simple.cpp 5.0 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183
  1. #include "common.h"
  2. #include "llama.h"
  3. #include <cmath>
  4. #include <cstdio>
  5. #include <string>
  6. #include <vector>
  7. int main(int argc, char ** argv) {
  8. gpt_params params;
  9. if (argc == 1 || argv[1][0] == '-') {
  10. printf("usage: %s MODEL_PATH [PROMPT]\n" , argv[0]);
  11. return 1 ;
  12. }
  13. if (argc >= 2) {
  14. params.model = argv[1];
  15. }
  16. if (argc >= 3) {
  17. params.prompt = argv[2];
  18. }
  19. if (params.prompt.empty()) {
  20. params.prompt = "Hello my name is";
  21. }
  22. // total length of the sequence including the prompt
  23. const int n_len = 32;
  24. // init LLM
  25. llama_backend_init();
  26. llama_numa_init(params.numa);
  27. // initialize the model
  28. llama_model_params model_params = llama_model_default_params();
  29. // model_params.n_gpu_layers = 99; // offload all layers to the GPU
  30. llama_model * model = llama_load_model_from_file(params.model.c_str(), model_params);
  31. if (model == NULL) {
  32. fprintf(stderr , "%s: error: unable to load model\n" , __func__);
  33. return 1;
  34. }
  35. // initialize the context
  36. llama_context_params ctx_params = llama_context_default_params();
  37. ctx_params.seed = 1234;
  38. ctx_params.n_ctx = 2048;
  39. ctx_params.n_threads = params.n_threads;
  40. ctx_params.n_threads_batch = params.n_threads_batch == -1 ? params.n_threads : params.n_threads_batch;
  41. llama_context * ctx = llama_new_context_with_model(model, ctx_params);
  42. if (ctx == NULL) {
  43. fprintf(stderr , "%s: error: failed to create the llama_context\n" , __func__);
  44. return 1;
  45. }
  46. // tokenize the prompt
  47. std::vector<llama_token> tokens_list;
  48. tokens_list = ::llama_tokenize(ctx, params.prompt, true);
  49. const int n_ctx = llama_n_ctx(ctx);
  50. const int n_kv_req = tokens_list.size() + (n_len - tokens_list.size());
  51. LOG_TEE("\n%s: n_len = %d, n_ctx = %d, n_kv_req = %d\n", __func__, n_len, n_ctx, n_kv_req);
  52. // make sure the KV cache is big enough to hold all the prompt and generated tokens
  53. if (n_kv_req > n_ctx) {
  54. LOG_TEE("%s: error: n_kv_req > n_ctx, the required KV cache size is not big enough\n", __func__);
  55. LOG_TEE("%s: either reduce n_len or increase n_ctx\n", __func__);
  56. return 1;
  57. }
  58. // print the prompt token-by-token
  59. fprintf(stderr, "\n");
  60. for (auto id : tokens_list) {
  61. fprintf(stderr, "%s", llama_token_to_piece(ctx, id).c_str());
  62. }
  63. fflush(stderr);
  64. // create a llama_batch with size 512
  65. // we use this object to submit token data for decoding
  66. llama_batch batch = llama_batch_init(512, 0, 1);
  67. // evaluate the initial prompt
  68. for (size_t i = 0; i < tokens_list.size(); i++) {
  69. llama_batch_add(batch, tokens_list[i], i, { 0 }, false);
  70. }
  71. // llama_decode will output logits only for the last token of the prompt
  72. batch.logits[batch.n_tokens - 1] = true;
  73. if (llama_decode(ctx, batch) != 0) {
  74. LOG_TEE("%s: llama_decode() failed\n", __func__);
  75. return 1;
  76. }
  77. // main loop
  78. int n_cur = batch.n_tokens;
  79. int n_decode = 0;
  80. const auto t_main_start = ggml_time_us();
  81. while (n_cur <= n_len) {
  82. // sample the next token
  83. {
  84. auto n_vocab = llama_n_vocab(model);
  85. auto * logits = llama_get_logits_ith(ctx, batch.n_tokens - 1);
  86. std::vector<llama_token_data> candidates;
  87. candidates.reserve(n_vocab);
  88. for (llama_token token_id = 0; token_id < n_vocab; token_id++) {
  89. candidates.emplace_back(llama_token_data{ token_id, logits[token_id], 0.0f });
  90. }
  91. llama_token_data_array candidates_p = { candidates.data(), candidates.size(), false };
  92. // sample the most likely token
  93. const llama_token new_token_id = llama_sample_token_greedy(ctx, &candidates_p);
  94. // is it an end of stream?
  95. if (new_token_id == llama_token_eos(model) || n_cur == n_len) {
  96. LOG_TEE("\n");
  97. break;
  98. }
  99. LOG_TEE("%s", llama_token_to_piece(ctx, new_token_id).c_str());
  100. fflush(stdout);
  101. // prepare the next batch
  102. llama_batch_clear(batch);
  103. // push this new token for next evaluation
  104. llama_batch_add(batch, new_token_id, n_cur, { 0 }, true);
  105. n_decode += 1;
  106. }
  107. n_cur += 1;
  108. // evaluate the current batch with the transformer model
  109. if (llama_decode(ctx, batch)) {
  110. fprintf(stderr, "%s : failed to eval, return code %d\n", __func__, 1);
  111. return 1;
  112. }
  113. }
  114. LOG_TEE("\n");
  115. const auto t_main_end = ggml_time_us();
  116. LOG_TEE("%s: decoded %d tokens in %.2f s, speed: %.2f t/s\n",
  117. __func__, n_decode, (t_main_end - t_main_start) / 1000000.0f, n_decode / ((t_main_end - t_main_start) / 1000000.0f));
  118. llama_print_timings(ctx);
  119. fprintf(stderr, "\n");
  120. llama_batch_free(batch);
  121. llama_free(ctx);
  122. llama_free_model(model);
  123. llama_backend_free();
  124. return 0;
  125. }