ggml.c 695 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284528552865287528852895290529152925293529452955296529752985299530053015302530353045305530653075308530953105311531253135314531553165317531853195320532153225323532453255326532753285329533053315332533353345335533653375338533953405341534253435344534553465347534853495350535153525353535453555356535753585359536053615362536353645365536653675368536953705371537253735374537553765377537853795380538153825383538453855386538753885389539053915392539353945395539653975398539954005401540254035404540554065407540854095410541154125413541454155416541754185419542054215422542354245425542654275428542954305431543254335434543554365437543854395440544154425443544454455446544754485449545054515452545354545455545654575458545954605461546254635464546554665467546854695470547154725473547454755476547754785479548054815482548354845485548654875488548954905491549254935494549554965497549854995500550155025503550455055506550755085509551055115512551355145515551655175518551955205521552255235524552555265527552855295530553155325533553455355536553755385539554055415542554355445545554655475548554955505551555255535554555555565557555855595560556155625563556455655566556755685569557055715572557355745575557655775578557955805581558255835584558555865587558855895590559155925593559455955596559755985599560056015602560356045605560656075608560956105611561256135614561556165617561856195620562156225623562456255626562756285629563056315632563356345635563656375638563956405641564256435644564556465647564856495650565156525653565456555656565756585659566056615662566356645665566656675668566956705671567256735674567556765677567856795680568156825683568456855686568756885689569056915692569356945695569656975698569957005701570257035704570557065707570857095710571157125713571457155716571757185719572057215722572357245725572657275728572957305731573257335734573557365737573857395740574157425743574457455746574757485749575057515752575357545755575657575758575957605761576257635764576557665767576857695770577157725773577457755776577757785779578057815782578357845785578657875788578957905791579257935794579557965797579857995800580158025803580458055806580758085809581058115812581358145815581658175818581958205821582258235824582558265827582858295830583158325833583458355836583758385839584058415842584358445845584658475848584958505851585258535854585558565857585858595860586158625863586458655866586758685869587058715872587358745875587658775878587958805881588258835884588558865887588858895890589158925893589458955896589758985899590059015902590359045905590659075908590959105911591259135914591559165917591859195920592159225923592459255926592759285929593059315932593359345935593659375938593959405941594259435944594559465947594859495950595159525953595459555956595759585959596059615962596359645965596659675968596959705971597259735974597559765977597859795980598159825983598459855986598759885989599059915992599359945995599659975998599960006001600260036004600560066007600860096010601160126013601460156016601760186019602060216022602360246025602660276028602960306031603260336034603560366037603860396040604160426043604460456046604760486049605060516052605360546055605660576058605960606061606260636064606560666067606860696070607160726073607460756076607760786079608060816082608360846085608660876088608960906091609260936094609560966097609860996100610161026103610461056106610761086109611061116112611361146115611661176118611961206121612261236124612561266127612861296130613161326133613461356136613761386139614061416142614361446145614661476148614961506151615261536154615561566157615861596160616161626163616461656166616761686169617061716172617361746175617661776178617961806181618261836184618561866187618861896190619161926193619461956196619761986199620062016202620362046205620662076208620962106211621262136214621562166217621862196220622162226223622462256226622762286229623062316232623362346235623662376238623962406241624262436244624562466247624862496250625162526253625462556256625762586259626062616262626362646265626662676268626962706271627262736274627562766277627862796280628162826283628462856286628762886289629062916292629362946295629662976298629963006301630263036304630563066307630863096310631163126313631463156316631763186319632063216322632363246325632663276328632963306331633263336334633563366337633863396340634163426343634463456346634763486349635063516352635363546355635663576358635963606361636263636364636563666367636863696370637163726373637463756376637763786379638063816382638363846385638663876388638963906391639263936394639563966397639863996400640164026403640464056406640764086409641064116412641364146415641664176418641964206421642264236424642564266427642864296430643164326433643464356436643764386439644064416442644364446445644664476448644964506451645264536454645564566457645864596460646164626463646464656466646764686469647064716472647364746475647664776478647964806481648264836484648564866487648864896490649164926493649464956496649764986499650065016502650365046505650665076508650965106511651265136514651565166517651865196520652165226523652465256526652765286529653065316532653365346535653665376538653965406541654265436544654565466547654865496550655165526553655465556556655765586559656065616562656365646565656665676568656965706571657265736574657565766577657865796580658165826583658465856586658765886589659065916592659365946595659665976598659966006601660266036604660566066607660866096610661166126613661466156616661766186619662066216622662366246625662666276628662966306631663266336634663566366637663866396640664166426643664466456646664766486649665066516652665366546655665666576658665966606661666266636664666566666667666866696670667166726673667466756676667766786679668066816682668366846685668666876688668966906691669266936694669566966697669866996700670167026703670467056706670767086709671067116712671367146715671667176718671967206721672267236724672567266727672867296730673167326733673467356736673767386739674067416742674367446745674667476748674967506751675267536754675567566757675867596760676167626763676467656766676767686769677067716772677367746775677667776778677967806781678267836784678567866787678867896790679167926793679467956796679767986799680068016802680368046805680668076808680968106811681268136814681568166817681868196820682168226823682468256826682768286829683068316832683368346835683668376838683968406841684268436844684568466847684868496850685168526853685468556856685768586859686068616862686368646865686668676868686968706871687268736874687568766877687868796880688168826883688468856886688768886889689068916892689368946895689668976898689969006901690269036904690569066907690869096910691169126913691469156916691769186919692069216922692369246925692669276928692969306931693269336934693569366937693869396940694169426943694469456946694769486949695069516952695369546955695669576958695969606961696269636964696569666967696869696970697169726973697469756976697769786979698069816982698369846985698669876988698969906991699269936994699569966997699869997000700170027003700470057006700770087009701070117012701370147015701670177018701970207021702270237024702570267027702870297030703170327033703470357036703770387039704070417042704370447045704670477048704970507051705270537054705570567057705870597060706170627063706470657066706770687069707070717072707370747075707670777078707970807081708270837084708570867087708870897090709170927093709470957096709770987099710071017102710371047105710671077108710971107111711271137114711571167117711871197120712171227123712471257126712771287129713071317132713371347135713671377138713971407141714271437144714571467147714871497150715171527153715471557156715771587159716071617162716371647165716671677168716971707171717271737174717571767177717871797180718171827183718471857186718771887189719071917192719371947195719671977198719972007201720272037204720572067207720872097210721172127213721472157216721772187219722072217222722372247225722672277228722972307231723272337234723572367237723872397240724172427243724472457246724772487249725072517252725372547255725672577258725972607261726272637264726572667267726872697270727172727273727472757276727772787279728072817282728372847285728672877288728972907291729272937294729572967297729872997300730173027303730473057306730773087309731073117312731373147315731673177318731973207321732273237324732573267327732873297330733173327333733473357336733773387339734073417342734373447345734673477348734973507351735273537354735573567357735873597360736173627363736473657366736773687369737073717372737373747375737673777378737973807381738273837384738573867387738873897390739173927393739473957396739773987399740074017402740374047405740674077408740974107411741274137414741574167417741874197420742174227423742474257426742774287429743074317432743374347435743674377438743974407441744274437444744574467447744874497450745174527453745474557456745774587459746074617462746374647465746674677468746974707471747274737474747574767477747874797480748174827483748474857486748774887489749074917492749374947495749674977498749975007501750275037504750575067507750875097510751175127513751475157516751775187519752075217522752375247525752675277528752975307531753275337534753575367537753875397540754175427543754475457546754775487549755075517552755375547555755675577558755975607561756275637564756575667567756875697570757175727573757475757576757775787579758075817582758375847585758675877588758975907591759275937594759575967597759875997600760176027603760476057606760776087609761076117612761376147615761676177618761976207621762276237624762576267627762876297630763176327633763476357636763776387639764076417642764376447645764676477648764976507651765276537654765576567657765876597660766176627663766476657666766776687669767076717672767376747675767676777678767976807681768276837684768576867687768876897690769176927693769476957696769776987699770077017702770377047705770677077708770977107711771277137714771577167717771877197720772177227723772477257726772777287729773077317732773377347735773677377738773977407741774277437744774577467747774877497750775177527753775477557756775777587759776077617762776377647765776677677768776977707771777277737774777577767777777877797780778177827783778477857786778777887789779077917792779377947795779677977798779978007801780278037804780578067807780878097810781178127813781478157816781778187819782078217822782378247825782678277828782978307831783278337834783578367837783878397840784178427843784478457846784778487849785078517852785378547855785678577858785978607861786278637864786578667867786878697870787178727873787478757876787778787879788078817882788378847885788678877888788978907891789278937894789578967897789878997900790179027903790479057906790779087909791079117912791379147915791679177918791979207921792279237924792579267927792879297930793179327933793479357936793779387939794079417942794379447945794679477948794979507951795279537954795579567957795879597960796179627963796479657966796779687969797079717972797379747975797679777978797979807981798279837984798579867987798879897990799179927993799479957996799779987999800080018002800380048005800680078008800980108011801280138014801580168017801880198020802180228023802480258026802780288029803080318032803380348035803680378038803980408041804280438044804580468047804880498050805180528053805480558056805780588059806080618062806380648065806680678068806980708071807280738074807580768077807880798080808180828083808480858086808780888089809080918092809380948095809680978098809981008101810281038104810581068107810881098110811181128113811481158116811781188119812081218122812381248125812681278128812981308131813281338134813581368137813881398140814181428143814481458146814781488149815081518152815381548155815681578158815981608161816281638164816581668167816881698170817181728173817481758176817781788179818081818182818381848185818681878188818981908191819281938194819581968197819881998200820182028203820482058206820782088209821082118212821382148215821682178218821982208221822282238224822582268227822882298230823182328233823482358236823782388239824082418242824382448245824682478248824982508251825282538254825582568257825882598260826182628263826482658266826782688269827082718272827382748275827682778278827982808281828282838284828582868287828882898290829182928293829482958296829782988299830083018302830383048305830683078308830983108311831283138314831583168317831883198320832183228323832483258326832783288329833083318332833383348335833683378338833983408341834283438344834583468347834883498350835183528353835483558356835783588359836083618362836383648365836683678368836983708371837283738374837583768377837883798380838183828383838483858386838783888389839083918392839383948395839683978398839984008401840284038404840584068407840884098410841184128413841484158416841784188419842084218422842384248425842684278428842984308431843284338434843584368437843884398440844184428443844484458446844784488449845084518452845384548455845684578458845984608461846284638464846584668467846884698470847184728473847484758476847784788479848084818482848384848485848684878488848984908491849284938494849584968497849884998500850185028503850485058506850785088509851085118512851385148515851685178518851985208521852285238524852585268527852885298530853185328533853485358536853785388539854085418542854385448545854685478548854985508551855285538554855585568557855885598560856185628563856485658566856785688569857085718572857385748575857685778578857985808581858285838584858585868587858885898590859185928593859485958596859785988599860086018602860386048605860686078608860986108611861286138614861586168617861886198620862186228623862486258626862786288629863086318632863386348635863686378638863986408641864286438644864586468647864886498650865186528653865486558656865786588659866086618662866386648665866686678668866986708671867286738674867586768677867886798680868186828683868486858686868786888689869086918692869386948695869686978698869987008701870287038704870587068707870887098710871187128713871487158716871787188719872087218722872387248725872687278728872987308731873287338734873587368737873887398740874187428743874487458746874787488749875087518752875387548755875687578758875987608761876287638764876587668767876887698770877187728773877487758776877787788779878087818782878387848785878687878788878987908791879287938794879587968797879887998800880188028803880488058806880788088809881088118812881388148815881688178818881988208821882288238824882588268827882888298830883188328833883488358836883788388839884088418842884388448845884688478848884988508851885288538854885588568857885888598860886188628863886488658866886788688869887088718872887388748875887688778878887988808881888288838884888588868887888888898890889188928893889488958896889788988899890089018902890389048905890689078908890989108911891289138914891589168917891889198920892189228923892489258926892789288929893089318932893389348935893689378938893989408941894289438944894589468947894889498950895189528953895489558956895789588959896089618962896389648965896689678968896989708971897289738974897589768977897889798980898189828983898489858986898789888989899089918992899389948995899689978998899990009001900290039004900590069007900890099010901190129013901490159016901790189019902090219022902390249025902690279028902990309031903290339034903590369037903890399040904190429043904490459046904790489049905090519052905390549055905690579058905990609061906290639064906590669067906890699070907190729073907490759076907790789079908090819082908390849085908690879088908990909091909290939094909590969097909890999100910191029103910491059106910791089109911091119112911391149115911691179118911991209121912291239124912591269127912891299130913191329133913491359136913791389139914091419142914391449145914691479148914991509151915291539154915591569157915891599160916191629163916491659166916791689169917091719172917391749175917691779178917991809181918291839184918591869187918891899190919191929193919491959196919791989199920092019202920392049205920692079208920992109211921292139214921592169217921892199220922192229223922492259226922792289229923092319232923392349235923692379238923992409241924292439244924592469247924892499250925192529253925492559256925792589259926092619262926392649265926692679268926992709271927292739274927592769277927892799280928192829283928492859286928792889289929092919292929392949295929692979298929993009301930293039304930593069307930893099310931193129313931493159316931793189319932093219322932393249325932693279328932993309331933293339334933593369337933893399340934193429343934493459346934793489349935093519352935393549355935693579358935993609361936293639364936593669367936893699370937193729373937493759376937793789379938093819382938393849385938693879388938993909391939293939394939593969397939893999400940194029403940494059406940794089409941094119412941394149415941694179418941994209421942294239424942594269427942894299430943194329433943494359436943794389439944094419442944394449445944694479448944994509451945294539454945594569457945894599460946194629463946494659466946794689469947094719472947394749475947694779478947994809481948294839484948594869487948894899490949194929493949494959496949794989499950095019502950395049505950695079508950995109511951295139514951595169517951895199520952195229523952495259526952795289529953095319532953395349535953695379538953995409541954295439544954595469547954895499550955195529553955495559556955795589559956095619562956395649565956695679568956995709571957295739574957595769577957895799580958195829583958495859586958795889589959095919592959395949595959695979598959996009601960296039604960596069607960896099610961196129613961496159616961796189619962096219622962396249625962696279628962996309631963296339634963596369637963896399640964196429643964496459646964796489649965096519652965396549655965696579658965996609661966296639664966596669667966896699670967196729673967496759676967796789679968096819682968396849685968696879688968996909691969296939694969596969697969896999700970197029703970497059706970797089709971097119712971397149715971697179718971997209721972297239724972597269727972897299730973197329733973497359736973797389739974097419742974397449745974697479748974997509751975297539754975597569757975897599760976197629763976497659766976797689769977097719772977397749775977697779778977997809781978297839784978597869787978897899790979197929793979497959796979797989799980098019802980398049805980698079808980998109811981298139814981598169817981898199820982198229823982498259826982798289829983098319832983398349835983698379838983998409841984298439844984598469847984898499850985198529853985498559856985798589859986098619862986398649865986698679868986998709871987298739874987598769877987898799880988198829883988498859886988798889889989098919892989398949895989698979898989999009901990299039904990599069907990899099910991199129913991499159916991799189919992099219922992399249925992699279928992999309931993299339934993599369937993899399940994199429943994499459946994799489949995099519952995399549955995699579958995999609961996299639964996599669967996899699970997199729973997499759976997799789979998099819982998399849985998699879988998999909991999299939994999599969997999899991000010001100021000310004100051000610007100081000910010100111001210013100141001510016100171001810019100201002110022100231002410025100261002710028100291003010031100321003310034100351003610037100381003910040100411004210043100441004510046100471004810049100501005110052100531005410055100561005710058100591006010061100621006310064100651006610067100681006910070100711007210073100741007510076100771007810079100801008110082100831008410085100861008710088100891009010091100921009310094100951009610097100981009910100101011010210103101041010510106101071010810109101101011110112101131011410115101161011710118101191012010121101221012310124101251012610127101281012910130101311013210133101341013510136101371013810139101401014110142101431014410145101461014710148101491015010151101521015310154101551015610157101581015910160101611016210163101641016510166101671016810169101701017110172101731017410175101761017710178101791018010181101821018310184101851018610187101881018910190101911019210193101941019510196101971019810199102001020110202102031020410205102061020710208102091021010211102121021310214102151021610217102181021910220102211022210223102241022510226102271022810229102301023110232102331023410235102361023710238102391024010241102421024310244102451024610247102481024910250102511025210253102541025510256102571025810259102601026110262102631026410265102661026710268102691027010271102721027310274102751027610277102781027910280102811028210283102841028510286102871028810289102901029110292102931029410295102961029710298102991030010301103021030310304103051030610307103081030910310103111031210313103141031510316103171031810319103201032110322103231032410325103261032710328103291033010331103321033310334103351033610337103381033910340103411034210343103441034510346103471034810349103501035110352103531035410355103561035710358103591036010361103621036310364103651036610367103681036910370103711037210373103741037510376103771037810379103801038110382103831038410385103861038710388103891039010391103921039310394103951039610397103981039910400104011040210403104041040510406104071040810409104101041110412104131041410415104161041710418104191042010421104221042310424104251042610427104281042910430104311043210433104341043510436104371043810439104401044110442104431044410445104461044710448104491045010451104521045310454104551045610457104581045910460104611046210463104641046510466104671046810469104701047110472104731047410475104761047710478104791048010481104821048310484104851048610487104881048910490104911049210493104941049510496104971049810499105001050110502105031050410505105061050710508105091051010511105121051310514105151051610517105181051910520105211052210523105241052510526105271052810529105301053110532105331053410535105361053710538105391054010541105421054310544105451054610547105481054910550105511055210553105541055510556105571055810559105601056110562105631056410565105661056710568105691057010571105721057310574105751057610577105781057910580105811058210583105841058510586105871058810589105901059110592105931059410595105961059710598105991060010601106021060310604106051060610607106081060910610106111061210613106141061510616106171061810619106201062110622106231062410625106261062710628106291063010631106321063310634106351063610637106381063910640106411064210643106441064510646106471064810649106501065110652106531065410655106561065710658106591066010661106621066310664106651066610667106681066910670106711067210673106741067510676106771067810679106801068110682106831068410685106861068710688106891069010691106921069310694106951069610697106981069910700107011070210703107041070510706107071070810709107101071110712107131071410715107161071710718107191072010721107221072310724107251072610727107281072910730107311073210733107341073510736107371073810739107401074110742107431074410745107461074710748107491075010751107521075310754107551075610757107581075910760107611076210763107641076510766107671076810769107701077110772107731077410775107761077710778107791078010781107821078310784107851078610787107881078910790107911079210793107941079510796107971079810799108001080110802108031080410805108061080710808108091081010811108121081310814108151081610817108181081910820108211082210823108241082510826108271082810829108301083110832108331083410835108361083710838108391084010841108421084310844108451084610847108481084910850108511085210853108541085510856108571085810859108601086110862108631086410865108661086710868108691087010871108721087310874108751087610877108781087910880108811088210883108841088510886108871088810889108901089110892108931089410895108961089710898108991090010901109021090310904109051090610907109081090910910109111091210913109141091510916109171091810919109201092110922109231092410925109261092710928109291093010931109321093310934109351093610937109381093910940109411094210943109441094510946109471094810949109501095110952109531095410955109561095710958109591096010961109621096310964109651096610967109681096910970109711097210973109741097510976109771097810979109801098110982109831098410985109861098710988109891099010991109921099310994109951099610997109981099911000110011100211003110041100511006110071100811009110101101111012110131101411015110161101711018110191102011021110221102311024110251102611027110281102911030110311103211033110341103511036110371103811039110401104111042110431104411045110461104711048110491105011051110521105311054110551105611057110581105911060110611106211063110641106511066110671106811069110701107111072110731107411075110761107711078110791108011081110821108311084110851108611087110881108911090110911109211093110941109511096110971109811099111001110111102111031110411105111061110711108111091111011111111121111311114111151111611117111181111911120111211112211123111241112511126111271112811129111301113111132111331113411135111361113711138111391114011141111421114311144111451114611147111481114911150111511115211153111541115511156111571115811159111601116111162111631116411165111661116711168111691117011171111721117311174111751117611177111781117911180111811118211183111841118511186111871118811189111901119111192111931119411195111961119711198111991120011201112021120311204112051120611207112081120911210112111121211213112141121511216112171121811219112201122111222112231122411225112261122711228112291123011231112321123311234112351123611237112381123911240112411124211243112441124511246112471124811249112501125111252112531125411255112561125711258112591126011261112621126311264112651126611267112681126911270112711127211273112741127511276112771127811279112801128111282112831128411285112861128711288112891129011291112921129311294112951129611297112981129911300113011130211303113041130511306113071130811309113101131111312113131131411315113161131711318113191132011321113221132311324113251132611327113281132911330113311133211333113341133511336113371133811339113401134111342113431134411345113461134711348113491135011351113521135311354113551135611357113581135911360113611136211363113641136511366113671136811369113701137111372113731137411375113761137711378113791138011381113821138311384113851138611387113881138911390113911139211393113941139511396113971139811399114001140111402114031140411405114061140711408114091141011411114121141311414114151141611417114181141911420114211142211423114241142511426114271142811429114301143111432114331143411435114361143711438114391144011441114421144311444114451144611447114481144911450114511145211453114541145511456114571145811459114601146111462114631146411465114661146711468114691147011471114721147311474114751147611477114781147911480114811148211483114841148511486114871148811489114901149111492114931149411495114961149711498114991150011501115021150311504115051150611507115081150911510115111151211513115141151511516115171151811519115201152111522115231152411525115261152711528115291153011531115321153311534115351153611537115381153911540115411154211543115441154511546115471154811549115501155111552115531155411555115561155711558115591156011561115621156311564115651156611567115681156911570115711157211573115741157511576115771157811579115801158111582115831158411585115861158711588115891159011591115921159311594115951159611597115981159911600116011160211603116041160511606116071160811609116101161111612116131161411615116161161711618116191162011621116221162311624116251162611627116281162911630116311163211633116341163511636116371163811639116401164111642116431164411645116461164711648116491165011651116521165311654116551165611657116581165911660116611166211663116641166511666116671166811669116701167111672116731167411675116761167711678116791168011681116821168311684116851168611687116881168911690116911169211693116941169511696116971169811699117001170111702117031170411705117061170711708117091171011711117121171311714117151171611717117181171911720117211172211723117241172511726117271172811729117301173111732117331173411735117361173711738117391174011741117421174311744117451174611747117481174911750117511175211753117541175511756117571175811759117601176111762117631176411765117661176711768117691177011771117721177311774117751177611777117781177911780117811178211783117841178511786117871178811789117901179111792117931179411795117961179711798117991180011801118021180311804118051180611807118081180911810118111181211813118141181511816118171181811819118201182111822118231182411825118261182711828118291183011831118321183311834118351183611837118381183911840118411184211843118441184511846118471184811849118501185111852118531185411855118561185711858118591186011861118621186311864118651186611867118681186911870118711187211873118741187511876118771187811879118801188111882118831188411885118861188711888118891189011891118921189311894118951189611897118981189911900119011190211903119041190511906119071190811909119101191111912119131191411915119161191711918119191192011921119221192311924119251192611927119281192911930119311193211933119341193511936119371193811939119401194111942119431194411945119461194711948119491195011951119521195311954119551195611957119581195911960119611196211963119641196511966119671196811969119701197111972119731197411975119761197711978119791198011981119821198311984119851198611987119881198911990119911199211993119941199511996119971199811999120001200112002120031200412005120061200712008120091201012011120121201312014120151201612017120181201912020120211202212023120241202512026120271202812029120301203112032120331203412035120361203712038120391204012041120421204312044120451204612047120481204912050120511205212053120541205512056120571205812059120601206112062120631206412065120661206712068120691207012071120721207312074120751207612077120781207912080120811208212083120841208512086120871208812089120901209112092120931209412095120961209712098120991210012101121021210312104121051210612107121081210912110121111211212113121141211512116121171211812119121201212112122121231212412125121261212712128121291213012131121321213312134121351213612137121381213912140121411214212143121441214512146121471214812149121501215112152121531215412155121561215712158121591216012161121621216312164121651216612167121681216912170121711217212173121741217512176121771217812179121801218112182121831218412185121861218712188121891219012191121921219312194121951219612197121981219912200122011220212203122041220512206122071220812209122101221112212122131221412215122161221712218122191222012221122221222312224122251222612227122281222912230122311223212233122341223512236122371223812239122401224112242122431224412245122461224712248122491225012251122521225312254122551225612257122581225912260122611226212263122641226512266122671226812269122701227112272122731227412275122761227712278122791228012281122821228312284122851228612287122881228912290122911229212293122941229512296122971229812299123001230112302123031230412305123061230712308123091231012311123121231312314123151231612317123181231912320123211232212323123241232512326123271232812329123301233112332123331233412335123361233712338123391234012341123421234312344123451234612347123481234912350123511235212353123541235512356123571235812359123601236112362123631236412365123661236712368123691237012371123721237312374123751237612377123781237912380123811238212383123841238512386123871238812389123901239112392123931239412395123961239712398123991240012401124021240312404124051240612407124081240912410124111241212413124141241512416124171241812419124201242112422124231242412425124261242712428124291243012431124321243312434124351243612437124381243912440124411244212443124441244512446124471244812449124501245112452124531245412455124561245712458124591246012461124621246312464124651246612467124681246912470124711247212473124741247512476124771247812479124801248112482124831248412485124861248712488124891249012491124921249312494124951249612497124981249912500125011250212503125041250512506125071250812509125101251112512125131251412515125161251712518125191252012521125221252312524125251252612527125281252912530125311253212533125341253512536125371253812539125401254112542125431254412545125461254712548125491255012551125521255312554125551255612557125581255912560125611256212563125641256512566125671256812569125701257112572125731257412575125761257712578125791258012581125821258312584125851258612587125881258912590125911259212593125941259512596125971259812599126001260112602126031260412605126061260712608126091261012611126121261312614126151261612617126181261912620126211262212623126241262512626126271262812629126301263112632126331263412635126361263712638126391264012641126421264312644126451264612647126481264912650126511265212653126541265512656126571265812659126601266112662126631266412665126661266712668126691267012671126721267312674126751267612677126781267912680126811268212683126841268512686126871268812689126901269112692126931269412695126961269712698126991270012701127021270312704127051270612707127081270912710127111271212713127141271512716127171271812719127201272112722127231272412725127261272712728127291273012731127321273312734127351273612737127381273912740127411274212743127441274512746127471274812749127501275112752127531275412755127561275712758127591276012761127621276312764127651276612767127681276912770127711277212773127741277512776127771277812779127801278112782127831278412785127861278712788127891279012791127921279312794127951279612797127981279912800128011280212803128041280512806128071280812809128101281112812128131281412815128161281712818128191282012821128221282312824128251282612827128281282912830128311283212833128341283512836128371283812839128401284112842128431284412845128461284712848128491285012851128521285312854128551285612857128581285912860128611286212863128641286512866128671286812869128701287112872128731287412875128761287712878128791288012881128821288312884128851288612887128881288912890128911289212893128941289512896128971289812899129001290112902129031290412905129061290712908129091291012911129121291312914129151291612917129181291912920129211292212923129241292512926129271292812929129301293112932129331293412935129361293712938129391294012941129421294312944129451294612947129481294912950129511295212953129541295512956129571295812959129601296112962129631296412965129661296712968129691297012971129721297312974129751297612977129781297912980129811298212983129841298512986129871298812989129901299112992129931299412995129961299712998129991300013001130021300313004130051300613007130081300913010130111301213013130141301513016130171301813019130201302113022130231302413025130261302713028130291303013031130321303313034130351303613037130381303913040130411304213043130441304513046130471304813049130501305113052130531305413055130561305713058130591306013061130621306313064130651306613067130681306913070130711307213073130741307513076130771307813079130801308113082130831308413085130861308713088130891309013091130921309313094130951309613097130981309913100131011310213103131041310513106131071310813109131101311113112131131311413115131161311713118131191312013121131221312313124131251312613127131281312913130131311313213133131341313513136131371313813139131401314113142131431314413145131461314713148131491315013151131521315313154131551315613157131581315913160131611316213163131641316513166131671316813169131701317113172131731317413175131761317713178131791318013181131821318313184131851318613187131881318913190131911319213193131941319513196131971319813199132001320113202132031320413205132061320713208132091321013211132121321313214132151321613217132181321913220132211322213223132241322513226132271322813229132301323113232132331323413235132361323713238132391324013241132421324313244132451324613247132481324913250132511325213253132541325513256132571325813259132601326113262132631326413265132661326713268132691327013271132721327313274132751327613277132781327913280132811328213283132841328513286132871328813289132901329113292132931329413295132961329713298132991330013301133021330313304133051330613307133081330913310133111331213313133141331513316133171331813319133201332113322133231332413325133261332713328133291333013331133321333313334133351333613337133381333913340133411334213343133441334513346133471334813349133501335113352133531335413355133561335713358133591336013361133621336313364133651336613367133681336913370133711337213373133741337513376133771337813379133801338113382133831338413385133861338713388133891339013391133921339313394133951339613397133981339913400134011340213403134041340513406134071340813409134101341113412134131341413415134161341713418134191342013421134221342313424134251342613427134281342913430134311343213433134341343513436134371343813439134401344113442134431344413445134461344713448134491345013451134521345313454134551345613457134581345913460134611346213463134641346513466134671346813469134701347113472134731347413475134761347713478134791348013481134821348313484134851348613487134881348913490134911349213493134941349513496134971349813499135001350113502135031350413505135061350713508135091351013511135121351313514135151351613517135181351913520135211352213523135241352513526135271352813529135301353113532135331353413535135361353713538135391354013541135421354313544135451354613547135481354913550135511355213553135541355513556135571355813559135601356113562135631356413565135661356713568135691357013571135721357313574135751357613577135781357913580135811358213583135841358513586135871358813589135901359113592135931359413595135961359713598135991360013601136021360313604136051360613607136081360913610136111361213613136141361513616136171361813619136201362113622136231362413625136261362713628136291363013631136321363313634136351363613637136381363913640136411364213643136441364513646136471364813649136501365113652136531365413655136561365713658136591366013661136621366313664136651366613667136681366913670136711367213673136741367513676136771367813679136801368113682136831368413685136861368713688136891369013691136921369313694136951369613697136981369913700137011370213703137041370513706137071370813709137101371113712137131371413715137161371713718137191372013721137221372313724137251372613727137281372913730137311373213733137341373513736137371373813739137401374113742137431374413745137461374713748137491375013751137521375313754137551375613757137581375913760137611376213763137641376513766137671376813769137701377113772137731377413775137761377713778137791378013781137821378313784137851378613787137881378913790137911379213793137941379513796137971379813799138001380113802138031380413805138061380713808138091381013811138121381313814138151381613817138181381913820138211382213823138241382513826138271382813829138301383113832138331383413835138361383713838138391384013841138421384313844138451384613847138481384913850138511385213853138541385513856138571385813859138601386113862138631386413865138661386713868138691387013871138721387313874138751387613877138781387913880138811388213883138841388513886138871388813889138901389113892138931389413895138961389713898138991390013901139021390313904139051390613907139081390913910139111391213913139141391513916139171391813919139201392113922139231392413925139261392713928139291393013931139321393313934139351393613937139381393913940139411394213943139441394513946139471394813949139501395113952139531395413955139561395713958139591396013961139621396313964139651396613967139681396913970139711397213973139741397513976139771397813979139801398113982139831398413985139861398713988139891399013991139921399313994139951399613997139981399914000140011400214003140041400514006140071400814009140101401114012140131401414015140161401714018140191402014021140221402314024140251402614027140281402914030140311403214033140341403514036140371403814039140401404114042140431404414045140461404714048140491405014051140521405314054140551405614057140581405914060140611406214063140641406514066140671406814069140701407114072140731407414075140761407714078140791408014081140821408314084140851408614087140881408914090140911409214093140941409514096140971409814099141001410114102141031410414105141061410714108141091411014111141121411314114141151411614117141181411914120141211412214123141241412514126141271412814129141301413114132141331413414135141361413714138141391414014141141421414314144141451414614147141481414914150141511415214153141541415514156141571415814159141601416114162141631416414165141661416714168141691417014171141721417314174141751417614177141781417914180141811418214183141841418514186141871418814189141901419114192141931419414195141961419714198141991420014201142021420314204142051420614207142081420914210142111421214213142141421514216142171421814219142201422114222142231422414225142261422714228142291423014231142321423314234142351423614237142381423914240142411424214243142441424514246142471424814249142501425114252142531425414255142561425714258142591426014261142621426314264142651426614267142681426914270142711427214273142741427514276142771427814279142801428114282142831428414285142861428714288142891429014291142921429314294142951429614297142981429914300143011430214303143041430514306143071430814309143101431114312143131431414315143161431714318143191432014321143221432314324143251432614327143281432914330143311433214333143341433514336143371433814339143401434114342143431434414345143461434714348143491435014351143521435314354143551435614357143581435914360143611436214363143641436514366143671436814369143701437114372143731437414375143761437714378143791438014381143821438314384143851438614387143881438914390143911439214393143941439514396143971439814399144001440114402144031440414405144061440714408144091441014411144121441314414144151441614417144181441914420144211442214423144241442514426144271442814429144301443114432144331443414435144361443714438144391444014441144421444314444144451444614447144481444914450144511445214453144541445514456144571445814459144601446114462144631446414465144661446714468144691447014471144721447314474144751447614477144781447914480144811448214483144841448514486144871448814489144901449114492144931449414495144961449714498144991450014501145021450314504145051450614507145081450914510145111451214513145141451514516145171451814519145201452114522145231452414525145261452714528145291453014531145321453314534145351453614537145381453914540145411454214543145441454514546145471454814549145501455114552145531455414555145561455714558145591456014561145621456314564145651456614567145681456914570145711457214573145741457514576145771457814579145801458114582145831458414585145861458714588145891459014591145921459314594145951459614597145981459914600146011460214603146041460514606146071460814609146101461114612146131461414615146161461714618146191462014621146221462314624146251462614627146281462914630146311463214633146341463514636146371463814639146401464114642146431464414645146461464714648146491465014651146521465314654146551465614657146581465914660146611466214663146641466514666146671466814669146701467114672146731467414675146761467714678146791468014681146821468314684146851468614687146881468914690146911469214693146941469514696146971469814699147001470114702147031470414705147061470714708147091471014711147121471314714147151471614717147181471914720147211472214723147241472514726147271472814729147301473114732147331473414735147361473714738147391474014741147421474314744147451474614747147481474914750147511475214753147541475514756147571475814759147601476114762147631476414765147661476714768147691477014771147721477314774147751477614777147781477914780147811478214783147841478514786147871478814789147901479114792147931479414795147961479714798147991480014801148021480314804148051480614807148081480914810148111481214813148141481514816148171481814819148201482114822148231482414825148261482714828148291483014831148321483314834148351483614837148381483914840148411484214843148441484514846148471484814849148501485114852148531485414855148561485714858148591486014861148621486314864148651486614867148681486914870148711487214873148741487514876148771487814879148801488114882148831488414885148861488714888148891489014891148921489314894148951489614897148981489914900149011490214903149041490514906149071490814909149101491114912149131491414915149161491714918149191492014921149221492314924149251492614927149281492914930149311493214933149341493514936149371493814939149401494114942149431494414945149461494714948149491495014951149521495314954149551495614957149581495914960149611496214963149641496514966149671496814969149701497114972149731497414975149761497714978149791498014981149821498314984149851498614987149881498914990149911499214993149941499514996149971499814999150001500115002150031500415005150061500715008150091501015011150121501315014150151501615017150181501915020150211502215023150241502515026150271502815029150301503115032150331503415035150361503715038150391504015041150421504315044150451504615047150481504915050150511505215053150541505515056150571505815059150601506115062150631506415065150661506715068150691507015071150721507315074150751507615077150781507915080150811508215083150841508515086150871508815089150901509115092150931509415095150961509715098150991510015101151021510315104151051510615107151081510915110151111511215113151141511515116151171511815119151201512115122151231512415125151261512715128151291513015131151321513315134151351513615137151381513915140151411514215143151441514515146151471514815149151501515115152151531515415155151561515715158151591516015161151621516315164151651516615167151681516915170151711517215173151741517515176151771517815179151801518115182151831518415185151861518715188151891519015191151921519315194151951519615197151981519915200152011520215203152041520515206152071520815209152101521115212152131521415215152161521715218152191522015221152221522315224152251522615227152281522915230152311523215233152341523515236152371523815239152401524115242152431524415245152461524715248152491525015251152521525315254152551525615257152581525915260152611526215263152641526515266152671526815269152701527115272152731527415275152761527715278152791528015281152821528315284152851528615287152881528915290152911529215293152941529515296152971529815299153001530115302153031530415305153061530715308153091531015311153121531315314153151531615317153181531915320153211532215323153241532515326153271532815329153301533115332153331533415335153361533715338153391534015341153421534315344153451534615347153481534915350153511535215353153541535515356153571535815359153601536115362153631536415365153661536715368153691537015371153721537315374153751537615377153781537915380153811538215383153841538515386153871538815389153901539115392153931539415395153961539715398153991540015401154021540315404154051540615407154081540915410154111541215413154141541515416154171541815419154201542115422154231542415425154261542715428154291543015431154321543315434154351543615437154381543915440154411544215443154441544515446154471544815449154501545115452154531545415455154561545715458154591546015461154621546315464154651546615467154681546915470154711547215473154741547515476154771547815479154801548115482154831548415485154861548715488154891549015491154921549315494154951549615497154981549915500155011550215503155041550515506155071550815509155101551115512155131551415515155161551715518155191552015521155221552315524155251552615527155281552915530155311553215533155341553515536155371553815539155401554115542155431554415545155461554715548155491555015551155521555315554155551555615557155581555915560155611556215563155641556515566155671556815569155701557115572155731557415575155761557715578155791558015581155821558315584155851558615587155881558915590155911559215593155941559515596155971559815599156001560115602156031560415605156061560715608156091561015611156121561315614156151561615617156181561915620156211562215623156241562515626156271562815629156301563115632156331563415635156361563715638156391564015641156421564315644156451564615647156481564915650156511565215653156541565515656156571565815659156601566115662156631566415665156661566715668156691567015671156721567315674156751567615677156781567915680156811568215683156841568515686156871568815689156901569115692156931569415695156961569715698156991570015701157021570315704157051570615707157081570915710157111571215713157141571515716157171571815719157201572115722157231572415725157261572715728157291573015731157321573315734157351573615737157381573915740157411574215743157441574515746157471574815749157501575115752157531575415755157561575715758157591576015761157621576315764157651576615767157681576915770157711577215773157741577515776157771577815779157801578115782157831578415785157861578715788157891579015791157921579315794157951579615797157981579915800158011580215803158041580515806158071580815809158101581115812158131581415815158161581715818158191582015821158221582315824158251582615827158281582915830158311583215833158341583515836158371583815839158401584115842158431584415845158461584715848158491585015851158521585315854158551585615857158581585915860158611586215863158641586515866158671586815869158701587115872158731587415875158761587715878158791588015881158821588315884158851588615887158881588915890158911589215893158941589515896158971589815899159001590115902159031590415905159061590715908159091591015911159121591315914159151591615917159181591915920159211592215923159241592515926159271592815929159301593115932159331593415935159361593715938159391594015941159421594315944159451594615947159481594915950159511595215953159541595515956159571595815959159601596115962159631596415965159661596715968159691597015971159721597315974159751597615977159781597915980159811598215983159841598515986159871598815989159901599115992159931599415995159961599715998159991600016001160021600316004160051600616007160081600916010160111601216013160141601516016160171601816019160201602116022160231602416025160261602716028160291603016031160321603316034160351603616037160381603916040160411604216043160441604516046160471604816049160501605116052160531605416055160561605716058160591606016061160621606316064160651606616067160681606916070160711607216073160741607516076160771607816079160801608116082160831608416085160861608716088160891609016091160921609316094160951609616097160981609916100161011610216103161041610516106161071610816109161101611116112161131611416115161161611716118161191612016121161221612316124161251612616127161281612916130161311613216133161341613516136161371613816139161401614116142161431614416145161461614716148161491615016151161521615316154161551615616157161581615916160161611616216163161641616516166161671616816169161701617116172161731617416175161761617716178161791618016181161821618316184161851618616187161881618916190161911619216193161941619516196161971619816199162001620116202162031620416205162061620716208162091621016211162121621316214162151621616217162181621916220162211622216223162241622516226162271622816229162301623116232162331623416235162361623716238162391624016241162421624316244162451624616247162481624916250162511625216253162541625516256162571625816259162601626116262162631626416265162661626716268162691627016271162721627316274162751627616277162781627916280162811628216283162841628516286162871628816289162901629116292162931629416295162961629716298162991630016301163021630316304163051630616307163081630916310163111631216313163141631516316163171631816319163201632116322163231632416325163261632716328163291633016331163321633316334163351633616337163381633916340163411634216343163441634516346163471634816349163501635116352163531635416355163561635716358163591636016361163621636316364163651636616367163681636916370163711637216373163741637516376163771637816379163801638116382163831638416385163861638716388163891639016391163921639316394163951639616397163981639916400164011640216403164041640516406164071640816409164101641116412164131641416415164161641716418164191642016421164221642316424164251642616427164281642916430164311643216433164341643516436164371643816439164401644116442164431644416445164461644716448164491645016451164521645316454164551645616457164581645916460164611646216463164641646516466164671646816469164701647116472164731647416475164761647716478164791648016481164821648316484164851648616487164881648916490164911649216493164941649516496164971649816499165001650116502165031650416505165061650716508165091651016511165121651316514165151651616517165181651916520165211652216523165241652516526165271652816529165301653116532165331653416535165361653716538165391654016541165421654316544165451654616547165481654916550165511655216553165541655516556165571655816559165601656116562165631656416565165661656716568165691657016571165721657316574165751657616577165781657916580165811658216583165841658516586165871658816589165901659116592165931659416595165961659716598165991660016601166021660316604166051660616607166081660916610166111661216613166141661516616166171661816619166201662116622166231662416625166261662716628166291663016631166321663316634166351663616637166381663916640166411664216643166441664516646166471664816649166501665116652166531665416655166561665716658166591666016661166621666316664166651666616667166681666916670166711667216673166741667516676166771667816679166801668116682166831668416685166861668716688166891669016691166921669316694166951669616697166981669916700167011670216703167041670516706167071670816709167101671116712167131671416715167161671716718167191672016721167221672316724167251672616727167281672916730167311673216733167341673516736167371673816739167401674116742167431674416745167461674716748167491675016751167521675316754167551675616757167581675916760167611676216763167641676516766167671676816769167701677116772167731677416775167761677716778167791678016781167821678316784167851678616787167881678916790167911679216793167941679516796167971679816799168001680116802168031680416805168061680716808168091681016811168121681316814168151681616817168181681916820168211682216823168241682516826168271682816829168301683116832168331683416835168361683716838168391684016841168421684316844168451684616847168481684916850168511685216853168541685516856168571685816859168601686116862168631686416865168661686716868168691687016871168721687316874168751687616877168781687916880168811688216883168841688516886168871688816889168901689116892168931689416895168961689716898168991690016901169021690316904169051690616907169081690916910169111691216913169141691516916169171691816919169201692116922169231692416925169261692716928169291693016931169321693316934169351693616937169381693916940169411694216943169441694516946169471694816949169501695116952169531695416955169561695716958169591696016961169621696316964169651696616967169681696916970169711697216973169741697516976169771697816979169801698116982169831698416985169861698716988169891699016991169921699316994169951699616997169981699917000170011700217003170041700517006170071700817009170101701117012170131701417015170161701717018170191702017021170221702317024170251702617027170281702917030170311703217033170341703517036170371703817039170401704117042170431704417045170461704717048170491705017051170521705317054170551705617057170581705917060170611706217063170641706517066170671706817069170701707117072170731707417075170761707717078170791708017081170821708317084170851708617087170881708917090170911709217093170941709517096170971709817099171001710117102171031710417105171061710717108171091711017111171121711317114171151711617117171181711917120171211712217123171241712517126171271712817129171301713117132171331713417135171361713717138171391714017141171421714317144171451714617147171481714917150171511715217153171541715517156171571715817159171601716117162171631716417165171661716717168171691717017171171721717317174171751717617177171781717917180171811718217183171841718517186171871718817189171901719117192171931719417195171961719717198171991720017201172021720317204172051720617207172081720917210172111721217213172141721517216172171721817219172201722117222172231722417225172261722717228172291723017231172321723317234172351723617237172381723917240172411724217243172441724517246172471724817249172501725117252172531725417255172561725717258172591726017261172621726317264172651726617267172681726917270172711727217273172741727517276172771727817279172801728117282172831728417285172861728717288172891729017291172921729317294172951729617297172981729917300173011730217303173041730517306173071730817309173101731117312173131731417315173161731717318173191732017321173221732317324173251732617327173281732917330173311733217333173341733517336173371733817339173401734117342173431734417345173461734717348173491735017351173521735317354173551735617357173581735917360173611736217363173641736517366173671736817369173701737117372173731737417375173761737717378173791738017381173821738317384173851738617387173881738917390173911739217393173941739517396173971739817399174001740117402174031740417405174061740717408174091741017411174121741317414174151741617417174181741917420174211742217423174241742517426174271742817429174301743117432174331743417435174361743717438174391744017441174421744317444174451744617447174481744917450174511745217453174541745517456174571745817459174601746117462174631746417465174661746717468174691747017471174721747317474174751747617477174781747917480174811748217483174841748517486174871748817489174901749117492174931749417495174961749717498174991750017501175021750317504175051750617507175081750917510175111751217513175141751517516175171751817519175201752117522175231752417525175261752717528175291753017531175321753317534175351753617537175381753917540175411754217543175441754517546175471754817549175501755117552175531755417555175561755717558175591756017561175621756317564175651756617567175681756917570175711757217573175741757517576175771757817579175801758117582175831758417585175861758717588175891759017591175921759317594175951759617597175981759917600176011760217603176041760517606176071760817609176101761117612176131761417615176161761717618176191762017621176221762317624176251762617627176281762917630176311763217633176341763517636176371763817639176401764117642176431764417645176461764717648176491765017651176521765317654176551765617657176581765917660176611766217663176641766517666176671766817669176701767117672176731767417675176761767717678176791768017681176821768317684176851768617687176881768917690176911769217693176941769517696176971769817699177001770117702177031770417705177061770717708177091771017711177121771317714177151771617717177181771917720177211772217723177241772517726177271772817729177301773117732177331773417735177361773717738177391774017741177421774317744177451774617747177481774917750177511775217753177541775517756177571775817759177601776117762177631776417765177661776717768177691777017771177721777317774177751777617777177781777917780177811778217783177841778517786177871778817789177901779117792177931779417795177961779717798177991780017801178021780317804178051780617807178081780917810178111781217813178141781517816178171781817819178201782117822178231782417825178261782717828178291783017831178321783317834178351783617837178381783917840178411784217843178441784517846178471784817849178501785117852178531785417855178561785717858178591786017861178621786317864178651786617867178681786917870178711787217873178741787517876178771787817879178801788117882178831788417885178861788717888178891789017891178921789317894178951789617897178981789917900179011790217903179041790517906179071790817909179101791117912179131791417915179161791717918179191792017921179221792317924179251792617927179281792917930179311793217933179341793517936179371793817939179401794117942179431794417945179461794717948179491795017951179521795317954179551795617957179581795917960179611796217963179641796517966179671796817969179701797117972179731797417975179761797717978179791798017981179821798317984179851798617987179881798917990179911799217993179941799517996179971799817999180001800118002180031800418005180061800718008180091801018011180121801318014180151801618017180181801918020180211802218023180241802518026180271802818029180301803118032180331803418035180361803718038180391804018041180421804318044180451804618047180481804918050180511805218053180541805518056180571805818059180601806118062180631806418065180661806718068180691807018071180721807318074180751807618077180781807918080180811808218083180841808518086180871808818089180901809118092180931809418095180961809718098180991810018101181021810318104181051810618107181081810918110181111811218113181141811518116181171811818119181201812118122181231812418125181261812718128181291813018131181321813318134181351813618137181381813918140181411814218143181441814518146181471814818149181501815118152181531815418155181561815718158181591816018161181621816318164181651816618167181681816918170181711817218173181741817518176181771817818179181801818118182181831818418185181861818718188181891819018191181921819318194181951819618197181981819918200182011820218203182041820518206182071820818209182101821118212182131821418215182161821718218182191822018221182221822318224182251822618227182281822918230182311823218233182341823518236182371823818239182401824118242182431824418245182461824718248182491825018251182521825318254182551825618257182581825918260182611826218263182641826518266182671826818269182701827118272182731827418275182761827718278182791828018281182821828318284182851828618287182881828918290182911829218293182941829518296182971829818299183001830118302183031830418305183061830718308183091831018311183121831318314183151831618317183181831918320183211832218323183241832518326183271832818329183301833118332183331833418335183361833718338183391834018341183421834318344183451834618347183481834918350183511835218353183541835518356183571835818359183601836118362183631836418365183661836718368183691837018371183721837318374183751837618377183781837918380183811838218383183841838518386183871838818389183901839118392183931839418395183961839718398183991840018401184021840318404184051840618407184081840918410184111841218413184141841518416184171841818419184201842118422184231842418425184261842718428184291843018431184321843318434184351843618437184381843918440184411844218443184441844518446184471844818449184501845118452184531845418455184561845718458184591846018461184621846318464184651846618467184681846918470184711847218473184741847518476184771847818479184801848118482184831848418485184861848718488184891849018491184921849318494184951849618497184981849918500185011850218503185041850518506185071850818509185101851118512185131851418515185161851718518185191852018521185221852318524185251852618527185281852918530185311853218533185341853518536185371853818539185401854118542185431854418545185461854718548185491855018551185521855318554185551855618557185581855918560185611856218563185641856518566185671856818569185701857118572185731857418575185761857718578185791858018581185821858318584185851858618587185881858918590185911859218593185941859518596185971859818599186001860118602186031860418605186061860718608186091861018611186121861318614186151861618617186181861918620186211862218623186241862518626186271862818629186301863118632186331863418635186361863718638186391864018641186421864318644186451864618647186481864918650186511865218653186541865518656186571865818659186601866118662186631866418665186661866718668186691867018671186721867318674186751867618677186781867918680186811868218683186841868518686186871868818689186901869118692186931869418695186961869718698186991870018701187021870318704187051870618707187081870918710187111871218713187141871518716187171871818719187201872118722187231872418725187261872718728187291873018731187321873318734187351873618737187381873918740187411874218743187441874518746187471874818749187501875118752187531875418755187561875718758187591876018761187621876318764187651876618767187681876918770187711877218773187741877518776187771877818779187801878118782187831878418785187861878718788187891879018791187921879318794187951879618797187981879918800188011880218803188041880518806188071880818809188101881118812188131881418815188161881718818188191882018821188221882318824188251882618827188281882918830188311883218833188341883518836188371883818839188401884118842188431884418845188461884718848188491885018851188521885318854188551885618857188581885918860188611886218863188641886518866188671886818869188701887118872188731887418875188761887718878188791888018881188821888318884188851888618887188881888918890188911889218893188941889518896188971889818899189001890118902189031890418905189061890718908189091891018911189121891318914189151891618917189181891918920189211892218923189241892518926189271892818929189301893118932189331893418935189361893718938189391894018941189421894318944189451894618947189481894918950189511895218953189541895518956189571895818959189601896118962189631896418965189661896718968189691897018971189721897318974189751897618977189781897918980189811898218983189841898518986189871898818989189901899118992189931899418995189961899718998189991900019001190021900319004190051900619007190081900919010190111901219013190141901519016190171901819019190201902119022190231902419025190261902719028190291903019031190321903319034190351903619037190381903919040190411904219043190441904519046190471904819049190501905119052190531905419055190561905719058190591906019061190621906319064190651906619067190681906919070190711907219073190741907519076190771907819079190801908119082190831908419085190861908719088190891909019091190921909319094190951909619097190981909919100191011910219103191041910519106191071910819109191101911119112191131911419115191161911719118191191912019121191221912319124191251912619127191281912919130191311913219133191341913519136191371913819139191401914119142191431914419145191461914719148191491915019151191521915319154191551915619157191581915919160191611916219163191641916519166191671916819169191701917119172191731917419175191761917719178191791918019181191821918319184191851918619187191881918919190191911919219193191941919519196191971919819199192001920119202192031920419205192061920719208192091921019211192121921319214192151921619217192181921919220192211922219223192241922519226192271922819229192301923119232192331923419235192361923719238192391924019241192421924319244192451924619247192481924919250192511925219253192541925519256192571925819259192601926119262192631926419265192661926719268192691927019271192721927319274192751927619277192781927919280192811928219283192841928519286192871928819289192901929119292192931929419295192961929719298192991930019301193021930319304193051930619307193081930919310193111931219313193141931519316193171931819319193201932119322193231932419325193261932719328193291933019331193321933319334193351933619337193381933919340193411934219343193441934519346193471934819349193501935119352193531935419355193561935719358193591936019361193621936319364193651936619367193681936919370193711937219373193741937519376193771937819379193801938119382193831938419385193861938719388193891939019391193921939319394193951939619397193981939919400194011940219403194041940519406194071940819409194101941119412194131941419415194161941719418194191942019421194221942319424194251942619427194281942919430194311943219433194341943519436194371943819439194401944119442194431944419445194461944719448194491945019451194521945319454194551945619457194581945919460194611946219463194641946519466194671946819469194701947119472194731947419475194761947719478194791948019481194821948319484194851948619487194881948919490194911949219493194941949519496194971949819499195001950119502195031950419505195061950719508195091951019511195121951319514195151951619517195181951919520195211952219523195241952519526195271952819529195301953119532195331953419535195361953719538195391954019541195421954319544195451954619547195481954919550195511955219553195541955519556195571955819559195601956119562195631956419565195661956719568195691957019571195721957319574195751957619577195781957919580195811958219583195841958519586195871958819589195901959119592195931959419595195961959719598195991960019601196021960319604196051960619607196081960919610196111961219613196141961519616196171961819619196201962119622196231962419625196261962719628196291963019631196321963319634196351963619637196381963919640196411964219643196441964519646196471964819649196501965119652196531965419655196561965719658196591966019661196621966319664196651966619667196681966919670196711967219673196741967519676196771967819679196801968119682196831968419685196861968719688196891969019691196921969319694196951969619697196981969919700197011970219703197041970519706197071970819709197101971119712197131971419715197161971719718197191972019721197221972319724197251972619727197281972919730197311973219733197341973519736197371973819739197401974119742197431974419745197461974719748197491975019751197521975319754197551975619757197581975919760197611976219763197641976519766197671976819769197701977119772197731977419775197761977719778197791978019781197821978319784197851978619787197881978919790197911979219793197941979519796197971979819799198001980119802198031980419805198061980719808198091981019811198121981319814198151981619817198181981919820198211982219823198241982519826198271982819829198301983119832198331983419835198361983719838198391984019841198421984319844198451984619847198481984919850198511985219853198541985519856198571985819859198601986119862198631986419865198661986719868198691987019871198721987319874198751987619877198781987919880198811988219883198841988519886198871988819889198901989119892198931989419895198961989719898198991990019901199021990319904199051990619907199081990919910199111991219913199141991519916199171991819919199201992119922199231992419925199261992719928199291993019931199321993319934199351993619937199381993919940199411994219943199441994519946199471994819949199501995119952199531995419955199561995719958199591996019961199621996319964199651996619967199681996919970199711997219973199741997519976199771997819979199801998119982199831998419985199861998719988199891999019991199921999319994199951999619997199981999920000200012000220003200042000520006200072000820009200102001120012200132001420015200162001720018200192002020021200222002320024200252002620027200282002920030200312003220033200342003520036200372003820039200402004120042200432004420045200462004720048200492005020051200522005320054200552005620057200582005920060200612006220063200642006520066200672006820069200702007120072200732007420075200762007720078200792008020081200822008320084200852008620087200882008920090200912009220093200942009520096200972009820099201002010120102201032010420105201062010720108201092011020111201122011320114201152011620117201182011920120201212012220123201242012520126201272012820129201302013120132201332013420135201362013720138201392014020141201422014320144201452014620147201482014920150201512015220153201542015520156201572015820159201602016120162201632016420165201662016720168201692017020171201722017320174201752017620177201782017920180201812018220183201842018520186201872018820189201902019120192201932019420195201962019720198201992020020201202022020320204202052020620207202082020920210202112021220213202142021520216202172021820219202202022120222202232022420225202262022720228202292023020231202322023320234202352023620237202382023920240202412024220243202442024520246202472024820249202502025120252202532025420255202562025720258202592026020261202622026320264202652026620267202682026920270202712027220273202742027520276202772027820279202802028120282202832028420285202862028720288202892029020291202922029320294202952029620297202982029920300203012030220303203042030520306203072030820309203102031120312203132031420315203162031720318203192032020321203222032320324203252032620327203282032920330203312033220333203342033520336203372033820339203402034120342203432034420345203462034720348203492035020351203522035320354203552035620357203582035920360203612036220363203642036520366203672036820369203702037120372203732037420375203762037720378203792038020381203822038320384203852038620387203882038920390203912039220393203942039520396203972039820399204002040120402204032040420405204062040720408204092041020411204122041320414204152041620417204182041920420204212042220423204242042520426204272042820429204302043120432204332043420435204362043720438204392044020441204422044320444204452044620447204482044920450204512045220453204542045520456204572045820459204602046120462204632046420465204662046720468204692047020471204722047320474204752047620477204782047920480204812048220483204842048520486204872048820489204902049120492204932049420495204962049720498204992050020501205022050320504205052050620507205082050920510205112051220513205142051520516205172051820519205202052120522205232052420525205262052720528205292053020531205322053320534205352053620537205382053920540205412054220543205442054520546205472054820549205502055120552205532055420555205562055720558205592056020561205622056320564205652056620567205682056920570205712057220573205742057520576205772057820579205802058120582205832058420585205862058720588205892059020591205922059320594205952059620597205982059920600206012060220603206042060520606206072060820609206102061120612206132061420615206162061720618206192062020621206222062320624206252062620627206282062920630206312063220633206342063520636206372063820639206402064120642206432064420645206462064720648206492065020651206522065320654206552065620657206582065920660206612066220663206642066520666206672066820669206702067120672206732067420675206762067720678206792068020681206822068320684206852068620687206882068920690206912069220693206942069520696206972069820699207002070120702207032070420705207062070720708207092071020711207122071320714207152071620717207182071920720207212072220723207242072520726207272072820729207302073120732207332073420735207362073720738207392074020741207422074320744207452074620747207482074920750207512075220753207542075520756207572075820759207602076120762207632076420765207662076720768207692077020771207722077320774207752077620777207782077920780207812078220783207842078520786207872078820789207902079120792207932079420795207962079720798207992080020801208022080320804208052080620807208082080920810208112081220813208142081520816208172081820819208202082120822208232082420825208262082720828208292083020831208322083320834208352083620837208382083920840208412084220843208442084520846208472084820849208502085120852208532085420855208562085720858208592086020861208622086320864208652086620867208682086920870208712087220873208742087520876208772087820879208802088120882208832088420885208862088720888208892089020891208922089320894208952089620897208982089920900209012090220903209042090520906209072090820909209102091120912209132091420915209162091720918209192092020921209222092320924209252092620927209282092920930209312093220933209342093520936209372093820939209402094120942209432094420945209462094720948209492095020951209522095320954209552095620957209582095920960209612096220963209642096520966209672096820969209702097120972209732097420975209762097720978209792098020981209822098320984209852098620987209882098920990209912099220993209942099520996209972099820999210002100121002210032100421005210062100721008210092101021011210122101321014210152101621017210182101921020210212102221023210242102521026210272102821029210302103121032210332103421035210362103721038210392104021041210422104321044210452104621047210482104921050210512105221053210542105521056210572105821059210602106121062210632106421065210662106721068210692107021071210722107321074210752107621077210782107921080210812108221083210842108521086210872108821089210902109121092210932109421095210962109721098210992110021101211022110321104211052110621107211082110921110211112111221113211142111521116211172111821119211202112121122211232112421125211262112721128211292113021131211322113321134211352113621137211382113921140211412114221143211442114521146211472114821149211502115121152211532115421155211562115721158211592116021161211622116321164211652116621167211682116921170211712117221173211742117521176211772117821179211802118121182211832118421185211862118721188211892119021191211922119321194211952119621197211982119921200212012120221203212042120521206212072120821209212102121121212212132121421215212162121721218212192122021221212222122321224212252122621227212282122921230212312123221233212342123521236212372123821239212402124121242212432124421245212462124721248212492125021251212522125321254212552125621257212582125921260212612126221263212642126521266212672126821269212702127121272212732127421275212762127721278212792128021281212822128321284212852128621287212882128921290212912129221293212942129521296212972129821299213002130121302213032130421305213062130721308213092131021311213122131321314213152131621317213182131921320213212132221323213242132521326213272132821329213302133121332213332133421335213362133721338213392134021341213422134321344213452134621347213482134921350213512135221353213542135521356213572135821359213602136121362213632136421365213662136721368213692137021371213722137321374213752137621377213782137921380213812138221383213842138521386213872138821389213902139121392213932139421395213962139721398213992140021401214022140321404214052140621407214082140921410214112141221413214142141521416214172141821419214202142121422214232142421425214262142721428214292143021431214322143321434214352143621437214382143921440214412144221443214442144521446214472144821449214502145121452214532145421455214562145721458214592146021461214622146321464214652146621467214682146921470214712147221473214742147521476214772147821479214802148121482214832148421485214862148721488214892149021491214922149321494214952149621497214982149921500215012150221503215042150521506215072150821509215102151121512215132151421515215162151721518215192152021521215222152321524215252152621527215282152921530215312153221533215342153521536215372153821539215402154121542215432154421545215462154721548215492155021551215522155321554215552155621557215582155921560215612156221563215642156521566215672156821569215702157121572215732157421575215762157721578215792158021581215822158321584215852158621587215882158921590215912159221593215942159521596215972159821599216002160121602216032160421605216062160721608216092161021611216122161321614216152161621617216182161921620216212162221623216242162521626216272162821629216302163121632216332163421635216362163721638216392164021641216422164321644216452164621647216482164921650216512165221653216542165521656216572165821659216602166121662216632166421665216662166721668216692167021671216722167321674216752167621677216782167921680216812168221683216842168521686216872168821689216902169121692216932169421695216962169721698216992170021701217022170321704217052170621707217082170921710217112171221713217142171521716217172171821719217202172121722217232172421725217262172721728217292173021731217322173321734217352173621737217382173921740217412174221743217442174521746217472174821749217502175121752217532175421755
  1. #define _CRT_SECURE_NO_DEPRECATE // Disables ridiculous "unsafe" warnings on Windows
  2. #define _USE_MATH_DEFINES // For M_PI on MSVC
  3. #include "ggml-impl.h"
  4. #include "ggml-quants.h"
  5. #include "ggml.h"
  6. #if defined(_MSC_VER) || defined(__MINGW32__)
  7. #include <malloc.h> // using malloc.h with MSC/MINGW
  8. #elif !defined(__FreeBSD__) && !defined(__NetBSD__) && !defined(__OpenBSD__)
  9. #include <alloca.h>
  10. #endif
  11. #include <assert.h>
  12. #include <errno.h>
  13. #include <time.h>
  14. #include <math.h>
  15. #include <stdlib.h>
  16. #include <string.h>
  17. #include <stdint.h>
  18. #include <inttypes.h>
  19. #include <stdio.h>
  20. #include <float.h>
  21. #include <limits.h>
  22. #include <stdarg.h>
  23. #include <signal.h>
  24. #if defined(__gnu_linux__)
  25. #include <syscall.h>
  26. #endif
  27. #ifdef GGML_USE_METAL
  28. #include <unistd.h>
  29. #endif
  30. #if defined(_MSC_VER)
  31. // disable "possible loss of data" to avoid hundreds of casts
  32. // we should just be careful :)
  33. #pragma warning(disable: 4244 4267)
  34. // disable POSIX deprecation warnings
  35. // these functions are never going away, anyway
  36. #pragma warning(disable: 4996)
  37. #endif
  38. #if defined(_WIN32)
  39. #define WIN32_LEAN_AND_MEAN
  40. #ifndef NOMINMAX
  41. #define NOMINMAX
  42. #endif
  43. #include <windows.h>
  44. typedef volatile LONG atomic_int;
  45. typedef atomic_int atomic_bool;
  46. static void atomic_store(atomic_int * ptr, LONG val) {
  47. InterlockedExchange(ptr, val);
  48. }
  49. static LONG atomic_load(atomic_int * ptr) {
  50. return InterlockedCompareExchange(ptr, 0, 0);
  51. }
  52. static LONG atomic_fetch_add(atomic_int * ptr, LONG inc) {
  53. return InterlockedExchangeAdd(ptr, inc);
  54. }
  55. static LONG atomic_fetch_sub(atomic_int * ptr, LONG dec) {
  56. return atomic_fetch_add(ptr, -(dec));
  57. }
  58. typedef HANDLE pthread_t;
  59. typedef DWORD thread_ret_t;
  60. static int pthread_create(pthread_t * out, void * unused, thread_ret_t(*func)(void *), void * arg) {
  61. (void) unused;
  62. HANDLE handle = CreateThread(NULL, 0, (LPTHREAD_START_ROUTINE) func, arg, 0, NULL);
  63. if (handle == NULL)
  64. {
  65. return EAGAIN;
  66. }
  67. *out = handle;
  68. return 0;
  69. }
  70. static int pthread_join(pthread_t thread, void * unused) {
  71. (void) unused;
  72. int ret = (int) WaitForSingleObject(thread, INFINITE);
  73. CloseHandle(thread);
  74. return ret;
  75. }
  76. static int sched_yield (void) {
  77. Sleep (0);
  78. return 0;
  79. }
  80. #else
  81. #include <pthread.h>
  82. #include <stdatomic.h>
  83. typedef void * thread_ret_t;
  84. #include <sys/types.h>
  85. #include <sys/stat.h>
  86. #include <unistd.h>
  87. #endif
  88. #ifdef GGML_USE_CPU_HBM
  89. #include <hbwmalloc.h>
  90. #endif
  91. #if defined(__APPLE__)
  92. #include <TargetConditionals.h>
  93. #endif
  94. #if (defined(__linux__) || defined(__APPLE__) || defined(__FreeBSD__) || defined(__NetBSD__) || defined(__OpenBSD__)) && \
  95. (!defined(TARGET_OS_TV) && !defined(TARGET_OS_WATCH))
  96. #include <sys/wait.h>
  97. void ggml_print_backtrace(void) {
  98. /*
  99. #include <execinfo.h>
  100. #include <dlfcn.h>
  101. void * trace[100];
  102. int nptrs = backtrace(trace, sizeof(trace)/sizeof(trace[0]));
  103. backtrace_symbols_fd(trace, nptrs, STDERR_FILENO);
  104. */
  105. // backtrack_symbols does not show line numbers, use gdb instead
  106. char attach[32];
  107. snprintf(attach, sizeof(attach), "attach %d", getpid());
  108. int pid = fork();
  109. if (pid == 0) {
  110. execlp("gdb", "gdb", "--batch",
  111. "-ex", "set style enabled on",
  112. "-ex", attach,
  113. "-ex", "bt -frame-info source-and-location",
  114. "-ex", "detach",
  115. "-ex", "quit",
  116. (char *) NULL);
  117. } else {
  118. waitpid(pid, NULL, 0);
  119. }
  120. }
  121. #else
  122. void ggml_print_backtrace(void) {
  123. // platform not supported
  124. }
  125. #endif
  126. /*#define GGML_PERF*/
  127. #define GGML_DEBUG 0
  128. #define GGML_GELU_FP16
  129. #define GGML_GELU_QUICK_FP16
  130. #define GGML_SILU_FP16
  131. // #define GGML_CROSS_ENTROPY_EXP_FP16
  132. // #define GGML_FLASH_ATTN_EXP_FP16
  133. #define GGML_SOFT_MAX_UNROLL 4
  134. #define GGML_VEC_DOT_UNROLL 2
  135. #define GGML_VEC_MAD_UNROLL 32
  136. //
  137. // logging
  138. //
  139. #if (GGML_DEBUG >= 1)
  140. #define GGML_PRINT_DEBUG(...) printf(__VA_ARGS__)
  141. #else
  142. #define GGML_PRINT_DEBUG(...)
  143. #endif
  144. #if (GGML_DEBUG >= 5)
  145. #define GGML_PRINT_DEBUG_5(...) printf(__VA_ARGS__)
  146. #else
  147. #define GGML_PRINT_DEBUG_5(...)
  148. #endif
  149. #if (GGML_DEBUG >= 10)
  150. #define GGML_PRINT_DEBUG_10(...) printf(__VA_ARGS__)
  151. #else
  152. #define GGML_PRINT_DEBUG_10(...)
  153. #endif
  154. #define GGML_PRINT(...) printf(__VA_ARGS__)
  155. //
  156. // end of logging block
  157. //
  158. #ifdef GGML_USE_ACCELERATE
  159. // uncomment to use vDSP for soft max computation
  160. // note: not sure if it is actually faster
  161. //#define GGML_SOFT_MAX_ACCELERATE
  162. #endif
  163. #if defined(_MSC_VER) || defined(__MINGW32__)
  164. #define GGML_ALIGNED_MALLOC(size) _aligned_malloc(size, GGML_MEM_ALIGN)
  165. #define GGML_ALIGNED_FREE(ptr) _aligned_free(ptr)
  166. #else
  167. inline static void * ggml_aligned_malloc(size_t size) {
  168. if (size == 0) {
  169. GGML_PRINT("WARNING: Behavior may be unexpected when allocating 0 bytes for ggml_aligned_malloc!\n");
  170. return NULL;
  171. }
  172. void * aligned_memory = NULL;
  173. #ifdef GGML_USE_CPU_HBM
  174. int result = hbw_posix_memalign(&aligned_memory, 16, size);
  175. #elif GGML_USE_METAL
  176. int result = posix_memalign(&aligned_memory, sysconf(_SC_PAGESIZE), size);
  177. #else
  178. int result = posix_memalign(&aligned_memory, GGML_MEM_ALIGN, size);
  179. #endif
  180. if (result != 0) {
  181. // Handle allocation failure
  182. const char *error_desc = "unknown allocation error";
  183. switch (result) {
  184. case EINVAL:
  185. error_desc = "invalid alignment value";
  186. break;
  187. case ENOMEM:
  188. error_desc = "insufficient memory";
  189. break;
  190. }
  191. GGML_PRINT("%s: %s (attempted to allocate %6.2f MB)\n", __func__, error_desc, size/(1024.0*1024.0));
  192. GGML_ASSERT(false);
  193. return NULL;
  194. }
  195. return aligned_memory;
  196. }
  197. #define GGML_ALIGNED_MALLOC(size) ggml_aligned_malloc(size)
  198. #ifdef GGML_USE_CPU_HBM
  199. #define GGML_ALIGNED_FREE(ptr) if(NULL != ptr) hbw_free(ptr)
  200. #else
  201. #define GGML_ALIGNED_FREE(ptr) free(ptr)
  202. #endif
  203. #endif
  204. inline static void * ggml_malloc(size_t size) {
  205. if (size == 0) {
  206. GGML_PRINT("WARNING: Behavior may be unexpected when allocating 0 bytes for ggml_malloc!\n");
  207. return NULL;
  208. }
  209. void * result = malloc(size);
  210. if (result == NULL) {
  211. GGML_PRINT("%s: failed to allocate %6.2f MB\n", __func__, size/(1024.0*1024.0));
  212. GGML_ASSERT(false);
  213. }
  214. return result;
  215. }
  216. // calloc
  217. inline static void * ggml_calloc(size_t num, size_t size) {
  218. if (num == 0 || size == 0) {
  219. GGML_PRINT("WARNING: Behavior may be unexpected when allocating 0 bytes for ggml_calloc!\n");
  220. return NULL;
  221. }
  222. void * result = calloc(num, size);
  223. if (result == NULL) {
  224. GGML_PRINT("%s: failed to allocate %6.2f MB\n", __func__, size/(1024.0*1024.0));
  225. GGML_ASSERT(false);
  226. }
  227. return result;
  228. }
  229. #define GGML_MALLOC(size) ggml_malloc(size)
  230. #define GGML_CALLOC(num, size) ggml_calloc(num, size)
  231. #define GGML_FREE(ptr) free(ptr)
  232. #define UNUSED GGML_UNUSED
  233. #define SWAP(x, y, T) do { T SWAP = x; x = y; y = SWAP; } while (0)
  234. #if defined(GGML_USE_ACCELERATE)
  235. #include <Accelerate/Accelerate.h>
  236. #if defined(GGML_USE_CLBLAST) // allow usage of CLBlast alongside Accelerate functions
  237. #include "ggml-opencl.h"
  238. #endif
  239. #elif defined(GGML_USE_OPENBLAS)
  240. #if defined(GGML_BLAS_USE_MKL)
  241. #include <mkl.h>
  242. #else
  243. #include <cblas.h>
  244. #endif
  245. #elif defined(GGML_USE_CLBLAST)
  246. #include "ggml-opencl.h"
  247. #endif
  248. // floating point type used to accumulate sums
  249. typedef double ggml_float;
  250. #undef MIN
  251. #undef MAX
  252. #define MIN(a, b) ((a) < (b) ? (a) : (b))
  253. #define MAX(a, b) ((a) > (b) ? (a) : (b))
  254. //
  255. // global data
  256. //
  257. // precomputed gelu table for f16 (128 KB)
  258. static ggml_fp16_t ggml_table_gelu_f16[1 << 16];
  259. // precomputed quick gelu table for f16 (128 KB)
  260. static ggml_fp16_t ggml_table_gelu_quick_f16[1 << 16];
  261. // precomputed silu table for f16 (128 KB)
  262. static ggml_fp16_t ggml_table_silu_f16[1 << 16];
  263. // precomputed exp table for f16 (128 KB)
  264. static ggml_fp16_t ggml_table_exp_f16[1 << 16];
  265. // precomputed f32 table for f16 (256 KB) (ggml-impl.h)
  266. float ggml_table_f32_f16[1 << 16];
  267. const char * ggml_status_to_string(enum ggml_status status) {
  268. switch (status) {
  269. case GGML_STATUS_ALLOC_FAILED: return "GGML status: error (failed to allocate memory)";
  270. case GGML_STATUS_FAILED: return "GGML status: error (operation failed)";
  271. case GGML_STATUS_SUCCESS: return "GGML status: success";
  272. case GGML_STATUS_ABORTED: return "GGML status: warning (operation aborted)";
  273. }
  274. return "GGML status: unknown";
  275. }
  276. // note: do not use these inside ggml.c
  277. // these are meant to be used via the ggml.h API
  278. float ggml_fp16_to_fp32(ggml_fp16_t x) {
  279. return GGML_FP16_TO_FP32(x);
  280. }
  281. ggml_fp16_t ggml_fp32_to_fp16(float x) {
  282. return GGML_FP32_TO_FP16(x);
  283. }
  284. void ggml_fp16_to_fp32_row(const ggml_fp16_t * x, float * y, int n) {
  285. for (int i = 0; i < n; i++) {
  286. y[i] = GGML_FP16_TO_FP32(x[i]);
  287. }
  288. }
  289. void ggml_fp32_to_fp16_row(const float * x, ggml_fp16_t * y, int n) {
  290. int i = 0;
  291. #if defined(__F16C__)
  292. for (; i + 7 < n; i += 8) {
  293. __m256 x_vec = _mm256_loadu_ps(x + i);
  294. __m128i y_vec = _mm256_cvtps_ph(x_vec, _MM_FROUND_TO_NEAREST_INT);
  295. _mm_storeu_si128((__m128i *)(y + i), y_vec);
  296. }
  297. for(; i + 3 < n; i += 4) {
  298. __m128 x_vec = _mm_loadu_ps(x + i);
  299. __m128i y_vec = _mm_cvtps_ph(x_vec, _MM_FROUND_TO_NEAREST_INT);
  300. _mm_storel_epi64((__m128i *)(y + i), y_vec);
  301. }
  302. #endif
  303. for (; i < n; i++) {
  304. y[i] = GGML_FP32_TO_FP16(x[i]);
  305. }
  306. }
  307. bool ggml_guid_matches(ggml_guid_t guid_a, ggml_guid_t guid_b) {
  308. return memcmp(guid_a, guid_b, sizeof(ggml_guid)) == 0;
  309. }
  310. //
  311. // timing
  312. //
  313. #if defined(_MSC_VER) || defined(__MINGW32__)
  314. static int64_t timer_freq, timer_start;
  315. void ggml_time_init(void) {
  316. LARGE_INTEGER t;
  317. QueryPerformanceFrequency(&t);
  318. timer_freq = t.QuadPart;
  319. // The multiplication by 1000 or 1000000 below can cause an overflow if timer_freq
  320. // and the uptime is high enough.
  321. // We subtract the program start time to reduce the likelihood of that happening.
  322. QueryPerformanceCounter(&t);
  323. timer_start = t.QuadPart;
  324. }
  325. int64_t ggml_time_ms(void) {
  326. LARGE_INTEGER t;
  327. QueryPerformanceCounter(&t);
  328. return ((t.QuadPart-timer_start) * 1000) / timer_freq;
  329. }
  330. int64_t ggml_time_us(void) {
  331. LARGE_INTEGER t;
  332. QueryPerformanceCounter(&t);
  333. return ((t.QuadPart-timer_start) * 1000000) / timer_freq;
  334. }
  335. #else
  336. void ggml_time_init(void) {}
  337. int64_t ggml_time_ms(void) {
  338. struct timespec ts;
  339. clock_gettime(CLOCK_MONOTONIC, &ts);
  340. return (int64_t)ts.tv_sec*1000 + (int64_t)ts.tv_nsec/1000000;
  341. }
  342. int64_t ggml_time_us(void) {
  343. struct timespec ts;
  344. clock_gettime(CLOCK_MONOTONIC, &ts);
  345. return (int64_t)ts.tv_sec*1000000 + (int64_t)ts.tv_nsec/1000;
  346. }
  347. #endif
  348. int64_t ggml_cycles(void) {
  349. return clock();
  350. }
  351. int64_t ggml_cycles_per_ms(void) {
  352. return CLOCKS_PER_SEC/1000;
  353. }
  354. #ifdef GGML_PERF
  355. #define ggml_perf_time_ms() ggml_time_ms()
  356. #define ggml_perf_time_us() ggml_time_us()
  357. #define ggml_perf_cycles() ggml_cycles()
  358. #define ggml_perf_cycles_per_ms() ggml_cycles_per_ms()
  359. #else
  360. #define ggml_perf_time_ms() 0
  361. #define ggml_perf_time_us() 0
  362. #define ggml_perf_cycles() 0
  363. #define ggml_perf_cycles_per_ms() 0
  364. #endif
  365. //
  366. // cross-platform UTF-8 file paths
  367. //
  368. #ifdef _WIN32
  369. static wchar_t * ggml_mbstowcs(const char * mbs) {
  370. int wlen = MultiByteToWideChar(CP_UTF8, 0, mbs, -1, NULL, 0);
  371. if (!wlen) {
  372. errno = EINVAL;
  373. return NULL;
  374. }
  375. wchar_t * wbuf = GGML_MALLOC(wlen * sizeof(wchar_t));
  376. wlen = MultiByteToWideChar(CP_UTF8, 0, mbs, -1, wbuf, wlen);
  377. if (!wlen) {
  378. GGML_FREE(wbuf);
  379. errno = EINVAL;
  380. return NULL;
  381. }
  382. return wbuf;
  383. }
  384. #endif
  385. FILE * ggml_fopen(const char * fname, const char * mode) {
  386. #ifdef _WIN32
  387. FILE * file = NULL;
  388. // convert fname (UTF-8)
  389. wchar_t * wfname = ggml_mbstowcs(fname);
  390. if (wfname) {
  391. // convert mode (ANSI)
  392. wchar_t * wmode = GGML_MALLOC((strlen(mode) + 1) * sizeof(wchar_t));
  393. wchar_t * wmode_p = wmode;
  394. do {
  395. *wmode_p++ = (wchar_t)*mode;
  396. } while (*mode++);
  397. // open file
  398. file = _wfopen(wfname, wmode);
  399. GGML_FREE(wfname);
  400. GGML_FREE(wmode);
  401. }
  402. return file;
  403. #else
  404. return fopen(fname, mode);
  405. #endif
  406. }
  407. //
  408. // cache line
  409. //
  410. #if defined(__cpp_lib_hardware_interference_size)
  411. #define CACHE_LINE_SIZE hardware_destructive_interference_size
  412. #else
  413. #if defined(__POWER9_VECTOR__)
  414. #define CACHE_LINE_SIZE 128
  415. #else
  416. #define CACHE_LINE_SIZE 64
  417. #endif
  418. #endif
  419. static const size_t CACHE_LINE_SIZE_F32 = CACHE_LINE_SIZE/sizeof(float);
  420. static void ggml_vec_dot_f32(int n, float * restrict s, size_t bs, const float * restrict x, size_t bx, const float * restrict y, size_t by, int nrc);
  421. static void ggml_vec_dot_f16(int n, float * restrict s, size_t bs, ggml_fp16_t * restrict x, size_t bx, ggml_fp16_t * restrict y, size_t by, int nrc);
  422. static const ggml_type_traits_t type_traits[GGML_TYPE_COUNT] = {
  423. [GGML_TYPE_I8] = {
  424. .type_name = "i8",
  425. .blck_size = 1,
  426. .type_size = sizeof(int8_t),
  427. .is_quantized = false,
  428. },
  429. [GGML_TYPE_I16] = {
  430. .type_name = "i16",
  431. .blck_size = 1,
  432. .type_size = sizeof(int16_t),
  433. .is_quantized = false,
  434. },
  435. [GGML_TYPE_I32] = {
  436. .type_name = "i32",
  437. .blck_size = 1,
  438. .type_size = sizeof(int32_t),
  439. .is_quantized = false,
  440. },
  441. [GGML_TYPE_I64] = {
  442. .type_name = "i64",
  443. .blck_size = 1,
  444. .type_size = sizeof(int64_t),
  445. .is_quantized = false,
  446. },
  447. [GGML_TYPE_F64] = {
  448. .type_name = "f64",
  449. .blck_size = 1,
  450. .type_size = sizeof(double),
  451. .is_quantized = false,
  452. .nrows = 1,
  453. },
  454. [GGML_TYPE_F32] = {
  455. .type_name = "f32",
  456. .blck_size = 1,
  457. .type_size = sizeof(float),
  458. .is_quantized = false,
  459. .vec_dot = (ggml_vec_dot_t) ggml_vec_dot_f32,
  460. .vec_dot_type = GGML_TYPE_F32,
  461. .nrows = 1,
  462. },
  463. [GGML_TYPE_F16] = {
  464. .type_name = "f16",
  465. .blck_size = 1,
  466. .type_size = sizeof(ggml_fp16_t),
  467. .is_quantized = false,
  468. .to_float = (ggml_to_float_t) ggml_fp16_to_fp32_row,
  469. .from_float = (ggml_from_float_t) ggml_fp32_to_fp16_row,
  470. .from_float_reference = (ggml_from_float_t) ggml_fp32_to_fp16_row,
  471. .vec_dot = (ggml_vec_dot_t) ggml_vec_dot_f16,
  472. .vec_dot_type = GGML_TYPE_F16,
  473. .nrows = 1,
  474. },
  475. [GGML_TYPE_Q4_0] = {
  476. .type_name = "q4_0",
  477. .blck_size = QK4_0,
  478. .type_size = sizeof(block_q4_0),
  479. .is_quantized = true,
  480. .to_float = (ggml_to_float_t) dequantize_row_q4_0,
  481. .from_float = quantize_row_q4_0,
  482. .from_float_reference = (ggml_from_float_t) quantize_row_q4_0_reference,
  483. .vec_dot = ggml_vec_dot_q4_0_q8_0,
  484. .vec_dot_type = GGML_TYPE_Q8_0,
  485. #if defined (__ARM_FEATURE_MATMUL_INT8)
  486. .nrows = 2,
  487. #else
  488. .nrows = 1,
  489. #endif
  490. },
  491. [GGML_TYPE_Q4_1] = {
  492. .type_name = "q4_1",
  493. .blck_size = QK4_1,
  494. .type_size = sizeof(block_q4_1),
  495. .is_quantized = true,
  496. .to_float = (ggml_to_float_t) dequantize_row_q4_1,
  497. .from_float = quantize_row_q4_1,
  498. .from_float_reference = (ggml_from_float_t) quantize_row_q4_1_reference,
  499. .vec_dot = ggml_vec_dot_q4_1_q8_1,
  500. .vec_dot_type = GGML_TYPE_Q8_1,
  501. #if defined (__ARM_FEATURE_MATMUL_INT8)
  502. .nrows = 2,
  503. #else
  504. .nrows = 1,
  505. #endif
  506. },
  507. [4] = { // GGML_TYPE_Q4_2
  508. .type_name = "DEPRECATED",
  509. .blck_size = 0,
  510. .type_size = 0,
  511. .is_quantized = false,
  512. .to_float = NULL,
  513. .from_float = NULL,
  514. .from_float_reference = NULL,
  515. .vec_dot = NULL,
  516. .vec_dot_type = GGML_TYPE_COUNT,
  517. .nrows = 1,
  518. },
  519. [5] = { // GGML_TYPE_Q4_3
  520. .type_name = "DEPRECATED",
  521. .blck_size = 0,
  522. .type_size = 0,
  523. .is_quantized = false,
  524. .to_float = NULL,
  525. .from_float = NULL,
  526. .from_float_reference = NULL,
  527. .vec_dot = NULL,
  528. .vec_dot_type = GGML_TYPE_COUNT,
  529. .nrows = 1,
  530. },
  531. [GGML_TYPE_Q5_0] = {
  532. .type_name = "q5_0",
  533. .blck_size = QK5_0,
  534. .type_size = sizeof(block_q5_0),
  535. .is_quantized = true,
  536. .to_float = (ggml_to_float_t) dequantize_row_q5_0,
  537. .from_float = quantize_row_q5_0,
  538. .from_float_reference = (ggml_from_float_t) quantize_row_q5_0_reference,
  539. .vec_dot = ggml_vec_dot_q5_0_q8_0,
  540. .vec_dot_type = GGML_TYPE_Q8_0,
  541. .nrows = 1,
  542. },
  543. [GGML_TYPE_Q5_1] = {
  544. .type_name = "q5_1",
  545. .blck_size = QK5_1,
  546. .type_size = sizeof(block_q5_1),
  547. .is_quantized = true,
  548. .to_float = (ggml_to_float_t) dequantize_row_q5_1,
  549. .from_float = quantize_row_q5_1,
  550. .from_float_reference = (ggml_from_float_t) quantize_row_q5_1_reference,
  551. .vec_dot = ggml_vec_dot_q5_1_q8_1,
  552. .vec_dot_type = GGML_TYPE_Q8_1,
  553. .nrows = 1,
  554. },
  555. [GGML_TYPE_Q8_0] = {
  556. .type_name = "q8_0",
  557. .blck_size = QK8_0,
  558. .type_size = sizeof(block_q8_0),
  559. .is_quantized = true,
  560. .to_float = (ggml_to_float_t) dequantize_row_q8_0,
  561. .from_float = quantize_row_q8_0,
  562. .from_float_reference = (ggml_from_float_t) quantize_row_q8_0_reference,
  563. .vec_dot = ggml_vec_dot_q8_0_q8_0,
  564. .vec_dot_type = GGML_TYPE_Q8_0,
  565. #if defined (__ARM_FEATURE_MATMUL_INT8)
  566. .nrows = 2,
  567. #else
  568. .nrows = 1,
  569. #endif
  570. },
  571. [GGML_TYPE_Q8_1] = {
  572. .type_name = "q8_1",
  573. .blck_size = QK8_1,
  574. .type_size = sizeof(block_q8_1),
  575. .is_quantized = true,
  576. .from_float = quantize_row_q8_1,
  577. .from_float_reference = (ggml_from_float_t) quantize_row_q8_1_reference,
  578. .vec_dot_type = GGML_TYPE_Q8_1,
  579. .nrows = 1,
  580. },
  581. [GGML_TYPE_Q2_K] = {
  582. .type_name = "q2_K",
  583. .blck_size = QK_K,
  584. .type_size = sizeof(block_q2_K),
  585. .is_quantized = true,
  586. .to_float = (ggml_to_float_t) dequantize_row_q2_K,
  587. .from_float = quantize_row_q2_K,
  588. .from_float_reference = (ggml_from_float_t) quantize_row_q2_K_reference,
  589. .vec_dot = ggml_vec_dot_q2_K_q8_K,
  590. .vec_dot_type = GGML_TYPE_Q8_K,
  591. .nrows = 1,
  592. },
  593. [GGML_TYPE_Q3_K] = {
  594. .type_name = "q3_K",
  595. .blck_size = QK_K,
  596. .type_size = sizeof(block_q3_K),
  597. .is_quantized = true,
  598. .to_float = (ggml_to_float_t) dequantize_row_q3_K,
  599. .from_float = quantize_row_q3_K,
  600. .from_float_reference = (ggml_from_float_t) quantize_row_q3_K_reference,
  601. .vec_dot = ggml_vec_dot_q3_K_q8_K,
  602. .vec_dot_type = GGML_TYPE_Q8_K,
  603. .nrows = 1,
  604. },
  605. [GGML_TYPE_Q4_K] = {
  606. .type_name = "q4_K",
  607. .blck_size = QK_K,
  608. .type_size = sizeof(block_q4_K),
  609. .is_quantized = true,
  610. .to_float = (ggml_to_float_t) dequantize_row_q4_K,
  611. .from_float = quantize_row_q4_K,
  612. .from_float_reference = (ggml_from_float_t) quantize_row_q4_K_reference,
  613. .vec_dot = ggml_vec_dot_q4_K_q8_K,
  614. .vec_dot_type = GGML_TYPE_Q8_K,
  615. .nrows = 1,
  616. },
  617. [GGML_TYPE_Q5_K] = {
  618. .type_name = "q5_K",
  619. .blck_size = QK_K,
  620. .type_size = sizeof(block_q5_K),
  621. .is_quantized = true,
  622. .to_float = (ggml_to_float_t) dequantize_row_q5_K,
  623. .from_float = quantize_row_q5_K,
  624. .from_float_reference = (ggml_from_float_t) quantize_row_q5_K_reference,
  625. .vec_dot = ggml_vec_dot_q5_K_q8_K,
  626. .vec_dot_type = GGML_TYPE_Q8_K,
  627. .nrows = 1,
  628. },
  629. [GGML_TYPE_Q6_K] = {
  630. .type_name = "q6_K",
  631. .blck_size = QK_K,
  632. .type_size = sizeof(block_q6_K),
  633. .is_quantized = true,
  634. .to_float = (ggml_to_float_t) dequantize_row_q6_K,
  635. .from_float = quantize_row_q6_K,
  636. .from_float_reference = (ggml_from_float_t) quantize_row_q6_K_reference,
  637. .vec_dot = ggml_vec_dot_q6_K_q8_K,
  638. .vec_dot_type = GGML_TYPE_Q8_K,
  639. .nrows = 1,
  640. },
  641. [GGML_TYPE_IQ2_XXS] = {
  642. .type_name = "iq2_xxs",
  643. .blck_size = QK_K,
  644. .type_size = sizeof(block_iq2_xxs),
  645. .is_quantized = true,
  646. .to_float = (ggml_to_float_t) dequantize_row_iq2_xxs,
  647. .from_float = NULL,
  648. .from_float_reference = NULL,
  649. .vec_dot = ggml_vec_dot_iq2_xxs_q8_K,
  650. .vec_dot_type = GGML_TYPE_Q8_K,
  651. .nrows = 1,
  652. },
  653. [GGML_TYPE_IQ2_XS] = {
  654. .type_name = "iq2_xs",
  655. .blck_size = QK_K,
  656. .type_size = sizeof(block_iq2_xs),
  657. .is_quantized = true,
  658. .to_float = (ggml_to_float_t) dequantize_row_iq2_xs,
  659. .from_float = NULL,
  660. .from_float_reference = NULL,
  661. .vec_dot = ggml_vec_dot_iq2_xs_q8_K,
  662. .vec_dot_type = GGML_TYPE_Q8_K,
  663. .nrows = 1,
  664. },
  665. [GGML_TYPE_IQ3_XXS] = {
  666. .type_name = "iq3_xxs",
  667. .blck_size = QK_K,
  668. .type_size = sizeof(block_iq3_xxs),
  669. .is_quantized = true,
  670. .to_float = (ggml_to_float_t) dequantize_row_iq3_xxs,
  671. .from_float = quantize_row_iq3_xxs,
  672. .from_float_reference = (ggml_from_float_t)quantize_row_iq3_xxs_reference,
  673. .vec_dot = ggml_vec_dot_iq3_xxs_q8_K,
  674. .vec_dot_type = GGML_TYPE_Q8_K,
  675. .nrows = 1,
  676. },
  677. [GGML_TYPE_IQ3_S] = {
  678. .type_name = "iq3_s",
  679. .blck_size = QK_K,
  680. .type_size = sizeof(block_iq3_s),
  681. .is_quantized = true,
  682. .to_float = (ggml_to_float_t) dequantize_row_iq3_s,
  683. .from_float = quantize_row_iq3_s,
  684. .from_float_reference = (ggml_from_float_t)quantize_row_iq3_s_reference,
  685. .vec_dot = ggml_vec_dot_iq3_s_q8_K,
  686. .vec_dot_type = GGML_TYPE_Q8_K,
  687. .nrows = 1,
  688. },
  689. [GGML_TYPE_IQ2_S] = {
  690. .type_name = "iq2_s",
  691. .blck_size = QK_K,
  692. .type_size = sizeof(block_iq2_s),
  693. .is_quantized = true,
  694. .to_float = (ggml_to_float_t) dequantize_row_iq2_s,
  695. .from_float = quantize_row_iq2_s,
  696. .from_float_reference = (ggml_from_float_t)quantize_row_iq2_s_reference,
  697. .vec_dot = ggml_vec_dot_iq2_s_q8_K,
  698. .vec_dot_type = GGML_TYPE_Q8_K,
  699. .nrows = 1,
  700. },
  701. [GGML_TYPE_IQ1_S] = {
  702. .type_name = "iq1_s",
  703. .blck_size = QK_K,
  704. .type_size = sizeof(block_iq1_s),
  705. .is_quantized = true,
  706. .to_float = (ggml_to_float_t) dequantize_row_iq1_s,
  707. .from_float = NULL,
  708. .from_float_reference = NULL,
  709. .vec_dot = ggml_vec_dot_iq1_s_q8_K,
  710. .vec_dot_type = GGML_TYPE_Q8_K,
  711. .nrows = 1,
  712. },
  713. [GGML_TYPE_IQ1_M] = {
  714. .type_name = "iq1_m",
  715. .blck_size = QK_K,
  716. .type_size = sizeof(block_iq1_m),
  717. .is_quantized = true,
  718. .to_float = (ggml_to_float_t) dequantize_row_iq1_m,
  719. .from_float = NULL,
  720. .from_float_reference = NULL,
  721. .vec_dot = ggml_vec_dot_iq1_m_q8_K,
  722. .vec_dot_type = GGML_TYPE_Q8_K,
  723. .nrows = 1,
  724. },
  725. [GGML_TYPE_IQ4_NL] = {
  726. .type_name = "iq4_nl",
  727. .blck_size = QK4_NL,
  728. .type_size = sizeof(block_iq4_nl),
  729. .is_quantized = true,
  730. .to_float = (ggml_to_float_t) dequantize_row_iq4_nl,
  731. .from_float = quantize_row_iq4_nl,
  732. .from_float_reference = (ggml_from_float_t)quantize_row_iq4_nl_reference,
  733. .vec_dot = ggml_vec_dot_iq4_nl_q8_0,
  734. .vec_dot_type = GGML_TYPE_Q8_0,
  735. .nrows = 1,
  736. },
  737. [GGML_TYPE_IQ4_XS] = {
  738. .type_name = "iq4_xs",
  739. #if QK_K == 64
  740. .blck_size = QK4_NL,
  741. #else
  742. .blck_size = QK_K,
  743. #endif
  744. .type_size = sizeof(block_iq4_xs),
  745. .is_quantized = true,
  746. .to_float = (ggml_to_float_t) dequantize_row_iq4_xs,
  747. .from_float = quantize_row_iq4_xs,
  748. .from_float_reference = (ggml_from_float_t)quantize_row_iq4_xs_reference,
  749. .vec_dot = ggml_vec_dot_iq4_xs_q8_K,
  750. #if QK_K == 64
  751. .vec_dot_type = GGML_TYPE_Q8_0,
  752. #else
  753. .vec_dot_type = GGML_TYPE_Q8_K,
  754. #endif
  755. .nrows = 1,
  756. },
  757. [GGML_TYPE_Q8_K] = {
  758. .type_name = "q8_K",
  759. .blck_size = QK_K,
  760. .type_size = sizeof(block_q8_K),
  761. .is_quantized = true,
  762. .from_float = quantize_row_q8_K,
  763. }
  764. };
  765. // For internal test use
  766. ggml_type_traits_t ggml_internal_get_type_traits(enum ggml_type type) {
  767. GGML_ASSERT(type < GGML_TYPE_COUNT);
  768. return type_traits[type];
  769. }
  770. //
  771. // simd mappings
  772. //
  773. #if defined(__ARM_NEON)
  774. #if !defined(__aarch64__)
  775. // 64-bit compatibility
  776. inline static float vaddvq_f32(float32x4_t v) {
  777. return vgetq_lane_f32(v, 0) + vgetq_lane_f32(v, 1) + vgetq_lane_f32(v, 2) + vgetq_lane_f32(v, 3);
  778. }
  779. #endif
  780. #endif
  781. // we define a common set of C macros which map to specific intrinsics based on the current architecture
  782. // we then implement the fundamental computation operations below using only these macros
  783. // adding support for new architectures requires to define the corresponding SIMD macros
  784. //
  785. // GGML_F32_STEP / GGML_F16_STEP
  786. // number of elements to process in a single step
  787. //
  788. // GGML_F32_EPR / GGML_F16_EPR
  789. // number of elements to fit in a single register
  790. //
  791. #if defined(__ARM_NEON) && defined(__ARM_FEATURE_FMA)
  792. #define GGML_SIMD
  793. // F32 NEON
  794. #define GGML_F32_STEP 16
  795. #define GGML_F32_EPR 4
  796. #define GGML_F32x4 float32x4_t
  797. #define GGML_F32x4_ZERO vdupq_n_f32(0.0f)
  798. #define GGML_F32x4_SET1(x) vdupq_n_f32(x)
  799. #define GGML_F32x4_LOAD vld1q_f32
  800. #define GGML_F32x4_STORE vst1q_f32
  801. #define GGML_F32x4_FMA(a, b, c) vfmaq_f32(a, b, c)
  802. #define GGML_F32x4_ADD vaddq_f32
  803. #define GGML_F32x4_MUL vmulq_f32
  804. #define GGML_F32x4_REDUCE_ONE(x) vaddvq_f32(x)
  805. #define GGML_F32x4_REDUCE(res, x) \
  806. { \
  807. int offset = GGML_F32_ARR >> 1; \
  808. for (int i = 0; i < offset; ++i) { \
  809. x[i] = vaddq_f32(x[i], x[offset+i]); \
  810. } \
  811. offset >>= 1; \
  812. for (int i = 0; i < offset; ++i) { \
  813. x[i] = vaddq_f32(x[i], x[offset+i]); \
  814. } \
  815. offset >>= 1; \
  816. for (int i = 0; i < offset; ++i) { \
  817. x[i] = vaddq_f32(x[i], x[offset+i]); \
  818. } \
  819. res = GGML_F32x4_REDUCE_ONE(x[0]); \
  820. }
  821. #define GGML_F32_VEC GGML_F32x4
  822. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  823. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  824. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  825. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  826. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  827. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  828. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  829. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  830. // F16 NEON
  831. #if defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC)
  832. #define GGML_F16_STEP 32
  833. #define GGML_F16_EPR 8
  834. #define GGML_F16x8 float16x8_t
  835. #define GGML_F16x8_ZERO vdupq_n_f16(0.0f)
  836. #define GGML_F16x8_SET1(x) vdupq_n_f16(x)
  837. #define GGML_F16x8_LOAD(x) vld1q_f16((const ggml_fp16_internal_t *)(x))
  838. #define GGML_F16x8_STORE vst1q_f16
  839. #define GGML_F16x8_FMA(a, b, c) vfmaq_f16(a, b, c)
  840. #define GGML_F16x8_ADD vaddq_f16
  841. #define GGML_F16x8_MUL vmulq_f16
  842. #define GGML_F16x8_REDUCE(res, x) \
  843. do { \
  844. int offset = GGML_F16_ARR >> 1; \
  845. for (int i = 0; i < offset; ++i) { \
  846. x[i] = vaddq_f16(x[i], x[offset+i]); \
  847. } \
  848. offset >>= 1; \
  849. for (int i = 0; i < offset; ++i) { \
  850. x[i] = vaddq_f16(x[i], x[offset+i]); \
  851. } \
  852. offset >>= 1; \
  853. for (int i = 0; i < offset; ++i) { \
  854. x[i] = vaddq_f16(x[i], x[offset+i]); \
  855. } \
  856. const float32x4_t t0 = vcvt_f32_f16(vget_low_f16 (x[0])); \
  857. const float32x4_t t1 = vcvt_f32_f16(vget_high_f16(x[0])); \
  858. res = (ggml_float) vaddvq_f32(vaddq_f32(t0, t1)); \
  859. } while (0)
  860. #define GGML_F16_VEC GGML_F16x8
  861. #define GGML_F16_VEC_ZERO GGML_F16x8_ZERO
  862. #define GGML_F16_VEC_SET1 GGML_F16x8_SET1
  863. #define GGML_F16_VEC_LOAD(p, i) GGML_F16x8_LOAD(p)
  864. #define GGML_F16_VEC_STORE(p, r, i) GGML_F16x8_STORE(p, r[i])
  865. #define GGML_F16_VEC_FMA GGML_F16x8_FMA
  866. #define GGML_F16_VEC_ADD GGML_F16x8_ADD
  867. #define GGML_F16_VEC_MUL GGML_F16x8_MUL
  868. #define GGML_F16_VEC_REDUCE GGML_F16x8_REDUCE
  869. #else
  870. // if FP16 vector arithmetic is not supported, we use FP32 instead
  871. // and take advantage of the vcvt_ functions to convert to/from FP16
  872. #define GGML_F16_STEP 16
  873. #define GGML_F16_EPR 4
  874. #define GGML_F32Cx4 float32x4_t
  875. #define GGML_F32Cx4_ZERO vdupq_n_f32(0.0f)
  876. #define GGML_F32Cx4_SET1(x) vdupq_n_f32(x)
  877. #define GGML_F32Cx4_LOAD(x) vcvt_f32_f16(vld1_f16((const ggml_fp16_internal_t *)(x)))
  878. #define GGML_F32Cx4_STORE(x, y) vst1_f16(x, vcvt_f16_f32(y))
  879. #define GGML_F32Cx4_FMA(a, b, c) vfmaq_f32(a, b, c)
  880. #define GGML_F32Cx4_ADD vaddq_f32
  881. #define GGML_F32Cx4_MUL vmulq_f32
  882. #define GGML_F32Cx4_REDUCE GGML_F32x4_REDUCE
  883. #define GGML_F16_VEC GGML_F32Cx4
  884. #define GGML_F16_VEC_ZERO GGML_F32Cx4_ZERO
  885. #define GGML_F16_VEC_SET1 GGML_F32Cx4_SET1
  886. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx4_LOAD(p)
  887. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx4_STORE(p, r[i])
  888. #define GGML_F16_VEC_FMA GGML_F32Cx4_FMA
  889. #define GGML_F16_VEC_ADD GGML_F32Cx4_ADD
  890. #define GGML_F16_VEC_MUL GGML_F32Cx4_MUL
  891. #define GGML_F16_VEC_REDUCE GGML_F32Cx4_REDUCE
  892. #endif
  893. #elif defined(__AVX512F__)
  894. #define GGML_SIMD
  895. // F32 AVX512
  896. #define GGML_F32_STEP 64
  897. #define GGML_F32_EPR 16
  898. #define GGML_F32x16 __m512
  899. #define GGML_F32x16_ZERO _mm512_setzero_ps()
  900. #define GGML_F32x16_SET1(x) _mm512_set1_ps(x)
  901. #define GGML_F32x16_LOAD _mm512_loadu_ps
  902. #define GGML_F32x16_STORE _mm512_storeu_ps
  903. // _mm512_fmadd_ps is defined in AVX512F so no guard is required
  904. #define GGML_F32x16_FMA(a, b, c) _mm512_fmadd_ps(b, c, a)
  905. #define GGML_F32x16_ADD _mm512_add_ps
  906. #define GGML_F32x16_MUL _mm512_mul_ps
  907. #define GGML_F32x16_REDUCE(res, x) \
  908. do { \
  909. int offset = GGML_F32_ARR >> 1; \
  910. for (int i = 0; i < offset; ++i) { \
  911. x[i] = _mm512_add_ps(x[i], x[offset+i]); \
  912. } \
  913. offset >>= 1; \
  914. for (int i = 0; i < offset; ++i) { \
  915. x[i] = _mm512_add_ps(x[i], x[offset+i]); \
  916. } \
  917. offset >>= 1; \
  918. for (int i = 0; i < offset; ++i) { \
  919. x[i] = _mm512_add_ps(x[i], x[offset+i]); \
  920. } \
  921. res = _mm512_reduce_add_ps(x[0]); \
  922. } while (0)
  923. // TODO: is this optimal ?
  924. #define GGML_F32_VEC GGML_F32x16
  925. #define GGML_F32_VEC_ZERO GGML_F32x16_ZERO
  926. #define GGML_F32_VEC_SET1 GGML_F32x16_SET1
  927. #define GGML_F32_VEC_LOAD GGML_F32x16_LOAD
  928. #define GGML_F32_VEC_STORE GGML_F32x16_STORE
  929. #define GGML_F32_VEC_FMA GGML_F32x16_FMA
  930. #define GGML_F32_VEC_ADD GGML_F32x16_ADD
  931. #define GGML_F32_VEC_MUL GGML_F32x16_MUL
  932. #define GGML_F32_VEC_REDUCE GGML_F32x16_REDUCE
  933. // F16 AVX512
  934. // F16 AVX
  935. #define GGML_F16_STEP 64
  936. #define GGML_F16_EPR 16
  937. // AVX512 has FP16 extension (AVX512_FP16) but I don't have it on my machine so I use FP32 instead
  938. #define GGML_F32Cx16 __m512
  939. #define GGML_F32Cx16_ZERO _mm512_setzero_ps()
  940. #define GGML_F32Cx16_SET1(x) _mm512_set1_ps(x)
  941. // unlike _mm256_cvt intrinsics that require F16C, _mm512_cvt is defined in AVX512F
  942. // so F16C guard isn't required
  943. #define GGML_F32Cx16_LOAD(x) _mm512_cvtph_ps(_mm256_loadu_si256((__m256i *)(x)))
  944. #define GGML_F32Cx16_STORE(x, y) _mm256_storeu_si256((__m256i *)(x), _mm512_cvtps_ph(y, 0))
  945. #define GGML_F32Cx16_FMA(a, b, c) _mm512_fmadd_ps(b, c, a)
  946. #define GGML_F32Cx16_ADD _mm512_add_ps
  947. #define GGML_F32Cx16_MUL _mm512_mul_ps
  948. #define GGML_F32Cx16_REDUCE(res, x) \
  949. do { \
  950. int offset = GGML_F32_ARR >> 1; \
  951. for (int i = 0; i < offset; ++i) { \
  952. x[i] = _mm512_add_ps(x[i], x[offset+i]); \
  953. } \
  954. offset >>= 1; \
  955. for (int i = 0; i < offset; ++i) { \
  956. x[i] = _mm512_add_ps(x[i], x[offset+i]); \
  957. } \
  958. offset >>= 1; \
  959. for (int i = 0; i < offset; ++i) { \
  960. x[i] = _mm512_add_ps(x[i], x[offset+i]); \
  961. } \
  962. res = _mm512_reduce_add_ps(x[0]); \
  963. } while (0)
  964. #define GGML_F16_VEC GGML_F32Cx16
  965. #define GGML_F16_VEC_ZERO GGML_F32Cx16_ZERO
  966. #define GGML_F16_VEC_SET1 GGML_F32Cx16_SET1
  967. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx16_LOAD(p)
  968. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx16_STORE(p, r[i])
  969. #define GGML_F16_VEC_FMA GGML_F32Cx16_FMA
  970. #define GGML_F16_VEC_ADD GGML_F32Cx16_ADD
  971. #define GGML_F16_VEC_MUL GGML_F32Cx16_MUL
  972. #define GGML_F16_VEC_REDUCE GGML_F32Cx16_REDUCE
  973. #elif defined(__AVX__)
  974. #define GGML_SIMD
  975. // F32 AVX
  976. #define GGML_F32_STEP 32
  977. #define GGML_F32_EPR 8
  978. #define GGML_F32x8 __m256
  979. #define GGML_F32x8_ZERO _mm256_setzero_ps()
  980. #define GGML_F32x8_SET1(x) _mm256_set1_ps(x)
  981. #define GGML_F32x8_LOAD _mm256_loadu_ps
  982. #define GGML_F32x8_STORE _mm256_storeu_ps
  983. #if defined(__FMA__)
  984. #define GGML_F32x8_FMA(a, b, c) _mm256_fmadd_ps(b, c, a)
  985. #else
  986. #define GGML_F32x8_FMA(a, b, c) _mm256_add_ps(_mm256_mul_ps(b, c), a)
  987. #endif
  988. #define GGML_F32x8_ADD _mm256_add_ps
  989. #define GGML_F32x8_MUL _mm256_mul_ps
  990. #define GGML_F32x8_REDUCE(res, x) \
  991. do { \
  992. int offset = GGML_F32_ARR >> 1; \
  993. for (int i = 0; i < offset; ++i) { \
  994. x[i] = _mm256_add_ps(x[i], x[offset+i]); \
  995. } \
  996. offset >>= 1; \
  997. for (int i = 0; i < offset; ++i) { \
  998. x[i] = _mm256_add_ps(x[i], x[offset+i]); \
  999. } \
  1000. offset >>= 1; \
  1001. for (int i = 0; i < offset; ++i) { \
  1002. x[i] = _mm256_add_ps(x[i], x[offset+i]); \
  1003. } \
  1004. const __m128 t0 = _mm_add_ps(_mm256_castps256_ps128(x[0]), \
  1005. _mm256_extractf128_ps(x[0], 1)); \
  1006. const __m128 t1 = _mm_hadd_ps(t0, t0); \
  1007. res = (ggml_float) _mm_cvtss_f32(_mm_hadd_ps(t1, t1)); \
  1008. } while (0)
  1009. // TODO: is this optimal ?
  1010. #define GGML_F32_VEC GGML_F32x8
  1011. #define GGML_F32_VEC_ZERO GGML_F32x8_ZERO
  1012. #define GGML_F32_VEC_SET1 GGML_F32x8_SET1
  1013. #define GGML_F32_VEC_LOAD GGML_F32x8_LOAD
  1014. #define GGML_F32_VEC_STORE GGML_F32x8_STORE
  1015. #define GGML_F32_VEC_FMA GGML_F32x8_FMA
  1016. #define GGML_F32_VEC_ADD GGML_F32x8_ADD
  1017. #define GGML_F32_VEC_MUL GGML_F32x8_MUL
  1018. #define GGML_F32_VEC_REDUCE GGML_F32x8_REDUCE
  1019. // F16 AVX
  1020. #define GGML_F16_STEP 32
  1021. #define GGML_F16_EPR 8
  1022. // F16 arithmetic is not supported by AVX, so we use F32 instead
  1023. #define GGML_F32Cx8 __m256
  1024. #define GGML_F32Cx8_ZERO _mm256_setzero_ps()
  1025. #define GGML_F32Cx8_SET1(x) _mm256_set1_ps(x)
  1026. #if defined(__F16C__)
  1027. // the _mm256_cvt intrinsics require F16C
  1028. #define GGML_F32Cx8_LOAD(x) _mm256_cvtph_ps(_mm_loadu_si128((__m128i *)(x)))
  1029. #define GGML_F32Cx8_STORE(x, y) _mm_storeu_si128((__m128i *)(x), _mm256_cvtps_ph(y, 0))
  1030. #else
  1031. static inline __m256 __avx_f32cx8_load(ggml_fp16_t *x) {
  1032. float tmp[8];
  1033. for (int i = 0; i < 8; i++) {
  1034. tmp[i] = GGML_FP16_TO_FP32(x[i]);
  1035. }
  1036. return _mm256_loadu_ps(tmp);
  1037. }
  1038. static inline void __avx_f32cx8_store(ggml_fp16_t *x, __m256 y) {
  1039. float arr[8];
  1040. _mm256_storeu_ps(arr, y);
  1041. for (int i = 0; i < 8; i++)
  1042. x[i] = GGML_FP32_TO_FP16(arr[i]);
  1043. }
  1044. #define GGML_F32Cx8_LOAD(x) __avx_f32cx8_load(x)
  1045. #define GGML_F32Cx8_STORE(x, y) __avx_f32cx8_store(x, y)
  1046. #endif
  1047. #define GGML_F32Cx8_FMA GGML_F32x8_FMA
  1048. #define GGML_F32Cx8_ADD _mm256_add_ps
  1049. #define GGML_F32Cx8_MUL _mm256_mul_ps
  1050. #define GGML_F32Cx8_REDUCE GGML_F32x8_REDUCE
  1051. #define GGML_F16_VEC GGML_F32Cx8
  1052. #define GGML_F16_VEC_ZERO GGML_F32Cx8_ZERO
  1053. #define GGML_F16_VEC_SET1 GGML_F32Cx8_SET1
  1054. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx8_LOAD(p)
  1055. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx8_STORE(p, r[i])
  1056. #define GGML_F16_VEC_FMA GGML_F32Cx8_FMA
  1057. #define GGML_F16_VEC_ADD GGML_F32Cx8_ADD
  1058. #define GGML_F16_VEC_MUL GGML_F32Cx8_MUL
  1059. #define GGML_F16_VEC_REDUCE GGML_F32Cx8_REDUCE
  1060. #elif defined(__POWER9_VECTOR__)
  1061. #define GGML_SIMD
  1062. // F32 POWER9
  1063. #define GGML_F32_STEP 32
  1064. #define GGML_F32_EPR 4
  1065. #define GGML_F32x4 vector float
  1066. #define GGML_F32x4_ZERO 0.0f
  1067. #define GGML_F32x4_SET1 vec_splats
  1068. #define GGML_F32x4_LOAD(p) vec_xl(0, p)
  1069. #define GGML_F32x4_STORE(p, r) vec_xst(r, 0, p)
  1070. #define GGML_F32x4_FMA(a, b, c) vec_madd(b, c, a)
  1071. #define GGML_F32x4_ADD vec_add
  1072. #define GGML_F32x4_MUL vec_mul
  1073. #define GGML_F32x4_REDUCE(res, x) \
  1074. { \
  1075. int offset = GGML_F32_ARR >> 1; \
  1076. for (int i = 0; i < offset; ++i) { \
  1077. x[i] = vec_add(x[i], x[offset+i]); \
  1078. } \
  1079. offset >>= 1; \
  1080. for (int i = 0; i < offset; ++i) { \
  1081. x[i] = vec_add(x[i], x[offset+i]); \
  1082. } \
  1083. offset >>= 1; \
  1084. for (int i = 0; i < offset; ++i) { \
  1085. x[i] = vec_add(x[i], x[offset+i]); \
  1086. } \
  1087. res = vec_extract(x[0], 0) + \
  1088. vec_extract(x[0], 1) + \
  1089. vec_extract(x[0], 2) + \
  1090. vec_extract(x[0], 3); \
  1091. }
  1092. #define GGML_F32_VEC GGML_F32x4
  1093. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1094. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1095. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1096. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1097. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1098. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1099. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1100. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1101. // F16 POWER9
  1102. #define GGML_F16_STEP GGML_F32_STEP
  1103. #define GGML_F16_EPR GGML_F32_EPR
  1104. #define GGML_F16_VEC GGML_F32x4
  1105. #define GGML_F16_VEC_ZERO GGML_F32x4_ZERO
  1106. #define GGML_F16_VEC_SET1 GGML_F32x4_SET1
  1107. #define GGML_F16_VEC_FMA GGML_F32x4_FMA
  1108. #define GGML_F16_VEC_REDUCE GGML_F32x4_REDUCE
  1109. // Use vec_xl, not vec_ld, in case the load address is not aligned.
  1110. #define GGML_F16_VEC_LOAD(p, i) (i & 0x1) ? \
  1111. vec_extract_fp32_from_shorth(vec_xl(0, p - GGML_F16_EPR)) : \
  1112. vec_extract_fp32_from_shortl(vec_xl(0, p))
  1113. #define GGML_ENDIAN_BYTE(i) ((unsigned char *)&(uint16_t){1})[i]
  1114. #define GGML_F16_VEC_STORE(p, r, i) \
  1115. if (i & 0x1) \
  1116. vec_xst(vec_pack_to_short_fp32(r[i - GGML_ENDIAN_BYTE(1)], \
  1117. r[i - GGML_ENDIAN_BYTE(0)]), \
  1118. 0, p - GGML_F16_EPR)
  1119. #elif defined(__wasm_simd128__)
  1120. #define GGML_SIMD
  1121. // F32 WASM
  1122. #define GGML_F32_STEP 16
  1123. #define GGML_F32_EPR 4
  1124. #define GGML_F32x4 v128_t
  1125. #define GGML_F32x4_ZERO wasm_f32x4_splat(0.0f)
  1126. #define GGML_F32x4_SET1(x) wasm_f32x4_splat(x)
  1127. #define GGML_F32x4_LOAD wasm_v128_load
  1128. #define GGML_F32x4_STORE wasm_v128_store
  1129. #define GGML_F32x4_FMA(a, b, c) wasm_f32x4_add(wasm_f32x4_mul(b, c), a)
  1130. #define GGML_F32x4_ADD wasm_f32x4_add
  1131. #define GGML_F32x4_MUL wasm_f32x4_mul
  1132. #define GGML_F32x4_REDUCE(res, x) \
  1133. { \
  1134. int offset = GGML_F32_ARR >> 1; \
  1135. for (int i = 0; i < offset; ++i) { \
  1136. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  1137. } \
  1138. offset >>= 1; \
  1139. for (int i = 0; i < offset; ++i) { \
  1140. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  1141. } \
  1142. offset >>= 1; \
  1143. for (int i = 0; i < offset; ++i) { \
  1144. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  1145. } \
  1146. res = wasm_f32x4_extract_lane(x[0], 0) + \
  1147. wasm_f32x4_extract_lane(x[0], 1) + \
  1148. wasm_f32x4_extract_lane(x[0], 2) + \
  1149. wasm_f32x4_extract_lane(x[0], 3); \
  1150. }
  1151. #define GGML_F32_VEC GGML_F32x4
  1152. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1153. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1154. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1155. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1156. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1157. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1158. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1159. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1160. // F16 WASM
  1161. #define GGML_F16_STEP 16
  1162. #define GGML_F16_EPR 4
  1163. inline static v128_t __wasm_f16x4_load(const ggml_fp16_t * p) {
  1164. float tmp[4];
  1165. tmp[0] = GGML_FP16_TO_FP32(p[0]);
  1166. tmp[1] = GGML_FP16_TO_FP32(p[1]);
  1167. tmp[2] = GGML_FP16_TO_FP32(p[2]);
  1168. tmp[3] = GGML_FP16_TO_FP32(p[3]);
  1169. return wasm_v128_load(tmp);
  1170. }
  1171. inline static void __wasm_f16x4_store(ggml_fp16_t * p, v128_t x) {
  1172. float tmp[4];
  1173. wasm_v128_store(tmp, x);
  1174. p[0] = GGML_FP32_TO_FP16(tmp[0]);
  1175. p[1] = GGML_FP32_TO_FP16(tmp[1]);
  1176. p[2] = GGML_FP32_TO_FP16(tmp[2]);
  1177. p[3] = GGML_FP32_TO_FP16(tmp[3]);
  1178. }
  1179. #define GGML_F16x4 v128_t
  1180. #define GGML_F16x4_ZERO wasm_f32x4_splat(0.0f)
  1181. #define GGML_F16x4_SET1(x) wasm_f32x4_splat(x)
  1182. #define GGML_F16x4_LOAD(x) __wasm_f16x4_load(x)
  1183. #define GGML_F16x4_STORE(x, y) __wasm_f16x4_store(x, y)
  1184. #define GGML_F16x4_FMA GGML_F32x4_FMA
  1185. #define GGML_F16x4_ADD wasm_f32x4_add
  1186. #define GGML_F16x4_MUL wasm_f32x4_mul
  1187. #define GGML_F16x4_REDUCE(res, x) \
  1188. { \
  1189. int offset = GGML_F16_ARR >> 1; \
  1190. for (int i = 0; i < offset; ++i) { \
  1191. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  1192. } \
  1193. offset >>= 1; \
  1194. for (int i = 0; i < offset; ++i) { \
  1195. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  1196. } \
  1197. offset >>= 1; \
  1198. for (int i = 0; i < offset; ++i) { \
  1199. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  1200. } \
  1201. res = wasm_f32x4_extract_lane(x[0], 0) + \
  1202. wasm_f32x4_extract_lane(x[0], 1) + \
  1203. wasm_f32x4_extract_lane(x[0], 2) + \
  1204. wasm_f32x4_extract_lane(x[0], 3); \
  1205. }
  1206. #define GGML_F16_VEC GGML_F16x4
  1207. #define GGML_F16_VEC_ZERO GGML_F16x4_ZERO
  1208. #define GGML_F16_VEC_SET1 GGML_F16x4_SET1
  1209. #define GGML_F16_VEC_LOAD(p, i) GGML_F16x4_LOAD(p)
  1210. #define GGML_F16_VEC_STORE(p, r, i) GGML_F16x4_STORE(p, r[i])
  1211. #define GGML_F16_VEC_FMA GGML_F16x4_FMA
  1212. #define GGML_F16_VEC_ADD GGML_F16x4_ADD
  1213. #define GGML_F16_VEC_MUL GGML_F16x4_MUL
  1214. #define GGML_F16_VEC_REDUCE GGML_F16x4_REDUCE
  1215. #elif defined(__SSE3__)
  1216. #define GGML_SIMD
  1217. // F32 SSE
  1218. #define GGML_F32_STEP 32
  1219. #define GGML_F32_EPR 4
  1220. #define GGML_F32x4 __m128
  1221. #define GGML_F32x4_ZERO _mm_setzero_ps()
  1222. #define GGML_F32x4_SET1(x) _mm_set1_ps(x)
  1223. #define GGML_F32x4_LOAD _mm_loadu_ps
  1224. #define GGML_F32x4_STORE _mm_storeu_ps
  1225. #if defined(__FMA__)
  1226. // TODO: Does this work?
  1227. #define GGML_F32x4_FMA(a, b, c) _mm_fmadd_ps(b, c, a)
  1228. #else
  1229. #define GGML_F32x4_FMA(a, b, c) _mm_add_ps(_mm_mul_ps(b, c), a)
  1230. #endif
  1231. #define GGML_F32x4_ADD _mm_add_ps
  1232. #define GGML_F32x4_MUL _mm_mul_ps
  1233. #define GGML_F32x4_REDUCE(res, x) \
  1234. { \
  1235. int offset = GGML_F32_ARR >> 1; \
  1236. for (int i = 0; i < offset; ++i) { \
  1237. x[i] = _mm_add_ps(x[i], x[offset+i]); \
  1238. } \
  1239. offset >>= 1; \
  1240. for (int i = 0; i < offset; ++i) { \
  1241. x[i] = _mm_add_ps(x[i], x[offset+i]); \
  1242. } \
  1243. offset >>= 1; \
  1244. for (int i = 0; i < offset; ++i) { \
  1245. x[i] = _mm_add_ps(x[i], x[offset+i]); \
  1246. } \
  1247. const __m128 t0 = _mm_hadd_ps(x[0], x[0]); \
  1248. res = (ggml_float) _mm_cvtss_f32(_mm_hadd_ps(t0, t0)); \
  1249. }
  1250. // TODO: is this optimal ?
  1251. #define GGML_F32_VEC GGML_F32x4
  1252. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1253. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1254. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1255. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1256. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1257. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1258. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1259. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1260. // F16 SSE
  1261. #define GGML_F16_STEP 32
  1262. #define GGML_F16_EPR 4
  1263. static inline __m128 __sse_f16x4_load(ggml_fp16_t *x) {
  1264. float tmp[4];
  1265. tmp[0] = GGML_FP16_TO_FP32(x[0]);
  1266. tmp[1] = GGML_FP16_TO_FP32(x[1]);
  1267. tmp[2] = GGML_FP16_TO_FP32(x[2]);
  1268. tmp[3] = GGML_FP16_TO_FP32(x[3]);
  1269. return _mm_loadu_ps(tmp);
  1270. }
  1271. static inline void __sse_f16x4_store(ggml_fp16_t *x, __m128 y) {
  1272. float arr[4];
  1273. _mm_storeu_ps(arr, y);
  1274. x[0] = GGML_FP32_TO_FP16(arr[0]);
  1275. x[1] = GGML_FP32_TO_FP16(arr[1]);
  1276. x[2] = GGML_FP32_TO_FP16(arr[2]);
  1277. x[3] = GGML_FP32_TO_FP16(arr[3]);
  1278. }
  1279. #define GGML_F32Cx4 __m128
  1280. #define GGML_F32Cx4_ZERO _mm_setzero_ps()
  1281. #define GGML_F32Cx4_SET1(x) _mm_set1_ps(x)
  1282. #define GGML_F32Cx4_LOAD(x) __sse_f16x4_load(x)
  1283. #define GGML_F32Cx4_STORE(x, y) __sse_f16x4_store(x, y)
  1284. #define GGML_F32Cx4_FMA GGML_F32x4_FMA
  1285. #define GGML_F32Cx4_ADD _mm_add_ps
  1286. #define GGML_F32Cx4_MUL _mm_mul_ps
  1287. #define GGML_F32Cx4_REDUCE GGML_F32x4_REDUCE
  1288. #define GGML_F16_VEC GGML_F32Cx4
  1289. #define GGML_F16_VEC_ZERO GGML_F32Cx4_ZERO
  1290. #define GGML_F16_VEC_SET1 GGML_F32Cx4_SET1
  1291. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx4_LOAD(p)
  1292. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx4_STORE(p, r[i])
  1293. #define GGML_F16_VEC_FMA GGML_F32Cx4_FMA
  1294. #define GGML_F16_VEC_ADD GGML_F32Cx4_ADD
  1295. #define GGML_F16_VEC_MUL GGML_F32Cx4_MUL
  1296. #define GGML_F16_VEC_REDUCE GGML_F32Cx4_REDUCE
  1297. #endif
  1298. // GGML_F32_ARR / GGML_F16_ARR
  1299. // number of registers to use per step
  1300. #ifdef GGML_SIMD
  1301. #define GGML_F32_ARR (GGML_F32_STEP/GGML_F32_EPR)
  1302. #define GGML_F16_ARR (GGML_F16_STEP/GGML_F16_EPR)
  1303. #endif
  1304. //
  1305. // fundamental operations
  1306. //
  1307. inline static void ggml_vec_set_i8(const int n, int8_t * x, const int8_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1308. inline static void ggml_vec_set_i16(const int n, int16_t * x, const int16_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1309. inline static void ggml_vec_set_i32(const int n, int32_t * x, const int32_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1310. inline static void ggml_vec_set_f16(const int n, ggml_fp16_t * x, const int32_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1311. inline static void ggml_vec_add_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i] + y[i]; }
  1312. inline static void ggml_vec_add1_f32(const int n, float * z, const float * x, const float v) { for (int i = 0; i < n; ++i) z[i] = x[i] + v; }
  1313. inline static void ggml_vec_acc_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] += x[i]; }
  1314. inline static void ggml_vec_acc1_f32(const int n, float * y, const float v) { for (int i = 0; i < n; ++i) y[i] += v; }
  1315. inline static void ggml_vec_sub_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i] - y[i]; }
  1316. inline static void ggml_vec_set_f32 (const int n, float * x, const float v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1317. inline static void ggml_vec_cpy_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i]; }
  1318. inline static void ggml_vec_neg_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = -x[i]; }
  1319. inline static void ggml_vec_mul_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i]*y[i]; }
  1320. inline static void ggml_vec_div_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i]/y[i]; }
  1321. static void ggml_vec_dot_f32(int n, float * restrict s, size_t bs, const float * restrict x, size_t bx, const float * restrict y, size_t by, int nrc) {
  1322. assert(nrc == 1);
  1323. UNUSED(nrc);
  1324. UNUSED(bx);
  1325. UNUSED(by);
  1326. UNUSED(bs);
  1327. #ifdef GGML_SIMD
  1328. float sumf = 0.0f;
  1329. const int np = (n & ~(GGML_F32_STEP - 1));
  1330. GGML_F32_VEC sum[GGML_F32_ARR] = { GGML_F32_VEC_ZERO };
  1331. GGML_F32_VEC ax[GGML_F32_ARR];
  1332. GGML_F32_VEC ay[GGML_F32_ARR];
  1333. for (int i = 0; i < np; i += GGML_F32_STEP) {
  1334. for (int j = 0; j < GGML_F32_ARR; j++) {
  1335. ax[j] = GGML_F32_VEC_LOAD(x + i + j*GGML_F32_EPR);
  1336. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  1337. sum[j] = GGML_F32_VEC_FMA(sum[j], ax[j], ay[j]);
  1338. }
  1339. }
  1340. // reduce sum0..sum3 to sum0
  1341. GGML_F32_VEC_REDUCE(sumf, sum);
  1342. // leftovers
  1343. for (int i = np; i < n; ++i) {
  1344. sumf += x[i]*y[i];
  1345. }
  1346. #else
  1347. // scalar
  1348. ggml_float sumf = 0.0;
  1349. for (int i = 0; i < n; ++i) {
  1350. sumf += (ggml_float)(x[i]*y[i]);
  1351. }
  1352. #endif
  1353. *s = sumf;
  1354. }
  1355. static void ggml_vec_dot_f16(int n, float * restrict s, size_t bs, ggml_fp16_t * restrict x, size_t bx, ggml_fp16_t * restrict y, size_t by, int nrc) {
  1356. assert(nrc == 1);
  1357. UNUSED(nrc);
  1358. UNUSED(bx);
  1359. UNUSED(by);
  1360. UNUSED(bs);
  1361. ggml_float sumf = 0.0;
  1362. #if defined(GGML_SIMD)
  1363. const int np = (n & ~(GGML_F16_STEP - 1));
  1364. GGML_F16_VEC sum[GGML_F16_ARR] = { GGML_F16_VEC_ZERO };
  1365. GGML_F16_VEC ax[GGML_F16_ARR];
  1366. GGML_F16_VEC ay[GGML_F16_ARR];
  1367. for (int i = 0; i < np; i += GGML_F16_STEP) {
  1368. for (int j = 0; j < GGML_F16_ARR; j++) {
  1369. ax[j] = GGML_F16_VEC_LOAD(x + i + j*GGML_F16_EPR, j);
  1370. ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
  1371. sum[j] = GGML_F16_VEC_FMA(sum[j], ax[j], ay[j]);
  1372. }
  1373. }
  1374. // reduce sum0..sum3 to sum0
  1375. GGML_F16_VEC_REDUCE(sumf, sum);
  1376. // leftovers
  1377. for (int i = np; i < n; ++i) {
  1378. sumf += (ggml_float)(GGML_FP16_TO_FP32(x[i])*GGML_FP16_TO_FP32(y[i]));
  1379. }
  1380. #else
  1381. for (int i = 0; i < n; ++i) {
  1382. sumf += (ggml_float)(GGML_FP16_TO_FP32(x[i])*GGML_FP16_TO_FP32(y[i]));
  1383. }
  1384. #endif
  1385. *s = sumf;
  1386. }
  1387. // compute GGML_VEC_DOT_UNROLL dot products at once
  1388. // xs - x row stride in bytes
  1389. inline static void ggml_vec_dot_f16_unroll(const int n, const int xs, float * restrict s, void * restrict xv, ggml_fp16_t * restrict y) {
  1390. ggml_float sumf[GGML_VEC_DOT_UNROLL] = { 0.0 };
  1391. ggml_fp16_t * restrict x[GGML_VEC_DOT_UNROLL];
  1392. for (int i = 0; i < GGML_VEC_DOT_UNROLL; ++i) {
  1393. x[i] = (ggml_fp16_t *) ((char *) xv + i*xs);
  1394. }
  1395. #if defined(GGML_SIMD)
  1396. const int np = (n & ~(GGML_F16_STEP - 1));
  1397. GGML_F16_VEC sum[GGML_VEC_DOT_UNROLL][GGML_F16_ARR] = { { GGML_F16_VEC_ZERO } };
  1398. GGML_F16_VEC ax[GGML_F16_ARR];
  1399. GGML_F16_VEC ay[GGML_F16_ARR];
  1400. for (int i = 0; i < np; i += GGML_F16_STEP) {
  1401. for (int j = 0; j < GGML_F16_ARR; j++) {
  1402. ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
  1403. for (int k = 0; k < GGML_VEC_DOT_UNROLL; ++k) {
  1404. ax[j] = GGML_F16_VEC_LOAD(x[k] + i + j*GGML_F16_EPR, j);
  1405. sum[k][j] = GGML_F16_VEC_FMA(sum[k][j], ax[j], ay[j]);
  1406. }
  1407. }
  1408. }
  1409. // reduce sum0..sum3 to sum0
  1410. for (int k = 0; k < GGML_VEC_DOT_UNROLL; ++k) {
  1411. GGML_F16_VEC_REDUCE(sumf[k], sum[k]);
  1412. }
  1413. // leftovers
  1414. for (int i = np; i < n; ++i) {
  1415. for (int j = 0; j < GGML_VEC_DOT_UNROLL; ++j) {
  1416. sumf[j] += (ggml_float)(GGML_FP16_TO_FP32(x[j][i])*GGML_FP16_TO_FP32(y[i]));
  1417. }
  1418. }
  1419. #else
  1420. for (int i = 0; i < n; ++i) {
  1421. for (int j = 0; j < GGML_VEC_DOT_UNROLL; ++j) {
  1422. sumf[j] += (ggml_float)(GGML_FP16_TO_FP32(x[j][i])*GGML_FP16_TO_FP32(y[i]));
  1423. }
  1424. }
  1425. #endif
  1426. for (int i = 0; i < GGML_VEC_DOT_UNROLL; ++i) {
  1427. s[i] = sumf[i];
  1428. }
  1429. }
  1430. inline static void ggml_vec_mad_f32(const int n, float * restrict y, const float * restrict x, const float v) {
  1431. #if defined(GGML_SIMD)
  1432. const int np = (n & ~(GGML_F32_STEP - 1));
  1433. GGML_F32_VEC vx = GGML_F32_VEC_SET1(v);
  1434. GGML_F32_VEC ax[GGML_F32_ARR];
  1435. GGML_F32_VEC ay[GGML_F32_ARR];
  1436. for (int i = 0; i < np; i += GGML_F32_STEP) {
  1437. for (int j = 0; j < GGML_F32_ARR; j++) {
  1438. ax[j] = GGML_F32_VEC_LOAD(x + i + j*GGML_F32_EPR);
  1439. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  1440. ay[j] = GGML_F32_VEC_FMA(ay[j], ax[j], vx);
  1441. GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
  1442. }
  1443. }
  1444. // leftovers
  1445. for (int i = np; i < n; ++i) {
  1446. y[i] += x[i]*v;
  1447. }
  1448. #else
  1449. // scalar
  1450. for (int i = 0; i < n; ++i) {
  1451. y[i] += x[i]*v;
  1452. }
  1453. #endif
  1454. }
  1455. // xs and vs are byte strides of x and v
  1456. inline static void ggml_vec_mad_f32_unroll(const int n, const int xs, const int vs, float * restrict y, const float * restrict xv, const float * restrict vv) {
  1457. const float * restrict x[GGML_VEC_MAD_UNROLL];
  1458. const float * restrict v[GGML_VEC_MAD_UNROLL];
  1459. for (int i = 0; i < GGML_VEC_MAD_UNROLL; ++i) {
  1460. x[i] = (const float *) ((const char *) xv + i*xs);
  1461. v[i] = (const float *) ((const char *) vv + i*vs);
  1462. }
  1463. #if defined(GGML_SIMD)
  1464. const int np = (n & ~(GGML_F32_STEP - 1));
  1465. GGML_F32_VEC vx[GGML_VEC_MAD_UNROLL];
  1466. for (int k = 0; k < GGML_VEC_MAD_UNROLL; ++k) {
  1467. vx[k] = GGML_F32_VEC_SET1(v[k][0]);
  1468. }
  1469. GGML_F32_VEC ax[GGML_VEC_MAD_UNROLL][GGML_F32_ARR];
  1470. GGML_F32_VEC ay[GGML_F32_ARR];
  1471. for (int i = 0; i < np; i += GGML_F32_STEP) {
  1472. for (int j = 0; j < GGML_F32_ARR; j++) {
  1473. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  1474. for (int k = 0; k < GGML_VEC_MAD_UNROLL; ++k) {
  1475. ax[k][j] = GGML_F32_VEC_LOAD(x[k] + i + j*GGML_F32_EPR);
  1476. ay[j] = GGML_F32_VEC_FMA(ay[j], ax[k][j], vx[k]);
  1477. }
  1478. GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
  1479. }
  1480. }
  1481. // leftovers
  1482. for (int k = 0; k < GGML_VEC_MAD_UNROLL; ++k) {
  1483. for (int i = np; i < n; ++i) {
  1484. y[i] += x[k][i]*v[k][0];
  1485. }
  1486. }
  1487. #else
  1488. // scalar
  1489. for (int k = 0; k < GGML_VEC_MAD_UNROLL; ++k) {
  1490. for (int i = 0; i < n; ++i) {
  1491. y[i] += x[k][i]*v[k][0];
  1492. }
  1493. }
  1494. #endif
  1495. }
  1496. //inline static void ggml_vec_scale_f32(const int n, float * y, const float v) { for (int i = 0; i < n; ++i) y[i] *= v; }
  1497. inline static void ggml_vec_scale_f32(const int n, float * y, const float v) {
  1498. #if defined(GGML_USE_ACCELERATE)
  1499. vDSP_vsmul(y, 1, &v, y, 1, n);
  1500. #elif defined(GGML_SIMD)
  1501. const int np = (n & ~(GGML_F32_STEP - 1));
  1502. GGML_F32_VEC vx = GGML_F32_VEC_SET1(v);
  1503. GGML_F32_VEC ay[GGML_F32_ARR];
  1504. for (int i = 0; i < np; i += GGML_F32_STEP) {
  1505. for (int j = 0; j < GGML_F32_ARR; j++) {
  1506. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  1507. ay[j] = GGML_F32_VEC_MUL(ay[j], vx);
  1508. GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
  1509. }
  1510. }
  1511. // leftovers
  1512. for (int i = np; i < n; ++i) {
  1513. y[i] *= v;
  1514. }
  1515. #else
  1516. // scalar
  1517. for (int i = 0; i < n; ++i) {
  1518. y[i] *= v;
  1519. }
  1520. #endif
  1521. }
  1522. inline static void ggml_vec_norm_f32 (const int n, float * s, const float * x) { ggml_vec_dot_f32(n, s, 0, x, 0, x, 0, 1); *s = sqrtf(*s); }
  1523. inline static void ggml_vec_sqr_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i]*x[i]; }
  1524. inline static void ggml_vec_sqrt_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = sqrtf(x[i]); }
  1525. inline static void ggml_vec_log_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = logf(x[i]); }
  1526. inline static void ggml_vec_abs_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = fabsf(x[i]); }
  1527. inline static void ggml_vec_sgn_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? 1.f : ((x[i] < 0.f) ? -1.f : 0.f); }
  1528. inline static void ggml_vec_step_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? 1.f : 0.f; }
  1529. inline static void ggml_vec_tanh_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = tanhf(x[i]); }
  1530. inline static void ggml_vec_elu_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? x[i] : expf(x[i])-1; }
  1531. inline static void ggml_vec_relu_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? x[i] : 0.f; }
  1532. inline static void ggml_vec_leaky_relu_f32 (const int n, float * y, const float * x, const float ns) { for (int i = 0; i < n; ++i) y[i] = ((x[i] > 0.f) ? x[i] : 0.f) + ns * ((x[i] < 0.0f) ? x[i] : 0.f); }
  1533. // TODO: optimize performance
  1534. inline static void ggml_vec_hardswish_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i] * fminf(1.0f, fmaxf(0.0f, (x[i] + 3.0f) / 6.0f)); }
  1535. inline static void ggml_vec_hardsigmoid_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = fminf(1.0f, fmaxf(0.0f, (x[i] + 3.0f) / 6.0f)); }
  1536. static const float GELU_COEF_A = 0.044715f;
  1537. static const float GELU_QUICK_COEF = -1.702f;
  1538. static const float SQRT_2_OVER_PI = 0.79788456080286535587989211986876f;
  1539. inline static float ggml_gelu_f32(float x) {
  1540. return 0.5f*x*(1.0f + tanhf(SQRT_2_OVER_PI*x*(1.0f + GELU_COEF_A*x*x)));
  1541. }
  1542. inline static void ggml_vec_gelu_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
  1543. const uint16_t * i16 = (const uint16_t *) x;
  1544. for (int i = 0; i < n; ++i) {
  1545. y[i] = ggml_table_gelu_f16[i16[i]];
  1546. }
  1547. }
  1548. #ifdef GGML_GELU_FP16
  1549. inline static void ggml_vec_gelu_f32(const int n, float * y, const float * x) {
  1550. uint16_t t;
  1551. for (int i = 0; i < n; ++i) {
  1552. if (x[i] <= -10.0f) {
  1553. y[i] = 0.0f;
  1554. } else if (x[i] >= 10.0f) {
  1555. y[i] = x[i];
  1556. } else {
  1557. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  1558. memcpy(&t, &fp16, sizeof(uint16_t));
  1559. y[i] = GGML_FP16_TO_FP32(ggml_table_gelu_f16[t]);
  1560. }
  1561. }
  1562. }
  1563. #else
  1564. inline static void ggml_vec_gelu_f32(const int n, float * y, const float * x) {
  1565. for (int i = 0; i < n; ++i) {
  1566. y[i] = ggml_gelu_f32(x[i]);
  1567. }
  1568. }
  1569. #endif
  1570. inline static float ggml_gelu_quick_f32(float x) {
  1571. return x*(1.0f/(1.0f+expf(GELU_QUICK_COEF*x)));
  1572. }
  1573. //inline static void ggml_vec_gelu_quick_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
  1574. // const uint16_t * i16 = (const uint16_t *) x;
  1575. // for (int i = 0; i < n; ++i) {
  1576. // y[i] = ggml_table_gelu_quick_f16[i16[i]];
  1577. // }
  1578. //}
  1579. #ifdef GGML_GELU_QUICK_FP16
  1580. inline static void ggml_vec_gelu_quick_f32(const int n, float * y, const float * x) {
  1581. uint16_t t;
  1582. for (int i = 0; i < n; ++i) {
  1583. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  1584. memcpy(&t, &fp16, sizeof(uint16_t));
  1585. y[i] = GGML_FP16_TO_FP32(ggml_table_gelu_quick_f16[t]);
  1586. }
  1587. }
  1588. #else
  1589. inline static void ggml_vec_gelu_quick_f32(const int n, float * y, const float * x) {
  1590. for (int i = 0; i < n; ++i) {
  1591. y[i] = ggml_gelu_quick_f32(x[i]);
  1592. }
  1593. }
  1594. #endif
  1595. // Sigmoid Linear Unit (SiLU) function
  1596. inline static float ggml_silu_f32(float x) {
  1597. return x/(1.0f + expf(-x));
  1598. }
  1599. //inline static void ggml_vec_silu_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
  1600. // const uint16_t * i16 = (const uint16_t *) x;
  1601. // for (int i = 0; i < n; ++i) {
  1602. // y[i] = ggml_table_silu_f16[i16[i]];
  1603. // }
  1604. //}
  1605. #ifdef GGML_SILU_FP16
  1606. inline static void ggml_vec_silu_f32(const int n, float * y, const float * x) {
  1607. uint16_t t;
  1608. for (int i = 0; i < n; ++i) {
  1609. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  1610. memcpy(&t, &fp16, sizeof(uint16_t));
  1611. y[i] = GGML_FP16_TO_FP32(ggml_table_silu_f16[t]);
  1612. }
  1613. }
  1614. #else
  1615. inline static void ggml_vec_silu_f32(const int n, float * y, const float * x) {
  1616. for (int i = 0; i < n; ++i) {
  1617. y[i] = ggml_silu_f32(x[i]);
  1618. }
  1619. }
  1620. #endif
  1621. inline static float ggml_silu_backward_f32(float x, float dy) {
  1622. const float s = 1.0f/(1.0f + expf(-x));
  1623. return dy*s*(1.0f + x*(1.0f - s));
  1624. }
  1625. #ifdef GGML_SILU_FP16
  1626. inline static void ggml_vec_silu_backward_f32(const int n, float * dx, const float * x, const float * dy) {
  1627. for (int i = 0; i < n; ++i) {
  1628. // we did not use x[i] to compute forward silu but its f16 equivalent
  1629. // take derivative at f16 of x[i]:
  1630. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  1631. float usedx = GGML_FP16_TO_FP32(fp16);
  1632. dx[i] = ggml_silu_backward_f32(usedx, dy[i]);
  1633. }
  1634. }
  1635. #else
  1636. inline static void ggml_vec_silu_backward_f32(const int n, float * dx, const float * x, const float * dy) {
  1637. for (int i = 0; i < n; ++i) {
  1638. dx[i] = ggml_silu_backward_f32(x[i], dy[i]);
  1639. }
  1640. }
  1641. #endif
  1642. inline static void ggml_vec_sum_f32(const int n, float * s, const float * x) {
  1643. #ifndef GGML_USE_ACCELERATE
  1644. ggml_float sum = 0.0;
  1645. for (int i = 0; i < n; ++i) {
  1646. sum += (ggml_float)x[i];
  1647. }
  1648. *s = sum;
  1649. #else
  1650. vDSP_sve(x, 1, s, n);
  1651. #endif
  1652. }
  1653. inline static void ggml_vec_sum_f32_ggf(const int n, ggml_float * s, const float * x) {
  1654. ggml_float sum = 0.0;
  1655. for (int i = 0; i < n; ++i) {
  1656. sum += (ggml_float)x[i];
  1657. }
  1658. *s = sum;
  1659. }
  1660. inline static void ggml_vec_sum_f16_ggf(const int n, float * s, const ggml_fp16_t * x) {
  1661. float sum = 0.0f;
  1662. for (int i = 0; i < n; ++i) {
  1663. sum += GGML_FP16_TO_FP32(x[i]);
  1664. }
  1665. *s = sum;
  1666. }
  1667. inline static void ggml_vec_max_f32(const int n, float * s, const float * x) {
  1668. #ifndef GGML_USE_ACCELERATE
  1669. float max = -INFINITY;
  1670. for (int i = 0; i < n; ++i) {
  1671. max = MAX(max, x[i]);
  1672. }
  1673. *s = max;
  1674. #else
  1675. vDSP_maxv(x, 1, s, n);
  1676. #endif
  1677. }
  1678. inline static void ggml_vec_norm_inv_f32(const int n, float * s, const float * x) {
  1679. ggml_vec_norm_f32(n, s, x);
  1680. *s = 1.f/(*s);
  1681. }
  1682. inline static void ggml_vec_argmax_f32(const int n, int * s, const float * x) {
  1683. float max = -INFINITY;
  1684. int idx = 0;
  1685. for (int i = 0; i < n; ++i) {
  1686. max = MAX(max, x[i]);
  1687. if (max == x[i]) { idx = i; }
  1688. }
  1689. *s = idx;
  1690. }
  1691. //
  1692. // data types
  1693. //
  1694. static const char * GGML_OP_NAME[GGML_OP_COUNT] = {
  1695. "NONE",
  1696. "DUP",
  1697. "ADD",
  1698. "ADD1",
  1699. "ACC",
  1700. "SUB",
  1701. "MUL",
  1702. "DIV",
  1703. "SQR",
  1704. "SQRT",
  1705. "LOG",
  1706. "SUM",
  1707. "SUM_ROWS",
  1708. "MEAN",
  1709. "ARGMAX",
  1710. "REPEAT",
  1711. "REPEAT_BACK",
  1712. "CONCAT",
  1713. "SILU_BACK",
  1714. "NORM",
  1715. "RMS_NORM",
  1716. "RMS_NORM_BACK",
  1717. "GROUP_NORM",
  1718. "MUL_MAT",
  1719. "MUL_MAT_ID",
  1720. "OUT_PROD",
  1721. "SCALE",
  1722. "SET",
  1723. "CPY",
  1724. "CONT",
  1725. "RESHAPE",
  1726. "VIEW",
  1727. "PERMUTE",
  1728. "TRANSPOSE",
  1729. "GET_ROWS",
  1730. "GET_ROWS_BACK",
  1731. "DIAG",
  1732. "DIAG_MASK_INF",
  1733. "DIAG_MASK_ZERO",
  1734. "SOFT_MAX",
  1735. "SOFT_MAX_BACK",
  1736. "ROPE",
  1737. "ROPE_BACK",
  1738. "ALIBI",
  1739. "CLAMP",
  1740. "CONV_TRANSPOSE_1D",
  1741. "IM2COL",
  1742. "CONV_TRANSPOSE_2D",
  1743. "POOL_1D",
  1744. "POOL_2D",
  1745. "UPSCALE",
  1746. "PAD",
  1747. "ARANGE",
  1748. "TIMESTEP_EMBEDDING",
  1749. "ARGSORT",
  1750. "LEAKY_RELU",
  1751. "FLASH_ATTN",
  1752. "FLASH_FF",
  1753. "FLASH_ATTN_BACK",
  1754. "SSM_CONV",
  1755. "SSM_SCAN",
  1756. "WIN_PART",
  1757. "WIN_UNPART",
  1758. "GET_REL_POS",
  1759. "ADD_REL_POS",
  1760. "UNARY",
  1761. "MAP_UNARY",
  1762. "MAP_BINARY",
  1763. "MAP_CUSTOM1_F32",
  1764. "MAP_CUSTOM2_F32",
  1765. "MAP_CUSTOM3_F32",
  1766. "MAP_CUSTOM1",
  1767. "MAP_CUSTOM2",
  1768. "MAP_CUSTOM3",
  1769. "CROSS_ENTROPY_LOSS",
  1770. "CROSS_ENTROPY_LOSS_BACK",
  1771. };
  1772. static_assert(GGML_OP_COUNT == 76, "GGML_OP_COUNT != 76");
  1773. static const char * GGML_OP_SYMBOL[GGML_OP_COUNT] = {
  1774. "none",
  1775. "x",
  1776. "x+y",
  1777. "x+y",
  1778. "view(x,nb,offset)+=y->x",
  1779. "x-y",
  1780. "x*y",
  1781. "x/y",
  1782. "x^2",
  1783. "√x",
  1784. "log(x)",
  1785. "Σx",
  1786. "Σx_k",
  1787. "Σx/n",
  1788. "argmax(x)",
  1789. "repeat(x)",
  1790. "repeat_back(x)",
  1791. "concat(x, y)",
  1792. "silu_back(x)",
  1793. "norm(x)",
  1794. "rms_norm(x)",
  1795. "rms_norm_back(x)",
  1796. "group_norm(x)",
  1797. "X*Y",
  1798. "X[i]*Y",
  1799. "X*Y",
  1800. "x*v",
  1801. "y-\\>view(x)",
  1802. "x-\\>y",
  1803. "cont(x)",
  1804. "reshape(x)",
  1805. "view(x)",
  1806. "permute(x)",
  1807. "transpose(x)",
  1808. "get_rows(x)",
  1809. "get_rows_back(x)",
  1810. "diag(x)",
  1811. "diag_mask_inf(x)",
  1812. "diag_mask_zero(x)",
  1813. "soft_max(x)",
  1814. "soft_max_back(x)",
  1815. "rope(x)",
  1816. "rope_back(x)",
  1817. "alibi(x)",
  1818. "clamp(x)",
  1819. "conv_transpose_1d(x)",
  1820. "im2col(x)",
  1821. "conv_transpose_2d(x)",
  1822. "pool_1d(x)",
  1823. "pool_2d(x)",
  1824. "upscale(x)",
  1825. "pad(x)",
  1826. "arange(start, stop, step)",
  1827. "timestep_embedding(timesteps, dim, max_period)",
  1828. "argsort(x)",
  1829. "leaky_relu(x)",
  1830. "flash_attn(x)",
  1831. "flash_ff(x)",
  1832. "flash_attn_back(x)",
  1833. "ssm_conv(x)",
  1834. "ssm_scan(x)",
  1835. "win_part(x)",
  1836. "win_unpart(x)",
  1837. "get_rel_pos(x)",
  1838. "add_rel_pos(x)",
  1839. "unary(x)",
  1840. "f(x)",
  1841. "f(x,y)",
  1842. "custom_f32(x)",
  1843. "custom_f32(x,y)",
  1844. "custom_f32(x,y,z)",
  1845. "custom(x)",
  1846. "custom(x,y)",
  1847. "custom(x,y,z)",
  1848. "cross_entropy_loss(x,y)",
  1849. "cross_entropy_loss_back(x,y)",
  1850. };
  1851. static_assert(GGML_OP_COUNT == 76, "GGML_OP_COUNT != 76");
  1852. static_assert(GGML_OP_POOL_COUNT == 2, "GGML_OP_POOL_COUNT != 2");
  1853. static const char * GGML_UNARY_OP_NAME[GGML_UNARY_OP_COUNT] = {
  1854. "ABS",
  1855. "SGN",
  1856. "NEG",
  1857. "STEP",
  1858. "TANH",
  1859. "ELU",
  1860. "RELU",
  1861. "GELU",
  1862. "GELU_QUICK",
  1863. "SILU",
  1864. "HARDSWISH",
  1865. "HARDSIGMOID",
  1866. };
  1867. static_assert(GGML_UNARY_OP_COUNT == 12, "GGML_UNARY_OP_COUNT != 12");
  1868. static_assert(sizeof(struct ggml_object)%GGML_MEM_ALIGN == 0, "ggml_object size must be a multiple of GGML_MEM_ALIGN");
  1869. static_assert(sizeof(struct ggml_tensor)%GGML_MEM_ALIGN == 0, "ggml_tensor size must be a multiple of GGML_MEM_ALIGN");
  1870. // WARN:
  1871. // Mis-configuration can lead to problem that's hard to reason about:
  1872. // * At best it crash or talks nosense.
  1873. // * At worst it talks slightly difference but hard to perceive.
  1874. //
  1875. // An op has to enable INIT or FINALIZE when any of it's branch needs that pass.
  1876. // Take care about compile options (e.g., GGML_USE_xxx).
  1877. static bool GGML_OP_HAS_INIT [GGML_OP_COUNT] = { 0 };
  1878. static bool GGML_OP_HAS_FINALIZE[GGML_OP_COUNT] = { 0 };
  1879. static void ggml_setup_op_has_task_pass(void) {
  1880. { // INIT
  1881. bool * p = GGML_OP_HAS_INIT;
  1882. p[GGML_OP_ACC ] = true;
  1883. p[GGML_OP_MUL_MAT ] = true;
  1884. p[GGML_OP_MUL_MAT_ID ] = true;
  1885. p[GGML_OP_OUT_PROD ] = true;
  1886. p[GGML_OP_SET ] = true;
  1887. p[GGML_OP_GET_ROWS_BACK ] = true;
  1888. p[GGML_OP_DIAG_MASK_INF ] = true;
  1889. p[GGML_OP_DIAG_MASK_ZERO ] = true;
  1890. p[GGML_OP_CONV_TRANSPOSE_1D ] = true;
  1891. p[GGML_OP_CONV_TRANSPOSE_2D ] = true;
  1892. p[GGML_OP_FLASH_ATTN_BACK ] = true;
  1893. p[GGML_OP_CROSS_ENTROPY_LOSS ] = true;
  1894. p[GGML_OP_ADD_REL_POS ] = true;
  1895. }
  1896. { // FINALIZE
  1897. bool * p = GGML_OP_HAS_FINALIZE;
  1898. p[GGML_OP_CROSS_ENTROPY_LOSS ] = true;
  1899. }
  1900. }
  1901. //
  1902. // ggml context
  1903. //
  1904. struct ggml_context {
  1905. size_t mem_size;
  1906. void * mem_buffer;
  1907. bool mem_buffer_owned;
  1908. bool no_alloc;
  1909. bool no_alloc_save; // this is used to save the no_alloc state when using scratch buffers
  1910. int n_objects;
  1911. struct ggml_object * objects_begin;
  1912. struct ggml_object * objects_end;
  1913. struct ggml_scratch scratch;
  1914. struct ggml_scratch scratch_save;
  1915. };
  1916. struct ggml_context_container {
  1917. bool used;
  1918. struct ggml_context context;
  1919. };
  1920. //
  1921. // NUMA support
  1922. //
  1923. #define GGML_NUMA_MAX_NODES 8
  1924. #define GGML_NUMA_MAX_CPUS 512
  1925. struct ggml_numa_node {
  1926. uint32_t cpus[GGML_NUMA_MAX_CPUS]; // hardware threads on this node
  1927. uint32_t n_cpus;
  1928. };
  1929. struct ggml_numa_nodes {
  1930. enum ggml_numa_strategy numa_strategy;
  1931. struct ggml_numa_node nodes[GGML_NUMA_MAX_NODES];
  1932. uint32_t n_nodes;
  1933. uint32_t total_cpus; // hardware threads on system
  1934. uint32_t current_node; // node on which main process is execting
  1935. #if defined(__gnu_linux__)
  1936. cpu_set_t cpuset; // cpuset from numactl
  1937. #else
  1938. uint32_t cpuset; // no NUMA support outside of Linux at this time. Use a portable datatype
  1939. #endif
  1940. };
  1941. //
  1942. // ggml state
  1943. //
  1944. struct ggml_state {
  1945. struct ggml_context_container contexts[GGML_MAX_CONTEXTS];
  1946. struct ggml_numa_nodes numa;
  1947. };
  1948. // global state
  1949. static struct ggml_state g_state;
  1950. static atomic_int g_state_barrier = 0;
  1951. // barrier via spin lock
  1952. inline static void ggml_critical_section_start(void) {
  1953. int processing = atomic_fetch_add(&g_state_barrier, 1);
  1954. while (processing > 0) {
  1955. // wait for other threads to finish
  1956. atomic_fetch_sub(&g_state_barrier, 1);
  1957. sched_yield(); // TODO: reconsider this
  1958. processing = atomic_fetch_add(&g_state_barrier, 1);
  1959. }
  1960. }
  1961. // TODO: make this somehow automatically executed
  1962. // some sort of "sentry" mechanism
  1963. inline static void ggml_critical_section_end(void) {
  1964. atomic_fetch_sub(&g_state_barrier, 1);
  1965. }
  1966. #if defined(__gnu_linux__)
  1967. static cpu_set_t ggml_get_numa_affinity(void) {
  1968. cpu_set_t cpuset;
  1969. pthread_t thread;
  1970. thread = pthread_self();
  1971. CPU_ZERO(&cpuset);
  1972. pthread_getaffinity_np(thread, sizeof(cpu_set_t), &cpuset);
  1973. return cpuset;
  1974. }
  1975. #else
  1976. static uint32_t ggml_get_numa_affinity(void) {
  1977. return 0; // no NUMA support
  1978. }
  1979. #endif
  1980. void ggml_numa_init(enum ggml_numa_strategy numa_flag) {
  1981. if (g_state.numa.n_nodes > 0) {
  1982. fprintf(stderr, "ggml_numa_init: NUMA already initialized\n");
  1983. return;
  1984. }
  1985. #if defined(__gnu_linux__)
  1986. struct stat st;
  1987. char path[256];
  1988. int rv;
  1989. // set numa scheme
  1990. g_state.numa.numa_strategy = numa_flag;
  1991. GGML_PRINT_DEBUG("numa strategy %u\n",g_state.numa.numa_strategy);
  1992. g_state.numa.cpuset = ggml_get_numa_affinity();
  1993. // enumerate nodes
  1994. while (g_state.numa.n_nodes < GGML_NUMA_MAX_NODES) {
  1995. rv = snprintf(path, sizeof(path), "/sys/devices/system/node/node%u", g_state.numa.n_nodes);
  1996. GGML_ASSERT(rv > 0 && (unsigned)rv < sizeof(path));
  1997. if (stat(path, &st) != 0) { break; }
  1998. ++g_state.numa.n_nodes;
  1999. }
  2000. // enumerate CPUs
  2001. while (g_state.numa.total_cpus < GGML_NUMA_MAX_CPUS) {
  2002. rv = snprintf(path, sizeof(path), "/sys/devices/system/cpu/cpu%u", g_state.numa.total_cpus);
  2003. GGML_ASSERT(rv > 0 && (unsigned)rv < sizeof(path));
  2004. if (stat(path, &st) != 0) { break; }
  2005. ++g_state.numa.total_cpus;
  2006. }
  2007. GGML_PRINT_DEBUG("found %u numa nodes, %u CPUs\n", g_state.numa.n_nodes, g_state.numa.total_cpus);
  2008. // figure out which node we're on
  2009. uint current_cpu;
  2010. int getcpu_ret = 0;
  2011. #if __GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ > 28)
  2012. getcpu_ret = getcpu(&current_cpu, &g_state.numa.current_node);
  2013. #else
  2014. // old glibc doesn't have a wrapper for this call. Fall back on direct syscall
  2015. # if !defined(SYS_getcpu) && defined(SYS_get_cpu)
  2016. # define SYS_getcpu SYS_get_cpu // some older glibc versions use this name
  2017. # endif
  2018. getcpu_ret = syscall(SYS_getcpu, &current_cpu, &g_state.numa.current_node);
  2019. #endif
  2020. if (g_state.numa.n_nodes < 1 || g_state.numa.total_cpus < 1 || getcpu_ret != 0) {
  2021. g_state.numa.n_nodes = 0;
  2022. return;
  2023. }
  2024. GGML_PRINT_DEBUG("found our process on numa node %u, CPU %u\n", g_state.numa.current_node, current_cpu);
  2025. for (uint32_t n = 0; n < g_state.numa.n_nodes; ++n) {
  2026. struct ggml_numa_node * node = &g_state.numa.nodes[n];
  2027. GGML_PRINT_DEBUG("CPUs on node %u:", n);
  2028. node->n_cpus = 0;
  2029. for (uint32_t c = 0; c < g_state.numa.total_cpus; ++c) {
  2030. rv = snprintf(path, sizeof(path), "/sys/devices/system/node/node%u/cpu%u", n, c);
  2031. GGML_ASSERT(rv > 0 && (unsigned)rv < sizeof(path));
  2032. if (stat(path, &st) == 0) {
  2033. node->cpus[node->n_cpus++] = c;
  2034. GGML_PRINT_DEBUG(" %u", c);
  2035. }
  2036. }
  2037. GGML_PRINT_DEBUG("\n");
  2038. }
  2039. if (ggml_is_numa()) {
  2040. FILE *fptr = fopen("/proc/sys/kernel/numa_balancing", "r");
  2041. if (fptr != NULL) {
  2042. char buf[42];
  2043. if (fgets(buf, sizeof(buf), fptr) && strncmp(buf, "0\n", sizeof(buf)) != 0) {
  2044. GGML_PRINT("WARNING: /proc/sys/kernel/numa_balancing is enabled, this has been observed to impair performance\n");
  2045. }
  2046. fclose(fptr);
  2047. }
  2048. }
  2049. #else
  2050. GGML_UNUSED(numa_flag);
  2051. // TODO
  2052. #endif
  2053. }
  2054. bool ggml_is_numa(void) {
  2055. return g_state.numa.n_nodes > 1;
  2056. }
  2057. ////////////////////////////////////////////////////////////////////////////////
  2058. void ggml_print_object(const struct ggml_object * obj) {
  2059. GGML_PRINT(" - ggml_object: type = %d, offset = %zu, size = %zu, next = %p\n",
  2060. obj->type, obj->offs, obj->size, (const void *) obj->next);
  2061. }
  2062. void ggml_print_objects(const struct ggml_context * ctx) {
  2063. struct ggml_object * obj = ctx->objects_begin;
  2064. GGML_PRINT("%s: objects in context %p:\n", __func__, (const void *) ctx);
  2065. while (obj != NULL) {
  2066. ggml_print_object(obj);
  2067. obj = obj->next;
  2068. }
  2069. GGML_PRINT("%s: --- end ---\n", __func__);
  2070. }
  2071. GGML_CALL int64_t ggml_nelements(const struct ggml_tensor * tensor) {
  2072. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2073. return tensor->ne[0]*tensor->ne[1]*tensor->ne[2]*tensor->ne[3];
  2074. }
  2075. GGML_CALL int64_t ggml_nrows(const struct ggml_tensor * tensor) {
  2076. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2077. return tensor->ne[1]*tensor->ne[2]*tensor->ne[3];
  2078. }
  2079. GGML_CALL size_t ggml_nbytes(const struct ggml_tensor * tensor) {
  2080. size_t nbytes;
  2081. size_t blck_size = ggml_blck_size(tensor->type);
  2082. if (blck_size == 1) {
  2083. nbytes = ggml_type_size(tensor->type);
  2084. for (int i = 0; i < GGML_MAX_DIMS; ++i) {
  2085. nbytes += (tensor->ne[i] - 1)*tensor->nb[i];
  2086. }
  2087. }
  2088. else {
  2089. nbytes = tensor->ne[0]*tensor->nb[0]/blck_size;
  2090. for (int i = 1; i < GGML_MAX_DIMS; ++i) {
  2091. nbytes += (tensor->ne[i] - 1)*tensor->nb[i];
  2092. }
  2093. }
  2094. return nbytes;
  2095. }
  2096. size_t ggml_nbytes_pad(const struct ggml_tensor * tensor) {
  2097. return GGML_PAD(ggml_nbytes(tensor), GGML_MEM_ALIGN);
  2098. }
  2099. GGML_CALL int ggml_blck_size(enum ggml_type type) {
  2100. return type_traits[type].blck_size;
  2101. }
  2102. GGML_CALL size_t ggml_type_size(enum ggml_type type) {
  2103. return type_traits[type].type_size;
  2104. }
  2105. GGML_CALL size_t ggml_row_size(enum ggml_type type, int64_t ne) {
  2106. assert(ne % ggml_blck_size(type) == 0);
  2107. return ggml_type_size(type)*ne/ggml_blck_size(type);
  2108. }
  2109. double ggml_type_sizef(enum ggml_type type) {
  2110. return ((double)(type_traits[type].type_size))/type_traits[type].blck_size;
  2111. }
  2112. GGML_CALL const char * ggml_type_name(enum ggml_type type) {
  2113. return type_traits[type].type_name;
  2114. }
  2115. GGML_CALL bool ggml_is_quantized(enum ggml_type type) {
  2116. return type_traits[type].is_quantized;
  2117. }
  2118. GGML_CALL const char * ggml_op_name(enum ggml_op op) {
  2119. return GGML_OP_NAME[op];
  2120. }
  2121. const char * ggml_op_symbol(enum ggml_op op) {
  2122. return GGML_OP_SYMBOL[op];
  2123. }
  2124. const char * ggml_unary_op_name(enum ggml_unary_op op) {
  2125. return GGML_UNARY_OP_NAME[op];
  2126. }
  2127. GGML_CALL const char * ggml_op_desc(const struct ggml_tensor * t) {
  2128. if (t->op == GGML_OP_UNARY) {
  2129. enum ggml_unary_op uop = ggml_get_unary_op(t);
  2130. return ggml_unary_op_name(uop);
  2131. }
  2132. else {
  2133. return ggml_op_name(t->op);
  2134. }
  2135. }
  2136. GGML_CALL size_t ggml_element_size(const struct ggml_tensor * tensor) {
  2137. return ggml_type_size(tensor->type);
  2138. }
  2139. bool ggml_is_scalar(const struct ggml_tensor * tensor) {
  2140. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2141. return tensor->ne[0] == 1 && tensor->ne[1] == 1 && tensor->ne[2] == 1 && tensor->ne[3] == 1;
  2142. }
  2143. bool ggml_is_vector(const struct ggml_tensor * tensor) {
  2144. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2145. return tensor->ne[1] == 1 && tensor->ne[2] == 1 && tensor->ne[3] == 1;
  2146. }
  2147. bool ggml_is_matrix(const struct ggml_tensor * tensor) {
  2148. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2149. return tensor->ne[2] == 1 && tensor->ne[3] == 1;
  2150. }
  2151. bool ggml_is_3d(const struct ggml_tensor * tensor) {
  2152. return tensor->ne[3] == 1;
  2153. }
  2154. int ggml_n_dims(const struct ggml_tensor * tensor) {
  2155. for (int i = GGML_MAX_DIMS - 1; i >= 1; --i) {
  2156. if (tensor->ne[i] > 1) {
  2157. return i + 1;
  2158. }
  2159. }
  2160. return 1;
  2161. }
  2162. static inline bool ggml_can_mul_mat(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  2163. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2164. return (t0->ne[0] == t1->ne[0]) &&
  2165. (t1->ne[2]%t0->ne[2] == 0) && // verify t0 is broadcastable
  2166. (t1->ne[3]%t0->ne[3] == 0);
  2167. }
  2168. static inline bool ggml_can_out_prod(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  2169. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2170. return (t0->ne[1] == t1->ne[1]) &&
  2171. (t1->ne[2]%t0->ne[2] == 0) && // verify t0 is broadcastable
  2172. (t1->ne[3]%t0->ne[3] == 0);
  2173. }
  2174. enum ggml_type ggml_ftype_to_ggml_type(enum ggml_ftype ftype) {
  2175. enum ggml_type wtype = GGML_TYPE_COUNT;
  2176. switch (ftype) {
  2177. case GGML_FTYPE_ALL_F32: wtype = GGML_TYPE_F32; break;
  2178. case GGML_FTYPE_MOSTLY_F16: wtype = GGML_TYPE_F16; break;
  2179. case GGML_FTYPE_MOSTLY_Q4_0: wtype = GGML_TYPE_Q4_0; break;
  2180. case GGML_FTYPE_MOSTLY_Q4_1: wtype = GGML_TYPE_Q4_1; break;
  2181. case GGML_FTYPE_MOSTLY_Q5_0: wtype = GGML_TYPE_Q5_0; break;
  2182. case GGML_FTYPE_MOSTLY_Q5_1: wtype = GGML_TYPE_Q5_1; break;
  2183. case GGML_FTYPE_MOSTLY_Q8_0: wtype = GGML_TYPE_Q8_0; break;
  2184. case GGML_FTYPE_MOSTLY_Q2_K: wtype = GGML_TYPE_Q2_K; break;
  2185. case GGML_FTYPE_MOSTLY_Q3_K: wtype = GGML_TYPE_Q3_K; break;
  2186. case GGML_FTYPE_MOSTLY_Q4_K: wtype = GGML_TYPE_Q4_K; break;
  2187. case GGML_FTYPE_MOSTLY_Q5_K: wtype = GGML_TYPE_Q5_K; break;
  2188. case GGML_FTYPE_MOSTLY_Q6_K: wtype = GGML_TYPE_Q6_K; break;
  2189. case GGML_FTYPE_MOSTLY_IQ2_XXS: wtype = GGML_TYPE_IQ2_XXS; break;
  2190. case GGML_FTYPE_MOSTLY_IQ2_XS: wtype = GGML_TYPE_IQ2_XS; break;
  2191. case GGML_FTYPE_MOSTLY_IQ3_XXS: wtype = GGML_TYPE_IQ3_XXS; break;
  2192. case GGML_FTYPE_MOSTLY_IQ1_S: wtype = GGML_TYPE_IQ1_S; break;
  2193. case GGML_FTYPE_MOSTLY_IQ1_M: wtype = GGML_TYPE_IQ1_M; break;
  2194. case GGML_FTYPE_MOSTLY_IQ4_NL: wtype = GGML_TYPE_IQ4_NL; break;
  2195. case GGML_FTYPE_MOSTLY_IQ4_XS: wtype = GGML_TYPE_IQ4_XS; break;
  2196. case GGML_FTYPE_MOSTLY_IQ3_S: wtype = GGML_TYPE_IQ3_S; break;
  2197. case GGML_FTYPE_MOSTLY_IQ2_S: wtype = GGML_TYPE_IQ2_S; break;
  2198. case GGML_FTYPE_UNKNOWN: wtype = GGML_TYPE_COUNT; break;
  2199. case GGML_FTYPE_MOSTLY_Q4_1_SOME_F16: wtype = GGML_TYPE_COUNT; break;
  2200. }
  2201. GGML_ASSERT(wtype != GGML_TYPE_COUNT);
  2202. return wtype;
  2203. }
  2204. size_t ggml_tensor_overhead(void) {
  2205. return GGML_OBJECT_SIZE + GGML_TENSOR_SIZE;
  2206. }
  2207. GGML_CALL bool ggml_is_transposed(const struct ggml_tensor * tensor) {
  2208. return tensor->nb[0] > tensor->nb[1];
  2209. }
  2210. GGML_CALL bool ggml_is_contiguous(const struct ggml_tensor * tensor) {
  2211. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2212. return
  2213. tensor->nb[0] == ggml_type_size(tensor->type) &&
  2214. tensor->nb[1] == (tensor->nb[0]*tensor->ne[0])/ggml_blck_size(tensor->type) &&
  2215. tensor->nb[2] == tensor->nb[1]*tensor->ne[1] &&
  2216. tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
  2217. }
  2218. static inline bool ggml_is_contiguous_except_dim_1(const struct ggml_tensor * tensor) {
  2219. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2220. return
  2221. tensor->nb[0] == ggml_type_size(tensor->type) &&
  2222. tensor->nb[2] == tensor->nb[1]*tensor->ne[1] &&
  2223. tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
  2224. }
  2225. GGML_CALL bool ggml_is_permuted(const struct ggml_tensor * tensor) {
  2226. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2227. return tensor->nb[0] > tensor->nb[1] || tensor->nb[1] > tensor->nb[2] || tensor->nb[2] > tensor->nb[3];
  2228. }
  2229. static inline bool ggml_is_padded_1d(const struct ggml_tensor * tensor) {
  2230. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2231. return
  2232. tensor->nb[0] == ggml_type_size(tensor->type) &&
  2233. tensor->nb[2] == tensor->nb[1]*tensor->ne[1] &&
  2234. tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
  2235. }
  2236. GGML_CALL bool ggml_is_empty(const struct ggml_tensor * tensor) {
  2237. for (int i = 0; i < GGML_MAX_DIMS; ++i) {
  2238. if (tensor->ne[i] == 0) {
  2239. // empty if any dimension has no elements
  2240. return true;
  2241. }
  2242. }
  2243. return false;
  2244. }
  2245. bool ggml_are_same_shape(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  2246. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2247. return
  2248. (t0->ne[0] == t1->ne[0] ) &&
  2249. (t0->ne[1] == t1->ne[1] ) &&
  2250. (t0->ne[2] == t1->ne[2] ) &&
  2251. (t0->ne[3] == t1->ne[3] );
  2252. }
  2253. // check if t1 can be represented as a repeatition of t0
  2254. static inline bool ggml_can_repeat(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  2255. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2256. return ggml_is_empty(t0) ? ggml_is_empty(t1) :
  2257. (t1->ne[0]%t0->ne[0] == 0) &&
  2258. (t1->ne[1]%t0->ne[1] == 0) &&
  2259. (t1->ne[2]%t0->ne[2] == 0) &&
  2260. (t1->ne[3]%t0->ne[3] == 0);
  2261. }
  2262. static inline bool ggml_can_repeat_rows(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  2263. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2264. return (t0->ne[0] == t1->ne[0]) && ggml_can_repeat(t0, t1);
  2265. }
  2266. static inline int ggml_up32(int n) {
  2267. return (n + 31) & ~31;
  2268. }
  2269. //static inline int ggml_up64(int n) {
  2270. // return (n + 63) & ~63;
  2271. //}
  2272. static inline int ggml_up(int n, int m) {
  2273. // assert m is a power of 2
  2274. GGML_ASSERT((m & (m - 1)) == 0);
  2275. return (n + m - 1) & ~(m - 1);
  2276. }
  2277. // assert that pointer is aligned to GGML_MEM_ALIGN
  2278. #define ggml_assert_aligned(ptr) \
  2279. GGML_ASSERT(((uintptr_t) (ptr))%GGML_MEM_ALIGN == 0)
  2280. ////////////////////////////////////////////////////////////////////////////////
  2281. struct ggml_context * ggml_init(struct ggml_init_params params) {
  2282. // make this function thread safe
  2283. ggml_critical_section_start();
  2284. static bool is_first_call = true;
  2285. if (is_first_call) {
  2286. // initialize time system (required on Windows)
  2287. ggml_time_init();
  2288. // initialize GELU, Quick GELU, SILU and EXP F32 tables
  2289. {
  2290. const uint64_t t_start = ggml_time_us(); UNUSED(t_start);
  2291. ggml_fp16_t ii;
  2292. for (int i = 0; i < (1 << 16); ++i) {
  2293. uint16_t ui = i;
  2294. memcpy(&ii, &ui, sizeof(ii));
  2295. const float f = ggml_table_f32_f16[i] = GGML_COMPUTE_FP16_TO_FP32(ii);
  2296. ggml_table_gelu_f16[i] = GGML_FP32_TO_FP16(ggml_gelu_f32(f));
  2297. ggml_table_gelu_quick_f16[i] = GGML_FP32_TO_FP16(ggml_gelu_quick_f32(f));
  2298. ggml_table_silu_f16[i] = GGML_FP32_TO_FP16(ggml_silu_f32(f));
  2299. ggml_table_exp_f16[i] = GGML_FP32_TO_FP16(expf(f));
  2300. }
  2301. const uint64_t t_end = ggml_time_us(); UNUSED(t_end);
  2302. GGML_PRINT_DEBUG("%s: GELU, Quick GELU, SILU and EXP tables initialized in %f ms\n", __func__, (t_end - t_start)/1000.0f);
  2303. }
  2304. // initialize g_state
  2305. {
  2306. const uint64_t t_start = ggml_time_us(); UNUSED(t_start);
  2307. g_state = (struct ggml_state) {
  2308. /*.contexts =*/ { { 0 } },
  2309. /*.numa =*/ {
  2310. .n_nodes = 0,
  2311. .total_cpus = 0,
  2312. },
  2313. };
  2314. for (int i = 0; i < GGML_MAX_CONTEXTS; ++i) {
  2315. g_state.contexts[i].used = false;
  2316. }
  2317. const uint64_t t_end = ggml_time_us(); UNUSED(t_end);
  2318. GGML_PRINT_DEBUG("%s: g_state initialized in %f ms\n", __func__, (t_end - t_start)/1000.0f);
  2319. }
  2320. #if defined(GGML_USE_CLBLAST)
  2321. ggml_cl_init();
  2322. #endif
  2323. ggml_setup_op_has_task_pass();
  2324. is_first_call = false;
  2325. }
  2326. // find non-used context in g_state
  2327. struct ggml_context * ctx = NULL;
  2328. for (int i = 0; i < GGML_MAX_CONTEXTS; i++) {
  2329. if (!g_state.contexts[i].used) {
  2330. g_state.contexts[i].used = true;
  2331. ctx = &g_state.contexts[i].context;
  2332. GGML_PRINT_DEBUG("%s: found unused context %d\n", __func__, i);
  2333. break;
  2334. }
  2335. }
  2336. if (ctx == NULL) {
  2337. GGML_PRINT_DEBUG("%s: no unused context found\n", __func__);
  2338. ggml_critical_section_end();
  2339. return NULL;
  2340. }
  2341. // allow to call ggml_init with 0 size
  2342. if (params.mem_size == 0) {
  2343. params.mem_size = GGML_MEM_ALIGN;
  2344. }
  2345. const size_t mem_size = params.mem_buffer ? params.mem_size : GGML_PAD(params.mem_size, GGML_MEM_ALIGN);
  2346. *ctx = (struct ggml_context) {
  2347. /*.mem_size =*/ mem_size,
  2348. /*.mem_buffer =*/ params.mem_buffer ? params.mem_buffer : GGML_ALIGNED_MALLOC(mem_size),
  2349. /*.mem_buffer_owned =*/ params.mem_buffer ? false : true,
  2350. /*.no_alloc =*/ params.no_alloc,
  2351. /*.no_alloc_save =*/ params.no_alloc,
  2352. /*.n_objects =*/ 0,
  2353. /*.objects_begin =*/ NULL,
  2354. /*.objects_end =*/ NULL,
  2355. /*.scratch =*/ { 0, 0, NULL, },
  2356. /*.scratch_save =*/ { 0, 0, NULL, },
  2357. };
  2358. GGML_ASSERT(ctx->mem_buffer != NULL);
  2359. ggml_assert_aligned(ctx->mem_buffer);
  2360. GGML_PRINT_DEBUG("%s: context initialized\n", __func__);
  2361. ggml_critical_section_end();
  2362. return ctx;
  2363. }
  2364. void ggml_free(struct ggml_context * ctx) {
  2365. if (ctx == NULL) {
  2366. return;
  2367. }
  2368. // make this function thread safe
  2369. ggml_critical_section_start();
  2370. bool found = false;
  2371. for (int i = 0; i < GGML_MAX_CONTEXTS; i++) {
  2372. if (&g_state.contexts[i].context == ctx) {
  2373. g_state.contexts[i].used = false;
  2374. GGML_PRINT_DEBUG("%s: context %d has been freed. memory used = %zu\n",
  2375. __func__, i, ggml_used_mem(ctx));
  2376. if (ctx->mem_buffer_owned) {
  2377. GGML_ALIGNED_FREE(ctx->mem_buffer);
  2378. }
  2379. found = true;
  2380. break;
  2381. }
  2382. }
  2383. if (!found) {
  2384. GGML_PRINT_DEBUG("%s: context not found\n", __func__);
  2385. }
  2386. ggml_critical_section_end();
  2387. }
  2388. size_t ggml_used_mem(const struct ggml_context * ctx) {
  2389. return ctx->objects_end == NULL ? 0 : ctx->objects_end->offs + ctx->objects_end->size;
  2390. }
  2391. size_t ggml_set_scratch(struct ggml_context * ctx, struct ggml_scratch scratch) {
  2392. const size_t result = ctx->scratch.data ? ctx->scratch.offs : 0;
  2393. ctx->scratch = scratch;
  2394. return result;
  2395. }
  2396. bool ggml_get_no_alloc(struct ggml_context * ctx) {
  2397. return ctx->no_alloc;
  2398. }
  2399. void ggml_set_no_alloc(struct ggml_context * ctx, bool no_alloc) {
  2400. ctx->no_alloc = no_alloc;
  2401. }
  2402. void * ggml_get_mem_buffer(const struct ggml_context * ctx) {
  2403. return ctx->mem_buffer;
  2404. }
  2405. size_t ggml_get_mem_size(const struct ggml_context * ctx) {
  2406. return ctx->mem_size;
  2407. }
  2408. size_t ggml_get_max_tensor_size(const struct ggml_context * ctx) {
  2409. size_t max_size = 0;
  2410. for (struct ggml_tensor * tensor = ggml_get_first_tensor(ctx); tensor != NULL; tensor = ggml_get_next_tensor(ctx, tensor)) {
  2411. size_t bytes = ggml_nbytes(tensor);
  2412. max_size = MAX(max_size, bytes);
  2413. }
  2414. return max_size;
  2415. }
  2416. // IMPORTANT:
  2417. // when creating "opt" tensors, always save and load the scratch buffer
  2418. // this is an error prone process, but it is necessary to support inplace
  2419. // operators when using scratch buffers
  2420. // TODO: implement a better way
  2421. static void ggml_scratch_save(struct ggml_context * ctx) {
  2422. // this is needed to allow opt tensors to store their data
  2423. // TODO: again, need to find a better way
  2424. ctx->no_alloc_save = ctx->no_alloc;
  2425. ctx->no_alloc = false;
  2426. ctx->scratch_save = ctx->scratch;
  2427. ctx->scratch.data = NULL;
  2428. }
  2429. static void ggml_scratch_load(struct ggml_context * ctx) {
  2430. ctx->no_alloc = ctx->no_alloc_save;
  2431. ctx->scratch = ctx->scratch_save;
  2432. }
  2433. ////////////////////////////////////////////////////////////////////////////////
  2434. static struct ggml_object * ggml_new_object(struct ggml_context * ctx, enum ggml_object_type type, size_t size) {
  2435. // always insert objects at the end of the context's memory pool
  2436. struct ggml_object * obj_cur = ctx->objects_end;
  2437. const size_t cur_offs = obj_cur == NULL ? 0 : obj_cur->offs;
  2438. const size_t cur_size = obj_cur == NULL ? 0 : obj_cur->size;
  2439. const size_t cur_end = cur_offs + cur_size;
  2440. // align to GGML_MEM_ALIGN
  2441. size_t size_needed = GGML_PAD(size, GGML_MEM_ALIGN);
  2442. char * const mem_buffer = ctx->mem_buffer;
  2443. struct ggml_object * const obj_new = (struct ggml_object *)(mem_buffer + cur_end);
  2444. if (cur_end + size_needed + GGML_OBJECT_SIZE > ctx->mem_size) {
  2445. GGML_PRINT("%s: not enough space in the context's memory pool (needed %zu, available %zu)\n",
  2446. __func__, cur_end + size_needed, ctx->mem_size);
  2447. assert(false);
  2448. return NULL;
  2449. }
  2450. *obj_new = (struct ggml_object) {
  2451. .offs = cur_end + GGML_OBJECT_SIZE,
  2452. .size = size_needed,
  2453. .next = NULL,
  2454. .type = type,
  2455. };
  2456. ggml_assert_aligned(mem_buffer + obj_new->offs);
  2457. if (obj_cur != NULL) {
  2458. obj_cur->next = obj_new;
  2459. } else {
  2460. // this is the first object in this context
  2461. ctx->objects_begin = obj_new;
  2462. }
  2463. ctx->objects_end = obj_new;
  2464. //printf("%s: inserted new object at %zu, size = %zu\n", __func__, cur_end, obj_new->size);
  2465. return obj_new;
  2466. }
  2467. static struct ggml_tensor * ggml_new_tensor_impl(
  2468. struct ggml_context * ctx,
  2469. enum ggml_type type,
  2470. int n_dims,
  2471. const int64_t * ne,
  2472. struct ggml_tensor * view_src,
  2473. size_t view_offs) {
  2474. assert(n_dims >= 1 && n_dims <= GGML_MAX_DIMS);
  2475. // find the base tensor and absolute offset
  2476. if (view_src != NULL && view_src->view_src != NULL) {
  2477. view_offs += view_src->view_offs;
  2478. view_src = view_src->view_src;
  2479. }
  2480. size_t data_size = ggml_row_size(type, ne[0]);
  2481. for (int i = 1; i < n_dims; i++) {
  2482. data_size *= ne[i];
  2483. }
  2484. GGML_ASSERT(view_src == NULL || data_size == 0 || data_size + view_offs <= ggml_nbytes(view_src));
  2485. void * data = view_src != NULL ? view_src->data : NULL;
  2486. if (data != NULL) {
  2487. data = (char *) data + view_offs;
  2488. }
  2489. size_t obj_alloc_size = 0;
  2490. if (view_src == NULL && !ctx->no_alloc) {
  2491. if (ctx->scratch.data != NULL) {
  2492. // allocate tensor data in the scratch buffer
  2493. if (ctx->scratch.offs + data_size > ctx->scratch.size) {
  2494. GGML_PRINT("%s: not enough space in the scratch memory pool (needed %zu, available %zu)\n",
  2495. __func__, ctx->scratch.offs + data_size, ctx->scratch.size);
  2496. assert(false);
  2497. return NULL;
  2498. }
  2499. data = (char * const) ctx->scratch.data + ctx->scratch.offs;
  2500. ctx->scratch.offs += data_size;
  2501. } else {
  2502. // allocate tensor data in the context's memory pool
  2503. obj_alloc_size = data_size;
  2504. }
  2505. }
  2506. struct ggml_object * const obj_new = ggml_new_object(ctx, GGML_OBJECT_TYPE_TENSOR, GGML_TENSOR_SIZE + obj_alloc_size);
  2507. // TODO: for recoverable errors, we would need to free the data allocated from the scratch buffer here
  2508. struct ggml_tensor * const result = (struct ggml_tensor *)((char *)ctx->mem_buffer + obj_new->offs);
  2509. *result = (struct ggml_tensor) {
  2510. /*.type =*/ type,
  2511. /*.backend =*/ GGML_BACKEND_TYPE_CPU,
  2512. /*.buffer =*/ NULL,
  2513. /*.ne =*/ { 1, 1, 1, 1 },
  2514. /*.nb =*/ { 0, 0, 0, 0 },
  2515. /*.op =*/ GGML_OP_NONE,
  2516. /*.op_params =*/ { 0 },
  2517. /*.flags =*/ 0,
  2518. /*.grad =*/ NULL,
  2519. /*.src =*/ { NULL },
  2520. /*.perf_runs =*/ 0,
  2521. /*.perf_cycles =*/ 0,
  2522. /*.perf_time_us =*/ 0,
  2523. /*.view_src =*/ view_src,
  2524. /*.view_offs =*/ view_offs,
  2525. /*.data =*/ obj_alloc_size > 0 ? (void *)(result + 1) : data,
  2526. /*.name =*/ { 0 },
  2527. /*.extra =*/ NULL,
  2528. /*.padding =*/ { 0 },
  2529. };
  2530. // TODO: this should not be needed as long as we don't rely on aligned SIMD loads
  2531. //ggml_assert_aligned(result->data);
  2532. for (int i = 0; i < n_dims; i++) {
  2533. result->ne[i] = ne[i];
  2534. }
  2535. result->nb[0] = ggml_type_size(type);
  2536. result->nb[1] = result->nb[0]*(result->ne[0]/ggml_blck_size(type));
  2537. for (int i = 2; i < GGML_MAX_DIMS; i++) {
  2538. result->nb[i] = result->nb[i - 1]*result->ne[i - 1];
  2539. }
  2540. ctx->n_objects++;
  2541. return result;
  2542. }
  2543. struct ggml_tensor * ggml_new_tensor(
  2544. struct ggml_context * ctx,
  2545. enum ggml_type type,
  2546. int n_dims,
  2547. const int64_t * ne) {
  2548. return ggml_new_tensor_impl(ctx, type, n_dims, ne, NULL, 0);
  2549. }
  2550. struct ggml_tensor * ggml_new_tensor_1d(
  2551. struct ggml_context * ctx,
  2552. enum ggml_type type,
  2553. int64_t ne0) {
  2554. return ggml_new_tensor(ctx, type, 1, &ne0);
  2555. }
  2556. struct ggml_tensor * ggml_new_tensor_2d(
  2557. struct ggml_context * ctx,
  2558. enum ggml_type type,
  2559. int64_t ne0,
  2560. int64_t ne1) {
  2561. const int64_t ne[2] = { ne0, ne1 };
  2562. return ggml_new_tensor(ctx, type, 2, ne);
  2563. }
  2564. struct ggml_tensor * ggml_new_tensor_3d(
  2565. struct ggml_context * ctx,
  2566. enum ggml_type type,
  2567. int64_t ne0,
  2568. int64_t ne1,
  2569. int64_t ne2) {
  2570. const int64_t ne[3] = { ne0, ne1, ne2 };
  2571. return ggml_new_tensor(ctx, type, 3, ne);
  2572. }
  2573. struct ggml_tensor * ggml_new_tensor_4d(
  2574. struct ggml_context * ctx,
  2575. enum ggml_type type,
  2576. int64_t ne0,
  2577. int64_t ne1,
  2578. int64_t ne2,
  2579. int64_t ne3) {
  2580. const int64_t ne[4] = { ne0, ne1, ne2, ne3 };
  2581. return ggml_new_tensor(ctx, type, 4, ne);
  2582. }
  2583. struct ggml_tensor * ggml_new_i32(struct ggml_context * ctx, int32_t value) {
  2584. ggml_scratch_save(ctx);
  2585. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 1);
  2586. ggml_scratch_load(ctx);
  2587. ggml_set_i32(result, value);
  2588. return result;
  2589. }
  2590. struct ggml_tensor * ggml_new_f32(struct ggml_context * ctx, float value) {
  2591. ggml_scratch_save(ctx);
  2592. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 1);
  2593. ggml_scratch_load(ctx);
  2594. ggml_set_f32(result, value);
  2595. return result;
  2596. }
  2597. struct ggml_tensor * ggml_dup_tensor(struct ggml_context * ctx, const struct ggml_tensor * src) {
  2598. return ggml_new_tensor(ctx, src->type, GGML_MAX_DIMS, src->ne);
  2599. }
  2600. static void ggml_set_op_params(struct ggml_tensor * tensor, const void * params, size_t params_size) {
  2601. GGML_ASSERT(tensor != NULL); // silence -Warray-bounds warnings
  2602. assert(params_size <= GGML_MAX_OP_PARAMS);
  2603. memcpy(tensor->op_params, params, params_size);
  2604. }
  2605. static int32_t ggml_get_op_params_i32(const struct ggml_tensor * tensor, uint32_t i) {
  2606. assert(i < GGML_MAX_OP_PARAMS / sizeof(int32_t));
  2607. return ((const int32_t *)(tensor->op_params))[i];
  2608. }
  2609. static float ggml_get_op_params_f32(const struct ggml_tensor * tensor, uint32_t i) {
  2610. assert(i < GGML_MAX_OP_PARAMS / sizeof(float));
  2611. return ((const float *)(tensor->op_params))[i];
  2612. }
  2613. static void ggml_set_op_params_i32(struct ggml_tensor * tensor, uint32_t i, int32_t value) {
  2614. assert(i < GGML_MAX_OP_PARAMS / sizeof(int32_t));
  2615. ((int32_t *)(tensor->op_params))[i] = value;
  2616. }
  2617. static void ggml_set_op_params_f32(struct ggml_tensor * tensor, uint32_t i, float value) {
  2618. assert(i < GGML_MAX_OP_PARAMS / sizeof(float));
  2619. ((float *)(tensor->op_params))[i] = value;
  2620. }
  2621. struct ggml_tensor * ggml_set_zero(struct ggml_tensor * tensor) {
  2622. memset(tensor->data, 0, ggml_nbytes(tensor));
  2623. return tensor;
  2624. }
  2625. struct ggml_tensor * ggml_set_i32 (struct ggml_tensor * tensor, int32_t value) {
  2626. const int n = ggml_nrows(tensor);
  2627. const int nc = tensor->ne[0];
  2628. const size_t n1 = tensor->nb[1];
  2629. char * const data = tensor->data;
  2630. switch (tensor->type) {
  2631. case GGML_TYPE_I8:
  2632. {
  2633. assert(tensor->nb[0] == sizeof(int8_t));
  2634. for (int i = 0; i < n; i++) {
  2635. ggml_vec_set_i8(nc, (int8_t *)(data + i*n1), value);
  2636. }
  2637. } break;
  2638. case GGML_TYPE_I16:
  2639. {
  2640. assert(tensor->nb[0] == sizeof(int16_t));
  2641. for (int i = 0; i < n; i++) {
  2642. ggml_vec_set_i16(nc, (int16_t *)(data + i*n1), value);
  2643. }
  2644. } break;
  2645. case GGML_TYPE_I32:
  2646. {
  2647. assert(tensor->nb[0] == sizeof(int32_t));
  2648. for (int i = 0; i < n; i++) {
  2649. ggml_vec_set_i32(nc, (int32_t *)(data + i*n1), value);
  2650. }
  2651. } break;
  2652. case GGML_TYPE_F16:
  2653. {
  2654. assert(tensor->nb[0] == sizeof(ggml_fp16_t));
  2655. for (int i = 0; i < n; i++) {
  2656. ggml_vec_set_f16(nc, (ggml_fp16_t *)(data + i*n1), GGML_FP32_TO_FP16(value));
  2657. }
  2658. } break;
  2659. case GGML_TYPE_F32:
  2660. {
  2661. assert(tensor->nb[0] == sizeof(float));
  2662. for (int i = 0; i < n; i++) {
  2663. ggml_vec_set_f32(nc, (float *)(data + i*n1), value);
  2664. }
  2665. } break;
  2666. default:
  2667. {
  2668. GGML_ASSERT(false);
  2669. } break;
  2670. }
  2671. return tensor;
  2672. }
  2673. struct ggml_tensor * ggml_set_f32(struct ggml_tensor * tensor, float value) {
  2674. const int n = ggml_nrows(tensor);
  2675. const int nc = tensor->ne[0];
  2676. const size_t n1 = tensor->nb[1];
  2677. char * const data = tensor->data;
  2678. switch (tensor->type) {
  2679. case GGML_TYPE_I8:
  2680. {
  2681. assert(tensor->nb[0] == sizeof(int8_t));
  2682. for (int i = 0; i < n; i++) {
  2683. ggml_vec_set_i8(nc, (int8_t *)(data + i*n1), value);
  2684. }
  2685. } break;
  2686. case GGML_TYPE_I16:
  2687. {
  2688. assert(tensor->nb[0] == sizeof(int16_t));
  2689. for (int i = 0; i < n; i++) {
  2690. ggml_vec_set_i16(nc, (int16_t *)(data + i*n1), value);
  2691. }
  2692. } break;
  2693. case GGML_TYPE_I32:
  2694. {
  2695. assert(tensor->nb[0] == sizeof(int32_t));
  2696. for (int i = 0; i < n; i++) {
  2697. ggml_vec_set_i32(nc, (int32_t *)(data + i*n1), value);
  2698. }
  2699. } break;
  2700. case GGML_TYPE_F16:
  2701. {
  2702. assert(tensor->nb[0] == sizeof(ggml_fp16_t));
  2703. for (int i = 0; i < n; i++) {
  2704. ggml_vec_set_f16(nc, (ggml_fp16_t *)(data + i*n1), GGML_FP32_TO_FP16(value));
  2705. }
  2706. } break;
  2707. case GGML_TYPE_F32:
  2708. {
  2709. assert(tensor->nb[0] == sizeof(float));
  2710. for (int i = 0; i < n; i++) {
  2711. ggml_vec_set_f32(nc, (float *)(data + i*n1), value);
  2712. }
  2713. } break;
  2714. default:
  2715. {
  2716. GGML_ASSERT(false);
  2717. } break;
  2718. }
  2719. return tensor;
  2720. }
  2721. void ggml_unravel_index(const struct ggml_tensor * tensor, int64_t i, int64_t * i0, int64_t * i1, int64_t * i2, int64_t * i3) {
  2722. const int64_t ne2 = tensor->ne[2];
  2723. const int64_t ne1 = tensor->ne[1];
  2724. const int64_t ne0 = tensor->ne[0];
  2725. const int64_t i3_ = (i/(ne2*ne1*ne0));
  2726. const int64_t i2_ = (i - i3_*ne2*ne1*ne0)/(ne1*ne0);
  2727. const int64_t i1_ = (i - i3_*ne2*ne1*ne0 - i2_*ne1*ne0)/ne0;
  2728. const int64_t i0_ = (i - i3_*ne2*ne1*ne0 - i2_*ne1*ne0 - i1_*ne0);
  2729. if (i0) {
  2730. * i0 = i0_;
  2731. }
  2732. if (i1) {
  2733. * i1 = i1_;
  2734. }
  2735. if (i2) {
  2736. * i2 = i2_;
  2737. }
  2738. if (i3) {
  2739. * i3 = i3_;
  2740. }
  2741. }
  2742. int32_t ggml_get_i32_1d(const struct ggml_tensor * tensor, int i) {
  2743. if (!ggml_is_contiguous(tensor)) {
  2744. int64_t id[4] = { 0, 0, 0, 0 };
  2745. ggml_unravel_index(tensor, i, &id[0], &id[1], &id[2], &id[3]);
  2746. return ggml_get_i32_nd(tensor, id[0], id[1], id[2], id[3]);
  2747. }
  2748. switch (tensor->type) {
  2749. case GGML_TYPE_I8:
  2750. {
  2751. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  2752. return ((int8_t *)(tensor->data))[i];
  2753. }
  2754. case GGML_TYPE_I16:
  2755. {
  2756. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  2757. return ((int16_t *)(tensor->data))[i];
  2758. }
  2759. case GGML_TYPE_I32:
  2760. {
  2761. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  2762. return ((int32_t *)(tensor->data))[i];
  2763. }
  2764. case GGML_TYPE_F16:
  2765. {
  2766. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  2767. return GGML_FP16_TO_FP32(((ggml_fp16_t *)(tensor->data))[i]);
  2768. }
  2769. case GGML_TYPE_F32:
  2770. {
  2771. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  2772. return ((float *)(tensor->data))[i];
  2773. }
  2774. default:
  2775. {
  2776. GGML_ASSERT(false);
  2777. }
  2778. }
  2779. return 0.0f;
  2780. }
  2781. void ggml_set_i32_1d(const struct ggml_tensor * tensor, int i, int32_t value) {
  2782. if (!ggml_is_contiguous(tensor)) {
  2783. int64_t id[4] = { 0, 0, 0, 0 };
  2784. ggml_unravel_index(tensor, i, &id[0], &id[1], &id[2], &id[3]);
  2785. ggml_set_i32_nd(tensor, id[0], id[1], id[2], id[3], value);
  2786. return;
  2787. }
  2788. switch (tensor->type) {
  2789. case GGML_TYPE_I8:
  2790. {
  2791. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  2792. ((int8_t *)(tensor->data))[i] = value;
  2793. } break;
  2794. case GGML_TYPE_I16:
  2795. {
  2796. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  2797. ((int16_t *)(tensor->data))[i] = value;
  2798. } break;
  2799. case GGML_TYPE_I32:
  2800. {
  2801. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  2802. ((int32_t *)(tensor->data))[i] = value;
  2803. } break;
  2804. case GGML_TYPE_F16:
  2805. {
  2806. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  2807. ((ggml_fp16_t *)(tensor->data))[i] = GGML_FP32_TO_FP16(value);
  2808. } break;
  2809. case GGML_TYPE_F32:
  2810. {
  2811. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  2812. ((float *)(tensor->data))[i] = value;
  2813. } break;
  2814. default:
  2815. {
  2816. GGML_ASSERT(false);
  2817. } break;
  2818. }
  2819. }
  2820. int32_t ggml_get_i32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3) {
  2821. void * data = (char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1] + i2*tensor->nb[2] + i3*tensor->nb[3];
  2822. switch (tensor->type) {
  2823. case GGML_TYPE_I8:
  2824. return ((int8_t *) data)[0];
  2825. case GGML_TYPE_I16:
  2826. return ((int16_t *) data)[0];
  2827. case GGML_TYPE_I32:
  2828. return ((int32_t *) data)[0];
  2829. case GGML_TYPE_F16:
  2830. return GGML_FP16_TO_FP32(((ggml_fp16_t *) data)[0]);
  2831. case GGML_TYPE_F32:
  2832. return ((float *) data)[0];
  2833. default:
  2834. GGML_ASSERT(false);
  2835. }
  2836. return 0.0f;
  2837. }
  2838. void ggml_set_i32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3, int32_t value) {
  2839. void * data = (char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1] + i2*tensor->nb[2] + i3*tensor->nb[3];
  2840. switch (tensor->type) {
  2841. case GGML_TYPE_I8:
  2842. {
  2843. ((int8_t *)(data))[0] = value;
  2844. } break;
  2845. case GGML_TYPE_I16:
  2846. {
  2847. ((int16_t *)(data))[0] = value;
  2848. } break;
  2849. case GGML_TYPE_I32:
  2850. {
  2851. ((int32_t *)(data))[0] = value;
  2852. } break;
  2853. case GGML_TYPE_F16:
  2854. {
  2855. ((ggml_fp16_t *)(data))[0] = GGML_FP32_TO_FP16(value);
  2856. } break;
  2857. case GGML_TYPE_F32:
  2858. {
  2859. ((float *)(data))[0] = value;
  2860. } break;
  2861. default:
  2862. {
  2863. GGML_ASSERT(false);
  2864. } break;
  2865. }
  2866. }
  2867. float ggml_get_f32_1d(const struct ggml_tensor * tensor, int i) {
  2868. if (!ggml_is_contiguous(tensor)) {
  2869. int64_t id[4] = { 0, 0, 0, 0 };
  2870. ggml_unravel_index(tensor, i, &id[0], &id[1], &id[2], &id[3]);
  2871. return ggml_get_f32_nd(tensor, id[0], id[1], id[2], id[3]);
  2872. }
  2873. switch (tensor->type) {
  2874. case GGML_TYPE_I8:
  2875. {
  2876. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  2877. return ((int8_t *)(tensor->data))[i];
  2878. }
  2879. case GGML_TYPE_I16:
  2880. {
  2881. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  2882. return ((int16_t *)(tensor->data))[i];
  2883. }
  2884. case GGML_TYPE_I32:
  2885. {
  2886. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  2887. return ((int32_t *)(tensor->data))[i];
  2888. }
  2889. case GGML_TYPE_F16:
  2890. {
  2891. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  2892. return GGML_FP16_TO_FP32(((ggml_fp16_t *)(tensor->data))[i]);
  2893. }
  2894. case GGML_TYPE_F32:
  2895. {
  2896. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  2897. return ((float *)(tensor->data))[i];
  2898. }
  2899. default:
  2900. {
  2901. GGML_ASSERT(false);
  2902. }
  2903. }
  2904. return 0.0f;
  2905. }
  2906. void ggml_set_f32_1d(const struct ggml_tensor * tensor, int i, float value) {
  2907. if (!ggml_is_contiguous(tensor)) {
  2908. int64_t id[4] = { 0, 0, 0, 0 };
  2909. ggml_unravel_index(tensor, i, &id[0], &id[1], &id[2], &id[3]);
  2910. ggml_set_f32_nd(tensor, id[0], id[1], id[2], id[3], value);
  2911. return;
  2912. }
  2913. switch (tensor->type) {
  2914. case GGML_TYPE_I8:
  2915. {
  2916. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  2917. ((int8_t *)(tensor->data))[i] = value;
  2918. } break;
  2919. case GGML_TYPE_I16:
  2920. {
  2921. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  2922. ((int16_t *)(tensor->data))[i] = value;
  2923. } break;
  2924. case GGML_TYPE_I32:
  2925. {
  2926. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  2927. ((int32_t *)(tensor->data))[i] = value;
  2928. } break;
  2929. case GGML_TYPE_F16:
  2930. {
  2931. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  2932. ((ggml_fp16_t *)(tensor->data))[i] = GGML_FP32_TO_FP16(value);
  2933. } break;
  2934. case GGML_TYPE_F32:
  2935. {
  2936. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  2937. ((float *)(tensor->data))[i] = value;
  2938. } break;
  2939. default:
  2940. {
  2941. GGML_ASSERT(false);
  2942. } break;
  2943. }
  2944. }
  2945. float ggml_get_f32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3) {
  2946. void * data = (char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1] + i2*tensor->nb[2] + i3*tensor->nb[3];
  2947. switch (tensor->type) {
  2948. case GGML_TYPE_I8:
  2949. return ((int8_t *) data)[0];
  2950. case GGML_TYPE_I16:
  2951. return ((int16_t *) data)[0];
  2952. case GGML_TYPE_I32:
  2953. return ((int32_t *) data)[0];
  2954. case GGML_TYPE_F16:
  2955. return GGML_FP16_TO_FP32(((ggml_fp16_t *) data)[0]);
  2956. case GGML_TYPE_F32:
  2957. return ((float *) data)[0];
  2958. default:
  2959. GGML_ASSERT(false);
  2960. }
  2961. return 0.0f;
  2962. }
  2963. void ggml_set_f32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3, float value) {
  2964. void * data = (char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1] + i2*tensor->nb[2] + i3*tensor->nb[3];
  2965. switch (tensor->type) {
  2966. case GGML_TYPE_I8:
  2967. {
  2968. ((int8_t *)(data))[0] = value;
  2969. } break;
  2970. case GGML_TYPE_I16:
  2971. {
  2972. ((int16_t *)(data))[0] = value;
  2973. } break;
  2974. case GGML_TYPE_I32:
  2975. {
  2976. ((int32_t *)(data))[0] = value;
  2977. } break;
  2978. case GGML_TYPE_F16:
  2979. {
  2980. ((ggml_fp16_t *)(data))[0] = GGML_FP32_TO_FP16(value);
  2981. } break;
  2982. case GGML_TYPE_F32:
  2983. {
  2984. ((float *)(data))[0] = value;
  2985. } break;
  2986. default:
  2987. {
  2988. GGML_ASSERT(false);
  2989. } break;
  2990. }
  2991. }
  2992. void * ggml_get_data(const struct ggml_tensor * tensor) {
  2993. return tensor->data;
  2994. }
  2995. float * ggml_get_data_f32(const struct ggml_tensor * tensor) {
  2996. assert(tensor->type == GGML_TYPE_F32);
  2997. return (float *)(tensor->data);
  2998. }
  2999. GGML_CALL enum ggml_unary_op ggml_get_unary_op(const struct ggml_tensor * tensor) {
  3000. GGML_ASSERT(tensor->op == GGML_OP_UNARY);
  3001. return (enum ggml_unary_op) ggml_get_op_params_i32(tensor, 0);
  3002. }
  3003. const char * ggml_get_name(const struct ggml_tensor * tensor) {
  3004. return tensor->name;
  3005. }
  3006. struct ggml_tensor * ggml_set_name(struct ggml_tensor * tensor, const char * name) {
  3007. strncpy(tensor->name, name, sizeof(tensor->name) - 1);
  3008. tensor->name[sizeof(tensor->name) - 1] = '\0';
  3009. return tensor;
  3010. }
  3011. struct ggml_tensor * ggml_format_name(struct ggml_tensor * tensor, const char * fmt, ...) {
  3012. va_list args;
  3013. va_start(args, fmt);
  3014. vsnprintf(tensor->name, sizeof(tensor->name), fmt, args);
  3015. va_end(args);
  3016. return tensor;
  3017. }
  3018. struct ggml_tensor * ggml_view_tensor(
  3019. struct ggml_context * ctx,
  3020. struct ggml_tensor * src) {
  3021. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, src->type, GGML_MAX_DIMS, src->ne, src, 0);
  3022. ggml_format_name(result, "%s (view)", src->name);
  3023. for (int i = 0; i < GGML_MAX_DIMS; i++) {
  3024. result->nb[i] = src->nb[i];
  3025. }
  3026. return result;
  3027. }
  3028. struct ggml_tensor * ggml_get_first_tensor(const struct ggml_context * ctx) {
  3029. struct ggml_object * obj = ctx->objects_begin;
  3030. char * const mem_buffer = ctx->mem_buffer;
  3031. while (obj != NULL) {
  3032. if (obj->type == GGML_OBJECT_TYPE_TENSOR) {
  3033. return (struct ggml_tensor *)(mem_buffer + obj->offs);
  3034. }
  3035. obj = obj->next;
  3036. }
  3037. return NULL;
  3038. }
  3039. struct ggml_tensor * ggml_get_next_tensor(const struct ggml_context * ctx, struct ggml_tensor * tensor) {
  3040. struct ggml_object * obj = (struct ggml_object *) ((char *)tensor - GGML_OBJECT_SIZE);
  3041. obj = obj->next;
  3042. char * const mem_buffer = ctx->mem_buffer;
  3043. while (obj != NULL) {
  3044. if (obj->type == GGML_OBJECT_TYPE_TENSOR) {
  3045. return (struct ggml_tensor *)(mem_buffer + obj->offs);
  3046. }
  3047. obj = obj->next;
  3048. }
  3049. return NULL;
  3050. }
  3051. struct ggml_tensor * ggml_get_tensor(struct ggml_context * ctx, const char * name) {
  3052. struct ggml_object * obj = ctx->objects_begin;
  3053. char * const mem_buffer = ctx->mem_buffer;
  3054. while (obj != NULL) {
  3055. if (obj->type == GGML_OBJECT_TYPE_TENSOR) {
  3056. struct ggml_tensor * cur = (struct ggml_tensor *)(mem_buffer + obj->offs);
  3057. if (strcmp(cur->name, name) == 0) {
  3058. return cur;
  3059. }
  3060. }
  3061. obj = obj->next;
  3062. }
  3063. return NULL;
  3064. }
  3065. ////////////////////////////////////////////////////////////////////////////////
  3066. // ggml_dup
  3067. static struct ggml_tensor * ggml_dup_impl(
  3068. struct ggml_context * ctx,
  3069. struct ggml_tensor * a,
  3070. bool inplace) {
  3071. bool is_node = false;
  3072. if (!inplace && (a->grad)) {
  3073. is_node = true;
  3074. }
  3075. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3076. result->op = GGML_OP_DUP;
  3077. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3078. result->src[0] = a;
  3079. return result;
  3080. }
  3081. struct ggml_tensor * ggml_dup(
  3082. struct ggml_context * ctx,
  3083. struct ggml_tensor * a) {
  3084. return ggml_dup_impl(ctx, a, false);
  3085. }
  3086. struct ggml_tensor * ggml_dup_inplace(
  3087. struct ggml_context * ctx,
  3088. struct ggml_tensor * a) {
  3089. return ggml_dup_impl(ctx, a, true);
  3090. }
  3091. // ggml_add
  3092. static struct ggml_tensor * ggml_add_impl(
  3093. struct ggml_context * ctx,
  3094. struct ggml_tensor * a,
  3095. struct ggml_tensor * b,
  3096. bool inplace) {
  3097. GGML_ASSERT(ggml_can_repeat(b, a));
  3098. bool is_node = false;
  3099. if (!inplace && (a->grad || b->grad)) {
  3100. // TODO: support backward pass for broadcasting
  3101. GGML_ASSERT(ggml_are_same_shape(a, b));
  3102. is_node = true;
  3103. }
  3104. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3105. result->op = GGML_OP_ADD;
  3106. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3107. result->src[0] = a;
  3108. result->src[1] = b;
  3109. return result;
  3110. }
  3111. struct ggml_tensor * ggml_add(
  3112. struct ggml_context * ctx,
  3113. struct ggml_tensor * a,
  3114. struct ggml_tensor * b) {
  3115. return ggml_add_impl(ctx, a, b, false);
  3116. }
  3117. struct ggml_tensor * ggml_add_inplace(
  3118. struct ggml_context * ctx,
  3119. struct ggml_tensor * a,
  3120. struct ggml_tensor * b) {
  3121. return ggml_add_impl(ctx, a, b, true);
  3122. }
  3123. // ggml_add_cast
  3124. static struct ggml_tensor * ggml_add_cast_impl(
  3125. struct ggml_context * ctx,
  3126. struct ggml_tensor * a,
  3127. struct ggml_tensor * b,
  3128. enum ggml_type type) {
  3129. // TODO: support less-strict constraint
  3130. // GGML_ASSERT(ggml_can_repeat(b, a));
  3131. GGML_ASSERT(ggml_can_repeat_rows(b, a));
  3132. GGML_ASSERT(ggml_is_quantized(a->type) || a->type == GGML_TYPE_F16); // currently only supported for quantized input and f16
  3133. bool is_node = false;
  3134. if (a->grad || b->grad) {
  3135. // TODO: support backward pass for broadcasting
  3136. GGML_ASSERT(ggml_are_same_shape(a, b));
  3137. is_node = true;
  3138. }
  3139. struct ggml_tensor * result = ggml_new_tensor(ctx, type, GGML_MAX_DIMS, a->ne);
  3140. result->op = GGML_OP_ADD;
  3141. result->grad = is_node ? ggml_new_tensor(ctx, GGML_TYPE_F32, GGML_MAX_DIMS, a->ne) : NULL;
  3142. result->src[0] = a;
  3143. result->src[1] = b;
  3144. return result;
  3145. }
  3146. struct ggml_tensor * ggml_add_cast(
  3147. struct ggml_context * ctx,
  3148. struct ggml_tensor * a,
  3149. struct ggml_tensor * b,
  3150. enum ggml_type type) {
  3151. return ggml_add_cast_impl(ctx, a, b, type);
  3152. }
  3153. // ggml_add1
  3154. static struct ggml_tensor * ggml_add1_impl(
  3155. struct ggml_context * ctx,
  3156. struct ggml_tensor * a,
  3157. struct ggml_tensor * b,
  3158. bool inplace) {
  3159. GGML_ASSERT(ggml_is_scalar(b));
  3160. GGML_ASSERT(ggml_is_padded_1d(a));
  3161. bool is_node = false;
  3162. if (a->grad || b->grad) {
  3163. is_node = true;
  3164. }
  3165. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3166. result->op = GGML_OP_ADD1;
  3167. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3168. result->src[0] = a;
  3169. result->src[1] = b;
  3170. return result;
  3171. }
  3172. struct ggml_tensor * ggml_add1(
  3173. struct ggml_context * ctx,
  3174. struct ggml_tensor * a,
  3175. struct ggml_tensor * b) {
  3176. return ggml_add1_impl(ctx, a, b, false);
  3177. }
  3178. struct ggml_tensor * ggml_add1_inplace(
  3179. struct ggml_context * ctx,
  3180. struct ggml_tensor * a,
  3181. struct ggml_tensor * b) {
  3182. return ggml_add1_impl(ctx, a, b, true);
  3183. }
  3184. // ggml_acc
  3185. static struct ggml_tensor * ggml_acc_impl(
  3186. struct ggml_context * ctx,
  3187. struct ggml_tensor * a,
  3188. struct ggml_tensor * b,
  3189. size_t nb1,
  3190. size_t nb2,
  3191. size_t nb3,
  3192. size_t offset,
  3193. bool inplace) {
  3194. GGML_ASSERT(ggml_nelements(b) <= ggml_nelements(a));
  3195. GGML_ASSERT(ggml_is_contiguous(a));
  3196. GGML_ASSERT(a->type == GGML_TYPE_F32);
  3197. GGML_ASSERT(b->type == GGML_TYPE_F32);
  3198. bool is_node = false;
  3199. if (!inplace && (a->grad || b->grad)) {
  3200. is_node = true;
  3201. }
  3202. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3203. int32_t params[] = { nb1, nb2, nb3, offset, inplace ? 1 : 0 };
  3204. ggml_set_op_params(result, params, sizeof(params));
  3205. result->op = GGML_OP_ACC;
  3206. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3207. result->src[0] = a;
  3208. result->src[1] = b;
  3209. return result;
  3210. }
  3211. struct ggml_tensor * ggml_acc(
  3212. struct ggml_context * ctx,
  3213. struct ggml_tensor * a,
  3214. struct ggml_tensor * b,
  3215. size_t nb1,
  3216. size_t nb2,
  3217. size_t nb3,
  3218. size_t offset) {
  3219. return ggml_acc_impl(ctx, a, b, nb1, nb2, nb3, offset, false);
  3220. }
  3221. struct ggml_tensor * ggml_acc_inplace(
  3222. struct ggml_context * ctx,
  3223. struct ggml_tensor * a,
  3224. struct ggml_tensor * b,
  3225. size_t nb1,
  3226. size_t nb2,
  3227. size_t nb3,
  3228. size_t offset) {
  3229. return ggml_acc_impl(ctx, a, b, nb1, nb2, nb3, offset, true);
  3230. }
  3231. // ggml_sub
  3232. static struct ggml_tensor * ggml_sub_impl(
  3233. struct ggml_context * ctx,
  3234. struct ggml_tensor * a,
  3235. struct ggml_tensor * b,
  3236. bool inplace) {
  3237. GGML_ASSERT(ggml_are_same_shape(a, b));
  3238. bool is_node = false;
  3239. if (!inplace && (a->grad || b->grad)) {
  3240. is_node = true;
  3241. }
  3242. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3243. result->op = GGML_OP_SUB;
  3244. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3245. result->src[0] = a;
  3246. result->src[1] = b;
  3247. return result;
  3248. }
  3249. struct ggml_tensor * ggml_sub(
  3250. struct ggml_context * ctx,
  3251. struct ggml_tensor * a,
  3252. struct ggml_tensor * b) {
  3253. return ggml_sub_impl(ctx, a, b, false);
  3254. }
  3255. struct ggml_tensor * ggml_sub_inplace(
  3256. struct ggml_context * ctx,
  3257. struct ggml_tensor * a,
  3258. struct ggml_tensor * b) {
  3259. return ggml_sub_impl(ctx, a, b, true);
  3260. }
  3261. // ggml_mul
  3262. static struct ggml_tensor * ggml_mul_impl(
  3263. struct ggml_context * ctx,
  3264. struct ggml_tensor * a,
  3265. struct ggml_tensor * b,
  3266. bool inplace) {
  3267. GGML_ASSERT(ggml_can_repeat(b, a));
  3268. bool is_node = false;
  3269. if (!inplace && (a->grad || b->grad)) {
  3270. // TODO: support backward pass for broadcasting
  3271. GGML_ASSERT(ggml_are_same_shape(a, b));
  3272. is_node = true;
  3273. }
  3274. if (inplace) {
  3275. GGML_ASSERT(!is_node);
  3276. }
  3277. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3278. result->op = GGML_OP_MUL;
  3279. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3280. result->src[0] = a;
  3281. result->src[1] = b;
  3282. return result;
  3283. }
  3284. struct ggml_tensor * ggml_mul(
  3285. struct ggml_context * ctx,
  3286. struct ggml_tensor * a,
  3287. struct ggml_tensor * b) {
  3288. return ggml_mul_impl(ctx, a, b, false);
  3289. }
  3290. struct ggml_tensor * ggml_mul_inplace(
  3291. struct ggml_context * ctx,
  3292. struct ggml_tensor * a,
  3293. struct ggml_tensor * b) {
  3294. return ggml_mul_impl(ctx, a, b, true);
  3295. }
  3296. // ggml_div
  3297. static struct ggml_tensor * ggml_div_impl(
  3298. struct ggml_context * ctx,
  3299. struct ggml_tensor * a,
  3300. struct ggml_tensor * b,
  3301. bool inplace) {
  3302. GGML_ASSERT(ggml_can_repeat(b, a));
  3303. bool is_node = false;
  3304. if (!inplace && (a->grad || b->grad)) {
  3305. is_node = true;
  3306. }
  3307. if (inplace) {
  3308. GGML_ASSERT(!is_node);
  3309. }
  3310. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3311. result->op = GGML_OP_DIV;
  3312. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3313. result->src[0] = a;
  3314. result->src[1] = b;
  3315. return result;
  3316. }
  3317. struct ggml_tensor * ggml_div(
  3318. struct ggml_context * ctx,
  3319. struct ggml_tensor * a,
  3320. struct ggml_tensor * b) {
  3321. return ggml_div_impl(ctx, a, b, false);
  3322. }
  3323. struct ggml_tensor * ggml_div_inplace(
  3324. struct ggml_context * ctx,
  3325. struct ggml_tensor * a,
  3326. struct ggml_tensor * b) {
  3327. return ggml_div_impl(ctx, a, b, true);
  3328. }
  3329. // ggml_sqr
  3330. static struct ggml_tensor * ggml_sqr_impl(
  3331. struct ggml_context * ctx,
  3332. struct ggml_tensor * a,
  3333. bool inplace) {
  3334. bool is_node = false;
  3335. if (!inplace && (a->grad)) {
  3336. is_node = true;
  3337. }
  3338. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3339. result->op = GGML_OP_SQR;
  3340. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3341. result->src[0] = a;
  3342. return result;
  3343. }
  3344. struct ggml_tensor * ggml_sqr(
  3345. struct ggml_context * ctx,
  3346. struct ggml_tensor * a) {
  3347. return ggml_sqr_impl(ctx, a, false);
  3348. }
  3349. struct ggml_tensor * ggml_sqr_inplace(
  3350. struct ggml_context * ctx,
  3351. struct ggml_tensor * a) {
  3352. return ggml_sqr_impl(ctx, a, true);
  3353. }
  3354. // ggml_sqrt
  3355. static struct ggml_tensor * ggml_sqrt_impl(
  3356. struct ggml_context * ctx,
  3357. struct ggml_tensor * a,
  3358. bool inplace) {
  3359. bool is_node = false;
  3360. if (!inplace && (a->grad)) {
  3361. is_node = true;
  3362. }
  3363. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3364. result->op = GGML_OP_SQRT;
  3365. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3366. result->src[0] = a;
  3367. return result;
  3368. }
  3369. struct ggml_tensor * ggml_sqrt(
  3370. struct ggml_context * ctx,
  3371. struct ggml_tensor * a) {
  3372. return ggml_sqrt_impl(ctx, a, false);
  3373. }
  3374. struct ggml_tensor * ggml_sqrt_inplace(
  3375. struct ggml_context * ctx,
  3376. struct ggml_tensor * a) {
  3377. return ggml_sqrt_impl(ctx, a, true);
  3378. }
  3379. // ggml_log
  3380. static struct ggml_tensor * ggml_log_impl(
  3381. struct ggml_context * ctx,
  3382. struct ggml_tensor * a,
  3383. bool inplace) {
  3384. bool is_node = false;
  3385. if (!inplace && (a->grad)) {
  3386. is_node = true;
  3387. }
  3388. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3389. result->op = GGML_OP_LOG;
  3390. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3391. result->src[0] = a;
  3392. return result;
  3393. }
  3394. struct ggml_tensor * ggml_log(
  3395. struct ggml_context * ctx,
  3396. struct ggml_tensor * a) {
  3397. return ggml_log_impl(ctx, a, false);
  3398. }
  3399. struct ggml_tensor * ggml_log_inplace(
  3400. struct ggml_context * ctx,
  3401. struct ggml_tensor * a) {
  3402. return ggml_log_impl(ctx, a, true);
  3403. }
  3404. // ggml_sum
  3405. struct ggml_tensor * ggml_sum(
  3406. struct ggml_context * ctx,
  3407. struct ggml_tensor * a) {
  3408. bool is_node = false;
  3409. if (a->grad) {
  3410. is_node = true;
  3411. }
  3412. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, a->type, 1);
  3413. result->op = GGML_OP_SUM;
  3414. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3415. result->src[0] = a;
  3416. return result;
  3417. }
  3418. // ggml_sum_rows
  3419. struct ggml_tensor * ggml_sum_rows(
  3420. struct ggml_context * ctx,
  3421. struct ggml_tensor * a) {
  3422. bool is_node = false;
  3423. if (a->grad) {
  3424. is_node = true;
  3425. }
  3426. int64_t ne[GGML_MAX_DIMS] = { 1 };
  3427. for (int i = 1; i < GGML_MAX_DIMS; ++i) {
  3428. ne[i] = a->ne[i];
  3429. }
  3430. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, GGML_MAX_DIMS, ne);
  3431. result->op = GGML_OP_SUM_ROWS;
  3432. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3433. result->src[0] = a;
  3434. return result;
  3435. }
  3436. // ggml_mean
  3437. struct ggml_tensor * ggml_mean(
  3438. struct ggml_context * ctx,
  3439. struct ggml_tensor * a) {
  3440. bool is_node = false;
  3441. if (a->grad) {
  3442. GGML_ASSERT(false); // TODO: implement
  3443. is_node = true;
  3444. }
  3445. int64_t ne[4] = { 1, a->ne[1], a->ne[2], a->ne[3] };
  3446. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  3447. result->op = GGML_OP_MEAN;
  3448. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3449. result->src[0] = a;
  3450. return result;
  3451. }
  3452. // ggml_argmax
  3453. struct ggml_tensor * ggml_argmax(
  3454. struct ggml_context * ctx,
  3455. struct ggml_tensor * a) {
  3456. GGML_ASSERT(ggml_is_matrix(a));
  3457. bool is_node = false;
  3458. if (a->grad) {
  3459. GGML_ASSERT(false);
  3460. is_node = true;
  3461. }
  3462. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, a->ne[1]);
  3463. result->op = GGML_OP_ARGMAX;
  3464. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3465. result->src[0] = a;
  3466. return result;
  3467. }
  3468. // ggml_repeat
  3469. struct ggml_tensor * ggml_repeat(
  3470. struct ggml_context * ctx,
  3471. struct ggml_tensor * a,
  3472. struct ggml_tensor * b) {
  3473. GGML_ASSERT(ggml_can_repeat(a, b));
  3474. bool is_node = false;
  3475. if (a->grad) {
  3476. is_node = true;
  3477. }
  3478. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, GGML_MAX_DIMS, b->ne);
  3479. result->op = GGML_OP_REPEAT;
  3480. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3481. result->src[0] = a;
  3482. return result;
  3483. }
  3484. // ggml_repeat_back
  3485. struct ggml_tensor * ggml_repeat_back(
  3486. struct ggml_context * ctx,
  3487. struct ggml_tensor * a,
  3488. struct ggml_tensor * b) {
  3489. GGML_ASSERT(ggml_can_repeat(b, a));
  3490. bool is_node = false;
  3491. if (a->grad) {
  3492. is_node = true;
  3493. }
  3494. if (ggml_are_same_shape(a, b) && !is_node) {
  3495. return a;
  3496. }
  3497. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, GGML_MAX_DIMS, b->ne);
  3498. result->op = GGML_OP_REPEAT_BACK;
  3499. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3500. result->src[0] = a;
  3501. return result;
  3502. }
  3503. // ggml_concat
  3504. struct ggml_tensor * ggml_concat(
  3505. struct ggml_context* ctx,
  3506. struct ggml_tensor* a,
  3507. struct ggml_tensor* b) {
  3508. GGML_ASSERT(a->ne[0] == b->ne[0] && a->ne[1] == b->ne[1] && a->ne[3] == b->ne[3]);
  3509. bool is_node = false;
  3510. if (a->grad || b->grad) {
  3511. is_node = true;
  3512. }
  3513. struct ggml_tensor * result = ggml_new_tensor_4d(ctx, a->type, a->ne[0], a->ne[1], a->ne[2] + b->ne[2], a->ne[3]);
  3514. result->op = GGML_OP_CONCAT;
  3515. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3516. result->src[0] = a;
  3517. result->src[1] = b;
  3518. return result;
  3519. }
  3520. // ggml_abs
  3521. struct ggml_tensor * ggml_abs(
  3522. struct ggml_context * ctx,
  3523. struct ggml_tensor * a) {
  3524. return ggml_unary(ctx, a, GGML_UNARY_OP_ABS);
  3525. }
  3526. struct ggml_tensor * ggml_abs_inplace(
  3527. struct ggml_context * ctx,
  3528. struct ggml_tensor * a) {
  3529. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_ABS);
  3530. }
  3531. // ggml_sgn
  3532. struct ggml_tensor * ggml_sgn(
  3533. struct ggml_context * ctx,
  3534. struct ggml_tensor * a) {
  3535. return ggml_unary(ctx, a, GGML_UNARY_OP_SGN);
  3536. }
  3537. struct ggml_tensor * ggml_sgn_inplace(
  3538. struct ggml_context * ctx,
  3539. struct ggml_tensor * a) {
  3540. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_SGN);
  3541. }
  3542. // ggml_neg
  3543. struct ggml_tensor * ggml_neg(
  3544. struct ggml_context * ctx,
  3545. struct ggml_tensor * a) {
  3546. return ggml_unary(ctx, a, GGML_UNARY_OP_NEG);
  3547. }
  3548. struct ggml_tensor * ggml_neg_inplace(
  3549. struct ggml_context * ctx,
  3550. struct ggml_tensor * a) {
  3551. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_NEG);
  3552. }
  3553. // ggml_step
  3554. struct ggml_tensor * ggml_step(
  3555. struct ggml_context * ctx,
  3556. struct ggml_tensor * a) {
  3557. return ggml_unary(ctx, a, GGML_UNARY_OP_STEP);
  3558. }
  3559. struct ggml_tensor * ggml_step_inplace(
  3560. struct ggml_context * ctx,
  3561. struct ggml_tensor * a) {
  3562. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_STEP);
  3563. }
  3564. // ggml_tanh
  3565. struct ggml_tensor * ggml_tanh(
  3566. struct ggml_context * ctx,
  3567. struct ggml_tensor * a) {
  3568. return ggml_unary(ctx, a, GGML_UNARY_OP_TANH);
  3569. }
  3570. struct ggml_tensor * ggml_tanh_inplace(
  3571. struct ggml_context * ctx,
  3572. struct ggml_tensor * a) {
  3573. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_TANH);
  3574. }
  3575. // ggml_elu
  3576. struct ggml_tensor * ggml_elu(
  3577. struct ggml_context * ctx,
  3578. struct ggml_tensor * a) {
  3579. return ggml_unary(ctx, a, GGML_UNARY_OP_ELU);
  3580. }
  3581. struct ggml_tensor * ggml_elu_inplace(
  3582. struct ggml_context * ctx,
  3583. struct ggml_tensor * a) {
  3584. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_ELU);
  3585. }
  3586. // ggml_relu
  3587. struct ggml_tensor * ggml_relu(
  3588. struct ggml_context * ctx,
  3589. struct ggml_tensor * a) {
  3590. return ggml_unary(ctx, a, GGML_UNARY_OP_RELU);
  3591. }
  3592. struct ggml_tensor * ggml_relu_inplace(
  3593. struct ggml_context * ctx,
  3594. struct ggml_tensor * a) {
  3595. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_RELU);
  3596. }
  3597. // ggml_leaky_relu
  3598. struct ggml_tensor * ggml_leaky_relu(
  3599. struct ggml_context * ctx,
  3600. struct ggml_tensor * a, float negative_slope, bool inplace) {
  3601. bool is_node = false;
  3602. if (!inplace && (a->grad)) {
  3603. is_node = true;
  3604. }
  3605. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3606. ggml_set_op_params(result, &negative_slope, sizeof(negative_slope));
  3607. result->op = GGML_OP_LEAKY_RELU;
  3608. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3609. result->src[0] = a;
  3610. return result;
  3611. }
  3612. // ggml_gelu
  3613. struct ggml_tensor * ggml_gelu(
  3614. struct ggml_context * ctx,
  3615. struct ggml_tensor * a) {
  3616. return ggml_unary(ctx, a, GGML_UNARY_OP_GELU);
  3617. }
  3618. struct ggml_tensor * ggml_gelu_inplace(
  3619. struct ggml_context * ctx,
  3620. struct ggml_tensor * a) {
  3621. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_GELU);
  3622. }
  3623. // ggml_gelu_quick
  3624. struct ggml_tensor * ggml_gelu_quick(
  3625. struct ggml_context * ctx,
  3626. struct ggml_tensor * a) {
  3627. return ggml_unary(ctx, a, GGML_UNARY_OP_GELU_QUICK);
  3628. }
  3629. struct ggml_tensor * ggml_gelu_quick_inplace(
  3630. struct ggml_context * ctx,
  3631. struct ggml_tensor * a) {
  3632. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_GELU_QUICK);
  3633. }
  3634. // ggml_silu
  3635. struct ggml_tensor * ggml_silu(
  3636. struct ggml_context * ctx,
  3637. struct ggml_tensor * a) {
  3638. return ggml_unary(ctx, a, GGML_UNARY_OP_SILU);
  3639. }
  3640. struct ggml_tensor * ggml_silu_inplace(
  3641. struct ggml_context * ctx,
  3642. struct ggml_tensor * a) {
  3643. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_SILU);
  3644. }
  3645. // ggml_silu_back
  3646. struct ggml_tensor * ggml_silu_back(
  3647. struct ggml_context * ctx,
  3648. struct ggml_tensor * a,
  3649. struct ggml_tensor * b) {
  3650. bool is_node = false;
  3651. if (a->grad || b->grad) {
  3652. // TODO: implement backward
  3653. is_node = true;
  3654. }
  3655. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  3656. result->op = GGML_OP_SILU_BACK;
  3657. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3658. result->src[0] = a;
  3659. result->src[1] = b;
  3660. return result;
  3661. }
  3662. // ggml hardswish
  3663. struct ggml_tensor * ggml_hardswish(
  3664. struct ggml_context * ctx,
  3665. struct ggml_tensor * a) {
  3666. return ggml_unary(ctx, a, GGML_UNARY_OP_HARDSWISH);
  3667. }
  3668. // ggml hardsigmoid
  3669. struct ggml_tensor * ggml_hardsigmoid(
  3670. struct ggml_context * ctx,
  3671. struct ggml_tensor * a) {
  3672. return ggml_unary(ctx, a, GGML_UNARY_OP_HARDSIGMOID);
  3673. }
  3674. // ggml_norm
  3675. static struct ggml_tensor * ggml_norm_impl(
  3676. struct ggml_context * ctx,
  3677. struct ggml_tensor * a,
  3678. float eps,
  3679. bool inplace) {
  3680. bool is_node = false;
  3681. if (!inplace && (a->grad)) {
  3682. GGML_ASSERT(false); // TODO: implement backward
  3683. is_node = true;
  3684. }
  3685. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3686. ggml_set_op_params(result, &eps, sizeof(eps));
  3687. result->op = GGML_OP_NORM;
  3688. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3689. result->src[0] = a;
  3690. return result;
  3691. }
  3692. struct ggml_tensor * ggml_norm(
  3693. struct ggml_context * ctx,
  3694. struct ggml_tensor * a,
  3695. float eps) {
  3696. return ggml_norm_impl(ctx, a, eps, false);
  3697. }
  3698. struct ggml_tensor * ggml_norm_inplace(
  3699. struct ggml_context * ctx,
  3700. struct ggml_tensor * a,
  3701. float eps) {
  3702. return ggml_norm_impl(ctx, a, eps, true);
  3703. }
  3704. // ggml_rms_norm
  3705. static struct ggml_tensor * ggml_rms_norm_impl(
  3706. struct ggml_context * ctx,
  3707. struct ggml_tensor * a,
  3708. float eps,
  3709. bool inplace) {
  3710. bool is_node = false;
  3711. if (!inplace && (a->grad)) {
  3712. is_node = true;
  3713. }
  3714. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3715. ggml_set_op_params(result, &eps, sizeof(eps));
  3716. result->op = GGML_OP_RMS_NORM;
  3717. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3718. result->src[0] = a;
  3719. return result;
  3720. }
  3721. struct ggml_tensor * ggml_rms_norm(
  3722. struct ggml_context * ctx,
  3723. struct ggml_tensor * a,
  3724. float eps) {
  3725. return ggml_rms_norm_impl(ctx, a, eps, false);
  3726. }
  3727. struct ggml_tensor * ggml_rms_norm_inplace(
  3728. struct ggml_context * ctx,
  3729. struct ggml_tensor * a,
  3730. float eps) {
  3731. return ggml_rms_norm_impl(ctx, a, eps, true);
  3732. }
  3733. // ggml_rms_norm_back
  3734. struct ggml_tensor * ggml_rms_norm_back(
  3735. struct ggml_context * ctx,
  3736. struct ggml_tensor * a,
  3737. struct ggml_tensor * b,
  3738. float eps) {
  3739. bool is_node = false;
  3740. if (a->grad) {
  3741. // TODO: implement backward
  3742. is_node = true;
  3743. }
  3744. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  3745. ggml_set_op_params(result, &eps, sizeof(eps));
  3746. result->op = GGML_OP_RMS_NORM_BACK;
  3747. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3748. result->src[0] = a;
  3749. result->src[1] = b;
  3750. return result;
  3751. }
  3752. // ggml_group_norm
  3753. static struct ggml_tensor * ggml_group_norm_impl(
  3754. struct ggml_context * ctx,
  3755. struct ggml_tensor * a,
  3756. int n_groups,
  3757. bool inplace) {
  3758. bool is_node = false;
  3759. if (!inplace && (a->grad)) {
  3760. GGML_ASSERT(false); // TODO: implement backward
  3761. is_node = true;
  3762. }
  3763. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3764. result->op_params[0] = n_groups;
  3765. result->op = GGML_OP_GROUP_NORM;
  3766. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3767. result->src[0] = a;
  3768. return result;
  3769. }
  3770. struct ggml_tensor * ggml_group_norm(
  3771. struct ggml_context * ctx,
  3772. struct ggml_tensor * a,
  3773. int n_groups) {
  3774. return ggml_group_norm_impl(ctx, a, n_groups, false);
  3775. }
  3776. struct ggml_tensor * ggml_group_norm_inplace(
  3777. struct ggml_context * ctx,
  3778. struct ggml_tensor * a,
  3779. int n_groups) {
  3780. return ggml_group_norm_impl(ctx, a, n_groups, true);
  3781. }
  3782. // ggml_mul_mat
  3783. struct ggml_tensor * ggml_mul_mat(
  3784. struct ggml_context * ctx,
  3785. struct ggml_tensor * a,
  3786. struct ggml_tensor * b) {
  3787. GGML_ASSERT(ggml_can_mul_mat(a, b));
  3788. GGML_ASSERT(!ggml_is_transposed(a));
  3789. bool is_node = false;
  3790. if (a->grad || b->grad) {
  3791. is_node = true;
  3792. }
  3793. const int64_t ne[4] = { a->ne[1], b->ne[1], b->ne[2], b->ne[3] };
  3794. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  3795. result->op = GGML_OP_MUL_MAT;
  3796. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3797. result->src[0] = a;
  3798. result->src[1] = b;
  3799. return result;
  3800. }
  3801. void ggml_mul_mat_set_prec(
  3802. struct ggml_tensor * a,
  3803. enum ggml_prec prec) {
  3804. const int32_t prec_i32 = (int32_t) prec;
  3805. ggml_set_op_params_i32(a, 0, prec_i32);
  3806. }
  3807. // ggml_mul_mat_id
  3808. // NOTE: id will be removed in the future and instead all the experts listed in ids will be computed
  3809. // this will allow computing all the used experts in a single matrix multiplication
  3810. struct ggml_tensor * ggml_mul_mat_id(
  3811. struct ggml_context * ctx,
  3812. struct ggml_tensor * as,
  3813. struct ggml_tensor * ids,
  3814. int id,
  3815. struct ggml_tensor * b) {
  3816. GGML_ASSERT(ids->type == GGML_TYPE_I32);
  3817. GGML_ASSERT(ids->ne[2] == 1 && ids->ne[3] == 1); // ids is 2d
  3818. GGML_ASSERT(ids->ne[1] == b->ne[1]); // must have an expert per b row
  3819. GGML_ASSERT(ids->ne[2] == b->ne[2] && ids->ne[3] == b->ne[3]);
  3820. GGML_ASSERT(id >= 0 && id < ids->ne[0]); // valid id
  3821. GGML_ASSERT(as->ne[0] == b->ne[0]); // can_mul_mat
  3822. bool is_node = false;
  3823. if (as->grad || b->grad) {
  3824. is_node = true;
  3825. }
  3826. const int64_t ne[4] = { as->ne[1], b->ne[1], b->ne[2], b->ne[3] };
  3827. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  3828. ggml_set_op_params_i32(result, 0, id);
  3829. result->op = GGML_OP_MUL_MAT_ID;
  3830. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3831. result->src[0] = as;
  3832. result->src[1] = b;
  3833. result->src[2] = ids;
  3834. return result;
  3835. }
  3836. // ggml_out_prod
  3837. struct ggml_tensor * ggml_out_prod(
  3838. struct ggml_context * ctx,
  3839. struct ggml_tensor * a,
  3840. struct ggml_tensor * b) {
  3841. GGML_ASSERT(ggml_can_out_prod(a, b));
  3842. GGML_ASSERT(!ggml_is_transposed(a));
  3843. bool is_node = false;
  3844. if (a->grad || b->grad) {
  3845. is_node = true;
  3846. }
  3847. // a is broadcastable to b for ne[2] and ne[3] -> use b->ne[2] and b->ne[3]
  3848. const int64_t ne[4] = { a->ne[0], b->ne[0], b->ne[2], b->ne[3] };
  3849. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  3850. result->op = GGML_OP_OUT_PROD;
  3851. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3852. result->src[0] = a;
  3853. result->src[1] = b;
  3854. return result;
  3855. }
  3856. // ggml_scale
  3857. static struct ggml_tensor * ggml_scale_impl(
  3858. struct ggml_context * ctx,
  3859. struct ggml_tensor * a,
  3860. float s,
  3861. bool inplace) {
  3862. GGML_ASSERT(ggml_is_padded_1d(a));
  3863. bool is_node = false;
  3864. if (a->grad) {
  3865. is_node = true;
  3866. }
  3867. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3868. ggml_set_op_params(result, &s, sizeof(s));
  3869. result->op = GGML_OP_SCALE;
  3870. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3871. result->src[0] = a;
  3872. return result;
  3873. }
  3874. struct ggml_tensor * ggml_scale(
  3875. struct ggml_context * ctx,
  3876. struct ggml_tensor * a,
  3877. float s) {
  3878. return ggml_scale_impl(ctx, a, s, false);
  3879. }
  3880. struct ggml_tensor * ggml_scale_inplace(
  3881. struct ggml_context * ctx,
  3882. struct ggml_tensor * a,
  3883. float s) {
  3884. return ggml_scale_impl(ctx, a, s, true);
  3885. }
  3886. // ggml_set
  3887. static struct ggml_tensor * ggml_set_impl(
  3888. struct ggml_context * ctx,
  3889. struct ggml_tensor * a,
  3890. struct ggml_tensor * b,
  3891. size_t nb1,
  3892. size_t nb2,
  3893. size_t nb3,
  3894. size_t offset,
  3895. bool inplace) {
  3896. GGML_ASSERT(ggml_nelements(a) >= ggml_nelements(b));
  3897. bool is_node = false;
  3898. if (a->grad || b->grad) {
  3899. is_node = true;
  3900. }
  3901. // make a view of the destination
  3902. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3903. int32_t params[] = { nb1, nb2, nb3, offset, inplace ? 1 : 0 };
  3904. ggml_set_op_params(result, params, sizeof(params));
  3905. result->op = GGML_OP_SET;
  3906. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3907. result->src[0] = a;
  3908. result->src[1] = b;
  3909. return result;
  3910. }
  3911. struct ggml_tensor * ggml_set(
  3912. struct ggml_context * ctx,
  3913. struct ggml_tensor * a,
  3914. struct ggml_tensor * b,
  3915. size_t nb1,
  3916. size_t nb2,
  3917. size_t nb3,
  3918. size_t offset) {
  3919. return ggml_set_impl(ctx, a, b, nb1, nb2, nb3, offset, false);
  3920. }
  3921. struct ggml_tensor * ggml_set_inplace(
  3922. struct ggml_context * ctx,
  3923. struct ggml_tensor * a,
  3924. struct ggml_tensor * b,
  3925. size_t nb1,
  3926. size_t nb2,
  3927. size_t nb3,
  3928. size_t offset) {
  3929. return ggml_set_impl(ctx, a, b, nb1, nb2, nb3, offset, true);
  3930. }
  3931. struct ggml_tensor * ggml_set_1d(
  3932. struct ggml_context * ctx,
  3933. struct ggml_tensor * a,
  3934. struct ggml_tensor * b,
  3935. size_t offset) {
  3936. return ggml_set_impl(ctx, a, b, a->nb[1], a->nb[2], a->nb[3], offset, false);
  3937. }
  3938. struct ggml_tensor * ggml_set_1d_inplace(
  3939. struct ggml_context * ctx,
  3940. struct ggml_tensor * a,
  3941. struct ggml_tensor * b,
  3942. size_t offset) {
  3943. return ggml_set_impl(ctx, a, b, a->nb[1], a->nb[2], a->nb[3], offset, true);
  3944. }
  3945. struct ggml_tensor * ggml_set_2d(
  3946. struct ggml_context * ctx,
  3947. struct ggml_tensor * a,
  3948. struct ggml_tensor * b,
  3949. size_t nb1,
  3950. size_t offset) {
  3951. return ggml_set_impl(ctx, a, b, nb1, a->nb[2], a->nb[3], offset, false);
  3952. }
  3953. struct ggml_tensor * ggml_set_2d_inplace(
  3954. struct ggml_context * ctx,
  3955. struct ggml_tensor * a,
  3956. struct ggml_tensor * b,
  3957. size_t nb1,
  3958. size_t offset) {
  3959. return ggml_set_impl(ctx, a, b, nb1, a->nb[2], a->nb[3], offset, true);
  3960. }
  3961. // ggml_cpy
  3962. static struct ggml_tensor * ggml_cpy_impl(
  3963. struct ggml_context * ctx,
  3964. struct ggml_tensor * a,
  3965. struct ggml_tensor * b) {
  3966. GGML_ASSERT(ggml_nelements(a) == ggml_nelements(b));
  3967. bool is_node = false;
  3968. if (a->grad || b->grad) {
  3969. // inplace is false and either one have a grad
  3970. is_node = true;
  3971. }
  3972. // make a view of the destination
  3973. struct ggml_tensor * result = ggml_view_tensor(ctx, b);
  3974. if (strlen(b->name) > 0) {
  3975. ggml_format_name(result, "%s (copy of %s)", b->name, a->name);
  3976. } else {
  3977. ggml_format_name(result, "%s (copy)", a->name);
  3978. }
  3979. result->op = GGML_OP_CPY;
  3980. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3981. result->src[0] = a;
  3982. result->src[1] = b;
  3983. return result;
  3984. }
  3985. struct ggml_tensor * ggml_cpy(
  3986. struct ggml_context * ctx,
  3987. struct ggml_tensor * a,
  3988. struct ggml_tensor * b) {
  3989. return ggml_cpy_impl(ctx, a, b);
  3990. }
  3991. struct ggml_tensor * ggml_cast(
  3992. struct ggml_context * ctx,
  3993. struct ggml_tensor * a,
  3994. enum ggml_type type) {
  3995. bool is_node = false;
  3996. struct ggml_tensor * result = ggml_new_tensor(ctx, type, GGML_MAX_DIMS, a->ne);
  3997. ggml_format_name(result, "%s (copy)", a->name);
  3998. result->op = GGML_OP_CPY;
  3999. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4000. result->src[0] = a;
  4001. result->src[1] = result;
  4002. return result;
  4003. }
  4004. // ggml_cont
  4005. static struct ggml_tensor * ggml_cont_impl(
  4006. struct ggml_context * ctx,
  4007. struct ggml_tensor * a) {
  4008. bool is_node = false;
  4009. if (a->grad) {
  4010. is_node = true;
  4011. }
  4012. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  4013. ggml_format_name(result, "%s (cont)", a->name);
  4014. result->op = GGML_OP_CONT;
  4015. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4016. result->src[0] = a;
  4017. return result;
  4018. }
  4019. struct ggml_tensor * ggml_cont(
  4020. struct ggml_context * ctx,
  4021. struct ggml_tensor * a) {
  4022. return ggml_cont_impl(ctx, a);
  4023. }
  4024. // make contiguous, with new shape
  4025. GGML_API struct ggml_tensor * ggml_cont_1d(
  4026. struct ggml_context * ctx,
  4027. struct ggml_tensor * a,
  4028. int64_t ne0) {
  4029. return ggml_cont_4d(ctx, a, ne0, 1, 1, 1);
  4030. }
  4031. GGML_API struct ggml_tensor * ggml_cont_2d(
  4032. struct ggml_context * ctx,
  4033. struct ggml_tensor * a,
  4034. int64_t ne0,
  4035. int64_t ne1) {
  4036. return ggml_cont_4d(ctx, a, ne0, ne1, 1, 1);
  4037. }
  4038. GGML_API struct ggml_tensor * ggml_cont_3d(
  4039. struct ggml_context * ctx,
  4040. struct ggml_tensor * a,
  4041. int64_t ne0,
  4042. int64_t ne1,
  4043. int64_t ne2) {
  4044. return ggml_cont_4d(ctx, a, ne0, ne1, ne2, 1);
  4045. }
  4046. struct ggml_tensor * ggml_cont_4d(
  4047. struct ggml_context * ctx,
  4048. struct ggml_tensor * a,
  4049. int64_t ne0,
  4050. int64_t ne1,
  4051. int64_t ne2,
  4052. int64_t ne3) {
  4053. GGML_ASSERT(ggml_nelements(a) == (ne0*ne1*ne2*ne3));
  4054. bool is_node = false;
  4055. struct ggml_tensor * result = ggml_new_tensor_4d(ctx, a->type, ne0, ne1, ne2, ne3);
  4056. ggml_format_name(result, "%s (cont)", a->name);
  4057. result->op = GGML_OP_CONT;
  4058. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4059. result->src[0] = a;
  4060. return result;
  4061. }
  4062. // ggml_reshape
  4063. struct ggml_tensor * ggml_reshape(
  4064. struct ggml_context * ctx,
  4065. struct ggml_tensor * a,
  4066. struct ggml_tensor * b) {
  4067. GGML_ASSERT(ggml_is_contiguous(a));
  4068. // as only the shape of b is relevant, and not its memory layout, b is allowed to be non contiguous.
  4069. GGML_ASSERT(ggml_nelements(a) == ggml_nelements(b));
  4070. bool is_node = false;
  4071. if (a->grad) {
  4072. is_node = true;
  4073. }
  4074. if (b->grad) {
  4075. // gradient propagation is not supported
  4076. //GGML_ASSERT(false);
  4077. }
  4078. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, GGML_MAX_DIMS, b->ne, a, 0);
  4079. ggml_format_name(result, "%s (reshaped)", a->name);
  4080. result->op = GGML_OP_RESHAPE;
  4081. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4082. result->src[0] = a;
  4083. return result;
  4084. }
  4085. struct ggml_tensor * ggml_reshape_1d(
  4086. struct ggml_context * ctx,
  4087. struct ggml_tensor * a,
  4088. int64_t ne0) {
  4089. GGML_ASSERT(ggml_is_contiguous(a));
  4090. GGML_ASSERT(ggml_nelements(a) == ne0);
  4091. bool is_node = false;
  4092. if (a->grad) {
  4093. is_node = true;
  4094. }
  4095. const int64_t ne[1] = { ne0 };
  4096. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 1, ne, a, 0);
  4097. ggml_format_name(result, "%s (reshaped)", a->name);
  4098. result->op = GGML_OP_RESHAPE;
  4099. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4100. result->src[0] = a;
  4101. return result;
  4102. }
  4103. struct ggml_tensor * ggml_reshape_2d(
  4104. struct ggml_context * ctx,
  4105. struct ggml_tensor * a,
  4106. int64_t ne0,
  4107. int64_t ne1) {
  4108. GGML_ASSERT(ggml_is_contiguous(a));
  4109. GGML_ASSERT(ggml_nelements(a) == ne0*ne1);
  4110. bool is_node = false;
  4111. if (a->grad) {
  4112. is_node = true;
  4113. }
  4114. const int64_t ne[2] = { ne0, ne1 };
  4115. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 2, ne, a, 0);
  4116. ggml_format_name(result, "%s (reshaped)", a->name);
  4117. result->op = GGML_OP_RESHAPE;
  4118. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4119. result->src[0] = a;
  4120. return result;
  4121. }
  4122. struct ggml_tensor * ggml_reshape_3d(
  4123. struct ggml_context * ctx,
  4124. struct ggml_tensor * a,
  4125. int64_t ne0,
  4126. int64_t ne1,
  4127. int64_t ne2) {
  4128. GGML_ASSERT(ggml_is_contiguous(a));
  4129. GGML_ASSERT(ggml_nelements(a) == ne0*ne1*ne2);
  4130. bool is_node = false;
  4131. if (a->grad) {
  4132. is_node = true;
  4133. }
  4134. const int64_t ne[3] = { ne0, ne1, ne2 };
  4135. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 3, ne, a, 0);
  4136. ggml_format_name(result, "%s (reshaped)", a->name);
  4137. result->op = GGML_OP_RESHAPE;
  4138. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4139. result->src[0] = a;
  4140. return result;
  4141. }
  4142. struct ggml_tensor * ggml_reshape_4d(
  4143. struct ggml_context * ctx,
  4144. struct ggml_tensor * a,
  4145. int64_t ne0,
  4146. int64_t ne1,
  4147. int64_t ne2,
  4148. int64_t ne3) {
  4149. GGML_ASSERT(ggml_is_contiguous(a));
  4150. GGML_ASSERT(ggml_nelements(a) == ne0*ne1*ne2*ne3);
  4151. bool is_node = false;
  4152. if (a->grad) {
  4153. is_node = true;
  4154. }
  4155. const int64_t ne[4] = { ne0, ne1, ne2, ne3 };
  4156. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 4, ne, a, 0);
  4157. ggml_format_name(result, "%s (reshaped)", a->name);
  4158. result->op = GGML_OP_RESHAPE;
  4159. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4160. result->src[0] = a;
  4161. return result;
  4162. }
  4163. static struct ggml_tensor * ggml_view_impl(
  4164. struct ggml_context * ctx,
  4165. struct ggml_tensor * a,
  4166. int n_dims,
  4167. const int64_t * ne,
  4168. size_t offset) {
  4169. bool is_node = false;
  4170. if (a->grad) {
  4171. is_node = true;
  4172. }
  4173. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, n_dims, ne, a, offset);
  4174. ggml_format_name(result, "%s (view)", a->name);
  4175. ggml_set_op_params(result, &offset, sizeof(offset));
  4176. result->op = GGML_OP_VIEW;
  4177. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4178. result->src[0] = a;
  4179. return result;
  4180. }
  4181. // ggml_view_1d
  4182. struct ggml_tensor * ggml_view_1d(
  4183. struct ggml_context * ctx,
  4184. struct ggml_tensor * a,
  4185. int64_t ne0,
  4186. size_t offset) {
  4187. struct ggml_tensor * result = ggml_view_impl(ctx, a, 1, &ne0, offset);
  4188. return result;
  4189. }
  4190. // ggml_view_2d
  4191. struct ggml_tensor * ggml_view_2d(
  4192. struct ggml_context * ctx,
  4193. struct ggml_tensor * a,
  4194. int64_t ne0,
  4195. int64_t ne1,
  4196. size_t nb1,
  4197. size_t offset) {
  4198. const int64_t ne[2] = { ne0, ne1 };
  4199. struct ggml_tensor * result = ggml_view_impl(ctx, a, 2, ne, offset);
  4200. result->nb[1] = nb1;
  4201. result->nb[2] = result->nb[1]*ne1;
  4202. result->nb[3] = result->nb[2];
  4203. return result;
  4204. }
  4205. // ggml_view_3d
  4206. struct ggml_tensor * ggml_view_3d(
  4207. struct ggml_context * ctx,
  4208. struct ggml_tensor * a,
  4209. int64_t ne0,
  4210. int64_t ne1,
  4211. int64_t ne2,
  4212. size_t nb1,
  4213. size_t nb2,
  4214. size_t offset) {
  4215. const int64_t ne[3] = { ne0, ne1, ne2 };
  4216. struct ggml_tensor * result = ggml_view_impl(ctx, a, 3, ne, offset);
  4217. result->nb[1] = nb1;
  4218. result->nb[2] = nb2;
  4219. result->nb[3] = result->nb[2]*ne2;
  4220. return result;
  4221. }
  4222. // ggml_view_4d
  4223. struct ggml_tensor * ggml_view_4d(
  4224. struct ggml_context * ctx,
  4225. struct ggml_tensor * a,
  4226. int64_t ne0,
  4227. int64_t ne1,
  4228. int64_t ne2,
  4229. int64_t ne3,
  4230. size_t nb1,
  4231. size_t nb2,
  4232. size_t nb3,
  4233. size_t offset) {
  4234. const int64_t ne[4] = { ne0, ne1, ne2, ne3 };
  4235. struct ggml_tensor * result = ggml_view_impl(ctx, a, 4, ne, offset);
  4236. result->nb[1] = nb1;
  4237. result->nb[2] = nb2;
  4238. result->nb[3] = nb3;
  4239. return result;
  4240. }
  4241. // ggml_permute
  4242. struct ggml_tensor * ggml_permute(
  4243. struct ggml_context * ctx,
  4244. struct ggml_tensor * a,
  4245. int axis0,
  4246. int axis1,
  4247. int axis2,
  4248. int axis3) {
  4249. GGML_ASSERT(axis0 >= 0 && axis0 < GGML_MAX_DIMS);
  4250. GGML_ASSERT(axis1 >= 0 && axis1 < GGML_MAX_DIMS);
  4251. GGML_ASSERT(axis2 >= 0 && axis2 < GGML_MAX_DIMS);
  4252. GGML_ASSERT(axis3 >= 0 && axis3 < GGML_MAX_DIMS);
  4253. GGML_ASSERT(axis0 != axis1);
  4254. GGML_ASSERT(axis0 != axis2);
  4255. GGML_ASSERT(axis0 != axis3);
  4256. GGML_ASSERT(axis1 != axis2);
  4257. GGML_ASSERT(axis1 != axis3);
  4258. GGML_ASSERT(axis2 != axis3);
  4259. bool is_node = false;
  4260. if (a->grad) {
  4261. is_node = true;
  4262. }
  4263. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  4264. ggml_format_name(result, "%s (permuted)", a->name);
  4265. int ne[GGML_MAX_DIMS];
  4266. int nb[GGML_MAX_DIMS];
  4267. ne[axis0] = a->ne[0];
  4268. ne[axis1] = a->ne[1];
  4269. ne[axis2] = a->ne[2];
  4270. ne[axis3] = a->ne[3];
  4271. nb[axis0] = a->nb[0];
  4272. nb[axis1] = a->nb[1];
  4273. nb[axis2] = a->nb[2];
  4274. nb[axis3] = a->nb[3];
  4275. result->ne[0] = ne[0];
  4276. result->ne[1] = ne[1];
  4277. result->ne[2] = ne[2];
  4278. result->ne[3] = ne[3];
  4279. result->nb[0] = nb[0];
  4280. result->nb[1] = nb[1];
  4281. result->nb[2] = nb[2];
  4282. result->nb[3] = nb[3];
  4283. result->op = GGML_OP_PERMUTE;
  4284. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4285. result->src[0] = a;
  4286. int32_t params[] = { axis0, axis1, axis2, axis3 };
  4287. ggml_set_op_params(result, params, sizeof(params));
  4288. return result;
  4289. }
  4290. // ggml_transpose
  4291. struct ggml_tensor * ggml_transpose(
  4292. struct ggml_context * ctx,
  4293. struct ggml_tensor * a) {
  4294. bool is_node = false;
  4295. if (a->grad) {
  4296. is_node = true;
  4297. }
  4298. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  4299. ggml_format_name(result, "%s (transposed)", a->name);
  4300. result->ne[0] = a->ne[1];
  4301. result->ne[1] = a->ne[0];
  4302. result->nb[0] = a->nb[1];
  4303. result->nb[1] = a->nb[0];
  4304. result->op = GGML_OP_TRANSPOSE;
  4305. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4306. result->src[0] = a;
  4307. return result;
  4308. }
  4309. // ggml_get_rows
  4310. struct ggml_tensor * ggml_get_rows(
  4311. struct ggml_context * ctx,
  4312. struct ggml_tensor * a,
  4313. struct ggml_tensor * b) {
  4314. GGML_ASSERT(a->ne[2] == b->ne[1]);
  4315. GGML_ASSERT(b->ne[3] == 1);
  4316. GGML_ASSERT(b->type == GGML_TYPE_I32);
  4317. bool is_node = false;
  4318. if (a->grad || b->grad) {
  4319. is_node = true;
  4320. }
  4321. // TODO: implement non F32 return
  4322. enum ggml_type type = GGML_TYPE_F32;
  4323. if (a->type == GGML_TYPE_I32) {
  4324. type = a->type;
  4325. }
  4326. struct ggml_tensor * result = ggml_new_tensor_4d(ctx, type, a->ne[0], b->ne[0], b->ne[1], b->ne[2]);
  4327. result->op = GGML_OP_GET_ROWS;
  4328. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4329. result->src[0] = a;
  4330. result->src[1] = b;
  4331. return result;
  4332. }
  4333. // ggml_get_rows_back
  4334. struct ggml_tensor * ggml_get_rows_back(
  4335. struct ggml_context * ctx,
  4336. struct ggml_tensor * a,
  4337. struct ggml_tensor * b,
  4338. struct ggml_tensor * c) {
  4339. GGML_ASSERT(ggml_is_matrix(a) && ggml_is_vector(b) && b->type == GGML_TYPE_I32);
  4340. GGML_ASSERT(ggml_is_matrix(c) && (a->ne[0] == c->ne[0]));
  4341. bool is_node = false;
  4342. if (a->grad || b->grad) {
  4343. is_node = true;
  4344. }
  4345. // TODO: implement non F32 return
  4346. //struct ggml_tensor * result = ggml_new_tensor_2d(ctx, a->type, a->ne[0], b->ne[0]);
  4347. struct ggml_tensor * result = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, c->ne[0], c->ne[1]);
  4348. result->op = GGML_OP_GET_ROWS_BACK;
  4349. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4350. result->src[0] = a;
  4351. result->src[1] = b;
  4352. return result;
  4353. }
  4354. // ggml_diag
  4355. struct ggml_tensor * ggml_diag(
  4356. struct ggml_context * ctx,
  4357. struct ggml_tensor * a) {
  4358. GGML_ASSERT(a->ne[1] == 1);
  4359. bool is_node = false;
  4360. if (a->grad) {
  4361. is_node = true;
  4362. }
  4363. const int64_t ne[4] = { a->ne[0], a->ne[0], a->ne[2], a->ne[3] };
  4364. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, 4, ne);
  4365. result->op = GGML_OP_DIAG;
  4366. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4367. result->src[0] = a;
  4368. return result;
  4369. }
  4370. // ggml_diag_mask_inf
  4371. static struct ggml_tensor * ggml_diag_mask_inf_impl(
  4372. struct ggml_context * ctx,
  4373. struct ggml_tensor * a,
  4374. int n_past,
  4375. bool inplace) {
  4376. bool is_node = false;
  4377. if (a->grad) {
  4378. is_node = true;
  4379. }
  4380. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4381. int32_t params[] = { n_past };
  4382. ggml_set_op_params(result, params, sizeof(params));
  4383. result->op = GGML_OP_DIAG_MASK_INF;
  4384. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4385. result->src[0] = a;
  4386. return result;
  4387. }
  4388. struct ggml_tensor * ggml_diag_mask_inf(
  4389. struct ggml_context * ctx,
  4390. struct ggml_tensor * a,
  4391. int n_past) {
  4392. return ggml_diag_mask_inf_impl(ctx, a, n_past, false);
  4393. }
  4394. struct ggml_tensor * ggml_diag_mask_inf_inplace(
  4395. struct ggml_context * ctx,
  4396. struct ggml_tensor * a,
  4397. int n_past) {
  4398. return ggml_diag_mask_inf_impl(ctx, a, n_past, true);
  4399. }
  4400. // ggml_diag_mask_zero
  4401. static struct ggml_tensor * ggml_diag_mask_zero_impl(
  4402. struct ggml_context * ctx,
  4403. struct ggml_tensor * a,
  4404. int n_past,
  4405. bool inplace) {
  4406. bool is_node = false;
  4407. if (a->grad) {
  4408. is_node = true;
  4409. }
  4410. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4411. int32_t params[] = { n_past };
  4412. ggml_set_op_params(result, params, sizeof(params));
  4413. result->op = GGML_OP_DIAG_MASK_ZERO;
  4414. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4415. result->src[0] = a;
  4416. return result;
  4417. }
  4418. struct ggml_tensor * ggml_diag_mask_zero(
  4419. struct ggml_context * ctx,
  4420. struct ggml_tensor * a,
  4421. int n_past) {
  4422. return ggml_diag_mask_zero_impl(ctx, a, n_past, false);
  4423. }
  4424. struct ggml_tensor * ggml_diag_mask_zero_inplace(
  4425. struct ggml_context * ctx,
  4426. struct ggml_tensor * a,
  4427. int n_past) {
  4428. return ggml_diag_mask_zero_impl(ctx, a, n_past, true);
  4429. }
  4430. // ggml_soft_max
  4431. static struct ggml_tensor * ggml_soft_max_impl(
  4432. struct ggml_context * ctx,
  4433. struct ggml_tensor * a,
  4434. struct ggml_tensor * mask,
  4435. struct ggml_tensor * pos,
  4436. float scale,
  4437. float max_bias,
  4438. bool inplace) {
  4439. GGML_ASSERT(ggml_is_contiguous(a));
  4440. if (mask) {
  4441. GGML_ASSERT(ggml_is_contiguous(mask));
  4442. GGML_ASSERT(ggml_is_matrix(mask));
  4443. GGML_ASSERT(ggml_can_repeat_rows(mask, a));
  4444. }
  4445. if (pos) {
  4446. GGML_ASSERT(ggml_is_vector(pos));
  4447. GGML_ASSERT(pos->type == GGML_TYPE_F32);
  4448. GGML_ASSERT(pos->ne[0] == a->ne[0]);
  4449. }
  4450. if (max_bias > 0.0f) {
  4451. GGML_ASSERT(pos);
  4452. }
  4453. bool is_node = false;
  4454. if (a->grad) {
  4455. is_node = true;
  4456. }
  4457. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4458. float params[] = { scale, max_bias };
  4459. ggml_set_op_params(result, params, sizeof(params));
  4460. result->op = GGML_OP_SOFT_MAX;
  4461. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4462. result->src[0] = a;
  4463. result->src[1] = mask;
  4464. result->src[2] = pos;
  4465. return result;
  4466. }
  4467. struct ggml_tensor * ggml_soft_max(
  4468. struct ggml_context * ctx,
  4469. struct ggml_tensor * a) {
  4470. return ggml_soft_max_impl(ctx, a, NULL, NULL, 1.0f, 0.0f, false);
  4471. }
  4472. struct ggml_tensor * ggml_soft_max_inplace(
  4473. struct ggml_context * ctx,
  4474. struct ggml_tensor * a) {
  4475. return ggml_soft_max_impl(ctx, a, NULL, NULL, 1.0f, 0.0f, true);
  4476. }
  4477. struct ggml_tensor * ggml_soft_max_ext(
  4478. struct ggml_context * ctx,
  4479. struct ggml_tensor * a,
  4480. struct ggml_tensor * mask,
  4481. struct ggml_tensor * pos,
  4482. float scale,
  4483. float max_bias) {
  4484. return ggml_soft_max_impl(ctx, a, mask, pos, scale, max_bias, false);
  4485. }
  4486. // ggml_soft_max_back
  4487. static struct ggml_tensor * ggml_soft_max_back_impl(
  4488. struct ggml_context * ctx,
  4489. struct ggml_tensor * a,
  4490. struct ggml_tensor * b,
  4491. bool inplace) {
  4492. bool is_node = false;
  4493. if (a->grad || b->grad) {
  4494. is_node = true; // TODO : implement backward pass
  4495. }
  4496. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4497. result->op = GGML_OP_SOFT_MAX_BACK;
  4498. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4499. result->src[0] = a;
  4500. result->src[1] = b;
  4501. return result;
  4502. }
  4503. struct ggml_tensor * ggml_soft_max_back(
  4504. struct ggml_context * ctx,
  4505. struct ggml_tensor * a,
  4506. struct ggml_tensor * b) {
  4507. return ggml_soft_max_back_impl(ctx, a, b, false);
  4508. }
  4509. struct ggml_tensor * ggml_soft_max_back_inplace(
  4510. struct ggml_context * ctx,
  4511. struct ggml_tensor * a,
  4512. struct ggml_tensor * b) {
  4513. return ggml_soft_max_back_impl(ctx, a, b, true);
  4514. }
  4515. // ggml_rope
  4516. static struct ggml_tensor * ggml_rope_impl(
  4517. struct ggml_context * ctx,
  4518. struct ggml_tensor * a,
  4519. struct ggml_tensor * b,
  4520. int n_dims,
  4521. int mode,
  4522. int n_ctx,
  4523. int n_orig_ctx,
  4524. float freq_base,
  4525. float freq_scale,
  4526. float ext_factor,
  4527. float attn_factor,
  4528. float beta_fast,
  4529. float beta_slow,
  4530. float xpos_base,
  4531. bool xpos_down,
  4532. bool inplace) {
  4533. GGML_ASSERT(ggml_is_vector(b));
  4534. GGML_ASSERT(b->type == GGML_TYPE_I32);
  4535. GGML_ASSERT(a->ne[2] == b->ne[0]);
  4536. bool is_node = false;
  4537. if (a->grad) {
  4538. is_node = true;
  4539. }
  4540. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4541. int32_t params[13] = { /*n_past*/ 0, n_dims, mode, n_ctx, n_orig_ctx };
  4542. memcpy(params + 5, &freq_base, sizeof(float));
  4543. memcpy(params + 6, &freq_scale, sizeof(float));
  4544. memcpy(params + 7, &ext_factor, sizeof(float));
  4545. memcpy(params + 8, &attn_factor, sizeof(float));
  4546. memcpy(params + 9, &beta_fast, sizeof(float));
  4547. memcpy(params + 10, &beta_slow, sizeof(float));
  4548. memcpy(params + 11, &xpos_base, sizeof(float));
  4549. memcpy(params + 12, &xpos_down, sizeof(bool));
  4550. ggml_set_op_params(result, params, sizeof(params));
  4551. result->op = GGML_OP_ROPE;
  4552. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4553. result->src[0] = a;
  4554. result->src[1] = b;
  4555. return result;
  4556. }
  4557. struct ggml_tensor * ggml_rope(
  4558. struct ggml_context * ctx,
  4559. struct ggml_tensor * a,
  4560. struct ggml_tensor * b,
  4561. int n_dims,
  4562. int mode,
  4563. int n_ctx) {
  4564. return ggml_rope_impl(
  4565. ctx, a, b, n_dims, mode, n_ctx, 0, 10000.0f, 1.0f, 0.0f, 1.0f, 0.0f, 0.0f, 0.0f, false, false
  4566. );
  4567. }
  4568. struct ggml_tensor * ggml_rope_inplace(
  4569. struct ggml_context * ctx,
  4570. struct ggml_tensor * a,
  4571. struct ggml_tensor * b,
  4572. int n_dims,
  4573. int mode,
  4574. int n_ctx) {
  4575. return ggml_rope_impl(
  4576. ctx, a, b, n_dims, mode, n_ctx, 0, 10000.0f, 1.0f, 0.0f, 1.0f, 0.0f, 0.0f, 0.0f, false, true
  4577. );
  4578. }
  4579. struct ggml_tensor * ggml_rope_custom(
  4580. struct ggml_context * ctx,
  4581. struct ggml_tensor * a,
  4582. struct ggml_tensor * b,
  4583. int n_dims,
  4584. int mode,
  4585. int n_ctx,
  4586. int n_orig_ctx,
  4587. float freq_base,
  4588. float freq_scale,
  4589. float ext_factor,
  4590. float attn_factor,
  4591. float beta_fast,
  4592. float beta_slow) {
  4593. return ggml_rope_impl(
  4594. ctx, a, b, n_dims, mode, n_ctx, n_orig_ctx, freq_base, freq_scale,
  4595. ext_factor, attn_factor, beta_fast, beta_slow, 0.0f, false, false
  4596. );
  4597. }
  4598. struct ggml_tensor * ggml_rope_custom_inplace(
  4599. struct ggml_context * ctx,
  4600. struct ggml_tensor * a,
  4601. struct ggml_tensor * b,
  4602. int n_dims,
  4603. int mode,
  4604. int n_ctx,
  4605. int n_orig_ctx,
  4606. float freq_base,
  4607. float freq_scale,
  4608. float ext_factor,
  4609. float attn_factor,
  4610. float beta_fast,
  4611. float beta_slow) {
  4612. return ggml_rope_impl(
  4613. ctx, a, b, n_dims, mode, n_ctx, n_orig_ctx, freq_base, freq_scale,
  4614. ext_factor, attn_factor, beta_fast, beta_slow, 0.0f, false, true
  4615. );
  4616. }
  4617. struct ggml_tensor * ggml_rope_xpos_inplace(
  4618. struct ggml_context * ctx,
  4619. struct ggml_tensor * a,
  4620. struct ggml_tensor * b,
  4621. int n_dims,
  4622. float base,
  4623. bool down) {
  4624. return ggml_rope_impl(ctx, a, b, n_dims, 0, 0, 0, 10000.0f, 1.0f, 0.0f, 1.0f, 0.0f, 0.0f, base, down, true);
  4625. }
  4626. // ggml_rope_back
  4627. struct ggml_tensor * ggml_rope_back(
  4628. struct ggml_context * ctx,
  4629. struct ggml_tensor * a,
  4630. struct ggml_tensor * b,
  4631. int n_dims,
  4632. int mode,
  4633. int n_ctx,
  4634. int n_orig_ctx,
  4635. float freq_base,
  4636. float freq_scale,
  4637. float ext_factor,
  4638. float attn_factor,
  4639. float beta_fast,
  4640. float beta_slow,
  4641. float xpos_base,
  4642. bool xpos_down) {
  4643. GGML_ASSERT(ggml_is_vector(b));
  4644. GGML_ASSERT(b->type == GGML_TYPE_I32);
  4645. GGML_ASSERT(a->ne[2] == b->ne[0]);
  4646. GGML_ASSERT((mode & 4) == 0 && "ggml_rope_back() for ChatGLM not implemented yet");
  4647. bool is_node = false;
  4648. if (a->grad) {
  4649. is_node = false; // TODO: implement backward
  4650. }
  4651. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  4652. int32_t params[13] = { /*n_past*/ 0, n_dims, mode, n_ctx, n_orig_ctx };
  4653. memcpy(params + 5, &freq_base, sizeof(float));
  4654. memcpy(params + 6, &freq_scale, sizeof(float));
  4655. memcpy(params + 7, &ext_factor, sizeof(float));
  4656. memcpy(params + 8, &attn_factor, sizeof(float));
  4657. memcpy(params + 9, &beta_fast, sizeof(float));
  4658. memcpy(params + 10, &beta_slow, sizeof(float));
  4659. memcpy(params + 11, &xpos_base, sizeof(float));
  4660. memcpy(params + 12, &xpos_down, sizeof(bool));
  4661. ggml_set_op_params(result, params, sizeof(params));
  4662. result->op = GGML_OP_ROPE_BACK;
  4663. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4664. result->src[0] = a;
  4665. result->src[1] = b;
  4666. return result;
  4667. }
  4668. // ggml_alibi
  4669. struct ggml_tensor * ggml_alibi(
  4670. struct ggml_context * ctx,
  4671. struct ggml_tensor * a,
  4672. int n_past,
  4673. int n_head,
  4674. float bias_max) {
  4675. GGML_ASSERT(n_past >= 0);
  4676. bool is_node = false;
  4677. if (a->grad) {
  4678. GGML_ASSERT(false); // TODO: implement backward
  4679. is_node = true;
  4680. }
  4681. // TODO: when implement backward, fix this:
  4682. //struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4683. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  4684. int32_t op_params[3] = { n_past, n_head };
  4685. memcpy(op_params + 2, &bias_max, sizeof(float));
  4686. ggml_set_op_params(result, op_params, sizeof(op_params));
  4687. result->op = GGML_OP_ALIBI;
  4688. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4689. result->src[0] = a;
  4690. return result;
  4691. }
  4692. // ggml_clamp
  4693. struct ggml_tensor * ggml_clamp(
  4694. struct ggml_context * ctx,
  4695. struct ggml_tensor * a,
  4696. float min,
  4697. float max) {
  4698. bool is_node = false;
  4699. if (a->grad) {
  4700. GGML_ASSERT(false); // TODO: implement backward
  4701. is_node = true;
  4702. }
  4703. // TODO: when implement backward, fix this:
  4704. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  4705. float params[] = { min, max };
  4706. ggml_set_op_params(result, params, sizeof(params));
  4707. result->op = GGML_OP_CLAMP;
  4708. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4709. result->src[0] = a;
  4710. return result;
  4711. }
  4712. // ggml_conv_1d
  4713. static int64_t ggml_calc_conv_output_size(int64_t ins, int64_t ks, int s, int p, int d) {
  4714. return (ins + 2 * p - d * (ks - 1) - 1) / s + 1;
  4715. }
  4716. GGML_API struct ggml_tensor * ggml_conv_1d(
  4717. struct ggml_context * ctx,
  4718. struct ggml_tensor * a,
  4719. struct ggml_tensor * b,
  4720. int s0,
  4721. int p0,
  4722. int d0) {
  4723. struct ggml_tensor * im2col = ggml_im2col(ctx, a, b, s0, 0, p0, 0, d0, 0, false, GGML_TYPE_F16); // [N, OL, IC * K]
  4724. struct ggml_tensor * result =
  4725. ggml_mul_mat(ctx,
  4726. ggml_reshape_2d(ctx, im2col, im2col->ne[0], (im2col->ne[2] * im2col->ne[1])), // [N, OL, IC * K] => [N*OL, IC * K]
  4727. ggml_reshape_2d(ctx, a, (a->ne[0] * a->ne[1]), a->ne[2])); // [OC,IC, K] => [OC, IC * K]
  4728. result = ggml_reshape_3d(ctx, result, im2col->ne[1], a->ne[2], im2col->ne[2]); // [N, OC, OL]
  4729. return result;
  4730. }
  4731. // ggml_conv_1d_ph
  4732. struct ggml_tensor* ggml_conv_1d_ph(
  4733. struct ggml_context * ctx,
  4734. struct ggml_tensor * a,
  4735. struct ggml_tensor * b,
  4736. int s,
  4737. int d) {
  4738. return ggml_conv_1d(ctx, a, b, s, a->ne[0] / 2, d);
  4739. }
  4740. // ggml_conv_transpose_1d
  4741. static int64_t ggml_calc_conv_transpose_1d_output_size(int64_t ins, int64_t ks, int s, int p, int d) {
  4742. return (ins - 1) * s - 2 * p + d * (ks - 1) + 1;
  4743. }
  4744. GGML_API struct ggml_tensor * ggml_conv_transpose_1d(
  4745. struct ggml_context * ctx,
  4746. struct ggml_tensor * a,
  4747. struct ggml_tensor * b,
  4748. int s0,
  4749. int p0,
  4750. int d0) {
  4751. GGML_ASSERT(ggml_is_matrix(b));
  4752. GGML_ASSERT(a->ne[2] == b->ne[1]);
  4753. GGML_ASSERT(a->ne[3] == 1);
  4754. GGML_ASSERT(p0 == 0);
  4755. GGML_ASSERT(d0 == 1);
  4756. bool is_node = false;
  4757. if (a->grad || b->grad) {
  4758. GGML_ASSERT(false); // TODO: implement backward
  4759. is_node = true;
  4760. }
  4761. const int64_t ne[4] = {
  4762. ggml_calc_conv_transpose_1d_output_size(b->ne[0], a->ne[0], s0, 0 /*p0*/, 1 /*d0*/),
  4763. a->ne[1], b->ne[2], 1,
  4764. };
  4765. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  4766. int32_t params[] = { s0, p0, d0 };
  4767. ggml_set_op_params(result, params, sizeof(params));
  4768. result->op = GGML_OP_CONV_TRANSPOSE_1D;
  4769. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4770. result->src[0] = a;
  4771. result->src[1] = b;
  4772. return result;
  4773. }
  4774. // ggml_conv_depthwise
  4775. struct ggml_tensor * ggml_conv_depthwise_2d(
  4776. struct ggml_context * ctx,
  4777. struct ggml_tensor * a,
  4778. struct ggml_tensor * b,
  4779. int s0,
  4780. int s1,
  4781. int p0,
  4782. int p1,
  4783. int d0,
  4784. int d1) {
  4785. struct ggml_tensor * new_a = ggml_reshape_4d(ctx, a, a->ne[0], a->ne[1], 1, a->ne[2] * a->ne[3]);
  4786. struct ggml_tensor * im2col = ggml_im2col(ctx, new_a,
  4787. ggml_reshape_4d(ctx, b, b->ne[0], b->ne[1], 1, b->ne[2] * b->ne[3]),
  4788. s0, s1, p0, p1, d0, d1, true, GGML_TYPE_F16); // [N * IC, OH, OW, KH * KW]
  4789. struct ggml_tensor * new_b = ggml_reshape_4d(ctx, im2col, im2col->ne[0], im2col->ne[2] * im2col->ne[1], b->ne[2], b->ne[3]); // [N * IC, OH, OW, KH * KW] => [N, IC, OH * OW, KH * KW]
  4790. new_a = ggml_reshape_4d(ctx, new_a, (new_a->ne[0] * new_a->ne[1]), new_a->ne[2], new_a->ne[3], 1); // [OC,1, KH, KW] => [1, OC, 1, KH * KW]
  4791. struct ggml_tensor * result = ggml_mul_mat(ctx, new_a, new_b);
  4792. result = ggml_reshape_4d(ctx, result, im2col->ne[1], im2col->ne[2], b->ne[2], b->ne[3]); // [N, OC, OH, OW]
  4793. return result;
  4794. }
  4795. // ggml_conv_2d
  4796. // im2col: [N, IC, IH, IW] => [N, OH, OW, IC*KH*KW]
  4797. // a: [OC,IC, KH, KW]
  4798. // b: [N, IC, IH, IW]
  4799. // result: [N, OH, OW, IC*KH*KW]
  4800. struct ggml_tensor * ggml_im2col(
  4801. struct ggml_context * ctx,
  4802. struct ggml_tensor * a,
  4803. struct ggml_tensor * b,
  4804. int s0,
  4805. int s1,
  4806. int p0,
  4807. int p1,
  4808. int d0,
  4809. int d1,
  4810. bool is_2D,
  4811. enum ggml_type dst_type) {
  4812. if(is_2D) {
  4813. GGML_ASSERT(a->ne[2] == b->ne[2]);
  4814. } else {
  4815. GGML_ASSERT(a->ne[1] == b->ne[1]);
  4816. }
  4817. bool is_node = false;
  4818. if (a->grad || b->grad) {
  4819. GGML_ASSERT(false); // TODO: implement backward
  4820. is_node = true;
  4821. }
  4822. const int64_t OH = is_2D ? ggml_calc_conv_output_size(b->ne[1], a->ne[1], s1, p1, d1) : 0;
  4823. const int64_t OW = ggml_calc_conv_output_size(b->ne[0], a->ne[0], s0, p0, d0);
  4824. const int64_t ne[4] = {
  4825. is_2D ? (a->ne[2] * a->ne[1] * a->ne[0]) : a->ne[1] * a->ne[0],
  4826. OW,
  4827. is_2D ? OH : b->ne[2],
  4828. is_2D ? b->ne[3] : 1,
  4829. };
  4830. struct ggml_tensor * result = ggml_new_tensor(ctx, dst_type, 4, ne);
  4831. int32_t params[] = { s0, s1, p0, p1, d0, d1, (is_2D ? 1 : 0) };
  4832. ggml_set_op_params(result, params, sizeof(params));
  4833. result->op = GGML_OP_IM2COL;
  4834. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4835. result->src[0] = a;
  4836. result->src[1] = b;
  4837. return result;
  4838. }
  4839. // a: [OC,IC, KH, KW]
  4840. // b: [N, IC, IH, IW]
  4841. // result: [N, OC, OH, OW]
  4842. struct ggml_tensor * ggml_conv_2d(
  4843. struct ggml_context * ctx,
  4844. struct ggml_tensor * a,
  4845. struct ggml_tensor * b,
  4846. int s0,
  4847. int s1,
  4848. int p0,
  4849. int p1,
  4850. int d0,
  4851. int d1) {
  4852. struct ggml_tensor * im2col = ggml_im2col(ctx, a, b, s0, s1, p0, p1, d0, d1, true, GGML_TYPE_F16); // [N, OH, OW, IC * KH * KW]
  4853. struct ggml_tensor * result =
  4854. ggml_mul_mat(ctx,
  4855. ggml_reshape_2d(ctx, im2col, im2col->ne[0], im2col->ne[3] * im2col->ne[2] * im2col->ne[1]), // [N, OH, OW, IC * KH * KW] => [N*OH*OW, IC * KH * KW]
  4856. ggml_reshape_2d(ctx, a, (a->ne[0] * a->ne[1] * a->ne[2]), a->ne[3])); // [OC,IC, KH, KW] => [OC, IC * KH * KW]
  4857. result = ggml_reshape_4d(ctx, result, im2col->ne[1], im2col->ne[2], im2col->ne[3], a->ne[3]); // [OC, N, OH, OW]
  4858. result = ggml_cont(ctx, ggml_permute(ctx, result, 0, 1, 3, 2)); // [N, OC, OH, OW]
  4859. return result;
  4860. }
  4861. // ggml_conv_2d_sk_p0
  4862. struct ggml_tensor * ggml_conv_2d_sk_p0(
  4863. struct ggml_context * ctx,
  4864. struct ggml_tensor * a,
  4865. struct ggml_tensor * b) {
  4866. return ggml_conv_2d(ctx, a, b, a->ne[0], a->ne[1], 0, 0, 1, 1);
  4867. }
  4868. // ggml_conv_2d_s1_ph
  4869. struct ggml_tensor * ggml_conv_2d_s1_ph(
  4870. struct ggml_context * ctx,
  4871. struct ggml_tensor * a,
  4872. struct ggml_tensor * b) {
  4873. return ggml_conv_2d(ctx, a, b, 1, 1, a->ne[0] / 2, a->ne[1] / 2, 1, 1);
  4874. }
  4875. // ggml_conv_transpose_2d_p0
  4876. static int64_t ggml_calc_conv_transpose_output_size(int64_t ins, int64_t ks, int s, int p) {
  4877. return (ins - 1) * s - 2 * p + ks;
  4878. }
  4879. struct ggml_tensor * ggml_conv_transpose_2d_p0(
  4880. struct ggml_context * ctx,
  4881. struct ggml_tensor * a,
  4882. struct ggml_tensor * b,
  4883. int stride) {
  4884. GGML_ASSERT(a->ne[3] == b->ne[2]);
  4885. bool is_node = false;
  4886. if (a->grad || b->grad) {
  4887. GGML_ASSERT(false); // TODO: implement backward
  4888. is_node = true;
  4889. }
  4890. const int64_t ne[4] = {
  4891. ggml_calc_conv_transpose_output_size(b->ne[0], a->ne[0], stride, 0 /*p0*/),
  4892. ggml_calc_conv_transpose_output_size(b->ne[1], a->ne[1], stride, 0 /*p1*/),
  4893. a->ne[2], b->ne[3],
  4894. };
  4895. struct ggml_tensor* result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  4896. ggml_set_op_params_i32(result, 0, stride);
  4897. result->op = GGML_OP_CONV_TRANSPOSE_2D;
  4898. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4899. result->src[0] = a;
  4900. result->src[1] = b;
  4901. return result;
  4902. }
  4903. // ggml_pool_*
  4904. static int64_t ggml_calc_pool_output_size(int64_t ins, int ks, int s, float p) {
  4905. return (ins + 2 * p - ks) / s + 1;
  4906. }
  4907. // ggml_pool_1d
  4908. struct ggml_tensor * ggml_pool_1d(
  4909. struct ggml_context * ctx,
  4910. struct ggml_tensor * a,
  4911. enum ggml_op_pool op,
  4912. int k0,
  4913. int s0,
  4914. int p0) {
  4915. bool is_node = false;
  4916. if (a->grad) {
  4917. GGML_ASSERT(false); // TODO: implement backward
  4918. is_node = true;
  4919. }
  4920. const int64_t ne[4] = {
  4921. ggml_calc_pool_output_size(a->ne[0], k0, s0, p0),
  4922. a->ne[1],
  4923. a->ne[2],
  4924. a->ne[3],
  4925. };
  4926. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  4927. int32_t params[] = { op, k0, s0, p0 };
  4928. ggml_set_op_params(result, params, sizeof(params));
  4929. result->op = GGML_OP_POOL_1D;
  4930. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4931. result->src[0] = a;
  4932. return result;
  4933. }
  4934. // ggml_pool_2d
  4935. struct ggml_tensor * ggml_pool_2d(
  4936. struct ggml_context * ctx,
  4937. struct ggml_tensor * a,
  4938. enum ggml_op_pool op,
  4939. int k0,
  4940. int k1,
  4941. int s0,
  4942. int s1,
  4943. float p0,
  4944. float p1) {
  4945. bool is_node = false;
  4946. if (a->grad) {
  4947. GGML_ASSERT(false); // TODO: implement backward
  4948. is_node = true;
  4949. }
  4950. struct ggml_tensor * result;
  4951. const int64_t ne[3] = {
  4952. ggml_calc_pool_output_size(a->ne[0], k0, s0, p0),
  4953. ggml_calc_pool_output_size(a->ne[1], k1, s1, p1),
  4954. a->ne[2],
  4955. };
  4956. result = ggml_new_tensor(ctx, GGML_TYPE_F32, 3, ne);
  4957. int32_t params[] = { op, k0, k1, s0, s1, p0, p1 };
  4958. ggml_set_op_params(result, params, sizeof(params));
  4959. result->op = GGML_OP_POOL_2D;
  4960. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4961. result->src[0] = a;
  4962. return result;
  4963. }
  4964. // ggml_upscale
  4965. static struct ggml_tensor * ggml_upscale_impl(
  4966. struct ggml_context * ctx,
  4967. struct ggml_tensor * a,
  4968. int scale_factor) {
  4969. bool is_node = false;
  4970. if (a->grad) {
  4971. GGML_ASSERT(false); // TODO: implement backward
  4972. is_node = true;
  4973. }
  4974. struct ggml_tensor * result = ggml_new_tensor_4d(ctx, a->type,
  4975. a->ne[0] * scale_factor,
  4976. a->ne[1] * scale_factor,
  4977. a->ne[2], a->ne[3]);
  4978. result->op = GGML_OP_UPSCALE;
  4979. result->op_params[0] = scale_factor;
  4980. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4981. result->src[0] = a;
  4982. return result;
  4983. }
  4984. struct ggml_tensor * ggml_pad(
  4985. struct ggml_context * ctx,
  4986. struct ggml_tensor * a,
  4987. int p0, int p1, int p2, int p3) {
  4988. bool is_node = false;
  4989. if (a->grad) {
  4990. GGML_ASSERT(false); // TODO: implement backward
  4991. is_node = true;
  4992. }
  4993. struct ggml_tensor * result = ggml_new_tensor_4d(ctx, a->type,
  4994. a->ne[0] + p0,
  4995. a->ne[1] + p1,
  4996. a->ne[2] + p2,
  4997. a->ne[3] + p3);
  4998. result->op = GGML_OP_PAD;
  4999. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5000. result->src[0] = a;
  5001. return result;
  5002. }
  5003. struct ggml_tensor * ggml_upscale(
  5004. struct ggml_context * ctx,
  5005. struct ggml_tensor * a,
  5006. int scale_factor) {
  5007. return ggml_upscale_impl(ctx, a, scale_factor);
  5008. }
  5009. struct ggml_tensor * ggml_arange(
  5010. struct ggml_context * ctx,
  5011. float start,
  5012. float stop,
  5013. float step) {
  5014. GGML_ASSERT(stop > start);
  5015. const int64_t steps = (int64_t) ceilf((stop - start) / step);
  5016. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, steps);
  5017. result->op = GGML_OP_ARANGE;
  5018. ggml_set_op_params_f32(result, 0, start);
  5019. ggml_set_op_params_f32(result, 1, stop);
  5020. ggml_set_op_params_f32(result, 2, step);
  5021. return result;
  5022. }
  5023. struct ggml_tensor * ggml_timestep_embedding(
  5024. struct ggml_context * ctx,
  5025. struct ggml_tensor * timesteps,
  5026. int dim,
  5027. int max_period) {
  5028. bool is_node = false;
  5029. if (timesteps->grad) {
  5030. GGML_ASSERT(false); // TODO: implement backward
  5031. is_node = true;
  5032. }
  5033. int actual_dim = dim;
  5034. if (dim % 2 != 0) {
  5035. actual_dim = dim + 1;
  5036. }
  5037. struct ggml_tensor * result = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, actual_dim, timesteps->ne[0]);
  5038. result->op = GGML_OP_TIMESTEP_EMBEDDING;
  5039. ggml_set_op_params_i32(result, 0, dim);
  5040. ggml_set_op_params_i32(result, 1, max_period);
  5041. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5042. result->src[0] = timesteps;
  5043. return result;
  5044. }
  5045. // ggml_argsort
  5046. struct ggml_tensor * ggml_argsort(
  5047. struct ggml_context * ctx,
  5048. struct ggml_tensor * a,
  5049. enum ggml_sort_order order) {
  5050. bool is_node = false;
  5051. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_I32, GGML_MAX_DIMS, a->ne);
  5052. ggml_set_op_params_i32(result, 0, (int32_t) order);
  5053. result->op = GGML_OP_ARGSORT;
  5054. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5055. result->src[0] = a;
  5056. return result;
  5057. }
  5058. // ggml_top_k
  5059. struct ggml_tensor * ggml_top_k(
  5060. struct ggml_context * ctx,
  5061. struct ggml_tensor * a,
  5062. int k) {
  5063. GGML_ASSERT(a->ne[0] >= k);
  5064. struct ggml_tensor * result = ggml_argsort(ctx, a, GGML_SORT_ORDER_DESC);
  5065. result = ggml_view_4d(ctx, result,
  5066. k, result->ne[1], result->ne[2], result->ne[3],
  5067. result->nb[1], result->nb[2], result->nb[3],
  5068. 0);
  5069. return result;
  5070. }
  5071. // ggml_flash_attn
  5072. struct ggml_tensor * ggml_flash_attn(
  5073. struct ggml_context * ctx,
  5074. struct ggml_tensor * q,
  5075. struct ggml_tensor * k,
  5076. struct ggml_tensor * v,
  5077. bool masked) {
  5078. GGML_ASSERT(ggml_can_mul_mat(k, q));
  5079. // TODO: check if vT can be multiplied by (k*qT)
  5080. bool is_node = false;
  5081. if (q->grad || k->grad || v->grad) {
  5082. is_node = true;
  5083. }
  5084. //struct ggml_tensor * result = ggml_dup_tensor(ctx, q);
  5085. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, GGML_MAX_DIMS, q->ne);
  5086. int32_t t = masked ? 1 : 0;
  5087. ggml_set_op_params(result, &t, sizeof(t));
  5088. result->op = GGML_OP_FLASH_ATTN;
  5089. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5090. result->src[0] = q;
  5091. result->src[1] = k;
  5092. result->src[2] = v;
  5093. return result;
  5094. }
  5095. // ggml_flash_ff
  5096. struct ggml_tensor * ggml_flash_ff(
  5097. struct ggml_context * ctx,
  5098. struct ggml_tensor * a,
  5099. struct ggml_tensor * b0,
  5100. struct ggml_tensor * b1,
  5101. struct ggml_tensor * c0,
  5102. struct ggml_tensor * c1) {
  5103. GGML_ASSERT(ggml_can_mul_mat(b0, a));
  5104. // TODO: more checks
  5105. bool is_node = false;
  5106. if (a->grad || b0->grad || b1->grad || c0->grad || c1->grad) {
  5107. is_node = true;
  5108. }
  5109. //struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  5110. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, GGML_MAX_DIMS, a->ne);
  5111. result->op = GGML_OP_FLASH_FF;
  5112. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5113. result->src[0] = a;
  5114. result->src[1] = b0;
  5115. result->src[2] = b1;
  5116. result->src[3] = c0;
  5117. result->src[4] = c1;
  5118. return result;
  5119. }
  5120. // ggml_flash_attn_back
  5121. struct ggml_tensor * ggml_flash_attn_back(
  5122. struct ggml_context * ctx,
  5123. struct ggml_tensor * q,
  5124. struct ggml_tensor * k,
  5125. struct ggml_tensor * v,
  5126. struct ggml_tensor * d,
  5127. bool masked) {
  5128. GGML_ASSERT(ggml_can_mul_mat(k, q));
  5129. // TODO: check if vT can be multiplied by (k*qT)
  5130. // d shape [D,N,ne2,ne3]
  5131. // q shape [D,N,ne2,ne3]
  5132. // k shape [D,M,kvne2,ne3]
  5133. // v shape [M,D,kvne2,ne3]
  5134. const int64_t D = q->ne[0];
  5135. const int64_t N = q->ne[1];
  5136. const int64_t M = k->ne[1];
  5137. const int64_t ne2 = q->ne[2];
  5138. const int64_t ne3 = q->ne[3];
  5139. const int64_t kvne2 = k->ne[2];
  5140. GGML_ASSERT(k->ne[0] == D);
  5141. GGML_ASSERT(v->ne[0] == M);
  5142. GGML_ASSERT(v->ne[1] == D);
  5143. GGML_ASSERT(d->ne[0] == D);
  5144. GGML_ASSERT(d->ne[1] == N);
  5145. GGML_ASSERT(k->ne[2] == kvne2);
  5146. GGML_ASSERT(k->ne[3] == ne3);
  5147. GGML_ASSERT(v->ne[2] == kvne2);
  5148. GGML_ASSERT(v->ne[3] == ne3);
  5149. GGML_ASSERT(d->ne[2] == ne2);
  5150. GGML_ASSERT(d->ne[3] == ne3);
  5151. GGML_ASSERT(ne2 % kvne2 == 0);
  5152. bool is_node = false;
  5153. if (q->grad || k->grad || v->grad) {
  5154. // when using this operation (in backwards pass) these grads are set.
  5155. // we don't want to create (big) grad of our result, so is_node is false.
  5156. is_node = false;
  5157. }
  5158. // store gradients of q, k and v as continuous tensors concatenated in result.
  5159. // note: v and gradv are actually transposed, i.e. v->ne[0] != D.
  5160. const int64_t elem_q = ggml_nelements(q);
  5161. const int64_t elem_k = ggml_nelements(k);
  5162. const int64_t elem_v = ggml_nelements(v);
  5163. enum ggml_type result_type = GGML_TYPE_F32;
  5164. GGML_ASSERT(ggml_blck_size(result_type) == 1);
  5165. const size_t tsize = ggml_type_size(result_type);
  5166. const size_t offs_q = 0;
  5167. const size_t offs_k = offs_q + GGML_PAD(elem_q * tsize, GGML_MEM_ALIGN);
  5168. const size_t offs_v = offs_k + GGML_PAD(elem_k * tsize, GGML_MEM_ALIGN);
  5169. const size_t end = offs_v + GGML_PAD(elem_v * tsize, GGML_MEM_ALIGN);
  5170. const size_t nelements = (end + tsize - 1)/tsize;
  5171. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nelements);
  5172. int32_t masked_i = masked ? 1 : 0;
  5173. ggml_set_op_params(result, &masked_i, sizeof(masked_i));
  5174. result->op = GGML_OP_FLASH_ATTN_BACK;
  5175. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5176. result->src[0] = q;
  5177. result->src[1] = k;
  5178. result->src[2] = v;
  5179. result->src[3] = d;
  5180. return result;
  5181. }
  5182. // ggml_ssm_conv
  5183. struct ggml_tensor * ggml_ssm_conv(
  5184. struct ggml_context * ctx,
  5185. struct ggml_tensor * s,
  5186. struct ggml_tensor * x,
  5187. struct ggml_tensor * c,
  5188. struct ggml_tensor * sq) {
  5189. GGML_ASSERT(ggml_is_3d(s));
  5190. GGML_ASSERT(ggml_is_matrix(x));
  5191. GGML_ASSERT(ggml_is_matrix(c));
  5192. GGML_ASSERT(ggml_is_matrix(sq));
  5193. GGML_ASSERT(sq->type == GGML_TYPE_I32);
  5194. const int64_t d_conv = c->ne[0];
  5195. const int64_t d_inner = c->ne[1];
  5196. const int64_t n_tokens = x->ne[1];
  5197. const int64_t n_kv = s->ne[2];
  5198. GGML_ASSERT( s->ne[0] == d_conv - 1);
  5199. GGML_ASSERT( s->ne[1] == d_inner);
  5200. GGML_ASSERT( x->ne[0] == d_inner);
  5201. GGML_ASSERT(sq->ne[0] == n_kv);
  5202. GGML_ASSERT(sq->ne[1] == n_tokens);
  5203. bool is_node = false;
  5204. if (s->grad || x->grad || c->grad || sq->grad) {
  5205. GGML_ASSERT(false); // TODO: implement
  5206. is_node = true;
  5207. }
  5208. // 2-in-1 concatenated x and conv_states, {d_inner, n_tokens} with {d_conv, d_inner, n_kv}
  5209. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, (d_inner*n_tokens) + (d_conv*d_inner*n_kv));
  5210. result->op = GGML_OP_SSM_CONV;
  5211. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5212. result->src[0] = s;
  5213. result->src[1] = x;
  5214. result->src[2] = c;
  5215. result->src[3] = sq;
  5216. return result;
  5217. }
  5218. // ggml_ssm_scan
  5219. struct ggml_tensor * ggml_ssm_scan(
  5220. struct ggml_context * ctx,
  5221. struct ggml_tensor * s,
  5222. struct ggml_tensor * x,
  5223. struct ggml_tensor * dt,
  5224. struct ggml_tensor * A,
  5225. struct ggml_tensor * B,
  5226. struct ggml_tensor * C,
  5227. struct ggml_tensor * sq) {
  5228. GGML_ASSERT(ggml_is_contiguous(s));
  5229. GGML_ASSERT(ggml_is_contiguous(x));
  5230. GGML_ASSERT(ggml_is_contiguous(dt));
  5231. GGML_ASSERT(ggml_is_contiguous(A));
  5232. GGML_ASSERT(sq->type == GGML_TYPE_I32);
  5233. GGML_ASSERT(B->nb[0] == ggml_type_size(B->type));
  5234. GGML_ASSERT(C->nb[0] == ggml_type_size(C->type));
  5235. GGML_ASSERT(ggml_are_same_shape(x, dt));
  5236. {
  5237. const int64_t d_state = s->ne[0];
  5238. const int64_t d_inner = s->ne[1];
  5239. const int64_t n_tokens = x->ne[1];
  5240. GGML_ASSERT(x->ne[0] == d_inner);
  5241. GGML_ASSERT(A->ne[0] == d_state);
  5242. GGML_ASSERT(A->ne[1] == d_inner);
  5243. GGML_ASSERT(B->ne[0] == d_state);
  5244. GGML_ASSERT(B->ne[1] == n_tokens);
  5245. GGML_ASSERT(C->ne[0] == d_state);
  5246. GGML_ASSERT(C->ne[1] == n_tokens);
  5247. }
  5248. bool is_node = false;
  5249. if (s->grad || x->grad || dt->grad || A->grad || B->grad || C->grad || sq->grad) {
  5250. GGML_ASSERT(false); // TODO: implement
  5251. is_node = true;
  5252. }
  5253. // 2-in-1 concatenated y and ssm_states, {d_inner, n_tokens} with {d_state, d_inner, n_kv}
  5254. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, ggml_nelements(x) + ggml_nelements(s));
  5255. result->op = GGML_OP_SSM_SCAN;
  5256. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5257. result->src[0] = s;
  5258. result->src[1] = x;
  5259. result->src[2] = dt;
  5260. result->src[3] = A;
  5261. result->src[4] = B;
  5262. result->src[5] = C;
  5263. result->src[6] = sq;
  5264. return result;
  5265. }
  5266. // ggml_win_part
  5267. struct ggml_tensor * ggml_win_part(
  5268. struct ggml_context * ctx,
  5269. struct ggml_tensor * a,
  5270. int w) {
  5271. GGML_ASSERT(a->ne[3] == 1);
  5272. GGML_ASSERT(a->type == GGML_TYPE_F32);
  5273. bool is_node = false;
  5274. if (a->grad) {
  5275. GGML_ASSERT(false); // TODO: implement backward
  5276. is_node = true;
  5277. }
  5278. // padding
  5279. const int px = (w - a->ne[1]%w)%w;
  5280. const int py = (w - a->ne[2]%w)%w;
  5281. const int npx = (px + a->ne[1])/w;
  5282. const int npy = (py + a->ne[2])/w;
  5283. const int np = npx*npy;
  5284. const int64_t ne[4] = { a->ne[0], w, w, np, };
  5285. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  5286. int32_t params[] = { npx, npy, w };
  5287. ggml_set_op_params(result, params, sizeof(params));
  5288. result->op = GGML_OP_WIN_PART;
  5289. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5290. result->src[0] = a;
  5291. return result;
  5292. }
  5293. // ggml_win_unpart
  5294. struct ggml_tensor * ggml_win_unpart(
  5295. struct ggml_context * ctx,
  5296. struct ggml_tensor * a,
  5297. int w0,
  5298. int h0,
  5299. int w) {
  5300. GGML_ASSERT(a->type == GGML_TYPE_F32);
  5301. bool is_node = false;
  5302. if (a->grad) {
  5303. GGML_ASSERT(false); // TODO: implement backward
  5304. is_node = true;
  5305. }
  5306. const int64_t ne[4] = { a->ne[0], w0, h0, 1, };
  5307. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 3, ne);
  5308. int32_t params[] = { w };
  5309. ggml_set_op_params(result, params, sizeof(params));
  5310. result->op = GGML_OP_WIN_UNPART;
  5311. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5312. result->src[0] = a;
  5313. return result;
  5314. }
  5315. // ggml_get_rel_pos
  5316. struct ggml_tensor * ggml_get_rel_pos(
  5317. struct ggml_context * ctx,
  5318. struct ggml_tensor * a,
  5319. int qh,
  5320. int kh) {
  5321. GGML_ASSERT(qh == kh);
  5322. GGML_ASSERT(2*MAX(qh, kh) - 1 == a->ne[1]);
  5323. bool is_node = false;
  5324. if (a->grad) {
  5325. GGML_ASSERT(false); // TODO: implement backward
  5326. is_node = true;
  5327. }
  5328. const int64_t ne[4] = { a->ne[0], kh, qh, 1, };
  5329. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F16, 3, ne);
  5330. result->op = GGML_OP_GET_REL_POS;
  5331. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5332. result->src[0] = a;
  5333. return result;
  5334. }
  5335. // ggml_add_rel_pos
  5336. static struct ggml_tensor * ggml_add_rel_pos_impl(
  5337. struct ggml_context * ctx,
  5338. struct ggml_tensor * a,
  5339. struct ggml_tensor * pw,
  5340. struct ggml_tensor * ph,
  5341. bool inplace) {
  5342. GGML_ASSERT(ggml_are_same_shape(pw, ph));
  5343. GGML_ASSERT(ggml_is_contiguous(a));
  5344. GGML_ASSERT(ggml_is_contiguous(pw));
  5345. GGML_ASSERT(ggml_is_contiguous(ph));
  5346. GGML_ASSERT(ph->type == GGML_TYPE_F32);
  5347. GGML_ASSERT(pw->type == GGML_TYPE_F32);
  5348. GGML_ASSERT(pw->ne[3] == a->ne[2]);
  5349. GGML_ASSERT(pw->ne[0]*pw->ne[0] == a->ne[0]);
  5350. GGML_ASSERT(pw->ne[1]*pw->ne[2] == a->ne[1]);
  5351. bool is_node = false;
  5352. if (!inplace && (a->grad || pw->grad || ph->grad)) {
  5353. is_node = true;
  5354. }
  5355. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5356. ggml_set_op_params_i32(result, 0, inplace ? 1 : 0);
  5357. result->op = GGML_OP_ADD_REL_POS;
  5358. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5359. result->src[0] = a;
  5360. result->src[1] = pw;
  5361. result->src[2] = ph;
  5362. return result;
  5363. }
  5364. struct ggml_tensor * ggml_add_rel_pos(
  5365. struct ggml_context * ctx,
  5366. struct ggml_tensor * a,
  5367. struct ggml_tensor * pw,
  5368. struct ggml_tensor * ph) {
  5369. return ggml_add_rel_pos_impl(ctx, a, pw, ph, false);
  5370. }
  5371. struct ggml_tensor * ggml_add_rel_pos_inplace(
  5372. struct ggml_context * ctx,
  5373. struct ggml_tensor * a,
  5374. struct ggml_tensor * pw,
  5375. struct ggml_tensor * ph) {
  5376. return ggml_add_rel_pos_impl(ctx, a, pw, ph, true);
  5377. }
  5378. // gmml_unary
  5379. static struct ggml_tensor * ggml_unary_impl(
  5380. struct ggml_context * ctx,
  5381. struct ggml_tensor * a,
  5382. enum ggml_unary_op op,
  5383. bool inplace) {
  5384. bool is_node = false;
  5385. if (!inplace && (a->grad)) {
  5386. is_node = true;
  5387. }
  5388. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5389. ggml_set_op_params_i32(result, 0, (int32_t) op);
  5390. result->op = GGML_OP_UNARY;
  5391. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5392. result->src[0] = a;
  5393. return result;
  5394. }
  5395. struct ggml_tensor * ggml_unary(
  5396. struct ggml_context * ctx,
  5397. struct ggml_tensor * a,
  5398. enum ggml_unary_op op) {
  5399. return ggml_unary_impl(ctx, a, op, false);
  5400. }
  5401. struct ggml_tensor * ggml_unary_inplace(
  5402. struct ggml_context * ctx,
  5403. struct ggml_tensor * a,
  5404. enum ggml_unary_op op) {
  5405. return ggml_unary_impl(ctx, a, op, true);
  5406. }
  5407. // ggml_map_unary
  5408. static struct ggml_tensor * ggml_map_unary_impl_f32(
  5409. struct ggml_context * ctx,
  5410. struct ggml_tensor * a,
  5411. const ggml_unary_op_f32_t fun,
  5412. bool inplace) {
  5413. bool is_node = false;
  5414. if (!inplace && a->grad) {
  5415. is_node = true;
  5416. }
  5417. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5418. ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
  5419. result->op = GGML_OP_MAP_UNARY;
  5420. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5421. result->src[0] = a;
  5422. return result;
  5423. }
  5424. struct ggml_tensor * ggml_map_unary_f32(
  5425. struct ggml_context * ctx,
  5426. struct ggml_tensor * a,
  5427. const ggml_unary_op_f32_t fun) {
  5428. return ggml_map_unary_impl_f32(ctx, a, fun, false);
  5429. }
  5430. struct ggml_tensor * ggml_map_unary_inplace_f32(
  5431. struct ggml_context * ctx,
  5432. struct ggml_tensor * a,
  5433. const ggml_unary_op_f32_t fun) {
  5434. return ggml_map_unary_impl_f32(ctx, a, fun, true);
  5435. }
  5436. // ggml_map_binary
  5437. static struct ggml_tensor * ggml_map_binary_impl_f32(
  5438. struct ggml_context * ctx,
  5439. struct ggml_tensor * a,
  5440. struct ggml_tensor * b,
  5441. const ggml_binary_op_f32_t fun,
  5442. bool inplace) {
  5443. GGML_ASSERT(ggml_are_same_shape(a, b));
  5444. bool is_node = false;
  5445. if (!inplace && (a->grad || b->grad)) {
  5446. is_node = true;
  5447. }
  5448. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5449. ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
  5450. result->op = GGML_OP_MAP_BINARY;
  5451. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5452. result->src[0] = a;
  5453. result->src[1] = b;
  5454. return result;
  5455. }
  5456. struct ggml_tensor * ggml_map_binary_f32(
  5457. struct ggml_context * ctx,
  5458. struct ggml_tensor * a,
  5459. struct ggml_tensor * b,
  5460. const ggml_binary_op_f32_t fun) {
  5461. return ggml_map_binary_impl_f32(ctx, a, b, fun, false);
  5462. }
  5463. struct ggml_tensor * ggml_map_binary_inplace_f32(
  5464. struct ggml_context * ctx,
  5465. struct ggml_tensor * a,
  5466. struct ggml_tensor * b,
  5467. const ggml_binary_op_f32_t fun) {
  5468. return ggml_map_binary_impl_f32(ctx, a, b, fun, true);
  5469. }
  5470. // ggml_map_custom1_f32
  5471. static struct ggml_tensor * ggml_map_custom1_impl_f32(
  5472. struct ggml_context * ctx,
  5473. struct ggml_tensor * a,
  5474. const ggml_custom1_op_f32_t fun,
  5475. bool inplace) {
  5476. bool is_node = false;
  5477. if (!inplace && a->grad) {
  5478. is_node = true;
  5479. }
  5480. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5481. ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
  5482. result->op = GGML_OP_MAP_CUSTOM1_F32;
  5483. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5484. result->src[0] = a;
  5485. return result;
  5486. }
  5487. struct ggml_tensor * ggml_map_custom1_f32(
  5488. struct ggml_context * ctx,
  5489. struct ggml_tensor * a,
  5490. const ggml_custom1_op_f32_t fun) {
  5491. return ggml_map_custom1_impl_f32(ctx, a, fun, false);
  5492. }
  5493. struct ggml_tensor * ggml_map_custom1_inplace_f32(
  5494. struct ggml_context * ctx,
  5495. struct ggml_tensor * a,
  5496. const ggml_custom1_op_f32_t fun) {
  5497. return ggml_map_custom1_impl_f32(ctx, a, fun, true);
  5498. }
  5499. // ggml_map_custom2_f32
  5500. static struct ggml_tensor * ggml_map_custom2_impl_f32(
  5501. struct ggml_context * ctx,
  5502. struct ggml_tensor * a,
  5503. struct ggml_tensor * b,
  5504. const ggml_custom2_op_f32_t fun,
  5505. bool inplace) {
  5506. bool is_node = false;
  5507. if (!inplace && (a->grad || b->grad)) {
  5508. is_node = true;
  5509. }
  5510. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5511. ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
  5512. result->op = GGML_OP_MAP_CUSTOM2_F32;
  5513. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5514. result->src[0] = a;
  5515. result->src[1] = b;
  5516. return result;
  5517. }
  5518. struct ggml_tensor * ggml_map_custom2_f32(
  5519. struct ggml_context * ctx,
  5520. struct ggml_tensor * a,
  5521. struct ggml_tensor * b,
  5522. const ggml_custom2_op_f32_t fun) {
  5523. return ggml_map_custom2_impl_f32(ctx, a, b, fun, false);
  5524. }
  5525. struct ggml_tensor * ggml_map_custom2_inplace_f32(
  5526. struct ggml_context * ctx,
  5527. struct ggml_tensor * a,
  5528. struct ggml_tensor * b,
  5529. const ggml_custom2_op_f32_t fun) {
  5530. return ggml_map_custom2_impl_f32(ctx, a, b, fun, true);
  5531. }
  5532. // ggml_map_custom3_f32
  5533. static struct ggml_tensor * ggml_map_custom3_impl_f32(
  5534. struct ggml_context * ctx,
  5535. struct ggml_tensor * a,
  5536. struct ggml_tensor * b,
  5537. struct ggml_tensor * c,
  5538. const ggml_custom3_op_f32_t fun,
  5539. bool inplace) {
  5540. bool is_node = false;
  5541. if (!inplace && (a->grad || b->grad || c->grad)) {
  5542. is_node = true;
  5543. }
  5544. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5545. ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
  5546. result->op = GGML_OP_MAP_CUSTOM3_F32;
  5547. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5548. result->src[0] = a;
  5549. result->src[1] = b;
  5550. result->src[2] = c;
  5551. return result;
  5552. }
  5553. struct ggml_tensor * ggml_map_custom3_f32(
  5554. struct ggml_context * ctx,
  5555. struct ggml_tensor * a,
  5556. struct ggml_tensor * b,
  5557. struct ggml_tensor * c,
  5558. const ggml_custom3_op_f32_t fun) {
  5559. return ggml_map_custom3_impl_f32(ctx, a, b, c, fun, false);
  5560. }
  5561. struct ggml_tensor * ggml_map_custom3_inplace_f32(
  5562. struct ggml_context * ctx,
  5563. struct ggml_tensor * a,
  5564. struct ggml_tensor * b,
  5565. struct ggml_tensor * c,
  5566. const ggml_custom3_op_f32_t fun) {
  5567. return ggml_map_custom3_impl_f32(ctx, a, b, c, fun, true);
  5568. }
  5569. // ggml_map_custom1
  5570. struct ggml_map_custom1_op_params {
  5571. ggml_custom1_op_t fun;
  5572. int n_tasks;
  5573. void * userdata;
  5574. };
  5575. static struct ggml_tensor * ggml_map_custom1_impl(
  5576. struct ggml_context * ctx,
  5577. struct ggml_tensor * a,
  5578. const ggml_custom1_op_t fun,
  5579. int n_tasks,
  5580. void * userdata,
  5581. bool inplace) {
  5582. GGML_ASSERT(n_tasks == GGML_N_TASKS_MAX || n_tasks > 0);
  5583. bool is_node = false;
  5584. if (!inplace && a->grad) {
  5585. is_node = true;
  5586. }
  5587. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5588. struct ggml_map_custom1_op_params params = {
  5589. /*.fun =*/ fun,
  5590. /*.n_tasks =*/ n_tasks,
  5591. /*.userdata =*/ userdata
  5592. };
  5593. ggml_set_op_params(result, (const void *) &params, sizeof(params));
  5594. result->op = GGML_OP_MAP_CUSTOM1;
  5595. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5596. result->src[0] = a;
  5597. return result;
  5598. }
  5599. struct ggml_tensor * ggml_map_custom1(
  5600. struct ggml_context * ctx,
  5601. struct ggml_tensor * a,
  5602. const ggml_custom1_op_t fun,
  5603. int n_tasks,
  5604. void * userdata) {
  5605. return ggml_map_custom1_impl(ctx, a, fun, n_tasks, userdata, false);
  5606. }
  5607. struct ggml_tensor * ggml_map_custom1_inplace(
  5608. struct ggml_context * ctx,
  5609. struct ggml_tensor * a,
  5610. const ggml_custom1_op_t fun,
  5611. int n_tasks,
  5612. void * userdata) {
  5613. return ggml_map_custom1_impl(ctx, a, fun, n_tasks, userdata, true);
  5614. }
  5615. // ggml_map_custom2
  5616. struct ggml_map_custom2_op_params {
  5617. ggml_custom2_op_t fun;
  5618. int n_tasks;
  5619. void * userdata;
  5620. };
  5621. static struct ggml_tensor * ggml_map_custom2_impl(
  5622. struct ggml_context * ctx,
  5623. struct ggml_tensor * a,
  5624. struct ggml_tensor * b,
  5625. const ggml_custom2_op_t fun,
  5626. int n_tasks,
  5627. void * userdata,
  5628. bool inplace) {
  5629. GGML_ASSERT(n_tasks == GGML_N_TASKS_MAX || n_tasks > 0);
  5630. bool is_node = false;
  5631. if (!inplace && (a->grad || b->grad)) {
  5632. is_node = true;
  5633. }
  5634. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5635. struct ggml_map_custom2_op_params params = {
  5636. /*.fun =*/ fun,
  5637. /*.n_tasks =*/ n_tasks,
  5638. /*.userdata =*/ userdata
  5639. };
  5640. ggml_set_op_params(result, (const void *) &params, sizeof(params));
  5641. result->op = GGML_OP_MAP_CUSTOM2;
  5642. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5643. result->src[0] = a;
  5644. result->src[1] = b;
  5645. return result;
  5646. }
  5647. struct ggml_tensor * ggml_map_custom2(
  5648. struct ggml_context * ctx,
  5649. struct ggml_tensor * a,
  5650. struct ggml_tensor * b,
  5651. const ggml_custom2_op_t fun,
  5652. int n_tasks,
  5653. void * userdata) {
  5654. return ggml_map_custom2_impl(ctx, a, b, fun, n_tasks, userdata, false);
  5655. }
  5656. struct ggml_tensor * ggml_map_custom2_inplace(
  5657. struct ggml_context * ctx,
  5658. struct ggml_tensor * a,
  5659. struct ggml_tensor * b,
  5660. const ggml_custom2_op_t fun,
  5661. int n_tasks,
  5662. void * userdata) {
  5663. return ggml_map_custom2_impl(ctx, a, b, fun, n_tasks, userdata, true);
  5664. }
  5665. // ggml_map_custom3
  5666. struct ggml_map_custom3_op_params {
  5667. ggml_custom3_op_t fun;
  5668. int n_tasks;
  5669. void * userdata;
  5670. };
  5671. static struct ggml_tensor * ggml_map_custom3_impl(
  5672. struct ggml_context * ctx,
  5673. struct ggml_tensor * a,
  5674. struct ggml_tensor * b,
  5675. struct ggml_tensor * c,
  5676. const ggml_custom3_op_t fun,
  5677. int n_tasks,
  5678. void * userdata,
  5679. bool inplace) {
  5680. GGML_ASSERT(n_tasks == GGML_N_TASKS_MAX || n_tasks > 0);
  5681. bool is_node = false;
  5682. if (!inplace && (a->grad || b->grad || c->grad)) {
  5683. is_node = true;
  5684. }
  5685. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5686. struct ggml_map_custom3_op_params params = {
  5687. /*.fun =*/ fun,
  5688. /*.n_tasks =*/ n_tasks,
  5689. /*.userdata =*/ userdata
  5690. };
  5691. ggml_set_op_params(result, (const void *) &params, sizeof(params));
  5692. result->op = GGML_OP_MAP_CUSTOM3;
  5693. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5694. result->src[0] = a;
  5695. result->src[1] = b;
  5696. result->src[2] = c;
  5697. return result;
  5698. }
  5699. struct ggml_tensor * ggml_map_custom3(
  5700. struct ggml_context * ctx,
  5701. struct ggml_tensor * a,
  5702. struct ggml_tensor * b,
  5703. struct ggml_tensor * c,
  5704. const ggml_custom3_op_t fun,
  5705. int n_tasks,
  5706. void * userdata) {
  5707. return ggml_map_custom3_impl(ctx, a, b, c, fun, n_tasks, userdata, false);
  5708. }
  5709. struct ggml_tensor * ggml_map_custom3_inplace(
  5710. struct ggml_context * ctx,
  5711. struct ggml_tensor * a,
  5712. struct ggml_tensor * b,
  5713. struct ggml_tensor * c,
  5714. const ggml_custom3_op_t fun,
  5715. int n_tasks,
  5716. void * userdata) {
  5717. return ggml_map_custom3_impl(ctx, a, b, c, fun, n_tasks, userdata, true);
  5718. }
  5719. // ggml_cross_entropy_loss
  5720. struct ggml_tensor * ggml_cross_entropy_loss(
  5721. struct ggml_context * ctx,
  5722. struct ggml_tensor * a,
  5723. struct ggml_tensor * b) {
  5724. GGML_ASSERT(ggml_are_same_shape(a, b));
  5725. bool is_node = false;
  5726. if (a->grad || b->grad) {
  5727. is_node = true;
  5728. }
  5729. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, a->type, 1);
  5730. result->op = GGML_OP_CROSS_ENTROPY_LOSS;
  5731. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5732. result->src[0] = a;
  5733. result->src[1] = b;
  5734. return result;
  5735. }
  5736. // ggml_cross_entropy_loss_back
  5737. struct ggml_tensor * ggml_cross_entropy_loss_back(
  5738. struct ggml_context * ctx,
  5739. struct ggml_tensor * a,
  5740. struct ggml_tensor * b,
  5741. struct ggml_tensor * c) {
  5742. GGML_ASSERT(ggml_are_same_shape(a, b));
  5743. GGML_ASSERT(ggml_is_scalar(c));
  5744. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  5745. result->op = GGML_OP_CROSS_ENTROPY_LOSS_BACK;
  5746. result->grad = NULL;
  5747. result->src[0] = a;
  5748. result->src[1] = b;
  5749. result->src[2] = c;
  5750. return result;
  5751. }
  5752. ////////////////////////////////////////////////////////////////////////////////
  5753. void ggml_set_param(
  5754. struct ggml_context * ctx,
  5755. struct ggml_tensor * tensor) {
  5756. tensor->flags |= GGML_TENSOR_FLAG_PARAM;
  5757. GGML_ASSERT(tensor->grad == NULL);
  5758. tensor->grad = ggml_dup_tensor(ctx, tensor);
  5759. ggml_format_name(tensor->grad, "%s (grad)", tensor->name);
  5760. }
  5761. // ggml_compute_forward_dup
  5762. static void ggml_compute_forward_dup_same_cont(
  5763. const struct ggml_compute_params * params,
  5764. struct ggml_tensor * dst) {
  5765. const struct ggml_tensor * src0 = dst->src[0];
  5766. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  5767. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  5768. GGML_ASSERT(src0->type == dst->type);
  5769. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  5770. return;
  5771. }
  5772. const size_t nb00 = src0->nb[0];
  5773. const size_t nb0 = dst->nb[0];
  5774. const int ith = params->ith; // thread index
  5775. const int nth = params->nth; // number of threads
  5776. // parallelize by elements
  5777. const int ne = ggml_nelements(dst);
  5778. const int dr = (ne + nth - 1) / nth;
  5779. const int ie0 = dr * ith;
  5780. const int ie1 = MIN(ie0 + dr, ne);
  5781. if (ie0 < ie1) {
  5782. memcpy(
  5783. ((char *) dst->data + ie0*nb0),
  5784. ((char *) src0->data + ie0*nb00),
  5785. (ie1 - ie0) * ggml_type_size(src0->type));
  5786. }
  5787. }
  5788. static void ggml_compute_forward_dup_f16(
  5789. const struct ggml_compute_params * params,
  5790. struct ggml_tensor * dst) {
  5791. const struct ggml_tensor * src0 = dst->src[0];
  5792. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  5793. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  5794. return;
  5795. }
  5796. GGML_TENSOR_UNARY_OP_LOCALS
  5797. const int ith = params->ith; // thread index
  5798. const int nth = params->nth; // number of threads
  5799. if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst) && src0->type == dst->type) {
  5800. ggml_compute_forward_dup_same_cont(params, dst);
  5801. return;
  5802. }
  5803. // parallelize by rows
  5804. const int nr = ne01;
  5805. // number of rows per thread
  5806. const int dr = (nr + nth - 1) / nth;
  5807. // row range for this thread
  5808. const int ir0 = dr * ith;
  5809. const int ir1 = MIN(ir0 + dr, nr);
  5810. if (src0->type == dst->type &&
  5811. ne00 == ne0 &&
  5812. nb00 == ggml_type_size(src0->type) && nb0 == ggml_type_size(dst->type)) {
  5813. // copy by rows
  5814. const size_t rs = ne00*nb00;
  5815. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5816. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5817. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5818. memcpy(
  5819. ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  5820. ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
  5821. rs);
  5822. }
  5823. }
  5824. }
  5825. return;
  5826. }
  5827. // TODO: add more special-case implementations for tensor shapes/strides that can benefit from memcpy
  5828. if (ggml_is_contiguous(dst)) {
  5829. if (nb00 == sizeof(ggml_fp16_t)) {
  5830. if (dst->type == GGML_TYPE_F16) {
  5831. size_t id = 0;
  5832. const size_t rs = ne00 * nb00;
  5833. char * dst_ptr = (char *) dst->data;
  5834. for (int i03 = 0; i03 < ne03; i03++) {
  5835. for (int i02 = 0; i02 < ne02; i02++) {
  5836. id += rs * ir0;
  5837. for (int i01 = ir0; i01 < ir1; i01++) {
  5838. const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
  5839. memcpy(dst_ptr + id, src0_ptr, rs);
  5840. id += rs;
  5841. }
  5842. id += rs * (ne01 - ir1);
  5843. }
  5844. }
  5845. } else if (dst->type == GGML_TYPE_F32) {
  5846. size_t id = 0;
  5847. float * dst_ptr = (float *) dst->data;
  5848. for (int i03 = 0; i03 < ne03; i03++) {
  5849. for (int i02 = 0; i02 < ne02; i02++) {
  5850. id += ne00 * ir0;
  5851. for (int i01 = ir0; i01 < ir1; i01++) {
  5852. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  5853. for (int i00 = 0; i00 < ne00; i00++) {
  5854. dst_ptr[id] = GGML_FP16_TO_FP32(src0_ptr[i00]);
  5855. id++;
  5856. }
  5857. }
  5858. id += ne00 * (ne01 - ir1);
  5859. }
  5860. }
  5861. } else if (type_traits[dst->type].from_float) {
  5862. ggml_from_float_t const quantize_row_q = type_traits[dst->type].from_float;
  5863. float * src0_f32 = (float *) params->wdata + (ne00 + CACHE_LINE_SIZE_F32) * ith;
  5864. size_t id = 0;
  5865. size_t rs = nb0 * (ne00 / ggml_blck_size(dst->type));
  5866. char * dst_ptr = (char *) dst->data;
  5867. for (int i03 = 0; i03 < ne03; i03++) {
  5868. for (int i02 = 0; i02 < ne02; i02++) {
  5869. id += rs * ir0;
  5870. for (int i01 = ir0; i01 < ir1; i01++) {
  5871. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  5872. for (int i00 = 0; i00 < ne00; i00++) {
  5873. src0_f32[i00] = GGML_FP16_TO_FP32(src0_ptr[i00]);
  5874. }
  5875. quantize_row_q(src0_f32, dst_ptr + id, ne00);
  5876. id += rs;
  5877. }
  5878. id += rs * (ne01 - ir1);
  5879. }
  5880. }
  5881. } else {
  5882. GGML_ASSERT(false); // TODO: implement
  5883. }
  5884. } else {
  5885. //printf("%s: this is not optimal - fix me\n", __func__);
  5886. if (dst->type == GGML_TYPE_F32) {
  5887. size_t id = 0;
  5888. float * dst_ptr = (float *) dst->data;
  5889. for (int i03 = 0; i03 < ne03; i03++) {
  5890. for (int i02 = 0; i02 < ne02; i02++) {
  5891. id += ne00 * ir0;
  5892. for (int i01 = ir0; i01 < ir1; i01++) {
  5893. for (int i00 = 0; i00 < ne00; i00++) {
  5894. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5895. dst_ptr[id] = GGML_FP16_TO_FP32(*src0_ptr);
  5896. id++;
  5897. }
  5898. }
  5899. id += ne00 * (ne01 - ir1);
  5900. }
  5901. }
  5902. } else if (dst->type == GGML_TYPE_F16) {
  5903. size_t id = 0;
  5904. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  5905. for (int i03 = 0; i03 < ne03; i03++) {
  5906. for (int i02 = 0; i02 < ne02; i02++) {
  5907. id += ne00 * ir0;
  5908. for (int i01 = ir0; i01 < ir1; i01++) {
  5909. for (int i00 = 0; i00 < ne00; i00++) {
  5910. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5911. dst_ptr[id] = *src0_ptr;
  5912. id++;
  5913. }
  5914. }
  5915. id += ne00 * (ne01 - ir1);
  5916. }
  5917. }
  5918. } else {
  5919. GGML_ASSERT(false); // TODO: implement
  5920. }
  5921. }
  5922. return;
  5923. }
  5924. // dst counters
  5925. int64_t i10 = 0;
  5926. int64_t i11 = 0;
  5927. int64_t i12 = 0;
  5928. int64_t i13 = 0;
  5929. if (dst->type == GGML_TYPE_F16) {
  5930. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5931. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5932. i10 += ne00 * ir0;
  5933. while (i10 >= ne0) {
  5934. i10 -= ne0;
  5935. if (++i11 == ne1) {
  5936. i11 = 0;
  5937. if (++i12 == ne2) {
  5938. i12 = 0;
  5939. if (++i13 == ne3) {
  5940. i13 = 0;
  5941. }
  5942. }
  5943. }
  5944. }
  5945. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5946. for (int64_t i00 = 0; i00 < ne00; i00++) {
  5947. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5948. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  5949. memcpy(dst_ptr, src0_ptr, sizeof(ggml_fp16_t));
  5950. if (++i10 == ne00) {
  5951. i10 = 0;
  5952. if (++i11 == ne01) {
  5953. i11 = 0;
  5954. if (++i12 == ne02) {
  5955. i12 = 0;
  5956. if (++i13 == ne03) {
  5957. i13 = 0;
  5958. }
  5959. }
  5960. }
  5961. }
  5962. }
  5963. }
  5964. i10 += ne00 * (ne01 - ir1);
  5965. while (i10 >= ne0) {
  5966. i10 -= ne0;
  5967. if (++i11 == ne1) {
  5968. i11 = 0;
  5969. if (++i12 == ne2) {
  5970. i12 = 0;
  5971. if (++i13 == ne3) {
  5972. i13 = 0;
  5973. }
  5974. }
  5975. }
  5976. }
  5977. }
  5978. }
  5979. } else if (dst->type == GGML_TYPE_F32) {
  5980. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5981. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5982. i10 += ne00 * ir0;
  5983. while (i10 >= ne0) {
  5984. i10 -= ne0;
  5985. if (++i11 == ne1) {
  5986. i11 = 0;
  5987. if (++i12 == ne2) {
  5988. i12 = 0;
  5989. if (++i13 == ne3) {
  5990. i13 = 0;
  5991. }
  5992. }
  5993. }
  5994. }
  5995. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5996. for (int64_t i00 = 0; i00 < ne00; i00++) {
  5997. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5998. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  5999. *(float *) dst_ptr = GGML_FP16_TO_FP32(*(const ggml_fp16_t *) src0_ptr);
  6000. if (++i10 == ne0) {
  6001. i10 = 0;
  6002. if (++i11 == ne1) {
  6003. i11 = 0;
  6004. if (++i12 == ne2) {
  6005. i12 = 0;
  6006. if (++i13 == ne3) {
  6007. i13 = 0;
  6008. }
  6009. }
  6010. }
  6011. }
  6012. }
  6013. }
  6014. i10 += ne00 * (ne01 - ir1);
  6015. while (i10 >= ne0) {
  6016. i10 -= ne0;
  6017. if (++i11 == ne1) {
  6018. i11 = 0;
  6019. if (++i12 == ne2) {
  6020. i12 = 0;
  6021. if (++i13 == ne3) {
  6022. i13 = 0;
  6023. }
  6024. }
  6025. }
  6026. }
  6027. }
  6028. }
  6029. } else {
  6030. GGML_ASSERT(false); // TODO: implement
  6031. }
  6032. }
  6033. static void ggml_compute_forward_dup_f32(
  6034. const struct ggml_compute_params * params,
  6035. struct ggml_tensor * dst) {
  6036. const struct ggml_tensor * src0 = dst->src[0];
  6037. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  6038. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  6039. return;
  6040. }
  6041. GGML_TENSOR_UNARY_OP_LOCALS
  6042. const int ith = params->ith; // thread index
  6043. const int nth = params->nth; // number of threads
  6044. if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst) && src0->type == dst->type) {
  6045. ggml_compute_forward_dup_same_cont(params, dst);
  6046. return;
  6047. }
  6048. // parallelize by rows
  6049. const int nr = ne01;
  6050. // number of rows per thread
  6051. const int dr = (nr + nth - 1) / nth;
  6052. // row range for this thread
  6053. const int ir0 = dr * ith;
  6054. const int ir1 = MIN(ir0 + dr, nr);
  6055. if (src0->type == dst->type &&
  6056. ne00 == ne0 &&
  6057. nb00 == ggml_type_size(src0->type) && nb0 == ggml_type_size(dst->type)) {
  6058. // copy by rows
  6059. const size_t rs = ne00*nb00;
  6060. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6061. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6062. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  6063. memcpy(
  6064. ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  6065. ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
  6066. rs);
  6067. }
  6068. }
  6069. }
  6070. return;
  6071. }
  6072. if (ggml_is_contiguous(dst)) {
  6073. // TODO: simplify
  6074. if (nb00 == sizeof(float)) {
  6075. if (dst->type == GGML_TYPE_F32) {
  6076. size_t id = 0;
  6077. const size_t rs = ne00 * nb00;
  6078. char * dst_ptr = (char *) dst->data;
  6079. for (int i03 = 0; i03 < ne03; i03++) {
  6080. for (int i02 = 0; i02 < ne02; i02++) {
  6081. id += rs * ir0;
  6082. for (int i01 = ir0; i01 < ir1; i01++) {
  6083. const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
  6084. memcpy(dst_ptr + id, src0_ptr, rs);
  6085. id += rs;
  6086. }
  6087. id += rs * (ne01 - ir1);
  6088. }
  6089. }
  6090. } else if (type_traits[dst->type].from_float) {
  6091. ggml_from_float_t const quantize_row_q = type_traits[dst->type].from_float;
  6092. size_t id = 0;
  6093. size_t rs = nb0 * (ne00 / ggml_blck_size(dst->type));
  6094. char * dst_ptr = (char *) dst->data;
  6095. for (int i03 = 0; i03 < ne03; i03++) {
  6096. for (int i02 = 0; i02 < ne02; i02++) {
  6097. id += rs * ir0;
  6098. for (int i01 = ir0; i01 < ir1; i01++) {
  6099. const float * src0_ptr = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  6100. quantize_row_q(src0_ptr, dst_ptr + id, ne00);
  6101. id += rs;
  6102. }
  6103. id += rs * (ne01 - ir1);
  6104. }
  6105. }
  6106. } else {
  6107. GGML_ASSERT(false); // TODO: implement
  6108. }
  6109. } else {
  6110. //printf("%s: this is not optimal - fix me\n", __func__);
  6111. if (dst->type == GGML_TYPE_F32) {
  6112. size_t id = 0;
  6113. float * dst_ptr = (float *) dst->data;
  6114. for (int i03 = 0; i03 < ne03; i03++) {
  6115. for (int i02 = 0; i02 < ne02; i02++) {
  6116. id += ne00 * ir0;
  6117. for (int i01 = ir0; i01 < ir1; i01++) {
  6118. for (int i00 = 0; i00 < ne00; i00++) {
  6119. const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6120. dst_ptr[id] = *src0_ptr;
  6121. id++;
  6122. }
  6123. }
  6124. id += ne00 * (ne01 - ir1);
  6125. }
  6126. }
  6127. } else if (dst->type == GGML_TYPE_F16) {
  6128. size_t id = 0;
  6129. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  6130. for (int i03 = 0; i03 < ne03; i03++) {
  6131. for (int i02 = 0; i02 < ne02; i02++) {
  6132. id += ne00 * ir0;
  6133. for (int i01 = ir0; i01 < ir1; i01++) {
  6134. for (int i00 = 0; i00 < ne00; i00++) {
  6135. const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6136. dst_ptr[id] = GGML_FP32_TO_FP16(*src0_ptr);
  6137. id++;
  6138. }
  6139. }
  6140. id += ne00 * (ne01 - ir1);
  6141. }
  6142. }
  6143. } else {
  6144. GGML_ASSERT(false); // TODO: implement
  6145. }
  6146. }
  6147. return;
  6148. }
  6149. // dst counters
  6150. int64_t i10 = 0;
  6151. int64_t i11 = 0;
  6152. int64_t i12 = 0;
  6153. int64_t i13 = 0;
  6154. if (dst->type == GGML_TYPE_F32) {
  6155. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6156. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6157. i10 += ne00 * ir0;
  6158. while (i10 >= ne0) {
  6159. i10 -= ne0;
  6160. if (++i11 == ne1) {
  6161. i11 = 0;
  6162. if (++i12 == ne2) {
  6163. i12 = 0;
  6164. if (++i13 == ne3) {
  6165. i13 = 0;
  6166. }
  6167. }
  6168. }
  6169. }
  6170. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  6171. for (int64_t i00 = 0; i00 < ne00; i00++) {
  6172. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6173. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  6174. memcpy(dst_ptr, src0_ptr, sizeof(float));
  6175. if (++i10 == ne0) {
  6176. i10 = 0;
  6177. if (++i11 == ne1) {
  6178. i11 = 0;
  6179. if (++i12 == ne2) {
  6180. i12 = 0;
  6181. if (++i13 == ne3) {
  6182. i13 = 0;
  6183. }
  6184. }
  6185. }
  6186. }
  6187. }
  6188. }
  6189. i10 += ne00 * (ne01 - ir1);
  6190. while (i10 >= ne0) {
  6191. i10 -= ne0;
  6192. if (++i11 == ne1) {
  6193. i11 = 0;
  6194. if (++i12 == ne2) {
  6195. i12 = 0;
  6196. if (++i13 == ne3) {
  6197. i13 = 0;
  6198. }
  6199. }
  6200. }
  6201. }
  6202. }
  6203. }
  6204. } else if (dst->type == GGML_TYPE_F16) {
  6205. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6206. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6207. i10 += ne00 * ir0;
  6208. while (i10 >= ne0) {
  6209. i10 -= ne0;
  6210. if (++i11 == ne1) {
  6211. i11 = 0;
  6212. if (++i12 == ne2) {
  6213. i12 = 0;
  6214. if (++i13 == ne3) {
  6215. i13 = 0;
  6216. }
  6217. }
  6218. }
  6219. }
  6220. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  6221. for (int64_t i00 = 0; i00 < ne00; i00++) {
  6222. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6223. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  6224. *(ggml_fp16_t *) dst_ptr = GGML_FP32_TO_FP16(*(const float *) src0_ptr);
  6225. if (++i10 == ne0) {
  6226. i10 = 0;
  6227. if (++i11 == ne1) {
  6228. i11 = 0;
  6229. if (++i12 == ne2) {
  6230. i12 = 0;
  6231. if (++i13 == ne3) {
  6232. i13 = 0;
  6233. }
  6234. }
  6235. }
  6236. }
  6237. }
  6238. }
  6239. i10 += ne00 * (ne01 - ir1);
  6240. while (i10 >= ne0) {
  6241. i10 -= ne0;
  6242. if (++i11 == ne1) {
  6243. i11 = 0;
  6244. if (++i12 == ne2) {
  6245. i12 = 0;
  6246. if (++i13 == ne3) {
  6247. i13 = 0;
  6248. }
  6249. }
  6250. }
  6251. }
  6252. }
  6253. }
  6254. } else {
  6255. GGML_ASSERT(false); // TODO: implement
  6256. }
  6257. }
  6258. // A simplified version of ggml_compute_forward_dup that doesn't do float upcasting, and just plain old memcpy.
  6259. static void ggml_compute_forward_dup_bytes(
  6260. const struct ggml_compute_params * params,
  6261. struct ggml_tensor * dst) {
  6262. const struct ggml_tensor * src0 = dst->src[0];
  6263. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  6264. GGML_ASSERT(src0->type == dst->type);
  6265. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  6266. return;
  6267. }
  6268. if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst)) {
  6269. ggml_compute_forward_dup_same_cont(params, dst);
  6270. return;
  6271. }
  6272. GGML_TENSOR_UNARY_OP_LOCALS;
  6273. const size_t type_size = ggml_type_size(src0->type);
  6274. const int ith = params->ith; // thread index
  6275. const int nth = params->nth; // number of threads
  6276. // parallelize by rows
  6277. const int nr = ne01;
  6278. // number of rows per thread
  6279. const int dr = (nr + nth - 1) / nth;
  6280. // row range for this thread
  6281. const int ir0 = dr * ith;
  6282. const int ir1 = MIN(ir0 + dr, nr);
  6283. if (src0->type == dst->type &&
  6284. ne00 == ne0 &&
  6285. nb00 == type_size && nb0 == type_size) {
  6286. // copy by rows
  6287. const size_t rs = ne00 * type_size;
  6288. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6289. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6290. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  6291. memcpy(
  6292. ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  6293. ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
  6294. rs);
  6295. }
  6296. }
  6297. }
  6298. return;
  6299. }
  6300. if (ggml_is_contiguous(dst)) {
  6301. size_t id = 0;
  6302. char * dst_ptr = (char *) dst->data;
  6303. const size_t rs = ne00 * type_size;
  6304. if (nb00 == type_size) {
  6305. // src0 is contigous on first dimension, copy by rows
  6306. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6307. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6308. id += rs * ir0;
  6309. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  6310. const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
  6311. memcpy(dst_ptr + id, src0_ptr, rs);
  6312. id += rs;
  6313. }
  6314. id += rs * (ne01 - ir1);
  6315. }
  6316. }
  6317. } else {
  6318. //printf("%s: this is not optimal - fix me\n", __func__);
  6319. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6320. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6321. id += rs * ir0;
  6322. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  6323. for (int64_t i00 = 0; i00 < ne00; i00++) {
  6324. const char * src0_ptr = (char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03;
  6325. memcpy(dst_ptr + id, src0_ptr, type_size);
  6326. id += type_size;
  6327. }
  6328. }
  6329. id += rs * (ne01 - ir1);
  6330. }
  6331. }
  6332. }
  6333. return;
  6334. }
  6335. // dst counters
  6336. int64_t i10 = 0;
  6337. int64_t i11 = 0;
  6338. int64_t i12 = 0;
  6339. int64_t i13 = 0;
  6340. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6341. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6342. i10 += ne00 * ir0;
  6343. while (i10 >= ne0) {
  6344. i10 -= ne0;
  6345. if (++i11 == ne1) {
  6346. i11 = 0;
  6347. if (++i12 == ne2) {
  6348. i12 = 0;
  6349. if (++i13 == ne3) {
  6350. i13 = 0;
  6351. }
  6352. }
  6353. }
  6354. }
  6355. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  6356. for (int64_t i00 = 0; i00 < ne00; i00++) {
  6357. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6358. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  6359. memcpy(dst_ptr, src0_ptr, type_size);
  6360. if (++i10 == ne0) {
  6361. i10 = 0;
  6362. if (++i11 == ne1) {
  6363. i11 = 0;
  6364. if (++i12 == ne2) {
  6365. i12 = 0;
  6366. if (++i13 == ne3) {
  6367. i13 = 0;
  6368. }
  6369. }
  6370. }
  6371. }
  6372. }
  6373. }
  6374. i10 += ne00 * (ne01 - ir1);
  6375. while (i10 >= ne0) {
  6376. i10 -= ne0;
  6377. if (++i11 == ne1) {
  6378. i11 = 0;
  6379. if (++i12 == ne2) {
  6380. i12 = 0;
  6381. if (++i13 == ne3) {
  6382. i13 = 0;
  6383. }
  6384. }
  6385. }
  6386. }
  6387. }
  6388. }
  6389. }
  6390. static void ggml_compute_forward_dup(
  6391. const struct ggml_compute_params * params,
  6392. struct ggml_tensor * dst) {
  6393. const struct ggml_tensor * src0 = dst->src[0];
  6394. if (src0->type == dst->type) {
  6395. ggml_compute_forward_dup_bytes(params, dst);
  6396. return;
  6397. }
  6398. switch (src0->type) {
  6399. case GGML_TYPE_F16:
  6400. {
  6401. ggml_compute_forward_dup_f16(params, dst);
  6402. } break;
  6403. case GGML_TYPE_F32:
  6404. {
  6405. ggml_compute_forward_dup_f32(params, dst);
  6406. } break;
  6407. default:
  6408. {
  6409. GGML_ASSERT(false);
  6410. } break;
  6411. }
  6412. }
  6413. // ggml_compute_forward_add
  6414. static void ggml_compute_forward_add_f32(
  6415. const struct ggml_compute_params * params,
  6416. struct ggml_tensor * dst) {
  6417. const struct ggml_tensor * src0 = dst->src[0];
  6418. const struct ggml_tensor * src1 = dst->src[1];
  6419. GGML_ASSERT(ggml_can_repeat(src1, src0) && ggml_are_same_shape(src0, dst));
  6420. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  6421. return;
  6422. }
  6423. const int ith = params->ith;
  6424. const int nth = params->nth;
  6425. #ifdef GGML_USE_CLBLAST
  6426. if (src1->backend == GGML_BACKEND_TYPE_GPU) {
  6427. // TODO: OpenCL kernel support full broadcast
  6428. GGML_ASSERT(ggml_can_repeat_rows(src1, src0));
  6429. if (ith == 0) {
  6430. ggml_cl_add(src0, src1, dst);
  6431. }
  6432. return;
  6433. }
  6434. #endif
  6435. const int nr = ggml_nrows(src0);
  6436. GGML_TENSOR_BINARY_OP_LOCALS
  6437. GGML_ASSERT( nb0 == sizeof(float));
  6438. GGML_ASSERT(nb00 == sizeof(float));
  6439. // rows per thread
  6440. const int dr = (nr + nth - 1)/nth;
  6441. // row range for this thread
  6442. const int ir0 = dr*ith;
  6443. const int ir1 = MIN(ir0 + dr, nr);
  6444. if (nb10 == sizeof(float)) {
  6445. for (int ir = ir0; ir < ir1; ++ir) {
  6446. // src1 is broadcastable across src0 and dst in i1, i2, i3
  6447. const int64_t i03 = ir/(ne02*ne01);
  6448. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  6449. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  6450. const int64_t i13 = i03 % ne13;
  6451. const int64_t i12 = i02 % ne12;
  6452. const int64_t i11 = i01 % ne11;
  6453. const int64_t nr0 = ne00 / ne10;
  6454. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  6455. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  6456. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11);
  6457. for (int64_t r = 0; r < nr0; ++r) {
  6458. #ifdef GGML_USE_ACCELERATE
  6459. vDSP_vadd(src0_ptr + r*ne10, 1, src1_ptr, 1, dst_ptr + r*ne10, 1, ne10);
  6460. #else
  6461. ggml_vec_add_f32(ne10, dst_ptr + r*ne10, src0_ptr + r*ne10, src1_ptr);
  6462. #endif
  6463. }
  6464. }
  6465. } else {
  6466. // src1 is not contiguous
  6467. for (int ir = ir0; ir < ir1; ++ir) {
  6468. // src1 is broadcastable across src0 and dst in i1, i2, i3
  6469. const int64_t i03 = ir/(ne02*ne01);
  6470. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  6471. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  6472. const int64_t i13 = i03 % ne13;
  6473. const int64_t i12 = i02 % ne12;
  6474. const int64_t i11 = i01 % ne11;
  6475. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  6476. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  6477. for (int64_t i0 = 0; i0 < ne0; ++i0) {
  6478. const int64_t i10 = i0 % ne10;
  6479. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11 + i10*nb10);
  6480. dst_ptr[i0] = src0_ptr[i0] + *src1_ptr;
  6481. }
  6482. }
  6483. }
  6484. }
  6485. static void ggml_compute_forward_add_f16_f32(
  6486. const struct ggml_compute_params * params,
  6487. struct ggml_tensor * dst) {
  6488. const struct ggml_tensor * src0 = dst->src[0];
  6489. const struct ggml_tensor * src1 = dst->src[1];
  6490. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  6491. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  6492. return;
  6493. }
  6494. const int ith = params->ith;
  6495. const int nth = params->nth;
  6496. const int nr = ggml_nrows(src0);
  6497. GGML_TENSOR_BINARY_OP_LOCALS
  6498. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  6499. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  6500. if (dst->type == GGML_TYPE_F32) {
  6501. GGML_ASSERT( nb0 == sizeof(float));
  6502. }
  6503. else {
  6504. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  6505. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  6506. }
  6507. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  6508. // rows per thread
  6509. const int dr = (nr + nth - 1)/nth;
  6510. // row range for this thread
  6511. const int ir0 = dr*ith;
  6512. const int ir1 = MIN(ir0 + dr, nr);
  6513. if (nb10 == sizeof(float)) {
  6514. if (dst->type == GGML_TYPE_F16) {
  6515. for (int ir = ir0; ir < ir1; ++ir) {
  6516. // src0, src1 and dst are same shape => same indices
  6517. const int i3 = ir/(ne2*ne1);
  6518. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6519. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6520. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  6521. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  6522. float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11);
  6523. for (int i = 0; i < ne0; i++) {
  6524. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + src1_ptr[i]);
  6525. }
  6526. }
  6527. } else {
  6528. for (int ir = ir0; ir < ir1; ++ir) {
  6529. // src0, src1 and dst are same shape => same indices
  6530. const int i3 = ir/(ne2*ne1);
  6531. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6532. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6533. float * dst_ptr = (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  6534. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  6535. float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11);
  6536. for (int i = 0; i < ne0; i++) {
  6537. dst_ptr[i] = GGML_FP16_TO_FP32(src0_ptr[i]) + src1_ptr[i];
  6538. }
  6539. }
  6540. }
  6541. }
  6542. else {
  6543. // src1 is not contiguous
  6544. GGML_ASSERT(false);
  6545. }
  6546. }
  6547. static void ggml_compute_forward_add_f16_f16(
  6548. const struct ggml_compute_params * params,
  6549. struct ggml_tensor * dst) {
  6550. const struct ggml_tensor * src0 = dst->src[0];
  6551. const struct ggml_tensor * src1 = dst->src[1];
  6552. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  6553. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  6554. return;
  6555. }
  6556. const int ith = params->ith;
  6557. const int nth = params->nth;
  6558. const int nr = ggml_nrows(src0);
  6559. GGML_TENSOR_BINARY_OP_LOCALS
  6560. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  6561. GGML_ASSERT(src1->type == GGML_TYPE_F16);
  6562. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  6563. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  6564. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  6565. // rows per thread
  6566. const int dr = (nr + nth - 1)/nth;
  6567. // row range for this thread
  6568. const int ir0 = dr*ith;
  6569. const int ir1 = MIN(ir0 + dr, nr);
  6570. if (nb10 == sizeof(ggml_fp16_t)) {
  6571. for (int ir = ir0; ir < ir1; ++ir) {
  6572. // src0, src1 and dst are same shape => same indices
  6573. const int i3 = ir/(ne2*ne1);
  6574. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6575. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6576. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  6577. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  6578. ggml_fp16_t * src1_ptr = (ggml_fp16_t *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11);
  6579. for (int i = 0; i < ne0; i++) {
  6580. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + GGML_FP16_TO_FP32(src1_ptr[i]));
  6581. }
  6582. }
  6583. }
  6584. else {
  6585. // src1 is not contiguous
  6586. GGML_ASSERT(false);
  6587. }
  6588. }
  6589. static void ggml_compute_forward_add_q_f32(
  6590. const struct ggml_compute_params * params,
  6591. struct ggml_tensor * dst) {
  6592. const struct ggml_tensor * src0 = dst->src[0];
  6593. const struct ggml_tensor * src1 = dst->src[1];
  6594. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  6595. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  6596. return;
  6597. }
  6598. const int nr = ggml_nrows(src0);
  6599. GGML_TENSOR_BINARY_OP_LOCALS
  6600. const int ith = params->ith;
  6601. const int nth = params->nth;
  6602. const enum ggml_type type = src0->type;
  6603. const enum ggml_type dtype = dst->type;
  6604. ggml_to_float_t const dequantize_row_q = type_traits[type].to_float;
  6605. ggml_from_float_t const quantize_row_q = type_traits[dtype].from_float;
  6606. // we don't support permuted src0 or src1
  6607. GGML_ASSERT(nb00 == ggml_type_size(type));
  6608. GGML_ASSERT(nb10 == sizeof(float));
  6609. // dst cannot be transposed or permuted
  6610. GGML_ASSERT(nb0 <= nb1);
  6611. GGML_ASSERT(nb1 <= nb2);
  6612. GGML_ASSERT(nb2 <= nb3);
  6613. GGML_ASSERT(ggml_is_quantized(src0->type));
  6614. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  6615. // rows per thread
  6616. const int dr = (nr + nth - 1)/nth;
  6617. // row range for this thread
  6618. const int ir0 = dr*ith;
  6619. const int ir1 = MIN(ir0 + dr, nr);
  6620. float * wdata = (float *) params->wdata + (ne00 + CACHE_LINE_SIZE_F32) * ith;
  6621. for (int ir = ir0; ir < ir1; ++ir) {
  6622. // src0 indices
  6623. const int i03 = ir/(ne02*ne01);
  6624. const int i02 = (ir - i03*ne02*ne01)/ne01;
  6625. const int i01 = (ir - i03*ne02*ne01 - i02*ne01);
  6626. // src1 and dst are same shape as src0 => same indices
  6627. const int i13 = i03;
  6628. const int i12 = i02;
  6629. const int i11 = i01;
  6630. const int i3 = i03;
  6631. const int i2 = i02;
  6632. const int i1 = i01;
  6633. void * src0_row = (void *) ((char *) src0->data + (i01*nb01 + i02*nb02 + i03*nb03));
  6634. float * src1_row = (float *)((char *) src1->data + (i11*nb11 + i12*nb12 + i13*nb13));
  6635. void * dst_row = (void *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
  6636. assert(ne00 % 32 == 0);
  6637. // unquantize row from src0 to temp buffer
  6638. dequantize_row_q(src0_row, wdata, ne00);
  6639. // add src1
  6640. ggml_vec_acc_f32(ne00, wdata, src1_row);
  6641. // quantize row to dst
  6642. if (quantize_row_q != NULL) {
  6643. quantize_row_q(wdata, dst_row, ne00);
  6644. } else {
  6645. memcpy(dst_row, wdata, ne0*nb0);
  6646. }
  6647. }
  6648. }
  6649. static void ggml_compute_forward_add(
  6650. const struct ggml_compute_params * params,
  6651. struct ggml_tensor * dst) {
  6652. const struct ggml_tensor * src0 = dst->src[0];
  6653. const struct ggml_tensor * src1 = dst->src[1];
  6654. switch (src0->type) {
  6655. case GGML_TYPE_F32:
  6656. {
  6657. if (src1->type == GGML_TYPE_F32) {
  6658. ggml_compute_forward_add_f32(params, dst);
  6659. }
  6660. else {
  6661. GGML_ASSERT(false);
  6662. }
  6663. } break;
  6664. case GGML_TYPE_F16:
  6665. {
  6666. if (src1->type == GGML_TYPE_F16) {
  6667. ggml_compute_forward_add_f16_f16(params, dst);
  6668. }
  6669. else if (src1->type == GGML_TYPE_F32) {
  6670. ggml_compute_forward_add_f16_f32(params, dst);
  6671. }
  6672. else {
  6673. GGML_ASSERT(false);
  6674. }
  6675. } break;
  6676. case GGML_TYPE_Q4_0:
  6677. case GGML_TYPE_Q4_1:
  6678. case GGML_TYPE_Q5_0:
  6679. case GGML_TYPE_Q5_1:
  6680. case GGML_TYPE_Q8_0:
  6681. case GGML_TYPE_Q2_K:
  6682. case GGML_TYPE_Q3_K:
  6683. case GGML_TYPE_Q4_K:
  6684. case GGML_TYPE_Q5_K:
  6685. case GGML_TYPE_Q6_K:
  6686. case GGML_TYPE_IQ2_XXS:
  6687. case GGML_TYPE_IQ2_XS:
  6688. case GGML_TYPE_IQ3_XXS:
  6689. case GGML_TYPE_IQ1_S:
  6690. case GGML_TYPE_IQ1_M:
  6691. case GGML_TYPE_IQ4_NL:
  6692. case GGML_TYPE_IQ4_XS:
  6693. case GGML_TYPE_IQ3_S:
  6694. case GGML_TYPE_IQ2_S:
  6695. {
  6696. ggml_compute_forward_add_q_f32(params, dst);
  6697. } break;
  6698. default:
  6699. {
  6700. GGML_ASSERT(false);
  6701. } break;
  6702. }
  6703. }
  6704. // ggml_compute_forward_add1
  6705. static void ggml_compute_forward_add1_f32(
  6706. const struct ggml_compute_params * params,
  6707. struct ggml_tensor * dst) {
  6708. const struct ggml_tensor * src0 = dst->src[0];
  6709. const struct ggml_tensor * src1 = dst->src[1];
  6710. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6711. GGML_ASSERT(ggml_is_scalar(src1));
  6712. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  6713. return;
  6714. }
  6715. const int ith = params->ith;
  6716. const int nth = params->nth;
  6717. const int nr = ggml_nrows(src0);
  6718. GGML_TENSOR_UNARY_OP_LOCALS
  6719. GGML_ASSERT( nb0 == sizeof(float));
  6720. GGML_ASSERT(nb00 == sizeof(float));
  6721. // rows per thread
  6722. const int dr = (nr + nth - 1)/nth;
  6723. // row range for this thread
  6724. const int ir0 = dr*ith;
  6725. const int ir1 = MIN(ir0 + dr, nr);
  6726. for (int ir = ir0; ir < ir1; ++ir) {
  6727. // src0 and dst are same shape => same indices
  6728. const int i3 = ir/(ne2*ne1);
  6729. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6730. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6731. #ifdef GGML_USE_ACCELERATE
  6732. UNUSED(ggml_vec_add1_f32);
  6733. vDSP_vadd(
  6734. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01), 1,
  6735. (float *) ((char *) src1->data), 0,
  6736. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ), 1,
  6737. ne0);
  6738. #else
  6739. ggml_vec_add1_f32(ne0,
  6740. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ),
  6741. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01),
  6742. *(float *) src1->data);
  6743. #endif
  6744. }
  6745. }
  6746. static void ggml_compute_forward_add1_f16_f32(
  6747. const struct ggml_compute_params * params,
  6748. struct ggml_tensor * dst) {
  6749. const struct ggml_tensor * src0 = dst->src[0];
  6750. const struct ggml_tensor * src1 = dst->src[1];
  6751. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6752. GGML_ASSERT(ggml_is_scalar(src1));
  6753. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  6754. return;
  6755. }
  6756. // scalar to add
  6757. const float v = *(float *) src1->data;
  6758. const int ith = params->ith;
  6759. const int nth = params->nth;
  6760. const int nr = ggml_nrows(src0);
  6761. GGML_TENSOR_UNARY_OP_LOCALS
  6762. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  6763. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  6764. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  6765. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  6766. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  6767. // rows per thread
  6768. const int dr = (nr + nth - 1)/nth;
  6769. // row range for this thread
  6770. const int ir0 = dr*ith;
  6771. const int ir1 = MIN(ir0 + dr, nr);
  6772. for (int ir = ir0; ir < ir1; ++ir) {
  6773. // src0 and dst are same shape => same indices
  6774. const int i3 = ir/(ne2*ne1);
  6775. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6776. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6777. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  6778. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  6779. for (int i = 0; i < ne0; i++) {
  6780. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + v);
  6781. }
  6782. }
  6783. }
  6784. static void ggml_compute_forward_add1_f16_f16(
  6785. const struct ggml_compute_params * params,
  6786. struct ggml_tensor * dst) {
  6787. const struct ggml_tensor * src0 = dst->src[0];
  6788. const struct ggml_tensor * src1 = dst->src[1];
  6789. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6790. GGML_ASSERT(ggml_is_scalar(src1));
  6791. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  6792. return;
  6793. }
  6794. // scalar to add
  6795. const float v = GGML_FP16_TO_FP32(*(ggml_fp16_t *) src1->data);
  6796. const int ith = params->ith;
  6797. const int nth = params->nth;
  6798. const int nr = ggml_nrows(src0);
  6799. GGML_TENSOR_UNARY_OP_LOCALS
  6800. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  6801. GGML_ASSERT(src1->type == GGML_TYPE_F16);
  6802. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  6803. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  6804. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  6805. // rows per thread
  6806. const int dr = (nr + nth - 1)/nth;
  6807. // row range for this thread
  6808. const int ir0 = dr*ith;
  6809. const int ir1 = MIN(ir0 + dr, nr);
  6810. for (int ir = ir0; ir < ir1; ++ir) {
  6811. // src0 and dst are same shape => same indices
  6812. const int i3 = ir/(ne2*ne1);
  6813. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6814. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6815. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  6816. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  6817. for (int i = 0; i < ne0; i++) {
  6818. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + v);
  6819. }
  6820. }
  6821. }
  6822. static void ggml_compute_forward_add1_q_f32(
  6823. const struct ggml_compute_params * params,
  6824. struct ggml_tensor * dst) {
  6825. const struct ggml_tensor * src0 = dst->src[0];
  6826. const struct ggml_tensor * src1 = dst->src[1];
  6827. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6828. GGML_ASSERT(ggml_is_scalar(src1));
  6829. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  6830. return;
  6831. }
  6832. // scalar to add
  6833. const float v = *(float *) src1->data;
  6834. const int ith = params->ith;
  6835. const int nth = params->nth;
  6836. const int nr = ggml_nrows(src0);
  6837. GGML_TENSOR_UNARY_OP_LOCALS
  6838. const enum ggml_type type = src0->type;
  6839. ggml_to_float_t const dequantize_row_q = type_traits[type].to_float;
  6840. ggml_from_float_t const quantize_row_q = type_traits[type].from_float;
  6841. // we don't support permuted src0
  6842. GGML_ASSERT(nb00 == ggml_type_size(type));
  6843. // dst cannot be transposed or permuted
  6844. GGML_ASSERT(nb0 <= nb1);
  6845. GGML_ASSERT(nb1 <= nb2);
  6846. GGML_ASSERT(nb2 <= nb3);
  6847. GGML_ASSERT(ggml_is_quantized(src0->type));
  6848. GGML_ASSERT(dst->type == src0->type);
  6849. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  6850. // rows per thread
  6851. const int dr = (nr + nth - 1)/nth;
  6852. // row range for this thread
  6853. const int ir0 = dr*ith;
  6854. const int ir1 = MIN(ir0 + dr, nr);
  6855. float * wdata = (float *) params->wdata + (ne0 + CACHE_LINE_SIZE_F32) * ith;
  6856. for (int ir = ir0; ir < ir1; ++ir) {
  6857. // src0 and dst are same shape => same indices
  6858. const int i3 = ir/(ne2*ne1);
  6859. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6860. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6861. void * src0_row = (void *) ((char *) src0->data + (i1*nb01 + i2*nb02 + i3*nb03));
  6862. void * dst_row = (void *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb0 ));
  6863. assert(ne0 % 32 == 0);
  6864. // unquantize row from src0 to temp buffer
  6865. dequantize_row_q(src0_row, wdata, ne0);
  6866. // add src1
  6867. ggml_vec_acc1_f32(ne0, wdata, v);
  6868. // quantize row to dst
  6869. quantize_row_q(wdata, dst_row, ne0);
  6870. }
  6871. }
  6872. static void ggml_compute_forward_add1(
  6873. const struct ggml_compute_params * params,
  6874. struct ggml_tensor * dst) {
  6875. const struct ggml_tensor * src0 = dst->src[0];
  6876. const struct ggml_tensor * src1 = dst->src[1];
  6877. switch (src0->type) {
  6878. case GGML_TYPE_F32:
  6879. {
  6880. ggml_compute_forward_add1_f32(params, dst);
  6881. } break;
  6882. case GGML_TYPE_F16:
  6883. {
  6884. if (src1->type == GGML_TYPE_F16) {
  6885. ggml_compute_forward_add1_f16_f16(params, dst);
  6886. }
  6887. else if (src1->type == GGML_TYPE_F32) {
  6888. ggml_compute_forward_add1_f16_f32(params, dst);
  6889. }
  6890. else {
  6891. GGML_ASSERT(false);
  6892. }
  6893. } break;
  6894. case GGML_TYPE_Q4_0:
  6895. case GGML_TYPE_Q4_1:
  6896. case GGML_TYPE_Q5_0:
  6897. case GGML_TYPE_Q5_1:
  6898. case GGML_TYPE_Q8_0:
  6899. case GGML_TYPE_Q8_1:
  6900. case GGML_TYPE_Q2_K:
  6901. case GGML_TYPE_Q3_K:
  6902. case GGML_TYPE_Q4_K:
  6903. case GGML_TYPE_Q5_K:
  6904. case GGML_TYPE_Q6_K:
  6905. case GGML_TYPE_IQ2_XXS:
  6906. case GGML_TYPE_IQ2_XS:
  6907. case GGML_TYPE_IQ3_XXS:
  6908. case GGML_TYPE_IQ1_S:
  6909. case GGML_TYPE_IQ1_M:
  6910. case GGML_TYPE_IQ4_NL:
  6911. case GGML_TYPE_IQ4_XS:
  6912. case GGML_TYPE_IQ3_S:
  6913. case GGML_TYPE_IQ2_S:
  6914. {
  6915. ggml_compute_forward_add1_q_f32(params, dst);
  6916. } break;
  6917. default:
  6918. {
  6919. GGML_ASSERT(false);
  6920. } break;
  6921. }
  6922. }
  6923. // ggml_compute_forward_acc
  6924. static void ggml_compute_forward_acc_f32(
  6925. const struct ggml_compute_params * params,
  6926. struct ggml_tensor * dst) {
  6927. const struct ggml_tensor * src0 = dst->src[0];
  6928. const struct ggml_tensor * src1 = dst->src[1];
  6929. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6930. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  6931. // view src0 and dst with these strides and data offset inbytes during acc
  6932. // nb0 is implicitly element_size because src0 and dst are contiguous
  6933. size_t nb1 = ((int32_t *) dst->op_params)[0];
  6934. size_t nb2 = ((int32_t *) dst->op_params)[1];
  6935. size_t nb3 = ((int32_t *) dst->op_params)[2];
  6936. size_t offset = ((int32_t *) dst->op_params)[3];
  6937. bool inplace = (bool) ((int32_t *) dst->op_params)[4];
  6938. if (!inplace && (params->type == GGML_TASK_TYPE_INIT)) {
  6939. if (params->ith != 0) {
  6940. return;
  6941. }
  6942. // memcpy needs to be synchronized across threads to avoid race conditions.
  6943. // => do it in INIT phase
  6944. memcpy(
  6945. ((char *) dst->data),
  6946. ((char *) src0->data),
  6947. ggml_nbytes(dst));
  6948. }
  6949. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  6950. return;
  6951. }
  6952. const int ith = params->ith;
  6953. const int nth = params->nth;
  6954. const int nr = ggml_nrows(src1);
  6955. const int nc = src1->ne[0];
  6956. GGML_TENSOR_LOCALS(int64_t, ne1, src1, ne)
  6957. GGML_TENSOR_LOCALS(size_t, nb1, src1, nb)
  6958. // src0 and dst as viewed during acc
  6959. const size_t nb0 = ggml_element_size(src0);
  6960. const size_t nb00 = nb0;
  6961. const size_t nb01 = nb1;
  6962. const size_t nb02 = nb2;
  6963. const size_t nb03 = nb3;
  6964. GGML_ASSERT(offset + (ne10 == 0 ? 0 : ne10-1)*nb0 + (ne11 == 0 ? 0 : ne11-1)*nb1 + (ne12 == 0 ? 0 : ne12-1)*nb2 + (ne13 == 0 ? 0 : ne13-1)*nb3 < ggml_nbytes(dst));
  6965. GGML_ASSERT(offset + (ne10 == 0 ? 0 : ne10-1)*nb00 + (ne11 == 0 ? 0 : ne11-1)*nb01 + (ne12 == 0 ? 0 : ne12-1)*nb02 + (ne13 == 0 ? 0 : ne13-1)*nb03 < ggml_nbytes(src0));
  6966. GGML_ASSERT(nb10 == sizeof(float));
  6967. // rows per thread
  6968. const int dr = (nr + nth - 1)/nth;
  6969. // row range for this thread
  6970. const int ir0 = dr*ith;
  6971. const int ir1 = MIN(ir0 + dr, nr);
  6972. for (int ir = ir0; ir < ir1; ++ir) {
  6973. // src0 and dst are viewed with shape of src1 and offset
  6974. // => same indices
  6975. const int i3 = ir/(ne12*ne11);
  6976. const int i2 = (ir - i3*ne12*ne11)/ne11;
  6977. const int i1 = (ir - i3*ne12*ne11 - i2*ne11);
  6978. #ifdef GGML_USE_ACCELERATE
  6979. vDSP_vadd(
  6980. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + offset), 1,
  6981. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11), 1,
  6982. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + offset), 1, nc);
  6983. #else
  6984. ggml_vec_add_f32(nc,
  6985. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + offset),
  6986. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + offset),
  6987. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
  6988. #endif
  6989. }
  6990. }
  6991. static void ggml_compute_forward_acc(
  6992. const struct ggml_compute_params * params,
  6993. struct ggml_tensor * dst) {
  6994. const struct ggml_tensor * src0 = dst->src[0];
  6995. switch (src0->type) {
  6996. case GGML_TYPE_F32:
  6997. {
  6998. ggml_compute_forward_acc_f32(params, dst);
  6999. } break;
  7000. case GGML_TYPE_F16:
  7001. case GGML_TYPE_Q4_0:
  7002. case GGML_TYPE_Q4_1:
  7003. case GGML_TYPE_Q5_0:
  7004. case GGML_TYPE_Q5_1:
  7005. case GGML_TYPE_Q8_0:
  7006. case GGML_TYPE_Q8_1:
  7007. case GGML_TYPE_Q2_K:
  7008. case GGML_TYPE_Q3_K:
  7009. case GGML_TYPE_Q4_K:
  7010. case GGML_TYPE_Q5_K:
  7011. case GGML_TYPE_Q6_K:
  7012. case GGML_TYPE_IQ2_XXS:
  7013. case GGML_TYPE_IQ2_XS:
  7014. case GGML_TYPE_IQ3_XXS:
  7015. case GGML_TYPE_IQ1_S:
  7016. case GGML_TYPE_IQ1_M:
  7017. case GGML_TYPE_IQ4_NL:
  7018. case GGML_TYPE_IQ4_XS:
  7019. case GGML_TYPE_IQ3_S:
  7020. case GGML_TYPE_IQ2_S:
  7021. default:
  7022. {
  7023. GGML_ASSERT(false);
  7024. } break;
  7025. }
  7026. }
  7027. // ggml_compute_forward_sub
  7028. static void ggml_compute_forward_sub_f32(
  7029. const struct ggml_compute_params * params,
  7030. struct ggml_tensor * dst) {
  7031. const struct ggml_tensor * src0 = dst->src[0];
  7032. const struct ggml_tensor * src1 = dst->src[1];
  7033. assert(params->ith == 0);
  7034. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  7035. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7036. return;
  7037. }
  7038. const int nr = ggml_nrows(src0);
  7039. GGML_TENSOR_BINARY_OP_LOCALS
  7040. GGML_ASSERT( nb0 == sizeof(float));
  7041. GGML_ASSERT(nb00 == sizeof(float));
  7042. if (nb10 == sizeof(float)) {
  7043. for (int ir = 0; ir < nr; ++ir) {
  7044. // src0, src1 and dst are same shape => same indices
  7045. const int i3 = ir/(ne2*ne1);
  7046. const int i2 = (ir - i3*ne2*ne1)/ne1;
  7047. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  7048. #ifdef GGML_USE_ACCELERATE
  7049. vDSP_vsub(
  7050. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11), 1,
  7051. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01), 1,
  7052. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ), 1,
  7053. ne0);
  7054. #else
  7055. ggml_vec_sub_f32(ne0,
  7056. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ),
  7057. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01),
  7058. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
  7059. #endif
  7060. // }
  7061. // }
  7062. }
  7063. } else {
  7064. // src1 is not contiguous
  7065. for (int ir = 0; ir < nr; ++ir) {
  7066. // src0, src1 and dst are same shape => same indices
  7067. const int i3 = ir/(ne2*ne1);
  7068. const int i2 = (ir - i3*ne2*ne1)/ne1;
  7069. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  7070. float * dst_ptr = (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  7071. float * src0_ptr = (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  7072. for (int i0 = 0; i0 < ne0; i0++) {
  7073. float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11 + i0*nb10);
  7074. dst_ptr[i0] = src0_ptr[i0] - *src1_ptr;
  7075. }
  7076. }
  7077. }
  7078. }
  7079. static void ggml_compute_forward_sub(
  7080. const struct ggml_compute_params * params,
  7081. struct ggml_tensor * dst) {
  7082. const struct ggml_tensor * src0 = dst->src[0];
  7083. switch (src0->type) {
  7084. case GGML_TYPE_F32:
  7085. {
  7086. ggml_compute_forward_sub_f32(params, dst);
  7087. } break;
  7088. default:
  7089. {
  7090. GGML_ASSERT(false);
  7091. } break;
  7092. }
  7093. }
  7094. // ggml_compute_forward_mul
  7095. static void ggml_compute_forward_mul_f32(
  7096. const struct ggml_compute_params * params,
  7097. struct ggml_tensor * dst) {
  7098. const struct ggml_tensor * src0 = dst->src[0];
  7099. const struct ggml_tensor * src1 = dst->src[1];
  7100. GGML_ASSERT(ggml_can_repeat(src1, src0) && ggml_are_same_shape(src0, dst));
  7101. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7102. return;
  7103. }
  7104. const int ith = params->ith;
  7105. const int nth = params->nth;
  7106. #if defined(GGML_USE_CLBLAST)
  7107. if (src1->backend == GGML_BACKEND_TYPE_GPU) {
  7108. // TODO: OpenCL kernel support full broadcast
  7109. GGML_ASSERT(ggml_can_repeat_rows(src1, src0));
  7110. if (ith == 0) {
  7111. ggml_cl_mul(src0, src1, dst);
  7112. }
  7113. return;
  7114. }
  7115. #endif
  7116. const int64_t nr = ggml_nrows(src0);
  7117. GGML_TENSOR_BINARY_OP_LOCALS
  7118. GGML_ASSERT( nb0 == sizeof(float));
  7119. GGML_ASSERT(nb00 == sizeof(float));
  7120. if (nb10 == sizeof(float)) {
  7121. for (int64_t ir = ith; ir < nr; ir += nth) {
  7122. // src0 and dst are same shape => same indices
  7123. const int64_t i03 = ir/(ne02*ne01);
  7124. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  7125. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  7126. const int64_t i13 = i03 % ne13;
  7127. const int64_t i12 = i02 % ne12;
  7128. const int64_t i11 = i01 % ne11;
  7129. const int64_t nr0 = ne00 / ne10;
  7130. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  7131. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  7132. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11);
  7133. for (int64_t r = 0 ; r < nr0; ++r) {
  7134. #ifdef GGML_USE_ACCELERATE
  7135. UNUSED(ggml_vec_mul_f32);
  7136. vDSP_vmul(src0_ptr + r*ne10, 1, src1_ptr, 1, dst_ptr + r*ne10, 1, ne10);
  7137. #else
  7138. ggml_vec_mul_f32(ne10, dst_ptr + r*ne10, src0_ptr + r*ne10, src1_ptr);
  7139. #endif
  7140. }
  7141. }
  7142. } else {
  7143. // src1 is not contiguous
  7144. for (int64_t ir = ith; ir < nr; ir += nth) {
  7145. // src0 and dst are same shape => same indices
  7146. // src1 is broadcastable across src0 and dst in i1, i2, i3
  7147. const int64_t i03 = ir/(ne02*ne01);
  7148. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  7149. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  7150. const int64_t i13 = i03 % ne13;
  7151. const int64_t i12 = i02 % ne12;
  7152. const int64_t i11 = i01 % ne11;
  7153. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  7154. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  7155. for (int64_t i0 = 0; i0 < ne00; ++i0) {
  7156. const int64_t i10 = i0 % ne10;
  7157. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11 + i10*nb10);
  7158. dst_ptr[i0] = src0_ptr[i0] * (*src1_ptr);
  7159. }
  7160. }
  7161. }
  7162. }
  7163. static void ggml_compute_forward_mul(
  7164. const struct ggml_compute_params * params,
  7165. struct ggml_tensor * dst) {
  7166. const struct ggml_tensor * src0 = dst->src[0];
  7167. const struct ggml_tensor * src1 = dst->src[1];
  7168. GGML_ASSERT(src1->type == GGML_TYPE_F32 && "only f32 src1 supported for now");
  7169. switch (src0->type) {
  7170. case GGML_TYPE_F32:
  7171. {
  7172. ggml_compute_forward_mul_f32(params, dst);
  7173. } break;
  7174. default:
  7175. {
  7176. GGML_ASSERT(false);
  7177. } break;
  7178. }
  7179. }
  7180. // ggml_compute_forward_div
  7181. static void ggml_compute_forward_div_f32(
  7182. const struct ggml_compute_params * params,
  7183. struct ggml_tensor * dst) {
  7184. const struct ggml_tensor * src0 = dst->src[0];
  7185. const struct ggml_tensor * src1 = dst->src[1];
  7186. GGML_ASSERT(ggml_can_repeat(src1, src0) && ggml_are_same_shape(src0, dst));
  7187. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7188. return;
  7189. }
  7190. const int ith = params->ith;
  7191. const int nth = params->nth;
  7192. const int64_t nr = ggml_nrows(src0);
  7193. GGML_TENSOR_BINARY_OP_LOCALS
  7194. GGML_ASSERT( nb0 == sizeof(float));
  7195. GGML_ASSERT(nb00 == sizeof(float));
  7196. if (nb10 == sizeof(float)) {
  7197. for (int64_t ir = ith; ir < nr; ir += nth) {
  7198. // src0 and dst are same shape => same indices
  7199. const int64_t i03 = ir/(ne02*ne01);
  7200. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  7201. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  7202. const int64_t i13 = i03 % ne13;
  7203. const int64_t i12 = i02 % ne12;
  7204. const int64_t i11 = i01 % ne11;
  7205. const int64_t nr0 = ne00 / ne10;
  7206. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  7207. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  7208. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11);
  7209. for (int64_t r = 0; r < nr0; ++r) {
  7210. #ifdef GGML_USE_ACCELERATE
  7211. UNUSED(ggml_vec_div_f32);
  7212. vDSP_vdiv(src1_ptr, 1, src0_ptr + r*ne10, 1, dst_ptr + r*ne10, 1, ne10);
  7213. #else
  7214. ggml_vec_div_f32(ne10, dst_ptr + r*ne10, src0_ptr + r*ne10, src1_ptr);
  7215. #endif
  7216. }
  7217. }
  7218. } else {
  7219. // src1 is not contiguous
  7220. for (int64_t ir = ith; ir < nr; ir += nth) {
  7221. // src0 and dst are same shape => same indices
  7222. // src1 is broadcastable across src0 and dst in i1, i2, i3
  7223. const int64_t i03 = ir/(ne02*ne01);
  7224. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  7225. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  7226. const int64_t i13 = i03 % ne13;
  7227. const int64_t i12 = i02 % ne12;
  7228. const int64_t i11 = i01 % ne11;
  7229. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  7230. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  7231. for (int64_t i0 = 0; i0 < ne00; ++i0) {
  7232. const int64_t i10 = i0 % ne10;
  7233. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11 + i10*nb10);
  7234. dst_ptr[i0] = src0_ptr[i0] / (*src1_ptr);
  7235. }
  7236. }
  7237. }
  7238. }
  7239. static void ggml_compute_forward_div(
  7240. const struct ggml_compute_params * params,
  7241. struct ggml_tensor * dst) {
  7242. const struct ggml_tensor * src0 = dst->src[0];
  7243. switch (src0->type) {
  7244. case GGML_TYPE_F32:
  7245. {
  7246. ggml_compute_forward_div_f32(params, dst);
  7247. } break;
  7248. default:
  7249. {
  7250. GGML_ASSERT(false);
  7251. } break;
  7252. }
  7253. }
  7254. // ggml_compute_forward_sqr
  7255. static void ggml_compute_forward_sqr_f32(
  7256. const struct ggml_compute_params * params,
  7257. struct ggml_tensor * dst) {
  7258. const struct ggml_tensor * src0 = dst->src[0];
  7259. assert(params->ith == 0);
  7260. assert(ggml_are_same_shape(src0, dst));
  7261. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7262. return;
  7263. }
  7264. const int n = ggml_nrows(src0);
  7265. const int nc = src0->ne[0];
  7266. assert( dst->nb[0] == sizeof(float));
  7267. assert(src0->nb[0] == sizeof(float));
  7268. for (int i = 0; i < n; i++) {
  7269. ggml_vec_sqr_f32(nc,
  7270. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7271. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7272. }
  7273. }
  7274. static void ggml_compute_forward_sqr(
  7275. const struct ggml_compute_params * params,
  7276. struct ggml_tensor * dst) {
  7277. const struct ggml_tensor * src0 = dst->src[0];
  7278. switch (src0->type) {
  7279. case GGML_TYPE_F32:
  7280. {
  7281. ggml_compute_forward_sqr_f32(params, dst);
  7282. } break;
  7283. default:
  7284. {
  7285. GGML_ASSERT(false);
  7286. } break;
  7287. }
  7288. }
  7289. // ggml_compute_forward_sqrt
  7290. static void ggml_compute_forward_sqrt_f32(
  7291. const struct ggml_compute_params * params,
  7292. struct ggml_tensor * dst) {
  7293. const struct ggml_tensor * src0 = dst->src[0];
  7294. assert(params->ith == 0);
  7295. assert(ggml_are_same_shape(src0, dst));
  7296. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7297. return;
  7298. }
  7299. const int n = ggml_nrows(src0);
  7300. const int nc = src0->ne[0];
  7301. assert( dst->nb[0] == sizeof(float));
  7302. assert(src0->nb[0] == sizeof(float));
  7303. for (int i = 0; i < n; i++) {
  7304. ggml_vec_sqrt_f32(nc,
  7305. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7306. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7307. }
  7308. }
  7309. static void ggml_compute_forward_sqrt(
  7310. const struct ggml_compute_params * params,
  7311. struct ggml_tensor * dst) {
  7312. const struct ggml_tensor * src0 = dst->src[0];
  7313. switch (src0->type) {
  7314. case GGML_TYPE_F32:
  7315. {
  7316. ggml_compute_forward_sqrt_f32(params, dst);
  7317. } break;
  7318. default:
  7319. {
  7320. GGML_ASSERT(false);
  7321. } break;
  7322. }
  7323. }
  7324. // ggml_compute_forward_log
  7325. static void ggml_compute_forward_log_f32(
  7326. const struct ggml_compute_params * params,
  7327. struct ggml_tensor * dst) {
  7328. const struct ggml_tensor * src0 = dst->src[0];
  7329. GGML_ASSERT(params->ith == 0);
  7330. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7331. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7332. return;
  7333. }
  7334. const int n = ggml_nrows(src0);
  7335. const int nc = src0->ne[0];
  7336. GGML_ASSERT( dst->nb[0] == sizeof(float));
  7337. GGML_ASSERT(src0->nb[0] == sizeof(float));
  7338. for (int i = 0; i < n; i++) {
  7339. ggml_vec_log_f32(nc,
  7340. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7341. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7342. }
  7343. }
  7344. static void ggml_compute_forward_log(
  7345. const struct ggml_compute_params * params,
  7346. struct ggml_tensor * dst) {
  7347. const struct ggml_tensor * src0 = dst->src[0];
  7348. switch (src0->type) {
  7349. case GGML_TYPE_F32:
  7350. {
  7351. ggml_compute_forward_log_f32(params, dst);
  7352. } break;
  7353. default:
  7354. {
  7355. GGML_ASSERT(false);
  7356. } break;
  7357. }
  7358. }
  7359. // ggml_compute_forward_sum
  7360. static void ggml_compute_forward_sum_f32(
  7361. const struct ggml_compute_params * params,
  7362. struct ggml_tensor * dst) {
  7363. const struct ggml_tensor * src0 = dst->src[0];
  7364. assert(params->ith == 0);
  7365. assert(ggml_is_scalar(dst));
  7366. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7367. return;
  7368. }
  7369. assert(ggml_is_scalar(dst));
  7370. assert(src0->nb[0] == sizeof(float));
  7371. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne)
  7372. GGML_TENSOR_LOCALS(size_t, nb0, src0, nb)
  7373. ggml_float sum = 0;
  7374. ggml_float row_sum = 0;
  7375. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7376. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7377. for (int64_t i01 = 0; i01 < ne01; i01++) {
  7378. ggml_vec_sum_f32_ggf(ne00,
  7379. &row_sum,
  7380. (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03));
  7381. sum += row_sum;
  7382. }
  7383. }
  7384. }
  7385. ((float *) dst->data)[0] = sum;
  7386. }
  7387. static void ggml_compute_forward_sum_f16(
  7388. const struct ggml_compute_params * params,
  7389. struct ggml_tensor * dst) {
  7390. const struct ggml_tensor * src0 = dst->src[0];
  7391. assert(params->ith == 0);
  7392. assert(ggml_is_scalar(dst));
  7393. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7394. return;
  7395. }
  7396. assert(src0->nb[0] == sizeof(ggml_fp16_t));
  7397. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne)
  7398. GGML_TENSOR_LOCALS(size_t, nb0, src0, nb)
  7399. float sum = 0;
  7400. float row_sum = 0;
  7401. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7402. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7403. for (int64_t i01 = 0; i01 < ne01; i01++) {
  7404. ggml_vec_sum_f16_ggf(ne00,
  7405. &row_sum,
  7406. (ggml_fp16_t *) ((char *) src0->data + i01 * nb01 + i02 * nb02 + i03 * nb03));
  7407. sum += row_sum;
  7408. }
  7409. }
  7410. }
  7411. ((ggml_fp16_t *) dst->data)[0] = GGML_FP32_TO_FP16(sum);
  7412. }
  7413. static void ggml_compute_forward_sum(
  7414. const struct ggml_compute_params * params,
  7415. struct ggml_tensor * dst) {
  7416. const struct ggml_tensor * src0 = dst->src[0];
  7417. switch (src0->type) {
  7418. case GGML_TYPE_F32:
  7419. {
  7420. ggml_compute_forward_sum_f32(params, dst);
  7421. } break;
  7422. case GGML_TYPE_F16:
  7423. {
  7424. ggml_compute_forward_sum_f16(params, dst);
  7425. } break;
  7426. default:
  7427. {
  7428. GGML_ASSERT(false);
  7429. } break;
  7430. }
  7431. }
  7432. // ggml_compute_forward_sum_rows
  7433. static void ggml_compute_forward_sum_rows_f32(
  7434. const struct ggml_compute_params * params,
  7435. struct ggml_tensor * dst) {
  7436. const struct ggml_tensor * src0 = dst->src[0];
  7437. GGML_ASSERT(params->ith == 0);
  7438. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7439. return;
  7440. }
  7441. GGML_ASSERT(src0->nb[0] == sizeof(float));
  7442. GGML_ASSERT(dst->nb[0] == sizeof(float));
  7443. GGML_TENSOR_UNARY_OP_LOCALS
  7444. GGML_ASSERT(ne0 == 1);
  7445. GGML_ASSERT(ne1 == ne01);
  7446. GGML_ASSERT(ne2 == ne02);
  7447. GGML_ASSERT(ne3 == ne03);
  7448. for (int64_t i3 = 0; i3 < ne03; i3++) {
  7449. for (int64_t i2 = 0; i2 < ne02; i2++) {
  7450. for (int64_t i1 = 0; i1 < ne01; i1++) {
  7451. float * src_row = (float *) ((char *) src0->data + i1*nb01 + i2*nb02 + i3*nb03);
  7452. float * dst_row = (float *) ((char *) dst->data + i1*nb1 + i2*nb2 + i3*nb3);
  7453. float row_sum = 0;
  7454. ggml_vec_sum_f32(ne00, &row_sum, src_row);
  7455. dst_row[0] = row_sum;
  7456. }
  7457. }
  7458. }
  7459. }
  7460. static void ggml_compute_forward_sum_rows(
  7461. const struct ggml_compute_params * params,
  7462. struct ggml_tensor * dst) {
  7463. const struct ggml_tensor * src0 = dst->src[0];
  7464. switch (src0->type) {
  7465. case GGML_TYPE_F32:
  7466. {
  7467. ggml_compute_forward_sum_rows_f32(params, dst);
  7468. } break;
  7469. default:
  7470. {
  7471. GGML_ASSERT(false);
  7472. } break;
  7473. }
  7474. }
  7475. // ggml_compute_forward_mean
  7476. static void ggml_compute_forward_mean_f32(
  7477. const struct ggml_compute_params * params,
  7478. struct ggml_tensor * dst) {
  7479. const struct ggml_tensor * src0 = dst->src[0];
  7480. assert(params->ith == 0);
  7481. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7482. return;
  7483. }
  7484. assert(src0->nb[0] == sizeof(float));
  7485. GGML_TENSOR_UNARY_OP_LOCALS
  7486. assert(ne0 == 1);
  7487. assert(ne1 == ne01);
  7488. assert(ne2 == ne02);
  7489. assert(ne3 == ne03);
  7490. UNUSED(ne0);
  7491. UNUSED(ne1);
  7492. UNUSED(ne2);
  7493. UNUSED(ne3);
  7494. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7495. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7496. for (int64_t i01 = 0; i01 < ne01; i01++) {
  7497. ggml_vec_sum_f32(ne00,
  7498. (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  7499. (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03));
  7500. *(float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3) /= (float) ne00;
  7501. }
  7502. }
  7503. }
  7504. }
  7505. static void ggml_compute_forward_mean(
  7506. const struct ggml_compute_params * params,
  7507. struct ggml_tensor * dst) {
  7508. const struct ggml_tensor * src0 = dst->src[0];
  7509. switch (src0->type) {
  7510. case GGML_TYPE_F32:
  7511. {
  7512. ggml_compute_forward_mean_f32(params, dst);
  7513. } break;
  7514. default:
  7515. {
  7516. GGML_ASSERT(false);
  7517. } break;
  7518. }
  7519. }
  7520. // ggml_compute_forward_argmax
  7521. static void ggml_compute_forward_argmax_f32(
  7522. const struct ggml_compute_params * params,
  7523. struct ggml_tensor * dst) {
  7524. const struct ggml_tensor * src0 = dst->src[0];
  7525. assert(params->ith == 0);
  7526. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7527. return;
  7528. }
  7529. assert(src0->nb[0] == sizeof(float));
  7530. assert(dst->nb[0] == sizeof(float));
  7531. const int64_t ne00 = src0->ne[0];
  7532. const int64_t ne01 = src0->ne[1];
  7533. const size_t nb01 = src0->nb[1];
  7534. const size_t nb0 = dst->nb[0];
  7535. for (int64_t i1 = 0; i1 < ne01; i1++) {
  7536. float * src = (float *) ((char *) src0->data + i1*nb01);
  7537. int32_t * dst_ = (int32_t *) ((char *) dst->data + i1*nb0);
  7538. int v = 0;
  7539. ggml_vec_argmax_f32(ne00, &v, src);
  7540. dst_[0] = v;
  7541. }
  7542. }
  7543. static void ggml_compute_forward_argmax(
  7544. const struct ggml_compute_params * params,
  7545. struct ggml_tensor * dst) {
  7546. const struct ggml_tensor * src0 = dst->src[0];
  7547. switch (src0->type) {
  7548. case GGML_TYPE_F32:
  7549. {
  7550. ggml_compute_forward_argmax_f32(params, dst);
  7551. } break;
  7552. default:
  7553. {
  7554. GGML_ASSERT(false);
  7555. } break;
  7556. }
  7557. }
  7558. // ggml_compute_forward_repeat
  7559. static void ggml_compute_forward_repeat_f32(
  7560. const struct ggml_compute_params * params,
  7561. struct ggml_tensor * dst) {
  7562. const struct ggml_tensor * src0 = dst->src[0];
  7563. GGML_ASSERT(params->ith == 0);
  7564. GGML_ASSERT(ggml_can_repeat(src0, dst));
  7565. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7566. return;
  7567. }
  7568. GGML_TENSOR_UNARY_OP_LOCALS
  7569. // guaranteed to be an integer due to the check in ggml_can_repeat
  7570. const int nr0 = (int)(ne0/ne00);
  7571. const int nr1 = (int)(ne1/ne01);
  7572. const int nr2 = (int)(ne2/ne02);
  7573. const int nr3 = (int)(ne3/ne03);
  7574. // TODO: support for transposed / permuted tensors
  7575. GGML_ASSERT(nb0 == sizeof(float));
  7576. GGML_ASSERT(nb00 == sizeof(float));
  7577. // TODO: maybe this is not optimal?
  7578. for (int i3 = 0; i3 < nr3; i3++) {
  7579. for (int k3 = 0; k3 < ne03; k3++) {
  7580. for (int i2 = 0; i2 < nr2; i2++) {
  7581. for (int k2 = 0; k2 < ne02; k2++) {
  7582. for (int i1 = 0; i1 < nr1; i1++) {
  7583. for (int k1 = 0; k1 < ne01; k1++) {
  7584. for (int i0 = 0; i0 < nr0; i0++) {
  7585. ggml_vec_cpy_f32(ne00,
  7586. (float *) ((char *) dst->data + (i3*ne03 + k3)*nb3 + (i2*ne02 + k2)*nb2 + (i1*ne01 + k1)*nb1 + (i0*ne00)*nb0),
  7587. (float *) ((char *) src0->data + ( k3)*nb03 + ( k2)*nb02 + ( k1)*nb01));
  7588. }
  7589. }
  7590. }
  7591. }
  7592. }
  7593. }
  7594. }
  7595. }
  7596. static void ggml_compute_forward_repeat_f16(
  7597. const struct ggml_compute_params * params,
  7598. struct ggml_tensor * dst) {
  7599. const struct ggml_tensor * src0 = dst->src[0];
  7600. GGML_ASSERT(params->ith == 0);
  7601. GGML_ASSERT(ggml_can_repeat(src0, dst));
  7602. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7603. return;
  7604. }
  7605. GGML_TENSOR_UNARY_OP_LOCALS
  7606. // guaranteed to be an integer due to the check in ggml_can_repeat
  7607. const int nr0 = (int)(ne0/ne00);
  7608. const int nr1 = (int)(ne1/ne01);
  7609. const int nr2 = (int)(ne2/ne02);
  7610. const int nr3 = (int)(ne3/ne03);
  7611. // TODO: support for transposed / permuted tensors
  7612. GGML_ASSERT(nb0 == sizeof(ggml_fp16_t));
  7613. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  7614. // TODO: maybe this is not optimal?
  7615. for (int i3 = 0; i3 < nr3; i3++) {
  7616. for (int k3 = 0; k3 < ne03; k3++) {
  7617. for (int i2 = 0; i2 < nr2; i2++) {
  7618. for (int k2 = 0; k2 < ne02; k2++) {
  7619. for (int i1 = 0; i1 < nr1; i1++) {
  7620. for (int k1 = 0; k1 < ne01; k1++) {
  7621. for (int i0 = 0; i0 < nr0; i0++) {
  7622. ggml_fp16_t * y = (ggml_fp16_t *) ((char *) dst->data + (i3*ne03 + k3)*nb3 + (i2*ne02 + k2)*nb2 + (i1*ne01 + k1)*nb1 + (i0*ne00)*nb0);
  7623. ggml_fp16_t * x = (ggml_fp16_t *) ((char *) src0->data + ( k3)*nb03 + ( k2)*nb02 + ( k1)*nb01);
  7624. // ggml_vec_cpy_f16(ne00, y, x)
  7625. for (int i = 0; i < ne00; ++i) {
  7626. y[i] = x[i];
  7627. }
  7628. }
  7629. }
  7630. }
  7631. }
  7632. }
  7633. }
  7634. }
  7635. }
  7636. static void ggml_compute_forward_repeat(
  7637. const struct ggml_compute_params * params,
  7638. struct ggml_tensor * dst) {
  7639. const struct ggml_tensor * src0 = dst->src[0];
  7640. switch (src0->type) {
  7641. case GGML_TYPE_F16:
  7642. case GGML_TYPE_I16:
  7643. {
  7644. ggml_compute_forward_repeat_f16(params, dst);
  7645. } break;
  7646. case GGML_TYPE_F32:
  7647. case GGML_TYPE_I32:
  7648. {
  7649. ggml_compute_forward_repeat_f32(params, dst);
  7650. } break;
  7651. default:
  7652. {
  7653. GGML_ASSERT(false);
  7654. } break;
  7655. }
  7656. }
  7657. // ggml_compute_forward_repeat_back
  7658. static void ggml_compute_forward_repeat_back_f32(
  7659. const struct ggml_compute_params * params,
  7660. struct ggml_tensor * dst) {
  7661. const struct ggml_tensor * src0 = dst->src[0];
  7662. GGML_ASSERT(params->ith == 0);
  7663. GGML_ASSERT(ggml_can_repeat(dst, src0));
  7664. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7665. return;
  7666. }
  7667. GGML_TENSOR_UNARY_OP_LOCALS
  7668. // guaranteed to be an integer due to the check in ggml_can_repeat
  7669. const int nr0 = (int)(ne00/ne0);
  7670. const int nr1 = (int)(ne01/ne1);
  7671. const int nr2 = (int)(ne02/ne2);
  7672. const int nr3 = (int)(ne03/ne3);
  7673. // TODO: support for transposed / permuted tensors
  7674. GGML_ASSERT(nb0 == sizeof(float));
  7675. GGML_ASSERT(nb00 == sizeof(float));
  7676. if (ggml_is_contiguous(dst)) {
  7677. ggml_vec_set_f32(ne0*ne1*ne2*ne3, dst->data, 0);
  7678. } else {
  7679. for (int k3 = 0; k3 < ne3; k3++) {
  7680. for (int k2 = 0; k2 < ne2; k2++) {
  7681. for (int k1 = 0; k1 < ne1; k1++) {
  7682. ggml_vec_set_f32(ne0,
  7683. (float *) ((char *) dst->data + k1*nb1 + k2*nb2 + k3*nb3),
  7684. 0);
  7685. }
  7686. }
  7687. }
  7688. }
  7689. // TODO: maybe this is not optimal?
  7690. for (int i3 = 0; i3 < nr3; i3++) {
  7691. for (int k3 = 0; k3 < ne3; k3++) {
  7692. for (int i2 = 0; i2 < nr2; i2++) {
  7693. for (int k2 = 0; k2 < ne2; k2++) {
  7694. for (int i1 = 0; i1 < nr1; i1++) {
  7695. for (int k1 = 0; k1 < ne1; k1++) {
  7696. for (int i0 = 0; i0 < nr0; i0++) {
  7697. ggml_vec_acc_f32(ne0,
  7698. (float *) ((char *) dst->data + ( k3)*nb3 + ( k2)*nb2 + ( k1)*nb1),
  7699. (float *) ((char *) src0->data + (i3*ne3 + k3)*nb03 + (i2*ne2 + k2)*nb02 + (i1*ne1 + k1)*nb01 + (i0*ne0)*nb00));
  7700. }
  7701. }
  7702. }
  7703. }
  7704. }
  7705. }
  7706. }
  7707. }
  7708. static void ggml_compute_forward_repeat_back(
  7709. const struct ggml_compute_params * params,
  7710. struct ggml_tensor * dst) {
  7711. const struct ggml_tensor * src0 = dst->src[0];
  7712. switch (src0->type) {
  7713. case GGML_TYPE_F32:
  7714. {
  7715. ggml_compute_forward_repeat_back_f32(params, dst);
  7716. } break;
  7717. default:
  7718. {
  7719. GGML_ASSERT(false);
  7720. } break;
  7721. }
  7722. }
  7723. // ggml_compute_forward_concat
  7724. static void ggml_compute_forward_concat_f32(
  7725. const struct ggml_compute_params * params,
  7726. struct ggml_tensor * dst) {
  7727. const struct ggml_tensor * src0 = dst->src[0];
  7728. const struct ggml_tensor * src1 = dst->src[1];
  7729. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7730. return;
  7731. }
  7732. GGML_ASSERT(src0->nb[0] == sizeof(float));
  7733. const int ith = params->ith;
  7734. const int nth = params->nth;
  7735. GGML_TENSOR_BINARY_OP_LOCALS
  7736. // TODO: support for transposed / permuted tensors
  7737. GGML_ASSERT(nb0 == sizeof(float));
  7738. GGML_ASSERT(nb00 == sizeof(float));
  7739. GGML_ASSERT(nb10 == sizeof(float));
  7740. for (int i3 = 0; i3 < ne3; i3++) {
  7741. for (int i2 = ith; i2 < ne2; i2 += nth) {
  7742. if (i2 < ne02) { // src0
  7743. for (int i1 = 0; i1 < ne1; i1++) {
  7744. for (int i0 = 0; i0 < ne0; i0++) {
  7745. const float * x = (float *)((char *) src0->data + i0 * nb00 + i1 * nb01 + i2 * nb02 + i3 * nb03);
  7746. float * y = (float *)((char *)dst->data + i0 * nb0 + i1 * nb1 + i2 * nb2 + i3 * nb3);
  7747. *y = *x;
  7748. }
  7749. }
  7750. } // src1
  7751. else {
  7752. for (int i1 = 0; i1 < ne1; i1++) {
  7753. for (int i0 = 0; i0 < ne0; i0++) {
  7754. const float * x = (float *)((char *) src1->data + i0 * nb10 + i1 * nb11 + (i2 - ne02) * nb12 + i3 * nb13);
  7755. float * y = (float *)((char *)dst->data + i0 * nb0 + i1 * nb1 + i2 * nb2 + i3 * nb3);
  7756. *y = *x;
  7757. }
  7758. }
  7759. }
  7760. }
  7761. }
  7762. }
  7763. static void ggml_compute_forward_concat(
  7764. const struct ggml_compute_params* params,
  7765. struct ggml_tensor* dst) {
  7766. const struct ggml_tensor * src0 = dst->src[0];
  7767. switch (src0->type) {
  7768. case GGML_TYPE_F32:
  7769. case GGML_TYPE_I32:
  7770. {
  7771. ggml_compute_forward_concat_f32(params, dst);
  7772. } break;
  7773. default:
  7774. {
  7775. GGML_ASSERT(false);
  7776. } break;
  7777. }
  7778. }
  7779. // ggml_compute_forward_abs
  7780. static void ggml_compute_forward_abs_f32(
  7781. const struct ggml_compute_params * params,
  7782. struct ggml_tensor * dst) {
  7783. const struct ggml_tensor * src0 = dst->src[0];
  7784. assert(params->ith == 0);
  7785. assert(ggml_are_same_shape(src0, dst));
  7786. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7787. return;
  7788. }
  7789. const int n = ggml_nrows(src0);
  7790. const int nc = src0->ne[0];
  7791. assert(dst->nb[0] == sizeof(float));
  7792. assert(src0->nb[0] == sizeof(float));
  7793. for (int i = 0; i < n; i++) {
  7794. ggml_vec_abs_f32(nc,
  7795. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7796. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7797. }
  7798. }
  7799. static void ggml_compute_forward_abs(
  7800. const struct ggml_compute_params * params,
  7801. struct ggml_tensor * dst) {
  7802. const struct ggml_tensor * src0 = dst->src[0];
  7803. switch (src0->type) {
  7804. case GGML_TYPE_F32:
  7805. {
  7806. ggml_compute_forward_abs_f32(params, dst);
  7807. } break;
  7808. default:
  7809. {
  7810. GGML_ASSERT(false);
  7811. } break;
  7812. }
  7813. }
  7814. // ggml_compute_forward_sgn
  7815. static void ggml_compute_forward_sgn_f32(
  7816. const struct ggml_compute_params * params,
  7817. struct ggml_tensor * dst) {
  7818. const struct ggml_tensor * src0 = dst->src[0];
  7819. assert(params->ith == 0);
  7820. assert(ggml_are_same_shape(src0, dst));
  7821. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7822. return;
  7823. }
  7824. const int n = ggml_nrows(src0);
  7825. const int nc = src0->ne[0];
  7826. assert(dst->nb[0] == sizeof(float));
  7827. assert(src0->nb[0] == sizeof(float));
  7828. for (int i = 0; i < n; i++) {
  7829. ggml_vec_sgn_f32(nc,
  7830. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7831. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7832. }
  7833. }
  7834. static void ggml_compute_forward_sgn(
  7835. const struct ggml_compute_params * params,
  7836. struct ggml_tensor * dst) {
  7837. const struct ggml_tensor * src0 = dst->src[0];
  7838. switch (src0->type) {
  7839. case GGML_TYPE_F32:
  7840. {
  7841. ggml_compute_forward_sgn_f32(params, dst);
  7842. } break;
  7843. default:
  7844. {
  7845. GGML_ASSERT(false);
  7846. } break;
  7847. }
  7848. }
  7849. // ggml_compute_forward_neg
  7850. static void ggml_compute_forward_neg_f32(
  7851. const struct ggml_compute_params * params,
  7852. struct ggml_tensor * dst) {
  7853. const struct ggml_tensor * src0 = dst->src[0];
  7854. assert(params->ith == 0);
  7855. assert(ggml_are_same_shape(src0, dst));
  7856. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7857. return;
  7858. }
  7859. const int n = ggml_nrows(src0);
  7860. const int nc = src0->ne[0];
  7861. assert(dst->nb[0] == sizeof(float));
  7862. assert(src0->nb[0] == sizeof(float));
  7863. for (int i = 0; i < n; i++) {
  7864. ggml_vec_neg_f32(nc,
  7865. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7866. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7867. }
  7868. }
  7869. static void ggml_compute_forward_neg(
  7870. const struct ggml_compute_params * params,
  7871. struct ggml_tensor * dst) {
  7872. const struct ggml_tensor * src0 = dst->src[0];
  7873. switch (src0->type) {
  7874. case GGML_TYPE_F32:
  7875. {
  7876. ggml_compute_forward_neg_f32(params, dst);
  7877. } break;
  7878. default:
  7879. {
  7880. GGML_ASSERT(false);
  7881. } break;
  7882. }
  7883. }
  7884. // ggml_compute_forward_step
  7885. static void ggml_compute_forward_step_f32(
  7886. const struct ggml_compute_params * params,
  7887. struct ggml_tensor * dst) {
  7888. const struct ggml_tensor * src0 = dst->src[0];
  7889. assert(params->ith == 0);
  7890. assert(ggml_are_same_shape(src0, dst));
  7891. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7892. return;
  7893. }
  7894. const int n = ggml_nrows(src0);
  7895. const int nc = src0->ne[0];
  7896. assert(dst->nb[0] == sizeof(float));
  7897. assert(src0->nb[0] == sizeof(float));
  7898. for (int i = 0; i < n; i++) {
  7899. ggml_vec_step_f32(nc,
  7900. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7901. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7902. }
  7903. }
  7904. static void ggml_compute_forward_step(
  7905. const struct ggml_compute_params * params,
  7906. struct ggml_tensor * dst) {
  7907. const struct ggml_tensor * src0 = dst->src[0];
  7908. switch (src0->type) {
  7909. case GGML_TYPE_F32:
  7910. {
  7911. ggml_compute_forward_step_f32(params, dst);
  7912. } break;
  7913. default:
  7914. {
  7915. GGML_ASSERT(false);
  7916. } break;
  7917. }
  7918. }
  7919. // ggml_compute_forward_tanh
  7920. static void ggml_compute_forward_tanh_f32(
  7921. const struct ggml_compute_params * params,
  7922. struct ggml_tensor * dst) {
  7923. const struct ggml_tensor * src0 = dst->src[0];
  7924. assert(params->ith == 0);
  7925. assert(ggml_are_same_shape(src0, dst));
  7926. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7927. return;
  7928. }
  7929. const int n = ggml_nrows(src0);
  7930. const int nc = src0->ne[0];
  7931. assert(dst->nb[0] == sizeof(float));
  7932. assert(src0->nb[0] == sizeof(float));
  7933. for (int i = 0; i < n; i++) {
  7934. ggml_vec_tanh_f32(nc,
  7935. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7936. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7937. }
  7938. }
  7939. static void ggml_compute_forward_tanh(
  7940. const struct ggml_compute_params * params,
  7941. struct ggml_tensor * dst) {
  7942. const struct ggml_tensor * src0 = dst->src[0];
  7943. switch (src0->type) {
  7944. case GGML_TYPE_F32:
  7945. {
  7946. ggml_compute_forward_tanh_f32(params, dst);
  7947. } break;
  7948. default:
  7949. {
  7950. GGML_ASSERT(false);
  7951. } break;
  7952. }
  7953. }
  7954. // ggml_compute_forward_elu
  7955. static void ggml_compute_forward_elu_f32(
  7956. const struct ggml_compute_params * params,
  7957. struct ggml_tensor * dst) {
  7958. const struct ggml_tensor * src0 = dst->src[0];
  7959. assert(params->ith == 0);
  7960. assert(ggml_are_same_shape(src0, dst));
  7961. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7962. return;
  7963. }
  7964. const int n = ggml_nrows(src0);
  7965. const int nc = src0->ne[0];
  7966. assert(dst->nb[0] == sizeof(float));
  7967. assert(src0->nb[0] == sizeof(float));
  7968. for (int i = 0; i < n; i++) {
  7969. ggml_vec_elu_f32(nc,
  7970. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7971. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7972. }
  7973. }
  7974. static void ggml_compute_forward_elu(
  7975. const struct ggml_compute_params * params,
  7976. struct ggml_tensor * dst) {
  7977. const struct ggml_tensor * src0 = dst->src[0];
  7978. switch (src0->type) {
  7979. case GGML_TYPE_F32:
  7980. {
  7981. ggml_compute_forward_elu_f32(params, dst);
  7982. } break;
  7983. default:
  7984. {
  7985. GGML_ASSERT(false);
  7986. } break;
  7987. }
  7988. }
  7989. // ggml_compute_forward_relu
  7990. static void ggml_compute_forward_relu_f32(
  7991. const struct ggml_compute_params * params,
  7992. struct ggml_tensor * dst) {
  7993. const struct ggml_tensor * src0 = dst->src[0];
  7994. assert(params->ith == 0);
  7995. assert(ggml_are_same_shape(src0, dst));
  7996. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7997. return;
  7998. }
  7999. const int n = ggml_nrows(src0);
  8000. const int nc = src0->ne[0];
  8001. assert(dst->nb[0] == sizeof(float));
  8002. assert(src0->nb[0] == sizeof(float));
  8003. for (int i = 0; i < n; i++) {
  8004. ggml_vec_relu_f32(nc,
  8005. (float *) ((char *) dst->data + i*( dst->nb[1])),
  8006. (float *) ((char *) src0->data + i*(src0->nb[1])));
  8007. }
  8008. }
  8009. static void ggml_compute_forward_relu(
  8010. const struct ggml_compute_params * params,
  8011. struct ggml_tensor * dst) {
  8012. const struct ggml_tensor * src0 = dst->src[0];
  8013. switch (src0->type) {
  8014. case GGML_TYPE_F32:
  8015. {
  8016. ggml_compute_forward_relu_f32(params, dst);
  8017. } break;
  8018. default:
  8019. {
  8020. GGML_ASSERT(false);
  8021. } break;
  8022. }
  8023. }
  8024. // ggml_compute_forward_gelu
  8025. static void ggml_compute_forward_gelu_f32(
  8026. const struct ggml_compute_params * params,
  8027. struct ggml_tensor * dst) {
  8028. const struct ggml_tensor * src0 = dst->src[0];
  8029. GGML_ASSERT(ggml_is_contiguous_except_dim_1(src0));
  8030. GGML_ASSERT(ggml_is_contiguous_except_dim_1(dst));
  8031. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8032. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8033. return;
  8034. }
  8035. const int ith = params->ith;
  8036. const int nth = params->nth;
  8037. const int nc = src0->ne[0];
  8038. const int nr = ggml_nrows(src0);
  8039. // rows per thread
  8040. const int dr = (nr + nth - 1)/nth;
  8041. // row range for this thread
  8042. const int ir0 = dr*ith;
  8043. const int ir1 = MIN(ir0 + dr, nr);
  8044. for (int i1 = ir0; i1 < ir1; i1++) {
  8045. ggml_vec_gelu_f32(nc,
  8046. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  8047. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  8048. #ifndef NDEBUG
  8049. for (int k = 0; k < nc; k++) {
  8050. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  8051. UNUSED(x);
  8052. assert(!isnan(x));
  8053. assert(!isinf(x));
  8054. }
  8055. #endif
  8056. }
  8057. }
  8058. static void ggml_compute_forward_gelu(
  8059. const struct ggml_compute_params * params,
  8060. struct ggml_tensor * dst) {
  8061. const struct ggml_tensor * src0 = dst->src[0];
  8062. switch (src0->type) {
  8063. case GGML_TYPE_F32:
  8064. {
  8065. ggml_compute_forward_gelu_f32(params, dst);
  8066. } break;
  8067. default:
  8068. {
  8069. GGML_ASSERT(false);
  8070. } break;
  8071. }
  8072. }
  8073. // ggml_compute_forward_gelu_quick
  8074. static void ggml_compute_forward_gelu_quick_f32(
  8075. const struct ggml_compute_params * params,
  8076. struct ggml_tensor * dst) {
  8077. const struct ggml_tensor * src0 = dst->src[0];
  8078. GGML_ASSERT(ggml_is_contiguous_except_dim_1(src0));
  8079. GGML_ASSERT(ggml_is_contiguous_except_dim_1(dst));
  8080. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8081. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8082. return;
  8083. }
  8084. const int ith = params->ith;
  8085. const int nth = params->nth;
  8086. const int nc = src0->ne[0];
  8087. const int nr = ggml_nrows(src0);
  8088. // rows per thread
  8089. const int dr = (nr + nth - 1)/nth;
  8090. // row range for this thread
  8091. const int ir0 = dr*ith;
  8092. const int ir1 = MIN(ir0 + dr, nr);
  8093. for (int i1 = ir0; i1 < ir1; i1++) {
  8094. ggml_vec_gelu_quick_f32(nc,
  8095. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  8096. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  8097. #ifndef NDEBUG
  8098. for (int k = 0; k < nc; k++) {
  8099. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  8100. UNUSED(x);
  8101. assert(!isnan(x));
  8102. assert(!isinf(x));
  8103. }
  8104. #endif
  8105. }
  8106. }
  8107. static void ggml_compute_forward_gelu_quick(
  8108. const struct ggml_compute_params * params,
  8109. struct ggml_tensor * dst) {
  8110. const struct ggml_tensor * src0 = dst->src[0];
  8111. switch (src0->type) {
  8112. case GGML_TYPE_F32:
  8113. {
  8114. ggml_compute_forward_gelu_quick_f32(params, dst);
  8115. } break;
  8116. default:
  8117. {
  8118. GGML_ASSERT(false);
  8119. } break;
  8120. }
  8121. }
  8122. // ggml_compute_forward_silu
  8123. static void ggml_compute_forward_silu_f32(
  8124. const struct ggml_compute_params * params,
  8125. struct ggml_tensor * dst) {
  8126. const struct ggml_tensor * src0 = dst->src[0];
  8127. GGML_ASSERT(ggml_is_contiguous_except_dim_1(src0));
  8128. GGML_ASSERT(ggml_is_contiguous_except_dim_1(dst));
  8129. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8130. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8131. return;
  8132. }
  8133. const int ith = params->ith;
  8134. const int nth = params->nth;
  8135. const int nc = src0->ne[0];
  8136. const int nr = ggml_nrows(src0);
  8137. // rows per thread
  8138. const int dr = (nr + nth - 1)/nth;
  8139. // row range for this thread
  8140. const int ir0 = dr*ith;
  8141. const int ir1 = MIN(ir0 + dr, nr);
  8142. for (int i1 = ir0; i1 < ir1; i1++) {
  8143. ggml_vec_silu_f32(nc,
  8144. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  8145. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  8146. #ifndef NDEBUG
  8147. for (int k = 0; k < nc; k++) {
  8148. const float x = ((float *) ((char *) dst->data + i1*(dst->nb[1])))[k];
  8149. UNUSED(x);
  8150. assert(!isnan(x));
  8151. assert(!isinf(x));
  8152. }
  8153. #endif
  8154. }
  8155. }
  8156. static void ggml_compute_forward_silu(
  8157. const struct ggml_compute_params * params,
  8158. struct ggml_tensor * dst) {
  8159. const struct ggml_tensor * src0 = dst->src[0];
  8160. switch (src0->type) {
  8161. case GGML_TYPE_F32:
  8162. {
  8163. ggml_compute_forward_silu_f32(params, dst);
  8164. } break;
  8165. default:
  8166. {
  8167. GGML_ASSERT(false);
  8168. } break;
  8169. }
  8170. }
  8171. // ggml_compute_forward_leaky_relu
  8172. static void ggml_compute_forward_leaky_relu_f32(
  8173. const struct ggml_compute_params * params,
  8174. struct ggml_tensor * dst) {
  8175. const struct ggml_tensor * src0 = dst->src[0];
  8176. assert(params->ith == 0);
  8177. assert(ggml_are_same_shape(src0, dst));
  8178. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8179. return;
  8180. }
  8181. const int n = ggml_nrows(src0);
  8182. const int nc = src0->ne[0];
  8183. float negative_slope;
  8184. memcpy(&negative_slope, dst->op_params, sizeof(float));
  8185. assert(dst->nb[0] == sizeof(float));
  8186. assert(src0->nb[0] == sizeof(float));
  8187. for (int i = 0; i < n; i++) {
  8188. ggml_vec_leaky_relu_f32(nc,
  8189. (float *) ((char *) dst->data + i*( dst->nb[1])),
  8190. (float *) ((char *) src0->data + i*(src0->nb[1])), negative_slope);
  8191. }
  8192. }
  8193. static void ggml_compute_forward_leaky_relu(
  8194. const struct ggml_compute_params * params,
  8195. struct ggml_tensor * dst) {
  8196. const struct ggml_tensor * src0 = dst->src[0];
  8197. switch (src0->type) {
  8198. case GGML_TYPE_F32:
  8199. {
  8200. ggml_compute_forward_leaky_relu_f32(params, dst);
  8201. } break;
  8202. default:
  8203. {
  8204. GGML_ASSERT(false);
  8205. } break;
  8206. }
  8207. }
  8208. // ggml_compute_forward_silu_back
  8209. static void ggml_compute_forward_silu_back_f32(
  8210. const struct ggml_compute_params * params,
  8211. struct ggml_tensor * dst) {
  8212. const struct ggml_tensor * src0 = dst->src[0];
  8213. const struct ggml_tensor * grad = dst->src[1];
  8214. GGML_ASSERT(ggml_is_contiguous_except_dim_1(grad));
  8215. GGML_ASSERT(ggml_is_contiguous_except_dim_1(src0));
  8216. GGML_ASSERT(ggml_is_contiguous_except_dim_1(dst));
  8217. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8218. GGML_ASSERT(ggml_are_same_shape(src0, grad));
  8219. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8220. return;
  8221. }
  8222. const int ith = params->ith;
  8223. const int nth = params->nth;
  8224. const int nc = src0->ne[0];
  8225. const int nr = ggml_nrows(src0);
  8226. // rows per thread
  8227. const int dr = (nr + nth - 1)/nth;
  8228. // row range for this thread
  8229. const int ir0 = dr*ith;
  8230. const int ir1 = MIN(ir0 + dr, nr);
  8231. for (int i1 = ir0; i1 < ir1; i1++) {
  8232. ggml_vec_silu_backward_f32(nc,
  8233. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  8234. (float *) ((char *) src0->data + i1*(src0->nb[1])),
  8235. (float *) ((char *) grad->data + i1*(grad->nb[1])));
  8236. #ifndef NDEBUG
  8237. for (int k = 0; k < nc; k++) {
  8238. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  8239. UNUSED(x);
  8240. assert(!isnan(x));
  8241. assert(!isinf(x));
  8242. }
  8243. #endif
  8244. }
  8245. }
  8246. static void ggml_compute_forward_silu_back(
  8247. const struct ggml_compute_params * params,
  8248. struct ggml_tensor * dst) {
  8249. const struct ggml_tensor * src0 = dst->src[0];
  8250. switch (src0->type) {
  8251. case GGML_TYPE_F32:
  8252. {
  8253. ggml_compute_forward_silu_back_f32(params, dst);
  8254. } break;
  8255. default:
  8256. {
  8257. GGML_ASSERT(false);
  8258. } break;
  8259. }
  8260. }
  8261. static void ggml_compute_forward_hardswish_f32(
  8262. const struct ggml_compute_params * params,
  8263. struct ggml_tensor * dst) {
  8264. const struct ggml_tensor * src0 = dst->src[0];
  8265. assert(params->ith == 0);
  8266. assert(ggml_are_same_shape(src0, dst));
  8267. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8268. return;
  8269. }
  8270. const int n = ggml_nrows(src0);
  8271. const int nc = src0->ne[0];
  8272. assert(dst->nb[0] == sizeof(float));
  8273. assert(src0->nb[0] == sizeof(float));
  8274. for (int i = 0; i < n; i++) {
  8275. ggml_vec_hardswish_f32(nc,
  8276. (float *) ((char *) dst->data + i*( dst->nb[1])),
  8277. (float *) ((char *) src0->data + i*(src0->nb[1])));
  8278. }
  8279. }
  8280. static void ggml_compute_forward_hardswish(
  8281. const struct ggml_compute_params * params,
  8282. struct ggml_tensor * dst) {
  8283. const struct ggml_tensor * src0 = dst->src[0];
  8284. switch (src0->type) {
  8285. case GGML_TYPE_F32:
  8286. {
  8287. ggml_compute_forward_hardswish_f32(params, dst);
  8288. } break;
  8289. default:
  8290. {
  8291. GGML_ASSERT(false);
  8292. } break;
  8293. }
  8294. }
  8295. static void ggml_compute_forward_hardsigmoid_f32(
  8296. const struct ggml_compute_params * params,
  8297. struct ggml_tensor * dst) {
  8298. const struct ggml_tensor * src0 = dst->src[0];
  8299. assert(params->ith == 0);
  8300. assert(ggml_are_same_shape(src0, dst));
  8301. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8302. return;
  8303. }
  8304. const int n = ggml_nrows(src0);
  8305. const int nc = src0->ne[0];
  8306. assert(dst->nb[0] == sizeof(float));
  8307. assert(src0->nb[0] == sizeof(float));
  8308. for (int i = 0; i < n; i++) {
  8309. ggml_vec_hardsigmoid_f32(nc,
  8310. (float *) ((char *) dst->data + i*( dst->nb[1])),
  8311. (float *) ((char *) src0->data + i*(src0->nb[1])));
  8312. }
  8313. }
  8314. static void ggml_compute_forward_hardsigmoid(
  8315. const struct ggml_compute_params * params,
  8316. struct ggml_tensor * dst) {
  8317. const struct ggml_tensor * src0 = dst->src[0];
  8318. switch (src0->type) {
  8319. case GGML_TYPE_F32:
  8320. {
  8321. ggml_compute_forward_hardsigmoid_f32(params, dst);
  8322. } break;
  8323. default:
  8324. {
  8325. GGML_ASSERT(false);
  8326. } break;
  8327. }
  8328. }
  8329. // ggml_compute_forward_norm
  8330. static void ggml_compute_forward_norm_f32(
  8331. const struct ggml_compute_params * params,
  8332. struct ggml_tensor * dst) {
  8333. const struct ggml_tensor * src0 = dst->src[0];
  8334. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8335. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8336. return;
  8337. }
  8338. GGML_ASSERT(src0->nb[0] == sizeof(float));
  8339. const int ith = params->ith;
  8340. const int nth = params->nth;
  8341. GGML_TENSOR_UNARY_OP_LOCALS
  8342. float eps;
  8343. memcpy(&eps, dst->op_params, sizeof(float));
  8344. GGML_ASSERT(eps > 0.0f);
  8345. // TODO: optimize
  8346. for (int64_t i03 = 0; i03 < ne03; i03++) {
  8347. for (int64_t i02 = 0; i02 < ne02; i02++) {
  8348. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  8349. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  8350. ggml_float sum = 0.0;
  8351. for (int64_t i00 = 0; i00 < ne00; i00++) {
  8352. sum += (ggml_float)x[i00];
  8353. }
  8354. float mean = sum/ne00;
  8355. float * y = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  8356. ggml_float sum2 = 0.0;
  8357. for (int64_t i00 = 0; i00 < ne00; i00++) {
  8358. float v = x[i00] - mean;
  8359. y[i00] = v;
  8360. sum2 += (ggml_float)(v*v);
  8361. }
  8362. float variance = sum2/ne00;
  8363. const float scale = 1.0f/sqrtf(variance + eps);
  8364. ggml_vec_scale_f32(ne00, y, scale);
  8365. }
  8366. }
  8367. }
  8368. }
  8369. static void ggml_compute_forward_norm(
  8370. const struct ggml_compute_params * params,
  8371. struct ggml_tensor * dst) {
  8372. const struct ggml_tensor * src0 = dst->src[0];
  8373. switch (src0->type) {
  8374. case GGML_TYPE_F32:
  8375. {
  8376. ggml_compute_forward_norm_f32(params, dst);
  8377. } break;
  8378. default:
  8379. {
  8380. GGML_ASSERT(false);
  8381. } break;
  8382. }
  8383. }
  8384. // ggml_compute_forward_group_rms_norm
  8385. static void ggml_compute_forward_rms_norm_f32(
  8386. const struct ggml_compute_params * params,
  8387. struct ggml_tensor * dst) {
  8388. const struct ggml_tensor * src0 = dst->src[0];
  8389. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8390. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8391. return;
  8392. }
  8393. GGML_ASSERT(src0->nb[0] == sizeof(float));
  8394. const int ith = params->ith;
  8395. const int nth = params->nth;
  8396. GGML_TENSOR_UNARY_OP_LOCALS
  8397. float eps;
  8398. memcpy(&eps, dst->op_params, sizeof(float));
  8399. GGML_ASSERT(eps > 0.0f);
  8400. // TODO: optimize
  8401. for (int64_t i03 = 0; i03 < ne03; i03++) {
  8402. for (int64_t i02 = 0; i02 < ne02; i02++) {
  8403. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  8404. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  8405. ggml_float sum = 0.0;
  8406. for (int64_t i00 = 0; i00 < ne00; i00++) {
  8407. sum += (ggml_float)(x[i00] * x[i00]);
  8408. }
  8409. const float mean = sum/ne00;
  8410. float * y = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  8411. memcpy(y, x, ne00 * sizeof(float));
  8412. // for (int i00 = 0; i00 < ne00; i00++) {
  8413. // y[i00] = x[i00];
  8414. // }
  8415. const float scale = 1.0f/sqrtf(mean + eps);
  8416. ggml_vec_scale_f32(ne00, y, scale);
  8417. }
  8418. }
  8419. }
  8420. }
  8421. static void ggml_compute_forward_rms_norm(
  8422. const struct ggml_compute_params * params,
  8423. struct ggml_tensor * dst) {
  8424. const struct ggml_tensor * src0 = dst->src[0];
  8425. switch (src0->type) {
  8426. case GGML_TYPE_F32:
  8427. {
  8428. ggml_compute_forward_rms_norm_f32(params, dst);
  8429. } break;
  8430. default:
  8431. {
  8432. GGML_ASSERT(false);
  8433. } break;
  8434. }
  8435. }
  8436. static void ggml_compute_forward_rms_norm_back_f32(
  8437. const struct ggml_compute_params * params,
  8438. struct ggml_tensor * dst) {
  8439. const struct ggml_tensor * src0 = dst->src[0];
  8440. const struct ggml_tensor * src1 = dst->src[1];
  8441. GGML_ASSERT(ggml_are_same_shape(src0, dst) && ggml_are_same_shape(src0, src1));
  8442. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8443. return;
  8444. }
  8445. GGML_ASSERT(src0->nb[0] == sizeof(float));
  8446. const int ith = params->ith;
  8447. const int nth = params->nth;
  8448. GGML_TENSOR_BINARY_OP_LOCALS
  8449. float eps;
  8450. memcpy(&eps, dst->op_params, sizeof(float));
  8451. // TODO: optimize
  8452. for (int64_t i03 = 0; i03 < ne03; i03++) {
  8453. for (int64_t i02 = 0; i02 < ne02; i02++) {
  8454. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  8455. // src1 is same shape as src0 => same indices
  8456. const int64_t i11 = i01;
  8457. const int64_t i12 = i02;
  8458. const int64_t i13 = i03;
  8459. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  8460. const float * dz = (float *) ((char *) src1->data + i11*nb11 + i12*nb12 + i13*nb13);
  8461. ggml_float sum_xx = 0.0;
  8462. ggml_float sum_xdz = 0.0;
  8463. for (int64_t i00 = 0; i00 < ne00; i00++) {
  8464. sum_xx += (ggml_float)(x[i00] * x[i00]);
  8465. sum_xdz += (ggml_float)(x[i00] * dz[i00]);
  8466. }
  8467. //const float mean = (float)(sum_xx)/ne00;
  8468. const float mean_eps = (float)(sum_xx)/ne00 + eps;
  8469. const float sum_eps = (float)(sum_xx) + eps*ne00;
  8470. //const float mean_xdz = (float)(sum_xdz)/ne00;
  8471. // we could cache rms from forward pass to improve performance.
  8472. // to do this implement ggml_rms and compose ggml_rms_norm using ggml_rms.
  8473. //const float rms = sqrtf(mean_eps);
  8474. const float rrms = 1.0f / sqrtf(mean_eps);
  8475. //const float scale = -rrms/(ne00 * mean_eps); // -1/(n*rms**3)
  8476. {
  8477. // z = rms_norm(x)
  8478. //
  8479. // rms_norm(src0) =
  8480. // scale(
  8481. // src0,
  8482. // div(
  8483. // 1,
  8484. // sqrt(
  8485. // add(
  8486. // scale(
  8487. // sum(
  8488. // sqr(
  8489. // src0)),
  8490. // (1.0/N)),
  8491. // eps))));
  8492. // postorder:
  8493. // ## op args grad
  8494. // 00 param src0 grad[#00]
  8495. // 01 const 1
  8496. // 02 sqr (#00) grad[#02]
  8497. // 03 sum (#02) grad[#03]
  8498. // 04 const 1/N
  8499. // 05 scale (#03, #04) grad[#05]
  8500. // 06 const eps
  8501. // 07 add (#05, #06) grad[#07]
  8502. // 08 sqrt (#07) grad[#08]
  8503. // 09 div (#01,#08) grad[#09]
  8504. // 10 scale (#00,#09) grad[#10]
  8505. //
  8506. // backward pass, given grad[#10]
  8507. // #10: scale
  8508. // grad[#00] += scale(grad[#10],#09)
  8509. // grad[#09] += sum(mul(grad[#10],#00))
  8510. // #09: div
  8511. // grad[#08] += neg(mul(grad[#09], div(#09,#08)))
  8512. // #08: sqrt
  8513. // grad[#07] += mul(grad[#08], div(0.5, #08))
  8514. // #07: add
  8515. // grad[#05] += grad[#07]
  8516. // #05: scale
  8517. // grad[#03] += scale(grad[#05],#04)
  8518. // #03: sum
  8519. // grad[#02] += repeat(grad[#03], #02)
  8520. // #02:
  8521. // grad[#00] += scale(mul(#00, grad[#02]), 2.0)
  8522. //
  8523. // substitute and simplify:
  8524. // grad[#00] = scale(grad(#10), #09) + scale(mul(#00, grad[#02]), 2.0)
  8525. // grad[#02] = repeat(grad[#03], #02)
  8526. // grad[#02] = repeat(scale(grad[#05],#04), #02)
  8527. // grad[#02] = repeat(scale(grad[#07],#04), #02)
  8528. // grad[#02] = repeat(scale(mul(grad[#08], div(0.5, #08)),#04), #02)
  8529. // grad[#02] = repeat(scale(mul(neg(mul(grad[#09], div(#09,#08))), div(0.5, #08)),#04), #02)
  8530. // grad[#02] = repeat(scale(mul(neg(mul(sum(mul(grad[#10],#00)), div(#09,#08))), div(0.5, #08)),#04), #02)
  8531. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(#09,#08) * div(0.5, #08) * (1/N)), #02)
  8532. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(div(#01,#08),#08) * div(0.5, #08) * (1/N)), #02)
  8533. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(1,#08*#08) * div(0.5, #08) * (1/N)), #02)
  8534. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(1,#07) * div(0.5, #08) * (1/N)), #02)
  8535. // grad[#00] = scale(grad(#10), #09) + scale(mul(#00, grad[#02]), 2.0)
  8536. // grad[#00] = scale(grad(#10), #09) + scale(mul(#00, repeat(-(sum(mul(grad[#10],#00)) * div(1,#07) * div(0.5, #08) * (1/N)), #02)), 2.0)
  8537. // grad[#00] = scale(grad(#10), #09) + scale(scale(#00, -(sum(mul(grad[#10],#00)) * div(1,#07) * div(0.5, #08) * (1/N))), 2.0)
  8538. // grad[#00] = scale(grad(#10), #09) + scale(#00, -(sum(mul(grad[#10],#00)) * div(1,#07) * div(1,#08) * (1/N)))
  8539. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(1,#07*#08) * (-1/N))
  8540. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(1,#07*#08) * (-1/N))
  8541. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(1,mean_eps*rms) * (-1/N))
  8542. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(-1,rms*N*mean_eps))
  8543. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(-1,rms*N*(sum_xx/N+eps)))
  8544. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(-1,rms*N*sum_xx+rms*N*eps))
  8545. // grad[#00] = scale(dz, rrms) + scale(x, sum(mul(dz,x)) * div(-1,rms*N*mean_eps))
  8546. // grad[#00] = scale(dz, rrms) + scale(x, sum_xdz * div(-1,rms*N*mean_eps))
  8547. // a = b*c + d*e
  8548. // a = b*c*f/f + d*e*f/f
  8549. // a = (b*c*f + d*e*f)*(1/f)
  8550. // a = (b*c*(1/c) + d*e*(1/c))*(1/(1/c))
  8551. // a = (b + d*e/c)*c
  8552. // b = dz, c = rrms, d = x, e = sum_xdz * div(-1,rms*N*mean_eps)
  8553. // a = (dz + x*sum_xdz * div(-1,rms*N*mean_eps)/rrms)*rrms
  8554. // a = (dz + x*sum_xdz * div(-1,rms*N*mean_eps)*rms)*rrms
  8555. // a = (dz + x*sum_xdz * div(-rms,rms*N*mean_eps))*rrms
  8556. // a = (dz + x*sum_xdz * div(-1,N*mean_eps))*rrms
  8557. // a = (dz + x*div(-sum_xdz,N*mean_eps))*rrms
  8558. // a = (dz + x*div(-mean_xdz,mean_eps))*rrms
  8559. // grad[#00] = scale(dz + scale(x, div(-mean_xdz,mean_eps)),rrms)
  8560. // grad[#00] = scale(dz + scale(x, -mean_xdz/mean_eps),rrms)
  8561. // dx = scale(dz + scale(x, -mean_xdz/mean_eps),rrms)
  8562. }
  8563. // dx = scale(dz + scale(x, -mean_xdz/mean_eps),rrms)
  8564. // post-order:
  8565. // dx := x
  8566. // dx := scale(dx,-mean_xdz/mean_eps)
  8567. // dx := add(dx, dz)
  8568. // dx := scale(dx, rrms)
  8569. float * dx = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  8570. ggml_vec_cpy_f32 (ne00, dx, x);
  8571. // ggml_vec_scale_f32(ne00, dx, -mean_xdz/mean_eps);
  8572. ggml_vec_scale_f32(ne00, dx, (float)(-sum_xdz)/sum_eps);
  8573. ggml_vec_acc_f32 (ne00, dx, dz);
  8574. ggml_vec_scale_f32(ne00, dx, rrms);
  8575. }
  8576. }
  8577. }
  8578. }
  8579. static void ggml_compute_forward_rms_norm_back(
  8580. const struct ggml_compute_params * params,
  8581. struct ggml_tensor * dst) {
  8582. const struct ggml_tensor * src0 = dst->src[0];
  8583. switch (src0->type) {
  8584. case GGML_TYPE_F32:
  8585. {
  8586. ggml_compute_forward_rms_norm_back_f32(params, dst);
  8587. } break;
  8588. default:
  8589. {
  8590. GGML_ASSERT(false);
  8591. } break;
  8592. }
  8593. }
  8594. // ggml_compute_forward_group_norm
  8595. static void ggml_compute_forward_group_norm_f32(
  8596. const struct ggml_compute_params * params,
  8597. struct ggml_tensor * dst) {
  8598. const struct ggml_tensor * src0 = dst->src[0];
  8599. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8600. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8601. return;
  8602. }
  8603. GGML_ASSERT(src0->nb[0] == sizeof(float));
  8604. const int ith = params->ith;
  8605. const int nth = params->nth;
  8606. GGML_TENSOR_UNARY_OP_LOCALS
  8607. const float eps = 1e-6f; // TODO: make this a parameter
  8608. // TODO: optimize
  8609. int n_channels = src0->ne[2];
  8610. int n_groups = dst->op_params[0];
  8611. int n_channels_per_group = (n_channels + n_groups - 1) / n_groups;
  8612. for (int i = ith; i < n_groups; i += nth) {
  8613. int start = i * n_channels_per_group;
  8614. int end = start + n_channels_per_group;
  8615. if (end > n_channels) {
  8616. end = n_channels;
  8617. }
  8618. int step = end - start;
  8619. for (int64_t i03 = 0; i03 < ne03; i03++) {
  8620. ggml_float sum = 0.0;
  8621. for (int64_t i02 = start; i02 < end; i02++) {
  8622. for (int64_t i01 = 0; i01 < ne01; i01++) {
  8623. const float * x = (float *)((char *) src0->data + i01 * nb01 + i02 * nb02 + i03 * nb03);
  8624. ggml_float sumr = 0.0;
  8625. for (int64_t i00 = 0; i00 < ne00; i00++) {
  8626. sumr += (ggml_float)x[i00];
  8627. }
  8628. sum += sumr;
  8629. }
  8630. }
  8631. const float mean = sum / (ne00 * ne01 * step);
  8632. ggml_float sum2 = 0.0;
  8633. for (int64_t i02 = start; i02 < end; i02++) {
  8634. for (int64_t i01 = 0; i01 < ne01; i01++) {
  8635. const float * x = (float *)((char *) src0->data + i01 * nb01 + i02 * nb02 + i03 * nb03);
  8636. float * y = (float *)((char *) dst->data + i01 * nb1 + i02 * nb2 + i03 * nb3);
  8637. ggml_float sumr = 0.0;
  8638. for (int64_t i00 = 0; i00 < ne00; i00++) {
  8639. float v = x[i00] - mean;
  8640. y[i00] = v;
  8641. sumr += (ggml_float)(v * v);
  8642. }
  8643. sum2 += sumr;
  8644. }
  8645. }
  8646. const float variance = sum2 / (ne00 * ne01 * step);
  8647. const float scale = 1.0f / sqrtf(variance + eps);
  8648. for (int64_t i02 = start; i02 < end; i02++) {
  8649. for (int64_t i01 = 0; i01 < ne01; i01++) {
  8650. float * y = (float *)((char *) dst->data + i01 * nb1 + i02 * nb2 + i03 * nb3);
  8651. ggml_vec_scale_f32(ne00, y, scale);
  8652. }
  8653. }
  8654. }
  8655. }
  8656. }
  8657. static void ggml_compute_forward_group_norm(
  8658. const struct ggml_compute_params * params,
  8659. struct ggml_tensor * dst) {
  8660. const struct ggml_tensor * src0 = dst->src[0];
  8661. switch (src0->type) {
  8662. case GGML_TYPE_F32:
  8663. {
  8664. ggml_compute_forward_group_norm_f32(params, dst);
  8665. } break;
  8666. default:
  8667. {
  8668. GGML_ASSERT(false);
  8669. } break;
  8670. }
  8671. }
  8672. // ggml_compute_forward_mul_mat
  8673. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  8674. // helper function to determine if it is better to use BLAS or not
  8675. // for large matrices, BLAS is faster
  8676. static bool ggml_compute_forward_mul_mat_use_blas(struct ggml_tensor * dst) {
  8677. const struct ggml_tensor * src0 = dst->src[0];
  8678. const struct ggml_tensor * src1 = dst->src[1];
  8679. //const int64_t ne00 = src0->ne[0];
  8680. //const int64_t ne01 = src0->ne[1];
  8681. const int64_t ne10 = src1->ne[0];
  8682. const int64_t ne0 = dst->ne[0];
  8683. const int64_t ne1 = dst->ne[1];
  8684. // NOTE: with GGML_OP_MUL_MAT_ID we don't want to go through the BLAS branch because it will dequantize (to_float)
  8685. // all the experts for each batch element and the processing would become incredibly slow
  8686. // TODO: find the optimal values for these
  8687. if (dst->op != GGML_OP_MUL_MAT_ID &&
  8688. ggml_is_contiguous(src0) &&
  8689. ggml_is_contiguous(src1) &&
  8690. //src0->type == GGML_TYPE_F32 &&
  8691. src1->type == GGML_TYPE_F32 &&
  8692. (ne0 >= 32 && ne1 >= 32 && ne10 >= 32)) {
  8693. /*printf("BLAS: %d %d %d %d %d\n", ne0, ne1, ne10, ne00, ne01);*/
  8694. return true;
  8695. }
  8696. return false;
  8697. }
  8698. #endif
  8699. static void ggml_compute_forward_mul_mat(
  8700. const struct ggml_compute_params * params,
  8701. struct ggml_tensor * dst) {
  8702. const struct ggml_tensor * src0 = dst->src[0];
  8703. const struct ggml_tensor * src1 = dst->src[1];
  8704. int64_t t0 = ggml_perf_time_us();
  8705. UNUSED(t0);
  8706. GGML_TENSOR_BINARY_OP_LOCALS
  8707. const int ith = params->ith;
  8708. const int nth = params->nth;
  8709. const enum ggml_type type = src0->type;
  8710. const bool src1_cont = ggml_is_contiguous(src1);
  8711. ggml_vec_dot_t const vec_dot = type_traits[type].vec_dot;
  8712. enum ggml_type const vec_dot_type = type_traits[type].vec_dot_type;
  8713. ggml_from_float_t const from_float_to_vec_dot = type_traits[vec_dot_type].from_float;
  8714. int64_t const vec_dot_num_rows = type_traits[type].nrows;
  8715. GGML_ASSERT(ne0 == ne01);
  8716. GGML_ASSERT(ne1 == ne11);
  8717. GGML_ASSERT(ne2 == ne12);
  8718. GGML_ASSERT(ne3 == ne13);
  8719. // we don't support permuted src0 or src1
  8720. GGML_ASSERT(nb00 == ggml_type_size(type));
  8721. GGML_ASSERT(nb10 == ggml_type_size(src1->type));
  8722. // dst cannot be transposed or permuted
  8723. GGML_ASSERT(nb0 == sizeof(float));
  8724. GGML_ASSERT(nb0 <= nb1);
  8725. GGML_ASSERT(nb1 <= nb2);
  8726. GGML_ASSERT(nb2 <= nb3);
  8727. // broadcast factors
  8728. const int64_t r2 = ne12/ne02;
  8729. const int64_t r3 = ne13/ne03;
  8730. // nb01 >= nb00 - src0 is not transposed
  8731. // compute by src0 rows
  8732. #if defined(GGML_USE_CLBLAST)
  8733. if (ggml_cl_can_mul_mat(src0, src1, dst)) {
  8734. if (params->ith == 0 && params->type == GGML_TASK_TYPE_COMPUTE) {
  8735. ggml_cl_mul_mat(src0, src1, dst, params->wdata, params->wsize);
  8736. }
  8737. return;
  8738. }
  8739. #endif
  8740. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  8741. if (ggml_compute_forward_mul_mat_use_blas(dst)) {
  8742. const int64_t ne_plane = ne01*ne00;
  8743. const size_t desired_wsize = ne13*ne12*ne_plane*sizeof(float);
  8744. UNUSED(desired_wsize);
  8745. if (params->type == GGML_TASK_TYPE_INIT) {
  8746. if (type != GGML_TYPE_F32) {
  8747. assert(params->wsize >= desired_wsize);
  8748. // parallelize by src0 rows
  8749. for (int64_t i13 = 0; i13 < ne13; i13++) {
  8750. for (int64_t i12 = 0; i12 < ne12; i12++) {
  8751. // broadcast src0 into src1 across 2nd,3rd dimension
  8752. const int64_t i03 = i13/r3;
  8753. const int64_t i02 = i12/r2;
  8754. const void * x = (char *) src0->data + i02*nb02 + i03*nb03;
  8755. float * const wdata = (float *) params->wdata + i13*ne12*ne_plane + i12*ne_plane;
  8756. ggml_to_float_t const to_float = type_traits[type].to_float;
  8757. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  8758. to_float((const char *) x + i01*nb01, wdata + i01*ne00, ne00);
  8759. }
  8760. }
  8761. }
  8762. }
  8763. return;
  8764. }
  8765. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  8766. return;
  8767. }
  8768. // perform sgemm, parallelization controlled by blas lib
  8769. if (ith != 0) {
  8770. return;
  8771. }
  8772. //const int64_t tgemm0 = ggml_perf_time_us();
  8773. for (int64_t i13 = 0; i13 < ne13; i13++) {
  8774. for (int64_t i12 = 0; i12 < ne12; i12++) {
  8775. const int64_t i03 = i13/r3;
  8776. const int64_t i02 = i12/r2;
  8777. const void * x = (char *) src0->data + i02*nb02 + i03*nb03;
  8778. const float * y = (float *) ((char *) src1->data + i12*nb12 + i13*nb13);
  8779. float * d = (float *) ((char *) dst->data + i12*nb2 + i13*nb3);
  8780. if (type != GGML_TYPE_F32) {
  8781. x = (float *) params->wdata + i13*ne12*ne_plane + i12*ne_plane;
  8782. }
  8783. cblas_sgemm(CblasRowMajor, CblasNoTrans, CblasTrans,
  8784. ne1, ne01, ne10,
  8785. 1.0f, y, ne10,
  8786. x, ne00,
  8787. 0.0f, d, ne01);
  8788. }
  8789. }
  8790. //printf("cblas_sgemm = %.3f ms, %lld flops\n", (ggml_perf_time_us() - tgemm0)/1000.0, ne13*ne12*ne1*ne01*ne10*2);
  8791. //printf("CBLAS = %f ms, %d x %d x %d x %d\n", (ggml_perf_time_us() - t0)/1000.0, ne0, ne1, ne2, ne3);
  8792. return;
  8793. }
  8794. #endif
  8795. if (params->type == GGML_TASK_TYPE_INIT) {
  8796. if (ith != 0) {
  8797. return;
  8798. }
  8799. if (src1->type != vec_dot_type) {
  8800. char * wdata = params->wdata;
  8801. const size_t row_size = ggml_row_size(vec_dot_type, ne10);
  8802. assert(params->wsize >= ne11*ne12*ne13*row_size);
  8803. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  8804. for (int64_t i13 = 0; i13 < ne13; ++i13) {
  8805. for (int64_t i12 = 0; i12 < ne12; ++i12) {
  8806. for (int64_t i11 = 0; i11 < ne11; ++i11) {
  8807. from_float_to_vec_dot((float *)((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11), (void *) wdata, ne10);
  8808. wdata += row_size;
  8809. }
  8810. }
  8811. }
  8812. }
  8813. return;
  8814. }
  8815. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  8816. return;
  8817. }
  8818. const void * wdata = (src1->type == vec_dot_type) ? src1->data : params->wdata;
  8819. const size_t row_size = ggml_row_size(vec_dot_type, ne10);
  8820. const int64_t nr0 = ne01; // src0 rows
  8821. const int64_t nr1 = ne1*ne12*ne13; // src1 rows
  8822. //printf("nr0 = %lld, nr1 = %lld\n", nr0, nr1);
  8823. // distribute the thread work across the inner or outer loop based on which one is larger
  8824. const int64_t nth0 = nr0 > nr1 ? nth : 1; // parallelize by src0 rows
  8825. const int64_t nth1 = nr0 > nr1 ? 1 : nth; // parallelize by src1 rows
  8826. const int64_t ith0 = ith % nth0;
  8827. const int64_t ith1 = ith / nth0;
  8828. const int64_t dr0 = (nr0 + nth0 - 1)/nth0;
  8829. const int64_t dr1 = (nr1 + nth1 - 1)/nth1;
  8830. const int64_t ir010 = dr0*ith0;
  8831. const int64_t ir011 = MIN(ir010 + dr0, nr0);
  8832. const int64_t ir110 = dr1*ith1;
  8833. const int64_t ir111 = MIN(ir110 + dr1, nr1);
  8834. //printf("ir010 = %6lld, ir011 = %6lld, ir110 = %6lld, ir111 = %6lld\n", ir010, ir011, ir110, ir111);
  8835. // threads with no work simply yield (not sure if it helps)
  8836. if (ir010 >= ir011 || ir110 >= ir111) {
  8837. sched_yield();
  8838. return;
  8839. }
  8840. assert(ne12 % ne02 == 0);
  8841. assert(ne13 % ne03 == 0);
  8842. // block-tiling attempt
  8843. const int64_t blck_0 = 16;
  8844. const int64_t blck_1 = 16;
  8845. // dot kernels can handle 1 row and col at a time, but mmla kernels can process 2 rows and cols
  8846. int64_t nrc = vec_dot_num_rows;
  8847. // TODO: currently the mmla kernels support only even numbered rows/cols.
  8848. // this check can be removed once they are extended to support odd numbered rows/cols too
  8849. if ((nr0 % 2 != 0) || (ne11 % 2 != 0)) {
  8850. nrc = 1;
  8851. }
  8852. const size_t src1_col_stride = src1_cont || src1->type != vec_dot_type ? row_size : nb11;
  8853. // attempt to reduce false-sharing (does not seem to make a difference)
  8854. // 16 * 2, accounting for mmla kernels
  8855. float tmp[32];
  8856. for (int64_t iir1 = ir110; iir1 < ir111; iir1 += blck_1) {
  8857. for (int64_t iir0 = ir010; iir0 < ir011; iir0 += blck_0) {
  8858. for (int64_t ir1 = iir1; ir1 < iir1 + blck_1 && ir1 < ir111; ir1 += nrc) {
  8859. const int64_t i13 = (ir1/(ne12*ne1));
  8860. const int64_t i12 = (ir1 - i13*ne12*ne1)/ne1;
  8861. const int64_t i11 = (ir1 - i13*ne12*ne1 - i12*ne1);
  8862. // broadcast src0 into src1
  8863. const int64_t i03 = i13/r3;
  8864. const int64_t i02 = i12/r2;
  8865. const int64_t i1 = i11;
  8866. const int64_t i2 = i12;
  8867. const int64_t i3 = i13;
  8868. const char * src0_row = (const char *) src0->data + (0 + i02*nb02 + i03*nb03);
  8869. // desc: when src1 is not a contiguous memory block we have to calculate the offset using the strides
  8870. // if it is, then we have either copied the data to params->wdata and made it contiguous or we are using
  8871. // the original src1 data pointer, so we should index using the indices directly
  8872. // TODO: this is a bit of a hack, we should probably have a better way to handle this
  8873. const char * src1_col = (const char *) wdata +
  8874. (src1_cont || src1->type != vec_dot_type
  8875. ? (i11 + i12*ne11 + i13*ne12*ne11)*row_size
  8876. : (i11*nb11 + i12*nb12 + i13*nb13));
  8877. float * dst_col = (float *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3));
  8878. //for (int64_t ir0 = iir0; ir0 < iir0 + blck_0 && ir0 < ir011; ++ir0) {
  8879. // vec_dot(ne00, &dst_col[ir0], src0_row + ir0*nb01, src1_col);
  8880. //}
  8881. for (int64_t ir0 = iir0; ir0 < iir0 + blck_0 && ir0 < ir011; ir0 += nrc) {
  8882. vec_dot(ne00, &tmp[ir0 - iir0], (nrc>1 ? 16 : 0), src0_row + ir0*nb01, (nrc>1 ? nb01 : 0), src1_col, (nrc>1 ? src1_col_stride : 0), nrc);
  8883. }
  8884. for (int cn = 0; cn < nrc; ++cn) {
  8885. memcpy(&dst_col[iir0 + cn*nb1/nb0], tmp + (cn*16), (MIN(iir0 + blck_0, ir011) - iir0)*sizeof(float));
  8886. }
  8887. }
  8888. }
  8889. }
  8890. }
  8891. // ggml_compute_forward_mul_mat_id
  8892. static void ggml_compute_forward_mul_mat_id(
  8893. const struct ggml_compute_params * params,
  8894. struct ggml_tensor * dst) {
  8895. const struct ggml_tensor * src0 = dst->src[0];
  8896. const struct ggml_tensor * src1 = dst->src[1];
  8897. const struct ggml_tensor * ids = dst->src[2];
  8898. GGML_TENSOR_BINARY_OP_LOCALS
  8899. const int ith = params->ith;
  8900. const int nth = params->nth;
  8901. const enum ggml_type type = src0->type;
  8902. const bool src1_cont = ggml_is_contiguous(src1);
  8903. ggml_vec_dot_t const vec_dot = type_traits[type].vec_dot;
  8904. enum ggml_type const vec_dot_type = type_traits[type].vec_dot_type;
  8905. ggml_from_float_t const from_float_to_vec_dot = type_traits[vec_dot_type].from_float;
  8906. GGML_ASSERT(ne0 == ne01);
  8907. GGML_ASSERT(ne1 == ne11);
  8908. GGML_ASSERT(ne2 == ne12);
  8909. GGML_ASSERT(ne3 == ne13);
  8910. // we don't support permuted src0 or src1
  8911. GGML_ASSERT(nb00 == ggml_type_size(type));
  8912. GGML_ASSERT(nb10 == ggml_type_size(src1->type));
  8913. // dst cannot be transposed or permuted
  8914. GGML_ASSERT(nb0 == sizeof(float));
  8915. GGML_ASSERT(nb0 <= nb1);
  8916. GGML_ASSERT(nb1 <= nb2);
  8917. GGML_ASSERT(nb2 <= nb3);
  8918. // broadcast is not supported with mmid
  8919. assert(ne12 == 1);
  8920. assert(ne13 == 1);
  8921. // row groups
  8922. const int id = ggml_get_op_params_i32(dst, 0);
  8923. const int n_as = src0->ne[2];
  8924. char * wdata_src1_end = (src1->type == vec_dot_type) ?
  8925. (char *) params->wdata :
  8926. (char *) params->wdata + GGML_PAD(ggml_row_size(vec_dot_type, ggml_nelements(src1)), sizeof(int64_t));
  8927. int64_t * matrix_row_counts = (int64_t *) (wdata_src1_end); // [n_as]
  8928. int64_t * matrix_rows = matrix_row_counts + n_as; // [n_as][ne11]
  8929. #define MMID_MATRIX_ROW(row_id, i1) matrix_rows[(row_id)*ne11 + (i1)]
  8930. if (params->type == GGML_TASK_TYPE_INIT) {
  8931. if (ith != 0) {
  8932. return;
  8933. }
  8934. char * wdata = params->wdata;
  8935. if (src1->type != vec_dot_type) {
  8936. const size_t row_size = ggml_row_size(vec_dot_type, ne10);
  8937. assert(params->wsize >= ne11*ne12*ne13*row_size);
  8938. assert(src1->type == GGML_TYPE_F32);
  8939. for (int64_t i13 = 0; i13 < ne13; ++i13) {
  8940. for (int64_t i12 = 0; i12 < ne12; ++i12) {
  8941. for (int64_t i11 = 0; i11 < ne11; ++i11) {
  8942. from_float_to_vec_dot((float *)((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11), (void *) wdata, ne10);
  8943. wdata += row_size;
  8944. }
  8945. }
  8946. }
  8947. }
  8948. // initialize matrix_row_counts
  8949. GGML_ASSERT(wdata == wdata_src1_end);
  8950. memset(matrix_row_counts, 0, n_as*sizeof(int64_t));
  8951. // group rows by src0 matrix
  8952. for (int64_t i01 = 0; i01 < ids->ne[1]; i01++) {
  8953. const int32_t row_id = *(const int32_t *) ((const char *) ids->data + i01*ids->nb[1] + id*ids->nb[0]);
  8954. GGML_ASSERT(row_id >= 0 && row_id < n_as);
  8955. MMID_MATRIX_ROW(row_id, matrix_row_counts[row_id]) = i01;
  8956. matrix_row_counts[row_id] += 1;
  8957. }
  8958. return;
  8959. }
  8960. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  8961. return;
  8962. }
  8963. // compute each matrix multiplication in sequence
  8964. for (int cur_a = 0; cur_a < n_as; ++cur_a) {
  8965. const int64_t cne1 = matrix_row_counts[cur_a];
  8966. if (cne1 == 0) {
  8967. continue;
  8968. }
  8969. size_t src0_offset = cur_a*src0->nb[2];
  8970. const void * wdata = (src1->type == vec_dot_type) ? src1->data : params->wdata;
  8971. const size_t row_size = ggml_row_size(vec_dot_type, ne10);
  8972. const int64_t nr0 = ne01; // src0 rows
  8973. const int64_t nr1 = cne1*ne12*ne13; // src1 rows
  8974. //printf("nr0 = %lld, nr1 = %lld\n", nr0, nr1);
  8975. // distribute the thread work across the inner or outer loop based on which one is larger
  8976. const int64_t nth0 = nr0 > nr1 ? nth : 1; // parallelize by src0 rows
  8977. const int64_t nth1 = nr0 > nr1 ? 1 : nth; // parallelize by src1 rows
  8978. const int64_t ith0 = ith % nth0;
  8979. const int64_t ith1 = ith / nth0;
  8980. const int64_t dr0 = (nr0 + nth0 - 1)/nth0;
  8981. const int64_t dr1 = (nr1 + nth1 - 1)/nth1;
  8982. const int64_t ir010 = dr0*ith0;
  8983. const int64_t ir011 = MIN(ir010 + dr0, nr0);
  8984. const int64_t ir110 = dr1*ith1;
  8985. const int64_t ir111 = MIN(ir110 + dr1, nr1);
  8986. //printf("ir010 = %6lld, ir011 = %6lld, ir110 = %6lld, ir111 = %6lld\n", ir010, ir011, ir110, ir111);
  8987. // threads with no work simply yield (not sure if it helps)
  8988. if (ir010 >= ir011 || ir110 >= ir111) {
  8989. sched_yield();
  8990. continue;
  8991. }
  8992. // block-tiling attempt
  8993. const int64_t blck_0 = 16;
  8994. const int64_t blck_1 = 16;
  8995. // attempt to reduce false-sharing (does not seem to make a difference)
  8996. float tmp[16];
  8997. for (int64_t iir1 = ir110; iir1 < ir111; iir1 += blck_1) {
  8998. for (int64_t iir0 = ir010; iir0 < ir011; iir0 += blck_0) {
  8999. for (int64_t ir1 = iir1; ir1 < iir1 + blck_1 && ir1 < ir111; ++ir1) {
  9000. const int64_t i13 = (ir1/(ne12*cne1)); // Note: currently, src1 is always a matrix
  9001. const int64_t i12 = (ir1 - i13*ne12*cne1)/cne1;
  9002. const int64_t _i11 = (ir1 - i13*ne12*cne1 - i12*cne1);
  9003. const int64_t i11 = MMID_MATRIX_ROW(cur_a, _i11);
  9004. // broadcast src0 into src1
  9005. //const int64_t i03 = i13/r3;
  9006. //const int64_t i02 = i12/r2;
  9007. const int64_t i1 = i11;
  9008. const int64_t i2 = i12;
  9009. const int64_t i3 = i13;
  9010. const char * src0_row = (const char *) src0->data + src0_offset;
  9011. // desc: when src1 is not a contiguous memory block we have to calculate the offset using the strides
  9012. // if it is, then we have either copied the data to params->wdata and made it contiguous or we are using
  9013. // the original src1 data pointer, so we should index using the indices directly
  9014. // TODO: this is a bit of a hack, we should probably have a better way to handle this
  9015. const char * src1_col = (const char *) wdata +
  9016. (src1_cont || src1->type != vec_dot_type
  9017. ? (i11 + i12*ne11 + i13*ne12*ne11)*row_size
  9018. : (i11*nb11 + i12*nb12 + i13*nb13));
  9019. float * dst_col = (float *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3));
  9020. //for (int64_t ir0 = iir0; ir0 < iir0 + blck_0 && ir0 < ir011; ++ir0) {
  9021. // vec_dot(ne00, &dst_col[ir0], src0_row + ir0*nb01, src1_col);
  9022. //}
  9023. for (int64_t ir0 = iir0; ir0 < iir0 + blck_0 && ir0 < ir011; ++ir0) {
  9024. vec_dot(ne00, &tmp[ir0 - iir0], 0, src0_row + ir0*nb01, 0, src1_col, 0, 1);
  9025. }
  9026. memcpy(&dst_col[iir0], tmp, (MIN(iir0 + blck_0, ir011) - iir0)*sizeof(float));
  9027. }
  9028. }
  9029. }
  9030. }
  9031. #undef MMID_MATRIX_ROW
  9032. }
  9033. // ggml_compute_forward_out_prod
  9034. static void ggml_compute_forward_out_prod_f32(
  9035. const struct ggml_compute_params * params,
  9036. struct ggml_tensor * dst) {
  9037. const struct ggml_tensor * src0 = dst->src[0];
  9038. const struct ggml_tensor * src1 = dst->src[1];
  9039. // int64_t t0 = ggml_perf_time_us();
  9040. // UNUSED(t0);
  9041. GGML_TENSOR_BINARY_OP_LOCALS
  9042. const int ith = params->ith;
  9043. const int nth = params->nth;
  9044. GGML_ASSERT(ne0 == ne00);
  9045. GGML_ASSERT(ne1 == ne10);
  9046. GGML_ASSERT(ne2 == ne02);
  9047. GGML_ASSERT(ne02 == ne12);
  9048. GGML_ASSERT(ne3 == ne13);
  9049. GGML_ASSERT(ne03 == ne13);
  9050. // we don't support permuted src0 or src1
  9051. GGML_ASSERT(nb00 == sizeof(float));
  9052. // dst cannot be transposed or permuted
  9053. GGML_ASSERT(nb0 == sizeof(float));
  9054. // GGML_ASSERT(nb0 <= nb1);
  9055. // GGML_ASSERT(nb1 <= nb2);
  9056. // GGML_ASSERT(nb2 <= nb3);
  9057. // nb01 >= nb00 - src0 is not transposed
  9058. // compute by src0 rows
  9059. // TODO: #if defined(GGML_USE_CLBLAST)
  9060. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  9061. bool use_blas = ggml_is_matrix(src0) &&
  9062. ggml_is_matrix(src1) &&
  9063. ggml_is_contiguous(src0) &&
  9064. (ggml_is_contiguous(src1) || ggml_is_transposed(src1));
  9065. #endif
  9066. if (params->type == GGML_TASK_TYPE_INIT) {
  9067. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) // gemm beta will zero dst
  9068. if (use_blas) {
  9069. return;
  9070. }
  9071. #endif
  9072. if (ith != 0) {
  9073. return;
  9074. }
  9075. ggml_vec_set_f32(ne0*ne1*ne2*ne3, dst->data, 0);
  9076. return;
  9077. }
  9078. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  9079. return;
  9080. }
  9081. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  9082. if (use_blas) {
  9083. if (params->ith != 0) { // All threads other than the first do no work.
  9084. return;
  9085. }
  9086. // Arguments to ggml_compute_forward_out_prod (expressed as major,minor)
  9087. // src0: (k,n)
  9088. // src1: (k,m)
  9089. // dst: (m,n)
  9090. //
  9091. // Arguments to sgemm (see https://github.com/Reference-LAPACK/lapack/blob/master/BLAS/SRC/sgemm.f)
  9092. // Also expressed as (major,minor)
  9093. // a: (m,k): so src1 transposed
  9094. // b: (k,n): so src0
  9095. // c: (m,n)
  9096. //
  9097. // However, if ggml_is_transposed(src1) is true, then
  9098. // src1->data already contains a transposed version, so sgemm mustn't
  9099. // transpose it further.
  9100. int n = src0->ne[0];
  9101. int k = src0->ne[1];
  9102. int m = src1->ne[0];
  9103. int transposeA, lda;
  9104. if (!ggml_is_transposed(src1)) {
  9105. transposeA = CblasTrans;
  9106. lda = m;
  9107. } else {
  9108. transposeA = CblasNoTrans;
  9109. lda = k;
  9110. }
  9111. float * a = (float *) ((char *) src1->data);
  9112. float * b = (float *) ((char *) src0->data);
  9113. float * c = (float *) ((char *) dst->data);
  9114. cblas_sgemm(CblasRowMajor, transposeA, CblasNoTrans, m, n, k, 1.0, a, lda, b, n, 0.0, c, n);
  9115. return;
  9116. }
  9117. #endif
  9118. // dst[:,:,:,:] = 0
  9119. // for i2,i3:
  9120. // for i1:
  9121. // for i01:
  9122. // for i0:
  9123. // dst[i0,i1,i2,i3] += src0[i0,i01,i2,i3] * src1[i1,i01,i2,i3]
  9124. // parallelize by last three dimensions
  9125. // total rows in dst
  9126. const int64_t nr = ne1*ne2*ne3;
  9127. // rows per thread
  9128. const int64_t dr = (nr + nth - 1)/nth;
  9129. // row range for this thread
  9130. const int64_t ir0 = dr*ith;
  9131. const int64_t ir1 = MIN(ir0 + dr, nr);
  9132. // block-tiling attempt
  9133. const int64_t blck_0 = MAX(GGML_VEC_MAD_UNROLL, 32);
  9134. const int64_t blck_1 = 16;
  9135. for (int64_t bir = ir0; bir < ir1; bir += blck_1) {
  9136. const int64_t bir1 = MIN(bir + blck_1, ir1);
  9137. for (int64_t bi01 = 0; bi01 < ne01; bi01 += blck_0) {
  9138. const int64_t bne01 = MIN(bi01 + blck_0, ne01);
  9139. for (int64_t ir = bir; ir < bir1; ++ir) {
  9140. // dst indices
  9141. const int64_t i3 = ir/(ne2*ne1);
  9142. const int64_t i2 = (ir - i3*ne2*ne1)/ne1;
  9143. const int64_t i1 = (ir - i3*ne2*ne1 - i2*ne1);
  9144. const int64_t i02 = i2;
  9145. const int64_t i03 = i3;
  9146. //const int64_t i10 = i1;
  9147. const int64_t i12 = i2;
  9148. const int64_t i13 = i3;
  9149. #if GGML_VEC_MAD_UNROLL > 2
  9150. const int64_t bne01_unroll = bne01 - (bne01 % GGML_VEC_MAD_UNROLL);
  9151. for (int64_t i01 = bi01; i01 < bne01_unroll; i01 += GGML_VEC_MAD_UNROLL) {
  9152. const int64_t i11 = i01;
  9153. float * s0 = (float *) ((char *) src0->data + ( i01*nb01 + i02*nb02 + i03*nb03));
  9154. float * s1 = (float *) ((char *) src1->data + (i1*nb10 + i11*nb11 + i12*nb12 + i13*nb13));
  9155. float * d = (float *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
  9156. ggml_vec_mad_f32_unroll(ne0, nb01, nb11, d, s0, s1);
  9157. }
  9158. for (int64_t i01 = bne01_unroll; i01 < bne01; ++i01) {
  9159. const int64_t i11 = i01;
  9160. float * s0 = (float *) ((char *) src0->data + ( i01*nb01 + i02*nb02 + i03*nb03));
  9161. float * s1 = (float *) ((char *) src1->data + (i1*nb10 + i11*nb11 + i12*nb12 + i13*nb13));
  9162. float * d = (float *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
  9163. ggml_vec_mad_f32(ne0, d, s0, *s1);
  9164. }
  9165. #else
  9166. for (int64_t i01 = bi01; i01 < bne01; ++i01) {
  9167. const int64_t i11 = i01;
  9168. float * s0 = (float *) ((char *) src0->data + ( i01*nb01 + i02*nb02 + i03*nb03));
  9169. float * s1 = (float *) ((char *) src1->data + (i1*nb10 + i11*nb11 + i12*nb12 + i13*nb13));
  9170. float * d = (float *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
  9171. ggml_vec_mad_f32(ne0, d, s0, *s1);
  9172. }
  9173. #endif
  9174. }
  9175. }
  9176. }
  9177. //int64_t t1 = ggml_perf_time_us();
  9178. //static int64_t acc = 0;
  9179. //acc += t1 - t0;
  9180. //if (t1 - t0 > 10) {
  9181. // printf("\n");
  9182. // printf("ne00 = %5d, ne01 = %5d, ne02 = %5d, ne03 = %5d\n", ne00, ne01, ne02, ne03);
  9183. // printf("nb00 = %5d, nb01 = %5d, nb02 = %5d, nb03 = %5d\n", nb00, nb01, nb02, nb03);
  9184. // printf("ne10 = %5d, ne11 = %5d, ne12 = %5d, ne13 = %5d\n", ne10, ne11, ne12, ne13);
  9185. // printf("nb10 = %5d, nb11 = %5d, nb12 = %5d, nb13 = %5d\n", nb10, nb11, nb12, nb13);
  9186. // printf("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX task %d/%d: %d us, acc = %d\n", ith, nth, (int) (t1 - t0), (int) acc);
  9187. //}
  9188. }
  9189. static void ggml_compute_forward_out_prod_q_f32(
  9190. const struct ggml_compute_params * params,
  9191. struct ggml_tensor * dst) {
  9192. const struct ggml_tensor * src0 = dst->src[0];
  9193. const struct ggml_tensor * src1 = dst->src[1];
  9194. // int64_t t0 = ggml_perf_time_us();
  9195. // UNUSED(t0);
  9196. GGML_TENSOR_BINARY_OP_LOCALS;
  9197. const int ith = params->ith;
  9198. const int nth = params->nth;
  9199. const enum ggml_type type = src0->type;
  9200. ggml_to_float_t const dequantize_row_q = type_traits[type].to_float;
  9201. GGML_ASSERT(ne02 == ne12);
  9202. GGML_ASSERT(ne03 == ne13);
  9203. GGML_ASSERT(ne2 == ne12);
  9204. GGML_ASSERT(ne3 == ne13);
  9205. // we don't support permuted src0 dim0
  9206. GGML_ASSERT(nb00 == ggml_type_size(type));
  9207. // dst dim0 cannot be transposed or permuted
  9208. GGML_ASSERT(nb0 == sizeof(float));
  9209. // GGML_ASSERT(nb0 <= nb1);
  9210. // GGML_ASSERT(nb1 <= nb2);
  9211. // GGML_ASSERT(nb2 <= nb3);
  9212. GGML_ASSERT(ne0 == ne00);
  9213. GGML_ASSERT(ne1 == ne10);
  9214. GGML_ASSERT(ne2 == ne02);
  9215. GGML_ASSERT(ne3 == ne03);
  9216. // nb01 >= nb00 - src0 is not transposed
  9217. // compute by src0 rows
  9218. // TODO: #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CLBLAST)
  9219. if (params->type == GGML_TASK_TYPE_INIT) {
  9220. if (ith != 0) {
  9221. return;
  9222. }
  9223. ggml_vec_set_f32(ne0*ne1*ne2*ne3, dst->data, 0);
  9224. return;
  9225. }
  9226. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  9227. return;
  9228. }
  9229. // parallelize by last three dimensions
  9230. // total rows in dst
  9231. const int64_t nr = ne1*ne2*ne3;
  9232. // rows per thread
  9233. const int64_t dr = (nr + nth - 1)/nth;
  9234. // row range for this thread
  9235. const int64_t ir0 = dr*ith;
  9236. const int64_t ir1 = MIN(ir0 + dr, nr);
  9237. // dst[:,:,:,:] = 0
  9238. // for i2,i3:
  9239. // for i1:
  9240. // for i01:
  9241. // for i0:
  9242. // dst[i0,i1,i2,i3] += src0[i0,i01,i2,i3] * src1[i1,i01,i2,i3]
  9243. float * wdata = (float *) params->wdata + (ne0 + CACHE_LINE_SIZE_F32) * ith;
  9244. for (int64_t ir = ir0; ir < ir1; ++ir) {
  9245. // dst indices
  9246. const int64_t i3 = ir/(ne2*ne1);
  9247. const int64_t i2 = (ir - i3*ne2*ne1)/ne1;
  9248. const int64_t i1 = (ir - i3*ne2*ne1 - i2*ne1);
  9249. const int64_t i02 = i2;
  9250. const int64_t i03 = i3;
  9251. //const int64_t i10 = i1;
  9252. const int64_t i12 = i2;
  9253. const int64_t i13 = i3;
  9254. for (int64_t i01 = 0; i01 < ne01; ++i01) {
  9255. const int64_t i11 = i01;
  9256. float * s0 = (float *) ((char *) src0->data + ( i01*nb01 + i02*nb02 + i03*nb03));
  9257. float * s1 = (float *) ((char *) src1->data + (i1*nb10 + i11*nb11 + i12*nb12 + i13*nb13));
  9258. float * d = (float *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
  9259. dequantize_row_q(s0, wdata, ne0);
  9260. ggml_vec_mad_f32(ne0, d, wdata, *s1);
  9261. }
  9262. }
  9263. //int64_t t1 = ggml_perf_time_us();
  9264. //static int64_t acc = 0;
  9265. //acc += t1 - t0;
  9266. //if (t1 - t0 > 10) {
  9267. // printf("\n");
  9268. // printf("ne00 = %5d, ne01 = %5d, ne02 = %5d, ne03 = %5d\n", ne00, ne01, ne02, ne03);
  9269. // printf("nb00 = %5d, nb01 = %5d, nb02 = %5d, nb03 = %5d\n", nb00, nb01, nb02, nb03);
  9270. // printf("ne10 = %5d, ne11 = %5d, ne12 = %5d, ne13 = %5d\n", ne10, ne11, ne12, ne13);
  9271. // printf("nb10 = %5d, nb11 = %5d, nb12 = %5d, nb13 = %5d\n", nb10, nb11, nb12, nb13);
  9272. // printf("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX task %d/%d: %d us, acc = %d\n", ith, nth, (int) (t1 - t0), (int) acc);
  9273. //}
  9274. }
  9275. static void ggml_compute_forward_out_prod(
  9276. const struct ggml_compute_params * params,
  9277. struct ggml_tensor * dst) {
  9278. const struct ggml_tensor * src0 = dst->src[0];
  9279. switch (src0->type) {
  9280. case GGML_TYPE_Q4_0:
  9281. case GGML_TYPE_Q4_1:
  9282. case GGML_TYPE_Q5_0:
  9283. case GGML_TYPE_Q5_1:
  9284. case GGML_TYPE_Q8_0:
  9285. case GGML_TYPE_Q2_K:
  9286. case GGML_TYPE_Q3_K:
  9287. case GGML_TYPE_Q4_K:
  9288. case GGML_TYPE_Q5_K:
  9289. case GGML_TYPE_Q6_K:
  9290. case GGML_TYPE_IQ2_XXS:
  9291. case GGML_TYPE_IQ2_XS:
  9292. case GGML_TYPE_IQ3_XXS:
  9293. case GGML_TYPE_IQ1_S:
  9294. case GGML_TYPE_IQ1_M:
  9295. case GGML_TYPE_IQ4_NL:
  9296. case GGML_TYPE_IQ4_XS:
  9297. case GGML_TYPE_IQ3_S:
  9298. case GGML_TYPE_IQ2_S:
  9299. {
  9300. ggml_compute_forward_out_prod_q_f32(params, dst);
  9301. } break;
  9302. case GGML_TYPE_F16:
  9303. {
  9304. GGML_ASSERT(false); // todo
  9305. // ggml_compute_forward_out_prod_f16_f32(params, dst);
  9306. } break;
  9307. case GGML_TYPE_F32:
  9308. {
  9309. ggml_compute_forward_out_prod_f32(params, dst);
  9310. } break;
  9311. default:
  9312. {
  9313. GGML_ASSERT(false);
  9314. } break;
  9315. }
  9316. }
  9317. // ggml_compute_forward_scale
  9318. static void ggml_compute_forward_scale_f32(
  9319. const struct ggml_compute_params * params,
  9320. struct ggml_tensor * dst) {
  9321. const struct ggml_tensor * src0 = dst->src[0];
  9322. GGML_ASSERT(ggml_is_contiguous(src0));
  9323. GGML_ASSERT(ggml_is_contiguous(dst));
  9324. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  9325. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9326. return;
  9327. }
  9328. // scale factor
  9329. float v;
  9330. memcpy(&v, dst->op_params, sizeof(float));
  9331. const int ith = params->ith;
  9332. const int nth = params->nth;
  9333. const int nc = src0->ne[0];
  9334. const int nr = ggml_nrows(src0);
  9335. // rows per thread
  9336. const int dr = (nr + nth - 1)/nth;
  9337. // row range for this thread
  9338. const int ir0 = dr*ith;
  9339. const int ir1 = MIN(ir0 + dr, nr);
  9340. const size_t nb01 = src0->nb[1];
  9341. const size_t nb1 = dst->nb[1];
  9342. for (int i1 = ir0; i1 < ir1; i1++) {
  9343. if (dst->data != src0->data) {
  9344. // src0 is same shape as dst => same indices
  9345. memcpy((char *)dst->data + i1*nb1, (char *)src0->data + i1*nb01, nc * sizeof(float));
  9346. }
  9347. ggml_vec_scale_f32(nc, (float *) ((char *) dst->data + i1*nb1), v);
  9348. }
  9349. }
  9350. static void ggml_compute_forward_scale(
  9351. const struct ggml_compute_params * params,
  9352. struct ggml_tensor * dst) {
  9353. const struct ggml_tensor * src0 = dst->src[0];
  9354. switch (src0->type) {
  9355. case GGML_TYPE_F32:
  9356. {
  9357. ggml_compute_forward_scale_f32(params, dst);
  9358. } break;
  9359. default:
  9360. {
  9361. GGML_ASSERT(false);
  9362. } break;
  9363. }
  9364. }
  9365. // ggml_compute_forward_set
  9366. static void ggml_compute_forward_set_f32(
  9367. const struct ggml_compute_params * params,
  9368. struct ggml_tensor * dst) {
  9369. const struct ggml_tensor * src0 = dst->src[0];
  9370. const struct ggml_tensor * src1 = dst->src[1];
  9371. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  9372. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  9373. // view src0 and dst with these strides and data offset inbytes during set
  9374. // nb0 is implicitly element_size because src0 and dst are contiguous
  9375. size_t nb1 = ((int32_t *) dst->op_params)[0];
  9376. size_t nb2 = ((int32_t *) dst->op_params)[1];
  9377. size_t nb3 = ((int32_t *) dst->op_params)[2];
  9378. size_t offset = ((int32_t *) dst->op_params)[3];
  9379. bool inplace = (bool) ((int32_t *) dst->op_params)[4];
  9380. if (!inplace && (params->type == GGML_TASK_TYPE_INIT)) {
  9381. if (params->ith != 0) {
  9382. return;
  9383. }
  9384. // memcpy needs to be synchronized across threads to avoid race conditions.
  9385. // => do it in INIT phase
  9386. memcpy(
  9387. ((char *) dst->data),
  9388. ((char *) src0->data),
  9389. ggml_nbytes(dst));
  9390. }
  9391. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9392. return;
  9393. }
  9394. const int ith = params->ith;
  9395. const int nth = params->nth;
  9396. const int nr = ggml_nrows(src1);
  9397. const int nc = src1->ne[0];
  9398. GGML_TENSOR_LOCALS(int64_t, ne1, src1, ne)
  9399. GGML_TENSOR_LOCALS(size_t, nb1, src1, nb)
  9400. // src0 and dst as viewed during set
  9401. const size_t nb0 = ggml_element_size(src0);
  9402. const int im0 = (ne10 == 0 ? 0 : ne10-1);
  9403. const int im1 = (ne11 == 0 ? 0 : ne11-1);
  9404. const int im2 = (ne12 == 0 ? 0 : ne12-1);
  9405. const int im3 = (ne13 == 0 ? 0 : ne13-1);
  9406. GGML_ASSERT(offset + im0*nb0 + im1*nb1 + im2*nb2 + im3*nb3 <= ggml_nbytes(dst));
  9407. GGML_ASSERT(nb10 == sizeof(float));
  9408. // rows per thread
  9409. const int dr = (nr + nth - 1)/nth;
  9410. // row range for this thread
  9411. const int ir0 = dr*ith;
  9412. const int ir1 = MIN(ir0 + dr, nr);
  9413. for (int ir = ir0; ir < ir1; ++ir) {
  9414. // src0 and dst are viewed with shape of src1 and offset
  9415. // => same indices
  9416. const int i3 = ir/(ne12*ne11);
  9417. const int i2 = (ir - i3*ne12*ne11)/ne11;
  9418. const int i1 = (ir - i3*ne12*ne11 - i2*ne11);
  9419. ggml_vec_cpy_f32(nc,
  9420. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + offset),
  9421. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
  9422. }
  9423. }
  9424. static void ggml_compute_forward_set(
  9425. const struct ggml_compute_params * params,
  9426. struct ggml_tensor * dst) {
  9427. const struct ggml_tensor * src0 = dst->src[0];
  9428. switch (src0->type) {
  9429. case GGML_TYPE_F32:
  9430. {
  9431. ggml_compute_forward_set_f32(params, dst);
  9432. } break;
  9433. case GGML_TYPE_F16:
  9434. case GGML_TYPE_Q4_0:
  9435. case GGML_TYPE_Q4_1:
  9436. case GGML_TYPE_Q5_0:
  9437. case GGML_TYPE_Q5_1:
  9438. case GGML_TYPE_Q8_0:
  9439. case GGML_TYPE_Q8_1:
  9440. case GGML_TYPE_Q2_K:
  9441. case GGML_TYPE_Q3_K:
  9442. case GGML_TYPE_Q4_K:
  9443. case GGML_TYPE_Q5_K:
  9444. case GGML_TYPE_Q6_K:
  9445. case GGML_TYPE_IQ2_XXS:
  9446. case GGML_TYPE_IQ2_XS:
  9447. case GGML_TYPE_IQ3_XXS:
  9448. case GGML_TYPE_IQ1_S:
  9449. case GGML_TYPE_IQ1_M:
  9450. case GGML_TYPE_IQ4_NL:
  9451. case GGML_TYPE_IQ4_XS:
  9452. case GGML_TYPE_IQ3_S:
  9453. case GGML_TYPE_IQ2_S:
  9454. default:
  9455. {
  9456. GGML_ASSERT(false);
  9457. } break;
  9458. }
  9459. }
  9460. // ggml_compute_forward_cpy
  9461. static void ggml_compute_forward_cpy(
  9462. const struct ggml_compute_params * params,
  9463. struct ggml_tensor * dst) {
  9464. ggml_compute_forward_dup(params, dst);
  9465. }
  9466. // ggml_compute_forward_cont
  9467. static void ggml_compute_forward_cont(
  9468. const struct ggml_compute_params * params,
  9469. struct ggml_tensor * dst) {
  9470. ggml_compute_forward_dup(params, dst);
  9471. }
  9472. // ggml_compute_forward_reshape
  9473. static void ggml_compute_forward_reshape(
  9474. const struct ggml_compute_params * params,
  9475. struct ggml_tensor * dst) {
  9476. // NOP
  9477. UNUSED(params);
  9478. UNUSED(dst);
  9479. }
  9480. // ggml_compute_forward_view
  9481. static void ggml_compute_forward_view(
  9482. const struct ggml_compute_params * params,
  9483. const struct ggml_tensor * dst) {
  9484. // NOP
  9485. UNUSED(params);
  9486. UNUSED(dst);
  9487. }
  9488. // ggml_compute_forward_permute
  9489. static void ggml_compute_forward_permute(
  9490. const struct ggml_compute_params * params,
  9491. const struct ggml_tensor * dst) {
  9492. // NOP
  9493. UNUSED(params);
  9494. UNUSED(dst);
  9495. }
  9496. // ggml_compute_forward_transpose
  9497. static void ggml_compute_forward_transpose(
  9498. const struct ggml_compute_params * params,
  9499. const struct ggml_tensor * dst) {
  9500. // NOP
  9501. UNUSED(params);
  9502. UNUSED(dst);
  9503. }
  9504. // ggml_compute_forward_get_rows
  9505. static void ggml_compute_forward_get_rows_q(
  9506. const struct ggml_compute_params * params,
  9507. struct ggml_tensor * dst) {
  9508. const struct ggml_tensor * src0 = dst->src[0];
  9509. const struct ggml_tensor * src1 = dst->src[1];
  9510. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9511. return;
  9512. }
  9513. GGML_TENSOR_BINARY_OP_LOCALS
  9514. const int64_t nc = ne00;
  9515. const int64_t nr = ggml_nelements(src1);
  9516. const enum ggml_type type = src0->type;
  9517. ggml_to_float_t const dequantize_row_q = type_traits[type].to_float;
  9518. assert(ne0 == nc);
  9519. assert(ne02 == ne11);
  9520. assert(nb00 == ggml_type_size(type));
  9521. assert(ggml_nrows(dst) == nr);
  9522. const int ith = params->ith;
  9523. const int nth = params->nth;
  9524. // rows per thread
  9525. const int dr = (nr + nth - 1)/nth;
  9526. // row range for this thread
  9527. const int ir0 = dr*ith;
  9528. const int ir1 = MIN(ir0 + dr, nr);
  9529. for (int64_t i = ir0; i < ir1; ++i) {
  9530. const int64_t i12 = i/(ne11*ne10);
  9531. const int64_t i11 = (i - i12*ne11*ne10)/ne10;
  9532. const int64_t i10 = (i - i12*ne11*ne10 - i11*ne10);
  9533. const int64_t i01 = *(int32_t *) ((char *) src1->data + i10*nb10 + i11*nb11 + i12*nb12);
  9534. dequantize_row_q(
  9535. (const void *) ((char *) src0->data + i01*nb01 + i11*nb02 + i12*nb03),
  9536. (float *) ((char *) dst->data + i10*nb1 + i11*nb2 + i12*nb3), nc);
  9537. }
  9538. }
  9539. static void ggml_compute_forward_get_rows_f16(
  9540. const struct ggml_compute_params * params,
  9541. struct ggml_tensor * dst) {
  9542. const struct ggml_tensor * src0 = dst->src[0];
  9543. const struct ggml_tensor * src1 = dst->src[1];
  9544. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9545. return;
  9546. }
  9547. GGML_TENSOR_BINARY_OP_LOCALS
  9548. const int64_t nc = ne00;
  9549. const int64_t nr = ggml_nelements(src1);
  9550. assert(ne0 == nc);
  9551. assert(ne02 == ne11);
  9552. assert(nb00 == sizeof(ggml_fp16_t));
  9553. assert(ggml_nrows(dst) == nr);
  9554. const int ith = params->ith;
  9555. const int nth = params->nth;
  9556. // rows per thread
  9557. const int dr = (nr + nth - 1)/nth;
  9558. // row range for this thread
  9559. const int ir0 = dr*ith;
  9560. const int ir1 = MIN(ir0 + dr, nr);
  9561. for (int64_t i = ir0; i < ir1; ++i) {
  9562. const int64_t i12 = i/(ne11*ne10);
  9563. const int64_t i11 = (i - i12*ne11*ne10)/ne10;
  9564. const int64_t i10 = (i - i12*ne11*ne10 - i11*ne10);
  9565. const int64_t i01 = *(int32_t *) ((char *) src1->data + i10*nb10 + i11*nb11 + i12*nb12);
  9566. ggml_fp16_to_fp32_row(
  9567. (const void *) ((char *) src0->data + i01*nb01 + i11*nb02 + i12*nb03),
  9568. (float *) ((char *) dst->data + i10*nb1 + i11*nb2 + i12*nb3), nc);
  9569. }
  9570. }
  9571. static void ggml_compute_forward_get_rows_f32(
  9572. const struct ggml_compute_params * params,
  9573. struct ggml_tensor * dst) {
  9574. const struct ggml_tensor * src0 = dst->src[0];
  9575. const struct ggml_tensor * src1 = dst->src[1];
  9576. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9577. return;
  9578. }
  9579. GGML_TENSOR_BINARY_OP_LOCALS
  9580. const int64_t nc = ne00;
  9581. const int64_t nr = ggml_nelements(src1);
  9582. assert(ne0 == nc);
  9583. assert(ne02 == ne11);
  9584. assert(nb00 == sizeof(float));
  9585. assert(ggml_nrows(dst) == nr);
  9586. const int ith = params->ith;
  9587. const int nth = params->nth;
  9588. // rows per thread
  9589. const int dr = (nr + nth - 1)/nth;
  9590. // row range for this thread
  9591. const int ir0 = dr*ith;
  9592. const int ir1 = MIN(ir0 + dr, nr);
  9593. for (int64_t i = ir0; i < ir1; ++i) {
  9594. const int64_t i12 = i/(ne11*ne10);
  9595. const int64_t i11 = (i - i12*ne11*ne10)/ne10;
  9596. const int64_t i10 = (i - i12*ne11*ne10 - i11*ne10);
  9597. const int64_t i01 = *(int32_t *) ((char *) src1->data + i10*nb10 + i11*nb11 + i12*nb12);
  9598. ggml_vec_cpy_f32(nc,
  9599. (float *) ((char *) dst->data + i10*nb1 + i11*nb2 + i12*nb3),
  9600. (float *) ((char *) src0->data + i01*nb01 + i11*nb02 + i12*nb03));
  9601. }
  9602. }
  9603. static void ggml_compute_forward_get_rows(
  9604. const struct ggml_compute_params * params,
  9605. struct ggml_tensor * dst) {
  9606. const struct ggml_tensor * src0 = dst->src[0];
  9607. switch (src0->type) {
  9608. case GGML_TYPE_Q4_0:
  9609. case GGML_TYPE_Q4_1:
  9610. case GGML_TYPE_Q5_0:
  9611. case GGML_TYPE_Q5_1:
  9612. case GGML_TYPE_Q8_0:
  9613. case GGML_TYPE_Q8_1:
  9614. case GGML_TYPE_Q2_K:
  9615. case GGML_TYPE_Q3_K:
  9616. case GGML_TYPE_Q4_K:
  9617. case GGML_TYPE_Q5_K:
  9618. case GGML_TYPE_Q6_K:
  9619. case GGML_TYPE_IQ2_XXS:
  9620. case GGML_TYPE_IQ2_XS:
  9621. case GGML_TYPE_IQ3_XXS:
  9622. case GGML_TYPE_IQ1_S:
  9623. case GGML_TYPE_IQ1_M:
  9624. case GGML_TYPE_IQ4_NL:
  9625. case GGML_TYPE_IQ4_XS:
  9626. case GGML_TYPE_IQ3_S:
  9627. case GGML_TYPE_IQ2_S:
  9628. {
  9629. ggml_compute_forward_get_rows_q(params, dst);
  9630. } break;
  9631. case GGML_TYPE_F16:
  9632. {
  9633. ggml_compute_forward_get_rows_f16(params, dst);
  9634. } break;
  9635. case GGML_TYPE_F32:
  9636. case GGML_TYPE_I32:
  9637. {
  9638. ggml_compute_forward_get_rows_f32(params, dst);
  9639. } break;
  9640. default:
  9641. {
  9642. GGML_ASSERT(false);
  9643. } break;
  9644. }
  9645. //static bool first = true;
  9646. //printf("ne0 = %d, ne1 = %d, ne2 = %d\n", dst->ne[0], dst->ne[1], dst->ne[2]);
  9647. //if (first) {
  9648. // first = false;
  9649. //} else {
  9650. // for (int k = 0; k < dst->ne[1]; ++k) {
  9651. // for (int j = 0; j < dst->ne[0]/16; ++j) {
  9652. // for (int i = 0; i < 16; ++i) {
  9653. // printf("%8.4f ", ((float *) dst->data)[k*dst->ne[0] + j*16 + i]);
  9654. // }
  9655. // printf("\n");
  9656. // }
  9657. // printf("\n");
  9658. // }
  9659. // printf("\n");
  9660. // exit(0);
  9661. //}
  9662. }
  9663. // ggml_compute_forward_get_rows_back
  9664. static void ggml_compute_forward_get_rows_back_f32_f16(
  9665. const struct ggml_compute_params * params,
  9666. struct ggml_tensor * dst) {
  9667. const struct ggml_tensor * src0 = dst->src[0];
  9668. const struct ggml_tensor * src1 = dst->src[1];
  9669. GGML_ASSERT(params->ith == 0);
  9670. GGML_ASSERT(ggml_is_contiguous(dst));
  9671. // ggml_compute_forward_dup_same_cont(params, opt0, dst);
  9672. if (params->type == GGML_TASK_TYPE_INIT) {
  9673. if (params->ith != 0) {
  9674. return;
  9675. }
  9676. memset(dst->data, 0, ggml_nbytes(dst));
  9677. }
  9678. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9679. return;
  9680. }
  9681. const int nc = src0->ne[0];
  9682. const int nr = ggml_nelements(src1);
  9683. GGML_ASSERT( dst->ne[0] == nc);
  9684. GGML_ASSERT(src0->nb[0] == sizeof(ggml_fp16_t));
  9685. for (int i = 0; i < nr; ++i) {
  9686. const int r = ((int32_t *) src1->data)[i];
  9687. for (int j = 0; j < nc; ++j) {
  9688. ggml_fp16_t v = ((ggml_fp16_t *) ((char *) src0->data + i*src0->nb[1]))[j];
  9689. ((float *) ((char *) dst->data + r*dst->nb[1]))[j] += GGML_FP16_TO_FP32(v);
  9690. }
  9691. }
  9692. }
  9693. static void ggml_compute_forward_get_rows_back_f32(
  9694. const struct ggml_compute_params * params,
  9695. struct ggml_tensor * dst) {
  9696. const struct ggml_tensor * src0 = dst->src[0];
  9697. const struct ggml_tensor * src1 = dst->src[1];
  9698. GGML_ASSERT(params->ith == 0);
  9699. GGML_ASSERT(ggml_is_contiguous(dst));
  9700. // ggml_compute_forward_dup_same_cont(params, opt0, dst);
  9701. if (params->type == GGML_TASK_TYPE_INIT) {
  9702. if (params->ith != 0) {
  9703. return;
  9704. }
  9705. memset(dst->data, 0, ggml_nbytes(dst));
  9706. }
  9707. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9708. return;
  9709. }
  9710. const int nc = src0->ne[0];
  9711. const int nr = ggml_nelements(src1);
  9712. GGML_ASSERT( dst->ne[0] == nc);
  9713. GGML_ASSERT(src0->nb[0] == sizeof(float));
  9714. for (int i = 0; i < nr; ++i) {
  9715. const int r = ((int32_t *) src1->data)[i];
  9716. ggml_vec_add_f32(nc,
  9717. (float *) ((char *) dst->data + r*dst->nb[1]),
  9718. (float *) ((char *) dst->data + r*dst->nb[1]),
  9719. (float *) ((char *) src0->data + i*src0->nb[1]));
  9720. }
  9721. }
  9722. static void ggml_compute_forward_get_rows_back(
  9723. const struct ggml_compute_params * params,
  9724. struct ggml_tensor * dst) {
  9725. const struct ggml_tensor * src0 = dst->src[0];
  9726. switch (src0->type) {
  9727. case GGML_TYPE_F16:
  9728. {
  9729. ggml_compute_forward_get_rows_back_f32_f16(params, dst);
  9730. } break;
  9731. case GGML_TYPE_F32:
  9732. {
  9733. ggml_compute_forward_get_rows_back_f32(params, dst);
  9734. } break;
  9735. default:
  9736. {
  9737. GGML_ASSERT(false);
  9738. } break;
  9739. }
  9740. //static bool first = true;
  9741. //printf("ne0 = %d, ne1 = %d, ne2 = %d\n", dst->ne[0], dst->ne[1], dst->ne[2]);
  9742. //if (first) {
  9743. // first = false;
  9744. //} else {
  9745. // for (int k = 0; k < dst->ne[1]; ++k) {
  9746. // for (int j = 0; j < dst->ne[0]/16; ++j) {
  9747. // for (int i = 0; i < 16; ++i) {
  9748. // printf("%8.4f ", ((float *) dst->data)[k*dst->ne[0] + j*16 + i]);
  9749. // }
  9750. // printf("\n");
  9751. // }
  9752. // printf("\n");
  9753. // }
  9754. // printf("\n");
  9755. // exit(0);
  9756. //}
  9757. }
  9758. // ggml_compute_forward_diag
  9759. static void ggml_compute_forward_diag_f32(
  9760. const struct ggml_compute_params * params,
  9761. struct ggml_tensor * dst) {
  9762. const struct ggml_tensor * src0 = dst->src[0];
  9763. GGML_ASSERT(params->ith == 0);
  9764. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9765. return;
  9766. }
  9767. // TODO: handle transposed/permuted matrices
  9768. GGML_TENSOR_UNARY_OP_LOCALS
  9769. GGML_ASSERT(ne00 == ne0);
  9770. GGML_ASSERT(ne00 == ne1);
  9771. GGML_ASSERT(ne01 == 1);
  9772. GGML_ASSERT(ne02 == ne2);
  9773. GGML_ASSERT(ne03 == ne3);
  9774. GGML_ASSERT(nb00 == sizeof(float));
  9775. GGML_ASSERT(nb0 == sizeof(float));
  9776. for (int i3 = 0; i3 < ne3; i3++) {
  9777. for (int i2 = 0; i2 < ne2; i2++) {
  9778. for (int i1 = 0; i1 < ne1; i1++) {
  9779. float * d = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  9780. float * s = (float *)((char *) src0->data + i3*nb03 + i2*nb02);
  9781. for (int i0 = 0; i0 < i1; i0++) {
  9782. d[i0] = 0;
  9783. }
  9784. d[i1] = s[i1];
  9785. for (int i0 = i1+1; i0 < ne0; i0++) {
  9786. d[i0] = 0;
  9787. }
  9788. }
  9789. }
  9790. }
  9791. }
  9792. static void ggml_compute_forward_diag(
  9793. const struct ggml_compute_params * params,
  9794. struct ggml_tensor * dst) {
  9795. const struct ggml_tensor * src0 = dst->src[0];
  9796. switch (src0->type) {
  9797. case GGML_TYPE_F32:
  9798. {
  9799. ggml_compute_forward_diag_f32(params, dst);
  9800. } break;
  9801. default:
  9802. {
  9803. GGML_ASSERT(false);
  9804. } break;
  9805. }
  9806. }
  9807. // ggml_compute_forward_diag_mask_inf
  9808. static void ggml_compute_forward_diag_mask_f32(
  9809. const struct ggml_compute_params * params,
  9810. struct ggml_tensor * dst,
  9811. const float value) {
  9812. const struct ggml_tensor * src0 = dst->src[0];
  9813. const int ith = params->ith;
  9814. const int nth = params->nth;
  9815. const int n_past = ((int32_t *) dst->op_params)[0];
  9816. const bool inplace = src0->data == dst->data;
  9817. GGML_ASSERT(n_past >= 0);
  9818. if (!inplace && (params->type == GGML_TASK_TYPE_INIT)) {
  9819. if (ith != 0) {
  9820. return;
  9821. }
  9822. // memcpy needs to be synchronized across threads to avoid race conditions.
  9823. // => do it in INIT phase
  9824. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  9825. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  9826. memcpy(
  9827. ((char *) dst->data),
  9828. ((char *) src0->data),
  9829. ggml_nbytes(dst));
  9830. }
  9831. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9832. return;
  9833. }
  9834. // TODO: handle transposed/permuted matrices
  9835. const int n = ggml_nrows(src0);
  9836. const int nc = src0->ne[0];
  9837. const int nr = src0->ne[1];
  9838. const int nz = n/nr;
  9839. GGML_ASSERT( dst->nb[0] == sizeof(float));
  9840. GGML_ASSERT(src0->nb[0] == sizeof(float));
  9841. for (int k = 0; k < nz; k++) {
  9842. for (int j = ith; j < nr; j += nth) {
  9843. for (int i = n_past; i < nc; i++) {
  9844. if (i > n_past + j) {
  9845. *(float *)((char *) dst->data + k*dst->nb[2] + j*dst->nb[1] + i*dst->nb[0]) = value;
  9846. }
  9847. }
  9848. }
  9849. }
  9850. }
  9851. static void ggml_compute_forward_diag_mask_inf(
  9852. const struct ggml_compute_params * params,
  9853. struct ggml_tensor * dst) {
  9854. const struct ggml_tensor * src0 = dst->src[0];
  9855. switch (src0->type) {
  9856. case GGML_TYPE_F32:
  9857. {
  9858. ggml_compute_forward_diag_mask_f32(params, dst, -INFINITY);
  9859. } break;
  9860. default:
  9861. {
  9862. GGML_ASSERT(false);
  9863. } break;
  9864. }
  9865. }
  9866. static void ggml_compute_forward_diag_mask_zero(
  9867. const struct ggml_compute_params * params,
  9868. struct ggml_tensor * dst) {
  9869. const struct ggml_tensor * src0 = dst->src[0];
  9870. switch (src0->type) {
  9871. case GGML_TYPE_F32:
  9872. {
  9873. ggml_compute_forward_diag_mask_f32(params, dst, 0);
  9874. } break;
  9875. default:
  9876. {
  9877. GGML_ASSERT(false);
  9878. } break;
  9879. }
  9880. }
  9881. // ggml_compute_forward_soft_max
  9882. static void ggml_compute_forward_soft_max_f32(
  9883. const struct ggml_compute_params * params,
  9884. struct ggml_tensor * dst) {
  9885. const struct ggml_tensor * src0 = dst->src[0];
  9886. const struct ggml_tensor * src1 = dst->src[1];
  9887. const struct ggml_tensor * src2 = dst->src[2];
  9888. assert(ggml_is_contiguous(dst));
  9889. assert(ggml_are_same_shape(src0, dst));
  9890. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9891. return;
  9892. }
  9893. float scale = 1.0f;
  9894. float max_bias = 0.0f;
  9895. memcpy(&scale, (float *) dst->op_params + 0, sizeof(float));
  9896. memcpy(&max_bias, (float *) dst->op_params + 1, sizeof(float));
  9897. // TODO: handle transposed/permuted matrices
  9898. const int ith = params->ith;
  9899. const int nth = params->nth;
  9900. GGML_TENSOR_UNARY_OP_LOCALS
  9901. const int64_t ne11 = src1 ? src1->ne[1] : 1;
  9902. // TODO: is this supposed to be ceil instead of floor?
  9903. // https://huggingface.co/mosaicml/mpt-7b/blob/main/attention.py#L370
  9904. const uint32_t n_head_kv = ne02;
  9905. const uint32_t n_head_log2 = 1u << (uint32_t) floor(log2(n_head_kv));
  9906. const float m0 = powf(2.0f, -(max_bias ) / n_head_log2);
  9907. const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_head_log2);
  9908. const int nc = src0->ne[0];
  9909. const int nr = ggml_nrows(src0);
  9910. // rows per thread
  9911. const int dr = (nr + nth - 1)/nth;
  9912. // row range for this thread
  9913. const int ir0 = dr*ith;
  9914. const int ir1 = MIN(ir0 + dr, nr);
  9915. float * wp = (float *) params->wdata + (nc + CACHE_LINE_SIZE_F32) * ith;
  9916. // when max_bias <= 0.0f, src2 is not used and we default it to src0 to avoid branching
  9917. float * pos = src2 ? (float *) src2->data : src0->data;
  9918. for (int i1 = ir0; i1 < ir1; i1++) {
  9919. float * sp = (float *)((char *) src0->data + i1*src0->nb[1]);
  9920. float * dp = (float *)((char *) dst->data + i1*dst->nb[1]);
  9921. // broadcast the mask across rows
  9922. float * mp = src1 ? (float *)((char *) src1->data + (i1%ne11)*src1->nb[1]) : NULL;
  9923. ggml_vec_cpy_f32 (nc, wp, sp);
  9924. ggml_vec_scale_f32(nc, wp, scale);
  9925. if (mp) {
  9926. ggml_vec_acc_f32(nc, wp, mp);
  9927. }
  9928. // ALiBi bias
  9929. if (max_bias > 0.0f) {
  9930. const uint32_t h = (i1/ne01)%ne02; // head
  9931. const float slope = h < n_head_log2 ? powf(m0, h + 1) : powf(m1, 2*(h - n_head_log2) + 1);
  9932. for (int i = 0; i < nc; i++) {
  9933. wp[i] = wp[i] + slope*pos[i];
  9934. }
  9935. }
  9936. #ifndef NDEBUG
  9937. for (int i = 0; i < nc; ++i) {
  9938. //printf("p[%d] = %f\n", i, p[i]);
  9939. assert(!isnan(wp[i]));
  9940. }
  9941. #endif
  9942. float max = -INFINITY;
  9943. ggml_vec_max_f32(nc, &max, wp);
  9944. ggml_float sum = 0.0;
  9945. uint16_t scvt;
  9946. for (int i = 0; i < nc; i++) {
  9947. if (wp[i] == -INFINITY) {
  9948. dp[i] = 0.0f;
  9949. } else {
  9950. // const float val = (wp[i] == -INFINITY) ? 0.0 : exp(wp[i] - max);
  9951. ggml_fp16_t s = GGML_FP32_TO_FP16(wp[i] - max);
  9952. memcpy(&scvt, &s, sizeof(scvt));
  9953. const float val = GGML_FP16_TO_FP32(ggml_table_exp_f16[scvt]);
  9954. sum += (ggml_float)val;
  9955. dp[i] = val;
  9956. }
  9957. }
  9958. assert(sum > 0.0);
  9959. sum = 1.0/sum;
  9960. ggml_vec_scale_f32(nc, dp, sum);
  9961. #ifndef NDEBUG
  9962. for (int i = 0; i < nc; ++i) {
  9963. assert(!isnan(dp[i]));
  9964. assert(!isinf(dp[i]));
  9965. }
  9966. #endif
  9967. }
  9968. }
  9969. static void ggml_compute_forward_soft_max(
  9970. const struct ggml_compute_params * params,
  9971. struct ggml_tensor * dst) {
  9972. const struct ggml_tensor * src0 = dst->src[0];
  9973. switch (src0->type) {
  9974. case GGML_TYPE_F32:
  9975. {
  9976. ggml_compute_forward_soft_max_f32(params, dst);
  9977. } break;
  9978. default:
  9979. {
  9980. GGML_ASSERT(false);
  9981. } break;
  9982. }
  9983. }
  9984. // ggml_compute_forward_soft_max_back
  9985. static void ggml_compute_forward_soft_max_back_f32(
  9986. const struct ggml_compute_params * params,
  9987. struct ggml_tensor * dst) {
  9988. const struct ggml_tensor * src0 = dst->src[0];
  9989. const struct ggml_tensor * src1 = dst->src[1];
  9990. GGML_ASSERT(ggml_is_contiguous(src0));
  9991. GGML_ASSERT(ggml_is_contiguous(src1));
  9992. GGML_ASSERT(ggml_is_contiguous(dst));
  9993. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  9994. GGML_ASSERT(ggml_are_same_shape(src1, dst));
  9995. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9996. return;
  9997. }
  9998. // TODO: handle transposed/permuted matrices
  9999. const int ith = params->ith;
  10000. const int nth = params->nth;
  10001. const int nc = src0->ne[0];
  10002. const int nr = ggml_nrows(src0);
  10003. // rows per thread
  10004. const int dr = (nr + nth - 1)/nth;
  10005. // row range for this thread
  10006. const int ir0 = dr*ith;
  10007. const int ir1 = MIN(ir0 + dr, nr);
  10008. for (int i1 = ir0; i1 < ir1; i1++) {
  10009. float *dy = (float *)((char *) src0->data + i1*src0->nb[1]);
  10010. float *y = (float *)((char *) src1->data + i1*src1->nb[1]);
  10011. float *dx = (float *)((char *) dst->data + i1*dst->nb[1]);
  10012. #ifndef NDEBUG
  10013. for (int i = 0; i < nc; ++i) {
  10014. //printf("p[%d] = %f\n", i, p[i]);
  10015. assert(!isnan(dy[i]));
  10016. assert(!isnan(y[i]));
  10017. }
  10018. #endif
  10019. // Jii = yi - yi*yi
  10020. // Jij = -yi*yj
  10021. // J = diag(y)-y.T*y
  10022. // dx = J * dy
  10023. // dxk = sum_i(Jki * dyi)
  10024. // dxk = sum_i(-yk*yi * dyi) - (-yk*yk)*dyk + (yk - yk*yk)*dyk
  10025. // dxk = sum_i(-yk*yi * dyi) + yk*yk*dyk + yk*dyk - yk*yk*dyk
  10026. // dxk = sum_i(-yk*yi * dyi) + yk*dyk
  10027. // dxk = -yk * sum_i(yi * dyi) + yk*dyk
  10028. // dxk = -yk * dot(y, dy) + yk*dyk
  10029. // dxk = yk * (- dot(y, dy) + dyk)
  10030. // dxk = yk * (dyk - dot(y, dy))
  10031. //
  10032. // post-order:
  10033. // dot_y_dy := dot(y, dy)
  10034. // dx := dy
  10035. // dx := dx - dot_y_dy
  10036. // dx := dx * y
  10037. // linear runtime, no additional memory
  10038. float dot_y_dy = 0;
  10039. ggml_vec_dot_f32 (nc, &dot_y_dy, 0, y, 0, dy, 0, 1);
  10040. ggml_vec_cpy_f32 (nc, dx, dy);
  10041. ggml_vec_acc1_f32(nc, dx, -dot_y_dy);
  10042. ggml_vec_mul_f32 (nc, dx, dx, y);
  10043. #ifndef NDEBUG
  10044. for (int i = 0; i < nc; ++i) {
  10045. assert(!isnan(dx[i]));
  10046. assert(!isinf(dx[i]));
  10047. }
  10048. #endif
  10049. }
  10050. }
  10051. static void ggml_compute_forward_soft_max_back(
  10052. const struct ggml_compute_params * params,
  10053. struct ggml_tensor * dst) {
  10054. const struct ggml_tensor * src0 = dst->src[0];
  10055. switch (src0->type) {
  10056. case GGML_TYPE_F32:
  10057. {
  10058. ggml_compute_forward_soft_max_back_f32(params, dst);
  10059. } break;
  10060. default:
  10061. {
  10062. GGML_ASSERT(false);
  10063. } break;
  10064. }
  10065. }
  10066. // ggml_compute_forward_alibi
  10067. static void ggml_compute_forward_alibi_f32(
  10068. const struct ggml_compute_params * params,
  10069. struct ggml_tensor * dst) {
  10070. const struct ggml_tensor * src0 = dst->src[0];
  10071. assert(params->ith == 0);
  10072. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  10073. return;
  10074. }
  10075. //const int n_past = ((int32_t *) dst->op_params)[0];
  10076. const int n_head = ((int32_t *) dst->op_params)[1];
  10077. float max_bias;
  10078. memcpy(&max_bias, (int32_t *) dst->op_params + 2, sizeof(float));
  10079. const int64_t ne0 = src0->ne[0]; // all_seq_len = n_past + ne1
  10080. const int64_t ne1 = src0->ne[1]; // seq_len_without_past
  10081. const int64_t ne2 = src0->ne[2]; // n_head -> this is k
  10082. //const int64_t ne3 = src0->ne[3]; // 1 -> bsz
  10083. const int64_t n = ggml_nrows(src0);
  10084. const int64_t ne2_ne3 = n/ne1; // ne2*ne3
  10085. const size_t nb0 = src0->nb[0];
  10086. const size_t nb1 = src0->nb[1];
  10087. const size_t nb2 = src0->nb[2];
  10088. //const int nb3 = src0->nb[3];
  10089. GGML_ASSERT(nb0 == sizeof(float));
  10090. GGML_ASSERT(n_head == ne2);
  10091. // add alibi to src0 (KQ_scaled)
  10092. const int n_heads_log2_floor = 1 << (int) floor(log2(n_head));
  10093. const float m0 = powf(2.0f, -(max_bias) / n_heads_log2_floor);
  10094. const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_heads_log2_floor);
  10095. for (int64_t k = 0; k < ne2_ne3; k++) {
  10096. // TODO: k*nb2 or k*nb3
  10097. float m_k;
  10098. if (k < n_heads_log2_floor) {
  10099. m_k = powf(m0, k + 1);
  10100. } else {
  10101. m_k = powf(m1, 2 * (k - n_heads_log2_floor) + 1);
  10102. }
  10103. for (int64_t i = 0; i < ne0; i++) {
  10104. for (int64_t j = 0; j < ne1; j++) {
  10105. float * const src = (float *)((char *) src0->data + i*nb0 + j*nb1 + k*nb2);
  10106. float * pdst = (float *)((char *) dst->data + i*nb0 + j*nb1 + k*nb2);
  10107. pdst[0] = i * m_k + src[0];
  10108. }
  10109. }
  10110. }
  10111. }
  10112. static void ggml_compute_forward_alibi_f16(
  10113. const struct ggml_compute_params * params,
  10114. struct ggml_tensor * dst) {
  10115. const struct ggml_tensor * src0 = dst->src[0];
  10116. assert(params->ith == 0);
  10117. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  10118. return;
  10119. }
  10120. //const int n_past = ((int32_t *) dst->op_params)[0];
  10121. const int n_head = ((int32_t *) dst->op_params)[1];
  10122. float max_bias;
  10123. memcpy(&max_bias, (int32_t *) dst->op_params + 2, sizeof(float));
  10124. const int ne0 = src0->ne[0]; // all_seq_len = n_past + ne1
  10125. const int ne1 = src0->ne[1]; // seq_len_without_past
  10126. const int ne2 = src0->ne[2]; // n_head -> this is k
  10127. //const int ne3 = src0->ne[3]; // 1 -> bsz
  10128. const int n = ggml_nrows(src0);
  10129. const int ne2_ne3 = n/ne1; // ne2*ne3
  10130. const int nb0 = src0->nb[0];
  10131. const int nb1 = src0->nb[1];
  10132. const int nb2 = src0->nb[2];
  10133. //const int nb3 = src0->nb[3];
  10134. GGML_ASSERT(nb0 == sizeof(ggml_fp16_t));
  10135. //GGML_ASSERT(ne1 + n_past == ne0); (void) n_past;
  10136. GGML_ASSERT(n_head == ne2);
  10137. // add alibi to src0 (KQ_scaled)
  10138. const int n_heads_log2_floor = 1 << (int) floor(log2(n_head));
  10139. const float m0 = powf(2.0f, -(max_bias) / n_heads_log2_floor);
  10140. const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_heads_log2_floor);
  10141. for (int k = 0; k < ne2_ne3; k++) {
  10142. // TODO: k*nb2 or k*nb3
  10143. float m_k;
  10144. if (k < n_heads_log2_floor) {
  10145. m_k = powf(m0, k + 1);
  10146. } else {
  10147. m_k = powf(m1, 2 * (k - n_heads_log2_floor) + 1);
  10148. }
  10149. for (int i = 0; i < ne0; i++) {
  10150. for (int j = 0; j < ne1; j++) {
  10151. ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i*nb0 + j*nb1 + k*nb2);
  10152. float * pdst = (float *)((char *) dst->data + i*nb0 + j*nb1 + k*nb2);
  10153. // we return F32
  10154. pdst[0] = i * m_k + GGML_FP16_TO_FP32(src[0]);
  10155. }
  10156. }
  10157. }
  10158. }
  10159. static void ggml_compute_forward_alibi(
  10160. const struct ggml_compute_params * params,
  10161. struct ggml_tensor * dst) {
  10162. const struct ggml_tensor * src0 = dst->src[0];
  10163. switch (src0->type) {
  10164. case GGML_TYPE_F16:
  10165. {
  10166. ggml_compute_forward_alibi_f16(params, dst);
  10167. } break;
  10168. case GGML_TYPE_F32:
  10169. {
  10170. ggml_compute_forward_alibi_f32(params, dst);
  10171. } break;
  10172. case GGML_TYPE_Q4_0:
  10173. case GGML_TYPE_Q4_1:
  10174. case GGML_TYPE_Q5_0:
  10175. case GGML_TYPE_Q5_1:
  10176. case GGML_TYPE_Q8_0:
  10177. case GGML_TYPE_Q8_1:
  10178. case GGML_TYPE_Q2_K:
  10179. case GGML_TYPE_Q3_K:
  10180. case GGML_TYPE_Q4_K:
  10181. case GGML_TYPE_Q5_K:
  10182. case GGML_TYPE_Q6_K:
  10183. case GGML_TYPE_IQ2_XXS:
  10184. case GGML_TYPE_IQ2_XS:
  10185. case GGML_TYPE_IQ3_XXS:
  10186. case GGML_TYPE_IQ1_S:
  10187. case GGML_TYPE_IQ1_M:
  10188. case GGML_TYPE_IQ4_NL:
  10189. case GGML_TYPE_IQ4_XS:
  10190. case GGML_TYPE_IQ3_S:
  10191. case GGML_TYPE_IQ2_S:
  10192. case GGML_TYPE_Q8_K:
  10193. case GGML_TYPE_I8:
  10194. case GGML_TYPE_I16:
  10195. case GGML_TYPE_I32:
  10196. case GGML_TYPE_I64:
  10197. case GGML_TYPE_F64:
  10198. case GGML_TYPE_COUNT:
  10199. {
  10200. GGML_ASSERT(false);
  10201. } break;
  10202. }
  10203. }
  10204. // ggml_compute_forward_clamp
  10205. static void ggml_compute_forward_clamp_f32(
  10206. const struct ggml_compute_params * params,
  10207. struct ggml_tensor * dst) {
  10208. const struct ggml_tensor * src0 = dst->src[0];
  10209. assert(params->ith == 0);
  10210. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  10211. return;
  10212. }
  10213. float min;
  10214. float max;
  10215. memcpy(&min, (float *) dst->op_params + 0, sizeof(float));
  10216. memcpy(&max, (float *) dst->op_params + 1, sizeof(float));
  10217. const int ith = params->ith;
  10218. const int nth = params->nth;
  10219. const int n = ggml_nrows(src0);
  10220. const int nc = src0->ne[0];
  10221. const size_t nb00 = src0->nb[0];
  10222. const size_t nb01 = src0->nb[1];
  10223. const size_t nb0 = dst->nb[0];
  10224. const size_t nb1 = dst->nb[1];
  10225. GGML_ASSERT( nb0 == sizeof(float));
  10226. GGML_ASSERT(nb00 == sizeof(float));
  10227. for (int j = ith; j < n; j += nth) {
  10228. float * dst_ptr = (float *) ((char *) dst->data + j*nb1);
  10229. float * src0_ptr = (float *) ((char *) src0->data + j*nb01);
  10230. for (int i = 0; i < nc; i++) {
  10231. dst_ptr[i] = MAX(MIN(src0_ptr[i], max), min);
  10232. }
  10233. }
  10234. }
  10235. static void ggml_compute_forward_clamp(
  10236. const struct ggml_compute_params * params,
  10237. struct ggml_tensor * dst) {
  10238. const struct ggml_tensor * src0 = dst->src[0];
  10239. switch (src0->type) {
  10240. case GGML_TYPE_F32:
  10241. {
  10242. ggml_compute_forward_clamp_f32(params, dst);
  10243. } break;
  10244. case GGML_TYPE_F16:
  10245. case GGML_TYPE_Q4_0:
  10246. case GGML_TYPE_Q4_1:
  10247. case GGML_TYPE_Q5_0:
  10248. case GGML_TYPE_Q5_1:
  10249. case GGML_TYPE_Q8_0:
  10250. case GGML_TYPE_Q8_1:
  10251. case GGML_TYPE_Q2_K:
  10252. case GGML_TYPE_Q3_K:
  10253. case GGML_TYPE_Q4_K:
  10254. case GGML_TYPE_Q5_K:
  10255. case GGML_TYPE_Q6_K:
  10256. case GGML_TYPE_IQ2_XXS:
  10257. case GGML_TYPE_IQ2_XS:
  10258. case GGML_TYPE_IQ3_XXS:
  10259. case GGML_TYPE_IQ1_S:
  10260. case GGML_TYPE_IQ1_M:
  10261. case GGML_TYPE_IQ4_NL:
  10262. case GGML_TYPE_IQ4_XS:
  10263. case GGML_TYPE_IQ3_S:
  10264. case GGML_TYPE_IQ2_S:
  10265. case GGML_TYPE_Q8_K:
  10266. case GGML_TYPE_I8:
  10267. case GGML_TYPE_I16:
  10268. case GGML_TYPE_I32:
  10269. case GGML_TYPE_I64:
  10270. case GGML_TYPE_F64:
  10271. case GGML_TYPE_COUNT:
  10272. {
  10273. GGML_ASSERT(false);
  10274. } break;
  10275. }
  10276. }
  10277. // ggml_compute_forward_rope
  10278. static float rope_yarn_ramp(const float low, const float high, const int i0) {
  10279. const float y = (i0 / 2 - low) / MAX(0.001f, high - low);
  10280. return 1 - MIN(1, MAX(0, y));
  10281. }
  10282. // YaRN algorithm based on LlamaYaRNScaledRotaryEmbedding.py from https://github.com/jquesnelle/yarn
  10283. // MIT licensed. Copyright (c) 2023 Jeffrey Quesnelle and Bowen Peng.
  10284. static void rope_yarn(
  10285. float theta_extrap, float freq_scale, float corr_dims[2], int64_t i0, float ext_factor, float mscale,
  10286. float * cos_theta, float * sin_theta
  10287. ) {
  10288. // Get n-d rotational scaling corrected for extrapolation
  10289. float theta_interp = freq_scale * theta_extrap;
  10290. float theta = theta_interp;
  10291. if (ext_factor != 0.0f) {
  10292. float ramp_mix = rope_yarn_ramp(corr_dims[0], corr_dims[1], i0) * ext_factor;
  10293. theta = theta_interp * (1 - ramp_mix) + theta_extrap * ramp_mix;
  10294. // Get n-d magnitude scaling corrected for interpolation
  10295. mscale *= 1.0f + 0.1f * logf(1.0f / freq_scale);
  10296. }
  10297. *cos_theta = cosf(theta) * mscale;
  10298. *sin_theta = sinf(theta) * mscale;
  10299. }
  10300. // Apparently solving `n_rot = 2pi * x * base^((2 * max_pos_emb) / n_dims)` for x, we get
  10301. // `corr_dim(n_rot) = n_dims * log(max_pos_emb / (n_rot * 2pi)) / (2 * log(base))`
  10302. static float ggml_rope_yarn_corr_dim(int n_dims, int n_orig_ctx, float n_rot, float base) {
  10303. return n_dims * logf(n_orig_ctx / (n_rot * 2 * (float)M_PI)) / (2 * logf(base));
  10304. }
  10305. static void ggml_rope_cache_init(
  10306. float theta_base, float freq_scale, float corr_dims[2], int64_t ne0, float ext_factor, float mscale,
  10307. float * cache, float sin_sign, float theta_scale
  10308. ) {
  10309. float theta = theta_base;
  10310. for (int64_t i0 = 0; i0 < ne0; i0 += 2) {
  10311. rope_yarn(
  10312. theta, freq_scale, corr_dims, i0, ext_factor, mscale, &cache[i0 + 0], &cache[i0 + 1]
  10313. );
  10314. cache[i0 + 1] *= sin_sign;
  10315. theta *= theta_scale;
  10316. }
  10317. }
  10318. GGML_CALL void ggml_rope_yarn_corr_dims(
  10319. int n_dims, int n_orig_ctx, float freq_base, float beta_fast, float beta_slow, float dims[2]
  10320. ) {
  10321. // start and end correction dims
  10322. float start = floorf(ggml_rope_yarn_corr_dim(n_dims, n_orig_ctx, beta_fast, freq_base));
  10323. float end = ceilf(ggml_rope_yarn_corr_dim(n_dims, n_orig_ctx, beta_slow, freq_base));
  10324. dims[0] = MAX(0, start);
  10325. dims[1] = MIN(n_dims - 1, end);
  10326. }
  10327. static void ggml_compute_forward_rope_f32(
  10328. const struct ggml_compute_params * params,
  10329. struct ggml_tensor * dst,
  10330. const bool forward) {
  10331. const struct ggml_tensor * src0 = dst->src[0];
  10332. const struct ggml_tensor * src1 = dst->src[1];
  10333. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  10334. return;
  10335. }
  10336. float freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow;
  10337. // these two only relevant for xPos RoPE:
  10338. float xpos_base;
  10339. bool xpos_down;
  10340. //const int n_past = ((int32_t *) dst->op_params)[0];
  10341. const int n_dims = ((int32_t *) dst->op_params)[1];
  10342. const int mode = ((int32_t *) dst->op_params)[2];
  10343. const int n_ctx = ((int32_t *) dst->op_params)[3];
  10344. const int n_orig_ctx = ((int32_t *) dst->op_params)[4];
  10345. memcpy(&freq_base, (int32_t *) dst->op_params + 5, sizeof(float));
  10346. memcpy(&freq_scale, (int32_t *) dst->op_params + 6, sizeof(float));
  10347. memcpy(&ext_factor, (int32_t *) dst->op_params + 7, sizeof(float));
  10348. memcpy(&attn_factor, (int32_t *) dst->op_params + 8, sizeof(float));
  10349. memcpy(&beta_fast, (int32_t *) dst->op_params + 9, sizeof(float));
  10350. memcpy(&beta_slow, (int32_t *) dst->op_params + 10, sizeof(float));
  10351. memcpy(&xpos_base, (int32_t *) dst->op_params + 11, sizeof(float));
  10352. memcpy(&xpos_down, (int32_t *) dst->op_params + 12, sizeof(bool));
  10353. GGML_TENSOR_UNARY_OP_LOCALS
  10354. //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
  10355. //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
  10356. GGML_ASSERT(nb00 == sizeof(float));
  10357. const int ith = params->ith;
  10358. const int nth = params->nth;
  10359. const int nr = ggml_nrows(dst);
  10360. GGML_ASSERT(n_dims <= ne0);
  10361. GGML_ASSERT(n_dims % 2 == 0);
  10362. // rows per thread
  10363. const int dr = (nr + nth - 1)/nth;
  10364. // row range for this thread
  10365. const int ir0 = dr*ith;
  10366. const int ir1 = MIN(ir0 + dr, nr);
  10367. // row index used to determine which thread to use
  10368. int ir = 0;
  10369. const float theta_scale = powf(freq_base, -2.0f/n_dims);
  10370. const float inv_ndims = -1.f/n_dims;
  10371. float corr_dims[2];
  10372. ggml_rope_yarn_corr_dims(n_dims, n_orig_ctx, freq_base, beta_fast, beta_slow, corr_dims);
  10373. const bool is_neox = mode & 2;
  10374. const bool is_glm = mode & 4;
  10375. // backward process uses inverse rotation by cos and sin.
  10376. // cos and sin build a rotation matrix, where the inverse is the transpose.
  10377. // this essentially just switches the sign of sin.
  10378. const float sin_sign = forward ? 1.0f : -1.0f;
  10379. const int32_t * pos = (const int32_t *) src1->data;
  10380. for (int64_t i3 = 0; i3 < ne3; i3++) {
  10381. for (int64_t i2 = 0; i2 < ne2; i2++) {
  10382. const int64_t p = pos[i2];
  10383. float * cache = (float *) params->wdata + (ne0 + CACHE_LINE_SIZE_F32)*ith;
  10384. if (!is_glm && !is_neox) { // TODO: cache sin/cos for glm, neox
  10385. ggml_rope_cache_init(p, freq_scale, corr_dims, ne0, ext_factor, attn_factor, cache, sin_sign, theta_scale);
  10386. }
  10387. for (int64_t i1 = 0; i1 < ne1; i1++) {
  10388. if (ir++ < ir0) continue;
  10389. if (ir > ir1) break;
  10390. float theta_base = (float)p;
  10391. if (is_glm) {
  10392. theta_base = MIN(p, n_ctx - 2);
  10393. float block_theta = MAX(p - (n_ctx - 2), 0);
  10394. for (int64_t i0 = 0; i0 < ne0 / 4; i0++) {
  10395. const float cos_theta = cosf(theta_base);
  10396. const float sin_theta = sinf(theta_base) * sin_sign;
  10397. const float cos_block_theta = cosf(block_theta);
  10398. const float sin_block_theta = sinf(block_theta) * sin_sign;
  10399. theta_base *= theta_scale;
  10400. block_theta *= theta_scale;
  10401. const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  10402. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  10403. const float x0 = src[0];
  10404. const float x1 = src[n_dims/2];
  10405. const float x2 = src[n_dims];
  10406. const float x3 = src[n_dims/2*3];
  10407. dst_data[0] = x0*cos_theta - x1*sin_theta;
  10408. dst_data[n_dims/2] = x0*sin_theta + x1*cos_theta;
  10409. dst_data[n_dims] = x2*cos_block_theta - x3*sin_block_theta;
  10410. dst_data[n_dims/2*3] = x2*sin_block_theta + x3*cos_block_theta;
  10411. }
  10412. } else if (!is_neox) {
  10413. for (int64_t i0 = 0; i0 < ne0; i0 += 2) {
  10414. const float cos_theta = cache[i0 + 0];
  10415. const float sin_theta = cache[i0 + 1];
  10416. // zeta scaling for xPos only:
  10417. float zeta = xpos_base != 0.0f ? powf((i0 + 0.4f * ne0) / (1.4f * ne0), p / xpos_base) : 1.0f;
  10418. if (xpos_down) zeta = 1.0f / zeta;
  10419. const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  10420. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  10421. const float x0 = src[0];
  10422. const float x1 = src[1];
  10423. dst_data[0] = x0*cos_theta*zeta - x1*sin_theta*zeta;
  10424. dst_data[1] = x0*sin_theta*zeta + x1*cos_theta*zeta;
  10425. }
  10426. } else {
  10427. // TODO: this might be wrong for ne0 != n_dims - need double check
  10428. // it seems we have to rope just the first n_dims elements and do nothing with the rest
  10429. // ref: https://github.com/ml-explore/mlx/blob/dc2edc762c797e3b8de50b1dad4dc0a131691033/benchmarks/python/llama_jax_bench.py#L11-L26
  10430. theta_base *= freq_scale;
  10431. for (int64_t ic = 0; ic < ne0; ic += 2) {
  10432. if (ic < n_dims) {
  10433. const int64_t ib = 0;
  10434. // simplified from `(ib * n_dims + ic) * inv_ndims`
  10435. float cur_rot = inv_ndims * ic - ib;
  10436. float cos_theta, sin_theta;
  10437. rope_yarn(
  10438. theta_base, freq_scale, corr_dims, cur_rot, ext_factor, attn_factor,
  10439. &cos_theta, &sin_theta
  10440. );
  10441. sin_theta *= sin_sign;
  10442. theta_base *= theta_scale;
  10443. const int64_t i0 = ib*n_dims + ic/2;
  10444. const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  10445. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  10446. const float x0 = src[0];
  10447. const float x1 = src[n_dims/2];
  10448. dst_data[0] = x0*cos_theta - x1*sin_theta;
  10449. dst_data[n_dims/2] = x0*sin_theta + x1*cos_theta;
  10450. } else {
  10451. const int64_t i0 = ic;
  10452. const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  10453. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  10454. dst_data[0] = src[0];
  10455. dst_data[1] = src[1];
  10456. }
  10457. }
  10458. }
  10459. }
  10460. }
  10461. }
  10462. }
  10463. static void ggml_compute_forward_rope_f16(
  10464. const struct ggml_compute_params * params,
  10465. struct ggml_tensor * dst,
  10466. const bool forward) {
  10467. const struct ggml_tensor * src0 = dst->src[0];
  10468. const struct ggml_tensor * src1 = dst->src[1];
  10469. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  10470. return;
  10471. }
  10472. float freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow;
  10473. //const int n_past = ((int32_t *) dst->op_params)[0];
  10474. const int n_dims = ((int32_t *) dst->op_params)[1];
  10475. const int mode = ((int32_t *) dst->op_params)[2];
  10476. const int n_ctx = ((int32_t *) dst->op_params)[3];
  10477. const int n_orig_ctx = ((int32_t *) dst->op_params)[4];
  10478. memcpy(&freq_base, (int32_t *) dst->op_params + 5, sizeof(float));
  10479. memcpy(&freq_scale, (int32_t *) dst->op_params + 6, sizeof(float));
  10480. memcpy(&ext_factor, (int32_t *) dst->op_params + 7, sizeof(float));
  10481. memcpy(&attn_factor, (int32_t *) dst->op_params + 8, sizeof(float));
  10482. memcpy(&beta_fast, (int32_t *) dst->op_params + 9, sizeof(float));
  10483. memcpy(&beta_slow, (int32_t *) dst->op_params + 10, sizeof(float));
  10484. GGML_TENSOR_UNARY_OP_LOCALS
  10485. //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
  10486. //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
  10487. GGML_ASSERT(nb0 == sizeof(ggml_fp16_t));
  10488. const int ith = params->ith;
  10489. const int nth = params->nth;
  10490. const int nr = ggml_nrows(dst);
  10491. GGML_ASSERT(n_dims <= ne0);
  10492. GGML_ASSERT(n_dims % 2 == 0);
  10493. // rows per thread
  10494. const int dr = (nr + nth - 1)/nth;
  10495. // row range for this thread
  10496. const int ir0 = dr*ith;
  10497. const int ir1 = MIN(ir0 + dr, nr);
  10498. // row index used to determine which thread to use
  10499. int ir = 0;
  10500. const float theta_scale = powf(freq_base, -2.0f/n_dims);
  10501. const float inv_ndims = -1.f/n_dims;
  10502. float corr_dims[2];
  10503. ggml_rope_yarn_corr_dims(n_dims, n_orig_ctx, freq_base, beta_fast, beta_slow, corr_dims);
  10504. const bool is_neox = mode & 2;
  10505. const bool is_glm = mode & 4;
  10506. // backward process uses inverse rotation by cos and sin.
  10507. // cos and sin build a rotation matrix, where the inverse is the transpose.
  10508. // this essentially just switches the sign of sin.
  10509. const float sin_sign = forward ? 1.0f : -1.0f;
  10510. const int32_t * pos = (const int32_t *) src1->data;
  10511. for (int64_t i3 = 0; i3 < ne3; i3++) {
  10512. for (int64_t i2 = 0; i2 < ne2; i2++) {
  10513. const int64_t p = pos[i2];
  10514. float * cache = (float *) params->wdata + (ne0 + CACHE_LINE_SIZE_F32)*ith;
  10515. if (!is_glm && !is_neox) { // TODO: cache sin/cos for glm, neox
  10516. ggml_rope_cache_init(p, freq_scale, corr_dims, ne0, ext_factor, attn_factor, cache, sin_sign, theta_scale);
  10517. }
  10518. for (int64_t i1 = 0; i1 < ne1; i1++) {
  10519. if (ir++ < ir0) continue;
  10520. if (ir > ir1) break;
  10521. float theta_base = (float)p;
  10522. if (is_glm) {
  10523. theta_base = MIN(p, n_ctx - 2);
  10524. float block_theta = MAX(p - (n_ctx - 2), 0);
  10525. for (int64_t i0 = 0; i0 < ne0 / 4; i0++) {
  10526. const float cos_theta = cosf(theta_base);
  10527. const float sin_theta = sinf(theta_base) * sin_sign;
  10528. const float cos_block_theta = cosf(block_theta);
  10529. const float sin_block_theta = sinf(block_theta) * sin_sign;
  10530. theta_base *= theta_scale;
  10531. block_theta *= theta_scale;
  10532. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  10533. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  10534. const float x0 = GGML_FP16_TO_FP32(src[0]);
  10535. const float x1 = GGML_FP16_TO_FP32(src[n_dims/2]);
  10536. const float x2 = GGML_FP16_TO_FP32(src[n_dims]);
  10537. const float x3 = GGML_FP16_TO_FP32(src[n_dims/2*3]);
  10538. dst_data[0] = GGML_FP32_TO_FP16(x0*cos_theta - x1*sin_theta);
  10539. dst_data[n_dims/2] = GGML_FP32_TO_FP16(x0*sin_theta + x1*cos_theta);
  10540. dst_data[n_dims] = GGML_FP32_TO_FP16(x2*cos_block_theta - x3*sin_block_theta);
  10541. dst_data[n_dims/2*3] = GGML_FP32_TO_FP16(x2*sin_block_theta + x3*cos_block_theta);
  10542. }
  10543. } else if (!is_neox) {
  10544. for (int64_t i0 = 0; i0 < ne0; i0 += 2) {
  10545. const float cos_theta = cache[i0 + 0];
  10546. const float sin_theta = cache[i0 + 1];
  10547. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  10548. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  10549. const float x0 = GGML_FP16_TO_FP32(src[0]);
  10550. const float x1 = GGML_FP16_TO_FP32(src[1]);
  10551. dst_data[0] = GGML_FP32_TO_FP16(x0*cos_theta - x1*sin_theta);
  10552. dst_data[1] = GGML_FP32_TO_FP16(x0*sin_theta + x1*cos_theta);
  10553. }
  10554. } else {
  10555. // TODO: this might be wrong for ne0 != n_dims - need double check
  10556. // it seems we have to rope just the first n_dims elements and do nothing with the rest
  10557. // ref: https://github.com/ml-explore/mlx/blob/dc2edc762c797e3b8de50b1dad4dc0a131691033/benchmarks/python/llama_jax_bench.py#L11-L26
  10558. theta_base *= freq_scale;
  10559. for (int64_t ic = 0; ic < ne0; ic += 2) {
  10560. if (ic < n_dims) {
  10561. const int64_t ib = 0;
  10562. // simplified from `(ib * n_dims + ic) * inv_ndims`
  10563. float cur_rot = inv_ndims * ic - ib;
  10564. float cos_theta, sin_theta;
  10565. rope_yarn(
  10566. theta_base, freq_scale, corr_dims, cur_rot, ext_factor, attn_factor,
  10567. &cos_theta, &sin_theta
  10568. );
  10569. sin_theta *= sin_sign;
  10570. theta_base *= theta_scale;
  10571. const int64_t i0 = ib*n_dims + ic/2;
  10572. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  10573. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  10574. const float x0 = GGML_FP16_TO_FP32(src[0]);
  10575. const float x1 = GGML_FP16_TO_FP32(src[n_dims/2]);
  10576. dst_data[0] = GGML_FP32_TO_FP16(x0*cos_theta - x1*sin_theta);
  10577. dst_data[n_dims/2] = GGML_FP32_TO_FP16(x0*sin_theta + x1*cos_theta);
  10578. } else {
  10579. const int64_t i0 = ic;
  10580. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  10581. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  10582. dst_data[0] = src[0];
  10583. dst_data[1] = src[1];
  10584. }
  10585. }
  10586. }
  10587. }
  10588. }
  10589. }
  10590. }
  10591. static void ggml_compute_forward_rope(
  10592. const struct ggml_compute_params * params,
  10593. struct ggml_tensor * dst) {
  10594. const struct ggml_tensor * src0 = dst->src[0];
  10595. switch (src0->type) {
  10596. case GGML_TYPE_F16:
  10597. {
  10598. ggml_compute_forward_rope_f16(params, dst, true);
  10599. } break;
  10600. case GGML_TYPE_F32:
  10601. {
  10602. ggml_compute_forward_rope_f32(params, dst, true);
  10603. } break;
  10604. default:
  10605. {
  10606. GGML_ASSERT(false);
  10607. } break;
  10608. }
  10609. }
  10610. // ggml_compute_forward_rope_back
  10611. static void ggml_compute_forward_rope_back(
  10612. const struct ggml_compute_params * params,
  10613. struct ggml_tensor * dst) {
  10614. const struct ggml_tensor * src0 = dst->src[0];
  10615. switch (src0->type) {
  10616. case GGML_TYPE_F16:
  10617. {
  10618. ggml_compute_forward_rope_f16(params, dst, false);
  10619. } break;
  10620. case GGML_TYPE_F32:
  10621. {
  10622. ggml_compute_forward_rope_f32(params, dst, false);
  10623. } break;
  10624. default:
  10625. {
  10626. GGML_ASSERT(false);
  10627. } break;
  10628. }
  10629. }
  10630. // ggml_compute_forward_conv_transpose_1d
  10631. static void ggml_compute_forward_conv_transpose_1d_f16_f32(
  10632. const struct ggml_compute_params * params,
  10633. struct ggml_tensor * dst) {
  10634. const struct ggml_tensor * src0 = dst->src[0];
  10635. const struct ggml_tensor * src1 = dst->src[1];
  10636. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  10637. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  10638. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  10639. int64_t t0 = ggml_perf_time_us();
  10640. UNUSED(t0);
  10641. GGML_TENSOR_BINARY_OP_LOCALS
  10642. const int ith = params->ith;
  10643. const int nth = params->nth;
  10644. const int nk = ne00*ne01*ne02;
  10645. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  10646. GGML_ASSERT(nb10 == sizeof(float));
  10647. if (params->type == GGML_TASK_TYPE_INIT) {
  10648. if (ith != 0) {
  10649. return;
  10650. }
  10651. memset(params->wdata, 0, params->wsize);
  10652. // permute kernel data (src0) from (K x Cout x Cin) to (Cin x K x Cout)
  10653. {
  10654. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  10655. for (int64_t i02 = 0; i02 < ne02; i02++) {
  10656. for (int64_t i01 = 0; i01 < ne01; i01++) {
  10657. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i02*nb02 + i01*nb01);
  10658. ggml_fp16_t * dst_data = wdata + i01*ne00*ne02;
  10659. for (int64_t i00 = 0; i00 < ne00; i00++) {
  10660. dst_data[i00*ne02 + i02] = src[i00];
  10661. }
  10662. }
  10663. }
  10664. }
  10665. // permute source data (src1) from (L x Cin) to (Cin x L)
  10666. {
  10667. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + nk;
  10668. ggml_fp16_t * dst_data = wdata;
  10669. for (int64_t i11 = 0; i11 < ne11; i11++) {
  10670. const float * const src = (float *)((char *) src1->data + i11*nb11);
  10671. for (int64_t i10 = 0; i10 < ne10; i10++) {
  10672. dst_data[i10*ne11 + i11] = GGML_FP32_TO_FP16(src[i10]);
  10673. }
  10674. }
  10675. }
  10676. // need to zero dst since we are accumulating into it
  10677. memset(dst->data, 0, ggml_nbytes(dst));
  10678. return;
  10679. }
  10680. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  10681. return;
  10682. }
  10683. const int32_t s0 = ((const int32_t*)(dst->op_params))[0];
  10684. // total rows in dst
  10685. const int nr = ne1;
  10686. // rows per thread
  10687. const int dr = (nr + nth - 1)/nth;
  10688. // row range for this thread
  10689. const int ir0 = dr*ith;
  10690. const int ir1 = MIN(ir0 + dr, nr);
  10691. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  10692. ggml_fp16_t * const wdata_src = wdata + nk;
  10693. for (int i1 = ir0; i1 < ir1; i1++) {
  10694. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  10695. ggml_fp16_t * wdata_kernel = wdata + i1*ne02*ne00;
  10696. for (int i10 = 0; i10 < ne10; i10++) {
  10697. const int i1n = i10*ne11;
  10698. for (int i00 = 0; i00 < ne00; i00++) {
  10699. float v = 0;
  10700. ggml_vec_dot_f16(ne02, &v, 0,
  10701. (ggml_fp16_t *) wdata_src + i1n, 0,
  10702. (ggml_fp16_t *) wdata_kernel + i00*ne02, 0, 1);
  10703. dst_data[i10*s0 + i00] += v;
  10704. }
  10705. }
  10706. }
  10707. }
  10708. static void ggml_compute_forward_conv_transpose_1d_f32(
  10709. const struct ggml_compute_params * params,
  10710. struct ggml_tensor * dst) {
  10711. const struct ggml_tensor * src0 = dst->src[0];
  10712. const struct ggml_tensor * src1 = dst->src[1];
  10713. GGML_ASSERT(src0->type == GGML_TYPE_F32);
  10714. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  10715. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  10716. int64_t t0 = ggml_perf_time_us();
  10717. UNUSED(t0);
  10718. GGML_TENSOR_BINARY_OP_LOCALS
  10719. const int ith = params->ith;
  10720. const int nth = params->nth;
  10721. const int nk = ne00*ne01*ne02;
  10722. GGML_ASSERT(nb00 == sizeof(float));
  10723. GGML_ASSERT(nb10 == sizeof(float));
  10724. if (params->type == GGML_TASK_TYPE_INIT) {
  10725. if (ith != 0) {
  10726. return;
  10727. }
  10728. memset(params->wdata, 0, params->wsize);
  10729. // prepare kernel data (src0) from (K x Cout x Cin) to (Cin x K x Cout)
  10730. {
  10731. float * const wdata = (float *) params->wdata + 0;
  10732. for (int64_t i02 = 0; i02 < ne02; i02++) {
  10733. for (int64_t i01 = 0; i01 < ne01; i01++) {
  10734. const float * const src = (float *)((char *) src0->data + i02*nb02 + i01*nb01);
  10735. float * dst_data = wdata + i01*ne00*ne02;
  10736. for (int64_t i00 = 0; i00 < ne00; i00++) {
  10737. dst_data[i00*ne02 + i02] = src[i00];
  10738. }
  10739. }
  10740. }
  10741. }
  10742. // prepare source data (src1)
  10743. {
  10744. float * const wdata = (float *) params->wdata + nk;
  10745. float * dst_data = wdata;
  10746. for (int64_t i11 = 0; i11 < ne11; i11++) {
  10747. const float * const src = (float *)((char *) src1->data + i11*nb11);
  10748. for (int64_t i10 = 0; i10 < ne10; i10++) {
  10749. dst_data[i10*ne11 + i11] = src[i10];
  10750. }
  10751. }
  10752. }
  10753. // need to zero dst since we are accumulating into it
  10754. memset(dst->data, 0, ggml_nbytes(dst));
  10755. return;
  10756. }
  10757. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  10758. return;
  10759. }
  10760. const int32_t s0 = ((const int32_t*)(dst->op_params))[0];
  10761. // total rows in dst
  10762. const int nr = ne1;
  10763. // rows per thread
  10764. const int dr = (nr + nth - 1)/nth;
  10765. // row range for this thread
  10766. const int ir0 = dr*ith;
  10767. const int ir1 = MIN(ir0 + dr, nr);
  10768. float * const wdata = (float *) params->wdata + 0;
  10769. float * const wdata_src = wdata + nk;
  10770. for (int i1 = ir0; i1 < ir1; i1++) {
  10771. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  10772. float * wdata_kernel = wdata + i1*ne02*ne00;
  10773. for (int i10 = 0; i10 < ne10; i10++) {
  10774. const int i1n = i10*ne11;
  10775. for (int i00 = 0; i00 < ne00; i00++) {
  10776. float v = 0;
  10777. ggml_vec_dot_f32(ne02, &v, 0,
  10778. wdata_src + i1n, 0,
  10779. wdata_kernel + i00*ne02, 0, 1);
  10780. dst_data[i10*s0 + i00] += v;
  10781. }
  10782. }
  10783. }
  10784. }
  10785. static void ggml_compute_forward_conv_transpose_1d(
  10786. const struct ggml_compute_params * params,
  10787. struct ggml_tensor * dst) {
  10788. const struct ggml_tensor * src0 = dst->src[0];
  10789. switch (src0->type) {
  10790. case GGML_TYPE_F16:
  10791. {
  10792. ggml_compute_forward_conv_transpose_1d_f16_f32(params, dst);
  10793. } break;
  10794. case GGML_TYPE_F32:
  10795. {
  10796. ggml_compute_forward_conv_transpose_1d_f32(params, dst);
  10797. } break;
  10798. default:
  10799. {
  10800. GGML_ASSERT(false);
  10801. } break;
  10802. }
  10803. }
  10804. // src0: kernel [OC, IC, KH, KW]
  10805. // src1: image [N, IC, IH, IW]
  10806. // dst: result [N, OH, OW, IC*KH*KW]
  10807. static void ggml_compute_forward_im2col_f32(
  10808. const struct ggml_compute_params * params,
  10809. struct ggml_tensor * dst) {
  10810. const struct ggml_tensor * src0 = dst->src[0];
  10811. const struct ggml_tensor * src1 = dst->src[1];
  10812. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  10813. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  10814. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  10815. int64_t t0 = ggml_perf_time_us();
  10816. UNUSED(t0);
  10817. GGML_TENSOR_BINARY_OP_LOCALS;
  10818. const int32_t s0 = ((const int32_t *)(dst->op_params))[0];
  10819. const int32_t s1 = ((const int32_t *)(dst->op_params))[1];
  10820. const int32_t p0 = ((const int32_t *)(dst->op_params))[2];
  10821. const int32_t p1 = ((const int32_t *)(dst->op_params))[3];
  10822. const int32_t d0 = ((const int32_t *)(dst->op_params))[4];
  10823. const int32_t d1 = ((const int32_t *)(dst->op_params))[5];
  10824. const bool is_2D = ((const int32_t *)(dst->op_params))[6] == 1;
  10825. const int ith = params->ith;
  10826. const int nth = params->nth;
  10827. const int64_t N = is_2D ? ne13 : ne12;
  10828. const int64_t IC = is_2D ? ne12 : ne11;
  10829. const int64_t IH = is_2D ? ne11 : 1;
  10830. const int64_t IW = ne10;
  10831. const int64_t KH = is_2D ? ne01 : 1;
  10832. const int64_t KW = ne00;
  10833. const int64_t OH = is_2D ? ne2 : 1;
  10834. const int64_t OW = ne1;
  10835. int ofs0 = is_2D ? nb13 : nb12;
  10836. int ofs1 = is_2D ? nb12 : nb11;
  10837. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  10838. GGML_ASSERT(nb10 == sizeof(float));
  10839. if (params->type == GGML_TASK_TYPE_INIT) {
  10840. return;
  10841. }
  10842. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  10843. return;
  10844. }
  10845. // im2col: [N, IC, IH, IW] => [N, OH, OW, IC*KH*KW]
  10846. {
  10847. float * const wdata = (float *) dst->data;
  10848. for (int64_t in = 0; in < N; in++) {
  10849. for (int64_t ioh = 0; ioh < OH; ioh++) { // 1
  10850. for (int64_t iow = 0; iow < OW; iow++) {
  10851. for (int64_t iic = ith; iic < IC; iic += nth) {
  10852. // micro kernel
  10853. float * dst_data = wdata + (in*OH*OW + ioh*OW + iow)*(IC*KH*KW); // [IC, KH, KW]
  10854. const float * const src_data = (float *)((char *) src1->data + in*ofs0 + iic*ofs1); // [IH, IW]
  10855. for (int64_t ikh = 0; ikh < KH; ikh++) { // 1
  10856. for (int64_t ikw = 0; ikw < KW; ikw++) {
  10857. const int64_t iiw = iow*s0 + ikw*d0 - p0;
  10858. const int64_t iih = ioh*s1 + ikh*d1 - p1;
  10859. if (iih < 0 || iih >= IH || iiw < 0 || iiw >= IW) {
  10860. dst_data[iic*(KH*KW) + ikh*KW + ikw] = 0;
  10861. } else {
  10862. dst_data[iic*(KH*KW) + ikh*KW + ikw] = (src_data[iih*IW + iiw]);
  10863. }
  10864. }
  10865. }
  10866. }
  10867. }
  10868. }
  10869. }
  10870. }
  10871. }
  10872. // src0: kernel [OC, IC, KH, KW]
  10873. // src1: image [N, IC, IH, IW]
  10874. // dst: result [N, OH, OW, IC*KH*KW]
  10875. static void ggml_compute_forward_im2col_f16(
  10876. const struct ggml_compute_params * params,
  10877. struct ggml_tensor * dst) {
  10878. const struct ggml_tensor * src0 = dst->src[0];
  10879. const struct ggml_tensor * src1 = dst->src[1];
  10880. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  10881. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  10882. GGML_ASSERT( dst->type == GGML_TYPE_F16);
  10883. int64_t t0 = ggml_perf_time_us();
  10884. UNUSED(t0);
  10885. GGML_TENSOR_BINARY_OP_LOCALS;
  10886. const int32_t s0 = ((const int32_t *)(dst->op_params))[0];
  10887. const int32_t s1 = ((const int32_t *)(dst->op_params))[1];
  10888. const int32_t p0 = ((const int32_t *)(dst->op_params))[2];
  10889. const int32_t p1 = ((const int32_t *)(dst->op_params))[3];
  10890. const int32_t d0 = ((const int32_t *)(dst->op_params))[4];
  10891. const int32_t d1 = ((const int32_t *)(dst->op_params))[5];
  10892. const bool is_2D = ((const int32_t *)(dst->op_params))[6] == 1;
  10893. const int ith = params->ith;
  10894. const int nth = params->nth;
  10895. const int64_t N = is_2D ? ne13 : ne12;
  10896. const int64_t IC = is_2D ? ne12 : ne11;
  10897. const int64_t IH = is_2D ? ne11 : 1;
  10898. const int64_t IW = ne10;
  10899. const int64_t KH = is_2D ? ne01 : 1;
  10900. const int64_t KW = ne00;
  10901. const int64_t OH = is_2D ? ne2 : 1;
  10902. const int64_t OW = ne1;
  10903. int ofs0 = is_2D ? nb13 : nb12;
  10904. int ofs1 = is_2D ? nb12 : nb11;
  10905. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  10906. GGML_ASSERT(nb10 == sizeof(float));
  10907. if (params->type == GGML_TASK_TYPE_INIT) {
  10908. return;
  10909. }
  10910. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  10911. return;
  10912. }
  10913. // im2col: [N, IC, IH, IW] => [N, OH, OW, IC*KH*KW]
  10914. {
  10915. ggml_fp16_t * const wdata = (ggml_fp16_t *) dst->data;
  10916. for (int64_t in = 0; in < N; in++) {
  10917. for (int64_t ioh = 0; ioh < OH; ioh++) { // 1
  10918. for (int64_t iow = 0; iow < OW; iow++) {
  10919. for (int64_t iic = ith; iic < IC; iic += nth) {
  10920. // micro kernel
  10921. ggml_fp16_t * dst_data = wdata + (in*OH*OW + ioh*OW + iow)*(IC*KH*KW); // [IC, KH, KW]
  10922. const float * const src_data = (float *)((char *) src1->data + in*ofs0 + iic*ofs1); // [IH, IW]
  10923. for (int64_t ikh = 0; ikh < KH; ikh++) { // 1
  10924. for (int64_t ikw = 0; ikw < KW; ikw++) {
  10925. const int64_t iiw = iow*s0 + ikw*d0 - p0;
  10926. const int64_t iih = ioh*s1 + ikh*d1 - p1;
  10927. if (iih < 0 || iih >= IH || iiw < 0 || iiw >= IW) {
  10928. dst_data[iic*(KH*KW) + ikh*KW + ikw] = 0;
  10929. } else {
  10930. dst_data[iic*(KH*KW) + ikh*KW + ikw] = GGML_FP32_TO_FP16(src_data[iih*IW + iiw]);
  10931. }
  10932. }
  10933. }
  10934. }
  10935. }
  10936. }
  10937. }
  10938. }
  10939. }
  10940. static void ggml_compute_forward_im2col(
  10941. const struct ggml_compute_params * params,
  10942. struct ggml_tensor * dst) {
  10943. switch (dst->type) {
  10944. case GGML_TYPE_F16:
  10945. {
  10946. ggml_compute_forward_im2col_f16(params, dst);
  10947. } break;
  10948. case GGML_TYPE_F32:
  10949. {
  10950. ggml_compute_forward_im2col_f32(params, dst);
  10951. } break;
  10952. default:
  10953. {
  10954. GGML_ASSERT(false);
  10955. } break;
  10956. }
  10957. }
  10958. // ggml_compute_forward_conv_transpose_2d
  10959. static void ggml_compute_forward_conv_transpose_2d(
  10960. const struct ggml_compute_params * params,
  10961. struct ggml_tensor * dst) {
  10962. const struct ggml_tensor * src0 = dst->src[0];
  10963. const struct ggml_tensor * src1 = dst->src[1];
  10964. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  10965. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  10966. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  10967. int64_t t0 = ggml_perf_time_us();
  10968. UNUSED(t0);
  10969. GGML_TENSOR_BINARY_OP_LOCALS
  10970. const int ith = params->ith;
  10971. const int nth = params->nth;
  10972. const int nk = ne00*ne01*ne02*ne03;
  10973. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  10974. GGML_ASSERT(nb10 == sizeof(float));
  10975. if (params->type == GGML_TASK_TYPE_INIT) {
  10976. if (ith != 0) {
  10977. return;
  10978. }
  10979. memset(params->wdata, 0, params->wsize);
  10980. // permute kernel data (src0) from (Kw x Kh x Cout x Cin) to (Cin x Kw x Kh x Cout)
  10981. {
  10982. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  10983. for (int64_t i03 = 0; i03 < ne03; i03++) {
  10984. for (int64_t i02 = 0; i02 < ne02; i02++) {
  10985. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i03*nb03 + i02*nb02);
  10986. ggml_fp16_t * dst_data = wdata + i02*ne01*ne00*ne03;
  10987. for (int64_t i01 = 0; i01 < ne01; i01++) {
  10988. for (int64_t i00 = 0; i00 < ne00; i00++) {
  10989. dst_data[i01*ne00*ne03 + i00*ne03 + i03] = src[i01 * ne00 + i00];
  10990. }
  10991. }
  10992. }
  10993. }
  10994. }
  10995. // permute source data (src1) from (Sw x Sh x Cin) to (Cin x Sw x Sh)
  10996. {
  10997. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + nk;
  10998. for (int i12 = 0; i12 < ne12; i12++) {
  10999. for (int i11 = 0; i11 < ne11; i11++) {
  11000. const float * const src = (float *)((char *) src1->data + i12*nb12 + i11*nb11);
  11001. ggml_fp16_t * dst_data = wdata + i11*ne10*ne12;
  11002. for (int i10 = 0; i10 < ne10; i10++) {
  11003. dst_data[i10*ne12 + i12] = GGML_FP32_TO_FP16(src[i10]);
  11004. }
  11005. }
  11006. }
  11007. }
  11008. memset(dst->data, 0, ggml_nbytes(dst));
  11009. return;
  11010. }
  11011. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  11012. return;
  11013. }
  11014. const int32_t stride = ggml_get_op_params_i32(dst, 0);
  11015. // total patches in dst
  11016. const int np = ne2;
  11017. // patches per thread
  11018. const int dp = (np + nth - 1)/nth;
  11019. // patch range for this thread
  11020. const int ip0 = dp*ith;
  11021. const int ip1 = MIN(ip0 + dp, np);
  11022. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  11023. ggml_fp16_t * const wdata_src = wdata + nk;
  11024. for (int i2 = ip0; i2 < ip1; i2++) { // Cout
  11025. float * dst_data = (float *)((char *) dst->data + i2*nb2);
  11026. ggml_fp16_t * wdata_kernel = wdata + i2*ne01*ne00*ne03;
  11027. for (int i11 = 0; i11 < ne11; i11++) {
  11028. for (int i10 = 0; i10 < ne10; i10++) {
  11029. const int i1n = i11*ne10*ne12 + i10*ne12;
  11030. for (int i01 = 0; i01 < ne01; i01++) {
  11031. for (int i00 = 0; i00 < ne00; i00++) {
  11032. float v = 0;
  11033. ggml_vec_dot_f16(ne03, &v, 0,
  11034. wdata_src + i1n, 0,
  11035. wdata_kernel + i01*ne00*ne03 + i00*ne03, 0, 1);
  11036. dst_data[(i11*stride + i01)*ne0 + i10*stride + i00] += v;
  11037. }
  11038. }
  11039. }
  11040. }
  11041. }
  11042. }
  11043. // ggml_compute_forward_pool_1d_sk_p0
  11044. static void ggml_compute_forward_pool_1d_sk_p0(
  11045. const struct ggml_compute_params * params,
  11046. const enum ggml_op_pool op,
  11047. const int k,
  11048. struct ggml_tensor * dst) {
  11049. const struct ggml_tensor * src = dst->src[0];
  11050. assert(src->type == GGML_TYPE_F32);
  11051. assert(params->ith == 0);
  11052. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  11053. return;
  11054. }
  11055. const char * cdata = (const char *)src->data;
  11056. const char * const data_end = cdata + ggml_nbytes(src);
  11057. float * drow = (float *)dst->data;
  11058. const int64_t rs = dst->ne[0];
  11059. while (cdata < data_end) {
  11060. const float * const srow = (const float *)cdata;
  11061. int j = 0;
  11062. for (int64_t i = 0; i < rs; ++i) {
  11063. switch (op) {
  11064. case GGML_OP_POOL_AVG: drow[i] = 0; break;
  11065. case GGML_OP_POOL_MAX: drow[i] = -FLT_MAX; break;
  11066. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  11067. }
  11068. for (int ki = 0; ki < k; ++ki) {
  11069. switch (op) {
  11070. case GGML_OP_POOL_AVG: drow[i] += srow[j]; break;
  11071. case GGML_OP_POOL_MAX: if (srow[j] > drow[i]) drow[i] = srow[j]; break;
  11072. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  11073. }
  11074. ++j;
  11075. }
  11076. switch (op) {
  11077. case GGML_OP_POOL_AVG: drow[i] /= k; break;
  11078. case GGML_OP_POOL_MAX: break;
  11079. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  11080. }
  11081. }
  11082. cdata += src->nb[1];
  11083. drow += rs;
  11084. }
  11085. }
  11086. // ggml_compute_forward_pool_1d
  11087. static void ggml_compute_forward_pool_1d(
  11088. const struct ggml_compute_params * params,
  11089. struct ggml_tensor * dst) {
  11090. const int32_t * opts = (const int32_t *)dst->op_params;
  11091. enum ggml_op_pool op = opts[0];
  11092. const int k0 = opts[1];
  11093. const int s0 = opts[2];
  11094. const int p0 = opts[3];
  11095. GGML_ASSERT(p0 == 0); // padding not supported
  11096. GGML_ASSERT(k0 == s0); // only s = k supported
  11097. ggml_compute_forward_pool_1d_sk_p0(params, op, k0, dst);
  11098. }
  11099. // ggml_compute_forward_pool_2d
  11100. static void ggml_compute_forward_pool_2d(
  11101. const struct ggml_compute_params * params,
  11102. struct ggml_tensor * dst) {
  11103. const struct ggml_tensor * src = dst->src[0];
  11104. GGML_ASSERT(src->type == GGML_TYPE_F32);
  11105. GGML_ASSERT(params->ith == 0);
  11106. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  11107. return;
  11108. }
  11109. const int32_t * opts = (const int32_t *)dst->op_params;
  11110. enum ggml_op_pool op = opts[0];
  11111. const int k0 = opts[1];
  11112. const int k1 = opts[2];
  11113. const int s0 = opts[3];
  11114. const int s1 = opts[4];
  11115. const int p0 = opts[5];
  11116. const int p1 = opts[6];
  11117. const char * cdata = (const char*)src->data;
  11118. const char * const data_end = cdata + ggml_nbytes(src);
  11119. const int64_t px = dst->ne[0];
  11120. const int64_t py = dst->ne[1];
  11121. const int64_t pa = px * py;
  11122. float * dplane = (float *)dst->data;
  11123. const int ka = k0 * k1;
  11124. const int offset0 = -p0;
  11125. const int offset1 = -p1;
  11126. while (cdata < data_end) {
  11127. for (int oy = 0; oy < py; ++oy) {
  11128. float * const drow = dplane + oy * px;
  11129. for (int ox = 0; ox < px; ++ox) {
  11130. float * const out = drow + ox;
  11131. switch (op) {
  11132. case GGML_OP_POOL_AVG: *out = 0; break;
  11133. case GGML_OP_POOL_MAX: *out = -FLT_MAX; break;
  11134. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  11135. }
  11136. const int ix = offset0 + ox * s0;
  11137. const int iy = offset1 + oy * s1;
  11138. for (int ky = 0; ky < k1; ++ky) {
  11139. if (iy + ky < 0 || iy + ky >= src->ne[1]) continue;
  11140. const float * const srow = (const float *)(cdata + src->nb[1] * (iy + ky));
  11141. for (int kx = 0; kx < k0; ++kx) {
  11142. int j = ix + kx;
  11143. if (j < 0 || j >= src->ne[0]) continue;
  11144. switch (op) {
  11145. case GGML_OP_POOL_AVG: *out += srow[j]; break;
  11146. case GGML_OP_POOL_MAX: if (srow[j] > *out) *out = srow[j]; break;
  11147. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  11148. }
  11149. }
  11150. }
  11151. switch (op) {
  11152. case GGML_OP_POOL_AVG: *out /= ka; break;
  11153. case GGML_OP_POOL_MAX: break;
  11154. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  11155. }
  11156. }
  11157. }
  11158. cdata += src->nb[2];
  11159. dplane += pa;
  11160. }
  11161. }
  11162. // ggml_compute_forward_upscale
  11163. static void ggml_compute_forward_upscale_f32(
  11164. const struct ggml_compute_params * params,
  11165. struct ggml_tensor * dst) {
  11166. const struct ggml_tensor * src0 = dst->src[0];
  11167. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  11168. return;
  11169. }
  11170. GGML_ASSERT(src0->nb[0] == sizeof(float));
  11171. const int ith = params->ith;
  11172. const int nth = params->nth;
  11173. GGML_TENSOR_UNARY_OP_LOCALS
  11174. const int scale_factor = dst->op_params[0];
  11175. // TODO: optimize
  11176. for (int64_t i3 = 0; i3 < ne3; i3++) {
  11177. const int64_t i03 = i3;
  11178. for (int64_t i2 = ith; i2 < ne2; i2 += nth) {
  11179. const int64_t i02 = i2;
  11180. for (int64_t i1 = 0; i1 < ne1; i1++) {
  11181. const int64_t i01 = i1 / scale_factor;
  11182. for (int64_t i0 = 0; i0 < ne0; i0++) {
  11183. const int64_t i00 = i0 / scale_factor;
  11184. const float * x = (float *)((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  11185. float * y = (float *)((char *) dst->data + i0*nb0 + i1*nb1 + i2*nb2 + i3*nb3);
  11186. *y = *x;
  11187. }
  11188. }
  11189. }
  11190. }
  11191. }
  11192. static void ggml_compute_forward_upscale(
  11193. const struct ggml_compute_params * params,
  11194. struct ggml_tensor * dst) {
  11195. const struct ggml_tensor * src0 = dst->src[0];
  11196. switch (src0->type) {
  11197. case GGML_TYPE_F32:
  11198. {
  11199. ggml_compute_forward_upscale_f32(params, dst);
  11200. } break;
  11201. default:
  11202. {
  11203. GGML_ASSERT(false);
  11204. } break;
  11205. }
  11206. }
  11207. // ggml_compute_forward_pad
  11208. static void ggml_compute_forward_pad_f32(
  11209. const struct ggml_compute_params * params,
  11210. struct ggml_tensor * dst) {
  11211. const struct ggml_tensor * src0 = dst->src[0];
  11212. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  11213. return;
  11214. }
  11215. GGML_ASSERT(src0->nb[0] == sizeof(float));
  11216. GGML_ASSERT( dst->nb[0] == sizeof(float));
  11217. const int ith = params->ith;
  11218. const int nth = params->nth;
  11219. GGML_TENSOR_UNARY_OP_LOCALS
  11220. float * dst_ptr = (float *) dst->data;
  11221. // TODO: optimize
  11222. for (int64_t i2 = 0; i2 < ne2; ++i2) {
  11223. for (int64_t i1 = ith; i1 < ne1; i1 += nth) {
  11224. for (int64_t i0 = 0; i0 < ne0; ++i0) {
  11225. for (int64_t i3 = 0; i3 < ne3; ++i3) {
  11226. const int64_t dst_idx = i3*(ne0*ne1*ne2) + i2*(ne0*ne1) + i1*ne0 + i0;
  11227. const float * src_ptr = (const float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  11228. if (i0 < ne00 && i1 < ne01 && i2 < ne02 && i3 < ne03) {
  11229. dst_ptr[dst_idx] = *src_ptr;
  11230. } else {
  11231. dst_ptr[dst_idx] = 0;
  11232. }
  11233. }
  11234. }
  11235. }
  11236. }
  11237. }
  11238. static void ggml_compute_forward_pad(
  11239. const struct ggml_compute_params * params,
  11240. struct ggml_tensor * dst) {
  11241. const struct ggml_tensor * src0 = dst->src[0];
  11242. switch (src0->type) {
  11243. case GGML_TYPE_F32:
  11244. {
  11245. ggml_compute_forward_pad_f32(params, dst);
  11246. } break;
  11247. default:
  11248. {
  11249. GGML_ASSERT(false);
  11250. } break;
  11251. }
  11252. }
  11253. // ggml_compute_forward_arange
  11254. static void ggml_compute_forward_arange_f32(
  11255. const struct ggml_compute_params * params,
  11256. struct ggml_tensor * dst) {
  11257. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  11258. return;
  11259. }
  11260. GGML_ASSERT(dst->nb[0] == sizeof(float));
  11261. const int ith = params->ith;
  11262. const int nth = params->nth;
  11263. const float start = ggml_get_op_params_f32(dst, 0);
  11264. const float stop = ggml_get_op_params_f32(dst, 1);
  11265. const float step = ggml_get_op_params_f32(dst, 2);
  11266. const int64_t steps = (int64_t) ceilf((stop - start) / step);
  11267. GGML_ASSERT(ggml_nelements(dst) == steps);
  11268. for (int64_t i = ith; i < steps; i+= nth) {
  11269. float value = start + step * i;
  11270. ((float *)dst->data)[i] = value;
  11271. }
  11272. }
  11273. static void ggml_compute_forward_arange(
  11274. const struct ggml_compute_params * params,
  11275. struct ggml_tensor * dst) {
  11276. switch (dst->type) {
  11277. case GGML_TYPE_F32:
  11278. {
  11279. ggml_compute_forward_arange_f32(params, dst);
  11280. } break;
  11281. default:
  11282. {
  11283. GGML_ASSERT(false);
  11284. } break;
  11285. }
  11286. }
  11287. static void ggml_compute_forward_timestep_embedding_f32(
  11288. const struct ggml_compute_params * params,
  11289. struct ggml_tensor * dst) {
  11290. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  11291. return;
  11292. }
  11293. const struct ggml_tensor * src0 = dst->src[0];
  11294. GGML_ASSERT(src0->nb[0] == sizeof(float));
  11295. const int ith = params->ith;
  11296. const int nth = params->nth;
  11297. GGML_TENSOR_UNARY_OP_LOCALS
  11298. const int dim = ggml_get_op_params_i32(dst, 0);
  11299. const int max_period = ggml_get_op_params_i32(dst, 1);
  11300. int half = dim / 2;
  11301. for (int64_t i = 0; i < ne00; i++) {
  11302. float * embed_data = (float *)((char *) dst->data + i*nb1);
  11303. for (int64_t j = ith; j < half; j += nth) {
  11304. float timestep = ((float *)src0->data)[i];
  11305. float freq = (float)expf(-logf(max_period) * j / half);
  11306. float arg = timestep * freq;
  11307. embed_data[j] = cosf(arg);
  11308. embed_data[j + half] = sinf(arg);
  11309. }
  11310. if (dim % 2 != 0 && ith == 0) {
  11311. embed_data[dim] = 0.f;
  11312. }
  11313. }
  11314. }
  11315. static void ggml_compute_forward_timestep_embedding(
  11316. const struct ggml_compute_params * params,
  11317. struct ggml_tensor * dst) {
  11318. const struct ggml_tensor * src0 = dst->src[0];
  11319. switch (src0->type) {
  11320. case GGML_TYPE_F32:
  11321. {
  11322. ggml_compute_forward_timestep_embedding_f32(params, dst);
  11323. } break;
  11324. default:
  11325. {
  11326. GGML_ASSERT(false);
  11327. } break;
  11328. }
  11329. }
  11330. // ggml_compute_forward_argsort
  11331. static void ggml_compute_forward_argsort_f32(
  11332. const struct ggml_compute_params * params,
  11333. struct ggml_tensor * dst) {
  11334. const struct ggml_tensor * src0 = dst->src[0];
  11335. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  11336. return;
  11337. }
  11338. GGML_TENSOR_UNARY_OP_LOCALS
  11339. GGML_ASSERT(nb0 == sizeof(float));
  11340. const int ith = params->ith;
  11341. const int nth = params->nth;
  11342. const int64_t nr = ggml_nrows(src0);
  11343. enum ggml_sort_order order = (enum ggml_sort_order) ggml_get_op_params_i32(dst, 0);
  11344. for (int64_t i = ith; i < nr; i += nth) {
  11345. int32_t * dst_data = (int32_t *)((char *) dst->data + i*nb1);
  11346. const float * src_data = (float *)((char *) src0->data + i*nb01);
  11347. for (int64_t j = 0; j < ne0; j++) {
  11348. dst_data[j] = j;
  11349. }
  11350. // C doesn't have a functional sort, so we do a bubble sort instead
  11351. for (int64_t j = 0; j < ne0; j++) {
  11352. for (int64_t k = j + 1; k < ne0; k++) {
  11353. if ((order == GGML_SORT_ORDER_ASC && src_data[dst_data[j]] > src_data[dst_data[k]]) ||
  11354. (order == GGML_SORT_ORDER_DESC && src_data[dst_data[j]] < src_data[dst_data[k]])) {
  11355. int32_t tmp = dst_data[j];
  11356. dst_data[j] = dst_data[k];
  11357. dst_data[k] = tmp;
  11358. }
  11359. }
  11360. }
  11361. }
  11362. }
  11363. static void ggml_compute_forward_argsort(
  11364. const struct ggml_compute_params * params,
  11365. struct ggml_tensor * dst) {
  11366. const struct ggml_tensor * src0 = dst->src[0];
  11367. switch (src0->type) {
  11368. case GGML_TYPE_F32:
  11369. {
  11370. ggml_compute_forward_argsort_f32(params, dst);
  11371. } break;
  11372. default:
  11373. {
  11374. GGML_ASSERT(false);
  11375. } break;
  11376. }
  11377. }
  11378. // ggml_compute_forward_flash_attn
  11379. static void ggml_compute_forward_flash_attn_f32(
  11380. const struct ggml_compute_params * params,
  11381. const bool masked,
  11382. struct ggml_tensor * dst) {
  11383. const struct ggml_tensor * q = dst->src[0];
  11384. const struct ggml_tensor * k = dst->src[1];
  11385. const struct ggml_tensor * v = dst->src[2];
  11386. int64_t t0 = ggml_perf_time_us();
  11387. UNUSED(t0);
  11388. GGML_TENSOR_LOCALS(int64_t, neq, q, ne)
  11389. GGML_TENSOR_LOCALS(size_t, nbq, q, nb)
  11390. GGML_TENSOR_LOCALS(int64_t, nek, k, ne)
  11391. GGML_TENSOR_LOCALS(size_t, nbk, k, nb)
  11392. GGML_TENSOR_LOCALS(int64_t, nev, v, ne)
  11393. GGML_TENSOR_LOCALS(size_t, nbv, v, nb)
  11394. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
  11395. GGML_TENSOR_LOCALS(size_t, nb, dst, nb)
  11396. const int ith = params->ith;
  11397. const int nth = params->nth;
  11398. const int64_t D = neq0;
  11399. const int64_t N = neq1;
  11400. const int64_t P = nek1 - N;
  11401. const int64_t M = P + N;
  11402. const int Mup = ggml_up(M, GGML_SOFT_MAX_UNROLL);
  11403. GGML_ASSERT(ne0 == D);
  11404. GGML_ASSERT(ne1 == N);
  11405. GGML_ASSERT(P >= 0);
  11406. GGML_ASSERT(nbq0 == sizeof(float));
  11407. GGML_ASSERT(nbk0 == sizeof(float));
  11408. GGML_ASSERT(nbv0 == sizeof(float));
  11409. GGML_ASSERT(neq0 == D);
  11410. GGML_ASSERT(nek0 == D);
  11411. GGML_ASSERT(nev1 == D);
  11412. GGML_ASSERT(neq1 == N);
  11413. GGML_ASSERT(nek1 == N + P);
  11414. GGML_ASSERT(nev1 == D);
  11415. // dst cannot be transposed or permuted
  11416. GGML_ASSERT(nb0 == sizeof(float));
  11417. GGML_ASSERT(nb0 <= nb1);
  11418. GGML_ASSERT(nb1 <= nb2);
  11419. GGML_ASSERT(nb2 <= nb3);
  11420. if (params->type == GGML_TASK_TYPE_INIT) {
  11421. return;
  11422. }
  11423. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  11424. return;
  11425. }
  11426. // parallelize by q rows using ggml_vec_dot_f32
  11427. // total rows in q
  11428. const int nr = neq1*neq2*neq3;
  11429. // rows per thread
  11430. const int dr = (nr + nth - 1)/nth;
  11431. // row range for this thread
  11432. const int ir0 = dr*ith;
  11433. const int ir1 = MIN(ir0 + dr, nr);
  11434. const float scale = 1.0f/sqrtf(D);
  11435. //printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale);
  11436. for (int ir = ir0; ir < ir1; ++ir) {
  11437. // q indices
  11438. const int iq3 = ir/(neq2*neq1);
  11439. const int iq2 = (ir - iq3*neq2*neq1)/neq1;
  11440. const int iq1 = (ir - iq3*neq2*neq1 - iq2*neq1);
  11441. float * S = (float *) params->wdata + ith*(Mup + CACHE_LINE_SIZE_F32);
  11442. for (int i = M; i < Mup; ++i) {
  11443. S[i] = -INFINITY;
  11444. }
  11445. const int64_t masked_begin = masked ? (P + iq1 + 1) : M;
  11446. for (int64_t ic = 0; ic < masked_begin; ++ic) {
  11447. // k indices
  11448. const int ik3 = iq3;
  11449. const int ik2 = iq2 % nek2;
  11450. const int ik1 = ic;
  11451. // S indices
  11452. const int i1 = ik1;
  11453. ggml_vec_dot_f32(neq0,
  11454. S + i1, 0,
  11455. (float *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)), 0,
  11456. (float *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)), 0, 1);
  11457. }
  11458. // scale
  11459. ggml_vec_scale_f32(masked_begin, S, scale);
  11460. for (int64_t i = masked_begin; i < M; i++) {
  11461. S[i] = -INFINITY;
  11462. }
  11463. // softmax
  11464. // exclude known -INF S[..] values from max and loop
  11465. // dont forget to set their SW values to zero
  11466. {
  11467. float max = -INFINITY;
  11468. ggml_vec_max_f32(masked_begin, &max, S);
  11469. ggml_float sum = 0.0;
  11470. {
  11471. #ifdef GGML_SOFT_MAX_ACCELERATE
  11472. max = -max;
  11473. vDSP_vsadd(S, 1, &max, S, 1, Mup);
  11474. vvexpf(S, S, &Mup);
  11475. ggml_vec_sum_f32(Mup, &sum, S);
  11476. #else
  11477. uint16_t scvt[GGML_SOFT_MAX_UNROLL]; UNUSED(scvt);
  11478. ggml_float sump[GGML_SOFT_MAX_UNROLL] = { 0.0 };
  11479. for (int i = 0; i < Mup; i += GGML_SOFT_MAX_UNROLL) {
  11480. if (i >= masked_begin) {
  11481. break;
  11482. }
  11483. float * SS = S + i;
  11484. for (int j = 0; j < GGML_SOFT_MAX_UNROLL; ++j) {
  11485. if (i + j >= masked_begin) {
  11486. break;
  11487. } else if (SS[j] == -INFINITY) {
  11488. SS[j] = 0.0f;
  11489. } else {
  11490. #ifndef GGML_FLASH_ATTN_EXP_FP16
  11491. const float val = expf(SS[j] - max);
  11492. #else
  11493. ggml_fp16_t s = GGML_FP32_TO_FP16(SS[j] - max);
  11494. memcpy(&scvt[j], &s, sizeof(uint16_t));
  11495. const float val = GGML_FP16_TO_FP32(ggml_table_exp_f16[scvt[j]]);
  11496. #endif
  11497. sump[j] += (ggml_float)val;
  11498. SS[j] = val;
  11499. }
  11500. }
  11501. }
  11502. for (int i = 0; i < GGML_SOFT_MAX_UNROLL; i++) {
  11503. sum += sump[i];
  11504. }
  11505. #endif
  11506. }
  11507. assert(sum > 0.0);
  11508. sum = 1.0/sum;
  11509. ggml_vec_scale_f32(masked_begin, S, sum);
  11510. #ifndef NDEBUG
  11511. for (int i = 0; i < masked_begin; ++i) {
  11512. assert(!isnan(S[i]));
  11513. assert(!isinf(S[i]));
  11514. }
  11515. #endif
  11516. }
  11517. for (int64_t ic = 0; ic < nev1; ++ic) {
  11518. // dst indices
  11519. const int i1 = iq1;
  11520. const int i2 = iq2;
  11521. const int i3 = iq3;
  11522. // v indices
  11523. const int iv2 = iq2 % nev2;
  11524. const int iv3 = iq3;
  11525. ggml_vec_dot_f32(masked_begin,
  11526. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)), 0,
  11527. (float *) ((char *) v->data + ( ic*nbv1 + iv2*nbv2 + iv3*nbv3)), 0,
  11528. S, 0, 1);
  11529. }
  11530. }
  11531. }
  11532. static void ggml_compute_forward_flash_attn_f16(
  11533. const struct ggml_compute_params * params,
  11534. const bool masked,
  11535. struct ggml_tensor * dst) {
  11536. const struct ggml_tensor * q = dst->src[0];
  11537. const struct ggml_tensor * k = dst->src[1];
  11538. const struct ggml_tensor * v = dst->src[2];
  11539. int64_t t0 = ggml_perf_time_us();
  11540. UNUSED(t0);
  11541. GGML_TENSOR_LOCALS(int64_t, neq, q, ne)
  11542. GGML_TENSOR_LOCALS(size_t, nbq, q, nb)
  11543. GGML_TENSOR_LOCALS(int64_t, nek, k, ne)
  11544. GGML_TENSOR_LOCALS(size_t, nbk, k, nb)
  11545. GGML_TENSOR_LOCALS(int64_t, nev, v, ne)
  11546. GGML_TENSOR_LOCALS(size_t, nbv, v, nb)
  11547. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
  11548. GGML_TENSOR_LOCALS(size_t, nb, dst, nb)
  11549. const int ith = params->ith;
  11550. const int nth = params->nth;
  11551. const int64_t D = neq0;
  11552. const int64_t N = neq1;
  11553. const int64_t P = nek1 - N;
  11554. const int64_t M = P + N;
  11555. const int Mup = ggml_up(M, GGML_SOFT_MAX_UNROLL);
  11556. GGML_ASSERT(ne0 == D);
  11557. GGML_ASSERT(ne1 == N);
  11558. GGML_ASSERT(P >= 0);
  11559. GGML_ASSERT(nbq0 == sizeof(ggml_fp16_t));
  11560. GGML_ASSERT(nbk0 == sizeof(ggml_fp16_t));
  11561. GGML_ASSERT(nbv0 == sizeof(ggml_fp16_t));
  11562. GGML_ASSERT(neq0 == D);
  11563. GGML_ASSERT(nek0 == D);
  11564. GGML_ASSERT(nev1 == D);
  11565. GGML_ASSERT(neq1 == N);
  11566. GGML_ASSERT(nek1 == N + P);
  11567. GGML_ASSERT(nev1 == D);
  11568. // dst cannot be transposed or permuted
  11569. GGML_ASSERT(nb0 == sizeof(float));
  11570. GGML_ASSERT(nb0 <= nb1);
  11571. GGML_ASSERT(nb1 <= nb2);
  11572. GGML_ASSERT(nb2 <= nb3);
  11573. if (params->type == GGML_TASK_TYPE_INIT) {
  11574. return;
  11575. }
  11576. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  11577. return;
  11578. }
  11579. // parallelize by q rows using ggml_vec_dot_f32
  11580. // total rows in q
  11581. const int nr = neq1*neq2*neq3;
  11582. // rows per thread
  11583. const int dr = (nr + nth - 1)/nth;
  11584. // row range for this thread
  11585. const int ir0 = dr*ith;
  11586. const int ir1 = MIN(ir0 + dr, nr);
  11587. const float scale = 1.0f/sqrtf(D);
  11588. //printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale);
  11589. for (int ir = ir0; ir < ir1; ++ir) {
  11590. // q indices
  11591. const int iq3 = ir/(neq2*neq1);
  11592. const int iq2 = (ir - iq3*neq2*neq1)/neq1;
  11593. const int iq1 = (ir - iq3*neq2*neq1 - iq2*neq1);
  11594. float * S = (float *) params->wdata + ith*(2*Mup + CACHE_LINE_SIZE_F32);
  11595. for (int i = M; i < Mup; ++i) {
  11596. S[i] = -INFINITY;
  11597. }
  11598. if (GGML_VEC_DOT_UNROLL > 2 || nek1 % GGML_VEC_DOT_UNROLL != 0) {
  11599. for (int64_t ic = 0; ic < nek1; ++ic) {
  11600. // k indices
  11601. const int ik3 = iq3;
  11602. const int ik2 = iq2 % nek2;
  11603. const int ik1 = ic;
  11604. // S indices
  11605. const int i1 = ik1;
  11606. ggml_vec_dot_f16(neq0,
  11607. S + i1, 0,
  11608. (ggml_fp16_t *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)), 0,
  11609. (ggml_fp16_t *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)), 0, 1);
  11610. }
  11611. } else {
  11612. for (int64_t ic = 0; ic < nek1; ic += GGML_VEC_DOT_UNROLL) {
  11613. // k indices
  11614. const int ik3 = iq3;
  11615. const int ik2 = iq2 % nek2;
  11616. const int ik1 = ic;
  11617. // S indices
  11618. const int i1 = ik1;
  11619. ggml_vec_dot_f16_unroll(neq0, nbk1,
  11620. S + i1,
  11621. ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
  11622. (ggml_fp16_t *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
  11623. }
  11624. }
  11625. // scale
  11626. ggml_vec_scale_f32(nek1, S, scale);
  11627. if (masked) {
  11628. for (int64_t i = P; i < M; i++) {
  11629. if (i > P + iq1) {
  11630. S[i] = -INFINITY;
  11631. }
  11632. }
  11633. }
  11634. // softmax
  11635. // todo: exclude known -INF S[..] values from max and loop, assuming their results to be zero.
  11636. // dont forget to set their S values to zero
  11637. {
  11638. float max = -INFINITY;
  11639. ggml_vec_max_f32(M, &max, S);
  11640. ggml_float sum = 0.0;
  11641. {
  11642. #ifdef GGML_SOFT_MAX_ACCELERATE
  11643. max = -max;
  11644. vDSP_vsadd(S, 1, &max, S, 1, Mup);
  11645. vvexpf(S, S, &Mup);
  11646. ggml_vec_sum_f32(Mup, &sum, S);
  11647. #else
  11648. uint16_t scvt[GGML_SOFT_MAX_UNROLL];
  11649. ggml_float sump[GGML_SOFT_MAX_UNROLL] = { 0.0 };
  11650. for (int i = 0; i < Mup; i += GGML_SOFT_MAX_UNROLL) {
  11651. float * SS = S + i;
  11652. for (int j = 0; j < GGML_SOFT_MAX_UNROLL; ++j) {
  11653. if (SS[j] == -INFINITY) {
  11654. SS[j] = 0.0f;
  11655. } else {
  11656. ggml_fp16_t s = GGML_FP32_TO_FP16(SS[j] - max);
  11657. memcpy(&scvt[j], &s, sizeof(uint16_t));
  11658. const float val = GGML_FP16_TO_FP32(ggml_table_exp_f16[scvt[j]]);
  11659. sump[j] += (ggml_float)val;
  11660. SS[j] = val;
  11661. }
  11662. }
  11663. }
  11664. for (int i = 0; i < GGML_SOFT_MAX_UNROLL; i++) {
  11665. sum += sump[i];
  11666. }
  11667. #endif
  11668. }
  11669. assert(sum > 0.0);
  11670. sum = 1.0/sum;
  11671. ggml_vec_scale_f32(M, S, sum);
  11672. #ifndef NDEBUG
  11673. for (int i = 0; i < M; ++i) {
  11674. assert(!isnan(S[i]));
  11675. assert(!isinf(S[i]));
  11676. }
  11677. #endif
  11678. }
  11679. ggml_fp16_t * S16 = (ggml_fp16_t *) ((float *) params->wdata + ith*(2*Mup + CACHE_LINE_SIZE_F32) + Mup);
  11680. for (int64_t i = 0; i < M; i++) {
  11681. S16[i] = GGML_FP32_TO_FP16(S[i]);
  11682. }
  11683. // todo: exclude known zero S[..] values from dot (reducing nev0 and increasing begin of v and S16).
  11684. if (GGML_VEC_DOT_UNROLL == 1 || (nev1 % GGML_VEC_DOT_UNROLL != 0)) {
  11685. for (int64_t ic = 0; ic < nev1; ++ic) {
  11686. // dst indices
  11687. const int i1 = iq1;
  11688. const int i2 = iq2;
  11689. const int i3 = iq3;
  11690. // v indices
  11691. const int iv2 = iq2 % nev2;
  11692. const int iv3 = iq3;
  11693. ggml_vec_dot_f16(nev0,
  11694. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)), 0,
  11695. (ggml_fp16_t *) ((char *) v->data + ( ic*nbv1 + iv2*nbv2 + iv3*nbv3)), 0,
  11696. S16, 0, 1);
  11697. }
  11698. } else {
  11699. for (int64_t ic = 0; ic < nev1; ic += GGML_VEC_DOT_UNROLL) {
  11700. // dst indices
  11701. const int i1 = iq1;
  11702. const int i2 = iq2;
  11703. const int i3 = iq3;
  11704. // v indices
  11705. const int iv2 = iq2 % nev2;
  11706. const int iv3 = iq3;
  11707. ggml_vec_dot_f16_unroll(nev0, nbv1,
  11708. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  11709. ((char *) v->data + ( ic*nbv1 + iv2*nbv2 + iv3*nbv3)),
  11710. S16);
  11711. }
  11712. }
  11713. }
  11714. }
  11715. static void ggml_compute_forward_flash_attn(
  11716. const struct ggml_compute_params * params,
  11717. const bool masked,
  11718. struct ggml_tensor * dst) {
  11719. const struct ggml_tensor * q = dst->src[0];
  11720. switch (q->type) {
  11721. case GGML_TYPE_F16:
  11722. {
  11723. ggml_compute_forward_flash_attn_f16(params, masked, dst);
  11724. } break;
  11725. case GGML_TYPE_F32:
  11726. {
  11727. ggml_compute_forward_flash_attn_f32(params, masked, dst);
  11728. } break;
  11729. default:
  11730. {
  11731. GGML_ASSERT(false);
  11732. } break;
  11733. }
  11734. }
  11735. // ggml_compute_forward_flash_ff
  11736. static void ggml_compute_forward_flash_ff_f16(
  11737. const struct ggml_compute_params * params,
  11738. struct ggml_tensor * dst) {
  11739. const struct ggml_tensor * a = dst->src[0]; // F16
  11740. const struct ggml_tensor * b0 = dst->src[1]; // F16 fc_w
  11741. const struct ggml_tensor * b1 = dst->src[2]; // F32 fc_b
  11742. const struct ggml_tensor * c0 = dst->src[3]; // F16 proj_w
  11743. const struct ggml_tensor * c1 = dst->src[4]; // F32 proj_b
  11744. int64_t t0 = ggml_perf_time_us();
  11745. UNUSED(t0);
  11746. GGML_TENSOR_LOCALS(int64_t, nea, a, ne)
  11747. GGML_TENSOR_LOCALS(size_t, nba, a, nb)
  11748. GGML_TENSOR_LOCALS(int64_t, neb0, b0, ne)
  11749. GGML_TENSOR_LOCALS(size_t, nbb0, b0, nb)
  11750. GGML_TENSOR_LOCALS(int64_t, neb1, b1, ne)
  11751. GGML_TENSOR_LOCALS(size_t, nbb1, b1, nb)
  11752. GGML_TENSOR_LOCALS(int64_t, nec0, c0, ne)
  11753. GGML_TENSOR_LOCALS(size_t, nbc0, c0, nb)
  11754. GGML_TENSOR_LOCALS(int64_t, nec1, c1, ne)
  11755. GGML_TENSOR_LOCALS(size_t, nbc1, c1, nb)
  11756. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
  11757. GGML_TENSOR_LOCALS(size_t, nb, dst, nb)
  11758. const int ith = params->ith;
  11759. const int nth = params->nth;
  11760. const int64_t D = nea0;
  11761. //const int64_t N = nea1;
  11762. const int64_t M = neb01;
  11763. GGML_ASSERT(ne0 == nea0);
  11764. GGML_ASSERT(ne1 == nea1);
  11765. GGML_ASSERT(ne2 == nea2);
  11766. GGML_ASSERT(nba0 == sizeof(ggml_fp16_t));
  11767. GGML_ASSERT(nbb00 == sizeof(ggml_fp16_t));
  11768. GGML_ASSERT(nbb10 == sizeof(float));
  11769. GGML_ASSERT(nbc00 == sizeof(ggml_fp16_t));
  11770. GGML_ASSERT(nbc10 == sizeof(float));
  11771. GGML_ASSERT(neb00 == D);
  11772. GGML_ASSERT(neb01 == M);
  11773. GGML_ASSERT(neb10 == M);
  11774. GGML_ASSERT(neb11 == 1);
  11775. GGML_ASSERT(nec00 == M);
  11776. GGML_ASSERT(nec01 == D);
  11777. GGML_ASSERT(nec10 == D);
  11778. GGML_ASSERT(nec11 == 1);
  11779. // dst cannot be transposed or permuted
  11780. GGML_ASSERT(nb0 == sizeof(float));
  11781. GGML_ASSERT(nb0 <= nb1);
  11782. GGML_ASSERT(nb1 <= nb2);
  11783. GGML_ASSERT(nb2 <= nb3);
  11784. if (params->type == GGML_TASK_TYPE_INIT) {
  11785. return;
  11786. }
  11787. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  11788. return;
  11789. }
  11790. // parallelize by a rows using ggml_vec_dot_f32
  11791. // total rows in a
  11792. const int nr = nea1*nea2*nea3;
  11793. // rows per thread
  11794. const int dr = (nr + nth - 1)/nth;
  11795. // row range for this thread
  11796. const int ir0 = dr*ith;
  11797. const int ir1 = MIN(ir0 + dr, nr);
  11798. for (int ir = ir0; ir < ir1; ++ir) {
  11799. // a indices
  11800. const int ia3 = ir/(nea2*nea1);
  11801. const int ia2 = (ir - ia3*nea2*nea1)/nea1;
  11802. const int ia1 = (ir - ia3*nea2*nea1 - ia2*nea1);
  11803. float * S = (float *) params->wdata + ith*(2*M + CACHE_LINE_SIZE_F32);
  11804. for (int64_t ic = 0; ic < neb01; ++ic) {
  11805. // b0 indices
  11806. const int ib03 = ia3;
  11807. const int ib02 = ia2;
  11808. const int ib01 = ic;
  11809. // S indices
  11810. const int i1 = ib01;
  11811. ggml_vec_dot_f16(nea0,
  11812. S + i1, 0,
  11813. (ggml_fp16_t *) ((char *) b0->data + (ib01*nbb01 + ib02*nbb02 + ib03*nbb03)), 0,
  11814. (ggml_fp16_t *) ((char *) a->data + ( ia1*nba1 + ia2*nba2 + ia3*nba3)), 0, 1);
  11815. }
  11816. ggml_vec_add_f32(neb01, S, S, (float *) b1->data);
  11817. //ggml_vec_gelu_f32(neb01, S, S);
  11818. ggml_fp16_t * S16 = (ggml_fp16_t *) ((float *) params->wdata + ith*(2*M + CACHE_LINE_SIZE_F32) + M);
  11819. for (int64_t i = 0; i < M; i++) {
  11820. S16[i] = GGML_FP32_TO_FP16(S[i]);
  11821. }
  11822. ggml_vec_gelu_f16(neb01, S16, S16);
  11823. {
  11824. // dst indices
  11825. const int i1 = ia1;
  11826. const int i2 = ia2;
  11827. const int i3 = ia3;
  11828. for (int64_t ic = 0; ic < nec01; ++ic) {
  11829. ggml_vec_dot_f16(neb01,
  11830. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)), 0,
  11831. (ggml_fp16_t *) ((char *) c0->data + ( ic*nbc01 + i2*nbc02 + i3*nbc03)), 0,
  11832. S16, 0, 1);
  11833. }
  11834. ggml_vec_add_f32(nec01,
  11835. (float *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3)),
  11836. (float *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3)),
  11837. (float *) c1->data);
  11838. }
  11839. }
  11840. }
  11841. static void ggml_compute_forward_flash_ff(
  11842. const struct ggml_compute_params * params,
  11843. struct ggml_tensor * dst) {
  11844. const struct ggml_tensor * b0 = dst->src[1];
  11845. switch (b0->type) {
  11846. case GGML_TYPE_F16:
  11847. {
  11848. ggml_compute_forward_flash_ff_f16(params, dst);
  11849. } break;
  11850. case GGML_TYPE_F32:
  11851. {
  11852. GGML_ASSERT(false); // TODO
  11853. } break;
  11854. default:
  11855. {
  11856. GGML_ASSERT(false);
  11857. } break;
  11858. }
  11859. }
  11860. // ggml_compute_forward_flash_attn_back
  11861. static void ggml_compute_forward_flash_attn_back_f32(
  11862. const struct ggml_compute_params * params,
  11863. const bool masked,
  11864. struct ggml_tensor * dst) {
  11865. const struct ggml_tensor * q = dst->src[0];
  11866. const struct ggml_tensor * k = dst->src[1];
  11867. const struct ggml_tensor * v = dst->src[2];
  11868. const struct ggml_tensor * d = dst->src[3];
  11869. int64_t t0 = ggml_perf_time_us();
  11870. UNUSED(t0);
  11871. GGML_TENSOR_LOCALS(int64_t, neq, q, ne)
  11872. GGML_TENSOR_LOCALS(size_t, nbq, q, nb)
  11873. GGML_TENSOR_LOCALS(int64_t, nek, k, ne)
  11874. GGML_TENSOR_LOCALS(size_t, nbk, k, nb)
  11875. GGML_TENSOR_LOCALS(int64_t, nev, v, ne)
  11876. GGML_TENSOR_LOCALS(size_t, nbv, v, nb)
  11877. GGML_TENSOR_LOCALS(int64_t, ned, d, ne)
  11878. GGML_TENSOR_LOCALS(size_t, nbd, d, nb)
  11879. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
  11880. GGML_TENSOR_LOCALS(size_t, nb, dst, nb)
  11881. const int ith = params->ith;
  11882. const int nth = params->nth;
  11883. const int64_t D = neq0;
  11884. const int64_t N = neq1;
  11885. const int64_t P = nek1 - N;
  11886. const int64_t M = P + N;
  11887. const int Mup = ggml_up(M, GGML_SOFT_MAX_UNROLL);
  11888. const int mxDM = MAX(D, Mup);
  11889. // GGML_ASSERT(ne0 == D);
  11890. // GGML_ASSERT(ne1 == N);
  11891. GGML_ASSERT(P >= 0);
  11892. GGML_ASSERT(nbq0 == sizeof(float));
  11893. GGML_ASSERT(nbk0 == sizeof(float));
  11894. GGML_ASSERT(nbv0 == sizeof(float));
  11895. GGML_ASSERT(neq0 == D);
  11896. GGML_ASSERT(nek0 == D);
  11897. GGML_ASSERT(nev1 == D);
  11898. GGML_ASSERT(ned0 == D);
  11899. GGML_ASSERT(neq1 == N);
  11900. GGML_ASSERT(nek1 == N + P);
  11901. GGML_ASSERT(nev1 == D);
  11902. GGML_ASSERT(ned1 == N);
  11903. // dst cannot be transposed or permuted
  11904. GGML_ASSERT(nb0 == sizeof(float));
  11905. GGML_ASSERT(nb0 <= nb1);
  11906. GGML_ASSERT(nb1 <= nb2);
  11907. GGML_ASSERT(nb2 <= nb3);
  11908. if (params->type == GGML_TASK_TYPE_INIT) {
  11909. if (ith == 0) {
  11910. memset(dst->data, 0, nb0*ne0*ne1*ne2*ne3);
  11911. }
  11912. return;
  11913. }
  11914. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  11915. return;
  11916. }
  11917. const int64_t elem_q = ggml_nelements(q);
  11918. const int64_t elem_k = ggml_nelements(k);
  11919. enum ggml_type result_type = dst->type;
  11920. GGML_ASSERT(ggml_blck_size(result_type) == 1);
  11921. const size_t tsize = ggml_type_size(result_type);
  11922. const size_t offs_q = 0;
  11923. const size_t offs_k = offs_q + GGML_PAD(elem_q * tsize, GGML_MEM_ALIGN);
  11924. const size_t offs_v = offs_k + GGML_PAD(elem_k * tsize, GGML_MEM_ALIGN);
  11925. void * grad_q = (char *) dst->data;
  11926. void * grad_k = (char *) dst->data + offs_k;
  11927. void * grad_v = (char *) dst->data + offs_v;
  11928. const size_t nbgq1 = nb0*neq0;
  11929. const size_t nbgq2 = nb0*neq0*neq1;
  11930. const size_t nbgq3 = nb0*neq0*neq1*neq2;
  11931. const size_t nbgk1 = nb0*nek0;
  11932. const size_t nbgk2 = nb0*nek0*nek1;
  11933. const size_t nbgk3 = nb0*nek0*nek1*neq2;
  11934. const size_t nbgv1 = nb0*nev0;
  11935. const size_t nbgv2 = nb0*nev0*nev1;
  11936. const size_t nbgv3 = nb0*nev0*nev1*neq2;
  11937. // parallelize by k rows using ggml_vec_dot_f32
  11938. // total rows in k
  11939. const int nr = nek2*nek3;
  11940. // rows per thread
  11941. const int dr = (nr + nth - 1)/nth;
  11942. // row range for this thread
  11943. const int ir0 = dr*ith;
  11944. const int ir1 = MIN(ir0 + dr, nr);
  11945. const float scale = 1.0f/sqrtf(D);
  11946. //printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale);
  11947. // how often k2 (and v2) is repeated in q2
  11948. int nrep = neq2/nek2;
  11949. for (int ir = ir0; ir < ir1; ++ir) {
  11950. // q indices
  11951. const int ik3 = ir/(nek2);
  11952. const int ik2 = ir - ik3*nek2;
  11953. const int iq3 = ik3;
  11954. const int id3 = ik3;
  11955. const int iv3 = ik3;
  11956. const int iv2 = ik2;
  11957. for (int irep = 0; irep < nrep; ++irep) {
  11958. const int iq2 = ik2 + irep*nek2;
  11959. const int id2 = iq2;
  11960. // (ik2 + irep*nek2) % nek2 == ik2
  11961. for (int iq1 = 0; iq1 < neq1; ++iq1) {
  11962. const int id1 = iq1;
  11963. // not sure about CACHE_LINE_SIZE_F32..
  11964. // - maybe it must not be multiplied by 2 and excluded from .. in SM 1*(..) offset?
  11965. float * S = (float *) params->wdata + ith*2*(mxDM + CACHE_LINE_SIZE_F32) + 0*(mxDM+CACHE_LINE_SIZE_F32);
  11966. float * SM = (float *) params->wdata + ith*2*(mxDM + CACHE_LINE_SIZE_F32) + 1*(mxDM+CACHE_LINE_SIZE_F32);
  11967. for (int i = M; i < Mup; ++i) {
  11968. S[i] = -INFINITY;
  11969. }
  11970. const int64_t masked_begin = masked ? (P + iq1 + 1) : M;
  11971. for (int64_t ic = 0; ic < masked_begin; ++ic) {
  11972. // k indices
  11973. const int ik1 = ic;
  11974. // S indices
  11975. const int i1 = ik1;
  11976. ggml_vec_dot_f32(neq0,
  11977. S + i1, 0,
  11978. (float *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)), 0,
  11979. (float *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)), 0, 1);
  11980. }
  11981. // scale
  11982. ggml_vec_scale_f32(masked_begin, S, scale);
  11983. for (int64_t i = masked_begin; i < M; i++) {
  11984. S[i] = -INFINITY;
  11985. }
  11986. // softmax
  11987. // exclude known -INF S[..] values from max and loop
  11988. // dont forget to set their SM values to zero
  11989. {
  11990. float max = -INFINITY;
  11991. ggml_vec_max_f32(masked_begin, &max, S);
  11992. ggml_float sum = 0.0;
  11993. {
  11994. #ifdef GGML_SOFT_MAX_ACCELERATE
  11995. max = -max;
  11996. vDSP_vsadd(SM, 1, &max, SM, 1, Mup);
  11997. vvexpf(SM, SM, &Mup);
  11998. ggml_vec_sum_f32(Mup, &sum, SM);
  11999. #else
  12000. uint16_t scvt[GGML_SOFT_MAX_UNROLL]; UNUSED(scvt);
  12001. ggml_float sump[GGML_SOFT_MAX_UNROLL] = { 0.0 };
  12002. for (int i = 0; i < Mup; i += GGML_SOFT_MAX_UNROLL) {
  12003. if (i >= masked_begin) {
  12004. break;
  12005. }
  12006. float * SR = S + i;
  12007. float * SW = SM + i;
  12008. for (int j = 0; j < GGML_SOFT_MAX_UNROLL; ++j) {
  12009. if (i + j >= masked_begin) {
  12010. break;
  12011. } else if (SR[j] == -INFINITY) {
  12012. SW[j] = 0.0f;
  12013. } else {
  12014. #ifndef GGML_FLASH_ATTN_EXP_FP16
  12015. const float val = expf(SR[j] - max);
  12016. #else
  12017. ggml_fp16_t s = GGML_FP32_TO_FP16(SR[j] - max);
  12018. memcpy(&scvt[j], &s, sizeof(uint16_t));
  12019. const float val = GGML_FP16_TO_FP32(ggml_table_exp_f16[scvt[j]]);
  12020. #endif
  12021. sump[j] += (ggml_float)val;
  12022. SW[j] = val;
  12023. }
  12024. }
  12025. }
  12026. for (int i = 0; i < GGML_SOFT_MAX_UNROLL; i++) {
  12027. sum += sump[i];
  12028. }
  12029. #endif
  12030. }
  12031. assert(sum > 0.0);
  12032. sum = 1.0/sum;
  12033. ggml_vec_scale_f32(masked_begin, SM, sum);
  12034. }
  12035. // step-by-step explanation
  12036. {
  12037. // forward-process shape grads from backward process
  12038. // parallel_for ik2,ik3:
  12039. // for irep:
  12040. // iq2 = ik2 + irep*nek2
  12041. // k[:D,:M,:,:] [D,M,:,:] grad[k][:D,:M,ik2,ik3] += grad[kcur]
  12042. // q[:D,:N,:,:] [D,N,:,:] grad[q][:D,iq1,iq2,iq3] += grad[qcur]
  12043. // v[:M,:D,:,:] [M,D,:,:] grad[v][:M,:D,iv2,iv3] += grad[vcur]
  12044. // for iq1:
  12045. // kcur = k[:D,:M,ik2,ik3] [D,M,1,1] grad[kcur] = grad[S1].T @ qcur
  12046. // qcur = q[:D,iq1,iq2,iq3] [D,1,1,1] grad[qcur] = grad[S1] @ kcur
  12047. // vcur = v[:M,:D,iv2,iv3] [M,D,1,1] grad[vcur] = grad[S5].T @ S4
  12048. // S0 = -Inf [D,1,1,1]
  12049. // ~S1[i] = dot(kcur[:D,i], qcur)
  12050. // S1 = qcur @ kcur.T [M,1,1,1] grad[S1] = grad[S2] * scale
  12051. // S2 = S1 * scale [M,1,1,1] grad[S2] = diag_mask_zero(grad[S3], P)
  12052. // S3 = diag_mask_inf(S2, P) [M,1,1,1] grad[S3] = S4 * (grad[S4] - dot(S4, grad[S4]))
  12053. // S4 = softmax(S3) [M,1,1,1] grad[S4] = grad[S5] @ vcur
  12054. // ~S5[i] = dot(vcur[:,i], S4)
  12055. // S5 = S4 @ vcur.T [D,1,1,1] grad[S5] = d[:D,id1,id2,id3]
  12056. // ~dst[i,iq1,iq2,iq3] = S5[i] ^
  12057. // dst[:D,iq1,iq2,iq3] = S5 | grad[dst[:D,iq1,iq2,iq3]] = d[:D,id1,id2,id3]
  12058. // dst backward-/ grad[dst] = d
  12059. //
  12060. // output gradients with their dependencies:
  12061. //
  12062. // grad[kcur] = grad[S1].T @ qcur
  12063. // grad[S1] = diag_mask_zero(grad[S3], P) * scale
  12064. // grad[S3] = S4 * (grad[S4] - dot(S4, grad[S4]))
  12065. // grad[S4] = grad[S5] @ vcur
  12066. // grad[S4] = d[:D,id1,id2,id3] @ vcur
  12067. // grad[qcur] = grad[S1] @ kcur
  12068. // grad[vcur] = grad[S5].T @ S4
  12069. // grad[vcur] = d[:D,id1,id2,id3].T @ S4
  12070. //
  12071. // in post-order:
  12072. //
  12073. // S1 = qcur @ kcur.T
  12074. // S2 = S1 * scale
  12075. // S3 = diag_mask_inf(S2, P)
  12076. // S4 = softmax(S3)
  12077. // grad[S4] = d[:D,id1,id2,id3] @ vcur
  12078. // grad[S3] = S4 * (grad[S4] - dot(S4, grad[S4]))
  12079. // grad[S1] = diag_mask_zero(grad[S3], P) * scale
  12080. // grad[qcur] = grad[S1] @ kcur
  12081. // grad[kcur] = grad[S1].T @ qcur
  12082. // grad[vcur] = d[:D,id1,id2,id3].T @ S4
  12083. //
  12084. // using less variables (SM=S4):
  12085. //
  12086. // S = diag_mask_inf(qcur @ kcur.T * scale, P)
  12087. // SM = softmax(S)
  12088. // S = d[:D,iq1,iq2,iq3] @ vcur
  12089. // dot_SM_gradSM = dot(SM, S)
  12090. // S = SM * (S - dot(SM, S))
  12091. // S = diag_mask_zero(S, P) * scale
  12092. //
  12093. // grad[q][:D,iq1,iq2,iq3] += S @ kcur
  12094. // grad[k][:D,:M,ik2,ik3] += S.T @ qcur
  12095. // grad[v][:M,:D,iv2,iv3] += d[:D,id1,id2,id3].T @ SM
  12096. }
  12097. // S = gradSM = d[:D,id1,id2,id3] @ vcur[:,:,iv2,iv3]
  12098. // S = d[:D,id1,id2,id3] @ vcur[:,:,iv2,iv3]
  12099. // for ic:
  12100. // S[:M] += vcur[:M,ic,iv2,iv3] * d[ic,id1,id2,id3]
  12101. // exclude known future zero S[..] values from operation
  12102. ggml_vec_set_f32(masked_begin, S, 0);
  12103. for (int64_t ic = 0; ic < D; ++ic) {
  12104. ggml_vec_mad_f32(masked_begin,
  12105. S,
  12106. (float *) ((char *) v->data + ( ic*nbv1 + iv2*nbv2 + iv3*nbv3)),
  12107. *(float *) ((char *) d->data + (ic*nbd0 + id1*nbd1 + id2*nbd2 + id3*nbd3)));
  12108. }
  12109. // S = SM * (S - dot(SM, S))
  12110. float dot_SM_gradSM = 0;
  12111. ggml_vec_dot_f32 (masked_begin, &dot_SM_gradSM, 0, SM, 0, S, 0, 1);
  12112. ggml_vec_acc1_f32(M, S, -dot_SM_gradSM);
  12113. ggml_vec_mul_f32 (masked_begin, S, S, SM);
  12114. // S = diag_mask_zero(S, P) * scale
  12115. // already done by above ggml_vec_set_f32
  12116. // exclude known zero S[..] values from operation
  12117. ggml_vec_scale_f32(masked_begin, S, scale);
  12118. // S shape [M,1]
  12119. // SM shape [M,1]
  12120. // kcur shape [D,M]
  12121. // qcur shape [D,1]
  12122. // vcur shape [M,D]
  12123. // grad[q][:D,iq1,iq2,iq3] += S @ kcur
  12124. // grad[q][:D,iq1,iq2,iq3] += shape[M,1] @ shape[D,M]
  12125. // for ic:
  12126. // grad[q][:D,iq1,iq2,iq3] += S[ic] * kcur[:D,ic,ik2,ik3]
  12127. // exclude known zero S[..] values from loop
  12128. for (int64_t ic = 0; ic < masked_begin; ++ic) {
  12129. ggml_vec_mad_f32(D,
  12130. (float *) ((char *) grad_q + (iq1*nbgq1 + iq2*nbgq2 + iq3*nbgq3)),
  12131. (float *) ((char *) k->data + (ic*nbk1 + ik2*nbk2 + ik3*nbk3)),
  12132. S[ic]);
  12133. }
  12134. // grad[k][:D,:M,iq2,iq3] += S.T @ qcur
  12135. // for ic:
  12136. // grad[k][:D,ic,iq2,iq3] += S.T[0,ic] * qcur[:D,0]
  12137. // grad[k][:D,ic,iq2,iq3] += S[ic] * qcur[:D,0]
  12138. // exclude known zero S[..] values from loop
  12139. for (int64_t ic = 0; ic < masked_begin; ++ic) {
  12140. ggml_vec_mad_f32(D,
  12141. (float *) ((char *) grad_k + (ic*nbgk1 + ik2*nbgk2 + ik3*nbgk3)),
  12142. (float *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)),
  12143. S[ic]);
  12144. }
  12145. // grad[v][:M,:D,iv2,iv3] += d[:D,id1,id2,id3].T @ SM
  12146. // for ic:
  12147. // grad[v][:M,ic,iv2,iv3] += d[:D,id1,id2,id3].T[0,ic] * SM[:M]
  12148. // grad[v][:M,ic,iv2,iv3] += d[ic,id1,id2,id3] * SM[:M]
  12149. // exclude known zero SM[..] values from mad
  12150. for (int64_t ic = 0; ic < D; ++ic) {
  12151. ggml_vec_mad_f32(masked_begin,
  12152. (float *) ((char *) grad_v + ( ic*nbgv1 + iv2*nbgv2 + iv3*nbgv3)),
  12153. SM,
  12154. *(float *) ((char *) d->data + (ic*nbd0 + id1*nbd1 + id2*nbd2 + id3*nbd3)));
  12155. }
  12156. }
  12157. }
  12158. }
  12159. }
  12160. static void ggml_compute_forward_flash_attn_back(
  12161. const struct ggml_compute_params * params,
  12162. const bool masked,
  12163. struct ggml_tensor * dst) {
  12164. const struct ggml_tensor * q = dst->src[0];
  12165. switch (q->type) {
  12166. case GGML_TYPE_F32:
  12167. {
  12168. ggml_compute_forward_flash_attn_back_f32(params, masked, dst);
  12169. } break;
  12170. default:
  12171. {
  12172. GGML_ASSERT(false);
  12173. } break;
  12174. }
  12175. }
  12176. // ggml_compute_forward_ssm_conv
  12177. static void ggml_compute_forward_ssm_conv_f32(
  12178. const struct ggml_compute_params * params,
  12179. struct ggml_tensor * dst) {
  12180. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  12181. return;
  12182. }
  12183. const struct ggml_tensor * src0 = dst->src[0]; // conv_state
  12184. const struct ggml_tensor * src1 = dst->src[1]; // x
  12185. const struct ggml_tensor * src2 = dst->src[2]; // conv1d.weight
  12186. const struct ggml_tensor * src3 = dst->src[3]; // state_seq
  12187. const int ith = params->ith;
  12188. const int nth = params->nth;
  12189. const int nc = src2->ne[0]; // d_conv
  12190. const int nr = src0->ne[1]; // d_inner
  12191. const int n_t = src1->ne[1]; // n_tokens
  12192. const int n_kv = src0->ne[2]; // max number of sequences in the batch
  12193. GGML_ASSERT((nr*n_t) + (nc*nr*n_kv) == ggml_nelements(dst));
  12194. GGML_ASSERT(src0->nb[0] == sizeof(float));
  12195. GGML_ASSERT(src1->nb[0] == sizeof(float));
  12196. GGML_ASSERT(src2->nb[0] == sizeof(float));
  12197. GGML_ASSERT(src3->nb[0] == sizeof(int32_t));
  12198. GGML_ASSERT(src0->nb[1] == src0->ne[0]*sizeof(float));
  12199. // for use with the destination state offset between sequences
  12200. GGML_ASSERT(src2->nb[2] == src2->ne[1]*src2->ne[0]*sizeof(float));
  12201. // rows per thread
  12202. const int dr = (nr + nth - 1)/nth;
  12203. // row range for this thread
  12204. const int ir0 = dr*ith;
  12205. const int ir1 = MIN(ir0 + dr, nr);
  12206. const int ir = ir1 - ir0;
  12207. if (n_kv > 1) {
  12208. // multiple sequences means it's hard to know when it's the first time a state is read,
  12209. // so copy them all over to the destination, just to be sure.
  12210. for (int i3 = 0; i3 < n_kv; ++i3) {
  12211. float * s0 = (float *) ((char *) src0->data + ir0*(src0->nb[1]) + i3*(src0->nb[2]));
  12212. float * s = (float *) ((char *) dst->data + ir0*(src2->nb[1]) + i3*(src2->nb[2]) + nr*n_t*sizeof(float));
  12213. // can't use memcpy because of d_conv vs d_conv - 1
  12214. for (int i1 = 0; i1 < ir; ++i1) {
  12215. for (int i0 = 0; i0 < nc - 1; ++i0) {
  12216. // copy s0 to last (d_conv - 1) columns of s
  12217. s[1 + i0 + i1*nc] = s0[i0 + i1*(nc - 1)];
  12218. }
  12219. }
  12220. }
  12221. }
  12222. for (int i2 = 0; i2 < n_t; ++i2) {
  12223. int32_t * sq = (int32_t *) ((char *) src3->data + i2*(src3->nb[1])); // {n_kv, n_tokens}
  12224. float * x = (float *) ((char *) dst->data + ir0*sizeof(float) + i2*(nr*sizeof(float))); // {d_inner, n_tokens}
  12225. float * s = (float *) ((char *) dst->data + ir0*(src2->nb[1]) + sq[0]*(src2->nb[2]) + nr*n_t*sizeof(float)); // {d_conv, d_inner, n_kv}
  12226. float * s0; // {d_conv - 1, d_inner, n_kv}
  12227. float * x0 = (float *) ((char *) src1->data + ir0*(src1->nb[0]) + i2*(src1->nb[1])); // {d_inner, n_tokens}
  12228. float * c = (float *) ((char *) src2->data + ir0*(src2->nb[1])); // {d_conv, d_inner}
  12229. int ne0s0;
  12230. GGML_ASSERT(0 <= sq[0] && sq[0] < n_kv);
  12231. // avoid needing to copy the state for the first token
  12232. if (i2 == 0) {
  12233. s0 = (float *) ((char *) src0->data + ir0*(src0->nb[1]) + sq[0]*(src0->nb[2])); // {d_conv - 1, d_inner, n_kv}
  12234. ne0s0 = src0->ne[0];
  12235. } else {
  12236. // the source is the last (d_conv - 1) columns of the destination
  12237. s0 = s + 1;
  12238. ne0s0 = nc;
  12239. }
  12240. // d_inner
  12241. for (int i1 = 0; i1 < ir; ++i1) {
  12242. // shift state left
  12243. for (int i0 = 0; i0 < nc - 1; ++i0) {
  12244. s[i0 + i1*nc] = s0[i0 + i1*ne0s0];
  12245. }
  12246. // insert x on the last column
  12247. s[(nc - 1) + i1*nc] = x0[i1];
  12248. }
  12249. // handle copies when there are multiple output states
  12250. for (int i3 = 1; i3 < n_kv; ++i3) {
  12251. int32_t seq = sq[i3];
  12252. if (0 <= seq && seq < n_kv) {
  12253. float * s1 = s + (seq - sq[0])*nc*nr;
  12254. memcpy(s1, s, nc*ir*sizeof(float));
  12255. } else {
  12256. // stop at negative or too big seq_ids
  12257. break;
  12258. }
  12259. }
  12260. // it seems a little faster when this is separate from the state shift
  12261. for (int i1 = 0; i1 < ir; ++i1) {
  12262. // rowwise dot product
  12263. float sumf = 0.0f;
  12264. for (int i0 = 0; i0 < nc; ++i0) {
  12265. int i = i0 + i1*nc;
  12266. sumf += s[i] * c[i];
  12267. }
  12268. x[i1] = sumf;
  12269. }
  12270. }
  12271. }
  12272. static void ggml_compute_forward_ssm_conv(
  12273. const struct ggml_compute_params * params,
  12274. struct ggml_tensor * dst) {
  12275. switch (dst->src[0]->type) {
  12276. case GGML_TYPE_F32:
  12277. {
  12278. ggml_compute_forward_ssm_conv_f32(params, dst);
  12279. } break;
  12280. default:
  12281. {
  12282. GGML_ASSERT(false);
  12283. } break;
  12284. }
  12285. }
  12286. // ggml_compute_forward_ssm_scan
  12287. static void ggml_compute_forward_ssm_scan_f32(
  12288. const struct ggml_compute_params * params,
  12289. struct ggml_tensor * dst) {
  12290. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  12291. return;
  12292. }
  12293. const struct ggml_tensor * src0 = dst->src[0]; // s
  12294. const struct ggml_tensor * src1 = dst->src[1]; // x
  12295. const struct ggml_tensor * src2 = dst->src[2]; // dt
  12296. const struct ggml_tensor * src3 = dst->src[3]; // A
  12297. const struct ggml_tensor * src4 = dst->src[4]; // B
  12298. const struct ggml_tensor * src5 = dst->src[5]; // C
  12299. const struct ggml_tensor * src6 = dst->src[6]; // sq
  12300. const int ith = params->ith;
  12301. const int nth = params->nth;
  12302. const int64_t nc = src0->ne[0]; // d_state
  12303. const int64_t nr = src0->ne[1]; // d_inner
  12304. const int64_t n_t = src1->ne[1]; // number of tokens in the batch
  12305. const int64_t n_kv = src0->ne[2]; // max number of sequences in the batch
  12306. GGML_ASSERT(ggml_nelements(src1) + ggml_nelements(src0) == ggml_nelements(dst));
  12307. GGML_ASSERT(src0->nb[0] == sizeof(float));
  12308. GGML_ASSERT(src1->nb[0] == sizeof(float));
  12309. GGML_ASSERT(src2->nb[0] == sizeof(float));
  12310. GGML_ASSERT(src3->nb[0] == sizeof(float));
  12311. GGML_ASSERT(src4->nb[0] == sizeof(float));
  12312. GGML_ASSERT(src5->nb[0] == sizeof(float));
  12313. // required for the dot product between s and C, and when copying the states
  12314. GGML_ASSERT(src0->nb[1] == src0->ne[0]*sizeof(float));
  12315. // required for per-sequence offsets for states
  12316. GGML_ASSERT(src0->nb[2] == src0->ne[0]*src0->ne[1]*sizeof(float));
  12317. // required to get correct offset for state destination (i.e. src1->nb[2])
  12318. GGML_ASSERT(src1->nb[2] == src1->ne[0]*src1->ne[1]*sizeof(float));
  12319. // rows per thread
  12320. const int dr = (nr + nth - 1)/nth;
  12321. // row range for this thread
  12322. const int ir0 = dr*ith;
  12323. const int ir1 = MIN(ir0 + dr, nr);
  12324. const int ir = ir1 - ir0;
  12325. if (n_kv > 1) {
  12326. // it's hard to know if the source states have already been copied
  12327. // when there are multiple, so copy them already.
  12328. for (int i3 = 0; i3 < n_kv; ++i3) {
  12329. float * s0 = (float *) ((char *) src0->data + ir0*(src0->nb[1]) + i3*(src0->nb[2]));
  12330. float * s = (float *) ((char *) dst->data + ir0*(src0->nb[1]) + i3*(src0->nb[2]) + src1->nb[2]);
  12331. memcpy(s, s0, nc*ir*sizeof(float));
  12332. }
  12333. }
  12334. for (int i2 = 0; i2 < n_t; ++i2) {
  12335. int32_t * sq = (int32_t *) ((char *) src6->data + i2*(src6->nb[1])); // {n_kv, n_tokens}
  12336. float * y = (float *) ((char *) dst->data + ir0*(src1->nb[0]) + i2*(src1->nb[1])); // {d_inner, n_tokens}
  12337. float * s = (float *) ((char *) dst->data + ir0*(src0->nb[1]) + sq[0]*(src0->nb[2]) + src1->nb[2]); // {d_state, d_inner, n_kv}
  12338. float * s0;
  12339. float * x = (float *) ((char *) src1->data + ir0*(src1->nb[0]) + i2*(src1->nb[1])); // {d_inner, n_tokens}
  12340. float * dt = (float *) ((char *) src2->data + ir0*(src2->nb[0]) + i2*(src2->nb[1])); // {d_inner, n_tokens}
  12341. float * A = (float *) ((char *) src3->data + ir0*(src3->nb[1])); // {d_state, d_inner}
  12342. float * B = (float *) ((char *) src4->data + i2*(src4->nb[1])); // {d_state, n_tokens}
  12343. float * C = (float *) ((char *) src5->data + i2*(src5->nb[1])); // {d_state, n_tokens}
  12344. GGML_ASSERT(0 <= sq[0] && sq[0] < n_kv);
  12345. // avoid needing to copy the state for the first token
  12346. if (i2 == 0) {
  12347. s0 = (float *) ((char *) src0->data + ir0*(src0->nb[1]) + sq[0]*(src0->nb[2])); // {d_state, d_inner, n_kv}
  12348. } else {
  12349. // otherwise the source is the same as the destination
  12350. s0 = s;
  12351. }
  12352. // d_inner
  12353. for (int i1 = 0; i1 < ir; ++i1) {
  12354. // ref: https://github.com/state-spaces/mamba/blob/34076d664838588a3c97727b263478ab9f621a07/mamba_ssm/ops/triton/selective_state_update.py#L78
  12355. float dt_soft_plus = dt[i1] <= 20.0f ? log1pf(expf(dt[i1])) : dt[i1];
  12356. float x_dt = x[i1] * dt_soft_plus;
  12357. float sumf = 0.0f;
  12358. // d_state
  12359. for (int i0 = 0; i0 < nc; ++i0) {
  12360. int i = i0 + i1*nc;
  12361. // state = prev_state * dA + dB * x
  12362. float state = (s0[i] * expf(dt_soft_plus * A[i])) + (B[i0] * x_dt);
  12363. // y = rowwise_dotprod(state, C)
  12364. sumf += state * C[i0];
  12365. s[i] = state;
  12366. }
  12367. y[i1] = sumf;
  12368. }
  12369. // handle copies when there are multiple output states
  12370. for (int i3 = 1; i3 < n_kv; ++i3) {
  12371. int32_t seq = sq[i3];
  12372. if (0 <= seq && seq < n_kv) {
  12373. float * s1 = s + (seq - sq[0])*nc*nr;
  12374. memcpy(s1, s, nc*ir*sizeof(float));
  12375. } else {
  12376. // stop at negative or too big seq_ids
  12377. break;
  12378. }
  12379. }
  12380. }
  12381. }
  12382. static void ggml_compute_forward_ssm_scan(
  12383. const struct ggml_compute_params * params,
  12384. struct ggml_tensor * dst) {
  12385. switch (dst->src[0]->type) {
  12386. case GGML_TYPE_F32:
  12387. {
  12388. ggml_compute_forward_ssm_scan_f32(params, dst);
  12389. } break;
  12390. default:
  12391. {
  12392. GGML_ASSERT(false);
  12393. } break;
  12394. }
  12395. }
  12396. // ggml_compute_forward_win_part
  12397. static void ggml_compute_forward_win_part_f32(
  12398. const struct ggml_compute_params * params,
  12399. struct ggml_tensor * dst) {
  12400. const struct ggml_tensor * src0 = dst->src[0];
  12401. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  12402. return;
  12403. }
  12404. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne)
  12405. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
  12406. const int32_t nep0 = ((const int32_t *)(dst->op_params))[0];
  12407. const int32_t nep1 = ((const int32_t *)(dst->op_params))[1];
  12408. const int32_t w = ((const int32_t *)(dst->op_params))[2];
  12409. assert(ne00 == ne0);
  12410. assert(ne3 == nep0*nep1);
  12411. // TODO: optimize / multi-thread
  12412. for (int py = 0; py < nep1; ++py) {
  12413. for (int px = 0; px < nep0; ++px) {
  12414. const int64_t i3 = py*nep0 + px;
  12415. for (int64_t i2 = 0; i2 < ne2; ++i2) {
  12416. for (int64_t i1 = 0; i1 < ne1; ++i1) {
  12417. for (int64_t i0 = 0; i0 < ne0; ++i0) {
  12418. const int64_t i02 = py*w + i2;
  12419. const int64_t i01 = px*w + i1;
  12420. const int64_t i00 = i0;
  12421. const int64_t i = i3*ne2*ne1*ne0 + i2*ne1*ne0 + i1*ne0 + i0;
  12422. const int64_t j = i02*ne01*ne00 + i01*ne00 + i00;
  12423. if (py*w + i2 >= ne02 || px*w + i1 >= ne01) {
  12424. ((float *) dst->data)[i] = 0.0f;
  12425. } else {
  12426. ((float *) dst->data)[i] = ((float *) src0->data)[j];
  12427. }
  12428. }
  12429. }
  12430. }
  12431. }
  12432. }
  12433. }
  12434. static void ggml_compute_forward_win_part(
  12435. const struct ggml_compute_params * params,
  12436. struct ggml_tensor * dst) {
  12437. const struct ggml_tensor * src0 = dst->src[0];
  12438. switch (src0->type) {
  12439. case GGML_TYPE_F32:
  12440. {
  12441. ggml_compute_forward_win_part_f32(params, dst);
  12442. } break;
  12443. default:
  12444. {
  12445. GGML_ASSERT(false);
  12446. } break;
  12447. }
  12448. }
  12449. // ggml_compute_forward_win_unpart
  12450. static void ggml_compute_forward_win_unpart_f32(
  12451. const struct ggml_compute_params * params,
  12452. struct ggml_tensor * dst) {
  12453. const struct ggml_tensor * src0 = dst->src[0];
  12454. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  12455. return;
  12456. }
  12457. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne)
  12458. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
  12459. const int32_t w = ((const int32_t *)(dst->op_params))[0];
  12460. // padding
  12461. const int px = (w - ne1%w)%w;
  12462. //const int py = (w - ne2%w)%w;
  12463. const int npx = (px + ne1)/w;
  12464. //const int npy = (py + ne2)/w;
  12465. assert(ne0 == ne00);
  12466. // TODO: optimize / multi-thread
  12467. for (int64_t i2 = 0; i2 < ne2; ++i2) {
  12468. for (int64_t i1 = 0; i1 < ne1; ++i1) {
  12469. for (int64_t i0 = 0; i0 < ne0; ++i0) {
  12470. const int ip2 = i2/w;
  12471. const int ip1 = i1/w;
  12472. const int64_t i02 = i2%w;
  12473. const int64_t i01 = i1%w;
  12474. const int64_t i00 = i0;
  12475. const int64_t i = (ip2*npx + ip1)*ne02*ne01*ne00 + i02*ne01*ne00 + i01*ne00 + i00;
  12476. const int64_t j = i2*ne1*ne0 + i1*ne0 + i0;
  12477. ((float *) dst->data)[j] = ((float *) src0->data)[i];
  12478. }
  12479. }
  12480. }
  12481. }
  12482. static void ggml_compute_forward_win_unpart(
  12483. const struct ggml_compute_params * params,
  12484. struct ggml_tensor * dst) {
  12485. const struct ggml_tensor * src0 = dst->src[0];
  12486. switch (src0->type) {
  12487. case GGML_TYPE_F32:
  12488. {
  12489. ggml_compute_forward_win_unpart_f32(params, dst);
  12490. } break;
  12491. default:
  12492. {
  12493. GGML_ASSERT(false);
  12494. } break;
  12495. }
  12496. }
  12497. //gmml_compute_forward_unary
  12498. static void ggml_compute_forward_unary(
  12499. const struct ggml_compute_params * params,
  12500. struct ggml_tensor * dst) {
  12501. const enum ggml_unary_op op = ggml_get_unary_op(dst);
  12502. switch (op) {
  12503. case GGML_UNARY_OP_ABS:
  12504. {
  12505. ggml_compute_forward_abs(params, dst);
  12506. } break;
  12507. case GGML_UNARY_OP_SGN:
  12508. {
  12509. ggml_compute_forward_sgn(params, dst);
  12510. } break;
  12511. case GGML_UNARY_OP_NEG:
  12512. {
  12513. ggml_compute_forward_neg(params, dst);
  12514. } break;
  12515. case GGML_UNARY_OP_STEP:
  12516. {
  12517. ggml_compute_forward_step(params, dst);
  12518. } break;
  12519. case GGML_UNARY_OP_TANH:
  12520. {
  12521. ggml_compute_forward_tanh(params, dst);
  12522. } break;
  12523. case GGML_UNARY_OP_ELU:
  12524. {
  12525. ggml_compute_forward_elu(params, dst);
  12526. } break;
  12527. case GGML_UNARY_OP_RELU:
  12528. {
  12529. ggml_compute_forward_relu(params, dst);
  12530. } break;
  12531. case GGML_UNARY_OP_GELU:
  12532. {
  12533. ggml_compute_forward_gelu(params, dst);
  12534. } break;
  12535. case GGML_UNARY_OP_GELU_QUICK:
  12536. {
  12537. ggml_compute_forward_gelu_quick(params, dst);
  12538. } break;
  12539. case GGML_UNARY_OP_SILU:
  12540. {
  12541. ggml_compute_forward_silu(params, dst);
  12542. } break;
  12543. case GGML_UNARY_OP_HARDSWISH:
  12544. {
  12545. ggml_compute_forward_hardswish(params, dst);
  12546. } break;
  12547. case GGML_UNARY_OP_HARDSIGMOID:
  12548. {
  12549. ggml_compute_forward_hardsigmoid(params, dst);
  12550. } break;
  12551. default:
  12552. {
  12553. GGML_ASSERT(false);
  12554. } break;
  12555. }
  12556. }
  12557. // ggml_compute_forward_get_rel_pos
  12558. static void ggml_compute_forward_get_rel_pos_f16(
  12559. const struct ggml_compute_params * params,
  12560. struct ggml_tensor * dst) {
  12561. const struct ggml_tensor * src0 = dst->src[0];
  12562. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  12563. return;
  12564. }
  12565. // ref: https://github.com/facebookresearch/segment-anything/blob/main/segment_anything/modeling/image_encoder.py#L292-L322
  12566. GGML_TENSOR_UNARY_OP_LOCALS
  12567. const int64_t w = ne1;
  12568. ggml_fp16_t * src0_data = (ggml_fp16_t *) src0->data;
  12569. ggml_fp16_t * dst_data = (ggml_fp16_t *) dst->data;
  12570. for (int64_t i2 = 0; i2 < ne2; ++i2) {
  12571. for (int64_t i1 = 0; i1 < ne1; ++i1) {
  12572. const int64_t pos = (w - i1 - 1) + i2;
  12573. for (int64_t i0 = 0; i0 < ne0; ++i0) {
  12574. dst_data[i2*ne1*ne0 + i1*ne0 + i0] = src0_data[pos*ne00 + i0];
  12575. }
  12576. }
  12577. }
  12578. }
  12579. static void ggml_compute_forward_get_rel_pos(
  12580. const struct ggml_compute_params * params,
  12581. struct ggml_tensor * dst) {
  12582. const struct ggml_tensor * src0 = dst->src[0];
  12583. switch (src0->type) {
  12584. case GGML_TYPE_F16:
  12585. {
  12586. ggml_compute_forward_get_rel_pos_f16(params, dst);
  12587. } break;
  12588. default:
  12589. {
  12590. GGML_ASSERT(false);
  12591. } break;
  12592. }
  12593. }
  12594. // ggml_compute_forward_add_rel_pos
  12595. static void ggml_compute_forward_add_rel_pos_f32(
  12596. const struct ggml_compute_params * params,
  12597. struct ggml_tensor * dst) {
  12598. const struct ggml_tensor * src0 = dst->src[0];
  12599. const struct ggml_tensor * src1 = dst->src[1];
  12600. const struct ggml_tensor * src2 = dst->src[2];
  12601. const bool inplace = (bool) ((int32_t *) dst->op_params)[0];
  12602. if (!inplace && params->type == GGML_TASK_TYPE_INIT) {
  12603. if (params->ith != 0) {
  12604. return;
  12605. }
  12606. memcpy((char *) dst->data, (char *) src0->data, ggml_nbytes(dst));
  12607. return;
  12608. }
  12609. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  12610. return;
  12611. }
  12612. int64_t t0 = ggml_perf_time_us();
  12613. UNUSED(t0);
  12614. // ref: https://github.com/facebookresearch/segment-anything/blob/main/segment_anything/modeling/image_encoder.py#L357-L359
  12615. float * src1_data = (float *) src1->data;
  12616. float * src2_data = (float *) src2->data;
  12617. float * dst_data = (float *) dst->data;
  12618. const int64_t ne10 = src1->ne[0];
  12619. const int64_t ne11 = src1->ne[1];
  12620. const int64_t ne12 = src1->ne[2];
  12621. const int64_t ne13 = src1->ne[3];
  12622. const int ith = params->ith;
  12623. const int nth = params->nth;
  12624. // total patches in dst
  12625. const int np = ne13;
  12626. // patches per thread
  12627. const int dp = (np + nth - 1)/nth;
  12628. // patch range for this thread
  12629. const int ip0 = dp*ith;
  12630. const int ip1 = MIN(ip0 + dp, np);
  12631. for (int64_t i13 = ip0; i13 < ip1; ++i13) {
  12632. for (int64_t i12 = 0; i12 < ne12; ++i12) {
  12633. for (int64_t i11 = 0; i11 < ne11; ++i11) {
  12634. const int64_t jp1 = i13*ne12*ne11*ne10 + i12*ne11*ne10 + i11*ne10;
  12635. for (int64_t i10 = 0; i10 < ne10; ++i10) {
  12636. const int64_t jp0 = jp1 + i10;
  12637. const float src1_e = src1_data[jp0];
  12638. const float src2_e = src2_data[jp0];
  12639. const int64_t jdh = jp0 * ne10;
  12640. const int64_t jdw = jdh - (ne10 - 1) * i10;
  12641. for (int64_t j = 0; j < ne10; ++j) {
  12642. dst_data[jdh + j ] += src2_e;
  12643. dst_data[jdw + j*ne10] += src1_e;
  12644. }
  12645. }
  12646. }
  12647. }
  12648. }
  12649. }
  12650. static void ggml_compute_forward_add_rel_pos(
  12651. const struct ggml_compute_params * params,
  12652. struct ggml_tensor * dst) {
  12653. const struct ggml_tensor * src0 = dst->src[0];
  12654. switch (src0->type) {
  12655. case GGML_TYPE_F32:
  12656. {
  12657. ggml_compute_forward_add_rel_pos_f32(params, dst);
  12658. } break;
  12659. default:
  12660. {
  12661. GGML_ASSERT(false);
  12662. } break;
  12663. }
  12664. }
  12665. // ggml_compute_forward_map_unary
  12666. static void ggml_compute_forward_map_unary_f32(
  12667. const struct ggml_compute_params * params,
  12668. struct ggml_tensor * dst,
  12669. const ggml_unary_op_f32_t fun) {
  12670. const struct ggml_tensor * src0 = dst->src[0];
  12671. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  12672. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  12673. return;
  12674. }
  12675. const int n = ggml_nrows(src0);
  12676. const int nc = src0->ne[0];
  12677. assert( dst->nb[0] == sizeof(float));
  12678. assert(src0->nb[0] == sizeof(float));
  12679. for (int i = 0; i < n; i++) {
  12680. fun(nc,
  12681. (float *) ((char *) dst->data + i*( dst->nb[1])),
  12682. (float *) ((char *) src0->data + i*(src0->nb[1])));
  12683. }
  12684. }
  12685. static void ggml_compute_forward_map_unary(
  12686. const struct ggml_compute_params * params,
  12687. struct ggml_tensor * dst,
  12688. const ggml_unary_op_f32_t fun) {
  12689. const struct ggml_tensor * src0 = dst->src[0];
  12690. switch (src0->type) {
  12691. case GGML_TYPE_F32:
  12692. {
  12693. ggml_compute_forward_map_unary_f32(params, dst, fun);
  12694. } break;
  12695. default:
  12696. {
  12697. GGML_ASSERT(false);
  12698. } break;
  12699. }
  12700. }
  12701. // ggml_compute_forward_map_binary
  12702. static void ggml_compute_forward_map_binary_f32(
  12703. const struct ggml_compute_params * params,
  12704. struct ggml_tensor * dst,
  12705. const ggml_binary_op_f32_t fun) {
  12706. const struct ggml_tensor * src0 = dst->src[0];
  12707. const struct ggml_tensor * src1 = dst->src[1];
  12708. assert(params->ith == 0);
  12709. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  12710. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  12711. return;
  12712. }
  12713. const int n = ggml_nrows(src0);
  12714. const int nc = src0->ne[0];
  12715. assert( dst->nb[0] == sizeof(float));
  12716. assert(src0->nb[0] == sizeof(float));
  12717. assert(src1->nb[0] == sizeof(float));
  12718. for (int i = 0; i < n; i++) {
  12719. fun(nc,
  12720. (float *) ((char *) dst->data + i*( dst->nb[1])),
  12721. (float *) ((char *) src0->data + i*(src0->nb[1])),
  12722. (float *) ((char *) src1->data + i*(src1->nb[1])));
  12723. }
  12724. }
  12725. static void ggml_compute_forward_map_binary(
  12726. const struct ggml_compute_params * params,
  12727. struct ggml_tensor * dst,
  12728. const ggml_binary_op_f32_t fun) {
  12729. const struct ggml_tensor * src0 = dst->src[0];
  12730. switch (src0->type) {
  12731. case GGML_TYPE_F32:
  12732. {
  12733. ggml_compute_forward_map_binary_f32(params, dst, fun);
  12734. } break;
  12735. default:
  12736. {
  12737. GGML_ASSERT(false);
  12738. } break;
  12739. }
  12740. }
  12741. // ggml_compute_forward_map_custom1
  12742. static void ggml_compute_forward_map_custom1_f32(
  12743. const struct ggml_compute_params * params,
  12744. struct ggml_tensor * dst,
  12745. const ggml_custom1_op_f32_t fun) {
  12746. const struct ggml_tensor * a = dst->src[0];
  12747. assert(params->ith == 0);
  12748. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  12749. return;
  12750. }
  12751. fun(dst, a);
  12752. }
  12753. // ggml_compute_forward_map_custom2
  12754. static void ggml_compute_forward_map_custom2_f32(
  12755. const struct ggml_compute_params * params,
  12756. struct ggml_tensor * dst,
  12757. const ggml_custom2_op_f32_t fun) {
  12758. const struct ggml_tensor * a = dst->src[0];
  12759. const struct ggml_tensor * b = dst->src[1];
  12760. assert(params->ith == 0);
  12761. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  12762. return;
  12763. }
  12764. fun(dst, a, b);
  12765. }
  12766. // ggml_compute_forward_map_custom3
  12767. static void ggml_compute_forward_map_custom3_f32(
  12768. const struct ggml_compute_params * params,
  12769. struct ggml_tensor * dst,
  12770. const ggml_custom3_op_f32_t fun) {
  12771. const struct ggml_tensor * a = dst->src[0];
  12772. const struct ggml_tensor * b = dst->src[1];
  12773. const struct ggml_tensor * c = dst->src[1];
  12774. assert(params->ith == 0);
  12775. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  12776. return;
  12777. }
  12778. fun(dst, a, b, c);
  12779. }
  12780. // ggml_compute_forward_map_custom1
  12781. static void ggml_compute_forward_map_custom1(
  12782. const struct ggml_compute_params * params,
  12783. struct ggml_tensor * dst) {
  12784. const struct ggml_tensor * a = dst->src[0];
  12785. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  12786. return;
  12787. }
  12788. struct ggml_map_custom1_op_params p;
  12789. memcpy(&p, dst->op_params, sizeof(p));
  12790. p.fun(dst, a, params->ith, params->nth, p.userdata);
  12791. }
  12792. // ggml_compute_forward_map_custom2
  12793. static void ggml_compute_forward_map_custom2(
  12794. const struct ggml_compute_params * params,
  12795. struct ggml_tensor * dst) {
  12796. const struct ggml_tensor * a = dst->src[0];
  12797. const struct ggml_tensor * b = dst->src[1];
  12798. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  12799. return;
  12800. }
  12801. struct ggml_map_custom2_op_params p;
  12802. memcpy(&p, dst->op_params, sizeof(p));
  12803. p.fun(dst, a, b, params->ith, params->nth, p.userdata);
  12804. }
  12805. // ggml_compute_forward_map_custom3
  12806. static void ggml_compute_forward_map_custom3(
  12807. const struct ggml_compute_params * params,
  12808. struct ggml_tensor * dst) {
  12809. const struct ggml_tensor * a = dst->src[0];
  12810. const struct ggml_tensor * b = dst->src[1];
  12811. const struct ggml_tensor * c = dst->src[2];
  12812. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  12813. return;
  12814. }
  12815. struct ggml_map_custom3_op_params p;
  12816. memcpy(&p, dst->op_params, sizeof(p));
  12817. p.fun(dst, a, b, c, params->ith, params->nth, p.userdata);
  12818. }
  12819. // ggml_compute_forward_cross_entropy_loss
  12820. static void ggml_compute_forward_cross_entropy_loss_f32(
  12821. const struct ggml_compute_params * params,
  12822. struct ggml_tensor * dst) {
  12823. const struct ggml_tensor * src0 = dst->src[0];
  12824. const struct ggml_tensor * src1 = dst->src[1];
  12825. GGML_ASSERT(ggml_is_contiguous(src0));
  12826. GGML_ASSERT(ggml_is_contiguous(src1));
  12827. GGML_ASSERT(ggml_is_scalar(dst));
  12828. GGML_ASSERT(ggml_are_same_shape(src0, src1));
  12829. const int ith = params->ith;
  12830. const int nth = params->nth;
  12831. float * sums = (float *) params->wdata;
  12832. // TODO: handle transposed/permuted matrices
  12833. const int nc = src0->ne[0];
  12834. const int nr = ggml_nrows(src0);
  12835. GGML_ASSERT(params->wsize >= sizeof(float) * (nth + nth * nc));
  12836. if (params->type == GGML_TASK_TYPE_INIT) {
  12837. if (ith == 0) {
  12838. memset(sums, 0, sizeof(float) * (nth + nth * nc));
  12839. }
  12840. return;
  12841. }
  12842. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  12843. if (ith == 0) {
  12844. float * dp = (float *) dst->data;
  12845. ggml_vec_sum_f32(nth, dp, sums);
  12846. dp[0] *= -1.0f / (float) nr;
  12847. }
  12848. return;
  12849. }
  12850. const double eps = 1e-9;
  12851. // rows per thread
  12852. const int dr = (nr + nth - 1)/nth;
  12853. // row range for this thread
  12854. const int ir0 = dr*ith;
  12855. const int ir1 = MIN(ir0 + dr, nr);
  12856. for (int i1 = ir0; i1 < ir1; i1++) {
  12857. float * s0 = (float *)((char *) src0->data + i1*src0->nb[1]);
  12858. float * s1 = (float *)((char *) src1->data + i1*src1->nb[1]);
  12859. float * st = ((float *) params->wdata) + nth + ith*nc;
  12860. #ifndef NDEBUG
  12861. for (int i = 0; i < nc; ++i) {
  12862. //printf("p[%d] = %f\n", i, p[i]);
  12863. assert(!isnan(s0[i]));
  12864. assert(!isnan(s1[i]));
  12865. }
  12866. #endif
  12867. // soft_max
  12868. ggml_float sum = 0.0;
  12869. {
  12870. float max = -INFINITY;
  12871. ggml_vec_max_f32(nc, &max, s0);
  12872. uint16_t scvt; UNUSED(scvt);
  12873. for (int i = 0; i < nc; i++) {
  12874. if (s0[i] == -INFINITY) {
  12875. st[i] = 0.0f;
  12876. } else {
  12877. #ifndef GGML_CROSS_ENTROPY_EXP_FP16
  12878. const float s = s0[i] - max;
  12879. const float val = expf(s);
  12880. #else
  12881. ggml_fp16_t s = GGML_FP32_TO_FP16(s0[i] - max);
  12882. memcpy(&scvt, &s, sizeof(scvt));
  12883. const float val = GGML_FP16_TO_FP32(ggml_table_exp_f16[scvt]);
  12884. #endif
  12885. sum += (ggml_float)val;
  12886. st[i] = val;
  12887. }
  12888. }
  12889. assert(sum > 0.0);
  12890. // sum = 1.0/sum;
  12891. }
  12892. // avoid log(0) by rescaling from [0..1] to [eps..1]
  12893. sum = (1.0 - eps) / sum;
  12894. ggml_vec_scale_f32(nc, st, sum);
  12895. ggml_vec_add1_f32(nc, st, st, eps);
  12896. ggml_vec_log_f32(nc, st, st);
  12897. ggml_vec_mul_f32(nc, st, st, s1);
  12898. float st_sum = 0;
  12899. ggml_vec_sum_f32(nc, &st_sum, st);
  12900. sums[ith] += st_sum;
  12901. #ifndef NDEBUG
  12902. for (int i = 0; i < nc; ++i) {
  12903. assert(!isnan(st[i]));
  12904. assert(!isinf(st[i]));
  12905. }
  12906. #endif
  12907. }
  12908. }
  12909. static void ggml_compute_forward_cross_entropy_loss(
  12910. const struct ggml_compute_params * params,
  12911. struct ggml_tensor * dst) {
  12912. const struct ggml_tensor * src0 = dst->src[0];
  12913. switch (src0->type) {
  12914. case GGML_TYPE_F32:
  12915. {
  12916. ggml_compute_forward_cross_entropy_loss_f32(params, dst);
  12917. } break;
  12918. default:
  12919. {
  12920. GGML_ASSERT(false);
  12921. } break;
  12922. }
  12923. }
  12924. // ggml_compute_forward_cross_entropy_loss_back
  12925. static void ggml_compute_forward_cross_entropy_loss_back_f32(
  12926. const struct ggml_compute_params * params,
  12927. struct ggml_tensor * dst) {
  12928. const struct ggml_tensor * src0 = dst->src[0];
  12929. const struct ggml_tensor * src1 = dst->src[1];
  12930. const struct ggml_tensor * opt0 = dst->src[2];
  12931. GGML_ASSERT(ggml_is_contiguous(dst));
  12932. GGML_ASSERT(ggml_is_contiguous(src0));
  12933. GGML_ASSERT(ggml_is_contiguous(src1));
  12934. GGML_ASSERT(ggml_is_contiguous(opt0));
  12935. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  12936. const int64_t ith = params->ith;
  12937. const int64_t nth = params->nth;
  12938. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  12939. return;
  12940. }
  12941. const double eps = 1e-9;
  12942. // TODO: handle transposed/permuted matrices
  12943. const int64_t nc = src0->ne[0];
  12944. const int64_t nr = ggml_nrows(src0);
  12945. // rows per thread
  12946. const int64_t dr = (nr + nth - 1)/nth;
  12947. // row range for this thread
  12948. const int64_t ir0 = dr*ith;
  12949. const int64_t ir1 = MIN(ir0 + dr, nr);
  12950. float * d = (float *) opt0->data;
  12951. for (int64_t i1 = ir0; i1 < ir1; i1++) {
  12952. float * ds0 = (float *)((char *) dst->data + i1*dst->nb[1]);
  12953. float * s0 = (float *)((char *) src0->data + i1*src0->nb[1]);
  12954. float * s1 = (float *)((char *) src1->data + i1*src1->nb[1]);
  12955. #ifndef NDEBUG
  12956. for (int i = 0; i < nc; ++i) {
  12957. //printf("p[%d] = %f\n", i, p[i]);
  12958. assert(!isnan(s0[i]));
  12959. assert(!isnan(s1[i]));
  12960. }
  12961. #endif
  12962. // soft_max
  12963. ggml_float sum = 0.0;
  12964. {
  12965. float max = -INFINITY;
  12966. ggml_vec_max_f32(nc, &max, s0);
  12967. uint16_t scvt; UNUSED(scvt);
  12968. for (int i = 0; i < nc; i++) {
  12969. if (s0[i] == -INFINITY) {
  12970. ds0[i] = 0.0f;
  12971. } else {
  12972. #ifndef GGML_CROSS_ENTROPY_EXP_FP16
  12973. const float s = s0[i] - max;
  12974. const float val = expf(s);
  12975. #else
  12976. ggml_fp16_t s = GGML_FP32_TO_FP16(s0[i] - max);
  12977. memcpy(&scvt, &s, sizeof(scvt));
  12978. const float val = GGML_FP16_TO_FP32(ggml_table_exp_f16[scvt]);
  12979. #endif
  12980. sum += (ggml_float)val;
  12981. ds0[i] = val;
  12982. }
  12983. }
  12984. assert(sum > 0.0);
  12985. sum = (1.0 - eps)/sum;
  12986. }
  12987. // grad(src0) = (softmax(src0) - src1) * grad(cross_entropy_loss(src0, src1)) / nr
  12988. ggml_vec_scale_f32(nc, ds0, sum);
  12989. ggml_vec_add1_f32(nc, ds0, ds0, eps);
  12990. ggml_vec_sub_f32(nc, ds0, ds0, s1);
  12991. ggml_vec_scale_f32(nc, ds0, d[0] / (float) nr);
  12992. #ifndef NDEBUG
  12993. for (int i = 0; i < nc; ++i) {
  12994. assert(!isnan(ds0[i]));
  12995. assert(!isinf(ds0[i]));
  12996. }
  12997. #endif
  12998. }
  12999. }
  13000. static void ggml_compute_forward_cross_entropy_loss_back(
  13001. const struct ggml_compute_params * params,
  13002. struct ggml_tensor * dst) {
  13003. const struct ggml_tensor * src0 = dst->src[0];
  13004. switch (src0->type) {
  13005. case GGML_TYPE_F32:
  13006. {
  13007. ggml_compute_forward_cross_entropy_loss_back_f32(params, dst);
  13008. } break;
  13009. default:
  13010. {
  13011. GGML_ASSERT(false);
  13012. } break;
  13013. }
  13014. }
  13015. /////////////////////////////////
  13016. static void ggml_compute_forward(struct ggml_compute_params * params, struct ggml_tensor * tensor) {
  13017. GGML_ASSERT(params);
  13018. if (tensor->op == GGML_OP_NONE || ggml_is_empty(tensor)) {
  13019. return;
  13020. }
  13021. switch (tensor->op) {
  13022. case GGML_OP_DUP:
  13023. {
  13024. ggml_compute_forward_dup(params, tensor);
  13025. } break;
  13026. case GGML_OP_ADD:
  13027. {
  13028. ggml_compute_forward_add(params, tensor);
  13029. } break;
  13030. case GGML_OP_ADD1:
  13031. {
  13032. ggml_compute_forward_add1(params, tensor);
  13033. } break;
  13034. case GGML_OP_ACC:
  13035. {
  13036. ggml_compute_forward_acc(params, tensor);
  13037. } break;
  13038. case GGML_OP_SUB:
  13039. {
  13040. ggml_compute_forward_sub(params, tensor);
  13041. } break;
  13042. case GGML_OP_MUL:
  13043. {
  13044. ggml_compute_forward_mul(params, tensor);
  13045. } break;
  13046. case GGML_OP_DIV:
  13047. {
  13048. ggml_compute_forward_div(params, tensor);
  13049. } break;
  13050. case GGML_OP_SQR:
  13051. {
  13052. ggml_compute_forward_sqr(params, tensor);
  13053. } break;
  13054. case GGML_OP_SQRT:
  13055. {
  13056. ggml_compute_forward_sqrt(params, tensor);
  13057. } break;
  13058. case GGML_OP_LOG:
  13059. {
  13060. ggml_compute_forward_log(params, tensor);
  13061. } break;
  13062. case GGML_OP_SUM:
  13063. {
  13064. ggml_compute_forward_sum(params, tensor);
  13065. } break;
  13066. case GGML_OP_SUM_ROWS:
  13067. {
  13068. ggml_compute_forward_sum_rows(params, tensor);
  13069. } break;
  13070. case GGML_OP_MEAN:
  13071. {
  13072. ggml_compute_forward_mean(params, tensor);
  13073. } break;
  13074. case GGML_OP_ARGMAX:
  13075. {
  13076. ggml_compute_forward_argmax(params, tensor);
  13077. } break;
  13078. case GGML_OP_REPEAT:
  13079. {
  13080. ggml_compute_forward_repeat(params, tensor);
  13081. } break;
  13082. case GGML_OP_REPEAT_BACK:
  13083. {
  13084. ggml_compute_forward_repeat_back(params, tensor);
  13085. } break;
  13086. case GGML_OP_CONCAT:
  13087. {
  13088. ggml_compute_forward_concat(params, tensor);
  13089. } break;
  13090. case GGML_OP_SILU_BACK:
  13091. {
  13092. ggml_compute_forward_silu_back(params, tensor);
  13093. } break;
  13094. case GGML_OP_NORM:
  13095. {
  13096. ggml_compute_forward_norm(params, tensor);
  13097. } break;
  13098. case GGML_OP_RMS_NORM:
  13099. {
  13100. ggml_compute_forward_rms_norm(params, tensor);
  13101. } break;
  13102. case GGML_OP_RMS_NORM_BACK:
  13103. {
  13104. ggml_compute_forward_rms_norm_back(params, tensor);
  13105. } break;
  13106. case GGML_OP_GROUP_NORM:
  13107. {
  13108. ggml_compute_forward_group_norm(params, tensor);
  13109. } break;
  13110. case GGML_OP_MUL_MAT:
  13111. {
  13112. ggml_compute_forward_mul_mat(params, tensor);
  13113. } break;
  13114. case GGML_OP_MUL_MAT_ID:
  13115. {
  13116. ggml_compute_forward_mul_mat_id(params, tensor);
  13117. } break;
  13118. case GGML_OP_OUT_PROD:
  13119. {
  13120. ggml_compute_forward_out_prod(params, tensor);
  13121. } break;
  13122. case GGML_OP_SCALE:
  13123. {
  13124. ggml_compute_forward_scale(params, tensor);
  13125. } break;
  13126. case GGML_OP_SET:
  13127. {
  13128. ggml_compute_forward_set(params, tensor);
  13129. } break;
  13130. case GGML_OP_CPY:
  13131. {
  13132. ggml_compute_forward_cpy(params, tensor);
  13133. } break;
  13134. case GGML_OP_CONT:
  13135. {
  13136. ggml_compute_forward_cont(params, tensor);
  13137. } break;
  13138. case GGML_OP_RESHAPE:
  13139. {
  13140. ggml_compute_forward_reshape(params, tensor);
  13141. } break;
  13142. case GGML_OP_VIEW:
  13143. {
  13144. ggml_compute_forward_view(params, tensor);
  13145. } break;
  13146. case GGML_OP_PERMUTE:
  13147. {
  13148. ggml_compute_forward_permute(params, tensor);
  13149. } break;
  13150. case GGML_OP_TRANSPOSE:
  13151. {
  13152. ggml_compute_forward_transpose(params, tensor);
  13153. } break;
  13154. case GGML_OP_GET_ROWS:
  13155. {
  13156. ggml_compute_forward_get_rows(params, tensor);
  13157. } break;
  13158. case GGML_OP_GET_ROWS_BACK:
  13159. {
  13160. ggml_compute_forward_get_rows_back(params, tensor);
  13161. } break;
  13162. case GGML_OP_DIAG:
  13163. {
  13164. ggml_compute_forward_diag(params, tensor);
  13165. } break;
  13166. case GGML_OP_DIAG_MASK_INF:
  13167. {
  13168. ggml_compute_forward_diag_mask_inf(params, tensor);
  13169. } break;
  13170. case GGML_OP_DIAG_MASK_ZERO:
  13171. {
  13172. ggml_compute_forward_diag_mask_zero(params, tensor);
  13173. } break;
  13174. case GGML_OP_SOFT_MAX:
  13175. {
  13176. ggml_compute_forward_soft_max(params, tensor);
  13177. } break;
  13178. case GGML_OP_SOFT_MAX_BACK:
  13179. {
  13180. ggml_compute_forward_soft_max_back(params, tensor);
  13181. } break;
  13182. case GGML_OP_ROPE:
  13183. {
  13184. ggml_compute_forward_rope(params, tensor);
  13185. } break;
  13186. case GGML_OP_ROPE_BACK:
  13187. {
  13188. ggml_compute_forward_rope_back(params, tensor);
  13189. } break;
  13190. case GGML_OP_ALIBI:
  13191. {
  13192. ggml_compute_forward_alibi(params, tensor);
  13193. } break;
  13194. case GGML_OP_CLAMP:
  13195. {
  13196. ggml_compute_forward_clamp(params, tensor);
  13197. } break;
  13198. case GGML_OP_CONV_TRANSPOSE_1D:
  13199. {
  13200. ggml_compute_forward_conv_transpose_1d(params, tensor);
  13201. } break;
  13202. case GGML_OP_IM2COL:
  13203. {
  13204. ggml_compute_forward_im2col(params, tensor);
  13205. } break;
  13206. case GGML_OP_CONV_TRANSPOSE_2D:
  13207. {
  13208. ggml_compute_forward_conv_transpose_2d(params, tensor);
  13209. } break;
  13210. case GGML_OP_POOL_1D:
  13211. {
  13212. ggml_compute_forward_pool_1d(params, tensor);
  13213. } break;
  13214. case GGML_OP_POOL_2D:
  13215. {
  13216. ggml_compute_forward_pool_2d(params, tensor);
  13217. } break;
  13218. case GGML_OP_UPSCALE:
  13219. {
  13220. ggml_compute_forward_upscale(params, tensor);
  13221. } break;
  13222. case GGML_OP_PAD:
  13223. {
  13224. ggml_compute_forward_pad(params, tensor);
  13225. } break;
  13226. case GGML_OP_ARANGE:
  13227. {
  13228. ggml_compute_forward_arange(params, tensor);
  13229. } break;
  13230. case GGML_OP_TIMESTEP_EMBEDDING:
  13231. {
  13232. ggml_compute_forward_timestep_embedding(params, tensor);
  13233. } break;
  13234. case GGML_OP_ARGSORT:
  13235. {
  13236. ggml_compute_forward_argsort(params, tensor);
  13237. } break;
  13238. case GGML_OP_LEAKY_RELU:
  13239. {
  13240. ggml_compute_forward_leaky_relu(params, tensor);
  13241. } break;
  13242. case GGML_OP_FLASH_ATTN:
  13243. {
  13244. const int32_t t = ggml_get_op_params_i32(tensor, 0);
  13245. GGML_ASSERT(t == 0 || t == 1);
  13246. const bool masked = t != 0;
  13247. ggml_compute_forward_flash_attn(params, masked, tensor);
  13248. } break;
  13249. case GGML_OP_FLASH_FF:
  13250. {
  13251. ggml_compute_forward_flash_ff(params, tensor);
  13252. } break;
  13253. case GGML_OP_FLASH_ATTN_BACK:
  13254. {
  13255. int32_t t = ggml_get_op_params_i32(tensor, 0);
  13256. GGML_ASSERT(t == 0 || t == 1);
  13257. bool masked = t != 0;
  13258. ggml_compute_forward_flash_attn_back(params, masked, tensor);
  13259. } break;
  13260. case GGML_OP_SSM_CONV:
  13261. {
  13262. ggml_compute_forward_ssm_conv(params, tensor);
  13263. } break;
  13264. case GGML_OP_SSM_SCAN:
  13265. {
  13266. ggml_compute_forward_ssm_scan(params, tensor);
  13267. } break;
  13268. case GGML_OP_WIN_PART:
  13269. {
  13270. ggml_compute_forward_win_part(params, tensor);
  13271. } break;
  13272. case GGML_OP_WIN_UNPART:
  13273. {
  13274. ggml_compute_forward_win_unpart(params, tensor);
  13275. } break;
  13276. case GGML_OP_UNARY:
  13277. {
  13278. ggml_compute_forward_unary(params, tensor);
  13279. } break;
  13280. case GGML_OP_GET_REL_POS:
  13281. {
  13282. ggml_compute_forward_get_rel_pos(params, tensor);
  13283. } break;
  13284. case GGML_OP_ADD_REL_POS:
  13285. {
  13286. ggml_compute_forward_add_rel_pos(params, tensor);
  13287. } break;
  13288. case GGML_OP_MAP_UNARY:
  13289. {
  13290. ggml_unary_op_f32_t fun;
  13291. memcpy(&fun, tensor->op_params, sizeof(fun));
  13292. ggml_compute_forward_map_unary(params, tensor, fun);
  13293. }
  13294. break;
  13295. case GGML_OP_MAP_BINARY:
  13296. {
  13297. ggml_binary_op_f32_t fun;
  13298. memcpy(&fun, tensor->op_params, sizeof(fun));
  13299. ggml_compute_forward_map_binary(params, tensor, fun);
  13300. }
  13301. break;
  13302. case GGML_OP_MAP_CUSTOM1_F32:
  13303. {
  13304. ggml_custom1_op_f32_t fun;
  13305. memcpy(&fun, tensor->op_params, sizeof(fun));
  13306. ggml_compute_forward_map_custom1_f32(params, tensor, fun);
  13307. }
  13308. break;
  13309. case GGML_OP_MAP_CUSTOM2_F32:
  13310. {
  13311. ggml_custom2_op_f32_t fun;
  13312. memcpy(&fun, tensor->op_params, sizeof(fun));
  13313. ggml_compute_forward_map_custom2_f32(params, tensor, fun);
  13314. }
  13315. break;
  13316. case GGML_OP_MAP_CUSTOM3_F32:
  13317. {
  13318. ggml_custom3_op_f32_t fun;
  13319. memcpy(&fun, tensor->op_params, sizeof(fun));
  13320. ggml_compute_forward_map_custom3_f32(params, tensor, fun);
  13321. }
  13322. break;
  13323. case GGML_OP_MAP_CUSTOM1:
  13324. {
  13325. ggml_compute_forward_map_custom1(params, tensor);
  13326. }
  13327. break;
  13328. case GGML_OP_MAP_CUSTOM2:
  13329. {
  13330. ggml_compute_forward_map_custom2(params, tensor);
  13331. }
  13332. break;
  13333. case GGML_OP_MAP_CUSTOM3:
  13334. {
  13335. ggml_compute_forward_map_custom3(params, tensor);
  13336. }
  13337. break;
  13338. case GGML_OP_CROSS_ENTROPY_LOSS:
  13339. {
  13340. ggml_compute_forward_cross_entropy_loss(params, tensor);
  13341. }
  13342. break;
  13343. case GGML_OP_CROSS_ENTROPY_LOSS_BACK:
  13344. {
  13345. ggml_compute_forward_cross_entropy_loss_back(params, tensor);
  13346. }
  13347. break;
  13348. case GGML_OP_NONE:
  13349. {
  13350. // nop
  13351. } break;
  13352. case GGML_OP_COUNT:
  13353. {
  13354. GGML_ASSERT(false);
  13355. } break;
  13356. }
  13357. }
  13358. ////////////////////////////////////////////////////////////////////////////////
  13359. static size_t ggml_hash_size(size_t min_sz) {
  13360. // next primes after powers of two
  13361. static const size_t primes[] = {
  13362. 2, 3, 5, 11, 17, 37, 67, 131, 257, 521, 1031,
  13363. 2053, 4099, 8209, 16411, 32771, 65537, 131101,
  13364. 262147, 524309, 1048583, 2097169, 4194319, 8388617,
  13365. 16777259, 33554467, 67108879, 134217757, 268435459,
  13366. 536870923, 1073741827, 2147483659
  13367. };
  13368. static const size_t n_primes = sizeof(primes)/sizeof(primes[0]);
  13369. // find the smallest prime that is larger or equal to min_sz
  13370. size_t l = 0;
  13371. size_t r = n_primes;
  13372. while (l < r) {
  13373. size_t m = (l + r)/2;
  13374. if (primes[m] < min_sz) {
  13375. l = m + 1;
  13376. } else {
  13377. r = m;
  13378. }
  13379. }
  13380. size_t sz = l < n_primes ? primes[l] : min_sz | 1;
  13381. return sz;
  13382. }
  13383. static size_t ggml_hash(const void * p) {
  13384. return (size_t)p;
  13385. }
  13386. size_t ggml_hash_find(const struct ggml_hash_set hash_set, struct ggml_tensor * key) {
  13387. size_t h = ggml_hash(key) % hash_set.size;
  13388. // linear probing
  13389. size_t i = h;
  13390. while (hash_set.keys[i] != NULL && hash_set.keys[i] != key) {
  13391. i = (i + 1) % hash_set.size;
  13392. if (i == h) {
  13393. // visited all hash table entries -> not found
  13394. return GGML_HASHTABLE_FULL;
  13395. }
  13396. }
  13397. return i;
  13398. }
  13399. bool ggml_hash_contains(struct ggml_hash_set hash_set, struct ggml_tensor * key) {
  13400. size_t i = ggml_hash_find(hash_set, key);
  13401. return i != GGML_HASHTABLE_FULL && hash_set.keys[i] == key;
  13402. }
  13403. size_t ggml_hash_insert(struct ggml_hash_set hash_set, struct ggml_tensor * key) {
  13404. size_t i = ggml_hash_find(hash_set, key);
  13405. GGML_ASSERT(i != GGML_HASHTABLE_FULL);
  13406. if (hash_set.keys[i] == key) {
  13407. return GGML_HASHTABLE_ALREADY_EXISTS;
  13408. }
  13409. // insert
  13410. GGML_ASSERT(hash_set.keys[i] == NULL);
  13411. hash_set.keys[i] = key;
  13412. return i;
  13413. }
  13414. size_t ggml_hash_find_or_insert(struct ggml_hash_set hash_set, struct ggml_tensor * key) {
  13415. size_t i = ggml_hash_find(hash_set, key);
  13416. GGML_ASSERT(i != GGML_HASHTABLE_FULL);
  13417. hash_set.keys[i] = key;
  13418. return i;
  13419. }
  13420. struct ggml_hash_set ggml_hash_set_new(size_t size) {
  13421. size = ggml_hash_size(size);
  13422. struct ggml_hash_set result;
  13423. result.size = size;
  13424. result.keys = GGML_MALLOC(sizeof(struct ggml_tensor *) * size);
  13425. memset(result.keys, 0, sizeof(struct ggml_tensor *) * size);
  13426. return result;
  13427. }
  13428. static void ggml_hash_set_free(struct ggml_hash_set hash_set) {
  13429. GGML_FREE(hash_set.keys);
  13430. }
  13431. struct hash_map {
  13432. struct ggml_hash_set set;
  13433. struct ggml_tensor ** vals;
  13434. };
  13435. static struct hash_map * ggml_new_hash_map(size_t size) {
  13436. struct hash_map * result = GGML_MALLOC(sizeof(struct hash_map));
  13437. result->set = ggml_hash_set_new(size);
  13438. result->vals = GGML_MALLOC(sizeof(struct ggml_tensor *) * result->set.size);
  13439. memset(result->vals, 0, sizeof(struct ggml_tensor *) * result->set.size);
  13440. return result;
  13441. }
  13442. static void ggml_hash_map_free(struct hash_map * map) {
  13443. ggml_hash_set_free(map->set);
  13444. GGML_FREE(map->vals);
  13445. GGML_FREE(map);
  13446. }
  13447. // gradient checkpointing
  13448. static struct ggml_tensor * ggml_recompute_graph_node(
  13449. struct ggml_context * ctx,
  13450. struct ggml_cgraph * graph,
  13451. struct hash_map * replacements,
  13452. struct ggml_tensor * node) {
  13453. if (node == NULL) {
  13454. return NULL;
  13455. }
  13456. if (node->flags & GGML_TENSOR_FLAG_PARAM) {
  13457. return node;
  13458. }
  13459. if (!ggml_hash_contains(graph->visited_hash_table, node)) {
  13460. return node;
  13461. }
  13462. int count_children = 0;
  13463. for (int k = 0; k < GGML_MAX_SRC; ++k) {
  13464. if (node->src[k]) {
  13465. ++count_children;
  13466. }
  13467. }
  13468. if (count_children == 0) {
  13469. return node;
  13470. }
  13471. size_t i = ggml_hash_find(replacements->set, node);
  13472. GGML_ASSERT(i != GGML_HASHTABLE_FULL); // assert that not full
  13473. if (replacements->set.keys[i] == node) {
  13474. return replacements->vals[i];
  13475. }
  13476. struct ggml_tensor * clone = ggml_new_tensor(ctx, node->type, GGML_MAX_DIMS, node->ne);
  13477. // insert clone into replacements
  13478. GGML_ASSERT(replacements->set.keys[i] == NULL); // assert that we don't overwrite
  13479. replacements->set.keys[i] = node;
  13480. replacements->vals[i] = clone;
  13481. clone->op = node->op;
  13482. clone->grad = node->grad;
  13483. clone->flags = node->flags;
  13484. clone->extra = node->extra;
  13485. for (int k = 0; k < GGML_MAX_DIMS; ++k) {
  13486. clone->nb[k] = node->nb[k];
  13487. }
  13488. for (int k = 0; k < GGML_MAX_SRC; ++k) {
  13489. clone->src[k] = ggml_recompute_graph_node(ctx, graph, replacements, node->src[k]);
  13490. }
  13491. if (node->view_src != NULL) {
  13492. clone->data = (node->view_src->data == NULL)
  13493. ? NULL // view_src not yet allocated
  13494. : (char *) node->view_src->data // view_src already allocated
  13495. + node->view_offs;
  13496. clone->view_src = node->view_src;
  13497. clone->view_offs = node->view_offs;
  13498. }
  13499. GGML_ASSERT(sizeof(node->op_params) == sizeof(int32_t) * (GGML_MAX_OP_PARAMS / sizeof(int32_t)));
  13500. GGML_ASSERT(sizeof(node->name) == GGML_MAX_NAME);
  13501. memcpy(clone->op_params, node->op_params, sizeof(node->op_params));
  13502. ggml_format_name(clone, "%s (clone)", ggml_get_name(node));
  13503. return clone;
  13504. }
  13505. void ggml_build_backward_gradient_checkpointing(
  13506. struct ggml_context * ctx,
  13507. struct ggml_cgraph * gf,
  13508. struct ggml_cgraph * gb,
  13509. struct ggml_cgraph * gb_tmp,
  13510. struct ggml_tensor * * checkpoints,
  13511. int n_checkpoints) {
  13512. ggml_graph_cpy(gf, gb_tmp);
  13513. ggml_build_backward_expand(ctx, gf, gb_tmp, true);
  13514. if (n_checkpoints <= 0) {
  13515. ggml_graph_cpy(gb_tmp, gb);
  13516. return;
  13517. }
  13518. struct hash_map * replacements = ggml_new_hash_map(gf->n_nodes + gf->n_leafs + n_checkpoints);
  13519. // insert checkpoints in replacements
  13520. for (int i = 0; i < n_checkpoints; ++i) {
  13521. size_t k = ggml_hash_find(replacements->set, checkpoints[i]);
  13522. GGML_ASSERT(k != GGML_HASHTABLE_FULL); // assert that not full
  13523. GGML_ASSERT(replacements->set.keys[k] == NULL); // assert that we don't overwrite
  13524. replacements->set.keys[k] = checkpoints[i];
  13525. replacements->vals[k] = checkpoints[i];
  13526. }
  13527. ggml_graph_cpy(gf, gb);
  13528. // rewrite gb_tmp->nodes[gf->n_nodes:gb_tmp->n_nodes],
  13529. // replacing references to gb_tmp->nodes[0:gf->n_nodes] ( == gf->nodes[0:gf->n_nodes]),
  13530. // by recomputing them from checkpoints
  13531. for (int i = gf->n_nodes; i<gb_tmp->n_nodes; ++i) {
  13532. struct ggml_tensor * node = gb_tmp->nodes[i];
  13533. for (int k = 0; k < GGML_MAX_SRC; ++k) {
  13534. // insert new tensors recomputing src, reusing already made replacements,
  13535. // remember replacements: remember new tensors with mapping from corresponding gf nodes
  13536. // recurse for input tensors,
  13537. // unless (i.e. terminating when) input tensors are replacements (like checkpoints)
  13538. node->src[k] = ggml_recompute_graph_node(ctx, gf, replacements, node->src[k]);
  13539. }
  13540. // insert rewritten backward node with replacements made into resulting backward graph gb
  13541. ggml_build_forward_expand(gb, node);
  13542. }
  13543. ggml_hash_map_free(replacements);
  13544. }
  13545. // functions to change gradients considering the case that input a might be initial gradient with zero value
  13546. static struct ggml_tensor * ggml_add_or_set(struct ggml_context * ctx, struct ggml_tensor * a, struct ggml_tensor * b, struct ggml_hash_set zero_table) {
  13547. if (ggml_hash_contains(zero_table, a)) {
  13548. return b;
  13549. } else {
  13550. return ggml_add_impl(ctx, a, b, false);
  13551. }
  13552. }
  13553. static struct ggml_tensor * ggml_acc_or_set(struct ggml_context * ctx, struct ggml_tensor * a, struct ggml_tensor * b, size_t nb1, size_t nb2, size_t nb3, size_t offset, struct ggml_hash_set zero_table) {
  13554. if (ggml_hash_contains(zero_table, a)) {
  13555. struct ggml_tensor * a_zero = ggml_scale(ctx, a, 0.0f);
  13556. return ggml_acc_impl(ctx, a_zero, b, nb1, nb2, nb3, offset, false);
  13557. } else {
  13558. return ggml_acc_impl(ctx, a, b, nb1, nb2, nb3, offset, false);
  13559. }
  13560. }
  13561. static struct ggml_tensor * ggml_add1_or_set(struct ggml_context * ctx, struct ggml_tensor * a, struct ggml_tensor * b, struct ggml_hash_set zero_table) {
  13562. if (ggml_hash_contains(zero_table, a)) {
  13563. return ggml_repeat(ctx, b, a);
  13564. } else {
  13565. return ggml_add1_impl(ctx, a, b, false);
  13566. }
  13567. }
  13568. static struct ggml_tensor * ggml_sub_or_set(struct ggml_context * ctx, struct ggml_tensor * a, struct ggml_tensor * b, struct ggml_hash_set zero_table) {
  13569. if (ggml_hash_contains(zero_table, a)) {
  13570. return ggml_neg(ctx, b);
  13571. } else {
  13572. return ggml_sub_impl(ctx, a, b, false);
  13573. }
  13574. }
  13575. static void ggml_compute_backward(struct ggml_context * ctx, struct ggml_tensor * tensor, struct ggml_hash_set zero_table) {
  13576. struct ggml_tensor * src0 = tensor->src[0];
  13577. struct ggml_tensor * src1 = tensor->src[1];
  13578. switch (tensor->op) {
  13579. case GGML_OP_DUP:
  13580. {
  13581. if (src0->grad) {
  13582. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  13583. }
  13584. } break;
  13585. case GGML_OP_ADD:
  13586. {
  13587. if (src0->grad) {
  13588. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  13589. }
  13590. if (src1->grad) {
  13591. src1->grad = ggml_add_or_set(ctx, src1->grad, tensor->grad, zero_table);
  13592. }
  13593. } break;
  13594. case GGML_OP_ADD1:
  13595. {
  13596. if (src0->grad) {
  13597. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  13598. }
  13599. if (src1->grad) {
  13600. src1->grad = ggml_add_or_set(ctx,
  13601. src1->grad,
  13602. ggml_mean(ctx, tensor->grad), // TODO: should probably be sum instead of mean
  13603. zero_table);
  13604. }
  13605. } break;
  13606. case GGML_OP_ACC:
  13607. {
  13608. if (src0->grad) {
  13609. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  13610. }
  13611. if (src1->grad) {
  13612. const size_t nb1 = ((int32_t *) tensor->op_params)[0];
  13613. const size_t nb2 = ((int32_t *) tensor->op_params)[1];
  13614. const size_t nb3 = ((int32_t *) tensor->op_params)[2];
  13615. const size_t offset = ((int32_t *) tensor->op_params)[3];
  13616. struct ggml_tensor * tensor_grad_view = ggml_view_4d(ctx,
  13617. tensor->grad,
  13618. src1->grad->ne[0],
  13619. src1->grad->ne[1],
  13620. src1->grad->ne[2],
  13621. src1->grad->ne[3],
  13622. nb1, nb2, nb3, offset);
  13623. src1->grad =
  13624. ggml_add_or_set(ctx,
  13625. src1->grad,
  13626. ggml_reshape(ctx,
  13627. ggml_cont(ctx, tensor_grad_view),
  13628. src1->grad),
  13629. zero_table);
  13630. }
  13631. } break;
  13632. case GGML_OP_SUB:
  13633. {
  13634. if (src0->grad) {
  13635. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  13636. }
  13637. if (src1->grad) {
  13638. src1->grad = ggml_sub_or_set(ctx, src1->grad, tensor->grad, zero_table);
  13639. }
  13640. } break;
  13641. case GGML_OP_MUL:
  13642. {
  13643. if (src0->grad) {
  13644. src0->grad =
  13645. ggml_add_or_set(ctx,
  13646. src0->grad,
  13647. ggml_mul(ctx, src1, tensor->grad),
  13648. zero_table);
  13649. }
  13650. if (src1->grad) {
  13651. src1->grad =
  13652. ggml_add_or_set(ctx,
  13653. src1->grad,
  13654. ggml_mul(ctx, src0, tensor->grad),
  13655. zero_table);
  13656. }
  13657. } break;
  13658. case GGML_OP_DIV:
  13659. {
  13660. if (src0->grad) {
  13661. src0->grad =
  13662. ggml_add_or_set(ctx,
  13663. src0->grad,
  13664. ggml_div(ctx, tensor->grad, src1),
  13665. zero_table);
  13666. }
  13667. if (src1->grad) {
  13668. src1->grad =
  13669. ggml_sub_or_set(ctx,
  13670. src1->grad,
  13671. ggml_mul(ctx,
  13672. tensor->grad,
  13673. ggml_div(ctx, tensor, src1)),
  13674. zero_table);
  13675. }
  13676. } break;
  13677. case GGML_OP_SQR:
  13678. {
  13679. if (src0->grad) {
  13680. src0->grad =
  13681. ggml_add_or_set(ctx,
  13682. src0->grad,
  13683. ggml_scale(ctx,
  13684. ggml_mul(ctx, src0, tensor->grad),
  13685. 2.0f),
  13686. zero_table);
  13687. }
  13688. } break;
  13689. case GGML_OP_SQRT:
  13690. {
  13691. if (src0->grad) {
  13692. src0->grad =
  13693. ggml_add_or_set(ctx,
  13694. src0->grad,
  13695. ggml_scale(ctx,
  13696. ggml_div(ctx,
  13697. tensor->grad,
  13698. tensor),
  13699. 0.5f),
  13700. zero_table);
  13701. }
  13702. } break;
  13703. case GGML_OP_LOG:
  13704. {
  13705. if (src0->grad) {
  13706. src0->grad =
  13707. ggml_add_or_set(ctx,
  13708. src0->grad,
  13709. ggml_div(ctx,
  13710. tensor->grad,
  13711. src0),
  13712. zero_table);
  13713. }
  13714. } break;
  13715. case GGML_OP_SUM:
  13716. {
  13717. if (src0->grad) {
  13718. src0->grad =
  13719. ggml_add1_or_set(ctx,
  13720. src0->grad,
  13721. tensor->grad,
  13722. zero_table);
  13723. }
  13724. } break;
  13725. case GGML_OP_SUM_ROWS:
  13726. {
  13727. if (src0->grad) {
  13728. src0->grad =
  13729. ggml_add_or_set(ctx,
  13730. src0->grad,
  13731. ggml_repeat(ctx,
  13732. tensor->grad,
  13733. src0->grad),
  13734. zero_table);
  13735. }
  13736. } break;
  13737. case GGML_OP_MEAN:
  13738. case GGML_OP_ARGMAX:
  13739. {
  13740. GGML_ASSERT(false); // TODO: implement
  13741. } break;
  13742. case GGML_OP_REPEAT:
  13743. {
  13744. // necessary for llama
  13745. if (src0->grad) {
  13746. src0->grad = ggml_add_or_set(ctx,
  13747. src0->grad,
  13748. ggml_repeat_back(ctx, tensor->grad, src0->grad),
  13749. zero_table);
  13750. }
  13751. } break;
  13752. case GGML_OP_REPEAT_BACK:
  13753. {
  13754. if (src0->grad) {
  13755. // TODO: test this
  13756. src0->grad = ggml_add_or_set(ctx,
  13757. src0->grad,
  13758. ggml_repeat(ctx, tensor->grad, src0->grad),
  13759. zero_table);
  13760. }
  13761. } break;
  13762. case GGML_OP_CONCAT:
  13763. {
  13764. GGML_ASSERT(false); // TODO: implement
  13765. } break;
  13766. case GGML_OP_SILU_BACK:
  13767. {
  13768. GGML_ASSERT(false); // TODO: not implemented
  13769. } break;
  13770. case GGML_OP_NORM:
  13771. {
  13772. GGML_ASSERT(false); // TODO: not implemented
  13773. } break;
  13774. case GGML_OP_RMS_NORM:
  13775. {
  13776. // necessary for llama
  13777. if (src0->grad) {
  13778. float eps;
  13779. memcpy(&eps, tensor->op_params, sizeof(float));
  13780. src0->grad = ggml_add_or_set(ctx,
  13781. src0->grad,
  13782. ggml_rms_norm_back(ctx, src0, tensor->grad, eps),
  13783. zero_table);
  13784. }
  13785. } break;
  13786. case GGML_OP_RMS_NORM_BACK:
  13787. {
  13788. GGML_ASSERT(false); // TODO: not implemented
  13789. } break;
  13790. case GGML_OP_GROUP_NORM:
  13791. {
  13792. GGML_ASSERT(false); // TODO: not implemented
  13793. } break;
  13794. case GGML_OP_MUL_MAT:
  13795. {
  13796. // https://cs231n.github.io/optimization-2/#staged
  13797. // # forward pass
  13798. // s0 = np.random.randn(5, 10)
  13799. // s1 = np.random.randn(10, 3)
  13800. // t = s0.dot(s1)
  13801. // # now suppose we had the gradient on t from above in the circuit
  13802. // dt = np.random.randn(*t.shape) # same shape as t
  13803. // ds0 = dt.dot(s1.T) #.T gives the transpose of the matrix
  13804. // ds1 = t.T.dot(dt)
  13805. // tensor.shape [m,p,qq,rr]
  13806. // src0.shape [n,m,q1,r1]
  13807. // src1.shape [n,p,qq,rr]
  13808. // necessary for llama
  13809. if (src0->grad) {
  13810. struct ggml_tensor * s1_tg =
  13811. ggml_out_prod(ctx, // [n,m,qq,rr]
  13812. src1, // [n,p,qq,rr]
  13813. tensor->grad); // [m,p,qq,rr]
  13814. const int64_t qq = s1_tg->ne[2];
  13815. const int64_t rr = s1_tg->ne[3];
  13816. const int64_t q1 = src0->ne[2];
  13817. const int64_t r1 = src0->ne[3];
  13818. const bool ne2_broadcasted = qq > q1;
  13819. const bool ne3_broadcasted = rr > r1;
  13820. if (ne2_broadcasted || ne3_broadcasted) {
  13821. // sum broadcast repetitions of s1_tg into shape of src0
  13822. s1_tg = ggml_repeat_back(ctx, s1_tg, src0);
  13823. }
  13824. src0->grad =
  13825. ggml_add_or_set(ctx,
  13826. src0->grad, // [n,m,q1,r1]
  13827. s1_tg, // [n,m,q1,r1]
  13828. zero_table);
  13829. }
  13830. if (src1->grad) {
  13831. src1->grad =
  13832. ggml_add_or_set(ctx,
  13833. src1->grad, // [n,p,qq,rr]
  13834. // ggml_mul_mat(ctx, // [n,p,qq,rr]
  13835. // ggml_cont(ctx, // [m,n,q1,r1]
  13836. // ggml_transpose(ctx, src0)), // [m,n,q1,r1]
  13837. // tensor->grad), // [m,p,qq,rr]
  13838. // // when src0 is bigger than tensor->grad (this is mostly the case in llama),
  13839. // // avoid transpose of src0, rather transpose smaller tensor->grad
  13840. // // and then use ggml_out_prod
  13841. ggml_out_prod(ctx, // [n,p,qq,rr]
  13842. src0, // [n,m,q1,r1]
  13843. ggml_transpose(ctx, // [p,m,qq,rr]
  13844. tensor->grad)), // [m,p,qq,rr]
  13845. zero_table);
  13846. }
  13847. } break;
  13848. case GGML_OP_MUL_MAT_ID:
  13849. {
  13850. GGML_ASSERT(false); // TODO: not implemented
  13851. } break;
  13852. case GGML_OP_OUT_PROD:
  13853. {
  13854. GGML_ASSERT(false); // TODO: not implemented
  13855. } break;
  13856. case GGML_OP_SCALE:
  13857. {
  13858. // necessary for llama
  13859. if (src0->grad) {
  13860. float s;
  13861. memcpy(&s, tensor->op_params, sizeof(float));
  13862. src0->grad =
  13863. ggml_add_or_set(ctx,
  13864. src0->grad,
  13865. ggml_scale_impl(ctx, tensor->grad, s, false),
  13866. zero_table);
  13867. }
  13868. } break;
  13869. case GGML_OP_SET:
  13870. {
  13871. const size_t nb1 = ((int32_t *) tensor->op_params)[0];
  13872. const size_t nb2 = ((int32_t *) tensor->op_params)[1];
  13873. const size_t nb3 = ((int32_t *) tensor->op_params)[2];
  13874. const size_t offset = ((int32_t *) tensor->op_params)[3];
  13875. struct ggml_tensor * tensor_grad_view = NULL;
  13876. if (src0->grad || src1->grad) {
  13877. GGML_ASSERT(src0->type == tensor->type);
  13878. GGML_ASSERT(tensor->grad->type == tensor->type);
  13879. GGML_ASSERT(tensor->grad->type == src1->grad->type);
  13880. tensor_grad_view = ggml_view_4d(ctx,
  13881. tensor->grad,
  13882. src1->grad->ne[0],
  13883. src1->grad->ne[1],
  13884. src1->grad->ne[2],
  13885. src1->grad->ne[3],
  13886. nb1, nb2, nb3, offset);
  13887. }
  13888. if (src0->grad) {
  13889. src0->grad = ggml_add_or_set(ctx,
  13890. src0->grad,
  13891. ggml_acc_impl(ctx,
  13892. tensor->grad,
  13893. ggml_neg(ctx, tensor_grad_view),
  13894. nb1, nb2, nb3, offset, false),
  13895. zero_table);
  13896. }
  13897. if (src1->grad) {
  13898. src1->grad =
  13899. ggml_add_or_set(ctx,
  13900. src1->grad,
  13901. ggml_reshape(ctx,
  13902. ggml_cont(ctx, tensor_grad_view),
  13903. src1->grad),
  13904. zero_table);
  13905. }
  13906. } break;
  13907. case GGML_OP_CPY:
  13908. {
  13909. // necessary for llama
  13910. // cpy overwrites value of src1 by src0 and returns view(src1)
  13911. // the overwriting is mathematically equivalent to:
  13912. // tensor = src0 * 1 + src1 * 0
  13913. if (src0->grad) {
  13914. // dsrc0 = dtensor * 1
  13915. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  13916. }
  13917. if (src1->grad) {
  13918. // dsrc1 = dtensor * 0 -> noop
  13919. }
  13920. } break;
  13921. case GGML_OP_CONT:
  13922. {
  13923. // same as cpy
  13924. if (src0->grad) {
  13925. GGML_ASSERT(ggml_is_contiguous(src0->grad));
  13926. GGML_ASSERT(ggml_is_contiguous(tensor->grad));
  13927. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  13928. }
  13929. } break;
  13930. case GGML_OP_RESHAPE:
  13931. {
  13932. // necessary for llama
  13933. if (src0->grad) {
  13934. src0->grad =
  13935. ggml_add_or_set(ctx, src0->grad,
  13936. ggml_reshape(ctx,
  13937. ggml_is_contiguous(tensor->grad)
  13938. ? tensor->grad
  13939. : ggml_cont(ctx, tensor->grad),
  13940. src0->grad),
  13941. zero_table);
  13942. }
  13943. } break;
  13944. case GGML_OP_VIEW:
  13945. {
  13946. // necessary for llama
  13947. if (src0->grad) {
  13948. size_t offset;
  13949. memcpy(&offset, tensor->op_params, sizeof(offset));
  13950. size_t nb1 = tensor->nb[1];
  13951. size_t nb2 = tensor->nb[2];
  13952. size_t nb3 = tensor->nb[3];
  13953. if (src0->type != src0->grad->type) {
  13954. // gradient is typically F32, but src0 could be other type
  13955. size_t ng = ggml_element_size(src0->grad);
  13956. size_t n0 = ggml_element_size(src0);
  13957. GGML_ASSERT(offset % n0 == 0);
  13958. GGML_ASSERT(nb1 % n0 == 0);
  13959. GGML_ASSERT(nb2 % n0 == 0);
  13960. GGML_ASSERT(nb3 % n0 == 0);
  13961. offset = (offset / n0) * ng;
  13962. nb1 = (nb1 / n0) * ng;
  13963. nb2 = (nb2 / n0) * ng;
  13964. nb3 = (nb3 / n0) * ng;
  13965. }
  13966. src0->grad = ggml_acc_or_set(ctx, src0->grad, tensor->grad, nb1, nb2, nb3, offset, zero_table);
  13967. }
  13968. } break;
  13969. case GGML_OP_PERMUTE:
  13970. {
  13971. // necessary for llama
  13972. if (src0->grad) {
  13973. int32_t * axes = (int32_t *) tensor->op_params;
  13974. int axis0 = axes[0] & 0x3;
  13975. int axis1 = axes[1] & 0x3;
  13976. int axis2 = axes[2] & 0x3;
  13977. int axis3 = axes[3] & 0x3;
  13978. int axes_backward[4] = {0,0,0,0};
  13979. axes_backward[axis0] = 0;
  13980. axes_backward[axis1] = 1;
  13981. axes_backward[axis2] = 2;
  13982. axes_backward[axis3] = 3;
  13983. src0->grad =
  13984. ggml_add_or_set(ctx, src0->grad,
  13985. ggml_permute(ctx,
  13986. tensor->grad,
  13987. axes_backward[0],
  13988. axes_backward[1],
  13989. axes_backward[2],
  13990. axes_backward[3]),
  13991. zero_table);
  13992. }
  13993. } break;
  13994. case GGML_OP_TRANSPOSE:
  13995. {
  13996. // necessary for llama
  13997. if (src0->grad) {
  13998. src0->grad =
  13999. ggml_add_or_set(ctx, src0->grad,
  14000. ggml_transpose(ctx, tensor->grad),
  14001. zero_table);
  14002. }
  14003. } break;
  14004. case GGML_OP_GET_ROWS:
  14005. {
  14006. // necessary for llama (only for tokenizer)
  14007. if (src0->grad) {
  14008. src0->grad =
  14009. ggml_add_or_set(ctx, src0->grad,
  14010. // last ggml_get_rows_back argument src0->grad is only
  14011. // necessary to setup correct output shape
  14012. ggml_get_rows_back(ctx, tensor->grad, src1, src0->grad),
  14013. zero_table);
  14014. }
  14015. if (src1->grad) {
  14016. // noop
  14017. }
  14018. } break;
  14019. case GGML_OP_GET_ROWS_BACK:
  14020. {
  14021. GGML_ASSERT(false); // TODO: not implemented
  14022. } break;
  14023. case GGML_OP_DIAG:
  14024. {
  14025. GGML_ASSERT(false); // TODO: not implemented
  14026. } break;
  14027. case GGML_OP_DIAG_MASK_INF:
  14028. {
  14029. // necessary for llama
  14030. if (src0->grad) {
  14031. const int n_past = ((int32_t *) tensor->op_params)[0];
  14032. src0->grad =
  14033. ggml_add_or_set(ctx, src0->grad,
  14034. /* ggml_diag_mask_inf_impl() shouldn't be here */
  14035. /* ref: https://github.com/ggerganov/llama.cpp/pull/4203#discussion_r1412377992 */
  14036. ggml_diag_mask_zero_impl(ctx, tensor->grad, n_past, false),
  14037. zero_table);
  14038. }
  14039. } break;
  14040. case GGML_OP_DIAG_MASK_ZERO:
  14041. {
  14042. // necessary for llama
  14043. if (src0->grad) {
  14044. const int n_past = ((int32_t *) tensor->op_params)[0];
  14045. src0->grad =
  14046. ggml_add_or_set(ctx, src0->grad,
  14047. ggml_diag_mask_zero_impl(ctx, tensor->grad, n_past, false),
  14048. zero_table);
  14049. }
  14050. } break;
  14051. case GGML_OP_SOFT_MAX:
  14052. {
  14053. // necessary for llama
  14054. if (src0->grad) {
  14055. src0->grad =
  14056. ggml_add_or_set(ctx, src0->grad,
  14057. ggml_soft_max_back(ctx, tensor->grad, tensor),
  14058. zero_table);
  14059. }
  14060. } break;
  14061. case GGML_OP_SOFT_MAX_BACK:
  14062. {
  14063. GGML_ASSERT(false); // TODO: not implemented
  14064. } break;
  14065. case GGML_OP_ROPE:
  14066. {
  14067. // necessary for llama
  14068. if (src0->grad) {
  14069. //const int n_past = ((int32_t *) tensor->op_params)[0];
  14070. const int n_dims = ((int32_t *) tensor->op_params)[1];
  14071. const int mode = ((int32_t *) tensor->op_params)[2];
  14072. const int n_ctx = ((int32_t *) tensor->op_params)[3];
  14073. const int n_orig_ctx = ((int32_t *) tensor->op_params)[4];
  14074. float freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow, xpos_base, xpos_down;
  14075. memcpy(&freq_base, (int32_t *) tensor->op_params + 5, sizeof(float));
  14076. memcpy(&freq_scale, (int32_t *) tensor->op_params + 6, sizeof(float));
  14077. memcpy(&ext_factor, (int32_t *) tensor->op_params + 7, sizeof(float));
  14078. memcpy(&attn_factor, (int32_t *) tensor->op_params + 8, sizeof(float));
  14079. memcpy(&beta_fast, (int32_t *) tensor->op_params + 9, sizeof(float));
  14080. memcpy(&beta_slow, (int32_t *) tensor->op_params + 10, sizeof(float));
  14081. memcpy(&xpos_base, (int32_t *) tensor->op_params + 11, sizeof(float));
  14082. memcpy(&xpos_down, (int32_t *) tensor->op_params + 12, sizeof(bool));
  14083. src0->grad = ggml_add_or_set(ctx,
  14084. src0->grad,
  14085. ggml_rope_back(ctx,
  14086. tensor->grad,
  14087. src1,
  14088. n_dims,
  14089. mode,
  14090. n_ctx,
  14091. n_orig_ctx,
  14092. freq_base,
  14093. freq_scale,
  14094. ext_factor,
  14095. attn_factor,
  14096. beta_fast,
  14097. beta_slow,
  14098. xpos_base,
  14099. xpos_down),
  14100. zero_table);
  14101. }
  14102. } break;
  14103. case GGML_OP_ROPE_BACK:
  14104. {
  14105. if (src0->grad) {
  14106. //const int n_past = ((int32_t *) tensor->op_params)[0];
  14107. const int n_dims = ((int32_t *) tensor->op_params)[1];
  14108. const int mode = ((int32_t *) tensor->op_params)[2];
  14109. const int n_ctx = ((int32_t *) tensor->op_params)[3];
  14110. const int n_orig_ctx = ((int32_t *) tensor->op_params)[4];
  14111. float freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow, xpos_base, xpos_down;
  14112. memcpy(&freq_base, (int32_t *) tensor->op_params + 5, sizeof(float));
  14113. memcpy(&freq_scale, (int32_t *) tensor->op_params + 6, sizeof(float));
  14114. memcpy(&ext_factor, (int32_t *) tensor->op_params + 7, sizeof(float));
  14115. memcpy(&attn_factor, (int32_t *) tensor->op_params + 8, sizeof(float));
  14116. memcpy(&beta_fast, (int32_t *) tensor->op_params + 9, sizeof(float));
  14117. memcpy(&beta_slow, (int32_t *) tensor->op_params + 10, sizeof(float));
  14118. memcpy(&xpos_base, (int32_t *) tensor->op_params + 11, sizeof(float));
  14119. memcpy(&xpos_down, (int32_t *) tensor->op_params + 12, sizeof(bool));
  14120. src0->grad = ggml_add_or_set(ctx,
  14121. src0->grad,
  14122. ggml_rope_impl(ctx,
  14123. tensor->grad,
  14124. src1,
  14125. n_dims,
  14126. mode,
  14127. n_ctx,
  14128. n_orig_ctx,
  14129. freq_base,
  14130. freq_scale,
  14131. ext_factor,
  14132. attn_factor,
  14133. beta_fast,
  14134. beta_slow,
  14135. xpos_base,
  14136. xpos_down,
  14137. false),
  14138. zero_table);
  14139. }
  14140. } break;
  14141. case GGML_OP_ALIBI:
  14142. {
  14143. GGML_ASSERT(false); // TODO: not implemented
  14144. } break;
  14145. case GGML_OP_CLAMP:
  14146. {
  14147. GGML_ASSERT(false); // TODO: not implemented
  14148. } break;
  14149. case GGML_OP_CONV_TRANSPOSE_1D:
  14150. {
  14151. GGML_ASSERT(false); // TODO: not implemented
  14152. } break;
  14153. case GGML_OP_IM2COL:
  14154. {
  14155. GGML_ASSERT(false); // TODO: not implemented
  14156. } break;
  14157. case GGML_OP_CONV_TRANSPOSE_2D:
  14158. {
  14159. GGML_ASSERT(false); // TODO: not implemented
  14160. } break;
  14161. case GGML_OP_POOL_1D:
  14162. {
  14163. GGML_ASSERT(false); // TODO: not implemented
  14164. } break;
  14165. case GGML_OP_POOL_2D:
  14166. {
  14167. GGML_ASSERT(false); // TODO: not implemented
  14168. } break;
  14169. case GGML_OP_UPSCALE:
  14170. {
  14171. GGML_ASSERT(false); // TODO: not implemented
  14172. } break;
  14173. case GGML_OP_PAD:
  14174. {
  14175. GGML_ASSERT(false); // TODO: not implemented
  14176. } break;
  14177. case GGML_OP_ARANGE:
  14178. {
  14179. GGML_ASSERT(false); // TODO: not implemented
  14180. } break;
  14181. case GGML_OP_TIMESTEP_EMBEDDING:
  14182. {
  14183. GGML_ASSERT(false); // TODO: not implemented
  14184. } break;
  14185. case GGML_OP_ARGSORT:
  14186. {
  14187. GGML_ASSERT(false); // TODO: not implemented
  14188. } break;
  14189. case GGML_OP_LEAKY_RELU:
  14190. {
  14191. GGML_ASSERT(false); // TODO: not implemented
  14192. } break;
  14193. case GGML_OP_FLASH_ATTN:
  14194. {
  14195. struct ggml_tensor * flash_grad = NULL;
  14196. if (src0->grad || src1->grad || tensor->src[2]->grad) {
  14197. int32_t t = ggml_get_op_params_i32(tensor, 0);
  14198. GGML_ASSERT(t == 0 || t == 1);
  14199. bool masked = t != 0;
  14200. flash_grad =
  14201. ggml_flash_attn_back(ctx,
  14202. src0,
  14203. src1,
  14204. tensor->src[2],
  14205. tensor->grad,
  14206. masked);
  14207. }
  14208. struct ggml_tensor * src2 = tensor->src[2];
  14209. const int64_t elem_q = ggml_nelements(src0);
  14210. const int64_t elem_k = ggml_nelements(src1);
  14211. const int64_t elem_v = ggml_nelements(src2);
  14212. enum ggml_type result_type = flash_grad->type;
  14213. GGML_ASSERT(ggml_blck_size(result_type) == 1);
  14214. const size_t tsize = ggml_type_size(result_type);
  14215. const size_t offs_q = 0;
  14216. const size_t offs_k = offs_q + GGML_PAD(elem_q * tsize, GGML_MEM_ALIGN);
  14217. const size_t offs_v = offs_k + GGML_PAD(elem_k * tsize, GGML_MEM_ALIGN);
  14218. if (src0->grad) {
  14219. struct ggml_tensor * view_q = ggml_view_1d(ctx, flash_grad, elem_q, offs_q);
  14220. struct ggml_tensor * grad_q = ggml_reshape(ctx, view_q, src0);
  14221. src0->grad = ggml_add_or_set(ctx,
  14222. src0->grad,
  14223. grad_q,
  14224. zero_table);
  14225. }
  14226. if (src1->grad) {
  14227. struct ggml_tensor * view_k = ggml_view_1d(ctx, flash_grad, elem_k, offs_k);
  14228. struct ggml_tensor * grad_k = ggml_reshape(ctx, view_k, src1);
  14229. src1->grad = ggml_add_or_set(ctx,
  14230. src1->grad,
  14231. grad_k,
  14232. zero_table);
  14233. }
  14234. if (src2->grad) {
  14235. struct ggml_tensor * view_v = ggml_view_1d(ctx, flash_grad, elem_v, offs_v);
  14236. struct ggml_tensor * grad_v = ggml_reshape(ctx, view_v, src2);
  14237. src2->grad = ggml_add_or_set(ctx,
  14238. src2->grad,
  14239. grad_v,
  14240. zero_table);
  14241. }
  14242. } break;
  14243. case GGML_OP_FLASH_FF:
  14244. {
  14245. GGML_ASSERT(false); // not supported
  14246. } break;
  14247. case GGML_OP_FLASH_ATTN_BACK:
  14248. {
  14249. GGML_ASSERT(false); // not supported
  14250. } break;
  14251. case GGML_OP_SSM_CONV:
  14252. case GGML_OP_SSM_SCAN:
  14253. {
  14254. GGML_ASSERT(false); // TODO: not implemented
  14255. } break;
  14256. case GGML_OP_WIN_PART:
  14257. case GGML_OP_WIN_UNPART:
  14258. case GGML_OP_UNARY:
  14259. {
  14260. switch (ggml_get_unary_op(tensor)) {
  14261. case GGML_UNARY_OP_ABS:
  14262. {
  14263. if (src0->grad) {
  14264. src0->grad =
  14265. ggml_add_or_set(ctx,
  14266. src0->grad,
  14267. ggml_mul(ctx,
  14268. ggml_sgn(ctx, src0),
  14269. tensor->grad),
  14270. zero_table);
  14271. }
  14272. } break;
  14273. case GGML_UNARY_OP_SGN:
  14274. {
  14275. if (src0->grad) {
  14276. // noop
  14277. }
  14278. } break;
  14279. case GGML_UNARY_OP_NEG:
  14280. {
  14281. if (src0->grad) {
  14282. src0->grad = ggml_sub_or_set(ctx, src0->grad, tensor->grad, zero_table);
  14283. }
  14284. } break;
  14285. case GGML_UNARY_OP_STEP:
  14286. {
  14287. if (src0->grad) {
  14288. // noop
  14289. }
  14290. } break;
  14291. case GGML_UNARY_OP_TANH:
  14292. {
  14293. GGML_ASSERT(false); // TODO: not implemented
  14294. } break;
  14295. case GGML_UNARY_OP_ELU:
  14296. {
  14297. GGML_ASSERT(false); // TODO: not implemented
  14298. } break;
  14299. case GGML_UNARY_OP_RELU:
  14300. {
  14301. if (src0->grad) {
  14302. src0->grad = ggml_add_or_set(ctx,
  14303. src0->grad,
  14304. ggml_mul(ctx,
  14305. ggml_step(ctx, src0),
  14306. tensor->grad),
  14307. zero_table);
  14308. }
  14309. } break;
  14310. case GGML_UNARY_OP_GELU:
  14311. {
  14312. GGML_ASSERT(false); // TODO: not implemented
  14313. } break;
  14314. case GGML_UNARY_OP_GELU_QUICK:
  14315. {
  14316. GGML_ASSERT(false); // TODO: not implemented
  14317. } break;
  14318. case GGML_UNARY_OP_SILU:
  14319. {
  14320. // necessary for llama
  14321. if (src0->grad) {
  14322. src0->grad = ggml_add_or_set(ctx,
  14323. src0->grad,
  14324. ggml_silu_back(ctx, src0, tensor->grad),
  14325. zero_table);
  14326. }
  14327. } break;
  14328. default:
  14329. GGML_ASSERT(false);
  14330. }
  14331. } break;
  14332. case GGML_OP_GET_REL_POS:
  14333. case GGML_OP_ADD_REL_POS:
  14334. case GGML_OP_MAP_UNARY:
  14335. case GGML_OP_MAP_BINARY:
  14336. case GGML_OP_MAP_CUSTOM1_F32:
  14337. case GGML_OP_MAP_CUSTOM2_F32:
  14338. case GGML_OP_MAP_CUSTOM3_F32:
  14339. case GGML_OP_MAP_CUSTOM1:
  14340. case GGML_OP_MAP_CUSTOM2:
  14341. case GGML_OP_MAP_CUSTOM3:
  14342. {
  14343. GGML_ASSERT(false); // not supported
  14344. } break;
  14345. case GGML_OP_CROSS_ENTROPY_LOSS:
  14346. {
  14347. if (src0->grad) {
  14348. src0->grad = ggml_add_or_set(ctx,
  14349. src0->grad,
  14350. ggml_cross_entropy_loss_back(ctx,
  14351. src0,
  14352. src1,
  14353. tensor->grad),
  14354. zero_table);
  14355. }
  14356. } break;
  14357. case GGML_OP_CROSS_ENTROPY_LOSS_BACK:
  14358. {
  14359. GGML_ASSERT(false); // not supported
  14360. } break;
  14361. case GGML_OP_NONE:
  14362. {
  14363. // nop
  14364. } break;
  14365. case GGML_OP_COUNT:
  14366. {
  14367. GGML_ASSERT(false);
  14368. } break;
  14369. }
  14370. for (int i = 0; i < GGML_MAX_SRC; ++i) {
  14371. if (tensor->src[i] && tensor->src[i]->grad) {
  14372. GGML_ASSERT(ggml_are_same_shape(tensor->src[i], tensor->src[i]->grad));
  14373. }
  14374. }
  14375. }
  14376. static void ggml_visit_parents(struct ggml_cgraph * cgraph, struct ggml_tensor * node) {
  14377. if (node->grad == NULL) {
  14378. // this usually happens when we generate intermediate nodes from constants in the backward pass
  14379. // it can also happen during forward pass, if the user performs computations with constants
  14380. if (node->op != GGML_OP_NONE) {
  14381. //GGML_PRINT_DEBUG("%s: warning: node %p has no grad, but op %d\n", __func__, (void *) node, node->op);
  14382. }
  14383. }
  14384. // check if already visited
  14385. if (ggml_hash_insert(cgraph->visited_hash_table, node) == GGML_HASHTABLE_ALREADY_EXISTS) {
  14386. return;
  14387. }
  14388. for (int i = 0; i < GGML_MAX_SRC; ++i) {
  14389. const int k =
  14390. (cgraph->order == GGML_CGRAPH_EVAL_ORDER_LEFT_TO_RIGHT) ? i :
  14391. (cgraph->order == GGML_CGRAPH_EVAL_ORDER_RIGHT_TO_LEFT) ? (GGML_MAX_SRC-1-i) :
  14392. /* unknown order, just fall back to using i*/ i;
  14393. if (node->src[k]) {
  14394. ggml_visit_parents(cgraph, node->src[k]);
  14395. }
  14396. }
  14397. if (node->op == GGML_OP_NONE && node->grad == NULL) {
  14398. // reached a leaf node, not part of the gradient graph (e.g. a constant)
  14399. GGML_ASSERT(cgraph->n_leafs < cgraph->size);
  14400. if (strlen(node->name) == 0) {
  14401. ggml_format_name(node, "leaf_%d", cgraph->n_leafs);
  14402. }
  14403. cgraph->leafs[cgraph->n_leafs] = node;
  14404. cgraph->n_leafs++;
  14405. } else {
  14406. GGML_ASSERT(cgraph->n_nodes < cgraph->size);
  14407. if (strlen(node->name) == 0) {
  14408. ggml_format_name(node, "node_%d", cgraph->n_nodes);
  14409. }
  14410. cgraph->nodes[cgraph->n_nodes] = node;
  14411. if (cgraph->grads) {
  14412. cgraph->grads[cgraph->n_nodes] = node->grad;
  14413. }
  14414. cgraph->n_nodes++;
  14415. }
  14416. }
  14417. static void ggml_build_forward_impl(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor, bool expand) {
  14418. if (!expand) {
  14419. // TODO: this branch isn't accessible anymore, maybe move this to ggml_build_forward_expand
  14420. ggml_graph_clear(cgraph);
  14421. }
  14422. const int n0 = cgraph->n_nodes;
  14423. UNUSED(n0);
  14424. ggml_visit_parents(cgraph, tensor);
  14425. const int n_new = cgraph->n_nodes - n0;
  14426. GGML_PRINT_DEBUG("%s: visited %d new nodes\n", __func__, n_new);
  14427. if (n_new > 0) {
  14428. // the last added node should always be starting point
  14429. GGML_ASSERT(cgraph->nodes[cgraph->n_nodes - 1] == tensor);
  14430. }
  14431. }
  14432. void ggml_build_forward_expand(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor) {
  14433. ggml_build_forward_impl(cgraph, tensor, true);
  14434. }
  14435. void ggml_build_backward_expand(struct ggml_context * ctx, struct ggml_cgraph * gf, struct ggml_cgraph * gb, bool keep) {
  14436. GGML_ASSERT(gf->n_nodes > 0);
  14437. // if we are keeping the gradient graph, we have to detach the gradient nodes from the original graph
  14438. if (keep) {
  14439. for (int i = 0; i < gf->n_nodes; i++) {
  14440. struct ggml_tensor * node = gf->nodes[i];
  14441. if (node->grad) {
  14442. node->grad = ggml_dup_tensor(ctx, node);
  14443. gf->grads[i] = node->grad;
  14444. }
  14445. }
  14446. }
  14447. // remember original gradients which start with zero values
  14448. struct ggml_hash_set zero_table = ggml_hash_set_new(gf->size);
  14449. for (int i = 0; i < gf->n_nodes; i++) {
  14450. if (gf->grads[i]) {
  14451. ggml_hash_insert(zero_table, gf->grads[i]);
  14452. }
  14453. }
  14454. for (int i = gf->n_nodes - 1; i >= 0; i--) {
  14455. struct ggml_tensor * node = gf->nodes[i];
  14456. // inplace operations to add gradients are not created by ggml_compute_backward
  14457. // use allocator to automatically make inplace operations
  14458. if (node->grad) {
  14459. ggml_compute_backward(ctx, node, zero_table);
  14460. }
  14461. }
  14462. for (int i = 0; i < gf->n_nodes; i++) {
  14463. struct ggml_tensor * node = gf->nodes[i];
  14464. if (node->flags & GGML_TENSOR_FLAG_PARAM) {
  14465. GGML_PRINT_DEBUG("%s: found root node %p\n", __func__, (void *) node);
  14466. ggml_build_forward_expand(gb, node->grad);
  14467. }
  14468. }
  14469. ggml_hash_set_free(zero_table);
  14470. }
  14471. static size_t ggml_graph_nbytes(size_t size, bool grads) {
  14472. size_t nbytes = sizeof(struct ggml_cgraph);
  14473. nbytes += size * sizeof(struct ggml_tensor *) * 2; // leafs + nodes
  14474. if (grads) {
  14475. nbytes += size * sizeof(struct ggml_tensor *); // grads
  14476. }
  14477. nbytes += ggml_hash_size(size * 2) * sizeof(struct ggml_tensor *); // hash set
  14478. return nbytes;
  14479. }
  14480. size_t ggml_graph_overhead_custom(size_t size, bool grads) {
  14481. return GGML_OBJECT_SIZE + GGML_PAD(ggml_graph_nbytes(size, grads), GGML_MEM_ALIGN);
  14482. }
  14483. size_t ggml_graph_overhead(void) {
  14484. return ggml_graph_overhead_custom(GGML_DEFAULT_GRAPH_SIZE, false);
  14485. }
  14486. struct ggml_cgraph * ggml_new_graph_custom(struct ggml_context * ctx, size_t size, bool grads) {
  14487. const size_t obj_size = ggml_graph_nbytes(size, grads);
  14488. struct ggml_object * obj = ggml_new_object(ctx, GGML_OBJECT_TYPE_GRAPH, obj_size);
  14489. struct ggml_cgraph * cgraph = (struct ggml_cgraph *) ((char *) ctx->mem_buffer + obj->offs);
  14490. struct ggml_tensor ** data_start = (struct ggml_tensor **) (cgraph + 1);
  14491. size_t hash_size = ggml_hash_size(size * 2);
  14492. struct ggml_tensor ** nodes_ptr = data_start;
  14493. struct ggml_tensor ** leafs_ptr = nodes_ptr + size;
  14494. struct ggml_tensor ** hash_keys_ptr = leafs_ptr + size;
  14495. struct ggml_tensor ** grads_ptr = grads ? hash_keys_ptr + hash_size : NULL;
  14496. // check that we allocated the correct amount of memory
  14497. assert(obj_size == (size_t) (
  14498. (grads ? (char *)(grads_ptr + size) : (char *)(hash_keys_ptr + hash_size)) - (char *)cgraph));
  14499. memset(hash_keys_ptr, 0, hash_size * sizeof(struct ggml_tensor *));
  14500. *cgraph = (struct ggml_cgraph) {
  14501. /*.size =*/ size,
  14502. /*.n_nodes =*/ 0,
  14503. /*.n_leafs =*/ 0,
  14504. /*.nodes =*/ nodes_ptr,
  14505. /*.grads =*/ grads_ptr,
  14506. /*.leafs =*/ leafs_ptr,
  14507. /*.hash_table =*/ { hash_size, hash_keys_ptr },
  14508. /*.order =*/ GGML_CGRAPH_EVAL_ORDER_LEFT_TO_RIGHT,
  14509. /*.perf_runs =*/ 0,
  14510. /*.perf_cycles =*/ 0,
  14511. /*.perf_time_us =*/ 0,
  14512. };
  14513. return cgraph;
  14514. }
  14515. struct ggml_cgraph * ggml_new_graph(struct ggml_context * ctx) {
  14516. return ggml_new_graph_custom(ctx, GGML_DEFAULT_GRAPH_SIZE, false);
  14517. }
  14518. struct ggml_cgraph ggml_graph_view(struct ggml_cgraph * cgraph0, int i0, int i1) {
  14519. struct ggml_cgraph cgraph = {
  14520. /*.size =*/ 0,
  14521. /*.n_nodes =*/ i1 - i0,
  14522. /*.n_leafs =*/ 0,
  14523. /*.nodes =*/ cgraph0->nodes + i0,
  14524. /*.grads =*/ cgraph0->grads ? cgraph0->grads + i0 : NULL,
  14525. /*.leafs =*/ NULL,
  14526. /*.hash_table =*/ { 0, NULL },
  14527. /*.order =*/ cgraph0->order,
  14528. /*.perf_runs =*/ 0,
  14529. /*.perf_cycles =*/ 0,
  14530. /*.perf_time_us =*/ 0,
  14531. };
  14532. return cgraph;
  14533. }
  14534. void ggml_graph_cpy(struct ggml_cgraph * src, struct ggml_cgraph * dst) {
  14535. GGML_ASSERT(dst->size >= src->n_leafs);
  14536. GGML_ASSERT(dst->size >= src->n_nodes);
  14537. GGML_ASSERT(dst->visited_hash_table.size >= src->visited_hash_table.size);
  14538. dst->n_leafs = src->n_leafs;
  14539. dst->n_nodes = src->n_nodes;
  14540. dst->order = src->order;
  14541. for (int i = 0; i < src->n_leafs; ++i) {
  14542. dst->leafs[i] = src->leafs[i];
  14543. }
  14544. for (int i = 0; i < src->n_nodes; ++i) {
  14545. dst->nodes[i] = src->nodes[i];
  14546. }
  14547. if (src->grads) {
  14548. GGML_ASSERT(dst->grads != NULL);
  14549. for (int i = 0; i < src->n_nodes; ++i) {
  14550. dst->grads[i] = src->grads[i];
  14551. }
  14552. }
  14553. for (size_t i = 0; i < src->visited_hash_table.size; ++i) {
  14554. if (src->visited_hash_table.keys[i]) {
  14555. ggml_hash_insert(dst->visited_hash_table, src->visited_hash_table.keys[i]);
  14556. }
  14557. }
  14558. }
  14559. struct ggml_cgraph * ggml_graph_dup(struct ggml_context * ctx, struct ggml_cgraph * cgraph) {
  14560. struct ggml_cgraph * result = ggml_new_graph_custom(ctx, cgraph->size, cgraph->grads != NULL);
  14561. ggml_graph_cpy(cgraph, result);
  14562. return result;
  14563. }
  14564. void ggml_graph_reset(struct ggml_cgraph * cgraph) {
  14565. GGML_ASSERT(cgraph->grads != NULL);
  14566. for (int i = 0; i < cgraph->n_nodes; i++) {
  14567. struct ggml_tensor * grad = cgraph->grads[i];
  14568. if (grad) {
  14569. ggml_set_zero(grad);
  14570. }
  14571. }
  14572. }
  14573. void ggml_graph_clear(struct ggml_cgraph * cgraph) {
  14574. cgraph->n_leafs = 0;
  14575. cgraph->n_nodes = 0;
  14576. memset(cgraph->visited_hash_table.keys, 0, cgraph->visited_hash_table.size * sizeof(struct ggml_tensor *));
  14577. }
  14578. //
  14579. // thread data
  14580. //
  14581. // synchronization is done via busy loops
  14582. // I tried using spin locks, but not sure how to use them correctly - the things I tried were slower than busy loops
  14583. //
  14584. #ifdef __APPLE__
  14585. //#include <os/lock.h>
  14586. //
  14587. //typedef os_unfair_lock ggml_lock_t;
  14588. //
  14589. //#define ggml_lock_init(x) UNUSED(x)
  14590. //#define ggml_lock_destroy(x) UNUSED(x)
  14591. //#define ggml_lock_lock os_unfair_lock_lock
  14592. //#define ggml_lock_unlock os_unfair_lock_unlock
  14593. //
  14594. //#define GGML_LOCK_INITIALIZER OS_UNFAIR_LOCK_INIT
  14595. typedef int ggml_lock_t;
  14596. #define ggml_lock_init(x) UNUSED(x)
  14597. #define ggml_lock_destroy(x) UNUSED(x)
  14598. #define ggml_lock_lock(x) UNUSED(x)
  14599. #define ggml_lock_unlock(x) UNUSED(x)
  14600. #define GGML_LOCK_INITIALIZER 0
  14601. typedef pthread_t ggml_thread_t;
  14602. #define ggml_thread_create pthread_create
  14603. #define ggml_thread_join pthread_join
  14604. #else
  14605. //typedef pthread_spinlock_t ggml_lock_t;
  14606. //#define ggml_lock_init(x) pthread_spin_init(x, PTHREAD_PROCESS_PRIVATE)
  14607. //#define ggml_lock_destroy pthread_spin_destroy
  14608. //#define ggml_lock_lock pthread_spin_lock
  14609. //#define ggml_lock_unlock pthread_spin_unlock
  14610. typedef int ggml_lock_t;
  14611. #define ggml_lock_init(x) UNUSED(x)
  14612. #define ggml_lock_destroy(x) UNUSED(x)
  14613. #if defined(__x86_64__) || (defined(_MSC_VER) && defined(_M_AMD64))
  14614. #define ggml_lock_lock(x) _mm_pause()
  14615. #else
  14616. #define ggml_lock_lock(x) UNUSED(x)
  14617. #endif
  14618. #define ggml_lock_unlock(x) UNUSED(x)
  14619. #define GGML_LOCK_INITIALIZER 0
  14620. typedef pthread_t ggml_thread_t;
  14621. #define ggml_thread_create pthread_create
  14622. #define ggml_thread_join pthread_join
  14623. #endif
  14624. // Android's libc implementation "bionic" does not support setting affinity
  14625. #if defined(__gnu_linux__)
  14626. static void set_numa_thread_affinity(int thread_n) {
  14627. if (!ggml_is_numa()) {
  14628. return;
  14629. }
  14630. int node_num;
  14631. int rv;
  14632. size_t setsize = CPU_ALLOC_SIZE(g_state.numa.total_cpus);
  14633. switch(g_state.numa.numa_strategy) {
  14634. case GGML_NUMA_STRATEGY_DISTRIBUTE:
  14635. // run thread on node_num thread_n / (threads per node)
  14636. node_num = thread_n % g_state.numa.n_nodes;
  14637. break;
  14638. case GGML_NUMA_STRATEGY_ISOLATE:
  14639. // run thread on current_node
  14640. node_num = g_state.numa.current_node;
  14641. break;
  14642. case GGML_NUMA_STRATEGY_NUMACTL:
  14643. // use the cpuset that numactl gave us
  14644. rv = pthread_setaffinity_np(pthread_self(), setsize, &g_state.numa.cpuset);
  14645. if (rv) {
  14646. fprintf(stderr, "warning: pthread_setaffinity_np() failed: %s\n",strerror(rv));
  14647. }
  14648. return;
  14649. default:
  14650. return;
  14651. }
  14652. struct ggml_numa_node * node = &g_state.numa.nodes[node_num];
  14653. cpu_set_t * cpus = CPU_ALLOC(g_state.numa.total_cpus);
  14654. CPU_ZERO_S(setsize, cpus);
  14655. for (size_t i = 0; i < node->n_cpus; ++i) {
  14656. CPU_SET_S(node->cpus[i], setsize, cpus);
  14657. }
  14658. rv = pthread_setaffinity_np(pthread_self(), setsize, cpus);
  14659. if (rv) {
  14660. fprintf(stderr, "warning: pthread_setaffinity_np() failed: %s\n", strerror(rv));
  14661. }
  14662. CPU_FREE(cpus);
  14663. }
  14664. static void clear_numa_thread_affinity(void) {
  14665. if (!ggml_is_numa()) {
  14666. return;
  14667. }
  14668. size_t setsize = CPU_ALLOC_SIZE(g_state.numa.total_cpus);
  14669. cpu_set_t * cpus = CPU_ALLOC(g_state.numa.total_cpus);
  14670. CPU_ZERO_S(setsize, cpus);
  14671. for (unsigned i = 0; i < g_state.numa.total_cpus; ++i) {
  14672. CPU_SET_S(i, setsize, cpus);
  14673. }
  14674. int rv = pthread_setaffinity_np(pthread_self(), setsize, cpus);
  14675. if (rv) {
  14676. fprintf(stderr, "warning: pthread_setaffinity_np() failed: %s\n", strerror(rv));
  14677. }
  14678. CPU_FREE(cpus);
  14679. }
  14680. #else
  14681. // TODO: Windows etc.
  14682. // (the linux implementation may also work on BSD, someone should test)
  14683. static void set_numa_thread_affinity(int thread_n) { UNUSED(thread_n); }
  14684. static void clear_numa_thread_affinity(void) {}
  14685. #endif
  14686. struct ggml_compute_state_shared {
  14687. const struct ggml_cgraph * cgraph;
  14688. const struct ggml_cplan * cplan;
  14689. int64_t perf_node_start_cycles;
  14690. int64_t perf_node_start_time_us;
  14691. const int n_threads;
  14692. // synchronization primitives
  14693. atomic_int n_active; // num active threads
  14694. atomic_int node_n; // active graph node
  14695. atomic_int node_task; // active graph node task phase
  14696. ggml_abort_callback abort_callback; // abort ggml_graph_compute when true
  14697. void * abort_callback_data;
  14698. };
  14699. struct ggml_compute_state {
  14700. ggml_thread_t thrd;
  14701. int ith;
  14702. struct ggml_compute_state_shared * shared;
  14703. enum ggml_status ec;
  14704. };
  14705. static void ggml_graph_compute_perf_stats_node(struct ggml_tensor * node, const struct ggml_compute_state_shared * st) {
  14706. int64_t cycles_cur = ggml_perf_cycles() - st->perf_node_start_cycles;
  14707. int64_t time_us_cur = ggml_perf_time_us() - st->perf_node_start_time_us;
  14708. node->perf_runs++;
  14709. node->perf_cycles += cycles_cur;
  14710. node->perf_time_us += time_us_cur;
  14711. }
  14712. static int ggml_get_n_tasks(struct ggml_tensor * node, int n_threads, int n_cur_threads) {
  14713. int n_tasks = 0;
  14714. if (ggml_is_empty(node)) {
  14715. // no need to multi-thread a no-op
  14716. n_tasks = 1;
  14717. return n_tasks;
  14718. }
  14719. switch (node->op) {
  14720. case GGML_OP_CPY:
  14721. case GGML_OP_DUP:
  14722. case GGML_OP_ADD:
  14723. case GGML_OP_ADD1:
  14724. case GGML_OP_ACC:
  14725. {
  14726. n_tasks = n_threads;
  14727. } break;
  14728. case GGML_OP_SUB:
  14729. case GGML_OP_SQR:
  14730. case GGML_OP_SQRT:
  14731. case GGML_OP_LOG:
  14732. case GGML_OP_SUM:
  14733. case GGML_OP_SUM_ROWS:
  14734. case GGML_OP_MEAN:
  14735. case GGML_OP_ARGMAX:
  14736. case GGML_OP_REPEAT:
  14737. case GGML_OP_REPEAT_BACK:
  14738. case GGML_OP_LEAKY_RELU:
  14739. {
  14740. n_tasks = 1;
  14741. } break;
  14742. case GGML_OP_UNARY:
  14743. switch (ggml_get_unary_op(node)) {
  14744. case GGML_UNARY_OP_ABS:
  14745. case GGML_UNARY_OP_SGN:
  14746. case GGML_UNARY_OP_NEG:
  14747. case GGML_UNARY_OP_STEP:
  14748. case GGML_UNARY_OP_TANH:
  14749. case GGML_UNARY_OP_ELU:
  14750. case GGML_UNARY_OP_RELU:
  14751. case GGML_UNARY_OP_HARDSWISH: // to opt for multiple threads
  14752. case GGML_UNARY_OP_HARDSIGMOID: // to opt for multiple threads
  14753. {
  14754. n_tasks = 1;
  14755. } break;
  14756. case GGML_UNARY_OP_GELU:
  14757. case GGML_UNARY_OP_GELU_QUICK:
  14758. case GGML_UNARY_OP_SILU:
  14759. {
  14760. n_tasks = n_threads;
  14761. } break;
  14762. default:
  14763. GGML_ASSERT(false);
  14764. }
  14765. break;
  14766. case GGML_OP_SILU_BACK:
  14767. case GGML_OP_MUL:
  14768. case GGML_OP_DIV:
  14769. case GGML_OP_NORM:
  14770. case GGML_OP_RMS_NORM:
  14771. case GGML_OP_RMS_NORM_BACK:
  14772. case GGML_OP_GROUP_NORM:
  14773. case GGML_OP_CONCAT:
  14774. {
  14775. n_tasks = n_threads;
  14776. } break;
  14777. case GGML_OP_MUL_MAT:
  14778. {
  14779. n_tasks = n_threads;
  14780. // TODO: use different scheduling for different matrix sizes
  14781. //const int nr0 = ggml_nrows(node->src[0]);
  14782. //const int nr1 = ggml_nrows(node->src[1]);
  14783. //n_tasks = MIN(n_threads, MAX(1, nr0/128));
  14784. //printf("nr0 = %8d, nr1 = %8d, nr0*nr1 = %8d, n_tasks%d\n", nr0, nr1, nr0*nr1, n_tasks);
  14785. } break;
  14786. case GGML_OP_MUL_MAT_ID:
  14787. {
  14788. n_tasks = n_threads;
  14789. } break;
  14790. case GGML_OP_OUT_PROD:
  14791. {
  14792. n_tasks = n_threads;
  14793. } break;
  14794. case GGML_OP_GET_ROWS:
  14795. {
  14796. // FIXME: the cost of launching additional threads decreases performance with GPU offloading
  14797. //n_tasks = MIN(n_threads, ggml_nelements(node->src[1]));
  14798. n_tasks = MIN(n_cur_threads, ggml_nelements(node->src[1]));
  14799. } break;
  14800. case GGML_OP_SCALE:
  14801. case GGML_OP_SET:
  14802. case GGML_OP_CONT:
  14803. case GGML_OP_RESHAPE:
  14804. case GGML_OP_VIEW:
  14805. case GGML_OP_PERMUTE:
  14806. case GGML_OP_TRANSPOSE:
  14807. case GGML_OP_GET_ROWS_BACK:
  14808. case GGML_OP_DIAG:
  14809. {
  14810. n_tasks = 1;
  14811. } break;
  14812. case GGML_OP_DIAG_MASK_ZERO:
  14813. case GGML_OP_DIAG_MASK_INF:
  14814. case GGML_OP_SOFT_MAX_BACK:
  14815. case GGML_OP_ROPE:
  14816. case GGML_OP_ROPE_BACK:
  14817. case GGML_OP_ADD_REL_POS:
  14818. {
  14819. n_tasks = n_threads;
  14820. } break;
  14821. case GGML_OP_ALIBI:
  14822. {
  14823. n_tasks = 1; //TODO
  14824. } break;
  14825. case GGML_OP_CLAMP:
  14826. {
  14827. n_tasks = 1; //TODO
  14828. } break;
  14829. case GGML_OP_SOFT_MAX:
  14830. {
  14831. n_tasks = MIN(n_threads, ggml_nrows(node->src[0]));
  14832. } break;
  14833. case GGML_OP_CONV_TRANSPOSE_1D:
  14834. {
  14835. n_tasks = n_threads;
  14836. } break;
  14837. case GGML_OP_IM2COL:
  14838. {
  14839. n_tasks = n_threads;
  14840. } break;
  14841. case GGML_OP_CONV_TRANSPOSE_2D:
  14842. {
  14843. n_tasks = n_threads;
  14844. } break;
  14845. case GGML_OP_POOL_1D:
  14846. case GGML_OP_POOL_2D:
  14847. {
  14848. n_tasks = 1;
  14849. } break;
  14850. case GGML_OP_UPSCALE:
  14851. {
  14852. n_tasks = n_threads;
  14853. } break;
  14854. case GGML_OP_PAD:
  14855. {
  14856. n_tasks = n_threads;
  14857. } break;
  14858. case GGML_OP_ARANGE:
  14859. {
  14860. n_tasks = n_threads;
  14861. } break;
  14862. case GGML_OP_TIMESTEP_EMBEDDING:
  14863. {
  14864. n_tasks = n_threads;
  14865. } break;
  14866. case GGML_OP_ARGSORT:
  14867. {
  14868. n_tasks = n_threads;
  14869. } break;
  14870. case GGML_OP_FLASH_ATTN:
  14871. {
  14872. n_tasks = n_threads;
  14873. } break;
  14874. case GGML_OP_FLASH_FF:
  14875. {
  14876. n_tasks = n_threads;
  14877. } break;
  14878. case GGML_OP_FLASH_ATTN_BACK:
  14879. {
  14880. n_tasks = n_threads;
  14881. } break;
  14882. case GGML_OP_SSM_CONV:
  14883. case GGML_OP_SSM_SCAN:
  14884. {
  14885. n_tasks = n_threads;
  14886. } break;
  14887. case GGML_OP_WIN_PART:
  14888. case GGML_OP_WIN_UNPART:
  14889. case GGML_OP_GET_REL_POS:
  14890. case GGML_OP_MAP_UNARY:
  14891. case GGML_OP_MAP_BINARY:
  14892. case GGML_OP_MAP_CUSTOM1_F32:
  14893. case GGML_OP_MAP_CUSTOM2_F32:
  14894. case GGML_OP_MAP_CUSTOM3_F32:
  14895. {
  14896. n_tasks = 1;
  14897. } break;
  14898. case GGML_OP_MAP_CUSTOM1:
  14899. {
  14900. struct ggml_map_custom1_op_params p;
  14901. memcpy(&p, node->op_params, sizeof(p));
  14902. if (p.n_tasks == GGML_N_TASKS_MAX) {
  14903. n_tasks = n_threads;
  14904. } else {
  14905. n_tasks = MIN(p.n_tasks, n_threads);
  14906. }
  14907. } break;
  14908. case GGML_OP_MAP_CUSTOM2:
  14909. {
  14910. struct ggml_map_custom2_op_params p;
  14911. memcpy(&p, node->op_params, sizeof(p));
  14912. if (p.n_tasks == GGML_N_TASKS_MAX) {
  14913. n_tasks = n_threads;
  14914. } else {
  14915. n_tasks = MIN(p.n_tasks, n_threads);
  14916. }
  14917. } break;
  14918. case GGML_OP_MAP_CUSTOM3:
  14919. {
  14920. struct ggml_map_custom3_op_params p;
  14921. memcpy(&p, node->op_params, sizeof(p));
  14922. if (p.n_tasks == GGML_N_TASKS_MAX) {
  14923. n_tasks = n_threads;
  14924. } else {
  14925. n_tasks = MIN(p.n_tasks, n_threads);
  14926. }
  14927. } break;
  14928. case GGML_OP_CROSS_ENTROPY_LOSS:
  14929. {
  14930. n_tasks = n_threads;
  14931. } break;
  14932. case GGML_OP_CROSS_ENTROPY_LOSS_BACK:
  14933. {
  14934. n_tasks = n_threads;
  14935. } break;
  14936. case GGML_OP_NONE:
  14937. {
  14938. n_tasks = 1;
  14939. } break;
  14940. case GGML_OP_COUNT:
  14941. {
  14942. GGML_ASSERT(false);
  14943. } break;
  14944. default:
  14945. {
  14946. fprintf(stderr, "%s: op not implemented: ", __func__);
  14947. if (node->op < GGML_OP_COUNT) {
  14948. fprintf(stderr, "%s\n", ggml_op_name(node->op));
  14949. } else {
  14950. fprintf(stderr, "%d\n", node->op);
  14951. }
  14952. GGML_ASSERT(false);
  14953. } break;
  14954. }
  14955. assert(n_tasks > 0);
  14956. return n_tasks;
  14957. }
  14958. static void ggml_graph_compute_thread_sync_node(int * node_n, struct ggml_compute_state * state, const bool do_yield) {
  14959. // wait for other threads to finish
  14960. const int last_node_n = * node_n;
  14961. while (true) {
  14962. if (do_yield) {
  14963. sched_yield();
  14964. }
  14965. * node_n = atomic_load(&state->shared->node_n);
  14966. if (* node_n != last_node_n) break;
  14967. }
  14968. }
  14969. static void ggml_graph_compute_thread_sync_task(int * task_phase, struct ggml_compute_state * state, const bool do_yield) {
  14970. // wait for other threads to finish
  14971. const int last_task_phase = * task_phase;
  14972. while (true) {
  14973. if (do_yield) {
  14974. sched_yield();
  14975. }
  14976. * task_phase = atomic_load(&state->shared->node_task);
  14977. if (* task_phase != last_task_phase) break;
  14978. }
  14979. }
  14980. static thread_ret_t ggml_graph_compute_thread(void * data) {
  14981. struct ggml_compute_state * state = (struct ggml_compute_state *) data;
  14982. const struct ggml_cgraph * cgraph = state->shared->cgraph;
  14983. const struct ggml_cplan * cplan = state->shared->cplan;
  14984. const int n_threads = state->shared->n_threads;
  14985. set_numa_thread_affinity(state->ith);
  14986. int node_n = -1;
  14987. int task_phase = GGML_TASK_TYPE_FINALIZE;
  14988. while (true) {
  14989. if (cplan->abort_callback && cplan->abort_callback(cplan->abort_callback_data)) {
  14990. state->shared->node_n += 1;
  14991. state->ec = GGML_STATUS_ABORTED;
  14992. return 0;
  14993. }
  14994. if (atomic_fetch_sub(&state->shared->n_active, 1) == 1) {
  14995. // all other threads are finished and spinning
  14996. // do finalize and init here so we don't have synchronize again
  14997. struct ggml_compute_params params = {
  14998. /*.type =*/ GGML_TASK_TYPE_FINALIZE,
  14999. /*.ith =*/ 0,
  15000. /*.nth =*/ 0,
  15001. /*.wsize =*/ cplan->work_size,
  15002. /*.wdata =*/ cplan->work_data,
  15003. };
  15004. if (node_n != -1) {
  15005. /* FINALIZE */
  15006. struct ggml_tensor * node = cgraph->nodes[node_n];
  15007. if (GGML_OP_HAS_FINALIZE[node->op]) {
  15008. params.nth = ggml_get_n_tasks(node, n_threads, state->shared->n_threads);
  15009. ggml_compute_forward(&params, node);
  15010. }
  15011. ggml_graph_compute_perf_stats_node(node, state->shared);
  15012. }
  15013. // distribute new work or execute it direct if 1T
  15014. while (++node_n < cgraph->n_nodes) {
  15015. GGML_PRINT_DEBUG_5("%s: %d/%d\n", __func__, node_n, cgraph->n_nodes);
  15016. struct ggml_tensor * node = cgraph->nodes[node_n];
  15017. const int n_tasks = ggml_get_n_tasks(node, n_threads, state->shared->n_threads);
  15018. state->shared->perf_node_start_cycles = ggml_perf_cycles();
  15019. state->shared->perf_node_start_time_us = ggml_perf_time_us();
  15020. params.nth = n_tasks;
  15021. if (n_tasks == 1) {
  15022. /* INIT */
  15023. if (GGML_OP_HAS_INIT[node->op]) {
  15024. params.type = GGML_TASK_TYPE_INIT;
  15025. ggml_compute_forward(&params, node);
  15026. }
  15027. // TODO: maybe push node_n to the atomic but if other threads see n_tasks is 1,
  15028. // they do something more efficient than spinning (?)
  15029. params.type = GGML_TASK_TYPE_COMPUTE;
  15030. ggml_compute_forward(&params, node);
  15031. if (GGML_OP_HAS_FINALIZE[node->op]) {
  15032. params.type = GGML_TASK_TYPE_FINALIZE;
  15033. ggml_compute_forward(&params, node);
  15034. }
  15035. ggml_graph_compute_perf_stats_node(node, state->shared);
  15036. } else {
  15037. break;
  15038. }
  15039. if (cplan->abort_callback && cplan->abort_callback(cplan->abort_callback_data)) {
  15040. break;
  15041. }
  15042. }
  15043. task_phase = GGML_TASK_TYPE_INIT;
  15044. atomic_store(&state->shared->n_active, n_threads);
  15045. atomic_store(&state->shared->node_n, node_n);
  15046. atomic_store(&state->shared->node_task, task_phase);
  15047. } else {
  15048. ggml_graph_compute_thread_sync_node(&node_n, state, false);
  15049. ggml_graph_compute_thread_sync_task(&task_phase, state, false);
  15050. }
  15051. // check if we should stop
  15052. if (node_n >= cgraph->n_nodes) break;
  15053. /* INIT & COMPUTE */
  15054. struct ggml_tensor * node = cgraph->nodes[node_n];
  15055. const int n_tasks = ggml_get_n_tasks(node, n_threads, state->shared->n_threads);
  15056. struct ggml_compute_params params = {
  15057. /*.type =*/ GGML_TASK_TYPE_INIT,
  15058. /*.ith =*/ state->ith,
  15059. /*.nth =*/ n_tasks,
  15060. /*.wsize =*/ cplan->work_size,
  15061. /*.wdata =*/ cplan->work_data,
  15062. };
  15063. if (state->ith < n_tasks) {
  15064. if (GGML_OP_HAS_INIT[node->op]) {
  15065. ggml_compute_forward(&params, node);
  15066. }
  15067. }
  15068. if (atomic_fetch_sub(&state->shared->n_active, 1) == 1) {
  15069. task_phase = GGML_TASK_TYPE_COMPUTE;
  15070. atomic_store(&state->shared->n_active, n_threads);
  15071. atomic_store(&state->shared->node_task, task_phase);
  15072. }
  15073. else {
  15074. // TODO: this sched_yield can have significant impact on the performance - either positive or negative
  15075. // depending on the workload and the operating system.
  15076. // since it is not clear what is the best approach, it should potentially become user-configurable
  15077. // ref: https://github.com/ggerganov/ggml/issues/291
  15078. // UPD: adding the do_yield flag seems to resolve the issue universally
  15079. const bool do_yield = node_n < 0 || cgraph->nodes[node_n]->op == GGML_OP_MUL_MAT;
  15080. ggml_graph_compute_thread_sync_task(&task_phase, state, do_yield);
  15081. }
  15082. if (state->ith < n_tasks) {
  15083. params.type = GGML_TASK_TYPE_COMPUTE;
  15084. ggml_compute_forward(&params, node);
  15085. }
  15086. if (atomic_fetch_sub(&state->shared->n_active, 1) == 1) {
  15087. task_phase = GGML_TASK_TYPE_FINALIZE;
  15088. atomic_store(&state->shared->n_active, n_threads);
  15089. atomic_store(&state->shared->node_task, task_phase);
  15090. }
  15091. else {
  15092. ggml_graph_compute_thread_sync_task(&task_phase, state, false);
  15093. }
  15094. }
  15095. return 0;
  15096. }
  15097. struct ggml_cplan ggml_graph_plan(const struct ggml_cgraph * cgraph, int n_threads) {
  15098. if (n_threads <= 0) {
  15099. n_threads = GGML_DEFAULT_N_THREADS;
  15100. }
  15101. size_t work_size = 0;
  15102. struct ggml_cplan cplan;
  15103. memset(&cplan, 0, sizeof(struct ggml_cplan));
  15104. int max_tasks = 1;
  15105. // thread scheduling for the different operations + work buffer size estimation
  15106. for (int i = 0; i < cgraph->n_nodes; i++) {
  15107. struct ggml_tensor * node = cgraph->nodes[i];
  15108. const int n_tasks = ggml_get_n_tasks(node, n_threads, 1);
  15109. max_tasks = MAX(max_tasks, n_tasks);
  15110. size_t cur = 0;
  15111. switch (node->op) {
  15112. case GGML_OP_CPY:
  15113. case GGML_OP_DUP:
  15114. {
  15115. if (ggml_is_quantized(node->type)) {
  15116. cur = ggml_type_size(GGML_TYPE_F32) * node->ne[0] * n_tasks;
  15117. }
  15118. } break;
  15119. case GGML_OP_ADD:
  15120. case GGML_OP_ADD1:
  15121. {
  15122. if (ggml_is_quantized(node->src[0]->type)) {
  15123. cur = ggml_type_size(GGML_TYPE_F32) * node->src[0]->ne[0] * n_tasks;
  15124. }
  15125. } break;
  15126. case GGML_OP_ACC:
  15127. {
  15128. if (ggml_is_quantized(node->src[0]->type)) {
  15129. cur = ggml_type_size(GGML_TYPE_F32) * node->src[1]->ne[0] * n_tasks;
  15130. }
  15131. } break;
  15132. case GGML_OP_MUL_MAT:
  15133. {
  15134. const enum ggml_type vec_dot_type = type_traits[node->src[0]->type].vec_dot_type;
  15135. #if defined(GGML_USE_CLBLAST)
  15136. if (ggml_cl_can_mul_mat(node->src[0], node->src[1], node)) {
  15137. cur = ggml_cl_mul_mat_get_wsize(node->src[0], node->src[1], node);
  15138. } else
  15139. #endif
  15140. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  15141. if (ggml_compute_forward_mul_mat_use_blas(node)) {
  15142. if (node->src[0]->type != GGML_TYPE_F32) {
  15143. // here we need memory for fully dequantized matrix from src0
  15144. // take into account that src0 can be broadcasted into src1[2,3]
  15145. cur = ggml_type_size(GGML_TYPE_F32)
  15146. * node->src[0]->ne[0]*node->src[0]->ne[1]
  15147. * node->src[1]->ne[2]*node->src[1]->ne[3];
  15148. }
  15149. } else
  15150. #endif
  15151. if (node->src[1]->type != vec_dot_type) {
  15152. cur = ggml_row_size(vec_dot_type, ggml_nelements(node->src[1]));
  15153. }
  15154. } break;
  15155. case GGML_OP_MUL_MAT_ID:
  15156. {
  15157. cur = 0;
  15158. const struct ggml_tensor * src0 = node->src[0];
  15159. const struct ggml_tensor * src1 = node->src[1];
  15160. const enum ggml_type vec_dot_type = type_traits[src0->type].vec_dot_type;
  15161. if (src1->type != vec_dot_type) {
  15162. cur += ggml_row_size(vec_dot_type, ggml_nelements(src1));
  15163. }
  15164. const int n_as = src0->ne[2];
  15165. cur += GGML_PAD(cur, sizeof(int64_t)); // align
  15166. cur += n_as * sizeof(int64_t); // matrix_row_counts
  15167. cur += n_as * src1->ne[1] * sizeof(int64_t); // matrix_rows
  15168. } break;
  15169. case GGML_OP_OUT_PROD:
  15170. {
  15171. if (ggml_is_quantized(node->src[0]->type)) {
  15172. cur = ggml_type_size(GGML_TYPE_F32) * node->src[0]->ne[0] * n_tasks;
  15173. }
  15174. } break;
  15175. case GGML_OP_SOFT_MAX:
  15176. case GGML_OP_ROPE:
  15177. {
  15178. cur = ggml_type_size(GGML_TYPE_F32) * node->ne[0] * n_tasks;
  15179. } break;
  15180. case GGML_OP_CONV_TRANSPOSE_1D:
  15181. {
  15182. GGML_ASSERT(node->src[0]->ne[3] == 1);
  15183. GGML_ASSERT(node->src[1]->ne[2] == 1);
  15184. GGML_ASSERT(node->src[1]->ne[3] == 1);
  15185. const int64_t ne00 = node->src[0]->ne[0]; // K
  15186. const int64_t ne01 = node->src[0]->ne[1]; // Cout
  15187. const int64_t ne02 = node->src[0]->ne[2]; // Cin
  15188. const int64_t ne10 = node->src[1]->ne[0]; // L
  15189. const int64_t ne11 = node->src[1]->ne[1]; // Cin
  15190. if (node->src[0]->type == GGML_TYPE_F16 &&
  15191. node->src[1]->type == GGML_TYPE_F32) {
  15192. cur += sizeof(ggml_fp16_t)*ne00*ne01*ne02;
  15193. cur += sizeof(ggml_fp16_t)*ne10*ne11;
  15194. } else if (node->src[0]->type == GGML_TYPE_F32 &&
  15195. node->src[1]->type == GGML_TYPE_F32) {
  15196. cur += sizeof(float)*ne00*ne01*ne02;
  15197. cur += sizeof(float)*ne10*ne11;
  15198. } else {
  15199. GGML_ASSERT(false);
  15200. }
  15201. } break;
  15202. case GGML_OP_CONV_TRANSPOSE_2D:
  15203. {
  15204. const int64_t ne00 = node->src[0]->ne[0]; // W
  15205. const int64_t ne01 = node->src[0]->ne[1]; // H
  15206. const int64_t ne02 = node->src[0]->ne[2]; // Channels Out
  15207. const int64_t ne03 = node->src[0]->ne[3]; // Channels In
  15208. const int64_t ne10 = node->src[1]->ne[0]; // W
  15209. const int64_t ne11 = node->src[1]->ne[1]; // H
  15210. const int64_t ne12 = node->src[1]->ne[2]; // Channels In
  15211. cur += sizeof(ggml_fp16_t)*ne00*ne01*ne02*ne03;
  15212. cur += sizeof(ggml_fp16_t)*ne10*ne11*ne12;
  15213. } break;
  15214. case GGML_OP_FLASH_ATTN:
  15215. {
  15216. const int64_t ne11 = ggml_up(node->src[1]->ne[1], GGML_SOFT_MAX_UNROLL);
  15217. if (node->src[1]->type == GGML_TYPE_F32) {
  15218. cur = sizeof(float)*ne11*n_tasks; // TODO: this can become (n_tasks-1)
  15219. cur += sizeof(float)*ne11*n_tasks; // this is overestimated by x2
  15220. } else if (node->src[1]->type == GGML_TYPE_F16) {
  15221. cur = sizeof(float)*ne11*n_tasks; // TODO: this can become (n_tasks-1)
  15222. cur += sizeof(float)*ne11*n_tasks; // this is overestimated by x2
  15223. }
  15224. } break;
  15225. case GGML_OP_FLASH_FF:
  15226. {
  15227. if (node->src[1]->type == GGML_TYPE_F32) {
  15228. cur = sizeof(float)*node->src[1]->ne[1]*n_tasks; // TODO: this can become (n_tasks-1)
  15229. cur += sizeof(float)*node->src[1]->ne[1]*n_tasks; // this is overestimated by x2
  15230. } else if (node->src[1]->type == GGML_TYPE_F16) {
  15231. cur = sizeof(float)*node->src[1]->ne[1]*n_tasks; // TODO: this can become (n_tasks-1)
  15232. cur += sizeof(float)*node->src[1]->ne[1]*n_tasks; // this is overestimated by x2
  15233. }
  15234. } break;
  15235. case GGML_OP_FLASH_ATTN_BACK:
  15236. {
  15237. const int64_t D = node->src[0]->ne[0];
  15238. const int64_t ne11 = ggml_up(node->src[1]->ne[1], GGML_SOFT_MAX_UNROLL);
  15239. const int64_t mxDn = MAX(D, ne11) * 2; // *2 because of S and SM in ggml_compute_forward_flash_attn_back
  15240. if (node->src[1]->type == GGML_TYPE_F32) {
  15241. cur = sizeof(float)*mxDn*n_tasks; // TODO: this can become (n_tasks-1)
  15242. cur += sizeof(float)*mxDn*n_tasks; // this is overestimated by x2
  15243. } else if (node->src[1]->type == GGML_TYPE_F16) {
  15244. cur = sizeof(float)*mxDn*n_tasks; // TODO: this can become (n_tasks-1)
  15245. cur += sizeof(float)*mxDn*n_tasks; // this is overestimated by x2
  15246. }
  15247. } break;
  15248. case GGML_OP_CROSS_ENTROPY_LOSS:
  15249. {
  15250. cur = ggml_type_size(node->type)*(n_tasks + node->src[0]->ne[0]*n_tasks);
  15251. } break;
  15252. case GGML_OP_COUNT:
  15253. {
  15254. GGML_ASSERT(false);
  15255. } break;
  15256. default:
  15257. break;
  15258. }
  15259. work_size = MAX(work_size, cur);
  15260. }
  15261. if (work_size > 0) {
  15262. work_size += CACHE_LINE_SIZE*(n_threads - 1);
  15263. }
  15264. cplan.n_threads = MIN(max_tasks, n_threads);
  15265. cplan.work_size = work_size;
  15266. cplan.work_data = NULL;
  15267. return cplan;
  15268. }
  15269. enum ggml_status ggml_graph_compute(struct ggml_cgraph * cgraph, struct ggml_cplan * cplan) {
  15270. {
  15271. GGML_ASSERT(cplan);
  15272. GGML_ASSERT(cplan->n_threads > 0);
  15273. if (cplan->work_size > 0) {
  15274. GGML_ASSERT(cplan->work_data);
  15275. }
  15276. }
  15277. const int n_threads = cplan->n_threads;
  15278. struct ggml_compute_state_shared state_shared = {
  15279. /*.cgraph =*/ cgraph,
  15280. /*.cgraph_plan =*/ cplan,
  15281. /*.perf_node_start_cycles =*/ 0,
  15282. /*.perf_node_start_time_us =*/ 0,
  15283. /*.n_threads =*/ n_threads,
  15284. /*.n_active =*/ n_threads,
  15285. /*.node_n =*/ -1,
  15286. /*.node_task =*/ GGML_TASK_TYPE_FINALIZE,
  15287. /*.abort_callback =*/ NULL,
  15288. /*.abort_callback_data =*/ NULL,
  15289. };
  15290. struct ggml_compute_state * workers = alloca(sizeof(struct ggml_compute_state)*n_threads);
  15291. // create thread pool
  15292. if (n_threads > 1) {
  15293. for (int j = 1; j < n_threads; ++j) {
  15294. workers[j] = (struct ggml_compute_state) {
  15295. .thrd = 0,
  15296. .ith = j,
  15297. .shared = &state_shared,
  15298. .ec = GGML_STATUS_SUCCESS,
  15299. };
  15300. const int rc = ggml_thread_create(&workers[j].thrd, NULL, ggml_graph_compute_thread, &workers[j]);
  15301. GGML_ASSERT(rc == 0);
  15302. UNUSED(rc);
  15303. }
  15304. }
  15305. workers[0].ith = 0;
  15306. workers[0].shared = &state_shared;
  15307. workers[0].ec = GGML_STATUS_SUCCESS;
  15308. const int64_t perf_start_cycles = ggml_perf_cycles();
  15309. const int64_t perf_start_time_us = ggml_perf_time_us();
  15310. // this is a work thread too
  15311. ggml_graph_compute_thread(&workers[0]);
  15312. enum ggml_status compute_status = workers[0].ec;
  15313. // don't leave affinity set on the main thread
  15314. clear_numa_thread_affinity();
  15315. // join or kill thread pool
  15316. if (n_threads > 1) {
  15317. for (int j = 1; j < n_threads; j++) {
  15318. const int rc = ggml_thread_join(workers[j].thrd, NULL);
  15319. GGML_ASSERT(rc == 0);
  15320. if (workers[j].ec != GGML_STATUS_SUCCESS)
  15321. compute_status = workers[j].ec;
  15322. }
  15323. }
  15324. // performance stats (graph)
  15325. {
  15326. int64_t perf_cycles_cur = ggml_perf_cycles() - perf_start_cycles;
  15327. int64_t perf_time_us_cur = ggml_perf_time_us() - perf_start_time_us;
  15328. cgraph->perf_runs++;
  15329. cgraph->perf_cycles += perf_cycles_cur;
  15330. cgraph->perf_time_us += perf_time_us_cur;
  15331. GGML_PRINT_DEBUG("%s: perf (%d) - cpu = %.3f / %.3f ms, wall = %.3f / %.3f ms\n",
  15332. __func__, cgraph->perf_runs,
  15333. (double) perf_cycles_cur / (double) ggml_cycles_per_ms(),
  15334. (double) cgraph->perf_cycles / (double) ggml_cycles_per_ms() / (double) cgraph->perf_runs,
  15335. (double) perf_time_us_cur / 1000.0,
  15336. (double) cgraph->perf_time_us / 1000.0 / cgraph->perf_runs);
  15337. }
  15338. return compute_status;
  15339. }
  15340. enum ggml_status ggml_graph_compute_with_ctx(struct ggml_context * ctx, struct ggml_cgraph * cgraph, int n_threads) {
  15341. struct ggml_cplan cplan = ggml_graph_plan(cgraph, n_threads);
  15342. struct ggml_object * obj = ggml_new_object(ctx, GGML_OBJECT_TYPE_WORK_BUFFER, cplan.work_size);
  15343. cplan.work_data = (uint8_t *)ctx->mem_buffer + obj->offs;
  15344. return ggml_graph_compute(cgraph, &cplan);
  15345. }
  15346. struct ggml_tensor * ggml_graph_get_tensor(struct ggml_cgraph * cgraph, const char * name) {
  15347. for (int i = 0; i < cgraph->n_leafs; i++) {
  15348. struct ggml_tensor * leaf = cgraph->leafs[i];
  15349. if (strcmp(leaf->name, name) == 0) {
  15350. return leaf;
  15351. }
  15352. }
  15353. for (int i = 0; i < cgraph->n_nodes; i++) {
  15354. struct ggml_tensor * node = cgraph->nodes[i];
  15355. if (strcmp(node->name, name) == 0) {
  15356. return node;
  15357. }
  15358. }
  15359. return NULL;
  15360. }
  15361. static void ggml_graph_export_leaf(const struct ggml_tensor * tensor, FILE * fout) {
  15362. const int64_t * ne = tensor->ne;
  15363. const size_t * nb = tensor->nb;
  15364. fprintf(fout, "%-6s %-12s %8d %" PRId64 " %" PRId64 " %" PRId64 " %" PRId64 " %16zu %16zu %16zu %16zu %16p %32s\n",
  15365. ggml_type_name(tensor->type),
  15366. ggml_op_name (tensor->op),
  15367. ggml_n_dims(tensor),
  15368. ne[0], ne[1], ne[2], ne[3],
  15369. nb[0], nb[1], nb[2], nb[3],
  15370. tensor->data,
  15371. tensor->name);
  15372. }
  15373. static void ggml_graph_export_node(const struct ggml_tensor * tensor, const char * arg, FILE * fout) {
  15374. const int64_t * ne = tensor->ne;
  15375. const size_t * nb = tensor->nb;
  15376. fprintf(fout, "%-6s %-6s %-12s %8d %" PRId64 " %" PRId64 " %" PRId64 " %" PRId64 " %16zu %16zu %16zu %16zu %16p %32s\n",
  15377. arg,
  15378. ggml_type_name(tensor->type),
  15379. ggml_op_name (tensor->op),
  15380. ggml_n_dims(tensor),
  15381. ne[0], ne[1], ne[2], ne[3],
  15382. nb[0], nb[1], nb[2], nb[3],
  15383. tensor->data,
  15384. tensor->name);
  15385. }
  15386. void ggml_graph_export(const struct ggml_cgraph * cgraph, const char * fname) {
  15387. uint64_t size_eval = 0;
  15388. // compute size of intermediate results
  15389. // TODO: does not take into account scratch buffers !!!!
  15390. for (int i = 0; i < cgraph->n_nodes; ++i) {
  15391. size_eval += ggml_nbytes_pad(cgraph->nodes[i]);
  15392. }
  15393. // print
  15394. {
  15395. FILE * fout = stdout;
  15396. fprintf(fout, "\n");
  15397. fprintf(fout, "%-16s %8x\n", "magic", GGML_FILE_MAGIC);
  15398. fprintf(fout, "%-16s %8d\n", "version", GGML_FILE_VERSION);
  15399. fprintf(fout, "%-16s %8d\n", "leafs", cgraph->n_leafs);
  15400. fprintf(fout, "%-16s %8d\n", "nodes", cgraph->n_nodes);
  15401. fprintf(fout, "%-16s %" PRIu64 "\n", "eval", size_eval);
  15402. // header
  15403. fprintf(fout, "\n");
  15404. fprintf(fout, "%-6s %-12s %8s %8s %8s %8s %8s %16s %16s %16s %16s %16s %16s\n",
  15405. "TYPE", "OP", "NDIMS", "NE0", "NE1", "NE2", "NE3", "NB0", "NB1", "NB2", "NB3", "DATA", "NAME");
  15406. for (int i = 0; i < cgraph->n_leafs; ++i) {
  15407. ggml_graph_export_leaf(cgraph->leafs[i], fout);
  15408. GGML_ASSERT(cgraph->leafs[i]->op == GGML_OP_NONE);
  15409. GGML_ASSERT(cgraph->leafs[i]->src[0] == NULL);
  15410. GGML_ASSERT(cgraph->leafs[i]->src[1] == NULL);
  15411. }
  15412. // header
  15413. fprintf(fout, "\n");
  15414. fprintf(fout, "%-6s %-6s %-12s %8s %8s %8s %8s %8s %16s %16s %16s %16s %8s %16s %16s\n",
  15415. "ARG", "TYPE", "OP", "NDIMS", "NE0", "NE1", "NE2", "NE3", "NB0", "NB1", "NB2", "NB3", "NTASKS", "DATA", "NAME");
  15416. for (int i = 0; i < cgraph->n_nodes; ++i) {
  15417. ggml_graph_export_node(cgraph->nodes[i], "DST", fout);
  15418. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  15419. if (cgraph->nodes[i]->src[j]) {
  15420. ggml_graph_export_node(cgraph->nodes[i]->src[j], "SRC", fout);
  15421. }
  15422. }
  15423. fprintf(fout, "\n");
  15424. }
  15425. fprintf(fout, "\n");
  15426. }
  15427. // write binary data
  15428. {
  15429. FILE * fout = ggml_fopen(fname, "wb");
  15430. if (!fout) {
  15431. fprintf(stderr, "%s: failed to open %s\n", __func__, fname);
  15432. return;
  15433. }
  15434. // header
  15435. {
  15436. const uint32_t magic = GGML_FILE_MAGIC;
  15437. const uint32_t version = GGML_FILE_VERSION;
  15438. const uint32_t n_leafs = cgraph->n_leafs;
  15439. const uint32_t n_nodes = cgraph->n_nodes;
  15440. fwrite(&magic, sizeof(uint32_t), 1, fout);
  15441. fwrite(&version, sizeof(uint32_t), 1, fout);
  15442. fwrite(&n_leafs, sizeof(uint32_t), 1, fout);
  15443. fwrite(&n_nodes, sizeof(uint32_t), 1, fout);
  15444. fwrite(&size_eval, sizeof(uint64_t), 1, fout);
  15445. }
  15446. // leafs
  15447. {
  15448. for (int i = 0; i < cgraph->n_leafs; ++i) {
  15449. const struct ggml_tensor * tensor = cgraph->leafs[i];
  15450. const uint32_t type = tensor->type;
  15451. const uint32_t op = tensor->op;
  15452. fwrite(&type, sizeof(uint32_t), 1, fout);
  15453. fwrite(&op, sizeof(uint32_t), 1, fout);
  15454. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  15455. const uint64_t ne = tensor->ne[j];
  15456. const uint64_t nb = tensor->nb[j];
  15457. fwrite(&ne, sizeof(uint64_t), 1, fout);
  15458. fwrite(&nb, sizeof(uint64_t), 1, fout);
  15459. }
  15460. fwrite(tensor->name, sizeof(char), GGML_MAX_NAME, fout);
  15461. fwrite(tensor->op_params, sizeof(char), GGML_MAX_OP_PARAMS, fout);
  15462. // dump the data
  15463. // TODO: pad this to 32 byte boundary
  15464. {
  15465. const size_t size = ggml_nbytes(tensor);
  15466. fwrite(tensor->data, sizeof(char), size, fout);
  15467. }
  15468. }
  15469. }
  15470. // nodes
  15471. {
  15472. for (int i = 0; i < cgraph->n_nodes; ++i) {
  15473. const struct ggml_tensor * tensor = cgraph->nodes[i];
  15474. const uint32_t type = tensor->type;
  15475. const uint32_t op = tensor->op;
  15476. fwrite(&type, sizeof(uint32_t), 1, fout);
  15477. fwrite(&op, sizeof(uint32_t), 1, fout);
  15478. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  15479. const uint64_t ne = tensor->ne[j];
  15480. const uint64_t nb = tensor->nb[j];
  15481. fwrite(&ne, sizeof(uint64_t), 1, fout);
  15482. fwrite(&nb, sizeof(uint64_t), 1, fout);
  15483. }
  15484. fwrite(tensor->name, sizeof(char), GGML_MAX_NAME, fout);
  15485. fwrite(tensor->op_params, sizeof(char), GGML_MAX_OP_PARAMS, fout);
  15486. // output the op arguments
  15487. {
  15488. struct ggml_tensor * args[GGML_MAX_SRC] = { NULL };
  15489. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  15490. args[j] = tensor->src[j];
  15491. }
  15492. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  15493. if (args[j]) {
  15494. int32_t idx = -1;
  15495. // check if leaf
  15496. {
  15497. for (int k = 0; k < cgraph->n_leafs; ++k) {
  15498. if (args[j] == cgraph->leafs[k]) {
  15499. idx = k;
  15500. break;
  15501. }
  15502. }
  15503. }
  15504. // check if node
  15505. if (idx == -1) {
  15506. for (int k = 0; k < cgraph->n_nodes; ++k) {
  15507. if (args[j] == cgraph->nodes[k]) {
  15508. idx = cgraph->n_leafs + k;
  15509. break;
  15510. }
  15511. }
  15512. }
  15513. if (idx == -1) {
  15514. fprintf(stderr, "%s: failed to find tensor, arg = %d, node = %d\n", __func__, j, i);
  15515. fclose(fout);
  15516. return;
  15517. }
  15518. fwrite(&idx, sizeof(int32_t), 1, fout);
  15519. } else {
  15520. const int32_t nul = -1;
  15521. fwrite(&nul, sizeof(int32_t), 1, fout);
  15522. }
  15523. }
  15524. }
  15525. }
  15526. }
  15527. fclose(fout);
  15528. }
  15529. }
  15530. struct ggml_cgraph * ggml_graph_import(const char * fname, struct ggml_context ** ctx_data, struct ggml_context ** ctx_eval) {
  15531. assert(*ctx_data == NULL);
  15532. assert(*ctx_eval == NULL);
  15533. struct ggml_cgraph * result = NULL;
  15534. struct ggml_tensor * data = NULL;
  15535. // read file into data
  15536. {
  15537. FILE * fin = ggml_fopen(fname, "rb");
  15538. if (!fin) {
  15539. fprintf(stderr, "%s: failed to open %s\n", __func__, fname);
  15540. return result;
  15541. }
  15542. size_t fsize = 0;
  15543. fseek(fin, 0, SEEK_END);
  15544. fsize = ftell(fin);
  15545. fseek(fin, 0, SEEK_SET);
  15546. // create the data context
  15547. {
  15548. const size_t overhead = 1*ggml_tensor_overhead();
  15549. struct ggml_init_params params = {
  15550. .mem_size = fsize + overhead,
  15551. .mem_buffer = NULL,
  15552. .no_alloc = false,
  15553. };
  15554. *ctx_data = ggml_init(params);
  15555. if (!*ctx_data) {
  15556. fprintf(stderr, "%s: failed to create ggml context\n", __func__);
  15557. fclose(fin);
  15558. return result;
  15559. }
  15560. }
  15561. data = ggml_new_tensor_1d(*ctx_data, GGML_TYPE_I8, fsize);
  15562. {
  15563. const size_t ret = fread(data->data, sizeof(char), fsize, fin);
  15564. if (ret != fsize) {
  15565. fprintf(stderr, "%s: failed to read %s\n", __func__, fname);
  15566. fclose(fin);
  15567. return result;
  15568. }
  15569. }
  15570. fclose(fin);
  15571. }
  15572. // populate result
  15573. {
  15574. char * ptr = (char *) data->data;
  15575. const uint32_t magic = *(const uint32_t *) ptr; ptr += sizeof(magic);
  15576. if (magic != GGML_FILE_MAGIC) {
  15577. fprintf(stderr, "%s: invalid magic number, got %08x\n", __func__, magic);
  15578. return result;
  15579. }
  15580. const uint32_t version = *(const uint32_t *) ptr; ptr += sizeof(version);
  15581. if (version != GGML_FILE_VERSION) {
  15582. fprintf(stderr, "%s: invalid version number\n", __func__);
  15583. return result;
  15584. }
  15585. const uint32_t n_leafs = *(const uint32_t *) ptr; ptr += sizeof(n_leafs);
  15586. const uint32_t n_nodes = *(const uint32_t *) ptr; ptr += sizeof(n_nodes);
  15587. const uint64_t size_eval = *(const uint64_t *) ptr; ptr += sizeof(size_eval);
  15588. const int graph_size = MAX(n_leafs, n_nodes);
  15589. // create the data context
  15590. {
  15591. const size_t overhead = (n_leafs + n_nodes)*ggml_tensor_overhead() + ggml_graph_overhead_custom(graph_size, false);
  15592. struct ggml_init_params params = {
  15593. .mem_size = size_eval + overhead,
  15594. .mem_buffer = NULL,
  15595. .no_alloc = true,
  15596. };
  15597. *ctx_eval = ggml_init(params);
  15598. if (!*ctx_eval) {
  15599. fprintf(stderr, "%s: failed to create ggml context\n", __func__);
  15600. return result;
  15601. }
  15602. }
  15603. result = ggml_new_graph_custom(*ctx_eval, graph_size, false);
  15604. result->n_leafs = n_leafs;
  15605. result->n_nodes = n_nodes;
  15606. // leafs
  15607. {
  15608. uint32_t type;
  15609. uint32_t op;
  15610. for (uint32_t i = 0; i < n_leafs; ++i) {
  15611. type = *(const uint32_t *) ptr; ptr += sizeof(type);
  15612. op = *(const uint32_t *) ptr; ptr += sizeof(op);
  15613. int64_t ne[GGML_MAX_DIMS];
  15614. size_t nb[GGML_MAX_DIMS];
  15615. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  15616. uint64_t ne_cur;
  15617. uint64_t nb_cur;
  15618. ne_cur = *(const uint64_t *) ptr; ptr += sizeof(ne_cur);
  15619. nb_cur = *(const uint64_t *) ptr; ptr += sizeof(nb_cur);
  15620. ne[j] = ne_cur;
  15621. nb[j] = nb_cur;
  15622. }
  15623. struct ggml_tensor * tensor = ggml_new_tensor(*ctx_eval, (enum ggml_type) type, GGML_MAX_DIMS, ne);
  15624. tensor->op = (enum ggml_op) op;
  15625. memcpy(tensor->name, ptr, GGML_MAX_NAME); ptr += GGML_MAX_NAME;
  15626. memcpy(tensor->op_params, ptr, GGML_MAX_OP_PARAMS); ptr += GGML_MAX_OP_PARAMS;
  15627. tensor->data = (void *) ptr;
  15628. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  15629. tensor->nb[j] = nb[j];
  15630. }
  15631. result->leafs[i] = tensor;
  15632. ptr += ggml_nbytes(tensor);
  15633. fprintf(stderr, "%s: loaded leaf %u: '%16s', %9zu bytes\n", __func__, i, tensor->name, ggml_nbytes(tensor));
  15634. }
  15635. }
  15636. ggml_set_no_alloc(*ctx_eval, false);
  15637. // nodes
  15638. {
  15639. uint32_t type;
  15640. uint32_t op;
  15641. for (uint32_t i = 0; i < n_nodes; ++i) {
  15642. type = *(const uint32_t *) ptr; ptr += sizeof(type);
  15643. op = *(const uint32_t *) ptr; ptr += sizeof(op);
  15644. enum ggml_op eop = (enum ggml_op) op;
  15645. int64_t ne[GGML_MAX_DIMS];
  15646. size_t nb[GGML_MAX_DIMS];
  15647. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  15648. uint64_t ne_cur;
  15649. uint64_t nb_cur;
  15650. ne_cur = *(const uint64_t *) ptr; ptr += sizeof(ne_cur);
  15651. nb_cur = *(const uint64_t *) ptr; ptr += sizeof(nb_cur);
  15652. ne[j] = ne_cur;
  15653. nb[j] = nb_cur;
  15654. }
  15655. const char * ptr_name = ptr; ptr += GGML_MAX_NAME;
  15656. const char * ptr_op_params = ptr; ptr += GGML_MAX_OP_PARAMS;
  15657. const int32_t * ptr_arg_idx = (const int32_t *) ptr; ptr += GGML_MAX_SRC*sizeof(int32_t);
  15658. struct ggml_tensor * args[GGML_MAX_SRC] = { NULL };
  15659. // parse args
  15660. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  15661. const int32_t arg_idx = ptr_arg_idx[j];
  15662. if (arg_idx == -1) {
  15663. continue;
  15664. }
  15665. if (arg_idx < result->n_leafs) {
  15666. args[j] = result->leafs[arg_idx];
  15667. } else {
  15668. args[j] = result->nodes[arg_idx - result->n_leafs];
  15669. }
  15670. }
  15671. // create the tensor
  15672. // "view" operations are handled differently
  15673. // TODO: handle inplace ops - currently a copy is always made
  15674. struct ggml_tensor * tensor = NULL;
  15675. switch (eop) {
  15676. // TODO: implement other view ops
  15677. case GGML_OP_RESHAPE:
  15678. {
  15679. tensor = ggml_reshape_4d(*ctx_eval, args[0], ne[0], ne[1], ne[2], ne[3]);
  15680. } break;
  15681. case GGML_OP_VIEW:
  15682. {
  15683. tensor = ggml_view_4d(*ctx_eval, args[0], ne[0], ne[1], ne[2], ne[3], 0, 0, 0, 0);
  15684. size_t offs;
  15685. memcpy(&offs, ptr_op_params, sizeof(offs));
  15686. tensor->data = ((char *) tensor->data) + offs;
  15687. } break;
  15688. case GGML_OP_TRANSPOSE:
  15689. {
  15690. tensor = ggml_transpose(*ctx_eval, args[0]);
  15691. } break;
  15692. case GGML_OP_PERMUTE:
  15693. {
  15694. tensor = ggml_view_4d(*ctx_eval, args[0], ne[0], ne[1], ne[2], ne[3], 0, 0, 0, 0);
  15695. } break;
  15696. default:
  15697. {
  15698. tensor = ggml_new_tensor(*ctx_eval, (enum ggml_type) type, GGML_MAX_DIMS, ne);
  15699. tensor->op = eop;
  15700. } break;
  15701. }
  15702. memcpy(tensor->name, ptr_name, GGML_MAX_NAME);
  15703. memcpy(tensor->op_params, ptr_op_params, GGML_MAX_OP_PARAMS);
  15704. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  15705. tensor->nb[j] = nb[j];
  15706. }
  15707. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  15708. tensor->src[j] = args[j];
  15709. }
  15710. result->nodes[i] = tensor;
  15711. fprintf(stderr, "%s: loaded node %u: '%16s', %9zu bytes\n", __func__, i, tensor->name, ggml_nbytes(tensor));
  15712. }
  15713. }
  15714. }
  15715. return result;
  15716. }
  15717. void ggml_graph_print(const struct ggml_cgraph * cgraph) {
  15718. int64_t perf_total_per_op_us[GGML_OP_COUNT] = {0};
  15719. GGML_PRINT("=== GRAPH ===\n");
  15720. GGML_PRINT("n_nodes = %d\n", cgraph->n_nodes);
  15721. for (int i = 0; i < cgraph->n_nodes; i++) {
  15722. struct ggml_tensor * node = cgraph->nodes[i];
  15723. perf_total_per_op_us[node->op] += MAX(1, node->perf_time_us);
  15724. GGML_PRINT(" - %3d: [ %5" PRId64 ", %5" PRId64 ", %5" PRId64 "] %16s %s (%3d) cpu = %7.3f / %7.3f ms, wall = %7.3f / %7.3f ms\n",
  15725. i,
  15726. node->ne[0], node->ne[1], node->ne[2],
  15727. ggml_op_name(node->op), (node->flags & GGML_TENSOR_FLAG_PARAM) ? "x" : node->grad ? "g" : " ", node->perf_runs,
  15728. (double) node->perf_cycles / (double) ggml_cycles_per_ms(),
  15729. (double) node->perf_cycles / (double) ggml_cycles_per_ms() / (double) node->perf_runs,
  15730. (double) node->perf_time_us / 1000.0,
  15731. (double) node->perf_time_us / 1000.0 / node->perf_runs);
  15732. }
  15733. GGML_PRINT("n_leafs = %d\n", cgraph->n_leafs);
  15734. for (int i = 0; i < cgraph->n_leafs; i++) {
  15735. struct ggml_tensor * node = cgraph->leafs[i];
  15736. GGML_PRINT(" - %3d: [ %5" PRId64 ", %5" PRId64 "] %8s %16s\n",
  15737. i,
  15738. node->ne[0], node->ne[1],
  15739. ggml_op_name(node->op),
  15740. ggml_get_name(node));
  15741. }
  15742. for (int i = 0; i < GGML_OP_COUNT; i++) {
  15743. if (perf_total_per_op_us[i] == 0) {
  15744. continue;
  15745. }
  15746. GGML_PRINT("perf_total_per_op_us[%16s] = %7.3f ms\n", ggml_op_name(i), (double) perf_total_per_op_us[i] / 1000.0);
  15747. }
  15748. GGML_PRINT("========================================\n");
  15749. }
  15750. // check if node is part of the graph
  15751. static bool ggml_graph_find(const struct ggml_cgraph * cgraph, const struct ggml_tensor * node) {
  15752. if (cgraph == NULL) {
  15753. return true;
  15754. }
  15755. for (int i = 0; i < cgraph->n_nodes; i++) {
  15756. if (cgraph->nodes[i] == node) {
  15757. return true;
  15758. }
  15759. }
  15760. return false;
  15761. }
  15762. static struct ggml_tensor * ggml_graph_get_parent(const struct ggml_cgraph * cgraph, const struct ggml_tensor * node) {
  15763. for (int i = 0; i < cgraph->n_nodes; i++) {
  15764. struct ggml_tensor * parent = cgraph->nodes[i];
  15765. if (parent->grad == node) {
  15766. return parent;
  15767. }
  15768. }
  15769. return NULL;
  15770. }
  15771. static void ggml_graph_dump_dot_node_edge(FILE * fp, const struct ggml_cgraph * gb, struct ggml_tensor * node, struct ggml_tensor * parent, const char * label) {
  15772. struct ggml_tensor * gparent = ggml_graph_get_parent(gb, node);
  15773. struct ggml_tensor * gparent0 = ggml_graph_get_parent(gb, parent);
  15774. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ arrowhead = %s; style = %s; label = \"%s\"; ]\n",
  15775. gparent0 ? (void *) gparent0 : (void *) parent,
  15776. gparent0 ? "g" : "x",
  15777. gparent ? (void *) gparent : (void *) node,
  15778. gparent ? "g" : "x",
  15779. gparent ? "empty" : "vee",
  15780. gparent ? "dashed" : "solid",
  15781. label);
  15782. }
  15783. static void ggml_graph_dump_dot_leaf_edge(FILE * fp, struct ggml_tensor * node, struct ggml_tensor * parent, const char * label) {
  15784. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ label = \"%s\"; ]\n",
  15785. (void *) parent, "x",
  15786. (void *) node, "x",
  15787. label);
  15788. }
  15789. void ggml_graph_dump_dot(const struct ggml_cgraph * gb, const struct ggml_cgraph * gf, const char * filename) {
  15790. char color[16];
  15791. FILE * fp = ggml_fopen(filename, "w");
  15792. GGML_ASSERT(fp);
  15793. fprintf(fp, "digraph G {\n");
  15794. fprintf(fp, " newrank = true;\n");
  15795. fprintf(fp, " rankdir = LR;\n");
  15796. for (int i = 0; i < gb->n_nodes; i++) {
  15797. struct ggml_tensor * node = gb->nodes[i];
  15798. if (ggml_graph_get_parent(gb, node) != NULL) {
  15799. continue;
  15800. }
  15801. if (node->flags & GGML_TENSOR_FLAG_PARAM) {
  15802. snprintf(color, sizeof(color), "yellow");
  15803. } else if (node->grad) {
  15804. if (ggml_graph_find(gf, node)) {
  15805. snprintf(color, sizeof(color), "green");
  15806. } else {
  15807. snprintf(color, sizeof(color), "lightblue");
  15808. }
  15809. } else {
  15810. snprintf(color, sizeof(color), "white");
  15811. }
  15812. fprintf(fp, " \"%p\" [ "
  15813. "style = filled; fillcolor = %s; shape = record; "
  15814. "label=\"",
  15815. (void *) node, color);
  15816. if (strlen(node->name) > 0) {
  15817. fprintf(fp, "%s (%s)|", node->name, ggml_type_name(node->type));
  15818. } else {
  15819. fprintf(fp, "(%s)|", ggml_type_name(node->type));
  15820. }
  15821. if (ggml_is_matrix(node)) {
  15822. fprintf(fp, "%d [%" PRId64 ", %" PRId64 "] | <x>%s", i, node->ne[0], node->ne[1], ggml_op_symbol(node->op));
  15823. } else {
  15824. fprintf(fp, "%d [%" PRId64 ", %" PRId64 ", %" PRId64 "] | <x>%s", i, node->ne[0], node->ne[1], node->ne[2], ggml_op_symbol(node->op));
  15825. }
  15826. if (node->grad) {
  15827. fprintf(fp, " | <g>%s\"; ]\n", ggml_op_symbol(node->grad->op));
  15828. } else {
  15829. fprintf(fp, "\"; ]\n");
  15830. }
  15831. }
  15832. for (int i = 0; i < gb->n_leafs; i++) {
  15833. struct ggml_tensor * node = gb->leafs[i];
  15834. snprintf(color, sizeof(color), "pink");
  15835. fprintf(fp, " \"%p\" [ "
  15836. "style = filled; fillcolor = %s; shape = record; "
  15837. "label=\"<x>",
  15838. (void *) node, color);
  15839. if (strlen(node->name) > 0) {
  15840. fprintf(fp, "%s (%s)|", node->name, ggml_type_name(node->type));
  15841. } else {
  15842. fprintf(fp, "(%s)|", ggml_type_name(node->type));
  15843. }
  15844. fprintf(fp, "CONST %d [%" PRId64 ", %" PRId64 "]", i, node->ne[0], node->ne[1]);
  15845. if (ggml_nelements(node) < 5) {
  15846. fprintf(fp, " | (");
  15847. for (int j = 0; j < ggml_nelements(node); j++) {
  15848. if (node->type == GGML_TYPE_I8 || node->type == GGML_TYPE_I16 || node->type == GGML_TYPE_I32) {
  15849. fprintf(fp, "%d", ggml_get_i32_1d(node, j));
  15850. }
  15851. else if (node->type == GGML_TYPE_F32 || node->type == GGML_TYPE_F16) {
  15852. fprintf(fp, "%.1e", (double)ggml_get_f32_1d(node, j));
  15853. }
  15854. else {
  15855. fprintf(fp, "#");
  15856. }
  15857. if (j < ggml_nelements(node) - 1) {
  15858. fprintf(fp, ", ");
  15859. }
  15860. }
  15861. fprintf(fp, ")");
  15862. }
  15863. fprintf(fp, "\"; ]\n");
  15864. }
  15865. for (int i = 0; i < gb->n_nodes; i++) {
  15866. struct ggml_tensor * node = gb->nodes[i];
  15867. for (int j = 0; j < GGML_MAX_SRC; j++) {
  15868. if (node->src[j]) {
  15869. char label[16];
  15870. snprintf(label, sizeof(label), "src %d", j);
  15871. ggml_graph_dump_dot_node_edge(fp, gb, node, node->src[j], label);
  15872. }
  15873. }
  15874. }
  15875. for (int i = 0; i < gb->n_leafs; i++) {
  15876. struct ggml_tensor * node = gb->leafs[i];
  15877. for (int j = 0; j < GGML_MAX_SRC; j++) {
  15878. if (node->src[j]) {
  15879. char label[16];
  15880. snprintf(label, sizeof(label), "src %d", j);
  15881. ggml_graph_dump_dot_leaf_edge(fp, node, node->src[j], label);
  15882. }
  15883. }
  15884. }
  15885. fprintf(fp, "}\n");
  15886. fclose(fp);
  15887. GGML_PRINT("%s: dot -Tpng %s -o %s.png && open %s.png\n", __func__, filename, filename, filename);
  15888. }
  15889. ////////////////////////////////////////////////////////////////////////////////
  15890. static void ggml_opt_set_params(int np, struct ggml_tensor * const ps[], const float * x) {
  15891. int i = 0;
  15892. for (int p = 0; p < np; ++p) {
  15893. const int64_t ne = ggml_nelements(ps[p]) ;
  15894. // TODO: add function to set tensor from array
  15895. for (int64_t j = 0; j < ne; ++j) {
  15896. ggml_set_f32_1d(ps[p], j, x[i++]);
  15897. }
  15898. }
  15899. }
  15900. static void ggml_opt_get_params(int np, struct ggml_tensor * const ps[], float * x) {
  15901. int i = 0;
  15902. for (int p = 0; p < np; ++p) {
  15903. const int64_t ne = ggml_nelements(ps[p]) ;
  15904. // TODO: add function to get all elements at once
  15905. for (int64_t j = 0; j < ne; ++j) {
  15906. x[i++] = ggml_get_f32_1d(ps[p], j);
  15907. }
  15908. }
  15909. }
  15910. static void ggml_opt_get_grad(int np, struct ggml_tensor * const ps[], float * g) {
  15911. int64_t i = 0;
  15912. for (int p = 0; p < np; ++p) {
  15913. const int64_t ne = ggml_nelements(ps[p]) ;
  15914. // TODO: add function to get all elements at once
  15915. for (int64_t j = 0; j < ne; ++j) {
  15916. g[i++] = ggml_get_f32_1d(ps[p]->grad, j);
  15917. }
  15918. }
  15919. }
  15920. static void ggml_opt_acc_grad(int np, struct ggml_tensor * const ps[], float * g, float scale) {
  15921. int64_t i = 0;
  15922. for (int p = 0; p < np; ++p) {
  15923. const int64_t ne = ggml_nelements(ps[p]) ;
  15924. // TODO: add function to get all elements at once
  15925. for (int64_t j = 0; j < ne; ++j) {
  15926. g[i++] += ggml_get_f32_1d(ps[p]->grad, j) * scale;
  15927. }
  15928. }
  15929. }
  15930. //
  15931. // Using AdamW - ref: https://arxiv.org/pdf/1711.05101v3.pdf
  15932. //
  15933. // (Original Adam - ref: https://arxiv.org/pdf/1412.6980.pdf)
  15934. //
  15935. static enum ggml_opt_result ggml_opt_adam(
  15936. struct ggml_context * ctx,
  15937. struct ggml_opt_context * opt,
  15938. struct ggml_opt_params params,
  15939. struct ggml_tensor * f,
  15940. struct ggml_cgraph * gf,
  15941. struct ggml_cgraph * gb,
  15942. ggml_opt_callback callback,
  15943. void * callback_data) {
  15944. GGML_ASSERT(ggml_is_scalar(f));
  15945. // these will store the parameters we want to optimize
  15946. struct ggml_tensor * ps[GGML_MAX_PARAMS];
  15947. int np = 0;
  15948. int64_t nx = 0;
  15949. for (int i = 0; i < gf->n_nodes; ++i) {
  15950. if (gf->nodes[i]->flags & GGML_TENSOR_FLAG_PARAM) {
  15951. GGML_PRINT_DEBUG("found param %d: grad->op = %d\n", np, gf->nodes[i]->grad->op);
  15952. GGML_ASSERT(np < GGML_MAX_PARAMS);
  15953. ps[np++] = gf->nodes[i];
  15954. nx += ggml_nelements(gf->nodes[i]);
  15955. }
  15956. }
  15957. if ((opt->params.type != params.type) || (opt->nx != nx) || (opt->params.past != params.past)) {
  15958. int iter = opt->iter;
  15959. ggml_opt_init(opt->ctx, opt, params, nx);
  15960. opt->iter = iter;
  15961. }
  15962. // constants
  15963. float sched = params.adam.sched;
  15964. const float alpha = params.adam.alpha;
  15965. const float decay = params.adam.decay * alpha;
  15966. const float beta1 = params.adam.beta1;
  15967. const float beta2 = params.adam.beta2;
  15968. const float eps = params.adam.eps;
  15969. const float gclip = params.adam.gclip;
  15970. const int decay_min_ndim = params.adam.decay_min_ndim;
  15971. const int n_accum = MAX(1, params.n_gradient_accumulation);
  15972. const float accum_norm = 1.0f / (float) n_accum;
  15973. float * g = opt->adam.g->data; // gradients
  15974. float * m = opt->adam.m->data; // first moment
  15975. float * v = opt->adam.v->data; // second moment
  15976. float * pf = params.past > 0 ? opt->adam.pf->data : NULL; // past function values
  15977. struct ggml_cplan cplan = ggml_graph_plan(gb, params.n_threads);
  15978. struct ggml_object * obj = ggml_new_object(ctx, GGML_OBJECT_TYPE_WORK_BUFFER, cplan.work_size);
  15979. cplan.work_data = (uint8_t *)ctx->mem_buffer + obj->offs;
  15980. bool cancel = false;
  15981. // compute the function value
  15982. float fx = 0;
  15983. ggml_set_zero(opt->adam.g);
  15984. for (int accum_step = 0; accum_step < n_accum; ++accum_step) {
  15985. if (callback) {
  15986. callback(callback_data, accum_step, &sched, &cancel);
  15987. if (cancel) {
  15988. return GGML_OPT_RESULT_CANCEL;
  15989. }
  15990. }
  15991. // ggml_graph_reset (gf);
  15992. ggml_set_f32 (f->grad, 1.0f);
  15993. ggml_graph_compute(gb, &cplan);
  15994. ggml_opt_acc_grad(np, ps, g, accum_norm);
  15995. fx += ggml_get_f32_1d(f, 0);
  15996. }
  15997. fx *= accum_norm;
  15998. opt->adam.fx_prev = fx;
  15999. opt->adam.fx_best = opt->adam.fx_prev;
  16000. if (pf) {
  16001. pf[opt->iter % params.past] = opt->adam.fx_prev;
  16002. }
  16003. opt->loss_before = opt->adam.fx_prev;
  16004. opt->loss_after = opt->adam.fx_prev;
  16005. // initialize
  16006. if (opt->just_initialized) {
  16007. opt->adam.n_no_improvement = 0;
  16008. opt->just_initialized = false;
  16009. }
  16010. float * fx_best = &opt->adam.fx_best;
  16011. float * fx_prev = &opt->adam.fx_prev;
  16012. int * n_no_improvement = &opt->adam.n_no_improvement;
  16013. int iter0 = opt->iter;
  16014. // run the optimizer
  16015. for (int t = 0; t < params.adam.n_iter; ++t) {
  16016. opt->iter = iter0 + t + 1;
  16017. GGML_PRINT_DEBUG ("=== iter %d ===\n", t);
  16018. GGML_PRINT_DEBUG ("f = %10.6f\n", ggml_get_f32_1d(f, 0));
  16019. GGML_PRINT_DEBUG_5("df/dx0 = %10.6f\n", ggml_get_f32_1d(ps[0]->grad, 0));
  16020. GGML_PRINT_DEBUG_5("df/dx1 = %10.6f\n", ggml_get_f32_1d(ps[1]->grad, 0));
  16021. for (int i = 0; i < np; ++i) {
  16022. GGML_PRINT_DEBUG("param %d: %10.6f, g = %10.6f\n", i,
  16023. ggml_get_f32_1d(ps[i], 0), ggml_get_f32_1d(ps[i]->grad, 0));
  16024. }
  16025. const int64_t t_start_wall = ggml_time_us();
  16026. const int64_t t_start_cpu = ggml_cycles();
  16027. UNUSED(t_start_wall);
  16028. UNUSED(t_start_cpu);
  16029. {
  16030. float gnorm = 1.0f;
  16031. if (gclip > 0.0f) {
  16032. // gradient clipping
  16033. ggml_float sum = 0.0;
  16034. for (int64_t i = 0; i < nx; ++i) {
  16035. sum += (ggml_float)(g[i]*g[i]);
  16036. }
  16037. ggml_float norm = sqrt(sum);
  16038. if (norm > (ggml_float) gclip) {
  16039. gnorm = (float) ((ggml_float) gclip / norm);
  16040. }
  16041. }
  16042. const float beta1h = alpha*sched/(1.0f - powf(beta1, opt->iter));
  16043. const float beta2h = 1.0f/(1.0f - powf(beta2, opt->iter));
  16044. int64_t i = 0;
  16045. for (int p = 0; p < np; ++p) {
  16046. const int64_t ne = ggml_nelements(ps[p]);
  16047. const float p_decay = ((ggml_n_dims(ps[p]) >= decay_min_ndim) ? decay : 0.0f) * sched;
  16048. for (int64_t j = 0; j < ne; ++j) {
  16049. float x = ggml_get_f32_1d(ps[p], j);
  16050. float g_ = g[i]*gnorm;
  16051. m[i] = m[i]*beta1 + g_*(1.0f - beta1);
  16052. v[i] = v[i]*beta2 + g_*g_*(1.0f - beta2);
  16053. float mh = m[i]*beta1h;
  16054. float vh = v[i]*beta2h;
  16055. vh = sqrtf(vh) + eps;
  16056. x = x*(1.0f - p_decay) - mh/vh;
  16057. ggml_set_f32_1d(ps[p], j, x);
  16058. ++i;
  16059. }
  16060. }
  16061. }
  16062. fx = 0;
  16063. ggml_set_zero(opt->adam.g);
  16064. for (int accum_step = 0; accum_step < n_accum; ++accum_step) {
  16065. if (callback) {
  16066. callback(callback_data, accum_step, &sched, &cancel);
  16067. if (cancel) {
  16068. return GGML_OPT_RESULT_CANCEL;;
  16069. }
  16070. }
  16071. // ggml_graph_reset (gf);
  16072. ggml_set_f32 (f->grad, 1.0f);
  16073. ggml_graph_compute(gb, &cplan);
  16074. ggml_opt_acc_grad(np, ps, g, accum_norm);
  16075. fx += ggml_get_f32_1d(f, 0);
  16076. }
  16077. fx *= accum_norm;
  16078. opt->loss_after = fx;
  16079. // check convergence
  16080. if (fabsf(fx - fx_prev[0])/fx < params.adam.eps_f) {
  16081. GGML_PRINT_DEBUG("converged\n");
  16082. return GGML_OPT_RESULT_OK;
  16083. }
  16084. // delta-based convergence test
  16085. if (pf != NULL) {
  16086. // need at least params.past iterations to start checking for convergence
  16087. if (params.past <= iter0 + t) {
  16088. const float rate = (pf[(iter0 + t)%params.past] - fx)/fx;
  16089. if (fabsf(rate) < params.delta) {
  16090. return GGML_OPT_RESULT_OK;
  16091. }
  16092. }
  16093. pf[(iter0 + t)%params.past] = fx;
  16094. }
  16095. // check for improvement
  16096. if (params.max_no_improvement > 0) {
  16097. if (fx_best[0] > fx) {
  16098. fx_best[0] = fx;
  16099. n_no_improvement[0] = 0;
  16100. } else {
  16101. ++n_no_improvement[0];
  16102. if (n_no_improvement[0] >= params.max_no_improvement) {
  16103. return GGML_OPT_RESULT_OK;
  16104. }
  16105. }
  16106. }
  16107. fx_prev[0] = fx;
  16108. {
  16109. const int64_t t_end_cpu = ggml_cycles();
  16110. GGML_PRINT_DEBUG("time iter: %5.3f s\n", ((float)(t_end_cpu - t_start_cpu))/CLOCKS_PER_SEC);
  16111. UNUSED(t_end_cpu);
  16112. const int64_t t_end_wall = ggml_time_us();
  16113. GGML_PRINT_DEBUG("wall time iter: %5.3f s\n", (t_end_wall - t_start_wall)/1e6);
  16114. UNUSED(t_end_wall);
  16115. }
  16116. }
  16117. return GGML_OPT_RESULT_DID_NOT_CONVERGE;
  16118. }
  16119. //
  16120. // L-BFGS
  16121. //
  16122. // the L-BFGS implementation below is based on the following implementation:
  16123. //
  16124. // https://github.com/chokkan/liblbfgs
  16125. //
  16126. struct ggml_lbfgs_iteration_data {
  16127. float alpha;
  16128. float ys;
  16129. float * s;
  16130. float * y;
  16131. };
  16132. static enum ggml_opt_result linesearch_backtracking(
  16133. const struct ggml_opt_params * params,
  16134. int nx,
  16135. float * x,
  16136. float * fx,
  16137. float * g,
  16138. float * d,
  16139. float * step,
  16140. const float * xp,
  16141. struct ggml_tensor * f,
  16142. struct ggml_cgraph * gb,
  16143. struct ggml_cplan * cplan,
  16144. const int np,
  16145. struct ggml_tensor * ps[],
  16146. bool * cancel,
  16147. ggml_opt_callback callback,
  16148. void * callback_data) {
  16149. int count = 0;
  16150. float width = 0.0f;
  16151. float dg = 0.0f;
  16152. float finit = 0.0f;
  16153. float dginit = 0.0f;
  16154. float dgtest = 0.0f;
  16155. const float dec = 0.5f;
  16156. const float inc = 2.1f;
  16157. const int n_accum = MAX(1, params->n_gradient_accumulation);
  16158. const float accum_norm = 1.0f / (float) n_accum;
  16159. if (*step <= 0.f) {
  16160. return GGML_LINESEARCH_INVALID_PARAMETERS;
  16161. }
  16162. // compute the initial gradient in the search direction
  16163. ggml_vec_dot_f32(nx, &dginit, 0, g, 0, d, 0, 1);
  16164. // make sure that d points to a descent direction
  16165. if (0 < dginit) {
  16166. return GGML_LINESEARCH_FAIL;
  16167. }
  16168. // initialize local variables
  16169. finit = *fx;
  16170. dgtest = params->lbfgs.ftol*dginit;
  16171. while (true) {
  16172. ggml_vec_cpy_f32(nx, x, xp);
  16173. ggml_vec_mad_f32(nx, x, d, *step);
  16174. // evaluate the function and gradient values
  16175. {
  16176. ggml_opt_set_params(np, ps, x);
  16177. *fx = 0;
  16178. memset(g, 0, sizeof(float)*nx);
  16179. for (int accum_step = 0; accum_step < n_accum; ++accum_step) {
  16180. if (callback) {
  16181. // LBFG-S does not support learning rate -> ignore learning schedule
  16182. float sched = 0;
  16183. callback(callback_data, accum_step, &sched, cancel);
  16184. if (*cancel) {
  16185. return GGML_OPT_RESULT_CANCEL;
  16186. }
  16187. }
  16188. // ggml_graph_reset (gf);
  16189. ggml_set_f32 (f->grad, 1.0f);
  16190. ggml_graph_compute(gb, cplan);
  16191. ggml_opt_acc_grad(np, ps, g, accum_norm);
  16192. *fx += ggml_get_f32_1d(f, 0);
  16193. }
  16194. *fx *= accum_norm;
  16195. }
  16196. ++count;
  16197. if (*fx > finit + (*step)*dgtest) {
  16198. width = dec;
  16199. } else {
  16200. // Armijo condition is satisfied
  16201. if (params->lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_ARMIJO) {
  16202. return count;
  16203. }
  16204. ggml_vec_dot_f32(nx, &dg, 0, g, 0, d, 0, 1);
  16205. // check the Wolfe condition
  16206. if (dg < params->lbfgs.wolfe * dginit) {
  16207. width = inc;
  16208. } else {
  16209. if(params->lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_WOLFE) {
  16210. // regular Wolfe conditions
  16211. return count;
  16212. }
  16213. if(dg > -params->lbfgs.wolfe*dginit) {
  16214. width = dec;
  16215. } else {
  16216. // strong Wolfe condition (GGML_LINESEARCH_BACKTRACKING_STRONG_WOLFE)
  16217. return count;
  16218. }
  16219. }
  16220. }
  16221. if (*step < params->lbfgs.min_step) {
  16222. return GGML_LINESEARCH_MINIMUM_STEP;
  16223. }
  16224. if (*step > params->lbfgs.max_step) {
  16225. return GGML_LINESEARCH_MAXIMUM_STEP;
  16226. }
  16227. if (params->lbfgs.max_linesearch <= count) {
  16228. return GGML_LINESEARCH_MAXIMUM_ITERATIONS;
  16229. }
  16230. (*step) *= width;
  16231. }
  16232. GGML_ASSERT(false && "line search failed");
  16233. return GGML_LINESEARCH_FAIL;
  16234. }
  16235. static enum ggml_opt_result ggml_opt_lbfgs(
  16236. struct ggml_context * ctx,
  16237. struct ggml_opt_context * opt,
  16238. struct ggml_opt_params params,
  16239. struct ggml_tensor * f,
  16240. struct ggml_cgraph * gf,
  16241. struct ggml_cgraph * gb,
  16242. ggml_opt_callback callback,
  16243. void * callback_data) {
  16244. if (params.lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_WOLFE ||
  16245. params.lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_STRONG_WOLFE) {
  16246. if (params.lbfgs.wolfe <= params.lbfgs.ftol || 1.f <= params.lbfgs.wolfe) {
  16247. return GGML_OPT_RESULT_INVALID_WOLFE;
  16248. }
  16249. }
  16250. const int m = params.lbfgs.m;
  16251. // these will store the parameters we want to optimize
  16252. struct ggml_tensor * ps[GGML_MAX_PARAMS];
  16253. int np = 0;
  16254. int nx = 0;
  16255. for (int i = 0; i < gf->n_nodes; ++i) {
  16256. if (gf->nodes[i]->flags & GGML_TENSOR_FLAG_PARAM) {
  16257. GGML_PRINT_DEBUG("found param %d: grad->op = %d\n", np, gf->nodes[i]->grad->op);
  16258. GGML_ASSERT(np < GGML_MAX_PARAMS);
  16259. ps[np++] = gf->nodes[i];
  16260. nx += ggml_nelements(gf->nodes[i]);
  16261. }
  16262. }
  16263. if ((opt->params.type != params.type) || (opt->nx != nx) || (opt->params.past != params.past) || (opt->params.lbfgs.m != params.lbfgs.m)) {
  16264. int iter = opt->iter;
  16265. ggml_opt_init(ctx, opt, params, nx);
  16266. opt->iter = iter;
  16267. }
  16268. struct ggml_cplan cplan = ggml_graph_plan(gb, params.n_threads);
  16269. struct ggml_object * obj = ggml_new_object(ctx, GGML_OBJECT_TYPE_WORK_BUFFER, cplan.work_size);
  16270. cplan.work_data = (uint8_t *)ctx->mem_buffer + obj->offs;
  16271. float * x = opt->lbfgs.x->data; // current parameters
  16272. float * xp = opt->lbfgs.xp->data; // previous parameters
  16273. float * g = opt->lbfgs.g->data; // current gradient
  16274. float * gp = opt->lbfgs.gp->data; // previous gradient
  16275. float * d = opt->lbfgs.d->data; // search direction
  16276. float * pf = params.past > 0 ? opt->lbfgs.pf->data : NULL; // past function values
  16277. const int n_accum = MAX(1, params.n_gradient_accumulation);
  16278. const float accum_norm = 1.0f / (float) n_accum;
  16279. float fx = 0.0f; // cost function value
  16280. float xnorm = 0.0f; // ||x||
  16281. float gnorm = 0.0f; // ||g||
  16282. // initialize x from the graph nodes
  16283. ggml_opt_get_params(np, ps, x);
  16284. // the L-BFGS memory
  16285. float * lm_alpha = opt->lbfgs.lmal->data;
  16286. float * lm_ys = opt->lbfgs.lmys->data;
  16287. float * lm_s = opt->lbfgs.lms->data;
  16288. float * lm_y = opt->lbfgs.lmy->data;
  16289. bool cancel = false;
  16290. // evaluate the function value and its gradient
  16291. {
  16292. ggml_opt_set_params(np, ps, x);
  16293. fx = 0;
  16294. memset(g, 0, sizeof(float)*nx);
  16295. for (int accum_step = 0; accum_step < n_accum; ++accum_step) {
  16296. if (callback) {
  16297. // LBFG-S does not support learning rate -> ignore learning schedule
  16298. float sched = 0;
  16299. callback(callback_data, accum_step, &sched, &cancel);
  16300. if (cancel) {
  16301. return GGML_OPT_RESULT_CANCEL;
  16302. }
  16303. }
  16304. // ggml_graph_reset (gf);
  16305. ggml_set_f32 (f->grad, 1.0f);
  16306. ggml_graph_compute(gb, &cplan);
  16307. ggml_opt_acc_grad(np, ps, g, accum_norm);
  16308. fx += ggml_get_f32_1d(f, 0);
  16309. }
  16310. fx *= accum_norm;
  16311. opt->loss_before = fx;
  16312. opt->loss_after = fx;
  16313. }
  16314. // search direction = -gradient
  16315. ggml_vec_neg_f32(nx, d, g);
  16316. // ||x||, ||g||
  16317. ggml_vec_norm_f32(nx, &xnorm, x);
  16318. ggml_vec_norm_f32(nx, &gnorm, g);
  16319. if (xnorm < 1.0f) {
  16320. xnorm = 1.0f;
  16321. }
  16322. // already optimized
  16323. if (gnorm/xnorm <= params.lbfgs.eps) {
  16324. return GGML_OPT_RESULT_OK;
  16325. }
  16326. if (opt->just_initialized) {
  16327. if (pf) {
  16328. pf[0] = fx;
  16329. }
  16330. opt->lbfgs.fx_best = fx;
  16331. // initial step
  16332. ggml_vec_norm_inv_f32(nx, &opt->lbfgs.step, d);
  16333. opt->lbfgs.j = 0;
  16334. opt->lbfgs.k = 1;
  16335. opt->lbfgs.end = 0;
  16336. opt->lbfgs.n_no_improvement = 0;
  16337. opt->just_initialized = false;
  16338. }
  16339. float * fx_best = &opt->lbfgs.fx_best;
  16340. float * step = &opt->lbfgs.step;
  16341. int * j = &opt->lbfgs.j;
  16342. int * k = &opt->lbfgs.k;
  16343. int * end = &opt->lbfgs.end;
  16344. int * n_no_improvement = &opt->lbfgs.n_no_improvement;
  16345. int ls = 0;
  16346. int bound = 0;
  16347. float ys = 0.0f;
  16348. float yy = 0.0f;
  16349. float beta = 0.0f;
  16350. int it = 0;
  16351. while (true) {
  16352. // store the current position and gradient vectors
  16353. ggml_vec_cpy_f32(nx, xp, x);
  16354. ggml_vec_cpy_f32(nx, gp, g);
  16355. // TODO: instead of passing &cancel here, use the return code of the linesearch
  16356. // to determine if the optimization should be cancelled
  16357. // this is a simple change, but not doing this atm, since I don't have a nice
  16358. // way to test and don't want to break something with so many changes lined up
  16359. ls = linesearch_backtracking(&params, nx, x, &fx, g, d, step, xp, f, gb, &cplan, np, ps, &cancel, callback, callback_data);
  16360. if (cancel) {
  16361. return GGML_OPT_RESULT_CANCEL;
  16362. }
  16363. if (ls < 0) {
  16364. // linesearch failed - go back to the previous point and return
  16365. ggml_vec_cpy_f32(nx, x, xp);
  16366. ggml_vec_cpy_f32(nx, g, gp);
  16367. return ls;
  16368. }
  16369. opt->loss_after = fx;
  16370. ggml_vec_norm_f32(nx, &xnorm, x);
  16371. ggml_vec_norm_f32(nx, &gnorm, g);
  16372. GGML_PRINT_DEBUG("f = %10.6f\n", ggml_get_f32_1d(f, 0));
  16373. if (xnorm < 1.0f) {
  16374. xnorm = 1.0f;
  16375. }
  16376. if (gnorm/xnorm <= params.lbfgs.eps) {
  16377. // converged
  16378. return GGML_OPT_RESULT_OK;
  16379. }
  16380. // delta-based convergence test
  16381. if (pf != NULL) {
  16382. // need at least params.past iterations to start checking for convergence
  16383. if (params.past <= k[0]) {
  16384. const float rate = (pf[k[0]%params.past] - fx)/fx;
  16385. if (fabsf(rate) < params.delta) {
  16386. return GGML_OPT_RESULT_OK;
  16387. }
  16388. }
  16389. pf[k[0]%params.past] = fx;
  16390. }
  16391. // check for improvement
  16392. if (params.max_no_improvement > 0) {
  16393. if (fx < fx_best[0]) {
  16394. fx_best[0] = fx;
  16395. n_no_improvement[0] = 0;
  16396. } else {
  16397. n_no_improvement[0]++;
  16398. if (n_no_improvement[0] >= params.max_no_improvement) {
  16399. return GGML_OPT_RESULT_OK;
  16400. }
  16401. }
  16402. }
  16403. if (params.lbfgs.n_iter != 0 && params.lbfgs.n_iter < it + 1) {
  16404. // reached the maximum number of iterations
  16405. return GGML_OPT_RESULT_DID_NOT_CONVERGE;
  16406. }
  16407. // update vectors s and y:
  16408. // s_{k+1} = x_{k+1} - x_{k} = \step * d_{k}.
  16409. // y_{k+1} = g_{k+1} - g_{k}.
  16410. //
  16411. ggml_vec_sub_f32(nx, &lm_s[end[0]*nx], x, xp);
  16412. ggml_vec_sub_f32(nx, &lm_y[end[0]*nx], g, gp);
  16413. // compute scalars ys and yy:
  16414. // ys = y^t \cdot s -> 1 / \rho.
  16415. // yy = y^t \cdot y.
  16416. //
  16417. ggml_vec_dot_f32(nx, &ys, 0, &lm_y[end[0]*nx], 0, &lm_s[end[0]*nx], 0, 1);
  16418. ggml_vec_dot_f32(nx, &yy, 0, &lm_y[end[0]*nx], 0, &lm_y[end[0]*nx], 0, 1);
  16419. lm_ys[end[0]] = ys;
  16420. // find new search direction
  16421. // ref: https://en.wikipedia.org/wiki/Limited-memory_BFGS
  16422. bound = (m <= k[0]) ? m : k[0];
  16423. k[0]++;
  16424. it++;
  16425. end[0] = (end[0] + 1)%m;
  16426. // initialize search direction with -g
  16427. ggml_vec_neg_f32(nx, d, g);
  16428. j[0] = end[0];
  16429. for (int i = 0; i < bound; ++i) {
  16430. j[0] = (j[0] + m - 1) % m;
  16431. // \alpha_{j} = \rho_{j} s^{t}_{j} \cdot q_{k+1}
  16432. ggml_vec_dot_f32(nx, &lm_alpha[j[0]], 0, &lm_s[j[0]*nx], 0, d, 0, 1);
  16433. lm_alpha[j[0]] /= lm_ys[j[0]];
  16434. // q_{i} = q_{i+1} - \alpha_{i} y_{i}
  16435. ggml_vec_mad_f32(nx, d, &lm_y[j[0]*nx], -lm_alpha[j[0]]);
  16436. }
  16437. ggml_vec_scale_f32(nx, d, ys/yy);
  16438. for (int i = 0; i < bound; ++i) {
  16439. // \beta_{j} = \rho_{j} y^t_{j} \cdot \gamma_{i}
  16440. ggml_vec_dot_f32(nx, &beta, 0, &lm_y[j[0]*nx], 0, d, 0, 1);
  16441. beta /= lm_ys[j[0]];
  16442. // \gamma_{i+1} = \gamma_{i} + (\alpha_{j} - \beta_{j}) s_{j}
  16443. ggml_vec_mad_f32(nx, d, &lm_s[j[0]*nx], lm_alpha[j[0]] - beta);
  16444. j[0] = (j[0] + 1)%m;
  16445. }
  16446. step[0] = 1.0;
  16447. }
  16448. GGML_ASSERT(false && "lbfgs failed");
  16449. return GGML_OPT_RESULT_DID_NOT_CONVERGE;
  16450. }
  16451. struct ggml_opt_params ggml_opt_default_params(enum ggml_opt_type type) {
  16452. struct ggml_opt_params result;
  16453. switch (type) {
  16454. case GGML_OPT_TYPE_ADAM:
  16455. {
  16456. result = (struct ggml_opt_params) {
  16457. .type = GGML_OPT_TYPE_ADAM,
  16458. .graph_size = GGML_DEFAULT_GRAPH_SIZE,
  16459. .n_threads = 1, // FIXME: GGML_DEFAULT_N_THREADS ?
  16460. .past = 0,
  16461. .delta = 1e-5f,
  16462. .max_no_improvement = 100,
  16463. .print_forward_graph = true,
  16464. .print_backward_graph = true,
  16465. .n_gradient_accumulation = 1,
  16466. .adam = {
  16467. .n_iter = 10000,
  16468. .sched = 1.000f,
  16469. .decay = 0.0f,
  16470. .decay_min_ndim = 2,
  16471. .alpha = 0.001f,
  16472. .beta1 = 0.9f,
  16473. .beta2 = 0.999f,
  16474. .eps = 1e-8f,
  16475. .eps_f = 1e-5f,
  16476. .eps_g = 1e-3f,
  16477. .gclip = 0.0f,
  16478. },
  16479. };
  16480. } break;
  16481. case GGML_OPT_TYPE_LBFGS:
  16482. {
  16483. result = (struct ggml_opt_params) {
  16484. .type = GGML_OPT_TYPE_LBFGS,
  16485. .graph_size = GGML_DEFAULT_GRAPH_SIZE,
  16486. .n_threads = 1,
  16487. .past = 0,
  16488. .delta = 1e-5f,
  16489. .max_no_improvement = 0,
  16490. .print_forward_graph = true,
  16491. .print_backward_graph = true,
  16492. .n_gradient_accumulation = 1,
  16493. .lbfgs = {
  16494. .m = 6,
  16495. .n_iter = 100,
  16496. .max_linesearch = 20,
  16497. .eps = 1e-5f,
  16498. .ftol = 1e-4f,
  16499. .wolfe = 0.9f,
  16500. .min_step = 1e-20f,
  16501. .max_step = 1e+20f,
  16502. .linesearch = GGML_LINESEARCH_DEFAULT,
  16503. },
  16504. };
  16505. } break;
  16506. }
  16507. return result;
  16508. }
  16509. GGML_API void ggml_opt_init(
  16510. struct ggml_context * ctx,
  16511. struct ggml_opt_context * opt,
  16512. struct ggml_opt_params params,
  16513. int64_t nx) {
  16514. opt->ctx = ctx;
  16515. opt->params = params;
  16516. opt->iter = 0;
  16517. opt->nx = nx;
  16518. opt->just_initialized = true;
  16519. if (opt->ctx == NULL) {
  16520. struct ggml_init_params ctx_opt_params;
  16521. if (opt->params.type == GGML_OPT_TYPE_ADAM) {
  16522. ctx_opt_params.mem_size = GGML_MEM_ALIGN*3 + ggml_tensor_overhead()*3 + ggml_type_size(GGML_TYPE_F32)*nx*3;
  16523. if (opt->params.past > 0) {
  16524. ctx_opt_params.mem_size += GGML_MEM_ALIGN + ggml_tensor_overhead() + ggml_type_size(GGML_TYPE_F32)*opt->params.past;
  16525. }
  16526. } else if (opt->params.type == GGML_OPT_TYPE_LBFGS) {
  16527. ctx_opt_params.mem_size = GGML_MEM_ALIGN*9 + ggml_tensor_overhead()*9 + ggml_type_size(GGML_TYPE_F32)*(nx*5 + opt->params.lbfgs.m*2 + nx*opt->params.lbfgs.m*2);
  16528. if (opt->params.past > 0) {
  16529. ctx_opt_params.mem_size += GGML_MEM_ALIGN + ggml_tensor_overhead() + ggml_type_size(GGML_TYPE_F32)*opt->params.past;
  16530. }
  16531. }
  16532. ctx_opt_params.mem_buffer = NULL;
  16533. ctx_opt_params.no_alloc = false;
  16534. opt->ctx = ggml_init(ctx_opt_params);
  16535. }
  16536. switch (opt->params.type) {
  16537. case GGML_OPT_TYPE_ADAM:
  16538. {
  16539. opt->adam.g = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  16540. opt->adam.m = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  16541. opt->adam.v = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  16542. opt->adam.pf = params.past > 0
  16543. ? ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, params.past)
  16544. : NULL;
  16545. ggml_set_zero(opt->adam.m);
  16546. ggml_set_zero(opt->adam.v);
  16547. if (opt->adam.pf) {
  16548. ggml_set_zero(opt->adam.pf);
  16549. }
  16550. } break;
  16551. case GGML_OPT_TYPE_LBFGS:
  16552. {
  16553. opt->lbfgs.x = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  16554. opt->lbfgs.xp = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  16555. opt->lbfgs.g = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  16556. opt->lbfgs.gp = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  16557. opt->lbfgs.d = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  16558. opt->lbfgs.pf = params.past > 0
  16559. ? ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, params.past)
  16560. : NULL;
  16561. opt->lbfgs.lmal = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, params.lbfgs.m);
  16562. opt->lbfgs.lmys = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, params.lbfgs.m);
  16563. opt->lbfgs.lms = ggml_new_tensor_2d(opt->ctx, GGML_TYPE_F32, nx, params.lbfgs.m);
  16564. opt->lbfgs.lmy = ggml_new_tensor_2d(opt->ctx, GGML_TYPE_F32, nx, params.lbfgs.m);
  16565. ggml_set_zero(opt->lbfgs.x);
  16566. ggml_set_zero(opt->lbfgs.xp);
  16567. ggml_set_zero(opt->lbfgs.g);
  16568. ggml_set_zero(opt->lbfgs.gp);
  16569. ggml_set_zero(opt->lbfgs.d);
  16570. if (opt->lbfgs.pf) {
  16571. ggml_set_zero(opt->lbfgs.pf);
  16572. }
  16573. ggml_set_zero(opt->lbfgs.lmal);
  16574. ggml_set_zero(opt->lbfgs.lmys);
  16575. ggml_set_zero(opt->lbfgs.lms);
  16576. ggml_set_zero(opt->lbfgs.lmy);
  16577. } break;
  16578. }
  16579. }
  16580. enum ggml_opt_result ggml_opt(
  16581. struct ggml_context * ctx,
  16582. struct ggml_opt_params params,
  16583. struct ggml_tensor * f) {
  16584. bool free_ctx = false;
  16585. if (ctx == NULL) {
  16586. struct ggml_init_params params_ctx = {
  16587. .mem_size = 16*1024*1024,
  16588. .mem_buffer = NULL,
  16589. .no_alloc = false,
  16590. };
  16591. ctx = ggml_init(params_ctx);
  16592. if (ctx == NULL) {
  16593. return GGML_OPT_RESULT_NO_CONTEXT;
  16594. }
  16595. free_ctx = true;
  16596. }
  16597. enum ggml_opt_result result = GGML_OPT_RESULT_OK;
  16598. struct ggml_opt_context * opt = (struct ggml_opt_context *) alloca(sizeof(struct ggml_opt_context));
  16599. ggml_opt_init(ctx, opt, params, 0);
  16600. result = ggml_opt_resume(ctx, opt, f);
  16601. if (free_ctx) {
  16602. ggml_free(ctx);
  16603. }
  16604. return result;
  16605. }
  16606. enum ggml_opt_result ggml_opt_resume(
  16607. struct ggml_context * ctx,
  16608. struct ggml_opt_context * opt,
  16609. struct ggml_tensor * f) {
  16610. // build forward + backward compute graphs
  16611. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx, opt->params.graph_size, true);
  16612. ggml_build_forward_expand(gf, f);
  16613. struct ggml_cgraph * gb = ggml_graph_dup(ctx, gf);
  16614. ggml_build_backward_expand(ctx, gf, gb, true);
  16615. return ggml_opt_resume_g(ctx, opt, f, gf, gb, NULL, NULL);
  16616. }
  16617. enum ggml_opt_result ggml_opt_resume_g(
  16618. struct ggml_context * ctx,
  16619. struct ggml_opt_context * opt,
  16620. struct ggml_tensor * f,
  16621. struct ggml_cgraph * gf,
  16622. struct ggml_cgraph * gb,
  16623. ggml_opt_callback callback,
  16624. void * callback_data) {
  16625. // build forward + backward compute graphs
  16626. enum ggml_opt_result result = GGML_OPT_RESULT_OK;
  16627. switch (opt->params.type) {
  16628. case GGML_OPT_TYPE_ADAM:
  16629. {
  16630. result = ggml_opt_adam(ctx, opt, opt->params, f, gf, gb, callback, callback_data);
  16631. } break;
  16632. case GGML_OPT_TYPE_LBFGS:
  16633. {
  16634. result = ggml_opt_lbfgs(ctx, opt, opt->params, f, gf, gb, callback, callback_data);
  16635. } break;
  16636. }
  16637. if (opt->params.print_forward_graph) {
  16638. ggml_graph_print (gf);
  16639. ggml_graph_dump_dot(gf, NULL, "opt-forward.dot");
  16640. }
  16641. if (opt->params.print_backward_graph) {
  16642. ggml_graph_print (gb);
  16643. ggml_graph_dump_dot(gb, gf, "opt-backward.dot");
  16644. }
  16645. return result;
  16646. }
  16647. ////////////////////////////////////////////////////////////////////////////////
  16648. void ggml_set_input(struct ggml_tensor * tensor) {
  16649. tensor->flags |= GGML_TENSOR_FLAG_INPUT;
  16650. }
  16651. void ggml_set_output(struct ggml_tensor * tensor) {
  16652. tensor->flags |= GGML_TENSOR_FLAG_OUTPUT;
  16653. }
  16654. ////////////////////////////////////////////////////////////////////////////////
  16655. void ggml_quantize_init(enum ggml_type type) {
  16656. ggml_critical_section_start();
  16657. switch (type) {
  16658. case GGML_TYPE_IQ2_XXS:
  16659. case GGML_TYPE_IQ2_XS:
  16660. case GGML_TYPE_IQ2_S:
  16661. case GGML_TYPE_IQ1_S:
  16662. case GGML_TYPE_IQ1_M: iq2xs_init_impl(type); break;
  16663. case GGML_TYPE_IQ3_XXS: iq3xs_init_impl(256); break;
  16664. case GGML_TYPE_IQ3_S: iq3xs_init_impl(512); break;
  16665. default: // nothing
  16666. break;
  16667. }
  16668. ggml_critical_section_end();
  16669. }
  16670. void ggml_quantize_free(void) {
  16671. ggml_critical_section_start();
  16672. iq2xs_free_impl(GGML_TYPE_IQ2_XXS);
  16673. iq2xs_free_impl(GGML_TYPE_IQ2_XS);
  16674. iq2xs_free_impl(GGML_TYPE_IQ1_S);
  16675. iq3xs_free_impl(256);
  16676. ggml_critical_section_end();
  16677. }
  16678. bool ggml_quantize_requires_imatrix(enum ggml_type type) {
  16679. return
  16680. type == GGML_TYPE_IQ2_XXS ||
  16681. type == GGML_TYPE_IQ2_XS ||
  16682. type == GGML_TYPE_IQ1_S;// ||
  16683. //type == GGML_TYPE_IQ1_M;
  16684. }
  16685. size_t ggml_quantize_chunk(
  16686. enum ggml_type type,
  16687. const float * src,
  16688. void * dst,
  16689. int start,
  16690. int nrows,
  16691. int n_per_row,
  16692. const float * imatrix) {
  16693. const int n = nrows * n_per_row;
  16694. if (ggml_quantize_requires_imatrix(type)) {
  16695. GGML_ASSERT(imatrix != NULL);
  16696. }
  16697. GGML_ASSERT(start % type_traits[type].blck_size == 0);
  16698. GGML_ASSERT(start % n_per_row == 0);
  16699. ggml_quantize_init(type); // this is noop if already initialized
  16700. const size_t start_row = start / n_per_row;
  16701. const size_t row_size = ggml_row_size(type, n_per_row);
  16702. size_t result = 0;
  16703. switch (type) {
  16704. case GGML_TYPE_Q4_0: result = quantize_q4_0(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  16705. case GGML_TYPE_Q4_1: result = quantize_q4_1(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  16706. case GGML_TYPE_Q5_0: result = quantize_q5_0(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  16707. case GGML_TYPE_Q5_1: result = quantize_q5_1(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  16708. case GGML_TYPE_Q8_0: result = quantize_q8_0(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  16709. case GGML_TYPE_Q2_K: result = quantize_q2_K(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  16710. case GGML_TYPE_Q3_K: result = quantize_q3_K(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  16711. case GGML_TYPE_Q4_K: result = quantize_q4_K(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  16712. case GGML_TYPE_Q5_K: result = quantize_q5_K(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  16713. case GGML_TYPE_Q6_K: result = quantize_q6_K(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  16714. case GGML_TYPE_IQ2_XXS: result = quantize_iq2_xxs(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  16715. case GGML_TYPE_IQ2_XS: result = quantize_iq2_xs (src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  16716. case GGML_TYPE_IQ3_XXS: result = quantize_iq3_xxs(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  16717. case GGML_TYPE_IQ3_S: result = quantize_iq3_s (src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  16718. case GGML_TYPE_IQ2_S: result = quantize_iq2_s (src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  16719. case GGML_TYPE_IQ1_S: result = quantize_iq1_s (src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  16720. case GGML_TYPE_IQ1_M: result = quantize_iq1_m (src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  16721. case GGML_TYPE_IQ4_NL: result = quantize_iq4_nl (src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  16722. #if QK_K == 64
  16723. case GGML_TYPE_IQ4_XS: result = quantize_iq4_nl (src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  16724. #else
  16725. case GGML_TYPE_IQ4_XS: result = quantize_iq4_xs (src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  16726. #endif
  16727. case GGML_TYPE_F16:
  16728. {
  16729. size_t elemsize = sizeof(ggml_fp16_t);
  16730. ggml_fp32_to_fp16_row(src + start, (ggml_fp16_t *)dst + start, n);
  16731. result = n * elemsize;
  16732. } break;
  16733. case GGML_TYPE_F32:
  16734. {
  16735. size_t elemsize = sizeof(float);
  16736. result = n * elemsize;
  16737. memcpy((uint8_t *)dst + start * elemsize, src + start, result);
  16738. } break;
  16739. default:
  16740. assert(false);
  16741. }
  16742. GGML_ASSERT(result == nrows * row_size);
  16743. return result;
  16744. }
  16745. ////////////////////////////////////////////////////////////////////////////////
  16746. struct gguf_str {
  16747. uint64_t n; // GGUFv2
  16748. char * data;
  16749. };
  16750. static const size_t GGUF_TYPE_SIZE[GGUF_TYPE_COUNT] = {
  16751. [GGUF_TYPE_UINT8] = sizeof(uint8_t),
  16752. [GGUF_TYPE_INT8] = sizeof(int8_t),
  16753. [GGUF_TYPE_UINT16] = sizeof(uint16_t),
  16754. [GGUF_TYPE_INT16] = sizeof(int16_t),
  16755. [GGUF_TYPE_UINT32] = sizeof(uint32_t),
  16756. [GGUF_TYPE_INT32] = sizeof(int32_t),
  16757. [GGUF_TYPE_FLOAT32] = sizeof(float),
  16758. [GGUF_TYPE_BOOL] = sizeof(bool),
  16759. [GGUF_TYPE_STRING] = sizeof(struct gguf_str),
  16760. [GGUF_TYPE_UINT64] = sizeof(uint64_t),
  16761. [GGUF_TYPE_INT64] = sizeof(int64_t),
  16762. [GGUF_TYPE_FLOAT64] = sizeof(double),
  16763. [GGUF_TYPE_ARRAY] = 0, // undefined
  16764. };
  16765. static_assert(GGUF_TYPE_COUNT == 13, "GGUF_TYPE_COUNT != 13");
  16766. static const char * GGUF_TYPE_NAME[GGUF_TYPE_COUNT] = {
  16767. [GGUF_TYPE_UINT8] = "u8",
  16768. [GGUF_TYPE_INT8] = "i8",
  16769. [GGUF_TYPE_UINT16] = "u16",
  16770. [GGUF_TYPE_INT16] = "i16",
  16771. [GGUF_TYPE_UINT32] = "u32",
  16772. [GGUF_TYPE_INT32] = "i32",
  16773. [GGUF_TYPE_FLOAT32] = "f32",
  16774. [GGUF_TYPE_BOOL] = "bool",
  16775. [GGUF_TYPE_STRING] = "str",
  16776. [GGUF_TYPE_ARRAY] = "arr",
  16777. [GGUF_TYPE_UINT64] = "u64",
  16778. [GGUF_TYPE_INT64] = "i64",
  16779. [GGUF_TYPE_FLOAT64] = "f64",
  16780. };
  16781. static_assert(GGUF_TYPE_COUNT == 13, "GGUF_TYPE_COUNT != 13");
  16782. union gguf_value {
  16783. uint8_t uint8;
  16784. int8_t int8;
  16785. uint16_t uint16;
  16786. int16_t int16;
  16787. uint32_t uint32;
  16788. int32_t int32;
  16789. float float32;
  16790. uint64_t uint64;
  16791. int64_t int64;
  16792. double float64;
  16793. bool bool_;
  16794. struct gguf_str str;
  16795. struct {
  16796. enum gguf_type type;
  16797. uint64_t n; // GGUFv2
  16798. void * data;
  16799. } arr;
  16800. };
  16801. struct gguf_kv {
  16802. struct gguf_str key;
  16803. enum gguf_type type;
  16804. union gguf_value value;
  16805. };
  16806. struct gguf_header {
  16807. char magic[4];
  16808. uint32_t version;
  16809. uint64_t n_tensors; // GGUFv2
  16810. uint64_t n_kv; // GGUFv2
  16811. };
  16812. struct gguf_tensor_info {
  16813. struct gguf_str name;
  16814. uint32_t n_dims;
  16815. uint64_t ne[GGML_MAX_DIMS];
  16816. enum ggml_type type;
  16817. uint64_t offset; // offset from start of `data`, must be a multiple of `ALIGNMENT`
  16818. // for writing API
  16819. const void * data;
  16820. size_t size;
  16821. };
  16822. struct gguf_context {
  16823. struct gguf_header header;
  16824. struct gguf_kv * kv;
  16825. struct gguf_tensor_info * infos;
  16826. size_t alignment;
  16827. size_t offset; // offset of `data` from beginning of file
  16828. size_t size; // size of `data` in bytes
  16829. //uint8_t * padding;
  16830. void * data;
  16831. };
  16832. static size_t gguf_type_size(enum gguf_type type) {
  16833. GGML_ASSERT(0 <= type && type < GGUF_TYPE_COUNT);
  16834. return GGUF_TYPE_SIZE[type];
  16835. }
  16836. static void gguf_tensor_info_sanitize(struct gguf_tensor_info * info) {
  16837. GGML_ASSERT(info->n_dims <= GGML_MAX_DIMS);
  16838. GGML_ASSERT(0 <= info->type && info->type < GGML_TYPE_COUNT);
  16839. for (uint32_t i = 0; i < info->n_dims; ++i) {
  16840. GGML_ASSERT(info->ne[i] > 0);
  16841. }
  16842. // prevent overflow for total number of elements
  16843. GGML_ASSERT(INT64_MAX/info->ne[1] > info->ne[0]);
  16844. GGML_ASSERT(INT64_MAX/info->ne[2] > info->ne[0]*info->ne[1]);
  16845. GGML_ASSERT(INT64_MAX/info->ne[3] > info->ne[0]*info->ne[1]*info->ne[2]);
  16846. }
  16847. static bool gguf_fread_el(FILE * file, void * dst, size_t size, size_t * offset) {
  16848. const size_t n = fread(dst, 1, size, file);
  16849. *offset += n;
  16850. return n == size;
  16851. }
  16852. static bool gguf_fread_str(FILE * file, struct gguf_str * p, size_t * offset) {
  16853. p->n = 0;
  16854. p->data = NULL;
  16855. bool ok = true;
  16856. ok = ok && gguf_fread_el(file, &p->n, sizeof(p->n), offset);
  16857. // early exit if string length is invalid, prevents from integer overflow
  16858. if (p->n == SIZE_MAX) {
  16859. fprintf(stderr, "%s: invalid string length (%" PRIu64 ")\n", __func__, p->n);
  16860. return false;
  16861. }
  16862. p->data = GGML_CALLOC(p->n + 1, 1);
  16863. ok = ok && gguf_fread_el(file, p->data, p->n, offset);
  16864. return ok;
  16865. }
  16866. struct gguf_context * gguf_init_empty(void) {
  16867. struct gguf_context * ctx = GGML_ALIGNED_MALLOC(sizeof(struct gguf_context));
  16868. memcpy(ctx->header.magic, GGUF_MAGIC, sizeof(ctx->header.magic));
  16869. ctx->header.version = GGUF_VERSION;
  16870. ctx->header.n_tensors = 0;
  16871. ctx->header.n_kv = 0;
  16872. ctx->kv = NULL;
  16873. ctx->infos = NULL;
  16874. ctx->alignment = GGUF_DEFAULT_ALIGNMENT;
  16875. ctx->offset = 0;
  16876. ctx->size = 0;
  16877. ctx->data = NULL;
  16878. return ctx;
  16879. }
  16880. struct gguf_context * gguf_init_from_file(const char * fname, struct gguf_init_params params) {
  16881. FILE * file = ggml_fopen(fname, "rb");
  16882. if (!file) {
  16883. return NULL;
  16884. }
  16885. // offset from start of file
  16886. size_t offset = 0;
  16887. char magic[4];
  16888. // check the magic before making allocations
  16889. {
  16890. gguf_fread_el(file, &magic, sizeof(magic), &offset);
  16891. for (uint32_t i = 0; i < sizeof(magic); i++) {
  16892. if (magic[i] != GGUF_MAGIC[i]) {
  16893. fprintf(stderr, "%s: invalid magic characters '%c%c%c%c'\n", __func__, magic[0], magic[1], magic[2], magic[3]);
  16894. fclose(file);
  16895. return NULL;
  16896. }
  16897. }
  16898. }
  16899. bool ok = true;
  16900. struct gguf_context * ctx = GGML_ALIGNED_MALLOC(sizeof(struct gguf_context));
  16901. // read the header
  16902. {
  16903. strncpy(ctx->header.magic, magic, 4);
  16904. ctx->kv = NULL;
  16905. ctx->infos = NULL;
  16906. ctx->data = NULL;
  16907. ok = ok && gguf_fread_el(file, &ctx->header.version, sizeof(ctx->header.version), &offset);
  16908. ok = ok && gguf_fread_el(file, &ctx->header.n_tensors, sizeof(ctx->header.n_tensors), &offset);
  16909. ok = ok && gguf_fread_el(file, &ctx->header.n_kv, sizeof(ctx->header.n_kv), &offset);
  16910. if (ctx->header.version == 1) {
  16911. fprintf(stderr, "%s: GGUFv1 is no longer supported. please use a more up-to-date version\n", __func__);
  16912. fclose(file);
  16913. gguf_free(ctx);
  16914. return NULL;
  16915. }
  16916. // sanity-checks to prevent from integer/buffer overflows
  16917. ok = ok && (ctx->header.n_tensors < (SIZE_MAX/2)/sizeof(struct gguf_tensor_info));
  16918. ok = ok && (ctx->header.n_tensors < (SIZE_MAX/2)/ggml_tensor_overhead());
  16919. ok = ok && (ctx->header.n_kv < (SIZE_MAX/2)/sizeof(struct gguf_kv));
  16920. if (!ok) {
  16921. fprintf(stderr, "%s: failed to read header\n", __func__);
  16922. fclose(file);
  16923. gguf_free(ctx);
  16924. return NULL;
  16925. }
  16926. }
  16927. // read the kv pairs
  16928. {
  16929. ctx->kv = GGML_MALLOC(ctx->header.n_kv * sizeof(struct gguf_kv));
  16930. for (uint64_t i = 0; i < ctx->header.n_kv; ++i) {
  16931. struct gguf_kv * kv = &ctx->kv[i];
  16932. //fprintf(stderr, "%s: reading kv %d\n", __func__, i);
  16933. ok = ok && gguf_fread_str(file, &kv->key, &offset);
  16934. ok = ok && gguf_fread_el (file, &kv->type, sizeof(kv->type), &offset);
  16935. //fprintf(stderr, "%s: reading kv with key %s\n", __func__, kv->key.data);
  16936. switch (kv->type) {
  16937. case GGUF_TYPE_UINT8: ok = ok && gguf_fread_el (file, &kv->value.uint8, sizeof(kv->value.uint8), &offset); break;
  16938. case GGUF_TYPE_INT8: ok = ok && gguf_fread_el (file, &kv->value.int8, sizeof(kv->value.int8), &offset); break;
  16939. case GGUF_TYPE_UINT16: ok = ok && gguf_fread_el (file, &kv->value.uint16, sizeof(kv->value.uint16), &offset); break;
  16940. case GGUF_TYPE_INT16: ok = ok && gguf_fread_el (file, &kv->value.int16, sizeof(kv->value.int16), &offset); break;
  16941. case GGUF_TYPE_UINT32: ok = ok && gguf_fread_el (file, &kv->value.uint32, sizeof(kv->value.uint32), &offset); break;
  16942. case GGUF_TYPE_INT32: ok = ok && gguf_fread_el (file, &kv->value.int32, sizeof(kv->value.int32), &offset); break;
  16943. case GGUF_TYPE_FLOAT32: ok = ok && gguf_fread_el (file, &kv->value.float32, sizeof(kv->value.float32), &offset); break;
  16944. case GGUF_TYPE_UINT64: ok = ok && gguf_fread_el (file, &kv->value.uint64, sizeof(kv->value.uint64), &offset); break;
  16945. case GGUF_TYPE_INT64: ok = ok && gguf_fread_el (file, &kv->value.int64, sizeof(kv->value.int64), &offset); break;
  16946. case GGUF_TYPE_FLOAT64: ok = ok && gguf_fread_el (file, &kv->value.float64, sizeof(kv->value.float64), &offset); break;
  16947. case GGUF_TYPE_BOOL: ok = ok && gguf_fread_el (file, &kv->value.bool_, sizeof(kv->value.bool_), &offset); break;
  16948. case GGUF_TYPE_STRING: ok = ok && gguf_fread_str(file, &kv->value.str, &offset); break;
  16949. case GGUF_TYPE_ARRAY:
  16950. {
  16951. ok = ok && gguf_fread_el(file, &kv->value.arr.type, sizeof(kv->value.arr.type), &offset);
  16952. ok = ok && gguf_fread_el(file, &kv->value.arr.n, sizeof(kv->value.arr.n), &offset);
  16953. switch (kv->value.arr.type) {
  16954. case GGUF_TYPE_UINT8:
  16955. case GGUF_TYPE_INT8:
  16956. case GGUF_TYPE_UINT16:
  16957. case GGUF_TYPE_INT16:
  16958. case GGUF_TYPE_UINT32:
  16959. case GGUF_TYPE_INT32:
  16960. case GGUF_TYPE_FLOAT32:
  16961. case GGUF_TYPE_UINT64:
  16962. case GGUF_TYPE_INT64:
  16963. case GGUF_TYPE_FLOAT64:
  16964. case GGUF_TYPE_BOOL:
  16965. {
  16966. // prevent from integer overflow in the malloc below
  16967. if (kv->value.arr.n >= SIZE_MAX/gguf_type_size(kv->value.arr.type)) {
  16968. fprintf(stderr, "%s: array size is too large (%" PRIu64 ")\n", __func__, kv->value.arr.n);
  16969. fclose(file);
  16970. gguf_free(ctx);
  16971. return NULL;
  16972. }
  16973. kv->value.arr.data = GGML_MALLOC(kv->value.arr.n * gguf_type_size(kv->value.arr.type));
  16974. ok = ok && gguf_fread_el(file, kv->value.arr.data, kv->value.arr.n * gguf_type_size(kv->value.arr.type), &offset);
  16975. } break;
  16976. case GGUF_TYPE_STRING:
  16977. {
  16978. // prevent from integer overflow in the malloc below
  16979. if (kv->value.arr.n >= SIZE_MAX/sizeof(struct gguf_str)) {
  16980. fprintf(stderr, "%s: array size is too large (%" PRIu64 ")\n", __func__, kv->value.arr.n);
  16981. fclose(file);
  16982. gguf_free(ctx);
  16983. return NULL;
  16984. }
  16985. kv->value.arr.data = GGML_MALLOC(kv->value.arr.n * sizeof(struct gguf_str));
  16986. for (uint64_t j = 0; j < kv->value.arr.n; ++j) {
  16987. ok = ok && gguf_fread_str(file, &((struct gguf_str *) kv->value.arr.data)[j], &offset);
  16988. }
  16989. } break;
  16990. case GGUF_TYPE_ARRAY:
  16991. default: GGML_ASSERT(false && "invalid type"); break;
  16992. }
  16993. } break;
  16994. default: GGML_ASSERT(false && "invalid type");
  16995. }
  16996. if (!ok) {
  16997. break;
  16998. }
  16999. }
  17000. if (!ok) {
  17001. fprintf(stderr, "%s: failed to read key-value pairs\n", __func__);
  17002. fclose(file);
  17003. gguf_free(ctx);
  17004. return NULL;
  17005. }
  17006. }
  17007. // read the tensor infos
  17008. {
  17009. ctx->infos = GGML_MALLOC(ctx->header.n_tensors * sizeof(struct gguf_tensor_info));
  17010. for (uint64_t i = 0; i < ctx->header.n_tensors; ++i) {
  17011. struct gguf_tensor_info * info = &ctx->infos[i];
  17012. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  17013. info->ne[j] = 1;
  17014. }
  17015. ok = ok && gguf_fread_str(file, &info->name, &offset);
  17016. ok = ok && gguf_fread_el (file, &info->n_dims, sizeof(info->n_dims), &offset);
  17017. ok = ok && (info->n_dims <= GGML_MAX_DIMS);
  17018. for (uint32_t j = 0; j < info->n_dims; ++j) {
  17019. ok = ok && gguf_fread_el(file, &info->ne[j], sizeof(info->ne[j]), &offset);
  17020. }
  17021. ok = ok && gguf_fread_el (file, &info->type, sizeof(info->type), &offset);
  17022. ok = ok && gguf_fread_el (file, &info->offset, sizeof(info->offset), &offset);
  17023. gguf_tensor_info_sanitize(info);
  17024. if (!ok) {
  17025. fprintf(stderr, "%s: failed to read tensor info\n", __func__);
  17026. fclose(file);
  17027. gguf_free(ctx);
  17028. return NULL;
  17029. }
  17030. }
  17031. }
  17032. ctx->alignment = GGUF_DEFAULT_ALIGNMENT;
  17033. int alignment_idx = gguf_find_key(ctx, "general.alignment");
  17034. if (alignment_idx != -1) {
  17035. ctx->alignment = gguf_get_val_u32(ctx, alignment_idx);
  17036. }
  17037. // we require the data section to be aligned, so take into account any padding
  17038. {
  17039. const size_t offset_pad = offset % ctx->alignment;
  17040. if (offset_pad != 0) {
  17041. offset += ctx->alignment - offset_pad;
  17042. fseek(file, offset, SEEK_SET);
  17043. }
  17044. }
  17045. // store the current file offset - this is where the data section starts
  17046. ctx->offset = offset;
  17047. // compute the total size of the data section, taking into account the alignment
  17048. {
  17049. ctx->size = 0;
  17050. for (uint64_t i = 0; i < ctx->header.n_tensors; ++i) {
  17051. struct gguf_tensor_info * info = &ctx->infos[i];
  17052. const int64_t ne =
  17053. (int64_t) info->ne[0] *
  17054. (int64_t) info->ne[1] *
  17055. (int64_t) info->ne[2] *
  17056. (int64_t) info->ne[3];
  17057. if (ne % ggml_blck_size(info->type) != 0) {
  17058. fprintf(stderr, "%s: tensor '%s' of type %d (%s) number of elements (%" PRId64 ") is not a multiple of block size (%d)\n",
  17059. __func__, info->name.data, (int)info->type, ggml_type_name(info->type), ne, ggml_blck_size(info->type));
  17060. fclose(file);
  17061. gguf_free(ctx);
  17062. return NULL;
  17063. }
  17064. const size_t size_cur = ggml_row_size(info->type, ne);
  17065. ctx->size += GGML_PAD(size_cur, ctx->alignment);
  17066. }
  17067. }
  17068. // load the tensor data only if requested
  17069. if (params.ctx != NULL) {
  17070. // if the provided gguf_context is no_alloc, then we create "empty" tensors and do not read the binary blob
  17071. // otherwise, we load the binary blob into the created ggml_context as well, and point the "data" members of
  17072. // the ggml_tensor structs to the appropriate locations in the binary blob
  17073. // compute the exact size needed for the new ggml_context
  17074. const size_t mem_size =
  17075. params.no_alloc ?
  17076. (ctx->header.n_tensors )*ggml_tensor_overhead() :
  17077. (ctx->header.n_tensors + 1)*ggml_tensor_overhead() + ctx->size;
  17078. struct ggml_init_params pdata = {
  17079. .mem_size = mem_size,
  17080. .mem_buffer = NULL,
  17081. .no_alloc = params.no_alloc,
  17082. };
  17083. *params.ctx = ggml_init(pdata);
  17084. struct ggml_context * ctx_data = *params.ctx;
  17085. struct ggml_tensor * data = NULL;
  17086. if (!params.no_alloc) {
  17087. data = ggml_new_tensor_1d(ctx_data, GGML_TYPE_I8, ctx->size);
  17088. ok = ok && data != NULL;
  17089. // read the binary blob with the tensor data
  17090. ok = ok && gguf_fread_el(file, data->data, ctx->size, &offset);
  17091. if (!ok) {
  17092. fprintf(stderr, "%s: failed to read tensor data\n", __func__);
  17093. fclose(file);
  17094. ggml_free(ctx_data);
  17095. gguf_free(ctx);
  17096. return NULL;
  17097. }
  17098. ctx->data = data->data;
  17099. }
  17100. ggml_set_no_alloc(ctx_data, true);
  17101. // create the tensors
  17102. for (uint64_t i = 0; i < ctx->header.n_tensors; ++i) {
  17103. const int64_t ne[GGML_MAX_DIMS] = {
  17104. ctx->infos[i].ne[0],
  17105. ctx->infos[i].ne[1],
  17106. ctx->infos[i].ne[2],
  17107. ctx->infos[i].ne[3],
  17108. };
  17109. struct ggml_tensor * cur = ggml_new_tensor(ctx_data, ctx->infos[i].type, ctx->infos[i].n_dims, ne);
  17110. ok = ok && cur != NULL;
  17111. ggml_set_name(cur, ctx->infos[i].name.data);
  17112. if (!ok) {
  17113. break;
  17114. }
  17115. // point the data member to the appropriate location in the binary blob using the tensor infos
  17116. if (!params.no_alloc) {
  17117. //cur->data = (char *) data->data + ctx->infos[i].offset - ctx->offset; // offset from start of file
  17118. cur->data = (char *) data->data + ctx->infos[i].offset; // offset from data
  17119. }
  17120. }
  17121. if (!ok) {
  17122. fprintf(stderr, "%s: failed to read the tensor data\n", __func__);
  17123. fclose(file);
  17124. ggml_free(ctx_data);
  17125. gguf_free(ctx);
  17126. return NULL;
  17127. }
  17128. ggml_set_no_alloc(ctx_data, params.no_alloc);
  17129. }
  17130. fclose(file);
  17131. return ctx;
  17132. }
  17133. void gguf_free(struct gguf_context * ctx) {
  17134. if (ctx == NULL) {
  17135. return;
  17136. }
  17137. if (ctx->kv) {
  17138. // free string memory - not great..
  17139. for (uint64_t i = 0; i < ctx->header.n_kv; ++i) {
  17140. struct gguf_kv * kv = &ctx->kv[i];
  17141. if (kv->key.data) {
  17142. GGML_FREE(kv->key.data);
  17143. }
  17144. if (kv->type == GGUF_TYPE_STRING) {
  17145. if (kv->value.str.data) {
  17146. GGML_FREE(kv->value.str.data);
  17147. }
  17148. }
  17149. if (kv->type == GGUF_TYPE_ARRAY) {
  17150. if (kv->value.arr.data) {
  17151. if (kv->value.arr.type == GGUF_TYPE_STRING) {
  17152. for (uint64_t j = 0; j < kv->value.arr.n; ++j) {
  17153. struct gguf_str * str = &((struct gguf_str *) kv->value.arr.data)[j];
  17154. if (str->data) {
  17155. GGML_FREE(str->data);
  17156. }
  17157. }
  17158. }
  17159. GGML_FREE(kv->value.arr.data);
  17160. }
  17161. }
  17162. }
  17163. GGML_FREE(ctx->kv);
  17164. }
  17165. if (ctx->infos) {
  17166. for (uint64_t i = 0; i < ctx->header.n_tensors; ++i) {
  17167. struct gguf_tensor_info * info = &ctx->infos[i];
  17168. if (info->name.data) {
  17169. GGML_FREE(info->name.data);
  17170. }
  17171. }
  17172. GGML_FREE(ctx->infos);
  17173. }
  17174. GGML_ALIGNED_FREE(ctx);
  17175. }
  17176. const char * gguf_type_name(enum gguf_type type) {
  17177. return GGUF_TYPE_NAME[type];
  17178. }
  17179. int gguf_get_version(const struct gguf_context * ctx) {
  17180. return ctx->header.version;
  17181. }
  17182. size_t gguf_get_alignment(const struct gguf_context * ctx) {
  17183. return ctx->alignment;
  17184. }
  17185. size_t gguf_get_data_offset(const struct gguf_context * ctx) {
  17186. return ctx->offset;
  17187. }
  17188. void * gguf_get_data(const struct gguf_context * ctx) {
  17189. return ctx->data;
  17190. }
  17191. int gguf_get_n_kv(const struct gguf_context * ctx) {
  17192. return ctx->header.n_kv;
  17193. }
  17194. int gguf_find_key(const struct gguf_context * ctx, const char * key) {
  17195. // return -1 if key not found
  17196. int keyfound = -1;
  17197. const int n_kv = gguf_get_n_kv(ctx);
  17198. for (int i = 0; i < n_kv; ++i) {
  17199. if (strcmp(key, gguf_get_key(ctx, i)) == 0) {
  17200. keyfound = i;
  17201. break;
  17202. }
  17203. }
  17204. return keyfound;
  17205. }
  17206. const char * gguf_get_key(const struct gguf_context * ctx, int key_id) {
  17207. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  17208. return ctx->kv[key_id].key.data;
  17209. }
  17210. enum gguf_type gguf_get_kv_type(const struct gguf_context * ctx, int key_id) {
  17211. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  17212. return ctx->kv[key_id].type;
  17213. }
  17214. enum gguf_type gguf_get_arr_type(const struct gguf_context * ctx, int key_id) {
  17215. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  17216. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_ARRAY);
  17217. return ctx->kv[key_id].value.arr.type;
  17218. }
  17219. const void * gguf_get_arr_data(const struct gguf_context * ctx, int key_id) {
  17220. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  17221. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_ARRAY);
  17222. return ctx->kv[key_id].value.arr.data;
  17223. }
  17224. const char * gguf_get_arr_str(const struct gguf_context * ctx, int key_id, int i) {
  17225. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  17226. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_ARRAY);
  17227. struct gguf_kv * kv = &ctx->kv[key_id];
  17228. struct gguf_str * str = &((struct gguf_str *) kv->value.arr.data)[i];
  17229. return str->data;
  17230. }
  17231. int gguf_get_arr_n(const struct gguf_context * ctx, int key_id) {
  17232. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  17233. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_ARRAY);
  17234. return ctx->kv[key_id].value.arr.n;
  17235. }
  17236. uint8_t gguf_get_val_u8(const struct gguf_context * ctx, int key_id) {
  17237. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  17238. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_UINT8);
  17239. return ctx->kv[key_id].value.uint8;
  17240. }
  17241. int8_t gguf_get_val_i8(const struct gguf_context * ctx, int key_id) {
  17242. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  17243. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_INT8);
  17244. return ctx->kv[key_id].value.int8;
  17245. }
  17246. uint16_t gguf_get_val_u16(const struct gguf_context * ctx, int key_id) {
  17247. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  17248. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_UINT16);
  17249. return ctx->kv[key_id].value.uint16;
  17250. }
  17251. int16_t gguf_get_val_i16(const struct gguf_context * ctx, int key_id) {
  17252. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  17253. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_INT16);
  17254. return ctx->kv[key_id].value.int16;
  17255. }
  17256. uint32_t gguf_get_val_u32(const struct gguf_context * ctx, int key_id) {
  17257. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  17258. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_UINT32);
  17259. return ctx->kv[key_id].value.uint32;
  17260. }
  17261. int32_t gguf_get_val_i32(const struct gguf_context * ctx, int key_id) {
  17262. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  17263. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_INT32);
  17264. return ctx->kv[key_id].value.int32;
  17265. }
  17266. float gguf_get_val_f32(const struct gguf_context * ctx, int key_id) {
  17267. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  17268. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_FLOAT32);
  17269. return ctx->kv[key_id].value.float32;
  17270. }
  17271. uint64_t gguf_get_val_u64(const struct gguf_context * ctx, int key_id) {
  17272. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  17273. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_UINT64);
  17274. return ctx->kv[key_id].value.uint64;
  17275. }
  17276. int64_t gguf_get_val_i64(const struct gguf_context * ctx, int key_id) {
  17277. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  17278. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_INT64);
  17279. return ctx->kv[key_id].value.int64;
  17280. }
  17281. double gguf_get_val_f64(const struct gguf_context * ctx, int key_id) {
  17282. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  17283. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_FLOAT64);
  17284. return ctx->kv[key_id].value.float64;
  17285. }
  17286. bool gguf_get_val_bool(const struct gguf_context * ctx, int key_id) {
  17287. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  17288. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_BOOL);
  17289. return ctx->kv[key_id].value.bool_;
  17290. }
  17291. const char * gguf_get_val_str(const struct gguf_context * ctx, int key_id) {
  17292. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  17293. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_STRING);
  17294. return ctx->kv[key_id].value.str.data;
  17295. }
  17296. const void * gguf_get_val_data(const struct gguf_context * ctx, int key_id) {
  17297. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  17298. GGML_ASSERT(ctx->kv[key_id].type != GGUF_TYPE_ARRAY);
  17299. GGML_ASSERT(ctx->kv[key_id].type != GGUF_TYPE_STRING);
  17300. return &ctx->kv[key_id].value;
  17301. }
  17302. int gguf_get_n_tensors(const struct gguf_context * ctx) {
  17303. return ctx->header.n_tensors;
  17304. }
  17305. int gguf_find_tensor(const struct gguf_context * ctx, const char * name) {
  17306. // return -1 if tensor not found
  17307. int tensorfound = -1;
  17308. const int n_tensors = gguf_get_n_tensors(ctx);
  17309. for (int i = 0; i < n_tensors; ++i) {
  17310. if (strcmp(name, gguf_get_tensor_name(ctx, i)) == 0) {
  17311. tensorfound = i;
  17312. break;
  17313. }
  17314. }
  17315. return tensorfound;
  17316. }
  17317. size_t gguf_get_tensor_offset(const struct gguf_context * ctx, int i) {
  17318. return ctx->infos[i].offset;
  17319. }
  17320. char * gguf_get_tensor_name(const struct gguf_context * ctx, int i) {
  17321. return ctx->infos[i].name.data;
  17322. }
  17323. enum ggml_type gguf_get_tensor_type(const struct gguf_context * ctx, int i) {
  17324. return ctx->infos[i].type;
  17325. }
  17326. // returns the index
  17327. static int gguf_get_or_add_key(struct gguf_context * ctx, const char * key) {
  17328. const int idx = gguf_find_key(ctx, key);
  17329. if (idx >= 0) {
  17330. return idx;
  17331. }
  17332. const int n_kv = gguf_get_n_kv(ctx);
  17333. ctx->kv = realloc(ctx->kv, (n_kv + 1) * sizeof(struct gguf_kv));
  17334. ctx->kv[n_kv].key.n = strlen(key);
  17335. ctx->kv[n_kv].key.data = strdup(key);
  17336. ctx->header.n_kv++;
  17337. return n_kv;
  17338. }
  17339. void gguf_set_val_u8(struct gguf_context * ctx, const char * key, uint8_t val) {
  17340. const int idx = gguf_get_or_add_key(ctx, key);
  17341. ctx->kv[idx].type = GGUF_TYPE_UINT8;
  17342. ctx->kv[idx].value.uint8 = val;
  17343. }
  17344. void gguf_set_val_i8(struct gguf_context * ctx, const char * key, int8_t val) {
  17345. const int idx = gguf_get_or_add_key(ctx, key);
  17346. ctx->kv[idx].type = GGUF_TYPE_INT8;
  17347. ctx->kv[idx].value.int8 = val;
  17348. }
  17349. void gguf_set_val_u16(struct gguf_context * ctx, const char * key, uint16_t val) {
  17350. const int idx = gguf_get_or_add_key(ctx, key);
  17351. ctx->kv[idx].type = GGUF_TYPE_UINT16;
  17352. ctx->kv[idx].value.uint16 = val;
  17353. }
  17354. void gguf_set_val_i16(struct gguf_context * ctx, const char * key, int16_t val) {
  17355. const int idx = gguf_get_or_add_key(ctx, key);
  17356. ctx->kv[idx].type = GGUF_TYPE_INT16;
  17357. ctx->kv[idx].value.int16 = val;
  17358. }
  17359. void gguf_set_val_u32(struct gguf_context * ctx, const char * key, uint32_t val) {
  17360. const int idx = gguf_get_or_add_key(ctx, key);
  17361. ctx->kv[idx].type = GGUF_TYPE_UINT32;
  17362. ctx->kv[idx].value.uint32 = val;
  17363. }
  17364. void gguf_set_val_i32(struct gguf_context * ctx, const char * key, int32_t val) {
  17365. const int idx = gguf_get_or_add_key(ctx, key);
  17366. ctx->kv[idx].type = GGUF_TYPE_INT32;
  17367. ctx->kv[idx].value.int32 = val;
  17368. }
  17369. void gguf_set_val_f32(struct gguf_context * ctx, const char * key, float val) {
  17370. const int idx = gguf_get_or_add_key(ctx, key);
  17371. ctx->kv[idx].type = GGUF_TYPE_FLOAT32;
  17372. ctx->kv[idx].value.float32 = val;
  17373. }
  17374. void gguf_set_val_u64(struct gguf_context * ctx, const char * key, uint64_t val) {
  17375. const int idx = gguf_get_or_add_key(ctx, key);
  17376. ctx->kv[idx].type = GGUF_TYPE_UINT64;
  17377. ctx->kv[idx].value.uint64 = val;
  17378. }
  17379. void gguf_set_val_i64(struct gguf_context * ctx, const char * key, int64_t val) {
  17380. const int idx = gguf_get_or_add_key(ctx, key);
  17381. ctx->kv[idx].type = GGUF_TYPE_INT64;
  17382. ctx->kv[idx].value.int64 = val;
  17383. }
  17384. void gguf_set_val_f64(struct gguf_context * ctx, const char * key, double val) {
  17385. const int idx = gguf_get_or_add_key(ctx, key);
  17386. ctx->kv[idx].type = GGUF_TYPE_FLOAT64;
  17387. ctx->kv[idx].value.float64 = val;
  17388. }
  17389. void gguf_set_val_bool(struct gguf_context * ctx, const char * key, bool val) {
  17390. const int idx = gguf_get_or_add_key(ctx, key);
  17391. ctx->kv[idx].type = GGUF_TYPE_BOOL;
  17392. ctx->kv[idx].value.bool_ = val;
  17393. }
  17394. void gguf_set_val_str(struct gguf_context * ctx, const char * key, const char * val) {
  17395. const int idx = gguf_get_or_add_key(ctx, key);
  17396. ctx->kv[idx].type = GGUF_TYPE_STRING;
  17397. ctx->kv[idx].value.str.n = strlen(val);
  17398. ctx->kv[idx].value.str.data = strdup(val);
  17399. }
  17400. void gguf_set_arr_data(struct gguf_context * ctx, const char * key, enum gguf_type type, const void * data, int n) {
  17401. const int idx = gguf_get_or_add_key(ctx, key);
  17402. ctx->kv[idx].type = GGUF_TYPE_ARRAY;
  17403. ctx->kv[idx].value.arr.type = type;
  17404. ctx->kv[idx].value.arr.n = n;
  17405. ctx->kv[idx].value.arr.data = GGML_MALLOC(n*gguf_type_size(type));
  17406. memcpy(ctx->kv[idx].value.arr.data, data, n*gguf_type_size(type));
  17407. }
  17408. void gguf_set_arr_str(struct gguf_context * ctx, const char * key, const char ** data, int n) {
  17409. const int idx = gguf_get_or_add_key(ctx, key);
  17410. ctx->kv[idx].type = GGUF_TYPE_ARRAY;
  17411. ctx->kv[idx].value.arr.type = GGUF_TYPE_STRING;
  17412. ctx->kv[idx].value.arr.n = n;
  17413. ctx->kv[idx].value.arr.data = GGML_MALLOC(n*sizeof(struct gguf_str));
  17414. for (int i = 0; i < n; i++) {
  17415. struct gguf_str * str = &((struct gguf_str *)ctx->kv[idx].value.arr.data)[i];
  17416. str->n = strlen(data[i]);
  17417. str->data = strdup(data[i]);
  17418. }
  17419. }
  17420. // set or add KV pairs from another context
  17421. void gguf_set_kv(struct gguf_context * ctx, struct gguf_context * src) {
  17422. for (uint32_t i = 0; i < src->header.n_kv; i++) {
  17423. switch (src->kv[i].type) {
  17424. case GGUF_TYPE_UINT8: gguf_set_val_u8 (ctx, src->kv[i].key.data, src->kv[i].value.uint8); break;
  17425. case GGUF_TYPE_INT8: gguf_set_val_i8 (ctx, src->kv[i].key.data, src->kv[i].value.int8); break;
  17426. case GGUF_TYPE_UINT16: gguf_set_val_u16 (ctx, src->kv[i].key.data, src->kv[i].value.uint16); break;
  17427. case GGUF_TYPE_INT16: gguf_set_val_i16 (ctx, src->kv[i].key.data, src->kv[i].value.int16); break;
  17428. case GGUF_TYPE_UINT32: gguf_set_val_u32 (ctx, src->kv[i].key.data, src->kv[i].value.uint32); break;
  17429. case GGUF_TYPE_INT32: gguf_set_val_i32 (ctx, src->kv[i].key.data, src->kv[i].value.int32); break;
  17430. case GGUF_TYPE_FLOAT32: gguf_set_val_f32 (ctx, src->kv[i].key.data, src->kv[i].value.float32); break;
  17431. case GGUF_TYPE_UINT64: gguf_set_val_u64 (ctx, src->kv[i].key.data, src->kv[i].value.uint64); break;
  17432. case GGUF_TYPE_INT64: gguf_set_val_i64 (ctx, src->kv[i].key.data, src->kv[i].value.int64); break;
  17433. case GGUF_TYPE_FLOAT64: gguf_set_val_f64 (ctx, src->kv[i].key.data, src->kv[i].value.float64); break;
  17434. case GGUF_TYPE_BOOL: gguf_set_val_bool(ctx, src->kv[i].key.data, src->kv[i].value.bool_); break;
  17435. case GGUF_TYPE_STRING: gguf_set_val_str (ctx, src->kv[i].key.data, src->kv[i].value.str.data); break;
  17436. case GGUF_TYPE_ARRAY:
  17437. {
  17438. if (src->kv[i].value.arr.type == GGUF_TYPE_STRING) {
  17439. const char ** data = GGML_MALLOC(src->kv[i].value.arr.n*sizeof(char *));
  17440. for (uint32_t j = 0; j < src->kv[i].value.arr.n; j++) {
  17441. data[j] = ((struct gguf_str *)src->kv[i].value.arr.data)[j].data;
  17442. }
  17443. gguf_set_arr_str(ctx, src->kv[i].key.data, data, src->kv[i].value.arr.n);
  17444. GGML_FREE((void *)data);
  17445. } else if (src->kv[i].value.arr.type == GGUF_TYPE_ARRAY) {
  17446. GGML_ASSERT(false && "nested arrays not supported");
  17447. } else {
  17448. gguf_set_arr_data(ctx, src->kv[i].key.data, src->kv[i].value.arr.type, src->kv[i].value.arr.data, src->kv[i].value.arr.n);
  17449. }
  17450. } break;
  17451. default: GGML_ASSERT(false && "invalid type"); break;
  17452. }
  17453. }
  17454. }
  17455. void gguf_add_tensor(
  17456. struct gguf_context * ctx,
  17457. const struct ggml_tensor * tensor) {
  17458. const int idx = ctx->header.n_tensors;
  17459. ctx->infos = realloc(ctx->infos, (idx + 1)*sizeof(struct gguf_tensor_info));
  17460. ctx->infos[idx].name.n = strlen(tensor->name);
  17461. ctx->infos[idx].name.data = strdup(tensor->name);
  17462. for (int i = 0; i < GGML_MAX_DIMS; ++i) {
  17463. ctx->infos[idx].ne[i] = 1;
  17464. }
  17465. ctx->infos[idx].n_dims = ggml_n_dims(tensor);
  17466. for (uint32_t i = 0; i < ctx->infos[idx].n_dims; i++) {
  17467. ctx->infos[idx].ne[i] = tensor->ne[i];
  17468. }
  17469. ctx->infos[idx].type = tensor->type;
  17470. ctx->infos[idx].offset = 0;
  17471. ctx->infos[idx].data = tensor->data;
  17472. ctx->infos[idx].size = ggml_nbytes(tensor);
  17473. if (ctx->header.n_tensors > 0) {
  17474. ctx->infos[idx].offset = ctx->infos[idx - 1].offset + GGML_PAD(ctx->infos[idx - 1].size, ctx->alignment);
  17475. }
  17476. ctx->header.n_tensors++;
  17477. }
  17478. void gguf_set_tensor_type(struct gguf_context * ctx, const char * name, enum ggml_type type) {
  17479. const int idx = gguf_find_tensor(ctx, name);
  17480. if (idx < 0) {
  17481. GGML_ASSERT(false && "tensor not found");
  17482. }
  17483. ctx->infos[idx].type = type;
  17484. }
  17485. void gguf_set_tensor_data(struct gguf_context * ctx, const char * name, const void * data, size_t size) {
  17486. const int idx = gguf_find_tensor(ctx, name);
  17487. if (idx < 0) {
  17488. GGML_ASSERT(false && "tensor not found");
  17489. }
  17490. ctx->infos[idx].data = data;
  17491. ctx->infos[idx].size = size;
  17492. // update offsets
  17493. for (uint32_t i = idx + 1; i < ctx->header.n_tensors; ++i) {
  17494. ctx->infos[i].offset = ctx->infos[i - 1].offset + GGML_PAD(ctx->infos[i - 1].size, ctx->alignment);
  17495. }
  17496. }
  17497. //static void gguf_fwrite_str(FILE * file, const struct gguf_str * val) {
  17498. // fwrite(&val->n, sizeof(val->n), 1, file);
  17499. // fwrite(val->data, sizeof(char), val->n, file);
  17500. //}
  17501. //
  17502. //static void gguf_fwrite_el(FILE * file, const void * val, size_t size) {
  17503. // fwrite(val, sizeof(char), size, file);
  17504. //}
  17505. struct gguf_buf {
  17506. void * data;
  17507. size_t size;
  17508. size_t offset;
  17509. };
  17510. static struct gguf_buf gguf_buf_init(size_t size) {
  17511. struct gguf_buf buf = {
  17512. /*buf.data =*/ size == 0 ? NULL : GGML_MALLOC(size),
  17513. /*buf.size =*/ size,
  17514. /*buf.offset =*/ 0,
  17515. };
  17516. return buf;
  17517. }
  17518. static void gguf_buf_free(struct gguf_buf buf) {
  17519. if (buf.data) {
  17520. GGML_FREE(buf.data);
  17521. }
  17522. }
  17523. static void gguf_buf_grow(struct gguf_buf * buf, size_t size) {
  17524. if (buf->offset + size > buf->size) {
  17525. buf->size = 1.5*(buf->offset + size);
  17526. if (buf->data) {
  17527. buf->data = realloc(buf->data, buf->size);
  17528. }
  17529. }
  17530. }
  17531. static void gguf_bwrite_str(struct gguf_buf * buf, const struct gguf_str * val) {
  17532. gguf_buf_grow(buf, sizeof(val->n) + val->n);
  17533. if (buf->data) {
  17534. memcpy((char *) buf->data + buf->offset, &val->n, sizeof(val->n));
  17535. }
  17536. buf->offset += sizeof(val->n);
  17537. if (buf->data) {
  17538. memcpy((char *) buf->data + buf->offset, val->data, val->n);
  17539. }
  17540. buf->offset += val->n;
  17541. }
  17542. static void gguf_bwrite_el(struct gguf_buf * buf, const void * val, size_t el_size) {
  17543. gguf_buf_grow(buf, el_size);
  17544. if (buf->data) {
  17545. memcpy((char *) buf->data + buf->offset, val, el_size);
  17546. }
  17547. buf->offset += el_size;
  17548. }
  17549. static void gguf_write_to_buf(const struct gguf_context * ctx, struct gguf_buf * buf, bool only_meta) {
  17550. // write header
  17551. gguf_bwrite_el(buf, &ctx->header.magic, sizeof(ctx->header.magic));
  17552. gguf_bwrite_el(buf, &ctx->header.version, sizeof(ctx->header.version));
  17553. gguf_bwrite_el(buf, &ctx->header.n_tensors, sizeof(ctx->header.n_tensors));
  17554. gguf_bwrite_el(buf, &ctx->header.n_kv, sizeof(ctx->header.n_kv));
  17555. // write key-value pairs
  17556. for (uint32_t i = 0; i < ctx->header.n_kv; ++i) {
  17557. struct gguf_kv * kv = &ctx->kv[i];
  17558. gguf_bwrite_str(buf, &kv->key);
  17559. gguf_bwrite_el (buf, &kv->type, sizeof(kv->type));
  17560. switch (kv->type) {
  17561. case GGUF_TYPE_UINT8: gguf_bwrite_el( buf, &kv->value.uint8, sizeof(kv->value.uint8) ); break;
  17562. case GGUF_TYPE_INT8: gguf_bwrite_el (buf, &kv->value.int8, sizeof(kv->value.int8) ); break;
  17563. case GGUF_TYPE_UINT16: gguf_bwrite_el (buf, &kv->value.uint16, sizeof(kv->value.uint16) ); break;
  17564. case GGUF_TYPE_INT16: gguf_bwrite_el (buf, &kv->value.int16, sizeof(kv->value.int16) ); break;
  17565. case GGUF_TYPE_UINT32: gguf_bwrite_el (buf, &kv->value.uint32, sizeof(kv->value.uint32) ); break;
  17566. case GGUF_TYPE_INT32: gguf_bwrite_el (buf, &kv->value.int32, sizeof(kv->value.int32) ); break;
  17567. case GGUF_TYPE_FLOAT32: gguf_bwrite_el (buf, &kv->value.float32, sizeof(kv->value.float32)); break;
  17568. case GGUF_TYPE_UINT64: gguf_bwrite_el (buf, &kv->value.uint64, sizeof(kv->value.uint64) ); break;
  17569. case GGUF_TYPE_INT64: gguf_bwrite_el (buf, &kv->value.int64, sizeof(kv->value.int64) ); break;
  17570. case GGUF_TYPE_FLOAT64: gguf_bwrite_el (buf, &kv->value.float64, sizeof(kv->value.float64)); break;
  17571. case GGUF_TYPE_BOOL: gguf_bwrite_el (buf, &kv->value.bool_, sizeof(kv->value.bool_) ); break;
  17572. case GGUF_TYPE_STRING: gguf_bwrite_str(buf, &kv->value.str ); break;
  17573. case GGUF_TYPE_ARRAY:
  17574. {
  17575. gguf_bwrite_el(buf, &kv->value.arr.type, sizeof(kv->value.arr.type));
  17576. gguf_bwrite_el(buf, &kv->value.arr.n, sizeof(kv->value.arr.n) );
  17577. switch (kv->value.arr.type) {
  17578. case GGUF_TYPE_UINT8:
  17579. case GGUF_TYPE_INT8:
  17580. case GGUF_TYPE_UINT16:
  17581. case GGUF_TYPE_INT16:
  17582. case GGUF_TYPE_UINT32:
  17583. case GGUF_TYPE_INT32:
  17584. case GGUF_TYPE_FLOAT32:
  17585. case GGUF_TYPE_UINT64:
  17586. case GGUF_TYPE_INT64:
  17587. case GGUF_TYPE_FLOAT64:
  17588. case GGUF_TYPE_BOOL:
  17589. {
  17590. gguf_bwrite_el(buf, kv->value.arr.data, kv->value.arr.n * gguf_type_size(kv->value.arr.type));
  17591. } break;
  17592. case GGUF_TYPE_STRING:
  17593. {
  17594. for (uint32_t j = 0; j < kv->value.arr.n; ++j) {
  17595. gguf_bwrite_str(buf, &((struct gguf_str *) kv->value.arr.data)[j]);
  17596. }
  17597. } break;
  17598. case GGUF_TYPE_ARRAY:
  17599. default: GGML_ASSERT(false && "invalid type"); break;
  17600. }
  17601. } break;
  17602. default: GGML_ASSERT(false && "invalid type");
  17603. }
  17604. }
  17605. // write tensor infos
  17606. for (uint32_t i = 0; i < ctx->header.n_tensors; ++i) {
  17607. struct gguf_tensor_info * info = &ctx->infos[i];
  17608. gguf_bwrite_str(buf, &info->name);
  17609. gguf_bwrite_el (buf, &info->n_dims, sizeof(info->n_dims));
  17610. for (uint32_t j = 0; j < info->n_dims; ++j) {
  17611. gguf_bwrite_el(buf, &info->ne[j], sizeof(info->ne[j]));
  17612. }
  17613. gguf_bwrite_el(buf, &info->type, sizeof(info->type));
  17614. gguf_bwrite_el(buf, &info->offset, sizeof(info->offset));
  17615. }
  17616. // we require the data section to be aligned, so take into account any padding
  17617. {
  17618. const size_t offset = buf->offset;
  17619. const size_t offset_pad = GGML_PAD(offset, ctx->alignment);
  17620. if (offset_pad != offset) {
  17621. uint8_t pad = 0;
  17622. for (size_t i = 0; i < offset_pad - offset; ++i) {
  17623. gguf_bwrite_el(buf, &pad, sizeof(pad));
  17624. }
  17625. }
  17626. }
  17627. if (only_meta) {
  17628. return;
  17629. }
  17630. size_t offset = 0;
  17631. // write tensor data
  17632. for (uint32_t i = 0; i < ctx->header.n_tensors; ++i) {
  17633. struct gguf_tensor_info * info = &ctx->infos[i];
  17634. const size_t size = info->size;
  17635. const size_t size_pad = GGML_PAD(size, ctx->alignment);
  17636. gguf_bwrite_el(buf, info->data, size);
  17637. if (size_pad != size) {
  17638. uint8_t pad = 0;
  17639. for (size_t j = 0; j < size_pad - size; ++j) {
  17640. gguf_bwrite_el(buf, &pad, sizeof(pad));
  17641. }
  17642. }
  17643. GGML_ASSERT(offset == info->offset);
  17644. offset += size_pad;
  17645. }
  17646. }
  17647. void gguf_write_to_file(const struct gguf_context * ctx, const char * fname, bool only_meta) {
  17648. FILE * file = ggml_fopen(fname, "wb");
  17649. if (!file) {
  17650. GGML_ASSERT(false && "failed to open file for writing");
  17651. }
  17652. struct gguf_buf buf = gguf_buf_init(16*1024);
  17653. gguf_write_to_buf(ctx, &buf, only_meta);
  17654. fwrite(buf.data, 1, buf.offset, file);
  17655. gguf_buf_free(buf);
  17656. fclose(file);
  17657. }
  17658. size_t gguf_get_meta_size(const struct gguf_context * ctx) {
  17659. // no allocs - only compute size
  17660. struct gguf_buf buf = gguf_buf_init(0);
  17661. gguf_write_to_buf(ctx, &buf, true);
  17662. return buf.offset;
  17663. }
  17664. void gguf_get_meta_data(const struct gguf_context * ctx, void * data) {
  17665. struct gguf_buf buf = gguf_buf_init(16*1024);
  17666. gguf_write_to_buf(ctx, &buf, true);
  17667. memcpy(data, buf.data, buf.offset);
  17668. gguf_buf_free(buf);
  17669. }
  17670. ////////////////////////////////////////////////////////////////////////////////
  17671. int ggml_cpu_has_avx(void) {
  17672. #if defined(__AVX__)
  17673. return 1;
  17674. #else
  17675. return 0;
  17676. #endif
  17677. }
  17678. int ggml_cpu_has_avx_vnni(void) {
  17679. #if defined(__AVXVNNI__)
  17680. return 1;
  17681. #else
  17682. return 0;
  17683. #endif
  17684. }
  17685. int ggml_cpu_has_avx2(void) {
  17686. #if defined(__AVX2__)
  17687. return 1;
  17688. #else
  17689. return 0;
  17690. #endif
  17691. }
  17692. int ggml_cpu_has_avx512(void) {
  17693. #if defined(__AVX512F__)
  17694. return 1;
  17695. #else
  17696. return 0;
  17697. #endif
  17698. }
  17699. int ggml_cpu_has_avx512_vbmi(void) {
  17700. #if defined(__AVX512VBMI__)
  17701. return 1;
  17702. #else
  17703. return 0;
  17704. #endif
  17705. }
  17706. int ggml_cpu_has_avx512_vnni(void) {
  17707. #if defined(__AVX512VNNI__)
  17708. return 1;
  17709. #else
  17710. return 0;
  17711. #endif
  17712. }
  17713. int ggml_cpu_has_fma(void) {
  17714. #if defined(__FMA__)
  17715. return 1;
  17716. #else
  17717. return 0;
  17718. #endif
  17719. }
  17720. int ggml_cpu_has_neon(void) {
  17721. #if defined(__ARM_NEON)
  17722. return 1;
  17723. #else
  17724. return 0;
  17725. #endif
  17726. }
  17727. int ggml_cpu_has_arm_fma(void) {
  17728. #if defined(__ARM_FEATURE_FMA)
  17729. return 1;
  17730. #else
  17731. return 0;
  17732. #endif
  17733. }
  17734. int ggml_cpu_has_metal(void) {
  17735. #if defined(GGML_USE_METAL)
  17736. return 1;
  17737. #else
  17738. return 0;
  17739. #endif
  17740. }
  17741. int ggml_cpu_has_f16c(void) {
  17742. #if defined(__F16C__)
  17743. return 1;
  17744. #else
  17745. return 0;
  17746. #endif
  17747. }
  17748. int ggml_cpu_has_fp16_va(void) {
  17749. #if defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC)
  17750. return 1;
  17751. #else
  17752. return 0;
  17753. #endif
  17754. }
  17755. int ggml_cpu_has_wasm_simd(void) {
  17756. #if defined(__wasm_simd128__)
  17757. return 1;
  17758. #else
  17759. return 0;
  17760. #endif
  17761. }
  17762. int ggml_cpu_has_blas(void) {
  17763. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CUDA) || defined(GGML_USE_VULKAN) || defined(GGML_USE_CLBLAST) || defined(GGML_USE_SYCL)
  17764. return 1;
  17765. #else
  17766. return 0;
  17767. #endif
  17768. }
  17769. int ggml_cpu_has_cuda(void) {
  17770. #if defined(GGML_USE_CUDA)
  17771. return 1;
  17772. #else
  17773. return 0;
  17774. #endif
  17775. }
  17776. int ggml_cpu_has_clblast(void) {
  17777. #if defined(GGML_USE_CLBLAST)
  17778. return 1;
  17779. #else
  17780. return 0;
  17781. #endif
  17782. }
  17783. int ggml_cpu_has_vulkan(void) {
  17784. #if defined(GGML_USE_VULKAN)
  17785. return 1;
  17786. #else
  17787. return 0;
  17788. #endif
  17789. }
  17790. int ggml_cpu_has_kompute(void) {
  17791. #if defined(GGML_USE_KOMPUTE)
  17792. return 1;
  17793. #else
  17794. return 0;
  17795. #endif
  17796. }
  17797. int ggml_cpu_has_sycl(void) {
  17798. #if defined(GGML_USE_SYCL)
  17799. return 1;
  17800. #else
  17801. return 0;
  17802. #endif
  17803. }
  17804. int ggml_cpu_has_gpublas(void) {
  17805. return ggml_cpu_has_cuda() || ggml_cpu_has_clblast() || ggml_cpu_has_vulkan() || ggml_cpu_has_kompute() ||
  17806. ggml_cpu_has_sycl();
  17807. }
  17808. int ggml_cpu_has_sse3(void) {
  17809. #if defined(__SSE3__)
  17810. return 1;
  17811. #else
  17812. return 0;
  17813. #endif
  17814. }
  17815. int ggml_cpu_has_ssse3(void) {
  17816. #if defined(__SSSE3__)
  17817. return 1;
  17818. #else
  17819. return 0;
  17820. #endif
  17821. }
  17822. int ggml_cpu_has_vsx(void) {
  17823. #if defined(__POWER9_VECTOR__)
  17824. return 1;
  17825. #else
  17826. return 0;
  17827. #endif
  17828. }
  17829. int ggml_cpu_has_matmul_int8(void) {
  17830. #if defined(__ARM_FEATURE_MATMUL_INT8)
  17831. return 1;
  17832. #else
  17833. return 0;
  17834. #endif
  17835. }
  17836. ////////////////////////////////////////////////////////////////////////////////