ggml-quants.c 473 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124512551265127512851295130513151325133513451355136513751385139514051415142514351445145514651475148514951505151515251535154515551565157515851595160516151625163516451655166516751685169517051715172517351745175517651775178517951805181518251835184518551865187518851895190519151925193519451955196519751985199520052015202520352045205520652075208520952105211521252135214521552165217521852195220522152225223522452255226522752285229523052315232523352345235523652375238523952405241524252435244524552465247524852495250525152525253525452555256525752585259526052615262526352645265526652675268526952705271527252735274527552765277527852795280528152825283528452855286528752885289529052915292529352945295529652975298529953005301530253035304530553065307530853095310531153125313531453155316531753185319532053215322532353245325532653275328532953305331533253335334533553365337533853395340534153425343534453455346534753485349535053515352535353545355535653575358535953605361536253635364536553665367536853695370537153725373537453755376537753785379538053815382538353845385538653875388538953905391539253935394539553965397539853995400540154025403540454055406540754085409541054115412541354145415541654175418541954205421542254235424542554265427542854295430543154325433543454355436543754385439544054415442544354445445544654475448544954505451545254535454545554565457545854595460546154625463546454655466546754685469547054715472547354745475547654775478547954805481548254835484548554865487548854895490549154925493549454955496549754985499550055015502550355045505550655075508550955105511551255135514551555165517551855195520552155225523552455255526552755285529553055315532553355345535553655375538553955405541554255435544554555465547554855495550555155525553555455555556555755585559556055615562556355645565556655675568556955705571557255735574557555765577557855795580558155825583558455855586558755885589559055915592559355945595559655975598559956005601560256035604560556065607560856095610561156125613561456155616561756185619562056215622562356245625562656275628562956305631563256335634563556365637563856395640564156425643564456455646564756485649565056515652565356545655565656575658565956605661566256635664566556665667566856695670567156725673567456755676567756785679568056815682568356845685568656875688568956905691569256935694569556965697569856995700570157025703570457055706570757085709571057115712571357145715571657175718571957205721572257235724572557265727572857295730573157325733573457355736573757385739574057415742574357445745574657475748574957505751575257535754575557565757575857595760576157625763576457655766576757685769577057715772577357745775577657775778577957805781578257835784578557865787578857895790579157925793579457955796579757985799580058015802580358045805580658075808580958105811581258135814581558165817581858195820582158225823582458255826582758285829583058315832583358345835583658375838583958405841584258435844584558465847584858495850585158525853585458555856585758585859586058615862586358645865586658675868586958705871587258735874587558765877587858795880588158825883588458855886588758885889589058915892589358945895589658975898589959005901590259035904590559065907590859095910591159125913591459155916591759185919592059215922592359245925592659275928592959305931593259335934593559365937593859395940594159425943594459455946594759485949595059515952595359545955595659575958595959605961596259635964596559665967596859695970597159725973597459755976597759785979598059815982598359845985598659875988598959905991599259935994599559965997599859996000600160026003600460056006600760086009601060116012601360146015601660176018601960206021602260236024602560266027602860296030603160326033603460356036603760386039604060416042604360446045604660476048604960506051605260536054605560566057605860596060606160626063606460656066606760686069607060716072607360746075607660776078607960806081608260836084608560866087608860896090609160926093609460956096609760986099610061016102610361046105610661076108610961106111611261136114611561166117611861196120612161226123612461256126612761286129613061316132613361346135613661376138613961406141614261436144614561466147614861496150615161526153615461556156615761586159616061616162616361646165616661676168616961706171617261736174617561766177617861796180618161826183618461856186618761886189619061916192619361946195619661976198619962006201620262036204620562066207620862096210621162126213621462156216621762186219622062216222622362246225622662276228622962306231623262336234623562366237623862396240624162426243624462456246624762486249625062516252625362546255625662576258625962606261626262636264626562666267626862696270627162726273627462756276627762786279628062816282628362846285628662876288628962906291629262936294629562966297629862996300630163026303630463056306630763086309631063116312631363146315631663176318631963206321632263236324632563266327632863296330633163326333633463356336633763386339634063416342634363446345634663476348634963506351635263536354635563566357635863596360636163626363636463656366636763686369637063716372637363746375637663776378637963806381638263836384638563866387638863896390639163926393639463956396639763986399640064016402640364046405640664076408640964106411641264136414641564166417641864196420642164226423642464256426642764286429643064316432643364346435643664376438643964406441644264436444644564466447644864496450645164526453645464556456645764586459646064616462646364646465646664676468646964706471647264736474647564766477647864796480648164826483648464856486648764886489649064916492649364946495649664976498649965006501650265036504650565066507650865096510651165126513651465156516651765186519652065216522652365246525652665276528652965306531653265336534653565366537653865396540654165426543654465456546654765486549655065516552655365546555655665576558655965606561656265636564656565666567656865696570657165726573657465756576657765786579658065816582658365846585658665876588658965906591659265936594659565966597659865996600660166026603660466056606660766086609661066116612661366146615661666176618661966206621662266236624662566266627662866296630663166326633663466356636663766386639664066416642664366446645664666476648664966506651665266536654665566566657665866596660666166626663666466656666666766686669667066716672667366746675667666776678667966806681668266836684668566866687668866896690669166926693669466956696669766986699670067016702670367046705670667076708670967106711671267136714671567166717671867196720672167226723672467256726672767286729673067316732673367346735673667376738673967406741674267436744674567466747674867496750675167526753675467556756675767586759676067616762676367646765676667676768676967706771677267736774677567766777677867796780678167826783678467856786678767886789679067916792679367946795679667976798679968006801680268036804680568066807680868096810681168126813681468156816681768186819682068216822682368246825682668276828682968306831683268336834683568366837683868396840684168426843684468456846684768486849685068516852685368546855685668576858685968606861686268636864686568666867686868696870687168726873687468756876687768786879688068816882688368846885688668876888688968906891689268936894689568966897689868996900690169026903690469056906690769086909691069116912691369146915691669176918691969206921692269236924692569266927692869296930693169326933693469356936693769386939694069416942694369446945694669476948694969506951695269536954695569566957695869596960696169626963696469656966696769686969697069716972697369746975697669776978697969806981698269836984698569866987698869896990699169926993699469956996699769986999700070017002700370047005700670077008700970107011701270137014701570167017701870197020702170227023702470257026702770287029703070317032703370347035703670377038703970407041704270437044704570467047704870497050705170527053705470557056705770587059706070617062706370647065706670677068706970707071707270737074707570767077707870797080708170827083708470857086708770887089709070917092709370947095709670977098709971007101710271037104710571067107710871097110711171127113711471157116711771187119712071217122712371247125712671277128712971307131713271337134713571367137713871397140714171427143714471457146714771487149715071517152715371547155715671577158715971607161716271637164716571667167716871697170717171727173717471757176717771787179718071817182718371847185718671877188718971907191719271937194719571967197719871997200720172027203720472057206720772087209721072117212721372147215721672177218721972207221722272237224722572267227722872297230723172327233723472357236723772387239724072417242724372447245724672477248724972507251725272537254725572567257725872597260726172627263726472657266726772687269727072717272727372747275727672777278727972807281728272837284728572867287728872897290729172927293729472957296729772987299730073017302730373047305730673077308730973107311731273137314731573167317731873197320732173227323732473257326732773287329733073317332733373347335733673377338733973407341734273437344734573467347734873497350735173527353735473557356735773587359736073617362736373647365736673677368736973707371737273737374737573767377737873797380738173827383738473857386738773887389739073917392739373947395739673977398739974007401740274037404740574067407740874097410741174127413741474157416741774187419742074217422742374247425742674277428742974307431743274337434743574367437743874397440744174427443744474457446744774487449745074517452745374547455745674577458745974607461746274637464746574667467746874697470747174727473747474757476747774787479748074817482748374847485748674877488748974907491749274937494749574967497749874997500750175027503750475057506750775087509751075117512751375147515751675177518751975207521752275237524752575267527752875297530753175327533753475357536753775387539754075417542754375447545754675477548754975507551755275537554755575567557755875597560756175627563756475657566756775687569757075717572757375747575757675777578757975807581758275837584758575867587758875897590759175927593759475957596759775987599760076017602760376047605760676077608760976107611761276137614761576167617761876197620762176227623762476257626762776287629763076317632763376347635763676377638763976407641764276437644764576467647764876497650765176527653765476557656765776587659766076617662766376647665766676677668766976707671767276737674767576767677767876797680768176827683768476857686768776887689769076917692769376947695769676977698769977007701770277037704770577067707770877097710771177127713771477157716771777187719772077217722772377247725772677277728772977307731773277337734773577367737773877397740774177427743774477457746774777487749775077517752775377547755775677577758775977607761776277637764776577667767776877697770777177727773777477757776777777787779778077817782778377847785778677877788778977907791779277937794779577967797779877997800780178027803780478057806780778087809781078117812781378147815781678177818781978207821782278237824782578267827782878297830783178327833783478357836783778387839784078417842784378447845784678477848784978507851785278537854785578567857785878597860786178627863786478657866786778687869787078717872787378747875787678777878787978807881788278837884788578867887788878897890789178927893789478957896789778987899790079017902790379047905790679077908790979107911791279137914791579167917791879197920792179227923792479257926792779287929793079317932793379347935793679377938793979407941794279437944794579467947794879497950795179527953795479557956795779587959796079617962796379647965796679677968796979707971797279737974797579767977797879797980798179827983798479857986798779887989799079917992799379947995799679977998799980008001800280038004800580068007800880098010801180128013801480158016801780188019802080218022802380248025802680278028802980308031803280338034803580368037803880398040804180428043804480458046804780488049805080518052805380548055805680578058805980608061806280638064806580668067806880698070807180728073807480758076807780788079808080818082808380848085808680878088808980908091809280938094809580968097809880998100810181028103810481058106810781088109811081118112811381148115811681178118811981208121812281238124812581268127812881298130813181328133813481358136813781388139814081418142814381448145814681478148814981508151815281538154815581568157815881598160816181628163816481658166816781688169817081718172817381748175817681778178817981808181818281838184818581868187818881898190819181928193819481958196819781988199820082018202820382048205820682078208820982108211821282138214821582168217821882198220822182228223822482258226822782288229823082318232823382348235823682378238823982408241824282438244824582468247824882498250825182528253825482558256825782588259826082618262826382648265826682678268826982708271827282738274827582768277827882798280828182828283828482858286828782888289829082918292829382948295829682978298829983008301830283038304830583068307830883098310831183128313831483158316831783188319832083218322832383248325832683278328832983308331833283338334833583368337833883398340834183428343834483458346834783488349835083518352835383548355835683578358835983608361836283638364836583668367836883698370837183728373837483758376837783788379838083818382838383848385838683878388838983908391839283938394839583968397839883998400840184028403840484058406840784088409841084118412841384148415841684178418841984208421842284238424842584268427842884298430843184328433843484358436843784388439844084418442844384448445844684478448844984508451845284538454845584568457845884598460846184628463846484658466846784688469847084718472847384748475847684778478847984808481848284838484848584868487848884898490849184928493849484958496849784988499850085018502850385048505850685078508850985108511851285138514851585168517851885198520852185228523852485258526852785288529853085318532853385348535853685378538853985408541854285438544854585468547854885498550855185528553855485558556855785588559856085618562856385648565856685678568856985708571857285738574857585768577857885798580858185828583858485858586858785888589859085918592859385948595859685978598859986008601860286038604860586068607860886098610861186128613861486158616861786188619862086218622862386248625862686278628862986308631863286338634863586368637863886398640864186428643864486458646864786488649865086518652865386548655865686578658865986608661866286638664866586668667866886698670867186728673867486758676867786788679868086818682868386848685868686878688868986908691869286938694869586968697869886998700870187028703870487058706870787088709871087118712871387148715871687178718871987208721872287238724872587268727872887298730873187328733873487358736873787388739874087418742874387448745874687478748874987508751875287538754875587568757875887598760876187628763876487658766876787688769877087718772877387748775877687778778877987808781878287838784878587868787878887898790879187928793879487958796879787988799880088018802880388048805880688078808880988108811881288138814881588168817881888198820882188228823882488258826882788288829883088318832883388348835883688378838883988408841884288438844884588468847884888498850885188528853885488558856885788588859886088618862886388648865886688678868886988708871887288738874887588768877887888798880888188828883888488858886888788888889889088918892889388948895889688978898889989008901890289038904890589068907890889098910891189128913891489158916891789188919892089218922892389248925892689278928892989308931893289338934893589368937893889398940894189428943894489458946894789488949895089518952895389548955895689578958895989608961896289638964896589668967896889698970897189728973897489758976897789788979898089818982898389848985898689878988898989908991899289938994899589968997899889999000900190029003900490059006900790089009901090119012901390149015901690179018901990209021902290239024902590269027902890299030903190329033903490359036903790389039904090419042904390449045904690479048904990509051905290539054905590569057905890599060906190629063906490659066906790689069907090719072907390749075907690779078907990809081908290839084908590869087908890899090909190929093909490959096909790989099910091019102910391049105910691079108910991109111911291139114911591169117911891199120912191229123912491259126912791289129913091319132913391349135913691379138913991409141914291439144914591469147914891499150915191529153915491559156915791589159916091619162916391649165916691679168916991709171917291739174917591769177917891799180918191829183918491859186918791889189919091919192919391949195919691979198919992009201920292039204920592069207920892099210921192129213921492159216921792189219922092219222922392249225922692279228922992309231923292339234923592369237923892399240924192429243924492459246924792489249925092519252925392549255925692579258925992609261926292639264926592669267926892699270927192729273927492759276927792789279928092819282928392849285928692879288928992909291929292939294929592969297929892999300930193029303930493059306930793089309931093119312931393149315931693179318931993209321932293239324932593269327932893299330933193329333933493359336933793389339934093419342934393449345934693479348934993509351935293539354935593569357935893599360936193629363936493659366936793689369937093719372937393749375937693779378937993809381938293839384938593869387938893899390939193929393939493959396939793989399940094019402940394049405940694079408940994109411941294139414941594169417941894199420942194229423942494259426942794289429943094319432943394349435943694379438943994409441944294439444944594469447944894499450945194529453945494559456945794589459946094619462946394649465946694679468946994709471947294739474947594769477947894799480948194829483948494859486948794889489949094919492949394949495949694979498949995009501950295039504950595069507950895099510951195129513951495159516951795189519952095219522952395249525952695279528952995309531953295339534953595369537953895399540954195429543954495459546954795489549955095519552955395549555955695579558955995609561956295639564956595669567956895699570957195729573957495759576957795789579958095819582958395849585958695879588958995909591959295939594959595969597959895999600960196029603960496059606960796089609961096119612961396149615961696179618961996209621962296239624962596269627962896299630963196329633963496359636963796389639964096419642964396449645964696479648964996509651965296539654965596569657965896599660966196629663966496659666966796689669967096719672967396749675967696779678967996809681968296839684968596869687968896899690969196929693969496959696969796989699970097019702970397049705970697079708970997109711971297139714971597169717971897199720972197229723972497259726972797289729973097319732973397349735973697379738973997409741974297439744974597469747974897499750975197529753975497559756975797589759976097619762976397649765976697679768976997709771977297739774977597769777977897799780978197829783978497859786978797889789979097919792979397949795979697979798979998009801980298039804980598069807980898099810981198129813981498159816981798189819982098219822982398249825982698279828982998309831983298339834983598369837983898399840984198429843984498459846984798489849985098519852985398549855985698579858985998609861986298639864986598669867986898699870987198729873987498759876987798789879988098819882988398849885988698879888988998909891989298939894989598969897989898999900990199029903990499059906990799089909991099119912991399149915991699179918991999209921992299239924992599269927992899299930993199329933993499359936993799389939994099419942994399449945994699479948994999509951995299539954995599569957995899599960996199629963996499659966996799689969997099719972997399749975997699779978997999809981998299839984998599869987998899899990999199929993999499959996999799989999100001000110002100031000410005100061000710008100091001010011100121001310014100151001610017100181001910020100211002210023100241002510026100271002810029100301003110032100331003410035100361003710038100391004010041100421004310044100451004610047100481004910050100511005210053100541005510056100571005810059100601006110062100631006410065100661006710068100691007010071100721007310074100751007610077100781007910080100811008210083100841008510086100871008810089100901009110092100931009410095100961009710098100991010010101101021010310104101051010610107101081010910110101111011210113101141011510116101171011810119101201012110122101231012410125101261012710128101291013010131101321013310134101351013610137101381013910140101411014210143101441014510146101471014810149101501015110152101531015410155101561015710158101591016010161101621016310164101651016610167101681016910170101711017210173101741017510176101771017810179101801018110182101831018410185101861018710188101891019010191101921019310194101951019610197101981019910200102011020210203102041020510206102071020810209102101021110212102131021410215102161021710218102191022010221102221022310224102251022610227102281022910230102311023210233102341023510236102371023810239102401024110242102431024410245102461024710248102491025010251102521025310254102551025610257102581025910260102611026210263102641026510266102671026810269102701027110272102731027410275102761027710278102791028010281102821028310284102851028610287102881028910290102911029210293102941029510296102971029810299103001030110302103031030410305103061030710308103091031010311103121031310314103151031610317103181031910320103211032210323103241032510326103271032810329103301033110332103331033410335103361033710338103391034010341103421034310344103451034610347103481034910350103511035210353103541035510356103571035810359103601036110362103631036410365103661036710368103691037010371103721037310374103751037610377103781037910380103811038210383103841038510386103871038810389103901039110392103931039410395103961039710398103991040010401104021040310404104051040610407104081040910410104111041210413104141041510416104171041810419104201042110422104231042410425104261042710428104291043010431104321043310434104351043610437104381043910440104411044210443104441044510446104471044810449104501045110452104531045410455104561045710458104591046010461104621046310464104651046610467104681046910470104711047210473104741047510476104771047810479104801048110482104831048410485104861048710488104891049010491104921049310494104951049610497104981049910500105011050210503105041050510506105071050810509105101051110512105131051410515105161051710518105191052010521105221052310524105251052610527105281052910530105311053210533105341053510536105371053810539105401054110542105431054410545105461054710548105491055010551105521055310554105551055610557105581055910560105611056210563105641056510566105671056810569105701057110572105731057410575105761057710578105791058010581105821058310584105851058610587105881058910590105911059210593105941059510596105971059810599106001060110602106031060410605106061060710608106091061010611106121061310614106151061610617106181061910620106211062210623106241062510626106271062810629106301063110632106331063410635106361063710638106391064010641106421064310644106451064610647106481064910650106511065210653106541065510656106571065810659106601066110662106631066410665106661066710668106691067010671106721067310674106751067610677106781067910680106811068210683106841068510686106871068810689106901069110692106931069410695106961069710698106991070010701107021070310704107051070610707107081070910710107111071210713107141071510716107171071810719107201072110722107231072410725107261072710728107291073010731107321073310734107351073610737107381073910740107411074210743107441074510746107471074810749107501075110752107531075410755107561075710758107591076010761107621076310764107651076610767107681076910770107711077210773107741077510776107771077810779107801078110782107831078410785107861078710788107891079010791107921079310794107951079610797107981079910800108011080210803108041080510806108071080810809108101081110812108131081410815108161081710818108191082010821108221082310824108251082610827108281082910830108311083210833108341083510836108371083810839108401084110842108431084410845108461084710848108491085010851108521085310854108551085610857108581085910860108611086210863108641086510866108671086810869108701087110872108731087410875108761087710878108791088010881108821088310884108851088610887108881088910890108911089210893108941089510896108971089810899109001090110902109031090410905109061090710908109091091010911109121091310914109151091610917109181091910920109211092210923109241092510926109271092810929109301093110932109331093410935109361093710938109391094010941109421094310944109451094610947109481094910950109511095210953109541095510956109571095810959109601096110962109631096410965109661096710968109691097010971109721097310974109751097610977109781097910980109811098210983109841098510986109871098810989109901099110992109931099410995109961099710998109991100011001110021100311004110051100611007110081100911010110111101211013110141101511016110171101811019110201102111022110231102411025110261102711028110291103011031110321103311034110351103611037110381103911040110411104211043110441104511046110471104811049110501105111052110531105411055110561105711058110591106011061110621106311064110651106611067110681106911070110711107211073110741107511076110771107811079110801108111082110831108411085110861108711088110891109011091110921109311094110951109611097110981109911100111011110211103111041110511106111071110811109111101111111112111131111411115111161111711118111191112011121111221112311124111251112611127111281112911130111311113211133111341113511136111371113811139111401114111142111431114411145111461114711148111491115011151111521115311154111551115611157111581115911160111611116211163111641116511166111671116811169111701117111172111731117411175111761117711178111791118011181111821118311184111851118611187111881118911190111911119211193111941119511196111971119811199112001120111202112031120411205112061120711208112091121011211112121121311214112151121611217112181121911220112211122211223112241122511226112271122811229112301123111232112331123411235112361123711238112391124011241112421124311244112451124611247112481124911250112511125211253112541125511256112571125811259112601126111262112631126411265112661126711268112691127011271112721127311274112751127611277112781127911280112811128211283112841128511286112871128811289112901129111292112931129411295112961129711298112991130011301113021130311304113051130611307113081130911310113111131211313113141131511316113171131811319113201132111322113231132411325113261132711328113291133011331113321133311334113351133611337113381133911340113411134211343113441134511346113471134811349113501135111352113531135411355113561135711358113591136011361113621136311364113651136611367113681136911370113711137211373113741137511376113771137811379113801138111382113831138411385113861138711388113891139011391113921139311394113951139611397113981139911400114011140211403114041140511406114071140811409114101141111412114131141411415114161141711418114191142011421114221142311424114251142611427114281142911430114311143211433114341143511436114371143811439114401144111442114431144411445114461144711448114491145011451114521145311454114551145611457114581145911460114611146211463114641146511466114671146811469114701147111472114731147411475114761147711478114791148011481114821148311484114851148611487114881148911490114911149211493114941149511496114971149811499115001150111502115031150411505115061150711508115091151011511115121151311514115151151611517115181151911520115211152211523115241152511526115271152811529115301153111532115331153411535115361153711538115391154011541115421154311544115451154611547115481154911550115511155211553115541155511556115571155811559115601156111562115631156411565115661156711568115691157011571115721157311574115751157611577115781157911580115811158211583115841158511586115871158811589115901159111592115931159411595115961159711598115991160011601116021160311604116051160611607116081160911610116111161211613116141161511616116171161811619116201162111622116231162411625116261162711628116291163011631116321163311634116351163611637116381163911640116411164211643116441164511646116471164811649116501165111652116531165411655116561165711658116591166011661116621166311664116651166611667116681166911670116711167211673116741167511676116771167811679116801168111682116831168411685116861168711688116891169011691116921169311694116951169611697116981169911700117011170211703117041170511706117071170811709117101171111712117131171411715117161171711718117191172011721117221172311724117251172611727117281172911730117311173211733117341173511736117371173811739117401174111742117431174411745117461174711748117491175011751117521175311754117551175611757117581175911760117611176211763117641176511766117671176811769117701177111772117731177411775117761177711778117791178011781117821178311784117851178611787117881178911790117911179211793117941179511796117971179811799118001180111802118031180411805118061180711808118091181011811118121181311814118151181611817118181181911820118211182211823118241182511826118271182811829118301183111832118331183411835118361183711838118391184011841118421184311844118451184611847118481184911850118511185211853118541185511856118571185811859118601186111862118631186411865118661186711868118691187011871118721187311874118751187611877118781187911880118811188211883118841188511886118871188811889118901189111892118931189411895118961189711898118991190011901119021190311904119051190611907119081190911910119111191211913119141191511916119171191811919119201192111922119231192411925119261192711928119291193011931
  1. #include "ggml-quants.h"
  2. #include "ggml-impl.h"
  3. #define GGML_COMMON_IMPL_C
  4. #include "ggml-common.h"
  5. #include <math.h>
  6. #include <string.h>
  7. #include <assert.h>
  8. #include <float.h>
  9. #include <stdlib.h> // for qsort
  10. #include <stdio.h> // for GGML_ASSERT
  11. #ifdef __ARM_NEON
  12. // if YCM cannot find <arm_neon.h>, make a symbolic link to it, for example:
  13. //
  14. // $ ln -sfn /Library/Developer/CommandLineTools/usr/lib/clang/13.1.6/include/arm_neon.h ./src/
  15. //
  16. #include <arm_neon.h>
  17. #else
  18. #ifdef __wasm_simd128__
  19. #include <wasm_simd128.h>
  20. #else
  21. #if defined(__POWER9_VECTOR__) || defined(__powerpc64__)
  22. #include <altivec.h>
  23. #undef bool
  24. #define bool _Bool
  25. #else
  26. #if defined(_MSC_VER) || defined(__MINGW32__)
  27. #include <intrin.h>
  28. #else
  29. #if defined(__AVX__) || defined(__AVX2__) || defined(__AVX512F__) || defined(__SSSE3__) || defined(__SSE3__)
  30. #if !defined(__riscv)
  31. #include <immintrin.h>
  32. #endif
  33. #endif
  34. #endif
  35. #endif
  36. #endif
  37. #endif
  38. #ifdef __riscv_v_intrinsic
  39. #include <riscv_vector.h>
  40. #endif
  41. #undef MIN
  42. #undef MAX
  43. #define MIN(a, b) ((a) < (b) ? (a) : (b))
  44. #define MAX(a, b) ((a) > (b) ? (a) : (b))
  45. #define UNUSED GGML_UNUSED
  46. // some compilers don't provide _mm256_set_m128i, e.g. gcc 7
  47. #define MM256_SET_M128I(a, b) _mm256_insertf128_si256(_mm256_castsi128_si256(b), (a), 1)
  48. #if defined(__AVX__) || defined(__AVX2__) || defined(__AVX512F__) || defined(__SSSE3__)
  49. // multiply int8_t, add results pairwise twice
  50. static inline __m128i mul_sum_i8_pairs(const __m128i x, const __m128i y) {
  51. // Get absolute values of x vectors
  52. const __m128i ax = _mm_sign_epi8(x, x);
  53. // Sign the values of the y vectors
  54. const __m128i sy = _mm_sign_epi8(y, x);
  55. // Perform multiplication and create 16-bit values
  56. const __m128i dot = _mm_maddubs_epi16(ax, sy);
  57. const __m128i ones = _mm_set1_epi16(1);
  58. return _mm_madd_epi16(ones, dot);
  59. }
  60. #if __AVX__ || __AVX2__ || __AVX512F__
  61. // horizontally add 8 floats
  62. static inline float hsum_float_8(const __m256 x) {
  63. __m128 res = _mm256_extractf128_ps(x, 1);
  64. res = _mm_add_ps(res, _mm256_castps256_ps128(x));
  65. res = _mm_add_ps(res, _mm_movehl_ps(res, res));
  66. res = _mm_add_ss(res, _mm_movehdup_ps(res));
  67. return _mm_cvtss_f32(res);
  68. }
  69. // horizontally add 8 int32_t
  70. static inline int hsum_i32_8(const __m256i a) {
  71. const __m128i sum128 = _mm_add_epi32(_mm256_castsi256_si128(a), _mm256_extractf128_si256(a, 1));
  72. const __m128i hi64 = _mm_unpackhi_epi64(sum128, sum128);
  73. const __m128i sum64 = _mm_add_epi32(hi64, sum128);
  74. const __m128i hi32 = _mm_shuffle_epi32(sum64, _MM_SHUFFLE(2, 3, 0, 1));
  75. return _mm_cvtsi128_si32(_mm_add_epi32(sum64, hi32));
  76. }
  77. // horizontally add 4 int32_t
  78. static inline int hsum_i32_4(const __m128i a) {
  79. const __m128i hi64 = _mm_unpackhi_epi64(a, a);
  80. const __m128i sum64 = _mm_add_epi32(hi64, a);
  81. const __m128i hi32 = _mm_shuffle_epi32(sum64, _MM_SHUFFLE(2, 3, 0, 1));
  82. return _mm_cvtsi128_si32(_mm_add_epi32(sum64, hi32));
  83. }
  84. #if defined(__AVX2__) || defined(__AVX512F__)
  85. // spread 32 bits to 32 bytes { 0x00, 0xFF }
  86. static inline __m256i bytes_from_bits_32(const uint8_t * x) {
  87. uint32_t x32;
  88. memcpy(&x32, x, sizeof(uint32_t));
  89. const __m256i shuf_mask = _mm256_set_epi64x(
  90. 0x0303030303030303, 0x0202020202020202,
  91. 0x0101010101010101, 0x0000000000000000);
  92. __m256i bytes = _mm256_shuffle_epi8(_mm256_set1_epi32(x32), shuf_mask);
  93. const __m256i bit_mask = _mm256_set1_epi64x(0x7fbfdfeff7fbfdfe);
  94. bytes = _mm256_or_si256(bytes, bit_mask);
  95. return _mm256_cmpeq_epi8(bytes, _mm256_set1_epi64x(-1));
  96. }
  97. // Unpack 32 4-bit fields into 32 bytes
  98. // The output vector contains 32 bytes, each one in [ 0 .. 15 ] interval
  99. static inline __m256i bytes_from_nibbles_32(const uint8_t * rsi)
  100. {
  101. const __m128i tmp = _mm_loadu_si128((const __m128i *)rsi);
  102. const __m256i bytes = MM256_SET_M128I(_mm_srli_epi16(tmp, 4), tmp);
  103. const __m256i lowMask = _mm256_set1_epi8( 0xF );
  104. return _mm256_and_si256(lowMask, bytes);
  105. }
  106. // add int16_t pairwise and return as float vector
  107. static inline __m256 sum_i16_pairs_float(const __m256i x) {
  108. const __m256i ones = _mm256_set1_epi16(1);
  109. const __m256i summed_pairs = _mm256_madd_epi16(ones, x);
  110. return _mm256_cvtepi32_ps(summed_pairs);
  111. }
  112. static inline __m256 mul_sum_us8_pairs_float(const __m256i ax, const __m256i sy) {
  113. #if __AVXVNNI__
  114. const __m256i zero = _mm256_setzero_si256();
  115. const __m256i summed_pairs = _mm256_dpbusd_epi32(zero, ax, sy);
  116. return _mm256_cvtepi32_ps(summed_pairs);
  117. #else
  118. // Perform multiplication and create 16-bit values
  119. const __m256i dot = _mm256_maddubs_epi16(ax, sy);
  120. return sum_i16_pairs_float(dot);
  121. #endif
  122. }
  123. // multiply int8_t, add results pairwise twice and return as float vector
  124. static inline __m256 mul_sum_i8_pairs_float(const __m256i x, const __m256i y) {
  125. #if __AVXVNNIINT8__
  126. const __m256i zero = _mm256_setzero_si256();
  127. const __m256i summed_pairs = _mm256_dpbssd_epi32(zero, x, y);
  128. return _mm256_cvtepi32_ps(summed_pairs);
  129. #else
  130. // Get absolute values of x vectors
  131. const __m256i ax = _mm256_sign_epi8(x, x);
  132. // Sign the values of the y vectors
  133. const __m256i sy = _mm256_sign_epi8(y, x);
  134. return mul_sum_us8_pairs_float(ax, sy);
  135. #endif
  136. }
  137. static inline __m128i packNibbles( __m256i bytes )
  138. {
  139. // Move bits within 16-bit lanes from 0000_abcd_0000_efgh into 0000_0000_abcd_efgh
  140. #if __AVX512F__
  141. const __m256i bytes_srli_4 = _mm256_srli_epi16(bytes, 4); // 0000_0000_abcd_0000
  142. bytes = _mm256_or_si256(bytes, bytes_srli_4); // 0000_abcd_abcd_efgh
  143. return _mm256_cvtepi16_epi8(bytes); // abcd_efgh
  144. #else
  145. const __m256i lowByte = _mm256_set1_epi16( 0xFF );
  146. __m256i high = _mm256_andnot_si256( lowByte, bytes );
  147. __m256i low = _mm256_and_si256( lowByte, bytes );
  148. high = _mm256_srli_epi16( high, 4 );
  149. bytes = _mm256_or_si256( low, high );
  150. // Compress uint16_t lanes into bytes
  151. __m128i r0 = _mm256_castsi256_si128( bytes );
  152. __m128i r1 = _mm256_extracti128_si256( bytes, 1 );
  153. return _mm_packus_epi16( r0, r1 );
  154. #endif
  155. }
  156. #elif defined(__AVX__)
  157. // spread 32 bits to 32 bytes { 0x00, 0xFF }
  158. static inline __m256i bytes_from_bits_32(const uint8_t * x) {
  159. uint32_t x32;
  160. memcpy(&x32, x, sizeof(uint32_t));
  161. const __m128i shuf_maskl = _mm_set_epi64x(0x0101010101010101, 0x0000000000000000);
  162. const __m128i shuf_maskh = _mm_set_epi64x(0x0303030303030303, 0x0202020202020202);
  163. __m128i bytesl = _mm_shuffle_epi8(_mm_set1_epi32(x32), shuf_maskl);
  164. __m128i bytesh = _mm_shuffle_epi8(_mm_set1_epi32(x32), shuf_maskh);
  165. const __m128i bit_mask = _mm_set1_epi64x(0x7fbfdfeff7fbfdfe);
  166. bytesl = _mm_or_si128(bytesl, bit_mask);
  167. bytesh = _mm_or_si128(bytesh, bit_mask);
  168. bytesl = _mm_cmpeq_epi8(bytesl, _mm_set1_epi64x(-1));
  169. bytesh = _mm_cmpeq_epi8(bytesh, _mm_set1_epi64x(-1));
  170. return MM256_SET_M128I(bytesh, bytesl);
  171. }
  172. // Unpack 32 4-bit fields into 32 bytes
  173. // The output vector contains 32 bytes, each one in [ 0 .. 15 ] interval
  174. static inline __m256i bytes_from_nibbles_32(const uint8_t * rsi)
  175. {
  176. // Load 16 bytes from memory
  177. __m128i tmpl = _mm_loadu_si128((const __m128i *)rsi);
  178. __m128i tmph = _mm_srli_epi16(tmpl, 4);
  179. const __m128i lowMask = _mm_set1_epi8(0xF);
  180. tmpl = _mm_and_si128(lowMask, tmpl);
  181. tmph = _mm_and_si128(lowMask, tmph);
  182. return MM256_SET_M128I(tmph, tmpl);
  183. }
  184. // add int16_t pairwise and return as float vector
  185. static inline __m256 sum_i16_pairs_float(const __m128i xh, const __m128i xl) {
  186. const __m128i ones = _mm_set1_epi16(1);
  187. const __m128i summed_pairsl = _mm_madd_epi16(ones, xl);
  188. const __m128i summed_pairsh = _mm_madd_epi16(ones, xh);
  189. const __m256i summed_pairs = MM256_SET_M128I(summed_pairsh, summed_pairsl);
  190. return _mm256_cvtepi32_ps(summed_pairs);
  191. }
  192. static inline __m256 mul_sum_us8_pairs_float(const __m256i ax, const __m256i sy) {
  193. const __m128i axl = _mm256_castsi256_si128(ax);
  194. const __m128i axh = _mm256_extractf128_si256(ax, 1);
  195. const __m128i syl = _mm256_castsi256_si128(sy);
  196. const __m128i syh = _mm256_extractf128_si256(sy, 1);
  197. // Perform multiplication and create 16-bit values
  198. const __m128i dotl = _mm_maddubs_epi16(axl, syl);
  199. const __m128i doth = _mm_maddubs_epi16(axh, syh);
  200. return sum_i16_pairs_float(doth, dotl);
  201. }
  202. // multiply int8_t, add results pairwise twice and return as float vector
  203. static inline __m256 mul_sum_i8_pairs_float(const __m256i x, const __m256i y) {
  204. const __m128i xl = _mm256_castsi256_si128(x);
  205. const __m128i xh = _mm256_extractf128_si256(x, 1);
  206. const __m128i yl = _mm256_castsi256_si128(y);
  207. const __m128i yh = _mm256_extractf128_si256(y, 1);
  208. // Get absolute values of x vectors
  209. const __m128i axl = _mm_sign_epi8(xl, xl);
  210. const __m128i axh = _mm_sign_epi8(xh, xh);
  211. // Sign the values of the y vectors
  212. const __m128i syl = _mm_sign_epi8(yl, xl);
  213. const __m128i syh = _mm_sign_epi8(yh, xh);
  214. // Perform multiplication and create 16-bit values
  215. const __m128i dotl = _mm_maddubs_epi16(axl, syl);
  216. const __m128i doth = _mm_maddubs_epi16(axh, syh);
  217. return sum_i16_pairs_float(doth, dotl);
  218. }
  219. static inline __m128i packNibbles( __m128i bytes1, __m128i bytes2 )
  220. {
  221. // Move bits within 16-bit lanes from 0000_abcd_0000_efgh into 0000_0000_abcd_efgh
  222. const __m128i lowByte = _mm_set1_epi16( 0xFF );
  223. __m128i high = _mm_andnot_si128( lowByte, bytes1 );
  224. __m128i low = _mm_and_si128( lowByte, bytes1 );
  225. high = _mm_srli_epi16( high, 4 );
  226. bytes1 = _mm_or_si128( low, high );
  227. high = _mm_andnot_si128( lowByte, bytes2 );
  228. low = _mm_and_si128( lowByte, bytes2 );
  229. high = _mm_srli_epi16( high, 4 );
  230. bytes2 = _mm_or_si128( low, high );
  231. return _mm_packus_epi16( bytes1, bytes2);
  232. }
  233. #endif
  234. #elif defined(__SSSE3__)
  235. // horizontally add 4x4 floats
  236. static inline float hsum_float_4x4(const __m128 a, const __m128 b, const __m128 c, const __m128 d) {
  237. __m128 res_0 =_mm_hadd_ps(a, b);
  238. __m128 res_1 =_mm_hadd_ps(c, d);
  239. __m128 res =_mm_hadd_ps(res_0, res_1);
  240. res =_mm_hadd_ps(res, res);
  241. res =_mm_hadd_ps(res, res);
  242. return _mm_cvtss_f32(res);
  243. }
  244. #endif // __AVX__ || __AVX2__ || __AVX512F__
  245. #endif // defined(__AVX__) || defined(__AVX2__) || defined(__AVX512F__) || defined(__SSSE3__)
  246. #if defined(__ARM_NEON)
  247. #ifdef _MSC_VER
  248. #define ggml_vld1q_u32(w,x,y,z) { ((w) + ((uint64_t)(x) << 32)), ((y) + ((uint64_t)(z) << 32)) }
  249. #else
  250. #define ggml_vld1q_u32(w,x,y,z) { (w), (x), (y), (z) }
  251. #endif
  252. #if !defined(__aarch64__)
  253. // 64-bit compatibility
  254. // vaddvq_s16
  255. // vpaddq_s16
  256. // vpaddq_s32
  257. // vaddvq_s32
  258. // vaddvq_f32
  259. // vmaxvq_f32
  260. // vcvtnq_s32_f32
  261. // vzip1_u8
  262. // vzip2_u8
  263. inline static int32_t vaddvq_s16(int16x8_t v) {
  264. return
  265. (int32_t)vgetq_lane_s16(v, 0) + (int32_t)vgetq_lane_s16(v, 1) +
  266. (int32_t)vgetq_lane_s16(v, 2) + (int32_t)vgetq_lane_s16(v, 3) +
  267. (int32_t)vgetq_lane_s16(v, 4) + (int32_t)vgetq_lane_s16(v, 5) +
  268. (int32_t)vgetq_lane_s16(v, 6) + (int32_t)vgetq_lane_s16(v, 7);
  269. }
  270. inline static int16x8_t vpaddq_s16(int16x8_t a, int16x8_t b) {
  271. int16x4_t a0 = vpadd_s16(vget_low_s16(a), vget_high_s16(a));
  272. int16x4_t b0 = vpadd_s16(vget_low_s16(b), vget_high_s16(b));
  273. return vcombine_s16(a0, b0);
  274. }
  275. inline static int32x4_t vpaddq_s32(int32x4_t a, int32x4_t b) {
  276. int32x2_t a0 = vpadd_s32(vget_low_s32(a), vget_high_s32(a));
  277. int32x2_t b0 = vpadd_s32(vget_low_s32(b), vget_high_s32(b));
  278. return vcombine_s32(a0, b0);
  279. }
  280. inline static int32_t vaddvq_s32(int32x4_t v) {
  281. return vgetq_lane_s32(v, 0) + vgetq_lane_s32(v, 1) + vgetq_lane_s32(v, 2) + vgetq_lane_s32(v, 3);
  282. }
  283. inline static float vaddvq_f32(float32x4_t v) {
  284. return vgetq_lane_f32(v, 0) + vgetq_lane_f32(v, 1) + vgetq_lane_f32(v, 2) + vgetq_lane_f32(v, 3);
  285. }
  286. inline static float vmaxvq_f32(float32x4_t v) {
  287. return
  288. MAX(MAX(vgetq_lane_f32(v, 0), vgetq_lane_f32(v, 1)),
  289. MAX(vgetq_lane_f32(v, 2), vgetq_lane_f32(v, 3)));
  290. }
  291. inline static int32x4_t vcvtnq_s32_f32(float32x4_t v) {
  292. int32x4_t res;
  293. res[0] = roundf(vgetq_lane_f32(v, 0));
  294. res[1] = roundf(vgetq_lane_f32(v, 1));
  295. res[2] = roundf(vgetq_lane_f32(v, 2));
  296. res[3] = roundf(vgetq_lane_f32(v, 3));
  297. return res;
  298. }
  299. inline static uint8x8_t vzip1_u8(uint8x8_t a, uint8x8_t b) {
  300. uint8x8_t res;
  301. res[0] = a[0]; res[1] = b[0];
  302. res[2] = a[1]; res[3] = b[1];
  303. res[4] = a[2]; res[5] = b[2];
  304. res[6] = a[3]; res[7] = b[3];
  305. return res;
  306. }
  307. inline static uint8x8_t vzip2_u8(uint8x8_t a, uint8x8_t b) {
  308. uint8x8_t res;
  309. res[0] = a[4]; res[1] = b[4];
  310. res[2] = a[5]; res[3] = b[5];
  311. res[4] = a[6]; res[5] = b[6];
  312. res[6] = a[7]; res[7] = b[7];
  313. return res;
  314. }
  315. // vld1q_s16_x2
  316. // vld1q_u8_x2
  317. // vld1q_u8_x4
  318. // vld1q_s8_x2
  319. // vld1q_s8_x4
  320. // TODO: double-check these work correctly
  321. typedef struct ggml_int16x8x2_t {
  322. int16x8_t val[2];
  323. } ggml_int16x8x2_t;
  324. inline static ggml_int16x8x2_t ggml_vld1q_s16_x2(const int16_t * ptr) {
  325. ggml_int16x8x2_t res;
  326. res.val[0] = vld1q_s16(ptr + 0);
  327. res.val[1] = vld1q_s16(ptr + 8);
  328. return res;
  329. }
  330. typedef struct ggml_uint8x16x2_t {
  331. uint8x16_t val[2];
  332. } ggml_uint8x16x2_t;
  333. inline static ggml_uint8x16x2_t ggml_vld1q_u8_x2(const uint8_t * ptr) {
  334. ggml_uint8x16x2_t res;
  335. res.val[0] = vld1q_u8(ptr + 0);
  336. res.val[1] = vld1q_u8(ptr + 16);
  337. return res;
  338. }
  339. typedef struct ggml_uint8x16x4_t {
  340. uint8x16_t val[4];
  341. } ggml_uint8x16x4_t;
  342. inline static ggml_uint8x16x4_t ggml_vld1q_u8_x4(const uint8_t * ptr) {
  343. ggml_uint8x16x4_t res;
  344. res.val[0] = vld1q_u8(ptr + 0);
  345. res.val[1] = vld1q_u8(ptr + 16);
  346. res.val[2] = vld1q_u8(ptr + 32);
  347. res.val[3] = vld1q_u8(ptr + 48);
  348. return res;
  349. }
  350. typedef struct ggml_int8x16x2_t {
  351. int8x16_t val[2];
  352. } ggml_int8x16x2_t;
  353. inline static ggml_int8x16x2_t ggml_vld1q_s8_x2(const int8_t * ptr) {
  354. ggml_int8x16x2_t res;
  355. res.val[0] = vld1q_s8(ptr + 0);
  356. res.val[1] = vld1q_s8(ptr + 16);
  357. return res;
  358. }
  359. typedef struct ggml_int8x16x4_t {
  360. int8x16_t val[4];
  361. } ggml_int8x16x4_t;
  362. inline static ggml_int8x16x4_t ggml_vld1q_s8_x4(const int8_t * ptr) {
  363. ggml_int8x16x4_t res;
  364. res.val[0] = vld1q_s8(ptr + 0);
  365. res.val[1] = vld1q_s8(ptr + 16);
  366. res.val[2] = vld1q_s8(ptr + 32);
  367. res.val[3] = vld1q_s8(ptr + 48);
  368. return res;
  369. }
  370. // NOTE: not tested
  371. inline static int8x16_t ggml_vqtbl1q_s8(int8x16_t a, uint8x16_t b) {
  372. int8x16_t res;
  373. res[ 0] = a[b[ 0]];
  374. res[ 1] = a[b[ 1]];
  375. res[ 2] = a[b[ 2]];
  376. res[ 3] = a[b[ 3]];
  377. res[ 4] = a[b[ 4]];
  378. res[ 5] = a[b[ 5]];
  379. res[ 6] = a[b[ 6]];
  380. res[ 7] = a[b[ 7]];
  381. res[ 8] = a[b[ 8]];
  382. res[ 9] = a[b[ 9]];
  383. res[10] = a[b[10]];
  384. res[11] = a[b[11]];
  385. res[12] = a[b[12]];
  386. res[13] = a[b[13]];
  387. res[14] = a[b[14]];
  388. res[15] = a[b[15]];
  389. return res;
  390. }
  391. // NOTE: not tested
  392. inline static uint8x16_t ggml_vqtbl1q_u8(uint8x16_t a, uint8x16_t b) {
  393. uint8x16_t res;
  394. res[ 0] = a[b[ 0]];
  395. res[ 1] = a[b[ 1]];
  396. res[ 2] = a[b[ 2]];
  397. res[ 3] = a[b[ 3]];
  398. res[ 4] = a[b[ 4]];
  399. res[ 5] = a[b[ 5]];
  400. res[ 6] = a[b[ 6]];
  401. res[ 7] = a[b[ 7]];
  402. res[ 8] = a[b[ 8]];
  403. res[ 9] = a[b[ 9]];
  404. res[10] = a[b[10]];
  405. res[11] = a[b[11]];
  406. res[12] = a[b[12]];
  407. res[13] = a[b[13]];
  408. res[14] = a[b[14]];
  409. res[15] = a[b[15]];
  410. return res;
  411. }
  412. #else
  413. #define ggml_int16x8x2_t int16x8x2_t
  414. #define ggml_uint8x16x2_t uint8x16x2_t
  415. #define ggml_uint8x16x4_t uint8x16x4_t
  416. #define ggml_int8x16x2_t int8x16x2_t
  417. #define ggml_int8x16x4_t int8x16x4_t
  418. #define ggml_vld1q_s16_x2 vld1q_s16_x2
  419. #define ggml_vld1q_u8_x2 vld1q_u8_x2
  420. #define ggml_vld1q_u8_x4 vld1q_u8_x4
  421. #define ggml_vld1q_s8_x2 vld1q_s8_x2
  422. #define ggml_vld1q_s8_x4 vld1q_s8_x4
  423. #define ggml_vqtbl1q_s8 vqtbl1q_s8
  424. #define ggml_vqtbl1q_u8 vqtbl1q_u8
  425. #endif
  426. #if !defined(__ARM_FEATURE_DOTPROD)
  427. inline static int32x4_t ggml_vdotq_s32(int32x4_t acc, int8x16_t a, int8x16_t b) {
  428. const int16x8_t p0 = vmull_s8(vget_low_s8 (a), vget_low_s8 (b));
  429. const int16x8_t p1 = vmull_s8(vget_high_s8(a), vget_high_s8(b));
  430. return vaddq_s32(acc, vaddq_s32(vpaddlq_s16(p0), vpaddlq_s16(p1)));
  431. }
  432. #else
  433. #define ggml_vdotq_s32(a, b, c) vdotq_s32(a, b, c)
  434. #endif
  435. #endif
  436. #if defined(__ARM_NEON) || defined(__wasm_simd128__)
  437. #define B1(c,s,n) 0x ## n ## c , 0x ## n ## s
  438. #define B2(c,s,n) B1(c,s,n ## c), B1(c,s,n ## s)
  439. #define B3(c,s,n) B2(c,s,n ## c), B2(c,s,n ## s)
  440. #define B4(c,s,n) B3(c,s,n ## c), B3(c,s,n ## s)
  441. #define B5(c,s,n) B4(c,s,n ## c), B4(c,s,n ## s)
  442. #define B6(c,s,n) B5(c,s,n ## c), B5(c,s,n ## s)
  443. #define B7(c,s,n) B6(c,s,n ## c), B6(c,s,n ## s)
  444. #define B8(c,s ) B7(c,s, c), B7(c,s, s)
  445. // precomputed tables for expanding 8bits to 8 bytes:
  446. static const uint64_t table_b2b_0[1 << 8] = { B8(00, 10) }; // ( b) << 4
  447. static const uint64_t table_b2b_1[1 << 8] = { B8(10, 00) }; // (!b) << 4
  448. #endif
  449. // reference implementation for deterministic creation of model files
  450. void quantize_row_q4_0_reference(const float * restrict x, block_q4_0 * restrict y, int k) {
  451. static const int qk = QK4_0;
  452. assert(k % qk == 0);
  453. const int nb = k / qk;
  454. for (int i = 0; i < nb; i++) {
  455. float amax = 0.0f; // absolute max
  456. float max = 0.0f;
  457. for (int j = 0; j < qk; j++) {
  458. const float v = x[i*qk + j];
  459. if (amax < fabsf(v)) {
  460. amax = fabsf(v);
  461. max = v;
  462. }
  463. }
  464. const float d = max / -8;
  465. const float id = d ? 1.0f/d : 0.0f;
  466. y[i].d = GGML_FP32_TO_FP16(d);
  467. for (int j = 0; j < qk/2; ++j) {
  468. const float x0 = x[i*qk + 0 + j]*id;
  469. const float x1 = x[i*qk + qk/2 + j]*id;
  470. const uint8_t xi0 = MIN(15, (int8_t)(x0 + 8.5f));
  471. const uint8_t xi1 = MIN(15, (int8_t)(x1 + 8.5f));
  472. y[i].qs[j] = xi0;
  473. y[i].qs[j] |= xi1 << 4;
  474. }
  475. }
  476. }
  477. void quantize_row_q4_0(const float * restrict x, void * restrict y, int k) {
  478. quantize_row_q4_0_reference(x, y, k);
  479. }
  480. void quantize_row_q4_1_reference(const float * restrict x, block_q4_1 * restrict y, int k) {
  481. const int qk = QK4_1;
  482. assert(k % qk == 0);
  483. const int nb = k / qk;
  484. for (int i = 0; i < nb; i++) {
  485. float min = FLT_MAX;
  486. float max = -FLT_MAX;
  487. for (int j = 0; j < qk; j++) {
  488. const float v = x[i*qk + j];
  489. if (v < min) min = v;
  490. if (v > max) max = v;
  491. }
  492. const float d = (max - min) / ((1 << 4) - 1);
  493. const float id = d ? 1.0f/d : 0.0f;
  494. y[i].d = GGML_FP32_TO_FP16(d);
  495. y[i].m = GGML_FP32_TO_FP16(min);
  496. for (int j = 0; j < qk/2; ++j) {
  497. const float x0 = (x[i*qk + 0 + j] - min)*id;
  498. const float x1 = (x[i*qk + qk/2 + j] - min)*id;
  499. const uint8_t xi0 = MIN(15, (int8_t)(x0 + 0.5f));
  500. const uint8_t xi1 = MIN(15, (int8_t)(x1 + 0.5f));
  501. y[i].qs[j] = xi0;
  502. y[i].qs[j] |= xi1 << 4;
  503. }
  504. }
  505. }
  506. void quantize_row_q4_1(const float * restrict x, void * restrict y, int k) {
  507. quantize_row_q4_1_reference(x, y, k);
  508. }
  509. void quantize_row_q5_0_reference(const float * restrict x, block_q5_0 * restrict y, int k) {
  510. static const int qk = QK5_0;
  511. assert(k % qk == 0);
  512. const int nb = k / qk;
  513. for (int i = 0; i < nb; i++) {
  514. float amax = 0.0f; // absolute max
  515. float max = 0.0f;
  516. for (int j = 0; j < qk; j++) {
  517. const float v = x[i*qk + j];
  518. if (amax < fabsf(v)) {
  519. amax = fabsf(v);
  520. max = v;
  521. }
  522. }
  523. const float d = max / -16;
  524. const float id = d ? 1.0f/d : 0.0f;
  525. y[i].d = GGML_FP32_TO_FP16(d);
  526. uint32_t qh = 0;
  527. for (int j = 0; j < qk/2; ++j) {
  528. const float x0 = x[i*qk + 0 + j]*id;
  529. const float x1 = x[i*qk + qk/2 + j]*id;
  530. const uint8_t xi0 = MIN(31, (int8_t)(x0 + 16.5f));
  531. const uint8_t xi1 = MIN(31, (int8_t)(x1 + 16.5f));
  532. y[i].qs[j] = (xi0 & 0x0F) | ((xi1 & 0x0F) << 4);
  533. // get the 5-th bit and store it in qh at the right position
  534. qh |= ((xi0 & 0x10u) >> 4) << (j + 0);
  535. qh |= ((xi1 & 0x10u) >> 4) << (j + qk/2);
  536. }
  537. memcpy(&y[i].qh, &qh, sizeof(qh));
  538. }
  539. }
  540. void quantize_row_q5_0(const float * restrict x, void * restrict y, int k) {
  541. quantize_row_q5_0_reference(x, y, k);
  542. }
  543. void quantize_row_q5_1_reference(const float * restrict x, block_q5_1 * restrict y, int k) {
  544. const int qk = QK5_1;
  545. assert(k % qk == 0);
  546. const int nb = k / qk;
  547. for (int i = 0; i < nb; i++) {
  548. float min = FLT_MAX;
  549. float max = -FLT_MAX;
  550. for (int j = 0; j < qk; j++) {
  551. const float v = x[i*qk + j];
  552. if (v < min) min = v;
  553. if (v > max) max = v;
  554. }
  555. const float d = (max - min) / ((1 << 5) - 1);
  556. const float id = d ? 1.0f/d : 0.0f;
  557. y[i].d = GGML_FP32_TO_FP16(d);
  558. y[i].m = GGML_FP32_TO_FP16(min);
  559. uint32_t qh = 0;
  560. for (int j = 0; j < qk/2; ++j) {
  561. const float x0 = (x[i*qk + 0 + j] - min)*id;
  562. const float x1 = (x[i*qk + qk/2 + j] - min)*id;
  563. const uint8_t xi0 = (uint8_t)(x0 + 0.5f);
  564. const uint8_t xi1 = (uint8_t)(x1 + 0.5f);
  565. y[i].qs[j] = (xi0 & 0x0F) | ((xi1 & 0x0F) << 4);
  566. // get the 5-th bit and store it in qh at the right position
  567. qh |= ((xi0 & 0x10u) >> 4) << (j + 0);
  568. qh |= ((xi1 & 0x10u) >> 4) << (j + qk/2);
  569. }
  570. memcpy(&y[i].qh, &qh, sizeof(y[i].qh));
  571. }
  572. }
  573. void quantize_row_q5_1(const float * restrict x, void * restrict y, int k) {
  574. quantize_row_q5_1_reference(x, y, k);
  575. }
  576. // reference implementation for deterministic creation of model files
  577. void quantize_row_q8_0_reference(const float * restrict x, block_q8_0 * restrict y, int k) {
  578. assert(k % QK8_0 == 0);
  579. const int nb = k / QK8_0;
  580. for (int i = 0; i < nb; i++) {
  581. float amax = 0.0f; // absolute max
  582. for (int j = 0; j < QK8_0; j++) {
  583. const float v = x[i*QK8_0 + j];
  584. amax = MAX(amax, fabsf(v));
  585. }
  586. const float d = amax / ((1 << 7) - 1);
  587. const float id = d ? 1.0f/d : 0.0f;
  588. y[i].d = GGML_FP32_TO_FP16(d);
  589. for (int j = 0; j < QK8_0; ++j) {
  590. const float x0 = x[i*QK8_0 + j]*id;
  591. y[i].qs[j] = roundf(x0);
  592. }
  593. }
  594. }
  595. void quantize_row_q8_0(const float * restrict x, void * restrict vy, int k) {
  596. assert(QK8_0 == 32);
  597. assert(k % QK8_0 == 0);
  598. const int nb = k / QK8_0;
  599. block_q8_0 * restrict y = vy;
  600. #if defined(__ARM_NEON)
  601. for (int i = 0; i < nb; i++) {
  602. float32x4_t srcv [8];
  603. float32x4_t asrcv[8];
  604. float32x4_t amaxv[8];
  605. for (int j = 0; j < 8; j++) srcv[j] = vld1q_f32(x + i*32 + 4*j);
  606. for (int j = 0; j < 8; j++) asrcv[j] = vabsq_f32(srcv[j]);
  607. for (int j = 0; j < 4; j++) amaxv[2*j] = vmaxq_f32(asrcv[2*j], asrcv[2*j+1]);
  608. for (int j = 0; j < 2; j++) amaxv[4*j] = vmaxq_f32(amaxv[4*j], amaxv[4*j+2]);
  609. for (int j = 0; j < 1; j++) amaxv[8*j] = vmaxq_f32(amaxv[8*j], amaxv[8*j+4]);
  610. const float amax = vmaxvq_f32(amaxv[0]);
  611. const float d = amax / ((1 << 7) - 1);
  612. const float id = d ? 1.0f/d : 0.0f;
  613. y[i].d = GGML_FP32_TO_FP16(d);
  614. for (int j = 0; j < 8; j++) {
  615. const float32x4_t v = vmulq_n_f32(srcv[j], id);
  616. const int32x4_t vi = vcvtnq_s32_f32(v);
  617. y[i].qs[4*j + 0] = vgetq_lane_s32(vi, 0);
  618. y[i].qs[4*j + 1] = vgetq_lane_s32(vi, 1);
  619. y[i].qs[4*j + 2] = vgetq_lane_s32(vi, 2);
  620. y[i].qs[4*j + 3] = vgetq_lane_s32(vi, 3);
  621. }
  622. }
  623. #elif defined(__wasm_simd128__)
  624. for (int i = 0; i < nb; i++) {
  625. v128_t srcv [8];
  626. v128_t asrcv[8];
  627. v128_t amaxv[8];
  628. for (int j = 0; j < 8; j++) srcv[j] = wasm_v128_load(x + i*32 + 4*j);
  629. for (int j = 0; j < 8; j++) asrcv[j] = wasm_f32x4_abs(srcv[j]);
  630. for (int j = 0; j < 4; j++) amaxv[2*j] = wasm_f32x4_max(asrcv[2*j], asrcv[2*j+1]);
  631. for (int j = 0; j < 2; j++) amaxv[4*j] = wasm_f32x4_max(amaxv[4*j], amaxv[4*j+2]);
  632. for (int j = 0; j < 1; j++) amaxv[8*j] = wasm_f32x4_max(amaxv[8*j], amaxv[8*j+4]);
  633. const float amax = MAX(MAX(wasm_f32x4_extract_lane(amaxv[0], 0),
  634. wasm_f32x4_extract_lane(amaxv[0], 1)),
  635. MAX(wasm_f32x4_extract_lane(amaxv[0], 2),
  636. wasm_f32x4_extract_lane(amaxv[0], 3)));
  637. const float d = amax / ((1 << 7) - 1);
  638. const float id = d ? 1.0f/d : 0.0f;
  639. y[i].d = GGML_FP32_TO_FP16(d);
  640. for (int j = 0; j < 8; j++) {
  641. const v128_t v = wasm_f32x4_mul(srcv[j], wasm_f32x4_splat(id));
  642. const v128_t vi = wasm_i32x4_trunc_sat_f32x4(v);
  643. y[i].qs[4*j + 0] = wasm_i32x4_extract_lane(vi, 0);
  644. y[i].qs[4*j + 1] = wasm_i32x4_extract_lane(vi, 1);
  645. y[i].qs[4*j + 2] = wasm_i32x4_extract_lane(vi, 2);
  646. y[i].qs[4*j + 3] = wasm_i32x4_extract_lane(vi, 3);
  647. }
  648. }
  649. #elif defined(__AVX2__) || defined(__AVX__)
  650. for (int i = 0; i < nb; i++) {
  651. // Load elements into 4 AVX vectors
  652. __m256 v0 = _mm256_loadu_ps( x );
  653. __m256 v1 = _mm256_loadu_ps( x + 8 );
  654. __m256 v2 = _mm256_loadu_ps( x + 16 );
  655. __m256 v3 = _mm256_loadu_ps( x + 24 );
  656. x += 32;
  657. // Compute max(abs(e)) for the block
  658. const __m256 signBit = _mm256_set1_ps( -0.0f );
  659. __m256 maxAbs = _mm256_andnot_ps( signBit, v0 );
  660. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v1 ) );
  661. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v2 ) );
  662. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v3 ) );
  663. __m128 max4 = _mm_max_ps( _mm256_extractf128_ps( maxAbs, 1 ), _mm256_castps256_ps128( maxAbs ) );
  664. max4 = _mm_max_ps( max4, _mm_movehl_ps( max4, max4 ) );
  665. max4 = _mm_max_ss( max4, _mm_movehdup_ps( max4 ) );
  666. const float maxScalar = _mm_cvtss_f32( max4 );
  667. // Quantize these floats
  668. const float d = maxScalar / 127.f;
  669. y[i].d = GGML_FP32_TO_FP16(d);
  670. const float id = ( maxScalar != 0.0f ) ? 127.f / maxScalar : 0.0f;
  671. const __m256 mul = _mm256_set1_ps( id );
  672. // Apply the multiplier
  673. v0 = _mm256_mul_ps( v0, mul );
  674. v1 = _mm256_mul_ps( v1, mul );
  675. v2 = _mm256_mul_ps( v2, mul );
  676. v3 = _mm256_mul_ps( v3, mul );
  677. // Round to nearest integer
  678. v0 = _mm256_round_ps( v0, _MM_ROUND_NEAREST );
  679. v1 = _mm256_round_ps( v1, _MM_ROUND_NEAREST );
  680. v2 = _mm256_round_ps( v2, _MM_ROUND_NEAREST );
  681. v3 = _mm256_round_ps( v3, _MM_ROUND_NEAREST );
  682. // Convert floats to integers
  683. __m256i i0 = _mm256_cvtps_epi32( v0 );
  684. __m256i i1 = _mm256_cvtps_epi32( v1 );
  685. __m256i i2 = _mm256_cvtps_epi32( v2 );
  686. __m256i i3 = _mm256_cvtps_epi32( v3 );
  687. #if defined(__AVX2__)
  688. // Convert int32 to int16
  689. i0 = _mm256_packs_epi32( i0, i1 ); // 0, 1, 2, 3, 8, 9, 10, 11, 4, 5, 6, 7, 12, 13, 14, 15
  690. i2 = _mm256_packs_epi32( i2, i3 ); // 16, 17, 18, 19, 24, 25, 26, 27, 20, 21, 22, 23, 28, 29, 30, 31
  691. // Convert int16 to int8
  692. i0 = _mm256_packs_epi16( i0, i2 ); // 0, 1, 2, 3, 8, 9, 10, 11, 16, 17, 18, 19, 24, 25, 26, 27, 4, 5, 6, 7, 12, 13, 14, 15, 20, 21, 22, 23, 28, 29, 30, 31
  693. // We got our precious signed bytes, but the order is now wrong
  694. // These AVX2 pack instructions process 16-byte pieces independently
  695. // The following instruction is fixing the order
  696. const __m256i perm = _mm256_setr_epi32( 0, 4, 1, 5, 2, 6, 3, 7 );
  697. i0 = _mm256_permutevar8x32_epi32( i0, perm );
  698. _mm256_storeu_si256((__m256i *)y[i].qs, i0);
  699. #else
  700. // Since we don't have in AVX some necessary functions,
  701. // we split the registers in half and call AVX2 analogs from SSE
  702. __m128i ni0 = _mm256_castsi256_si128( i0 );
  703. __m128i ni1 = _mm256_extractf128_si256( i0, 1);
  704. __m128i ni2 = _mm256_castsi256_si128( i1 );
  705. __m128i ni3 = _mm256_extractf128_si256( i1, 1);
  706. __m128i ni4 = _mm256_castsi256_si128( i2 );
  707. __m128i ni5 = _mm256_extractf128_si256( i2, 1);
  708. __m128i ni6 = _mm256_castsi256_si128( i3 );
  709. __m128i ni7 = _mm256_extractf128_si256( i3, 1);
  710. // Convert int32 to int16
  711. ni0 = _mm_packs_epi32( ni0, ni1 );
  712. ni2 = _mm_packs_epi32( ni2, ni3 );
  713. ni4 = _mm_packs_epi32( ni4, ni5 );
  714. ni6 = _mm_packs_epi32( ni6, ni7 );
  715. // Convert int16 to int8
  716. ni0 = _mm_packs_epi16( ni0, ni2 );
  717. ni4 = _mm_packs_epi16( ni4, ni6 );
  718. _mm_storeu_si128((__m128i *)(y[i].qs + 0), ni0);
  719. _mm_storeu_si128((__m128i *)(y[i].qs + 16), ni4);
  720. #endif
  721. }
  722. #elif defined(__riscv_v_intrinsic)
  723. size_t vl = __riscv_vsetvl_e32m4(QK8_0);
  724. for (int i = 0; i < nb; i++) {
  725. // load elements
  726. vfloat32m4_t v_x = __riscv_vle32_v_f32m4(x+i*QK8_0, vl);
  727. vfloat32m4_t vfabs = __riscv_vfabs_v_f32m4(v_x, vl);
  728. vfloat32m1_t tmp = __riscv_vfmv_v_f_f32m1(0.0f, vl);
  729. vfloat32m1_t vmax = __riscv_vfredmax_vs_f32m4_f32m1(vfabs, tmp, vl);
  730. float amax = __riscv_vfmv_f_s_f32m1_f32(vmax);
  731. const float d = amax / ((1 << 7) - 1);
  732. const float id = d ? 1.0f/d : 0.0f;
  733. y[i].d = GGML_FP32_TO_FP16(d);
  734. vfloat32m4_t x0 = __riscv_vfmul_vf_f32m4(v_x, id, vl);
  735. // convert to integer
  736. vint16m2_t vi = __riscv_vfncvt_x_f_w_i16m2(x0, vl);
  737. vint8m1_t vs = __riscv_vncvt_x_x_w_i8m1(vi, vl);
  738. // store result
  739. __riscv_vse8_v_i8m1(y[i].qs , vs, vl);
  740. }
  741. #else
  742. GGML_UNUSED(nb);
  743. // scalar
  744. quantize_row_q8_0_reference(x, y, k);
  745. #endif
  746. }
  747. // reference implementation for deterministic creation of model files
  748. void quantize_row_q8_1_reference(const float * restrict x, block_q8_1 * restrict y, int k) {
  749. assert(QK8_1 == 32);
  750. assert(k % QK8_1 == 0);
  751. const int nb = k / QK8_1;
  752. for (int i = 0; i < nb; i++) {
  753. float amax = 0.0f; // absolute max
  754. for (int j = 0; j < QK8_1; j++) {
  755. const float v = x[i*QK8_1 + j];
  756. amax = MAX(amax, fabsf(v));
  757. }
  758. const float d = amax / ((1 << 7) - 1);
  759. const float id = d ? 1.0f/d : 0.0f;
  760. y[i].d = d;
  761. int sum = 0;
  762. for (int j = 0; j < QK8_1/2; ++j) {
  763. const float v0 = x[i*QK8_1 + j]*id;
  764. const float v1 = x[i*QK8_1 + QK8_1/2 + j]*id;
  765. y[i].qs[ j] = roundf(v0);
  766. y[i].qs[QK8_1/2 + j] = roundf(v1);
  767. sum += y[i].qs[ j];
  768. sum += y[i].qs[QK8_1/2 + j];
  769. }
  770. y[i].s = sum*d;
  771. }
  772. }
  773. void quantize_row_q8_1(const float * restrict x, void * restrict vy, int k) {
  774. assert(k % QK8_1 == 0);
  775. const int nb = k / QK8_1;
  776. block_q8_1 * restrict y = vy;
  777. #if defined(__ARM_NEON)
  778. for (int i = 0; i < nb; i++) {
  779. float32x4_t srcv [8];
  780. float32x4_t asrcv[8];
  781. float32x4_t amaxv[8];
  782. for (int j = 0; j < 8; j++) srcv[j] = vld1q_f32(x + i*32 + 4*j);
  783. for (int j = 0; j < 8; j++) asrcv[j] = vabsq_f32(srcv[j]);
  784. for (int j = 0; j < 4; j++) amaxv[2*j] = vmaxq_f32(asrcv[2*j], asrcv[2*j+1]);
  785. for (int j = 0; j < 2; j++) amaxv[4*j] = vmaxq_f32(amaxv[4*j], amaxv[4*j+2]);
  786. for (int j = 0; j < 1; j++) amaxv[8*j] = vmaxq_f32(amaxv[8*j], amaxv[8*j+4]);
  787. const float amax = vmaxvq_f32(amaxv[0]);
  788. const float d = amax / ((1 << 7) - 1);
  789. const float id = d ? 1.0f/d : 0.0f;
  790. y[i].d = d;
  791. int32x4_t accv = vdupq_n_s32(0);
  792. for (int j = 0; j < 8; j++) {
  793. const float32x4_t v = vmulq_n_f32(srcv[j], id);
  794. const int32x4_t vi = vcvtnq_s32_f32(v);
  795. y[i].qs[4*j + 0] = vgetq_lane_s32(vi, 0);
  796. y[i].qs[4*j + 1] = vgetq_lane_s32(vi, 1);
  797. y[i].qs[4*j + 2] = vgetq_lane_s32(vi, 2);
  798. y[i].qs[4*j + 3] = vgetq_lane_s32(vi, 3);
  799. accv = vaddq_s32(accv, vi);
  800. }
  801. y[i].s = d * vaddvq_s32(accv);
  802. }
  803. #elif defined(__wasm_simd128__)
  804. for (int i = 0; i < nb; i++) {
  805. v128_t srcv [8];
  806. v128_t asrcv[8];
  807. v128_t amaxv[8];
  808. for (int j = 0; j < 8; j++) srcv[j] = wasm_v128_load(x + i*32 + 4*j);
  809. for (int j = 0; j < 8; j++) asrcv[j] = wasm_f32x4_abs(srcv[j]);
  810. for (int j = 0; j < 4; j++) amaxv[2*j] = wasm_f32x4_max(asrcv[2*j], asrcv[2*j+1]);
  811. for (int j = 0; j < 2; j++) amaxv[4*j] = wasm_f32x4_max(amaxv[4*j], amaxv[4*j+2]);
  812. for (int j = 0; j < 1; j++) amaxv[8*j] = wasm_f32x4_max(amaxv[8*j], amaxv[8*j+4]);
  813. const float amax = MAX(MAX(wasm_f32x4_extract_lane(amaxv[0], 0),
  814. wasm_f32x4_extract_lane(amaxv[0], 1)),
  815. MAX(wasm_f32x4_extract_lane(amaxv[0], 2),
  816. wasm_f32x4_extract_lane(amaxv[0], 3)));
  817. const float d = amax / ((1 << 7) - 1);
  818. const float id = d ? 1.0f/d : 0.0f;
  819. y[i].d = d;
  820. v128_t accv = wasm_i32x4_splat(0);
  821. for (int j = 0; j < 8; j++) {
  822. const v128_t v = wasm_f32x4_mul(srcv[j], wasm_f32x4_splat(id));
  823. const v128_t vi = wasm_i32x4_trunc_sat_f32x4(v);
  824. y[i].qs[4*j + 0] = wasm_i32x4_extract_lane(vi, 0);
  825. y[i].qs[4*j + 1] = wasm_i32x4_extract_lane(vi, 1);
  826. y[i].qs[4*j + 2] = wasm_i32x4_extract_lane(vi, 2);
  827. y[i].qs[4*j + 3] = wasm_i32x4_extract_lane(vi, 3);
  828. accv = wasm_i32x4_add(accv, vi);
  829. }
  830. y[i].s = d * (wasm_i32x4_extract_lane(accv, 0) +
  831. wasm_i32x4_extract_lane(accv, 1) +
  832. wasm_i32x4_extract_lane(accv, 2) +
  833. wasm_i32x4_extract_lane(accv, 3));
  834. }
  835. #elif defined(__AVX2__) || defined(__AVX__)
  836. for (int i = 0; i < nb; i++) {
  837. // Load elements into 4 AVX vectors
  838. __m256 v0 = _mm256_loadu_ps( x );
  839. __m256 v1 = _mm256_loadu_ps( x + 8 );
  840. __m256 v2 = _mm256_loadu_ps( x + 16 );
  841. __m256 v3 = _mm256_loadu_ps( x + 24 );
  842. x += 32;
  843. // Compute max(abs(e)) for the block
  844. const __m256 signBit = _mm256_set1_ps( -0.0f );
  845. __m256 maxAbs = _mm256_andnot_ps( signBit, v0 );
  846. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v1 ) );
  847. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v2 ) );
  848. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v3 ) );
  849. __m128 max4 = _mm_max_ps( _mm256_extractf128_ps( maxAbs, 1 ), _mm256_castps256_ps128( maxAbs ) );
  850. max4 = _mm_max_ps( max4, _mm_movehl_ps( max4, max4 ) );
  851. max4 = _mm_max_ss( max4, _mm_movehdup_ps( max4 ) );
  852. const float maxScalar = _mm_cvtss_f32( max4 );
  853. // Quantize these floats
  854. const float d = maxScalar / 127.f;
  855. y[i].d = d;
  856. const float id = ( maxScalar != 0.0f ) ? 127.f / maxScalar : 0.0f;
  857. const __m256 mul = _mm256_set1_ps( id );
  858. // Apply the multiplier
  859. v0 = _mm256_mul_ps( v0, mul );
  860. v1 = _mm256_mul_ps( v1, mul );
  861. v2 = _mm256_mul_ps( v2, mul );
  862. v3 = _mm256_mul_ps( v3, mul );
  863. // Round to nearest integer
  864. v0 = _mm256_round_ps( v0, _MM_ROUND_NEAREST );
  865. v1 = _mm256_round_ps( v1, _MM_ROUND_NEAREST );
  866. v2 = _mm256_round_ps( v2, _MM_ROUND_NEAREST );
  867. v3 = _mm256_round_ps( v3, _MM_ROUND_NEAREST );
  868. // Convert floats to integers
  869. __m256i i0 = _mm256_cvtps_epi32( v0 );
  870. __m256i i1 = _mm256_cvtps_epi32( v1 );
  871. __m256i i2 = _mm256_cvtps_epi32( v2 );
  872. __m256i i3 = _mm256_cvtps_epi32( v3 );
  873. #if defined(__AVX2__)
  874. // Compute the sum of the quants and set y[i].s
  875. y[i].s = d * hsum_i32_8(_mm256_add_epi32(_mm256_add_epi32(i0, i1), _mm256_add_epi32(i2, i3)));
  876. // Convert int32 to int16
  877. i0 = _mm256_packs_epi32( i0, i1 ); // 0, 1, 2, 3, 8, 9, 10, 11, 4, 5, 6, 7, 12, 13, 14, 15
  878. i2 = _mm256_packs_epi32( i2, i3 ); // 16, 17, 18, 19, 24, 25, 26, 27, 20, 21, 22, 23, 28, 29, 30, 31
  879. // Convert int16 to int8
  880. i0 = _mm256_packs_epi16( i0, i2 ); // 0, 1, 2, 3, 8, 9, 10, 11, 16, 17, 18, 19, 24, 25, 26, 27, 4, 5, 6, 7, 12, 13, 14, 15, 20, 21, 22, 23, 28, 29, 30, 31
  881. // We got our precious signed bytes, but the order is now wrong
  882. // These AVX2 pack instructions process 16-byte pieces independently
  883. // The following instruction is fixing the order
  884. const __m256i perm = _mm256_setr_epi32( 0, 4, 1, 5, 2, 6, 3, 7 );
  885. i0 = _mm256_permutevar8x32_epi32( i0, perm );
  886. _mm256_storeu_si256((__m256i *)y[i].qs, i0);
  887. #else
  888. // Since we don't have in AVX some necessary functions,
  889. // we split the registers in half and call AVX2 analogs from SSE
  890. __m128i ni0 = _mm256_castsi256_si128( i0 );
  891. __m128i ni1 = _mm256_extractf128_si256( i0, 1);
  892. __m128i ni2 = _mm256_castsi256_si128( i1 );
  893. __m128i ni3 = _mm256_extractf128_si256( i1, 1);
  894. __m128i ni4 = _mm256_castsi256_si128( i2 );
  895. __m128i ni5 = _mm256_extractf128_si256( i2, 1);
  896. __m128i ni6 = _mm256_castsi256_si128( i3 );
  897. __m128i ni7 = _mm256_extractf128_si256( i3, 1);
  898. // Compute the sum of the quants and set y[i].s
  899. const __m128i s0 = _mm_add_epi32(_mm_add_epi32(ni0, ni1), _mm_add_epi32(ni2, ni3));
  900. const __m128i s1 = _mm_add_epi32(_mm_add_epi32(ni4, ni5), _mm_add_epi32(ni6, ni7));
  901. y[i].s = d * hsum_i32_4(_mm_add_epi32(s0, s1));
  902. // Convert int32 to int16
  903. ni0 = _mm_packs_epi32( ni0, ni1 );
  904. ni2 = _mm_packs_epi32( ni2, ni3 );
  905. ni4 = _mm_packs_epi32( ni4, ni5 );
  906. ni6 = _mm_packs_epi32( ni6, ni7 );
  907. // Convert int16 to int8
  908. ni0 = _mm_packs_epi16( ni0, ni2 );
  909. ni4 = _mm_packs_epi16( ni4, ni6 );
  910. _mm_storeu_si128((__m128i *)(y[i].qs + 0), ni0);
  911. _mm_storeu_si128((__m128i *)(y[i].qs + 16), ni4);
  912. #endif
  913. }
  914. #elif defined(__riscv_v_intrinsic)
  915. size_t vl = __riscv_vsetvl_e32m4(QK8_1);
  916. for (int i = 0; i < nb; i++) {
  917. // load elements
  918. vfloat32m4_t v_x = __riscv_vle32_v_f32m4(x+i*QK8_1, vl);
  919. vfloat32m4_t vfabs = __riscv_vfabs_v_f32m4(v_x, vl);
  920. vfloat32m1_t tmp = __riscv_vfmv_v_f_f32m1(0.0, vl);
  921. vfloat32m1_t vmax = __riscv_vfredmax_vs_f32m4_f32m1(vfabs, tmp, vl);
  922. float amax = __riscv_vfmv_f_s_f32m1_f32(vmax);
  923. const float d = amax / ((1 << 7) - 1);
  924. const float id = d ? 1.0f/d : 0.0f;
  925. y[i].d = d;
  926. vfloat32m4_t x0 = __riscv_vfmul_vf_f32m4(v_x, id, vl);
  927. // convert to integer
  928. vint16m2_t vi = __riscv_vfncvt_x_f_w_i16m2(x0, vl);
  929. vint8m1_t vs = __riscv_vncvt_x_x_w_i8m1(vi, vl);
  930. // store result
  931. __riscv_vse8_v_i8m1(y[i].qs , vs, vl);
  932. // compute sum for y[i].s
  933. vint16m1_t tmp2 = __riscv_vmv_v_x_i16m1(0, vl);
  934. vint16m1_t vwrs = __riscv_vwredsum_vs_i8m1_i16m1(vs, tmp2, vl);
  935. // set y[i].s
  936. int sum = __riscv_vmv_x_s_i16m1_i16(vwrs);
  937. y[i].s = sum*d;
  938. }
  939. #else
  940. GGML_UNUSED(nb);
  941. // scalar
  942. quantize_row_q8_1_reference(x, y, k);
  943. #endif
  944. }
  945. void dequantize_row_q4_0(const block_q4_0 * restrict x, float * restrict y, int k) {
  946. static const int qk = QK4_0;
  947. assert(k % qk == 0);
  948. const int nb = k / qk;
  949. for (int i = 0; i < nb; i++) {
  950. const float d = GGML_FP16_TO_FP32(x[i].d);
  951. for (int j = 0; j < qk/2; ++j) {
  952. const int x0 = (x[i].qs[j] & 0x0F) - 8;
  953. const int x1 = (x[i].qs[j] >> 4) - 8;
  954. y[i*qk + j + 0 ] = x0*d;
  955. y[i*qk + j + qk/2] = x1*d;
  956. }
  957. }
  958. }
  959. void dequantize_row_q4_1(const block_q4_1 * restrict x, float * restrict y, int k) {
  960. static const int qk = QK4_1;
  961. assert(k % qk == 0);
  962. const int nb = k / qk;
  963. for (int i = 0; i < nb; i++) {
  964. const float d = GGML_FP16_TO_FP32(x[i].d);
  965. const float m = GGML_FP16_TO_FP32(x[i].m);
  966. for (int j = 0; j < qk/2; ++j) {
  967. const int x0 = (x[i].qs[j] & 0x0F);
  968. const int x1 = (x[i].qs[j] >> 4);
  969. y[i*qk + j + 0 ] = x0*d + m;
  970. y[i*qk + j + qk/2] = x1*d + m;
  971. }
  972. }
  973. }
  974. void dequantize_row_q5_0(const block_q5_0 * restrict x, float * restrict y, int k) {
  975. static const int qk = QK5_0;
  976. assert(k % qk == 0);
  977. const int nb = k / qk;
  978. for (int i = 0; i < nb; i++) {
  979. const float d = GGML_FP16_TO_FP32(x[i].d);
  980. uint32_t qh;
  981. memcpy(&qh, x[i].qh, sizeof(qh));
  982. for (int j = 0; j < qk/2; ++j) {
  983. const uint8_t xh_0 = ((qh >> (j + 0)) << 4) & 0x10;
  984. const uint8_t xh_1 = ((qh >> (j + 12)) ) & 0x10;
  985. const int32_t x0 = ((x[i].qs[j] & 0x0F) | xh_0) - 16;
  986. const int32_t x1 = ((x[i].qs[j] >> 4) | xh_1) - 16;
  987. y[i*qk + j + 0 ] = x0*d;
  988. y[i*qk + j + qk/2] = x1*d;
  989. }
  990. }
  991. }
  992. void dequantize_row_q5_1(const block_q5_1 * restrict x, float * restrict y, int k) {
  993. static const int qk = QK5_1;
  994. assert(k % qk == 0);
  995. const int nb = k / qk;
  996. for (int i = 0; i < nb; i++) {
  997. const float d = GGML_FP16_TO_FP32(x[i].d);
  998. const float m = GGML_FP16_TO_FP32(x[i].m);
  999. uint32_t qh;
  1000. memcpy(&qh, x[i].qh, sizeof(qh));
  1001. for (int j = 0; j < qk/2; ++j) {
  1002. const uint8_t xh_0 = ((qh >> (j + 0)) << 4) & 0x10;
  1003. const uint8_t xh_1 = ((qh >> (j + 12)) ) & 0x10;
  1004. const int x0 = (x[i].qs[j] & 0x0F) | xh_0;
  1005. const int x1 = (x[i].qs[j] >> 4) | xh_1;
  1006. y[i*qk + j + 0 ] = x0*d + m;
  1007. y[i*qk + j + qk/2] = x1*d + m;
  1008. }
  1009. }
  1010. }
  1011. void dequantize_row_q8_0(const block_q8_0 * restrict x, float * restrict y, int k) {
  1012. static const int qk = QK8_0;
  1013. assert(k % qk == 0);
  1014. const int nb = k / qk;
  1015. for (int i = 0; i < nb; i++) {
  1016. const float d = GGML_FP16_TO_FP32(x[i].d);
  1017. for (int j = 0; j < qk; ++j) {
  1018. y[i*qk + j] = x[i].qs[j]*d;
  1019. }
  1020. }
  1021. }
  1022. //
  1023. // 2-6 bit quantization in super-blocks
  1024. //
  1025. //
  1026. // ===================== Helper functions
  1027. //
  1028. static inline int nearest_int(float fval) {
  1029. assert(fval <= 4194303.f);
  1030. float val = fval + 12582912.f;
  1031. int i; memcpy(&i, &val, sizeof(int));
  1032. return (i & 0x007fffff) - 0x00400000;
  1033. }
  1034. static float make_qx_quants(int n, int nmax, const float * restrict x, int8_t * restrict L, int rmse_type,
  1035. const float * restrict qw) {
  1036. float max = 0;
  1037. float amax = 0;
  1038. for (int i = 0; i < n; ++i) {
  1039. float ax = fabsf(x[i]);
  1040. if (ax > amax) { amax = ax; max = x[i]; }
  1041. }
  1042. if (amax < 1e-30f) { // all zero
  1043. for (int i = 0; i < n; ++i) {
  1044. L[i] = 0;
  1045. }
  1046. return 0.f;
  1047. }
  1048. float iscale = -nmax / max;
  1049. if (rmse_type == 0) {
  1050. for (int i = 0; i < n; ++i) {
  1051. int l = nearest_int(iscale * x[i]);
  1052. L[i] = nmax + MAX(-nmax, MIN(nmax-1, l));
  1053. }
  1054. return 1/iscale;
  1055. }
  1056. bool return_early = false;
  1057. if (rmse_type < 0) {
  1058. rmse_type = -rmse_type;
  1059. return_early = true;
  1060. }
  1061. float sumlx = 0;
  1062. float suml2 = 0;
  1063. #ifdef HAVE_BUGGY_APPLE_LINKER
  1064. // use 'volatile' to prevent unroll and work around a bug in Apple ld64 1015.7
  1065. for (volatile int i = 0; i < n; ++i) {
  1066. #else
  1067. for (int i = 0; i < n; ++i) {
  1068. #endif
  1069. int l = nearest_int(iscale * x[i]);
  1070. l = MAX(-nmax, MIN(nmax-1, l));
  1071. L[i] = l + nmax;
  1072. float w = qw ? qw[i] : rmse_type == 1 ? x[i] * x[i] : rmse_type == 2 ? 1 : rmse_type == 3 ? fabsf(x[i]) : sqrtf(fabsf(x[i]));
  1073. sumlx += w*x[i]*l;
  1074. suml2 += w*l*l;
  1075. }
  1076. float scale = sumlx/suml2;
  1077. if (return_early) return suml2 > 0 ? 0.5f*(scale + 1/iscale) : 1/iscale;
  1078. float best = scale * sumlx;
  1079. for (int is = -9; is <= 9; ++is) {
  1080. if (is == 0) {
  1081. continue;
  1082. }
  1083. iscale = -(nmax + 0.1f*is) / max;
  1084. sumlx = suml2 = 0;
  1085. for (int i = 0; i < n; ++i) {
  1086. int l = nearest_int(iscale * x[i]);
  1087. l = MAX(-nmax, MIN(nmax-1, l));
  1088. float w = qw ? qw[i] : rmse_type == 1 ? x[i] * x[i] : rmse_type == 2 ? 1 : rmse_type == 3 ? fabsf(x[i]) : sqrtf(fabsf(x[i]));
  1089. sumlx += w*x[i]*l;
  1090. suml2 += w*l*l;
  1091. }
  1092. if (suml2 > 0 && sumlx*sumlx > best*suml2) {
  1093. for (int i = 0; i < n; ++i) {
  1094. int l = nearest_int(iscale * x[i]);
  1095. L[i] = nmax + MAX(-nmax, MIN(nmax-1, l));
  1096. }
  1097. scale = sumlx/suml2; best = scale*sumlx;
  1098. }
  1099. }
  1100. return scale;
  1101. }
  1102. static float make_q3_quants(int n, int nmax, const float * restrict x, int8_t * restrict L, bool do_rmse) {
  1103. float max = 0;
  1104. float amax = 0;
  1105. for (int i = 0; i < n; ++i) {
  1106. float ax = fabsf(x[i]);
  1107. if (ax > amax) { amax = ax; max = x[i]; }
  1108. }
  1109. if (!amax) { // all zero
  1110. for (int i = 0; i < n; ++i) { L[i] = 0; }
  1111. return 0.f;
  1112. }
  1113. float iscale = -nmax / max;
  1114. if (do_rmse) {
  1115. float sumlx = 0;
  1116. float suml2 = 0;
  1117. for (int i = 0; i < n; ++i) {
  1118. int l = nearest_int(iscale * x[i]);
  1119. l = MAX(-nmax, MIN(nmax-1, l));
  1120. L[i] = l;
  1121. float w = x[i]*x[i];
  1122. sumlx += w*x[i]*l;
  1123. suml2 += w*l*l;
  1124. }
  1125. for (int itry = 0; itry < 5; ++itry) {
  1126. int n_changed = 0;
  1127. for (int i = 0; i < n; ++i) {
  1128. float w = x[i]*x[i];
  1129. float slx = sumlx - w*x[i]*L[i];
  1130. if (slx > 0) {
  1131. float sl2 = suml2 - w*L[i]*L[i];
  1132. int new_l = nearest_int(x[i] * sl2 / slx);
  1133. new_l = MAX(-nmax, MIN(nmax-1, new_l));
  1134. if (new_l != L[i]) {
  1135. slx += w*x[i]*new_l;
  1136. sl2 += w*new_l*new_l;
  1137. if (sl2 > 0 && slx*slx*suml2 > sumlx*sumlx*sl2) {
  1138. L[i] = new_l; sumlx = slx; suml2 = sl2;
  1139. ++n_changed;
  1140. }
  1141. }
  1142. }
  1143. }
  1144. if (!n_changed) {
  1145. break;
  1146. }
  1147. }
  1148. for (int i = 0; i < n; ++i) {
  1149. L[i] += nmax;
  1150. }
  1151. return sumlx / suml2;
  1152. }
  1153. for (int i = 0; i < n; ++i) {
  1154. int l = nearest_int(iscale * x[i]);
  1155. l = MAX(-nmax, MIN(nmax-1, l));
  1156. L[i] = l + nmax;
  1157. }
  1158. return 1/iscale;
  1159. }
  1160. static float make_qkx1_quants(int n, int nmax, const float * restrict x, uint8_t * restrict L, float * restrict the_min,
  1161. int ntry, float alpha) {
  1162. float min = x[0];
  1163. float max = x[0];
  1164. for (int i = 1; i < n; ++i) {
  1165. if (x[i] < min) min = x[i];
  1166. if (x[i] > max) max = x[i];
  1167. }
  1168. if (max == min) {
  1169. for (int i = 0; i < n; ++i) L[i] = 0;
  1170. *the_min = 0;
  1171. return 0.f;
  1172. }
  1173. if (min > 0) min = 0;
  1174. float iscale = nmax/(max - min);
  1175. float scale = 1/iscale;
  1176. for (int itry = 0; itry < ntry; ++itry) {
  1177. float sumlx = 0; int suml2 = 0;
  1178. bool did_change = false;
  1179. for (int i = 0; i < n; ++i) {
  1180. int l = nearest_int(iscale*(x[i] - min));
  1181. l = MAX(0, MIN(nmax, l));
  1182. if (l != L[i]) {
  1183. L[i] = l;
  1184. did_change = true;
  1185. }
  1186. sumlx += (x[i] - min)*l;
  1187. suml2 += l*l;
  1188. }
  1189. scale = sumlx/suml2;
  1190. float sum = 0;
  1191. for (int i = 0; i < n; ++i) {
  1192. sum += x[i] - scale*L[i];
  1193. }
  1194. min = alpha*min + (1 - alpha)*sum/n;
  1195. if (min > 0) min = 0;
  1196. iscale = 1/scale;
  1197. if (!did_change) break;
  1198. }
  1199. *the_min = -min;
  1200. return scale;
  1201. }
  1202. static float make_qkx2_quants(int n, int nmax, const float * restrict x, const float * restrict weights,
  1203. uint8_t * restrict L, float * restrict the_min, uint8_t * restrict Laux,
  1204. float rmin, float rdelta, int nstep, bool use_mad) {
  1205. float min = x[0];
  1206. float max = x[0];
  1207. float sum_w = weights[0];
  1208. float sum_x = sum_w * x[0];
  1209. #ifdef HAVE_BUGGY_APPLE_LINKER
  1210. // use 'volatile' to prevent unroll and work around a bug in Apple ld64 1015.7
  1211. for (volatile int i = 1; i < n; ++i) {
  1212. #else
  1213. for (int i = 1; i < n; ++i) {
  1214. #endif
  1215. if (x[i] < min) min = x[i];
  1216. if (x[i] > max) max = x[i];
  1217. float w = weights[i];
  1218. sum_w += w;
  1219. sum_x += w * x[i];
  1220. }
  1221. if (min > 0) min = 0;
  1222. if (max == min) {
  1223. for (int i = 0; i < n; ++i) L[i] = 0;
  1224. *the_min = -min;
  1225. return 0.f;
  1226. }
  1227. float iscale = nmax/(max - min);
  1228. float scale = 1/iscale;
  1229. float best_mad = 0;
  1230. for (int i = 0; i < n; ++i) {
  1231. int l = nearest_int(iscale*(x[i] - min));
  1232. L[i] = MAX(0, MIN(nmax, l));
  1233. float diff = scale * L[i] + min - x[i];
  1234. diff = use_mad ? fabsf(diff) : diff * diff;
  1235. float w = weights[i];
  1236. best_mad += w * diff;
  1237. }
  1238. if (nstep < 1) {
  1239. *the_min = -min;
  1240. return scale;
  1241. }
  1242. for (int is = 0; is <= nstep; ++is) {
  1243. iscale = (rmin + rdelta*is + nmax)/(max - min);
  1244. float sum_l = 0, sum_l2 = 0, sum_xl = 0;
  1245. for (int i = 0; i < n; ++i) {
  1246. int l = nearest_int(iscale*(x[i] - min));
  1247. l = MAX(0, MIN(nmax, l));
  1248. Laux[i] = l;
  1249. float w = weights[i];
  1250. sum_l += w*l;
  1251. sum_l2 += w*l*l;
  1252. sum_xl += w*l*x[i];
  1253. }
  1254. float D = sum_w * sum_l2 - sum_l * sum_l;
  1255. if (D > 0) {
  1256. float this_scale = (sum_w * sum_xl - sum_x * sum_l)/D;
  1257. float this_min = (sum_l2 * sum_x - sum_l * sum_xl)/D;
  1258. if (this_min > 0) {
  1259. this_min = 0;
  1260. this_scale = sum_xl / sum_l2;
  1261. }
  1262. float mad = 0;
  1263. for (int i = 0; i < n; ++i) {
  1264. float diff = this_scale * Laux[i] + this_min - x[i];
  1265. diff = use_mad ? fabsf(diff) : diff * diff;
  1266. float w = weights[i];
  1267. mad += w * diff;
  1268. }
  1269. if (mad < best_mad) {
  1270. for (int i = 0; i < n; ++i) {
  1271. L[i] = Laux[i];
  1272. }
  1273. best_mad = mad;
  1274. scale = this_scale;
  1275. min = this_min;
  1276. }
  1277. }
  1278. }
  1279. *the_min = -min;
  1280. return scale;
  1281. }
  1282. #if QK_K == 256
  1283. static inline void get_scale_min_k4(int j, const uint8_t * restrict q, uint8_t * restrict d, uint8_t * restrict m) {
  1284. if (j < 4) {
  1285. *d = q[j] & 63; *m = q[j + 4] & 63;
  1286. } else {
  1287. *d = (q[j+4] & 0xF) | ((q[j-4] >> 6) << 4);
  1288. *m = (q[j+4] >> 4) | ((q[j-0] >> 6) << 4);
  1289. }
  1290. }
  1291. #endif
  1292. //========================- 2-bit (de)-quantization
  1293. void quantize_row_q2_K_reference(const float * restrict x, block_q2_K * restrict y, int k) {
  1294. assert(k % QK_K == 0);
  1295. const int nb = k / QK_K;
  1296. uint8_t L[QK_K];
  1297. uint8_t Laux[16];
  1298. float weights[16];
  1299. float mins[QK_K/16];
  1300. float scales[QK_K/16];
  1301. const float q4scale = 15.f;
  1302. for (int i = 0; i < nb; i++) {
  1303. float max_scale = 0; // as we are deducting the min, scales are always positive
  1304. float max_min = 0;
  1305. for (int j = 0; j < QK_K/16; ++j) {
  1306. for (int l = 0; l < 16; ++l) weights[l] = fabsf(x[16*j + l]);
  1307. scales[j] = make_qkx2_quants(16, 3, x + 16*j, weights, L + 16*j, &mins[j], Laux, -0.5f, 0.1f, 15, true);
  1308. float scale = scales[j];
  1309. if (scale > max_scale) {
  1310. max_scale = scale;
  1311. }
  1312. float min = mins[j];
  1313. if (min > max_min) {
  1314. max_min = min;
  1315. }
  1316. }
  1317. if (max_scale > 0) {
  1318. float iscale = q4scale/max_scale;
  1319. for (int j = 0; j < QK_K/16; ++j) {
  1320. int l = nearest_int(iscale*scales[j]);
  1321. y[i].scales[j] = l;
  1322. }
  1323. y[i].d = GGML_FP32_TO_FP16(max_scale/q4scale);
  1324. } else {
  1325. for (int j = 0; j < QK_K/16; ++j) y[i].scales[j] = 0;
  1326. y[i].d = GGML_FP32_TO_FP16(0.f);
  1327. }
  1328. if (max_min > 0) {
  1329. float iscale = q4scale/max_min;
  1330. for (int j = 0; j < QK_K/16; ++j) {
  1331. int l = nearest_int(iscale*mins[j]);
  1332. y[i].scales[j] |= (l << 4);
  1333. }
  1334. y[i].dmin = GGML_FP32_TO_FP16(max_min/q4scale);
  1335. } else {
  1336. y[i].dmin = GGML_FP32_TO_FP16(0.f);
  1337. }
  1338. for (int j = 0; j < QK_K/16; ++j) {
  1339. const float d = GGML_FP16_TO_FP32(y[i].d) * (y[i].scales[j] & 0xF);
  1340. if (!d) continue;
  1341. const float dm = GGML_FP16_TO_FP32(y[i].dmin) * (y[i].scales[j] >> 4);
  1342. for (int ii = 0; ii < 16; ++ii) {
  1343. int l = nearest_int((x[16*j + ii] + dm)/d);
  1344. l = MAX(0, MIN(3, l));
  1345. L[16*j + ii] = l;
  1346. }
  1347. }
  1348. #if QK_K == 256
  1349. for (int j = 0; j < QK_K; j += 128) {
  1350. for (int l = 0; l < 32; ++l) {
  1351. y[i].qs[j/4 + l] = L[j + l] | (L[j + l + 32] << 2) | (L[j + l + 64] << 4) | (L[j + l + 96] << 6);
  1352. }
  1353. }
  1354. #else
  1355. for (int l = 0; l < 16; ++l) {
  1356. y[i].qs[l] = L[l] | (L[l + 16] << 2) | (L[l + 32] << 4) | (L[l + 48] << 6);
  1357. }
  1358. #endif
  1359. x += QK_K;
  1360. }
  1361. }
  1362. void dequantize_row_q2_K(const block_q2_K * restrict x, float * restrict y, int k) {
  1363. assert(k % QK_K == 0);
  1364. const int nb = k / QK_K;
  1365. for (int i = 0; i < nb; i++) {
  1366. const float d = GGML_FP16_TO_FP32(x[i].d);
  1367. const float min = GGML_FP16_TO_FP32(x[i].dmin);
  1368. const uint8_t * q = x[i].qs;
  1369. #if QK_K == 256
  1370. int is = 0;
  1371. float dl, ml;
  1372. for (int n = 0; n < QK_K; n += 128) {
  1373. int shift = 0;
  1374. for (int j = 0; j < 4; ++j) {
  1375. uint8_t sc = x[i].scales[is++];
  1376. dl = d * (sc & 0xF); ml = min * (sc >> 4);
  1377. for (int l = 0; l < 16; ++l) *y++ = dl * ((int8_t)((q[l] >> shift) & 3)) - ml;
  1378. sc = x[i].scales[is++];
  1379. dl = d * (sc & 0xF); ml = min * (sc >> 4);
  1380. for (int l = 0; l < 16; ++l) *y++ = dl * ((int8_t)((q[l+16] >> shift) & 3)) - ml;
  1381. shift += 2;
  1382. }
  1383. q += 32;
  1384. }
  1385. #else
  1386. float dl1 = d * (x[i].scales[0] & 0xF), ml1 = min * (x[i].scales[0] >> 4);
  1387. float dl2 = d * (x[i].scales[1] & 0xF), ml2 = min * (x[i].scales[1] >> 4);
  1388. float dl3 = d * (x[i].scales[2] & 0xF), ml3 = min * (x[i].scales[2] >> 4);
  1389. float dl4 = d * (x[i].scales[3] & 0xF), ml4 = min * (x[i].scales[3] >> 4);
  1390. for (int l = 0; l < 16; ++l) {
  1391. y[l+ 0] = dl1 * ((int8_t)((q[l] >> 0) & 3)) - ml1;
  1392. y[l+16] = dl2 * ((int8_t)((q[l] >> 2) & 3)) - ml2;
  1393. y[l+32] = dl3 * ((int8_t)((q[l] >> 4) & 3)) - ml3;
  1394. y[l+48] = dl4 * ((int8_t)((q[l] >> 6) & 3)) - ml4;
  1395. }
  1396. y += QK_K;
  1397. #endif
  1398. }
  1399. }
  1400. void quantize_row_q2_K(const float * restrict x, void * restrict vy, int k) {
  1401. quantize_row_q2_K_reference(x, vy, k);
  1402. }
  1403. static float make_qkx3_quants(int n, int nmax, const float * restrict x, const float * restrict weights,
  1404. uint8_t * restrict L, float * restrict the_min, uint8_t * restrict Laux,
  1405. float rmin, float rdelta, int nstep, bool use_mad) {
  1406. float min = x[0];
  1407. float max = x[0];
  1408. float sum_w = weights ? weights[0] : x[0]*x[0];
  1409. float sum_x = sum_w * x[0];
  1410. #ifdef HAVE_BUGGY_APPLE_LINKER
  1411. // use 'volatile' to prevent unroll and work around a bug in Apple ld64 1015.7
  1412. for (volatile int i = 1; i < n; ++i) {
  1413. #else
  1414. for (int i = 1; i < n; ++i) {
  1415. #endif
  1416. if (x[i] < min) min = x[i];
  1417. if (x[i] > max) max = x[i];
  1418. float w = weights ? weights[i] : x[i]*x[i];
  1419. sum_w += w;
  1420. sum_x += w * x[i];
  1421. }
  1422. if (min > 0) {
  1423. min = 0;
  1424. }
  1425. if (max <= min) {
  1426. memset(L, 0, n);
  1427. *the_min = -min;
  1428. return 0.f;
  1429. }
  1430. float iscale = nmax/(max - min);
  1431. float scale = 1/iscale;
  1432. float best_mad = 0;
  1433. for (int i = 0; i < n; ++i) {
  1434. int l = nearest_int(iscale*(x[i] - min));
  1435. L[i] = MAX(0, MIN(nmax, l));
  1436. float diff = scale * L[i] + min - x[i];
  1437. diff = use_mad ? fabsf(diff) : diff*diff;
  1438. float w = weights ? weights[i] : x[i]*x[i];
  1439. best_mad += w * diff;
  1440. }
  1441. if (nstep < 1) {
  1442. *the_min = -min;
  1443. return scale;
  1444. }
  1445. for (int is = 0; is <= nstep; ++is) {
  1446. iscale = (rmin + rdelta*is + nmax)/(max - min);
  1447. float sum_l = 0, sum_l2 = 0, sum_xl = 0;
  1448. for (int i = 0; i < n; ++i) {
  1449. int l = nearest_int(iscale*(x[i] - min));
  1450. l = MAX(0, MIN(nmax, l));
  1451. Laux[i] = l;
  1452. float w = weights ? weights[i] : x[i]*x[i];
  1453. sum_l += w*l;
  1454. sum_l2 += w*l*l;
  1455. sum_xl += w*l*x[i];
  1456. }
  1457. float D = sum_w * sum_l2 - sum_l * sum_l;
  1458. if (D > 0) {
  1459. float this_scale = (sum_w * sum_xl - sum_x * sum_l)/D;
  1460. float this_min = (sum_l2 * sum_x - sum_l * sum_xl)/D;
  1461. if (this_min > 0) {
  1462. this_min = 0;
  1463. this_scale = sum_xl / sum_l2;
  1464. }
  1465. float mad = 0;
  1466. for (int i = 0; i < n; ++i) {
  1467. float diff = this_scale * Laux[i] + this_min - x[i];
  1468. diff = use_mad ? fabsf(diff) : diff*diff;
  1469. float w = weights ? weights[i] : x[i]*x[i];
  1470. mad += w * diff;
  1471. }
  1472. if (mad < best_mad) {
  1473. for (int i = 0; i < n; ++i) {
  1474. L[i] = Laux[i];
  1475. }
  1476. best_mad = mad;
  1477. scale = this_scale;
  1478. min = this_min;
  1479. }
  1480. }
  1481. }
  1482. *the_min = -min;
  1483. return scale;
  1484. }
  1485. static float make_qp_quants(int n, int nmax, const float * restrict x, uint8_t * restrict L, const float * quant_weights) {
  1486. float max = 0;
  1487. for (int i = 0; i < n; ++i) {
  1488. max = MAX(max, x[i]);
  1489. }
  1490. if (!max) { // all zero
  1491. for (int i = 0; i < n; ++i) { L[i] = 0; }
  1492. return 0.f;
  1493. }
  1494. float iscale = nmax / max;
  1495. for (int i = 0; i < n; ++i) {
  1496. L[i] = nearest_int(iscale * x[i]);
  1497. }
  1498. float scale = 1/iscale;
  1499. float best_mse = 0;
  1500. for (int i = 0; i < n; ++i) {
  1501. float diff = x[i] - scale*L[i];
  1502. float w = quant_weights[i];
  1503. best_mse += w*diff*diff;
  1504. }
  1505. for (int is = -4; is <= 4; ++is) {
  1506. if (is == 0) continue;
  1507. float iscale_is = (0.1f*is + nmax)/max;
  1508. float scale_is = 1/iscale_is;
  1509. float mse = 0;
  1510. for (int i = 0; i < n; ++i) {
  1511. int l = nearest_int(iscale_is*x[i]);
  1512. l = MIN(nmax, l);
  1513. float diff = x[i] - scale_is*l;
  1514. float w = quant_weights[i];
  1515. mse += w*diff*diff;
  1516. }
  1517. if (mse < best_mse) {
  1518. best_mse = mse;
  1519. iscale = iscale_is;
  1520. }
  1521. }
  1522. float sumlx = 0;
  1523. float suml2 = 0;
  1524. for (int i = 0; i < n; ++i) {
  1525. int l = nearest_int(iscale * x[i]);
  1526. l = MIN(nmax, l);
  1527. L[i] = l;
  1528. float w = quant_weights[i];
  1529. sumlx += w*x[i]*l;
  1530. suml2 += w*l*l;
  1531. }
  1532. for (int itry = 0; itry < 5; ++itry) {
  1533. int n_changed = 0;
  1534. for (int i = 0; i < n; ++i) {
  1535. float w = quant_weights[i];
  1536. float slx = sumlx - w*x[i]*L[i];
  1537. float sl2 = suml2 - w*L[i]*L[i];
  1538. if (slx > 0 && sl2 > 0) {
  1539. int new_l = nearest_int(x[i] * sl2 / slx);
  1540. new_l = MIN(nmax, new_l);
  1541. if (new_l != L[i]) {
  1542. slx += w*x[i]*new_l;
  1543. sl2 += w*new_l*new_l;
  1544. if (slx*slx*suml2 > sumlx*sumlx*sl2) {
  1545. L[i] = new_l; sumlx = slx; suml2 = sl2;
  1546. ++n_changed;
  1547. }
  1548. }
  1549. }
  1550. }
  1551. if (!n_changed) {
  1552. break;
  1553. }
  1554. }
  1555. return sumlx / suml2;
  1556. }
  1557. static void quantize_row_q2_K_impl(const float * restrict x, block_q2_K * restrict y, int k, const float * restrict quant_weights) {
  1558. GGML_ASSERT(quant_weights);
  1559. assert(k % QK_K == 0);
  1560. const int nb = k / QK_K;
  1561. const bool requantize = true;
  1562. uint8_t L[QK_K];
  1563. uint8_t Laux[16];
  1564. float mins[QK_K/16];
  1565. float scales[QK_K/16];
  1566. float sw[QK_K/16];
  1567. float weight[16];
  1568. uint8_t Ls[QK_K/16], Lm[QK_K/16];
  1569. for (int i = 0; i < nb; i++) {
  1570. memset(sw, 0, QK_K/16*sizeof(float));
  1571. float sumx2 = 0;
  1572. for (int j = 0; j < QK_K; ++j) sumx2 += x[j]*x[j];
  1573. float sigma2 = sumx2/QK_K;
  1574. for (int j = 0; j < QK_K/16; ++j) {
  1575. const float * restrict qw = quant_weights + QK_K * i + 16*j;
  1576. for (int l = 0; l < 16; ++l) weight[l] = qw[l] * sqrtf(sigma2 + x[16*j + l]*x[16*j + l]);
  1577. for (int l = 0; l < QK_K/16; ++l) sw[j] += weight[l];
  1578. scales[j] = make_qkx3_quants(16, 3, x + 16*j, weight, L + 16*j, &mins[j], Laux, -0.9f, 0.05f, 36, false);
  1579. }
  1580. float dm, mm;
  1581. #if QK_K == 64
  1582. float max_scale = 0, max_min = 0;
  1583. for (int j = 0; j < QK_K/16; ++j) {
  1584. max_scale = MAX(max_scale, scales[j]);
  1585. max_min = MAX(max_min, mins[j]);
  1586. }
  1587. dm = max_scale/15;
  1588. mm = max_min/15;
  1589. if (max_scale) {
  1590. float id = 1/dm;
  1591. for (int j = 0; j < QK_K/16; ++j) {
  1592. int l = nearest_int(id*scales[j]);
  1593. Ls[j] = MAX(0, MIN(15, l));
  1594. }
  1595. } else {
  1596. memset(Ls, 0, QK_K/16);
  1597. }
  1598. if (max_min) {
  1599. float id = 1/mm;
  1600. for (int j = 0; j < QK_K/16; ++j) {
  1601. int l = nearest_int(id*mins[j]);
  1602. Lm[j] = MAX(0, MIN(15, l));
  1603. }
  1604. } else {
  1605. memset(Lm, 0, QK_K/16);
  1606. }
  1607. #else
  1608. dm = make_qp_quants(QK_K/16, 15, scales, Ls, sw);
  1609. mm = make_qp_quants(QK_K/16, 15, mins, Lm, sw);
  1610. #endif
  1611. y[i].d = GGML_FP32_TO_FP16(dm);
  1612. y[i].dmin = GGML_FP32_TO_FP16(mm);
  1613. dm = GGML_FP16_TO_FP32(y[i].d);
  1614. mm = GGML_FP16_TO_FP32(y[i].dmin);
  1615. for (int j = 0; j < QK_K/16; ++j) {
  1616. y[i].scales[j] = Ls[j] | (Lm[j] << 4);
  1617. }
  1618. if (requantize) {
  1619. for (int j = 0; j < QK_K/16; ++j) {
  1620. const float d = dm * (y[i].scales[j] & 0xF);
  1621. if (!d) continue;
  1622. const float m = mm * (y[i].scales[j] >> 4);
  1623. for (int ii = 0; ii < 16; ++ii) {
  1624. int l = nearest_int((x[16*j + ii] + m)/d);
  1625. l = MAX(0, MIN(3, l));
  1626. L[16*j + ii] = l;
  1627. }
  1628. }
  1629. }
  1630. #if QK_K == 256
  1631. for (int j = 0; j < QK_K; j += 128) {
  1632. for (int l = 0; l < 32; ++l) {
  1633. y[i].qs[j/4 + l] = L[j + l] | (L[j + l + 32] << 2) | (L[j + l + 64] << 4) | (L[j + l + 96] << 6);
  1634. }
  1635. }
  1636. #else
  1637. for (int l = 0; l < 16; ++l) {
  1638. y[i].qs[l] = L[l] | (L[l + 16] << 2) | (L[l + 32] << 4) | (L[l + 48] << 6);
  1639. }
  1640. #endif
  1641. x += QK_K;
  1642. }
  1643. }
  1644. size_t quantize_q2_K(const float * restrict src, void * restrict dst, int nrow, int n_per_row, const float * quant_weights) {
  1645. size_t row_size = ggml_row_size(GGML_TYPE_Q2_K, n_per_row);
  1646. if (!quant_weights) {
  1647. quantize_row_q2_K_reference(src, dst, nrow*n_per_row);
  1648. }
  1649. else {
  1650. char * qrow = (char *)dst;
  1651. for (int row = 0; row < nrow; ++row) {
  1652. quantize_row_q2_K_impl(src, (block_q2_K*)qrow, n_per_row, quant_weights);
  1653. src += n_per_row;
  1654. qrow += row_size;
  1655. }
  1656. }
  1657. return nrow * row_size;
  1658. }
  1659. //========================= 3-bit (de)-quantization
  1660. void quantize_row_q3_K_reference(const float * restrict x, block_q3_K * restrict y, int k) {
  1661. assert(k % QK_K == 0);
  1662. const int nb = k / QK_K;
  1663. int8_t L[QK_K];
  1664. float scales[QK_K / 16];
  1665. for (int i = 0; i < nb; i++) {
  1666. float max_scale = 0;
  1667. float amax = 0;
  1668. for (int j = 0; j < QK_K/16; ++j) {
  1669. scales[j] = make_q3_quants(16, 4, x + 16*j, L + 16*j, true);
  1670. float scale = fabsf(scales[j]);
  1671. if (scale > amax) {
  1672. amax = scale; max_scale = scales[j];
  1673. }
  1674. }
  1675. #if QK_K == 256
  1676. memset(y[i].scales, 0, 12);
  1677. if (max_scale) {
  1678. float iscale = -32.f/max_scale;
  1679. for (int j = 0; j < QK_K/16; ++j) {
  1680. int8_t l = nearest_int(iscale*scales[j]);
  1681. l = MAX(-32, MIN(31, l)) + 32;
  1682. if (j < 8) {
  1683. y[i].scales[j] = l & 0xF;
  1684. } else {
  1685. y[i].scales[j-8] |= ((l & 0xF) << 4);
  1686. }
  1687. l >>= 4;
  1688. y[i].scales[j%4 + 8] |= (l << (2*(j/4)));
  1689. }
  1690. y[i].d = GGML_FP32_TO_FP16(1/iscale);
  1691. } else {
  1692. y[i].d = GGML_FP32_TO_FP16(0.f);
  1693. }
  1694. int8_t sc;
  1695. for (int j = 0; j < QK_K/16; ++j) {
  1696. sc = j < 8 ? y[i].scales[j] & 0xF : y[i].scales[j-8] >> 4;
  1697. sc = (sc | (((y[i].scales[8 + j%4] >> (2*(j/4))) & 3) << 4)) - 32;
  1698. float d = GGML_FP16_TO_FP32(y[i].d) * sc;
  1699. if (!d) {
  1700. continue;
  1701. }
  1702. for (int ii = 0; ii < 16; ++ii) {
  1703. int l = nearest_int(x[16*j + ii]/d);
  1704. l = MAX(-4, MIN(3, l));
  1705. L[16*j + ii] = l + 4;
  1706. }
  1707. }
  1708. #else
  1709. if (max_scale) {
  1710. float iscale = -8.f/max_scale;
  1711. for (int j = 0; j < QK_K/16; j+=2) {
  1712. int l1 = nearest_int(iscale*scales[j]);
  1713. l1 = 8 + MAX(-8, MIN(7, l1));
  1714. int l2 = nearest_int(iscale*scales[j+1]);
  1715. l2 = 8 + MAX(-8, MIN(7, l2));
  1716. y[i].scales[j/2] = l1 | (l2 << 4);
  1717. }
  1718. y[i].d = GGML_FP32_TO_FP16(1/iscale);
  1719. } else {
  1720. for (int j = 0; j < QK_K/16; j+=2) {
  1721. y[i].scales[j/2] = 0;
  1722. }
  1723. y[i].d = GGML_FP32_TO_FP16(0.f);
  1724. }
  1725. for (int j = 0; j < QK_K/16; ++j) {
  1726. int s = j%2 == 0 ? y[i].scales[j/2] & 0xF : y[i].scales[j/2] >> 4;
  1727. float d = GGML_FP16_TO_FP32(y[i].d) * (s - 8);
  1728. if (!d) {
  1729. continue;
  1730. }
  1731. for (int ii = 0; ii < 16; ++ii) {
  1732. int l = nearest_int(x[16*j + ii]/d);
  1733. l = MAX(-4, MIN(3, l));
  1734. L[16*j + ii] = l + 4;
  1735. }
  1736. }
  1737. #endif
  1738. memset(y[i].hmask, 0, QK_K/8);
  1739. // We put the high-bit for the 1st 8 quants into bit 0, the next 8 into bit 1, etc.
  1740. int m = 0;
  1741. uint8_t hm = 1;
  1742. for (int j = 0; j < QK_K; ++j) {
  1743. if (L[j] > 3) {
  1744. y[i].hmask[m] |= hm;
  1745. L[j] -= 4;
  1746. }
  1747. if (++m == QK_K/8) {
  1748. m = 0; hm <<= 1;
  1749. }
  1750. }
  1751. #if QK_K == 256
  1752. for (int j = 0; j < QK_K; j += 128) {
  1753. for (int l = 0; l < 32; ++l) {
  1754. y[i].qs[j/4 + l] = L[j + l] | (L[j + l + 32] << 2) | (L[j + l + 64] << 4) | (L[j + l + 96] << 6);
  1755. }
  1756. }
  1757. #else
  1758. for (int l = 0; l < 16; ++l) {
  1759. y[i].qs[l] = L[l] | (L[l + 16] << 2) | (L[l + 32] << 4) | (L[l + 48] << 6);
  1760. }
  1761. #endif
  1762. x += QK_K;
  1763. }
  1764. }
  1765. #if QK_K == 256
  1766. void dequantize_row_q3_K(const block_q3_K * restrict x, float * restrict y, int k) {
  1767. assert(k % QK_K == 0);
  1768. const int nb = k / QK_K;
  1769. const uint32_t kmask1 = 0x03030303;
  1770. const uint32_t kmask2 = 0x0f0f0f0f;
  1771. uint32_t aux[4];
  1772. const int8_t * scales = (const int8_t*)aux;
  1773. for (int i = 0; i < nb; i++) {
  1774. const float d_all = GGML_FP16_TO_FP32(x[i].d);
  1775. const uint8_t * restrict q = x[i].qs;
  1776. const uint8_t * restrict hm = x[i].hmask;
  1777. uint8_t m = 1;
  1778. memcpy(aux, x[i].scales, 12);
  1779. uint32_t tmp = aux[2];
  1780. aux[2] = ((aux[0] >> 4) & kmask2) | (((tmp >> 4) & kmask1) << 4);
  1781. aux[3] = ((aux[1] >> 4) & kmask2) | (((tmp >> 6) & kmask1) << 4);
  1782. aux[0] = (aux[0] & kmask2) | (((tmp >> 0) & kmask1) << 4);
  1783. aux[1] = (aux[1] & kmask2) | (((tmp >> 2) & kmask1) << 4);
  1784. int is = 0;
  1785. float dl;
  1786. for (int n = 0; n < QK_K; n += 128) {
  1787. int shift = 0;
  1788. for (int j = 0; j < 4; ++j) {
  1789. dl = d_all * (scales[is++] - 32);
  1790. for (int l = 0; l < 16; ++l) {
  1791. *y++ = dl * ((int8_t)((q[l+ 0] >> shift) & 3) - ((hm[l+ 0] & m) ? 0 : 4));
  1792. }
  1793. dl = d_all * (scales[is++] - 32);
  1794. for (int l = 0; l < 16; ++l) {
  1795. *y++ = dl * ((int8_t)((q[l+16] >> shift) & 3) - ((hm[l+16] & m) ? 0 : 4));
  1796. }
  1797. shift += 2;
  1798. m <<= 1;
  1799. }
  1800. q += 32;
  1801. }
  1802. }
  1803. }
  1804. #else
  1805. void dequantize_row_q3_K(const block_q3_K * restrict x, float * restrict y, int k) {
  1806. assert(k % QK_K == 0);
  1807. assert(QK_K == 64);
  1808. const int nb = k / QK_K;
  1809. for (int i = 0; i < nb; i++) {
  1810. const float d_all = GGML_FP16_TO_FP32(x[i].d);
  1811. const uint8_t * restrict q = x[i].qs;
  1812. const uint8_t * restrict hm = x[i].hmask;
  1813. const float d1 = d_all * ((x[i].scales[0] & 0xF) - 8);
  1814. const float d2 = d_all * ((x[i].scales[0] >> 4) - 8);
  1815. const float d3 = d_all * ((x[i].scales[1] & 0xF) - 8);
  1816. const float d4 = d_all * ((x[i].scales[1] >> 4) - 8);
  1817. for (int l=0; l<8; ++l) {
  1818. uint8_t h = hm[l];
  1819. y[l+ 0] = d1 * ((int8_t)((q[l+0] >> 0) & 3) - ((h & 0x01) ? 0 : 4));
  1820. y[l+ 8] = d1 * ((int8_t)((q[l+8] >> 0) & 3) - ((h & 0x02) ? 0 : 4));
  1821. y[l+16] = d2 * ((int8_t)((q[l+0] >> 2) & 3) - ((h & 0x04) ? 0 : 4));
  1822. y[l+24] = d2 * ((int8_t)((q[l+8] >> 2) & 3) - ((h & 0x08) ? 0 : 4));
  1823. y[l+32] = d3 * ((int8_t)((q[l+0] >> 4) & 3) - ((h & 0x10) ? 0 : 4));
  1824. y[l+40] = d3 * ((int8_t)((q[l+8] >> 4) & 3) - ((h & 0x20) ? 0 : 4));
  1825. y[l+48] = d4 * ((int8_t)((q[l+0] >> 6) & 3) - ((h & 0x40) ? 0 : 4));
  1826. y[l+56] = d4 * ((int8_t)((q[l+8] >> 6) & 3) - ((h & 0x80) ? 0 : 4));
  1827. }
  1828. y += QK_K;
  1829. }
  1830. }
  1831. #endif
  1832. void quantize_row_q3_K(const float * restrict x, void * restrict vy, int k) {
  1833. quantize_row_q3_K_reference(x, vy, k);
  1834. }
  1835. static void quantize_row_q3_K_impl(const float * restrict x, block_q3_K * restrict y, int n_per_row, const float * restrict quant_weights) {
  1836. #if QK_K != 256
  1837. (void)quant_weights;
  1838. quantize_row_q3_K_reference(x, y, n_per_row);
  1839. #else
  1840. assert(n_per_row % QK_K == 0);
  1841. const int nb = n_per_row / QK_K;
  1842. int8_t L[QK_K];
  1843. float scales[QK_K / 16];
  1844. float weight[16];
  1845. float sw[QK_K / 16];
  1846. int8_t Ls[QK_K / 16];
  1847. for (int i = 0; i < nb; i++) {
  1848. float sumx2 = 0;
  1849. for (int j = 0; j < QK_K; ++j) sumx2 += x[j]*x[j];
  1850. float sigma2 = 2*sumx2/QK_K;
  1851. for (int j = 0; j < QK_K/16; ++j) {
  1852. if (quant_weights) {
  1853. const float * qw = quant_weights ? quant_weights + QK_K * i + 16*j : NULL;
  1854. for (int l = 0; l < 16; ++l) weight[l] = qw[l] * sqrtf(sigma2 + x[16*j+l]*x[16*j+l]);
  1855. } else {
  1856. for (int l = 0; l < 16; ++l) weight[l] = x[16*j+l]*x[16*j+l];
  1857. }
  1858. float sumw = 0;
  1859. for (int l = 0; l < 16; ++l) sumw += weight[l];
  1860. sw[j] = sumw;
  1861. scales[j] = make_qx_quants(16, 4, x + 16*j, L + 16*j, 1, weight);
  1862. }
  1863. memset(y[i].scales, 0, 12);
  1864. float d_block = make_qx_quants(QK_K/16, 32, scales, Ls, 1, sw);
  1865. for (int j = 0; j < QK_K/16; ++j) {
  1866. int l = Ls[j];
  1867. if (j < 8) {
  1868. y[i].scales[j] = l & 0xF;
  1869. } else {
  1870. y[i].scales[j-8] |= ((l & 0xF) << 4);
  1871. }
  1872. l >>= 4;
  1873. y[i].scales[j%4 + 8] |= (l << (2*(j/4)));
  1874. }
  1875. y[i].d = GGML_FP32_TO_FP16(d_block);
  1876. int8_t sc;
  1877. for (int j = 0; j < QK_K/16; ++j) {
  1878. sc = j < 8 ? y[i].scales[j] & 0xF : y[i].scales[j-8] >> 4;
  1879. sc = (sc | (((y[i].scales[8 + j%4] >> (2*(j/4))) & 3) << 4)) - 32;
  1880. float d = GGML_FP16_TO_FP32(y[i].d) * sc;
  1881. if (!d) {
  1882. continue;
  1883. }
  1884. for (int ii = 0; ii < 16; ++ii) {
  1885. int l = nearest_int(x[16*j + ii]/d);
  1886. l = MAX(-4, MIN(3, l));
  1887. L[16*j + ii] = l + 4;
  1888. }
  1889. }
  1890. memset(y[i].hmask, 0, QK_K/8);
  1891. // We put the high-bit for the 1st 8 quants into bit 0, the next 8 into bit 1, etc.
  1892. int m = 0;
  1893. uint8_t hm = 1;
  1894. for (int j = 0; j < QK_K; ++j) {
  1895. if (L[j] > 3) {
  1896. y[i].hmask[m] |= hm;
  1897. L[j] -= 4;
  1898. }
  1899. if (++m == QK_K/8) {
  1900. m = 0; hm <<= 1;
  1901. }
  1902. }
  1903. for (int j = 0; j < QK_K; j += 128) {
  1904. for (int l = 0; l < 32; ++l) {
  1905. y[i].qs[j/4 + l] = L[j + l] | (L[j + l + 32] << 2) | (L[j + l + 64] << 4) | (L[j + l + 96] << 6);
  1906. }
  1907. }
  1908. x += QK_K;
  1909. }
  1910. #endif
  1911. }
  1912. size_t quantize_q3_K(const float * restrict src, void * restrict dst, int nrow, int n_per_row, const float * quant_weights) {
  1913. size_t row_size = ggml_row_size(GGML_TYPE_Q3_K, n_per_row);
  1914. if (!quant_weights) {
  1915. quantize_row_q3_K_reference(src, dst, nrow*n_per_row);
  1916. }
  1917. else {
  1918. char * qrow = (char *)dst;
  1919. for (int row = 0; row < nrow; ++row) {
  1920. quantize_row_q3_K_impl(src, (block_q3_K*)qrow, n_per_row, quant_weights);
  1921. src += n_per_row;
  1922. qrow += row_size;
  1923. }
  1924. }
  1925. return nrow * row_size;
  1926. }
  1927. // ====================== 4-bit (de)-quantization
  1928. void quantize_row_q4_K_reference(const float * restrict x, block_q4_K * restrict y, int k) {
  1929. assert(k % QK_K == 0);
  1930. const int nb = k / QK_K;
  1931. uint8_t L[QK_K];
  1932. uint8_t Laux[32];
  1933. float weights[32];
  1934. float mins[QK_K/32];
  1935. float scales[QK_K/32];
  1936. for (int i = 0; i < nb; i++) {
  1937. float max_scale = 0; // as we are deducting the min, scales are always positive
  1938. float max_min = 0;
  1939. for (int j = 0; j < QK_K/32; ++j) {
  1940. //scales[j] = make_qkx1_quants(32, 15, x + 32*j, L + 32*j, &mins[j], 9, 0.5f);
  1941. float sum_x2 = 0;
  1942. for (int l = 0; l < 32; ++l) sum_x2 += x[32*j + l] * x[32*j + l];
  1943. float av_x = sqrtf(sum_x2/32);
  1944. for (int l = 0; l < 32; ++l) weights[l] = av_x + fabsf(x[32*j + l]);
  1945. scales[j] = make_qkx2_quants(32, 15, x + 32*j, weights, L + 32*j, &mins[j], Laux, -1.f, 0.1f, 20, false);
  1946. float scale = scales[j];
  1947. if (scale > max_scale) {
  1948. max_scale = scale;
  1949. }
  1950. float min = mins[j];
  1951. if (min > max_min) {
  1952. max_min = min;
  1953. }
  1954. }
  1955. #if QK_K == 256
  1956. float inv_scale = max_scale > 0 ? 63.f/max_scale : 0.f;
  1957. float inv_min = max_min > 0 ? 63.f/max_min : 0.f;
  1958. for (int j = 0; j < QK_K/32; ++j) {
  1959. uint8_t ls = nearest_int(inv_scale*scales[j]);
  1960. uint8_t lm = nearest_int(inv_min*mins[j]);
  1961. ls = MIN(63, ls);
  1962. lm = MIN(63, lm);
  1963. if (j < 4) {
  1964. y[i].scales[j] = ls;
  1965. y[i].scales[j+4] = lm;
  1966. } else {
  1967. y[i].scales[j+4] = (ls & 0xF) | ((lm & 0xF) << 4);
  1968. y[i].scales[j-4] |= ((ls >> 4) << 6);
  1969. y[i].scales[j-0] |= ((lm >> 4) << 6);
  1970. }
  1971. }
  1972. y[i].d = GGML_FP32_TO_FP16(max_scale/63.f);
  1973. y[i].dmin = GGML_FP32_TO_FP16(max_min/63.f);
  1974. uint8_t sc, m;
  1975. for (int j = 0; j < QK_K/32; ++j) {
  1976. get_scale_min_k4(j, y[i].scales, &sc, &m);
  1977. const float d = GGML_FP16_TO_FP32(y[i].d) * sc;
  1978. if (!d) continue;
  1979. const float dm = GGML_FP16_TO_FP32(y[i].dmin) * m;
  1980. for (int ii = 0; ii < 32; ++ii) {
  1981. int l = nearest_int((x[32*j + ii] + dm)/d);
  1982. l = MAX(0, MIN(15, l));
  1983. L[32*j + ii] = l;
  1984. }
  1985. }
  1986. #else
  1987. const float s_factor = 15.f;
  1988. float inv_scale = max_scale > 0 ? s_factor/max_scale : 0.f;
  1989. float inv_min = max_min > 0 ? s_factor/max_min : 0.f;
  1990. int d1 = nearest_int(inv_scale*scales[0]);
  1991. int m1 = nearest_int(inv_min*mins[0]);
  1992. int d2 = nearest_int(inv_scale*scales[1]);
  1993. int m2 = nearest_int(inv_min*mins[1]);
  1994. y[i].scales[0] = d1 | (m1 << 4);
  1995. y[i].scales[1] = d2 | (m2 << 4);
  1996. y[i].d[0] = GGML_FP32_TO_FP16(max_scale/s_factor);
  1997. y[i].d[1] = GGML_FP32_TO_FP16(max_min/s_factor);
  1998. float sumlx = 0;
  1999. int suml2 = 0;
  2000. for (int j = 0; j < QK_K/32; ++j) {
  2001. const uint8_t sd = y[i].scales[j] & 0xF;
  2002. const uint8_t sm = y[i].scales[j] >> 4;
  2003. const float d = GGML_FP16_TO_FP32(y[i].d[0]) * sd;
  2004. if (!d) continue;
  2005. const float m = GGML_FP16_TO_FP32(y[i].d[1]) * sm;
  2006. for (int ii = 0; ii < 32; ++ii) {
  2007. int l = nearest_int((x[32*j + ii] + m)/d);
  2008. l = MAX(0, MIN(15, l));
  2009. L[32*j + ii] = l;
  2010. sumlx += (x[32*j + ii] + m)*l*sd;
  2011. suml2 += l*l*sd*sd;
  2012. }
  2013. }
  2014. if (suml2) {
  2015. y[i].d[0] = GGML_FP32_TO_FP16(sumlx/suml2);
  2016. }
  2017. #endif
  2018. uint8_t * q = y[i].qs;
  2019. for (int j = 0; j < QK_K; j += 64) {
  2020. for (int l = 0; l < 32; ++l) q[l] = L[j + l] | (L[j + l + 32] << 4);
  2021. q += 32;
  2022. }
  2023. x += QK_K;
  2024. }
  2025. }
  2026. void dequantize_row_q4_K(const block_q4_K * restrict x, float * restrict y, int k) {
  2027. assert(k % QK_K == 0);
  2028. const int nb = k / QK_K;
  2029. for (int i = 0; i < nb; i++) {
  2030. const uint8_t * q = x[i].qs;
  2031. #if QK_K == 256
  2032. const float d = GGML_FP16_TO_FP32(x[i].d);
  2033. const float min = GGML_FP16_TO_FP32(x[i].dmin);
  2034. int is = 0;
  2035. uint8_t sc, m;
  2036. for (int j = 0; j < QK_K; j += 64) {
  2037. get_scale_min_k4(is + 0, x[i].scales, &sc, &m);
  2038. const float d1 = d * sc; const float m1 = min * m;
  2039. get_scale_min_k4(is + 1, x[i].scales, &sc, &m);
  2040. const float d2 = d * sc; const float m2 = min * m;
  2041. for (int l = 0; l < 32; ++l) *y++ = d1 * (q[l] & 0xF) - m1;
  2042. for (int l = 0; l < 32; ++l) *y++ = d2 * (q[l] >> 4) - m2;
  2043. q += 32; is += 2;
  2044. }
  2045. #else
  2046. const float dall = GGML_FP16_TO_FP32(x[i].d[0]);
  2047. const float mall = GGML_FP16_TO_FP32(x[i].d[1]);
  2048. const float d1 = dall * (x[i].scales[0] & 0xF), m1 = mall * (x[i].scales[0] >> 4);
  2049. const float d2 = dall * (x[i].scales[1] & 0xF), m2 = mall * (x[i].scales[1] >> 4);
  2050. for (int l = 0; l < 32; ++l) {
  2051. y[l+ 0] = d1 * (q[l] & 0xF) - m1;
  2052. y[l+32] = d2 * (q[l] >> 4) - m2;
  2053. }
  2054. y += QK_K;
  2055. #endif
  2056. }
  2057. }
  2058. void quantize_row_q4_K(const float * restrict x, void * restrict vy, int k) {
  2059. assert(k % QK_K == 0);
  2060. block_q4_K * restrict y = vy;
  2061. quantize_row_q4_K_reference(x, y, k);
  2062. }
  2063. static void quantize_row_q4_K_impl(const float * restrict x, block_q4_K * restrict y, int n_per_row, const float * quant_weights) {
  2064. #if QK_K != 256
  2065. (void)quant_weights;
  2066. quantize_row_q4_K_reference(x, y, n_per_row);
  2067. #else
  2068. assert(n_per_row % QK_K == 0);
  2069. const int nb = n_per_row / QK_K;
  2070. uint8_t L[QK_K];
  2071. uint8_t Laux[32];
  2072. uint8_t Ls[QK_K/32];
  2073. uint8_t Lm[QK_K/32];
  2074. float weights[32];
  2075. float sw[QK_K/32];
  2076. float mins[QK_K/32];
  2077. float scales[QK_K/32];
  2078. for (int i = 0; i < nb; i++) {
  2079. float sum_x2 = 0;
  2080. for (int l = 0; l < QK_K; ++l) sum_x2 += x[l] * x[l];
  2081. float sigma2 = 2*sum_x2/QK_K;
  2082. float av_x = sqrtf(sigma2);
  2083. for (int j = 0; j < QK_K/32; ++j) {
  2084. if (quant_weights) {
  2085. const float * qw = quant_weights + QK_K*i + 32*j;
  2086. for (int l = 0; l < 32; ++l) weights[l] = qw[l] * sqrtf(sigma2 + x[32*j + l]*x[32*j + l]);
  2087. } else {
  2088. for (int l = 0; l < 32; ++l) weights[l] = av_x + fabsf(x[32*j + l]);
  2089. }
  2090. float sumw = 0;
  2091. for (int l = 0; l < 32; ++l) sumw += weights[l];
  2092. sw[j] = sumw;
  2093. scales[j] = make_qkx3_quants(32, 15, x + 32*j, weights, L + 32*j, &mins[j], Laux, -0.9f, 0.05f, 36, false);
  2094. }
  2095. float d_block = make_qp_quants(QK_K/32, 63, scales, Ls, sw);
  2096. float m_block = make_qp_quants(QK_K/32, 63, mins, Lm, sw);
  2097. for (int j = 0; j < QK_K/32; ++j) {
  2098. uint8_t ls = Ls[j];
  2099. uint8_t lm = Lm[j];
  2100. if (j < 4) {
  2101. y[i].scales[j] = ls;
  2102. y[i].scales[j+4] = lm;
  2103. } else {
  2104. y[i].scales[j+4] = (ls & 0xF) | ((lm & 0xF) << 4);
  2105. y[i].scales[j-4] |= ((ls >> 4) << 6);
  2106. y[i].scales[j-0] |= ((lm >> 4) << 6);
  2107. }
  2108. }
  2109. y[i].d = GGML_FP32_TO_FP16(d_block);
  2110. y[i].dmin = GGML_FP32_TO_FP16(m_block);
  2111. uint8_t sc, m;
  2112. for (int j = 0; j < QK_K/32; ++j) {
  2113. get_scale_min_k4(j, y[i].scales, &sc, &m);
  2114. const float d = GGML_FP16_TO_FP32(y[i].d) * sc;
  2115. if (!d) continue;
  2116. const float dm = GGML_FP16_TO_FP32(y[i].dmin) * m;
  2117. for (int ii = 0; ii < 32; ++ii) {
  2118. int l = nearest_int((x[32*j + ii] + dm)/d);
  2119. l = MAX(0, MIN(15, l));
  2120. L[32*j + ii] = l;
  2121. }
  2122. }
  2123. uint8_t * q = y[i].qs;
  2124. for (int j = 0; j < QK_K; j += 64) {
  2125. for (int l = 0; l < 32; ++l) q[l] = L[j + l] | (L[j + l + 32] << 4);
  2126. q += 32;
  2127. }
  2128. x += QK_K;
  2129. }
  2130. #endif
  2131. }
  2132. size_t quantize_q4_K(const float * restrict src, void * restrict dst, int nrow, int n_per_row, const float * quant_weights) {
  2133. size_t row_size = ggml_row_size(GGML_TYPE_Q4_K, n_per_row);
  2134. if (!quant_weights) {
  2135. quantize_row_q4_K_reference(src, dst, nrow*n_per_row);
  2136. }
  2137. else {
  2138. char * qrow = (char *)dst;
  2139. for (int row = 0; row < nrow; ++row) {
  2140. quantize_row_q4_K_impl(src, (block_q4_K*)qrow, n_per_row, quant_weights);
  2141. src += n_per_row;
  2142. qrow += row_size;
  2143. }
  2144. }
  2145. return nrow * row_size;
  2146. }
  2147. // ====================== 5-bit (de)-quantization
  2148. void quantize_row_q5_K_reference(const float * restrict x, block_q5_K * restrict y, int k) {
  2149. assert(k % QK_K == 0);
  2150. const int nb = k / QK_K;
  2151. #if QK_K == 256
  2152. uint8_t L[QK_K];
  2153. float mins[QK_K/32];
  2154. float scales[QK_K/32];
  2155. float weights[32];
  2156. uint8_t Laux[32];
  2157. #else
  2158. int8_t L[QK_K];
  2159. float scales[QK_K/16];
  2160. #endif
  2161. for (int i = 0; i < nb; i++) {
  2162. #if QK_K == 256
  2163. float max_scale = 0; // as we are deducting the min, scales are always positive
  2164. float max_min = 0;
  2165. for (int j = 0; j < QK_K/32; ++j) {
  2166. //scales[j] = make_qkx1_quants(32, 31, x + 32*j, L + 32*j, &mins[j], 9, 0.5f);
  2167. float sum_x2 = 0;
  2168. for (int l = 0; l < 32; ++l) sum_x2 += x[32*j + l] * x[32*j + l];
  2169. float av_x = sqrtf(sum_x2/32);
  2170. for (int l = 0; l < 32; ++l) weights[l] = av_x + fabsf(x[32*j + l]);
  2171. scales[j] = make_qkx2_quants(32, 31, x + 32*j, weights, L + 32*j, &mins[j], Laux, -0.5f, 0.1f, 15, false);
  2172. float scale = scales[j];
  2173. if (scale > max_scale) {
  2174. max_scale = scale;
  2175. }
  2176. float min = mins[j];
  2177. if (min > max_min) {
  2178. max_min = min;
  2179. }
  2180. }
  2181. float inv_scale = max_scale > 0 ? 63.f/max_scale : 0.f;
  2182. float inv_min = max_min > 0 ? 63.f/max_min : 0.f;
  2183. for (int j = 0; j < QK_K/32; ++j) {
  2184. uint8_t ls = nearest_int(inv_scale*scales[j]);
  2185. uint8_t lm = nearest_int(inv_min*mins[j]);
  2186. ls = MIN(63, ls);
  2187. lm = MIN(63, lm);
  2188. if (j < 4) {
  2189. y[i].scales[j] = ls;
  2190. y[i].scales[j+4] = lm;
  2191. } else {
  2192. y[i].scales[j+4] = (ls & 0xF) | ((lm & 0xF) << 4);
  2193. y[i].scales[j-4] |= ((ls >> 4) << 6);
  2194. y[i].scales[j-0] |= ((lm >> 4) << 6);
  2195. }
  2196. }
  2197. y[i].d = GGML_FP32_TO_FP16(max_scale/63.f);
  2198. y[i].dmin = GGML_FP32_TO_FP16(max_min/63.f);
  2199. uint8_t sc, m;
  2200. for (int j = 0; j < QK_K/32; ++j) {
  2201. get_scale_min_k4(j, y[i].scales, &sc, &m);
  2202. const float d = GGML_FP16_TO_FP32(y[i].d) * sc;
  2203. if (!d) continue;
  2204. const float dm = GGML_FP16_TO_FP32(y[i].dmin) * m;
  2205. for (int ii = 0; ii < 32; ++ii) {
  2206. int l = nearest_int((x[32*j + ii] + dm)/d);
  2207. l = MAX(0, MIN(31, l));
  2208. L[32*j + ii] = l;
  2209. }
  2210. }
  2211. uint8_t * restrict qh = y[i].qh;
  2212. uint8_t * restrict ql = y[i].qs;
  2213. memset(qh, 0, QK_K/8);
  2214. uint8_t m1 = 1, m2 = 2;
  2215. for (int n = 0; n < QK_K; n += 64) {
  2216. for (int j = 0; j < 32; ++j) {
  2217. int l1 = L[n + j];
  2218. if (l1 > 15) {
  2219. l1 -= 16; qh[j] |= m1;
  2220. }
  2221. int l2 = L[n + j + 32];
  2222. if (l2 > 15) {
  2223. l2 -= 16; qh[j] |= m2;
  2224. }
  2225. ql[j] = l1 | (l2 << 4);
  2226. }
  2227. m1 <<= 2; m2 <<= 2;
  2228. ql += 32;
  2229. }
  2230. #else
  2231. float max_scale = 0, amax = 0;
  2232. for (int j = 0; j < QK_K/16; ++j) {
  2233. scales[j] = make_qx_quants(16, 16, x + 16*j, L + 16*j, 1, NULL);
  2234. float abs_scale = fabsf(scales[j]);
  2235. if (abs_scale > amax) {
  2236. amax = abs_scale;
  2237. max_scale = scales[j];
  2238. }
  2239. }
  2240. float iscale = -128.f/max_scale;
  2241. for (int j = 0; j < QK_K/16; ++j) {
  2242. int l = nearest_int(iscale*scales[j]);
  2243. y[i].scales[j] = MAX(-128, MIN(127, l));
  2244. }
  2245. y[i].d = GGML_FP32_TO_FP16(1/iscale);
  2246. for (int j = 0; j < QK_K/16; ++j) {
  2247. const float d = GGML_FP16_TO_FP32(y[i].d) * y[i].scales[j];
  2248. if (!d) continue;
  2249. for (int ii = 0; ii < 16; ++ii) {
  2250. int l = nearest_int(x[16*j + ii]/d);
  2251. l = MAX(-16, MIN(15, l));
  2252. L[16*j + ii] = l + 16;
  2253. }
  2254. }
  2255. uint8_t * restrict qh = y[i].qh;
  2256. uint8_t * restrict ql = y[i].qs;
  2257. memset(qh, 0, QK_K/8);
  2258. for (int j = 0; j < 32; ++j) {
  2259. int jm = j%8;
  2260. int is = j/8;
  2261. int l1 = L[j];
  2262. if (l1 > 15) {
  2263. l1 -= 16; qh[jm] |= (1 << is);
  2264. }
  2265. int l2 = L[j + 32];
  2266. if (l2 > 15) {
  2267. l2 -= 16; qh[jm] |= (1 << (4 + is));
  2268. }
  2269. ql[j] = l1 | (l2 << 4);
  2270. }
  2271. #endif
  2272. x += QK_K;
  2273. }
  2274. }
  2275. void dequantize_row_q5_K(const block_q5_K * restrict x, float * restrict y, int k) {
  2276. assert(k % QK_K == 0);
  2277. const int nb = k / QK_K;
  2278. for (int i = 0; i < nb; i++) {
  2279. const uint8_t * ql = x[i].qs;
  2280. const uint8_t * qh = x[i].qh;
  2281. #if QK_K == 256
  2282. const float d = GGML_FP16_TO_FP32(x[i].d);
  2283. const float min = GGML_FP16_TO_FP32(x[i].dmin);
  2284. int is = 0;
  2285. uint8_t sc, m;
  2286. uint8_t u1 = 1, u2 = 2;
  2287. for (int j = 0; j < QK_K; j += 64) {
  2288. get_scale_min_k4(is + 0, x[i].scales, &sc, &m);
  2289. const float d1 = d * sc; const float m1 = min * m;
  2290. get_scale_min_k4(is + 1, x[i].scales, &sc, &m);
  2291. const float d2 = d * sc; const float m2 = min * m;
  2292. for (int l = 0; l < 32; ++l) *y++ = d1 * ((ql[l] & 0xF) + (qh[l] & u1 ? 16 : 0)) - m1;
  2293. for (int l = 0; l < 32; ++l) *y++ = d2 * ((ql[l] >> 4) + (qh[l] & u2 ? 16 : 0)) - m2;
  2294. ql += 32; is += 2;
  2295. u1 <<= 2; u2 <<= 2;
  2296. }
  2297. #else
  2298. float d = GGML_FP16_TO_FP32(x[i].d);
  2299. const int8_t * restrict s = x[i].scales;
  2300. for (int l = 0; l < 8; ++l) {
  2301. y[l+ 0] = d * s[0] * ((ql[l+ 0] & 0xF) - (qh[l] & 0x01 ? 0 : 16));
  2302. y[l+ 8] = d * s[0] * ((ql[l+ 8] & 0xF) - (qh[l] & 0x02 ? 0 : 16));
  2303. y[l+16] = d * s[1] * ((ql[l+16] & 0xF) - (qh[l] & 0x04 ? 0 : 16));
  2304. y[l+24] = d * s[1] * ((ql[l+24] & 0xF) - (qh[l] & 0x08 ? 0 : 16));
  2305. y[l+32] = d * s[2] * ((ql[l+ 0] >> 4) - (qh[l] & 0x10 ? 0 : 16));
  2306. y[l+40] = d * s[2] * ((ql[l+ 8] >> 4) - (qh[l] & 0x20 ? 0 : 16));
  2307. y[l+48] = d * s[3] * ((ql[l+16] >> 4) - (qh[l] & 0x40 ? 0 : 16));
  2308. y[l+56] = d * s[3] * ((ql[l+24] >> 4) - (qh[l] & 0x80 ? 0 : 16));
  2309. }
  2310. y += QK_K;
  2311. #endif
  2312. }
  2313. }
  2314. void quantize_row_q5_K(const float * restrict x, void * restrict vy, int k) {
  2315. assert(k % QK_K == 0);
  2316. block_q5_K * restrict y = vy;
  2317. quantize_row_q5_K_reference(x, y, k);
  2318. }
  2319. static void quantize_row_q5_K_impl(const float * restrict x, block_q5_K * restrict y, int n_per_row, const float * quant_weights) {
  2320. #if QK_K != 256
  2321. (void)quant_weights;
  2322. quantize_row_q5_K_reference(x, y, n_per_row);
  2323. #else
  2324. assert(n_per_row % QK_K == 0);
  2325. const int nb = n_per_row / QK_K;
  2326. uint8_t L[QK_K];
  2327. uint8_t Laux[32];
  2328. uint8_t Ls[QK_K/32];
  2329. uint8_t Lm[QK_K/32];
  2330. float mins[QK_K/32];
  2331. float scales[QK_K/32];
  2332. float sw[QK_K/32];
  2333. float weights[32];
  2334. for (int i = 0; i < nb; i++) {
  2335. float sum_x2 = 0;
  2336. for (int l = 0; l < QK_K; ++l) sum_x2 += x[l] * x[l];
  2337. float sigma2 = 2*sum_x2/QK_K;
  2338. float av_x = sqrtf(sigma2);
  2339. for (int j = 0; j < QK_K/32; ++j) {
  2340. if (quant_weights) {
  2341. const float * qw = quant_weights + QK_K*i + 32*j;
  2342. for (int l = 0; l < 32; ++l) weights[l] = qw[l] * sqrtf(sigma2 + x[32*j + l]*x[32*j + l]);
  2343. } else {
  2344. for (int l = 0; l < 32; ++l) weights[l] = av_x + fabsf(x[32*j + l]);
  2345. }
  2346. float sumw = 0;
  2347. for (int l = 0; l < 32; ++l) sumw += weights[l];
  2348. sw[j] = sumw;
  2349. scales[j] = make_qkx3_quants(32, 31, x + 32*j, weights, L + 32*j, &mins[j], Laux, -0.9f, 0.05f, 36, false);
  2350. }
  2351. float d_block = make_qp_quants(QK_K/32, 63, scales, Ls, sw);
  2352. float m_block = make_qp_quants(QK_K/32, 63, mins, Lm, sw);
  2353. for (int j = 0; j < QK_K/32; ++j) {
  2354. uint8_t ls = Ls[j];
  2355. uint8_t lm = Lm[j];
  2356. ls = MIN(63, ls);
  2357. lm = MIN(63, lm);
  2358. if (j < 4) {
  2359. y[i].scales[j] = ls;
  2360. y[i].scales[j+4] = lm;
  2361. } else {
  2362. y[i].scales[j+4] = (ls & 0xF) | ((lm & 0xF) << 4);
  2363. y[i].scales[j-4] |= ((ls >> 4) << 6);
  2364. y[i].scales[j-0] |= ((lm >> 4) << 6);
  2365. }
  2366. }
  2367. y[i].d = GGML_FP32_TO_FP16(d_block);
  2368. y[i].dmin = GGML_FP32_TO_FP16(m_block);
  2369. uint8_t sc, m;
  2370. for (int j = 0; j < QK_K/32; ++j) {
  2371. get_scale_min_k4(j, y[i].scales, &sc, &m);
  2372. const float d = GGML_FP16_TO_FP32(y[i].d) * sc;
  2373. if (!d) continue;
  2374. const float dm = GGML_FP16_TO_FP32(y[i].dmin) * m;
  2375. for (int ii = 0; ii < 32; ++ii) {
  2376. int l = nearest_int((x[32*j + ii] + dm)/d);
  2377. l = MAX(0, MIN(31, l));
  2378. L[32*j + ii] = l;
  2379. }
  2380. }
  2381. uint8_t * restrict qh = y[i].qh;
  2382. uint8_t * restrict ql = y[i].qs;
  2383. memset(qh, 0, QK_K/8);
  2384. uint8_t m1 = 1, m2 = 2;
  2385. for (int n = 0; n < QK_K; n += 64) {
  2386. for (int j = 0; j < 32; ++j) {
  2387. int l1 = L[n + j];
  2388. if (l1 > 15) {
  2389. l1 -= 16; qh[j] |= m1;
  2390. }
  2391. int l2 = L[n + j + 32];
  2392. if (l2 > 15) {
  2393. l2 -= 16; qh[j] |= m2;
  2394. }
  2395. ql[j] = l1 | (l2 << 4);
  2396. }
  2397. m1 <<= 2; m2 <<= 2;
  2398. ql += 32;
  2399. }
  2400. x += QK_K;
  2401. }
  2402. #endif
  2403. }
  2404. size_t quantize_q5_K(const float * restrict src, void * restrict dst, int nrow, int n_per_row, const float * quant_weights) {
  2405. size_t row_size = ggml_row_size(GGML_TYPE_Q5_K, n_per_row);
  2406. if (!quant_weights) {
  2407. quantize_row_q5_K_reference(src, dst, nrow*n_per_row);
  2408. }
  2409. else {
  2410. char * qrow = (char *)dst;
  2411. for (int row = 0; row < nrow; ++row) {
  2412. quantize_row_q5_K_impl(src, (block_q5_K*)qrow, n_per_row, quant_weights);
  2413. src += n_per_row;
  2414. qrow += row_size;
  2415. }
  2416. }
  2417. return nrow * row_size;
  2418. }
  2419. // ====================== 6-bit (de)-quantization
  2420. void quantize_row_q6_K_reference(const float * restrict x, block_q6_K * restrict y, int k) {
  2421. assert(k % QK_K == 0);
  2422. const int nb = k / QK_K;
  2423. int8_t L[QK_K];
  2424. float scales[QK_K/16];
  2425. for (int i = 0; i < nb; i++) {
  2426. float max_scale = 0;
  2427. float max_abs_scale = 0;
  2428. for (int ib = 0; ib < QK_K/16; ++ib) {
  2429. const float scale = make_qx_quants(16, 32, x + 16*ib, L + 16*ib, 1, NULL);
  2430. scales[ib] = scale;
  2431. const float abs_scale = fabsf(scale);
  2432. if (abs_scale > max_abs_scale) {
  2433. max_abs_scale = abs_scale;
  2434. max_scale = scale;
  2435. }
  2436. }
  2437. if (!max_abs_scale) {
  2438. memset(&y[i], 0, sizeof(block_q6_K));
  2439. y[i].d = GGML_FP32_TO_FP16(0.f);
  2440. x += QK_K;
  2441. continue;
  2442. }
  2443. float iscale = -128.f/max_scale;
  2444. y[i].d = GGML_FP32_TO_FP16(1/iscale);
  2445. for (int ib = 0; ib < QK_K/16; ++ib) {
  2446. y[i].scales[ib] = MIN(127, nearest_int(iscale*scales[ib]));
  2447. }
  2448. for (int j = 0; j < QK_K/16; ++j) {
  2449. float d = GGML_FP16_TO_FP32(y[i].d) * y[i].scales[j];
  2450. if (!d) {
  2451. continue;
  2452. }
  2453. for (int ii = 0; ii < 16; ++ii) {
  2454. int l = nearest_int(x[16*j + ii]/d);
  2455. l = MAX(-32, MIN(31, l));
  2456. L[16*j + ii] = l + 32;
  2457. }
  2458. }
  2459. uint8_t * restrict ql = y[i].ql;
  2460. uint8_t * restrict qh = y[i].qh;
  2461. #if QK_K == 256
  2462. for (int j = 0; j < QK_K; j += 128) {
  2463. for (int l = 0; l < 32; ++l) {
  2464. const uint8_t q1 = L[j + l + 0] & 0xF;
  2465. const uint8_t q2 = L[j + l + 32] & 0xF;
  2466. const uint8_t q3 = L[j + l + 64] & 0xF;
  2467. const uint8_t q4 = L[j + l + 96] & 0xF;
  2468. ql[l+ 0] = q1 | (q3 << 4);
  2469. ql[l+32] = q2 | (q4 << 4);
  2470. qh[l] = (L[j + l] >> 4) | ((L[j + l + 32] >> 4) << 2) | ((L[j + l + 64] >> 4) << 4) | ((L[j + l + 96] >> 4) << 6);
  2471. }
  2472. ql += 64;
  2473. qh += 32;
  2474. }
  2475. #else
  2476. for (int l = 0; l < 32; ++l) {
  2477. const uint8_t q1 = L[l + 0] & 0xF;
  2478. const uint8_t q2 = L[l + 32] & 0xF;
  2479. ql[l] = q1 | (q2 << 4);
  2480. }
  2481. for (int l = 0; l < 16; ++l) {
  2482. qh[l] = (L[l] >> 4) | ((L[l + 16] >> 4) << 2) | ((L[l + 32] >> 4) << 4) | ((L[l + 48] >> 4) << 6);
  2483. }
  2484. #endif
  2485. x += QK_K;
  2486. }
  2487. }
  2488. void dequantize_row_q6_K(const block_q6_K * restrict x, float * restrict y, int k) {
  2489. assert(k % QK_K == 0);
  2490. const int nb = k / QK_K;
  2491. for (int i = 0; i < nb; i++) {
  2492. const float d = GGML_FP16_TO_FP32(x[i].d);
  2493. const uint8_t * restrict ql = x[i].ql;
  2494. const uint8_t * restrict qh = x[i].qh;
  2495. const int8_t * restrict sc = x[i].scales;
  2496. #if QK_K == 256
  2497. for (int n = 0; n < QK_K; n += 128) {
  2498. for (int l = 0; l < 32; ++l) {
  2499. int is = l/16;
  2500. const int8_t q1 = (int8_t)((ql[l + 0] & 0xF) | (((qh[l] >> 0) & 3) << 4)) - 32;
  2501. const int8_t q2 = (int8_t)((ql[l + 32] & 0xF) | (((qh[l] >> 2) & 3) << 4)) - 32;
  2502. const int8_t q3 = (int8_t)((ql[l + 0] >> 4) | (((qh[l] >> 4) & 3) << 4)) - 32;
  2503. const int8_t q4 = (int8_t)((ql[l + 32] >> 4) | (((qh[l] >> 6) & 3) << 4)) - 32;
  2504. y[l + 0] = d * sc[is + 0] * q1;
  2505. y[l + 32] = d * sc[is + 2] * q2;
  2506. y[l + 64] = d * sc[is + 4] * q3;
  2507. y[l + 96] = d * sc[is + 6] * q4;
  2508. }
  2509. y += 128;
  2510. ql += 64;
  2511. qh += 32;
  2512. sc += 8;
  2513. }
  2514. #else
  2515. for (int l = 0; l < 16; ++l) {
  2516. const int8_t q1 = (int8_t)((ql[l+ 0] & 0xF) | (((qh[l] >> 0) & 3) << 4)) - 32;
  2517. const int8_t q2 = (int8_t)((ql[l+16] & 0xF) | (((qh[l] >> 2) & 3) << 4)) - 32;
  2518. const int8_t q3 = (int8_t)((ql[l+ 0] >> 4) | (((qh[l] >> 4) & 3) << 4)) - 32;
  2519. const int8_t q4 = (int8_t)((ql[l+16] >> 4) | (((qh[l] >> 6) & 3) << 4)) - 32;
  2520. y[l+ 0] = d * sc[0] * q1;
  2521. y[l+16] = d * sc[1] * q2;
  2522. y[l+32] = d * sc[2] * q3;
  2523. y[l+48] = d * sc[3] * q4;
  2524. }
  2525. y += 64;
  2526. #endif
  2527. }
  2528. }
  2529. void quantize_row_q6_K(const float * restrict x, void * restrict vy, int k) {
  2530. assert(k % QK_K == 0);
  2531. block_q6_K * restrict y = vy;
  2532. quantize_row_q6_K_reference(x, y, k);
  2533. }
  2534. static void quantize_row_q6_K_impl(const float * restrict x, block_q6_K * restrict y, int n_per_row, const float * quant_weights) {
  2535. #if QK_K != 256
  2536. (void)quant_weights;
  2537. quantize_row_q6_K_reference(x, y, n_per_row);
  2538. #else
  2539. assert(n_per_row % QK_K == 0);
  2540. const int nb = n_per_row / QK_K;
  2541. int8_t L[QK_K];
  2542. float scales[QK_K/16];
  2543. //float weights[16];
  2544. for (int i = 0; i < nb; i++) {
  2545. //float sum_x2 = 0;
  2546. //for (int j = 0; j < QK_K; ++j) sum_x2 += x[j]*x[j];
  2547. //float sigma2 = sum_x2/QK_K;
  2548. float max_scale = 0;
  2549. float max_abs_scale = 0;
  2550. for (int ib = 0; ib < QK_K/16; ++ib) {
  2551. float scale;
  2552. if (quant_weights) {
  2553. const float * qw = quant_weights + QK_K*i + 16*ib;
  2554. //for (int j = 0; j < 16; ++j) weights[j] = qw[j] * sqrtf(sigma2 + x[16*ib + j]*x[16*ib + j]);
  2555. //scale = make_qx_quants(16, 32, x + 16*ib, L + 16*ib, 1, weights);
  2556. scale = make_qx_quants(16, 32, x + 16*ib, L + 16*ib, 1, qw);
  2557. } else {
  2558. scale = make_qx_quants(16, 32, x + 16*ib, L + 16*ib, 1, NULL);
  2559. }
  2560. scales[ib] = scale;
  2561. const float abs_scale = fabsf(scale);
  2562. if (abs_scale > max_abs_scale) {
  2563. max_abs_scale = abs_scale;
  2564. max_scale = scale;
  2565. }
  2566. }
  2567. if (!max_abs_scale) {
  2568. memset(&y[i], 0, sizeof(block_q6_K));
  2569. y[i].d = GGML_FP32_TO_FP16(0.f);
  2570. x += QK_K;
  2571. continue;
  2572. }
  2573. float iscale = -128.f/max_scale;
  2574. y[i].d = GGML_FP32_TO_FP16(1/iscale);
  2575. for (int ib = 0; ib < QK_K/16; ++ib) {
  2576. y[i].scales[ib] = MIN(127, nearest_int(iscale*scales[ib]));
  2577. }
  2578. for (int j = 0; j < QK_K/16; ++j) {
  2579. float d = GGML_FP16_TO_FP32(y[i].d) * y[i].scales[j];
  2580. if (!d) {
  2581. continue;
  2582. }
  2583. for (int ii = 0; ii < 16; ++ii) {
  2584. int l = nearest_int(x[16*j + ii]/d);
  2585. l = MAX(-32, MIN(31, l));
  2586. L[16*j + ii] = l + 32;
  2587. }
  2588. }
  2589. uint8_t * restrict ql = y[i].ql;
  2590. uint8_t * restrict qh = y[i].qh;
  2591. for (int j = 0; j < QK_K; j += 128) {
  2592. for (int l = 0; l < 32; ++l) {
  2593. const uint8_t q1 = L[j + l + 0] & 0xF;
  2594. const uint8_t q2 = L[j + l + 32] & 0xF;
  2595. const uint8_t q3 = L[j + l + 64] & 0xF;
  2596. const uint8_t q4 = L[j + l + 96] & 0xF;
  2597. ql[l+ 0] = q1 | (q3 << 4);
  2598. ql[l+32] = q2 | (q4 << 4);
  2599. qh[l] = (L[j + l] >> 4) | ((L[j + l + 32] >> 4) << 2) | ((L[j + l + 64] >> 4) << 4) | ((L[j + l + 96] >> 4) << 6);
  2600. }
  2601. ql += 64;
  2602. qh += 32;
  2603. }
  2604. x += QK_K;
  2605. }
  2606. #endif
  2607. }
  2608. size_t quantize_q6_K(const float * restrict src, void * restrict dst, int nrow, int n_per_row, const float * quant_weights) {
  2609. size_t row_size = ggml_row_size(GGML_TYPE_Q6_K, n_per_row);
  2610. if (!quant_weights) {
  2611. quantize_row_q6_K_reference(src, dst, nrow*n_per_row);
  2612. }
  2613. else {
  2614. char * qrow = (char *)dst;
  2615. for (int row = 0; row < nrow; ++row) {
  2616. quantize_row_q6_K_impl(src, (block_q6_K*)qrow, n_per_row, quant_weights);
  2617. src += n_per_row;
  2618. qrow += row_size;
  2619. }
  2620. }
  2621. return nrow * row_size;
  2622. }
  2623. static void quantize_row_q4_0_impl(const float * restrict x, block_q4_0 * restrict y, int n_per_row, const float * quant_weights) {
  2624. static_assert(QK4_0 == 32, "QK4_0 must be 32");
  2625. if (!quant_weights) {
  2626. quantize_row_q4_0_reference(x, y, n_per_row);
  2627. return;
  2628. }
  2629. float weight[QK4_0];
  2630. int8_t L[QK4_0];
  2631. float sum_x2 = 0;
  2632. for (int j = 0; j < n_per_row; ++j) sum_x2 += x[j]*x[j];
  2633. float sigma2 = sum_x2/n_per_row;
  2634. const int nb = n_per_row/QK4_0;
  2635. for (int ib = 0; ib < nb; ++ib) {
  2636. const float * xb = x + QK4_0 * ib;
  2637. const float * qw = quant_weights + QK4_0 * ib;
  2638. for (int j = 0; j < QK4_0; ++j) weight[j] = qw[j] * sqrtf(sigma2 + xb[j]*xb[j]);
  2639. float d = make_qx_quants(QK4_0, 8, xb, L, 1, weight);
  2640. y[ib].d = GGML_FP32_TO_FP16(d);
  2641. for (int j = 0; j < 16; ++j) {
  2642. y[ib].qs[j] = L[j] | (L[j+16] << 4);
  2643. }
  2644. }
  2645. }
  2646. size_t quantize_q4_0(const float * restrict src, void * restrict dst, int nrow, int n_per_row, const float * quant_weights) {
  2647. if (!quant_weights) {
  2648. quantize_row_q4_0_reference(src, dst, nrow*n_per_row);
  2649. return nrow * ggml_row_size(GGML_TYPE_Q4_0, n_per_row);
  2650. }
  2651. size_t row_size = ggml_row_size(GGML_TYPE_Q4_0, n_per_row);
  2652. char * qrow = (char *)dst;
  2653. for (int row = 0; row < nrow; ++row) {
  2654. quantize_row_q4_0_impl(src, (block_q4_0*)qrow, n_per_row, quant_weights);
  2655. src += n_per_row;
  2656. qrow += row_size;
  2657. }
  2658. return nrow * row_size;
  2659. }
  2660. static void quantize_row_q4_1_impl(const float * restrict x, block_q4_1 * restrict y, int n_per_row, const float * quant_weights) {
  2661. static_assert(QK4_1 == 32, "QK4_1 must be 32");
  2662. if (!quant_weights) {
  2663. quantize_row_q4_1_reference(x, y, n_per_row);
  2664. return;
  2665. }
  2666. float weight[QK4_1];
  2667. uint8_t L[QK4_1], Laux[QK4_1];
  2668. float sum_x2 = 0;
  2669. for (int j = 0; j < n_per_row; ++j) sum_x2 += x[j]*x[j];
  2670. float sigma2 = sum_x2/n_per_row;
  2671. const int nb = n_per_row/QK4_1;
  2672. for (int ib = 0; ib < nb; ++ib) {
  2673. const float * xb = x + QK4_1 * ib;
  2674. const float * qw = quant_weights + QK4_1 * ib;
  2675. for (int j = 0; j < QK4_1; ++j) weight[j] = qw[j] * sqrtf(sigma2 + xb[j]*xb[j]);
  2676. float min;
  2677. float d = make_qkx3_quants(QK4_1, 15, xb, weight, L, &min, Laux, -0.9f, 0.05f, 36, false);
  2678. y[ib].d = GGML_FP32_TO_FP16(d);
  2679. y[ib].m = GGML_FP32_TO_FP16(-min);
  2680. for (int j = 0; j < 16; ++j) {
  2681. y[ib].qs[j] = L[j] | (L[j+16] << 4);
  2682. }
  2683. }
  2684. }
  2685. size_t quantize_q4_1(const float * restrict src, void * restrict dst, int nrow, int n_per_row, const float * quant_weights) {
  2686. if (!quant_weights) {
  2687. quantize_row_q4_1_reference(src, dst, nrow*n_per_row);
  2688. return nrow * ggml_row_size(GGML_TYPE_Q4_1, n_per_row);
  2689. }
  2690. size_t row_size = ggml_row_size(GGML_TYPE_Q4_1, n_per_row);
  2691. char * qrow = (char *)dst;
  2692. for (int row = 0; row < nrow; ++row) {
  2693. quantize_row_q4_1_impl(src, (block_q4_1*)qrow, n_per_row, quant_weights);
  2694. src += n_per_row;
  2695. qrow += row_size;
  2696. }
  2697. return nrow * row_size;
  2698. }
  2699. static void quantize_row_q5_0_impl(const float * restrict x, block_q5_0 * restrict y, int n_per_row, const float * quant_weights) {
  2700. static_assert(QK5_0 == 32, "QK5_0 must be 32");
  2701. if (!quant_weights) {
  2702. quantize_row_q5_0_reference(x, y, n_per_row);
  2703. return;
  2704. }
  2705. float weight[QK5_0];
  2706. int8_t L[QK5_0];
  2707. float sum_x2 = 0;
  2708. for (int j = 0; j < n_per_row; ++j) sum_x2 += x[j]*x[j];
  2709. float sigma2 = sum_x2/n_per_row;
  2710. const int nb = n_per_row/QK5_0;
  2711. for (int ib = 0; ib < nb; ++ib) {
  2712. const float * xb = x + QK5_0 * ib;
  2713. const float * qw = quant_weights + QK5_0 * ib;
  2714. for (int j = 0; j < QK5_0; ++j) weight[j] = qw[j] * sqrtf(sigma2 + xb[j]*xb[j]);
  2715. float d = make_qx_quants(QK5_0, 16, xb, L, 1, weight);
  2716. y[ib].d = GGML_FP32_TO_FP16(d);
  2717. uint32_t qh = 0;
  2718. for (int j = 0; j < 16; ++j) {
  2719. const uint8_t xi0 = L[j];
  2720. const uint8_t xi1 = L[j+16];
  2721. y[ib].qs[j] = (xi0 & 0x0F) | ((xi1 & 0x0F) << 4);
  2722. // get the 5-th bit and store it in qh at the right position
  2723. qh |= ((xi0 & 0x10u) >> 4) << (j + 0);
  2724. qh |= ((xi1 & 0x10u) >> 4) << (j + QK5_0/2);
  2725. }
  2726. memcpy(&y[ib].qh, &qh, sizeof(qh));
  2727. }
  2728. }
  2729. size_t quantize_q5_0(const float * restrict src, void * restrict dst, int nrow, int n_per_row, const float * quant_weights) {
  2730. if (!quant_weights) {
  2731. quantize_row_q5_0_reference(src, dst, nrow*n_per_row);
  2732. return nrow * ggml_row_size(GGML_TYPE_Q5_0, n_per_row);
  2733. }
  2734. size_t row_size = ggml_row_size(GGML_TYPE_Q5_0, n_per_row);
  2735. char * qrow = (char *)dst;
  2736. for (int row = 0; row < nrow; ++row) {
  2737. quantize_row_q5_0_impl(src, (block_q5_0*)qrow, n_per_row, quant_weights);
  2738. src += n_per_row;
  2739. qrow += row_size;
  2740. }
  2741. return nrow * row_size;
  2742. }
  2743. static void quantize_row_q5_1_impl(const float * restrict x, block_q5_1 * restrict y, int n_per_row, const float * quant_weights) {
  2744. static_assert(QK5_1 == 32, "QK5_1 must be 32");
  2745. if (!quant_weights) {
  2746. quantize_row_q5_1_reference(x, y, n_per_row);
  2747. return;
  2748. }
  2749. float weight[QK5_1];
  2750. uint8_t L[QK5_1], Laux[QK5_1];
  2751. float sum_x2 = 0;
  2752. for (int j = 0; j < n_per_row; ++j) sum_x2 += x[j]*x[j];
  2753. float sigma2 = sum_x2/n_per_row;
  2754. const int nb = n_per_row/QK5_1;
  2755. for (int ib = 0; ib < nb; ++ib) {
  2756. const float * xb = x + QK5_1 * ib;
  2757. const float * qw = quant_weights + QK5_1 * ib;
  2758. for (int j = 0; j < QK5_1; ++j) weight[j] = qw[j] * sqrtf(sigma2 + xb[j]*xb[j]);
  2759. float min;
  2760. float d = make_qkx3_quants(QK5_1, 31, xb, weight, L, &min, Laux, -0.9f, 0.05f, 36, false);
  2761. y[ib].d = GGML_FP32_TO_FP16(d);
  2762. y[ib].m = GGML_FP32_TO_FP16(-min);
  2763. uint32_t qh = 0;
  2764. for (int j = 0; j < 16; ++j) {
  2765. const uint8_t xi0 = L[j];
  2766. const uint8_t xi1 = L[j+16];
  2767. y[ib].qs[j] = (xi0 & 0x0F) | ((xi1 & 0x0F) << 4);
  2768. // get the 5-th bit and store it in qh at the right position
  2769. qh |= ((xi0 & 0x10u) >> 4) << (j + 0);
  2770. qh |= ((xi1 & 0x10u) >> 4) << (j + QK5_0/2);
  2771. }
  2772. memcpy(&y[ib].qh, &qh, sizeof(qh));
  2773. }
  2774. }
  2775. size_t quantize_q5_1(const float * restrict src, void * restrict dst, int nrow, int n_per_row, const float * quant_weights) {
  2776. if (!quant_weights) {
  2777. quantize_row_q5_1_reference(src, dst, nrow*n_per_row);
  2778. return nrow * ggml_row_size(GGML_TYPE_Q5_1, n_per_row);
  2779. }
  2780. size_t row_size = ggml_row_size(GGML_TYPE_Q5_1, n_per_row);
  2781. char * qrow = (char *)dst;
  2782. for (int row = 0; row < nrow; ++row) {
  2783. quantize_row_q5_1_impl(src, (block_q5_1*)qrow, n_per_row, quant_weights);
  2784. src += n_per_row;
  2785. qrow += row_size;
  2786. }
  2787. return nrow * row_size;
  2788. }
  2789. size_t quantize_q8_0(const float * restrict src, void * restrict dst, int nrow, int n_per_row, const float * quant_weights) {
  2790. (void)quant_weights; // not used
  2791. const size_t row_size = ggml_row_size(GGML_TYPE_Q8_0, n_per_row);
  2792. quantize_row_q8_0_reference(src, dst, nrow*n_per_row);
  2793. return nrow * row_size;
  2794. }
  2795. // ====================== "True" 2-bit (de)-quantization
  2796. void dequantize_row_iq2_xxs(const block_iq2_xxs * restrict x, float * restrict y, int k) {
  2797. assert(k % QK_K == 0);
  2798. const int nb = k / QK_K;
  2799. uint32_t aux32[2];
  2800. const uint8_t * aux8 = (const uint8_t *)aux32;
  2801. for (int i = 0; i < nb; i++) {
  2802. const float d = GGML_FP16_TO_FP32(x[i].d);
  2803. for (int ib32 = 0; ib32 < QK_K/32; ++ib32) {
  2804. memcpy(aux32, x[i].qs + 4*ib32, 2*sizeof(uint32_t));
  2805. const float db = d * (0.5f + (aux32[1] >> 28)) * 0.25f;
  2806. for (int l = 0; l < 4; ++l) {
  2807. const uint8_t * grid = (const uint8_t *)(iq2xxs_grid + aux8[l]);
  2808. const uint8_t signs = ksigns_iq2xs[(aux32[1] >> 7*l) & 127];
  2809. for (int j = 0; j < 8; ++j) {
  2810. y[j] = db * grid[j] * (signs & kmask_iq2xs[j] ? -1.f : 1.f);
  2811. }
  2812. y += 8;
  2813. }
  2814. }
  2815. }
  2816. }
  2817. // ====================== 2.3125 bpw (de)-quantization
  2818. void dequantize_row_iq2_xs(const block_iq2_xs * restrict x, float * restrict y, int k) {
  2819. assert(k % QK_K == 0);
  2820. const int nb = k / QK_K;
  2821. float db[2];
  2822. for (int i = 0; i < nb; i++) {
  2823. const float d = GGML_FP16_TO_FP32(x[i].d);
  2824. for (int ib32 = 0; ib32 < QK_K/32; ++ib32) {
  2825. db[0] = d * (0.5f + (x[i].scales[ib32] & 0xf)) * 0.25f;
  2826. db[1] = d * (0.5f + (x[i].scales[ib32] >> 4)) * 0.25f;
  2827. for (int l = 0; l < 4; ++l) {
  2828. const uint8_t * grid = (const uint8_t *)(iq2xs_grid + (x[i].qs[4*ib32 + l] & 511));
  2829. const uint8_t signs = ksigns_iq2xs[x[i].qs[4*ib32 + l] >> 9];
  2830. for (int j = 0; j < 8; ++j) {
  2831. y[j] = db[l/2] * grid[j] * (signs & kmask_iq2xs[j] ? -1.f : 1.f);
  2832. }
  2833. y += 8;
  2834. }
  2835. }
  2836. }
  2837. }
  2838. // ====================== 2.5625 bpw (de)-quantization
  2839. void dequantize_row_iq2_s(const block_iq2_s * restrict x, float * restrict y, int k) {
  2840. assert(k % QK_K == 0);
  2841. const int nb = k / QK_K;
  2842. float db[2];
  2843. for (int i = 0; i < nb; i++) {
  2844. const float d = GGML_FP16_TO_FP32(x[i].d);
  2845. const uint8_t * qs = x[i].qs;
  2846. const uint8_t * qh = x[i].qh;
  2847. const uint8_t * signs = qs + QK_K/8;
  2848. for (int ib32 = 0; ib32 < QK_K/32; ++ib32) {
  2849. db[0] = d * (0.5f + (x[i].scales[ib32] & 0xf)) * 0.25f;
  2850. db[1] = d * (0.5f + (x[i].scales[ib32] >> 4)) * 0.25f;
  2851. for (int l = 0; l < 4; ++l) {
  2852. const float dl = db[l/2];
  2853. const uint8_t * grid = (const uint8_t *)(iq2s_grid + (qs[l] | (qh[ib32] << (8-2*l) & 0x300)));
  2854. for (int j = 0; j < 8; ++j) {
  2855. y[j] = dl * grid[j] * (signs[l] & kmask_iq2xs[j] ? -1.f : 1.f);
  2856. }
  2857. y += 8;
  2858. }
  2859. qs += 4;
  2860. signs += 4;
  2861. }
  2862. }
  2863. }
  2864. // ====================== 3.0625 bpw (de)-quantization
  2865. void dequantize_row_iq3_xxs(const block_iq3_xxs * restrict x, float * restrict y, int k) {
  2866. assert(k % QK_K == 0);
  2867. const int nb = k / QK_K;
  2868. uint32_t aux32;
  2869. for (int i = 0; i < nb; i++) {
  2870. const float d = GGML_FP16_TO_FP32(x[i].d);
  2871. const uint8_t * qs = x[i].qs;
  2872. const uint8_t * scales_and_signs = qs + QK_K/4;
  2873. for (int ib32 = 0; ib32 < QK_K/32; ++ib32) {
  2874. memcpy(&aux32, scales_and_signs + 4*ib32, sizeof(uint32_t));
  2875. const float db = d * (0.5f + (aux32 >> 28)) * 0.5f;
  2876. for (int l = 0; l < 4; ++l) {
  2877. const uint8_t signs = ksigns_iq2xs[(aux32 >> 7*l) & 127];
  2878. const uint8_t * grid1 = (const uint8_t *)(iq3xxs_grid + qs[2*l+0]);
  2879. const uint8_t * grid2 = (const uint8_t *)(iq3xxs_grid + qs[2*l+1]);
  2880. for (int j = 0; j < 4; ++j) {
  2881. y[j+0] = db * grid1[j] * (signs & kmask_iq2xs[j+0] ? -1.f : 1.f);
  2882. y[j+4] = db * grid2[j] * (signs & kmask_iq2xs[j+4] ? -1.f : 1.f);
  2883. }
  2884. y += 8;
  2885. }
  2886. qs += 8;
  2887. }
  2888. }
  2889. }
  2890. // ====================== 3.3125 bpw (de)-quantization
  2891. void dequantize_row_iq3_s(const block_iq3_s * restrict x, float * restrict y, int k) {
  2892. assert(k % QK_K == 0);
  2893. const int nb = k / QK_K;
  2894. for (int i = 0; i < nb; i++) {
  2895. const float d = GGML_FP16_TO_FP32(x[i].d);
  2896. const uint8_t * qs = x[i].qs;
  2897. const uint8_t * qh = x[i].qh;
  2898. const uint8_t * signs = x[i].signs;
  2899. for (int ib32 = 0; ib32 < QK_K/32; ib32 += 2) {
  2900. const float db1 = d * (1 + 2*(x[i].scales[ib32/2] & 0xf));
  2901. const float db2 = d * (1 + 2*(x[i].scales[ib32/2] >> 4));
  2902. for (int l = 0; l < 4; ++l) {
  2903. const uint8_t * grid1 = (const uint8_t *)(iq3s_grid + (qs[2*l+0] | ((qh[0] << (8-2*l)) & 256)));
  2904. const uint8_t * grid2 = (const uint8_t *)(iq3s_grid + (qs[2*l+1] | ((qh[0] << (7-2*l)) & 256)));
  2905. for (int j = 0; j < 4; ++j) {
  2906. y[j+0] = db1 * grid1[j] * (signs[l] & kmask_iq2xs[j+0] ? -1.f : 1.f);
  2907. y[j+4] = db1 * grid2[j] * (signs[l] & kmask_iq2xs[j+4] ? -1.f : 1.f);
  2908. }
  2909. y += 8;
  2910. }
  2911. qs += 8;
  2912. signs += 4;
  2913. for (int l = 0; l < 4; ++l) {
  2914. const uint8_t * grid1 = (const uint8_t *)(iq3s_grid + (qs[2*l+0] | ((qh[1] << (8-2*l)) & 256)));
  2915. const uint8_t * grid2 = (const uint8_t *)(iq3s_grid + (qs[2*l+1] | ((qh[1] << (7-2*l)) & 256)));
  2916. for (int j = 0; j < 4; ++j) {
  2917. y[j+0] = db2 * grid1[j] * (signs[l] & kmask_iq2xs[j+0] ? -1.f : 1.f);
  2918. y[j+4] = db2 * grid2[j] * (signs[l] & kmask_iq2xs[j+4] ? -1.f : 1.f);
  2919. }
  2920. y += 8;
  2921. }
  2922. qh += 2;
  2923. qs += 8;
  2924. signs += 4;
  2925. }
  2926. }
  2927. }
  2928. // ====================== 1.5625 bpw (de)-quantization
  2929. void dequantize_row_iq1_s(const block_iq1_s * restrict x, float * restrict y, int k) {
  2930. assert(k % QK_K == 0);
  2931. const int nb = k / QK_K;
  2932. float db[4];
  2933. uint16_t idx[4];
  2934. //const int8_t * grid[4];
  2935. for (int i = 0; i < nb; i++) {
  2936. const float d = GGML_FP16_TO_FP32(x[i].d);
  2937. const uint8_t * sc = x[i].scales;
  2938. const uint8_t * qs = x[i].qs;
  2939. for (int i8 = 0; i8 < QK_K/8; i8 += 4) {
  2940. idx[0] = qs[0] | ((sc[0] & 0x08) << 5);
  2941. idx[1] = qs[1] | ((sc[0] & 0x80) << 1);
  2942. idx[2] = qs[2] | ((sc[1] & 0x08) << 5);
  2943. idx[3] = qs[3] | ((sc[1] & 0x80) << 1);
  2944. //grid[0] = (const int8_t *)(iq1s_grid + (qs[0] | ((sc[0] & 0x08) << 5)));
  2945. //grid[1] = (const int8_t *)(iq1s_grid + (qs[1] | ((sc[0] & 0x80) << 1)));
  2946. //grid[2] = (const int8_t *)(iq1s_grid + (qs[2] | ((sc[1] & 0x08) << 5)));
  2947. //grid[3] = (const int8_t *)(iq1s_grid + (qs[3] | ((sc[1] & 0x80) << 1)));
  2948. db[0] = d * (2*(sc[0] & 7) + 1);
  2949. db[1] = d * (2*((sc[0] >> 4) & 7) + 1);
  2950. db[2] = d * (2*(sc[1] & 7) + 1);
  2951. db[3] = d * (2*((sc[1] >> 4) & 7) + 1);
  2952. for (int l = 0; l < 4; ++l) {
  2953. const int8_t * grid = (const int8_t *)(iq1s_grid + idx[l]);
  2954. for (int j = 0; j < 8; ++j) {
  2955. //y[j] = db[l] * grid[l][j];
  2956. y[j] = db[l] * grid[j];
  2957. }
  2958. y += 8;
  2959. }
  2960. qs += 4;
  2961. sc += 2;
  2962. }
  2963. }
  2964. }
  2965. static const int8_t kvalues_iq4nl[16] = {-127, -104, -83, -65, -49, -35, -22, -10, 1, 13, 25, 38, 53, 69, 89, 113};
  2966. void dequantize_row_iq4_nl(const block_iq4_nl * restrict x, float * restrict y, int k) {
  2967. assert(k % QK4_NL == 0);
  2968. const int nb = k / QK4_NL;
  2969. for (int i = 0; i < nb; i++) {
  2970. const uint8_t * qs = x[i].qs;
  2971. const float d = GGML_FP16_TO_FP32(x[i].d);
  2972. for (int j = 0; j < QK4_NL/2; ++j) {
  2973. y[j+ 0] = d * kvalues_iq4nl[qs[j] & 0xf];
  2974. y[j+QK4_NL/2] = d * kvalues_iq4nl[qs[j] >> 4];
  2975. }
  2976. y += QK4_NL;
  2977. qs += QK4_NL/2;
  2978. }
  2979. }
  2980. void dequantize_row_iq4_xs(const block_iq4_xs * restrict x, float * restrict y, int k) {
  2981. assert(k % QK_K == 0);
  2982. #if QK_K == 64
  2983. dequantize_row_iq4_nl((const block_iq4_nl *)x, y, k);
  2984. #else
  2985. const int nb = k / QK_K;
  2986. for (int i = 0; i < nb; i++) {
  2987. const uint8_t * qs = x[i].qs;
  2988. const float d = GGML_FP16_TO_FP32(x[i].d);
  2989. for (int ib = 0; ib < QK_K/32; ++ib) {
  2990. const int ls = ((x[i].scales_l[ib/2] >> 4*(ib%2)) & 0xf) | (((x[i].scales_h >> 2*ib) & 3) << 4);
  2991. const float dl = d * (ls - 32);
  2992. for (int j = 0; j < 16; ++j) {
  2993. y[j+ 0] = dl * kvalues_iq4nl[qs[j] & 0xf];
  2994. y[j+16] = dl * kvalues_iq4nl[qs[j] >> 4];
  2995. }
  2996. y += 32;
  2997. qs += 16;
  2998. }
  2999. }
  3000. #endif
  3001. }
  3002. //===================================== Q8_K ==============================================
  3003. void quantize_row_q8_K_reference(const float * restrict x, block_q8_K * restrict y, int k) {
  3004. assert(k % QK_K == 0);
  3005. const int nb = k / QK_K;
  3006. for (int i = 0; i < nb; i++) {
  3007. float max = 0;
  3008. float amax = 0;
  3009. for (int j = 0; j < QK_K; ++j) {
  3010. float ax = fabsf(x[j]);
  3011. if (ax > amax) {
  3012. amax = ax; max = x[j];
  3013. }
  3014. }
  3015. if (!amax) {
  3016. y[i].d = 0;
  3017. memset(y[i].qs, 0, QK_K);
  3018. x += QK_K;
  3019. continue;
  3020. }
  3021. //const float iscale = -128.f/max;
  3022. // We need this change for IQ2_XXS, else the AVX implementation becomes very awkward
  3023. const float iscale = -127.f/max;
  3024. for (int j = 0; j < QK_K; ++j) {
  3025. int v = nearest_int(iscale*x[j]);
  3026. y[i].qs[j] = MIN(127, v);
  3027. }
  3028. for (int j = 0; j < QK_K/16; ++j) {
  3029. int sum = 0;
  3030. for (int ii = 0; ii < 16; ++ii) {
  3031. sum += y[i].qs[j*16 + ii];
  3032. }
  3033. y[i].bsums[j] = sum;
  3034. }
  3035. y[i].d = 1/iscale;
  3036. x += QK_K;
  3037. }
  3038. }
  3039. void dequantize_row_q8_K(const block_q8_K * restrict x, float * restrict y, int k) {
  3040. assert(k % QK_K == 0);
  3041. const int nb = k / QK_K;
  3042. for (int i = 0; i < nb; i++) {
  3043. for (int j = 0; j < QK_K; ++j) {
  3044. *y++ = x[i].d * x[i].qs[j];
  3045. }
  3046. }
  3047. }
  3048. void quantize_row_q8_K(const float * restrict x, void * restrict y, int k) {
  3049. quantize_row_q8_K_reference(x, y, k);
  3050. }
  3051. //===================================== Dot ptoducts =================================
  3052. //
  3053. // Helper functions
  3054. //
  3055. #if __AVX__ || __AVX2__ || __AVX512F__
  3056. // shuffles to pick the required scales in dot products
  3057. static inline __m256i get_scale_shuffle_q3k(int i) {
  3058. static const uint8_t k_shuffle[128] = {
  3059. 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3,
  3060. 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7,
  3061. 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 10,11,10,11,10,11,10,11,10,11,10,11,10,11,10,11,
  3062. 12,13,12,13,12,13,12,13,12,13,12,13,12,13,12,13, 14,15,14,15,14,15,14,15,14,15,14,15,14,15,14,15,
  3063. };
  3064. return _mm256_loadu_si256((const __m256i*)k_shuffle + i);
  3065. }
  3066. static inline __m256i get_scale_shuffle_k4(int i) {
  3067. static const uint8_t k_shuffle[256] = {
  3068. 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1,
  3069. 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3,
  3070. 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5,
  3071. 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7,
  3072. 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9,
  3073. 10,11,10,11,10,11,10,11,10,11,10,11,10,11,10,11,10,11,10,11,10,11,10,11,10,11,10,11,10,11,10,11,
  3074. 12,13,12,13,12,13,12,13,12,13,12,13,12,13,12,13,12,13,12,13,12,13,12,13,12,13,12,13,12,13,12,13,
  3075. 14,15,14,15,14,15,14,15,14,15,14,15,14,15,14,15,14,15,14,15,14,15,14,15,14,15,14,15,14,15,14,15
  3076. };
  3077. return _mm256_loadu_si256((const __m256i*)k_shuffle + i);
  3078. }
  3079. static inline __m128i get_scale_shuffle(int i) {
  3080. static const uint8_t k_shuffle[128] = {
  3081. 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1,
  3082. 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3,
  3083. 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5,
  3084. 6, 6, 6, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 7, 7,
  3085. 8, 8, 8, 8, 8, 8, 8, 8, 9, 9, 9, 9, 9, 9, 9, 9,
  3086. 10,10,10,10,10,10,10,10, 11,11,11,11,11,11,11,11,
  3087. 12,12,12,12,12,12,12,12, 13,13,13,13,13,13,13,13,
  3088. 14,14,14,14,14,14,14,14, 15,15,15,15,15,15,15,15
  3089. };
  3090. return _mm_loadu_si128((const __m128i*)k_shuffle + i);
  3091. }
  3092. #endif
  3093. void ggml_vec_dot_q4_0_q8_0(int n, float * restrict s, size_t bs, const void * restrict vx, size_t bx, const void * restrict vy, size_t by, int nrc) {
  3094. const int qk = QK8_0;
  3095. const int nb = n / qk;
  3096. assert(n % qk == 0);
  3097. #if defined(__ARM_FEATURE_MATMUL_INT8)
  3098. assert((nrc == 2) || (nrc == 1));
  3099. #else
  3100. assert(nrc == 1);
  3101. #endif
  3102. UNUSED(nrc);
  3103. UNUSED(bx);
  3104. UNUSED(by);
  3105. UNUSED(bs);
  3106. const block_q4_0 * restrict x = vx;
  3107. const block_q8_0 * restrict y = vy;
  3108. #if defined(__ARM_FEATURE_MATMUL_INT8)
  3109. if (nrc == 2) {
  3110. const block_q4_0 * restrict vx0 = vx;
  3111. const block_q4_0 * restrict vx1 = vx + bx;
  3112. const block_q8_0 * restrict vy0 = vy;
  3113. const block_q8_0 * restrict vy1 = vy + by;
  3114. float32x4_t sumv0 = vdupq_n_f32(0.0f);
  3115. for (int i = 0; i < nb; i++) {
  3116. const block_q4_0 * restrict b_x0 = &vx0[i];
  3117. const block_q4_0 * restrict b_x1 = &vx1[i];
  3118. const block_q8_0 * restrict b_y0 = &vy0[i];
  3119. const block_q8_0 * restrict b_y1 = &vy1[i];
  3120. const uint8x16_t m4b = vdupq_n_u8(0x0F);
  3121. const int8x16_t s8b = vdupq_n_s8(0x8);
  3122. const uint8x16_t v0_0 = vld1q_u8(b_x0->qs);
  3123. const uint8x16_t v0_1 = vld1q_u8(b_x1->qs);
  3124. // 4-bit -> 8-bit
  3125. const int8x16_t v0_0l = vreinterpretq_s8_u8(vandq_u8 (v0_0, m4b));
  3126. const int8x16_t v0_0h = vreinterpretq_s8_u8(vshrq_n_u8(v0_0, 4));
  3127. const int8x16_t v0_1l = vreinterpretq_s8_u8(vandq_u8 (v0_1, m4b));
  3128. const int8x16_t v0_1h = vreinterpretq_s8_u8(vshrq_n_u8(v0_1, 4));
  3129. // sub 8
  3130. const int8x16_t x0_l = vsubq_s8(v0_0l, s8b);
  3131. const int8x16_t x0_h = vsubq_s8(v0_0h, s8b);
  3132. const int8x16_t x1_l = vsubq_s8(v0_1l, s8b);
  3133. const int8x16_t x1_h = vsubq_s8(v0_1h, s8b);
  3134. // load y
  3135. const int8x16_t y0_l = vld1q_s8(b_y0->qs);
  3136. const int8x16_t y0_h = vld1q_s8(b_y0->qs + 16);
  3137. const int8x16_t y1_l = vld1q_s8(b_y1->qs);
  3138. const int8x16_t y1_h = vld1q_s8(b_y1->qs + 16);
  3139. float32x4_t scale = {GGML_FP16_TO_FP32(b_x0->d)*GGML_FP16_TO_FP32(b_y0->d),
  3140. GGML_FP16_TO_FP32(b_x0->d)*GGML_FP16_TO_FP32(b_y1->d),
  3141. GGML_FP16_TO_FP32(b_x1->d)*GGML_FP16_TO_FP32(b_y0->d),
  3142. GGML_FP16_TO_FP32(b_x1->d)*GGML_FP16_TO_FP32(b_y1->d)};
  3143. int8x16_t l0 = vreinterpretq_s8_s64(vzip1q_s64(vreinterpretq_s64_s8(x0_l), vreinterpretq_s64_s8(x1_l)));
  3144. int8x16_t l1 = vreinterpretq_s8_s64(vzip2q_s64(vreinterpretq_s64_s8(x0_l), vreinterpretq_s64_s8(x1_l)));
  3145. int8x16_t l2 = vreinterpretq_s8_s64(vzip1q_s64(vreinterpretq_s64_s8(x0_h), vreinterpretq_s64_s8(x1_h)));
  3146. int8x16_t l3 = vreinterpretq_s8_s64(vzip2q_s64(vreinterpretq_s64_s8(x0_h), vreinterpretq_s64_s8(x1_h)));
  3147. int8x16_t r0 = vreinterpretq_s8_s64(vzip1q_s64(vreinterpretq_s64_s8(y0_l), vreinterpretq_s64_s8(y1_l)));
  3148. int8x16_t r1 = vreinterpretq_s8_s64(vzip2q_s64(vreinterpretq_s64_s8(y0_l), vreinterpretq_s64_s8(y1_l)));
  3149. int8x16_t r2 = vreinterpretq_s8_s64(vzip1q_s64(vreinterpretq_s64_s8(y0_h), vreinterpretq_s64_s8(y1_h)));
  3150. int8x16_t r3 = vreinterpretq_s8_s64(vzip2q_s64(vreinterpretq_s64_s8(y0_h), vreinterpretq_s64_s8(y1_h)));
  3151. sumv0 = vmlaq_f32(sumv0,(vcvtq_f32_s32(vmmlaq_s32((vmmlaq_s32((vmmlaq_s32((vmmlaq_s32(vdupq_n_s32(0), l0, r0)),
  3152. l1, r1)), l2, r2)), l3, r3))), scale);
  3153. }
  3154. float32x4_t sumv1 = vextq_f32(sumv0, sumv0, 2);
  3155. float32x4_t sumv2 = vzip1q_f32(sumv0, sumv1);
  3156. vst1_f32(s, vget_low_f32(sumv2));
  3157. vst1_f32(s + bs, vget_high_f32(sumv2));
  3158. return;
  3159. }
  3160. #endif
  3161. #if defined(__ARM_NEON)
  3162. float32x4_t sumv0 = vdupq_n_f32(0.0f);
  3163. float32x4_t sumv1 = vdupq_n_f32(0.0f);
  3164. assert(nb % 2 == 0); // TODO: handle odd nb
  3165. for (int i = 0; i < nb; i += 2) {
  3166. const block_q4_0 * restrict x0 = &x[i + 0];
  3167. const block_q4_0 * restrict x1 = &x[i + 1];
  3168. const block_q8_0 * restrict y0 = &y[i + 0];
  3169. const block_q8_0 * restrict y1 = &y[i + 1];
  3170. const uint8x16_t m4b = vdupq_n_u8(0x0F);
  3171. const int8x16_t s8b = vdupq_n_s8(0x8);
  3172. const uint8x16_t v0_0 = vld1q_u8(x0->qs);
  3173. const uint8x16_t v0_1 = vld1q_u8(x1->qs);
  3174. // 4-bit -> 8-bit
  3175. const int8x16_t v0_0l = vreinterpretq_s8_u8(vandq_u8 (v0_0, m4b));
  3176. const int8x16_t v0_0h = vreinterpretq_s8_u8(vshrq_n_u8(v0_0, 4));
  3177. const int8x16_t v0_1l = vreinterpretq_s8_u8(vandq_u8 (v0_1, m4b));
  3178. const int8x16_t v0_1h = vreinterpretq_s8_u8(vshrq_n_u8(v0_1, 4));
  3179. // sub 8
  3180. const int8x16_t v0_0ls = vsubq_s8(v0_0l, s8b);
  3181. const int8x16_t v0_0hs = vsubq_s8(v0_0h, s8b);
  3182. const int8x16_t v0_1ls = vsubq_s8(v0_1l, s8b);
  3183. const int8x16_t v0_1hs = vsubq_s8(v0_1h, s8b);
  3184. // load y
  3185. const int8x16_t v1_0l = vld1q_s8(y0->qs);
  3186. const int8x16_t v1_0h = vld1q_s8(y0->qs + 16);
  3187. const int8x16_t v1_1l = vld1q_s8(y1->qs);
  3188. const int8x16_t v1_1h = vld1q_s8(y1->qs + 16);
  3189. // dot product into int32x4_t
  3190. const int32x4_t p_0 = ggml_vdotq_s32(ggml_vdotq_s32(vdupq_n_s32(0), v0_0ls, v1_0l), v0_0hs, v1_0h);
  3191. const int32x4_t p_1 = ggml_vdotq_s32(ggml_vdotq_s32(vdupq_n_s32(0), v0_1ls, v1_1l), v0_1hs, v1_1h);
  3192. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(p_0), GGML_FP16_TO_FP32(x0->d)*GGML_FP16_TO_FP32(y0->d));
  3193. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(p_1), GGML_FP16_TO_FP32(x1->d)*GGML_FP16_TO_FP32(y1->d));
  3194. }
  3195. *s = vaddvq_f32(sumv0) + vaddvq_f32(sumv1);
  3196. #elif defined(__AVX2__)
  3197. // Initialize accumulator with zeros
  3198. __m256 acc = _mm256_setzero_ps();
  3199. // Main loop
  3200. for (int i = 0; i < nb; ++i) {
  3201. /* Compute combined scale for the block */
  3202. const __m256 d = _mm256_set1_ps( GGML_FP16_TO_FP32(x[i].d) * GGML_FP16_TO_FP32(y[i].d) );
  3203. __m256i qx = bytes_from_nibbles_32(x[i].qs);
  3204. // Now we have a vector with bytes in [ 0 .. 15 ] interval. Offset them into [ -8 .. +7 ] interval.
  3205. const __m256i off = _mm256_set1_epi8( 8 );
  3206. qx = _mm256_sub_epi8( qx, off );
  3207. __m256i qy = _mm256_loadu_si256((const __m256i *)y[i].qs);
  3208. const __m256 q = mul_sum_i8_pairs_float(qx, qy);
  3209. /* Multiply q with scale and accumulate */
  3210. acc = _mm256_fmadd_ps( d, q, acc );
  3211. }
  3212. *s = hsum_float_8(acc);
  3213. #elif defined(__AVX__)
  3214. // Initialize accumulator with zeros
  3215. __m256 acc = _mm256_setzero_ps();
  3216. // Main loop
  3217. for (int i = 0; i < nb; ++i) {
  3218. // Compute combined scale for the block
  3219. const __m256 d = _mm256_set1_ps( GGML_FP16_TO_FP32(x[i].d) * GGML_FP16_TO_FP32(y[i].d) );
  3220. const __m128i lowMask = _mm_set1_epi8(0xF);
  3221. const __m128i off = _mm_set1_epi8(8);
  3222. const __m128i tmp = _mm_loadu_si128((const __m128i *)x[i].qs);
  3223. __m128i bx_0 = _mm_and_si128(lowMask, tmp);
  3224. __m128i by_0 = _mm_loadu_si128((const __m128i *)y[i].qs);
  3225. bx_0 = _mm_sub_epi8(bx_0, off);
  3226. const __m128i i32_0 = mul_sum_i8_pairs(bx_0, by_0);
  3227. bx_0 = _mm_and_si128(lowMask, _mm_srli_epi64(tmp, 4));
  3228. by_0 = _mm_loadu_si128((const __m128i *)(y[i].qs + 16));
  3229. bx_0 = _mm_sub_epi8(bx_0, off);
  3230. const __m128i i32_1 = mul_sum_i8_pairs(bx_0, by_0);
  3231. // Convert int32_t to float
  3232. __m256 p = _mm256_cvtepi32_ps(MM256_SET_M128I(i32_0, i32_1));
  3233. // Apply the scale, and accumulate
  3234. acc = _mm256_add_ps(_mm256_mul_ps( d, p ), acc);
  3235. }
  3236. *s = hsum_float_8(acc);
  3237. #elif defined(__SSSE3__)
  3238. // set constants
  3239. const __m128i lowMask = _mm_set1_epi8(0xF);
  3240. const __m128i off = _mm_set1_epi8(8);
  3241. // Initialize accumulator with zeros
  3242. __m128 acc_0 = _mm_setzero_ps();
  3243. __m128 acc_1 = _mm_setzero_ps();
  3244. __m128 acc_2 = _mm_setzero_ps();
  3245. __m128 acc_3 = _mm_setzero_ps();
  3246. // First round without accumulation
  3247. {
  3248. _mm_prefetch(&x[0] + sizeof(block_q4_0), _MM_HINT_T0);
  3249. _mm_prefetch(&y[0] + sizeof(block_q8_0), _MM_HINT_T0);
  3250. // Compute combined scale for the block 0 and 1
  3251. const __m128 d_0_1 = _mm_set1_ps( GGML_FP16_TO_FP32(x[0].d) * GGML_FP16_TO_FP32(y[0].d) );
  3252. const __m128i tmp_0_1 = _mm_loadu_si128((const __m128i *)x[0].qs);
  3253. __m128i bx_0 = _mm_and_si128(lowMask, tmp_0_1);
  3254. __m128i by_0 = _mm_loadu_si128((const __m128i *)y[0].qs);
  3255. bx_0 = _mm_sub_epi8(bx_0, off);
  3256. const __m128i i32_0 = mul_sum_i8_pairs(bx_0, by_0);
  3257. __m128i bx_1 = _mm_and_si128(lowMask, _mm_srli_epi64(tmp_0_1, 4));
  3258. __m128i by_1 = _mm_loadu_si128((const __m128i *)(y[0].qs + 16));
  3259. bx_1 = _mm_sub_epi8(bx_1, off);
  3260. const __m128i i32_1 = mul_sum_i8_pairs(bx_1, by_1);
  3261. _mm_prefetch(&x[1] + sizeof(block_q4_0), _MM_HINT_T0);
  3262. _mm_prefetch(&y[1] + sizeof(block_q8_0), _MM_HINT_T0);
  3263. // Compute combined scale for the block 2 and 3
  3264. const __m128 d_2_3 = _mm_set1_ps( GGML_FP16_TO_FP32(x[1].d) * GGML_FP16_TO_FP32(y[1].d) );
  3265. const __m128i tmp_2_3 = _mm_loadu_si128((const __m128i *)x[1].qs);
  3266. __m128i bx_2 = _mm_and_si128(lowMask, tmp_2_3);
  3267. __m128i by_2 = _mm_loadu_si128((const __m128i *)y[1].qs);
  3268. bx_2 = _mm_sub_epi8(bx_2, off);
  3269. const __m128i i32_2 = mul_sum_i8_pairs(bx_2, by_2);
  3270. __m128i bx_3 = _mm_and_si128(lowMask, _mm_srli_epi64(tmp_2_3, 4));
  3271. __m128i by_3 = _mm_loadu_si128((const __m128i *)(y[1].qs + 16));
  3272. bx_3 = _mm_sub_epi8(bx_3, off);
  3273. const __m128i i32_3 = mul_sum_i8_pairs(bx_3, by_3);
  3274. // Convert int32_t to float
  3275. __m128 p0 = _mm_cvtepi32_ps(i32_0);
  3276. __m128 p1 = _mm_cvtepi32_ps(i32_1);
  3277. __m128 p2 = _mm_cvtepi32_ps(i32_2);
  3278. __m128 p3 = _mm_cvtepi32_ps(i32_3);
  3279. // Apply the scale
  3280. acc_0 = _mm_mul_ps( d_0_1, p0 );
  3281. acc_1 = _mm_mul_ps( d_0_1, p1 );
  3282. acc_2 = _mm_mul_ps( d_2_3, p2 );
  3283. acc_3 = _mm_mul_ps( d_2_3, p3 );
  3284. }
  3285. assert(nb % 2 == 0); // TODO: handle odd nb
  3286. // Main loop
  3287. for (int i = 2; i < nb; i+=2) {
  3288. _mm_prefetch(&x[i] + sizeof(block_q4_0), _MM_HINT_T0);
  3289. _mm_prefetch(&y[i] + sizeof(block_q8_0), _MM_HINT_T0);
  3290. // Compute combined scale for the block 0 and 1
  3291. const __m128 d_0_1 = _mm_set1_ps( GGML_FP16_TO_FP32(x[i].d) * GGML_FP16_TO_FP32(y[i].d) );
  3292. const __m128i tmp_0_1 = _mm_loadu_si128((const __m128i *)x[i].qs);
  3293. __m128i bx_0 = _mm_and_si128(lowMask, tmp_0_1);
  3294. __m128i by_0 = _mm_loadu_si128((const __m128i *)y[i].qs);
  3295. bx_0 = _mm_sub_epi8(bx_0, off);
  3296. const __m128i i32_0 = mul_sum_i8_pairs(bx_0, by_0);
  3297. __m128i bx_1 = _mm_and_si128(lowMask, _mm_srli_epi64(tmp_0_1, 4));
  3298. __m128i by_1 = _mm_loadu_si128((const __m128i *)(y[i].qs + 16));
  3299. bx_1 = _mm_sub_epi8(bx_1, off);
  3300. const __m128i i32_1 = mul_sum_i8_pairs(bx_1, by_1);
  3301. _mm_prefetch(&x[i] + 2 * sizeof(block_q4_0), _MM_HINT_T0);
  3302. _mm_prefetch(&y[i] + 2 * sizeof(block_q8_0), _MM_HINT_T0);
  3303. // Compute combined scale for the block 2 and 3
  3304. const __m128 d_2_3 = _mm_set1_ps( GGML_FP16_TO_FP32(x[i + 1].d) * GGML_FP16_TO_FP32(y[i + 1].d) );
  3305. const __m128i tmp_2_3 = _mm_loadu_si128((const __m128i *)x[i + 1].qs);
  3306. __m128i bx_2 = _mm_and_si128(lowMask, tmp_2_3);
  3307. __m128i by_2 = _mm_loadu_si128((const __m128i *)y[i + 1].qs);
  3308. bx_2 = _mm_sub_epi8(bx_2, off);
  3309. const __m128i i32_2 = mul_sum_i8_pairs(bx_2, by_2);
  3310. __m128i bx_3 = _mm_and_si128(lowMask, _mm_srli_epi64(tmp_2_3, 4));
  3311. __m128i by_3 = _mm_loadu_si128((const __m128i *)(y[i + 1].qs + 16));
  3312. bx_3 = _mm_sub_epi8(bx_3, off);
  3313. const __m128i i32_3 = mul_sum_i8_pairs(bx_3, by_3);
  3314. // Convert int32_t to float
  3315. __m128 p0 = _mm_cvtepi32_ps(i32_0);
  3316. __m128 p1 = _mm_cvtepi32_ps(i32_1);
  3317. __m128 p2 = _mm_cvtepi32_ps(i32_2);
  3318. __m128 p3 = _mm_cvtepi32_ps(i32_3);
  3319. // Apply the scale
  3320. __m128 p0_d = _mm_mul_ps( d_0_1, p0 );
  3321. __m128 p1_d = _mm_mul_ps( d_0_1, p1 );
  3322. __m128 p2_d = _mm_mul_ps( d_2_3, p2 );
  3323. __m128 p3_d = _mm_mul_ps( d_2_3, p3 );
  3324. // Acummulate
  3325. acc_0 = _mm_add_ps(p0_d, acc_0);
  3326. acc_1 = _mm_add_ps(p1_d, acc_1);
  3327. acc_2 = _mm_add_ps(p2_d, acc_2);
  3328. acc_3 = _mm_add_ps(p3_d, acc_3);
  3329. }
  3330. *s = hsum_float_4x4(acc_0, acc_1, acc_2, acc_3);
  3331. #elif defined(__riscv_v_intrinsic)
  3332. float sumf = 0.0;
  3333. size_t vl = __riscv_vsetvl_e8m1(qk/2);
  3334. for (int i = 0; i < nb; i++) {
  3335. // load elements
  3336. vuint8mf2_t tx = __riscv_vle8_v_u8mf2(x[i].qs, vl);
  3337. vint8mf2_t y0 = __riscv_vle8_v_i8mf2(y[i].qs, vl);
  3338. vint8mf2_t y1 = __riscv_vle8_v_i8mf2(y[i].qs+16, vl);
  3339. // mask and store lower part of x, and then upper part
  3340. vuint8mf2_t x_a = __riscv_vand_vx_u8mf2(tx, 0x0F, vl);
  3341. vuint8mf2_t x_l = __riscv_vsrl_vx_u8mf2(tx, 0x04, vl);
  3342. vint8mf2_t x_ai = __riscv_vreinterpret_v_u8mf2_i8mf2(x_a);
  3343. vint8mf2_t x_li = __riscv_vreinterpret_v_u8mf2_i8mf2(x_l);
  3344. // subtract offset
  3345. vint8mf2_t v0 = __riscv_vsub_vx_i8mf2(x_ai, 8, vl);
  3346. vint8mf2_t v1 = __riscv_vsub_vx_i8mf2(x_li, 8, vl);
  3347. vint16m1_t vec_mul1 = __riscv_vwmul_vv_i16m1(v0, y0, vl);
  3348. vint16m1_t vec_mul2 = __riscv_vwmul_vv_i16m1(v1, y1, vl);
  3349. vint32m1_t vec_zero = __riscv_vmv_v_x_i32m1(0, vl);
  3350. vint32m1_t vs1 = __riscv_vwredsum_vs_i16m1_i32m1(vec_mul1, vec_zero, vl);
  3351. vint32m1_t vs2 = __riscv_vwredsum_vs_i16m1_i32m1(vec_mul2, vs1, vl);
  3352. int sumi = __riscv_vmv_x_s_i32m1_i32(vs2);
  3353. sumf += sumi*GGML_FP16_TO_FP32(x[i].d)*GGML_FP16_TO_FP32(y[i].d);
  3354. }
  3355. *s = sumf;
  3356. #else
  3357. // scalar
  3358. float sumf = 0.0;
  3359. for (int i = 0; i < nb; i++) {
  3360. int sumi = 0;
  3361. for (int j = 0; j < qk/2; ++j) {
  3362. const int v0 = (x[i].qs[j] & 0x0F) - 8;
  3363. const int v1 = (x[i].qs[j] >> 4) - 8;
  3364. sumi += (v0 * y[i].qs[j]) + (v1 * y[i].qs[j + qk/2]);
  3365. }
  3366. sumf += sumi*GGML_FP16_TO_FP32(x[i].d)*GGML_FP16_TO_FP32(y[i].d);
  3367. }
  3368. *s = sumf;
  3369. #endif
  3370. }
  3371. void ggml_vec_dot_q4_1_q8_1(int n, float * restrict s, size_t bs, const void * restrict vx, size_t bx, const void * restrict vy, size_t by, int nrc) {
  3372. const int qk = QK8_1;
  3373. const int nb = n / qk;
  3374. assert(n % qk == 0);
  3375. #if defined(__ARM_FEATURE_MATMUL_INT8)
  3376. assert((nrc == 2) || (nrc == 1));
  3377. #else
  3378. assert(nrc == 1);
  3379. #endif
  3380. UNUSED(nrc);
  3381. UNUSED(bx);
  3382. UNUSED(by);
  3383. UNUSED(bs);
  3384. const block_q4_1 * restrict x = vx;
  3385. const block_q8_1 * restrict y = vy;
  3386. #if defined(__ARM_FEATURE_MATMUL_INT8)
  3387. if (nrc == 2) {
  3388. const block_q4_1 * restrict vx0 = vx;
  3389. const block_q4_1 * restrict vx1 = vx + bx;
  3390. const block_q8_1 * restrict vy0 = vy;
  3391. const block_q8_1 * restrict vy1 = vy + by;
  3392. float32x4_t sumv0 = vdupq_n_f32(0.0f);
  3393. float32x4_t summs0 = vdupq_n_f32(0.0f);
  3394. for (int i = 0; i < nb; i++) {
  3395. const block_q4_1 * restrict b_x0 = &vx0[i];
  3396. const block_q4_1 * restrict b_x1 = &vx1[i];
  3397. const block_q8_1 * restrict b_y0 = &vy0[i];
  3398. const block_q8_1 * restrict b_y1 = &vy1[i];
  3399. float32x4_t summs_t = {GGML_FP16_TO_FP32(b_x0->m) * b_y0->s,
  3400. GGML_FP16_TO_FP32(b_x1->m) * b_y0->s,
  3401. GGML_FP16_TO_FP32(b_x0->m) * b_y1->s,
  3402. GGML_FP16_TO_FP32(b_x1->m) * b_y1->s};
  3403. summs0 += summs_t;
  3404. const uint8x16_t m4b = vdupq_n_u8(0x0F);
  3405. const uint8x16_t v0_0 = vld1q_u8(b_x0->qs);
  3406. const uint8x16_t v0_1 = vld1q_u8(b_x1->qs);
  3407. // 4-bit -> 8-bit
  3408. const int8x16_t x0_l = vreinterpretq_s8_u8(vandq_u8 (v0_0, m4b));
  3409. const int8x16_t x0_h = vreinterpretq_s8_u8(vshrq_n_u8(v0_0, 4));
  3410. const int8x16_t x1_l = vreinterpretq_s8_u8(vandq_u8 (v0_1, m4b));
  3411. const int8x16_t x1_h = vreinterpretq_s8_u8(vshrq_n_u8(v0_1, 4));
  3412. // load y
  3413. const int8x16_t y0_l = vld1q_s8(b_y0->qs);
  3414. const int8x16_t y0_h = vld1q_s8(b_y0->qs + 16);
  3415. const int8x16_t y1_l = vld1q_s8(b_y1->qs);
  3416. const int8x16_t y1_h = vld1q_s8(b_y1->qs + 16);
  3417. // mmla into int32x4_t
  3418. float32x4_t scale = {GGML_FP16_TO_FP32(b_x0->d)*GGML_FP16_TO_FP32(b_y0->d),
  3419. GGML_FP16_TO_FP32(b_x0->d)*GGML_FP16_TO_FP32(b_y1->d),
  3420. GGML_FP16_TO_FP32(b_x1->d)*GGML_FP16_TO_FP32(b_y0->d),
  3421. GGML_FP16_TO_FP32(b_x1->d)*GGML_FP16_TO_FP32(b_y1->d)};
  3422. int8x16_t l0 = vreinterpretq_s8_s64(vzip1q_s64(vreinterpretq_s64_s8(x0_l), vreinterpretq_s64_s8(x1_l)));
  3423. int8x16_t l1 = vreinterpretq_s8_s64(vzip2q_s64(vreinterpretq_s64_s8(x0_l), vreinterpretq_s64_s8(x1_l)));
  3424. int8x16_t l2 = vreinterpretq_s8_s64(vzip1q_s64(vreinterpretq_s64_s8(x0_h), vreinterpretq_s64_s8(x1_h)));
  3425. int8x16_t l3 = vreinterpretq_s8_s64(vzip2q_s64(vreinterpretq_s64_s8(x0_h), vreinterpretq_s64_s8(x1_h)));
  3426. int8x16_t r0 = vreinterpretq_s8_s64(vzip1q_s64(vreinterpretq_s64_s8(y0_l), vreinterpretq_s64_s8(y1_l)));
  3427. int8x16_t r1 = vreinterpretq_s8_s64(vzip2q_s64(vreinterpretq_s64_s8(y0_l), vreinterpretq_s64_s8(y1_l)));
  3428. int8x16_t r2 = vreinterpretq_s8_s64(vzip1q_s64(vreinterpretq_s64_s8(y0_h), vreinterpretq_s64_s8(y1_h)));
  3429. int8x16_t r3 = vreinterpretq_s8_s64(vzip2q_s64(vreinterpretq_s64_s8(y0_h), vreinterpretq_s64_s8(y1_h)));
  3430. sumv0 = vmlaq_f32(sumv0,(vcvtq_f32_s32(vmmlaq_s32((vmmlaq_s32((vmmlaq_s32((vmmlaq_s32(vdupq_n_s32(0), l0, r0)),
  3431. l1, r1)), l2, r2)), l3, r3))), scale);
  3432. }
  3433. float32x4_t sumv1 = vextq_f32(sumv0, sumv0, 2);
  3434. float32x4_t sumv2 = vzip1q_f32(sumv0, sumv1);
  3435. sumv2 = sumv2 + summs0;
  3436. vst1_f32(s, vget_low_f32(sumv2));
  3437. vst1_f32(s + bs, vget_high_f32(sumv2));
  3438. return;
  3439. }
  3440. #endif
  3441. // TODO: add WASM SIMD
  3442. #if defined(__ARM_NEON)
  3443. float32x4_t sumv0 = vdupq_n_f32(0.0f);
  3444. float32x4_t sumv1 = vdupq_n_f32(0.0f);
  3445. float summs = 0;
  3446. assert(nb % 2 == 0); // TODO: handle odd nb
  3447. for (int i = 0; i < nb; i += 2) {
  3448. const block_q4_1 * restrict x0 = &x[i + 0];
  3449. const block_q4_1 * restrict x1 = &x[i + 1];
  3450. const block_q8_1 * restrict y0 = &y[i + 0];
  3451. const block_q8_1 * restrict y1 = &y[i + 1];
  3452. summs += GGML_FP16_TO_FP32(x0->m) * y0->s + GGML_FP16_TO_FP32(x1->m) * y1->s;
  3453. const uint8x16_t m4b = vdupq_n_u8(0x0F);
  3454. const uint8x16_t v0_0 = vld1q_u8(x0->qs);
  3455. const uint8x16_t v0_1 = vld1q_u8(x1->qs);
  3456. // 4-bit -> 8-bit
  3457. const int8x16_t v0_0l = vreinterpretq_s8_u8(vandq_u8 (v0_0, m4b));
  3458. const int8x16_t v0_0h = vreinterpretq_s8_u8(vshrq_n_u8(v0_0, 4));
  3459. const int8x16_t v0_1l = vreinterpretq_s8_u8(vandq_u8 (v0_1, m4b));
  3460. const int8x16_t v0_1h = vreinterpretq_s8_u8(vshrq_n_u8(v0_1, 4));
  3461. // load y
  3462. const int8x16_t v1_0l = vld1q_s8(y0->qs);
  3463. const int8x16_t v1_0h = vld1q_s8(y0->qs + 16);
  3464. const int8x16_t v1_1l = vld1q_s8(y1->qs);
  3465. const int8x16_t v1_1h = vld1q_s8(y1->qs + 16);
  3466. // dot product into int32x4_t
  3467. const int32x4_t p_0 = ggml_vdotq_s32(ggml_vdotq_s32(vdupq_n_s32(0), v0_0l, v1_0l), v0_0h, v1_0h);
  3468. const int32x4_t p_1 = ggml_vdotq_s32(ggml_vdotq_s32(vdupq_n_s32(0), v0_1l, v1_1l), v0_1h, v1_1h);
  3469. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(p_0), GGML_FP16_TO_FP32(x0->d)*y0->d);
  3470. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(p_1), GGML_FP16_TO_FP32(x1->d)*y1->d);
  3471. }
  3472. *s = vaddvq_f32(sumv0) + vaddvq_f32(sumv1) + summs;
  3473. #elif defined(__AVX2__) || defined(__AVX__)
  3474. // Initialize accumulator with zeros
  3475. __m256 acc = _mm256_setzero_ps();
  3476. float summs = 0;
  3477. // Main loop
  3478. for (int i = 0; i < nb; ++i) {
  3479. const float d0 = GGML_FP16_TO_FP32(x[i].d);
  3480. const float d1 = y[i].d;
  3481. summs += GGML_FP16_TO_FP32(x[i].m) * y[i].s;
  3482. const __m256 d0v = _mm256_set1_ps( d0 );
  3483. const __m256 d1v = _mm256_set1_ps( d1 );
  3484. // Compute combined scales
  3485. const __m256 d0d1 = _mm256_mul_ps( d0v, d1v );
  3486. // Load 16 bytes, and unpack 4 bit fields into bytes, making 32 bytes
  3487. const __m256i qx = bytes_from_nibbles_32(x[i].qs);
  3488. const __m256i qy = _mm256_loadu_si256( (const __m256i *)y[i].qs );
  3489. const __m256 xy = mul_sum_us8_pairs_float(qx, qy);
  3490. // Accumulate d0*d1*x*y
  3491. #if defined(__AVX2__)
  3492. acc = _mm256_fmadd_ps( d0d1, xy, acc );
  3493. #else
  3494. acc = _mm256_add_ps( _mm256_mul_ps( d0d1, xy ), acc );
  3495. #endif
  3496. }
  3497. *s = hsum_float_8(acc) + summs;
  3498. #elif defined(__riscv_v_intrinsic)
  3499. float sumf = 0.0;
  3500. size_t vl = __riscv_vsetvl_e8m1(qk/2);
  3501. for (int i = 0; i < nb; i++) {
  3502. // load elements
  3503. vuint8mf2_t tx = __riscv_vle8_v_u8mf2(x[i].qs, vl);
  3504. vint8mf2_t y0 = __riscv_vle8_v_i8mf2(y[i].qs, vl);
  3505. vint8mf2_t y1 = __riscv_vle8_v_i8mf2(y[i].qs+16, vl);
  3506. // mask and store lower part of x, and then upper part
  3507. vuint8mf2_t x_a = __riscv_vand_vx_u8mf2(tx, 0x0F, vl);
  3508. vuint8mf2_t x_l = __riscv_vsrl_vx_u8mf2(tx, 0x04, vl);
  3509. vint8mf2_t v0 = __riscv_vreinterpret_v_u8mf2_i8mf2(x_a);
  3510. vint8mf2_t v1 = __riscv_vreinterpret_v_u8mf2_i8mf2(x_l);
  3511. vint16m1_t vec_mul1 = __riscv_vwmul_vv_i16m1(v0, y0, vl);
  3512. vint16m1_t vec_mul2 = __riscv_vwmul_vv_i16m1(v1, y1, vl);
  3513. vint32m1_t vec_zero = __riscv_vmv_v_x_i32m1(0, vl);
  3514. vint32m1_t vs1 = __riscv_vwredsum_vs_i16m1_i32m1(vec_mul1, vec_zero, vl);
  3515. vint32m1_t vs2 = __riscv_vwredsum_vs_i16m1_i32m1(vec_mul2, vs1, vl);
  3516. int sumi = __riscv_vmv_x_s_i32m1_i32(vs2);
  3517. sumf += (GGML_FP16_TO_FP32(x[i].d)*y[i].d)*sumi + GGML_FP16_TO_FP32(x[i].m)*y[i].s;
  3518. }
  3519. *s = sumf;
  3520. #else
  3521. // scalar
  3522. float sumf = 0.0;
  3523. for (int i = 0; i < nb; i++) {
  3524. int sumi = 0;
  3525. for (int j = 0; j < qk/2; ++j) {
  3526. const int v0 = (x[i].qs[j] & 0x0F);
  3527. const int v1 = (x[i].qs[j] >> 4);
  3528. sumi += (v0 * y[i].qs[j]) + (v1 * y[i].qs[j + qk/2]);
  3529. }
  3530. sumf += (GGML_FP16_TO_FP32(x[i].d)*y[i].d)*sumi + GGML_FP16_TO_FP32(x[i].m)*y[i].s;
  3531. }
  3532. *s = sumf;
  3533. #endif
  3534. }
  3535. void ggml_vec_dot_q5_0_q8_0(int n, float * restrict s, size_t bs, const void * restrict vx, size_t bx, const void * restrict vy, size_t by, int nrc) {
  3536. const int qk = QK8_0;
  3537. const int nb = n / qk;
  3538. assert(n % qk == 0);
  3539. assert(qk == QK5_0);
  3540. assert(nrc == 1);
  3541. UNUSED(nrc);
  3542. UNUSED(bx);
  3543. UNUSED(by);
  3544. UNUSED(bs);
  3545. const block_q5_0 * restrict x = vx;
  3546. const block_q8_0 * restrict y = vy;
  3547. #if defined(__ARM_NEON)
  3548. float32x4_t sumv0 = vdupq_n_f32(0.0f);
  3549. float32x4_t sumv1 = vdupq_n_f32(0.0f);
  3550. uint32_t qh0;
  3551. uint32_t qh1;
  3552. uint64_t tmp0[4];
  3553. uint64_t tmp1[4];
  3554. assert(nb % 2 == 0); // TODO: handle odd nb
  3555. for (int i = 0; i < nb; i += 2) {
  3556. const block_q5_0 * restrict x0 = &x[i];
  3557. const block_q5_0 * restrict x1 = &x[i + 1];
  3558. const block_q8_0 * restrict y0 = &y[i];
  3559. const block_q8_0 * restrict y1 = &y[i + 1];
  3560. const uint8x16_t m4b = vdupq_n_u8(0x0F);
  3561. // extract the 5th bit via lookup table ((!b) << 4)
  3562. memcpy(&qh0, x0->qh, sizeof(qh0));
  3563. memcpy(&qh1, x1->qh, sizeof(qh1));
  3564. tmp0[0] = table_b2b_1[(qh0 >> 0) & 0xFF];
  3565. tmp0[1] = table_b2b_1[(qh0 >> 8) & 0xFF];
  3566. tmp0[2] = table_b2b_1[(qh0 >> 16) & 0xFF];
  3567. tmp0[3] = table_b2b_1[(qh0 >> 24) ];
  3568. tmp1[0] = table_b2b_1[(qh1 >> 0) & 0xFF];
  3569. tmp1[1] = table_b2b_1[(qh1 >> 8) & 0xFF];
  3570. tmp1[2] = table_b2b_1[(qh1 >> 16) & 0xFF];
  3571. tmp1[3] = table_b2b_1[(qh1 >> 24) ];
  3572. const int8x16_t qhl0 = vld1q_s8((const int8_t *)(tmp0 + 0));
  3573. const int8x16_t qhh0 = vld1q_s8((const int8_t *)(tmp0 + 2));
  3574. const int8x16_t qhl1 = vld1q_s8((const int8_t *)(tmp1 + 0));
  3575. const int8x16_t qhh1 = vld1q_s8((const int8_t *)(tmp1 + 2));
  3576. const uint8x16_t v0_0 = vld1q_u8(x0->qs);
  3577. const uint8x16_t v0_1 = vld1q_u8(x1->qs);
  3578. // 4-bit -> 8-bit
  3579. int8x16_t v0_0l = vreinterpretq_s8_u8(vandq_u8 (v0_0, m4b));
  3580. int8x16_t v0_0h = vreinterpretq_s8_u8(vshrq_n_u8(v0_0, 4));
  3581. int8x16_t v0_1l = vreinterpretq_s8_u8(vandq_u8 (v0_1, m4b));
  3582. int8x16_t v0_1h = vreinterpretq_s8_u8(vshrq_n_u8(v0_1, 4));
  3583. // add high bit and sub 16 (equivalent to sub 0x10 when bit is zero)
  3584. const int8x16_t v0_0lf = vsubq_s8(v0_0l, qhl0);
  3585. const int8x16_t v0_0hf = vsubq_s8(v0_0h, qhh0);
  3586. const int8x16_t v0_1lf = vsubq_s8(v0_1l, qhl1);
  3587. const int8x16_t v0_1hf = vsubq_s8(v0_1h, qhh1);
  3588. // load y
  3589. const int8x16_t v1_0l = vld1q_s8(y0->qs);
  3590. const int8x16_t v1_0h = vld1q_s8(y0->qs + 16);
  3591. const int8x16_t v1_1l = vld1q_s8(y1->qs);
  3592. const int8x16_t v1_1h = vld1q_s8(y1->qs + 16);
  3593. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(
  3594. ggml_vdotq_s32(vdupq_n_s32(0), v0_0lf, v1_0l),
  3595. ggml_vdotq_s32(vdupq_n_s32(0), v0_0hf, v1_0h))), GGML_FP16_TO_FP32(x0->d)*GGML_FP16_TO_FP32(y0->d));
  3596. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(
  3597. ggml_vdotq_s32(vdupq_n_s32(0), v0_1lf, v1_1l),
  3598. ggml_vdotq_s32(vdupq_n_s32(0), v0_1hf, v1_1h))), GGML_FP16_TO_FP32(x1->d)*GGML_FP16_TO_FP32(y1->d));
  3599. }
  3600. *s = vaddvq_f32(sumv0) + vaddvq_f32(sumv1);
  3601. #elif defined(__wasm_simd128__)
  3602. v128_t sumv = wasm_f32x4_splat(0.0f);
  3603. uint32_t qh;
  3604. uint64_t tmp[4];
  3605. // TODO: check if unrolling this is better
  3606. for (int i = 0; i < nb; ++i) {
  3607. const block_q5_0 * restrict x0 = &x[i];
  3608. const block_q8_0 * restrict y0 = &y[i];
  3609. const v128_t m4b = wasm_i8x16_splat(0x0F);
  3610. // extract the 5th bit
  3611. memcpy(&qh, x0->qh, sizeof(qh));
  3612. tmp[0] = table_b2b_1[(qh >> 0) & 0xFF];
  3613. tmp[1] = table_b2b_1[(qh >> 8) & 0xFF];
  3614. tmp[2] = table_b2b_1[(qh >> 16) & 0xFF];
  3615. tmp[3] = table_b2b_1[(qh >> 24) ];
  3616. const v128_t qhl = wasm_v128_load(tmp + 0);
  3617. const v128_t qhh = wasm_v128_load(tmp + 2);
  3618. const v128_t v0 = wasm_v128_load(x0->qs);
  3619. // 4-bit -> 8-bit
  3620. const v128_t v0l = wasm_v128_and (v0, m4b);
  3621. const v128_t v0h = wasm_u8x16_shr(v0, 4);
  3622. // add high bit and sub 16 (equivalent to sub 0x10 when bit is zero)
  3623. const v128_t v0lf = wasm_i8x16_sub(v0l, qhl);
  3624. const v128_t v0hf = wasm_i8x16_sub(v0h, qhh);
  3625. // load y
  3626. const v128_t v1l = wasm_v128_load(y0->qs);
  3627. const v128_t v1h = wasm_v128_load(y0->qs + 16);
  3628. // int8x16 -> int16x8
  3629. const v128_t v0lfl = wasm_i16x8_extend_low_i8x16 (v0lf);
  3630. const v128_t v0lfh = wasm_i16x8_extend_high_i8x16(v0lf);
  3631. const v128_t v0hfl = wasm_i16x8_extend_low_i8x16 (v0hf);
  3632. const v128_t v0hfh = wasm_i16x8_extend_high_i8x16(v0hf);
  3633. const v128_t v1ll = wasm_i16x8_extend_low_i8x16 (v1l);
  3634. const v128_t v1lh = wasm_i16x8_extend_high_i8x16(v1l);
  3635. const v128_t v1hl = wasm_i16x8_extend_low_i8x16 (v1h);
  3636. const v128_t v1hh = wasm_i16x8_extend_high_i8x16(v1h);
  3637. // dot product
  3638. sumv = wasm_f32x4_add(sumv, wasm_f32x4_mul(wasm_f32x4_convert_i32x4(
  3639. wasm_i32x4_add(
  3640. wasm_i32x4_add(wasm_i32x4_dot_i16x8(v0lfl, v1ll),
  3641. wasm_i32x4_dot_i16x8(v0lfh, v1lh)),
  3642. wasm_i32x4_add(wasm_i32x4_dot_i16x8(v0hfl, v1hl),
  3643. wasm_i32x4_dot_i16x8(v0hfh, v1hh)))),
  3644. wasm_f32x4_splat(GGML_FP16_TO_FP32(x0->d) * GGML_FP16_TO_FP32(y0->d))));
  3645. }
  3646. *s = wasm_f32x4_extract_lane(sumv, 0) + wasm_f32x4_extract_lane(sumv, 1) +
  3647. wasm_f32x4_extract_lane(sumv, 2) + wasm_f32x4_extract_lane(sumv, 3);
  3648. #elif defined(__AVX2__)
  3649. // Initialize accumulator with zeros
  3650. __m256 acc = _mm256_setzero_ps();
  3651. // Main loop
  3652. for (int i = 0; i < nb; i++) {
  3653. /* Compute combined scale for the block */
  3654. const __m256 d = _mm256_set1_ps(GGML_FP16_TO_FP32(x[i].d) * GGML_FP16_TO_FP32(y[i].d));
  3655. __m256i qx = bytes_from_nibbles_32(x[i].qs);
  3656. __m256i bxhi = bytes_from_bits_32(x[i].qh);
  3657. bxhi = _mm256_andnot_si256(bxhi, _mm256_set1_epi8((char)0xF0));
  3658. qx = _mm256_or_si256(qx, bxhi);
  3659. __m256i qy = _mm256_loadu_si256((const __m256i *)y[i].qs);
  3660. const __m256 q = mul_sum_i8_pairs_float(qx, qy);
  3661. /* Multiply q with scale and accumulate */
  3662. acc = _mm256_fmadd_ps(d, q, acc);
  3663. }
  3664. *s = hsum_float_8(acc);
  3665. #elif defined(__AVX__)
  3666. // Initialize accumulator with zeros
  3667. __m256 acc = _mm256_setzero_ps();
  3668. __m128i mask = _mm_set1_epi8((char)0xF0);
  3669. // Main loop
  3670. for (int i = 0; i < nb; i++) {
  3671. /* Compute combined scale for the block */
  3672. const __m256 d = _mm256_set1_ps(GGML_FP16_TO_FP32(x[i].d) * GGML_FP16_TO_FP32(y[i].d));
  3673. __m256i bx_0 = bytes_from_nibbles_32(x[i].qs);
  3674. const __m256i bxhi = bytes_from_bits_32(x[i].qh);
  3675. __m128i bxhil = _mm256_castsi256_si128(bxhi);
  3676. __m128i bxhih = _mm256_extractf128_si256(bxhi, 1);
  3677. bxhil = _mm_andnot_si128(bxhil, mask);
  3678. bxhih = _mm_andnot_si128(bxhih, mask);
  3679. __m128i bxl = _mm256_castsi256_si128(bx_0);
  3680. __m128i bxh = _mm256_extractf128_si256(bx_0, 1);
  3681. bxl = _mm_or_si128(bxl, bxhil);
  3682. bxh = _mm_or_si128(bxh, bxhih);
  3683. bx_0 = MM256_SET_M128I(bxh, bxl);
  3684. const __m256i by_0 = _mm256_loadu_si256((const __m256i *)y[i].qs);
  3685. const __m256 q = mul_sum_i8_pairs_float(bx_0, by_0);
  3686. /* Multiply q with scale and accumulate */
  3687. acc = _mm256_add_ps(_mm256_mul_ps(d, q), acc);
  3688. }
  3689. *s = hsum_float_8(acc);
  3690. #elif defined(__riscv_v_intrinsic)
  3691. float sumf = 0.0;
  3692. uint32_t qh;
  3693. size_t vl = __riscv_vsetvl_e8m1(qk/2);
  3694. // These temporary registers are for masking and shift operations
  3695. vuint32m2_t vt_1 = __riscv_vid_v_u32m2(vl);
  3696. vuint32m2_t vt_2 = __riscv_vsll_vv_u32m2(__riscv_vmv_v_x_u32m2(1, vl), vt_1, vl);
  3697. vuint32m2_t vt_3 = __riscv_vsll_vx_u32m2(vt_2, 16, vl);
  3698. vuint32m2_t vt_4 = __riscv_vadd_vx_u32m2(vt_1, 12, vl);
  3699. for (int i = 0; i < nb; i++) {
  3700. memcpy(&qh, x[i].qh, sizeof(uint32_t));
  3701. // ((qh & (1u << (j + 0 ))) >> (j + 0 )) << 4;
  3702. vuint32m2_t xha_0 = __riscv_vand_vx_u32m2(vt_2, qh, vl);
  3703. vuint32m2_t xhr_0 = __riscv_vsrl_vv_u32m2(xha_0, vt_1, vl);
  3704. vuint32m2_t xhl_0 = __riscv_vsll_vx_u32m2(xhr_0, 4, vl);
  3705. // ((qh & (1u << (j + 16))) >> (j + 12));
  3706. vuint32m2_t xha_1 = __riscv_vand_vx_u32m2(vt_3, qh, vl);
  3707. vuint32m2_t xhl_1 = __riscv_vsrl_vv_u32m2(xha_1, vt_4, vl);
  3708. // narrowing
  3709. vuint16m1_t xhc_0 = __riscv_vncvt_x_x_w_u16m1(xhl_0, vl);
  3710. vuint8mf2_t xh_0 = __riscv_vncvt_x_x_w_u8mf2(xhc_0, vl);
  3711. vuint16m1_t xhc_1 = __riscv_vncvt_x_x_w_u16m1(xhl_1, vl);
  3712. vuint8mf2_t xh_1 = __riscv_vncvt_x_x_w_u8mf2(xhc_1, vl);
  3713. // load
  3714. vuint8mf2_t tx = __riscv_vle8_v_u8mf2(x[i].qs, vl);
  3715. vint8mf2_t y0 = __riscv_vle8_v_i8mf2(y[i].qs, vl);
  3716. vint8mf2_t y1 = __riscv_vle8_v_i8mf2(y[i].qs+16, vl);
  3717. vuint8mf2_t x_at = __riscv_vand_vx_u8mf2(tx, 0x0F, vl);
  3718. vuint8mf2_t x_lt = __riscv_vsrl_vx_u8mf2(tx, 0x04, vl);
  3719. vuint8mf2_t x_a = __riscv_vor_vv_u8mf2(x_at, xh_0, vl);
  3720. vuint8mf2_t x_l = __riscv_vor_vv_u8mf2(x_lt, xh_1, vl);
  3721. vint8mf2_t x_ai = __riscv_vreinterpret_v_u8mf2_i8mf2(x_a);
  3722. vint8mf2_t x_li = __riscv_vreinterpret_v_u8mf2_i8mf2(x_l);
  3723. vint8mf2_t v0 = __riscv_vsub_vx_i8mf2(x_ai, 16, vl);
  3724. vint8mf2_t v1 = __riscv_vsub_vx_i8mf2(x_li, 16, vl);
  3725. vint16m1_t vec_mul1 = __riscv_vwmul_vv_i16m1(v0, y0, vl);
  3726. vint16m1_t vec_mul2 = __riscv_vwmul_vv_i16m1(v1, y1, vl);
  3727. vint32m1_t vec_zero = __riscv_vmv_v_x_i32m1(0, vl);
  3728. vint32m1_t vs1 = __riscv_vwredsum_vs_i16m1_i32m1(vec_mul1, vec_zero, vl);
  3729. vint32m1_t vs2 = __riscv_vwredsum_vs_i16m1_i32m1(vec_mul2, vs1, vl);
  3730. int sumi = __riscv_vmv_x_s_i32m1_i32(vs2);
  3731. sumf += (GGML_FP16_TO_FP32(x[i].d)*GGML_FP16_TO_FP32(y[i].d)) * sumi;
  3732. }
  3733. *s = sumf;
  3734. #else
  3735. // scalar
  3736. float sumf = 0.0;
  3737. for (int i = 0; i < nb; i++) {
  3738. uint32_t qh;
  3739. memcpy(&qh, x[i].qh, sizeof(qh));
  3740. int sumi = 0;
  3741. for (int j = 0; j < qk/2; ++j) {
  3742. const uint8_t xh_0 = ((qh & (1u << (j + 0 ))) >> (j + 0 )) << 4;
  3743. const uint8_t xh_1 = ((qh & (1u << (j + 16))) >> (j + 12));
  3744. const int32_t x0 = ((x[i].qs[j] & 0x0F) | xh_0) - 16;
  3745. const int32_t x1 = ((x[i].qs[j] >> 4) | xh_1) - 16;
  3746. sumi += (x0 * y[i].qs[j]) + (x1 * y[i].qs[j + qk/2]);
  3747. }
  3748. sumf += (GGML_FP16_TO_FP32(x[i].d)*GGML_FP16_TO_FP32(y[i].d)) * sumi;
  3749. }
  3750. *s = sumf;
  3751. #endif
  3752. }
  3753. void ggml_vec_dot_q5_1_q8_1(int n, float * restrict s, size_t bs, const void * restrict vx, size_t bx, const void * restrict vy, size_t by, int nrc) {
  3754. const int qk = QK8_1;
  3755. const int nb = n / qk;
  3756. assert(n % qk == 0);
  3757. assert(qk == QK5_1);
  3758. assert(nrc == 1);
  3759. UNUSED(nrc);
  3760. UNUSED(bx);
  3761. UNUSED(by);
  3762. UNUSED(bs);
  3763. const block_q5_1 * restrict x = vx;
  3764. const block_q8_1 * restrict y = vy;
  3765. #if defined(__ARM_NEON)
  3766. float32x4_t sumv0 = vdupq_n_f32(0.0f);
  3767. float32x4_t sumv1 = vdupq_n_f32(0.0f);
  3768. float summs0 = 0.0f;
  3769. float summs1 = 0.0f;
  3770. uint32_t qh0;
  3771. uint32_t qh1;
  3772. uint64_t tmp0[4];
  3773. uint64_t tmp1[4];
  3774. assert(nb % 2 == 0); // TODO: handle odd nb
  3775. for (int i = 0; i < nb; i += 2) {
  3776. const block_q5_1 * restrict x0 = &x[i];
  3777. const block_q5_1 * restrict x1 = &x[i + 1];
  3778. const block_q8_1 * restrict y0 = &y[i];
  3779. const block_q8_1 * restrict y1 = &y[i + 1];
  3780. const uint8x16_t m4b = vdupq_n_u8(0x0F);
  3781. summs0 += GGML_FP16_TO_FP32(x0->m) * y0->s;
  3782. summs1 += GGML_FP16_TO_FP32(x1->m) * y1->s;
  3783. // extract the 5th bit via lookup table ((b) << 4)
  3784. memcpy(&qh0, x0->qh, sizeof(qh0));
  3785. memcpy(&qh1, x1->qh, sizeof(qh1));
  3786. tmp0[0] = table_b2b_0[(qh0 >> 0) & 0xFF];
  3787. tmp0[1] = table_b2b_0[(qh0 >> 8) & 0xFF];
  3788. tmp0[2] = table_b2b_0[(qh0 >> 16) & 0xFF];
  3789. tmp0[3] = table_b2b_0[(qh0 >> 24) ];
  3790. tmp1[0] = table_b2b_0[(qh1 >> 0) & 0xFF];
  3791. tmp1[1] = table_b2b_0[(qh1 >> 8) & 0xFF];
  3792. tmp1[2] = table_b2b_0[(qh1 >> 16) & 0xFF];
  3793. tmp1[3] = table_b2b_0[(qh1 >> 24) ];
  3794. const int8x16_t qhl0 = vld1q_s8((const int8_t *)(tmp0 + 0));
  3795. const int8x16_t qhh0 = vld1q_s8((const int8_t *)(tmp0 + 2));
  3796. const int8x16_t qhl1 = vld1q_s8((const int8_t *)(tmp1 + 0));
  3797. const int8x16_t qhh1 = vld1q_s8((const int8_t *)(tmp1 + 2));
  3798. const uint8x16_t v0_0 = vld1q_u8(x0->qs);
  3799. const uint8x16_t v0_1 = vld1q_u8(x1->qs);
  3800. // 4-bit -> 8-bit
  3801. const int8x16_t v0_0l = vreinterpretq_s8_u8(vandq_u8 (v0_0, m4b));
  3802. const int8x16_t v0_0h = vreinterpretq_s8_u8(vshrq_n_u8(v0_0, 4));
  3803. const int8x16_t v0_1l = vreinterpretq_s8_u8(vandq_u8 (v0_1, m4b));
  3804. const int8x16_t v0_1h = vreinterpretq_s8_u8(vshrq_n_u8(v0_1, 4));
  3805. // add high bit
  3806. const int8x16_t v0_0lf = vorrq_s8(v0_0l, qhl0);
  3807. const int8x16_t v0_0hf = vorrq_s8(v0_0h, qhh0);
  3808. const int8x16_t v0_1lf = vorrq_s8(v0_1l, qhl1);
  3809. const int8x16_t v0_1hf = vorrq_s8(v0_1h, qhh1);
  3810. // load y
  3811. const int8x16_t v1_0l = vld1q_s8(y0->qs);
  3812. const int8x16_t v1_0h = vld1q_s8(y0->qs + 16);
  3813. const int8x16_t v1_1l = vld1q_s8(y1->qs);
  3814. const int8x16_t v1_1h = vld1q_s8(y1->qs + 16);
  3815. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(
  3816. ggml_vdotq_s32(vdupq_n_s32(0), v0_0lf, v1_0l),
  3817. ggml_vdotq_s32(vdupq_n_s32(0), v0_0hf, v1_0h))), GGML_FP16_TO_FP32(x0->d)*y0->d);
  3818. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(
  3819. ggml_vdotq_s32(vdupq_n_s32(0), v0_1lf, v1_1l),
  3820. ggml_vdotq_s32(vdupq_n_s32(0), v0_1hf, v1_1h))), GGML_FP16_TO_FP32(x1->d)*y1->d);
  3821. }
  3822. *s = vaddvq_f32(sumv0) + vaddvq_f32(sumv1) + summs0 + summs1;
  3823. #elif defined(__wasm_simd128__)
  3824. v128_t sumv = wasm_f32x4_splat(0.0f);
  3825. float summs = 0.0f;
  3826. uint32_t qh;
  3827. uint64_t tmp[4];
  3828. // TODO: check if unrolling this is better
  3829. for (int i = 0; i < nb; ++i) {
  3830. const block_q5_1 * restrict x0 = &x[i];
  3831. const block_q8_1 * restrict y0 = &y[i];
  3832. summs += GGML_FP16_TO_FP32(x0->m) * y0->s;
  3833. const v128_t m4b = wasm_i8x16_splat(0x0F);
  3834. // extract the 5th bit
  3835. memcpy(&qh, x0->qh, sizeof(qh));
  3836. tmp[0] = table_b2b_0[(qh >> 0) & 0xFF];
  3837. tmp[1] = table_b2b_0[(qh >> 8) & 0xFF];
  3838. tmp[2] = table_b2b_0[(qh >> 16) & 0xFF];
  3839. tmp[3] = table_b2b_0[(qh >> 24) ];
  3840. const v128_t qhl = wasm_v128_load(tmp + 0);
  3841. const v128_t qhh = wasm_v128_load(tmp + 2);
  3842. const v128_t v0 = wasm_v128_load(x0->qs);
  3843. // 4-bit -> 8-bit
  3844. const v128_t v0l = wasm_v128_and (v0, m4b);
  3845. const v128_t v0h = wasm_u8x16_shr(v0, 4);
  3846. // add high bit
  3847. const v128_t v0lf = wasm_v128_or(v0l, qhl);
  3848. const v128_t v0hf = wasm_v128_or(v0h, qhh);
  3849. // load y
  3850. const v128_t v1l = wasm_v128_load(y0->qs);
  3851. const v128_t v1h = wasm_v128_load(y0->qs + 16);
  3852. // int8x16 -> int16x8
  3853. const v128_t v0lfl = wasm_i16x8_extend_low_i8x16 (v0lf);
  3854. const v128_t v0lfh = wasm_i16x8_extend_high_i8x16(v0lf);
  3855. const v128_t v0hfl = wasm_i16x8_extend_low_i8x16 (v0hf);
  3856. const v128_t v0hfh = wasm_i16x8_extend_high_i8x16(v0hf);
  3857. const v128_t v1ll = wasm_i16x8_extend_low_i8x16 (v1l);
  3858. const v128_t v1lh = wasm_i16x8_extend_high_i8x16(v1l);
  3859. const v128_t v1hl = wasm_i16x8_extend_low_i8x16 (v1h);
  3860. const v128_t v1hh = wasm_i16x8_extend_high_i8x16(v1h);
  3861. // dot product
  3862. sumv = wasm_f32x4_add(sumv,
  3863. wasm_f32x4_mul(wasm_f32x4_convert_i32x4(wasm_i32x4_add(
  3864. wasm_i32x4_add(wasm_i32x4_dot_i16x8(v0lfl, v1ll),
  3865. wasm_i32x4_dot_i16x8(v0lfh, v1lh)),
  3866. wasm_i32x4_add(wasm_i32x4_dot_i16x8(v0hfl, v1hl),
  3867. wasm_i32x4_dot_i16x8(v0hfh, v1hh)))),
  3868. wasm_f32x4_splat(GGML_FP16_TO_FP32(x0->d) * y0->d)));
  3869. }
  3870. *s = wasm_f32x4_extract_lane(sumv, 0) + wasm_f32x4_extract_lane(sumv, 1) +
  3871. wasm_f32x4_extract_lane(sumv, 2) + wasm_f32x4_extract_lane(sumv, 3) + summs;
  3872. #elif defined(__AVX2__)
  3873. // Initialize accumulator with zeros
  3874. __m256 acc = _mm256_setzero_ps();
  3875. float summs = 0.0f;
  3876. // Main loop
  3877. for (int i = 0; i < nb; i++) {
  3878. const __m256 dx = _mm256_set1_ps(GGML_FP16_TO_FP32(x[i].d));
  3879. summs += GGML_FP16_TO_FP32(x[i].m) * y[i].s;
  3880. __m256i qx = bytes_from_nibbles_32(x[i].qs);
  3881. __m256i bxhi = bytes_from_bits_32(x[i].qh);
  3882. bxhi = _mm256_and_si256(bxhi, _mm256_set1_epi8(0x10));
  3883. qx = _mm256_or_si256(qx, bxhi);
  3884. const __m256 dy = _mm256_set1_ps(y[i].d);
  3885. const __m256i qy = _mm256_loadu_si256((const __m256i *)y[i].qs);
  3886. const __m256 q = mul_sum_us8_pairs_float(qx, qy);
  3887. acc = _mm256_fmadd_ps(q, _mm256_mul_ps(dx, dy), acc);
  3888. }
  3889. *s = hsum_float_8(acc) + summs;
  3890. #elif defined(__AVX__)
  3891. // Initialize accumulator with zeros
  3892. __m256 acc = _mm256_setzero_ps();
  3893. __m128i mask = _mm_set1_epi8(0x10);
  3894. float summs = 0.0f;
  3895. // Main loop
  3896. for (int i = 0; i < nb; i++) {
  3897. const __m256 dx = _mm256_set1_ps(GGML_FP16_TO_FP32(x[i].d));
  3898. summs += GGML_FP16_TO_FP32(x[i].m) * y[i].s;
  3899. __m256i bx_0 = bytes_from_nibbles_32(x[i].qs);
  3900. const __m256i bxhi = bytes_from_bits_32(x[i].qh);
  3901. __m128i bxhil = _mm256_castsi256_si128(bxhi);
  3902. __m128i bxhih = _mm256_extractf128_si256(bxhi, 1);
  3903. bxhil = _mm_and_si128(bxhil, mask);
  3904. bxhih = _mm_and_si128(bxhih, mask);
  3905. __m128i bxl = _mm256_castsi256_si128(bx_0);
  3906. __m128i bxh = _mm256_extractf128_si256(bx_0, 1);
  3907. bxl = _mm_or_si128(bxl, bxhil);
  3908. bxh = _mm_or_si128(bxh, bxhih);
  3909. bx_0 = MM256_SET_M128I(bxh, bxl);
  3910. const __m256 dy = _mm256_set1_ps(y[i].d);
  3911. const __m256i by_0 = _mm256_loadu_si256((const __m256i *)y[i].qs);
  3912. const __m256 q = mul_sum_us8_pairs_float(bx_0, by_0);
  3913. acc = _mm256_add_ps(_mm256_mul_ps(q, _mm256_mul_ps(dx, dy)), acc);
  3914. }
  3915. *s = hsum_float_8(acc) + summs;
  3916. #elif defined(__riscv_v_intrinsic)
  3917. float sumf = 0.0;
  3918. uint32_t qh;
  3919. size_t vl = __riscv_vsetvl_e8m1(qk/2);
  3920. // temporary registers for shift operations
  3921. vuint32m2_t vt_1 = __riscv_vid_v_u32m2(vl);
  3922. vuint32m2_t vt_2 = __riscv_vadd_vx_u32m2(vt_1, 12, vl);
  3923. for (int i = 0; i < nb; i++) {
  3924. memcpy(&qh, x[i].qh, sizeof(uint32_t));
  3925. // load qh
  3926. vuint32m2_t vqh = __riscv_vmv_v_x_u32m2(qh, vl);
  3927. // ((qh >> (j + 0)) << 4) & 0x10;
  3928. vuint32m2_t xhr_0 = __riscv_vsrl_vv_u32m2(vqh, vt_1, vl);
  3929. vuint32m2_t xhl_0 = __riscv_vsll_vx_u32m2(xhr_0, 4, vl);
  3930. vuint32m2_t xha_0 = __riscv_vand_vx_u32m2(xhl_0, 0x10, vl);
  3931. // ((qh >> (j + 12)) ) & 0x10;
  3932. vuint32m2_t xhr_1 = __riscv_vsrl_vv_u32m2(vqh, vt_2, vl);
  3933. vuint32m2_t xha_1 = __riscv_vand_vx_u32m2(xhr_1, 0x10, vl);
  3934. // narrowing
  3935. vuint16m1_t xhc_0 = __riscv_vncvt_x_x_w_u16m1(xha_0, vl);
  3936. vuint8mf2_t xh_0 = __riscv_vncvt_x_x_w_u8mf2(xhc_0, vl);
  3937. vuint16m1_t xhc_1 = __riscv_vncvt_x_x_w_u16m1(xha_1, vl);
  3938. vuint8mf2_t xh_1 = __riscv_vncvt_x_x_w_u8mf2(xhc_1, vl);
  3939. // load
  3940. vuint8mf2_t tx = __riscv_vle8_v_u8mf2(x[i].qs, vl);
  3941. vint8mf2_t y0 = __riscv_vle8_v_i8mf2(y[i].qs, vl);
  3942. vint8mf2_t y1 = __riscv_vle8_v_i8mf2(y[i].qs+16, vl);
  3943. vuint8mf2_t x_at = __riscv_vand_vx_u8mf2(tx, 0x0F, vl);
  3944. vuint8mf2_t x_lt = __riscv_vsrl_vx_u8mf2(tx, 0x04, vl);
  3945. vuint8mf2_t x_a = __riscv_vor_vv_u8mf2(x_at, xh_0, vl);
  3946. vuint8mf2_t x_l = __riscv_vor_vv_u8mf2(x_lt, xh_1, vl);
  3947. vint8mf2_t v0 = __riscv_vreinterpret_v_u8mf2_i8mf2(x_a);
  3948. vint8mf2_t v1 = __riscv_vreinterpret_v_u8mf2_i8mf2(x_l);
  3949. vint16m1_t vec_mul1 = __riscv_vwmul_vv_i16m1(v0, y0, vl);
  3950. vint16m1_t vec_mul2 = __riscv_vwmul_vv_i16m1(v1, y1, vl);
  3951. vint32m1_t vec_zero = __riscv_vmv_v_x_i32m1(0, vl);
  3952. vint32m1_t vs1 = __riscv_vwredsum_vs_i16m1_i32m1(vec_mul1, vec_zero, vl);
  3953. vint32m1_t vs2 = __riscv_vwredsum_vs_i16m1_i32m1(vec_mul2, vs1, vl);
  3954. int sumi = __riscv_vmv_x_s_i32m1_i32(vs2);
  3955. sumf += (GGML_FP16_TO_FP32(x[i].d)*y[i].d)*sumi + GGML_FP16_TO_FP32(x[i].m)*y[i].s;
  3956. }
  3957. *s = sumf;
  3958. #else
  3959. // scalar
  3960. float sumf = 0.0;
  3961. for (int i = 0; i < nb; i++) {
  3962. uint32_t qh;
  3963. memcpy(&qh, x[i].qh, sizeof(qh));
  3964. int sumi = 0;
  3965. for (int j = 0; j < qk/2; ++j) {
  3966. const uint8_t xh_0 = ((qh >> (j + 0)) << 4) & 0x10;
  3967. const uint8_t xh_1 = ((qh >> (j + 12)) ) & 0x10;
  3968. const int32_t x0 = (x[i].qs[j] & 0xF) | xh_0;
  3969. const int32_t x1 = (x[i].qs[j] >> 4) | xh_1;
  3970. sumi += (x0 * y[i].qs[j]) + (x1 * y[i].qs[j + qk/2]);
  3971. }
  3972. sumf += (GGML_FP16_TO_FP32(x[i].d)*y[i].d)*sumi + GGML_FP16_TO_FP32(x[i].m)*y[i].s;
  3973. }
  3974. *s = sumf;
  3975. #endif
  3976. }
  3977. void ggml_vec_dot_q8_0_q8_0(int n, float * restrict s, size_t bs, const void * restrict vx, size_t bx, const void * restrict vy, size_t by, int nrc) {
  3978. const int qk = QK8_0;
  3979. const int nb = n / qk;
  3980. assert(n % qk == 0);
  3981. #if defined(__ARM_FEATURE_MATMUL_INT8)
  3982. assert((nrc == 2) || (nrc == 1));
  3983. #else
  3984. assert(nrc == 1);
  3985. #endif
  3986. UNUSED(nrc);
  3987. UNUSED(bx);
  3988. UNUSED(by);
  3989. UNUSED(bs);
  3990. const block_q8_0 * restrict x = vx;
  3991. const block_q8_0 * restrict y = vy;
  3992. #if defined(__ARM_FEATURE_MATMUL_INT8)
  3993. if (nrc == 2) {
  3994. const block_q8_0 * restrict vx0 = vx;
  3995. const block_q8_0 * restrict vx1 = vx + bx;
  3996. const block_q8_0 * restrict vy0 = vy;
  3997. const block_q8_0 * restrict vy1 = vy + by;
  3998. float32x4_t sumv0 = vdupq_n_f32(0.0f);
  3999. for (int i = 0; i < nb; i++) {
  4000. const block_q8_0 * restrict b_x0 = &vx0[i];
  4001. const block_q8_0 * restrict b_y0 = &vy0[i];
  4002. const block_q8_0 * restrict b_x1 = &vx1[i];
  4003. const block_q8_0 * restrict b_y1 = &vy1[i];
  4004. const int8x16_t x0_l = vld1q_s8(b_x0->qs);
  4005. const int8x16_t x0_h = vld1q_s8(b_x0->qs + 16);
  4006. const int8x16_t x1_l = vld1q_s8(b_x1->qs);
  4007. const int8x16_t x1_h = vld1q_s8(b_x1->qs + 16);
  4008. // load y
  4009. const int8x16_t y0_l = vld1q_s8(b_y0->qs);
  4010. const int8x16_t y0_h = vld1q_s8(b_y0->qs + 16);
  4011. const int8x16_t y1_l = vld1q_s8(b_y1->qs);
  4012. const int8x16_t y1_h = vld1q_s8(b_y1->qs + 16);
  4013. float32x4_t scale = {GGML_FP16_TO_FP32(b_x0->d)*GGML_FP16_TO_FP32(b_y0->d),
  4014. GGML_FP16_TO_FP32(b_x0->d)*GGML_FP16_TO_FP32(b_y1->d),
  4015. GGML_FP16_TO_FP32(b_x1->d)*GGML_FP16_TO_FP32(b_y0->d),
  4016. GGML_FP16_TO_FP32(b_x1->d)*GGML_FP16_TO_FP32(b_y1->d)};
  4017. int8x16_t l0 = vreinterpretq_s8_s64(vzip1q_s64(vreinterpretq_s64_s8(x0_l), vreinterpretq_s64_s8(x1_l)));
  4018. int8x16_t l1 = vreinterpretq_s8_s64(vzip2q_s64(vreinterpretq_s64_s8(x0_l), vreinterpretq_s64_s8(x1_l)));
  4019. int8x16_t l2 = vreinterpretq_s8_s64(vzip1q_s64(vreinterpretq_s64_s8(x0_h), vreinterpretq_s64_s8(x1_h)));
  4020. int8x16_t l3 = vreinterpretq_s8_s64(vzip2q_s64(vreinterpretq_s64_s8(x0_h), vreinterpretq_s64_s8(x1_h)));
  4021. int8x16_t r0 = vreinterpretq_s8_s64(vzip1q_s64(vreinterpretq_s64_s8(y0_l), vreinterpretq_s64_s8(y1_l)));
  4022. int8x16_t r1 = vreinterpretq_s8_s64(vzip2q_s64(vreinterpretq_s64_s8(y0_l), vreinterpretq_s64_s8(y1_l)));
  4023. int8x16_t r2 = vreinterpretq_s8_s64(vzip1q_s64(vreinterpretq_s64_s8(y0_h), vreinterpretq_s64_s8(y1_h)));
  4024. int8x16_t r3 = vreinterpretq_s8_s64(vzip2q_s64(vreinterpretq_s64_s8(y0_h), vreinterpretq_s64_s8(y1_h)));
  4025. sumv0 = vmlaq_f32(sumv0,(vcvtq_f32_s32(vmmlaq_s32((vmmlaq_s32((vmmlaq_s32((vmmlaq_s32(vdupq_n_s32(0), l0, r0)),
  4026. l1, r1)), l2, r2)), l3, r3))), scale);
  4027. }
  4028. float32x4_t sumv1 = vextq_f32(sumv0, sumv0, 2);
  4029. float32x4_t sumv2 = vzip1q_f32(sumv0, sumv1);
  4030. vst1_f32(s, vget_low_f32(sumv2));
  4031. vst1_f32(s + bs, vget_high_f32(sumv2));
  4032. return;
  4033. }
  4034. #endif
  4035. #if defined(__ARM_NEON)
  4036. float32x4_t sumv0 = vdupq_n_f32(0.0f);
  4037. float32x4_t sumv1 = vdupq_n_f32(0.0f);
  4038. assert(nb % 2 == 0); // TODO: handle odd nb
  4039. for (int i = 0; i < nb; i += 2) {
  4040. const block_q8_0 * restrict x0 = &x[i + 0];
  4041. const block_q8_0 * restrict x1 = &x[i + 1];
  4042. const block_q8_0 * restrict y0 = &y[i + 0];
  4043. const block_q8_0 * restrict y1 = &y[i + 1];
  4044. const int8x16_t x0_0 = vld1q_s8(x0->qs);
  4045. const int8x16_t x0_1 = vld1q_s8(x0->qs + 16);
  4046. const int8x16_t x1_0 = vld1q_s8(x1->qs);
  4047. const int8x16_t x1_1 = vld1q_s8(x1->qs + 16);
  4048. // load y
  4049. const int8x16_t y0_0 = vld1q_s8(y0->qs);
  4050. const int8x16_t y0_1 = vld1q_s8(y0->qs + 16);
  4051. const int8x16_t y1_0 = vld1q_s8(y1->qs);
  4052. const int8x16_t y1_1 = vld1q_s8(y1->qs + 16);
  4053. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(
  4054. ggml_vdotq_s32(vdupq_n_s32(0), x0_0, y0_0),
  4055. ggml_vdotq_s32(vdupq_n_s32(0), x0_1, y0_1))), GGML_FP16_TO_FP32(x0->d)*GGML_FP16_TO_FP32(y0->d));
  4056. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(
  4057. ggml_vdotq_s32(vdupq_n_s32(0), x1_0, y1_0),
  4058. ggml_vdotq_s32(vdupq_n_s32(0), x1_1, y1_1))), GGML_FP16_TO_FP32(x1->d)*GGML_FP16_TO_FP32(y1->d));
  4059. }
  4060. *s = vaddvq_f32(sumv0) + vaddvq_f32(sumv1);
  4061. #elif defined(__AVX2__) || defined(__AVX__)
  4062. // Initialize accumulator with zeros
  4063. __m256 acc = _mm256_setzero_ps();
  4064. // Main loop
  4065. for (int i = 0; i < nb; ++i) {
  4066. // Compute combined scale for the block
  4067. const __m256 d = _mm256_set1_ps(GGML_FP16_TO_FP32(x[i].d) * GGML_FP16_TO_FP32(y[i].d));
  4068. __m256i qx = _mm256_loadu_si256((const __m256i *)x[i].qs);
  4069. __m256i qy = _mm256_loadu_si256((const __m256i *)y[i].qs);
  4070. const __m256 q = mul_sum_i8_pairs_float(qx, qy);
  4071. // Multiply q with scale and accumulate
  4072. #if defined(__AVX2__)
  4073. acc = _mm256_fmadd_ps( d, q, acc );
  4074. #else
  4075. acc = _mm256_add_ps( _mm256_mul_ps( d, q ), acc );
  4076. #endif
  4077. }
  4078. *s = hsum_float_8(acc);
  4079. #elif defined(__riscv_v_intrinsic)
  4080. float sumf = 0.0;
  4081. size_t vl = __riscv_vsetvl_e8m1(qk);
  4082. for (int i = 0; i < nb; i++) {
  4083. // load elements
  4084. vint8m1_t bx_0 = __riscv_vle8_v_i8m1(x[i].qs, vl);
  4085. vint8m1_t by_0 = __riscv_vle8_v_i8m1(y[i].qs, vl);
  4086. vint16m2_t vw_mul = __riscv_vwmul_vv_i16m2(bx_0, by_0, vl);
  4087. vint32m1_t v_zero = __riscv_vmv_v_x_i32m1(0, vl);
  4088. vint32m1_t v_sum = __riscv_vwredsum_vs_i16m2_i32m1(vw_mul, v_zero, vl);
  4089. int sumi = __riscv_vmv_x_s_i32m1_i32(v_sum);
  4090. sumf += sumi*(GGML_FP16_TO_FP32(x[i].d)*GGML_FP16_TO_FP32(y[i].d));
  4091. }
  4092. *s = sumf;
  4093. #else
  4094. // scalar
  4095. float sumf = 0.0;
  4096. for (int i = 0; i < nb; i++) {
  4097. int sumi = 0;
  4098. for (int j = 0; j < qk; j++) {
  4099. sumi += x[i].qs[j]*y[i].qs[j];
  4100. }
  4101. sumf += sumi*(GGML_FP16_TO_FP32(x[i].d)*GGML_FP16_TO_FP32(y[i].d));
  4102. }
  4103. *s = sumf;
  4104. #endif
  4105. }
  4106. #if QK_K == 256
  4107. void ggml_vec_dot_q2_K_q8_K(int n, float * restrict s, size_t bs, const void * restrict vx, size_t bx, const void * restrict vy, size_t by, int nrc) {
  4108. assert(nrc == 1);
  4109. UNUSED(nrc);
  4110. UNUSED(bx);
  4111. UNUSED(by);
  4112. UNUSED(bs);
  4113. const block_q2_K * restrict x = vx;
  4114. const block_q8_K * restrict y = vy;
  4115. const int nb = n / QK_K;
  4116. #ifdef __ARM_NEON
  4117. const uint8x16_t m3 = vdupq_n_u8(0x3);
  4118. const uint8x16_t m4 = vdupq_n_u8(0xF);
  4119. const int32x4_t vzero = vdupq_n_s32(0);
  4120. ggml_int8x16x2_t q2bytes;
  4121. uint8_t aux[16];
  4122. float sum = 0;
  4123. for (int i = 0; i < nb; ++i) {
  4124. const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d);
  4125. const float dmin = -y[i].d * GGML_FP16_TO_FP32(x[i].dmin);
  4126. const uint8_t * restrict q2 = x[i].qs;
  4127. const int8_t * restrict q8 = y[i].qs;
  4128. const uint8_t * restrict sc = x[i].scales;
  4129. const uint8x16_t mins_and_scales = vld1q_u8(sc);
  4130. const uint8x16_t scales = vandq_u8(mins_and_scales, m4);
  4131. vst1q_u8(aux, scales);
  4132. const uint8x16_t mins = vshrq_n_u8(mins_and_scales, 4);
  4133. const ggml_int16x8x2_t q8sums = ggml_vld1q_s16_x2(y[i].bsums);
  4134. const ggml_int16x8x2_t mins16 = {{vreinterpretq_s16_u16(vmovl_u8(vget_low_u8(mins))), vreinterpretq_s16_u16(vmovl_u8(vget_high_u8(mins)))}};
  4135. const int32x4_t s0 = vaddq_s32(vmull_s16(vget_low_s16 (mins16.val[0]), vget_low_s16 (q8sums.val[0])),
  4136. vmull_s16(vget_high_s16(mins16.val[0]), vget_high_s16(q8sums.val[0])));
  4137. const int32x4_t s1 = vaddq_s32(vmull_s16(vget_low_s16 (mins16.val[1]), vget_low_s16 (q8sums.val[1])),
  4138. vmull_s16(vget_high_s16(mins16.val[1]), vget_high_s16(q8sums.val[1])));
  4139. sum += dmin * vaddvq_s32(vaddq_s32(s0, s1));
  4140. int isum = 0;
  4141. int is = 0;
  4142. // We use this macro instead of a function call because for some reason
  4143. // the code runs 2-3% slower, even if the function is declared inline
  4144. #define MULTIPLY_ACCUM_WITH_SCALE(index)\
  4145. isum += vaddvq_s32(ggml_vdotq_s32(vzero, q2bytes.val[0], q8bytes.val[0])) * aux[is+(index)];\
  4146. isum += vaddvq_s32(ggml_vdotq_s32(vzero, q2bytes.val[1], q8bytes.val[1])) * aux[is+1+(index)];
  4147. #define SHIFT_MULTIPLY_ACCUM_WITH_SCALE(shift, index)\
  4148. q8bytes = ggml_vld1q_s8_x2(q8); q8 += 32;\
  4149. q2bytes.val[0] = vreinterpretq_s8_u8(vandq_u8(vshrq_n_u8(q2bits.val[0], (shift)), m3));\
  4150. q2bytes.val[1] = vreinterpretq_s8_u8(vandq_u8(vshrq_n_u8(q2bits.val[1], (shift)), m3));\
  4151. MULTIPLY_ACCUM_WITH_SCALE((index));
  4152. for (int j = 0; j < QK_K/128; ++j) {
  4153. const ggml_uint8x16x2_t q2bits = ggml_vld1q_u8_x2(q2); q2 += 32;
  4154. ggml_int8x16x2_t q8bytes = ggml_vld1q_s8_x2(q8); q8 += 32;
  4155. q2bytes.val[0] = vreinterpretq_s8_u8(vandq_u8(q2bits.val[0], m3));
  4156. q2bytes.val[1] = vreinterpretq_s8_u8(vandq_u8(q2bits.val[1], m3));
  4157. MULTIPLY_ACCUM_WITH_SCALE(0);
  4158. SHIFT_MULTIPLY_ACCUM_WITH_SCALE(2, 2);
  4159. SHIFT_MULTIPLY_ACCUM_WITH_SCALE(4, 4);
  4160. SHIFT_MULTIPLY_ACCUM_WITH_SCALE(6, 6);
  4161. is += 8;
  4162. }
  4163. sum += d * isum;
  4164. }
  4165. *s = sum;
  4166. #elif defined __AVX2__
  4167. const __m256i m3 = _mm256_set1_epi8(3);
  4168. const __m128i m4 = _mm_set1_epi8(0xF);
  4169. __m256 acc = _mm256_setzero_ps();
  4170. for (int i = 0; i < nb; ++i) {
  4171. const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d);
  4172. const float dmin = -y[i].d * GGML_FP16_TO_FP32(x[i].dmin);
  4173. const uint8_t * restrict q2 = x[i].qs;
  4174. const int8_t * restrict q8 = y[i].qs;
  4175. const __m128i mins_and_scales = _mm_loadu_si128((const __m128i*)x[i].scales);
  4176. const __m128i scales8 = _mm_and_si128(mins_and_scales, m4);
  4177. const __m128i mins8 = _mm_and_si128(_mm_srli_epi16(mins_and_scales, 4), m4);
  4178. const __m256i mins = _mm256_cvtepi8_epi16(mins8);
  4179. const __m256i prod = _mm256_madd_epi16(mins, _mm256_loadu_si256((const __m256i*)y[i].bsums));
  4180. acc = _mm256_fmadd_ps(_mm256_broadcast_ss(&dmin), _mm256_cvtepi32_ps(prod), acc);
  4181. const __m256i all_scales = _mm256_cvtepi8_epi16(scales8);
  4182. const __m128i l_scales = _mm256_extracti128_si256(all_scales, 0);
  4183. const __m128i h_scales = _mm256_extracti128_si256(all_scales, 1);
  4184. const __m256i scales[2] = {MM256_SET_M128I(l_scales, l_scales), MM256_SET_M128I(h_scales, h_scales)};
  4185. __m256i sumi = _mm256_setzero_si256();
  4186. for (int j = 0; j < QK_K/128; ++j) {
  4187. const __m256i q2bits = _mm256_loadu_si256((const __m256i*)q2); q2 += 32;
  4188. const __m256i q8_0 = _mm256_loadu_si256((const __m256i*)q8); q8 += 32;
  4189. const __m256i q8_1 = _mm256_loadu_si256((const __m256i*)q8); q8 += 32;
  4190. const __m256i q8_2 = _mm256_loadu_si256((const __m256i*)q8); q8 += 32;
  4191. const __m256i q8_3 = _mm256_loadu_si256((const __m256i*)q8); q8 += 32;
  4192. const __m256i q2_0 = _mm256_and_si256(q2bits, m3);
  4193. const __m256i q2_1 = _mm256_and_si256(_mm256_srli_epi16(q2bits, 2), m3);
  4194. const __m256i q2_2 = _mm256_and_si256(_mm256_srli_epi16(q2bits, 4), m3);
  4195. const __m256i q2_3 = _mm256_and_si256(_mm256_srli_epi16(q2bits, 6), m3);
  4196. __m256i p0 = _mm256_maddubs_epi16(q2_0, q8_0);
  4197. __m256i p1 = _mm256_maddubs_epi16(q2_1, q8_1);
  4198. __m256i p2 = _mm256_maddubs_epi16(q2_2, q8_2);
  4199. __m256i p3 = _mm256_maddubs_epi16(q2_3, q8_3);
  4200. p0 = _mm256_madd_epi16(_mm256_shuffle_epi8(scales[j], get_scale_shuffle_q3k(0)), p0);
  4201. p1 = _mm256_madd_epi16(_mm256_shuffle_epi8(scales[j], get_scale_shuffle_q3k(1)), p1);
  4202. p2 = _mm256_madd_epi16(_mm256_shuffle_epi8(scales[j], get_scale_shuffle_q3k(2)), p2);
  4203. p3 = _mm256_madd_epi16(_mm256_shuffle_epi8(scales[j], get_scale_shuffle_q3k(3)), p3);
  4204. p0 = _mm256_add_epi32(p0, p1);
  4205. p2 = _mm256_add_epi32(p2, p3);
  4206. sumi = _mm256_add_epi32(sumi, _mm256_add_epi32(p0, p2));
  4207. }
  4208. acc = _mm256_fmadd_ps(_mm256_broadcast_ss(&d), _mm256_cvtepi32_ps(sumi), acc);
  4209. }
  4210. *s = hsum_float_8(acc);
  4211. #elif defined __AVX__
  4212. const __m128i m3 = _mm_set1_epi8(0x3);
  4213. const __m128i m4 = _mm_set1_epi8(0xF);
  4214. const __m128i m2 = _mm_set1_epi8(0x2);
  4215. __m256 acc = _mm256_setzero_ps();
  4216. for (int i = 0; i < nb; ++i) {
  4217. const float dall = y[i].d * GGML_FP16_TO_FP32(x[i].d);
  4218. const float dmin = -y[i].d * GGML_FP16_TO_FP32(x[i].dmin);
  4219. const uint8_t * restrict q2 = x[i].qs;
  4220. const int8_t * restrict q8 = y[i].qs;
  4221. // load mins and scales from block_q2_K.scales[QK_K/16]
  4222. const __m128i mins_and_scales = _mm_loadu_si128((const __m128i*)x[i].scales);
  4223. const __m128i scales16 = _mm_and_si128(mins_and_scales, m4);
  4224. const __m128i mins16 = _mm_and_si128(_mm_srli_epi16(mins_and_scales, 4), m4);
  4225. const __m128i mins_0 = _mm_cvtepi8_epi16(mins16);
  4226. const __m128i mins_1 = _mm_cvtepi8_epi16(_mm_unpackhi_epi64(mins16, mins16));
  4227. // summs = y[i].bsums * (x[i].scales >> 4) in 16bits*8*2 to 32bits*4*2
  4228. const __m128i summs_0 = _mm_madd_epi16(mins_0, _mm_loadu_si128((const __m128i*)&y[i].bsums[0]));
  4229. const __m128i summs_1 = _mm_madd_epi16(mins_1, _mm_loadu_si128((const __m128i*)&y[i].bsums[8]));
  4230. // sumf += -dmin * summs in 32bits*8
  4231. acc = _mm256_add_ps(_mm256_mul_ps(_mm256_broadcast_ss(&dmin), _mm256_cvtepi32_ps(MM256_SET_M128I(summs_1, summs_0))), acc);
  4232. const __m128i scales_0 = _mm_cvtepi8_epi16(scales16);
  4233. const __m128i scales_1 = _mm_cvtepi8_epi16(_mm_unpackhi_epi64(scales16, scales16));
  4234. const __m128i scales[2] = { scales_0, scales_1 };
  4235. __m128i sumi_0 = _mm_setzero_si128();
  4236. __m128i sumi_1 = _mm_setzero_si128();
  4237. for (int j = 0; j < QK_K/128; ++j) {
  4238. // load Q8 quants int8*16*8 from block_q8_K.qs[QK_K]
  4239. const __m128i q8_0 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  4240. const __m128i q8_1 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  4241. const __m128i q8_2 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  4242. const __m128i q8_3 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  4243. const __m128i q8_4 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  4244. const __m128i q8_5 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  4245. const __m128i q8_6 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  4246. const __m128i q8_7 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  4247. // load 2bits*16*8 from block_q2_K.qs[QK_K/4]
  4248. __m128i q2bits = _mm_loadu_si128((const __m128i*)q2); q2 += 16;
  4249. const __m128i q2_0 = _mm_and_si128(q2bits, m3);
  4250. const __m128i q2_2 = _mm_and_si128(_mm_srli_epi16(q2bits, 2), m3);
  4251. const __m128i q2_4 = _mm_and_si128(_mm_srli_epi16(q2bits, 4), m3);
  4252. const __m128i q2_6 = _mm_and_si128(_mm_srli_epi16(q2bits, 6), m3);
  4253. q2bits = _mm_loadu_si128((const __m128i*)q2); q2 += 16;
  4254. const __m128i q2_1 = _mm_and_si128(q2bits, m3);
  4255. const __m128i q2_3 = _mm_and_si128(_mm_srli_epi16(q2bits, 2), m3);
  4256. const __m128i q2_5 = _mm_and_si128(_mm_srli_epi16(q2bits, 4), m3);
  4257. const __m128i q2_7 = _mm_and_si128(_mm_srli_epi16(q2bits, 6), m3);
  4258. // isuml = q8[l] * ((q2[l] >> shift) & 3) in 8bits*16*8 to 16bits*8*8
  4259. __m128i p0 = _mm_maddubs_epi16(q2_0, q8_0);
  4260. __m128i p1 = _mm_maddubs_epi16(q2_1, q8_1);
  4261. __m128i p2 = _mm_maddubs_epi16(q2_2, q8_2);
  4262. __m128i p3 = _mm_maddubs_epi16(q2_3, q8_3);
  4263. __m128i p4 = _mm_maddubs_epi16(q2_4, q8_4);
  4264. __m128i p5 = _mm_maddubs_epi16(q2_5, q8_5);
  4265. __m128i p6 = _mm_maddubs_epi16(q2_6, q8_6);
  4266. __m128i p7 = _mm_maddubs_epi16(q2_7, q8_7);
  4267. // isum += (x[i].scales[is++] & 0xF) * isuml in 16bits*8*8 to 32bits*4*8
  4268. __m128i shuffle = _mm_set1_epi16(0x0100);
  4269. p0 = _mm_madd_epi16(_mm_shuffle_epi8(scales[j], shuffle), p0);
  4270. shuffle = _mm_add_epi16(shuffle, m2);
  4271. p1 = _mm_madd_epi16(_mm_shuffle_epi8(scales[j], shuffle), p1);
  4272. shuffle = _mm_add_epi16(shuffle, m2);
  4273. p2 = _mm_madd_epi16(_mm_shuffle_epi8(scales[j], shuffle), p2);
  4274. shuffle = _mm_add_epi16(shuffle, m2);
  4275. p3 = _mm_madd_epi16(_mm_shuffle_epi8(scales[j], shuffle), p3);
  4276. shuffle = _mm_add_epi16(shuffle, m2);
  4277. p4 = _mm_madd_epi16(_mm_shuffle_epi8(scales[j], shuffle), p4);
  4278. shuffle = _mm_add_epi16(shuffle, m2);
  4279. p5 = _mm_madd_epi16(_mm_shuffle_epi8(scales[j], shuffle), p5);
  4280. shuffle = _mm_add_epi16(shuffle, m2);
  4281. p6 = _mm_madd_epi16(_mm_shuffle_epi8(scales[j], shuffle), p6);
  4282. shuffle = _mm_add_epi16(shuffle, m2);
  4283. p7 = _mm_madd_epi16(_mm_shuffle_epi8(scales[j], shuffle), p7);
  4284. p0 = _mm_add_epi32(p0, p1);
  4285. p2 = _mm_add_epi32(p2, p3);
  4286. p4 = _mm_add_epi32(p4, p5);
  4287. p6 = _mm_add_epi32(p6, p7);
  4288. // isum in 32bits*4*2
  4289. sumi_0 = _mm_add_epi32(sumi_0, _mm_add_epi32(p0, p2));
  4290. sumi_1 = _mm_add_epi32(sumi_1, _mm_add_epi32(p4, p6));
  4291. }
  4292. // sumf += dall * isum - dmin * summs in 32bits
  4293. __m256i sumi = MM256_SET_M128I(sumi_1, sumi_0);
  4294. acc = _mm256_add_ps(_mm256_mul_ps(_mm256_broadcast_ss(&dall), _mm256_cvtepi32_ps(sumi)), acc);
  4295. }
  4296. *s = hsum_float_8(acc);
  4297. #elif defined __riscv_v_intrinsic
  4298. float sumf = 0;
  4299. uint8_t temp_01[32] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
  4300. 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1};
  4301. for (int i = 0; i < nb; ++i) {
  4302. const uint8_t * q2 = x[i].qs;
  4303. const int8_t * q8 = y[i].qs;
  4304. const uint8_t * sc = x[i].scales;
  4305. const float dall = y[i].d * GGML_FP16_TO_FP32(x[i].d);
  4306. const float dmin = -y[i].d * GGML_FP16_TO_FP32(x[i].dmin);
  4307. size_t vl = 16;
  4308. vuint8m1_t scales = __riscv_vle8_v_u8m1(sc, vl);
  4309. vuint8m1_t aux = __riscv_vand_vx_u8m1(scales, 0x0F, vl);
  4310. vint16m1_t q8sums = __riscv_vle16_v_i16m1(y[i].bsums, vl);
  4311. vuint8mf2_t scales_2 = __riscv_vle8_v_u8mf2(sc, vl);
  4312. vuint8mf2_t mins8 = __riscv_vsrl_vx_u8mf2(scales_2, 0x4, vl);
  4313. vint16m1_t mins = __riscv_vreinterpret_v_u16m1_i16m1(__riscv_vzext_vf2_u16m1(mins8, vl));
  4314. vint32m2_t prod = __riscv_vwmul_vv_i32m2(q8sums, mins, vl);
  4315. vint32m1_t vsums = __riscv_vredsum_vs_i32m2_i32m1(prod, __riscv_vmv_v_x_i32m1(0, 1), vl);
  4316. sumf += dmin * __riscv_vmv_x_s_i32m1_i32(vsums);
  4317. vl = 32;
  4318. vint32m1_t vzero = __riscv_vmv_v_x_i32m1(0, 1);
  4319. vuint8m1_t v_b = __riscv_vle8_v_u8m1(temp_01, vl);
  4320. uint8_t is=0;
  4321. int isum=0;
  4322. for (int j = 0; j < QK_K/128; ++j) {
  4323. // load Q2
  4324. vuint8m1_t q2_x = __riscv_vle8_v_u8m1(q2, vl);
  4325. vuint8m1_t q2_0 = __riscv_vand_vx_u8m1(q2_x, 0x03, vl);
  4326. vuint8m1_t q2_1 = __riscv_vand_vx_u8m1(__riscv_vsrl_vx_u8m1(q2_x, 0x2, vl), 0x03 , vl);
  4327. vuint8m1_t q2_2 = __riscv_vand_vx_u8m1(__riscv_vsrl_vx_u8m1(q2_x, 0x4, vl), 0x03 , vl);
  4328. vuint8m1_t q2_3 = __riscv_vand_vx_u8m1(__riscv_vsrl_vx_u8m1(q2_x, 0x6, vl), 0x03 , vl);
  4329. // duplicate scale elements for product
  4330. vuint8m1_t sc0 = __riscv_vrgather_vv_u8m1(aux, __riscv_vadd_vx_u8m1(v_b, 0+is, vl), vl);
  4331. vuint8m1_t sc1 = __riscv_vrgather_vv_u8m1(aux, __riscv_vadd_vx_u8m1(v_b, 2+is, vl), vl);
  4332. vuint8m1_t sc2 = __riscv_vrgather_vv_u8m1(aux, __riscv_vadd_vx_u8m1(v_b, 4+is, vl), vl);
  4333. vuint8m1_t sc3 = __riscv_vrgather_vv_u8m1(aux, __riscv_vadd_vx_u8m1(v_b, 6+is, vl), vl);
  4334. vint16m2_t p0 = __riscv_vreinterpret_v_u16m2_i16m2(__riscv_vwmulu_vv_u16m2(q2_0, sc0, vl));
  4335. vint16m2_t p1 = __riscv_vreinterpret_v_u16m2_i16m2(__riscv_vwmulu_vv_u16m2(q2_1, sc1, vl));
  4336. vint16m2_t p2 = __riscv_vreinterpret_v_u16m2_i16m2(__riscv_vwmulu_vv_u16m2(q2_2, sc2, vl));
  4337. vint16m2_t p3 = __riscv_vreinterpret_v_u16m2_i16m2(__riscv_vwmulu_vv_u16m2(q2_3, sc3, vl));
  4338. // load Q8
  4339. vint8m1_t q8_0 = __riscv_vle8_v_i8m1(q8, vl);
  4340. vint8m1_t q8_1 = __riscv_vle8_v_i8m1(q8+32, vl);
  4341. vint8m1_t q8_2 = __riscv_vle8_v_i8m1(q8+64, vl);
  4342. vint8m1_t q8_3 = __riscv_vle8_v_i8m1(q8+96, vl);
  4343. vint32m4_t s0 = __riscv_vwmul_vv_i32m4(p0, __riscv_vwcvt_x_x_v_i16m2(q8_0, vl), vl);
  4344. vint32m4_t s1 = __riscv_vwmul_vv_i32m4(p1, __riscv_vwcvt_x_x_v_i16m2(q8_1, vl), vl);
  4345. vint32m4_t s2 = __riscv_vwmul_vv_i32m4(p2, __riscv_vwcvt_x_x_v_i16m2(q8_2, vl), vl);
  4346. vint32m4_t s3 = __riscv_vwmul_vv_i32m4(p3, __riscv_vwcvt_x_x_v_i16m2(q8_3, vl), vl);
  4347. vint32m1_t isum0 = __riscv_vredsum_vs_i32m4_i32m1(__riscv_vadd_vv_i32m4(s0, s1, vl), vzero, vl);
  4348. vint32m1_t isum1 = __riscv_vredsum_vs_i32m4_i32m1(__riscv_vadd_vv_i32m4(s2, s3, vl), isum0, vl);
  4349. isum += __riscv_vmv_x_s_i32m1_i32(isum1);
  4350. q2+=32; q8+=128; is=8;
  4351. }
  4352. sumf += dall * isum;
  4353. }
  4354. *s = sumf;
  4355. #else
  4356. float sumf = 0;
  4357. for (int i = 0; i < nb; ++i) {
  4358. const uint8_t * q2 = x[i].qs;
  4359. const int8_t * q8 = y[i].qs;
  4360. const uint8_t * sc = x[i].scales;
  4361. int summs = 0;
  4362. for (int j = 0; j < 16; ++j) {
  4363. summs += y[i].bsums[j] * (sc[j] >> 4);
  4364. }
  4365. const float dall = y[i].d * GGML_FP16_TO_FP32(x[i].d);
  4366. const float dmin = y[i].d * GGML_FP16_TO_FP32(x[i].dmin);
  4367. int isum = 0;
  4368. int is = 0;
  4369. int d;
  4370. for (int k = 0; k < QK_K/128; ++k) {
  4371. int shift = 0;
  4372. for (int j = 0; j < 4; ++j) {
  4373. d = sc[is++] & 0xF;
  4374. int isuml = 0;
  4375. for (int l = 0; l < 16; ++l) isuml += q8[l] * ((q2[l] >> shift) & 3);
  4376. isum += d * isuml;
  4377. d = sc[is++] & 0xF;
  4378. isuml = 0;
  4379. for (int l = 16; l < 32; ++l) isuml += q8[l] * ((q2[l] >> shift) & 3);
  4380. isum += d * isuml;
  4381. shift += 2;
  4382. q8 += 32;
  4383. }
  4384. q2 += 32;
  4385. }
  4386. sumf += dall * isum - dmin * summs;
  4387. }
  4388. *s = sumf;
  4389. #endif
  4390. }
  4391. #else
  4392. void ggml_vec_dot_q2_K_q8_K(int n, float * restrict s, size_t bs, const void * restrict vx, size_t bx, const void * restrict vy, size_t by, int nrc) {
  4393. assert(nrc == 1);
  4394. UNUSED(nrc);
  4395. UNUSED(bx);
  4396. UNUSED(by);
  4397. UNUSED(bs);
  4398. const block_q2_K * restrict x = vx;
  4399. const block_q8_K * restrict y = vy;
  4400. const int nb = n / QK_K;
  4401. #ifdef __ARM_NEON
  4402. const uint8x16_t m3 = vdupq_n_u8(0x3);
  4403. const int32x4_t vzero = vdupq_n_s32(0);
  4404. ggml_int8x16x4_t q2bytes;
  4405. uint32_t aux32[2];
  4406. const uint8_t * scales = (const uint8_t *)aux32;
  4407. float sum = 0;
  4408. for (int i = 0; i < nb; ++i) {
  4409. const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d);
  4410. const float dmin = -y[i].d * GGML_FP16_TO_FP32(x[i].dmin);
  4411. const uint8_t * restrict q2 = x[i].qs;
  4412. const int8_t * restrict q8 = y[i].qs;
  4413. const uint32_t * restrict sc = (const uint32_t *)x[i].scales;
  4414. aux32[0] = sc[0] & 0x0f0f0f0f;
  4415. aux32[1] = (sc[0] >> 4) & 0x0f0f0f0f;
  4416. sum += dmin * (scales[4] * y[i].bsums[0] + scales[5] * y[i].bsums[1] + scales[6] * y[i].bsums[2] + scales[7] * y[i].bsums[3]);
  4417. int isum1 = 0, isum2 = 0;
  4418. const uint8x16_t q2bits = vld1q_u8(q2);
  4419. const ggml_int8x16x4_t q8bytes = ggml_vld1q_s8_x4(q8);
  4420. q2bytes.val[0] = vreinterpretq_s8_u8(vandq_u8(q2bits, m3));
  4421. q2bytes.val[1] = vreinterpretq_s8_u8(vandq_u8(vshrq_n_u8(q2bits, 2), m3));
  4422. q2bytes.val[2] = vreinterpretq_s8_u8(vandq_u8(vshrq_n_u8(q2bits, 4), m3));
  4423. q2bytes.val[3] = vreinterpretq_s8_u8(vandq_u8(vshrq_n_u8(q2bits, 6), m3));
  4424. isum1 += vaddvq_s32(ggml_vdotq_s32(vzero, q2bytes.val[0], q8bytes.val[0])) * scales[0];
  4425. isum2 += vaddvq_s32(ggml_vdotq_s32(vzero, q2bytes.val[1], q8bytes.val[1])) * scales[1];
  4426. isum1 += vaddvq_s32(ggml_vdotq_s32(vzero, q2bytes.val[2], q8bytes.val[2])) * scales[2];
  4427. isum2 += vaddvq_s32(ggml_vdotq_s32(vzero, q2bytes.val[3], q8bytes.val[3])) * scales[3];
  4428. sum += d * (isum1 + isum2);
  4429. }
  4430. *s = sum;
  4431. #elif defined __AVX2__
  4432. const __m256i m3 = _mm256_set1_epi8(3);
  4433. __m256 acc = _mm256_setzero_ps();
  4434. uint32_t ud, um;
  4435. const uint8_t * restrict db = (const uint8_t *)&ud;
  4436. const uint8_t * restrict mb = (const uint8_t *)&um;
  4437. float summs = 0;
  4438. // TODO: optimize this
  4439. for (int i = 0; i < nb; ++i) {
  4440. const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d);
  4441. const float dmin = -y[i].d * GGML_FP16_TO_FP32(x[i].dmin);
  4442. const uint8_t * restrict q2 = x[i].qs;
  4443. const int8_t * restrict q8 = y[i].qs;
  4444. const uint32_t * restrict sc = (const uint32_t *)x[i].scales;
  4445. ud = (sc[0] >> 0) & 0x0f0f0f0f;
  4446. um = (sc[0] >> 4) & 0x0f0f0f0f;
  4447. int32_t smin = mb[0] * y[i].bsums[0] + mb[1] * y[i].bsums[1] + mb[2] * y[i].bsums[2] + mb[3] * y[i].bsums[3];
  4448. summs += dmin * smin;
  4449. const __m128i q2bits = _mm_loadu_si128((const __m128i*)q2);
  4450. const __m256i q2_0 = _mm256_and_si256(MM256_SET_M128I(_mm_srli_epi16(q2bits, 2), q2bits), m3);
  4451. const __m256i q2_1 = _mm256_and_si256(MM256_SET_M128I(_mm_srli_epi16(q2bits, 6), _mm_srli_epi16(q2bits, 4)), m3);
  4452. const __m256i q8_0 = _mm256_loadu_si256((const __m256i*)(q8+ 0));
  4453. const __m256i q8_1 = _mm256_loadu_si256((const __m256i*)(q8+32));
  4454. const __m256i p0 = _mm256_maddubs_epi16(q2_0, q8_0);
  4455. const __m256i p1 = _mm256_maddubs_epi16(q2_1, q8_1);
  4456. const __m256i p_0 = _mm256_cvtepi16_epi32(_mm256_extracti128_si256(p0, 0));
  4457. const __m256i p_1 = _mm256_cvtepi16_epi32(_mm256_extracti128_si256(p0, 1));
  4458. const __m256i p_2 = _mm256_cvtepi16_epi32(_mm256_extracti128_si256(p1, 0));
  4459. const __m256i p_3 = _mm256_cvtepi16_epi32(_mm256_extracti128_si256(p1, 1));
  4460. acc = _mm256_fmadd_ps(_mm256_set1_ps(d * db[0]), _mm256_cvtepi32_ps(p_0), acc);
  4461. acc = _mm256_fmadd_ps(_mm256_set1_ps(d * db[1]), _mm256_cvtepi32_ps(p_1), acc);
  4462. acc = _mm256_fmadd_ps(_mm256_set1_ps(d * db[2]), _mm256_cvtepi32_ps(p_2), acc);
  4463. acc = _mm256_fmadd_ps(_mm256_set1_ps(d * db[3]), _mm256_cvtepi32_ps(p_3), acc);
  4464. }
  4465. *s = hsum_float_8(acc) + summs;
  4466. #elif defined __AVX__
  4467. const __m128i m3 = _mm_set1_epi8(3);
  4468. __m256 acc = _mm256_setzero_ps();
  4469. uint32_t ud, um;
  4470. const uint8_t * restrict db = (const uint8_t *)&ud;
  4471. const uint8_t * restrict mb = (const uint8_t *)&um;
  4472. float summs = 0;
  4473. // TODO: optimize this
  4474. for (int i = 0; i < nb; ++i) {
  4475. const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d);
  4476. const float dmin = -y[i].d * GGML_FP16_TO_FP32(x[i].dmin);
  4477. const uint8_t * restrict q2 = x[i].qs;
  4478. const int8_t * restrict q8 = y[i].qs;
  4479. const uint32_t * restrict sc = (const uint32_t *)x[i].scales;
  4480. ud = (sc[0] >> 0) & 0x0f0f0f0f;
  4481. um = (sc[0] >> 4) & 0x0f0f0f0f;
  4482. int32_t smin = mb[0] * y[i].bsums[0] + mb[1] * y[i].bsums[1] + mb[2] * y[i].bsums[2] + mb[3] * y[i].bsums[3];
  4483. summs += dmin * smin;
  4484. const __m128i q2bits = _mm_loadu_si128((const __m128i*)q2);
  4485. const __m128i q2_0 = _mm_and_si128(q2bits, m3);
  4486. const __m128i q2_1 = _mm_and_si128(_mm_srli_epi16(q2bits, 2), m3);
  4487. const __m128i q2_2 = _mm_and_si128(_mm_srli_epi16(q2bits, 4), m3);
  4488. const __m128i q2_3 = _mm_and_si128(_mm_srli_epi16(q2bits, 6), m3);
  4489. const __m256i q8_0 = _mm256_loadu_si256((const __m256i*)(q8+ 0));
  4490. const __m256i q8_1 = _mm256_loadu_si256((const __m256i*)(q8+32));
  4491. const __m128i p0 = _mm_maddubs_epi16(q2_0, _mm256_extractf128_si256(q8_0, 0));
  4492. const __m128i p1 = _mm_maddubs_epi16(q2_1, _mm256_extractf128_si256(q8_0, 1));
  4493. const __m128i p2 = _mm_maddubs_epi16(q2_2, _mm256_extractf128_si256(q8_1, 0));
  4494. const __m128i p3 = _mm_maddubs_epi16(q2_3, _mm256_extractf128_si256(q8_1, 1));
  4495. const __m256i p_0 = MM256_SET_M128I(_mm_cvtepi16_epi32(_mm_unpackhi_epi64(p0, p0)), _mm_cvtepi16_epi32(p0));
  4496. const __m256i p_1 = MM256_SET_M128I(_mm_cvtepi16_epi32(_mm_unpackhi_epi64(p1, p1)), _mm_cvtepi16_epi32(p1));
  4497. const __m256i p_2 = MM256_SET_M128I(_mm_cvtepi16_epi32(_mm_unpackhi_epi64(p2, p2)), _mm_cvtepi16_epi32(p2));
  4498. const __m256i p_3 = MM256_SET_M128I(_mm_cvtepi16_epi32(_mm_unpackhi_epi64(p3, p3)), _mm_cvtepi16_epi32(p3));
  4499. acc = _mm256_add_ps(_mm256_mul_ps(_mm256_set1_ps(d * db[0]), _mm256_cvtepi32_ps(p_0)), acc);
  4500. acc = _mm256_add_ps(_mm256_mul_ps(_mm256_set1_ps(d * db[1]), _mm256_cvtepi32_ps(p_1)), acc);
  4501. acc = _mm256_add_ps(_mm256_mul_ps(_mm256_set1_ps(d * db[2]), _mm256_cvtepi32_ps(p_2)), acc);
  4502. acc = _mm256_add_ps(_mm256_mul_ps(_mm256_set1_ps(d * db[3]), _mm256_cvtepi32_ps(p_3)), acc);
  4503. }
  4504. *s = hsum_float_8(acc) + summs;
  4505. #elif defined __riscv_v_intrinsic
  4506. uint32_t aux32[2];
  4507. const uint8_t * scales = (const uint8_t *)aux32;
  4508. float sumf = 0;
  4509. for (int i = 0; i < nb; ++i) {
  4510. const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d);
  4511. const float dmin = -y[i].d * GGML_FP16_TO_FP32(x[i].dmin);
  4512. const uint8_t * restrict q2 = x[i].qs;
  4513. const int8_t * restrict q8 = y[i].qs;
  4514. const uint32_t * restrict sc = (const uint32_t *)x[i].scales;
  4515. aux32[0] = sc[0] & 0x0f0f0f0f;
  4516. aux32[1] = (sc[0] >> 4) & 0x0f0f0f0f;
  4517. sumf += dmin * (scales[4] * y[i].bsums[0] + scales[5] * y[i].bsums[1] + scales[6] * y[i].bsums[2] + scales[7] * y[i].bsums[3]);
  4518. int isum1 = 0;
  4519. int isum2 = 0;
  4520. size_t vl = 16;
  4521. vint16m1_t vzero = __riscv_vmv_v_x_i16m1(0, 1);
  4522. // load Q2
  4523. vuint8mf2_t q2_x = __riscv_vle8_v_u8mf2(q2, vl);
  4524. vint8mf2_t q2_0 = __riscv_vreinterpret_v_u8mf2_i8mf2(__riscv_vand_vx_u8mf2(q2_x, 0x03, vl));
  4525. vint8mf2_t q2_1 = __riscv_vreinterpret_v_u8mf2_i8mf2(__riscv_vand_vx_u8mf2(__riscv_vsrl_vx_u8mf2(q2_x, 0x2, vl), 0x03 , vl));
  4526. vint8mf2_t q2_2 = __riscv_vreinterpret_v_u8mf2_i8mf2(__riscv_vand_vx_u8mf2(__riscv_vsrl_vx_u8mf2(q2_x, 0x4, vl), 0x03 , vl));
  4527. vint8mf2_t q2_3 = __riscv_vreinterpret_v_u8mf2_i8mf2(__riscv_vand_vx_u8mf2(__riscv_vsrl_vx_u8mf2(q2_x, 0x6, vl), 0x03 , vl));
  4528. // load Q8, and take product with Q2
  4529. vint16m1_t p0 = __riscv_vwmul_vv_i16m1(q2_0, __riscv_vle8_v_i8mf2(q8, vl), vl);
  4530. vint16m1_t p1 = __riscv_vwmul_vv_i16m1(q2_1, __riscv_vle8_v_i8mf2(q8+16, vl), vl);
  4531. vint16m1_t p2 = __riscv_vwmul_vv_i16m1(q2_2, __riscv_vle8_v_i8mf2(q8+32, vl), vl);
  4532. vint16m1_t p3 = __riscv_vwmul_vv_i16m1(q2_3, __riscv_vle8_v_i8mf2(q8+48, vl), vl);
  4533. vint16m1_t vs_0 = __riscv_vredsum_vs_i16m1_i16m1(p0, vzero, vl);
  4534. vint16m1_t vs_1 = __riscv_vredsum_vs_i16m1_i16m1(p1, vzero, vl);
  4535. vint16m1_t vs_2 = __riscv_vredsum_vs_i16m1_i16m1(p2, vzero, vl);
  4536. vint16m1_t vs_3 = __riscv_vredsum_vs_i16m1_i16m1(p3, vzero, vl);
  4537. isum1 += __riscv_vmv_x_s_i16m1_i16(vs_0) * scales[0];
  4538. isum2 += __riscv_vmv_x_s_i16m1_i16(vs_1) * scales[1];
  4539. isum1 += __riscv_vmv_x_s_i16m1_i16(vs_2) * scales[2];
  4540. isum2 += __riscv_vmv_x_s_i16m1_i16(vs_3) * scales[3];
  4541. sumf += d * (isum1 + isum2);
  4542. }
  4543. *s = sumf;
  4544. #else
  4545. float sumf = 0;
  4546. int isum[QK_K/16];
  4547. for (int i = 0; i < nb; ++i) {
  4548. const uint8_t * q2 = x[i].qs;
  4549. const int8_t * q8 = y[i].qs;
  4550. const uint8_t * sc = x[i].scales;
  4551. int summs = 0;
  4552. for (int j = 0; j < QK_K/16; ++j) {
  4553. summs += y[i].bsums[j] * (sc[j] >> 4);
  4554. }
  4555. const float dall = y[i].d * GGML_FP16_TO_FP32(x[i].d);
  4556. const float dmin = y[i].d * GGML_FP16_TO_FP32(x[i].dmin);
  4557. memset(isum, 0, (QK_K/16)*sizeof(int));
  4558. for (int l = 0; l < 16; ++l) {
  4559. isum[0] += q8[l+ 0] * ((q2[l] >> 0) & 3);
  4560. isum[1] += q8[l+16] * ((q2[l] >> 2) & 3);
  4561. isum[2] += q8[l+32] * ((q2[l] >> 4) & 3);
  4562. isum[3] += q8[l+48] * ((q2[l] >> 6) & 3);
  4563. }
  4564. for (int l = 0; l < QK_K/16; ++l) {
  4565. isum[l] *= (sc[l] & 0xF);
  4566. }
  4567. sumf += dall * (isum[0] + isum[1] + isum[2] + isum[3]) - dmin * summs;
  4568. }
  4569. *s = sumf;
  4570. #endif
  4571. }
  4572. #endif
  4573. #if QK_K == 256
  4574. void ggml_vec_dot_q3_K_q8_K(int n, float * restrict s, size_t bs, const void * restrict vx, size_t bx, const void * restrict vy, size_t by, int nrc) {
  4575. assert(n % QK_K == 0);
  4576. assert(nrc == 1);
  4577. UNUSED(nrc);
  4578. UNUSED(bx);
  4579. UNUSED(by);
  4580. UNUSED(bs);
  4581. const uint32_t kmask1 = 0x03030303;
  4582. const uint32_t kmask2 = 0x0f0f0f0f;
  4583. const block_q3_K * restrict x = vx;
  4584. const block_q8_K * restrict y = vy;
  4585. const int nb = n / QK_K;
  4586. #ifdef __ARM_NEON
  4587. uint32_t aux[3];
  4588. uint32_t utmp[4];
  4589. const uint8x16_t m3b = vdupq_n_u8(0x3);
  4590. const int32x4_t vzero = vdupq_n_s32(0);
  4591. const uint8x16_t m0 = vdupq_n_u8(1);
  4592. const uint8x16_t m1 = vshlq_n_u8(m0, 1);
  4593. const uint8x16_t m2 = vshlq_n_u8(m0, 2);
  4594. const uint8x16_t m3 = vshlq_n_u8(m0, 3);
  4595. const int8_t m32 = 32;
  4596. ggml_int8x16x4_t q3bytes;
  4597. float sum = 0;
  4598. for (int i = 0; i < nb; ++i) {
  4599. const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d);
  4600. const uint8_t * restrict q3 = x[i].qs;
  4601. const uint8_t * restrict qh = x[i].hmask;
  4602. const int8_t * restrict q8 = y[i].qs;
  4603. ggml_uint8x16x2_t qhbits = ggml_vld1q_u8_x2(qh);
  4604. ggml_uint8x16x4_t q3h;
  4605. int32_t isum = 0;
  4606. // Set up scales
  4607. memcpy(aux, x[i].scales, 12);
  4608. utmp[3] = ((aux[1] >> 4) & kmask2) | (((aux[2] >> 6) & kmask1) << 4);
  4609. utmp[2] = ((aux[0] >> 4) & kmask2) | (((aux[2] >> 4) & kmask1) << 4);
  4610. utmp[1] = (aux[1] & kmask2) | (((aux[2] >> 2) & kmask1) << 4);
  4611. utmp[0] = (aux[0] & kmask2) | (((aux[2] >> 0) & kmask1) << 4);
  4612. int8_t * scale = (int8_t *)utmp;
  4613. for (int j = 0; j < 16; ++j) scale[j] -= m32;
  4614. for (int j = 0; j < QK_K/128; ++j) {
  4615. const ggml_uint8x16x2_t q3bits = ggml_vld1q_u8_x2(q3); q3 += 32;
  4616. const ggml_int8x16x4_t q8bytes_1 = ggml_vld1q_s8_x4(q8); q8 += 64;
  4617. const ggml_int8x16x4_t q8bytes_2 = ggml_vld1q_s8_x4(q8); q8 += 64;
  4618. q3h.val[0] = vshlq_n_u8(vbicq_u8(m0, qhbits.val[0]), 2);
  4619. q3h.val[1] = vshlq_n_u8(vbicq_u8(m0, qhbits.val[1]), 2);
  4620. q3h.val[2] = vshlq_n_u8(vbicq_u8(m1, qhbits.val[0]), 1);
  4621. q3h.val[3] = vshlq_n_u8(vbicq_u8(m1, qhbits.val[1]), 1);
  4622. q3bytes.val[0] = vsubq_s8(vreinterpretq_s8_u8(vandq_u8(q3bits.val[0], m3b)), vreinterpretq_s8_u8(q3h.val[0]));
  4623. q3bytes.val[1] = vsubq_s8(vreinterpretq_s8_u8(vandq_u8(q3bits.val[1], m3b)), vreinterpretq_s8_u8(q3h.val[1]));
  4624. q3bytes.val[2] = vsubq_s8(vreinterpretq_s8_u8(vandq_u8(vshrq_n_u8(q3bits.val[0], 2), m3b)), vreinterpretq_s8_u8(q3h.val[2]));
  4625. q3bytes.val[3] = vsubq_s8(vreinterpretq_s8_u8(vandq_u8(vshrq_n_u8(q3bits.val[1], 2), m3b)), vreinterpretq_s8_u8(q3h.val[3]));
  4626. isum += vaddvq_s32(ggml_vdotq_s32(vzero, q3bytes.val[0], q8bytes_1.val[0])) * scale[0];
  4627. isum += vaddvq_s32(ggml_vdotq_s32(vzero, q3bytes.val[1], q8bytes_1.val[1])) * scale[1];
  4628. isum += vaddvq_s32(ggml_vdotq_s32(vzero, q3bytes.val[2], q8bytes_1.val[2])) * scale[2];
  4629. isum += vaddvq_s32(ggml_vdotq_s32(vzero, q3bytes.val[3], q8bytes_1.val[3])) * scale[3];
  4630. scale += 4;
  4631. q3h.val[0] = vbicq_u8(m2, qhbits.val[0]);
  4632. q3h.val[1] = vbicq_u8(m2, qhbits.val[1]);
  4633. q3h.val[2] = vshrq_n_u8(vbicq_u8(m3, qhbits.val[0]), 1);
  4634. q3h.val[3] = vshrq_n_u8(vbicq_u8(m3, qhbits.val[1]), 1);
  4635. q3bytes.val[0] = vsubq_s8(vreinterpretq_s8_u8(vandq_u8(vshrq_n_u8(q3bits.val[0], 4), m3b)), vreinterpretq_s8_u8(q3h.val[0]));
  4636. q3bytes.val[1] = vsubq_s8(vreinterpretq_s8_u8(vandq_u8(vshrq_n_u8(q3bits.val[1], 4), m3b)), vreinterpretq_s8_u8(q3h.val[1]));
  4637. q3bytes.val[2] = vsubq_s8(vreinterpretq_s8_u8(vandq_u8(vshrq_n_u8(q3bits.val[0], 6), m3b)), vreinterpretq_s8_u8(q3h.val[2]));
  4638. q3bytes.val[3] = vsubq_s8(vreinterpretq_s8_u8(vandq_u8(vshrq_n_u8(q3bits.val[1], 6), m3b)), vreinterpretq_s8_u8(q3h.val[3]));
  4639. isum += vaddvq_s32(ggml_vdotq_s32(vzero, q3bytes.val[0], q8bytes_2.val[0])) * scale[0];
  4640. isum += vaddvq_s32(ggml_vdotq_s32(vzero, q3bytes.val[1], q8bytes_2.val[1])) * scale[1];
  4641. isum += vaddvq_s32(ggml_vdotq_s32(vzero, q3bytes.val[2], q8bytes_2.val[2])) * scale[2];
  4642. isum += vaddvq_s32(ggml_vdotq_s32(vzero, q3bytes.val[3], q8bytes_2.val[3])) * scale[3];
  4643. scale += 4;
  4644. if (j == 0) {
  4645. qhbits.val[0] = vshrq_n_u8(qhbits.val[0], 4);
  4646. qhbits.val[1] = vshrq_n_u8(qhbits.val[1], 4);
  4647. }
  4648. }
  4649. sum += d * isum;
  4650. }
  4651. *s = sum;
  4652. #elif defined __AVX2__
  4653. const __m256i m3 = _mm256_set1_epi8(3);
  4654. const __m256i mone = _mm256_set1_epi8(1);
  4655. const __m128i m32 = _mm_set1_epi8(32);
  4656. __m256 acc = _mm256_setzero_ps();
  4657. uint32_t aux[3];
  4658. for (int i = 0; i < nb; ++i) {
  4659. const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d);
  4660. const uint8_t * restrict q3 = x[i].qs;
  4661. const int8_t * restrict q8 = y[i].qs;
  4662. // Set up scales
  4663. memcpy(aux, x[i].scales, 12);
  4664. __m128i scales128 = _mm_set_epi32(
  4665. ((aux[1] >> 4) & kmask2) | (((aux[2] >> 6) & kmask1) << 4),
  4666. ((aux[0] >> 4) & kmask2) | (((aux[2] >> 4) & kmask1) << 4),
  4667. (aux[1] & kmask2) | (((aux[2] >> 2) & kmask1) << 4),
  4668. (aux[0] & kmask2) | (((aux[2] >> 0) & kmask1) << 4));
  4669. scales128 = _mm_sub_epi8(scales128, m32);
  4670. const __m256i all_scales = _mm256_cvtepi8_epi16(scales128);
  4671. const __m128i l_scales = _mm256_extracti128_si256(all_scales, 0);
  4672. const __m128i h_scales = _mm256_extracti128_si256(all_scales, 1);
  4673. const __m256i scales[2] = {MM256_SET_M128I(l_scales, l_scales), MM256_SET_M128I(h_scales, h_scales)};
  4674. // high bit
  4675. const __m256i hbits = _mm256_loadu_si256((const __m256i*)x[i].hmask);
  4676. // integer accumulator
  4677. __m256i sumi = _mm256_setzero_si256();
  4678. int bit = 0;
  4679. int is = 0;
  4680. for (int j = 0; j < QK_K/128; ++j) {
  4681. // load low 2 bits
  4682. const __m256i q3bits = _mm256_loadu_si256((const __m256i*)q3); q3 += 32;
  4683. // prepare low and high bits
  4684. const __m256i q3l_0 = _mm256_and_si256(q3bits, m3);
  4685. const __m256i q3h_0 = _mm256_slli_epi16(_mm256_srli_epi16(_mm256_andnot_si256(hbits, _mm256_slli_epi16(mone, bit)), bit), 2);
  4686. ++bit;
  4687. const __m256i q3l_1 = _mm256_and_si256(_mm256_srli_epi16(q3bits, 2), m3);
  4688. const __m256i q3h_1 = _mm256_slli_epi16(_mm256_srli_epi16(_mm256_andnot_si256(hbits, _mm256_slli_epi16(mone, bit)), bit), 2);
  4689. ++bit;
  4690. const __m256i q3l_2 = _mm256_and_si256(_mm256_srli_epi16(q3bits, 4), m3);
  4691. const __m256i q3h_2 = _mm256_slli_epi16(_mm256_srli_epi16(_mm256_andnot_si256(hbits, _mm256_slli_epi16(mone, bit)), bit), 2);
  4692. ++bit;
  4693. const __m256i q3l_3 = _mm256_and_si256(_mm256_srli_epi16(q3bits, 6), m3);
  4694. const __m256i q3h_3 = _mm256_slli_epi16(_mm256_srli_epi16(_mm256_andnot_si256(hbits, _mm256_slli_epi16(mone, bit)), bit), 2);
  4695. ++bit;
  4696. // load Q8 quants
  4697. const __m256i q8_0 = _mm256_loadu_si256((const __m256i*)q8); q8 += 32;
  4698. const __m256i q8_1 = _mm256_loadu_si256((const __m256i*)q8); q8 += 32;
  4699. const __m256i q8_2 = _mm256_loadu_si256((const __m256i*)q8); q8 += 32;
  4700. const __m256i q8_3 = _mm256_loadu_si256((const __m256i*)q8); q8 += 32;
  4701. // Dot product: we multiply the 2 low bits and 1 high bit part separately, so we can use _mm256_maddubs_epi16,
  4702. // and then subtract. The high bit part has the 2 already subtracted (and so, it is zero if the high bit was not set,
  4703. // and 2 if the high bit was set)
  4704. __m256i q8s_0 = _mm256_maddubs_epi16(q3h_0, q8_0);
  4705. __m256i q8s_1 = _mm256_maddubs_epi16(q3h_1, q8_1);
  4706. __m256i q8s_2 = _mm256_maddubs_epi16(q3h_2, q8_2);
  4707. __m256i q8s_3 = _mm256_maddubs_epi16(q3h_3, q8_3);
  4708. __m256i p16_0 = _mm256_maddubs_epi16(q3l_0, q8_0);
  4709. __m256i p16_1 = _mm256_maddubs_epi16(q3l_1, q8_1);
  4710. __m256i p16_2 = _mm256_maddubs_epi16(q3l_2, q8_2);
  4711. __m256i p16_3 = _mm256_maddubs_epi16(q3l_3, q8_3);
  4712. p16_0 = _mm256_sub_epi16(p16_0, q8s_0);
  4713. p16_1 = _mm256_sub_epi16(p16_1, q8s_1);
  4714. p16_2 = _mm256_sub_epi16(p16_2, q8s_2);
  4715. p16_3 = _mm256_sub_epi16(p16_3, q8s_3);
  4716. // multiply with scales
  4717. p16_0 = _mm256_madd_epi16(_mm256_shuffle_epi8(scales[j], get_scale_shuffle_q3k(is + 0)), p16_0);
  4718. p16_1 = _mm256_madd_epi16(_mm256_shuffle_epi8(scales[j], get_scale_shuffle_q3k(is + 1)), p16_1);
  4719. p16_2 = _mm256_madd_epi16(_mm256_shuffle_epi8(scales[j], get_scale_shuffle_q3k(is + 2)), p16_2);
  4720. p16_3 = _mm256_madd_epi16(_mm256_shuffle_epi8(scales[j], get_scale_shuffle_q3k(is + 3)), p16_3);
  4721. // accumulate
  4722. p16_0 = _mm256_add_epi32(p16_0, p16_1);
  4723. p16_2 = _mm256_add_epi32(p16_2, p16_3);
  4724. sumi = _mm256_add_epi32(sumi, _mm256_add_epi32(p16_0, p16_2));
  4725. }
  4726. // multiply with block scale and accumulate
  4727. acc = _mm256_fmadd_ps(_mm256_broadcast_ss(&d), _mm256_cvtepi32_ps(sumi), acc);
  4728. }
  4729. *s = hsum_float_8(acc);
  4730. #elif defined __AVX__
  4731. const __m128i m3 = _mm_set1_epi8(3);
  4732. const __m128i mone = _mm_set1_epi8(1);
  4733. const __m128i m32 = _mm_set1_epi8(32);
  4734. const __m128i m2 = _mm_set1_epi8(2);
  4735. __m256 acc = _mm256_setzero_ps();
  4736. const uint32_t *aux;
  4737. for (int i = 0; i < nb; ++i) {
  4738. const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d);
  4739. const uint8_t * restrict q3 = x[i].qs;
  4740. const int8_t * restrict q8 = y[i].qs;
  4741. // Set up scales
  4742. aux = (const uint32_t *)x[i].scales;
  4743. __m128i scales128 = _mm_set_epi32(
  4744. ((aux[1] >> 4) & kmask2) | (((aux[2] >> 6) & kmask1) << 4),
  4745. ((aux[0] >> 4) & kmask2) | (((aux[2] >> 4) & kmask1) << 4),
  4746. (aux[1] & kmask2) | (((aux[2] >> 2) & kmask1) << 4),
  4747. (aux[0] & kmask2) | (((aux[2] >> 0) & kmask1) << 4));
  4748. scales128 = _mm_sub_epi8(scales128, m32);
  4749. const __m128i scales_0 = _mm_cvtepi8_epi16(scales128);
  4750. const __m128i scales_1 = _mm_cvtepi8_epi16(_mm_unpackhi_epi64(scales128, scales128));
  4751. const __m128i scales[2] = { scales_0, scales_1 };
  4752. // high bit *128*2 from block_q3_K.hmask[QK_K/8]
  4753. const __m128i hbits_0 = _mm_loadu_si128((const __m128i*)&x[i].hmask[0]);
  4754. const __m128i hbits_1 = _mm_loadu_si128((const __m128i*)&x[i].hmask[16]);
  4755. // integer accumulator
  4756. __m128i sumi_0 = _mm_setzero_si128();
  4757. __m128i sumi_1 = _mm_setzero_si128();
  4758. for (int j = 0; j < QK_K/128; ++j) {
  4759. // load low 2 bits *64*2 from block_q3_K.qs[QK_K/4]
  4760. const __m128i q3bits_0 = _mm_loadu_si128((const __m128i*)q3); q3 += 16;
  4761. const __m128i q3bits_1 = _mm_loadu_si128((const __m128i*)q3); q3 += 16;
  4762. // prepare low and high bits
  4763. const int bit = j << 2;
  4764. const __m128i q3l_0 = _mm_and_si128(q3bits_0, m3);
  4765. const __m128i q3l_1 = _mm_and_si128(q3bits_1, m3);
  4766. const __m128i q3h_0 = _mm_slli_epi16(_mm_srli_epi16(_mm_andnot_si128(hbits_0, _mm_slli_epi16(mone, bit)), bit), 2);
  4767. const __m128i q3h_1 = _mm_slli_epi16(_mm_srli_epi16(_mm_andnot_si128(hbits_1, _mm_slli_epi16(mone, bit)), bit), 2);
  4768. const __m128i q3l_2 = _mm_and_si128(_mm_srli_epi16(q3bits_0, 2), m3);
  4769. const __m128i q3l_3 = _mm_and_si128(_mm_srli_epi16(q3bits_1, 2), m3);
  4770. const __m128i q3h_2 = _mm_slli_epi16(_mm_srli_epi16(_mm_andnot_si128(hbits_0, _mm_slli_epi16(mone, bit+1)), bit+1), 2);
  4771. const __m128i q3h_3 = _mm_slli_epi16(_mm_srli_epi16(_mm_andnot_si128(hbits_1, _mm_slli_epi16(mone, bit+1)), bit+1), 2);
  4772. const __m128i q3l_4 = _mm_and_si128(_mm_srli_epi16(q3bits_0, 4), m3);
  4773. const __m128i q3l_5 = _mm_and_si128(_mm_srli_epi16(q3bits_1, 4), m3);
  4774. const __m128i q3h_4 = _mm_slli_epi16(_mm_srli_epi16(_mm_andnot_si128(hbits_0, _mm_slli_epi16(mone, bit+2)), bit+2), 2);
  4775. const __m128i q3h_5 = _mm_slli_epi16(_mm_srli_epi16(_mm_andnot_si128(hbits_1, _mm_slli_epi16(mone, bit+2)), bit+2), 2);
  4776. const __m128i q3l_6 = _mm_and_si128(_mm_srli_epi16(q3bits_0, 6), m3);
  4777. const __m128i q3l_7 = _mm_and_si128(_mm_srli_epi16(q3bits_1, 6), m3);
  4778. const __m128i q3h_6 = _mm_slli_epi16(_mm_srli_epi16(_mm_andnot_si128(hbits_0, _mm_slli_epi16(mone, bit+3)), bit+3), 2);
  4779. const __m128i q3h_7 = _mm_slli_epi16(_mm_srli_epi16(_mm_andnot_si128(hbits_1, _mm_slli_epi16(mone, bit+3)), bit+3), 2);
  4780. // load Q8 quants from block_q8_K.qs[QK_K]
  4781. const __m128i q8_0 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  4782. const __m128i q8_1 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  4783. const __m128i q8_2 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  4784. const __m128i q8_3 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  4785. const __m128i q8_4 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  4786. const __m128i q8_5 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  4787. const __m128i q8_6 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  4788. const __m128i q8_7 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  4789. // Dot product: we multiply the 2 low bits and 1 high bit part separately, so we can use _mm256_maddubs_epi16,
  4790. // and then subtract. The high bit part has the 2 already subtracted (and so, it is zero if the high bit was not set,
  4791. // and 2 if the high bit was set)
  4792. __m128i q8s_0 = _mm_maddubs_epi16(q3h_0, q8_0);
  4793. __m128i q8s_1 = _mm_maddubs_epi16(q3h_1, q8_1);
  4794. __m128i q8s_2 = _mm_maddubs_epi16(q3h_2, q8_2);
  4795. __m128i q8s_3 = _mm_maddubs_epi16(q3h_3, q8_3);
  4796. __m128i q8s_4 = _mm_maddubs_epi16(q3h_4, q8_4);
  4797. __m128i q8s_5 = _mm_maddubs_epi16(q3h_5, q8_5);
  4798. __m128i q8s_6 = _mm_maddubs_epi16(q3h_6, q8_6);
  4799. __m128i q8s_7 = _mm_maddubs_epi16(q3h_7, q8_7);
  4800. __m128i p16_0 = _mm_maddubs_epi16(q3l_0, q8_0);
  4801. __m128i p16_1 = _mm_maddubs_epi16(q3l_1, q8_1);
  4802. __m128i p16_2 = _mm_maddubs_epi16(q3l_2, q8_2);
  4803. __m128i p16_3 = _mm_maddubs_epi16(q3l_3, q8_3);
  4804. __m128i p16_4 = _mm_maddubs_epi16(q3l_4, q8_4);
  4805. __m128i p16_5 = _mm_maddubs_epi16(q3l_5, q8_5);
  4806. __m128i p16_6 = _mm_maddubs_epi16(q3l_6, q8_6);
  4807. __m128i p16_7 = _mm_maddubs_epi16(q3l_7, q8_7);
  4808. p16_0 = _mm_sub_epi16(p16_0, q8s_0);
  4809. p16_1 = _mm_sub_epi16(p16_1, q8s_1);
  4810. p16_2 = _mm_sub_epi16(p16_2, q8s_2);
  4811. p16_3 = _mm_sub_epi16(p16_3, q8s_3);
  4812. p16_4 = _mm_sub_epi16(p16_4, q8s_4);
  4813. p16_5 = _mm_sub_epi16(p16_5, q8s_5);
  4814. p16_6 = _mm_sub_epi16(p16_6, q8s_6);
  4815. p16_7 = _mm_sub_epi16(p16_7, q8s_7);
  4816. // multiply with scales
  4817. __m128i shuffle = _mm_set1_epi16(0x0100);
  4818. p16_0 = _mm_madd_epi16(_mm_shuffle_epi8(scales[j], shuffle), p16_0);
  4819. shuffle = _mm_add_epi16(shuffle, m2);
  4820. p16_1 = _mm_madd_epi16(_mm_shuffle_epi8(scales[j], shuffle), p16_1);
  4821. shuffle = _mm_add_epi16(shuffle, m2);
  4822. p16_2 = _mm_madd_epi16(_mm_shuffle_epi8(scales[j], shuffle), p16_2);
  4823. shuffle = _mm_add_epi16(shuffle, m2);
  4824. p16_3 = _mm_madd_epi16(_mm_shuffle_epi8(scales[j], shuffle), p16_3);
  4825. shuffle = _mm_add_epi16(shuffle, m2);
  4826. p16_4 = _mm_madd_epi16(_mm_shuffle_epi8(scales[j], shuffle), p16_4);
  4827. shuffle = _mm_add_epi16(shuffle, m2);
  4828. p16_5 = _mm_madd_epi16(_mm_shuffle_epi8(scales[j], shuffle), p16_5);
  4829. shuffle = _mm_add_epi16(shuffle, m2);
  4830. p16_6 = _mm_madd_epi16(_mm_shuffle_epi8(scales[j], shuffle), p16_6);
  4831. shuffle = _mm_add_epi16(shuffle, m2);
  4832. p16_7 = _mm_madd_epi16(_mm_shuffle_epi8(scales[j], shuffle), p16_7);
  4833. // accumulate
  4834. p16_0 = _mm_add_epi32(p16_0, p16_1);
  4835. p16_2 = _mm_add_epi32(p16_2, p16_3);
  4836. p16_4 = _mm_add_epi32(p16_4, p16_5);
  4837. p16_6 = _mm_add_epi32(p16_6, p16_7);
  4838. sumi_0 = _mm_add_epi32(sumi_0, _mm_add_epi32(p16_0, p16_2));
  4839. sumi_1 = _mm_add_epi32(sumi_1, _mm_add_epi32(p16_4, p16_6));
  4840. }
  4841. // multiply with block scale and accumulate
  4842. __m256i sumi = MM256_SET_M128I(sumi_1, sumi_0);
  4843. acc = _mm256_add_ps(_mm256_mul_ps(_mm256_broadcast_ss(&d), _mm256_cvtepi32_ps(sumi)), acc);
  4844. }
  4845. *s = hsum_float_8(acc);
  4846. #elif defined __riscv_v_intrinsic
  4847. uint32_t aux[3];
  4848. uint32_t utmp[4];
  4849. float sumf = 0;
  4850. for (int i = 0; i < nb; ++i) {
  4851. const uint8_t * restrict q3 = x[i].qs;
  4852. const uint8_t * restrict qh = x[i].hmask;
  4853. const int8_t * restrict q8 = y[i].qs;
  4854. memcpy(aux, x[i].scales, 12);
  4855. utmp[3] = ((aux[1] >> 4) & kmask2) | (((aux[2] >> 6) & kmask1) << 4);
  4856. utmp[2] = ((aux[0] >> 4) & kmask2) | (((aux[2] >> 4) & kmask1) << 4);
  4857. utmp[1] = (aux[1] & kmask2) | (((aux[2] >> 2) & kmask1) << 4);
  4858. utmp[0] = (aux[0] & kmask2) | (((aux[2] >> 0) & kmask1) << 4);
  4859. int8_t * scale = (int8_t *)utmp;
  4860. for (int j = 0; j < 16; ++j) scale[j] -= 32;
  4861. size_t vl = 32;
  4862. uint8_t m = 1;
  4863. vint32m1_t vzero = __riscv_vmv_v_x_i32m1(0, 1);
  4864. vuint8m1_t vqh = __riscv_vle8_v_u8m1(qh, vl);
  4865. int sum_t = 0;
  4866. for (int j = 0; j < QK_K; j += 128) {
  4867. vl = 32;
  4868. // load Q3
  4869. vuint8m1_t q3_x = __riscv_vle8_v_u8m1(q3, vl);
  4870. vint8m1_t q3_0 = __riscv_vreinterpret_v_u8m1_i8m1(__riscv_vand_vx_u8m1(q3_x, 0x03, vl));
  4871. vint8m1_t q3_1 = __riscv_vreinterpret_v_u8m1_i8m1(__riscv_vand_vx_u8m1(__riscv_vsrl_vx_u8m1(q3_x, 0x2, vl), 0x03 , vl));
  4872. vint8m1_t q3_2 = __riscv_vreinterpret_v_u8m1_i8m1(__riscv_vand_vx_u8m1(__riscv_vsrl_vx_u8m1(q3_x, 0x4, vl), 0x03 , vl));
  4873. vint8m1_t q3_3 = __riscv_vreinterpret_v_u8m1_i8m1(__riscv_vand_vx_u8m1(__riscv_vsrl_vx_u8m1(q3_x, 0x6, vl), 0x03 , vl));
  4874. // compute mask for subtraction
  4875. vuint8m1_t qh_m0 = __riscv_vand_vx_u8m1(vqh, m, vl);
  4876. vbool8_t vmask_0 = __riscv_vmseq_vx_u8m1_b8(qh_m0, 0, vl);
  4877. vint8m1_t q3_m0 = __riscv_vsub_vx_i8m1_m(vmask_0, q3_0, 0x4, vl);
  4878. m <<= 1;
  4879. vuint8m1_t qh_m1 = __riscv_vand_vx_u8m1(vqh, m, vl);
  4880. vbool8_t vmask_1 = __riscv_vmseq_vx_u8m1_b8(qh_m1, 0, vl);
  4881. vint8m1_t q3_m1 = __riscv_vsub_vx_i8m1_m(vmask_1, q3_1, 0x4, vl);
  4882. m <<= 1;
  4883. vuint8m1_t qh_m2 = __riscv_vand_vx_u8m1(vqh, m, vl);
  4884. vbool8_t vmask_2 = __riscv_vmseq_vx_u8m1_b8(qh_m2, 0, vl);
  4885. vint8m1_t q3_m2 = __riscv_vsub_vx_i8m1_m(vmask_2, q3_2, 0x4, vl);
  4886. m <<= 1;
  4887. vuint8m1_t qh_m3 = __riscv_vand_vx_u8m1(vqh, m, vl);
  4888. vbool8_t vmask_3 = __riscv_vmseq_vx_u8m1_b8(qh_m3, 0, vl);
  4889. vint8m1_t q3_m3 = __riscv_vsub_vx_i8m1_m(vmask_3, q3_3, 0x4, vl);
  4890. m <<= 1;
  4891. // load Q8 and take product with Q3
  4892. vint16m2_t a0 = __riscv_vwmul_vv_i16m2(q3_m0, __riscv_vle8_v_i8m1(q8, vl), vl);
  4893. vint16m2_t a1 = __riscv_vwmul_vv_i16m2(q3_m1, __riscv_vle8_v_i8m1(q8+32, vl), vl);
  4894. vint16m2_t a2 = __riscv_vwmul_vv_i16m2(q3_m2, __riscv_vle8_v_i8m1(q8+64, vl), vl);
  4895. vint16m2_t a3 = __riscv_vwmul_vv_i16m2(q3_m3, __riscv_vle8_v_i8m1(q8+96, vl), vl);
  4896. vl = 16;
  4897. // retrieve lane to multiply with scale
  4898. vint32m2_t aux0_0 = __riscv_vwmul_vx_i32m2(__riscv_vget_v_i16m2_i16m1(a0, 0), (scale[0]), vl);
  4899. vint32m2_t aux0_1 = __riscv_vwmul_vx_i32m2(__riscv_vget_v_i16m2_i16m1(a0, 1), (scale[1]), vl);
  4900. vint32m2_t aux1_0 = __riscv_vwmul_vx_i32m2(__riscv_vget_v_i16m2_i16m1(a1, 0), (scale[2]), vl);
  4901. vint32m2_t aux1_1 = __riscv_vwmul_vx_i32m2(__riscv_vget_v_i16m2_i16m1(a1, 1), (scale[3]), vl);
  4902. vint32m2_t aux2_0 = __riscv_vwmul_vx_i32m2(__riscv_vget_v_i16m2_i16m1(a2, 0), (scale[4]), vl);
  4903. vint32m2_t aux2_1 = __riscv_vwmul_vx_i32m2(__riscv_vget_v_i16m2_i16m1(a2, 1), (scale[5]), vl);
  4904. vint32m2_t aux3_0 = __riscv_vwmul_vx_i32m2(__riscv_vget_v_i16m2_i16m1(a3, 0), (scale[6]), vl);
  4905. vint32m2_t aux3_1 = __riscv_vwmul_vx_i32m2(__riscv_vget_v_i16m2_i16m1(a3, 1), (scale[7]), vl);
  4906. vint32m1_t isum0 = __riscv_vredsum_vs_i32m2_i32m1(__riscv_vadd_vv_i32m2(aux0_0, aux0_1, vl), vzero, vl);
  4907. vint32m1_t isum1 = __riscv_vredsum_vs_i32m2_i32m1(__riscv_vadd_vv_i32m2(aux1_0, aux1_1, vl), isum0, vl);
  4908. vint32m1_t isum2 = __riscv_vredsum_vs_i32m2_i32m1(__riscv_vadd_vv_i32m2(aux2_0, aux2_1, vl), isum1, vl);
  4909. vint32m1_t isum3 = __riscv_vredsum_vs_i32m2_i32m1(__riscv_vadd_vv_i32m2(aux3_0, aux3_1, vl), isum2, vl);
  4910. sum_t += __riscv_vmv_x_s_i32m1_i32(isum3);
  4911. q3 += 32; q8 += 128; scale += 8;
  4912. }
  4913. const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d;
  4914. sumf += d*sum_t;
  4915. }
  4916. *s = sumf;
  4917. #else
  4918. // scalar version
  4919. // This function is written like this so the compiler can manage to vectorize most of it
  4920. // Using -Ofast, GCC and clang manage to produce code that is within a factor of 2 or so from the
  4921. // manually vectorized version above. Every other version I tried would run at least 4 times slower.
  4922. // The ideal situation would be if we could just write the code once, and the compiler would
  4923. // automatically produce the best possible set of machine instructions, instead of us having to manually
  4924. // write vectorized versions for AVX, ARM_NEON, etc.
  4925. int8_t aux8[QK_K];
  4926. int16_t aux16[8];
  4927. float sums [8];
  4928. int32_t aux32[8];
  4929. memset(sums, 0, 8*sizeof(float));
  4930. uint32_t auxs[4];
  4931. const int8_t * scales = (const int8_t*)auxs;
  4932. float sumf = 0;
  4933. for (int i = 0; i < nb; ++i) {
  4934. const uint8_t * restrict q3 = x[i].qs;
  4935. const uint8_t * restrict hm = x[i].hmask;
  4936. const int8_t * restrict q8 = y[i].qs;
  4937. memset(aux32, 0, 8*sizeof(int32_t));
  4938. int8_t * restrict a = aux8;
  4939. uint8_t m = 1;
  4940. for (int j = 0; j < QK_K; j += 128) {
  4941. for (int l = 0; l < 32; ++l) a[l] = q3[l] & 3;
  4942. for (int l = 0; l < 32; ++l) a[l] -= (hm[l] & m ? 0 : 4);
  4943. a += 32; m <<= 1;
  4944. for (int l = 0; l < 32; ++l) a[l] = (q3[l] >> 2) & 3;
  4945. for (int l = 0; l < 32; ++l) a[l] -= (hm[l] & m ? 0 : 4);
  4946. a += 32; m <<= 1;
  4947. for (int l = 0; l < 32; ++l) a[l] = (q3[l] >> 4) & 3;
  4948. for (int l = 0; l < 32; ++l) a[l] -= (hm[l] & m ? 0 : 4);
  4949. a += 32; m <<= 1;
  4950. for (int l = 0; l < 32; ++l) a[l] = (q3[l] >> 6) & 3;
  4951. for (int l = 0; l < 32; ++l) a[l] -= (hm[l] & m ? 0 : 4);
  4952. a += 32; m <<= 1;
  4953. q3 += 32;
  4954. }
  4955. a = aux8;
  4956. memcpy(auxs, x[i].scales, 12);
  4957. uint32_t tmp = auxs[2];
  4958. auxs[2] = ((auxs[0] >> 4) & kmask2) | (((tmp >> 4) & kmask1) << 4);
  4959. auxs[3] = ((auxs[1] >> 4) & kmask2) | (((tmp >> 6) & kmask1) << 4);
  4960. auxs[0] = (auxs[0] & kmask2) | (((tmp >> 0) & kmask1) << 4);
  4961. auxs[1] = (auxs[1] & kmask2) | (((tmp >> 2) & kmask1) << 4);
  4962. for (int j = 0; j < QK_K/16; ++j) {
  4963. for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
  4964. for (int l = 0; l < 8; ++l) aux32[l] += (scales[j] - 32) * aux16[l];
  4965. q8 += 8; a += 8;
  4966. for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
  4967. for (int l = 0; l < 8; ++l) aux32[l] += (scales[j] - 32) * aux16[l];
  4968. q8 += 8; a += 8;
  4969. }
  4970. const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d;
  4971. for (int l = 0; l < 8; ++l) sums[l] += d * aux32[l];
  4972. }
  4973. for (int l = 0; l < 8; ++l) sumf += sums[l];
  4974. *s = sumf;
  4975. #endif
  4976. }
  4977. #else
  4978. void ggml_vec_dot_q3_K_q8_K(int n, float * restrict s, size_t bs, const void * restrict vx, size_t bx, const void * restrict vy, size_t by, int nrc) {
  4979. assert(n % QK_K == 0);
  4980. assert(nrc == 1);
  4981. UNUSED(nrc);
  4982. UNUSED(bx);
  4983. UNUSED(by);
  4984. UNUSED(bs);
  4985. const block_q3_K * restrict x = vx;
  4986. const block_q8_K * restrict y = vy;
  4987. const int nb = n / QK_K;
  4988. #ifdef __ARM_NEON
  4989. const int32x4_t vzero = vdupq_n_s32(0);
  4990. const uint8x16_t m3b = vdupq_n_u8(0x3);
  4991. const uint8x16_t mh = vdupq_n_u8(4);
  4992. ggml_int8x16x4_t q3bytes;
  4993. uint16_t aux16[2];
  4994. int8_t * scales = (int8_t *)aux16;
  4995. float sum = 0;
  4996. for (int i = 0; i < nb; ++i) {
  4997. ggml_uint8x16x4_t q3h;
  4998. const uint8x8_t hbits = vld1_u8(x[i].hmask);
  4999. const uint8x16_t q3bits = vld1q_u8(x[i].qs);
  5000. const ggml_int8x16x4_t q8bytes = ggml_vld1q_s8_x4(y[i].qs);
  5001. const uint16_t a = *(const uint16_t *)x[i].scales;
  5002. aux16[0] = a & 0x0f0f;
  5003. aux16[1] = (a >> 4) & 0x0f0f;
  5004. for (int j = 0; j < 4; ++j) scales[j] -= 8;
  5005. int32_t isum = -4*(scales[0] * y[i].bsums[0] + scales[2] * y[i].bsums[1] + scales[1] * y[i].bsums[2] + scales[3] * y[i].bsums[3]);
  5006. const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d);
  5007. const uint8x16_t htmp = vcombine_u8(hbits, vshr_n_u8(hbits, 1));
  5008. q3h.val[0] = vandq_u8(mh, vshlq_n_u8(htmp, 2));
  5009. q3h.val[1] = vandq_u8(mh, htmp);
  5010. q3h.val[2] = vandq_u8(mh, vshrq_n_u8(htmp, 2));
  5011. q3h.val[3] = vandq_u8(mh, vshrq_n_u8(htmp, 4));
  5012. q3bytes.val[0] = vreinterpretq_s8_u8(vorrq_u8(vandq_u8(q3bits, m3b), q3h.val[0]));
  5013. q3bytes.val[1] = vreinterpretq_s8_u8(vorrq_u8(vandq_u8(vshrq_n_u8(q3bits, 2), m3b), q3h.val[1]));
  5014. q3bytes.val[2] = vreinterpretq_s8_u8(vorrq_u8(vandq_u8(vshrq_n_u8(q3bits, 4), m3b), q3h.val[2]));
  5015. q3bytes.val[3] = vreinterpretq_s8_u8(vorrq_u8(vshrq_n_u8(q3bits, 6), q3h.val[3]));
  5016. isum += vaddvq_s32(ggml_vdotq_s32(vzero, q3bytes.val[0], q8bytes.val[0])) * scales[0];
  5017. isum += vaddvq_s32(ggml_vdotq_s32(vzero, q3bytes.val[1], q8bytes.val[1])) * scales[2];
  5018. isum += vaddvq_s32(ggml_vdotq_s32(vzero, q3bytes.val[2], q8bytes.val[2])) * scales[1];
  5019. isum += vaddvq_s32(ggml_vdotq_s32(vzero, q3bytes.val[3], q8bytes.val[3])) * scales[3];
  5020. sum += d * isum;
  5021. }
  5022. *s = sum;
  5023. #elif defined __AVX2__
  5024. const __m256i m3 = _mm256_set1_epi8(3);
  5025. const __m256i m1 = _mm256_set1_epi8(1);
  5026. __m256 acc = _mm256_setzero_ps();
  5027. uint64_t aux64;
  5028. uint16_t aux16[2];
  5029. const int8_t * aux8 = (const int8_t *)aux16;
  5030. for (int i = 0; i < nb; ++i) {
  5031. const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d);
  5032. const uint8_t * restrict q3 = x[i].qs;
  5033. const int8_t * restrict q8 = y[i].qs;
  5034. const uint16_t a = *(const uint16_t *)x[i].scales;
  5035. aux16[0] = a & 0x0f0f;
  5036. aux16[1] = (a >> 4) & 0x0f0f;
  5037. const __m256i scale_0 = MM256_SET_M128I(_mm_set1_epi16(aux8[2] - 8), _mm_set1_epi16(aux8[0] - 8));
  5038. const __m256i scale_1 = MM256_SET_M128I(_mm_set1_epi16(aux8[3] - 8), _mm_set1_epi16(aux8[1] - 8));
  5039. memcpy(&aux64, x[i].hmask, 8);
  5040. const __m128i haux = _mm_set_epi64x(aux64 >> 1, aux64 >> 0);
  5041. __m256i q3h_0 = MM256_SET_M128I(_mm_srli_epi16(haux, 2), haux);
  5042. __m256i q3h_1 = _mm256_srli_epi16(q3h_0, 4);
  5043. q3h_0 = _mm256_slli_epi16(_mm256_andnot_si256(q3h_0, m1), 2);
  5044. q3h_1 = _mm256_slli_epi16(_mm256_andnot_si256(q3h_1, m1), 2);
  5045. // load low 2 bits
  5046. const __m128i q3bits = _mm_loadu_si128((const __m128i*)q3);
  5047. // prepare low and high bits
  5048. const __m256i q3aux = MM256_SET_M128I(_mm_srli_epi16(q3bits, 2), q3bits);
  5049. const __m256i q3l_0 = _mm256_and_si256(q3aux, m3);
  5050. const __m256i q3l_1 = _mm256_and_si256(_mm256_srli_epi16(q3aux, 4), m3);
  5051. // load Q8 quants
  5052. const __m256i q8_0 = _mm256_loadu_si256((const __m256i*)(q8+ 0));
  5053. const __m256i q8_1 = _mm256_loadu_si256((const __m256i*)(q8+32));
  5054. // Dot product: we multiply the 2 low bits and 1 high bit part separately, so we can use _mm256_maddubs_epi16,
  5055. // and then subtract. The high bit part has the 2 already subtracted (and so, it is zero if the high bit was not set,
  5056. // and 2 if the high bit was set)
  5057. const __m256i q8s_0 = _mm256_maddubs_epi16(q3h_0, q8_0);
  5058. const __m256i q8s_1 = _mm256_maddubs_epi16(q3h_1, q8_1);
  5059. __m256i p16_0 = _mm256_maddubs_epi16(q3l_0, q8_0);
  5060. __m256i p16_1 = _mm256_maddubs_epi16(q3l_1, q8_1);
  5061. p16_0 = _mm256_sub_epi16(p16_0, q8s_0);
  5062. p16_1 = _mm256_sub_epi16(p16_1, q8s_1);
  5063. // multiply with scales
  5064. p16_0 = _mm256_madd_epi16(scale_0, p16_0);
  5065. p16_1 = _mm256_madd_epi16(scale_1, p16_1);
  5066. p16_0 = _mm256_add_epi32(p16_0, p16_1);
  5067. // multiply with block scale and accumulate
  5068. acc = _mm256_fmadd_ps(_mm256_broadcast_ss(&d), _mm256_cvtepi32_ps(p16_0), acc);
  5069. }
  5070. *s = hsum_float_8(acc);
  5071. #elif defined __AVX__
  5072. const __m128i m3 = _mm_set1_epi8(3);
  5073. const __m128i m1 = _mm_set1_epi8(1);
  5074. __m256 acc = _mm256_setzero_ps();
  5075. uint64_t aux64;
  5076. uint16_t aux16[2];
  5077. const int8_t * aux8 = (const int8_t *)aux16;
  5078. for (int i = 0; i < nb; ++i) {
  5079. const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d);
  5080. const uint8_t * restrict q3 = x[i].qs;
  5081. const int8_t * restrict q8 = y[i].qs;
  5082. const uint16_t a = *(const uint16_t *)x[i].scales;
  5083. aux16[0] = a & 0x0f0f;
  5084. aux16[1] = (a >> 4) & 0x0f0f;
  5085. const __m128i scale_0 = _mm_set1_epi16(aux8[0] - 8);
  5086. const __m128i scale_1 = _mm_set1_epi16(aux8[2] - 8);
  5087. const __m128i scale_2 = _mm_set1_epi16(aux8[1] - 8);
  5088. const __m128i scale_3 = _mm_set1_epi16(aux8[3] - 8);
  5089. memcpy(&aux64, x[i].hmask, 8);
  5090. __m128i q3h_0 = _mm_set_epi64x(aux64 >> 1, aux64 >> 0);
  5091. __m128i q3h_1 = _mm_srli_epi16(q3h_0, 2);
  5092. __m128i q3h_2 = _mm_srli_epi16(q3h_0, 4);
  5093. __m128i q3h_3 = _mm_srli_epi16(q3h_0, 6);
  5094. q3h_0 = _mm_slli_epi16(_mm_andnot_si128(q3h_0, m1), 2);
  5095. q3h_1 = _mm_slli_epi16(_mm_andnot_si128(q3h_1, m1), 2);
  5096. q3h_2 = _mm_slli_epi16(_mm_andnot_si128(q3h_2, m1), 2);
  5097. q3h_3 = _mm_slli_epi16(_mm_andnot_si128(q3h_3, m1), 2);
  5098. // load low 2 bits
  5099. const __m128i q3bits = _mm_loadu_si128((const __m128i*)q3);
  5100. // prepare low and high bits
  5101. const __m128i q3l_0 = _mm_and_si128(q3bits, m3);
  5102. const __m128i q3l_1 = _mm_and_si128(_mm_srli_epi16(q3bits, 2), m3);
  5103. const __m128i q3l_2 = _mm_and_si128(_mm_srli_epi16(q3bits, 4), m3);
  5104. const __m128i q3l_3 = _mm_and_si128(_mm_srli_epi16(q3bits, 6), m3);
  5105. // load Q8 quants
  5106. const __m256i q8_0 = _mm256_loadu_si256((const __m256i*)(q8+ 0));
  5107. const __m256i q8_1 = _mm256_loadu_si256((const __m256i*)(q8+32));
  5108. // Dot product: we multiply the 2 low bits and 1 high bit part separately, so we can use _mm_maddubs_epi16,
  5109. // and then subtract. The high bit part has the 2 already subtracted (and so, it is zero if the high bit was not set,
  5110. // and 2 if the high bit was set)
  5111. const __m128i q8s_0 = _mm_maddubs_epi16(q3h_0, _mm256_extractf128_si256(q8_0, 0));
  5112. const __m128i q8s_1 = _mm_maddubs_epi16(q3h_1, _mm256_extractf128_si256(q8_0, 1));
  5113. const __m128i q8s_2 = _mm_maddubs_epi16(q3h_2, _mm256_extractf128_si256(q8_1, 0));
  5114. const __m128i q8s_3 = _mm_maddubs_epi16(q3h_3, _mm256_extractf128_si256(q8_1, 1));
  5115. __m128i p16_0 = _mm_maddubs_epi16(q3l_0, _mm256_extractf128_si256(q8_0, 0));
  5116. __m128i p16_1 = _mm_maddubs_epi16(q3l_1, _mm256_extractf128_si256(q8_0, 1));
  5117. __m128i p16_2 = _mm_maddubs_epi16(q3l_2, _mm256_extractf128_si256(q8_1, 0));
  5118. __m128i p16_3 = _mm_maddubs_epi16(q3l_3, _mm256_extractf128_si256(q8_1, 1));
  5119. p16_0 = _mm_sub_epi16(p16_0, q8s_0);
  5120. p16_1 = _mm_sub_epi16(p16_1, q8s_1);
  5121. p16_2 = _mm_sub_epi16(p16_2, q8s_2);
  5122. p16_3 = _mm_sub_epi16(p16_3, q8s_3);
  5123. // multiply with scales
  5124. p16_0 = _mm_madd_epi16(scale_0, p16_0);
  5125. p16_1 = _mm_madd_epi16(scale_1, p16_1);
  5126. p16_2 = _mm_madd_epi16(scale_2, p16_2);
  5127. p16_3 = _mm_madd_epi16(scale_3, p16_3);
  5128. p16_0 = _mm_add_epi32(p16_0, p16_2);
  5129. p16_1 = _mm_add_epi32(p16_1, p16_3);
  5130. __m256i p16 = MM256_SET_M128I(p16_1, p16_0);
  5131. // multiply with block scale and accumulate
  5132. acc = _mm256_add_ps(_mm256_mul_ps(_mm256_broadcast_ss(&d), _mm256_cvtepi32_ps(p16)), acc);
  5133. }
  5134. *s = hsum_float_8(acc);
  5135. #elif defined __riscv_v_intrinsic
  5136. uint16_t aux16[2];
  5137. int8_t * scales = (int8_t *)aux16;
  5138. float sumf = 0;
  5139. for (int i = 0; i < nb; ++i) {
  5140. const uint8_t * restrict q3 = x[i].qs;
  5141. const int8_t * restrict q8 = y[i].qs;
  5142. const uint16_t a = *(const uint16_t *)x[i].scales;
  5143. aux16[0] = a & 0x0f0f;
  5144. aux16[1] = (a >> 4) & 0x0f0f;
  5145. for (int j = 0; j < 4; ++j) scales[j] -= 8;
  5146. int32_t isum = -4*(scales[0] * y[i].bsums[0] + scales[2] * y[i].bsums[1] + scales[1] * y[i].bsums[2] + scales[3] * y[i].bsums[3]);
  5147. const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d);
  5148. vint32m1_t vzero = __riscv_vmv_v_x_i32m1(0, 1);
  5149. // load qh
  5150. vuint8mf4_t qh_x1 = __riscv_vle8_v_u8mf4(x[i].hmask, 8);
  5151. vuint8mf2_t qh_x2 = __riscv_vlmul_ext_v_u8mf4_u8mf2(__riscv_vsrl_vx_u8mf4(qh_x1, 1, 8));
  5152. size_t vl = 16;
  5153. // extend and combine both qh_x1 and qh_x2
  5154. vuint8mf2_t qh_x = __riscv_vslideup_vx_u8mf2(__riscv_vlmul_ext_v_u8mf4_u8mf2(qh_x1), qh_x2, vl/2, vl);
  5155. vuint8mf2_t qh_0 = __riscv_vand_vx_u8mf2(__riscv_vsll_vx_u8mf2(qh_x, 0x2, vl), 0x4, vl);
  5156. vuint8mf2_t qh_1 = __riscv_vand_vx_u8mf2(qh_x, 0x4, vl);
  5157. vuint8mf2_t qh_2 = __riscv_vand_vx_u8mf2(__riscv_vsrl_vx_u8mf2(qh_x, 0x2, vl), 0x4, vl);
  5158. vuint8mf2_t qh_3 = __riscv_vand_vx_u8mf2(__riscv_vsrl_vx_u8mf2(qh_x, 0x4, vl), 0x4, vl);
  5159. // load Q3
  5160. vuint8mf2_t q3_x = __riscv_vle8_v_u8mf2(q3, vl);
  5161. vuint8mf2_t q3h_0 = __riscv_vor_vv_u8mf2(__riscv_vand_vx_u8mf2(q3_x, 0x3, vl), qh_0, vl);
  5162. vuint8mf2_t q3h_1 = __riscv_vor_vv_u8mf2(__riscv_vand_vx_u8mf2(__riscv_vsrl_vx_u8mf2(q3_x, 2, vl), 0x3, vl), qh_1, vl);
  5163. vuint8mf2_t q3h_2 = __riscv_vor_vv_u8mf2(__riscv_vand_vx_u8mf2(__riscv_vsrl_vx_u8mf2(q3_x, 4, vl), 0x3, vl), qh_2, vl);
  5164. vuint8mf2_t q3h_3 = __riscv_vor_vv_u8mf2(__riscv_vsrl_vx_u8mf2(q3_x, 0x6, vl), qh_3, vl);
  5165. vint8mf2_t q3_0 = __riscv_vreinterpret_v_u8mf2_i8mf2(q3h_0);
  5166. vint8mf2_t q3_1 = __riscv_vreinterpret_v_u8mf2_i8mf2(q3h_1);
  5167. vint8mf2_t q3_2 = __riscv_vreinterpret_v_u8mf2_i8mf2(q3h_2);
  5168. vint8mf2_t q3_3 = __riscv_vreinterpret_v_u8mf2_i8mf2(q3h_3);
  5169. // load Q8 and take product with Q3
  5170. vint16m1_t p0 = __riscv_vwmul_vv_i16m1(q3_0, __riscv_vle8_v_i8mf2(q8, vl), vl);
  5171. vint16m1_t p1 = __riscv_vwmul_vv_i16m1(q3_1, __riscv_vle8_v_i8mf2(q8+16, vl), vl);
  5172. vint16m1_t p2 = __riscv_vwmul_vv_i16m1(q3_2, __riscv_vle8_v_i8mf2(q8+32, vl), vl);
  5173. vint16m1_t p3 = __riscv_vwmul_vv_i16m1(q3_3, __riscv_vle8_v_i8mf2(q8+48, vl), vl);
  5174. vint32m1_t vs_0 = __riscv_vwredsum_vs_i16m1_i32m1(p0, vzero, vl);
  5175. vint32m1_t vs_1 = __riscv_vwredsum_vs_i16m1_i32m1(p1, vzero, vl);
  5176. vint32m1_t vs_2 = __riscv_vwredsum_vs_i16m1_i32m1(p2, vzero, vl);
  5177. vint32m1_t vs_3 = __riscv_vwredsum_vs_i16m1_i32m1(p3, vzero, vl);
  5178. isum += __riscv_vmv_x_s_i32m1_i32(vs_0) * scales[0];
  5179. isum += __riscv_vmv_x_s_i32m1_i32(vs_1) * scales[2];
  5180. isum += __riscv_vmv_x_s_i32m1_i32(vs_2) * scales[1];
  5181. isum += __riscv_vmv_x_s_i32m1_i32(vs_3) * scales[3];
  5182. sumf += d * isum;
  5183. }
  5184. *s = sumf;
  5185. #else
  5186. int8_t aux8[QK_K];
  5187. int16_t aux16[8];
  5188. float sums [8];
  5189. int32_t aux32[8];
  5190. int32_t scales[4];
  5191. memset(sums, 0, 8*sizeof(float));
  5192. float sumf = 0;
  5193. for (int i = 0; i < nb; ++i) {
  5194. const uint8_t * restrict q3 = x[i].qs;
  5195. const uint8_t * restrict hm = x[i].hmask;
  5196. const int8_t * restrict q8 = y[i].qs;
  5197. int8_t * restrict a = aux8;
  5198. for (int l = 0; l < 8; ++l) {
  5199. a[l+ 0] = (int8_t)((q3[l+0] >> 0) & 3) - (hm[l] & 0x01 ? 0 : 4);
  5200. a[l+ 8] = (int8_t)((q3[l+8] >> 0) & 3) - (hm[l] & 0x02 ? 0 : 4);
  5201. a[l+16] = (int8_t)((q3[l+0] >> 2) & 3) - (hm[l] & 0x04 ? 0 : 4);
  5202. a[l+24] = (int8_t)((q3[l+8] >> 2) & 3) - (hm[l] & 0x08 ? 0 : 4);
  5203. a[l+32] = (int8_t)((q3[l+0] >> 4) & 3) - (hm[l] & 0x10 ? 0 : 4);
  5204. a[l+40] = (int8_t)((q3[l+8] >> 4) & 3) - (hm[l] & 0x20 ? 0 : 4);
  5205. a[l+48] = (int8_t)((q3[l+0] >> 6) & 3) - (hm[l] & 0x40 ? 0 : 4);
  5206. a[l+56] = (int8_t)((q3[l+8] >> 6) & 3) - (hm[l] & 0x80 ? 0 : 4);
  5207. }
  5208. scales[0] = (x[i].scales[0] & 0xF) - 8;
  5209. scales[1] = (x[i].scales[0] >> 4) - 8;
  5210. scales[2] = (x[i].scales[1] & 0xF) - 8;
  5211. scales[3] = (x[i].scales[1] >> 4) - 8;
  5212. memset(aux32, 0, 8*sizeof(int32_t));
  5213. for (int j = 0; j < QK_K/16; ++j) {
  5214. for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
  5215. q8 += 8; a += 8;
  5216. for (int l = 0; l < 8; ++l) aux16[l] += q8[l] * a[l];
  5217. q8 += 8; a += 8;
  5218. for (int l = 0; l < 8; ++l) aux32[l] += scales[j] * aux16[l];
  5219. }
  5220. const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d;
  5221. for (int l = 0; l < 8; ++l) sums[l] += d * aux32[l];
  5222. }
  5223. for (int l = 0; l < 8; ++l) sumf += sums[l];
  5224. *s = sumf;
  5225. #endif
  5226. }
  5227. #endif
  5228. #if QK_K == 256
  5229. void ggml_vec_dot_q4_K_q8_K(int n, float * restrict s, size_t bs, const void * restrict vx, size_t bx, const void * restrict vy, size_t by, int nrc) {
  5230. assert(n % QK_K == 0);
  5231. assert(nrc == 1);
  5232. UNUSED(nrc);
  5233. UNUSED(bx);
  5234. UNUSED(by);
  5235. UNUSED(bs);
  5236. const block_q4_K * restrict x = vx;
  5237. const block_q8_K * restrict y = vy;
  5238. const int nb = n / QK_K;
  5239. static const uint32_t kmask1 = 0x3f3f3f3f;
  5240. static const uint32_t kmask2 = 0x0f0f0f0f;
  5241. static const uint32_t kmask3 = 0x03030303;
  5242. uint32_t utmp[4];
  5243. #ifdef __ARM_NEON
  5244. const uint8x16_t m4b = vdupq_n_u8(0xf);
  5245. const int32x4_t mzero = vdupq_n_s32(0);
  5246. ggml_int8x16x2_t q4bytes;
  5247. ggml_int8x16x2_t q8bytes;
  5248. float sumf = 0;
  5249. for (int i = 0; i < nb; ++i) {
  5250. const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d);
  5251. const float dmin = y[i].d * GGML_FP16_TO_FP32(x[i].dmin);
  5252. const int16x8_t q8sums = vpaddq_s16(vld1q_s16(y[i].bsums), vld1q_s16(y[i].bsums + 8));
  5253. memcpy(utmp, x[i].scales, 12);
  5254. uint32x2_t mins8 = { 0 };
  5255. mins8 = vset_lane_u32(utmp[1] & kmask1, mins8, 0);
  5256. mins8 = vset_lane_u32(((utmp[2] >> 4) & kmask2) | (((utmp[1] >> 6) & kmask3) << 4), mins8, 1);
  5257. utmp[1] = (utmp[2] & kmask2) | (((utmp[0] >> 6) & kmask3) << 4);
  5258. utmp[0] &= kmask1;
  5259. const int16x8_t mins = vreinterpretq_s16_u16(vmovl_u8(vreinterpret_u8_u32(mins8)));
  5260. const int32x4_t prod = vaddq_s32(vmull_s16(vget_low_s16 (q8sums), vget_low_s16 (mins)),
  5261. vmull_s16(vget_high_s16(q8sums), vget_high_s16(mins)));
  5262. sumf -= dmin * vaddvq_s32(prod);
  5263. const uint8_t * scales = (const uint8_t *)utmp;
  5264. const uint8_t * restrict q4 = x[i].qs;
  5265. const int8_t * restrict q8 = y[i].qs;
  5266. int32_t sumi1 = 0;
  5267. int32_t sumi2 = 0;
  5268. for (int j = 0; j < QK_K/64; ++j) {
  5269. const ggml_uint8x16x2_t q4bits = ggml_vld1q_u8_x2(q4); q4 += 32;
  5270. q8bytes = ggml_vld1q_s8_x2(q8); q8 += 32;
  5271. q4bytes.val[0] = vreinterpretq_s8_u8(vandq_u8 (q4bits.val[0], m4b));
  5272. q4bytes.val[1] = vreinterpretq_s8_u8(vandq_u8 (q4bits.val[1], m4b));
  5273. const int32x4_t p1 = ggml_vdotq_s32(ggml_vdotq_s32(mzero, q4bytes.val[0], q8bytes.val[0]), q4bytes.val[1], q8bytes.val[1]);
  5274. sumi1 += vaddvq_s32(p1) * scales[2*j+0];
  5275. q8bytes = ggml_vld1q_s8_x2(q8); q8 += 32;
  5276. q4bytes.val[0] = vreinterpretq_s8_u8(vshrq_n_u8(q4bits.val[0], 4));
  5277. q4bytes.val[1] = vreinterpretq_s8_u8(vshrq_n_u8(q4bits.val[1], 4));
  5278. const int32x4_t p2 = ggml_vdotq_s32(ggml_vdotq_s32(mzero, q4bytes.val[0], q8bytes.val[0]), q4bytes.val[1], q8bytes.val[1]);
  5279. sumi2 += vaddvq_s32(p2) * scales[2*j+1];
  5280. }
  5281. sumf += d * (sumi1 + sumi2);
  5282. }
  5283. *s = sumf;
  5284. #elif defined __AVX2__
  5285. const __m256i m4 = _mm256_set1_epi8(0xF);
  5286. __m256 acc = _mm256_setzero_ps();
  5287. __m128 acc_m = _mm_setzero_ps();
  5288. for (int i = 0; i < nb; ++i) {
  5289. const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d);
  5290. const float dmin = -y[i].d * GGML_FP16_TO_FP32(x[i].dmin);
  5291. memcpy(utmp, x[i].scales, 12);
  5292. utmp[3] = ((utmp[2] >> 4) & kmask2) | (((utmp[1] >> 6) & kmask3) << 4);
  5293. const uint32_t uaux = utmp[1] & kmask1;
  5294. utmp[1] = (utmp[2] & kmask2) | (((utmp[0] >> 6) & kmask3) << 4);
  5295. utmp[2] = uaux;
  5296. utmp[0] &= kmask1;
  5297. const uint8_t * restrict q4 = x[i].qs;
  5298. const int8_t * restrict q8 = y[i].qs;
  5299. const __m256i mins_and_scales = _mm256_cvtepu8_epi16(_mm_set_epi32(utmp[3], utmp[2], utmp[1], utmp[0]));
  5300. const __m256i q8sums = _mm256_loadu_si256((const __m256i*)y[i].bsums);
  5301. const __m128i q8s = _mm_hadd_epi16(_mm256_extracti128_si256(q8sums, 0), _mm256_extracti128_si256(q8sums, 1));
  5302. const __m128i prod = _mm_madd_epi16(_mm256_extracti128_si256(mins_and_scales, 1), q8s);
  5303. acc_m = _mm_fmadd_ps(_mm_set1_ps(dmin), _mm_cvtepi32_ps(prod), acc_m);
  5304. const __m128i sc128 = _mm256_extracti128_si256(mins_and_scales, 0);
  5305. const __m256i scales = MM256_SET_M128I(sc128, sc128);
  5306. __m256i sumi = _mm256_setzero_si256();
  5307. for (int j = 0; j < QK_K/64; ++j) {
  5308. const __m256i scale_l = _mm256_shuffle_epi8(scales, get_scale_shuffle_k4(2*j+0));
  5309. const __m256i scale_h = _mm256_shuffle_epi8(scales, get_scale_shuffle_k4(2*j+1));
  5310. const __m256i q4bits = _mm256_loadu_si256((const __m256i*)q4); q4 += 32;
  5311. const __m256i q4l = _mm256_and_si256(q4bits, m4);
  5312. const __m256i q4h = _mm256_and_si256(_mm256_srli_epi16(q4bits, 4), m4);
  5313. const __m256i q8l = _mm256_loadu_si256((const __m256i*)q8); q8 += 32;
  5314. __m256i p16l = _mm256_maddubs_epi16(q4l, q8l);
  5315. p16l = _mm256_madd_epi16(scale_l, p16l);
  5316. const __m256i q8h = _mm256_loadu_si256((const __m256i*)q8); q8 += 32;
  5317. __m256i p16h = _mm256_maddubs_epi16(q4h, q8h);
  5318. p16h = _mm256_madd_epi16(scale_h, p16h);
  5319. const __m256i sumj = _mm256_add_epi32(p16l, p16h);
  5320. sumi = _mm256_add_epi32(sumi, sumj);
  5321. }
  5322. __m256 vd = _mm256_set1_ps(d);
  5323. acc = _mm256_fmadd_ps(vd, _mm256_cvtepi32_ps(sumi), acc);
  5324. }
  5325. acc_m = _mm_add_ps(acc_m, _mm_movehl_ps(acc_m, acc_m));
  5326. acc_m = _mm_add_ss(acc_m, _mm_movehdup_ps(acc_m));
  5327. *s = hsum_float_8(acc) + _mm_cvtss_f32(acc_m);
  5328. #elif defined __AVX__
  5329. const __m128i m4 = _mm_set1_epi8(0xF);
  5330. const __m128i m2 = _mm_set1_epi8(0x2);
  5331. __m256 acc = _mm256_setzero_ps();
  5332. __m128 acc_m = _mm_setzero_ps();
  5333. for (int i = 0; i < nb; ++i) {
  5334. const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d);
  5335. const float dmin = -y[i].d * GGML_FP16_TO_FP32(x[i].dmin);
  5336. const uint8_t * restrict q4 = x[i].qs;
  5337. const int8_t * restrict q8 = y[i].qs;
  5338. memcpy(utmp, x[i].scales, 12);
  5339. utmp[3] = ((utmp[2] >> 4) & kmask2) | (((utmp[1] >> 6) & kmask3) << 4);
  5340. const uint32_t uaux = utmp[1] & kmask1;
  5341. utmp[1] = (utmp[2] & kmask2) | (((utmp[0] >> 6) & kmask3) << 4);
  5342. utmp[2] = uaux;
  5343. utmp[0] &= kmask1;
  5344. const __m128i utmps = _mm_set_epi32(utmp[3], utmp[2], utmp[1], utmp[0]);
  5345. const __m128i scales = _mm_cvtepu8_epi16(utmps);
  5346. const __m128i mins = _mm_cvtepu8_epi16(_mm_unpackhi_epi64(utmps, utmps));
  5347. const __m128i q8sums_0 = _mm_loadu_si128((const __m128i*)&y[i].bsums[0]);
  5348. const __m128i q8sums_1 = _mm_loadu_si128((const __m128i*)&y[i].bsums[8]);
  5349. const __m128i q8s = _mm_hadd_epi16(q8sums_0, q8sums_1);
  5350. const __m128i prod = _mm_madd_epi16(mins, q8s);
  5351. acc_m = _mm_add_ps(_mm_mul_ps(_mm_set1_ps(dmin), _mm_cvtepi32_ps(prod)), acc_m);
  5352. __m128i sumi_0 = _mm_setzero_si128();
  5353. __m128i sumi_1 = _mm_setzero_si128();
  5354. __m128i shuffle = _mm_set1_epi16(0x0100);
  5355. for (int j = 0; j < QK_K/64; ++j) {
  5356. const __m128i scale_l = _mm_shuffle_epi8(scales, shuffle);
  5357. shuffle = _mm_add_epi16(shuffle, m2);
  5358. const __m128i scale_h = _mm_shuffle_epi8(scales, shuffle);
  5359. shuffle = _mm_add_epi16(shuffle, m2);
  5360. __m128i q4bits = _mm_loadu_si128((const __m128i*)q4); q4 += 16;
  5361. const __m128i q4l_0 = _mm_and_si128(q4bits, m4);
  5362. const __m128i q4h_0 = _mm_and_si128(_mm_srli_epi16(q4bits, 4), m4);
  5363. q4bits = _mm_loadu_si128((const __m128i*)q4); q4 += 16;
  5364. const __m128i q4l_1 = _mm_and_si128(q4bits, m4);
  5365. const __m128i q4h_1 = _mm_and_si128(_mm_srli_epi16(q4bits, 4), m4);
  5366. const __m128i q8l_0 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  5367. __m128i p16l = _mm_maddubs_epi16(q4l_0, q8l_0);
  5368. p16l = _mm_madd_epi16(scale_l, p16l);
  5369. sumi_0 = _mm_add_epi32(sumi_0, p16l);
  5370. const __m128i q8l_1 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  5371. p16l = _mm_maddubs_epi16(q4l_1, q8l_1);
  5372. p16l = _mm_madd_epi16(scale_l, p16l);
  5373. sumi_1 = _mm_add_epi32(sumi_1, p16l);
  5374. const __m128i q8h_0 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  5375. __m128i p16h = _mm_maddubs_epi16(q4h_0, q8h_0);
  5376. p16h = _mm_madd_epi16(scale_h, p16h);
  5377. sumi_0 = _mm_add_epi32(sumi_0, p16h);
  5378. const __m128i q8h_1 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  5379. p16h = _mm_maddubs_epi16(q4h_1, q8h_1);
  5380. p16h = _mm_madd_epi16(scale_h, p16h);
  5381. sumi_1 = _mm_add_epi32(sumi_1, p16h);
  5382. }
  5383. __m256 vd = _mm256_set1_ps(d);
  5384. __m256i sumi = MM256_SET_M128I(sumi_1, sumi_0);
  5385. acc = _mm256_add_ps(_mm256_mul_ps(vd, _mm256_cvtepi32_ps(sumi)), acc);
  5386. }
  5387. acc_m = _mm_add_ps(acc_m, _mm_movehl_ps(acc_m, acc_m));
  5388. acc_m = _mm_add_ss(acc_m, _mm_movehdup_ps(acc_m));
  5389. *s = hsum_float_8(acc) + _mm_cvtss_f32(acc_m);
  5390. #elif defined __riscv_v_intrinsic
  5391. const uint8_t * scales = (const uint8_t*)&utmp[0];
  5392. const uint8_t * mins = (const uint8_t*)&utmp[2];
  5393. float sumf = 0;
  5394. for (int i = 0; i < nb; ++i) {
  5395. size_t vl = 8;
  5396. const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d);
  5397. const float dmin = y[i].d * GGML_FP16_TO_FP32(x[i].dmin);
  5398. vint16mf2_t q8sums_0 = __riscv_vlse16_v_i16mf2(y[i].bsums, 4, vl);
  5399. vint16mf2_t q8sums_1 = __riscv_vlse16_v_i16mf2(y[i].bsums+1, 4, vl);
  5400. vint16mf2_t q8sums = __riscv_vadd_vv_i16mf2(q8sums_0, q8sums_1, vl);
  5401. memcpy(utmp, x[i].scales, 12);
  5402. utmp[3] = ((utmp[2] >> 4) & kmask2) | (((utmp[1] >> 6) & kmask3) << 4);
  5403. const uint32_t uaux = utmp[1] & kmask1;
  5404. utmp[1] = (utmp[2] & kmask2) | (((utmp[0] >> 6) & kmask3) << 4);
  5405. utmp[2] = uaux;
  5406. utmp[0] &= kmask1;
  5407. vuint8mf4_t mins8 = __riscv_vle8_v_u8mf4(mins, vl);
  5408. vint16mf2_t v_mins = __riscv_vreinterpret_v_u16mf2_i16mf2(__riscv_vzext_vf2_u16mf2(mins8, vl));
  5409. vint32m1_t prod = __riscv_vwmul_vv_i32m1(q8sums, v_mins, vl);
  5410. vint32m1_t sumi = __riscv_vredsum_vs_i32m1_i32m1(prod, __riscv_vmv_v_x_i32m1(0, 1), vl);
  5411. sumf -= dmin * __riscv_vmv_x_s_i32m1_i32(sumi);
  5412. const uint8_t * restrict q4 = x[i].qs;
  5413. const int8_t * restrict q8 = y[i].qs;
  5414. vl = 32;
  5415. int32_t sum_1 = 0;
  5416. int32_t sum_2 = 0;
  5417. vint16m1_t vzero = __riscv_vmv_v_x_i16m1(0, 1);
  5418. for (int j = 0; j < QK_K/64; ++j) {
  5419. // load Q4
  5420. vuint8m1_t q4_x = __riscv_vle8_v_u8m1(q4, vl);
  5421. // load Q8 and multiply it with lower Q4 nibble
  5422. vint8m1_t q8_0 = __riscv_vle8_v_i8m1(q8, vl);
  5423. vint8m1_t q4_0 = __riscv_vreinterpret_v_u8m1_i8m1(__riscv_vand_vx_u8m1(q4_x, 0x0F, vl));
  5424. vint16m2_t qv_0 = __riscv_vwmul_vv_i16m2(q4_0, q8_0, vl);
  5425. vint16m1_t vs_0 = __riscv_vredsum_vs_i16m2_i16m1(qv_0, vzero, vl);
  5426. sum_1 += __riscv_vmv_x_s_i16m1_i16(vs_0) * scales[2*j+0];
  5427. // load Q8 and multiply it with upper Q4 nibble
  5428. vint8m1_t q8_1 = __riscv_vle8_v_i8m1(q8+32, vl);
  5429. vint8m1_t q4_1 = __riscv_vreinterpret_v_u8m1_i8m1(__riscv_vsrl_vx_u8m1(q4_x, 0x04, vl));
  5430. vint16m2_t qv_1 = __riscv_vwmul_vv_i16m2(q4_1, q8_1, vl);
  5431. vint16m1_t vs_1 = __riscv_vredsum_vs_i16m2_i16m1(qv_1, vzero, vl);
  5432. sum_2 += __riscv_vmv_x_s_i16m1_i16(vs_1) * scales[2*j+1];
  5433. q4 += 32; q8 += 64;
  5434. }
  5435. sumf += d*(sum_1 + sum_2);
  5436. }
  5437. *s = sumf;
  5438. #else
  5439. const uint8_t * scales = (const uint8_t*)&utmp[0];
  5440. const uint8_t * mins = (const uint8_t*)&utmp[2];
  5441. int8_t aux8[QK_K];
  5442. int16_t aux16[8];
  5443. float sums [8];
  5444. int32_t aux32[8];
  5445. memset(sums, 0, 8*sizeof(float));
  5446. float sumf = 0;
  5447. for (int i = 0; i < nb; ++i) {
  5448. const uint8_t * restrict q4 = x[i].qs;
  5449. const int8_t * restrict q8 = y[i].qs;
  5450. memset(aux32, 0, 8*sizeof(int32_t));
  5451. int8_t * restrict a = aux8;
  5452. for (int j = 0; j < QK_K/64; ++j) {
  5453. for (int l = 0; l < 32; ++l) a[l] = (int8_t)(q4[l] & 0xF);
  5454. a += 32;
  5455. for (int l = 0; l < 32; ++l) a[l] = (int8_t)(q4[l] >> 4);
  5456. a += 32; q4 += 32;
  5457. }
  5458. memcpy(utmp, x[i].scales, 12);
  5459. utmp[3] = ((utmp[2] >> 4) & kmask2) | (((utmp[1] >> 6) & kmask3) << 4);
  5460. const uint32_t uaux = utmp[1] & kmask1;
  5461. utmp[1] = (utmp[2] & kmask2) | (((utmp[0] >> 6) & kmask3) << 4);
  5462. utmp[2] = uaux;
  5463. utmp[0] &= kmask1;
  5464. int sumi = 0;
  5465. for (int j = 0; j < QK_K/16; ++j) sumi += y[i].bsums[j] * mins[j/2];
  5466. a = aux8;
  5467. int is = 0;
  5468. for (int j = 0; j < QK_K/32; ++j) {
  5469. int32_t scale = scales[is++];
  5470. for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
  5471. for (int l = 0; l < 8; ++l) aux32[l] += scale * aux16[l];
  5472. q8 += 8; a += 8;
  5473. for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
  5474. for (int l = 0; l < 8; ++l) aux32[l] += scale * aux16[l];
  5475. q8 += 8; a += 8;
  5476. for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
  5477. for (int l = 0; l < 8; ++l) aux32[l] += scale * aux16[l];
  5478. q8 += 8; a += 8;
  5479. for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
  5480. for (int l = 0; l < 8; ++l) aux32[l] += scale * aux16[l];
  5481. q8 += 8; a += 8;
  5482. }
  5483. const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d;
  5484. for (int l = 0; l < 8; ++l) sums[l] += d * aux32[l];
  5485. const float dmin = GGML_FP16_TO_FP32(x[i].dmin) * y[i].d;
  5486. sumf -= dmin * sumi;
  5487. }
  5488. for (int l = 0; l < 8; ++l) sumf += sums[l];
  5489. *s = sumf;
  5490. #endif
  5491. }
  5492. #else
  5493. void ggml_vec_dot_q4_K_q8_K(int n, float * restrict s, size_t bs, const void * restrict vx, size_t bx, const void * restrict vy, size_t by, int nrc) {
  5494. assert(n % QK_K == 0);
  5495. assert(nrc == 1);
  5496. UNUSED(nrc);
  5497. UNUSED(bx);
  5498. UNUSED(by);
  5499. UNUSED(bs);
  5500. const block_q4_K * restrict x = vx;
  5501. const block_q8_K * restrict y = vy;
  5502. const int nb = n / QK_K;
  5503. #ifdef __ARM_NEON
  5504. const uint8x16_t m4b = vdupq_n_u8(0xf);
  5505. const int32x4_t mzero = vdupq_n_s32(0);
  5506. float sumf = 0;
  5507. ggml_int8x16x2_t q4bytes;
  5508. ggml_int8x16x4_t q8bytes;
  5509. float sum_mins = 0.f;
  5510. uint16_t aux16[2];
  5511. const uint8_t * restrict scales = (const uint8_t *)aux16;
  5512. for (int i = 0; i < nb; ++i) {
  5513. const uint8_t * restrict q4 = x[i].qs;
  5514. const int8_t * restrict q8 = y[i].qs;
  5515. const uint16_t * restrict a = (const uint16_t *)x[i].scales;
  5516. aux16[0] = a[0] & 0x0f0f;
  5517. aux16[1] = (a[0] >> 4) & 0x0f0f;
  5518. const int32_t summi = scales[2] * (y[i].bsums[0] + y[i].bsums[1]) + scales[3] * (y[i].bsums[2] + y[i].bsums[3]);
  5519. sum_mins += y[i].d * GGML_FP16_TO_FP32(x[i].d[1]) * summi;
  5520. const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d[0]);
  5521. const ggml_uint8x16x2_t q4bits = ggml_vld1q_u8_x2(q4);
  5522. q8bytes = ggml_vld1q_s8_x4(q8);
  5523. q4bytes.val[0] = vreinterpretq_s8_u8(vandq_u8 (q4bits.val[0], m4b));
  5524. q4bytes.val[1] = vreinterpretq_s8_u8(vandq_u8 (q4bits.val[1], m4b));
  5525. const int32x4_t p1 = ggml_vdotq_s32(ggml_vdotq_s32(mzero, q4bytes.val[0], q8bytes.val[0]), q4bytes.val[1], q8bytes.val[1]);
  5526. const int32_t sumi1 = vaddvq_s32(p1) * scales[0];
  5527. q4bytes.val[0] = vreinterpretq_s8_u8(vshrq_n_u8(q4bits.val[0], 4));
  5528. q4bytes.val[1] = vreinterpretq_s8_u8(vshrq_n_u8(q4bits.val[1], 4));
  5529. const int32x4_t p2 = ggml_vdotq_s32(ggml_vdotq_s32(mzero, q4bytes.val[0], q8bytes.val[2]), q4bytes.val[1], q8bytes.val[3]);
  5530. const int32_t sumi2 = vaddvq_s32(p2) * scales[1];
  5531. sumf += d * (sumi1 + sumi2);
  5532. }
  5533. *s = sumf - sum_mins;
  5534. #elif defined __AVX2__
  5535. const __m256i m4 = _mm256_set1_epi8(0xF);
  5536. __m256 acc = _mm256_setzero_ps();
  5537. float summs = 0;
  5538. uint16_t aux16[2];
  5539. const uint8_t * scales = (const uint8_t *)aux16;
  5540. for (int i = 0; i < nb; ++i) {
  5541. const float d = GGML_FP16_TO_FP32(x[i].d[0]) * y[i].d;
  5542. const float m = GGML_FP16_TO_FP32(x[i].d[1]) * y[i].d;
  5543. const __m256 vd = _mm256_set1_ps(d);
  5544. const uint16_t * a = (const uint16_t *)x[i].scales;
  5545. aux16[0] = a[0] & 0x0f0f;
  5546. aux16[1] = (a[0] >> 4) & 0x0f0f;
  5547. summs += m * (scales[2] * (y[i].bsums[0] + y[i].bsums[1]) + scales[3] * (y[i].bsums[2] + y[i].bsums[3]));
  5548. const uint8_t * restrict q4 = x[i].qs;
  5549. const int8_t * restrict q8 = y[i].qs;
  5550. const __m256i q4bits = _mm256_loadu_si256((const __m256i*)q4);
  5551. const __m256i q4l = _mm256_and_si256(q4bits, m4);
  5552. const __m256i q4h = _mm256_and_si256(_mm256_srli_epi16(q4bits, 4), m4);
  5553. const __m256i q8l = _mm256_loadu_si256((const __m256i*)(q8+ 0));
  5554. const __m256i q8h = _mm256_loadu_si256((const __m256i*)(q8+32));
  5555. const __m256i p16l = _mm256_maddubs_epi16(q4l, q8l);
  5556. const __m256i p16h = _mm256_maddubs_epi16(q4h, q8h);
  5557. const __m256i p32l = _mm256_madd_epi16(_mm256_set1_epi16(scales[0]), p16l);
  5558. acc = _mm256_fmadd_ps(vd, _mm256_cvtepi32_ps(p32l), acc);
  5559. const __m256i p32h = _mm256_madd_epi16(_mm256_set1_epi16(scales[1]), p16h);
  5560. acc = _mm256_fmadd_ps(vd, _mm256_cvtepi32_ps(p32h), acc);
  5561. }
  5562. *s = hsum_float_8(acc) - summs;
  5563. #elif defined __AVX__
  5564. const __m128i m4 = _mm_set1_epi8(0xF);
  5565. __m256 acc = _mm256_setzero_ps();
  5566. float summs = 0;
  5567. uint16_t aux16[2];
  5568. const uint8_t * scales = (const uint8_t *)aux16;
  5569. for (int i = 0; i < nb; ++i) {
  5570. const float d = GGML_FP16_TO_FP32(x[i].d[0]) * y[i].d;
  5571. const float m = GGML_FP16_TO_FP32(x[i].d[1]) * y[i].d;
  5572. const __m256 vd = _mm256_set1_ps(d);
  5573. const uint16_t * a = (const uint16_t *)x[i].scales;
  5574. aux16[0] = a[0] & 0x0f0f;
  5575. aux16[1] = (a[0] >> 4) & 0x0f0f;
  5576. summs += m * (scales[2] * (y[i].bsums[0] + y[i].bsums[1]) + scales[3] * (y[i].bsums[2] + y[i].bsums[3]));
  5577. const uint8_t * restrict q4 = x[i].qs;
  5578. const int8_t * restrict q8 = y[i].qs;
  5579. const __m256i q4bits = _mm256_loadu_si256((const __m256i*)q4);
  5580. const __m128i q4bits_0 = _mm256_extractf128_si256(q4bits, 0);
  5581. const __m128i q4bits_1 = _mm256_extractf128_si256(q4bits, 1);
  5582. const __m128i q4_0 = _mm_and_si128(q4bits_0, m4);
  5583. const __m128i q4_1 = _mm_and_si128(q4bits_1, m4);
  5584. const __m128i q4_2 = _mm_and_si128(_mm_srli_epi16(q4bits_0, 4), m4);
  5585. const __m128i q4_3 = _mm_and_si128(_mm_srli_epi16(q4bits_1, 4), m4);
  5586. const __m256i q8_0 = _mm256_loadu_si256((const __m256i*)(q8+ 0));
  5587. const __m256i q8_1 = _mm256_loadu_si256((const __m256i*)(q8+32));
  5588. const __m128i p16_0 = _mm_maddubs_epi16(q4_0, _mm256_extractf128_si256(q8_0, 0));
  5589. const __m128i p16_1 = _mm_maddubs_epi16(q4_1, _mm256_extractf128_si256(q8_0, 1));
  5590. const __m128i p16_2 = _mm_maddubs_epi16(q4_2, _mm256_extractf128_si256(q8_1, 0));
  5591. const __m128i p16_3 = _mm_maddubs_epi16(q4_3, _mm256_extractf128_si256(q8_1, 1));
  5592. const __m128i p32_0 = _mm_madd_epi16(_mm_set1_epi16(scales[0]), p16_0);
  5593. const __m128i p32_1 = _mm_madd_epi16(_mm_set1_epi16(scales[0]), p16_1);
  5594. acc = _mm256_add_ps(_mm256_mul_ps(vd, _mm256_cvtepi32_ps(MM256_SET_M128I(p32_1, p32_0))), acc);
  5595. const __m128i p32_2 = _mm_madd_epi16(_mm_set1_epi16(scales[1]), p16_2);
  5596. const __m128i p32_3 = _mm_madd_epi16(_mm_set1_epi16(scales[1]), p16_3);
  5597. acc = _mm256_add_ps(_mm256_mul_ps(vd, _mm256_cvtepi32_ps(MM256_SET_M128I(p32_3, p32_2))), acc);
  5598. }
  5599. *s = hsum_float_8(acc) - summs;
  5600. #elif defined __riscv_v_intrinsic
  5601. uint16_t s16[2];
  5602. const uint8_t * restrict scales = (const uint8_t *)s16;
  5603. float sumf = 0;
  5604. for (int i = 0; i < nb; ++i) {
  5605. const uint8_t * restrict q4 = x[i].qs;
  5606. const int8_t * restrict q8 = y[i].qs;
  5607. const uint16_t * restrict b = (const uint16_t *)x[i].scales;
  5608. s16[0] = b[0] & 0x0f0f;
  5609. s16[1] = (b[0] >> 4) & 0x0f0f;
  5610. sumf -= y[i].d * GGML_FP16_TO_FP32(x[i].d[1]) * (scales[2] * (y[i].bsums[0] + y[i].bsums[1]) + scales[3] * (y[i].bsums[2] + y[i].bsums[3]));
  5611. const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d[0]);
  5612. size_t vl = 32;
  5613. vint16m1_t vzero = __riscv_vmv_v_x_i16m1(0, 1);
  5614. // load Q4
  5615. vuint8m1_t q4_x = __riscv_vle8_v_u8m1(q4, vl);
  5616. // load Q8 and multiply it with lower Q4 nibble
  5617. vint8m1_t q4_a = __riscv_vreinterpret_v_u8m1_i8m1(__riscv_vand_vx_u8m1(q4_x, 0x0F, vl));
  5618. vint16m2_t va_0 = __riscv_vwmul_vv_i16m2(q4_a, __riscv_vle8_v_i8m1(q8, vl), vl);
  5619. vint16m1_t aux1 = __riscv_vredsum_vs_i16m2_i16m1(va_0, vzero, vl);
  5620. sumf += d*scales[0]*__riscv_vmv_x_s_i16m1_i16(aux1);
  5621. // load Q8 and multiply it with upper Q4 nibble
  5622. vint8m1_t q4_s = __riscv_vreinterpret_v_u8m1_i8m1(__riscv_vsrl_vx_u8m1(q4_x, 0x04, vl));
  5623. vint16m2_t va_1 = __riscv_vwmul_vv_i16m2(q4_s, __riscv_vle8_v_i8m1(q8+32, vl), vl);
  5624. vint16m1_t aux2 = __riscv_vredsum_vs_i16m2_i16m1(va_1, vzero, vl);
  5625. sumf += d*scales[1]*__riscv_vmv_x_s_i16m1_i16(aux2);
  5626. }
  5627. *s = sumf;
  5628. #else
  5629. uint8_t aux8[QK_K];
  5630. int16_t aux16[16];
  5631. float sums [8];
  5632. memset(sums, 0, 8*sizeof(float));
  5633. uint16_t s16[2];
  5634. const uint8_t * restrict scales = (const uint8_t *)s16;
  5635. float sumf = 0;
  5636. for (int i = 0; i < nb; ++i) {
  5637. const uint8_t * restrict q4 = x[i].qs;
  5638. const int8_t * restrict q8 = y[i].qs;
  5639. uint8_t * restrict a = aux8;
  5640. for (int l = 0; l < 32; ++l) a[l+ 0] = q4[l] & 0xF;
  5641. for (int l = 0; l < 32; ++l) a[l+32] = q4[l] >> 4;
  5642. const uint16_t * restrict b = (const uint16_t *)x[i].scales;
  5643. s16[0] = b[0] & 0x0f0f;
  5644. s16[1] = (b[0] >> 4) & 0x0f0f;
  5645. sumf -= y[i].d * GGML_FP16_TO_FP32(x[i].d[1]) * (scales[2] * (y[i].bsums[0] + y[i].bsums[1]) + scales[3] * (y[i].bsums[2] + y[i].bsums[3]));
  5646. const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d[0]);
  5647. for (int j = 0; j < QK_K/32; ++j) {
  5648. for (int l = 0; l < 16; ++l) aux16[l] = q8[l] * a[l];
  5649. q8 += 16; a += 16;
  5650. for (int l = 0; l < 16; ++l) aux16[l] += q8[l] * a[l];
  5651. q8 += 16; a += 16;
  5652. const float dl = d * scales[j];
  5653. for (int l = 0; l < 8; ++l) sums[l] += dl * (aux16[l] + aux16[l+8]);
  5654. }
  5655. }
  5656. for (int l = 0; l < 8; ++l) sumf += sums[l];
  5657. *s = sumf;
  5658. #endif
  5659. }
  5660. #endif
  5661. #if QK_K == 256
  5662. void ggml_vec_dot_q5_K_q8_K(int n, float * restrict s, size_t bs, const void * restrict vx, size_t bx, const void * restrict vy, size_t by, int nrc) {
  5663. assert(n % QK_K == 0);
  5664. assert(nrc == 1);
  5665. UNUSED(nrc);
  5666. UNUSED(bx);
  5667. UNUSED(by);
  5668. UNUSED(bs);
  5669. const block_q5_K * restrict x = vx;
  5670. const block_q8_K * restrict y = vy;
  5671. const int nb = n / QK_K;
  5672. static const uint32_t kmask1 = 0x3f3f3f3f;
  5673. static const uint32_t kmask2 = 0x0f0f0f0f;
  5674. static const uint32_t kmask3 = 0x03030303;
  5675. uint32_t utmp[4];
  5676. #ifdef __ARM_NEON
  5677. const uint8x16_t m4b = vdupq_n_u8(0xf);
  5678. const uint8x16_t mone = vdupq_n_u8(1);
  5679. const uint8x16_t mtwo = vdupq_n_u8(2);
  5680. const int32x4_t mzero = vdupq_n_s32(0);
  5681. ggml_int8x16x4_t q5bytes;
  5682. float sumf = 0;
  5683. for (int i = 0; i < nb; ++i) {
  5684. const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d);
  5685. const float dmin = y[i].d * GGML_FP16_TO_FP32(x[i].dmin);
  5686. const int16x8_t q8sums = vpaddq_s16(vld1q_s16(y[i].bsums), vld1q_s16(y[i].bsums + 8));
  5687. memcpy(utmp, x[i].scales, 12);
  5688. utmp[3] = ((utmp[2] >> 4) & kmask2) | (((utmp[1] >> 6) & kmask3) << 4);
  5689. const uint32_t uaux = utmp[1] & kmask1;
  5690. utmp[1] = (utmp[2] & kmask2) | (((utmp[0] >> 6) & kmask3) << 4);
  5691. utmp[2] = uaux;
  5692. utmp[0] &= kmask1;
  5693. const uint8x8_t mins8 = vld1_u8((const uint8_t*)utmp + 8);
  5694. const int16x8_t mins = vreinterpretq_s16_u16(vmovl_u8(mins8));
  5695. const int32x4_t prod = vaddq_s32(vmull_s16(vget_low_s16 (q8sums), vget_low_s16 (mins)),
  5696. vmull_s16(vget_high_s16(q8sums), vget_high_s16(mins)));
  5697. int32_t sumi_mins = vaddvq_s32(prod);
  5698. const uint8_t * scales = (const uint8_t *)utmp;
  5699. const uint8_t * restrict q5 = x[i].qs;
  5700. const uint8_t * restrict qh = x[i].qh;
  5701. const int8_t * restrict q8 = y[i].qs;
  5702. ggml_uint8x16x2_t qhbits = ggml_vld1q_u8_x2(qh);
  5703. ggml_uint8x16x4_t q5h;
  5704. int32_t sumi = 0;
  5705. for (int j = 0; j < QK_K/64; ++j) {
  5706. const ggml_uint8x16x2_t q5bits = ggml_vld1q_u8_x2(q5); q5 += 32;
  5707. const ggml_int8x16x4_t q8bytes = ggml_vld1q_s8_x4(q8); q8 += 64;
  5708. q5h.val[0] = vshlq_n_u8(vandq_u8(mone, qhbits.val[0]), 4);
  5709. q5h.val[1] = vshlq_n_u8(vandq_u8(mone, qhbits.val[1]), 4);
  5710. q5h.val[2] = vshlq_n_u8(vandq_u8(mtwo, qhbits.val[0]), 3);
  5711. q5h.val[3] = vshlq_n_u8(vandq_u8(mtwo, qhbits.val[1]), 3);
  5712. qhbits.val[0] = vshrq_n_u8(qhbits.val[0], 2);
  5713. qhbits.val[1] = vshrq_n_u8(qhbits.val[1], 2);
  5714. q5bytes.val[0] = vreinterpretq_s8_u8(vorrq_u8(vandq_u8(q5bits.val[0], m4b), q5h.val[0]));
  5715. q5bytes.val[1] = vreinterpretq_s8_u8(vorrq_u8(vandq_u8(q5bits.val[1], m4b), q5h.val[1]));
  5716. q5bytes.val[2] = vreinterpretq_s8_u8(vorrq_u8(vshrq_n_u8(q5bits.val[0], 4), q5h.val[2]));
  5717. q5bytes.val[3] = vreinterpretq_s8_u8(vorrq_u8(vshrq_n_u8(q5bits.val[1], 4), q5h.val[3]));
  5718. sumi += vaddvq_s32(ggml_vdotq_s32(ggml_vdotq_s32(mzero, q5bytes.val[0], q8bytes.val[0]), q5bytes.val[1], q8bytes.val[1])) * *scales++;
  5719. sumi += vaddvq_s32(ggml_vdotq_s32(ggml_vdotq_s32(mzero, q5bytes.val[2], q8bytes.val[2]), q5bytes.val[3], q8bytes.val[3])) * *scales++;
  5720. }
  5721. sumf += d * sumi - dmin * sumi_mins;
  5722. }
  5723. *s = sumf;
  5724. #elif defined __AVX2__
  5725. const __m256i m4 = _mm256_set1_epi8(0xF);
  5726. const __m128i mzero = _mm_setzero_si128();
  5727. const __m256i mone = _mm256_set1_epi8(1);
  5728. __m256 acc = _mm256_setzero_ps();
  5729. float summs = 0.f;
  5730. for (int i = 0; i < nb; ++i) {
  5731. const uint8_t * restrict q5 = x[i].qs;
  5732. const int8_t * restrict q8 = y[i].qs;
  5733. #if QK_K == 256
  5734. const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d);
  5735. const float dmin = -y[i].d * GGML_FP16_TO_FP32(x[i].dmin);
  5736. memcpy(utmp, x[i].scales, 12);
  5737. utmp[3] = ((utmp[2] >> 4) & kmask2) | (((utmp[1] >> 6) & kmask3) << 4);
  5738. const uint32_t uaux = utmp[1] & kmask1;
  5739. utmp[1] = (utmp[2] & kmask2) | (((utmp[0] >> 6) & kmask3) << 4);
  5740. utmp[2] = uaux;
  5741. utmp[0] &= kmask1;
  5742. #else
  5743. // TODO
  5744. const float d = 0, dmin = 0;
  5745. #endif
  5746. const __m256i mins_and_scales = _mm256_cvtepu8_epi16(_mm_set_epi32(utmp[3], utmp[2], utmp[1], utmp[0]));
  5747. const __m256i q8sums = _mm256_loadu_si256((const __m256i*)y[i].bsums);
  5748. const __m128i q8s = _mm_hadd_epi16(_mm256_extracti128_si256(q8sums, 0), _mm256_extracti128_si256(q8sums, 1));
  5749. const __m128i prod = _mm_madd_epi16(_mm256_extracti128_si256(mins_and_scales, 1), q8s);
  5750. const __m128i hsum = _mm_hadd_epi32(_mm_hadd_epi32(prod, mzero), mzero);
  5751. summs += dmin * _mm_extract_epi32(hsum, 0);
  5752. const __m128i sc128 = _mm256_extracti128_si256(mins_and_scales, 0);
  5753. const __m256i scales = MM256_SET_M128I(sc128, sc128);
  5754. const __m256i hbits = _mm256_loadu_si256((const __m256i*)x[i].qh);
  5755. __m256i hmask = mone;
  5756. __m256i sumi = _mm256_setzero_si256();
  5757. int bit = 0;
  5758. for (int j = 0; j < QK_K/64; ++j) {
  5759. const __m256i scale_0 = _mm256_shuffle_epi8(scales, get_scale_shuffle_k4(2*j+0));
  5760. const __m256i scale_1 = _mm256_shuffle_epi8(scales, get_scale_shuffle_k4(2*j+1));
  5761. const __m256i q5bits = _mm256_loadu_si256((const __m256i*)q5); q5 += 32;
  5762. const __m256i q5l_0 = _mm256_and_si256(q5bits, m4);
  5763. const __m256i q5h_0 = _mm256_slli_epi16(_mm256_srli_epi16(_mm256_and_si256(hbits, hmask), bit++), 4);
  5764. const __m256i q5_0 = _mm256_add_epi8(q5l_0, q5h_0);
  5765. hmask = _mm256_slli_epi16(hmask, 1);
  5766. const __m256i q5l_1 = _mm256_and_si256(_mm256_srli_epi16(q5bits, 4), m4);
  5767. const __m256i q5h_1 = _mm256_slli_epi16(_mm256_srli_epi16(_mm256_and_si256(hbits, hmask), bit++), 4);
  5768. const __m256i q5_1 = _mm256_add_epi8(q5l_1, q5h_1);
  5769. hmask = _mm256_slli_epi16(hmask, 1);
  5770. const __m256i q8_0 = _mm256_loadu_si256((const __m256i*)q8); q8 += 32;
  5771. const __m256i q8_1 = _mm256_loadu_si256((const __m256i*)q8); q8 += 32;
  5772. __m256i p16_0 = _mm256_maddubs_epi16(q5_0, q8_0);
  5773. __m256i p16_1 = _mm256_maddubs_epi16(q5_1, q8_1);
  5774. p16_0 = _mm256_madd_epi16(scale_0, p16_0);
  5775. p16_1 = _mm256_madd_epi16(scale_1, p16_1);
  5776. sumi = _mm256_add_epi32(sumi, _mm256_add_epi32(p16_0, p16_1));
  5777. }
  5778. __m256 vd = _mm256_set1_ps(d);
  5779. acc = _mm256_fmadd_ps(vd, _mm256_cvtepi32_ps(sumi), acc);
  5780. }
  5781. *s = hsum_float_8(acc) + summs;
  5782. #elif defined __AVX__
  5783. const __m128i m4 = _mm_set1_epi8(0xF);
  5784. const __m128i mzero = _mm_setzero_si128();
  5785. const __m128i mone = _mm_set1_epi8(1);
  5786. const __m128i m2 = _mm_set1_epi8(2);
  5787. __m256 acc = _mm256_setzero_ps();
  5788. float summs = 0.f;
  5789. for (int i = 0; i < nb; ++i) {
  5790. const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d);
  5791. const float dmin = -y[i].d * GGML_FP16_TO_FP32(x[i].dmin);
  5792. const uint8_t * restrict q5 = x[i].qs;
  5793. const int8_t * restrict q8 = y[i].qs;
  5794. memcpy(utmp, x[i].scales, 12);
  5795. utmp[3] = ((utmp[2] >> 4) & kmask2) | (((utmp[1] >> 6) & kmask3) << 4);
  5796. const uint32_t uaux = utmp[1] & kmask1;
  5797. utmp[1] = (utmp[2] & kmask2) | (((utmp[0] >> 6) & kmask3) << 4);
  5798. utmp[2] = uaux;
  5799. utmp[0] &= kmask1;
  5800. const __m128i utmps = _mm_set_epi32(utmp[3], utmp[2], utmp[1], utmp[0]);
  5801. const __m128i scales = _mm_cvtepu8_epi16(utmps);
  5802. const __m128i mins = _mm_cvtepu8_epi16(_mm_unpackhi_epi64(utmps, utmps));
  5803. const __m128i q8sums_0 = _mm_loadu_si128((const __m128i*)&y[i].bsums[0]);
  5804. const __m128i q8sums_1 = _mm_loadu_si128((const __m128i*)&y[i].bsums[8]);
  5805. const __m128i q8s = _mm_hadd_epi16(q8sums_0, q8sums_1);
  5806. const __m128i prod = _mm_madd_epi16(mins, q8s);
  5807. const __m128i hsum = _mm_hadd_epi32(_mm_hadd_epi32(prod, mzero), mzero);
  5808. summs += dmin * _mm_extract_epi32(hsum, 0);
  5809. const __m128i hbits_0 = _mm_loadu_si128((const __m128i*)&x[i].qh[0]);
  5810. const __m128i hbits_1 = _mm_loadu_si128((const __m128i*)&x[i].qh[16]);
  5811. __m128i hmask = mone;
  5812. __m128i sumi_0 = _mm_setzero_si128();
  5813. __m128i sumi_1 = _mm_setzero_si128();
  5814. int bit = 0;
  5815. __m128i shuffle = _mm_set1_epi16(0x0100);
  5816. for (int j = 0; j < QK_K/64; ++j) {
  5817. const __m128i scale_0 = _mm_shuffle_epi8(scales, shuffle);
  5818. shuffle = _mm_add_epi16(shuffle, m2);
  5819. const __m128i scale_1 = _mm_shuffle_epi8(scales, shuffle);
  5820. shuffle = _mm_add_epi16(shuffle, m2);
  5821. const __m128i q5bits_0 = _mm_loadu_si128((const __m128i*)q5); q5 += 16;
  5822. const __m128i q5bits_1 = _mm_loadu_si128((const __m128i*)q5); q5 += 16;
  5823. __m128i q5l_0 = _mm_and_si128(q5bits_0, m4);
  5824. __m128i q5l_1 = _mm_and_si128(q5bits_1, m4);
  5825. __m128i q5h_0 = _mm_slli_epi16(_mm_srli_epi16(_mm_and_si128(hbits_0, hmask), bit), 4);
  5826. __m128i q5h_1 = _mm_slli_epi16(_mm_srli_epi16(_mm_and_si128(hbits_1, hmask), bit++), 4);
  5827. __m128i q5_0 = _mm_add_epi8(q5l_0, q5h_0);
  5828. __m128i q5_1 = _mm_add_epi8(q5l_1, q5h_1);
  5829. hmask = _mm_slli_epi16(hmask, 1);
  5830. __m128i q8_0 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  5831. __m128i q8_1 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  5832. __m128i p16_0 = _mm_maddubs_epi16(q5_0, q8_0);
  5833. __m128i p16_1 = _mm_maddubs_epi16(q5_1, q8_1);
  5834. p16_0 = _mm_madd_epi16(scale_0, p16_0);
  5835. p16_1 = _mm_madd_epi16(scale_0, p16_1);
  5836. q5l_0 = _mm_and_si128(_mm_srli_epi16(q5bits_0, 4), m4);
  5837. q5l_1 = _mm_and_si128(_mm_srli_epi16(q5bits_1, 4), m4);
  5838. q5h_0 = _mm_slli_epi16(_mm_srli_epi16(_mm_and_si128(hbits_0, hmask), bit), 4);
  5839. q5h_1 = _mm_slli_epi16(_mm_srli_epi16(_mm_and_si128(hbits_1, hmask), bit++), 4);
  5840. q5_0 = _mm_add_epi8(q5l_0, q5h_0);
  5841. q5_1 = _mm_add_epi8(q5l_1, q5h_1);
  5842. hmask = _mm_slli_epi16(hmask, 1);
  5843. q8_0 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  5844. q8_1 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  5845. __m128i p16_2 = _mm_maddubs_epi16(q5_0, q8_0);
  5846. __m128i p16_3 = _mm_maddubs_epi16(q5_1, q8_1);
  5847. p16_2 = _mm_madd_epi16(scale_1, p16_2);
  5848. p16_3 = _mm_madd_epi16(scale_1, p16_3);
  5849. sumi_0 = _mm_add_epi32(sumi_0, _mm_add_epi32(p16_0, p16_2));
  5850. sumi_1 = _mm_add_epi32(sumi_1, _mm_add_epi32(p16_1, p16_3));
  5851. }
  5852. __m256 vd = _mm256_set1_ps(d);
  5853. __m256i sumi = MM256_SET_M128I(sumi_1, sumi_0);
  5854. acc = _mm256_add_ps(_mm256_mul_ps(vd, _mm256_cvtepi32_ps(sumi)), acc);
  5855. }
  5856. *s = hsum_float_8(acc) + summs;
  5857. #elif defined __riscv_v_intrinsic
  5858. const uint8_t * scales = (const uint8_t*)&utmp[0];
  5859. const uint8_t * mins = (const uint8_t*)&utmp[2];
  5860. float sumf = 0;
  5861. float sums = 0.0;
  5862. size_t vl;
  5863. for (int i = 0; i < nb; ++i) {
  5864. vl = 8;
  5865. const uint8_t * restrict q5 = x[i].qs;
  5866. const uint8_t * restrict hm = x[i].qh;
  5867. const int8_t * restrict q8 = y[i].qs;
  5868. const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d;
  5869. const float dmin = GGML_FP16_TO_FP32(x[i].dmin) * y[i].d;
  5870. vint16mf2_t q8sums_0 = __riscv_vlse16_v_i16mf2(y[i].bsums, 4, vl);
  5871. vint16mf2_t q8sums_1 = __riscv_vlse16_v_i16mf2(y[i].bsums+1, 4, vl);
  5872. vint16mf2_t q8sums = __riscv_vadd_vv_i16mf2(q8sums_0, q8sums_1, vl);
  5873. memcpy(utmp, x[i].scales, 12);
  5874. utmp[3] = ((utmp[2] >> 4) & kmask2) | (((utmp[1] >> 6) & kmask3) << 4);
  5875. const uint32_t uaux = utmp[1] & kmask1;
  5876. utmp[1] = (utmp[2] & kmask2) | (((utmp[0] >> 6) & kmask3) << 4);
  5877. utmp[2] = uaux;
  5878. utmp[0] &= kmask1;
  5879. vuint8mf4_t mins8 = __riscv_vle8_v_u8mf4(mins, vl);
  5880. vint16mf2_t v_mins = __riscv_vreinterpret_v_u16mf2_i16mf2(__riscv_vzext_vf2_u16mf2(mins8, vl));
  5881. vint32m1_t prod = __riscv_vwmul_vv_i32m1(q8sums, v_mins, vl);
  5882. vint32m1_t sumi = __riscv_vredsum_vs_i32m1_i32m1(prod, __riscv_vmv_v_x_i32m1(0, 1), vl);
  5883. sumf -= dmin * __riscv_vmv_x_s_i32m1_i32(sumi);
  5884. vl = 32;
  5885. int32_t aux32 = 0;
  5886. int is = 0;
  5887. uint8_t m = 1;
  5888. vint32m1_t vzero = __riscv_vmv_v_x_i32m1(0, 1);
  5889. vuint8m1_t vqh = __riscv_vle8_v_u8m1(hm, vl);
  5890. for (int j = 0; j < QK_K/64; ++j) {
  5891. // load Q5 and Q8
  5892. vuint8m1_t q5_x = __riscv_vle8_v_u8m1(q5, vl);
  5893. vint8m1_t q8_y1 = __riscv_vle8_v_i8m1(q8, vl);
  5894. vint8m1_t q8_y2 = __riscv_vle8_v_i8m1(q8+32, vl);
  5895. // compute mask for addition
  5896. vint8m1_t q5_a = __riscv_vreinterpret_v_u8m1_i8m1(__riscv_vand_vx_u8m1(q5_x, 0x0F, vl));
  5897. vuint8m1_t qh_m1 = __riscv_vand_vx_u8m1(vqh, m, vl);
  5898. vbool8_t vmask_1 = __riscv_vmsne_vx_u8m1_b8(qh_m1, 0, vl);
  5899. vint8m1_t q5_m1 = __riscv_vadd_vx_i8m1_m(vmask_1, q5_a, 16, vl);
  5900. m <<= 1;
  5901. vint8m1_t q5_l = __riscv_vreinterpret_v_u8m1_i8m1(__riscv_vsrl_vx_u8m1(q5_x, 0x04, vl));
  5902. vuint8m1_t qh_m2 = __riscv_vand_vx_u8m1(vqh, m, vl);
  5903. vbool8_t vmask_2 = __riscv_vmsne_vx_u8m1_b8(qh_m2, 0, vl);
  5904. vint8m1_t q5_m2 = __riscv_vadd_vx_i8m1_m(vmask_2, q5_l, 16, vl);
  5905. m <<= 1;
  5906. vint16m2_t v0 = __riscv_vwmul_vv_i16m2(q5_m1, q8_y1, vl);
  5907. vint16m2_t v1 = __riscv_vwmul_vv_i16m2(q5_m2, q8_y2, vl);
  5908. vint32m4_t vs1 = __riscv_vwmul_vx_i32m4(v0, scales[is++], vl);
  5909. vint32m4_t vs2 = __riscv_vwmul_vx_i32m4(v1, scales[is++], vl);
  5910. vint32m1_t vacc1 = __riscv_vredsum_vs_i32m4_i32m1(vs1, vzero, vl);
  5911. vint32m1_t vacc2 = __riscv_vredsum_vs_i32m4_i32m1(vs2, vzero, vl);
  5912. aux32 += __riscv_vmv_x_s_i32m1_i32(vacc1) + __riscv_vmv_x_s_i32m1_i32(vacc2);
  5913. q5 += 32; q8 += 64;
  5914. }
  5915. vfloat32m1_t vaux = __riscv_vfmul_vf_f32m1(__riscv_vfmv_v_f_f32m1(aux32, 1), d, 1);
  5916. sums += __riscv_vfmv_f_s_f32m1_f32(vaux);
  5917. }
  5918. *s = sumf+sums;
  5919. #else
  5920. const uint8_t * scales = (const uint8_t*)&utmp[0];
  5921. const uint8_t * mins = (const uint8_t*)&utmp[2];
  5922. int8_t aux8[QK_K];
  5923. int16_t aux16[8];
  5924. float sums [8];
  5925. int32_t aux32[8];
  5926. memset(sums, 0, 8*sizeof(float));
  5927. float sumf = 0;
  5928. for (int i = 0; i < nb; ++i) {
  5929. const uint8_t * restrict q4 = x[i].qs;
  5930. const uint8_t * restrict hm = x[i].qh;
  5931. const int8_t * restrict q8 = y[i].qs;
  5932. memset(aux32, 0, 8*sizeof(int32_t));
  5933. int8_t * restrict a = aux8;
  5934. uint8_t m = 1;
  5935. for (int j = 0; j < QK_K/64; ++j) {
  5936. for (int l = 0; l < 32; ++l) a[l] = (int8_t)(q4[l] & 0xF);
  5937. for (int l = 0; l < 32; ++l) a[l] += (hm[l] & m ? 16 : 0);
  5938. a += 32; m <<= 1;
  5939. for (int l = 0; l < 32; ++l) a[l] = (int8_t)(q4[l] >> 4);
  5940. for (int l = 0; l < 32; ++l) a[l] += (hm[l] & m ? 16 : 0);
  5941. a += 32; m <<= 1;
  5942. q4 += 32;
  5943. }
  5944. memcpy(utmp, x[i].scales, 12);
  5945. utmp[3] = ((utmp[2] >> 4) & kmask2) | (((utmp[1] >> 6) & kmask3) << 4);
  5946. const uint32_t uaux = utmp[1] & kmask1;
  5947. utmp[1] = (utmp[2] & kmask2) | (((utmp[0] >> 6) & kmask3) << 4);
  5948. utmp[2] = uaux;
  5949. utmp[0] &= kmask1;
  5950. int sumi = 0;
  5951. for (int j = 0; j < QK_K/16; ++j) sumi += y[i].bsums[j] * mins[j/2];
  5952. a = aux8;
  5953. int is = 0;
  5954. for (int j = 0; j < QK_K/32; ++j) {
  5955. int32_t scale = scales[is++];
  5956. for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
  5957. for (int l = 0; l < 8; ++l) aux32[l] += scale * aux16[l];
  5958. q8 += 8; a += 8;
  5959. for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
  5960. for (int l = 0; l < 8; ++l) aux32[l] += scale * aux16[l];
  5961. q8 += 8; a += 8;
  5962. for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
  5963. for (int l = 0; l < 8; ++l) aux32[l] += scale * aux16[l];
  5964. q8 += 8; a += 8;
  5965. for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
  5966. for (int l = 0; l < 8; ++l) aux32[l] += scale * aux16[l];
  5967. q8 += 8; a += 8;
  5968. }
  5969. const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d;
  5970. for (int l = 0; l < 8; ++l) sums[l] += d * aux32[l];
  5971. const float dmin = GGML_FP16_TO_FP32(x[i].dmin) * y[i].d;
  5972. sumf -= dmin * sumi;
  5973. }
  5974. for (int l = 0; l < 8; ++l) sumf += sums[l];
  5975. *s = sumf;
  5976. #endif
  5977. }
  5978. #else
  5979. void ggml_vec_dot_q5_K_q8_K(int n, float * restrict s, size_t bs, const void * restrict vx, size_t bx, const void * restrict vy, size_t by, int nrc) {
  5980. assert(n % QK_K == 0);
  5981. assert(nrc == 1);
  5982. UNUSED(nrc);
  5983. UNUSED(bx);
  5984. UNUSED(by);
  5985. UNUSED(bs);
  5986. const block_q5_K * restrict x = vx;
  5987. const block_q8_K * restrict y = vy;
  5988. const int nb = n / QK_K;
  5989. #ifdef __ARM_NEON
  5990. const uint8x16_t m4b = vdupq_n_u8(0xf);
  5991. const uint8x16_t mh = vdupq_n_u8(16);
  5992. const int32x4_t mzero = vdupq_n_s32(0);
  5993. ggml_int8x16x4_t q5bytes;
  5994. ggml_uint8x16x4_t q5h;
  5995. float sumf = 0;
  5996. for (int i = 0; i < nb; ++i) {
  5997. const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d);
  5998. const int8_t * sc = x[i].scales;
  5999. const uint8_t * restrict q5 = x[i].qs;
  6000. const uint8_t * restrict qh = x[i].qh;
  6001. const int8_t * restrict q8 = y[i].qs;
  6002. const uint8x8_t qhbits = vld1_u8(qh);
  6003. const ggml_uint8x16x2_t q5bits = ggml_vld1q_u8_x2(q5);
  6004. const ggml_int8x16x4_t q8bytes = ggml_vld1q_s8_x4(q8);
  6005. const uint8x16_t htmp = vcombine_u8(qhbits, vshr_n_u8(qhbits, 1));
  6006. q5h.val[0] = vbicq_u8(mh, vshlq_n_u8(htmp, 4));
  6007. q5h.val[1] = vbicq_u8(mh, vshlq_n_u8(htmp, 2));
  6008. q5h.val[2] = vbicq_u8(mh, htmp);
  6009. q5h.val[3] = vbicq_u8(mh, vshrq_n_u8(htmp, 2));
  6010. q5bytes.val[0] = vsubq_s8(vreinterpretq_s8_u8(vandq_u8(q5bits.val[0], m4b)), vreinterpretq_s8_u8(q5h.val[0]));
  6011. q5bytes.val[1] = vsubq_s8(vreinterpretq_s8_u8(vandq_u8(q5bits.val[1], m4b)), vreinterpretq_s8_u8(q5h.val[1]));
  6012. q5bytes.val[2] = vsubq_s8(vreinterpretq_s8_u8(vshrq_n_u8(q5bits.val[0], 4)), vreinterpretq_s8_u8(q5h.val[2]));
  6013. q5bytes.val[3] = vsubq_s8(vreinterpretq_s8_u8(vshrq_n_u8(q5bits.val[1], 4)), vreinterpretq_s8_u8(q5h.val[3]));
  6014. int32_t sumi1 = sc[0] * vaddvq_s32(ggml_vdotq_s32(mzero, q5bytes.val[0], q8bytes.val[0]));
  6015. int32_t sumi2 = sc[1] * vaddvq_s32(ggml_vdotq_s32(mzero, q5bytes.val[1], q8bytes.val[1]));
  6016. int32_t sumi3 = sc[2] * vaddvq_s32(ggml_vdotq_s32(mzero, q5bytes.val[2], q8bytes.val[2]));
  6017. int32_t sumi4 = sc[3] * vaddvq_s32(ggml_vdotq_s32(mzero, q5bytes.val[3], q8bytes.val[3]));
  6018. sumf += d * (sumi1 + sumi2 + sumi3 + sumi4);
  6019. }
  6020. *s = sumf;
  6021. #elif defined __AVX2__
  6022. const __m256i m4 = _mm256_set1_epi8(0xF);
  6023. const __m256i mone = _mm256_set1_epi8(1);
  6024. __m256 acc = _mm256_setzero_ps();
  6025. for (int i = 0; i < nb; ++i) {
  6026. const uint8_t * restrict q5 = x[i].qs;
  6027. const int8_t * restrict q8 = y[i].qs;
  6028. const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d);
  6029. const __m256i q5bits = _mm256_loadu_si256((const __m256i*)q5);
  6030. const __m256i scale_l = MM256_SET_M128I(_mm_set1_epi16(x[i].scales[1]), _mm_set1_epi16(x[i].scales[0]));
  6031. const __m256i scale_h = MM256_SET_M128I(_mm_set1_epi16(x[i].scales[3]), _mm_set1_epi16(x[i].scales[2]));
  6032. int64_t aux64;
  6033. memcpy(&aux64, x[i].qh, 8);
  6034. const __m128i haux128 = _mm_set_epi64x(aux64 >> 1, aux64);
  6035. const __m256i haux256 = MM256_SET_M128I(_mm_srli_epi16(haux128, 2), haux128);
  6036. const __m256i q5h_0 = _mm256_slli_epi16(_mm256_andnot_si256(haux256, mone), 4);
  6037. const __m256i q5h_1 = _mm256_slli_epi16(_mm256_andnot_si256(_mm256_srli_epi16(haux256, 4), mone), 4);
  6038. const __m256i q5l_0 = _mm256_and_si256(q5bits, m4);
  6039. const __m256i q5l_1 = _mm256_and_si256(_mm256_srli_epi16(q5bits, 4), m4);
  6040. const __m256i q8_0 = _mm256_loadu_si256((const __m256i*)(q8+ 0));
  6041. const __m256i q8_1 = _mm256_loadu_si256((const __m256i*)(q8+32));
  6042. const __m256i p16_0 = _mm256_madd_epi16(scale_l, _mm256_maddubs_epi16(q5l_0, q8_0));
  6043. const __m256i p16_1 = _mm256_madd_epi16(scale_h, _mm256_maddubs_epi16(q5l_1, q8_1));
  6044. const __m256i s16_0 = _mm256_madd_epi16(scale_l, _mm256_maddubs_epi16(q5h_0, q8_0));
  6045. const __m256i s16_1 = _mm256_madd_epi16(scale_h, _mm256_maddubs_epi16(q5h_1, q8_1));
  6046. const __m256i dot = _mm256_sub_epi32(_mm256_add_epi32(p16_0, p16_1), _mm256_add_epi32(s16_0, s16_1));
  6047. acc = _mm256_fmadd_ps(_mm256_set1_ps(d), _mm256_cvtepi32_ps(dot), acc);
  6048. }
  6049. *s = hsum_float_8(acc);
  6050. #elif defined __AVX__
  6051. const __m128i m4 = _mm_set1_epi8(0xF);
  6052. const __m128i mone = _mm_set1_epi8(1);
  6053. __m256 acc = _mm256_setzero_ps();
  6054. for (int i = 0; i < nb; ++i) {
  6055. const uint8_t * restrict q5 = x[i].qs;
  6056. const int8_t * restrict q8 = y[i].qs;
  6057. const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d);
  6058. const __m256i q5bits = _mm256_loadu_si256((const __m256i*)q5);
  6059. const __m128i scale_0 = _mm_set1_epi16(x[i].scales[0]);
  6060. const __m128i scale_1 = _mm_set1_epi16(x[i].scales[1]);
  6061. const __m128i scale_2 = _mm_set1_epi16(x[i].scales[2]);
  6062. const __m128i scale_3 = _mm_set1_epi16(x[i].scales[3]);
  6063. int64_t aux64;
  6064. memcpy(&aux64, x[i].qh, 8);
  6065. const __m128i haux128_0 = _mm_set_epi64x(aux64 >> 1, aux64);
  6066. const __m128i haux128_1 = _mm_srli_epi16(haux128_0, 2);
  6067. const __m128i q5h_0 = _mm_slli_epi16(_mm_andnot_si128(haux128_0, mone), 4);
  6068. const __m128i q5h_1 = _mm_slli_epi16(_mm_andnot_si128(haux128_1, mone), 4);
  6069. const __m128i q5h_2 = _mm_slli_epi16(_mm_andnot_si128(_mm_srli_epi16(haux128_0, 4), mone), 4);
  6070. const __m128i q5h_3 = _mm_slli_epi16(_mm_andnot_si128(_mm_srli_epi16(haux128_1, 4), mone), 4);
  6071. const __m128i q5l_0 = _mm_and_si128(_mm256_extractf128_si256(q5bits, 0), m4);
  6072. const __m128i q5l_1 = _mm_and_si128(_mm256_extractf128_si256(q5bits, 1), m4);
  6073. const __m128i q5l_2 = _mm_and_si128(_mm_srli_epi16(_mm256_extractf128_si256(q5bits, 0), 4), m4);
  6074. const __m128i q5l_3 = _mm_and_si128(_mm_srli_epi16(_mm256_extractf128_si256(q5bits, 1), 4), m4);
  6075. const __m256i q8_0 = _mm256_loadu_si256((const __m256i*)(q8+ 0));
  6076. const __m256i q8_1 = _mm256_loadu_si256((const __m256i*)(q8+32));
  6077. const __m128i p16_0 = _mm_madd_epi16(scale_0, _mm_maddubs_epi16(q5l_0, _mm256_extractf128_si256(q8_0, 0)));
  6078. const __m128i p16_1 = _mm_madd_epi16(scale_1, _mm_maddubs_epi16(q5l_1, _mm256_extractf128_si256(q8_0, 1)));
  6079. const __m128i p16_2 = _mm_madd_epi16(scale_2, _mm_maddubs_epi16(q5l_2, _mm256_extractf128_si256(q8_1, 0)));
  6080. const __m128i p16_3 = _mm_madd_epi16(scale_3, _mm_maddubs_epi16(q5l_3, _mm256_extractf128_si256(q8_1, 1)));
  6081. const __m128i s16_0 = _mm_madd_epi16(scale_0, _mm_maddubs_epi16(q5h_0, _mm256_extractf128_si256(q8_0, 0)));
  6082. const __m128i s16_1 = _mm_madd_epi16(scale_1, _mm_maddubs_epi16(q5h_1, _mm256_extractf128_si256(q8_0, 1)));
  6083. const __m128i s16_2 = _mm_madd_epi16(scale_2, _mm_maddubs_epi16(q5h_2, _mm256_extractf128_si256(q8_1, 0)));
  6084. const __m128i s16_3 = _mm_madd_epi16(scale_3, _mm_maddubs_epi16(q5h_3, _mm256_extractf128_si256(q8_1, 1)));
  6085. const __m128i dot_0 = _mm_sub_epi32(_mm_add_epi32(p16_0, p16_2), _mm_add_epi32(s16_0, s16_2));
  6086. const __m128i dot_1 = _mm_sub_epi32(_mm_add_epi32(p16_1, p16_3), _mm_add_epi32(s16_1, s16_3));
  6087. acc = _mm256_add_ps(_mm256_mul_ps(_mm256_set1_ps(d), _mm256_cvtepi32_ps(MM256_SET_M128I(dot_1, dot_0))), acc);
  6088. }
  6089. *s = hsum_float_8(acc);
  6090. #elif defined __riscv_v_intrinsic
  6091. float sumf = 0;
  6092. for (int i = 0; i < nb; ++i) {
  6093. const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d);
  6094. const int8_t * sc = x[i].scales;
  6095. const uint8_t * restrict q5 = x[i].qs;
  6096. const uint8_t * restrict qh = x[i].qh;
  6097. const int8_t * restrict q8 = y[i].qs;
  6098. vint32m1_t vzero = __riscv_vmv_v_x_i32m1(0, 1);
  6099. // load qh
  6100. vuint8mf4_t qh_x1 = __riscv_vle8_v_u8mf4(qh, 8);
  6101. vuint8mf2_t qh_x2 = __riscv_vlmul_ext_v_u8mf4_u8mf2(__riscv_vsrl_vx_u8mf4(qh_x1, 1, 8));
  6102. size_t vl = 16;
  6103. // combine both qh_1 and qh_2
  6104. vuint8mf2_t qh_x = __riscv_vslideup_vx_u8mf2(__riscv_vlmul_ext_v_u8mf4_u8mf2(qh_x1), qh_x2, vl/2, vl);
  6105. vuint8mf2_t qh_h0 = __riscv_vand_vx_u8mf2(__riscv_vnot_v_u8mf2(__riscv_vsll_vx_u8mf2(qh_x, 0x4, vl), vl), 16, vl);
  6106. vuint8mf2_t qh_h1 = __riscv_vand_vx_u8mf2(__riscv_vnot_v_u8mf2(__riscv_vsll_vx_u8mf2(qh_x, 0x2, vl), vl), 16, vl);
  6107. vuint8mf2_t qh_h2 = __riscv_vand_vx_u8mf2(__riscv_vnot_v_u8mf2(qh_x, vl), 16, vl);
  6108. vuint8mf2_t qh_h3 = __riscv_vand_vx_u8mf2(__riscv_vnot_v_u8mf2(__riscv_vsrl_vx_u8mf2(qh_x, 0x4, vl), vl), 16, vl);
  6109. vint8mf2_t qh_0 = __riscv_vreinterpret_v_u8mf2_i8mf2(qh_h0);
  6110. vint8mf2_t qh_1 = __riscv_vreinterpret_v_u8mf2_i8mf2(qh_h1);
  6111. vint8mf2_t qh_2 = __riscv_vreinterpret_v_u8mf2_i8mf2(qh_h2);
  6112. vint8mf2_t qh_3 = __riscv_vreinterpret_v_u8mf2_i8mf2(qh_h3);
  6113. // load q5
  6114. vuint8mf2_t q5_x1 = __riscv_vle8_v_u8mf2(q5, vl);
  6115. vuint8mf2_t q5_x2 = __riscv_vle8_v_u8mf2(q5+16, vl);
  6116. vint8mf2_t q5s_0 = __riscv_vreinterpret_v_u8mf2_i8mf2(__riscv_vand_vx_u8mf2(q5_x1, 0xF, vl));
  6117. vint8mf2_t q5s_1 = __riscv_vreinterpret_v_u8mf2_i8mf2(__riscv_vand_vx_u8mf2(q5_x2, 0xF, vl));
  6118. vint8mf2_t q5s_2 = __riscv_vreinterpret_v_u8mf2_i8mf2(__riscv_vsrl_vx_u8mf2(q5_x1, 0x4, vl));
  6119. vint8mf2_t q5s_3 = __riscv_vreinterpret_v_u8mf2_i8mf2(__riscv_vsrl_vx_u8mf2(q5_x2, 0x4, vl));
  6120. vint8mf2_t q5_0 = __riscv_vsub_vv_i8mf2(q5s_0, qh_0, vl);
  6121. vint8mf2_t q5_1 = __riscv_vsub_vv_i8mf2(q5s_1, qh_1, vl);
  6122. vint8mf2_t q5_2 = __riscv_vsub_vv_i8mf2(q5s_2, qh_2, vl);
  6123. vint8mf2_t q5_3 = __riscv_vsub_vv_i8mf2(q5s_3, qh_3, vl);
  6124. // load Q8 and multiply it with Q5
  6125. vint16m1_t p0 = __riscv_vwmul_vv_i16m1(q5_0, __riscv_vle8_v_i8mf2(q8, vl), vl);
  6126. vint16m1_t p1 = __riscv_vwmul_vv_i16m1(q5_1, __riscv_vle8_v_i8mf2(q8+16, vl), vl);
  6127. vint16m1_t p2 = __riscv_vwmul_vv_i16m1(q5_2, __riscv_vle8_v_i8mf2(q8+32, vl), vl);
  6128. vint16m1_t p3 = __riscv_vwmul_vv_i16m1(q5_3, __riscv_vle8_v_i8mf2(q8+48, vl), vl);
  6129. vint32m1_t vs_0 = __riscv_vwredsum_vs_i16m1_i32m1(p0, vzero, vl);
  6130. vint32m1_t vs_1 = __riscv_vwredsum_vs_i16m1_i32m1(p1, vzero, vl);
  6131. vint32m1_t vs_2 = __riscv_vwredsum_vs_i16m1_i32m1(p2, vzero, vl);
  6132. vint32m1_t vs_3 = __riscv_vwredsum_vs_i16m1_i32m1(p3, vzero, vl);
  6133. int32_t sumi1 = sc[0] * __riscv_vmv_x_s_i32m1_i32(vs_0);
  6134. int32_t sumi2 = sc[1] * __riscv_vmv_x_s_i32m1_i32(vs_1);
  6135. int32_t sumi3 = sc[2] * __riscv_vmv_x_s_i32m1_i32(vs_2);
  6136. int32_t sumi4 = sc[3] * __riscv_vmv_x_s_i32m1_i32(vs_3);
  6137. sumf += d * (sumi1 + sumi2 + sumi3 + sumi4);
  6138. }
  6139. *s = sumf;
  6140. #else
  6141. int8_t aux8[QK_K];
  6142. int16_t aux16[16];
  6143. float sums [8];
  6144. memset(sums, 0, 8*sizeof(float));
  6145. float sumf = 0;
  6146. for (int i = 0; i < nb; ++i) {
  6147. const uint8_t * restrict q4 = x[i].qs;
  6148. const uint8_t * restrict hm = x[i].qh;
  6149. const int8_t * restrict q8 = y[i].qs;
  6150. int8_t * restrict a = aux8;
  6151. for (int l = 0; l < 32; ++l) {
  6152. a[l+ 0] = q4[l] & 0xF;
  6153. a[l+32] = q4[l] >> 4;
  6154. }
  6155. for (int is = 0; is < 8; ++is) {
  6156. uint8_t m = 1 << is;
  6157. for (int l = 0; l < 8; ++l) a[8*is + l] -= (hm[l] & m ? 0 : 16);
  6158. }
  6159. const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d);
  6160. const int8_t * restrict sc = x[i].scales;
  6161. for (int j = 0; j < QK_K/16; ++j) {
  6162. const float dl = d * sc[j];
  6163. for (int l = 0; l < 16; ++l) aux16[l] = q8[l] * a[l];
  6164. for (int l = 0; l < 8; ++l) sums[l] += dl * (aux16[l] + aux16[8+l]);
  6165. q8 += 16; a += 16;
  6166. }
  6167. }
  6168. for (int l = 0; l < 8; ++l) sumf += sums[l];
  6169. *s = sumf;
  6170. #endif
  6171. }
  6172. #endif
  6173. #if QK_K == 256
  6174. void ggml_vec_dot_q6_K_q8_K(int n, float * restrict s, size_t bs, const void * restrict vx, size_t bx, const void * restrict vy, size_t by, int nrc) {
  6175. assert(n % QK_K == 0);
  6176. assert(nrc == 1);
  6177. UNUSED(nrc);
  6178. UNUSED(bx);
  6179. UNUSED(by);
  6180. UNUSED(bs);
  6181. const block_q6_K * restrict x = vx;
  6182. const block_q8_K * restrict y = vy;
  6183. const int nb = n / QK_K;
  6184. #ifdef __ARM_NEON
  6185. float sum = 0;
  6186. const uint8x16_t m4b = vdupq_n_u8(0xF);
  6187. const int32x4_t vzero = vdupq_n_s32(0);
  6188. //const int8x16_t m32s = vdupq_n_s8(32);
  6189. const uint8x16_t mone = vdupq_n_u8(3);
  6190. ggml_int8x16x4_t q6bytes;
  6191. ggml_uint8x16x4_t q6h;
  6192. for (int i = 0; i < nb; ++i) {
  6193. const float d_all = GGML_FP16_TO_FP32(x[i].d);
  6194. const uint8_t * restrict q6 = x[i].ql;
  6195. const uint8_t * restrict qh = x[i].qh;
  6196. const int8_t * restrict q8 = y[i].qs;
  6197. const int8_t * restrict scale = x[i].scales;
  6198. const ggml_int16x8x2_t q8sums = ggml_vld1q_s16_x2(y[i].bsums);
  6199. const int8x16_t scales = vld1q_s8(scale);
  6200. const ggml_int16x8x2_t q6scales = {{vmovl_s8(vget_low_s8(scales)), vmovl_s8(vget_high_s8(scales))}};
  6201. const int32x4_t prod = vaddq_s32(vaddq_s32(vmull_s16(vget_low_s16 (q8sums.val[0]), vget_low_s16 (q6scales.val[0])),
  6202. vmull_s16(vget_high_s16(q8sums.val[0]), vget_high_s16(q6scales.val[0]))),
  6203. vaddq_s32(vmull_s16(vget_low_s16 (q8sums.val[1]), vget_low_s16 (q6scales.val[1])),
  6204. vmull_s16(vget_high_s16(q8sums.val[1]), vget_high_s16(q6scales.val[1]))));
  6205. int32_t isum_mins = vaddvq_s32(prod);
  6206. int32_t isum = 0;
  6207. for (int j = 0; j < QK_K/128; ++j) {
  6208. ggml_uint8x16x2_t qhbits = ggml_vld1q_u8_x2(qh); qh += 32;
  6209. ggml_uint8x16x4_t q6bits = ggml_vld1q_u8_x4(q6); q6 += 64;
  6210. ggml_int8x16x4_t q8bytes = ggml_vld1q_s8_x4(q8); q8 += 64;
  6211. q6h.val[0] = vshlq_n_u8(vandq_u8(mone, qhbits.val[0]), 4);
  6212. q6h.val[1] = vshlq_n_u8(vandq_u8(mone, qhbits.val[1]), 4);
  6213. uint8x16_t shifted = vshrq_n_u8(qhbits.val[0], 2);
  6214. q6h.val[2] = vshlq_n_u8(vandq_u8(mone, shifted), 4);
  6215. shifted = vshrq_n_u8(qhbits.val[1], 2);
  6216. q6h.val[3] = vshlq_n_u8(vandq_u8(mone, shifted), 4);
  6217. //q6bytes.val[0] = vsubq_s8(vreinterpretq_s8_u8(vorrq_u8(vandq_u8(q6bits.val[0], m4b), q6h.val[0])), m32s);
  6218. //q6bytes.val[1] = vsubq_s8(vreinterpretq_s8_u8(vorrq_u8(vandq_u8(q6bits.val[1], m4b), q6h.val[1])), m32s);
  6219. //q6bytes.val[2] = vsubq_s8(vreinterpretq_s8_u8(vorrq_u8(vandq_u8(q6bits.val[2], m4b), q6h.val[2])), m32s);
  6220. //q6bytes.val[3] = vsubq_s8(vreinterpretq_s8_u8(vorrq_u8(vandq_u8(q6bits.val[3], m4b), q6h.val[3])), m32s);
  6221. q6bytes.val[0] = vreinterpretq_s8_u8(vorrq_u8(vandq_u8(q6bits.val[0], m4b), q6h.val[0]));
  6222. q6bytes.val[1] = vreinterpretq_s8_u8(vorrq_u8(vandq_u8(q6bits.val[1], m4b), q6h.val[1]));
  6223. q6bytes.val[2] = vreinterpretq_s8_u8(vorrq_u8(vandq_u8(q6bits.val[2], m4b), q6h.val[2]));
  6224. q6bytes.val[3] = vreinterpretq_s8_u8(vorrq_u8(vandq_u8(q6bits.val[3], m4b), q6h.val[3]));
  6225. isum += vaddvq_s32(ggml_vdotq_s32(vzero, q6bytes.val[0], q8bytes.val[0])) * scale[0] +
  6226. vaddvq_s32(ggml_vdotq_s32(vzero, q6bytes.val[1], q8bytes.val[1])) * scale[1] +
  6227. vaddvq_s32(ggml_vdotq_s32(vzero, q6bytes.val[2], q8bytes.val[2])) * scale[2] +
  6228. vaddvq_s32(ggml_vdotq_s32(vzero, q6bytes.val[3], q8bytes.val[3])) * scale[3];
  6229. scale += 4;
  6230. q8bytes = ggml_vld1q_s8_x4(q8); q8 += 64;
  6231. shifted = vshrq_n_u8(qhbits.val[0], 4);
  6232. q6h.val[0] = vshlq_n_u8(vandq_u8(mone, shifted), 4);
  6233. shifted = vshrq_n_u8(qhbits.val[1], 4);
  6234. q6h.val[1] = vshlq_n_u8(vandq_u8(mone, shifted), 4);
  6235. shifted = vshrq_n_u8(qhbits.val[0], 6);
  6236. q6h.val[2] = vshlq_n_u8(vandq_u8(mone, shifted), 4);
  6237. shifted = vshrq_n_u8(qhbits.val[1], 6);
  6238. q6h.val[3] = vshlq_n_u8(vandq_u8(mone, shifted), 4);
  6239. //q6bytes.val[0] = vsubq_s8(vreinterpretq_s8_u8(vorrq_u8(vshrq_n_u8(q6bits.val[0], 4), q6h.val[0])), m32s);
  6240. //q6bytes.val[1] = vsubq_s8(vreinterpretq_s8_u8(vorrq_u8(vshrq_n_u8(q6bits.val[1], 4), q6h.val[1])), m32s);
  6241. //q6bytes.val[2] = vsubq_s8(vreinterpretq_s8_u8(vorrq_u8(vshrq_n_u8(q6bits.val[2], 4), q6h.val[2])), m32s);
  6242. //q6bytes.val[3] = vsubq_s8(vreinterpretq_s8_u8(vorrq_u8(vshrq_n_u8(q6bits.val[3], 4), q6h.val[3])), m32s);
  6243. q6bytes.val[0] = vreinterpretq_s8_u8(vorrq_u8(vshrq_n_u8(q6bits.val[0], 4), q6h.val[0]));
  6244. q6bytes.val[1] = vreinterpretq_s8_u8(vorrq_u8(vshrq_n_u8(q6bits.val[1], 4), q6h.val[1]));
  6245. q6bytes.val[2] = vreinterpretq_s8_u8(vorrq_u8(vshrq_n_u8(q6bits.val[2], 4), q6h.val[2]));
  6246. q6bytes.val[3] = vreinterpretq_s8_u8(vorrq_u8(vshrq_n_u8(q6bits.val[3], 4), q6h.val[3]));
  6247. isum += vaddvq_s32(ggml_vdotq_s32(vzero, q6bytes.val[0], q8bytes.val[0])) * scale[0] +
  6248. vaddvq_s32(ggml_vdotq_s32(vzero, q6bytes.val[1], q8bytes.val[1])) * scale[1] +
  6249. vaddvq_s32(ggml_vdotq_s32(vzero, q6bytes.val[2], q8bytes.val[2])) * scale[2] +
  6250. vaddvq_s32(ggml_vdotq_s32(vzero, q6bytes.val[3], q8bytes.val[3])) * scale[3];
  6251. scale += 4;
  6252. }
  6253. //sum += isum * d_all * y[i].d;
  6254. sum += d_all * y[i].d * (isum - 32 * isum_mins);
  6255. }
  6256. *s = sum;
  6257. #elif defined __AVX2__
  6258. const __m256i m4 = _mm256_set1_epi8(0xF);
  6259. const __m256i m2 = _mm256_set1_epi8(3);
  6260. const __m256i m32s = _mm256_set1_epi8(32);
  6261. __m256 acc = _mm256_setzero_ps();
  6262. for (int i = 0; i < nb; ++i) {
  6263. const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d);
  6264. const uint8_t * restrict q4 = x[i].ql;
  6265. const uint8_t * restrict qh = x[i].qh;
  6266. const int8_t * restrict q8 = y[i].qs;
  6267. const __m128i scales = _mm_loadu_si128((const __m128i*)x[i].scales);
  6268. __m256i sumi = _mm256_setzero_si256();
  6269. int is = 0;
  6270. for (int j = 0; j < QK_K/128; ++j) {
  6271. const __m128i scale_0 = _mm_shuffle_epi8(scales, get_scale_shuffle(is + 0));
  6272. const __m128i scale_1 = _mm_shuffle_epi8(scales, get_scale_shuffle(is + 1));
  6273. const __m128i scale_2 = _mm_shuffle_epi8(scales, get_scale_shuffle(is + 2));
  6274. const __m128i scale_3 = _mm_shuffle_epi8(scales, get_scale_shuffle(is + 3));
  6275. is += 4;
  6276. const __m256i q4bits1 = _mm256_loadu_si256((const __m256i*)q4); q4 += 32;
  6277. const __m256i q4bits2 = _mm256_loadu_si256((const __m256i*)q4); q4 += 32;
  6278. const __m256i q4bitsH = _mm256_loadu_si256((const __m256i*)qh); qh += 32;
  6279. const __m256i q4h_0 = _mm256_slli_epi16(_mm256_and_si256(q4bitsH, m2), 4);
  6280. const __m256i q4h_1 = _mm256_slli_epi16(_mm256_and_si256(_mm256_srli_epi16(q4bitsH, 2), m2), 4);
  6281. const __m256i q4h_2 = _mm256_slli_epi16(_mm256_and_si256(_mm256_srli_epi16(q4bitsH, 4), m2), 4);
  6282. const __m256i q4h_3 = _mm256_slli_epi16(_mm256_and_si256(_mm256_srli_epi16(q4bitsH, 6), m2), 4);
  6283. const __m256i q4_0 = _mm256_or_si256(_mm256_and_si256(q4bits1, m4), q4h_0);
  6284. const __m256i q4_1 = _mm256_or_si256(_mm256_and_si256(q4bits2, m4), q4h_1);
  6285. const __m256i q4_2 = _mm256_or_si256(_mm256_and_si256(_mm256_srli_epi16(q4bits1, 4), m4), q4h_2);
  6286. const __m256i q4_3 = _mm256_or_si256(_mm256_and_si256(_mm256_srli_epi16(q4bits2, 4), m4), q4h_3);
  6287. const __m256i q8_0 = _mm256_loadu_si256((const __m256i*)q8); q8 += 32;
  6288. const __m256i q8_1 = _mm256_loadu_si256((const __m256i*)q8); q8 += 32;
  6289. const __m256i q8_2 = _mm256_loadu_si256((const __m256i*)q8); q8 += 32;
  6290. const __m256i q8_3 = _mm256_loadu_si256((const __m256i*)q8); q8 += 32;
  6291. __m256i q8s_0 = _mm256_maddubs_epi16(m32s, q8_0);
  6292. __m256i q8s_1 = _mm256_maddubs_epi16(m32s, q8_1);
  6293. __m256i q8s_2 = _mm256_maddubs_epi16(m32s, q8_2);
  6294. __m256i q8s_3 = _mm256_maddubs_epi16(m32s, q8_3);
  6295. __m256i p16_0 = _mm256_maddubs_epi16(q4_0, q8_0);
  6296. __m256i p16_1 = _mm256_maddubs_epi16(q4_1, q8_1);
  6297. __m256i p16_2 = _mm256_maddubs_epi16(q4_2, q8_2);
  6298. __m256i p16_3 = _mm256_maddubs_epi16(q4_3, q8_3);
  6299. p16_0 = _mm256_sub_epi16(p16_0, q8s_0);
  6300. p16_1 = _mm256_sub_epi16(p16_1, q8s_1);
  6301. p16_2 = _mm256_sub_epi16(p16_2, q8s_2);
  6302. p16_3 = _mm256_sub_epi16(p16_3, q8s_3);
  6303. p16_0 = _mm256_madd_epi16(_mm256_cvtepi8_epi16(scale_0), p16_0);
  6304. p16_1 = _mm256_madd_epi16(_mm256_cvtepi8_epi16(scale_1), p16_1);
  6305. p16_2 = _mm256_madd_epi16(_mm256_cvtepi8_epi16(scale_2), p16_2);
  6306. p16_3 = _mm256_madd_epi16(_mm256_cvtepi8_epi16(scale_3), p16_3);
  6307. sumi = _mm256_add_epi32(sumi, _mm256_add_epi32(p16_0, p16_1));
  6308. sumi = _mm256_add_epi32(sumi, _mm256_add_epi32(p16_2, p16_3));
  6309. }
  6310. acc = _mm256_fmadd_ps(_mm256_broadcast_ss(&d), _mm256_cvtepi32_ps(sumi), acc);
  6311. }
  6312. *s = hsum_float_8(acc);
  6313. #elif defined __AVX__
  6314. const __m128i m4 = _mm_set1_epi8(0xF);
  6315. const __m128i m3 = _mm_set1_epi8(3);
  6316. const __m128i m32s = _mm_set1_epi8(32);
  6317. const __m128i m2 = _mm_set1_epi8(2);
  6318. __m256 acc = _mm256_setzero_ps();
  6319. for (int i = 0; i < nb; ++i) {
  6320. const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d);
  6321. const uint8_t * restrict q4 = x[i].ql;
  6322. const uint8_t * restrict qh = x[i].qh;
  6323. const int8_t * restrict q8 = y[i].qs;
  6324. const __m128i scales = _mm_loadu_si128((const __m128i*)x[i].scales);
  6325. __m128i sumi_0 = _mm_setzero_si128();
  6326. __m128i sumi_1 = _mm_setzero_si128();
  6327. __m128i shuffle = _mm_set_epi64x(0x0101010101010101, 0x0000000000000000);
  6328. for (int j = 0; j < QK_K/128; ++j) {
  6329. const __m128i q4bitsH_0 = _mm_loadu_si128((const __m128i*)qh); qh += 16;
  6330. const __m128i q4bitsH_1 = _mm_loadu_si128((const __m128i*)qh); qh += 16;
  6331. const __m128i q4h_0 = _mm_slli_epi16(_mm_and_si128(q4bitsH_0, m3), 4);
  6332. const __m128i q4h_1 = _mm_slli_epi16(_mm_and_si128(q4bitsH_1, m3), 4);
  6333. const __m128i q4h_2 = _mm_slli_epi16(_mm_and_si128(_mm_srli_epi16(q4bitsH_0, 2), m3), 4);
  6334. const __m128i q4h_3 = _mm_slli_epi16(_mm_and_si128(_mm_srli_epi16(q4bitsH_1, 2), m3), 4);
  6335. const __m128i q4h_4 = _mm_slli_epi16(_mm_and_si128(_mm_srli_epi16(q4bitsH_0, 4), m3), 4);
  6336. const __m128i q4h_5 = _mm_slli_epi16(_mm_and_si128(_mm_srli_epi16(q4bitsH_1, 4), m3), 4);
  6337. const __m128i q4h_6 = _mm_slli_epi16(_mm_and_si128(_mm_srli_epi16(q4bitsH_0, 6), m3), 4);
  6338. const __m128i q4h_7 = _mm_slli_epi16(_mm_and_si128(_mm_srli_epi16(q4bitsH_1, 6), m3), 4);
  6339. const __m128i q4bits1_0 = _mm_loadu_si128((const __m128i*)q4); q4 += 16;
  6340. const __m128i q4bits1_1 = _mm_loadu_si128((const __m128i*)q4); q4 += 16;
  6341. const __m128i q4bits2_0 = _mm_loadu_si128((const __m128i*)q4); q4 += 16;
  6342. const __m128i q4bits2_1 = _mm_loadu_si128((const __m128i*)q4); q4 += 16;
  6343. const __m128i q4_0 = _mm_or_si128(_mm_and_si128(q4bits1_0, m4), q4h_0);
  6344. const __m128i q4_1 = _mm_or_si128(_mm_and_si128(q4bits1_1, m4), q4h_1);
  6345. const __m128i q4_2 = _mm_or_si128(_mm_and_si128(q4bits2_0, m4), q4h_2);
  6346. const __m128i q4_3 = _mm_or_si128(_mm_and_si128(q4bits2_1, m4), q4h_3);
  6347. const __m128i q4_4 = _mm_or_si128(_mm_and_si128(_mm_srli_epi16(q4bits1_0, 4), m4), q4h_4);
  6348. const __m128i q4_5 = _mm_or_si128(_mm_and_si128(_mm_srli_epi16(q4bits1_1, 4), m4), q4h_5);
  6349. const __m128i q4_6 = _mm_or_si128(_mm_and_si128(_mm_srli_epi16(q4bits2_0, 4), m4), q4h_6);
  6350. const __m128i q4_7 = _mm_or_si128(_mm_and_si128(_mm_srli_epi16(q4bits2_1, 4), m4), q4h_7);
  6351. const __m128i q8_0 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  6352. const __m128i q8_1 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  6353. const __m128i q8_2 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  6354. const __m128i q8_3 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  6355. const __m128i q8_4 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  6356. const __m128i q8_5 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  6357. const __m128i q8_6 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  6358. const __m128i q8_7 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  6359. __m128i q8s_0 = _mm_maddubs_epi16(m32s, q8_0);
  6360. __m128i q8s_1 = _mm_maddubs_epi16(m32s, q8_1);
  6361. __m128i q8s_2 = _mm_maddubs_epi16(m32s, q8_2);
  6362. __m128i q8s_3 = _mm_maddubs_epi16(m32s, q8_3);
  6363. __m128i q8s_4 = _mm_maddubs_epi16(m32s, q8_4);
  6364. __m128i q8s_5 = _mm_maddubs_epi16(m32s, q8_5);
  6365. __m128i q8s_6 = _mm_maddubs_epi16(m32s, q8_6);
  6366. __m128i q8s_7 = _mm_maddubs_epi16(m32s, q8_7);
  6367. __m128i p16_0 = _mm_maddubs_epi16(q4_0, q8_0);
  6368. __m128i p16_1 = _mm_maddubs_epi16(q4_1, q8_1);
  6369. __m128i p16_2 = _mm_maddubs_epi16(q4_2, q8_2);
  6370. __m128i p16_3 = _mm_maddubs_epi16(q4_3, q8_3);
  6371. __m128i p16_4 = _mm_maddubs_epi16(q4_4, q8_4);
  6372. __m128i p16_5 = _mm_maddubs_epi16(q4_5, q8_5);
  6373. __m128i p16_6 = _mm_maddubs_epi16(q4_6, q8_6);
  6374. __m128i p16_7 = _mm_maddubs_epi16(q4_7, q8_7);
  6375. p16_0 = _mm_sub_epi16(p16_0, q8s_0);
  6376. p16_1 = _mm_sub_epi16(p16_1, q8s_1);
  6377. p16_2 = _mm_sub_epi16(p16_2, q8s_2);
  6378. p16_3 = _mm_sub_epi16(p16_3, q8s_3);
  6379. p16_4 = _mm_sub_epi16(p16_4, q8s_4);
  6380. p16_5 = _mm_sub_epi16(p16_5, q8s_5);
  6381. p16_6 = _mm_sub_epi16(p16_6, q8s_6);
  6382. p16_7 = _mm_sub_epi16(p16_7, q8s_7);
  6383. const __m128i scale_0 = _mm_shuffle_epi8(scales, shuffle);
  6384. shuffle = _mm_add_epi8(shuffle, m2);
  6385. const __m128i scale_1 = _mm_shuffle_epi8(scales, shuffle);
  6386. shuffle = _mm_add_epi8(shuffle, m2);
  6387. const __m128i scale_2 = _mm_shuffle_epi8(scales, shuffle);
  6388. shuffle = _mm_add_epi8(shuffle, m2);
  6389. const __m128i scale_3 = _mm_shuffle_epi8(scales, shuffle);
  6390. shuffle = _mm_add_epi8(shuffle, m2);
  6391. p16_0 = _mm_madd_epi16(_mm_cvtepi8_epi16(scale_0), p16_0);
  6392. p16_1 = _mm_madd_epi16(_mm_cvtepi8_epi16(_mm_unpackhi_epi64(scale_0, scale_0)), p16_1);
  6393. p16_2 = _mm_madd_epi16(_mm_cvtepi8_epi16(scale_1), p16_2);
  6394. p16_3 = _mm_madd_epi16(_mm_cvtepi8_epi16(_mm_unpackhi_epi64(scale_1, scale_1)), p16_3);
  6395. p16_4 = _mm_madd_epi16(_mm_cvtepi8_epi16(scale_2), p16_4);
  6396. p16_5 = _mm_madd_epi16(_mm_cvtepi8_epi16(_mm_unpackhi_epi64(scale_2, scale_2)), p16_5);
  6397. p16_6 = _mm_madd_epi16(_mm_cvtepi8_epi16(scale_3), p16_6);
  6398. p16_7 = _mm_madd_epi16(_mm_cvtepi8_epi16(_mm_unpackhi_epi64(scale_3, scale_3)), p16_7);
  6399. sumi_0 = _mm_add_epi32(sumi_0, _mm_add_epi32(p16_0, p16_2));
  6400. sumi_1 = _mm_add_epi32(sumi_1, _mm_add_epi32(p16_1, p16_3));
  6401. sumi_0 = _mm_add_epi32(sumi_0, _mm_add_epi32(p16_4, p16_6));
  6402. sumi_1 = _mm_add_epi32(sumi_1, _mm_add_epi32(p16_5, p16_7));
  6403. }
  6404. __m256i sumi = MM256_SET_M128I(sumi_1, sumi_0);
  6405. acc = _mm256_add_ps(_mm256_mul_ps(_mm256_broadcast_ss(&d), _mm256_cvtepi32_ps(sumi)), acc);
  6406. }
  6407. *s = hsum_float_8(acc);
  6408. #elif defined __riscv_v_intrinsic
  6409. float sumf = 0;
  6410. for (int i = 0; i < nb; ++i) {
  6411. const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d;
  6412. const uint8_t * restrict q6 = x[i].ql;
  6413. const uint8_t * restrict qh = x[i].qh;
  6414. const int8_t * restrict q8 = y[i].qs;
  6415. const int8_t * restrict scale = x[i].scales;
  6416. size_t vl;
  6417. vint32m1_t vzero = __riscv_vmv_v_x_i32m1(0, 1);
  6418. int sum_t = 0;
  6419. int is = 0;
  6420. for (int j = 0; j < QK_K/128; ++j) {
  6421. vl = 32;
  6422. // load qh
  6423. vuint8m1_t qh_x = __riscv_vle8_v_u8m1(qh, vl);
  6424. // load Q6
  6425. vuint8m1_t q6_0 = __riscv_vle8_v_u8m1(q6, vl);
  6426. vuint8m1_t q6_1 = __riscv_vle8_v_u8m1(q6+32, vl);
  6427. vuint8m1_t q6a_0 = __riscv_vand_vx_u8m1(q6_0, 0x0F, vl);
  6428. vuint8m1_t q6a_1 = __riscv_vand_vx_u8m1(q6_1, 0x0F, vl);
  6429. vuint8m1_t q6s_0 = __riscv_vsrl_vx_u8m1(q6_0, 0x04, vl);
  6430. vuint8m1_t q6s_1 = __riscv_vsrl_vx_u8m1(q6_1, 0x04, vl);
  6431. vuint8m1_t qh_0 = __riscv_vand_vx_u8m1(qh_x, 0x03, vl);
  6432. vuint8m1_t qh_1 = __riscv_vand_vx_u8m1(__riscv_vsrl_vx_u8m1(qh_x, 0x2, vl), 0x03 , vl);
  6433. vuint8m1_t qh_2 = __riscv_vand_vx_u8m1(__riscv_vsrl_vx_u8m1(qh_x, 0x4, vl), 0x03 , vl);
  6434. vuint8m1_t qh_3 = __riscv_vand_vx_u8m1(__riscv_vsrl_vx_u8m1(qh_x, 0x6, vl), 0x03 , vl);
  6435. vuint8m1_t qhi_0 = __riscv_vor_vv_u8m1(q6a_0, __riscv_vsll_vx_u8m1(qh_0, 0x04, vl), vl);
  6436. vuint8m1_t qhi_1 = __riscv_vor_vv_u8m1(q6a_1, __riscv_vsll_vx_u8m1(qh_1, 0x04, vl), vl);
  6437. vuint8m1_t qhi_2 = __riscv_vor_vv_u8m1(q6s_0, __riscv_vsll_vx_u8m1(qh_2, 0x04, vl), vl);
  6438. vuint8m1_t qhi_3 = __riscv_vor_vv_u8m1(q6s_1, __riscv_vsll_vx_u8m1(qh_3, 0x04, vl), vl);
  6439. vint8m1_t a_0 = __riscv_vsub_vx_i8m1(__riscv_vreinterpret_v_u8m1_i8m1(qhi_0), 32, vl);
  6440. vint8m1_t a_1 = __riscv_vsub_vx_i8m1(__riscv_vreinterpret_v_u8m1_i8m1(qhi_1), 32, vl);
  6441. vint8m1_t a_2 = __riscv_vsub_vx_i8m1(__riscv_vreinterpret_v_u8m1_i8m1(qhi_2), 32, vl);
  6442. vint8m1_t a_3 = __riscv_vsub_vx_i8m1(__riscv_vreinterpret_v_u8m1_i8m1(qhi_3), 32, vl);
  6443. // load Q8 and take product
  6444. vint16m2_t va_q_0 = __riscv_vwmul_vv_i16m2(a_0, __riscv_vle8_v_i8m1(q8, vl), vl);
  6445. vint16m2_t va_q_1 = __riscv_vwmul_vv_i16m2(a_1, __riscv_vle8_v_i8m1(q8+32, vl), vl);
  6446. vint16m2_t va_q_2 = __riscv_vwmul_vv_i16m2(a_2, __riscv_vle8_v_i8m1(q8+64, vl), vl);
  6447. vint16m2_t va_q_3 = __riscv_vwmul_vv_i16m2(a_3, __riscv_vle8_v_i8m1(q8+96, vl), vl);
  6448. vl = 16;
  6449. vint32m2_t vaux_0 = __riscv_vwmul_vx_i32m2(__riscv_vget_v_i16m2_i16m1(va_q_0, 0), scale[is+0], vl);
  6450. vint32m2_t vaux_1 = __riscv_vwmul_vx_i32m2(__riscv_vget_v_i16m2_i16m1(va_q_0, 1), scale[is+1], vl);
  6451. vint32m2_t vaux_2 = __riscv_vwmul_vx_i32m2(__riscv_vget_v_i16m2_i16m1(va_q_1, 0), scale[is+2], vl);
  6452. vint32m2_t vaux_3 = __riscv_vwmul_vx_i32m2(__riscv_vget_v_i16m2_i16m1(va_q_1, 1), scale[is+3], vl);
  6453. vint32m2_t vaux_4 = __riscv_vwmul_vx_i32m2(__riscv_vget_v_i16m2_i16m1(va_q_2, 0), scale[is+4], vl);
  6454. vint32m2_t vaux_5 = __riscv_vwmul_vx_i32m2(__riscv_vget_v_i16m2_i16m1(va_q_2, 1), scale[is+5], vl);
  6455. vint32m2_t vaux_6 = __riscv_vwmul_vx_i32m2(__riscv_vget_v_i16m2_i16m1(va_q_3, 0), scale[is+6], vl);
  6456. vint32m2_t vaux_7 = __riscv_vwmul_vx_i32m2(__riscv_vget_v_i16m2_i16m1(va_q_3, 1), scale[is+7], vl);
  6457. vint32m1_t isum0 = __riscv_vredsum_vs_i32m2_i32m1(__riscv_vadd_vv_i32m2(vaux_0, vaux_1, vl), vzero, vl);
  6458. vint32m1_t isum1 = __riscv_vredsum_vs_i32m2_i32m1(__riscv_vadd_vv_i32m2(vaux_2, vaux_3, vl), isum0, vl);
  6459. vint32m1_t isum2 = __riscv_vredsum_vs_i32m2_i32m1(__riscv_vadd_vv_i32m2(vaux_4, vaux_5, vl), isum1, vl);
  6460. vint32m1_t isum3 = __riscv_vredsum_vs_i32m2_i32m1(__riscv_vadd_vv_i32m2(vaux_6, vaux_7, vl), isum2, vl);
  6461. sum_t += __riscv_vmv_x_s_i32m1_i32(isum3);
  6462. q6 += 64; qh += 32; q8 += 128; is=8;
  6463. }
  6464. sumf += d * sum_t;
  6465. }
  6466. *s = sumf;
  6467. #else
  6468. int8_t aux8[QK_K];
  6469. int16_t aux16[8];
  6470. float sums [8];
  6471. int32_t aux32[8];
  6472. memset(sums, 0, 8*sizeof(float));
  6473. float sumf = 0;
  6474. for (int i = 0; i < nb; ++i) {
  6475. const uint8_t * restrict q4 = x[i].ql;
  6476. const uint8_t * restrict qh = x[i].qh;
  6477. const int8_t * restrict q8 = y[i].qs;
  6478. memset(aux32, 0, 8*sizeof(int32_t));
  6479. int8_t * restrict a = aux8;
  6480. for (int j = 0; j < QK_K; j += 128) {
  6481. for (int l = 0; l < 32; ++l) {
  6482. a[l + 0] = (int8_t)((q4[l + 0] & 0xF) | (((qh[l] >> 0) & 3) << 4)) - 32;
  6483. a[l + 32] = (int8_t)((q4[l + 32] & 0xF) | (((qh[l] >> 2) & 3) << 4)) - 32;
  6484. a[l + 64] = (int8_t)((q4[l + 0] >> 4) | (((qh[l] >> 4) & 3) << 4)) - 32;
  6485. a[l + 96] = (int8_t)((q4[l + 32] >> 4) | (((qh[l] >> 6) & 3) << 4)) - 32;
  6486. }
  6487. a += 128;
  6488. q4 += 64;
  6489. qh += 32;
  6490. }
  6491. a = aux8;
  6492. int is = 0;
  6493. for (int j = 0; j < QK_K/16; ++j) {
  6494. int scale = x[i].scales[is++];
  6495. for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
  6496. for (int l = 0; l < 8; ++l) aux32[l] += scale * aux16[l];
  6497. q8 += 8; a += 8;
  6498. for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
  6499. for (int l = 0; l < 8; ++l) aux32[l] += scale * aux16[l];
  6500. q8 += 8; a += 8;
  6501. }
  6502. const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d;
  6503. for (int l = 0; l < 8; ++l) sums[l] += d * aux32[l];
  6504. }
  6505. for (int l = 0; l < 8; ++l) sumf += sums[l];
  6506. *s = sumf;
  6507. #endif
  6508. }
  6509. #else
  6510. void ggml_vec_dot_q6_K_q8_K(int n, float * restrict s, size_t bs, const void * restrict vx, size_t bx, const void * restrict vy, size_t by, int nrc) {
  6511. assert(n % QK_K == 0);
  6512. assert(nrc == 1);
  6513. UNUSED(nrc);
  6514. UNUSED(bx);
  6515. UNUSED(by);
  6516. UNUSED(bs);
  6517. const block_q6_K * restrict x = vx;
  6518. const block_q8_K * restrict y = vy;
  6519. const int nb = n / QK_K;
  6520. #ifdef __ARM_NEON
  6521. float sum = 0;
  6522. const uint8x16_t m4b = vdupq_n_u8(0xF);
  6523. const int8x16_t m32s = vdupq_n_s8(32);
  6524. const int32x4_t vzero = vdupq_n_s32(0);
  6525. const uint8x16_t mone = vdupq_n_u8(3);
  6526. ggml_int8x16x4_t q6bytes;
  6527. ggml_uint8x16x4_t q6h;
  6528. for (int i = 0; i < nb; ++i) {
  6529. const float d_all = GGML_FP16_TO_FP32(x[i].d);
  6530. const uint8_t * restrict q6 = x[i].ql;
  6531. const uint8_t * restrict qh = x[i].qh;
  6532. const int8_t * restrict q8 = y[i].qs;
  6533. const int8_t * restrict scale = x[i].scales;
  6534. int32_t isum = 0;
  6535. uint8x16_t qhbits = vld1q_u8(qh);
  6536. ggml_uint8x16x2_t q6bits = ggml_vld1q_u8_x2(q6);
  6537. ggml_int8x16x4_t q8bytes = ggml_vld1q_s8_x4(q8);
  6538. q6h.val[0] = vshlq_n_u8(vandq_u8(mone, qhbits), 4);
  6539. uint8x16_t shifted = vshrq_n_u8(qhbits, 2);
  6540. q6h.val[1] = vshlq_n_u8(vandq_u8(mone, shifted), 4);
  6541. shifted = vshrq_n_u8(qhbits, 4);
  6542. q6h.val[2] = vshlq_n_u8(vandq_u8(mone, shifted), 4);
  6543. shifted = vshrq_n_u8(qhbits, 6);
  6544. q6h.val[3] = vshlq_n_u8(vandq_u8(mone, shifted), 4);
  6545. q6bytes.val[0] = vsubq_s8(vreinterpretq_s8_u8(vorrq_u8(vandq_u8(q6bits.val[0], m4b), q6h.val[0])), m32s);
  6546. q6bytes.val[1] = vsubq_s8(vreinterpretq_s8_u8(vorrq_u8(vandq_u8(q6bits.val[1], m4b), q6h.val[1])), m32s);
  6547. q6bytes.val[2] = vsubq_s8(vreinterpretq_s8_u8(vorrq_u8(vshrq_n_u8(q6bits.val[0], 4), q6h.val[2])), m32s);
  6548. q6bytes.val[3] = vsubq_s8(vreinterpretq_s8_u8(vorrq_u8(vshrq_n_u8(q6bits.val[1], 4), q6h.val[3])), m32s);
  6549. isum += vaddvq_s32(ggml_vdotq_s32(vzero, q6bytes.val[0], q8bytes.val[0])) * scale[0] +
  6550. vaddvq_s32(ggml_vdotq_s32(vzero, q6bytes.val[1], q8bytes.val[1])) * scale[1] +
  6551. vaddvq_s32(ggml_vdotq_s32(vzero, q6bytes.val[2], q8bytes.val[2])) * scale[2] +
  6552. vaddvq_s32(ggml_vdotq_s32(vzero, q6bytes.val[3], q8bytes.val[3])) * scale[3];
  6553. sum += isum * d_all * y[i].d;
  6554. }
  6555. *s = sum;
  6556. #elif defined __AVX2__
  6557. const __m256i m4 = _mm256_set1_epi8(0xF);
  6558. const __m256i m2 = _mm256_set1_epi8(3);
  6559. const __m256i m32s = _mm256_set1_epi8(32);
  6560. __m256 acc = _mm256_setzero_ps();
  6561. for (int i = 0; i < nb; ++i) {
  6562. const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d);
  6563. const uint8_t * restrict q4 = x[i].ql;
  6564. const uint8_t * restrict qh = x[i].qh;
  6565. const int8_t * restrict q8 = y[i].qs;
  6566. const __m64 scales_1 = _mm_set1_pi8(x[i].scales[0]);
  6567. const __m64 scales_2 = _mm_set1_pi8(x[i].scales[1]);
  6568. const __m64 scales_3 = _mm_set1_pi8(x[i].scales[2]);
  6569. const __m64 scales_4 = _mm_set1_pi8(x[i].scales[3]);
  6570. __m256i sumi = _mm256_setzero_si256();
  6571. const __m128i scale_0 = _mm_set_epi64(scales_2, scales_1);
  6572. const __m128i scale_1 = _mm_set_epi64(scales_4, scales_3);
  6573. const __m256i q4bits1 = _mm256_loadu_si256((const __m256i*)q4);
  6574. const __m128i q4bitsH = _mm_loadu_si128((const __m128i*)qh);
  6575. const __m256i q4h_0 = _mm256_slli_epi16(_mm256_and_si256(MM256_SET_M128I(_mm_srli_epi16(q4bitsH, 2), q4bitsH), m2), 4);
  6576. const __m256i q4h_1 = _mm256_slli_epi16(_mm256_and_si256(MM256_SET_M128I(_mm_srli_epi16(q4bitsH, 6), _mm_srli_epi16(q4bitsH, 4)), m2), 4);
  6577. const __m256i q4_0 = _mm256_or_si256(_mm256_and_si256(q4bits1, m4), q4h_0);
  6578. const __m256i q4_1 = _mm256_or_si256(_mm256_and_si256(_mm256_srli_epi16(q4bits1, 4), m4), q4h_1);
  6579. const __m256i q8_0 = _mm256_loadu_si256((const __m256i*)(q8+ 0));
  6580. const __m256i q8_1 = _mm256_loadu_si256((const __m256i*)(q8+32));
  6581. __m256i q8s_0 = _mm256_maddubs_epi16(m32s, q8_0);
  6582. __m256i q8s_1 = _mm256_maddubs_epi16(m32s, q8_1);
  6583. __m256i p16_0 = _mm256_maddubs_epi16(q4_0, q8_0);
  6584. __m256i p16_1 = _mm256_maddubs_epi16(q4_1, q8_1);
  6585. p16_0 = _mm256_sub_epi16(p16_0, q8s_0);
  6586. p16_1 = _mm256_sub_epi16(p16_1, q8s_1);
  6587. p16_0 = _mm256_madd_epi16(_mm256_cvtepi8_epi16(scale_0), p16_0);
  6588. p16_1 = _mm256_madd_epi16(_mm256_cvtepi8_epi16(scale_1), p16_1);
  6589. sumi = _mm256_add_epi32(sumi, _mm256_add_epi32(p16_0, p16_1));
  6590. acc = _mm256_fmadd_ps(_mm256_broadcast_ss(&d), _mm256_cvtepi32_ps(sumi), acc);
  6591. }
  6592. *s = hsum_float_8(acc);
  6593. #elif defined __AVX__
  6594. const __m128i m4 = _mm_set1_epi8(0xF);
  6595. const __m128i m2 = _mm_set1_epi8(3);
  6596. const __m128i m32s = _mm_set1_epi8(32);
  6597. __m256 acc = _mm256_setzero_ps();
  6598. for (int i = 0; i < nb; ++i) {
  6599. const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d);
  6600. const uint8_t * restrict q4 = x[i].ql;
  6601. const uint8_t * restrict qh = x[i].qh;
  6602. const int8_t * restrict q8 = y[i].qs;
  6603. const __m64 scales_1 = _mm_set1_pi8(x[i].scales[0]);
  6604. const __m64 scales_2 = _mm_set1_pi8(x[i].scales[1]);
  6605. const __m64 scales_3 = _mm_set1_pi8(x[i].scales[2]);
  6606. const __m64 scales_4 = _mm_set1_pi8(x[i].scales[3]);
  6607. __m128i sumi_0 = _mm_setzero_si128();
  6608. __m128i sumi_1 = _mm_setzero_si128();
  6609. const __m128i scale_0 = _mm_set_epi64(scales_2, scales_1);
  6610. const __m128i scale_1 = _mm_set_epi64(scales_4, scales_3);
  6611. const __m256i q4bits1 = _mm256_loadu_si256((const __m256i*)q4);
  6612. const __m128i q4bitsH = _mm_loadu_si128((const __m128i*)qh);
  6613. const __m128i q4h_0 = _mm_slli_epi16(_mm_and_si128(q4bitsH, m2), 4);
  6614. const __m128i q4h_1 = _mm_slli_epi16(_mm_and_si128(_mm_srli_epi16(q4bitsH, 2), m2), 4);
  6615. const __m128i q4h_2 = _mm_slli_epi16(_mm_and_si128(_mm_srli_epi16(q4bitsH, 4), m2), 4);
  6616. const __m128i q4h_3 = _mm_slli_epi16(_mm_and_si128(_mm_srli_epi16(q4bitsH, 6), m2), 4);
  6617. const __m128i q4_0 = _mm_or_si128(_mm_and_si128(_mm256_extractf128_si256(q4bits1, 0), m4), q4h_0);
  6618. const __m128i q4_1 = _mm_or_si128(_mm_and_si128(_mm256_extractf128_si256(q4bits1, 1), m4), q4h_1);
  6619. const __m128i q4_2 = _mm_or_si128(_mm_and_si128(_mm_srli_epi16(_mm256_extractf128_si256(q4bits1, 0), 4), m4), q4h_2);
  6620. const __m128i q4_3 = _mm_or_si128(_mm_and_si128(_mm_srli_epi16(_mm256_extractf128_si256(q4bits1, 1), 4), m4), q4h_3);
  6621. const __m256i q8_0 = _mm256_loadu_si256((const __m256i*)(q8+ 0));
  6622. const __m256i q8_1 = _mm256_loadu_si256((const __m256i*)(q8+32));
  6623. __m128i q8s_0 = _mm_maddubs_epi16(m32s, _mm256_extractf128_si256(q8_0, 0));
  6624. __m128i q8s_1 = _mm_maddubs_epi16(m32s, _mm256_extractf128_si256(q8_0, 1));
  6625. __m128i q8s_2 = _mm_maddubs_epi16(m32s, _mm256_extractf128_si256(q8_1, 0));
  6626. __m128i q8s_3 = _mm_maddubs_epi16(m32s, _mm256_extractf128_si256(q8_1, 1));
  6627. __m128i p16_0 = _mm_maddubs_epi16(q4_0, _mm256_extractf128_si256(q8_0, 0));
  6628. __m128i p16_1 = _mm_maddubs_epi16(q4_1, _mm256_extractf128_si256(q8_0, 1));
  6629. __m128i p16_2 = _mm_maddubs_epi16(q4_2, _mm256_extractf128_si256(q8_1, 0));
  6630. __m128i p16_3 = _mm_maddubs_epi16(q4_3, _mm256_extractf128_si256(q8_1, 1));
  6631. p16_0 = _mm_sub_epi16(p16_0, q8s_0);
  6632. p16_1 = _mm_sub_epi16(p16_1, q8s_1);
  6633. p16_2 = _mm_sub_epi16(p16_2, q8s_2);
  6634. p16_3 = _mm_sub_epi16(p16_3, q8s_3);
  6635. p16_0 = _mm_madd_epi16(_mm_cvtepi8_epi16(scale_0), p16_0);
  6636. p16_1 = _mm_madd_epi16(_mm_cvtepi8_epi16(_mm_unpackhi_epi64(scale_0, scale_0)), p16_1);
  6637. p16_2 = _mm_madd_epi16(_mm_cvtepi8_epi16(scale_1), p16_2);
  6638. p16_3 = _mm_madd_epi16(_mm_cvtepi8_epi16(_mm_unpackhi_epi64(scale_1, scale_1)), p16_3);
  6639. sumi_0 = _mm_add_epi32(sumi_0, _mm_add_epi32(p16_0, p16_2));
  6640. sumi_1 = _mm_add_epi32(sumi_1, _mm_add_epi32(p16_1, p16_3));
  6641. acc = _mm256_add_ps(_mm256_mul_ps(_mm256_broadcast_ss(&d), _mm256_cvtepi32_ps(MM256_SET_M128I(sumi_1, sumi_0))), acc);
  6642. }
  6643. *s = hsum_float_8(acc);
  6644. #elif defined __riscv_v_intrinsic
  6645. float sumf = 0;
  6646. for (int i = 0; i < nb; ++i) {
  6647. const float d_all = GGML_FP16_TO_FP32(x[i].d);
  6648. const uint8_t * restrict q6 = x[i].ql;
  6649. const uint8_t * restrict qh = x[i].qh;
  6650. const int8_t * restrict q8 = y[i].qs;
  6651. const int8_t * restrict scale = x[i].scales;
  6652. int32_t isum = 0;
  6653. size_t vl = 16;
  6654. vint32m1_t vzero = __riscv_vmv_v_x_i32m1(0, 1);
  6655. // load Q6
  6656. vuint8mf2_t q6_0 = __riscv_vle8_v_u8mf2(q6, vl);
  6657. vuint8mf2_t q6_1 = __riscv_vle8_v_u8mf2(q6+16, vl);
  6658. // load qh
  6659. vuint8mf2_t qh_x = __riscv_vle8_v_u8mf2(qh, vl);
  6660. vuint8mf2_t qh0 = __riscv_vsll_vx_u8mf2(__riscv_vand_vx_u8mf2(qh_x, 0x3, vl), 0x4, vl);
  6661. qh_x = __riscv_vsrl_vx_u8mf2(qh_x, 0x2, vl);
  6662. vuint8mf2_t qh1 = __riscv_vsll_vx_u8mf2(__riscv_vand_vx_u8mf2(qh_x, 0x3, vl), 0x4, vl);
  6663. qh_x = __riscv_vsrl_vx_u8mf2(qh_x, 0x2, vl);
  6664. vuint8mf2_t qh2 = __riscv_vsll_vx_u8mf2(__riscv_vand_vx_u8mf2(qh_x, 0x3, vl), 0x4, vl);
  6665. qh_x = __riscv_vsrl_vx_u8mf2(qh_x, 0x2, vl);
  6666. vuint8mf2_t qh3 = __riscv_vsll_vx_u8mf2(__riscv_vand_vx_u8mf2(qh_x, 0x3, vl), 0x4, vl);
  6667. vuint8mf2_t q6h_0 = __riscv_vor_vv_u8mf2(__riscv_vand_vx_u8mf2(q6_0, 0xF, vl), qh0, vl);
  6668. vuint8mf2_t q6h_1 = __riscv_vor_vv_u8mf2(__riscv_vand_vx_u8mf2(q6_1, 0xF, vl), qh1, vl);
  6669. vuint8mf2_t q6h_2 = __riscv_vor_vv_u8mf2(__riscv_vsrl_vx_u8mf2(q6_0, 0x4, vl), qh2, vl);
  6670. vuint8mf2_t q6h_3 = __riscv_vor_vv_u8mf2(__riscv_vsrl_vx_u8mf2(q6_1, 0x4, vl), qh3, vl);
  6671. vint8mf2_t q6v_0 = __riscv_vsub_vx_i8mf2(__riscv_vreinterpret_v_u8mf2_i8mf2(q6h_0), 32, vl);
  6672. vint8mf2_t q6v_1 = __riscv_vsub_vx_i8mf2(__riscv_vreinterpret_v_u8mf2_i8mf2(q6h_1), 32, vl);
  6673. vint8mf2_t q6v_2 = __riscv_vsub_vx_i8mf2(__riscv_vreinterpret_v_u8mf2_i8mf2(q6h_2), 32, vl);
  6674. vint8mf2_t q6v_3 = __riscv_vsub_vx_i8mf2(__riscv_vreinterpret_v_u8mf2_i8mf2(q6h_3), 32, vl);
  6675. // load Q8 and take product
  6676. vint16m1_t p0 = __riscv_vwmul_vv_i16m1(q6v_0, __riscv_vle8_v_i8mf2(q8, vl), vl);
  6677. vint16m1_t p1 = __riscv_vwmul_vv_i16m1(q6v_1, __riscv_vle8_v_i8mf2(q8+16, vl), vl);
  6678. vint16m1_t p2 = __riscv_vwmul_vv_i16m1(q6v_2, __riscv_vle8_v_i8mf2(q8+32, vl), vl);
  6679. vint16m1_t p3 = __riscv_vwmul_vv_i16m1(q6v_3, __riscv_vle8_v_i8mf2(q8+48, vl), vl);
  6680. vint32m1_t vs_0 = __riscv_vwredsum_vs_i16m1_i32m1(p0, vzero, vl);
  6681. vint32m1_t vs_1 = __riscv_vwredsum_vs_i16m1_i32m1(p1, vzero, vl);
  6682. vint32m1_t vs_2 = __riscv_vwredsum_vs_i16m1_i32m1(p2, vzero, vl);
  6683. vint32m1_t vs_3 = __riscv_vwredsum_vs_i16m1_i32m1(p3, vzero, vl);
  6684. isum += __riscv_vmv_x_s_i32m1_i32(vs_0) * scale[0];
  6685. isum += __riscv_vmv_x_s_i32m1_i32(vs_1) * scale[1];
  6686. isum += __riscv_vmv_x_s_i32m1_i32(vs_2) * scale[2];
  6687. isum += __riscv_vmv_x_s_i32m1_i32(vs_3) * scale[3];
  6688. sumf += isum * d_all * y[i].d;
  6689. }
  6690. *s = sumf;
  6691. #else
  6692. int8_t aux8[QK_K];
  6693. int16_t aux16[8];
  6694. float sums [8];
  6695. int32_t aux32[8];
  6696. memset(sums, 0, 8*sizeof(float));
  6697. float sumf = 0;
  6698. for (int i = 0; i < nb; ++i) {
  6699. const uint8_t * restrict q4 = x[i].ql;
  6700. const uint8_t * restrict qh = x[i].qh;
  6701. const int8_t * restrict q8 = y[i].qs;
  6702. memset(aux32, 0, 8*sizeof(int32_t));
  6703. int8_t * restrict a = aux8;
  6704. for (int l = 0; l < 16; ++l) {
  6705. a[l+ 0] = (int8_t)((q4[l+ 0] & 0xF) | (((qh[l] >> 0) & 3) << 4)) - 32;
  6706. a[l+16] = (int8_t)((q4[l+16] & 0xF) | (((qh[l] >> 2) & 3) << 4)) - 32;
  6707. a[l+32] = (int8_t)((q4[l+ 0] >> 4) | (((qh[l] >> 4) & 3) << 4)) - 32;
  6708. a[l+48] = (int8_t)((q4[l+16] >> 4) | (((qh[l] >> 6) & 3) << 4)) - 32;
  6709. }
  6710. int is = 0;
  6711. for (int j = 0; j < QK_K/16; ++j) {
  6712. int scale = x[i].scales[is++];
  6713. for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
  6714. for (int l = 0; l < 8; ++l) aux32[l] += scale * aux16[l];
  6715. q8 += 8; a += 8;
  6716. for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
  6717. for (int l = 0; l < 8; ++l) aux32[l] += scale * aux16[l];
  6718. q8 += 8; a += 8;
  6719. }
  6720. const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d;
  6721. for (int l = 0; l < 8; ++l) sums[l] += d * aux32[l];
  6722. }
  6723. for (int l = 0; l < 8; ++l) sumf += sums[l];
  6724. *s = sumf;
  6725. #endif
  6726. }
  6727. #endif
  6728. #if defined (__AVX2__) || defined (__ARM_NEON)
  6729. static const int8_t keven_signs_q2xs[1024] = {
  6730. 1, 1, 1, 1, 1, 1, 1, 1, -1, 1, 1, 1, 1, 1, 1, -1, 1, -1, 1, 1, 1, 1, 1, -1, -1, -1, 1, 1, 1, 1, 1, 1,
  6731. 1, 1, -1, 1, 1, 1, 1, -1, -1, 1, -1, 1, 1, 1, 1, 1, 1, -1, -1, 1, 1, 1, 1, 1, -1, -1, -1, 1, 1, 1, 1, -1,
  6732. 1, 1, 1, -1, 1, 1, 1, -1, -1, 1, 1, -1, 1, 1, 1, 1, 1, -1, 1, -1, 1, 1, 1, 1, -1, -1, 1, -1, 1, 1, 1, -1,
  6733. 1, 1, -1, -1, 1, 1, 1, 1, -1, 1, -1, -1, 1, 1, 1, -1, 1, -1, -1, -1, 1, 1, 1, -1, -1, -1, -1, -1, 1, 1, 1, 1,
  6734. 1, 1, 1, 1, -1, 1, 1, -1, -1, 1, 1, 1, -1, 1, 1, 1, 1, -1, 1, 1, -1, 1, 1, 1, -1, -1, 1, 1, -1, 1, 1, -1,
  6735. 1, 1, -1, 1, -1, 1, 1, 1, -1, 1, -1, 1, -1, 1, 1, -1, 1, -1, -1, 1, -1, 1, 1, -1, -1, -1, -1, 1, -1, 1, 1, 1,
  6736. 1, 1, 1, -1, -1, 1, 1, 1, -1, 1, 1, -1, -1, 1, 1, -1, 1, -1, 1, -1, -1, 1, 1, -1, -1, -1, 1, -1, -1, 1, 1, 1,
  6737. 1, 1, -1, -1, -1, 1, 1, -1, -1, 1, -1, -1, -1, 1, 1, 1, 1, -1, -1, -1, -1, 1, 1, 1, -1, -1, -1, -1, -1, 1, 1, -1,
  6738. 1, 1, 1, 1, 1, -1, 1, -1, -1, 1, 1, 1, 1, -1, 1, 1, 1, -1, 1, 1, 1, -1, 1, 1, -1, -1, 1, 1, 1, -1, 1, -1,
  6739. 1, 1, -1, 1, 1, -1, 1, 1, -1, 1, -1, 1, 1, -1, 1, -1, 1, -1, -1, 1, 1, -1, 1, -1, -1, -1, -1, 1, 1, -1, 1, 1,
  6740. 1, 1, 1, -1, 1, -1, 1, 1, -1, 1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, -1, -1, 1, -1, 1, -1, 1, 1,
  6741. 1, 1, -1, -1, 1, -1, 1, -1, -1, 1, -1, -1, 1, -1, 1, 1, 1, -1, -1, -1, 1, -1, 1, 1, -1, -1, -1, -1, 1, -1, 1, -1,
  6742. 1, 1, 1, 1, -1, -1, 1, 1, -1, 1, 1, 1, -1, -1, 1, -1, 1, -1, 1, 1, -1, -1, 1, -1, -1, -1, 1, 1, -1, -1, 1, 1,
  6743. 1, 1, -1, 1, -1, -1, 1, -1, -1, 1, -1, 1, -1, -1, 1, 1, 1, -1, -1, 1, -1, -1, 1, 1, -1, -1, -1, 1, -1, -1, 1, -1,
  6744. 1, 1, 1, -1, -1, -1, 1, -1, -1, 1, 1, -1, -1, -1, 1, 1, 1, -1, 1, -1, -1, -1, 1, 1, -1, -1, 1, -1, -1, -1, 1, -1,
  6745. 1, 1, -1, -1, -1, -1, 1, 1, -1, 1, -1, -1, -1, -1, 1, -1, 1, -1, -1, -1, -1, -1, 1, -1, -1, -1, -1, -1, -1, -1, 1, 1,
  6746. 1, 1, 1, 1, 1, 1, -1, -1, -1, 1, 1, 1, 1, 1, -1, 1, 1, -1, 1, 1, 1, 1, -1, 1, -1, -1, 1, 1, 1, 1, -1, -1,
  6747. 1, 1, -1, 1, 1, 1, -1, 1, -1, 1, -1, 1, 1, 1, -1, -1, 1, -1, -1, 1, 1, 1, -1, -1, -1, -1, -1, 1, 1, 1, -1, 1,
  6748. 1, 1, 1, -1, 1, 1, -1, 1, -1, 1, 1, -1, 1, 1, -1, -1, 1, -1, 1, -1, 1, 1, -1, -1, -1, -1, 1, -1, 1, 1, -1, 1,
  6749. 1, 1, -1, -1, 1, 1, -1, -1, -1, 1, -1, -1, 1, 1, -1, 1, 1, -1, -1, -1, 1, 1, -1, 1, -1, -1, -1, -1, 1, 1, -1, -1,
  6750. 1, 1, 1, 1, -1, 1, -1, 1, -1, 1, 1, 1, -1, 1, -1, -1, 1, -1, 1, 1, -1, 1, -1, -1, -1, -1, 1, 1, -1, 1, -1, 1,
  6751. 1, 1, -1, 1, -1, 1, -1, -1, -1, 1, -1, 1, -1, 1, -1, 1, 1, -1, -1, 1, -1, 1, -1, 1, -1, -1, -1, 1, -1, 1, -1, -1,
  6752. 1, 1, 1, -1, -1, 1, -1, -1, -1, 1, 1, -1, -1, 1, -1, 1, 1, -1, 1, -1, -1, 1, -1, 1, -1, -1, 1, -1, -1, 1, -1, -1,
  6753. 1, 1, -1, -1, -1, 1, -1, 1, -1, 1, -1, -1, -1, 1, -1, -1, 1, -1, -1, -1, -1, 1, -1, -1, -1, -1, -1, -1, -1, 1, -1, 1,
  6754. 1, 1, 1, 1, 1, -1, -1, 1, -1, 1, 1, 1, 1, -1, -1, -1, 1, -1, 1, 1, 1, -1, -1, -1, -1, -1, 1, 1, 1, -1, -1, 1,
  6755. 1, 1, -1, 1, 1, -1, -1, -1, -1, 1, -1, 1, 1, -1, -1, 1, 1, -1, -1, 1, 1, -1, -1, 1, -1, -1, -1, 1, 1, -1, -1, -1,
  6756. 1, 1, 1, -1, 1, -1, -1, -1, -1, 1, 1, -1, 1, -1, -1, 1, 1, -1, 1, -1, 1, -1, -1, 1, -1, -1, 1, -1, 1, -1, -1, -1,
  6757. 1, 1, -1, -1, 1, -1, -1, 1, -1, 1, -1, -1, 1, -1, -1, -1, 1, -1, -1, -1, 1, -1, -1, -1, -1, -1, -1, -1, 1, -1, -1, 1,
  6758. 1, 1, 1, 1, -1, -1, -1, -1, -1, 1, 1, 1, -1, -1, -1, 1, 1, -1, 1, 1, -1, -1, -1, 1, -1, -1, 1, 1, -1, -1, -1, -1,
  6759. 1, 1, -1, 1, -1, -1, -1, 1, -1, 1, -1, 1, -1, -1, -1, -1, 1, -1, -1, 1, -1, -1, -1, -1, -1, -1, -1, 1, -1, -1, -1, 1,
  6760. 1, 1, 1, -1, -1, -1, -1, 1, -1, 1, 1, -1, -1, -1, -1, -1, 1, -1, 1, -1, -1, -1, -1, -1, -1, -1, 1, -1, -1, -1, -1, 1,
  6761. 1, 1, -1, -1, -1, -1, -1, -1, -1, 1, -1, -1, -1, -1, -1, 1, 1, -1, -1, -1, -1, -1, -1, 1, -1, -1, -1, -1, -1, -1, -1, -1,
  6762. };
  6763. #endif
  6764. void ggml_vec_dot_iq2_xxs_q8_K(int n, float * restrict s, size_t bs, const void * restrict vx, size_t bx, const void * restrict vy, size_t by, int nrc) {
  6765. assert(n % QK_K == 0);
  6766. assert(nrc == 1);
  6767. UNUSED(nrc);
  6768. UNUSED(bx);
  6769. UNUSED(by);
  6770. UNUSED(bs);
  6771. const block_iq2_xxs * restrict x = vx;
  6772. const block_q8_K * restrict y = vy;
  6773. const int nb = n / QK_K;
  6774. #if defined(__ARM_NEON)
  6775. const uint64_t * signs64 = (const uint64_t *)keven_signs_q2xs;
  6776. uint32_t aux32[4];
  6777. const uint8_t * aux8 = (const uint8_t *)aux32;
  6778. ggml_int8x16x4_t q2u;
  6779. ggml_int8x16x4_t q2s;
  6780. ggml_int8x16x4_t q8b;
  6781. float sumf = 0;
  6782. for (int i = 0; i < nb; ++i) {
  6783. const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d;
  6784. const uint16_t * restrict q2 = x[i].qs;
  6785. const int8_t * restrict q8 = y[i].qs;
  6786. float sumf1 = 0, sumf2 = 0;
  6787. for (int ib32 = 0; ib32 < QK_K/32; ib32 += 2) {
  6788. q8b = ggml_vld1q_s8_x4(q8); q8 += 64;
  6789. memcpy(aux32, q2, 4*sizeof(uint32_t)); q2 += 8;
  6790. q2u.val[0] = vcombine_s8(vld1_s8((const void *)(iq2xxs_grid + aux8[ 0])), vld1_s8((const void *)(iq2xxs_grid + aux8[ 1])));
  6791. q2u.val[1] = vcombine_s8(vld1_s8((const void *)(iq2xxs_grid + aux8[ 2])), vld1_s8((const void *)(iq2xxs_grid + aux8[ 3])));
  6792. q2u.val[2] = vcombine_s8(vld1_s8((const void *)(iq2xxs_grid + aux8[ 8])), vld1_s8((const void *)(iq2xxs_grid + aux8[ 9])));
  6793. q2u.val[3] = vcombine_s8(vld1_s8((const void *)(iq2xxs_grid + aux8[10])), vld1_s8((const void *)(iq2xxs_grid + aux8[11])));
  6794. q2s.val[0] = vcombine_s8(vld1_s8((const void *)(signs64 + ((aux32[1] >> 0) & 127))), vld1_s8((const void *)(signs64 + ((aux32[1] >> 7) & 127))));
  6795. q2s.val[1] = vcombine_s8(vld1_s8((const void *)(signs64 + ((aux32[1] >> 14) & 127))), vld1_s8((const void *)(signs64 + ((aux32[1] >> 21) & 127))));
  6796. q2s.val[2] = vcombine_s8(vld1_s8((const void *)(signs64 + ((aux32[3] >> 0) & 127))), vld1_s8((const void *)(signs64 + ((aux32[3] >> 7) & 127))));
  6797. q2s.val[3] = vcombine_s8(vld1_s8((const void *)(signs64 + ((aux32[3] >> 14) & 127))), vld1_s8((const void *)(signs64 + ((aux32[3] >> 21) & 127))));
  6798. q2u.val[0] = vmulq_s8(q2u.val[0], q2s.val[0]);
  6799. q2u.val[1] = vmulq_s8(q2u.val[1], q2s.val[1]);
  6800. q2u.val[2] = vmulq_s8(q2u.val[2], q2s.val[2]);
  6801. q2u.val[3] = vmulq_s8(q2u.val[3], q2s.val[3]);
  6802. const int32x4_t p1 = ggml_vdotq_s32(ggml_vdotq_s32(vdupq_n_s32(0), q2u.val[0], q8b.val[0]), q2u.val[1], q8b.val[1]);
  6803. const int32x4_t p2 = ggml_vdotq_s32(ggml_vdotq_s32(vdupq_n_s32(0), q2u.val[2], q8b.val[2]), q2u.val[3], q8b.val[3]);
  6804. sumf1 += vaddvq_s32(p1) * (0.5f + (aux32[1] >> 28));
  6805. sumf2 += vaddvq_s32(p2) * (0.5f + (aux32[3] >> 28));
  6806. }
  6807. sumf += d*(sumf1 + sumf2);
  6808. }
  6809. *s = 0.25f * sumf;
  6810. #elif defined(__AVX2__)
  6811. const uint64_t * signs64 = (const uint64_t *)keven_signs_q2xs;
  6812. uint32_t aux32[4];
  6813. const uint8_t * aux8 = (const uint8_t *)aux32;
  6814. __m256 accumf = _mm256_setzero_ps();
  6815. for (int i = 0; i < nb; ++i) {
  6816. const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d;
  6817. const uint16_t * restrict q2 = x[i].qs;
  6818. const int8_t * restrict q8 = y[i].qs;
  6819. __m256i sumi1 = _mm256_setzero_si256();
  6820. __m256i sumi2 = _mm256_setzero_si256();
  6821. for (int ib32 = 0; ib32 < QK_K/32; ib32 += 2) {
  6822. const __m256i q8_1 = _mm256_loadu_si256((const __m256i *)q8); q8 += 32;
  6823. const __m256i q8_2 = _mm256_loadu_si256((const __m256i *)q8); q8 += 32;
  6824. memcpy(aux32, q2, 4*sizeof(uint32_t)); q2 += 8;
  6825. const __m256i q2_1 = _mm256_set_epi64x(iq2xxs_grid[aux8[ 3]], iq2xxs_grid[aux8[ 2]], iq2xxs_grid[aux8[1]], iq2xxs_grid[aux8[0]]);
  6826. const __m256i q2_2 = _mm256_set_epi64x(iq2xxs_grid[aux8[11]], iq2xxs_grid[aux8[10]], iq2xxs_grid[aux8[9]], iq2xxs_grid[aux8[8]]);
  6827. const __m256i s2_1 = _mm256_set_epi64x(signs64[(aux32[1] >> 21) & 127], signs64[(aux32[1] >> 14) & 127],
  6828. signs64[(aux32[1] >> 7) & 127], signs64[(aux32[1] >> 0) & 127]);
  6829. const __m256i s2_2 = _mm256_set_epi64x(signs64[(aux32[3] >> 21) & 127], signs64[(aux32[3] >> 14) & 127],
  6830. signs64[(aux32[3] >> 7) & 127], signs64[(aux32[3] >> 0) & 127]);
  6831. const __m256i q8s_1 = _mm256_sign_epi8(q8_1, s2_1);
  6832. const __m256i q8s_2 = _mm256_sign_epi8(q8_2, s2_2);
  6833. const __m256i dot1 = _mm256_maddubs_epi16(q2_1, q8s_1);
  6834. const __m256i dot2 = _mm256_maddubs_epi16(q2_2, q8s_2);
  6835. const uint16_t ls1 = aux32[1] >> 28;
  6836. const uint16_t ls2 = aux32[3] >> 28;
  6837. const __m256i p1 = _mm256_madd_epi16(dot1, _mm256_set1_epi16(2*ls1+1));
  6838. const __m256i p2 = _mm256_madd_epi16(dot2, _mm256_set1_epi16(2*ls2+1));
  6839. sumi1 = _mm256_add_epi32(sumi1, p1);
  6840. sumi2 = _mm256_add_epi32(sumi2, p2);
  6841. }
  6842. accumf = _mm256_fmadd_ps(_mm256_set1_ps(d), _mm256_cvtepi32_ps(_mm256_add_epi32(sumi1, sumi2)), accumf);
  6843. }
  6844. *s = 0.125f * hsum_float_8(accumf);
  6845. #else
  6846. uint32_t aux32[2];
  6847. const uint8_t * aux8 = (const uint8_t *)aux32;
  6848. float sumf = 0.f;
  6849. for (int i = 0; i < nb; ++i) {
  6850. const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d;
  6851. const uint16_t * restrict q2 = x[i].qs;
  6852. const int8_t * restrict q8 = y[i].qs;
  6853. int32_t bsum = 0;
  6854. for (int ib32 = 0; ib32 < QK_K/32; ++ib32) {
  6855. memcpy(aux32, q2, 2*sizeof(uint32_t));
  6856. q2 += 4;
  6857. const uint32_t ls = 2*(aux32[1] >> 28) + 1;
  6858. int32_t sumi = 0;
  6859. for (int l = 0; l < 4; ++l) {
  6860. const uint8_t * grid = (const uint8_t *)(iq2xxs_grid + aux8[l]);
  6861. const uint8_t signs = ksigns_iq2xs[(aux32[1] >> 7*l) & 127];
  6862. for (int j = 0; j < 8; ++j) {
  6863. sumi += grid[j] * q8[j] * (signs & kmask_iq2xs[j] ? -1 : 1);
  6864. }
  6865. q8 += 8;
  6866. }
  6867. bsum += sumi * ls;
  6868. }
  6869. sumf += d * bsum;
  6870. }
  6871. *s = 0.125f * sumf;
  6872. #endif
  6873. }
  6874. void ggml_vec_dot_iq2_xs_q8_K(int n, float * restrict s, size_t bs, const void * restrict vx, size_t bx, const void * restrict vy, size_t by, int nrc) {
  6875. assert(n % QK_K == 0);
  6876. assert(nrc == 1);
  6877. UNUSED(nrc);
  6878. UNUSED(bx);
  6879. UNUSED(by);
  6880. UNUSED(bs);
  6881. const block_iq2_xs * restrict x = vx;
  6882. const block_q8_K * restrict y = vy;
  6883. const int nb = n / QK_K;
  6884. #if defined(__ARM_NEON)
  6885. const uint64_t * signs64 = (const uint64_t *)keven_signs_q2xs;
  6886. ggml_int8x16x4_t q2u;
  6887. ggml_int8x16x4_t q2s;
  6888. ggml_int8x16x4_t q8b;
  6889. int32x4x4_t scales32;
  6890. float sumf = 0;
  6891. for (int i = 0; i < nb; ++i) {
  6892. const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d;
  6893. const uint16_t * restrict q2 = x[i].qs;
  6894. const int8_t * restrict q8 = y[i].qs;
  6895. const uint8x8_t scales8 = vld1_u8(x[i].scales);
  6896. const uint8x8_t scales_l = vand_u8(scales8, vdup_n_u8(0xf));
  6897. const uint8x8_t scales_h = vshr_n_u8(scales8, 4);
  6898. uint8x16_t scales = vcombine_u8(vzip1_u8(scales_l, scales_h), vzip2_u8(scales_l, scales_h));
  6899. scales = vaddq_u8(vshlq_n_u8(scales, 1), vdupq_n_u8(1));
  6900. const uint16x8_t scales1 = vmovl_u8(vget_low_u8(scales));
  6901. const uint16x8_t scales2 = vmovl_u8(vget_high_u8(scales));
  6902. scales32.val[0] = vreinterpretq_s32_u32(vmovl_u16(vget_low_u16(scales1)));
  6903. scales32.val[1] = vreinterpretq_s32_u32(vmovl_u16(vget_high_u16(scales1)));
  6904. scales32.val[2] = vreinterpretq_s32_u32(vmovl_u16(vget_low_u16(scales2)));
  6905. scales32.val[3] = vreinterpretq_s32_u32(vmovl_u16(vget_high_u16(scales2)));
  6906. int32x4_t sumi = vdupq_n_s32(0);
  6907. for (int ib64 = 0; ib64 < QK_K/64; ++ib64) {
  6908. q8b = ggml_vld1q_s8_x4(q8); q8 += 64;
  6909. q2u.val[0] = vcombine_s8(vld1_s8((const void *)(iq2xs_grid + (q2[0] & 511))), vld1_s8((const void *)(iq2xs_grid + (q2[1] & 511))));
  6910. q2u.val[1] = vcombine_s8(vld1_s8((const void *)(iq2xs_grid + (q2[2] & 511))), vld1_s8((const void *)(iq2xs_grid + (q2[3] & 511))));
  6911. q2u.val[2] = vcombine_s8(vld1_s8((const void *)(iq2xs_grid + (q2[4] & 511))), vld1_s8((const void *)(iq2xs_grid + (q2[5] & 511))));
  6912. q2u.val[3] = vcombine_s8(vld1_s8((const void *)(iq2xs_grid + (q2[6] & 511))), vld1_s8((const void *)(iq2xs_grid + (q2[7] & 511))));
  6913. q2s.val[0] = vcombine_s8(vld1_s8((const void *)(signs64 + (q2[0] >> 9))), vld1_s8((const void *)(signs64 + (q2[1] >> 9))));
  6914. q2s.val[1] = vcombine_s8(vld1_s8((const void *)(signs64 + (q2[2] >> 9))), vld1_s8((const void *)(signs64 + (q2[3] >> 9))));
  6915. q2s.val[2] = vcombine_s8(vld1_s8((const void *)(signs64 + (q2[4] >> 9))), vld1_s8((const void *)(signs64 + (q2[5] >> 9))));
  6916. q2s.val[3] = vcombine_s8(vld1_s8((const void *)(signs64 + (q2[6] >> 9))), vld1_s8((const void *)(signs64 + (q2[7] >> 9))));
  6917. q2u.val[0] = vmulq_s8(q2u.val[0], q2s.val[0]);
  6918. q2u.val[1] = vmulq_s8(q2u.val[1], q2s.val[1]);
  6919. q2u.val[2] = vmulq_s8(q2u.val[2], q2s.val[2]);
  6920. q2u.val[3] = vmulq_s8(q2u.val[3], q2s.val[3]);
  6921. const int32x4_t p1 = ggml_vdotq_s32(vdupq_n_s32(0), q2u.val[0], q8b.val[0]);
  6922. const int32x4_t p2 = ggml_vdotq_s32(vdupq_n_s32(0), q2u.val[1], q8b.val[1]);
  6923. const int32x4_t p3 = ggml_vdotq_s32(vdupq_n_s32(0), q2u.val[2], q8b.val[2]);
  6924. const int32x4_t p4 = ggml_vdotq_s32(vdupq_n_s32(0), q2u.val[3], q8b.val[3]);
  6925. const int32x4_t p = vpaddq_s32(vpaddq_s32(p1, p2), vpaddq_s32(p3, p4));
  6926. sumi = vmlaq_s32(sumi, p, scales32.val[ib64]);
  6927. q2 += 8;
  6928. }
  6929. sumf += d*vaddvq_s32(sumi);
  6930. }
  6931. *s = 0.125f * sumf;
  6932. #elif defined(__AVX2__)
  6933. const __m256i mone = _mm256_set1_epi8(1);
  6934. static const char block_sign_shuffle_mask_1[32] = {
  6935. 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02,
  6936. 0x04, 0x04, 0x04, 0x04, 0x04, 0x04, 0x04, 0x04, 0x06, 0x06, 0x06, 0x06, 0x06, 0x06, 0x06, 0x06,
  6937. };
  6938. static const char block_sign_shuffle_mask_2[32] = {
  6939. 0x08, 0x08, 0x08, 0x08, 0x08, 0x08, 0x08, 0x08, 0x0a, 0x0a, 0x0a, 0x0a, 0x0a, 0x0a, 0x0a, 0x0a,
  6940. 0x0c, 0x0c, 0x0c, 0x0c, 0x0c, 0x0c, 0x0c, 0x0c, 0x0e, 0x0e, 0x0e, 0x0e, 0x0e, 0x0e, 0x0e, 0x0e,
  6941. };
  6942. static const uint8_t bit_selector_mask_bytes[32] = {
  6943. 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80,
  6944. 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80,
  6945. };
  6946. const __m256i bit_selector_mask = _mm256_loadu_si256((const __m256i*)bit_selector_mask_bytes);
  6947. const __m256i block_sign_shuffle_1 = _mm256_loadu_si256((const __m256i*)block_sign_shuffle_mask_1);
  6948. const __m256i block_sign_shuffle_2 = _mm256_loadu_si256((const __m256i*)block_sign_shuffle_mask_2);
  6949. #if QK_K == 64
  6950. static const uint8_t k_bit_helper[16] = {
  6951. 0x00, 0x80, 0x80, 0x00, 0x80, 0x00, 0x00, 0x80, 0x80, 0x00, 0x00, 0x80, 0x00, 0x80, 0x80, 0x00,
  6952. };
  6953. const __m128i bit_helper = _mm_loadu_si128((const __m128i*)k_bit_helper);
  6954. const __m128i m511 = _mm_set1_epi16(511);
  6955. typedef union {
  6956. __m128i vec_index;
  6957. uint16_t index[8];
  6958. } index_t;
  6959. index_t idx;
  6960. __m256 accumf = _mm256_setzero_ps();
  6961. for (int i = 0; i < nb; ++i) {
  6962. const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d;
  6963. const __m128i q2_data = _mm_loadu_si128((const __m128i*)x[i].qs);
  6964. idx.vec_index = _mm_and_si128(q2_data, m511);
  6965. const __m128i partial_sign_bits = _mm_srli_epi16(q2_data, 9);
  6966. const __m128i partial_sign_bits_upper = _mm_srli_epi16(q2_data, 13);
  6967. const __m128i partial_sign_bits_for_counting = _mm_xor_si128(partial_sign_bits, partial_sign_bits_upper);
  6968. const __m128i odd_bits = _mm_shuffle_epi8(bit_helper, partial_sign_bits_for_counting);
  6969. const __m128i full_sign_bits = _mm_or_si128(partial_sign_bits, odd_bits);
  6970. const __m256i full_signs = MM256_SET_M128I(full_sign_bits, full_sign_bits);
  6971. const __m256i q8_1 = _mm256_loadu_si256((const __m256i *)y[i].qs);
  6972. const __m256i q8_2 = _mm256_loadu_si256((const __m256i *)(y[i].qs+32));
  6973. const __m256i q2_1 = _mm256_set_epi64x(iq2xs_grid[idx.index[3]], iq2xs_grid[idx.index[2]],
  6974. iq2xs_grid[idx.index[1]], iq2xs_grid[idx.index[0]]);
  6975. const __m256i q2_2 = _mm256_set_epi64x(iq2xs_grid[idx.index[7]], iq2xs_grid[idx.index[6]],
  6976. iq2xs_grid[idx.index[5]], iq2xs_grid[idx.index[4]]);
  6977. __m256i signs;
  6978. signs = _mm256_shuffle_epi8(full_signs, block_sign_shuffle_1);
  6979. signs = _mm256_cmpeq_epi8(_mm256_and_si256(signs, bit_selector_mask), bit_selector_mask);
  6980. const __m256i q8s_1 = _mm256_sign_epi8(q8_1, _mm256_or_si256(signs, mone));
  6981. signs = _mm256_shuffle_epi8(full_signs, block_sign_shuffle_2);
  6982. signs = _mm256_cmpeq_epi8(_mm256_and_si256(signs, bit_selector_mask), bit_selector_mask);
  6983. const __m256i q8s_2 = _mm256_sign_epi8(q8_2, _mm256_or_si256(signs, mone));
  6984. const __m256i dot1 = _mm256_maddubs_epi16(q2_1, q8s_1);
  6985. const __m256i dot2 = _mm256_maddubs_epi16(q2_2, q8s_2);
  6986. const __m256i sc1 = MM256_SET_M128I(_mm_set1_epi16(2*(x[i].scales[0] >> 4)+1), _mm_set1_epi16(2*(x[i].scales[0] & 0xf)+1));
  6987. const __m256i sc2 = MM256_SET_M128I(_mm_set1_epi16(2*(x[i].scales[1] >> 4)+1), _mm_set1_epi16(2*(x[i].scales[1] & 0xf)+1));
  6988. const __m256i sum = _mm256_add_epi32(_mm256_madd_epi16(sc1, dot1), _mm256_madd_epi16(sc2, dot2));
  6989. accumf = _mm256_fmadd_ps(_mm256_set1_ps(d), _mm256_cvtepi32_ps(sum), accumf);
  6990. }
  6991. *s = 0.125f * hsum_float_8(accumf);
  6992. #else
  6993. static const uint8_t k_bit_helper[32] = {
  6994. 0x00, 0x80, 0x80, 0x00, 0x80, 0x00, 0x00, 0x80, 0x80, 0x00, 0x00, 0x80, 0x00, 0x80, 0x80, 0x00,
  6995. 0x00, 0x80, 0x80, 0x00, 0x80, 0x00, 0x00, 0x80, 0x80, 0x00, 0x00, 0x80, 0x00, 0x80, 0x80, 0x00,
  6996. };
  6997. const __m256i bit_helper = _mm256_loadu_si256((const __m256i*)k_bit_helper);
  6998. const __m256i m511 = _mm256_set1_epi16(511);
  6999. const __m128i m4 = _mm_set1_epi8(0xf);
  7000. const __m128i m1 = _mm_set1_epi8(1);
  7001. uint64_t aux64;
  7002. // somewhat hacky, but gives a significant boost in performance
  7003. __m256i aux_gindex;
  7004. const uint16_t * gindex = (const uint16_t *)&aux_gindex;
  7005. __m256 accumf = _mm256_setzero_ps();
  7006. for (int i = 0; i < nb; ++i) {
  7007. const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d;
  7008. const uint16_t * restrict q2 = x[i].qs;
  7009. const int8_t * restrict q8 = y[i].qs;
  7010. memcpy(&aux64, x[i].scales, 8);
  7011. __m128i stmp = _mm_set1_epi64x(aux64);
  7012. stmp = _mm_unpacklo_epi8(_mm_and_si128(stmp, m4), _mm_and_si128(_mm_srli_epi16(stmp, 4), m4));
  7013. const __m128i scales = _mm_add_epi8(_mm_slli_epi16(stmp, 1), m1);
  7014. __m256i sumi1 = _mm256_setzero_si256();
  7015. __m256i sumi2 = _mm256_setzero_si256();
  7016. for (int ib32 = 0; ib32 < QK_K/32; ib32 += 4) {
  7017. const __m256i q2_data = _mm256_loadu_si256((const __m256i*)q2); q2 += 16;
  7018. aux_gindex = _mm256_and_si256(q2_data, m511);
  7019. const __m256i partial_sign_bits = _mm256_srli_epi16(q2_data, 9);
  7020. const __m256i partial_sign_bits_upper = _mm256_srli_epi16(q2_data, 13);
  7021. const __m256i partial_sign_bits_for_counting = _mm256_xor_si256(partial_sign_bits, partial_sign_bits_upper);
  7022. const __m256i odd_bits = _mm256_shuffle_epi8(bit_helper, partial_sign_bits_for_counting);
  7023. const __m256i full_sign_bits = _mm256_or_si256(partial_sign_bits, odd_bits);
  7024. const __m256i q8_1 = _mm256_loadu_si256((const __m256i *)q8); q8 += 32;
  7025. const __m256i q8_2 = _mm256_loadu_si256((const __m256i *)q8); q8 += 32;
  7026. const __m256i q8_3 = _mm256_loadu_si256((const __m256i *)q8); q8 += 32;
  7027. const __m256i q8_4 = _mm256_loadu_si256((const __m256i *)q8); q8 += 32;
  7028. const __m256i q2_1 = _mm256_set_epi64x(iq2xs_grid[gindex[ 3]], iq2xs_grid[gindex[ 2]],
  7029. iq2xs_grid[gindex[ 1]], iq2xs_grid[gindex[ 0]]);
  7030. const __m256i q2_2 = _mm256_set_epi64x(iq2xs_grid[gindex[ 7]], iq2xs_grid[gindex[ 6]],
  7031. iq2xs_grid[gindex[ 5]], iq2xs_grid[gindex[ 4]]);
  7032. const __m256i q2_3 = _mm256_set_epi64x(iq2xs_grid[gindex[11]], iq2xs_grid[gindex[10]],
  7033. iq2xs_grid[gindex[ 9]], iq2xs_grid[gindex[ 8]]);
  7034. const __m256i q2_4 = _mm256_set_epi64x(iq2xs_grid[gindex[15]], iq2xs_grid[gindex[14]],
  7035. iq2xs_grid[gindex[13]], iq2xs_grid[gindex[12]]);
  7036. const __m128i full_signs_l = _mm256_castsi256_si128(full_sign_bits);
  7037. const __m128i full_signs_h = _mm256_extractf128_si256(full_sign_bits, 1);
  7038. const __m256i full_signs_1 = MM256_SET_M128I(full_signs_l, full_signs_l);
  7039. const __m256i full_signs_2 = MM256_SET_M128I(full_signs_h, full_signs_h);
  7040. __m256i signs;
  7041. signs = _mm256_shuffle_epi8(full_signs_1, block_sign_shuffle_1);
  7042. signs = _mm256_cmpeq_epi8(_mm256_and_si256(signs, bit_selector_mask), bit_selector_mask);
  7043. const __m256i q8s_1 = _mm256_sign_epi8(q8_1, _mm256_or_si256(signs, mone));
  7044. signs = _mm256_shuffle_epi8(full_signs_1, block_sign_shuffle_2);
  7045. signs = _mm256_cmpeq_epi8(_mm256_and_si256(signs, bit_selector_mask), bit_selector_mask);
  7046. const __m256i q8s_2 = _mm256_sign_epi8(q8_2, _mm256_or_si256(signs, mone));
  7047. signs = _mm256_shuffle_epi8(full_signs_2, block_sign_shuffle_1);
  7048. signs = _mm256_cmpeq_epi8(_mm256_and_si256(signs, bit_selector_mask), bit_selector_mask);
  7049. const __m256i q8s_3 = _mm256_sign_epi8(q8_3, _mm256_or_si256(signs, mone));
  7050. signs = _mm256_shuffle_epi8(full_signs_2, block_sign_shuffle_2);
  7051. signs = _mm256_cmpeq_epi8(_mm256_and_si256(signs, bit_selector_mask), bit_selector_mask);
  7052. const __m256i q8s_4 = _mm256_sign_epi8(q8_4, _mm256_or_si256(signs, mone));
  7053. const __m256i dot1 = _mm256_maddubs_epi16(q2_1, q8s_1);
  7054. const __m256i dot2 = _mm256_maddubs_epi16(q2_2, q8s_2);
  7055. const __m256i dot3 = _mm256_maddubs_epi16(q2_3, q8s_3);
  7056. const __m256i dot4 = _mm256_maddubs_epi16(q2_4, q8s_4);
  7057. const __m256i sc1 = _mm256_cvtepi8_epi16(_mm_shuffle_epi8(scales, get_scale_shuffle(ib32+0)));
  7058. const __m256i sc2 = _mm256_cvtepi8_epi16(_mm_shuffle_epi8(scales, get_scale_shuffle(ib32+1)));
  7059. const __m256i sc3 = _mm256_cvtepi8_epi16(_mm_shuffle_epi8(scales, get_scale_shuffle(ib32+2)));
  7060. const __m256i sc4 = _mm256_cvtepi8_epi16(_mm_shuffle_epi8(scales, get_scale_shuffle(ib32+3)));
  7061. sumi1 = _mm256_add_epi32(sumi1, _mm256_madd_epi16(dot1, sc1));
  7062. sumi2 = _mm256_add_epi32(sumi2, _mm256_madd_epi16(dot2, sc2));
  7063. sumi1 = _mm256_add_epi32(sumi1, _mm256_madd_epi16(dot3, sc3));
  7064. sumi2 = _mm256_add_epi32(sumi2, _mm256_madd_epi16(dot4, sc4));
  7065. }
  7066. accumf = _mm256_fmadd_ps(_mm256_set1_ps(d), _mm256_cvtepi32_ps(_mm256_add_epi32(sumi1, sumi2)), accumf);
  7067. }
  7068. *s = 0.125f * hsum_float_8(accumf);
  7069. #endif
  7070. #else
  7071. float sumf = 0.f;
  7072. for (int i = 0; i < nb; ++i) {
  7073. const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d;
  7074. const uint16_t * restrict q2 = x[i].qs;
  7075. const uint8_t * restrict sc = x[i].scales;
  7076. const int8_t * restrict q8 = y[i].qs;
  7077. int32_t bsum = 0;
  7078. for (int ib32 = 0; ib32 < QK_K/32; ++ib32) {
  7079. const uint16_t ls1 = 2*(sc[ib32] & 0xf) + 1;
  7080. const uint16_t ls2 = 2*(sc[ib32] >> 4) + 1;
  7081. int32_t sumi = 0;
  7082. for (int l = 0; l < 2; ++l) {
  7083. const uint8_t * grid = (const uint8_t *)(iq2xs_grid + (q2[l] & 511));
  7084. const uint8_t signs = ksigns_iq2xs[q2[l] >> 9];
  7085. for (int j = 0; j < 8; ++j) {
  7086. sumi += grid[j] * q8[j] * (signs & kmask_iq2xs[j] ? -1 : 1);
  7087. }
  7088. q8 += 8;
  7089. }
  7090. bsum += sumi * ls1;
  7091. sumi = 0;
  7092. for (int l = 2; l < 4; ++l) {
  7093. const uint8_t * grid = (const uint8_t *)(iq2xs_grid + (q2[l] & 511));
  7094. const uint8_t signs = ksigns_iq2xs[q2[l] >> 9];
  7095. for (int j = 0; j < 8; ++j) {
  7096. sumi += grid[j] * q8[j] * (signs & kmask_iq2xs[j] ? -1 : 1);
  7097. }
  7098. q8 += 8;
  7099. }
  7100. bsum += sumi * ls2;
  7101. q2 += 4;
  7102. }
  7103. sumf += d * bsum;
  7104. }
  7105. *s = 0.125f * sumf;
  7106. #endif
  7107. }
  7108. void ggml_vec_dot_iq2_s_q8_K(int n, float * restrict s, size_t bs, const void * restrict vx, size_t bx, const void * restrict vy, size_t by, int nrc) {
  7109. assert(n % QK_K == 0);
  7110. assert(nrc == 1);
  7111. UNUSED(nrc);
  7112. UNUSED(bx);
  7113. UNUSED(by);
  7114. UNUSED(bs);
  7115. const block_iq2_s * restrict x = vx;
  7116. const block_q8_K * restrict y = vy;
  7117. const int nb = n / QK_K;
  7118. #if defined(__ARM_NEON)
  7119. static const uint8_t k_mask1[32] = {0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01,
  7120. 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03
  7121. };
  7122. static const uint8_t k_mask2[16] = {0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80,};
  7123. const uint8x16x2_t mask1 = vld1q_u8_x2(k_mask1);
  7124. const uint8x16_t mask2 = vld1q_u8(k_mask2);
  7125. const uint8x16_t m1 = vdupq_n_u8(1);
  7126. const int32x4_t vzero = vdupq_n_s32(0);
  7127. uint8x16x2_t vs;
  7128. ggml_int8x16x4_t q2s;
  7129. ggml_int8x16x4_t q8b;
  7130. float sumf = 0;
  7131. for (int i = 0; i < nb; ++i) {
  7132. const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d;
  7133. const uint8_t * restrict qs = x[i].qs;
  7134. const uint8_t * restrict qh = x[i].qh;
  7135. const uint16_t * restrict signs = (const uint16_t *)(x[i].qs + QK_K/8);
  7136. const int8_t * restrict q8 = y[i].qs;
  7137. int sumi1 = 0, sumi2 = 0;
  7138. for (int ib32 = 0; ib32 < QK_K/32; ib32 += 2) {
  7139. q8b = ggml_vld1q_s8_x4(q8); q8 += 64;
  7140. q2s.val[0] = vcombine_s8(vld1_s8((const int8_t *)(iq2s_grid + (qs[0] | ((qh[ib32+0] << 8) & 0x300)))),
  7141. vld1_s8((const int8_t *)(iq2s_grid + (qs[1] | ((qh[ib32+0] << 6) & 0x300)))));
  7142. q2s.val[1] = vcombine_s8(vld1_s8((const int8_t *)(iq2s_grid + (qs[2] | ((qh[ib32+0] << 4) & 0x300)))),
  7143. vld1_s8((const int8_t *)(iq2s_grid + (qs[3] | ((qh[ib32+0] << 2) & 0x300)))));
  7144. q2s.val[2] = vcombine_s8(vld1_s8((const int8_t *)(iq2s_grid + (qs[4] | ((qh[ib32+1] << 8) & 0x300)))),
  7145. vld1_s8((const int8_t *)(iq2s_grid + (qs[5] | ((qh[ib32+1] << 6) & 0x300)))));
  7146. q2s.val[3] = vcombine_s8(vld1_s8((const int8_t *)(iq2s_grid + (qs[6] | ((qh[ib32+1] << 4) & 0x300)))),
  7147. vld1_s8((const int8_t *)(iq2s_grid + (qs[7] | ((qh[ib32+1] << 2) & 0x300)))));
  7148. qs += 8;
  7149. vs.val[0] = vreinterpretq_u8_u32(vdupq_n_u32(signs[0] | (signs[1] << 16)));
  7150. vs.val[1] = vandq_u8(ggml_vqtbl1q_u8(vs.val[0], mask1.val[1]), mask2);
  7151. vs.val[0] = vandq_u8(ggml_vqtbl1q_u8(vs.val[0], mask1.val[0]), mask2);
  7152. vs.val[0] = vceqq_u8(vs.val[0], mask2);
  7153. vs.val[1] = vceqq_u8(vs.val[1], mask2);
  7154. q2s.val[0] = vmulq_s8(vreinterpretq_s8_u8(vorrq_u8(vs.val[0], m1)), q2s.val[0]);
  7155. q2s.val[1] = vmulq_s8(vreinterpretq_s8_u8(vorrq_u8(vs.val[1], m1)), q2s.val[1]);
  7156. vs.val[0] = vreinterpretq_u8_u32(vdupq_n_u32(signs[2] | (signs[3] << 16)));
  7157. vs.val[1] = vandq_u8(ggml_vqtbl1q_u8(vs.val[0], mask1.val[1]), mask2);
  7158. vs.val[0] = vandq_u8(ggml_vqtbl1q_u8(vs.val[0], mask1.val[0]), mask2);
  7159. vs.val[0] = vceqq_u8(vs.val[0], mask2);
  7160. vs.val[1] = vceqq_u8(vs.val[1], mask2);
  7161. signs += 4;
  7162. q2s.val[2] = vmulq_s8(vreinterpretq_s8_u8(vorrq_u8(vs.val[0], m1)), q2s.val[2]);
  7163. q2s.val[3] = vmulq_s8(vreinterpretq_s8_u8(vorrq_u8(vs.val[1], m1)), q2s.val[3]);
  7164. const int32x4_t p1 = ggml_vdotq_s32(vzero, q2s.val[0], q8b.val[0]);
  7165. const int32x4_t p2 = ggml_vdotq_s32(vzero, q2s.val[1], q8b.val[1]);
  7166. const int32x4_t p3 = ggml_vdotq_s32(vzero, q2s.val[2], q8b.val[2]);
  7167. const int32x4_t p4 = ggml_vdotq_s32(vzero, q2s.val[3], q8b.val[3]);
  7168. sumi1 += vaddvq_s32(p1) * (1 + 2*(x[i].scales[ib32+0] & 0xf));
  7169. sumi2 += vaddvq_s32(p2) * (1 + 2*(x[i].scales[ib32+0] >> 4));
  7170. sumi1 += vaddvq_s32(p3) * (1 + 2*(x[i].scales[ib32+1] & 0xf));
  7171. sumi2 += vaddvq_s32(p4) * (1 + 2*(x[i].scales[ib32+1] >> 4));
  7172. }
  7173. sumf += d*(sumi1 + sumi2);
  7174. }
  7175. *s = 0.125f * sumf;
  7176. #elif defined(__AVX2__)
  7177. static const uint8_t k_mask1[32] = {0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01,
  7178. 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03
  7179. };
  7180. static const uint8_t k_mask2[32] = {0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80,
  7181. 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80,
  7182. };
  7183. const __m128i m4 = _mm_set1_epi8(0xf);
  7184. const __m128i m1 = _mm_set1_epi8(1);
  7185. const __m256i mask1 = _mm256_loadu_si256((const __m256i*)k_mask1);
  7186. const __m256i mask2 = _mm256_loadu_si256((const __m256i*)k_mask2);
  7187. uint64_t aux64;
  7188. __m256 accumf = _mm256_setzero_ps();
  7189. for (int i = 0; i < nb; ++i) {
  7190. const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d;
  7191. const uint8_t * restrict qs = x[i].qs;
  7192. const uint8_t * restrict qh = x[i].qh;
  7193. const uint16_t * restrict signs = (const uint16_t *)(x[i].qs + QK_K/8);
  7194. const int8_t * restrict q8 = y[i].qs;
  7195. memcpy(&aux64, x[i].scales, 8);
  7196. const __m128i scales8 = _mm_add_epi8(_mm_slli_epi16(_mm_and_si128(_mm_set_epi64x(aux64 >> 4, aux64), m4), 1), m1);
  7197. const __m256i scales16 = _mm256_cvtepi8_epi16(scales8); // 0 2 4 6 8 10 12 14 1 3 5 7 9 11 13 15
  7198. __m256i sumi1 = _mm256_setzero_si256();
  7199. __m256i sumi2 = _mm256_setzero_si256();
  7200. for (int ib32 = 0; ib32 < QK_K/32; ib32 += 2) {
  7201. const __m256i q8_1 = _mm256_loadu_si256((const __m256i *)q8); q8 += 32;
  7202. const __m256i q8_2 = _mm256_loadu_si256((const __m256i *)q8); q8 += 32;
  7203. const __m256i q2_1 = _mm256_set_epi64x(iq2s_grid[qs[3] | ((qh[ib32+0] << 2) & 0x300)],
  7204. iq2s_grid[qs[2] | ((qh[ib32+0] << 4) & 0x300)],
  7205. iq2s_grid[qs[1] | ((qh[ib32+0] << 6) & 0x300)],
  7206. iq2s_grid[qs[0] | ((qh[ib32+0] << 8) & 0x300)]);
  7207. const __m256i q2_2 = _mm256_set_epi64x(iq2s_grid[qs[7] | ((qh[ib32+1] << 2) & 0x300)],
  7208. iq2s_grid[qs[6] | ((qh[ib32+1] << 4) & 0x300)],
  7209. iq2s_grid[qs[5] | ((qh[ib32+1] << 6) & 0x300)],
  7210. iq2s_grid[qs[4] | ((qh[ib32+1] << 8) & 0x300)]);
  7211. qs += 8;
  7212. __m256i aux256 = _mm256_set1_epi32(signs[0] | (signs[1] << 16));
  7213. aux256 = _mm256_and_si256(_mm256_shuffle_epi8(aux256,mask1), mask2);
  7214. const __m256i s2_1 = _mm256_cmpeq_epi8(aux256, mask2);
  7215. const __m256i q8s_1 = _mm256_sub_epi8(_mm256_xor_si256(s2_1, q8_1), s2_1);
  7216. aux256 = _mm256_set1_epi32(signs[2] | (signs[3] << 16));
  7217. aux256 = _mm256_and_si256(_mm256_shuffle_epi8(aux256,mask1), mask2);
  7218. const __m256i s2_2 = _mm256_cmpeq_epi8(aux256, mask2);
  7219. const __m256i q8s_2 = _mm256_sub_epi8(_mm256_xor_si256(s2_2, q8_2), s2_2);
  7220. signs += 4;
  7221. const __m256i dot1 = _mm256_maddubs_epi16(q2_1, q8s_1); // blocks 2*ib32+0, 2*ib32+1
  7222. const __m256i dot2 = _mm256_maddubs_epi16(q2_2, q8s_2); // blocks 2*ib32+2, 2*ib32+3
  7223. const __m256i p1 = _mm256_madd_epi16(dot1, _mm256_shuffle_epi8(scales16, get_scale_shuffle_k4(ib32+0)));
  7224. const __m256i p2 = _mm256_madd_epi16(dot2, _mm256_shuffle_epi8(scales16, get_scale_shuffle_k4(ib32+1)));
  7225. sumi1 = _mm256_add_epi32(sumi1, p1);
  7226. sumi2 = _mm256_add_epi32(sumi2, p2);
  7227. }
  7228. accumf = _mm256_fmadd_ps(_mm256_set1_ps(d), _mm256_cvtepi32_ps(_mm256_add_epi32(sumi1, sumi2)), accumf);
  7229. }
  7230. *s = 0.125f * hsum_float_8(accumf);
  7231. #else
  7232. float sumf = 0;
  7233. for (int i = 0; i < nb; i++) {
  7234. const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d;
  7235. const int8_t * q8 = y[i].qs;
  7236. const uint8_t * qs = x[i].qs;
  7237. const uint8_t * qh = x[i].qh;
  7238. const uint8_t * signs = qs + QK_K/8;
  7239. int bsum = 0;
  7240. for (int ib32 = 0; ib32 < QK_K/32; ++ib32) {
  7241. int ls1 = 1 + 2*(x[i].scales[ib32] & 0xf);
  7242. int ls2 = 1 + 2*(x[i].scales[ib32] >> 4);
  7243. int sumi1 = 0, sumi2 = 0;
  7244. for (int l = 0; l < 2; ++l) {
  7245. const uint8_t * grid = (const uint8_t *)(iq2s_grid + (qs[l] | (qh[ib32] << (8-2*l) & 0x300)));
  7246. for (int j = 0; j < 8; ++j) {
  7247. sumi1 += q8[j] * grid[j] * (signs[l] & kmask_iq2xs[j] ? -1 : 1);
  7248. }
  7249. q8 += 8;
  7250. }
  7251. for (int l = 2; l < 4; ++l) {
  7252. const uint8_t * grid = (const uint8_t *)(iq2s_grid + (qs[l] | (qh[ib32] << (8-2*l) & 0x300)));
  7253. for (int j = 0; j < 8; ++j) {
  7254. sumi2 += q8[j] * grid[j] * (signs[l] & kmask_iq2xs[j] ? -1 : 1);
  7255. }
  7256. q8 += 8;
  7257. }
  7258. bsum += ls1 * sumi1 + ls2 * sumi2;
  7259. qs += 4;
  7260. signs += 4;
  7261. }
  7262. sumf += d * bsum;
  7263. }
  7264. *s = 0.125f * sumf;
  7265. #endif
  7266. }
  7267. void ggml_vec_dot_iq3_xxs_q8_K(int n, float * restrict s, size_t bs, const void * restrict vx, size_t bx, const void * restrict vy, size_t by, int nrc) {
  7268. assert(n % QK_K == 0);
  7269. assert(nrc == 1);
  7270. UNUSED(nrc);
  7271. UNUSED(bx);
  7272. UNUSED(by);
  7273. UNUSED(bs);
  7274. const block_iq3_xxs * restrict x = vx;
  7275. const block_q8_K * restrict y = vy;
  7276. const int nb = n / QK_K;
  7277. #if defined(__ARM_NEON)
  7278. const uint64_t * signs64 = (const uint64_t *)keven_signs_q2xs;
  7279. uint32_t aux32[2];
  7280. ggml_int8x16x4_t q3s;
  7281. ggml_int8x16x4_t q8b;
  7282. float sumf = 0;
  7283. for (int i = 0; i < nb; ++i) {
  7284. const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d;
  7285. const uint8_t * restrict q3 = x[i].qs;
  7286. const uint8_t * restrict gas = x[i].qs + QK_K/4;
  7287. const int8_t * restrict q8 = y[i].qs;
  7288. float sumf1 = 0, sumf2 = 0;
  7289. for (int ib32 = 0; ib32 < QK_K/32; ib32 += 2) {
  7290. q8b = ggml_vld1q_s8_x4(q8); q8 += 64;
  7291. memcpy(aux32, gas, 2*sizeof(uint32_t)); gas += 2*sizeof(uint32_t);
  7292. const uint32x4_t aux32x4_0 = ggml_vld1q_u32(iq3xxs_grid[q3[ 0]], iq3xxs_grid[q3[ 1]], iq3xxs_grid[q3[ 2]], iq3xxs_grid[q3[ 3]]);
  7293. const uint32x4_t aux32x4_1 = ggml_vld1q_u32(iq3xxs_grid[q3[ 4]], iq3xxs_grid[q3[ 5]], iq3xxs_grid[q3[ 6]], iq3xxs_grid[q3[ 7]]);
  7294. const uint32x4_t aux32x4_2 = ggml_vld1q_u32(iq3xxs_grid[q3[ 8]], iq3xxs_grid[q3[ 9]], iq3xxs_grid[q3[10]], iq3xxs_grid[q3[11]]);
  7295. const uint32x4_t aux32x4_3 = ggml_vld1q_u32(iq3xxs_grid[q3[12]], iq3xxs_grid[q3[13]], iq3xxs_grid[q3[14]], iq3xxs_grid[q3[15]]);
  7296. q3 += 16;
  7297. q3s.val[0] = vcombine_s8(vld1_s8((const void *)(signs64 + ((aux32[0] >> 0) & 127))), vld1_s8((const void *)(signs64 + ((aux32[0] >> 7) & 127))));
  7298. q3s.val[1] = vcombine_s8(vld1_s8((const void *)(signs64 + ((aux32[0] >> 14) & 127))), vld1_s8((const void *)(signs64 + ((aux32[0] >> 21) & 127))));
  7299. q3s.val[2] = vcombine_s8(vld1_s8((const void *)(signs64 + ((aux32[1] >> 0) & 127))), vld1_s8((const void *)(signs64 + ((aux32[1] >> 7) & 127))));
  7300. q3s.val[3] = vcombine_s8(vld1_s8((const void *)(signs64 + ((aux32[1] >> 14) & 127))), vld1_s8((const void *)(signs64 + ((aux32[1] >> 21) & 127))));
  7301. q3s.val[0] = vmulq_s8(q3s.val[0], vreinterpretq_s8_u32(aux32x4_0));
  7302. q3s.val[1] = vmulq_s8(q3s.val[1], vreinterpretq_s8_u32(aux32x4_1));
  7303. q3s.val[2] = vmulq_s8(q3s.val[2], vreinterpretq_s8_u32(aux32x4_2));
  7304. q3s.val[3] = vmulq_s8(q3s.val[3], vreinterpretq_s8_u32(aux32x4_3));
  7305. const int32x4_t p1 = ggml_vdotq_s32(ggml_vdotq_s32(vdupq_n_s32(0), q3s.val[0], q8b.val[0]), q3s.val[1], q8b.val[1]);
  7306. const int32x4_t p2 = ggml_vdotq_s32(ggml_vdotq_s32(vdupq_n_s32(0), q3s.val[2], q8b.val[2]), q3s.val[3], q8b.val[3]);
  7307. sumf1 += vaddvq_s32(p1) * (0.5f + (aux32[0] >> 28));
  7308. sumf2 += vaddvq_s32(p2) * (0.5f + (aux32[1] >> 28));
  7309. }
  7310. sumf += d*(sumf1 + sumf2);
  7311. }
  7312. *s = 0.5f * sumf;
  7313. #elif defined(__AVX2__)
  7314. const uint64_t * signs64 = (const uint64_t *)keven_signs_q2xs;
  7315. uint32_t aux32[2];
  7316. __m256 accumf = _mm256_setzero_ps();
  7317. for (int i = 0; i < nb; ++i) {
  7318. const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d;
  7319. const uint8_t * restrict q3 = x[i].qs;
  7320. const uint8_t * restrict gas = x[i].qs + QK_K/4;
  7321. const int8_t * restrict q8 = y[i].qs;
  7322. __m256i sumi1 = _mm256_setzero_si256();
  7323. __m256i sumi2 = _mm256_setzero_si256();
  7324. for (int ib32 = 0; ib32 < QK_K/32; ib32 += 2) {
  7325. const __m256i q8_1 = _mm256_loadu_si256((const __m256i *)q8); q8 += 32;
  7326. const __m256i q8_2 = _mm256_loadu_si256((const __m256i *)q8); q8 += 32;
  7327. const __m256i q2_1 = _mm256_set_epi32(iq3xxs_grid[q3[7]], iq3xxs_grid[q3[6]], iq3xxs_grid[q3[5]], iq3xxs_grid[q3[4]],
  7328. iq3xxs_grid[q3[3]], iq3xxs_grid[q3[2]], iq3xxs_grid[q3[1]], iq3xxs_grid[q3[0]]);
  7329. q3 += 8;
  7330. const __m256i q2_2 = _mm256_set_epi32(iq3xxs_grid[q3[7]], iq3xxs_grid[q3[6]], iq3xxs_grid[q3[5]], iq3xxs_grid[q3[4]],
  7331. iq3xxs_grid[q3[3]], iq3xxs_grid[q3[2]], iq3xxs_grid[q3[1]], iq3xxs_grid[q3[0]]);
  7332. q3 += 8;
  7333. memcpy(aux32, gas, 8); gas += 8;
  7334. const __m256i s2_1 = _mm256_set_epi64x(signs64[(aux32[0] >> 21) & 127], signs64[(aux32[0] >> 14) & 127],
  7335. signs64[(aux32[0] >> 7) & 127], signs64[(aux32[0] >> 0) & 127]);
  7336. const __m256i s2_2 = _mm256_set_epi64x(signs64[(aux32[1] >> 21) & 127], signs64[(aux32[1] >> 14) & 127],
  7337. signs64[(aux32[1] >> 7) & 127], signs64[(aux32[1] >> 0) & 127]);
  7338. const __m256i q8s_1 = _mm256_sign_epi8(q8_1, s2_1);
  7339. const __m256i q8s_2 = _mm256_sign_epi8(q8_2, s2_2);
  7340. const __m256i dot1 = _mm256_maddubs_epi16(q2_1, q8s_1);
  7341. const __m256i dot2 = _mm256_maddubs_epi16(q2_2, q8s_2);
  7342. const uint16_t ls1 = aux32[0] >> 28;
  7343. const uint16_t ls2 = aux32[1] >> 28;
  7344. const __m256i p1 = _mm256_madd_epi16(dot1, _mm256_set1_epi16(2*ls1+1));
  7345. const __m256i p2 = _mm256_madd_epi16(dot2, _mm256_set1_epi16(2*ls2+1));
  7346. sumi1 = _mm256_add_epi32(sumi1, p1);
  7347. sumi2 = _mm256_add_epi32(sumi2, p2);
  7348. }
  7349. accumf = _mm256_fmadd_ps(_mm256_set1_ps(d), _mm256_cvtepi32_ps(_mm256_add_epi32(sumi1, sumi2)), accumf);
  7350. }
  7351. *s = 0.25f * hsum_float_8(accumf);
  7352. #else
  7353. uint32_t aux32;
  7354. float sumf = 0.f;
  7355. for (int i = 0; i < nb; ++i) {
  7356. const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d;
  7357. const uint8_t * restrict q3 = x[i].qs;
  7358. const uint8_t * restrict gas = x[i].qs + QK_K/4;
  7359. const int8_t * restrict q8 = y[i].qs;
  7360. int32_t bsum = 0;
  7361. for (int ib32 = 0; ib32 < QK_K/32; ++ib32) {
  7362. memcpy(&aux32, gas, sizeof(uint32_t)); gas += sizeof(uint32_t);
  7363. const uint32_t ls = 2*(aux32 >> 28) + 1;
  7364. int32_t sumi = 0;
  7365. for (int l = 0; l < 4; ++l) {
  7366. const uint8_t * grid1 = (const uint8_t *)(iq3xxs_grid + q3[2*l+0]);
  7367. const uint8_t * grid2 = (const uint8_t *)(iq3xxs_grid + q3[2*l+1]);
  7368. const uint8_t signs = ksigns_iq2xs[(aux32 >> 7*l) & 127];
  7369. for (int j = 0; j < 4; ++j) {
  7370. sumi += grid1[j] * q8[j+0] * (signs & kmask_iq2xs[j+0] ? -1 : 1);
  7371. sumi += grid2[j] * q8[j+4] * (signs & kmask_iq2xs[j+4] ? -1 : 1);
  7372. }
  7373. q8 += 8;
  7374. }
  7375. q3 += 8;
  7376. bsum += sumi * ls;
  7377. }
  7378. sumf += d * bsum;
  7379. }
  7380. *s = 0.25f * sumf;
  7381. #endif
  7382. }
  7383. void ggml_vec_dot_iq3_s_q8_K (int n, float * restrict s, size_t bs, const void * restrict vx, size_t bx, const void * restrict vy, size_t by, int nrc) {
  7384. assert(n % QK_K == 0);
  7385. assert(nrc == 1);
  7386. UNUSED(nrc);
  7387. UNUSED(bx);
  7388. UNUSED(by);
  7389. UNUSED(bs);
  7390. const block_iq3_s * restrict x = vx;
  7391. const block_q8_K * restrict y = vy;
  7392. const int nb = n / QK_K;
  7393. #if defined(__ARM_NEON)
  7394. typedef union {
  7395. uint16x8_t vec_index;
  7396. uint16_t index[8];
  7397. } vec_index_t;
  7398. static const uint8_t k_mask1[32] = {0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01,
  7399. 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03
  7400. };
  7401. static const uint8_t k_mask2[16] = {0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80,};
  7402. static const int16_t k_shift[8] = {8, 7, 6, 5, 4, 3, 2, 1};
  7403. const uint8x16x2_t mask1 = vld1q_u8_x2(k_mask1);
  7404. const uint8x16_t mask2 = vld1q_u8(k_mask2);
  7405. const int16x8_t hshift = vld1q_s16(k_shift);
  7406. const uint16x8_t m256 = vdupq_n_u16(256);
  7407. const uint8x16_t m1 = vdupq_n_u8(1);
  7408. uint8x16x2_t vs;
  7409. ggml_int8x16x4_t q3s;
  7410. ggml_int8x16x4_t q8b;
  7411. vec_index_t idx;
  7412. #if QK_K == 256
  7413. uint32_t scales32[2];
  7414. const uint8_t * scales8 = (const uint8_t *)scales32;
  7415. #endif
  7416. float sumf = 0;
  7417. for (int i = 0; i < nb; ++i) {
  7418. const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d;
  7419. const uint8_t * restrict qs = x[i].qs;
  7420. const uint8_t * restrict qh = x[i].qh;
  7421. const uint16_t * restrict signs = (const uint16_t *)x[i].signs;
  7422. const int8_t * restrict q8 = y[i].qs;
  7423. #if QK_K == 256
  7424. memcpy(scales32, x[i].scales, 4);
  7425. scales32[1] = (((scales32[0] >> 4) & 0x0f0f0f0f) << 1) | 0x01010101;
  7426. scales32[0] = ((scales32[0] & 0x0f0f0f0f) << 1) | 0x01010101;
  7427. #endif
  7428. int sumi1 = 0, sumi2 = 0;
  7429. for (int ib32 = 0; ib32 < QK_K/32; ib32 += 2) {
  7430. q8b = ggml_vld1q_s8_x4(q8); q8 += 64;
  7431. const uint8x16_t idx_l = vld1q_u8(qs); qs += 16;
  7432. idx.vec_index = vorrq_u16(vmovl_u8(vget_low_u8 (idx_l)), vandq_u16(vshlq_u16(vdupq_n_u16(qh[ib32+0]), hshift), m256));
  7433. const uint32x4_t aux32x4_0 = {iq3s_grid[idx.index[0]], iq3s_grid[idx.index[1]],
  7434. iq3s_grid[idx.index[2]], iq3s_grid[idx.index[3]]};
  7435. const uint32x4_t aux32x4_1 = {iq3s_grid[idx.index[4]], iq3s_grid[idx.index[5]],
  7436. iq3s_grid[idx.index[6]], iq3s_grid[idx.index[7]]};
  7437. idx.vec_index = vorrq_u16(vmovl_u8(vget_high_u8(idx_l)), vandq_u16(vshlq_u16(vdupq_n_u16(qh[ib32+1]), hshift), m256));
  7438. const uint32x4_t aux32x4_2 = {iq3s_grid[idx.index[0]], iq3s_grid[idx.index[1]],
  7439. iq3s_grid[idx.index[2]], iq3s_grid[idx.index[3]]};
  7440. const uint32x4_t aux32x4_3 = {iq3s_grid[idx.index[4]], iq3s_grid[idx.index[5]],
  7441. iq3s_grid[idx.index[6]], iq3s_grid[idx.index[7]]};
  7442. vs.val[0] = vreinterpretq_u8_u32(vdupq_n_u32(signs[0] | (signs[1] << 16)));
  7443. vs.val[1] = vandq_u8(ggml_vqtbl1q_u8(vs.val[0], mask1.val[1]), mask2);
  7444. vs.val[0] = vandq_u8(ggml_vqtbl1q_u8(vs.val[0], mask1.val[0]), mask2);
  7445. vs.val[0] = vorrq_u8(vceqq_u8(vs.val[0], mask2), m1);
  7446. vs.val[1] = vorrq_u8(vceqq_u8(vs.val[1], mask2), m1);
  7447. q3s.val[0] = vmulq_s8(vreinterpretq_s8_u8(vs.val[0]), vreinterpretq_s8_u32(aux32x4_0));
  7448. q3s.val[1] = vmulq_s8(vreinterpretq_s8_u8(vs.val[1]), vreinterpretq_s8_u32(aux32x4_1));
  7449. vs.val[0] = vreinterpretq_u8_u32(vdupq_n_u32(signs[2] | (signs[3] << 16)));
  7450. vs.val[1] = vandq_u8(ggml_vqtbl1q_u8(vs.val[0], mask1.val[1]), mask2);
  7451. vs.val[0] = vandq_u8(ggml_vqtbl1q_u8(vs.val[0], mask1.val[0]), mask2);
  7452. vs.val[0] = vorrq_u8(vceqq_u8(vs.val[0], mask2), m1);
  7453. vs.val[1] = vorrq_u8(vceqq_u8(vs.val[1], mask2), m1);
  7454. signs += 4;
  7455. q3s.val[2] = vmulq_s8(vreinterpretq_s8_u8(vs.val[0]), vreinterpretq_s8_u32(aux32x4_2));
  7456. q3s.val[3] = vmulq_s8(vreinterpretq_s8_u8(vs.val[1]), vreinterpretq_s8_u32(aux32x4_3));
  7457. const int32x4_t p1 = ggml_vdotq_s32(ggml_vdotq_s32(vdupq_n_s32(0), q3s.val[0], q8b.val[0]), q3s.val[1], q8b.val[1]);
  7458. const int32x4_t p2 = ggml_vdotq_s32(ggml_vdotq_s32(vdupq_n_s32(0), q3s.val[2], q8b.val[2]), q3s.val[3], q8b.val[3]);
  7459. #if QK_K == 256
  7460. sumi1 += vaddvq_s32(p1) * scales8[ib32/2+0];
  7461. sumi2 += vaddvq_s32(p2) * scales8[ib32/2+4];
  7462. #else
  7463. sumi1 += vaddvq_s32(p1) * (1 + 2*(x[i].scales[ib32/2] & 0xf));
  7464. sumi2 += vaddvq_s32(p2) * (1 + 2*(x[i].scales[ib32/2] >> 4));
  7465. #endif
  7466. }
  7467. sumf += d*(sumi1 + sumi2);
  7468. }
  7469. *s = sumf;
  7470. #elif defined(__AVX2__)
  7471. static const uint8_t k_mask1[32] = {0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01,
  7472. 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03
  7473. };
  7474. static const uint8_t k_mask2[32] = {0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80,
  7475. 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80,
  7476. };
  7477. const __m256i mask1 = _mm256_loadu_si256((const __m256i*)k_mask1);
  7478. const __m256i mask2 = _mm256_loadu_si256((const __m256i*)k_mask2);
  7479. const __m256i idx_shift = _mm256_set_epi32(1, 2, 3, 4, 5, 6, 7, 8);
  7480. const __m256i idx_mask = _mm256_set1_epi32(256);
  7481. typedef union {
  7482. __m256i vec[2];
  7483. uint32_t index[16];
  7484. } index_t;
  7485. index_t idx;
  7486. __m256 accumf = _mm256_setzero_ps();
  7487. for (int i = 0; i < nb; ++i) {
  7488. const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d;
  7489. const uint8_t * restrict qs = x[i].qs;
  7490. const uint8_t * restrict qh = x[i].qh;
  7491. const uint16_t * restrict signs = (const uint16_t *)x[i].signs;
  7492. const int8_t * restrict q8 = y[i].qs;
  7493. __m256i sumi1 = _mm256_setzero_si256();
  7494. __m256i sumi2 = _mm256_setzero_si256();
  7495. for (int ib32 = 0; ib32 < QK_K/32; ib32 += 2) {
  7496. const __m256i q8_1 = _mm256_loadu_si256((const __m256i *)q8); q8 += 32;
  7497. const __m256i q8_2 = _mm256_loadu_si256((const __m256i *)q8); q8 += 32;
  7498. const __m256i idx_l = _mm256_cvtepu8_epi16(_mm_loadu_si128((const __m128i *)qs)); qs += 16;
  7499. idx.vec[0] = _mm256_set1_epi32(qh[ib32+0]);
  7500. idx.vec[1] = _mm256_set1_epi32(qh[ib32+1]);
  7501. idx.vec[0] = _mm256_and_si256(_mm256_sllv_epi32(idx.vec[0], idx_shift), idx_mask);
  7502. idx.vec[1] = _mm256_and_si256(_mm256_sllv_epi32(idx.vec[1], idx_shift), idx_mask);
  7503. idx.vec[0] = _mm256_or_si256(idx.vec[0], _mm256_cvtepi16_epi32(_mm256_castsi256_si128(idx_l)));
  7504. idx.vec[1] = _mm256_or_si256(idx.vec[1], _mm256_cvtepi16_epi32(_mm256_extractf128_si256(idx_l, 1)));
  7505. // At leat on my CPU (Ryzen 7950X), using _mm256_i32gather_epi32 is slower than _mm256_set_epi32. Strange.
  7506. //const __m256i q2_1 = _mm256_i32gather_epi32((const int *)iq3s_grid, idx.vec[0], 4);
  7507. //const __m256i q2_2 = _mm256_i32gather_epi32((const int *)iq3s_grid, idx.vec[1], 4);
  7508. const __m256i q2_1 = _mm256_set_epi32(
  7509. iq3s_grid[idx.index[7]], iq3s_grid[idx.index[6]], iq3s_grid[idx.index[5]], iq3s_grid[idx.index[4]],
  7510. iq3s_grid[idx.index[3]], iq3s_grid[idx.index[2]], iq3s_grid[idx.index[1]], iq3s_grid[idx.index[0]]
  7511. );
  7512. const __m256i q2_2 = _mm256_set_epi32(
  7513. iq3s_grid[idx.index[15]], iq3s_grid[idx.index[14]], iq3s_grid[idx.index[13]], iq3s_grid[idx.index[12]],
  7514. iq3s_grid[idx.index[11]], iq3s_grid[idx.index[10]], iq3s_grid[idx.index[ 9]], iq3s_grid[idx.index[ 8]]
  7515. );
  7516. __m256i aux256 = _mm256_set1_epi32(signs[0] | (signs[1] << 16));
  7517. aux256 = _mm256_and_si256(_mm256_shuffle_epi8(aux256,mask1), mask2);
  7518. const __m256i s2_1 = _mm256_cmpeq_epi8(aux256, mask2);
  7519. const __m256i q8s_1 = _mm256_sub_epi8(_mm256_xor_si256(s2_1, q8_1), s2_1);
  7520. aux256 = _mm256_set1_epi32(signs[2] | (signs[3] << 16));
  7521. aux256 = _mm256_and_si256(_mm256_shuffle_epi8(aux256,mask1), mask2);
  7522. const __m256i s2_2 = _mm256_cmpeq_epi8(aux256, mask2);
  7523. const __m256i q8s_2 = _mm256_sub_epi8(_mm256_xor_si256(s2_2, q8_2), s2_2);
  7524. signs += 4;
  7525. const __m256i dot1 = _mm256_maddubs_epi16(q2_1, q8s_1);
  7526. const __m256i dot2 = _mm256_maddubs_epi16(q2_2, q8s_2);
  7527. const uint16_t ls1 = x[i].scales[ib32/2] & 0xf;
  7528. const uint16_t ls2 = x[i].scales[ib32/2] >> 4;
  7529. const __m256i p1 = _mm256_madd_epi16(dot1, _mm256_set1_epi16(2*ls1+1));
  7530. const __m256i p2 = _mm256_madd_epi16(dot2, _mm256_set1_epi16(2*ls2+1));
  7531. sumi1 = _mm256_add_epi32(sumi1, p1);
  7532. sumi2 = _mm256_add_epi32(sumi2, p2);
  7533. }
  7534. accumf = _mm256_fmadd_ps(_mm256_set1_ps(d), _mm256_cvtepi32_ps(_mm256_add_epi32(sumi1, sumi2)), accumf);
  7535. }
  7536. *s = hsum_float_8(accumf);
  7537. #else
  7538. float sumf = 0.f;
  7539. for (int i = 0; i < nb; ++i) {
  7540. const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d;
  7541. const uint8_t * restrict qs = x[i].qs;
  7542. const uint8_t * restrict qh = x[i].qh;
  7543. const uint8_t * restrict signs = x[i].signs;
  7544. const int8_t * restrict q8 = y[i].qs;
  7545. int32_t bsum = 0;
  7546. for (int ib32 = 0; ib32 < QK_K/32; ib32 += 2) {
  7547. const uint32_t ls1 = 2*(x[i].scales[ib32/2] & 0xf) + 1;
  7548. const uint32_t ls2 = 2*(x[i].scales[ib32/2] >> 4) + 1;
  7549. int32_t sumi = 0;
  7550. for (int l = 0; l < 4; ++l) {
  7551. const uint8_t * grid1 = (const uint8_t *)(iq3s_grid + (qs[2*l+0] | ((qh[ib32+0] << (8-2*l)) & 256)));
  7552. const uint8_t * grid2 = (const uint8_t *)(iq3s_grid + (qs[2*l+1] | ((qh[ib32+0] << (7-2*l)) & 256)));
  7553. for (int j = 0; j < 4; ++j) {
  7554. sumi += grid1[j] * q8[j+0] * (signs[l] & kmask_iq2xs[j+0] ? -1 : 1);
  7555. sumi += grid2[j] * q8[j+4] * (signs[l] & kmask_iq2xs[j+4] ? -1 : 1);
  7556. }
  7557. q8 += 8;
  7558. }
  7559. qs += 8;
  7560. signs += 4;
  7561. bsum += sumi * ls1;
  7562. sumi = 0;
  7563. for (int l = 0; l < 4; ++l) {
  7564. const uint8_t * grid1 = (const uint8_t *)(iq3s_grid + (qs[2*l+0] | ((qh[ib32+1] << (8-2*l)) & 256)));
  7565. const uint8_t * grid2 = (const uint8_t *)(iq3s_grid + (qs[2*l+1] | ((qh[ib32+1] << (7-2*l)) & 256)));
  7566. for (int j = 0; j < 4; ++j) {
  7567. sumi += grid1[j] * q8[j+0] * (signs[l] & kmask_iq2xs[j+0] ? -1 : 1);
  7568. sumi += grid2[j] * q8[j+4] * (signs[l] & kmask_iq2xs[j+4] ? -1 : 1);
  7569. }
  7570. q8 += 8;
  7571. }
  7572. qs += 8;
  7573. signs += 4;
  7574. bsum += sumi * ls2;
  7575. }
  7576. sumf += d * bsum;
  7577. }
  7578. *s = sumf;
  7579. #endif
  7580. }
  7581. #ifdef __AVX2__
  7582. static inline __m256i mul_add_epi8(const __m256i x, const __m256i y) {
  7583. const __m256i ax = _mm256_sign_epi8(x, x);
  7584. const __m256i sy = _mm256_sign_epi8(y, x);
  7585. return _mm256_maddubs_epi16(ax, sy);
  7586. }
  7587. #endif
  7588. void ggml_vec_dot_iq1_s_q8_K (int n, float * restrict s, size_t bs, const void * restrict vx, size_t bx, const void * restrict vy, size_t by, int nrc) {
  7589. assert(n % QK_K == 0);
  7590. assert(nrc == 1);
  7591. UNUSED(nrc);
  7592. UNUSED(bx);
  7593. UNUSED(by);
  7594. UNUSED(bs);
  7595. const block_iq1_s * restrict x = vx;
  7596. const block_q8_K * restrict y = vy;
  7597. const int nb = n / QK_K;
  7598. // TODO: implement for QK_K = 64
  7599. #if defined __ARM_NEON && QK_K == 256
  7600. const uint8x16_t m8 = vdupq_n_u8(0x08);
  7601. const uint8x16_t m7 = vdupq_n_u8(0x07);
  7602. const uint8x16_t m1 = vdupq_n_u8(0x01);
  7603. const int32x4_t vzero = vdupq_n_s32(0);
  7604. uint16_t gindex[8];
  7605. uint16x8x2_t vindex;
  7606. int8x16x4_t q1b;
  7607. ggml_int8x16x4_t q8b;
  7608. uint16x8x4_t scales;
  7609. int32x4x2_t sumi;
  7610. int32x4x2_t dotq;
  7611. float sumf = 0;
  7612. for (int i = 0; i < nb; ++i) {
  7613. const int8_t * q8 = y[i].qs;
  7614. const uint8_t * qs = x[i].qs;
  7615. const uint8_t * sc = x[i].scales;
  7616. sumi.val[0] = sumi.val[1] = vzero;
  7617. for (int i128 = 0; i128 < QK_K/128; ++i128) {
  7618. const uint8x16_t ql = vld1q_u8(qs); qs += 16;
  7619. const uint8x8_t tm1 = vld1_u8 (sc); sc += 8;
  7620. const uint8x8_t tm2 = vshr_n_u8(tm1, 4);
  7621. const uint8x16_t qh = vcombine_u8(vzip1_u8(tm1, tm2), vzip2_u8(tm1, tm2));
  7622. const uint8x16_t hbit = vandq_u8(qh, m8);
  7623. vindex.val[0] = vorrq_u16(vmovl_u8(vget_low_u8 (ql)), vshlq_n_u16(vmovl_u8(vget_low_u8 (hbit)), 5));
  7624. vindex.val[1] = vorrq_u16(vmovl_u8(vget_high_u8(ql)), vshlq_n_u16(vmovl_u8(vget_high_u8(hbit)), 5));
  7625. const uint8x16_t scales8 = vorrq_u8(vshlq_n_u8(vandq_u8(qh, m7), 1), m1);
  7626. scales.val[0] = vmovl_u8(vget_low_u8 (scales8));
  7627. scales.val[1] = vmovl_u8(vget_high_u8 (scales8));
  7628. for (int l = 0; l < 2; ++l) {
  7629. vst1q_u16(gindex+0, vindex.val[l]);
  7630. q1b.val[0] = vcombine_s8(vld1_s8((const void *)(iq1s_grid+gindex[0])), vld1_s8((const void *)(iq1s_grid+gindex[1])));
  7631. q1b.val[1] = vcombine_s8(vld1_s8((const void *)(iq1s_grid+gindex[2])), vld1_s8((const void *)(iq1s_grid+gindex[3])));
  7632. q1b.val[2] = vcombine_s8(vld1_s8((const void *)(iq1s_grid+gindex[4])), vld1_s8((const void *)(iq1s_grid+gindex[5])));
  7633. q1b.val[3] = vcombine_s8(vld1_s8((const void *)(iq1s_grid+gindex[6])), vld1_s8((const void *)(iq1s_grid+gindex[7])));
  7634. q8b = ggml_vld1q_s8_x4(q8); q8 += 64;
  7635. dotq.val[0] = vpaddq_s32(ggml_vdotq_s32(vzero, q1b.val[0], q8b.val[0]), ggml_vdotq_s32(vzero, q1b.val[1], q8b.val[1]));
  7636. dotq.val[1] = vpaddq_s32(ggml_vdotq_s32(vzero, q1b.val[2], q8b.val[2]), ggml_vdotq_s32(vzero, q1b.val[3], q8b.val[3]));
  7637. sumi.val[0] = vmlaq_s32(sumi.val[0], dotq.val[0], vreinterpretq_s32_u32(vmovl_u16(vget_low_u16 (scales.val[l]))));
  7638. sumi.val[1] = vmlaq_s32(sumi.val[1], dotq.val[1], vreinterpretq_s32_u32(vmovl_u16(vget_high_u16(scales.val[l]))));
  7639. }
  7640. }
  7641. sumf += y[i].d * GGML_FP16_TO_FP32(x[i].d) * vaddvq_s32(vaddq_s32(sumi.val[0], sumi.val[1]));
  7642. }
  7643. *s = sumf;
  7644. // TODO: implement for QK_K = 64
  7645. #elif defined __AVX2__ && QK_K == 256
  7646. const __m128i m8 = _mm_set1_epi8(0x08);
  7647. const __m128i m7 = _mm_set1_epi8(0x07);
  7648. const __m128i m1 = _mm_set1_epi8(0x01);
  7649. const __m128i shuffle_h = _mm_set_epi8(15, 7, 14, 6, 13, 5, 12, 4, 11, 3, 10, 2, 9, 1, 8, 0);
  7650. const __m128i shuffle_s[4] = {
  7651. _mm_set_epi32(0x03030303, 0x02020202, 0x01010101, 0x00000000),
  7652. _mm_set_epi32(0x07070707, 0x06060606, 0x05050505, 0x04040404),
  7653. _mm_set_epi32(0x0b0b0b0b, 0x0a0a0a0a, 0x09090909, 0x08080808),
  7654. _mm_set_epi32(0x0f0f0f0f, 0x0e0e0e0e, 0x0d0d0d0d, 0x0c0c0c0c)
  7655. };
  7656. uint64_t aux64;
  7657. typedef union m256i_uint16 {
  7658. __m256i reg;
  7659. uint16_t s[16];
  7660. } m256i_uint16_t;
  7661. m256i_uint16_t v_gindex;
  7662. __m256 accum = _mm256_setzero_ps();
  7663. for (int i = 0; i < nb; ++i) {
  7664. const int8_t * q8 = y[i].qs;
  7665. const uint8_t * qs = x[i].qs;
  7666. const uint8_t * sc = x[i].scales;
  7667. __m256i sumi = _mm256_setzero_si256();
  7668. for (int i128 = 0; i128 < QK_K/128; ++i128) {
  7669. const __m128i ql = _mm_loadu_si128((const __m128i*)qs); qs += 16;
  7670. memcpy(&aux64, sc, 8); sc += 8;
  7671. const __m128i qh = _mm_shuffle_epi8(_mm_set_epi64x(aux64 >> 4, aux64), shuffle_h);
  7672. const __m256i hbit = _mm256_cvtepu8_epi16(_mm_and_si128(qh, m8));
  7673. v_gindex.reg = _mm256_or_si256(_mm256_cvtepu8_epi16(ql), _mm256_slli_epi16(hbit, 5));
  7674. const __m128i scales = _mm_or_si128(_mm_slli_epi16(_mm_and_si128(qh, m7), 1), m1);
  7675. for (int i32 = 0; i32 < 4; ++i32) {
  7676. const __m256i q8b = _mm256_loadu_si256((const __m256i*)q8); q8 += 32;
  7677. const __m256i q1b = _mm256_set_epi64x(iq1s_grid[v_gindex.s[4*i32+3]], iq1s_grid[v_gindex.s[4*i32+2]],
  7678. iq1s_grid[v_gindex.s[4*i32+1]], iq1s_grid[v_gindex.s[4*i32+0]]);
  7679. const __m256i dot = mul_add_epi8(q1b, q8b);
  7680. const __m256i s16 = _mm256_cvtepi8_epi16(_mm_shuffle_epi8(scales, shuffle_s[i32]));
  7681. const __m256i p = _mm256_madd_epi16(s16, dot);
  7682. sumi = _mm256_add_epi32(sumi, p);
  7683. }
  7684. }
  7685. accum = _mm256_fmadd_ps(_mm256_set1_ps(y[i].d * GGML_FP16_TO_FP32(x[i].d)), _mm256_cvtepi32_ps(sumi), accum);
  7686. }
  7687. *s = hsum_float_8(accum);
  7688. #else
  7689. int db[4];
  7690. uint16_t idx[4];
  7691. float sumf = 0;
  7692. for (int i = 0; i < nb; ++i) {
  7693. const int8_t * q8 = y[i].qs;
  7694. const uint8_t * qs = x[i].qs;
  7695. const uint8_t * sc = x[i].scales;
  7696. int sumi = 0;
  7697. for (int i32 = 0; i32 < QK_K/32; ++i32) {
  7698. idx[0] = qs[0] | ((sc[0] & 0x08) << 5);
  7699. idx[1] = qs[1] | ((sc[0] & 0x80) << 1);
  7700. idx[2] = qs[2] | ((sc[1] & 0x08) << 5);
  7701. idx[3] = qs[3] | ((sc[1] & 0x80) << 1);
  7702. db[0] = (2*(sc[0] & 7) + 1);
  7703. db[1] = (2*((sc[0] >> 4) & 7) + 1);
  7704. db[2] = (2*(sc[1] & 7) + 1);
  7705. db[3] = (2*((sc[1] >> 4) & 7) + 1);
  7706. for (int l = 0; l < 4; ++l) {
  7707. const int8_t * grid = (const int8_t *)(iq1s_grid + idx[l]);
  7708. int suml = 0;
  7709. for (int j = 0; j < 8; ++j) suml += q8[j] * grid[j];
  7710. sumi += db[l] * suml;
  7711. q8 += 8;
  7712. }
  7713. qs += 4;
  7714. sc += 2;
  7715. }
  7716. sumf += GGML_FP16_TO_FP32(x[i].d) * y[i].d * sumi;
  7717. }
  7718. *s = sumf;
  7719. #endif
  7720. }
  7721. void ggml_vec_dot_iq4_nl_q8_0(int n, float * restrict s, size_t bs, const void * restrict vx, size_t bx, const void * restrict vy, size_t by, int nrc) {
  7722. assert(nrc == 1);
  7723. UNUSED(nrc);
  7724. UNUSED(bx);
  7725. UNUSED(by);
  7726. UNUSED(bs);
  7727. assert(n % QK4_NL == 0);
  7728. static_assert(QK4_NL == QK8_0, "QK4_NL and QK8_0 must be the same");
  7729. const block_iq4_nl * restrict x = vx;
  7730. const block_q8_0 * restrict y = vy;
  7731. const int nb = n / QK4_NL;
  7732. #if defined __ARM_NEON
  7733. const int8x16_t values = vld1q_s8(kvalues_iq4nl);
  7734. const uint8x16_t m4b = vdupq_n_u8(0x0f);
  7735. uint8x16x2_t q4bits;
  7736. int8x16x4_t q4b;
  7737. int8x16x4_t q8b;
  7738. int32x4_t prod_1, prod_2;
  7739. float sumf = 0;
  7740. for (int ib = 0; ib < nb; ib += 2) {
  7741. q4bits.val[0] = vld1q_u8(x[ib+0].qs);
  7742. q4bits.val[1] = vld1q_u8(x[ib+1].qs);
  7743. q8b.val[0] = vld1q_s8(y[ib+0].qs);
  7744. q8b.val[1] = vld1q_s8(y[ib+0].qs + 16);
  7745. q8b.val[2] = vld1q_s8(y[ib+1].qs);
  7746. q8b.val[3] = vld1q_s8(y[ib+1].qs + 16);
  7747. q4b.val[0] = ggml_vqtbl1q_s8(values, vandq_u8 (q4bits.val[0], m4b));
  7748. q4b.val[1] = ggml_vqtbl1q_s8(values, vshrq_n_u8(q4bits.val[0], 4));
  7749. q4b.val[2] = ggml_vqtbl1q_s8(values, vandq_u8 (q4bits.val[1], m4b));
  7750. q4b.val[3] = ggml_vqtbl1q_s8(values, vshrq_n_u8(q4bits.val[1], 4));
  7751. prod_1 = ggml_vdotq_s32(ggml_vdotq_s32(vdupq_n_s32(0), q4b.val[0], q8b.val[0]), q4b.val[1], q8b.val[1]);
  7752. prod_2 = ggml_vdotq_s32(ggml_vdotq_s32(vdupq_n_s32(0), q4b.val[2], q8b.val[2]), q4b.val[3], q8b.val[3]);
  7753. sumf +=
  7754. GGML_FP16_TO_FP32(x[ib+0].d) * GGML_FP16_TO_FP32(y[ib+0].d) * vaddvq_s32(prod_1) +
  7755. GGML_FP16_TO_FP32(x[ib+1].d) * GGML_FP16_TO_FP32(y[ib+1].d) * vaddvq_s32(prod_2);
  7756. }
  7757. *s = sumf;
  7758. #elif defined __AVX2__
  7759. const __m128i values128 = _mm_loadu_si128((const __m128i*)kvalues_iq4nl);
  7760. const __m128i m4b = _mm_set1_epi8(0x0f);
  7761. const __m256i mone = _mm256_set1_epi16(1);
  7762. __m256 accum1 = _mm256_setzero_ps();
  7763. __m256 accum2 = _mm256_setzero_ps();
  7764. for (int ib = 0; ib < nb; ib += 2) {
  7765. const __m128i q4bits_1 = _mm_loadu_si128((const __m128i*)x[0].qs);
  7766. const __m128i q4bits_2 = _mm_loadu_si128((const __m128i*)x[1].qs);
  7767. const __m256i q8b_1 = _mm256_loadu_si256((const __m256i *)y[0].qs);
  7768. const __m256i q8b_2 = _mm256_loadu_si256((const __m256i *)y[1].qs);
  7769. const __m256i q4b_1 = MM256_SET_M128I(_mm_shuffle_epi8(values128, _mm_and_si128(_mm_srli_epi16(q4bits_1, 4), m4b)),
  7770. _mm_shuffle_epi8(values128, _mm_and_si128(q4bits_1, m4b)));
  7771. const __m256i q4b_2 = MM256_SET_M128I(_mm_shuffle_epi8(values128, _mm_and_si128(_mm_srli_epi16(q4bits_2, 4), m4b)),
  7772. _mm_shuffle_epi8(values128, _mm_and_si128(q4bits_2, m4b)));
  7773. const __m256i p16_1 = mul_add_epi8(q4b_1, q8b_1);
  7774. const __m256i p16_2 = mul_add_epi8(q4b_2, q8b_2);
  7775. const __m256i p_1 = _mm256_madd_epi16(p16_1, mone);
  7776. const __m256i p_2 = _mm256_madd_epi16(p16_2, mone);
  7777. accum1 = _mm256_fmadd_ps(_mm256_set1_ps(GGML_FP16_TO_FP32(y[0].d)*GGML_FP16_TO_FP32(x[0].d)),
  7778. _mm256_cvtepi32_ps(p_1), accum1);
  7779. accum2 = _mm256_fmadd_ps(_mm256_set1_ps(GGML_FP16_TO_FP32(y[1].d)*GGML_FP16_TO_FP32(x[1].d)),
  7780. _mm256_cvtepi32_ps(p_2), accum2);
  7781. y += 2;
  7782. x += 2;
  7783. }
  7784. *s = hsum_float_8(_mm256_add_ps(accum1, accum2));
  7785. #else
  7786. float sumf = 0;
  7787. for (int ib = 0; ib < nb; ++ib) {
  7788. const float d = GGML_FP16_TO_FP32(y[ib].d)*GGML_FP16_TO_FP32(x[ib].d);
  7789. int sumi1 = 0, sumi2 = 0;
  7790. for (int j = 0; j < QK4_NL/2; ++j) {
  7791. sumi1 += y[ib].qs[j+ 0] * kvalues_iq4nl[x[ib].qs[j] & 0xf];
  7792. sumi2 += y[ib].qs[j+QK4_NL/2] * kvalues_iq4nl[x[ib].qs[j] >> 4];
  7793. }
  7794. sumf += d * (sumi1 + sumi2);
  7795. }
  7796. *s = sumf;
  7797. #endif
  7798. }
  7799. void ggml_vec_dot_iq4_xs_q8_K(int n, float * restrict s, size_t bs, const void * restrict vx, size_t bx, const void * restrict vy, size_t by, int nrc) {
  7800. assert(nrc == 1);
  7801. UNUSED(nrc);
  7802. UNUSED(bx);
  7803. UNUSED(by);
  7804. UNUSED(bs);
  7805. assert(n % QK_K == 0);
  7806. #if QK_K == 64
  7807. ggml_vec_dot_iq4_nl_q8_0(n, s, bs, vx, bx, vy, by, nrc);
  7808. #else
  7809. const block_iq4_xs * restrict x = vx;
  7810. const block_q8_K * restrict y = vy;
  7811. const int nb = n / QK_K;
  7812. #if defined __ARM_NEON
  7813. const int8x16_t values = vld1q_s8(kvalues_iq4nl);
  7814. const uint8x16_t m4b = vdupq_n_u8(0x0f);
  7815. ggml_uint8x16x2_t q4bits;
  7816. ggml_int8x16x4_t q4b;
  7817. ggml_int8x16x4_t q8b;
  7818. int32x4_t prod_1, prod_2;
  7819. float sumf = 0;
  7820. for (int ibl = 0; ibl < nb; ++ibl) {
  7821. const int8_t * q8 = y[ibl].qs;
  7822. const uint8_t * q4 = x[ibl].qs;
  7823. uint16_t h = x[ibl].scales_h;
  7824. int sumi1 = 0, sumi2 = 0;
  7825. for (int ib = 0; ib < QK_K/64; ++ib) {
  7826. q4bits = ggml_vld1q_u8_x2(q4); q4 += 32;
  7827. q8b = ggml_vld1q_s8_x4(q8); q8 += 64;
  7828. q4b.val[0] = ggml_vqtbl1q_s8(values, vandq_u8 (q4bits.val[0], m4b));
  7829. q4b.val[1] = ggml_vqtbl1q_s8(values, vshrq_n_u8(q4bits.val[0], 4));
  7830. q4b.val[2] = ggml_vqtbl1q_s8(values, vandq_u8 (q4bits.val[1], m4b));
  7831. q4b.val[3] = ggml_vqtbl1q_s8(values, vshrq_n_u8(q4bits.val[1], 4));
  7832. prod_1 = ggml_vdotq_s32(ggml_vdotq_s32(vdupq_n_s32(0), q4b.val[0], q8b.val[0]), q4b.val[1], q8b.val[1]);
  7833. prod_2 = ggml_vdotq_s32(ggml_vdotq_s32(vdupq_n_s32(0), q4b.val[2], q8b.val[2]), q4b.val[3], q8b.val[3]);
  7834. int ls1 = ((x[ibl].scales_l[ib] & 0xf) | ((h << 4) & 0x30)) - 32;
  7835. int ls2 = ((x[ibl].scales_l[ib] >> 4) | ((h << 2) & 0x30)) - 32;
  7836. h >>= 4;
  7837. sumi1 += vaddvq_s32(prod_1) * ls1;
  7838. sumi2 += vaddvq_s32(prod_2) * ls2;
  7839. }
  7840. sumf += GGML_FP16_TO_FP32(x[ibl].d) * y[ibl].d * (sumi1 + sumi2);
  7841. }
  7842. *s = sumf;
  7843. #elif defined __AVX2__
  7844. const __m128i values128 = _mm_loadu_si128((const __m128i*)kvalues_iq4nl);
  7845. const __m128i m4b = _mm_set1_epi8(0x0f);
  7846. __m256 accum = _mm256_setzero_ps();
  7847. for (int ibl = 0; ibl < nb; ++ibl) {
  7848. const uint8_t * qs = x[ibl].qs;
  7849. const int8_t * q8 = y[ibl].qs;
  7850. uint16_t sh = x[ibl].scales_h;
  7851. __m256i sumi1 = _mm256_setzero_si256();
  7852. __m256i sumi2 = _mm256_setzero_si256();
  7853. for (int ib = 0; ib < QK_K/32; ib += 2) {
  7854. const __m128i q4bits_1 = _mm_loadu_si128((const __m128i*)qs); qs += 16;
  7855. const __m128i q4bits_2 = _mm_loadu_si128((const __m128i*)qs); qs += 16;
  7856. const __m256i q8b_1 = _mm256_loadu_si256((const __m256i *)q8); q8 += 32;
  7857. const __m256i q8b_2 = _mm256_loadu_si256((const __m256i *)q8); q8 += 32;
  7858. const __m256i q4b_1 = MM256_SET_M128I(_mm_shuffle_epi8(values128, _mm_and_si128(_mm_srli_epi16(q4bits_1, 4), m4b)),
  7859. _mm_shuffle_epi8(values128, _mm_and_si128(q4bits_1, m4b)));
  7860. const __m256i q4b_2 = MM256_SET_M128I(_mm_shuffle_epi8(values128, _mm_and_si128(_mm_srli_epi16(q4bits_2, 4), m4b)),
  7861. _mm_shuffle_epi8(values128, _mm_and_si128(q4bits_2, m4b)));
  7862. const __m256i p16_1 = mul_add_epi8(q4b_1, q8b_1);
  7863. const __m256i p16_2 = mul_add_epi8(q4b_2, q8b_2);
  7864. const int16_t ls1 = ((x[ibl].scales_l[ib/2] & 0xf) | ((sh << 4) & 0x30)) - 32;
  7865. const int16_t ls2 = ((x[ibl].scales_l[ib/2] >> 4) | ((sh << 2) & 0x30)) - 32;
  7866. sh >>= 4;
  7867. const __m256i p_1 = _mm256_madd_epi16(p16_1, _mm256_set1_epi16(ls1));
  7868. const __m256i p_2 = _mm256_madd_epi16(p16_2, _mm256_set1_epi16(ls2));
  7869. sumi1 = _mm256_add_epi32(p_1, sumi1);
  7870. sumi2 = _mm256_add_epi32(p_2, sumi2);
  7871. }
  7872. accum = _mm256_fmadd_ps(_mm256_set1_ps(GGML_FP16_TO_FP32(x[ibl].d)*y[ibl].d),
  7873. _mm256_cvtepi32_ps(_mm256_add_epi32(sumi1, sumi2)), accum);
  7874. }
  7875. *s = hsum_float_8(accum);
  7876. #else
  7877. float sumf = 0;
  7878. for (int ibl = 0; ibl < nb; ++ibl) {
  7879. const float d4d8 = GGML_FP16_TO_FP32(x[ibl].d) * y[ibl].d;
  7880. uint16_t h = x[ibl].scales_h;
  7881. const uint8_t * qs = x[ibl].qs;
  7882. const int8_t * q8 = y[ibl].qs;
  7883. for (int ib = 0; ib < QK_K/32; ib += 2) {
  7884. const uint8_t ls1 = (x[ibl].scales_l[ib/2] & 0xf) | ((h << 4) & 0x30);
  7885. const uint8_t ls2 = (x[ibl].scales_l[ib/2] >> 4) | ((h << 2) & 0x30);
  7886. h >>= 4;
  7887. const float d1 = d4d8*(ls1 - 32);
  7888. const float d2 = d4d8*(ls2 - 32);
  7889. int sumi1 = 0, sumi2 = 0;
  7890. for (int j = 0; j < 16; ++j) {
  7891. sumi1 += q8[j+ 0] * kvalues_iq4nl[qs[j] & 0xf];
  7892. sumi2 += q8[j+16] * kvalues_iq4nl[qs[j] >> 4];
  7893. }
  7894. sumf += d1 * (sumi1 + sumi2);
  7895. qs += 16;
  7896. q8 += 32;
  7897. sumi1 = sumi2 = 0;
  7898. for (int j = 0; j < 16; ++j) {
  7899. sumi1 += q8[j+ 0] * kvalues_iq4nl[qs[j] & 0xf];
  7900. sumi2 += q8[j+16] * kvalues_iq4nl[qs[j] >> 4];
  7901. }
  7902. sumf += d2 * (sumi1 + sumi2);
  7903. qs += 16;
  7904. q8 += 32;
  7905. }
  7906. }
  7907. *s = sumf;
  7908. #endif
  7909. #endif
  7910. }
  7911. // ================================ IQ2 quantization =============================================
  7912. typedef struct {
  7913. uint64_t * grid;
  7914. int * map;
  7915. uint16_t * neighbours;
  7916. } iq2_entry_t;
  7917. static iq2_entry_t iq2_data[4] = {
  7918. {NULL, NULL, NULL},
  7919. {NULL, NULL, NULL},
  7920. {NULL, NULL, NULL},
  7921. {NULL, NULL, NULL},
  7922. };
  7923. static inline int iq2_data_index(enum ggml_type type) {
  7924. GGML_ASSERT(type == GGML_TYPE_IQ2_XXS || type == GGML_TYPE_IQ2_XS || type == GGML_TYPE_IQ1_S || type == GGML_TYPE_IQ2_S);
  7925. return type == GGML_TYPE_IQ2_XXS ? 0 :
  7926. type == GGML_TYPE_IQ2_XS ? 1 :
  7927. type == GGML_TYPE_IQ1_S ? 2 : 3;
  7928. }
  7929. static inline int iq2_grid_size(enum ggml_type type) {
  7930. GGML_ASSERT(type == GGML_TYPE_IQ2_XXS || type == GGML_TYPE_IQ2_XS || type == GGML_TYPE_IQ1_S || type == GGML_TYPE_IQ2_S);
  7931. return type == GGML_TYPE_IQ2_XXS ? 256 :
  7932. type == GGML_TYPE_IQ2_XS ? 512 :
  7933. type == GGML_TYPE_IQ1_S ? 512 : 1024;
  7934. }
  7935. static int iq2_compare_func(const void * left, const void * right) {
  7936. const int * l = (const int *)left;
  7937. const int * r = (const int *)right;
  7938. return l[0] < r[0] ? -1 : l[0] > r[0] ? 1 : l[1] < r[1] ? -1 : l[1] > r[1] ? 1 : 0;
  7939. }
  7940. void iq2xs_init_impl(enum ggml_type type) {
  7941. const int gindex = iq2_data_index(type);
  7942. const int grid_size = iq2_grid_size(type);
  7943. if (iq2_data[gindex].grid) {
  7944. return;
  7945. }
  7946. static const uint16_t kgrid_2bit_256[256] = {
  7947. 0, 2, 5, 8, 10, 17, 20, 32, 34, 40, 42, 65, 68, 80, 88, 97,
  7948. 100, 128, 130, 138, 162, 257, 260, 272, 277, 320, 388, 408, 512, 514, 546, 642,
  7949. 1025, 1028, 1040, 1057, 1060, 1088, 1090, 1096, 1120, 1153, 1156, 1168, 1188, 1280, 1282, 1288,
  7950. 1312, 1350, 1385, 1408, 1425, 1545, 1552, 1600, 1668, 1700, 2048, 2053, 2056, 2068, 2088, 2113,
  7951. 2116, 2128, 2130, 2184, 2308, 2368, 2562, 2580, 4097, 4100, 4112, 4129, 4160, 4192, 4228, 4240,
  7952. 4245, 4352, 4360, 4384, 4432, 4442, 4480, 4644, 4677, 5120, 5128, 5152, 5157, 5193, 5248, 5400,
  7953. 5474, 5632, 5654, 6145, 6148, 6160, 6208, 6273, 6400, 6405, 6560, 6737, 8192, 8194, 8202, 8260,
  7954. 8289, 8320, 8322, 8489, 8520, 8704, 8706, 9217, 9220, 9232, 9280, 9302, 9472, 9537, 9572, 9872,
  7955. 10248, 10272, 10388, 10820, 16385, 16388, 16400, 16408, 16417, 16420, 16448, 16456, 16470, 16480, 16513, 16516,
  7956. 16528, 16640, 16672, 16737, 16768, 16773, 16897, 16912, 16968, 16982, 17000, 17408, 17416, 17440, 17536, 17561,
  7957. 17682, 17700, 17920, 18433, 18436, 18448, 18496, 18501, 18688, 18776, 18785, 18818, 19013, 19088, 20480, 20488,
  7958. 20497, 20505, 20512, 20608, 20616, 20740, 20802, 20900, 21137, 21648, 21650, 21770, 22017, 22100, 22528, 22545,
  7959. 22553, 22628, 22848, 23048, 24580, 24592, 24640, 24680, 24832, 24917, 25112, 25184, 25600, 25605, 25872, 25874,
  7960. 25988, 26690, 32768, 32770, 32778, 32833, 32898, 33028, 33048, 33088, 33297, 33793, 33796, 33808, 33813, 33856,
  7961. 33888, 34048, 34118, 34196, 34313, 34368, 34400, 34818, 35076, 35345, 36868, 36880, 36900, 36928, 37025, 37142,
  7962. 37248, 37445, 37888, 37922, 37956, 38225, 39041, 39200, 40962, 41040, 41093, 41225, 41472, 42008, 43088, 43268,
  7963. };
  7964. static const uint16_t kgrid_2bit_512[512] = {
  7965. 0, 2, 5, 8, 10, 17, 20, 22, 25, 32, 34, 37, 40, 65, 68, 70,
  7966. 73, 80, 82, 85, 88, 97, 100, 128, 130, 133, 136, 145, 148, 153, 160, 257,
  7967. 260, 262, 265, 272, 274, 277, 280, 282, 289, 292, 320, 322, 325, 328, 337, 340,
  7968. 352, 360, 385, 388, 400, 512, 514, 517, 520, 529, 532, 544, 577, 580, 592, 597,
  7969. 640, 650, 1025, 1028, 1030, 1033, 1040, 1042, 1045, 1048, 1057, 1060, 1088, 1090, 1093, 1096,
  7970. 1105, 1108, 1110, 1120, 1153, 1156, 1168, 1280, 1282, 1285, 1288, 1297, 1300, 1312, 1345, 1348,
  7971. 1360, 1377, 1408, 1537, 1540, 1552, 1574, 1600, 1602, 1668, 2048, 2050, 2053, 2056, 2058, 2065,
  7972. 2068, 2080, 2085, 2113, 2116, 2128, 2136, 2176, 2208, 2218, 2305, 2308, 2320, 2368, 2433, 2441,
  7973. 2560, 2592, 2600, 2710, 2720, 4097, 4100, 4102, 4105, 4112, 4114, 4117, 4120, 4129, 4132, 4160,
  7974. 4162, 4165, 4168, 4177, 4180, 4192, 4202, 4225, 4228, 4240, 4352, 4354, 4357, 4360, 4369, 4372,
  7975. 4384, 4417, 4420, 4432, 4480, 4500, 4502, 4609, 4612, 4614, 4624, 4672, 4704, 5120, 5122, 5125,
  7976. 5128, 5137, 5140, 5152, 5185, 5188, 5193, 5200, 5220, 5248, 5377, 5380, 5392, 5440, 5632, 5652,
  7977. 5705, 6145, 6148, 6160, 6162, 6208, 6228, 6278, 6400, 6405, 6502, 6737, 6825, 8192, 8194, 8197,
  7978. 8200, 8202, 8209, 8212, 8224, 8257, 8260, 8272, 8320, 8352, 8449, 8452, 8464, 8512, 8520, 8549,
  7979. 8704, 8738, 8832, 8872, 9217, 9220, 9232, 9257, 9280, 9472, 9537, 9554, 9625, 9729, 9754, 9894,
  7980. 10240, 10248, 10250, 10272, 10325, 10376, 10402, 10600, 10640, 10760, 10784, 10882, 10888, 10890, 16385, 16388,
  7981. 16390, 16393, 16400, 16402, 16405, 16408, 16417, 16420, 16448, 16450, 16453, 16456, 16458, 16465, 16468, 16480,
  7982. 16485, 16513, 16516, 16528, 16640, 16642, 16645, 16648, 16657, 16660, 16672, 16705, 16708, 16720, 16768, 16773,
  7983. 16802, 16897, 16900, 16912, 16914, 16937, 16960, 17408, 17410, 17413, 17416, 17425, 17428, 17433, 17440, 17473,
  7984. 17476, 17488, 17536, 17556, 17665, 17668, 17680, 17700, 17728, 17818, 17920, 17930, 17988, 18000, 18433, 18436,
  7985. 18448, 18496, 18501, 18516, 18530, 18688, 18705, 18756, 18768, 18793, 18948, 20480, 20482, 20485, 20488, 20497,
  7986. 20500, 20512, 20520, 20545, 20548, 20560, 20608, 20737, 20740, 20752, 20757, 20800, 20802, 20992, 21060, 21162,
  7987. 21505, 21508, 21520, 21537, 21568, 21600, 21633, 21665, 21760, 21768, 21888, 21896, 22049, 22120, 22177, 22528,
  7988. 22548, 22593, 22608, 22681, 22810, 22848, 22850, 23173, 24577, 24580, 24592, 24640, 24660, 24674, 24710, 24745,
  7989. 24832, 25124, 25162, 25234, 25600, 25622, 25872, 25920, 25925, 26020, 26625, 26730, 26917, 27142, 27220, 27234,
  7990. 32768, 32770, 32773, 32776, 32785, 32788, 32800, 32810, 32833, 32836, 32848, 32896, 32898, 32936, 32938, 33025,
  7991. 33028, 33030, 33040, 33088, 33105, 33113, 33280, 33312, 33408, 33410, 33440, 33448, 33793, 33796, 33808, 33810,
  7992. 33813, 33856, 33888, 33929, 34048, 34116, 34213, 34328, 34410, 34816, 34824, 34853, 34906, 34944, 34946, 34984,
  7993. 35078, 35362, 35456, 35464, 35478, 35496, 36865, 36868, 36880, 36928, 36950, 36996, 37120, 37154, 37220, 37462,
  7994. 37513, 37888, 37893, 37956, 37968, 37976, 38185, 38288, 38290, 38465, 38993, 39078, 39241, 39445, 39520, 40960,
  7995. 40962, 40968, 40970, 40992, 41002, 41120, 41297, 41305, 41382, 41472, 41474, 41480, 41514, 41600, 41632, 42048,
  7996. 42133, 42597, 42648, 43018, 43040, 43042, 43048, 43168, 43176, 43268, 43396, 43398, 43560, 43562, 43665, 43690,
  7997. };
  7998. static const uint16_t kgrid_1bit_512[512] = {
  7999. 10, 33, 41, 85, 132, 134, 160, 162, 277, 337, 340, 345, 357, 405, 516, 545,
  8000. 553, 598, 641, 650, 681, 1042, 1044, 1097, 1169, 1176, 1320, 1345, 1365, 1378, 1434, 1444,
  8001. 1545, 1617, 1642, 1685, 2053, 2080, 2089, 2133, 2176, 2182, 2208, 2214, 2306, 2384, 2393, 2440,
  8002. 2453, 2581, 2664, 2690, 2721, 4117, 4161, 4182, 4184, 4261, 4357, 4369, 4372, 4377, 4390, 4422,
  8003. 4432, 4437, 4449, 4457, 4485, 4497, 4505, 4629, 4677, 4696, 4774, 5205, 5217, 5225, 5386, 5397,
  8004. 5409, 5445, 5457, 5460, 5461, 5462, 5465, 5472, 5477, 5525, 5545, 5650, 5668, 5717, 5729, 5769,
  8005. 5777, 6212, 6234, 6244, 6293, 6424, 6482, 6485, 6502, 6505, 6529, 6538, 6565, 6656, 6682, 6788,
  8006. 6806, 6820, 8218, 8224, 8226, 8232, 8277, 8326, 8354, 8469, 8521, 8530, 8549, 8596, 8737, 8794,
  8007. 9221, 9253, 9348, 9369, 9380, 9474, 9557, 9633, 9732, 9753, 9793, 9830, 9862, 9880, 10240, 10272,
  8008. 10282, 10321, 10406, 10517, 10530, 10566, 10585, 10645, 10896, 16466, 16468, 16473, 16485, 16646, 16660, 16665,
  8009. 16725, 16793, 16806, 16914, 16969, 16977, 16996, 17028, 17057, 17408, 17416, 17434, 17493, 17512, 17578, 17685,
  8010. 17696, 17733, 17745, 17748, 17749, 17750, 17753, 17765, 17794, 17813, 17946, 17984, 18005, 18072, 18453, 18529,
  8011. 18569, 18722, 18756, 18762, 18773, 18794, 18833, 18853, 18945, 19026, 19033, 19077, 20489, 20497, 20500, 20517,
  8012. 20565, 20586, 20610, 20633, 20757, 20769, 20776, 20805, 20817, 20820, 20821, 20822, 20825, 20837, 20864, 20872,
  8013. 20885, 20896, 21002, 21029, 21077, 21146, 21510, 21525, 21573, 21585, 21588, 21589, 21590, 21593, 21605, 21653,
  8014. 21665, 21765, 21777, 21780, 21781, 21782, 21785, 21797, 21825, 21828, 21829, 21830, 21833, 21840, 21841, 21842,
  8015. 21844, 21846, 21848, 21849, 21850, 21857, 21860, 21861, 21862, 21865, 21893, 21905, 21908, 21909, 21910, 21913,
  8016. 21925, 22024, 22037, 22085, 22097, 22100, 22101, 22102, 22105, 22117, 22165, 22545, 22566, 22568, 22594, 22608,
  8017. 22613, 22676, 22697, 22793, 22805, 22853, 22865, 22868, 22869, 22870, 22873, 22885, 22933, 22946, 23046, 23072,
  8018. 23125, 23209, 24597, 24640, 24665, 24673, 24725, 24833, 24840, 24869, 24917, 24934, 24965, 25001, 25108, 25110,
  8019. 25152, 25184, 25192, 25234, 25616, 25618, 25625, 25685, 25704, 25738, 25744, 25770, 25877, 25897, 25925, 25937,
  8020. 25940, 25941, 25942, 25945, 25957, 25986, 26005, 26186, 26197, 26276, 26632, 26634, 26725, 26757, 26770, 26885,
  8021. 26965, 26976, 26986, 27032, 27153, 27174, 27200, 27208, 27240, 27269, 27282, 27290, 32778, 32800, 32802, 32808,
  8022. 32810, 32853, 32904, 32922, 32930, 32932, 33105, 33110, 33112, 33125, 33157, 33280, 33288, 33301, 33312, 33320,
  8023. 33424, 33797, 33829, 33858, 34068, 34133, 34146, 34176, 34217, 34306, 34342, 34441, 34454, 34468, 34832, 34918,
  8024. 34965, 34984, 35094, 35137, 35161, 35208, 35232, 35332, 35338, 35368, 35429, 36932, 36934, 36953, 37009, 37125,
  8025. 37136, 37138, 37145, 37157, 37205, 37220, 37258, 37290, 37444, 37446, 37465, 37478, 37525, 37905, 37968, 37973,
  8026. 38040, 38054, 38145, 38154, 38165, 38180, 38186, 38213, 38225, 38228, 38229, 38230, 38233, 38245, 38293, 38485,
  8027. 38504, 38530, 38938, 38985, 38993, 39012, 39040, 39173, 39192, 39253, 39265, 39301, 39316, 39322, 39442, 39497,
  8028. 39504, 39590, 40970, 40984, 40992, 41002, 41045, 41120, 41128, 41237, 41289, 41297, 41317, 41364, 41366, 41514,
  8029. 41557, 41633, 41989, 42021, 42056, 42068, 42074, 42113, 42242, 42265, 42274, 42325, 42340, 42402, 42501, 42512,
  8030. 42533, 42624, 42632, 42666, 43040, 43093, 43106, 43168, 43176, 43264, 43286, 43345, 43429, 43590, 43618, 43680,
  8031. };
  8032. static const uint16_t kgrid_2bit_1024[1024] = {
  8033. 0, 2, 5, 8, 10, 17, 20, 22, 25, 32, 34, 37, 40, 65, 68, 70,
  8034. 73, 80, 82, 85, 88, 97, 100, 102, 105, 128, 130, 133, 136, 145, 148, 160,
  8035. 165, 170, 257, 260, 262, 265, 272, 274, 277, 280, 289, 292, 320, 322, 325, 328,
  8036. 337, 340, 342, 345, 352, 357, 360, 385, 388, 400, 402, 405, 417, 420, 512, 514,
  8037. 517, 520, 529, 532, 544, 554, 577, 580, 582, 585, 592, 597, 640, 645, 650, 660,
  8038. 674, 1025, 1028, 1030, 1033, 1040, 1042, 1045, 1048, 1057, 1060, 1062, 1065, 1088, 1090, 1093,
  8039. 1096, 1098, 1105, 1108, 1110, 1113, 1120, 1122, 1125, 1153, 1156, 1158, 1161, 1168, 1173, 1176,
  8040. 1185, 1188, 1280, 1282, 1285, 1288, 1290, 1297, 1300, 1302, 1305, 1312, 1317, 1320, 1345, 1348,
  8041. 1350, 1353, 1360, 1362, 1365, 1368, 1377, 1380, 1408, 1410, 1413, 1416, 1425, 1428, 1440, 1537,
  8042. 1540, 1542, 1545, 1552, 1557, 1600, 1605, 1608, 1617, 1620, 1632, 1665, 1668, 1680, 2048, 2050,
  8043. 2053, 2056, 2065, 2068, 2070, 2073, 2080, 2085, 2090, 2113, 2116, 2118, 2121, 2128, 2130, 2133,
  8044. 2136, 2145, 2148, 2176, 2181, 2196, 2218, 2305, 2308, 2320, 2322, 2325, 2328, 2337, 2368, 2373,
  8045. 2376, 2385, 2388, 2400, 2433, 2448, 2560, 2577, 2580, 2594, 2600, 2602, 2640, 2713, 4097, 4100,
  8046. 4102, 4105, 4112, 4114, 4117, 4120, 4129, 4132, 4134, 4160, 4162, 4165, 4168, 4177, 4180, 4182,
  8047. 4185, 4192, 4194, 4197, 4200, 4225, 4228, 4230, 4240, 4245, 4248, 4257, 4260, 4352, 4354, 4357,
  8048. 4360, 4362, 4369, 4372, 4374, 4377, 4384, 4386, 4389, 4392, 4417, 4420, 4422, 4425, 4432, 4434,
  8049. 4437, 4440, 4449, 4452, 4480, 4482, 4485, 4488, 4497, 4500, 4609, 4612, 4617, 4624, 4629, 4641,
  8050. 4644, 4672, 4677, 4689, 4692, 4737, 4740, 4752, 5120, 5122, 5125, 5128, 5137, 5140, 5142, 5145,
  8051. 5152, 5157, 5160, 5185, 5188, 5190, 5193, 5200, 5202, 5205, 5208, 5217, 5220, 5248, 5250, 5253,
  8052. 5256, 5265, 5268, 5280, 5377, 5380, 5382, 5385, 5392, 5394, 5397, 5400, 5409, 5412, 5440, 5442,
  8053. 5445, 5448, 5457, 5460, 5472, 5505, 5508, 5520, 5632, 5637, 5640, 5649, 5652, 5664, 5697, 5700,
  8054. 5712, 5760, 5802, 6145, 6148, 6150, 6153, 6160, 6165, 6168, 6177, 6208, 6210, 6213, 6216, 6225,
  8055. 6228, 6240, 6273, 6276, 6400, 6402, 6405, 6408, 6417, 6420, 6432, 6465, 6468, 6480, 6505, 6562,
  8056. 6660, 6672, 6720, 6742, 8192, 8194, 8197, 8200, 8209, 8212, 8214, 8217, 8224, 8229, 8234, 8257,
  8057. 8260, 8272, 8274, 8277, 8292, 8320, 8330, 8340, 8362, 8449, 8452, 8464, 8466, 8469, 8481, 8512,
  8058. 8514, 8517, 8529, 8532, 8544, 8577, 8580, 8592, 8704, 8714, 8738, 8744, 8746, 8772, 8784, 8840,
  8059. 8842, 8872, 9217, 9220, 9222, 9225, 9232, 9237, 9240, 9249, 9252, 9280, 9282, 9285, 9288, 9297,
  8060. 9300, 9312, 9345, 9348, 9360, 9472, 9477, 9480, 9489, 9492, 9504, 9537, 9540, 9552, 9574, 9600,
  8061. 9729, 9732, 9744, 9792, 9817, 10240, 10245, 10257, 10260, 10305, 10308, 10320, 10378, 10410, 10497, 10500,
  8062. 10512, 10645, 10762, 10786, 10852, 10888, 10890, 16385, 16388, 16390, 16393, 16400, 16402, 16405, 16408, 16410,
  8063. 16417, 16420, 16422, 16448, 16450, 16453, 16456, 16458, 16465, 16468, 16470, 16473, 16480, 16482, 16485, 16513,
  8064. 16516, 16528, 16533, 16536, 16545, 16548, 16640, 16642, 16645, 16648, 16657, 16660, 16662, 16665, 16672, 16674,
  8065. 16677, 16705, 16708, 16710, 16713, 16720, 16722, 16725, 16728, 16737, 16740, 16768, 16770, 16773, 16776, 16785,
  8066. 16788, 16800, 16897, 16900, 16912, 16914, 16917, 16920, 16932, 16960, 16965, 16968, 16977, 16980, 16992, 17025,
  8067. 17028, 17408, 17410, 17413, 17416, 17418, 17425, 17428, 17430, 17433, 17440, 17442, 17445, 17448, 17473, 17476,
  8068. 17478, 17481, 17488, 17490, 17493, 17496, 17505, 17508, 17536, 17538, 17541, 17544, 17553, 17556, 17568, 17665,
  8069. 17668, 17670, 17673, 17680, 17682, 17685, 17688, 17697, 17700, 17728, 17730, 17733, 17736, 17745, 17748, 17760,
  8070. 17770, 17793, 17796, 17808, 17920, 17922, 17925, 17928, 17937, 17940, 17952, 17985, 17988, 18000, 18048, 18085,
  8071. 18433, 18436, 18441, 18448, 18450, 18453, 18456, 18465, 18468, 18496, 18498, 18501, 18504, 18513, 18516, 18528,
  8072. 18564, 18576, 18688, 18690, 18693, 18696, 18705, 18708, 18720, 18753, 18756, 18768, 18816, 18838, 18945, 18948,
  8073. 18960, 19008, 20480, 20482, 20485, 20488, 20497, 20500, 20502, 20505, 20512, 20514, 20517, 20520, 20545, 20548,
  8074. 20550, 20553, 20560, 20562, 20565, 20568, 20577, 20580, 20608, 20610, 20613, 20616, 20625, 20628, 20737, 20740,
  8075. 20742, 20745, 20752, 20754, 20757, 20760, 20769, 20772, 20800, 20802, 20805, 20808, 20817, 20820, 20832, 20865,
  8076. 20868, 20880, 20992, 20997, 21000, 21009, 21012, 21024, 21057, 21060, 21072, 21097, 21120, 21505, 21508, 21510,
  8077. 21513, 21520, 21522, 21525, 21528, 21537, 21540, 21568, 21570, 21573, 21576, 21585, 21588, 21600, 21633, 21636,
  8078. 21648, 21760, 21762, 21765, 21768, 21777, 21780, 21792, 21825, 21828, 21840, 21888, 22017, 22020, 22032, 22054,
  8079. 22080, 22528, 22530, 22533, 22536, 22545, 22548, 22560, 22593, 22596, 22608, 22618, 22656, 22785, 22788, 22800,
  8080. 22848, 23040, 23065, 23173, 23208, 24577, 24580, 24582, 24592, 24594, 24597, 24600, 24609, 24612, 24640, 24645,
  8081. 24648, 24657, 24660, 24672, 24708, 24720, 24832, 24834, 24837, 24840, 24849, 24852, 24864, 24897, 24900, 24912,
  8082. 24960, 24985, 25092, 25104, 25152, 25174, 25249, 25600, 25605, 25608, 25617, 25620, 25632, 25665, 25668, 25680,
  8083. 25728, 25857, 25860, 25872, 25920, 25930, 25960, 26002, 26112, 26260, 26625, 26628, 26640, 26725, 26776, 26880,
  8084. 26922, 27202, 27297, 32768, 32770, 32773, 32776, 32785, 32788, 32793, 32800, 32805, 32833, 32836, 32848, 32850,
  8085. 32853, 32856, 32865, 32896, 32901, 32913, 32916, 33025, 33028, 33033, 33040, 33042, 33045, 33048, 33057, 33060,
  8086. 33088, 33090, 33093, 33096, 33105, 33108, 33153, 33156, 33168, 33193, 33280, 33285, 33290, 33297, 33300, 33345,
  8087. 33348, 33360, 33793, 33796, 33798, 33801, 33808, 33810, 33813, 33816, 33825, 33856, 33858, 33861, 33864, 33873,
  8088. 33876, 33888, 33921, 33924, 33936, 34048, 34050, 34053, 34056, 34065, 34068, 34080, 34113, 34116, 34128, 34176,
  8089. 34186, 34305, 34308, 34320, 34345, 34368, 34816, 34821, 34833, 34836, 34881, 34884, 34896, 34978, 35073, 35076,
  8090. 35136, 35173, 35362, 35416, 35418, 35458, 35490, 36865, 36868, 36873, 36880, 36882, 36885, 36888, 36900, 36928,
  8091. 36930, 36933, 36936, 36945, 36948, 36960, 36993, 36996, 37008, 37120, 37125, 37137, 37140, 37185, 37188, 37200,
  8092. 37210, 37377, 37380, 37392, 37440, 37542, 37888, 37890, 37893, 37896, 37905, 37908, 37920, 37953, 37956, 37968,
  8093. 38016, 38038, 38145, 38148, 38160, 38208, 38296, 38305, 38400, 38470, 38500, 38913, 38916, 38928, 38950, 38976,
  8094. 39081, 39168, 39241, 39250, 39568, 40960, 40965, 40970, 40980, 40994, 41002, 41025, 41028, 41040, 41122, 41130,
  8095. 41280, 41317, 41474, 41482, 41506, 41512, 41514, 41602, 41608, 41610, 41640, 41985, 41988, 42000, 42048, 42121,
  8096. 42148, 42240, 42265, 42577, 43018, 43048, 43170, 43348, 43398, 43528, 43530, 43552, 43554, 43560, 43656, 43690,
  8097. };
  8098. const int kmap_size = 43692;
  8099. //const int nwant = type == GGML_TYPE_IQ1_S ? 3 : 2;
  8100. const int nwant = type == GGML_TYPE_IQ1_S ? 3 : type == GGML_TYPE_IQ2_S ? 1 : 2;
  8101. const uint16_t * kgrid = type == GGML_TYPE_IQ2_XXS ? kgrid_2bit_256 :
  8102. type == GGML_TYPE_IQ2_XS ? kgrid_2bit_512 :
  8103. type == GGML_TYPE_IQ1_S ? kgrid_1bit_512 : kgrid_2bit_1024;
  8104. uint64_t * kgrid_q2xs;
  8105. int * kmap_q2xs;
  8106. uint16_t * kneighbors_q2xs;
  8107. //printf("================================================================= %s(grid_size = %d)\n", __func__, grid_size);
  8108. uint64_t * the_grid = (uint64_t *)malloc(grid_size*sizeof(uint64_t));
  8109. for (int k = 0; k < grid_size; ++k) {
  8110. int8_t * pos = (int8_t *)(the_grid + k);
  8111. for (int i = 0; i < 8; ++i) {
  8112. int l = (kgrid[k] >> 2*i) & 0x3;
  8113. pos[i] = 2*l + 1;
  8114. }
  8115. }
  8116. kgrid_q2xs = the_grid;
  8117. iq2_data[gindex].grid = the_grid;
  8118. kmap_q2xs = (int *)malloc(kmap_size*sizeof(int));
  8119. iq2_data[gindex].map = kmap_q2xs;
  8120. for (int i = 0; i < kmap_size; ++i) kmap_q2xs[i] = -1;
  8121. uint64_t aux64;
  8122. uint8_t * aux8 = (uint8_t *)&aux64;
  8123. for (int i = 0; i < grid_size; ++i) {
  8124. aux64 = kgrid_q2xs[i];
  8125. uint16_t index = 0;
  8126. for (int k=0; k<8; ++k) {
  8127. uint16_t q = (aux8[k] - 1)/2;
  8128. index |= (q << 2*k);
  8129. }
  8130. kmap_q2xs[index] = i;
  8131. }
  8132. int8_t pos[8];
  8133. int * dist2 = (int *)malloc(2*grid_size*sizeof(int));
  8134. int num_neighbors = 0, num_not_in_map = 0;
  8135. for (int i = 0; i < kmap_size; ++i) {
  8136. if (kmap_q2xs[i] >= 0) continue;
  8137. ++num_not_in_map;
  8138. for (int k = 0; k < 8; ++k) {
  8139. int l = (i >> 2*k) & 0x3;
  8140. pos[k] = 2*l + 1;
  8141. }
  8142. for (int j = 0; j < grid_size; ++j) {
  8143. const int8_t * pg = (const int8_t *)(kgrid_q2xs + j);
  8144. int d2 = 0;
  8145. for (int k = 0; k < 8; ++k) d2 += (pg[k] - pos[k])*(pg[k] - pos[k]);
  8146. dist2[2*j+0] = d2;
  8147. dist2[2*j+1] = j;
  8148. }
  8149. qsort(dist2, grid_size, 2*sizeof(int), iq2_compare_func);
  8150. int n = 0; int d2 = dist2[0];
  8151. int nhave = 1;
  8152. for (int j = 0; j < grid_size; ++j) {
  8153. if (dist2[2*j] > d2) {
  8154. if (nhave == nwant) break;
  8155. d2 = dist2[2*j];
  8156. ++nhave;
  8157. }
  8158. ++n;
  8159. }
  8160. num_neighbors += n;
  8161. }
  8162. //printf("%s: %d neighbours in total\n", __func__, num_neighbors);
  8163. kneighbors_q2xs = (uint16_t *)malloc((num_neighbors + num_not_in_map)*sizeof(uint16_t));
  8164. iq2_data[gindex].neighbours = kneighbors_q2xs;
  8165. int counter = 0;
  8166. for (int i = 0; i < kmap_size; ++i) {
  8167. if (kmap_q2xs[i] >= 0) continue;
  8168. for (int k = 0; k < 8; ++k) {
  8169. int l = (i >> 2*k) & 0x3;
  8170. pos[k] = 2*l + 1;
  8171. }
  8172. for (int j = 0; j < grid_size; ++j) {
  8173. const int8_t * pg = (const int8_t *)(kgrid_q2xs + j);
  8174. int d2 = 0;
  8175. for (int k = 0; k < 8; ++k) d2 += (pg[k] - pos[k])*(pg[k] - pos[k]);
  8176. dist2[2*j+0] = d2;
  8177. dist2[2*j+1] = j;
  8178. }
  8179. qsort(dist2, grid_size, 2*sizeof(int), iq2_compare_func);
  8180. kmap_q2xs[i] = -(counter + 1);
  8181. int d2 = dist2[0];
  8182. uint16_t * start = &kneighbors_q2xs[counter++];
  8183. int n = 0, nhave = 1;
  8184. for (int j = 0; j < grid_size; ++j) {
  8185. if (dist2[2*j] > d2) {
  8186. if (nhave == nwant) break;
  8187. d2 = dist2[2*j];
  8188. ++nhave;
  8189. }
  8190. kneighbors_q2xs[counter++] = dist2[2*j+1];
  8191. ++n;
  8192. }
  8193. *start = n;
  8194. }
  8195. free(dist2);
  8196. }
  8197. void iq2xs_free_impl(enum ggml_type type) {
  8198. GGML_ASSERT(type == GGML_TYPE_IQ2_XXS || type == GGML_TYPE_IQ2_XS || type == GGML_TYPE_IQ1_S || type == GGML_TYPE_IQ2_S);
  8199. const int gindex = iq2_data_index(type);
  8200. if (iq2_data[gindex].grid) {
  8201. free(iq2_data[gindex].grid); iq2_data[gindex].grid = NULL;
  8202. free(iq2_data[gindex].map); iq2_data[gindex].map = NULL;
  8203. free(iq2_data[gindex].neighbours); iq2_data[gindex].neighbours = NULL;
  8204. }
  8205. }
  8206. static int iq2_find_best_neighbour(const uint16_t * restrict neighbours, const uint64_t * restrict grid,
  8207. const float * restrict xval, const float * restrict weight, float scale, int8_t * restrict L) {
  8208. int num_neighbors = neighbours[0];
  8209. GGML_ASSERT(num_neighbors > 0);
  8210. float best_d2 = FLT_MAX;
  8211. int grid_index = -1;
  8212. for (int j = 1; j <= num_neighbors; ++j) {
  8213. const int8_t * pg = (const int8_t *)(grid + neighbours[j]);
  8214. float d2 = 0;
  8215. for (int i = 0; i < 8; ++i) {
  8216. float q = pg[i];
  8217. float diff = scale*q - xval[i];
  8218. d2 += weight[i]*diff*diff;
  8219. }
  8220. if (d2 < best_d2) {
  8221. best_d2 = d2; grid_index = neighbours[j];
  8222. }
  8223. }
  8224. GGML_ASSERT(grid_index >= 0);
  8225. const int8_t * pg = (const int8_t *)(grid + grid_index);
  8226. for (int i = 0; i < 8; ++i) L[i] = (pg[i] - 1)/2;
  8227. return grid_index;
  8228. }
  8229. static void quantize_row_iq2_xxs_impl(const float * restrict x, void * restrict vy, int n, const float * restrict quant_weights) {
  8230. const int gindex = iq2_data_index(GGML_TYPE_IQ2_XXS);
  8231. const uint64_t * kgrid_q2xs = iq2_data[gindex].grid;
  8232. const int * kmap_q2xs = iq2_data[gindex].map;
  8233. const uint16_t * kneighbors_q2xs = iq2_data[gindex].neighbours;
  8234. GGML_ASSERT(quant_weights && "missing quantization weights");
  8235. GGML_ASSERT(kgrid_q2xs && "forgot to call ggml_quantize_init()?");
  8236. GGML_ASSERT(kmap_q2xs && "forgot to call ggml_quantize_init()?");
  8237. GGML_ASSERT(kneighbors_q2xs && "forgot to call ggml_quantize_init()?");
  8238. GGML_ASSERT(n%QK_K == 0);
  8239. const int kMaxQ = 3;
  8240. const int nbl = n/QK_K;
  8241. block_iq2_xxs * y = vy;
  8242. float scales[QK_K/32];
  8243. float weight[32];
  8244. float xval[32];
  8245. int8_t L[32];
  8246. int8_t Laux[32];
  8247. float waux[32];
  8248. uint8_t block_signs[4];
  8249. uint32_t q2[2*(QK_K/32)];
  8250. for (int ibl = 0; ibl < nbl; ++ibl) {
  8251. y[ibl].d = GGML_FP32_TO_FP16(0.f);
  8252. memset(q2, 0, QK_K/4);
  8253. float max_scale = 0;
  8254. const float * xbl = x + QK_K*ibl;
  8255. float sumx2 = 0;
  8256. for (int i = 0; i < QK_K; ++i) sumx2 += xbl[i]*xbl[i];
  8257. float sigma2 = sumx2/QK_K;
  8258. for (int ib = 0; ib < QK_K/32; ++ib) {
  8259. const float * xb = xbl + 32*ib;
  8260. const float * qw = quant_weights + QK_K*ibl + 32*ib;
  8261. for (int i = 0; i < 32; ++i) weight[i] = qw[i] * sqrtf(sigma2 + xb[i]*xb[i]);
  8262. for (int i = 0; i < 32; ++i) waux[i] = sqrtf(weight[i]);
  8263. for (int k = 0; k < 4; ++k) {
  8264. int nflip = 0;
  8265. uint8_t s = 0;
  8266. for (int i = 0; i < 8; ++i) {
  8267. if (xb[8*k + i] >= 0) xval[8*k + i] = xb[8*k + i];
  8268. else {
  8269. xval[8*k + i] = -xb[8*k + i]; ++nflip; s |= (1 << i);
  8270. }
  8271. }
  8272. if (nflip%2) {
  8273. int imin = 0; float min = weight[8*k+imin]*xb[8*k+imin]*xb[8*k+imin];
  8274. for (int i = 1; i < 8; ++i) {
  8275. float ax = weight[8*k+i]*xb[8*k+i]*xb[8*k+i];
  8276. if (ax < min) {
  8277. min = ax; imin = i;
  8278. }
  8279. }
  8280. xval[8*k+imin] = -xval[8*k+imin];
  8281. s ^= (1 << imin);
  8282. }
  8283. block_signs[k] = s & 127;
  8284. }
  8285. float max = xval[0];
  8286. for (int i = 1; i < 32; ++i) max = MAX(max, xval[i]);
  8287. if (!max) {
  8288. scales[ib] = 0;
  8289. memset(L, 0, 32);
  8290. continue;
  8291. }
  8292. float scale = make_qp_quants(32, kMaxQ+1, xval, (uint8_t*)L, weight);
  8293. float eff_max = scale*kMaxQ;
  8294. float best = 0;
  8295. for (int is = -6; is <= 6; ++is) {
  8296. float id = (2*kMaxQ-1+is*0.1f)/eff_max;
  8297. float this_scale = 1/id;
  8298. for (int k = 0; k < 4; ++k) {
  8299. for (int i = 0; i < 8; ++i) {
  8300. int l = nearest_int(0.5f*(id*xval[8*k+i]-1));
  8301. Laux[8*k+i] = MAX(0, MIN(kMaxQ-1, l));
  8302. }
  8303. uint16_t u = 0;
  8304. for (int i = 0; i < 8; ++i) u |= (Laux[8*k+i] << 2*i);
  8305. int grid_index = kmap_q2xs[u];
  8306. if (grid_index < 0) {
  8307. const uint16_t * neighbours = kneighbors_q2xs - kmap_q2xs[u] - 1;
  8308. grid_index = iq2_find_best_neighbour(neighbours, kgrid_q2xs, xval + 8*k, waux + 8*k, this_scale, Laux + 8*k);
  8309. }
  8310. }
  8311. float sumqx = 0, sumq2 = 0;
  8312. for (int i = 0; i < 32; ++i) {
  8313. float w = weight[i];
  8314. float q = 2*Laux[i] + 1;
  8315. sumqx += w*xval[i]*q;
  8316. sumq2 += w*q*q;
  8317. }
  8318. if (sumq2 > 0 && sumqx*sumqx > best*sumq2) {
  8319. scale = sumqx/sumq2; best = scale*sumqx;
  8320. memcpy(L, Laux, 32);
  8321. }
  8322. }
  8323. if (scale > 0) {
  8324. float id = 1/scale;
  8325. for (int k = 0; k < 4; ++k) {
  8326. uint16_t u = 0;
  8327. for (int i = 0; i < 8; ++i) {
  8328. int l = nearest_int(0.5f*(id*xval[8*k+i]-1));
  8329. l = MAX(0, MIN(kMaxQ-1, l));
  8330. u |= (l << 2*i);
  8331. }
  8332. int grid_index = kmap_q2xs[u];
  8333. if (grid_index < 0) {
  8334. const uint16_t * neighbours = kneighbors_q2xs - kmap_q2xs[u] - 1;
  8335. grid_index = iq2_find_best_neighbour(neighbours, kgrid_q2xs, xval + 8*k, waux + 8*k, scale, L + 8*k);
  8336. }
  8337. const int8_t * pg = (const int8_t *)(kgrid_q2xs + grid_index);
  8338. for (int i = 0; i < 8; ++i) L[8*k+i] = (pg[i] - 1)/2;
  8339. }
  8340. float sumqx = 0, sumq2 = 0;
  8341. for (int i = 0; i < 32; ++i) {
  8342. float w = weight[i];
  8343. float q = 2*L[i] + 1;
  8344. sumqx += w*xval[i]*q;
  8345. sumq2 += w*q*q;
  8346. }
  8347. if (sumq2 > 0) scale = sumqx/sumq2;
  8348. }
  8349. if (scale < 0) {
  8350. // This should never happen, but just in case, flip scale so that it is positive (we use uint's to encode the scale)
  8351. // and correspondingly flip quant signs.
  8352. scale = -scale;
  8353. for (int k = 0; k < 4; ++k) block_signs[k] = (~block_signs[k]) & 127;
  8354. }
  8355. for (int k = 0; k < 4; ++k) {
  8356. uint16_t u = 0;
  8357. for (int i = 0; i < 8; ++i) u |= (L[8*k+i] << 2*i);
  8358. int grid_index = kmap_q2xs[u];
  8359. if (grid_index < 0) {
  8360. printf("Oops: found point %u not on grid:", u);
  8361. for (int i = 0; i < 8; ++i) printf(" %d", L[8*k+i]);
  8362. printf("\n");
  8363. GGML_ASSERT(false);
  8364. }
  8365. q2[2*ib+0] |= (grid_index << 8*k);
  8366. q2[2*ib+1] |= (block_signs[k] << 7*k);
  8367. }
  8368. GGML_ASSERT(scale >= 0);
  8369. scales[ib] = scale;
  8370. max_scale = MAX(max_scale, scale);
  8371. }
  8372. if (!max_scale) {
  8373. memset(y[ibl].qs, 0, QK_K/4);
  8374. continue;
  8375. }
  8376. float d = max_scale/31;
  8377. y[ibl].d = GGML_FP32_TO_FP16(d);
  8378. float id = 1/d;
  8379. for (int ib = 0; ib < QK_K/32; ++ib) {
  8380. int l = nearest_int(0.5f*(id*scales[ib]-1));
  8381. l = MAX(0, MIN(15, l));
  8382. q2[2*ib+1] |= ((uint32_t)l << 28);
  8383. }
  8384. memcpy(y[ibl].qs, q2, QK_K/4);
  8385. }
  8386. }
  8387. static void quantize_row_iq2_xs_impl(const float * restrict x, void * restrict vy, int n, const float * restrict quant_weights) {
  8388. const int gindex = iq2_data_index(GGML_TYPE_IQ2_XS);
  8389. const uint64_t * kgrid_q2xs = iq2_data[gindex].grid;
  8390. const int * kmap_q2xs = iq2_data[gindex].map;
  8391. const uint16_t * kneighbors_q2xs = iq2_data[gindex].neighbours;
  8392. GGML_ASSERT(quant_weights && "missing quantization weights");
  8393. GGML_ASSERT(kmap_q2xs && "forgot to call ggml_quantize_init()?");
  8394. GGML_ASSERT(kgrid_q2xs && "forgot to call ggml_quantize_init()?");
  8395. GGML_ASSERT(kneighbors_q2xs && "forgot to call ggml_quantize_init()?");
  8396. GGML_ASSERT(n%QK_K == 0);
  8397. const int kMaxQ = 3;
  8398. const int nbl = n/QK_K;
  8399. block_iq2_xs * y = vy;
  8400. float scales[QK_K/16];
  8401. float weight[16];
  8402. float xval[16];
  8403. int8_t L[16];
  8404. int8_t Laux[16];
  8405. float waux[16];
  8406. bool is_on_grid[2];
  8407. bool is_on_grid_aux[2];
  8408. uint8_t block_signs[2];
  8409. uint16_t q2[2*(QK_K/16)];
  8410. for (int ibl = 0; ibl < nbl; ++ibl) {
  8411. y[ibl].d = GGML_FP32_TO_FP16(0.f);
  8412. memset(q2, 0, QK_K/4);
  8413. memset(y[ibl].scales, 0, QK_K/32);
  8414. float max_scale = 0;
  8415. const float * xbl = x + QK_K*ibl;
  8416. float sumx2 = 0;
  8417. for (int i = 0; i < QK_K; ++i) sumx2 += xbl[i]*xbl[i];
  8418. float sigma2 = sumx2/QK_K;
  8419. for (int ib = 0; ib < QK_K/16; ++ib) {
  8420. const float * xb = xbl + 16*ib;
  8421. const float * qw = quant_weights + QK_K*ibl + 16*ib;
  8422. for (int i = 0; i < 16; ++i) weight[i] = qw[i] * sqrtf(sigma2 + xb[i]*xb[i]);
  8423. for (int i = 0; i < 16; ++i) waux[i] = sqrtf(weight[i]);
  8424. for (int k = 0; k < 2; ++k) {
  8425. int nflip = 0;
  8426. uint8_t s = 0;
  8427. for (int i = 0; i < 8; ++i) {
  8428. if (xb[8*k + i] >= 0) xval[8*k + i] = xb[8*k + i];
  8429. else {
  8430. xval[8*k + i] = -xb[8*k + i]; ++nflip; s |= (1 << i);
  8431. }
  8432. }
  8433. if (nflip%2) {
  8434. int imin = 0; float min = weight[8*k+imin]*xb[8*k+imin]*xb[8*k+imin];
  8435. for (int i = 1; i < 8; ++i) {
  8436. float ax = weight[8*k+i]*xb[8*k+i]*xb[8*k+i];
  8437. if (ax < min) {
  8438. min = ax; imin = i;
  8439. }
  8440. }
  8441. xval[8*k+imin] = -xval[8*k+imin];
  8442. s ^= (1 << imin);
  8443. }
  8444. block_signs[k] = s & 127;
  8445. }
  8446. float max = xval[0];
  8447. for (int i = 1; i < 16; ++i) max = MAX(max, xval[i]);
  8448. if (!max) {
  8449. scales[ib] = 0;
  8450. memset(L, 0, 16);
  8451. continue;
  8452. }
  8453. float best = 0;
  8454. float scale = max/(2*kMaxQ-1);
  8455. is_on_grid[0] = is_on_grid[1] = true;
  8456. for (int is = -9; is <= 9; ++is) {
  8457. float id = (2*kMaxQ-1+is*0.1f)/max;
  8458. float this_scale = 1/id;
  8459. for (int k = 0; k < 2; ++k) {
  8460. for (int i = 0; i < 8; ++i) {
  8461. int l = nearest_int(0.5f*(id*xval[8*k+i]-1));
  8462. Laux[8*k+i] = MAX(0, MIN(kMaxQ-1, l));
  8463. }
  8464. uint16_t u = 0;
  8465. for (int i = 0; i < 8; ++i) u |= (Laux[8*k+i] << 2*i);
  8466. int grid_index = kmap_q2xs[u];
  8467. is_on_grid_aux[k] = true;
  8468. if (grid_index < 0) {
  8469. is_on_grid_aux[k] = false;
  8470. const uint16_t * neighbours = kneighbors_q2xs - kmap_q2xs[u] - 1;
  8471. grid_index = iq2_find_best_neighbour(neighbours, kgrid_q2xs, xval + 8*k, waux + 8*k, this_scale, Laux + 8*k);
  8472. }
  8473. }
  8474. float sumqx = 0, sumq2 = 0;
  8475. for (int i = 0; i < 16; ++i) {
  8476. float w = weight[i];
  8477. float q = 2*Laux[i] + 1;
  8478. sumqx += w*xval[i]*q;
  8479. sumq2 += w*q*q;
  8480. }
  8481. if (sumq2 > 0 && sumqx*sumqx > best*sumq2) {
  8482. scale = sumqx/sumq2; best = scale*sumqx;
  8483. for (int i = 0; i < 16; ++i) L[i] = Laux[i];
  8484. for (int k = 0; k < 2; ++k) is_on_grid[k] = is_on_grid_aux[k];
  8485. }
  8486. }
  8487. int n_not_ongrid = 0;
  8488. for (int k = 0; k < 2; ++k) if (!is_on_grid[k]) ++n_not_ongrid;
  8489. if (n_not_ongrid > 0 && scale > 0) {
  8490. float id = 1/scale;
  8491. for (int k = 0; k < 2; ++k) {
  8492. if (is_on_grid[k]) continue;
  8493. uint16_t u = 0;
  8494. for (int i = 0; i < 8; ++i) {
  8495. int l = nearest_int(0.5f*(id*xval[8*k+i]-1));
  8496. l = MAX(0, MIN(kMaxQ-1, l));
  8497. u |= (l << 2*i);
  8498. L[8*k + i] = l;
  8499. }
  8500. int grid_index = kmap_q2xs[u];
  8501. if (grid_index < 0) {
  8502. const uint16_t * neighbours = kneighbors_q2xs - kmap_q2xs[u] - 1;
  8503. grid_index = iq2_find_best_neighbour(neighbours, kgrid_q2xs, xval + 8*k, waux + 8*k, scale, L + 8*k);
  8504. }
  8505. }
  8506. float sumqx = 0, sumq2 = 0;
  8507. for (int i = 0; i < 16; ++i) {
  8508. float w = weight[i];
  8509. float q = 2*L[i] + 1;
  8510. sumqx += w*xval[i]*q;
  8511. sumq2 += w*q*q;
  8512. }
  8513. if (sumq2 > 0) scale = sumqx/sumq2;
  8514. }
  8515. if (scale < 0) {
  8516. scale = -scale;
  8517. for (int k = 0; k < 2; ++k) block_signs[k] = (~block_signs[k]) & 127;
  8518. }
  8519. for (int k = 0; k < 2; ++k) {
  8520. uint16_t u = 0;
  8521. for (int i = 0; i < 8; ++i) u |= (L[8*k+i] << 2*i);
  8522. int grid_index = kmap_q2xs[u];
  8523. if (grid_index < 0) {
  8524. printf("Oops: found point %u not on grid:", u);
  8525. for (int i = 0; i < 8; ++i) printf(" %d", L[8*k+i]);
  8526. printf("\n");
  8527. GGML_ASSERT(false);
  8528. }
  8529. q2[2*ib+k] = grid_index | (block_signs[k] << 9);
  8530. }
  8531. GGML_ASSERT(scale >= 0);
  8532. scales[ib] = scale;
  8533. max_scale = MAX(max_scale, scale);
  8534. }
  8535. if (!max_scale) {
  8536. memset(y[ibl].qs, 0, QK_K/4);
  8537. continue;
  8538. }
  8539. float d = max_scale/31;
  8540. y[ibl].d = GGML_FP32_TO_FP16(d);
  8541. float id = 1/d;
  8542. for (int ib = 0; ib < QK_K/16; ++ib) {
  8543. int l = nearest_int(0.5f*(id*scales[ib]-1));
  8544. l = MAX(0, MIN(15, l));
  8545. if (ib%2 == 0) y[ibl].scales[ib/2] = l;
  8546. else y[ibl].scales[ib/2] |= (l << 4);
  8547. }
  8548. memcpy(y[ibl].qs, q2, QK_K/4);
  8549. }
  8550. }
  8551. size_t quantize_iq2_xxs(const float * restrict src, void * restrict dst, int nrow, int n_per_row, const float * quant_weights) {
  8552. GGML_ASSERT(n_per_row%QK_K == 0);
  8553. int nblock = n_per_row/QK_K;
  8554. char * qrow = (char *)dst;
  8555. for (int row = 0; row < nrow; ++row) {
  8556. quantize_row_iq2_xxs_impl(src, qrow, n_per_row, quant_weights);
  8557. src += n_per_row;
  8558. qrow += nblock*sizeof(block_iq2_xxs);
  8559. }
  8560. return nrow * nblock * sizeof(block_iq2_xxs);
  8561. }
  8562. size_t quantize_iq2_xs(const float * restrict src, void * restrict dst, int nrow, int n_per_row, const float * quant_weights) {
  8563. GGML_ASSERT(n_per_row%QK_K == 0);
  8564. int nblock = n_per_row/QK_K;
  8565. char * qrow = (char *)dst;
  8566. for (int row = 0; row < nrow; ++row) {
  8567. quantize_row_iq2_xs_impl(src, qrow, n_per_row, quant_weights);
  8568. src += n_per_row;
  8569. qrow += nblock*sizeof(block_iq2_xs);
  8570. }
  8571. return nrow * nblock * sizeof(block_iq2_xs);
  8572. }
  8573. //
  8574. // ============================================= 3-bit using D4 lattice
  8575. //
  8576. typedef struct {
  8577. uint32_t * grid;
  8578. int * map;
  8579. uint16_t * neighbours;
  8580. } iq3_entry_t;
  8581. static iq3_entry_t iq3_data[2] = {
  8582. {NULL, NULL, NULL},
  8583. {NULL, NULL, NULL},
  8584. };
  8585. static inline int iq3_data_index(int grid_size) {
  8586. (void)grid_size;
  8587. GGML_ASSERT(grid_size == 256 || grid_size == 512);
  8588. return grid_size == 256 ? 0 : 1;
  8589. }
  8590. static int iq3_compare_func(const void * left, const void * right) {
  8591. const int * l = (const int *)left;
  8592. const int * r = (const int *)right;
  8593. return l[0] < r[0] ? -1 : l[0] > r[0] ? 1 : l[1] < r[1] ? -1 : l[1] > r[1] ? 1 : 0;
  8594. }
  8595. void iq3xs_init_impl(int grid_size) {
  8596. const int gindex = iq3_data_index(grid_size);
  8597. if (iq3_data[gindex].grid) {
  8598. return;
  8599. }
  8600. static const uint16_t kgrid_256[256] = {
  8601. 0, 2, 4, 9, 11, 15, 16, 18, 25, 34, 59, 61, 65, 67, 72, 74,
  8602. 81, 85, 88, 90, 97, 108, 120, 128, 130, 132, 137, 144, 146, 153, 155, 159,
  8603. 169, 175, 189, 193, 199, 200, 202, 213, 248, 267, 287, 292, 303, 315, 317, 321,
  8604. 327, 346, 362, 413, 436, 456, 460, 462, 483, 497, 513, 515, 520, 522, 529, 531,
  8605. 536, 538, 540, 551, 552, 576, 578, 585, 592, 594, 641, 643, 648, 650, 657, 664,
  8606. 698, 704, 706, 720, 729, 742, 758, 769, 773, 808, 848, 852, 870, 889, 901, 978,
  8607. 992, 1024, 1026, 1033, 1035, 1040, 1042, 1046, 1049, 1058, 1089, 1091, 1093, 1096, 1098, 1105,
  8608. 1112, 1139, 1143, 1144, 1152, 1154, 1161, 1167, 1168, 1170, 1183, 1184, 1197, 1217, 1224, 1228,
  8609. 1272, 1276, 1309, 1323, 1347, 1367, 1377, 1404, 1473, 1475, 1486, 1509, 1537, 1544, 1546, 1553,
  8610. 1555, 1576, 1589, 1594, 1600, 1602, 1616, 1625, 1636, 1638, 1665, 1667, 1672, 1685, 1706, 1722,
  8611. 1737, 1755, 1816, 1831, 1850, 1856, 1862, 1874, 1901, 1932, 1950, 1971, 2011, 2032, 2052, 2063,
  8612. 2077, 2079, 2091, 2095, 2172, 2192, 2207, 2208, 2224, 2230, 2247, 2277, 2308, 2345, 2356, 2389,
  8613. 2403, 2424, 2501, 2504, 2506, 2520, 2570, 2593, 2616, 2624, 2630, 2646, 2669, 2700, 2714, 2746,
  8614. 2754, 2795, 2824, 2835, 2839, 2874, 2882, 2905, 2984, 3028, 3042, 3092, 3108, 3110, 3124, 3153,
  8615. 3185, 3215, 3252, 3288, 3294, 3364, 3397, 3434, 3483, 3523, 3537, 3587, 3589, 3591, 3592, 3610,
  8616. 3626, 3670, 3680, 3722, 3749, 3754, 3776, 3789, 3803, 3824, 3857, 3873, 3904, 3906, 3924, 3992,
  8617. };
  8618. static const uint16_t kgrid_512[512] = {
  8619. 0, 1, 2, 5, 7, 8, 9, 10, 12, 14, 16, 17, 21, 27, 32, 34,
  8620. 37, 39, 41, 43, 48, 50, 57, 60, 63, 64, 65, 66, 68, 72, 73, 77,
  8621. 80, 83, 87, 89, 93, 100, 113, 117, 122, 128, 129, 133, 135, 136, 139, 142,
  8622. 145, 149, 152, 156, 162, 165, 167, 169, 171, 184, 187, 195, 201, 205, 208, 210,
  8623. 217, 219, 222, 228, 232, 234, 247, 249, 253, 256, 267, 271, 273, 276, 282, 288,
  8624. 291, 297, 312, 322, 324, 336, 338, 342, 347, 353, 357, 359, 374, 379, 390, 393,
  8625. 395, 409, 426, 441, 448, 450, 452, 464, 466, 470, 475, 488, 492, 512, 513, 514,
  8626. 516, 520, 521, 523, 525, 527, 528, 530, 537, 540, 542, 556, 558, 561, 570, 576,
  8627. 577, 579, 582, 584, 588, 593, 600, 603, 609, 616, 618, 632, 638, 640, 650, 653,
  8628. 655, 656, 660, 666, 672, 675, 685, 688, 698, 705, 708, 711, 712, 715, 721, 727,
  8629. 728, 732, 737, 754, 760, 771, 773, 778, 780, 793, 795, 802, 806, 808, 812, 833,
  8630. 840, 843, 849, 856, 858, 873, 912, 916, 919, 932, 934, 961, 963, 968, 970, 977,
  8631. 989, 993, 1010, 1016, 1024, 1025, 1027, 1029, 1031, 1032, 1034, 1036, 1038, 1041, 1043, 1047,
  8632. 1048, 1050, 1057, 1059, 1061, 1064, 1066, 1079, 1080, 1083, 1085, 1088, 1090, 1096, 1099, 1103,
  8633. 1106, 1109, 1113, 1116, 1122, 1129, 1153, 1156, 1159, 1169, 1171, 1176, 1183, 1185, 1195, 1199,
  8634. 1209, 1212, 1216, 1218, 1221, 1225, 1234, 1236, 1241, 1243, 1250, 1256, 1270, 1281, 1287, 1296,
  8635. 1299, 1306, 1309, 1313, 1338, 1341, 1348, 1353, 1362, 1375, 1376, 1387, 1400, 1408, 1410, 1415,
  8636. 1425, 1453, 1457, 1477, 1481, 1494, 1496, 1507, 1512, 1538, 1545, 1547, 1549, 1551, 1554, 1561,
  8637. 1563, 1565, 1570, 1572, 1575, 1577, 1587, 1593, 1601, 1603, 1605, 1612, 1617, 1619, 1632, 1648,
  8638. 1658, 1662, 1664, 1674, 1680, 1690, 1692, 1704, 1729, 1736, 1740, 1745, 1747, 1751, 1752, 1761,
  8639. 1763, 1767, 1773, 1787, 1795, 1801, 1806, 1810, 1817, 1834, 1840, 1844, 1857, 1864, 1866, 1877,
  8640. 1882, 1892, 1902, 1915, 1934, 1953, 1985, 1987, 2000, 2002, 2013, 2048, 2052, 2058, 2064, 2068,
  8641. 2071, 2074, 2081, 2088, 2104, 2114, 2119, 2121, 2123, 2130, 2136, 2141, 2147, 2153, 2157, 2177,
  8642. 2179, 2184, 2189, 2193, 2203, 2208, 2223, 2226, 2232, 2244, 2249, 2251, 2256, 2258, 2265, 2269,
  8643. 2304, 2306, 2324, 2335, 2336, 2361, 2373, 2375, 2385, 2418, 2443, 2460, 2480, 2504, 2509, 2520,
  8644. 2531, 2537, 2562, 2568, 2572, 2578, 2592, 2596, 2599, 2602, 2614, 2620, 2625, 2627, 2629, 2634,
  8645. 2641, 2650, 2682, 2688, 2697, 2707, 2712, 2718, 2731, 2754, 2759, 2760, 2775, 2788, 2793, 2805,
  8646. 2811, 2817, 2820, 2832, 2842, 2854, 2890, 2902, 2921, 2923, 2978, 3010, 3012, 3026, 3081, 3083,
  8647. 3085, 3097, 3099, 3120, 3136, 3152, 3159, 3188, 3210, 3228, 3234, 3245, 3250, 3256, 3264, 3276,
  8648. 3281, 3296, 3349, 3363, 3378, 3392, 3395, 3420, 3440, 3461, 3488, 3529, 3531, 3584, 3588, 3591,
  8649. 3600, 3602, 3614, 3616, 3628, 3634, 3650, 3657, 3668, 3683, 3685, 3713, 3716, 3720, 3726, 3729,
  8650. 3736, 3753, 3778, 3802, 3805, 3819, 3841, 3845, 3851, 3856, 3880, 3922, 3938, 3970, 3993, 4032,
  8651. };
  8652. const int kmap_size = 4096;
  8653. const int nwant = grid_size == 256 ? 2 : 3;
  8654. const uint16_t * kgrid = grid_size == 256 ? kgrid_256 : kgrid_512;
  8655. uint32_t * kgrid_q3xs;
  8656. int * kmap_q3xs;
  8657. uint16_t * kneighbors_q3xs;
  8658. //printf("================================================================= %s(grid_size = %d)\n", __func__, grid_size);
  8659. uint32_t * the_grid = (uint32_t *)malloc(grid_size*sizeof(uint32_t));
  8660. for (int k = 0; k < grid_size; ++k) {
  8661. int8_t * pos = (int8_t *)(the_grid + k);
  8662. for (int i = 0; i < 4; ++i) {
  8663. int l = (kgrid[k] >> 3*i) & 0x7;
  8664. pos[i] = 2*l + 1;
  8665. }
  8666. }
  8667. kgrid_q3xs = the_grid;
  8668. iq3_data[gindex].grid = the_grid;
  8669. kmap_q3xs = (int *)malloc(kmap_size*sizeof(int));
  8670. iq3_data[gindex].map = kmap_q3xs;
  8671. for (int i = 0; i < kmap_size; ++i) kmap_q3xs[i] = -1;
  8672. uint32_t aux32;
  8673. uint8_t * aux8 = (uint8_t *)&aux32;
  8674. for (int i = 0; i < grid_size; ++i) {
  8675. aux32 = kgrid_q3xs[i];
  8676. uint16_t index = 0;
  8677. for (int k=0; k<4; ++k) {
  8678. uint16_t q = (aux8[k] - 1)/2;
  8679. index |= (q << 3*k);
  8680. }
  8681. kmap_q3xs[index] = i;
  8682. }
  8683. int8_t pos[4];
  8684. int * dist2 = (int *)malloc(2*grid_size*sizeof(int));
  8685. int num_neighbors = 0, num_not_in_map = 0;
  8686. for (int i = 0; i < kmap_size; ++i) {
  8687. if (kmap_q3xs[i] >= 0) continue;
  8688. ++num_not_in_map;
  8689. for (int k = 0; k < 4; ++k) {
  8690. int l = (i >> 3*k) & 0x7;
  8691. pos[k] = 2*l + 1;
  8692. }
  8693. for (int j = 0; j < grid_size; ++j) {
  8694. const int8_t * pg = (const int8_t *)(kgrid_q3xs + j);
  8695. int d2 = 0;
  8696. for (int k = 0; k < 4; ++k) d2 += (pg[k] - pos[k])*(pg[k] - pos[k]);
  8697. dist2[2*j+0] = d2;
  8698. dist2[2*j+1] = j;
  8699. }
  8700. qsort(dist2, grid_size, 2*sizeof(int), iq3_compare_func);
  8701. int n = 0; int d2 = dist2[0];
  8702. int nhave = 1;
  8703. for (int j = 0; j < grid_size; ++j) {
  8704. if (dist2[2*j] > d2) {
  8705. if (nhave == nwant) break;
  8706. d2 = dist2[2*j];
  8707. ++nhave;
  8708. }
  8709. ++n;
  8710. }
  8711. num_neighbors += n;
  8712. }
  8713. //printf("%s: %d neighbours in total\n", __func__, num_neighbors);
  8714. kneighbors_q3xs = (uint16_t *)malloc((num_neighbors + num_not_in_map)*sizeof(uint16_t));
  8715. iq3_data[gindex].neighbours = kneighbors_q3xs;
  8716. int counter = 0;
  8717. for (int i = 0; i < kmap_size; ++i) {
  8718. if (kmap_q3xs[i] >= 0) continue;
  8719. for (int k = 0; k < 4; ++k) {
  8720. int l = (i >> 3*k) & 0x7;
  8721. pos[k] = 2*l + 1;
  8722. }
  8723. for (int j = 0; j < grid_size; ++j) {
  8724. const int8_t * pg = (const int8_t *)(kgrid_q3xs + j);
  8725. int d2 = 0;
  8726. for (int k = 0; k < 4; ++k) d2 += (pg[k] - pos[k])*(pg[k] - pos[k]);
  8727. dist2[2*j+0] = d2;
  8728. dist2[2*j+1] = j;
  8729. }
  8730. qsort(dist2, grid_size, 2*sizeof(int), iq3_compare_func);
  8731. kmap_q3xs[i] = -(counter + 1);
  8732. int d2 = dist2[0];
  8733. uint16_t * start = &kneighbors_q3xs[counter++];
  8734. int n = 0, nhave = 1;
  8735. for (int j = 0; j < grid_size; ++j) {
  8736. if (dist2[2*j] > d2) {
  8737. if (nhave == nwant) break;
  8738. d2 = dist2[2*j];
  8739. ++nhave;
  8740. }
  8741. kneighbors_q3xs[counter++] = dist2[2*j+1];
  8742. ++n;
  8743. }
  8744. *start = n;
  8745. }
  8746. free(dist2);
  8747. }
  8748. void iq3xs_free_impl(int grid_size) {
  8749. GGML_ASSERT(grid_size == 256 || grid_size == 512);
  8750. const int gindex = iq3_data_index(grid_size);
  8751. if (iq3_data[gindex].grid) {
  8752. free(iq3_data[gindex].grid); iq3_data[gindex].grid = NULL;
  8753. free(iq3_data[gindex].map); iq3_data[gindex].map = NULL;
  8754. free(iq3_data[gindex].neighbours); iq3_data[gindex].neighbours = NULL;
  8755. }
  8756. }
  8757. static int iq3_find_best_neighbour(const uint16_t * restrict neighbours, const uint32_t * restrict grid,
  8758. const float * restrict xval, const float * restrict weight, float scale, int8_t * restrict L) {
  8759. int num_neighbors = neighbours[0];
  8760. GGML_ASSERT(num_neighbors > 0);
  8761. float best_d2 = FLT_MAX;
  8762. int grid_index = -1;
  8763. for (int j = 1; j <= num_neighbors; ++j) {
  8764. const int8_t * pg = (const int8_t *)(grid + neighbours[j]);
  8765. float d2 = 0;
  8766. for (int i = 0; i < 4; ++i) {
  8767. float q = pg[i];
  8768. float diff = scale*q - xval[i];
  8769. d2 += weight[i]*diff*diff;
  8770. }
  8771. if (d2 < best_d2) {
  8772. best_d2 = d2; grid_index = neighbours[j];
  8773. }
  8774. }
  8775. GGML_ASSERT(grid_index >= 0);
  8776. const int8_t * pg = (const int8_t *)(grid + grid_index);
  8777. for (int i = 0; i < 4; ++i) L[i] = (pg[i] - 1)/2;
  8778. return grid_index;
  8779. }
  8780. static void quantize_row_iq3_xxs_impl(int grid_size, const float * restrict x, void * restrict vy, int n,
  8781. const float * restrict quant_weights) {
  8782. const int gindex = iq3_data_index(grid_size);
  8783. const uint32_t * kgrid_q3xs = iq3_data[gindex].grid;
  8784. const int * kmap_q3xs = iq3_data[gindex].map;
  8785. const uint16_t * kneighbors_q3xs = iq3_data[gindex].neighbours;
  8786. //GGML_ASSERT(quant_weights && "missing quantization weights");
  8787. GGML_ASSERT(kgrid_q3xs && "forgot to call ggml_quantize_init()?");
  8788. GGML_ASSERT(kmap_q3xs && "forgot to call ggml_quantize_init()?");
  8789. GGML_ASSERT(kneighbors_q3xs && "forgot to call ggml_quantize_init()?");
  8790. GGML_ASSERT(n%QK_K == 0);
  8791. const int kMaxQ = 8;
  8792. const int nbl = n/QK_K;
  8793. ggml_fp16_t * dh;
  8794. uint8_t * qs;
  8795. int block_size;
  8796. if (grid_size == 256) {
  8797. block_iq3_xxs * y = vy;
  8798. dh = &y->d;
  8799. qs = y->qs;
  8800. block_size = sizeof(block_iq3_xxs);
  8801. } else {
  8802. block_iq3_s * y = vy;
  8803. dh = &y->d;
  8804. qs = y->qs;
  8805. block_size = sizeof(block_iq3_s);
  8806. }
  8807. int quant_size = block_size - sizeof(ggml_fp16_t);
  8808. float scales[QK_K/32];
  8809. float weight[32];
  8810. float xval[32];
  8811. int8_t L[32];
  8812. int8_t Laux[32];
  8813. float waux[32];
  8814. bool is_on_grid[8];
  8815. bool is_on_grid_aux[8];
  8816. uint8_t block_signs[8];
  8817. uint8_t q3[3*(QK_K/8)+QK_K/32];
  8818. uint32_t * scales_and_signs = (uint32_t *)(q3 + QK_K/4);
  8819. uint8_t * qh = q3 + 3*(QK_K/8);
  8820. for (int ibl = 0; ibl < nbl; ++ibl) {
  8821. dh[0] = GGML_FP32_TO_FP16(0.f);
  8822. memset(q3, 0, 3*QK_K/8+QK_K/32);
  8823. float max_scale = 0;
  8824. const float * xbl = x + QK_K*ibl;
  8825. float sumx2 = 0;
  8826. for (int i = 0; i < QK_K; ++i) sumx2 += xbl[i]*xbl[i];
  8827. float sigma2 = 2*sumx2/QK_K;
  8828. for (int ib = 0; ib < QK_K/32; ++ib) {
  8829. const float * xb = xbl + 32*ib;
  8830. if (quant_weights) {
  8831. const float * qw = quant_weights + QK_K*ibl + 32*ib;
  8832. for (int i = 0; i < 32; ++i) weight[i] = qw[i] * sqrtf(sigma2 + xb[i]*xb[i]);
  8833. } else {
  8834. for (int i = 0; i < 32; ++i) weight[i] = xb[i]*xb[i];
  8835. }
  8836. for (int i = 0; i < 32; ++i) waux[i] = sqrtf(weight[i]);
  8837. for (int k = 0; k < 4; ++k) {
  8838. int nflip = 0;
  8839. uint8_t s = 0;
  8840. for (int i = 0; i < 8; ++i) {
  8841. if (xb[8*k + i] >= 0) xval[8*k + i] = xb[8*k + i];
  8842. else {
  8843. xval[8*k + i] = -xb[8*k + i]; ++nflip; s |= (1 << i);
  8844. }
  8845. }
  8846. if (nflip%2) {
  8847. int imin = 0; float min = weight[8*k+imin]*xb[8*k+imin]*xb[8*k+imin];
  8848. for (int i = 1; i < 8; ++i) {
  8849. float ax = weight[8*k+i]*xb[8*k+i]*xb[8*k+i];
  8850. if (ax < min) {
  8851. min = ax; imin = i;
  8852. }
  8853. }
  8854. xval[8*k+imin] = -xval[8*k+imin];
  8855. s ^= (1 << imin);
  8856. }
  8857. block_signs[k] = s & 127;
  8858. }
  8859. float max = xval[0];
  8860. for (int i = 1; i < 32; ++i) max = MAX(max, xval[i]);
  8861. if (!max) {
  8862. scales[ib] = 0;
  8863. memset(L, 0, 32);
  8864. continue;
  8865. }
  8866. float best = 0;
  8867. float scale = max/(2*kMaxQ-1);
  8868. for (int is = -15; is <= 15; ++is) {
  8869. float id = (2*kMaxQ-1+is*0.2f)/max;
  8870. float this_scale = 1/id;
  8871. for (int k = 0; k < 8; ++k) {
  8872. for (int i = 0; i < 4; ++i) {
  8873. int l = nearest_int(0.5f*(id*xval[4*k+i]-1));
  8874. Laux[4*k+i] = MAX(0, MIN(kMaxQ-1, l));
  8875. }
  8876. uint16_t u = 0;
  8877. for (int i = 0; i < 4; ++i) u |= (Laux[4*k+i] << 3*i);
  8878. int grid_index = kmap_q3xs[u];
  8879. is_on_grid_aux[k] = true;
  8880. if (grid_index < 0) {
  8881. is_on_grid_aux[k] = false;
  8882. const uint16_t * neighbours = kneighbors_q3xs - kmap_q3xs[u] - 1;
  8883. grid_index = iq3_find_best_neighbour(neighbours, kgrid_q3xs, xval + 4*k, waux + 4*k, this_scale, Laux + 4*k);
  8884. }
  8885. }
  8886. float sumqx = 0, sumq2 = 0;
  8887. for (int i = 0; i < 32; ++i) {
  8888. float w = weight[i];
  8889. float q = 2*Laux[i] + 1;
  8890. sumqx += w*xval[i]*q;
  8891. sumq2 += w*q*q;
  8892. }
  8893. if (sumq2 > 0 && sumqx*sumqx > best*sumq2) {
  8894. scale = sumqx/sumq2; best = scale*sumqx;
  8895. for (int i = 0; i < 32; ++i) L[i] = Laux[i];
  8896. for (int k = 0; k < 8; ++k) is_on_grid[k] = is_on_grid_aux[k];
  8897. }
  8898. }
  8899. int n_not_ongrid = 0;
  8900. for (int k = 0; k < 8; ++k) if (!is_on_grid[k]) ++n_not_ongrid;
  8901. if (n_not_ongrid > 0 && scale > 0) {
  8902. float id = 1/scale;
  8903. for (int k = 0; k < 8; ++k) {
  8904. if (is_on_grid[k]) continue;
  8905. uint16_t u = 0;
  8906. for (int i = 0; i < 4; ++i) {
  8907. int l = nearest_int(0.5f*(id*xval[4*k+i]-1));
  8908. l = MAX(0, MIN(kMaxQ-1, l));
  8909. u |= (l << 3*i);
  8910. }
  8911. int grid_index = kmap_q3xs[u];
  8912. if (grid_index < 0) {
  8913. const uint16_t * neighbours = kneighbors_q3xs - kmap_q3xs[u] - 1;
  8914. grid_index = iq3_find_best_neighbour(neighbours, kgrid_q3xs, xval + 4*k, waux + 4*k, scale, L + 4*k);
  8915. }
  8916. const int8_t * pg = (const int8_t *)(kgrid_q3xs + grid_index);
  8917. for (int i = 0; i < 4; ++i) L[4*k+i] = (pg[i] - 1)/2;
  8918. }
  8919. float sumqx = 0, sumq2 = 0;
  8920. for (int i = 0; i < 32; ++i) {
  8921. float w = weight[i];
  8922. float q = 2*L[i] + 1;
  8923. sumqx += w*xval[i]*q;
  8924. sumq2 += w*q*q;
  8925. }
  8926. if (sumq2 > 0) scale = sumqx/sumq2;
  8927. }
  8928. if (scale < 0) {
  8929. // This should never happen, but just in case, flip scale so that it is positive (we use uint's to encode the scale)
  8930. // and correspondingly flip quant signs.
  8931. scale = -scale;
  8932. for (int k = 0; k < 4; ++k) block_signs[k] = (~block_signs[k]) & 127;
  8933. }
  8934. for (int k = 0; k < 8; ++k) {
  8935. uint16_t u = 0;
  8936. for (int i = 0; i < 4; ++i) u |= (L[4*k+i] << 3*i);
  8937. int grid_index = kmap_q3xs[u];
  8938. if (grid_index < 0) {
  8939. printf("Oops: found point %u not on grid:", u);
  8940. for (int i = 0; i < 4; ++i) printf(" %d", L[4*k+i]);
  8941. printf("\n");
  8942. GGML_ASSERT(false);
  8943. }
  8944. if (grid_size == 256) {
  8945. q3[8*ib+k] = grid_index;
  8946. } else {
  8947. q3[8*ib+k] = grid_index & 255;
  8948. qh[ib] |= ((grid_index >> 8) << k);
  8949. }
  8950. }
  8951. scales_and_signs[ib] = block_signs[0] | (block_signs[1] << 7) | (block_signs[2] << 14) | (block_signs[3] << 21);
  8952. GGML_ASSERT(scale >= 0);
  8953. scales[ib] = scale;
  8954. max_scale = MAX(max_scale, scale);
  8955. }
  8956. if (!max_scale) {
  8957. memset(qs, 0, quant_size);
  8958. dh += block_size/sizeof(ggml_fp16_t);
  8959. qs += block_size;
  8960. continue;
  8961. }
  8962. float d = max_scale/31;
  8963. dh[0] = GGML_FP32_TO_FP16(d * 1.0125f); // small improvement via this fudge factor
  8964. float id = 1/d;
  8965. for (int ib = 0; ib < QK_K/32; ++ib) {
  8966. int l = nearest_int(0.5f*(id*scales[ib]-1));
  8967. l = MAX(0, MIN(15, l));
  8968. scales_and_signs[ib] |= ((uint32_t)l << 28);
  8969. }
  8970. memcpy(qs, q3, quant_size);
  8971. dh += block_size/sizeof(ggml_fp16_t);
  8972. qs += block_size;
  8973. }
  8974. }
  8975. size_t quantize_iq3_xxs(const float * restrict src, void * restrict dst, int nrow, int n_per_row, const float * quant_weights) {
  8976. GGML_ASSERT(n_per_row%QK_K == 0);
  8977. int nblock = n_per_row/QK_K;
  8978. char * qrow = (char *)dst;
  8979. for (int row = 0; row < nrow; ++row) {
  8980. quantize_row_iq3_xxs_impl(256, src, qrow, n_per_row, quant_weights);
  8981. src += n_per_row;
  8982. qrow += nblock*sizeof(block_iq3_xxs);
  8983. }
  8984. return nrow * nblock * sizeof(block_iq3_xxs);
  8985. }
  8986. void quantize_row_iq3_xxs(const float * restrict x, void * restrict vy, int k) {
  8987. assert(k % QK_K == 0);
  8988. block_iq3_xxs * restrict y = vy;
  8989. quantize_row_iq3_xxs_reference(x, y, k);
  8990. }
  8991. void quantize_row_iq3_xxs_reference(const float * restrict x, block_iq3_xxs * restrict y, int k) {
  8992. assert(k % QK_K == 0);
  8993. quantize_row_iq3_xxs_impl(256, x, y, k, NULL);
  8994. }
  8995. static void quantize_row_iq3_s_impl(int block_size, const float * restrict x, void * restrict vy, int n,
  8996. const float * restrict quant_weights,
  8997. float * scales,
  8998. float * weight,
  8999. float * xval,
  9000. int8_t * L,
  9001. int8_t * Laux,
  9002. float * waux,
  9003. bool * is_on_grid,
  9004. bool * is_on_grid_aux,
  9005. uint8_t * block_signs) {
  9006. const int gindex = iq3_data_index(512);
  9007. const uint32_t * kgrid_q3xs = iq3_data[gindex].grid;
  9008. const int * kmap_q3xs = iq3_data[gindex].map;
  9009. const uint16_t * kneighbors_q3xs = iq3_data[gindex].neighbours;
  9010. //GGML_ASSERT(quant_weights && "missing quantization weights");
  9011. GGML_ASSERT(kgrid_q3xs && "forgot to call ggml_quantize_init()?");
  9012. GGML_ASSERT(kmap_q3xs && "forgot to call ggml_quantize_init()?");
  9013. GGML_ASSERT(kneighbors_q3xs && "forgot to call ggml_quantize_init()?");
  9014. GGML_ASSERT(n%QK_K == 0);
  9015. const int kMaxQ = 8;
  9016. const int nbl = n/QK_K;
  9017. block_iq3_s * y = vy;
  9018. const int bs4 = block_size/4;
  9019. const int bs8 = block_size/8;
  9020. for (int ibl = 0; ibl < nbl; ++ibl) {
  9021. memset(&y[ibl], 0, sizeof(block_iq3_s));
  9022. y[ibl].d = GGML_FP32_TO_FP16(0.f);
  9023. uint8_t * qs = y[ibl].qs;
  9024. uint8_t * qh = y[ibl].qh;
  9025. uint8_t * signs = y[ibl].signs;
  9026. float max_scale = 0;
  9027. const float * xbl = x + QK_K*ibl;
  9028. float sumx2 = 0;
  9029. for (int i = 0; i < QK_K; ++i) sumx2 += xbl[i]*xbl[i];
  9030. float sigma2 = 2*sumx2/QK_K;
  9031. for (int ib = 0; ib < QK_K/block_size; ++ib) {
  9032. const float * xb = xbl + block_size*ib;
  9033. if (quant_weights) {
  9034. const float * qw = quant_weights + QK_K*ibl + block_size*ib;
  9035. for (int i = 0; i < block_size; ++i) weight[i] = qw[i] * sqrtf(sigma2 + xb[i]*xb[i]);
  9036. } else {
  9037. for (int i = 0; i < block_size; ++i) weight[i] = xb[i]*xb[i];
  9038. }
  9039. for (int i = 0; i < block_size; ++i) waux[i] = sqrtf(weight[i]);
  9040. for (int k = 0; k < bs8; ++k) {
  9041. uint8_t s = 0;
  9042. for (int i = 0; i < 8; ++i) {
  9043. if (xb[8*k + i] >= 0) xval[8*k + i] = xb[8*k + i];
  9044. else {
  9045. xval[8*k + i] = -xb[8*k + i]; s |= (1 << i);
  9046. }
  9047. }
  9048. block_signs[k] = s;
  9049. }
  9050. float max = xval[0];
  9051. for (int i = 1; i < block_size; ++i) max = MAX(max, xval[i]);
  9052. if (!max) {
  9053. scales[ib] = 0;
  9054. continue;
  9055. }
  9056. float best = 0;
  9057. float scale = max/(2*kMaxQ-1);
  9058. for (int k = 0; k < bs4; ++k) is_on_grid[k] = false;
  9059. for (int is = -9; is <= 9; ++is) {
  9060. float id = (2*kMaxQ-1+is*0.2f)/max;
  9061. float this_scale = 1/id;
  9062. for (int k = 0; k < bs4; ++k) {
  9063. for (int i = 0; i < 4; ++i) {
  9064. int l = nearest_int(0.5f*(id*xval[4*k+i]-1));
  9065. Laux[4*k+i] = MAX(0, MIN(kMaxQ-1, l));
  9066. }
  9067. uint16_t u = 0;
  9068. for (int i = 0; i < 4; ++i) u |= (Laux[4*k+i] << 3*i);
  9069. int grid_index = kmap_q3xs[u];
  9070. is_on_grid_aux[k] = true;
  9071. if (grid_index < 0) {
  9072. is_on_grid_aux[k] = false;
  9073. const uint16_t * neighbours = kneighbors_q3xs - kmap_q3xs[u] - 1;
  9074. grid_index = iq3_find_best_neighbour(neighbours, kgrid_q3xs, xval + 4*k, waux + 4*k, this_scale, Laux + 4*k);
  9075. }
  9076. }
  9077. float sumqx = 0, sumq2 = 0;
  9078. for (int i = 0; i < block_size; ++i) {
  9079. float w = weight[i];
  9080. float q = 2*Laux[i] + 1;
  9081. sumqx += w*xval[i]*q;
  9082. sumq2 += w*q*q;
  9083. }
  9084. if (sumq2 > 0 && sumqx*sumqx > best*sumq2) {
  9085. scale = sumqx/sumq2; best = scale*sumqx;
  9086. for (int i = 0; i < block_size; ++i) L[i] = Laux[i];
  9087. for (int k = 0; k < bs4; ++k) is_on_grid[k] = is_on_grid_aux[k];
  9088. }
  9089. }
  9090. int n_not_ongrid = 0;
  9091. for (int k = 0; k < bs4; ++k) if (!is_on_grid[k]) ++n_not_ongrid;
  9092. if (n_not_ongrid > 0 && scale > 0) {
  9093. float id = 1/scale;
  9094. for (int k = 0; k < bs4; ++k) {
  9095. //if (is_on_grid[k]) continue;
  9096. uint16_t u = 0;
  9097. for (int i = 0; i < 4; ++i) {
  9098. int l = nearest_int(0.5f*(id*xval[4*k+i]-1));
  9099. l = MAX(0, MIN(kMaxQ-1, l));
  9100. u |= (l << 3*i);
  9101. }
  9102. int grid_index = kmap_q3xs[u];
  9103. if (grid_index < 0) {
  9104. const uint16_t * neighbours = kneighbors_q3xs - kmap_q3xs[u] - 1;
  9105. grid_index = iq3_find_best_neighbour(neighbours, kgrid_q3xs, xval + 4*k, waux + 4*k, scale, L + 4*k);
  9106. }
  9107. const int8_t * pg = (const int8_t *)(kgrid_q3xs + grid_index);
  9108. for (int i = 0; i < 4; ++i) L[4*k+i] = (pg[i] - 1)/2;
  9109. }
  9110. float sumqx = 0, sumq2 = 0;
  9111. for (int i = 0; i < block_size; ++i) {
  9112. float w = weight[i];
  9113. float q = 2*L[i] + 1;
  9114. sumqx += w*xval[i]*q;
  9115. sumq2 += w*q*q;
  9116. }
  9117. if (sumq2 > 0) scale = sumqx/sumq2;
  9118. }
  9119. if (scale < 0) {
  9120. // This should never happen, but just in case, flip scale so that it is positive (we use uint's to encode the scale)
  9121. // and correspondingly flip quant signs.
  9122. scale = -scale;
  9123. for (int k = 0; k < bs8; ++k) block_signs[k] = ~block_signs[k];
  9124. }
  9125. for (int k = 0; k < bs4; ++k) {
  9126. uint16_t u = 0;
  9127. for (int i = 0; i < 4; ++i) u |= (L[4*k+i] << 3*i);
  9128. int grid_index = kmap_q3xs[u];
  9129. if (grid_index < 0) {
  9130. printf("Oops: found point %u not on grid:", u);
  9131. for (int i = 0; i < 4; ++i) printf(" %d", L[4*k+i]);
  9132. printf("\n");
  9133. GGML_ASSERT(false);
  9134. }
  9135. qs[k] = grid_index & 255;
  9136. qh[(ib*bs4+k)/8] |= ((grid_index >> 8) << ((ib*bs4+k)%8));
  9137. }
  9138. qs += bs4;
  9139. for (int k = 0; k < bs8; ++k) signs[k] = block_signs[k];
  9140. signs += bs8;
  9141. GGML_ASSERT(scale >= 0);
  9142. scales[ib] = scale;
  9143. max_scale = MAX(max_scale, scale);
  9144. }
  9145. if (!max_scale) {
  9146. continue;
  9147. }
  9148. float d = max_scale/31;
  9149. y[ibl].d = GGML_FP32_TO_FP16(d * 1.033f);
  9150. float id = 1/d;
  9151. for (int ib = 0; ib < QK_K/block_size; ib += 2) {
  9152. int l1 = nearest_int(0.5f*(id*scales[ib+0]-1));
  9153. l1 = MAX(0, MIN(15, l1));
  9154. int l2 = nearest_int(0.5f*(id*scales[ib+1]-1));
  9155. l2 = MAX(0, MIN(15, l2));
  9156. y[ibl].scales[ib/2] = l1 | (l2 << 4);
  9157. }
  9158. }
  9159. }
  9160. #define IQ3S_BLOCK_SIZE 32
  9161. size_t quantize_iq3_s(const float * restrict src, void * restrict dst, int nrow, int n_per_row, const float * quant_weights) {
  9162. GGML_ASSERT(n_per_row%QK_K == 0);
  9163. int nblock = n_per_row/QK_K;
  9164. float scales[QK_K/IQ3S_BLOCK_SIZE];
  9165. float weight[IQ3S_BLOCK_SIZE];
  9166. float xval[IQ3S_BLOCK_SIZE];
  9167. int8_t L[IQ3S_BLOCK_SIZE];
  9168. int8_t Laux[IQ3S_BLOCK_SIZE];
  9169. float waux[IQ3S_BLOCK_SIZE];
  9170. bool is_on_grid[IQ3S_BLOCK_SIZE/4];
  9171. bool is_on_grid_aux[IQ3S_BLOCK_SIZE/4];
  9172. uint8_t block_signs[IQ3S_BLOCK_SIZE/8];
  9173. char * qrow = (char *)dst;
  9174. for (int row = 0; row < nrow; ++row) {
  9175. quantize_row_iq3_s_impl(IQ3S_BLOCK_SIZE, src, qrow, n_per_row, quant_weights,
  9176. scales, weight, xval, L, Laux, waux, is_on_grid, is_on_grid_aux, block_signs);
  9177. src += n_per_row;
  9178. qrow += nblock*sizeof(block_iq3_s);
  9179. }
  9180. return nrow * nblock * sizeof(block_iq3_s);
  9181. }
  9182. void quantize_row_iq3_s(const float * restrict x, void * restrict vy, int k) {
  9183. assert(k % QK_K == 0);
  9184. block_iq3_s * restrict y = vy;
  9185. quantize_row_iq3_s_reference(x, y, k);
  9186. }
  9187. void quantize_row_iq3_s_reference(const float * restrict x, block_iq3_s * restrict y, int k) {
  9188. assert(k % QK_K == 0);
  9189. quantize_iq3_s(x, y, 1, k, NULL);
  9190. }
  9191. // =================================== 1.5 bpw ===================================================
  9192. static int iq1_find_best_neighbour(const uint16_t * restrict neighbours, const uint64_t * restrict grid,
  9193. const float * restrict xval, const float * restrict weight, float * scale, int8_t * restrict L, int ngrid) {
  9194. int num_neighbors = neighbours[0];
  9195. GGML_ASSERT(num_neighbors > 0);
  9196. float best_score = 0;
  9197. int grid_index = -1;
  9198. for (int j = 1; j <= num_neighbors; ++j) {
  9199. const int8_t * pg = (const int8_t *)(grid + neighbours[j]);
  9200. float sumqx = 0, sumq2 = 0;
  9201. for (int i = 0; i < 8; ++i) {
  9202. float q = (pg[i] - 3)/2;
  9203. float w = weight[i];
  9204. sumqx += w*q*xval[i];
  9205. sumq2 += w*q*q;
  9206. }
  9207. if (sumqx > 0 && sumq2 > 0 && sumqx*sumqx > best_score*sumq2) {
  9208. *scale = sumqx/sumq2; best_score = *scale * sumqx;
  9209. grid_index = neighbours[j];
  9210. }
  9211. }
  9212. if (grid_index < 0) {
  9213. for (int i = 0; i < ngrid; ++i) {
  9214. const int8_t * grid_i = (const int8_t *)(grid + i);
  9215. float sumqx = 0, sumq2 = 0;
  9216. for (int j = 0; j < 8; ++j) {
  9217. float w = weight[j];
  9218. float q = (grid_i[j] - 3)/2;
  9219. sumqx += w*q*xval[j];
  9220. sumq2 += w*q*q;
  9221. }
  9222. if (sumqx > 0 && sumq2 > 0 && sumqx*sumqx > best_score*sumq2) {
  9223. *scale = sumqx/sumq2; best_score = *scale*sumqx;
  9224. grid_index = i;
  9225. }
  9226. }
  9227. }
  9228. if (grid_index < 0) {
  9229. printf("Oops, did not find grid point\n");
  9230. printf("Have %d neighbours\n", num_neighbors);
  9231. for (int j = 1; j <= num_neighbors; ++j) {
  9232. const int8_t * pg = (const int8_t *)(grid + neighbours[j]);
  9233. float sumqx = 0, sumq2 = 0;
  9234. for (int i = 0; i < 8; ++i) {
  9235. float q = (pg[i] - 3)/2;
  9236. float w = weight[i];
  9237. sumqx += w*q*xval[i];
  9238. sumq2 += w*q*q;
  9239. }
  9240. printf(" neighbour %d: sumqx = %g sumq2 = %g\n", j, (double)sumqx, (double)sumq2);
  9241. }
  9242. }
  9243. GGML_ASSERT(grid_index >= 0);
  9244. //!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
  9245. *scale *= 1.05f; // This is a fudge factor. Don't ask me why it improves the result.
  9246. //!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
  9247. const int8_t * pg = (const int8_t *)(grid + grid_index);
  9248. for (int i = 0; i < 8; ++i) L[i] = (pg[i] - 1)/2;
  9249. return grid_index;
  9250. }
  9251. static int iq1_sort_helper(const void * left, const void * right) {
  9252. const float * l = left;
  9253. const float * r = right;
  9254. return *l < *r ? -1 : *l > *r ? 1 : 0;
  9255. }
  9256. static void quantize_row_iq1_s_impl(const float * restrict x, void * restrict vy, int n, const float * restrict quant_weights) {
  9257. const int gindex = iq2_data_index(GGML_TYPE_IQ1_S);
  9258. const uint64_t * kgrid_q2xs = iq2_data[gindex].grid;
  9259. const int * kmap_q2xs = iq2_data[gindex].map;
  9260. const uint16_t * kneighbors_q2xs = iq2_data[gindex].neighbours;
  9261. GGML_ASSERT(quant_weights && "missing quantization weights");
  9262. GGML_ASSERT(kgrid_q2xs && "forgot to call ggml_quantize_init()?");
  9263. GGML_ASSERT(kmap_q2xs && "forgot to call ggml_quantize_init()?");
  9264. GGML_ASSERT(kneighbors_q2xs && "forgot to call ggml_quantize_init()?");
  9265. GGML_ASSERT(n%QK_K == 0);
  9266. const int nbl = n/QK_K;
  9267. block_iq1_s * y = vy;
  9268. float scales[QK_K/8];
  9269. float weight[8];
  9270. int8_t L[8];
  9271. float sumx[9];
  9272. float sumw[9];
  9273. float pairs[16];
  9274. int * idx = (int *)(pairs + 1);
  9275. uint8_t hbit[QK_K/8];
  9276. for (int ibl = 0; ibl < nbl; ++ibl) {
  9277. y[ibl].d = GGML_FP32_TO_FP16(0.f);
  9278. memset(y[ibl].qs, 0, QK_K/8);
  9279. memset(y[ibl].scales, 0, QK_K/16);
  9280. float max_scale = 0;
  9281. const float * xbl = x + QK_K*ibl;
  9282. float sumx2 = 0;
  9283. for (int i = 0; i < QK_K; ++i) sumx2 += xbl[i]*xbl[i];
  9284. float sigma2 = sumx2/QK_K;
  9285. for (int ib = 0; ib < QK_K/8; ++ib) {
  9286. const float * xb = xbl + 8*ib;
  9287. const float * qw = quant_weights + QK_K*ibl + 8*ib;
  9288. for (int i = 0; i < 8; ++i) weight[i] = qw[i] * sqrtf(sigma2 + xb[i]*xb[i]);
  9289. float max = fabsf(xb[0]);
  9290. for (int i = 1; i < 8; ++i) max = MAX(max, fabsf(xb[i]));
  9291. if (!max) {
  9292. scales[ib] = 0;
  9293. memset(L, 1, 8);
  9294. continue;
  9295. }
  9296. // Here we solve exactly the sum of squared difference (SSD) weighted minimization problem.
  9297. // With just 3 allowed quant values (-1, 0, 1), we can search exhaustively for the two
  9298. // boundaries that split the weights xb[i] into 3 groups. To do so, we sort the weights
  9299. // in ascending order, compute Si = sum[weight[j] xb[j], j = 0...i] and
  9300. // Wi = sum[weight[j], j = 0...i], and use these to quckly get get the optimum scale
  9301. // for each possible and score for each split.
  9302. for (int j = 0; j < 8; ++j) {
  9303. pairs[2*j] = xb[j];
  9304. idx[2*j] = j;
  9305. }
  9306. qsort(pairs, 8, 2*sizeof(float), iq1_sort_helper);
  9307. {
  9308. sumx[0] = sumw[0] = 0;
  9309. for (int j = 0; j < 8; ++j) {
  9310. int i = idx[2*j];
  9311. sumx[j+1] = sumx[j] + weight[i]*xb[i];
  9312. sumw[j+1] = sumw[j] + weight[i];
  9313. }
  9314. }
  9315. float best_score = 0, scale = max;
  9316. int besti1 = 0, besti2 = 0;
  9317. for (int i1 = 0; i1 <= 8; ++i1) {
  9318. for (int i2 = i1; i2 <= 8; ++i2) {
  9319. float sumqx = -(sumx[i1] - sumx[0]) + (sumx[8] - sumx[i2]);
  9320. float sumq2 = (sumw[i1] - sumw[0]) + (sumw[8] - sumw[i2]);
  9321. if (sumq2 > 0 && sumqx*sumqx > best_score*sumq2) {
  9322. scale = sumqx/sumq2; best_score = scale*sumqx;
  9323. besti1 = i1; besti2 = i2;
  9324. }
  9325. }
  9326. }
  9327. for (int j = 0; j < besti1; ++j) L[idx[2*j]] = 0;
  9328. for (int j = besti1; j < besti2; ++j) L[idx[2*j]] = 1;
  9329. for (int j = besti2; j < 8; ++j) L[idx[2*j]] = 2;
  9330. if (scale < 0) {
  9331. for (int j = 0; j < 8; ++j) L[j] = 2 - L[j];
  9332. scale = -scale;
  9333. }
  9334. // Now we check if the solution found above corresponds to a grid point and, if not, use a neighbouring
  9335. // grid point that minimizes SSD.
  9336. uint16_t u = 0;
  9337. for (int j = 0; j < 8; ++j) u |= (L[j] << 2*j);
  9338. int grid_index = kmap_q2xs[u];
  9339. if (grid_index < 0) {
  9340. const uint16_t * neighbours = kneighbors_q2xs - kmap_q2xs[u] - 1;
  9341. grid_index = iq1_find_best_neighbour(neighbours, kgrid_q2xs, xb, weight, &scale, L, NGRID_IQ2XXS);
  9342. GGML_ASSERT(grid_index >= 0);
  9343. }
  9344. y[ibl].qs[ib] = grid_index & 255;
  9345. hbit[ib] = grid_index >> 8;
  9346. GGML_ASSERT(scale >= 0);
  9347. scales[ib] = scale;
  9348. max_scale = MAX(max_scale, scale);
  9349. }
  9350. if (!max_scale) {
  9351. memset(y[ibl].qs, 0, QK_K/8);
  9352. continue;
  9353. }
  9354. float d = max_scale/15;
  9355. y[ibl].d = GGML_FP32_TO_FP16(d*1.085f); // 1.085f is another fudge factor. Don't ask me why it is needed.
  9356. float id = 1/d;
  9357. for (int ib = 0; ib < QK_K/8; ++ib) {
  9358. int l = nearest_int(0.5f*(id*scales[ib]-1));
  9359. l = MAX(0, MIN(7, l));
  9360. if (hbit[ib]) l |= 8;
  9361. y[ibl].scales[ib/2] |= (l << 4*(ib%2));
  9362. }
  9363. }
  9364. }
  9365. size_t quantize_iq1_s(const float * restrict src, void * restrict dst, int nrow, int n_per_row, const float * quant_weights) {
  9366. GGML_ASSERT(n_per_row%QK_K == 0);
  9367. int nblock = n_per_row/QK_K;
  9368. char * qrow = (char *)dst;
  9369. for (int row = 0; row < nrow; ++row) {
  9370. quantize_row_iq1_s_impl(src, qrow, n_per_row, quant_weights);
  9371. src += n_per_row;
  9372. qrow += nblock*sizeof(block_iq1_s);
  9373. }
  9374. return nrow * nblock * sizeof(block_iq1_s);
  9375. }
  9376. // ============================ 4-bit non-linear quants
  9377. static inline int best_index_int8(int n, const int8_t * val, float x) {
  9378. if (x <= val[0]) return 0;
  9379. if (x >= val[n-1]) return n-1;
  9380. int ml = 0, mu = n-1;
  9381. while (mu-ml > 1) {
  9382. int mav = (ml+mu)/2;
  9383. if (x < val[mav]) mu = mav; else ml = mav;
  9384. }
  9385. return x - val[mu-1] < val[mu] - x ? mu-1 : mu;
  9386. }
  9387. static void quantize_row_iq4_nl_impl(const int super_block_size, const int block_size, const float * restrict x,
  9388. ggml_fp16_t * dh, uint8_t * q4, uint16_t * scales_h, uint8_t * scales_l,
  9389. float * scales, float * weight, uint8_t * L,
  9390. const int8_t * values,
  9391. const float * quant_weights) {
  9392. const int ntry = 7;
  9393. float sigma2 = 0;
  9394. for (int j = 0; j < super_block_size; ++j) sigma2 += x[j]*x[j];
  9395. sigma2 *= 2.f/super_block_size;
  9396. memset(q4, 0, super_block_size/2);
  9397. dh[0] = GGML_FP32_TO_FP16(0.f);
  9398. float max_scale = 0, amax_scale = 0;
  9399. for (int ib = 0; ib < super_block_size/block_size; ++ib) {
  9400. const float * xb = x + ib*block_size;
  9401. if (quant_weights) {
  9402. const float * qw = quant_weights + ib*block_size;
  9403. for (int j = 0; j < block_size; ++j) weight[j] = qw[j] * sqrtf(sigma2 + xb[j]*xb[j]);
  9404. } else {
  9405. for (int j = 0; j < block_size; ++j) weight[j] = xb[j]*xb[j];
  9406. }
  9407. float amax = 0, max = 0;
  9408. for (int j = 0; j < block_size; ++j) {
  9409. float ax = fabsf(xb[j]);
  9410. if (ax > amax) {
  9411. amax = ax; max = xb[j];
  9412. }
  9413. }
  9414. if (!amax) {
  9415. scales[ib] = 0;
  9416. continue;
  9417. }
  9418. float d = -max/values[0];
  9419. float id = 1/d;
  9420. float sumqx = 0, sumq2 = 0;
  9421. for (int j = 0; j < block_size; ++j) {
  9422. float al = id*xb[j];
  9423. int l = best_index_int8(16, values, al);
  9424. float q = values[l];
  9425. float w = weight[j];
  9426. sumqx += w*q*xb[j];
  9427. sumq2 += w*q*q;
  9428. }
  9429. d = sumqx/sumq2;
  9430. float best = d*sumqx;
  9431. for (int itry = -ntry; itry <= ntry; ++itry) {
  9432. id = (itry + values[0])/max;
  9433. sumqx = sumq2 = 0;
  9434. for (int j = 0; j < block_size; ++j) {
  9435. float al = id*xb[j];
  9436. int l = best_index_int8(16, values, al);
  9437. float q = values[l];
  9438. float w = weight[j];
  9439. sumqx += w*q*xb[j];
  9440. sumq2 += w*q*q;
  9441. }
  9442. if (sumq2 > 0 && sumqx*sumqx > best*sumq2) {
  9443. d = sumqx/sumq2; best = d * sumqx;
  9444. }
  9445. }
  9446. scales[ib] = d;
  9447. float abs_d = fabsf(d);
  9448. if (abs_d > amax_scale) {
  9449. amax_scale = abs_d; max_scale = d;
  9450. }
  9451. }
  9452. if (super_block_size/block_size > 1) {
  9453. int nb = super_block_size/block_size;
  9454. memset(scales_h, 0, ((nb+7)/8)*sizeof(uint16_t));
  9455. float d = -max_scale/32;
  9456. dh[0] = GGML_FP32_TO_FP16(d);
  9457. float id = d ? 1/d : 0.f;
  9458. for (int ib = 0; ib < super_block_size/block_size; ++ib) {
  9459. int l = nearest_int(id*scales[ib]);
  9460. l = MAX(-32, MIN(31, l));
  9461. float dl = d * l;
  9462. float idl = dl ? 1/dl : 0.f;
  9463. uint8_t * Lb = L + ib*block_size;
  9464. const float * xb = x + ib*block_size;
  9465. for (int j = 0; j < block_size; ++j) {
  9466. Lb[j] = best_index_int8(16, values, idl*xb[j]);
  9467. }
  9468. l += 32;
  9469. uint8_t l_l = l & 0xf;
  9470. uint8_t l_h = l >> 4;
  9471. if (ib%2 == 0) scales_l[ib/2] = l_l;
  9472. else scales_l[ib/2] |= (l_l << 4);
  9473. scales_h[ib/8] |= (l_h << 2*(ib%8));
  9474. }
  9475. } else {
  9476. dh[0] = GGML_FP32_TO_FP16(scales[0]);
  9477. float id = scales[0] ? 1/scales[0] : 0;
  9478. for (int j = 0; j < super_block_size; ++j) {
  9479. L[j] = best_index_int8(16, values, id*x[j]);
  9480. }
  9481. }
  9482. for (int i = 0; i < super_block_size/32; ++i) {
  9483. for (int j = 0; j < 16; ++j) {
  9484. q4[16*i + j] = L[32*i + j] | (L[32*i + 16 + j] << 4);
  9485. }
  9486. }
  9487. }
  9488. size_t quantize_iq4_nl(const float * restrict src, void * restrict dst, int nrow, int n_per_row, const float * quant_weights) {
  9489. GGML_ASSERT(n_per_row%QK4_NL == 0);
  9490. int nblock = n_per_row/QK4_NL;
  9491. char * qrow = (char *)dst;
  9492. uint8_t L[QK4_NL];
  9493. float weight[QK4_NL];
  9494. uint16_t unused_h;
  9495. uint8_t * unused_l = NULL;
  9496. float scale;
  9497. for (int row = 0; row < nrow; ++row) {
  9498. block_iq4_nl * iq4 = (block_iq4_nl *)qrow;
  9499. for (int ibl = 0; ibl < nblock; ++ibl) {
  9500. const float * qw = quant_weights ? quant_weights + QK4_NL*ibl : NULL;
  9501. quantize_row_iq4_nl_impl(QK4_NL, 32, src + QK4_NL*ibl, &iq4[ibl].d, iq4[ibl].qs, &unused_h, unused_l,
  9502. &scale, weight, L, kvalues_iq4nl, qw);
  9503. }
  9504. src += n_per_row;
  9505. qrow += nblock*sizeof(block_iq4_nl);
  9506. }
  9507. return nrow * nblock * sizeof(block_iq4_nl);
  9508. }
  9509. void quantize_row_iq4_nl(const float * restrict x, void * restrict vy, int k) {
  9510. assert(k % QK4_NL == 0);
  9511. block_iq4_nl * restrict y = vy;
  9512. quantize_row_iq4_nl_reference(x, y, k);
  9513. }
  9514. void quantize_row_iq4_nl_reference(const float * restrict x, block_iq4_nl * restrict y, int k) {
  9515. assert(k % QK4_NL == 0);
  9516. quantize_iq4_nl(x, y, 1, k, NULL);
  9517. }
  9518. size_t quantize_iq4_xs(const float * restrict src, void * restrict dst, int nrow, int n_per_row, const float * quant_weights) {
  9519. #if QK_K == 64
  9520. return quantize_iq4_nl(src, dst, nrow, n_per_row, quant_weights);
  9521. #else
  9522. GGML_ASSERT(n_per_row%QK_K == 0);
  9523. int nblock = n_per_row/QK_K;
  9524. char * qrow = (char *)dst;
  9525. uint8_t L[QK_K];
  9526. float weight[32];
  9527. float scales[QK_K/32];
  9528. for (int row = 0; row < nrow; ++row) {
  9529. block_iq4_xs * iq4 = (block_iq4_xs *)qrow;
  9530. for (int ibl = 0; ibl < nblock; ++ibl) {
  9531. const float * qw = quant_weights ? quant_weights + QK_K*ibl : NULL;
  9532. quantize_row_iq4_nl_impl(QK_K, 32, src + QK_K*ibl, &iq4[ibl].d, iq4[ibl].qs, &iq4[ibl].scales_h, iq4[ibl].scales_l,
  9533. scales, weight, L, kvalues_iq4nl, qw);
  9534. }
  9535. src += n_per_row;
  9536. qrow += nblock*sizeof(block_iq4_xs);
  9537. }
  9538. return nrow * nblock * sizeof(block_iq4_xs);
  9539. #endif
  9540. }
  9541. void quantize_row_iq4_xs(const float * restrict x, void * restrict vy, int k) {
  9542. assert(k % QK_K == 0);
  9543. block_iq4_xs * restrict y = vy;
  9544. quantize_row_iq4_xs_reference(x, y, k);
  9545. }
  9546. void quantize_row_iq4_xs_reference(const float * restrict x, block_iq4_xs * restrict y, int k) {
  9547. assert(k % QK_K == 0);
  9548. quantize_iq4_xs(x, y, 1, k, NULL);
  9549. }
  9550. // =============================== 2.5625 bpw
  9551. static void quantize_row_iq2_s_impl(const float * restrict x, void * restrict vy, int n, const float * restrict quant_weights) {
  9552. const int gindex = iq2_data_index(GGML_TYPE_IQ2_S);
  9553. const uint64_t * kgrid_q2xs = iq2_data[gindex].grid;
  9554. const int * kmap_q2xs = iq2_data[gindex].map;
  9555. const uint16_t * kneighbors_q2xs = iq2_data[gindex].neighbours;
  9556. GGML_ASSERT(kmap_q2xs && "forgot to call ggml_quantize_init()?");
  9557. GGML_ASSERT(kgrid_q2xs && "forgot to call ggml_quantize_init()?");
  9558. GGML_ASSERT(kneighbors_q2xs && "forgot to call ggml_quantize_init()?");
  9559. GGML_ASSERT(n%QK_K == 0);
  9560. const int kMaxQ = 3;
  9561. const int nbl = n/QK_K;
  9562. block_iq2_s * y = vy;
  9563. float scales[QK_K/16];
  9564. float weight[16];
  9565. float xval[16];
  9566. int8_t L[16];
  9567. int8_t Laux[16];
  9568. float waux[16];
  9569. bool is_on_grid[2];
  9570. bool is_on_grid_aux[2];
  9571. uint8_t block_signs[2];
  9572. for (int ibl = 0; ibl < nbl; ++ibl) {
  9573. memset(&y[ibl], 0, sizeof(block_iq2_s));
  9574. y[ibl].d = GGML_FP32_TO_FP16(0.f);
  9575. float max_scale = 0;
  9576. const float * xbl = x + QK_K*ibl;
  9577. float sumx2 = 0;
  9578. for (int i = 0; i < QK_K; ++i) sumx2 += xbl[i]*xbl[i];
  9579. float sigma2 = 2*sumx2/QK_K;
  9580. for (int ib = 0; ib < QK_K/16; ++ib) {
  9581. const float * xb = xbl + 16*ib;
  9582. if (quant_weights) {
  9583. const float * qw = quant_weights + QK_K*ibl + 16*ib;
  9584. for (int i = 0; i < 16; ++i) weight[i] = qw[i] * sqrtf(sigma2 + xb[i]*xb[i]);
  9585. } else {
  9586. for (int i = 0; i < 16; ++i) weight[i] = 0.25f*sigma2 + xb[i]*xb[i];
  9587. }
  9588. for (int i = 0; i < 16; ++i) waux[i] = sqrtf(weight[i]);
  9589. for (int k = 0; k < 2; ++k) {
  9590. uint8_t s = 0;
  9591. for (int i = 0; i < 8; ++i) {
  9592. if (xb[8*k + i] >= 0) xval[8*k + i] = xb[8*k + i];
  9593. else {
  9594. xval[8*k + i] = -xb[8*k + i]; s |= (1 << i);
  9595. }
  9596. }
  9597. block_signs[k] = s;
  9598. }
  9599. float max = xval[0];
  9600. for (int i = 1; i < 16; ++i) max = MAX(max, xval[i]);
  9601. if (!max) {
  9602. scales[ib] = 0;
  9603. continue;
  9604. }
  9605. float best = 0;
  9606. float scale = max/(2*kMaxQ-1);
  9607. is_on_grid[0] = is_on_grid[1] = true;
  9608. for (int is = -9; is <= 9; ++is) {
  9609. float id = (2*kMaxQ-1+is*0.1f)/max;
  9610. float this_scale = 1/id;
  9611. for (int k = 0; k < 2; ++k) {
  9612. for (int i = 0; i < 8; ++i) {
  9613. int l = nearest_int(0.5f*(id*xval[8*k+i]-1));
  9614. Laux[8*k+i] = MAX(0, MIN(kMaxQ-1, l));
  9615. }
  9616. uint16_t u = 0;
  9617. for (int i = 0; i < 8; ++i) u |= (Laux[8*k+i] << 2*i);
  9618. int grid_index = kmap_q2xs[u];
  9619. is_on_grid_aux[k] = true;
  9620. if (grid_index < 0) {
  9621. is_on_grid_aux[k] = false;
  9622. const uint16_t * neighbours = kneighbors_q2xs - kmap_q2xs[u] - 1;
  9623. grid_index = iq2_find_best_neighbour(neighbours, kgrid_q2xs, xval + 8*k, waux + 8*k, this_scale, Laux + 8*k);
  9624. }
  9625. }
  9626. float sumqx = 0, sumq2 = 0;
  9627. for (int i = 0; i < 16; ++i) {
  9628. float w = weight[i];
  9629. float q = 2*Laux[i] + 1;
  9630. sumqx += w*xval[i]*q;
  9631. sumq2 += w*q*q;
  9632. }
  9633. if (sumq2 > 0 && sumqx*sumqx > best*sumq2) {
  9634. scale = sumqx/sumq2; best = scale*sumqx;
  9635. for (int i = 0; i < 16; ++i) L[i] = Laux[i];
  9636. for (int k = 0; k < 2; ++k) is_on_grid[k] = is_on_grid_aux[k];
  9637. }
  9638. }
  9639. int n_not_ongrid = 0;
  9640. for (int k = 0; k < 2; ++k) if (!is_on_grid[k]) ++n_not_ongrid;
  9641. if (n_not_ongrid > 0 && scale > 0) {
  9642. float id = 1/scale;
  9643. for (int k = 0; k < 2; ++k) {
  9644. if (is_on_grid[k]) continue;
  9645. uint16_t u = 0;
  9646. for (int i = 0; i < 8; ++i) {
  9647. int l = nearest_int(0.5f*(id*xval[8*k+i]-1));
  9648. l = MAX(0, MIN(kMaxQ-1, l));
  9649. u |= (l << 2*i);
  9650. L[8*k + i] = l;
  9651. }
  9652. int grid_index = kmap_q2xs[u];
  9653. if (grid_index < 0) {
  9654. const uint16_t * neighbours = kneighbors_q2xs - kmap_q2xs[u] - 1;
  9655. grid_index = iq2_find_best_neighbour(neighbours, kgrid_q2xs, xval + 8*k, waux + 8*k, scale, L + 8*k);
  9656. }
  9657. }
  9658. float sumqx = 0, sumq2 = 0;
  9659. for (int i = 0; i < 16; ++i) {
  9660. float w = weight[i];
  9661. float q = 2*L[i] + 1;
  9662. sumqx += w*xval[i]*q;
  9663. sumq2 += w*q*q;
  9664. }
  9665. if (sumq2 > 0) scale = sumqx/sumq2;
  9666. }
  9667. if (scale < 0) {
  9668. scale = -scale;
  9669. for (int k = 0; k < 2; ++k) block_signs[k] = ~block_signs[k];
  9670. }
  9671. for (int k = 0; k < 2; ++k) {
  9672. uint16_t u = 0;
  9673. for (int i = 0; i < 8; ++i) u |= (L[8*k+i] << 2*i);
  9674. int grid_index = kmap_q2xs[u];
  9675. if (grid_index < 0) {
  9676. printf("Oops: found point %u not on grid:", u);
  9677. for (int i = 0; i < 8; ++i) printf(" %d", L[8*k+i]);
  9678. printf("\n");
  9679. GGML_ASSERT(false);
  9680. }
  9681. const int i8 = 2*ib + k;
  9682. y[ibl].qs[i8] = grid_index & 255;
  9683. y[ibl].qh[i8/4] |= ((grid_index >> 8) << 2*(i8%4));
  9684. y[ibl].qs[QK_K/8 + i8] = block_signs[k];
  9685. }
  9686. GGML_ASSERT(scale >= 0);
  9687. scales[ib] = scale;
  9688. max_scale = MAX(max_scale, scale);
  9689. }
  9690. if (!max_scale) {
  9691. continue;
  9692. }
  9693. float d = max_scale/31;
  9694. y[ibl].d = GGML_FP32_TO_FP16(d * 0.9875f);
  9695. float id = 1/d;
  9696. for (int ib = 0; ib < QK_K/16; ++ib) {
  9697. int l = nearest_int(0.5f*(id*scales[ib]-1));
  9698. l = MAX(0, MIN(15, l));
  9699. if (ib%2 == 0) y[ibl].scales[ib/2] = l;
  9700. else y[ibl].scales[ib/2] |= (l << 4);
  9701. }
  9702. }
  9703. }
  9704. size_t quantize_iq2_s(const float * restrict src, void * restrict dst, int nrow, int n_per_row, const float * quant_weights) {
  9705. GGML_ASSERT(n_per_row%QK_K == 0);
  9706. int nblock = n_per_row/QK_K;
  9707. char * qrow = (char *)dst;
  9708. for (int row = 0; row < nrow; ++row) {
  9709. quantize_row_iq2_s_impl(src, qrow, n_per_row, quant_weights);
  9710. src += n_per_row;
  9711. qrow += nblock*sizeof(block_iq2_s);
  9712. }
  9713. return nrow * nblock * sizeof(block_iq2_s);
  9714. }
  9715. void quantize_row_iq2_s_reference(const float * restrict x, block_iq2_s * restrict y, int k) {
  9716. assert(k % QK_K == 0);
  9717. quantize_iq2_s(x, y, 1, k, NULL);
  9718. }
  9719. void quantize_row_iq2_s(const float * restrict x, void * restrict vy, int k) {
  9720. assert(k % QK_K == 0);
  9721. block_iq2_s * restrict y = vy;
  9722. quantize_row_iq2_s_reference(x, y, k);
  9723. }