convert_hf_to_gguf.py 220 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888
  1. #!/usr/bin/env python3
  2. # -*- coding: utf-8 -*-
  3. from __future__ import annotations
  4. import ast
  5. import logging
  6. import argparse
  7. import contextlib
  8. import json
  9. import os
  10. import re
  11. import sys
  12. from enum import IntEnum
  13. from pathlib import Path
  14. from hashlib import sha256
  15. from typing import TYPE_CHECKING, Any, Callable, ContextManager, Iterable, Iterator, Literal, Sequence, TypeVar, cast
  16. from itertools import chain
  17. import math
  18. import numpy as np
  19. import torch
  20. if TYPE_CHECKING:
  21. from torch import Tensor
  22. if 'NO_LOCAL_GGUF' not in os.environ:
  23. sys.path.insert(1, str(Path(__file__).parent / 'gguf-py'))
  24. import gguf
  25. logger = logging.getLogger("hf-to-gguf")
  26. ###### MODEL DEFINITIONS ######
  27. class SentencePieceTokenTypes(IntEnum):
  28. NORMAL = 1
  29. UNKNOWN = 2
  30. CONTROL = 3
  31. USER_DEFINED = 4
  32. UNUSED = 5
  33. BYTE = 6
  34. AnyModel = TypeVar("AnyModel", bound="type[Model]")
  35. class Model:
  36. _model_classes: dict[str, type[Model]] = {}
  37. dir_model: Path
  38. ftype: gguf.LlamaFileType
  39. fname_out: Path
  40. is_big_endian: bool
  41. endianess: gguf.GGUFEndian
  42. use_temp_file: bool
  43. lazy: bool
  44. part_names: list[str]
  45. is_safetensors: bool
  46. hparams: dict[str, Any]
  47. block_count: int
  48. tensor_map: gguf.TensorNameMap
  49. tensor_names: set[str] | None
  50. gguf_writer: gguf.GGUFWriter
  51. model_name: str | None
  52. metadata_override: Path | None
  53. dir_model_card: Path
  54. # subclasses should define this!
  55. model_arch: gguf.MODEL_ARCH
  56. def __init__(self, dir_model: Path, ftype: gguf.LlamaFileType, fname_out: Path, is_big_endian: bool = False,
  57. use_temp_file: bool = False, eager: bool = False,
  58. metadata_override: Path | None = None, model_name: str | None = None,
  59. split_max_tensors: int = 0, split_max_size: int = 0, dry_run: bool = False,
  60. small_first_shard: bool = False, hparams: dict[str, Any] | None = None):
  61. if type(self) is Model:
  62. raise TypeError(f"{type(self).__name__!r} should not be directly instantiated")
  63. self.dir_model = dir_model
  64. self.ftype = ftype
  65. self.fname_out = fname_out
  66. self.is_big_endian = is_big_endian
  67. self.endianess = gguf.GGUFEndian.BIG if is_big_endian else gguf.GGUFEndian.LITTLE
  68. self.use_temp_file = use_temp_file
  69. self.lazy = not eager
  70. self.part_names = Model.get_model_part_names(self.dir_model, "model", ".safetensors")
  71. self.is_safetensors = len(self.part_names) > 0
  72. if not self.is_safetensors:
  73. self.part_names = Model.get_model_part_names(self.dir_model, "pytorch_model", ".bin")
  74. self.hparams = Model.load_hparams(self.dir_model) if hparams is None else hparams
  75. self.block_count = self.find_hparam(["n_layers", "num_hidden_layers", "n_layer", "num_layers"])
  76. self.tensor_map = gguf.get_tensor_name_map(self.model_arch, self.block_count)
  77. self.tensor_names = None
  78. self.metadata_override = metadata_override
  79. self.model_name = model_name
  80. self.dir_model_card = dir_model # overridden in convert_lora_to_gguf.py
  81. # Apply heuristics to figure out typical tensor encoding based on first layer tensor encoding type
  82. if self.ftype == gguf.LlamaFileType.GUESSED:
  83. # NOTE: can't use field "torch_dtype" in config.json, because some finetunes lie.
  84. _, first_tensor = next(self.get_tensors())
  85. if first_tensor.dtype == torch.float16:
  86. logger.info(f"choosing --outtype f16 from first tensor type ({first_tensor.dtype})")
  87. self.ftype = gguf.LlamaFileType.MOSTLY_F16
  88. else:
  89. logger.info(f"choosing --outtype bf16 from first tensor type ({first_tensor.dtype})")
  90. self.ftype = gguf.LlamaFileType.MOSTLY_BF16
  91. # Configure GGUF Writer
  92. self.gguf_writer = gguf.GGUFWriter(path=None, arch=gguf.MODEL_ARCH_NAMES[self.model_arch], endianess=self.endianess, use_temp_file=self.use_temp_file,
  93. split_max_tensors=split_max_tensors, split_max_size=split_max_size, dry_run=dry_run, small_first_shard=small_first_shard)
  94. @classmethod
  95. def __init_subclass__(cls):
  96. # can't use an abstract property, because overriding it without type errors
  97. # would require using decorated functions instead of simply defining the property
  98. if "model_arch" not in cls.__dict__:
  99. raise TypeError(f"Missing property 'model_arch' for {cls.__name__!r}")
  100. def find_hparam(self, keys: Iterable[str], optional: bool = False) -> Any:
  101. key = next((k for k in keys if k in self.hparams), None)
  102. if key is not None:
  103. return self.hparams[key]
  104. if optional:
  105. return None
  106. raise KeyError(f"could not find any of: {keys}")
  107. def set_vocab(self):
  108. self._set_vocab_gpt2()
  109. def get_tensors(self) -> Iterator[tuple[str, Tensor]]:
  110. tensor_names_from_parts: set[str] = set()
  111. index_name = "model.safetensors" if self.is_safetensors else "pytorch_model.bin"
  112. index_name += ".index.json"
  113. index_file = self.dir_model / index_name
  114. if index_file.is_file():
  115. self.tensor_names = set()
  116. logger.info(f"gguf: loading model weight map from '{index_name}'")
  117. with open(index_file, "r", encoding="utf-8") as f:
  118. index: dict[str, Any] = json.load(f)
  119. weight_map = index.get("weight_map")
  120. if weight_map is None or not isinstance(weight_map, dict):
  121. raise ValueError(f"Can't load 'weight_map' from {index_name!r}")
  122. self.tensor_names.update(weight_map.keys())
  123. else:
  124. self.tensor_names = tensor_names_from_parts
  125. weight_map = {}
  126. for part_name in self.part_names:
  127. logger.info(f"gguf: loading model part '{part_name}'")
  128. ctx: ContextManager[Any]
  129. if self.is_safetensors:
  130. from safetensors import safe_open
  131. ctx = cast(ContextManager[Any], safe_open(self.dir_model / part_name, framework="pt", device="cpu"))
  132. else:
  133. ctx = contextlib.nullcontext(torch.load(str(self.dir_model / part_name), map_location="cpu", mmap=True, weights_only=True))
  134. with ctx as model_part:
  135. tensor_names_from_parts.update(model_part.keys())
  136. for name in model_part.keys():
  137. if self.is_safetensors:
  138. if self.lazy:
  139. data = model_part.get_slice(name)
  140. data = LazyTorchTensor.from_safetensors_slice(data)
  141. else:
  142. data = model_part.get_tensor(name)
  143. else:
  144. data = model_part[name]
  145. if self.lazy:
  146. data = LazyTorchTensor.from_eager(data)
  147. yield name, data
  148. # verify tensor name presence and identify potentially missing files
  149. if len(tensor_names_from_parts.symmetric_difference(self.tensor_names)) > 0:
  150. missing = sorted(self.tensor_names.difference(tensor_names_from_parts))
  151. extra = sorted(tensor_names_from_parts.difference(self.tensor_names))
  152. missing_files = sorted(set(weight_map[n] for n in missing if n in weight_map))
  153. if len(extra) == 0 and len(missing_files) > 0:
  154. raise ValueError(f"Missing or incomplete model files: {missing_files}")
  155. else:
  156. raise ValueError("Mismatch between weight map and model parts for tensor names:\n"
  157. f"Missing tensors: {missing}\n"
  158. f"Extra tensors: {extra}")
  159. def format_tensor_name(self, key: gguf.MODEL_TENSOR, bid: int | None = None, suffix: str = ".weight") -> str:
  160. if key not in gguf.MODEL_TENSORS[self.model_arch]:
  161. raise ValueError(f"Missing {key!r} for MODEL_TENSORS of {self.model_arch!r}")
  162. name: str = gguf.TENSOR_NAMES[key]
  163. if "{bid}" in name:
  164. assert bid is not None
  165. name = name.format(bid=bid)
  166. return name + suffix
  167. def match_model_tensor_name(self, name: str, key: gguf.MODEL_TENSOR, bid: int | None, suffix: str = ".weight") -> bool:
  168. if key not in gguf.MODEL_TENSORS[self.model_arch]:
  169. return False
  170. key_name: str = gguf.TENSOR_NAMES[key]
  171. if "{bid}" in key_name:
  172. if bid is None:
  173. return False
  174. key_name = key_name.format(bid=bid)
  175. else:
  176. if bid is not None:
  177. return False
  178. return name == (key_name + suffix)
  179. def map_tensor_name(self, name: str, try_suffixes: Sequence[str] = (".weight", ".bias")) -> str:
  180. new_name = self.tensor_map.get_name(key=name, try_suffixes=try_suffixes)
  181. if new_name is None:
  182. raise ValueError(f"Can not map tensor {name!r}")
  183. return new_name
  184. def set_gguf_parameters(self):
  185. self.gguf_writer.add_block_count(self.block_count)
  186. if (n_ctx := self.find_hparam(["max_position_embeddings", "n_ctx"], optional=True)) is not None:
  187. self.gguf_writer.add_context_length(n_ctx)
  188. logger.info(f"gguf: context length = {n_ctx}")
  189. if (n_embd := self.find_hparam(["hidden_size", "n_embd"], optional=True)) is not None:
  190. self.gguf_writer.add_embedding_length(n_embd)
  191. logger.info(f"gguf: embedding length = {n_embd}")
  192. if (n_ff := self.find_hparam(["intermediate_size", "n_inner"], optional=True)) is not None:
  193. self.gguf_writer.add_feed_forward_length(n_ff)
  194. logger.info(f"gguf: feed forward length = {n_ff}")
  195. if (n_head := self.find_hparam(["num_attention_heads", "n_head"], optional=True)) is not None:
  196. self.gguf_writer.add_head_count(n_head)
  197. logger.info(f"gguf: head count = {n_head}")
  198. if (n_head_kv := self.hparams.get("num_key_value_heads")) is not None:
  199. self.gguf_writer.add_head_count_kv(n_head_kv)
  200. logger.info(f"gguf: key-value head count = {n_head_kv}")
  201. if (rope_theta := self.hparams.get("rope_theta")) is not None:
  202. self.gguf_writer.add_rope_freq_base(rope_theta)
  203. logger.info(f"gguf: rope theta = {rope_theta}")
  204. if (f_rms_eps := self.hparams.get("rms_norm_eps")) is not None:
  205. self.gguf_writer.add_layer_norm_rms_eps(f_rms_eps)
  206. logger.info(f"gguf: rms norm epsilon = {f_rms_eps}")
  207. if (f_norm_eps := self.find_hparam(["layer_norm_eps", "layer_norm_epsilon", "norm_epsilon"], optional=True)) is not None:
  208. self.gguf_writer.add_layer_norm_eps(f_norm_eps)
  209. logger.info(f"gguf: layer norm epsilon = {f_norm_eps}")
  210. if (n_experts := self.hparams.get("num_local_experts")) is not None:
  211. self.gguf_writer.add_expert_count(n_experts)
  212. logger.info(f"gguf: expert count = {n_experts}")
  213. if (n_experts_used := self.hparams.get("num_experts_per_tok")) is not None:
  214. self.gguf_writer.add_expert_used_count(n_experts_used)
  215. logger.info(f"gguf: experts used count = {n_experts_used}")
  216. if (head_dim := self.hparams.get("head_dim")) is not None:
  217. self.gguf_writer.add_key_length(head_dim)
  218. self.gguf_writer.add_value_length(head_dim)
  219. self.gguf_writer.add_file_type(self.ftype)
  220. logger.info(f"gguf: file type = {self.ftype}")
  221. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  222. del bid # unused
  223. return [(self.map_tensor_name(name), data_torch)]
  224. def tensor_force_quant(self, name: str, new_name: str, bid: int | None, n_dims: int) -> gguf.GGMLQuantizationType | bool:
  225. del name, new_name, bid, n_dims # unused
  226. return False
  227. # some models need extra generated tensors (like rope_freqs)
  228. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  229. return ()
  230. def prepare_tensors(self):
  231. max_name_len = max(len(s) for _, s in self.tensor_map.mapping.values()) + len(".weight,")
  232. for name, data_torch in chain(self.generate_extra_tensors(), self.get_tensors()):
  233. # we don't need these
  234. if name.endswith((".attention.masked_bias", ".attention.bias", ".rotary_emb.inv_freq")):
  235. continue
  236. old_dtype = data_torch.dtype
  237. # convert any unsupported data types to float32
  238. if data_torch.dtype not in (torch.float16, torch.float32):
  239. data_torch = data_torch.to(torch.float32)
  240. # use the first number-like part of the tensor name as the block id
  241. bid = None
  242. for part in name.split("."):
  243. if part.isdecimal():
  244. bid = int(part)
  245. break
  246. for new_name, data_torch in (self.modify_tensors(data_torch, name, bid)):
  247. # TODO: why do we squeeze here?
  248. # data = data_torch.squeeze().numpy()
  249. data = data_torch.numpy()
  250. # if data ends up empty, it means data_torch was a scalar tensor -> restore
  251. if len(data.shape) == 0:
  252. data = data_torch.numpy()
  253. n_dims = len(data.shape)
  254. data_qtype: gguf.GGMLQuantizationType | bool = self.tensor_force_quant(name, new_name, bid, n_dims)
  255. # Most of the codebase that takes in 1D tensors or norms only handles F32 tensors
  256. if n_dims <= 1 or new_name.endswith("_norm.weight"):
  257. data_qtype = gguf.GGMLQuantizationType.F32
  258. # Conditions should closely match those in llama_model_quantize_internal in llama.cpp
  259. # Some tensor types are always in float32
  260. if data_qtype is False and (
  261. any(
  262. self.match_model_tensor_name(new_name, key, bid)
  263. for key in (
  264. gguf.MODEL_TENSOR.FFN_GATE_INP,
  265. gguf.MODEL_TENSOR.POS_EMBD,
  266. gguf.MODEL_TENSOR.TOKEN_TYPES,
  267. gguf.MODEL_TENSOR.SSM_CONV1D,
  268. gguf.MODEL_TENSOR.TIME_MIX_FIRST,
  269. gguf.MODEL_TENSOR.TIME_MIX_W1,
  270. gguf.MODEL_TENSOR.TIME_MIX_W2,
  271. gguf.MODEL_TENSOR.TIME_MIX_DECAY_W1,
  272. gguf.MODEL_TENSOR.TIME_MIX_DECAY_W2,
  273. gguf.MODEL_TENSOR.POSNET_NORM1,
  274. gguf.MODEL_TENSOR.POSNET_NORM2,
  275. )
  276. )
  277. or not new_name.endswith(".weight")
  278. ):
  279. data_qtype = gguf.GGMLQuantizationType.F32
  280. if data_qtype is False and any(
  281. self.match_model_tensor_name(new_name, key, bid)
  282. for key in (
  283. gguf.MODEL_TENSOR.TOKEN_EMBD,
  284. gguf.MODEL_TENSOR.OUTPUT,
  285. )
  286. ):
  287. if self.ftype in (
  288. gguf.LlamaFileType.MOSTLY_TQ1_0,
  289. gguf.LlamaFileType.MOSTLY_TQ2_0,
  290. ):
  291. # TODO: use Q4_K and Q6_K
  292. data_qtype = gguf.GGMLQuantizationType.F16
  293. # No override (data_qtype is False), or wants to be quantized (data_qtype is True)
  294. if isinstance(data_qtype, bool):
  295. if self.ftype == gguf.LlamaFileType.ALL_F32:
  296. data_qtype = gguf.GGMLQuantizationType.F32
  297. elif self.ftype == gguf.LlamaFileType.MOSTLY_F16:
  298. data_qtype = gguf.GGMLQuantizationType.F16
  299. elif self.ftype == gguf.LlamaFileType.MOSTLY_BF16:
  300. data_qtype = gguf.GGMLQuantizationType.BF16
  301. elif self.ftype == gguf.LlamaFileType.MOSTLY_Q8_0:
  302. data_qtype = gguf.GGMLQuantizationType.Q8_0
  303. elif self.ftype == gguf.LlamaFileType.MOSTLY_TQ1_0:
  304. data_qtype = gguf.GGMLQuantizationType.TQ1_0
  305. elif self.ftype == gguf.LlamaFileType.MOSTLY_TQ2_0:
  306. data_qtype = gguf.GGMLQuantizationType.TQ2_0
  307. else:
  308. raise ValueError(f"Unknown file type: {self.ftype.name}")
  309. try:
  310. data = gguf.quants.quantize(data, data_qtype)
  311. except gguf.QuantError as e:
  312. logger.warning("%s, %s", e, "falling back to F16")
  313. data_qtype = gguf.GGMLQuantizationType.F16
  314. data = gguf.quants.quantize(data, data_qtype)
  315. shape = gguf.quant_shape_from_byte_shape(data.shape, data_qtype) if data.dtype == np.uint8 else data.shape
  316. # reverse shape to make it similar to the internal ggml dimension order
  317. shape_str = f"{{{', '.join(str(n) for n in reversed(shape))}}}"
  318. # n_dims is implicit in the shape
  319. logger.info(f"{f'%-{max_name_len}s' % f'{new_name},'} {old_dtype} --> {data_qtype.name}, shape = {shape_str}")
  320. self.gguf_writer.add_tensor(new_name, data, raw_dtype=data_qtype)
  321. def set_type(self):
  322. self.gguf_writer.add_type(gguf.GGUFType.MODEL)
  323. def prepare_metadata(self, vocab_only: bool):
  324. total_params, shared_params, expert_params, expert_count = self.gguf_writer.get_total_parameter_count()
  325. self.metadata = gguf.Metadata.load(self.metadata_override, self.dir_model_card, self.model_name, total_params)
  326. # Fallback to model directory name if metadata name is still missing
  327. if self.metadata.name is None:
  328. self.metadata.name = self.dir_model.name
  329. # Generate parameter weight class (useful for leader boards) if not yet determined
  330. if self.metadata.size_label is None and total_params > 0:
  331. self.metadata.size_label = gguf.size_label(total_params, shared_params, expert_params, expert_count)
  332. # Extract the encoding scheme from the file type name. e.g. 'gguf.LlamaFileType.MOSTLY_Q8_0' --> 'Q8_0'
  333. output_type: str = self.ftype.name.partition("_")[2]
  334. # Filename Output
  335. if self.fname_out.is_dir():
  336. # Generate default filename based on model specification and available metadata
  337. if not vocab_only:
  338. fname_default: str = gguf.naming_convention(self.metadata.name, self.metadata.basename, self.metadata.finetune, self.metadata.version, self.metadata.size_label, output_type, model_type="LoRA" if total_params < 0 else None)
  339. else:
  340. fname_default: str = gguf.naming_convention(self.metadata.name, self.metadata.basename, self.metadata.finetune, self.metadata.version, size_label=None, output_type=None, model_type="vocab")
  341. # Use the default filename
  342. self.fname_out = self.fname_out / f"{fname_default}.gguf"
  343. else:
  344. # Output path is a custom defined templated filename
  345. # Note: `not is_dir()` is used because `.is_file()` will not detect
  346. # file template strings as it doesn't actually exist as a file
  347. # Process templated file name with the output ftype, useful with the "auto" ftype
  348. self.fname_out = self.fname_out.parent / gguf.fill_templated_filename(self.fname_out.name, output_type)
  349. self.set_type()
  350. logger.info("Set meta model")
  351. self.metadata.set_gguf_meta_model(self.gguf_writer)
  352. logger.info("Set model parameters")
  353. self.set_gguf_parameters()
  354. logger.info("Set model tokenizer")
  355. self.set_vocab()
  356. logger.info("Set model quantization version")
  357. self.gguf_writer.add_quantization_version(gguf.GGML_QUANT_VERSION)
  358. def write(self):
  359. self.prepare_tensors()
  360. self.prepare_metadata(vocab_only=False)
  361. self.gguf_writer.write_header_to_file(path=self.fname_out)
  362. self.gguf_writer.write_kv_data_to_file()
  363. self.gguf_writer.write_tensors_to_file(progress=True)
  364. self.gguf_writer.close()
  365. def write_vocab(self):
  366. if len(self.gguf_writer.tensors) != 1:
  367. raise ValueError('Splitting the vocabulary is not supported')
  368. self.prepare_metadata(vocab_only=True)
  369. self.gguf_writer.write_header_to_file(path=self.fname_out)
  370. self.gguf_writer.write_kv_data_to_file()
  371. self.gguf_writer.close()
  372. @staticmethod
  373. def get_model_part_names(dir_model: Path, prefix: str, suffix: str) -> list[str]:
  374. part_names: list[str] = []
  375. for filename in os.listdir(dir_model):
  376. if filename.startswith(prefix) and filename.endswith(suffix):
  377. part_names.append(filename)
  378. part_names.sort()
  379. return part_names
  380. @staticmethod
  381. def load_hparams(dir_model: Path):
  382. with open(dir_model / "config.json", "r", encoding="utf-8") as f:
  383. return json.load(f)
  384. @classmethod
  385. def register(cls, *names: str) -> Callable[[AnyModel], AnyModel]:
  386. assert names
  387. def func(modelcls: AnyModel) -> AnyModel:
  388. for name in names:
  389. cls._model_classes[name] = modelcls
  390. return modelcls
  391. return func
  392. @classmethod
  393. def from_model_architecture(cls, arch: str) -> type[Model]:
  394. try:
  395. return cls._model_classes[arch]
  396. except KeyError:
  397. raise NotImplementedError(f'Architecture {arch!r} not supported!') from None
  398. def does_token_look_special(self, token: str | bytes) -> bool:
  399. if isinstance(token, (bytes, bytearray)):
  400. token_text = token.decode(encoding="utf-8")
  401. elif isinstance(token, memoryview):
  402. token_text = token.tobytes().decode(encoding="utf-8")
  403. else:
  404. token_text = token
  405. # Some models mark some added tokens which ought to be control tokens as not special.
  406. # (e.g. command-r, command-r-plus, deepseek-coder, gemma{,-2})
  407. seems_special = token_text in (
  408. "<pad>", # deepseek-coder
  409. "<mask>", "<2mass>", "[@BOS@]", # gemma{,-2}
  410. )
  411. seems_special = seems_special or (token_text.startswith("<|") and token_text.endswith("|>"))
  412. seems_special = seems_special or (token_text.startswith("<|") and token_text.endswith("|>")) # deepseek-coder
  413. # TODO: should these be marked as UNUSED instead? (maybe not)
  414. seems_special = seems_special or (token_text.startswith("<unused") and token_text.endswith(">")) # gemma{,-2}
  415. return seems_special
  416. # used for GPT-2 BPE and WordPiece vocabs
  417. def get_vocab_base(self) -> tuple[list[str], list[int], str]:
  418. tokens: list[str] = []
  419. toktypes: list[int] = []
  420. from transformers import AutoTokenizer
  421. tokenizer = AutoTokenizer.from_pretrained(self.dir_model)
  422. vocab_size = self.hparams.get("vocab_size", len(tokenizer.vocab))
  423. assert max(tokenizer.vocab.values()) < vocab_size
  424. tokpre = self.get_vocab_base_pre(tokenizer)
  425. reverse_vocab = {id_: encoded_tok for encoded_tok, id_ in tokenizer.vocab.items()}
  426. added_vocab = tokenizer.get_added_vocab()
  427. for i in range(vocab_size):
  428. if i not in reverse_vocab:
  429. tokens.append(f"[PAD{i}]")
  430. toktypes.append(gguf.TokenType.UNUSED)
  431. else:
  432. token: str = reverse_vocab[i]
  433. if token in added_vocab:
  434. # The tokenizer in llama.cpp assumes the CONTROL and USER_DEFINED tokens are pre-normalized.
  435. # To avoid unexpected issues - we make sure to normalize non-normalized tokens
  436. if not tokenizer.added_tokens_decoder[i].normalized:
  437. previous_token = token
  438. token = tokenizer.decode(tokenizer.encode(token, add_special_tokens=False))
  439. if previous_token != token:
  440. logger.info(f"{repr(previous_token)} is encoded and decoded back to {repr(token)} using AutoTokenizer")
  441. if tokenizer.added_tokens_decoder[i].special or self.does_token_look_special(token):
  442. toktypes.append(gguf.TokenType.CONTROL)
  443. else:
  444. # NOTE: this was added for Gemma.
  445. # Encoding and decoding the tokens above isn't sufficient for this case.
  446. token = token.replace(b"\xe2\x96\x81".decode("utf-8"), " ") # pre-normalize user-defined spaces
  447. toktypes.append(gguf.TokenType.USER_DEFINED)
  448. else:
  449. toktypes.append(gguf.TokenType.NORMAL)
  450. tokens.append(token)
  451. return tokens, toktypes, tokpre
  452. # NOTE: this function is generated by convert_hf_to_gguf_update.py
  453. # do not modify it manually!
  454. # ref: https://github.com/ggerganov/llama.cpp/pull/6920
  455. # Marker: Start get_vocab_base_pre
  456. def get_vocab_base_pre(self, tokenizer) -> str:
  457. # encoding this string and hashing the resulting tokens would (hopefully) give us a unique identifier that
  458. # is specific for the BPE pre-tokenizer used by the model
  459. # we will use this unique identifier to write a "tokenizer.ggml.pre" entry in the GGUF file which we can
  460. # use in llama.cpp to implement the same pre-tokenizer
  461. chktxt = '\n \n\n \n\n\n \t \t\t \t\n \n \n \n \n🚀 (normal) 😶\u200d🌫️ (multiple emojis concatenated) ✅ 🦙🦙 3 33 333 3333 33333 333333 3333333 33333333 3.3 3..3 3...3 កាន់តែពិសេសអាច😁 ?我想在apple工作1314151天~ ------======= нещо на Български \'\'\'\'\'\'```````""""......!!!!!!?????? I\'ve been \'told he\'s there, \'RE you sure? \'M not sure I\'ll make it, \'D you like some tea? We\'Ve a\'lL'
  462. chktok = tokenizer.encode(chktxt)
  463. chkhsh = sha256(str(chktok).encode()).hexdigest()
  464. logger.debug(f"chktok: {chktok}")
  465. logger.debug(f"chkhsh: {chkhsh}")
  466. res = None
  467. # NOTE: if you get an error here, you need to update the convert_hf_to_gguf_update.py script
  468. # or pull the latest version of the model from Huggingface
  469. # don't edit the hashes manually!
  470. if chkhsh == "0ef9807a4087ebef797fc749390439009c3b9eda9ad1a097abbe738f486c01e5":
  471. # ref: https://huggingface.co/meta-llama/Meta-Llama-3-8B
  472. res = "llama-bpe"
  473. if chkhsh == "049ecf7629871e3041641907f3de7c733e4dbfdc736f57d882ba0b0845599754":
  474. # ref: https://huggingface.co/deepseek-ai/deepseek-llm-7b-base
  475. res = "deepseek-llm"
  476. if chkhsh == "347715f544604f9118bb75ed199f68779f423cabb20db6de6f31b908d04d7821":
  477. # ref: https://huggingface.co/deepseek-ai/deepseek-coder-6.7b-base
  478. res = "deepseek-coder"
  479. if chkhsh == "8aeee3860c56296a157a1fe2fad249ec40aa59b1bb5709f4ade11c4e6fe652ed":
  480. # ref: https://huggingface.co/tiiuae/falcon-7b
  481. res = "falcon"
  482. if chkhsh == "9d032fcbd5501f4a38150912590928bfb36091efb5df11b8e2124b0390e3fb1e":
  483. # ref: https://huggingface.co/tiiuae/Falcon3-7B-Base
  484. res = "falcon3"
  485. if chkhsh == "0876d13b50744004aa9aeae05e7b0647eac9d801b5ba4668afc01e709c15e19f":
  486. # ref: https://huggingface.co/BAAI/bge-small-en-v1.5
  487. res = "bert-bge"
  488. if chkhsh == "8e62295832751ca1e8f92f2226f403dea30dc5165e448b5bfa05af5340c64ec7":
  489. # ref: https://huggingface.co/BAAI/bge-large-zh-v1.5
  490. res = "bert-bge-large"
  491. if chkhsh == "b6dc8df998e1cfbdc4eac8243701a65afe638679230920b50d6f17d81c098166":
  492. # ref: https://huggingface.co/mosaicml/mpt-7b
  493. res = "mpt"
  494. if chkhsh == "35d91631860c815f952d711435f48d356ebac988362536bed955d43bfa436e34":
  495. # ref: https://huggingface.co/bigcode/starcoder2-3b
  496. res = "starcoder"
  497. if chkhsh == "3ce83efda5659b07b1ad37ca97ca5797ea4285d9b9ab0dc679e4a720c9da7454":
  498. # ref: https://huggingface.co/openai-community/gpt2
  499. res = "gpt-2"
  500. if chkhsh == "32d85c31273f8019248f2559fed492d929ea28b17e51d81d3bb36fff23ca72b3":
  501. # ref: https://huggingface.co/stabilityai/stablelm-2-zephyr-1_6b
  502. res = "stablelm2"
  503. if chkhsh == "6221ad2852e85ce96f791f476e0b390cf9b474c9e3d1362f53a24a06dc8220ff":
  504. # ref: https://huggingface.co/smallcloudai/Refact-1_6-base
  505. res = "refact"
  506. if chkhsh == "9c2227e4dd922002fb81bde4fc02b0483ca4f12911410dee2255e4987644e3f8":
  507. # ref: https://huggingface.co/CohereForAI/c4ai-command-r-v01
  508. res = "command-r"
  509. if chkhsh == "e636dc30a262dcc0d8c323492e32ae2b70728f4df7dfe9737d9f920a282b8aea":
  510. # ref: https://huggingface.co/Qwen/Qwen1.5-7B
  511. res = "qwen2"
  512. if chkhsh == "b6dc8df998e1cfbdc4eac8243701a65afe638679230920b50d6f17d81c098166":
  513. # ref: https://huggingface.co/allenai/OLMo-1.7-7B-hf
  514. res = "olmo"
  515. if chkhsh == "a8594e3edff7c29c003940395316294b2c623e09894deebbc65f33f1515df79e":
  516. # ref: https://huggingface.co/databricks/dbrx-base
  517. res = "dbrx"
  518. if chkhsh == "c7699093ba4255a91e702aa38a596aa81669f3525dae06c2953267dde580f448":
  519. # ref: https://huggingface.co/jinaai/jina-reranker-v1-tiny-en
  520. res = "jina-v1-en"
  521. if chkhsh == "0876d13b50744004aa9aeae05e7b0647eac9d801b5ba4668afc01e709c15e19f":
  522. # ref: https://huggingface.co/jinaai/jina-embeddings-v2-base-en
  523. res = "jina-v2-en"
  524. if chkhsh == "171aeeedd6fb548d418a7461d053f11b6f1f1fc9b387bd66640d28a4b9f5c643":
  525. # ref: https://huggingface.co/jinaai/jina-embeddings-v2-base-es
  526. res = "jina-v2-es"
  527. if chkhsh == "27949a2493fc4a9f53f5b9b029c82689cfbe5d3a1929bb25e043089e28466de6":
  528. # ref: https://huggingface.co/jinaai/jina-embeddings-v2-base-de
  529. res = "jina-v2-de"
  530. if chkhsh == "c136ed14d01c2745d4f60a9596ae66800e2b61fa45643e72436041855ad4089d":
  531. # ref: https://huggingface.co/abacusai/Smaug-Llama-3-70B-Instruct
  532. res = "smaug-bpe"
  533. if chkhsh == "c7ea5862a53e4272c035c8238367063e2b270d51faa48c0f09e9d5b54746c360":
  534. # ref: https://huggingface.co/LumiOpen/Poro-34B-chat
  535. res = "poro-chat"
  536. if chkhsh == "7967bfa498ade6b757b064f31e964dddbb80f8f9a4d68d4ba7998fcf281c531a":
  537. # ref: https://huggingface.co/jinaai/jina-embeddings-v2-base-code
  538. res = "jina-v2-code"
  539. if chkhsh == "b6e8e1518dc4305be2fe39c313ed643381c4da5db34a98f6a04c093f8afbe99b":
  540. # ref: https://huggingface.co/THUDM/glm-4-9b-chat
  541. res = "chatglm-bpe"
  542. if chkhsh == "7fc505bd3104ca1083b150b17d088b59534ede9bde81f0dd2090967d7fe52cee":
  543. # ref: https://huggingface.co/LumiOpen/Viking-7B
  544. res = "viking"
  545. if chkhsh == "b53802fb28e26d645c3a310b34bfe07da813026ec7c7716883404d5e0f8b1901":
  546. # ref: https://huggingface.co/core42/jais-13b
  547. res = "jais"
  548. if chkhsh == "7b3e7548e4308f52a76e8229e4e6cc831195d0d1df43aed21ac6c93da05fec5f":
  549. # ref: https://huggingface.co/WisdomShell/CodeShell-7B
  550. res = "codeshell"
  551. if chkhsh == "63b97e4253352e6f357cc59ea5b583e3a680eaeaf2632188c2b952de2588485e":
  552. # ref: https://huggingface.co/mistralai/Mistral-Nemo-Base-2407
  553. res = "tekken"
  554. if chkhsh == "855059429035d75a914d1eda9f10a876752e281a054a7a3d421ef0533e5b6249":
  555. # ref: https://huggingface.co/HuggingFaceTB/SmolLM-135M
  556. res = "smollm"
  557. if chkhsh == "3c30d3ad1d6b64202cd222813e7736c2db6e1bd6d67197090fc1211fbc612ae7":
  558. # ref: https://huggingface.co/bigscience/bloom
  559. res = "bloom"
  560. if chkhsh == "bc01ce58980e1db43859146dc51b1758b3b88729b217a74792e9f8d43e479d21":
  561. # ref: https://huggingface.co/TurkuNLP/gpt3-finnish-small
  562. res = "gpt3-finnish"
  563. if chkhsh == "4e2b24cc4770243d65a2c9ec19770a72f08cffc161adbb73fcbb6b7dd45a0aae":
  564. # ref: https://huggingface.co/LGAI-EXAONE/EXAONE-3.0-7.8B-Instruct
  565. res = "exaone"
  566. if chkhsh == "fcace8b9cac38ce847670c970cd5892031a753a1ef381abd1d9af00f713da085":
  567. # ref: https://huggingface.co/microsoft/phi-2
  568. res = "phi-2"
  569. if chkhsh == "60824e3c0d9401f89943cbb2fff727f0e2d4c545ba4df2d6e4f09a6db0f5b450":
  570. # ref: https://huggingface.co/facebook/chameleon-7b
  571. res = "chameleon"
  572. if chkhsh == "1431a23e583c97432bc230bff598d103ddb5a1f89960c8f1d1051aaa944d0b35":
  573. # ref: https://huggingface.co/sapienzanlp/Minerva-7B-base-v1.0
  574. res = "minerva-7b"
  575. if chkhsh == "8b5a93ed704057481f240da0be7e7dca721d7f8f4755263b6807227a2cbeae65":
  576. # ref: https://huggingface.co/sentence-transformers/stsb-roberta-base
  577. res = "roberta-bpe"
  578. if chkhsh == "ad851be1dba641f2e3711822f816db2c265f788b37c63b4e1aeacb9ee92de8eb":
  579. # ref: https://huggingface.co/ai-sage/GigaChat-20B-A3B-instruct
  580. res = "gigachat"
  581. if chkhsh == "d4c8f286ea6b520b3d495c4455483cfa2302c0cfcd4be05d781b6a8a0a7cdaf1":
  582. # ref: https://huggingface.co/Infinigence/Megrez-3B-Instruct
  583. res = "megrez"
  584. if res is None:
  585. logger.warning("\n")
  586. logger.warning("**************************************************************************************")
  587. logger.warning("** WARNING: The BPE pre-tokenizer was not recognized!")
  588. logger.warning("** There are 2 possible reasons for this:")
  589. logger.warning("** - the model has not been added to convert_hf_to_gguf_update.py yet")
  590. logger.warning("** - the pre-tokenization config has changed upstream")
  591. logger.warning("** Check your model files and convert_hf_to_gguf_update.py and update them accordingly.")
  592. logger.warning("** ref: https://github.com/ggerganov/llama.cpp/pull/6920")
  593. logger.warning("**")
  594. logger.warning(f"** chkhsh: {chkhsh}")
  595. logger.warning("**************************************************************************************")
  596. logger.warning("\n")
  597. raise NotImplementedError("BPE pre-tokenizer was not recognized - update get_vocab_base_pre()")
  598. logger.debug(f"tokenizer.ggml.pre: {repr(res)}")
  599. logger.debug(f"chkhsh: {chkhsh}")
  600. return res
  601. # Marker: End get_vocab_base_pre
  602. def _set_vocab_none(self) -> None:
  603. self.gguf_writer.add_tokenizer_model("none")
  604. def _set_vocab_gpt2(self) -> None:
  605. tokens, toktypes, tokpre = self.get_vocab_base()
  606. self.gguf_writer.add_tokenizer_model("gpt2")
  607. self.gguf_writer.add_tokenizer_pre(tokpre)
  608. self.gguf_writer.add_token_list(tokens)
  609. self.gguf_writer.add_token_types(toktypes)
  610. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=True)
  611. special_vocab.add_to_gguf(self.gguf_writer)
  612. def _set_vocab_qwen(self):
  613. dir_model = self.dir_model
  614. hparams = self.hparams
  615. tokens: list[str] = []
  616. toktypes: list[int] = []
  617. from transformers import AutoTokenizer
  618. tokenizer = AutoTokenizer.from_pretrained(dir_model, trust_remote_code=True)
  619. vocab_size = hparams["vocab_size"]
  620. assert max(tokenizer.get_vocab().values()) < vocab_size
  621. tokpre = self.get_vocab_base_pre(tokenizer)
  622. merges = []
  623. vocab = {}
  624. mergeable_ranks = tokenizer.mergeable_ranks
  625. for token, rank in mergeable_ranks.items():
  626. vocab[QwenModel.token_bytes_to_string(token)] = rank
  627. if len(token) == 1:
  628. continue
  629. merged = QwenModel.bpe(mergeable_ranks, token, max_rank=rank)
  630. assert len(merged) == 2
  631. merges.append(' '.join(map(QwenModel.token_bytes_to_string, merged)))
  632. # for this kind of tokenizer, added_vocab is not a subset of vocab, so they need to be combined
  633. added_vocab = tokenizer.special_tokens
  634. reverse_vocab = {id_ : encoded_tok for encoded_tok, id_ in {**vocab, **added_vocab}.items()}
  635. for i in range(vocab_size):
  636. if i not in reverse_vocab:
  637. tokens.append(f"[PAD{i}]")
  638. toktypes.append(gguf.TokenType.UNUSED)
  639. elif reverse_vocab[i] in added_vocab:
  640. tokens.append(reverse_vocab[i])
  641. toktypes.append(gguf.TokenType.CONTROL)
  642. else:
  643. tokens.append(reverse_vocab[i])
  644. toktypes.append(gguf.TokenType.NORMAL)
  645. self.gguf_writer.add_tokenizer_model("gpt2")
  646. self.gguf_writer.add_tokenizer_pre(tokpre)
  647. self.gguf_writer.add_token_list(tokens)
  648. self.gguf_writer.add_token_types(toktypes)
  649. special_vocab = gguf.SpecialVocab(dir_model, load_merges=False)
  650. special_vocab.merges = merges
  651. # only add special tokens when they were not already loaded from config.json
  652. if len(special_vocab.special_token_ids) == 0:
  653. special_vocab._set_special_token("bos", tokenizer.special_tokens["<|endoftext|>"])
  654. special_vocab._set_special_token("eos", tokenizer.special_tokens["<|endoftext|>"])
  655. # this one is usually not in config.json anyway
  656. special_vocab._set_special_token("unk", tokenizer.special_tokens["<|endoftext|>"])
  657. special_vocab.add_to_gguf(self.gguf_writer)
  658. def _set_vocab_sentencepiece(self, add_to_gguf=True):
  659. tokens, scores, toktypes = self._create_vocab_sentencepiece()
  660. self.gguf_writer.add_tokenizer_model("llama")
  661. self.gguf_writer.add_tokenizer_pre("default")
  662. self.gguf_writer.add_token_list(tokens)
  663. self.gguf_writer.add_token_scores(scores)
  664. self.gguf_writer.add_token_types(toktypes)
  665. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  666. special_vocab.add_to_gguf(self.gguf_writer)
  667. def _create_vocab_sentencepiece(self):
  668. from sentencepiece import SentencePieceProcessor
  669. tokenizer_path = self.dir_model / 'tokenizer.model'
  670. if not tokenizer_path.is_file():
  671. raise FileNotFoundError(f"File not found: {tokenizer_path}")
  672. tokenizer = SentencePieceProcessor()
  673. tokenizer.LoadFromFile(str(tokenizer_path))
  674. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  675. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  676. scores: list[float] = [-10000.0] * vocab_size
  677. toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
  678. for token_id in range(tokenizer.vocab_size()):
  679. piece = tokenizer.IdToPiece(token_id)
  680. text = piece.encode("utf-8")
  681. score = tokenizer.GetScore(token_id)
  682. toktype = SentencePieceTokenTypes.NORMAL
  683. if tokenizer.IsUnknown(token_id):
  684. toktype = SentencePieceTokenTypes.UNKNOWN
  685. elif tokenizer.IsControl(token_id):
  686. toktype = SentencePieceTokenTypes.CONTROL
  687. elif tokenizer.IsUnused(token_id):
  688. toktype = SentencePieceTokenTypes.UNUSED
  689. elif tokenizer.IsByte(token_id):
  690. toktype = SentencePieceTokenTypes.BYTE
  691. tokens[token_id] = text
  692. scores[token_id] = score
  693. toktypes[token_id] = toktype
  694. added_tokens_file = self.dir_model / 'added_tokens.json'
  695. if added_tokens_file.is_file():
  696. with open(added_tokens_file, "r", encoding="utf-8") as f:
  697. added_tokens_json = json.load(f)
  698. for key in added_tokens_json:
  699. token_id = added_tokens_json[key]
  700. if token_id >= vocab_size:
  701. logger.warning(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
  702. continue
  703. tokens[token_id] = key.encode("utf-8")
  704. scores[token_id] = -1000.0
  705. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  706. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  707. if tokenizer_config_file.is_file():
  708. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  709. tokenizer_config_json = json.load(f)
  710. added_tokens_decoder = tokenizer_config_json.get("added_tokens_decoder", {})
  711. for token_id, token_data in added_tokens_decoder.items():
  712. token_id = int(token_id)
  713. token: str = token_data["content"]
  714. if toktypes[token_id] != SentencePieceTokenTypes.UNUSED:
  715. if tokens[token_id] != token.encode("utf-8"):
  716. logger.warning(f'replacing token {token_id}: {tokens[token_id].decode("utf-8")!r} -> {token!r}')
  717. if token_data.get("special") or self.does_token_look_special(token):
  718. toktypes[token_id] = SentencePieceTokenTypes.CONTROL
  719. else:
  720. token = token.replace(b"\xe2\x96\x81".decode("utf-8"), " ") # pre-normalize user-defined spaces
  721. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  722. scores[token_id] = -1000.0
  723. tokens[token_id] = token.encode("utf-8")
  724. if vocab_size > len(tokens):
  725. pad_count = vocab_size - len(tokens)
  726. logger.debug(f"Padding vocab with {pad_count} token(s) - [PAD1] through [PAD{pad_count}]")
  727. for i in range(1, pad_count + 1):
  728. tokens.append(bytes(f"[PAD{i}]", encoding="utf-8"))
  729. scores.append(-1000.0)
  730. toktypes.append(SentencePieceTokenTypes.UNUSED)
  731. return tokens, scores, toktypes
  732. def _set_vocab_llama_hf(self):
  733. vocab = gguf.LlamaHfVocab(self.dir_model)
  734. tokens = []
  735. scores = []
  736. toktypes = []
  737. for text, score, toktype in vocab.all_tokens():
  738. tokens.append(text)
  739. scores.append(score)
  740. toktypes.append(toktype)
  741. assert len(tokens) == vocab.vocab_size
  742. self.gguf_writer.add_tokenizer_model("llama")
  743. self.gguf_writer.add_tokenizer_pre("default")
  744. self.gguf_writer.add_token_list(tokens)
  745. self.gguf_writer.add_token_scores(scores)
  746. self.gguf_writer.add_token_types(toktypes)
  747. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  748. special_vocab.add_to_gguf(self.gguf_writer)
  749. def _set_vocab_builtin(self, model_name: Literal["gpt-neox", "llama-spm"], vocab_size: int):
  750. tokenizer_path = Path(sys.path[0]) / "models" / f"ggml-vocab-{model_name}.gguf"
  751. logger.warning(f"Using tokenizer from '{os.path.relpath(tokenizer_path, os.getcwd())}'")
  752. vocab_reader = gguf.GGUFReader(tokenizer_path, "r")
  753. default_pre = "mpt" if model_name == "gpt-neox" else "default"
  754. field = vocab_reader.get_field(gguf.Keys.Tokenizer.MODEL)
  755. assert field # tokenizer model
  756. self.gguf_writer.add_tokenizer_model(bytes(field.parts[-1]).decode("utf-8"))
  757. field = vocab_reader.get_field(gguf.Keys.Tokenizer.PRE)
  758. self.gguf_writer.add_tokenizer_pre(bytes(field.parts[-1]).decode("utf-8") if field else default_pre)
  759. field = vocab_reader.get_field(gguf.Keys.Tokenizer.LIST)
  760. assert field # token list
  761. self.gguf_writer.add_token_list([bytes(field.parts[i]) for i in field.data][:vocab_size])
  762. if model_name == "llama-spm":
  763. field = vocab_reader.get_field(gguf.Keys.Tokenizer.SCORES)
  764. assert field # token scores
  765. self.gguf_writer.add_token_scores([field.parts[i].tolist()[0] for i in field.data][:vocab_size])
  766. field = vocab_reader.get_field(gguf.Keys.Tokenizer.TOKEN_TYPE)
  767. assert field # token types
  768. self.gguf_writer.add_token_types([field.parts[i].tolist()[0] for i in field.data][:vocab_size])
  769. if model_name != "llama-spm":
  770. field = vocab_reader.get_field(gguf.Keys.Tokenizer.MERGES)
  771. assert field # token merges
  772. self.gguf_writer.add_token_merges([bytes(field.parts[i]) for i in field.data])
  773. if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.BOS_ID)) is not None:
  774. self.gguf_writer.add_bos_token_id(field.parts[-1].tolist()[0])
  775. if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.EOS_ID)) is not None:
  776. self.gguf_writer.add_eos_token_id(field.parts[-1].tolist()[0])
  777. if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.UNK_ID)) is not None:
  778. self.gguf_writer.add_unk_token_id(field.parts[-1].tolist()[0])
  779. if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.PAD_ID)) is not None:
  780. self.gguf_writer.add_pad_token_id(field.parts[-1].tolist()[0])
  781. if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.ADD_BOS)) is not None:
  782. self.gguf_writer.add_add_bos_token(field.parts[-1].tolist()[0])
  783. if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.ADD_EOS)) is not None:
  784. self.gguf_writer.add_add_eos_token(field.parts[-1].tolist()[0])
  785. @Model.register("GPTNeoXForCausalLM")
  786. class GPTNeoXModel(Model):
  787. model_arch = gguf.MODEL_ARCH.GPTNEOX
  788. def set_gguf_parameters(self):
  789. block_count = self.hparams["num_hidden_layers"]
  790. self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"])
  791. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  792. self.gguf_writer.add_block_count(block_count)
  793. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  794. self.gguf_writer.add_rope_dimension_count(
  795. int(self.hparams["rotary_pct"] * (self.hparams["hidden_size"] // self.hparams["num_attention_heads"])),
  796. )
  797. self.gguf_writer.add_head_count(self.hparams["num_attention_heads"])
  798. self.gguf_writer.add_parallel_residual(self.hparams.get("use_parallel_residual", True))
  799. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_eps"])
  800. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  801. del bid # unused
  802. n_head = self.hparams.get("n_head", self.hparams.get("num_attention_heads"))
  803. n_embed = self.hparams.get("hidden_size", self.hparams.get("n_embed"))
  804. tensors: list[tuple[str, Tensor]] = []
  805. if re.match(r"gpt_neox\.layers\.\d+\.attention\.query_key_value\.weight", name):
  806. # Map bloom-style qkv_linear to gpt-style qkv_linear
  807. # bloom: https://github.com/huggingface/transformers/blob/main/src/transformers/models/bloom/modeling_bloom.py#L238-L252 # noqa
  808. # gpt-2: https://github.com/huggingface/transformers/blob/main/src/transformers/models/gpt2/modeling_gpt2.py#L312 # noqa
  809. qkv_weights = data_torch.reshape((n_head, 3, n_embed // n_head, n_embed))
  810. data_torch = torch.cat(
  811. (
  812. qkv_weights[:, 0, :, :].reshape((-1, n_embed)),
  813. qkv_weights[:, 1, :, :].reshape((-1, n_embed)),
  814. qkv_weights[:, 2, :, :].reshape((-1, n_embed)),
  815. ),
  816. dim=0,
  817. )
  818. logger.info("re-format attention.linear_qkv.weight")
  819. elif re.match(r"gpt_neox\.layers\.\d+\.attention\.query_key_value\.bias", name):
  820. qkv_bias = data_torch.reshape((n_head, 3, n_embed // n_head))
  821. data_torch = torch.cat(
  822. (
  823. qkv_bias[:, 0, :].reshape((n_embed,)),
  824. qkv_bias[:, 1, :].reshape((n_embed,)),
  825. qkv_bias[:, 2, :].reshape((n_embed,)),
  826. ),
  827. dim=0,
  828. )
  829. logger.info("re-format attention.linear_qkv.bias")
  830. tensors.append((self.map_tensor_name(name), data_torch))
  831. return tensors
  832. @Model.register("BloomForCausalLM", "BloomModel")
  833. class BloomModel(Model):
  834. model_arch = gguf.MODEL_ARCH.BLOOM
  835. def set_gguf_parameters(self):
  836. n_embed = self.hparams.get("hidden_size", self.hparams.get("n_embed"))
  837. n_head = self.hparams.get("n_head", self.hparams.get("num_attention_heads"))
  838. self.gguf_writer.add_context_length(self.hparams.get("seq_length", n_embed))
  839. self.gguf_writer.add_embedding_length(n_embed)
  840. self.gguf_writer.add_feed_forward_length(4 * n_embed)
  841. self.gguf_writer.add_block_count(self.hparams["n_layer"])
  842. self.gguf_writer.add_head_count(n_head)
  843. self.gguf_writer.add_head_count_kv(n_head)
  844. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  845. self.gguf_writer.add_file_type(self.ftype)
  846. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  847. del bid # unused
  848. n_head = self.hparams.get("n_head", self.hparams.get("num_attention_heads"))
  849. n_embed = self.hparams.get("hidden_size", self.hparams.get("n_embed"))
  850. name = re.sub(r'transformer\.', '', name)
  851. tensors: list[tuple[str, Tensor]] = []
  852. if re.match(r"h\.\d+\.self_attention\.query_key_value\.weight", name):
  853. # Map bloom-style qkv_linear to gpt-style qkv_linear
  854. # bloom: https://github.com/huggingface/transformers/blob/main/src/transformers/models/bloom/modeling_bloom.py#L238-L252 # noqa
  855. # gpt-2: https://github.com/huggingface/transformers/blob/main/src/transformers/models/gpt2/modeling_gpt2.py#L312 # noqa
  856. qkv_weights = data_torch.reshape((n_head, 3, n_embed // n_head, n_embed))
  857. data_torch = torch.cat(
  858. (
  859. qkv_weights[:, 0, :, :].reshape((-1, n_embed)),
  860. qkv_weights[:, 1, :, :].reshape((-1, n_embed)),
  861. qkv_weights[:, 2, :, :].reshape((-1, n_embed)),
  862. ),
  863. dim=0,
  864. )
  865. logger.info("re-format attention.linear_qkv.weight")
  866. elif re.match(r"h\.\d+\.self_attention\.query_key_value\.bias", name):
  867. qkv_bias = data_torch.reshape((n_head, 3, n_embed // n_head))
  868. data_torch = torch.cat(
  869. (
  870. qkv_bias[:, 0, :].reshape((n_embed,)),
  871. qkv_bias[:, 1, :].reshape((n_embed,)),
  872. qkv_bias[:, 2, :].reshape((n_embed,)),
  873. ),
  874. dim=0,
  875. )
  876. logger.info("re-format attention.linear_qkv.bias")
  877. tensors.append((self.map_tensor_name(name), data_torch))
  878. if name == "word_embeddings.weight":
  879. assert self.tensor_names is not None
  880. # TODO: tie them at runtime, don't duplicate in the model file
  881. if all(s not in self.tensor_names for s in ("lm_head.weight", "output.weight")):
  882. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT), data_torch))
  883. return tensors
  884. @Model.register("MPTForCausalLM")
  885. class MPTModel(Model):
  886. model_arch = gguf.MODEL_ARCH.MPT
  887. def set_vocab(self):
  888. try:
  889. self._set_vocab_gpt2()
  890. except Exception:
  891. # Fallback for SEA-LION model
  892. self._set_vocab_sentencepiece()
  893. self.gguf_writer.add_add_bos_token(False)
  894. self.gguf_writer.add_pad_token_id(3)
  895. self.gguf_writer.add_eos_token_id(1)
  896. self.gguf_writer.add_unk_token_id(0)
  897. def set_gguf_parameters(self):
  898. block_count = self.hparams["n_layers"]
  899. self.gguf_writer.add_context_length(self.hparams["max_seq_len"])
  900. self.gguf_writer.add_embedding_length(self.hparams["d_model"])
  901. self.gguf_writer.add_block_count(block_count)
  902. self.gguf_writer.add_feed_forward_length(4 * self.hparams["d_model"])
  903. self.gguf_writer.add_head_count(self.hparams["n_heads"])
  904. if kv_n_heads := self.hparams["attn_config"].get("kv_n_heads"):
  905. self.gguf_writer.add_head_count_kv(kv_n_heads)
  906. self.gguf_writer.add_layer_norm_eps(1e-5)
  907. if self.hparams["attn_config"]["clip_qkv"] is not None:
  908. self.gguf_writer.add_clamp_kqv(self.hparams["attn_config"]["clip_qkv"])
  909. if self.hparams["attn_config"]["alibi"]:
  910. self.gguf_writer.add_max_alibi_bias(self.hparams["attn_config"]["alibi_bias_max"])
  911. else:
  912. self.gguf_writer.add_max_alibi_bias(0.0)
  913. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  914. del bid # unused
  915. if "scales" in name:
  916. new_name = self.map_tensor_name(name, try_suffixes=(".weight", ".bias", ".scales"))
  917. new_name = new_name.replace("scales", "act.scales")
  918. else:
  919. new_name = self.map_tensor_name(name, try_suffixes=(".weight", ".bias"))
  920. return [(new_name, data_torch)]
  921. @Model.register("OrionForCausalLM")
  922. class OrionModel(Model):
  923. model_arch = gguf.MODEL_ARCH.ORION
  924. def set_vocab(self):
  925. self._set_vocab_sentencepiece()
  926. def set_gguf_parameters(self):
  927. block_count = self.hparams["num_hidden_layers"]
  928. head_count = self.hparams["num_attention_heads"]
  929. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  930. ctx_length = 0
  931. if "max_sequence_length" in self.hparams:
  932. ctx_length = self.hparams["max_sequence_length"]
  933. elif "max_position_embeddings" in self.hparams:
  934. ctx_length = self.hparams["max_position_embeddings"]
  935. elif "model_max_length" in self.hparams:
  936. ctx_length = self.hparams["model_max_length"]
  937. else:
  938. raise ValueError("gguf: can not find ctx length parameter.")
  939. self.gguf_writer.add_file_type(self.ftype)
  940. self.gguf_writer.add_tensor_data_layout("Meta AI original pth")
  941. self.gguf_writer.add_context_length(ctx_length)
  942. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  943. self.gguf_writer.add_block_count(block_count)
  944. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  945. self.gguf_writer.add_head_count(head_count)
  946. self.gguf_writer.add_head_count_kv(head_count_kv)
  947. # note: config provides rms norm but it is actually layer norm
  948. # ref: https://huggingface.co/OrionStarAI/Orion-14B-Chat/blob/276a17221ce42beb45f66fac657a41540e71f4f5/modeling_orion.py#L570-L571
  949. self.gguf_writer.add_layer_norm_eps(self.hparams["rms_norm_eps"])
  950. @Model.register("BaichuanForCausalLM", "BaiChuanForCausalLM")
  951. class BaichuanModel(Model):
  952. model_arch = gguf.MODEL_ARCH.BAICHUAN
  953. def set_vocab(self):
  954. self._set_vocab_sentencepiece()
  955. def set_gguf_parameters(self):
  956. block_count = self.hparams["num_hidden_layers"]
  957. head_count = self.hparams["num_attention_heads"]
  958. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  959. ctx_length = 0
  960. if "max_sequence_length" in self.hparams:
  961. ctx_length = self.hparams["max_sequence_length"]
  962. elif "max_position_embeddings" in self.hparams:
  963. ctx_length = self.hparams["max_position_embeddings"]
  964. elif "model_max_length" in self.hparams:
  965. ctx_length = self.hparams["model_max_length"]
  966. else:
  967. raise ValueError("gguf: can not find ctx length parameter.")
  968. self.gguf_writer.add_tensor_data_layout("Meta AI original pth")
  969. self.gguf_writer.add_context_length(ctx_length)
  970. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  971. self.gguf_writer.add_block_count(block_count)
  972. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  973. self.gguf_writer.add_rope_dimension_count(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  974. self.gguf_writer.add_head_count(head_count)
  975. self.gguf_writer.add_head_count_kv(head_count_kv)
  976. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  977. self.gguf_writer.add_file_type(self.ftype)
  978. if self.hparams.get("rope_scaling") is not None and "factor" in self.hparams["rope_scaling"]:
  979. if self.hparams["rope_scaling"].get("type") == "linear":
  980. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  981. self.gguf_writer.add_rope_scaling_factor(self.hparams["rope_scaling"]["factor"])
  982. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  983. head_count = self.hparams["num_attention_heads"]
  984. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  985. tensors: list[tuple[str, Tensor]] = []
  986. if bid is not None and name == f"model.layers.{bid}.self_attn.W_pack.weight":
  987. logger.info(f"Unpacking and permuting layer {bid}")
  988. tensors = [
  989. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_Q, bid),
  990. self._reverse_hf_permute_part(data_torch, 0, head_count, head_count)),
  991. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_K, bid),
  992. self._reverse_hf_permute_part(data_torch, 1, head_count, head_count_kv)),
  993. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_V, bid),
  994. self._reverse_hf_part(data_torch, 2)),
  995. ]
  996. else:
  997. tensors = [(self.map_tensor_name(name), data_torch)]
  998. return tensors
  999. def _reverse_hf_permute(self, weights: Tensor, n_head: int, n_kv_head: int | None = None) -> Tensor:
  1000. if n_kv_head is not None and n_head != n_kv_head:
  1001. n_head //= n_kv_head
  1002. return (
  1003. weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  1004. .swapaxes(1, 2)
  1005. .reshape(weights.shape)
  1006. )
  1007. def _reverse_hf_permute_part(
  1008. self, weights: Tensor, n_part: int, n_head: int, n_head_kv: int | None = None,
  1009. ) -> Tensor:
  1010. r = weights.shape[0] // 3
  1011. return self._reverse_hf_permute(weights[r * n_part:r * n_part + r, ...], n_head, n_head_kv)
  1012. def _reverse_hf_part(self, weights: Tensor, n_part: int) -> Tensor:
  1013. r = weights.shape[0] // 3
  1014. return weights[r * n_part:r * n_part + r, ...]
  1015. @Model.register("XverseForCausalLM")
  1016. class XverseModel(Model):
  1017. model_arch = gguf.MODEL_ARCH.XVERSE
  1018. def set_vocab(self):
  1019. assert (self.dir_model / "tokenizer.json").is_file()
  1020. dir_model = self.dir_model
  1021. hparams = self.hparams
  1022. tokens: list[bytes] = []
  1023. toktypes: list[int] = []
  1024. from transformers import AutoTokenizer
  1025. tokenizer = AutoTokenizer.from_pretrained(dir_model)
  1026. vocab_size = hparams.get("vocab_size", len(tokenizer.vocab))
  1027. # Since we are checking the maximum index, we need to ensure it's strictly less than vocab_size,
  1028. # because vocab_size is the count of items, and indexes start at 0.
  1029. max_vocab_index = max(tokenizer.get_vocab().values())
  1030. if max_vocab_index >= vocab_size:
  1031. raise ValueError("Vocabulary size exceeds expected maximum size.")
  1032. reverse_vocab: dict[int, str] = {id_: encoded_tok for encoded_tok, id_ in tokenizer.vocab.items()}
  1033. added_vocab = tokenizer.get_added_vocab()
  1034. for token_id in range(vocab_size):
  1035. token_text = reverse_vocab[token_id].encode('utf-8')
  1036. # replace "\x00" to string with length > 0
  1037. if token_text == b"\x00":
  1038. toktype = gguf.TokenType.BYTE # special
  1039. token_text = f"<{token_text}>".encode('utf-8')
  1040. elif re.fullmatch(br"<0x[0-9A-Fa-f]{2}>", token_text):
  1041. toktype = gguf.TokenType.BYTE # special
  1042. elif reverse_vocab[token_id] in added_vocab:
  1043. if tokenizer.added_tokens_decoder[token_id].special:
  1044. toktype = gguf.TokenType.CONTROL
  1045. else:
  1046. toktype = gguf.TokenType.USER_DEFINED
  1047. else:
  1048. toktype = gguf.TokenType.NORMAL
  1049. tokens.append(token_text)
  1050. toktypes.append(toktype)
  1051. self.gguf_writer.add_tokenizer_model("llama")
  1052. self.gguf_writer.add_tokenizer_pre("default")
  1053. self.gguf_writer.add_token_list(tokens)
  1054. self.gguf_writer.add_token_types(toktypes)
  1055. special_vocab = gguf.SpecialVocab(dir_model, n_vocab=len(tokens))
  1056. special_vocab.add_to_gguf(self.gguf_writer)
  1057. def set_gguf_parameters(self):
  1058. block_count = self.hparams["num_hidden_layers"]
  1059. head_count = self.hparams["num_attention_heads"]
  1060. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  1061. ctx_length = 0
  1062. if "max_sequence_length" in self.hparams:
  1063. ctx_length = self.hparams["max_sequence_length"]
  1064. elif "max_position_embeddings" in self.hparams:
  1065. ctx_length = self.hparams["max_position_embeddings"]
  1066. elif "model_max_length" in self.hparams:
  1067. ctx_length = self.hparams["model_max_length"]
  1068. else:
  1069. raise ValueError("gguf: can not find ctx length parameter.")
  1070. self.gguf_writer.add_tensor_data_layout("Meta AI original pth")
  1071. self.gguf_writer.add_context_length(ctx_length)
  1072. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  1073. self.gguf_writer.add_block_count(block_count)
  1074. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  1075. self.gguf_writer.add_rope_dimension_count(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  1076. self.gguf_writer.add_head_count(head_count)
  1077. self.gguf_writer.add_head_count_kv(head_count_kv)
  1078. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  1079. self.gguf_writer.add_file_type(self.ftype)
  1080. if self.hparams.get("rope_scaling") is not None and "factor" in self.hparams["rope_scaling"]:
  1081. if self.hparams["rope_scaling"].get("type") == "linear":
  1082. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  1083. self.gguf_writer.add_rope_scaling_factor(self.hparams["rope_scaling"]["factor"])
  1084. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1085. del bid # unused
  1086. head_count = self.hparams["num_attention_heads"]
  1087. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  1088. # HF models permute some of the tensors, so we need to undo that
  1089. if name.endswith("q_proj.weight"):
  1090. data_torch = self._reverse_hf_permute(data_torch, head_count, head_count)
  1091. if name.endswith("k_proj.weight"):
  1092. data_torch = self._reverse_hf_permute(data_torch, head_count, head_count_kv)
  1093. return [(self.map_tensor_name(name), data_torch)]
  1094. def _reverse_hf_permute(self, weights: Tensor, n_head: int, n_kv_head: int | None = None) -> Tensor:
  1095. if n_kv_head is not None and n_head != n_kv_head:
  1096. n_head //= n_kv_head
  1097. return (
  1098. weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  1099. .swapaxes(1, 2)
  1100. .reshape(weights.shape)
  1101. )
  1102. @Model.register("FalconForCausalLM", "RWForCausalLM")
  1103. class FalconModel(Model):
  1104. model_arch = gguf.MODEL_ARCH.FALCON
  1105. def set_gguf_parameters(self):
  1106. block_count = self.hparams.get("num_hidden_layers")
  1107. if block_count is None:
  1108. block_count = self.hparams["n_layer"] # old name
  1109. n_head = self.hparams.get("num_attention_heads")
  1110. if n_head is None:
  1111. n_head = self.hparams["n_head"] # old name
  1112. n_head_kv = self.hparams.get("num_kv_heads")
  1113. if n_head_kv is None:
  1114. n_head_kv = self.hparams.get("n_head_kv", 1) # old name
  1115. self.gguf_writer.add_context_length(2048) # not in config.json
  1116. self.gguf_writer.add_tensor_data_layout("jploski") # qkv tensor transform
  1117. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  1118. self.gguf_writer.add_feed_forward_length(4 * self.hparams["hidden_size"])
  1119. self.gguf_writer.add_block_count(block_count)
  1120. self.gguf_writer.add_head_count(n_head)
  1121. self.gguf_writer.add_head_count_kv(n_head_kv)
  1122. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  1123. self.gguf_writer.add_file_type(self.ftype)
  1124. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1125. del bid # unused
  1126. # QKV tensor transform
  1127. # The original query_key_value tensor contains n_head_kv "kv groups",
  1128. # each consisting of n_head/n_head_kv query weights followed by one key
  1129. # and one value weight (shared by all query heads in the kv group).
  1130. # This layout makes it a big pain to work with in GGML.
  1131. # So we rearrange them here,, so that we have n_head query weights
  1132. # followed by n_head_kv key weights followed by n_head_kv value weights,
  1133. # in contiguous fashion.
  1134. # ref: https://github.com/jploski/ggml/blob/falcon40b/examples/falcon/convert-hf-to-ggml.py
  1135. if "query_key_value" in name:
  1136. n_head = self.find_hparam(["num_attention_heads", "n_head"])
  1137. n_head_kv = self.find_hparam(["num_kv_heads", "n_head_kv"], optional=True) or 1
  1138. head_dim = self.hparams["hidden_size"] // n_head
  1139. qkv = data_torch.view(n_head_kv, n_head // n_head_kv + 2, head_dim, head_dim * n_head)
  1140. q = qkv[:, :-2].reshape(n_head * head_dim, head_dim * n_head)
  1141. k = qkv[:, [-2]].reshape(n_head_kv * head_dim, head_dim * n_head)
  1142. v = qkv[:, [-1]].reshape(n_head_kv * head_dim, head_dim * n_head)
  1143. data_torch = torch.cat((q, k, v)).reshape_as(data_torch)
  1144. return [(self.map_tensor_name(name), data_torch)]
  1145. @Model.register("GPTBigCodeForCausalLM")
  1146. class StarCoderModel(Model):
  1147. model_arch = gguf.MODEL_ARCH.STARCODER
  1148. def set_gguf_parameters(self):
  1149. block_count = self.hparams["n_layer"]
  1150. self.gguf_writer.add_context_length(self.hparams["n_positions"])
  1151. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  1152. self.gguf_writer.add_feed_forward_length(4 * self.hparams["n_embd"])
  1153. self.gguf_writer.add_block_count(block_count)
  1154. self.gguf_writer.add_head_count(self.hparams["n_head"])
  1155. self.gguf_writer.add_head_count_kv(1)
  1156. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  1157. self.gguf_writer.add_file_type(self.ftype)
  1158. @Model.register("GPTRefactForCausalLM")
  1159. class RefactModel(Model):
  1160. model_arch = gguf.MODEL_ARCH.REFACT
  1161. def set_vocab(self):
  1162. super().set_vocab()
  1163. # TODO: how to determine special FIM tokens automatically?
  1164. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=False,
  1165. special_token_types = ['prefix', 'suffix', 'middle', 'eot'])
  1166. special_vocab._set_special_token("prefix", 1)
  1167. special_vocab._set_special_token("suffix", 3)
  1168. special_vocab._set_special_token("middle", 2)
  1169. special_vocab.chat_template = None # do not add it twice
  1170. special_vocab.add_to_gguf(self.gguf_writer)
  1171. def set_gguf_parameters(self):
  1172. hidden_dim = self.hparams["n_embd"]
  1173. inner_dim = 4 * hidden_dim
  1174. hidden_dim = int(2 * inner_dim / 3)
  1175. multiple_of = 256
  1176. ff_dim = multiple_of * ((hidden_dim + multiple_of - 1) // multiple_of)
  1177. block_count = self.hparams["n_layer"]
  1178. # refact uses Alibi. So this is from config.json which might be used by training.
  1179. self.gguf_writer.add_context_length(self.hparams["n_positions"])
  1180. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  1181. self.gguf_writer.add_feed_forward_length(ff_dim)
  1182. self.gguf_writer.add_block_count(block_count)
  1183. self.gguf_writer.add_head_count(self.hparams["n_head"])
  1184. self.gguf_writer.add_head_count_kv(1)
  1185. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["layer_norm_epsilon"])
  1186. self.gguf_writer.add_file_type(self.ftype)
  1187. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1188. hidden_dim = self.hparams["n_embd"]
  1189. inner_dim = 4 * hidden_dim
  1190. hidden_dim = int(2 * inner_dim / 3)
  1191. multiple_of = 256
  1192. ff_dim = multiple_of * ((hidden_dim + multiple_of - 1) // multiple_of)
  1193. n_head = self.hparams["n_head"]
  1194. n_head_kv = 1
  1195. head_dim = self.hparams["n_embd"] // n_head
  1196. tensors: list[tuple[str, Tensor]] = []
  1197. if bid is not None:
  1198. if name == f"transformer.h.{bid}.attn.kv.weight":
  1199. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_K, bid), data_torch[:n_head_kv * head_dim]))
  1200. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_V, bid), data_torch[n_head_kv * head_dim:]))
  1201. elif name == f"transformer.h.{bid}.attn.q.weight":
  1202. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_Q, bid), data_torch))
  1203. elif name == f"transformer.h.{bid}.mlp.gate_up_proj.weight":
  1204. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.FFN_GATE, bid), data_torch[:ff_dim]))
  1205. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.FFN_UP, bid), data_torch[ff_dim:]))
  1206. if len(tensors) == 0:
  1207. tensors.append((self.map_tensor_name(name), data_torch))
  1208. return tensors
  1209. @Model.register("StableLmForCausalLM", "StableLMEpochForCausalLM", "LlavaStableLMEpochForCausalLM")
  1210. class StableLMModel(Model):
  1211. model_arch = gguf.MODEL_ARCH.STABLELM
  1212. def set_vocab(self):
  1213. if (self.dir_model / "tokenizer.json").is_file():
  1214. self._set_vocab_gpt2()
  1215. else:
  1216. # StableLM 2 1.6B used to have a vocab in a similar format to Qwen's vocab
  1217. self._set_vocab_qwen()
  1218. def set_gguf_parameters(self):
  1219. hparams = self.hparams
  1220. block_count = hparams["num_hidden_layers"]
  1221. self.gguf_writer.add_context_length(hparams["max_position_embeddings"])
  1222. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  1223. self.gguf_writer.add_block_count(block_count)
  1224. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  1225. rotary_factor = self.find_hparam(["partial_rotary_factor", "rope_pct"])
  1226. self.gguf_writer.add_rope_dimension_count(int(rotary_factor * (hparams["hidden_size"] // hparams["num_attention_heads"])))
  1227. self.gguf_writer.add_head_count(hparams["num_attention_heads"])
  1228. self.gguf_writer.add_head_count_kv(hparams["num_key_value_heads"])
  1229. self.gguf_writer.add_parallel_residual(hparams["use_parallel_residual"] if "use_parallel_residual" in hparams else True)
  1230. self.gguf_writer.add_layer_norm_eps(self.find_hparam(["layer_norm_eps", "norm_eps"]))
  1231. self.gguf_writer.add_file_type(self.ftype)
  1232. _q_norms: list[dict[str, Tensor]] | None = None
  1233. _k_norms: list[dict[str, Tensor]] | None = None
  1234. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1235. n_head = self.hparams["num_attention_heads"]
  1236. n_kv_head = self.hparams["num_key_value_heads"]
  1237. if name.find("q_layernorm.norms") != -1:
  1238. assert bid is not None
  1239. if self._q_norms is None:
  1240. self._q_norms = [{} for _ in range(self.block_count)]
  1241. self._q_norms[bid][name] = data_torch
  1242. if len(self._q_norms[bid]) >= n_head:
  1243. return self._stack_qk_norm(bid, n_head, self._q_norms[bid], "q_layernorm")
  1244. else:
  1245. return []
  1246. if name.find("k_layernorm.norms") != -1:
  1247. assert bid is not None
  1248. if self._k_norms is None:
  1249. self._k_norms = [{} for _ in range(self.block_count)]
  1250. self._k_norms[bid][name] = data_torch
  1251. if len(self._k_norms[bid]) >= n_kv_head:
  1252. return self._stack_qk_norm(bid, n_kv_head, self._k_norms[bid], "k_layernorm")
  1253. else:
  1254. return []
  1255. return [(self.map_tensor_name(name), data_torch)]
  1256. def _stack_qk_norm(self, bid: int, n_head: int, norms: dict[str, Tensor], layer_name: str = "q_layernorm"):
  1257. datas: list[Tensor] = []
  1258. # extract the norms in order
  1259. for xid in range(n_head):
  1260. ename = f"model.layers.{bid}.self_attn.{layer_name}.norms.{xid}.weight"
  1261. datas.append(norms[ename])
  1262. del norms[ename]
  1263. data_torch = torch.stack(datas, dim=0)
  1264. merged_name = f"model.layers.{bid}.self_attn.{layer_name}.weight"
  1265. new_name = self.map_tensor_name(merged_name)
  1266. return [(new_name, data_torch)]
  1267. def prepare_tensors(self):
  1268. super().prepare_tensors()
  1269. if self._q_norms is not None or self._k_norms is not None:
  1270. # flatten two `list[dict[str, Tensor]]` into a single `list[str]`
  1271. norms = (
  1272. [k for d in self._q_norms for k in d.keys()] if self._q_norms is not None else []
  1273. ) + (
  1274. [k for d in self._k_norms for k in d.keys()] if self._k_norms is not None else []
  1275. )
  1276. if len(norms) > 0:
  1277. raise ValueError(f"Unprocessed norms: {norms}")
  1278. @Model.register("LLaMAForCausalLM", "LlamaForCausalLM", "MistralForCausalLM", "MixtralForCausalLM")
  1279. class LlamaModel(Model):
  1280. model_arch = gguf.MODEL_ARCH.LLAMA
  1281. def set_vocab(self):
  1282. try:
  1283. self._set_vocab_sentencepiece()
  1284. except FileNotFoundError:
  1285. try:
  1286. self._set_vocab_llama_hf()
  1287. except (FileNotFoundError, TypeError):
  1288. # Llama 3
  1289. self._set_vocab_gpt2()
  1290. # Apply to CodeLlama only (and ignore for Llama 3 with a vocab size of 128256)
  1291. if self.hparams.get("vocab_size", 32000) == 32016:
  1292. special_vocab = gguf.SpecialVocab(
  1293. self.dir_model, load_merges=False,
  1294. special_token_types = ['prefix', 'suffix', 'middle', 'eot']
  1295. )
  1296. special_vocab._set_special_token("prefix", 32007)
  1297. special_vocab._set_special_token("suffix", 32008)
  1298. special_vocab._set_special_token("middle", 32009)
  1299. special_vocab._set_special_token("eot", 32010)
  1300. special_vocab.add_to_gguf(self.gguf_writer)
  1301. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  1302. if tokenizer_config_file.is_file():
  1303. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  1304. tokenizer_config_json = json.load(f)
  1305. if "add_prefix_space" in tokenizer_config_json:
  1306. self.gguf_writer.add_add_space_prefix(tokenizer_config_json["add_prefix_space"])
  1307. # Apply to granite small models only
  1308. if self.hparams.get("vocab_size", 32000) == 49152:
  1309. self.gguf_writer.add_add_bos_token(False)
  1310. def set_gguf_parameters(self):
  1311. super().set_gguf_parameters()
  1312. hparams = self.hparams
  1313. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  1314. if "head_dim" in hparams:
  1315. rope_dim = hparams["head_dim"]
  1316. else:
  1317. rope_dim = hparams["hidden_size"] // hparams["num_attention_heads"]
  1318. self.gguf_writer.add_rope_dimension_count(rope_dim)
  1319. if self.hparams.get("rope_scaling") is not None and "factor" in self.hparams["rope_scaling"]:
  1320. if self.hparams["rope_scaling"].get("type") == "linear":
  1321. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  1322. self.gguf_writer.add_rope_scaling_factor(self.hparams["rope_scaling"]["factor"])
  1323. @staticmethod
  1324. def permute(weights: Tensor, n_head: int, n_head_kv: int | None):
  1325. if n_head_kv is not None and n_head != n_head_kv:
  1326. n_head = n_head_kv
  1327. return (weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  1328. .swapaxes(1, 2)
  1329. .reshape(weights.shape))
  1330. _experts: list[dict[str, Tensor]] | None = None
  1331. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1332. n_head = self.hparams["num_attention_heads"]
  1333. n_kv_head = self.hparams.get("num_key_value_heads")
  1334. if name.endswith(("q_proj.weight", "q_proj.bias")):
  1335. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  1336. if name.endswith(("k_proj.weight", "k_proj.bias")):
  1337. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  1338. # process the experts separately
  1339. if name.find("block_sparse_moe.experts") != -1:
  1340. n_experts = self.hparams["num_local_experts"]
  1341. assert bid is not None
  1342. if self._experts is None:
  1343. self._experts = [{} for _ in range(self.block_count)]
  1344. self._experts[bid][name] = data_torch
  1345. if len(self._experts[bid]) >= n_experts * 3:
  1346. tensors: list[tuple[str, Tensor]] = []
  1347. # merge the experts into a single 3d tensor
  1348. for wid in ["w1", "w2", "w3"]:
  1349. datas: list[Tensor] = []
  1350. for xid in range(n_experts):
  1351. ename = f"model.layers.{bid}.block_sparse_moe.experts.{xid}.{wid}.weight"
  1352. datas.append(self._experts[bid][ename])
  1353. del self._experts[bid][ename]
  1354. data_torch = torch.stack(datas, dim=0)
  1355. merged_name = f"layers.{bid}.feed_forward.experts.{wid}.weight"
  1356. new_name = self.map_tensor_name(merged_name)
  1357. tensors.append((new_name, data_torch))
  1358. return tensors
  1359. else:
  1360. return []
  1361. return [(self.map_tensor_name(name), data_torch)]
  1362. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  1363. if rope_scaling := self.find_hparam(["rope_scaling"], optional=True):
  1364. if rope_scaling.get("rope_type", '').lower() == "llama3":
  1365. base = self.hparams.get("rope_theta", 10000.0)
  1366. dim = self.hparams.get("head_dim", self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  1367. freqs = 1.0 / (base ** (torch.arange(0, dim, 2, dtype=torch.float32) / dim))
  1368. factor = rope_scaling.get("factor", 8.0)
  1369. low_freq_factor = rope_scaling.get("low_freq_factor", 1.0)
  1370. high_freq_factor = rope_scaling.get("high_freq_factor", 4.0)
  1371. old_context_len = self.hparams.get("original_max_position_embeddings", 8192)
  1372. low_freq_wavelen = old_context_len / low_freq_factor
  1373. high_freq_wavelen = old_context_len / high_freq_factor
  1374. assert low_freq_wavelen != high_freq_wavelen
  1375. rope_factors = []
  1376. for freq in freqs:
  1377. wavelen = 2 * math.pi / freq
  1378. if wavelen < high_freq_wavelen:
  1379. rope_factors.append(1)
  1380. elif wavelen > low_freq_wavelen:
  1381. rope_factors.append(factor)
  1382. else:
  1383. smooth = (old_context_len / wavelen - low_freq_factor) / (high_freq_factor - low_freq_factor)
  1384. rope_factors.append(1 / ((1 - smooth) / factor + smooth))
  1385. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FREQS), torch.tensor(rope_factors, dtype=torch.float32))
  1386. def prepare_tensors(self):
  1387. super().prepare_tensors()
  1388. if self._experts is not None:
  1389. # flatten `list[dict[str, Tensor]]` into `list[str]`
  1390. experts = [k for d in self._experts for k in d.keys()]
  1391. if len(experts) > 0:
  1392. raise ValueError(f"Unprocessed experts: {experts}")
  1393. @Model.register("DeciLMForCausalLM")
  1394. class DeciModel(Model):
  1395. model_arch = gguf.MODEL_ARCH.DECI
  1396. @staticmethod
  1397. def _ffn_mult_to_intermediate_size(ffn_mult: float, n_embd: int) -> int:
  1398. # DeciLM-specific code
  1399. intermediate_size = int(2 * ffn_mult * n_embd / 3)
  1400. return DeciModel._find_multiple(intermediate_size, 256)
  1401. @staticmethod
  1402. def _find_multiple(n: int, k: int) -> int:
  1403. # DeciLM-specific code
  1404. if n % k == 0:
  1405. return n
  1406. return n + k - (n % k)
  1407. def __init__(self, *args, **kwargs):
  1408. super().__init__(*args, **kwargs)
  1409. if "block_configs" in self.hparams: # Llama-3_1-Nemotron-51B
  1410. _block_configs: list[dict[str,Any]] = self.hparams["block_configs"]
  1411. assert self.block_count == len(_block_configs)
  1412. self._num_kv_heads = list()
  1413. self._num_heads = list()
  1414. _ffn_multipliers = list()
  1415. # ***linear attention layer***
  1416. # if n_heads_in_group is None and replace_with_linear is True
  1417. # then _num_kv_heads[il] is 0 and _num_heads[il] is num_attention_heads
  1418. # ***attention-free layer***
  1419. # if n_heads_in_group is None and replace_with_linear is False
  1420. # then _num_kv_heads[il] is 0 and _num_heads[il] is 0
  1421. # ***normal attention-layer***
  1422. # if n_heads_in_group is not None, then
  1423. # _num_kv_heads[il] is num_attention_head // n_heads_in_group and
  1424. # _num_heads[il] is num_attention_head
  1425. for il in range(len(_block_configs)):
  1426. if _block_configs[il]["attention"]["n_heads_in_group"] is None:
  1427. if _block_configs[il]["attention"]["replace_with_linear"] is True:
  1428. self._num_kv_heads.append(0)
  1429. self._num_heads.append(self.hparams["num_attention_heads"])
  1430. else:
  1431. self._num_kv_heads.append(0)
  1432. self._num_heads.append(0)
  1433. else:
  1434. self._num_kv_heads.append(self.hparams["num_attention_heads"] // _block_configs[il]["attention"]["n_heads_in_group"])
  1435. self._num_heads.append(self.hparams["num_attention_heads"])
  1436. _ffn_multipliers.append(_block_configs[il]["ffn"]["ffn_mult"])
  1437. assert self.block_count == len(self._num_kv_heads)
  1438. assert self.block_count == len(self._num_heads)
  1439. assert self.block_count == len(_ffn_multipliers)
  1440. assert isinstance(self._num_kv_heads, list) and isinstance(self._num_kv_heads[0], int)
  1441. assert isinstance(self._num_heads, list) and isinstance(self._num_heads[0], int)
  1442. assert isinstance(_ffn_multipliers, list) and isinstance(_ffn_multipliers[0], float)
  1443. self._ffn_dims: list[int] = [
  1444. DeciModel._ffn_mult_to_intermediate_size(multiplier, self.hparams["hidden_size"])
  1445. for multiplier in _ffn_multipliers
  1446. ]
  1447. def set_vocab(self):
  1448. # Please change tokenizer_config.json of Llama-3_1-Nemotron-51B's
  1449. # eos_token from '|eot_id|' to '|end_of_text|'
  1450. if self.hparams.get("vocab_size", 128256) == 128256:
  1451. tokens, toktypes, tokpre = self.get_vocab_base()
  1452. self.gguf_writer.add_tokenizer_model("gpt2")
  1453. self.gguf_writer.add_tokenizer_pre(tokpre)
  1454. self.gguf_writer.add_token_list(tokens)
  1455. self.gguf_writer.add_token_types(toktypes)
  1456. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=True)
  1457. special_vocab.add_to_gguf(self.gguf_writer)
  1458. else:
  1459. # DeciLM-7B
  1460. self._set_vocab_llama_hf()
  1461. def set_gguf_parameters(self):
  1462. if "block_configs" in self.hparams: # Llama-3_1-Nemotron-51B
  1463. assert self.block_count == len(self._num_kv_heads)
  1464. assert self.block_count == len(self._num_heads)
  1465. assert self.block_count == len(self._ffn_dims)
  1466. if (rope_theta := self.hparams.get("rope_theta")) is not None:
  1467. self.gguf_writer.add_rope_freq_base(rope_theta)
  1468. self.gguf_writer.add_head_count_kv(self._num_kv_heads)
  1469. self.gguf_writer.add_head_count(self._num_heads)
  1470. self.gguf_writer.add_feed_forward_length(self._ffn_dims)
  1471. self.gguf_writer.add_block_count(self.block_count)
  1472. self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"])
  1473. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  1474. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  1475. self.gguf_writer.add_key_length(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  1476. self.gguf_writer.add_value_length(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  1477. self.gguf_writer.add_file_type(self.ftype)
  1478. else: # DeciLM-7B
  1479. super().set_gguf_parameters()
  1480. if "num_key_value_heads_per_layer" in self.hparams: # DeciLM-7B
  1481. self._num_kv_heads: list[int] = self.hparams["num_key_value_heads_per_layer"]
  1482. assert self.block_count == len(self._num_kv_heads)
  1483. self.gguf_writer.add_head_count_kv(self._num_kv_heads)
  1484. hparams = self.hparams
  1485. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  1486. if "head_dim" in hparams:
  1487. rope_dim = hparams["head_dim"]
  1488. else:
  1489. rope_dim = hparams["hidden_size"] // hparams["num_attention_heads"]
  1490. self.gguf_writer.add_rope_dimension_count(rope_dim)
  1491. if self.hparams.get("rope_scaling") is not None and "factor" in self.hparams["rope_scaling"]:
  1492. if self.hparams["rope_scaling"].get("type") == "linear":
  1493. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  1494. self.gguf_writer.add_rope_scaling_factor(self.hparams["rope_scaling"]["factor"])
  1495. @staticmethod
  1496. def permute(weights: Tensor, n_head: int, n_head_kv: int | None):
  1497. if n_head_kv is not None and n_head != n_head_kv:
  1498. n_head = n_head_kv
  1499. return (weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  1500. .swapaxes(1, 2)
  1501. .reshape(weights.shape))
  1502. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1503. n_head = self.hparams["num_attention_heads"]
  1504. if bid is not None:
  1505. if "num_key_value_heads_per_layer" in self.hparams:
  1506. n_kv_head = self.hparams["num_key_value_heads_per_layer"][bid]
  1507. elif "block_configs" in self.hparams:
  1508. n_kv_head = self._num_kv_heads[bid]
  1509. n_head = self._num_heads[bid]
  1510. else:
  1511. n_kv_head = self.hparams.get("num_key_value_heads")
  1512. else:
  1513. n_kv_head = self.hparams.get("num_key_value_heads")
  1514. if name.endswith(("q_proj.weight", "q_proj.bias")):
  1515. data_torch = DeciModel.permute(data_torch, n_head, n_head)
  1516. if name.endswith(("k_proj.weight", "k_proj.bias")):
  1517. data_torch = DeciModel.permute(data_torch, n_head, n_kv_head)
  1518. return [(self.map_tensor_name(name), data_torch)]
  1519. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  1520. if rope_scaling := self.find_hparam(["rope_scaling"], optional=True):
  1521. if rope_scaling.get("rope_type", '').lower() == "llama3":
  1522. base = self.hparams.get("rope_theta", 10000.0)
  1523. dim = self.hparams.get("head_dim", self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  1524. freqs = 1.0 / (base ** (torch.arange(0, dim, 2, dtype=torch.float32) / dim))
  1525. factor = rope_scaling.get("factor", 8.0)
  1526. low_freq_factor = rope_scaling.get("low_freq_factor", 1.0)
  1527. high_freq_factor = rope_scaling.get("high_freq_factor", 4.0)
  1528. old_context_len = self.hparams.get("original_max_position_embeddings", 8192)
  1529. low_freq_wavelen = old_context_len / low_freq_factor
  1530. high_freq_wavelen = old_context_len / high_freq_factor
  1531. assert low_freq_wavelen != high_freq_wavelen
  1532. rope_factors = []
  1533. for freq in freqs:
  1534. wavelen = 2 * math.pi / freq
  1535. if wavelen < high_freq_wavelen:
  1536. rope_factors.append(1)
  1537. elif wavelen > low_freq_wavelen:
  1538. rope_factors.append(factor)
  1539. else:
  1540. smooth = (old_context_len / wavelen - low_freq_factor) / (high_freq_factor - low_freq_factor)
  1541. rope_factors.append(1 / ((1 - smooth) / factor + smooth))
  1542. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FREQS), torch.tensor(rope_factors, dtype=torch.float32))
  1543. def prepare_tensors(self):
  1544. super().prepare_tensors()
  1545. @Model.register("BitnetForCausalLM")
  1546. class BitnetModel(Model):
  1547. model_arch = gguf.MODEL_ARCH.BITNET
  1548. def set_vocab(self):
  1549. self._set_vocab_sentencepiece()
  1550. def set_gguf_parameters(self):
  1551. super().set_gguf_parameters()
  1552. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  1553. self.gguf_writer.add_rope_scaling_factor(1.0)
  1554. def weight_quant(self, weight: Tensor) -> Tensor:
  1555. dtype = weight.dtype
  1556. weight = weight.float()
  1557. scale = weight.abs().mean().clamp(min=1e-5)
  1558. iscale = 1 / scale
  1559. # TODO: multiply by the scale directly instead of inverting it twice
  1560. # (this is also unnecessarily doubly inverted upstream)
  1561. # ref: https://huggingface.co/1bitLLM/bitnet_b1_58-3B/blob/af89e318d78a70802061246bf037199d2fb97020/utils_quant.py#L10
  1562. result = (weight * iscale).round().clamp(-1, 1) / iscale
  1563. return result.type(dtype)
  1564. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1565. new_name = self.map_tensor_name(name)
  1566. if any(self.match_model_tensor_name(new_name, key, bid) for key in [
  1567. gguf.MODEL_TENSOR.ATTN_Q,
  1568. gguf.MODEL_TENSOR.ATTN_K,
  1569. gguf.MODEL_TENSOR.ATTN_V,
  1570. gguf.MODEL_TENSOR.ATTN_OUT,
  1571. gguf.MODEL_TENSOR.FFN_UP,
  1572. gguf.MODEL_TENSOR.FFN_DOWN,
  1573. gguf.MODEL_TENSOR.FFN_GATE,
  1574. ]):
  1575. # transform weight into 1/0/-1 (in fp32)
  1576. data_torch = self.weight_quant(data_torch)
  1577. yield (new_name, data_torch)
  1578. @Model.register("GrokForCausalLM")
  1579. class GrokModel(Model):
  1580. model_arch = gguf.MODEL_ARCH.GROK
  1581. def set_vocab(self):
  1582. self._set_vocab_sentencepiece()
  1583. def __init__(self, *args, **kwargs):
  1584. super().__init__(*args, **kwargs)
  1585. def set_gguf_parameters(self):
  1586. super().set_gguf_parameters()
  1587. _experts: list[dict[str, Tensor]] | None = None
  1588. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1589. # process the experts separately
  1590. if name.find(".moe.") != -1:
  1591. n_experts = self.hparams["num_local_experts"]
  1592. assert bid is not None
  1593. if self._experts is None:
  1594. self._experts = [{} for _ in range(self.block_count)]
  1595. self._experts[bid][name] = data_torch
  1596. if len(self._experts[bid]) >= n_experts * 3:
  1597. tensors: list[tuple[str, Tensor]] = []
  1598. # merge the experts into a single 3d tensor
  1599. for wid in ["linear", "linear_1", "linear_v"]:
  1600. datas: list[Tensor] = []
  1601. for xid in range(n_experts):
  1602. ename = f"transformer.decoder_layer.{bid}.moe.{xid}.{wid}.weight"
  1603. datas.append(self._experts[bid][ename])
  1604. del self._experts[bid][ename]
  1605. data_torch = torch.stack(datas, dim=0)
  1606. merged_name = f"transformer.decoder_layer.{bid}.moe.{wid}.weight"
  1607. new_name = self.map_tensor_name(merged_name)
  1608. tensors.append((new_name, data_torch))
  1609. return tensors
  1610. else:
  1611. return []
  1612. return [(self.map_tensor_name(name), data_torch)]
  1613. @Model.register("DbrxForCausalLM")
  1614. class DbrxModel(Model):
  1615. model_arch = gguf.MODEL_ARCH.DBRX
  1616. def set_gguf_parameters(self):
  1617. ffn_config = self.hparams["ffn_config"]
  1618. attn_config = self.hparams["attn_config"]
  1619. self.gguf_writer.add_block_count(self.hparams["n_layers"])
  1620. self.gguf_writer.add_context_length(self.hparams["max_seq_len"])
  1621. self.gguf_writer.add_embedding_length(self.hparams["d_model"])
  1622. self.gguf_writer.add_feed_forward_length(ffn_config["ffn_hidden_size"])
  1623. self.gguf_writer.add_head_count(self.hparams["n_heads"])
  1624. self.gguf_writer.add_head_count_kv(attn_config["kv_n_heads"])
  1625. self.gguf_writer.add_rope_freq_base(attn_config["rope_theta"])
  1626. self.gguf_writer.add_clamp_kqv(attn_config["clip_qkv"])
  1627. self.gguf_writer.add_expert_count(ffn_config["moe_num_experts"])
  1628. self.gguf_writer.add_expert_used_count(ffn_config["moe_top_k"])
  1629. self.gguf_writer.add_layer_norm_eps(1e-5)
  1630. self.gguf_writer.add_file_type(self.ftype)
  1631. logger.info(f"gguf: file type = {self.ftype}")
  1632. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1633. del bid # unused
  1634. n_expert = self.hparams["ffn_config"]["moe_num_experts"]
  1635. n_ff = self.hparams["ffn_config"]["ffn_hidden_size"]
  1636. n_embd = self.hparams["d_model"]
  1637. # Specific behavior for experts tensors: suffix .weight, view as 3D and transpose
  1638. # original implementation expects (n_expert, n_ff, n_embd) for all experts weights
  1639. # But llama.cpp moe graph works differently
  1640. # AND the dimensions in ggml are typically in the reverse order of the pytorch dimensions
  1641. # so (n_expert, n_ff, n_embd) in pytorch is {n_embd, n_ff, n_expert} in ggml_tensor
  1642. exp_tensor_names = {"ffn.experts.mlp.w1": None, # LLM_TENSOR_FFN_GATE_EXPS ggml_tensor->ne{n_embd, n_ff, n_expert}
  1643. "ffn.experts.mlp.w2": (0, 2, 1), # LLM_TENSOR_FFN_DOWN_EXPS ggml_tensor->ne{n_ff, n_embd, n_expert}
  1644. "ffn.experts.mlp.v1": None} # LLM_TENSOR_FFN_UP_EXPS ggml_tensor->ne{n_embd, n_ff, n_expert}
  1645. experts = False
  1646. for exp_tensor_name in exp_tensor_names.keys():
  1647. if name.find(exp_tensor_name) != -1 and name.find(".weight") == -1:
  1648. experts = True
  1649. data_torch = data_torch.view(n_expert, n_ff, n_embd)
  1650. if (permute_tensor := exp_tensor_names[exp_tensor_name]) is not None:
  1651. data_torch = data_torch.permute(*permute_tensor)
  1652. break
  1653. # map tensor names
  1654. # In MoE models the ffn tensors are typically most of the model weights,
  1655. # and need to be quantizable. Quantize expects tensor names to be suffixed by .weight.
  1656. # Every other model has the weight names ending in .weight,
  1657. # let's assume that is the convention which is not the case for dbrx:
  1658. # https://huggingface.co/databricks/dbrx-instruct/blob/main/model.safetensors.index.json#L15
  1659. new_name = self.map_tensor_name(name if not experts else name + ".weight", try_suffixes=(".weight",))
  1660. return [(new_name, data_torch)]
  1661. def tensor_force_quant(self, name: str, new_name: str, bid: int | None, n_dims: int) -> gguf.GGMLQuantizationType | bool:
  1662. del name, new_name, bid # unused
  1663. return n_dims > 1
  1664. @Model.register("MiniCPMForCausalLM")
  1665. class MiniCPMModel(Model):
  1666. model_arch = gguf.MODEL_ARCH.MINICPM
  1667. def set_gguf_parameters(self):
  1668. super().set_gguf_parameters()
  1669. embedding_scale = float(self.hparams["scale_emb"])
  1670. self.gguf_writer.add_embedding_scale(embedding_scale)
  1671. logger.info(f"gguf: (minicpm) embedding_scale = {embedding_scale}")
  1672. residual_scale = self.hparams["scale_depth"] / self.hparams["num_hidden_layers"] ** 0.5
  1673. self.gguf_writer.add_residual_scale(residual_scale)
  1674. logger.info(f"gguf: (minicpm) residual_scale = {residual_scale}")
  1675. logit_scale = self.hparams["hidden_size"] / self.hparams["dim_model_base"]
  1676. self.gguf_writer.add_logit_scale(logit_scale)
  1677. logger.info(f"gguf: (minicpm) logit_scale = {logit_scale}")
  1678. if self.hparams.get("rope_scaling") is not None:
  1679. if self.hparams["rope_scaling"].get("type") == "longrope":
  1680. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LONGROPE)
  1681. logger.info(f"gguf: (minicpm) rope_scaling_type = {gguf.RopeScalingType.LONGROPE}")
  1682. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  1683. rope_dims = self.hparams["hidden_size"] // self.hparams["num_attention_heads"]
  1684. rope_scaling = self.find_hparam(['rope_scaling'], True)
  1685. if rope_scaling is not None:
  1686. long_factors = rope_scaling.get('long_factor', None)
  1687. short_factors = rope_scaling.get('short_factor', None)
  1688. if long_factors is None or short_factors is None:
  1689. raise KeyError('Missing the required key rope_scaling.long_factor or rope_scaling_short_factor')
  1690. if len(long_factors) != len(short_factors) or len(long_factors) != rope_dims / 2:
  1691. raise ValueError(f'The length of rope long and short factors must be {rope_dims / 2}')
  1692. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FACTORS_LONG), torch.tensor(long_factors, dtype=torch.float32))
  1693. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FACTORS_SHORT), torch.tensor(short_factors, dtype=torch.float32))
  1694. def set_vocab(self):
  1695. self._set_vocab_sentencepiece()
  1696. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1697. del bid # unused
  1698. n_head = self.hparams["num_attention_heads"]
  1699. n_kv_head = self.hparams.get("num_key_value_heads")
  1700. # HF models permute some of the tensors, so we need to undo that
  1701. if name.endswith(("q_proj.weight")):
  1702. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  1703. if name.endswith(("k_proj.weight")):
  1704. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  1705. return [(self.map_tensor_name(name), data_torch)]
  1706. @Model.register("MiniCPM3ForCausalLM")
  1707. class MiniCPM3Model(Model):
  1708. model_arch = gguf.MODEL_ARCH.MINICPM3
  1709. def set_gguf_parameters(self):
  1710. hparams = self.hparams
  1711. self.gguf_writer.add_file_type(self.ftype)
  1712. self.gguf_writer.add_context_length(hparams["max_position_embeddings"])
  1713. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  1714. self.gguf_writer.add_block_count(self.block_count)
  1715. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  1716. self.gguf_writer.add_head_count(hparams["num_attention_heads"])
  1717. self.gguf_writer.add_head_count_kv(hparams["num_key_value_heads"])
  1718. self.gguf_writer.add_layer_norm_rms_eps(hparams["rms_norm_eps"])
  1719. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  1720. if "q_lora_rank" in hparams and hparams["q_lora_rank"] is not None:
  1721. self.gguf_writer.add_q_lora_rank(hparams["q_lora_rank"])
  1722. self.gguf_writer.add_kv_lora_rank(hparams["kv_lora_rank"])
  1723. self.gguf_writer.add_key_length(hparams["qk_nope_head_dim"] + hparams["qk_rope_head_dim"])
  1724. self.gguf_writer.add_rope_dimension_count(hparams["qk_rope_head_dim"])
  1725. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  1726. rope_scaling = self.find_hparam(['rope_scaling'], True)
  1727. if rope_scaling is not None:
  1728. rope_dims = self.hparams["qk_rope_head_dim"]
  1729. long_factors = rope_scaling.get('long_factor', None)
  1730. short_factors = rope_scaling.get('short_factor', None)
  1731. if long_factors is None or short_factors is None:
  1732. raise KeyError('Missing the required key rope_scaling.long_factor or rope_scaling_short_factor')
  1733. if len(long_factors) != len(short_factors) or len(long_factors) != rope_dims / 2:
  1734. raise ValueError(f'The length of rope long and short factors must be {rope_dims / 2}')
  1735. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FACTORS_LONG), torch.tensor(long_factors, dtype=torch.float32))
  1736. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FACTORS_SHORT), torch.tensor(short_factors, dtype=torch.float32))
  1737. def set_vocab(self):
  1738. self._set_vocab_sentencepiece()
  1739. def _reverse_hf_permute(self, weights: Tensor, n_head: int, n_kv_head: int | None = None) -> Tensor:
  1740. if n_kv_head is not None and n_head != n_kv_head:
  1741. n_head //= n_kv_head
  1742. return (
  1743. weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  1744. .swapaxes(1, 2)
  1745. .reshape(weights.shape)
  1746. )
  1747. @Model.register("QWenLMHeadModel")
  1748. class QwenModel(Model):
  1749. model_arch = gguf.MODEL_ARCH.QWEN
  1750. @staticmethod
  1751. def token_bytes_to_string(b):
  1752. from transformers.models.gpt2.tokenization_gpt2 import bytes_to_unicode
  1753. byte_encoder = bytes_to_unicode()
  1754. return ''.join([byte_encoder[ord(char)] for char in b.decode('latin-1')])
  1755. @staticmethod
  1756. def bpe(mergeable_ranks: dict[bytes, int], token: bytes, max_rank: int | None = None) -> list[bytes]:
  1757. parts = [bytes([b]) for b in token]
  1758. while True:
  1759. min_idx = None
  1760. min_rank = None
  1761. for i, pair in enumerate(zip(parts[:-1], parts[1:])):
  1762. rank = mergeable_ranks.get(pair[0] + pair[1])
  1763. if rank is not None and (min_rank is None or rank < min_rank):
  1764. min_idx = i
  1765. min_rank = rank
  1766. if min_rank is None or (max_rank is not None and min_rank >= max_rank):
  1767. break
  1768. assert min_idx is not None
  1769. parts = parts[:min_idx] + [parts[min_idx] + parts[min_idx + 1]] + parts[min_idx + 2:]
  1770. return parts
  1771. def set_vocab(self):
  1772. self._set_vocab_qwen()
  1773. def set_gguf_parameters(self):
  1774. self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"])
  1775. self.gguf_writer.add_block_count(self.hparams["num_hidden_layers"])
  1776. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  1777. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  1778. self.gguf_writer.add_rope_freq_base(self.hparams["rotary_emb_base"])
  1779. self.gguf_writer.add_rope_dimension_count(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  1780. self.gguf_writer.add_head_count(self.hparams["num_attention_heads"])
  1781. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["layer_norm_epsilon"])
  1782. self.gguf_writer.add_file_type(self.ftype)
  1783. @Model.register("Qwen2ForCausalLM")
  1784. class Qwen2Model(Model):
  1785. model_arch = gguf.MODEL_ARCH.QWEN2
  1786. def set_vocab(self):
  1787. try:
  1788. self._set_vocab_sentencepiece()
  1789. except FileNotFoundError:
  1790. self._set_vocab_gpt2()
  1791. def set_gguf_parameters(self):
  1792. super().set_gguf_parameters()
  1793. if self.hparams.get("rope_scaling") is not None and "factor" in self.hparams["rope_scaling"]:
  1794. if self.hparams["rope_scaling"].get("type") == "yarn":
  1795. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.YARN)
  1796. self.gguf_writer.add_rope_scaling_factor(self.hparams["rope_scaling"]["factor"])
  1797. self.gguf_writer.add_rope_scaling_orig_ctx_len(self.hparams["rope_scaling"]["original_max_position_embeddings"])
  1798. @Model.register("Qwen2VLForConditionalGeneration")
  1799. class Qwen2VLModel(Model):
  1800. model_arch = gguf.MODEL_ARCH.QWEN2VL
  1801. def set_gguf_parameters(self):
  1802. super().set_gguf_parameters()
  1803. mrope_section = self.hparams["rope_scaling"]["mrope_section"]
  1804. mrope_section += [0] * max(0, 4 - len(mrope_section))
  1805. self.gguf_writer.add_rope_dimension_sections(mrope_section)
  1806. def set_vocab(self):
  1807. try:
  1808. self._set_vocab_sentencepiece()
  1809. except FileNotFoundError:
  1810. self._set_vocab_gpt2()
  1811. def get_tensors(self) -> Iterator[tuple[str, Tensor]]:
  1812. for name, data in super().get_tensors():
  1813. if name.startswith("visual."):
  1814. continue
  1815. yield name, data
  1816. @Model.register("WavTokenizerDec")
  1817. class WavTokenizerDecModel(Model):
  1818. model_arch = gguf.MODEL_ARCH.WAVTOKENIZER_DEC
  1819. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1820. del bid # unused
  1821. if \
  1822. name.endswith("codebook.cluster_size") or \
  1823. name.endswith("codebook.embed_avg") or \
  1824. name.endswith("codebook.inited"):
  1825. logger.debug(f"Skipping {name!r}")
  1826. return []
  1827. logger.info(f"{self.map_tensor_name(name)} -> {data_torch.shape}")
  1828. return [(self.map_tensor_name(name), data_torch)]
  1829. def set_vocab(self):
  1830. self._set_vocab_none()
  1831. def set_gguf_parameters(self):
  1832. super().set_gguf_parameters()
  1833. self.gguf_writer.add_vocab_size (self.hparams["vocab_size"])
  1834. self.gguf_writer.add_features_length (self.hparams["n_embd_features"])
  1835. self.gguf_writer.add_feed_forward_length(self.hparams["n_ff"])
  1836. self.gguf_writer.add_group_norm_eps (self.hparams["group_norm_epsilon"])
  1837. self.gguf_writer.add_group_norm_groups (self.hparams["group_norm_groups"])
  1838. self.gguf_writer.add_posnet_embedding_length(self.hparams["posnet"]["n_embd"])
  1839. self.gguf_writer.add_posnet_block_count (self.hparams["posnet"]["n_layer"])
  1840. self.gguf_writer.add_convnext_embedding_length(self.hparams["convnext"]["n_embd"])
  1841. self.gguf_writer.add_convnext_block_count (self.hparams["convnext"]["n_layer"])
  1842. self.gguf_writer.add_causal_attention(False)
  1843. @Model.register("Qwen2MoeForCausalLM")
  1844. class Qwen2MoeModel(Model):
  1845. model_arch = gguf.MODEL_ARCH.QWEN2MOE
  1846. def set_gguf_parameters(self):
  1847. super().set_gguf_parameters()
  1848. if (n_experts := self.hparams.get("num_experts")) is not None:
  1849. self.gguf_writer.add_expert_count(n_experts)
  1850. if (moe_intermediate_size := self.hparams.get("moe_intermediate_size")) is not None:
  1851. self.gguf_writer.add_expert_feed_forward_length(moe_intermediate_size)
  1852. logger.info(f"gguf: expert feed forward length = {moe_intermediate_size}")
  1853. if (shared_expert_intermediate_size := self.hparams.get('shared_expert_intermediate_size')) is not None:
  1854. self.gguf_writer.add_expert_shared_feed_forward_length(shared_expert_intermediate_size)
  1855. logger.info(f"gguf: expert shared feed forward length = {shared_expert_intermediate_size}")
  1856. _experts: list[dict[str, Tensor]] | None = None
  1857. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1858. # process the experts separately
  1859. if name.find("experts") != -1:
  1860. n_experts = self.hparams["num_experts"]
  1861. assert bid is not None
  1862. if self._experts is None:
  1863. self._experts = [{} for _ in range(self.block_count)]
  1864. self._experts[bid][name] = data_torch
  1865. if len(self._experts[bid]) >= n_experts * 3:
  1866. tensors: list[tuple[str, Tensor]] = []
  1867. # merge the experts into a single 3d tensor
  1868. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  1869. datas: list[Tensor] = []
  1870. for xid in range(n_experts):
  1871. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  1872. datas.append(self._experts[bid][ename])
  1873. del self._experts[bid][ename]
  1874. data_torch = torch.stack(datas, dim=0)
  1875. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  1876. new_name = self.map_tensor_name(merged_name)
  1877. tensors.append((new_name, data_torch))
  1878. return tensors
  1879. else:
  1880. return []
  1881. return [(self.map_tensor_name(name), data_torch)]
  1882. def prepare_tensors(self):
  1883. super().prepare_tensors()
  1884. if self._experts is not None:
  1885. # flatten `list[dict[str, Tensor]]` into `list[str]`
  1886. experts = [k for d in self._experts for k in d.keys()]
  1887. if len(experts) > 0:
  1888. raise ValueError(f"Unprocessed experts: {experts}")
  1889. @Model.register("GPT2LMHeadModel")
  1890. class GPT2Model(Model):
  1891. model_arch = gguf.MODEL_ARCH.GPT2
  1892. def set_gguf_parameters(self):
  1893. self.gguf_writer.add_block_count(self.hparams["n_layer"])
  1894. self.gguf_writer.add_context_length(self.hparams["n_ctx"])
  1895. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  1896. self.gguf_writer.add_feed_forward_length(4 * self.hparams["n_embd"])
  1897. self.gguf_writer.add_head_count(self.hparams["n_head"])
  1898. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  1899. self.gguf_writer.add_file_type(self.ftype)
  1900. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1901. del bid # unused
  1902. tensors: list[tuple[str, Tensor]] = []
  1903. # we don't need these
  1904. if name.endswith((".attn.bias", ".attn.masked_bias")):
  1905. return tensors
  1906. if name.endswith((".c_attn.weight", ".c_proj.weight", ".c_fc.weight", ".c_proj.weight")):
  1907. data_torch = data_torch.transpose(1, 0)
  1908. new_name = self.map_tensor_name(name)
  1909. tensors.append((new_name, data_torch))
  1910. # note: GPT2 output is tied to (same as) wte in original model
  1911. if new_name == self.format_tensor_name(gguf.MODEL_TENSOR.TOKEN_EMBD):
  1912. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT), data_torch))
  1913. return tensors
  1914. @Model.register("PhiForCausalLM")
  1915. class Phi2Model(Model):
  1916. model_arch = gguf.MODEL_ARCH.PHI2
  1917. def set_gguf_parameters(self):
  1918. block_count = self.find_hparam(["num_hidden_layers", "n_layer"])
  1919. rot_pct = self.find_hparam(["partial_rotary_factor"])
  1920. n_embd = self.find_hparam(["hidden_size", "n_embd"])
  1921. n_head = self.find_hparam(["num_attention_heads", "n_head"])
  1922. self.gguf_writer.add_context_length(self.find_hparam(["n_positions", "max_position_embeddings"]))
  1923. self.gguf_writer.add_embedding_length(n_embd)
  1924. self.gguf_writer.add_feed_forward_length(4 * n_embd)
  1925. self.gguf_writer.add_block_count(block_count)
  1926. self.gguf_writer.add_head_count(n_head)
  1927. self.gguf_writer.add_head_count_kv(n_head)
  1928. self.gguf_writer.add_layer_norm_eps(self.find_hparam(["layer_norm_epsilon", "layer_norm_eps"]))
  1929. self.gguf_writer.add_rope_dimension_count(int(rot_pct * n_embd) // n_head)
  1930. self.gguf_writer.add_file_type(self.ftype)
  1931. self.gguf_writer.add_add_bos_token(False)
  1932. @Model.register("Phi3ForCausalLM")
  1933. class Phi3MiniModel(Model):
  1934. model_arch = gguf.MODEL_ARCH.PHI3
  1935. def set_vocab(self):
  1936. # Phi-4 model uses GPT2Tokenizer
  1937. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  1938. if tokenizer_config_file.is_file():
  1939. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  1940. tokenizer_config_json = json.load(f)
  1941. tokenizer_class = tokenizer_config_json['tokenizer_class']
  1942. if tokenizer_class == 'GPT2Tokenizer':
  1943. return self._set_vocab_gpt2()
  1944. from sentencepiece import SentencePieceProcessor
  1945. tokenizer_path = self.dir_model / 'tokenizer.model'
  1946. if not tokenizer_path.is_file():
  1947. raise ValueError(f'Error: Missing {tokenizer_path}')
  1948. tokenizer = SentencePieceProcessor()
  1949. tokenizer.LoadFromFile(str(tokenizer_path))
  1950. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  1951. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  1952. scores: list[float] = [-10000.0] * vocab_size
  1953. toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
  1954. for token_id in range(tokenizer.vocab_size()):
  1955. piece = tokenizer.IdToPiece(token_id)
  1956. text = piece.encode("utf-8")
  1957. score = tokenizer.GetScore(token_id)
  1958. toktype = SentencePieceTokenTypes.NORMAL
  1959. if tokenizer.IsUnknown(token_id):
  1960. toktype = SentencePieceTokenTypes.UNKNOWN
  1961. elif tokenizer.IsControl(token_id):
  1962. toktype = SentencePieceTokenTypes.CONTROL
  1963. elif tokenizer.IsUnused(token_id):
  1964. toktype = SentencePieceTokenTypes.UNUSED
  1965. elif tokenizer.IsByte(token_id):
  1966. toktype = SentencePieceTokenTypes.BYTE
  1967. tokens[token_id] = text
  1968. scores[token_id] = score
  1969. toktypes[token_id] = toktype
  1970. added_tokens_file = self.dir_model / 'added_tokens.json'
  1971. if added_tokens_file.is_file():
  1972. with open(added_tokens_file, "r", encoding="utf-8") as f:
  1973. added_tokens_json = json.load(f)
  1974. for key in added_tokens_json:
  1975. token_id = added_tokens_json[key]
  1976. if token_id >= vocab_size:
  1977. logger.debug(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
  1978. continue
  1979. tokens[token_id] = key.encode("utf-8")
  1980. scores[token_id] = -1000.0
  1981. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  1982. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  1983. if tokenizer_config_file.is_file():
  1984. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  1985. tokenizer_config_json = json.load(f)
  1986. added_tokens_decoder = tokenizer_config_json.get("added_tokens_decoder", {})
  1987. for token_id, foken_data in added_tokens_decoder.items():
  1988. token_id = int(token_id)
  1989. token = foken_data["content"].encode("utf-8")
  1990. if toktypes[token_id] != SentencePieceTokenTypes.UNUSED:
  1991. if tokens[token_id] != token:
  1992. logger.warning(f'replacing token {token_id}: {tokens[token_id].decode("utf-8")!r} -> {token.decode("utf-8")!r}')
  1993. tokens[token_id] = token
  1994. scores[token_id] = -1000.0
  1995. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  1996. if foken_data.get("special"):
  1997. toktypes[token_id] = SentencePieceTokenTypes.CONTROL
  1998. tokenizer_file = self.dir_model / 'tokenizer.json'
  1999. if tokenizer_file.is_file():
  2000. with open(tokenizer_file, "r", encoding="utf-8") as f:
  2001. tokenizer_json = json.load(f)
  2002. added_tokens = tokenizer_json.get("added_tokens", [])
  2003. for foken_data in added_tokens:
  2004. token_id = int(foken_data["id"])
  2005. token = foken_data["content"].encode("utf-8")
  2006. if toktypes[token_id] != SentencePieceTokenTypes.UNUSED:
  2007. if tokens[token_id] != token:
  2008. logger.warning(f'replacing token {token_id}: {tokens[token_id].decode("utf-8")!r} -> {token.decode("utf-8")!r}')
  2009. tokens[token_id] = token
  2010. scores[token_id] = -1000.0
  2011. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  2012. if foken_data.get("special"):
  2013. toktypes[token_id] = SentencePieceTokenTypes.CONTROL
  2014. self.gguf_writer.add_tokenizer_model("llama")
  2015. self.gguf_writer.add_tokenizer_pre("default")
  2016. self.gguf_writer.add_token_list(tokens)
  2017. self.gguf_writer.add_token_scores(scores)
  2018. self.gguf_writer.add_token_types(toktypes)
  2019. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  2020. special_vocab.add_to_gguf(self.gguf_writer)
  2021. def set_gguf_parameters(self):
  2022. block_count = self.find_hparam(["num_hidden_layers", "n_layer"])
  2023. n_embd = self.find_hparam(["hidden_size", "n_embd"])
  2024. n_head = self.find_hparam(["num_attention_heads", "n_head"])
  2025. n_head_kv = self.find_hparam(["num_key_value_heads", "n_head_kv"])
  2026. rms_eps = self.find_hparam(["rms_norm_eps"])
  2027. max_pos_embds = self.find_hparam(["n_positions", "max_position_embeddings"])
  2028. orig_max_pos_embds = self.find_hparam(["original_max_position_embeddings"])
  2029. rope_dims = n_embd // n_head
  2030. self.gguf_writer.add_context_length(max_pos_embds)
  2031. self.gguf_writer.add_rope_scaling_orig_ctx_len(orig_max_pos_embds)
  2032. self.gguf_writer.add_embedding_length(n_embd)
  2033. self.gguf_writer.add_feed_forward_length(self.find_hparam(["intermediate_size"]))
  2034. self.gguf_writer.add_block_count(block_count)
  2035. self.gguf_writer.add_head_count(n_head)
  2036. self.gguf_writer.add_head_count_kv(n_head_kv)
  2037. self.gguf_writer.add_layer_norm_rms_eps(rms_eps)
  2038. self.gguf_writer.add_rope_dimension_count(rope_dims)
  2039. self.gguf_writer.add_rope_freq_base(self.find_hparam(["rope_theta"]))
  2040. self.gguf_writer.add_file_type(self.ftype)
  2041. sliding_window = self.hparams.get("sliding_window")
  2042. # use zero value of sliding_window to distinguish Phi-4 from other PHI3 models
  2043. if sliding_window is None:
  2044. sliding_window = 0
  2045. self.gguf_writer.add_sliding_window(sliding_window)
  2046. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  2047. n_embd = self.find_hparam(["hidden_size", "n_embd"])
  2048. n_head = self.find_hparam(["num_attention_heads", "n_head"])
  2049. max_pos_embds = self.find_hparam(["n_positions", "max_position_embeddings"])
  2050. orig_max_pos_embds = self.find_hparam(["original_max_position_embeddings"])
  2051. rope_dims = n_embd // n_head
  2052. # write rope scaling for long context (128k) model
  2053. rope_scaling = self.find_hparam(['rope_scaling'], True)
  2054. if rope_scaling is None:
  2055. return
  2056. scale = max_pos_embds / orig_max_pos_embds
  2057. rope_scaling_type = rope_scaling.get('type', '').lower()
  2058. if len(rope_scaling_type) == 0:
  2059. raise KeyError('Missing the required key rope_scaling.type')
  2060. if rope_scaling_type == 'su' or rope_scaling_type == 'longrope':
  2061. attn_factor = math.sqrt(1 + math.log(scale) / math.log(orig_max_pos_embds)) if scale > 1.0 else 1.0
  2062. elif rope_scaling_type == 'yarn':
  2063. attn_factor = 0.1 * math.log(scale) + 1.0 if scale > 1.0 else 1.0
  2064. else:
  2065. raise NotImplementedError(f'The rope scaling type {rope_scaling_type} is not supported yet')
  2066. self.gguf_writer.add_rope_scaling_attn_factors(attn_factor)
  2067. long_factors = rope_scaling.get('long_factor', None)
  2068. short_factors = rope_scaling.get('short_factor', None)
  2069. if long_factors is None or short_factors is None:
  2070. raise KeyError('Missing the required key rope_scaling.long_factor or rope_scaling_short_factor')
  2071. if len(long_factors) != len(short_factors) or len(long_factors) != rope_dims / 2:
  2072. raise ValueError(f'The length of rope long and short factors must be {rope_dims / 2}')
  2073. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FACTORS_LONG), torch.tensor(long_factors, dtype=torch.float32))
  2074. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FACTORS_SHORT), torch.tensor(short_factors, dtype=torch.float32))
  2075. @Model.register("PlamoForCausalLM")
  2076. class PlamoModel(Model):
  2077. model_arch = gguf.MODEL_ARCH.PLAMO
  2078. def set_vocab(self):
  2079. self._set_vocab_sentencepiece()
  2080. def set_gguf_parameters(self):
  2081. hparams = self.hparams
  2082. block_count = hparams["num_hidden_layers"]
  2083. self.gguf_writer.add_context_length(4096) # not in config.json
  2084. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  2085. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  2086. self.gguf_writer.add_block_count(block_count)
  2087. self.gguf_writer.add_head_count(hparams["num_attention_heads"])
  2088. self.gguf_writer.add_head_count_kv(5) # hparams["num_key_value_heads"]) is wrong
  2089. self.gguf_writer.add_layer_norm_rms_eps(hparams["rms_norm_eps"])
  2090. self.gguf_writer.add_file_type(self.ftype)
  2091. def shuffle_attn_q_weight(self, data_torch):
  2092. assert data_torch.size() == (5120, 5120)
  2093. data_torch = data_torch.reshape(8, 5, 128, 5120)
  2094. data_torch = torch.permute(data_torch, (1, 0, 2, 3))
  2095. data_torch = torch.reshape(data_torch, (5120, 5120))
  2096. return data_torch
  2097. def shuffle_attn_output_weight(self, data_torch):
  2098. assert data_torch.size() == (5120, 5120)
  2099. data_torch = data_torch.reshape(5120, 8, 5, 128)
  2100. data_torch = torch.permute(data_torch, (0, 2, 1, 3))
  2101. data_torch = torch.reshape(data_torch, (5120, 5120))
  2102. return data_torch
  2103. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2104. del bid # unused
  2105. new_name = self.map_tensor_name(name)
  2106. # shuffle for broadcasting of gqa in ggml_mul_mat
  2107. if new_name.endswith("attn_q.weight"):
  2108. data_torch = self.shuffle_attn_q_weight(data_torch)
  2109. elif new_name.endswith("attn_output.weight"):
  2110. data_torch = self.shuffle_attn_output_weight(data_torch)
  2111. return [(new_name, data_torch)]
  2112. @Model.register("CodeShellForCausalLM")
  2113. class CodeShellModel(Model):
  2114. model_arch = gguf.MODEL_ARCH.CODESHELL
  2115. def set_gguf_parameters(self):
  2116. block_count = self.hparams["n_layer"]
  2117. self.gguf_writer.add_context_length(self.hparams["n_positions"])
  2118. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  2119. self.gguf_writer.add_feed_forward_length(4 * self.hparams["n_embd"])
  2120. self.gguf_writer.add_block_count(block_count)
  2121. self.gguf_writer.add_head_count(self.hparams["n_head"])
  2122. self.gguf_writer.add_head_count_kv(self.hparams["num_query_groups"])
  2123. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  2124. self.gguf_writer.add_file_type(self.ftype)
  2125. self.gguf_writer.add_rope_freq_base(10000.0)
  2126. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  2127. self.gguf_writer.add_rope_scaling_factor(1.0)
  2128. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2129. del bid # unused
  2130. new_name = self.map_tensor_name(name)
  2131. tensors: list[tuple[str, Tensor]] = [(new_name, data_torch)]
  2132. if new_name == self.format_tensor_name(gguf.MODEL_TENSOR.TOKEN_EMBD):
  2133. assert self.tensor_names is not None
  2134. if all(s not in self.tensor_names for s in ("lm_head.weight", "output.weight")):
  2135. # copy tok_embd.weight to output.weight
  2136. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT), data_torch))
  2137. return tensors
  2138. @Model.register("InternLM2ForCausalLM")
  2139. class InternLM2Model(Model):
  2140. model_arch = gguf.MODEL_ARCH.INTERNLM2
  2141. def set_vocab(self):
  2142. # (TODO): Is there a better way?
  2143. # Copy from _set_vocab_sentencepiece, The only difference is that we will treat the character
  2144. # \x00 specially and convert it into an emoji character to prevent it from being mistakenly
  2145. # recognized as an empty string in C++.
  2146. from sentencepiece import SentencePieceProcessor
  2147. from sentencepiece import sentencepiece_model_pb2 as model
  2148. tokenizer_path = self.dir_model / 'tokenizer.model'
  2149. tokens: list[bytes] = []
  2150. scores: list[float] = []
  2151. toktypes: list[int] = []
  2152. if not tokenizer_path.is_file():
  2153. logger.error(f'Error: Missing {tokenizer_path}')
  2154. sys.exit(1)
  2155. sentencepiece_model = model.ModelProto() # pyright: ignore[reportAttributeAccessIssue]
  2156. sentencepiece_model.ParseFromString(open(tokenizer_path, "rb").read())
  2157. add_prefix = sentencepiece_model.normalizer_spec.add_dummy_prefix
  2158. tokenizer = SentencePieceProcessor()
  2159. tokenizer.LoadFromFile(str(tokenizer_path))
  2160. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  2161. for token_id in range(vocab_size):
  2162. piece = tokenizer.IdToPiece(token_id)
  2163. text = piece.encode("utf-8")
  2164. score = tokenizer.GetScore(token_id)
  2165. if text == b"\x00":
  2166. # (TODO): fixme
  2167. # Hack here and replace the \x00 characters.
  2168. logger.warning(f"InternLM2 convert token '{text}' to '🐉'!")
  2169. text = "🐉".encode("utf-8")
  2170. toktype = SentencePieceTokenTypes.NORMAL
  2171. if tokenizer.IsUnknown(token_id):
  2172. toktype = SentencePieceTokenTypes.UNKNOWN
  2173. elif tokenizer.IsControl(token_id):
  2174. toktype = SentencePieceTokenTypes.CONTROL
  2175. elif tokenizer.IsUnused(token_id):
  2176. toktype = SentencePieceTokenTypes.UNUSED
  2177. elif tokenizer.IsByte(token_id):
  2178. toktype = SentencePieceTokenTypes.BYTE
  2179. # take care of ununsed raw token
  2180. if piece.startswith('[UNUSED'):
  2181. toktype = SentencePieceTokenTypes.UNUSED
  2182. tokens.append(text)
  2183. scores.append(score)
  2184. toktypes.append(toktype)
  2185. added_tokens_file = self.dir_model / 'added_tokens.json'
  2186. if added_tokens_file.is_file():
  2187. with open(added_tokens_file, "r", encoding="utf-8") as f:
  2188. added_tokens_json = json.load(f)
  2189. for key in added_tokens_json:
  2190. tokens.append(key.encode("utf-8"))
  2191. scores.append(-1000.0)
  2192. toktypes.append(SentencePieceTokenTypes.USER_DEFINED)
  2193. chat_eos_token = '<|im_end|>'
  2194. chat_eos_token_id = None
  2195. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  2196. if tokenizer_config_file.is_file():
  2197. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  2198. tokenizer_config_json = json.load(f)
  2199. added_tokens_decoder = tokenizer_config_json.get("added_tokens_decoder", {})
  2200. for token_id, foken_data in added_tokens_decoder.items():
  2201. token_id = int(token_id)
  2202. token = foken_data["content"]
  2203. if token == chat_eos_token:
  2204. chat_eos_token_id = token_id
  2205. token = token.encode("utf-8")
  2206. if toktypes[token_id] != SentencePieceTokenTypes.UNUSED:
  2207. if tokens[token_id] != token:
  2208. logger.warning(f'replacing token {token_id}: {tokens[token_id].decode("utf-8")!r} -> {token.decode("utf-8")!r}')
  2209. tokens[token_id] = token
  2210. scores[token_id] = -1000.0
  2211. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  2212. if foken_data.get("special"):
  2213. toktypes[token_id] = SentencePieceTokenTypes.CONTROL
  2214. tokenizer_file = self.dir_model / 'tokenizer.json'
  2215. if tokenizer_file.is_file():
  2216. with open(tokenizer_file, "r", encoding="utf-8") as f:
  2217. tokenizer_json = json.load(f)
  2218. added_tokens = tokenizer_json.get("added_tokens", [])
  2219. for foken_data in added_tokens:
  2220. token_id = int(foken_data["id"])
  2221. token = foken_data["content"]
  2222. if token == chat_eos_token:
  2223. chat_eos_token_id = token_id
  2224. token = token.encode("utf-8")
  2225. if toktypes[token_id] != SentencePieceTokenTypes.UNUSED:
  2226. if tokens[token_id] != token:
  2227. logger.warning(f'replacing token {token_id}: {tokens[token_id].decode("utf-8")!r} -> {token.decode("utf-8")!r}')
  2228. tokens[token_id] = token
  2229. scores[token_id] = -1000.0
  2230. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  2231. if foken_data.get("special"):
  2232. toktypes[token_id] = SentencePieceTokenTypes.CONTROL
  2233. self.gguf_writer.add_tokenizer_model("llama")
  2234. self.gguf_writer.add_tokenizer_pre("default")
  2235. self.gguf_writer.add_token_list(tokens)
  2236. self.gguf_writer.add_token_scores(scores)
  2237. self.gguf_writer.add_token_types(toktypes)
  2238. self.gguf_writer.add_add_space_prefix(add_prefix)
  2239. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  2240. old_eos = special_vocab.special_token_ids["eos"]
  2241. if chat_eos_token_id is not None:
  2242. # For the chat model, we replace the eos with '<|im_end|>'.
  2243. # TODO: this is a hack, should be fixed
  2244. # https://github.com/ggerganov/llama.cpp/pull/6745#issuecomment-2067687048
  2245. special_vocab.special_token_ids["eos"] = chat_eos_token_id
  2246. logger.warning(f"Replace eos:{old_eos} with a special token:{chat_eos_token_id}"
  2247. " in chat mode so that the conversation can end normally.")
  2248. special_vocab.add_to_gguf(self.gguf_writer)
  2249. def set_gguf_parameters(self):
  2250. self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"])
  2251. self.gguf_writer.add_block_count(self.hparams["num_hidden_layers"])
  2252. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  2253. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  2254. self.gguf_writer.add_rope_freq_base(self.hparams["rope_theta"])
  2255. self.gguf_writer.add_head_count(self.hparams["num_attention_heads"])
  2256. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  2257. self.gguf_writer.add_head_count_kv(self.hparams["num_key_value_heads"])
  2258. self.gguf_writer.add_file_type(self.ftype)
  2259. if self.hparams.get("rope_scaling") is not None and "factor" in self.hparams["rope_scaling"]:
  2260. if self.hparams["rope_scaling"].get("type") == "linear":
  2261. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  2262. self.gguf_writer.add_rope_scaling_factor(self.hparams["rope_scaling"]["factor"])
  2263. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2264. num_heads = self.hparams["num_attention_heads"]
  2265. num_kv_heads = self.hparams["num_key_value_heads"]
  2266. n_embd = self.hparams["hidden_size"]
  2267. q_per_kv = num_heads // num_kv_heads
  2268. head_dim = n_embd // num_heads
  2269. num_groups = num_heads // q_per_kv
  2270. if bid is not None and f"model.layers.{bid}.attention.wqkv" in name:
  2271. qkv = data_torch
  2272. qkv = qkv.reshape((num_groups, q_per_kv + 2, head_dim, n_embd))
  2273. q, k, v = qkv[:, : q_per_kv], qkv[:, -2], qkv[:, -1]
  2274. # The model weights of q and k equire additional reshape.
  2275. q = LlamaModel.permute(q.reshape((-1, q.shape[-1])), num_heads, num_heads)
  2276. k = LlamaModel.permute(k.reshape((-1, k.shape[-1])), num_heads, num_kv_heads)
  2277. v = v.reshape((-1, v.shape[-1]))
  2278. return [
  2279. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_Q, bid), q),
  2280. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_K, bid), k),
  2281. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_V, bid), v),
  2282. ]
  2283. else:
  2284. return [(self.map_tensor_name(name), data_torch)]
  2285. @Model.register("BertModel", "BertForMaskedLM", "CamembertModel")
  2286. class BertModel(Model):
  2287. model_arch = gguf.MODEL_ARCH.BERT
  2288. def __init__(self, *args, **kwargs):
  2289. super().__init__(*args, **kwargs)
  2290. self.vocab_size = None
  2291. def set_gguf_parameters(self):
  2292. super().set_gguf_parameters()
  2293. self.gguf_writer.add_causal_attention(False)
  2294. # get pooling path
  2295. pooling_path = None
  2296. module_path = self.dir_model / "modules.json"
  2297. if module_path.is_file():
  2298. with open(module_path, encoding="utf-8") as f:
  2299. modules = json.load(f)
  2300. for mod in modules:
  2301. if mod["type"] == "sentence_transformers.models.Pooling":
  2302. pooling_path = mod["path"]
  2303. break
  2304. # get pooling type
  2305. if pooling_path is not None:
  2306. with open(self.dir_model / pooling_path / "config.json", encoding="utf-8") as f:
  2307. pooling = json.load(f)
  2308. if pooling["pooling_mode_mean_tokens"]:
  2309. pooling_type = gguf.PoolingType.MEAN
  2310. elif pooling["pooling_mode_cls_token"]:
  2311. pooling_type = gguf.PoolingType.CLS
  2312. else:
  2313. raise NotImplementedError("Only MEAN and CLS pooling types supported")
  2314. self.gguf_writer.add_pooling_type(pooling_type)
  2315. def set_vocab(self):
  2316. tokens, toktypes, tokpre = self.get_vocab_base()
  2317. self.vocab_size = len(tokens)
  2318. # we need this to validate the size of the token_type embeddings
  2319. # though currently we are passing all zeros to the token_type embeddings
  2320. # "Sequence A" or "Sequence B"
  2321. self.gguf_writer.add_token_type_count(self.hparams.get("type_vocab_size", 1))
  2322. # convert to phantom space vocab
  2323. def phantom(tok):
  2324. if tok.startswith("[") and tok.endswith("]"):
  2325. return tok
  2326. if tok.startswith("##"):
  2327. return tok[2:]
  2328. return "\u2581" + tok
  2329. tokens = list(map(phantom, tokens))
  2330. # add vocab to gguf
  2331. self.gguf_writer.add_tokenizer_model("bert")
  2332. self.gguf_writer.add_tokenizer_pre(tokpre)
  2333. self.gguf_writer.add_token_list(tokens)
  2334. self.gguf_writer.add_token_types(toktypes)
  2335. # handle special tokens
  2336. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  2337. special_vocab.add_to_gguf(self.gguf_writer)
  2338. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2339. del bid # unused
  2340. if name.startswith("bert."):
  2341. name = name[5:]
  2342. if name.endswith(".gamma"):
  2343. name = name[:-6] + ".weight"
  2344. if name.endswith(".beta"):
  2345. name = name[:-5] + ".bias"
  2346. # we are only using BERT for embeddings so we don't need the pooling layer
  2347. if name in ("embeddings.position_ids", "pooler.dense.weight", "pooler.dense.bias"):
  2348. return [] # we don't need these
  2349. if name.startswith("cls.predictions"):
  2350. return []
  2351. if name.startswith("cls.seq_relationship"):
  2352. return []
  2353. return [(self.map_tensor_name(name), data_torch)]
  2354. @Model.register("RobertaModel")
  2355. class RobertaModel(BertModel):
  2356. model_arch = gguf.MODEL_ARCH.BERT
  2357. def __init__(self, *args, **kwargs):
  2358. super().__init__(*args, **kwargs)
  2359. # we need the pad_token_id to know how to chop down position_embd matrix
  2360. if (pad_token_id := self.hparams.get("pad_token_id")) is not None:
  2361. self._position_offset = 1 + pad_token_id
  2362. if "max_position_embeddings" in self.hparams:
  2363. self.hparams["max_position_embeddings"] -= self._position_offset
  2364. else:
  2365. self._position_offset = None
  2366. def set_vocab(self):
  2367. """Support BPE tokenizers for roberta models"""
  2368. bpe_tok_path = self.dir_model / "tokenizer.json"
  2369. if bpe_tok_path.exists():
  2370. self._set_vocab_gpt2()
  2371. self.gguf_writer.add_add_bos_token(True)
  2372. self.gguf_writer.add_add_eos_token(True)
  2373. # we need this to validate the size of the token_type embeddings
  2374. # though currently we are passing all zeros to the token_type embeddings
  2375. # "Sequence A" or "Sequence B"
  2376. self.gguf_writer.add_token_type_count(self.hparams.get("type_vocab_size", 1))
  2377. else:
  2378. return super().set_vocab()
  2379. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2380. # if name starts with "roberta.", remove the prefix
  2381. # e.g. https://huggingface.co/BAAI/bge-reranker-v2-m3/tree/main
  2382. if name.startswith("roberta."):
  2383. name = name[8:]
  2384. # position embeddings start at pad_token_id + 1, so just chop down the weight tensor
  2385. if name == "embeddings.position_embeddings.weight":
  2386. if self._position_offset is not None:
  2387. data_torch = data_torch[self._position_offset:,:]
  2388. return super().modify_tensors(data_torch, name, bid)
  2389. @Model.register("NomicBertModel")
  2390. class NomicBertModel(BertModel):
  2391. model_arch = gguf.MODEL_ARCH.NOMIC_BERT
  2392. def __init__(self, *args, **kwargs):
  2393. super().__init__(*args, **kwargs)
  2394. # the HF config claims n_ctx=8192, but it uses RoPE scaling
  2395. self.hparams["n_ctx"] = 2048
  2396. # SwigLU activation
  2397. assert self.hparams["activation_function"] == "swiglu"
  2398. # this doesn't do anything in the HF version
  2399. assert self.hparams["causal"] is False
  2400. # no bias tensors
  2401. assert self.hparams["qkv_proj_bias"] is False
  2402. assert self.hparams["mlp_fc1_bias"] is False
  2403. assert self.hparams["mlp_fc2_bias"] is False
  2404. # norm at end of layer
  2405. assert self.hparams["prenorm"] is False
  2406. # standard RoPE
  2407. assert self.hparams["rotary_emb_fraction"] == 1.0
  2408. assert self.hparams["rotary_emb_interleaved"] is False
  2409. assert self.hparams["rotary_emb_scale_base"] is None
  2410. def set_gguf_parameters(self):
  2411. super().set_gguf_parameters()
  2412. self.gguf_writer.add_rope_freq_base(self.hparams["rotary_emb_base"])
  2413. @Model.register("XLMRobertaModel", "XLMRobertaForSequenceClassification")
  2414. class XLMRobertaModel(BertModel):
  2415. model_arch = gguf.MODEL_ARCH.BERT
  2416. def __init__(self, *args, **kwargs):
  2417. super().__init__(*args, **kwargs)
  2418. # we need the pad_token_id to know how to chop down position_embd matrix
  2419. if (pad_token_id := self.hparams.get("pad_token_id")) is not None:
  2420. self._position_offset = 1 + pad_token_id
  2421. if "max_position_embeddings" in self.hparams:
  2422. self.hparams["max_position_embeddings"] -= self._position_offset
  2423. else:
  2424. self._position_offset = None
  2425. def set_vocab(self):
  2426. # to avoid TypeError: Descriptors cannot be created directly
  2427. # exception when importing sentencepiece_model_pb2
  2428. os.environ["PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION"] = "python"
  2429. from sentencepiece import SentencePieceProcessor
  2430. from sentencepiece import sentencepiece_model_pb2 as model
  2431. tokenizer_path = self.dir_model / 'sentencepiece.bpe.model'
  2432. if not tokenizer_path.is_file():
  2433. raise FileNotFoundError(f"File not found: {tokenizer_path}")
  2434. sentencepiece_model = model.ModelProto() # pyright: ignore[reportAttributeAccessIssue]
  2435. sentencepiece_model.ParseFromString(open(tokenizer_path, "rb").read())
  2436. assert sentencepiece_model.trainer_spec.model_type == 1 # UNIGRAM
  2437. add_prefix = sentencepiece_model.normalizer_spec.add_dummy_prefix
  2438. remove_whitespaces = sentencepiece_model.normalizer_spec.remove_extra_whitespaces
  2439. precompiled_charsmap = sentencepiece_model.normalizer_spec.precompiled_charsmap
  2440. tokenizer = SentencePieceProcessor()
  2441. tokenizer.LoadFromFile(str(tokenizer_path))
  2442. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  2443. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  2444. scores: list[float] = [-10000.0] * vocab_size
  2445. toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
  2446. for token_id in range(tokenizer.vocab_size()):
  2447. piece = tokenizer.IdToPiece(token_id)
  2448. text = piece.encode("utf-8")
  2449. score = tokenizer.GetScore(token_id)
  2450. toktype = SentencePieceTokenTypes.NORMAL
  2451. if tokenizer.IsUnknown(token_id):
  2452. toktype = SentencePieceTokenTypes.UNKNOWN
  2453. elif tokenizer.IsControl(token_id):
  2454. toktype = SentencePieceTokenTypes.CONTROL
  2455. elif tokenizer.IsUnused(token_id):
  2456. toktype = SentencePieceTokenTypes.UNUSED
  2457. elif tokenizer.IsByte(token_id):
  2458. toktype = SentencePieceTokenTypes.BYTE
  2459. tokens[token_id] = text
  2460. scores[token_id] = score
  2461. toktypes[token_id] = toktype
  2462. if vocab_size > len(tokens):
  2463. pad_count = vocab_size - len(tokens)
  2464. logger.debug(f"Padding vocab with {pad_count} token(s) - [PAD1] through [PAD{pad_count}]")
  2465. for i in range(1, pad_count + 1):
  2466. tokens.append(bytes(f"[PAD{i}]", encoding="utf-8"))
  2467. scores.append(-1000.0)
  2468. toktypes.append(SentencePieceTokenTypes.UNUSED)
  2469. # realign tokens (see HF tokenizer code)
  2470. tokens = [b'<s>', b'<pad>', b'</s>', b'<unk>'] + tokens[3:-1]
  2471. scores = [0.0, 0.0, 0.0, 0.0] + scores[3:-1]
  2472. toktypes = [
  2473. SentencePieceTokenTypes.CONTROL,
  2474. SentencePieceTokenTypes.CONTROL,
  2475. SentencePieceTokenTypes.CONTROL,
  2476. SentencePieceTokenTypes.UNKNOWN,
  2477. ] + toktypes[3:-1]
  2478. self.gguf_writer.add_tokenizer_model("t5")
  2479. self.gguf_writer.add_tokenizer_pre("default")
  2480. self.gguf_writer.add_token_list(tokens)
  2481. self.gguf_writer.add_token_scores(scores)
  2482. self.gguf_writer.add_token_types(toktypes)
  2483. self.gguf_writer.add_add_space_prefix(add_prefix)
  2484. self.gguf_writer.add_token_type_count(self.hparams.get("type_vocab_size", 1))
  2485. self.gguf_writer.add_remove_extra_whitespaces(remove_whitespaces)
  2486. if precompiled_charsmap:
  2487. self.gguf_writer.add_precompiled_charsmap(precompiled_charsmap)
  2488. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  2489. special_vocab.add_to_gguf(self.gguf_writer)
  2490. self.gguf_writer.add_add_bos_token(True)
  2491. self.gguf_writer.add_add_eos_token(True)
  2492. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2493. # if name starts with "roberta.", remove the prefix
  2494. # e.g. https://huggingface.co/BAAI/bge-reranker-v2-m3/tree/main
  2495. if name.startswith("roberta."):
  2496. name = name[8:]
  2497. # position embeddings start at pad_token_id + 1, so just chop down the weight tensor
  2498. if name == "embeddings.position_embeddings.weight":
  2499. if self._position_offset is not None:
  2500. data_torch = data_torch[self._position_offset:,:]
  2501. return super().modify_tensors(data_torch, name, bid)
  2502. @Model.register("GemmaForCausalLM")
  2503. class GemmaModel(Model):
  2504. model_arch = gguf.MODEL_ARCH.GEMMA
  2505. def set_vocab(self):
  2506. self._set_vocab_sentencepiece()
  2507. # TODO: these special tokens should be exported only for the CodeGemma family
  2508. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=False,
  2509. special_token_types = ['prefix', 'suffix', 'middle', 'fsep', 'eot'])
  2510. special_vocab._set_special_token("prefix", 67)
  2511. special_vocab._set_special_token("suffix", 69)
  2512. special_vocab._set_special_token("middle", 68)
  2513. special_vocab._set_special_token("fsep", 70)
  2514. special_vocab._set_special_token("eot", 107)
  2515. special_vocab.chat_template = None # do not add it twice
  2516. special_vocab.add_to_gguf(self.gguf_writer)
  2517. self.gguf_writer.add_add_space_prefix(False)
  2518. def set_gguf_parameters(self):
  2519. hparams = self.hparams
  2520. block_count = hparams["num_hidden_layers"]
  2521. self.gguf_writer.add_context_length(hparams["max_position_embeddings"])
  2522. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  2523. self.gguf_writer.add_block_count(block_count)
  2524. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  2525. self.gguf_writer.add_head_count(hparams["num_attention_heads"])
  2526. self.gguf_writer.add_head_count_kv(self.hparams["num_key_value_heads"] if "num_key_value_heads" in hparams else hparams["num_attention_heads"])
  2527. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  2528. self.gguf_writer.add_key_length(hparams["head_dim"])
  2529. self.gguf_writer.add_value_length(hparams["head_dim"])
  2530. self.gguf_writer.add_file_type(self.ftype)
  2531. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2532. del bid # unused
  2533. # lm_head is not used in llama.cpp, while autoawq will include this tensor in model
  2534. # To prevent errors, skip loading lm_head.weight.
  2535. if name == "lm_head.weight":
  2536. logger.debug(f"Skipping get tensor {name!r} in safetensors so that convert can end normally.")
  2537. return []
  2538. # ref: https://github.com/huggingface/transformers/blob/fc37f38915372c15992b540dfcbbe00a916d4fc6/src/transformers/models/gemma/modeling_gemma.py#L89
  2539. if name.endswith("norm.weight"):
  2540. data_torch = data_torch + 1
  2541. return [(self.map_tensor_name(name), data_torch)]
  2542. @Model.register("Gemma2ForCausalLM")
  2543. class Gemma2Model(Model):
  2544. model_arch = gguf.MODEL_ARCH.GEMMA2
  2545. def set_vocab(self):
  2546. self._set_vocab_sentencepiece()
  2547. self.gguf_writer.add_add_space_prefix(False)
  2548. def set_gguf_parameters(self):
  2549. hparams = self.hparams
  2550. block_count = hparams["num_hidden_layers"]
  2551. self.gguf_writer.add_context_length(hparams["max_position_embeddings"])
  2552. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  2553. self.gguf_writer.add_block_count(block_count)
  2554. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  2555. self.gguf_writer.add_head_count(hparams["num_attention_heads"])
  2556. self.gguf_writer.add_head_count_kv(self.hparams["num_key_value_heads"] if "num_key_value_heads" in hparams else hparams["num_attention_heads"])
  2557. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  2558. self.gguf_writer.add_key_length(hparams["head_dim"])
  2559. self.gguf_writer.add_value_length(hparams["head_dim"])
  2560. self.gguf_writer.add_file_type(self.ftype)
  2561. self.gguf_writer.add_attn_logit_softcapping(
  2562. self.hparams["attn_logit_softcapping"]
  2563. )
  2564. self.gguf_writer.add_final_logit_softcapping(
  2565. self.hparams["final_logit_softcapping"]
  2566. )
  2567. self.gguf_writer.add_sliding_window(self.hparams["sliding_window"])
  2568. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2569. del bid # unused
  2570. # lm_head is not used in llama.cpp, while autoawq will include this tensor in model
  2571. # To prevent errors, skip loading lm_head.weight.
  2572. if name == "lm_head.weight":
  2573. logger.debug(f"Skipping get tensor {name!r} in safetensors so that convert can end normally.")
  2574. return []
  2575. # ref: https://github.com/huggingface/transformers/blob/fc37f38915372c15992b540dfcbbe00a916d4fc6/src/transformers/models/gemma/modeling_gemma.py#L89
  2576. if name.endswith("norm.weight"):
  2577. data_torch = data_torch + 1
  2578. return [(self.map_tensor_name(name), data_torch)]
  2579. @Model.register("Starcoder2ForCausalLM")
  2580. class StarCoder2Model(Model):
  2581. model_arch = gguf.MODEL_ARCH.STARCODER2
  2582. @Model.register("Rwkv6ForCausalLM")
  2583. class Rwkv6Model(Model):
  2584. model_arch = gguf.MODEL_ARCH.RWKV6
  2585. def set_vocab(self):
  2586. assert (self.dir_model / "rwkv_vocab_v20230424.txt").is_file()
  2587. vocab_size = self.hparams.get("vocab_size", 65536)
  2588. tokens: list[bytes] = ['<s>'.encode("utf-8")]
  2589. toktypes: list[int] = [gguf.TokenType.CONTROL]
  2590. with open(self.dir_model / "rwkv_vocab_v20230424.txt", "r", encoding="utf-8") as f:
  2591. lines = f.readlines()
  2592. for line in lines:
  2593. parts = line.split(' ')
  2594. assert len(parts) >= 3
  2595. token, token_len = ast.literal_eval(' '.join(parts[1:-1])), int(parts[-1])
  2596. token = token.encode("utf-8") if isinstance(token, str) else token
  2597. assert isinstance(token, bytes)
  2598. assert len(token) == token_len
  2599. token_text: str = repr(token)[2:-1] # "b'\xff'" -> "\xff"
  2600. tokens.append(token_text.encode("utf-8"))
  2601. toktypes.append(gguf.TokenType.NORMAL)
  2602. remainder = vocab_size - len(tokens)
  2603. assert remainder >= 0
  2604. for i in range(len(tokens), vocab_size):
  2605. tokens.append(f"[PAD{i}]".encode("utf-8"))
  2606. toktypes.append(gguf.TokenType.UNUSED)
  2607. self.gguf_writer.add_tokenizer_model("rwkv")
  2608. self.gguf_writer.add_token_list(tokens)
  2609. self.gguf_writer.add_token_types(toktypes)
  2610. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=False)
  2611. special_vocab.chat_template = "rwkv-world"
  2612. # hack: Add '\n\n' as the EOT token to make it chat normally
  2613. special_vocab._set_special_token("eot", 261)
  2614. special_vocab.add_to_gguf(self.gguf_writer)
  2615. def set_gguf_parameters(self):
  2616. block_count = self.hparams["num_hidden_layers"]
  2617. head_size = self.hparams["head_size"]
  2618. hidden_size = self.hparams["hidden_size"]
  2619. layer_norm_eps = self.hparams["layer_norm_epsilon"]
  2620. rescale_every_n_layers = self.hparams["rescale_every"]
  2621. intermediate_size = self.hparams["intermediate_size"] if self.hparams["intermediate_size"] is not None else int((hidden_size * 3.5) // 32 * 32)
  2622. time_mix_extra_dim = 64 if hidden_size == 4096 else 32
  2623. time_decay_extra_dim = 128 if hidden_size == 4096 else 64
  2624. # RWKV isn't context limited
  2625. self.gguf_writer.add_context_length(1048576)
  2626. self.gguf_writer.add_embedding_length(hidden_size)
  2627. self.gguf_writer.add_block_count(block_count)
  2628. self.gguf_writer.add_layer_norm_eps(layer_norm_eps)
  2629. self.gguf_writer.add_rescale_every_n_layers(rescale_every_n_layers)
  2630. self.gguf_writer.add_wkv_head_size(head_size)
  2631. self.gguf_writer.add_time_mix_extra_dim(time_mix_extra_dim)
  2632. self.gguf_writer.add_time_decay_extra_dim(time_decay_extra_dim)
  2633. self.gguf_writer.add_feed_forward_length(intermediate_size)
  2634. self.gguf_writer.add_file_type(self.ftype)
  2635. # required by llama.cpp, unused
  2636. self.gguf_writer.add_head_count(0)
  2637. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2638. new_name = self.map_tensor_name(name)
  2639. if not (new_name.endswith(".weight") or new_name.endswith(".bias")):
  2640. new_name += ".weight"
  2641. if new_name.endswith("time_mix_w1.weight") or new_name.endswith("time_mix_decay_w1.weight") or new_name.endswith("time_mix_decay_w2.weight"):
  2642. data_torch = data_torch.transpose(0, 1)
  2643. if new_name.endswith("time_mix_w2.weight"):
  2644. data_torch = data_torch.permute(0, 2, 1)
  2645. if new_name.endswith("time_mix_decay.weight") or "lerp" in new_name:
  2646. data_torch = data_torch.squeeze()
  2647. rescale_every_n_layers = self.hparams["rescale_every"]
  2648. if rescale_every_n_layers > 0:
  2649. if new_name.endswith("time_mix_output.weight") or new_name.endswith("channel_mix_value.weight"):
  2650. data_torch = data_torch.div_(2 ** int(bid // rescale_every_n_layers))
  2651. yield (new_name, data_torch)
  2652. @Model.register("MambaForCausalLM", "MambaLMHeadModel", "FalconMambaForCausalLM")
  2653. class MambaModel(Model):
  2654. model_arch = gguf.MODEL_ARCH.MAMBA
  2655. def set_vocab(self):
  2656. vocab_size = self.hparams["vocab_size"]
  2657. # Round vocab size to next multiple of 8
  2658. pad_vocab = self.hparams.get("pad_vocab_size_multiple", 8)
  2659. # pad using ceiling division
  2660. # ref: https://stackoverflow.com/a/17511341/22827863
  2661. vocab_size = -(vocab_size // -pad_vocab) * pad_vocab
  2662. self.hparams["vocab_size"] = vocab_size
  2663. if (self.dir_model / "tokenizer.json").is_file():
  2664. self._set_vocab_gpt2()
  2665. elif (self.dir_model / "tokenizer.model").is_file():
  2666. self._set_vocab_sentencepiece()
  2667. else:
  2668. # Use the GPT-NeoX tokenizer when no tokenizer files are present
  2669. self._set_vocab_builtin("gpt-neox", vocab_size)
  2670. def set_gguf_parameters(self):
  2671. d_model = self.find_hparam(["hidden_size", "d_model"])
  2672. d_conv = self.find_hparam(["conv_kernel", "d_conv"], optional=True) or 4
  2673. d_inner = self.find_hparam(["intermediate_size", "d_inner"], optional=True) or 2 * d_model
  2674. d_state = self.find_hparam(["state_size", "d_state"], optional=True) or 16
  2675. # ceiling division
  2676. # ref: https://stackoverflow.com/a/17511341/22827863
  2677. # ref: https://github.com/state-spaces/mamba/blob/ce59daea3a090d011d6476c6e5b97f6d58ddad8b/mamba_ssm/modules/mamba_simple.py#L58
  2678. dt_rank = self.find_hparam(["time_step_rank", "dt_rank"], optional=True) or -(d_model // -16)
  2679. rms_norm_eps = self.find_hparam(["layer_norm_epsilon", "rms_norm_eps"], optional=True) or 1e-5
  2680. use_dt_b_c_norm = False
  2681. # For falconmamba we do apply RMS norm on B / DT and C layers
  2682. if self.find_hparam(["model_type"], optional=True) in ("falcon_mamba",):
  2683. use_dt_b_c_norm = True
  2684. # Fail early for models which don't have a block expansion factor of 2
  2685. assert d_inner == 2 * d_model
  2686. self.gguf_writer.add_context_length(2**20) # arbitrary value; for those who use the default
  2687. self.gguf_writer.add_embedding_length(d_model)
  2688. self.gguf_writer.add_feed_forward_length(0) # unused, but seemingly required when loading
  2689. self.gguf_writer.add_head_count(0) # unused, but seemingly required when loading
  2690. self.gguf_writer.add_block_count(self.block_count)
  2691. self.gguf_writer.add_ssm_conv_kernel(d_conv)
  2692. self.gguf_writer.add_ssm_inner_size(d_inner)
  2693. self.gguf_writer.add_ssm_state_size(d_state)
  2694. self.gguf_writer.add_ssm_time_step_rank(dt_rank)
  2695. self.gguf_writer.add_layer_norm_rms_eps(rms_norm_eps)
  2696. self.gguf_writer.add_ssm_dt_b_c_rms(use_dt_b_c_norm) # For classic Mamba we don't apply rms norm on B / DT layers
  2697. self.gguf_writer.add_file_type(self.ftype)
  2698. _tok_embd = None
  2699. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2700. del bid # unused
  2701. output_name = self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT)
  2702. tok_embd_name = self.format_tensor_name(gguf.MODEL_TENSOR.TOKEN_EMBD)
  2703. new_name = self.map_tensor_name(name)
  2704. if name.endswith(".A_log"):
  2705. logger.debug("A_log --> A ==> " + new_name)
  2706. data_torch = -torch.exp(data_torch)
  2707. # assuming token_embd.weight is seen before output.weight
  2708. if self._tok_embd is not None and new_name == output_name:
  2709. if torch.equal(self._tok_embd, data_torch):
  2710. logger.debug(f"{output_name} is equivalent to {tok_embd_name}, omitting")
  2711. return []
  2712. elif new_name == tok_embd_name:
  2713. self._tok_embd = data_torch
  2714. return [(new_name, data_torch)]
  2715. @Model.register("CohereForCausalLM")
  2716. class CommandR2Model(Model):
  2717. model_arch = gguf.MODEL_ARCH.COMMAND_R
  2718. def __init__(self, *args, **kwargs):
  2719. super().__init__(*args, **kwargs)
  2720. # max_position_embeddings = 8192 in config.json but model was actually
  2721. # trained on 128k context length
  2722. # aya-23 models don't have model_max_length specified
  2723. self.hparams["max_position_embeddings"] = self.find_hparam(["model_max_length", "max_position_embeddings"])
  2724. def set_gguf_parameters(self):
  2725. super().set_gguf_parameters()
  2726. self.gguf_writer.add_logit_scale(self.hparams["logit_scale"])
  2727. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
  2728. @Model.register("OlmoForCausalLM")
  2729. @Model.register("OLMoForCausalLM")
  2730. class OlmoModel(Model):
  2731. model_arch = gguf.MODEL_ARCH.OLMO
  2732. def set_gguf_parameters(self):
  2733. super().set_gguf_parameters()
  2734. self.gguf_writer.add_layer_norm_eps(1e-5)
  2735. clip_qkv = self.hparams.get("clip_qkv")
  2736. if clip_qkv is not None:
  2737. self.gguf_writer.add_clamp_kqv(clip_qkv)
  2738. # Same as super class, but permuting q_proj, k_proj
  2739. # Copied from: LlamaModel
  2740. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2741. del bid # unused
  2742. n_head = self.hparams["num_attention_heads"]
  2743. n_kv_head = self.hparams.get("num_key_value_heads")
  2744. if name.endswith("q_proj.weight"):
  2745. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  2746. if name.endswith("k_proj.weight"):
  2747. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  2748. return [(self.map_tensor_name(name), data_torch)]
  2749. @Model.register("Olmo2ForCausalLM")
  2750. class Olmo2Model(Model):
  2751. model_arch = gguf.MODEL_ARCH.OLMO2
  2752. @Model.register("OlmoeForCausalLM")
  2753. class OlmoeModel(Model):
  2754. model_arch = gguf.MODEL_ARCH.OLMOE
  2755. def set_gguf_parameters(self):
  2756. super().set_gguf_parameters()
  2757. self.gguf_writer.add_layer_norm_rms_eps(1e-5)
  2758. if (n_experts := self.hparams.get("num_experts")) is not None:
  2759. self.gguf_writer.add_expert_count(n_experts)
  2760. _experts: list[dict[str, Tensor]] | None = None
  2761. # Copied from: Qwen2MoeModel
  2762. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2763. # process the experts separately
  2764. if name.find("experts") != -1:
  2765. n_experts = self.hparams["num_experts"]
  2766. assert bid is not None
  2767. if self._experts is None:
  2768. self._experts = [{} for _ in range(self.block_count)]
  2769. self._experts[bid][name] = data_torch
  2770. if len(self._experts[bid]) >= n_experts * 3:
  2771. tensors: list[tuple[str, Tensor]] = []
  2772. # merge the experts into a single 3d tensor
  2773. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  2774. datas: list[Tensor] = []
  2775. for xid in range(n_experts):
  2776. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  2777. datas.append(self._experts[bid][ename])
  2778. del self._experts[bid][ename]
  2779. data_torch = torch.stack(datas, dim=0)
  2780. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  2781. new_name = self.map_tensor_name(merged_name)
  2782. tensors.append((new_name, data_torch))
  2783. return tensors
  2784. else:
  2785. return []
  2786. return [(self.map_tensor_name(name), data_torch)]
  2787. # Copied from: Qwen2MoeModel
  2788. def prepare_tensors(self):
  2789. super().prepare_tensors()
  2790. if self._experts is not None:
  2791. # flatten `list[dict[str, Tensor]]` into `list[str]`
  2792. experts = [k for d in self._experts for k in d.keys()]
  2793. if len(experts) > 0:
  2794. raise ValueError(f"Unprocessed experts: {experts}")
  2795. @Model.register("JinaBertModel", "JinaBertForMaskedLM")
  2796. class JinaBertV2Model(BertModel):
  2797. model_arch = gguf.MODEL_ARCH.JINA_BERT_V2
  2798. def __init__(self, *args, **kwargs):
  2799. super().__init__(*args, **kwargs)
  2800. self.intermediate_size = self.hparams["intermediate_size"]
  2801. def get_tensors(self):
  2802. for name, data in super().get_tensors():
  2803. if 'gated_layer' in name:
  2804. d1 = data[:self.intermediate_size, :]
  2805. name1 = name.replace('gated_layers', 'gated_layers_w')
  2806. name1 = name1.replace('up_gated_layer', 'gated_layers_v')
  2807. d2 = data[self.intermediate_size:, :]
  2808. name2 = name.replace('gated_layers', 'gated_layers_v')
  2809. name2 = name2.replace('up_gated_layer', 'gated_layers_w')
  2810. yield name1, d1
  2811. yield name2, d2
  2812. continue
  2813. yield name, data
  2814. def set_vocab(self):
  2815. tokenizer_class = 'BertTokenizer'
  2816. with open(self.dir_model / "tokenizer_config.json", "r", encoding="utf-8") as f:
  2817. tokenizer_class = json.load(f)['tokenizer_class']
  2818. if tokenizer_class == 'BertTokenizer':
  2819. super().set_vocab()
  2820. elif tokenizer_class == 'RobertaTokenizer':
  2821. self._set_vocab_gpt2()
  2822. self.gguf_writer.add_token_type_count(2)
  2823. else:
  2824. raise NotImplementedError(f'Tokenizer {tokenizer_class} is not supported for JinaBertModel')
  2825. self.gguf_writer.add_add_bos_token(True)
  2826. self.gguf_writer.add_add_eos_token(True)
  2827. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2828. # if name starts with "bert.", remove the prefix
  2829. # e.g. https://huggingface.co/jinaai/jina-reranker-v1-tiny-en
  2830. if name.startswith("bert."):
  2831. name = name[5:]
  2832. return super().modify_tensors(data_torch, name, bid)
  2833. @Model.register("OpenELMForCausalLM")
  2834. class OpenELMModel(Model):
  2835. model_arch = gguf.MODEL_ARCH.OPENELM
  2836. @staticmethod
  2837. def _make_divisible(v: float | int, divisor: int) -> int:
  2838. # ref: https://huggingface.co/apple/OpenELM-270M-Instruct/blob/eb111ff2e6724348e5b905984063d4064d4bc579/configuration_openelm.py#L34-L38
  2839. new_v = max(divisor, int(v + divisor / 2) // divisor * divisor)
  2840. # Make sure that round down does not go down by more than 10%.
  2841. if new_v < 0.9 * v:
  2842. new_v += divisor
  2843. return new_v
  2844. def __init__(self, *args, **kwargs):
  2845. super().__init__(*args, **kwargs)
  2846. ffn_multipliers: list[float] = self.hparams["ffn_multipliers"]
  2847. ffn_dim_divisor: int = self.hparams["ffn_dim_divisor"]
  2848. self._n_embd: int = self.hparams["model_dim"]
  2849. self._num_kv_heads: list[int] = self.hparams["num_kv_heads"]
  2850. self._num_query_heads: list[int] = self.hparams["num_query_heads"]
  2851. self._ffn_dims: list[int] = [
  2852. OpenELMModel._make_divisible(multiplier * self._n_embd, ffn_dim_divisor)
  2853. for multiplier in ffn_multipliers
  2854. ]
  2855. assert isinstance(self._num_kv_heads, list) and isinstance(self._num_kv_heads[0], int)
  2856. assert isinstance(self._num_query_heads, list) and isinstance(self._num_query_heads[0], int)
  2857. # Uses the tokenizer from meta-llama/Llama-2-7b-hf
  2858. def set_vocab(self):
  2859. try:
  2860. self._set_vocab_sentencepiece()
  2861. except FileNotFoundError:
  2862. self._set_vocab_builtin("llama-spm", self.hparams["vocab_size"])
  2863. def set_gguf_parameters(self):
  2864. n_embd = self._n_embd
  2865. head_dim = self.hparams["head_dim"]
  2866. rot_pct = 1.0
  2867. assert self.block_count == len(self._num_kv_heads)
  2868. assert self.block_count == len(self._num_query_heads)
  2869. assert self.block_count == len(self._ffn_dims)
  2870. self.gguf_writer.add_block_count(self.block_count)
  2871. self.gguf_writer.add_context_length(self.hparams["max_context_length"])
  2872. self.gguf_writer.add_embedding_length(n_embd)
  2873. self.gguf_writer.add_feed_forward_length(self._ffn_dims)
  2874. self.gguf_writer.add_head_count(self._num_query_heads)
  2875. self.gguf_writer.add_head_count_kv(self._num_kv_heads)
  2876. self.gguf_writer.add_rope_freq_base(self.hparams["rope_freq_constant"])
  2877. # https://huggingface.co/apple/OpenELM-270M-Instruct/blob/c401df2/modeling_openelm.py#L30
  2878. self.gguf_writer.add_layer_norm_rms_eps(1e-6)
  2879. self.gguf_writer.add_rope_dimension_count(int(rot_pct * head_dim))
  2880. self.gguf_writer.add_key_length(head_dim)
  2881. self.gguf_writer.add_value_length(head_dim)
  2882. self.gguf_writer.add_file_type(self.ftype)
  2883. def find_hparam(self, keys: Iterable[str], optional: bool = False) -> Any:
  2884. if "n_layers" in keys:
  2885. return self.hparams["num_transformer_layers"]
  2886. return super().find_hparam(keys, optional)
  2887. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2888. # split ff
  2889. if bid is not None and name == f"transformer.layers.{bid}.ffn.proj_1.weight":
  2890. ff_dim = self._ffn_dims[bid]
  2891. yield (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_GATE, bid), data_torch[:ff_dim])
  2892. yield (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_UP, bid), data_torch[ff_dim:])
  2893. return
  2894. yield (self.map_tensor_name(name), data_torch)
  2895. @Model.register("ArcticForCausalLM")
  2896. class ArcticModel(Model):
  2897. model_arch = gguf.MODEL_ARCH.ARCTIC
  2898. def set_vocab(self):
  2899. # The reason for using a custom implementation here is that the
  2900. # snowflake-arctic-instruct model redefined tokens 31998 and 31999 from
  2901. # tokenizer.model and used them as BOS and EOS instead of adding new tokens.
  2902. from sentencepiece import SentencePieceProcessor
  2903. tokenizer_path = self.dir_model / 'tokenizer.model'
  2904. if not tokenizer_path.is_file():
  2905. logger.error(f'Error: Missing {tokenizer_path}')
  2906. sys.exit(1)
  2907. # Read the whole vocabulary from the tokenizer.model file
  2908. tokenizer = SentencePieceProcessor()
  2909. tokenizer.LoadFromFile(str(tokenizer_path))
  2910. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  2911. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  2912. scores: list[float] = [-10000.0] * vocab_size
  2913. toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
  2914. for token_id in range(tokenizer.vocab_size()):
  2915. piece = tokenizer.IdToPiece(token_id)
  2916. text = piece.encode("utf-8")
  2917. score = tokenizer.GetScore(token_id)
  2918. toktype = SentencePieceTokenTypes.NORMAL
  2919. if tokenizer.IsUnknown(token_id):
  2920. toktype = SentencePieceTokenTypes.UNKNOWN
  2921. elif tokenizer.IsControl(token_id):
  2922. toktype = SentencePieceTokenTypes.CONTROL
  2923. elif tokenizer.IsUnused(token_id):
  2924. toktype = SentencePieceTokenTypes.UNUSED
  2925. elif tokenizer.IsByte(token_id):
  2926. toktype = SentencePieceTokenTypes.BYTE
  2927. tokens[token_id] = text
  2928. scores[token_id] = score
  2929. toktypes[token_id] = toktype
  2930. # Use the added_tokens_decoder field from tokeniser_config.json as the source
  2931. # of information about added/redefined tokens and modify them accordingly.
  2932. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  2933. if tokenizer_config_file.is_file():
  2934. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  2935. tokenizer_config_json = json.load(f)
  2936. if "added_tokens_decoder" in tokenizer_config_json:
  2937. added_tokens_decoder = tokenizer_config_json["added_tokens_decoder"]
  2938. for token_id, token_json in added_tokens_decoder.items():
  2939. token_id = int(token_id)
  2940. if token_id >= vocab_size:
  2941. logger.debug(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
  2942. continue
  2943. token_content = token_json["content"]
  2944. token_type = SentencePieceTokenTypes.USER_DEFINED
  2945. token_score = -10000.0
  2946. # Map unk_token to UNKNOWN, other special tokens to CONTROL
  2947. # Set the score to 0.0 as in the original tokenizer.model
  2948. if ("special" in token_json) and token_json["special"]:
  2949. if token_content == tokenizer_config_json["unk_token"]:
  2950. token_type = SentencePieceTokenTypes.UNKNOWN
  2951. else:
  2952. token_type = SentencePieceTokenTypes.CONTROL
  2953. token_score = 0.0
  2954. logger.info(f"Setting added token {token_id} to '{token_content}' (type: {token_type}, score: {token_score:.2f})")
  2955. tokens[token_id] = token_content.encode("utf-8")
  2956. toktypes[token_id] = token_type
  2957. scores[token_id] = token_score
  2958. self.gguf_writer.add_tokenizer_model("llama")
  2959. self.gguf_writer.add_tokenizer_pre("default")
  2960. self.gguf_writer.add_token_list(tokens)
  2961. self.gguf_writer.add_token_scores(scores)
  2962. self.gguf_writer.add_token_types(toktypes)
  2963. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  2964. special_vocab.add_to_gguf(self.gguf_writer)
  2965. def set_gguf_parameters(self):
  2966. super().set_gguf_parameters()
  2967. hparams = self.hparams
  2968. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  2969. self.gguf_writer.add_rope_dimension_count(hparams["hidden_size"] // hparams["num_attention_heads"])
  2970. _experts: list[dict[str, Tensor]] | None = None
  2971. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2972. n_head = self.hparams["num_attention_heads"]
  2973. n_kv_head = self.hparams.get("num_key_value_heads")
  2974. if name.endswith("q_proj.weight"):
  2975. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  2976. if name.endswith("k_proj.weight"):
  2977. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  2978. # process the experts separately
  2979. if name.find("block_sparse_moe.experts") != -1:
  2980. n_experts = self.hparams["num_local_experts"]
  2981. assert bid is not None
  2982. if self._experts is None:
  2983. self._experts = [{} for _ in range(self.block_count)]
  2984. self._experts[bid][name] = data_torch
  2985. if len(self._experts[bid]) >= n_experts * 3:
  2986. tensors: list[tuple[str, Tensor]] = []
  2987. # merge the experts into a single 3d tensor
  2988. for wid in ["w1", "w2", "w3"]:
  2989. datas: list[Tensor] = []
  2990. for xid in range(n_experts):
  2991. ename = f"model.layers.{bid}.block_sparse_moe.experts.{xid}.{wid}.weight"
  2992. datas.append(self._experts[bid][ename])
  2993. del self._experts[bid][ename]
  2994. data_torch = torch.stack(datas, dim=0)
  2995. merged_name = f"layers.{bid}.feed_forward.experts.{wid}.weight"
  2996. new_name = self.map_tensor_name(merged_name)
  2997. tensors.append((new_name, data_torch))
  2998. return tensors
  2999. else:
  3000. return []
  3001. return [(self.map_tensor_name(name), data_torch)]
  3002. def prepare_tensors(self):
  3003. super().prepare_tensors()
  3004. if self._experts is not None:
  3005. # flatten `list[dict[str, Tensor]]` into `list[str]`
  3006. experts = [k for d in self._experts for k in d.keys()]
  3007. if len(experts) > 0:
  3008. raise ValueError(f"Unprocessed experts: {experts}")
  3009. @Model.register("DeepseekForCausalLM")
  3010. class DeepseekModel(Model):
  3011. model_arch = gguf.MODEL_ARCH.DEEPSEEK
  3012. def set_vocab(self):
  3013. try:
  3014. self._set_vocab_sentencepiece()
  3015. except FileNotFoundError:
  3016. self._set_vocab_gpt2()
  3017. def set_gguf_parameters(self):
  3018. super().set_gguf_parameters()
  3019. hparams = self.hparams
  3020. if "head_dim" in hparams:
  3021. rope_dim = hparams["head_dim"]
  3022. else:
  3023. rope_dim = hparams["hidden_size"] // hparams["num_attention_heads"]
  3024. self.gguf_writer.add_rope_dimension_count(rope_dim)
  3025. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
  3026. self.gguf_writer.add_leading_dense_block_count(hparams["first_k_dense_replace"])
  3027. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  3028. self.gguf_writer.add_expert_feed_forward_length(hparams["moe_intermediate_size"])
  3029. self.gguf_writer.add_expert_weights_scale(1.0)
  3030. self.gguf_writer.add_expert_count(hparams["n_routed_experts"])
  3031. self.gguf_writer.add_expert_shared_count(hparams["n_shared_experts"])
  3032. _experts: list[dict[str, Tensor]] | None = None
  3033. @staticmethod
  3034. def permute(weights: Tensor, n_head: int, n_head_kv: int | None):
  3035. if n_head_kv is not None and n_head != n_head_kv:
  3036. n_head = n_head_kv
  3037. return (weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  3038. .swapaxes(1, 2)
  3039. .reshape(weights.shape))
  3040. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3041. n_head = self.hparams["num_attention_heads"]
  3042. n_kv_head = self.hparams.get("num_key_value_heads")
  3043. if name.endswith(("q_proj.weight", "q_proj.bias")):
  3044. data_torch = DeepseekModel.permute(data_torch, n_head, n_head)
  3045. if name.endswith(("k_proj.weight", "k_proj.bias")):
  3046. data_torch = DeepseekModel.permute(data_torch, n_head, n_kv_head)
  3047. # process the experts separately
  3048. if name.find("mlp.experts") != -1:
  3049. n_experts = self.hparams["n_routed_experts"]
  3050. assert bid is not None
  3051. if self._experts is None:
  3052. self._experts = [{} for _ in range(self.block_count)]
  3053. self._experts[bid][name] = data_torch
  3054. if len(self._experts[bid]) >= n_experts * 3:
  3055. tensors: list[tuple[str, Tensor]] = []
  3056. # merge the experts into a single 3d tensor
  3057. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  3058. datas: list[Tensor] = []
  3059. for xid in range(n_experts):
  3060. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  3061. datas.append(self._experts[bid][ename])
  3062. del self._experts[bid][ename]
  3063. data_torch = torch.stack(datas, dim=0)
  3064. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  3065. new_name = self.map_tensor_name(merged_name)
  3066. tensors.append((new_name, data_torch))
  3067. return tensors
  3068. else:
  3069. return []
  3070. return [(self.map_tensor_name(name), data_torch)]
  3071. def prepare_tensors(self):
  3072. super().prepare_tensors()
  3073. if self._experts is not None:
  3074. # flatten `list[dict[str, Tensor]]` into `list[str]`
  3075. experts = [k for d in self._experts for k in d.keys()]
  3076. if len(experts) > 0:
  3077. raise ValueError(f"Unprocessed experts: {experts}")
  3078. @Model.register("DeepseekV2ForCausalLM")
  3079. class DeepseekV2Model(Model):
  3080. model_arch = gguf.MODEL_ARCH.DEEPSEEK2
  3081. def set_vocab(self):
  3082. self._set_vocab_gpt2()
  3083. def set_gguf_parameters(self):
  3084. super().set_gguf_parameters()
  3085. hparams = self.hparams
  3086. self.gguf_writer.add_leading_dense_block_count(hparams["first_k_dense_replace"])
  3087. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  3088. if "q_lora_rank" in hparams and hparams["q_lora_rank"] is not None:
  3089. self.gguf_writer.add_q_lora_rank(hparams["q_lora_rank"])
  3090. self.gguf_writer.add_kv_lora_rank(hparams["kv_lora_rank"])
  3091. self.gguf_writer.add_key_length(hparams["qk_nope_head_dim"] + hparams["qk_rope_head_dim"])
  3092. self.gguf_writer.add_value_length(hparams["v_head_dim"])
  3093. self.gguf_writer.add_expert_feed_forward_length(hparams["moe_intermediate_size"])
  3094. self.gguf_writer.add_expert_count(hparams["n_routed_experts"])
  3095. self.gguf_writer.add_expert_shared_count(hparams["n_shared_experts"])
  3096. self.gguf_writer.add_expert_weights_scale(hparams["routed_scaling_factor"])
  3097. self.gguf_writer.add_rope_dimension_count(hparams["qk_rope_head_dim"])
  3098. if self.hparams.get("rope_scaling") is not None and "factor" in self.hparams["rope_scaling"]:
  3099. if self.hparams["rope_scaling"].get("type") == "yarn":
  3100. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.YARN)
  3101. self.gguf_writer.add_rope_scaling_factor(self.hparams["rope_scaling"]["factor"])
  3102. self.gguf_writer.add_rope_scaling_orig_ctx_len(self.hparams["rope_scaling"]["original_max_position_embeddings"])
  3103. self.gguf_writer.add_rope_scaling_yarn_log_mul(0.1 * hparams["rope_scaling"]["mscale_all_dim"])
  3104. _experts: list[dict[str, Tensor]] | None = None
  3105. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3106. # process the experts separately
  3107. if name.find("mlp.experts") != -1:
  3108. n_experts = self.hparams["n_routed_experts"]
  3109. assert bid is not None
  3110. if self._experts is None:
  3111. self._experts = [{} for _ in range(self.block_count)]
  3112. self._experts[bid][name] = data_torch
  3113. if len(self._experts[bid]) >= n_experts * 3:
  3114. tensors: list[tuple[str, Tensor]] = []
  3115. # merge the experts into a single 3d tensor
  3116. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  3117. datas: list[Tensor] = []
  3118. for xid in range(n_experts):
  3119. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  3120. datas.append(self._experts[bid][ename])
  3121. del self._experts[bid][ename]
  3122. data_torch = torch.stack(datas, dim=0)
  3123. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  3124. new_name = self.map_tensor_name(merged_name)
  3125. tensors.append((new_name, data_torch))
  3126. return tensors
  3127. else:
  3128. return []
  3129. return [(self.map_tensor_name(name), data_torch)]
  3130. def prepare_tensors(self):
  3131. super().prepare_tensors()
  3132. if self._experts is not None:
  3133. # flatten `list[dict[str, Tensor]]` into `list[str]`
  3134. experts = [k for d in self._experts for k in d.keys()]
  3135. if len(experts) > 0:
  3136. raise ValueError(f"Unprocessed experts: {experts}")
  3137. @Model.register("T5WithLMHeadModel")
  3138. @Model.register("T5ForConditionalGeneration")
  3139. @Model.register("MT5ForConditionalGeneration")
  3140. @Model.register("UMT5ForConditionalGeneration")
  3141. class T5Model(Model):
  3142. model_arch = gguf.MODEL_ARCH.T5
  3143. def __init__(self, *args, **kwargs):
  3144. super().__init__(*args, **kwargs)
  3145. self.shared_token_embeddings_found = False
  3146. def set_vocab(self):
  3147. # to avoid TypeError: Descriptors cannot be created directly
  3148. # exception when importing sentencepiece_model_pb2
  3149. os.environ["PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION"] = "python"
  3150. from sentencepiece import SentencePieceProcessor
  3151. from sentencepiece import sentencepiece_model_pb2 as model
  3152. tokenizer_path = self.dir_model / 'tokenizer.model'
  3153. # many older models use spiece.model tokenizer model filename
  3154. if not tokenizer_path.is_file():
  3155. tokenizer_path = self.dir_model / 'spiece.model'
  3156. if not tokenizer_path.is_file():
  3157. raise FileNotFoundError(f"File not found: {tokenizer_path}")
  3158. sentencepiece_model = model.ModelProto() # pyright: ignore[reportAttributeAccessIssue]
  3159. sentencepiece_model.ParseFromString(open(tokenizer_path, "rb").read())
  3160. # some models like Pile-T5 family use BPE tokenizer instead of Unigram
  3161. if sentencepiece_model.trainer_spec.model_type == 2: # BPE
  3162. # assure the tokenizer model file name is correct
  3163. assert tokenizer_path.name == 'tokenizer.model'
  3164. return self._set_vocab_sentencepiece()
  3165. else:
  3166. assert sentencepiece_model.trainer_spec.model_type == 1 # UNIGRAM
  3167. add_prefix = sentencepiece_model.normalizer_spec.add_dummy_prefix
  3168. remove_whitespaces = sentencepiece_model.normalizer_spec.remove_extra_whitespaces
  3169. precompiled_charsmap = sentencepiece_model.normalizer_spec.precompiled_charsmap
  3170. tokenizer = SentencePieceProcessor()
  3171. tokenizer.LoadFromFile(str(tokenizer_path))
  3172. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  3173. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  3174. scores: list[float] = [-10000.0] * vocab_size
  3175. toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
  3176. for token_id in range(tokenizer.vocab_size()):
  3177. piece = tokenizer.IdToPiece(token_id)
  3178. text = piece.encode("utf-8")
  3179. score = tokenizer.GetScore(token_id)
  3180. toktype = SentencePieceTokenTypes.NORMAL
  3181. if tokenizer.IsUnknown(token_id):
  3182. toktype = SentencePieceTokenTypes.UNKNOWN
  3183. elif tokenizer.IsControl(token_id):
  3184. toktype = SentencePieceTokenTypes.CONTROL
  3185. elif tokenizer.IsUnused(token_id):
  3186. toktype = SentencePieceTokenTypes.UNUSED
  3187. elif tokenizer.IsByte(token_id):
  3188. toktype = SentencePieceTokenTypes.BYTE
  3189. tokens[token_id] = text
  3190. scores[token_id] = score
  3191. toktypes[token_id] = toktype
  3192. added_tokens_file = self.dir_model / 'added_tokens.json'
  3193. if added_tokens_file.is_file():
  3194. with open(added_tokens_file, "r", encoding="utf-8") as f:
  3195. added_tokens_json = json.load(f)
  3196. for key in added_tokens_json:
  3197. token_id = added_tokens_json[key]
  3198. if token_id >= vocab_size:
  3199. logger.warning(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
  3200. continue
  3201. tokens[token_id] = key.encode("utf-8")
  3202. scores[token_id] = -1000.0
  3203. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  3204. if vocab_size > len(tokens):
  3205. pad_count = vocab_size - len(tokens)
  3206. logger.debug(f"Padding vocab with {pad_count} token(s) - [PAD1] through [PAD{pad_count}]")
  3207. for i in range(1, pad_count + 1):
  3208. tokens.append(bytes(f"[PAD{i}]", encoding="utf-8"))
  3209. scores.append(-1000.0)
  3210. toktypes.append(SentencePieceTokenTypes.UNUSED)
  3211. self.gguf_writer.add_tokenizer_model("t5")
  3212. self.gguf_writer.add_tokenizer_pre("default")
  3213. self.gguf_writer.add_token_list(tokens)
  3214. self.gguf_writer.add_token_scores(scores)
  3215. self.gguf_writer.add_token_types(toktypes)
  3216. self.gguf_writer.add_add_space_prefix(add_prefix)
  3217. self.gguf_writer.add_remove_extra_whitespaces(remove_whitespaces)
  3218. if precompiled_charsmap:
  3219. self.gguf_writer.add_precompiled_charsmap(precompiled_charsmap)
  3220. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  3221. special_vocab.add_to_gguf(self.gguf_writer)
  3222. self.gguf_writer.add_add_bos_token(False)
  3223. self.gguf_writer.add_add_eos_token(True)
  3224. def set_gguf_parameters(self):
  3225. if (n_ctx := self.find_hparam(["n_positions"], optional=True)) is None:
  3226. logger.warning("Couldn't find context length in config.json, assuming default value of 512")
  3227. n_ctx = 512
  3228. self.gguf_writer.add_context_length(n_ctx)
  3229. self.gguf_writer.add_embedding_length(self.hparams["d_model"])
  3230. self.gguf_writer.add_feed_forward_length(self.hparams["d_ff"])
  3231. self.gguf_writer.add_block_count(self.hparams["num_layers"])
  3232. self.gguf_writer.add_head_count(self.hparams["num_heads"])
  3233. self.gguf_writer.add_key_length(self.hparams["d_kv"])
  3234. self.gguf_writer.add_value_length(self.hparams["d_kv"])
  3235. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  3236. self.gguf_writer.add_relative_attn_buckets_count(self.hparams["relative_attention_num_buckets"])
  3237. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["layer_norm_epsilon"])
  3238. self.gguf_writer.add_decoder_start_token_id(self.hparams["decoder_start_token_id"])
  3239. self.gguf_writer.add_file_type(self.ftype)
  3240. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3241. del bid # unused
  3242. # T5 based models contain shared token embeddings tensors saved randomly as either "encoder.embed_tokens.weight",
  3243. # "decoder.embed_tokens.weight" or "shared.weight" tensor. In some models there are even multiple of them stored
  3244. # in the safetensors files. We use the first tensor from these three as the token embeddings for both encoder
  3245. # and decoder and ignore the remaining ones.
  3246. if name in ["decoder.embed_tokens.weight", "encoder.embed_tokens.weight", "shared.weight"]:
  3247. if not self.shared_token_embeddings_found:
  3248. name = "shared.weight"
  3249. self.shared_token_embeddings_found = True
  3250. else:
  3251. logger.debug(f"Skipping shared tensor {name!r} in safetensors so that convert can end normally.")
  3252. return []
  3253. return [(self.map_tensor_name(name), data_torch)]
  3254. @Model.register("T5EncoderModel")
  3255. class T5EncoderModel(Model):
  3256. model_arch = gguf.MODEL_ARCH.T5ENCODER
  3257. def __init__(self, *args, **kwargs):
  3258. super().__init__(*args, **kwargs)
  3259. self.shared_token_embeddings_found = False
  3260. def set_vocab(self):
  3261. # to avoid TypeError: Descriptors cannot be created directly
  3262. # exception when importing sentencepiece_model_pb2
  3263. os.environ["PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION"] = "python"
  3264. from sentencepiece import SentencePieceProcessor
  3265. from sentencepiece import sentencepiece_model_pb2 as model
  3266. tokenizer_path = self.dir_model / 'tokenizer.model'
  3267. # many older models use spiece.model tokenizer model filename
  3268. if not tokenizer_path.is_file():
  3269. tokenizer_path = self.dir_model / 'spiece.model'
  3270. if not tokenizer_path.is_file():
  3271. raise FileNotFoundError(f"File not found: {tokenizer_path}")
  3272. sentencepiece_model = model.ModelProto() # pyright: ignore[reportAttributeAccessIssue]
  3273. sentencepiece_model.ParseFromString(open(tokenizer_path, "rb").read())
  3274. # some models like Pile-T5 family use BPE tokenizer instead of Unigram
  3275. if sentencepiece_model.trainer_spec.model_type == 2: # BPE
  3276. # assure the tokenizer model file name is correct
  3277. assert tokenizer_path.name == 'tokenizer.model'
  3278. return self._set_vocab_sentencepiece()
  3279. else:
  3280. assert sentencepiece_model.trainer_spec.model_type == 1 # UNIGRAM
  3281. add_prefix = sentencepiece_model.normalizer_spec.add_dummy_prefix
  3282. remove_whitespaces = sentencepiece_model.normalizer_spec.remove_extra_whitespaces
  3283. precompiled_charsmap = sentencepiece_model.normalizer_spec.precompiled_charsmap
  3284. tokenizer = SentencePieceProcessor()
  3285. tokenizer.LoadFromFile(str(tokenizer_path))
  3286. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  3287. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  3288. scores: list[float] = [-10000.0] * vocab_size
  3289. toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
  3290. for token_id in range(tokenizer.vocab_size()):
  3291. piece = tokenizer.IdToPiece(token_id)
  3292. text = piece.encode("utf-8")
  3293. score = tokenizer.GetScore(token_id)
  3294. toktype = SentencePieceTokenTypes.NORMAL
  3295. if tokenizer.IsUnknown(token_id):
  3296. toktype = SentencePieceTokenTypes.UNKNOWN
  3297. elif tokenizer.IsControl(token_id):
  3298. toktype = SentencePieceTokenTypes.CONTROL
  3299. elif tokenizer.IsUnused(token_id):
  3300. toktype = SentencePieceTokenTypes.UNUSED
  3301. elif tokenizer.IsByte(token_id):
  3302. toktype = SentencePieceTokenTypes.BYTE
  3303. tokens[token_id] = text
  3304. scores[token_id] = score
  3305. toktypes[token_id] = toktype
  3306. added_tokens_file = self.dir_model / 'added_tokens.json'
  3307. if added_tokens_file.is_file():
  3308. with open(added_tokens_file, "r", encoding="utf-8") as f:
  3309. added_tokens_json = json.load(f)
  3310. for key in added_tokens_json:
  3311. token_id = added_tokens_json[key]
  3312. if token_id >= vocab_size:
  3313. logger.warning(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
  3314. continue
  3315. tokens[token_id] = key.encode("utf-8")
  3316. scores[token_id] = -1000.0
  3317. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  3318. if vocab_size > len(tokens):
  3319. pad_count = vocab_size - len(tokens)
  3320. logger.debug(f"Padding vocab with {pad_count} token(s) - [PAD1] through [PAD{pad_count}]")
  3321. for i in range(1, pad_count + 1):
  3322. tokens.append(bytes(f"[PAD{i}]", encoding="utf-8"))
  3323. scores.append(-1000.0)
  3324. toktypes.append(SentencePieceTokenTypes.UNUSED)
  3325. self.gguf_writer.add_tokenizer_model("t5")
  3326. self.gguf_writer.add_tokenizer_pre("default")
  3327. self.gguf_writer.add_token_list(tokens)
  3328. self.gguf_writer.add_token_scores(scores)
  3329. self.gguf_writer.add_token_types(toktypes)
  3330. self.gguf_writer.add_add_space_prefix(add_prefix)
  3331. self.gguf_writer.add_remove_extra_whitespaces(remove_whitespaces)
  3332. if precompiled_charsmap:
  3333. self.gguf_writer.add_precompiled_charsmap(precompiled_charsmap)
  3334. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  3335. special_vocab.add_to_gguf(self.gguf_writer)
  3336. self.gguf_writer.add_add_bos_token(False)
  3337. self.gguf_writer.add_add_eos_token(True)
  3338. def set_gguf_parameters(self):
  3339. if (n_ctx := self.find_hparam(["n_positions"], optional=True)) is None:
  3340. logger.warning("Couldn't find context length in config.json, assuming default value of 512")
  3341. n_ctx = 512
  3342. self.gguf_writer.add_context_length(n_ctx)
  3343. self.gguf_writer.add_embedding_length(self.hparams["d_model"])
  3344. self.gguf_writer.add_feed_forward_length(self.hparams["d_ff"])
  3345. self.gguf_writer.add_block_count(self.hparams["num_layers"])
  3346. self.gguf_writer.add_head_count(self.hparams["num_heads"])
  3347. self.gguf_writer.add_key_length(self.hparams["d_kv"])
  3348. self.gguf_writer.add_value_length(self.hparams["d_kv"])
  3349. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  3350. self.gguf_writer.add_relative_attn_buckets_count(self.hparams["relative_attention_num_buckets"])
  3351. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["layer_norm_epsilon"])
  3352. self.gguf_writer.add_file_type(self.ftype)
  3353. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3354. del bid # unused
  3355. # T5 based models contain shared token embeddings tensors saved randomly as either "encoder.embed_tokens.weight",
  3356. # "decoder.embed_tokens.weight" or "shared.weight" tensor. In some models there are even multiple of them stored
  3357. # in the safetensors files. We use the first tensor from these three as the token embeddings for both encoder
  3358. # and decoder and ignore the remaining ones.
  3359. if name in ["decoder.embed_tokens.weight", "encoder.embed_tokens.weight", "shared.weight"]:
  3360. if not self.shared_token_embeddings_found:
  3361. name = "shared.weight"
  3362. self.shared_token_embeddings_found = True
  3363. else:
  3364. logger.debug(f"Skipping shared tensor {name!r} in safetensors so that convert can end normally.")
  3365. return []
  3366. return [(self.map_tensor_name(name), data_torch)]
  3367. @Model.register("JAISLMHeadModel")
  3368. class JaisModel(Model):
  3369. model_arch = gguf.MODEL_ARCH.JAIS
  3370. def __init__(self, *args, **kwargs):
  3371. super().__init__(*args, **kwargs)
  3372. # SwigLU activation
  3373. assert self.hparams["activation_function"] == "swiglu"
  3374. # ALiBi position embedding
  3375. assert self.hparams["position_embedding_type"] == "alibi"
  3376. # Embeddings scale
  3377. self.embeddings_scale = 1.0
  3378. if 'mup_embeddings_scale' in self.hparams:
  3379. self.embeddings_scale = self.hparams['mup_embeddings_scale']
  3380. elif 'embeddings_scale' in self.hparams:
  3381. self.embeddings_scale = self.hparams['embeddings_scale']
  3382. else:
  3383. assert False
  3384. self.width_scale = 1.0
  3385. if 'mup_output_alpha' in self.hparams:
  3386. assert 'mup_width_scale' in self.hparams
  3387. self.width_scale = self.hparams['mup_output_alpha'] * self.hparams['mup_width_scale']
  3388. elif 'width_scale' in self.hparams:
  3389. self.width_scale = self.hparams['width_scale']
  3390. else:
  3391. assert False
  3392. self.max_alibi_bias = 8.0
  3393. def set_vocab(self):
  3394. self._set_vocab_gpt2()
  3395. def set_gguf_parameters(self):
  3396. self.gguf_writer.add_block_count(self.hparams["n_layer"])
  3397. self.gguf_writer.add_context_length(self.hparams["n_positions"])
  3398. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  3399. self.gguf_writer.add_feed_forward_length(self.hparams["n_inner"])
  3400. self.gguf_writer.add_head_count(self.hparams["n_head"])
  3401. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  3402. self.gguf_writer.add_file_type(self.ftype)
  3403. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3404. del bid # unused
  3405. tensors: list[tuple[str, Tensor]] = []
  3406. # we don't need these
  3407. if name.endswith((".attn.bias")):
  3408. return tensors
  3409. if name.endswith(("relative_pe.slopes")):
  3410. # Calculate max ALiBi bias (this is the inverse of the ALiBi calculation)
  3411. # Some other models has max_alibi_bias spelled out explicitly in the hyperparams,
  3412. # but Jais's PyTorch model simply precalculates the slope values and places them
  3413. # in relative_pes.slopes
  3414. n_head_closest_log2 = 2 ** math.floor(math.log2(self.hparams["n_head"]))
  3415. first_val = float(data_torch[0].item())
  3416. self.max_alibi_bias = -round(math.log2(first_val) * n_head_closest_log2)
  3417. return tensors
  3418. if name.endswith((".c_attn.weight", ".c_proj.weight", ".c_fc.weight", ".c_fc2.weight")):
  3419. data_torch = data_torch.transpose(1, 0)
  3420. new_name = self.map_tensor_name(name)
  3421. if new_name == self.format_tensor_name(gguf.MODEL_TENSOR.TOKEN_EMBD):
  3422. tensors.append((new_name, data_torch * self.embeddings_scale))
  3423. elif new_name == self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT):
  3424. tensors.append((new_name, data_torch * self.width_scale))
  3425. else:
  3426. tensors.append((new_name, data_torch))
  3427. return tensors
  3428. def prepare_tensors(self):
  3429. super().prepare_tensors()
  3430. self.gguf_writer.add_max_alibi_bias(self.max_alibi_bias)
  3431. @Model.register("ChatGLMModel", "ChatGLMForConditionalGeneration")
  3432. class ChatGLMModel(Model):
  3433. model_arch = gguf.MODEL_ARCH.CHATGLM
  3434. def set_vocab_chatglm3(self):
  3435. dir_model = self.dir_model
  3436. hparams = self.hparams
  3437. tokens: list[bytes] = []
  3438. toktypes: list[int] = []
  3439. scores: list[float] = []
  3440. from transformers import AutoTokenizer
  3441. tokenizer = AutoTokenizer.from_pretrained(dir_model, trust_remote_code=True)
  3442. vocab_size = hparams.get("padded_vocab_size", len(tokenizer.get_vocab()))
  3443. assert max(tokenizer.get_vocab().values()) < vocab_size
  3444. role_special_tokens = ["<|system|>", "<|user|>", "<|assistant|>", "<|observation|>"]
  3445. special_tokens = ["[MASK]", "[gMASK]", "[sMASK]", "sop", "eop"] + role_special_tokens
  3446. for token_id in range(vocab_size):
  3447. piece = tokenizer._convert_id_to_token(token_id)
  3448. if token_id == 0:
  3449. piece = "<unk>"
  3450. elif token_id == 1:
  3451. piece = "<bos>"
  3452. elif token_id == 2:
  3453. piece = "<eos>"
  3454. text = piece.encode("utf-8")
  3455. score = 0.0
  3456. # Referencing the tokenizer Python implementation(https://huggingface.co/THUDM/chatglm3-6b/blob/main/tokenization_chatglm.py),
  3457. # it is only valid if it is less than tokenizer.tokenizer.sp_model.vocab_size()
  3458. if len(piece) != 0 and token_id < tokenizer.tokenizer.sp_model.vocab_size():
  3459. score = tokenizer.tokenizer.sp_model.get_score(token_id)
  3460. if token_id >= tokenizer.tokenizer.sp_model.vocab_size():
  3461. if piece in special_tokens:
  3462. toktype = SentencePieceTokenTypes.CONTROL
  3463. elif len(piece) == 0:
  3464. text = f"[PAD{token_id}]".encode("utf-8")
  3465. toktype = SentencePieceTokenTypes.UNUSED
  3466. else:
  3467. toktype = SentencePieceTokenTypes.USER_DEFINED
  3468. tokens.append(text)
  3469. scores.append(score)
  3470. toktypes.append(toktype)
  3471. continue
  3472. toktype = SentencePieceTokenTypes.NORMAL
  3473. if tokenizer.tokenizer.sp_model.is_unknown(token_id):
  3474. toktype = SentencePieceTokenTypes.UNKNOWN
  3475. elif tokenizer.tokenizer.sp_model.is_control(token_id):
  3476. toktype = SentencePieceTokenTypes.CONTROL
  3477. elif tokenizer.tokenizer.sp_model.is_unused(token_id):
  3478. toktype = SentencePieceTokenTypes.UNUSED
  3479. elif tokenizer.tokenizer.sp_model.is_byte(token_id):
  3480. toktype = SentencePieceTokenTypes.BYTE
  3481. tokens.append(text)
  3482. scores.append(score)
  3483. toktypes.append(toktype)
  3484. self.gguf_writer.add_tokenizer_model("llama")
  3485. # glm3 needs prefix and suffix formatted as:
  3486. # prompt = "[gMASK]sop<|user|>\n" + prompt + "<|assistant|>"
  3487. self.gguf_writer.add_tokenizer_pre("chatglm-spm")
  3488. self.gguf_writer.add_token_list(tokens)
  3489. self.gguf_writer.add_token_scores(scores)
  3490. self.gguf_writer.add_token_types(toktypes)
  3491. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  3492. special_vocab.add_to_gguf(self.gguf_writer)
  3493. @staticmethod
  3494. def token_bytes_to_string(b):
  3495. from transformers.models.gpt2.tokenization_gpt2 import bytes_to_unicode
  3496. byte_encoder = bytes_to_unicode()
  3497. return ''.join([byte_encoder[ord(char)] for char in b.decode('latin-1')])
  3498. @staticmethod
  3499. def bpe(mergeable_ranks: dict[bytes, int], token: bytes, max_rank: int | None = None) -> list[bytes]:
  3500. parts = [bytes([b]) for b in token]
  3501. while True:
  3502. min_idx = None
  3503. min_rank = None
  3504. for i, pair in enumerate(zip(parts[:-1], parts[1:])):
  3505. rank = mergeable_ranks.get(pair[0] + pair[1])
  3506. if rank is not None and (min_rank is None or rank < min_rank):
  3507. min_idx = i
  3508. min_rank = rank
  3509. if min_rank is None or (max_rank is not None and min_rank >= max_rank):
  3510. break
  3511. assert min_idx is not None
  3512. parts = parts[:min_idx] + [parts[min_idx] + parts[min_idx + 1]] + parts[min_idx + 2:]
  3513. return parts
  3514. def set_vocab(self):
  3515. if "THUDM/chatglm3-6b" in self.hparams.get("_name_or_path", ""):
  3516. self.set_vocab_chatglm3()
  3517. return
  3518. dir_model = self.dir_model
  3519. hparams = self.hparams
  3520. tokens: list[str] = []
  3521. toktypes: list[int] = []
  3522. from transformers import AutoTokenizer
  3523. tokenizer = AutoTokenizer.from_pretrained(dir_model, trust_remote_code=True)
  3524. vocab_size = hparams["padded_vocab_size"]
  3525. assert max(tokenizer.get_vocab().values()) < vocab_size
  3526. tokpre = self.get_vocab_base_pre(tokenizer)
  3527. merges = []
  3528. vocab = {}
  3529. mergeable_ranks = tokenizer.mergeable_ranks
  3530. for token, rank in mergeable_ranks.items():
  3531. vocab[ChatGLMModel.token_bytes_to_string(token)] = rank
  3532. if len(token) == 1:
  3533. continue
  3534. merged = ChatGLMModel.bpe(mergeable_ranks, token, max_rank=rank)
  3535. assert len(merged) >= 2 and len(merged) <= 7
  3536. merges.append(' '.join(map(ChatGLMModel.token_bytes_to_string, merged)))
  3537. # for this kind of tokenizer, added_vocab is not a subset of vocab, so they need to be combined
  3538. added_vocab = tokenizer.get_added_vocab()
  3539. reverse_vocab = {id_ : encoded_tok for encoded_tok, id_ in {**vocab, **added_vocab}.items()}
  3540. for i in range(vocab_size):
  3541. if i not in reverse_vocab:
  3542. tokens.append(f"[PAD{i}]")
  3543. toktypes.append(gguf.TokenType.UNUSED)
  3544. elif reverse_vocab[i] in added_vocab:
  3545. tokens.append(reverse_vocab[i])
  3546. if tokenizer.added_tokens_decoder[i].special:
  3547. toktypes.append(gguf.TokenType.CONTROL)
  3548. else:
  3549. toktypes.append(gguf.TokenType.USER_DEFINED)
  3550. else:
  3551. tokens.append(reverse_vocab[i])
  3552. toktypes.append(gguf.TokenType.NORMAL)
  3553. self.gguf_writer.add_tokenizer_model("gpt2")
  3554. self.gguf_writer.add_tokenizer_pre(tokpre)
  3555. self.gguf_writer.add_token_list(tokens)
  3556. self.gguf_writer.add_token_types(toktypes)
  3557. special_vocab = gguf.SpecialVocab(dir_model, load_merges=False)
  3558. special_vocab.merges = merges
  3559. # only add special tokens when they were not already loaded from config.json
  3560. special_vocab._set_special_token("eos", tokenizer.get_added_vocab()["<|endoftext|>"])
  3561. special_vocab._set_special_token("eot", tokenizer.get_added_vocab()["<|user|>"])
  3562. # this one is usually not in config.json anyway
  3563. special_vocab._set_special_token("unk", tokenizer.get_added_vocab()["<|endoftext|>"])
  3564. special_vocab.add_to_gguf(self.gguf_writer)
  3565. def set_gguf_parameters(self):
  3566. n_embed = self.hparams.get("hidden_size", self.hparams.get("n_embed"))
  3567. n_head = self.hparams.get("n_head", self.hparams.get("num_attention_heads"))
  3568. n_head_kv = self.hparams.get("multi_query_group_num", n_head)
  3569. self.gguf_writer.add_context_length(self.hparams.get("seq_length", n_embed))
  3570. self.gguf_writer.add_embedding_length(n_embed)
  3571. self.gguf_writer.add_feed_forward_length(self.hparams.get("ffn_hidden_size", 4 * n_embed))
  3572. self.gguf_writer.add_block_count(self.hparams["num_layers"])
  3573. self.gguf_writer.add_head_count(n_head)
  3574. self.gguf_writer.add_head_count_kv(n_head_kv)
  3575. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["layernorm_epsilon"])
  3576. self.gguf_writer.add_file_type(self.ftype)
  3577. self.gguf_writer.add_rope_dimension_count(64)
  3578. self.gguf_writer.add_add_bos_token(False)
  3579. rope_freq = 10000
  3580. if "rope_ratio" in self.hparams:
  3581. rope_freq = rope_freq * self.hparams["rope_ratio"]
  3582. self.gguf_writer.add_rope_freq_base(rope_freq)
  3583. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3584. del bid # unused
  3585. if name.endswith(".rotary_pos_emb.inv_freq"):
  3586. return []
  3587. name = name.removeprefix("transformer.")
  3588. return [(self.map_tensor_name(name), data_torch)]
  3589. @Model.register("NemotronForCausalLM")
  3590. class NemotronModel(Model):
  3591. model_arch = gguf.MODEL_ARCH.NEMOTRON
  3592. def set_vocab(self):
  3593. self._set_vocab_sentencepiece()
  3594. self.gguf_writer.add_pad_token_id(0)
  3595. self.gguf_writer.add_unk_token_id(1)
  3596. def set_gguf_parameters(self):
  3597. super().set_gguf_parameters()
  3598. hparams = self.hparams
  3599. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  3600. f_norm_eps = self.find_hparam(["layer_norm_eps", "layer_norm_epsilon", "norm_epsilon", "norm_eps"])
  3601. self.gguf_writer.add_layer_norm_eps(f_norm_eps)
  3602. # * Partial RoPE
  3603. rot_pct = self.find_hparam(["partial_rotary_factor", "rope_pct", "rope_percent"])
  3604. n_embd = self.find_hparam(["hidden_size", "n_embd"])
  3605. n_head = self.find_hparam(["num_attention_heads", "n_head"])
  3606. self.gguf_writer.add_rope_dimension_count(int(rot_pct * n_embd) // n_head)
  3607. # * RopeScaling for Nemotron
  3608. if "rope_scaling" not in self.hparams or self.hparams["rope_scaling"] is None:
  3609. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
  3610. else:
  3611. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  3612. self.gguf_writer.add_rope_scaling_factor(self.hparams["factor"])
  3613. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3614. # * Adding +1 to LayerNorm's weights here to implement layernorm1p w/o changing anything on the GGML engine side
  3615. # model.layers.{l}.input_layernorm.weight
  3616. # model.layers.{l}.post_attention_layernorm.weight
  3617. # model.norm.weight
  3618. if name.endswith("norm.weight"):
  3619. data_torch = data_torch + 1
  3620. return [(self.map_tensor_name(name), data_torch)]
  3621. @Model.register("ExaoneForCausalLM")
  3622. class ExaoneModel(Model):
  3623. model_arch = gguf.MODEL_ARCH.EXAONE
  3624. def set_gguf_parameters(self):
  3625. hparams = self.hparams
  3626. assert (hparams["activation_function"] == "silu")
  3627. max_position_embeddings = hparams["max_position_embeddings"]
  3628. embed_dim = hparams["hidden_size"]
  3629. num_heads = hparams["num_attention_heads"]
  3630. num_kv_heads = hparams.get("num_key_value_heads", num_heads)
  3631. layer_norm_eps = hparams["layer_norm_epsilon"]
  3632. intermediate_size = hparams["intermediate_size"] if "intermediate_size" in hparams else 4 * embed_dim
  3633. num_layers = hparams["num_layers"]
  3634. # ignore for now as EXAONE-3.0-7.8B-Instruct attentino_dropout is 0.0
  3635. # attention_dropout_rate = hparams["attention_dropout"]
  3636. # ignore for now as EXAONE-3.0-7.8B-Instruct embed_dropout is 0.0
  3637. # embed_dropout_rate = hparams["embed_dropout"]
  3638. self.gguf_writer.add_embedding_length(embed_dim)
  3639. self.gguf_writer.add_head_count(num_heads)
  3640. self.gguf_writer.add_head_count_kv(num_kv_heads)
  3641. self.gguf_writer.add_context_length(max_position_embeddings)
  3642. self.gguf_writer.add_layer_norm_rms_eps(layer_norm_eps)
  3643. self.gguf_writer.add_feed_forward_length(intermediate_size)
  3644. self.gguf_writer.add_block_count(num_layers)
  3645. self.gguf_writer.add_file_type(self.ftype)
  3646. if (rope_theta := self.hparams.get("rope_theta")) is not None:
  3647. self.gguf_writer.add_rope_freq_base(rope_theta)
  3648. rotary_factor = self.find_hparam(["partial_rotary_factor", "rope_pct"], optional=True)
  3649. rotary_factor = rotary_factor if rotary_factor is not None else 1.0
  3650. self.gguf_writer.add_rope_dimension_count(int(rotary_factor * (hparams["hidden_size"] // hparams["num_attention_heads"])))
  3651. if hparams.get("rope_scaling") is not None and "factor" in hparams["rope_scaling"]:
  3652. if hparams["rope_scaling"].get("type") == "linear":
  3653. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  3654. self.gguf_writer.add_rope_scaling_factor(hparams["rope_scaling"]["factor"])
  3655. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  3656. if rope_scaling := self.find_hparam(["rope_scaling"], optional=True):
  3657. if rope_scaling.get("rope_type", '').lower() == "llama3":
  3658. base = self.hparams.get("rope_theta", 10000.0)
  3659. dim = self.hparams.get("head_dim", self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  3660. freqs = 1.0 / (base ** (torch.arange(0, dim, 2, dtype=torch.float32) / dim))
  3661. factor = rope_scaling.get("factor", 8.0)
  3662. low_freq_factor = rope_scaling.get("low_freq_factor", 1.0)
  3663. high_freq_factor = rope_scaling.get("high_freq_factor", 4.0)
  3664. old_context_len = self.hparams.get("original_max_position_embeddings", 8192)
  3665. low_freq_wavelen = old_context_len / low_freq_factor
  3666. high_freq_wavelen = old_context_len / high_freq_factor
  3667. assert low_freq_wavelen != high_freq_wavelen
  3668. rope_factors = []
  3669. for freq in freqs:
  3670. wavelen = 2 * math.pi / freq
  3671. if wavelen < high_freq_wavelen:
  3672. rope_factors.append(1)
  3673. elif wavelen > low_freq_wavelen:
  3674. rope_factors.append(factor)
  3675. else:
  3676. smooth = (old_context_len / wavelen - low_freq_factor) / (high_freq_factor - low_freq_factor)
  3677. rope_factors.append(1 / ((1 - smooth) / factor + smooth))
  3678. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FREQS), torch.tensor(rope_factors, dtype=torch.float32))
  3679. @Model.register("GraniteForCausalLM")
  3680. class GraniteModel(LlamaModel):
  3681. """Conversion for IBM's GraniteForCausalLM"""
  3682. model_arch = gguf.MODEL_ARCH.GRANITE
  3683. def set_gguf_parameters(self):
  3684. """Granite uses standard llama parameters with the following differences:
  3685. - No head_dim support
  3686. - New multiplier params:
  3687. - attention_scale
  3688. - embedding_scale
  3689. - residual_scale
  3690. - logits_scaling
  3691. """
  3692. if head_dim := self.hparams.pop("head_dim", None):
  3693. logger.warning("Ignoring head_dim (%s) from config for Granite", head_dim)
  3694. super().set_gguf_parameters()
  3695. # NOTE: Convert _multiplier params to _scale params for naming
  3696. # consistency
  3697. if attention_scale := self.hparams.get("attention_multiplier"):
  3698. self.gguf_writer.add_attention_scale(attention_scale)
  3699. logger.info("gguf: (granite) attention_scale = %s", attention_scale)
  3700. if embedding_scale := self.hparams.get("embedding_multiplier"):
  3701. self.gguf_writer.add_embedding_scale(embedding_scale)
  3702. logger.info("gguf: (granite) embedding_scale = %s", embedding_scale)
  3703. if residual_scale := self.hparams.get("residual_multiplier"):
  3704. self.gguf_writer.add_residual_scale(residual_scale)
  3705. logger.info("gguf: (granite) residual_scale = %s", residual_scale)
  3706. if logits_scale := self.hparams.get("logits_scaling"):
  3707. self.gguf_writer.add_logit_scale(logits_scale)
  3708. logger.info("gguf: (granite) logits_scale = %s", logits_scale)
  3709. @Model.register("GraniteMoeForCausalLM")
  3710. class GraniteMoeModel(GraniteModel):
  3711. """Conversion for IBM's GraniteMoeForCausalLM"""
  3712. model_arch = gguf.MODEL_ARCH.GRANITE_MOE
  3713. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3714. """In modeling_granitemoe, the JetMoe implementation of parallel experts
  3715. is used. This essentially merges w1 and w3 into a single tensor with 2x
  3716. the hidden size that is then split during forward. To keep compatibility
  3717. with existing mixtral support, we pull them apart here.
  3718. """
  3719. if name.endswith("block_sparse_moe.input_linear.weight"):
  3720. ffn_dim = self.hparams["intermediate_size"]
  3721. assert data_torch.shape[-2] == 2 * ffn_dim, "Merged FFN tensor size must be 2 * intermediate_size"
  3722. gate, up = data_torch[..., :ffn_dim, :], data_torch[..., ffn_dim:, :]
  3723. return [
  3724. (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_GATE_EXP, bid), gate),
  3725. (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_UP_EXP, bid), up),
  3726. ]
  3727. return super().modify_tensors(data_torch, name, bid)
  3728. @Model.register("ChameleonForConditionalGeneration")
  3729. @Model.register("ChameleonForCausalLM") # obsolete
  3730. class ChameleonModel(Model):
  3731. model_arch = gguf.MODEL_ARCH.CHAMELEON
  3732. def set_gguf_parameters(self):
  3733. super().set_gguf_parameters()
  3734. self.gguf_writer.add_swin_norm(self.hparams.get("swin_norm", False))
  3735. def set_vocab(self):
  3736. self._set_vocab_gpt2()
  3737. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3738. # ignore image tokenizer for now
  3739. # TODO: remove this once image support is implemented for Chameleon
  3740. if name.startswith("model.vqmodel"):
  3741. return []
  3742. n_head = self.hparams["num_attention_heads"]
  3743. n_kv_head = self.hparams.get("num_key_value_heads")
  3744. hidden_dim = self.hparams.get("hidden_size")
  3745. if name.endswith(("q_proj.weight", "q_proj.bias")):
  3746. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  3747. if name.endswith(("k_proj.weight", "k_proj.bias")):
  3748. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  3749. if name.endswith(("q_norm.weight", "q_norm.bias")):
  3750. data_torch = ChameleonModel._reverse_hf_permute(data_torch, n_head, hidden_dim)
  3751. if name.endswith(("k_norm.weight", "k_norm.bias")):
  3752. data_torch = ChameleonModel._reverse_hf_permute(data_torch, n_kv_head, hidden_dim)
  3753. return [(self.map_tensor_name(name), data_torch)]
  3754. # see: https://github.com/huggingface/transformers/blob/72fb02c47dbbe1999ae105319f24631cad6e2e00/src/transformers/models/chameleon/convert_chameleon_weights_to_hf.py#L176-L203
  3755. @staticmethod
  3756. def _reverse_hf_permute(data_torch, n_heads, hidden_dim):
  3757. head_dim = hidden_dim // n_heads
  3758. data_torch = data_torch[0].view(2, head_dim // 2).t().reshape(1, -1)
  3759. data_torch = data_torch.repeat_interleave(n_heads, 0)
  3760. return data_torch
  3761. ###### CONVERSION LOGIC ######
  3762. # tree of lazy tensors
  3763. class LazyTorchTensor(gguf.LazyBase):
  3764. _tensor_type = torch.Tensor
  3765. # to keep the type-checker happy
  3766. dtype: torch.dtype
  3767. shape: torch.Size
  3768. # only used when converting a torch.Tensor to a np.ndarray
  3769. _dtype_map: dict[torch.dtype, type] = {
  3770. torch.float16: np.float16,
  3771. torch.float32: np.float32,
  3772. }
  3773. # used for safetensors slices
  3774. # ref: https://github.com/huggingface/safetensors/blob/079781fd0dc455ba0fe851e2b4507c33d0c0d407/bindings/python/src/lib.rs#L1046
  3775. # TODO: uncomment U64, U32, and U16, ref: https://github.com/pytorch/pytorch/issues/58734
  3776. _dtype_str_map: dict[str, torch.dtype] = {
  3777. "F64": torch.float64,
  3778. "F32": torch.float32,
  3779. "BF16": torch.bfloat16,
  3780. "F16": torch.float16,
  3781. # "U64": torch.uint64,
  3782. "I64": torch.int64,
  3783. # "U32": torch.uint32,
  3784. "I32": torch.int32,
  3785. # "U16": torch.uint16,
  3786. "I16": torch.int16,
  3787. "U8": torch.uint8,
  3788. "I8": torch.int8,
  3789. "BOOL": torch.bool,
  3790. "F8_E4M3": torch.float8_e4m3fn,
  3791. "F8_E5M2": torch.float8_e5m2,
  3792. }
  3793. def numpy(self) -> gguf.LazyNumpyTensor:
  3794. dtype = self._dtype_map[self.dtype]
  3795. return gguf.LazyNumpyTensor(
  3796. meta=gguf.LazyNumpyTensor.meta_with_dtype_and_shape(dtype, self.shape),
  3797. args=(self,),
  3798. func=(lambda s: s.numpy())
  3799. )
  3800. @classmethod
  3801. def meta_with_dtype_and_shape(cls, dtype: torch.dtype, shape: tuple[int, ...]) -> Tensor:
  3802. return torch.empty(size=shape, dtype=dtype, device="meta")
  3803. @classmethod
  3804. def from_safetensors_slice(cls, st_slice: Any) -> Tensor:
  3805. dtype = cls._dtype_str_map[st_slice.get_dtype()]
  3806. shape: tuple[int, ...] = tuple(st_slice.get_shape())
  3807. lazy = cls(meta=cls.meta_with_dtype_and_shape(dtype, shape), args=(st_slice,), func=lambda s: s[:])
  3808. return cast(torch.Tensor, lazy)
  3809. @classmethod
  3810. def __torch_function__(cls, func, types, args=(), kwargs=None):
  3811. del types # unused
  3812. if kwargs is None:
  3813. kwargs = {}
  3814. if func is torch.Tensor.numpy:
  3815. return args[0].numpy()
  3816. return cls._wrap_fn(func)(*args, **kwargs)
  3817. def parse_args() -> argparse.Namespace:
  3818. parser = argparse.ArgumentParser(
  3819. description="Convert a huggingface model to a GGML compatible file")
  3820. parser.add_argument(
  3821. "--vocab-only", action="store_true",
  3822. help="extract only the vocab",
  3823. )
  3824. parser.add_argument(
  3825. "--outfile", type=Path,
  3826. help="path to write to; default: based on input. {ftype} will be replaced by the outtype.",
  3827. )
  3828. parser.add_argument(
  3829. "--outtype", type=str, choices=["f32", "f16", "bf16", "q8_0", "tq1_0", "tq2_0", "auto"], default="f16",
  3830. help="output format - use f32 for float32, f16 for float16, bf16 for bfloat16, q8_0 for Q8_0, tq1_0 or tq2_0 for ternary, and auto for the highest-fidelity 16-bit float type depending on the first loaded tensor type",
  3831. )
  3832. parser.add_argument(
  3833. "--bigendian", action="store_true",
  3834. help="model is executed on big endian machine",
  3835. )
  3836. parser.add_argument(
  3837. "model", type=Path,
  3838. help="directory containing model file",
  3839. )
  3840. parser.add_argument(
  3841. "--use-temp-file", action="store_true",
  3842. help="use the tempfile library while processing (helpful when running out of memory, process killed)",
  3843. )
  3844. parser.add_argument(
  3845. "--no-lazy", action="store_true",
  3846. help="use more RAM by computing all outputs before writing (use in case lazy evaluation is broken)",
  3847. )
  3848. parser.add_argument(
  3849. "--model-name", type=str, default=None,
  3850. help="name of the model",
  3851. )
  3852. parser.add_argument(
  3853. "--verbose", action="store_true",
  3854. help="increase output verbosity",
  3855. )
  3856. parser.add_argument(
  3857. "--split-max-tensors", type=int, default=0,
  3858. help="max tensors in each split",
  3859. )
  3860. parser.add_argument(
  3861. "--split-max-size", type=str, default="0",
  3862. help="max size per split N(M|G)",
  3863. )
  3864. parser.add_argument(
  3865. "--dry-run", action="store_true",
  3866. help="only print out a split plan and exit, without writing any new files",
  3867. )
  3868. parser.add_argument(
  3869. "--no-tensor-first-split", action="store_true",
  3870. help="do not add tensors to the first split (disabled by default)"
  3871. )
  3872. parser.add_argument(
  3873. "--metadata", type=Path,
  3874. help="Specify the path for an authorship metadata override file"
  3875. )
  3876. return parser.parse_args()
  3877. def split_str_to_n_bytes(split_str: str) -> int:
  3878. if split_str.endswith("K"):
  3879. n = int(split_str[:-1]) * 1000
  3880. elif split_str.endswith("M"):
  3881. n = int(split_str[:-1]) * 1000 * 1000
  3882. elif split_str.endswith("G"):
  3883. n = int(split_str[:-1]) * 1000 * 1000 * 1000
  3884. elif split_str.isnumeric():
  3885. n = int(split_str)
  3886. else:
  3887. raise ValueError(f"Invalid split size: {split_str}, must be a number, optionally followed by K, M, or G")
  3888. if n < 0:
  3889. raise ValueError(f"Invalid split size: {split_str}, must be positive")
  3890. return n
  3891. def main() -> None:
  3892. args = parse_args()
  3893. if args.verbose:
  3894. logging.basicConfig(level=logging.DEBUG)
  3895. else:
  3896. logging.basicConfig(level=logging.INFO)
  3897. dir_model = args.model
  3898. if not dir_model.is_dir():
  3899. logger.error(f'Error: {args.model} is not a directory')
  3900. sys.exit(1)
  3901. ftype_map: dict[str, gguf.LlamaFileType] = {
  3902. "f32": gguf.LlamaFileType.ALL_F32,
  3903. "f16": gguf.LlamaFileType.MOSTLY_F16,
  3904. "bf16": gguf.LlamaFileType.MOSTLY_BF16,
  3905. "q8_0": gguf.LlamaFileType.MOSTLY_Q8_0,
  3906. "tq1_0": gguf.LlamaFileType.MOSTLY_TQ1_0,
  3907. "tq2_0": gguf.LlamaFileType.MOSTLY_TQ2_0,
  3908. "auto": gguf.LlamaFileType.GUESSED,
  3909. }
  3910. is_split = args.split_max_tensors > 0 or args.split_max_size != "0"
  3911. if args.use_temp_file and is_split:
  3912. logger.error("Error: Cannot use temp file when splitting")
  3913. sys.exit(1)
  3914. if args.outfile is not None:
  3915. fname_out = args.outfile
  3916. else:
  3917. fname_out = dir_model
  3918. logger.info(f"Loading model: {dir_model.name}")
  3919. hparams = Model.load_hparams(dir_model)
  3920. with torch.inference_mode():
  3921. output_type = ftype_map[args.outtype]
  3922. model_architecture = hparams["architectures"][0]
  3923. try:
  3924. model_class = Model.from_model_architecture(model_architecture)
  3925. except NotImplementedError:
  3926. logger.error(f"Model {model_architecture} is not supported")
  3927. sys.exit(1)
  3928. model_instance = model_class(dir_model=dir_model, ftype=output_type, fname_out=fname_out,
  3929. is_big_endian=args.bigendian, use_temp_file=args.use_temp_file,
  3930. eager=args.no_lazy,
  3931. metadata_override=args.metadata, model_name=args.model_name,
  3932. split_max_tensors=args.split_max_tensors,
  3933. split_max_size=split_str_to_n_bytes(args.split_max_size), dry_run=args.dry_run,
  3934. small_first_shard=args.no_tensor_first_split)
  3935. if args.vocab_only:
  3936. logger.info("Exporting model vocab...")
  3937. model_instance.write_vocab()
  3938. logger.info(f"Model vocab successfully exported to {model_instance.fname_out}")
  3939. else:
  3940. logger.info("Exporting model...")
  3941. model_instance.write()
  3942. out_path = f"{model_instance.fname_out.parent}{os.sep}" if is_split else model_instance.fname_out
  3943. logger.info(f"Model successfully exported to {out_path}")
  3944. if __name__ == '__main__':
  3945. main()