server.cpp 165 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267
  1. #include "utils.hpp"
  2. #include "arg.h"
  3. #include "common.h"
  4. #include "json-schema-to-grammar.h"
  5. #include "llama.h"
  6. #include "log.h"
  7. #include "sampling.h"
  8. #include "speculative.h"
  9. // Change JSON_ASSERT from assert() to GGML_ASSERT:
  10. #define JSON_ASSERT GGML_ASSERT
  11. #include "json.hpp"
  12. // mime type for sending response
  13. #define MIMETYPE_JSON "application/json; charset=utf-8"
  14. // auto generated files (update with ./deps.sh)
  15. #include "index.html.gz.hpp"
  16. #include "loading.html.hpp"
  17. #include <atomic>
  18. #include <condition_variable>
  19. #include <cstddef>
  20. #include <cinttypes>
  21. #include <deque>
  22. #include <memory>
  23. #include <mutex>
  24. #include <signal.h>
  25. #include <thread>
  26. #include <unordered_map>
  27. #include <unordered_set>
  28. using json = nlohmann::ordered_json;
  29. enum stop_type {
  30. STOP_TYPE_NONE,
  31. STOP_TYPE_EOS,
  32. STOP_TYPE_WORD,
  33. STOP_TYPE_LIMIT,
  34. };
  35. // state diagram: https://github.com/ggerganov/llama.cpp/pull/9283
  36. enum slot_state {
  37. SLOT_STATE_IDLE,
  38. SLOT_STATE_STARTED, // TODO: this state is only used for setting up the initial prompt processing; maybe merge it with launch_slot_with_task in the future
  39. SLOT_STATE_PROCESSING_PROMPT,
  40. SLOT_STATE_DONE_PROMPT,
  41. SLOT_STATE_GENERATING,
  42. };
  43. enum server_state {
  44. SERVER_STATE_LOADING_MODEL, // Server is starting up, model not fully loaded yet
  45. SERVER_STATE_READY, // Server is ready and model is loaded
  46. };
  47. enum server_task_type {
  48. SERVER_TASK_TYPE_COMPLETION,
  49. SERVER_TASK_TYPE_EMBEDDING,
  50. SERVER_TASK_TYPE_RERANK,
  51. SERVER_TASK_TYPE_INFILL,
  52. SERVER_TASK_TYPE_CANCEL,
  53. SERVER_TASK_TYPE_NEXT_RESPONSE,
  54. SERVER_TASK_TYPE_METRICS,
  55. SERVER_TASK_TYPE_SLOT_SAVE,
  56. SERVER_TASK_TYPE_SLOT_RESTORE,
  57. SERVER_TASK_TYPE_SLOT_ERASE,
  58. SERVER_TASK_TYPE_SET_LORA,
  59. };
  60. enum oaicompat_type {
  61. OAICOMPAT_TYPE_NONE,
  62. OAICOMPAT_TYPE_CHAT,
  63. OAICOMPAT_TYPE_COMPLETION,
  64. OAICOMPAT_TYPE_EMBEDDING,
  65. };
  66. // https://community.openai.com/t/openai-chat-list-of-error-codes-and-types/357791/11
  67. enum error_type {
  68. ERROR_TYPE_INVALID_REQUEST,
  69. ERROR_TYPE_AUTHENTICATION,
  70. ERROR_TYPE_SERVER,
  71. ERROR_TYPE_NOT_FOUND,
  72. ERROR_TYPE_PERMISSION,
  73. ERROR_TYPE_UNAVAILABLE, // custom error
  74. ERROR_TYPE_NOT_SUPPORTED, // custom error
  75. };
  76. struct slot_params {
  77. bool stream = true;
  78. bool cache_prompt = true; // remember the prompt to avoid reprocessing all prompt
  79. bool return_tokens = false;
  80. int32_t n_keep = 0; // number of tokens to keep from initial prompt
  81. int32_t n_discard = 0; // number of tokens after n_keep that may be discarded when shifting context, 0 defaults to half
  82. int32_t n_predict = -1; // new tokens to predict
  83. int32_t n_indent = 0; // mininum line indentation for the generated text in number of whitespace characters
  84. int64_t t_max_prompt_ms = -1; // TODO: implement
  85. int64_t t_max_predict_ms = -1; // if positive, limit the generation phase to this time limit
  86. std::vector<std::string> antiprompt;
  87. std::vector<std::string> response_fields;
  88. bool timings_per_token = false;
  89. bool post_sampling_probs = false;
  90. bool ignore_eos = false;
  91. struct common_params_sampling sampling;
  92. struct common_params_speculative speculative;
  93. // OAI-compat fields
  94. bool verbose = false;
  95. oaicompat_type oaicompat = OAICOMPAT_TYPE_NONE;
  96. std::string oaicompat_model;
  97. std::string oaicompat_cmpl_id;
  98. json to_json() const {
  99. std::vector<std::string> samplers;
  100. samplers.reserve(sampling.samplers.size());
  101. for (const auto & sampler : sampling.samplers) {
  102. samplers.emplace_back(common_sampler_type_to_str(sampler));
  103. }
  104. return json {
  105. {"n_predict", n_predict}, // Server configured n_predict
  106. {"seed", sampling.seed},
  107. {"temperature", sampling.temp},
  108. {"dynatemp_range", sampling.dynatemp_range},
  109. {"dynatemp_exponent", sampling.dynatemp_exponent},
  110. {"top_k", sampling.top_k},
  111. {"top_p", sampling.top_p},
  112. {"min_p", sampling.min_p},
  113. {"xtc_probability", sampling.xtc_probability},
  114. {"xtc_threshold", sampling.xtc_threshold},
  115. {"typical_p", sampling.typ_p},
  116. {"repeat_last_n", sampling.penalty_last_n},
  117. {"repeat_penalty", sampling.penalty_repeat},
  118. {"presence_penalty", sampling.penalty_present},
  119. {"frequency_penalty", sampling.penalty_freq},
  120. {"dry_multiplier", sampling.dry_multiplier},
  121. {"dry_base", sampling.dry_base},
  122. {"dry_allowed_length", sampling.dry_allowed_length},
  123. {"dry_penalty_last_n", sampling.dry_penalty_last_n},
  124. {"dry_sequence_breakers", sampling.dry_sequence_breakers},
  125. {"mirostat", sampling.mirostat},
  126. {"mirostat_tau", sampling.mirostat_tau},
  127. {"mirostat_eta", sampling.mirostat_eta},
  128. {"stop", antiprompt},
  129. {"max_tokens", n_predict}, // User configured n_predict
  130. {"n_keep", n_keep},
  131. {"n_discard", n_discard},
  132. {"ignore_eos", sampling.ignore_eos},
  133. {"stream", stream},
  134. {"logit_bias", format_logit_bias(sampling.logit_bias)},
  135. {"n_probs", sampling.n_probs},
  136. {"min_keep", sampling.min_keep},
  137. {"grammar", sampling.grammar},
  138. {"samplers", samplers},
  139. {"speculative.n_max", speculative.n_max},
  140. {"speculative.n_min", speculative.n_min},
  141. {"speculative.p_min", speculative.p_min},
  142. {"timings_per_token", timings_per_token},
  143. {"post_sampling_probs", post_sampling_probs},
  144. };
  145. }
  146. };
  147. struct server_task {
  148. int id = -1; // to be filled by server_queue
  149. int index = -1; // used when there are multiple prompts (batch request)
  150. server_task_type type;
  151. // used by SERVER_TASK_TYPE_CANCEL
  152. int id_target = -1;
  153. // used by SERVER_TASK_TYPE_INFERENCE
  154. slot_params params;
  155. llama_tokens prompt_tokens;
  156. int id_selected_slot = -1;
  157. // used by SERVER_TASK_TYPE_SLOT_SAVE, SERVER_TASK_TYPE_SLOT_RESTORE, SERVER_TASK_TYPE_SLOT_ERASE
  158. struct slot_action {
  159. int slot_id;
  160. std::string filename;
  161. std::string filepath;
  162. };
  163. slot_action slot_action;
  164. // used by SERVER_TASK_TYPE_METRICS
  165. bool metrics_reset_bucket = false;
  166. server_task(server_task_type type) : type(type) {}
  167. static slot_params params_from_json_cmpl(
  168. const llama_model * model,
  169. const llama_context * ctx,
  170. const common_params & params_base,
  171. const json & data) {
  172. slot_params params;
  173. // Sampling parameter defaults are loaded from the global server context (but individual requests can still override them)
  174. slot_params defaults;
  175. defaults.sampling = params_base.sampling;
  176. defaults.speculative = params_base.speculative;
  177. // enabling this will output extra debug information in the HTTP responses from the server
  178. params.verbose = params_base.verbosity > 9;
  179. params.timings_per_token = json_value(data, "timings_per_token", false);
  180. params.stream = json_value(data, "stream", false);
  181. params.cache_prompt = json_value(data, "cache_prompt", true);
  182. params.return_tokens = json_value(data, "return_tokens", false);
  183. params.n_predict = json_value(data, "n_predict", json_value(data, "max_tokens", defaults.n_predict));
  184. params.n_indent = json_value(data, "n_indent", defaults.n_indent);
  185. params.n_keep = json_value(data, "n_keep", defaults.n_keep);
  186. params.n_discard = json_value(data, "n_discard", defaults.n_discard);
  187. //params.t_max_prompt_ms = json_value(data, "t_max_prompt_ms", defaults.t_max_prompt_ms); // TODO: implement
  188. params.t_max_predict_ms = json_value(data, "t_max_predict_ms", defaults.t_max_predict_ms);
  189. params.response_fields = json_value(data, "response_fields", std::vector<std::string>());
  190. params.sampling.top_k = json_value(data, "top_k", defaults.sampling.top_k);
  191. params.sampling.top_p = json_value(data, "top_p", defaults.sampling.top_p);
  192. params.sampling.min_p = json_value(data, "min_p", defaults.sampling.min_p);
  193. params.sampling.xtc_probability = json_value(data, "xtc_probability", defaults.sampling.xtc_probability);
  194. params.sampling.xtc_threshold = json_value(data, "xtc_threshold", defaults.sampling.xtc_threshold);
  195. params.sampling.typ_p = json_value(data, "typical_p", defaults.sampling.typ_p);
  196. params.sampling.temp = json_value(data, "temperature", defaults.sampling.temp);
  197. params.sampling.dynatemp_range = json_value(data, "dynatemp_range", defaults.sampling.dynatemp_range);
  198. params.sampling.dynatemp_exponent = json_value(data, "dynatemp_exponent", defaults.sampling.dynatemp_exponent);
  199. params.sampling.penalty_last_n = json_value(data, "repeat_last_n", defaults.sampling.penalty_last_n);
  200. params.sampling.penalty_repeat = json_value(data, "repeat_penalty", defaults.sampling.penalty_repeat);
  201. params.sampling.penalty_freq = json_value(data, "frequency_penalty", defaults.sampling.penalty_freq);
  202. params.sampling.penalty_present = json_value(data, "presence_penalty", defaults.sampling.penalty_present);
  203. params.sampling.dry_multiplier = json_value(data, "dry_multiplier", defaults.sampling.dry_multiplier);
  204. params.sampling.dry_base = json_value(data, "dry_base", defaults.sampling.dry_base);
  205. params.sampling.dry_allowed_length = json_value(data, "dry_allowed_length", defaults.sampling.dry_allowed_length);
  206. params.sampling.dry_penalty_last_n = json_value(data, "dry_penalty_last_n", defaults.sampling.dry_penalty_last_n);
  207. params.sampling.mirostat = json_value(data, "mirostat", defaults.sampling.mirostat);
  208. params.sampling.mirostat_tau = json_value(data, "mirostat_tau", defaults.sampling.mirostat_tau);
  209. params.sampling.mirostat_eta = json_value(data, "mirostat_eta", defaults.sampling.mirostat_eta);
  210. params.sampling.seed = json_value(data, "seed", defaults.sampling.seed);
  211. params.sampling.n_probs = json_value(data, "n_probs", defaults.sampling.n_probs);
  212. params.sampling.min_keep = json_value(data, "min_keep", defaults.sampling.min_keep);
  213. params.post_sampling_probs = json_value(data, "post_sampling_probs", defaults.post_sampling_probs);
  214. params.speculative.n_min = json_value(data, "speculative.n_min", defaults.speculative.n_min);
  215. params.speculative.n_max = json_value(data, "speculative.n_max", defaults.speculative.n_max);
  216. params.speculative.p_min = json_value(data, "speculative.p_min", defaults.speculative.p_min);
  217. params.speculative.n_min = std::min(params.speculative.n_max, params.speculative.n_min);
  218. params.speculative.n_min = std::max(params.speculative.n_min, 2);
  219. params.speculative.n_max = std::max(params.speculative.n_max, 0);
  220. // TODO: add more sanity checks for the input parameters
  221. if (params.sampling.penalty_last_n < -1) {
  222. throw std::runtime_error("Error: repeat_last_n must be >= -1");
  223. }
  224. if (params.sampling.dry_penalty_last_n < -1) {
  225. throw std::runtime_error("Error: dry_penalty_last_n must be >= -1");
  226. }
  227. if (params.sampling.penalty_last_n == -1) {
  228. // note: should be the slot's context and not the full context, but it's ok
  229. params.sampling.penalty_last_n = llama_n_ctx(ctx);
  230. }
  231. if (params.sampling.dry_penalty_last_n == -1) {
  232. params.sampling.dry_penalty_last_n = llama_n_ctx(ctx);
  233. }
  234. if (params.sampling.dry_base < 1.0f) {
  235. params.sampling.dry_base = defaults.sampling.dry_base;
  236. }
  237. // sequence breakers for DRY
  238. {
  239. // Currently, this is not compatible with TextGen WebUI, Koboldcpp and SillyTavern format
  240. // Ref: https://github.com/oobabooga/text-generation-webui/blob/d1af7a41ade7bd3c3a463bfa640725edb818ebaf/extensions/openai/typing.py#L39
  241. if (data.contains("dry_sequence_breakers")) {
  242. params.sampling.dry_sequence_breakers = json_value(data, "dry_sequence_breakers", std::vector<std::string>());
  243. if (params.sampling.dry_sequence_breakers.empty()) {
  244. throw std::runtime_error("Error: dry_sequence_breakers must be a non-empty array of strings");
  245. }
  246. }
  247. }
  248. // process "json_schema" and "grammar"
  249. if (data.contains("json_schema") && !data.at("json_schema").is_null() && data.contains("grammar") && !data.at("grammar").is_null()) {
  250. throw std::runtime_error("Either \"json_schema\" or \"grammar\" can be specified, but not both");
  251. }
  252. if (data.contains("json_schema") && !data.contains("grammar")) {
  253. try {
  254. auto schema = json_value(data, "json_schema", json::object());
  255. params.sampling.grammar = json_schema_to_grammar(schema);
  256. } catch (const std::exception & e) {
  257. throw std::runtime_error(std::string("\"json_schema\": ") + e.what());
  258. }
  259. } else {
  260. params.sampling.grammar = json_value(data, "grammar", defaults.sampling.grammar);
  261. }
  262. {
  263. params.sampling.logit_bias.clear();
  264. params.ignore_eos = json_value(data, "ignore_eos", false);
  265. const auto & logit_bias = data.find("logit_bias");
  266. if (logit_bias != data.end() && logit_bias->is_array()) {
  267. const int n_vocab = llama_n_vocab(model);
  268. for (const auto & el : *logit_bias) {
  269. // TODO: we may want to throw errors here, in case "el" is incorrect
  270. if (el.is_array() && el.size() == 2) {
  271. float bias;
  272. if (el[1].is_number()) {
  273. bias = el[1].get<float>();
  274. } else if (el[1].is_boolean() && !el[1].get<bool>()) {
  275. bias = -INFINITY;
  276. } else {
  277. continue;
  278. }
  279. if (el[0].is_number_integer()) {
  280. llama_token tok = el[0].get<llama_token>();
  281. if (tok >= 0 && tok < n_vocab) {
  282. params.sampling.logit_bias.push_back({tok, bias});
  283. }
  284. } else if (el[0].is_string()) {
  285. auto toks = common_tokenize(model, el[0].get<std::string>(), false);
  286. for (auto tok : toks) {
  287. params.sampling.logit_bias.push_back({tok, bias});
  288. }
  289. }
  290. }
  291. }
  292. }
  293. }
  294. {
  295. params.antiprompt.clear();
  296. const auto & stop = data.find("stop");
  297. if (stop != data.end() && stop->is_array()) {
  298. for (const auto & word : *stop) {
  299. if (!word.empty()) {
  300. params.antiprompt.push_back(word);
  301. }
  302. }
  303. }
  304. }
  305. {
  306. const auto & samplers = data.find("samplers");
  307. if (samplers != data.end()) {
  308. if (samplers->is_array()) {
  309. std::vector<std::string> sampler_names;
  310. for (const auto & name : *samplers) {
  311. if (name.is_string()) {
  312. sampler_names.emplace_back(name);
  313. }
  314. }
  315. params.sampling.samplers = common_sampler_types_from_names(sampler_names, false);
  316. } else if (samplers->is_string()){
  317. std::string sampler_string;
  318. for (const auto & name : *samplers) {
  319. sampler_string += name;
  320. }
  321. params.sampling.samplers = common_sampler_types_from_chars(sampler_string);
  322. }
  323. } else {
  324. params.sampling.samplers = defaults.sampling.samplers;
  325. }
  326. }
  327. std::string model_name = params_base.model_alias.empty() ? DEFAULT_OAICOMPAT_MODEL : params_base.model_alias;
  328. params.oaicompat_model = json_value(data, "model", model_name);
  329. return params;
  330. }
  331. // utility function
  332. static std::unordered_set<int> get_list_id(const std::vector<server_task> & tasks) {
  333. std::unordered_set<int> ids(tasks.size());
  334. for (size_t i = 0; i < tasks.size(); i++) {
  335. ids.insert(tasks[i].id);
  336. }
  337. return ids;
  338. }
  339. };
  340. struct result_timings {
  341. int32_t prompt_n = -1;
  342. double prompt_ms;
  343. double prompt_per_token_ms;
  344. double prompt_per_second;
  345. int32_t predicted_n = -1;
  346. double predicted_ms;
  347. double predicted_per_token_ms;
  348. double predicted_per_second;
  349. json to_json() const {
  350. return {
  351. {"prompt_n", prompt_n},
  352. {"prompt_ms", prompt_ms},
  353. {"prompt_per_token_ms", prompt_per_token_ms},
  354. {"prompt_per_second", prompt_per_second},
  355. {"predicted_n", predicted_n},
  356. {"predicted_ms", predicted_ms},
  357. {"predicted_per_token_ms", predicted_per_token_ms},
  358. {"predicted_per_second", predicted_per_second},
  359. };
  360. }
  361. };
  362. struct server_task_result {
  363. int id = -1;
  364. int id_slot = -1;
  365. virtual bool is_error() {
  366. // only used by server_task_result_error
  367. return false;
  368. }
  369. virtual bool is_stop() {
  370. // only used by server_task_result_cmpl_*
  371. return false;
  372. }
  373. virtual int get_index() {
  374. return -1;
  375. }
  376. virtual json to_json() = 0;
  377. virtual ~server_task_result() = default;
  378. };
  379. // using shared_ptr for polymorphism of server_task_result
  380. using server_task_result_ptr = std::unique_ptr<server_task_result>;
  381. inline std::string stop_type_to_str(stop_type type) {
  382. switch (type) {
  383. case STOP_TYPE_EOS: return "eos";
  384. case STOP_TYPE_WORD: return "word";
  385. case STOP_TYPE_LIMIT: return "limit";
  386. default: return "none";
  387. }
  388. }
  389. struct completion_token_output {
  390. llama_token tok;
  391. float prob;
  392. std::string text_to_send;
  393. struct prob_info {
  394. llama_token tok;
  395. std::string txt;
  396. float prob;
  397. };
  398. std::vector<prob_info> probs;
  399. json to_json(bool post_sampling_probs) const {
  400. json probs_for_token = json::array();
  401. for (const auto & p : probs) {
  402. std::string txt(p.txt);
  403. txt.resize(validate_utf8(txt));
  404. probs_for_token.push_back(json {
  405. {"id", p.tok},
  406. {"token", txt},
  407. {"bytes", str_to_bytes(p.txt)},
  408. {
  409. post_sampling_probs ? "prob" : "logprob",
  410. post_sampling_probs ? p.prob : logarithm(p.prob)
  411. },
  412. });
  413. }
  414. return probs_for_token;
  415. }
  416. static json probs_vector_to_json(const std::vector<completion_token_output> & probs, bool post_sampling_probs) {
  417. json out = json::array();
  418. for (const auto & p : probs) {
  419. std::string txt(p.text_to_send);
  420. txt.resize(validate_utf8(txt));
  421. out.push_back(json {
  422. {"id", p.tok},
  423. {"token", txt},
  424. {"bytes", str_to_bytes(p.text_to_send)},
  425. {
  426. post_sampling_probs ? "prob" : "logprob",
  427. post_sampling_probs ? p.prob : logarithm(p.prob)
  428. },
  429. {
  430. post_sampling_probs ? "top_probs" : "top_logprobs",
  431. p.to_json(post_sampling_probs)
  432. },
  433. });
  434. }
  435. return out;
  436. }
  437. static float logarithm(float x) {
  438. // nlohmann::json converts -inf to null, so we need to prevent that
  439. return x == 0.0f ? std::numeric_limits<float>::lowest() : std::log(x);
  440. }
  441. static std::vector<unsigned char> str_to_bytes(const std::string & str) {
  442. std::vector<unsigned char> bytes;
  443. for (unsigned char c : str) {
  444. bytes.push_back(c);
  445. }
  446. return bytes;
  447. }
  448. };
  449. struct server_task_result_cmpl_final : server_task_result {
  450. int index = 0;
  451. std::string content;
  452. llama_tokens tokens;
  453. bool stream;
  454. result_timings timings;
  455. std::string prompt;
  456. bool truncated;
  457. int32_t n_decoded;
  458. int32_t n_prompt_tokens;
  459. int32_t n_tokens_cached;
  460. bool has_new_line;
  461. std::string stopping_word;
  462. stop_type stop = STOP_TYPE_NONE;
  463. bool post_sampling_probs;
  464. std::vector<completion_token_output> probs_output;
  465. std::vector<std::string> response_fields;
  466. slot_params generation_params;
  467. // OAI-compat fields
  468. bool verbose = false;
  469. oaicompat_type oaicompat = OAICOMPAT_TYPE_NONE;
  470. std::string oaicompat_model;
  471. std::string oaicompat_cmpl_id;
  472. virtual int get_index() override {
  473. return index;
  474. }
  475. virtual bool is_stop() override {
  476. return true; // in stream mode, final responses are considered stop
  477. }
  478. virtual json to_json() override {
  479. switch (oaicompat) {
  480. case OAICOMPAT_TYPE_NONE:
  481. return to_json_non_oaicompat();
  482. case OAICOMPAT_TYPE_COMPLETION:
  483. return to_json_oaicompat();
  484. case OAICOMPAT_TYPE_CHAT:
  485. return stream ? to_json_oaicompat_chat_stream() : to_json_oaicompat_chat();
  486. default:
  487. GGML_ASSERT(false && "Invalid oaicompat_type");
  488. }
  489. }
  490. json to_json_non_oaicompat() {
  491. json res = json {
  492. {"index", index},
  493. {"content", stream ? "" : content}, // in stream mode, content is already in last partial chunk
  494. {"tokens", stream ? llama_tokens {} : tokens},
  495. {"id_slot", id_slot},
  496. {"stop", true},
  497. {"model", oaicompat_model},
  498. {"tokens_predicted", n_decoded},
  499. {"tokens_evaluated", n_prompt_tokens},
  500. {"generation_settings", generation_params.to_json()},
  501. {"prompt", prompt},
  502. {"has_new_line", has_new_line},
  503. {"truncated", truncated},
  504. {"stop_type", stop_type_to_str(stop)},
  505. {"stopping_word", stopping_word},
  506. {"tokens_cached", n_tokens_cached},
  507. {"timings", timings.to_json()},
  508. };
  509. if (!stream && !probs_output.empty()) {
  510. res["completion_probabilities"] = completion_token_output::probs_vector_to_json(probs_output, post_sampling_probs);
  511. }
  512. return response_fields.empty() ? res : json_get_nested_values(response_fields, res);
  513. }
  514. json to_json_oaicompat() {
  515. std::time_t t = std::time(0);
  516. json logprobs = json(nullptr); // OAI default to null
  517. if (!stream && probs_output.size() > 0) {
  518. logprobs = json{
  519. {"content", completion_token_output::probs_vector_to_json(probs_output, post_sampling_probs)},
  520. };
  521. }
  522. json finish_reason = "length";
  523. if (stop == STOP_TYPE_WORD || stop == STOP_TYPE_EOS) {
  524. finish_reason = "stop";
  525. }
  526. json res = json {
  527. {"choices", json::array({
  528. json{
  529. {"text", stream ? "" : content}, // in stream mode, content is already in last partial chunk
  530. {"index", index},
  531. {"logprobs", logprobs},
  532. {"finish_reason", finish_reason},
  533. }
  534. })},
  535. {"created", t},
  536. {"model", oaicompat_model},
  537. {"system_fingerprint", build_info},
  538. {"object", "text_completion"},
  539. {"usage", json {
  540. {"completion_tokens", n_decoded},
  541. {"prompt_tokens", n_prompt_tokens},
  542. {"total_tokens", n_decoded + n_prompt_tokens}
  543. }},
  544. {"id", oaicompat_cmpl_id}
  545. };
  546. // extra fields for debugging purposes
  547. if (verbose) {
  548. res["__verbose"] = to_json_non_oaicompat();
  549. }
  550. if (timings.prompt_n >= 0) {
  551. res.push_back({"timings", timings.to_json()});
  552. }
  553. return res;
  554. }
  555. json to_json_oaicompat_chat() {
  556. std::string finish_reason = "length";
  557. if (stop == STOP_TYPE_WORD || stop == STOP_TYPE_EOS) {
  558. finish_reason = "stop";
  559. }
  560. json choice = json{
  561. {"finish_reason", finish_reason},
  562. {"index", 0},
  563. {"message", json {
  564. {"content", content},
  565. {"role", "assistant"}
  566. }
  567. }};
  568. if (!stream && probs_output.size() > 0) {
  569. choice["logprobs"] = json{
  570. {"content", completion_token_output::probs_vector_to_json(probs_output, post_sampling_probs)},
  571. };
  572. }
  573. std::time_t t = std::time(0);
  574. json res = json {
  575. {"choices", json::array({choice})},
  576. {"created", t},
  577. {"model", oaicompat_model},
  578. {"system_fingerprint", build_info},
  579. {"object", "chat.completion"},
  580. {"usage", json {
  581. {"completion_tokens", n_decoded},
  582. {"prompt_tokens", n_prompt_tokens},
  583. {"total_tokens", n_decoded + n_prompt_tokens}
  584. }},
  585. {"id", oaicompat_cmpl_id}
  586. };
  587. // extra fields for debugging purposes
  588. if (verbose) {
  589. res["__verbose"] = to_json_non_oaicompat();
  590. }
  591. if (timings.prompt_n >= 0) {
  592. res.push_back({"timings", timings.to_json()});
  593. }
  594. return res;
  595. }
  596. json to_json_oaicompat_chat_stream() {
  597. std::time_t t = std::time(0);
  598. std::string finish_reason = "length";
  599. if (stop == STOP_TYPE_WORD || stop == STOP_TYPE_EOS) {
  600. finish_reason = "stop";
  601. }
  602. json choice = json{
  603. {"finish_reason", finish_reason},
  604. {"index", 0},
  605. {"delta", json::object()}
  606. };
  607. json ret = json {
  608. {"choices", json::array({choice})},
  609. {"created", t},
  610. {"id", oaicompat_cmpl_id},
  611. {"model", oaicompat_model},
  612. {"system_fingerprint", build_info},
  613. {"object", "chat.completion.chunk"},
  614. {"usage", json {
  615. {"completion_tokens", n_decoded},
  616. {"prompt_tokens", n_prompt_tokens},
  617. {"total_tokens", n_decoded + n_prompt_tokens},
  618. }},
  619. };
  620. if (timings.prompt_n >= 0) {
  621. ret.push_back({"timings", timings.to_json()});
  622. }
  623. return ret;
  624. }
  625. };
  626. struct server_task_result_cmpl_partial : server_task_result {
  627. int index = 0;
  628. std::string content;
  629. llama_tokens tokens;
  630. int32_t n_decoded;
  631. int32_t n_prompt_tokens;
  632. bool post_sampling_probs;
  633. completion_token_output prob_output;
  634. result_timings timings;
  635. // OAI-compat fields
  636. bool verbose = false;
  637. oaicompat_type oaicompat = OAICOMPAT_TYPE_NONE;
  638. std::string oaicompat_model;
  639. std::string oaicompat_cmpl_id;
  640. virtual int get_index() override {
  641. return index;
  642. }
  643. virtual bool is_stop() override {
  644. return false; // in stream mode, partial responses are not considered stop
  645. }
  646. virtual json to_json() override {
  647. switch (oaicompat) {
  648. case OAICOMPAT_TYPE_NONE:
  649. return to_json_non_oaicompat();
  650. case OAICOMPAT_TYPE_COMPLETION:
  651. return to_json_oaicompat();
  652. case OAICOMPAT_TYPE_CHAT:
  653. return to_json_oaicompat_chat();
  654. default:
  655. GGML_ASSERT(false && "Invalid oaicompat_type");
  656. }
  657. }
  658. json to_json_non_oaicompat() {
  659. // non-OAI-compat JSON
  660. json res = json {
  661. {"index", index},
  662. {"content", content},
  663. {"tokens", tokens},
  664. {"stop", false},
  665. {"id_slot", id_slot},
  666. {"tokens_predicted", n_decoded},
  667. {"tokens_evaluated", n_prompt_tokens},
  668. };
  669. // populate the timings object when needed (usually for the last response or with timings_per_token enabled)
  670. if (timings.prompt_n > 0) {
  671. res.push_back({"timings", timings.to_json()});
  672. }
  673. if (!prob_output.probs.empty()) {
  674. res["completion_probabilities"] = completion_token_output::probs_vector_to_json({prob_output}, post_sampling_probs);
  675. }
  676. return res;
  677. }
  678. json to_json_oaicompat() {
  679. std::time_t t = std::time(0);
  680. json logprobs = json(nullptr); // OAI default to null
  681. if (prob_output.probs.size() > 0) {
  682. logprobs = json{
  683. {"content", completion_token_output::probs_vector_to_json({prob_output}, post_sampling_probs)},
  684. };
  685. }
  686. json res = json {
  687. {"choices", json::array({
  688. json{
  689. {"text", content},
  690. {"index", index},
  691. {"logprobs", logprobs},
  692. {"finish_reason", nullptr},
  693. }
  694. })},
  695. {"created", t},
  696. {"model", oaicompat_model},
  697. {"system_fingerprint", build_info},
  698. {"object", "text_completion"},
  699. {"id", oaicompat_cmpl_id}
  700. };
  701. // extra fields for debugging purposes
  702. if (verbose) {
  703. res["__verbose"] = to_json_non_oaicompat();
  704. }
  705. if (timings.prompt_n >= 0) {
  706. res.push_back({"timings", timings.to_json()});
  707. }
  708. return res;
  709. }
  710. json to_json_oaicompat_chat() {
  711. bool first = n_decoded == 0;
  712. std::time_t t = std::time(0);
  713. json choices;
  714. if (first) {
  715. if (content.empty()) {
  716. choices = json::array({json{{"finish_reason", nullptr},
  717. {"index", 0},
  718. {"delta", json{{"role", "assistant"}}}}});
  719. } else {
  720. // We have to send this as two updates to conform to openai behavior
  721. json initial_ret = json{{"choices", json::array({json{
  722. {"finish_reason", nullptr},
  723. {"index", 0},
  724. {"delta", json{
  725. {"role", "assistant"}
  726. }}}})},
  727. {"created", t},
  728. {"id", oaicompat_cmpl_id},
  729. {"model", oaicompat_model},
  730. {"object", "chat.completion.chunk"}};
  731. json second_ret = json{
  732. {"choices", json::array({json{{"finish_reason", nullptr},
  733. {"index", 0},
  734. {"delta", json {
  735. {"content", content}}}
  736. }})},
  737. {"created", t},
  738. {"id", oaicompat_cmpl_id},
  739. {"model", oaicompat_model},
  740. {"object", "chat.completion.chunk"}};
  741. return std::vector<json>({initial_ret, second_ret});
  742. }
  743. } else {
  744. choices = json::array({json{
  745. {"finish_reason", nullptr},
  746. {"index", 0},
  747. {"delta",
  748. json {
  749. {"content", content},
  750. }},
  751. }});
  752. }
  753. GGML_ASSERT(choices.size() >= 1);
  754. if (prob_output.probs.size() > 0) {
  755. choices[0]["logprobs"] = json{
  756. {"content", completion_token_output::probs_vector_to_json({prob_output}, post_sampling_probs)},
  757. };
  758. }
  759. json ret = json {
  760. {"choices", choices},
  761. {"created", t},
  762. {"id", oaicompat_cmpl_id},
  763. {"model", oaicompat_model},
  764. {"system_fingerprint", build_info},
  765. {"object", "chat.completion.chunk"}
  766. };
  767. if (timings.prompt_n >= 0) {
  768. ret.push_back({"timings", timings.to_json()});
  769. }
  770. return std::vector<json>({ret});
  771. }
  772. };
  773. struct server_task_result_embd : server_task_result {
  774. int index = 0;
  775. std::vector<std::vector<float>> embedding;
  776. int32_t n_tokens;
  777. // OAI-compat fields
  778. oaicompat_type oaicompat = OAICOMPAT_TYPE_NONE;
  779. virtual int get_index() override {
  780. return index;
  781. }
  782. virtual json to_json() override {
  783. return oaicompat == OAICOMPAT_TYPE_EMBEDDING
  784. ? to_json_oaicompat()
  785. : to_json_non_oaicompat();
  786. }
  787. json to_json_non_oaicompat() {
  788. return json {
  789. {"index", index},
  790. {"embedding", embedding},
  791. };
  792. }
  793. json to_json_oaicompat() {
  794. return json {
  795. {"index", index},
  796. {"embedding", embedding[0]},
  797. {"tokens_evaluated", n_tokens},
  798. };
  799. }
  800. };
  801. struct server_task_result_rerank : server_task_result {
  802. int index = 0;
  803. float score = -1e6;
  804. int32_t n_tokens;
  805. virtual int get_index() override {
  806. return index;
  807. }
  808. virtual json to_json() override {
  809. return json {
  810. {"index", index},
  811. {"score", score},
  812. {"tokens_evaluated", n_tokens},
  813. };
  814. }
  815. };
  816. // this function maybe used outside of server_task_result_error
  817. static json format_error_response(const std::string & message, const enum error_type type) {
  818. std::string type_str;
  819. int code = 500;
  820. switch (type) {
  821. case ERROR_TYPE_INVALID_REQUEST:
  822. type_str = "invalid_request_error";
  823. code = 400;
  824. break;
  825. case ERROR_TYPE_AUTHENTICATION:
  826. type_str = "authentication_error";
  827. code = 401;
  828. break;
  829. case ERROR_TYPE_NOT_FOUND:
  830. type_str = "not_found_error";
  831. code = 404;
  832. break;
  833. case ERROR_TYPE_SERVER:
  834. type_str = "server_error";
  835. code = 500;
  836. break;
  837. case ERROR_TYPE_PERMISSION:
  838. type_str = "permission_error";
  839. code = 403;
  840. break;
  841. case ERROR_TYPE_NOT_SUPPORTED:
  842. type_str = "not_supported_error";
  843. code = 501;
  844. break;
  845. case ERROR_TYPE_UNAVAILABLE:
  846. type_str = "unavailable_error";
  847. code = 503;
  848. break;
  849. }
  850. return json {
  851. {"code", code},
  852. {"message", message},
  853. {"type", type_str},
  854. };
  855. }
  856. struct server_task_result_error : server_task_result {
  857. int index = 0;
  858. error_type err_type = ERROR_TYPE_SERVER;
  859. std::string err_msg;
  860. virtual bool is_error() override {
  861. return true;
  862. }
  863. virtual json to_json() override {
  864. return format_error_response(err_msg, err_type);
  865. }
  866. };
  867. struct server_task_result_metrics : server_task_result {
  868. int n_idle_slots;
  869. int n_processing_slots;
  870. int n_tasks_deferred;
  871. int64_t t_start;
  872. int32_t kv_cache_tokens_count;
  873. int32_t kv_cache_used_cells;
  874. // TODO: somehow reuse server_metrics in the future, instead of duplicating the fields
  875. uint64_t n_prompt_tokens_processed_total = 0;
  876. uint64_t t_prompt_processing_total = 0;
  877. uint64_t n_tokens_predicted_total = 0;
  878. uint64_t t_tokens_generation_total = 0;
  879. uint64_t n_prompt_tokens_processed = 0;
  880. uint64_t t_prompt_processing = 0;
  881. uint64_t n_tokens_predicted = 0;
  882. uint64_t t_tokens_generation = 0;
  883. uint64_t n_decode_total = 0;
  884. uint64_t n_busy_slots_total = 0;
  885. // while we can also use std::vector<server_slot> this requires copying the slot object which can be quite messy
  886. // therefore, we use json to temporarily store the slot.to_json() result
  887. json slots_data = json::array();
  888. virtual json to_json() override {
  889. return json {
  890. { "idle", n_idle_slots },
  891. { "processing", n_processing_slots },
  892. { "deferred", n_tasks_deferred },
  893. { "t_start", t_start },
  894. { "n_prompt_tokens_processed_total", n_prompt_tokens_processed_total },
  895. { "t_tokens_generation_total", t_tokens_generation_total },
  896. { "n_tokens_predicted_total", n_tokens_predicted_total },
  897. { "t_prompt_processing_total", t_prompt_processing_total },
  898. { "n_prompt_tokens_processed", n_prompt_tokens_processed },
  899. { "t_prompt_processing", t_prompt_processing },
  900. { "n_tokens_predicted", n_tokens_predicted },
  901. { "t_tokens_generation", t_tokens_generation },
  902. { "n_decode_total", n_decode_total },
  903. { "n_busy_slots_total", n_busy_slots_total },
  904. { "kv_cache_tokens_count", kv_cache_tokens_count },
  905. { "kv_cache_used_cells", kv_cache_used_cells },
  906. { "slots", slots_data },
  907. };
  908. }
  909. };
  910. struct server_task_result_slot_save_load : server_task_result {
  911. std::string filename;
  912. bool is_save; // true = save, false = load
  913. size_t n_tokens;
  914. size_t n_bytes;
  915. double t_ms;
  916. virtual json to_json() override {
  917. if (is_save) {
  918. return json {
  919. { "id_slot", id_slot },
  920. { "filename", filename },
  921. { "n_saved", n_tokens },
  922. { "n_written", n_bytes },
  923. { "timings", {
  924. { "save_ms", t_ms }
  925. }},
  926. };
  927. } else {
  928. return json {
  929. { "id_slot", id_slot },
  930. { "filename", filename },
  931. { "n_restored", n_tokens },
  932. { "n_read", n_bytes },
  933. { "timings", {
  934. { "restore_ms", t_ms }
  935. }},
  936. };
  937. }
  938. }
  939. };
  940. struct server_task_result_slot_erase : server_task_result {
  941. size_t n_erased;
  942. virtual json to_json() override {
  943. return json {
  944. { "id_slot", id_slot },
  945. { "n_erased", n_erased },
  946. };
  947. }
  948. };
  949. struct server_task_result_apply_lora : server_task_result {
  950. virtual json to_json() override {
  951. return json {{ "success", true }};
  952. }
  953. };
  954. struct server_slot {
  955. int id;
  956. int id_task = -1;
  957. // only used for completion/embedding/infill/rerank
  958. server_task_type task_type = SERVER_TASK_TYPE_COMPLETION;
  959. llama_batch batch_spec = {};
  960. llama_context * ctx = nullptr;
  961. llama_context * ctx_dft = nullptr;
  962. common_speculative * spec = nullptr;
  963. // the index relative to completion multi-task request
  964. size_t index = 0;
  965. struct slot_params params;
  966. slot_state state = SLOT_STATE_IDLE;
  967. // used to determine the slot that has been used the longest
  968. int64_t t_last_used = -1;
  969. // generation props
  970. int32_t n_ctx = 0; // context size per slot
  971. int32_t n_past = 0;
  972. int32_t n_decoded = 0;
  973. int32_t n_remaining = -1;
  974. int32_t i_batch = -1;
  975. int32_t n_predict = -1; // TODO: disambiguate from params.n_predict
  976. // n_prompt_tokens may not be equal to prompt_tokens.size(), because prompt maybe truncated
  977. int32_t n_prompt_tokens = 0;
  978. int32_t n_prompt_tokens_processed = 0;
  979. // input prompt tokens
  980. llama_tokens prompt_tokens;
  981. size_t last_nl_pos = 0;
  982. std::string generated_text;
  983. llama_tokens generated_tokens;
  984. llama_tokens cache_tokens;
  985. std::vector<completion_token_output> generated_token_probs;
  986. bool has_next_token = true;
  987. bool has_new_line = false;
  988. bool truncated = false;
  989. stop_type stop;
  990. std::string stopping_word;
  991. // sampling
  992. json json_schema;
  993. struct common_sampler * smpl = nullptr;
  994. llama_token sampled;
  995. // stats
  996. size_t n_sent_text = 0; // number of sent text character
  997. int64_t t_start_process_prompt;
  998. int64_t t_start_generation;
  999. double t_prompt_processing; // ms
  1000. double t_token_generation; // ms
  1001. std::function<void(int)> callback_on_release;
  1002. void reset() {
  1003. SLT_DBG(*this, "%s", "\n");
  1004. n_prompt_tokens = 0;
  1005. last_nl_pos = 0;
  1006. generated_text = "";
  1007. has_new_line = false;
  1008. truncated = false;
  1009. stop = STOP_TYPE_NONE;
  1010. stopping_word = "";
  1011. n_past = 0;
  1012. n_sent_text = 0;
  1013. task_type = SERVER_TASK_TYPE_COMPLETION;
  1014. generated_tokens.clear();
  1015. generated_token_probs.clear();
  1016. }
  1017. bool is_non_causal() const {
  1018. return task_type == SERVER_TASK_TYPE_EMBEDDING || task_type == SERVER_TASK_TYPE_RERANK;
  1019. }
  1020. bool has_budget(const common_params & global_params) {
  1021. if (params.n_predict == -1 && global_params.n_predict == -1) {
  1022. return true; // limitless
  1023. }
  1024. n_remaining = -1;
  1025. if (params.n_predict != -1) {
  1026. n_remaining = params.n_predict - n_decoded;
  1027. } else if (global_params.n_predict != -1) {
  1028. n_remaining = global_params.n_predict - n_decoded;
  1029. }
  1030. return n_remaining > 0; // no budget
  1031. }
  1032. bool is_processing() const {
  1033. return state != SLOT_STATE_IDLE;
  1034. }
  1035. bool can_speculate() const {
  1036. return ctx_dft && params.speculative.n_max > 0 && params.cache_prompt;
  1037. }
  1038. void add_token(const completion_token_output & token) {
  1039. if (!is_processing()) {
  1040. SLT_WRN(*this, "%s", "slot is not processing\n");
  1041. return;
  1042. }
  1043. generated_token_probs.push_back(token);
  1044. }
  1045. void release() {
  1046. if (is_processing()) {
  1047. SLT_INF(*this, "stop processing: n_past = %d, truncated = %d\n", n_past, truncated);
  1048. t_last_used = ggml_time_us();
  1049. t_token_generation = (ggml_time_us() - t_start_generation) / 1e3;
  1050. state = SLOT_STATE_IDLE;
  1051. callback_on_release(id);
  1052. }
  1053. }
  1054. result_timings get_timings() const {
  1055. result_timings timings;
  1056. timings.prompt_n = n_prompt_tokens_processed;
  1057. timings.prompt_ms = t_prompt_processing;
  1058. timings.prompt_per_token_ms = t_prompt_processing / n_prompt_tokens_processed;
  1059. timings.prompt_per_second = 1e3 / t_prompt_processing * n_prompt_tokens_processed;
  1060. timings.predicted_n = n_decoded;
  1061. timings.predicted_ms = t_token_generation;
  1062. timings.predicted_per_token_ms = t_token_generation / n_decoded;
  1063. timings.predicted_per_second = 1e3 / t_token_generation * n_decoded;
  1064. return timings;
  1065. }
  1066. size_t find_stopping_strings(const std::string & text, const size_t last_token_size, bool is_full_stop) {
  1067. size_t stop_pos = std::string::npos;
  1068. for (const std::string & word : params.antiprompt) {
  1069. size_t pos;
  1070. if (is_full_stop) {
  1071. const size_t tmp = word.size() + last_token_size;
  1072. const size_t from_pos = text.size() > tmp ? text.size() - tmp : 0;
  1073. pos = text.find(word, from_pos);
  1074. } else {
  1075. // otherwise, partial stop
  1076. pos = find_partial_stop_string(word, text);
  1077. }
  1078. if (pos != std::string::npos && (stop_pos == std::string::npos || pos < stop_pos)) {
  1079. if (is_full_stop) {
  1080. stop = STOP_TYPE_WORD;
  1081. stopping_word = word;
  1082. has_next_token = false;
  1083. }
  1084. stop_pos = pos;
  1085. }
  1086. }
  1087. return stop_pos;
  1088. }
  1089. void print_timings() const {
  1090. const double t_prompt = t_prompt_processing / n_prompt_tokens_processed;
  1091. const double n_prompt_second = 1e3 / t_prompt_processing * n_prompt_tokens_processed;
  1092. const double t_gen = t_token_generation / n_decoded;
  1093. const double n_gen_second = 1e3 / t_token_generation * n_decoded;
  1094. SLT_INF(*this,
  1095. "\n"
  1096. "prompt eval time = %10.2f ms / %5d tokens (%8.2f ms per token, %8.2f tokens per second)\n"
  1097. " eval time = %10.2f ms / %5d tokens (%8.2f ms per token, %8.2f tokens per second)\n"
  1098. " total time = %10.2f ms / %5d tokens\n",
  1099. t_prompt_processing, n_prompt_tokens_processed, t_prompt, n_prompt_second,
  1100. t_token_generation, n_decoded, t_gen, n_gen_second,
  1101. t_prompt_processing + t_token_generation, n_prompt_tokens_processed + n_decoded);
  1102. }
  1103. json to_json() const {
  1104. return json {
  1105. {"id", id},
  1106. {"id_task", id_task},
  1107. {"n_ctx", n_ctx},
  1108. {"speculative", can_speculate()},
  1109. {"is_processing", is_processing()},
  1110. {"non_causal", is_non_causal()},
  1111. {"params", params.to_json()},
  1112. {"prompt", common_detokenize(ctx, prompt_tokens)},
  1113. {"next_token",
  1114. {
  1115. {"has_next_token", has_next_token},
  1116. {"has_new_line", has_new_line},
  1117. {"n_remain", n_remaining},
  1118. {"n_decoded", n_decoded},
  1119. {"stopping_word", stopping_word},
  1120. }
  1121. },
  1122. };
  1123. }
  1124. };
  1125. struct server_metrics {
  1126. int64_t t_start = 0;
  1127. uint64_t n_prompt_tokens_processed_total = 0;
  1128. uint64_t t_prompt_processing_total = 0;
  1129. uint64_t n_tokens_predicted_total = 0;
  1130. uint64_t t_tokens_generation_total = 0;
  1131. uint64_t n_prompt_tokens_processed = 0;
  1132. uint64_t t_prompt_processing = 0;
  1133. uint64_t n_tokens_predicted = 0;
  1134. uint64_t t_tokens_generation = 0;
  1135. uint64_t n_decode_total = 0;
  1136. uint64_t n_busy_slots_total = 0;
  1137. void init() {
  1138. t_start = ggml_time_us();
  1139. }
  1140. void on_prompt_eval(const server_slot & slot) {
  1141. n_prompt_tokens_processed_total += slot.n_prompt_tokens_processed;
  1142. n_prompt_tokens_processed += slot.n_prompt_tokens_processed;
  1143. t_prompt_processing += slot.t_prompt_processing;
  1144. t_prompt_processing_total += slot.t_prompt_processing;
  1145. }
  1146. void on_prediction(const server_slot & slot) {
  1147. n_tokens_predicted_total += slot.n_decoded;
  1148. n_tokens_predicted += slot.n_decoded;
  1149. t_tokens_generation += slot.t_token_generation;
  1150. t_tokens_generation_total += slot.t_token_generation;
  1151. }
  1152. void on_decoded(const std::vector<server_slot> & slots) {
  1153. n_decode_total++;
  1154. for (const auto & slot : slots) {
  1155. if (slot.is_processing()) {
  1156. n_busy_slots_total++;
  1157. }
  1158. }
  1159. }
  1160. void reset_bucket() {
  1161. n_prompt_tokens_processed = 0;
  1162. t_prompt_processing = 0;
  1163. n_tokens_predicted = 0;
  1164. t_tokens_generation = 0;
  1165. }
  1166. };
  1167. struct server_queue {
  1168. int id = 0;
  1169. bool running;
  1170. // queues
  1171. std::deque<server_task> queue_tasks;
  1172. std::deque<server_task> queue_tasks_deferred;
  1173. std::mutex mutex_tasks;
  1174. std::condition_variable condition_tasks;
  1175. // callback functions
  1176. std::function<void(server_task)> callback_new_task;
  1177. std::function<void(void)> callback_update_slots;
  1178. // Add a new task to the end of the queue
  1179. int post(server_task task, bool front = false) {
  1180. std::unique_lock<std::mutex> lock(mutex_tasks);
  1181. GGML_ASSERT(task.id != -1);
  1182. QUE_DBG("new task, id = %d, front = %d\n", task.id, front);
  1183. if (front) {
  1184. queue_tasks.push_front(std::move(task));
  1185. } else {
  1186. queue_tasks.push_back(std::move(task));
  1187. }
  1188. condition_tasks.notify_one();
  1189. return task.id;
  1190. }
  1191. // multi-task version of post()
  1192. int post(std::vector<server_task> & tasks, bool front = false) {
  1193. std::unique_lock<std::mutex> lock(mutex_tasks);
  1194. for (auto & task : tasks) {
  1195. if (task.id == -1) {
  1196. task.id = id++;
  1197. }
  1198. QUE_DBG("new task, id = %d/%d, front = %d\n", task.id, (int) tasks.size(), front);
  1199. if (front) {
  1200. queue_tasks.push_front(std::move(task));
  1201. } else {
  1202. queue_tasks.push_back(std::move(task));
  1203. }
  1204. }
  1205. condition_tasks.notify_one();
  1206. return 0;
  1207. }
  1208. // Add a new task, but defer until one slot is available
  1209. void defer(server_task task) {
  1210. std::unique_lock<std::mutex> lock(mutex_tasks);
  1211. QUE_DBG("defer task, id = %d\n", task.id);
  1212. queue_tasks_deferred.push_back(std::move(task));
  1213. condition_tasks.notify_one();
  1214. }
  1215. // Get the next id for creating a new task
  1216. int get_new_id() {
  1217. std::unique_lock<std::mutex> lock(mutex_tasks);
  1218. int new_id = id++;
  1219. return new_id;
  1220. }
  1221. // Register function to process a new task
  1222. void on_new_task(std::function<void(server_task)> callback) {
  1223. callback_new_task = std::move(callback);
  1224. }
  1225. // Register the function to be called when all slots data is ready to be processed
  1226. void on_update_slots(std::function<void(void)> callback) {
  1227. callback_update_slots = std::move(callback);
  1228. }
  1229. // Call when the state of one slot is changed, it will move one task from deferred to main queue
  1230. void pop_deferred_task() {
  1231. std::unique_lock<std::mutex> lock(mutex_tasks);
  1232. if (!queue_tasks_deferred.empty()) {
  1233. queue_tasks.emplace_back(std::move(queue_tasks_deferred.front()));
  1234. queue_tasks_deferred.pop_front();
  1235. }
  1236. condition_tasks.notify_one();
  1237. }
  1238. // end the start_loop routine
  1239. void terminate() {
  1240. std::unique_lock<std::mutex> lock(mutex_tasks);
  1241. running = false;
  1242. condition_tasks.notify_all();
  1243. }
  1244. /**
  1245. * Main loop consists of these steps:
  1246. * - Wait until a new task arrives
  1247. * - Process the task (i.e. maybe copy data into slot)
  1248. * - Check if multitask is finished
  1249. * - Update all slots
  1250. */
  1251. void start_loop() {
  1252. running = true;
  1253. while (true) {
  1254. QUE_DBG("%s", "processing new tasks\n");
  1255. while (true) {
  1256. std::unique_lock<std::mutex> lock(mutex_tasks);
  1257. if (queue_tasks.empty()) {
  1258. lock.unlock();
  1259. break;
  1260. }
  1261. server_task task = queue_tasks.front();
  1262. queue_tasks.pop_front();
  1263. lock.unlock();
  1264. QUE_DBG("processing task, id = %d\n", task.id);
  1265. callback_new_task(std::move(task));
  1266. }
  1267. // all tasks in the current loop is processed, slots data is now ready
  1268. QUE_DBG("%s", "update slots\n");
  1269. callback_update_slots();
  1270. QUE_DBG("%s", "waiting for new tasks\n");
  1271. {
  1272. std::unique_lock<std::mutex> lock(mutex_tasks);
  1273. if (queue_tasks.empty()) {
  1274. if (!running) {
  1275. QUE_DBG("%s", "terminate\n");
  1276. return;
  1277. }
  1278. condition_tasks.wait(lock, [&]{
  1279. return (!queue_tasks.empty() || !running);
  1280. });
  1281. }
  1282. }
  1283. }
  1284. }
  1285. };
  1286. struct server_response {
  1287. // for keeping track of all tasks waiting for the result
  1288. std::unordered_set<int> waiting_task_ids;
  1289. // the main result queue (using ptr for polymorphism)
  1290. std::vector<server_task_result_ptr> queue_results;
  1291. std::mutex mutex_results;
  1292. std::condition_variable condition_results;
  1293. // add the id_task to the list of tasks waiting for response
  1294. void add_waiting_task_id(int id_task) {
  1295. SRV_DBG("add task %d to waiting list. current waiting = %d (before add)\n", id_task, (int) waiting_task_ids.size());
  1296. std::unique_lock<std::mutex> lock(mutex_results);
  1297. waiting_task_ids.insert(id_task);
  1298. }
  1299. void add_waiting_tasks(const std::vector<server_task> & tasks) {
  1300. std::unique_lock<std::mutex> lock(mutex_results);
  1301. for (const auto & task : tasks) {
  1302. SRV_DBG("add task %d to waiting list. current waiting = %d (before add)\n", task.id, (int) waiting_task_ids.size());
  1303. waiting_task_ids.insert(task.id);
  1304. }
  1305. }
  1306. // when the request is finished, we can remove task associated with it
  1307. void remove_waiting_task_id(int id_task) {
  1308. SRV_DBG("remove task %d from waiting list. current waiting = %d (before remove)\n", id_task, (int) waiting_task_ids.size());
  1309. std::unique_lock<std::mutex> lock(mutex_results);
  1310. waiting_task_ids.erase(id_task);
  1311. }
  1312. void remove_waiting_task_ids(const std::unordered_set<int> & id_tasks) {
  1313. std::unique_lock<std::mutex> lock(mutex_results);
  1314. for (const auto & id_task : id_tasks) {
  1315. SRV_DBG("remove task %d from waiting list. current waiting = %d (before remove)\n", id_task, (int) waiting_task_ids.size());
  1316. waiting_task_ids.erase(id_task);
  1317. }
  1318. }
  1319. // This function blocks the thread until there is a response for one of the id_tasks
  1320. server_task_result_ptr recv(const std::unordered_set<int> & id_tasks) {
  1321. while (true) {
  1322. std::unique_lock<std::mutex> lock(mutex_results);
  1323. condition_results.wait(lock, [&]{
  1324. return !queue_results.empty();
  1325. });
  1326. for (int i = 0; i < (int) queue_results.size(); i++) {
  1327. if (id_tasks.find(queue_results[i]->id) != id_tasks.end()) {
  1328. server_task_result_ptr res = std::move(queue_results[i]);
  1329. queue_results.erase(queue_results.begin() + i);
  1330. return res;
  1331. }
  1332. }
  1333. }
  1334. // should never reach here
  1335. }
  1336. // single-task version of recv()
  1337. server_task_result_ptr recv(int id_task) {
  1338. std::unordered_set<int> id_tasks = {id_task};
  1339. return recv(id_tasks);
  1340. }
  1341. // Send a new result to a waiting id_task
  1342. void send(server_task_result_ptr && result) {
  1343. SRV_DBG("sending result for task id = %d\n", result->id);
  1344. std::unique_lock<std::mutex> lock(mutex_results);
  1345. for (const auto & id_task : waiting_task_ids) {
  1346. if (result->id == id_task) {
  1347. SRV_DBG("task id = %d pushed to result queue\n", result->id);
  1348. queue_results.emplace_back(std::move(result));
  1349. condition_results.notify_all();
  1350. return;
  1351. }
  1352. }
  1353. }
  1354. };
  1355. struct server_context {
  1356. common_params params_base;
  1357. llama_model * model = nullptr;
  1358. llama_context * ctx = nullptr;
  1359. std::vector<common_lora_adapter_container> loras;
  1360. llama_model * model_dft = nullptr;
  1361. llama_context_params cparams_dft;
  1362. llama_batch batch = {};
  1363. bool clean_kv_cache = true;
  1364. bool add_bos_token = true;
  1365. bool has_eos_token = false;
  1366. int32_t n_ctx; // total context for all clients / slots
  1367. // slots / clients
  1368. std::vector<server_slot> slots;
  1369. json default_generation_settings_for_props;
  1370. server_queue queue_tasks;
  1371. server_response queue_results;
  1372. server_metrics metrics;
  1373. // Necessary similarity of prompt for slot selection
  1374. float slot_prompt_similarity = 0.0f;
  1375. ~server_context() {
  1376. if (ctx) {
  1377. llama_free(ctx);
  1378. ctx = nullptr;
  1379. }
  1380. if (model) {
  1381. llama_free_model(model);
  1382. model = nullptr;
  1383. }
  1384. if (model_dft) {
  1385. llama_free_model(model_dft);
  1386. model_dft = nullptr;
  1387. }
  1388. // Clear any sampling context
  1389. for (server_slot & slot : slots) {
  1390. common_sampler_free(slot.smpl);
  1391. slot.smpl = nullptr;
  1392. llama_free(slot.ctx_dft);
  1393. slot.ctx_dft = nullptr;
  1394. common_speculative_free(slot.spec);
  1395. slot.spec = nullptr;
  1396. llama_batch_free(slot.batch_spec);
  1397. }
  1398. llama_batch_free(batch);
  1399. }
  1400. bool load_model(const common_params & params) {
  1401. SRV_INF("loading model '%s'\n", params.model.c_str());
  1402. params_base = params;
  1403. common_init_result llama_init = common_init_from_params(params_base);
  1404. model = llama_init.model;
  1405. ctx = llama_init.context;
  1406. loras = llama_init.lora_adapters;
  1407. if (model == nullptr) {
  1408. SRV_ERR("failed to load model, '%s'\n", params_base.model.c_str());
  1409. return false;
  1410. }
  1411. n_ctx = llama_n_ctx(ctx);
  1412. add_bos_token = llama_add_bos_token(model);
  1413. has_eos_token = llama_token_eos(model) != LLAMA_TOKEN_NULL;
  1414. if (!params_base.speculative.model.empty()) {
  1415. SRV_INF("loading draft model '%s'\n", params_base.speculative.model.c_str());
  1416. auto params_dft = params_base;
  1417. params_dft.devices = params_base.speculative.devices;
  1418. params_dft.model = params_base.speculative.model;
  1419. params_dft.n_ctx = params_base.speculative.n_ctx == 0 ? params_base.n_ctx / params_base.n_parallel : params_base.speculative.n_ctx;
  1420. params_dft.n_gpu_layers = params_base.speculative.n_gpu_layers;
  1421. params_dft.n_parallel = 1;
  1422. common_init_result llama_init_dft = common_init_from_params(params_dft);
  1423. model_dft = llama_init_dft.model;
  1424. if (model_dft == nullptr) {
  1425. SRV_ERR("failed to load draft model, '%s'\n", params_base.speculative.model.c_str());
  1426. return false;
  1427. }
  1428. if (!common_speculative_are_compatible(ctx, llama_init_dft.context)) {
  1429. SRV_ERR("the draft model '%s' is not compatible with the target model '%s'\n", params_base.speculative.model.c_str(), params_base.model.c_str());
  1430. llama_free (llama_init_dft.context);
  1431. llama_free_model(llama_init_dft.model);
  1432. return false;
  1433. }
  1434. const int n_ctx_dft = llama_n_ctx(llama_init_dft.context);
  1435. cparams_dft = common_context_params_to_llama(params_dft);
  1436. cparams_dft.n_batch = n_ctx_dft;
  1437. // force F16 KV cache for the draft model for extra performance
  1438. cparams_dft.type_k = GGML_TYPE_F16;
  1439. cparams_dft.type_v = GGML_TYPE_F16;
  1440. // the context is not needed - we will create one for each slot
  1441. llama_free(llama_init_dft.context);
  1442. }
  1443. return true;
  1444. }
  1445. bool validate_model_chat_template() const {
  1446. std::vector<char> model_template(2048, 0); // longest known template is about 1200 bytes
  1447. std::string template_key = "tokenizer.chat_template";
  1448. int32_t res = llama_model_meta_val_str(model, template_key.c_str(), model_template.data(), model_template.size());
  1449. if (res >= 0) {
  1450. llama_chat_message chat[] = {{"user", "test"}};
  1451. std::string tmpl = std::string(model_template.data(), model_template.size());
  1452. int32_t chat_res = llama_chat_apply_template(model, tmpl.c_str(), chat, 1, true, nullptr, 0);
  1453. return chat_res > 0;
  1454. }
  1455. return false;
  1456. }
  1457. void init() {
  1458. const int32_t n_ctx_slot = n_ctx / params_base.n_parallel;
  1459. SRV_INF("initializing slots, n_slots = %d\n", params_base.n_parallel);
  1460. for (int i = 0; i < params_base.n_parallel; i++) {
  1461. server_slot slot;
  1462. slot.id = i;
  1463. slot.ctx = ctx;
  1464. slot.n_ctx = n_ctx_slot;
  1465. slot.n_predict = params_base.n_predict;
  1466. if (model_dft) {
  1467. slot.batch_spec = llama_batch_init(params_base.speculative.n_max + 1, 0, 1);
  1468. slot.ctx_dft = llama_new_context_with_model(model_dft, cparams_dft);
  1469. if (slot.ctx_dft == nullptr) {
  1470. SRV_ERR("%s", "failed to create draft context\n");
  1471. return;
  1472. }
  1473. slot.spec = common_speculative_init(slot.ctx_dft);
  1474. if (slot.spec == nullptr) {
  1475. SRV_ERR("%s", "failed to create speculator\n");
  1476. return;
  1477. }
  1478. }
  1479. SLT_INF(slot, "new slot n_ctx_slot = %d\n", slot.n_ctx);
  1480. slot.params.sampling = params_base.sampling;
  1481. slot.callback_on_release = [this](int) {
  1482. queue_tasks.pop_deferred_task();
  1483. };
  1484. slot.reset();
  1485. slots.push_back(slot);
  1486. }
  1487. default_generation_settings_for_props = slots[0].to_json();
  1488. // the update_slots() logic will always submit a maximum of n_batch or n_parallel tokens
  1489. // note that n_batch can be > n_ctx (e.g. for non-causal attention models such as BERT where the KV cache is not used)
  1490. {
  1491. const int32_t n_batch = llama_n_batch(ctx);
  1492. // only a single seq_id per token is needed
  1493. batch = llama_batch_init(std::max(n_batch, params_base.n_parallel), 0, 1);
  1494. }
  1495. metrics.init();
  1496. }
  1497. server_slot * get_slot_by_id(int id) {
  1498. for (server_slot & slot : slots) {
  1499. if (slot.id == id) {
  1500. return &slot;
  1501. }
  1502. }
  1503. return nullptr;
  1504. }
  1505. server_slot * get_available_slot(const server_task & task) {
  1506. server_slot * ret = nullptr;
  1507. // find the slot that has at least n% prompt similarity
  1508. if (ret == nullptr && slot_prompt_similarity != 0.0f) {
  1509. int lcs_len = 0;
  1510. float similarity = 0;
  1511. for (server_slot & slot : slots) {
  1512. // skip the slot if it is not available
  1513. if (slot.is_processing()) {
  1514. continue;
  1515. }
  1516. // skip the slot if it does not contains cached tokens
  1517. if (slot.cache_tokens.empty()) {
  1518. continue;
  1519. }
  1520. // length of the Longest Common Subsequence between the current slot's prompt and the input prompt
  1521. int cur_lcs_len = common_lcs(slot.cache_tokens, task.prompt_tokens);
  1522. // fraction of the common subsequence length compared to the current slot's prompt length
  1523. float cur_similarity = static_cast<float>(cur_lcs_len) / static_cast<int>(slot.cache_tokens.size());
  1524. // select the current slot if the criteria match
  1525. if (cur_lcs_len > lcs_len && cur_similarity > slot_prompt_similarity) {
  1526. lcs_len = cur_lcs_len;
  1527. similarity = cur_similarity;
  1528. ret = &slot;
  1529. }
  1530. }
  1531. if (ret != nullptr) {
  1532. SLT_DBG(*ret, "selected slot by lcs similarity, lcs_len = %d, similarity = %f\n", lcs_len, similarity);
  1533. }
  1534. }
  1535. // find the slot that has been least recently used
  1536. if (ret == nullptr) {
  1537. int64_t t_last = ggml_time_us();
  1538. for (server_slot & slot : slots) {
  1539. // skip the slot if it is not available
  1540. if (slot.is_processing()) {
  1541. continue;
  1542. }
  1543. // select the current slot if the criteria match
  1544. if (slot.t_last_used < t_last) {
  1545. t_last = slot.t_last_used;
  1546. ret = &slot;
  1547. }
  1548. }
  1549. if (ret != nullptr) {
  1550. SLT_DBG(*ret, "selected slot by lru, t_last = %" PRId64 "\n", t_last);
  1551. }
  1552. }
  1553. return ret;
  1554. }
  1555. bool launch_slot_with_task(server_slot & slot, const server_task & task) {
  1556. slot.reset();
  1557. slot.id_task = task.id;
  1558. slot.index = task.index;
  1559. slot.task_type = task.type;
  1560. slot.params = std::move(task.params);
  1561. slot.prompt_tokens = std::move(task.prompt_tokens);
  1562. SLT_DBG(slot, "launching slot : %s\n", safe_json_to_str(slot.to_json()).c_str());
  1563. if (slot.n_predict > 0 && slot.params.n_predict > slot.n_predict) {
  1564. // Might be better to reject the request with a 400 ?
  1565. slot.params.n_predict = slot.n_predict;
  1566. SLT_WRN(slot, "n_predict = %d exceeds server configuration, setting to %d", slot.n_predict, slot.n_predict);
  1567. }
  1568. if (slot.params.ignore_eos && has_eos_token) {
  1569. slot.params.sampling.logit_bias.push_back({llama_token_eos(model), -INFINITY});
  1570. }
  1571. {
  1572. if (slot.smpl != nullptr) {
  1573. common_sampler_free(slot.smpl);
  1574. }
  1575. slot.smpl = common_sampler_init(model, slot.params.sampling);
  1576. if (slot.smpl == nullptr) {
  1577. // for now, the only error that may happen here is invalid grammar
  1578. send_error(task, "Failed to parse grammar", ERROR_TYPE_INVALID_REQUEST);
  1579. return false;
  1580. }
  1581. }
  1582. if (slot.ctx_dft) {
  1583. llama_batch_free(slot.batch_spec);
  1584. slot.batch_spec = llama_batch_init(slot.params.speculative.n_max + 1, 0, 1);
  1585. }
  1586. slot.state = SLOT_STATE_STARTED;
  1587. SLT_INF(slot, "%s", "processing task\n");
  1588. return true;
  1589. }
  1590. void kv_cache_clear() {
  1591. SRV_DBG("%s", "clearing KV cache\n");
  1592. // clear the entire KV cache
  1593. llama_kv_cache_clear(ctx);
  1594. clean_kv_cache = false;
  1595. }
  1596. bool process_token(completion_token_output & result, server_slot & slot) {
  1597. // remember which tokens were sampled - used for repetition penalties during sampling
  1598. const std::string token_str = result.text_to_send;
  1599. slot.sampled = result.tok;
  1600. slot.generated_text += token_str;
  1601. if (slot.params.return_tokens) {
  1602. slot.generated_tokens.push_back(result.tok);
  1603. }
  1604. slot.has_next_token = true;
  1605. // check if there is incomplete UTF-8 character at the end
  1606. bool incomplete = validate_utf8(slot.generated_text) < slot.generated_text.size();
  1607. // search stop word and delete it
  1608. if (!incomplete) {
  1609. size_t pos = std::min(slot.n_sent_text, slot.generated_text.size());
  1610. const std::string str_test = slot.generated_text.substr(pos);
  1611. bool send_text = true;
  1612. size_t stop_pos = slot.find_stopping_strings(str_test, token_str.size(), true);
  1613. if (stop_pos != std::string::npos) {
  1614. slot.generated_text.erase(
  1615. slot.generated_text.begin() + pos + stop_pos,
  1616. slot.generated_text.end());
  1617. pos = std::min(slot.n_sent_text, slot.generated_text.size());
  1618. } else if (slot.has_next_token) {
  1619. stop_pos = slot.find_stopping_strings(str_test, token_str.size(), false);
  1620. send_text = stop_pos == std::string::npos;
  1621. }
  1622. // check if there is any token to predict
  1623. if (send_text) {
  1624. // no send the stop word in the response
  1625. result.text_to_send = slot.generated_text.substr(pos, std::string::npos);
  1626. slot.n_sent_text += result.text_to_send.size();
  1627. // add the token to slot queue and cache
  1628. } else {
  1629. result.text_to_send = "";
  1630. }
  1631. slot.add_token(result);
  1632. if (slot.params.stream) {
  1633. send_partial_response(slot, result);
  1634. }
  1635. }
  1636. if (incomplete) {
  1637. slot.has_next_token = true;
  1638. }
  1639. // check the limits
  1640. if (slot.n_decoded > 0 && slot.has_next_token && !slot.has_budget(params_base)) {
  1641. slot.stop = STOP_TYPE_LIMIT;
  1642. slot.has_next_token = false;
  1643. SLT_DBG(slot, "stopped by limit, n_decoded = %d, n_predict = %d\n", slot.n_decoded, slot.params.n_predict);
  1644. }
  1645. if (slot.has_new_line) {
  1646. // if we have already seen a new line, we stop after a certain time limit
  1647. if (slot.params.t_max_predict_ms > 0 && (ggml_time_us() - slot.t_start_generation > 1000.0f*slot.params.t_max_predict_ms)) {
  1648. slot.stop = STOP_TYPE_LIMIT;
  1649. slot.has_next_token = false;
  1650. SLT_DBG(slot, "stopped by time limit, n_decoded = %d, t_max_predict_ms = %d ms\n", slot.n_decoded, (int) slot.params.t_max_predict_ms);
  1651. }
  1652. // require that each new line has a whitespace prefix (i.e. indentation) of at least slot.params.n_indent
  1653. if (slot.params.n_indent > 0) {
  1654. // check the current indentation
  1655. // TODO: improve by not doing it more than once for each new line
  1656. if (slot.last_nl_pos > 0) {
  1657. size_t pos = slot.last_nl_pos;
  1658. int n_indent = 0;
  1659. while (pos < slot.generated_text.size() && (slot.generated_text[pos] == ' ' || slot.generated_text[pos] == '\t')) {
  1660. n_indent++;
  1661. pos++;
  1662. }
  1663. if (pos < slot.generated_text.size() && n_indent < slot.params.n_indent) {
  1664. slot.stop = STOP_TYPE_LIMIT;
  1665. slot.has_next_token = false;
  1666. // cut the last line
  1667. slot.generated_text.erase(pos, std::string::npos);
  1668. SLT_DBG(slot, "stopped by indentation limit, n_decoded = %d, n_indent = %d\n", slot.n_decoded, n_indent);
  1669. }
  1670. }
  1671. // find the next new line
  1672. {
  1673. const size_t pos = slot.generated_text.find('\n', slot.last_nl_pos);
  1674. if (pos != std::string::npos) {
  1675. slot.last_nl_pos = pos + 1;
  1676. }
  1677. }
  1678. }
  1679. }
  1680. // check if there is a new line in the generated text
  1681. if (result.text_to_send.find('\n') != std::string::npos) {
  1682. slot.has_new_line = true;
  1683. }
  1684. // if context shift is disabled, we stop when it reaches the context limit
  1685. if (slot.n_past >= slot.n_ctx) {
  1686. slot.truncated = true;
  1687. slot.stop = STOP_TYPE_LIMIT;
  1688. slot.has_next_token = false;
  1689. SLT_DBG(slot, "stopped due to running out of context capacity, n_past = %d, n_prompt_tokens = %d, n_decoded = %d, n_ctx = %d\n",
  1690. slot.n_decoded, slot.n_prompt_tokens, slot.n_past, slot.n_ctx);
  1691. }
  1692. if (llama_token_is_eog(model, result.tok)) {
  1693. slot.stop = STOP_TYPE_EOS;
  1694. slot.has_next_token = false;
  1695. SLT_DBG(slot, "%s", "stopped by EOS\n");
  1696. }
  1697. const auto n_ctx_train = llama_n_ctx_train(model);
  1698. if (slot.params.n_predict < 1 && slot.n_predict < 1 && slot.n_prompt_tokens + slot.n_decoded >= n_ctx_train) {
  1699. slot.truncated = true;
  1700. slot.stop = STOP_TYPE_LIMIT;
  1701. slot.has_next_token = false; // stop prediction
  1702. SLT_WRN(slot,
  1703. "n_predict (%d) is set for infinite generation. "
  1704. "Limiting generated tokens to n_ctx_train (%d) to avoid EOS-less generation infinite loop\n",
  1705. slot.params.n_predict, n_ctx_train);
  1706. }
  1707. SLT_DBG(slot, "n_decoded = %d, n_remaining = %d, next token: %5d '%s'\n", slot.n_decoded, slot.n_remaining, result.tok, token_str.c_str());
  1708. return slot.has_next_token; // continue
  1709. }
  1710. void populate_token_probs(const server_slot & slot, completion_token_output & result, bool post_sampling, bool special, int idx) {
  1711. size_t n_probs = slot.params.sampling.n_probs;
  1712. size_t n_vocab = llama_n_vocab(llama_get_model(ctx));
  1713. if (post_sampling) {
  1714. const auto * cur_p = common_sampler_get_candidates(slot.smpl);
  1715. const size_t max_probs = cur_p->size;
  1716. // set probability for sampled token
  1717. for (size_t i = 0; i < max_probs; i++) {
  1718. if (cur_p->data[i].id == result.tok) {
  1719. result.prob = cur_p->data[i].p;
  1720. break;
  1721. }
  1722. }
  1723. // set probability for top n_probs tokens
  1724. result.probs.reserve(max_probs);
  1725. for (size_t i = 0; i < std::min(max_probs, n_probs); i++) {
  1726. result.probs.push_back({
  1727. cur_p->data[i].id,
  1728. common_detokenize(ctx, {cur_p->data[i].id}, special),
  1729. cur_p->data[i].p
  1730. });
  1731. }
  1732. } else {
  1733. // TODO: optimize this with min-p optimization
  1734. std::vector<llama_token_data> cur = get_token_probabilities(ctx, idx);
  1735. // set probability for sampled token
  1736. for (size_t i = 0; i < n_vocab; i++) {
  1737. // set probability for sampled token
  1738. if (cur[i].id == result.tok) {
  1739. result.prob = cur[i].p;
  1740. break;
  1741. }
  1742. }
  1743. // set probability for top n_probs tokens
  1744. result.probs.reserve(n_probs);
  1745. for (size_t i = 0; i < std::min(n_vocab, n_probs); i++) {
  1746. result.probs.push_back({
  1747. cur[i].id,
  1748. common_detokenize(ctx, {cur[i].id}, special),
  1749. cur[i].p
  1750. });
  1751. }
  1752. }
  1753. }
  1754. void send_error(const server_task & task, const std::string & error, const enum error_type type = ERROR_TYPE_SERVER) {
  1755. send_error(task.id, error, type);
  1756. }
  1757. void send_error(const server_slot & slot, const std::string & error, const enum error_type type = ERROR_TYPE_SERVER) {
  1758. send_error(slot.id_task, error, type);
  1759. }
  1760. void send_error(const int id_task, const std::string & error, const enum error_type type = ERROR_TYPE_SERVER) {
  1761. SRV_ERR("task id = %d, error: %s\n", id_task, error.c_str());
  1762. auto res = std::make_unique<server_task_result_error>();
  1763. res->id = id_task;
  1764. res->err_type = type;
  1765. res->err_msg = error;
  1766. queue_results.send(std::move(res));
  1767. }
  1768. void send_partial_response(server_slot & slot, const completion_token_output & tkn) {
  1769. auto res = std::make_unique<server_task_result_cmpl_partial>();
  1770. res->id = slot.id_task;
  1771. res->index = slot.index;
  1772. res->content = tkn.text_to_send;
  1773. res->tokens = { tkn.tok };
  1774. res->n_decoded = slot.n_decoded;
  1775. res->n_prompt_tokens = slot.n_prompt_tokens;
  1776. res->post_sampling_probs = slot.params.post_sampling_probs;
  1777. res->verbose = slot.params.verbose;
  1778. res->oaicompat = slot.params.oaicompat;
  1779. res->oaicompat_model = slot.params.oaicompat_model;
  1780. res->oaicompat_cmpl_id = slot.params.oaicompat_cmpl_id;
  1781. // populate res.probs_output
  1782. if (slot.params.sampling.n_probs > 0) {
  1783. res->prob_output = tkn; // copy the token probs
  1784. }
  1785. // populate timings if this is final response or timings_per_token is enabled
  1786. if (slot.stop != STOP_TYPE_NONE || slot.params.timings_per_token) {
  1787. res->timings = slot.get_timings();
  1788. }
  1789. queue_results.send(std::move(res));
  1790. }
  1791. void send_final_response(server_slot & slot) {
  1792. auto res = std::make_unique<server_task_result_cmpl_final>();
  1793. res->id = slot.id_task;
  1794. res->id_slot = slot.id;
  1795. res->index = slot.index;
  1796. res->content = slot.generated_text;
  1797. res->tokens = slot.generated_tokens;
  1798. res->timings = slot.get_timings();
  1799. res->prompt = common_detokenize(ctx, slot.prompt_tokens, true);
  1800. res->response_fields = slot.params.response_fields;
  1801. res->truncated = slot.truncated;
  1802. res->n_decoded = slot.n_decoded;
  1803. res->n_prompt_tokens = slot.n_prompt_tokens;
  1804. res->n_tokens_cached = slot.n_past;
  1805. res->has_new_line = slot.has_new_line;
  1806. res->stopping_word = slot.stopping_word;
  1807. res->stop = slot.stop;
  1808. res->post_sampling_probs = slot.params.post_sampling_probs;
  1809. res->verbose = slot.params.verbose;
  1810. res->stream = slot.params.stream;
  1811. res->oaicompat = slot.params.oaicompat;
  1812. res->oaicompat_model = slot.params.oaicompat_model;
  1813. res->oaicompat_cmpl_id = slot.params.oaicompat_cmpl_id;
  1814. // populate res.probs_output
  1815. if (slot.params.sampling.n_probs > 0) {
  1816. if (!slot.params.stream && slot.stop == STOP_TYPE_WORD) {
  1817. const llama_tokens stop_word_toks = common_tokenize(ctx, slot.stopping_word, false);
  1818. size_t safe_offset = std::min(slot.generated_token_probs.size(), stop_word_toks.size());
  1819. res->probs_output = std::vector<completion_token_output>(
  1820. slot.generated_token_probs.begin(),
  1821. slot.generated_token_probs.end() - safe_offset);
  1822. } else {
  1823. res->probs_output = std::vector<completion_token_output>(
  1824. slot.generated_token_probs.begin(),
  1825. slot.generated_token_probs.end());
  1826. }
  1827. }
  1828. res->generation_params = slot.params; // copy the parameters
  1829. queue_results.send(std::move(res));
  1830. }
  1831. void send_embedding(const server_slot & slot, const llama_batch & batch) {
  1832. auto res = std::make_unique<server_task_result_embd>();
  1833. res->id = slot.id_task;
  1834. res->index = slot.index;
  1835. res->n_tokens = slot.n_prompt_tokens;
  1836. res->oaicompat = slot.params.oaicompat;
  1837. const int n_embd = llama_n_embd(model);
  1838. std::vector<float> embd_res(n_embd, 0.0f);
  1839. for (int i = 0; i < batch.n_tokens; ++i) {
  1840. if (!batch.logits[i] || batch.seq_id[i][0] != slot.id) {
  1841. continue;
  1842. }
  1843. const float * embd = llama_get_embeddings_seq(ctx, batch.seq_id[i][0]);
  1844. if (embd == NULL) {
  1845. embd = llama_get_embeddings_ith(ctx, i);
  1846. }
  1847. if (embd == NULL) {
  1848. SLT_ERR(slot, "failed to get embeddings, token = %d, seq_id = %d\n", batch.token[i], batch.seq_id[i][0]);
  1849. res->embedding.push_back(std::vector<float>(n_embd, 0.0f));
  1850. continue;
  1851. }
  1852. // normalize only when there is pooling
  1853. // TODO: configurable
  1854. if (llama_pooling_type(slot.ctx) != LLAMA_POOLING_TYPE_NONE) {
  1855. common_embd_normalize(embd, embd_res.data(), n_embd, 2);
  1856. res->embedding.push_back(embd_res);
  1857. } else {
  1858. res->embedding.push_back({ embd, embd + n_embd });
  1859. }
  1860. }
  1861. SLT_DBG(slot, "%s", "sending embeddings\n");
  1862. queue_results.send(std::move(res));
  1863. }
  1864. void send_rerank(const server_slot & slot, const llama_batch & batch) {
  1865. auto res = std::make_unique<server_task_result_rerank>();
  1866. res->id = slot.id_task;
  1867. res->index = slot.index;
  1868. res->n_tokens = slot.n_prompt_tokens;
  1869. for (int i = 0; i < batch.n_tokens; ++i) {
  1870. if (!batch.logits[i] || batch.seq_id[i][0] != slot.id) {
  1871. continue;
  1872. }
  1873. const float * embd = llama_get_embeddings_seq(ctx, batch.seq_id[i][0]);
  1874. if (embd == NULL) {
  1875. embd = llama_get_embeddings_ith(ctx, i);
  1876. }
  1877. if (embd == NULL) {
  1878. SLT_ERR(slot, "failed to get embeddings, token = %d, seq_id = %d\n", batch.token[i], batch.seq_id[i][0]);
  1879. res->score = -1e6;
  1880. continue;
  1881. }
  1882. res->score = embd[0];
  1883. }
  1884. SLT_DBG(slot, "sending rerank result, res.score = %f\n", res->score);
  1885. queue_results.send(std::move(res));
  1886. }
  1887. //
  1888. // Functions to create new task(s) and receive result(s)
  1889. //
  1890. void cancel_tasks(const std::unordered_set<int> & id_tasks) {
  1891. std::vector<server_task> cancel_tasks;
  1892. cancel_tasks.reserve(id_tasks.size());
  1893. for (const auto & id_task : id_tasks) {
  1894. SRV_WRN("cancel task, id_task = %d\n", id_task);
  1895. server_task task(SERVER_TASK_TYPE_CANCEL);
  1896. task.id_target = id_task;
  1897. cancel_tasks.push_back(task);
  1898. queue_results.remove_waiting_task_id(id_task);
  1899. }
  1900. // push to beginning of the queue, so it has highest priority
  1901. queue_tasks.post(cancel_tasks, true);
  1902. }
  1903. // receive the results from task(s)
  1904. void receive_multi_results(
  1905. const std::unordered_set<int> & id_tasks,
  1906. const std::function<void(std::vector<server_task_result_ptr>&)> & result_handler,
  1907. const std::function<void(json)> & error_handler) {
  1908. std::vector<server_task_result_ptr> results(id_tasks.size());
  1909. for (size_t i = 0; i < id_tasks.size(); i++) {
  1910. server_task_result_ptr result = queue_results.recv(id_tasks);
  1911. if (result->is_error()) {
  1912. error_handler(result->to_json());
  1913. cancel_tasks(id_tasks);
  1914. return;
  1915. }
  1916. GGML_ASSERT(
  1917. dynamic_cast<server_task_result_cmpl_final*>(result.get()) != nullptr
  1918. || dynamic_cast<server_task_result_embd*>(result.get()) != nullptr
  1919. || dynamic_cast<server_task_result_rerank*>(result.get()) != nullptr
  1920. );
  1921. const size_t idx = result->get_index();
  1922. GGML_ASSERT(idx < results.size() && "index out of range");
  1923. results[idx] = std::move(result);
  1924. }
  1925. result_handler(results);
  1926. }
  1927. // receive the results from task(s), in stream mode
  1928. void receive_cmpl_results_stream(
  1929. const std::unordered_set<int> & id_tasks,
  1930. const std::function<bool(server_task_result_ptr&)> & result_handler,
  1931. const std::function<void(json)> & error_handler) {
  1932. size_t n_finished = 0;
  1933. while (true) {
  1934. server_task_result_ptr result = queue_results.recv(id_tasks);
  1935. if (result->is_error()) {
  1936. error_handler(result->to_json());
  1937. cancel_tasks(id_tasks);
  1938. return;
  1939. }
  1940. GGML_ASSERT(
  1941. dynamic_cast<server_task_result_cmpl_partial*>(result.get()) != nullptr
  1942. || dynamic_cast<server_task_result_cmpl_final*>(result.get()) != nullptr
  1943. );
  1944. if (!result_handler(result)) {
  1945. cancel_tasks(id_tasks);
  1946. break;
  1947. }
  1948. if (result->is_stop()) {
  1949. if (++n_finished == id_tasks.size()) {
  1950. break;
  1951. }
  1952. }
  1953. }
  1954. }
  1955. //
  1956. // Functions to process the task
  1957. //
  1958. void process_single_task(server_task task) {
  1959. switch (task.type) {
  1960. case SERVER_TASK_TYPE_COMPLETION:
  1961. case SERVER_TASK_TYPE_INFILL:
  1962. case SERVER_TASK_TYPE_EMBEDDING:
  1963. case SERVER_TASK_TYPE_RERANK:
  1964. {
  1965. const int id_slot = task.id_selected_slot;
  1966. server_slot * slot = id_slot != -1 ? get_slot_by_id(id_slot) : get_available_slot(task);
  1967. if (slot == nullptr) {
  1968. // if no slot is available, we defer this task for processing later
  1969. SRV_DBG("no slot is available, defer task, id_task = %d\n", task.id);
  1970. queue_tasks.defer(task);
  1971. break;
  1972. }
  1973. if (slot->is_processing()) {
  1974. // if requested slot is unavailable, we defer this task for processing later
  1975. SRV_DBG("requested slot is unavailable, defer task, id_task = %d\n", task.id);
  1976. queue_tasks.defer(task);
  1977. break;
  1978. }
  1979. if (!launch_slot_with_task(*slot, task)) {
  1980. SRV_ERR("failed to launch slot with task, id_task = %d\n", task.id);
  1981. break;
  1982. }
  1983. } break;
  1984. case SERVER_TASK_TYPE_CANCEL:
  1985. {
  1986. // release slot linked with the task id
  1987. for (auto & slot : slots) {
  1988. if (slot.id_task == task.id_target) {
  1989. slot.release();
  1990. break;
  1991. }
  1992. }
  1993. } break;
  1994. case SERVER_TASK_TYPE_NEXT_RESPONSE:
  1995. {
  1996. // do nothing
  1997. } break;
  1998. case SERVER_TASK_TYPE_METRICS:
  1999. {
  2000. json slots_data = json::array();
  2001. int n_idle_slots = 0;
  2002. int n_processing_slots = 0;
  2003. for (server_slot & slot : slots) {
  2004. json slot_data = slot.to_json();
  2005. if (slot.is_processing()) {
  2006. n_processing_slots++;
  2007. } else {
  2008. n_idle_slots++;
  2009. }
  2010. slots_data.push_back(slot_data);
  2011. }
  2012. SRV_DBG("n_idle_slots = %d, n_processing_slots = %d\n", n_idle_slots, n_processing_slots);
  2013. auto res = std::make_unique<server_task_result_metrics>();
  2014. res->id = task.id;
  2015. res->slots_data = std::move(slots_data);
  2016. res->n_idle_slots = n_idle_slots;
  2017. res->n_processing_slots = n_processing_slots;
  2018. res->n_tasks_deferred = queue_tasks.queue_tasks_deferred.size();
  2019. res->t_start = metrics.t_start;
  2020. res->kv_cache_tokens_count = llama_get_kv_cache_token_count(ctx);
  2021. res->kv_cache_used_cells = llama_get_kv_cache_used_cells(ctx);
  2022. res->n_prompt_tokens_processed_total = metrics.n_prompt_tokens_processed_total;
  2023. res->t_prompt_processing_total = metrics.t_prompt_processing_total;
  2024. res->n_tokens_predicted_total = metrics.n_tokens_predicted_total;
  2025. res->t_tokens_generation_total = metrics.t_tokens_generation_total;
  2026. res->n_prompt_tokens_processed = metrics.n_prompt_tokens_processed;
  2027. res->t_prompt_processing = metrics.t_prompt_processing;
  2028. res->n_tokens_predicted = metrics.n_tokens_predicted;
  2029. res->t_tokens_generation = metrics.t_tokens_generation;
  2030. res->n_decode_total = metrics.n_decode_total;
  2031. res->n_busy_slots_total = metrics.n_busy_slots_total;
  2032. if (task.metrics_reset_bucket) {
  2033. metrics.reset_bucket();
  2034. }
  2035. queue_results.send(std::move(res));
  2036. } break;
  2037. case SERVER_TASK_TYPE_SLOT_SAVE:
  2038. {
  2039. int id_slot = task.slot_action.slot_id;
  2040. server_slot * slot = get_slot_by_id(id_slot);
  2041. if (slot == nullptr) {
  2042. send_error(task, "Invalid slot ID", ERROR_TYPE_INVALID_REQUEST);
  2043. break;
  2044. }
  2045. if (slot->is_processing()) {
  2046. // if requested slot is unavailable, we defer this task for processing later
  2047. SRV_DBG("requested slot is unavailable, defer task, id_task = %d\n", task.id);
  2048. queue_tasks.defer(task);
  2049. break;
  2050. }
  2051. const size_t token_count = slot->cache_tokens.size();
  2052. const int64_t t_start = ggml_time_us();
  2053. std::string filename = task.slot_action.filename;
  2054. std::string filepath = task.slot_action.filepath;
  2055. const size_t nwrite = llama_state_seq_save_file(ctx, filepath.c_str(), slot->id, slot->cache_tokens.data(), token_count);
  2056. const int64_t t_end = ggml_time_us();
  2057. const double t_save_ms = (t_end - t_start) / 1000.0;
  2058. auto res = std::make_unique<server_task_result_slot_save_load>();
  2059. res->id = task.id;
  2060. res->id_slot = id_slot;
  2061. res->filename = filename;
  2062. res->is_save = true;
  2063. res->n_tokens = token_count;
  2064. res->n_bytes = nwrite;
  2065. res->t_ms = t_save_ms;
  2066. queue_results.send(std::move(res));
  2067. } break;
  2068. case SERVER_TASK_TYPE_SLOT_RESTORE:
  2069. {
  2070. int id_slot = task.slot_action.slot_id;
  2071. server_slot * slot = get_slot_by_id(id_slot);
  2072. if (slot == nullptr) {
  2073. send_error(task, "Invalid slot ID", ERROR_TYPE_INVALID_REQUEST);
  2074. break;
  2075. }
  2076. if (slot->is_processing()) {
  2077. // if requested slot is unavailable, we defer this task for processing later
  2078. SRV_DBG("requested slot is unavailable, defer task, id_task = %d\n", task.id);
  2079. queue_tasks.defer(task);
  2080. break;
  2081. }
  2082. const int64_t t_start = ggml_time_us();
  2083. std::string filename = task.slot_action.filename;
  2084. std::string filepath = task.slot_action.filepath;
  2085. slot->cache_tokens.resize(slot->n_ctx);
  2086. size_t token_count = 0;
  2087. size_t nread = llama_state_seq_load_file(ctx, filepath.c_str(), slot->id, slot->cache_tokens.data(), slot->cache_tokens.size(), &token_count);
  2088. if (nread == 0) {
  2089. slot->cache_tokens.resize(0);
  2090. send_error(task, "Unable to restore slot, no available space in KV cache or invalid slot save file", ERROR_TYPE_INVALID_REQUEST);
  2091. break;
  2092. }
  2093. slot->cache_tokens.resize(token_count);
  2094. const int64_t t_end = ggml_time_us();
  2095. const double t_restore_ms = (t_end - t_start) / 1000.0;
  2096. auto res = std::make_unique<server_task_result_slot_save_load>();
  2097. res->id = task.id;
  2098. res->id_slot = id_slot;
  2099. res->filename = filename;
  2100. res->is_save = false;
  2101. res->n_tokens = token_count;
  2102. res->n_bytes = nread;
  2103. res->t_ms = t_restore_ms;
  2104. queue_results.send(std::move(res));
  2105. } break;
  2106. case SERVER_TASK_TYPE_SLOT_ERASE:
  2107. {
  2108. int id_slot = task.slot_action.slot_id;
  2109. server_slot * slot = get_slot_by_id(id_slot);
  2110. if (slot == nullptr) {
  2111. send_error(task, "Invalid slot ID", ERROR_TYPE_INVALID_REQUEST);
  2112. break;
  2113. }
  2114. if (slot->is_processing()) {
  2115. // if requested slot is unavailable, we defer this task for processing later
  2116. SRV_DBG("requested slot is unavailable, defer task, id_task = %d\n", task.id);
  2117. queue_tasks.defer(task);
  2118. break;
  2119. }
  2120. // Erase token cache
  2121. const size_t n_erased = slot->cache_tokens.size();
  2122. llama_kv_cache_seq_rm(ctx, slot->id, -1, -1);
  2123. slot->cache_tokens.clear();
  2124. auto res = std::make_unique<server_task_result_slot_erase>();
  2125. res->id = task.id;
  2126. res->id_slot = id_slot;
  2127. res->n_erased = n_erased;
  2128. queue_results.send(std::move(res));
  2129. } break;
  2130. case SERVER_TASK_TYPE_SET_LORA:
  2131. {
  2132. common_lora_adapters_apply(ctx, loras);
  2133. auto res = std::make_unique<server_task_result_apply_lora>();
  2134. res->id = task.id;
  2135. queue_results.send(std::move(res));
  2136. } break;
  2137. }
  2138. }
  2139. void update_slots() {
  2140. // check if all slots are idle
  2141. {
  2142. bool all_idle = true;
  2143. for (auto & slot : slots) {
  2144. if (slot.is_processing()) {
  2145. all_idle = false;
  2146. break;
  2147. }
  2148. }
  2149. if (all_idle) {
  2150. SRV_INF("%s", "all slots are idle\n");
  2151. if (clean_kv_cache) {
  2152. kv_cache_clear();
  2153. }
  2154. return;
  2155. }
  2156. }
  2157. {
  2158. SRV_DBG("%s", "posting NEXT_RESPONSE\n");
  2159. server_task task(SERVER_TASK_TYPE_NEXT_RESPONSE);
  2160. task.id = queue_tasks.get_new_id();
  2161. queue_tasks.post(task);
  2162. }
  2163. // apply context-shift if needed
  2164. // TODO: simplify and improve
  2165. for (server_slot & slot : slots) {
  2166. if (slot.is_processing() && slot.n_past + 1 >= slot.n_ctx) {
  2167. if (!params_base.ctx_shift) {
  2168. // this check is redundant (for good)
  2169. // we should never get here, because generation should already stopped in process_token()
  2170. slot.release();
  2171. send_error(slot, "context shift is disabled", ERROR_TYPE_SERVER);
  2172. continue;
  2173. }
  2174. // Shift context
  2175. const int n_keep = slot.params.n_keep + add_bos_token;
  2176. const int n_left = slot.n_past - n_keep;
  2177. const int n_discard = slot.params.n_discard ? slot.params.n_discard : (n_left / 2);
  2178. SLT_WRN(slot, "slot context shift, n_keep = %d, n_left = %d, n_discard = %d\n", n_keep, n_left, n_discard);
  2179. llama_kv_cache_seq_rm (ctx, slot.id, n_keep , n_keep + n_discard);
  2180. llama_kv_cache_seq_add(ctx, slot.id, n_keep + n_discard, slot.n_past, -n_discard);
  2181. if (slot.params.cache_prompt) {
  2182. for (size_t i = n_keep + n_discard; i < slot.cache_tokens.size(); i++) {
  2183. slot.cache_tokens[i - n_discard] = slot.cache_tokens[i];
  2184. }
  2185. slot.cache_tokens.resize(slot.cache_tokens.size() - n_discard);
  2186. }
  2187. slot.n_past -= n_discard;
  2188. slot.truncated = true;
  2189. }
  2190. }
  2191. // start populating the batch for this iteration
  2192. common_batch_clear(batch);
  2193. // frist, add sampled tokens from any ongoing sequences
  2194. for (auto & slot : slots) {
  2195. if (slot.state != SLOT_STATE_GENERATING) {
  2196. continue;
  2197. }
  2198. slot.i_batch = batch.n_tokens;
  2199. common_batch_add(batch, slot.sampled, slot.n_past, { slot.id }, true);
  2200. slot.n_past += 1;
  2201. if (slot.params.cache_prompt) {
  2202. slot.cache_tokens.push_back(slot.sampled);
  2203. }
  2204. SLT_DBG(slot, "slot decode token, n_ctx = %d, n_past = %d, n_cache_tokens = %d, truncated = %d\n",
  2205. slot.n_ctx, slot.n_past, (int) slot.cache_tokens.size(), slot.truncated);
  2206. }
  2207. // process in chunks of params.n_batch
  2208. int32_t n_batch = llama_n_batch(ctx);
  2209. int32_t n_ubatch = llama_n_ubatch(ctx);
  2210. // track if this is an embedding or non-embedding batch
  2211. // if we've added sampled tokens above, we are in non-embedding mode
  2212. // -1: none, 0: non-embedding, 1: embedding
  2213. // TODO: make enum
  2214. int32_t batch_type = batch.n_tokens > 0 ? 0 : -1;
  2215. // next, batch any pending prompts without exceeding n_batch
  2216. if (params_base.cont_batching || batch.n_tokens == 0) {
  2217. for (auto & slot : slots) {
  2218. // this slot still has a prompt to be processed
  2219. if (slot.state == SLOT_STATE_PROCESSING_PROMPT || slot.state == SLOT_STATE_STARTED) {
  2220. auto & prompt_tokens = slot.prompt_tokens;
  2221. // TODO: maybe move branch to outside of this loop in the future
  2222. if (slot.state == SLOT_STATE_STARTED) {
  2223. slot.t_start_process_prompt = ggml_time_us();
  2224. slot.t_start_generation = 0;
  2225. slot.n_past = 0;
  2226. slot.n_prompt_tokens = prompt_tokens.size();
  2227. slot.state = SLOT_STATE_PROCESSING_PROMPT;
  2228. SLT_INF(slot, "new prompt, n_ctx_slot = %d, n_keep = %d, n_prompt_tokens = %d\n", slot.n_ctx, slot.params.n_keep, slot.n_prompt_tokens);
  2229. // print prompt tokens (for debugging)
  2230. if (1) {
  2231. // first 16 tokens (avoid flooding logs)
  2232. for (int i = 0; i < std::min<int>(16, prompt_tokens.size()); i++) {
  2233. SLT_DBG(slot, "prompt token %3d: %6d '%s'\n", i, prompt_tokens[i], common_token_to_piece(ctx, prompt_tokens[i]).c_str());
  2234. }
  2235. } else {
  2236. // all
  2237. for (int i = 0; i < (int) prompt_tokens.size(); i++) {
  2238. SLT_DBG(slot, "prompt token %3d: %6d '%s'\n", i, prompt_tokens[i], common_token_to_piece(ctx, prompt_tokens[i]).c_str());
  2239. }
  2240. }
  2241. // empty prompt passed -> release the slot and send empty response
  2242. if (prompt_tokens.empty()) {
  2243. SLT_WRN(slot, "%s", "empty prompt - releasing slot\n");
  2244. slot.release();
  2245. slot.print_timings();
  2246. send_final_response(slot);
  2247. continue;
  2248. }
  2249. if (slot.is_non_causal()) {
  2250. if (slot.n_prompt_tokens > n_ubatch) {
  2251. slot.release();
  2252. send_error(slot, "input is too large to process. increase the physical batch size", ERROR_TYPE_SERVER);
  2253. continue;
  2254. }
  2255. if (slot.n_prompt_tokens > slot.n_ctx) {
  2256. slot.release();
  2257. send_error(slot, "input is larger than the max context size. skipping", ERROR_TYPE_SERVER);
  2258. continue;
  2259. }
  2260. } else {
  2261. if (!params_base.ctx_shift) {
  2262. // if context shift is disabled, we make sure prompt size is smaller than KV size
  2263. // TODO: there should be a separate parameter that control prompt truncation
  2264. // context shift should be applied only during the generation phase
  2265. if (slot.n_prompt_tokens >= slot.n_ctx) {
  2266. slot.release();
  2267. send_error(slot, "the request exceeds the available context size. try increasing the context size or enable context shift", ERROR_TYPE_INVALID_REQUEST);
  2268. continue;
  2269. }
  2270. }
  2271. if (slot.params.n_keep < 0) {
  2272. slot.params.n_keep = slot.n_prompt_tokens;
  2273. }
  2274. slot.params.n_keep = std::min(slot.n_ctx - 4, slot.params.n_keep);
  2275. // if input prompt is too big, truncate it
  2276. if (slot.n_prompt_tokens >= slot.n_ctx) {
  2277. const int n_left = slot.n_ctx - slot.params.n_keep;
  2278. const int n_block_size = n_left / 2;
  2279. const int erased_blocks = (slot.n_prompt_tokens - slot.params.n_keep - n_block_size) / n_block_size;
  2280. llama_tokens new_tokens(
  2281. prompt_tokens.begin(),
  2282. prompt_tokens.begin() + slot.params.n_keep);
  2283. new_tokens.insert(
  2284. new_tokens.end(),
  2285. prompt_tokens.begin() + slot.params.n_keep + erased_blocks * n_block_size,
  2286. prompt_tokens.end());
  2287. prompt_tokens = std::move(new_tokens);
  2288. slot.truncated = true;
  2289. slot.n_prompt_tokens = prompt_tokens.size();
  2290. SLT_WRN(slot, "input truncated, n_ctx = %d, n_keep = %d, n_left = %d, n_prompt_tokens = %d\n", slot.n_ctx, slot.params.n_keep, n_left, slot.n_prompt_tokens);
  2291. GGML_ASSERT(slot.n_prompt_tokens < slot.n_ctx);
  2292. }
  2293. if (slot.params.cache_prompt) {
  2294. // reuse any previously computed tokens that are common with the new prompt
  2295. slot.n_past = common_lcp(slot.cache_tokens, prompt_tokens);
  2296. // reuse chunks from the cached prompt by shifting their KV cache in the new position
  2297. if (params_base.n_cache_reuse > 0) {
  2298. size_t head_c = slot.n_past; // cache
  2299. size_t head_p = slot.n_past; // current prompt
  2300. SLT_DBG(slot, "trying to reuse chunks with size > %d, slot.n_past = %d\n", params_base.n_cache_reuse, slot.n_past);
  2301. while (head_c < slot.cache_tokens.size() &&
  2302. head_p < prompt_tokens.size()) {
  2303. size_t n_match = 0;
  2304. while (head_c + n_match < slot.cache_tokens.size() &&
  2305. head_p + n_match < prompt_tokens.size() &&
  2306. slot.cache_tokens[head_c + n_match] == prompt_tokens[head_p + n_match]) {
  2307. n_match++;
  2308. }
  2309. if (n_match >= (size_t) params_base.n_cache_reuse) {
  2310. SLT_INF(slot, "reusing chunk with size %zu, shifting KV cache [%zu, %zu) -> [%zu, %zu)\n", n_match, head_c, head_c + n_match, head_p, head_p + n_match);
  2311. //for (size_t i = head_p; i < head_p + n_match; i++) {
  2312. // SLT_DBG(slot, "cache token %3zu: %6d '%s'\n", i, prompt_tokens[i], common_token_to_piece(ctx, prompt_tokens[i]).c_str());
  2313. //}
  2314. const int64_t kv_shift = (int64_t) head_p - (int64_t) head_c;
  2315. llama_kv_cache_seq_rm (ctx, slot.id, head_p, head_c);
  2316. llama_kv_cache_seq_add(ctx, slot.id, head_c, -1, kv_shift);
  2317. for (size_t i = 0; i < n_match; i++) {
  2318. slot.cache_tokens[head_p + i] = slot.cache_tokens[head_c + i];
  2319. slot.n_past++;
  2320. }
  2321. head_c += n_match;
  2322. head_p += n_match;
  2323. } else {
  2324. head_c += 1;
  2325. }
  2326. }
  2327. SLT_DBG(slot, "after context reuse, new slot.n_past = %d\n", slot.n_past);
  2328. }
  2329. }
  2330. }
  2331. if (slot.n_past == slot.n_prompt_tokens && slot.n_past > 0) {
  2332. // we have to evaluate at least 1 token to generate logits.
  2333. SLT_WRN(slot, "need to evaluate at least 1 token to generate logits, n_past = %d, n_prompt_tokens = %d\n", slot.n_past, slot.n_prompt_tokens);
  2334. slot.n_past--;
  2335. }
  2336. slot.n_prompt_tokens_processed = 0;
  2337. }
  2338. // non-causal tasks require to fit the entire prompt in the physical batch
  2339. if (slot.is_non_causal()) {
  2340. // cannot fit the prompt in the current batch - will try next iter
  2341. if (batch.n_tokens + slot.n_prompt_tokens > n_batch) {
  2342. continue;
  2343. }
  2344. }
  2345. // check that we are in the right batch_type, if not defer the slot
  2346. int slot_type = slot.is_non_causal();
  2347. if (batch_type == -1) {
  2348. batch_type = slot_type;
  2349. } else if (batch_type != slot_type) {
  2350. continue;
  2351. }
  2352. // keep only the common part
  2353. if (!llama_kv_cache_seq_rm(ctx, slot.id, slot.n_past, -1)) {
  2354. // could not partially delete (likely using a non-Transformer model)
  2355. llama_kv_cache_seq_rm(ctx, slot.id, -1, -1);
  2356. // there is no common part left
  2357. slot.n_past = 0;
  2358. }
  2359. SLT_INF(slot, "kv cache rm [%d, end)\n", slot.n_past);
  2360. // remove the non-common part from the cache
  2361. slot.cache_tokens.resize(slot.n_past);
  2362. // add prompt tokens for processing in the current batch
  2363. while (slot.n_past < slot.n_prompt_tokens && batch.n_tokens < n_batch) {
  2364. // without pooling, we want to output the embeddings for all the tokens in the batch
  2365. const bool need_embd = slot.task_type == SERVER_TASK_TYPE_EMBEDDING && llama_pooling_type(slot.ctx) == LLAMA_POOLING_TYPE_NONE;
  2366. common_batch_add(batch, prompt_tokens[slot.n_past], slot.n_past, { slot.id }, need_embd);
  2367. if (slot.params.cache_prompt) {
  2368. slot.cache_tokens.push_back(prompt_tokens[slot.n_past]);
  2369. }
  2370. slot.n_prompt_tokens_processed++;
  2371. slot.n_past++;
  2372. }
  2373. SLT_INF(slot, "prompt processing progress, n_past = %d, n_tokens = %d, progress = %f\n", slot.n_past, batch.n_tokens, (float) slot.n_prompt_tokens_processed / slot.n_prompt_tokens);
  2374. // entire prompt has been processed
  2375. if (slot.n_past == slot.n_prompt_tokens) {
  2376. slot.state = SLOT_STATE_DONE_PROMPT;
  2377. GGML_ASSERT(batch.n_tokens > 0);
  2378. common_sampler_reset(slot.smpl);
  2379. // Process all prompt tokens through sampler system
  2380. for (int i = 0; i < slot.n_prompt_tokens; ++i) {
  2381. common_sampler_accept(slot.smpl, prompt_tokens[i], false);
  2382. }
  2383. // extract the logits only for the last token
  2384. batch.logits[batch.n_tokens - 1] = true;
  2385. slot.n_decoded = 0;
  2386. slot.i_batch = batch.n_tokens - 1;
  2387. SLT_INF(slot, "prompt done, n_past = %d, n_tokens = %d\n", slot.n_past, batch.n_tokens);
  2388. }
  2389. }
  2390. if (batch.n_tokens >= n_batch) {
  2391. break;
  2392. }
  2393. }
  2394. }
  2395. if (batch.n_tokens == 0) {
  2396. SRV_WRN("%s", "no tokens to decode\n");
  2397. return;
  2398. }
  2399. SRV_DBG("decoding batch, n_tokens = %d\n", batch.n_tokens);
  2400. // make sure we're in the right embedding mode
  2401. llama_set_embeddings(ctx, batch_type == 1);
  2402. // process the created batch of tokens
  2403. for (int32_t i = 0; i < batch.n_tokens; i += n_batch) {
  2404. const int32_t n_tokens = std::min(n_batch, batch.n_tokens - i);
  2405. llama_batch batch_view = {
  2406. n_tokens,
  2407. batch.token + i,
  2408. nullptr,
  2409. batch.pos + i,
  2410. batch.n_seq_id + i,
  2411. batch.seq_id + i,
  2412. batch.logits + i,
  2413. };
  2414. const int ret = llama_decode(ctx, batch_view);
  2415. metrics.on_decoded(slots);
  2416. if (ret != 0) {
  2417. if (n_batch == 1 || ret < 0) {
  2418. // if you get here, it means the KV cache is full - try increasing it via the context size
  2419. SRV_ERR("failed to decode the batch: KV cache is full - try increasing it via the context size, i = %d, n_batch = %d, ret = %d\n", i, n_batch, ret);
  2420. for (auto & slot : slots) {
  2421. slot.release();
  2422. send_error(slot, "Input prompt is too big compared to KV size. Please try increasing KV size.");
  2423. }
  2424. break; // break loop of n_batch
  2425. }
  2426. // retry with half the batch size to try to find a free slot in the KV cache
  2427. n_batch /= 2;
  2428. i -= n_batch;
  2429. SRV_WRN("failed to find free space in the KV cache, retrying with smaller batch size - try increasing it via the context size or enable defragmentation, i = %d, n_batch = %d, ret = %d\n", i, n_batch, ret);
  2430. continue; // continue loop of n_batch
  2431. }
  2432. for (auto & slot : slots) {
  2433. if (slot.i_batch < (int) i || slot.i_batch >= (int) (i + n_tokens)) {
  2434. continue; // continue loop of slots
  2435. }
  2436. if (slot.state == SLOT_STATE_DONE_PROMPT) {
  2437. if (slot.task_type == SERVER_TASK_TYPE_EMBEDDING) {
  2438. // prompt evaluated for embedding
  2439. send_embedding(slot, batch_view);
  2440. slot.release();
  2441. slot.i_batch = -1;
  2442. continue; // continue loop of slots
  2443. }
  2444. if (slot.task_type == SERVER_TASK_TYPE_RERANK) {
  2445. send_rerank(slot, batch_view);
  2446. slot.release();
  2447. slot.i_batch = -1;
  2448. continue; // continue loop of slots
  2449. }
  2450. // prompt evaluated for next-token prediction
  2451. slot.state = SLOT_STATE_GENERATING;
  2452. } else if (slot.state != SLOT_STATE_GENERATING) {
  2453. continue; // continue loop of slots
  2454. }
  2455. const int tok_idx = slot.i_batch - i;
  2456. llama_token id = common_sampler_sample(slot.smpl, ctx, tok_idx);
  2457. slot.i_batch = -1;
  2458. common_sampler_accept(slot.smpl, id, true);
  2459. slot.n_decoded += 1;
  2460. const int64_t t_current = ggml_time_us();
  2461. if (slot.n_decoded == 1) {
  2462. slot.t_start_generation = t_current;
  2463. slot.t_prompt_processing = (slot.t_start_generation - slot.t_start_process_prompt) / 1e3;
  2464. metrics.on_prompt_eval(slot);
  2465. }
  2466. slot.t_token_generation = (t_current - slot.t_start_generation) / 1e3;
  2467. completion_token_output result;
  2468. result.tok = id;
  2469. result.text_to_send = common_token_to_piece(ctx, result.tok, params_base.special);
  2470. result.prob = 1.0f; // TODO: set it here instead of doing inside populate_token_probs
  2471. if (slot.params.sampling.n_probs > 0) {
  2472. populate_token_probs(slot, result, slot.params.post_sampling_probs, params_base.special, tok_idx);
  2473. }
  2474. if (!process_token(result, slot)) {
  2475. // release slot because of stop condition
  2476. slot.release();
  2477. slot.print_timings();
  2478. send_final_response(slot);
  2479. metrics.on_prediction(slot);
  2480. continue;
  2481. }
  2482. }
  2483. // do speculative decoding
  2484. for (auto & slot : slots) {
  2485. if (!slot.is_processing() || !slot.can_speculate()) {
  2486. continue;
  2487. }
  2488. if (slot.state != SLOT_STATE_GENERATING) {
  2489. continue;
  2490. }
  2491. // determine the max draft that fits the current slot state
  2492. int n_draft_max = slot.params.speculative.n_max;
  2493. // note: n_past is not yet increased for the `id` token sampled above
  2494. // also, need to leave space for 1 extra token to allow context shifts
  2495. n_draft_max = std::min(n_draft_max, slot.n_ctx - slot.n_past - 2);
  2496. if (slot.n_remaining > 0) {
  2497. n_draft_max = std::min(n_draft_max, slot.n_remaining - 1);
  2498. }
  2499. SLT_DBG(slot, "max possible draft: %d\n", n_draft_max);
  2500. if (n_draft_max < slot.params.speculative.n_min) {
  2501. SLT_DBG(slot, "the max possible draft is too small: %d < %d - skipping speculative decoding\n", n_draft_max, slot.params.speculative.n_min);
  2502. continue;
  2503. }
  2504. llama_token id = slot.sampled;
  2505. struct common_speculative_params params_spec;
  2506. params_spec.n_draft = n_draft_max;
  2507. params_spec.n_reuse = llama_n_ctx(slot.ctx_dft) - slot.params.speculative.n_max;
  2508. params_spec.p_min = slot.params.speculative.p_min;
  2509. llama_tokens draft = common_speculative_gen_draft(slot.spec, params_spec, slot.cache_tokens, id);
  2510. // ignore small drafts
  2511. if (slot.params.speculative.n_min > (int) draft.size()) {
  2512. SLT_DBG(slot, "ignoring small draft: %d < %d\n", (int) draft.size(), slot.params.speculative.n_min);
  2513. continue;
  2514. }
  2515. // construct the speculation batch
  2516. common_batch_clear(slot.batch_spec);
  2517. common_batch_add (slot.batch_spec, id, slot.n_past, { slot.id }, true);
  2518. for (size_t i = 0; i < draft.size(); ++i) {
  2519. common_batch_add(slot.batch_spec, draft[i], slot.n_past + 1 + i, { slot.id }, true);
  2520. }
  2521. SLT_DBG(slot, "decoding speculative batch, size = %d\n", slot.batch_spec.n_tokens);
  2522. llama_decode(ctx, slot.batch_spec);
  2523. // the accepted tokens from the speculation
  2524. const auto ids = common_sampler_sample_and_accept_n(slot.smpl, ctx, draft);
  2525. slot.n_past += ids.size();
  2526. slot.n_decoded += ids.size();
  2527. slot.cache_tokens.push_back(id);
  2528. slot.cache_tokens.insert(slot.cache_tokens.end(), ids.begin(), ids.end() - 1);
  2529. llama_kv_cache_seq_rm(ctx, slot.id, slot.n_past, -1);
  2530. for (size_t i = 0; i < ids.size(); ++i) {
  2531. completion_token_output result;
  2532. result.tok = ids[i];
  2533. result.text_to_send = common_token_to_piece(ctx, result.tok, params_base.special);
  2534. result.prob = 1.0f; // set later
  2535. // TODO: set result.probs
  2536. if (!process_token(result, slot)) {
  2537. // release slot because of stop condition
  2538. slot.release();
  2539. slot.print_timings();
  2540. send_final_response(slot);
  2541. metrics.on_prediction(slot);
  2542. break;
  2543. }
  2544. }
  2545. SLT_DBG(slot, "accepted %d/%d draft tokens, new n_past = %d\n", (int) ids.size() - 1, (int) draft.size(), slot.n_past);
  2546. }
  2547. }
  2548. SRV_DBG("%s", "run slots completed\n");
  2549. }
  2550. json model_meta() const {
  2551. return json {
  2552. {"vocab_type", llama_vocab_type (model)},
  2553. {"n_vocab", llama_n_vocab (model)},
  2554. {"n_ctx_train", llama_n_ctx_train (model)},
  2555. {"n_embd", llama_n_embd (model)},
  2556. {"n_params", llama_model_n_params(model)},
  2557. {"size", llama_model_size (model)},
  2558. };
  2559. }
  2560. };
  2561. static void log_server_request(const httplib::Request & req, const httplib::Response & res) {
  2562. // skip GH copilot requests when using default port
  2563. if (req.path == "/v1/health" || req.path == "/v1/completions") {
  2564. return;
  2565. }
  2566. LOG_INF("request: %s %s %s %d\n", req.method.c_str(), req.path.c_str(), req.remote_addr.c_str(), res.status);
  2567. LOG_DBG("request: %s\n", req.body.c_str());
  2568. LOG_DBG("response: %s\n", res.body.c_str());
  2569. }
  2570. std::function<void(int)> shutdown_handler;
  2571. std::atomic_flag is_terminating = ATOMIC_FLAG_INIT;
  2572. inline void signal_handler(int signal) {
  2573. if (is_terminating.test_and_set()) {
  2574. // in case it hangs, we can force terminate the server by hitting Ctrl+C twice
  2575. // this is for better developer experience, we can remove when the server is stable enough
  2576. fprintf(stderr, "Received second interrupt, terminating immediately.\n");
  2577. exit(1);
  2578. }
  2579. shutdown_handler(signal);
  2580. }
  2581. int main(int argc, char ** argv) {
  2582. // own arguments required by this example
  2583. common_params params;
  2584. if (!common_params_parse(argc, argv, params, LLAMA_EXAMPLE_SERVER)) {
  2585. return 1;
  2586. }
  2587. common_init();
  2588. // struct that contains llama context and inference
  2589. server_context ctx_server;
  2590. llama_backend_init();
  2591. llama_numa_init(params.numa);
  2592. LOG_INF("system info: n_threads = %d, n_threads_batch = %d, total_threads = %d\n", params.cpuparams.n_threads, params.cpuparams_batch.n_threads, std::thread::hardware_concurrency());
  2593. LOG_INF("\n");
  2594. LOG_INF("%s\n", common_params_get_system_info(params).c_str());
  2595. LOG_INF("\n");
  2596. std::unique_ptr<httplib::Server> svr;
  2597. #ifdef CPPHTTPLIB_OPENSSL_SUPPORT
  2598. if (params.ssl_file_key != "" && params.ssl_file_cert != "") {
  2599. LOG_INF("Running with SSL: key = %s, cert = %s\n", params.ssl_file_key.c_str(), params.ssl_file_cert.c_str());
  2600. svr.reset(
  2601. new httplib::SSLServer(params.ssl_file_cert.c_str(), params.ssl_file_key.c_str())
  2602. );
  2603. } else {
  2604. LOG_INF("Running without SSL\n");
  2605. svr.reset(new httplib::Server());
  2606. }
  2607. #else
  2608. if (params.ssl_file_key != "" && params.ssl_file_cert != "") {
  2609. LOG_ERR("Server is built without SSL support\n");
  2610. return 1;
  2611. }
  2612. svr.reset(new httplib::Server());
  2613. #endif
  2614. std::atomic<server_state> state{SERVER_STATE_LOADING_MODEL};
  2615. svr->set_default_headers({{"Server", "llama.cpp"}});
  2616. svr->set_logger(log_server_request);
  2617. auto res_error = [](httplib::Response & res, const json & error_data) {
  2618. json final_response {{"error", error_data}};
  2619. res.set_content(safe_json_to_str(final_response), MIMETYPE_JSON);
  2620. res.status = json_value(error_data, "code", 500);
  2621. };
  2622. auto res_ok = [](httplib::Response & res, const json & data) {
  2623. res.set_content(safe_json_to_str(data), MIMETYPE_JSON);
  2624. res.status = 200;
  2625. };
  2626. svr->set_exception_handler([&res_error](const httplib::Request &, httplib::Response & res, const std::exception_ptr & ep) {
  2627. std::string message;
  2628. try {
  2629. std::rethrow_exception(ep);
  2630. } catch (const std::exception & e) {
  2631. message = e.what();
  2632. } catch (...) {
  2633. message = "Unknown Exception";
  2634. }
  2635. json formatted_error = format_error_response(message, ERROR_TYPE_SERVER);
  2636. LOG_WRN("got exception: %s\n", formatted_error.dump().c_str());
  2637. res_error(res, formatted_error);
  2638. });
  2639. svr->set_error_handler([&res_error](const httplib::Request &, httplib::Response & res) {
  2640. if (res.status == 404) {
  2641. res_error(res, format_error_response("File Not Found", ERROR_TYPE_NOT_FOUND));
  2642. }
  2643. // for other error codes, we skip processing here because it's already done by res_error()
  2644. });
  2645. // set timeouts and change hostname and port
  2646. svr->set_read_timeout (params.timeout_read);
  2647. svr->set_write_timeout(params.timeout_write);
  2648. std::unordered_map<std::string, std::string> log_data;
  2649. log_data["hostname"] = params.hostname;
  2650. log_data["port"] = std::to_string(params.port);
  2651. if (params.api_keys.size() == 1) {
  2652. auto key = params.api_keys[0];
  2653. log_data["api_key"] = "api_key: ****" + key.substr(std::max((int)(key.length() - 4), 0));
  2654. } else if (params.api_keys.size() > 1) {
  2655. log_data["api_key"] = "api_key: " + std::to_string(params.api_keys.size()) + " keys loaded";
  2656. }
  2657. // Necessary similarity of prompt for slot selection
  2658. ctx_server.slot_prompt_similarity = params.slot_prompt_similarity;
  2659. //
  2660. // Middlewares
  2661. //
  2662. auto middleware_validate_api_key = [&params, &res_error](const httplib::Request & req, httplib::Response & res) {
  2663. static const std::unordered_set<std::string> public_endpoints = {
  2664. "/health",
  2665. "/models",
  2666. "/v1/models",
  2667. };
  2668. // If API key is not set, skip validation
  2669. if (params.api_keys.empty()) {
  2670. return true;
  2671. }
  2672. // If path is public or is static file, skip validation
  2673. if (public_endpoints.find(req.path) != public_endpoints.end() || req.path == "/") {
  2674. return true;
  2675. }
  2676. // Check for API key in the header
  2677. auto auth_header = req.get_header_value("Authorization");
  2678. std::string prefix = "Bearer ";
  2679. if (auth_header.substr(0, prefix.size()) == prefix) {
  2680. std::string received_api_key = auth_header.substr(prefix.size());
  2681. if (std::find(params.api_keys.begin(), params.api_keys.end(), received_api_key) != params.api_keys.end()) {
  2682. return true; // API key is valid
  2683. }
  2684. }
  2685. // API key is invalid or not provided
  2686. res_error(res, format_error_response("Invalid API Key", ERROR_TYPE_AUTHENTICATION));
  2687. LOG_WRN("Unauthorized: Invalid API Key\n");
  2688. return false;
  2689. };
  2690. auto middleware_server_state = [&res_error, &state](const httplib::Request & req, httplib::Response & res) {
  2691. server_state current_state = state.load();
  2692. if (current_state == SERVER_STATE_LOADING_MODEL) {
  2693. auto tmp = string_split<std::string>(req.path, '.');
  2694. if (req.path == "/" || tmp.back() == "html") {
  2695. res.set_content(reinterpret_cast<const char*>(loading_html), loading_html_len, "text/html; charset=utf-8");
  2696. res.status = 503;
  2697. } else {
  2698. res_error(res, format_error_response("Loading model", ERROR_TYPE_UNAVAILABLE));
  2699. }
  2700. return false;
  2701. }
  2702. return true;
  2703. };
  2704. // register server middlewares
  2705. svr->set_pre_routing_handler([&middleware_validate_api_key, &middleware_server_state](const httplib::Request & req, httplib::Response & res) {
  2706. res.set_header("Access-Control-Allow-Origin", req.get_header_value("Origin"));
  2707. // If this is OPTIONS request, skip validation because browsers don't include Authorization header
  2708. if (req.method == "OPTIONS") {
  2709. res.set_header("Access-Control-Allow-Credentials", "true");
  2710. res.set_header("Access-Control-Allow-Methods", "GET, POST");
  2711. res.set_header("Access-Control-Allow-Headers", "*");
  2712. res.set_content("", "text/html"); // blank response, no data
  2713. return httplib::Server::HandlerResponse::Handled; // skip further processing
  2714. }
  2715. if (!middleware_server_state(req, res)) {
  2716. return httplib::Server::HandlerResponse::Handled;
  2717. }
  2718. if (!middleware_validate_api_key(req, res)) {
  2719. return httplib::Server::HandlerResponse::Handled;
  2720. }
  2721. return httplib::Server::HandlerResponse::Unhandled;
  2722. });
  2723. //
  2724. // Route handlers (or controllers)
  2725. //
  2726. const auto handle_health = [&](const httplib::Request &, httplib::Response & res) {
  2727. // error and loading states are handled by middleware
  2728. json health = {{"status", "ok"}};
  2729. res_ok(res, health);
  2730. };
  2731. const auto handle_slots = [&](const httplib::Request & req, httplib::Response & res) {
  2732. if (!params.endpoint_slots) {
  2733. res_error(res, format_error_response("This server does not support slots endpoint. Start it with `--slots`", ERROR_TYPE_NOT_SUPPORTED));
  2734. return;
  2735. }
  2736. // request slots data using task queue
  2737. server_task task(SERVER_TASK_TYPE_METRICS);
  2738. task.id = ctx_server.queue_tasks.get_new_id();
  2739. ctx_server.queue_results.add_waiting_task_id(task.id);
  2740. ctx_server.queue_tasks.post(task, true); // high-priority task
  2741. // get the result
  2742. server_task_result_ptr result = ctx_server.queue_results.recv(task.id);
  2743. ctx_server.queue_results.remove_waiting_task_id(task.id);
  2744. if (result->is_error()) {
  2745. res_error(res, result->to_json());
  2746. return;
  2747. }
  2748. // TODO: get rid of this dynamic_cast
  2749. auto res_metrics = dynamic_cast<server_task_result_metrics*>(result.get());
  2750. GGML_ASSERT(res_metrics != nullptr);
  2751. // optionally return "fail_on_no_slot" error
  2752. if (req.has_param("fail_on_no_slot")) {
  2753. if (res_metrics->n_idle_slots == 0) {
  2754. res_error(res, format_error_response("no slot available", ERROR_TYPE_UNAVAILABLE));
  2755. return;
  2756. }
  2757. }
  2758. res_ok(res, res_metrics->slots_data);
  2759. };
  2760. const auto handle_metrics = [&](const httplib::Request &, httplib::Response & res) {
  2761. if (!params.endpoint_metrics) {
  2762. res_error(res, format_error_response("This server does not support metrics endpoint. Start it with `--metrics`", ERROR_TYPE_NOT_SUPPORTED));
  2763. return;
  2764. }
  2765. // request slots data using task queue
  2766. server_task task(SERVER_TASK_TYPE_METRICS);
  2767. task.id = ctx_server.queue_tasks.get_new_id();
  2768. task.metrics_reset_bucket = true;
  2769. ctx_server.queue_results.add_waiting_task_id(task.id);
  2770. ctx_server.queue_tasks.post(task, true); // high-priority task
  2771. // get the result
  2772. server_task_result_ptr result = ctx_server.queue_results.recv(task.id);
  2773. ctx_server.queue_results.remove_waiting_task_id(task.id);
  2774. if (result->is_error()) {
  2775. res_error(res, result->to_json());
  2776. return;
  2777. }
  2778. // TODO: get rid of this dynamic_cast
  2779. auto res_metrics = dynamic_cast<server_task_result_metrics*>(result.get());
  2780. GGML_ASSERT(res_metrics != nullptr);
  2781. // metrics definition: https://prometheus.io/docs/practices/naming/#metric-names
  2782. json all_metrics_def = json {
  2783. {"counter", {{
  2784. {"name", "prompt_tokens_total"},
  2785. {"help", "Number of prompt tokens processed."},
  2786. {"value", (uint64_t) res_metrics->n_prompt_tokens_processed_total}
  2787. }, {
  2788. {"name", "prompt_seconds_total"},
  2789. {"help", "Prompt process time"},
  2790. {"value", (uint64_t) res_metrics->t_prompt_processing_total / 1.e3}
  2791. }, {
  2792. {"name", "tokens_predicted_total"},
  2793. {"help", "Number of generation tokens processed."},
  2794. {"value", (uint64_t) res_metrics->n_tokens_predicted_total}
  2795. }, {
  2796. {"name", "tokens_predicted_seconds_total"},
  2797. {"help", "Predict process time"},
  2798. {"value", (uint64_t) res_metrics->t_tokens_generation_total / 1.e3}
  2799. }, {
  2800. {"name", "n_decode_total"},
  2801. {"help", "Total number of llama_decode() calls"},
  2802. {"value", res_metrics->n_decode_total}
  2803. }, {
  2804. {"name", "n_busy_slots_per_decode"},
  2805. {"help", "Average number of busy slots per llama_decode() call"},
  2806. {"value", (float) res_metrics->n_busy_slots_total / (float) res_metrics->n_decode_total}
  2807. }}},
  2808. {"gauge", {{
  2809. {"name", "prompt_tokens_seconds"},
  2810. {"help", "Average prompt throughput in tokens/s."},
  2811. {"value", res_metrics->n_prompt_tokens_processed ? 1.e3 / res_metrics->t_prompt_processing * res_metrics->n_prompt_tokens_processed : 0.}
  2812. },{
  2813. {"name", "predicted_tokens_seconds"},
  2814. {"help", "Average generation throughput in tokens/s."},
  2815. {"value", res_metrics->n_tokens_predicted ? 1.e3 / res_metrics->t_tokens_generation * res_metrics->n_tokens_predicted : 0.}
  2816. },{
  2817. {"name", "kv_cache_usage_ratio"},
  2818. {"help", "KV-cache usage. 1 means 100 percent usage."},
  2819. {"value", 1. * res_metrics->kv_cache_used_cells / params.n_ctx}
  2820. },{
  2821. {"name", "kv_cache_tokens"},
  2822. {"help", "KV-cache tokens."},
  2823. {"value", (uint64_t) res_metrics->kv_cache_tokens_count}
  2824. },{
  2825. {"name", "requests_processing"},
  2826. {"help", "Number of request processing."},
  2827. {"value", (uint64_t) res_metrics->n_processing_slots}
  2828. },{
  2829. {"name", "requests_deferred"},
  2830. {"help", "Number of request deferred."},
  2831. {"value", (uint64_t) res_metrics->n_tasks_deferred}
  2832. }}}
  2833. };
  2834. std::stringstream prometheus;
  2835. for (const auto & el : all_metrics_def.items()) {
  2836. const auto & type = el.key();
  2837. const auto & metrics_def = el.value();
  2838. for (const auto & metric_def : metrics_def) {
  2839. const std::string name = metric_def.at("name");
  2840. const std::string help = metric_def.at("help");
  2841. auto value = json_value(metric_def, "value", 0.);
  2842. prometheus << "# HELP llamacpp:" << name << " " << help << "\n"
  2843. << "# TYPE llamacpp:" << name << " " << type << "\n"
  2844. << "llamacpp:" << name << " " << value << "\n";
  2845. }
  2846. }
  2847. res.set_header("Process-Start-Time-Unix", std::to_string(res_metrics->t_start));
  2848. res.set_content(prometheus.str(), "text/plain; version=0.0.4");
  2849. res.status = 200; // HTTP OK
  2850. };
  2851. const auto handle_slots_save = [&ctx_server, &res_error, &res_ok, &params](const httplib::Request & req, httplib::Response & res, int id_slot) {
  2852. json request_data = json::parse(req.body);
  2853. std::string filename = request_data.at("filename");
  2854. if (!fs_validate_filename(filename)) {
  2855. res_error(res, format_error_response("Invalid filename", ERROR_TYPE_INVALID_REQUEST));
  2856. return;
  2857. }
  2858. std::string filepath = params.slot_save_path + filename;
  2859. server_task task(SERVER_TASK_TYPE_SLOT_SAVE);
  2860. task.id = ctx_server.queue_tasks.get_new_id();
  2861. task.slot_action.slot_id = id_slot;
  2862. task.slot_action.filename = filename;
  2863. task.slot_action.filepath = filepath;
  2864. ctx_server.queue_results.add_waiting_task_id(task.id);
  2865. ctx_server.queue_tasks.post(task);
  2866. server_task_result_ptr result = ctx_server.queue_results.recv(task.id);
  2867. ctx_server.queue_results.remove_waiting_task_id(task.id);
  2868. if (result->is_error()) {
  2869. res_error(res, result->to_json());
  2870. return;
  2871. }
  2872. res_ok(res, result->to_json());
  2873. };
  2874. const auto handle_slots_restore = [&ctx_server, &res_error, &res_ok, &params](const httplib::Request & req, httplib::Response & res, int id_slot) {
  2875. json request_data = json::parse(req.body);
  2876. std::string filename = request_data.at("filename");
  2877. if (!fs_validate_filename(filename)) {
  2878. res_error(res, format_error_response("Invalid filename", ERROR_TYPE_INVALID_REQUEST));
  2879. return;
  2880. }
  2881. std::string filepath = params.slot_save_path + filename;
  2882. server_task task(SERVER_TASK_TYPE_SLOT_RESTORE);
  2883. task.id = ctx_server.queue_tasks.get_new_id();
  2884. task.slot_action.slot_id = id_slot;
  2885. task.slot_action.filename = filename;
  2886. task.slot_action.filepath = filepath;
  2887. ctx_server.queue_results.add_waiting_task_id(task.id);
  2888. ctx_server.queue_tasks.post(task);
  2889. server_task_result_ptr result = ctx_server.queue_results.recv(task.id);
  2890. ctx_server.queue_results.remove_waiting_task_id(task.id);
  2891. if (result->is_error()) {
  2892. res_error(res, result->to_json());
  2893. return;
  2894. }
  2895. GGML_ASSERT(dynamic_cast<server_task_result_slot_save_load*>(result.get()) != nullptr);
  2896. res_ok(res, result->to_json());
  2897. };
  2898. const auto handle_slots_erase = [&ctx_server, &res_error, &res_ok](const httplib::Request & /* req */, httplib::Response & res, int id_slot) {
  2899. server_task task(SERVER_TASK_TYPE_SLOT_ERASE);
  2900. task.id = ctx_server.queue_tasks.get_new_id();
  2901. task.slot_action.slot_id = id_slot;
  2902. ctx_server.queue_results.add_waiting_task_id(task.id);
  2903. ctx_server.queue_tasks.post(task);
  2904. server_task_result_ptr result = ctx_server.queue_results.recv(task.id);
  2905. ctx_server.queue_results.remove_waiting_task_id(task.id);
  2906. if (result->is_error()) {
  2907. res_error(res, result->to_json());
  2908. return;
  2909. }
  2910. GGML_ASSERT(dynamic_cast<server_task_result_slot_erase*>(result.get()) != nullptr);
  2911. res_ok(res, result->to_json());
  2912. };
  2913. const auto handle_slots_action = [&params, &res_error, &handle_slots_save, &handle_slots_restore, &handle_slots_erase](const httplib::Request & req, httplib::Response & res) {
  2914. if (params.slot_save_path.empty()) {
  2915. res_error(res, format_error_response("This server does not support slots action. Start it with `--slot-save-path`", ERROR_TYPE_NOT_SUPPORTED));
  2916. return;
  2917. }
  2918. std::string id_slot_str = req.path_params.at("id_slot");
  2919. int id_slot;
  2920. try {
  2921. id_slot = std::stoi(id_slot_str);
  2922. } catch (const std::exception &) {
  2923. res_error(res, format_error_response("Invalid slot ID", ERROR_TYPE_INVALID_REQUEST));
  2924. return;
  2925. }
  2926. std::string action = req.get_param_value("action");
  2927. if (action == "save") {
  2928. handle_slots_save(req, res, id_slot);
  2929. } else if (action == "restore") {
  2930. handle_slots_restore(req, res, id_slot);
  2931. } else if (action == "erase") {
  2932. handle_slots_erase(req, res, id_slot);
  2933. } else {
  2934. res_error(res, format_error_response("Invalid action", ERROR_TYPE_INVALID_REQUEST));
  2935. }
  2936. };
  2937. const auto handle_props = [&ctx_server, &res_ok](const httplib::Request &, httplib::Response & res) {
  2938. // this endpoint is publicly available, please only return what is safe to be exposed
  2939. json data = {
  2940. { "default_generation_settings", ctx_server.default_generation_settings_for_props },
  2941. { "total_slots", ctx_server.params_base.n_parallel },
  2942. { "model_path", ctx_server.params_base.model },
  2943. { "chat_template", llama_get_chat_template(ctx_server.model) },
  2944. { "build_info", build_info },
  2945. };
  2946. res_ok(res, data);
  2947. };
  2948. const auto handle_props_change = [&ctx_server, &res_error, &res_ok](const httplib::Request & req, httplib::Response & res) {
  2949. if (!ctx_server.params_base.endpoint_props) {
  2950. res_error(res, format_error_response("This server does not support changing global properties. Start it with `--props`", ERROR_TYPE_NOT_SUPPORTED));
  2951. return;
  2952. }
  2953. json data = json::parse(req.body);
  2954. // update any props here
  2955. res_ok(res, {{ "success", true }});
  2956. };
  2957. // handle completion-like requests (completion, chat, infill)
  2958. // we can optionally provide a custom format for partial results and final results
  2959. const auto handle_completions_impl = [&ctx_server, &res_error, &res_ok](
  2960. server_task_type type,
  2961. json & data,
  2962. httplib::Response & res,
  2963. oaicompat_type oaicompat) {
  2964. GGML_ASSERT(type == SERVER_TASK_TYPE_COMPLETION || type == SERVER_TASK_TYPE_INFILL);
  2965. if (ctx_server.params_base.embedding) {
  2966. res_error(res, format_error_response("This server does not support completions. Start it without `--embeddings`", ERROR_TYPE_NOT_SUPPORTED));
  2967. return;
  2968. }
  2969. auto completion_id = gen_chatcmplid();
  2970. std::vector<server_task> tasks;
  2971. try {
  2972. std::vector<llama_tokens> tokenized_prompts = tokenize_input_prompts(ctx_server.ctx, data.at("prompt"), true, true);
  2973. tasks.reserve(tokenized_prompts.size());
  2974. for (size_t i = 0; i < tokenized_prompts.size(); i++) {
  2975. server_task task = server_task(type);
  2976. task.id = ctx_server.queue_tasks.get_new_id();
  2977. task.index = i;
  2978. task.prompt_tokens = std::move(tokenized_prompts[i]);
  2979. task.params = server_task::params_from_json_cmpl(ctx_server.model, ctx_server.ctx, ctx_server.params_base, data);
  2980. task.id_selected_slot = json_value(data, "id_slot", -1);
  2981. // OAI-compat
  2982. task.params.oaicompat = oaicompat;
  2983. task.params.oaicompat_cmpl_id = completion_id;
  2984. // oaicompat_model is already populated by params_from_json_cmpl
  2985. tasks.push_back(task);
  2986. }
  2987. } catch (const std::exception & e) {
  2988. res_error(res, format_error_response(e.what(), ERROR_TYPE_INVALID_REQUEST));
  2989. return;
  2990. }
  2991. ctx_server.queue_results.add_waiting_tasks(tasks);
  2992. ctx_server.queue_tasks.post(tasks);
  2993. bool stream = json_value(data, "stream", false);
  2994. const auto task_ids = server_task::get_list_id(tasks);
  2995. if (!stream) {
  2996. ctx_server.receive_multi_results(task_ids, [&](std::vector<server_task_result_ptr> & results) {
  2997. if (results.size() == 1) {
  2998. // single result
  2999. res_ok(res, results[0]->to_json());
  3000. } else {
  3001. // multiple results (multitask)
  3002. json arr = json::array();
  3003. for (auto & res : results) {
  3004. arr.push_back(res->to_json());
  3005. }
  3006. res_ok(res, arr);
  3007. }
  3008. }, [&](const json & error_data) {
  3009. res_error(res, error_data);
  3010. });
  3011. ctx_server.queue_results.remove_waiting_task_ids(task_ids);
  3012. } else {
  3013. const auto chunked_content_provider = [task_ids, &ctx_server, oaicompat](size_t, httplib::DataSink & sink) {
  3014. ctx_server.receive_cmpl_results_stream(task_ids, [&](server_task_result_ptr & result) -> bool {
  3015. json res_json = result->to_json();
  3016. if (res_json.is_array()) {
  3017. for (const auto & res : res_json) {
  3018. if (!server_sent_event(sink, "data", res)) {
  3019. return false;
  3020. }
  3021. }
  3022. return true;
  3023. } else {
  3024. return server_sent_event(sink, "data", res_json);
  3025. }
  3026. }, [&](const json & error_data) {
  3027. server_sent_event(sink, "error", error_data);
  3028. });
  3029. if (oaicompat != OAICOMPAT_TYPE_NONE) {
  3030. static const std::string ev_done = "data: [DONE]\n\n";
  3031. sink.write(ev_done.data(), ev_done.size());
  3032. }
  3033. sink.done();
  3034. return false;
  3035. };
  3036. auto on_complete = [task_ids, &ctx_server] (bool) {
  3037. ctx_server.queue_results.remove_waiting_task_ids(task_ids);
  3038. };
  3039. res.set_chunked_content_provider("text/event-stream", chunked_content_provider, on_complete);
  3040. }
  3041. };
  3042. const auto handle_completions = [&handle_completions_impl](const httplib::Request & req, httplib::Response & res) {
  3043. json data = json::parse(req.body);
  3044. return handle_completions_impl(
  3045. SERVER_TASK_TYPE_COMPLETION,
  3046. data,
  3047. res,
  3048. OAICOMPAT_TYPE_NONE);
  3049. };
  3050. const auto handle_completions_oai = [&handle_completions_impl](const httplib::Request & req, httplib::Response & res) {
  3051. json data = oaicompat_completion_params_parse(json::parse(req.body));
  3052. return handle_completions_impl(
  3053. SERVER_TASK_TYPE_COMPLETION,
  3054. data,
  3055. res,
  3056. OAICOMPAT_TYPE_COMPLETION);
  3057. };
  3058. const auto handle_infill = [&ctx_server, &res_error, &handle_completions_impl](const httplib::Request & req, httplib::Response & res) {
  3059. // check model compatibility
  3060. std::string err;
  3061. if (llama_token_fim_pre(ctx_server.model) == LLAMA_TOKEN_NULL) {
  3062. err += "prefix token is missing. ";
  3063. }
  3064. if (llama_token_fim_suf(ctx_server.model) == LLAMA_TOKEN_NULL) {
  3065. err += "suffix token is missing. ";
  3066. }
  3067. if (llama_token_fim_mid(ctx_server.model) == LLAMA_TOKEN_NULL) {
  3068. err += "middle token is missing. ";
  3069. }
  3070. if (!err.empty()) {
  3071. res_error(res, format_error_response(string_format("Infill is not supported by this model: %s", err.c_str()), ERROR_TYPE_NOT_SUPPORTED));
  3072. return;
  3073. }
  3074. json data = json::parse(req.body);
  3075. // validate input
  3076. if (data.contains("prompt") && !data.at("prompt").is_string()) {
  3077. // prompt is optional
  3078. res_error(res, format_error_response("\"prompt\" must be a string", ERROR_TYPE_INVALID_REQUEST));
  3079. }
  3080. if (!data.contains("input_prefix")) {
  3081. res_error(res, format_error_response("\"input_prefix\" is required", ERROR_TYPE_INVALID_REQUEST));
  3082. }
  3083. if (!data.contains("input_suffix")) {
  3084. res_error(res, format_error_response("\"input_suffix\" is required", ERROR_TYPE_INVALID_REQUEST));
  3085. }
  3086. if (data.contains("input_extra") && !data.at("input_extra").is_array()) {
  3087. // input_extra is optional
  3088. res_error(res, format_error_response("\"input_extra\" must be an array of {\"filename\": string, \"text\": string}", ERROR_TYPE_INVALID_REQUEST));
  3089. return;
  3090. }
  3091. json input_extra = json_value(data, "input_extra", json::array());
  3092. for (const auto & chunk : input_extra) {
  3093. // { "text": string, "filename": string }
  3094. if (!chunk.contains("text") || !chunk.at("text").is_string()) {
  3095. res_error(res, format_error_response("extra_context chunk must contain a \"text\" field with a string value", ERROR_TYPE_INVALID_REQUEST));
  3096. return;
  3097. }
  3098. // filename is optional
  3099. if (chunk.contains("filename") && !chunk.at("filename").is_string()) {
  3100. res_error(res, format_error_response("extra_context chunk's \"filename\" field must be a string", ERROR_TYPE_INVALID_REQUEST));
  3101. return;
  3102. }
  3103. }
  3104. data["input_extra"] = input_extra; // default to empty array if it's not exist
  3105. std::string prompt = json_value(data, "prompt", std::string());
  3106. std::vector<llama_tokens> tokenized_prompts = tokenize_input_prompts(ctx_server.ctx, prompt, true, true);
  3107. SRV_DBG("creating infill tasks, n_prompts = %d\n", (int) tokenized_prompts.size());
  3108. data["prompt"] = format_infill(
  3109. ctx_server.ctx,
  3110. data.at("input_prefix"),
  3111. data.at("input_suffix"),
  3112. data.at("input_extra"),
  3113. ctx_server.params_base.n_batch,
  3114. ctx_server.params_base.n_predict,
  3115. ctx_server.slots[0].n_ctx, // TODO: there should be a better way
  3116. ctx_server.params_base.spm_infill,
  3117. tokenized_prompts[0]
  3118. );
  3119. return handle_completions_impl(
  3120. SERVER_TASK_TYPE_INFILL,
  3121. data,
  3122. res,
  3123. OAICOMPAT_TYPE_NONE); // infill is not OAI compatible
  3124. };
  3125. const auto handle_chat_completions = [&ctx_server, &params, &res_error, &handle_completions_impl](const httplib::Request & req, httplib::Response & res) {
  3126. if (ctx_server.params_base.embedding) {
  3127. res_error(res, format_error_response("This server does not support completions. Start it without `--embeddings`", ERROR_TYPE_NOT_SUPPORTED));
  3128. return;
  3129. }
  3130. json data = oaicompat_chat_completion_params_parse(ctx_server.model, json::parse(req.body), params.chat_template);
  3131. return handle_completions_impl(
  3132. SERVER_TASK_TYPE_COMPLETION,
  3133. data,
  3134. res,
  3135. OAICOMPAT_TYPE_CHAT);
  3136. };
  3137. const auto handle_models = [&params, &ctx_server, &res_ok](const httplib::Request &, httplib::Response & res) {
  3138. json models = {
  3139. {"object", "list"},
  3140. {"data", {
  3141. {
  3142. {"id", params.model_alias.empty() ? params.model : params.model_alias},
  3143. {"object", "model"},
  3144. {"created", std::time(0)},
  3145. {"owned_by", "llamacpp"},
  3146. {"meta", ctx_server.model_meta()}
  3147. },
  3148. }}
  3149. };
  3150. res_ok(res, models);
  3151. };
  3152. const auto handle_tokenize = [&ctx_server, &res_ok](const httplib::Request & req, httplib::Response & res) {
  3153. const json body = json::parse(req.body);
  3154. json tokens_response = json::array();
  3155. if (body.count("content") != 0) {
  3156. const bool add_special = json_value(body, "add_special", false);
  3157. const bool with_pieces = json_value(body, "with_pieces", false);
  3158. llama_tokens tokens = tokenize_mixed(ctx_server.ctx, body.at("content"), add_special, true);
  3159. if (with_pieces) {
  3160. for (const auto& token : tokens) {
  3161. std::string piece = common_token_to_piece(ctx_server.ctx, token);
  3162. json piece_json;
  3163. // Check if the piece is valid UTF-8
  3164. if (is_valid_utf8(piece)) {
  3165. piece_json = piece;
  3166. } else {
  3167. // If not valid UTF-8, store as array of byte values
  3168. piece_json = json::array();
  3169. for (unsigned char c : piece) {
  3170. piece_json.push_back(static_cast<int>(c));
  3171. }
  3172. }
  3173. tokens_response.push_back({
  3174. {"id", token},
  3175. {"piece", piece_json}
  3176. });
  3177. }
  3178. } else {
  3179. tokens_response = tokens;
  3180. }
  3181. }
  3182. const json data = format_tokenizer_response(tokens_response);
  3183. res_ok(res, data);
  3184. };
  3185. const auto handle_detokenize = [&ctx_server, &res_ok](const httplib::Request & req, httplib::Response & res) {
  3186. const json body = json::parse(req.body);
  3187. std::string content;
  3188. if (body.count("tokens") != 0) {
  3189. const llama_tokens tokens = body.at("tokens");
  3190. content = tokens_to_str(ctx_server.ctx, tokens.cbegin(), tokens.cend());
  3191. }
  3192. const json data = format_detokenized_response(content);
  3193. res_ok(res, data);
  3194. };
  3195. const auto handle_embeddings_impl = [&ctx_server, &res_error, &res_ok](const httplib::Request & req, httplib::Response & res, oaicompat_type oaicompat) {
  3196. const json body = json::parse(req.body);
  3197. if (oaicompat != OAICOMPAT_TYPE_NONE && llama_pooling_type(ctx_server.ctx) == LLAMA_POOLING_TYPE_NONE) {
  3198. res_error(res, format_error_response("Pooling type 'none' is not OAI compatible. Please use a different pooling type", ERROR_TYPE_INVALID_REQUEST));
  3199. return;
  3200. }
  3201. // for the shape of input/content, see tokenize_input_prompts()
  3202. json prompt;
  3203. if (body.count("input") != 0) {
  3204. prompt = body.at("input");
  3205. } else if (body.contains("content")) {
  3206. oaicompat = OAICOMPAT_TYPE_NONE; // "content" field is not OAI compatible
  3207. prompt = body.at("content");
  3208. } else {
  3209. res_error(res, format_error_response("\"input\" or \"content\" must be provided", ERROR_TYPE_INVALID_REQUEST));
  3210. return;
  3211. }
  3212. bool use_base64 = false;
  3213. if (body.count("encoding_format") != 0) {
  3214. const std::string& format = body.at("encoding_format");
  3215. if (format == "base64") {
  3216. use_base64 = true;
  3217. } else if (format != "float") {
  3218. res_error(res, format_error_response("The format to return the embeddings in. Can be either float or base64", ERROR_TYPE_INVALID_REQUEST));
  3219. return;
  3220. }
  3221. }
  3222. std::vector<llama_tokens> tokenized_prompts = tokenize_input_prompts(ctx_server.ctx, prompt, true, true);
  3223. for (const auto & tokens : tokenized_prompts) {
  3224. // this check is necessary for models that do not add BOS token to the input
  3225. if (tokens.empty()) {
  3226. res_error(res, format_error_response("Input content cannot be empty", ERROR_TYPE_INVALID_REQUEST));
  3227. return;
  3228. }
  3229. }
  3230. // create and queue the task
  3231. json responses = json::array();
  3232. bool error = false;
  3233. {
  3234. std::vector<server_task> tasks;
  3235. for (size_t i = 0; i < tokenized_prompts.size(); i++) {
  3236. server_task task = server_task(SERVER_TASK_TYPE_EMBEDDING);
  3237. task.id = ctx_server.queue_tasks.get_new_id();
  3238. task.index = i;
  3239. task.prompt_tokens = std::move(tokenized_prompts[i]);
  3240. // OAI-compat
  3241. task.params.oaicompat = oaicompat;
  3242. tasks.push_back(task);
  3243. }
  3244. ctx_server.queue_results.add_waiting_tasks(tasks);
  3245. ctx_server.queue_tasks.post(tasks);
  3246. // get the result
  3247. std::unordered_set<int> task_ids = server_task::get_list_id(tasks);
  3248. ctx_server.receive_multi_results(task_ids, [&](std::vector<server_task_result_ptr> & results) {
  3249. for (auto & res : results) {
  3250. GGML_ASSERT(dynamic_cast<server_task_result_embd*>(res.get()) != nullptr);
  3251. responses.push_back(res->to_json());
  3252. }
  3253. }, [&](const json & error_data) {
  3254. res_error(res, error_data);
  3255. error = true;
  3256. });
  3257. ctx_server.queue_results.remove_waiting_task_ids(task_ids);
  3258. }
  3259. if (error) {
  3260. return;
  3261. }
  3262. // write JSON response
  3263. json root = oaicompat == OAICOMPAT_TYPE_EMBEDDING
  3264. ? format_embeddings_response_oaicompat(body, responses, use_base64)
  3265. : json(responses);
  3266. res_ok(res, root);
  3267. };
  3268. const auto handle_embeddings = [&handle_embeddings_impl](const httplib::Request & req, httplib::Response & res) {
  3269. handle_embeddings_impl(req, res, OAICOMPAT_TYPE_NONE);
  3270. };
  3271. const auto handle_embeddings_oai = [&handle_embeddings_impl](const httplib::Request & req, httplib::Response & res) {
  3272. handle_embeddings_impl(req, res, OAICOMPAT_TYPE_EMBEDDING);
  3273. };
  3274. const auto handle_rerank = [&ctx_server, &res_error, &res_ok](const httplib::Request & req, httplib::Response & res) {
  3275. if (!ctx_server.params_base.reranking || ctx_server.params_base.embedding) {
  3276. res_error(res, format_error_response("This server does not support reranking. Start it with `--reranking` and without `--embedding`", ERROR_TYPE_NOT_SUPPORTED));
  3277. return;
  3278. }
  3279. const json body = json::parse(req.body);
  3280. // TODO: implement
  3281. //int top_n = 1;
  3282. //if (body.count("top_n") != 1) {
  3283. // top_n = body.at("top_n");
  3284. //} else {
  3285. // res_error(res, format_error_response("\"top_n\" must be provided", ERROR_TYPE_INVALID_REQUEST));
  3286. // return;
  3287. //}
  3288. json query;
  3289. if (body.count("query") == 1) {
  3290. query = body.at("query");
  3291. if (!query.is_string()) {
  3292. res_error(res, format_error_response("\"query\" must be a string", ERROR_TYPE_INVALID_REQUEST));
  3293. return;
  3294. }
  3295. } else {
  3296. res_error(res, format_error_response("\"query\" must be provided", ERROR_TYPE_INVALID_REQUEST));
  3297. return;
  3298. }
  3299. std::vector<std::string> documents = json_value(body, "documents", std::vector<std::string>());
  3300. if (documents.empty()) {
  3301. res_error(res, format_error_response("\"documents\" must be a non-empty string array", ERROR_TYPE_INVALID_REQUEST));
  3302. return;
  3303. }
  3304. llama_tokens tokenized_query = tokenize_input_prompts(ctx_server.ctx, query, /* add_special */ false, true)[0];
  3305. // create and queue the task
  3306. json responses = json::array();
  3307. bool error = false;
  3308. {
  3309. std::vector<server_task> tasks;
  3310. std::vector<llama_tokens> tokenized_docs = tokenize_input_prompts(ctx_server.ctx, documents, /* add_special */ false, true);
  3311. tasks.reserve(tokenized_docs.size());
  3312. for (size_t i = 0; i < tokenized_docs.size(); i++) {
  3313. server_task task = server_task(SERVER_TASK_TYPE_RERANK);
  3314. task.id = ctx_server.queue_tasks.get_new_id();
  3315. task.index = i;
  3316. task.prompt_tokens = format_rerank(ctx_server.model, tokenized_query, tokenized_docs[i]);
  3317. tasks.push_back(task);
  3318. }
  3319. ctx_server.queue_results.add_waiting_tasks(tasks);
  3320. ctx_server.queue_tasks.post(tasks);
  3321. // get the result
  3322. std::unordered_set<int> task_ids = server_task::get_list_id(tasks);
  3323. ctx_server.receive_multi_results(task_ids, [&](std::vector<server_task_result_ptr> & results) {
  3324. for (auto & res : results) {
  3325. GGML_ASSERT(dynamic_cast<server_task_result_rerank*>(res.get()) != nullptr);
  3326. responses.push_back(res->to_json());
  3327. }
  3328. }, [&](const json & error_data) {
  3329. res_error(res, error_data);
  3330. error = true;
  3331. });
  3332. }
  3333. if (error) {
  3334. return;
  3335. }
  3336. // write JSON response
  3337. json root = format_response_rerank(body, responses);
  3338. res_ok(res, root);
  3339. };
  3340. const auto handle_lora_adapters_list = [&](const httplib::Request &, httplib::Response & res) {
  3341. json result = json::array();
  3342. for (size_t i = 0; i < ctx_server.loras.size(); ++i) {
  3343. auto & lora = ctx_server.loras[i];
  3344. result.push_back({
  3345. {"id", i},
  3346. {"path", lora.path},
  3347. {"scale", lora.scale},
  3348. });
  3349. }
  3350. res_ok(res, result);
  3351. res.status = 200; // HTTP OK
  3352. };
  3353. const auto handle_lora_adapters_apply = [&](const httplib::Request & req, httplib::Response & res) {
  3354. const std::vector<json> body = json::parse(req.body);
  3355. int max_idx = ctx_server.loras.size();
  3356. // clear existing value
  3357. for (auto & lora : ctx_server.loras) {
  3358. lora.scale = 0.0f;
  3359. }
  3360. // set value
  3361. for (auto entry : body) {
  3362. int id = entry.at("id");
  3363. float scale = entry.at("scale");
  3364. if (0 <= id && id < max_idx) {
  3365. ctx_server.loras[id].scale = scale;
  3366. } else {
  3367. throw std::runtime_error("invalid adapter id");
  3368. }
  3369. }
  3370. server_task task(SERVER_TASK_TYPE_SET_LORA);
  3371. task.id = ctx_server.queue_tasks.get_new_id();
  3372. ctx_server.queue_results.add_waiting_task_id(task.id);
  3373. ctx_server.queue_tasks.post(task);
  3374. server_task_result_ptr result = ctx_server.queue_results.recv(task.id);
  3375. ctx_server.queue_results.remove_waiting_task_id(task.id);
  3376. if (result->is_error()) {
  3377. res_error(res, result->to_json());
  3378. return;
  3379. }
  3380. GGML_ASSERT(dynamic_cast<server_task_result_apply_lora*>(result.get()) != nullptr);
  3381. res_ok(res, result->to_json());
  3382. };
  3383. //
  3384. // Router
  3385. //
  3386. if (!params.webui) {
  3387. LOG_INF("Web UI is disabled\n");
  3388. } else {
  3389. // register static assets routes
  3390. if (!params.public_path.empty()) {
  3391. // Set the base directory for serving static files
  3392. bool is_found = svr->set_mount_point("/", params.public_path);
  3393. if (!is_found) {
  3394. LOG_ERR("%s: static assets path not found: %s\n", __func__, params.public_path.c_str());
  3395. return 1;
  3396. }
  3397. } else {
  3398. // using embedded static index.html
  3399. svr->Get("/", [](const httplib::Request & req, httplib::Response & res) {
  3400. if (req.get_header_value("Accept-Encoding").find("gzip") == std::string::npos) {
  3401. res.set_content("Error: gzip is not supported by this browser", "text/plain");
  3402. } else {
  3403. res.set_header("Content-Encoding", "gzip");
  3404. res.set_content(reinterpret_cast<const char*>(index_html_gz), index_html_gz_len, "text/html; charset=utf-8");
  3405. }
  3406. return false;
  3407. });
  3408. }
  3409. }
  3410. // register API routes
  3411. svr->Get ("/health", handle_health); // public endpoint (no API key check)
  3412. svr->Get ("/metrics", handle_metrics);
  3413. svr->Get ("/props", handle_props);
  3414. svr->Post("/props", handle_props_change);
  3415. svr->Get ("/models", handle_models); // public endpoint (no API key check)
  3416. svr->Get ("/v1/models", handle_models); // public endpoint (no API key check)
  3417. svr->Post("/completion", handle_completions); // legacy
  3418. svr->Post("/completions", handle_completions);
  3419. svr->Post("/v1/completions", handle_completions_oai);
  3420. svr->Post("/chat/completions", handle_chat_completions);
  3421. svr->Post("/v1/chat/completions", handle_chat_completions);
  3422. svr->Post("/infill", handle_infill);
  3423. svr->Post("/embedding", handle_embeddings); // legacy
  3424. svr->Post("/embeddings", handle_embeddings);
  3425. svr->Post("/v1/embeddings", handle_embeddings_oai);
  3426. svr->Post("/rerank", handle_rerank);
  3427. svr->Post("/reranking", handle_rerank);
  3428. svr->Post("/v1/rerank", handle_rerank);
  3429. svr->Post("/v1/reranking", handle_rerank);
  3430. svr->Post("/tokenize", handle_tokenize);
  3431. svr->Post("/detokenize", handle_detokenize);
  3432. // LoRA adapters hotswap
  3433. svr->Get ("/lora-adapters", handle_lora_adapters_list);
  3434. svr->Post("/lora-adapters", handle_lora_adapters_apply);
  3435. // Save & load slots
  3436. svr->Get ("/slots", handle_slots);
  3437. svr->Post("/slots/:id_slot", handle_slots_action);
  3438. //
  3439. // Start the server
  3440. //
  3441. if (params.n_threads_http < 1) {
  3442. // +2 threads for monitoring endpoints
  3443. params.n_threads_http = std::max(params.n_parallel + 2, (int32_t) std::thread::hardware_concurrency() - 1);
  3444. }
  3445. log_data["n_threads_http"] = std::to_string(params.n_threads_http);
  3446. svr->new_task_queue = [&params] { return new httplib::ThreadPool(params.n_threads_http); };
  3447. // clean up function, to be called before exit
  3448. auto clean_up = [&svr]() {
  3449. svr->stop();
  3450. llama_backend_free();
  3451. };
  3452. // bind HTTP listen port
  3453. bool was_bound = false;
  3454. if (params.port == 0) {
  3455. int bound_port = svr->bind_to_any_port(params.hostname);
  3456. if ((was_bound = (bound_port >= 0))) {
  3457. params.port = bound_port;
  3458. }
  3459. } else {
  3460. was_bound = svr->bind_to_port(params.hostname, params.port);
  3461. }
  3462. if (!was_bound) {
  3463. //LOG_ERROR("couldn't bind HTTP server socket", {
  3464. // {"hostname", params.hostname},
  3465. // {"port", params.port},
  3466. //});
  3467. LOG_ERR("%s: couldn't bind HTTP server socket, hostname: %s, port: %d\n", __func__, params.hostname.c_str(), params.port);
  3468. clean_up();
  3469. return 1;
  3470. }
  3471. // run the HTTP server in a thread
  3472. std::thread t([&]() { svr->listen_after_bind(); });
  3473. svr->wait_until_ready();
  3474. LOG_INF("%s: HTTP server is listening, hostname: %s, port: %d, http threads: %d\n", __func__, params.hostname.c_str(), params.port, params.n_threads_http);
  3475. // load the model
  3476. LOG_INF("%s: loading model\n", __func__);
  3477. if (!ctx_server.load_model(params)) {
  3478. clean_up();
  3479. t.join();
  3480. LOG_ERR("%s: exiting due to model loading error\n", __func__);
  3481. return 1;
  3482. }
  3483. ctx_server.init();
  3484. state.store(SERVER_STATE_READY);
  3485. LOG_INF("%s: model loaded\n", __func__);
  3486. // if a custom chat template is not supplied, we will use the one that comes with the model (if any)
  3487. if (params.chat_template.empty()) {
  3488. if (!ctx_server.validate_model_chat_template()) {
  3489. LOG_WRN("%s: The chat template that comes with this model is not yet supported, falling back to chatml. This may cause the model to output suboptimal responses\n", __func__);
  3490. params.chat_template = "chatml";
  3491. }
  3492. }
  3493. // print sample chat example to make it clear which template is used
  3494. LOG_INF("%s: chat template, built_in: %d, chat_example: '%s'\n", __func__, params.chat_template.empty(), common_chat_format_example(ctx_server.model, params.chat_template).c_str());
  3495. ctx_server.queue_tasks.on_new_task(std::bind(
  3496. &server_context::process_single_task, &ctx_server, std::placeholders::_1));
  3497. ctx_server.queue_tasks.on_update_slots(std::bind(
  3498. &server_context::update_slots, &ctx_server));
  3499. shutdown_handler = [&](int) {
  3500. ctx_server.queue_tasks.terminate();
  3501. };
  3502. LOG_INF("%s: server is listening on http://%s:%d - starting the main loop\n", __func__, params.hostname.c_str(), params.port);
  3503. ctx_server.queue_tasks.start_loop();
  3504. #if defined (__unix__) || (defined (__APPLE__) && defined (__MACH__))
  3505. struct sigaction sigint_action;
  3506. sigint_action.sa_handler = signal_handler;
  3507. sigemptyset (&sigint_action.sa_mask);
  3508. sigint_action.sa_flags = 0;
  3509. sigaction(SIGINT, &sigint_action, NULL);
  3510. sigaction(SIGTERM, &sigint_action, NULL);
  3511. #elif defined (_WIN32)
  3512. auto console_ctrl_handler = +[](DWORD ctrl_type) -> BOOL {
  3513. return (ctrl_type == CTRL_C_EVENT) ? (signal_handler(SIGINT), true) : false;
  3514. };
  3515. SetConsoleCtrlHandler(reinterpret_cast<PHANDLER_ROUTINE>(console_ctrl_handler), true);
  3516. #endif
  3517. clean_up();
  3518. t.join();
  3519. return 0;
  3520. }