1
0

ggml.c 326 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687568856895690569156925693569456955696569756985699570057015702570357045705570657075708570957105711571257135714571557165717571857195720572157225723572457255726572757285729573057315732573357345735573657375738573957405741574257435744574557465747574857495750575157525753575457555756575757585759576057615762576357645765576657675768576957705771577257735774577557765777577857795780578157825783578457855786578757885789579057915792579357945795579657975798579958005801580258035804580558065807580858095810581158125813581458155816581758185819582058215822582358245825582658275828582958305831583258335834583558365837583858395840584158425843584458455846584758485849585058515852585358545855585658575858585958605861586258635864586558665867586858695870587158725873587458755876587758785879588058815882588358845885588658875888588958905891589258935894589558965897589858995900590159025903590459055906590759085909591059115912591359145915591659175918591959205921592259235924592559265927592859295930593159325933593459355936593759385939594059415942594359445945594659475948594959505951595259535954595559565957595859595960596159625963596459655966596759685969597059715972597359745975597659775978597959805981598259835984598559865987598859895990599159925993599459955996599759985999600060016002600360046005600660076008600960106011601260136014601560166017601860196020602160226023602460256026602760286029603060316032603360346035603660376038603960406041604260436044604560466047604860496050605160526053605460556056605760586059606060616062606360646065606660676068606960706071607260736074607560766077607860796080608160826083608460856086608760886089609060916092609360946095609660976098609961006101610261036104610561066107610861096110611161126113611461156116611761186119612061216122612361246125612661276128612961306131613261336134613561366137613861396140614161426143614461456146614761486149615061516152615361546155615661576158615961606161616261636164616561666167616861696170617161726173617461756176617761786179618061816182618361846185618661876188618961906191619261936194619561966197619861996200620162026203620462056206620762086209621062116212621362146215621662176218621962206221622262236224622562266227622862296230623162326233623462356236623762386239624062416242624362446245624662476248624962506251625262536254625562566257625862596260626162626263626462656266626762686269627062716272627362746275627662776278627962806281628262836284628562866287628862896290629162926293629462956296629762986299630063016302630363046305630663076308630963106311631263136314631563166317631863196320632163226323632463256326632763286329633063316332633363346335633663376338633963406341634263436344634563466347634863496350635163526353635463556356635763586359636063616362636363646365636663676368636963706371637263736374637563766377637863796380638163826383638463856386638763886389639063916392639363946395639663976398639964006401640264036404640564066407640864096410641164126413641464156416641764186419642064216422642364246425642664276428642964306431643264336434643564366437643864396440644164426443644464456446644764486449645064516452645364546455645664576458645964606461646264636464646564666467646864696470647164726473647464756476647764786479648064816482648364846485648664876488648964906491649264936494649564966497649864996500650165026503650465056506650765086509651065116512651365146515651665176518651965206521652265236524652565266527652865296530653165326533653465356536653765386539654065416542654365446545654665476548654965506551655265536554655565566557655865596560656165626563656465656566656765686569657065716572657365746575657665776578657965806581658265836584658565866587658865896590659165926593659465956596659765986599660066016602660366046605660666076608660966106611661266136614661566166617661866196620662166226623662466256626662766286629663066316632663366346635663666376638663966406641664266436644664566466647664866496650665166526653665466556656665766586659666066616662666366646665666666676668666966706671667266736674667566766677667866796680668166826683668466856686668766886689669066916692669366946695669666976698669967006701670267036704670567066707670867096710671167126713671467156716671767186719672067216722672367246725672667276728672967306731673267336734673567366737673867396740674167426743674467456746674767486749675067516752675367546755675667576758675967606761676267636764676567666767676867696770677167726773677467756776677767786779678067816782678367846785678667876788678967906791679267936794679567966797679867996800680168026803680468056806680768086809681068116812681368146815681668176818681968206821682268236824682568266827682868296830683168326833683468356836683768386839684068416842684368446845684668476848684968506851685268536854685568566857685868596860686168626863686468656866686768686869687068716872687368746875687668776878687968806881688268836884688568866887688868896890689168926893689468956896689768986899690069016902690369046905690669076908690969106911691269136914691569166917691869196920692169226923692469256926692769286929693069316932693369346935693669376938693969406941694269436944694569466947694869496950695169526953695469556956695769586959696069616962696369646965696669676968696969706971697269736974697569766977697869796980698169826983698469856986698769886989699069916992699369946995699669976998699970007001700270037004700570067007700870097010701170127013701470157016701770187019702070217022702370247025702670277028702970307031703270337034703570367037703870397040704170427043704470457046704770487049705070517052705370547055705670577058705970607061706270637064706570667067706870697070707170727073707470757076707770787079708070817082708370847085708670877088708970907091709270937094709570967097709870997100710171027103710471057106710771087109711071117112711371147115711671177118711971207121712271237124712571267127712871297130713171327133713471357136713771387139714071417142714371447145714671477148714971507151715271537154715571567157715871597160716171627163716471657166716771687169717071717172717371747175717671777178717971807181718271837184718571867187718871897190719171927193719471957196719771987199720072017202720372047205720672077208720972107211721272137214721572167217721872197220722172227223722472257226722772287229723072317232723372347235723672377238723972407241724272437244724572467247724872497250725172527253725472557256725772587259726072617262726372647265726672677268726972707271727272737274727572767277727872797280728172827283728472857286728772887289729072917292729372947295729672977298729973007301730273037304730573067307730873097310731173127313731473157316731773187319732073217322732373247325732673277328732973307331733273337334733573367337733873397340734173427343734473457346734773487349735073517352735373547355735673577358735973607361736273637364736573667367736873697370737173727373737473757376737773787379738073817382738373847385738673877388738973907391739273937394739573967397739873997400740174027403740474057406740774087409741074117412741374147415741674177418741974207421742274237424742574267427742874297430743174327433743474357436743774387439744074417442744374447445744674477448744974507451745274537454745574567457745874597460746174627463746474657466746774687469747074717472747374747475747674777478747974807481748274837484748574867487748874897490749174927493749474957496749774987499750075017502750375047505750675077508750975107511751275137514751575167517751875197520752175227523752475257526752775287529753075317532753375347535753675377538753975407541754275437544754575467547754875497550755175527553755475557556755775587559756075617562756375647565756675677568756975707571757275737574757575767577757875797580758175827583758475857586758775887589759075917592759375947595759675977598759976007601760276037604760576067607760876097610761176127613761476157616761776187619762076217622762376247625762676277628762976307631763276337634763576367637763876397640764176427643764476457646764776487649765076517652765376547655765676577658765976607661766276637664766576667667766876697670767176727673767476757676767776787679768076817682768376847685768676877688768976907691769276937694769576967697769876997700770177027703770477057706770777087709771077117712771377147715771677177718771977207721772277237724772577267727772877297730773177327733773477357736773777387739774077417742774377447745774677477748774977507751775277537754775577567757775877597760776177627763776477657766776777687769777077717772777377747775777677777778777977807781778277837784778577867787778877897790779177927793779477957796779777987799780078017802780378047805780678077808780978107811781278137814781578167817781878197820782178227823782478257826782778287829783078317832783378347835783678377838783978407841784278437844784578467847784878497850785178527853785478557856785778587859786078617862786378647865786678677868786978707871787278737874787578767877787878797880788178827883788478857886788778887889789078917892789378947895789678977898789979007901790279037904790579067907790879097910791179127913791479157916791779187919792079217922792379247925792679277928792979307931793279337934793579367937793879397940794179427943794479457946794779487949795079517952795379547955795679577958795979607961796279637964796579667967796879697970797179727973797479757976797779787979798079817982798379847985798679877988798979907991799279937994799579967997799879998000800180028003800480058006800780088009801080118012801380148015801680178018801980208021802280238024802580268027802880298030803180328033803480358036803780388039804080418042804380448045804680478048804980508051805280538054805580568057805880598060806180628063806480658066806780688069807080718072807380748075807680778078807980808081808280838084808580868087808880898090809180928093809480958096809780988099810081018102810381048105810681078108810981108111811281138114811581168117811881198120812181228123812481258126812781288129813081318132813381348135813681378138813981408141814281438144814581468147814881498150815181528153815481558156815781588159816081618162816381648165816681678168816981708171817281738174817581768177817881798180818181828183818481858186818781888189819081918192819381948195819681978198819982008201820282038204820582068207820882098210821182128213821482158216821782188219822082218222822382248225822682278228822982308231823282338234823582368237823882398240824182428243824482458246824782488249825082518252825382548255825682578258825982608261826282638264826582668267826882698270827182728273827482758276827782788279828082818282828382848285828682878288828982908291829282938294829582968297829882998300830183028303830483058306830783088309831083118312831383148315831683178318831983208321832283238324832583268327832883298330833183328333833483358336833783388339834083418342834383448345834683478348834983508351835283538354835583568357835883598360836183628363836483658366836783688369837083718372837383748375837683778378837983808381838283838384838583868387838883898390839183928393839483958396839783988399840084018402840384048405840684078408840984108411841284138414841584168417841884198420842184228423842484258426842784288429843084318432843384348435843684378438843984408441844284438444844584468447844884498450845184528453845484558456845784588459846084618462846384648465846684678468846984708471847284738474847584768477847884798480848184828483848484858486848784888489849084918492849384948495849684978498849985008501850285038504850585068507850885098510851185128513851485158516851785188519852085218522852385248525852685278528852985308531853285338534853585368537853885398540854185428543854485458546854785488549855085518552855385548555855685578558855985608561856285638564856585668567856885698570857185728573857485758576857785788579858085818582858385848585858685878588858985908591859285938594859585968597859885998600860186028603860486058606860786088609861086118612861386148615861686178618861986208621862286238624862586268627862886298630863186328633863486358636863786388639864086418642864386448645864686478648864986508651865286538654865586568657865886598660866186628663866486658666866786688669867086718672867386748675867686778678867986808681868286838684868586868687868886898690869186928693869486958696869786988699870087018702870387048705870687078708870987108711871287138714871587168717871887198720872187228723872487258726872787288729873087318732873387348735873687378738873987408741874287438744874587468747874887498750875187528753875487558756875787588759876087618762876387648765876687678768876987708771877287738774877587768777877887798780878187828783878487858786878787888789879087918792879387948795879687978798879988008801880288038804880588068807880888098810881188128813881488158816881788188819882088218822882388248825882688278828882988308831883288338834883588368837883888398840884188428843884488458846884788488849885088518852885388548855885688578858885988608861886288638864886588668867886888698870887188728873887488758876887788788879888088818882888388848885888688878888888988908891889288938894889588968897889888998900890189028903890489058906890789088909891089118912891389148915891689178918891989208921892289238924892589268927892889298930893189328933893489358936893789388939894089418942894389448945894689478948894989508951895289538954895589568957895889598960896189628963896489658966896789688969897089718972897389748975897689778978897989808981898289838984898589868987898889898990899189928993899489958996899789988999900090019002900390049005900690079008900990109011901290139014901590169017901890199020902190229023902490259026902790289029903090319032903390349035903690379038903990409041904290439044904590469047904890499050905190529053905490559056905790589059906090619062906390649065906690679068906990709071907290739074907590769077907890799080908190829083908490859086908790889089909090919092909390949095909690979098909991009101910291039104910591069107910891099110911191129113911491159116911791189119912091219122912391249125912691279128912991309131913291339134913591369137913891399140914191429143914491459146914791489149915091519152915391549155915691579158915991609161916291639164916591669167916891699170917191729173917491759176917791789179918091819182918391849185918691879188918991909191919291939194919591969197919891999200920192029203920492059206920792089209921092119212921392149215921692179218921992209221922292239224922592269227922892299230923192329233923492359236923792389239924092419242924392449245924692479248924992509251925292539254925592569257925892599260926192629263926492659266926792689269927092719272927392749275927692779278927992809281928292839284928592869287928892899290929192929293929492959296929792989299930093019302930393049305930693079308930993109311931293139314931593169317931893199320932193229323932493259326932793289329933093319332933393349335933693379338933993409341934293439344934593469347934893499350935193529353935493559356935793589359936093619362936393649365936693679368936993709371937293739374937593769377937893799380938193829383938493859386938793889389939093919392939393949395939693979398939994009401940294039404940594069407940894099410941194129413941494159416941794189419942094219422942394249425942694279428942994309431943294339434943594369437943894399440944194429443944494459446944794489449945094519452945394549455945694579458945994609461946294639464946594669467946894699470947194729473947494759476947794789479948094819482948394849485948694879488948994909491949294939494949594969497949894999500950195029503950495059506950795089509951095119512951395149515951695179518951995209521952295239524952595269527952895299530953195329533953495359536953795389539954095419542954395449545954695479548954995509551955295539554955595569557955895599560956195629563956495659566956795689569957095719572957395749575957695779578957995809581958295839584958595869587958895899590959195929593959495959596959795989599960096019602960396049605960696079608960996109611961296139614961596169617961896199620962196229623962496259626962796289629963096319632963396349635963696379638963996409641964296439644964596469647964896499650965196529653965496559656965796589659966096619662966396649665966696679668966996709671967296739674967596769677967896799680968196829683968496859686968796889689969096919692969396949695969696979698969997009701970297039704970597069707970897099710971197129713971497159716971797189719972097219722972397249725972697279728972997309731973297339734973597369737973897399740974197429743974497459746974797489749975097519752975397549755975697579758975997609761976297639764976597669767976897699770977197729773977497759776977797789779978097819782978397849785978697879788978997909791979297939794979597969797979897999800980198029803980498059806980798089809981098119812981398149815981698179818981998209821982298239824982598269827982898299830983198329833983498359836983798389839984098419842984398449845984698479848984998509851985298539854985598569857985898599860986198629863986498659866986798689869987098719872987398749875987698779878987998809881988298839884988598869887988898899890989198929893989498959896989798989899990099019902990399049905990699079908990999109911991299139914991599169917991899199920992199229923992499259926992799289929993099319932993399349935993699379938993999409941994299439944994599469947994899499950995199529953995499559956995799589959996099619962996399649965996699679968996999709971997299739974997599769977997899799980998199829983998499859986998799889989999099919992999399949995999699979998999910000100011000210003100041000510006100071000810009100101001110012100131001410015100161001710018100191002010021100221002310024100251002610027100281002910030100311003210033100341003510036100371003810039100401004110042100431004410045100461004710048100491005010051100521005310054100551005610057100581005910060100611006210063100641006510066100671006810069100701007110072100731007410075100761007710078100791008010081100821008310084100851008610087100881008910090100911009210093100941009510096100971009810099101001010110102101031010410105101061010710108101091011010111101121011310114101151011610117101181011910120101211012210123101241012510126101271012810129101301013110132101331013410135101361013710138101391014010141101421014310144101451014610147101481014910150101511015210153101541015510156101571015810159101601016110162101631016410165101661016710168101691017010171101721017310174101751017610177101781017910180101811018210183101841018510186101871018810189101901019110192101931019410195101961019710198101991020010201102021020310204102051020610207102081020910210102111021210213102141021510216102171021810219102201022110222102231022410225102261022710228102291023010231102321023310234102351023610237102381023910240102411024210243102441024510246102471024810249102501025110252102531025410255102561025710258102591026010261102621026310264102651026610267102681026910270102711027210273102741027510276102771027810279102801028110282102831028410285102861028710288102891029010291102921029310294102951029610297102981029910300103011030210303103041030510306103071030810309103101031110312103131031410315103161031710318103191032010321103221032310324103251032610327103281032910330103311033210333103341033510336103371033810339103401034110342103431034410345103461034710348103491035010351103521035310354103551035610357103581035910360103611036210363103641036510366103671036810369103701037110372103731037410375103761037710378103791038010381103821038310384103851038610387103881038910390103911039210393103941039510396103971039810399104001040110402104031040410405104061040710408104091041010411104121041310414104151041610417104181041910420104211042210423104241042510426104271042810429104301043110432104331043410435104361043710438104391044010441104421044310444104451044610447104481044910450104511045210453104541045510456104571045810459104601046110462104631046410465104661046710468104691047010471104721047310474104751047610477104781047910480104811048210483104841048510486104871048810489104901049110492104931049410495104961049710498104991050010501105021050310504105051050610507105081050910510105111051210513105141051510516105171051810519105201052110522105231052410525105261052710528105291053010531105321053310534105351053610537105381053910540105411054210543105441054510546105471054810549105501055110552105531055410555105561055710558105591056010561105621056310564105651056610567105681056910570105711057210573105741057510576105771057810579105801058110582105831058410585105861058710588105891059010591105921059310594105951059610597105981059910600106011060210603106041060510606106071060810609106101061110612106131061410615106161061710618106191062010621106221062310624106251062610627106281062910630106311063210633106341063510636106371063810639106401064110642106431064410645106461064710648106491065010651106521065310654106551065610657106581065910660106611066210663106641066510666106671066810669106701067110672
  1. // Defines CLOCK_MONOTONIC and asprintf on Linux
  2. #define _GNU_SOURCE
  3. #include "ggml.h"
  4. #if defined(_MSC_VER) || defined(__MINGW32__)
  5. #include <malloc.h> // using malloc.h with MSC/MINGW
  6. #elif !defined(__FreeBSD__) && !defined(__NetBSD__) && !defined(__OpenBSD__)
  7. #include <alloca.h>
  8. #endif
  9. #include <assert.h>
  10. #include <errno.h>
  11. #include <time.h>
  12. #include <math.h>
  13. #include <stdlib.h>
  14. #include <string.h>
  15. #include <stdint.h>
  16. #include <inttypes.h>
  17. #include <stdio.h>
  18. #include <float.h>
  19. // if C99 - static_assert is noop
  20. // ref: https://stackoverflow.com/a/53923785/4039976
  21. #ifndef static_assert
  22. #define static_assert(cond, msg) struct global_scope_noop_trick
  23. #endif
  24. #if defined _MSC_VER || defined(__MINGW32__)
  25. #if !defined(__MINGW32__)
  26. #include <Windows.h>
  27. #else
  28. // ref: https://github.com/ggerganov/whisper.cpp/issues/168
  29. #include <windows.h>
  30. #endif
  31. typedef volatile LONG atomic_int;
  32. typedef atomic_int atomic_bool;
  33. static void atomic_store(atomic_int* ptr, LONG val) {
  34. InterlockedExchange(ptr, val);
  35. }
  36. static LONG atomic_load(atomic_int* ptr) {
  37. return InterlockedCompareExchange(ptr, 0, 0);
  38. }
  39. static LONG atomic_fetch_add(atomic_int* ptr, LONG inc) {
  40. return InterlockedExchangeAdd(ptr, inc);
  41. }
  42. static LONG atomic_fetch_sub(atomic_int* ptr, LONG dec) {
  43. return atomic_fetch_add(ptr, -(dec));
  44. }
  45. typedef HANDLE pthread_t;
  46. typedef DWORD thread_ret_t;
  47. static int pthread_create(pthread_t* out, void* unused, thread_ret_t(*func)(void*), void* arg) {
  48. HANDLE handle = CreateThread(NULL, 0, (LPTHREAD_START_ROUTINE) func, arg, 0, NULL);
  49. if (handle == NULL)
  50. {
  51. return EAGAIN;
  52. }
  53. *out = handle;
  54. return 0;
  55. }
  56. static int pthread_join(pthread_t thread, void* unused) {
  57. return (int) WaitForSingleObject(thread, INFINITE);
  58. }
  59. static int sched_yield (void) {
  60. Sleep (0);
  61. return 0;
  62. }
  63. #else
  64. #include <pthread.h>
  65. #include <stdatomic.h>
  66. typedef void* thread_ret_t;
  67. #endif
  68. // __FMA__ and __F16C__ are not defined in MSVC, however they are implied with AVX2/AVX512
  69. #if defined(_MSC_VER) && (defined(__AVX2__) || defined(__AVX512F__))
  70. #ifndef __FMA__
  71. #define __FMA__
  72. #endif
  73. #ifndef __F16C__
  74. #define __F16C__
  75. #endif
  76. #ifndef __SSE3__
  77. #define __SSE3__
  78. #endif
  79. #endif
  80. #ifdef __HAIKU__
  81. #define static_assert(cond, msg) _Static_assert(cond, msg)
  82. #endif
  83. #define GGML_MLOCK_SUPPORT 0
  84. #ifdef __has_include
  85. #if __has_include(<sys/mman.h>)
  86. #undef GGML_MLOCK_SUPPORT
  87. #define GGML_MLOCK_SUPPORT 1
  88. #include <sys/mman.h>
  89. #endif
  90. #endif
  91. /*#define GGML_PERF*/
  92. #define GGML_DEBUG 0
  93. #define GGML_GELU_FP16
  94. #define GGML_SILU_FP16
  95. #define GGML_SOFT_MAX_UNROLL 4
  96. #define GGML_VEC_DOT_UNROLL 2
  97. #ifdef GGML_USE_ACCELERATE
  98. // uncomment to use vDSP for soft max computation
  99. // note: not sure if it is actually faster
  100. //#define GGML_SOFT_MAX_ACCELERATE
  101. #endif
  102. #if UINTPTR_MAX == 0xFFFFFFFF
  103. #define GGML_MEM_ALIGN 4
  104. #else
  105. #define GGML_MEM_ALIGN 16
  106. #endif
  107. #define UNUSED(x) (void)(x)
  108. #define SWAP(x, y, T) do { T SWAP = x; x = y; y = SWAP; } while (0)
  109. #define GGML_ASSERT(x) \
  110. do { \
  111. if (!(x)) { \
  112. fprintf(stderr, "GGML_ASSERT: %s:%d: %s\n", __FILE__, __LINE__, #x); \
  113. abort(); \
  114. } \
  115. } while (0)
  116. #ifdef GGML_USE_ACCELERATE
  117. #include <Accelerate/Accelerate.h>
  118. #elif GGML_USE_OPENBLAS
  119. #include <cblas.h>
  120. #endif
  121. #undef MIN
  122. #undef MAX
  123. #define MIN(a, b) ((a) < (b) ? (a) : (b))
  124. #define MAX(a, b) ((a) > (b) ? (a) : (b))
  125. // floating point type used to accumulate sums
  126. typedef double ggml_float;
  127. // 16-bit float
  128. // on Arm, we use __fp16
  129. // on x86, we use uint16_t
  130. #ifdef __ARM_NEON
  131. // if YCM cannot find <arm_neon.h>, make a symbolic link to it, for example:
  132. //
  133. // $ ln -sfn /Library/Developer/CommandLineTools/usr/lib/clang/13.1.6/include/arm_neon.h ./src/
  134. //
  135. #include <arm_neon.h>
  136. #define GGML_COMPUTE_FP16_TO_FP32(x) ((float) (x))
  137. #define GGML_COMPUTE_FP32_TO_FP16(x) (x)
  138. #define GGML_FP16_TO_FP32(x) ((float) (x))
  139. #define GGML_FP32_TO_FP16(x) (x)
  140. #else
  141. #ifdef __wasm_simd128__
  142. #include <wasm_simd128.h>
  143. #else
  144. #ifdef __POWER9_VECTOR__
  145. #include <altivec.h>
  146. #undef bool
  147. #define bool _Bool
  148. #else
  149. #include <immintrin.h>
  150. #endif
  151. #endif
  152. #ifdef __F16C__
  153. #ifdef _MSC_VER
  154. #define GGML_COMPUTE_FP16_TO_FP32(x) _mm_cvtss_f32(_mm_cvtph_ps(_mm_cvtsi32_si128(x)))
  155. #define GGML_COMPUTE_FP32_TO_FP16(x) _mm_extract_epi16(_mm_cvtps_ph(_mm_set_ss(x), 0), 0)
  156. #else
  157. #define GGML_COMPUTE_FP16_TO_FP32(x) _cvtsh_ss(x)
  158. #define GGML_COMPUTE_FP32_TO_FP16(x) _cvtss_sh(x, 0)
  159. #endif
  160. #elif defined(__POWER9_VECTOR__)
  161. #define GGML_COMPUTE_FP16_TO_FP32(x) ggml_compute_fp16_to_fp32(x)
  162. #define GGML_COMPUTE_FP32_TO_FP16(x) ggml_compute_fp32_to_fp16(x)
  163. /* the inline asm below is about 12% faster than the lookup method */
  164. #define GGML_FP16_TO_FP32(x) GGML_COMPUTE_FP16_TO_FP32(x)
  165. #define GGML_FP32_TO_FP16(x) GGML_COMPUTE_FP32_TO_FP16(x)
  166. static inline float ggml_compute_fp16_to_fp32(ggml_fp16_t h) {
  167. register float f;
  168. register double d;
  169. __asm__(
  170. "mtfprd %0,%2\n"
  171. "xscvhpdp %0,%0\n"
  172. "frsp %1,%0\n" :
  173. /* temp */ "=d"(d),
  174. /* out */ "=f"(f):
  175. /* in */ "r"(h));
  176. return f;
  177. }
  178. static inline ggml_fp16_t ggml_compute_fp32_to_fp16(float f) {
  179. register double d;
  180. register ggml_fp16_t r;
  181. __asm__( /* xscvdphp can work on double or single precision */
  182. "xscvdphp %0,%2\n"
  183. "mffprd %1,%0\n" :
  184. /* temp */ "=d"(d),
  185. /* out */ "=r"(r):
  186. /* in */ "f"(f));
  187. return r;
  188. }
  189. #else
  190. // FP16 <-> FP32
  191. // ref: https://github.com/Maratyszcza/FP16
  192. static inline float fp32_from_bits(uint32_t w) {
  193. union {
  194. uint32_t as_bits;
  195. float as_value;
  196. } fp32;
  197. fp32.as_bits = w;
  198. return fp32.as_value;
  199. }
  200. static inline uint32_t fp32_to_bits(float f) {
  201. union {
  202. float as_value;
  203. uint32_t as_bits;
  204. } fp32;
  205. fp32.as_value = f;
  206. return fp32.as_bits;
  207. }
  208. static inline float ggml_compute_fp16_to_fp32(ggml_fp16_t h) {
  209. const uint32_t w = (uint32_t) h << 16;
  210. const uint32_t sign = w & UINT32_C(0x80000000);
  211. const uint32_t two_w = w + w;
  212. const uint32_t exp_offset = UINT32_C(0xE0) << 23;
  213. #if defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) || defined(__GNUC__) && !defined(__STRICT_ANSI__)
  214. const float exp_scale = 0x1.0p-112f;
  215. #else
  216. const float exp_scale = fp32_from_bits(UINT32_C(0x7800000));
  217. #endif
  218. const float normalized_value = fp32_from_bits((two_w >> 4) + exp_offset) * exp_scale;
  219. const uint32_t magic_mask = UINT32_C(126) << 23;
  220. const float magic_bias = 0.5f;
  221. const float denormalized_value = fp32_from_bits((two_w >> 17) | magic_mask) - magic_bias;
  222. const uint32_t denormalized_cutoff = UINT32_C(1) << 27;
  223. const uint32_t result = sign |
  224. (two_w < denormalized_cutoff ? fp32_to_bits(denormalized_value) : fp32_to_bits(normalized_value));
  225. return fp32_from_bits(result);
  226. }
  227. static inline ggml_fp16_t ggml_compute_fp32_to_fp16(float f) {
  228. #if defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) || defined(__GNUC__) && !defined(__STRICT_ANSI__)
  229. const float scale_to_inf = 0x1.0p+112f;
  230. const float scale_to_zero = 0x1.0p-110f;
  231. #else
  232. const float scale_to_inf = fp32_from_bits(UINT32_C(0x77800000));
  233. const float scale_to_zero = fp32_from_bits(UINT32_C(0x08800000));
  234. #endif
  235. float base = (fabsf(f) * scale_to_inf) * scale_to_zero;
  236. const uint32_t w = fp32_to_bits(f);
  237. const uint32_t shl1_w = w + w;
  238. const uint32_t sign = w & UINT32_C(0x80000000);
  239. uint32_t bias = shl1_w & UINT32_C(0xFF000000);
  240. if (bias < UINT32_C(0x71000000)) {
  241. bias = UINT32_C(0x71000000);
  242. }
  243. base = fp32_from_bits((bias >> 1) + UINT32_C(0x07800000)) + base;
  244. const uint32_t bits = fp32_to_bits(base);
  245. const uint32_t exp_bits = (bits >> 13) & UINT32_C(0x00007C00);
  246. const uint32_t mantissa_bits = bits & UINT32_C(0x00000FFF);
  247. const uint32_t nonsign = exp_bits + mantissa_bits;
  248. return (sign >> 16) | (shl1_w > UINT32_C(0xFF000000) ? UINT16_C(0x7E00) : nonsign);
  249. }
  250. #define GGML_COMPUTE_FP16_TO_FP32(x) ggml_compute_fp16_to_fp32(x)
  251. #define GGML_COMPUTE_FP32_TO_FP16(x) ggml_compute_fp32_to_fp16(x)
  252. #endif // __F16C__
  253. #endif // __ARM_NEON
  254. //
  255. // global data
  256. //
  257. // precomputed gelu table for f16 (128 KB)
  258. static ggml_fp16_t table_gelu_f16[1 << 16];
  259. // precomputed silu table for f16 (128 KB)
  260. static ggml_fp16_t table_silu_f16[1 << 16];
  261. // precomputed exp table for f16 (128 KB)
  262. static ggml_fp16_t table_exp_f16[1 << 16];
  263. // precomputed f32 table for f16 (256 KB)
  264. static float table_f32_f16[1 << 16];
  265. // On ARM NEON, it's quicker to directly convert x -> x instead of calling into ggml_lookup_fp16_to_fp32,
  266. // so we define GGML_FP16_TO_FP32 and GGML_FP32_TO_FP16 elsewhere for NEON.
  267. // This is also true for POWER9.
  268. #if !defined(GGML_FP16_TO_FP32) || !defined(GGML_FP32_TO_FP16)
  269. inline static float ggml_lookup_fp16_to_fp32(ggml_fp16_t f) {
  270. uint16_t s;
  271. memcpy(&s, &f, sizeof(uint16_t));
  272. return table_f32_f16[s];
  273. }
  274. #define GGML_FP16_TO_FP32(x) ggml_lookup_fp16_to_fp32(x)
  275. #define GGML_FP32_TO_FP16(x) GGML_COMPUTE_FP32_TO_FP16(x)
  276. #endif
  277. // note: do not use these inside ggml.c
  278. // these are meant to be used via the ggml.h API
  279. float ggml_fp16_to_fp32(ggml_fp16_t x) {
  280. return (float) GGML_FP16_TO_FP32(x);
  281. }
  282. ggml_fp16_t ggml_fp32_to_fp16(float x) {
  283. return GGML_FP32_TO_FP16(x);
  284. }
  285. //
  286. // timing
  287. //
  288. #if defined(_MSC_VER) || defined(__MINGW32__)
  289. static int64_t timer_freq;
  290. void ggml_time_init(void) {
  291. LARGE_INTEGER frequency;
  292. QueryPerformanceFrequency(&frequency);
  293. timer_freq = frequency.QuadPart;
  294. }
  295. int64_t ggml_time_ms(void) {
  296. LARGE_INTEGER t;
  297. QueryPerformanceCounter(&t);
  298. return (t.QuadPart * 1000) / timer_freq;
  299. }
  300. int64_t ggml_time_us(void) {
  301. LARGE_INTEGER t;
  302. QueryPerformanceCounter(&t);
  303. return (t.QuadPart * 1000000) / timer_freq;
  304. }
  305. #else
  306. void ggml_time_init(void) {}
  307. int64_t ggml_time_ms(void) {
  308. struct timespec ts;
  309. clock_gettime(CLOCK_MONOTONIC, &ts);
  310. return (int64_t)ts.tv_sec*1000 + (int64_t)ts.tv_nsec/1000000;
  311. }
  312. int64_t ggml_time_us(void) {
  313. struct timespec ts;
  314. clock_gettime(CLOCK_MONOTONIC, &ts);
  315. return (int64_t)ts.tv_sec*1000000 + (int64_t)ts.tv_nsec/1000;
  316. }
  317. #endif
  318. int64_t ggml_cycles(void) {
  319. return clock();
  320. }
  321. int64_t ggml_cycles_per_ms(void) {
  322. return CLOCKS_PER_SEC/1000;
  323. }
  324. #ifdef GGML_PERF
  325. #define ggml_perf_time_ms() ggml_time_ms()
  326. #define ggml_perf_time_us() ggml_time_us()
  327. #define ggml_perf_cycles() ggml_cycles()
  328. #define ggml_perf_cycles_per_ms() ggml_cycles_per_ms()
  329. #else
  330. #define ggml_perf_time_ms() 0
  331. #define ggml_perf_time_us() 0
  332. #define ggml_perf_cycles() 0
  333. #define ggml_perf_cycles_per_ms() 0
  334. #endif
  335. //
  336. // cache line
  337. //
  338. #if defined(__cpp_lib_hardware_interference_size)
  339. #define CACHE_LINE_SIZE hardware_destructive_interference_size
  340. #else
  341. #if defined(__POWER9_VECTOR__)
  342. #define CACHE_LINE_SIZE 128
  343. #else
  344. #define CACHE_LINE_SIZE 64
  345. #endif
  346. #endif
  347. static const size_t CACHE_LINE_SIZE_F32 = CACHE_LINE_SIZE/sizeof(float);
  348. //
  349. // quantization
  350. //
  351. #define QK 32
  352. // AVX routines provided by GH user Const-me
  353. // ref: https://github.com/ggerganov/ggml/pull/27#issuecomment-1464934600
  354. #if __AVX2__ || __AVX512F__
  355. // Unpack 32 4-bit fields into 32 bytes
  356. // The output vector contains 32 bytes, each one in [ 0 .. 15 ] interval
  357. static inline __m256i bytesFromNibbles( const uint8_t* rsi )
  358. {
  359. // Load 16 bytes from memory
  360. __m128i tmp = _mm_loadu_si128( ( const __m128i* )rsi );
  361. // Expand bytes into uint16_t values
  362. __m256i bytes = _mm256_cvtepu8_epi16( tmp );
  363. // Unpack values into individual bytes
  364. const __m256i lowMask = _mm256_set1_epi8( 0xF );
  365. __m256i high = _mm256_andnot_si256( lowMask, bytes );
  366. __m256i low = _mm256_and_si256( lowMask, bytes );
  367. high = _mm256_slli_epi16( high, 4 );
  368. bytes = _mm256_or_si256( low, high );
  369. return bytes;
  370. }
  371. static inline __m128i packNibbles( __m256i bytes )
  372. {
  373. // Move bits within 16-bit lanes from 0000_abcd_0000_efgh into 0000_0000_abcd_efgh
  374. const __m256i lowByte = _mm256_set1_epi16( 0xFF );
  375. __m256i high = _mm256_andnot_si256( lowByte, bytes );
  376. __m256i low = _mm256_and_si256( lowByte, bytes );
  377. high = _mm256_srli_epi16( high, 4 );
  378. bytes = _mm256_or_si256( low, high );
  379. // Compress uint16_t lanes into bytes
  380. __m128i r0 = _mm256_castsi256_si128( bytes );
  381. __m128i r1 = _mm256_extracti128_si256( bytes, 1 );
  382. return _mm_packus_epi16( r0, r1 );
  383. }
  384. #elif __AVX__
  385. static inline __m128i bytesFromNibbles( const uint8_t* rsi )
  386. {
  387. // Load 8 bytes from memory
  388. __m128i tmp = _mm_loadu_si64( ( const __m128i* )rsi );
  389. // Expand bytes into uint16_t values
  390. __m128i bytes = _mm_cvtepu8_epi16( tmp );
  391. // Unpack values into individual bytes
  392. const __m128i lowMask = _mm_set1_epi8( 0xF );
  393. __m128i high = _mm_andnot_si128( lowMask, bytes );
  394. __m128i low = _mm_and_si128( lowMask, bytes );
  395. high = _mm_slli_epi16( high, 4 );
  396. bytes = _mm_or_si128( low, high );
  397. return bytes;
  398. }
  399. static inline __m128i packNibbles( __m128i bytes1, __m128i bytes2 )
  400. {
  401. // Move bits within 16-bit lanes from 0000_abcd_0000_efgh into 0000_0000_abcd_efgh
  402. const __m128i lowByte = _mm_set1_epi16( 0xFF );
  403. __m128i high = _mm_andnot_si128( lowByte, bytes1 );
  404. __m128i low = _mm_and_si128( lowByte, bytes1 );
  405. high = _mm_srli_epi16( high, 4 );
  406. bytes1 = _mm_or_si128( low, high );
  407. high = _mm_andnot_si128( lowByte, bytes2 );
  408. low = _mm_and_si128( lowByte, bytes2 );
  409. high = _mm_srli_epi16( high, 4 );
  410. bytes2 = _mm_or_si128( low, high );
  411. return _mm_packus_epi16( bytes1, bytes2);
  412. }
  413. #endif
  414. // method 5
  415. // blocks of QK elements
  416. // represented with a single float (delta) and QK/2 8-bit ints (i.e QK 4-bit signed integer factors)
  417. typedef struct {
  418. float d; // delta
  419. uint8_t qs[QK / 2]; // nibbles / quants
  420. } block_q4_0;
  421. static_assert(sizeof(block_q4_0) == sizeof(float) + QK / 2, "wrong q4_0 block size/padding");
  422. // method 4
  423. // blocks of QK elements
  424. // represented with 2 floats (delta + min) and QK/2 8-bit ints (i.e QK 4-bit unsigned integer factors)
  425. typedef struct {
  426. float d;
  427. float m;
  428. uint8_t qs[QK / 2]; // nibbles / quants
  429. } block_q4_1;
  430. static_assert(sizeof(block_q4_1) == sizeof(float) * 2 + QK / 2, "wrong q4_1 block size/padding");
  431. // reference implementation for deterministic creation of model files
  432. static void quantize_row_q4_0_reference(const float * restrict x, block_q4_0 * restrict y, int k) {
  433. assert(k % QK == 0);
  434. const int nb = k / QK;
  435. uint8_t pp[QK/2];
  436. for (int i = 0; i < nb; i++) {
  437. float amax = 0.0f; // absolute max
  438. for (int l = 0; l < QK; l++) {
  439. const float v = x[i*QK + l];
  440. amax = MAX(amax, fabsf(v));
  441. }
  442. const float d = amax / ((1 << 3) - 1);
  443. const float id = d ? 1.0f/d : 0.0f;
  444. y[i].d = d;
  445. for (int l = 0; l < QK; l += 2) {
  446. const float v0 = x[i*QK + l + 0]*id;
  447. const float v1 = x[i*QK + l + 1]*id;
  448. const uint8_t vi0 = (int8_t)roundf(v0) + 8;
  449. const uint8_t vi1 = (int8_t)roundf(v1) + 8;
  450. assert(vi0 < 16);
  451. assert(vi1 < 16);
  452. pp[l/2] = vi0 | (vi1 << 4);
  453. }
  454. memcpy(y[i].qs, pp, sizeof(pp));
  455. }
  456. }
  457. static void quantize_row_q4_0(const float * restrict x, void * restrict vy, int k) {
  458. assert(k % QK == 0);
  459. const int nb = k / QK;
  460. block_q4_0 * restrict y = vy;
  461. #if defined(__POWER9_VECTOR__)
  462. const vector float v85 = vec_splats(8.5f);
  463. for (int i = 0; i < nb; i++) {
  464. float amax = 0.0f; // absolute max
  465. vector float srcv [8];
  466. vector float asrcv[8];
  467. vector float amaxv[8];
  468. for (int l = 0; l < 8; l++) srcv[l] = *(vector float *)(x + i*32 + 4*l);
  469. for (int l = 0; l < 8; l++) asrcv[l] = vec_abs(srcv[l]);
  470. for (int l = 0; l < 4; l++) amaxv[2*l] = vec_max(asrcv[2*l], asrcv[2*l+1]);
  471. //for (int l = 0; l < 2; l++) amaxv[4*l] = vec_max(amaxv[4*l], amaxv[4*l+2]);
  472. amaxv[0] = vec_max(amaxv[0], amaxv[2]);
  473. amaxv[4] = vec_max(amaxv[4], amaxv[6]);
  474. //for (int l = 0; l < 1; l++) amaxv[8*l] = vec_max(amaxv[8*l], amaxv[8*l+4]);
  475. amaxv[0] = vec_max(amaxv[0], amaxv[4]);
  476. amax = MAX(
  477. MAX(vec_extract(amaxv[0], 0), vec_extract(amaxv[0], 1)),
  478. MAX(vec_extract(amaxv[0], 2), vec_extract(amaxv[0], 3)));
  479. const float d = amax / ((1 << 3) - 1);
  480. const float id = d ? 1.0/d : 0.0;
  481. y[i].d = d;
  482. const vector float vid = vec_splats(id);
  483. uint8_t * restrict pb = y[i].qs;
  484. for (int l = 0; l < 8; l++) {
  485. const vector float vf = vec_madd(srcv[l], vid, v85);
  486. const vector signed int vi = vec_signed(vf);
  487. pb[2*l + 0] = vec_extract(vi, 0) | (vec_extract(vi, 1) << 4);
  488. pb[2*l + 1] = vec_extract(vi, 2) | (vec_extract(vi, 3) << 4);
  489. }
  490. }
  491. #elif __ARM_NEON
  492. for (int i = 0; i < nb; i++) {
  493. float32x4_t srcv [8];
  494. float32x4_t asrcv[8];
  495. float32x4_t amaxv[8];
  496. for (int l = 0; l < 8; l++) srcv[l] = vld1q_f32(x + i*32 + 4*l);
  497. for (int l = 0; l < 8; l++) asrcv[l] = vabsq_f32(srcv[l]);
  498. for (int l = 0; l < 4; l++) amaxv[2*l] = vmaxq_f32(asrcv[2*l], asrcv[2*l+1]);
  499. for (int l = 0; l < 2; l++) amaxv[4*l] = vmaxq_f32(amaxv[4*l], amaxv[4*l+2]);
  500. for (int l = 0; l < 1; l++) amaxv[8*l] = vmaxq_f32(amaxv[8*l], amaxv[8*l+4]);
  501. // absolute max
  502. const float amax = MAX(
  503. MAX(vgetq_lane_f32(amaxv[0], 0), vgetq_lane_f32(amaxv[0], 1)),
  504. MAX(vgetq_lane_f32(amaxv[0], 2), vgetq_lane_f32(amaxv[0], 3)));
  505. const float d = amax / ((1 << 3) - 1);
  506. const float id = d ? 1.0f/d : 0.0f;
  507. y[i].d = d;
  508. for (int l = 0; l < 8; l++) {
  509. const float32x4_t v = vmulq_n_f32(srcv[l], id);
  510. const float32x4_t vf = vaddq_f32(v, vdupq_n_f32(8.5f));
  511. const int32x4_t vi = vcvtq_s32_f32(vf);
  512. y[i].qs[2*l + 0] = vgetq_lane_s32(vi, 0) | (vgetq_lane_s32(vi, 1) << 4);
  513. y[i].qs[2*l + 1] = vgetq_lane_s32(vi, 2) | (vgetq_lane_s32(vi, 3) << 4);
  514. }
  515. }
  516. #elif defined(__AVX2__)
  517. for (int i = 0; i < nb; i++) {
  518. // Load elements into 4 AVX vectors
  519. __m256 v0 = _mm256_loadu_ps( x );
  520. __m256 v1 = _mm256_loadu_ps( x + 8 );
  521. __m256 v2 = _mm256_loadu_ps( x + 16 );
  522. __m256 v3 = _mm256_loadu_ps( x + 24 );
  523. x += 32;
  524. // Compute max(abs(e)) for the block
  525. const __m256 signBit = _mm256_set1_ps( -0.0f );
  526. __m256 maxAbs = _mm256_andnot_ps( signBit, v0 );
  527. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v1 ) );
  528. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v2 ) );
  529. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v3 ) );
  530. __m128 max4 = _mm_max_ps( _mm256_extractf128_ps( maxAbs, 1 ), _mm256_castps256_ps128( maxAbs ) );
  531. max4 = _mm_max_ps( max4, _mm_movehl_ps( max4, max4 ) );
  532. max4 = _mm_max_ss( max4, _mm_movehdup_ps( max4 ) );
  533. const float maxScalar = _mm_cvtss_f32( max4 );
  534. // Quantize these floats
  535. const float d = maxScalar / 7.0f;
  536. y[i].d = d;
  537. const float id = ( maxScalar != 0.0f ) ? 7.0f / maxScalar : 0.0f;
  538. const __m256 mul = _mm256_set1_ps( id );
  539. // Apply the multiplier
  540. v0 = _mm256_mul_ps( v0, mul );
  541. v1 = _mm256_mul_ps( v1, mul );
  542. v2 = _mm256_mul_ps( v2, mul );
  543. v3 = _mm256_mul_ps( v3, mul );
  544. // Round to nearest integer
  545. v0 = _mm256_round_ps( v0, _MM_ROUND_NEAREST );
  546. v1 = _mm256_round_ps( v1, _MM_ROUND_NEAREST );
  547. v2 = _mm256_round_ps( v2, _MM_ROUND_NEAREST );
  548. v3 = _mm256_round_ps( v3, _MM_ROUND_NEAREST );
  549. // Convert floats to integers
  550. __m256i i0 = _mm256_cvtps_epi32( v0 );
  551. __m256i i1 = _mm256_cvtps_epi32( v1 );
  552. __m256i i2 = _mm256_cvtps_epi32( v2 );
  553. __m256i i3 = _mm256_cvtps_epi32( v3 );
  554. // Convert int32 to int16
  555. i0 = _mm256_packs_epi32( i0, i1 ); // 0, 1, 2, 3, 8, 9, 10, 11, 4, 5, 6, 7, 12, 13, 14, 15
  556. i2 = _mm256_packs_epi32( i2, i3 ); // 16, 17, 18, 19, 24, 25, 26, 27, 20, 21, 22, 23, 28, 29, 30, 31
  557. // Convert int16 to int8
  558. i0 = _mm256_packs_epi16( i0, i2 ); // 0, 1, 2, 3, 8, 9, 10, 11, 16, 17, 18, 19, 24, 25, 26, 27, 4, 5, 6, 7, 12, 13, 14, 15, 20, 21, 22, 23, 28, 29, 30, 31
  559. // We got our precious signed bytes, but the order is now wrong
  560. // These AVX2 pack instructions process 16-byte pieces independently
  561. // The following instruction is fixing the order
  562. const __m256i perm = _mm256_setr_epi32( 0, 4, 1, 5, 2, 6, 3, 7 );
  563. i0 = _mm256_permutevar8x32_epi32( i0, perm );
  564. // Apply offset to translate the range from [ -7 .. +7 ] into [ +1 .. +15 ]
  565. const __m256i off = _mm256_set1_epi8( 8 );
  566. i0 = _mm256_add_epi8( i0, off );
  567. // Compress the vector into 4 bit/value, and store
  568. __m128i res = packNibbles( i0 );
  569. _mm_storeu_si128( ( __m128i* )y[i].qs, res );
  570. }
  571. #elif defined(__AVX__)
  572. for (int i = 0; i < nb; i++) {
  573. // Load elements into 4 AVX vectors
  574. __m256 v0 = _mm256_loadu_ps( x );
  575. __m256 v1 = _mm256_loadu_ps( x + 8 );
  576. __m256 v2 = _mm256_loadu_ps( x + 16 );
  577. __m256 v3 = _mm256_loadu_ps( x + 24 );
  578. x += 32;
  579. // Compute max(abs(e)) for the block
  580. const __m256 signBit = _mm256_set1_ps( -0.0f );
  581. __m256 maxAbs = _mm256_andnot_ps( signBit, v0 );
  582. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v1 ) );
  583. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v2 ) );
  584. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v3 ) );
  585. __m128 max4 = _mm_max_ps( _mm256_extractf128_ps( maxAbs, 1 ), _mm256_castps256_ps128( maxAbs ) );
  586. max4 = _mm_max_ps( max4, _mm_movehl_ps( max4, max4 ) );
  587. max4 = _mm_max_ss( max4, _mm_movehdup_ps( max4 ) );
  588. const float maxScalar = _mm_cvtss_f32( max4 );
  589. // Quantize these floats
  590. const float d = maxScalar / 7.0f;
  591. y[i].d = d;
  592. const float id = ( maxScalar != 0.0f ) ? 7.0f / maxScalar : 0.0f;
  593. const __m256 mul = _mm256_set1_ps( id );
  594. // Apply the multiplier
  595. v0 = _mm256_mul_ps( v0, mul );
  596. v1 = _mm256_mul_ps( v1, mul );
  597. v2 = _mm256_mul_ps( v2, mul );
  598. v3 = _mm256_mul_ps( v3, mul );
  599. // Round to nearest integer
  600. v0 = _mm256_round_ps( v0, _MM_ROUND_NEAREST );
  601. v1 = _mm256_round_ps( v1, _MM_ROUND_NEAREST );
  602. v2 = _mm256_round_ps( v2, _MM_ROUND_NEAREST );
  603. v3 = _mm256_round_ps( v3, _MM_ROUND_NEAREST );
  604. // Convert floats to integers
  605. __m256i i0 = _mm256_cvtps_epi32( v0 );
  606. __m256i i1 = _mm256_cvtps_epi32( v1 );
  607. __m256i i2 = _mm256_cvtps_epi32( v2 );
  608. __m256i i3 = _mm256_cvtps_epi32( v3 );
  609. // Since we don't have in AVX some necessary functions,
  610. // we split the registers in half and call AVX2 analogs from SSE
  611. __m128i ni0 = _mm256_castsi256_si128( i0 );
  612. __m128i ni1 = _mm256_extractf128_si256( i0, 1);
  613. __m128i ni2 = _mm256_castsi256_si128( i1 );
  614. __m128i ni3 = _mm256_extractf128_si256( i1, 1);
  615. __m128i ni4 = _mm256_castsi256_si128( i2 );
  616. __m128i ni5 = _mm256_extractf128_si256( i2, 1);
  617. __m128i ni6 = _mm256_castsi256_si128( i3 );
  618. __m128i ni7 = _mm256_extractf128_si256( i3, 1);
  619. // Convert int32 to int16
  620. ni0 = _mm_packs_epi32( ni0, ni1 );
  621. ni2 = _mm_packs_epi32( ni2, ni3 );
  622. ni4 = _mm_packs_epi32( ni4, ni5 );
  623. ni6 = _mm_packs_epi32( ni6, ni7 );
  624. // Convert int16 to int8
  625. ni0 = _mm_packs_epi16( ni0, ni2 );
  626. ni4 = _mm_packs_epi16( ni4, ni6 );
  627. // Apply offset to translate the range from [ -7 .. +7 ] into [ +1 .. +15 ]
  628. const __m128i off = _mm_set1_epi8( 8);
  629. ni0 = _mm_add_epi8( ni0, off );
  630. ni4 = _mm_add_epi8( ni4, off );
  631. // Compress the vector into 4 bit/value, and store
  632. __m128i res = packNibbles( ni0, ni4 );
  633. _mm_storeu_si128( ( __m128i* )y[i].qs, res );
  634. }
  635. #elif defined(__wasm_simd128__)
  636. for (int i = 0; i < nb; i++) {
  637. float amax = 0.0f; // absolute max
  638. v128_t srcv [8];
  639. v128_t asrcv[8];
  640. v128_t amaxv[8];
  641. for (int l = 0; l < 8; l++) srcv[l] = wasm_v128_load(x + i*32 + 4*l);
  642. for (int l = 0; l < 8; l++) asrcv[l] = wasm_f32x4_abs(srcv[l]);
  643. for (int l = 0; l < 4; l++) amaxv[2*l] = wasm_f32x4_max(asrcv[2*l], asrcv[2*l+1]);
  644. for (int l = 0; l < 2; l++) amaxv[4*l] = wasm_f32x4_max(amaxv[4*l], amaxv[4*l+2]);
  645. for (int l = 0; l < 1; l++) amaxv[8*l] = wasm_f32x4_max(amaxv[8*l], amaxv[8*l+4]);
  646. amax = MAX(
  647. MAX(wasm_f32x4_extract_lane(amaxv[0], 0), wasm_f32x4_extract_lane(amaxv[0], 1)),
  648. MAX(wasm_f32x4_extract_lane(amaxv[0], 2), wasm_f32x4_extract_lane(amaxv[0], 3)));
  649. const float d = amax / ((1 << 3) - 1);
  650. const float id = d ? 1.0/d : 0.0;
  651. y[i].d = d;
  652. for (int l = 0; l < 8; l++) {
  653. const v128_t v = wasm_f32x4_mul(srcv[l], wasm_f32x4_splat(id));
  654. const v128_t vf = wasm_f32x4_add(v, wasm_f32x4_splat(8.5f));
  655. const v128_t vi = wasm_i32x4_trunc_sat_f32x4(vf);
  656. y[i].qs[2*l + 0] = wasm_i32x4_extract_lane(vi, 0) | (wasm_i32x4_extract_lane(vi, 1) << 4);
  657. y[i].qs[2*l + 1] = wasm_i32x4_extract_lane(vi, 2) | (wasm_i32x4_extract_lane(vi, 3) << 4);
  658. }
  659. }
  660. #else
  661. // scalar
  662. quantize_row_q4_0_reference(x, y, k);
  663. #endif
  664. }
  665. static void quantize_row_q4_1_reference(const float * restrict x, void * restrict vy, int k) {
  666. assert(k % QK == 0);
  667. const int nb = k / QK;
  668. block_q4_1 * restrict y = vy;
  669. uint8_t pp[QK/2];
  670. for (int i = 0; i < nb; i++) {
  671. float min = FLT_MAX;
  672. float max = -FLT_MAX;
  673. for (int l = 0; l < QK; l++) {
  674. const float v = x[i*QK + l];
  675. if (v < min) min = v;
  676. if (v > max) max = v;
  677. }
  678. const float d = (max - min) / ((1 << 4) - 1);
  679. const float id = d ? 1.0f/d : 0.0f;
  680. y[i].d = d;
  681. y[i].m = min;
  682. for (int l = 0; l < QK; l += 2) {
  683. const float v0 = (x[i*QK + l + 0] - min)*id;
  684. const float v1 = (x[i*QK + l + 1] - min)*id;
  685. const uint8_t vi0 = roundf(v0);
  686. const uint8_t vi1 = roundf(v1);
  687. assert(vi0 < 16);
  688. assert(vi1 < 16);
  689. pp[l/2] = vi0 | (vi1 << 4);
  690. }
  691. memcpy(y[i].qs, pp, sizeof(pp));
  692. }
  693. }
  694. static void quantize_row_q4_1(const float * restrict x, void * restrict vy, int k) {
  695. assert(k % QK == 0);
  696. const int nb = k / QK;
  697. block_q4_1 * restrict y = vy;
  698. #if defined(__AVX2__)
  699. for (int i = 0; i < nb; i++) {
  700. // Load elements into 4 AVX vectors
  701. __m256 v0 = _mm256_loadu_ps( x );
  702. __m256 v1 = _mm256_loadu_ps( x + 8 );
  703. __m256 v2 = _mm256_loadu_ps( x + 16 );
  704. __m256 v3 = _mm256_loadu_ps( x + 24 );
  705. x += 32;
  706. // Compute max for the block
  707. __m256 vmax;
  708. vmax = _mm256_max_ps( v0, v1 );
  709. vmax = _mm256_max_ps( vmax, v2 );
  710. vmax = _mm256_max_ps( vmax, v3 );
  711. __m128 max4 = _mm_max_ps( _mm256_extractf128_ps( vmax, 1 ), _mm256_castps256_ps128( vmax ) );
  712. max4 = _mm_max_ps( max4, _mm_movehl_ps( max4, max4 ) );
  713. max4 = _mm_max_ss( max4, _mm_movehdup_ps( max4 ) );
  714. const float maxScalar = _mm_cvtss_f32( max4 );
  715. // Compute min for the block
  716. __m256 vmin;
  717. vmin = _mm256_min_ps( v0, v1 );
  718. vmin = _mm256_min_ps( vmin, v2 );
  719. vmin = _mm256_min_ps( vmin, v3 );
  720. __m128 min4 = _mm_min_ps( _mm256_extractf128_ps( vmin, 1 ), _mm256_castps256_ps128( vmin ) );
  721. min4 = _mm_min_ps( min4, _mm_movehl_ps( min4, min4 ) );
  722. min4 = _mm_min_ss( min4, _mm_movehdup_ps( min4 ) );
  723. const float minScalar = _mm_cvtss_f32( min4 );
  724. // Quantize these floats
  725. const float d = (maxScalar - minScalar) / ((1 << 4) - 1);
  726. const float id = d ? 1.0f/d : 0.0f;
  727. y[i].m = minScalar;
  728. y[i].d = d;
  729. // x = (x-min)*id
  730. const __m256 mul = _mm256_set1_ps( id );
  731. const __m256 off = _mm256_set1_ps( minScalar );
  732. v0 = _mm256_mul_ps( _mm256_sub_ps( v0, off ), mul );
  733. v1 = _mm256_mul_ps( _mm256_sub_ps( v1, off ), mul );
  734. v2 = _mm256_mul_ps( _mm256_sub_ps( v2, off ), mul );
  735. v3 = _mm256_mul_ps( _mm256_sub_ps( v3, off ), mul );
  736. // Round to nearest integer
  737. v0 = _mm256_round_ps( v0, _MM_ROUND_NEAREST );
  738. v1 = _mm256_round_ps( v1, _MM_ROUND_NEAREST );
  739. v2 = _mm256_round_ps( v2, _MM_ROUND_NEAREST );
  740. v3 = _mm256_round_ps( v3, _MM_ROUND_NEAREST );
  741. // Convert floats to integers
  742. __m256i i0 = _mm256_cvtps_epi32( v0 );
  743. __m256i i1 = _mm256_cvtps_epi32( v1 );
  744. __m256i i2 = _mm256_cvtps_epi32( v2 );
  745. __m256i i3 = _mm256_cvtps_epi32( v3 );
  746. // Convert int32 to int16
  747. i0 = _mm256_packs_epi32( i0, i1 ); // 0, 1, 2, 3, 8, 9, 10, 11, 4, 5, 6, 7, 12, 13, 14, 15
  748. i2 = _mm256_packs_epi32( i2, i3 ); // 16, 17, 18, 19, 24, 25, 26, 27, 20, 21, 22, 23, 28, 29, 30, 31
  749. // Convert int16 to int8
  750. i0 = _mm256_packs_epi16( i0, i2 ); // 0, 1, 2, 3, 8, 9, 10, 11, 16, 17, 18, 19, 24, 25, 26, 27, 4, 5, 6, 7, 12, 13, 14, 15, 20, 21, 22, 23, 28, 29, 30, 31
  751. // We got our precious signed bytes, but the order is now wrong
  752. // These AVX2 pack instructions process 16-byte pieces independently
  753. // The following instruction is fixing the order
  754. const __m256i perm = _mm256_setr_epi32( 0, 4, 1, 5, 2, 6, 3, 7 );
  755. i0 = _mm256_permutevar8x32_epi32( i0, perm );
  756. // Compress the vector into 4 bit/value, and store
  757. __m128i res = packNibbles( i0 );
  758. _mm_storeu_si128( ( __m128i* )y[i].qs, res );
  759. }
  760. #elif __ARM_NEON
  761. for (int i = 0; i < nb; i++) {
  762. float32x4_t srcv[8];
  763. float32x4_t minv[8];
  764. float32x4_t maxv[8];
  765. for (int l = 0; l < 8; l++) srcv[l] = vld1q_f32(x + i*32 + 4*l);
  766. for (int l = 0; l < 4; l++) minv[2*l] = vminq_f32(srcv[2*l], srcv[2*l + 1]);
  767. for (int l = 0; l < 2; l++) minv[4*l] = vminq_f32(minv[4*l], minv[4*l + 2]);
  768. for (int l = 0; l < 1; l++) minv[8*l] = vminq_f32(minv[8*l], minv[8*l + 4]);
  769. for (int l = 0; l < 4; l++) maxv[2*l] = vmaxq_f32(srcv[2*l], srcv[2*l + 1]);
  770. for (int l = 0; l < 2; l++) maxv[4*l] = vmaxq_f32(maxv[4*l], maxv[4*l + 2]);
  771. for (int l = 0; l < 1; l++) maxv[8*l] = vmaxq_f32(maxv[8*l], maxv[8*l + 4]);
  772. const float min = vminvq_f32(minv[0]);
  773. const float max = vmaxvq_f32(maxv[0]);
  774. const float d = (max - min) / ((1 << 4) - 1);
  775. const float id = d ? 1.0f/d : 0.0f;
  776. y[i].d = d;
  777. y[i].m = min;
  778. const float32x4_t minv0 = vdupq_n_f32(min);
  779. for (int l = 0; l < 8; l++) {
  780. const float32x4_t v = vmulq_n_f32(vsubq_f32(srcv[l], minv0), id);
  781. const int32x4_t vi = vcvtq_s32_f32(v);
  782. y[i].qs[2*l + 0] = vgetq_lane_s32(vi, 0) | (vgetq_lane_s32(vi, 1) << 4);
  783. y[i].qs[2*l + 1] = vgetq_lane_s32(vi, 2) | (vgetq_lane_s32(vi, 3) << 4);
  784. }
  785. }
  786. #else
  787. // scalar
  788. quantize_row_q4_1_reference(x, vy, k);
  789. #endif
  790. }
  791. static void dequantize_row_q4_0(const void * restrict vx, float * restrict y, int k) {
  792. assert(k % QK == 0);
  793. const int nb = k / QK;
  794. const block_q4_0 * restrict x = vx;
  795. #if defined(__AVX2__)
  796. for (int i = 0; i < nb; i++) {
  797. // scale factor
  798. const __m256 d_v = _mm256_broadcast_ss(&x[i].d);
  799. const uint8_t * restrict pp = x[i].qs;
  800. for (int l = 0; l < QK; l += 32) {
  801. // Load 32x4-bit integers into 32x8-bit integers
  802. __m256i vx8 = bytesFromNibbles(pp+l/2);
  803. // Subtract 8 from the integers
  804. vx8 = _mm256_sub_epi8(vx8, _mm256_set1_epi8(8));
  805. // Convert to 16-bit int
  806. const __m256i vx16_lo = _mm256_cvtepi8_epi16(_mm256_extracti128_si256(vx8, 0));
  807. const __m256i vx16_hi = _mm256_cvtepi8_epi16(_mm256_extracti128_si256(vx8, 1));
  808. // Convert to 32-bit int -> float 32
  809. const __m256 vf[4] = {
  810. _mm256_cvtepi32_ps(_mm256_cvtepi16_epi32(_mm256_extracti128_si256(vx16_lo, 0))),
  811. _mm256_cvtepi32_ps(_mm256_cvtepi16_epi32(_mm256_extracti128_si256(vx16_lo, 1))),
  812. _mm256_cvtepi32_ps(_mm256_cvtepi16_epi32(_mm256_extracti128_si256(vx16_hi, 0))),
  813. _mm256_cvtepi32_ps(_mm256_cvtepi16_epi32(_mm256_extracti128_si256(vx16_hi, 1)))
  814. };
  815. // Scale and store
  816. for (int j = 0; j < 4; j++) {
  817. const __m256 result = _mm256_mul_ps(vf[j], d_v);
  818. _mm256_storeu_ps(y + i * QK + l + j*8, result);
  819. }
  820. }
  821. }
  822. #elif defined(__ARM_NEON)
  823. for (int i = 0; i < nb; i++) {
  824. const float32x4_t vd = vdupq_n_f32(x[i].d);
  825. const uint8_t * restrict pp = x[i].qs;
  826. for (int l = 0; l < QK; l += 16) {
  827. // Load 16x4-bit integers into 8x8-bit integers
  828. const uint8x8_t v8 = vld1_u8(pp + l/2);
  829. // Expand 4-bit qs to 8-bit bytes
  830. const uint8x8_t v0 = vand_u8(v8, vdup_n_u8(0x0f));
  831. const uint8x8_t v1 = vshr_n_u8(v8, 4);
  832. // Convert to signed 8-bit integers
  833. const int8x8_t vs_0 = vreinterpret_s8_u8(v0);
  834. const int8x8_t vs_1 = vreinterpret_s8_u8(v1);
  835. // Subtract 8 from each byte
  836. const int8x8_t vb_0 = vsub_s8(vs_0, vdup_n_s8(8));
  837. const int8x8_t vb_1 = vsub_s8(vs_1, vdup_n_s8(8));
  838. // Interleave and combine
  839. const int8x8_t vx_0 = vzip1_s8(vb_0, vb_1);
  840. const int8x8_t vx_1 = vzip2_s8(vb_0, vb_1);
  841. const int8x16_t vq = vcombine_s8(vx_0, vx_1);
  842. // convert to 2x int16x8_t
  843. const int16x8_t vi_0 = vmovl_s8(vget_low_s8 (vq));
  844. const int16x8_t vi_1 = vmovl_s8(vget_high_s8(vq));
  845. // convert to 4x float32x4_t
  846. const float32x4_t vf_0 = vcvtq_f32_s32(vmovl_s16(vget_low_s16 (vi_0)));
  847. const float32x4_t vf_1 = vcvtq_f32_s32(vmovl_s16(vget_high_s16(vi_0)));
  848. const float32x4_t vf_2 = vcvtq_f32_s32(vmovl_s16(vget_low_s16 (vi_1)));
  849. const float32x4_t vf_3 = vcvtq_f32_s32(vmovl_s16(vget_high_s16(vi_1)));
  850. // Multiply by d
  851. const float32x4_t r0 = vmulq_f32(vf_0, vd);
  852. const float32x4_t r1 = vmulq_f32(vf_1, vd);
  853. const float32x4_t r2 = vmulq_f32(vf_2, vd);
  854. const float32x4_t r3 = vmulq_f32(vf_3, vd);
  855. // Store
  856. vst1q_f32(y + i*QK + l + 0, r0);
  857. vst1q_f32(y + i*QK + l + 4, r1);
  858. vst1q_f32(y + i*QK + l + 8, r2);
  859. vst1q_f32(y + i*QK + l + 12, r3);
  860. }
  861. }
  862. #else
  863. // scalar
  864. for (int i = 0; i < nb; i++) {
  865. const float d = x[i].d;
  866. const uint8_t * restrict pp = x[i].qs;
  867. for (int l = 0; l < QK; l += 2) {
  868. const uint8_t vi = pp[l/2];
  869. const int8_t vi0 = vi & 0xf;
  870. const int8_t vi1 = vi >> 4;
  871. const float v0 = (vi0 - 8)*d;
  872. const float v1 = (vi1 - 8)*d;
  873. //printf("d = %f, vi = %d, vi0 = %d, vi1 = %d, v0 = %f, v1 = %f\n", d, vi, vi0, vi1, v0, v1);
  874. y[i*QK + l + 0] = v0;
  875. y[i*QK + l + 1] = v1;
  876. assert(!isnan(y[i*QK + l + 0]));
  877. assert(!isnan(y[i*QK + l + 1]));
  878. }
  879. }
  880. #endif
  881. }
  882. static void dequantize_row_q4_1(const void * restrict vx, float * restrict y, int k) {
  883. assert(k % QK == 0);
  884. const int nb = k / QK;
  885. const block_q4_1 * restrict x = vx;
  886. #if defined(__AVX2__)
  887. for (int i = 0; i < nb; i++) {
  888. const __m256 d_v = _mm256_broadcast_ss(&x[i].d);
  889. const __m256 d_m = _mm256_broadcast_ss(&x[i].m);
  890. const uint8_t * restrict pp = x[i].qs;
  891. for (int l = 0; l < QK; l += 32) {
  892. // Load 32x4-bit integers into 32x8-bit integers
  893. __m256i vx8 = bytesFromNibbles(pp+l/2);
  894. // Convert to 16-bit int
  895. const __m256i vx16_lo = _mm256_cvtepi8_epi16(_mm256_extracti128_si256(vx8, 0));
  896. const __m256i vx16_hi = _mm256_cvtepi8_epi16(_mm256_extracti128_si256(vx8, 1));
  897. // Convert to 32-bit int -> float 32
  898. const __m256 vf[4] = {
  899. _mm256_cvtepi32_ps(_mm256_cvtepi16_epi32(_mm256_extracti128_si256(vx16_lo, 0))),
  900. _mm256_cvtepi32_ps(_mm256_cvtepi16_epi32(_mm256_extracti128_si256(vx16_lo, 1))),
  901. _mm256_cvtepi32_ps(_mm256_cvtepi16_epi32(_mm256_extracti128_si256(vx16_hi, 0))),
  902. _mm256_cvtepi32_ps(_mm256_cvtepi16_epi32(_mm256_extracti128_si256(vx16_hi, 1)))
  903. };
  904. // Scale, add m and store
  905. for (int j = 0; j < 4; j++) {
  906. const __m256 result = _mm256_add_ps(_mm256_mul_ps(vf[j], d_v), d_m);
  907. _mm256_storeu_ps(y + i * QK + l + j*8, result);
  908. }
  909. }
  910. }
  911. #elif defined(__ARM_NEON)
  912. for (int i = 0; i < nb; i++) {
  913. const float32x4_t vd = vdupq_n_f32(x[i].d);
  914. const float32x4_t vm = vdupq_n_f32(x[i].m);
  915. const uint8_t * restrict pp = x[i].qs;
  916. for (int l = 0; l < QK; l += 16) {
  917. // Load 16x4-bit integers into 8x8-bit integers
  918. const uint8x8_t v8 = vld1_u8(pp + l/2);
  919. // Expand 4-bit qs to 8-bit bytes
  920. const uint8x8_t v0 = vand_u8(v8, vdup_n_u8(0x0f));
  921. const uint8x8_t v1 = vshr_n_u8(v8, 4);
  922. // Interleave and combine
  923. const uint8x8_t vx_0 = vzip1_u8(v0, v1);
  924. const uint8x8_t vx_1 = vzip2_u8(v0, v1);
  925. const uint8x16_t vq = vcombine_u8(vx_0, vx_1);
  926. // convert to 2x uint16x8_t
  927. const uint16x8_t vi_0 = vmovl_u8(vget_low_u8 (vq));
  928. const uint16x8_t vi_1 = vmovl_u8(vget_high_u8(vq));
  929. // convert to 4x float32x4_t
  930. const float32x4_t vf_0 = vcvtq_f32_u32(vmovl_u16(vget_low_u16 (vi_0)));
  931. const float32x4_t vf_1 = vcvtq_f32_u32(vmovl_u16(vget_high_u16(vi_0)));
  932. const float32x4_t vf_2 = vcvtq_f32_u32(vmovl_u16(vget_low_u16 (vi_1)));
  933. const float32x4_t vf_3 = vcvtq_f32_u32(vmovl_u16(vget_high_u16(vi_1)));
  934. // multiply by d and add m
  935. const float32x4_t r0 = vmlaq_f32(vm, vf_0, vd);
  936. const float32x4_t r1 = vmlaq_f32(vm, vf_1, vd);
  937. const float32x4_t r2 = vmlaq_f32(vm, vf_2, vd);
  938. const float32x4_t r3 = vmlaq_f32(vm, vf_3, vd);
  939. // Store
  940. vst1q_f32(y + i*QK + l + 0, r0);
  941. vst1q_f32(y + i*QK + l + 4, r1);
  942. vst1q_f32(y + i*QK + l + 8, r2);
  943. vst1q_f32(y + i*QK + l + 12, r3);
  944. }
  945. }
  946. #else
  947. for (int i = 0; i < nb; i++) {
  948. const float d = x[i].d;
  949. const float m = x[i].m;
  950. const uint8_t * restrict pp = x[i].qs;
  951. for (int l = 0; l < QK; l += 2) {
  952. const uint8_t vi = pp[l/2];
  953. const int8_t vi0 = vi & 0xf;
  954. const int8_t vi1 = vi >> 4;
  955. const float v0 = vi0*d + m;
  956. const float v1 = vi1*d + m;
  957. y[i*QK + l + 0] = v0;
  958. y[i*QK + l + 1] = v1;
  959. assert(!isnan(y[i*QK + l + 0]));
  960. assert(!isnan(y[i*QK + l + 1]));
  961. }
  962. }
  963. #endif
  964. }
  965. //
  966. // simd mappings
  967. //
  968. // we define a common set of C macros which map to specific intrinsics based on the current architecture
  969. // we then implement the fundamental computation operations below using only these macros
  970. // adding support for new architectures requires to define the corresponding SIMD macros
  971. //
  972. // GGML_F32_STEP / GGML_F16_STEP
  973. // number of elements to process in a single step
  974. //
  975. // GGML_F32_EPR / GGML_F16_EPR
  976. // number of elements to fit in a single register
  977. //
  978. #if defined(__ARM_NEON) && defined(__ARM_FEATURE_FMA)
  979. #define GGML_SIMD
  980. // F32 NEON
  981. #define GGML_F32_STEP 16
  982. #define GGML_F32_EPR 4
  983. #define GGML_F32x4 float32x4_t
  984. #define GGML_F32x4_ZERO vdupq_n_f32(0.0f)
  985. #define GGML_F32x4_SET1(x) vdupq_n_f32(x)
  986. #define GGML_F32x4_LOAD vld1q_f32
  987. #define GGML_F32x4_STORE vst1q_f32
  988. #define GGML_F32x4_FMA(a, b, c) vfmaq_f32(a, b, c)
  989. #define GGML_F32x4_ADD vaddq_f32
  990. #define GGML_F32x4_MUL vmulq_f32
  991. #if defined(__ARM_FEATURE_QRDMX)
  992. #define GGML_F32x4_REDUCE_ONE(x) vaddvq_f32(x)
  993. #else
  994. #define GGML_F32x4_REDUCE_ONE(x) \
  995. (vgetq_lane_f32(x, 0) + \
  996. vgetq_lane_f32(x, 1) + \
  997. vgetq_lane_f32(x, 2) + \
  998. vgetq_lane_f32(x, 3))
  999. #endif
  1000. #define GGML_F32x4_REDUCE(res, x) \
  1001. { \
  1002. for (int i = 0; i < GGML_F32_ARR/2; ++i) { \
  1003. x[2*i] = vaddq_f32(x[2*i], x[2*i+1]); \
  1004. } \
  1005. for (int i = 0; i < GGML_F32_ARR/4; ++i) { \
  1006. x[4*i] = vaddq_f32(x[4*i], x[4*i+2]); \
  1007. } \
  1008. for (int i = 0; i < GGML_F32_ARR/8; ++i) { \
  1009. x[8*i] = vaddq_f32(x[8*i], x[8*i+4]); \
  1010. } \
  1011. res = GGML_F32x4_REDUCE_ONE(x[0]); \
  1012. }
  1013. #define GGML_F32_VEC GGML_F32x4
  1014. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1015. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1016. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1017. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1018. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1019. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1020. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1021. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1022. // F16 NEON
  1023. #if defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC)
  1024. #define GGML_F16_STEP 32
  1025. #define GGML_F16_EPR 8
  1026. #define GGML_F16x8 float16x8_t
  1027. #define GGML_F16x8_ZERO vdupq_n_f16(0.0f)
  1028. #define GGML_F16x8_SET1(x) vdupq_n_f16(x)
  1029. #define GGML_F16x8_LOAD vld1q_f16
  1030. #define GGML_F16x8_STORE vst1q_f16
  1031. #define GGML_F16x8_FMA(a, b, c) vfmaq_f16(a, b, c)
  1032. #define GGML_F16x8_ADD vaddq_f16
  1033. #define GGML_F16x8_MUL vmulq_f16
  1034. #define GGML_F16x8_REDUCE(res, x) \
  1035. { \
  1036. for (int i = 0; i < GGML_F16_ARR/2; ++i) { \
  1037. x[2*i] = vaddq_f16(x[2*i], x[2*i+1]); \
  1038. } \
  1039. for (int i = 0; i < GGML_F16_ARR/4; ++i) { \
  1040. x[4*i] = vaddq_f16(x[4*i], x[4*i+2]); \
  1041. } \
  1042. for (int i = 0; i < GGML_F16_ARR/8; ++i) { \
  1043. x[8*i] = vaddq_f16(x[8*i], x[8*i+4]); \
  1044. } \
  1045. const float32x4_t t0 = vcvt_f32_f16(vget_low_f16 (x[0])); \
  1046. const float32x4_t t1 = vcvt_f32_f16(vget_high_f16(x[0])); \
  1047. res = (ggml_float) vaddvq_f32(vaddq_f32(t0, t1)); \
  1048. }
  1049. #define GGML_F16_VEC GGML_F16x8
  1050. #define GGML_F16_VEC_ZERO GGML_F16x8_ZERO
  1051. #define GGML_F16_VEC_SET1 GGML_F16x8_SET1
  1052. #define GGML_F16_VEC_LOAD(p, i) GGML_F16x8_LOAD(p)
  1053. #define GGML_F16_VEC_STORE(p, r, i) GGML_F16x8_STORE(p, r[i])
  1054. #define GGML_F16_VEC_FMA GGML_F16x8_FMA
  1055. #define GGML_F16_VEC_ADD GGML_F16x8_ADD
  1056. #define GGML_F16_VEC_MUL GGML_F16x8_MUL
  1057. #define GGML_F16_VEC_REDUCE GGML_F16x8_REDUCE
  1058. #else
  1059. // if FP16 vector arithmetic is not supported, we use FP32 instead
  1060. // and take advantage of the vcvt_ functions to convert to/from FP16
  1061. #define GGML_F16_STEP 16
  1062. #define GGML_F16_EPR 4
  1063. #define GGML_F32Cx4 float32x4_t
  1064. #define GGML_F32Cx4_ZERO vdupq_n_f32(0.0f)
  1065. #define GGML_F32Cx4_SET1(x) vdupq_n_f32(x)
  1066. #define GGML_F32Cx4_LOAD(x) vcvt_f32_f16(vld1_f16(x))
  1067. #define GGML_F32Cx4_STORE(x, y) vst1_f16(x, vcvt_f16_f32(y))
  1068. #define GGML_F32Cx4_FMA(a, b, c) vfmaq_f32(a, b, c)
  1069. #define GGML_F32Cx4_ADD vaddq_f32
  1070. #define GGML_F32Cx4_MUL vmulq_f32
  1071. #define GGML_F32Cx4_REDUCE GGML_F32x4_REDUCE
  1072. #define GGML_F16_VEC GGML_F32Cx4
  1073. #define GGML_F16_VEC_ZERO GGML_F32Cx4_ZERO
  1074. #define GGML_F16_VEC_SET1 GGML_F32Cx4_SET1
  1075. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx4_LOAD(p)
  1076. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx4_STORE(p, r[i])
  1077. #define GGML_F16_VEC_FMA GGML_F32Cx4_FMA
  1078. #define GGML_F16_VEC_ADD GGML_F32Cx4_ADD
  1079. #define GGML_F16_VEC_MUL GGML_F32Cx4_MUL
  1080. #define GGML_F16_VEC_REDUCE GGML_F32Cx4_REDUCE
  1081. #endif
  1082. #elif defined(__AVX__)
  1083. #define GGML_SIMD
  1084. // F32 AVX
  1085. #define GGML_F32_STEP 32
  1086. #define GGML_F32_EPR 8
  1087. #define GGML_F32x8 __m256
  1088. #define GGML_F32x8_ZERO _mm256_setzero_ps()
  1089. #define GGML_F32x8_SET1(x) _mm256_set1_ps(x)
  1090. #define GGML_F32x8_LOAD _mm256_loadu_ps
  1091. #define GGML_F32x8_STORE _mm256_storeu_ps
  1092. #if defined(__FMA__)
  1093. #define GGML_F32x8_FMA(a, b, c) _mm256_fmadd_ps(b, c, a)
  1094. #else
  1095. #define GGML_F32x8_FMA(a, b, c) _mm256_add_ps(_mm256_mul_ps(b, c), a)
  1096. #endif
  1097. #define GGML_F32x8_ADD _mm256_add_ps
  1098. #define GGML_F32x8_MUL _mm256_mul_ps
  1099. #define GGML_F32x8_REDUCE(res, x) \
  1100. { \
  1101. for (int i = 0; i < GGML_F32_ARR/2; ++i) { \
  1102. x[2*i] = _mm256_add_ps(x[2*i], x[2*i+1]); \
  1103. } \
  1104. for (int i = 0; i < GGML_F32_ARR/4; ++i) { \
  1105. x[4*i] = _mm256_add_ps(x[4*i], x[4*i+2]); \
  1106. } \
  1107. for (int i = 0; i < GGML_F32_ARR/8; ++i) { \
  1108. x[8*i] = _mm256_add_ps(x[8*i], x[8*i+4]); \
  1109. } \
  1110. const __m128 t0 = _mm_add_ps(_mm256_castps256_ps128(x[0]), \
  1111. _mm256_extractf128_ps(x[0], 1)); \
  1112. const __m128 t1 = _mm_hadd_ps(t0, t0); \
  1113. res = _mm_cvtss_f32(_mm_hadd_ps(t1, t1)); \
  1114. }
  1115. // TODO: is this optimal ?
  1116. #define GGML_F32_VEC GGML_F32x8
  1117. #define GGML_F32_VEC_ZERO GGML_F32x8_ZERO
  1118. #define GGML_F32_VEC_SET1 GGML_F32x8_SET1
  1119. #define GGML_F32_VEC_LOAD GGML_F32x8_LOAD
  1120. #define GGML_F32_VEC_STORE GGML_F32x8_STORE
  1121. #define GGML_F32_VEC_FMA GGML_F32x8_FMA
  1122. #define GGML_F32_VEC_ADD GGML_F32x8_ADD
  1123. #define GGML_F32_VEC_MUL GGML_F32x8_MUL
  1124. #define GGML_F32_VEC_REDUCE GGML_F32x8_REDUCE
  1125. // F16 AVX
  1126. #define GGML_F16_STEP 32
  1127. #define GGML_F16_EPR 8
  1128. // F16 arithmetic is not supported by AVX, so we use F32 instead
  1129. #define GGML_F32Cx8 __m256
  1130. #define GGML_F32Cx8_ZERO _mm256_setzero_ps()
  1131. #define GGML_F32Cx8_SET1(x) _mm256_set1_ps(x)
  1132. #if defined(__F16C__)
  1133. // the _mm256_cvt intrinsics require F16C
  1134. #define GGML_F32Cx8_LOAD(x) _mm256_cvtph_ps(_mm_loadu_si128((__m128i *)(x)))
  1135. #define GGML_F32Cx8_STORE(x, y) _mm_storeu_si128((__m128i *)(x), _mm256_cvtps_ph(y, 0))
  1136. #else
  1137. static inline __m256 __avx_f32cx8_load(ggml_fp16_t *x) {
  1138. float tmp[8];
  1139. for (int i = 0; i < 8; i++)
  1140. tmp[i] = GGML_FP16_TO_FP32(x[i]);
  1141. return _mm256_loadu_ps(tmp);
  1142. }
  1143. static inline void __avx_f32cx8_store(ggml_fp16_t *x, __m256 y) {
  1144. float arr[8];
  1145. _mm256_storeu_ps(arr, y);
  1146. for (int i = 0; i < 8; i++)
  1147. x[i] = GGML_FP32_TO_FP16(arr[i]);
  1148. }
  1149. #define GGML_F32Cx8_LOAD(x) __avx_f32cx8_load(x)
  1150. #define GGML_F32Cx8_STORE(x, y) __avx_f32cx8_store(x, y)
  1151. #endif
  1152. #define GGML_F32Cx8_FMA GGML_F32x8_FMA
  1153. #define GGML_F32Cx8_ADD _mm256_add_ps
  1154. #define GGML_F32Cx8_MUL _mm256_mul_ps
  1155. #define GGML_F32Cx8_REDUCE GGML_F32x8_REDUCE
  1156. #define GGML_F16_VEC GGML_F32Cx8
  1157. #define GGML_F16_VEC_ZERO GGML_F32Cx8_ZERO
  1158. #define GGML_F16_VEC_SET1 GGML_F32Cx8_SET1
  1159. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx8_LOAD(p)
  1160. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx8_STORE(p, r[i])
  1161. #define GGML_F16_VEC_FMA GGML_F32Cx8_FMA
  1162. #define GGML_F16_VEC_ADD GGML_F32Cx8_ADD
  1163. #define GGML_F16_VEC_MUL GGML_F32Cx8_MUL
  1164. #define GGML_F16_VEC_REDUCE GGML_F32Cx8_REDUCE
  1165. #elif defined(__POWER9_VECTOR__)
  1166. #define GGML_SIMD
  1167. // F32 POWER9
  1168. #define GGML_F32_STEP 32
  1169. #define GGML_F32_EPR 4
  1170. #define GGML_F32x4 vector float
  1171. #define GGML_F32x4_ZERO 0.0f
  1172. #define GGML_F32x4_SET1 vec_splats
  1173. #define GGML_F32x4_LOAD(p) vec_xl(0, p)
  1174. #define GGML_F32x4_STORE(p, r) vec_xst(r, 0, p)
  1175. #define GGML_F32x4_FMA(a, b, c) vec_madd(b, c, a)
  1176. #define GGML_F32x4_ADD vec_add
  1177. #define GGML_F32x4_MUL vec_mul
  1178. #define GGML_F32x4_REDUCE(res, x) \
  1179. { \
  1180. for (int i = 0; i < GGML_F32_ARR/2; ++i) { \
  1181. x[2*i] = vec_add(x[2*i], x[2*i+1]); \
  1182. } \
  1183. for (int i = 0; i < GGML_F32_ARR/4; ++i) { \
  1184. x[4*i] = vec_add(x[4*i], x[4*i+2]); \
  1185. } \
  1186. for (int i = 0; i < GGML_F32_ARR/8; ++i) { \
  1187. x[8*i] = vec_add(x[8*i], x[8*i+4]); \
  1188. } \
  1189. res = vec_extract(x[0], 0) + \
  1190. vec_extract(x[0], 1) + \
  1191. vec_extract(x[0], 2) + \
  1192. vec_extract(x[0], 3); \
  1193. }
  1194. #define GGML_F32_VEC GGML_F32x4
  1195. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1196. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1197. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1198. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1199. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1200. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1201. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1202. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1203. // F16 POWER9
  1204. #define GGML_F16_STEP GGML_F32_STEP
  1205. #define GGML_F16_EPR GGML_F32_EPR
  1206. #define GGML_F16_VEC GGML_F32x4
  1207. #define GGML_F16_VEC_ZERO GGML_F32x4_ZERO
  1208. #define GGML_F16_VEC_SET1 GGML_F32x4_SET1
  1209. #define GGML_F16_VEC_FMA GGML_F32x4_FMA
  1210. #define GGML_F16_VEC_REDUCE GGML_F32x4_REDUCE
  1211. // Use vec_xl, not vec_ld, in case the load address is not aligned.
  1212. #define GGML_F16_VEC_LOAD(p, i) (i & 0x1) ? \
  1213. vec_extract_fp32_from_shorth(vec_xl(0, p - GGML_F16_EPR)) : \
  1214. vec_extract_fp32_from_shortl(vec_xl(0, p))
  1215. #define GGML_ENDIAN_BYTE(i) ((unsigned char *)&(uint16_t){1})[i]
  1216. #define GGML_F16_VEC_STORE(p, r, i) \
  1217. if (i & 0x1) \
  1218. vec_xst(vec_pack_to_short_fp32(r[i - GGML_ENDIAN_BYTE(1)], \
  1219. r[i - GGML_ENDIAN_BYTE(0)]), \
  1220. 0, p - GGML_F16_EPR)
  1221. #elif defined(__wasm_simd128__)
  1222. #define GGML_SIMD
  1223. // F32 WASM
  1224. #define GGML_F32_STEP 16
  1225. #define GGML_F32_EPR 4
  1226. #define GGML_F32x4 v128_t
  1227. #define GGML_F32x4_ZERO wasm_f32x4_splat(0.0f)
  1228. #define GGML_F32x4_SET1(x) wasm_f32x4_splat(x)
  1229. #define GGML_F32x4_LOAD wasm_v128_load
  1230. #define GGML_F32x4_STORE wasm_v128_store
  1231. #define GGML_F32x4_FMA(a, b, c) wasm_f32x4_add(wasm_f32x4_mul(b, c), a)
  1232. #define GGML_F32x4_ADD wasm_f32x4_add
  1233. #define GGML_F32x4_MUL wasm_f32x4_mul
  1234. #define GGML_F32x4_REDUCE(res, x) \
  1235. { \
  1236. for (int i = 0; i < GGML_F32_ARR/2; ++i) { \
  1237. x[2*i] = wasm_f32x4_add(x[2*i], x[2*i+1]); \
  1238. } \
  1239. for (int i = 0; i < GGML_F32_ARR/4; ++i) { \
  1240. x[4*i] = wasm_f32x4_add(x[4*i], x[4*i+2]); \
  1241. } \
  1242. for (int i = 0; i < GGML_F32_ARR/8; ++i) { \
  1243. x[8*i] = wasm_f32x4_add(x[8*i], x[8*i+4]); \
  1244. } \
  1245. res = wasm_f32x4_extract_lane(x[0], 0) + \
  1246. wasm_f32x4_extract_lane(x[0], 1) + \
  1247. wasm_f32x4_extract_lane(x[0], 2) + \
  1248. wasm_f32x4_extract_lane(x[0], 3); \
  1249. }
  1250. #define GGML_F32_VEC GGML_F32x4
  1251. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1252. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1253. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1254. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1255. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1256. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1257. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1258. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1259. // F16 WASM
  1260. #define GGML_F16_STEP 16
  1261. #define GGML_F16_EPR 4
  1262. inline static v128_t __wasm_f16x4_load(const ggml_fp16_t * p) {
  1263. float tmp[4];
  1264. tmp[0] = GGML_FP16_TO_FP32(p[0]);
  1265. tmp[1] = GGML_FP16_TO_FP32(p[1]);
  1266. tmp[2] = GGML_FP16_TO_FP32(p[2]);
  1267. tmp[3] = GGML_FP16_TO_FP32(p[3]);
  1268. return wasm_v128_load(tmp);
  1269. }
  1270. inline static void __wasm_f16x4_store(ggml_fp16_t * p, v128_t x) {
  1271. float tmp[4];
  1272. wasm_v128_store(tmp, x);
  1273. p[0] = GGML_FP32_TO_FP16(tmp[0]);
  1274. p[1] = GGML_FP32_TO_FP16(tmp[1]);
  1275. p[2] = GGML_FP32_TO_FP16(tmp[2]);
  1276. p[3] = GGML_FP32_TO_FP16(tmp[3]);
  1277. }
  1278. #define GGML_F16x4 v128_t
  1279. #define GGML_F16x4_ZERO wasm_f32x4_splat(0.0f)
  1280. #define GGML_F16x4_SET1(x) wasm_f32x4_splat(x)
  1281. #define GGML_F16x4_LOAD(x) __wasm_f16x4_load(x)
  1282. #define GGML_F16x4_STORE(x, y) __wasm_f16x4_store(x, y)
  1283. #define GGML_F16x4_FMA GGML_F32x4_FMA
  1284. #define GGML_F16x4_ADD wasm_f32x4_add
  1285. #define GGML_F16x4_MUL wasm_f32x4_mul
  1286. #define GGML_F16x4_REDUCE(res, x) \
  1287. { \
  1288. for (int i = 0; i < GGML_F16_ARR/2; ++i) { \
  1289. x[2*i] = wasm_f32x4_add(x[2*i], x[2*i+1]); \
  1290. } \
  1291. for (int i = 0; i < GGML_F16_ARR/4; ++i) { \
  1292. x[4*i] = wasm_f32x4_add(x[4*i], x[4*i+2]); \
  1293. } \
  1294. for (int i = 0; i < GGML_F16_ARR/8; ++i) { \
  1295. x[8*i] = wasm_f32x4_add(x[8*i], x[8*i+4]); \
  1296. } \
  1297. res = wasm_f32x4_extract_lane(x[0], 0) + \
  1298. wasm_f32x4_extract_lane(x[0], 1) + \
  1299. wasm_f32x4_extract_lane(x[0], 2) + \
  1300. wasm_f32x4_extract_lane(x[0], 3); \
  1301. }
  1302. #define GGML_F16_VEC GGML_F16x4
  1303. #define GGML_F16_VEC_ZERO GGML_F16x4_ZERO
  1304. #define GGML_F16_VEC_SET1 GGML_F16x4_SET1
  1305. #define GGML_F16_VEC_LOAD(p, i) GGML_F16x4_LOAD(p)
  1306. #define GGML_F16_VEC_STORE(p, r, i) GGML_F16x4_STORE(p, r[i])
  1307. #define GGML_F16_VEC_FMA GGML_F16x4_FMA
  1308. #define GGML_F16_VEC_ADD GGML_F16x4_ADD
  1309. #define GGML_F16_VEC_MUL GGML_F16x4_MUL
  1310. #define GGML_F16_VEC_REDUCE GGML_F16x4_REDUCE
  1311. #elif defined(__SSE3__)
  1312. #define GGML_SIMD
  1313. // F32 SSE
  1314. #define GGML_F32_STEP 32
  1315. #define GGML_F32_EPR 4
  1316. #define GGML_F32x4 __m128
  1317. #define GGML_F32x4_ZERO _mm_setzero_ps()
  1318. #define GGML_F32x4_SET1(x) _mm_set1_ps(x)
  1319. #define GGML_F32x4_LOAD _mm_loadu_ps
  1320. #define GGML_F32x4_STORE _mm_storeu_ps
  1321. #if defined(__FMA__)
  1322. // TODO: Does this work?
  1323. #define GGML_F32x4_FMA(a, b, c) _mm_fmadd_ps(b, c, a)
  1324. #else
  1325. #define GGML_F32x4_FMA(a, b, c) _mm_add_ps(_mm_mul_ps(b, c), a)
  1326. #endif
  1327. #define GGML_F32x4_ADD _mm_add_ps
  1328. #define GGML_F32x4_MUL _mm_mul_ps
  1329. #define GGML_F32x4_REDUCE(res, x) \
  1330. { \
  1331. for (int i = 0; i < GGML_F32_ARR/2; ++i) { \
  1332. x[2*i] = _mm_add_ps(x[2*i], x[2*i+1]); \
  1333. } \
  1334. for (int i = 0; i < GGML_F32_ARR/4; ++i) { \
  1335. x[4*i] = _mm_add_ps(x[4*i], x[4*i+2]); \
  1336. } \
  1337. for (int i = 0; i < GGML_F32_ARR/8; ++i) { \
  1338. x[8*i] = _mm_add_ps(x[8*i], x[8*i+4]); \
  1339. } \
  1340. const __m128 t0 = _mm_hadd_ps(x[0], x[0]); \
  1341. res = _mm_cvtss_f32(_mm_hadd_ps(t0, t0)); \
  1342. }
  1343. // TODO: is this optimal ?
  1344. #define GGML_F32_VEC GGML_F32x4
  1345. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1346. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1347. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1348. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1349. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1350. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1351. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1352. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1353. // F16 SSE
  1354. #define GGML_F16_STEP 32
  1355. #define GGML_F16_EPR 4
  1356. static inline __m128 __sse_f16x4_load(ggml_fp16_t *x) {
  1357. float tmp[4];
  1358. tmp[0] = GGML_FP16_TO_FP32(x[0]);
  1359. tmp[1] = GGML_FP16_TO_FP32(x[1]);
  1360. tmp[2] = GGML_FP16_TO_FP32(x[2]);
  1361. tmp[3] = GGML_FP16_TO_FP32(x[3]);
  1362. return _mm_loadu_ps(tmp);
  1363. }
  1364. static inline void __sse_f16x4_store(ggml_fp16_t *x, __m128 y) {
  1365. float arr[4];
  1366. _mm_storeu_ps(arr, y);
  1367. x[0] = GGML_FP32_TO_FP16(arr[0]);
  1368. x[1] = GGML_FP32_TO_FP16(arr[1]);
  1369. x[2] = GGML_FP32_TO_FP16(arr[2]);
  1370. x[3] = GGML_FP32_TO_FP16(arr[3]);
  1371. }
  1372. #define GGML_F32Cx4 __m128
  1373. #define GGML_F32Cx4_ZERO _mm_setzero_ps()
  1374. #define GGML_F32Cx4_SET1(x) _mm_set1_ps(x)
  1375. #define GGML_F32Cx4_LOAD(x) __sse_f16x4_load(x)
  1376. #define GGML_F32Cx4_STORE(x, y) __sse_f16x4_store(x, y)
  1377. #define GGML_F32Cx4_FMA GGML_F32x4_FMA
  1378. #define GGML_F32Cx4_ADD _mm_add_ps
  1379. #define GGML_F32Cx4_MUL _mm_mul_ps
  1380. #define GGML_F32Cx4_REDUCE GGML_F32x4_REDUCE
  1381. #define GGML_F16_VEC GGML_F32Cx4
  1382. #define GGML_F16_VEC_ZERO GGML_F32Cx4_ZERO
  1383. #define GGML_F16_VEC_SET1 GGML_F32Cx4_SET1
  1384. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx4_LOAD(p)
  1385. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx4_STORE(p, r[i])
  1386. #define GGML_F16_VEC_FMA GGML_F32Cx4_FMA
  1387. #define GGML_F16_VEC_ADD GGML_F32Cx4_ADD
  1388. #define GGML_F16_VEC_MUL GGML_F32Cx4_MUL
  1389. #define GGML_F16_VEC_REDUCE GGML_F32Cx4_REDUCE
  1390. #endif
  1391. // GGML_F32_ARR / GGML_F16_ARR
  1392. // number of registers to use per step
  1393. #ifdef GGML_SIMD
  1394. #define GGML_F32_ARR (GGML_F32_STEP/GGML_F32_EPR)
  1395. #define GGML_F16_ARR (GGML_F16_STEP/GGML_F16_EPR)
  1396. #endif
  1397. //
  1398. // fundamental operations
  1399. //
  1400. inline static void ggml_vec_set_i8(const int n, int8_t * x, const int8_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1401. inline static void ggml_vec_set_i16(const int n, int16_t * x, const int16_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1402. inline static void ggml_vec_set_i32(const int n, int32_t * x, const int32_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1403. inline static void ggml_vec_set_f16(const int n, ggml_fp16_t * x, const int32_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1404. inline static void ggml_vec_add_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i] + y[i]; }
  1405. inline static void ggml_vec_acc_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] += x[i]; }
  1406. inline static void ggml_vec_acc1_f32(const int n, float * y, const float v) { for (int i = 0; i < n; ++i) y[i] += v; }
  1407. inline static void ggml_vec_sub_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i] - y[i]; }
  1408. inline static void ggml_vec_set_f32 (const int n, float * x, const float v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1409. inline static void ggml_vec_cpy_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i]; }
  1410. inline static void ggml_vec_neg_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = -x[i]; }
  1411. inline static void ggml_vec_mul_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i]*y[i]; }
  1412. inline static void ggml_vec_div_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i]/y[i]; }
  1413. inline static void ggml_vec_dot_f32(const int n, float * restrict s, const float * restrict x, const float * restrict y) {
  1414. #ifdef GGML_SIMD
  1415. float sumf = 0.0f;
  1416. const int np = (n & ~(GGML_F32_STEP - 1));
  1417. GGML_F32_VEC sum[GGML_F32_ARR] = { GGML_F32_VEC_ZERO };
  1418. GGML_F32_VEC ax[GGML_F32_ARR];
  1419. GGML_F32_VEC ay[GGML_F32_ARR];
  1420. for (int i = 0; i < np; i += GGML_F32_STEP) {
  1421. for (int j = 0; j < GGML_F32_ARR; j++) {
  1422. ax[j] = GGML_F32_VEC_LOAD(x + i + j*GGML_F32_EPR);
  1423. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  1424. sum[j] = GGML_F32_VEC_FMA(sum[j], ax[j], ay[j]);
  1425. }
  1426. }
  1427. // reduce sum0..sum3 to sum0
  1428. GGML_F32_VEC_REDUCE(sumf, sum);
  1429. // leftovers
  1430. for (int i = np; i < n; ++i) {
  1431. sumf += x[i]*y[i];
  1432. }
  1433. #else
  1434. // scalar
  1435. ggml_float sumf = 0.0;
  1436. for (int i = 0; i < n; ++i) {
  1437. sumf += (ggml_float)(x[i]*y[i]);
  1438. }
  1439. #endif
  1440. *s = sumf;
  1441. }
  1442. #if __AVX512F__ && QK == 32
  1443. static inline __m512 dot_q4_0_oneblock_avx512(
  1444. __m512 acc,
  1445. const block_q4_0 * restrict x,
  1446. const block_q4_0 * restrict y,
  1447. int i
  1448. ) {
  1449. // Compute combined scale for the block
  1450. __m512 d = _mm512_set1_ps( x[i].d * y[i].d );
  1451. __m256i bx = bytesFromNibbles( x[i].qs );
  1452. __m256i by = bytesFromNibbles( y[i].qs );
  1453. // Now we have a vector with bytes in [ 0 .. 15 ] interval. Offset them into [ -8 .. +7 ] interval.
  1454. const __m256i off = _mm256_set1_epi8( 8 );
  1455. bx = _mm256_sub_epi8( bx, off );
  1456. by = _mm256_sub_epi8( by, off );
  1457. // Sign-extend 16 signed bytes into int16_t
  1458. __m512i x32 = _mm512_cvtepi8_epi16( bx );
  1459. __m512i y32 = _mm512_cvtepi8_epi16( by );
  1460. // Compute products of int16_t integers, add pairwise
  1461. __m512i i64 = _mm512_madd_epi16( x32, y32 );
  1462. // Convert int32_t to float
  1463. __m512 p = _mm512_cvtepi32_ps( i64 );
  1464. // Apply the scale, and accumulate
  1465. return _mm512_fmadd_ps( d, p, acc );
  1466. }
  1467. #endif
  1468. inline static void ggml_vec_dot_f16(const int n, float * restrict s, ggml_fp16_t * restrict x, ggml_fp16_t * restrict y) {
  1469. ggml_float sumf = 0.0;
  1470. #if defined(GGML_SIMD)
  1471. const int np = (n & ~(GGML_F16_STEP - 1));
  1472. GGML_F16_VEC sum[GGML_F16_ARR] = { GGML_F16_VEC_ZERO };
  1473. GGML_F16_VEC ax[GGML_F16_ARR];
  1474. GGML_F16_VEC ay[GGML_F16_ARR];
  1475. for (int i = 0; i < np; i += GGML_F16_STEP) {
  1476. for (int j = 0; j < GGML_F16_ARR; j++) {
  1477. ax[j] = GGML_F16_VEC_LOAD(x + i + j*GGML_F16_EPR, j);
  1478. ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
  1479. sum[j] = GGML_F16_VEC_FMA(sum[j], ax[j], ay[j]);
  1480. }
  1481. }
  1482. // reduce sum0..sum3 to sum0
  1483. GGML_F16_VEC_REDUCE(sumf, sum);
  1484. // leftovers
  1485. for (int i = np; i < n; ++i) {
  1486. sumf += (ggml_float)(GGML_FP16_TO_FP32(x[i])*GGML_FP16_TO_FP32(y[i]));
  1487. }
  1488. #else
  1489. for (int i = 0; i < n; ++i) {
  1490. sumf += (ggml_float)(GGML_FP16_TO_FP32(x[i])*GGML_FP16_TO_FP32(y[i]));
  1491. }
  1492. #endif
  1493. *s = sumf;
  1494. }
  1495. static void ggml_vec_dot_q4_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  1496. const int nb = n / QK;
  1497. assert(n % QK == 0);
  1498. assert(nb % 2 == 0);
  1499. const block_q4_0 * restrict x = vx;
  1500. const block_q4_0 * restrict y = vy;
  1501. float sumf = 0.0;
  1502. #if defined(__ARM_NEON)
  1503. float sum0 = 0.0f;
  1504. float sum1 = 0.0f;
  1505. for (int i = 0; i < nb; i += 2) {
  1506. const block_q4_0 * restrict x0 = &x[i + 0];
  1507. const block_q4_0 * restrict y0 = &y[i + 0];
  1508. const block_q4_0 * restrict x1 = &x[i + 1];
  1509. const block_q4_0 * restrict y1 = &y[i + 1];
  1510. const uint8x16_t m4b = vdupq_n_u8(0xf);
  1511. const int8x16_t s8b = vdupq_n_s8(0x8);
  1512. const uint8x16_t v0_0 = vld1q_u8(x0->qs);
  1513. const uint8x16_t v1_0 = vld1q_u8(y0->qs);
  1514. const uint8x16_t v0_1 = vld1q_u8(x1->qs);
  1515. const uint8x16_t v1_1 = vld1q_u8(y1->qs);
  1516. // 4-bit -> 8-bit
  1517. const int8x16_t v0_0l = vreinterpretq_s8_u8(vandq_u8(v0_0, m4b));
  1518. const int8x16_t v1_0l = vreinterpretq_s8_u8(vandq_u8(v1_0, m4b));
  1519. const int8x16_t v0_0h = vreinterpretq_s8_u8(vshrq_n_u8(v0_0, 4));
  1520. const int8x16_t v1_0h = vreinterpretq_s8_u8(vshrq_n_u8(v1_0, 4));
  1521. const int8x16_t v0_1l = vreinterpretq_s8_u8(vandq_u8(v0_1, m4b));
  1522. const int8x16_t v1_1l = vreinterpretq_s8_u8(vandq_u8(v1_1, m4b));
  1523. const int8x16_t v0_1h = vreinterpretq_s8_u8(vshrq_n_u8(v0_1, 4));
  1524. const int8x16_t v1_1h = vreinterpretq_s8_u8(vshrq_n_u8(v1_1, 4));
  1525. // sub 8
  1526. const int8x16_t v0_0ls = vsubq_s8(v0_0l, s8b);
  1527. const int8x16_t v1_0ls = vsubq_s8(v1_0l, s8b);
  1528. const int8x16_t v0_0hs = vsubq_s8(v0_0h, s8b);
  1529. const int8x16_t v1_0hs = vsubq_s8(v1_0h, s8b);
  1530. const int8x16_t v0_1ls = vsubq_s8(v0_1l, s8b);
  1531. const int8x16_t v1_1ls = vsubq_s8(v1_1l, s8b);
  1532. const int8x16_t v0_1hs = vsubq_s8(v0_1h, s8b);
  1533. const int8x16_t v1_1hs = vsubq_s8(v1_1h, s8b);
  1534. #if defined(__ARM_FEATURE_DOTPROD)
  1535. // dot product into int16x8_t
  1536. int32x4_t p_0 = vdotq_s32(vdupq_n_s32(0), v0_0ls, v1_0ls);
  1537. int32x4_t p_1 = vdotq_s32(vdupq_n_s32(0), v0_1ls, v1_1ls);
  1538. p_0 = vdotq_s32(p_0, v0_0hs, v1_0hs);
  1539. p_1 = vdotq_s32(p_1, v0_1hs, v1_1hs);
  1540. // scalar
  1541. #if defined(__ARM_FEATURE_QRDMX)
  1542. sum0 += x0->d * y0->d * vaddvq_s32(p_0);
  1543. sum1 += x1->d * y1->d * vaddvq_s32(p_1);
  1544. #else
  1545. sum0 += x0->d * y0->d * (vgetq_lane_s32(p_0, 0) + vgetq_lane_s32(p_0, 1) + vgetq_lane_s32(p_0, 2) + vgetq_lane_s32(p_0, 3));
  1546. sum1 += x1->d * y1->d * (vgetq_lane_s32(p_1, 0) + vgetq_lane_s32(p_1, 1) + vgetq_lane_s32(p_1, 2) + vgetq_lane_s32(p_1, 3));
  1547. #endif
  1548. #else
  1549. const int16x8_t pl0l = vmull_s8(vget_low_s8 (v0_0ls), vget_low_s8 (v1_0ls));
  1550. const int16x8_t pl0h = vmull_s8(vget_high_s8(v0_0ls), vget_high_s8(v1_0ls));
  1551. const int16x8_t ph0l = vmull_s8(vget_low_s8 (v0_0hs), vget_low_s8 (v1_0hs));
  1552. const int16x8_t ph0h = vmull_s8(vget_high_s8(v0_0hs), vget_high_s8(v1_0hs));
  1553. const int16x8_t pl1l = vmull_s8(vget_low_s8 (v0_1ls), vget_low_s8 (v1_1ls));
  1554. const int16x8_t pl1h = vmull_s8(vget_high_s8(v0_1ls), vget_high_s8(v1_1ls));
  1555. const int16x8_t ph1l = vmull_s8(vget_low_s8 (v0_1hs), vget_low_s8 (v1_1hs));
  1556. const int16x8_t ph1h = vmull_s8(vget_high_s8(v0_1hs), vget_high_s8(v1_1hs));
  1557. const int16x8_t pl_0 = vaddq_s16(pl0l, pl0h);
  1558. const int16x8_t ph_0 = vaddq_s16(ph0l, ph0h);
  1559. const int16x8_t pl_1 = vaddq_s16(pl1l, pl1h);
  1560. const int16x8_t ph_1 = vaddq_s16(ph1l, ph1h);
  1561. const int16x8_t p_0 = vaddq_s16(pl_0, ph_0);
  1562. const int16x8_t p_1 = vaddq_s16(pl_1, ph_1);
  1563. // scalar
  1564. #if defined(__ARM_FEATURE_QRDMX)
  1565. sum0 += x0->d * y0->d * vaddvq_s16(p_0);
  1566. sum1 += x1->d * y1->d * vaddvq_s16(p_1);
  1567. #else
  1568. sum0 += x0->d * y0->d * (vgetq_lane_s16(p_0, 0) + vgetq_lane_s16(p_0, 1) + vgetq_lane_s16(p_0, 2) + vgetq_lane_s16(p_0, 3) + vgetq_lane_s16(p_0, 4) + vgetq_lane_s16(p_0, 5) + vgetq_lane_s16(p_0, 6) + vgetq_lane_s16(p_0, 7));
  1569. sum1 += x1->d * y1->d * (vgetq_lane_s16(p_1, 0) + vgetq_lane_s16(p_1, 1) + vgetq_lane_s16(p_1, 2) + vgetq_lane_s16(p_1, 3) + vgetq_lane_s16(p_1, 4) + vgetq_lane_s16(p_1, 5) + vgetq_lane_s16(p_1, 6) + vgetq_lane_s16(p_1, 7));
  1570. #endif
  1571. #endif
  1572. }
  1573. sumf = sum0 + sum1;
  1574. #elif defined(__AVX512F__)
  1575. // Initialize accumulator with zeros
  1576. __m512 acc0 = _mm512_setzero_ps();
  1577. __m512 acc1 = _mm512_setzero_ps();
  1578. const int superblock_size = 8;
  1579. const int superblock_count = nb / superblock_size;
  1580. for (int superblock_ix = 0; superblock_ix < superblock_count; superblock_ix += 1) {
  1581. int i = superblock_ix * superblock_size;
  1582. acc0 = dot_q4_0_oneblock_avx512( acc0, x, y, i+0 );
  1583. acc1 = dot_q4_0_oneblock_avx512( acc1, x, y, i+1 );
  1584. acc0 = dot_q4_0_oneblock_avx512( acc0, x, y, i+2 );
  1585. acc1 = dot_q4_0_oneblock_avx512( acc1, x, y, i+3 );
  1586. acc0 = dot_q4_0_oneblock_avx512( acc0, x, y, i+4 );
  1587. acc1 = dot_q4_0_oneblock_avx512( acc1, x, y, i+5 );
  1588. acc0 = dot_q4_0_oneblock_avx512( acc0, x, y, i+6 );
  1589. acc1 = dot_q4_0_oneblock_avx512( acc1, x, y, i+7 );
  1590. }
  1591. // Remainders
  1592. for (int i = superblock_count * superblock_size; i < nb; ++i) {
  1593. acc0 = dot_q4_0_oneblock_avx512( acc0, x, y, i );
  1594. }
  1595. // Horizontal sum of all lanes of the accumulator
  1596. sumf = _mm512_reduce_add_ps( acc0 ) + _mm512_reduce_add_ps( acc1 );
  1597. #elif defined(__AVX2__)
  1598. // Initialize accumulator with zeros
  1599. __m256 acc = _mm256_setzero_ps();
  1600. /* Prepare the constants we will need during execution */
  1601. const __m256i lowMask = _mm256_set1_epi8( 0xF );
  1602. const __m256i offset_8 = _mm256_set1_epi16( 8 );
  1603. #define UNROLL_COUNT 8
  1604. // make sure we only unroll multiples of the block count
  1605. assert(nb % UNROLL_COUNT == 0);
  1606. // Main loop
  1607. for (int i = 0; i < nb; i+=UNROLL_COUNT) {
  1608. // This loop will be unrolled by the compiler
  1609. for (int u=0;u<UNROLL_COUNT;u++) {
  1610. /* Compute combined scale for the block */
  1611. const __m256 scale = _mm256_mul_ps(
  1612. _mm256_broadcast_ss( &x[i+u].d ),
  1613. _mm256_broadcast_ss( &y[i+u].d ) );
  1614. /* get input from x
  1615. Input: 32 Nibbles (16 bytes) at *x[i+u]
  1616. Output: 2 vectors with 16 values of type int16_t (x_high_q, x_low_q) */
  1617. /* Load 16 bytes from memory */
  1618. const __m128i tmp_x = _mm_loadu_si128( ( const __m128i* ) x[i+u].qs);
  1619. /* Expand bytes into uint16_t values */
  1620. const __m256i bytes_x = _mm256_cvtepu8_epi16(tmp_x);
  1621. /* Unpack values into individual bytes */
  1622. __m256i x_low_q = _mm256_and_si256( lowMask, bytes_x );
  1623. const __m256i pre_shift_x_high_q = _mm256_andnot_si256( lowMask, bytes_x );
  1624. __m256i x_high_q = _mm256_srli_epi16( pre_shift_x_high_q, 4 );
  1625. /* Now we have two vectors with bytes in [ 0 .. 15 ] interval. Offset them into [ -8 .. +7 ] interval. */
  1626. x_high_q = _mm256_sub_epi16( x_high_q, offset_8 );
  1627. x_low_q = _mm256_sub_epi16( x_low_q, offset_8 );
  1628. /* get input from y
  1629. Input: 32 Nibbles (16 bytes) at *y[i+u]
  1630. Output: 2 vectors with 16 values of type int16_t (y_high_q, y_low_q) */
  1631. /* Load 16 bytes from memory */
  1632. const __m128i tmp_y = _mm_loadu_si128( (const __m128i* ) y[i+u].qs);
  1633. /* Expand bytes into uint16_t values */
  1634. const __m256i bytes_y = _mm256_cvtepu8_epi16(tmp_y);
  1635. /* Unpack values into individual bytes */
  1636. const __m256i pre_shift_y_high_q = _mm256_andnot_si256( lowMask, bytes_y );
  1637. __m256i y_high_q = _mm256_srli_epi16( pre_shift_y_high_q, 4 );
  1638. __m256i y_low_q = _mm256_and_si256( lowMask, bytes_y );
  1639. /* Now we have two vectors with bytes in [ 0 .. 15 ] interval. Offset them into [ -8 .. +7 ] interval. */
  1640. y_high_q = _mm256_sub_epi16( y_high_q, offset_8 );
  1641. y_low_q = _mm256_sub_epi16( y_low_q, offset_8 );
  1642. /* Compute products of int16_t integers, add pairwise, store as int32_t */
  1643. __m256i xy_high_q = _mm256_madd_epi16( x_high_q, y_high_q );
  1644. __m256i xy_low_q = _mm256_madd_epi16( x_low_q, y_low_q );
  1645. /* Accumulate the products of int32_t integers -> we now have a vector of 8 int_32t */
  1646. __m256i xy_q = _mm256_add_epi32( xy_high_q, xy_low_q );
  1647. /* Convert to vectore of 8 int32_t to 8 floats */
  1648. __m256 q = _mm256_cvtepi32_ps( xy_q );
  1649. /* Multiply q with scale and accumulate */
  1650. acc = _mm256_fmadd_ps( scale, q, acc );
  1651. }
  1652. }
  1653. // Return horizontal sum of the acc vector
  1654. __m128 res = _mm256_extractf128_ps( acc, 1 );
  1655. res = _mm_add_ps( res, _mm256_castps256_ps128( acc ) );
  1656. res = _mm_add_ps( res, _mm_movehl_ps( res, res ) );
  1657. res = _mm_add_ss( res, _mm_movehdup_ps( res ) );
  1658. sumf = _mm_cvtss_f32( res );
  1659. #elif defined(__AVX__)
  1660. // Initialize accumulator with zeros
  1661. __m256 acc = _mm256_setzero_ps();
  1662. // Main loop
  1663. for (int i = 0; i < nb; ++i) {
  1664. // Compute combined scale for the block
  1665. const __m256 d = _mm256_mul_ps( _mm256_broadcast_ss( &x[i].d ), _mm256_broadcast_ss( &y[i].d ) );
  1666. __m128i i32[2];
  1667. for (int j = 0; j < 2; ++j) {
  1668. // Load 8 bytes, and unpack 4 bit fields into bytes, making 16 bytes
  1669. __m128i bx = bytesFromNibbles( x[i].qs + 8*j );
  1670. __m128i by = bytesFromNibbles( y[i].qs + 8*j );
  1671. // Now we have a vector with bytes in [ 0 .. 15 ] interval. Offset them into [ -8 .. +7 ] interval.
  1672. const __m128i off = _mm_set1_epi8( 8 );
  1673. bx = _mm_sub_epi8( bx, off );
  1674. by = _mm_sub_epi8( by, off );
  1675. // Get absolute values of x vectors
  1676. const __m128i ax = _mm_sign_epi8(bx, bx);
  1677. // Sign the values of the y vectors
  1678. const __m128i sy = _mm_sign_epi8(by, bx);
  1679. // Perform multiplication and create 16-bit values
  1680. const __m128i dot = _mm_maddubs_epi16(ax, sy);
  1681. const __m128i ones = _mm_set1_epi16(1);
  1682. i32[j] = _mm_madd_epi16(ones, dot);
  1683. }
  1684. // Convert int32_t to float
  1685. __m256 p = _mm256_cvtepi32_ps( _mm256_set_m128i( i32[0], i32[1] ));
  1686. // Apply the scale, and accumulate
  1687. acc = _mm256_add_ps(_mm256_mul_ps( d, p ), acc);
  1688. }
  1689. // Return horizontal sum of the acc vector
  1690. __m128 res = _mm256_extractf128_ps( acc, 1 );
  1691. res = _mm_add_ps( res, _mm256_castps256_ps128( acc ) );
  1692. res = _mm_add_ps( res, _mm_movehl_ps( res, res ) );
  1693. res = _mm_add_ss( res, _mm_movehdup_ps( res ) );
  1694. sumf = _mm_cvtss_f32( res );
  1695. #elif defined(__wasm_simd128__)
  1696. // wasm simd
  1697. float sum0 = 0.0f;
  1698. float sum1 = 0.0f;
  1699. for (int i = 0; i < nb; i += 2) {
  1700. const block_q4_0 * restrict x0 = &px[i + 0];
  1701. const block_q4_0 * restrict y0 = &py[i + 0];
  1702. const block_q4_0 * restrict x1 = &px[i + 1];
  1703. const block_q4_0 * restrict y1 = &py[i + 1];
  1704. const v128_t m4b = wasm_u8x16_splat(0xf);
  1705. const v128_t s8b = wasm_i8x16_splat(0x8);
  1706. const v128_t v0_0 = wasm_v128_load(x0.qs);
  1707. const v128_t v0_1 = wasm_v128_load(y0.qs);
  1708. const v128_t v1_0 = wasm_v128_load(x1.qs);
  1709. const v128_t v1_1 = wasm_v128_load(y1.qs);
  1710. // 4-bit -> 8-bit
  1711. const v128_t v0_0l = wasm_v128_and(v0_0, m4b);
  1712. const v128_t v1_0l = wasm_v128_and(v1_0, m4b);
  1713. const v128_t v0_0h = wasm_u8x16_shr(v0_0, 4);
  1714. const v128_t v1_0h = wasm_u8x16_shr(v1_0, 4);
  1715. const v128_t v0_1l = wasm_v128_and(v0_1, m4b);
  1716. const v128_t v1_1l = wasm_v128_and(v1_1, m4b);
  1717. const v128_t v0_1h = wasm_u8x16_shr(v0_1, 4);
  1718. const v128_t v1_1h = wasm_u8x16_shr(v1_1, 4);
  1719. // sub 8
  1720. const v128_t v0_0ls = wasm_i8x16_sub(v0_0l, s8b);
  1721. const v128_t v1_0ls = wasm_i8x16_sub(v1_0l, s8b);
  1722. const v128_t v0_0hs = wasm_i8x16_sub(v0_0h, s8b);
  1723. const v128_t v1_0hs = wasm_i8x16_sub(v1_0h, s8b);
  1724. const v128_t v0_1ls = wasm_i8x16_sub(v0_1l, s8b);
  1725. const v128_t v1_1ls = wasm_i8x16_sub(v1_1l, s8b);
  1726. const v128_t v0_1hs = wasm_i8x16_sub(v0_1h, s8b);
  1727. const v128_t v1_1hs = wasm_i8x16_sub(v1_1h, s8b);
  1728. // dot product into int16x8_t
  1729. const v128_t pl0l = wasm_i16x8_mul(wasm_i16x8_extend_low_i8x16(v0_0ls), wasm_i16x8_extend_low_i8x16(v1_0ls));
  1730. const v128_t pl0h = wasm_i16x8_mul(wasm_i16x8_extend_high_i8x16(v0_0ls), wasm_i16x8_extend_high_i8x16(v1_0ls));
  1731. const v128_t ph0l = wasm_i16x8_mul(wasm_i16x8_extend_low_i8x16(v0_0hs), wasm_i16x8_extend_low_i8x16(v1_0hs));
  1732. const v128_t ph0h = wasm_i16x8_mul(wasm_i16x8_extend_high_i8x16(v0_0hs), wasm_i16x8_extend_high_i8x16(v1_0hs));
  1733. const v128_t pl1l = wasm_i16x8_mul(wasm_i16x8_extend_low_i8x16(v0_1ls), wasm_i16x8_extend_low_i8x16(v1_1ls));
  1734. const v128_t pl1h = wasm_i16x8_mul(wasm_i16x8_extend_high_i8x16(v0_1ls), wasm_i16x8_extend_high_i8x16(v1_1ls));
  1735. const v128_t ph1l = wasm_i16x8_mul(wasm_i16x8_extend_low_i8x16(v0_1hs), wasm_i16x8_extend_low_i8x16(v1_1hs));
  1736. const v128_t ph1h = wasm_i16x8_mul(wasm_i16x8_extend_high_i8x16(v0_1hs), wasm_i16x8_extend_high_i8x16(v1_1hs));
  1737. const v128_t pl_0 = wasm_i16x8_add(pl0l, pl0h);
  1738. const v128_t ph_0 = wasm_i16x8_add(ph0l, ph0h);
  1739. const v128_t pl_1 = wasm_i16x8_add(pl1l, pl1h);
  1740. const v128_t ph_1 = wasm_i16x8_add(ph1l, ph1h);
  1741. const v128_t p_0 = wasm_i16x8_add(pl_0, ph_0);
  1742. const v128_t p_1 = wasm_i16x8_add(pl_1, ph_1);
  1743. sum0 += x0->d * y0->d * (
  1744. wasm_i16x8_extract_lane(p_0, 0) + wasm_i16x8_extract_lane(p_0, 1) +
  1745. wasm_i16x8_extract_lane(p_0, 2) + wasm_i16x8_extract_lane(p_0, 3) +
  1746. wasm_i16x8_extract_lane(p_0, 4) + wasm_i16x8_extract_lane(p_0, 5) +
  1747. wasm_i16x8_extract_lane(p_0, 6) + wasm_i16x8_extract_lane(p_0, 7));
  1748. sum1 += x1->d * y1->d * (
  1749. wasm_i16x8_extract_lane(p_1, 0) + wasm_i16x8_extract_lane(p_1, 1) +
  1750. wasm_i16x8_extract_lane(p_1, 2) + wasm_i16x8_extract_lane(p_1, 3) +
  1751. wasm_i16x8_extract_lane(p_1, 4) + wasm_i16x8_extract_lane(p_1, 5) +
  1752. wasm_i16x8_extract_lane(p_1, 6) + wasm_i16x8_extract_lane(p_1, 7));
  1753. }
  1754. sumf = sum0 + sum1;
  1755. #else
  1756. // scalar
  1757. for (int i = 0; i < nb; i++) {
  1758. const float d0 = x[i].d;
  1759. const float d1 = y[i].d;
  1760. const uint8_t * restrict p0 = x[i].qs;
  1761. const uint8_t * restrict p1 = y[i].qs;
  1762. for (int j = 0; j < QK/2; j++) {
  1763. const uint8_t v0 = p0[j];
  1764. const uint8_t v1 = p1[j];
  1765. const float f0 = d0*((int8_t) (v0 & 0xf) - 8);
  1766. const float f1 = d0*((int8_t) (v0 >> 4) - 8);
  1767. const float f2 = d1*((int8_t) (v1 & 0xf) - 8);
  1768. const float f3 = d1*((int8_t) (v1 >> 4) - 8);
  1769. sumf += f0*f2 + f1*f3;
  1770. }
  1771. }
  1772. #endif
  1773. *s = sumf;
  1774. }
  1775. static void ggml_vec_dot_q4_1(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  1776. const int nb = n / QK;
  1777. const block_q4_1 * restrict x = vx;
  1778. const block_q4_1 * restrict y = vy;
  1779. float sumf = 0.0;
  1780. #if defined(__AVX2__)
  1781. // Initialize accumulator with zeros
  1782. __m256 acc = _mm256_setzero_ps();
  1783. // Accumulator for constant offsets
  1784. float acc_offset = 0.0f;
  1785. // Main loop
  1786. for (int i = 0; i < nb; ++i) {
  1787. const float * d0 = &x[i].d;
  1788. const float * d1 = &y[i].d;
  1789. const float * m0 = &x[i].m;
  1790. const float * m1 = &y[i].m;
  1791. const __m256 d0v = _mm256_broadcast_ss( d0 );
  1792. const __m256 d1v = _mm256_broadcast_ss( d1 );
  1793. const __m256 m0v = _mm256_broadcast_ss( m0 );
  1794. const __m256 m1v = _mm256_broadcast_ss( m1 );
  1795. // Compute combined scale for the block
  1796. const __m256 scale_01 = _mm256_mul_ps( d0v, d1v );
  1797. // Compute cross scales for the block
  1798. const __m256 scale_0 = _mm256_mul_ps( d0v, m1v );
  1799. const __m256 scale_1 = _mm256_mul_ps( m0v, d1v );
  1800. const __m256 cross_scales = _mm256_blend_ps( scale_0, scale_1, 0xAA /* 0b10101010 */ );
  1801. // Load 16 bytes, and unpack 4 bit fields into bytes, making 32 bytes
  1802. __m256i bx = bytesFromNibbles( x[i].qs );
  1803. __m256i by = bytesFromNibbles( y[i].qs );
  1804. // Now we have a vector with bytes in [ 0 .. 15 ] interval.
  1805. // Sign-extend first 16 signed bytes into int16_t
  1806. __m256i x16 = _mm256_cvtepi8_epi16( _mm256_castsi256_si128( bx ) );
  1807. __m256i y16 = _mm256_cvtepi8_epi16( _mm256_castsi256_si128( by ) );
  1808. // Compute products of int16_t integers, add pairwise
  1809. __m256i i32 = _mm256_madd_epi16( x16, y16 );
  1810. // Sign-extend last 16 signed bytes into int16_t vectors
  1811. __m256i x16_h = _mm256_cvtepi8_epi16( _mm256_extracti128_si256( bx, 1 ) );
  1812. __m256i y16_h = _mm256_cvtepi8_epi16( _mm256_extracti128_si256( by, 1 ) );
  1813. // Accumulate products of int16_t integers
  1814. i32 = _mm256_add_epi32( i32, _mm256_madd_epi16( x16_h, y16_h ) );
  1815. // compute sums of unsigned bytes in bx, by in blocks of 8.
  1816. // This results in a layout like X100 0000 X200 0000 X300 0000 X400 0000,
  1817. // which we then interleave as X100 Y100 X200 Y200 X300 Y300 X400 Y400.
  1818. // so if we then cast to 8 singles, we get 8 floats like [ x0_7, y0_7, x8_15, y8_15, x16_23, y16_23, x24_31, y24_31 ]
  1819. __m256i xsumi = _mm256_sad_epu8( bx, _mm256_setzero_si256() );
  1820. __m256i ysumi = _mm256_sad_epu8( by, _mm256_setzero_si256() );
  1821. __m256i sumsi = _mm256_or_si256( xsumi, _mm256_slli_si256( ysumi, 4 ) );
  1822. __m256 sums = _mm256_cvtepi32_ps( sumsi );
  1823. // Convert int32_t to float
  1824. __m256 p = _mm256_cvtepi32_ps( i32 );
  1825. // Apply the scale, and accumulate
  1826. // acc += d0*d1*x*y + d0*m1*x + d1*m0*y
  1827. acc = _mm256_fmadd_ps( scale_01, p, acc );
  1828. acc = _mm256_fmadd_ps( cross_scales, sums, acc );
  1829. // acc_offset += m0*m1 (for each entry in the block)
  1830. acc_offset += (*m0)*(*m1);
  1831. }
  1832. // Return horizontal sum of the acc vector
  1833. __m128 res = _mm256_extractf128_ps( acc, 1 );
  1834. res = _mm_add_ps( res, _mm256_castps256_ps128( acc ) );
  1835. res = _mm_add_ps( res, _mm_movehl_ps( res, res ) );
  1836. res = _mm_add_ss( res, _mm_movehdup_ps( res ) );
  1837. sumf = _mm_cvtss_f32( res ) + acc_offset * QK;
  1838. #elif defined(__ARM_NEON)
  1839. float sum00 = 0.0f;
  1840. float sum01 = 0.0f;
  1841. float sum10 = 0.0f;
  1842. float sum11 = 0.0f;
  1843. for (int i = 0; i < nb; ++i) {
  1844. const block_q4_1 * restrict x0 = &x[i + 0];
  1845. const block_q4_1 * restrict y0 = &y[i + 0];
  1846. const uint8x16_t m4b = vdupq_n_u8(0xf);
  1847. const uint8x16_t v0_0 = vld1q_u8(x0->qs);
  1848. const uint8x16_t v1_0 = vld1q_u8(y0->qs);
  1849. // and with 0xf
  1850. const uint8x16_t v0_0l = vandq_u8(v0_0, m4b);
  1851. const uint8x16_t v1_0l = vandq_u8(v1_0, m4b);
  1852. const uint8x16_t v0_0h = vshrq_n_u8(v0_0, 4);
  1853. const uint8x16_t v1_0h = vshrq_n_u8(v1_0, 4);
  1854. // dot product into uint16x8_t
  1855. const uint16x8_t pl0l = vmull_u8(vget_low_u8 (v0_0l), vget_low_u8 (v1_0l));
  1856. const uint16x8_t pl0h = vmull_u8(vget_high_u8(v0_0l), vget_high_u8(v1_0l));
  1857. const uint16x8_t ph0l = vmull_u8(vget_low_u8 (v0_0h), vget_low_u8 (v1_0h));
  1858. const uint16x8_t ph0h = vmull_u8(vget_high_u8(v0_0h), vget_high_u8(v1_0h));
  1859. const uint16x8_t pl0 = vaddq_u16(pl0l, pl0h);
  1860. const uint16x8_t ph0 = vaddq_u16(ph0l, ph0h);
  1861. sum00 += x0->m*y0->m;
  1862. sum01 += y0->m*x0->d*(vaddvq_u8(v0_0l) + vaddvq_u8(v0_0h));
  1863. sum10 += x0->m*y0->d*(vaddvq_u8(v1_0l) + vaddvq_u8(v1_0h));
  1864. sum11 += x0->d*y0->d*vaddvq_u16(vaddq_u16(pl0, ph0));
  1865. }
  1866. sumf = QK*sum00 + sum01 + sum10 + sum11;
  1867. #else
  1868. // scalar
  1869. for (int i = 0; i < nb; i++) {
  1870. const float d0 = x[i].d;
  1871. const float d1 = y[i].d;
  1872. const float m0 = x[i].m;
  1873. const float m1 = y[i].m;
  1874. const uint8_t * restrict p0 = x[i].qs;
  1875. const uint8_t * restrict p1 = y[i].qs;
  1876. for (int j = 0; j < QK/2; j++) {
  1877. const uint8_t v0 = p0[j];
  1878. const uint8_t v1 = p1[j];
  1879. const float f0 = d0*(v0 & 0xf) + m0;
  1880. const float f1 = d0*(v0 >> 4) + m0;
  1881. const float f2 = d1*(v1 & 0xf) + m1;
  1882. const float f3 = d1*(v1 >> 4) + m1;
  1883. sumf += f0*f2 + f1*f3;
  1884. }
  1885. }
  1886. #endif
  1887. *s = sumf;
  1888. }
  1889. // compute GGML_VEC_DOT_UNROLL dot products at once
  1890. // xs - x row stride in bytes
  1891. inline static void ggml_vec_dot_f16_unroll(const int n, const int xs, float * restrict s, void * restrict xv, ggml_fp16_t * restrict y) {
  1892. ggml_float sumf[GGML_VEC_DOT_UNROLL] = { 0.0 };
  1893. ggml_fp16_t * restrict x[GGML_VEC_DOT_UNROLL];
  1894. for (int i = 0; i < GGML_VEC_DOT_UNROLL; ++i) {
  1895. x[i] = (ggml_fp16_t *) ((char *) xv + i*xs);
  1896. }
  1897. #if defined(GGML_SIMD)
  1898. const int np = (n & ~(GGML_F16_STEP - 1));
  1899. GGML_F16_VEC sum[GGML_VEC_DOT_UNROLL][GGML_F16_ARR] = { { GGML_F16_VEC_ZERO } };
  1900. GGML_F16_VEC ax[GGML_F16_ARR];
  1901. GGML_F16_VEC ay[GGML_F16_ARR];
  1902. for (int i = 0; i < np; i += GGML_F16_STEP) {
  1903. for (int j = 0; j < GGML_F16_ARR; j++) {
  1904. ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
  1905. for (int k = 0; k < GGML_VEC_DOT_UNROLL; ++k) {
  1906. ax[j] = GGML_F16_VEC_LOAD(x[k] + i + j*GGML_F16_EPR, j);
  1907. sum[k][j] = GGML_F16_VEC_FMA(sum[k][j], ax[j], ay[j]);
  1908. }
  1909. }
  1910. }
  1911. // reduce sum0..sum3 to sum0
  1912. for (int k = 0; k < GGML_VEC_DOT_UNROLL; ++k) {
  1913. GGML_F16_VEC_REDUCE(sumf[k], sum[k]);
  1914. }
  1915. // leftovers
  1916. for (int i = np; i < n; ++i) {
  1917. for (int j = 0; j < GGML_VEC_DOT_UNROLL; ++j) {
  1918. sumf[j] += (ggml_float)(GGML_FP16_TO_FP32(x[j][i])*GGML_FP16_TO_FP32(y[i]));
  1919. }
  1920. }
  1921. #else
  1922. for (int i = 0; i < n; ++i) {
  1923. for (int j = 0; j < GGML_VEC_DOT_UNROLL; ++j) {
  1924. sumf[j] += (ggml_float)(GGML_FP16_TO_FP32(x[j][i])*GGML_FP16_TO_FP32(y[i]));
  1925. }
  1926. }
  1927. #endif
  1928. for (int i = 0; i < GGML_VEC_DOT_UNROLL; ++i) {
  1929. s[i] = sumf[i];
  1930. }
  1931. }
  1932. inline static void ggml_vec_mad_f32(const int n, float * restrict y, const float * restrict x, const float v) {
  1933. #if defined(GGML_SIMD)
  1934. const int np = (n & ~(GGML_F32_STEP - 1));
  1935. GGML_F32_VEC vx = GGML_F32_VEC_SET1(v);
  1936. GGML_F32_VEC ax[GGML_F32_ARR];
  1937. GGML_F32_VEC ay[GGML_F32_ARR];
  1938. for (int i = 0; i < np; i += GGML_F32_STEP) {
  1939. for (int j = 0; j < GGML_F32_ARR; j++) {
  1940. ax[j] = GGML_F32_VEC_LOAD(x + i + j*GGML_F32_EPR);
  1941. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  1942. ay[j] = GGML_F32_VEC_FMA(ay[j], ax[j], vx);
  1943. GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
  1944. }
  1945. }
  1946. // leftovers
  1947. for (int i = np; i < n; ++i) {
  1948. y[i] += x[i]*v;
  1949. }
  1950. #else
  1951. // scalar
  1952. for (int i = 0; i < n; ++i) {
  1953. y[i] += x[i]*v;
  1954. }
  1955. #endif
  1956. }
  1957. //inline static void ggml_vec_scale_f32(const int n, float * y, const float v) { for (int i = 0; i < n; ++i) y[i] *= v; }
  1958. inline static void ggml_vec_scale_f32(const int n, float * y, const float v) {
  1959. #if defined(GGML_SIMD)
  1960. const int np = (n & ~(GGML_F32_STEP - 1));
  1961. GGML_F32_VEC vx = GGML_F32_VEC_SET1(v);
  1962. GGML_F32_VEC ay[GGML_F32_ARR];
  1963. for (int i = 0; i < np; i += GGML_F32_STEP) {
  1964. for (int j = 0; j < GGML_F32_ARR; j++) {
  1965. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  1966. ay[j] = GGML_F32_VEC_MUL(ay[j], vx);
  1967. GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
  1968. }
  1969. }
  1970. // leftovers
  1971. for (int i = np; i < n; ++i) {
  1972. y[i] *= v;
  1973. }
  1974. #else
  1975. // scalar
  1976. for (int i = 0; i < n; ++i) {
  1977. y[i] *= v;
  1978. }
  1979. #endif
  1980. }
  1981. inline static void ggml_vec_norm_f32 (const int n, float * s, const float * x) { ggml_vec_dot_f32(n, s, x, x); *s = sqrtf(*s); }
  1982. inline static void ggml_vec_sqr_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i]*x[i]; }
  1983. inline static void ggml_vec_sqrt_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = sqrtf(x[i]); }
  1984. inline static void ggml_vec_abs_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = fabsf(x[i]); }
  1985. inline static void ggml_vec_sgn_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? 1.f : ((x[i] < 0.f) ? -1.f : 0.f); }
  1986. inline static void ggml_vec_step_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? 1.f : 0.f; }
  1987. inline static void ggml_vec_relu_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? x[i] : 0.f; }
  1988. static const float GELU_COEF_A = 0.044715f;
  1989. static const float SQRT_2_OVER_PI = 0.79788456080286535587989211986876f;
  1990. inline static float ggml_gelu_f32(float x) {
  1991. return 0.5f*x*(1.0f + tanhf(SQRT_2_OVER_PI*x*(1.0f + GELU_COEF_A*x*x)));
  1992. }
  1993. inline static void ggml_vec_gelu_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
  1994. const uint16_t * i16 = (const uint16_t *) x;
  1995. for (int i = 0; i < n; ++i) {
  1996. y[i] = table_gelu_f16[i16[i]];
  1997. }
  1998. }
  1999. #ifdef GGML_GELU_FP16
  2000. inline static void ggml_vec_gelu_f32(const int n, float * y, const float * x) {
  2001. uint16_t t;
  2002. for (int i = 0; i < n; ++i) {
  2003. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  2004. memcpy(&t, &fp16, sizeof(uint16_t));
  2005. y[i] = GGML_FP16_TO_FP32(table_gelu_f16[t]);
  2006. }
  2007. }
  2008. #else
  2009. inline static void ggml_vec_gelu_f32(const int n, float * y, const float * x) {
  2010. for (int i = 0; i < n; ++i) {
  2011. y[i] = ggml_gelu_f32(x[i]);
  2012. }
  2013. }
  2014. #endif
  2015. // Sigmoid Linear Unit (SiLU) function
  2016. inline static float ggml_silu_f32(float x) {
  2017. return x/(1.0f + expf(-x));
  2018. }
  2019. inline static void ggml_vec_silu_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
  2020. const uint16_t * i16 = (const uint16_t *) x;
  2021. for (int i = 0; i < n; ++i) {
  2022. y[i] = table_silu_f16[i16[i]];
  2023. }
  2024. }
  2025. #ifdef GGML_SILU_FP16
  2026. inline static void ggml_vec_silu_f32(const int n, float * y, const float * x) {
  2027. uint16_t t;
  2028. for (int i = 0; i < n; ++i) {
  2029. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  2030. memcpy(&t, &fp16, sizeof(uint16_t));
  2031. y[i] = GGML_FP16_TO_FP32(table_silu_f16[t]);
  2032. }
  2033. }
  2034. #else
  2035. inline static void ggml_vec_silu_f32(const int n, float * y, const float * x) {
  2036. for (int i = 0; i < n; ++i) {
  2037. y[i] = ggml_silu_f32(x[i]);
  2038. }
  2039. }
  2040. #endif
  2041. inline static void ggml_vec_sum_f32(const int n, float * s, const float * x) {
  2042. #ifndef GGML_USE_ACCELERATE
  2043. ggml_float sum = 0.0;
  2044. for (int i = 0; i < n; ++i) {
  2045. sum += (ggml_float)x[i];
  2046. }
  2047. *s = sum;
  2048. #else
  2049. vDSP_sve(x, 1, s, n);
  2050. #endif
  2051. }
  2052. inline static void ggml_vec_max_f32(const int n, float * s, const float * x) {
  2053. #ifndef GGML_USE_ACCELERATE
  2054. float max = -INFINITY;
  2055. for (int i = 0; i < n; ++i) {
  2056. max = MAX(max, x[i]);
  2057. }
  2058. *s = max;
  2059. #else
  2060. vDSP_maxv(x, 1, s, n);
  2061. #endif
  2062. }
  2063. inline static void ggml_vec_norm_inv_f32(const int n, float * s, const float * x) {
  2064. ggml_vec_norm_f32(n, s, x);
  2065. *s = 1.f/(*s);
  2066. }
  2067. //
  2068. // logging
  2069. //
  2070. #if (GGML_DEBUG >= 1)
  2071. #define GGML_PRINT_DEBUG(...) printf(__VA_ARGS__)
  2072. #else
  2073. #define GGML_PRINT_DEBUG(...)
  2074. #endif
  2075. #if (GGML_DEBUG >= 5)
  2076. #define GGML_PRINT_DEBUG_5(...) printf(__VA_ARGS__)
  2077. #else
  2078. #define GGML_PRINT_DEBUG_5(...)
  2079. #endif
  2080. #if (GGML_DEBUG >= 10)
  2081. #define GGML_PRINT_DEBUG_10(...) printf(__VA_ARGS__)
  2082. #else
  2083. #define GGML_PRINT_DEBUG_10(...)
  2084. #endif
  2085. #define GGML_PRINT(...) printf(__VA_ARGS__)
  2086. //
  2087. // data types
  2088. //
  2089. static const int GGML_BLCK_SIZE[GGML_TYPE_COUNT] = {
  2090. QK,
  2091. QK,
  2092. 1,
  2093. 1,
  2094. 1,
  2095. 1,
  2096. 1,
  2097. };
  2098. static_assert(GGML_TYPE_COUNT == 7, "GGML_TYPE_COUNT != 5");
  2099. static const size_t GGML_TYPE_SIZE[GGML_TYPE_COUNT] = {
  2100. sizeof(block_q4_0),
  2101. sizeof(block_q4_1),
  2102. sizeof(int8_t ),
  2103. sizeof(int16_t),
  2104. sizeof(int32_t),
  2105. sizeof(ggml_fp16_t),
  2106. sizeof(float ),
  2107. };
  2108. // don't forget to update the array above when adding new types
  2109. static_assert(GGML_TYPE_COUNT == 7, "GGML_TYPE_COUNT != 5");
  2110. static const char * GGML_OP_LABEL[GGML_OP_COUNT] = {
  2111. "NONE",
  2112. "DUP",
  2113. "ADD",
  2114. "SUB",
  2115. "MUL",
  2116. "DIV",
  2117. "SQR",
  2118. "SQRT",
  2119. "SUM",
  2120. "MEAN",
  2121. "REPEAT",
  2122. "ABS",
  2123. "SGN",
  2124. "NEG",
  2125. "STEP",
  2126. "RELU",
  2127. "GELU",
  2128. "SILU",
  2129. "NORM",
  2130. "RMS_NORM",
  2131. "MUL_MAT",
  2132. "SCALE",
  2133. "CPY",
  2134. "RESHAPE",
  2135. "VIEW",
  2136. "PERMUTE",
  2137. "TRANSPOSE",
  2138. "GET_ROWS",
  2139. "DIAG_MASK_INF",
  2140. "SOFT_MAX",
  2141. "ROPE",
  2142. "CONV_1D_1S",
  2143. "CONV_1D_2S",
  2144. "FLASH_ATTN",
  2145. "FLASH_FF",
  2146. };
  2147. static_assert(GGML_OP_COUNT == 35, "GGML_OP_COUNT != 35");
  2148. static const char * GGML_OP_SYMBOL[GGML_OP_COUNT] = {
  2149. "none",
  2150. "x",
  2151. "x+y",
  2152. "x-y",
  2153. "x*y",
  2154. "x/y",
  2155. "x^2",
  2156. "√x",
  2157. "Σx",
  2158. "Σx/n",
  2159. "repeat(x)",
  2160. "abs(x)",
  2161. "sgn(x)",
  2162. "-x",
  2163. "step(x)",
  2164. "relu(x)",
  2165. "gelu(x)",
  2166. "silu(x)",
  2167. "norm(x)",
  2168. "rms_norm(x)",
  2169. "X*Y",
  2170. "x*v",
  2171. "x-\\>y",
  2172. "reshape(x)",
  2173. "view(x)",
  2174. "permute(x)",
  2175. "transpose(x)",
  2176. "get_rows(x)",
  2177. "diag_mask_inf(x)",
  2178. "soft_max(x)",
  2179. "rope(x)",
  2180. "conv_1d_1s(x)",
  2181. "conv_1d_2s(x)",
  2182. "flash_attn(x)",
  2183. "flash_ff(x)",
  2184. };
  2185. static_assert(GGML_OP_COUNT == 35, "GGML_OP_COUNT != 35");
  2186. //
  2187. // ggml object
  2188. //
  2189. struct ggml_object {
  2190. size_t offs;
  2191. size_t size;
  2192. struct ggml_object * next;
  2193. char padding[8];
  2194. };
  2195. static const size_t GGML_OBJECT_SIZE = sizeof(struct ggml_object);
  2196. static_assert(sizeof(struct ggml_object)%GGML_MEM_ALIGN == 0, "ggml_object size must be a multiple of GGML_MEM_ALIGN");
  2197. static_assert(sizeof(struct ggml_tensor)%GGML_MEM_ALIGN == 0, "ggml_tensor size must be a multiple of GGML_MEM_ALIGN");
  2198. //
  2199. // ggml context
  2200. //
  2201. struct ggml_context {
  2202. size_t mem_size;
  2203. void * mem_buffer;
  2204. bool mem_buffer_owned;
  2205. bool mem_buffer_mlocked;
  2206. bool no_alloc;
  2207. int n_objects;
  2208. struct ggml_object * objects_begin;
  2209. struct ggml_object * objects_end;
  2210. struct ggml_scratch scratch;
  2211. struct ggml_scratch scratch_save;
  2212. };
  2213. struct ggml_context_container {
  2214. bool used;
  2215. struct ggml_context context;
  2216. };
  2217. //
  2218. // compute types
  2219. //
  2220. enum ggml_task_type {
  2221. GGML_TASK_INIT = 0,
  2222. GGML_TASK_COMPUTE,
  2223. GGML_TASK_FINALIZE,
  2224. };
  2225. struct ggml_compute_params {
  2226. enum ggml_task_type type;
  2227. int ith, nth;
  2228. // work buffer for all threads
  2229. size_t wsize;
  2230. void * wdata;
  2231. };
  2232. //
  2233. // ggml state
  2234. //
  2235. struct ggml_state {
  2236. struct ggml_context_container contexts[GGML_MAX_CONTEXTS];
  2237. };
  2238. // global state
  2239. static struct ggml_state g_state;
  2240. static atomic_int g_state_barrier = 0;
  2241. // barrier via spin lock
  2242. inline static void ggml_critical_section_start(void) {
  2243. int processing = atomic_fetch_add(&g_state_barrier, 1);
  2244. while (processing > 0) {
  2245. // wait for other threads to finish
  2246. atomic_fetch_sub(&g_state_barrier, 1);
  2247. sched_yield(); // TODO: reconsider this
  2248. processing = atomic_fetch_add(&g_state_barrier, 1);
  2249. }
  2250. }
  2251. // TODO: make this somehow automatically executed
  2252. // some sort of "sentry" mechanism
  2253. inline static void ggml_critical_section_end(void) {
  2254. atomic_fetch_sub(&g_state_barrier, 1);
  2255. }
  2256. ////////////////////////////////////////////////////////////////////////////////
  2257. void ggml_print_object(const struct ggml_object * obj) {
  2258. GGML_PRINT(" - ggml_object: offset = %zu, size = %zu, next = %p\n",
  2259. obj->offs, obj->size, (const void *) obj->next);
  2260. }
  2261. void ggml_print_objects(const struct ggml_context * ctx) {
  2262. struct ggml_object * obj = ctx->objects_begin;
  2263. GGML_PRINT("%s: objects in context %p:\n", __func__, (const void *) ctx);
  2264. while (obj != NULL) {
  2265. ggml_print_object(obj);
  2266. obj = obj->next;
  2267. }
  2268. GGML_PRINT("%s: --- end ---\n", __func__);
  2269. }
  2270. int64_t ggml_nelements(const struct ggml_tensor * tensor) {
  2271. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2272. return tensor->ne[0]*tensor->ne[1]*tensor->ne[2]*tensor->ne[3];
  2273. }
  2274. int ggml_nrows(const struct ggml_tensor * tensor) {
  2275. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2276. return tensor->ne[1]*tensor->ne[2]*tensor->ne[3];
  2277. }
  2278. size_t ggml_nbytes(const struct ggml_tensor * tensor) {
  2279. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2280. return (ggml_nelements(tensor)*GGML_TYPE_SIZE[tensor->type])/GGML_BLCK_SIZE[tensor->type];
  2281. }
  2282. int ggml_blck_size(enum ggml_type type) {
  2283. return GGML_BLCK_SIZE[type];
  2284. }
  2285. size_t ggml_type_size(enum ggml_type type) {
  2286. return GGML_TYPE_SIZE[type];
  2287. }
  2288. float ggml_type_sizef(enum ggml_type type) {
  2289. return ((float)(GGML_TYPE_SIZE[type]))/GGML_BLCK_SIZE[type];
  2290. }
  2291. size_t ggml_element_size(const struct ggml_tensor * tensor) {
  2292. return GGML_TYPE_SIZE[tensor->type];
  2293. }
  2294. static inline bool ggml_is_scalar(const struct ggml_tensor * tensor) {
  2295. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2296. return tensor->ne[0] == 1 && tensor->ne[1] == 1 && tensor->ne[2] == 1 && tensor->ne[3] == 1;
  2297. }
  2298. static inline bool ggml_is_vector(const struct ggml_tensor * tensor) {
  2299. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2300. return tensor->ne[1] == 1 && tensor->ne[2] == 1 && tensor->ne[3] == 1;
  2301. }
  2302. static inline bool ggml_is_matrix(const struct ggml_tensor * tensor) {
  2303. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2304. return tensor->ne[2] == 1 && tensor->ne[3] == 1;
  2305. }
  2306. static inline bool ggml_can_mul_mat(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  2307. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2308. return
  2309. (t0->ne[0] == t1->ne[0]) &&
  2310. (t0->ne[2] == t1->ne[2]) &&
  2311. (t0->ne[3] == t1->ne[3]);
  2312. }
  2313. static inline bool ggml_is_transposed(const struct ggml_tensor * tensor) {
  2314. return tensor->nb[0] > tensor->nb[1];
  2315. }
  2316. static inline bool ggml_is_contiguous(const struct ggml_tensor * tensor) {
  2317. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2318. return
  2319. tensor->nb[0] == GGML_TYPE_SIZE[tensor->type] &&
  2320. tensor->nb[1] == (tensor->nb[0]*tensor->ne[0])/GGML_BLCK_SIZE[tensor->type] &&
  2321. tensor->nb[2] == tensor->nb[1]*tensor->ne[1] &&
  2322. tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
  2323. }
  2324. static inline bool ggml_is_padded_1d(const struct ggml_tensor * tensor) {
  2325. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2326. return
  2327. tensor->nb[0] == GGML_TYPE_SIZE[tensor->type] &&
  2328. tensor->nb[2] == tensor->nb[1]*tensor->ne[1] &&
  2329. tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
  2330. }
  2331. static inline bool ggml_are_same_shape(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  2332. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2333. return
  2334. (t0->ne[0] == t1->ne[0] ) &&
  2335. (t0->ne[1] == t1->ne[1] ) &&
  2336. (t0->ne[2] == t1->ne[2] ) &&
  2337. (t0->ne[3] == t1->ne[3] );
  2338. }
  2339. // check if t1 can be represented as a repeatition of t0
  2340. static inline bool ggml_can_repeat(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  2341. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2342. return
  2343. (t1->ne[0]%t0->ne[0] == 0) &&
  2344. (t1->ne[1]%t0->ne[1] == 0) &&
  2345. (t1->ne[2]%t0->ne[2] == 0) &&
  2346. (t1->ne[3]%t0->ne[3] == 0);
  2347. }
  2348. static inline int ggml_up32(int n) {
  2349. return (n + 31) & ~31;
  2350. }
  2351. static inline int ggml_up64(int n) {
  2352. return (n + 63) & ~63;
  2353. }
  2354. static inline int ggml_up(int n, int m) {
  2355. // assert m is a power of 2
  2356. GGML_ASSERT((m & (m - 1)) == 0);
  2357. return (n + m - 1) & ~(m - 1);
  2358. }
  2359. // assert that pointer is aligned to GGML_MEM_ALIGN
  2360. #define ggml_assert_aligned(ptr) \
  2361. GGML_ASSERT(((uintptr_t) (ptr))%GGML_MEM_ALIGN == 0)
  2362. ////////////////////////////////////////////////////////////////////////////////
  2363. struct ggml_context * ggml_init(struct ggml_init_params params) {
  2364. // make this function thread safe
  2365. ggml_critical_section_start();
  2366. static bool is_first_call = true;
  2367. if (is_first_call) {
  2368. // initialize time system (required on Windows)
  2369. ggml_time_init();
  2370. // initialize GELU, SILU and EXP F32 tables
  2371. {
  2372. const uint64_t t_start = ggml_time_us(); UNUSED(t_start);
  2373. ggml_fp16_t ii;
  2374. for (int i = 0; i < (1 << 16); ++i) {
  2375. uint16_t ui = i;
  2376. memcpy(&ii, &ui, sizeof(ii));
  2377. const float f = table_f32_f16[i] = GGML_COMPUTE_FP16_TO_FP32(ii);
  2378. table_gelu_f16[i] = GGML_FP32_TO_FP16(ggml_gelu_f32(f));
  2379. table_silu_f16[i] = GGML_FP32_TO_FP16(ggml_silu_f32(f));
  2380. table_exp_f16[i] = GGML_FP32_TO_FP16(expf(f));
  2381. }
  2382. const uint64_t t_end = ggml_time_us(); UNUSED(t_end);
  2383. GGML_PRINT_DEBUG("%s: GELU, SILU and EXP tables initialized in %f ms\n", __func__, (t_end - t_start)/1000.0f);
  2384. }
  2385. // initialize g_state
  2386. {
  2387. const uint64_t t_start = ggml_time_us(); UNUSED(t_start);
  2388. g_state = (struct ggml_state) {
  2389. /*.contexts =*/ { { 0 } },
  2390. };
  2391. for (int i = 0; i < GGML_MAX_CONTEXTS; ++i) {
  2392. g_state.contexts[i].used = false;
  2393. }
  2394. const uint64_t t_end = ggml_time_us(); UNUSED(t_end);
  2395. GGML_PRINT_DEBUG("%s: g_state initialized in %f ms\n", __func__, (t_end - t_start)/1000.0f);
  2396. }
  2397. is_first_call = false;
  2398. }
  2399. // find non-used context in g_state
  2400. struct ggml_context * ctx = NULL;
  2401. for (int i = 0; i < GGML_MAX_CONTEXTS; i++) {
  2402. if (!g_state.contexts[i].used) {
  2403. g_state.contexts[i].used = true;
  2404. ctx = &g_state.contexts[i].context;
  2405. GGML_PRINT_DEBUG("%s: found unused context %d\n", __func__, i);
  2406. break;
  2407. }
  2408. }
  2409. if (ctx == NULL) {
  2410. GGML_PRINT_DEBUG("%s: no unused context found\n", __func__);
  2411. ggml_critical_section_end();
  2412. return NULL;
  2413. }
  2414. *ctx = (struct ggml_context) {
  2415. /*.mem_size =*/ params.mem_size,
  2416. /*.mem_buffer =*/ params.mem_buffer ? params.mem_buffer : malloc(params.mem_size),
  2417. /*.mem_buffer_owned =*/ params.mem_buffer ? false : true,
  2418. /*.mem_buffer_mlocked =*/ false,
  2419. /*.no_alloc =*/ params.no_alloc,
  2420. /*.n_objects =*/ 0,
  2421. /*.objects_begin =*/ NULL,
  2422. /*.objects_end =*/ NULL,
  2423. /*.scratch =*/ { 0, 0, NULL, },
  2424. /*.scratch_save =*/ { 0, 0, NULL, },
  2425. };
  2426. GGML_ASSERT(ctx->mem_buffer != NULL); // check for allocation failure
  2427. ggml_assert_aligned(ctx->mem_buffer);
  2428. GGML_PRINT_DEBUG("%s: context initialized\n", __func__);
  2429. ggml_critical_section_end();
  2430. return ctx;
  2431. }
  2432. void ggml_free(struct ggml_context * ctx) {
  2433. // make this function thread safe
  2434. ggml_critical_section_start();
  2435. bool found = false;
  2436. for (int i = 0; i < GGML_MAX_CONTEXTS; i++) {
  2437. if (&g_state.contexts[i].context == ctx) {
  2438. g_state.contexts[i].used = false;
  2439. GGML_PRINT_DEBUG("%s: context %d with %d objects has been freed. memory used = %zu\n",
  2440. __func__, i, ctx->n_objects, ctx->objects_end->offs + ctx->objects_end->size);
  2441. #if GGML_MLOCK_SUPPORT
  2442. if (ctx->mem_buffer_mlocked) {
  2443. if (munlock(ctx->mem_buffer, ctx->mem_size)) {
  2444. fprintf(stderr, "%s: failed to munlock buffer: %s\n", __func__, strerror(errno));
  2445. }
  2446. }
  2447. #endif
  2448. if (ctx->mem_buffer_owned) {
  2449. free(ctx->mem_buffer);
  2450. }
  2451. found = true;
  2452. break;
  2453. }
  2454. }
  2455. if (!found) {
  2456. GGML_PRINT_DEBUG("%s: context not found\n", __func__);
  2457. }
  2458. ggml_critical_section_end();
  2459. }
  2460. size_t ggml_used_mem(const struct ggml_context * ctx) {
  2461. return ctx->objects_end->offs + ctx->objects_end->size;
  2462. }
  2463. size_t ggml_set_scratch(struct ggml_context * ctx, struct ggml_scratch scratch) {
  2464. const size_t result = ctx->scratch.data ? ctx->scratch.offs : 0;
  2465. ctx->scratch = scratch;
  2466. return result;
  2467. }
  2468. #ifdef __APPLE__
  2469. #define MLOCK_SUGGESTION \
  2470. "Try increasing the sysctl values 'vm.user_wire_limit' and 'vm.global_user_wire_limit' and/or " \
  2471. "decreasing 'vm.global_no_user_wire_amount'. Also try increasing RLIMIT_MLOCK (ulimit -l).\n"
  2472. #else
  2473. #define MLOCK_SUGGESTION \
  2474. "Try increasing RLIMIT_MLOCK ('ulimit -l' as root).\n"
  2475. #endif
  2476. bool ggml_mlock_supported(void) {
  2477. return GGML_MLOCK_SUPPORT;
  2478. }
  2479. bool ggml_mlock(
  2480. struct ggml_context * ctx,
  2481. const void *opt_extra_addr,
  2482. size_t opt_extra_len,
  2483. char **err_p) {
  2484. // TODO: Use SetProcessWorkingSetSize() + VirtualLock() on WIN32
  2485. #if GGML_MLOCK_SUPPORT
  2486. if (ctx->mem_buffer_mlocked) {
  2487. return true;
  2488. }
  2489. if (mlock(ctx->mem_buffer, ctx->mem_size) ||
  2490. (opt_extra_len &&
  2491. mlock(opt_extra_addr, opt_extra_len))) {
  2492. if ((*err_p = malloc(1024))) {
  2493. snprintf(*err_p, 1024,
  2494. "failed to mlock %zu-byte buffer: %s\n" MLOCK_SUGGESTION,
  2495. ctx->mem_size + opt_extra_len,
  2496. strerror(errno));
  2497. }
  2498. return false;
  2499. }
  2500. ctx->mem_buffer_mlocked = true;
  2501. return true;
  2502. #else // GGML_MLOCK_SUPPORT
  2503. *err_p = strdup("can't mlock because it's not supported on this system");
  2504. return false;
  2505. #endif // GGML_MLOCK_SUPPORT
  2506. }
  2507. ////////////////////////////////////////////////////////////////////////////////
  2508. struct ggml_tensor * ggml_new_tensor_impl(
  2509. struct ggml_context * ctx,
  2510. enum ggml_type type,
  2511. int n_dims,
  2512. const int64_t* ne,
  2513. void* data) {
  2514. // always insert objects at the end of the context's memory pool
  2515. struct ggml_object * obj_cur = ctx->objects_end;
  2516. const size_t cur_offs = obj_cur == NULL ? 0 : obj_cur->offs;
  2517. const size_t cur_size = obj_cur == NULL ? 0 : obj_cur->size;
  2518. const size_t cur_end = cur_offs + cur_size;
  2519. size_t size_needed = 0;
  2520. if (data == NULL && !ctx->no_alloc) {
  2521. size_needed += GGML_TYPE_SIZE[type]*(ne[0]/GGML_BLCK_SIZE[type]);
  2522. for (int i = 1; i < n_dims; i++) {
  2523. size_needed *= ne[i];
  2524. }
  2525. // align to GGML_MEM_ALIGN
  2526. size_needed = ((size_needed + GGML_MEM_ALIGN - 1)/GGML_MEM_ALIGN)*GGML_MEM_ALIGN;
  2527. }
  2528. char * const mem_buffer = ctx->mem_buffer;
  2529. struct ggml_object * const obj_new = (struct ggml_object *)(mem_buffer + cur_end);
  2530. if (ctx->scratch.data == NULL || data != NULL) {
  2531. size_needed += sizeof(struct ggml_tensor);
  2532. if (cur_end + size_needed + GGML_OBJECT_SIZE > ctx->mem_size) {
  2533. GGML_PRINT("%s: not enough space in the context's memory pool (needed %zu, available %zu)\n",
  2534. __func__, cur_end + size_needed + GGML_OBJECT_SIZE, ctx->mem_size);
  2535. assert(false);
  2536. return NULL;
  2537. }
  2538. *obj_new = (struct ggml_object) {
  2539. .offs = cur_end + GGML_OBJECT_SIZE,
  2540. .size = size_needed,
  2541. .next = NULL,
  2542. };
  2543. } else {
  2544. if (ctx->scratch.offs + size_needed > ctx->scratch.size) {
  2545. GGML_PRINT("%s: not enough space in the scratch memory\n", __func__);
  2546. assert(false);
  2547. return NULL;
  2548. }
  2549. if (cur_end + sizeof(struct ggml_tensor) + GGML_OBJECT_SIZE > ctx->mem_size) {
  2550. GGML_PRINT("%s: not enough space in the context's memory pool (needed %zu, available %zu)\n",
  2551. __func__, cur_end + sizeof(struct ggml_tensor) + GGML_OBJECT_SIZE, ctx->mem_size);
  2552. assert(false);
  2553. return NULL;
  2554. }
  2555. data = (char * const) ctx->scratch.data + ctx->scratch.offs;
  2556. *obj_new = (struct ggml_object) {
  2557. .offs = cur_end + GGML_OBJECT_SIZE,
  2558. .size = sizeof(struct ggml_tensor),
  2559. .next = NULL,
  2560. };
  2561. //printf("scratch offs = %zu, size_needed = %zu\n", ctx->scratch.offs, size_needed);
  2562. ctx->scratch.offs += size_needed;
  2563. }
  2564. if (obj_cur != NULL) {
  2565. obj_cur->next = obj_new;
  2566. } else {
  2567. // this is the first object in this context
  2568. ctx->objects_begin = obj_new;
  2569. }
  2570. ctx->objects_end = obj_new;
  2571. //printf("%s: inserted new object at %zu, size = %zu\n", __func__, cur_end, obj_new->size);
  2572. struct ggml_tensor * const result = (struct ggml_tensor *)(mem_buffer + obj_new->offs);
  2573. ggml_assert_aligned(result);
  2574. *result = (struct ggml_tensor) {
  2575. /*.type =*/ type,
  2576. /*.n_dims =*/ n_dims,
  2577. /*.ne =*/ { 1, 1, 1, 1 },
  2578. /*.nb =*/ { 0, 0, 0, 0 },
  2579. /*.op =*/ GGML_OP_NONE,
  2580. /*.is_param =*/ false,
  2581. /*.grad =*/ NULL,
  2582. /*.src0 =*/ NULL,
  2583. /*.src1 =*/ NULL,
  2584. /*.opt =*/ { NULL },
  2585. /*.n_tasks =*/ 0,
  2586. /*.perf_runs =*/ 0,
  2587. /*.perf_cycles =*/ 0,
  2588. /*.perf_time_us =*/ 0,
  2589. /*.data =*/ (data == NULL && !ctx->no_alloc) ? (void *)(result + 1) : data,
  2590. /*.pad =*/ { 0 },
  2591. };
  2592. ggml_assert_aligned(result->data);
  2593. for (int i = 0; i < n_dims; i++) {
  2594. result->ne[i] = ne[i];
  2595. }
  2596. result->nb[0] = GGML_TYPE_SIZE[type];
  2597. result->nb[1] = result->nb[0]*(result->ne[0]/GGML_BLCK_SIZE[type]);
  2598. for (int i = 2; i < GGML_MAX_DIMS; i++) {
  2599. result->nb[i] = result->nb[i - 1]*result->ne[i - 1];
  2600. }
  2601. ctx->n_objects++;
  2602. return result;
  2603. }
  2604. struct ggml_tensor * ggml_new_tensor(
  2605. struct ggml_context * ctx,
  2606. enum ggml_type type,
  2607. int n_dims,
  2608. const int64_t * ne) {
  2609. return ggml_new_tensor_impl(ctx, type, n_dims, ne, NULL);
  2610. }
  2611. struct ggml_tensor * ggml_new_tensor_1d(
  2612. struct ggml_context * ctx,
  2613. enum ggml_type type,
  2614. int64_t ne0) {
  2615. return ggml_new_tensor(ctx, type, 1, &ne0);
  2616. }
  2617. struct ggml_tensor * ggml_new_tensor_2d(
  2618. struct ggml_context * ctx,
  2619. enum ggml_type type,
  2620. int64_t ne0,
  2621. int64_t ne1) {
  2622. const int64_t ne[2] = { ne0, ne1 };
  2623. return ggml_new_tensor(ctx, type, 2, ne);
  2624. }
  2625. struct ggml_tensor * ggml_new_tensor_3d(
  2626. struct ggml_context * ctx,
  2627. enum ggml_type type,
  2628. int64_t ne0,
  2629. int64_t ne1,
  2630. int64_t ne2) {
  2631. const int64_t ne[3] = { ne0, ne1, ne2 };
  2632. return ggml_new_tensor(ctx, type, 3, ne);
  2633. }
  2634. struct ggml_tensor * ggml_new_tensor_4d(
  2635. struct ggml_context * ctx,
  2636. enum ggml_type type,
  2637. int64_t ne0,
  2638. int64_t ne1,
  2639. int64_t ne2,
  2640. int64_t ne3) {
  2641. const int64_t ne[4] = { ne0, ne1, ne2, ne3 };
  2642. return ggml_new_tensor(ctx, type, 4, ne);
  2643. }
  2644. struct ggml_tensor * ggml_new_i32(struct ggml_context * ctx, int32_t value) {
  2645. ctx->scratch_save = ctx->scratch;
  2646. ctx->scratch.data = NULL;
  2647. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 1);
  2648. ctx->scratch = ctx->scratch_save;
  2649. ggml_set_i32(result, value);
  2650. return result;
  2651. }
  2652. struct ggml_tensor * ggml_new_f32(struct ggml_context * ctx, float value) {
  2653. ctx->scratch_save = ctx->scratch;
  2654. ctx->scratch.data = NULL;
  2655. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 1);
  2656. ctx->scratch = ctx->scratch_save;
  2657. ggml_set_f32(result, value);
  2658. return result;
  2659. }
  2660. struct ggml_tensor * ggml_dup_tensor(struct ggml_context * ctx, const struct ggml_tensor * src) {
  2661. return ggml_new_tensor_impl(ctx, src->type, src->n_dims, src->ne, NULL);
  2662. }
  2663. struct ggml_tensor * ggml_set_zero(struct ggml_tensor * tensor) {
  2664. memset(tensor->data, 0, ggml_nbytes(tensor));
  2665. return tensor;
  2666. }
  2667. struct ggml_tensor * ggml_set_i32 (struct ggml_tensor * tensor, int32_t value) {
  2668. const int n = ggml_nrows(tensor);
  2669. const int nc = tensor->ne[0];
  2670. const size_t n1 = tensor->nb[1];
  2671. char * const data = tensor->data;
  2672. switch (tensor->type) {
  2673. case GGML_TYPE_Q4_0:
  2674. {
  2675. GGML_ASSERT(false);
  2676. } break;
  2677. case GGML_TYPE_Q4_1:
  2678. {
  2679. GGML_ASSERT(false);
  2680. } break;
  2681. case GGML_TYPE_I8:
  2682. {
  2683. assert(tensor->nb[0] == sizeof(int8_t));
  2684. for (int i = 0; i < n; i++) {
  2685. ggml_vec_set_i8(nc, (int8_t *)(data + i*n1), value);
  2686. }
  2687. } break;
  2688. case GGML_TYPE_I16:
  2689. {
  2690. assert(tensor->nb[0] == sizeof(int16_t));
  2691. for (int i = 0; i < n; i++) {
  2692. ggml_vec_set_i16(nc, (int16_t *)(data + i*n1), value);
  2693. }
  2694. } break;
  2695. case GGML_TYPE_I32:
  2696. {
  2697. assert(tensor->nb[0] == sizeof(int32_t));
  2698. for (int i = 0; i < n; i++) {
  2699. ggml_vec_set_i32(nc, (int32_t *)(data + i*n1), value);
  2700. }
  2701. } break;
  2702. case GGML_TYPE_F16:
  2703. {
  2704. assert(tensor->nb[0] == sizeof(ggml_fp16_t));
  2705. for (int i = 0; i < n; i++) {
  2706. ggml_vec_set_f16(nc, (ggml_fp16_t *)(data + i*n1), value);
  2707. }
  2708. } break;
  2709. case GGML_TYPE_F32:
  2710. {
  2711. assert(tensor->nb[0] == sizeof(float));
  2712. for (int i = 0; i < n; i++) {
  2713. ggml_vec_set_f32(nc, (float *)(data + i*n1), value);
  2714. }
  2715. } break;
  2716. case GGML_TYPE_COUNT:
  2717. {
  2718. GGML_ASSERT(false);
  2719. } break;
  2720. }
  2721. return tensor;
  2722. }
  2723. struct ggml_tensor * ggml_set_f32(struct ggml_tensor * tensor, float value) {
  2724. const int n = ggml_nrows(tensor);
  2725. const int nc = tensor->ne[0];
  2726. const size_t n1 = tensor->nb[1];
  2727. char * const data = tensor->data;
  2728. switch (tensor->type) {
  2729. case GGML_TYPE_Q4_0:
  2730. {
  2731. GGML_ASSERT(false);
  2732. } break;
  2733. case GGML_TYPE_Q4_1:
  2734. {
  2735. GGML_ASSERT(false);
  2736. } break;
  2737. case GGML_TYPE_I8:
  2738. {
  2739. assert(tensor->nb[0] == sizeof(int8_t));
  2740. for (int i = 0; i < n; i++) {
  2741. ggml_vec_set_i8(nc, (int8_t *)(data + i*n1), value);
  2742. }
  2743. } break;
  2744. case GGML_TYPE_I16:
  2745. {
  2746. assert(tensor->nb[0] == sizeof(int16_t));
  2747. for (int i = 0; i < n; i++) {
  2748. ggml_vec_set_i16(nc, (int16_t *)(data + i*n1), value);
  2749. }
  2750. } break;
  2751. case GGML_TYPE_I32:
  2752. {
  2753. assert(tensor->nb[0] == sizeof(int32_t));
  2754. for (int i = 0; i < n; i++) {
  2755. ggml_vec_set_i32(nc, (int32_t *)(data + i*n1), value);
  2756. }
  2757. } break;
  2758. case GGML_TYPE_F16:
  2759. {
  2760. assert(tensor->nb[0] == sizeof(ggml_fp16_t));
  2761. for (int i = 0; i < n; i++) {
  2762. ggml_vec_set_f16(nc, (ggml_fp16_t *)(data + i*n1), value);
  2763. }
  2764. } break;
  2765. case GGML_TYPE_F32:
  2766. {
  2767. assert(tensor->nb[0] == sizeof(float));
  2768. for (int i = 0; i < n; i++) {
  2769. ggml_vec_set_f32(nc, (float *)(data + i*n1), value);
  2770. }
  2771. } break;
  2772. case GGML_TYPE_COUNT:
  2773. {
  2774. GGML_ASSERT(false);
  2775. } break;
  2776. }
  2777. return tensor;
  2778. }
  2779. int32_t ggml_get_i32_1d(const struct ggml_tensor * tensor, int i) {
  2780. switch (tensor->type) {
  2781. case GGML_TYPE_Q4_0:
  2782. {
  2783. GGML_ASSERT(false);
  2784. } break;
  2785. case GGML_TYPE_Q4_1:
  2786. {
  2787. GGML_ASSERT(false);
  2788. } break;
  2789. case GGML_TYPE_I8:
  2790. {
  2791. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  2792. return ((int8_t *)(tensor->data))[i];
  2793. } break;
  2794. case GGML_TYPE_I16:
  2795. {
  2796. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  2797. return ((int16_t *)(tensor->data))[i];
  2798. } break;
  2799. case GGML_TYPE_I32:
  2800. {
  2801. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  2802. return ((int32_t *)(tensor->data))[i];
  2803. } break;
  2804. case GGML_TYPE_F16:
  2805. {
  2806. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  2807. return GGML_FP16_TO_FP32(((ggml_fp16_t *)(tensor->data))[i]);
  2808. } break;
  2809. case GGML_TYPE_F32:
  2810. {
  2811. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  2812. return ((float *)(tensor->data))[i];
  2813. } break;
  2814. case GGML_TYPE_COUNT:
  2815. {
  2816. GGML_ASSERT(false);
  2817. } break;
  2818. }
  2819. return 0.0f;
  2820. }
  2821. void ggml_set_i32_1d(const struct ggml_tensor * tensor, int i, int32_t value) {
  2822. switch (tensor->type) {
  2823. case GGML_TYPE_Q4_0:
  2824. {
  2825. GGML_ASSERT(false);
  2826. } break;
  2827. case GGML_TYPE_Q4_1:
  2828. {
  2829. GGML_ASSERT(false);
  2830. } break;
  2831. case GGML_TYPE_I8:
  2832. {
  2833. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  2834. ((int8_t *)(tensor->data))[i] = value;
  2835. } break;
  2836. case GGML_TYPE_I16:
  2837. {
  2838. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  2839. ((int16_t *)(tensor->data))[i] = value;
  2840. } break;
  2841. case GGML_TYPE_I32:
  2842. {
  2843. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  2844. ((int32_t *)(tensor->data))[i] = value;
  2845. } break;
  2846. case GGML_TYPE_F16:
  2847. {
  2848. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  2849. ((ggml_fp16_t *)(tensor->data))[i] = GGML_FP32_TO_FP16(value);
  2850. } break;
  2851. case GGML_TYPE_F32:
  2852. {
  2853. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  2854. ((float *)(tensor->data))[i] = value;
  2855. } break;
  2856. case GGML_TYPE_COUNT:
  2857. {
  2858. GGML_ASSERT(false);
  2859. } break;
  2860. }
  2861. }
  2862. float ggml_get_f32_1d(const struct ggml_tensor * tensor, int i) {
  2863. switch (tensor->type) {
  2864. case GGML_TYPE_Q4_0:
  2865. {
  2866. GGML_ASSERT(false);
  2867. } break;
  2868. case GGML_TYPE_Q4_1:
  2869. {
  2870. GGML_ASSERT(false);
  2871. } break;
  2872. case GGML_TYPE_I8:
  2873. {
  2874. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  2875. return ((int8_t *)(tensor->data))[i];
  2876. } break;
  2877. case GGML_TYPE_I16:
  2878. {
  2879. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  2880. return ((int16_t *)(tensor->data))[i];
  2881. } break;
  2882. case GGML_TYPE_I32:
  2883. {
  2884. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  2885. return ((int32_t *)(tensor->data))[i];
  2886. } break;
  2887. case GGML_TYPE_F16:
  2888. {
  2889. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  2890. return GGML_FP16_TO_FP32(((ggml_fp16_t *)(tensor->data))[i]);
  2891. } break;
  2892. case GGML_TYPE_F32:
  2893. {
  2894. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  2895. return ((float *)(tensor->data))[i];
  2896. } break;
  2897. case GGML_TYPE_COUNT:
  2898. {
  2899. GGML_ASSERT(false);
  2900. } break;
  2901. }
  2902. return 0.0f;
  2903. }
  2904. void ggml_set_f32_1d(const struct ggml_tensor * tensor, int i, float value) {
  2905. switch (tensor->type) {
  2906. case GGML_TYPE_Q4_0:
  2907. {
  2908. GGML_ASSERT(false);
  2909. } break;
  2910. case GGML_TYPE_Q4_1:
  2911. {
  2912. GGML_ASSERT(false);
  2913. } break;
  2914. case GGML_TYPE_I8:
  2915. {
  2916. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  2917. ((int8_t *)(tensor->data))[i] = value;
  2918. } break;
  2919. case GGML_TYPE_I16:
  2920. {
  2921. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  2922. ((int16_t *)(tensor->data))[i] = value;
  2923. } break;
  2924. case GGML_TYPE_I32:
  2925. {
  2926. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  2927. ((int32_t *)(tensor->data))[i] = value;
  2928. } break;
  2929. case GGML_TYPE_F16:
  2930. {
  2931. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  2932. ((ggml_fp16_t *)(tensor->data))[i] = GGML_FP32_TO_FP16(value);
  2933. } break;
  2934. case GGML_TYPE_F32:
  2935. {
  2936. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  2937. ((float *)(tensor->data))[i] = value;
  2938. } break;
  2939. case GGML_TYPE_COUNT:
  2940. {
  2941. GGML_ASSERT(false);
  2942. } break;
  2943. }
  2944. }
  2945. void * ggml_get_data(const struct ggml_tensor * tensor) {
  2946. return tensor->data;
  2947. }
  2948. float * ggml_get_data_f32(const struct ggml_tensor * tensor) {
  2949. assert(tensor->type == GGML_TYPE_F32);
  2950. return (float *)(tensor->data);
  2951. }
  2952. struct ggml_tensor * ggml_view_tensor(
  2953. struct ggml_context * ctx,
  2954. const struct ggml_tensor * src) {
  2955. return ggml_new_tensor_impl(ctx, src->type, src->n_dims, src->ne, src->data);
  2956. }
  2957. ////////////////////////////////////////////////////////////////////////////////
  2958. // ggml_dup
  2959. struct ggml_tensor * ggml_dup_impl(
  2960. struct ggml_context * ctx,
  2961. struct ggml_tensor * a,
  2962. bool inplace) {
  2963. bool is_node = false;
  2964. if (!inplace && (a->grad)) {
  2965. is_node = true;
  2966. }
  2967. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  2968. result->op = GGML_OP_DUP;
  2969. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2970. result->src0 = a;
  2971. result->src1 = NULL;
  2972. return result;
  2973. }
  2974. struct ggml_tensor * ggml_dup(
  2975. struct ggml_context * ctx,
  2976. struct ggml_tensor * a) {
  2977. return ggml_dup_impl(ctx, a, false);
  2978. }
  2979. struct ggml_tensor * ggml_dup_inplace(
  2980. struct ggml_context * ctx,
  2981. struct ggml_tensor * a) {
  2982. return ggml_dup_impl(ctx, a, true);
  2983. }
  2984. // ggml_add
  2985. struct ggml_tensor * ggml_add_impl(
  2986. struct ggml_context * ctx,
  2987. struct ggml_tensor * a,
  2988. struct ggml_tensor * b,
  2989. bool inplace) {
  2990. GGML_ASSERT(ggml_are_same_shape(a, b));
  2991. bool is_node = false;
  2992. if (!inplace && (a->grad || b->grad)) {
  2993. is_node = true;
  2994. }
  2995. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  2996. result->op = GGML_OP_ADD;
  2997. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2998. result->src0 = a;
  2999. result->src1 = b;
  3000. return result;
  3001. }
  3002. struct ggml_tensor * ggml_add(
  3003. struct ggml_context * ctx,
  3004. struct ggml_tensor * a,
  3005. struct ggml_tensor * b) {
  3006. return ggml_add_impl(ctx, a, b, false);
  3007. }
  3008. struct ggml_tensor * ggml_add_inplace(
  3009. struct ggml_context * ctx,
  3010. struct ggml_tensor * a,
  3011. struct ggml_tensor * b) {
  3012. return ggml_add_impl(ctx, a, b, true);
  3013. }
  3014. // ggml_sub
  3015. struct ggml_tensor * ggml_sub_impl(
  3016. struct ggml_context * ctx,
  3017. struct ggml_tensor * a,
  3018. struct ggml_tensor * b,
  3019. bool inplace) {
  3020. GGML_ASSERT(ggml_are_same_shape(a, b));
  3021. bool is_node = false;
  3022. if (!inplace && (a->grad || b->grad)) {
  3023. is_node = true;
  3024. }
  3025. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3026. result->op = GGML_OP_SUB;
  3027. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3028. result->src0 = a;
  3029. result->src1 = b;
  3030. return result;
  3031. }
  3032. struct ggml_tensor * ggml_sub(
  3033. struct ggml_context * ctx,
  3034. struct ggml_tensor * a,
  3035. struct ggml_tensor * b) {
  3036. return ggml_sub_impl(ctx, a, b, false);
  3037. }
  3038. struct ggml_tensor * ggml_sub_inplace(
  3039. struct ggml_context * ctx,
  3040. struct ggml_tensor * a,
  3041. struct ggml_tensor * b) {
  3042. return ggml_sub_impl(ctx, a, b, true);
  3043. }
  3044. // ggml_mul
  3045. struct ggml_tensor * ggml_mul_impl(
  3046. struct ggml_context * ctx,
  3047. struct ggml_tensor * a,
  3048. struct ggml_tensor * b,
  3049. bool inplace) {
  3050. GGML_ASSERT(ggml_are_same_shape(a, b));
  3051. bool is_node = false;
  3052. if (!inplace && (a->grad || b->grad)) {
  3053. is_node = true;
  3054. }
  3055. if (inplace) {
  3056. GGML_ASSERT(is_node == false);
  3057. }
  3058. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3059. result->op = GGML_OP_MUL;
  3060. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3061. result->src0 = a;
  3062. result->src1 = b;
  3063. return result;
  3064. }
  3065. struct ggml_tensor * ggml_mul(
  3066. struct ggml_context * ctx,
  3067. struct ggml_tensor * a,
  3068. struct ggml_tensor * b) {
  3069. return ggml_mul_impl(ctx, a, b, false);
  3070. }
  3071. struct ggml_tensor * ggml_mul_inplace(
  3072. struct ggml_context * ctx,
  3073. struct ggml_tensor * a,
  3074. struct ggml_tensor * b) {
  3075. return ggml_mul_impl(ctx, a, b, true);
  3076. }
  3077. // ggml_div
  3078. struct ggml_tensor * ggml_div_impl(
  3079. struct ggml_context * ctx,
  3080. struct ggml_tensor * a,
  3081. struct ggml_tensor * b,
  3082. bool inplace) {
  3083. GGML_ASSERT(ggml_are_same_shape(a, b));
  3084. bool is_node = false;
  3085. if (!inplace && (a->grad || b->grad)) {
  3086. is_node = true;
  3087. }
  3088. if (inplace) {
  3089. GGML_ASSERT(is_node == false);
  3090. }
  3091. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3092. result->op = GGML_OP_DIV;
  3093. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3094. result->src0 = a;
  3095. result->src1 = b;
  3096. return result;
  3097. }
  3098. struct ggml_tensor * ggml_div(
  3099. struct ggml_context * ctx,
  3100. struct ggml_tensor * a,
  3101. struct ggml_tensor * b) {
  3102. return ggml_div_impl(ctx, a, b, false);
  3103. }
  3104. struct ggml_tensor * ggml_div_inplace(
  3105. struct ggml_context * ctx,
  3106. struct ggml_tensor * a,
  3107. struct ggml_tensor * b) {
  3108. return ggml_div_impl(ctx, a, b, true);
  3109. }
  3110. // ggml_sqr
  3111. struct ggml_tensor * ggml_sqr_impl(
  3112. struct ggml_context * ctx,
  3113. struct ggml_tensor * a,
  3114. bool inplace) {
  3115. bool is_node = false;
  3116. if (!inplace && (a->grad)) {
  3117. is_node = true;
  3118. }
  3119. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3120. result->op = GGML_OP_SQR;
  3121. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3122. result->src0 = a;
  3123. result->src1 = NULL;
  3124. return result;
  3125. }
  3126. struct ggml_tensor * ggml_sqr(
  3127. struct ggml_context * ctx,
  3128. struct ggml_tensor * a) {
  3129. return ggml_sqr_impl(ctx, a, false);
  3130. }
  3131. struct ggml_tensor * ggml_sqr_inplace(
  3132. struct ggml_context * ctx,
  3133. struct ggml_tensor * a) {
  3134. return ggml_sqr_impl(ctx, a, true);
  3135. }
  3136. // ggml_sqrt
  3137. struct ggml_tensor * ggml_sqrt_impl(
  3138. struct ggml_context * ctx,
  3139. struct ggml_tensor * a,
  3140. bool inplace) {
  3141. bool is_node = false;
  3142. if (!inplace && (a->grad)) {
  3143. is_node = true;
  3144. }
  3145. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3146. result->op = GGML_OP_SQRT;
  3147. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3148. result->src0 = a;
  3149. result->src1 = NULL;
  3150. return result;
  3151. }
  3152. struct ggml_tensor * ggml_sqrt(
  3153. struct ggml_context * ctx,
  3154. struct ggml_tensor * a) {
  3155. return ggml_sqrt_impl(ctx, a, false);
  3156. }
  3157. struct ggml_tensor * ggml_sqrt_inplace(
  3158. struct ggml_context * ctx,
  3159. struct ggml_tensor * a) {
  3160. return ggml_sqrt_impl(ctx, a, true);
  3161. }
  3162. // ggml_sum
  3163. struct ggml_tensor * ggml_sum(
  3164. struct ggml_context * ctx,
  3165. struct ggml_tensor * a) {
  3166. bool is_node = false;
  3167. if (a->grad) {
  3168. is_node = true;
  3169. }
  3170. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, a->type, 1);
  3171. result->op = GGML_OP_SUM;
  3172. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3173. result->src0 = a;
  3174. result->src1 = NULL;
  3175. return result;
  3176. }
  3177. // ggml_mean
  3178. struct ggml_tensor * ggml_mean(
  3179. struct ggml_context * ctx,
  3180. struct ggml_tensor * a) {
  3181. bool is_node = false;
  3182. if (a->grad) {
  3183. GGML_ASSERT(false); // TODO: implement
  3184. is_node = true;
  3185. }
  3186. int64_t ne[GGML_MAX_DIMS] = { 1, a->ne[1], a->ne[2], a->ne[3] };
  3187. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, a->n_dims, ne);
  3188. result->op = GGML_OP_MEAN;
  3189. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3190. result->src0 = a;
  3191. result->src1 = NULL;
  3192. return result;
  3193. }
  3194. // ggml_repeat
  3195. struct ggml_tensor * ggml_repeat(
  3196. struct ggml_context * ctx,
  3197. struct ggml_tensor * a,
  3198. struct ggml_tensor * b) {
  3199. GGML_ASSERT(ggml_can_repeat(a, b));
  3200. bool is_node = false;
  3201. if (a->grad) {
  3202. is_node = true;
  3203. }
  3204. if (ggml_are_same_shape(a, b) && !is_node) {
  3205. return a;
  3206. }
  3207. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, b->n_dims, b->ne);
  3208. result->op = GGML_OP_REPEAT;
  3209. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3210. result->src0 = a;
  3211. result->src1 = b;
  3212. return result;
  3213. }
  3214. // ggml_abs
  3215. struct ggml_tensor * ggml_abs_impl(
  3216. struct ggml_context * ctx,
  3217. struct ggml_tensor * a,
  3218. bool inplace) {
  3219. bool is_node = false;
  3220. if (!inplace && (a->grad)) {
  3221. is_node = true;
  3222. }
  3223. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3224. result->op = GGML_OP_ABS;
  3225. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3226. result->src0 = a;
  3227. result->src1 = NULL;
  3228. return result;
  3229. }
  3230. struct ggml_tensor * ggml_abs(
  3231. struct ggml_context * ctx,
  3232. struct ggml_tensor * a) {
  3233. return ggml_abs_impl(ctx, a, false);
  3234. }
  3235. struct ggml_tensor * ggml_abs_inplace(
  3236. struct ggml_context * ctx,
  3237. struct ggml_tensor * a) {
  3238. return ggml_abs_impl(ctx, a, true);
  3239. }
  3240. // ggml_sgn
  3241. struct ggml_tensor * ggml_sgn_impl(
  3242. struct ggml_context * ctx,
  3243. struct ggml_tensor * a,
  3244. bool inplace) {
  3245. bool is_node = false;
  3246. if (!inplace && (a->grad)) {
  3247. is_node = true;
  3248. }
  3249. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3250. result->op = GGML_OP_SGN;
  3251. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3252. result->src0 = a;
  3253. result->src1 = NULL;
  3254. return result;
  3255. }
  3256. struct ggml_tensor * ggml_sgn(
  3257. struct ggml_context * ctx,
  3258. struct ggml_tensor * a) {
  3259. return ggml_sgn_impl(ctx, a, false);
  3260. }
  3261. struct ggml_tensor * ggml_sgn_inplace(
  3262. struct ggml_context * ctx,
  3263. struct ggml_tensor * a) {
  3264. return ggml_sgn_impl(ctx, a, true);
  3265. }
  3266. // ggml_neg
  3267. struct ggml_tensor * ggml_neg_impl(
  3268. struct ggml_context * ctx,
  3269. struct ggml_tensor * a,
  3270. bool inplace) {
  3271. bool is_node = false;
  3272. if (!inplace && (a->grad)) {
  3273. is_node = true;
  3274. }
  3275. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3276. result->op = GGML_OP_NEG;
  3277. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3278. result->src0 = a;
  3279. result->src1 = NULL;
  3280. return result;
  3281. }
  3282. struct ggml_tensor * ggml_neg(
  3283. struct ggml_context * ctx,
  3284. struct ggml_tensor * a) {
  3285. return ggml_neg_impl(ctx, a, false);
  3286. }
  3287. struct ggml_tensor * ggml_neg_inplace(
  3288. struct ggml_context * ctx,
  3289. struct ggml_tensor * a) {
  3290. return ggml_neg_impl(ctx, a, true);
  3291. }
  3292. // ggml_step
  3293. struct ggml_tensor * ggml_step_impl(
  3294. struct ggml_context * ctx,
  3295. struct ggml_tensor * a,
  3296. bool inplace) {
  3297. bool is_node = false;
  3298. if (!inplace && (a->grad)) {
  3299. is_node = true;
  3300. }
  3301. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3302. result->op = GGML_OP_STEP;
  3303. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3304. result->src0 = a;
  3305. result->src1 = NULL;
  3306. return result;
  3307. }
  3308. struct ggml_tensor * ggml_step(
  3309. struct ggml_context * ctx,
  3310. struct ggml_tensor * a) {
  3311. return ggml_step_impl(ctx, a, false);
  3312. }
  3313. struct ggml_tensor * ggml_step_inplace(
  3314. struct ggml_context * ctx,
  3315. struct ggml_tensor * a) {
  3316. return ggml_step_impl(ctx, a, true);
  3317. }
  3318. // ggml_relu
  3319. struct ggml_tensor * ggml_relu_impl(
  3320. struct ggml_context * ctx,
  3321. struct ggml_tensor * a,
  3322. bool inplace) {
  3323. bool is_node = false;
  3324. if (!inplace && (a->grad)) {
  3325. is_node = true;
  3326. }
  3327. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3328. result->op = GGML_OP_RELU;
  3329. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3330. result->src0 = a;
  3331. result->src1 = NULL;
  3332. return result;
  3333. }
  3334. struct ggml_tensor * ggml_relu(
  3335. struct ggml_context * ctx,
  3336. struct ggml_tensor * a) {
  3337. return ggml_relu_impl(ctx, a, false);
  3338. }
  3339. struct ggml_tensor * ggml_relu_inplace(
  3340. struct ggml_context * ctx,
  3341. struct ggml_tensor * a) {
  3342. return ggml_relu_impl(ctx, a, true);
  3343. }
  3344. // ggml_gelu
  3345. struct ggml_tensor * ggml_gelu_impl(
  3346. struct ggml_context * ctx,
  3347. struct ggml_tensor * a,
  3348. bool inplace) {
  3349. bool is_node = false;
  3350. if (!inplace && (a->grad)) {
  3351. is_node = true;
  3352. }
  3353. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3354. result->op = GGML_OP_GELU;
  3355. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3356. result->src0 = a;
  3357. result->src1 = NULL;
  3358. return result;
  3359. }
  3360. struct ggml_tensor * ggml_gelu(
  3361. struct ggml_context * ctx,
  3362. struct ggml_tensor * a) {
  3363. return ggml_gelu_impl(ctx, a, false);
  3364. }
  3365. struct ggml_tensor * ggml_gelu_inplace(
  3366. struct ggml_context * ctx,
  3367. struct ggml_tensor * a) {
  3368. return ggml_gelu_impl(ctx, a, true);
  3369. }
  3370. // ggml_silu
  3371. struct ggml_tensor * ggml_silu_impl(
  3372. struct ggml_context * ctx,
  3373. struct ggml_tensor * a,
  3374. bool inplace) {
  3375. bool is_node = false;
  3376. if (!inplace && (a->grad)) {
  3377. is_node = true;
  3378. }
  3379. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3380. result->op = GGML_OP_SILU;
  3381. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3382. result->src0 = a;
  3383. result->src1 = NULL;
  3384. return result;
  3385. }
  3386. struct ggml_tensor * ggml_silu(
  3387. struct ggml_context * ctx,
  3388. struct ggml_tensor * a) {
  3389. return ggml_silu_impl(ctx, a, false);
  3390. }
  3391. struct ggml_tensor * ggml_silu_inplace(
  3392. struct ggml_context * ctx,
  3393. struct ggml_tensor * a) {
  3394. return ggml_silu_impl(ctx, a, true);
  3395. }
  3396. // ggml_norm
  3397. struct ggml_tensor * ggml_norm_impl(
  3398. struct ggml_context * ctx,
  3399. struct ggml_tensor * a,
  3400. bool inplace) {
  3401. bool is_node = false;
  3402. if (!inplace && (a->grad)) {
  3403. GGML_ASSERT(false); // TODO: implement backward
  3404. is_node = true;
  3405. }
  3406. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3407. result->op = GGML_OP_NORM;
  3408. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3409. result->src0 = a;
  3410. result->src1 = NULL; // TODO: maybe store epsilon here?
  3411. return result;
  3412. }
  3413. struct ggml_tensor * ggml_norm(
  3414. struct ggml_context * ctx,
  3415. struct ggml_tensor * a) {
  3416. return ggml_norm_impl(ctx, a, false);
  3417. }
  3418. struct ggml_tensor * ggml_norm_inplace(
  3419. struct ggml_context * ctx,
  3420. struct ggml_tensor * a) {
  3421. return ggml_norm_impl(ctx, a, true);
  3422. }
  3423. struct ggml_tensor * ggml_rms_norm_impl(
  3424. struct ggml_context * ctx,
  3425. struct ggml_tensor * a,
  3426. bool inplace) {
  3427. bool is_node = false;
  3428. if (!inplace && (a->grad)) {
  3429. GGML_ASSERT(false); // TODO: implement backward
  3430. is_node = true;
  3431. }
  3432. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3433. result->op = GGML_OP_RMS_NORM;
  3434. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3435. result->src0 = a;
  3436. result->src1 = NULL; // TODO: maybe store epsilon here?
  3437. return result;
  3438. }
  3439. struct ggml_tensor * ggml_rms_norm(
  3440. struct ggml_context * ctx,
  3441. struct ggml_tensor * a) {
  3442. return ggml_rms_norm_impl(ctx, a, false);
  3443. }
  3444. struct ggml_tensor * ggml_rms_norm_inplace(
  3445. struct ggml_context * ctx,
  3446. struct ggml_tensor * a) {
  3447. return ggml_rms_norm_impl(ctx, a, true);
  3448. }
  3449. // ggml_mul_mat
  3450. struct ggml_tensor * ggml_mul_mat(
  3451. struct ggml_context * ctx,
  3452. struct ggml_tensor * a,
  3453. struct ggml_tensor * b) {
  3454. GGML_ASSERT(ggml_can_mul_mat(a, b));
  3455. GGML_ASSERT(!ggml_is_transposed(a));
  3456. bool is_node = false;
  3457. if (a->grad || b->grad) {
  3458. is_node = true;
  3459. }
  3460. const int64_t ne[4] = { a->ne[1], b->ne[1], a->ne[2], b->ne[3] };
  3461. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, MIN(a->n_dims, b->n_dims), ne);
  3462. result->op = GGML_OP_MUL_MAT;
  3463. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3464. result->src0 = a;
  3465. result->src1 = b;
  3466. return result;
  3467. }
  3468. // ggml_scale
  3469. struct ggml_tensor * ggml_scale_impl(
  3470. struct ggml_context * ctx,
  3471. struct ggml_tensor * a,
  3472. struct ggml_tensor * b,
  3473. bool inplace) {
  3474. GGML_ASSERT(ggml_is_scalar(b));
  3475. GGML_ASSERT(ggml_is_padded_1d(a));
  3476. bool is_node = false;
  3477. if (!inplace && (a->grad || b->grad)) {
  3478. GGML_ASSERT(false); // TODO: implement backward
  3479. is_node = true;
  3480. }
  3481. // TODO: when implement backward, fix this:
  3482. //struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3483. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  3484. result->op = GGML_OP_SCALE;
  3485. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3486. result->src0 = a;
  3487. result->src1 = b;
  3488. return result;
  3489. }
  3490. struct ggml_tensor * ggml_scale(
  3491. struct ggml_context * ctx,
  3492. struct ggml_tensor * a,
  3493. struct ggml_tensor * b) {
  3494. return ggml_scale_impl(ctx, a, b, false);
  3495. }
  3496. struct ggml_tensor * ggml_scale_inplace(
  3497. struct ggml_context * ctx,
  3498. struct ggml_tensor * a,
  3499. struct ggml_tensor * b) {
  3500. return ggml_scale_impl(ctx, a, b, true);
  3501. }
  3502. // ggml_cpy
  3503. struct ggml_tensor * ggml_cpy_impl(
  3504. struct ggml_context * ctx,
  3505. struct ggml_tensor * a,
  3506. struct ggml_tensor * b,
  3507. bool inplace) {
  3508. GGML_ASSERT(ggml_nelements(a) == ggml_nelements(b));
  3509. bool is_node = false;
  3510. if (!inplace && (a->grad || b->grad)) {
  3511. GGML_ASSERT(false); // TODO: implement backward
  3512. is_node = true;
  3513. }
  3514. // make a view of the destination
  3515. struct ggml_tensor * result = ggml_view_tensor(ctx, b);
  3516. result->op = GGML_OP_CPY;
  3517. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3518. result->src0 = a;
  3519. result->src1 = b;
  3520. return result;
  3521. }
  3522. struct ggml_tensor * ggml_cpy(
  3523. struct ggml_context * ctx,
  3524. struct ggml_tensor * a,
  3525. struct ggml_tensor * b) {
  3526. return ggml_cpy_impl(ctx, a, b, false);
  3527. }
  3528. struct ggml_tensor * ggml_cpy_inplace(
  3529. struct ggml_context * ctx,
  3530. struct ggml_tensor * a,
  3531. struct ggml_tensor * b) {
  3532. return ggml_cpy_impl(ctx, a, b, true);
  3533. }
  3534. // ggml_reshape
  3535. struct ggml_tensor * ggml_reshape(
  3536. struct ggml_context * ctx,
  3537. struct ggml_tensor * a,
  3538. struct ggml_tensor * b) {
  3539. GGML_ASSERT(ggml_is_contiguous(a));
  3540. GGML_ASSERT(ggml_is_contiguous(b));
  3541. GGML_ASSERT(ggml_nelements(a) == ggml_nelements(b));
  3542. bool is_node = false;
  3543. if (a->grad || b->grad) {
  3544. GGML_ASSERT(false); // TODO: implement backward
  3545. is_node = true;
  3546. }
  3547. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, b->n_dims, b->ne, a->data);
  3548. result->op = GGML_OP_RESHAPE;
  3549. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3550. result->src0 = a;
  3551. result->src1 = NULL;
  3552. return result;
  3553. }
  3554. struct ggml_tensor * ggml_reshape_2d(
  3555. struct ggml_context * ctx,
  3556. struct ggml_tensor * a,
  3557. int64_t ne0,
  3558. int64_t ne1) {
  3559. GGML_ASSERT(ggml_is_contiguous(a));
  3560. GGML_ASSERT(ggml_nelements(a) == ne0*ne1);
  3561. bool is_node = false;
  3562. if (a->grad) {
  3563. GGML_ASSERT(false); // TODO: implement backward
  3564. is_node = true;
  3565. }
  3566. const int64_t ne[2] = { ne0, ne1 };
  3567. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 2, ne, a->data);
  3568. result->op = GGML_OP_RESHAPE;
  3569. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3570. result->src0 = a;
  3571. result->src1 = NULL;
  3572. return result;
  3573. }
  3574. struct ggml_tensor * ggml_reshape_3d(
  3575. struct ggml_context * ctx,
  3576. struct ggml_tensor * a,
  3577. int64_t ne0,
  3578. int64_t ne1,
  3579. int64_t ne2) {
  3580. GGML_ASSERT(ggml_is_contiguous(a));
  3581. GGML_ASSERT(ggml_nelements(a) == ne0*ne1*ne2);
  3582. bool is_node = false;
  3583. if (a->grad) {
  3584. GGML_ASSERT(false); // TODO: implement backward
  3585. is_node = true;
  3586. }
  3587. const int64_t ne[3] = { ne0, ne1, ne2 };
  3588. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 3, ne, a->data);
  3589. result->op = GGML_OP_RESHAPE;
  3590. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3591. result->src0 = a;
  3592. result->src1 = NULL;
  3593. return result;
  3594. }
  3595. // ggml_view_1d
  3596. struct ggml_tensor * ggml_view_1d(
  3597. struct ggml_context * ctx,
  3598. struct ggml_tensor * a,
  3599. int64_t ne0,
  3600. size_t offset) {
  3601. if (a->grad) {
  3602. GGML_ASSERT(false); // gradient propagation is not supported
  3603. }
  3604. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 1, &ne0, (char *) a->data + offset);
  3605. result->op = GGML_OP_VIEW;
  3606. result->grad = NULL;
  3607. result->src0 = a;
  3608. result->src1 = NULL; // TODO: maybe store the offset here?
  3609. return result;
  3610. }
  3611. // ggml_view_2d
  3612. struct ggml_tensor * ggml_view_2d(
  3613. struct ggml_context * ctx,
  3614. struct ggml_tensor * a,
  3615. int64_t ne0,
  3616. int64_t ne1,
  3617. size_t nb1,
  3618. size_t offset) {
  3619. if (a->grad) {
  3620. GGML_ASSERT(false); // gradient propagation is not supported
  3621. }
  3622. const int64_t ne[GGML_MAX_DIMS] = { ne0, ne1, 1, 1 };
  3623. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 2, ne, (char *) a->data + offset);
  3624. result->nb[1] = nb1;
  3625. result->nb[2] = result->nb[1]*ne1;
  3626. result->nb[3] = result->nb[2];
  3627. result->op = GGML_OP_VIEW;
  3628. result->grad = NULL;
  3629. result->src0 = a;
  3630. result->src1 = NULL; // TODO: maybe store the offset here?
  3631. return result;
  3632. }
  3633. // ggml_permute
  3634. struct ggml_tensor * ggml_permute(
  3635. struct ggml_context * ctx,
  3636. struct ggml_tensor * a,
  3637. int axis0,
  3638. int axis1,
  3639. int axis2,
  3640. int axis3) {
  3641. GGML_ASSERT(axis0 >= 0 && axis0 < GGML_MAX_DIMS);
  3642. GGML_ASSERT(axis1 >= 0 && axis1 < GGML_MAX_DIMS);
  3643. GGML_ASSERT(axis2 >= 0 && axis2 < GGML_MAX_DIMS);
  3644. GGML_ASSERT(axis3 >= 0 && axis3 < GGML_MAX_DIMS);
  3645. GGML_ASSERT(axis0 != axis1);
  3646. GGML_ASSERT(axis0 != axis2);
  3647. GGML_ASSERT(axis0 != axis3);
  3648. GGML_ASSERT(axis1 != axis2);
  3649. GGML_ASSERT(axis1 != axis3);
  3650. GGML_ASSERT(axis2 != axis3);
  3651. bool is_node = false;
  3652. if (a->grad) {
  3653. GGML_ASSERT(false); // TODO: implement backward
  3654. is_node = true;
  3655. }
  3656. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  3657. int ne[GGML_MAX_DIMS];
  3658. int nb[GGML_MAX_DIMS];
  3659. ne[axis0] = a->ne[0];
  3660. ne[axis1] = a->ne[1];
  3661. ne[axis2] = a->ne[2];
  3662. ne[axis3] = a->ne[3];
  3663. nb[axis0] = a->nb[0];
  3664. nb[axis1] = a->nb[1];
  3665. nb[axis2] = a->nb[2];
  3666. nb[axis3] = a->nb[3];
  3667. result->ne[0] = ne[0];
  3668. result->ne[1] = ne[1];
  3669. result->ne[2] = ne[2];
  3670. result->ne[3] = ne[3];
  3671. result->nb[0] = nb[0];
  3672. result->nb[1] = nb[1];
  3673. result->nb[2] = nb[2];
  3674. result->nb[3] = nb[3];
  3675. result->op = GGML_OP_PERMUTE;
  3676. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3677. result->src0 = a;
  3678. result->src1 = NULL; // TODO: maybe store the permutation here?
  3679. return result;
  3680. }
  3681. // ggml_transpose
  3682. struct ggml_tensor * ggml_transpose(
  3683. struct ggml_context * ctx,
  3684. struct ggml_tensor * a) {
  3685. bool is_node = false;
  3686. if (a->grad) {
  3687. GGML_ASSERT(false); // TODO: implement backward
  3688. is_node = true;
  3689. }
  3690. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  3691. result->ne[0] = a->ne[1];
  3692. result->ne[1] = a->ne[0];
  3693. result->nb[0] = a->nb[1];
  3694. result->nb[1] = a->nb[0];
  3695. result->op = GGML_OP_TRANSPOSE;
  3696. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3697. result->src0 = a;
  3698. result->src1 = NULL;
  3699. return result;
  3700. }
  3701. // ggml_get_rows
  3702. struct ggml_tensor * ggml_get_rows(
  3703. struct ggml_context * ctx,
  3704. struct ggml_tensor * a,
  3705. struct ggml_tensor * b) {
  3706. GGML_ASSERT(ggml_is_matrix(a) && ggml_is_vector(b) && b->type == GGML_TYPE_I32);
  3707. bool is_node = false;
  3708. if (a->grad || b->grad) {
  3709. GGML_ASSERT(false); // TODO: implement backward
  3710. is_node = true;
  3711. }
  3712. // TODO: implement non F32 return
  3713. //struct ggml_tensor * result = ggml_new_tensor_2d(ctx, a->type, a->ne[0], b->ne[0]);
  3714. struct ggml_tensor * result = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, a->ne[0], b->ne[0]);
  3715. result->op = GGML_OP_GET_ROWS;
  3716. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3717. result->src0 = a;
  3718. result->src1 = b;
  3719. return result;
  3720. }
  3721. // ggml_diag_mask_inf
  3722. struct ggml_tensor * ggml_diag_mask_inf(
  3723. struct ggml_context * ctx,
  3724. struct ggml_tensor * a,
  3725. int n_past) {
  3726. bool is_node = false;
  3727. if (a->grad) {
  3728. GGML_ASSERT(false); // TODO: implement backward
  3729. is_node = true;
  3730. }
  3731. // TODO: when implement backward, fix this:
  3732. //struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3733. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  3734. struct ggml_tensor * b = ggml_new_i32(ctx, n_past);
  3735. result->op = GGML_OP_DIAG_MASK_INF;
  3736. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3737. result->src0 = a;
  3738. result->src1 = b;
  3739. return result;
  3740. }
  3741. // ggml_soft_max
  3742. struct ggml_tensor * ggml_soft_max(
  3743. struct ggml_context * ctx,
  3744. struct ggml_tensor * a) {
  3745. bool is_node = false;
  3746. if (a->grad) {
  3747. GGML_ASSERT(false); // TODO: implement backward
  3748. is_node = true;
  3749. }
  3750. // TODO: when implement backward, fix this:
  3751. //struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3752. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  3753. result->op = GGML_OP_SOFT_MAX;
  3754. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3755. result->src0 = a;
  3756. result->src1 = NULL;
  3757. return result;
  3758. }
  3759. // ggml_rope
  3760. struct ggml_tensor * ggml_rope(
  3761. struct ggml_context * ctx,
  3762. struct ggml_tensor * a,
  3763. int n_past,
  3764. int n_dims,
  3765. int mode) {
  3766. GGML_ASSERT(n_past >= 0);
  3767. bool is_node = false;
  3768. if (a->grad) {
  3769. GGML_ASSERT(false); // TODO: implement backward
  3770. is_node = true;
  3771. }
  3772. // TODO: when implement backward, fix this:
  3773. //struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3774. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  3775. struct ggml_tensor * b = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 3);
  3776. ((int32_t *) b->data)[0] = n_past;
  3777. ((int32_t *) b->data)[1] = n_dims;
  3778. ((int32_t *) b->data)[2] = mode;
  3779. result->op = GGML_OP_ROPE;
  3780. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3781. result->src0 = a;
  3782. result->src1 = b;
  3783. return result;
  3784. }
  3785. // ggml_conv_1d_1s
  3786. struct ggml_tensor * ggml_conv_1d_1s(
  3787. struct ggml_context * ctx,
  3788. struct ggml_tensor * a,
  3789. struct ggml_tensor * b) {
  3790. GGML_ASSERT(ggml_is_matrix(b));
  3791. GGML_ASSERT(a->ne[1] == b->ne[1]);
  3792. GGML_ASSERT(a->ne[3] == 1);
  3793. bool is_node = false;
  3794. if (a->grad || b->grad) {
  3795. GGML_ASSERT(false); // TODO: implement backward
  3796. is_node = true;
  3797. }
  3798. const int64_t ne[4] = { b->ne[0], a->ne[2], 1, 1, };
  3799. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 2, ne);
  3800. result->op = GGML_OP_CONV_1D_1S;
  3801. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3802. result->src0 = a;
  3803. result->src1 = b;
  3804. return result;
  3805. }
  3806. // ggml_conv_1d_2s
  3807. struct ggml_tensor * ggml_conv_1d_2s(
  3808. struct ggml_context * ctx,
  3809. struct ggml_tensor * a,
  3810. struct ggml_tensor * b) {
  3811. GGML_ASSERT(ggml_is_matrix(b));
  3812. GGML_ASSERT(a->ne[1] == b->ne[1]);
  3813. GGML_ASSERT(a->ne[3] == 1);
  3814. bool is_node = false;
  3815. if (a->grad || b->grad) {
  3816. GGML_ASSERT(false); // TODO: implement backward
  3817. is_node = true;
  3818. }
  3819. const int64_t ne[4] = { b->ne[0]/2, a->ne[2], 1, 1, };
  3820. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 2, ne);
  3821. result->op = GGML_OP_CONV_1D_2S;
  3822. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3823. result->src0 = a;
  3824. result->src1 = b;
  3825. return result;
  3826. }
  3827. // ggml_flash_attn
  3828. struct ggml_tensor * ggml_flash_attn(
  3829. struct ggml_context * ctx,
  3830. struct ggml_tensor * q,
  3831. struct ggml_tensor * k,
  3832. struct ggml_tensor * v,
  3833. bool masked) {
  3834. GGML_ASSERT(ggml_can_mul_mat(k, q));
  3835. // TODO: check if vT can be multiplied by (k*qT)
  3836. bool is_node = false;
  3837. if (q->grad || k->grad || v->grad) {
  3838. GGML_ASSERT(false); // TODO: implement backward
  3839. is_node = true;
  3840. }
  3841. //struct ggml_tensor * result = ggml_dup_tensor(ctx, q);
  3842. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, q->ne);
  3843. result->op = GGML_OP_FLASH_ATTN;
  3844. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3845. result->src0 = q;
  3846. result->src1 = k;
  3847. result->opt[0] = v;
  3848. result->opt[1] = ggml_new_i32(ctx, masked ? 1 : 0);
  3849. return result;
  3850. }
  3851. // ggml_flash_ff
  3852. struct ggml_tensor * ggml_flash_ff(
  3853. struct ggml_context * ctx,
  3854. struct ggml_tensor * a,
  3855. struct ggml_tensor * b0,
  3856. struct ggml_tensor * b1,
  3857. struct ggml_tensor * c0,
  3858. struct ggml_tensor * c1) {
  3859. GGML_ASSERT(ggml_can_mul_mat(b0, a));
  3860. // TODO: more checks
  3861. bool is_node = false;
  3862. if (a->grad || b0->grad || b1->grad || c0->grad || c1->grad) {
  3863. GGML_ASSERT(false); // TODO: implement backward
  3864. is_node = true;
  3865. }
  3866. //struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  3867. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, a->ne);
  3868. result->op = GGML_OP_FLASH_FF;
  3869. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3870. result->src0 = a;
  3871. result->src1 = b0;
  3872. result->opt[0] = b1;
  3873. result->opt[1] = c0;
  3874. result->opt[2] = c1;
  3875. return result;
  3876. }
  3877. ////////////////////////////////////////////////////////////////////////////////
  3878. void ggml_set_param(
  3879. struct ggml_context * ctx,
  3880. struct ggml_tensor * tensor) {
  3881. tensor->is_param = true;
  3882. GGML_ASSERT(tensor->grad == NULL);
  3883. tensor->grad = ggml_dup_tensor(ctx, tensor);
  3884. }
  3885. // ggml_compute_forward_dup
  3886. static void ggml_compute_forward_dup_f16(
  3887. const struct ggml_compute_params * params,
  3888. const struct ggml_tensor * src0,
  3889. struct ggml_tensor * dst) {
  3890. GGML_ASSERT(params->ith == 0);
  3891. GGML_ASSERT(ggml_is_contiguous(dst));
  3892. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  3893. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  3894. return;
  3895. }
  3896. const int64_t ne00 = src0->ne[0];
  3897. const int64_t ne01 = src0->ne[1];
  3898. const int64_t ne02 = src0->ne[2];
  3899. const int64_t ne03 = src0->ne[3];
  3900. const size_t nb00 = src0->nb[0];
  3901. const size_t nb01 = src0->nb[1];
  3902. const size_t nb02 = src0->nb[2];
  3903. const size_t nb03 = src0->nb[3];
  3904. if (ggml_is_contiguous(src0) && src0->type == dst->type) {
  3905. memcpy(dst->data, src0->data, ggml_nelements(dst) * GGML_TYPE_SIZE[src0->type]);
  3906. return;
  3907. }
  3908. if (src0->nb[0] == sizeof(ggml_fp16_t)) {
  3909. if (dst->type == GGML_TYPE_F16) {
  3910. size_t id = 0;
  3911. const size_t rs = ne00*nb00;
  3912. for (int64_t i03 = 0; i03 < ne03; i03++) {
  3913. for (int64_t i02 = 0; i02 < ne02; i02++) {
  3914. for (int64_t i01 = 0; i01 < ne01; i01++) {
  3915. const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
  3916. char * dst_ptr = (char *) dst->data + id*rs;
  3917. memcpy(dst_ptr, src0_ptr, rs);
  3918. id++;
  3919. }
  3920. }
  3921. }
  3922. } else if (dst->type == GGML_TYPE_F32) {
  3923. size_t id = 0;
  3924. float * dst_ptr = (float *) dst->data;
  3925. for (int64_t i03 = 0; i03 < ne03; i03++) {
  3926. for (int64_t i02 = 0; i02 < ne02; i02++) {
  3927. for (int64_t i01 = 0; i01 < ne01; i01++) {
  3928. for (int64_t i00 = 0; i00 < ne00; i00++) {
  3929. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  3930. dst_ptr[id] = GGML_FP16_TO_FP32(*src0_ptr);
  3931. id++;
  3932. }
  3933. }
  3934. }
  3935. }
  3936. } else {
  3937. GGML_ASSERT(false); // TODO: implement
  3938. }
  3939. } else {
  3940. //printf("%s: this is not optimal - fix me\n", __func__);
  3941. if (dst->type == GGML_TYPE_F32) {
  3942. size_t id = 0;
  3943. float * dst_ptr = (float *) dst->data;
  3944. for (int64_t i03 = 0; i03 < ne03; i03++) {
  3945. for (int64_t i02 = 0; i02 < ne02; i02++) {
  3946. for (int64_t i01 = 0; i01 < ne01; i01++) {
  3947. for (int64_t i00 = 0; i00 < ne00; i00++) {
  3948. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  3949. dst_ptr[id] = GGML_FP16_TO_FP32(*src0_ptr);
  3950. id++;
  3951. }
  3952. }
  3953. }
  3954. }
  3955. } else if (dst->type == GGML_TYPE_F16) {
  3956. size_t id = 0;
  3957. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  3958. for (int64_t i03 = 0; i03 < ne03; i03++) {
  3959. for (int64_t i02 = 0; i02 < ne02; i02++) {
  3960. for (int64_t i01 = 0; i01 < ne01; i01++) {
  3961. for (int64_t i00 = 0; i00 < ne00; i00++) {
  3962. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  3963. dst_ptr[id] = *src0_ptr;
  3964. id++;
  3965. }
  3966. }
  3967. }
  3968. }
  3969. } else {
  3970. GGML_ASSERT(false); // TODO: implement
  3971. }
  3972. }
  3973. }
  3974. static void ggml_compute_forward_dup_f32(
  3975. const struct ggml_compute_params * params,
  3976. const struct ggml_tensor * src0,
  3977. struct ggml_tensor * dst) {
  3978. GGML_ASSERT(params->ith == 0);
  3979. GGML_ASSERT(ggml_is_contiguous(dst));
  3980. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  3981. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  3982. return;
  3983. }
  3984. const int64_t ne00 = src0->ne[0];
  3985. const int64_t ne01 = src0->ne[1];
  3986. const int64_t ne02 = src0->ne[2];
  3987. const int64_t ne03 = src0->ne[3];
  3988. const size_t nb00 = src0->nb[0];
  3989. const size_t nb01 = src0->nb[1];
  3990. const size_t nb02 = src0->nb[2];
  3991. const size_t nb03 = src0->nb[3];
  3992. if (ggml_is_contiguous(src0) && src0->type == dst->type) {
  3993. memcpy(dst->data, src0->data, ggml_nelements(dst) * GGML_TYPE_SIZE[src0->type]);
  3994. return;
  3995. }
  3996. if (src0->nb[0] == sizeof(float)) {
  3997. if (dst->type == GGML_TYPE_F32) {
  3998. size_t id = 0;
  3999. const size_t rs = ne00*nb00;
  4000. for (int64_t i03 = 0; i03 < ne03; i03++) {
  4001. for (int64_t i02 = 0; i02 < ne02; i02++) {
  4002. for (int64_t i01 = 0; i01 < ne01; i01++) {
  4003. const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
  4004. char * dst_ptr = (char *) dst->data + id*rs;
  4005. memcpy(dst_ptr, src0_ptr, rs);
  4006. id++;
  4007. }
  4008. }
  4009. }
  4010. } else if (dst->type == GGML_TYPE_F16) {
  4011. size_t id = 0;
  4012. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  4013. for (int64_t i03 = 0; i03 < ne03; i03++) {
  4014. for (int64_t i02 = 0; i02 < ne02; i02++) {
  4015. for (int64_t i01 = 0; i01 < ne01; i01++) {
  4016. for (int64_t i00 = 0; i00 < ne00; i00++) {
  4017. const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  4018. dst_ptr[id] = GGML_FP32_TO_FP16(*src0_ptr);
  4019. id++;
  4020. }
  4021. }
  4022. }
  4023. }
  4024. } else {
  4025. GGML_ASSERT(false); // TODO: implement
  4026. }
  4027. } else {
  4028. //printf("%s: this is not optimal - fix me\n", __func__);
  4029. if (dst->type == GGML_TYPE_F32) {
  4030. size_t id = 0;
  4031. float * dst_ptr = (float *) dst->data;
  4032. for (int64_t i03 = 0; i03 < ne03; i03++) {
  4033. for (int64_t i02 = 0; i02 < ne02; i02++) {
  4034. for (int64_t i01 = 0; i01 < ne01; i01++) {
  4035. for (int64_t i00 = 0; i00 < ne00; i00++) {
  4036. const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  4037. dst_ptr[id] = *src0_ptr;
  4038. id++;
  4039. }
  4040. }
  4041. }
  4042. }
  4043. } else if (dst->type == GGML_TYPE_F16) {
  4044. size_t id = 0;
  4045. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  4046. for (int64_t i03 = 0; i03 < ne03; i03++) {
  4047. for (int64_t i02 = 0; i02 < ne02; i02++) {
  4048. for (int64_t i01 = 0; i01 < ne01; i01++) {
  4049. for (int64_t i00 = 0; i00 < ne00; i00++) {
  4050. const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  4051. dst_ptr[id] = GGML_FP32_TO_FP16(*src0_ptr);
  4052. id++;
  4053. }
  4054. }
  4055. }
  4056. }
  4057. } else {
  4058. GGML_ASSERT(false); // TODO: implement
  4059. }
  4060. }
  4061. }
  4062. static void ggml_compute_forward_dup(
  4063. const struct ggml_compute_params * params,
  4064. const struct ggml_tensor * src0,
  4065. struct ggml_tensor * dst) {
  4066. switch (src0->type) {
  4067. case GGML_TYPE_F16:
  4068. {
  4069. ggml_compute_forward_dup_f16(params, src0, dst);
  4070. } break;
  4071. case GGML_TYPE_F32:
  4072. {
  4073. ggml_compute_forward_dup_f32(params, src0, dst);
  4074. } break;
  4075. case GGML_TYPE_Q4_0:
  4076. case GGML_TYPE_Q4_1:
  4077. case GGML_TYPE_I8:
  4078. case GGML_TYPE_I16:
  4079. case GGML_TYPE_I32:
  4080. case GGML_TYPE_COUNT:
  4081. {
  4082. GGML_ASSERT(false);
  4083. } break;
  4084. }
  4085. }
  4086. // ggml_compute_forward_add
  4087. static void ggml_compute_forward_add_f32(
  4088. const struct ggml_compute_params * params,
  4089. const struct ggml_tensor * src0,
  4090. const struct ggml_tensor * src1,
  4091. struct ggml_tensor * dst) {
  4092. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  4093. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4094. return;
  4095. }
  4096. const int ith = params->ith;
  4097. const int nth = params->nth;
  4098. const int n = ggml_nrows(src0);
  4099. const int nc = src0->ne[0];
  4100. const size_t nb00 = src0->nb[0];
  4101. const size_t nb01 = src0->nb[1];
  4102. const size_t nb10 = src1->nb[0];
  4103. const size_t nb11 = src1->nb[1];
  4104. const size_t nb0 = dst->nb[0];
  4105. const size_t nb1 = dst->nb[1];
  4106. GGML_ASSERT( nb0 == sizeof(float));
  4107. GGML_ASSERT(nb00 == sizeof(float));
  4108. if (nb10 == sizeof(float)) {
  4109. const int j0 = (n/nth)*ith;
  4110. const int j1 = ith == nth - 1 ? n : (n/nth)*(ith + 1);
  4111. for (int j = j0; j < j1; j++) {
  4112. ggml_vec_add_f32(nc,
  4113. (float *) ((char *) dst->data + j*nb1),
  4114. (float *) ((char *) src0->data + j*nb01),
  4115. (float *) ((char *) src1->data + j*nb11));
  4116. }
  4117. } else {
  4118. // src1 is not contiguous
  4119. for (int j = ith; j < n; j += nth) {
  4120. float * dst_ptr = (float *) ((char *) dst->data + j*nb1);
  4121. float * src0_ptr = (float *) ((char *) src0->data + j*nb01);
  4122. for (int i = 0; i < nc; i++) {
  4123. float * src1_ptr = (float *) ((char *) src1->data + j*nb11 + i*nb10);
  4124. dst_ptr[i] = src0_ptr[i] + *src1_ptr;
  4125. }
  4126. }
  4127. }
  4128. }
  4129. static void ggml_compute_forward_add(
  4130. const struct ggml_compute_params * params,
  4131. const struct ggml_tensor * src0,
  4132. const struct ggml_tensor * src1,
  4133. struct ggml_tensor * dst) {
  4134. switch (src0->type) {
  4135. case GGML_TYPE_F32:
  4136. {
  4137. ggml_compute_forward_add_f32(params, src0, src1, dst);
  4138. } break;
  4139. case GGML_TYPE_Q4_0:
  4140. case GGML_TYPE_Q4_1:
  4141. case GGML_TYPE_I8:
  4142. case GGML_TYPE_I16:
  4143. case GGML_TYPE_I32:
  4144. case GGML_TYPE_F16:
  4145. case GGML_TYPE_COUNT:
  4146. {
  4147. GGML_ASSERT(false);
  4148. } break;
  4149. }
  4150. }
  4151. // ggml_compute_forward_sub
  4152. static void ggml_compute_forward_sub_f32(
  4153. const struct ggml_compute_params * params,
  4154. const struct ggml_tensor * src0,
  4155. const struct ggml_tensor * src1,
  4156. struct ggml_tensor * dst) {
  4157. assert(params->ith == 0);
  4158. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  4159. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4160. return;
  4161. }
  4162. const int n = ggml_nrows(src0);
  4163. const int nc = src0->ne[0];
  4164. assert( dst->nb[0] == sizeof(float));
  4165. assert(src0->nb[0] == sizeof(float));
  4166. assert(src1->nb[0] == sizeof(float));
  4167. for (int i = 0; i < n; i++) {
  4168. ggml_vec_sub_f32(nc,
  4169. (float *) ((char *) dst->data + i*( dst->nb[1])),
  4170. (float *) ((char *) src0->data + i*(src0->nb[1])),
  4171. (float *) ((char *) src1->data + i*(src1->nb[1])));
  4172. }
  4173. }
  4174. static void ggml_compute_forward_sub(
  4175. const struct ggml_compute_params * params,
  4176. const struct ggml_tensor * src0,
  4177. const struct ggml_tensor * src1,
  4178. struct ggml_tensor * dst) {
  4179. switch (src0->type) {
  4180. case GGML_TYPE_F32:
  4181. {
  4182. ggml_compute_forward_sub_f32(params, src0, src1, dst);
  4183. } break;
  4184. case GGML_TYPE_Q4_0:
  4185. case GGML_TYPE_Q4_1:
  4186. case GGML_TYPE_I8:
  4187. case GGML_TYPE_I16:
  4188. case GGML_TYPE_I32:
  4189. case GGML_TYPE_F16:
  4190. case GGML_TYPE_COUNT:
  4191. {
  4192. GGML_ASSERT(false);
  4193. } break;
  4194. }
  4195. }
  4196. // ggml_compute_forward_mul
  4197. static void ggml_compute_forward_mul_f32(
  4198. const struct ggml_compute_params * params,
  4199. const struct ggml_tensor * src0,
  4200. const struct ggml_tensor * src1,
  4201. struct ggml_tensor * dst) {
  4202. assert(params->ith == 0);
  4203. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  4204. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4205. return;
  4206. }
  4207. const int n = ggml_nrows(src0);
  4208. const int nc = src0->ne[0];
  4209. assert( dst->nb[0] == sizeof(float));
  4210. assert(src0->nb[0] == sizeof(float));
  4211. assert(src1->nb[0] == sizeof(float));
  4212. for (int i = 0; i < n; i++) {
  4213. ggml_vec_mul_f32(nc,
  4214. (float *) ((char *) dst->data + i*( dst->nb[1])),
  4215. (float *) ((char *) src0->data + i*(src0->nb[1])),
  4216. (float *) ((char *) src1->data + i*(src1->nb[1])));
  4217. }
  4218. }
  4219. static void ggml_compute_forward_mul(
  4220. const struct ggml_compute_params * params,
  4221. const struct ggml_tensor * src0,
  4222. const struct ggml_tensor * src1,
  4223. struct ggml_tensor * dst) {
  4224. switch (src0->type) {
  4225. case GGML_TYPE_F32:
  4226. {
  4227. ggml_compute_forward_mul_f32(params, src0, src1, dst);
  4228. } break;
  4229. case GGML_TYPE_Q4_0:
  4230. case GGML_TYPE_Q4_1:
  4231. case GGML_TYPE_I8:
  4232. case GGML_TYPE_I16:
  4233. case GGML_TYPE_I32:
  4234. case GGML_TYPE_F16:
  4235. case GGML_TYPE_COUNT:
  4236. {
  4237. GGML_ASSERT(false);
  4238. } break;
  4239. }
  4240. }
  4241. // ggml_compute_forward_div
  4242. static void ggml_compute_forward_div_f32(
  4243. const struct ggml_compute_params * params,
  4244. const struct ggml_tensor * src0,
  4245. const struct ggml_tensor * src1,
  4246. struct ggml_tensor * dst) {
  4247. assert(params->ith == 0);
  4248. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  4249. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4250. return;
  4251. }
  4252. const int n = ggml_nrows(src0);
  4253. const int nc = src0->ne[0];
  4254. assert( dst->nb[0] == sizeof(float));
  4255. assert(src0->nb[0] == sizeof(float));
  4256. assert(src1->nb[0] == sizeof(float));
  4257. for (int i = 0; i < n; i++) {
  4258. ggml_vec_div_f32(nc,
  4259. (float *) ((char *) dst->data + i*( dst->nb[1])),
  4260. (float *) ((char *) src0->data + i*(src0->nb[1])),
  4261. (float *) ((char *) src1->data + i*(src1->nb[1])));
  4262. }
  4263. }
  4264. static void ggml_compute_forward_div(
  4265. const struct ggml_compute_params * params,
  4266. const struct ggml_tensor * src0,
  4267. const struct ggml_tensor * src1,
  4268. struct ggml_tensor * dst) {
  4269. switch (src0->type) {
  4270. case GGML_TYPE_F32:
  4271. {
  4272. ggml_compute_forward_div_f32(params, src0, src1, dst);
  4273. } break;
  4274. case GGML_TYPE_Q4_0:
  4275. case GGML_TYPE_Q4_1:
  4276. case GGML_TYPE_I8:
  4277. case GGML_TYPE_I16:
  4278. case GGML_TYPE_I32:
  4279. case GGML_TYPE_F16:
  4280. case GGML_TYPE_COUNT:
  4281. {
  4282. GGML_ASSERT(false);
  4283. } break;
  4284. }
  4285. }
  4286. // ggml_compute_forward_sqr
  4287. static void ggml_compute_forward_sqr_f32(
  4288. const struct ggml_compute_params * params,
  4289. const struct ggml_tensor * src0,
  4290. struct ggml_tensor * dst) {
  4291. assert(params->ith == 0);
  4292. assert(ggml_are_same_shape(src0, dst));
  4293. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4294. return;
  4295. }
  4296. const int n = ggml_nrows(src0);
  4297. const int nc = src0->ne[0];
  4298. assert( dst->nb[0] == sizeof(float));
  4299. assert(src0->nb[0] == sizeof(float));
  4300. for (int i = 0; i < n; i++) {
  4301. ggml_vec_sqr_f32(nc,
  4302. (float *) ((char *) dst->data + i*( dst->nb[1])),
  4303. (float *) ((char *) src0->data + i*(src0->nb[1])));
  4304. }
  4305. }
  4306. static void ggml_compute_forward_sqr(
  4307. const struct ggml_compute_params * params,
  4308. const struct ggml_tensor * src0,
  4309. struct ggml_tensor * dst) {
  4310. switch (src0->type) {
  4311. case GGML_TYPE_F32:
  4312. {
  4313. ggml_compute_forward_sqr_f32(params, src0, dst);
  4314. } break;
  4315. case GGML_TYPE_Q4_0:
  4316. case GGML_TYPE_Q4_1:
  4317. case GGML_TYPE_I8:
  4318. case GGML_TYPE_I16:
  4319. case GGML_TYPE_I32:
  4320. case GGML_TYPE_F16:
  4321. case GGML_TYPE_COUNT:
  4322. {
  4323. GGML_ASSERT(false);
  4324. } break;
  4325. }
  4326. }
  4327. // ggml_compute_forward_sqrt
  4328. static void ggml_compute_forward_sqrt_f32(
  4329. const struct ggml_compute_params * params,
  4330. const struct ggml_tensor * src0,
  4331. struct ggml_tensor * dst) {
  4332. assert(params->ith == 0);
  4333. assert(ggml_are_same_shape(src0, dst));
  4334. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4335. return;
  4336. }
  4337. const int n = ggml_nrows(src0);
  4338. const int nc = src0->ne[0];
  4339. assert( dst->nb[0] == sizeof(float));
  4340. assert(src0->nb[0] == sizeof(float));
  4341. for (int i = 0; i < n; i++) {
  4342. ggml_vec_sqrt_f32(nc,
  4343. (float *) ((char *) dst->data + i*( dst->nb[1])),
  4344. (float *) ((char *) src0->data + i*(src0->nb[1])));
  4345. }
  4346. }
  4347. static void ggml_compute_forward_sqrt(
  4348. const struct ggml_compute_params * params,
  4349. const struct ggml_tensor * src0,
  4350. struct ggml_tensor * dst) {
  4351. switch (src0->type) {
  4352. case GGML_TYPE_F32:
  4353. {
  4354. ggml_compute_forward_sqrt_f32(params, src0, dst);
  4355. } break;
  4356. case GGML_TYPE_Q4_0:
  4357. case GGML_TYPE_Q4_1:
  4358. case GGML_TYPE_I8:
  4359. case GGML_TYPE_I16:
  4360. case GGML_TYPE_I32:
  4361. case GGML_TYPE_F16:
  4362. case GGML_TYPE_COUNT:
  4363. {
  4364. GGML_ASSERT(false);
  4365. } break;
  4366. }
  4367. }
  4368. // ggml_compute_forward_sum
  4369. static void ggml_compute_forward_sum_f32(
  4370. const struct ggml_compute_params * params,
  4371. const struct ggml_tensor * src0,
  4372. struct ggml_tensor * dst) {
  4373. assert(params->ith == 0);
  4374. assert(ggml_is_scalar(dst));
  4375. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4376. return;
  4377. }
  4378. assert(ggml_is_scalar(dst));
  4379. assert(src0->nb[0] == sizeof(float));
  4380. const int64_t ne00 = src0->ne[0];
  4381. const int64_t ne01 = src0->ne[1];
  4382. const int64_t ne02 = src0->ne[2];
  4383. const int64_t ne03 = src0->ne[3];
  4384. const size_t nb01 = src0->nb[1];
  4385. const size_t nb02 = src0->nb[2];
  4386. const size_t nb03 = src0->nb[3];
  4387. for (int64_t i03 = 0; i03 < ne03; i03++) {
  4388. for (int64_t i02 = 0; i02 < ne02; i02++) {
  4389. for (int64_t i01 = 0; i01 < ne01; i01++) {
  4390. ggml_vec_sum_f32(ne00,
  4391. (float *) (dst->data),
  4392. (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03));
  4393. }
  4394. }
  4395. }
  4396. }
  4397. static void ggml_compute_forward_sum(
  4398. const struct ggml_compute_params * params,
  4399. const struct ggml_tensor * src0,
  4400. struct ggml_tensor * dst) {
  4401. switch (src0->type) {
  4402. case GGML_TYPE_F32:
  4403. {
  4404. ggml_compute_forward_sum_f32(params, src0, dst);
  4405. } break;
  4406. case GGML_TYPE_Q4_0:
  4407. case GGML_TYPE_Q4_1:
  4408. case GGML_TYPE_I8:
  4409. case GGML_TYPE_I16:
  4410. case GGML_TYPE_I32:
  4411. case GGML_TYPE_F16:
  4412. case GGML_TYPE_COUNT:
  4413. {
  4414. GGML_ASSERT(false);
  4415. } break;
  4416. }
  4417. }
  4418. // ggml_compute_forward_mean
  4419. static void ggml_compute_forward_mean_f32(
  4420. const struct ggml_compute_params * params,
  4421. const struct ggml_tensor * src0,
  4422. struct ggml_tensor * dst) {
  4423. assert(params->ith == 0);
  4424. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4425. return;
  4426. }
  4427. assert(src0->nb[0] == sizeof(float));
  4428. const int64_t ne00 = src0->ne[0];
  4429. const int64_t ne01 = src0->ne[1];
  4430. const int64_t ne02 = src0->ne[2];
  4431. const int64_t ne03 = src0->ne[3];
  4432. const size_t nb01 = src0->nb[1];
  4433. const size_t nb02 = src0->nb[2];
  4434. const size_t nb03 = src0->nb[3];
  4435. const int64_t ne0 = dst->ne[0];
  4436. const int64_t ne1 = dst->ne[1];
  4437. const int64_t ne2 = dst->ne[2];
  4438. const int64_t ne3 = dst->ne[3];
  4439. assert(ne0 == 1);
  4440. assert(ne1 == ne01);
  4441. assert(ne2 == ne02);
  4442. assert(ne3 == ne03);
  4443. UNUSED(ne0);
  4444. UNUSED(ne1);
  4445. UNUSED(ne2);
  4446. UNUSED(ne3);
  4447. const size_t nb1 = dst->nb[1];
  4448. const size_t nb2 = dst->nb[2];
  4449. const size_t nb3 = dst->nb[3];
  4450. for (int64_t i03 = 0; i03 < ne03; i03++) {
  4451. for (int64_t i02 = 0; i02 < ne02; i02++) {
  4452. for (int64_t i01 = 0; i01 < ne01; i01++) {
  4453. ggml_vec_sum_f32(ne00,
  4454. (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  4455. (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03));
  4456. *(float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3) /= (float) ne00;
  4457. }
  4458. }
  4459. }
  4460. }
  4461. static void ggml_compute_forward_mean(
  4462. const struct ggml_compute_params * params,
  4463. const struct ggml_tensor * src0,
  4464. struct ggml_tensor * dst) {
  4465. switch (src0->type) {
  4466. case GGML_TYPE_F32:
  4467. {
  4468. ggml_compute_forward_mean_f32(params, src0, dst);
  4469. } break;
  4470. case GGML_TYPE_Q4_0:
  4471. case GGML_TYPE_Q4_1:
  4472. case GGML_TYPE_I8:
  4473. case GGML_TYPE_I16:
  4474. case GGML_TYPE_I32:
  4475. case GGML_TYPE_F16:
  4476. case GGML_TYPE_COUNT:
  4477. {
  4478. GGML_ASSERT(false);
  4479. } break;
  4480. }
  4481. }
  4482. // ggml_compute_forward_repeat
  4483. static void ggml_compute_forward_repeat_f32(
  4484. const struct ggml_compute_params * params,
  4485. const struct ggml_tensor * src0,
  4486. struct ggml_tensor * dst) {
  4487. assert(params->ith == 0);
  4488. assert(ggml_can_repeat(src0, dst));
  4489. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4490. return;
  4491. }
  4492. // TODO: implement support for rank > 2 tensors
  4493. assert(src0->ne[2] == 1);
  4494. assert(src0->ne[3] == 1);
  4495. assert( dst->ne[2] == 1);
  4496. assert( dst->ne[3] == 1);
  4497. const int nc = dst->ne[0];
  4498. const int nr = dst->ne[1];
  4499. const int nc0 = src0->ne[0];
  4500. const int nr0 = src0->ne[1];
  4501. const int ncr = nc/nc0; // guaranteed to be an integer due to the check in ggml_can_repeat
  4502. const int nrr = nr/nr0; // guaranteed to be an integer due to the check in ggml_can_repeat
  4503. // TODO: support for transposed / permuted tensors
  4504. assert( dst->nb[0] == sizeof(float));
  4505. assert(src0->nb[0] == sizeof(float));
  4506. // TODO: maybe this is not optimal?
  4507. for (int i = 0; i < nrr; i++) {
  4508. for (int j = 0; j < ncr; j++) {
  4509. for (int k = 0; k < nr0; k++) {
  4510. ggml_vec_cpy_f32(nc0,
  4511. (float *) ((char *) dst->data + (i*nr0 + k)*( dst->nb[1]) + j*nc0*( dst->nb[0])),
  4512. (float *) ((char *) src0->data + ( k)*(src0->nb[1])));
  4513. }
  4514. }
  4515. }
  4516. }
  4517. static void ggml_compute_forward_repeat(
  4518. const struct ggml_compute_params * params,
  4519. const struct ggml_tensor * src0,
  4520. struct ggml_tensor * dst) {
  4521. switch (src0->type) {
  4522. case GGML_TYPE_F32:
  4523. {
  4524. ggml_compute_forward_repeat_f32(params, src0, dst);
  4525. } break;
  4526. case GGML_TYPE_Q4_0:
  4527. case GGML_TYPE_Q4_1:
  4528. case GGML_TYPE_I8:
  4529. case GGML_TYPE_I16:
  4530. case GGML_TYPE_I32:
  4531. case GGML_TYPE_F16:
  4532. case GGML_TYPE_COUNT:
  4533. {
  4534. GGML_ASSERT(false);
  4535. } break;
  4536. }
  4537. }
  4538. // ggml_compute_forward_abs
  4539. static void ggml_compute_forward_abs_f32(
  4540. const struct ggml_compute_params * params,
  4541. const struct ggml_tensor * src0,
  4542. struct ggml_tensor * dst) {
  4543. assert(params->ith == 0);
  4544. assert(ggml_are_same_shape(src0, dst));
  4545. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4546. return;
  4547. }
  4548. const int n = ggml_nrows(src0);
  4549. const int nc = src0->ne[0];
  4550. assert(dst->nb[0] == sizeof(float));
  4551. assert(src0->nb[0] == sizeof(float));
  4552. for (int i = 0; i < n; i++) {
  4553. ggml_vec_abs_f32(nc,
  4554. (float *) ((char *) dst->data + i*( dst->nb[1])),
  4555. (float *) ((char *) src0->data + i*(src0->nb[1])));
  4556. }
  4557. }
  4558. static void ggml_compute_forward_abs(
  4559. const struct ggml_compute_params * params,
  4560. const struct ggml_tensor * src0,
  4561. struct ggml_tensor * dst) {
  4562. switch (src0->type) {
  4563. case GGML_TYPE_F32:
  4564. {
  4565. ggml_compute_forward_abs_f32(params, src0, dst);
  4566. } break;
  4567. case GGML_TYPE_Q4_0:
  4568. case GGML_TYPE_Q4_1:
  4569. case GGML_TYPE_I8:
  4570. case GGML_TYPE_I16:
  4571. case GGML_TYPE_I32:
  4572. case GGML_TYPE_F16:
  4573. case GGML_TYPE_COUNT:
  4574. {
  4575. GGML_ASSERT(false);
  4576. } break;
  4577. }
  4578. }
  4579. // ggml_compute_forward_sgn
  4580. static void ggml_compute_forward_sgn_f32(
  4581. const struct ggml_compute_params * params,
  4582. const struct ggml_tensor * src0,
  4583. struct ggml_tensor * dst) {
  4584. assert(params->ith == 0);
  4585. assert(ggml_are_same_shape(src0, dst));
  4586. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4587. return;
  4588. }
  4589. const int n = ggml_nrows(src0);
  4590. const int nc = src0->ne[0];
  4591. assert(dst->nb[0] == sizeof(float));
  4592. assert(src0->nb[0] == sizeof(float));
  4593. for (int i = 0; i < n; i++) {
  4594. ggml_vec_sgn_f32(nc,
  4595. (float *) ((char *) dst->data + i*( dst->nb[1])),
  4596. (float *) ((char *) src0->data + i*(src0->nb[1])));
  4597. }
  4598. }
  4599. static void ggml_compute_forward_sgn(
  4600. const struct ggml_compute_params * params,
  4601. const struct ggml_tensor * src0,
  4602. struct ggml_tensor * dst) {
  4603. switch (src0->type) {
  4604. case GGML_TYPE_F32:
  4605. {
  4606. ggml_compute_forward_sgn_f32(params, src0, dst);
  4607. } break;
  4608. case GGML_TYPE_Q4_0:
  4609. case GGML_TYPE_Q4_1:
  4610. case GGML_TYPE_I8:
  4611. case GGML_TYPE_I16:
  4612. case GGML_TYPE_I32:
  4613. case GGML_TYPE_F16:
  4614. case GGML_TYPE_COUNT:
  4615. {
  4616. GGML_ASSERT(false);
  4617. } break;
  4618. }
  4619. }
  4620. // ggml_compute_forward_neg
  4621. static void ggml_compute_forward_neg_f32(
  4622. const struct ggml_compute_params * params,
  4623. const struct ggml_tensor * src0,
  4624. struct ggml_tensor * dst) {
  4625. assert(params->ith == 0);
  4626. assert(ggml_are_same_shape(src0, dst));
  4627. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4628. return;
  4629. }
  4630. const int n = ggml_nrows(src0);
  4631. const int nc = src0->ne[0];
  4632. assert(dst->nb[0] == sizeof(float));
  4633. assert(src0->nb[0] == sizeof(float));
  4634. for (int i = 0; i < n; i++) {
  4635. ggml_vec_neg_f32(nc,
  4636. (float *) ((char *) dst->data + i*( dst->nb[1])),
  4637. (float *) ((char *) src0->data + i*(src0->nb[1])));
  4638. }
  4639. }
  4640. static void ggml_compute_forward_neg(
  4641. const struct ggml_compute_params * params,
  4642. const struct ggml_tensor * src0,
  4643. struct ggml_tensor * dst) {
  4644. switch (src0->type) {
  4645. case GGML_TYPE_F32:
  4646. {
  4647. ggml_compute_forward_neg_f32(params, src0, dst);
  4648. } break;
  4649. case GGML_TYPE_Q4_0:
  4650. case GGML_TYPE_Q4_1:
  4651. case GGML_TYPE_I8:
  4652. case GGML_TYPE_I16:
  4653. case GGML_TYPE_I32:
  4654. case GGML_TYPE_F16:
  4655. case GGML_TYPE_COUNT:
  4656. {
  4657. GGML_ASSERT(false);
  4658. } break;
  4659. }
  4660. }
  4661. // ggml_compute_forward_step
  4662. static void ggml_compute_forward_step_f32(
  4663. const struct ggml_compute_params * params,
  4664. const struct ggml_tensor * src0,
  4665. struct ggml_tensor * dst) {
  4666. assert(params->ith == 0);
  4667. assert(ggml_are_same_shape(src0, dst));
  4668. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4669. return;
  4670. }
  4671. const int n = ggml_nrows(src0);
  4672. const int nc = src0->ne[0];
  4673. assert(dst->nb[0] == sizeof(float));
  4674. assert(src0->nb[0] == sizeof(float));
  4675. for (int i = 0; i < n; i++) {
  4676. ggml_vec_step_f32(nc,
  4677. (float *) ((char *) dst->data + i*( dst->nb[1])),
  4678. (float *) ((char *) src0->data + i*(src0->nb[1])));
  4679. }
  4680. }
  4681. static void ggml_compute_forward_step(
  4682. const struct ggml_compute_params * params,
  4683. const struct ggml_tensor * src0,
  4684. struct ggml_tensor * dst) {
  4685. switch (src0->type) {
  4686. case GGML_TYPE_F32:
  4687. {
  4688. ggml_compute_forward_step_f32(params, src0, dst);
  4689. } break;
  4690. case GGML_TYPE_Q4_0:
  4691. case GGML_TYPE_Q4_1:
  4692. case GGML_TYPE_I8:
  4693. case GGML_TYPE_I16:
  4694. case GGML_TYPE_I32:
  4695. case GGML_TYPE_F16:
  4696. case GGML_TYPE_COUNT:
  4697. {
  4698. GGML_ASSERT(false);
  4699. } break;
  4700. }
  4701. }
  4702. // ggml_compute_forward_relu
  4703. static void ggml_compute_forward_relu_f32(
  4704. const struct ggml_compute_params * params,
  4705. const struct ggml_tensor * src0,
  4706. struct ggml_tensor * dst) {
  4707. assert(params->ith == 0);
  4708. assert(ggml_are_same_shape(src0, dst));
  4709. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4710. return;
  4711. }
  4712. const int n = ggml_nrows(src0);
  4713. const int nc = src0->ne[0];
  4714. assert(dst->nb[0] == sizeof(float));
  4715. assert(src0->nb[0] == sizeof(float));
  4716. for (int i = 0; i < n; i++) {
  4717. ggml_vec_relu_f32(nc,
  4718. (float *) ((char *) dst->data + i*( dst->nb[1])),
  4719. (float *) ((char *) src0->data + i*(src0->nb[1])));
  4720. }
  4721. }
  4722. static void ggml_compute_forward_relu(
  4723. const struct ggml_compute_params * params,
  4724. const struct ggml_tensor * src0,
  4725. struct ggml_tensor * dst) {
  4726. switch (src0->type) {
  4727. case GGML_TYPE_F32:
  4728. {
  4729. ggml_compute_forward_relu_f32(params, src0, dst);
  4730. } break;
  4731. case GGML_TYPE_Q4_0:
  4732. case GGML_TYPE_Q4_1:
  4733. case GGML_TYPE_I8:
  4734. case GGML_TYPE_I16:
  4735. case GGML_TYPE_I32:
  4736. case GGML_TYPE_F16:
  4737. case GGML_TYPE_COUNT:
  4738. {
  4739. GGML_ASSERT(false);
  4740. } break;
  4741. }
  4742. }
  4743. // ggml_compute_forward_gelu
  4744. static void ggml_compute_forward_gelu_f32(
  4745. const struct ggml_compute_params * params,
  4746. const struct ggml_tensor * src0,
  4747. struct ggml_tensor * dst) {
  4748. GGML_ASSERT(ggml_is_contiguous(src0));
  4749. GGML_ASSERT(ggml_is_contiguous(dst));
  4750. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  4751. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4752. return;
  4753. }
  4754. const int ith = params->ith;
  4755. const int nth = params->nth;
  4756. const int nc = src0->ne[0];
  4757. const int nr = ggml_nrows(src0);
  4758. // rows per thread
  4759. const int dr = (nr + nth - 1)/nth;
  4760. // row range for this thread
  4761. const int ir0 = dr*ith;
  4762. const int ir1 = MIN(ir0 + dr, nr);
  4763. for (int i1 = ir0; i1 < ir1; i1++) {
  4764. ggml_vec_gelu_f32(nc,
  4765. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  4766. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  4767. #ifndef NDEBUG
  4768. for (int k = 0; k < nc; k++) {
  4769. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  4770. UNUSED(x);
  4771. assert(!isnan(x));
  4772. assert(!isinf(x));
  4773. }
  4774. #endif
  4775. }
  4776. }
  4777. static void ggml_compute_forward_gelu(
  4778. const struct ggml_compute_params * params,
  4779. const struct ggml_tensor * src0,
  4780. struct ggml_tensor * dst) {
  4781. switch (src0->type) {
  4782. case GGML_TYPE_F32:
  4783. {
  4784. ggml_compute_forward_gelu_f32(params, src0, dst);
  4785. } break;
  4786. case GGML_TYPE_Q4_0:
  4787. case GGML_TYPE_Q4_1:
  4788. case GGML_TYPE_I8:
  4789. case GGML_TYPE_I16:
  4790. case GGML_TYPE_I32:
  4791. case GGML_TYPE_F16:
  4792. case GGML_TYPE_COUNT:
  4793. {
  4794. GGML_ASSERT(false);
  4795. } break;
  4796. }
  4797. //printf("XXXXXXXX gelu\n");
  4798. }
  4799. // ggml_compute_forward_silu
  4800. static void ggml_compute_forward_silu_f32(
  4801. const struct ggml_compute_params * params,
  4802. const struct ggml_tensor * src0,
  4803. struct ggml_tensor * dst) {
  4804. GGML_ASSERT(ggml_is_contiguous(src0));
  4805. GGML_ASSERT(ggml_is_contiguous(dst));
  4806. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  4807. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4808. return;
  4809. }
  4810. const int ith = params->ith;
  4811. const int nth = params->nth;
  4812. const int nc = src0->ne[0];
  4813. const int nr = ggml_nrows(src0);
  4814. // rows per thread
  4815. const int dr = (nr + nth - 1)/nth;
  4816. // row range for this thread
  4817. const int ir0 = dr*ith;
  4818. const int ir1 = MIN(ir0 + dr, nr);
  4819. for (int i1 = ir0; i1 < ir1; i1++) {
  4820. ggml_vec_silu_f32(nc,
  4821. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  4822. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  4823. #ifndef NDEBUG
  4824. for (int k = 0; k < nc; k++) {
  4825. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  4826. UNUSED(x);
  4827. assert(!isnan(x));
  4828. assert(!isinf(x));
  4829. }
  4830. #endif
  4831. }
  4832. }
  4833. static void ggml_compute_forward_silu(
  4834. const struct ggml_compute_params * params,
  4835. const struct ggml_tensor * src0,
  4836. struct ggml_tensor * dst) {
  4837. switch (src0->type) {
  4838. case GGML_TYPE_F32:
  4839. {
  4840. ggml_compute_forward_silu_f32(params, src0, dst);
  4841. } break;
  4842. case GGML_TYPE_Q4_0:
  4843. case GGML_TYPE_Q4_1:
  4844. case GGML_TYPE_I8:
  4845. case GGML_TYPE_I16:
  4846. case GGML_TYPE_I32:
  4847. case GGML_TYPE_F16:
  4848. case GGML_TYPE_COUNT:
  4849. {
  4850. GGML_ASSERT(false);
  4851. } break;
  4852. }
  4853. }
  4854. // ggml_compute_forward_norm
  4855. static void ggml_compute_forward_norm_f32(
  4856. const struct ggml_compute_params * params,
  4857. const struct ggml_tensor * src0,
  4858. struct ggml_tensor * dst) {
  4859. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  4860. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4861. return;
  4862. }
  4863. GGML_ASSERT(src0->nb[0] == sizeof(float));
  4864. const int ith = params->ith;
  4865. const int nth = params->nth;
  4866. const int64_t ne00 = src0->ne[0];
  4867. const int64_t ne01 = src0->ne[1];
  4868. const int64_t ne02 = src0->ne[2];
  4869. const int64_t ne03 = src0->ne[3];
  4870. const size_t nb01 = src0->nb[1];
  4871. const size_t nb02 = src0->nb[2];
  4872. const size_t nb03 = src0->nb[3];
  4873. const size_t nb1 = dst->nb[1];
  4874. const size_t nb2 = dst->nb[2];
  4875. const size_t nb3 = dst->nb[3];
  4876. const float eps = 1e-5f; // TODO: make this a parameter
  4877. // TODO: optimize
  4878. for (int64_t i03 = 0; i03 < ne03; i03++) {
  4879. for (int64_t i02 = 0; i02 < ne02; i02++) {
  4880. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  4881. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  4882. ggml_float sum = 0.0;
  4883. for (int64_t i00 = 0; i00 < ne00; i00++) {
  4884. sum += (ggml_float)x[i00];
  4885. }
  4886. float mean = sum/ne00;
  4887. float * y = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  4888. ggml_float sum2 = 0.0;
  4889. for (int64_t i00 = 0; i00 < ne00; i00++) {
  4890. float v = x[i00] - mean;
  4891. y[i00] = v;
  4892. sum2 += (ggml_float)(v*v);
  4893. }
  4894. float variance = sum2/ne00;
  4895. const float scale = 1.0f/sqrtf(variance + eps);
  4896. ggml_vec_scale_f32(ne00, y, scale);
  4897. }
  4898. }
  4899. }
  4900. }
  4901. static void ggml_compute_forward_norm(
  4902. const struct ggml_compute_params * params,
  4903. const struct ggml_tensor * src0,
  4904. struct ggml_tensor * dst) {
  4905. switch (src0->type) {
  4906. case GGML_TYPE_F32:
  4907. {
  4908. ggml_compute_forward_norm_f32(params, src0, dst);
  4909. } break;
  4910. case GGML_TYPE_Q4_0:
  4911. case GGML_TYPE_Q4_1:
  4912. case GGML_TYPE_I8:
  4913. case GGML_TYPE_I16:
  4914. case GGML_TYPE_I32:
  4915. case GGML_TYPE_F16:
  4916. case GGML_TYPE_COUNT:
  4917. {
  4918. GGML_ASSERT(false);
  4919. } break;
  4920. }
  4921. }
  4922. static void ggml_compute_forward_rms_norm_f32(
  4923. const struct ggml_compute_params * params,
  4924. const struct ggml_tensor * src0,
  4925. struct ggml_tensor * dst) {
  4926. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  4927. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4928. return;
  4929. }
  4930. GGML_ASSERT(src0->nb[0] == sizeof(float));
  4931. const int ith = params->ith;
  4932. const int nth = params->nth;
  4933. const int64_t ne00 = src0->ne[0];
  4934. const int64_t ne01 = src0->ne[1];
  4935. const int64_t ne02 = src0->ne[2];
  4936. const int64_t ne03 = src0->ne[3];
  4937. const size_t nb01 = src0->nb[1];
  4938. const size_t nb02 = src0->nb[2];
  4939. const size_t nb03 = src0->nb[3];
  4940. const size_t nb1 = dst->nb[1];
  4941. const size_t nb2 = dst->nb[2];
  4942. const size_t nb3 = dst->nb[3];
  4943. const float eps = 1e-6f; // TODO: make this a parameter
  4944. // TODO: optimize
  4945. for (int64_t i03 = 0; i03 < ne03; i03++) {
  4946. for (int64_t i02 = 0; i02 < ne02; i02++) {
  4947. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  4948. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  4949. ggml_float sum = 0.0;
  4950. for (int64_t i00 = 0; i00 < ne00; i00++) {
  4951. sum += (ggml_float)(x[i00] * x[i00]);
  4952. }
  4953. float mean = sum/ne00;
  4954. float * y = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  4955. memcpy(y, x, ne00 * sizeof(float));
  4956. // for (int i00 = 0; i00 < ne00; i00++) {
  4957. // y[i00] = x[i00];
  4958. // }
  4959. const float scale = 1.0f/sqrtf(mean + eps);
  4960. ggml_vec_scale_f32(ne00, y, scale);
  4961. }
  4962. }
  4963. }
  4964. }
  4965. static void ggml_compute_forward_rms_norm(
  4966. const struct ggml_compute_params * params,
  4967. const struct ggml_tensor * src0,
  4968. struct ggml_tensor * dst) {
  4969. switch (src0->type) {
  4970. case GGML_TYPE_F32:
  4971. {
  4972. ggml_compute_forward_rms_norm_f32(params, src0, dst);
  4973. } break;
  4974. case GGML_TYPE_Q4_0:
  4975. case GGML_TYPE_Q4_1:
  4976. case GGML_TYPE_I8:
  4977. case GGML_TYPE_I16:
  4978. case GGML_TYPE_I32:
  4979. case GGML_TYPE_F16:
  4980. case GGML_TYPE_COUNT:
  4981. {
  4982. GGML_ASSERT(false);
  4983. } break;
  4984. }
  4985. }
  4986. // ggml_compute_forward_mul_mat
  4987. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  4988. // helper function to determine if it is better to use BLAS or not
  4989. // for large matrices, BLAS is faster
  4990. static bool ggml_compute_forward_mul_mat_use_blas(
  4991. const struct ggml_tensor * src0,
  4992. const struct ggml_tensor * src1,
  4993. struct ggml_tensor * dst) {
  4994. //const int64_t ne00 = src0->ne[0];
  4995. //const int64_t ne01 = src0->ne[1];
  4996. const int64_t ne10 = src1->ne[0];
  4997. const int64_t ne0 = dst->ne[0];
  4998. const int64_t ne1 = dst->ne[1];
  4999. // TODO: find the optimal values for these
  5000. if (ggml_is_contiguous(src0) &&
  5001. ggml_is_contiguous(src1) && ((ne0 >= 32 && ne1 >= 32 && ne10 >= 32))) {
  5002. /*printf("BLAS: %d %d %d %d %d\n", ne0, ne1, ne10, ne00, ne01);*/
  5003. return true;
  5004. }
  5005. return false;
  5006. }
  5007. #endif
  5008. static void ggml_compute_forward_mul_mat_f32(
  5009. const struct ggml_compute_params * params,
  5010. const struct ggml_tensor * src0,
  5011. const struct ggml_tensor * src1,
  5012. struct ggml_tensor * dst) {
  5013. int64_t t0 = ggml_perf_time_us();
  5014. UNUSED(t0);
  5015. const int64_t ne00 = src0->ne[0];
  5016. const int64_t ne01 = src0->ne[1];
  5017. const int64_t ne02 = src0->ne[2];
  5018. const int64_t ne03 = src0->ne[3];
  5019. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  5020. const int64_t ne10 = src1->ne[0];
  5021. #endif
  5022. const int64_t ne11 = src1->ne[1];
  5023. #ifndef NDEBUG
  5024. const int64_t ne12 = src1->ne[2];
  5025. const int64_t ne13 = src1->ne[3];
  5026. const int64_t ne0 = dst->ne[0];
  5027. const int64_t ne1 = dst->ne[1];
  5028. const int64_t ne2 = dst->ne[2];
  5029. const int64_t ne3 = dst->ne[3];
  5030. const int nb00 = src0->nb[0];
  5031. #endif
  5032. const int nb01 = src0->nb[1];
  5033. const int nb02 = src0->nb[2];
  5034. const int nb03 = src0->nb[3];
  5035. #ifndef NDEBUG
  5036. const int nb10 = src1->nb[0];
  5037. #endif
  5038. const int nb11 = src1->nb[1];
  5039. const int nb12 = src1->nb[2];
  5040. const int nb13 = src1->nb[3];
  5041. const int nb0 = dst->nb[0];
  5042. const int nb1 = dst->nb[1];
  5043. const int nb2 = dst->nb[2];
  5044. const int nb3 = dst->nb[3];
  5045. const int ith = params->ith;
  5046. const int nth = params->nth;
  5047. assert(ne02 == ne12);
  5048. assert(ne03 == ne13);
  5049. assert(ne2 == ne12);
  5050. assert(ne3 == ne13);
  5051. // we don't support permuted src0 or src1
  5052. assert(nb00 == sizeof(float));
  5053. assert(nb10 == sizeof(float));
  5054. // dst cannot be transposed or permuted
  5055. assert(nb0 == sizeof(float));
  5056. assert(nb0 <= nb1);
  5057. assert(nb1 <= nb2);
  5058. assert(nb2 <= nb3);
  5059. assert(ne0 == ne01);
  5060. assert(ne1 == ne11);
  5061. assert(ne2 == ne02);
  5062. assert(ne3 == ne03);
  5063. // nb01 >= nb00 - src0 is not transposed
  5064. // compute by src0 rows
  5065. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  5066. if (ggml_compute_forward_mul_mat_use_blas(src0, src1, dst)) {
  5067. if (params->ith != 0) {
  5068. return;
  5069. }
  5070. if (params->type == GGML_TASK_INIT) {
  5071. return;
  5072. }
  5073. if (params->type == GGML_TASK_FINALIZE) {
  5074. return;
  5075. }
  5076. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5077. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5078. const float * x = (float *) ((char *) src0->data + i02*nb02 + i03*nb03);
  5079. const float * y = (float *) ((char *) src1->data + i02*nb12 + i03*nb13);
  5080. float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3);
  5081. // zT = y * xT
  5082. cblas_sgemm(CblasRowMajor, CblasNoTrans, CblasTrans,
  5083. ne11, ne01, ne10,
  5084. 1.0f, y, ne10,
  5085. x, ne10,
  5086. 0.0f, d, ne01);
  5087. }
  5088. }
  5089. //printf("CBLAS F32 = %f ms, %d x %d x %d x %d\n", (ggml_perf_time_us() - t0)/1000.0, ne0, ne1, ne2, ne3);
  5090. return;
  5091. }
  5092. #endif
  5093. if (params->type == GGML_TASK_INIT) {
  5094. return;
  5095. }
  5096. if (params->type == GGML_TASK_FINALIZE) {
  5097. return;
  5098. }
  5099. // parallelize by src0 rows using ggml_vec_dot_f32
  5100. // total rows in src0
  5101. const int nr = ne01*ne02*ne03;
  5102. // rows per thread
  5103. const int dr = (nr + nth - 1)/nth;
  5104. // row range for this thread
  5105. const int ir0 = dr*ith;
  5106. const int ir1 = MIN(ir0 + dr, nr);
  5107. for (int ir = ir0; ir < ir1; ++ir) {
  5108. // src0 indices
  5109. const int i03 = ir/(ne02*ne01);
  5110. const int i02 = (ir - i03*ne02*ne01)/ne01;
  5111. const int i01 = (ir - i03*ne02*ne01 - i02*ne01);
  5112. for (int64_t ic = 0; ic < ne11; ++ic) {
  5113. // src1 indices
  5114. const int i13 = i03;
  5115. const int i12 = i02;
  5116. const int i11 = ic;
  5117. // dst indices
  5118. const int i0 = i01;
  5119. const int i1 = i11;
  5120. const int i2 = i02;
  5121. const int i3 = i03;
  5122. ggml_vec_dot_f32(ne00,
  5123. (float *) ((char *) dst->data + (i0*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  5124. (float *) ((char *) src0->data + (i01*nb01 + i02*nb02 + i03*nb03)),
  5125. (float *) ((char *) src1->data + (i11*nb11 + i12*nb12 + i13*nb13)));
  5126. }
  5127. }
  5128. //int64_t t1 = ggml_perf_time_us();
  5129. //static int64_t acc = 0;
  5130. //acc += t1 - t0;
  5131. //if (t1 - t0 > 10) {
  5132. // printf("\n");
  5133. // printf("ne00 = %5d, ne01 = %5d, ne02 = %5d, ne03 = %5d\n", ne00, ne01, ne02, ne03);
  5134. // printf("nb00 = %5d, nb01 = %5d, nb02 = %5d, nb03 = %5d\n", nb00, nb01, nb02, nb03);
  5135. // printf("ne10 = %5d, ne11 = %5d, ne12 = %5d, ne13 = %5d\n", ne10, ne11, ne12, ne13);
  5136. // printf("nb10 = %5d, nb11 = %5d, nb12 = %5d, nb13 = %5d\n", nb10, nb11, nb12, nb13);
  5137. // printf("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX task %d/%d: %d us, acc = %d\n", ith, nth, (int) (t1 - t0), (int) acc);
  5138. //}
  5139. }
  5140. static void ggml_compute_forward_mul_mat_f16_f32(
  5141. const struct ggml_compute_params * params,
  5142. const struct ggml_tensor * src0,
  5143. const struct ggml_tensor * src1,
  5144. struct ggml_tensor * dst) {
  5145. int64_t t0 = ggml_perf_time_us();
  5146. UNUSED(t0);
  5147. const int64_t ne00 = src0->ne[0];
  5148. const int64_t ne01 = src0->ne[1];
  5149. const int64_t ne02 = src0->ne[2];
  5150. const int64_t ne03 = src0->ne[3];
  5151. const int64_t ne10 = src1->ne[0];
  5152. const int64_t ne11 = src1->ne[1];
  5153. const int64_t ne12 = src1->ne[2];
  5154. const int64_t ne13 = src1->ne[3];
  5155. const int64_t ne0 = dst->ne[0];
  5156. const int64_t ne1 = dst->ne[1];
  5157. const int64_t ne2 = dst->ne[2];
  5158. const int64_t ne3 = dst->ne[3];
  5159. //const int64_t ne = ne0*ne1*ne2*ne3;
  5160. const int nb00 = src0->nb[0];
  5161. const int nb01 = src0->nb[1];
  5162. const int nb02 = src0->nb[2];
  5163. const int nb03 = src0->nb[3];
  5164. const int nb10 = src1->nb[0];
  5165. const int nb11 = src1->nb[1];
  5166. const int nb12 = src1->nb[2];
  5167. const int nb13 = src1->nb[3];
  5168. const int nb0 = dst->nb[0];
  5169. const int nb1 = dst->nb[1];
  5170. const int nb2 = dst->nb[2];
  5171. const int nb3 = dst->nb[3];
  5172. const int ith = params->ith;
  5173. const int nth = params->nth;
  5174. GGML_ASSERT(ne02 == ne12);
  5175. GGML_ASSERT(ne03 == ne13);
  5176. GGML_ASSERT(ne2 == ne12);
  5177. GGML_ASSERT(ne3 == ne13);
  5178. // TODO: we don't support permuted src0
  5179. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  5180. // dst cannot be transposed or permuted
  5181. GGML_ASSERT(nb0 == sizeof(float));
  5182. GGML_ASSERT(nb0 <= nb1);
  5183. GGML_ASSERT(nb1 <= nb2);
  5184. GGML_ASSERT(nb2 <= nb3);
  5185. GGML_ASSERT(ne0 == ne01);
  5186. GGML_ASSERT(ne1 == ne11);
  5187. GGML_ASSERT(ne2 == ne02);
  5188. GGML_ASSERT(ne3 == ne03);
  5189. // nb01 >= nb00 - src0 is not transposed
  5190. // compute by src0 rows
  5191. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  5192. if (ggml_compute_forward_mul_mat_use_blas(src0, src1, dst)) {
  5193. GGML_ASSERT(nb10 == sizeof(float));
  5194. if (params->ith != 0) {
  5195. return;
  5196. }
  5197. if (params->type == GGML_TASK_INIT) {
  5198. return;
  5199. }
  5200. if (params->type == GGML_TASK_FINALIZE) {
  5201. return;
  5202. }
  5203. float * const wdata = params->wdata;
  5204. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5205. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5206. {
  5207. size_t id = 0;
  5208. for (int64_t i01 = 0; i01 < ne01; ++i01) {
  5209. for (int64_t i00 = 0; i00 < ne00; ++i00) {
  5210. wdata[id++] = GGML_FP16_TO_FP32(*(ggml_fp16_t *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01 + i00*nb00));
  5211. }
  5212. }
  5213. }
  5214. const float * x = wdata;
  5215. const float * y = (float *) ((char *) src1->data + i02*nb12 + i03*nb13);
  5216. float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3);
  5217. // zT = y * xT
  5218. cblas_sgemm(CblasRowMajor, CblasNoTrans, CblasTrans,
  5219. ne11, ne01, ne10,
  5220. 1.0f, y, ne10,
  5221. x, ne10,
  5222. 0.0f, d, ne01);
  5223. }
  5224. }
  5225. /*printf("CBLAS F16 = %f ms, %d x %d x %d x %d\n", (ggml_perf_time_us() - t0)/1000.0, ne0, ne1, ne2, ne3);*/
  5226. return;
  5227. }
  5228. #endif
  5229. if (params->type == GGML_TASK_INIT) {
  5230. ggml_fp16_t * const wdata = params->wdata;
  5231. size_t id = 0;
  5232. for (int64_t i13 = 0; i13 < ne13; ++i13) {
  5233. for (int64_t i12 = 0; i12 < ne12; ++i12) {
  5234. for (int64_t i11 = 0; i11 < ne11; ++i11) {
  5235. for (int64_t i10 = 0; i10 < ne10; ++i10) {
  5236. wdata[id++] = GGML_FP32_TO_FP16(*(float *)((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11 + i10*nb10));
  5237. }
  5238. }
  5239. }
  5240. }
  5241. GGML_ASSERT(id*sizeof(ggml_fp16_t) <= params->wsize);
  5242. return;
  5243. }
  5244. if (params->type == GGML_TASK_FINALIZE) {
  5245. return;
  5246. }
  5247. // fp16 -> half the size, so divide by 2
  5248. // TODO: do not support transposed src1
  5249. assert(nb10/2 == sizeof(ggml_fp16_t));
  5250. // parallelize by src0 rows using ggml_vec_dot_f16
  5251. // total rows in src0
  5252. const int nr = ne01*ne02*ne03;
  5253. // rows per thread
  5254. const int dr = (nr + nth - 1)/nth;
  5255. // row range for this thread
  5256. const int ir0 = dr*ith;
  5257. const int ir1 = MIN(ir0 + dr, nr);
  5258. ggml_fp16_t * wdata = params->wdata;
  5259. for (int ir = ir0; ir < ir1; ++ir) {
  5260. // src0 indices
  5261. const int i03 = ir/(ne02*ne01);
  5262. const int i02 = (ir - i03*ne02*ne01)/ne01;
  5263. const int i01 = (ir - i03*ne02*ne01 - i02*ne01);
  5264. const int i13 = i03;
  5265. const int i12 = i02;
  5266. const int i0 = i01;
  5267. const int i2 = i02;
  5268. const int i3 = i03;
  5269. ggml_fp16_t * src0_row = (ggml_fp16_t *) ((char *) src0->data + (i01*nb01 + i02*nb02 + i03*nb03));
  5270. ggml_fp16_t * src1_col = wdata + ( 0 + i12*ne11 + i13*ne12*ne11)*ne00;
  5271. float * dst_col = (float *) ((char *) dst->data + (i0*nb0 + 0*nb1 + i2*nb2 + i3*nb3));
  5272. for (int64_t ic = 0; ic < ne11; ++ic) {
  5273. ggml_vec_dot_f16(ne00, &dst_col[ic*ne0], src0_row, src1_col + ic*ne00);
  5274. }
  5275. }
  5276. //int64_t t1 = ggml_time_us();
  5277. //static int64_t acc = 0;
  5278. //acc += t1 - t0;
  5279. //if (t1 - t0 > 10) {
  5280. // printf("\n");
  5281. // printf("ne00 = %5d, ne01 = %5d, ne02 = %5d, ne03 = %5d\n", ne00, ne01, ne02, ne03);
  5282. // printf("nb00 = %5d, nb01 = %5d, nb02 = %5d, nb03 = %5d\n", nb00, nb01, nb02, nb03);
  5283. // printf("ne10 = %5d, ne11 = %5d, ne12 = %5d, ne13 = %5d\n", ne10, ne11, ne12, ne13);
  5284. // printf("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX task %d/%d: %d us, acc = %d\n", ith, nth, (int) (t1 - t0), (int) acc);
  5285. //}
  5286. }
  5287. typedef void (*dequantize_row_q_t)(const void * restrict x, float * restrict y, int k);
  5288. typedef void (*quantize_row_q_t)(const float * restrict x, void * restrict y, int k);
  5289. typedef void (*vec_dot_q_t)(const int n, float * restrict s, const void * restrict x, const void * restrict y);
  5290. typedef struct {
  5291. dequantize_row_q_t dequantize_row_q;
  5292. quantize_row_q_t quantize_row_q;
  5293. vec_dot_q_t vec_dot_q;
  5294. } quantize_fns_t;
  5295. static const quantize_fns_t quantize_fns[GGML_TYPE_COUNT] = {
  5296. [GGML_TYPE_Q4_0] = {
  5297. .dequantize_row_q = dequantize_row_q4_0,
  5298. .quantize_row_q = quantize_row_q4_0,
  5299. .vec_dot_q = ggml_vec_dot_q4_0,
  5300. },
  5301. [GGML_TYPE_Q4_1] = {
  5302. .dequantize_row_q = dequantize_row_q4_1,
  5303. .quantize_row_q = quantize_row_q4_1,
  5304. .vec_dot_q = ggml_vec_dot_q4_1,
  5305. },
  5306. };
  5307. static void ggml_compute_forward_mul_mat_q_f32(
  5308. const struct ggml_compute_params * params,
  5309. const struct ggml_tensor * src0,
  5310. const struct ggml_tensor * src1,
  5311. struct ggml_tensor * dst) {
  5312. int64_t t0 = ggml_perf_time_us();
  5313. UNUSED(t0);
  5314. const int64_t ne00 = src0->ne[0];
  5315. const int64_t ne01 = src0->ne[1];
  5316. const int64_t ne02 = src0->ne[2];
  5317. const int64_t ne03 = src0->ne[3];
  5318. const int64_t ne10 = src1->ne[0];
  5319. const int64_t ne11 = src1->ne[1];
  5320. const int64_t ne12 = src1->ne[2];
  5321. const int64_t ne13 = src1->ne[3];
  5322. const int64_t ne0 = dst->ne[0];
  5323. const int64_t ne1 = dst->ne[1];
  5324. const int64_t ne2 = dst->ne[2];
  5325. const int64_t ne3 = dst->ne[3];
  5326. const int nb00 = src0->nb[0];
  5327. const int nb01 = src0->nb[1];
  5328. const int nb02 = src0->nb[2];
  5329. const int nb03 = src0->nb[3];
  5330. const int nb10 = src1->nb[0];
  5331. const int nb11 = src1->nb[1];
  5332. const int nb12 = src1->nb[2];
  5333. const int nb13 = src1->nb[3];
  5334. const int nb0 = dst->nb[0];
  5335. const int nb1 = dst->nb[1];
  5336. const int nb2 = dst->nb[2];
  5337. const int nb3 = dst->nb[3];
  5338. const int ith = params->ith;
  5339. const int nth = params->nth;
  5340. GGML_ASSERT(ne02 == ne12);
  5341. GGML_ASSERT(ne03 == ne13);
  5342. GGML_ASSERT(ne2 == ne12);
  5343. GGML_ASSERT(ne3 == ne13);
  5344. const enum ggml_type type = src0->type;
  5345. quantize_row_q_t const quantize_row_q = quantize_fns[type].quantize_row_q;
  5346. vec_dot_q_t const vec_dot_q = quantize_fns[type].vec_dot_q;
  5347. // we don't support permuted src0 or src1
  5348. GGML_ASSERT(nb00 == (int) GGML_TYPE_SIZE[type]);
  5349. GGML_ASSERT(nb10 == sizeof(float));
  5350. // dst cannot be transposed or permuted
  5351. GGML_ASSERT(nb0 == sizeof(float));
  5352. GGML_ASSERT(nb0 <= nb1);
  5353. GGML_ASSERT(nb1 <= nb2);
  5354. GGML_ASSERT(nb2 <= nb3);
  5355. GGML_ASSERT(ne0 == ne01);
  5356. GGML_ASSERT(ne1 == ne11);
  5357. GGML_ASSERT(ne2 == ne02);
  5358. GGML_ASSERT(ne3 == ne03);
  5359. // nb01 >= nb00 - src0 is not transposed
  5360. // compute by src0 rows
  5361. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  5362. if (ggml_compute_forward_mul_mat_use_blas(src0, src1, dst)) {
  5363. if (params->ith != 0) {
  5364. return;
  5365. }
  5366. if (params->type == GGML_TASK_INIT) {
  5367. return;
  5368. }
  5369. if (params->type == GGML_TASK_FINALIZE) {
  5370. return;
  5371. }
  5372. float * const wdata = params->wdata;
  5373. dequantize_row_q_t const dequantize_row_q = quantize_fns[type].dequantize_row_q;
  5374. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5375. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5376. {
  5377. size_t id = 0;
  5378. for (int64_t i01 = 0; i01 < ne01; ++i01) {
  5379. dequantize_row_q((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01, wdata + id, ne00);
  5380. id += ne00;
  5381. }
  5382. }
  5383. const float * x = wdata;
  5384. const float * y = (float *) ((char *) src1->data + i02*nb12 + i03*nb13);
  5385. float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3);
  5386. // zT = y * xT
  5387. cblas_sgemm(CblasRowMajor, CblasNoTrans, CblasTrans,
  5388. ne11, ne01, ne10,
  5389. 1.0f, y, ne10,
  5390. x, ne10,
  5391. 0.0f, d, ne01);
  5392. }
  5393. }
  5394. //printf("CBLAS = %f ms, %d x %d x %d x %d\n", (ggml_perf_time_us() - t0)/1000.0, ne0, ne1, ne2, ne3);
  5395. return;
  5396. }
  5397. #endif
  5398. if (params->type == GGML_TASK_INIT) {
  5399. char * wdata = params->wdata;
  5400. const size_t row_size = ne10*GGML_TYPE_SIZE[type]/GGML_BLCK_SIZE[type];
  5401. for (int64_t i13 = 0; i13 < ne13; ++i13) {
  5402. for (int64_t i12 = 0; i12 < ne12; ++i12) {
  5403. for (int64_t i11 = 0; i11 < ne11; ++i11) {
  5404. quantize_row_q((float *)((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11), (void *) wdata, ne10);
  5405. wdata += row_size;
  5406. }
  5407. }
  5408. }
  5409. return;
  5410. }
  5411. if (params->type == GGML_TASK_FINALIZE) {
  5412. return;
  5413. }
  5414. // parallelize by src0 rows using ggml_vec_dot_q
  5415. // total rows in src0
  5416. const int nr = ne01*ne02*ne03;
  5417. // rows per thread
  5418. const int dr = (nr + nth - 1)/nth;
  5419. // row range for this thread
  5420. const int ir0 = dr*ith;
  5421. const int ir1 = MIN(ir0 + dr, nr);
  5422. void * wdata = params->wdata;
  5423. const size_t row_size = ne00*GGML_TYPE_SIZE[type]/GGML_BLCK_SIZE[type];
  5424. for (int ir = ir0; ir < ir1; ++ir) {
  5425. // src0 indices
  5426. const int i03 = ir/(ne02*ne01);
  5427. const int i02 = (ir - i03*ne02*ne01)/ne01;
  5428. const int i01 = (ir - i03*ne02*ne01 - i02*ne01);
  5429. const int i13 = i03;
  5430. const int i12 = i02;
  5431. const int i0 = i01;
  5432. const int i2 = i02;
  5433. const int i3 = i03;
  5434. void * src0_row = (void *) ((char *) src0->data + (i01*nb01 + i02*nb02 + i03*nb03));
  5435. char * src1_col = ((char *) wdata + ( (0 + i12*ne11 + i13*ne12*ne11)*row_size));
  5436. float * dst_col = (float *) ((char *) dst->data + (i0*nb0 + 0*nb1 + i2*nb2 + i3*nb3));
  5437. assert(ne00 % 32 == 0);
  5438. for (int64_t ic = 0; ic < ne11; ++ic) {
  5439. vec_dot_q(ne00, &dst_col[ic*ne0], src0_row, (void *) (src1_col + ic*row_size));
  5440. }
  5441. }
  5442. //int64_t t1 = ggml_time_us();
  5443. //static int64_t acc = 0;
  5444. //acc += t1 - t0;
  5445. //if (t1 - t0 > 10) {
  5446. // printf("\n");
  5447. // printf("ne00 = %5d, ne01 = %5d, ne02 = %5d, ne03 = %5d\n", ne00, ne01, ne02, ne03);
  5448. // printf("nb00 = %5d, nb01 = %5d, nb02 = %5d, nb03 = %5d\n", nb00, nb01, nb02, nb03);
  5449. // printf("ne10 = %5d, ne11 = %5d, ne12 = %5d, ne13 = %5d\n", ne10, ne11, ne12, ne13);
  5450. // printf("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX task %d/%d: %d us, acc = %d\n", ith, nth, (int) (t1 - t0), (int) acc);
  5451. //}
  5452. }
  5453. static void ggml_compute_forward_mul_mat(
  5454. const struct ggml_compute_params * params,
  5455. const struct ggml_tensor * src0,
  5456. const struct ggml_tensor * src1,
  5457. struct ggml_tensor * dst) {
  5458. switch (src0->type) {
  5459. case GGML_TYPE_Q4_0:
  5460. case GGML_TYPE_Q4_1:
  5461. {
  5462. ggml_compute_forward_mul_mat_q_f32(params, src0, src1, dst);
  5463. } break;
  5464. case GGML_TYPE_F16:
  5465. {
  5466. ggml_compute_forward_mul_mat_f16_f32(params, src0, src1, dst);
  5467. } break;
  5468. case GGML_TYPE_F32:
  5469. {
  5470. ggml_compute_forward_mul_mat_f32(params, src0, src1, dst);
  5471. } break;
  5472. case GGML_TYPE_I8:
  5473. case GGML_TYPE_I16:
  5474. case GGML_TYPE_I32:
  5475. case GGML_TYPE_COUNT:
  5476. {
  5477. GGML_ASSERT(false);
  5478. } break;
  5479. }
  5480. #if 0
  5481. if (src0->type == GGML_TYPE_F16 || src0->type == GGML_TYPE_Q4_1) {
  5482. static int first = 8;
  5483. printf("src0: ne0 = %5d, ne1 = %5d, ne2 = %5d\n", src0->ne[0], src0->ne[1], src0->ne[2]);
  5484. printf("src1: ne0 = %5d, ne1 = %5d, ne2 = %5d\n", src1->ne[0], src1->ne[1], src1->ne[2]);
  5485. printf("dst: ne0 = %5d, ne1 = %5d, ne2 = %5d\n", dst->ne[0], dst->ne[1], dst->ne[2]);
  5486. if (first) {
  5487. --first;
  5488. } else {
  5489. for (int k = 0; k < dst->ne[1]; ++k) {
  5490. for (int j = 0; j < dst->ne[0]/16; ++j) {
  5491. for (int i = 0; i < 16; ++i) {
  5492. printf("%8.4f ", ((float *) dst->data)[k*dst->ne[0] + j*16 + i]);
  5493. }
  5494. printf("\n");
  5495. }
  5496. printf("\n");
  5497. }
  5498. printf("\n");
  5499. exit(0);
  5500. }
  5501. } else {
  5502. printf("aaaa src0: ne0 = %5d, ne1 = %5d, ne2 = %5d\n", src0->ne[0], src0->ne[1], src0->ne[2]);
  5503. printf("aaaa src1: ne0 = %5d, ne1 = %5d, ne2 = %5d\n", src1->ne[0], src1->ne[1], src1->ne[2]);
  5504. printf("aaaa dst: ne0 = %5d, ne1 = %5d, ne2 = %5d\n", dst->ne[0], dst->ne[1], dst->ne[2]);
  5505. }
  5506. #endif
  5507. }
  5508. // ggml_compute_forward_scale
  5509. static void ggml_compute_forward_scale_f32(
  5510. const struct ggml_compute_params * params,
  5511. const struct ggml_tensor * src0,
  5512. const struct ggml_tensor * src1,
  5513. struct ggml_tensor * dst) {
  5514. GGML_ASSERT(ggml_is_contiguous(src0));
  5515. GGML_ASSERT(ggml_is_contiguous(dst));
  5516. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  5517. GGML_ASSERT(ggml_is_scalar(src1));
  5518. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5519. return;
  5520. }
  5521. // scale factor
  5522. const float v = *(float *) src1->data;
  5523. const int ith = params->ith;
  5524. const int nth = params->nth;
  5525. const int nc = src0->ne[0];
  5526. const int nr = ggml_nrows(src0);
  5527. // rows per thread
  5528. const int dr = (nr + nth - 1)/nth;
  5529. // row range for this thread
  5530. const int ir0 = dr*ith;
  5531. const int ir1 = MIN(ir0 + dr, nr);
  5532. for (int i1 = ir0; i1 < ir1; i1++) {
  5533. ggml_vec_scale_f32(nc, (float *) ((char *) dst->data + i1*(dst->nb[1])), v);
  5534. }
  5535. }
  5536. static void ggml_compute_forward_scale(
  5537. const struct ggml_compute_params * params,
  5538. const struct ggml_tensor * src0,
  5539. const struct ggml_tensor * src1,
  5540. struct ggml_tensor * dst) {
  5541. switch (src0->type) {
  5542. case GGML_TYPE_F32:
  5543. {
  5544. ggml_compute_forward_scale_f32(params, src0, src1, dst);
  5545. } break;
  5546. case GGML_TYPE_Q4_0:
  5547. case GGML_TYPE_Q4_1:
  5548. case GGML_TYPE_I8:
  5549. case GGML_TYPE_I16:
  5550. case GGML_TYPE_I32:
  5551. case GGML_TYPE_F16:
  5552. case GGML_TYPE_COUNT:
  5553. {
  5554. GGML_ASSERT(false);
  5555. } break;
  5556. }
  5557. }
  5558. // ggml_compute_forward_cpy
  5559. static void ggml_compute_forward_cpy(
  5560. const struct ggml_compute_params * params,
  5561. const struct ggml_tensor * src0,
  5562. struct ggml_tensor * dst) {
  5563. ggml_compute_forward_dup(params, src0, dst);
  5564. }
  5565. // ggml_compute_forward_reshape
  5566. static void ggml_compute_forward_reshape(
  5567. const struct ggml_compute_params * params,
  5568. const struct ggml_tensor * src0,
  5569. struct ggml_tensor * dst) {
  5570. // NOP
  5571. UNUSED(params);
  5572. UNUSED(src0);
  5573. UNUSED(dst);
  5574. }
  5575. // ggml_compute_forward_view
  5576. static void ggml_compute_forward_view(
  5577. const struct ggml_compute_params * params,
  5578. const struct ggml_tensor * src0) {
  5579. // NOP
  5580. UNUSED(params);
  5581. UNUSED(src0);
  5582. }
  5583. // ggml_compute_forward_permute
  5584. static void ggml_compute_forward_permute(
  5585. const struct ggml_compute_params * params,
  5586. const struct ggml_tensor * src0) {
  5587. // NOP
  5588. UNUSED(params);
  5589. UNUSED(src0);
  5590. }
  5591. // ggml_compute_forward_transpose
  5592. static void ggml_compute_forward_transpose(
  5593. const struct ggml_compute_params * params,
  5594. const struct ggml_tensor * src0) {
  5595. // NOP
  5596. UNUSED(params);
  5597. UNUSED(src0);
  5598. }
  5599. // ggml_compute_forward_get_rows
  5600. static void ggml_compute_forward_get_rows_q(
  5601. const struct ggml_compute_params * params,
  5602. const struct ggml_tensor * src0,
  5603. const struct ggml_tensor * src1,
  5604. struct ggml_tensor * dst) {
  5605. assert(params->ith == 0);
  5606. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5607. return;
  5608. }
  5609. const int nc = src0->ne[0];
  5610. const int nr = ggml_nelements(src1);
  5611. const enum ggml_type type = src0->type;
  5612. dequantize_row_q_t const dequantize_row_q = quantize_fns[type].dequantize_row_q;
  5613. assert( dst->ne[0] == nc);
  5614. assert( dst->ne[1] == nr);
  5615. assert(src0->nb[0] == GGML_TYPE_SIZE[type]);
  5616. for (int i = 0; i < nr; ++i) {
  5617. const int r = ((int32_t *) src1->data)[i];
  5618. dequantize_row_q(
  5619. (const void *) ((char *) src0->data + r*src0->nb[1]),
  5620. (float *) ((char *) dst->data + i*dst->nb[1]), nc);
  5621. }
  5622. }
  5623. static void ggml_compute_forward_get_rows_f16(
  5624. const struct ggml_compute_params * params,
  5625. const struct ggml_tensor * src0,
  5626. const struct ggml_tensor * src1,
  5627. struct ggml_tensor * dst) {
  5628. assert(params->ith == 0);
  5629. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5630. return;
  5631. }
  5632. const int nc = src0->ne[0];
  5633. const int nr = ggml_nelements(src1);
  5634. assert( dst->ne[0] == nc);
  5635. assert( dst->ne[1] == nr);
  5636. assert(src0->nb[0] == sizeof(ggml_fp16_t));
  5637. for (int i = 0; i < nr; ++i) {
  5638. const int r = ((int32_t *) src1->data)[i];
  5639. for (int j = 0; j < nc; ++j) {
  5640. ggml_fp16_t v = ((ggml_fp16_t *) ((char *) src0->data + r*src0->nb[1]))[j];
  5641. ((float *) ((char *) dst->data + i*dst->nb[1]))[j] = GGML_FP16_TO_FP32(v);
  5642. }
  5643. }
  5644. }
  5645. static void ggml_compute_forward_get_rows_f32(
  5646. const struct ggml_compute_params * params,
  5647. const struct ggml_tensor * src0,
  5648. const struct ggml_tensor * src1,
  5649. struct ggml_tensor * dst) {
  5650. assert(params->ith == 0);
  5651. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5652. return;
  5653. }
  5654. const int nc = src0->ne[0];
  5655. const int nr = ggml_nelements(src1);
  5656. assert( dst->ne[0] == nc);
  5657. assert( dst->ne[1] == nr);
  5658. assert(src0->nb[0] == sizeof(float));
  5659. for (int i = 0; i < nr; ++i) {
  5660. const int r = ((int32_t *) src1->data)[i];
  5661. ggml_vec_cpy_f32(nc,
  5662. (float *) ((char *) dst->data + i*dst->nb[1]),
  5663. (float *) ((char *) src0->data + r*src0->nb[1]));
  5664. }
  5665. }
  5666. static void ggml_compute_forward_get_rows(
  5667. const struct ggml_compute_params * params,
  5668. const struct ggml_tensor * src0,
  5669. const struct ggml_tensor * src1,
  5670. struct ggml_tensor * dst) {
  5671. switch (src0->type) {
  5672. case GGML_TYPE_Q4_0:
  5673. case GGML_TYPE_Q4_1:
  5674. {
  5675. ggml_compute_forward_get_rows_q(params, src0, src1, dst);
  5676. } break;
  5677. case GGML_TYPE_F16:
  5678. {
  5679. ggml_compute_forward_get_rows_f16(params, src0, src1, dst);
  5680. } break;
  5681. case GGML_TYPE_F32:
  5682. {
  5683. ggml_compute_forward_get_rows_f32(params, src0, src1, dst);
  5684. } break;
  5685. case GGML_TYPE_I8:
  5686. case GGML_TYPE_I16:
  5687. case GGML_TYPE_I32:
  5688. case GGML_TYPE_COUNT:
  5689. {
  5690. GGML_ASSERT(false);
  5691. } break;
  5692. }
  5693. //static bool first = true;
  5694. //printf("ne0 = %d, ne1 = %d, ne2 = %d\n", dst->ne[0], dst->ne[1], dst->ne[2]);
  5695. //if (first) {
  5696. // first = false;
  5697. //} else {
  5698. // for (int k = 0; k < dst->ne[1]; ++k) {
  5699. // for (int j = 0; j < dst->ne[0]/16; ++j) {
  5700. // for (int i = 0; i < 16; ++i) {
  5701. // printf("%8.4f ", ((float *) dst->data)[k*dst->ne[0] + j*16 + i]);
  5702. // }
  5703. // printf("\n");
  5704. // }
  5705. // printf("\n");
  5706. // }
  5707. // printf("\n");
  5708. // exit(0);
  5709. //}
  5710. }
  5711. // ggml_compute_forward_diag_mask_inf
  5712. static void ggml_compute_forward_diag_mask_inf_f32(
  5713. const struct ggml_compute_params * params,
  5714. const struct ggml_tensor * src0,
  5715. const struct ggml_tensor * src1,
  5716. struct ggml_tensor * dst) {
  5717. assert(params->ith == 0);
  5718. assert(src1->type == GGML_TYPE_I32);
  5719. assert(ggml_nelements(src1) == 1);
  5720. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5721. return;
  5722. }
  5723. const int n_past = ((int32_t *) src1->data)[0];
  5724. // TODO: handle transposed/permuted matrices
  5725. const int n = ggml_nrows(src0);
  5726. const int nc = src0->ne[0];
  5727. const int nr = src0->ne[1];
  5728. const int nz = n/nr;
  5729. assert( dst->nb[0] == sizeof(float));
  5730. assert(src0->nb[0] == sizeof(float));
  5731. for (int k = 0; k < nz; k++) {
  5732. for (int j = 0; j < nr; j++) {
  5733. for (int i = n_past; i < nc; i++) {
  5734. if (i > n_past + j) {
  5735. *(float *)((char *) dst->data + k*dst->nb[2] + j*dst->nb[1] + i*dst->nb[0]) = -INFINITY;
  5736. }
  5737. }
  5738. }
  5739. }
  5740. }
  5741. static void ggml_compute_forward_diag_mask_inf(
  5742. const struct ggml_compute_params * params,
  5743. const struct ggml_tensor * src0,
  5744. const struct ggml_tensor * src1,
  5745. struct ggml_tensor * dst) {
  5746. switch (src0->type) {
  5747. case GGML_TYPE_F32:
  5748. {
  5749. ggml_compute_forward_diag_mask_inf_f32(params, src0, src1, dst);
  5750. } break;
  5751. case GGML_TYPE_Q4_0:
  5752. case GGML_TYPE_Q4_1:
  5753. case GGML_TYPE_I8:
  5754. case GGML_TYPE_I16:
  5755. case GGML_TYPE_I32:
  5756. case GGML_TYPE_F16:
  5757. case GGML_TYPE_COUNT:
  5758. {
  5759. GGML_ASSERT(false);
  5760. } break;
  5761. }
  5762. }
  5763. // ggml_compute_forward_soft_max
  5764. static void ggml_compute_forward_soft_max_f32(
  5765. const struct ggml_compute_params * params,
  5766. const struct ggml_tensor * src0,
  5767. struct ggml_tensor * dst) {
  5768. GGML_ASSERT(ggml_is_contiguous(src0));
  5769. GGML_ASSERT(ggml_is_contiguous(dst));
  5770. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  5771. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5772. return;
  5773. }
  5774. // TODO: handle transposed/permuted matrices
  5775. const int ith = params->ith;
  5776. const int nth = params->nth;
  5777. const int nc = src0->ne[0];
  5778. const int nr = ggml_nrows(src0);
  5779. // rows per thread
  5780. const int dr = (nr + nth - 1)/nth;
  5781. // row range for this thread
  5782. const int ir0 = dr*ith;
  5783. const int ir1 = MIN(ir0 + dr, nr);
  5784. for (int i1 = ir0; i1 < ir1; i1++) {
  5785. float *p = (float *)((char *) dst->data + i1*dst->nb[1]);
  5786. #ifndef NDEBUG
  5787. for (int i = 0; i < nc; ++i) {
  5788. //printf("p[%d] = %f\n", i, p[i]);
  5789. assert(!isnan(p[i]));
  5790. }
  5791. #endif
  5792. float max = -INFINITY;
  5793. ggml_vec_max_f32(nc, &max, p);
  5794. ggml_float sum = 0.0;
  5795. uint16_t scvt;
  5796. for (int i = 0; i < nc; i++) {
  5797. if (p[i] == -INFINITY) {
  5798. p[i] = 0.0f;
  5799. } else {
  5800. //const float val = (p[i] == -INFINITY) ? 0.0 : exp(p[i] - max);
  5801. ggml_fp16_t s = GGML_FP32_TO_FP16(p[i] - max);
  5802. memcpy(&scvt, &s, sizeof(scvt));
  5803. const float val = GGML_FP16_TO_FP32(table_exp_f16[scvt]);
  5804. sum += (ggml_float)val;
  5805. p[i] = val;
  5806. }
  5807. }
  5808. assert(sum > 0.0);
  5809. sum = 1.0/sum;
  5810. ggml_vec_scale_f32(nc, p, sum);
  5811. #ifndef NDEBUG
  5812. for (int i = 0; i < nc; ++i) {
  5813. assert(!isnan(p[i]));
  5814. assert(!isinf(p[i]));
  5815. }
  5816. #endif
  5817. }
  5818. }
  5819. static void ggml_compute_forward_soft_max(
  5820. const struct ggml_compute_params * params,
  5821. const struct ggml_tensor * src0,
  5822. struct ggml_tensor * dst) {
  5823. switch (src0->type) {
  5824. case GGML_TYPE_F32:
  5825. {
  5826. ggml_compute_forward_soft_max_f32(params, src0, dst);
  5827. } break;
  5828. case GGML_TYPE_Q4_0:
  5829. case GGML_TYPE_Q4_1:
  5830. case GGML_TYPE_I8:
  5831. case GGML_TYPE_I16:
  5832. case GGML_TYPE_I32:
  5833. case GGML_TYPE_F16:
  5834. case GGML_TYPE_COUNT:
  5835. {
  5836. GGML_ASSERT(false);
  5837. } break;
  5838. }
  5839. }
  5840. // ggml_compute_forward_rope
  5841. static void ggml_compute_forward_rope_f32(
  5842. const struct ggml_compute_params * params,
  5843. const struct ggml_tensor * src0,
  5844. const struct ggml_tensor * src1,
  5845. struct ggml_tensor * dst) {
  5846. assert(params->ith == 0);
  5847. assert(src1->type == GGML_TYPE_I32);
  5848. assert(ggml_nelements(src1) == 3);
  5849. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5850. return;
  5851. }
  5852. const int n_past = ((int32_t *) src1->data)[0];
  5853. const int n_dims = ((int32_t *) src1->data)[1];
  5854. const int mode = ((int32_t *) src1->data)[2];
  5855. //const int64_t ne0 = src0->ne[0];
  5856. const int64_t ne1 = src0->ne[1];
  5857. const int64_t ne2 = src0->ne[2];
  5858. const int64_t ne3 = src0->ne[3];
  5859. const int nb0 = src0->nb[0];
  5860. const int nb1 = src0->nb[1];
  5861. const int nb2 = src0->nb[2];
  5862. const int nb3 = src0->nb[3];
  5863. //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
  5864. //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
  5865. assert(nb0 == sizeof(float));
  5866. // TODO: optimize
  5867. for (int64_t i3 = 0; i3 < ne3; i3++) {
  5868. for (int64_t i2 = (mode == 0 ? 0 : n_past); i2 < ne2; i2++) {
  5869. const int p = (mode == 0 ? n_past + i2 : i2);
  5870. for (int64_t i1 = 0; i1 < ne1; i1++) {
  5871. for (int i0 = 0; i0 < n_dims; i0 += 2) {
  5872. const float theta = powf(10000.0, ((float)-i0)/n_dims);
  5873. const float cos_theta = cosf(p*theta);
  5874. const float sin_theta = sinf(p*theta);
  5875. const float * const src = (float *)((char *) src0->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  5876. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  5877. const float x0 = src[0];
  5878. const float x1 = src[1];
  5879. dst_data[0] = x0*cos_theta - x1*sin_theta;
  5880. dst_data[1] = x0*sin_theta + x1*cos_theta;
  5881. }
  5882. }
  5883. }
  5884. }
  5885. }
  5886. static void ggml_compute_forward_rope_f16(
  5887. const struct ggml_compute_params * params,
  5888. const struct ggml_tensor * src0,
  5889. const struct ggml_tensor * src1,
  5890. struct ggml_tensor * dst) {
  5891. assert(params->ith == 0);
  5892. assert(src1->type == GGML_TYPE_I32);
  5893. assert(ggml_nelements(src1) == 3);
  5894. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5895. return;
  5896. }
  5897. const int n_past = ((int32_t *) src1->data)[0];
  5898. const int n_dims = ((int32_t *) src1->data)[1];
  5899. const int mode = ((int32_t *) src1->data)[2];
  5900. //const int64_t ne0 = src0->ne[0];
  5901. const int64_t ne1 = src0->ne[1];
  5902. const int64_t ne2 = src0->ne[2];
  5903. const int64_t ne3 = src0->ne[3];
  5904. const int nb0 = src0->nb[0];
  5905. const int nb1 = src0->nb[1];
  5906. const int nb2 = src0->nb[2];
  5907. const int nb3 = src0->nb[3];
  5908. //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
  5909. //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
  5910. assert(nb0 == sizeof(ggml_fp16_t));
  5911. for (int64_t i3 = 0; i3 < ne3; i3++) {
  5912. for (int64_t i2 = (mode == 0 ? 0 : n_past); i2 < ne2; i2++) {
  5913. const int p = (mode == 0 ? n_past + i2 : i2);
  5914. for (int64_t i1 = 0; i1 < ne1; i1++) {
  5915. for (int i0 = 0; i0 < n_dims; i0 += 2) {
  5916. const float theta = powf(10000.0, ((float)-i0)/n_dims);
  5917. const float cos_theta = cosf(p*theta);
  5918. const float sin_theta = sinf(p*theta);
  5919. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  5920. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  5921. const float x0 = ggml_fp16_to_fp32(src[0]);
  5922. const float x1 = ggml_fp16_to_fp32(src[1]);
  5923. dst_data[0] = ggml_fp32_to_fp16(x0*cos_theta - x1*sin_theta);
  5924. dst_data[1] = ggml_fp32_to_fp16(x0*sin_theta + x1*cos_theta);
  5925. }
  5926. }
  5927. }
  5928. }
  5929. }
  5930. static void ggml_compute_forward_rope(
  5931. const struct ggml_compute_params * params,
  5932. const struct ggml_tensor * src0,
  5933. const struct ggml_tensor * src1,
  5934. struct ggml_tensor * dst) {
  5935. switch (src0->type) {
  5936. case GGML_TYPE_F16:
  5937. {
  5938. ggml_compute_forward_rope_f16(params, src0, src1, dst);
  5939. } break;
  5940. case GGML_TYPE_F32:
  5941. {
  5942. ggml_compute_forward_rope_f32(params, src0, src1, dst);
  5943. } break;
  5944. case GGML_TYPE_Q4_0:
  5945. case GGML_TYPE_Q4_1:
  5946. case GGML_TYPE_I8:
  5947. case GGML_TYPE_I16:
  5948. case GGML_TYPE_I32:
  5949. case GGML_TYPE_COUNT:
  5950. {
  5951. GGML_ASSERT(false);
  5952. } break;
  5953. }
  5954. }
  5955. // ggml_compute_forward_conv_1d_1s
  5956. static void ggml_compute_forward_conv_1d_1s_f16_f32(
  5957. const struct ggml_compute_params * params,
  5958. const struct ggml_tensor * src0,
  5959. const struct ggml_tensor * src1,
  5960. struct ggml_tensor * dst) {
  5961. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  5962. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  5963. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  5964. int64_t t0 = ggml_perf_time_us();
  5965. UNUSED(t0);
  5966. const int64_t ne00 = src0->ne[0];
  5967. const int64_t ne01 = src0->ne[1];
  5968. const int64_t ne02 = src0->ne[2];
  5969. //const int64_t ne03 = src0->ne[3];
  5970. const int64_t ne10 = src1->ne[0];
  5971. const int64_t ne11 = src1->ne[1];
  5972. //const int64_t ne12 = src1->ne[2];
  5973. //const int64_t ne13 = src1->ne[3];
  5974. //const int64_t ne0 = dst->ne[0];
  5975. //const int64_t ne1 = dst->ne[1];
  5976. //const int64_t ne2 = dst->ne[2];
  5977. //const int64_t ne3 = dst->ne[3];
  5978. //const int64_t ne = ne0*ne1*ne2*ne3;
  5979. const int nb00 = src0->nb[0];
  5980. const int nb01 = src0->nb[1];
  5981. const int nb02 = src0->nb[2];
  5982. //const int nb03 = src0->nb[3];
  5983. const int nb10 = src1->nb[0];
  5984. const int nb11 = src1->nb[1];
  5985. //const int nb12 = src1->nb[2];
  5986. //const int nb13 = src1->nb[3];
  5987. //const int nb0 = dst->nb[0];
  5988. const int nb1 = dst->nb[1];
  5989. //const int nb2 = dst->nb[2];
  5990. //const int nb3 = dst->nb[3];
  5991. const int ith = params->ith;
  5992. const int nth = params->nth;
  5993. const int nk = ne00;
  5994. const int nh = nk/2;
  5995. const int ew0 = ggml_up32(ne01);
  5996. GGML_ASSERT(ne00 % 2 == 1); // TODO: support even kernel sizes
  5997. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  5998. GGML_ASSERT(nb10 == sizeof(float));
  5999. if (params->type == GGML_TASK_INIT) {
  6000. // TODO: fix this memset (wsize is overestimated)
  6001. memset(params->wdata, 0, params->wsize);
  6002. // prepare kernel data (src0)
  6003. {
  6004. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  6005. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6006. for (int64_t i01 = 0; i01 < ne01; i01++) {
  6007. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i02*nb02 + i01*nb01);
  6008. ggml_fp16_t * dst_data = wdata + i02*ew0*ne00;
  6009. for (int64_t i00 = 0; i00 < ne00; i00++) {
  6010. dst_data[i00*ew0 + i01] = src[i00];
  6011. }
  6012. }
  6013. }
  6014. }
  6015. // prepare source data (src1)
  6016. {
  6017. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + ne02*ew0*ne00;
  6018. for (int64_t i11 = 0; i11 < ne11; i11++) {
  6019. const float * const src = (float *)((char *) src1->data + i11*nb11);
  6020. ggml_fp16_t * dst_data = wdata;
  6021. for (int64_t i10 = 0; i10 < ne10; i10++) {
  6022. dst_data[(i10 + nh)*ew0 + i11] = GGML_FP32_TO_FP16(src[i10]);
  6023. }
  6024. }
  6025. }
  6026. return;
  6027. }
  6028. if (params->type == GGML_TASK_FINALIZE) {
  6029. return;
  6030. }
  6031. // total rows in dst
  6032. const int nr = ne02;
  6033. // rows per thread
  6034. const int dr = (nr + nth - 1)/nth;
  6035. // row range for this thread
  6036. const int ir0 = dr*ith;
  6037. const int ir1 = MIN(ir0 + dr, nr);
  6038. for (int i1 = ir0; i1 < ir1; i1++) {
  6039. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  6040. for (int64_t i0 = 0; i0 < ne10; ++i0) {
  6041. dst_data[i0] = 0;
  6042. for (int k = -nh; k <= nh; k++) {
  6043. float v = 0.0f;
  6044. ggml_vec_dot_f16(ew0, &v,
  6045. (ggml_fp16_t *) params->wdata + i1*ew0*ne00 + (nh + k)*ew0,
  6046. (ggml_fp16_t *) params->wdata + ne02*ew0*ne00 + (i0 + nh + k)*ew0);
  6047. dst_data[i0] += v;
  6048. }
  6049. }
  6050. }
  6051. }
  6052. static void ggml_compute_forward_conv_1d_1s_f32(
  6053. const struct ggml_compute_params * params,
  6054. const struct ggml_tensor * src0,
  6055. const struct ggml_tensor * src1,
  6056. struct ggml_tensor * dst) {
  6057. GGML_ASSERT(src0->type == GGML_TYPE_F32);
  6058. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  6059. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  6060. int64_t t0 = ggml_perf_time_us();
  6061. UNUSED(t0);
  6062. const int64_t ne00 = src0->ne[0];
  6063. const int64_t ne01 = src0->ne[1];
  6064. const int64_t ne02 = src0->ne[2];
  6065. //const int64_t ne03 = src0->ne[3];
  6066. const int64_t ne10 = src1->ne[0];
  6067. const int64_t ne11 = src1->ne[1];
  6068. //const int64_t ne12 = src1->ne[2];
  6069. //const int64_t ne13 = src1->ne[3];
  6070. //const int64_t ne0 = dst->ne[0];
  6071. //const int64_t ne1 = dst->ne[1];
  6072. //const int64_t ne2 = dst->ne[2];
  6073. //const int64_t ne3 = dst->ne[3];
  6074. //const int64_t ne = ne0*ne1*ne2*ne3;
  6075. const int nb00 = src0->nb[0];
  6076. const int nb01 = src0->nb[1];
  6077. const int nb02 = src0->nb[2];
  6078. //const int nb03 = src0->nb[3];
  6079. const int nb10 = src1->nb[0];
  6080. const int nb11 = src1->nb[1];
  6081. //const int nb12 = src1->nb[2];
  6082. //const int nb13 = src1->nb[3];
  6083. //const int nb0 = dst->nb[0];
  6084. const int nb1 = dst->nb[1];
  6085. //const int nb2 = dst->nb[2];
  6086. //const int nb3 = dst->nb[3];
  6087. const int ith = params->ith;
  6088. const int nth = params->nth;
  6089. const int nk = ne00;
  6090. const int nh = nk/2;
  6091. const int ew0 = ggml_up32(ne01);
  6092. GGML_ASSERT(ne00 % 2 == 1); // TODO: support even kernel sizes
  6093. GGML_ASSERT(nb00 == sizeof(float));
  6094. GGML_ASSERT(nb10 == sizeof(float));
  6095. if (params->type == GGML_TASK_INIT) {
  6096. // TODO: fix this memset (wsize is overestimated)
  6097. memset(params->wdata, 0, params->wsize);
  6098. // prepare kernel data (src0)
  6099. {
  6100. float * const wdata = (float *) params->wdata + 0;
  6101. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6102. for (int64_t i01 = 0; i01 < ne01; i01++) {
  6103. const float * const src = (float *)((char *) src0->data + i02*nb02 + i01*nb01);
  6104. float * dst_data = wdata + i02*ew0*ne00;
  6105. for (int64_t i00 = 0; i00 < ne00; i00++) {
  6106. dst_data[i00*ew0 + i01] = src[i00];
  6107. }
  6108. }
  6109. }
  6110. }
  6111. // prepare source data (src1)
  6112. {
  6113. float * const wdata = (float *) params->wdata + ne02*ew0*ne00;
  6114. for (int64_t i11 = 0; i11 < ne11; i11++) {
  6115. const float * const src = (float *)((char *) src1->data + i11*nb11);
  6116. float * dst_data = wdata;
  6117. for (int64_t i10 = 0; i10 < ne10; i10++) {
  6118. dst_data[(i10 + nh)*ew0 + i11] = src[i10];
  6119. }
  6120. }
  6121. }
  6122. return;
  6123. }
  6124. if (params->type == GGML_TASK_FINALIZE) {
  6125. return;
  6126. }
  6127. // total rows in dst
  6128. const int nr = ne02;
  6129. // rows per thread
  6130. const int dr = (nr + nth - 1)/nth;
  6131. // row range for this thread
  6132. const int ir0 = dr*ith;
  6133. const int ir1 = MIN(ir0 + dr, nr);
  6134. for (int i1 = ir0; i1 < ir1; i1++) {
  6135. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  6136. for (int64_t i0 = 0; i0 < ne10; ++i0) {
  6137. dst_data[i0] = 0;
  6138. for (int k = -nh; k <= nh; k++) {
  6139. float v = 0.0f;
  6140. ggml_vec_dot_f32(ew0, &v,
  6141. (float *) params->wdata + i1*ew0*ne00 + (nh + k)*ew0,
  6142. (float *) params->wdata + ne02*ew0*ne00 + (i0 + nh + k)*ew0);
  6143. dst_data[i0] += v;
  6144. }
  6145. }
  6146. }
  6147. }
  6148. static void ggml_compute_forward_conv_1d_1s(
  6149. const struct ggml_compute_params * params,
  6150. const struct ggml_tensor * src0,
  6151. const struct ggml_tensor * src1,
  6152. struct ggml_tensor * dst) {
  6153. switch (src0->type) {
  6154. case GGML_TYPE_F16:
  6155. {
  6156. ggml_compute_forward_conv_1d_1s_f16_f32(params, src0, src1, dst);
  6157. } break;
  6158. case GGML_TYPE_F32:
  6159. {
  6160. ggml_compute_forward_conv_1d_1s_f32(params, src0, src1, dst);
  6161. } break;
  6162. case GGML_TYPE_Q4_0:
  6163. case GGML_TYPE_Q4_1:
  6164. case GGML_TYPE_I8:
  6165. case GGML_TYPE_I16:
  6166. case GGML_TYPE_I32:
  6167. case GGML_TYPE_COUNT:
  6168. {
  6169. GGML_ASSERT(false);
  6170. } break;
  6171. }
  6172. }
  6173. // ggml_compute_forward_conv_1d_2s
  6174. static void ggml_compute_forward_conv_1d_2s_f16_f32(
  6175. const struct ggml_compute_params * params,
  6176. const struct ggml_tensor * src0,
  6177. const struct ggml_tensor * src1,
  6178. struct ggml_tensor * dst) {
  6179. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  6180. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  6181. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  6182. int64_t t0 = ggml_perf_time_us();
  6183. UNUSED(t0);
  6184. const int64_t ne00 = src0->ne[0];
  6185. const int64_t ne01 = src0->ne[1];
  6186. const int64_t ne02 = src0->ne[2];
  6187. //const int64_t ne03 = src0->ne[3];
  6188. const int64_t ne10 = src1->ne[0];
  6189. const int64_t ne11 = src1->ne[1];
  6190. //const int64_t ne12 = src1->ne[2];
  6191. //const int64_t ne13 = src1->ne[3];
  6192. //const int64_t ne0 = dst->ne[0];
  6193. //const int64_t ne1 = dst->ne[1];
  6194. //const int64_t ne2 = dst->ne[2];
  6195. //const int64_t ne3 = dst->ne[3];
  6196. //const int64_t ne = ne0*ne1*ne2*ne3;
  6197. const int nb00 = src0->nb[0];
  6198. const int nb01 = src0->nb[1];
  6199. const int nb02 = src0->nb[2];
  6200. //const int nb03 = src0->nb[3];
  6201. const int nb10 = src1->nb[0];
  6202. const int nb11 = src1->nb[1];
  6203. //const int nb12 = src1->nb[2];
  6204. //const int nb13 = src1->nb[3];
  6205. //const int nb0 = dst->nb[0];
  6206. const int nb1 = dst->nb[1];
  6207. //const int nb2 = dst->nb[2];
  6208. //const int nb3 = dst->nb[3];
  6209. const int ith = params->ith;
  6210. const int nth = params->nth;
  6211. const int nk = ne00;
  6212. const int nh = nk/2;
  6213. const int ew0 = ggml_up32(ne01);
  6214. GGML_ASSERT(ne00 % 2 == 1); // TODO: support even kernel sizes
  6215. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  6216. GGML_ASSERT(nb10 == sizeof(float));
  6217. if (params->type == GGML_TASK_INIT) {
  6218. // TODO: fix this memset (wsize is overestimated)
  6219. memset(params->wdata, 0, params->wsize);
  6220. // prepare kernel data (src0)
  6221. {
  6222. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  6223. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6224. for (int64_t i01 = 0; i01 < ne01; i01++) {
  6225. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i02*nb02 + i01*nb01);
  6226. ggml_fp16_t * dst_data = wdata + i02*ew0*ne00;
  6227. for (int64_t i00 = 0; i00 < ne00; i00++) {
  6228. dst_data[i00*ew0 + i01] = src[i00];
  6229. }
  6230. }
  6231. }
  6232. }
  6233. // prepare source data (src1)
  6234. {
  6235. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + ne02*ew0*ne00;
  6236. for (int64_t i11 = 0; i11 < ne11; i11++) {
  6237. const float * const src = (float *)((char *) src1->data + i11*nb11);
  6238. ggml_fp16_t * dst_data = wdata;
  6239. for (int64_t i10 = 0; i10 < ne10; i10++) {
  6240. dst_data[(i10 + nh)*ew0 + i11] = GGML_FP32_TO_FP16(src[i10]);
  6241. }
  6242. }
  6243. }
  6244. return;
  6245. }
  6246. if (params->type == GGML_TASK_FINALIZE) {
  6247. return;
  6248. }
  6249. // total rows in dst
  6250. const int nr = ne02;
  6251. // rows per thread
  6252. const int dr = (nr + nth - 1)/nth;
  6253. // row range for this thread
  6254. const int ir0 = dr*ith;
  6255. const int ir1 = MIN(ir0 + dr, nr);
  6256. for (int i1 = ir0; i1 < ir1; i1++) {
  6257. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  6258. for (int64_t i0 = 0; i0 < ne10; i0 += 2) {
  6259. dst_data[i0/2] = 0;
  6260. for (int k = -nh; k <= nh; k++) {
  6261. float v = 0.0f;
  6262. ggml_vec_dot_f16(ew0, &v,
  6263. (ggml_fp16_t *) params->wdata + i1*ew0*ne00 + (nh + k)*ew0,
  6264. (ggml_fp16_t *) params->wdata + ne02*ew0*ne00 + (i0 + nh + k)*ew0);
  6265. dst_data[i0/2] += v;
  6266. }
  6267. }
  6268. }
  6269. }
  6270. static void ggml_compute_forward_conv_1d_2s_f32(
  6271. const struct ggml_compute_params * params,
  6272. const struct ggml_tensor * src0,
  6273. const struct ggml_tensor * src1,
  6274. struct ggml_tensor * dst) {
  6275. GGML_ASSERT(src0->type == GGML_TYPE_F32);
  6276. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  6277. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  6278. int64_t t0 = ggml_perf_time_us();
  6279. UNUSED(t0);
  6280. const int64_t ne00 = src0->ne[0];
  6281. const int64_t ne01 = src0->ne[1];
  6282. const int64_t ne02 = src0->ne[2];
  6283. //const int64_t ne03 = src0->ne[3];
  6284. const int64_t ne10 = src1->ne[0];
  6285. const int64_t ne11 = src1->ne[1];
  6286. //const int64_t ne12 = src1->ne[2];
  6287. //const int64_t ne13 = src1->ne[3];
  6288. //const int64_t ne0 = dst->ne[0];
  6289. //const int64_t ne1 = dst->ne[1];
  6290. //const int64_t ne2 = dst->ne[2];
  6291. //const int64_t ne3 = dst->ne[3];
  6292. //const int64_t ne = ne0*ne1*ne2*ne3;
  6293. const int nb00 = src0->nb[0];
  6294. const int nb01 = src0->nb[1];
  6295. const int nb02 = src0->nb[2];
  6296. //const int nb03 = src0->nb[3];
  6297. const int nb10 = src1->nb[0];
  6298. const int nb11 = src1->nb[1];
  6299. //const int nb12 = src1->nb[2];
  6300. //const int nb13 = src1->nb[3];
  6301. //const int nb0 = dst->nb[0];
  6302. const int nb1 = dst->nb[1];
  6303. //const int nb2 = dst->nb[2];
  6304. //const int nb3 = dst->nb[3];
  6305. const int ith = params->ith;
  6306. const int nth = params->nth;
  6307. const int nk = ne00;
  6308. const int nh = nk/2;
  6309. const int ew0 = ggml_up32(ne01);
  6310. GGML_ASSERT(ne00 % 2 == 1); // TODO: support even kernel sizes
  6311. GGML_ASSERT(nb00 == sizeof(float));
  6312. GGML_ASSERT(nb10 == sizeof(float));
  6313. if (params->type == GGML_TASK_INIT) {
  6314. // TODO: fix this memset (wsize is overestimated)
  6315. memset(params->wdata, 0, params->wsize);
  6316. // prepare kernel data (src0)
  6317. {
  6318. float * const wdata = (float *) params->wdata + 0;
  6319. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6320. for (int64_t i01 = 0; i01 < ne01; i01++) {
  6321. const float * const src = (float *)((char *) src0->data + i02*nb02 + i01*nb01);
  6322. float * dst_data = wdata + i02*ew0*ne00;
  6323. for (int64_t i00 = 0; i00 < ne00; i00++) {
  6324. dst_data[i00*ew0 + i01] = src[i00];
  6325. }
  6326. }
  6327. }
  6328. }
  6329. // prepare source data (src1)
  6330. {
  6331. float * const wdata = (float *) params->wdata + ne02*ew0*ne00;
  6332. for (int64_t i11 = 0; i11 < ne11; i11++) {
  6333. const float * const src = (float *)((char *) src1->data + i11*nb11);
  6334. float * dst_data = wdata;
  6335. for (int64_t i10 = 0; i10 < ne10; i10++) {
  6336. dst_data[(i10 + nh)*ew0 + i11] = src[i10];
  6337. }
  6338. }
  6339. }
  6340. return;
  6341. }
  6342. if (params->type == GGML_TASK_FINALIZE) {
  6343. return;
  6344. }
  6345. // total rows in dst
  6346. const int nr = ne02;
  6347. // rows per thread
  6348. const int dr = (nr + nth - 1)/nth;
  6349. // row range for this thread
  6350. const int ir0 = dr*ith;
  6351. const int ir1 = MIN(ir0 + dr, nr);
  6352. for (int i1 = ir0; i1 < ir1; i1++) {
  6353. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  6354. for (int64_t i0 = 0; i0 < ne10; i0 += 2) {
  6355. dst_data[i0/2] = 0;
  6356. for (int k = -nh; k <= nh; k++) {
  6357. float v = 0.0f;
  6358. ggml_vec_dot_f32(ew0, &v,
  6359. (float *) params->wdata + i1*ew0*ne00 + (nh + k)*ew0,
  6360. (float *) params->wdata + ne02*ew0*ne00 + (i0 + nh + k)*ew0);
  6361. dst_data[i0/2] += v;
  6362. }
  6363. }
  6364. }
  6365. }
  6366. static void ggml_compute_forward_conv_1d_2s(
  6367. const struct ggml_compute_params * params,
  6368. const struct ggml_tensor * src0,
  6369. const struct ggml_tensor * src1,
  6370. struct ggml_tensor * dst) {
  6371. switch (src0->type) {
  6372. case GGML_TYPE_F16:
  6373. {
  6374. ggml_compute_forward_conv_1d_2s_f16_f32(params, src0, src1, dst);
  6375. } break;
  6376. case GGML_TYPE_F32:
  6377. {
  6378. ggml_compute_forward_conv_1d_2s_f32(params, src0, src1, dst);
  6379. } break;
  6380. case GGML_TYPE_Q4_0:
  6381. case GGML_TYPE_Q4_1:
  6382. case GGML_TYPE_I8:
  6383. case GGML_TYPE_I16:
  6384. case GGML_TYPE_I32:
  6385. case GGML_TYPE_COUNT:
  6386. {
  6387. GGML_ASSERT(false);
  6388. } break;
  6389. }
  6390. }
  6391. // ggml_compute_forward_flash_attn
  6392. static void ggml_compute_forward_flash_attn_f32(
  6393. const struct ggml_compute_params * params,
  6394. const struct ggml_tensor * q,
  6395. const struct ggml_tensor * k,
  6396. const struct ggml_tensor * v,
  6397. const bool masked,
  6398. struct ggml_tensor * dst) {
  6399. int64_t t0 = ggml_perf_time_us();
  6400. UNUSED(t0);
  6401. const int64_t neq0 = q->ne[0];
  6402. const int64_t neq1 = q->ne[1];
  6403. const int64_t neq2 = q->ne[2];
  6404. const int64_t neq3 = q->ne[3];
  6405. const int64_t nek0 = k->ne[0];
  6406. const int64_t nek1 = k->ne[1];
  6407. //const int64_t nek2 = k->ne[2];
  6408. //const int64_t nek3 = k->ne[3];
  6409. //const int64_t nev0 = v->ne[0];
  6410. const int64_t nev1 = v->ne[1];
  6411. //const int64_t nev2 = v->ne[2];
  6412. //const int64_t nev3 = v->ne[3];
  6413. const int64_t ne0 = dst->ne[0];
  6414. const int64_t ne1 = dst->ne[1];
  6415. //const int64_t ne2 = dst->ne[2];
  6416. //const int64_t ne3 = dst->ne[3];
  6417. const int nbk0 = k->nb[0];
  6418. const int nbk1 = k->nb[1];
  6419. const int nbk2 = k->nb[2];
  6420. const int nbk3 = k->nb[3];
  6421. const int nbq0 = q->nb[0];
  6422. const int nbq1 = q->nb[1];
  6423. const int nbq2 = q->nb[2];
  6424. const int nbq3 = q->nb[3];
  6425. const int nbv0 = v->nb[0];
  6426. const int nbv1 = v->nb[1];
  6427. const int nbv2 = v->nb[2];
  6428. const int nbv3 = v->nb[3];
  6429. const int nb0 = dst->nb[0];
  6430. const int nb1 = dst->nb[1];
  6431. const int nb2 = dst->nb[2];
  6432. const int nb3 = dst->nb[3];
  6433. const int ith = params->ith;
  6434. const int nth = params->nth;
  6435. const int64_t D = neq0;
  6436. const int64_t N = neq1;
  6437. const int64_t P = nek1 - N;
  6438. const int64_t M = P + N;
  6439. const int Mup = ggml_up(M, GGML_SOFT_MAX_UNROLL);
  6440. GGML_ASSERT(ne0 == D);
  6441. GGML_ASSERT(ne1 == N);
  6442. GGML_ASSERT(P >= 0);
  6443. GGML_ASSERT(nbq0 == sizeof(float));
  6444. GGML_ASSERT(nbk0 == sizeof(float));
  6445. GGML_ASSERT(nbv0 == sizeof(float));
  6446. GGML_ASSERT(neq0 == D);
  6447. GGML_ASSERT(nek0 == D);
  6448. GGML_ASSERT(nev1 == D);
  6449. GGML_ASSERT(neq1 == N);
  6450. GGML_ASSERT(nek1 == N + P);
  6451. GGML_ASSERT(nev1 == D);
  6452. // dst cannot be transposed or permuted
  6453. GGML_ASSERT(nb0 == sizeof(float));
  6454. GGML_ASSERT(nb0 <= nb1);
  6455. GGML_ASSERT(nb1 <= nb2);
  6456. GGML_ASSERT(nb2 <= nb3);
  6457. if (params->type == GGML_TASK_INIT) {
  6458. return;
  6459. }
  6460. if (params->type == GGML_TASK_FINALIZE) {
  6461. return;
  6462. }
  6463. // parallelize by q rows using ggml_vec_dot_f32
  6464. // total rows in q
  6465. const int nr = neq1*neq2*neq3;
  6466. // rows per thread
  6467. const int dr = (nr + nth - 1)/nth;
  6468. // row range for this thread
  6469. const int ir0 = dr*ith;
  6470. const int ir1 = MIN(ir0 + dr, nr);
  6471. const float scale = 1.0f/sqrtf(D);
  6472. //printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale);
  6473. for (int ir = ir0; ir < ir1; ++ir) {
  6474. // q indices
  6475. const int iq3 = ir/(neq2*neq1);
  6476. const int iq2 = (ir - iq3*neq2*neq1)/neq1;
  6477. const int iq1 = (ir - iq3*neq2*neq1 - iq2*neq1);
  6478. float * S = (float *) params->wdata + ith*(Mup + CACHE_LINE_SIZE_F32);
  6479. for (int i = M; i < Mup; ++i) {
  6480. S[i] = -INFINITY;
  6481. }
  6482. for (int64_t ic = 0; ic < nek1; ++ic) {
  6483. // k indices
  6484. const int ik3 = iq3;
  6485. const int ik2 = iq2;
  6486. const int ik1 = ic;
  6487. // S indices
  6488. const int i1 = ik1;
  6489. ggml_vec_dot_f32(neq0,
  6490. S + i1,
  6491. (float *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
  6492. (float *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
  6493. }
  6494. // scale
  6495. ggml_vec_scale_f32(nek1, S, scale);
  6496. if (masked) {
  6497. for (int64_t i = P; i < M; i++) {
  6498. if (i > P + iq1) {
  6499. S[i] = -INFINITY;
  6500. }
  6501. }
  6502. }
  6503. // softmax
  6504. {
  6505. float max = -INFINITY;
  6506. ggml_vec_max_f32(M, &max, S);
  6507. ggml_float sum = 0.0;
  6508. {
  6509. #ifdef GGML_SOFT_MAX_ACCELERATE
  6510. max = -max;
  6511. vDSP_vsadd(S, 1, &max, S, 1, Mup);
  6512. vvexpf(S, S, &Mup);
  6513. ggml_vec_sum_f32(Mup, &sum, S);
  6514. #else
  6515. uint16_t scvt[GGML_SOFT_MAX_UNROLL];
  6516. ggml_float sump[GGML_SOFT_MAX_UNROLL] = { 0.0 };
  6517. for (int i = 0; i < Mup; i += GGML_SOFT_MAX_UNROLL) {
  6518. float * SS = S + i;
  6519. for (int j = 0; j < GGML_SOFT_MAX_UNROLL; ++j) {
  6520. if (SS[j] == -INFINITY) {
  6521. SS[j] = 0.0f;
  6522. } else {
  6523. ggml_fp16_t s = GGML_FP32_TO_FP16(SS[j] - max);
  6524. memcpy(&scvt[j], &s, sizeof(uint16_t));
  6525. const float val = GGML_FP16_TO_FP32(table_exp_f16[scvt[j]]);
  6526. sump[j] += (ggml_float)val;
  6527. SS[j] = val;
  6528. }
  6529. }
  6530. }
  6531. for (int i = 0; i < GGML_SOFT_MAX_UNROLL; i++) {
  6532. sum += sump[i];
  6533. }
  6534. #endif
  6535. }
  6536. assert(sum > 0.0);
  6537. sum = 1.0/sum;
  6538. ggml_vec_scale_f32(M, S, sum);
  6539. #ifndef NDEBUG
  6540. for (int i = 0; i < M; ++i) {
  6541. assert(!isnan(S[i]));
  6542. assert(!isinf(S[i]));
  6543. }
  6544. #endif
  6545. }
  6546. for (int64_t ic = 0; ic < nev1; ++ic) {
  6547. // dst indices
  6548. const int i1 = iq1;
  6549. const int i2 = iq2;
  6550. const int i3 = iq3;
  6551. ggml_vec_dot_f32(nek1,
  6552. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  6553. (float *) ((char *) v->data + ( ic*nbv1 + i2*nbv2 + i3*nbv3)),
  6554. S);
  6555. }
  6556. }
  6557. }
  6558. static void ggml_compute_forward_flash_attn_f16(
  6559. const struct ggml_compute_params * params,
  6560. const struct ggml_tensor * q,
  6561. const struct ggml_tensor * k,
  6562. const struct ggml_tensor * v,
  6563. const bool masked,
  6564. struct ggml_tensor * dst) {
  6565. int64_t t0 = ggml_perf_time_us();
  6566. UNUSED(t0);
  6567. const int64_t neq0 = q->ne[0];
  6568. const int64_t neq1 = q->ne[1];
  6569. const int64_t neq2 = q->ne[2];
  6570. const int64_t neq3 = q->ne[3];
  6571. const int64_t nek0 = k->ne[0];
  6572. const int64_t nek1 = k->ne[1];
  6573. //const int64_t nek2 = k->ne[2];
  6574. //const int64_t nek3 = k->ne[3];
  6575. //const int64_t nev0 = v->ne[0];
  6576. const int64_t nev1 = v->ne[1];
  6577. //const int64_t nev2 = v->ne[2];
  6578. //const int64_t nev3 = v->ne[3];
  6579. const int64_t ne0 = dst->ne[0];
  6580. const int64_t ne1 = dst->ne[1];
  6581. //const int64_t ne2 = dst->ne[2];
  6582. //const int64_t ne3 = dst->ne[3];
  6583. const int nbk0 = k->nb[0];
  6584. const int nbk1 = k->nb[1];
  6585. const int nbk2 = k->nb[2];
  6586. const int nbk3 = k->nb[3];
  6587. const int nbq0 = q->nb[0];
  6588. const int nbq1 = q->nb[1];
  6589. const int nbq2 = q->nb[2];
  6590. const int nbq3 = q->nb[3];
  6591. const int nbv0 = v->nb[0];
  6592. const int nbv1 = v->nb[1];
  6593. const int nbv2 = v->nb[2];
  6594. const int nbv3 = v->nb[3];
  6595. const int nb0 = dst->nb[0];
  6596. const int nb1 = dst->nb[1];
  6597. const int nb2 = dst->nb[2];
  6598. const int nb3 = dst->nb[3];
  6599. const int ith = params->ith;
  6600. const int nth = params->nth;
  6601. const int64_t D = neq0;
  6602. const int64_t N = neq1;
  6603. const int64_t P = nek1 - N;
  6604. const int64_t M = P + N;
  6605. const int Mup = ggml_up(M, GGML_SOFT_MAX_UNROLL);
  6606. GGML_ASSERT(ne0 == D);
  6607. GGML_ASSERT(ne1 == N);
  6608. GGML_ASSERT(P >= 0);
  6609. GGML_ASSERT(nbq0 == sizeof(ggml_fp16_t));
  6610. GGML_ASSERT(nbk0 == sizeof(ggml_fp16_t));
  6611. GGML_ASSERT(nbv0 == sizeof(ggml_fp16_t));
  6612. GGML_ASSERT(neq0 == D);
  6613. GGML_ASSERT(nek0 == D);
  6614. GGML_ASSERT(nev1 == D);
  6615. GGML_ASSERT(neq1 == N);
  6616. GGML_ASSERT(nek1 == N + P);
  6617. GGML_ASSERT(nev1 == D);
  6618. // dst cannot be transposed or permuted
  6619. GGML_ASSERT(nb0 == sizeof(float));
  6620. GGML_ASSERT(nb0 <= nb1);
  6621. GGML_ASSERT(nb1 <= nb2);
  6622. GGML_ASSERT(nb2 <= nb3);
  6623. if (params->type == GGML_TASK_INIT) {
  6624. return;
  6625. }
  6626. if (params->type == GGML_TASK_FINALIZE) {
  6627. return;
  6628. }
  6629. // parallelize by q rows using ggml_vec_dot_f32
  6630. // total rows in q
  6631. const int nr = neq1*neq2*neq3;
  6632. // rows per thread
  6633. const int dr = (nr + nth - 1)/nth;
  6634. // row range for this thread
  6635. const int ir0 = dr*ith;
  6636. const int ir1 = MIN(ir0 + dr, nr);
  6637. const float scale = 1.0f/sqrtf(D);
  6638. //printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale);
  6639. for (int ir = ir0; ir < ir1; ++ir) {
  6640. // q indices
  6641. const int iq3 = ir/(neq2*neq1);
  6642. const int iq2 = (ir - iq3*neq2*neq1)/neq1;
  6643. const int iq1 = (ir - iq3*neq2*neq1 - iq2*neq1);
  6644. float * S = (float *) params->wdata + ith*(2*Mup + CACHE_LINE_SIZE_F32);
  6645. for (int i = M; i < Mup; ++i) {
  6646. S[i] = -INFINITY;
  6647. }
  6648. if (GGML_VEC_DOT_UNROLL > 2 || nek1 % GGML_VEC_DOT_UNROLL != 0) {
  6649. for (int64_t ic = 0; ic < nek1; ++ic) {
  6650. // k indices
  6651. const int ik3 = iq3;
  6652. const int ik2 = iq2;
  6653. const int ik1 = ic;
  6654. // S indices
  6655. const int i1 = ik1;
  6656. ggml_vec_dot_f16(neq0,
  6657. S + i1,
  6658. (ggml_fp16_t *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
  6659. (ggml_fp16_t *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
  6660. }
  6661. } else {
  6662. for (int64_t ic = 0; ic < nek1; ic += GGML_VEC_DOT_UNROLL) {
  6663. // k indices
  6664. const int ik3 = iq3;
  6665. const int ik2 = iq2;
  6666. const int ik1 = ic;
  6667. // S indices
  6668. const int i1 = ik1;
  6669. ggml_vec_dot_f16_unroll(neq0, nbk1,
  6670. S + i1,
  6671. ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
  6672. (ggml_fp16_t *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
  6673. }
  6674. }
  6675. // scale
  6676. ggml_vec_scale_f32(nek1, S, scale);
  6677. if (masked) {
  6678. for (int64_t i = P; i < M; i++) {
  6679. if (i > P + iq1) {
  6680. S[i] = -INFINITY;
  6681. }
  6682. }
  6683. }
  6684. // softmax
  6685. {
  6686. float max = -INFINITY;
  6687. ggml_vec_max_f32(M, &max, S);
  6688. ggml_float sum = 0.0;
  6689. {
  6690. #ifdef GGML_SOFT_MAX_ACCELERATE
  6691. max = -max;
  6692. vDSP_vsadd(S, 1, &max, S, 1, Mup);
  6693. vvexpf(S, S, &Mup);
  6694. ggml_vec_sum_f32(Mup, &sum, S);
  6695. #else
  6696. uint16_t scvt[GGML_SOFT_MAX_UNROLL];
  6697. ggml_float sump[GGML_SOFT_MAX_UNROLL] = { 0.0 };
  6698. for (int i = 0; i < Mup; i += GGML_SOFT_MAX_UNROLL) {
  6699. float * SS = S + i;
  6700. for (int j = 0; j < GGML_SOFT_MAX_UNROLL; ++j) {
  6701. if (SS[j] == -INFINITY) {
  6702. SS[j] = 0.0f;
  6703. } else {
  6704. ggml_fp16_t s = GGML_FP32_TO_FP16(SS[j] - max);
  6705. memcpy(&scvt[j], &s, sizeof(uint16_t));
  6706. const float val = GGML_FP16_TO_FP32(table_exp_f16[scvt[j]]);
  6707. sump[j] += (ggml_float)val;
  6708. SS[j] = val;
  6709. }
  6710. }
  6711. }
  6712. for (int i = 0; i < GGML_SOFT_MAX_UNROLL; i++) {
  6713. sum += sump[i];
  6714. }
  6715. #endif
  6716. }
  6717. assert(sum > 0.0);
  6718. sum = 1.0/sum;
  6719. ggml_vec_scale_f32(M, S, sum);
  6720. #ifndef NDEBUG
  6721. for (int i = 0; i < M; ++i) {
  6722. assert(!isnan(S[i]));
  6723. assert(!isinf(S[i]));
  6724. }
  6725. #endif
  6726. }
  6727. ggml_fp16_t * S16 = (ggml_fp16_t *) ((float *) params->wdata + ith*(2*Mup + CACHE_LINE_SIZE_F32) + Mup);
  6728. for (int64_t i = 0; i < M; i++) {
  6729. S16[i] = GGML_FP32_TO_FP16(S[i]);
  6730. }
  6731. if (GGML_VEC_DOT_UNROLL == 1 || (nev1 % GGML_VEC_DOT_UNROLL != 0)) {
  6732. for (int64_t ic = 0; ic < nev1; ++ic) {
  6733. // dst indices
  6734. const int i1 = iq1;
  6735. const int i2 = iq2;
  6736. const int i3 = iq3;
  6737. ggml_vec_dot_f16(nek1,
  6738. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  6739. (ggml_fp16_t *) ((char *) v->data + ( ic*nbv1 + i2*nbv2 + i3*nbv3)),
  6740. S16);
  6741. }
  6742. } else {
  6743. for (int64_t ic = 0; ic < nev1; ic += GGML_VEC_DOT_UNROLL) {
  6744. // dst indices
  6745. const int i1 = iq1;
  6746. const int i2 = iq2;
  6747. const int i3 = iq3;
  6748. ggml_vec_dot_f16_unroll(nek1, nbv1,
  6749. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  6750. ((char *) v->data + ( ic*nbv1 + i2*nbv2 + i3*nbv3)),
  6751. S16);
  6752. }
  6753. }
  6754. }
  6755. }
  6756. static void ggml_compute_forward_flash_attn(
  6757. const struct ggml_compute_params * params,
  6758. const struct ggml_tensor * q,
  6759. const struct ggml_tensor * k,
  6760. const struct ggml_tensor * v,
  6761. const bool masked,
  6762. struct ggml_tensor * dst) {
  6763. switch (q->type) {
  6764. case GGML_TYPE_F16:
  6765. {
  6766. ggml_compute_forward_flash_attn_f16(params, q, k, v, masked, dst);
  6767. } break;
  6768. case GGML_TYPE_F32:
  6769. {
  6770. ggml_compute_forward_flash_attn_f32(params, q, k, v, masked, dst);
  6771. } break;
  6772. case GGML_TYPE_Q4_0:
  6773. case GGML_TYPE_Q4_1:
  6774. case GGML_TYPE_I8:
  6775. case GGML_TYPE_I16:
  6776. case GGML_TYPE_I32:
  6777. case GGML_TYPE_COUNT:
  6778. {
  6779. GGML_ASSERT(false);
  6780. } break;
  6781. }
  6782. }
  6783. // ggml_compute_forward_flash_ff
  6784. static void ggml_compute_forward_flash_ff_f16(
  6785. const struct ggml_compute_params * params,
  6786. const struct ggml_tensor * a, // F16
  6787. const struct ggml_tensor * b0, // F16 fc_w
  6788. const struct ggml_tensor * b1, // F32 fc_b
  6789. const struct ggml_tensor * c0, // F16 proj_w
  6790. const struct ggml_tensor * c1, // F32 proj_b
  6791. struct ggml_tensor * dst) {
  6792. int64_t t0 = ggml_perf_time_us();
  6793. UNUSED(t0);
  6794. const int64_t nea0 = a->ne[0];
  6795. const int64_t nea1 = a->ne[1];
  6796. const int64_t nea2 = a->ne[2];
  6797. const int64_t nea3 = a->ne[3];
  6798. const int64_t neb00 = b0->ne[0];
  6799. const int64_t neb01 = b0->ne[1];
  6800. //const int64_t neb02 = b0->ne[2];
  6801. //const int64_t neb03 = b0->ne[3];
  6802. const int64_t neb10 = b1->ne[0];
  6803. const int64_t neb11 = b1->ne[1];
  6804. //const int64_t neb12 = b1->ne[2];
  6805. //const int64_t neb13 = b1->ne[3];
  6806. const int64_t nec00 = c0->ne[0];
  6807. const int64_t nec01 = c0->ne[1];
  6808. //const int64_t nec02 = c0->ne[2];
  6809. //const int64_t nec03 = c0->ne[3];
  6810. const int64_t nec10 = c1->ne[0];
  6811. const int64_t nec11 = c1->ne[1];
  6812. //const int64_t nec12 = c1->ne[2];
  6813. //const int64_t nec13 = c1->ne[3];
  6814. const int64_t ne0 = dst->ne[0];
  6815. const int64_t ne1 = dst->ne[1];
  6816. const int64_t ne2 = dst->ne[2];
  6817. //const int64_t ne3 = dst->ne[3];
  6818. const int nba0 = a->nb[0];
  6819. const int nba1 = a->nb[1];
  6820. const int nba2 = a->nb[2];
  6821. const int nba3 = a->nb[3];
  6822. const int nbb00 = b0->nb[0];
  6823. const int nbb01 = b0->nb[1];
  6824. const int nbb02 = b0->nb[2];
  6825. const int nbb03 = b0->nb[3];
  6826. const int nbb10 = b1->nb[0];
  6827. //const int nbb11 = b1->nb[1];
  6828. //const int nbb12 = b1->nb[2];
  6829. //const int nbb13 = b1->nb[3];
  6830. const int nbc00 = c0->nb[0];
  6831. const int nbc01 = c0->nb[1];
  6832. const int nbc02 = c0->nb[2];
  6833. const int nbc03 = c0->nb[3];
  6834. const int nbc10 = c1->nb[0];
  6835. //const int nbc11 = c1->nb[1];
  6836. //const int nbc12 = c1->nb[2];
  6837. //const int nbc13 = c1->nb[3];
  6838. const int nb0 = dst->nb[0];
  6839. const int nb1 = dst->nb[1];
  6840. const int nb2 = dst->nb[2];
  6841. const int nb3 = dst->nb[3];
  6842. const int ith = params->ith;
  6843. const int nth = params->nth;
  6844. const int64_t D = nea0;
  6845. //const int64_t N = nea1;
  6846. const int64_t M = neb01;
  6847. GGML_ASSERT(ne0 == nea0);
  6848. GGML_ASSERT(ne1 == nea1);
  6849. GGML_ASSERT(ne2 == nea2);
  6850. GGML_ASSERT(nba0 == sizeof(ggml_fp16_t));
  6851. GGML_ASSERT(nbb00 == sizeof(ggml_fp16_t));
  6852. GGML_ASSERT(nbb10 == sizeof(float));
  6853. GGML_ASSERT(nbc00 == sizeof(ggml_fp16_t));
  6854. GGML_ASSERT(nbc10 == sizeof(float));
  6855. GGML_ASSERT(neb00 == D);
  6856. GGML_ASSERT(neb01 == M);
  6857. GGML_ASSERT(neb10 == M);
  6858. GGML_ASSERT(neb11 == 1);
  6859. GGML_ASSERT(nec00 == M);
  6860. GGML_ASSERT(nec01 == D);
  6861. GGML_ASSERT(nec10 == D);
  6862. GGML_ASSERT(nec11 == 1);
  6863. // dst cannot be transposed or permuted
  6864. GGML_ASSERT(nb0 == sizeof(float));
  6865. GGML_ASSERT(nb0 <= nb1);
  6866. GGML_ASSERT(nb1 <= nb2);
  6867. GGML_ASSERT(nb2 <= nb3);
  6868. if (params->type == GGML_TASK_INIT) {
  6869. return;
  6870. }
  6871. if (params->type == GGML_TASK_FINALIZE) {
  6872. return;
  6873. }
  6874. // parallelize by a rows using ggml_vec_dot_f32
  6875. // total rows in a
  6876. const int nr = nea1*nea2*nea3;
  6877. // rows per thread
  6878. const int dr = (nr + nth - 1)/nth;
  6879. // row range for this thread
  6880. const int ir0 = dr*ith;
  6881. const int ir1 = MIN(ir0 + dr, nr);
  6882. for (int ir = ir0; ir < ir1; ++ir) {
  6883. // a indices
  6884. const int ia3 = ir/(nea2*nea1);
  6885. const int ia2 = (ir - ia3*nea2*nea1)/nea1;
  6886. const int ia1 = (ir - ia3*nea2*nea1 - ia2*nea1);
  6887. float * S = (float *) params->wdata + ith*(2*M + CACHE_LINE_SIZE_F32);
  6888. for (int64_t ic = 0; ic < neb01; ++ic) {
  6889. // b0 indices
  6890. const int ib03 = ia3;
  6891. const int ib02 = ia2;
  6892. const int ib01 = ic;
  6893. // S indices
  6894. const int i1 = ib01;
  6895. ggml_vec_dot_f16(nea0,
  6896. S + i1,
  6897. (ggml_fp16_t *) ((char *) b0->data + (ib01*nbb01 + ib02*nbb02 + ib03*nbb03)),
  6898. (ggml_fp16_t *) ((char *) a->data + ( ia1*nba1 + ia2*nba2 + ia3*nba3)));
  6899. }
  6900. ggml_vec_add_f32(neb01, S, S, (float *) b1->data);
  6901. //ggml_vec_gelu_f32(neb01, S, S);
  6902. ggml_fp16_t * S16 = (ggml_fp16_t *) ((float *) params->wdata + ith*(2*M + CACHE_LINE_SIZE_F32) + M);
  6903. for (int64_t i = 0; i < M; i++) {
  6904. S16[i] = GGML_FP32_TO_FP16(S[i]);
  6905. }
  6906. ggml_vec_gelu_f16(neb01, S16, S16);
  6907. {
  6908. // dst indices
  6909. const int i1 = ia1;
  6910. const int i2 = ia2;
  6911. const int i3 = ia3;
  6912. for (int64_t ic = 0; ic < nec01; ++ic) {
  6913. ggml_vec_dot_f16(neb01,
  6914. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  6915. (ggml_fp16_t *) ((char *) c0->data + ( ic*nbc01 + i2*nbc02 + i3*nbc03)),
  6916. S16);
  6917. }
  6918. ggml_vec_add_f32(nec01,
  6919. (float *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3)),
  6920. (float *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3)),
  6921. (float *) c1->data);
  6922. }
  6923. }
  6924. }
  6925. static void ggml_compute_forward_flash_ff(
  6926. const struct ggml_compute_params * params,
  6927. const struct ggml_tensor * a,
  6928. const struct ggml_tensor * b0,
  6929. const struct ggml_tensor * b1,
  6930. const struct ggml_tensor * c0,
  6931. const struct ggml_tensor * c1,
  6932. struct ggml_tensor * dst) {
  6933. switch (b0->type) {
  6934. case GGML_TYPE_F16:
  6935. {
  6936. ggml_compute_forward_flash_ff_f16(params, a, b0, b1, c0, c1, dst);
  6937. } break;
  6938. case GGML_TYPE_F32:
  6939. {
  6940. GGML_ASSERT(false); // TODO
  6941. } break;
  6942. case GGML_TYPE_Q4_0:
  6943. case GGML_TYPE_Q4_1:
  6944. case GGML_TYPE_I8:
  6945. case GGML_TYPE_I16:
  6946. case GGML_TYPE_I32:
  6947. case GGML_TYPE_COUNT:
  6948. {
  6949. GGML_ASSERT(false);
  6950. } break;
  6951. }
  6952. }
  6953. /////////////////////////////////
  6954. static void ggml_compute_forward(struct ggml_compute_params * params, struct ggml_tensor * tensor) {
  6955. GGML_ASSERT(params);
  6956. switch (tensor->op) {
  6957. case GGML_OP_DUP:
  6958. {
  6959. ggml_compute_forward_dup(params, tensor->src0, tensor);
  6960. } break;
  6961. case GGML_OP_ADD:
  6962. {
  6963. ggml_compute_forward_add(params, tensor->src0, tensor->src1, tensor);
  6964. } break;
  6965. case GGML_OP_SUB:
  6966. {
  6967. ggml_compute_forward_sub(params, tensor->src0, tensor->src1, tensor);
  6968. } break;
  6969. case GGML_OP_MUL:
  6970. {
  6971. ggml_compute_forward_mul(params, tensor->src0, tensor->src1, tensor);
  6972. } break;
  6973. case GGML_OP_DIV:
  6974. {
  6975. ggml_compute_forward_div(params, tensor->src0, tensor->src1, tensor);
  6976. } break;
  6977. case GGML_OP_SQR:
  6978. {
  6979. ggml_compute_forward_sqr(params, tensor->src0, tensor);
  6980. } break;
  6981. case GGML_OP_SQRT:
  6982. {
  6983. ggml_compute_forward_sqrt(params, tensor->src0, tensor);
  6984. } break;
  6985. case GGML_OP_SUM:
  6986. {
  6987. ggml_compute_forward_sum(params, tensor->src0, tensor);
  6988. } break;
  6989. case GGML_OP_MEAN:
  6990. {
  6991. ggml_compute_forward_mean(params, tensor->src0, tensor);
  6992. } break;
  6993. case GGML_OP_REPEAT:
  6994. {
  6995. ggml_compute_forward_repeat(params, tensor->src0, tensor);
  6996. } break;
  6997. case GGML_OP_ABS:
  6998. {
  6999. ggml_compute_forward_abs(params, tensor->src0, tensor);
  7000. } break;
  7001. case GGML_OP_SGN:
  7002. {
  7003. ggml_compute_forward_sgn(params, tensor->src0, tensor);
  7004. } break;
  7005. case GGML_OP_NEG:
  7006. {
  7007. ggml_compute_forward_neg(params, tensor->src0, tensor);
  7008. } break;
  7009. case GGML_OP_STEP:
  7010. {
  7011. ggml_compute_forward_step(params, tensor->src0, tensor);
  7012. } break;
  7013. case GGML_OP_RELU:
  7014. {
  7015. ggml_compute_forward_relu(params, tensor->src0, tensor);
  7016. } break;
  7017. case GGML_OP_GELU:
  7018. {
  7019. ggml_compute_forward_gelu(params, tensor->src0, tensor);
  7020. } break;
  7021. case GGML_OP_SILU:
  7022. {
  7023. ggml_compute_forward_silu(params, tensor->src0, tensor);
  7024. } break;
  7025. case GGML_OP_NORM:
  7026. {
  7027. ggml_compute_forward_norm(params, tensor->src0, tensor);
  7028. } break;
  7029. case GGML_OP_RMS_NORM:
  7030. {
  7031. ggml_compute_forward_rms_norm(params, tensor->src0, tensor);
  7032. } break;
  7033. case GGML_OP_MUL_MAT:
  7034. {
  7035. ggml_compute_forward_mul_mat(params, tensor->src0, tensor->src1, tensor);
  7036. } break;
  7037. case GGML_OP_SCALE:
  7038. {
  7039. ggml_compute_forward_scale(params, tensor->src0, tensor->src1, tensor);
  7040. } break;
  7041. case GGML_OP_CPY:
  7042. {
  7043. ggml_compute_forward_cpy(params, tensor->src0, tensor);
  7044. } break;
  7045. case GGML_OP_RESHAPE:
  7046. {
  7047. ggml_compute_forward_reshape(params, tensor->src0, tensor);
  7048. } break;
  7049. case GGML_OP_VIEW:
  7050. {
  7051. ggml_compute_forward_view(params, tensor->src0);
  7052. } break;
  7053. case GGML_OP_PERMUTE:
  7054. {
  7055. ggml_compute_forward_permute(params, tensor->src0);
  7056. } break;
  7057. case GGML_OP_TRANSPOSE:
  7058. {
  7059. ggml_compute_forward_transpose(params, tensor->src0);
  7060. } break;
  7061. case GGML_OP_GET_ROWS:
  7062. {
  7063. ggml_compute_forward_get_rows(params, tensor->src0, tensor->src1, tensor);
  7064. } break;
  7065. case GGML_OP_DIAG_MASK_INF:
  7066. {
  7067. ggml_compute_forward_diag_mask_inf(params, tensor->src0, tensor->src1, tensor);
  7068. } break;
  7069. case GGML_OP_SOFT_MAX:
  7070. {
  7071. ggml_compute_forward_soft_max(params, tensor->src0, tensor);
  7072. } break;
  7073. case GGML_OP_ROPE:
  7074. {
  7075. ggml_compute_forward_rope(params, tensor->src0, tensor->src1, tensor);
  7076. } break;
  7077. case GGML_OP_CONV_1D_1S:
  7078. {
  7079. ggml_compute_forward_conv_1d_1s(params, tensor->src0, tensor->src1, tensor);
  7080. } break;
  7081. case GGML_OP_CONV_1D_2S:
  7082. {
  7083. ggml_compute_forward_conv_1d_2s(params, tensor->src0, tensor->src1, tensor);
  7084. } break;
  7085. case GGML_OP_FLASH_ATTN:
  7086. {
  7087. int32_t t = ggml_get_i32_1d(tensor->opt[1], 0);
  7088. GGML_ASSERT(t == 0 || t == 1);
  7089. bool masked = t != 0;
  7090. ggml_compute_forward_flash_attn(params, tensor->src0, tensor->src1, tensor->opt[0], masked, tensor);
  7091. } break;
  7092. case GGML_OP_FLASH_FF:
  7093. {
  7094. ggml_compute_forward_flash_ff(params, tensor->src0, tensor->src1, tensor->opt[0], tensor->opt[1], tensor->opt[2], tensor);
  7095. } break;
  7096. case GGML_OP_NONE:
  7097. {
  7098. // nop
  7099. } break;
  7100. case GGML_OP_COUNT:
  7101. {
  7102. GGML_ASSERT(false);
  7103. } break;
  7104. }
  7105. }
  7106. ////////////////////////////////////////////////////////////////////////////////
  7107. static void ggml_compute_backward(struct ggml_context * ctx, struct ggml_tensor * tensor, bool inplace) {
  7108. struct ggml_tensor * src0 = tensor->src0;
  7109. struct ggml_tensor * src1 = tensor->src1;
  7110. switch (tensor->op) {
  7111. case GGML_OP_DUP:
  7112. {
  7113. if (src0->grad) {
  7114. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  7115. }
  7116. } break;
  7117. case GGML_OP_ADD:
  7118. {
  7119. if (src0->grad) {
  7120. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  7121. }
  7122. if (src1->grad) {
  7123. src1->grad = ggml_add_impl(ctx, src1->grad, tensor->grad, inplace);
  7124. }
  7125. } break;
  7126. case GGML_OP_SUB:
  7127. {
  7128. if (src0->grad) {
  7129. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  7130. }
  7131. if (src1->grad) {
  7132. src1->grad = ggml_sub_impl(ctx, src1->grad, tensor->grad, inplace);
  7133. }
  7134. } break;
  7135. case GGML_OP_MUL:
  7136. {
  7137. if (src0->grad) {
  7138. src0->grad =
  7139. ggml_add_impl(ctx,
  7140. src0->grad,
  7141. ggml_mul(ctx, src1, tensor->grad),
  7142. inplace);
  7143. }
  7144. if (src1->grad) {
  7145. src1->grad =
  7146. ggml_add_impl(ctx,
  7147. src1->grad,
  7148. ggml_mul(ctx, src0, tensor->grad),
  7149. inplace);
  7150. }
  7151. } break;
  7152. case GGML_OP_DIV:
  7153. {
  7154. if (src0->grad) {
  7155. src0->grad =
  7156. ggml_add_impl(ctx,
  7157. src0->grad,
  7158. ggml_div(ctx, tensor->grad, src1),
  7159. inplace);
  7160. }
  7161. if (src1->grad) {
  7162. src1->grad =
  7163. ggml_sub_impl(ctx,
  7164. src1->grad,
  7165. ggml_mul(ctx,
  7166. tensor->grad,
  7167. ggml_div(ctx, tensor, src1)),
  7168. inplace);
  7169. }
  7170. } break;
  7171. case GGML_OP_SQR:
  7172. {
  7173. if (src0->grad) {
  7174. src0->grad =
  7175. ggml_add_impl(ctx,
  7176. src0->grad,
  7177. ggml_mul(ctx,
  7178. ggml_mul(ctx, src0, tensor->grad),
  7179. ggml_repeat(ctx, ggml_new_f32(ctx, 2.0f), src0)),
  7180. inplace);
  7181. }
  7182. } break;
  7183. case GGML_OP_SQRT:
  7184. {
  7185. if (src0->grad) {
  7186. src0->grad =
  7187. ggml_add_impl(ctx,
  7188. src0->grad,
  7189. ggml_div(ctx,
  7190. ggml_repeat(ctx, ggml_new_f32(ctx, 0.5f), tensor),
  7191. tensor),
  7192. inplace);
  7193. }
  7194. } break;
  7195. case GGML_OP_SUM:
  7196. {
  7197. if (src0->grad) {
  7198. src0->grad =
  7199. ggml_add_impl(ctx,
  7200. src0->grad,
  7201. ggml_repeat(ctx, tensor->grad, src0->grad),
  7202. inplace);
  7203. }
  7204. } break;
  7205. case GGML_OP_MEAN:
  7206. {
  7207. GGML_ASSERT(false); // TODO: implement
  7208. } break;
  7209. case GGML_OP_REPEAT:
  7210. {
  7211. if (src0->grad) {
  7212. src0->grad =
  7213. ggml_add_impl(ctx,
  7214. src0->grad,
  7215. ggml_sum(ctx, tensor->grad),
  7216. inplace);
  7217. }
  7218. } break;
  7219. case GGML_OP_ABS:
  7220. {
  7221. if (src0->grad) {
  7222. src0->grad =
  7223. ggml_add_impl(ctx,
  7224. src0->grad,
  7225. ggml_mul(ctx,
  7226. ggml_sgn(ctx, src0),
  7227. tensor->grad),
  7228. inplace);
  7229. }
  7230. } break;
  7231. case GGML_OP_SGN:
  7232. {
  7233. if (src0->grad) {
  7234. // noop
  7235. }
  7236. } break;
  7237. case GGML_OP_NEG:
  7238. {
  7239. if (src0->grad) {
  7240. src0->grad = ggml_sub_impl(ctx, src0->grad, tensor->grad, inplace);
  7241. }
  7242. } break;
  7243. case GGML_OP_STEP:
  7244. {
  7245. if (src0->grad) {
  7246. // noop
  7247. }
  7248. } break;
  7249. case GGML_OP_RELU:
  7250. {
  7251. if (src0->grad) {
  7252. src0->grad = ggml_sub_impl(ctx,
  7253. src0->grad,
  7254. ggml_mul(ctx,
  7255. ggml_step(ctx, src0),
  7256. tensor->grad),
  7257. inplace);
  7258. }
  7259. } break;
  7260. case GGML_OP_GELU:
  7261. {
  7262. GGML_ASSERT(false); // TODO: not implemented
  7263. } break;
  7264. case GGML_OP_SILU:
  7265. {
  7266. GGML_ASSERT(false); // TODO: not implemented
  7267. } break;
  7268. case GGML_OP_NORM:
  7269. {
  7270. GGML_ASSERT(false); // TODO: not implemented
  7271. } break;
  7272. case GGML_OP_RMS_NORM:
  7273. {
  7274. GGML_ASSERT(false); // TODO: not implemented
  7275. } break;
  7276. case GGML_OP_MUL_MAT:
  7277. {
  7278. if (src0->grad) {
  7279. // TODO: this requires outer product - ggml_out_prod(ctx, src1, tensor->grad);
  7280. GGML_ASSERT(false);
  7281. }
  7282. if (src1->grad) {
  7283. src1->grad =
  7284. ggml_add_impl(ctx,
  7285. src1->grad,
  7286. // TODO: fix transpose, the node will break the graph connections
  7287. ggml_mul_mat(ctx, ggml_transpose(ctx, src0), tensor->grad),
  7288. inplace);
  7289. }
  7290. } break;
  7291. case GGML_OP_SCALE:
  7292. {
  7293. GGML_ASSERT(false); // TODO: not implemented
  7294. } break;
  7295. case GGML_OP_CPY:
  7296. {
  7297. GGML_ASSERT(false); // TODO: not implemented
  7298. } break;
  7299. case GGML_OP_RESHAPE:
  7300. {
  7301. GGML_ASSERT(false); // TODO: not implemented
  7302. } break;
  7303. case GGML_OP_VIEW:
  7304. {
  7305. GGML_ASSERT(false); // not supported
  7306. } break;
  7307. case GGML_OP_PERMUTE:
  7308. {
  7309. GGML_ASSERT(false); // TODO: not implemented
  7310. } break;
  7311. case GGML_OP_TRANSPOSE:
  7312. {
  7313. GGML_ASSERT(false); // TODO: not implemented
  7314. } break;
  7315. case GGML_OP_GET_ROWS:
  7316. {
  7317. GGML_ASSERT(false); // TODO: not implemented
  7318. } break;
  7319. case GGML_OP_DIAG_MASK_INF:
  7320. {
  7321. GGML_ASSERT(false); // TODO: not implemented
  7322. } break;
  7323. case GGML_OP_SOFT_MAX:
  7324. {
  7325. GGML_ASSERT(false); // TODO: not implemented
  7326. } break;
  7327. case GGML_OP_ROPE:
  7328. {
  7329. GGML_ASSERT(false); // TODO: not implemented
  7330. } break;
  7331. case GGML_OP_CONV_1D_1S:
  7332. {
  7333. GGML_ASSERT(false); // TODO: not implemented
  7334. } break;
  7335. case GGML_OP_CONV_1D_2S:
  7336. {
  7337. GGML_ASSERT(false); // TODO: not implemented
  7338. } break;
  7339. case GGML_OP_FLASH_ATTN:
  7340. {
  7341. GGML_ASSERT(false); // not supported
  7342. } break;
  7343. case GGML_OP_FLASH_FF:
  7344. {
  7345. GGML_ASSERT(false); // not supported
  7346. } break;
  7347. case GGML_OP_NONE:
  7348. {
  7349. // nop
  7350. } break;
  7351. case GGML_OP_COUNT:
  7352. {
  7353. GGML_ASSERT(false);
  7354. } break;
  7355. }
  7356. }
  7357. static void ggml_visit_parents(struct ggml_cgraph * cgraph, struct ggml_tensor * node) {
  7358. if (node->grad == NULL) {
  7359. // this usually happens when we generate intermediate nodes from constants in the backward pass
  7360. // it can also happen during forward pass, if the user performs computations with constants
  7361. if (node->op != GGML_OP_NONE) {
  7362. //GGML_PRINT_DEBUG("%s: warning: node %p has no grad, but op %d\n", __func__, (void *) node, node->op);
  7363. }
  7364. }
  7365. // check if already visited
  7366. for (int i = 0; i < cgraph->n_nodes; i++) {
  7367. if (cgraph->nodes[i] == node) {
  7368. return;
  7369. }
  7370. }
  7371. for (int i = 0; i < cgraph->n_leafs; i++) {
  7372. if (cgraph->leafs[i] == node) {
  7373. return;
  7374. }
  7375. }
  7376. if (node->src0) {
  7377. ggml_visit_parents(cgraph, node->src0);
  7378. }
  7379. if (node->src1) {
  7380. ggml_visit_parents(cgraph, node->src1);
  7381. }
  7382. for (int i = 0; i < GGML_MAX_OPT; ++i) {
  7383. if (node->opt[i]) {
  7384. ggml_visit_parents(cgraph, node->opt[i]);
  7385. }
  7386. }
  7387. if (node->op == GGML_OP_NONE && node->grad == NULL) {
  7388. // reached a leaf node, not part of the gradient graph (e.g. a constant)
  7389. GGML_ASSERT(cgraph->n_leafs < GGML_MAX_NODES);
  7390. cgraph->leafs[cgraph->n_leafs] = node;
  7391. cgraph->n_leafs++;
  7392. } else {
  7393. GGML_ASSERT(cgraph->n_nodes < GGML_MAX_NODES);
  7394. cgraph->nodes[cgraph->n_nodes] = node;
  7395. cgraph->grads[cgraph->n_nodes] = node->grad;
  7396. cgraph->n_nodes++;
  7397. }
  7398. }
  7399. static void ggml_build_forward_impl(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor, bool expand) {
  7400. if (!expand) {
  7401. cgraph->n_nodes = 0;
  7402. cgraph->n_leafs = 0;
  7403. }
  7404. const int n0 = cgraph->n_nodes;
  7405. UNUSED(n0);
  7406. ggml_visit_parents(cgraph, tensor);
  7407. const int n_new = cgraph->n_nodes - n0;
  7408. GGML_PRINT_DEBUG("%s: visited %d new nodes\n", __func__, n_new);
  7409. if (n_new > 0) {
  7410. // the last added node should always be starting point
  7411. GGML_ASSERT(cgraph->nodes[cgraph->n_nodes - 1] == tensor);
  7412. }
  7413. }
  7414. void ggml_build_forward_expand(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor) {
  7415. ggml_build_forward_impl(cgraph, tensor, true);
  7416. }
  7417. struct ggml_cgraph ggml_build_forward(struct ggml_tensor * tensor) {
  7418. struct ggml_cgraph result = {
  7419. /*.n_nodes =*/ 0,
  7420. /*.n_leafs =*/ 0,
  7421. /*.n_threads =*/ 0,
  7422. /*.work_size =*/ 0,
  7423. /*.work =*/ NULL,
  7424. /*.nodes =*/ { NULL },
  7425. /*.grads =*/ { NULL },
  7426. /*.leafs =*/ { NULL },
  7427. /*.perf_runs =*/ 0,
  7428. /*.perf_cycles =*/ 0,
  7429. /*.perf_time_us =*/ 0,
  7430. };
  7431. ggml_build_forward_impl(&result, tensor, false);
  7432. return result;
  7433. }
  7434. struct ggml_cgraph ggml_build_backward(struct ggml_context * ctx, struct ggml_cgraph * gf, bool keep) {
  7435. struct ggml_cgraph result = *gf;
  7436. GGML_ASSERT(gf->n_nodes > 0);
  7437. // if we are keeping the gradient graph, we have to detach the gradient nodes from the original graph
  7438. if (keep) {
  7439. for (int i = 0; i < gf->n_nodes; i++) {
  7440. struct ggml_tensor * node = gf->nodes[i];
  7441. if (node->grad) {
  7442. node->grad = ggml_dup_tensor(ctx, node);
  7443. gf->grads[i] = node->grad;
  7444. }
  7445. }
  7446. }
  7447. for (int i = gf->n_nodes - 1; i >= 0; i--) {
  7448. struct ggml_tensor * node = gf->nodes[i];
  7449. // because we detached the grad nodes from the original graph, we can afford inplace operations
  7450. if (node->grad) {
  7451. ggml_compute_backward(ctx, node, keep);
  7452. }
  7453. }
  7454. for (int i = gf->n_nodes - 1; i >= 0; i--) {
  7455. struct ggml_tensor * node = gf->nodes[i];
  7456. if (node->is_param) {
  7457. GGML_PRINT_DEBUG("%s: found root node %p\n", __func__, (void *) node);
  7458. ggml_build_forward_impl(&result, node->grad, true);
  7459. }
  7460. }
  7461. return result;
  7462. }
  7463. //
  7464. // thread data
  7465. //
  7466. // synchronization is done via busy loops
  7467. // I tried using spin locks, but not sure how to use them correctly - the things I tried were slower than busy loops
  7468. //
  7469. #ifdef __APPLE__
  7470. //#include <os/lock.h>
  7471. //
  7472. //typedef os_unfair_lock ggml_lock_t;
  7473. //
  7474. //#define ggml_lock_init(x) UNUSED(x)
  7475. //#define ggml_lock_destroy(x) UNUSED(x)
  7476. //#define ggml_lock_lock os_unfair_lock_lock
  7477. //#define ggml_lock_unlock os_unfair_lock_unlock
  7478. //
  7479. //#define GGML_LOCK_INITIALIZER OS_UNFAIR_LOCK_INIT
  7480. typedef int ggml_lock_t;
  7481. #define ggml_lock_init(x) UNUSED(x)
  7482. #define ggml_lock_destroy(x) UNUSED(x)
  7483. #define ggml_lock_lock(x) UNUSED(x)
  7484. #define ggml_lock_unlock(x) UNUSED(x)
  7485. #define GGML_LOCK_INITIALIZER 0
  7486. typedef pthread_t ggml_thread_t;
  7487. #define ggml_thread_create pthread_create
  7488. #define ggml_thread_join pthread_join
  7489. #else
  7490. //typedef pthread_spinlock_t ggml_lock_t;
  7491. //#define ggml_lock_init(x) pthread_spin_init(x, PTHREAD_PROCESS_PRIVATE)
  7492. //#define ggml_lock_destroy pthread_spin_destroy
  7493. //#define ggml_lock_lock pthread_spin_lock
  7494. //#define ggml_lock_unlock pthread_spin_unlock
  7495. typedef int ggml_lock_t;
  7496. #define ggml_lock_init(x) UNUSED(x)
  7497. #define ggml_lock_destroy(x) UNUSED(x)
  7498. #define ggml_lock_lock(x) UNUSED(x)
  7499. #define ggml_lock_unlock(x) UNUSED(x)
  7500. #define GGML_LOCK_INITIALIZER 0
  7501. typedef pthread_t ggml_thread_t;
  7502. #define ggml_thread_create pthread_create
  7503. #define ggml_thread_join pthread_join
  7504. #endif
  7505. struct ggml_compute_state_shared {
  7506. ggml_lock_t spin;
  7507. int n_threads;
  7508. // synchronization primitives
  7509. atomic_int n_ready;
  7510. atomic_bool has_work;
  7511. atomic_bool stop; // stop all threads
  7512. };
  7513. struct ggml_compute_state {
  7514. ggml_thread_t thrd;
  7515. struct ggml_compute_params params;
  7516. struct ggml_tensor * node;
  7517. struct ggml_compute_state_shared * shared;
  7518. };
  7519. static thread_ret_t ggml_graph_compute_thread(void * data) {
  7520. struct ggml_compute_state * state = (struct ggml_compute_state *) data;
  7521. const int n_threads = state->shared->n_threads;
  7522. while (true) {
  7523. if (atomic_fetch_add(&state->shared->n_ready, 1) == n_threads - 1) {
  7524. atomic_store(&state->shared->has_work, false);
  7525. } else {
  7526. while (atomic_load(&state->shared->has_work)) {
  7527. if (atomic_load(&state->shared->stop)) {
  7528. return 0;
  7529. }
  7530. ggml_lock_lock (&state->shared->spin);
  7531. ggml_lock_unlock(&state->shared->spin);
  7532. }
  7533. }
  7534. atomic_fetch_sub(&state->shared->n_ready, 1);
  7535. // wait for work
  7536. while (!atomic_load(&state->shared->has_work)) {
  7537. if (atomic_load(&state->shared->stop)) {
  7538. return 0;
  7539. }
  7540. ggml_lock_lock (&state->shared->spin);
  7541. ggml_lock_unlock(&state->shared->spin);
  7542. }
  7543. // check if we should stop
  7544. if (atomic_load(&state->shared->stop)) {
  7545. break;
  7546. }
  7547. if (state->node) {
  7548. if (state->params.ith < state->params.nth) {
  7549. ggml_compute_forward(&state->params, state->node);
  7550. }
  7551. state->node = NULL;
  7552. } else {
  7553. break;
  7554. }
  7555. }
  7556. return 0;
  7557. }
  7558. void ggml_graph_compute(struct ggml_context * ctx, struct ggml_cgraph * cgraph) {
  7559. const int n_threads = cgraph->n_threads;
  7560. struct ggml_compute_state_shared state_shared = {
  7561. /*.spin =*/ GGML_LOCK_INITIALIZER,
  7562. /*.n_threads =*/ n_threads,
  7563. /*.n_ready =*/ 0,
  7564. /*.has_work =*/ false,
  7565. /*.stop =*/ false,
  7566. };
  7567. struct ggml_compute_state * workers = n_threads > 1 ? alloca(sizeof(struct ggml_compute_state)*(n_threads - 1)) : NULL;
  7568. // create thread pool
  7569. if (n_threads > 1) {
  7570. ggml_lock_init(&state_shared.spin);
  7571. atomic_store(&state_shared.has_work, true);
  7572. for (int j = 0; j < n_threads - 1; j++) {
  7573. workers[j] = (struct ggml_compute_state) {
  7574. .thrd = 0,
  7575. .params = {
  7576. .type = GGML_TASK_COMPUTE,
  7577. .ith = j + 1,
  7578. .nth = n_threads,
  7579. .wsize = cgraph->work ? ggml_nbytes(cgraph->work) : 0,
  7580. .wdata = cgraph->work ? cgraph->work->data : NULL,
  7581. },
  7582. .node = NULL,
  7583. .shared = &state_shared,
  7584. };
  7585. int rc = ggml_thread_create(&workers[j].thrd, NULL, ggml_graph_compute_thread, &workers[j]);
  7586. GGML_ASSERT(rc == 0);
  7587. UNUSED(rc);
  7588. }
  7589. }
  7590. // initialize tasks + work buffer
  7591. {
  7592. size_t work_size = 0;
  7593. // thread scheduling for the different operations
  7594. for (int i = 0; i < cgraph->n_nodes; i++) {
  7595. struct ggml_tensor * node = cgraph->nodes[i];
  7596. switch (node->op) {
  7597. case GGML_OP_DUP:
  7598. {
  7599. node->n_tasks = 1;
  7600. } break;
  7601. case GGML_OP_ADD:
  7602. {
  7603. node->n_tasks = n_threads;
  7604. } break;
  7605. case GGML_OP_SUB:
  7606. case GGML_OP_MUL:
  7607. case GGML_OP_DIV:
  7608. case GGML_OP_SQR:
  7609. case GGML_OP_SQRT:
  7610. case GGML_OP_SUM:
  7611. case GGML_OP_MEAN:
  7612. case GGML_OP_REPEAT:
  7613. case GGML_OP_ABS:
  7614. case GGML_OP_SGN:
  7615. case GGML_OP_NEG:
  7616. case GGML_OP_STEP:
  7617. case GGML_OP_RELU:
  7618. {
  7619. node->n_tasks = 1;
  7620. } break;
  7621. case GGML_OP_GELU:
  7622. {
  7623. node->n_tasks = n_threads;
  7624. } break;
  7625. case GGML_OP_SILU:
  7626. {
  7627. node->n_tasks = n_threads;
  7628. } break;
  7629. case GGML_OP_NORM:
  7630. case GGML_OP_RMS_NORM:
  7631. {
  7632. node->n_tasks = n_threads;
  7633. } break;
  7634. case GGML_OP_MUL_MAT:
  7635. {
  7636. node->n_tasks = n_threads;
  7637. // TODO: use different scheduling for different matrix sizes
  7638. //const int nr0 = ggml_nrows(node->src0);
  7639. //const int nr1 = ggml_nrows(node->src1);
  7640. //node->n_tasks = MIN(n_threads, MAX(1, nr0/128));
  7641. //printf("nr0 = %8d, nr1 = %8d, nr0*nr1 = %8d, n_tasks = %d\n", nr0, nr1, nr0*nr1, node->n_tasks);
  7642. size_t cur = 0;
  7643. if (node->src0->type == GGML_TYPE_F16 && node->src1->type == GGML_TYPE_F32) {
  7644. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  7645. if (ggml_compute_forward_mul_mat_use_blas(node->src0, node->src1, node)) {
  7646. node->n_tasks = 1; // TODO: this actually is doing nothing
  7647. // the threads are still spinning
  7648. cur = GGML_TYPE_SIZE[GGML_TYPE_F32]*(node->src0->ne[0]*node->src0->ne[1]);
  7649. //printf("src0: ne0 = %d, ne1 = %d, ne = %d\n", node->src0->ne[0], node->src0->ne[1], node->src0->ne[0]*node->src0->ne[1]);
  7650. //printf("src1: ne0 = %d, ne1 = %d, ne = %d\n", node->src1->ne[0], node->src1->ne[1], node->src1->ne[0]*node->src1->ne[1]);
  7651. //printf("cur = %zu\n", cur);
  7652. } else {
  7653. cur = GGML_TYPE_SIZE[GGML_TYPE_F16]*ggml_nelements(node->src1);
  7654. }
  7655. #else
  7656. cur = GGML_TYPE_SIZE[GGML_TYPE_F16]*ggml_nelements(node->src1);
  7657. #endif
  7658. } else if (node->src0->type == GGML_TYPE_F32 && node->src1->type == GGML_TYPE_F32) {
  7659. cur = 0;
  7660. } else if (quantize_fns[node->src0->type].vec_dot_q && node->src1->type == GGML_TYPE_F32) {
  7661. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  7662. if (ggml_compute_forward_mul_mat_use_blas(node->src0, node->src1, node)) {
  7663. node->n_tasks = 1;
  7664. cur = GGML_TYPE_SIZE[GGML_TYPE_F32]*(node->src0->ne[0]*node->src0->ne[1]);
  7665. } else
  7666. #endif
  7667. {
  7668. cur = GGML_TYPE_SIZE[node->src0->type]*ggml_nelements(node->src1)/GGML_BLCK_SIZE[node->src0->type];
  7669. }
  7670. } else {
  7671. GGML_ASSERT(false);
  7672. }
  7673. work_size = MAX(work_size, cur);
  7674. } break;
  7675. case GGML_OP_SCALE:
  7676. {
  7677. node->n_tasks = n_threads;
  7678. } break;
  7679. case GGML_OP_CPY:
  7680. case GGML_OP_RESHAPE:
  7681. case GGML_OP_VIEW:
  7682. case GGML_OP_PERMUTE:
  7683. case GGML_OP_TRANSPOSE:
  7684. case GGML_OP_GET_ROWS:
  7685. case GGML_OP_DIAG_MASK_INF:
  7686. {
  7687. node->n_tasks = 1;
  7688. } break;
  7689. case GGML_OP_SOFT_MAX:
  7690. {
  7691. node->n_tasks = n_threads;
  7692. } break;
  7693. case GGML_OP_ROPE:
  7694. {
  7695. node->n_tasks = 1;
  7696. } break;
  7697. case GGML_OP_CONV_1D_1S:
  7698. case GGML_OP_CONV_1D_2S:
  7699. {
  7700. node->n_tasks = n_threads;
  7701. GGML_ASSERT(node->src0->ne[3] == 1);
  7702. GGML_ASSERT(node->src1->ne[2] == 1);
  7703. GGML_ASSERT(node->src1->ne[3] == 1);
  7704. size_t cur = 0;
  7705. const int nk = node->src0->ne[0];
  7706. if (node->src0->type == GGML_TYPE_F16 &&
  7707. node->src1->type == GGML_TYPE_F32) {
  7708. cur = sizeof(ggml_fp16_t)*(
  7709. nk*ggml_up32(node->src0->ne[1])*node->src0->ne[2] +
  7710. ( 2*(nk/2) + node->src1->ne[0])*node->src1->ne[1]
  7711. );
  7712. } else if (node->src0->type == GGML_TYPE_F32 &&
  7713. node->src1->type == GGML_TYPE_F32) {
  7714. cur = sizeof(float)*(
  7715. nk*ggml_up32(node->src0->ne[1])*node->src0->ne[2] +
  7716. ( 2*(nk/2) + node->src1->ne[0])*node->src1->ne[1]
  7717. );
  7718. } else {
  7719. GGML_ASSERT(false);
  7720. }
  7721. work_size = MAX(work_size, cur);
  7722. } break;
  7723. case GGML_OP_FLASH_ATTN:
  7724. {
  7725. node->n_tasks = n_threads;
  7726. size_t cur = 0;
  7727. const int64_t ne11 = ggml_up(node->src1->ne[1], GGML_SOFT_MAX_UNROLL);
  7728. if (node->src1->type == GGML_TYPE_F32) {
  7729. cur = sizeof(float)*ne11*node->n_tasks; // TODO: this can become (n_tasks-1)
  7730. cur += sizeof(float)*ne11*node->n_tasks; // this is overestimated by x2
  7731. }
  7732. if (node->src1->type == GGML_TYPE_F16) {
  7733. cur = sizeof(float)*ne11*node->n_tasks; // TODO: this can become (n_tasks-1)
  7734. cur += sizeof(float)*ne11*node->n_tasks; // this is overestimated by x2
  7735. }
  7736. work_size = MAX(work_size, cur);
  7737. } break;
  7738. case GGML_OP_FLASH_FF:
  7739. {
  7740. node->n_tasks = n_threads;
  7741. size_t cur = 0;
  7742. if (node->src1->type == GGML_TYPE_F32) {
  7743. cur = sizeof(float)*node->src1->ne[1]*node->n_tasks; // TODO: this can become (n_tasks-1)
  7744. cur += sizeof(float)*node->src1->ne[1]*node->n_tasks; // this is overestimated by x2
  7745. }
  7746. if (node->src1->type == GGML_TYPE_F16) {
  7747. cur = sizeof(float)*node->src1->ne[1]*node->n_tasks; // TODO: this can become (n_tasks-1)
  7748. cur += sizeof(float)*node->src1->ne[1]*node->n_tasks; // this is overestimated by x2
  7749. }
  7750. work_size = MAX(work_size, cur);
  7751. } break;
  7752. case GGML_OP_NONE:
  7753. {
  7754. node->n_tasks = 1;
  7755. } break;
  7756. case GGML_OP_COUNT:
  7757. {
  7758. GGML_ASSERT(false);
  7759. } break;
  7760. }
  7761. }
  7762. if (cgraph->work != NULL && work_size > cgraph->work_size) {
  7763. GGML_ASSERT(false); // TODO: better handling
  7764. }
  7765. if (work_size > 0 && cgraph->work == NULL) {
  7766. cgraph->work_size = work_size + CACHE_LINE_SIZE*(n_threads - 1);
  7767. GGML_PRINT_DEBUG("%s: allocating work buffer for graph (%zu bytes)\n", __func__, cgraph->work_size);
  7768. cgraph->work = ggml_new_tensor_1d(ctx, GGML_TYPE_I8, cgraph->work_size);
  7769. }
  7770. }
  7771. const int64_t perf_start_cycles = ggml_perf_cycles();
  7772. const int64_t perf_start_time_us = ggml_perf_time_us();
  7773. for (int i = 0; i < cgraph->n_nodes; i++) {
  7774. GGML_PRINT_DEBUG_5("%s: %d/%d\n", __func__, i, cgraph->n_nodes);
  7775. struct ggml_tensor * node = cgraph->nodes[i];
  7776. // TODO: this could be used to avoid unnecessary computations, but it needs to be improved
  7777. //if (node->grad == NULL && node->perf_runs > 0) {
  7778. // continue;
  7779. //}
  7780. const int64_t perf_node_start_cycles = ggml_perf_cycles();
  7781. const int64_t perf_node_start_time_us = ggml_perf_time_us();
  7782. // INIT
  7783. struct ggml_compute_params params = {
  7784. /*.type =*/ GGML_TASK_INIT,
  7785. /*.ith =*/ 0,
  7786. /*.nth =*/ node->n_tasks,
  7787. /*.wsize =*/ cgraph->work ? ggml_nbytes(cgraph->work) : 0,
  7788. /*.wdata =*/ cgraph->work ? cgraph->work->data : NULL,
  7789. };
  7790. ggml_compute_forward(&params, node);
  7791. // COMPUTE
  7792. if (node->n_tasks > 1) {
  7793. if (atomic_fetch_add(&state_shared.n_ready, 1) == n_threads - 1) {
  7794. atomic_store(&state_shared.has_work, false);
  7795. }
  7796. while (atomic_load(&state_shared.has_work)) {
  7797. ggml_lock_lock (&state_shared.spin);
  7798. ggml_lock_unlock(&state_shared.spin);
  7799. }
  7800. // launch thread pool
  7801. for (int j = 0; j < n_threads - 1; j++) {
  7802. workers[j].params = (struct ggml_compute_params) {
  7803. .type = GGML_TASK_COMPUTE,
  7804. .ith = j + 1,
  7805. .nth = node->n_tasks,
  7806. .wsize = cgraph->work ? ggml_nbytes(cgraph->work) : 0,
  7807. .wdata = cgraph->work ? cgraph->work->data : NULL,
  7808. };
  7809. workers[j].node = node;
  7810. }
  7811. atomic_fetch_sub(&state_shared.n_ready, 1);
  7812. while (atomic_load(&state_shared.n_ready) > 0) {
  7813. ggml_lock_lock (&state_shared.spin);
  7814. ggml_lock_unlock(&state_shared.spin);
  7815. }
  7816. atomic_store(&state_shared.has_work, true);
  7817. }
  7818. params.type = GGML_TASK_COMPUTE;
  7819. ggml_compute_forward(&params, node);
  7820. // wait for thread pool
  7821. if (node->n_tasks > 1) {
  7822. if (atomic_fetch_add(&state_shared.n_ready, 1) == n_threads - 1) {
  7823. atomic_store(&state_shared.has_work, false);
  7824. }
  7825. while (atomic_load(&state_shared.has_work)) {
  7826. ggml_lock_lock (&state_shared.spin);
  7827. ggml_lock_unlock(&state_shared.spin);
  7828. }
  7829. atomic_fetch_sub(&state_shared.n_ready, 1);
  7830. while (atomic_load(&state_shared.n_ready) != 0) {
  7831. ggml_lock_lock (&state_shared.spin);
  7832. ggml_lock_unlock(&state_shared.spin);
  7833. }
  7834. }
  7835. // FINALIZE
  7836. if (node->n_tasks > 1) {
  7837. if (atomic_fetch_add(&state_shared.n_ready, 1) == n_threads - 1) {
  7838. atomic_store(&state_shared.has_work, false);
  7839. }
  7840. while (atomic_load(&state_shared.has_work)) {
  7841. ggml_lock_lock (&state_shared.spin);
  7842. ggml_lock_unlock(&state_shared.spin);
  7843. }
  7844. // launch thread pool
  7845. for (int j = 0; j < n_threads - 1; j++) {
  7846. workers[j].params = (struct ggml_compute_params) {
  7847. .type = GGML_TASK_FINALIZE,
  7848. .ith = j + 1,
  7849. .nth = node->n_tasks,
  7850. .wsize = cgraph->work ? ggml_nbytes(cgraph->work) : 0,
  7851. .wdata = cgraph->work ? cgraph->work->data : NULL,
  7852. };
  7853. workers[j].node = node;
  7854. }
  7855. atomic_fetch_sub(&state_shared.n_ready, 1);
  7856. while (atomic_load(&state_shared.n_ready) > 0) {
  7857. ggml_lock_lock (&state_shared.spin);
  7858. ggml_lock_unlock(&state_shared.spin);
  7859. }
  7860. atomic_store(&state_shared.has_work, true);
  7861. }
  7862. params.type = GGML_TASK_FINALIZE;
  7863. ggml_compute_forward(&params, node);
  7864. // wait for thread pool
  7865. if (node->n_tasks > 1) {
  7866. if (atomic_fetch_add(&state_shared.n_ready, 1) == n_threads - 1) {
  7867. atomic_store(&state_shared.has_work, false);
  7868. }
  7869. while (atomic_load(&state_shared.has_work)) {
  7870. ggml_lock_lock (&state_shared.spin);
  7871. ggml_lock_unlock(&state_shared.spin);
  7872. }
  7873. atomic_fetch_sub(&state_shared.n_ready, 1);
  7874. while (atomic_load(&state_shared.n_ready) != 0) {
  7875. ggml_lock_lock (&state_shared.spin);
  7876. ggml_lock_unlock(&state_shared.spin);
  7877. }
  7878. }
  7879. // performance stats (node)
  7880. {
  7881. int64_t perf_cycles_cur = ggml_perf_cycles() - perf_node_start_cycles;
  7882. int64_t perf_time_us_cur = ggml_perf_time_us() - perf_node_start_time_us;
  7883. node->perf_runs++;
  7884. node->perf_cycles += perf_cycles_cur;
  7885. node->perf_time_us += perf_time_us_cur;
  7886. }
  7887. }
  7888. // join thread pool
  7889. if (n_threads > 1) {
  7890. atomic_store(&state_shared.stop, true);
  7891. atomic_store(&state_shared.has_work, true);
  7892. for (int j = 0; j < n_threads - 1; j++) {
  7893. int rc = ggml_thread_join(workers[j].thrd, NULL);
  7894. GGML_ASSERT(rc == 0);
  7895. UNUSED(rc);
  7896. }
  7897. ggml_lock_destroy(&state_shared.spin);
  7898. }
  7899. // performance stats (graph)
  7900. {
  7901. int64_t perf_cycles_cur = ggml_perf_cycles() - perf_start_cycles;
  7902. int64_t perf_time_us_cur = ggml_perf_time_us() - perf_start_time_us;
  7903. cgraph->perf_runs++;
  7904. cgraph->perf_cycles += perf_cycles_cur;
  7905. cgraph->perf_time_us += perf_time_us_cur;
  7906. GGML_PRINT_DEBUG("%s: perf (%d) - cpu = %.3f / %.3f ms, wall = %.3f / %.3f ms\n",
  7907. __func__, cgraph->perf_runs,
  7908. (double) perf_cycles_cur / (double) ggml_cycles_per_ms(),
  7909. (double) cgraph->perf_cycles / (double) ggml_cycles_per_ms() / (double) cgraph->perf_runs,
  7910. (double) perf_time_us_cur / 1000.0,
  7911. (double) cgraph->perf_time_us / 1000.0 / cgraph->perf_runs);
  7912. }
  7913. }
  7914. void ggml_graph_reset(struct ggml_cgraph * cgraph) {
  7915. for (int i = 0; i < cgraph->n_nodes; i++) {
  7916. struct ggml_tensor * grad = cgraph->grads[i];
  7917. if (grad) {
  7918. ggml_set_zero(grad);
  7919. }
  7920. }
  7921. }
  7922. void ggml_graph_print(const struct ggml_cgraph * cgraph) {
  7923. int64_t perf_total_per_op_us[GGML_OP_COUNT] = {0};
  7924. GGML_PRINT("=== GRAPH ===\n");
  7925. GGML_PRINT_DEBUG("n_threads = %d\n", cgraph->n_threads);
  7926. GGML_PRINT_DEBUG("total work size = %zu bytes\n",cgraph->work_size);
  7927. GGML_PRINT("n_nodes = %d\n", cgraph->n_nodes);
  7928. for (int i = 0; i < cgraph->n_nodes; i++) {
  7929. struct ggml_tensor * node = cgraph->nodes[i];
  7930. perf_total_per_op_us[node->op] += node->perf_time_us;
  7931. GGML_PRINT(" - %3d: [ %" PRId64 ", %" PRId64 ", %" PRId64 "] %16s %s (%3d) cpu = %7.3f / %7.3f ms, wall = %7.3f / %7.3f ms\n",
  7932. i,
  7933. node->ne[0], node->ne[1], node->ne[2],
  7934. GGML_OP_LABEL[node->op], node->is_param ? "x" : node->grad ? "g" : " ", node->perf_runs,
  7935. (double) node->perf_cycles / (double) ggml_cycles_per_ms(),
  7936. (double) node->perf_cycles / (double) ggml_cycles_per_ms() / (double) node->perf_runs,
  7937. (double) node->perf_time_us / 1000.0,
  7938. (double) node->perf_time_us / 1000.0 / node->perf_runs);
  7939. }
  7940. GGML_PRINT("n_leafs = %d\n", cgraph->n_leafs);
  7941. for (int i = 0; i < cgraph->n_leafs; i++) {
  7942. struct ggml_tensor * node = cgraph->leafs[i];
  7943. GGML_PRINT(" - %3d: [ %" PRId64 ", %" PRId64 "] %8s\n",
  7944. i,
  7945. node->ne[0], node->ne[1],
  7946. GGML_OP_LABEL[node->op]);
  7947. }
  7948. for (int i = 0; i < GGML_OP_COUNT; i++) {
  7949. GGML_PRINT("perf_total_per_op_us[%16s] = %7.3f ms\n", GGML_OP_LABEL[i], (double) perf_total_per_op_us[i] / 1000.0);
  7950. }
  7951. GGML_PRINT("========================================\n");
  7952. }
  7953. // check if node is part of the graph
  7954. static bool ggml_graph_find(const struct ggml_cgraph * cgraph, const struct ggml_tensor * node) {
  7955. if (cgraph == NULL) {
  7956. return true;
  7957. }
  7958. for (int i = 0; i < cgraph->n_nodes; i++) {
  7959. if (cgraph->nodes[i] == node) {
  7960. return true;
  7961. }
  7962. }
  7963. return false;
  7964. }
  7965. static struct ggml_tensor * ggml_graph_get_parent(const struct ggml_cgraph * cgraph, const struct ggml_tensor * node) {
  7966. for (int i = 0; i < cgraph->n_nodes; i++) {
  7967. struct ggml_tensor * parent = cgraph->nodes[i];
  7968. if (parent->grad == node) {
  7969. return parent;
  7970. }
  7971. }
  7972. return NULL;
  7973. }
  7974. void ggml_graph_dump_dot(const struct ggml_cgraph * gb, const struct ggml_cgraph * gf, const char * filename) {
  7975. char color[16];
  7976. FILE * fp = fopen(filename, "w");
  7977. GGML_ASSERT(fp);
  7978. fprintf(fp, "digraph G {\n");
  7979. fprintf(fp, " newrank = true;\n");
  7980. fprintf(fp, " rankdir = LR;\n");
  7981. for (int i = 0; i < gb->n_nodes; i++) {
  7982. struct ggml_tensor * node = gb->nodes[i];
  7983. if (ggml_graph_get_parent(gb, node) != NULL) {
  7984. continue;
  7985. }
  7986. if (node->is_param) {
  7987. snprintf(color, sizeof(color), "yellow");
  7988. } else if (node->grad) {
  7989. if (ggml_graph_find(gf, node)) {
  7990. snprintf(color, sizeof(color), "green");
  7991. } else {
  7992. snprintf(color, sizeof(color), "lightblue");
  7993. }
  7994. } else {
  7995. snprintf(color, sizeof(color), "white");
  7996. }
  7997. fprintf(fp, " \"%p\" [ \
  7998. style = filled; fillcolor = %s; shape = record; \
  7999. label=\"%d [%" PRId64 ", %" PRId64 "] | <x>%s",
  8000. (void *) node, color,
  8001. i, node->ne[0], node->ne[1],
  8002. GGML_OP_SYMBOL[node->op]);
  8003. if (node->grad) {
  8004. fprintf(fp, " | <g>%s\"; ]\n", GGML_OP_SYMBOL[node->grad->op]);
  8005. } else {
  8006. fprintf(fp, "\"; ]\n");
  8007. }
  8008. }
  8009. for (int i = 0; i < gb->n_leafs; i++) {
  8010. struct ggml_tensor * node = gb->leafs[i];
  8011. snprintf(color, sizeof(color), "pink");
  8012. if (ggml_nelements(node) == 1) {
  8013. fprintf(fp, " \"%p\" [ \
  8014. style = filled; fillcolor = %s; shape = record; \
  8015. label=\"<x>%.1e\"; ]\n",
  8016. (void *) node, color, (double)ggml_get_f32_1d(node, 0));
  8017. } else {
  8018. fprintf(fp, " \"%p\" [ \
  8019. style = filled; fillcolor = %s; shape = record; \
  8020. label=\"<x>CONST %d [%" PRId64 ", %" PRId64 "]\"; ]\n",
  8021. (void *) node, color,
  8022. i, node->ne[0], node->ne[1]);
  8023. }
  8024. }
  8025. for (int i = 0; i < gb->n_nodes; i++) {
  8026. struct ggml_tensor * node = gb->nodes[i];
  8027. struct ggml_tensor * parent = ggml_graph_get_parent(gb, node);
  8028. if (node->src0) {
  8029. struct ggml_tensor * parent0 = ggml_graph_get_parent(gb, node->src0);
  8030. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ arrowhead = %s; style = %s; label = \"x\"; ]\n",
  8031. parent0 ? (void *) parent0 : (void *) node->src0,
  8032. parent0 ? "g" : "x",
  8033. parent ? (void *) parent : (void *) node,
  8034. parent ? "g" : "x",
  8035. parent ? "empty" : "vee",
  8036. parent ? "dashed" : "solid");
  8037. }
  8038. if (node->src1) {
  8039. struct ggml_tensor * parent1 = ggml_graph_get_parent(gb, node->src1);
  8040. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ arrowhead = %s; style = %s; label = \"y\"; ]\n",
  8041. parent1 ? (void *) parent1 : (void *) node->src1,
  8042. parent1 ? "g" : "x",
  8043. parent ? (void *) parent : (void *) node,
  8044. parent ? "g" : "x",
  8045. parent ? "empty" : "vee",
  8046. parent ? "dashed" : "solid");
  8047. }
  8048. }
  8049. for (int i = 0; i < gb->n_leafs; i++) {
  8050. struct ggml_tensor * node = gb->leafs[i];
  8051. if (node->src0) {
  8052. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ label = \"x\"; ]\n",
  8053. (void *) node->src0, "x",
  8054. (void *) node, "x");
  8055. }
  8056. if (node->src1) {
  8057. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ label = \"y\"; ]\n",
  8058. (void *) node->src1, "x",
  8059. (void *) node, "x");
  8060. }
  8061. }
  8062. fprintf(fp, "}\n");
  8063. fclose(fp);
  8064. GGML_PRINT("%s: dot -Tpng %s -o %s.png && open %s.png\n", __func__, filename, filename, filename);
  8065. }
  8066. ////////////////////////////////////////////////////////////////////////////////
  8067. static void ggml_opt_set_params(int np, struct ggml_tensor * const ps[], const float * x) {
  8068. int i = 0;
  8069. for (int p = 0; p < np; ++p) {
  8070. const int64_t ne = ggml_nelements(ps[p]) ;
  8071. // TODO: add function to set tensor from array
  8072. for (int64_t j = 0; j < ne; ++j) {
  8073. ggml_set_f32_1d(ps[p], j, x[i++]);
  8074. }
  8075. }
  8076. }
  8077. static void ggml_opt_get_params(int np, struct ggml_tensor * const ps[], float * x) {
  8078. int i = 0;
  8079. for (int p = 0; p < np; ++p) {
  8080. const int64_t ne = ggml_nelements(ps[p]) ;
  8081. // TODO: add function to get all elements at once
  8082. for (int64_t j = 0; j < ne; ++j) {
  8083. x[i++] = ggml_get_f32_1d(ps[p], j);
  8084. }
  8085. }
  8086. }
  8087. static void ggml_opt_get_grad(int np, struct ggml_tensor * const ps[], float * g) {
  8088. int i = 0;
  8089. for (int p = 0; p < np; ++p) {
  8090. const int64_t ne = ggml_nelements(ps[p]) ;
  8091. // TODO: add function to get all elements at once
  8092. for (int64_t j = 0; j < ne; ++j) {
  8093. g[i++] = ggml_get_f32_1d(ps[p]->grad, j);
  8094. }
  8095. }
  8096. }
  8097. //
  8098. // ADAM
  8099. //
  8100. // ref: https://arxiv.org/pdf/1412.6980.pdf
  8101. //
  8102. static enum ggml_opt_result ggml_opt_adam(
  8103. struct ggml_context * ctx,
  8104. struct ggml_opt_params params,
  8105. struct ggml_tensor * f,
  8106. struct ggml_cgraph * gf,
  8107. struct ggml_cgraph * gb) {
  8108. GGML_ASSERT(ggml_is_scalar(f));
  8109. gf->n_threads = params.n_threads;
  8110. gb->n_threads = params.n_threads;
  8111. // these will store the parameters we want to optimize
  8112. struct ggml_tensor * ps[GGML_MAX_PARAMS];
  8113. int np = 0;
  8114. int nx = 0;
  8115. for (int i = 0; i < gf->n_nodes; ++i) {
  8116. if (gf->nodes[i]->is_param) {
  8117. GGML_PRINT_DEBUG("found param %d: grad->op = %d\n", np, gf->nodes[i]->grad->op);
  8118. GGML_ASSERT(np < GGML_MAX_PARAMS);
  8119. ps[np++] = gf->nodes[i];
  8120. nx += ggml_nelements(gf->nodes[i]);
  8121. }
  8122. }
  8123. // constants
  8124. const float alpha = params.adam.alpha;
  8125. const float beta1 = params.adam.beta1;
  8126. const float beta2 = params.adam.beta2;
  8127. const float eps = params.adam.eps;
  8128. float * x = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // view of the parameters
  8129. float * g1 = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // gradient
  8130. float * g2 = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // gradient squared
  8131. float * m = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // first moment
  8132. float * v = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // second moment
  8133. float * mh = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // first moment hat
  8134. float * vh = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // second moment hat
  8135. float * pf = params.past > 0 ? ggml_new_tensor_1d(ctx, GGML_TYPE_F32, params.past)->data : NULL; // past function values
  8136. // initialize
  8137. ggml_vec_set_f32(nx, m, 0.0f);
  8138. ggml_vec_set_f32(nx, v, 0.0f);
  8139. // update view
  8140. ggml_opt_get_params(np, ps, x);
  8141. // compute the function value
  8142. ggml_graph_reset (gf);
  8143. ggml_set_f32 (f->grad, 1.0f);
  8144. ggml_graph_compute(ctx, gb);
  8145. float fx_prev = ggml_get_f32_1d(f, 0);
  8146. if (pf) {
  8147. pf[0] = fx_prev;
  8148. }
  8149. int n_no_improvement = 0;
  8150. float fx_best = fx_prev;
  8151. // run the optimizer
  8152. for (int t = 0; t < params.adam.n_iter; ++t) {
  8153. GGML_PRINT_DEBUG ("=== iter %d ===\n", t);
  8154. GGML_PRINT_DEBUG ("f = %10.6f\n", ggml_get_f32_1d(f, 0));
  8155. GGML_PRINT_DEBUG_5("df/dx0 = %10.6f\n", ggml_get_f32_1d(ps[0]->grad, 0));
  8156. GGML_PRINT_DEBUG_5("df/dx1 = %10.6f\n", ggml_get_f32_1d(ps[1]->grad, 0));
  8157. for (int i = 0; i < np; ++i) {
  8158. GGML_PRINT_DEBUG("param %d: %10.6f, g = %10.6f\n", i,
  8159. ggml_get_f32_1d(ps[i], 0), ggml_get_f32_1d(ps[i]->grad, 0));
  8160. }
  8161. const int64_t t_start_wall = ggml_time_us();
  8162. const int64_t t_start_cpu = ggml_cycles();
  8163. UNUSED(t_start_wall);
  8164. UNUSED(t_start_cpu);
  8165. {
  8166. // update the gradient
  8167. ggml_opt_get_grad(np, ps, g1);
  8168. // m_t = beta1*m_t-1 + (1 - beta1)*g_t
  8169. ggml_vec_scale_f32(nx, m, beta1);
  8170. ggml_vec_mad_f32 (nx, m, g1, 1.0f - beta1);
  8171. // g2 = g1^2
  8172. ggml_vec_sqr_f32 (nx, g2, g1);
  8173. // v_t = beta2*v_t-1 + (1 - beta2)*g_t^2
  8174. ggml_vec_scale_f32(nx, v, beta2);
  8175. ggml_vec_mad_f32 (nx, v, g2, 1.0f - beta2);
  8176. // m^hat = m_t / (1 - beta1^t)
  8177. // v^hat = v_t / (1 - beta2^t)
  8178. // x_t = x_t-1 - alpha*m^hat/(sqrt(v^hat) + eps)
  8179. ggml_vec_cpy_f32 (nx, mh, m);
  8180. ggml_vec_cpy_f32 (nx, vh, v);
  8181. ggml_vec_scale_f32(nx, mh, alpha/(1.0f - powf(beta1, t + 1)));
  8182. ggml_vec_scale_f32(nx, vh, 1.0f/(1.0f - powf(beta2, t + 1)));
  8183. ggml_vec_sqrt_f32 (nx, vh, vh);
  8184. ggml_vec_acc1_f32 (nx, vh, eps);
  8185. ggml_vec_div_f32 (nx, mh, mh, vh);
  8186. ggml_vec_sub_f32 (nx, x, x, mh);
  8187. // update the parameters
  8188. ggml_opt_set_params(np, ps, x);
  8189. }
  8190. ggml_graph_reset (gf);
  8191. ggml_set_f32 (f->grad, 1.0f);
  8192. ggml_graph_compute(ctx, gb);
  8193. const float fx = ggml_get_f32_1d(f, 0);
  8194. // check convergence
  8195. if (fabsf(fx - fx_prev)/fx < params.adam.eps_f) {
  8196. GGML_PRINT_DEBUG("converged\n");
  8197. return GGML_OPT_OK;
  8198. }
  8199. // delta-based convergence test
  8200. if (pf != NULL) {
  8201. // need at least params.past iterations to start checking for convergence
  8202. if (params.past <= t) {
  8203. const float rate = (pf[t%params.past] - fx)/fx;
  8204. if (fabsf(rate) < params.delta) {
  8205. return GGML_OPT_OK;
  8206. }
  8207. }
  8208. pf[t%params.past] = fx;
  8209. }
  8210. // check for improvement
  8211. if (params.max_no_improvement > 0) {
  8212. if (fx_best > fx) {
  8213. fx_best = fx;
  8214. n_no_improvement = 0;
  8215. } else {
  8216. ++n_no_improvement;
  8217. if (n_no_improvement >= params.max_no_improvement) {
  8218. return GGML_OPT_OK;
  8219. }
  8220. }
  8221. }
  8222. fx_prev = fx;
  8223. {
  8224. const int64_t t_end_cpu = ggml_cycles();
  8225. GGML_PRINT_DEBUG("time iter: %5.3f s\n", ((float)(t_end_cpu - t_start_cpu))/CLOCKS_PER_SEC);
  8226. UNUSED(t_end_cpu);
  8227. const int64_t t_end_wall = ggml_time_us();
  8228. GGML_PRINT_DEBUG("wall time iter: %5.3f s\n", (t_end_wall - t_start_wall)/1e6);
  8229. UNUSED(t_end_wall);
  8230. }
  8231. }
  8232. return GGML_OPT_DID_NOT_CONVERGE;
  8233. }
  8234. //
  8235. // L-BFGS
  8236. //
  8237. // the L-BFGS implementation below is based on the following implementation:
  8238. //
  8239. // https://github.com/chokkan/liblbfgs
  8240. //
  8241. struct ggml_lbfgs_iteration_data {
  8242. float alpha;
  8243. float ys;
  8244. float * s;
  8245. float * y;
  8246. };
  8247. static enum ggml_opt_result linesearch_backtracking(
  8248. struct ggml_context * ctx,
  8249. const struct ggml_opt_params * params,
  8250. int nx,
  8251. float * x,
  8252. float * fx,
  8253. float * g,
  8254. float * d,
  8255. float * step,
  8256. const float * xp,
  8257. struct ggml_tensor * f,
  8258. struct ggml_cgraph * gf,
  8259. struct ggml_cgraph * gb,
  8260. const int np,
  8261. struct ggml_tensor * ps[]) {
  8262. int count = 0;
  8263. float width = 0.0f;
  8264. float dg = 0.0f;
  8265. float finit = 0.0f;
  8266. float dginit = 0.0f;
  8267. float dgtest = 0.0f;
  8268. const float dec = 0.5f;
  8269. const float inc = 2.1f;
  8270. if (*step <= 0.f) {
  8271. return GGML_LINESEARCH_INVALID_PARAMETERS;
  8272. }
  8273. // compute the initial gradient in the search direction
  8274. ggml_vec_dot_f32(nx, &dginit, g, d);
  8275. // make sure that d points to a descent direction
  8276. if (0 < dginit) {
  8277. return GGML_LINESEARCH_FAIL;
  8278. }
  8279. // initialize local variables
  8280. finit = *fx;
  8281. dgtest = params->lbfgs.ftol*dginit;
  8282. while (true) {
  8283. ggml_vec_cpy_f32(nx, x, xp);
  8284. ggml_vec_mad_f32(nx, x, d, *step);
  8285. // evaluate the function and gradient values
  8286. {
  8287. ggml_opt_set_params(np, ps, x);
  8288. ggml_graph_reset (gf);
  8289. ggml_set_f32 (f->grad, 1.0f);
  8290. ggml_graph_compute(ctx, gb);
  8291. ggml_opt_get_grad(np, ps, g);
  8292. *fx = ggml_get_f32_1d(f, 0);
  8293. }
  8294. ++count;
  8295. if (*fx > finit + (*step)*dgtest) {
  8296. width = dec;
  8297. } else {
  8298. // Armijo condition is satisfied
  8299. if (params->lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_ARMIJO) {
  8300. return count;
  8301. }
  8302. ggml_vec_dot_f32(nx, &dg, g, d);
  8303. // check the Wolfe condition
  8304. if (dg < params->lbfgs.wolfe * dginit) {
  8305. width = inc;
  8306. } else {
  8307. if(params->lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_WOLFE) {
  8308. // regular Wolfe conditions
  8309. return count;
  8310. }
  8311. if(dg > -params->lbfgs.wolfe*dginit) {
  8312. width = dec;
  8313. } else {
  8314. // strong Wolfe condition (GGML_LINESEARCH_BACKTRACKING_STRONG_WOLFE)
  8315. return count;
  8316. }
  8317. return count;
  8318. }
  8319. }
  8320. if (*step < params->lbfgs.min_step) {
  8321. return GGML_LINESEARCH_MINIMUM_STEP;
  8322. }
  8323. if (*step > params->lbfgs.max_step) {
  8324. return GGML_LINESEARCH_MAXIMUM_STEP;
  8325. }
  8326. if (params->lbfgs.max_linesearch <= count) {
  8327. return GGML_LINESEARCH_MAXIMUM_ITERATIONS;
  8328. }
  8329. (*step) *= width;
  8330. }
  8331. return GGML_LINESEARCH_FAIL;
  8332. }
  8333. static enum ggml_opt_result ggml_opt_lbfgs(
  8334. struct ggml_context * ctx,
  8335. struct ggml_opt_params params,
  8336. struct ggml_tensor * f,
  8337. struct ggml_cgraph * gf,
  8338. struct ggml_cgraph * gb) {
  8339. if (params.lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_WOLFE ||
  8340. params.lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_STRONG_WOLFE) {
  8341. if (params.lbfgs.wolfe <= params.lbfgs.ftol || 1.f <= params.lbfgs.wolfe) {
  8342. return GGML_OPT_INVALID_WOLFE;
  8343. }
  8344. }
  8345. gf->n_threads = params.n_threads;
  8346. gb->n_threads = params.n_threads;
  8347. const int m = params.lbfgs.m;
  8348. // these will store the parameters we want to optimize
  8349. struct ggml_tensor * ps[GGML_MAX_PARAMS];
  8350. int np = 0;
  8351. int nx = 0;
  8352. for (int i = 0; i < gf->n_nodes; ++i) {
  8353. if (gf->nodes[i]->is_param) {
  8354. GGML_PRINT_DEBUG("found param %d: grad->op = %d\n", np, gf->nodes[i]->grad->op);
  8355. GGML_ASSERT(np < GGML_MAX_PARAMS);
  8356. ps[np++] = gf->nodes[i];
  8357. nx += ggml_nelements(gf->nodes[i]);
  8358. }
  8359. }
  8360. float * x = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // current parameters
  8361. float * xp = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // previous parameters
  8362. float * g = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // current gradient
  8363. float * gp = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // previous gradient
  8364. float * d = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // search direction
  8365. float * pf = params.past > 0 ? ggml_new_tensor_1d(ctx, GGML_TYPE_F32, params.past)->data : NULL; // past function values
  8366. float fx = 0.0f; // cost function value
  8367. float xnorm = 0.0f; // ||x||
  8368. float gnorm = 0.0f; // ||g||
  8369. float step = 0.0f;
  8370. // initialize x from the graph nodes
  8371. ggml_opt_get_params(np, ps, x);
  8372. // the L-BFGS memory
  8373. struct ggml_lbfgs_iteration_data * lm = alloca(sizeof(struct ggml_lbfgs_iteration_data)*m);
  8374. for (int i = 0; i < m; ++i) {
  8375. lm[i].alpha = 0.0f;
  8376. lm[i].ys = 0.0f;
  8377. lm[i].s = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data;
  8378. lm[i].y = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data;
  8379. }
  8380. // evaluate the function value and its gradient
  8381. {
  8382. ggml_opt_set_params(np, ps, x);
  8383. ggml_graph_reset (gf);
  8384. ggml_set_f32 (f->grad, 1.0f);
  8385. ggml_graph_compute(ctx, gb);
  8386. ggml_opt_get_grad(np, ps, g);
  8387. fx = ggml_get_f32_1d(f, 0);
  8388. }
  8389. if (pf) {
  8390. pf[0] = fx;
  8391. }
  8392. float fx_best = fx;
  8393. // search direction = -gradient
  8394. ggml_vec_neg_f32(nx, d, g);
  8395. // ||x||, ||g||
  8396. ggml_vec_norm_f32(nx, &xnorm, x);
  8397. ggml_vec_norm_f32(nx, &gnorm, g);
  8398. if (xnorm < 1.0f) {
  8399. xnorm = 1.0f;
  8400. }
  8401. // already optimized
  8402. if (gnorm/xnorm <= params.lbfgs.eps) {
  8403. return GGML_OPT_OK;
  8404. }
  8405. // initial step
  8406. ggml_vec_norm_inv_f32(nx, &step, d);
  8407. int j = 0;
  8408. int k = 1;
  8409. int ls = 0;
  8410. int end = 0;
  8411. int bound = 0;
  8412. int n_no_improvement = 0;
  8413. float ys = 0.0f;
  8414. float yy = 0.0f;
  8415. float beta = 0.0f;
  8416. while (true) {
  8417. // store the current position and gradient vectors
  8418. ggml_vec_cpy_f32(nx, xp, x);
  8419. ggml_vec_cpy_f32(nx, gp, g);
  8420. ls = linesearch_backtracking(ctx, &params, nx, x, &fx, g, d, &step, xp, f, gf, gb, np, ps);
  8421. if (ls < 0) {
  8422. // linesearch failed - go back to the previous point and return
  8423. ggml_vec_cpy_f32(nx, x, xp);
  8424. ggml_vec_cpy_f32(nx, g, gp);
  8425. return ls;
  8426. }
  8427. ggml_vec_norm_f32(nx, &xnorm, x);
  8428. ggml_vec_norm_f32(nx, &gnorm, g);
  8429. GGML_PRINT_DEBUG("f = %10.6f\n", ggml_get_f32_1d(f, 0));
  8430. if (xnorm < 1.0f) {
  8431. xnorm = 1.0f;
  8432. }
  8433. if (gnorm/xnorm <= params.lbfgs.eps) {
  8434. // converged
  8435. return GGML_OPT_OK;
  8436. }
  8437. // delta-based convergence test
  8438. if (pf != NULL) {
  8439. // need at least params.past iterations to start checking for convergence
  8440. if (params.past <= k) {
  8441. const float rate = (pf[k%params.past] - fx)/fx;
  8442. if (fabsf(rate) < params.delta) {
  8443. return GGML_OPT_OK;
  8444. }
  8445. }
  8446. pf[k%params.past] = fx;
  8447. }
  8448. // check for improvement
  8449. if (params.max_no_improvement > 0) {
  8450. if (fx < fx_best) {
  8451. fx_best = fx;
  8452. n_no_improvement = 0;
  8453. } else {
  8454. n_no_improvement++;
  8455. if (n_no_improvement >= params.max_no_improvement) {
  8456. return GGML_OPT_OK;
  8457. }
  8458. }
  8459. }
  8460. if (params.lbfgs.n_iter != 0 && params.lbfgs.n_iter < k + 1) {
  8461. // reached the maximum number of iterations
  8462. return GGML_OPT_DID_NOT_CONVERGE;
  8463. }
  8464. // update vectors s and y:
  8465. // s_{k+1} = x_{k+1} - x_{k} = \step * d_{k}.
  8466. // y_{k+1} = g_{k+1} - g_{k}.
  8467. //
  8468. ggml_vec_sub_f32(nx, lm[end].s, x, xp);
  8469. ggml_vec_sub_f32(nx, lm[end].y, g, gp);
  8470. // compute scalars ys and yy:
  8471. // ys = y^t \cdot s -> 1 / \rho.
  8472. // yy = y^t \cdot y.
  8473. //
  8474. ggml_vec_dot_f32(nx, &ys, lm[end].y, lm[end].s);
  8475. ggml_vec_dot_f32(nx, &yy, lm[end].y, lm[end].y);
  8476. lm[end].ys = ys;
  8477. // find new search direction
  8478. // ref: https://en.wikipedia.org/wiki/Limited-memory_BFGS
  8479. bound = (m <= k) ? m : k;
  8480. k++;
  8481. end = (end + 1)%m;
  8482. // initialize search direction with -g
  8483. ggml_vec_neg_f32(nx, d, g);
  8484. j = end;
  8485. for (int i = 0; i < bound; ++i) {
  8486. j = (j + m - 1) % m;
  8487. // \alpha_{j} = \rho_{j} s^{t}_{j} \cdot q_{k+1}
  8488. ggml_vec_dot_f32(nx, &lm[j].alpha, lm[j].s, d);
  8489. lm[j].alpha /= lm[j].ys;
  8490. // q_{i} = q_{i+1} - \alpha_{i} y_{i}
  8491. ggml_vec_mad_f32(nx, d, lm[j].y, -lm[j].alpha);
  8492. }
  8493. ggml_vec_scale_f32(nx, d, ys/yy);
  8494. for (int i = 0; i < bound; ++i) {
  8495. // \beta_{j} = \rho_{j} y^t_{j} \cdot \gamma_{i}
  8496. ggml_vec_dot_f32(nx, &beta, lm[j].y, d);
  8497. beta /= lm[j].ys;
  8498. // \gamma_{i+1} = \gamma_{i} + (\alpha_{j} - \beta_{j}) s_{j}
  8499. ggml_vec_mad_f32(nx, d, lm[j].s, lm[j].alpha - beta);
  8500. j = (j + 1)%m;
  8501. }
  8502. step = 1.0;
  8503. }
  8504. return GGML_OPT_DID_NOT_CONVERGE;
  8505. }
  8506. struct ggml_opt_params ggml_opt_default_params(enum ggml_opt_type type) {
  8507. struct ggml_opt_params result;
  8508. switch (type) {
  8509. case GGML_OPT_ADAM:
  8510. {
  8511. result = (struct ggml_opt_params) {
  8512. .type = GGML_OPT_ADAM,
  8513. .n_threads = 1,
  8514. .past = 0,
  8515. .delta = 1e-5f,
  8516. .max_no_improvement = 100,
  8517. .print_forward_graph = true,
  8518. .print_backward_graph = true,
  8519. .adam = {
  8520. .n_iter = 10000,
  8521. .alpha = 0.001f,
  8522. .beta1 = 0.9f,
  8523. .beta2 = 0.999f,
  8524. .eps = 1e-8f,
  8525. .eps_f = 1e-5f,
  8526. .eps_g = 1e-3f,
  8527. },
  8528. };
  8529. } break;
  8530. case GGML_OPT_LBFGS:
  8531. {
  8532. result = (struct ggml_opt_params) {
  8533. .type = GGML_OPT_LBFGS,
  8534. .n_threads = 1,
  8535. .past = 0,
  8536. .delta = 1e-5f,
  8537. .max_no_improvement = 0,
  8538. .print_forward_graph = true,
  8539. .print_backward_graph = true,
  8540. .lbfgs = {
  8541. .m = 6,
  8542. .n_iter = 100,
  8543. .max_linesearch = 20,
  8544. .eps = 1e-5f,
  8545. .ftol = 1e-4f,
  8546. .wolfe = 0.9f,
  8547. .min_step = 1e-20f,
  8548. .max_step = 1e+20f,
  8549. .linesearch = GGML_LINESEARCH_DEFAULT,
  8550. },
  8551. };
  8552. } break;
  8553. }
  8554. return result;
  8555. }
  8556. enum ggml_opt_result ggml_opt(
  8557. struct ggml_context * ctx,
  8558. struct ggml_opt_params params,
  8559. struct ggml_tensor * f) {
  8560. bool free_ctx = false;
  8561. if (ctx == NULL) {
  8562. struct ggml_init_params params_ctx = {
  8563. .mem_size = 16*1024*1024,
  8564. .mem_buffer = NULL,
  8565. .no_alloc = false,
  8566. };
  8567. ctx = ggml_init(params_ctx);
  8568. if (ctx == NULL) {
  8569. return GGML_OPT_NO_CONTEXT;
  8570. }
  8571. free_ctx = true;
  8572. }
  8573. enum ggml_opt_result result = GGML_OPT_OK;
  8574. // build forward + backward compute graphs
  8575. struct ggml_cgraph gf = ggml_build_forward (f);
  8576. struct ggml_cgraph gb = ggml_build_backward(ctx, &gf, false);
  8577. switch (params.type) {
  8578. case GGML_OPT_ADAM:
  8579. {
  8580. result = ggml_opt_adam(ctx, params, f, &gf, &gb);
  8581. } break;
  8582. case GGML_OPT_LBFGS:
  8583. {
  8584. result = ggml_opt_lbfgs(ctx, params, f, &gf, &gb);
  8585. } break;
  8586. }
  8587. if (params.print_forward_graph) {
  8588. ggml_graph_print (&gf);
  8589. ggml_graph_dump_dot(&gf, NULL, "opt-forward.dot");
  8590. }
  8591. if (params.print_backward_graph) {
  8592. ggml_graph_print (&gb);
  8593. ggml_graph_dump_dot(&gb, &gf, "opt-backward.dot");
  8594. }
  8595. if (free_ctx) {
  8596. ggml_free(ctx);
  8597. }
  8598. return result;
  8599. }
  8600. ////////////////////////////////////////////////////////////////////////////////
  8601. size_t ggml_quantize_q4_0(const float * src, void * dst, int n, int k, int64_t * hist) {
  8602. assert(k % QK == 0);
  8603. const int nb = k / QK;
  8604. for (int j = 0; j < n; j += k) {
  8605. block_q4_0 * restrict y = (block_q4_0 *)dst + j/QK;
  8606. quantize_row_q4_0_reference(src + j, y, k);
  8607. for (int i = 0; i < nb; i++) {
  8608. for (int l = 0; l < QK; l += 2) {
  8609. const uint8_t vi0 = y[i].qs[l/2] & 0xF;
  8610. const uint8_t vi1 = y[i].qs[l/2] >> 4;
  8611. hist[vi0]++;
  8612. hist[vi1]++;
  8613. }
  8614. }
  8615. }
  8616. return (n/QK*sizeof(block_q4_0));
  8617. }
  8618. size_t ggml_quantize_q4_1(const float * src, void * dst, int n, int k, int64_t * hist) {
  8619. assert(k % QK == 0);
  8620. const int nb = k / QK;
  8621. for (int j = 0; j < n; j += k) {
  8622. block_q4_1 * restrict y = (block_q4_1 *)dst + j/QK;
  8623. quantize_row_q4_1_reference(src + j, y, k);
  8624. for (int i = 0; i < nb; i++) {
  8625. for (int l = 0; l < QK; l += 2) {
  8626. const uint8_t vi0 = y[i].qs[l/2] & 0xF;
  8627. const uint8_t vi1 = y[i].qs[l/2] >> 4;
  8628. hist[vi0]++;
  8629. hist[vi1]++;
  8630. }
  8631. }
  8632. }
  8633. return (n/QK*sizeof(block_q4_1));
  8634. }
  8635. ////////////////////////////////////////////////////////////////////////////////
  8636. int ggml_cpu_has_avx(void) {
  8637. #if defined(__AVX__)
  8638. return 1;
  8639. #else
  8640. return 0;
  8641. #endif
  8642. }
  8643. int ggml_cpu_has_avx2(void) {
  8644. #if defined(__AVX2__)
  8645. return 1;
  8646. #else
  8647. return 0;
  8648. #endif
  8649. }
  8650. int ggml_cpu_has_avx512(void) {
  8651. #if defined(__AVX512F__)
  8652. return 1;
  8653. #else
  8654. return 0;
  8655. #endif
  8656. }
  8657. int ggml_cpu_has_fma(void) {
  8658. #if defined(__FMA__)
  8659. return 1;
  8660. #else
  8661. return 0;
  8662. #endif
  8663. }
  8664. int ggml_cpu_has_neon(void) {
  8665. #if defined(__ARM_NEON)
  8666. return 1;
  8667. #else
  8668. return 0;
  8669. #endif
  8670. }
  8671. int ggml_cpu_has_arm_fma(void) {
  8672. #if defined(__ARM_FEATURE_FMA)
  8673. return 1;
  8674. #else
  8675. return 0;
  8676. #endif
  8677. }
  8678. int ggml_cpu_has_f16c(void) {
  8679. #if defined(__F16C__)
  8680. return 1;
  8681. #else
  8682. return 0;
  8683. #endif
  8684. }
  8685. int ggml_cpu_has_fp16_va(void) {
  8686. #if defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC)
  8687. return 1;
  8688. #else
  8689. return 0;
  8690. #endif
  8691. }
  8692. int ggml_cpu_has_wasm_simd(void) {
  8693. #if defined(__wasm_simd128__)
  8694. return 1;
  8695. #else
  8696. return 0;
  8697. #endif
  8698. }
  8699. int ggml_cpu_has_blas(void) {
  8700. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  8701. return 1;
  8702. #else
  8703. return 0;
  8704. #endif
  8705. }
  8706. int ggml_cpu_has_sse3(void) {
  8707. #if defined(__SSE3__)
  8708. return 1;
  8709. #else
  8710. return 0;
  8711. #endif
  8712. }
  8713. int ggml_cpu_has_vsx(void) {
  8714. #if defined(__POWER9_VECTOR__)
  8715. return 1;
  8716. #else
  8717. return 0;
  8718. #endif
  8719. }
  8720. ////////////////////////////////////////////////////////////////////////////////