ggml-blas.cpp 17 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517
  1. #include "ggml-impl.h"
  2. #include "ggml-blas.h"
  3. #include "ggml-backend-impl.h"
  4. #include <future>
  5. #include <vector>
  6. #include <cstring>
  7. #if defined(GGML_BLAS_USE_ACCELERATE)
  8. # include <Accelerate/Accelerate.h>
  9. #elif defined(GGML_BLAS_USE_MKL)
  10. # include <mkl.h>
  11. #elif defined(GGML_BLAS_USE_BLIS)
  12. # include <blis.h>
  13. #elif defined(GGML_BLAS_USE_NVPL)
  14. # include <nvpl_blas.h>
  15. #else
  16. # include <cblas.h>
  17. #endif
  18. struct ggml_backend_blas_context {
  19. int n_threads = GGML_DEFAULT_N_THREADS;
  20. std::unique_ptr<char[]> work_data;
  21. size_t work_size = 0;
  22. #ifndef GGML_USE_OPENMP
  23. std::vector<std::future<void>> tasks;
  24. #endif
  25. };
  26. static void ggml_backend_blas_mul_mat(ggml_backend_blas_context * ctx, struct ggml_tensor * dst) {
  27. const struct ggml_tensor * src0 = dst->src[0];
  28. const struct ggml_tensor * src1 = dst->src[1];
  29. GGML_TENSOR_BINARY_OP_LOCALS
  30. const enum ggml_type type = src0->type;
  31. GGML_ASSERT(ne0 == ne01);
  32. GGML_ASSERT(ne1 == ne11);
  33. GGML_ASSERT(ne2 == ne12);
  34. GGML_ASSERT(ne3 == ne13);
  35. // we don't support permuted src0 or src1
  36. GGML_ASSERT(nb00 == ggml_type_size(type));
  37. GGML_ASSERT(nb10 == ggml_type_size(src1->type));
  38. // dst cannot be transposed or permuted
  39. GGML_ASSERT(nb0 == sizeof(float));
  40. GGML_ASSERT(nb0 <= nb1);
  41. GGML_ASSERT(nb1 <= nb2);
  42. GGML_ASSERT(nb2 <= nb3);
  43. // broadcast factors
  44. const int64_t r2 = ne12/ne02;
  45. const int64_t r3 = ne13/ne03;
  46. const int64_t ne_plane = ne01*ne00;
  47. const size_t desired_wsize = type == GGML_TYPE_F32 ? 0 : ne03*ne02*ne_plane*sizeof(float);
  48. if (ctx->work_size < desired_wsize) {
  49. ctx->work_data.reset(new char[desired_wsize]);
  50. ctx->work_size = desired_wsize;
  51. }
  52. void * wdata = ctx->work_data.get();
  53. // convert src0 to float
  54. if (type != GGML_TYPE_F32) {
  55. const auto * type_traits = ggml_get_type_traits(type);
  56. ggml_to_float_t const to_float = type_traits->to_float;
  57. for (int64_t i03 = 0; i03 < ne03; i03++) {
  58. for (int64_t i02 = 0; i02 < ne02; i02++) {
  59. const void * x = (char *) src0->data + i02*nb02 + i03*nb03;
  60. float * const wplane = (float *) wdata + i02*ne_plane + i03*ne02*ne_plane;
  61. const int min_cols_per_thread = 4096;
  62. const int min_rows_per_thread = std::max((int)(min_cols_per_thread/ne00), 1);
  63. const int n_threads = std::max(std::min(ctx->n_threads, (int)(ne01/min_rows_per_thread)), 1);
  64. #ifdef GGML_USE_OPENMP
  65. #pragma omp parallel for num_threads(n_threads)
  66. for (int64_t i01 = 0; i01 < ne01; i01++) {
  67. to_float((const char *) x + i01*nb01, wplane + i01*ne00, ne00);
  68. }
  69. #else
  70. for (int i = 1; i < n_threads; i++) {
  71. const int64_t start = i*ne01/n_threads;
  72. const int64_t end = (i + 1)*ne01/n_threads;
  73. if (start < end) {
  74. ctx->tasks.push_back(std::async(std::launch::async, [=]() {
  75. for (int64_t i01 = start; i01 < end; i01++) {
  76. to_float((const char *) x + i01*nb01, wplane + i01*ne00, ne00);
  77. }
  78. }));
  79. }
  80. }
  81. {
  82. // reuse the current thread for the first task
  83. const int64_t start = 0;
  84. const int64_t end = ne01/n_threads;
  85. for (int64_t i01 = start; i01 < end; i01++) {
  86. to_float((const char *) x + i01*nb01, wplane + i01*ne00, ne00);
  87. }
  88. }
  89. #endif
  90. }
  91. }
  92. #ifndef GGML_USE_OPENMP
  93. // wait for all tasks to finish
  94. for (auto & task : ctx->tasks) {
  95. task.get();
  96. }
  97. ctx->tasks.clear();
  98. #endif
  99. }
  100. #if defined(OPENBLAS_VERSION)
  101. openblas_set_num_threads(ctx->n_threads);
  102. #endif
  103. #if defined(GGML_BLAS_USE_BLIS)
  104. bli_thread_set_num_threads(ctx->n_threads);
  105. #endif
  106. #if defined(GGML_BLAS_USE_NVPL)
  107. nvpl_blas_set_num_threads(ctx->n_threads);
  108. #endif
  109. for (int64_t i13 = 0; i13 < ne13; i13++) {
  110. for (int64_t i12 = 0; i12 < ne12; i12++) {
  111. const int64_t i03 = i13/r3;
  112. const int64_t i02 = i12/r2;
  113. const float * x = (float *) ((char *) src0->data + i02*nb02 + i03*nb03);
  114. const float * y = (float *) ((char *) src1->data + i12*nb12 + i13*nb13);
  115. float * d = (float *) ((char *) dst->data + i12*nb2 + i13*nb3);
  116. if (type != GGML_TYPE_F32) {
  117. x = (float *) wdata + i02*ne_plane + i03*ne02*ne_plane;
  118. }
  119. cblas_sgemm(CblasRowMajor, CblasNoTrans, CblasTrans,
  120. ne1, ne01, ne10,
  121. 1.0f, y, ne10,
  122. x, ne00,
  123. 0.0f, d, ne01);
  124. }
  125. }
  126. }
  127. static void ggml_backend_blas_out_prod(ggml_backend_blas_context * ctx, struct ggml_tensor * dst) {
  128. const struct ggml_tensor * src0 = dst->src[0];
  129. const struct ggml_tensor * src1 = dst->src[1];
  130. GGML_TENSOR_BINARY_OP_LOCALS
  131. GGML_ASSERT(ne0 == ne00);
  132. GGML_ASSERT(ne1 == ne10);
  133. GGML_ASSERT(ne2 == ne02);
  134. GGML_ASSERT(ne02 == ne12);
  135. GGML_ASSERT(ne3 == ne13);
  136. GGML_ASSERT(ne03 == ne13);
  137. // we don't support permuted src0 or src1
  138. GGML_ASSERT(nb00 == sizeof(float));
  139. // dst cannot be transposed or permuted
  140. GGML_ASSERT(nb0 == sizeof(float));
  141. // GGML_ASSERT(nb0 <= nb1);
  142. // GGML_ASSERT(nb1 <= nb2);
  143. // GGML_ASSERT(nb2 <= nb3);
  144. // Arguments to ggml_compute_forward_out_prod (expressed as major,minor)
  145. // src0: (k,n)
  146. // src1: (k,m)
  147. // dst: (m,n)
  148. //
  149. // Arguments to sgemm (see https://github.com/Reference-LAPACK/lapack/blob/master/BLAS/SRC/sgemm.f)
  150. // Also expressed as (major,minor)
  151. // a: (m,k): so src1 transposed
  152. // b: (k,n): so src0
  153. // c: (m,n)
  154. //
  155. // However, if ggml_is_transposed(src1) is true, then
  156. // src1->data already contains a transposed version, so sgemm mustn't
  157. // transpose it further.
  158. int n = src0->ne[0];
  159. int k = src0->ne[1];
  160. int m = src1->ne[0];
  161. CBLAS_TRANSPOSE transposeA;
  162. int lda;
  163. if (!ggml_is_transposed(src1)) {
  164. transposeA = CblasTrans;
  165. lda = m;
  166. } else {
  167. transposeA = CblasNoTrans;
  168. lda = k;
  169. }
  170. float * a = (float *) ((char *) src1->data);
  171. float * b = (float *) ((char *) src0->data);
  172. float * c = (float *) ((char *) dst->data);
  173. cblas_sgemm(CblasRowMajor, transposeA, CblasNoTrans, m, n, k, 1.0, a, lda, b, n, 0.0, c, n);
  174. GGML_UNUSED(ctx);
  175. }
  176. // backend interface
  177. static const char * ggml_backend_blas_get_name(ggml_backend_t backend) {
  178. return "BLAS";
  179. GGML_UNUSED(backend);
  180. }
  181. static void ggml_backend_blas_free(ggml_backend_t backend) {
  182. ggml_backend_blas_context * ctx = (ggml_backend_blas_context *)backend->context;
  183. delete ctx;
  184. delete backend;
  185. }
  186. static enum ggml_status ggml_backend_blas_graph_compute(ggml_backend_t backend, struct ggml_cgraph * cgraph) {
  187. ggml_backend_blas_context * ctx = (ggml_backend_blas_context *)backend->context;
  188. for (int i = 0; i < cgraph->n_nodes; i++) {
  189. struct ggml_tensor * node = cgraph->nodes[i];
  190. switch (node->op) {
  191. case GGML_OP_MUL_MAT:
  192. ggml_backend_blas_mul_mat(ctx, node);
  193. break;
  194. case GGML_OP_OUT_PROD:
  195. ggml_backend_blas_out_prod(ctx, node);
  196. break;
  197. case GGML_OP_NONE:
  198. case GGML_OP_RESHAPE:
  199. case GGML_OP_VIEW:
  200. case GGML_OP_PERMUTE:
  201. case GGML_OP_TRANSPOSE:
  202. break;
  203. default:
  204. GGML_ABORT("%s: unsupported op %s\n", __func__, ggml_op_desc(node));
  205. }
  206. }
  207. return GGML_STATUS_SUCCESS;
  208. GGML_UNUSED(backend);
  209. }
  210. static struct ggml_backend_i blas_backend_i = {
  211. /* .get_name = */ ggml_backend_blas_get_name,
  212. /* .free = */ ggml_backend_blas_free,
  213. /* .set_tensor_async = */ NULL,
  214. /* .get_tensor_async = */ NULL,
  215. /* .cpy_tensor_async = */ NULL,
  216. /* .synchronize = */ NULL,
  217. /* .graph_plan_create = */ NULL,
  218. /* .graph_plan_free = */ NULL,
  219. /* .graph_plan_update = */ NULL,
  220. /* .graph_plan_compute = */ NULL,
  221. /* .graph_compute = */ ggml_backend_blas_graph_compute,
  222. /* .event_record = */ NULL,
  223. /* .event_wait = */ NULL,
  224. };
  225. static ggml_guid_t ggml_backend_blas_guid(void) {
  226. static ggml_guid guid = { 0x12, 0xa8, 0xae, 0xf4, 0xc0, 0x1e, 0x61, 0x97, 0x8f, 0xeb, 0x33, 0x04, 0xa1, 0x33, 0x51, 0x2d };
  227. return &guid;
  228. }
  229. ggml_backend_t ggml_backend_blas_init(void) {
  230. ggml_backend_blas_context * ctx = new ggml_backend_blas_context;
  231. ggml_backend_t backend = new ggml_backend {
  232. /* .guid = */ ggml_backend_blas_guid(),
  233. /* .interface = */ blas_backend_i,
  234. /* .device = */ ggml_backend_reg_dev_get(ggml_backend_blas_reg(), 0),
  235. /* .context = */ ctx,
  236. };
  237. #if defined(OPENBLAS_VERSION) && defined(GGML_USE_OPENMP)
  238. if (openblas_get_parallel() != OPENBLAS_OPENMP) {
  239. GGML_LOG_DEBUG("%s: warning: ggml is using OpenMP, but OpenBLAS was compiled without OpenMP support\n", __func__);
  240. }
  241. #endif
  242. #if defined(BLIS_ENABLE_CBLAS) && defined(GGML_USE_OPENMP) && !defined(BLIS_ENABLE_OPENMP)
  243. GGML_LOG_DEBUG("%s: warning: ggml is using OpenMP, but BLIS was compiled without OpenMP support\n", __func__);
  244. #endif
  245. return backend;
  246. }
  247. bool ggml_backend_is_blas(ggml_backend_t backend) {
  248. return backend != NULL && ggml_guid_matches(backend->guid, ggml_backend_blas_guid());
  249. }
  250. void ggml_backend_blas_set_n_threads(ggml_backend_t backend_blas, int n_threads) {
  251. GGML_ASSERT(ggml_backend_is_blas(backend_blas));
  252. ggml_backend_blas_context * ctx = (ggml_backend_blas_context *)backend_blas->context;
  253. ctx->n_threads = n_threads;
  254. }
  255. // device interface
  256. static const char * ggml_backend_blas_device_get_name(ggml_backend_dev_t dev) {
  257. return "BLAS";
  258. GGML_UNUSED(dev);
  259. }
  260. static const char * ggml_backend_blas_device_get_description(ggml_backend_dev_t dev) {
  261. #if defined(GGML_BLAS_USE_ACCELERATE)
  262. return "Accelerate";
  263. #elif defined(GGML_BLAS_USE_MKL)
  264. return "MKL";
  265. #elif defined(GGML_BLAS_USE_BLIS)
  266. return "BLIS";
  267. #elif defined(GGML_BLAS_USE_NVPL)
  268. return "NVPL";
  269. #elif defined(OPENBLAS_VERSION)
  270. return "OpenBLAS";
  271. #else
  272. return "BLAS";
  273. #endif
  274. GGML_UNUSED(dev);
  275. }
  276. static void ggml_backend_blas_device_get_memory(ggml_backend_dev_t dev, size_t * free, size_t * total) {
  277. // TODO
  278. *free = 0;
  279. *total = 0;
  280. GGML_UNUSED(dev);
  281. }
  282. static enum ggml_backend_dev_type ggml_backend_blas_device_get_type(ggml_backend_dev_t dev) {
  283. return GGML_BACKEND_DEVICE_TYPE_ACCEL;
  284. GGML_UNUSED(dev);
  285. }
  286. static void ggml_backend_blas_device_get_props(ggml_backend_dev_t dev, struct ggml_backend_dev_props * props) {
  287. props->name = ggml_backend_blas_device_get_name(dev);
  288. props->description = ggml_backend_blas_device_get_description(dev);
  289. props->type = ggml_backend_blas_device_get_type(dev);
  290. ggml_backend_blas_device_get_memory(dev, &props->memory_free, &props->memory_total);
  291. props->caps = {
  292. /* .async = */ false,
  293. /* .host_buffer = */ false,
  294. /* .buffer_from_host_ptr = */ true,
  295. /* .events = */ false,
  296. };
  297. }
  298. static ggml_backend_t ggml_backend_blas_device_init_backend(ggml_backend_dev_t dev, const char * params) {
  299. return ggml_backend_blas_init();
  300. GGML_UNUSED(dev);
  301. GGML_UNUSED(params);
  302. }
  303. static ggml_backend_buffer_type_t ggml_backend_blas_device_get_buffer_type(ggml_backend_dev_t dev) {
  304. return ggml_backend_cpu_buffer_type();
  305. GGML_UNUSED(dev);
  306. }
  307. static ggml_backend_buffer_t ggml_backend_blas_device_buffer_from_host_ptr(ggml_backend_dev_t dev, void * ptr, size_t size, size_t max_tensor_size) {
  308. return ggml_backend_cpu_buffer_from_ptr(ptr, size);
  309. GGML_UNUSED(dev);
  310. GGML_UNUSED(max_tensor_size);
  311. }
  312. static bool ggml_backend_blas_device_supports_op(ggml_backend_dev_t dev, const struct ggml_tensor * op) {
  313. const struct ggml_tensor * src0 = op->src[0];
  314. const struct ggml_tensor * src1 = op->src[1];
  315. switch (op->op) {
  316. case GGML_OP_NONE:
  317. case GGML_OP_RESHAPE:
  318. case GGML_OP_VIEW:
  319. case GGML_OP_PERMUTE:
  320. case GGML_OP_TRANSPOSE:
  321. return true;
  322. case GGML_OP_MUL_MAT:
  323. {
  324. // BLAS usually is only faster for large matrices
  325. const struct ggml_tensor * src0 = op->src[0];
  326. const struct ggml_tensor * src1 = op->src[1];
  327. const int64_t ne10 = src1->ne[0];
  328. const int64_t ne0 = op->ne[0];
  329. const int64_t ne1 = op->ne[1];
  330. // TODO: find the optimal value
  331. const int64_t min_batch = 32;
  332. return ggml_is_contiguous(src0) &&
  333. ggml_is_contiguous(src1) &&
  334. src1->type == GGML_TYPE_F32 &&
  335. (ne0 >= min_batch && ne1 >= min_batch && ne10 >= min_batch) &&
  336. (src0->type == GGML_TYPE_F32 || ggml_get_type_traits(src0->type)->to_float != NULL);
  337. }
  338. case GGML_OP_OUT_PROD:
  339. return op->src[0]->type == GGML_TYPE_F32 &&
  340. op->src[1]->type == GGML_TYPE_F32 &&
  341. ggml_is_matrix(src0) &&
  342. ggml_is_matrix(src1) &&
  343. ggml_is_contiguous(src0) &&
  344. (ggml_is_contiguous(src1) || ggml_is_transposed(src1)) &&
  345. (src0->type == GGML_TYPE_F32 || ggml_get_type_traits(src0->type)->to_float != NULL);
  346. default:
  347. return false;
  348. }
  349. GGML_UNUSED(dev);
  350. }
  351. static bool ggml_backend_blas_device_supports_buft(ggml_backend_dev_t dev, ggml_backend_buffer_type_t buft) {
  352. return ggml_backend_buft_is_host(buft);
  353. GGML_UNUSED(dev);
  354. }
  355. static const struct ggml_backend_device_i ggml_backend_blas_device_i = {
  356. /* .get_name = */ ggml_backend_blas_device_get_name,
  357. /* .get_description = */ ggml_backend_blas_device_get_description,
  358. /* .get_memory = */ ggml_backend_blas_device_get_memory,
  359. /* .get_type = */ ggml_backend_blas_device_get_type,
  360. /* .get_props = */ ggml_backend_blas_device_get_props,
  361. /* .init_backend = */ ggml_backend_blas_device_init_backend,
  362. /* .get_buffer_type = */ ggml_backend_blas_device_get_buffer_type,
  363. /* .get_host_buffer_type = */ NULL,
  364. /* .buffer_from_host_ptr = */ ggml_backend_blas_device_buffer_from_host_ptr,
  365. /* .supports_op = */ ggml_backend_blas_device_supports_op,
  366. /* .supports_buft = */ ggml_backend_blas_device_supports_buft,
  367. /* .offload_op = */ NULL,
  368. /* .event_new = */ NULL,
  369. /* .event_free = */ NULL,
  370. /* .event_synchronize = */ NULL,
  371. };
  372. // backend reg interface
  373. static const char * ggml_backend_blas_reg_get_name(ggml_backend_reg_t reg) {
  374. return "BLAS";
  375. GGML_UNUSED(reg);
  376. }
  377. static size_t ggml_backend_blas_reg_get_device_count(ggml_backend_reg_t reg) {
  378. return 1;
  379. GGML_UNUSED(reg);
  380. }
  381. static ggml_backend_dev_t ggml_backend_blas_reg_get_device(ggml_backend_reg_t reg, size_t index) {
  382. GGML_ASSERT(index == 0);
  383. static ggml_backend_device ggml_backend_blas_device = {
  384. /* .iface = */ ggml_backend_blas_device_i,
  385. /* .reg = */ reg,
  386. /* .context = */ nullptr,
  387. };
  388. return &ggml_backend_blas_device;
  389. GGML_UNUSED(reg);
  390. GGML_UNUSED(index);
  391. }
  392. static void * ggml_backend_blas_get_proc_address(ggml_backend_reg_t reg, const char * name) {
  393. if (std::strcmp(name, "ggml_backend_set_n_threads") == 0) {
  394. return (void *)ggml_backend_blas_set_n_threads;
  395. }
  396. return NULL;
  397. GGML_UNUSED(reg);
  398. GGML_UNUSED(name);
  399. }
  400. static const struct ggml_backend_reg_i ggml_backend_blas_reg_i = {
  401. /* .get_name = */ ggml_backend_blas_reg_get_name,
  402. /* .get_device_count = */ ggml_backend_blas_reg_get_device_count,
  403. /* .get_device = */ ggml_backend_blas_reg_get_device,
  404. /* .get_proc_address = */ ggml_backend_blas_get_proc_address,
  405. };
  406. ggml_backend_reg_t ggml_backend_blas_reg(void) {
  407. static struct ggml_backend_reg ggml_backend_blas_reg = {
  408. /* .api_version = */ GGML_BACKEND_API_VERSION,
  409. /* .iface = */ ggml_backend_blas_reg_i,
  410. /* .context = */ NULL,
  411. };
  412. return &ggml_backend_blas_reg;
  413. }
  414. GGML_BACKEND_DL_IMPL(ggml_backend_blas_reg)