arg.cpp 139 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318
  1. #include "gguf.h" // for reading GGUF splits
  2. #include "arg.h"
  3. #include "common.h"
  4. #include "log.h"
  5. #include "sampling.h"
  6. #include "chat.h"
  7. // fix problem with std::min and std::max
  8. #if defined(_WIN32)
  9. #define WIN32_LEAN_AND_MEAN
  10. #ifndef NOMINMAX
  11. # define NOMINMAX
  12. #endif
  13. #include <windows.h>
  14. #endif
  15. #include <algorithm>
  16. #include <climits>
  17. #include <cstdarg>
  18. #include <filesystem>
  19. #include <fstream>
  20. #include <regex>
  21. #include <set>
  22. #include <string>
  23. #include <thread>
  24. #include <vector>
  25. //#define LLAMA_USE_CURL
  26. #if defined(LLAMA_USE_CURL)
  27. #include <curl/curl.h>
  28. #include <curl/easy.h>
  29. #include <future>
  30. #endif
  31. #include "json-schema-to-grammar.h"
  32. using json = nlohmann::ordered_json;
  33. std::initializer_list<enum llama_example> mmproj_examples = {
  34. LLAMA_EXAMPLE_LLAVA,
  35. // TODO: add LLAMA_EXAMPLE_SERVER when it's ready
  36. };
  37. static std::string read_file(const std::string & fname) {
  38. std::ifstream file(fname);
  39. if (!file) {
  40. throw std::runtime_error(string_format("error: failed to open file '%s'\n", fname.c_str()));
  41. }
  42. std::string content((std::istreambuf_iterator<char>(file)), std::istreambuf_iterator<char>());
  43. file.close();
  44. return content;
  45. }
  46. static void write_file(const std::string & fname, const std::string & content) {
  47. std::ofstream file(fname);
  48. if (!file) {
  49. throw std::runtime_error(string_format("error: failed to open file '%s'\n", fname.c_str()));
  50. }
  51. file << content;
  52. file.close();
  53. }
  54. common_arg & common_arg::set_examples(std::initializer_list<enum llama_example> examples) {
  55. this->examples = std::move(examples);
  56. return *this;
  57. }
  58. common_arg & common_arg::set_excludes(std::initializer_list<enum llama_example> excludes) {
  59. this->excludes = std::move(excludes);
  60. return *this;
  61. }
  62. common_arg & common_arg::set_env(const char * env) {
  63. help = help + "\n(env: " + env + ")";
  64. this->env = env;
  65. return *this;
  66. }
  67. common_arg & common_arg::set_sparam() {
  68. is_sparam = true;
  69. return *this;
  70. }
  71. bool common_arg::in_example(enum llama_example ex) {
  72. return examples.find(ex) != examples.end();
  73. }
  74. bool common_arg::is_exclude(enum llama_example ex) {
  75. return excludes.find(ex) != excludes.end();
  76. }
  77. bool common_arg::get_value_from_env(std::string & output) {
  78. if (env == nullptr) return false;
  79. char * value = std::getenv(env);
  80. if (value) {
  81. output = value;
  82. return true;
  83. }
  84. return false;
  85. }
  86. bool common_arg::has_value_from_env() {
  87. return env != nullptr && std::getenv(env);
  88. }
  89. static std::vector<std::string> break_str_into_lines(std::string input, size_t max_char_per_line) {
  90. std::vector<std::string> result;
  91. std::istringstream iss(input);
  92. std::string line;
  93. auto add_line = [&](const std::string& l) {
  94. if (l.length() <= max_char_per_line) {
  95. result.push_back(l);
  96. } else {
  97. std::istringstream line_stream(l);
  98. std::string word, current_line;
  99. while (line_stream >> word) {
  100. if (current_line.length() + !current_line.empty() + word.length() > max_char_per_line) {
  101. if (!current_line.empty()) result.push_back(current_line);
  102. current_line = word;
  103. } else {
  104. current_line += (!current_line.empty() ? " " : "") + word;
  105. }
  106. }
  107. if (!current_line.empty()) result.push_back(current_line);
  108. }
  109. };
  110. while (std::getline(iss, line)) {
  111. add_line(line);
  112. }
  113. return result;
  114. }
  115. std::string common_arg::to_string() {
  116. // params for printing to console
  117. const static int n_leading_spaces = 40;
  118. const static int n_char_per_line_help = 70; // TODO: detect this based on current console
  119. std::string leading_spaces(n_leading_spaces, ' ');
  120. std::ostringstream ss;
  121. for (const auto arg : args) {
  122. if (arg == args.front()) {
  123. if (args.size() == 1) {
  124. ss << arg;
  125. } else {
  126. // first arg is usually abbreviation, we need padding to make it more beautiful
  127. auto tmp = std::string(arg) + ", ";
  128. auto spaces = std::string(std::max(0, 7 - (int)tmp.size()), ' ');
  129. ss << tmp << spaces;
  130. }
  131. } else {
  132. ss << arg << (arg != args.back() ? ", " : "");
  133. }
  134. }
  135. if (value_hint) ss << " " << value_hint;
  136. if (value_hint_2) ss << " " << value_hint_2;
  137. if (ss.tellp() > n_leading_spaces - 3) {
  138. // current line is too long, add new line
  139. ss << "\n" << leading_spaces;
  140. } else {
  141. // padding between arg and help, same line
  142. ss << std::string(leading_spaces.size() - ss.tellp(), ' ');
  143. }
  144. const auto help_lines = break_str_into_lines(help, n_char_per_line_help);
  145. for (const auto & line : help_lines) {
  146. ss << (&line == &help_lines.front() ? "" : leading_spaces) << line << "\n";
  147. }
  148. return ss.str();
  149. }
  150. //
  151. // downloader
  152. //
  153. struct common_hf_file_res {
  154. std::string repo; // repo name with ":tag" removed
  155. std::string ggufFile;
  156. std::string mmprojFile;
  157. };
  158. #ifdef LLAMA_USE_CURL
  159. bool common_has_curl() {
  160. return true;
  161. }
  162. #ifdef __linux__
  163. #include <linux/limits.h>
  164. #elif defined(_WIN32)
  165. # if !defined(PATH_MAX)
  166. # define PATH_MAX MAX_PATH
  167. # endif
  168. #elif defined(_AIX)
  169. #include <sys/limits.h>
  170. #else
  171. #include <sys/syslimits.h>
  172. #endif
  173. #define LLAMA_CURL_MAX_URL_LENGTH 2084 // Maximum URL Length in Chrome: 2083
  174. //
  175. // CURL utils
  176. //
  177. using curl_ptr = std::unique_ptr<CURL, decltype(&curl_easy_cleanup)>;
  178. // cannot use unique_ptr for curl_slist, because we cannot update without destroying the old one
  179. struct curl_slist_ptr {
  180. struct curl_slist * ptr = nullptr;
  181. ~curl_slist_ptr() {
  182. if (ptr) {
  183. curl_slist_free_all(ptr);
  184. }
  185. }
  186. };
  187. #define CURL_MAX_RETRY 3
  188. #define CURL_RETRY_DELAY_SECONDS 2
  189. static bool curl_perform_with_retry(const std::string & url, CURL * curl, int max_attempts, int retry_delay_seconds) {
  190. int remaining_attempts = max_attempts;
  191. char * method = nullptr;
  192. curl_easy_getinfo(curl, CURLINFO_EFFECTIVE_METHOD, &method);
  193. while (remaining_attempts > 0) {
  194. LOG_INF("%s: %s %s (attempt %d of %d)...\n", __func__ , method, url.c_str(), max_attempts - remaining_attempts + 1, max_attempts);
  195. CURLcode res = curl_easy_perform(curl);
  196. if (res == CURLE_OK) {
  197. return true;
  198. }
  199. int exponential_backoff_delay = std::pow(retry_delay_seconds, max_attempts - remaining_attempts) * 1000;
  200. LOG_WRN("%s: curl_easy_perform() failed: %s, retrying after %d milliseconds...\n", __func__, curl_easy_strerror(res), exponential_backoff_delay);
  201. remaining_attempts--;
  202. if (remaining_attempts == 0) break;
  203. std::this_thread::sleep_for(std::chrono::milliseconds(exponential_backoff_delay));
  204. }
  205. LOG_ERR("%s: curl_easy_perform() failed after %d attempts\n", __func__, max_attempts);
  206. return false;
  207. }
  208. // download one single file from remote URL to local path
  209. static bool common_download_file_single(const std::string & url, const std::string & path, const std::string & bearer_token) {
  210. // Initialize libcurl
  211. curl_ptr curl(curl_easy_init(), &curl_easy_cleanup);
  212. curl_slist_ptr http_headers;
  213. if (!curl) {
  214. LOG_ERR("%s: error initializing libcurl\n", __func__);
  215. return false;
  216. }
  217. // Set the URL, allow to follow http redirection
  218. curl_easy_setopt(curl.get(), CURLOPT_URL, url.c_str());
  219. curl_easy_setopt(curl.get(), CURLOPT_FOLLOWLOCATION, 1L);
  220. http_headers.ptr = curl_slist_append(http_headers.ptr, "User-Agent: llama-cpp");
  221. // Check if hf-token or bearer-token was specified
  222. if (!bearer_token.empty()) {
  223. std::string auth_header = "Authorization: Bearer " + bearer_token;
  224. http_headers.ptr = curl_slist_append(http_headers.ptr, auth_header.c_str());
  225. }
  226. curl_easy_setopt(curl.get(), CURLOPT_HTTPHEADER, http_headers.ptr);
  227. #if defined(_WIN32)
  228. // CURLSSLOPT_NATIVE_CA tells libcurl to use standard certificate store of
  229. // operating system. Currently implemented under MS-Windows.
  230. curl_easy_setopt(curl.get(), CURLOPT_SSL_OPTIONS, CURLSSLOPT_NATIVE_CA);
  231. #endif
  232. // Check if the file already exists locally
  233. auto file_exists = std::filesystem::exists(path);
  234. // If the file exists, check its JSON metadata companion file.
  235. std::string metadata_path = path + ".json";
  236. nlohmann::json metadata; // TODO @ngxson : get rid of this json, use regex instead
  237. std::string etag;
  238. std::string last_modified;
  239. if (file_exists) {
  240. // Try and read the JSON metadata file (note: stream autoclosed upon exiting this block).
  241. std::ifstream metadata_in(metadata_path);
  242. if (metadata_in.good()) {
  243. try {
  244. metadata_in >> metadata;
  245. LOG_DBG("%s: previous metadata file found %s: %s\n", __func__, metadata_path.c_str(), metadata.dump().c_str());
  246. if (metadata.contains("url") && metadata.at("url").is_string()) {
  247. auto previous_url = metadata.at("url").get<std::string>();
  248. if (previous_url != url) {
  249. LOG_ERR("%s: Model URL mismatch: %s != %s\n", __func__, url.c_str(), previous_url.c_str());
  250. return false;
  251. }
  252. }
  253. if (metadata.contains("etag") && metadata.at("etag").is_string()) {
  254. etag = metadata.at("etag");
  255. }
  256. if (metadata.contains("lastModified") && metadata.at("lastModified").is_string()) {
  257. last_modified = metadata.at("lastModified");
  258. }
  259. } catch (const nlohmann::json::exception & e) {
  260. LOG_ERR("%s: error reading metadata file %s: %s\n", __func__, metadata_path.c_str(), e.what());
  261. return false;
  262. }
  263. }
  264. } else {
  265. LOG_INF("%s: no previous model file found %s\n", __func__, path.c_str());
  266. }
  267. // Send a HEAD request to retrieve the etag and last-modified headers
  268. struct common_load_model_from_url_headers {
  269. std::string etag;
  270. std::string last_modified;
  271. };
  272. common_load_model_from_url_headers headers;
  273. bool head_request_ok = false;
  274. bool should_download = !file_exists; // by default, we should download if the file does not exist
  275. // get ETag to see if the remote file has changed
  276. {
  277. typedef size_t(*CURLOPT_HEADERFUNCTION_PTR)(char *, size_t, size_t, void *);
  278. auto header_callback = [](char * buffer, size_t /*size*/, size_t n_items, void * userdata) -> size_t {
  279. common_load_model_from_url_headers * headers = (common_load_model_from_url_headers *) userdata;
  280. static std::regex header_regex("([^:]+): (.*)\r\n");
  281. static std::regex etag_regex("ETag", std::regex_constants::icase);
  282. static std::regex last_modified_regex("Last-Modified", std::regex_constants::icase);
  283. std::string header(buffer, n_items);
  284. std::smatch match;
  285. if (std::regex_match(header, match, header_regex)) {
  286. const std::string & key = match[1];
  287. const std::string & value = match[2];
  288. if (std::regex_match(key, match, etag_regex)) {
  289. headers->etag = value;
  290. } else if (std::regex_match(key, match, last_modified_regex)) {
  291. headers->last_modified = value;
  292. }
  293. }
  294. return n_items;
  295. };
  296. curl_easy_setopt(curl.get(), CURLOPT_NOBODY, 1L); // will trigger the HEAD verb
  297. curl_easy_setopt(curl.get(), CURLOPT_NOPROGRESS, 1L); // hide head request progress
  298. curl_easy_setopt(curl.get(), CURLOPT_HEADERFUNCTION, static_cast<CURLOPT_HEADERFUNCTION_PTR>(header_callback));
  299. curl_easy_setopt(curl.get(), CURLOPT_HEADERDATA, &headers);
  300. // we only allow retrying once for HEAD requests
  301. // this is for the use case of using running offline (no internet), retrying can be annoying
  302. bool was_perform_successful = curl_perform_with_retry(url, curl.get(), 1, 0);
  303. if (!was_perform_successful) {
  304. head_request_ok = false;
  305. }
  306. long http_code = 0;
  307. curl_easy_getinfo(curl.get(), CURLINFO_RESPONSE_CODE, &http_code);
  308. if (http_code == 200) {
  309. head_request_ok = true;
  310. } else {
  311. LOG_WRN("%s: HEAD invalid http status code received: %ld\n", __func__, http_code);
  312. head_request_ok = false;
  313. }
  314. }
  315. // if head_request_ok is false, we don't have the etag or last-modified headers
  316. // we leave should_download as-is, which is true if the file does not exist
  317. if (head_request_ok) {
  318. // check if ETag or Last-Modified headers are different
  319. // if it is, we need to download the file again
  320. if (!etag.empty() && etag != headers.etag) {
  321. LOG_WRN("%s: ETag header is different (%s != %s): triggering a new download\n", __func__, etag.c_str(), headers.etag.c_str());
  322. should_download = true;
  323. } else if (!last_modified.empty() && last_modified != headers.last_modified) {
  324. LOG_WRN("%s: Last-Modified header is different (%s != %s): triggering a new download\n", __func__, last_modified.c_str(), headers.last_modified.c_str());
  325. should_download = true;
  326. }
  327. }
  328. if (should_download) {
  329. std::string path_temporary = path + ".downloadInProgress";
  330. if (file_exists) {
  331. LOG_WRN("%s: deleting previous downloaded file: %s\n", __func__, path.c_str());
  332. if (remove(path.c_str()) != 0) {
  333. LOG_ERR("%s: unable to delete file: %s\n", __func__, path.c_str());
  334. return false;
  335. }
  336. }
  337. // Set the output file
  338. struct FILE_deleter {
  339. void operator()(FILE * f) const {
  340. fclose(f);
  341. }
  342. };
  343. std::unique_ptr<FILE, FILE_deleter> outfile(fopen(path_temporary.c_str(), "wb"));
  344. if (!outfile) {
  345. LOG_ERR("%s: error opening local file for writing: %s\n", __func__, path.c_str());
  346. return false;
  347. }
  348. typedef size_t(*CURLOPT_WRITEFUNCTION_PTR)(void * data, size_t size, size_t nmemb, void * fd);
  349. auto write_callback = [](void * data, size_t size, size_t nmemb, void * fd) -> size_t {
  350. return fwrite(data, size, nmemb, (FILE *)fd);
  351. };
  352. curl_easy_setopt(curl.get(), CURLOPT_NOBODY, 0L);
  353. curl_easy_setopt(curl.get(), CURLOPT_WRITEFUNCTION, static_cast<CURLOPT_WRITEFUNCTION_PTR>(write_callback));
  354. curl_easy_setopt(curl.get(), CURLOPT_WRITEDATA, outfile.get());
  355. // display download progress
  356. curl_easy_setopt(curl.get(), CURLOPT_NOPROGRESS, 0L);
  357. // helper function to hide password in URL
  358. auto llama_download_hide_password_in_url = [](const std::string & url) -> std::string {
  359. std::size_t protocol_pos = url.find("://");
  360. if (protocol_pos == std::string::npos) {
  361. return url; // Malformed URL
  362. }
  363. std::size_t at_pos = url.find('@', protocol_pos + 3);
  364. if (at_pos == std::string::npos) {
  365. return url; // No password in URL
  366. }
  367. return url.substr(0, protocol_pos + 3) + "********" + url.substr(at_pos);
  368. };
  369. // start the download
  370. LOG_INF("%s: trying to download model from %s to %s (server_etag:%s, server_last_modified:%s)...\n", __func__,
  371. llama_download_hide_password_in_url(url).c_str(), path.c_str(), headers.etag.c_str(), headers.last_modified.c_str());
  372. bool was_perform_successful = curl_perform_with_retry(url, curl.get(), CURL_MAX_RETRY, CURL_RETRY_DELAY_SECONDS);
  373. if (!was_perform_successful) {
  374. return false;
  375. }
  376. long http_code = 0;
  377. curl_easy_getinfo (curl.get(), CURLINFO_RESPONSE_CODE, &http_code);
  378. if (http_code < 200 || http_code >= 400) {
  379. LOG_ERR("%s: invalid http status code received: %ld\n", __func__, http_code);
  380. return false;
  381. }
  382. // Causes file to be closed explicitly here before we rename it.
  383. outfile.reset();
  384. // Write the updated JSON metadata file.
  385. metadata.update({
  386. {"url", url},
  387. {"etag", headers.etag},
  388. {"lastModified", headers.last_modified}
  389. });
  390. write_file(metadata_path, metadata.dump(4));
  391. LOG_DBG("%s: file metadata saved: %s\n", __func__, metadata_path.c_str());
  392. if (rename(path_temporary.c_str(), path.c_str()) != 0) {
  393. LOG_ERR("%s: unable to rename file: %s to %s\n", __func__, path_temporary.c_str(), path.c_str());
  394. return false;
  395. }
  396. } else {
  397. LOG_INF("%s: using cached file: %s\n", __func__, path.c_str());
  398. }
  399. return true;
  400. }
  401. // download multiple files from remote URLs to local paths
  402. // the input is a vector of pairs <url, path>
  403. static bool common_download_file_multiple(const std::vector<std::pair<std::string, std::string>> & urls, const std::string & bearer_token) {
  404. // Prepare download in parallel
  405. std::vector<std::future<bool>> futures_download;
  406. for (auto const & item : urls) {
  407. futures_download.push_back(std::async(std::launch::async, [bearer_token](const std::pair<std::string, std::string> & it) -> bool {
  408. return common_download_file_single(it.first, it.second, bearer_token);
  409. }, item));
  410. }
  411. // Wait for all downloads to complete
  412. for (auto & f : futures_download) {
  413. if (!f.get()) {
  414. return false;
  415. }
  416. }
  417. return true;
  418. }
  419. static bool common_download_model(
  420. const common_params_model & model,
  421. const std::string & bearer_token) {
  422. // Basic validation of the model.url
  423. if (model.url.empty()) {
  424. LOG_ERR("%s: invalid model url\n", __func__);
  425. return false;
  426. }
  427. if (!common_download_file_single(model.url, model.path, bearer_token)) {
  428. return false;
  429. }
  430. // check for additional GGUFs split to download
  431. int n_split = 0;
  432. {
  433. struct gguf_init_params gguf_params = {
  434. /*.no_alloc = */ true,
  435. /*.ctx = */ NULL,
  436. };
  437. auto * ctx_gguf = gguf_init_from_file(model.path.c_str(), gguf_params);
  438. if (!ctx_gguf) {
  439. LOG_ERR("\n%s: failed to load input GGUF from %s\n", __func__, model.path.c_str());
  440. return false;
  441. }
  442. auto key_n_split = gguf_find_key(ctx_gguf, LLM_KV_SPLIT_COUNT);
  443. if (key_n_split >= 0) {
  444. n_split = gguf_get_val_u16(ctx_gguf, key_n_split);
  445. }
  446. gguf_free(ctx_gguf);
  447. }
  448. if (n_split > 1) {
  449. char split_prefix[PATH_MAX] = {0};
  450. char split_url_prefix[LLAMA_CURL_MAX_URL_LENGTH] = {0};
  451. // Verify the first split file format
  452. // and extract split URL and PATH prefixes
  453. {
  454. if (!llama_split_prefix(split_prefix, sizeof(split_prefix), model.path.c_str(), 0, n_split)) {
  455. LOG_ERR("\n%s: unexpected model file name: %s n_split=%d\n", __func__, model.path.c_str(), n_split);
  456. return false;
  457. }
  458. if (!llama_split_prefix(split_url_prefix, sizeof(split_url_prefix), model.url.c_str(), 0, n_split)) {
  459. LOG_ERR("\n%s: unexpected model url: %s n_split=%d\n", __func__, model.url.c_str(), n_split);
  460. return false;
  461. }
  462. }
  463. std::vector<std::pair<std::string, std::string>> urls;
  464. for (int idx = 1; idx < n_split; idx++) {
  465. char split_path[PATH_MAX] = {0};
  466. llama_split_path(split_path, sizeof(split_path), split_prefix, idx, n_split);
  467. char split_url[LLAMA_CURL_MAX_URL_LENGTH] = {0};
  468. llama_split_path(split_url, sizeof(split_url), split_url_prefix, idx, n_split);
  469. if (std::string(split_path) == model.path) {
  470. continue; // skip the already downloaded file
  471. }
  472. urls.push_back({split_url, split_path});
  473. }
  474. // Download in parallel
  475. common_download_file_multiple(urls, bearer_token);
  476. }
  477. return true;
  478. }
  479. std::pair<long, std::vector<char>> common_remote_get_content(const std::string & url, const common_remote_params & params) {
  480. curl_ptr curl(curl_easy_init(), &curl_easy_cleanup);
  481. curl_slist_ptr http_headers;
  482. std::vector<char> res_buffer;
  483. curl_easy_setopt(curl.get(), CURLOPT_URL, url.c_str());
  484. curl_easy_setopt(curl.get(), CURLOPT_NOPROGRESS, 1L);
  485. curl_easy_setopt(curl.get(), CURLOPT_FOLLOWLOCATION, 1L);
  486. typedef size_t(*CURLOPT_WRITEFUNCTION_PTR)(void * ptr, size_t size, size_t nmemb, void * data);
  487. auto write_callback = [](void * ptr, size_t size, size_t nmemb, void * data) -> size_t {
  488. auto data_vec = static_cast<std::vector<char> *>(data);
  489. data_vec->insert(data_vec->end(), (char *)ptr, (char *)ptr + size * nmemb);
  490. return size * nmemb;
  491. };
  492. curl_easy_setopt(curl.get(), CURLOPT_WRITEFUNCTION, static_cast<CURLOPT_WRITEFUNCTION_PTR>(write_callback));
  493. curl_easy_setopt(curl.get(), CURLOPT_WRITEDATA, &res_buffer);
  494. #if defined(_WIN32)
  495. curl_easy_setopt(curl.get(), CURLOPT_SSL_OPTIONS, CURLSSLOPT_NATIVE_CA);
  496. #endif
  497. if (params.timeout > 0) {
  498. curl_easy_setopt(curl.get(), CURLOPT_TIMEOUT, params.timeout);
  499. }
  500. if (params.max_size > 0) {
  501. curl_easy_setopt(curl.get(), CURLOPT_MAXFILESIZE, params.max_size);
  502. }
  503. http_headers.ptr = curl_slist_append(http_headers.ptr, "User-Agent: llama-cpp");
  504. for (const auto & header : params.headers) {
  505. http_headers.ptr = curl_slist_append(http_headers.ptr, header.c_str());
  506. }
  507. curl_easy_setopt(curl.get(), CURLOPT_HTTPHEADER, http_headers.ptr);
  508. CURLcode res = curl_easy_perform(curl.get());
  509. if (res != CURLE_OK) {
  510. std::string error_msg = curl_easy_strerror(res);
  511. throw std::runtime_error("error: cannot make GET request: " + error_msg);
  512. }
  513. long res_code;
  514. curl_easy_getinfo(curl.get(), CURLINFO_RESPONSE_CODE, &res_code);
  515. return { res_code, std::move(res_buffer) };
  516. }
  517. /**
  518. * Allow getting the HF file from the HF repo with tag (like ollama), for example:
  519. * - bartowski/Llama-3.2-3B-Instruct-GGUF:q4
  520. * - bartowski/Llama-3.2-3B-Instruct-GGUF:Q4_K_M
  521. * - bartowski/Llama-3.2-3B-Instruct-GGUF:q5_k_s
  522. * Tag is optional, default to "latest" (meaning it checks for Q4_K_M first, then Q4, then if not found, return the first GGUF file in repo)
  523. *
  524. * Return pair of <repo, file> (with "repo" already having tag removed)
  525. *
  526. * Note: we use the Ollama-compatible HF API, but not using the blobId. Instead, we use the special "ggufFile" field which returns the value for "hf_file". This is done to be backward-compatible with existing cache files.
  527. */
  528. static struct common_hf_file_res common_get_hf_file(const std::string & hf_repo_with_tag, const std::string & bearer_token) {
  529. auto parts = string_split<std::string>(hf_repo_with_tag, ':');
  530. std::string tag = parts.size() > 1 ? parts.back() : "latest";
  531. std::string hf_repo = parts[0];
  532. if (string_split<std::string>(hf_repo, '/').size() != 2) {
  533. throw std::invalid_argument("error: invalid HF repo format, expected <user>/<model>[:quant]\n");
  534. }
  535. std::string url = get_model_endpoint() + "v2/" + hf_repo + "/manifests/" + tag;
  536. // headers
  537. std::vector<std::string> headers;
  538. headers.push_back("Accept: application/json");
  539. if (!bearer_token.empty()) {
  540. headers.push_back("Authorization: Bearer " + bearer_token);
  541. }
  542. // Important: the User-Agent must be "llama-cpp" to get the "ggufFile" field in the response
  543. // User-Agent header is already set in common_remote_get_content, no need to set it here
  544. // we use "=" to avoid clashing with other component, while still being allowed on windows
  545. std::string cached_response_fname = "manifest=" + hf_repo + "=" + tag + ".json";
  546. string_replace_all(cached_response_fname, "/", "_");
  547. std::string cached_response_path = fs_get_cache_file(cached_response_fname);
  548. // make the request
  549. common_remote_params params;
  550. params.headers = headers;
  551. long res_code = 0;
  552. std::string res_str;
  553. bool use_cache = false;
  554. try {
  555. auto res = common_remote_get_content(url, params);
  556. res_code = res.first;
  557. res_str = std::string(res.second.data(), res.second.size());
  558. } catch (const std::exception & e) {
  559. LOG_WRN("error: failed to get manifest: %s\n", e.what());
  560. LOG_WRN("try reading from cache\n");
  561. // try to read from cache
  562. try {
  563. res_str = read_file(cached_response_path);
  564. res_code = 200;
  565. use_cache = true;
  566. } catch (const std::exception & e) {
  567. throw std::runtime_error("error: failed to get manifest (check your internet connection)");
  568. }
  569. }
  570. std::string ggufFile;
  571. std::string mmprojFile;
  572. if (res_code == 200 || res_code == 304) {
  573. // extract ggufFile.rfilename in json, using regex
  574. {
  575. std::regex pattern("\"ggufFile\"[\\s\\S]*?\"rfilename\"\\s*:\\s*\"([^\"]+)\"");
  576. std::smatch match;
  577. if (std::regex_search(res_str, match, pattern)) {
  578. ggufFile = match[1].str();
  579. }
  580. }
  581. // extract mmprojFile.rfilename in json, using regex
  582. {
  583. std::regex pattern("\"mmprojFile\"[\\s\\S]*?\"rfilename\"\\s*:\\s*\"([^\"]+)\"");
  584. std::smatch match;
  585. if (std::regex_search(res_str, match, pattern)) {
  586. mmprojFile = match[1].str();
  587. }
  588. }
  589. if (!use_cache) {
  590. // if not using cached response, update the cache file
  591. write_file(cached_response_path, res_str);
  592. }
  593. } else if (res_code == 401) {
  594. throw std::runtime_error("error: model is private or does not exist; if you are accessing a gated model, please provide a valid HF token");
  595. } else {
  596. throw std::runtime_error(string_format("error from HF API, response code: %ld, data: %s", res_code, res_str.c_str()));
  597. }
  598. // check response
  599. if (ggufFile.empty()) {
  600. throw std::runtime_error("error: model does not have ggufFile");
  601. }
  602. return { hf_repo, ggufFile, mmprojFile };
  603. }
  604. #else
  605. bool common_has_curl() {
  606. return false;
  607. }
  608. static bool common_download_file_single(const std::string &, const std::string &, const std::string &) {
  609. LOG_ERR("error: built without CURL, cannot download model from internet\n");
  610. return false;
  611. }
  612. static bool common_download_file_multiple(const std::vector<std::pair<std::string, std::string>> &, const std::string &) {
  613. LOG_ERR("error: built without CURL, cannot download model from the internet\n");
  614. return false;
  615. }
  616. static bool common_download_model(
  617. const common_params_model &,
  618. const std::string &) {
  619. LOG_ERR("error: built without CURL, cannot download model from the internet\n");
  620. return false;
  621. }
  622. static struct common_hf_file_res common_get_hf_file(const std::string &, const std::string &) {
  623. LOG_ERR("error: built without CURL, cannot download model from the internet\n");
  624. return {};
  625. }
  626. std::pair<long, std::vector<char>> common_remote_get_content(const std::string & url, const common_remote_params &) {
  627. if (!url.empty()) {
  628. throw std::runtime_error("error: built without CURL, cannot download model from the internet");
  629. }
  630. return {};
  631. }
  632. #endif // LLAMA_USE_CURL
  633. //
  634. // utils
  635. //
  636. struct handle_model_result {
  637. bool found_mmproj = false;
  638. common_params_model mmproj;
  639. };
  640. static handle_model_result common_params_handle_model(
  641. struct common_params_model & model,
  642. const std::string & bearer_token,
  643. const std::string & model_path_default) {
  644. handle_model_result result;
  645. // handle pre-fill default model path and url based on hf_repo and hf_file
  646. {
  647. if (!model.hf_repo.empty()) {
  648. // short-hand to avoid specifying --hf-file -> default it to --model
  649. if (model.hf_file.empty()) {
  650. if (model.path.empty()) {
  651. auto auto_detected = common_get_hf_file(model.hf_repo, bearer_token);
  652. if (auto_detected.repo.empty() || auto_detected.ggufFile.empty()) {
  653. exit(1); // built without CURL, error message already printed
  654. }
  655. model.hf_repo = auto_detected.repo;
  656. model.hf_file = auto_detected.ggufFile;
  657. if (!auto_detected.mmprojFile.empty()) {
  658. result.found_mmproj = true;
  659. result.mmproj.hf_repo = model.hf_repo;
  660. result.mmproj.hf_file = auto_detected.mmprojFile;
  661. }
  662. } else {
  663. model.hf_file = model.path;
  664. }
  665. }
  666. std::string model_endpoint = get_model_endpoint();
  667. model.url = model_endpoint + model.hf_repo + "/resolve/main/" + model.hf_file;
  668. // make sure model path is present (for caching purposes)
  669. if (model.path.empty()) {
  670. // this is to avoid different repo having same file name, or same file name in different subdirs
  671. std::string filename = model.hf_repo + "_" + model.hf_file;
  672. // to make sure we don't have any slashes in the filename
  673. string_replace_all(filename, "/", "_");
  674. model.path = fs_get_cache_file(filename);
  675. }
  676. } else if (!model.url.empty()) {
  677. if (model.path.empty()) {
  678. auto f = string_split<std::string>(model.url, '#').front();
  679. f = string_split<std::string>(f, '?').front();
  680. model.path = fs_get_cache_file(string_split<std::string>(f, '/').back());
  681. }
  682. } else if (model.path.empty()) {
  683. model.path = model_path_default;
  684. }
  685. }
  686. // then, download it if needed
  687. if (!model.url.empty()) {
  688. bool ok = common_download_model(model, bearer_token);
  689. if (!ok) {
  690. LOG_ERR("error: failed to download model from %s\n", model.url.c_str());
  691. exit(1);
  692. }
  693. }
  694. return result;
  695. }
  696. const std::vector<ggml_type> kv_cache_types = {
  697. GGML_TYPE_F32,
  698. GGML_TYPE_F16,
  699. GGML_TYPE_BF16,
  700. GGML_TYPE_Q8_0,
  701. GGML_TYPE_Q4_0,
  702. GGML_TYPE_Q4_1,
  703. GGML_TYPE_IQ4_NL,
  704. GGML_TYPE_Q5_0,
  705. GGML_TYPE_Q5_1,
  706. };
  707. static ggml_type kv_cache_type_from_str(const std::string & s) {
  708. for (const auto & type : kv_cache_types) {
  709. if (ggml_type_name(type) == s) {
  710. return type;
  711. }
  712. }
  713. throw std::runtime_error("Unsupported cache type: " + s);
  714. }
  715. static std::string get_all_kv_cache_types() {
  716. std::ostringstream msg;
  717. for (const auto & type : kv_cache_types) {
  718. msg << ggml_type_name(type) << (&type == &kv_cache_types.back() ? "" : ", ");
  719. }
  720. return msg.str();
  721. }
  722. //
  723. // CLI argument parsing functions
  724. //
  725. static bool common_params_parse_ex(int argc, char ** argv, common_params_context & ctx_arg) {
  726. std::string arg;
  727. const std::string arg_prefix = "--";
  728. common_params & params = ctx_arg.params;
  729. std::unordered_map<std::string, common_arg *> arg_to_options;
  730. for (auto & opt : ctx_arg.options) {
  731. for (const auto & arg : opt.args) {
  732. arg_to_options[arg] = &opt;
  733. }
  734. }
  735. // handle environment variables
  736. for (auto & opt : ctx_arg.options) {
  737. std::string value;
  738. if (opt.get_value_from_env(value)) {
  739. try {
  740. if (opt.handler_void && (value == "1" || value == "true")) {
  741. opt.handler_void(params);
  742. }
  743. if (opt.handler_int) {
  744. opt.handler_int(params, std::stoi(value));
  745. }
  746. if (opt.handler_string) {
  747. opt.handler_string(params, value);
  748. continue;
  749. }
  750. } catch (std::exception & e) {
  751. throw std::invalid_argument(string_format(
  752. "error while handling environment variable \"%s\": %s\n\n", opt.env, e.what()));
  753. }
  754. }
  755. }
  756. // handle command line arguments
  757. auto check_arg = [&](int i) {
  758. if (i+1 >= argc) {
  759. throw std::invalid_argument("expected value for argument");
  760. }
  761. };
  762. for (int i = 1; i < argc; i++) {
  763. const std::string arg_prefix = "--";
  764. std::string arg = argv[i];
  765. if (arg.compare(0, arg_prefix.size(), arg_prefix) == 0) {
  766. std::replace(arg.begin(), arg.end(), '_', '-');
  767. }
  768. if (arg_to_options.find(arg) == arg_to_options.end()) {
  769. throw std::invalid_argument(string_format("error: invalid argument: %s", arg.c_str()));
  770. }
  771. auto opt = *arg_to_options[arg];
  772. if (opt.has_value_from_env()) {
  773. fprintf(stderr, "warn: %s environment variable is set, but will be overwritten by command line argument %s\n", opt.env, arg.c_str());
  774. }
  775. try {
  776. if (opt.handler_void) {
  777. opt.handler_void(params);
  778. continue;
  779. }
  780. // arg with single value
  781. check_arg(i);
  782. std::string val = argv[++i];
  783. if (opt.handler_int) {
  784. opt.handler_int(params, std::stoi(val));
  785. continue;
  786. }
  787. if (opt.handler_string) {
  788. opt.handler_string(params, val);
  789. continue;
  790. }
  791. // arg with 2 values
  792. check_arg(i);
  793. std::string val2 = argv[++i];
  794. if (opt.handler_str_str) {
  795. opt.handler_str_str(params, val, val2);
  796. continue;
  797. }
  798. } catch (std::exception & e) {
  799. throw std::invalid_argument(string_format(
  800. "error while handling argument \"%s\": %s\n\n"
  801. "usage:\n%s\n\nto show complete usage, run with -h",
  802. arg.c_str(), e.what(), arg_to_options[arg]->to_string().c_str()));
  803. }
  804. }
  805. postprocess_cpu_params(params.cpuparams, nullptr);
  806. postprocess_cpu_params(params.cpuparams_batch, &params.cpuparams);
  807. postprocess_cpu_params(params.speculative.cpuparams, &params.cpuparams);
  808. postprocess_cpu_params(params.speculative.cpuparams_batch, &params.cpuparams_batch);
  809. if (params.prompt_cache_all && (params.interactive || params.interactive_first)) {
  810. throw std::invalid_argument("error: --prompt-cache-all not supported in interactive mode yet\n");
  811. }
  812. // handle model and download
  813. {
  814. auto res = common_params_handle_model(params.model, params.hf_token, DEFAULT_MODEL_PATH);
  815. if (params.no_mmproj) {
  816. params.mmproj = {};
  817. } else if (res.found_mmproj && params.mmproj.path.empty() && params.mmproj.url.empty()) {
  818. // optionally, handle mmproj model when -hf is specified
  819. params.mmproj = res.mmproj;
  820. }
  821. // only download mmproj if the current example is using it
  822. for (auto & ex : mmproj_examples) {
  823. if (ctx_arg.ex == ex) {
  824. common_params_handle_model(params.mmproj, params.hf_token, "");
  825. break;
  826. }
  827. }
  828. common_params_handle_model(params.speculative.model, params.hf_token, "");
  829. common_params_handle_model(params.vocoder.model, params.hf_token, "");
  830. }
  831. if (params.escape) {
  832. string_process_escapes(params.prompt);
  833. string_process_escapes(params.input_prefix);
  834. string_process_escapes(params.input_suffix);
  835. for (auto & antiprompt : params.antiprompt) {
  836. string_process_escapes(antiprompt);
  837. }
  838. for (auto & seq_breaker : params.sampling.dry_sequence_breakers) {
  839. string_process_escapes(seq_breaker);
  840. }
  841. }
  842. if (!params.kv_overrides.empty()) {
  843. params.kv_overrides.emplace_back();
  844. params.kv_overrides.back().key[0] = 0;
  845. }
  846. if (!params.tensor_buft_overrides.empty()) {
  847. params.tensor_buft_overrides.push_back({nullptr, nullptr});
  848. }
  849. if (params.reranking && params.embedding) {
  850. throw std::invalid_argument("error: either --embedding or --reranking can be specified, but not both");
  851. }
  852. if (!params.chat_template.empty() && !common_chat_verify_template(params.chat_template, params.use_jinja)) {
  853. throw std::runtime_error(string_format(
  854. "error: the supplied chat template is not supported: %s%s\n",
  855. params.chat_template.c_str(),
  856. params.use_jinja ? "" : "\nnote: llama.cpp was started without --jinja, we only support commonly used templates"
  857. ));
  858. }
  859. return true;
  860. }
  861. static void common_params_print_usage(common_params_context & ctx_arg) {
  862. auto print_options = [](std::vector<common_arg *> & options) {
  863. for (common_arg * opt : options) {
  864. printf("%s", opt->to_string().c_str());
  865. }
  866. };
  867. std::vector<common_arg *> common_options;
  868. std::vector<common_arg *> sparam_options;
  869. std::vector<common_arg *> specific_options;
  870. for (auto & opt : ctx_arg.options) {
  871. // in case multiple LLAMA_EXAMPLE_* are set, we prioritize the LLAMA_EXAMPLE_* matching current example
  872. if (opt.is_sparam) {
  873. sparam_options.push_back(&opt);
  874. } else if (opt.in_example(ctx_arg.ex)) {
  875. specific_options.push_back(&opt);
  876. } else {
  877. common_options.push_back(&opt);
  878. }
  879. }
  880. printf("----- common params -----\n\n");
  881. print_options(common_options);
  882. printf("\n\n----- sampling params -----\n\n");
  883. print_options(sparam_options);
  884. // TODO: maybe convert enum llama_example to string
  885. printf("\n\n----- example-specific params -----\n\n");
  886. print_options(specific_options);
  887. }
  888. static void common_params_print_completion(common_params_context & ctx_arg) {
  889. std::vector<common_arg *> common_options;
  890. std::vector<common_arg *> sparam_options;
  891. std::vector<common_arg *> specific_options;
  892. for (auto & opt : ctx_arg.options) {
  893. if (opt.is_sparam) {
  894. sparam_options.push_back(&opt);
  895. } else if (opt.in_example(ctx_arg.ex)) {
  896. specific_options.push_back(&opt);
  897. } else {
  898. common_options.push_back(&opt);
  899. }
  900. }
  901. printf("_llama_completions() {\n");
  902. printf(" local cur prev opts\n");
  903. printf(" COMPREPLY=()\n");
  904. printf(" cur=\"${COMP_WORDS[COMP_CWORD]}\"\n");
  905. printf(" prev=\"${COMP_WORDS[COMP_CWORD-1]}\"\n\n");
  906. printf(" opts=\"");
  907. auto print_options = [](const std::vector<common_arg *> & options) {
  908. for (const common_arg * opt : options) {
  909. for (const char * arg : opt->args) {
  910. printf("%s ", arg);
  911. }
  912. }
  913. };
  914. print_options(common_options);
  915. print_options(sparam_options);
  916. print_options(specific_options);
  917. printf("\"\n\n");
  918. printf(" case \"$prev\" in\n");
  919. printf(" --model)\n");
  920. printf(" COMPREPLY=( $(compgen -f -X '!*.gguf' -- \"$cur\") $(compgen -d -- \"$cur\") )\n");
  921. printf(" return 0\n");
  922. printf(" ;;\n");
  923. printf(" --grammar-file)\n");
  924. printf(" COMPREPLY=( $(compgen -f -X '!*.gbnf' -- \"$cur\") $(compgen -d -- \"$cur\") )\n");
  925. printf(" return 0\n");
  926. printf(" ;;\n");
  927. printf(" --chat-template-file)\n");
  928. printf(" COMPREPLY=( $(compgen -f -X '!*.jinja' -- \"$cur\") $(compgen -d -- \"$cur\") )\n");
  929. printf(" return 0\n");
  930. printf(" ;;\n");
  931. printf(" *)\n");
  932. printf(" COMPREPLY=( $(compgen -W \"${opts}\" -- \"$cur\") )\n");
  933. printf(" return 0\n");
  934. printf(" ;;\n");
  935. printf(" esac\n");
  936. printf("}\n\n");
  937. std::set<std::string> executables = {
  938. "llama-batched",
  939. "llama-batched-bench",
  940. "llama-bench",
  941. "llama-cli",
  942. "llama-convert-llama2c-to-ggml",
  943. "llama-cvector-generator",
  944. "llama-embedding",
  945. "llama-eval-callback",
  946. "llama-export-lora",
  947. "llama-gen-docs",
  948. "llama-gguf",
  949. "llama-gguf-hash",
  950. "llama-gguf-split",
  951. "llama-gritlm",
  952. "llama-imatrix",
  953. "llama-infill",
  954. "llama-mtmd-cli",
  955. "llama-llava-clip-quantize-cli",
  956. "llama-lookahead",
  957. "llama-lookup",
  958. "llama-lookup-create",
  959. "llama-lookup-merge",
  960. "llama-lookup-stats",
  961. "llama-parallel",
  962. "llama-passkey",
  963. "llama-perplexity",
  964. "llama-q8dot",
  965. "llama-quantize",
  966. "llama-qwen2vl-cli",
  967. "llama-retrieval",
  968. "llama-run",
  969. "llama-save-load-state",
  970. "llama-server",
  971. "llama-simple",
  972. "llama-simple-chat",
  973. "llama-speculative",
  974. "llama-speculative-simple",
  975. "llama-tokenize",
  976. "llama-tts",
  977. "llama-vdot"
  978. };
  979. for (const auto& exe : executables) {
  980. printf("complete -F _llama_completions %s\n", exe.c_str());
  981. }
  982. }
  983. static std::vector<ggml_backend_dev_t> parse_device_list(const std::string & value) {
  984. std::vector<ggml_backend_dev_t> devices;
  985. auto dev_names = string_split<std::string>(value, ',');
  986. if (dev_names.empty()) {
  987. throw std::invalid_argument("no devices specified");
  988. }
  989. if (dev_names.size() == 1 && dev_names[0] == "none") {
  990. devices.push_back(nullptr);
  991. } else {
  992. for (const auto & device : dev_names) {
  993. auto * dev = ggml_backend_dev_by_name(device.c_str());
  994. if (!dev || ggml_backend_dev_type(dev) != GGML_BACKEND_DEVICE_TYPE_GPU) {
  995. throw std::invalid_argument(string_format("invalid device: %s", device.c_str()));
  996. }
  997. devices.push_back(dev);
  998. }
  999. devices.push_back(nullptr);
  1000. }
  1001. return devices;
  1002. }
  1003. static void add_rpc_devices(std::string servers) {
  1004. auto rpc_servers = string_split<std::string>(servers, ',');
  1005. if (rpc_servers.empty()) {
  1006. throw std::invalid_argument("no RPC servers specified");
  1007. }
  1008. ggml_backend_reg_t rpc_reg = ggml_backend_reg_by_name("RPC");
  1009. if (!rpc_reg) {
  1010. throw std::invalid_argument("failed to find RPC backend");
  1011. }
  1012. typedef ggml_backend_dev_t (*ggml_backend_rpc_add_device_t)(const char * endpoint);
  1013. ggml_backend_rpc_add_device_t ggml_backend_rpc_add_device_fn = (ggml_backend_rpc_add_device_t) ggml_backend_reg_get_proc_address(rpc_reg, "ggml_backend_rpc_add_device");
  1014. if (!ggml_backend_rpc_add_device_fn) {
  1015. throw std::invalid_argument("failed to find RPC device add function");
  1016. }
  1017. for (const auto & server : rpc_servers) {
  1018. ggml_backend_dev_t dev = ggml_backend_rpc_add_device_fn(server.c_str());
  1019. if (dev) {
  1020. ggml_backend_device_register(dev);
  1021. } else {
  1022. throw std::invalid_argument("failed to register RPC device");
  1023. }
  1024. }
  1025. }
  1026. bool common_params_parse(int argc, char ** argv, common_params & params, llama_example ex, void(*print_usage)(int, char **)) {
  1027. auto ctx_arg = common_params_parser_init(params, ex, print_usage);
  1028. const common_params params_org = ctx_arg.params; // the example can modify the default params
  1029. try {
  1030. if (!common_params_parse_ex(argc, argv, ctx_arg)) {
  1031. ctx_arg.params = params_org;
  1032. return false;
  1033. }
  1034. if (ctx_arg.params.usage) {
  1035. common_params_print_usage(ctx_arg);
  1036. if (ctx_arg.print_usage) {
  1037. ctx_arg.print_usage(argc, argv);
  1038. }
  1039. exit(0);
  1040. }
  1041. if (ctx_arg.params.completion) {
  1042. common_params_print_completion(ctx_arg);
  1043. exit(0);
  1044. }
  1045. } catch (const std::invalid_argument & ex) {
  1046. fprintf(stderr, "%s\n", ex.what());
  1047. ctx_arg.params = params_org;
  1048. return false;
  1049. } catch (std::exception & ex) {
  1050. fprintf(stderr, "%s\n", ex.what());
  1051. exit(1); // for other exceptions, we exit with status code 1
  1052. }
  1053. return true;
  1054. }
  1055. static std::string list_builtin_chat_templates() {
  1056. std::vector<const char *> supported_tmpl;
  1057. int32_t res = llama_chat_builtin_templates(nullptr, 0);
  1058. supported_tmpl.resize(res);
  1059. res = llama_chat_builtin_templates(supported_tmpl.data(), supported_tmpl.size());
  1060. std::ostringstream msg;
  1061. for (auto & tmpl : supported_tmpl) {
  1062. msg << tmpl << (&tmpl == &supported_tmpl.back() ? "" : ", ");
  1063. }
  1064. return msg.str();
  1065. }
  1066. common_params_context common_params_parser_init(common_params & params, llama_example ex, void(*print_usage)(int, char **)) {
  1067. // load dynamic backends
  1068. ggml_backend_load_all();
  1069. common_params_context ctx_arg(params);
  1070. ctx_arg.print_usage = print_usage;
  1071. ctx_arg.ex = ex;
  1072. std::string sampler_type_chars;
  1073. std::string sampler_type_names;
  1074. for (const auto & sampler : params.sampling.samplers) {
  1075. sampler_type_chars += common_sampler_type_to_chr(sampler);
  1076. sampler_type_names += common_sampler_type_to_str(sampler) + ";";
  1077. }
  1078. sampler_type_names.pop_back();
  1079. /**
  1080. * filter options by example
  1081. * rules:
  1082. * - all examples inherit options from LLAMA_EXAMPLE_COMMON
  1083. * - if LLAMA_EXAMPLE_* is set (other than COMMON), we only show the option in the corresponding example
  1084. * - if both {LLAMA_EXAMPLE_COMMON, LLAMA_EXAMPLE_*,} are set, we will prioritize the LLAMA_EXAMPLE_* matching current example
  1085. */
  1086. auto add_opt = [&](common_arg arg) {
  1087. if ((arg.in_example(ex) || arg.in_example(LLAMA_EXAMPLE_COMMON)) && !arg.is_exclude(ex)) {
  1088. ctx_arg.options.push_back(std::move(arg));
  1089. }
  1090. };
  1091. add_opt(common_arg(
  1092. {"-h", "--help", "--usage"},
  1093. "print usage and exit",
  1094. [](common_params & params) {
  1095. params.usage = true;
  1096. }
  1097. ));
  1098. add_opt(common_arg(
  1099. {"--version"},
  1100. "show version and build info",
  1101. [](common_params &) {
  1102. fprintf(stderr, "version: %d (%s)\n", LLAMA_BUILD_NUMBER, LLAMA_COMMIT);
  1103. fprintf(stderr, "built with %s for %s\n", LLAMA_COMPILER, LLAMA_BUILD_TARGET);
  1104. exit(0);
  1105. }
  1106. ));
  1107. add_opt(common_arg(
  1108. {"--completion-bash"},
  1109. "print source-able bash completion script for llama.cpp",
  1110. [](common_params & params) {
  1111. params.completion = true;
  1112. }
  1113. ));
  1114. add_opt(common_arg(
  1115. {"--verbose-prompt"},
  1116. string_format("print a verbose prompt before generation (default: %s)", params.verbose_prompt ? "true" : "false"),
  1117. [](common_params & params) {
  1118. params.verbose_prompt = true;
  1119. }
  1120. ));
  1121. add_opt(common_arg(
  1122. {"--no-display-prompt"},
  1123. string_format("don't print prompt at generation (default: %s)", !params.display_prompt ? "true" : "false"),
  1124. [](common_params & params) {
  1125. params.display_prompt = false;
  1126. }
  1127. ).set_examples({LLAMA_EXAMPLE_MAIN}));
  1128. add_opt(common_arg(
  1129. {"-co", "--color"},
  1130. string_format("colorise output to distinguish prompt and user input from generations (default: %s)", params.use_color ? "true" : "false"),
  1131. [](common_params & params) {
  1132. params.use_color = true;
  1133. }
  1134. ).set_examples({LLAMA_EXAMPLE_MAIN, LLAMA_EXAMPLE_INFILL, LLAMA_EXAMPLE_SPECULATIVE, LLAMA_EXAMPLE_LOOKUP}));
  1135. add_opt(common_arg(
  1136. {"-t", "--threads"}, "N",
  1137. string_format("number of threads to use during generation (default: %d)", params.cpuparams.n_threads),
  1138. [](common_params & params, int value) {
  1139. params.cpuparams.n_threads = value;
  1140. if (params.cpuparams.n_threads <= 0) {
  1141. params.cpuparams.n_threads = std::thread::hardware_concurrency();
  1142. }
  1143. }
  1144. ).set_env("LLAMA_ARG_THREADS"));
  1145. add_opt(common_arg(
  1146. {"-tb", "--threads-batch"}, "N",
  1147. "number of threads to use during batch and prompt processing (default: same as --threads)",
  1148. [](common_params & params, int value) {
  1149. params.cpuparams_batch.n_threads = value;
  1150. if (params.cpuparams_batch.n_threads <= 0) {
  1151. params.cpuparams_batch.n_threads = std::thread::hardware_concurrency();
  1152. }
  1153. }
  1154. ));
  1155. add_opt(common_arg(
  1156. {"-C", "--cpu-mask"}, "M",
  1157. "CPU affinity mask: arbitrarily long hex. Complements cpu-range (default: \"\")",
  1158. [](common_params & params, const std::string & mask) {
  1159. params.cpuparams.mask_valid = true;
  1160. if (!parse_cpu_mask(mask, params.cpuparams.cpumask)) {
  1161. throw std::invalid_argument("invalid cpumask");
  1162. }
  1163. }
  1164. ));
  1165. add_opt(common_arg(
  1166. {"-Cr", "--cpu-range"}, "lo-hi",
  1167. "range of CPUs for affinity. Complements --cpu-mask",
  1168. [](common_params & params, const std::string & range) {
  1169. params.cpuparams.mask_valid = true;
  1170. if (!parse_cpu_range(range, params.cpuparams.cpumask)) {
  1171. throw std::invalid_argument("invalid range");
  1172. }
  1173. }
  1174. ));
  1175. add_opt(common_arg(
  1176. {"--cpu-strict"}, "<0|1>",
  1177. string_format("use strict CPU placement (default: %u)\n", (unsigned) params.cpuparams.strict_cpu),
  1178. [](common_params & params, const std::string & value) {
  1179. params.cpuparams.strict_cpu = std::stoul(value);
  1180. }
  1181. ));
  1182. add_opt(common_arg(
  1183. {"--prio"}, "N",
  1184. string_format("set process/thread priority : 0-normal, 1-medium, 2-high, 3-realtime (default: %d)\n", params.cpuparams.priority),
  1185. [](common_params & params, int prio) {
  1186. if (prio < 0 || prio > 3) {
  1187. throw std::invalid_argument("invalid value");
  1188. }
  1189. params.cpuparams.priority = (enum ggml_sched_priority) prio;
  1190. }
  1191. ));
  1192. add_opt(common_arg(
  1193. {"--poll"}, "<0...100>",
  1194. string_format("use polling level to wait for work (0 - no polling, default: %u)\n", (unsigned) params.cpuparams.poll),
  1195. [](common_params & params, const std::string & value) {
  1196. params.cpuparams.poll = std::stoul(value);
  1197. }
  1198. ));
  1199. add_opt(common_arg(
  1200. {"-Cb", "--cpu-mask-batch"}, "M",
  1201. "CPU affinity mask: arbitrarily long hex. Complements cpu-range-batch (default: same as --cpu-mask)",
  1202. [](common_params & params, const std::string & mask) {
  1203. params.cpuparams_batch.mask_valid = true;
  1204. if (!parse_cpu_mask(mask, params.cpuparams_batch.cpumask)) {
  1205. throw std::invalid_argument("invalid cpumask");
  1206. }
  1207. }
  1208. ));
  1209. add_opt(common_arg(
  1210. {"-Crb", "--cpu-range-batch"}, "lo-hi",
  1211. "ranges of CPUs for affinity. Complements --cpu-mask-batch",
  1212. [](common_params & params, const std::string & range) {
  1213. params.cpuparams_batch.mask_valid = true;
  1214. if (!parse_cpu_range(range, params.cpuparams_batch.cpumask)) {
  1215. throw std::invalid_argument("invalid range");
  1216. }
  1217. }
  1218. ));
  1219. add_opt(common_arg(
  1220. {"--cpu-strict-batch"}, "<0|1>",
  1221. "use strict CPU placement (default: same as --cpu-strict)",
  1222. [](common_params & params, int value) {
  1223. params.cpuparams_batch.strict_cpu = value;
  1224. }
  1225. ));
  1226. add_opt(common_arg(
  1227. {"--prio-batch"}, "N",
  1228. string_format("set process/thread priority : 0-normal, 1-medium, 2-high, 3-realtime (default: %d)\n", params.cpuparams_batch.priority),
  1229. [](common_params & params, int prio) {
  1230. if (prio < 0 || prio > 3) {
  1231. throw std::invalid_argument("invalid value");
  1232. }
  1233. params.cpuparams_batch.priority = (enum ggml_sched_priority) prio;
  1234. }
  1235. ));
  1236. add_opt(common_arg(
  1237. {"--poll-batch"}, "<0|1>",
  1238. "use polling to wait for work (default: same as --poll)",
  1239. [](common_params & params, int value) {
  1240. params.cpuparams_batch.poll = value;
  1241. }
  1242. ));
  1243. add_opt(common_arg(
  1244. {"-lcs", "--lookup-cache-static"}, "FNAME",
  1245. "path to static lookup cache to use for lookup decoding (not updated by generation)",
  1246. [](common_params & params, const std::string & value) {
  1247. params.lookup_cache_static = value;
  1248. }
  1249. ).set_examples({LLAMA_EXAMPLE_LOOKUP}));
  1250. add_opt(common_arg(
  1251. {"-lcd", "--lookup-cache-dynamic"}, "FNAME",
  1252. "path to dynamic lookup cache to use for lookup decoding (updated by generation)",
  1253. [](common_params & params, const std::string & value) {
  1254. params.lookup_cache_dynamic = value;
  1255. }
  1256. ).set_examples({LLAMA_EXAMPLE_LOOKUP}));
  1257. add_opt(common_arg(
  1258. {"-c", "--ctx-size"}, "N",
  1259. string_format("size of the prompt context (default: %d, 0 = loaded from model)", params.n_ctx),
  1260. [](common_params & params, int value) {
  1261. params.n_ctx = value;
  1262. }
  1263. ).set_env("LLAMA_ARG_CTX_SIZE"));
  1264. add_opt(common_arg(
  1265. {"-n", "--predict", "--n-predict"}, "N",
  1266. string_format(
  1267. ex == LLAMA_EXAMPLE_MAIN || ex == LLAMA_EXAMPLE_INFILL
  1268. ? "number of tokens to predict (default: %d, -1 = infinity, -2 = until context filled)"
  1269. : "number of tokens to predict (default: %d, -1 = infinity)",
  1270. params.n_predict),
  1271. [](common_params & params, int value) {
  1272. params.n_predict = value;
  1273. }
  1274. ).set_env("LLAMA_ARG_N_PREDICT"));
  1275. add_opt(common_arg(
  1276. {"-b", "--batch-size"}, "N",
  1277. string_format("logical maximum batch size (default: %d)", params.n_batch),
  1278. [](common_params & params, int value) {
  1279. params.n_batch = value;
  1280. }
  1281. ).set_env("LLAMA_ARG_BATCH"));
  1282. add_opt(common_arg(
  1283. {"-ub", "--ubatch-size"}, "N",
  1284. string_format("physical maximum batch size (default: %d)", params.n_ubatch),
  1285. [](common_params & params, int value) {
  1286. params.n_ubatch = value;
  1287. }
  1288. ).set_env("LLAMA_ARG_UBATCH"));
  1289. add_opt(common_arg(
  1290. {"--keep"}, "N",
  1291. string_format("number of tokens to keep from the initial prompt (default: %d, -1 = all)", params.n_keep),
  1292. [](common_params & params, int value) {
  1293. params.n_keep = value;
  1294. }
  1295. ));
  1296. add_opt(common_arg(
  1297. {"--no-context-shift"},
  1298. string_format("disables context shift on infinite text generation (default: %s)", params.ctx_shift ? "disabled" : "enabled"),
  1299. [](common_params & params) {
  1300. params.ctx_shift = false;
  1301. }
  1302. ).set_examples({LLAMA_EXAMPLE_MAIN, LLAMA_EXAMPLE_SERVER, LLAMA_EXAMPLE_IMATRIX, LLAMA_EXAMPLE_PERPLEXITY}).set_env("LLAMA_ARG_NO_CONTEXT_SHIFT"));
  1303. add_opt(common_arg(
  1304. {"--chunks"}, "N",
  1305. string_format("max number of chunks to process (default: %d, -1 = all)", params.n_chunks),
  1306. [](common_params & params, int value) {
  1307. params.n_chunks = value;
  1308. }
  1309. ).set_examples({LLAMA_EXAMPLE_IMATRIX, LLAMA_EXAMPLE_PERPLEXITY, LLAMA_EXAMPLE_RETRIEVAL}));
  1310. add_opt(common_arg(
  1311. {"-fa", "--flash-attn"},
  1312. string_format("enable Flash Attention (default: %s)", params.flash_attn ? "enabled" : "disabled"),
  1313. [](common_params & params) {
  1314. params.flash_attn = true;
  1315. }
  1316. ).set_env("LLAMA_ARG_FLASH_ATTN"));
  1317. add_opt(common_arg(
  1318. {"-p", "--prompt"}, "PROMPT",
  1319. "prompt to start generation with; for system message, use -sys",
  1320. [](common_params & params, const std::string & value) {
  1321. params.prompt = value;
  1322. }
  1323. ).set_excludes({LLAMA_EXAMPLE_SERVER}));
  1324. add_opt(common_arg(
  1325. {"-sys", "--system-prompt"}, "PROMPT",
  1326. "system prompt to use with model (if applicable, depending on chat template)",
  1327. [](common_params & params, const std::string & value) {
  1328. params.system_prompt = value;
  1329. }
  1330. ).set_examples({LLAMA_EXAMPLE_MAIN}));
  1331. add_opt(common_arg(
  1332. {"--no-perf"},
  1333. string_format("disable internal libllama performance timings (default: %s)", params.no_perf ? "true" : "false"),
  1334. [](common_params & params) {
  1335. params.no_perf = true;
  1336. params.sampling.no_perf = true;
  1337. }
  1338. ).set_env("LLAMA_ARG_NO_PERF"));
  1339. add_opt(common_arg(
  1340. {"-f", "--file"}, "FNAME",
  1341. "a file containing the prompt (default: none)",
  1342. [](common_params & params, const std::string & value) {
  1343. params.prompt = read_file(value);
  1344. // store the external file name in params
  1345. params.prompt_file = value;
  1346. if (!params.prompt.empty() && params.prompt.back() == '\n') {
  1347. params.prompt.pop_back();
  1348. }
  1349. }
  1350. ).set_excludes({LLAMA_EXAMPLE_SERVER}));
  1351. add_opt(common_arg(
  1352. {"-sysf", "--system-prompt-file"}, "FNAME",
  1353. "a file containing the system prompt (default: none)",
  1354. [](common_params & params, const std::string & value) {
  1355. params.system_prompt = read_file(value);
  1356. if (!params.system_prompt.empty() && params.system_prompt.back() == '\n') {
  1357. params.system_prompt.pop_back();
  1358. }
  1359. }
  1360. ).set_examples({LLAMA_EXAMPLE_MAIN}));
  1361. add_opt(common_arg(
  1362. {"--in-file"}, "FNAME",
  1363. "an input file (repeat to specify multiple files)",
  1364. [](common_params & params, const std::string & value) {
  1365. std::ifstream file(value);
  1366. if (!file) {
  1367. throw std::runtime_error(string_format("error: failed to open file '%s'\n", value.c_str()));
  1368. }
  1369. params.in_files.push_back(value);
  1370. }
  1371. ).set_examples({LLAMA_EXAMPLE_IMATRIX}));
  1372. add_opt(common_arg(
  1373. {"-bf", "--binary-file"}, "FNAME",
  1374. "binary file containing the prompt (default: none)",
  1375. [](common_params & params, const std::string & value) {
  1376. std::ifstream file(value, std::ios::binary);
  1377. if (!file) {
  1378. throw std::runtime_error(string_format("error: failed to open file '%s'\n", value.c_str()));
  1379. }
  1380. // store the external file name in params
  1381. params.prompt_file = value;
  1382. std::ostringstream ss;
  1383. ss << file.rdbuf();
  1384. params.prompt = ss.str();
  1385. fprintf(stderr, "Read %zu bytes from binary file %s\n", params.prompt.size(), value.c_str());
  1386. }
  1387. ).set_excludes({LLAMA_EXAMPLE_SERVER}));
  1388. add_opt(common_arg(
  1389. {"-e", "--escape"},
  1390. string_format("process escapes sequences (\\n, \\r, \\t, \\', \\\", \\\\) (default: %s)", params.escape ? "true" : "false"),
  1391. [](common_params & params) {
  1392. params.escape = true;
  1393. }
  1394. ));
  1395. add_opt(common_arg(
  1396. {"--no-escape"},
  1397. "do not process escape sequences",
  1398. [](common_params & params) {
  1399. params.escape = false;
  1400. }
  1401. ));
  1402. add_opt(common_arg(
  1403. {"-ptc", "--print-token-count"}, "N",
  1404. string_format("print token count every N tokens (default: %d)", params.n_print),
  1405. [](common_params & params, int value) {
  1406. params.n_print = value;
  1407. }
  1408. ).set_examples({LLAMA_EXAMPLE_MAIN}));
  1409. add_opt(common_arg(
  1410. {"--prompt-cache"}, "FNAME",
  1411. "file to cache prompt state for faster startup (default: none)",
  1412. [](common_params & params, const std::string & value) {
  1413. params.path_prompt_cache = value;
  1414. }
  1415. ).set_examples({LLAMA_EXAMPLE_MAIN}));
  1416. add_opt(common_arg(
  1417. {"--prompt-cache-all"},
  1418. "if specified, saves user input and generations to cache as well\n",
  1419. [](common_params & params) {
  1420. params.prompt_cache_all = true;
  1421. }
  1422. ).set_examples({LLAMA_EXAMPLE_MAIN}));
  1423. add_opt(common_arg(
  1424. {"--prompt-cache-ro"},
  1425. "if specified, uses the prompt cache but does not update it",
  1426. [](common_params & params) {
  1427. params.prompt_cache_ro = true;
  1428. }
  1429. ).set_examples({LLAMA_EXAMPLE_MAIN}));
  1430. add_opt(common_arg(
  1431. {"-r", "--reverse-prompt"}, "PROMPT",
  1432. "halt generation at PROMPT, return control in interactive mode\n",
  1433. [](common_params & params, const std::string & value) {
  1434. params.antiprompt.emplace_back(value);
  1435. }
  1436. ).set_examples({LLAMA_EXAMPLE_MAIN}));
  1437. add_opt(common_arg(
  1438. {"-sp", "--special"},
  1439. string_format("special tokens output enabled (default: %s)", params.special ? "true" : "false"),
  1440. [](common_params & params) {
  1441. params.special = true;
  1442. }
  1443. ).set_examples({LLAMA_EXAMPLE_MAIN, LLAMA_EXAMPLE_SERVER}));
  1444. add_opt(common_arg(
  1445. {"-cnv", "--conversation"},
  1446. "run in conversation mode:\n"
  1447. "- does not print special tokens and suffix/prefix\n"
  1448. "- interactive mode is also enabled\n"
  1449. "(default: auto enabled if chat template is available)",
  1450. [](common_params & params) {
  1451. params.conversation_mode = COMMON_CONVERSATION_MODE_ENABLED;
  1452. }
  1453. ).set_examples({LLAMA_EXAMPLE_MAIN}));
  1454. add_opt(common_arg(
  1455. {"-no-cnv", "--no-conversation"},
  1456. "force disable conversation mode (default: false)",
  1457. [](common_params & params) {
  1458. params.conversation_mode = COMMON_CONVERSATION_MODE_DISABLED;
  1459. }
  1460. ).set_examples({LLAMA_EXAMPLE_MAIN}));
  1461. add_opt(common_arg(
  1462. {"-st", "--single-turn"},
  1463. "run conversation for a single turn only, then exit when done\n"
  1464. "will not be interactive if first turn is predefined with --prompt\n"
  1465. "(default: false)",
  1466. [](common_params & params) {
  1467. params.single_turn = true;
  1468. }
  1469. ).set_examples({LLAMA_EXAMPLE_MAIN}));
  1470. add_opt(common_arg(
  1471. {"-i", "--interactive"},
  1472. string_format("run in interactive mode (default: %s)", params.interactive ? "true" : "false"),
  1473. [](common_params & params) {
  1474. params.interactive = true;
  1475. }
  1476. ).set_examples({LLAMA_EXAMPLE_MAIN}));
  1477. add_opt(common_arg(
  1478. {"-if", "--interactive-first"},
  1479. string_format("run in interactive mode and wait for input right away (default: %s)", params.interactive_first ? "true" : "false"),
  1480. [](common_params & params) {
  1481. params.interactive_first = true;
  1482. }
  1483. ).set_examples({LLAMA_EXAMPLE_MAIN}));
  1484. add_opt(common_arg(
  1485. {"-mli", "--multiline-input"},
  1486. "allows you to write or paste multiple lines without ending each in '\\'",
  1487. [](common_params & params) {
  1488. params.multiline_input = true;
  1489. }
  1490. ).set_examples({LLAMA_EXAMPLE_MAIN}));
  1491. add_opt(common_arg(
  1492. {"--in-prefix-bos"},
  1493. "prefix BOS to user inputs, preceding the `--in-prefix` string",
  1494. [](common_params & params) {
  1495. params.input_prefix_bos = true;
  1496. params.enable_chat_template = false;
  1497. }
  1498. ).set_examples({LLAMA_EXAMPLE_MAIN}));
  1499. add_opt(common_arg(
  1500. {"--in-prefix"}, "STRING",
  1501. "string to prefix user inputs with (default: empty)",
  1502. [](common_params & params, const std::string & value) {
  1503. params.input_prefix = value;
  1504. params.enable_chat_template = false;
  1505. }
  1506. ).set_examples({LLAMA_EXAMPLE_MAIN, LLAMA_EXAMPLE_INFILL}));
  1507. add_opt(common_arg(
  1508. {"--in-suffix"}, "STRING",
  1509. "string to suffix after user inputs with (default: empty)",
  1510. [](common_params & params, const std::string & value) {
  1511. params.input_suffix = value;
  1512. params.enable_chat_template = false;
  1513. }
  1514. ).set_examples({LLAMA_EXAMPLE_MAIN, LLAMA_EXAMPLE_INFILL}));
  1515. add_opt(common_arg(
  1516. {"--no-warmup"},
  1517. "skip warming up the model with an empty run",
  1518. [](common_params & params) {
  1519. params.warmup = false;
  1520. }
  1521. ).set_examples({LLAMA_EXAMPLE_MAIN, LLAMA_EXAMPLE_SERVER, LLAMA_EXAMPLE_EMBEDDING}));
  1522. add_opt(common_arg(
  1523. {"--spm-infill"},
  1524. string_format(
  1525. "use Suffix/Prefix/Middle pattern for infill (instead of Prefix/Suffix/Middle) as some models prefer this. (default: %s)",
  1526. params.spm_infill ? "enabled" : "disabled"
  1527. ),
  1528. [](common_params & params) {
  1529. params.spm_infill = true;
  1530. }
  1531. ).set_examples({LLAMA_EXAMPLE_SERVER, LLAMA_EXAMPLE_INFILL}));
  1532. add_opt(common_arg(
  1533. {"--samplers"}, "SAMPLERS",
  1534. string_format("samplers that will be used for generation in the order, separated by \';\'\n(default: %s)", sampler_type_names.c_str()),
  1535. [](common_params & params, const std::string & value) {
  1536. const auto sampler_names = string_split<std::string>(value, ';');
  1537. params.sampling.samplers = common_sampler_types_from_names(sampler_names, true);
  1538. }
  1539. ).set_sparam());
  1540. add_opt(common_arg(
  1541. {"-s", "--seed"}, "SEED",
  1542. string_format("RNG seed (default: %d, use random seed for %d)", params.sampling.seed, LLAMA_DEFAULT_SEED),
  1543. [](common_params & params, const std::string & value) {
  1544. params.sampling.seed = std::stoul(value);
  1545. }
  1546. ).set_sparam());
  1547. add_opt(common_arg(
  1548. {"--sampling-seq", "--sampler-seq"}, "SEQUENCE",
  1549. string_format("simplified sequence for samplers that will be used (default: %s)", sampler_type_chars.c_str()),
  1550. [](common_params & params, const std::string & value) {
  1551. params.sampling.samplers = common_sampler_types_from_chars(value);
  1552. }
  1553. ).set_sparam());
  1554. add_opt(common_arg(
  1555. {"--ignore-eos"},
  1556. "ignore end of stream token and continue generating (implies --logit-bias EOS-inf)",
  1557. [](common_params & params) {
  1558. params.sampling.ignore_eos = true;
  1559. }
  1560. ).set_sparam());
  1561. add_opt(common_arg(
  1562. {"--temp"}, "N",
  1563. string_format("temperature (default: %.1f)", (double)params.sampling.temp),
  1564. [](common_params & params, const std::string & value) {
  1565. params.sampling.temp = std::stof(value);
  1566. params.sampling.temp = std::max(params.sampling.temp, 0.0f);
  1567. }
  1568. ).set_sparam());
  1569. add_opt(common_arg(
  1570. {"--top-k"}, "N",
  1571. string_format("top-k sampling (default: %d, 0 = disabled)", params.sampling.top_k),
  1572. [](common_params & params, int value) {
  1573. params.sampling.top_k = value;
  1574. }
  1575. ).set_sparam());
  1576. add_opt(common_arg(
  1577. {"--top-p"}, "N",
  1578. string_format("top-p sampling (default: %.1f, 1.0 = disabled)", (double)params.sampling.top_p),
  1579. [](common_params & params, const std::string & value) {
  1580. params.sampling.top_p = std::stof(value);
  1581. }
  1582. ).set_sparam());
  1583. add_opt(common_arg(
  1584. {"--min-p"}, "N",
  1585. string_format("min-p sampling (default: %.1f, 0.0 = disabled)", (double)params.sampling.min_p),
  1586. [](common_params & params, const std::string & value) {
  1587. params.sampling.min_p = std::stof(value);
  1588. }
  1589. ).set_sparam());
  1590. add_opt(common_arg(
  1591. {"--top-nsigma"}, "N",
  1592. string_format("top-n-sigma sampling (default: %.1f, -1.0 = disabled)", params.sampling.top_n_sigma),
  1593. [](common_params & params, const std::string & value) {
  1594. params.sampling.top_n_sigma = std::stof(value);
  1595. }
  1596. ).set_examples({LLAMA_EXAMPLE_MAIN}).set_sparam());
  1597. add_opt(common_arg(
  1598. {"--xtc-probability"}, "N",
  1599. string_format("xtc probability (default: %.1f, 0.0 = disabled)", (double)params.sampling.xtc_probability),
  1600. [](common_params & params, const std::string & value) {
  1601. params.sampling.xtc_probability = std::stof(value);
  1602. }
  1603. ).set_sparam());
  1604. add_opt(common_arg(
  1605. {"--xtc-threshold"}, "N",
  1606. string_format("xtc threshold (default: %.1f, 1.0 = disabled)", (double)params.sampling.xtc_threshold),
  1607. [](common_params & params, const std::string & value) {
  1608. params.sampling.xtc_threshold = std::stof(value);
  1609. }
  1610. ).set_sparam());
  1611. add_opt(common_arg(
  1612. {"--typical"}, "N",
  1613. string_format("locally typical sampling, parameter p (default: %.1f, 1.0 = disabled)", (double)params.sampling.typ_p),
  1614. [](common_params & params, const std::string & value) {
  1615. params.sampling.typ_p = std::stof(value);
  1616. }
  1617. ).set_sparam());
  1618. add_opt(common_arg(
  1619. {"--repeat-last-n"}, "N",
  1620. string_format("last n tokens to consider for penalize (default: %d, 0 = disabled, -1 = ctx_size)", params.sampling.penalty_last_n),
  1621. [](common_params & params, int value) {
  1622. if (value < -1) {
  1623. throw std::runtime_error(string_format("error: invalid repeat-last-n = %d\n", value));
  1624. }
  1625. params.sampling.penalty_last_n = value;
  1626. params.sampling.n_prev = std::max(params.sampling.n_prev, params.sampling.penalty_last_n);
  1627. }
  1628. ).set_sparam());
  1629. add_opt(common_arg(
  1630. {"--repeat-penalty"}, "N",
  1631. string_format("penalize repeat sequence of tokens (default: %.1f, 1.0 = disabled)", (double)params.sampling.penalty_repeat),
  1632. [](common_params & params, const std::string & value) {
  1633. params.sampling.penalty_repeat = std::stof(value);
  1634. }
  1635. ).set_sparam());
  1636. add_opt(common_arg(
  1637. {"--presence-penalty"}, "N",
  1638. string_format("repeat alpha presence penalty (default: %.1f, 0.0 = disabled)", (double)params.sampling.penalty_present),
  1639. [](common_params & params, const std::string & value) {
  1640. params.sampling.penalty_present = std::stof(value);
  1641. }
  1642. ).set_sparam());
  1643. add_opt(common_arg(
  1644. {"--frequency-penalty"}, "N",
  1645. string_format("repeat alpha frequency penalty (default: %.1f, 0.0 = disabled)", (double)params.sampling.penalty_freq),
  1646. [](common_params & params, const std::string & value) {
  1647. params.sampling.penalty_freq = std::stof(value);
  1648. }
  1649. ).set_sparam());
  1650. add_opt(common_arg(
  1651. {"--dry-multiplier"}, "N",
  1652. string_format("set DRY sampling multiplier (default: %.1f, 0.0 = disabled)", (double)params.sampling.dry_multiplier),
  1653. [](common_params & params, const std::string & value) {
  1654. params.sampling.dry_multiplier = std::stof(value);
  1655. }
  1656. ).set_sparam());
  1657. add_opt(common_arg(
  1658. {"--dry-base"}, "N",
  1659. string_format("set DRY sampling base value (default: %.2f)", (double)params.sampling.dry_base),
  1660. [](common_params & params, const std::string & value) {
  1661. float potential_base = std::stof(value);
  1662. if (potential_base >= 1.0f)
  1663. {
  1664. params.sampling.dry_base = potential_base;
  1665. }
  1666. }
  1667. ).set_sparam());
  1668. add_opt(common_arg(
  1669. {"--dry-allowed-length"}, "N",
  1670. string_format("set allowed length for DRY sampling (default: %d)", params.sampling.dry_allowed_length),
  1671. [](common_params & params, int value) {
  1672. params.sampling.dry_allowed_length = value;
  1673. }
  1674. ).set_sparam());
  1675. add_opt(common_arg(
  1676. {"--dry-penalty-last-n"}, "N",
  1677. string_format("set DRY penalty for the last n tokens (default: %d, 0 = disable, -1 = context size)", params.sampling.dry_penalty_last_n),
  1678. [](common_params & params, int value) {
  1679. if (value < -1) {
  1680. throw std::runtime_error(string_format("error: invalid dry-penalty-last-n = %d\n", value));
  1681. }
  1682. params.sampling.dry_penalty_last_n = value;
  1683. }
  1684. ).set_sparam());
  1685. add_opt(common_arg(
  1686. {"--dry-sequence-breaker"}, "STRING",
  1687. string_format("add sequence breaker for DRY sampling, clearing out default breakers (%s) in the process; use \"none\" to not use any sequence breakers\n",
  1688. params.sampling.dry_sequence_breakers.empty() ? "none" :
  1689. std::accumulate(std::next(params.sampling.dry_sequence_breakers.begin()),
  1690. params.sampling.dry_sequence_breakers.end(),
  1691. std::string("'") + (params.sampling.dry_sequence_breakers[0] == "\n" ? "\\n" : params.sampling.dry_sequence_breakers[0]) + "'",
  1692. [](const std::string& a, const std::string& b) {
  1693. std::string formatted_b = (b == "\n") ? "\\n" : b;
  1694. return a + ", '" + formatted_b + "'";
  1695. }).c_str()),
  1696. [](common_params & params, const std::string & value) {
  1697. static bool defaults_cleared = false;
  1698. if (!defaults_cleared) {
  1699. params.sampling.dry_sequence_breakers.clear();
  1700. defaults_cleared = true;
  1701. }
  1702. if (value == "none") {
  1703. params.sampling.dry_sequence_breakers.clear();
  1704. } else {
  1705. params.sampling.dry_sequence_breakers.emplace_back(value);
  1706. }
  1707. }
  1708. ).set_sparam());
  1709. add_opt(common_arg(
  1710. {"--dynatemp-range"}, "N",
  1711. string_format("dynamic temperature range (default: %.1f, 0.0 = disabled)", (double)params.sampling.dynatemp_range),
  1712. [](common_params & params, const std::string & value) {
  1713. params.sampling.dynatemp_range = std::stof(value);
  1714. }
  1715. ).set_sparam());
  1716. add_opt(common_arg(
  1717. {"--dynatemp-exp"}, "N",
  1718. string_format("dynamic temperature exponent (default: %.1f)", (double)params.sampling.dynatemp_exponent),
  1719. [](common_params & params, const std::string & value) {
  1720. params.sampling.dynatemp_exponent = std::stof(value);
  1721. }
  1722. ).set_sparam());
  1723. add_opt(common_arg(
  1724. {"--mirostat"}, "N",
  1725. string_format("use Mirostat sampling.\nTop K, Nucleus and Locally Typical samplers are ignored if used.\n"
  1726. "(default: %d, 0 = disabled, 1 = Mirostat, 2 = Mirostat 2.0)", params.sampling.mirostat),
  1727. [](common_params & params, int value) {
  1728. params.sampling.mirostat = value;
  1729. }
  1730. ).set_sparam());
  1731. add_opt(common_arg(
  1732. {"--mirostat-lr"}, "N",
  1733. string_format("Mirostat learning rate, parameter eta (default: %.1f)", (double)params.sampling.mirostat_eta),
  1734. [](common_params & params, const std::string & value) {
  1735. params.sampling.mirostat_eta = std::stof(value);
  1736. }
  1737. ).set_sparam());
  1738. add_opt(common_arg(
  1739. {"--mirostat-ent"}, "N",
  1740. string_format("Mirostat target entropy, parameter tau (default: %.1f)", (double)params.sampling.mirostat_tau),
  1741. [](common_params & params, const std::string & value) {
  1742. params.sampling.mirostat_tau = std::stof(value);
  1743. }
  1744. ).set_sparam());
  1745. add_opt(common_arg(
  1746. {"-l", "--logit-bias"}, "TOKEN_ID(+/-)BIAS",
  1747. "modifies the likelihood of token appearing in the completion,\n"
  1748. "i.e. `--logit-bias 15043+1` to increase likelihood of token ' Hello',\n"
  1749. "or `--logit-bias 15043-1` to decrease likelihood of token ' Hello'",
  1750. [](common_params & params, const std::string & value) {
  1751. std::stringstream ss(value);
  1752. llama_token key;
  1753. char sign;
  1754. std::string value_str;
  1755. try {
  1756. if (ss >> key && ss >> sign && std::getline(ss, value_str) && (sign == '+' || sign == '-')) {
  1757. const float bias = std::stof(value_str) * ((sign == '-') ? -1.0f : 1.0f);
  1758. params.sampling.logit_bias.push_back({key, bias});
  1759. } else {
  1760. throw std::invalid_argument("invalid input format");
  1761. }
  1762. } catch (const std::exception&) {
  1763. throw std::invalid_argument("invalid input format");
  1764. }
  1765. }
  1766. ).set_sparam());
  1767. add_opt(common_arg(
  1768. {"--grammar"}, "GRAMMAR",
  1769. string_format("BNF-like grammar to constrain generations (see samples in grammars/ dir) (default: '%s')", params.sampling.grammar.c_str()),
  1770. [](common_params & params, const std::string & value) {
  1771. params.sampling.grammar = value;
  1772. }
  1773. ).set_sparam());
  1774. add_opt(common_arg(
  1775. {"--grammar-file"}, "FNAME",
  1776. "file to read grammar from",
  1777. [](common_params & params, const std::string & value) {
  1778. params.sampling.grammar = read_file(value);
  1779. }
  1780. ).set_sparam());
  1781. add_opt(common_arg(
  1782. {"-j", "--json-schema"}, "SCHEMA",
  1783. "JSON schema to constrain generations (https://json-schema.org/), e.g. `{}` for any JSON object\nFor schemas w/ external $refs, use --grammar + example/json_schema_to_grammar.py instead",
  1784. [](common_params & params, const std::string & value) {
  1785. params.sampling.grammar = json_schema_to_grammar(json::parse(value));
  1786. }
  1787. ).set_sparam());
  1788. add_opt(common_arg(
  1789. {"--pooling"}, "{none,mean,cls,last,rank}",
  1790. "pooling type for embeddings, use model default if unspecified",
  1791. [](common_params & params, const std::string & value) {
  1792. /**/ if (value == "none") { params.pooling_type = LLAMA_POOLING_TYPE_NONE; }
  1793. else if (value == "mean") { params.pooling_type = LLAMA_POOLING_TYPE_MEAN; }
  1794. else if (value == "cls") { params.pooling_type = LLAMA_POOLING_TYPE_CLS; }
  1795. else if (value == "last") { params.pooling_type = LLAMA_POOLING_TYPE_LAST; }
  1796. else if (value == "rank") { params.pooling_type = LLAMA_POOLING_TYPE_RANK; }
  1797. else { throw std::invalid_argument("invalid value"); }
  1798. }
  1799. ).set_examples({LLAMA_EXAMPLE_EMBEDDING, LLAMA_EXAMPLE_RETRIEVAL, LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_POOLING"));
  1800. add_opt(common_arg(
  1801. {"--attention"}, "{causal,non-causal}",
  1802. "attention type for embeddings, use model default if unspecified",
  1803. [](common_params & params, const std::string & value) {
  1804. /**/ if (value == "causal") { params.attention_type = LLAMA_ATTENTION_TYPE_CAUSAL; }
  1805. else if (value == "non-causal") { params.attention_type = LLAMA_ATTENTION_TYPE_NON_CAUSAL; }
  1806. else { throw std::invalid_argument("invalid value"); }
  1807. }
  1808. ).set_examples({LLAMA_EXAMPLE_EMBEDDING}));
  1809. add_opt(common_arg(
  1810. {"--rope-scaling"}, "{none,linear,yarn}",
  1811. "RoPE frequency scaling method, defaults to linear unless specified by the model",
  1812. [](common_params & params, const std::string & value) {
  1813. /**/ if (value == "none") { params.rope_scaling_type = LLAMA_ROPE_SCALING_TYPE_NONE; }
  1814. else if (value == "linear") { params.rope_scaling_type = LLAMA_ROPE_SCALING_TYPE_LINEAR; }
  1815. else if (value == "yarn") { params.rope_scaling_type = LLAMA_ROPE_SCALING_TYPE_YARN; }
  1816. else { throw std::invalid_argument("invalid value"); }
  1817. }
  1818. ).set_env("LLAMA_ARG_ROPE_SCALING_TYPE"));
  1819. add_opt(common_arg(
  1820. {"--rope-scale"}, "N",
  1821. "RoPE context scaling factor, expands context by a factor of N",
  1822. [](common_params & params, const std::string & value) {
  1823. params.rope_freq_scale = 1.0f / std::stof(value);
  1824. }
  1825. ).set_env("LLAMA_ARG_ROPE_SCALE"));
  1826. add_opt(common_arg(
  1827. {"--rope-freq-base"}, "N",
  1828. "RoPE base frequency, used by NTK-aware scaling (default: loaded from model)",
  1829. [](common_params & params, const std::string & value) {
  1830. params.rope_freq_base = std::stof(value);
  1831. }
  1832. ).set_env("LLAMA_ARG_ROPE_FREQ_BASE"));
  1833. add_opt(common_arg(
  1834. {"--rope-freq-scale"}, "N",
  1835. "RoPE frequency scaling factor, expands context by a factor of 1/N",
  1836. [](common_params & params, const std::string & value) {
  1837. params.rope_freq_scale = std::stof(value);
  1838. }
  1839. ).set_env("LLAMA_ARG_ROPE_FREQ_SCALE"));
  1840. add_opt(common_arg(
  1841. {"--yarn-orig-ctx"}, "N",
  1842. string_format("YaRN: original context size of model (default: %d = model training context size)", params.yarn_orig_ctx),
  1843. [](common_params & params, int value) {
  1844. params.yarn_orig_ctx = value;
  1845. }
  1846. ).set_env("LLAMA_ARG_YARN_ORIG_CTX"));
  1847. add_opt(common_arg(
  1848. {"--yarn-ext-factor"}, "N",
  1849. string_format("YaRN: extrapolation mix factor (default: %.1f, 0.0 = full interpolation)", (double)params.yarn_ext_factor),
  1850. [](common_params & params, const std::string & value) {
  1851. params.yarn_ext_factor = std::stof(value);
  1852. }
  1853. ).set_env("LLAMA_ARG_YARN_EXT_FACTOR"));
  1854. add_opt(common_arg(
  1855. {"--yarn-attn-factor"}, "N",
  1856. string_format("YaRN: scale sqrt(t) or attention magnitude (default: %.1f)", (double)params.yarn_attn_factor),
  1857. [](common_params & params, const std::string & value) {
  1858. params.yarn_attn_factor = std::stof(value);
  1859. }
  1860. ).set_env("LLAMA_ARG_YARN_ATTN_FACTOR"));
  1861. add_opt(common_arg(
  1862. {"--yarn-beta-slow"}, "N",
  1863. string_format("YaRN: high correction dim or alpha (default: %.1f)", (double)params.yarn_beta_slow),
  1864. [](common_params & params, const std::string & value) {
  1865. params.yarn_beta_slow = std::stof(value);
  1866. }
  1867. ).set_env("LLAMA_ARG_YARN_BETA_SLOW"));
  1868. add_opt(common_arg(
  1869. {"--yarn-beta-fast"}, "N",
  1870. string_format("YaRN: low correction dim or beta (default: %.1f)", (double)params.yarn_beta_fast),
  1871. [](common_params & params, const std::string & value) {
  1872. params.yarn_beta_fast = std::stof(value);
  1873. }
  1874. ).set_env("LLAMA_ARG_YARN_BETA_FAST"));
  1875. add_opt(common_arg(
  1876. {"-gan", "--grp-attn-n"}, "N",
  1877. string_format("group-attention factor (default: %d)", params.grp_attn_n),
  1878. [](common_params & params, int value) {
  1879. params.grp_attn_n = value;
  1880. }
  1881. ).set_env("LLAMA_ARG_GRP_ATTN_N").set_examples({LLAMA_EXAMPLE_MAIN, LLAMA_EXAMPLE_PASSKEY}));
  1882. add_opt(common_arg(
  1883. {"-gaw", "--grp-attn-w"}, "N",
  1884. string_format("group-attention width (default: %d)", params.grp_attn_w),
  1885. [](common_params & params, int value) {
  1886. params.grp_attn_w = value;
  1887. }
  1888. ).set_env("LLAMA_ARG_GRP_ATTN_W").set_examples({LLAMA_EXAMPLE_MAIN}));
  1889. add_opt(common_arg(
  1890. {"-dkvc", "--dump-kv-cache"},
  1891. "verbose print of the KV cache",
  1892. [](common_params & params) {
  1893. params.dump_kv_cache = true;
  1894. }
  1895. ));
  1896. add_opt(common_arg(
  1897. {"-nkvo", "--no-kv-offload"},
  1898. "disable KV offload",
  1899. [](common_params & params) {
  1900. params.no_kv_offload = true;
  1901. }
  1902. ).set_env("LLAMA_ARG_NO_KV_OFFLOAD"));
  1903. add_opt(common_arg(
  1904. {"-ctk", "--cache-type-k"}, "TYPE",
  1905. string_format(
  1906. "KV cache data type for K\n"
  1907. "allowed values: %s\n"
  1908. "(default: %s)",
  1909. get_all_kv_cache_types().c_str(),
  1910. ggml_type_name(params.cache_type_k)
  1911. ),
  1912. [](common_params & params, const std::string & value) {
  1913. params.cache_type_k = kv_cache_type_from_str(value);
  1914. }
  1915. ).set_env("LLAMA_ARG_CACHE_TYPE_K"));
  1916. add_opt(common_arg(
  1917. {"-ctv", "--cache-type-v"}, "TYPE",
  1918. string_format(
  1919. "KV cache data type for V\n"
  1920. "allowed values: %s\n"
  1921. "(default: %s)",
  1922. get_all_kv_cache_types().c_str(),
  1923. ggml_type_name(params.cache_type_v)
  1924. ),
  1925. [](common_params & params, const std::string & value) {
  1926. params.cache_type_v = kv_cache_type_from_str(value);
  1927. }
  1928. ).set_env("LLAMA_ARG_CACHE_TYPE_V"));
  1929. add_opt(common_arg(
  1930. {"--perplexity", "--all-logits"},
  1931. string_format("return logits for all tokens in the batch (default: %s)", params.logits_all ? "true" : "false"),
  1932. [](common_params & params) {
  1933. params.logits_all = true;
  1934. }
  1935. ).set_examples({LLAMA_EXAMPLE_PERPLEXITY}));
  1936. add_opt(common_arg(
  1937. {"--hellaswag"},
  1938. "compute HellaSwag score over random tasks from datafile supplied with -f",
  1939. [](common_params & params) {
  1940. params.hellaswag = true;
  1941. }
  1942. ).set_examples({LLAMA_EXAMPLE_PERPLEXITY}));
  1943. add_opt(common_arg(
  1944. {"--hellaswag-tasks"}, "N",
  1945. string_format("number of tasks to use when computing the HellaSwag score (default: %zu)", params.hellaswag_tasks),
  1946. [](common_params & params, int value) {
  1947. params.hellaswag_tasks = value;
  1948. }
  1949. ).set_examples({LLAMA_EXAMPLE_PERPLEXITY}));
  1950. add_opt(common_arg(
  1951. {"--winogrande"},
  1952. "compute Winogrande score over random tasks from datafile supplied with -f",
  1953. [](common_params & params) {
  1954. params.winogrande = true;
  1955. }
  1956. ).set_examples({LLAMA_EXAMPLE_PERPLEXITY}));
  1957. add_opt(common_arg(
  1958. {"--winogrande-tasks"}, "N",
  1959. string_format("number of tasks to use when computing the Winogrande score (default: %zu)", params.winogrande_tasks),
  1960. [](common_params & params, int value) {
  1961. params.winogrande_tasks = value;
  1962. }
  1963. ).set_examples({LLAMA_EXAMPLE_PERPLEXITY}));
  1964. add_opt(common_arg(
  1965. {"--multiple-choice"},
  1966. "compute multiple choice score over random tasks from datafile supplied with -f",
  1967. [](common_params & params) {
  1968. params.multiple_choice = true;
  1969. }
  1970. ).set_examples({LLAMA_EXAMPLE_PERPLEXITY}));
  1971. add_opt(common_arg(
  1972. {"--multiple-choice-tasks"}, "N",
  1973. string_format("number of tasks to use when computing the multiple choice score (default: %zu)", params.multiple_choice_tasks),
  1974. [](common_params & params, int value) {
  1975. params.multiple_choice_tasks = value;
  1976. }
  1977. ).set_examples({LLAMA_EXAMPLE_PERPLEXITY}));
  1978. add_opt(common_arg(
  1979. {"--kl-divergence"},
  1980. "computes KL-divergence to logits provided via --kl-divergence-base",
  1981. [](common_params & params) {
  1982. params.kl_divergence = true;
  1983. }
  1984. ).set_examples({LLAMA_EXAMPLE_PERPLEXITY}));
  1985. add_opt(common_arg(
  1986. {"--save-all-logits", "--kl-divergence-base"}, "FNAME",
  1987. "set logits file",
  1988. [](common_params & params, const std::string & value) {
  1989. params.logits_file = value;
  1990. }
  1991. ).set_examples({LLAMA_EXAMPLE_PERPLEXITY}));
  1992. add_opt(common_arg(
  1993. {"--ppl-stride"}, "N",
  1994. string_format("stride for perplexity calculation (default: %d)", params.ppl_stride),
  1995. [](common_params & params, int value) {
  1996. params.ppl_stride = value;
  1997. }
  1998. ).set_examples({LLAMA_EXAMPLE_PERPLEXITY}));
  1999. add_opt(common_arg(
  2000. {"--ppl-output-type"}, "<0|1>",
  2001. string_format("output type for perplexity calculation (default: %d)", params.ppl_output_type),
  2002. [](common_params & params, int value) {
  2003. params.ppl_output_type = value;
  2004. }
  2005. ).set_examples({LLAMA_EXAMPLE_PERPLEXITY}));
  2006. add_opt(common_arg(
  2007. {"-dt", "--defrag-thold"}, "N",
  2008. string_format("KV cache defragmentation threshold (default: %.1f, < 0 - disabled)", (double)params.defrag_thold),
  2009. [](common_params & params, const std::string & value) {
  2010. params.defrag_thold = std::stof(value);
  2011. }
  2012. ).set_env("LLAMA_ARG_DEFRAG_THOLD"));
  2013. add_opt(common_arg(
  2014. {"-np", "--parallel"}, "N",
  2015. string_format("number of parallel sequences to decode (default: %d)", params.n_parallel),
  2016. [](common_params & params, int value) {
  2017. params.n_parallel = value;
  2018. }
  2019. ).set_env("LLAMA_ARG_N_PARALLEL"));
  2020. add_opt(common_arg(
  2021. {"-ns", "--sequences"}, "N",
  2022. string_format("number of sequences to decode (default: %d)", params.n_sequences),
  2023. [](common_params & params, int value) {
  2024. params.n_sequences = value;
  2025. }
  2026. ).set_examples({LLAMA_EXAMPLE_PARALLEL}));
  2027. add_opt(common_arg(
  2028. {"-cb", "--cont-batching"},
  2029. string_format("enable continuous batching (a.k.a dynamic batching) (default: %s)", params.cont_batching ? "enabled" : "disabled"),
  2030. [](common_params & params) {
  2031. params.cont_batching = true;
  2032. }
  2033. ).set_examples({LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_CONT_BATCHING"));
  2034. add_opt(common_arg(
  2035. {"-nocb", "--no-cont-batching"},
  2036. "disable continuous batching",
  2037. [](common_params & params) {
  2038. params.cont_batching = false;
  2039. }
  2040. ).set_examples({LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_NO_CONT_BATCHING"));
  2041. add_opt(common_arg(
  2042. {"--mmproj"}, "FILE",
  2043. "path to a multimodal projector file. see examples/llava/README.md",
  2044. [](common_params & params, const std::string & value) {
  2045. params.mmproj.path = value;
  2046. }
  2047. ).set_examples(mmproj_examples));
  2048. add_opt(common_arg(
  2049. {"--mmproj-url"}, "URL",
  2050. "URL to a multimodal projector file. see examples/llava/README.md",
  2051. [](common_params & params, const std::string & value) {
  2052. params.mmproj.url = value;
  2053. }
  2054. ).set_examples(mmproj_examples));
  2055. add_opt(common_arg(
  2056. {"--no-mmproj"},
  2057. "explicitly disable multimodal projector, useful when using -hf",
  2058. [](common_params & params) {
  2059. params.no_mmproj = true;
  2060. }
  2061. ).set_examples(mmproj_examples));
  2062. add_opt(common_arg(
  2063. {"--no-mmproj-offload"},
  2064. "do not offload multimodal projector to GPU",
  2065. [](common_params & params) {
  2066. params.mmproj_use_gpu = false;
  2067. }
  2068. ).set_examples(mmproj_examples));
  2069. add_opt(common_arg(
  2070. {"--image"}, "FILE",
  2071. "path to an image file. use with multimodal models. Specify multiple times for batching",
  2072. [](common_params & params, const std::string & value) {
  2073. params.image.emplace_back(value);
  2074. }
  2075. ).set_examples({LLAMA_EXAMPLE_LLAVA}));
  2076. if (llama_supports_rpc()) {
  2077. add_opt(common_arg(
  2078. {"--rpc"}, "SERVERS",
  2079. "comma separated list of RPC servers",
  2080. [](common_params & params, const std::string & value) {
  2081. add_rpc_devices(value);
  2082. GGML_UNUSED(params);
  2083. }
  2084. ).set_env("LLAMA_ARG_RPC"));
  2085. }
  2086. add_opt(common_arg(
  2087. {"--mlock"},
  2088. "force system to keep model in RAM rather than swapping or compressing",
  2089. [](common_params & params) {
  2090. params.use_mlock = true;
  2091. }
  2092. ).set_env("LLAMA_ARG_MLOCK"));
  2093. add_opt(common_arg(
  2094. {"--no-mmap"},
  2095. "do not memory-map model (slower load but may reduce pageouts if not using mlock)",
  2096. [](common_params & params) {
  2097. params.use_mmap = false;
  2098. }
  2099. ).set_env("LLAMA_ARG_NO_MMAP"));
  2100. add_opt(common_arg(
  2101. {"--numa"}, "TYPE",
  2102. "attempt optimizations that help on some NUMA systems\n"
  2103. "- distribute: spread execution evenly over all nodes\n"
  2104. "- isolate: only spawn threads on CPUs on the node that execution started on\n"
  2105. "- numactl: use the CPU map provided by numactl\n"
  2106. "if run without this previously, it is recommended to drop the system page cache before using this\n"
  2107. "see https://github.com/ggml-org/llama.cpp/issues/1437",
  2108. [](common_params & params, const std::string & value) {
  2109. /**/ if (value == "distribute" || value == "") { params.numa = GGML_NUMA_STRATEGY_DISTRIBUTE; }
  2110. else if (value == "isolate") { params.numa = GGML_NUMA_STRATEGY_ISOLATE; }
  2111. else if (value == "numactl") { params.numa = GGML_NUMA_STRATEGY_NUMACTL; }
  2112. else { throw std::invalid_argument("invalid value"); }
  2113. }
  2114. ).set_env("LLAMA_ARG_NUMA"));
  2115. add_opt(common_arg(
  2116. {"-dev", "--device"}, "<dev1,dev2,..>",
  2117. "comma-separated list of devices to use for offloading (none = don't offload)\n"
  2118. "use --list-devices to see a list of available devices",
  2119. [](common_params & params, const std::string & value) {
  2120. params.devices = parse_device_list(value);
  2121. }
  2122. ).set_env("LLAMA_ARG_DEVICE"));
  2123. add_opt(common_arg(
  2124. {"--list-devices"},
  2125. "print list of available devices and exit",
  2126. [](common_params &) {
  2127. std::vector<ggml_backend_dev_t> rpc_devices;
  2128. std::vector<ggml_backend_dev_t> all_devices;
  2129. for (size_t i = 0; i < ggml_backend_dev_count(); ++i) {
  2130. auto * dev = ggml_backend_dev_get(i);
  2131. if (ggml_backend_dev_type(dev) == GGML_BACKEND_DEVICE_TYPE_GPU) {
  2132. ggml_backend_reg_t reg = ggml_backend_dev_backend_reg(dev);
  2133. if (ggml_backend_reg_name(reg) == std::string("RPC")) {
  2134. rpc_devices.push_back(dev);
  2135. } else {
  2136. all_devices.push_back(dev);
  2137. }
  2138. }
  2139. }
  2140. // insert RPC devices in front
  2141. all_devices.insert(all_devices.begin(), rpc_devices.begin(), rpc_devices.end());
  2142. printf("Available devices:\n");
  2143. for (size_t i = 0; i < all_devices.size(); ++i) {
  2144. auto * dev = all_devices[i];
  2145. size_t free, total;
  2146. ggml_backend_dev_memory(dev, &free, &total);
  2147. printf(" %s: %s (%zu MiB, %zu MiB free)\n", ggml_backend_dev_name(dev), ggml_backend_dev_description(dev), total / 1024 / 1024, free / 1024 / 1024);
  2148. }
  2149. exit(0);
  2150. }
  2151. ));
  2152. add_opt(common_arg(
  2153. {"--override-tensor", "-ot"}, "<tensor name pattern>=<buffer type>,...",
  2154. "override tensor buffer type", [](common_params & params, const std::string & value) {
  2155. /* static */ std::map<std::string, ggml_backend_buffer_type_t> buft_list;
  2156. if (buft_list.empty()) {
  2157. // enumerate all the devices and add their buffer types to the list
  2158. for (size_t i = 0; i < ggml_backend_dev_count(); ++i) {
  2159. auto * dev = ggml_backend_dev_get(i);
  2160. auto * buft = ggml_backend_dev_buffer_type(dev);
  2161. if (buft) {
  2162. buft_list[ggml_backend_buft_name(buft)] = buft;
  2163. }
  2164. }
  2165. }
  2166. for (const auto & override : string_split<std::string>(value, ',')) {
  2167. std::string::size_type pos = override.find('=');
  2168. if (pos == std::string::npos) {
  2169. throw std::invalid_argument("invalid value");
  2170. }
  2171. std::string tensor_name = override.substr(0, pos);
  2172. std::string buffer_type = override.substr(pos + 1);
  2173. if (buft_list.find(buffer_type) == buft_list.end()) {
  2174. printf("Available buffer types:\n");
  2175. for (const auto & it : buft_list) {
  2176. printf(" %s\n", ggml_backend_buft_name(it.second));
  2177. }
  2178. throw std::invalid_argument("unknown buffer type");
  2179. }
  2180. // FIXME: this leaks memory
  2181. params.tensor_buft_overrides.push_back({strdup(tensor_name.c_str()), buft_list.at(buffer_type)});
  2182. }
  2183. }
  2184. ));
  2185. add_opt(common_arg(
  2186. {"-ngl", "--gpu-layers", "--n-gpu-layers"}, "N",
  2187. "number of layers to store in VRAM",
  2188. [](common_params & params, int value) {
  2189. params.n_gpu_layers = value;
  2190. if (!llama_supports_gpu_offload()) {
  2191. fprintf(stderr, "warning: no usable GPU found, --gpu-layers option will be ignored\n");
  2192. fprintf(stderr, "warning: one possible reason is that llama.cpp was compiled without GPU support\n");
  2193. fprintf(stderr, "warning: consult docs/build.md for compilation instructions\n");
  2194. }
  2195. }
  2196. ).set_env("LLAMA_ARG_N_GPU_LAYERS"));
  2197. add_opt(common_arg(
  2198. {"-sm", "--split-mode"}, "{none,layer,row}",
  2199. "how to split the model across multiple GPUs, one of:\n"
  2200. "- none: use one GPU only\n"
  2201. "- layer (default): split layers and KV across GPUs\n"
  2202. "- row: split rows across GPUs",
  2203. [](common_params & params, const std::string & value) {
  2204. std::string arg_next = value;
  2205. if (arg_next == "none") {
  2206. params.split_mode = LLAMA_SPLIT_MODE_NONE;
  2207. } else if (arg_next == "layer") {
  2208. params.split_mode = LLAMA_SPLIT_MODE_LAYER;
  2209. } else if (arg_next == "row") {
  2210. params.split_mode = LLAMA_SPLIT_MODE_ROW;
  2211. } else {
  2212. throw std::invalid_argument("invalid value");
  2213. }
  2214. if (!llama_supports_gpu_offload()) {
  2215. fprintf(stderr, "warning: llama.cpp was compiled without support for GPU offload. Setting the split mode has no effect.\n");
  2216. }
  2217. }
  2218. ).set_env("LLAMA_ARG_SPLIT_MODE"));
  2219. add_opt(common_arg(
  2220. {"-ts", "--tensor-split"}, "N0,N1,N2,...",
  2221. "fraction of the model to offload to each GPU, comma-separated list of proportions, e.g. 3,1",
  2222. [](common_params & params, const std::string & value) {
  2223. std::string arg_next = value;
  2224. // split string by , and /
  2225. const std::regex regex{ R"([,/]+)" };
  2226. std::sregex_token_iterator it{ arg_next.begin(), arg_next.end(), regex, -1 };
  2227. std::vector<std::string> split_arg{ it, {} };
  2228. if (split_arg.size() >= llama_max_devices()) {
  2229. throw std::invalid_argument(
  2230. string_format("got %d input configs, but system only has %d devices", (int)split_arg.size(), (int)llama_max_devices())
  2231. );
  2232. }
  2233. for (size_t i = 0; i < llama_max_devices(); ++i) {
  2234. if (i < split_arg.size()) {
  2235. params.tensor_split[i] = std::stof(split_arg[i]);
  2236. } else {
  2237. params.tensor_split[i] = 0.0f;
  2238. }
  2239. }
  2240. if (!llama_supports_gpu_offload()) {
  2241. fprintf(stderr, "warning: llama.cpp was compiled without support for GPU offload. Setting a tensor split has no effect.\n");
  2242. }
  2243. }
  2244. ).set_env("LLAMA_ARG_TENSOR_SPLIT"));
  2245. add_opt(common_arg(
  2246. {"-mg", "--main-gpu"}, "INDEX",
  2247. string_format("the GPU to use for the model (with split-mode = none), or for intermediate results and KV (with split-mode = row) (default: %d)", params.main_gpu),
  2248. [](common_params & params, int value) {
  2249. params.main_gpu = value;
  2250. if (!llama_supports_gpu_offload()) {
  2251. fprintf(stderr, "warning: llama.cpp was compiled without support for GPU offload. Setting the main GPU has no effect.\n");
  2252. }
  2253. }
  2254. ).set_env("LLAMA_ARG_MAIN_GPU"));
  2255. add_opt(common_arg(
  2256. {"--check-tensors"},
  2257. string_format("check model tensor data for invalid values (default: %s)", params.check_tensors ? "true" : "false"),
  2258. [](common_params & params) {
  2259. params.check_tensors = true;
  2260. }
  2261. ));
  2262. add_opt(common_arg(
  2263. {"--override-kv"}, "KEY=TYPE:VALUE",
  2264. "advanced option to override model metadata by key. may be specified multiple times.\n"
  2265. "types: int, float, bool, str. example: --override-kv tokenizer.ggml.add_bos_token=bool:false",
  2266. [](common_params & params, const std::string & value) {
  2267. if (!string_parse_kv_override(value.c_str(), params.kv_overrides)) {
  2268. throw std::runtime_error(string_format("error: Invalid type for KV override: %s\n", value.c_str()));
  2269. }
  2270. }
  2271. ));
  2272. add_opt(common_arg(
  2273. {"--lora"}, "FNAME",
  2274. "path to LoRA adapter (can be repeated to use multiple adapters)",
  2275. [](common_params & params, const std::string & value) {
  2276. params.lora_adapters.push_back({ std::string(value), 1.0, nullptr });
  2277. }
  2278. // we define this arg on both COMMON and EXPORT_LORA, so when showing help message of export-lora, it will be categorized as "example-specific" arg
  2279. ).set_examples({LLAMA_EXAMPLE_COMMON, LLAMA_EXAMPLE_EXPORT_LORA}));
  2280. add_opt(common_arg(
  2281. {"--lora-scaled"}, "FNAME", "SCALE",
  2282. "path to LoRA adapter with user defined scaling (can be repeated to use multiple adapters)",
  2283. [](common_params & params, const std::string & fname, const std::string & scale) {
  2284. params.lora_adapters.push_back({ fname, std::stof(scale), nullptr });
  2285. }
  2286. // we define this arg on both COMMON and EXPORT_LORA, so when showing help message of export-lora, it will be categorized as "example-specific" arg
  2287. ).set_examples({LLAMA_EXAMPLE_COMMON, LLAMA_EXAMPLE_EXPORT_LORA}));
  2288. add_opt(common_arg(
  2289. {"--control-vector"}, "FNAME",
  2290. "add a control vector\nnote: this argument can be repeated to add multiple control vectors",
  2291. [](common_params & params, const std::string & value) {
  2292. params.control_vectors.push_back({ 1.0f, value, });
  2293. }
  2294. ));
  2295. add_opt(common_arg(
  2296. {"--control-vector-scaled"}, "FNAME", "SCALE",
  2297. "add a control vector with user defined scaling SCALE\n"
  2298. "note: this argument can be repeated to add multiple scaled control vectors",
  2299. [](common_params & params, const std::string & fname, const std::string & scale) {
  2300. params.control_vectors.push_back({ std::stof(scale), fname });
  2301. }
  2302. ));
  2303. add_opt(common_arg(
  2304. {"--control-vector-layer-range"}, "START", "END",
  2305. "layer range to apply the control vector(s) to, start and end inclusive",
  2306. [](common_params & params, const std::string & start, const std::string & end) {
  2307. params.control_vector_layer_start = std::stoi(start);
  2308. params.control_vector_layer_end = std::stoi(end);
  2309. }
  2310. ));
  2311. add_opt(common_arg(
  2312. {"-a", "--alias"}, "STRING",
  2313. "set alias for model name (to be used by REST API)",
  2314. [](common_params & params, const std::string & value) {
  2315. params.model_alias = value;
  2316. }
  2317. ).set_examples({LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_ALIAS"));
  2318. add_opt(common_arg(
  2319. {"-m", "--model"}, "FNAME",
  2320. ex == LLAMA_EXAMPLE_EXPORT_LORA
  2321. ? std::string("model path from which to load base model")
  2322. : string_format(
  2323. "model path (default: `models/$filename` with filename from `--hf-file` "
  2324. "or `--model-url` if set, otherwise %s)", DEFAULT_MODEL_PATH
  2325. ),
  2326. [](common_params & params, const std::string & value) {
  2327. params.model.path = value;
  2328. }
  2329. ).set_examples({LLAMA_EXAMPLE_COMMON, LLAMA_EXAMPLE_EXPORT_LORA}).set_env("LLAMA_ARG_MODEL"));
  2330. add_opt(common_arg(
  2331. {"-mu", "--model-url"}, "MODEL_URL",
  2332. "model download url (default: unused)",
  2333. [](common_params & params, const std::string & value) {
  2334. params.model.url = value;
  2335. }
  2336. ).set_env("LLAMA_ARG_MODEL_URL"));
  2337. add_opt(common_arg(
  2338. {"-hf", "-hfr", "--hf-repo"}, "<user>/<model>[:quant]",
  2339. "Hugging Face model repository; quant is optional, case-insensitive, default to Q4_K_M, or falls back to the first file in the repo if Q4_K_M doesn't exist.\n"
  2340. "mmproj is also downloaded automatically if available. to disable, add --no-mmproj\n"
  2341. "example: unsloth/phi-4-GGUF:q4_k_m\n"
  2342. "(default: unused)",
  2343. [](common_params & params, const std::string & value) {
  2344. params.model.hf_repo = value;
  2345. }
  2346. ).set_env("LLAMA_ARG_HF_REPO"));
  2347. add_opt(common_arg(
  2348. {"-hfd", "-hfrd", "--hf-repo-draft"}, "<user>/<model>[:quant]",
  2349. "Same as --hf-repo, but for the draft model (default: unused)",
  2350. [](common_params & params, const std::string & value) {
  2351. params.speculative.model.hf_repo = value;
  2352. }
  2353. ).set_env("LLAMA_ARG_HFD_REPO"));
  2354. add_opt(common_arg(
  2355. {"-hff", "--hf-file"}, "FILE",
  2356. "Hugging Face model file. If specified, it will override the quant in --hf-repo (default: unused)",
  2357. [](common_params & params, const std::string & value) {
  2358. params.model.hf_file = value;
  2359. }
  2360. ).set_env("LLAMA_ARG_HF_FILE"));
  2361. add_opt(common_arg(
  2362. {"-hfv", "-hfrv", "--hf-repo-v"}, "<user>/<model>[:quant]",
  2363. "Hugging Face model repository for the vocoder model (default: unused)",
  2364. [](common_params & params, const std::string & value) {
  2365. params.vocoder.model.hf_repo = value;
  2366. }
  2367. ).set_env("LLAMA_ARG_HF_REPO_V"));
  2368. add_opt(common_arg(
  2369. {"-hffv", "--hf-file-v"}, "FILE",
  2370. "Hugging Face model file for the vocoder model (default: unused)",
  2371. [](common_params & params, const std::string & value) {
  2372. params.vocoder.model.hf_file = value;
  2373. }
  2374. ).set_env("LLAMA_ARG_HF_FILE_V"));
  2375. add_opt(common_arg(
  2376. {"-hft", "--hf-token"}, "TOKEN",
  2377. "Hugging Face access token (default: value from HF_TOKEN environment variable)",
  2378. [](common_params & params, const std::string & value) {
  2379. params.hf_token = value;
  2380. }
  2381. ).set_env("HF_TOKEN"));
  2382. add_opt(common_arg(
  2383. {"--context-file"}, "FNAME",
  2384. "file to load context from (repeat to specify multiple files)",
  2385. [](common_params & params, const std::string & value) {
  2386. std::ifstream file(value, std::ios::binary);
  2387. if (!file) {
  2388. throw std::runtime_error(string_format("error: failed to open file '%s'\n", value.c_str()));
  2389. }
  2390. params.context_files.push_back(value);
  2391. }
  2392. ).set_examples({LLAMA_EXAMPLE_RETRIEVAL}));
  2393. add_opt(common_arg(
  2394. {"--chunk-size"}, "N",
  2395. string_format("minimum length of embedded text chunks (default: %d)", params.chunk_size),
  2396. [](common_params & params, int value) {
  2397. params.chunk_size = value;
  2398. }
  2399. ).set_examples({LLAMA_EXAMPLE_RETRIEVAL}));
  2400. add_opt(common_arg(
  2401. {"--chunk-separator"}, "STRING",
  2402. string_format("separator between chunks (default: '%s')", params.chunk_separator.c_str()),
  2403. [](common_params & params, const std::string & value) {
  2404. params.chunk_separator = value;
  2405. }
  2406. ).set_examples({LLAMA_EXAMPLE_RETRIEVAL}));
  2407. add_opt(common_arg(
  2408. {"--junk"}, "N",
  2409. string_format("number of times to repeat the junk text (default: %d)", params.n_junk),
  2410. [](common_params & params, int value) {
  2411. params.n_junk = value;
  2412. }
  2413. ).set_examples({LLAMA_EXAMPLE_PASSKEY}));
  2414. add_opt(common_arg(
  2415. {"--pos"}, "N",
  2416. string_format("position of the passkey in the junk text (default: %d)", params.i_pos),
  2417. [](common_params & params, int value) {
  2418. params.i_pos = value;
  2419. }
  2420. ).set_examples({LLAMA_EXAMPLE_PASSKEY}));
  2421. add_opt(common_arg(
  2422. {"-o", "--output", "--output-file"}, "FNAME",
  2423. string_format("output file (default: '%s')", params.out_file.c_str()),
  2424. [](common_params & params, const std::string & value) {
  2425. params.out_file = value;
  2426. }
  2427. ).set_examples({LLAMA_EXAMPLE_IMATRIX, LLAMA_EXAMPLE_CVECTOR_GENERATOR, LLAMA_EXAMPLE_EXPORT_LORA, LLAMA_EXAMPLE_TTS}));
  2428. add_opt(common_arg(
  2429. {"-ofreq", "--output-frequency"}, "N",
  2430. string_format("output the imatrix every N iterations (default: %d)", params.n_out_freq),
  2431. [](common_params & params, int value) {
  2432. params.n_out_freq = value;
  2433. }
  2434. ).set_examples({LLAMA_EXAMPLE_IMATRIX}));
  2435. add_opt(common_arg(
  2436. {"--save-frequency"}, "N",
  2437. string_format("save an imatrix copy every N iterations (default: %d)", params.n_save_freq),
  2438. [](common_params & params, int value) {
  2439. params.n_save_freq = value;
  2440. }
  2441. ).set_examples({LLAMA_EXAMPLE_IMATRIX}));
  2442. add_opt(common_arg(
  2443. {"--process-output"},
  2444. string_format("collect data for the output tensor (default: %s)", params.process_output ? "true" : "false"),
  2445. [](common_params & params) {
  2446. params.process_output = true;
  2447. }
  2448. ).set_examples({LLAMA_EXAMPLE_IMATRIX}));
  2449. add_opt(common_arg(
  2450. {"--no-ppl"},
  2451. string_format("do not compute perplexity (default: %s)", params.compute_ppl ? "true" : "false"),
  2452. [](common_params & params) {
  2453. params.compute_ppl = false;
  2454. }
  2455. ).set_examples({LLAMA_EXAMPLE_IMATRIX}));
  2456. add_opt(common_arg(
  2457. {"--chunk", "--from-chunk"}, "N",
  2458. string_format("start processing the input from chunk N (default: %d)", params.i_chunk),
  2459. [](common_params & params, int value) {
  2460. params.i_chunk = value;
  2461. }
  2462. ).set_examples({LLAMA_EXAMPLE_IMATRIX}));
  2463. add_opt(common_arg(
  2464. {"-pps"},
  2465. string_format("is the prompt shared across parallel sequences (default: %s)", params.is_pp_shared ? "true" : "false"),
  2466. [](common_params & params) {
  2467. params.is_pp_shared = true;
  2468. }
  2469. ).set_examples({LLAMA_EXAMPLE_BENCH}));
  2470. add_opt(common_arg(
  2471. {"-npp"}, "n0,n1,...",
  2472. "number of prompt tokens",
  2473. [](common_params & params, const std::string & value) {
  2474. auto p = string_split<int>(value, ',');
  2475. params.n_pp.insert(params.n_pp.end(), p.begin(), p.end());
  2476. }
  2477. ).set_examples({LLAMA_EXAMPLE_BENCH}));
  2478. add_opt(common_arg(
  2479. {"-ntg"}, "n0,n1,...",
  2480. "number of text generation tokens",
  2481. [](common_params & params, const std::string & value) {
  2482. auto p = string_split<int>(value, ',');
  2483. params.n_tg.insert(params.n_tg.end(), p.begin(), p.end());
  2484. }
  2485. ).set_examples({LLAMA_EXAMPLE_BENCH}));
  2486. add_opt(common_arg(
  2487. {"-npl"}, "n0,n1,...",
  2488. "number of parallel prompts",
  2489. [](common_params & params, const std::string & value) {
  2490. auto p = string_split<int>(value, ',');
  2491. params.n_pl.insert(params.n_pl.end(), p.begin(), p.end());
  2492. }
  2493. ).set_examples({LLAMA_EXAMPLE_BENCH}));
  2494. add_opt(common_arg(
  2495. {"--embd-normalize"}, "N",
  2496. string_format("normalisation for embeddings (default: %d) (-1=none, 0=max absolute int16, 1=taxicab, 2=euclidean, >2=p-norm)", params.embd_normalize),
  2497. [](common_params & params, int value) {
  2498. params.embd_normalize = value;
  2499. }
  2500. ).set_examples({LLAMA_EXAMPLE_EMBEDDING}));
  2501. add_opt(common_arg(
  2502. {"--embd-output-format"}, "FORMAT",
  2503. "empty = default, \"array\" = [[],[]...], \"json\" = openai style, \"json+\" = same \"json\" + cosine similarity matrix",
  2504. [](common_params & params, const std::string & value) {
  2505. params.embd_out = value;
  2506. }
  2507. ).set_examples({LLAMA_EXAMPLE_EMBEDDING}));
  2508. add_opt(common_arg(
  2509. {"--embd-separator"}, "STRING",
  2510. "separator of embeddings (default \\n) for example \"<#sep#>\"",
  2511. [](common_params & params, const std::string & value) {
  2512. params.embd_sep = value;
  2513. }
  2514. ).set_examples({LLAMA_EXAMPLE_EMBEDDING}));
  2515. add_opt(common_arg(
  2516. {"--host"}, "HOST",
  2517. string_format("ip address to listen, or bind to an UNIX socket if the address ends with .sock (default: %s)", params.hostname.c_str()),
  2518. [](common_params & params, const std::string & value) {
  2519. params.hostname = value;
  2520. }
  2521. ).set_examples({LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_HOST"));
  2522. add_opt(common_arg(
  2523. {"--port"}, "PORT",
  2524. string_format("port to listen (default: %d)", params.port),
  2525. [](common_params & params, int value) {
  2526. params.port = value;
  2527. }
  2528. ).set_examples({LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_PORT"));
  2529. add_opt(common_arg(
  2530. {"--path"}, "PATH",
  2531. string_format("path to serve static files from (default: %s)", params.public_path.c_str()),
  2532. [](common_params & params, const std::string & value) {
  2533. params.public_path = value;
  2534. }
  2535. ).set_examples({LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_STATIC_PATH"));
  2536. add_opt(common_arg(
  2537. {"--no-webui"},
  2538. string_format("Disable the Web UI (default: %s)", params.webui ? "enabled" : "disabled"),
  2539. [](common_params & params) {
  2540. params.webui = false;
  2541. }
  2542. ).set_examples({LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_NO_WEBUI"));
  2543. add_opt(common_arg(
  2544. {"--embedding", "--embeddings"},
  2545. string_format("restrict to only support embedding use case; use only with dedicated embedding models (default: %s)", params.embedding ? "enabled" : "disabled"),
  2546. [](common_params & params) {
  2547. params.embedding = true;
  2548. }
  2549. ).set_examples({LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_EMBEDDINGS"));
  2550. add_opt(common_arg(
  2551. {"--reranking", "--rerank"},
  2552. string_format("enable reranking endpoint on server (default: %s)", params.reranking ? "enabled" : "disabled"),
  2553. [](common_params & params) {
  2554. params.reranking = true;
  2555. }
  2556. ).set_examples({LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_RERANKING"));
  2557. add_opt(common_arg(
  2558. {"--api-key"}, "KEY",
  2559. "API key to use for authentication (default: none)",
  2560. [](common_params & params, const std::string & value) {
  2561. params.api_keys.push_back(value);
  2562. }
  2563. ).set_examples({LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_API_KEY"));
  2564. add_opt(common_arg(
  2565. {"--api-key-file"}, "FNAME",
  2566. "path to file containing API keys (default: none)",
  2567. [](common_params & params, const std::string & value) {
  2568. std::ifstream key_file(value);
  2569. if (!key_file) {
  2570. throw std::runtime_error(string_format("error: failed to open file '%s'\n", value.c_str()));
  2571. }
  2572. std::string key;
  2573. while (std::getline(key_file, key)) {
  2574. if (!key.empty()) {
  2575. params.api_keys.push_back(key);
  2576. }
  2577. }
  2578. key_file.close();
  2579. }
  2580. ).set_examples({LLAMA_EXAMPLE_SERVER}));
  2581. add_opt(common_arg(
  2582. {"--ssl-key-file"}, "FNAME",
  2583. "path to file a PEM-encoded SSL private key",
  2584. [](common_params & params, const std::string & value) {
  2585. params.ssl_file_key = value;
  2586. }
  2587. ).set_examples({LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_SSL_KEY_FILE"));
  2588. add_opt(common_arg(
  2589. {"--ssl-cert-file"}, "FNAME",
  2590. "path to file a PEM-encoded SSL certificate",
  2591. [](common_params & params, const std::string & value) {
  2592. params.ssl_file_cert = value;
  2593. }
  2594. ).set_examples({LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_SSL_CERT_FILE"));
  2595. add_opt(common_arg(
  2596. {"-to", "--timeout"}, "N",
  2597. string_format("server read/write timeout in seconds (default: %d)", params.timeout_read),
  2598. [](common_params & params, int value) {
  2599. params.timeout_read = value;
  2600. params.timeout_write = value;
  2601. }
  2602. ).set_examples({LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_TIMEOUT"));
  2603. add_opt(common_arg(
  2604. {"--threads-http"}, "N",
  2605. string_format("number of threads used to process HTTP requests (default: %d)", params.n_threads_http),
  2606. [](common_params & params, int value) {
  2607. params.n_threads_http = value;
  2608. }
  2609. ).set_examples({LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_THREADS_HTTP"));
  2610. add_opt(common_arg(
  2611. {"--cache-reuse"}, "N",
  2612. string_format("min chunk size to attempt reusing from the cache via KV shifting (default: %d)", params.n_cache_reuse),
  2613. [](common_params & params, int value) {
  2614. params.n_cache_reuse = value;
  2615. }
  2616. ).set_examples({LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_CACHE_REUSE"));
  2617. add_opt(common_arg(
  2618. {"--metrics"},
  2619. string_format("enable prometheus compatible metrics endpoint (default: %s)", params.endpoint_metrics ? "enabled" : "disabled"),
  2620. [](common_params & params) {
  2621. params.endpoint_metrics = true;
  2622. }
  2623. ).set_examples({LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_ENDPOINT_METRICS"));
  2624. add_opt(common_arg(
  2625. {"--slots"},
  2626. string_format("enable slots monitoring endpoint (default: %s)", params.endpoint_slots ? "enabled" : "disabled"),
  2627. [](common_params & params) {
  2628. params.endpoint_slots = true;
  2629. }
  2630. ).set_examples({LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_ENDPOINT_SLOTS"));
  2631. add_opt(common_arg(
  2632. {"--props"},
  2633. string_format("enable changing global properties via POST /props (default: %s)", params.endpoint_props ? "enabled" : "disabled"),
  2634. [](common_params & params) {
  2635. params.endpoint_props = true;
  2636. }
  2637. ).set_examples({LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_ENDPOINT_PROPS"));
  2638. add_opt(common_arg(
  2639. {"--no-slots"},
  2640. "disables slots monitoring endpoint",
  2641. [](common_params & params) {
  2642. params.endpoint_slots = false;
  2643. }
  2644. ).set_examples({LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_NO_ENDPOINT_SLOTS"));
  2645. add_opt(common_arg(
  2646. {"--slot-save-path"}, "PATH",
  2647. "path to save slot kv cache (default: disabled)",
  2648. [](common_params & params, const std::string & value) {
  2649. params.slot_save_path = value;
  2650. // if doesn't end with DIRECTORY_SEPARATOR, add it
  2651. if (!params.slot_save_path.empty() && params.slot_save_path[params.slot_save_path.size() - 1] != DIRECTORY_SEPARATOR) {
  2652. params.slot_save_path += DIRECTORY_SEPARATOR;
  2653. }
  2654. }
  2655. ).set_examples({LLAMA_EXAMPLE_SERVER}));
  2656. add_opt(common_arg(
  2657. {"--jinja"},
  2658. "use jinja template for chat (default: disabled)",
  2659. [](common_params & params) {
  2660. params.use_jinja = true;
  2661. }
  2662. ).set_examples({LLAMA_EXAMPLE_SERVER, LLAMA_EXAMPLE_MAIN}).set_env("LLAMA_ARG_JINJA"));
  2663. add_opt(common_arg(
  2664. {"--reasoning-format"}, "FORMAT",
  2665. "reasoning format (default: deepseek; allowed values: deepseek, none)\n"
  2666. "controls whether thought tags are extracted from the response, and in which format they're returned. 'none' leaves thoughts unparsed in `message.content`, 'deepseek' puts them in `message.reasoning_content` (for DeepSeek R1 & Command R7B only).\n"
  2667. "only supported for non-streamed responses",
  2668. [](common_params & params, const std::string & value) {
  2669. /**/ if (value == "deepseek") { params.reasoning_format = COMMON_REASONING_FORMAT_DEEPSEEK; }
  2670. else if (value == "none") { params.reasoning_format = COMMON_REASONING_FORMAT_NONE; }
  2671. else { std::invalid_argument("invalid value"); }
  2672. }
  2673. ).set_examples({LLAMA_EXAMPLE_SERVER, LLAMA_EXAMPLE_MAIN}).set_env("LLAMA_ARG_THINK"));
  2674. add_opt(common_arg(
  2675. {"--chat-template"}, "JINJA_TEMPLATE",
  2676. string_format(
  2677. "set custom jinja chat template (default: template taken from model's metadata)\n"
  2678. "if suffix/prefix are specified, template will be disabled\n"
  2679. "only commonly used templates are accepted (unless --jinja is set before this flag):\n"
  2680. "list of built-in templates:\n%s", list_builtin_chat_templates().c_str()
  2681. ),
  2682. [](common_params & params, const std::string & value) {
  2683. params.chat_template = value;
  2684. }
  2685. ).set_examples({LLAMA_EXAMPLE_MAIN, LLAMA_EXAMPLE_SERVER, LLAMA_EXAMPLE_LLAVA}).set_env("LLAMA_ARG_CHAT_TEMPLATE"));
  2686. add_opt(common_arg(
  2687. {"--chat-template-file"}, "JINJA_TEMPLATE_FILE",
  2688. string_format(
  2689. "set custom jinja chat template file (default: template taken from model's metadata)\n"
  2690. "if suffix/prefix are specified, template will be disabled\n"
  2691. "only commonly used templates are accepted (unless --jinja is set before this flag):\n"
  2692. "list of built-in templates:\n%s", list_builtin_chat_templates().c_str()
  2693. ),
  2694. [](common_params & params, const std::string & value) {
  2695. params.chat_template = read_file(value);
  2696. }
  2697. ).set_examples({LLAMA_EXAMPLE_MAIN, LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_CHAT_TEMPLATE_FILE"));
  2698. add_opt(common_arg(
  2699. {"-sps", "--slot-prompt-similarity"}, "SIMILARITY",
  2700. string_format("how much the prompt of a request must match the prompt of a slot in order to use that slot (default: %.2f, 0.0 = disabled)\n", params.slot_prompt_similarity),
  2701. [](common_params & params, const std::string & value) {
  2702. params.slot_prompt_similarity = std::stof(value);
  2703. }
  2704. ).set_examples({LLAMA_EXAMPLE_SERVER}));
  2705. add_opt(common_arg(
  2706. {"--lora-init-without-apply"},
  2707. string_format("load LoRA adapters without applying them (apply later via POST /lora-adapters) (default: %s)", params.lora_init_without_apply ? "enabled" : "disabled"),
  2708. [](common_params & params) {
  2709. params.lora_init_without_apply = true;
  2710. }
  2711. ).set_examples({LLAMA_EXAMPLE_SERVER}));
  2712. add_opt(common_arg(
  2713. {"--simple-io"},
  2714. "use basic IO for better compatibility in subprocesses and limited consoles",
  2715. [](common_params & params) {
  2716. params.simple_io = true;
  2717. }
  2718. ).set_examples({LLAMA_EXAMPLE_MAIN, LLAMA_EXAMPLE_INFILL}));
  2719. add_opt(common_arg(
  2720. {"--positive-file"}, "FNAME",
  2721. string_format("positive prompts file, one prompt per line (default: '%s')", params.cvector_positive_file.c_str()),
  2722. [](common_params & params, const std::string & value) {
  2723. params.cvector_positive_file = value;
  2724. }
  2725. ).set_examples({LLAMA_EXAMPLE_CVECTOR_GENERATOR}));
  2726. add_opt(common_arg(
  2727. {"--negative-file"}, "FNAME",
  2728. string_format("negative prompts file, one prompt per line (default: '%s')", params.cvector_negative_file.c_str()),
  2729. [](common_params & params, const std::string & value) {
  2730. params.cvector_negative_file = value;
  2731. }
  2732. ).set_examples({LLAMA_EXAMPLE_CVECTOR_GENERATOR}));
  2733. add_opt(common_arg(
  2734. {"--pca-batch"}, "N",
  2735. string_format("batch size used for PCA. Larger batch runs faster, but uses more memory (default: %d)", params.n_pca_batch),
  2736. [](common_params & params, int value) {
  2737. params.n_pca_batch = value;
  2738. }
  2739. ).set_examples({LLAMA_EXAMPLE_CVECTOR_GENERATOR}));
  2740. add_opt(common_arg(
  2741. {"--pca-iter"}, "N",
  2742. string_format("number of iterations used for PCA (default: %d)", params.n_pca_iterations),
  2743. [](common_params & params, int value) {
  2744. params.n_pca_iterations = value;
  2745. }
  2746. ).set_examples({LLAMA_EXAMPLE_CVECTOR_GENERATOR}));
  2747. add_opt(common_arg(
  2748. {"--method"}, "{pca, mean}",
  2749. "dimensionality reduction method to be used (default: pca)",
  2750. [](common_params & params, const std::string & value) {
  2751. /**/ if (value == "pca") { params.cvector_dimre_method = DIMRE_METHOD_PCA; }
  2752. else if (value == "mean") { params.cvector_dimre_method = DIMRE_METHOD_MEAN; }
  2753. else { throw std::invalid_argument("invalid value"); }
  2754. }
  2755. ).set_examples({LLAMA_EXAMPLE_CVECTOR_GENERATOR}));
  2756. add_opt(common_arg(
  2757. {"--output-format"}, "{md,jsonl}",
  2758. "output format for batched-bench results (default: md)",
  2759. [](common_params & params, const std::string & value) {
  2760. /**/ if (value == "jsonl") { params.batched_bench_output_jsonl = true; }
  2761. else if (value == "md") { params.batched_bench_output_jsonl = false; }
  2762. else { std::invalid_argument("invalid value"); }
  2763. }
  2764. ).set_examples({LLAMA_EXAMPLE_BENCH}));
  2765. add_opt(common_arg(
  2766. {"--log-disable"},
  2767. "Log disable",
  2768. [](common_params &) {
  2769. common_log_pause(common_log_main());
  2770. }
  2771. ));
  2772. add_opt(common_arg(
  2773. {"--log-file"}, "FNAME",
  2774. "Log to file",
  2775. [](common_params &, const std::string & value) {
  2776. common_log_set_file(common_log_main(), value.c_str());
  2777. }
  2778. ));
  2779. add_opt(common_arg(
  2780. {"--log-colors"},
  2781. "Enable colored logging",
  2782. [](common_params &) {
  2783. common_log_set_colors(common_log_main(), true);
  2784. }
  2785. ).set_env("LLAMA_LOG_COLORS"));
  2786. add_opt(common_arg(
  2787. {"-v", "--verbose", "--log-verbose"},
  2788. "Set verbosity level to infinity (i.e. log all messages, useful for debugging)",
  2789. [](common_params & params) {
  2790. params.verbosity = INT_MAX;
  2791. common_log_set_verbosity_thold(INT_MAX);
  2792. }
  2793. ));
  2794. add_opt(common_arg(
  2795. {"-lv", "--verbosity", "--log-verbosity"}, "N",
  2796. "Set the verbosity threshold. Messages with a higher verbosity will be ignored.",
  2797. [](common_params & params, int value) {
  2798. params.verbosity = value;
  2799. common_log_set_verbosity_thold(value);
  2800. }
  2801. ).set_env("LLAMA_LOG_VERBOSITY"));
  2802. add_opt(common_arg(
  2803. {"--log-prefix"},
  2804. "Enable prefix in log messages",
  2805. [](common_params &) {
  2806. common_log_set_prefix(common_log_main(), true);
  2807. }
  2808. ).set_env("LLAMA_LOG_PREFIX"));
  2809. add_opt(common_arg(
  2810. {"--log-timestamps"},
  2811. "Enable timestamps in log messages",
  2812. [](common_params &) {
  2813. common_log_set_timestamps(common_log_main(), true);
  2814. }
  2815. ).set_env("LLAMA_LOG_TIMESTAMPS"));
  2816. // speculative parameters
  2817. add_opt(common_arg(
  2818. {"-td", "--threads-draft"}, "N",
  2819. "number of threads to use during generation (default: same as --threads)",
  2820. [](common_params & params, int value) {
  2821. params.speculative.cpuparams.n_threads = value;
  2822. if (params.speculative.cpuparams.n_threads <= 0) {
  2823. params.speculative.cpuparams.n_threads = std::thread::hardware_concurrency();
  2824. }
  2825. }
  2826. ).set_examples({LLAMA_EXAMPLE_SPECULATIVE}));
  2827. add_opt(common_arg(
  2828. {"-tbd", "--threads-batch-draft"}, "N",
  2829. "number of threads to use during batch and prompt processing (default: same as --threads-draft)",
  2830. [](common_params & params, int value) {
  2831. params.speculative.cpuparams_batch.n_threads = value;
  2832. if (params.speculative.cpuparams_batch.n_threads <= 0) {
  2833. params.speculative.cpuparams_batch.n_threads = std::thread::hardware_concurrency();
  2834. }
  2835. }
  2836. ).set_examples({LLAMA_EXAMPLE_SPECULATIVE}));
  2837. add_opt(common_arg(
  2838. {"-Cd", "--cpu-mask-draft"}, "M",
  2839. "Draft model CPU affinity mask. Complements cpu-range-draft (default: same as --cpu-mask)",
  2840. [](common_params & params, const std::string & mask) {
  2841. params.speculative.cpuparams.mask_valid = true;
  2842. if (!parse_cpu_mask(mask, params.speculative.cpuparams.cpumask)) {
  2843. throw std::invalid_argument("invalid cpumask");
  2844. }
  2845. }
  2846. ).set_examples({LLAMA_EXAMPLE_SPECULATIVE}));
  2847. add_opt(common_arg(
  2848. {"-Crd", "--cpu-range-draft"}, "lo-hi",
  2849. "Ranges of CPUs for affinity. Complements --cpu-mask-draft",
  2850. [](common_params & params, const std::string & range) {
  2851. params.speculative.cpuparams.mask_valid = true;
  2852. if (!parse_cpu_range(range, params.speculative.cpuparams.cpumask)) {
  2853. throw std::invalid_argument("invalid range");
  2854. }
  2855. }
  2856. ).set_examples({LLAMA_EXAMPLE_SPECULATIVE}));
  2857. add_opt(common_arg(
  2858. {"--cpu-strict-draft"}, "<0|1>",
  2859. "Use strict CPU placement for draft model (default: same as --cpu-strict)",
  2860. [](common_params & params, int value) {
  2861. params.speculative.cpuparams.strict_cpu = value;
  2862. }
  2863. ).set_examples({LLAMA_EXAMPLE_SPECULATIVE}));
  2864. add_opt(common_arg(
  2865. {"--prio-draft"}, "N",
  2866. string_format("set draft process/thread priority : 0-normal, 1-medium, 2-high, 3-realtime (default: %d)\n", params.speculative.cpuparams.priority),
  2867. [](common_params & params, int prio) {
  2868. if (prio < 0 || prio > 3) {
  2869. throw std::invalid_argument("invalid value");
  2870. }
  2871. params.speculative.cpuparams.priority = (enum ggml_sched_priority) prio;
  2872. }
  2873. ).set_examples({LLAMA_EXAMPLE_SPECULATIVE}));
  2874. add_opt(common_arg(
  2875. {"--poll-draft"}, "<0|1>",
  2876. "Use polling to wait for draft model work (default: same as --poll])",
  2877. [](common_params & params, int value) {
  2878. params.speculative.cpuparams.poll = value;
  2879. }
  2880. ).set_examples({LLAMA_EXAMPLE_SPECULATIVE}));
  2881. add_opt(common_arg(
  2882. {"-Cbd", "--cpu-mask-batch-draft"}, "M",
  2883. "Draft model CPU affinity mask. Complements cpu-range-draft (default: same as --cpu-mask)",
  2884. [](common_params & params, const std::string & mask) {
  2885. params.speculative.cpuparams_batch.mask_valid = true;
  2886. if (!parse_cpu_mask(mask, params.speculative.cpuparams_batch.cpumask)) {
  2887. throw std::invalid_argument("invalid cpumask");
  2888. }
  2889. }
  2890. ).set_examples({LLAMA_EXAMPLE_SPECULATIVE}));
  2891. add_opt(common_arg(
  2892. {"-Crbd", "--cpu-range-batch-draft"}, "lo-hi",
  2893. "Ranges of CPUs for affinity. Complements --cpu-mask-draft-batch)",
  2894. [](common_params & params, const std::string & range) {
  2895. params.speculative.cpuparams_batch.mask_valid = true;
  2896. if (!parse_cpu_range(range, params.speculative.cpuparams_batch.cpumask)) {
  2897. throw std::invalid_argument("invalid cpumask");
  2898. }
  2899. }
  2900. ).set_examples({LLAMA_EXAMPLE_SPECULATIVE}));
  2901. add_opt(common_arg(
  2902. {"--cpu-strict-batch-draft"}, "<0|1>",
  2903. "Use strict CPU placement for draft model (default: --cpu-strict-draft)",
  2904. [](common_params & params, int value) {
  2905. params.speculative.cpuparams_batch.strict_cpu = value;
  2906. }
  2907. ).set_examples({LLAMA_EXAMPLE_SPECULATIVE}));
  2908. add_opt(common_arg(
  2909. {"--prio-batch-draft"}, "N",
  2910. string_format("set draft process/thread priority : 0-normal, 1-medium, 2-high, 3-realtime (default: %d)\n", params.speculative.cpuparams_batch.priority),
  2911. [](common_params & params, int prio) {
  2912. if (prio < 0 || prio > 3) {
  2913. throw std::invalid_argument("invalid value");
  2914. }
  2915. params.speculative.cpuparams_batch.priority = (enum ggml_sched_priority) prio;
  2916. }
  2917. ).set_examples({LLAMA_EXAMPLE_SPECULATIVE}));
  2918. add_opt(common_arg(
  2919. {"--poll-batch-draft"}, "<0|1>",
  2920. "Use polling to wait for draft model work (default: --poll-draft)",
  2921. [](common_params & params, int value) {
  2922. params.speculative.cpuparams_batch.poll = value;
  2923. }
  2924. ).set_examples({LLAMA_EXAMPLE_SPECULATIVE}));
  2925. add_opt(common_arg(
  2926. {"--draft-max", "--draft", "--draft-n"}, "N",
  2927. string_format("number of tokens to draft for speculative decoding (default: %d)", params.speculative.n_max),
  2928. [](common_params & params, int value) {
  2929. params.speculative.n_max = value;
  2930. }
  2931. ).set_examples({LLAMA_EXAMPLE_SPECULATIVE, LLAMA_EXAMPLE_LOOKUP, LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_DRAFT_MAX"));
  2932. add_opt(common_arg(
  2933. {"--draft-min", "--draft-n-min"}, "N",
  2934. string_format("minimum number of draft tokens to use for speculative decoding (default: %d)", params.speculative.n_min),
  2935. [](common_params & params, int value) {
  2936. params.speculative.n_min = value;
  2937. }
  2938. ).set_examples({LLAMA_EXAMPLE_SPECULATIVE, LLAMA_EXAMPLE_LOOKUP, LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_DRAFT_MIN"));
  2939. add_opt(common_arg(
  2940. {"--draft-p-split"}, "P",
  2941. string_format("speculative decoding split probability (default: %.1f)", (double)params.speculative.p_split),
  2942. [](common_params & params, const std::string & value) {
  2943. params.speculative.p_split = std::stof(value);
  2944. }
  2945. ).set_examples({LLAMA_EXAMPLE_SPECULATIVE}).set_env("LLAMA_ARG_DRAFT_P_SPLIT"));
  2946. add_opt(common_arg(
  2947. {"--draft-p-min"}, "P",
  2948. string_format("minimum speculative decoding probability (greedy) (default: %.1f)", (double)params.speculative.p_min),
  2949. [](common_params & params, const std::string & value) {
  2950. params.speculative.p_min = std::stof(value);
  2951. }
  2952. ).set_examples({LLAMA_EXAMPLE_SPECULATIVE, LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_DRAFT_P_MIN"));
  2953. add_opt(common_arg(
  2954. {"-cd", "--ctx-size-draft"}, "N",
  2955. string_format("size of the prompt context for the draft model (default: %d, 0 = loaded from model)", params.speculative.n_ctx),
  2956. [](common_params & params, int value) {
  2957. params.speculative.n_ctx = value;
  2958. }
  2959. ).set_examples({LLAMA_EXAMPLE_SPECULATIVE, LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_CTX_SIZE_DRAFT"));
  2960. add_opt(common_arg(
  2961. {"-devd", "--device-draft"}, "<dev1,dev2,..>",
  2962. "comma-separated list of devices to use for offloading the draft model (none = don't offload)\n"
  2963. "use --list-devices to see a list of available devices",
  2964. [](common_params & params, const std::string & value) {
  2965. params.speculative.devices = parse_device_list(value);
  2966. }
  2967. ).set_examples({LLAMA_EXAMPLE_SPECULATIVE, LLAMA_EXAMPLE_SERVER}));
  2968. add_opt(common_arg(
  2969. {"-ngld", "--gpu-layers-draft", "--n-gpu-layers-draft"}, "N",
  2970. "number of layers to store in VRAM for the draft model",
  2971. [](common_params & params, int value) {
  2972. params.speculative.n_gpu_layers = value;
  2973. if (!llama_supports_gpu_offload()) {
  2974. fprintf(stderr, "warning: no usable GPU found, --gpu-layers-draft option will be ignored\n");
  2975. fprintf(stderr, "warning: one possible reason is that llama.cpp was compiled without GPU support\n");
  2976. fprintf(stderr, "warning: consult docs/build.md for compilation instructions\n");
  2977. }
  2978. }
  2979. ).set_examples({LLAMA_EXAMPLE_SPECULATIVE, LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_N_GPU_LAYERS_DRAFT"));
  2980. add_opt(common_arg(
  2981. {"-md", "--model-draft"}, "FNAME",
  2982. "draft model for speculative decoding (default: unused)",
  2983. [](common_params & params, const std::string & value) {
  2984. params.speculative.model.path = value;
  2985. }
  2986. ).set_examples({LLAMA_EXAMPLE_SPECULATIVE, LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_MODEL_DRAFT"));
  2987. add_opt(common_arg(
  2988. {"-mv", "--model-vocoder"}, "FNAME",
  2989. "vocoder model for audio generation (default: unused)",
  2990. [](common_params & params, const std::string & value) {
  2991. params.vocoder.model.path = value;
  2992. }
  2993. ).set_examples({LLAMA_EXAMPLE_TTS, LLAMA_EXAMPLE_SERVER}));
  2994. add_opt(common_arg(
  2995. {"--tts-use-guide-tokens"},
  2996. "Use guide tokens to improve TTS word recall",
  2997. [](common_params & params) {
  2998. params.vocoder.use_guide_tokens = true;
  2999. }
  3000. ).set_examples({LLAMA_EXAMPLE_TTS, LLAMA_EXAMPLE_SERVER}));
  3001. add_opt(common_arg(
  3002. {"--tts-speaker-file"}, "FNAME",
  3003. "speaker file path for audio generation",
  3004. [](common_params & params, const std::string & value) {
  3005. params.vocoder.speaker_file = value;
  3006. }
  3007. ).set_examples({LLAMA_EXAMPLE_TTS}));
  3008. // model-specific
  3009. add_opt(common_arg(
  3010. {"--tts-oute-default"},
  3011. string_format("use default OuteTTS models (note: can download weights from the internet)"),
  3012. [](common_params & params) {
  3013. params.model.hf_repo = "OuteAI/OuteTTS-0.2-500M-GGUF";
  3014. params.model.hf_file = "OuteTTS-0.2-500M-Q8_0.gguf";
  3015. params.vocoder.model.hf_repo = "ggml-org/WavTokenizer";
  3016. params.vocoder.model.hf_file = "WavTokenizer-Large-75-F16.gguf";
  3017. }
  3018. ).set_examples({LLAMA_EXAMPLE_TTS}));
  3019. add_opt(common_arg(
  3020. {"--embd-bge-small-en-default"},
  3021. string_format("use default bge-small-en-v1.5 model (note: can download weights from the internet)"),
  3022. [](common_params & params) {
  3023. params.model.hf_repo = "ggml-org/bge-small-en-v1.5-Q8_0-GGUF";
  3024. params.model.hf_file = "bge-small-en-v1.5-q8_0.gguf";
  3025. params.pooling_type = LLAMA_POOLING_TYPE_NONE;
  3026. params.embd_normalize = 2;
  3027. params.n_ctx = 512;
  3028. params.verbose_prompt = true;
  3029. params.embedding = true;
  3030. }
  3031. ).set_examples({LLAMA_EXAMPLE_EMBEDDING, LLAMA_EXAMPLE_SERVER}));
  3032. add_opt(common_arg(
  3033. {"--embd-e5-small-en-default"},
  3034. string_format("use default e5-small-v2 model (note: can download weights from the internet)"),
  3035. [](common_params & params) {
  3036. params.model.hf_repo = "ggml-org/e5-small-v2-Q8_0-GGUF";
  3037. params.model.hf_file = "e5-small-v2-q8_0.gguf";
  3038. params.pooling_type = LLAMA_POOLING_TYPE_NONE;
  3039. params.embd_normalize = 2;
  3040. params.n_ctx = 512;
  3041. params.verbose_prompt = true;
  3042. params.embedding = true;
  3043. }
  3044. ).set_examples({LLAMA_EXAMPLE_EMBEDDING, LLAMA_EXAMPLE_SERVER}));
  3045. add_opt(common_arg(
  3046. {"--embd-gte-small-default"},
  3047. string_format("use default gte-small model (note: can download weights from the internet)"),
  3048. [](common_params & params) {
  3049. params.model.hf_repo = "ggml-org/gte-small-Q8_0-GGUF";
  3050. params.model.hf_file = "gte-small-q8_0.gguf";
  3051. params.pooling_type = LLAMA_POOLING_TYPE_NONE;
  3052. params.embd_normalize = 2;
  3053. params.n_ctx = 512;
  3054. params.verbose_prompt = true;
  3055. params.embedding = true;
  3056. }
  3057. ).set_examples({LLAMA_EXAMPLE_EMBEDDING, LLAMA_EXAMPLE_SERVER}));
  3058. add_opt(common_arg(
  3059. {"--fim-qwen-1.5b-default"},
  3060. string_format("use default Qwen 2.5 Coder 1.5B (note: can download weights from the internet)"),
  3061. [](common_params & params) {
  3062. params.model.hf_repo = "ggml-org/Qwen2.5-Coder-1.5B-Q8_0-GGUF";
  3063. params.model.hf_file = "qwen2.5-coder-1.5b-q8_0.gguf";
  3064. params.port = 8012;
  3065. params.n_gpu_layers = 99;
  3066. params.flash_attn = true;
  3067. params.n_ubatch = 1024;
  3068. params.n_batch = 1024;
  3069. params.n_ctx = 0;
  3070. params.n_cache_reuse = 256;
  3071. }
  3072. ).set_examples({LLAMA_EXAMPLE_SERVER}));
  3073. add_opt(common_arg(
  3074. {"--fim-qwen-3b-default"},
  3075. string_format("use default Qwen 2.5 Coder 3B (note: can download weights from the internet)"),
  3076. [](common_params & params) {
  3077. params.model.hf_repo = "ggml-org/Qwen2.5-Coder-3B-Q8_0-GGUF";
  3078. params.model.hf_file = "qwen2.5-coder-3b-q8_0.gguf";
  3079. params.port = 8012;
  3080. params.n_gpu_layers = 99;
  3081. params.flash_attn = true;
  3082. params.n_ubatch = 1024;
  3083. params.n_batch = 1024;
  3084. params.n_ctx = 0;
  3085. params.n_cache_reuse = 256;
  3086. }
  3087. ).set_examples({LLAMA_EXAMPLE_SERVER}));
  3088. add_opt(common_arg(
  3089. {"--fim-qwen-7b-default"},
  3090. string_format("use default Qwen 2.5 Coder 7B (note: can download weights from the internet)"),
  3091. [](common_params & params) {
  3092. params.model.hf_repo = "ggml-org/Qwen2.5-Coder-7B-Q8_0-GGUF";
  3093. params.model.hf_file = "qwen2.5-coder-7b-q8_0.gguf";
  3094. params.port = 8012;
  3095. params.n_gpu_layers = 99;
  3096. params.flash_attn = true;
  3097. params.n_ubatch = 1024;
  3098. params.n_batch = 1024;
  3099. params.n_ctx = 0;
  3100. params.n_cache_reuse = 256;
  3101. }
  3102. ).set_examples({LLAMA_EXAMPLE_SERVER}));
  3103. add_opt(common_arg(
  3104. {"--fim-qwen-7b-spec"},
  3105. string_format("use Qwen 2.5 Coder 7B + 0.5B draft for speculative decoding (note: can download weights from the internet)"),
  3106. [](common_params & params) {
  3107. params.model.hf_repo = "ggml-org/Qwen2.5-Coder-7B-Q8_0-GGUF";
  3108. params.model.hf_file = "qwen2.5-coder-7b-q8_0.gguf";
  3109. params.speculative.model.hf_repo = "ggml-org/Qwen2.5-Coder-0.5B-Q8_0-GGUF";
  3110. params.speculative.model.hf_file = "qwen2.5-coder-0.5b-q8_0.gguf";
  3111. params.speculative.n_gpu_layers = 99;
  3112. params.port = 8012;
  3113. params.n_gpu_layers = 99;
  3114. params.flash_attn = true;
  3115. params.n_ubatch = 1024;
  3116. params.n_batch = 1024;
  3117. params.n_ctx = 0;
  3118. params.n_cache_reuse = 256;
  3119. }
  3120. ).set_examples({LLAMA_EXAMPLE_SERVER}));
  3121. add_opt(common_arg(
  3122. {"--fim-qwen-14b-spec"},
  3123. string_format("use Qwen 2.5 Coder 14B + 0.5B draft for speculative decoding (note: can download weights from the internet)"),
  3124. [](common_params & params) {
  3125. params.model.hf_repo = "ggml-org/Qwen2.5-Coder-14B-Q8_0-GGUF";
  3126. params.model.hf_file = "qwen2.5-coder-14b-q8_0.gguf";
  3127. params.speculative.model.hf_repo = "ggml-org/Qwen2.5-Coder-0.5B-Q8_0-GGUF";
  3128. params.speculative.model.hf_file = "qwen2.5-coder-0.5b-q8_0.gguf";
  3129. params.speculative.n_gpu_layers = 99;
  3130. params.port = 8012;
  3131. params.n_gpu_layers = 99;
  3132. params.flash_attn = true;
  3133. params.n_ubatch = 1024;
  3134. params.n_batch = 1024;
  3135. params.n_ctx = 0;
  3136. params.n_cache_reuse = 256;
  3137. }
  3138. ).set_examples({LLAMA_EXAMPLE_SERVER}));
  3139. return ctx_arg;
  3140. }