ggml.c 693 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687568856895690569156925693569456955696569756985699570057015702570357045705570657075708570957105711571257135714571557165717571857195720572157225723572457255726572757285729573057315732573357345735573657375738573957405741574257435744574557465747574857495750575157525753575457555756575757585759576057615762576357645765576657675768576957705771577257735774577557765777577857795780578157825783578457855786578757885789579057915792579357945795579657975798579958005801580258035804580558065807580858095810581158125813581458155816581758185819582058215822582358245825582658275828582958305831583258335834583558365837583858395840584158425843584458455846584758485849585058515852585358545855585658575858585958605861586258635864586558665867586858695870587158725873587458755876587758785879588058815882588358845885588658875888588958905891589258935894589558965897589858995900590159025903590459055906590759085909591059115912591359145915591659175918591959205921592259235924592559265927592859295930593159325933593459355936593759385939594059415942594359445945594659475948594959505951595259535954595559565957595859595960596159625963596459655966596759685969597059715972597359745975597659775978597959805981598259835984598559865987598859895990599159925993599459955996599759985999600060016002600360046005600660076008600960106011601260136014601560166017601860196020602160226023602460256026602760286029603060316032603360346035603660376038603960406041604260436044604560466047604860496050605160526053605460556056605760586059606060616062606360646065606660676068606960706071607260736074607560766077607860796080608160826083608460856086608760886089609060916092609360946095609660976098609961006101610261036104610561066107610861096110611161126113611461156116611761186119612061216122612361246125612661276128612961306131613261336134613561366137613861396140614161426143614461456146614761486149615061516152615361546155615661576158615961606161616261636164616561666167616861696170617161726173617461756176617761786179618061816182618361846185618661876188618961906191619261936194619561966197619861996200620162026203620462056206620762086209621062116212621362146215621662176218621962206221622262236224622562266227622862296230623162326233623462356236623762386239624062416242624362446245624662476248624962506251625262536254625562566257625862596260626162626263626462656266626762686269627062716272627362746275627662776278627962806281628262836284628562866287628862896290629162926293629462956296629762986299630063016302630363046305630663076308630963106311631263136314631563166317631863196320632163226323632463256326632763286329633063316332633363346335633663376338633963406341634263436344634563466347634863496350635163526353635463556356635763586359636063616362636363646365636663676368636963706371637263736374637563766377637863796380638163826383638463856386638763886389639063916392639363946395639663976398639964006401640264036404640564066407640864096410641164126413641464156416641764186419642064216422642364246425642664276428642964306431643264336434643564366437643864396440644164426443644464456446644764486449645064516452645364546455645664576458645964606461646264636464646564666467646864696470647164726473647464756476647764786479648064816482648364846485648664876488648964906491649264936494649564966497649864996500650165026503650465056506650765086509651065116512651365146515651665176518651965206521652265236524652565266527652865296530653165326533653465356536653765386539654065416542654365446545654665476548654965506551655265536554655565566557655865596560656165626563656465656566656765686569657065716572657365746575657665776578657965806581658265836584658565866587658865896590659165926593659465956596659765986599660066016602660366046605660666076608660966106611661266136614661566166617661866196620662166226623662466256626662766286629663066316632663366346635663666376638663966406641664266436644664566466647664866496650665166526653665466556656665766586659666066616662666366646665666666676668666966706671667266736674667566766677667866796680668166826683668466856686668766886689669066916692669366946695669666976698669967006701670267036704670567066707670867096710671167126713671467156716671767186719672067216722672367246725672667276728672967306731673267336734673567366737673867396740674167426743674467456746674767486749675067516752675367546755675667576758675967606761676267636764676567666767676867696770677167726773677467756776677767786779678067816782678367846785678667876788678967906791679267936794679567966797679867996800680168026803680468056806680768086809681068116812681368146815681668176818681968206821682268236824682568266827682868296830683168326833683468356836683768386839684068416842684368446845684668476848684968506851685268536854685568566857685868596860686168626863686468656866686768686869687068716872687368746875687668776878687968806881688268836884688568866887688868896890689168926893689468956896689768986899690069016902690369046905690669076908690969106911691269136914691569166917691869196920692169226923692469256926692769286929693069316932693369346935693669376938693969406941694269436944694569466947694869496950695169526953695469556956695769586959696069616962696369646965696669676968696969706971697269736974697569766977697869796980698169826983698469856986698769886989699069916992699369946995699669976998699970007001700270037004700570067007700870097010701170127013701470157016701770187019702070217022702370247025702670277028702970307031703270337034703570367037703870397040704170427043704470457046704770487049705070517052705370547055705670577058705970607061706270637064706570667067706870697070707170727073707470757076707770787079708070817082708370847085708670877088708970907091709270937094709570967097709870997100710171027103710471057106710771087109711071117112711371147115711671177118711971207121712271237124712571267127712871297130713171327133713471357136713771387139714071417142714371447145714671477148714971507151715271537154715571567157715871597160716171627163716471657166716771687169717071717172717371747175717671777178717971807181718271837184718571867187718871897190719171927193719471957196719771987199720072017202720372047205720672077208720972107211721272137214721572167217721872197220722172227223722472257226722772287229723072317232723372347235723672377238723972407241724272437244724572467247724872497250725172527253725472557256725772587259726072617262726372647265726672677268726972707271727272737274727572767277727872797280728172827283728472857286728772887289729072917292729372947295729672977298729973007301730273037304730573067307730873097310731173127313731473157316731773187319732073217322732373247325732673277328732973307331733273337334733573367337733873397340734173427343734473457346734773487349735073517352735373547355735673577358735973607361736273637364736573667367736873697370737173727373737473757376737773787379738073817382738373847385738673877388738973907391739273937394739573967397739873997400740174027403740474057406740774087409741074117412741374147415741674177418741974207421742274237424742574267427742874297430743174327433743474357436743774387439744074417442744374447445744674477448744974507451745274537454745574567457745874597460746174627463746474657466746774687469747074717472747374747475747674777478747974807481748274837484748574867487748874897490749174927493749474957496749774987499750075017502750375047505750675077508750975107511751275137514751575167517751875197520752175227523752475257526752775287529753075317532753375347535753675377538753975407541754275437544754575467547754875497550755175527553755475557556755775587559756075617562756375647565756675677568756975707571757275737574757575767577757875797580758175827583758475857586758775887589759075917592759375947595759675977598759976007601760276037604760576067607760876097610761176127613761476157616761776187619762076217622762376247625762676277628762976307631763276337634763576367637763876397640764176427643764476457646764776487649765076517652765376547655765676577658765976607661766276637664766576667667766876697670767176727673767476757676767776787679768076817682768376847685768676877688768976907691769276937694769576967697769876997700770177027703770477057706770777087709771077117712771377147715771677177718771977207721772277237724772577267727772877297730773177327733773477357736773777387739774077417742774377447745774677477748774977507751775277537754775577567757775877597760776177627763776477657766776777687769777077717772777377747775777677777778777977807781778277837784778577867787778877897790779177927793779477957796779777987799780078017802780378047805780678077808780978107811781278137814781578167817781878197820782178227823782478257826782778287829783078317832783378347835783678377838783978407841784278437844784578467847784878497850785178527853785478557856785778587859786078617862786378647865786678677868786978707871787278737874787578767877787878797880788178827883788478857886788778887889789078917892789378947895789678977898789979007901790279037904790579067907790879097910791179127913791479157916791779187919792079217922792379247925792679277928792979307931793279337934793579367937793879397940794179427943794479457946794779487949795079517952795379547955795679577958795979607961796279637964796579667967796879697970797179727973797479757976797779787979798079817982798379847985798679877988798979907991799279937994799579967997799879998000800180028003800480058006800780088009801080118012801380148015801680178018801980208021802280238024802580268027802880298030803180328033803480358036803780388039804080418042804380448045804680478048804980508051805280538054805580568057805880598060806180628063806480658066806780688069807080718072807380748075807680778078807980808081808280838084808580868087808880898090809180928093809480958096809780988099810081018102810381048105810681078108810981108111811281138114811581168117811881198120812181228123812481258126812781288129813081318132813381348135813681378138813981408141814281438144814581468147814881498150815181528153815481558156815781588159816081618162816381648165816681678168816981708171817281738174817581768177817881798180818181828183818481858186818781888189819081918192819381948195819681978198819982008201820282038204820582068207820882098210821182128213821482158216821782188219822082218222822382248225822682278228822982308231823282338234823582368237823882398240824182428243824482458246824782488249825082518252825382548255825682578258825982608261826282638264826582668267826882698270827182728273827482758276827782788279828082818282828382848285828682878288828982908291829282938294829582968297829882998300830183028303830483058306830783088309831083118312831383148315831683178318831983208321832283238324832583268327832883298330833183328333833483358336833783388339834083418342834383448345834683478348834983508351835283538354835583568357835883598360836183628363836483658366836783688369837083718372837383748375837683778378837983808381838283838384838583868387838883898390839183928393839483958396839783988399840084018402840384048405840684078408840984108411841284138414841584168417841884198420842184228423842484258426842784288429843084318432843384348435843684378438843984408441844284438444844584468447844884498450845184528453845484558456845784588459846084618462846384648465846684678468846984708471847284738474847584768477847884798480848184828483848484858486848784888489849084918492849384948495849684978498849985008501850285038504850585068507850885098510851185128513851485158516851785188519852085218522852385248525852685278528852985308531853285338534853585368537853885398540854185428543854485458546854785488549855085518552855385548555855685578558855985608561856285638564856585668567856885698570857185728573857485758576857785788579858085818582858385848585858685878588858985908591859285938594859585968597859885998600860186028603860486058606860786088609861086118612861386148615861686178618861986208621862286238624862586268627862886298630863186328633863486358636863786388639864086418642864386448645864686478648864986508651865286538654865586568657865886598660866186628663866486658666866786688669867086718672867386748675867686778678867986808681868286838684868586868687868886898690869186928693869486958696869786988699870087018702870387048705870687078708870987108711871287138714871587168717871887198720872187228723872487258726872787288729873087318732873387348735873687378738873987408741874287438744874587468747874887498750875187528753875487558756875787588759876087618762876387648765876687678768876987708771877287738774877587768777877887798780878187828783878487858786878787888789879087918792879387948795879687978798879988008801880288038804880588068807880888098810881188128813881488158816881788188819882088218822882388248825882688278828882988308831883288338834883588368837883888398840884188428843884488458846884788488849885088518852885388548855885688578858885988608861886288638864886588668867886888698870887188728873887488758876887788788879888088818882888388848885888688878888888988908891889288938894889588968897889888998900890189028903890489058906890789088909891089118912891389148915891689178918891989208921892289238924892589268927892889298930893189328933893489358936893789388939894089418942894389448945894689478948894989508951895289538954895589568957895889598960896189628963896489658966896789688969897089718972897389748975897689778978897989808981898289838984898589868987898889898990899189928993899489958996899789988999900090019002900390049005900690079008900990109011901290139014901590169017901890199020902190229023902490259026902790289029903090319032903390349035903690379038903990409041904290439044904590469047904890499050905190529053905490559056905790589059906090619062906390649065906690679068906990709071907290739074907590769077907890799080908190829083908490859086908790889089909090919092909390949095909690979098909991009101910291039104910591069107910891099110911191129113911491159116911791189119912091219122912391249125912691279128912991309131913291339134913591369137913891399140914191429143914491459146914791489149915091519152915391549155915691579158915991609161916291639164916591669167916891699170917191729173917491759176917791789179918091819182918391849185918691879188918991909191919291939194919591969197919891999200920192029203920492059206920792089209921092119212921392149215921692179218921992209221922292239224922592269227922892299230923192329233923492359236923792389239924092419242924392449245924692479248924992509251925292539254925592569257925892599260926192629263926492659266926792689269927092719272927392749275927692779278927992809281928292839284928592869287928892899290929192929293929492959296929792989299930093019302930393049305930693079308930993109311931293139314931593169317931893199320932193229323932493259326932793289329933093319332933393349335933693379338933993409341934293439344934593469347934893499350935193529353935493559356935793589359936093619362936393649365936693679368936993709371937293739374937593769377937893799380938193829383938493859386938793889389939093919392939393949395939693979398939994009401940294039404940594069407940894099410941194129413941494159416941794189419942094219422942394249425942694279428942994309431943294339434943594369437943894399440944194429443944494459446944794489449945094519452945394549455945694579458945994609461946294639464946594669467946894699470947194729473947494759476947794789479948094819482948394849485948694879488948994909491949294939494949594969497949894999500950195029503950495059506950795089509951095119512951395149515951695179518951995209521952295239524952595269527952895299530953195329533953495359536953795389539954095419542954395449545954695479548954995509551955295539554955595569557955895599560956195629563956495659566956795689569957095719572957395749575957695779578957995809581958295839584958595869587958895899590959195929593959495959596959795989599960096019602960396049605960696079608960996109611961296139614961596169617961896199620962196229623962496259626962796289629963096319632963396349635963696379638963996409641964296439644964596469647964896499650965196529653965496559656965796589659966096619662966396649665966696679668966996709671967296739674967596769677967896799680968196829683968496859686968796889689969096919692969396949695969696979698969997009701970297039704970597069707970897099710971197129713971497159716971797189719972097219722972397249725972697279728972997309731973297339734973597369737973897399740974197429743974497459746974797489749975097519752975397549755975697579758975997609761976297639764976597669767976897699770977197729773977497759776977797789779978097819782978397849785978697879788978997909791979297939794979597969797979897999800980198029803980498059806980798089809981098119812981398149815981698179818981998209821982298239824982598269827982898299830983198329833983498359836983798389839984098419842984398449845984698479848984998509851985298539854985598569857985898599860986198629863986498659866986798689869987098719872987398749875987698779878987998809881988298839884988598869887988898899890989198929893989498959896989798989899990099019902990399049905990699079908990999109911991299139914991599169917991899199920992199229923992499259926992799289929993099319932993399349935993699379938993999409941994299439944994599469947994899499950995199529953995499559956995799589959996099619962996399649965996699679968996999709971997299739974997599769977997899799980998199829983998499859986998799889989999099919992999399949995999699979998999910000100011000210003100041000510006100071000810009100101001110012100131001410015100161001710018100191002010021100221002310024100251002610027100281002910030100311003210033100341003510036100371003810039100401004110042100431004410045100461004710048100491005010051100521005310054100551005610057100581005910060100611006210063100641006510066100671006810069100701007110072100731007410075100761007710078100791008010081100821008310084100851008610087100881008910090100911009210093100941009510096100971009810099101001010110102101031010410105101061010710108101091011010111101121011310114101151011610117101181011910120101211012210123101241012510126101271012810129101301013110132101331013410135101361013710138101391014010141101421014310144101451014610147101481014910150101511015210153101541015510156101571015810159101601016110162101631016410165101661016710168101691017010171101721017310174101751017610177101781017910180101811018210183101841018510186101871018810189101901019110192101931019410195101961019710198101991020010201102021020310204102051020610207102081020910210102111021210213102141021510216102171021810219102201022110222102231022410225102261022710228102291023010231102321023310234102351023610237102381023910240102411024210243102441024510246102471024810249102501025110252102531025410255102561025710258102591026010261102621026310264102651026610267102681026910270102711027210273102741027510276102771027810279102801028110282102831028410285102861028710288102891029010291102921029310294102951029610297102981029910300103011030210303103041030510306103071030810309103101031110312103131031410315103161031710318103191032010321103221032310324103251032610327103281032910330103311033210333103341033510336103371033810339103401034110342103431034410345103461034710348103491035010351103521035310354103551035610357103581035910360103611036210363103641036510366103671036810369103701037110372103731037410375103761037710378103791038010381103821038310384103851038610387103881038910390103911039210393103941039510396103971039810399104001040110402104031040410405104061040710408104091041010411104121041310414104151041610417104181041910420104211042210423104241042510426104271042810429104301043110432104331043410435104361043710438104391044010441104421044310444104451044610447104481044910450104511045210453104541045510456104571045810459104601046110462104631046410465104661046710468104691047010471104721047310474104751047610477104781047910480104811048210483104841048510486104871048810489104901049110492104931049410495104961049710498104991050010501105021050310504105051050610507105081050910510105111051210513105141051510516105171051810519105201052110522105231052410525105261052710528105291053010531105321053310534105351053610537105381053910540105411054210543105441054510546105471054810549105501055110552105531055410555105561055710558105591056010561105621056310564105651056610567105681056910570105711057210573105741057510576105771057810579105801058110582105831058410585105861058710588105891059010591105921059310594105951059610597105981059910600106011060210603106041060510606106071060810609106101061110612106131061410615106161061710618106191062010621106221062310624106251062610627106281062910630106311063210633106341063510636106371063810639106401064110642106431064410645106461064710648106491065010651106521065310654106551065610657106581065910660106611066210663106641066510666106671066810669106701067110672106731067410675106761067710678106791068010681106821068310684106851068610687106881068910690106911069210693106941069510696106971069810699107001070110702107031070410705107061070710708107091071010711107121071310714107151071610717107181071910720107211072210723107241072510726107271072810729107301073110732107331073410735107361073710738107391074010741107421074310744107451074610747107481074910750107511075210753107541075510756107571075810759107601076110762107631076410765107661076710768107691077010771107721077310774107751077610777107781077910780107811078210783107841078510786107871078810789107901079110792107931079410795107961079710798107991080010801108021080310804108051080610807108081080910810108111081210813108141081510816108171081810819108201082110822108231082410825108261082710828108291083010831108321083310834108351083610837108381083910840108411084210843108441084510846108471084810849108501085110852108531085410855108561085710858108591086010861108621086310864108651086610867108681086910870108711087210873108741087510876108771087810879108801088110882108831088410885108861088710888108891089010891108921089310894108951089610897108981089910900109011090210903109041090510906109071090810909109101091110912109131091410915109161091710918109191092010921109221092310924109251092610927109281092910930109311093210933109341093510936109371093810939109401094110942109431094410945109461094710948109491095010951109521095310954109551095610957109581095910960109611096210963109641096510966109671096810969109701097110972109731097410975109761097710978109791098010981109821098310984109851098610987109881098910990109911099210993109941099510996109971099810999110001100111002110031100411005110061100711008110091101011011110121101311014110151101611017110181101911020110211102211023110241102511026110271102811029110301103111032110331103411035110361103711038110391104011041110421104311044110451104611047110481104911050110511105211053110541105511056110571105811059110601106111062110631106411065110661106711068110691107011071110721107311074110751107611077110781107911080110811108211083110841108511086110871108811089110901109111092110931109411095110961109711098110991110011101111021110311104111051110611107111081110911110111111111211113111141111511116111171111811119111201112111122111231112411125111261112711128111291113011131111321113311134111351113611137111381113911140111411114211143111441114511146111471114811149111501115111152111531115411155111561115711158111591116011161111621116311164111651116611167111681116911170111711117211173111741117511176111771117811179111801118111182111831118411185111861118711188111891119011191111921119311194111951119611197111981119911200112011120211203112041120511206112071120811209112101121111212112131121411215112161121711218112191122011221112221122311224112251122611227112281122911230112311123211233112341123511236112371123811239112401124111242112431124411245112461124711248112491125011251112521125311254112551125611257112581125911260112611126211263112641126511266112671126811269112701127111272112731127411275112761127711278112791128011281112821128311284112851128611287112881128911290112911129211293112941129511296112971129811299113001130111302113031130411305113061130711308113091131011311113121131311314113151131611317113181131911320113211132211323113241132511326113271132811329113301133111332113331133411335113361133711338113391134011341113421134311344113451134611347113481134911350113511135211353113541135511356113571135811359113601136111362113631136411365113661136711368113691137011371113721137311374113751137611377113781137911380113811138211383113841138511386113871138811389113901139111392113931139411395113961139711398113991140011401114021140311404114051140611407114081140911410114111141211413114141141511416114171141811419114201142111422114231142411425114261142711428114291143011431114321143311434114351143611437114381143911440114411144211443114441144511446114471144811449114501145111452114531145411455114561145711458114591146011461114621146311464114651146611467114681146911470114711147211473114741147511476114771147811479114801148111482114831148411485114861148711488114891149011491114921149311494114951149611497114981149911500115011150211503115041150511506115071150811509115101151111512115131151411515115161151711518115191152011521115221152311524115251152611527115281152911530115311153211533115341153511536115371153811539115401154111542115431154411545115461154711548115491155011551115521155311554115551155611557115581155911560115611156211563115641156511566115671156811569115701157111572115731157411575115761157711578115791158011581115821158311584115851158611587115881158911590115911159211593115941159511596115971159811599116001160111602116031160411605116061160711608116091161011611116121161311614116151161611617116181161911620116211162211623116241162511626116271162811629116301163111632116331163411635116361163711638116391164011641116421164311644116451164611647116481164911650116511165211653116541165511656116571165811659116601166111662116631166411665116661166711668116691167011671116721167311674116751167611677116781167911680116811168211683116841168511686116871168811689116901169111692116931169411695116961169711698116991170011701117021170311704117051170611707117081170911710117111171211713117141171511716117171171811719117201172111722117231172411725117261172711728117291173011731117321173311734117351173611737117381173911740117411174211743117441174511746117471174811749117501175111752117531175411755117561175711758117591176011761117621176311764117651176611767117681176911770117711177211773117741177511776117771177811779117801178111782117831178411785117861178711788117891179011791117921179311794117951179611797117981179911800118011180211803118041180511806118071180811809118101181111812118131181411815118161181711818118191182011821118221182311824118251182611827118281182911830118311183211833118341183511836118371183811839118401184111842118431184411845118461184711848118491185011851118521185311854118551185611857118581185911860118611186211863118641186511866118671186811869118701187111872118731187411875118761187711878118791188011881118821188311884118851188611887118881188911890118911189211893118941189511896118971189811899119001190111902119031190411905119061190711908119091191011911119121191311914119151191611917119181191911920119211192211923119241192511926119271192811929119301193111932119331193411935119361193711938119391194011941119421194311944119451194611947119481194911950119511195211953119541195511956119571195811959119601196111962119631196411965119661196711968119691197011971119721197311974119751197611977119781197911980119811198211983119841198511986119871198811989119901199111992119931199411995119961199711998119991200012001120021200312004120051200612007120081200912010120111201212013120141201512016120171201812019120201202112022120231202412025120261202712028120291203012031120321203312034120351203612037120381203912040120411204212043120441204512046120471204812049120501205112052120531205412055120561205712058120591206012061120621206312064120651206612067120681206912070120711207212073120741207512076120771207812079120801208112082120831208412085120861208712088120891209012091120921209312094120951209612097120981209912100121011210212103121041210512106121071210812109121101211112112121131211412115121161211712118121191212012121121221212312124121251212612127121281212912130121311213212133121341213512136121371213812139121401214112142121431214412145121461214712148121491215012151121521215312154121551215612157121581215912160121611216212163121641216512166121671216812169121701217112172121731217412175121761217712178121791218012181121821218312184121851218612187121881218912190121911219212193121941219512196121971219812199122001220112202122031220412205122061220712208122091221012211122121221312214122151221612217122181221912220122211222212223122241222512226122271222812229122301223112232122331223412235122361223712238122391224012241122421224312244122451224612247122481224912250122511225212253122541225512256122571225812259122601226112262122631226412265122661226712268122691227012271122721227312274122751227612277122781227912280122811228212283122841228512286122871228812289122901229112292122931229412295122961229712298122991230012301123021230312304123051230612307123081230912310123111231212313123141231512316123171231812319123201232112322123231232412325123261232712328123291233012331123321233312334123351233612337123381233912340123411234212343123441234512346123471234812349123501235112352123531235412355123561235712358123591236012361123621236312364123651236612367123681236912370123711237212373123741237512376123771237812379123801238112382123831238412385123861238712388123891239012391123921239312394123951239612397123981239912400124011240212403124041240512406124071240812409124101241112412124131241412415124161241712418124191242012421124221242312424124251242612427124281242912430124311243212433124341243512436124371243812439124401244112442124431244412445124461244712448124491245012451124521245312454124551245612457124581245912460124611246212463124641246512466124671246812469124701247112472124731247412475124761247712478124791248012481124821248312484124851248612487124881248912490124911249212493124941249512496124971249812499125001250112502125031250412505125061250712508125091251012511125121251312514125151251612517125181251912520125211252212523125241252512526125271252812529125301253112532125331253412535125361253712538125391254012541125421254312544125451254612547125481254912550125511255212553125541255512556125571255812559125601256112562125631256412565125661256712568125691257012571125721257312574125751257612577125781257912580125811258212583125841258512586125871258812589125901259112592125931259412595125961259712598125991260012601126021260312604126051260612607126081260912610126111261212613126141261512616126171261812619126201262112622126231262412625126261262712628126291263012631126321263312634126351263612637126381263912640126411264212643126441264512646126471264812649126501265112652126531265412655126561265712658126591266012661126621266312664126651266612667126681266912670126711267212673126741267512676126771267812679126801268112682126831268412685126861268712688126891269012691126921269312694126951269612697126981269912700127011270212703127041270512706127071270812709127101271112712127131271412715127161271712718127191272012721127221272312724127251272612727127281272912730127311273212733127341273512736127371273812739127401274112742127431274412745127461274712748127491275012751127521275312754127551275612757127581275912760127611276212763127641276512766127671276812769127701277112772127731277412775127761277712778127791278012781127821278312784127851278612787127881278912790127911279212793127941279512796127971279812799128001280112802128031280412805128061280712808128091281012811128121281312814128151281612817128181281912820128211282212823128241282512826128271282812829128301283112832128331283412835128361283712838128391284012841128421284312844128451284612847128481284912850128511285212853128541285512856128571285812859128601286112862128631286412865128661286712868128691287012871128721287312874128751287612877128781287912880128811288212883128841288512886128871288812889128901289112892128931289412895128961289712898128991290012901129021290312904129051290612907129081290912910129111291212913129141291512916129171291812919129201292112922129231292412925129261292712928129291293012931129321293312934129351293612937129381293912940129411294212943129441294512946129471294812949129501295112952129531295412955129561295712958129591296012961129621296312964129651296612967129681296912970129711297212973129741297512976129771297812979129801298112982129831298412985129861298712988129891299012991129921299312994129951299612997129981299913000130011300213003130041300513006130071300813009130101301113012130131301413015130161301713018130191302013021130221302313024130251302613027130281302913030130311303213033130341303513036130371303813039130401304113042130431304413045130461304713048130491305013051130521305313054130551305613057130581305913060130611306213063130641306513066130671306813069130701307113072130731307413075130761307713078130791308013081130821308313084130851308613087130881308913090130911309213093130941309513096130971309813099131001310113102131031310413105131061310713108131091311013111131121311313114131151311613117131181311913120131211312213123131241312513126131271312813129131301313113132131331313413135131361313713138131391314013141131421314313144131451314613147131481314913150131511315213153131541315513156131571315813159131601316113162131631316413165131661316713168131691317013171131721317313174131751317613177131781317913180131811318213183131841318513186131871318813189131901319113192131931319413195131961319713198131991320013201132021320313204132051320613207132081320913210132111321213213132141321513216132171321813219132201322113222132231322413225132261322713228132291323013231132321323313234132351323613237132381323913240132411324213243132441324513246132471324813249132501325113252132531325413255132561325713258132591326013261132621326313264132651326613267132681326913270132711327213273132741327513276132771327813279132801328113282132831328413285132861328713288132891329013291132921329313294132951329613297132981329913300133011330213303133041330513306133071330813309133101331113312133131331413315133161331713318133191332013321133221332313324133251332613327133281332913330133311333213333133341333513336133371333813339133401334113342133431334413345133461334713348133491335013351133521335313354133551335613357133581335913360133611336213363133641336513366133671336813369133701337113372133731337413375133761337713378133791338013381133821338313384133851338613387133881338913390133911339213393133941339513396133971339813399134001340113402134031340413405134061340713408134091341013411134121341313414134151341613417134181341913420134211342213423134241342513426134271342813429134301343113432134331343413435134361343713438134391344013441134421344313444134451344613447134481344913450134511345213453134541345513456134571345813459134601346113462134631346413465134661346713468134691347013471134721347313474134751347613477134781347913480134811348213483134841348513486134871348813489134901349113492134931349413495134961349713498134991350013501135021350313504135051350613507135081350913510135111351213513135141351513516135171351813519135201352113522135231352413525135261352713528135291353013531135321353313534135351353613537135381353913540135411354213543135441354513546135471354813549135501355113552135531355413555135561355713558135591356013561135621356313564135651356613567135681356913570135711357213573135741357513576135771357813579135801358113582135831358413585135861358713588135891359013591135921359313594135951359613597135981359913600136011360213603136041360513606136071360813609136101361113612136131361413615136161361713618136191362013621136221362313624136251362613627136281362913630136311363213633136341363513636136371363813639136401364113642136431364413645136461364713648136491365013651136521365313654136551365613657136581365913660136611366213663136641366513666136671366813669136701367113672136731367413675136761367713678136791368013681136821368313684136851368613687136881368913690136911369213693136941369513696136971369813699137001370113702137031370413705137061370713708137091371013711137121371313714137151371613717137181371913720137211372213723137241372513726137271372813729137301373113732137331373413735137361373713738137391374013741137421374313744137451374613747137481374913750137511375213753137541375513756137571375813759137601376113762137631376413765137661376713768137691377013771137721377313774137751377613777137781377913780137811378213783137841378513786137871378813789137901379113792137931379413795137961379713798137991380013801138021380313804138051380613807138081380913810138111381213813138141381513816138171381813819138201382113822138231382413825138261382713828138291383013831138321383313834138351383613837138381383913840138411384213843138441384513846138471384813849138501385113852138531385413855138561385713858138591386013861138621386313864138651386613867138681386913870138711387213873138741387513876138771387813879138801388113882138831388413885138861388713888138891389013891138921389313894138951389613897138981389913900139011390213903139041390513906139071390813909139101391113912139131391413915139161391713918139191392013921139221392313924139251392613927139281392913930139311393213933139341393513936139371393813939139401394113942139431394413945139461394713948139491395013951139521395313954139551395613957139581395913960139611396213963139641396513966139671396813969139701397113972139731397413975139761397713978139791398013981139821398313984139851398613987139881398913990139911399213993139941399513996139971399813999140001400114002140031400414005140061400714008140091401014011140121401314014140151401614017140181401914020140211402214023140241402514026140271402814029140301403114032140331403414035140361403714038140391404014041140421404314044140451404614047140481404914050140511405214053140541405514056140571405814059140601406114062140631406414065140661406714068140691407014071140721407314074140751407614077140781407914080140811408214083140841408514086140871408814089140901409114092140931409414095140961409714098140991410014101141021410314104141051410614107141081410914110141111411214113141141411514116141171411814119141201412114122141231412414125141261412714128141291413014131141321413314134141351413614137141381413914140141411414214143141441414514146141471414814149141501415114152141531415414155141561415714158141591416014161141621416314164141651416614167141681416914170141711417214173141741417514176141771417814179141801418114182141831418414185141861418714188141891419014191141921419314194141951419614197141981419914200142011420214203142041420514206142071420814209142101421114212142131421414215142161421714218142191422014221142221422314224142251422614227142281422914230142311423214233142341423514236142371423814239142401424114242142431424414245142461424714248142491425014251142521425314254142551425614257142581425914260142611426214263142641426514266142671426814269142701427114272142731427414275142761427714278142791428014281142821428314284142851428614287142881428914290142911429214293142941429514296142971429814299143001430114302143031430414305143061430714308143091431014311143121431314314143151431614317143181431914320143211432214323143241432514326143271432814329143301433114332143331433414335143361433714338143391434014341143421434314344143451434614347143481434914350143511435214353143541435514356143571435814359143601436114362143631436414365143661436714368143691437014371143721437314374143751437614377143781437914380143811438214383143841438514386143871438814389143901439114392143931439414395143961439714398143991440014401144021440314404144051440614407144081440914410144111441214413144141441514416144171441814419144201442114422144231442414425144261442714428144291443014431144321443314434144351443614437144381443914440144411444214443144441444514446144471444814449144501445114452144531445414455144561445714458144591446014461144621446314464144651446614467144681446914470144711447214473144741447514476144771447814479144801448114482144831448414485144861448714488144891449014491144921449314494144951449614497144981449914500145011450214503145041450514506145071450814509145101451114512145131451414515145161451714518145191452014521145221452314524145251452614527145281452914530145311453214533145341453514536145371453814539145401454114542145431454414545145461454714548145491455014551145521455314554145551455614557145581455914560145611456214563145641456514566145671456814569145701457114572145731457414575145761457714578145791458014581145821458314584145851458614587145881458914590145911459214593145941459514596145971459814599146001460114602146031460414605146061460714608146091461014611146121461314614146151461614617146181461914620146211462214623146241462514626146271462814629146301463114632146331463414635146361463714638146391464014641146421464314644146451464614647146481464914650146511465214653146541465514656146571465814659146601466114662146631466414665146661466714668146691467014671146721467314674146751467614677146781467914680146811468214683146841468514686146871468814689146901469114692146931469414695146961469714698146991470014701147021470314704147051470614707147081470914710147111471214713147141471514716147171471814719147201472114722147231472414725147261472714728147291473014731147321473314734147351473614737147381473914740147411474214743147441474514746147471474814749147501475114752147531475414755147561475714758147591476014761147621476314764147651476614767147681476914770147711477214773147741477514776147771477814779147801478114782147831478414785147861478714788147891479014791147921479314794147951479614797147981479914800148011480214803148041480514806148071480814809148101481114812148131481414815148161481714818148191482014821148221482314824148251482614827148281482914830148311483214833148341483514836148371483814839148401484114842148431484414845148461484714848148491485014851148521485314854148551485614857148581485914860148611486214863148641486514866148671486814869148701487114872148731487414875148761487714878148791488014881148821488314884148851488614887148881488914890148911489214893148941489514896148971489814899149001490114902149031490414905149061490714908149091491014911149121491314914149151491614917149181491914920149211492214923149241492514926149271492814929149301493114932149331493414935149361493714938149391494014941149421494314944149451494614947149481494914950149511495214953149541495514956149571495814959149601496114962149631496414965149661496714968149691497014971149721497314974149751497614977149781497914980149811498214983149841498514986149871498814989149901499114992149931499414995149961499714998149991500015001150021500315004150051500615007150081500915010150111501215013150141501515016150171501815019150201502115022150231502415025150261502715028150291503015031150321503315034150351503615037150381503915040150411504215043150441504515046150471504815049150501505115052150531505415055150561505715058150591506015061150621506315064150651506615067150681506915070150711507215073150741507515076150771507815079150801508115082150831508415085150861508715088150891509015091150921509315094150951509615097150981509915100151011510215103151041510515106151071510815109151101511115112151131511415115151161511715118151191512015121151221512315124151251512615127151281512915130151311513215133151341513515136151371513815139151401514115142151431514415145151461514715148151491515015151151521515315154151551515615157151581515915160151611516215163151641516515166151671516815169151701517115172151731517415175151761517715178151791518015181151821518315184151851518615187151881518915190151911519215193151941519515196151971519815199152001520115202152031520415205152061520715208152091521015211152121521315214152151521615217152181521915220152211522215223152241522515226152271522815229152301523115232152331523415235152361523715238152391524015241152421524315244152451524615247152481524915250152511525215253152541525515256152571525815259152601526115262152631526415265152661526715268152691527015271152721527315274152751527615277152781527915280152811528215283152841528515286152871528815289152901529115292152931529415295152961529715298152991530015301153021530315304153051530615307153081530915310153111531215313153141531515316153171531815319153201532115322153231532415325153261532715328153291533015331153321533315334153351533615337153381533915340153411534215343153441534515346153471534815349153501535115352153531535415355153561535715358153591536015361153621536315364153651536615367153681536915370153711537215373153741537515376153771537815379153801538115382153831538415385153861538715388153891539015391153921539315394153951539615397153981539915400154011540215403154041540515406154071540815409154101541115412154131541415415154161541715418154191542015421154221542315424154251542615427154281542915430154311543215433154341543515436154371543815439154401544115442154431544415445154461544715448154491545015451154521545315454154551545615457154581545915460154611546215463154641546515466154671546815469154701547115472154731547415475154761547715478154791548015481154821548315484154851548615487154881548915490154911549215493154941549515496154971549815499155001550115502155031550415505155061550715508155091551015511155121551315514155151551615517155181551915520155211552215523155241552515526155271552815529155301553115532155331553415535155361553715538155391554015541155421554315544155451554615547155481554915550155511555215553155541555515556155571555815559155601556115562155631556415565155661556715568155691557015571155721557315574155751557615577155781557915580155811558215583155841558515586155871558815589155901559115592155931559415595155961559715598155991560015601156021560315604156051560615607156081560915610156111561215613156141561515616156171561815619156201562115622156231562415625156261562715628156291563015631156321563315634156351563615637156381563915640156411564215643156441564515646156471564815649156501565115652156531565415655156561565715658156591566015661156621566315664156651566615667156681566915670156711567215673156741567515676156771567815679156801568115682156831568415685156861568715688156891569015691156921569315694156951569615697156981569915700157011570215703157041570515706157071570815709157101571115712157131571415715157161571715718157191572015721157221572315724157251572615727157281572915730157311573215733157341573515736157371573815739157401574115742157431574415745157461574715748157491575015751157521575315754157551575615757157581575915760157611576215763157641576515766157671576815769157701577115772157731577415775157761577715778157791578015781157821578315784157851578615787157881578915790157911579215793157941579515796157971579815799158001580115802158031580415805158061580715808158091581015811158121581315814158151581615817158181581915820158211582215823158241582515826158271582815829158301583115832158331583415835158361583715838158391584015841158421584315844158451584615847158481584915850158511585215853158541585515856158571585815859158601586115862158631586415865158661586715868158691587015871158721587315874158751587615877158781587915880158811588215883158841588515886158871588815889158901589115892158931589415895158961589715898158991590015901159021590315904159051590615907159081590915910159111591215913159141591515916159171591815919159201592115922159231592415925159261592715928159291593015931159321593315934159351593615937159381593915940159411594215943159441594515946159471594815949159501595115952159531595415955159561595715958159591596015961159621596315964159651596615967159681596915970159711597215973159741597515976159771597815979159801598115982159831598415985159861598715988159891599015991159921599315994159951599615997159981599916000160011600216003160041600516006160071600816009160101601116012160131601416015160161601716018160191602016021160221602316024160251602616027160281602916030160311603216033160341603516036160371603816039160401604116042160431604416045160461604716048160491605016051160521605316054160551605616057160581605916060160611606216063160641606516066160671606816069160701607116072160731607416075160761607716078160791608016081160821608316084160851608616087160881608916090160911609216093160941609516096160971609816099161001610116102161031610416105161061610716108161091611016111161121611316114161151611616117161181611916120161211612216123161241612516126161271612816129161301613116132161331613416135161361613716138161391614016141161421614316144161451614616147161481614916150161511615216153161541615516156161571615816159161601616116162161631616416165161661616716168161691617016171161721617316174161751617616177161781617916180161811618216183161841618516186161871618816189161901619116192161931619416195161961619716198161991620016201162021620316204162051620616207162081620916210162111621216213162141621516216162171621816219162201622116222162231622416225162261622716228162291623016231162321623316234162351623616237162381623916240162411624216243162441624516246162471624816249162501625116252162531625416255162561625716258162591626016261162621626316264162651626616267162681626916270162711627216273162741627516276162771627816279162801628116282162831628416285162861628716288162891629016291162921629316294162951629616297162981629916300163011630216303163041630516306163071630816309163101631116312163131631416315163161631716318163191632016321163221632316324163251632616327163281632916330163311633216333163341633516336163371633816339163401634116342163431634416345163461634716348163491635016351163521635316354163551635616357163581635916360163611636216363163641636516366163671636816369163701637116372163731637416375163761637716378163791638016381163821638316384163851638616387163881638916390163911639216393163941639516396163971639816399164001640116402164031640416405164061640716408164091641016411164121641316414164151641616417164181641916420164211642216423164241642516426164271642816429164301643116432164331643416435164361643716438164391644016441164421644316444164451644616447164481644916450164511645216453164541645516456164571645816459164601646116462164631646416465164661646716468164691647016471164721647316474164751647616477164781647916480164811648216483164841648516486164871648816489164901649116492164931649416495164961649716498164991650016501165021650316504165051650616507165081650916510165111651216513165141651516516165171651816519165201652116522165231652416525165261652716528165291653016531165321653316534165351653616537165381653916540165411654216543165441654516546165471654816549165501655116552165531655416555165561655716558165591656016561165621656316564165651656616567165681656916570165711657216573165741657516576165771657816579165801658116582165831658416585165861658716588165891659016591165921659316594165951659616597165981659916600166011660216603166041660516606166071660816609166101661116612166131661416615166161661716618166191662016621166221662316624166251662616627166281662916630166311663216633166341663516636166371663816639166401664116642166431664416645166461664716648166491665016651166521665316654166551665616657166581665916660166611666216663166641666516666166671666816669166701667116672166731667416675166761667716678166791668016681166821668316684166851668616687166881668916690166911669216693166941669516696166971669816699167001670116702167031670416705167061670716708167091671016711167121671316714167151671616717167181671916720167211672216723167241672516726167271672816729167301673116732167331673416735167361673716738167391674016741167421674316744167451674616747167481674916750167511675216753167541675516756167571675816759167601676116762167631676416765167661676716768167691677016771167721677316774167751677616777167781677916780167811678216783167841678516786167871678816789167901679116792167931679416795167961679716798167991680016801168021680316804168051680616807168081680916810168111681216813168141681516816168171681816819168201682116822168231682416825168261682716828168291683016831168321683316834168351683616837168381683916840168411684216843168441684516846168471684816849168501685116852168531685416855168561685716858168591686016861168621686316864168651686616867168681686916870168711687216873168741687516876168771687816879168801688116882168831688416885168861688716888168891689016891168921689316894168951689616897168981689916900169011690216903169041690516906169071690816909169101691116912169131691416915169161691716918169191692016921169221692316924169251692616927169281692916930169311693216933169341693516936169371693816939169401694116942169431694416945169461694716948169491695016951169521695316954169551695616957169581695916960169611696216963169641696516966169671696816969169701697116972169731697416975169761697716978169791698016981169821698316984169851698616987169881698916990169911699216993169941699516996169971699816999170001700117002170031700417005170061700717008170091701017011170121701317014170151701617017170181701917020170211702217023170241702517026170271702817029170301703117032170331703417035170361703717038170391704017041170421704317044170451704617047170481704917050170511705217053170541705517056170571705817059170601706117062170631706417065170661706717068170691707017071170721707317074170751707617077170781707917080170811708217083170841708517086170871708817089170901709117092170931709417095170961709717098170991710017101171021710317104171051710617107171081710917110171111711217113171141711517116171171711817119171201712117122171231712417125171261712717128171291713017131171321713317134171351713617137171381713917140171411714217143171441714517146171471714817149171501715117152171531715417155171561715717158171591716017161171621716317164171651716617167171681716917170171711717217173171741717517176171771717817179171801718117182171831718417185171861718717188171891719017191171921719317194171951719617197171981719917200172011720217203172041720517206172071720817209172101721117212172131721417215172161721717218172191722017221172221722317224172251722617227172281722917230172311723217233172341723517236172371723817239172401724117242172431724417245172461724717248172491725017251172521725317254172551725617257172581725917260172611726217263172641726517266172671726817269172701727117272172731727417275172761727717278172791728017281172821728317284172851728617287172881728917290172911729217293172941729517296172971729817299173001730117302173031730417305173061730717308173091731017311173121731317314173151731617317173181731917320173211732217323173241732517326173271732817329173301733117332173331733417335173361733717338173391734017341173421734317344173451734617347173481734917350173511735217353173541735517356173571735817359173601736117362173631736417365173661736717368173691737017371173721737317374173751737617377173781737917380173811738217383173841738517386173871738817389173901739117392173931739417395173961739717398173991740017401174021740317404174051740617407174081740917410174111741217413174141741517416174171741817419174201742117422174231742417425174261742717428174291743017431174321743317434174351743617437174381743917440174411744217443174441744517446174471744817449174501745117452174531745417455174561745717458174591746017461174621746317464174651746617467174681746917470174711747217473174741747517476174771747817479174801748117482174831748417485174861748717488174891749017491174921749317494174951749617497174981749917500175011750217503175041750517506175071750817509175101751117512175131751417515175161751717518175191752017521175221752317524175251752617527175281752917530175311753217533175341753517536175371753817539175401754117542175431754417545175461754717548175491755017551175521755317554175551755617557175581755917560175611756217563175641756517566175671756817569175701757117572175731757417575175761757717578175791758017581175821758317584175851758617587175881758917590175911759217593175941759517596175971759817599176001760117602176031760417605176061760717608176091761017611176121761317614176151761617617176181761917620176211762217623176241762517626176271762817629176301763117632176331763417635176361763717638176391764017641176421764317644176451764617647176481764917650176511765217653176541765517656176571765817659176601766117662176631766417665176661766717668176691767017671176721767317674176751767617677176781767917680176811768217683176841768517686176871768817689176901769117692176931769417695176961769717698176991770017701177021770317704177051770617707177081770917710177111771217713177141771517716177171771817719177201772117722177231772417725177261772717728177291773017731177321773317734177351773617737177381773917740177411774217743177441774517746177471774817749177501775117752177531775417755177561775717758177591776017761177621776317764177651776617767177681776917770177711777217773177741777517776177771777817779177801778117782177831778417785177861778717788177891779017791177921779317794177951779617797177981779917800178011780217803178041780517806178071780817809178101781117812178131781417815178161781717818178191782017821178221782317824178251782617827178281782917830178311783217833178341783517836178371783817839178401784117842178431784417845178461784717848178491785017851178521785317854178551785617857178581785917860178611786217863178641786517866178671786817869178701787117872178731787417875178761787717878178791788017881178821788317884178851788617887178881788917890178911789217893178941789517896178971789817899179001790117902179031790417905179061790717908179091791017911179121791317914179151791617917179181791917920179211792217923179241792517926179271792817929179301793117932179331793417935179361793717938179391794017941179421794317944179451794617947179481794917950179511795217953179541795517956179571795817959179601796117962179631796417965179661796717968179691797017971179721797317974179751797617977179781797917980179811798217983179841798517986179871798817989179901799117992179931799417995179961799717998179991800018001180021800318004180051800618007180081800918010180111801218013180141801518016180171801818019180201802118022180231802418025180261802718028180291803018031180321803318034180351803618037180381803918040180411804218043180441804518046180471804818049180501805118052180531805418055180561805718058180591806018061180621806318064180651806618067180681806918070180711807218073180741807518076180771807818079180801808118082180831808418085180861808718088180891809018091180921809318094180951809618097180981809918100181011810218103181041810518106181071810818109181101811118112181131811418115181161811718118181191812018121181221812318124181251812618127181281812918130181311813218133181341813518136181371813818139181401814118142181431814418145181461814718148181491815018151181521815318154181551815618157181581815918160181611816218163181641816518166181671816818169181701817118172181731817418175181761817718178181791818018181181821818318184181851818618187181881818918190181911819218193181941819518196181971819818199182001820118202182031820418205182061820718208182091821018211182121821318214182151821618217182181821918220182211822218223182241822518226182271822818229182301823118232182331823418235182361823718238182391824018241182421824318244182451824618247182481824918250182511825218253182541825518256182571825818259182601826118262182631826418265182661826718268182691827018271182721827318274182751827618277182781827918280182811828218283182841828518286182871828818289182901829118292182931829418295182961829718298182991830018301183021830318304183051830618307183081830918310183111831218313183141831518316183171831818319183201832118322183231832418325183261832718328183291833018331183321833318334183351833618337183381833918340183411834218343183441834518346183471834818349183501835118352183531835418355183561835718358183591836018361183621836318364183651836618367183681836918370183711837218373183741837518376183771837818379183801838118382183831838418385183861838718388183891839018391183921839318394183951839618397183981839918400184011840218403184041840518406184071840818409184101841118412184131841418415184161841718418184191842018421184221842318424184251842618427184281842918430184311843218433184341843518436184371843818439184401844118442184431844418445184461844718448184491845018451184521845318454184551845618457184581845918460184611846218463184641846518466184671846818469184701847118472184731847418475184761847718478184791848018481184821848318484184851848618487184881848918490184911849218493184941849518496184971849818499185001850118502185031850418505185061850718508185091851018511185121851318514185151851618517185181851918520185211852218523185241852518526185271852818529185301853118532185331853418535185361853718538185391854018541185421854318544185451854618547185481854918550185511855218553185541855518556185571855818559185601856118562185631856418565185661856718568185691857018571185721857318574185751857618577185781857918580185811858218583185841858518586185871858818589185901859118592185931859418595185961859718598185991860018601186021860318604186051860618607186081860918610186111861218613186141861518616186171861818619186201862118622186231862418625186261862718628186291863018631186321863318634186351863618637186381863918640186411864218643186441864518646186471864818649186501865118652186531865418655186561865718658186591866018661186621866318664186651866618667186681866918670186711867218673186741867518676186771867818679186801868118682186831868418685186861868718688186891869018691186921869318694186951869618697186981869918700187011870218703187041870518706187071870818709187101871118712187131871418715187161871718718187191872018721187221872318724187251872618727187281872918730187311873218733187341873518736187371873818739187401874118742187431874418745187461874718748187491875018751187521875318754187551875618757187581875918760187611876218763187641876518766187671876818769187701877118772187731877418775187761877718778187791878018781187821878318784187851878618787187881878918790187911879218793187941879518796187971879818799188001880118802188031880418805188061880718808188091881018811188121881318814188151881618817188181881918820188211882218823188241882518826188271882818829188301883118832188331883418835188361883718838188391884018841188421884318844188451884618847188481884918850188511885218853188541885518856188571885818859188601886118862188631886418865188661886718868188691887018871188721887318874188751887618877188781887918880188811888218883188841888518886188871888818889188901889118892188931889418895188961889718898188991890018901189021890318904189051890618907189081890918910189111891218913189141891518916189171891818919189201892118922189231892418925189261892718928189291893018931189321893318934189351893618937189381893918940189411894218943189441894518946189471894818949189501895118952189531895418955189561895718958189591896018961189621896318964189651896618967189681896918970189711897218973189741897518976189771897818979189801898118982189831898418985189861898718988189891899018991189921899318994189951899618997189981899919000190011900219003190041900519006190071900819009190101901119012190131901419015190161901719018190191902019021190221902319024190251902619027190281902919030190311903219033190341903519036190371903819039190401904119042190431904419045190461904719048190491905019051190521905319054190551905619057190581905919060190611906219063190641906519066190671906819069190701907119072190731907419075190761907719078190791908019081190821908319084190851908619087190881908919090190911909219093190941909519096190971909819099191001910119102191031910419105191061910719108191091911019111191121911319114191151911619117191181911919120191211912219123191241912519126191271912819129191301913119132191331913419135191361913719138191391914019141191421914319144191451914619147191481914919150191511915219153191541915519156191571915819159191601916119162191631916419165191661916719168191691917019171191721917319174191751917619177191781917919180191811918219183191841918519186191871918819189191901919119192191931919419195191961919719198191991920019201192021920319204192051920619207192081920919210192111921219213192141921519216192171921819219192201922119222192231922419225192261922719228192291923019231192321923319234192351923619237192381923919240192411924219243192441924519246192471924819249192501925119252192531925419255192561925719258192591926019261192621926319264192651926619267192681926919270192711927219273192741927519276192771927819279192801928119282192831928419285192861928719288192891929019291192921929319294192951929619297192981929919300193011930219303193041930519306193071930819309193101931119312193131931419315193161931719318193191932019321193221932319324193251932619327193281932919330193311933219333193341933519336193371933819339193401934119342193431934419345193461934719348193491935019351193521935319354193551935619357193581935919360193611936219363193641936519366193671936819369193701937119372193731937419375193761937719378193791938019381193821938319384193851938619387193881938919390193911939219393193941939519396193971939819399194001940119402194031940419405194061940719408194091941019411194121941319414194151941619417194181941919420194211942219423194241942519426194271942819429194301943119432194331943419435194361943719438194391944019441194421944319444194451944619447194481944919450194511945219453194541945519456194571945819459194601946119462194631946419465194661946719468194691947019471194721947319474194751947619477194781947919480194811948219483194841948519486194871948819489194901949119492194931949419495194961949719498194991950019501195021950319504195051950619507195081950919510195111951219513195141951519516195171951819519195201952119522195231952419525195261952719528195291953019531195321953319534195351953619537195381953919540195411954219543195441954519546195471954819549195501955119552195531955419555195561955719558195591956019561195621956319564195651956619567195681956919570195711957219573195741957519576195771957819579195801958119582195831958419585195861958719588195891959019591195921959319594195951959619597195981959919600196011960219603196041960519606196071960819609196101961119612196131961419615196161961719618196191962019621196221962319624196251962619627196281962919630196311963219633196341963519636196371963819639196401964119642196431964419645196461964719648196491965019651196521965319654196551965619657196581965919660196611966219663196641966519666196671966819669196701967119672196731967419675196761967719678196791968019681196821968319684196851968619687196881968919690196911969219693196941969519696196971969819699197001970119702197031970419705197061970719708197091971019711197121971319714197151971619717197181971919720197211972219723197241972519726197271972819729197301973119732197331973419735197361973719738197391974019741197421974319744197451974619747197481974919750197511975219753197541975519756197571975819759197601976119762197631976419765197661976719768197691977019771197721977319774197751977619777197781977919780197811978219783197841978519786197871978819789197901979119792197931979419795197961979719798197991980019801198021980319804198051980619807198081980919810198111981219813198141981519816198171981819819198201982119822198231982419825198261982719828198291983019831198321983319834198351983619837198381983919840198411984219843198441984519846198471984819849198501985119852198531985419855198561985719858198591986019861198621986319864198651986619867198681986919870198711987219873198741987519876198771987819879198801988119882198831988419885198861988719888198891989019891198921989319894198951989619897198981989919900199011990219903199041990519906199071990819909199101991119912199131991419915199161991719918199191992019921199221992319924199251992619927199281992919930199311993219933199341993519936199371993819939199401994119942199431994419945199461994719948199491995019951199521995319954199551995619957199581995919960199611996219963199641996519966199671996819969199701997119972199731997419975199761997719978199791998019981199821998319984199851998619987199881998919990199911999219993199941999519996199971999819999200002000120002200032000420005200062000720008200092001020011200122001320014200152001620017200182001920020200212002220023200242002520026200272002820029200302003120032200332003420035200362003720038200392004020041200422004320044200452004620047200482004920050200512005220053200542005520056200572005820059200602006120062200632006420065200662006720068200692007020071200722007320074200752007620077200782007920080200812008220083200842008520086200872008820089200902009120092200932009420095200962009720098200992010020101201022010320104201052010620107201082010920110201112011220113201142011520116201172011820119201202012120122201232012420125201262012720128201292013020131201322013320134201352013620137201382013920140201412014220143201442014520146201472014820149201502015120152201532015420155201562015720158201592016020161201622016320164201652016620167201682016920170201712017220173201742017520176201772017820179201802018120182201832018420185201862018720188201892019020191201922019320194201952019620197201982019920200202012020220203202042020520206202072020820209202102021120212202132021420215202162021720218202192022020221202222022320224202252022620227202282022920230202312023220233202342023520236202372023820239202402024120242202432024420245202462024720248202492025020251202522025320254202552025620257202582025920260202612026220263202642026520266202672026820269202702027120272202732027420275202762027720278202792028020281202822028320284202852028620287202882028920290202912029220293202942029520296202972029820299203002030120302203032030420305203062030720308203092031020311203122031320314203152031620317203182031920320203212032220323203242032520326203272032820329203302033120332203332033420335203362033720338203392034020341203422034320344203452034620347203482034920350203512035220353203542035520356203572035820359203602036120362203632036420365203662036720368203692037020371203722037320374203752037620377203782037920380203812038220383203842038520386203872038820389203902039120392203932039420395203962039720398203992040020401204022040320404204052040620407204082040920410204112041220413204142041520416204172041820419204202042120422204232042420425204262042720428204292043020431204322043320434204352043620437204382043920440204412044220443204442044520446204472044820449204502045120452204532045420455204562045720458204592046020461204622046320464204652046620467204682046920470204712047220473204742047520476204772047820479204802048120482204832048420485204862048720488204892049020491204922049320494204952049620497204982049920500205012050220503205042050520506205072050820509205102051120512205132051420515205162051720518205192052020521205222052320524205252052620527205282052920530205312053220533205342053520536205372053820539205402054120542205432054420545205462054720548205492055020551205522055320554205552055620557205582055920560205612056220563205642056520566205672056820569205702057120572205732057420575205762057720578205792058020581205822058320584205852058620587205882058920590205912059220593205942059520596205972059820599206002060120602206032060420605206062060720608206092061020611206122061320614206152061620617206182061920620206212062220623206242062520626206272062820629206302063120632206332063420635206362063720638206392064020641206422064320644206452064620647206482064920650206512065220653206542065520656206572065820659206602066120662206632066420665206662066720668206692067020671206722067320674206752067620677206782067920680206812068220683206842068520686206872068820689206902069120692206932069420695206962069720698206992070020701207022070320704207052070620707207082070920710207112071220713207142071520716207172071820719207202072120722207232072420725207262072720728207292073020731207322073320734207352073620737207382073920740207412074220743207442074520746207472074820749207502075120752207532075420755207562075720758207592076020761207622076320764207652076620767207682076920770207712077220773207742077520776207772077820779207802078120782207832078420785207862078720788207892079020791207922079320794207952079620797207982079920800208012080220803208042080520806208072080820809208102081120812208132081420815208162081720818208192082020821208222082320824208252082620827208282082920830208312083220833208342083520836208372083820839208402084120842208432084420845208462084720848208492085020851208522085320854208552085620857208582085920860208612086220863208642086520866208672086820869208702087120872208732087420875208762087720878208792088020881208822088320884208852088620887208882088920890208912089220893208942089520896208972089820899209002090120902209032090420905209062090720908209092091020911209122091320914209152091620917209182091920920209212092220923209242092520926209272092820929209302093120932209332093420935209362093720938209392094020941209422094320944209452094620947209482094920950209512095220953209542095520956209572095820959209602096120962209632096420965209662096720968209692097020971209722097320974209752097620977209782097920980209812098220983209842098520986209872098820989209902099120992209932099420995209962099720998209992100021001210022100321004210052100621007210082100921010210112101221013210142101521016210172101821019210202102121022210232102421025210262102721028210292103021031210322103321034210352103621037210382103921040210412104221043210442104521046210472104821049210502105121052210532105421055210562105721058210592106021061210622106321064210652106621067210682106921070210712107221073210742107521076210772107821079210802108121082210832108421085210862108721088210892109021091210922109321094210952109621097210982109921100211012110221103211042110521106211072110821109211102111121112211132111421115211162111721118211192112021121211222112321124211252112621127211282112921130211312113221133211342113521136211372113821139211402114121142211432114421145211462114721148211492115021151211522115321154211552115621157211582115921160211612116221163211642116521166211672116821169211702117121172211732117421175211762117721178211792118021181211822118321184211852118621187211882118921190211912119221193211942119521196211972119821199212002120121202212032120421205212062120721208212092121021211212122121321214212152121621217212182121921220212212122221223212242122521226212272122821229212302123121232212332123421235212362123721238212392124021241212422124321244212452124621247212482124921250212512125221253212542125521256212572125821259212602126121262212632126421265212662126721268212692127021271212722127321274212752127621277212782127921280212812128221283212842128521286212872128821289212902129121292212932129421295212962129721298212992130021301213022130321304213052130621307213082130921310213112131221313213142131521316213172131821319213202132121322213232132421325213262132721328213292133021331213322133321334213352133621337213382133921340213412134221343213442134521346213472134821349213502135121352213532135421355213562135721358213592136021361213622136321364213652136621367213682136921370213712137221373213742137521376213772137821379213802138121382213832138421385213862138721388213892139021391213922139321394213952139621397213982139921400214012140221403214042140521406214072140821409214102141121412214132141421415214162141721418214192142021421214222142321424214252142621427214282142921430214312143221433214342143521436214372143821439214402144121442214432144421445214462144721448214492145021451214522145321454214552145621457214582145921460214612146221463214642146521466214672146821469214702147121472214732147421475214762147721478214792148021481214822148321484214852148621487214882148921490214912149221493214942149521496214972149821499215002150121502215032150421505215062150721508215092151021511215122151321514215152151621517215182151921520215212152221523215242152521526215272152821529215302153121532215332153421535215362153721538215392154021541215422154321544215452154621547215482154921550215512155221553215542155521556215572155821559215602156121562215632156421565215662156721568215692157021571215722157321574215752157621577215782157921580215812158221583215842158521586215872158821589215902159121592215932159421595215962159721598215992160021601216022160321604216052160621607216082160921610216112161221613216142161521616216172161821619216202162121622216232162421625216262162721628216292163021631216322163321634216352163621637216382163921640216412164221643216442164521646216472164821649216502165121652216532165421655216562165721658216592166021661216622166321664216652166621667216682166921670216712167221673216742167521676216772167821679216802168121682216832168421685216862168721688216892169021691216922169321694216952169621697216982169921700217012170221703217042170521706217072170821709217102171121712217132171421715
  1. #define _CRT_SECURE_NO_DEPRECATE // Disables ridiculous "unsafe" warnings on Windows
  2. #define _USE_MATH_DEFINES // For M_PI on MSVC
  3. #include "ggml-impl.h"
  4. #include "ggml-quants.h"
  5. #if defined(_MSC_VER) || defined(__MINGW32__)
  6. #include <malloc.h> // using malloc.h with MSC/MINGW
  7. #elif !defined(__FreeBSD__) && !defined(__NetBSD__) && !defined(__OpenBSD__)
  8. #include <alloca.h>
  9. #endif
  10. #include <assert.h>
  11. #include <errno.h>
  12. #include <time.h>
  13. #include <math.h>
  14. #include <stdlib.h>
  15. #include <string.h>
  16. #include <stdint.h>
  17. #include <inttypes.h>
  18. #include <stdio.h>
  19. #include <float.h>
  20. #include <limits.h>
  21. #include <stdarg.h>
  22. #include <signal.h>
  23. #if defined(__gnu_linux__)
  24. #include <syscall.h>
  25. #endif
  26. #ifdef GGML_USE_METAL
  27. #include <unistd.h>
  28. #endif
  29. #if defined(_MSC_VER)
  30. // disable "possible loss of data" to avoid hundreds of casts
  31. // we should just be careful :)
  32. #pragma warning(disable: 4244 4267)
  33. // disable POSIX deprecation warnings
  34. // these functions are never going away, anyway
  35. #pragma warning(disable: 4996)
  36. #endif
  37. #if defined(_WIN32)
  38. #include <windows.h>
  39. typedef volatile LONG atomic_int;
  40. typedef atomic_int atomic_bool;
  41. static void atomic_store(atomic_int * ptr, LONG val) {
  42. InterlockedExchange(ptr, val);
  43. }
  44. static LONG atomic_load(atomic_int * ptr) {
  45. return InterlockedCompareExchange(ptr, 0, 0);
  46. }
  47. static LONG atomic_fetch_add(atomic_int * ptr, LONG inc) {
  48. return InterlockedExchangeAdd(ptr, inc);
  49. }
  50. static LONG atomic_fetch_sub(atomic_int * ptr, LONG dec) {
  51. return atomic_fetch_add(ptr, -(dec));
  52. }
  53. typedef HANDLE pthread_t;
  54. typedef DWORD thread_ret_t;
  55. static int pthread_create(pthread_t * out, void * unused, thread_ret_t(*func)(void *), void * arg) {
  56. (void) unused;
  57. HANDLE handle = CreateThread(NULL, 0, (LPTHREAD_START_ROUTINE) func, arg, 0, NULL);
  58. if (handle == NULL)
  59. {
  60. return EAGAIN;
  61. }
  62. *out = handle;
  63. return 0;
  64. }
  65. static int pthread_join(pthread_t thread, void * unused) {
  66. (void) unused;
  67. int ret = (int) WaitForSingleObject(thread, INFINITE);
  68. CloseHandle(thread);
  69. return ret;
  70. }
  71. static int sched_yield (void) {
  72. Sleep (0);
  73. return 0;
  74. }
  75. #else
  76. #include <pthread.h>
  77. #include <stdatomic.h>
  78. typedef void * thread_ret_t;
  79. #include <sys/types.h>
  80. #include <sys/stat.h>
  81. #include <unistd.h>
  82. #endif
  83. #ifdef GGML_USE_CPU_HBM
  84. #include <hbwmalloc.h>
  85. #endif
  86. #if defined(__APPLE__)
  87. #include <TargetConditionals.h>
  88. #endif
  89. #if (defined(__linux__) || defined(__APPLE__) || defined(__FreeBSD__) || defined(__NetBSD__) || defined(__OpenBSD__)) && \
  90. (!defined(TARGET_OS_TV) && !defined(TARGET_OS_WATCH))
  91. #include <sys/wait.h>
  92. void ggml_print_backtrace(void) {
  93. /*
  94. #include <execinfo.h>
  95. #include <dlfcn.h>
  96. void * trace[100];
  97. int nptrs = backtrace(trace, sizeof(trace)/sizeof(trace[0]));
  98. backtrace_symbols_fd(trace, nptrs, STDERR_FILENO);
  99. */
  100. // backtrack_symbols does not show line numbers, use gdb instead
  101. char attach[32];
  102. snprintf(attach, sizeof(attach), "attach %d", getpid());
  103. int pid = fork();
  104. if (pid == 0) {
  105. execlp("gdb", "gdb", "--batch",
  106. "-ex", "set style enabled on",
  107. "-ex", attach,
  108. "-ex", "bt -frame-info source-and-location",
  109. "-ex", "detach",
  110. "-ex", "quit",
  111. (char *) NULL);
  112. } else {
  113. waitpid(pid, NULL, 0);
  114. }
  115. }
  116. #else
  117. void ggml_print_backtrace(void) {
  118. // platform not supported
  119. }
  120. #endif
  121. /*#define GGML_PERF*/
  122. #define GGML_DEBUG 0
  123. #define GGML_GELU_FP16
  124. #define GGML_GELU_QUICK_FP16
  125. #define GGML_SILU_FP16
  126. // #define GGML_CROSS_ENTROPY_EXP_FP16
  127. // #define GGML_FLASH_ATTN_EXP_FP16
  128. #define GGML_SOFT_MAX_UNROLL 4
  129. #define GGML_VEC_DOT_UNROLL 2
  130. #define GGML_VEC_MAD_UNROLL 32
  131. //
  132. // logging
  133. //
  134. #if (GGML_DEBUG >= 1)
  135. #define GGML_PRINT_DEBUG(...) printf(__VA_ARGS__)
  136. #else
  137. #define GGML_PRINT_DEBUG(...)
  138. #endif
  139. #if (GGML_DEBUG >= 5)
  140. #define GGML_PRINT_DEBUG_5(...) printf(__VA_ARGS__)
  141. #else
  142. #define GGML_PRINT_DEBUG_5(...)
  143. #endif
  144. #if (GGML_DEBUG >= 10)
  145. #define GGML_PRINT_DEBUG_10(...) printf(__VA_ARGS__)
  146. #else
  147. #define GGML_PRINT_DEBUG_10(...)
  148. #endif
  149. #define GGML_PRINT(...) printf(__VA_ARGS__)
  150. //
  151. // end of logging block
  152. //
  153. #ifdef GGML_USE_ACCELERATE
  154. // uncomment to use vDSP for soft max computation
  155. // note: not sure if it is actually faster
  156. //#define GGML_SOFT_MAX_ACCELERATE
  157. #endif
  158. #if defined(_MSC_VER) || defined(__MINGW32__)
  159. #define GGML_ALIGNED_MALLOC(size) _aligned_malloc(size, GGML_MEM_ALIGN)
  160. #define GGML_ALIGNED_FREE(ptr) _aligned_free(ptr)
  161. #else
  162. inline static void * ggml_aligned_malloc(size_t size) {
  163. if (size == 0) {
  164. GGML_PRINT("WARNING: Behavior may be unexpected when allocating 0 bytes for ggml_aligned_malloc!\n");
  165. return NULL;
  166. }
  167. void * aligned_memory = NULL;
  168. #ifdef GGML_USE_CPU_HBM
  169. int result = hbw_posix_memalign(&aligned_memory, 16, size);
  170. #elif GGML_USE_METAL
  171. int result = posix_memalign(&aligned_memory, sysconf(_SC_PAGESIZE), size);
  172. #else
  173. int result = posix_memalign(&aligned_memory, GGML_MEM_ALIGN, size);
  174. #endif
  175. if (result != 0) {
  176. // Handle allocation failure
  177. const char *error_desc = "unknown allocation error";
  178. switch (result) {
  179. case EINVAL:
  180. error_desc = "invalid alignment value";
  181. break;
  182. case ENOMEM:
  183. error_desc = "insufficient memory";
  184. break;
  185. }
  186. GGML_PRINT("%s: %s (attempted to allocate %6.2f MB)\n", __func__, error_desc, size/(1024.0*1024.0));
  187. GGML_ASSERT(false);
  188. return NULL;
  189. }
  190. return aligned_memory;
  191. }
  192. #define GGML_ALIGNED_MALLOC(size) ggml_aligned_malloc(size)
  193. #ifdef GGML_USE_CPU_HBM
  194. #define GGML_ALIGNED_FREE(ptr) if(NULL != ptr) hbw_free(ptr)
  195. #else
  196. #define GGML_ALIGNED_FREE(ptr) free(ptr)
  197. #endif
  198. #endif
  199. inline static void * ggml_malloc(size_t size) {
  200. if (size == 0) {
  201. GGML_PRINT("WARNING: Behavior may be unexpected when allocating 0 bytes for ggml_malloc!\n");
  202. return NULL;
  203. }
  204. void * result = malloc(size);
  205. if (result == NULL) {
  206. GGML_PRINT("%s: failed to allocate %6.2f MB\n", __func__, size/(1024.0*1024.0));
  207. GGML_ASSERT(false);
  208. }
  209. return result;
  210. }
  211. // calloc
  212. inline static void * ggml_calloc(size_t num, size_t size) {
  213. if (num == 0 || size == 0) {
  214. GGML_PRINT("WARNING: Behavior may be unexpected when allocating 0 bytes for ggml_calloc!\n");
  215. return NULL;
  216. }
  217. void * result = calloc(num, size);
  218. if (result == NULL) {
  219. GGML_PRINT("%s: failed to allocate %6.2f MB\n", __func__, size/(1024.0*1024.0));
  220. GGML_ASSERT(false);
  221. }
  222. return result;
  223. }
  224. #define GGML_MALLOC(size) ggml_malloc(size)
  225. #define GGML_CALLOC(num, size) ggml_calloc(num, size)
  226. #define GGML_FREE(ptr) free(ptr)
  227. #define UNUSED GGML_UNUSED
  228. #define SWAP(x, y, T) do { T SWAP = x; x = y; y = SWAP; } while (0)
  229. #if defined(GGML_USE_ACCELERATE)
  230. #include <Accelerate/Accelerate.h>
  231. #if defined(GGML_USE_CLBLAST) // allow usage of CLBlast alongside Accelerate functions
  232. #include "ggml-opencl.h"
  233. #elif defined(GGML_USE_VULKAN)
  234. #include "ggml-vulkan.h"
  235. #endif
  236. #elif defined(GGML_USE_OPENBLAS)
  237. #if defined(GGML_BLAS_USE_MKL)
  238. #include <mkl.h>
  239. #else
  240. #include <cblas.h>
  241. #endif
  242. #elif defined(GGML_USE_CLBLAST)
  243. #include "ggml-opencl.h"
  244. #elif defined(GGML_USE_VULKAN)
  245. #include "ggml-vulkan.h"
  246. #elif defined(GGML_USE_SYCL)
  247. #include "ggml-sycl.h"
  248. #endif
  249. // floating point type used to accumulate sums
  250. typedef double ggml_float;
  251. #undef MIN
  252. #undef MAX
  253. #define MIN(a, b) ((a) < (b) ? (a) : (b))
  254. #define MAX(a, b) ((a) > (b) ? (a) : (b))
  255. //
  256. // global data
  257. //
  258. // precomputed gelu table for f16 (128 KB)
  259. static ggml_fp16_t ggml_table_gelu_f16[1 << 16];
  260. // precomputed quick gelu table for f16 (128 KB)
  261. static ggml_fp16_t ggml_table_gelu_quick_f16[1 << 16];
  262. // precomputed silu table for f16 (128 KB)
  263. static ggml_fp16_t ggml_table_silu_f16[1 << 16];
  264. // precomputed exp table for f16 (128 KB)
  265. static ggml_fp16_t ggml_table_exp_f16[1 << 16];
  266. // precomputed f32 table for f16 (256 KB) (ggml-impl.h)
  267. float ggml_table_f32_f16[1 << 16];
  268. const char * ggml_status_to_string(enum ggml_status status) {
  269. switch (status) {
  270. case GGML_STATUS_ALLOC_FAILED: return "GGML status: error (failed to allocate memory)";
  271. case GGML_STATUS_FAILED: return "GGML status: error (operation failed)";
  272. case GGML_STATUS_SUCCESS: return "GGML status: success";
  273. case GGML_STATUS_ABORTED: return "GGML status: warning (operation aborted)";
  274. }
  275. return "GGML status: unknown";
  276. }
  277. // note: do not use these inside ggml.c
  278. // these are meant to be used via the ggml.h API
  279. float ggml_fp16_to_fp32(ggml_fp16_t x) {
  280. return GGML_FP16_TO_FP32(x);
  281. }
  282. ggml_fp16_t ggml_fp32_to_fp16(float x) {
  283. return GGML_FP32_TO_FP16(x);
  284. }
  285. void ggml_fp16_to_fp32_row(const ggml_fp16_t * x, float * y, int n) {
  286. for (int i = 0; i < n; i++) {
  287. y[i] = GGML_FP16_TO_FP32(x[i]);
  288. }
  289. }
  290. void ggml_fp32_to_fp16_row(const float * x, ggml_fp16_t * y, int n) {
  291. int i = 0;
  292. #if defined(__F16C__)
  293. for (; i + 7 < n; i += 8) {
  294. __m256 x_vec = _mm256_loadu_ps(x + i);
  295. __m128i y_vec = _mm256_cvtps_ph(x_vec, _MM_FROUND_TO_NEAREST_INT);
  296. _mm_storeu_si128((__m128i *)(y + i), y_vec);
  297. }
  298. for(; i + 3 < n; i += 4) {
  299. __m128 x_vec = _mm_loadu_ps(x + i);
  300. __m128i y_vec = _mm_cvtps_ph(x_vec, _MM_FROUND_TO_NEAREST_INT);
  301. _mm_storel_epi64((__m128i *)(y + i), y_vec);
  302. }
  303. #endif
  304. for (; i < n; i++) {
  305. y[i] = GGML_FP32_TO_FP16(x[i]);
  306. }
  307. }
  308. bool ggml_guid_matches(ggml_guid_t guid_a, ggml_guid_t guid_b) {
  309. return memcmp(guid_a, guid_b, sizeof(ggml_guid)) == 0;
  310. }
  311. //
  312. // timing
  313. //
  314. #if defined(_MSC_VER) || defined(__MINGW32__)
  315. static int64_t timer_freq, timer_start;
  316. void ggml_time_init(void) {
  317. LARGE_INTEGER t;
  318. QueryPerformanceFrequency(&t);
  319. timer_freq = t.QuadPart;
  320. // The multiplication by 1000 or 1000000 below can cause an overflow if timer_freq
  321. // and the uptime is high enough.
  322. // We subtract the program start time to reduce the likelihood of that happening.
  323. QueryPerformanceCounter(&t);
  324. timer_start = t.QuadPart;
  325. }
  326. int64_t ggml_time_ms(void) {
  327. LARGE_INTEGER t;
  328. QueryPerformanceCounter(&t);
  329. return ((t.QuadPart-timer_start) * 1000) / timer_freq;
  330. }
  331. int64_t ggml_time_us(void) {
  332. LARGE_INTEGER t;
  333. QueryPerformanceCounter(&t);
  334. return ((t.QuadPart-timer_start) * 1000000) / timer_freq;
  335. }
  336. #else
  337. void ggml_time_init(void) {}
  338. int64_t ggml_time_ms(void) {
  339. struct timespec ts;
  340. clock_gettime(CLOCK_MONOTONIC, &ts);
  341. return (int64_t)ts.tv_sec*1000 + (int64_t)ts.tv_nsec/1000000;
  342. }
  343. int64_t ggml_time_us(void) {
  344. struct timespec ts;
  345. clock_gettime(CLOCK_MONOTONIC, &ts);
  346. return (int64_t)ts.tv_sec*1000000 + (int64_t)ts.tv_nsec/1000;
  347. }
  348. #endif
  349. int64_t ggml_cycles(void) {
  350. return clock();
  351. }
  352. int64_t ggml_cycles_per_ms(void) {
  353. return CLOCKS_PER_SEC/1000;
  354. }
  355. #ifdef GGML_PERF
  356. #define ggml_perf_time_ms() ggml_time_ms()
  357. #define ggml_perf_time_us() ggml_time_us()
  358. #define ggml_perf_cycles() ggml_cycles()
  359. #define ggml_perf_cycles_per_ms() ggml_cycles_per_ms()
  360. #else
  361. #define ggml_perf_time_ms() 0
  362. #define ggml_perf_time_us() 0
  363. #define ggml_perf_cycles() 0
  364. #define ggml_perf_cycles_per_ms() 0
  365. #endif
  366. //
  367. // cache line
  368. //
  369. #if defined(__cpp_lib_hardware_interference_size)
  370. #define CACHE_LINE_SIZE hardware_destructive_interference_size
  371. #else
  372. #if defined(__POWER9_VECTOR__)
  373. #define CACHE_LINE_SIZE 128
  374. #else
  375. #define CACHE_LINE_SIZE 64
  376. #endif
  377. #endif
  378. static const size_t CACHE_LINE_SIZE_F32 = CACHE_LINE_SIZE/sizeof(float);
  379. static void ggml_vec_dot_f32(int n, float * restrict s, size_t bs, const float * restrict x, size_t bx, const float * restrict y, size_t by, int nrc);
  380. static void ggml_vec_dot_f16(int n, float * restrict s, size_t bs, ggml_fp16_t * restrict x, size_t bx, ggml_fp16_t * restrict y, size_t by, int nrc);
  381. static const ggml_type_traits_t type_traits[GGML_TYPE_COUNT] = {
  382. [GGML_TYPE_I8] = {
  383. .type_name = "i8",
  384. .blck_size = 1,
  385. .type_size = sizeof(int8_t),
  386. .is_quantized = false,
  387. },
  388. [GGML_TYPE_I16] = {
  389. .type_name = "i16",
  390. .blck_size = 1,
  391. .type_size = sizeof(int16_t),
  392. .is_quantized = false,
  393. },
  394. [GGML_TYPE_I32] = {
  395. .type_name = "i32",
  396. .blck_size = 1,
  397. .type_size = sizeof(int32_t),
  398. .is_quantized = false,
  399. },
  400. [GGML_TYPE_I64] = {
  401. .type_name = "i64",
  402. .blck_size = 1,
  403. .type_size = sizeof(int64_t),
  404. .is_quantized = false,
  405. },
  406. [GGML_TYPE_F64] = {
  407. .type_name = "f64",
  408. .blck_size = 1,
  409. .type_size = sizeof(double),
  410. .is_quantized = false,
  411. .nrows = 1,
  412. },
  413. [GGML_TYPE_F32] = {
  414. .type_name = "f32",
  415. .blck_size = 1,
  416. .type_size = sizeof(float),
  417. .is_quantized = false,
  418. .vec_dot = (ggml_vec_dot_t) ggml_vec_dot_f32,
  419. .vec_dot_type = GGML_TYPE_F32,
  420. .nrows = 1,
  421. },
  422. [GGML_TYPE_F16] = {
  423. .type_name = "f16",
  424. .blck_size = 1,
  425. .type_size = sizeof(ggml_fp16_t),
  426. .is_quantized = false,
  427. .to_float = (ggml_to_float_t) ggml_fp16_to_fp32_row,
  428. .from_float = (ggml_from_float_t) ggml_fp32_to_fp16_row,
  429. .from_float_reference = (ggml_from_float_t) ggml_fp32_to_fp16_row,
  430. .vec_dot = (ggml_vec_dot_t) ggml_vec_dot_f16,
  431. .vec_dot_type = GGML_TYPE_F16,
  432. .nrows = 1,
  433. },
  434. [GGML_TYPE_Q4_0] = {
  435. .type_name = "q4_0",
  436. .blck_size = QK4_0,
  437. .type_size = sizeof(block_q4_0),
  438. .is_quantized = true,
  439. .to_float = (ggml_to_float_t) dequantize_row_q4_0,
  440. .from_float = quantize_row_q4_0,
  441. .from_float_reference = (ggml_from_float_t) quantize_row_q4_0_reference,
  442. .vec_dot = ggml_vec_dot_q4_0_q8_0,
  443. .vec_dot_type = GGML_TYPE_Q8_0,
  444. #if defined (__ARM_FEATURE_MATMUL_INT8)
  445. .nrows = 2,
  446. #else
  447. .nrows = 1,
  448. #endif
  449. },
  450. [GGML_TYPE_Q4_1] = {
  451. .type_name = "q4_1",
  452. .blck_size = QK4_1,
  453. .type_size = sizeof(block_q4_1),
  454. .is_quantized = true,
  455. .to_float = (ggml_to_float_t) dequantize_row_q4_1,
  456. .from_float = quantize_row_q4_1,
  457. .from_float_reference = (ggml_from_float_t) quantize_row_q4_1_reference,
  458. .vec_dot = ggml_vec_dot_q4_1_q8_1,
  459. .vec_dot_type = GGML_TYPE_Q8_1,
  460. #if defined (__ARM_FEATURE_MATMUL_INT8)
  461. .nrows = 2,
  462. #else
  463. .nrows = 1,
  464. #endif
  465. },
  466. [4] = { // GGML_TYPE_Q4_2
  467. .type_name = "DEPRECATED",
  468. .blck_size = 0,
  469. .type_size = 0,
  470. .is_quantized = false,
  471. .to_float = NULL,
  472. .from_float = NULL,
  473. .from_float_reference = NULL,
  474. .vec_dot = NULL,
  475. .vec_dot_type = GGML_TYPE_COUNT,
  476. .nrows = 1,
  477. },
  478. [5] = { // GGML_TYPE_Q4_3
  479. .type_name = "DEPRECATED",
  480. .blck_size = 0,
  481. .type_size = 0,
  482. .is_quantized = false,
  483. .to_float = NULL,
  484. .from_float = NULL,
  485. .from_float_reference = NULL,
  486. .vec_dot = NULL,
  487. .vec_dot_type = GGML_TYPE_COUNT,
  488. .nrows = 1,
  489. },
  490. [GGML_TYPE_Q5_0] = {
  491. .type_name = "q5_0",
  492. .blck_size = QK5_0,
  493. .type_size = sizeof(block_q5_0),
  494. .is_quantized = true,
  495. .to_float = (ggml_to_float_t) dequantize_row_q5_0,
  496. .from_float = quantize_row_q5_0,
  497. .from_float_reference = (ggml_from_float_t) quantize_row_q5_0_reference,
  498. .vec_dot = ggml_vec_dot_q5_0_q8_0,
  499. .vec_dot_type = GGML_TYPE_Q8_0,
  500. .nrows = 1,
  501. },
  502. [GGML_TYPE_Q5_1] = {
  503. .type_name = "q5_1",
  504. .blck_size = QK5_1,
  505. .type_size = sizeof(block_q5_1),
  506. .is_quantized = true,
  507. .to_float = (ggml_to_float_t) dequantize_row_q5_1,
  508. .from_float = quantize_row_q5_1,
  509. .from_float_reference = (ggml_from_float_t) quantize_row_q5_1_reference,
  510. .vec_dot = ggml_vec_dot_q5_1_q8_1,
  511. .vec_dot_type = GGML_TYPE_Q8_1,
  512. .nrows = 1,
  513. },
  514. [GGML_TYPE_Q8_0] = {
  515. .type_name = "q8_0",
  516. .blck_size = QK8_0,
  517. .type_size = sizeof(block_q8_0),
  518. .is_quantized = true,
  519. .to_float = (ggml_to_float_t) dequantize_row_q8_0,
  520. .from_float = quantize_row_q8_0,
  521. .from_float_reference = (ggml_from_float_t) quantize_row_q8_0_reference,
  522. .vec_dot = ggml_vec_dot_q8_0_q8_0,
  523. .vec_dot_type = GGML_TYPE_Q8_0,
  524. #if defined (__ARM_FEATURE_MATMUL_INT8)
  525. .nrows = 2,
  526. #else
  527. .nrows = 1,
  528. #endif
  529. },
  530. [GGML_TYPE_Q8_1] = {
  531. .type_name = "q8_1",
  532. .blck_size = QK8_1,
  533. .type_size = sizeof(block_q8_1),
  534. .is_quantized = true,
  535. .from_float = quantize_row_q8_1,
  536. .from_float_reference = (ggml_from_float_t) quantize_row_q8_1_reference,
  537. .vec_dot_type = GGML_TYPE_Q8_1,
  538. .nrows = 1,
  539. },
  540. [GGML_TYPE_Q2_K] = {
  541. .type_name = "q2_K",
  542. .blck_size = QK_K,
  543. .type_size = sizeof(block_q2_K),
  544. .is_quantized = true,
  545. .to_float = (ggml_to_float_t) dequantize_row_q2_K,
  546. .from_float = quantize_row_q2_K,
  547. .from_float_reference = (ggml_from_float_t) quantize_row_q2_K_reference,
  548. .vec_dot = ggml_vec_dot_q2_K_q8_K,
  549. .vec_dot_type = GGML_TYPE_Q8_K,
  550. .nrows = 1,
  551. },
  552. [GGML_TYPE_Q3_K] = {
  553. .type_name = "q3_K",
  554. .blck_size = QK_K,
  555. .type_size = sizeof(block_q3_K),
  556. .is_quantized = true,
  557. .to_float = (ggml_to_float_t) dequantize_row_q3_K,
  558. .from_float = quantize_row_q3_K,
  559. .from_float_reference = (ggml_from_float_t) quantize_row_q3_K_reference,
  560. .vec_dot = ggml_vec_dot_q3_K_q8_K,
  561. .vec_dot_type = GGML_TYPE_Q8_K,
  562. .nrows = 1,
  563. },
  564. [GGML_TYPE_Q4_K] = {
  565. .type_name = "q4_K",
  566. .blck_size = QK_K,
  567. .type_size = sizeof(block_q4_K),
  568. .is_quantized = true,
  569. .to_float = (ggml_to_float_t) dequantize_row_q4_K,
  570. .from_float = quantize_row_q4_K,
  571. .from_float_reference = (ggml_from_float_t) quantize_row_q4_K_reference,
  572. .vec_dot = ggml_vec_dot_q4_K_q8_K,
  573. .vec_dot_type = GGML_TYPE_Q8_K,
  574. .nrows = 1,
  575. },
  576. [GGML_TYPE_Q5_K] = {
  577. .type_name = "q5_K",
  578. .blck_size = QK_K,
  579. .type_size = sizeof(block_q5_K),
  580. .is_quantized = true,
  581. .to_float = (ggml_to_float_t) dequantize_row_q5_K,
  582. .from_float = quantize_row_q5_K,
  583. .from_float_reference = (ggml_from_float_t) quantize_row_q5_K_reference,
  584. .vec_dot = ggml_vec_dot_q5_K_q8_K,
  585. .vec_dot_type = GGML_TYPE_Q8_K,
  586. .nrows = 1,
  587. },
  588. [GGML_TYPE_Q6_K] = {
  589. .type_name = "q6_K",
  590. .blck_size = QK_K,
  591. .type_size = sizeof(block_q6_K),
  592. .is_quantized = true,
  593. .to_float = (ggml_to_float_t) dequantize_row_q6_K,
  594. .from_float = quantize_row_q6_K,
  595. .from_float_reference = (ggml_from_float_t) quantize_row_q6_K_reference,
  596. .vec_dot = ggml_vec_dot_q6_K_q8_K,
  597. .vec_dot_type = GGML_TYPE_Q8_K,
  598. .nrows = 1,
  599. },
  600. [GGML_TYPE_IQ2_XXS] = {
  601. .type_name = "iq2_xxs",
  602. .blck_size = QK_K,
  603. .type_size = sizeof(block_iq2_xxs),
  604. .is_quantized = true,
  605. .to_float = (ggml_to_float_t) dequantize_row_iq2_xxs,
  606. .from_float = NULL,
  607. .from_float_reference = NULL,
  608. .vec_dot = ggml_vec_dot_iq2_xxs_q8_K,
  609. .vec_dot_type = GGML_TYPE_Q8_K,
  610. .nrows = 1,
  611. },
  612. [GGML_TYPE_IQ2_XS] = {
  613. .type_name = "iq2_xs",
  614. .blck_size = QK_K,
  615. .type_size = sizeof(block_iq2_xs),
  616. .is_quantized = true,
  617. .to_float = (ggml_to_float_t) dequantize_row_iq2_xs,
  618. .from_float = NULL,
  619. .from_float_reference = NULL,
  620. .vec_dot = ggml_vec_dot_iq2_xs_q8_K,
  621. .vec_dot_type = GGML_TYPE_Q8_K,
  622. .nrows = 1,
  623. },
  624. [GGML_TYPE_IQ3_XXS] = {
  625. .type_name = "iq3_xxs",
  626. .blck_size = QK_K,
  627. .type_size = sizeof(block_iq3_xxs),
  628. .is_quantized = true,
  629. .to_float = (ggml_to_float_t) dequantize_row_iq3_xxs,
  630. .from_float = quantize_row_iq3_xxs,
  631. .from_float_reference = (ggml_from_float_t)quantize_row_iq3_xxs_reference,
  632. .vec_dot = ggml_vec_dot_iq3_xxs_q8_K,
  633. .vec_dot_type = GGML_TYPE_Q8_K,
  634. .nrows = 1,
  635. },
  636. [GGML_TYPE_IQ3_S] = {
  637. .type_name = "iq3_s",
  638. .blck_size = QK_K,
  639. .type_size = sizeof(block_iq3_s),
  640. .is_quantized = true,
  641. .to_float = (ggml_to_float_t) dequantize_row_iq3_s,
  642. .from_float = quantize_row_iq3_s,
  643. .from_float_reference = (ggml_from_float_t)quantize_row_iq3_s_reference,
  644. .vec_dot = ggml_vec_dot_iq3_s_q8_K,
  645. .vec_dot_type = GGML_TYPE_Q8_K,
  646. .nrows = 1,
  647. },
  648. [GGML_TYPE_IQ2_S] = {
  649. .type_name = "iq2_s",
  650. .blck_size = QK_K,
  651. .type_size = sizeof(block_iq2_s),
  652. .is_quantized = true,
  653. .to_float = (ggml_to_float_t) dequantize_row_iq2_s,
  654. .from_float = quantize_row_iq2_s,
  655. .from_float_reference = (ggml_from_float_t)quantize_row_iq2_s_reference,
  656. .vec_dot = ggml_vec_dot_iq2_s_q8_K,
  657. .vec_dot_type = GGML_TYPE_Q8_K,
  658. .nrows = 1,
  659. },
  660. [GGML_TYPE_IQ1_S] = {
  661. .type_name = "iq1_s",
  662. .blck_size = QK_K,
  663. .type_size = sizeof(block_iq1_s),
  664. .is_quantized = true,
  665. .to_float = (ggml_to_float_t) dequantize_row_iq1_s,
  666. .from_float = NULL,
  667. .from_float_reference = NULL,
  668. .vec_dot = ggml_vec_dot_iq1_s_q8_K,
  669. .vec_dot_type = GGML_TYPE_Q8_K,
  670. .nrows = 1,
  671. },
  672. [GGML_TYPE_IQ4_NL] = {
  673. .type_name = "iq4_nl",
  674. .blck_size = QK4_NL,
  675. .type_size = sizeof(block_iq4_nl),
  676. .is_quantized = true,
  677. .to_float = (ggml_to_float_t) dequantize_row_iq4_nl,
  678. .from_float = quantize_row_iq4_nl,
  679. .from_float_reference = (ggml_from_float_t)quantize_row_iq4_nl_reference,
  680. .vec_dot = ggml_vec_dot_iq4_nl_q8_0,
  681. .vec_dot_type = GGML_TYPE_Q8_0,
  682. .nrows = 1,
  683. },
  684. [GGML_TYPE_IQ4_XS] = {
  685. .type_name = "iq4_xs",
  686. #if QK_K == 64
  687. .blck_size = QK4_NL,
  688. #else
  689. .blck_size = QK_K,
  690. #endif
  691. .type_size = sizeof(block_iq4_xs),
  692. .is_quantized = true,
  693. .to_float = (ggml_to_float_t) dequantize_row_iq4_xs,
  694. .from_float = quantize_row_iq4_xs,
  695. .from_float_reference = (ggml_from_float_t)quantize_row_iq4_xs_reference,
  696. .vec_dot = ggml_vec_dot_iq4_xs_q8_K,
  697. #if QK_K == 64
  698. .vec_dot_type = GGML_TYPE_Q8_0,
  699. #else
  700. .vec_dot_type = GGML_TYPE_Q8_K,
  701. #endif
  702. .nrows = 1,
  703. },
  704. [GGML_TYPE_Q8_K] = {
  705. .type_name = "q8_K",
  706. .blck_size = QK_K,
  707. .type_size = sizeof(block_q8_K),
  708. .is_quantized = true,
  709. .from_float = quantize_row_q8_K,
  710. }
  711. };
  712. // For internal test use
  713. ggml_type_traits_t ggml_internal_get_type_traits(enum ggml_type type) {
  714. GGML_ASSERT(type < GGML_TYPE_COUNT);
  715. return type_traits[type];
  716. }
  717. //
  718. // simd mappings
  719. //
  720. #if defined(__ARM_NEON)
  721. #if !defined(__aarch64__)
  722. // 64-bit compatibility
  723. inline static float vaddvq_f32(float32x4_t v) {
  724. return vgetq_lane_f32(v, 0) + vgetq_lane_f32(v, 1) + vgetq_lane_f32(v, 2) + vgetq_lane_f32(v, 3);
  725. }
  726. #endif
  727. #endif
  728. // we define a common set of C macros which map to specific intrinsics based on the current architecture
  729. // we then implement the fundamental computation operations below using only these macros
  730. // adding support for new architectures requires to define the corresponding SIMD macros
  731. //
  732. // GGML_F32_STEP / GGML_F16_STEP
  733. // number of elements to process in a single step
  734. //
  735. // GGML_F32_EPR / GGML_F16_EPR
  736. // number of elements to fit in a single register
  737. //
  738. #if defined(__ARM_NEON) && defined(__ARM_FEATURE_FMA)
  739. #define GGML_SIMD
  740. // F32 NEON
  741. #define GGML_F32_STEP 16
  742. #define GGML_F32_EPR 4
  743. #define GGML_F32x4 float32x4_t
  744. #define GGML_F32x4_ZERO vdupq_n_f32(0.0f)
  745. #define GGML_F32x4_SET1(x) vdupq_n_f32(x)
  746. #define GGML_F32x4_LOAD vld1q_f32
  747. #define GGML_F32x4_STORE vst1q_f32
  748. #define GGML_F32x4_FMA(a, b, c) vfmaq_f32(a, b, c)
  749. #define GGML_F32x4_ADD vaddq_f32
  750. #define GGML_F32x4_MUL vmulq_f32
  751. #define GGML_F32x4_REDUCE_ONE(x) vaddvq_f32(x)
  752. #define GGML_F32x4_REDUCE(res, x) \
  753. { \
  754. int offset = GGML_F32_ARR >> 1; \
  755. for (int i = 0; i < offset; ++i) { \
  756. x[i] = vaddq_f32(x[i], x[offset+i]); \
  757. } \
  758. offset >>= 1; \
  759. for (int i = 0; i < offset; ++i) { \
  760. x[i] = vaddq_f32(x[i], x[offset+i]); \
  761. } \
  762. offset >>= 1; \
  763. for (int i = 0; i < offset; ++i) { \
  764. x[i] = vaddq_f32(x[i], x[offset+i]); \
  765. } \
  766. res = GGML_F32x4_REDUCE_ONE(x[0]); \
  767. }
  768. #define GGML_F32_VEC GGML_F32x4
  769. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  770. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  771. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  772. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  773. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  774. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  775. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  776. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  777. // F16 NEON
  778. #if defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC)
  779. #define GGML_F16_STEP 32
  780. #define GGML_F16_EPR 8
  781. #define GGML_F16x8 float16x8_t
  782. #define GGML_F16x8_ZERO vdupq_n_f16(0.0f)
  783. #define GGML_F16x8_SET1(x) vdupq_n_f16(x)
  784. #define GGML_F16x8_LOAD(x) vld1q_f16((const ggml_fp16_internal_t *)(x))
  785. #define GGML_F16x8_STORE vst1q_f16
  786. #define GGML_F16x8_FMA(a, b, c) vfmaq_f16(a, b, c)
  787. #define GGML_F16x8_ADD vaddq_f16
  788. #define GGML_F16x8_MUL vmulq_f16
  789. #define GGML_F16x8_REDUCE(res, x) \
  790. do { \
  791. int offset = GGML_F16_ARR >> 1; \
  792. for (int i = 0; i < offset; ++i) { \
  793. x[i] = vaddq_f16(x[i], x[offset+i]); \
  794. } \
  795. offset >>= 1; \
  796. for (int i = 0; i < offset; ++i) { \
  797. x[i] = vaddq_f16(x[i], x[offset+i]); \
  798. } \
  799. offset >>= 1; \
  800. for (int i = 0; i < offset; ++i) { \
  801. x[i] = vaddq_f16(x[i], x[offset+i]); \
  802. } \
  803. const float32x4_t t0 = vcvt_f32_f16(vget_low_f16 (x[0])); \
  804. const float32x4_t t1 = vcvt_f32_f16(vget_high_f16(x[0])); \
  805. res = (ggml_float) vaddvq_f32(vaddq_f32(t0, t1)); \
  806. } while (0)
  807. #define GGML_F16_VEC GGML_F16x8
  808. #define GGML_F16_VEC_ZERO GGML_F16x8_ZERO
  809. #define GGML_F16_VEC_SET1 GGML_F16x8_SET1
  810. #define GGML_F16_VEC_LOAD(p, i) GGML_F16x8_LOAD(p)
  811. #define GGML_F16_VEC_STORE(p, r, i) GGML_F16x8_STORE(p, r[i])
  812. #define GGML_F16_VEC_FMA GGML_F16x8_FMA
  813. #define GGML_F16_VEC_ADD GGML_F16x8_ADD
  814. #define GGML_F16_VEC_MUL GGML_F16x8_MUL
  815. #define GGML_F16_VEC_REDUCE GGML_F16x8_REDUCE
  816. #else
  817. // if FP16 vector arithmetic is not supported, we use FP32 instead
  818. // and take advantage of the vcvt_ functions to convert to/from FP16
  819. #define GGML_F16_STEP 16
  820. #define GGML_F16_EPR 4
  821. #define GGML_F32Cx4 float32x4_t
  822. #define GGML_F32Cx4_ZERO vdupq_n_f32(0.0f)
  823. #define GGML_F32Cx4_SET1(x) vdupq_n_f32(x)
  824. #define GGML_F32Cx4_LOAD(x) vcvt_f32_f16(vld1_f16((const ggml_fp16_internal_t *)(x)))
  825. #define GGML_F32Cx4_STORE(x, y) vst1_f16(x, vcvt_f16_f32(y))
  826. #define GGML_F32Cx4_FMA(a, b, c) vfmaq_f32(a, b, c)
  827. #define GGML_F32Cx4_ADD vaddq_f32
  828. #define GGML_F32Cx4_MUL vmulq_f32
  829. #define GGML_F32Cx4_REDUCE GGML_F32x4_REDUCE
  830. #define GGML_F16_VEC GGML_F32Cx4
  831. #define GGML_F16_VEC_ZERO GGML_F32Cx4_ZERO
  832. #define GGML_F16_VEC_SET1 GGML_F32Cx4_SET1
  833. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx4_LOAD(p)
  834. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx4_STORE(p, r[i])
  835. #define GGML_F16_VEC_FMA GGML_F32Cx4_FMA
  836. #define GGML_F16_VEC_ADD GGML_F32Cx4_ADD
  837. #define GGML_F16_VEC_MUL GGML_F32Cx4_MUL
  838. #define GGML_F16_VEC_REDUCE GGML_F32Cx4_REDUCE
  839. #endif
  840. #elif defined(__AVX512F__)
  841. #define GGML_SIMD
  842. // F32 AVX512
  843. #define GGML_F32_STEP 64
  844. #define GGML_F32_EPR 16
  845. #define GGML_F32x16 __m512
  846. #define GGML_F32x16_ZERO _mm512_setzero_ps()
  847. #define GGML_F32x16_SET1(x) _mm512_set1_ps(x)
  848. #define GGML_F32x16_LOAD _mm512_loadu_ps
  849. #define GGML_F32x16_STORE _mm512_storeu_ps
  850. // _mm512_fmadd_ps is defined in AVX512F so no guard is required
  851. #define GGML_F32x16_FMA(a, b, c) _mm512_fmadd_ps(b, c, a)
  852. #define GGML_F32x16_ADD _mm512_add_ps
  853. #define GGML_F32x16_MUL _mm512_mul_ps
  854. #define GGML_F32x16_REDUCE(res, x) \
  855. do { \
  856. int offset = GGML_F32_ARR >> 1; \
  857. for (int i = 0; i < offset; ++i) { \
  858. x[i] = _mm512_add_ps(x[i], x[offset+i]); \
  859. } \
  860. offset >>= 1; \
  861. for (int i = 0; i < offset; ++i) { \
  862. x[i] = _mm512_add_ps(x[i], x[offset+i]); \
  863. } \
  864. offset >>= 1; \
  865. for (int i = 0; i < offset; ++i) { \
  866. x[i] = _mm512_add_ps(x[i], x[offset+i]); \
  867. } \
  868. res = _mm512_reduce_add_ps(x[0]); \
  869. } while (0)
  870. // TODO: is this optimal ?
  871. #define GGML_F32_VEC GGML_F32x16
  872. #define GGML_F32_VEC_ZERO GGML_F32x16_ZERO
  873. #define GGML_F32_VEC_SET1 GGML_F32x16_SET1
  874. #define GGML_F32_VEC_LOAD GGML_F32x16_LOAD
  875. #define GGML_F32_VEC_STORE GGML_F32x16_STORE
  876. #define GGML_F32_VEC_FMA GGML_F32x16_FMA
  877. #define GGML_F32_VEC_ADD GGML_F32x16_ADD
  878. #define GGML_F32_VEC_MUL GGML_F32x16_MUL
  879. #define GGML_F32_VEC_REDUCE GGML_F32x16_REDUCE
  880. // F16 AVX512
  881. // F16 AVX
  882. #define GGML_F16_STEP 64
  883. #define GGML_F16_EPR 16
  884. // AVX512 has FP16 extension (AVX512_FP16) but I don't have it on my machine so I use FP32 instead
  885. #define GGML_F32Cx16 __m512
  886. #define GGML_F32Cx16_ZERO _mm512_setzero_ps()
  887. #define GGML_F32Cx16_SET1(x) _mm512_set1_ps(x)
  888. // unlike _mm256_cvt intrinsics that require F16C, _mm512_cvt is defined in AVX512F
  889. // so F16C guard isn't required
  890. #define GGML_F32Cx16_LOAD(x) _mm512_cvtph_ps(_mm256_loadu_si256((__m256i *)(x)))
  891. #define GGML_F32Cx16_STORE(x, y) _mm256_storeu_si256((__m256i *)(x), _mm512_cvtps_ph(y, 0))
  892. #define GGML_F32Cx16_FMA(a, b, c) _mm512_fmadd_ps(b, c, a)
  893. #define GGML_F32Cx16_ADD _mm512_add_ps
  894. #define GGML_F32Cx16_MUL _mm512_mul_ps
  895. #define GGML_F32Cx16_REDUCE(res, x) \
  896. do { \
  897. int offset = GGML_F32_ARR >> 1; \
  898. for (int i = 0; i < offset; ++i) { \
  899. x[i] = _mm512_add_ps(x[i], x[offset+i]); \
  900. } \
  901. offset >>= 1; \
  902. for (int i = 0; i < offset; ++i) { \
  903. x[i] = _mm512_add_ps(x[i], x[offset+i]); \
  904. } \
  905. offset >>= 1; \
  906. for (int i = 0; i < offset; ++i) { \
  907. x[i] = _mm512_add_ps(x[i], x[offset+i]); \
  908. } \
  909. res = _mm512_reduce_add_ps(x[0]); \
  910. } while (0)
  911. #define GGML_F16_VEC GGML_F32Cx16
  912. #define GGML_F16_VEC_ZERO GGML_F32Cx16_ZERO
  913. #define GGML_F16_VEC_SET1 GGML_F32Cx16_SET1
  914. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx16_LOAD(p)
  915. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx16_STORE(p, r[i])
  916. #define GGML_F16_VEC_FMA GGML_F32Cx16_FMA
  917. #define GGML_F16_VEC_ADD GGML_F32Cx16_ADD
  918. #define GGML_F16_VEC_MUL GGML_F32Cx16_MUL
  919. #define GGML_F16_VEC_REDUCE GGML_F32Cx16_REDUCE
  920. #elif defined(__AVX__)
  921. #define GGML_SIMD
  922. // F32 AVX
  923. #define GGML_F32_STEP 32
  924. #define GGML_F32_EPR 8
  925. #define GGML_F32x8 __m256
  926. #define GGML_F32x8_ZERO _mm256_setzero_ps()
  927. #define GGML_F32x8_SET1(x) _mm256_set1_ps(x)
  928. #define GGML_F32x8_LOAD _mm256_loadu_ps
  929. #define GGML_F32x8_STORE _mm256_storeu_ps
  930. #if defined(__FMA__)
  931. #define GGML_F32x8_FMA(a, b, c) _mm256_fmadd_ps(b, c, a)
  932. #else
  933. #define GGML_F32x8_FMA(a, b, c) _mm256_add_ps(_mm256_mul_ps(b, c), a)
  934. #endif
  935. #define GGML_F32x8_ADD _mm256_add_ps
  936. #define GGML_F32x8_MUL _mm256_mul_ps
  937. #define GGML_F32x8_REDUCE(res, x) \
  938. do { \
  939. int offset = GGML_F32_ARR >> 1; \
  940. for (int i = 0; i < offset; ++i) { \
  941. x[i] = _mm256_add_ps(x[i], x[offset+i]); \
  942. } \
  943. offset >>= 1; \
  944. for (int i = 0; i < offset; ++i) { \
  945. x[i] = _mm256_add_ps(x[i], x[offset+i]); \
  946. } \
  947. offset >>= 1; \
  948. for (int i = 0; i < offset; ++i) { \
  949. x[i] = _mm256_add_ps(x[i], x[offset+i]); \
  950. } \
  951. const __m128 t0 = _mm_add_ps(_mm256_castps256_ps128(x[0]), \
  952. _mm256_extractf128_ps(x[0], 1)); \
  953. const __m128 t1 = _mm_hadd_ps(t0, t0); \
  954. res = (ggml_float) _mm_cvtss_f32(_mm_hadd_ps(t1, t1)); \
  955. } while (0)
  956. // TODO: is this optimal ?
  957. #define GGML_F32_VEC GGML_F32x8
  958. #define GGML_F32_VEC_ZERO GGML_F32x8_ZERO
  959. #define GGML_F32_VEC_SET1 GGML_F32x8_SET1
  960. #define GGML_F32_VEC_LOAD GGML_F32x8_LOAD
  961. #define GGML_F32_VEC_STORE GGML_F32x8_STORE
  962. #define GGML_F32_VEC_FMA GGML_F32x8_FMA
  963. #define GGML_F32_VEC_ADD GGML_F32x8_ADD
  964. #define GGML_F32_VEC_MUL GGML_F32x8_MUL
  965. #define GGML_F32_VEC_REDUCE GGML_F32x8_REDUCE
  966. // F16 AVX
  967. #define GGML_F16_STEP 32
  968. #define GGML_F16_EPR 8
  969. // F16 arithmetic is not supported by AVX, so we use F32 instead
  970. #define GGML_F32Cx8 __m256
  971. #define GGML_F32Cx8_ZERO _mm256_setzero_ps()
  972. #define GGML_F32Cx8_SET1(x) _mm256_set1_ps(x)
  973. #if defined(__F16C__)
  974. // the _mm256_cvt intrinsics require F16C
  975. #define GGML_F32Cx8_LOAD(x) _mm256_cvtph_ps(_mm_loadu_si128((__m128i *)(x)))
  976. #define GGML_F32Cx8_STORE(x, y) _mm_storeu_si128((__m128i *)(x), _mm256_cvtps_ph(y, 0))
  977. #else
  978. static inline __m256 __avx_f32cx8_load(ggml_fp16_t *x) {
  979. float tmp[8];
  980. for (int i = 0; i < 8; i++) {
  981. tmp[i] = GGML_FP16_TO_FP32(x[i]);
  982. }
  983. return _mm256_loadu_ps(tmp);
  984. }
  985. static inline void __avx_f32cx8_store(ggml_fp16_t *x, __m256 y) {
  986. float arr[8];
  987. _mm256_storeu_ps(arr, y);
  988. for (int i = 0; i < 8; i++)
  989. x[i] = GGML_FP32_TO_FP16(arr[i]);
  990. }
  991. #define GGML_F32Cx8_LOAD(x) __avx_f32cx8_load(x)
  992. #define GGML_F32Cx8_STORE(x, y) __avx_f32cx8_store(x, y)
  993. #endif
  994. #define GGML_F32Cx8_FMA GGML_F32x8_FMA
  995. #define GGML_F32Cx8_ADD _mm256_add_ps
  996. #define GGML_F32Cx8_MUL _mm256_mul_ps
  997. #define GGML_F32Cx8_REDUCE GGML_F32x8_REDUCE
  998. #define GGML_F16_VEC GGML_F32Cx8
  999. #define GGML_F16_VEC_ZERO GGML_F32Cx8_ZERO
  1000. #define GGML_F16_VEC_SET1 GGML_F32Cx8_SET1
  1001. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx8_LOAD(p)
  1002. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx8_STORE(p, r[i])
  1003. #define GGML_F16_VEC_FMA GGML_F32Cx8_FMA
  1004. #define GGML_F16_VEC_ADD GGML_F32Cx8_ADD
  1005. #define GGML_F16_VEC_MUL GGML_F32Cx8_MUL
  1006. #define GGML_F16_VEC_REDUCE GGML_F32Cx8_REDUCE
  1007. #elif defined(__POWER9_VECTOR__)
  1008. #define GGML_SIMD
  1009. // F32 POWER9
  1010. #define GGML_F32_STEP 32
  1011. #define GGML_F32_EPR 4
  1012. #define GGML_F32x4 vector float
  1013. #define GGML_F32x4_ZERO 0.0f
  1014. #define GGML_F32x4_SET1 vec_splats
  1015. #define GGML_F32x4_LOAD(p) vec_xl(0, p)
  1016. #define GGML_F32x4_STORE(p, r) vec_xst(r, 0, p)
  1017. #define GGML_F32x4_FMA(a, b, c) vec_madd(b, c, a)
  1018. #define GGML_F32x4_ADD vec_add
  1019. #define GGML_F32x4_MUL vec_mul
  1020. #define GGML_F32x4_REDUCE(res, x) \
  1021. { \
  1022. int offset = GGML_F32_ARR >> 1; \
  1023. for (int i = 0; i < offset; ++i) { \
  1024. x[i] = vec_add(x[i], x[offset+i]); \
  1025. } \
  1026. offset >>= 1; \
  1027. for (int i = 0; i < offset; ++i) { \
  1028. x[i] = vec_add(x[i], x[offset+i]); \
  1029. } \
  1030. offset >>= 1; \
  1031. for (int i = 0; i < offset; ++i) { \
  1032. x[i] = vec_add(x[i], x[offset+i]); \
  1033. } \
  1034. res = vec_extract(x[0], 0) + \
  1035. vec_extract(x[0], 1) + \
  1036. vec_extract(x[0], 2) + \
  1037. vec_extract(x[0], 3); \
  1038. }
  1039. #define GGML_F32_VEC GGML_F32x4
  1040. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1041. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1042. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1043. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1044. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1045. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1046. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1047. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1048. // F16 POWER9
  1049. #define GGML_F16_STEP GGML_F32_STEP
  1050. #define GGML_F16_EPR GGML_F32_EPR
  1051. #define GGML_F16_VEC GGML_F32x4
  1052. #define GGML_F16_VEC_ZERO GGML_F32x4_ZERO
  1053. #define GGML_F16_VEC_SET1 GGML_F32x4_SET1
  1054. #define GGML_F16_VEC_FMA GGML_F32x4_FMA
  1055. #define GGML_F16_VEC_REDUCE GGML_F32x4_REDUCE
  1056. // Use vec_xl, not vec_ld, in case the load address is not aligned.
  1057. #define GGML_F16_VEC_LOAD(p, i) (i & 0x1) ? \
  1058. vec_extract_fp32_from_shorth(vec_xl(0, p - GGML_F16_EPR)) : \
  1059. vec_extract_fp32_from_shortl(vec_xl(0, p))
  1060. #define GGML_ENDIAN_BYTE(i) ((unsigned char *)&(uint16_t){1})[i]
  1061. #define GGML_F16_VEC_STORE(p, r, i) \
  1062. if (i & 0x1) \
  1063. vec_xst(vec_pack_to_short_fp32(r[i - GGML_ENDIAN_BYTE(1)], \
  1064. r[i - GGML_ENDIAN_BYTE(0)]), \
  1065. 0, p - GGML_F16_EPR)
  1066. #elif defined(__wasm_simd128__)
  1067. #define GGML_SIMD
  1068. // F32 WASM
  1069. #define GGML_F32_STEP 16
  1070. #define GGML_F32_EPR 4
  1071. #define GGML_F32x4 v128_t
  1072. #define GGML_F32x4_ZERO wasm_f32x4_splat(0.0f)
  1073. #define GGML_F32x4_SET1(x) wasm_f32x4_splat(x)
  1074. #define GGML_F32x4_LOAD wasm_v128_load
  1075. #define GGML_F32x4_STORE wasm_v128_store
  1076. #define GGML_F32x4_FMA(a, b, c) wasm_f32x4_add(wasm_f32x4_mul(b, c), a)
  1077. #define GGML_F32x4_ADD wasm_f32x4_add
  1078. #define GGML_F32x4_MUL wasm_f32x4_mul
  1079. #define GGML_F32x4_REDUCE(res, x) \
  1080. { \
  1081. int offset = GGML_F32_ARR >> 1; \
  1082. for (int i = 0; i < offset; ++i) { \
  1083. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  1084. } \
  1085. offset >>= 1; \
  1086. for (int i = 0; i < offset; ++i) { \
  1087. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  1088. } \
  1089. offset >>= 1; \
  1090. for (int i = 0; i < offset; ++i) { \
  1091. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  1092. } \
  1093. res = wasm_f32x4_extract_lane(x[0], 0) + \
  1094. wasm_f32x4_extract_lane(x[0], 1) + \
  1095. wasm_f32x4_extract_lane(x[0], 2) + \
  1096. wasm_f32x4_extract_lane(x[0], 3); \
  1097. }
  1098. #define GGML_F32_VEC GGML_F32x4
  1099. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1100. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1101. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1102. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1103. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1104. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1105. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1106. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1107. // F16 WASM
  1108. #define GGML_F16_STEP 16
  1109. #define GGML_F16_EPR 4
  1110. inline static v128_t __wasm_f16x4_load(const ggml_fp16_t * p) {
  1111. float tmp[4];
  1112. tmp[0] = GGML_FP16_TO_FP32(p[0]);
  1113. tmp[1] = GGML_FP16_TO_FP32(p[1]);
  1114. tmp[2] = GGML_FP16_TO_FP32(p[2]);
  1115. tmp[3] = GGML_FP16_TO_FP32(p[3]);
  1116. return wasm_v128_load(tmp);
  1117. }
  1118. inline static void __wasm_f16x4_store(ggml_fp16_t * p, v128_t x) {
  1119. float tmp[4];
  1120. wasm_v128_store(tmp, x);
  1121. p[0] = GGML_FP32_TO_FP16(tmp[0]);
  1122. p[1] = GGML_FP32_TO_FP16(tmp[1]);
  1123. p[2] = GGML_FP32_TO_FP16(tmp[2]);
  1124. p[3] = GGML_FP32_TO_FP16(tmp[3]);
  1125. }
  1126. #define GGML_F16x4 v128_t
  1127. #define GGML_F16x4_ZERO wasm_f32x4_splat(0.0f)
  1128. #define GGML_F16x4_SET1(x) wasm_f32x4_splat(x)
  1129. #define GGML_F16x4_LOAD(x) __wasm_f16x4_load(x)
  1130. #define GGML_F16x4_STORE(x, y) __wasm_f16x4_store(x, y)
  1131. #define GGML_F16x4_FMA GGML_F32x4_FMA
  1132. #define GGML_F16x4_ADD wasm_f32x4_add
  1133. #define GGML_F16x4_MUL wasm_f32x4_mul
  1134. #define GGML_F16x4_REDUCE(res, x) \
  1135. { \
  1136. int offset = GGML_F16_ARR >> 1; \
  1137. for (int i = 0; i < offset; ++i) { \
  1138. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  1139. } \
  1140. offset >>= 1; \
  1141. for (int i = 0; i < offset; ++i) { \
  1142. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  1143. } \
  1144. offset >>= 1; \
  1145. for (int i = 0; i < offset; ++i) { \
  1146. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  1147. } \
  1148. res = wasm_f32x4_extract_lane(x[0], 0) + \
  1149. wasm_f32x4_extract_lane(x[0], 1) + \
  1150. wasm_f32x4_extract_lane(x[0], 2) + \
  1151. wasm_f32x4_extract_lane(x[0], 3); \
  1152. }
  1153. #define GGML_F16_VEC GGML_F16x4
  1154. #define GGML_F16_VEC_ZERO GGML_F16x4_ZERO
  1155. #define GGML_F16_VEC_SET1 GGML_F16x4_SET1
  1156. #define GGML_F16_VEC_LOAD(p, i) GGML_F16x4_LOAD(p)
  1157. #define GGML_F16_VEC_STORE(p, r, i) GGML_F16x4_STORE(p, r[i])
  1158. #define GGML_F16_VEC_FMA GGML_F16x4_FMA
  1159. #define GGML_F16_VEC_ADD GGML_F16x4_ADD
  1160. #define GGML_F16_VEC_MUL GGML_F16x4_MUL
  1161. #define GGML_F16_VEC_REDUCE GGML_F16x4_REDUCE
  1162. #elif defined(__SSE3__)
  1163. #define GGML_SIMD
  1164. // F32 SSE
  1165. #define GGML_F32_STEP 32
  1166. #define GGML_F32_EPR 4
  1167. #define GGML_F32x4 __m128
  1168. #define GGML_F32x4_ZERO _mm_setzero_ps()
  1169. #define GGML_F32x4_SET1(x) _mm_set1_ps(x)
  1170. #define GGML_F32x4_LOAD _mm_loadu_ps
  1171. #define GGML_F32x4_STORE _mm_storeu_ps
  1172. #if defined(__FMA__)
  1173. // TODO: Does this work?
  1174. #define GGML_F32x4_FMA(a, b, c) _mm_fmadd_ps(b, c, a)
  1175. #else
  1176. #define GGML_F32x4_FMA(a, b, c) _mm_add_ps(_mm_mul_ps(b, c), a)
  1177. #endif
  1178. #define GGML_F32x4_ADD _mm_add_ps
  1179. #define GGML_F32x4_MUL _mm_mul_ps
  1180. #define GGML_F32x4_REDUCE(res, x) \
  1181. { \
  1182. int offset = GGML_F32_ARR >> 1; \
  1183. for (int i = 0; i < offset; ++i) { \
  1184. x[i] = _mm_add_ps(x[i], x[offset+i]); \
  1185. } \
  1186. offset >>= 1; \
  1187. for (int i = 0; i < offset; ++i) { \
  1188. x[i] = _mm_add_ps(x[i], x[offset+i]); \
  1189. } \
  1190. offset >>= 1; \
  1191. for (int i = 0; i < offset; ++i) { \
  1192. x[i] = _mm_add_ps(x[i], x[offset+i]); \
  1193. } \
  1194. const __m128 t0 = _mm_hadd_ps(x[0], x[0]); \
  1195. res = (ggml_float) _mm_cvtss_f32(_mm_hadd_ps(t0, t0)); \
  1196. }
  1197. // TODO: is this optimal ?
  1198. #define GGML_F32_VEC GGML_F32x4
  1199. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1200. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1201. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1202. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1203. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1204. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1205. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1206. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1207. // F16 SSE
  1208. #define GGML_F16_STEP 32
  1209. #define GGML_F16_EPR 4
  1210. static inline __m128 __sse_f16x4_load(ggml_fp16_t *x) {
  1211. float tmp[4];
  1212. tmp[0] = GGML_FP16_TO_FP32(x[0]);
  1213. tmp[1] = GGML_FP16_TO_FP32(x[1]);
  1214. tmp[2] = GGML_FP16_TO_FP32(x[2]);
  1215. tmp[3] = GGML_FP16_TO_FP32(x[3]);
  1216. return _mm_loadu_ps(tmp);
  1217. }
  1218. static inline void __sse_f16x4_store(ggml_fp16_t *x, __m128 y) {
  1219. float arr[4];
  1220. _mm_storeu_ps(arr, y);
  1221. x[0] = GGML_FP32_TO_FP16(arr[0]);
  1222. x[1] = GGML_FP32_TO_FP16(arr[1]);
  1223. x[2] = GGML_FP32_TO_FP16(arr[2]);
  1224. x[3] = GGML_FP32_TO_FP16(arr[3]);
  1225. }
  1226. #define GGML_F32Cx4 __m128
  1227. #define GGML_F32Cx4_ZERO _mm_setzero_ps()
  1228. #define GGML_F32Cx4_SET1(x) _mm_set1_ps(x)
  1229. #define GGML_F32Cx4_LOAD(x) __sse_f16x4_load(x)
  1230. #define GGML_F32Cx4_STORE(x, y) __sse_f16x4_store(x, y)
  1231. #define GGML_F32Cx4_FMA GGML_F32x4_FMA
  1232. #define GGML_F32Cx4_ADD _mm_add_ps
  1233. #define GGML_F32Cx4_MUL _mm_mul_ps
  1234. #define GGML_F32Cx4_REDUCE GGML_F32x4_REDUCE
  1235. #define GGML_F16_VEC GGML_F32Cx4
  1236. #define GGML_F16_VEC_ZERO GGML_F32Cx4_ZERO
  1237. #define GGML_F16_VEC_SET1 GGML_F32Cx4_SET1
  1238. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx4_LOAD(p)
  1239. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx4_STORE(p, r[i])
  1240. #define GGML_F16_VEC_FMA GGML_F32Cx4_FMA
  1241. #define GGML_F16_VEC_ADD GGML_F32Cx4_ADD
  1242. #define GGML_F16_VEC_MUL GGML_F32Cx4_MUL
  1243. #define GGML_F16_VEC_REDUCE GGML_F32Cx4_REDUCE
  1244. #endif
  1245. // GGML_F32_ARR / GGML_F16_ARR
  1246. // number of registers to use per step
  1247. #ifdef GGML_SIMD
  1248. #define GGML_F32_ARR (GGML_F32_STEP/GGML_F32_EPR)
  1249. #define GGML_F16_ARR (GGML_F16_STEP/GGML_F16_EPR)
  1250. #endif
  1251. //
  1252. // fundamental operations
  1253. //
  1254. inline static void ggml_vec_set_i8(const int n, int8_t * x, const int8_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1255. inline static void ggml_vec_set_i16(const int n, int16_t * x, const int16_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1256. inline static void ggml_vec_set_i32(const int n, int32_t * x, const int32_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1257. inline static void ggml_vec_set_f16(const int n, ggml_fp16_t * x, const int32_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1258. inline static void ggml_vec_add_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i] + y[i]; }
  1259. inline static void ggml_vec_add1_f32(const int n, float * z, const float * x, const float v) { for (int i = 0; i < n; ++i) z[i] = x[i] + v; }
  1260. inline static void ggml_vec_acc_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] += x[i]; }
  1261. inline static void ggml_vec_acc1_f32(const int n, float * y, const float v) { for (int i = 0; i < n; ++i) y[i] += v; }
  1262. inline static void ggml_vec_sub_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i] - y[i]; }
  1263. inline static void ggml_vec_set_f32 (const int n, float * x, const float v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1264. inline static void ggml_vec_cpy_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i]; }
  1265. inline static void ggml_vec_neg_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = -x[i]; }
  1266. inline static void ggml_vec_mul_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i]*y[i]; }
  1267. inline static void ggml_vec_div_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i]/y[i]; }
  1268. static void ggml_vec_dot_f32(int n, float * restrict s, size_t bs, const float * restrict x, size_t bx, const float * restrict y, size_t by, int nrc) {
  1269. assert(nrc == 1);
  1270. UNUSED(nrc);
  1271. UNUSED(bx);
  1272. UNUSED(by);
  1273. UNUSED(bs);
  1274. #ifdef GGML_SIMD
  1275. float sumf = 0.0f;
  1276. const int np = (n & ~(GGML_F32_STEP - 1));
  1277. GGML_F32_VEC sum[GGML_F32_ARR] = { GGML_F32_VEC_ZERO };
  1278. GGML_F32_VEC ax[GGML_F32_ARR];
  1279. GGML_F32_VEC ay[GGML_F32_ARR];
  1280. for (int i = 0; i < np; i += GGML_F32_STEP) {
  1281. for (int j = 0; j < GGML_F32_ARR; j++) {
  1282. ax[j] = GGML_F32_VEC_LOAD(x + i + j*GGML_F32_EPR);
  1283. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  1284. sum[j] = GGML_F32_VEC_FMA(sum[j], ax[j], ay[j]);
  1285. }
  1286. }
  1287. // reduce sum0..sum3 to sum0
  1288. GGML_F32_VEC_REDUCE(sumf, sum);
  1289. // leftovers
  1290. for (int i = np; i < n; ++i) {
  1291. sumf += x[i]*y[i];
  1292. }
  1293. #else
  1294. // scalar
  1295. ggml_float sumf = 0.0;
  1296. for (int i = 0; i < n; ++i) {
  1297. sumf += (ggml_float)(x[i]*y[i]);
  1298. }
  1299. #endif
  1300. *s = sumf;
  1301. }
  1302. static void ggml_vec_dot_f16(int n, float * restrict s, size_t bs, ggml_fp16_t * restrict x, size_t bx, ggml_fp16_t * restrict y, size_t by, int nrc) {
  1303. assert(nrc == 1);
  1304. UNUSED(nrc);
  1305. UNUSED(bx);
  1306. UNUSED(by);
  1307. UNUSED(bs);
  1308. ggml_float sumf = 0.0;
  1309. #if defined(GGML_SIMD)
  1310. const int np = (n & ~(GGML_F16_STEP - 1));
  1311. GGML_F16_VEC sum[GGML_F16_ARR] = { GGML_F16_VEC_ZERO };
  1312. GGML_F16_VEC ax[GGML_F16_ARR];
  1313. GGML_F16_VEC ay[GGML_F16_ARR];
  1314. for (int i = 0; i < np; i += GGML_F16_STEP) {
  1315. for (int j = 0; j < GGML_F16_ARR; j++) {
  1316. ax[j] = GGML_F16_VEC_LOAD(x + i + j*GGML_F16_EPR, j);
  1317. ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
  1318. sum[j] = GGML_F16_VEC_FMA(sum[j], ax[j], ay[j]);
  1319. }
  1320. }
  1321. // reduce sum0..sum3 to sum0
  1322. GGML_F16_VEC_REDUCE(sumf, sum);
  1323. // leftovers
  1324. for (int i = np; i < n; ++i) {
  1325. sumf += (ggml_float)(GGML_FP16_TO_FP32(x[i])*GGML_FP16_TO_FP32(y[i]));
  1326. }
  1327. #else
  1328. for (int i = 0; i < n; ++i) {
  1329. sumf += (ggml_float)(GGML_FP16_TO_FP32(x[i])*GGML_FP16_TO_FP32(y[i]));
  1330. }
  1331. #endif
  1332. *s = sumf;
  1333. }
  1334. // compute GGML_VEC_DOT_UNROLL dot products at once
  1335. // xs - x row stride in bytes
  1336. inline static void ggml_vec_dot_f16_unroll(const int n, const int xs, float * restrict s, void * restrict xv, ggml_fp16_t * restrict y) {
  1337. ggml_float sumf[GGML_VEC_DOT_UNROLL] = { 0.0 };
  1338. ggml_fp16_t * restrict x[GGML_VEC_DOT_UNROLL];
  1339. for (int i = 0; i < GGML_VEC_DOT_UNROLL; ++i) {
  1340. x[i] = (ggml_fp16_t *) ((char *) xv + i*xs);
  1341. }
  1342. #if defined(GGML_SIMD)
  1343. const int np = (n & ~(GGML_F16_STEP - 1));
  1344. GGML_F16_VEC sum[GGML_VEC_DOT_UNROLL][GGML_F16_ARR] = { { GGML_F16_VEC_ZERO } };
  1345. GGML_F16_VEC ax[GGML_F16_ARR];
  1346. GGML_F16_VEC ay[GGML_F16_ARR];
  1347. for (int i = 0; i < np; i += GGML_F16_STEP) {
  1348. for (int j = 0; j < GGML_F16_ARR; j++) {
  1349. ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
  1350. for (int k = 0; k < GGML_VEC_DOT_UNROLL; ++k) {
  1351. ax[j] = GGML_F16_VEC_LOAD(x[k] + i + j*GGML_F16_EPR, j);
  1352. sum[k][j] = GGML_F16_VEC_FMA(sum[k][j], ax[j], ay[j]);
  1353. }
  1354. }
  1355. }
  1356. // reduce sum0..sum3 to sum0
  1357. for (int k = 0; k < GGML_VEC_DOT_UNROLL; ++k) {
  1358. GGML_F16_VEC_REDUCE(sumf[k], sum[k]);
  1359. }
  1360. // leftovers
  1361. for (int i = np; i < n; ++i) {
  1362. for (int j = 0; j < GGML_VEC_DOT_UNROLL; ++j) {
  1363. sumf[j] += (ggml_float)(GGML_FP16_TO_FP32(x[j][i])*GGML_FP16_TO_FP32(y[i]));
  1364. }
  1365. }
  1366. #else
  1367. for (int i = 0; i < n; ++i) {
  1368. for (int j = 0; j < GGML_VEC_DOT_UNROLL; ++j) {
  1369. sumf[j] += (ggml_float)(GGML_FP16_TO_FP32(x[j][i])*GGML_FP16_TO_FP32(y[i]));
  1370. }
  1371. }
  1372. #endif
  1373. for (int i = 0; i < GGML_VEC_DOT_UNROLL; ++i) {
  1374. s[i] = sumf[i];
  1375. }
  1376. }
  1377. inline static void ggml_vec_mad_f32(const int n, float * restrict y, const float * restrict x, const float v) {
  1378. #if defined(GGML_SIMD)
  1379. const int np = (n & ~(GGML_F32_STEP - 1));
  1380. GGML_F32_VEC vx = GGML_F32_VEC_SET1(v);
  1381. GGML_F32_VEC ax[GGML_F32_ARR];
  1382. GGML_F32_VEC ay[GGML_F32_ARR];
  1383. for (int i = 0; i < np; i += GGML_F32_STEP) {
  1384. for (int j = 0; j < GGML_F32_ARR; j++) {
  1385. ax[j] = GGML_F32_VEC_LOAD(x + i + j*GGML_F32_EPR);
  1386. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  1387. ay[j] = GGML_F32_VEC_FMA(ay[j], ax[j], vx);
  1388. GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
  1389. }
  1390. }
  1391. // leftovers
  1392. for (int i = np; i < n; ++i) {
  1393. y[i] += x[i]*v;
  1394. }
  1395. #else
  1396. // scalar
  1397. for (int i = 0; i < n; ++i) {
  1398. y[i] += x[i]*v;
  1399. }
  1400. #endif
  1401. }
  1402. // xs and vs are byte strides of x and v
  1403. inline static void ggml_vec_mad_f32_unroll(const int n, const int xs, const int vs, float * restrict y, const float * restrict xv, const float * restrict vv) {
  1404. const float * restrict x[GGML_VEC_MAD_UNROLL];
  1405. const float * restrict v[GGML_VEC_MAD_UNROLL];
  1406. for (int i = 0; i < GGML_VEC_MAD_UNROLL; ++i) {
  1407. x[i] = (const float *) ((const char *) xv + i*xs);
  1408. v[i] = (const float *) ((const char *) vv + i*vs);
  1409. }
  1410. #if defined(GGML_SIMD)
  1411. const int np = (n & ~(GGML_F32_STEP - 1));
  1412. GGML_F32_VEC vx[GGML_VEC_MAD_UNROLL];
  1413. for (int k = 0; k < GGML_VEC_MAD_UNROLL; ++k) {
  1414. vx[k] = GGML_F32_VEC_SET1(v[k][0]);
  1415. }
  1416. GGML_F32_VEC ax[GGML_VEC_MAD_UNROLL][GGML_F32_ARR];
  1417. GGML_F32_VEC ay[GGML_F32_ARR];
  1418. for (int i = 0; i < np; i += GGML_F32_STEP) {
  1419. for (int j = 0; j < GGML_F32_ARR; j++) {
  1420. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  1421. for (int k = 0; k < GGML_VEC_MAD_UNROLL; ++k) {
  1422. ax[k][j] = GGML_F32_VEC_LOAD(x[k] + i + j*GGML_F32_EPR);
  1423. ay[j] = GGML_F32_VEC_FMA(ay[j], ax[k][j], vx[k]);
  1424. }
  1425. GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
  1426. }
  1427. }
  1428. // leftovers
  1429. for (int k = 0; k < GGML_VEC_MAD_UNROLL; ++k) {
  1430. for (int i = np; i < n; ++i) {
  1431. y[i] += x[k][i]*v[k][0];
  1432. }
  1433. }
  1434. #else
  1435. // scalar
  1436. for (int k = 0; k < GGML_VEC_MAD_UNROLL; ++k) {
  1437. for (int i = 0; i < n; ++i) {
  1438. y[i] += x[k][i]*v[k][0];
  1439. }
  1440. }
  1441. #endif
  1442. }
  1443. //inline static void ggml_vec_scale_f32(const int n, float * y, const float v) { for (int i = 0; i < n; ++i) y[i] *= v; }
  1444. inline static void ggml_vec_scale_f32(const int n, float * y, const float v) {
  1445. #if defined(GGML_USE_ACCELERATE)
  1446. vDSP_vsmul(y, 1, &v, y, 1, n);
  1447. #elif defined(GGML_SIMD)
  1448. const int np = (n & ~(GGML_F32_STEP - 1));
  1449. GGML_F32_VEC vx = GGML_F32_VEC_SET1(v);
  1450. GGML_F32_VEC ay[GGML_F32_ARR];
  1451. for (int i = 0; i < np; i += GGML_F32_STEP) {
  1452. for (int j = 0; j < GGML_F32_ARR; j++) {
  1453. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  1454. ay[j] = GGML_F32_VEC_MUL(ay[j], vx);
  1455. GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
  1456. }
  1457. }
  1458. // leftovers
  1459. for (int i = np; i < n; ++i) {
  1460. y[i] *= v;
  1461. }
  1462. #else
  1463. // scalar
  1464. for (int i = 0; i < n; ++i) {
  1465. y[i] *= v;
  1466. }
  1467. #endif
  1468. }
  1469. inline static void ggml_vec_norm_f32 (const int n, float * s, const float * x) { ggml_vec_dot_f32(n, s, 0, x, 0, x, 0, 1); *s = sqrtf(*s); }
  1470. inline static void ggml_vec_sqr_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i]*x[i]; }
  1471. inline static void ggml_vec_sqrt_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = sqrtf(x[i]); }
  1472. inline static void ggml_vec_log_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = logf(x[i]); }
  1473. inline static void ggml_vec_abs_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = fabsf(x[i]); }
  1474. inline static void ggml_vec_sgn_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? 1.f : ((x[i] < 0.f) ? -1.f : 0.f); }
  1475. inline static void ggml_vec_step_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? 1.f : 0.f; }
  1476. inline static void ggml_vec_tanh_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = tanhf(x[i]); }
  1477. inline static void ggml_vec_elu_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? x[i] : expf(x[i])-1; }
  1478. inline static void ggml_vec_relu_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? x[i] : 0.f; }
  1479. inline static void ggml_vec_leaky_relu_f32 (const int n, float * y, const float * x, const float ns) { for (int i = 0; i < n; ++i) y[i] = ((x[i] > 0.f) ? x[i] : 0.f) + ns * ((x[i] < 0.0f) ? x[i] : 0.f); }
  1480. // TODO: optimize performance
  1481. inline static void ggml_vec_hardswish_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i] * fminf(1.0f, fmaxf(0.0f, (x[i] + 3.0f) / 6.0f)); }
  1482. inline static void ggml_vec_hardsigmoid_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = fminf(1.0f, fmaxf(0.0f, (x[i] + 3.0f) / 6.0f)); }
  1483. static const float GELU_COEF_A = 0.044715f;
  1484. static const float GELU_QUICK_COEF = -1.702f;
  1485. static const float SQRT_2_OVER_PI = 0.79788456080286535587989211986876f;
  1486. inline static float ggml_gelu_f32(float x) {
  1487. return 0.5f*x*(1.0f + tanhf(SQRT_2_OVER_PI*x*(1.0f + GELU_COEF_A*x*x)));
  1488. }
  1489. inline static void ggml_vec_gelu_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
  1490. const uint16_t * i16 = (const uint16_t *) x;
  1491. for (int i = 0; i < n; ++i) {
  1492. y[i] = ggml_table_gelu_f16[i16[i]];
  1493. }
  1494. }
  1495. #ifdef GGML_GELU_FP16
  1496. inline static void ggml_vec_gelu_f32(const int n, float * y, const float * x) {
  1497. uint16_t t;
  1498. for (int i = 0; i < n; ++i) {
  1499. if (x[i] <= -10.0f) {
  1500. y[i] = 0.0f;
  1501. } else if (x[i] >= 10.0f) {
  1502. y[i] = x[i];
  1503. } else {
  1504. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  1505. memcpy(&t, &fp16, sizeof(uint16_t));
  1506. y[i] = GGML_FP16_TO_FP32(ggml_table_gelu_f16[t]);
  1507. }
  1508. }
  1509. }
  1510. #else
  1511. inline static void ggml_vec_gelu_f32(const int n, float * y, const float * x) {
  1512. for (int i = 0; i < n; ++i) {
  1513. y[i] = ggml_gelu_f32(x[i]);
  1514. }
  1515. }
  1516. #endif
  1517. inline static float ggml_gelu_quick_f32(float x) {
  1518. return x*(1.0f/(1.0f+expf(GELU_QUICK_COEF*x)));
  1519. }
  1520. //inline static void ggml_vec_gelu_quick_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
  1521. // const uint16_t * i16 = (const uint16_t *) x;
  1522. // for (int i = 0; i < n; ++i) {
  1523. // y[i] = ggml_table_gelu_quick_f16[i16[i]];
  1524. // }
  1525. //}
  1526. #ifdef GGML_GELU_QUICK_FP16
  1527. inline static void ggml_vec_gelu_quick_f32(const int n, float * y, const float * x) {
  1528. uint16_t t;
  1529. for (int i = 0; i < n; ++i) {
  1530. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  1531. memcpy(&t, &fp16, sizeof(uint16_t));
  1532. y[i] = GGML_FP16_TO_FP32(ggml_table_gelu_quick_f16[t]);
  1533. }
  1534. }
  1535. #else
  1536. inline static void ggml_vec_gelu_quick_f32(const int n, float * y, const float * x) {
  1537. for (int i = 0; i < n; ++i) {
  1538. y[i] = ggml_gelu_quick_f32(x[i]);
  1539. }
  1540. }
  1541. #endif
  1542. // Sigmoid Linear Unit (SiLU) function
  1543. inline static float ggml_silu_f32(float x) {
  1544. return x/(1.0f + expf(-x));
  1545. }
  1546. //inline static void ggml_vec_silu_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
  1547. // const uint16_t * i16 = (const uint16_t *) x;
  1548. // for (int i = 0; i < n; ++i) {
  1549. // y[i] = ggml_table_silu_f16[i16[i]];
  1550. // }
  1551. //}
  1552. #ifdef GGML_SILU_FP16
  1553. inline static void ggml_vec_silu_f32(const int n, float * y, const float * x) {
  1554. uint16_t t;
  1555. for (int i = 0; i < n; ++i) {
  1556. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  1557. memcpy(&t, &fp16, sizeof(uint16_t));
  1558. y[i] = GGML_FP16_TO_FP32(ggml_table_silu_f16[t]);
  1559. }
  1560. }
  1561. #else
  1562. inline static void ggml_vec_silu_f32(const int n, float * y, const float * x) {
  1563. for (int i = 0; i < n; ++i) {
  1564. y[i] = ggml_silu_f32(x[i]);
  1565. }
  1566. }
  1567. #endif
  1568. inline static float ggml_silu_backward_f32(float x, float dy) {
  1569. const float s = 1.0f/(1.0f + expf(-x));
  1570. return dy*s*(1.0f + x*(1.0f - s));
  1571. }
  1572. #ifdef GGML_SILU_FP16
  1573. inline static void ggml_vec_silu_backward_f32(const int n, float * dx, const float * x, const float * dy) {
  1574. for (int i = 0; i < n; ++i) {
  1575. // we did not use x[i] to compute forward silu but its f16 equivalent
  1576. // take derivative at f16 of x[i]:
  1577. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  1578. float usedx = GGML_FP16_TO_FP32(fp16);
  1579. dx[i] = ggml_silu_backward_f32(usedx, dy[i]);
  1580. }
  1581. }
  1582. #else
  1583. inline static void ggml_vec_silu_backward_f32(const int n, float * dx, const float * x, const float * dy) {
  1584. for (int i = 0; i < n; ++i) {
  1585. dx[i] = ggml_silu_backward_f32(x[i], dy[i]);
  1586. }
  1587. }
  1588. #endif
  1589. inline static void ggml_vec_sum_f32(const int n, float * s, const float * x) {
  1590. #ifndef GGML_USE_ACCELERATE
  1591. ggml_float sum = 0.0;
  1592. for (int i = 0; i < n; ++i) {
  1593. sum += (ggml_float)x[i];
  1594. }
  1595. *s = sum;
  1596. #else
  1597. vDSP_sve(x, 1, s, n);
  1598. #endif
  1599. }
  1600. inline static void ggml_vec_sum_f32_ggf(const int n, ggml_float * s, const float * x) {
  1601. ggml_float sum = 0.0;
  1602. for (int i = 0; i < n; ++i) {
  1603. sum += (ggml_float)x[i];
  1604. }
  1605. *s = sum;
  1606. }
  1607. inline static void ggml_vec_sum_f16_ggf(const int n, float * s, const ggml_fp16_t * x) {
  1608. float sum = 0.0f;
  1609. for (int i = 0; i < n; ++i) {
  1610. sum += GGML_FP16_TO_FP32(x[i]);
  1611. }
  1612. *s = sum;
  1613. }
  1614. inline static void ggml_vec_max_f32(const int n, float * s, const float * x) {
  1615. #ifndef GGML_USE_ACCELERATE
  1616. float max = -INFINITY;
  1617. for (int i = 0; i < n; ++i) {
  1618. max = MAX(max, x[i]);
  1619. }
  1620. *s = max;
  1621. #else
  1622. vDSP_maxv(x, 1, s, n);
  1623. #endif
  1624. }
  1625. inline static void ggml_vec_norm_inv_f32(const int n, float * s, const float * x) {
  1626. ggml_vec_norm_f32(n, s, x);
  1627. *s = 1.f/(*s);
  1628. }
  1629. inline static void ggml_vec_argmax_f32(const int n, int * s, const float * x) {
  1630. float max = -INFINITY;
  1631. int idx = 0;
  1632. for (int i = 0; i < n; ++i) {
  1633. max = MAX(max, x[i]);
  1634. if (max == x[i]) { idx = i; }
  1635. }
  1636. *s = idx;
  1637. }
  1638. //
  1639. // data types
  1640. //
  1641. static const char * GGML_OP_NAME[GGML_OP_COUNT] = {
  1642. "NONE",
  1643. "DUP",
  1644. "ADD",
  1645. "ADD1",
  1646. "ACC",
  1647. "SUB",
  1648. "MUL",
  1649. "DIV",
  1650. "SQR",
  1651. "SQRT",
  1652. "LOG",
  1653. "SUM",
  1654. "SUM_ROWS",
  1655. "MEAN",
  1656. "ARGMAX",
  1657. "REPEAT",
  1658. "REPEAT_BACK",
  1659. "CONCAT",
  1660. "SILU_BACK",
  1661. "NORM",
  1662. "RMS_NORM",
  1663. "RMS_NORM_BACK",
  1664. "GROUP_NORM",
  1665. "MUL_MAT",
  1666. "MUL_MAT_ID",
  1667. "OUT_PROD",
  1668. "SCALE",
  1669. "SET",
  1670. "CPY",
  1671. "CONT",
  1672. "RESHAPE",
  1673. "VIEW",
  1674. "PERMUTE",
  1675. "TRANSPOSE",
  1676. "GET_ROWS",
  1677. "GET_ROWS_BACK",
  1678. "DIAG",
  1679. "DIAG_MASK_INF",
  1680. "DIAG_MASK_ZERO",
  1681. "SOFT_MAX",
  1682. "SOFT_MAX_BACK",
  1683. "ROPE",
  1684. "ROPE_BACK",
  1685. "ALIBI",
  1686. "CLAMP",
  1687. "CONV_TRANSPOSE_1D",
  1688. "IM2COL",
  1689. "CONV_TRANSPOSE_2D",
  1690. "POOL_1D",
  1691. "POOL_2D",
  1692. "UPSCALE",
  1693. "PAD",
  1694. "ARANGE",
  1695. "TIMESTEP_EMBEDDING",
  1696. "ARGSORT",
  1697. "LEAKY_RELU",
  1698. "FLASH_ATTN",
  1699. "FLASH_FF",
  1700. "FLASH_ATTN_BACK",
  1701. "SSM_CONV",
  1702. "SSM_SCAN",
  1703. "WIN_PART",
  1704. "WIN_UNPART",
  1705. "GET_REL_POS",
  1706. "ADD_REL_POS",
  1707. "UNARY",
  1708. "MAP_UNARY",
  1709. "MAP_BINARY",
  1710. "MAP_CUSTOM1_F32",
  1711. "MAP_CUSTOM2_F32",
  1712. "MAP_CUSTOM3_F32",
  1713. "MAP_CUSTOM1",
  1714. "MAP_CUSTOM2",
  1715. "MAP_CUSTOM3",
  1716. "CROSS_ENTROPY_LOSS",
  1717. "CROSS_ENTROPY_LOSS_BACK",
  1718. };
  1719. static_assert(GGML_OP_COUNT == 76, "GGML_OP_COUNT != 76");
  1720. static const char * GGML_OP_SYMBOL[GGML_OP_COUNT] = {
  1721. "none",
  1722. "x",
  1723. "x+y",
  1724. "x+y",
  1725. "view(x,nb,offset)+=y->x",
  1726. "x-y",
  1727. "x*y",
  1728. "x/y",
  1729. "x^2",
  1730. "√x",
  1731. "log(x)",
  1732. "Σx",
  1733. "Σx_k",
  1734. "Σx/n",
  1735. "argmax(x)",
  1736. "repeat(x)",
  1737. "repeat_back(x)",
  1738. "concat(x, y)",
  1739. "silu_back(x)",
  1740. "norm(x)",
  1741. "rms_norm(x)",
  1742. "rms_norm_back(x)",
  1743. "group_norm(x)",
  1744. "X*Y",
  1745. "X[i]*Y",
  1746. "X*Y",
  1747. "x*v",
  1748. "y-\\>view(x)",
  1749. "x-\\>y",
  1750. "cont(x)",
  1751. "reshape(x)",
  1752. "view(x)",
  1753. "permute(x)",
  1754. "transpose(x)",
  1755. "get_rows(x)",
  1756. "get_rows_back(x)",
  1757. "diag(x)",
  1758. "diag_mask_inf(x)",
  1759. "diag_mask_zero(x)",
  1760. "soft_max(x)",
  1761. "soft_max_back(x)",
  1762. "rope(x)",
  1763. "rope_back(x)",
  1764. "alibi(x)",
  1765. "clamp(x)",
  1766. "conv_transpose_1d(x)",
  1767. "im2col(x)",
  1768. "conv_transpose_2d(x)",
  1769. "pool_1d(x)",
  1770. "pool_2d(x)",
  1771. "upscale(x)",
  1772. "pad(x)",
  1773. "arange(start, stop, step)",
  1774. "timestep_embedding(timesteps, dim, max_period)",
  1775. "argsort(x)",
  1776. "leaky_relu(x)",
  1777. "flash_attn(x)",
  1778. "flash_ff(x)",
  1779. "flash_attn_back(x)",
  1780. "ssm_conv(x)",
  1781. "ssm_scan(x)",
  1782. "win_part(x)",
  1783. "win_unpart(x)",
  1784. "get_rel_pos(x)",
  1785. "add_rel_pos(x)",
  1786. "unary(x)",
  1787. "f(x)",
  1788. "f(x,y)",
  1789. "custom_f32(x)",
  1790. "custom_f32(x,y)",
  1791. "custom_f32(x,y,z)",
  1792. "custom(x)",
  1793. "custom(x,y)",
  1794. "custom(x,y,z)",
  1795. "cross_entropy_loss(x,y)",
  1796. "cross_entropy_loss_back(x,y)",
  1797. };
  1798. static_assert(GGML_OP_COUNT == 76, "GGML_OP_COUNT != 76");
  1799. static_assert(GGML_OP_POOL_COUNT == 2, "GGML_OP_POOL_COUNT != 2");
  1800. static const char * GGML_UNARY_OP_NAME[GGML_UNARY_OP_COUNT] = {
  1801. "ABS",
  1802. "SGN",
  1803. "NEG",
  1804. "STEP",
  1805. "TANH",
  1806. "ELU",
  1807. "RELU",
  1808. "GELU",
  1809. "GELU_QUICK",
  1810. "SILU",
  1811. "HARDSWISH",
  1812. "HARDSIGMOID",
  1813. };
  1814. static_assert(GGML_UNARY_OP_COUNT == 12, "GGML_UNARY_OP_COUNT != 12");
  1815. static_assert(sizeof(struct ggml_object)%GGML_MEM_ALIGN == 0, "ggml_object size must be a multiple of GGML_MEM_ALIGN");
  1816. static_assert(sizeof(struct ggml_tensor)%GGML_MEM_ALIGN == 0, "ggml_tensor size must be a multiple of GGML_MEM_ALIGN");
  1817. // WARN:
  1818. // Mis-configuration can lead to problem that's hard to reason about:
  1819. // * At best it crash or talks nosense.
  1820. // * At worst it talks slightly difference but hard to perceive.
  1821. //
  1822. // An op has to enable INIT or FINALIZE when any of it's branch needs that pass.
  1823. // Take care about compile options (e.g., GGML_USE_xxx).
  1824. static bool GGML_OP_HAS_INIT [GGML_OP_COUNT] = { 0 };
  1825. static bool GGML_OP_HAS_FINALIZE[GGML_OP_COUNT] = { 0 };
  1826. static void ggml_setup_op_has_task_pass(void) {
  1827. { // INIT
  1828. bool * p = GGML_OP_HAS_INIT;
  1829. p[GGML_OP_ACC ] = true;
  1830. p[GGML_OP_MUL_MAT ] = true;
  1831. p[GGML_OP_MUL_MAT_ID ] = true;
  1832. p[GGML_OP_OUT_PROD ] = true;
  1833. p[GGML_OP_SET ] = true;
  1834. p[GGML_OP_GET_ROWS_BACK ] = true;
  1835. p[GGML_OP_DIAG_MASK_INF ] = true;
  1836. p[GGML_OP_DIAG_MASK_ZERO ] = true;
  1837. p[GGML_OP_CONV_TRANSPOSE_1D ] = true;
  1838. p[GGML_OP_CONV_TRANSPOSE_2D ] = true;
  1839. p[GGML_OP_FLASH_ATTN_BACK ] = true;
  1840. p[GGML_OP_CROSS_ENTROPY_LOSS ] = true;
  1841. p[GGML_OP_ADD_REL_POS ] = true;
  1842. }
  1843. { // FINALIZE
  1844. bool * p = GGML_OP_HAS_FINALIZE;
  1845. p[GGML_OP_CROSS_ENTROPY_LOSS ] = true;
  1846. }
  1847. }
  1848. //
  1849. // ggml context
  1850. //
  1851. struct ggml_context {
  1852. size_t mem_size;
  1853. void * mem_buffer;
  1854. bool mem_buffer_owned;
  1855. bool no_alloc;
  1856. bool no_alloc_save; // this is used to save the no_alloc state when using scratch buffers
  1857. int n_objects;
  1858. struct ggml_object * objects_begin;
  1859. struct ggml_object * objects_end;
  1860. struct ggml_scratch scratch;
  1861. struct ggml_scratch scratch_save;
  1862. };
  1863. struct ggml_context_container {
  1864. bool used;
  1865. struct ggml_context context;
  1866. };
  1867. //
  1868. // NUMA support
  1869. //
  1870. #define GGML_NUMA_MAX_NODES 8
  1871. #define GGML_NUMA_MAX_CPUS 512
  1872. struct ggml_numa_node {
  1873. uint32_t cpus[GGML_NUMA_MAX_CPUS]; // hardware threads on this node
  1874. uint32_t n_cpus;
  1875. };
  1876. struct ggml_numa_nodes {
  1877. enum ggml_numa_strategy numa_strategy;
  1878. struct ggml_numa_node nodes[GGML_NUMA_MAX_NODES];
  1879. uint32_t n_nodes;
  1880. uint32_t total_cpus; // hardware threads on system
  1881. uint32_t current_node; // node on which main process is execting
  1882. #if defined(__gnu_linux__)
  1883. cpu_set_t cpuset; // cpuset from numactl
  1884. #else
  1885. uint32_t cpuset; // no NUMA support outside of Linux at this time. Use a portable datatype
  1886. #endif
  1887. };
  1888. //
  1889. // ggml state
  1890. //
  1891. struct ggml_state {
  1892. struct ggml_context_container contexts[GGML_MAX_CONTEXTS];
  1893. struct ggml_numa_nodes numa;
  1894. };
  1895. // global state
  1896. static struct ggml_state g_state;
  1897. static atomic_int g_state_barrier = 0;
  1898. // barrier via spin lock
  1899. inline static void ggml_critical_section_start(void) {
  1900. int processing = atomic_fetch_add(&g_state_barrier, 1);
  1901. while (processing > 0) {
  1902. // wait for other threads to finish
  1903. atomic_fetch_sub(&g_state_barrier, 1);
  1904. sched_yield(); // TODO: reconsider this
  1905. processing = atomic_fetch_add(&g_state_barrier, 1);
  1906. }
  1907. }
  1908. // TODO: make this somehow automatically executed
  1909. // some sort of "sentry" mechanism
  1910. inline static void ggml_critical_section_end(void) {
  1911. atomic_fetch_sub(&g_state_barrier, 1);
  1912. }
  1913. #if defined(__gnu_linux__)
  1914. static cpu_set_t ggml_get_numa_affinity(void) {
  1915. cpu_set_t cpuset;
  1916. pthread_t thread;
  1917. thread = pthread_self();
  1918. CPU_ZERO(&cpuset);
  1919. pthread_getaffinity_np(thread, sizeof(cpu_set_t), &cpuset);
  1920. return cpuset;
  1921. }
  1922. #else
  1923. static uint32_t ggml_get_numa_affinity(void) {
  1924. return 0; // no NUMA support
  1925. }
  1926. #endif
  1927. void ggml_numa_init(enum ggml_numa_strategy numa_flag) {
  1928. if (g_state.numa.n_nodes > 0) {
  1929. fprintf(stderr, "ggml_numa_init: NUMA already initialized\n");
  1930. return;
  1931. }
  1932. #if defined(__gnu_linux__)
  1933. struct stat st;
  1934. char path[256];
  1935. int rv;
  1936. // set numa scheme
  1937. g_state.numa.numa_strategy = numa_flag;
  1938. GGML_PRINT_DEBUG("numa strategy %u\n",g_state.numa.numa_strategy);
  1939. g_state.numa.cpuset = ggml_get_numa_affinity();
  1940. // enumerate nodes
  1941. while (g_state.numa.n_nodes < GGML_NUMA_MAX_NODES) {
  1942. rv = snprintf(path, sizeof(path), "/sys/devices/system/node/node%u", g_state.numa.n_nodes);
  1943. GGML_ASSERT(rv > 0 && (unsigned)rv < sizeof(path));
  1944. if (stat(path, &st) != 0) { break; }
  1945. ++g_state.numa.n_nodes;
  1946. }
  1947. // enumerate CPUs
  1948. while (g_state.numa.total_cpus < GGML_NUMA_MAX_CPUS) {
  1949. rv = snprintf(path, sizeof(path), "/sys/devices/system/cpu/cpu%u", g_state.numa.total_cpus);
  1950. GGML_ASSERT(rv > 0 && (unsigned)rv < sizeof(path));
  1951. if (stat(path, &st) != 0) { break; }
  1952. ++g_state.numa.total_cpus;
  1953. }
  1954. GGML_PRINT_DEBUG("found %u numa nodes, %u CPUs\n", g_state.numa.n_nodes, g_state.numa.total_cpus);
  1955. // figure out which node we're on
  1956. uint current_cpu;
  1957. int getcpu_ret = 0;
  1958. #if __GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ > 28)
  1959. getcpu_ret = getcpu(&current_cpu, &g_state.numa.current_node);
  1960. #else
  1961. // old glibc doesn't have a wrapper for this call. Fall back on direct syscall
  1962. # if !defined(SYS_getcpu) && defined(SYS_get_cpu)
  1963. # define SYS_getcpu SYS_get_cpu // some older glibc versions use this name
  1964. # endif
  1965. getcpu_ret = syscall(SYS_getcpu, &current_cpu, &g_state.numa.current_node);
  1966. #endif
  1967. if (g_state.numa.n_nodes < 1 || g_state.numa.total_cpus < 1 || getcpu_ret != 0) {
  1968. g_state.numa.n_nodes = 0;
  1969. return;
  1970. }
  1971. GGML_PRINT_DEBUG("found our process on numa node %u, CPU %u\n", g_state.numa.current_node, current_cpu);
  1972. for (uint32_t n = 0; n < g_state.numa.n_nodes; ++n) {
  1973. struct ggml_numa_node * node = &g_state.numa.nodes[n];
  1974. GGML_PRINT_DEBUG("CPUs on node %u:", n);
  1975. node->n_cpus = 0;
  1976. for (uint32_t c = 0; c < g_state.numa.total_cpus; ++c) {
  1977. rv = snprintf(path, sizeof(path), "/sys/devices/system/node/node%u/cpu%u", n, c);
  1978. GGML_ASSERT(rv > 0 && (unsigned)rv < sizeof(path));
  1979. if (stat(path, &st) == 0) {
  1980. node->cpus[node->n_cpus++] = c;
  1981. GGML_PRINT_DEBUG(" %u", c);
  1982. }
  1983. }
  1984. GGML_PRINT_DEBUG("\n");
  1985. }
  1986. if (ggml_is_numa()) {
  1987. FILE *fptr = fopen("/proc/sys/kernel/numa_balancing", "r");
  1988. if (fptr != NULL) {
  1989. char buf[42];
  1990. if (fgets(buf, sizeof(buf), fptr) && strncmp(buf, "0\n", sizeof(buf)) != 0) {
  1991. GGML_PRINT("WARNING: /proc/sys/kernel/numa_balancing is enabled, this has been observed to impair performance\n");
  1992. }
  1993. fclose(fptr);
  1994. }
  1995. }
  1996. #else
  1997. GGML_UNUSED(numa_flag);
  1998. // TODO
  1999. #endif
  2000. }
  2001. bool ggml_is_numa(void) {
  2002. return g_state.numa.n_nodes > 1;
  2003. }
  2004. ////////////////////////////////////////////////////////////////////////////////
  2005. void ggml_print_object(const struct ggml_object * obj) {
  2006. GGML_PRINT(" - ggml_object: type = %d, offset = %zu, size = %zu, next = %p\n",
  2007. obj->type, obj->offs, obj->size, (const void *) obj->next);
  2008. }
  2009. void ggml_print_objects(const struct ggml_context * ctx) {
  2010. struct ggml_object * obj = ctx->objects_begin;
  2011. GGML_PRINT("%s: objects in context %p:\n", __func__, (const void *) ctx);
  2012. while (obj != NULL) {
  2013. ggml_print_object(obj);
  2014. obj = obj->next;
  2015. }
  2016. GGML_PRINT("%s: --- end ---\n", __func__);
  2017. }
  2018. GGML_CALL int64_t ggml_nelements(const struct ggml_tensor * tensor) {
  2019. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2020. return tensor->ne[0]*tensor->ne[1]*tensor->ne[2]*tensor->ne[3];
  2021. }
  2022. GGML_CALL int64_t ggml_nrows(const struct ggml_tensor * tensor) {
  2023. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2024. return tensor->ne[1]*tensor->ne[2]*tensor->ne[3];
  2025. }
  2026. GGML_CALL size_t ggml_nbytes(const struct ggml_tensor * tensor) {
  2027. size_t nbytes;
  2028. size_t blck_size = ggml_blck_size(tensor->type);
  2029. if (blck_size == 1) {
  2030. nbytes = ggml_type_size(tensor->type);
  2031. for (int i = 0; i < GGML_MAX_DIMS; ++i) {
  2032. nbytes += (tensor->ne[i] - 1)*tensor->nb[i];
  2033. }
  2034. }
  2035. else {
  2036. nbytes = tensor->ne[0]*tensor->nb[0]/blck_size;
  2037. for (int i = 1; i < GGML_MAX_DIMS; ++i) {
  2038. nbytes += (tensor->ne[i] - 1)*tensor->nb[i];
  2039. }
  2040. }
  2041. return nbytes;
  2042. }
  2043. size_t ggml_nbytes_pad(const struct ggml_tensor * tensor) {
  2044. return GGML_PAD(ggml_nbytes(tensor), GGML_MEM_ALIGN);
  2045. }
  2046. GGML_CALL int ggml_blck_size(enum ggml_type type) {
  2047. return type_traits[type].blck_size;
  2048. }
  2049. GGML_CALL size_t ggml_type_size(enum ggml_type type) {
  2050. return type_traits[type].type_size;
  2051. }
  2052. GGML_CALL size_t ggml_row_size(enum ggml_type type, int64_t ne) {
  2053. assert(ne % ggml_blck_size(type) == 0);
  2054. return ggml_type_size(type)*ne/ggml_blck_size(type);
  2055. }
  2056. double ggml_type_sizef(enum ggml_type type) {
  2057. return ((double)(type_traits[type].type_size))/type_traits[type].blck_size;
  2058. }
  2059. GGML_CALL const char * ggml_type_name(enum ggml_type type) {
  2060. return type_traits[type].type_name;
  2061. }
  2062. GGML_CALL bool ggml_is_quantized(enum ggml_type type) {
  2063. return type_traits[type].is_quantized;
  2064. }
  2065. GGML_CALL const char * ggml_op_name(enum ggml_op op) {
  2066. return GGML_OP_NAME[op];
  2067. }
  2068. const char * ggml_op_symbol(enum ggml_op op) {
  2069. return GGML_OP_SYMBOL[op];
  2070. }
  2071. const char * ggml_unary_op_name(enum ggml_unary_op op) {
  2072. return GGML_UNARY_OP_NAME[op];
  2073. }
  2074. GGML_CALL const char * ggml_op_desc(const struct ggml_tensor * t) {
  2075. if (t->op == GGML_OP_UNARY) {
  2076. enum ggml_unary_op uop = ggml_get_unary_op(t);
  2077. return ggml_unary_op_name(uop);
  2078. }
  2079. else {
  2080. return ggml_op_name(t->op);
  2081. }
  2082. }
  2083. GGML_CALL size_t ggml_element_size(const struct ggml_tensor * tensor) {
  2084. return ggml_type_size(tensor->type);
  2085. }
  2086. bool ggml_is_scalar(const struct ggml_tensor * tensor) {
  2087. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2088. return tensor->ne[0] == 1 && tensor->ne[1] == 1 && tensor->ne[2] == 1 && tensor->ne[3] == 1;
  2089. }
  2090. bool ggml_is_vector(const struct ggml_tensor * tensor) {
  2091. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2092. return tensor->ne[1] == 1 && tensor->ne[2] == 1 && tensor->ne[3] == 1;
  2093. }
  2094. bool ggml_is_matrix(const struct ggml_tensor * tensor) {
  2095. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2096. return tensor->ne[2] == 1 && tensor->ne[3] == 1;
  2097. }
  2098. bool ggml_is_3d(const struct ggml_tensor * tensor) {
  2099. return tensor->ne[3] == 1;
  2100. }
  2101. int ggml_n_dims(const struct ggml_tensor * tensor) {
  2102. for (int i = GGML_MAX_DIMS - 1; i >= 1; --i) {
  2103. if (tensor->ne[i] > 1) {
  2104. return i + 1;
  2105. }
  2106. }
  2107. return 1;
  2108. }
  2109. static inline bool ggml_can_mul_mat(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  2110. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2111. return (t0->ne[0] == t1->ne[0]) &&
  2112. (t1->ne[2]%t0->ne[2] == 0) && // verify t0 is broadcastable
  2113. (t1->ne[3]%t0->ne[3] == 0);
  2114. }
  2115. static inline bool ggml_can_out_prod(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  2116. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2117. return (t0->ne[1] == t1->ne[1]) &&
  2118. (t1->ne[2]%t0->ne[2] == 0) && // verify t0 is broadcastable
  2119. (t1->ne[3]%t0->ne[3] == 0);
  2120. }
  2121. enum ggml_type ggml_ftype_to_ggml_type(enum ggml_ftype ftype) {
  2122. enum ggml_type wtype = GGML_TYPE_COUNT;
  2123. switch (ftype) {
  2124. case GGML_FTYPE_ALL_F32: wtype = GGML_TYPE_F32; break;
  2125. case GGML_FTYPE_MOSTLY_F16: wtype = GGML_TYPE_F16; break;
  2126. case GGML_FTYPE_MOSTLY_Q4_0: wtype = GGML_TYPE_Q4_0; break;
  2127. case GGML_FTYPE_MOSTLY_Q4_1: wtype = GGML_TYPE_Q4_1; break;
  2128. case GGML_FTYPE_MOSTLY_Q5_0: wtype = GGML_TYPE_Q5_0; break;
  2129. case GGML_FTYPE_MOSTLY_Q5_1: wtype = GGML_TYPE_Q5_1; break;
  2130. case GGML_FTYPE_MOSTLY_Q8_0: wtype = GGML_TYPE_Q8_0; break;
  2131. case GGML_FTYPE_MOSTLY_Q2_K: wtype = GGML_TYPE_Q2_K; break;
  2132. case GGML_FTYPE_MOSTLY_Q3_K: wtype = GGML_TYPE_Q3_K; break;
  2133. case GGML_FTYPE_MOSTLY_Q4_K: wtype = GGML_TYPE_Q4_K; break;
  2134. case GGML_FTYPE_MOSTLY_Q5_K: wtype = GGML_TYPE_Q5_K; break;
  2135. case GGML_FTYPE_MOSTLY_Q6_K: wtype = GGML_TYPE_Q6_K; break;
  2136. case GGML_FTYPE_MOSTLY_IQ2_XXS: wtype = GGML_TYPE_IQ2_XXS; break;
  2137. case GGML_FTYPE_MOSTLY_IQ2_XS: wtype = GGML_TYPE_IQ2_XS; break;
  2138. case GGML_FTYPE_MOSTLY_IQ3_XXS: wtype = GGML_TYPE_IQ3_XXS; break;
  2139. case GGML_FTYPE_MOSTLY_IQ1_S: wtype = GGML_TYPE_IQ1_S; break;
  2140. case GGML_FTYPE_MOSTLY_IQ4_NL: wtype = GGML_TYPE_IQ4_NL; break;
  2141. case GGML_FTYPE_MOSTLY_IQ4_XS: wtype = GGML_TYPE_IQ4_XS; break;
  2142. case GGML_FTYPE_MOSTLY_IQ3_S: wtype = GGML_TYPE_IQ3_S; break;
  2143. case GGML_FTYPE_MOSTLY_IQ2_S: wtype = GGML_TYPE_IQ2_S; break;
  2144. case GGML_FTYPE_UNKNOWN: wtype = GGML_TYPE_COUNT; break;
  2145. case GGML_FTYPE_MOSTLY_Q4_1_SOME_F16: wtype = GGML_TYPE_COUNT; break;
  2146. }
  2147. GGML_ASSERT(wtype != GGML_TYPE_COUNT);
  2148. return wtype;
  2149. }
  2150. size_t ggml_tensor_overhead(void) {
  2151. return GGML_OBJECT_SIZE + GGML_TENSOR_SIZE;
  2152. }
  2153. GGML_CALL bool ggml_is_transposed(const struct ggml_tensor * tensor) {
  2154. return tensor->nb[0] > tensor->nb[1];
  2155. }
  2156. GGML_CALL bool ggml_is_contiguous(const struct ggml_tensor * tensor) {
  2157. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2158. return
  2159. tensor->nb[0] == ggml_type_size(tensor->type) &&
  2160. tensor->nb[1] == (tensor->nb[0]*tensor->ne[0])/ggml_blck_size(tensor->type) &&
  2161. tensor->nb[2] == tensor->nb[1]*tensor->ne[1] &&
  2162. tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
  2163. }
  2164. static inline bool ggml_is_contiguous_except_dim_1(const struct ggml_tensor * tensor) {
  2165. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2166. return
  2167. tensor->nb[0] == ggml_type_size(tensor->type) &&
  2168. tensor->nb[2] == tensor->nb[1]*tensor->ne[1] &&
  2169. tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
  2170. }
  2171. GGML_CALL bool ggml_is_permuted(const struct ggml_tensor * tensor) {
  2172. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2173. return tensor->nb[0] > tensor->nb[1] || tensor->nb[1] > tensor->nb[2] || tensor->nb[2] > tensor->nb[3];
  2174. }
  2175. static inline bool ggml_is_padded_1d(const struct ggml_tensor * tensor) {
  2176. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2177. return
  2178. tensor->nb[0] == ggml_type_size(tensor->type) &&
  2179. tensor->nb[2] == tensor->nb[1]*tensor->ne[1] &&
  2180. tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
  2181. }
  2182. bool ggml_are_same_shape(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  2183. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2184. return
  2185. (t0->ne[0] == t1->ne[0] ) &&
  2186. (t0->ne[1] == t1->ne[1] ) &&
  2187. (t0->ne[2] == t1->ne[2] ) &&
  2188. (t0->ne[3] == t1->ne[3] );
  2189. }
  2190. // check if t1 can be represented as a repeatition of t0
  2191. static inline bool ggml_can_repeat(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  2192. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2193. return
  2194. (t1->ne[0]%t0->ne[0] == 0) &&
  2195. (t1->ne[1]%t0->ne[1] == 0) &&
  2196. (t1->ne[2]%t0->ne[2] == 0) &&
  2197. (t1->ne[3]%t0->ne[3] == 0);
  2198. }
  2199. static inline bool ggml_can_repeat_rows(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  2200. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2201. return (t0->ne[0] == t1->ne[0]) && ggml_can_repeat(t0, t1);
  2202. }
  2203. static inline int ggml_up32(int n) {
  2204. return (n + 31) & ~31;
  2205. }
  2206. //static inline int ggml_up64(int n) {
  2207. // return (n + 63) & ~63;
  2208. //}
  2209. static inline int ggml_up(int n, int m) {
  2210. // assert m is a power of 2
  2211. GGML_ASSERT((m & (m - 1)) == 0);
  2212. return (n + m - 1) & ~(m - 1);
  2213. }
  2214. // assert that pointer is aligned to GGML_MEM_ALIGN
  2215. #define ggml_assert_aligned(ptr) \
  2216. GGML_ASSERT(((uintptr_t) (ptr))%GGML_MEM_ALIGN == 0)
  2217. ////////////////////////////////////////////////////////////////////////////////
  2218. struct ggml_context * ggml_init(struct ggml_init_params params) {
  2219. // make this function thread safe
  2220. ggml_critical_section_start();
  2221. static bool is_first_call = true;
  2222. if (is_first_call) {
  2223. // initialize time system (required on Windows)
  2224. ggml_time_init();
  2225. // initialize GELU, Quick GELU, SILU and EXP F32 tables
  2226. {
  2227. const uint64_t t_start = ggml_time_us(); UNUSED(t_start);
  2228. ggml_fp16_t ii;
  2229. for (int i = 0; i < (1 << 16); ++i) {
  2230. uint16_t ui = i;
  2231. memcpy(&ii, &ui, sizeof(ii));
  2232. const float f = ggml_table_f32_f16[i] = GGML_COMPUTE_FP16_TO_FP32(ii);
  2233. ggml_table_gelu_f16[i] = GGML_FP32_TO_FP16(ggml_gelu_f32(f));
  2234. ggml_table_gelu_quick_f16[i] = GGML_FP32_TO_FP16(ggml_gelu_quick_f32(f));
  2235. ggml_table_silu_f16[i] = GGML_FP32_TO_FP16(ggml_silu_f32(f));
  2236. ggml_table_exp_f16[i] = GGML_FP32_TO_FP16(expf(f));
  2237. }
  2238. const uint64_t t_end = ggml_time_us(); UNUSED(t_end);
  2239. GGML_PRINT_DEBUG("%s: GELU, Quick GELU, SILU and EXP tables initialized in %f ms\n", __func__, (t_end - t_start)/1000.0f);
  2240. }
  2241. // initialize g_state
  2242. {
  2243. const uint64_t t_start = ggml_time_us(); UNUSED(t_start);
  2244. g_state = (struct ggml_state) {
  2245. /*.contexts =*/ { { 0 } },
  2246. /*.numa =*/ {
  2247. .n_nodes = 0,
  2248. .total_cpus = 0,
  2249. },
  2250. };
  2251. for (int i = 0; i < GGML_MAX_CONTEXTS; ++i) {
  2252. g_state.contexts[i].used = false;
  2253. }
  2254. const uint64_t t_end = ggml_time_us(); UNUSED(t_end);
  2255. GGML_PRINT_DEBUG("%s: g_state initialized in %f ms\n", __func__, (t_end - t_start)/1000.0f);
  2256. }
  2257. #if defined(GGML_USE_CLBLAST)
  2258. ggml_cl_init();
  2259. #elif defined(GGML_USE_VULKAN)
  2260. ggml_vk_init_cpu_assist();
  2261. #elif defined(GGML_USE_SYCL)
  2262. ggml_init_sycl();
  2263. #endif
  2264. ggml_setup_op_has_task_pass();
  2265. is_first_call = false;
  2266. }
  2267. // find non-used context in g_state
  2268. struct ggml_context * ctx = NULL;
  2269. for (int i = 0; i < GGML_MAX_CONTEXTS; i++) {
  2270. if (!g_state.contexts[i].used) {
  2271. g_state.contexts[i].used = true;
  2272. ctx = &g_state.contexts[i].context;
  2273. GGML_PRINT_DEBUG("%s: found unused context %d\n", __func__, i);
  2274. break;
  2275. }
  2276. }
  2277. if (ctx == NULL) {
  2278. GGML_PRINT_DEBUG("%s: no unused context found\n", __func__);
  2279. ggml_critical_section_end();
  2280. return NULL;
  2281. }
  2282. // allow to call ggml_init with 0 size
  2283. if (params.mem_size == 0) {
  2284. params.mem_size = GGML_MEM_ALIGN;
  2285. }
  2286. const size_t mem_size = params.mem_buffer ? params.mem_size : GGML_PAD(params.mem_size, GGML_MEM_ALIGN);
  2287. *ctx = (struct ggml_context) {
  2288. /*.mem_size =*/ mem_size,
  2289. /*.mem_buffer =*/ params.mem_buffer ? params.mem_buffer : GGML_ALIGNED_MALLOC(mem_size),
  2290. /*.mem_buffer_owned =*/ params.mem_buffer ? false : true,
  2291. /*.no_alloc =*/ params.no_alloc,
  2292. /*.no_alloc_save =*/ params.no_alloc,
  2293. /*.n_objects =*/ 0,
  2294. /*.objects_begin =*/ NULL,
  2295. /*.objects_end =*/ NULL,
  2296. /*.scratch =*/ { 0, 0, NULL, },
  2297. /*.scratch_save =*/ { 0, 0, NULL, },
  2298. };
  2299. GGML_ASSERT(ctx->mem_buffer != NULL);
  2300. ggml_assert_aligned(ctx->mem_buffer);
  2301. GGML_PRINT_DEBUG("%s: context initialized\n", __func__);
  2302. ggml_critical_section_end();
  2303. return ctx;
  2304. }
  2305. void ggml_free(struct ggml_context * ctx) {
  2306. if (ctx == NULL) {
  2307. return;
  2308. }
  2309. // make this function thread safe
  2310. ggml_critical_section_start();
  2311. bool found = false;
  2312. for (int i = 0; i < GGML_MAX_CONTEXTS; i++) {
  2313. if (&g_state.contexts[i].context == ctx) {
  2314. g_state.contexts[i].used = false;
  2315. GGML_PRINT_DEBUG("%s: context %d has been freed. memory used = %zu\n",
  2316. __func__, i, ggml_used_mem(ctx));
  2317. if (ctx->mem_buffer_owned) {
  2318. GGML_ALIGNED_FREE(ctx->mem_buffer);
  2319. }
  2320. found = true;
  2321. break;
  2322. }
  2323. }
  2324. if (!found) {
  2325. GGML_PRINT_DEBUG("%s: context not found\n", __func__);
  2326. }
  2327. ggml_critical_section_end();
  2328. }
  2329. size_t ggml_used_mem(const struct ggml_context * ctx) {
  2330. return ctx->objects_end == NULL ? 0 : ctx->objects_end->offs + ctx->objects_end->size;
  2331. }
  2332. size_t ggml_set_scratch(struct ggml_context * ctx, struct ggml_scratch scratch) {
  2333. const size_t result = ctx->scratch.data ? ctx->scratch.offs : 0;
  2334. ctx->scratch = scratch;
  2335. return result;
  2336. }
  2337. bool ggml_get_no_alloc(struct ggml_context * ctx) {
  2338. return ctx->no_alloc;
  2339. }
  2340. void ggml_set_no_alloc(struct ggml_context * ctx, bool no_alloc) {
  2341. ctx->no_alloc = no_alloc;
  2342. }
  2343. void * ggml_get_mem_buffer(const struct ggml_context * ctx) {
  2344. return ctx->mem_buffer;
  2345. }
  2346. size_t ggml_get_mem_size(const struct ggml_context * ctx) {
  2347. return ctx->mem_size;
  2348. }
  2349. size_t ggml_get_max_tensor_size(const struct ggml_context * ctx) {
  2350. size_t max_size = 0;
  2351. for (struct ggml_tensor * tensor = ggml_get_first_tensor(ctx); tensor != NULL; tensor = ggml_get_next_tensor(ctx, tensor)) {
  2352. size_t bytes = ggml_nbytes(tensor);
  2353. max_size = MAX(max_size, bytes);
  2354. }
  2355. return max_size;
  2356. }
  2357. // IMPORTANT:
  2358. // when creating "opt" tensors, always save and load the scratch buffer
  2359. // this is an error prone process, but it is necessary to support inplace
  2360. // operators when using scratch buffers
  2361. // TODO: implement a better way
  2362. static void ggml_scratch_save(struct ggml_context * ctx) {
  2363. // this is needed to allow opt tensors to store their data
  2364. // TODO: again, need to find a better way
  2365. ctx->no_alloc_save = ctx->no_alloc;
  2366. ctx->no_alloc = false;
  2367. ctx->scratch_save = ctx->scratch;
  2368. ctx->scratch.data = NULL;
  2369. }
  2370. static void ggml_scratch_load(struct ggml_context * ctx) {
  2371. ctx->no_alloc = ctx->no_alloc_save;
  2372. ctx->scratch = ctx->scratch_save;
  2373. }
  2374. ////////////////////////////////////////////////////////////////////////////////
  2375. static struct ggml_object * ggml_new_object(struct ggml_context * ctx, enum ggml_object_type type, size_t size) {
  2376. // always insert objects at the end of the context's memory pool
  2377. struct ggml_object * obj_cur = ctx->objects_end;
  2378. const size_t cur_offs = obj_cur == NULL ? 0 : obj_cur->offs;
  2379. const size_t cur_size = obj_cur == NULL ? 0 : obj_cur->size;
  2380. const size_t cur_end = cur_offs + cur_size;
  2381. // align to GGML_MEM_ALIGN
  2382. size_t size_needed = GGML_PAD(size, GGML_MEM_ALIGN);
  2383. char * const mem_buffer = ctx->mem_buffer;
  2384. struct ggml_object * const obj_new = (struct ggml_object *)(mem_buffer + cur_end);
  2385. if (cur_end + size_needed + GGML_OBJECT_SIZE > ctx->mem_size) {
  2386. GGML_PRINT("%s: not enough space in the context's memory pool (needed %zu, available %zu)\n",
  2387. __func__, cur_end + size_needed, ctx->mem_size);
  2388. assert(false);
  2389. return NULL;
  2390. }
  2391. *obj_new = (struct ggml_object) {
  2392. .offs = cur_end + GGML_OBJECT_SIZE,
  2393. .size = size_needed,
  2394. .next = NULL,
  2395. .type = type,
  2396. };
  2397. ggml_assert_aligned(mem_buffer + obj_new->offs);
  2398. if (obj_cur != NULL) {
  2399. obj_cur->next = obj_new;
  2400. } else {
  2401. // this is the first object in this context
  2402. ctx->objects_begin = obj_new;
  2403. }
  2404. ctx->objects_end = obj_new;
  2405. //printf("%s: inserted new object at %zu, size = %zu\n", __func__, cur_end, obj_new->size);
  2406. return obj_new;
  2407. }
  2408. static struct ggml_tensor * ggml_new_tensor_impl(
  2409. struct ggml_context * ctx,
  2410. enum ggml_type type,
  2411. int n_dims,
  2412. const int64_t * ne,
  2413. struct ggml_tensor * view_src,
  2414. size_t view_offs) {
  2415. assert(n_dims >= 1 && n_dims <= GGML_MAX_DIMS);
  2416. // find the base tensor and absolute offset
  2417. if (view_src != NULL && view_src->view_src != NULL) {
  2418. view_offs += view_src->view_offs;
  2419. view_src = view_src->view_src;
  2420. }
  2421. size_t data_size = ggml_row_size(type, ne[0]);
  2422. for (int i = 1; i < n_dims; i++) {
  2423. data_size *= ne[i];
  2424. }
  2425. GGML_ASSERT(view_src == NULL || data_size + view_offs <= ggml_nbytes(view_src));
  2426. void * data = view_src != NULL ? view_src->data : NULL;
  2427. if (data != NULL) {
  2428. data = (char *) data + view_offs;
  2429. }
  2430. size_t obj_alloc_size = 0;
  2431. if (view_src == NULL && !ctx->no_alloc) {
  2432. if (ctx->scratch.data != NULL) {
  2433. // allocate tensor data in the scratch buffer
  2434. if (ctx->scratch.offs + data_size > ctx->scratch.size) {
  2435. GGML_PRINT("%s: not enough space in the scratch memory pool (needed %zu, available %zu)\n",
  2436. __func__, ctx->scratch.offs + data_size, ctx->scratch.size);
  2437. assert(false);
  2438. return NULL;
  2439. }
  2440. data = (char * const) ctx->scratch.data + ctx->scratch.offs;
  2441. ctx->scratch.offs += data_size;
  2442. } else {
  2443. // allocate tensor data in the context's memory pool
  2444. obj_alloc_size = data_size;
  2445. }
  2446. }
  2447. struct ggml_object * const obj_new = ggml_new_object(ctx, GGML_OBJECT_TYPE_TENSOR, GGML_TENSOR_SIZE + obj_alloc_size);
  2448. // TODO: for recoverable errors, we would need to free the data allocated from the scratch buffer here
  2449. struct ggml_tensor * const result = (struct ggml_tensor *)((char *)ctx->mem_buffer + obj_new->offs);
  2450. *result = (struct ggml_tensor) {
  2451. /*.type =*/ type,
  2452. /*.backend =*/ GGML_BACKEND_TYPE_CPU,
  2453. /*.buffer =*/ NULL,
  2454. /*.ne =*/ { 1, 1, 1, 1 },
  2455. /*.nb =*/ { 0, 0, 0, 0 },
  2456. /*.op =*/ GGML_OP_NONE,
  2457. /*.op_params =*/ { 0 },
  2458. /*.flags =*/ 0,
  2459. /*.grad =*/ NULL,
  2460. /*.src =*/ { NULL },
  2461. /*.perf_runs =*/ 0,
  2462. /*.perf_cycles =*/ 0,
  2463. /*.perf_time_us =*/ 0,
  2464. /*.view_src =*/ view_src,
  2465. /*.view_offs =*/ view_offs,
  2466. /*.data =*/ obj_alloc_size > 0 ? (void *)(result + 1) : data,
  2467. /*.name =*/ { 0 },
  2468. /*.extra =*/ NULL,
  2469. /*.padding =*/ { 0 },
  2470. };
  2471. // TODO: this should not be needed as long as we don't rely on aligned SIMD loads
  2472. //ggml_assert_aligned(result->data);
  2473. for (int i = 0; i < n_dims; i++) {
  2474. result->ne[i] = ne[i];
  2475. }
  2476. result->nb[0] = ggml_type_size(type);
  2477. result->nb[1] = result->nb[0]*(result->ne[0]/ggml_blck_size(type));
  2478. for (int i = 2; i < GGML_MAX_DIMS; i++) {
  2479. result->nb[i] = result->nb[i - 1]*result->ne[i - 1];
  2480. }
  2481. ctx->n_objects++;
  2482. return result;
  2483. }
  2484. struct ggml_tensor * ggml_new_tensor(
  2485. struct ggml_context * ctx,
  2486. enum ggml_type type,
  2487. int n_dims,
  2488. const int64_t * ne) {
  2489. return ggml_new_tensor_impl(ctx, type, n_dims, ne, NULL, 0);
  2490. }
  2491. struct ggml_tensor * ggml_new_tensor_1d(
  2492. struct ggml_context * ctx,
  2493. enum ggml_type type,
  2494. int64_t ne0) {
  2495. return ggml_new_tensor(ctx, type, 1, &ne0);
  2496. }
  2497. struct ggml_tensor * ggml_new_tensor_2d(
  2498. struct ggml_context * ctx,
  2499. enum ggml_type type,
  2500. int64_t ne0,
  2501. int64_t ne1) {
  2502. const int64_t ne[2] = { ne0, ne1 };
  2503. return ggml_new_tensor(ctx, type, 2, ne);
  2504. }
  2505. struct ggml_tensor * ggml_new_tensor_3d(
  2506. struct ggml_context * ctx,
  2507. enum ggml_type type,
  2508. int64_t ne0,
  2509. int64_t ne1,
  2510. int64_t ne2) {
  2511. const int64_t ne[3] = { ne0, ne1, ne2 };
  2512. return ggml_new_tensor(ctx, type, 3, ne);
  2513. }
  2514. struct ggml_tensor * ggml_new_tensor_4d(
  2515. struct ggml_context * ctx,
  2516. enum ggml_type type,
  2517. int64_t ne0,
  2518. int64_t ne1,
  2519. int64_t ne2,
  2520. int64_t ne3) {
  2521. const int64_t ne[4] = { ne0, ne1, ne2, ne3 };
  2522. return ggml_new_tensor(ctx, type, 4, ne);
  2523. }
  2524. struct ggml_tensor * ggml_new_i32(struct ggml_context * ctx, int32_t value) {
  2525. ggml_scratch_save(ctx);
  2526. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 1);
  2527. ggml_scratch_load(ctx);
  2528. ggml_set_i32(result, value);
  2529. return result;
  2530. }
  2531. struct ggml_tensor * ggml_new_f32(struct ggml_context * ctx, float value) {
  2532. ggml_scratch_save(ctx);
  2533. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 1);
  2534. ggml_scratch_load(ctx);
  2535. ggml_set_f32(result, value);
  2536. return result;
  2537. }
  2538. struct ggml_tensor * ggml_dup_tensor(struct ggml_context * ctx, const struct ggml_tensor * src) {
  2539. return ggml_new_tensor(ctx, src->type, GGML_MAX_DIMS, src->ne);
  2540. }
  2541. static void ggml_set_op_params(struct ggml_tensor * tensor, const void * params, size_t params_size) {
  2542. GGML_ASSERT(tensor != NULL); // silence -Warray-bounds warnings
  2543. assert(params_size <= GGML_MAX_OP_PARAMS);
  2544. memcpy(tensor->op_params, params, params_size);
  2545. }
  2546. static int32_t ggml_get_op_params_i32(const struct ggml_tensor * tensor, uint32_t i) {
  2547. assert(i < GGML_MAX_OP_PARAMS / sizeof(int32_t));
  2548. return ((const int32_t *)(tensor->op_params))[i];
  2549. }
  2550. static float ggml_get_op_params_f32(const struct ggml_tensor * tensor, uint32_t i) {
  2551. assert(i < GGML_MAX_OP_PARAMS / sizeof(float));
  2552. return ((const float *)(tensor->op_params))[i];
  2553. }
  2554. static void ggml_set_op_params_i32(struct ggml_tensor * tensor, uint32_t i, int32_t value) {
  2555. assert(i < GGML_MAX_OP_PARAMS / sizeof(int32_t));
  2556. ((int32_t *)(tensor->op_params))[i] = value;
  2557. }
  2558. static void ggml_set_op_params_f32(struct ggml_tensor * tensor, uint32_t i, float value) {
  2559. assert(i < GGML_MAX_OP_PARAMS / sizeof(float));
  2560. ((float *)(tensor->op_params))[i] = value;
  2561. }
  2562. struct ggml_tensor * ggml_set_zero(struct ggml_tensor * tensor) {
  2563. memset(tensor->data, 0, ggml_nbytes(tensor));
  2564. return tensor;
  2565. }
  2566. struct ggml_tensor * ggml_set_i32 (struct ggml_tensor * tensor, int32_t value) {
  2567. const int n = ggml_nrows(tensor);
  2568. const int nc = tensor->ne[0];
  2569. const size_t n1 = tensor->nb[1];
  2570. char * const data = tensor->data;
  2571. switch (tensor->type) {
  2572. case GGML_TYPE_I8:
  2573. {
  2574. assert(tensor->nb[0] == sizeof(int8_t));
  2575. for (int i = 0; i < n; i++) {
  2576. ggml_vec_set_i8(nc, (int8_t *)(data + i*n1), value);
  2577. }
  2578. } break;
  2579. case GGML_TYPE_I16:
  2580. {
  2581. assert(tensor->nb[0] == sizeof(int16_t));
  2582. for (int i = 0; i < n; i++) {
  2583. ggml_vec_set_i16(nc, (int16_t *)(data + i*n1), value);
  2584. }
  2585. } break;
  2586. case GGML_TYPE_I32:
  2587. {
  2588. assert(tensor->nb[0] == sizeof(int32_t));
  2589. for (int i = 0; i < n; i++) {
  2590. ggml_vec_set_i32(nc, (int32_t *)(data + i*n1), value);
  2591. }
  2592. } break;
  2593. case GGML_TYPE_F16:
  2594. {
  2595. assert(tensor->nb[0] == sizeof(ggml_fp16_t));
  2596. for (int i = 0; i < n; i++) {
  2597. ggml_vec_set_f16(nc, (ggml_fp16_t *)(data + i*n1), GGML_FP32_TO_FP16(value));
  2598. }
  2599. } break;
  2600. case GGML_TYPE_F32:
  2601. {
  2602. assert(tensor->nb[0] == sizeof(float));
  2603. for (int i = 0; i < n; i++) {
  2604. ggml_vec_set_f32(nc, (float *)(data + i*n1), value);
  2605. }
  2606. } break;
  2607. default:
  2608. {
  2609. GGML_ASSERT(false);
  2610. } break;
  2611. }
  2612. return tensor;
  2613. }
  2614. struct ggml_tensor * ggml_set_f32(struct ggml_tensor * tensor, float value) {
  2615. const int n = ggml_nrows(tensor);
  2616. const int nc = tensor->ne[0];
  2617. const size_t n1 = tensor->nb[1];
  2618. char * const data = tensor->data;
  2619. switch (tensor->type) {
  2620. case GGML_TYPE_I8:
  2621. {
  2622. assert(tensor->nb[0] == sizeof(int8_t));
  2623. for (int i = 0; i < n; i++) {
  2624. ggml_vec_set_i8(nc, (int8_t *)(data + i*n1), value);
  2625. }
  2626. } break;
  2627. case GGML_TYPE_I16:
  2628. {
  2629. assert(tensor->nb[0] == sizeof(int16_t));
  2630. for (int i = 0; i < n; i++) {
  2631. ggml_vec_set_i16(nc, (int16_t *)(data + i*n1), value);
  2632. }
  2633. } break;
  2634. case GGML_TYPE_I32:
  2635. {
  2636. assert(tensor->nb[0] == sizeof(int32_t));
  2637. for (int i = 0; i < n; i++) {
  2638. ggml_vec_set_i32(nc, (int32_t *)(data + i*n1), value);
  2639. }
  2640. } break;
  2641. case GGML_TYPE_F16:
  2642. {
  2643. assert(tensor->nb[0] == sizeof(ggml_fp16_t));
  2644. for (int i = 0; i < n; i++) {
  2645. ggml_vec_set_f16(nc, (ggml_fp16_t *)(data + i*n1), GGML_FP32_TO_FP16(value));
  2646. }
  2647. } break;
  2648. case GGML_TYPE_F32:
  2649. {
  2650. assert(tensor->nb[0] == sizeof(float));
  2651. for (int i = 0; i < n; i++) {
  2652. ggml_vec_set_f32(nc, (float *)(data + i*n1), value);
  2653. }
  2654. } break;
  2655. default:
  2656. {
  2657. GGML_ASSERT(false);
  2658. } break;
  2659. }
  2660. return tensor;
  2661. }
  2662. void ggml_unravel_index(const struct ggml_tensor * tensor, int64_t i, int64_t * i0, int64_t * i1, int64_t * i2, int64_t * i3) {
  2663. const int64_t ne2 = tensor->ne[2];
  2664. const int64_t ne1 = tensor->ne[1];
  2665. const int64_t ne0 = tensor->ne[0];
  2666. const int64_t i3_ = (i/(ne2*ne1*ne0));
  2667. const int64_t i2_ = (i - i3_*ne2*ne1*ne0)/(ne1*ne0);
  2668. const int64_t i1_ = (i - i3_*ne2*ne1*ne0 - i2_*ne1*ne0)/ne0;
  2669. const int64_t i0_ = (i - i3_*ne2*ne1*ne0 - i2_*ne1*ne0 - i1_*ne0);
  2670. if (i0) {
  2671. * i0 = i0_;
  2672. }
  2673. if (i1) {
  2674. * i1 = i1_;
  2675. }
  2676. if (i2) {
  2677. * i2 = i2_;
  2678. }
  2679. if (i3) {
  2680. * i3 = i3_;
  2681. }
  2682. }
  2683. int32_t ggml_get_i32_1d(const struct ggml_tensor * tensor, int i) {
  2684. if (!ggml_is_contiguous(tensor)) {
  2685. int64_t id[4] = { 0, 0, 0, 0 };
  2686. ggml_unravel_index(tensor, i, &id[0], &id[1], &id[2], &id[3]);
  2687. return ggml_get_i32_nd(tensor, id[0], id[1], id[2], id[3]);
  2688. }
  2689. switch (tensor->type) {
  2690. case GGML_TYPE_I8:
  2691. {
  2692. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  2693. return ((int8_t *)(tensor->data))[i];
  2694. }
  2695. case GGML_TYPE_I16:
  2696. {
  2697. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  2698. return ((int16_t *)(tensor->data))[i];
  2699. }
  2700. case GGML_TYPE_I32:
  2701. {
  2702. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  2703. return ((int32_t *)(tensor->data))[i];
  2704. }
  2705. case GGML_TYPE_F16:
  2706. {
  2707. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  2708. return GGML_FP16_TO_FP32(((ggml_fp16_t *)(tensor->data))[i]);
  2709. }
  2710. case GGML_TYPE_F32:
  2711. {
  2712. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  2713. return ((float *)(tensor->data))[i];
  2714. }
  2715. default:
  2716. {
  2717. GGML_ASSERT(false);
  2718. }
  2719. }
  2720. return 0.0f;
  2721. }
  2722. void ggml_set_i32_1d(const struct ggml_tensor * tensor, int i, int32_t value) {
  2723. if (!ggml_is_contiguous(tensor)) {
  2724. int64_t id[4] = { 0, 0, 0, 0 };
  2725. ggml_unravel_index(tensor, i, &id[0], &id[1], &id[2], &id[3]);
  2726. ggml_set_i32_nd(tensor, id[0], id[1], id[2], id[3], value);
  2727. return;
  2728. }
  2729. switch (tensor->type) {
  2730. case GGML_TYPE_I8:
  2731. {
  2732. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  2733. ((int8_t *)(tensor->data))[i] = value;
  2734. } break;
  2735. case GGML_TYPE_I16:
  2736. {
  2737. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  2738. ((int16_t *)(tensor->data))[i] = value;
  2739. } break;
  2740. case GGML_TYPE_I32:
  2741. {
  2742. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  2743. ((int32_t *)(tensor->data))[i] = value;
  2744. } break;
  2745. case GGML_TYPE_F16:
  2746. {
  2747. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  2748. ((ggml_fp16_t *)(tensor->data))[i] = GGML_FP32_TO_FP16(value);
  2749. } break;
  2750. case GGML_TYPE_F32:
  2751. {
  2752. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  2753. ((float *)(tensor->data))[i] = value;
  2754. } break;
  2755. default:
  2756. {
  2757. GGML_ASSERT(false);
  2758. } break;
  2759. }
  2760. }
  2761. int32_t ggml_get_i32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3) {
  2762. void * data = (char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1] + i2*tensor->nb[2] + i3*tensor->nb[3];
  2763. switch (tensor->type) {
  2764. case GGML_TYPE_I8:
  2765. return ((int8_t *) data)[0];
  2766. case GGML_TYPE_I16:
  2767. return ((int16_t *) data)[0];
  2768. case GGML_TYPE_I32:
  2769. return ((int32_t *) data)[0];
  2770. case GGML_TYPE_F16:
  2771. return GGML_FP16_TO_FP32(((ggml_fp16_t *) data)[0]);
  2772. case GGML_TYPE_F32:
  2773. return ((float *) data)[0];
  2774. default:
  2775. GGML_ASSERT(false);
  2776. }
  2777. return 0.0f;
  2778. }
  2779. void ggml_set_i32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3, int32_t value) {
  2780. void * data = (char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1] + i2*tensor->nb[2] + i3*tensor->nb[3];
  2781. switch (tensor->type) {
  2782. case GGML_TYPE_I8:
  2783. {
  2784. ((int8_t *)(data))[0] = value;
  2785. } break;
  2786. case GGML_TYPE_I16:
  2787. {
  2788. ((int16_t *)(data))[0] = value;
  2789. } break;
  2790. case GGML_TYPE_I32:
  2791. {
  2792. ((int32_t *)(data))[0] = value;
  2793. } break;
  2794. case GGML_TYPE_F16:
  2795. {
  2796. ((ggml_fp16_t *)(data))[0] = GGML_FP32_TO_FP16(value);
  2797. } break;
  2798. case GGML_TYPE_F32:
  2799. {
  2800. ((float *)(data))[0] = value;
  2801. } break;
  2802. default:
  2803. {
  2804. GGML_ASSERT(false);
  2805. } break;
  2806. }
  2807. }
  2808. float ggml_get_f32_1d(const struct ggml_tensor * tensor, int i) {
  2809. if (!ggml_is_contiguous(tensor)) {
  2810. int64_t id[4] = { 0, 0, 0, 0 };
  2811. ggml_unravel_index(tensor, i, &id[0], &id[1], &id[2], &id[3]);
  2812. return ggml_get_f32_nd(tensor, id[0], id[1], id[2], id[3]);
  2813. }
  2814. switch (tensor->type) {
  2815. case GGML_TYPE_I8:
  2816. {
  2817. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  2818. return ((int8_t *)(tensor->data))[i];
  2819. }
  2820. case GGML_TYPE_I16:
  2821. {
  2822. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  2823. return ((int16_t *)(tensor->data))[i];
  2824. }
  2825. case GGML_TYPE_I32:
  2826. {
  2827. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  2828. return ((int32_t *)(tensor->data))[i];
  2829. }
  2830. case GGML_TYPE_F16:
  2831. {
  2832. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  2833. return GGML_FP16_TO_FP32(((ggml_fp16_t *)(tensor->data))[i]);
  2834. }
  2835. case GGML_TYPE_F32:
  2836. {
  2837. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  2838. return ((float *)(tensor->data))[i];
  2839. }
  2840. default:
  2841. {
  2842. GGML_ASSERT(false);
  2843. }
  2844. }
  2845. return 0.0f;
  2846. }
  2847. void ggml_set_f32_1d(const struct ggml_tensor * tensor, int i, float value) {
  2848. if (!ggml_is_contiguous(tensor)) {
  2849. int64_t id[4] = { 0, 0, 0, 0 };
  2850. ggml_unravel_index(tensor, i, &id[0], &id[1], &id[2], &id[3]);
  2851. ggml_set_f32_nd(tensor, id[0], id[1], id[2], id[3], value);
  2852. return;
  2853. }
  2854. switch (tensor->type) {
  2855. case GGML_TYPE_I8:
  2856. {
  2857. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  2858. ((int8_t *)(tensor->data))[i] = value;
  2859. } break;
  2860. case GGML_TYPE_I16:
  2861. {
  2862. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  2863. ((int16_t *)(tensor->data))[i] = value;
  2864. } break;
  2865. case GGML_TYPE_I32:
  2866. {
  2867. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  2868. ((int32_t *)(tensor->data))[i] = value;
  2869. } break;
  2870. case GGML_TYPE_F16:
  2871. {
  2872. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  2873. ((ggml_fp16_t *)(tensor->data))[i] = GGML_FP32_TO_FP16(value);
  2874. } break;
  2875. case GGML_TYPE_F32:
  2876. {
  2877. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  2878. ((float *)(tensor->data))[i] = value;
  2879. } break;
  2880. default:
  2881. {
  2882. GGML_ASSERT(false);
  2883. } break;
  2884. }
  2885. }
  2886. float ggml_get_f32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3) {
  2887. void * data = (char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1] + i2*tensor->nb[2] + i3*tensor->nb[3];
  2888. switch (tensor->type) {
  2889. case GGML_TYPE_I8:
  2890. return ((int8_t *) data)[0];
  2891. case GGML_TYPE_I16:
  2892. return ((int16_t *) data)[0];
  2893. case GGML_TYPE_I32:
  2894. return ((int32_t *) data)[0];
  2895. case GGML_TYPE_F16:
  2896. return GGML_FP16_TO_FP32(((ggml_fp16_t *) data)[0]);
  2897. case GGML_TYPE_F32:
  2898. return ((float *) data)[0];
  2899. default:
  2900. GGML_ASSERT(false);
  2901. }
  2902. return 0.0f;
  2903. }
  2904. void ggml_set_f32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3, float value) {
  2905. void * data = (char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1] + i2*tensor->nb[2] + i3*tensor->nb[3];
  2906. switch (tensor->type) {
  2907. case GGML_TYPE_I8:
  2908. {
  2909. ((int8_t *)(data))[0] = value;
  2910. } break;
  2911. case GGML_TYPE_I16:
  2912. {
  2913. ((int16_t *)(data))[0] = value;
  2914. } break;
  2915. case GGML_TYPE_I32:
  2916. {
  2917. ((int32_t *)(data))[0] = value;
  2918. } break;
  2919. case GGML_TYPE_F16:
  2920. {
  2921. ((ggml_fp16_t *)(data))[0] = GGML_FP32_TO_FP16(value);
  2922. } break;
  2923. case GGML_TYPE_F32:
  2924. {
  2925. ((float *)(data))[0] = value;
  2926. } break;
  2927. default:
  2928. {
  2929. GGML_ASSERT(false);
  2930. } break;
  2931. }
  2932. }
  2933. void * ggml_get_data(const struct ggml_tensor * tensor) {
  2934. return tensor->data;
  2935. }
  2936. float * ggml_get_data_f32(const struct ggml_tensor * tensor) {
  2937. assert(tensor->type == GGML_TYPE_F32);
  2938. return (float *)(tensor->data);
  2939. }
  2940. GGML_CALL enum ggml_unary_op ggml_get_unary_op(const struct ggml_tensor * tensor) {
  2941. GGML_ASSERT(tensor->op == GGML_OP_UNARY);
  2942. return (enum ggml_unary_op) ggml_get_op_params_i32(tensor, 0);
  2943. }
  2944. const char * ggml_get_name(const struct ggml_tensor * tensor) {
  2945. return tensor->name;
  2946. }
  2947. struct ggml_tensor * ggml_set_name(struct ggml_tensor * tensor, const char * name) {
  2948. strncpy(tensor->name, name, sizeof(tensor->name) - 1);
  2949. tensor->name[sizeof(tensor->name) - 1] = '\0';
  2950. return tensor;
  2951. }
  2952. struct ggml_tensor * ggml_format_name(struct ggml_tensor * tensor, const char * fmt, ...) {
  2953. va_list args;
  2954. va_start(args, fmt);
  2955. vsnprintf(tensor->name, sizeof(tensor->name), fmt, args);
  2956. va_end(args);
  2957. return tensor;
  2958. }
  2959. struct ggml_tensor * ggml_view_tensor(
  2960. struct ggml_context * ctx,
  2961. struct ggml_tensor * src) {
  2962. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, src->type, GGML_MAX_DIMS, src->ne, src, 0);
  2963. ggml_format_name(result, "%s (view)", src->name);
  2964. for (int i = 0; i < GGML_MAX_DIMS; i++) {
  2965. result->nb[i] = src->nb[i];
  2966. }
  2967. return result;
  2968. }
  2969. struct ggml_tensor * ggml_get_first_tensor(const struct ggml_context * ctx) {
  2970. struct ggml_object * obj = ctx->objects_begin;
  2971. char * const mem_buffer = ctx->mem_buffer;
  2972. while (obj != NULL) {
  2973. if (obj->type == GGML_OBJECT_TYPE_TENSOR) {
  2974. return (struct ggml_tensor *)(mem_buffer + obj->offs);
  2975. }
  2976. obj = obj->next;
  2977. }
  2978. return NULL;
  2979. }
  2980. struct ggml_tensor * ggml_get_next_tensor(const struct ggml_context * ctx, struct ggml_tensor * tensor) {
  2981. struct ggml_object * obj = (struct ggml_object *) ((char *)tensor - GGML_OBJECT_SIZE);
  2982. obj = obj->next;
  2983. char * const mem_buffer = ctx->mem_buffer;
  2984. while (obj != NULL) {
  2985. if (obj->type == GGML_OBJECT_TYPE_TENSOR) {
  2986. return (struct ggml_tensor *)(mem_buffer + obj->offs);
  2987. }
  2988. obj = obj->next;
  2989. }
  2990. return NULL;
  2991. }
  2992. struct ggml_tensor * ggml_get_tensor(struct ggml_context * ctx, const char * name) {
  2993. struct ggml_object * obj = ctx->objects_begin;
  2994. char * const mem_buffer = ctx->mem_buffer;
  2995. while (obj != NULL) {
  2996. if (obj->type == GGML_OBJECT_TYPE_TENSOR) {
  2997. struct ggml_tensor * cur = (struct ggml_tensor *)(mem_buffer + obj->offs);
  2998. if (strcmp(cur->name, name) == 0) {
  2999. return cur;
  3000. }
  3001. }
  3002. obj = obj->next;
  3003. }
  3004. return NULL;
  3005. }
  3006. ////////////////////////////////////////////////////////////////////////////////
  3007. // ggml_dup
  3008. static struct ggml_tensor * ggml_dup_impl(
  3009. struct ggml_context * ctx,
  3010. struct ggml_tensor * a,
  3011. bool inplace) {
  3012. bool is_node = false;
  3013. if (!inplace && (a->grad)) {
  3014. is_node = true;
  3015. }
  3016. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3017. result->op = GGML_OP_DUP;
  3018. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3019. result->src[0] = a;
  3020. return result;
  3021. }
  3022. struct ggml_tensor * ggml_dup(
  3023. struct ggml_context * ctx,
  3024. struct ggml_tensor * a) {
  3025. return ggml_dup_impl(ctx, a, false);
  3026. }
  3027. struct ggml_tensor * ggml_dup_inplace(
  3028. struct ggml_context * ctx,
  3029. struct ggml_tensor * a) {
  3030. return ggml_dup_impl(ctx, a, true);
  3031. }
  3032. // ggml_add
  3033. static struct ggml_tensor * ggml_add_impl(
  3034. struct ggml_context * ctx,
  3035. struct ggml_tensor * a,
  3036. struct ggml_tensor * b,
  3037. bool inplace) {
  3038. GGML_ASSERT(ggml_can_repeat(b, a));
  3039. bool is_node = false;
  3040. if (!inplace && (a->grad || b->grad)) {
  3041. // TODO: support backward pass for broadcasting
  3042. GGML_ASSERT(ggml_are_same_shape(a, b));
  3043. is_node = true;
  3044. }
  3045. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3046. result->op = GGML_OP_ADD;
  3047. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3048. result->src[0] = a;
  3049. result->src[1] = b;
  3050. return result;
  3051. }
  3052. struct ggml_tensor * ggml_add(
  3053. struct ggml_context * ctx,
  3054. struct ggml_tensor * a,
  3055. struct ggml_tensor * b) {
  3056. return ggml_add_impl(ctx, a, b, false);
  3057. }
  3058. struct ggml_tensor * ggml_add_inplace(
  3059. struct ggml_context * ctx,
  3060. struct ggml_tensor * a,
  3061. struct ggml_tensor * b) {
  3062. return ggml_add_impl(ctx, a, b, true);
  3063. }
  3064. // ggml_add_cast
  3065. static struct ggml_tensor * ggml_add_cast_impl(
  3066. struct ggml_context * ctx,
  3067. struct ggml_tensor * a,
  3068. struct ggml_tensor * b,
  3069. enum ggml_type type) {
  3070. // TODO: support less-strict constraint
  3071. // GGML_ASSERT(ggml_can_repeat(b, a));
  3072. GGML_ASSERT(ggml_can_repeat_rows(b, a));
  3073. GGML_ASSERT(ggml_is_quantized(a->type) || a->type == GGML_TYPE_F16); // currently only supported for quantized input and f16
  3074. bool is_node = false;
  3075. if (a->grad || b->grad) {
  3076. // TODO: support backward pass for broadcasting
  3077. GGML_ASSERT(ggml_are_same_shape(a, b));
  3078. is_node = true;
  3079. }
  3080. struct ggml_tensor * result = ggml_new_tensor(ctx, type, GGML_MAX_DIMS, a->ne);
  3081. result->op = GGML_OP_ADD;
  3082. result->grad = is_node ? ggml_new_tensor(ctx, GGML_TYPE_F32, GGML_MAX_DIMS, a->ne) : NULL;
  3083. result->src[0] = a;
  3084. result->src[1] = b;
  3085. return result;
  3086. }
  3087. struct ggml_tensor * ggml_add_cast(
  3088. struct ggml_context * ctx,
  3089. struct ggml_tensor * a,
  3090. struct ggml_tensor * b,
  3091. enum ggml_type type) {
  3092. return ggml_add_cast_impl(ctx, a, b, type);
  3093. }
  3094. // ggml_add1
  3095. static struct ggml_tensor * ggml_add1_impl(
  3096. struct ggml_context * ctx,
  3097. struct ggml_tensor * a,
  3098. struct ggml_tensor * b,
  3099. bool inplace) {
  3100. GGML_ASSERT(ggml_is_scalar(b));
  3101. GGML_ASSERT(ggml_is_padded_1d(a));
  3102. bool is_node = false;
  3103. if (a->grad || b->grad) {
  3104. is_node = true;
  3105. }
  3106. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3107. result->op = GGML_OP_ADD1;
  3108. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3109. result->src[0] = a;
  3110. result->src[1] = b;
  3111. return result;
  3112. }
  3113. struct ggml_tensor * ggml_add1(
  3114. struct ggml_context * ctx,
  3115. struct ggml_tensor * a,
  3116. struct ggml_tensor * b) {
  3117. return ggml_add1_impl(ctx, a, b, false);
  3118. }
  3119. struct ggml_tensor * ggml_add1_inplace(
  3120. struct ggml_context * ctx,
  3121. struct ggml_tensor * a,
  3122. struct ggml_tensor * b) {
  3123. return ggml_add1_impl(ctx, a, b, true);
  3124. }
  3125. // ggml_acc
  3126. static struct ggml_tensor * ggml_acc_impl(
  3127. struct ggml_context * ctx,
  3128. struct ggml_tensor * a,
  3129. struct ggml_tensor * b,
  3130. size_t nb1,
  3131. size_t nb2,
  3132. size_t nb3,
  3133. size_t offset,
  3134. bool inplace) {
  3135. GGML_ASSERT(ggml_nelements(b) <= ggml_nelements(a));
  3136. GGML_ASSERT(ggml_is_contiguous(a));
  3137. GGML_ASSERT(a->type == GGML_TYPE_F32);
  3138. GGML_ASSERT(b->type == GGML_TYPE_F32);
  3139. bool is_node = false;
  3140. if (!inplace && (a->grad || b->grad)) {
  3141. is_node = true;
  3142. }
  3143. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3144. int32_t params[] = { nb1, nb2, nb3, offset, inplace ? 1 : 0 };
  3145. ggml_set_op_params(result, params, sizeof(params));
  3146. result->op = GGML_OP_ACC;
  3147. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3148. result->src[0] = a;
  3149. result->src[1] = b;
  3150. return result;
  3151. }
  3152. struct ggml_tensor * ggml_acc(
  3153. struct ggml_context * ctx,
  3154. struct ggml_tensor * a,
  3155. struct ggml_tensor * b,
  3156. size_t nb1,
  3157. size_t nb2,
  3158. size_t nb3,
  3159. size_t offset) {
  3160. return ggml_acc_impl(ctx, a, b, nb1, nb2, nb3, offset, false);
  3161. }
  3162. struct ggml_tensor * ggml_acc_inplace(
  3163. struct ggml_context * ctx,
  3164. struct ggml_tensor * a,
  3165. struct ggml_tensor * b,
  3166. size_t nb1,
  3167. size_t nb2,
  3168. size_t nb3,
  3169. size_t offset) {
  3170. return ggml_acc_impl(ctx, a, b, nb1, nb2, nb3, offset, true);
  3171. }
  3172. // ggml_sub
  3173. static struct ggml_tensor * ggml_sub_impl(
  3174. struct ggml_context * ctx,
  3175. struct ggml_tensor * a,
  3176. struct ggml_tensor * b,
  3177. bool inplace) {
  3178. GGML_ASSERT(ggml_are_same_shape(a, b));
  3179. bool is_node = false;
  3180. if (!inplace && (a->grad || b->grad)) {
  3181. is_node = true;
  3182. }
  3183. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3184. result->op = GGML_OP_SUB;
  3185. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3186. result->src[0] = a;
  3187. result->src[1] = b;
  3188. return result;
  3189. }
  3190. struct ggml_tensor * ggml_sub(
  3191. struct ggml_context * ctx,
  3192. struct ggml_tensor * a,
  3193. struct ggml_tensor * b) {
  3194. return ggml_sub_impl(ctx, a, b, false);
  3195. }
  3196. struct ggml_tensor * ggml_sub_inplace(
  3197. struct ggml_context * ctx,
  3198. struct ggml_tensor * a,
  3199. struct ggml_tensor * b) {
  3200. return ggml_sub_impl(ctx, a, b, true);
  3201. }
  3202. // ggml_mul
  3203. static struct ggml_tensor * ggml_mul_impl(
  3204. struct ggml_context * ctx,
  3205. struct ggml_tensor * a,
  3206. struct ggml_tensor * b,
  3207. bool inplace) {
  3208. GGML_ASSERT(ggml_can_repeat(b, a));
  3209. bool is_node = false;
  3210. if (!inplace && (a->grad || b->grad)) {
  3211. // TODO: support backward pass for broadcasting
  3212. GGML_ASSERT(ggml_are_same_shape(a, b));
  3213. is_node = true;
  3214. }
  3215. if (inplace) {
  3216. GGML_ASSERT(!is_node);
  3217. }
  3218. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3219. result->op = GGML_OP_MUL;
  3220. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3221. result->src[0] = a;
  3222. result->src[1] = b;
  3223. return result;
  3224. }
  3225. struct ggml_tensor * ggml_mul(
  3226. struct ggml_context * ctx,
  3227. struct ggml_tensor * a,
  3228. struct ggml_tensor * b) {
  3229. return ggml_mul_impl(ctx, a, b, false);
  3230. }
  3231. struct ggml_tensor * ggml_mul_inplace(
  3232. struct ggml_context * ctx,
  3233. struct ggml_tensor * a,
  3234. struct ggml_tensor * b) {
  3235. return ggml_mul_impl(ctx, a, b, true);
  3236. }
  3237. // ggml_div
  3238. static struct ggml_tensor * ggml_div_impl(
  3239. struct ggml_context * ctx,
  3240. struct ggml_tensor * a,
  3241. struct ggml_tensor * b,
  3242. bool inplace) {
  3243. GGML_ASSERT(ggml_can_repeat(b, a));
  3244. bool is_node = false;
  3245. if (!inplace && (a->grad || b->grad)) {
  3246. is_node = true;
  3247. }
  3248. if (inplace) {
  3249. GGML_ASSERT(!is_node);
  3250. }
  3251. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3252. result->op = GGML_OP_DIV;
  3253. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3254. result->src[0] = a;
  3255. result->src[1] = b;
  3256. return result;
  3257. }
  3258. struct ggml_tensor * ggml_div(
  3259. struct ggml_context * ctx,
  3260. struct ggml_tensor * a,
  3261. struct ggml_tensor * b) {
  3262. return ggml_div_impl(ctx, a, b, false);
  3263. }
  3264. struct ggml_tensor * ggml_div_inplace(
  3265. struct ggml_context * ctx,
  3266. struct ggml_tensor * a,
  3267. struct ggml_tensor * b) {
  3268. return ggml_div_impl(ctx, a, b, true);
  3269. }
  3270. // ggml_sqr
  3271. static struct ggml_tensor * ggml_sqr_impl(
  3272. struct ggml_context * ctx,
  3273. struct ggml_tensor * a,
  3274. bool inplace) {
  3275. bool is_node = false;
  3276. if (!inplace && (a->grad)) {
  3277. is_node = true;
  3278. }
  3279. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3280. result->op = GGML_OP_SQR;
  3281. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3282. result->src[0] = a;
  3283. return result;
  3284. }
  3285. struct ggml_tensor * ggml_sqr(
  3286. struct ggml_context * ctx,
  3287. struct ggml_tensor * a) {
  3288. return ggml_sqr_impl(ctx, a, false);
  3289. }
  3290. struct ggml_tensor * ggml_sqr_inplace(
  3291. struct ggml_context * ctx,
  3292. struct ggml_tensor * a) {
  3293. return ggml_sqr_impl(ctx, a, true);
  3294. }
  3295. // ggml_sqrt
  3296. static struct ggml_tensor * ggml_sqrt_impl(
  3297. struct ggml_context * ctx,
  3298. struct ggml_tensor * a,
  3299. bool inplace) {
  3300. bool is_node = false;
  3301. if (!inplace && (a->grad)) {
  3302. is_node = true;
  3303. }
  3304. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3305. result->op = GGML_OP_SQRT;
  3306. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3307. result->src[0] = a;
  3308. return result;
  3309. }
  3310. struct ggml_tensor * ggml_sqrt(
  3311. struct ggml_context * ctx,
  3312. struct ggml_tensor * a) {
  3313. return ggml_sqrt_impl(ctx, a, false);
  3314. }
  3315. struct ggml_tensor * ggml_sqrt_inplace(
  3316. struct ggml_context * ctx,
  3317. struct ggml_tensor * a) {
  3318. return ggml_sqrt_impl(ctx, a, true);
  3319. }
  3320. // ggml_log
  3321. static struct ggml_tensor * ggml_log_impl(
  3322. struct ggml_context * ctx,
  3323. struct ggml_tensor * a,
  3324. bool inplace) {
  3325. bool is_node = false;
  3326. if (!inplace && (a->grad)) {
  3327. is_node = true;
  3328. }
  3329. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3330. result->op = GGML_OP_LOG;
  3331. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3332. result->src[0] = a;
  3333. return result;
  3334. }
  3335. struct ggml_tensor * ggml_log(
  3336. struct ggml_context * ctx,
  3337. struct ggml_tensor * a) {
  3338. return ggml_log_impl(ctx, a, false);
  3339. }
  3340. struct ggml_tensor * ggml_log_inplace(
  3341. struct ggml_context * ctx,
  3342. struct ggml_tensor * a) {
  3343. return ggml_log_impl(ctx, a, true);
  3344. }
  3345. // ggml_sum
  3346. struct ggml_tensor * ggml_sum(
  3347. struct ggml_context * ctx,
  3348. struct ggml_tensor * a) {
  3349. bool is_node = false;
  3350. if (a->grad) {
  3351. is_node = true;
  3352. }
  3353. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, a->type, 1);
  3354. result->op = GGML_OP_SUM;
  3355. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3356. result->src[0] = a;
  3357. return result;
  3358. }
  3359. // ggml_sum_rows
  3360. struct ggml_tensor * ggml_sum_rows(
  3361. struct ggml_context * ctx,
  3362. struct ggml_tensor * a) {
  3363. bool is_node = false;
  3364. if (a->grad) {
  3365. is_node = true;
  3366. }
  3367. int64_t ne[GGML_MAX_DIMS] = { 1 };
  3368. for (int i = 1; i < GGML_MAX_DIMS; ++i) {
  3369. ne[i] = a->ne[i];
  3370. }
  3371. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, GGML_MAX_DIMS, ne);
  3372. result->op = GGML_OP_SUM_ROWS;
  3373. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3374. result->src[0] = a;
  3375. return result;
  3376. }
  3377. // ggml_mean
  3378. struct ggml_tensor * ggml_mean(
  3379. struct ggml_context * ctx,
  3380. struct ggml_tensor * a) {
  3381. bool is_node = false;
  3382. if (a->grad) {
  3383. GGML_ASSERT(false); // TODO: implement
  3384. is_node = true;
  3385. }
  3386. int64_t ne[4] = { 1, a->ne[1], a->ne[2], a->ne[3] };
  3387. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  3388. result->op = GGML_OP_MEAN;
  3389. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3390. result->src[0] = a;
  3391. return result;
  3392. }
  3393. // ggml_argmax
  3394. struct ggml_tensor * ggml_argmax(
  3395. struct ggml_context * ctx,
  3396. struct ggml_tensor * a) {
  3397. GGML_ASSERT(ggml_is_matrix(a));
  3398. bool is_node = false;
  3399. if (a->grad) {
  3400. GGML_ASSERT(false);
  3401. is_node = true;
  3402. }
  3403. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, a->ne[1]);
  3404. result->op = GGML_OP_ARGMAX;
  3405. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3406. result->src[0] = a;
  3407. return result;
  3408. }
  3409. // ggml_repeat
  3410. struct ggml_tensor * ggml_repeat(
  3411. struct ggml_context * ctx,
  3412. struct ggml_tensor * a,
  3413. struct ggml_tensor * b) {
  3414. GGML_ASSERT(ggml_can_repeat(a, b));
  3415. bool is_node = false;
  3416. if (a->grad) {
  3417. is_node = true;
  3418. }
  3419. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, GGML_MAX_DIMS, b->ne);
  3420. result->op = GGML_OP_REPEAT;
  3421. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3422. result->src[0] = a;
  3423. return result;
  3424. }
  3425. // ggml_repeat_back
  3426. struct ggml_tensor * ggml_repeat_back(
  3427. struct ggml_context * ctx,
  3428. struct ggml_tensor * a,
  3429. struct ggml_tensor * b) {
  3430. GGML_ASSERT(ggml_can_repeat(b, a));
  3431. bool is_node = false;
  3432. if (a->grad) {
  3433. is_node = true;
  3434. }
  3435. if (ggml_are_same_shape(a, b) && !is_node) {
  3436. return a;
  3437. }
  3438. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, GGML_MAX_DIMS, b->ne);
  3439. result->op = GGML_OP_REPEAT_BACK;
  3440. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3441. result->src[0] = a;
  3442. return result;
  3443. }
  3444. // ggml_concat
  3445. struct ggml_tensor * ggml_concat(
  3446. struct ggml_context* ctx,
  3447. struct ggml_tensor* a,
  3448. struct ggml_tensor* b) {
  3449. GGML_ASSERT(a->ne[0] == b->ne[0] && a->ne[1] == b->ne[1] && a->ne[3] == b->ne[3]);
  3450. bool is_node = false;
  3451. if (a->grad || b->grad) {
  3452. is_node = true;
  3453. }
  3454. struct ggml_tensor * result = ggml_new_tensor_4d(ctx, a->type, a->ne[0], a->ne[1], a->ne[2] + b->ne[2], a->ne[3]);
  3455. result->op = GGML_OP_CONCAT;
  3456. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3457. result->src[0] = a;
  3458. result->src[1] = b;
  3459. return result;
  3460. }
  3461. // ggml_abs
  3462. struct ggml_tensor * ggml_abs(
  3463. struct ggml_context * ctx,
  3464. struct ggml_tensor * a) {
  3465. return ggml_unary(ctx, a, GGML_UNARY_OP_ABS);
  3466. }
  3467. struct ggml_tensor * ggml_abs_inplace(
  3468. struct ggml_context * ctx,
  3469. struct ggml_tensor * a) {
  3470. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_ABS);
  3471. }
  3472. // ggml_sgn
  3473. struct ggml_tensor * ggml_sgn(
  3474. struct ggml_context * ctx,
  3475. struct ggml_tensor * a) {
  3476. return ggml_unary(ctx, a, GGML_UNARY_OP_SGN);
  3477. }
  3478. struct ggml_tensor * ggml_sgn_inplace(
  3479. struct ggml_context * ctx,
  3480. struct ggml_tensor * a) {
  3481. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_SGN);
  3482. }
  3483. // ggml_neg
  3484. struct ggml_tensor * ggml_neg(
  3485. struct ggml_context * ctx,
  3486. struct ggml_tensor * a) {
  3487. return ggml_unary(ctx, a, GGML_UNARY_OP_NEG);
  3488. }
  3489. struct ggml_tensor * ggml_neg_inplace(
  3490. struct ggml_context * ctx,
  3491. struct ggml_tensor * a) {
  3492. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_NEG);
  3493. }
  3494. // ggml_step
  3495. struct ggml_tensor * ggml_step(
  3496. struct ggml_context * ctx,
  3497. struct ggml_tensor * a) {
  3498. return ggml_unary(ctx, a, GGML_UNARY_OP_STEP);
  3499. }
  3500. struct ggml_tensor * ggml_step_inplace(
  3501. struct ggml_context * ctx,
  3502. struct ggml_tensor * a) {
  3503. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_STEP);
  3504. }
  3505. // ggml_tanh
  3506. struct ggml_tensor * ggml_tanh(
  3507. struct ggml_context * ctx,
  3508. struct ggml_tensor * a) {
  3509. return ggml_unary(ctx, a, GGML_UNARY_OP_TANH);
  3510. }
  3511. struct ggml_tensor * ggml_tanh_inplace(
  3512. struct ggml_context * ctx,
  3513. struct ggml_tensor * a) {
  3514. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_TANH);
  3515. }
  3516. // ggml_elu
  3517. struct ggml_tensor * ggml_elu(
  3518. struct ggml_context * ctx,
  3519. struct ggml_tensor * a) {
  3520. return ggml_unary(ctx, a, GGML_UNARY_OP_ELU);
  3521. }
  3522. struct ggml_tensor * ggml_elu_inplace(
  3523. struct ggml_context * ctx,
  3524. struct ggml_tensor * a) {
  3525. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_ELU);
  3526. }
  3527. // ggml_relu
  3528. struct ggml_tensor * ggml_relu(
  3529. struct ggml_context * ctx,
  3530. struct ggml_tensor * a) {
  3531. return ggml_unary(ctx, a, GGML_UNARY_OP_RELU);
  3532. }
  3533. struct ggml_tensor * ggml_relu_inplace(
  3534. struct ggml_context * ctx,
  3535. struct ggml_tensor * a) {
  3536. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_RELU);
  3537. }
  3538. // ggml_leaky_relu
  3539. struct ggml_tensor * ggml_leaky_relu(
  3540. struct ggml_context * ctx,
  3541. struct ggml_tensor * a, float negative_slope, bool inplace) {
  3542. bool is_node = false;
  3543. if (!inplace && (a->grad)) {
  3544. is_node = true;
  3545. }
  3546. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3547. ggml_set_op_params(result, &negative_slope, sizeof(negative_slope));
  3548. result->op = GGML_OP_LEAKY_RELU;
  3549. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3550. result->src[0] = a;
  3551. return result;
  3552. }
  3553. // ggml_gelu
  3554. struct ggml_tensor * ggml_gelu(
  3555. struct ggml_context * ctx,
  3556. struct ggml_tensor * a) {
  3557. return ggml_unary(ctx, a, GGML_UNARY_OP_GELU);
  3558. }
  3559. struct ggml_tensor * ggml_gelu_inplace(
  3560. struct ggml_context * ctx,
  3561. struct ggml_tensor * a) {
  3562. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_GELU);
  3563. }
  3564. // ggml_gelu_quick
  3565. struct ggml_tensor * ggml_gelu_quick(
  3566. struct ggml_context * ctx,
  3567. struct ggml_tensor * a) {
  3568. return ggml_unary(ctx, a, GGML_UNARY_OP_GELU_QUICK);
  3569. }
  3570. struct ggml_tensor * ggml_gelu_quick_inplace(
  3571. struct ggml_context * ctx,
  3572. struct ggml_tensor * a) {
  3573. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_GELU_QUICK);
  3574. }
  3575. // ggml_silu
  3576. struct ggml_tensor * ggml_silu(
  3577. struct ggml_context * ctx,
  3578. struct ggml_tensor * a) {
  3579. return ggml_unary(ctx, a, GGML_UNARY_OP_SILU);
  3580. }
  3581. struct ggml_tensor * ggml_silu_inplace(
  3582. struct ggml_context * ctx,
  3583. struct ggml_tensor * a) {
  3584. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_SILU);
  3585. }
  3586. // ggml_silu_back
  3587. struct ggml_tensor * ggml_silu_back(
  3588. struct ggml_context * ctx,
  3589. struct ggml_tensor * a,
  3590. struct ggml_tensor * b) {
  3591. bool is_node = false;
  3592. if (a->grad || b->grad) {
  3593. // TODO: implement backward
  3594. is_node = true;
  3595. }
  3596. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  3597. result->op = GGML_OP_SILU_BACK;
  3598. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3599. result->src[0] = a;
  3600. result->src[1] = b;
  3601. return result;
  3602. }
  3603. // ggml hardswish
  3604. struct ggml_tensor * ggml_hardswish(
  3605. struct ggml_context * ctx,
  3606. struct ggml_tensor * a) {
  3607. return ggml_unary(ctx, a, GGML_UNARY_OP_HARDSWISH);
  3608. }
  3609. // ggml hardsigmoid
  3610. struct ggml_tensor * ggml_hardsigmoid(
  3611. struct ggml_context * ctx,
  3612. struct ggml_tensor * a) {
  3613. return ggml_unary(ctx, a, GGML_UNARY_OP_HARDSIGMOID);
  3614. }
  3615. // ggml_norm
  3616. static struct ggml_tensor * ggml_norm_impl(
  3617. struct ggml_context * ctx,
  3618. struct ggml_tensor * a,
  3619. float eps,
  3620. bool inplace) {
  3621. bool is_node = false;
  3622. if (!inplace && (a->grad)) {
  3623. GGML_ASSERT(false); // TODO: implement backward
  3624. is_node = true;
  3625. }
  3626. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3627. ggml_set_op_params(result, &eps, sizeof(eps));
  3628. result->op = GGML_OP_NORM;
  3629. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3630. result->src[0] = a;
  3631. return result;
  3632. }
  3633. struct ggml_tensor * ggml_norm(
  3634. struct ggml_context * ctx,
  3635. struct ggml_tensor * a,
  3636. float eps) {
  3637. return ggml_norm_impl(ctx, a, eps, false);
  3638. }
  3639. struct ggml_tensor * ggml_norm_inplace(
  3640. struct ggml_context * ctx,
  3641. struct ggml_tensor * a,
  3642. float eps) {
  3643. return ggml_norm_impl(ctx, a, eps, true);
  3644. }
  3645. // ggml_rms_norm
  3646. static struct ggml_tensor * ggml_rms_norm_impl(
  3647. struct ggml_context * ctx,
  3648. struct ggml_tensor * a,
  3649. float eps,
  3650. bool inplace) {
  3651. bool is_node = false;
  3652. if (!inplace && (a->grad)) {
  3653. is_node = true;
  3654. }
  3655. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3656. ggml_set_op_params(result, &eps, sizeof(eps));
  3657. result->op = GGML_OP_RMS_NORM;
  3658. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3659. result->src[0] = a;
  3660. return result;
  3661. }
  3662. struct ggml_tensor * ggml_rms_norm(
  3663. struct ggml_context * ctx,
  3664. struct ggml_tensor * a,
  3665. float eps) {
  3666. return ggml_rms_norm_impl(ctx, a, eps, false);
  3667. }
  3668. struct ggml_tensor * ggml_rms_norm_inplace(
  3669. struct ggml_context * ctx,
  3670. struct ggml_tensor * a,
  3671. float eps) {
  3672. return ggml_rms_norm_impl(ctx, a, eps, true);
  3673. }
  3674. // ggml_rms_norm_back
  3675. struct ggml_tensor * ggml_rms_norm_back(
  3676. struct ggml_context * ctx,
  3677. struct ggml_tensor * a,
  3678. struct ggml_tensor * b,
  3679. float eps) {
  3680. bool is_node = false;
  3681. if (a->grad) {
  3682. // TODO: implement backward
  3683. is_node = true;
  3684. }
  3685. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  3686. ggml_set_op_params(result, &eps, sizeof(eps));
  3687. result->op = GGML_OP_RMS_NORM_BACK;
  3688. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3689. result->src[0] = a;
  3690. result->src[1] = b;
  3691. return result;
  3692. }
  3693. // ggml_group_norm
  3694. static struct ggml_tensor * ggml_group_norm_impl(
  3695. struct ggml_context * ctx,
  3696. struct ggml_tensor * a,
  3697. int n_groups,
  3698. bool inplace) {
  3699. bool is_node = false;
  3700. if (!inplace && (a->grad)) {
  3701. GGML_ASSERT(false); // TODO: implement backward
  3702. is_node = true;
  3703. }
  3704. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3705. result->op_params[0] = n_groups;
  3706. result->op = GGML_OP_GROUP_NORM;
  3707. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3708. result->src[0] = a;
  3709. return result;
  3710. }
  3711. struct ggml_tensor * ggml_group_norm(
  3712. struct ggml_context * ctx,
  3713. struct ggml_tensor * a,
  3714. int n_groups) {
  3715. return ggml_group_norm_impl(ctx, a, n_groups, false);
  3716. }
  3717. struct ggml_tensor * ggml_group_norm_inplace(
  3718. struct ggml_context * ctx,
  3719. struct ggml_tensor * a,
  3720. int n_groups) {
  3721. return ggml_group_norm_impl(ctx, a, n_groups, true);
  3722. }
  3723. // ggml_mul_mat
  3724. struct ggml_tensor * ggml_mul_mat(
  3725. struct ggml_context * ctx,
  3726. struct ggml_tensor * a,
  3727. struct ggml_tensor * b) {
  3728. GGML_ASSERT(ggml_can_mul_mat(a, b));
  3729. GGML_ASSERT(!ggml_is_transposed(a));
  3730. bool is_node = false;
  3731. if (a->grad || b->grad) {
  3732. is_node = true;
  3733. }
  3734. const int64_t ne[4] = { a->ne[1], b->ne[1], b->ne[2], b->ne[3] };
  3735. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  3736. result->op = GGML_OP_MUL_MAT;
  3737. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3738. result->src[0] = a;
  3739. result->src[1] = b;
  3740. return result;
  3741. }
  3742. void ggml_mul_mat_set_prec(
  3743. struct ggml_tensor * a,
  3744. enum ggml_prec prec) {
  3745. const int32_t prec_i32 = (int32_t) prec;
  3746. ggml_set_op_params_i32(a, 0, prec_i32);
  3747. }
  3748. // ggml_mul_mat_id
  3749. struct ggml_tensor * ggml_mul_mat_id(
  3750. struct ggml_context * ctx,
  3751. struct ggml_tensor * const as[],
  3752. int n_as,
  3753. struct ggml_tensor * ids,
  3754. int id,
  3755. struct ggml_tensor * b) {
  3756. GGML_ASSERT(ids->type == GGML_TYPE_I32);
  3757. GGML_ASSERT(ids->ne[2] == 1 && ids->ne[3] == 1);
  3758. GGML_ASSERT(ids->ne[1] == b->ne[1]);
  3759. GGML_ASSERT(ids->ne[2] == b->ne[2] && ids->ne[3] == b->ne[3]);
  3760. GGML_ASSERT(n_as > 0 && n_as <= GGML_MAX_SRC - 2);
  3761. GGML_ASSERT(id >= 0 && id < ids->ne[0]);
  3762. bool is_node = false;
  3763. if (as[0]->grad || b->grad) {
  3764. is_node = true;
  3765. }
  3766. const int64_t ne[4] = { as[0]->ne[1], b->ne[1], b->ne[2], b->ne[3] };
  3767. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  3768. ggml_set_op_params_i32(result, 0, id);
  3769. ggml_set_op_params_i32(result, 1, n_as);
  3770. result->op = GGML_OP_MUL_MAT_ID;
  3771. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3772. result->src[0] = ids;
  3773. result->src[1] = b;
  3774. for (int i = 0; i < n_as; i++) {
  3775. struct ggml_tensor * a = as[i];
  3776. GGML_ASSERT(ggml_are_same_shape(as[0], a));
  3777. GGML_ASSERT(ggml_can_mul_mat(a, b));
  3778. GGML_ASSERT(!ggml_is_transposed(a));
  3779. result->src[i + 2] = a;
  3780. }
  3781. return result;
  3782. }
  3783. // ggml_out_prod
  3784. struct ggml_tensor * ggml_out_prod(
  3785. struct ggml_context * ctx,
  3786. struct ggml_tensor * a,
  3787. struct ggml_tensor * b) {
  3788. GGML_ASSERT(ggml_can_out_prod(a, b));
  3789. GGML_ASSERT(!ggml_is_transposed(a));
  3790. bool is_node = false;
  3791. if (a->grad || b->grad) {
  3792. is_node = true;
  3793. }
  3794. // a is broadcastable to b for ne[2] and ne[3] -> use b->ne[2] and b->ne[3]
  3795. const int64_t ne[4] = { a->ne[0], b->ne[0], b->ne[2], b->ne[3] };
  3796. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  3797. result->op = GGML_OP_OUT_PROD;
  3798. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3799. result->src[0] = a;
  3800. result->src[1] = b;
  3801. return result;
  3802. }
  3803. // ggml_scale
  3804. static struct ggml_tensor * ggml_scale_impl(
  3805. struct ggml_context * ctx,
  3806. struct ggml_tensor * a,
  3807. float s,
  3808. bool inplace) {
  3809. GGML_ASSERT(ggml_is_padded_1d(a));
  3810. bool is_node = false;
  3811. if (a->grad) {
  3812. is_node = true;
  3813. }
  3814. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3815. ggml_set_op_params(result, &s, sizeof(s));
  3816. result->op = GGML_OP_SCALE;
  3817. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3818. result->src[0] = a;
  3819. return result;
  3820. }
  3821. struct ggml_tensor * ggml_scale(
  3822. struct ggml_context * ctx,
  3823. struct ggml_tensor * a,
  3824. float s) {
  3825. return ggml_scale_impl(ctx, a, s, false);
  3826. }
  3827. struct ggml_tensor * ggml_scale_inplace(
  3828. struct ggml_context * ctx,
  3829. struct ggml_tensor * a,
  3830. float s) {
  3831. return ggml_scale_impl(ctx, a, s, true);
  3832. }
  3833. // ggml_set
  3834. static struct ggml_tensor * ggml_set_impl(
  3835. struct ggml_context * ctx,
  3836. struct ggml_tensor * a,
  3837. struct ggml_tensor * b,
  3838. size_t nb1,
  3839. size_t nb2,
  3840. size_t nb3,
  3841. size_t offset,
  3842. bool inplace) {
  3843. GGML_ASSERT(ggml_nelements(a) >= ggml_nelements(b));
  3844. bool is_node = false;
  3845. if (a->grad || b->grad) {
  3846. is_node = true;
  3847. }
  3848. // make a view of the destination
  3849. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3850. int32_t params[] = { nb1, nb2, nb3, offset, inplace ? 1 : 0 };
  3851. ggml_set_op_params(result, params, sizeof(params));
  3852. result->op = GGML_OP_SET;
  3853. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3854. result->src[0] = a;
  3855. result->src[1] = b;
  3856. return result;
  3857. }
  3858. struct ggml_tensor * ggml_set(
  3859. struct ggml_context * ctx,
  3860. struct ggml_tensor * a,
  3861. struct ggml_tensor * b,
  3862. size_t nb1,
  3863. size_t nb2,
  3864. size_t nb3,
  3865. size_t offset) {
  3866. return ggml_set_impl(ctx, a, b, nb1, nb2, nb3, offset, false);
  3867. }
  3868. struct ggml_tensor * ggml_set_inplace(
  3869. struct ggml_context * ctx,
  3870. struct ggml_tensor * a,
  3871. struct ggml_tensor * b,
  3872. size_t nb1,
  3873. size_t nb2,
  3874. size_t nb3,
  3875. size_t offset) {
  3876. return ggml_set_impl(ctx, a, b, nb1, nb2, nb3, offset, true);
  3877. }
  3878. struct ggml_tensor * ggml_set_1d(
  3879. struct ggml_context * ctx,
  3880. struct ggml_tensor * a,
  3881. struct ggml_tensor * b,
  3882. size_t offset) {
  3883. return ggml_set_impl(ctx, a, b, a->nb[1], a->nb[2], a->nb[3], offset, false);
  3884. }
  3885. struct ggml_tensor * ggml_set_1d_inplace(
  3886. struct ggml_context * ctx,
  3887. struct ggml_tensor * a,
  3888. struct ggml_tensor * b,
  3889. size_t offset) {
  3890. return ggml_set_impl(ctx, a, b, a->nb[1], a->nb[2], a->nb[3], offset, true);
  3891. }
  3892. struct ggml_tensor * ggml_set_2d(
  3893. struct ggml_context * ctx,
  3894. struct ggml_tensor * a,
  3895. struct ggml_tensor * b,
  3896. size_t nb1,
  3897. size_t offset) {
  3898. return ggml_set_impl(ctx, a, b, nb1, a->nb[2], a->nb[3], offset, false);
  3899. }
  3900. struct ggml_tensor * ggml_set_2d_inplace(
  3901. struct ggml_context * ctx,
  3902. struct ggml_tensor * a,
  3903. struct ggml_tensor * b,
  3904. size_t nb1,
  3905. size_t offset) {
  3906. return ggml_set_impl(ctx, a, b, nb1, a->nb[2], a->nb[3], offset, true);
  3907. }
  3908. // ggml_cpy
  3909. static struct ggml_tensor * ggml_cpy_impl(
  3910. struct ggml_context * ctx,
  3911. struct ggml_tensor * a,
  3912. struct ggml_tensor * b) {
  3913. GGML_ASSERT(ggml_nelements(a) == ggml_nelements(b));
  3914. bool is_node = false;
  3915. if (a->grad || b->grad) {
  3916. // inplace is false and either one have a grad
  3917. is_node = true;
  3918. }
  3919. // make a view of the destination
  3920. struct ggml_tensor * result = ggml_view_tensor(ctx, b);
  3921. if (strlen(b->name) > 0) {
  3922. ggml_format_name(result, "%s (copy of %s)", b->name, a->name);
  3923. } else {
  3924. ggml_format_name(result, "%s (copy)", a->name);
  3925. }
  3926. result->op = GGML_OP_CPY;
  3927. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3928. result->src[0] = a;
  3929. result->src[1] = b;
  3930. return result;
  3931. }
  3932. struct ggml_tensor * ggml_cpy(
  3933. struct ggml_context * ctx,
  3934. struct ggml_tensor * a,
  3935. struct ggml_tensor * b) {
  3936. return ggml_cpy_impl(ctx, a, b);
  3937. }
  3938. struct ggml_tensor * ggml_cast(
  3939. struct ggml_context * ctx,
  3940. struct ggml_tensor * a,
  3941. enum ggml_type type) {
  3942. bool is_node = false;
  3943. struct ggml_tensor * result = ggml_new_tensor(ctx, type, GGML_MAX_DIMS, a->ne);
  3944. ggml_format_name(result, "%s (copy)", a->name);
  3945. result->op = GGML_OP_CPY;
  3946. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3947. result->src[0] = a;
  3948. result->src[1] = result;
  3949. return result;
  3950. }
  3951. // ggml_cont
  3952. static struct ggml_tensor * ggml_cont_impl(
  3953. struct ggml_context * ctx,
  3954. struct ggml_tensor * a) {
  3955. bool is_node = false;
  3956. if (a->grad) {
  3957. is_node = true;
  3958. }
  3959. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  3960. ggml_format_name(result, "%s (cont)", a->name);
  3961. result->op = GGML_OP_CONT;
  3962. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3963. result->src[0] = a;
  3964. return result;
  3965. }
  3966. struct ggml_tensor * ggml_cont(
  3967. struct ggml_context * ctx,
  3968. struct ggml_tensor * a) {
  3969. return ggml_cont_impl(ctx, a);
  3970. }
  3971. // make contiguous, with new shape
  3972. GGML_API struct ggml_tensor * ggml_cont_1d(
  3973. struct ggml_context * ctx,
  3974. struct ggml_tensor * a,
  3975. int64_t ne0) {
  3976. return ggml_cont_4d(ctx, a, ne0, 1, 1, 1);
  3977. }
  3978. GGML_API struct ggml_tensor * ggml_cont_2d(
  3979. struct ggml_context * ctx,
  3980. struct ggml_tensor * a,
  3981. int64_t ne0,
  3982. int64_t ne1) {
  3983. return ggml_cont_4d(ctx, a, ne0, ne1, 1, 1);
  3984. }
  3985. GGML_API struct ggml_tensor * ggml_cont_3d(
  3986. struct ggml_context * ctx,
  3987. struct ggml_tensor * a,
  3988. int64_t ne0,
  3989. int64_t ne1,
  3990. int64_t ne2) {
  3991. return ggml_cont_4d(ctx, a, ne0, ne1, ne2, 1);
  3992. }
  3993. struct ggml_tensor * ggml_cont_4d(
  3994. struct ggml_context * ctx,
  3995. struct ggml_tensor * a,
  3996. int64_t ne0,
  3997. int64_t ne1,
  3998. int64_t ne2,
  3999. int64_t ne3) {
  4000. GGML_ASSERT(ggml_nelements(a) == (ne0*ne1*ne2*ne3));
  4001. bool is_node = false;
  4002. struct ggml_tensor * result = ggml_new_tensor_4d(ctx, a->type, ne0, ne1, ne2, ne3);
  4003. ggml_format_name(result, "%s (cont)", a->name);
  4004. result->op = GGML_OP_CONT;
  4005. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4006. result->src[0] = a;
  4007. return result;
  4008. }
  4009. // ggml_reshape
  4010. struct ggml_tensor * ggml_reshape(
  4011. struct ggml_context * ctx,
  4012. struct ggml_tensor * a,
  4013. struct ggml_tensor * b) {
  4014. GGML_ASSERT(ggml_is_contiguous(a));
  4015. // as only the shape of b is relevant, and not its memory layout, b is allowed to be non contiguous.
  4016. GGML_ASSERT(ggml_nelements(a) == ggml_nelements(b));
  4017. bool is_node = false;
  4018. if (a->grad) {
  4019. is_node = true;
  4020. }
  4021. if (b->grad) {
  4022. // gradient propagation is not supported
  4023. //GGML_ASSERT(false);
  4024. }
  4025. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, GGML_MAX_DIMS, b->ne, a, 0);
  4026. ggml_format_name(result, "%s (reshaped)", a->name);
  4027. result->op = GGML_OP_RESHAPE;
  4028. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4029. result->src[0] = a;
  4030. return result;
  4031. }
  4032. struct ggml_tensor * ggml_reshape_1d(
  4033. struct ggml_context * ctx,
  4034. struct ggml_tensor * a,
  4035. int64_t ne0) {
  4036. GGML_ASSERT(ggml_is_contiguous(a));
  4037. GGML_ASSERT(ggml_nelements(a) == ne0);
  4038. bool is_node = false;
  4039. if (a->grad) {
  4040. is_node = true;
  4041. }
  4042. const int64_t ne[1] = { ne0 };
  4043. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 1, ne, a, 0);
  4044. ggml_format_name(result, "%s (reshaped)", a->name);
  4045. result->op = GGML_OP_RESHAPE;
  4046. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4047. result->src[0] = a;
  4048. return result;
  4049. }
  4050. struct ggml_tensor * ggml_reshape_2d(
  4051. struct ggml_context * ctx,
  4052. struct ggml_tensor * a,
  4053. int64_t ne0,
  4054. int64_t ne1) {
  4055. GGML_ASSERT(ggml_is_contiguous(a));
  4056. GGML_ASSERT(ggml_nelements(a) == ne0*ne1);
  4057. bool is_node = false;
  4058. if (a->grad) {
  4059. is_node = true;
  4060. }
  4061. const int64_t ne[2] = { ne0, ne1 };
  4062. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 2, ne, a, 0);
  4063. ggml_format_name(result, "%s (reshaped)", a->name);
  4064. result->op = GGML_OP_RESHAPE;
  4065. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4066. result->src[0] = a;
  4067. return result;
  4068. }
  4069. struct ggml_tensor * ggml_reshape_3d(
  4070. struct ggml_context * ctx,
  4071. struct ggml_tensor * a,
  4072. int64_t ne0,
  4073. int64_t ne1,
  4074. int64_t ne2) {
  4075. GGML_ASSERT(ggml_is_contiguous(a));
  4076. GGML_ASSERT(ggml_nelements(a) == ne0*ne1*ne2);
  4077. bool is_node = false;
  4078. if (a->grad) {
  4079. is_node = true;
  4080. }
  4081. const int64_t ne[3] = { ne0, ne1, ne2 };
  4082. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 3, ne, a, 0);
  4083. ggml_format_name(result, "%s (reshaped)", a->name);
  4084. result->op = GGML_OP_RESHAPE;
  4085. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4086. result->src[0] = a;
  4087. return result;
  4088. }
  4089. struct ggml_tensor * ggml_reshape_4d(
  4090. struct ggml_context * ctx,
  4091. struct ggml_tensor * a,
  4092. int64_t ne0,
  4093. int64_t ne1,
  4094. int64_t ne2,
  4095. int64_t ne3) {
  4096. GGML_ASSERT(ggml_is_contiguous(a));
  4097. GGML_ASSERT(ggml_nelements(a) == ne0*ne1*ne2*ne3);
  4098. bool is_node = false;
  4099. if (a->grad) {
  4100. is_node = true;
  4101. }
  4102. const int64_t ne[4] = { ne0, ne1, ne2, ne3 };
  4103. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 4, ne, a, 0);
  4104. ggml_format_name(result, "%s (reshaped)", a->name);
  4105. result->op = GGML_OP_RESHAPE;
  4106. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4107. result->src[0] = a;
  4108. return result;
  4109. }
  4110. static struct ggml_tensor * ggml_view_impl(
  4111. struct ggml_context * ctx,
  4112. struct ggml_tensor * a,
  4113. int n_dims,
  4114. const int64_t * ne,
  4115. size_t offset) {
  4116. bool is_node = false;
  4117. if (a->grad) {
  4118. is_node = true;
  4119. }
  4120. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, n_dims, ne, a, offset);
  4121. ggml_format_name(result, "%s (view)", a->name);
  4122. ggml_set_op_params(result, &offset, sizeof(offset));
  4123. result->op = GGML_OP_VIEW;
  4124. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4125. result->src[0] = a;
  4126. return result;
  4127. }
  4128. // ggml_view_1d
  4129. struct ggml_tensor * ggml_view_1d(
  4130. struct ggml_context * ctx,
  4131. struct ggml_tensor * a,
  4132. int64_t ne0,
  4133. size_t offset) {
  4134. struct ggml_tensor * result = ggml_view_impl(ctx, a, 1, &ne0, offset);
  4135. return result;
  4136. }
  4137. // ggml_view_2d
  4138. struct ggml_tensor * ggml_view_2d(
  4139. struct ggml_context * ctx,
  4140. struct ggml_tensor * a,
  4141. int64_t ne0,
  4142. int64_t ne1,
  4143. size_t nb1,
  4144. size_t offset) {
  4145. const int64_t ne[2] = { ne0, ne1 };
  4146. struct ggml_tensor * result = ggml_view_impl(ctx, a, 2, ne, offset);
  4147. result->nb[1] = nb1;
  4148. result->nb[2] = result->nb[1]*ne1;
  4149. result->nb[3] = result->nb[2];
  4150. return result;
  4151. }
  4152. // ggml_view_3d
  4153. struct ggml_tensor * ggml_view_3d(
  4154. struct ggml_context * ctx,
  4155. struct ggml_tensor * a,
  4156. int64_t ne0,
  4157. int64_t ne1,
  4158. int64_t ne2,
  4159. size_t nb1,
  4160. size_t nb2,
  4161. size_t offset) {
  4162. const int64_t ne[3] = { ne0, ne1, ne2 };
  4163. struct ggml_tensor * result = ggml_view_impl(ctx, a, 3, ne, offset);
  4164. result->nb[1] = nb1;
  4165. result->nb[2] = nb2;
  4166. result->nb[3] = result->nb[2]*ne2;
  4167. return result;
  4168. }
  4169. // ggml_view_4d
  4170. struct ggml_tensor * ggml_view_4d(
  4171. struct ggml_context * ctx,
  4172. struct ggml_tensor * a,
  4173. int64_t ne0,
  4174. int64_t ne1,
  4175. int64_t ne2,
  4176. int64_t ne3,
  4177. size_t nb1,
  4178. size_t nb2,
  4179. size_t nb3,
  4180. size_t offset) {
  4181. const int64_t ne[4] = { ne0, ne1, ne2, ne3 };
  4182. struct ggml_tensor * result = ggml_view_impl(ctx, a, 4, ne, offset);
  4183. result->nb[1] = nb1;
  4184. result->nb[2] = nb2;
  4185. result->nb[3] = nb3;
  4186. return result;
  4187. }
  4188. // ggml_permute
  4189. struct ggml_tensor * ggml_permute(
  4190. struct ggml_context * ctx,
  4191. struct ggml_tensor * a,
  4192. int axis0,
  4193. int axis1,
  4194. int axis2,
  4195. int axis3) {
  4196. GGML_ASSERT(axis0 >= 0 && axis0 < GGML_MAX_DIMS);
  4197. GGML_ASSERT(axis1 >= 0 && axis1 < GGML_MAX_DIMS);
  4198. GGML_ASSERT(axis2 >= 0 && axis2 < GGML_MAX_DIMS);
  4199. GGML_ASSERT(axis3 >= 0 && axis3 < GGML_MAX_DIMS);
  4200. GGML_ASSERT(axis0 != axis1);
  4201. GGML_ASSERT(axis0 != axis2);
  4202. GGML_ASSERT(axis0 != axis3);
  4203. GGML_ASSERT(axis1 != axis2);
  4204. GGML_ASSERT(axis1 != axis3);
  4205. GGML_ASSERT(axis2 != axis3);
  4206. bool is_node = false;
  4207. if (a->grad) {
  4208. is_node = true;
  4209. }
  4210. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  4211. ggml_format_name(result, "%s (permuted)", a->name);
  4212. int ne[GGML_MAX_DIMS];
  4213. int nb[GGML_MAX_DIMS];
  4214. ne[axis0] = a->ne[0];
  4215. ne[axis1] = a->ne[1];
  4216. ne[axis2] = a->ne[2];
  4217. ne[axis3] = a->ne[3];
  4218. nb[axis0] = a->nb[0];
  4219. nb[axis1] = a->nb[1];
  4220. nb[axis2] = a->nb[2];
  4221. nb[axis3] = a->nb[3];
  4222. result->ne[0] = ne[0];
  4223. result->ne[1] = ne[1];
  4224. result->ne[2] = ne[2];
  4225. result->ne[3] = ne[3];
  4226. result->nb[0] = nb[0];
  4227. result->nb[1] = nb[1];
  4228. result->nb[2] = nb[2];
  4229. result->nb[3] = nb[3];
  4230. result->op = GGML_OP_PERMUTE;
  4231. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4232. result->src[0] = a;
  4233. int32_t params[] = { axis0, axis1, axis2, axis3 };
  4234. ggml_set_op_params(result, params, sizeof(params));
  4235. return result;
  4236. }
  4237. // ggml_transpose
  4238. struct ggml_tensor * ggml_transpose(
  4239. struct ggml_context * ctx,
  4240. struct ggml_tensor * a) {
  4241. bool is_node = false;
  4242. if (a->grad) {
  4243. is_node = true;
  4244. }
  4245. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  4246. ggml_format_name(result, "%s (transposed)", a->name);
  4247. result->ne[0] = a->ne[1];
  4248. result->ne[1] = a->ne[0];
  4249. result->nb[0] = a->nb[1];
  4250. result->nb[1] = a->nb[0];
  4251. result->op = GGML_OP_TRANSPOSE;
  4252. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4253. result->src[0] = a;
  4254. return result;
  4255. }
  4256. // ggml_get_rows
  4257. struct ggml_tensor * ggml_get_rows(
  4258. struct ggml_context * ctx,
  4259. struct ggml_tensor * a,
  4260. struct ggml_tensor * b) {
  4261. GGML_ASSERT(a->ne[2] == b->ne[1]);
  4262. GGML_ASSERT(b->ne[3] == 1);
  4263. GGML_ASSERT(b->type == GGML_TYPE_I32);
  4264. bool is_node = false;
  4265. if (a->grad || b->grad) {
  4266. is_node = true;
  4267. }
  4268. // TODO: implement non F32 return
  4269. enum ggml_type type = GGML_TYPE_F32;
  4270. if (a->type == GGML_TYPE_I32) {
  4271. type = a->type;
  4272. }
  4273. struct ggml_tensor * result = ggml_new_tensor_4d(ctx, type, a->ne[0], b->ne[0], b->ne[1], b->ne[2]);
  4274. result->op = GGML_OP_GET_ROWS;
  4275. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4276. result->src[0] = a;
  4277. result->src[1] = b;
  4278. return result;
  4279. }
  4280. // ggml_get_rows_back
  4281. struct ggml_tensor * ggml_get_rows_back(
  4282. struct ggml_context * ctx,
  4283. struct ggml_tensor * a,
  4284. struct ggml_tensor * b,
  4285. struct ggml_tensor * c) {
  4286. GGML_ASSERT(ggml_is_matrix(a) && ggml_is_vector(b) && b->type == GGML_TYPE_I32);
  4287. GGML_ASSERT(ggml_is_matrix(c) && (a->ne[0] == c->ne[0]));
  4288. bool is_node = false;
  4289. if (a->grad || b->grad) {
  4290. is_node = true;
  4291. }
  4292. // TODO: implement non F32 return
  4293. //struct ggml_tensor * result = ggml_new_tensor_2d(ctx, a->type, a->ne[0], b->ne[0]);
  4294. struct ggml_tensor * result = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, c->ne[0], c->ne[1]);
  4295. result->op = GGML_OP_GET_ROWS_BACK;
  4296. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4297. result->src[0] = a;
  4298. result->src[1] = b;
  4299. return result;
  4300. }
  4301. // ggml_diag
  4302. struct ggml_tensor * ggml_diag(
  4303. struct ggml_context * ctx,
  4304. struct ggml_tensor * a) {
  4305. GGML_ASSERT(a->ne[1] == 1);
  4306. bool is_node = false;
  4307. if (a->grad) {
  4308. is_node = true;
  4309. }
  4310. const int64_t ne[4] = { a->ne[0], a->ne[0], a->ne[2], a->ne[3] };
  4311. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, 4, ne);
  4312. result->op = GGML_OP_DIAG;
  4313. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4314. result->src[0] = a;
  4315. return result;
  4316. }
  4317. // ggml_diag_mask_inf
  4318. static struct ggml_tensor * ggml_diag_mask_inf_impl(
  4319. struct ggml_context * ctx,
  4320. struct ggml_tensor * a,
  4321. int n_past,
  4322. bool inplace) {
  4323. bool is_node = false;
  4324. if (a->grad) {
  4325. is_node = true;
  4326. }
  4327. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4328. int32_t params[] = { n_past };
  4329. ggml_set_op_params(result, params, sizeof(params));
  4330. result->op = GGML_OP_DIAG_MASK_INF;
  4331. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4332. result->src[0] = a;
  4333. return result;
  4334. }
  4335. struct ggml_tensor * ggml_diag_mask_inf(
  4336. struct ggml_context * ctx,
  4337. struct ggml_tensor * a,
  4338. int n_past) {
  4339. return ggml_diag_mask_inf_impl(ctx, a, n_past, false);
  4340. }
  4341. struct ggml_tensor * ggml_diag_mask_inf_inplace(
  4342. struct ggml_context * ctx,
  4343. struct ggml_tensor * a,
  4344. int n_past) {
  4345. return ggml_diag_mask_inf_impl(ctx, a, n_past, true);
  4346. }
  4347. // ggml_diag_mask_zero
  4348. static struct ggml_tensor * ggml_diag_mask_zero_impl(
  4349. struct ggml_context * ctx,
  4350. struct ggml_tensor * a,
  4351. int n_past,
  4352. bool inplace) {
  4353. bool is_node = false;
  4354. if (a->grad) {
  4355. is_node = true;
  4356. }
  4357. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4358. int32_t params[] = { n_past };
  4359. ggml_set_op_params(result, params, sizeof(params));
  4360. result->op = GGML_OP_DIAG_MASK_ZERO;
  4361. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4362. result->src[0] = a;
  4363. return result;
  4364. }
  4365. struct ggml_tensor * ggml_diag_mask_zero(
  4366. struct ggml_context * ctx,
  4367. struct ggml_tensor * a,
  4368. int n_past) {
  4369. return ggml_diag_mask_zero_impl(ctx, a, n_past, false);
  4370. }
  4371. struct ggml_tensor * ggml_diag_mask_zero_inplace(
  4372. struct ggml_context * ctx,
  4373. struct ggml_tensor * a,
  4374. int n_past) {
  4375. return ggml_diag_mask_zero_impl(ctx, a, n_past, true);
  4376. }
  4377. // ggml_soft_max
  4378. static struct ggml_tensor * ggml_soft_max_impl(
  4379. struct ggml_context * ctx,
  4380. struct ggml_tensor * a,
  4381. struct ggml_tensor * mask,
  4382. struct ggml_tensor * pos,
  4383. float scale,
  4384. float max_bias,
  4385. bool inplace) {
  4386. GGML_ASSERT(ggml_is_contiguous(a));
  4387. if (mask) {
  4388. GGML_ASSERT(ggml_is_contiguous(mask));
  4389. GGML_ASSERT(ggml_is_matrix(mask));
  4390. GGML_ASSERT(ggml_can_repeat_rows(mask, a));
  4391. }
  4392. if (pos) {
  4393. GGML_ASSERT(ggml_is_vector(pos));
  4394. GGML_ASSERT(pos->type == GGML_TYPE_F32);
  4395. GGML_ASSERT(pos->ne[0] == a->ne[0]);
  4396. }
  4397. if (max_bias > 0.0f) {
  4398. GGML_ASSERT(pos);
  4399. }
  4400. bool is_node = false;
  4401. if (a->grad) {
  4402. is_node = true;
  4403. }
  4404. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4405. float params[] = { scale, max_bias };
  4406. ggml_set_op_params(result, params, sizeof(params));
  4407. result->op = GGML_OP_SOFT_MAX;
  4408. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4409. result->src[0] = a;
  4410. result->src[1] = mask;
  4411. result->src[2] = pos;
  4412. return result;
  4413. }
  4414. struct ggml_tensor * ggml_soft_max(
  4415. struct ggml_context * ctx,
  4416. struct ggml_tensor * a) {
  4417. return ggml_soft_max_impl(ctx, a, NULL, NULL, 1.0f, 0.0f, false);
  4418. }
  4419. struct ggml_tensor * ggml_soft_max_inplace(
  4420. struct ggml_context * ctx,
  4421. struct ggml_tensor * a) {
  4422. return ggml_soft_max_impl(ctx, a, NULL, NULL, 1.0f, 0.0f, true);
  4423. }
  4424. struct ggml_tensor * ggml_soft_max_ext(
  4425. struct ggml_context * ctx,
  4426. struct ggml_tensor * a,
  4427. struct ggml_tensor * mask,
  4428. struct ggml_tensor * pos,
  4429. float scale,
  4430. float max_bias) {
  4431. return ggml_soft_max_impl(ctx, a, mask, pos, scale, max_bias, false);
  4432. }
  4433. // ggml_soft_max_back
  4434. static struct ggml_tensor * ggml_soft_max_back_impl(
  4435. struct ggml_context * ctx,
  4436. struct ggml_tensor * a,
  4437. struct ggml_tensor * b,
  4438. bool inplace) {
  4439. bool is_node = false;
  4440. if (a->grad || b->grad) {
  4441. is_node = true; // TODO : implement backward pass
  4442. }
  4443. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4444. result->op = GGML_OP_SOFT_MAX_BACK;
  4445. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4446. result->src[0] = a;
  4447. result->src[1] = b;
  4448. return result;
  4449. }
  4450. struct ggml_tensor * ggml_soft_max_back(
  4451. struct ggml_context * ctx,
  4452. struct ggml_tensor * a,
  4453. struct ggml_tensor * b) {
  4454. return ggml_soft_max_back_impl(ctx, a, b, false);
  4455. }
  4456. struct ggml_tensor * ggml_soft_max_back_inplace(
  4457. struct ggml_context * ctx,
  4458. struct ggml_tensor * a,
  4459. struct ggml_tensor * b) {
  4460. return ggml_soft_max_back_impl(ctx, a, b, true);
  4461. }
  4462. // ggml_rope
  4463. static struct ggml_tensor * ggml_rope_impl(
  4464. struct ggml_context * ctx,
  4465. struct ggml_tensor * a,
  4466. struct ggml_tensor * b,
  4467. int n_dims,
  4468. int mode,
  4469. int n_ctx,
  4470. int n_orig_ctx,
  4471. float freq_base,
  4472. float freq_scale,
  4473. float ext_factor,
  4474. float attn_factor,
  4475. float beta_fast,
  4476. float beta_slow,
  4477. float xpos_base,
  4478. bool xpos_down,
  4479. bool inplace) {
  4480. GGML_ASSERT(ggml_is_vector(b));
  4481. GGML_ASSERT(b->type == GGML_TYPE_I32);
  4482. GGML_ASSERT(a->ne[2] == b->ne[0]);
  4483. bool is_node = false;
  4484. if (a->grad) {
  4485. is_node = true;
  4486. }
  4487. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4488. int32_t params[13] = { /*n_past*/ 0, n_dims, mode, n_ctx, n_orig_ctx };
  4489. memcpy(params + 5, &freq_base, sizeof(float));
  4490. memcpy(params + 6, &freq_scale, sizeof(float));
  4491. memcpy(params + 7, &ext_factor, sizeof(float));
  4492. memcpy(params + 8, &attn_factor, sizeof(float));
  4493. memcpy(params + 9, &beta_fast, sizeof(float));
  4494. memcpy(params + 10, &beta_slow, sizeof(float));
  4495. memcpy(params + 11, &xpos_base, sizeof(float));
  4496. memcpy(params + 12, &xpos_down, sizeof(bool));
  4497. ggml_set_op_params(result, params, sizeof(params));
  4498. result->op = GGML_OP_ROPE;
  4499. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4500. result->src[0] = a;
  4501. result->src[1] = b;
  4502. return result;
  4503. }
  4504. struct ggml_tensor * ggml_rope(
  4505. struct ggml_context * ctx,
  4506. struct ggml_tensor * a,
  4507. struct ggml_tensor * b,
  4508. int n_dims,
  4509. int mode,
  4510. int n_ctx) {
  4511. return ggml_rope_impl(
  4512. ctx, a, b, n_dims, mode, n_ctx, 0, 10000.0f, 1.0f, 0.0f, 1.0f, 0.0f, 0.0f, 0.0f, false, false
  4513. );
  4514. }
  4515. struct ggml_tensor * ggml_rope_inplace(
  4516. struct ggml_context * ctx,
  4517. struct ggml_tensor * a,
  4518. struct ggml_tensor * b,
  4519. int n_dims,
  4520. int mode,
  4521. int n_ctx) {
  4522. return ggml_rope_impl(
  4523. ctx, a, b, n_dims, mode, n_ctx, 0, 10000.0f, 1.0f, 0.0f, 1.0f, 0.0f, 0.0f, 0.0f, false, true
  4524. );
  4525. }
  4526. struct ggml_tensor * ggml_rope_custom(
  4527. struct ggml_context * ctx,
  4528. struct ggml_tensor * a,
  4529. struct ggml_tensor * b,
  4530. int n_dims,
  4531. int mode,
  4532. int n_ctx,
  4533. int n_orig_ctx,
  4534. float freq_base,
  4535. float freq_scale,
  4536. float ext_factor,
  4537. float attn_factor,
  4538. float beta_fast,
  4539. float beta_slow) {
  4540. return ggml_rope_impl(
  4541. ctx, a, b, n_dims, mode, n_ctx, n_orig_ctx, freq_base, freq_scale,
  4542. ext_factor, attn_factor, beta_fast, beta_slow, 0.0f, false, false
  4543. );
  4544. }
  4545. struct ggml_tensor * ggml_rope_custom_inplace(
  4546. struct ggml_context * ctx,
  4547. struct ggml_tensor * a,
  4548. struct ggml_tensor * b,
  4549. int n_dims,
  4550. int mode,
  4551. int n_ctx,
  4552. int n_orig_ctx,
  4553. float freq_base,
  4554. float freq_scale,
  4555. float ext_factor,
  4556. float attn_factor,
  4557. float beta_fast,
  4558. float beta_slow) {
  4559. return ggml_rope_impl(
  4560. ctx, a, b, n_dims, mode, n_ctx, n_orig_ctx, freq_base, freq_scale,
  4561. ext_factor, attn_factor, beta_fast, beta_slow, 0.0f, false, true
  4562. );
  4563. }
  4564. struct ggml_tensor * ggml_rope_xpos_inplace(
  4565. struct ggml_context * ctx,
  4566. struct ggml_tensor * a,
  4567. struct ggml_tensor * b,
  4568. int n_dims,
  4569. float base,
  4570. bool down) {
  4571. return ggml_rope_impl(ctx, a, b, n_dims, 0, 0, 0, 10000.0f, 1.0f, 0.0f, 1.0f, 0.0f, 0.0f, base, down, true);
  4572. }
  4573. // ggml_rope_back
  4574. struct ggml_tensor * ggml_rope_back(
  4575. struct ggml_context * ctx,
  4576. struct ggml_tensor * a,
  4577. struct ggml_tensor * b,
  4578. int n_dims,
  4579. int mode,
  4580. int n_ctx,
  4581. int n_orig_ctx,
  4582. float freq_base,
  4583. float freq_scale,
  4584. float ext_factor,
  4585. float attn_factor,
  4586. float beta_fast,
  4587. float beta_slow,
  4588. float xpos_base,
  4589. bool xpos_down) {
  4590. GGML_ASSERT(ggml_is_vector(b));
  4591. GGML_ASSERT(b->type == GGML_TYPE_I32);
  4592. GGML_ASSERT(a->ne[2] == b->ne[0]);
  4593. GGML_ASSERT((mode & 4) == 0 && "ggml_rope_back() for ChatGLM not implemented yet");
  4594. bool is_node = false;
  4595. if (a->grad) {
  4596. is_node = false; // TODO: implement backward
  4597. }
  4598. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  4599. int32_t params[13] = { /*n_past*/ 0, n_dims, mode, n_ctx, n_orig_ctx };
  4600. memcpy(params + 5, &freq_base, sizeof(float));
  4601. memcpy(params + 6, &freq_scale, sizeof(float));
  4602. memcpy(params + 7, &ext_factor, sizeof(float));
  4603. memcpy(params + 8, &attn_factor, sizeof(float));
  4604. memcpy(params + 9, &beta_fast, sizeof(float));
  4605. memcpy(params + 10, &beta_slow, sizeof(float));
  4606. memcpy(params + 11, &xpos_base, sizeof(float));
  4607. memcpy(params + 12, &xpos_down, sizeof(bool));
  4608. ggml_set_op_params(result, params, sizeof(params));
  4609. result->op = GGML_OP_ROPE_BACK;
  4610. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4611. result->src[0] = a;
  4612. result->src[1] = b;
  4613. return result;
  4614. }
  4615. // ggml_alibi
  4616. struct ggml_tensor * ggml_alibi(
  4617. struct ggml_context * ctx,
  4618. struct ggml_tensor * a,
  4619. int n_past,
  4620. int n_head,
  4621. float bias_max) {
  4622. GGML_ASSERT(n_past >= 0);
  4623. bool is_node = false;
  4624. if (a->grad) {
  4625. GGML_ASSERT(false); // TODO: implement backward
  4626. is_node = true;
  4627. }
  4628. // TODO: when implement backward, fix this:
  4629. //struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4630. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  4631. int32_t op_params[3] = { n_past, n_head };
  4632. memcpy(op_params + 2, &bias_max, sizeof(float));
  4633. ggml_set_op_params(result, op_params, sizeof(op_params));
  4634. result->op = GGML_OP_ALIBI;
  4635. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4636. result->src[0] = a;
  4637. return result;
  4638. }
  4639. // ggml_clamp
  4640. struct ggml_tensor * ggml_clamp(
  4641. struct ggml_context * ctx,
  4642. struct ggml_tensor * a,
  4643. float min,
  4644. float max) {
  4645. bool is_node = false;
  4646. if (a->grad) {
  4647. GGML_ASSERT(false); // TODO: implement backward
  4648. is_node = true;
  4649. }
  4650. // TODO: when implement backward, fix this:
  4651. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  4652. float params[] = { min, max };
  4653. ggml_set_op_params(result, params, sizeof(params));
  4654. result->op = GGML_OP_CLAMP;
  4655. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4656. result->src[0] = a;
  4657. return result;
  4658. }
  4659. // ggml_conv_1d
  4660. static int64_t ggml_calc_conv_output_size(int64_t ins, int64_t ks, int s, int p, int d) {
  4661. return (ins + 2 * p - d * (ks - 1) - 1) / s + 1;
  4662. }
  4663. GGML_API struct ggml_tensor * ggml_conv_1d(
  4664. struct ggml_context * ctx,
  4665. struct ggml_tensor * a,
  4666. struct ggml_tensor * b,
  4667. int s0,
  4668. int p0,
  4669. int d0) {
  4670. struct ggml_tensor * im2col = ggml_im2col(ctx, a, b, s0, 0, p0, 0, d0, 0, false, GGML_TYPE_F16); // [N, OL, IC * K]
  4671. struct ggml_tensor * result =
  4672. ggml_mul_mat(ctx,
  4673. ggml_reshape_2d(ctx, im2col, im2col->ne[0], (im2col->ne[2] * im2col->ne[1])), // [N, OL, IC * K] => [N*OL, IC * K]
  4674. ggml_reshape_2d(ctx, a, (a->ne[0] * a->ne[1]), a->ne[2])); // [OC,IC, K] => [OC, IC * K]
  4675. result = ggml_reshape_3d(ctx, result, im2col->ne[1], a->ne[2], im2col->ne[2]); // [N, OC, OL]
  4676. return result;
  4677. }
  4678. // ggml_conv_1d_ph
  4679. struct ggml_tensor* ggml_conv_1d_ph(
  4680. struct ggml_context * ctx,
  4681. struct ggml_tensor * a,
  4682. struct ggml_tensor * b,
  4683. int s,
  4684. int d) {
  4685. return ggml_conv_1d(ctx, a, b, s, a->ne[0] / 2, d);
  4686. }
  4687. // ggml_conv_transpose_1d
  4688. static int64_t ggml_calc_conv_transpose_1d_output_size(int64_t ins, int64_t ks, int s, int p, int d) {
  4689. return (ins - 1) * s - 2 * p + d * (ks - 1) + 1;
  4690. }
  4691. GGML_API struct ggml_tensor * ggml_conv_transpose_1d(
  4692. struct ggml_context * ctx,
  4693. struct ggml_tensor * a,
  4694. struct ggml_tensor * b,
  4695. int s0,
  4696. int p0,
  4697. int d0) {
  4698. GGML_ASSERT(ggml_is_matrix(b));
  4699. GGML_ASSERT(a->ne[2] == b->ne[1]);
  4700. GGML_ASSERT(a->ne[3] == 1);
  4701. GGML_ASSERT(p0 == 0);
  4702. GGML_ASSERT(d0 == 1);
  4703. bool is_node = false;
  4704. if (a->grad || b->grad) {
  4705. GGML_ASSERT(false); // TODO: implement backward
  4706. is_node = true;
  4707. }
  4708. const int64_t ne[4] = {
  4709. ggml_calc_conv_transpose_1d_output_size(b->ne[0], a->ne[0], s0, 0 /*p0*/, 1 /*d0*/),
  4710. a->ne[1], b->ne[2], 1,
  4711. };
  4712. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  4713. int32_t params[] = { s0, p0, d0 };
  4714. ggml_set_op_params(result, params, sizeof(params));
  4715. result->op = GGML_OP_CONV_TRANSPOSE_1D;
  4716. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4717. result->src[0] = a;
  4718. result->src[1] = b;
  4719. return result;
  4720. }
  4721. // ggml_conv_depthwise
  4722. struct ggml_tensor * ggml_conv_depthwise_2d(
  4723. struct ggml_context * ctx,
  4724. struct ggml_tensor * a,
  4725. struct ggml_tensor * b,
  4726. int s0,
  4727. int s1,
  4728. int p0,
  4729. int p1,
  4730. int d0,
  4731. int d1) {
  4732. struct ggml_tensor * new_a = ggml_reshape_4d(ctx, a, a->ne[0], a->ne[1], 1, a->ne[2] * a->ne[3]);
  4733. struct ggml_tensor * im2col = ggml_im2col(ctx, new_a,
  4734. ggml_reshape_4d(ctx, b, b->ne[0], b->ne[1], 1, b->ne[2] * b->ne[3]),
  4735. s0, s1, p0, p1, d0, d1, true, GGML_TYPE_F16); // [N * IC, OH, OW, KH * KW]
  4736. struct ggml_tensor * new_b = ggml_reshape_4d(ctx, im2col, im2col->ne[0], im2col->ne[2] * im2col->ne[1], b->ne[2], b->ne[3]); // [N * IC, OH, OW, KH * KW] => [N, IC, OH * OW, KH * KW]
  4737. new_a = ggml_reshape_4d(ctx, new_a, (new_a->ne[0] * new_a->ne[1]), new_a->ne[2], new_a->ne[3], 1); // [OC,1, KH, KW] => [1, OC, 1, KH * KW]
  4738. struct ggml_tensor * result = ggml_mul_mat(ctx, new_a, new_b);
  4739. result = ggml_reshape_4d(ctx, result, im2col->ne[1], im2col->ne[2], b->ne[2], b->ne[3]); // [N, OC, OH, OW]
  4740. return result;
  4741. }
  4742. // ggml_conv_2d
  4743. // im2col: [N, IC, IH, IW] => [N, OH, OW, IC*KH*KW]
  4744. // a: [OC,IC, KH, KW]
  4745. // b: [N, IC, IH, IW]
  4746. // result: [N, OH, OW, IC*KH*KW]
  4747. struct ggml_tensor * ggml_im2col(
  4748. struct ggml_context * ctx,
  4749. struct ggml_tensor * a,
  4750. struct ggml_tensor * b,
  4751. int s0,
  4752. int s1,
  4753. int p0,
  4754. int p1,
  4755. int d0,
  4756. int d1,
  4757. bool is_2D,
  4758. enum ggml_type dst_type) {
  4759. if(is_2D) {
  4760. GGML_ASSERT(a->ne[2] == b->ne[2]);
  4761. } else {
  4762. GGML_ASSERT(a->ne[1] == b->ne[1]);
  4763. }
  4764. bool is_node = false;
  4765. if (a->grad || b->grad) {
  4766. GGML_ASSERT(false); // TODO: implement backward
  4767. is_node = true;
  4768. }
  4769. const int64_t OH = is_2D ? ggml_calc_conv_output_size(b->ne[1], a->ne[1], s1, p1, d1) : 0;
  4770. const int64_t OW = ggml_calc_conv_output_size(b->ne[0], a->ne[0], s0, p0, d0);
  4771. const int64_t ne[4] = {
  4772. is_2D ? (a->ne[2] * a->ne[1] * a->ne[0]) : a->ne[1] * a->ne[0],
  4773. OW,
  4774. is_2D ? OH : b->ne[2],
  4775. is_2D ? b->ne[3] : 1,
  4776. };
  4777. struct ggml_tensor * result = ggml_new_tensor(ctx, dst_type, 4, ne);
  4778. int32_t params[] = { s0, s1, p0, p1, d0, d1, (is_2D ? 1 : 0) };
  4779. ggml_set_op_params(result, params, sizeof(params));
  4780. result->op = GGML_OP_IM2COL;
  4781. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4782. result->src[0] = a;
  4783. result->src[1] = b;
  4784. return result;
  4785. }
  4786. // a: [OC,IC, KH, KW]
  4787. // b: [N, IC, IH, IW]
  4788. // result: [N, OC, OH, OW]
  4789. struct ggml_tensor * ggml_conv_2d(
  4790. struct ggml_context * ctx,
  4791. struct ggml_tensor * a,
  4792. struct ggml_tensor * b,
  4793. int s0,
  4794. int s1,
  4795. int p0,
  4796. int p1,
  4797. int d0,
  4798. int d1) {
  4799. struct ggml_tensor * im2col = ggml_im2col(ctx, a, b, s0, s1, p0, p1, d0, d1, true, GGML_TYPE_F16); // [N, OH, OW, IC * KH * KW]
  4800. struct ggml_tensor * result =
  4801. ggml_mul_mat(ctx,
  4802. ggml_reshape_2d(ctx, im2col, im2col->ne[0], im2col->ne[3] * im2col->ne[2] * im2col->ne[1]), // [N, OH, OW, IC * KH * KW] => [N*OH*OW, IC * KH * KW]
  4803. ggml_reshape_2d(ctx, a, (a->ne[0] * a->ne[1] * a->ne[2]), a->ne[3])); // [OC,IC, KH, KW] => [OC, IC * KH * KW]
  4804. result = ggml_reshape_4d(ctx, result, im2col->ne[1], im2col->ne[2], im2col->ne[3], a->ne[3]); // [OC, N, OH, OW]
  4805. result = ggml_cont(ctx, ggml_permute(ctx, result, 0, 1, 3, 2)); // [N, OC, OH, OW]
  4806. return result;
  4807. }
  4808. // ggml_conv_2d_sk_p0
  4809. struct ggml_tensor * ggml_conv_2d_sk_p0(
  4810. struct ggml_context * ctx,
  4811. struct ggml_tensor * a,
  4812. struct ggml_tensor * b) {
  4813. return ggml_conv_2d(ctx, a, b, a->ne[0], a->ne[1], 0, 0, 1, 1);
  4814. }
  4815. // ggml_conv_2d_s1_ph
  4816. struct ggml_tensor * ggml_conv_2d_s1_ph(
  4817. struct ggml_context * ctx,
  4818. struct ggml_tensor * a,
  4819. struct ggml_tensor * b) {
  4820. return ggml_conv_2d(ctx, a, b, 1, 1, a->ne[0] / 2, a->ne[1] / 2, 1, 1);
  4821. }
  4822. // ggml_conv_transpose_2d_p0
  4823. static int64_t ggml_calc_conv_transpose_output_size(int64_t ins, int64_t ks, int s, int p) {
  4824. return (ins - 1) * s - 2 * p + ks;
  4825. }
  4826. struct ggml_tensor * ggml_conv_transpose_2d_p0(
  4827. struct ggml_context * ctx,
  4828. struct ggml_tensor * a,
  4829. struct ggml_tensor * b,
  4830. int stride) {
  4831. GGML_ASSERT(a->ne[3] == b->ne[2]);
  4832. bool is_node = false;
  4833. if (a->grad || b->grad) {
  4834. GGML_ASSERT(false); // TODO: implement backward
  4835. is_node = true;
  4836. }
  4837. const int64_t ne[4] = {
  4838. ggml_calc_conv_transpose_output_size(b->ne[0], a->ne[0], stride, 0 /*p0*/),
  4839. ggml_calc_conv_transpose_output_size(b->ne[1], a->ne[1], stride, 0 /*p1*/),
  4840. a->ne[2], b->ne[3],
  4841. };
  4842. struct ggml_tensor* result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  4843. ggml_set_op_params_i32(result, 0, stride);
  4844. result->op = GGML_OP_CONV_TRANSPOSE_2D;
  4845. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4846. result->src[0] = a;
  4847. result->src[1] = b;
  4848. return result;
  4849. }
  4850. // ggml_pool_*
  4851. static int64_t ggml_calc_pool_output_size(int64_t ins, int ks, int s, float p) {
  4852. return (ins + 2 * p - ks) / s + 1;
  4853. }
  4854. // ggml_pool_1d
  4855. struct ggml_tensor * ggml_pool_1d(
  4856. struct ggml_context * ctx,
  4857. struct ggml_tensor * a,
  4858. enum ggml_op_pool op,
  4859. int k0,
  4860. int s0,
  4861. int p0) {
  4862. bool is_node = false;
  4863. if (a->grad) {
  4864. GGML_ASSERT(false); // TODO: implement backward
  4865. is_node = true;
  4866. }
  4867. const int64_t ne[4] = {
  4868. ggml_calc_pool_output_size(a->ne[0], k0, s0, p0),
  4869. a->ne[1],
  4870. a->ne[2],
  4871. a->ne[3],
  4872. };
  4873. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  4874. int32_t params[] = { op, k0, s0, p0 };
  4875. ggml_set_op_params(result, params, sizeof(params));
  4876. result->op = GGML_OP_POOL_1D;
  4877. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4878. result->src[0] = a;
  4879. return result;
  4880. }
  4881. // ggml_pool_2d
  4882. struct ggml_tensor * ggml_pool_2d(
  4883. struct ggml_context * ctx,
  4884. struct ggml_tensor * a,
  4885. enum ggml_op_pool op,
  4886. int k0,
  4887. int k1,
  4888. int s0,
  4889. int s1,
  4890. float p0,
  4891. float p1) {
  4892. bool is_node = false;
  4893. if (a->grad) {
  4894. GGML_ASSERT(false); // TODO: implement backward
  4895. is_node = true;
  4896. }
  4897. struct ggml_tensor * result;
  4898. const int64_t ne[3] = {
  4899. ggml_calc_pool_output_size(a->ne[0], k0, s0, p0),
  4900. ggml_calc_pool_output_size(a->ne[1], k1, s1, p1),
  4901. a->ne[2],
  4902. };
  4903. result = ggml_new_tensor(ctx, GGML_TYPE_F32, 3, ne);
  4904. int32_t params[] = { op, k0, k1, s0, s1, p0, p1 };
  4905. ggml_set_op_params(result, params, sizeof(params));
  4906. result->op = GGML_OP_POOL_2D;
  4907. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4908. result->src[0] = a;
  4909. return result;
  4910. }
  4911. // ggml_upscale
  4912. static struct ggml_tensor * ggml_upscale_impl(
  4913. struct ggml_context * ctx,
  4914. struct ggml_tensor * a,
  4915. int scale_factor) {
  4916. bool is_node = false;
  4917. if (a->grad) {
  4918. GGML_ASSERT(false); // TODO: implement backward
  4919. is_node = true;
  4920. }
  4921. struct ggml_tensor * result = ggml_new_tensor_4d(ctx, a->type,
  4922. a->ne[0] * scale_factor,
  4923. a->ne[1] * scale_factor,
  4924. a->ne[2], a->ne[3]);
  4925. result->op = GGML_OP_UPSCALE;
  4926. result->op_params[0] = scale_factor;
  4927. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4928. result->src[0] = a;
  4929. return result;
  4930. }
  4931. struct ggml_tensor * ggml_pad(
  4932. struct ggml_context * ctx,
  4933. struct ggml_tensor * a,
  4934. int p0, int p1, int p2, int p3) {
  4935. bool is_node = false;
  4936. if (a->grad) {
  4937. GGML_ASSERT(false); // TODO: implement backward
  4938. is_node = true;
  4939. }
  4940. struct ggml_tensor * result = ggml_new_tensor_4d(ctx, a->type,
  4941. a->ne[0] + p0,
  4942. a->ne[1] + p1,
  4943. a->ne[2] + p2,
  4944. a->ne[3] + p3);
  4945. result->op = GGML_OP_PAD;
  4946. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4947. result->src[0] = a;
  4948. return result;
  4949. }
  4950. struct ggml_tensor * ggml_upscale(
  4951. struct ggml_context * ctx,
  4952. struct ggml_tensor * a,
  4953. int scale_factor) {
  4954. return ggml_upscale_impl(ctx, a, scale_factor);
  4955. }
  4956. struct ggml_tensor * ggml_arange(
  4957. struct ggml_context * ctx,
  4958. float start,
  4959. float stop,
  4960. float step) {
  4961. GGML_ASSERT(stop > start);
  4962. const int64_t steps = (int64_t) ceilf((stop - start) / step);
  4963. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, steps);
  4964. result->op = GGML_OP_ARANGE;
  4965. ggml_set_op_params_f32(result, 0, start);
  4966. ggml_set_op_params_f32(result, 1, stop);
  4967. ggml_set_op_params_f32(result, 2, step);
  4968. return result;
  4969. }
  4970. struct ggml_tensor * ggml_timestep_embedding(
  4971. struct ggml_context * ctx,
  4972. struct ggml_tensor * timesteps,
  4973. int dim,
  4974. int max_period) {
  4975. bool is_node = false;
  4976. if (timesteps->grad) {
  4977. GGML_ASSERT(false); // TODO: implement backward
  4978. is_node = true;
  4979. }
  4980. int actual_dim = dim;
  4981. if (dim % 2 != 0) {
  4982. actual_dim = dim + 1;
  4983. }
  4984. struct ggml_tensor * result = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, actual_dim, timesteps->ne[0]);
  4985. result->op = GGML_OP_TIMESTEP_EMBEDDING;
  4986. ggml_set_op_params_i32(result, 0, dim);
  4987. ggml_set_op_params_i32(result, 1, max_period);
  4988. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4989. result->src[0] = timesteps;
  4990. return result;
  4991. }
  4992. // ggml_argsort
  4993. struct ggml_tensor * ggml_argsort(
  4994. struct ggml_context * ctx,
  4995. struct ggml_tensor * a,
  4996. enum ggml_sort_order order) {
  4997. bool is_node = false;
  4998. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_I32, GGML_MAX_DIMS, a->ne);
  4999. ggml_set_op_params_i32(result, 0, (int32_t) order);
  5000. result->op = GGML_OP_ARGSORT;
  5001. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5002. result->src[0] = a;
  5003. return result;
  5004. }
  5005. // ggml_top_k
  5006. struct ggml_tensor * ggml_top_k(
  5007. struct ggml_context * ctx,
  5008. struct ggml_tensor * a,
  5009. int k) {
  5010. GGML_ASSERT(a->ne[0] >= k);
  5011. struct ggml_tensor * result = ggml_argsort(ctx, a, GGML_SORT_ORDER_DESC);
  5012. result = ggml_view_4d(ctx, result,
  5013. k, result->ne[1], result->ne[2], result->ne[3],
  5014. result->nb[1], result->nb[2], result->nb[3],
  5015. 0);
  5016. return result;
  5017. }
  5018. // ggml_flash_attn
  5019. struct ggml_tensor * ggml_flash_attn(
  5020. struct ggml_context * ctx,
  5021. struct ggml_tensor * q,
  5022. struct ggml_tensor * k,
  5023. struct ggml_tensor * v,
  5024. bool masked) {
  5025. GGML_ASSERT(ggml_can_mul_mat(k, q));
  5026. // TODO: check if vT can be multiplied by (k*qT)
  5027. bool is_node = false;
  5028. if (q->grad || k->grad || v->grad) {
  5029. is_node = true;
  5030. }
  5031. //struct ggml_tensor * result = ggml_dup_tensor(ctx, q);
  5032. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, GGML_MAX_DIMS, q->ne);
  5033. int32_t t = masked ? 1 : 0;
  5034. ggml_set_op_params(result, &t, sizeof(t));
  5035. result->op = GGML_OP_FLASH_ATTN;
  5036. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5037. result->src[0] = q;
  5038. result->src[1] = k;
  5039. result->src[2] = v;
  5040. return result;
  5041. }
  5042. // ggml_flash_ff
  5043. struct ggml_tensor * ggml_flash_ff(
  5044. struct ggml_context * ctx,
  5045. struct ggml_tensor * a,
  5046. struct ggml_tensor * b0,
  5047. struct ggml_tensor * b1,
  5048. struct ggml_tensor * c0,
  5049. struct ggml_tensor * c1) {
  5050. GGML_ASSERT(ggml_can_mul_mat(b0, a));
  5051. // TODO: more checks
  5052. bool is_node = false;
  5053. if (a->grad || b0->grad || b1->grad || c0->grad || c1->grad) {
  5054. is_node = true;
  5055. }
  5056. //struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  5057. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, GGML_MAX_DIMS, a->ne);
  5058. result->op = GGML_OP_FLASH_FF;
  5059. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5060. result->src[0] = a;
  5061. result->src[1] = b0;
  5062. result->src[2] = b1;
  5063. result->src[3] = c0;
  5064. result->src[4] = c1;
  5065. return result;
  5066. }
  5067. // ggml_flash_attn_back
  5068. struct ggml_tensor * ggml_flash_attn_back(
  5069. struct ggml_context * ctx,
  5070. struct ggml_tensor * q,
  5071. struct ggml_tensor * k,
  5072. struct ggml_tensor * v,
  5073. struct ggml_tensor * d,
  5074. bool masked) {
  5075. GGML_ASSERT(ggml_can_mul_mat(k, q));
  5076. // TODO: check if vT can be multiplied by (k*qT)
  5077. // d shape [D,N,ne2,ne3]
  5078. // q shape [D,N,ne2,ne3]
  5079. // k shape [D,M,kvne2,ne3]
  5080. // v shape [M,D,kvne2,ne3]
  5081. const int64_t D = q->ne[0];
  5082. const int64_t N = q->ne[1];
  5083. const int64_t M = k->ne[1];
  5084. const int64_t ne2 = q->ne[2];
  5085. const int64_t ne3 = q->ne[3];
  5086. const int64_t kvne2 = k->ne[2];
  5087. GGML_ASSERT(k->ne[0] == D);
  5088. GGML_ASSERT(v->ne[0] == M);
  5089. GGML_ASSERT(v->ne[1] == D);
  5090. GGML_ASSERT(d->ne[0] == D);
  5091. GGML_ASSERT(d->ne[1] == N);
  5092. GGML_ASSERT(k->ne[2] == kvne2);
  5093. GGML_ASSERT(k->ne[3] == ne3);
  5094. GGML_ASSERT(v->ne[2] == kvne2);
  5095. GGML_ASSERT(v->ne[3] == ne3);
  5096. GGML_ASSERT(d->ne[2] == ne2);
  5097. GGML_ASSERT(d->ne[3] == ne3);
  5098. GGML_ASSERT(ne2 % kvne2 == 0);
  5099. bool is_node = false;
  5100. if (q->grad || k->grad || v->grad) {
  5101. // when using this operation (in backwards pass) these grads are set.
  5102. // we don't want to create (big) grad of our result, so is_node is false.
  5103. is_node = false;
  5104. }
  5105. // store gradients of q, k and v as continuous tensors concatenated in result.
  5106. // note: v and gradv are actually transposed, i.e. v->ne[0] != D.
  5107. const int64_t elem_q = ggml_nelements(q);
  5108. const int64_t elem_k = ggml_nelements(k);
  5109. const int64_t elem_v = ggml_nelements(v);
  5110. enum ggml_type result_type = GGML_TYPE_F32;
  5111. GGML_ASSERT(ggml_blck_size(result_type) == 1);
  5112. const size_t tsize = ggml_type_size(result_type);
  5113. const size_t offs_q = 0;
  5114. const size_t offs_k = offs_q + GGML_PAD(elem_q * tsize, GGML_MEM_ALIGN);
  5115. const size_t offs_v = offs_k + GGML_PAD(elem_k * tsize, GGML_MEM_ALIGN);
  5116. const size_t end = offs_v + GGML_PAD(elem_v * tsize, GGML_MEM_ALIGN);
  5117. const size_t nelements = (end + tsize - 1)/tsize;
  5118. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nelements);
  5119. int32_t masked_i = masked ? 1 : 0;
  5120. ggml_set_op_params(result, &masked_i, sizeof(masked_i));
  5121. result->op = GGML_OP_FLASH_ATTN_BACK;
  5122. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5123. result->src[0] = q;
  5124. result->src[1] = k;
  5125. result->src[2] = v;
  5126. result->src[3] = d;
  5127. return result;
  5128. }
  5129. // ggml_ssm_conv
  5130. struct ggml_tensor * ggml_ssm_conv(
  5131. struct ggml_context * ctx,
  5132. struct ggml_tensor * s,
  5133. struct ggml_tensor * x,
  5134. struct ggml_tensor * c,
  5135. struct ggml_tensor * sq) {
  5136. GGML_ASSERT(ggml_is_3d(s));
  5137. GGML_ASSERT(ggml_is_matrix(x));
  5138. GGML_ASSERT(ggml_is_matrix(c));
  5139. GGML_ASSERT(ggml_is_matrix(sq));
  5140. GGML_ASSERT(sq->type == GGML_TYPE_I32);
  5141. const int64_t d_conv = c->ne[0];
  5142. const int64_t d_inner = c->ne[1];
  5143. const int64_t n_tokens = x->ne[1];
  5144. const int64_t n_kv = s->ne[2];
  5145. GGML_ASSERT( s->ne[0] == d_conv - 1);
  5146. GGML_ASSERT( s->ne[1] == d_inner);
  5147. GGML_ASSERT( x->ne[0] == d_inner);
  5148. GGML_ASSERT(sq->ne[0] == n_kv);
  5149. GGML_ASSERT(sq->ne[1] == n_tokens);
  5150. bool is_node = false;
  5151. if (s->grad || x->grad || c->grad || sq->grad) {
  5152. GGML_ASSERT(false); // TODO: implement
  5153. is_node = true;
  5154. }
  5155. // 2-in-1 concatenated x and conv_states, {d_inner, n_tokens} with {d_conv, d_inner, n_kv}
  5156. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, (d_inner*n_tokens) + (d_conv*d_inner*n_kv));
  5157. result->op = GGML_OP_SSM_CONV;
  5158. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5159. result->src[0] = s;
  5160. result->src[1] = x;
  5161. result->src[2] = c;
  5162. result->src[3] = sq;
  5163. return result;
  5164. }
  5165. // ggml_ssm_scan
  5166. struct ggml_tensor * ggml_ssm_scan(
  5167. struct ggml_context * ctx,
  5168. struct ggml_tensor * s,
  5169. struct ggml_tensor * x,
  5170. struct ggml_tensor * dt,
  5171. struct ggml_tensor * A,
  5172. struct ggml_tensor * B,
  5173. struct ggml_tensor * C,
  5174. struct ggml_tensor * sq) {
  5175. GGML_ASSERT(ggml_is_contiguous(s));
  5176. GGML_ASSERT(ggml_is_contiguous(x));
  5177. GGML_ASSERT(ggml_is_contiguous(dt));
  5178. GGML_ASSERT(ggml_is_contiguous(A));
  5179. GGML_ASSERT(sq->type == GGML_TYPE_I32);
  5180. GGML_ASSERT(B->nb[0] == ggml_type_size(B->type));
  5181. GGML_ASSERT(C->nb[0] == ggml_type_size(C->type));
  5182. GGML_ASSERT(ggml_are_same_shape(x, dt));
  5183. {
  5184. const int64_t d_state = s->ne[0];
  5185. const int64_t d_inner = s->ne[1];
  5186. const int64_t n_tokens = x->ne[1];
  5187. GGML_ASSERT(x->ne[0] == d_inner);
  5188. GGML_ASSERT(A->ne[0] == d_state);
  5189. GGML_ASSERT(A->ne[1] == d_inner);
  5190. GGML_ASSERT(B->ne[0] == d_state);
  5191. GGML_ASSERT(B->ne[1] == n_tokens);
  5192. GGML_ASSERT(C->ne[0] == d_state);
  5193. GGML_ASSERT(C->ne[1] == n_tokens);
  5194. }
  5195. bool is_node = false;
  5196. if (s->grad || x->grad || dt->grad || A->grad || B->grad || C->grad || sq->grad) {
  5197. GGML_ASSERT(false); // TODO: implement
  5198. is_node = true;
  5199. }
  5200. // 2-in-1 concatenated y and ssm_states, {d_inner, n_tokens} with {d_state, d_inner, n_kv}
  5201. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, ggml_nelements(x) + ggml_nelements(s));
  5202. result->op = GGML_OP_SSM_SCAN;
  5203. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5204. result->src[0] = s;
  5205. result->src[1] = x;
  5206. result->src[2] = dt;
  5207. result->src[3] = A;
  5208. result->src[4] = B;
  5209. result->src[5] = C;
  5210. result->src[6] = sq;
  5211. return result;
  5212. }
  5213. // ggml_win_part
  5214. struct ggml_tensor * ggml_win_part(
  5215. struct ggml_context * ctx,
  5216. struct ggml_tensor * a,
  5217. int w) {
  5218. GGML_ASSERT(a->ne[3] == 1);
  5219. GGML_ASSERT(a->type == GGML_TYPE_F32);
  5220. bool is_node = false;
  5221. if (a->grad) {
  5222. GGML_ASSERT(false); // TODO: implement backward
  5223. is_node = true;
  5224. }
  5225. // padding
  5226. const int px = (w - a->ne[1]%w)%w;
  5227. const int py = (w - a->ne[2]%w)%w;
  5228. const int npx = (px + a->ne[1])/w;
  5229. const int npy = (py + a->ne[2])/w;
  5230. const int np = npx*npy;
  5231. const int64_t ne[4] = { a->ne[0], w, w, np, };
  5232. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  5233. int32_t params[] = { npx, npy, w };
  5234. ggml_set_op_params(result, params, sizeof(params));
  5235. result->op = GGML_OP_WIN_PART;
  5236. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5237. result->src[0] = a;
  5238. return result;
  5239. }
  5240. // ggml_win_unpart
  5241. struct ggml_tensor * ggml_win_unpart(
  5242. struct ggml_context * ctx,
  5243. struct ggml_tensor * a,
  5244. int w0,
  5245. int h0,
  5246. int w) {
  5247. GGML_ASSERT(a->type == GGML_TYPE_F32);
  5248. bool is_node = false;
  5249. if (a->grad) {
  5250. GGML_ASSERT(false); // TODO: implement backward
  5251. is_node = true;
  5252. }
  5253. const int64_t ne[4] = { a->ne[0], w0, h0, 1, };
  5254. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 3, ne);
  5255. int32_t params[] = { w };
  5256. ggml_set_op_params(result, params, sizeof(params));
  5257. result->op = GGML_OP_WIN_UNPART;
  5258. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5259. result->src[0] = a;
  5260. return result;
  5261. }
  5262. // ggml_get_rel_pos
  5263. struct ggml_tensor * ggml_get_rel_pos(
  5264. struct ggml_context * ctx,
  5265. struct ggml_tensor * a,
  5266. int qh,
  5267. int kh) {
  5268. GGML_ASSERT(qh == kh);
  5269. GGML_ASSERT(2*MAX(qh, kh) - 1 == a->ne[1]);
  5270. bool is_node = false;
  5271. if (a->grad) {
  5272. GGML_ASSERT(false); // TODO: implement backward
  5273. is_node = true;
  5274. }
  5275. const int64_t ne[4] = { a->ne[0], kh, qh, 1, };
  5276. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F16, 3, ne);
  5277. result->op = GGML_OP_GET_REL_POS;
  5278. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5279. result->src[0] = a;
  5280. return result;
  5281. }
  5282. // ggml_add_rel_pos
  5283. static struct ggml_tensor * ggml_add_rel_pos_impl(
  5284. struct ggml_context * ctx,
  5285. struct ggml_tensor * a,
  5286. struct ggml_tensor * pw,
  5287. struct ggml_tensor * ph,
  5288. bool inplace) {
  5289. GGML_ASSERT(ggml_are_same_shape(pw, ph));
  5290. GGML_ASSERT(ggml_is_contiguous(a));
  5291. GGML_ASSERT(ggml_is_contiguous(pw));
  5292. GGML_ASSERT(ggml_is_contiguous(ph));
  5293. GGML_ASSERT(ph->type == GGML_TYPE_F32);
  5294. GGML_ASSERT(pw->type == GGML_TYPE_F32);
  5295. GGML_ASSERT(pw->ne[3] == a->ne[2]);
  5296. GGML_ASSERT(pw->ne[0]*pw->ne[0] == a->ne[0]);
  5297. GGML_ASSERT(pw->ne[1]*pw->ne[2] == a->ne[1]);
  5298. bool is_node = false;
  5299. if (!inplace && (a->grad || pw->grad || ph->grad)) {
  5300. is_node = true;
  5301. }
  5302. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5303. ggml_set_op_params_i32(result, 0, inplace ? 1 : 0);
  5304. result->op = GGML_OP_ADD_REL_POS;
  5305. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5306. result->src[0] = a;
  5307. result->src[1] = pw;
  5308. result->src[2] = ph;
  5309. return result;
  5310. }
  5311. struct ggml_tensor * ggml_add_rel_pos(
  5312. struct ggml_context * ctx,
  5313. struct ggml_tensor * a,
  5314. struct ggml_tensor * pw,
  5315. struct ggml_tensor * ph) {
  5316. return ggml_add_rel_pos_impl(ctx, a, pw, ph, false);
  5317. }
  5318. struct ggml_tensor * ggml_add_rel_pos_inplace(
  5319. struct ggml_context * ctx,
  5320. struct ggml_tensor * a,
  5321. struct ggml_tensor * pw,
  5322. struct ggml_tensor * ph) {
  5323. return ggml_add_rel_pos_impl(ctx, a, pw, ph, true);
  5324. }
  5325. // gmml_unary
  5326. static struct ggml_tensor * ggml_unary_impl(
  5327. struct ggml_context * ctx,
  5328. struct ggml_tensor * a,
  5329. enum ggml_unary_op op,
  5330. bool inplace) {
  5331. bool is_node = false;
  5332. if (!inplace && (a->grad)) {
  5333. is_node = true;
  5334. }
  5335. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5336. ggml_set_op_params_i32(result, 0, (int32_t) op);
  5337. result->op = GGML_OP_UNARY;
  5338. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5339. result->src[0] = a;
  5340. return result;
  5341. }
  5342. struct ggml_tensor * ggml_unary(
  5343. struct ggml_context * ctx,
  5344. struct ggml_tensor * a,
  5345. enum ggml_unary_op op) {
  5346. return ggml_unary_impl(ctx, a, op, false);
  5347. }
  5348. struct ggml_tensor * ggml_unary_inplace(
  5349. struct ggml_context * ctx,
  5350. struct ggml_tensor * a,
  5351. enum ggml_unary_op op) {
  5352. return ggml_unary_impl(ctx, a, op, true);
  5353. }
  5354. // ggml_map_unary
  5355. static struct ggml_tensor * ggml_map_unary_impl_f32(
  5356. struct ggml_context * ctx,
  5357. struct ggml_tensor * a,
  5358. const ggml_unary_op_f32_t fun,
  5359. bool inplace) {
  5360. bool is_node = false;
  5361. if (!inplace && a->grad) {
  5362. is_node = true;
  5363. }
  5364. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5365. ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
  5366. result->op = GGML_OP_MAP_UNARY;
  5367. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5368. result->src[0] = a;
  5369. return result;
  5370. }
  5371. struct ggml_tensor * ggml_map_unary_f32(
  5372. struct ggml_context * ctx,
  5373. struct ggml_tensor * a,
  5374. const ggml_unary_op_f32_t fun) {
  5375. return ggml_map_unary_impl_f32(ctx, a, fun, false);
  5376. }
  5377. struct ggml_tensor * ggml_map_unary_inplace_f32(
  5378. struct ggml_context * ctx,
  5379. struct ggml_tensor * a,
  5380. const ggml_unary_op_f32_t fun) {
  5381. return ggml_map_unary_impl_f32(ctx, a, fun, true);
  5382. }
  5383. // ggml_map_binary
  5384. static struct ggml_tensor * ggml_map_binary_impl_f32(
  5385. struct ggml_context * ctx,
  5386. struct ggml_tensor * a,
  5387. struct ggml_tensor * b,
  5388. const ggml_binary_op_f32_t fun,
  5389. bool inplace) {
  5390. GGML_ASSERT(ggml_are_same_shape(a, b));
  5391. bool is_node = false;
  5392. if (!inplace && (a->grad || b->grad)) {
  5393. is_node = true;
  5394. }
  5395. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5396. ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
  5397. result->op = GGML_OP_MAP_BINARY;
  5398. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5399. result->src[0] = a;
  5400. result->src[1] = b;
  5401. return result;
  5402. }
  5403. struct ggml_tensor * ggml_map_binary_f32(
  5404. struct ggml_context * ctx,
  5405. struct ggml_tensor * a,
  5406. struct ggml_tensor * b,
  5407. const ggml_binary_op_f32_t fun) {
  5408. return ggml_map_binary_impl_f32(ctx, a, b, fun, false);
  5409. }
  5410. struct ggml_tensor * ggml_map_binary_inplace_f32(
  5411. struct ggml_context * ctx,
  5412. struct ggml_tensor * a,
  5413. struct ggml_tensor * b,
  5414. const ggml_binary_op_f32_t fun) {
  5415. return ggml_map_binary_impl_f32(ctx, a, b, fun, true);
  5416. }
  5417. // ggml_map_custom1_f32
  5418. static struct ggml_tensor * ggml_map_custom1_impl_f32(
  5419. struct ggml_context * ctx,
  5420. struct ggml_tensor * a,
  5421. const ggml_custom1_op_f32_t fun,
  5422. bool inplace) {
  5423. bool is_node = false;
  5424. if (!inplace && a->grad) {
  5425. is_node = true;
  5426. }
  5427. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5428. ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
  5429. result->op = GGML_OP_MAP_CUSTOM1_F32;
  5430. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5431. result->src[0] = a;
  5432. return result;
  5433. }
  5434. struct ggml_tensor * ggml_map_custom1_f32(
  5435. struct ggml_context * ctx,
  5436. struct ggml_tensor * a,
  5437. const ggml_custom1_op_f32_t fun) {
  5438. return ggml_map_custom1_impl_f32(ctx, a, fun, false);
  5439. }
  5440. struct ggml_tensor * ggml_map_custom1_inplace_f32(
  5441. struct ggml_context * ctx,
  5442. struct ggml_tensor * a,
  5443. const ggml_custom1_op_f32_t fun) {
  5444. return ggml_map_custom1_impl_f32(ctx, a, fun, true);
  5445. }
  5446. // ggml_map_custom2_f32
  5447. static struct ggml_tensor * ggml_map_custom2_impl_f32(
  5448. struct ggml_context * ctx,
  5449. struct ggml_tensor * a,
  5450. struct ggml_tensor * b,
  5451. const ggml_custom2_op_f32_t fun,
  5452. bool inplace) {
  5453. bool is_node = false;
  5454. if (!inplace && (a->grad || b->grad)) {
  5455. is_node = true;
  5456. }
  5457. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5458. ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
  5459. result->op = GGML_OP_MAP_CUSTOM2_F32;
  5460. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5461. result->src[0] = a;
  5462. result->src[1] = b;
  5463. return result;
  5464. }
  5465. struct ggml_tensor * ggml_map_custom2_f32(
  5466. struct ggml_context * ctx,
  5467. struct ggml_tensor * a,
  5468. struct ggml_tensor * b,
  5469. const ggml_custom2_op_f32_t fun) {
  5470. return ggml_map_custom2_impl_f32(ctx, a, b, fun, false);
  5471. }
  5472. struct ggml_tensor * ggml_map_custom2_inplace_f32(
  5473. struct ggml_context * ctx,
  5474. struct ggml_tensor * a,
  5475. struct ggml_tensor * b,
  5476. const ggml_custom2_op_f32_t fun) {
  5477. return ggml_map_custom2_impl_f32(ctx, a, b, fun, true);
  5478. }
  5479. // ggml_map_custom3_f32
  5480. static struct ggml_tensor * ggml_map_custom3_impl_f32(
  5481. struct ggml_context * ctx,
  5482. struct ggml_tensor * a,
  5483. struct ggml_tensor * b,
  5484. struct ggml_tensor * c,
  5485. const ggml_custom3_op_f32_t fun,
  5486. bool inplace) {
  5487. bool is_node = false;
  5488. if (!inplace && (a->grad || b->grad || c->grad)) {
  5489. is_node = true;
  5490. }
  5491. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5492. ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
  5493. result->op = GGML_OP_MAP_CUSTOM3_F32;
  5494. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5495. result->src[0] = a;
  5496. result->src[1] = b;
  5497. result->src[2] = c;
  5498. return result;
  5499. }
  5500. struct ggml_tensor * ggml_map_custom3_f32(
  5501. struct ggml_context * ctx,
  5502. struct ggml_tensor * a,
  5503. struct ggml_tensor * b,
  5504. struct ggml_tensor * c,
  5505. const ggml_custom3_op_f32_t fun) {
  5506. return ggml_map_custom3_impl_f32(ctx, a, b, c, fun, false);
  5507. }
  5508. struct ggml_tensor * ggml_map_custom3_inplace_f32(
  5509. struct ggml_context * ctx,
  5510. struct ggml_tensor * a,
  5511. struct ggml_tensor * b,
  5512. struct ggml_tensor * c,
  5513. const ggml_custom3_op_f32_t fun) {
  5514. return ggml_map_custom3_impl_f32(ctx, a, b, c, fun, true);
  5515. }
  5516. // ggml_map_custom1
  5517. struct ggml_map_custom1_op_params {
  5518. ggml_custom1_op_t fun;
  5519. int n_tasks;
  5520. void * userdata;
  5521. };
  5522. static struct ggml_tensor * ggml_map_custom1_impl(
  5523. struct ggml_context * ctx,
  5524. struct ggml_tensor * a,
  5525. const ggml_custom1_op_t fun,
  5526. int n_tasks,
  5527. void * userdata,
  5528. bool inplace) {
  5529. GGML_ASSERT(n_tasks == GGML_N_TASKS_MAX || n_tasks > 0);
  5530. bool is_node = false;
  5531. if (!inplace && a->grad) {
  5532. is_node = true;
  5533. }
  5534. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5535. struct ggml_map_custom1_op_params params = {
  5536. /*.fun =*/ fun,
  5537. /*.n_tasks =*/ n_tasks,
  5538. /*.userdata =*/ userdata
  5539. };
  5540. ggml_set_op_params(result, (const void *) &params, sizeof(params));
  5541. result->op = GGML_OP_MAP_CUSTOM1;
  5542. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5543. result->src[0] = a;
  5544. return result;
  5545. }
  5546. struct ggml_tensor * ggml_map_custom1(
  5547. struct ggml_context * ctx,
  5548. struct ggml_tensor * a,
  5549. const ggml_custom1_op_t fun,
  5550. int n_tasks,
  5551. void * userdata) {
  5552. return ggml_map_custom1_impl(ctx, a, fun, n_tasks, userdata, false);
  5553. }
  5554. struct ggml_tensor * ggml_map_custom1_inplace(
  5555. struct ggml_context * ctx,
  5556. struct ggml_tensor * a,
  5557. const ggml_custom1_op_t fun,
  5558. int n_tasks,
  5559. void * userdata) {
  5560. return ggml_map_custom1_impl(ctx, a, fun, n_tasks, userdata, true);
  5561. }
  5562. // ggml_map_custom2
  5563. struct ggml_map_custom2_op_params {
  5564. ggml_custom2_op_t fun;
  5565. int n_tasks;
  5566. void * userdata;
  5567. };
  5568. static struct ggml_tensor * ggml_map_custom2_impl(
  5569. struct ggml_context * ctx,
  5570. struct ggml_tensor * a,
  5571. struct ggml_tensor * b,
  5572. const ggml_custom2_op_t fun,
  5573. int n_tasks,
  5574. void * userdata,
  5575. bool inplace) {
  5576. GGML_ASSERT(n_tasks == GGML_N_TASKS_MAX || n_tasks > 0);
  5577. bool is_node = false;
  5578. if (!inplace && (a->grad || b->grad)) {
  5579. is_node = true;
  5580. }
  5581. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5582. struct ggml_map_custom2_op_params params = {
  5583. /*.fun =*/ fun,
  5584. /*.n_tasks =*/ n_tasks,
  5585. /*.userdata =*/ userdata
  5586. };
  5587. ggml_set_op_params(result, (const void *) &params, sizeof(params));
  5588. result->op = GGML_OP_MAP_CUSTOM2;
  5589. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5590. result->src[0] = a;
  5591. result->src[1] = b;
  5592. return result;
  5593. }
  5594. struct ggml_tensor * ggml_map_custom2(
  5595. struct ggml_context * ctx,
  5596. struct ggml_tensor * a,
  5597. struct ggml_tensor * b,
  5598. const ggml_custom2_op_t fun,
  5599. int n_tasks,
  5600. void * userdata) {
  5601. return ggml_map_custom2_impl(ctx, a, b, fun, n_tasks, userdata, false);
  5602. }
  5603. struct ggml_tensor * ggml_map_custom2_inplace(
  5604. struct ggml_context * ctx,
  5605. struct ggml_tensor * a,
  5606. struct ggml_tensor * b,
  5607. const ggml_custom2_op_t fun,
  5608. int n_tasks,
  5609. void * userdata) {
  5610. return ggml_map_custom2_impl(ctx, a, b, fun, n_tasks, userdata, true);
  5611. }
  5612. // ggml_map_custom3
  5613. struct ggml_map_custom3_op_params {
  5614. ggml_custom3_op_t fun;
  5615. int n_tasks;
  5616. void * userdata;
  5617. };
  5618. static struct ggml_tensor * ggml_map_custom3_impl(
  5619. struct ggml_context * ctx,
  5620. struct ggml_tensor * a,
  5621. struct ggml_tensor * b,
  5622. struct ggml_tensor * c,
  5623. const ggml_custom3_op_t fun,
  5624. int n_tasks,
  5625. void * userdata,
  5626. bool inplace) {
  5627. GGML_ASSERT(n_tasks == GGML_N_TASKS_MAX || n_tasks > 0);
  5628. bool is_node = false;
  5629. if (!inplace && (a->grad || b->grad || c->grad)) {
  5630. is_node = true;
  5631. }
  5632. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5633. struct ggml_map_custom3_op_params params = {
  5634. /*.fun =*/ fun,
  5635. /*.n_tasks =*/ n_tasks,
  5636. /*.userdata =*/ userdata
  5637. };
  5638. ggml_set_op_params(result, (const void *) &params, sizeof(params));
  5639. result->op = GGML_OP_MAP_CUSTOM3;
  5640. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5641. result->src[0] = a;
  5642. result->src[1] = b;
  5643. result->src[2] = c;
  5644. return result;
  5645. }
  5646. struct ggml_tensor * ggml_map_custom3(
  5647. struct ggml_context * ctx,
  5648. struct ggml_tensor * a,
  5649. struct ggml_tensor * b,
  5650. struct ggml_tensor * c,
  5651. const ggml_custom3_op_t fun,
  5652. int n_tasks,
  5653. void * userdata) {
  5654. return ggml_map_custom3_impl(ctx, a, b, c, fun, n_tasks, userdata, false);
  5655. }
  5656. struct ggml_tensor * ggml_map_custom3_inplace(
  5657. struct ggml_context * ctx,
  5658. struct ggml_tensor * a,
  5659. struct ggml_tensor * b,
  5660. struct ggml_tensor * c,
  5661. const ggml_custom3_op_t fun,
  5662. int n_tasks,
  5663. void * userdata) {
  5664. return ggml_map_custom3_impl(ctx, a, b, c, fun, n_tasks, userdata, true);
  5665. }
  5666. // ggml_cross_entropy_loss
  5667. struct ggml_tensor * ggml_cross_entropy_loss(
  5668. struct ggml_context * ctx,
  5669. struct ggml_tensor * a,
  5670. struct ggml_tensor * b) {
  5671. GGML_ASSERT(ggml_are_same_shape(a, b));
  5672. bool is_node = false;
  5673. if (a->grad || b->grad) {
  5674. is_node = true;
  5675. }
  5676. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, a->type, 1);
  5677. result->op = GGML_OP_CROSS_ENTROPY_LOSS;
  5678. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5679. result->src[0] = a;
  5680. result->src[1] = b;
  5681. return result;
  5682. }
  5683. // ggml_cross_entropy_loss_back
  5684. struct ggml_tensor * ggml_cross_entropy_loss_back(
  5685. struct ggml_context * ctx,
  5686. struct ggml_tensor * a,
  5687. struct ggml_tensor * b,
  5688. struct ggml_tensor * c) {
  5689. GGML_ASSERT(ggml_are_same_shape(a, b));
  5690. GGML_ASSERT(ggml_is_scalar(c));
  5691. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  5692. result->op = GGML_OP_CROSS_ENTROPY_LOSS_BACK;
  5693. result->grad = NULL;
  5694. result->src[0] = a;
  5695. result->src[1] = b;
  5696. result->src[2] = c;
  5697. return result;
  5698. }
  5699. ////////////////////////////////////////////////////////////////////////////////
  5700. void ggml_set_param(
  5701. struct ggml_context * ctx,
  5702. struct ggml_tensor * tensor) {
  5703. tensor->flags |= GGML_TENSOR_FLAG_PARAM;
  5704. GGML_ASSERT(tensor->grad == NULL);
  5705. tensor->grad = ggml_dup_tensor(ctx, tensor);
  5706. ggml_format_name(tensor->grad, "%s (grad)", tensor->name);
  5707. }
  5708. // ggml_compute_forward_dup
  5709. static void ggml_compute_forward_dup_same_cont(
  5710. const struct ggml_compute_params * params,
  5711. struct ggml_tensor * dst) {
  5712. const struct ggml_tensor * src0 = dst->src[0];
  5713. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  5714. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  5715. GGML_ASSERT(src0->type == dst->type);
  5716. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  5717. return;
  5718. }
  5719. const size_t nb00 = src0->nb[0];
  5720. const size_t nb0 = dst->nb[0];
  5721. const int ith = params->ith; // thread index
  5722. const int nth = params->nth; // number of threads
  5723. // parallelize by elements
  5724. const int ne = ggml_nelements(dst);
  5725. const int dr = (ne + nth - 1) / nth;
  5726. const int ie0 = dr * ith;
  5727. const int ie1 = MIN(ie0 + dr, ne);
  5728. if (ie0 < ie1) {
  5729. memcpy(
  5730. ((char *) dst->data + ie0*nb0),
  5731. ((char *) src0->data + ie0*nb00),
  5732. (ie1 - ie0) * ggml_type_size(src0->type));
  5733. }
  5734. }
  5735. static void ggml_compute_forward_dup_f16(
  5736. const struct ggml_compute_params * params,
  5737. struct ggml_tensor * dst) {
  5738. const struct ggml_tensor * src0 = dst->src[0];
  5739. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  5740. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  5741. return;
  5742. }
  5743. GGML_TENSOR_UNARY_OP_LOCALS
  5744. const int ith = params->ith; // thread index
  5745. const int nth = params->nth; // number of threads
  5746. if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst) && src0->type == dst->type) {
  5747. ggml_compute_forward_dup_same_cont(params, dst);
  5748. return;
  5749. }
  5750. // parallelize by rows
  5751. const int nr = ne01;
  5752. // number of rows per thread
  5753. const int dr = (nr + nth - 1) / nth;
  5754. // row range for this thread
  5755. const int ir0 = dr * ith;
  5756. const int ir1 = MIN(ir0 + dr, nr);
  5757. if (src0->type == dst->type &&
  5758. ne00 == ne0 &&
  5759. nb00 == ggml_type_size(src0->type) && nb0 == ggml_type_size(dst->type)) {
  5760. // copy by rows
  5761. const size_t rs = ne00*nb00;
  5762. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5763. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5764. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5765. memcpy(
  5766. ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  5767. ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
  5768. rs);
  5769. }
  5770. }
  5771. }
  5772. return;
  5773. }
  5774. // TODO: add more special-case implementations for tensor shapes/strides that can benefit from memcpy
  5775. if (ggml_is_contiguous(dst)) {
  5776. if (nb00 == sizeof(ggml_fp16_t)) {
  5777. if (dst->type == GGML_TYPE_F16) {
  5778. size_t id = 0;
  5779. const size_t rs = ne00 * nb00;
  5780. char * dst_ptr = (char *) dst->data;
  5781. for (int i03 = 0; i03 < ne03; i03++) {
  5782. for (int i02 = 0; i02 < ne02; i02++) {
  5783. id += rs * ir0;
  5784. for (int i01 = ir0; i01 < ir1; i01++) {
  5785. const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
  5786. memcpy(dst_ptr + id, src0_ptr, rs);
  5787. id += rs;
  5788. }
  5789. id += rs * (ne01 - ir1);
  5790. }
  5791. }
  5792. } else if (dst->type == GGML_TYPE_F32) {
  5793. size_t id = 0;
  5794. float * dst_ptr = (float *) dst->data;
  5795. for (int i03 = 0; i03 < ne03; i03++) {
  5796. for (int i02 = 0; i02 < ne02; i02++) {
  5797. id += ne00 * ir0;
  5798. for (int i01 = ir0; i01 < ir1; i01++) {
  5799. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  5800. for (int i00 = 0; i00 < ne00; i00++) {
  5801. dst_ptr[id] = GGML_FP16_TO_FP32(src0_ptr[i00]);
  5802. id++;
  5803. }
  5804. }
  5805. id += ne00 * (ne01 - ir1);
  5806. }
  5807. }
  5808. } else if (type_traits[dst->type].from_float) {
  5809. ggml_from_float_t const quantize_row_q = type_traits[dst->type].from_float;
  5810. float * src0_f32 = (float *) params->wdata + (ne00 + CACHE_LINE_SIZE_F32) * ith;
  5811. size_t id = 0;
  5812. size_t rs = nb0 * (ne00 / ggml_blck_size(dst->type));
  5813. char * dst_ptr = (char *) dst->data;
  5814. for (int i03 = 0; i03 < ne03; i03++) {
  5815. for (int i02 = 0; i02 < ne02; i02++) {
  5816. id += rs * ir0;
  5817. for (int i01 = ir0; i01 < ir1; i01++) {
  5818. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  5819. for (int i00 = 0; i00 < ne00; i00++) {
  5820. src0_f32[i00] = GGML_FP16_TO_FP32(src0_ptr[i00]);
  5821. }
  5822. quantize_row_q(src0_f32, dst_ptr + id, ne00);
  5823. id += rs;
  5824. }
  5825. id += rs * (ne01 - ir1);
  5826. }
  5827. }
  5828. } else {
  5829. GGML_ASSERT(false); // TODO: implement
  5830. }
  5831. } else {
  5832. //printf("%s: this is not optimal - fix me\n", __func__);
  5833. if (dst->type == GGML_TYPE_F32) {
  5834. size_t id = 0;
  5835. float * dst_ptr = (float *) dst->data;
  5836. for (int i03 = 0; i03 < ne03; i03++) {
  5837. for (int i02 = 0; i02 < ne02; i02++) {
  5838. id += ne00 * ir0;
  5839. for (int i01 = ir0; i01 < ir1; i01++) {
  5840. for (int i00 = 0; i00 < ne00; i00++) {
  5841. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5842. dst_ptr[id] = GGML_FP16_TO_FP32(*src0_ptr);
  5843. id++;
  5844. }
  5845. }
  5846. id += ne00 * (ne01 - ir1);
  5847. }
  5848. }
  5849. } else if (dst->type == GGML_TYPE_F16) {
  5850. size_t id = 0;
  5851. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  5852. for (int i03 = 0; i03 < ne03; i03++) {
  5853. for (int i02 = 0; i02 < ne02; i02++) {
  5854. id += ne00 * ir0;
  5855. for (int i01 = ir0; i01 < ir1; i01++) {
  5856. for (int i00 = 0; i00 < ne00; i00++) {
  5857. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5858. dst_ptr[id] = *src0_ptr;
  5859. id++;
  5860. }
  5861. }
  5862. id += ne00 * (ne01 - ir1);
  5863. }
  5864. }
  5865. } else {
  5866. GGML_ASSERT(false); // TODO: implement
  5867. }
  5868. }
  5869. return;
  5870. }
  5871. // dst counters
  5872. int64_t i10 = 0;
  5873. int64_t i11 = 0;
  5874. int64_t i12 = 0;
  5875. int64_t i13 = 0;
  5876. if (dst->type == GGML_TYPE_F16) {
  5877. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5878. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5879. i10 += ne00 * ir0;
  5880. while (i10 >= ne0) {
  5881. i10 -= ne0;
  5882. if (++i11 == ne1) {
  5883. i11 = 0;
  5884. if (++i12 == ne2) {
  5885. i12 = 0;
  5886. if (++i13 == ne3) {
  5887. i13 = 0;
  5888. }
  5889. }
  5890. }
  5891. }
  5892. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5893. for (int64_t i00 = 0; i00 < ne00; i00++) {
  5894. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5895. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  5896. memcpy(dst_ptr, src0_ptr, sizeof(ggml_fp16_t));
  5897. if (++i10 == ne00) {
  5898. i10 = 0;
  5899. if (++i11 == ne01) {
  5900. i11 = 0;
  5901. if (++i12 == ne02) {
  5902. i12 = 0;
  5903. if (++i13 == ne03) {
  5904. i13 = 0;
  5905. }
  5906. }
  5907. }
  5908. }
  5909. }
  5910. }
  5911. i10 += ne00 * (ne01 - ir1);
  5912. while (i10 >= ne0) {
  5913. i10 -= ne0;
  5914. if (++i11 == ne1) {
  5915. i11 = 0;
  5916. if (++i12 == ne2) {
  5917. i12 = 0;
  5918. if (++i13 == ne3) {
  5919. i13 = 0;
  5920. }
  5921. }
  5922. }
  5923. }
  5924. }
  5925. }
  5926. } else if (dst->type == GGML_TYPE_F32) {
  5927. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5928. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5929. i10 += ne00 * ir0;
  5930. while (i10 >= ne0) {
  5931. i10 -= ne0;
  5932. if (++i11 == ne1) {
  5933. i11 = 0;
  5934. if (++i12 == ne2) {
  5935. i12 = 0;
  5936. if (++i13 == ne3) {
  5937. i13 = 0;
  5938. }
  5939. }
  5940. }
  5941. }
  5942. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5943. for (int64_t i00 = 0; i00 < ne00; i00++) {
  5944. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5945. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  5946. *(float *) dst_ptr = GGML_FP16_TO_FP32(*(const ggml_fp16_t *) src0_ptr);
  5947. if (++i10 == ne0) {
  5948. i10 = 0;
  5949. if (++i11 == ne1) {
  5950. i11 = 0;
  5951. if (++i12 == ne2) {
  5952. i12 = 0;
  5953. if (++i13 == ne3) {
  5954. i13 = 0;
  5955. }
  5956. }
  5957. }
  5958. }
  5959. }
  5960. }
  5961. i10 += ne00 * (ne01 - ir1);
  5962. while (i10 >= ne0) {
  5963. i10 -= ne0;
  5964. if (++i11 == ne1) {
  5965. i11 = 0;
  5966. if (++i12 == ne2) {
  5967. i12 = 0;
  5968. if (++i13 == ne3) {
  5969. i13 = 0;
  5970. }
  5971. }
  5972. }
  5973. }
  5974. }
  5975. }
  5976. } else {
  5977. GGML_ASSERT(false); // TODO: implement
  5978. }
  5979. }
  5980. static void ggml_compute_forward_dup_f32(
  5981. const struct ggml_compute_params * params,
  5982. struct ggml_tensor * dst) {
  5983. const struct ggml_tensor * src0 = dst->src[0];
  5984. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  5985. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  5986. return;
  5987. }
  5988. GGML_TENSOR_UNARY_OP_LOCALS
  5989. const int ith = params->ith; // thread index
  5990. const int nth = params->nth; // number of threads
  5991. if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst) && src0->type == dst->type) {
  5992. ggml_compute_forward_dup_same_cont(params, dst);
  5993. return;
  5994. }
  5995. // parallelize by rows
  5996. const int nr = ne01;
  5997. // number of rows per thread
  5998. const int dr = (nr + nth - 1) / nth;
  5999. // row range for this thread
  6000. const int ir0 = dr * ith;
  6001. const int ir1 = MIN(ir0 + dr, nr);
  6002. if (src0->type == dst->type &&
  6003. ne00 == ne0 &&
  6004. nb00 == ggml_type_size(src0->type) && nb0 == ggml_type_size(dst->type)) {
  6005. // copy by rows
  6006. const size_t rs = ne00*nb00;
  6007. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6008. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6009. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  6010. memcpy(
  6011. ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  6012. ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
  6013. rs);
  6014. }
  6015. }
  6016. }
  6017. return;
  6018. }
  6019. if (ggml_is_contiguous(dst)) {
  6020. // TODO: simplify
  6021. if (nb00 == sizeof(float)) {
  6022. if (dst->type == GGML_TYPE_F32) {
  6023. size_t id = 0;
  6024. const size_t rs = ne00 * nb00;
  6025. char * dst_ptr = (char *) dst->data;
  6026. for (int i03 = 0; i03 < ne03; i03++) {
  6027. for (int i02 = 0; i02 < ne02; i02++) {
  6028. id += rs * ir0;
  6029. for (int i01 = ir0; i01 < ir1; i01++) {
  6030. const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
  6031. memcpy(dst_ptr + id, src0_ptr, rs);
  6032. id += rs;
  6033. }
  6034. id += rs * (ne01 - ir1);
  6035. }
  6036. }
  6037. } else if (type_traits[dst->type].from_float) {
  6038. ggml_from_float_t const quantize_row_q = type_traits[dst->type].from_float;
  6039. size_t id = 0;
  6040. size_t rs = nb0 * (ne00 / ggml_blck_size(dst->type));
  6041. char * dst_ptr = (char *) dst->data;
  6042. for (int i03 = 0; i03 < ne03; i03++) {
  6043. for (int i02 = 0; i02 < ne02; i02++) {
  6044. id += rs * ir0;
  6045. for (int i01 = ir0; i01 < ir1; i01++) {
  6046. const float * src0_ptr = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  6047. quantize_row_q(src0_ptr, dst_ptr + id, ne00);
  6048. id += rs;
  6049. }
  6050. id += rs * (ne01 - ir1);
  6051. }
  6052. }
  6053. } else {
  6054. GGML_ASSERT(false); // TODO: implement
  6055. }
  6056. } else {
  6057. //printf("%s: this is not optimal - fix me\n", __func__);
  6058. if (dst->type == GGML_TYPE_F32) {
  6059. size_t id = 0;
  6060. float * dst_ptr = (float *) dst->data;
  6061. for (int i03 = 0; i03 < ne03; i03++) {
  6062. for (int i02 = 0; i02 < ne02; i02++) {
  6063. id += ne00 * ir0;
  6064. for (int i01 = ir0; i01 < ir1; i01++) {
  6065. for (int i00 = 0; i00 < ne00; i00++) {
  6066. const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6067. dst_ptr[id] = *src0_ptr;
  6068. id++;
  6069. }
  6070. }
  6071. id += ne00 * (ne01 - ir1);
  6072. }
  6073. }
  6074. } else if (dst->type == GGML_TYPE_F16) {
  6075. size_t id = 0;
  6076. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  6077. for (int i03 = 0; i03 < ne03; i03++) {
  6078. for (int i02 = 0; i02 < ne02; i02++) {
  6079. id += ne00 * ir0;
  6080. for (int i01 = ir0; i01 < ir1; i01++) {
  6081. for (int i00 = 0; i00 < ne00; i00++) {
  6082. const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6083. dst_ptr[id] = GGML_FP32_TO_FP16(*src0_ptr);
  6084. id++;
  6085. }
  6086. }
  6087. id += ne00 * (ne01 - ir1);
  6088. }
  6089. }
  6090. } else {
  6091. GGML_ASSERT(false); // TODO: implement
  6092. }
  6093. }
  6094. return;
  6095. }
  6096. // dst counters
  6097. int64_t i10 = 0;
  6098. int64_t i11 = 0;
  6099. int64_t i12 = 0;
  6100. int64_t i13 = 0;
  6101. if (dst->type == GGML_TYPE_F32) {
  6102. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6103. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6104. i10 += ne00 * ir0;
  6105. while (i10 >= ne0) {
  6106. i10 -= ne0;
  6107. if (++i11 == ne1) {
  6108. i11 = 0;
  6109. if (++i12 == ne2) {
  6110. i12 = 0;
  6111. if (++i13 == ne3) {
  6112. i13 = 0;
  6113. }
  6114. }
  6115. }
  6116. }
  6117. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  6118. for (int64_t i00 = 0; i00 < ne00; i00++) {
  6119. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6120. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  6121. memcpy(dst_ptr, src0_ptr, sizeof(float));
  6122. if (++i10 == ne0) {
  6123. i10 = 0;
  6124. if (++i11 == ne1) {
  6125. i11 = 0;
  6126. if (++i12 == ne2) {
  6127. i12 = 0;
  6128. if (++i13 == ne3) {
  6129. i13 = 0;
  6130. }
  6131. }
  6132. }
  6133. }
  6134. }
  6135. }
  6136. i10 += ne00 * (ne01 - ir1);
  6137. while (i10 >= ne0) {
  6138. i10 -= ne0;
  6139. if (++i11 == ne1) {
  6140. i11 = 0;
  6141. if (++i12 == ne2) {
  6142. i12 = 0;
  6143. if (++i13 == ne3) {
  6144. i13 = 0;
  6145. }
  6146. }
  6147. }
  6148. }
  6149. }
  6150. }
  6151. } else if (dst->type == GGML_TYPE_F16) {
  6152. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6153. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6154. i10 += ne00 * ir0;
  6155. while (i10 >= ne0) {
  6156. i10 -= ne0;
  6157. if (++i11 == ne1) {
  6158. i11 = 0;
  6159. if (++i12 == ne2) {
  6160. i12 = 0;
  6161. if (++i13 == ne3) {
  6162. i13 = 0;
  6163. }
  6164. }
  6165. }
  6166. }
  6167. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  6168. for (int64_t i00 = 0; i00 < ne00; i00++) {
  6169. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6170. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  6171. *(ggml_fp16_t *) dst_ptr = GGML_FP32_TO_FP16(*(const float *) src0_ptr);
  6172. if (++i10 == ne0) {
  6173. i10 = 0;
  6174. if (++i11 == ne1) {
  6175. i11 = 0;
  6176. if (++i12 == ne2) {
  6177. i12 = 0;
  6178. if (++i13 == ne3) {
  6179. i13 = 0;
  6180. }
  6181. }
  6182. }
  6183. }
  6184. }
  6185. }
  6186. i10 += ne00 * (ne01 - ir1);
  6187. while (i10 >= ne0) {
  6188. i10 -= ne0;
  6189. if (++i11 == ne1) {
  6190. i11 = 0;
  6191. if (++i12 == ne2) {
  6192. i12 = 0;
  6193. if (++i13 == ne3) {
  6194. i13 = 0;
  6195. }
  6196. }
  6197. }
  6198. }
  6199. }
  6200. }
  6201. } else {
  6202. GGML_ASSERT(false); // TODO: implement
  6203. }
  6204. }
  6205. // A simplified version of ggml_compute_forward_dup that doesn't do float upcasting, and just plain old memcpy.
  6206. static void ggml_compute_forward_dup_bytes(
  6207. const struct ggml_compute_params * params,
  6208. struct ggml_tensor * dst) {
  6209. const struct ggml_tensor * src0 = dst->src[0];
  6210. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  6211. GGML_ASSERT(src0->type == dst->type);
  6212. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  6213. return;
  6214. }
  6215. if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst)) {
  6216. ggml_compute_forward_dup_same_cont(params, dst);
  6217. return;
  6218. }
  6219. GGML_TENSOR_UNARY_OP_LOCALS;
  6220. const size_t type_size = ggml_type_size(src0->type);
  6221. const int ith = params->ith; // thread index
  6222. const int nth = params->nth; // number of threads
  6223. // parallelize by rows
  6224. const int nr = ne01;
  6225. // number of rows per thread
  6226. const int dr = (nr + nth - 1) / nth;
  6227. // row range for this thread
  6228. const int ir0 = dr * ith;
  6229. const int ir1 = MIN(ir0 + dr, nr);
  6230. if (src0->type == dst->type &&
  6231. ne00 == ne0 &&
  6232. nb00 == type_size && nb0 == type_size) {
  6233. // copy by rows
  6234. const size_t rs = ne00 * type_size;
  6235. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6236. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6237. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  6238. memcpy(
  6239. ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  6240. ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
  6241. rs);
  6242. }
  6243. }
  6244. }
  6245. return;
  6246. }
  6247. if (ggml_is_contiguous(dst)) {
  6248. size_t id = 0;
  6249. char * dst_ptr = (char *) dst->data;
  6250. const size_t rs = ne00 * type_size;
  6251. if (nb00 == type_size) {
  6252. // src0 is contigous on first dimension, copy by rows
  6253. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6254. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6255. id += rs * ir0;
  6256. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  6257. const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
  6258. memcpy(dst_ptr + id, src0_ptr, rs);
  6259. id += rs;
  6260. }
  6261. id += rs * (ne01 - ir1);
  6262. }
  6263. }
  6264. } else {
  6265. //printf("%s: this is not optimal - fix me\n", __func__);
  6266. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6267. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6268. id += rs * ir0;
  6269. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  6270. for (int64_t i00 = 0; i00 < ne00; i00++) {
  6271. const char * src0_ptr = (char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03;
  6272. memcpy(dst_ptr + id, src0_ptr, type_size);
  6273. id += type_size;
  6274. }
  6275. }
  6276. id += rs * (ne01 - ir1);
  6277. }
  6278. }
  6279. }
  6280. return;
  6281. }
  6282. // dst counters
  6283. int64_t i10 = 0;
  6284. int64_t i11 = 0;
  6285. int64_t i12 = 0;
  6286. int64_t i13 = 0;
  6287. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6288. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6289. i10 += ne00 * ir0;
  6290. while (i10 >= ne0) {
  6291. i10 -= ne0;
  6292. if (++i11 == ne1) {
  6293. i11 = 0;
  6294. if (++i12 == ne2) {
  6295. i12 = 0;
  6296. if (++i13 == ne3) {
  6297. i13 = 0;
  6298. }
  6299. }
  6300. }
  6301. }
  6302. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  6303. for (int64_t i00 = 0; i00 < ne00; i00++) {
  6304. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6305. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  6306. memcpy(dst_ptr, src0_ptr, type_size);
  6307. if (++i10 == ne0) {
  6308. i10 = 0;
  6309. if (++i11 == ne1) {
  6310. i11 = 0;
  6311. if (++i12 == ne2) {
  6312. i12 = 0;
  6313. if (++i13 == ne3) {
  6314. i13 = 0;
  6315. }
  6316. }
  6317. }
  6318. }
  6319. }
  6320. }
  6321. i10 += ne00 * (ne01 - ir1);
  6322. while (i10 >= ne0) {
  6323. i10 -= ne0;
  6324. if (++i11 == ne1) {
  6325. i11 = 0;
  6326. if (++i12 == ne2) {
  6327. i12 = 0;
  6328. if (++i13 == ne3) {
  6329. i13 = 0;
  6330. }
  6331. }
  6332. }
  6333. }
  6334. }
  6335. }
  6336. }
  6337. static void ggml_compute_forward_dup(
  6338. const struct ggml_compute_params * params,
  6339. struct ggml_tensor * dst) {
  6340. const struct ggml_tensor * src0 = dst->src[0];
  6341. if (src0->type == dst->type) {
  6342. ggml_compute_forward_dup_bytes(params, dst);
  6343. return;
  6344. }
  6345. switch (src0->type) {
  6346. case GGML_TYPE_F16:
  6347. {
  6348. ggml_compute_forward_dup_f16(params, dst);
  6349. } break;
  6350. case GGML_TYPE_F32:
  6351. {
  6352. ggml_compute_forward_dup_f32(params, dst);
  6353. } break;
  6354. default:
  6355. {
  6356. GGML_ASSERT(false);
  6357. } break;
  6358. }
  6359. }
  6360. // ggml_compute_forward_add
  6361. static void ggml_compute_forward_add_f32(
  6362. const struct ggml_compute_params * params,
  6363. struct ggml_tensor * dst) {
  6364. const struct ggml_tensor * src0 = dst->src[0];
  6365. const struct ggml_tensor * src1 = dst->src[1];
  6366. GGML_ASSERT(ggml_can_repeat(src1, src0) && ggml_are_same_shape(src0, dst));
  6367. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  6368. return;
  6369. }
  6370. const int ith = params->ith;
  6371. const int nth = params->nth;
  6372. #ifdef GGML_USE_CLBLAST
  6373. if (src1->backend == GGML_BACKEND_TYPE_GPU) {
  6374. // TODO: OpenCL kernel support full broadcast
  6375. GGML_ASSERT(ggml_can_repeat_rows(src1, src0));
  6376. if (ith == 0) {
  6377. ggml_cl_add(src0, src1, dst);
  6378. }
  6379. return;
  6380. }
  6381. #endif
  6382. const int nr = ggml_nrows(src0);
  6383. GGML_TENSOR_BINARY_OP_LOCALS
  6384. GGML_ASSERT( nb0 == sizeof(float));
  6385. GGML_ASSERT(nb00 == sizeof(float));
  6386. // rows per thread
  6387. const int dr = (nr + nth - 1)/nth;
  6388. // row range for this thread
  6389. const int ir0 = dr*ith;
  6390. const int ir1 = MIN(ir0 + dr, nr);
  6391. if (nb10 == sizeof(float)) {
  6392. for (int ir = ir0; ir < ir1; ++ir) {
  6393. // src1 is broadcastable across src0 and dst in i1, i2, i3
  6394. const int64_t i03 = ir/(ne02*ne01);
  6395. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  6396. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  6397. const int64_t i13 = i03 % ne13;
  6398. const int64_t i12 = i02 % ne12;
  6399. const int64_t i11 = i01 % ne11;
  6400. const int64_t nr0 = ne00 / ne10;
  6401. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  6402. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  6403. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11);
  6404. for (int64_t r = 0; r < nr0; ++r) {
  6405. #ifdef GGML_USE_ACCELERATE
  6406. vDSP_vadd(src0_ptr + r*ne10, 1, src1_ptr, 1, dst_ptr + r*ne10, 1, ne10);
  6407. #else
  6408. ggml_vec_add_f32(ne10, dst_ptr + r*ne10, src0_ptr + r*ne10, src1_ptr);
  6409. #endif
  6410. }
  6411. }
  6412. } else {
  6413. // src1 is not contiguous
  6414. for (int ir = ir0; ir < ir1; ++ir) {
  6415. // src1 is broadcastable across src0 and dst in i1, i2, i3
  6416. const int64_t i03 = ir/(ne02*ne01);
  6417. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  6418. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  6419. const int64_t i13 = i03 % ne13;
  6420. const int64_t i12 = i02 % ne12;
  6421. const int64_t i11 = i01 % ne11;
  6422. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  6423. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  6424. for (int64_t i0 = 0; i0 < ne0; ++i0) {
  6425. const int64_t i10 = i0 % ne10;
  6426. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11 + i10*nb10);
  6427. dst_ptr[i0] = src0_ptr[i0] + *src1_ptr;
  6428. }
  6429. }
  6430. }
  6431. }
  6432. static void ggml_compute_forward_add_f16_f32(
  6433. const struct ggml_compute_params * params,
  6434. struct ggml_tensor * dst) {
  6435. const struct ggml_tensor * src0 = dst->src[0];
  6436. const struct ggml_tensor * src1 = dst->src[1];
  6437. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  6438. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  6439. return;
  6440. }
  6441. const int ith = params->ith;
  6442. const int nth = params->nth;
  6443. const int nr = ggml_nrows(src0);
  6444. GGML_TENSOR_BINARY_OP_LOCALS
  6445. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  6446. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  6447. if (dst->type == GGML_TYPE_F32) {
  6448. GGML_ASSERT( nb0 == sizeof(float));
  6449. }
  6450. else {
  6451. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  6452. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  6453. }
  6454. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  6455. // rows per thread
  6456. const int dr = (nr + nth - 1)/nth;
  6457. // row range for this thread
  6458. const int ir0 = dr*ith;
  6459. const int ir1 = MIN(ir0 + dr, nr);
  6460. if (nb10 == sizeof(float)) {
  6461. if (dst->type == GGML_TYPE_F16) {
  6462. for (int ir = ir0; ir < ir1; ++ir) {
  6463. // src0, src1 and dst are same shape => same indices
  6464. const int i3 = ir/(ne2*ne1);
  6465. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6466. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6467. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  6468. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  6469. float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11);
  6470. for (int i = 0; i < ne0; i++) {
  6471. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + src1_ptr[i]);
  6472. }
  6473. }
  6474. } else {
  6475. for (int ir = ir0; ir < ir1; ++ir) {
  6476. // src0, src1 and dst are same shape => same indices
  6477. const int i3 = ir/(ne2*ne1);
  6478. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6479. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6480. float * dst_ptr = (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  6481. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  6482. float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11);
  6483. for (int i = 0; i < ne0; i++) {
  6484. dst_ptr[i] = GGML_FP16_TO_FP32(src0_ptr[i]) + src1_ptr[i];
  6485. }
  6486. }
  6487. }
  6488. }
  6489. else {
  6490. // src1 is not contiguous
  6491. GGML_ASSERT(false);
  6492. }
  6493. }
  6494. static void ggml_compute_forward_add_f16_f16(
  6495. const struct ggml_compute_params * params,
  6496. struct ggml_tensor * dst) {
  6497. const struct ggml_tensor * src0 = dst->src[0];
  6498. const struct ggml_tensor * src1 = dst->src[1];
  6499. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  6500. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  6501. return;
  6502. }
  6503. const int ith = params->ith;
  6504. const int nth = params->nth;
  6505. const int nr = ggml_nrows(src0);
  6506. GGML_TENSOR_BINARY_OP_LOCALS
  6507. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  6508. GGML_ASSERT(src1->type == GGML_TYPE_F16);
  6509. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  6510. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  6511. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  6512. // rows per thread
  6513. const int dr = (nr + nth - 1)/nth;
  6514. // row range for this thread
  6515. const int ir0 = dr*ith;
  6516. const int ir1 = MIN(ir0 + dr, nr);
  6517. if (nb10 == sizeof(ggml_fp16_t)) {
  6518. for (int ir = ir0; ir < ir1; ++ir) {
  6519. // src0, src1 and dst are same shape => same indices
  6520. const int i3 = ir/(ne2*ne1);
  6521. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6522. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6523. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  6524. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  6525. ggml_fp16_t * src1_ptr = (ggml_fp16_t *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11);
  6526. for (int i = 0; i < ne0; i++) {
  6527. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + GGML_FP16_TO_FP32(src1_ptr[i]));
  6528. }
  6529. }
  6530. }
  6531. else {
  6532. // src1 is not contiguous
  6533. GGML_ASSERT(false);
  6534. }
  6535. }
  6536. static void ggml_compute_forward_add_q_f32(
  6537. const struct ggml_compute_params * params,
  6538. struct ggml_tensor * dst) {
  6539. const struct ggml_tensor * src0 = dst->src[0];
  6540. const struct ggml_tensor * src1 = dst->src[1];
  6541. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  6542. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  6543. return;
  6544. }
  6545. const int nr = ggml_nrows(src0);
  6546. GGML_TENSOR_BINARY_OP_LOCALS
  6547. const int ith = params->ith;
  6548. const int nth = params->nth;
  6549. const enum ggml_type type = src0->type;
  6550. const enum ggml_type dtype = dst->type;
  6551. ggml_to_float_t const dequantize_row_q = type_traits[type].to_float;
  6552. ggml_from_float_t const quantize_row_q = type_traits[dtype].from_float;
  6553. // we don't support permuted src0 or src1
  6554. GGML_ASSERT(nb00 == ggml_type_size(type));
  6555. GGML_ASSERT(nb10 == sizeof(float));
  6556. // dst cannot be transposed or permuted
  6557. GGML_ASSERT(nb0 <= nb1);
  6558. GGML_ASSERT(nb1 <= nb2);
  6559. GGML_ASSERT(nb2 <= nb3);
  6560. GGML_ASSERT(ggml_is_quantized(src0->type));
  6561. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  6562. // rows per thread
  6563. const int dr = (nr + nth - 1)/nth;
  6564. // row range for this thread
  6565. const int ir0 = dr*ith;
  6566. const int ir1 = MIN(ir0 + dr, nr);
  6567. float * wdata = (float *) params->wdata + (ne00 + CACHE_LINE_SIZE_F32) * ith;
  6568. for (int ir = ir0; ir < ir1; ++ir) {
  6569. // src0 indices
  6570. const int i03 = ir/(ne02*ne01);
  6571. const int i02 = (ir - i03*ne02*ne01)/ne01;
  6572. const int i01 = (ir - i03*ne02*ne01 - i02*ne01);
  6573. // src1 and dst are same shape as src0 => same indices
  6574. const int i13 = i03;
  6575. const int i12 = i02;
  6576. const int i11 = i01;
  6577. const int i3 = i03;
  6578. const int i2 = i02;
  6579. const int i1 = i01;
  6580. void * src0_row = (void *) ((char *) src0->data + (i01*nb01 + i02*nb02 + i03*nb03));
  6581. float * src1_row = (float *)((char *) src1->data + (i11*nb11 + i12*nb12 + i13*nb13));
  6582. void * dst_row = (void *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
  6583. assert(ne00 % 32 == 0);
  6584. // unquantize row from src0 to temp buffer
  6585. dequantize_row_q(src0_row, wdata, ne00);
  6586. // add src1
  6587. ggml_vec_acc_f32(ne00, wdata, src1_row);
  6588. // quantize row to dst
  6589. if (quantize_row_q != NULL) {
  6590. quantize_row_q(wdata, dst_row, ne00);
  6591. } else {
  6592. memcpy(dst_row, wdata, ne0*nb0);
  6593. }
  6594. }
  6595. }
  6596. static void ggml_compute_forward_add(
  6597. const struct ggml_compute_params * params,
  6598. struct ggml_tensor * dst) {
  6599. const struct ggml_tensor * src0 = dst->src[0];
  6600. const struct ggml_tensor * src1 = dst->src[1];
  6601. switch (src0->type) {
  6602. case GGML_TYPE_F32:
  6603. {
  6604. if (src1->type == GGML_TYPE_F32) {
  6605. ggml_compute_forward_add_f32(params, dst);
  6606. }
  6607. else {
  6608. GGML_ASSERT(false);
  6609. }
  6610. } break;
  6611. case GGML_TYPE_F16:
  6612. {
  6613. if (src1->type == GGML_TYPE_F16) {
  6614. ggml_compute_forward_add_f16_f16(params, dst);
  6615. }
  6616. else if (src1->type == GGML_TYPE_F32) {
  6617. ggml_compute_forward_add_f16_f32(params, dst);
  6618. }
  6619. else {
  6620. GGML_ASSERT(false);
  6621. }
  6622. } break;
  6623. case GGML_TYPE_Q4_0:
  6624. case GGML_TYPE_Q4_1:
  6625. case GGML_TYPE_Q5_0:
  6626. case GGML_TYPE_Q5_1:
  6627. case GGML_TYPE_Q8_0:
  6628. case GGML_TYPE_Q2_K:
  6629. case GGML_TYPE_Q3_K:
  6630. case GGML_TYPE_Q4_K:
  6631. case GGML_TYPE_Q5_K:
  6632. case GGML_TYPE_Q6_K:
  6633. case GGML_TYPE_IQ2_XXS:
  6634. case GGML_TYPE_IQ2_XS:
  6635. case GGML_TYPE_IQ3_XXS:
  6636. case GGML_TYPE_IQ1_S:
  6637. case GGML_TYPE_IQ4_NL:
  6638. case GGML_TYPE_IQ4_XS:
  6639. case GGML_TYPE_IQ3_S:
  6640. case GGML_TYPE_IQ2_S:
  6641. {
  6642. ggml_compute_forward_add_q_f32(params, dst);
  6643. } break;
  6644. default:
  6645. {
  6646. GGML_ASSERT(false);
  6647. } break;
  6648. }
  6649. }
  6650. // ggml_compute_forward_add1
  6651. static void ggml_compute_forward_add1_f32(
  6652. const struct ggml_compute_params * params,
  6653. struct ggml_tensor * dst) {
  6654. const struct ggml_tensor * src0 = dst->src[0];
  6655. const struct ggml_tensor * src1 = dst->src[1];
  6656. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6657. GGML_ASSERT(ggml_is_scalar(src1));
  6658. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  6659. return;
  6660. }
  6661. const int ith = params->ith;
  6662. const int nth = params->nth;
  6663. const int nr = ggml_nrows(src0);
  6664. GGML_TENSOR_UNARY_OP_LOCALS
  6665. GGML_ASSERT( nb0 == sizeof(float));
  6666. GGML_ASSERT(nb00 == sizeof(float));
  6667. // rows per thread
  6668. const int dr = (nr + nth - 1)/nth;
  6669. // row range for this thread
  6670. const int ir0 = dr*ith;
  6671. const int ir1 = MIN(ir0 + dr, nr);
  6672. for (int ir = ir0; ir < ir1; ++ir) {
  6673. // src0 and dst are same shape => same indices
  6674. const int i3 = ir/(ne2*ne1);
  6675. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6676. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6677. #ifdef GGML_USE_ACCELERATE
  6678. UNUSED(ggml_vec_add1_f32);
  6679. vDSP_vadd(
  6680. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01), 1,
  6681. (float *) ((char *) src1->data), 0,
  6682. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ), 1,
  6683. ne0);
  6684. #else
  6685. ggml_vec_add1_f32(ne0,
  6686. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ),
  6687. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01),
  6688. *(float *) src1->data);
  6689. #endif
  6690. }
  6691. }
  6692. static void ggml_compute_forward_add1_f16_f32(
  6693. const struct ggml_compute_params * params,
  6694. struct ggml_tensor * dst) {
  6695. const struct ggml_tensor * src0 = dst->src[0];
  6696. const struct ggml_tensor * src1 = dst->src[1];
  6697. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6698. GGML_ASSERT(ggml_is_scalar(src1));
  6699. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  6700. return;
  6701. }
  6702. // scalar to add
  6703. const float v = *(float *) src1->data;
  6704. const int ith = params->ith;
  6705. const int nth = params->nth;
  6706. const int nr = ggml_nrows(src0);
  6707. GGML_TENSOR_UNARY_OP_LOCALS
  6708. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  6709. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  6710. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  6711. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  6712. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  6713. // rows per thread
  6714. const int dr = (nr + nth - 1)/nth;
  6715. // row range for this thread
  6716. const int ir0 = dr*ith;
  6717. const int ir1 = MIN(ir0 + dr, nr);
  6718. for (int ir = ir0; ir < ir1; ++ir) {
  6719. // src0 and dst are same shape => same indices
  6720. const int i3 = ir/(ne2*ne1);
  6721. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6722. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6723. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  6724. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  6725. for (int i = 0; i < ne0; i++) {
  6726. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + v);
  6727. }
  6728. }
  6729. }
  6730. static void ggml_compute_forward_add1_f16_f16(
  6731. const struct ggml_compute_params * params,
  6732. struct ggml_tensor * dst) {
  6733. const struct ggml_tensor * src0 = dst->src[0];
  6734. const struct ggml_tensor * src1 = dst->src[1];
  6735. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6736. GGML_ASSERT(ggml_is_scalar(src1));
  6737. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  6738. return;
  6739. }
  6740. // scalar to add
  6741. const float v = GGML_FP16_TO_FP32(*(ggml_fp16_t *) src1->data);
  6742. const int ith = params->ith;
  6743. const int nth = params->nth;
  6744. const int nr = ggml_nrows(src0);
  6745. GGML_TENSOR_UNARY_OP_LOCALS
  6746. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  6747. GGML_ASSERT(src1->type == GGML_TYPE_F16);
  6748. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  6749. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  6750. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  6751. // rows per thread
  6752. const int dr = (nr + nth - 1)/nth;
  6753. // row range for this thread
  6754. const int ir0 = dr*ith;
  6755. const int ir1 = MIN(ir0 + dr, nr);
  6756. for (int ir = ir0; ir < ir1; ++ir) {
  6757. // src0 and dst are same shape => same indices
  6758. const int i3 = ir/(ne2*ne1);
  6759. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6760. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6761. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  6762. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  6763. for (int i = 0; i < ne0; i++) {
  6764. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + v);
  6765. }
  6766. }
  6767. }
  6768. static void ggml_compute_forward_add1_q_f32(
  6769. const struct ggml_compute_params * params,
  6770. struct ggml_tensor * dst) {
  6771. const struct ggml_tensor * src0 = dst->src[0];
  6772. const struct ggml_tensor * src1 = dst->src[1];
  6773. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6774. GGML_ASSERT(ggml_is_scalar(src1));
  6775. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  6776. return;
  6777. }
  6778. // scalar to add
  6779. const float v = *(float *) src1->data;
  6780. const int ith = params->ith;
  6781. const int nth = params->nth;
  6782. const int nr = ggml_nrows(src0);
  6783. GGML_TENSOR_UNARY_OP_LOCALS
  6784. const enum ggml_type type = src0->type;
  6785. ggml_to_float_t const dequantize_row_q = type_traits[type].to_float;
  6786. ggml_from_float_t const quantize_row_q = type_traits[type].from_float;
  6787. // we don't support permuted src0
  6788. GGML_ASSERT(nb00 == ggml_type_size(type));
  6789. // dst cannot be transposed or permuted
  6790. GGML_ASSERT(nb0 <= nb1);
  6791. GGML_ASSERT(nb1 <= nb2);
  6792. GGML_ASSERT(nb2 <= nb3);
  6793. GGML_ASSERT(ggml_is_quantized(src0->type));
  6794. GGML_ASSERT(dst->type == src0->type);
  6795. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  6796. // rows per thread
  6797. const int dr = (nr + nth - 1)/nth;
  6798. // row range for this thread
  6799. const int ir0 = dr*ith;
  6800. const int ir1 = MIN(ir0 + dr, nr);
  6801. float * wdata = (float *) params->wdata + (ne0 + CACHE_LINE_SIZE_F32) * ith;
  6802. for (int ir = ir0; ir < ir1; ++ir) {
  6803. // src0 and dst are same shape => same indices
  6804. const int i3 = ir/(ne2*ne1);
  6805. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6806. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6807. void * src0_row = (void *) ((char *) src0->data + (i1*nb01 + i2*nb02 + i3*nb03));
  6808. void * dst_row = (void *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb0 ));
  6809. assert(ne0 % 32 == 0);
  6810. // unquantize row from src0 to temp buffer
  6811. dequantize_row_q(src0_row, wdata, ne0);
  6812. // add src1
  6813. ggml_vec_acc1_f32(ne0, wdata, v);
  6814. // quantize row to dst
  6815. quantize_row_q(wdata, dst_row, ne0);
  6816. }
  6817. }
  6818. static void ggml_compute_forward_add1(
  6819. const struct ggml_compute_params * params,
  6820. struct ggml_tensor * dst) {
  6821. const struct ggml_tensor * src0 = dst->src[0];
  6822. const struct ggml_tensor * src1 = dst->src[1];
  6823. switch (src0->type) {
  6824. case GGML_TYPE_F32:
  6825. {
  6826. ggml_compute_forward_add1_f32(params, dst);
  6827. } break;
  6828. case GGML_TYPE_F16:
  6829. {
  6830. if (src1->type == GGML_TYPE_F16) {
  6831. ggml_compute_forward_add1_f16_f16(params, dst);
  6832. }
  6833. else if (src1->type == GGML_TYPE_F32) {
  6834. ggml_compute_forward_add1_f16_f32(params, dst);
  6835. }
  6836. else {
  6837. GGML_ASSERT(false);
  6838. }
  6839. } break;
  6840. case GGML_TYPE_Q4_0:
  6841. case GGML_TYPE_Q4_1:
  6842. case GGML_TYPE_Q5_0:
  6843. case GGML_TYPE_Q5_1:
  6844. case GGML_TYPE_Q8_0:
  6845. case GGML_TYPE_Q8_1:
  6846. case GGML_TYPE_Q2_K:
  6847. case GGML_TYPE_Q3_K:
  6848. case GGML_TYPE_Q4_K:
  6849. case GGML_TYPE_Q5_K:
  6850. case GGML_TYPE_Q6_K:
  6851. case GGML_TYPE_IQ2_XXS:
  6852. case GGML_TYPE_IQ2_XS:
  6853. case GGML_TYPE_IQ3_XXS:
  6854. case GGML_TYPE_IQ1_S:
  6855. case GGML_TYPE_IQ4_NL:
  6856. case GGML_TYPE_IQ4_XS:
  6857. case GGML_TYPE_IQ3_S:
  6858. case GGML_TYPE_IQ2_S:
  6859. {
  6860. ggml_compute_forward_add1_q_f32(params, dst);
  6861. } break;
  6862. default:
  6863. {
  6864. GGML_ASSERT(false);
  6865. } break;
  6866. }
  6867. }
  6868. // ggml_compute_forward_acc
  6869. static void ggml_compute_forward_acc_f32(
  6870. const struct ggml_compute_params * params,
  6871. struct ggml_tensor * dst) {
  6872. const struct ggml_tensor * src0 = dst->src[0];
  6873. const struct ggml_tensor * src1 = dst->src[1];
  6874. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6875. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  6876. // view src0 and dst with these strides and data offset inbytes during acc
  6877. // nb0 is implicitly element_size because src0 and dst are contiguous
  6878. size_t nb1 = ((int32_t *) dst->op_params)[0];
  6879. size_t nb2 = ((int32_t *) dst->op_params)[1];
  6880. size_t nb3 = ((int32_t *) dst->op_params)[2];
  6881. size_t offset = ((int32_t *) dst->op_params)[3];
  6882. bool inplace = (bool) ((int32_t *) dst->op_params)[4];
  6883. if (!inplace && (params->type == GGML_TASK_TYPE_INIT)) {
  6884. if (params->ith != 0) {
  6885. return;
  6886. }
  6887. // memcpy needs to be synchronized across threads to avoid race conditions.
  6888. // => do it in INIT phase
  6889. memcpy(
  6890. ((char *) dst->data),
  6891. ((char *) src0->data),
  6892. ggml_nbytes(dst));
  6893. }
  6894. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  6895. return;
  6896. }
  6897. const int ith = params->ith;
  6898. const int nth = params->nth;
  6899. const int nr = ggml_nrows(src1);
  6900. const int nc = src1->ne[0];
  6901. GGML_TENSOR_LOCALS(int64_t, ne1, src1, ne)
  6902. GGML_TENSOR_LOCALS(size_t, nb1, src1, nb)
  6903. // src0 and dst as viewed during acc
  6904. const size_t nb0 = ggml_element_size(src0);
  6905. const size_t nb00 = nb0;
  6906. const size_t nb01 = nb1;
  6907. const size_t nb02 = nb2;
  6908. const size_t nb03 = nb3;
  6909. GGML_ASSERT(offset + (ne10 == 0 ? 0 : ne10-1)*nb0 + (ne11 == 0 ? 0 : ne11-1)*nb1 + (ne12 == 0 ? 0 : ne12-1)*nb2 + (ne13 == 0 ? 0 : ne13-1)*nb3 < ggml_nbytes(dst));
  6910. GGML_ASSERT(offset + (ne10 == 0 ? 0 : ne10-1)*nb00 + (ne11 == 0 ? 0 : ne11-1)*nb01 + (ne12 == 0 ? 0 : ne12-1)*nb02 + (ne13 == 0 ? 0 : ne13-1)*nb03 < ggml_nbytes(src0));
  6911. GGML_ASSERT(nb10 == sizeof(float));
  6912. // rows per thread
  6913. const int dr = (nr + nth - 1)/nth;
  6914. // row range for this thread
  6915. const int ir0 = dr*ith;
  6916. const int ir1 = MIN(ir0 + dr, nr);
  6917. for (int ir = ir0; ir < ir1; ++ir) {
  6918. // src0 and dst are viewed with shape of src1 and offset
  6919. // => same indices
  6920. const int i3 = ir/(ne12*ne11);
  6921. const int i2 = (ir - i3*ne12*ne11)/ne11;
  6922. const int i1 = (ir - i3*ne12*ne11 - i2*ne11);
  6923. #ifdef GGML_USE_ACCELERATE
  6924. vDSP_vadd(
  6925. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + offset), 1,
  6926. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11), 1,
  6927. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + offset), 1, nc);
  6928. #else
  6929. ggml_vec_add_f32(nc,
  6930. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + offset),
  6931. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + offset),
  6932. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
  6933. #endif
  6934. }
  6935. }
  6936. static void ggml_compute_forward_acc(
  6937. const struct ggml_compute_params * params,
  6938. struct ggml_tensor * dst) {
  6939. const struct ggml_tensor * src0 = dst->src[0];
  6940. switch (src0->type) {
  6941. case GGML_TYPE_F32:
  6942. {
  6943. ggml_compute_forward_acc_f32(params, dst);
  6944. } break;
  6945. case GGML_TYPE_F16:
  6946. case GGML_TYPE_Q4_0:
  6947. case GGML_TYPE_Q4_1:
  6948. case GGML_TYPE_Q5_0:
  6949. case GGML_TYPE_Q5_1:
  6950. case GGML_TYPE_Q8_0:
  6951. case GGML_TYPE_Q8_1:
  6952. case GGML_TYPE_Q2_K:
  6953. case GGML_TYPE_Q3_K:
  6954. case GGML_TYPE_Q4_K:
  6955. case GGML_TYPE_Q5_K:
  6956. case GGML_TYPE_Q6_K:
  6957. case GGML_TYPE_IQ2_XXS:
  6958. case GGML_TYPE_IQ2_XS:
  6959. case GGML_TYPE_IQ3_XXS:
  6960. case GGML_TYPE_IQ1_S:
  6961. case GGML_TYPE_IQ4_NL:
  6962. case GGML_TYPE_IQ4_XS:
  6963. case GGML_TYPE_IQ3_S:
  6964. case GGML_TYPE_IQ2_S:
  6965. default:
  6966. {
  6967. GGML_ASSERT(false);
  6968. } break;
  6969. }
  6970. }
  6971. // ggml_compute_forward_sub
  6972. static void ggml_compute_forward_sub_f32(
  6973. const struct ggml_compute_params * params,
  6974. struct ggml_tensor * dst) {
  6975. const struct ggml_tensor * src0 = dst->src[0];
  6976. const struct ggml_tensor * src1 = dst->src[1];
  6977. assert(params->ith == 0);
  6978. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  6979. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  6980. return;
  6981. }
  6982. const int nr = ggml_nrows(src0);
  6983. GGML_TENSOR_BINARY_OP_LOCALS
  6984. GGML_ASSERT( nb0 == sizeof(float));
  6985. GGML_ASSERT(nb00 == sizeof(float));
  6986. if (nb10 == sizeof(float)) {
  6987. for (int ir = 0; ir < nr; ++ir) {
  6988. // src0, src1 and dst are same shape => same indices
  6989. const int i3 = ir/(ne2*ne1);
  6990. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6991. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6992. #ifdef GGML_USE_ACCELERATE
  6993. vDSP_vsub(
  6994. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11), 1,
  6995. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01), 1,
  6996. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ), 1,
  6997. ne0);
  6998. #else
  6999. ggml_vec_sub_f32(ne0,
  7000. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ),
  7001. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01),
  7002. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
  7003. #endif
  7004. // }
  7005. // }
  7006. }
  7007. } else {
  7008. // src1 is not contiguous
  7009. for (int ir = 0; ir < nr; ++ir) {
  7010. // src0, src1 and dst are same shape => same indices
  7011. const int i3 = ir/(ne2*ne1);
  7012. const int i2 = (ir - i3*ne2*ne1)/ne1;
  7013. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  7014. float * dst_ptr = (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  7015. float * src0_ptr = (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  7016. for (int i0 = 0; i0 < ne0; i0++) {
  7017. float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11 + i0*nb10);
  7018. dst_ptr[i0] = src0_ptr[i0] - *src1_ptr;
  7019. }
  7020. }
  7021. }
  7022. }
  7023. static void ggml_compute_forward_sub(
  7024. const struct ggml_compute_params * params,
  7025. struct ggml_tensor * dst) {
  7026. const struct ggml_tensor * src0 = dst->src[0];
  7027. switch (src0->type) {
  7028. case GGML_TYPE_F32:
  7029. {
  7030. ggml_compute_forward_sub_f32(params, dst);
  7031. } break;
  7032. default:
  7033. {
  7034. GGML_ASSERT(false);
  7035. } break;
  7036. }
  7037. }
  7038. // ggml_compute_forward_mul
  7039. static void ggml_compute_forward_mul_f32(
  7040. const struct ggml_compute_params * params,
  7041. struct ggml_tensor * dst) {
  7042. const struct ggml_tensor * src0 = dst->src[0];
  7043. const struct ggml_tensor * src1 = dst->src[1];
  7044. GGML_ASSERT(ggml_can_repeat(src1, src0) && ggml_are_same_shape(src0, dst));
  7045. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7046. return;
  7047. }
  7048. const int ith = params->ith;
  7049. const int nth = params->nth;
  7050. #if defined(GGML_USE_CLBLAST)
  7051. if (src1->backend == GGML_BACKEND_TYPE_GPU) {
  7052. // TODO: OpenCL kernel support full broadcast
  7053. GGML_ASSERT(ggml_can_repeat_rows(src1, src0));
  7054. if (ith == 0) {
  7055. ggml_cl_mul(src0, src1, dst);
  7056. }
  7057. return;
  7058. }
  7059. #endif
  7060. const int64_t nr = ggml_nrows(src0);
  7061. GGML_TENSOR_BINARY_OP_LOCALS
  7062. GGML_ASSERT( nb0 == sizeof(float));
  7063. GGML_ASSERT(nb00 == sizeof(float));
  7064. if (nb10 == sizeof(float)) {
  7065. for (int64_t ir = ith; ir < nr; ir += nth) {
  7066. // src0 and dst are same shape => same indices
  7067. const int64_t i03 = ir/(ne02*ne01);
  7068. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  7069. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  7070. const int64_t i13 = i03 % ne13;
  7071. const int64_t i12 = i02 % ne12;
  7072. const int64_t i11 = i01 % ne11;
  7073. const int64_t nr0 = ne00 / ne10;
  7074. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  7075. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  7076. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11);
  7077. for (int64_t r = 0 ; r < nr0; ++r) {
  7078. #ifdef GGML_USE_ACCELERATE
  7079. UNUSED(ggml_vec_mul_f32);
  7080. vDSP_vmul(src0_ptr + r*ne10, 1, src1_ptr, 1, dst_ptr + r*ne10, 1, ne10);
  7081. #else
  7082. ggml_vec_mul_f32(ne10, dst_ptr + r*ne10, src0_ptr + r*ne10, src1_ptr);
  7083. #endif
  7084. }
  7085. }
  7086. } else {
  7087. // src1 is not contiguous
  7088. for (int64_t ir = ith; ir < nr; ir += nth) {
  7089. // src0 and dst are same shape => same indices
  7090. // src1 is broadcastable across src0 and dst in i1, i2, i3
  7091. const int64_t i03 = ir/(ne02*ne01);
  7092. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  7093. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  7094. const int64_t i13 = i03 % ne13;
  7095. const int64_t i12 = i02 % ne12;
  7096. const int64_t i11 = i01 % ne11;
  7097. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  7098. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  7099. for (int64_t i0 = 0; i0 < ne00; ++i0) {
  7100. const int64_t i10 = i0 % ne10;
  7101. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11 + i10*nb10);
  7102. dst_ptr[i0] = src0_ptr[i0] * (*src1_ptr);
  7103. }
  7104. }
  7105. }
  7106. }
  7107. static void ggml_compute_forward_mul(
  7108. const struct ggml_compute_params * params,
  7109. struct ggml_tensor * dst) {
  7110. const struct ggml_tensor * src0 = dst->src[0];
  7111. const struct ggml_tensor * src1 = dst->src[1];
  7112. GGML_ASSERT(src1->type == GGML_TYPE_F32 && "only f32 src1 supported for now");
  7113. switch (src0->type) {
  7114. case GGML_TYPE_F32:
  7115. {
  7116. ggml_compute_forward_mul_f32(params, dst);
  7117. } break;
  7118. default:
  7119. {
  7120. GGML_ASSERT(false);
  7121. } break;
  7122. }
  7123. }
  7124. // ggml_compute_forward_div
  7125. static void ggml_compute_forward_div_f32(
  7126. const struct ggml_compute_params * params,
  7127. struct ggml_tensor * dst) {
  7128. const struct ggml_tensor * src0 = dst->src[0];
  7129. const struct ggml_tensor * src1 = dst->src[1];
  7130. GGML_ASSERT(ggml_can_repeat(src1, src0) && ggml_are_same_shape(src0, dst));
  7131. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7132. return;
  7133. }
  7134. const int ith = params->ith;
  7135. const int nth = params->nth;
  7136. const int64_t nr = ggml_nrows(src0);
  7137. GGML_TENSOR_BINARY_OP_LOCALS
  7138. GGML_ASSERT( nb0 == sizeof(float));
  7139. GGML_ASSERT(nb00 == sizeof(float));
  7140. if (nb10 == sizeof(float)) {
  7141. for (int64_t ir = ith; ir < nr; ir += nth) {
  7142. // src0 and dst are same shape => same indices
  7143. const int64_t i03 = ir/(ne02*ne01);
  7144. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  7145. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  7146. const int64_t i13 = i03 % ne13;
  7147. const int64_t i12 = i02 % ne12;
  7148. const int64_t i11 = i01 % ne11;
  7149. const int64_t nr0 = ne00 / ne10;
  7150. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  7151. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  7152. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11);
  7153. for (int64_t r = 0; r < nr0; ++r) {
  7154. #ifdef GGML_USE_ACCELERATE
  7155. UNUSED(ggml_vec_div_f32);
  7156. vDSP_vdiv(src1_ptr, 1, src0_ptr + r*ne10, 1, dst_ptr + r*ne10, 1, ne10);
  7157. #else
  7158. ggml_vec_div_f32(ne10, dst_ptr + r*ne10, src0_ptr + r*ne10, src1_ptr);
  7159. #endif
  7160. }
  7161. }
  7162. } else {
  7163. // src1 is not contiguous
  7164. for (int64_t ir = ith; ir < nr; ir += nth) {
  7165. // src0 and dst are same shape => same indices
  7166. // src1 is broadcastable across src0 and dst in i1, i2, i3
  7167. const int64_t i03 = ir/(ne02*ne01);
  7168. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  7169. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  7170. const int64_t i13 = i03 % ne13;
  7171. const int64_t i12 = i02 % ne12;
  7172. const int64_t i11 = i01 % ne11;
  7173. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  7174. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  7175. for (int64_t i0 = 0; i0 < ne00; ++i0) {
  7176. const int64_t i10 = i0 % ne10;
  7177. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11 + i10*nb10);
  7178. dst_ptr[i0] = src0_ptr[i0] / (*src1_ptr);
  7179. }
  7180. }
  7181. }
  7182. }
  7183. static void ggml_compute_forward_div(
  7184. const struct ggml_compute_params * params,
  7185. struct ggml_tensor * dst) {
  7186. const struct ggml_tensor * src0 = dst->src[0];
  7187. switch (src0->type) {
  7188. case GGML_TYPE_F32:
  7189. {
  7190. ggml_compute_forward_div_f32(params, dst);
  7191. } break;
  7192. default:
  7193. {
  7194. GGML_ASSERT(false);
  7195. } break;
  7196. }
  7197. }
  7198. // ggml_compute_forward_sqr
  7199. static void ggml_compute_forward_sqr_f32(
  7200. const struct ggml_compute_params * params,
  7201. struct ggml_tensor * dst) {
  7202. const struct ggml_tensor * src0 = dst->src[0];
  7203. assert(params->ith == 0);
  7204. assert(ggml_are_same_shape(src0, dst));
  7205. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7206. return;
  7207. }
  7208. const int n = ggml_nrows(src0);
  7209. const int nc = src0->ne[0];
  7210. assert( dst->nb[0] == sizeof(float));
  7211. assert(src0->nb[0] == sizeof(float));
  7212. for (int i = 0; i < n; i++) {
  7213. ggml_vec_sqr_f32(nc,
  7214. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7215. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7216. }
  7217. }
  7218. static void ggml_compute_forward_sqr(
  7219. const struct ggml_compute_params * params,
  7220. struct ggml_tensor * dst) {
  7221. const struct ggml_tensor * src0 = dst->src[0];
  7222. switch (src0->type) {
  7223. case GGML_TYPE_F32:
  7224. {
  7225. ggml_compute_forward_sqr_f32(params, dst);
  7226. } break;
  7227. default:
  7228. {
  7229. GGML_ASSERT(false);
  7230. } break;
  7231. }
  7232. }
  7233. // ggml_compute_forward_sqrt
  7234. static void ggml_compute_forward_sqrt_f32(
  7235. const struct ggml_compute_params * params,
  7236. struct ggml_tensor * dst) {
  7237. const struct ggml_tensor * src0 = dst->src[0];
  7238. assert(params->ith == 0);
  7239. assert(ggml_are_same_shape(src0, dst));
  7240. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7241. return;
  7242. }
  7243. const int n = ggml_nrows(src0);
  7244. const int nc = src0->ne[0];
  7245. assert( dst->nb[0] == sizeof(float));
  7246. assert(src0->nb[0] == sizeof(float));
  7247. for (int i = 0; i < n; i++) {
  7248. ggml_vec_sqrt_f32(nc,
  7249. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7250. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7251. }
  7252. }
  7253. static void ggml_compute_forward_sqrt(
  7254. const struct ggml_compute_params * params,
  7255. struct ggml_tensor * dst) {
  7256. const struct ggml_tensor * src0 = dst->src[0];
  7257. switch (src0->type) {
  7258. case GGML_TYPE_F32:
  7259. {
  7260. ggml_compute_forward_sqrt_f32(params, dst);
  7261. } break;
  7262. default:
  7263. {
  7264. GGML_ASSERT(false);
  7265. } break;
  7266. }
  7267. }
  7268. // ggml_compute_forward_log
  7269. static void ggml_compute_forward_log_f32(
  7270. const struct ggml_compute_params * params,
  7271. struct ggml_tensor * dst) {
  7272. const struct ggml_tensor * src0 = dst->src[0];
  7273. GGML_ASSERT(params->ith == 0);
  7274. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7275. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7276. return;
  7277. }
  7278. const int n = ggml_nrows(src0);
  7279. const int nc = src0->ne[0];
  7280. GGML_ASSERT( dst->nb[0] == sizeof(float));
  7281. GGML_ASSERT(src0->nb[0] == sizeof(float));
  7282. for (int i = 0; i < n; i++) {
  7283. ggml_vec_log_f32(nc,
  7284. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7285. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7286. }
  7287. }
  7288. static void ggml_compute_forward_log(
  7289. const struct ggml_compute_params * params,
  7290. struct ggml_tensor * dst) {
  7291. const struct ggml_tensor * src0 = dst->src[0];
  7292. switch (src0->type) {
  7293. case GGML_TYPE_F32:
  7294. {
  7295. ggml_compute_forward_log_f32(params, dst);
  7296. } break;
  7297. default:
  7298. {
  7299. GGML_ASSERT(false);
  7300. } break;
  7301. }
  7302. }
  7303. // ggml_compute_forward_sum
  7304. static void ggml_compute_forward_sum_f32(
  7305. const struct ggml_compute_params * params,
  7306. struct ggml_tensor * dst) {
  7307. const struct ggml_tensor * src0 = dst->src[0];
  7308. assert(params->ith == 0);
  7309. assert(ggml_is_scalar(dst));
  7310. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7311. return;
  7312. }
  7313. assert(ggml_is_scalar(dst));
  7314. assert(src0->nb[0] == sizeof(float));
  7315. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne)
  7316. GGML_TENSOR_LOCALS(size_t, nb0, src0, nb)
  7317. ggml_float sum = 0;
  7318. ggml_float row_sum = 0;
  7319. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7320. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7321. for (int64_t i01 = 0; i01 < ne01; i01++) {
  7322. ggml_vec_sum_f32_ggf(ne00,
  7323. &row_sum,
  7324. (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03));
  7325. sum += row_sum;
  7326. }
  7327. }
  7328. }
  7329. ((float *) dst->data)[0] = sum;
  7330. }
  7331. static void ggml_compute_forward_sum_f16(
  7332. const struct ggml_compute_params * params,
  7333. struct ggml_tensor * dst) {
  7334. const struct ggml_tensor * src0 = dst->src[0];
  7335. assert(params->ith == 0);
  7336. assert(ggml_is_scalar(dst));
  7337. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7338. return;
  7339. }
  7340. assert(src0->nb[0] == sizeof(ggml_fp16_t));
  7341. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne)
  7342. GGML_TENSOR_LOCALS(size_t, nb0, src0, nb)
  7343. float sum = 0;
  7344. float row_sum = 0;
  7345. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7346. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7347. for (int64_t i01 = 0; i01 < ne01; i01++) {
  7348. ggml_vec_sum_f16_ggf(ne00,
  7349. &row_sum,
  7350. (ggml_fp16_t *) ((char *) src0->data + i01 * nb01 + i02 * nb02 + i03 * nb03));
  7351. sum += row_sum;
  7352. }
  7353. }
  7354. }
  7355. ((ggml_fp16_t *) dst->data)[0] = GGML_FP32_TO_FP16(sum);
  7356. }
  7357. static void ggml_compute_forward_sum(
  7358. const struct ggml_compute_params * params,
  7359. struct ggml_tensor * dst) {
  7360. const struct ggml_tensor * src0 = dst->src[0];
  7361. switch (src0->type) {
  7362. case GGML_TYPE_F32:
  7363. {
  7364. ggml_compute_forward_sum_f32(params, dst);
  7365. } break;
  7366. case GGML_TYPE_F16:
  7367. {
  7368. ggml_compute_forward_sum_f16(params, dst);
  7369. } break;
  7370. default:
  7371. {
  7372. GGML_ASSERT(false);
  7373. } break;
  7374. }
  7375. }
  7376. // ggml_compute_forward_sum_rows
  7377. static void ggml_compute_forward_sum_rows_f32(
  7378. const struct ggml_compute_params * params,
  7379. struct ggml_tensor * dst) {
  7380. const struct ggml_tensor * src0 = dst->src[0];
  7381. GGML_ASSERT(params->ith == 0);
  7382. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7383. return;
  7384. }
  7385. GGML_ASSERT(src0->nb[0] == sizeof(float));
  7386. GGML_ASSERT(dst->nb[0] == sizeof(float));
  7387. GGML_TENSOR_UNARY_OP_LOCALS
  7388. GGML_ASSERT(ne0 == 1);
  7389. GGML_ASSERT(ne1 == ne01);
  7390. GGML_ASSERT(ne2 == ne02);
  7391. GGML_ASSERT(ne3 == ne03);
  7392. for (int64_t i3 = 0; i3 < ne03; i3++) {
  7393. for (int64_t i2 = 0; i2 < ne02; i2++) {
  7394. for (int64_t i1 = 0; i1 < ne01; i1++) {
  7395. float * src_row = (float *) ((char *) src0->data + i1*nb01 + i2*nb02 + i3*nb03);
  7396. float * dst_row = (float *) ((char *) dst->data + i1*nb1 + i2*nb2 + i3*nb3);
  7397. float row_sum = 0;
  7398. ggml_vec_sum_f32(ne00, &row_sum, src_row);
  7399. dst_row[0] = row_sum;
  7400. }
  7401. }
  7402. }
  7403. }
  7404. static void ggml_compute_forward_sum_rows(
  7405. const struct ggml_compute_params * params,
  7406. struct ggml_tensor * dst) {
  7407. const struct ggml_tensor * src0 = dst->src[0];
  7408. switch (src0->type) {
  7409. case GGML_TYPE_F32:
  7410. {
  7411. ggml_compute_forward_sum_rows_f32(params, dst);
  7412. } break;
  7413. default:
  7414. {
  7415. GGML_ASSERT(false);
  7416. } break;
  7417. }
  7418. }
  7419. // ggml_compute_forward_mean
  7420. static void ggml_compute_forward_mean_f32(
  7421. const struct ggml_compute_params * params,
  7422. struct ggml_tensor * dst) {
  7423. const struct ggml_tensor * src0 = dst->src[0];
  7424. assert(params->ith == 0);
  7425. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7426. return;
  7427. }
  7428. assert(src0->nb[0] == sizeof(float));
  7429. GGML_TENSOR_UNARY_OP_LOCALS
  7430. assert(ne0 == 1);
  7431. assert(ne1 == ne01);
  7432. assert(ne2 == ne02);
  7433. assert(ne3 == ne03);
  7434. UNUSED(ne0);
  7435. UNUSED(ne1);
  7436. UNUSED(ne2);
  7437. UNUSED(ne3);
  7438. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7439. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7440. for (int64_t i01 = 0; i01 < ne01; i01++) {
  7441. ggml_vec_sum_f32(ne00,
  7442. (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  7443. (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03));
  7444. *(float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3) /= (float) ne00;
  7445. }
  7446. }
  7447. }
  7448. }
  7449. static void ggml_compute_forward_mean(
  7450. const struct ggml_compute_params * params,
  7451. struct ggml_tensor * dst) {
  7452. const struct ggml_tensor * src0 = dst->src[0];
  7453. switch (src0->type) {
  7454. case GGML_TYPE_F32:
  7455. {
  7456. ggml_compute_forward_mean_f32(params, dst);
  7457. } break;
  7458. default:
  7459. {
  7460. GGML_ASSERT(false);
  7461. } break;
  7462. }
  7463. }
  7464. // ggml_compute_forward_argmax
  7465. static void ggml_compute_forward_argmax_f32(
  7466. const struct ggml_compute_params * params,
  7467. struct ggml_tensor * dst) {
  7468. const struct ggml_tensor * src0 = dst->src[0];
  7469. assert(params->ith == 0);
  7470. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7471. return;
  7472. }
  7473. assert(src0->nb[0] == sizeof(float));
  7474. assert(dst->nb[0] == sizeof(float));
  7475. const int64_t ne00 = src0->ne[0];
  7476. const int64_t ne01 = src0->ne[1];
  7477. const size_t nb01 = src0->nb[1];
  7478. const size_t nb0 = dst->nb[0];
  7479. for (int64_t i1 = 0; i1 < ne01; i1++) {
  7480. float * src = (float *) ((char *) src0->data + i1*nb01);
  7481. int32_t * dst_ = (int32_t *) ((char *) dst->data + i1*nb0);
  7482. int v = 0;
  7483. ggml_vec_argmax_f32(ne00, &v, src);
  7484. dst_[0] = v;
  7485. }
  7486. }
  7487. static void ggml_compute_forward_argmax(
  7488. const struct ggml_compute_params * params,
  7489. struct ggml_tensor * dst) {
  7490. const struct ggml_tensor * src0 = dst->src[0];
  7491. switch (src0->type) {
  7492. case GGML_TYPE_F32:
  7493. {
  7494. ggml_compute_forward_argmax_f32(params, dst);
  7495. } break;
  7496. default:
  7497. {
  7498. GGML_ASSERT(false);
  7499. } break;
  7500. }
  7501. }
  7502. // ggml_compute_forward_repeat
  7503. static void ggml_compute_forward_repeat_f32(
  7504. const struct ggml_compute_params * params,
  7505. struct ggml_tensor * dst) {
  7506. const struct ggml_tensor * src0 = dst->src[0];
  7507. GGML_ASSERT(params->ith == 0);
  7508. GGML_ASSERT(ggml_can_repeat(src0, dst));
  7509. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7510. return;
  7511. }
  7512. GGML_TENSOR_UNARY_OP_LOCALS
  7513. // guaranteed to be an integer due to the check in ggml_can_repeat
  7514. const int nr0 = (int)(ne0/ne00);
  7515. const int nr1 = (int)(ne1/ne01);
  7516. const int nr2 = (int)(ne2/ne02);
  7517. const int nr3 = (int)(ne3/ne03);
  7518. // TODO: support for transposed / permuted tensors
  7519. GGML_ASSERT(nb0 == sizeof(float));
  7520. GGML_ASSERT(nb00 == sizeof(float));
  7521. // TODO: maybe this is not optimal?
  7522. for (int i3 = 0; i3 < nr3; i3++) {
  7523. for (int k3 = 0; k3 < ne03; k3++) {
  7524. for (int i2 = 0; i2 < nr2; i2++) {
  7525. for (int k2 = 0; k2 < ne02; k2++) {
  7526. for (int i1 = 0; i1 < nr1; i1++) {
  7527. for (int k1 = 0; k1 < ne01; k1++) {
  7528. for (int i0 = 0; i0 < nr0; i0++) {
  7529. ggml_vec_cpy_f32(ne00,
  7530. (float *) ((char *) dst->data + (i3*ne03 + k3)*nb3 + (i2*ne02 + k2)*nb2 + (i1*ne01 + k1)*nb1 + (i0*ne00)*nb0),
  7531. (float *) ((char *) src0->data + ( k3)*nb03 + ( k2)*nb02 + ( k1)*nb01));
  7532. }
  7533. }
  7534. }
  7535. }
  7536. }
  7537. }
  7538. }
  7539. }
  7540. static void ggml_compute_forward_repeat_f16(
  7541. const struct ggml_compute_params * params,
  7542. struct ggml_tensor * dst) {
  7543. const struct ggml_tensor * src0 = dst->src[0];
  7544. GGML_ASSERT(params->ith == 0);
  7545. GGML_ASSERT(ggml_can_repeat(src0, dst));
  7546. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7547. return;
  7548. }
  7549. GGML_TENSOR_UNARY_OP_LOCALS
  7550. // guaranteed to be an integer due to the check in ggml_can_repeat
  7551. const int nr0 = (int)(ne0/ne00);
  7552. const int nr1 = (int)(ne1/ne01);
  7553. const int nr2 = (int)(ne2/ne02);
  7554. const int nr3 = (int)(ne3/ne03);
  7555. // TODO: support for transposed / permuted tensors
  7556. GGML_ASSERT(nb0 == sizeof(ggml_fp16_t));
  7557. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  7558. // TODO: maybe this is not optimal?
  7559. for (int i3 = 0; i3 < nr3; i3++) {
  7560. for (int k3 = 0; k3 < ne03; k3++) {
  7561. for (int i2 = 0; i2 < nr2; i2++) {
  7562. for (int k2 = 0; k2 < ne02; k2++) {
  7563. for (int i1 = 0; i1 < nr1; i1++) {
  7564. for (int k1 = 0; k1 < ne01; k1++) {
  7565. for (int i0 = 0; i0 < nr0; i0++) {
  7566. ggml_fp16_t * y = (ggml_fp16_t *) ((char *) dst->data + (i3*ne03 + k3)*nb3 + (i2*ne02 + k2)*nb2 + (i1*ne01 + k1)*nb1 + (i0*ne00)*nb0);
  7567. ggml_fp16_t * x = (ggml_fp16_t *) ((char *) src0->data + ( k3)*nb03 + ( k2)*nb02 + ( k1)*nb01);
  7568. // ggml_vec_cpy_f16(ne00, y, x)
  7569. for (int i = 0; i < ne00; ++i) {
  7570. y[i] = x[i];
  7571. }
  7572. }
  7573. }
  7574. }
  7575. }
  7576. }
  7577. }
  7578. }
  7579. }
  7580. static void ggml_compute_forward_repeat(
  7581. const struct ggml_compute_params * params,
  7582. struct ggml_tensor * dst) {
  7583. const struct ggml_tensor * src0 = dst->src[0];
  7584. switch (src0->type) {
  7585. case GGML_TYPE_F16:
  7586. case GGML_TYPE_I16:
  7587. {
  7588. ggml_compute_forward_repeat_f16(params, dst);
  7589. } break;
  7590. case GGML_TYPE_F32:
  7591. case GGML_TYPE_I32:
  7592. {
  7593. ggml_compute_forward_repeat_f32(params, dst);
  7594. } break;
  7595. default:
  7596. {
  7597. GGML_ASSERT(false);
  7598. } break;
  7599. }
  7600. }
  7601. // ggml_compute_forward_repeat_back
  7602. static void ggml_compute_forward_repeat_back_f32(
  7603. const struct ggml_compute_params * params,
  7604. struct ggml_tensor * dst) {
  7605. const struct ggml_tensor * src0 = dst->src[0];
  7606. GGML_ASSERT(params->ith == 0);
  7607. GGML_ASSERT(ggml_can_repeat(dst, src0));
  7608. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7609. return;
  7610. }
  7611. GGML_TENSOR_UNARY_OP_LOCALS
  7612. // guaranteed to be an integer due to the check in ggml_can_repeat
  7613. const int nr0 = (int)(ne00/ne0);
  7614. const int nr1 = (int)(ne01/ne1);
  7615. const int nr2 = (int)(ne02/ne2);
  7616. const int nr3 = (int)(ne03/ne3);
  7617. // TODO: support for transposed / permuted tensors
  7618. GGML_ASSERT(nb0 == sizeof(float));
  7619. GGML_ASSERT(nb00 == sizeof(float));
  7620. if (ggml_is_contiguous(dst)) {
  7621. ggml_vec_set_f32(ne0*ne1*ne2*ne3, dst->data, 0);
  7622. } else {
  7623. for (int k3 = 0; k3 < ne3; k3++) {
  7624. for (int k2 = 0; k2 < ne2; k2++) {
  7625. for (int k1 = 0; k1 < ne1; k1++) {
  7626. ggml_vec_set_f32(ne0,
  7627. (float *) ((char *) dst->data + k1*nb1 + k2*nb2 + k3*nb3),
  7628. 0);
  7629. }
  7630. }
  7631. }
  7632. }
  7633. // TODO: maybe this is not optimal?
  7634. for (int i3 = 0; i3 < nr3; i3++) {
  7635. for (int k3 = 0; k3 < ne3; k3++) {
  7636. for (int i2 = 0; i2 < nr2; i2++) {
  7637. for (int k2 = 0; k2 < ne2; k2++) {
  7638. for (int i1 = 0; i1 < nr1; i1++) {
  7639. for (int k1 = 0; k1 < ne1; k1++) {
  7640. for (int i0 = 0; i0 < nr0; i0++) {
  7641. ggml_vec_acc_f32(ne0,
  7642. (float *) ((char *) dst->data + ( k3)*nb3 + ( k2)*nb2 + ( k1)*nb1),
  7643. (float *) ((char *) src0->data + (i3*ne3 + k3)*nb03 + (i2*ne2 + k2)*nb02 + (i1*ne1 + k1)*nb01 + (i0*ne0)*nb00));
  7644. }
  7645. }
  7646. }
  7647. }
  7648. }
  7649. }
  7650. }
  7651. }
  7652. static void ggml_compute_forward_repeat_back(
  7653. const struct ggml_compute_params * params,
  7654. struct ggml_tensor * dst) {
  7655. const struct ggml_tensor * src0 = dst->src[0];
  7656. switch (src0->type) {
  7657. case GGML_TYPE_F32:
  7658. {
  7659. ggml_compute_forward_repeat_back_f32(params, dst);
  7660. } break;
  7661. default:
  7662. {
  7663. GGML_ASSERT(false);
  7664. } break;
  7665. }
  7666. }
  7667. // ggml_compute_forward_concat
  7668. static void ggml_compute_forward_concat_f32(
  7669. const struct ggml_compute_params * params,
  7670. struct ggml_tensor * dst) {
  7671. const struct ggml_tensor * src0 = dst->src[0];
  7672. const struct ggml_tensor * src1 = dst->src[1];
  7673. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7674. return;
  7675. }
  7676. GGML_ASSERT(src0->nb[0] == sizeof(float));
  7677. const int ith = params->ith;
  7678. const int nth = params->nth;
  7679. GGML_TENSOR_BINARY_OP_LOCALS
  7680. // TODO: support for transposed / permuted tensors
  7681. GGML_ASSERT(nb0 == sizeof(float));
  7682. GGML_ASSERT(nb00 == sizeof(float));
  7683. GGML_ASSERT(nb10 == sizeof(float));
  7684. for (int i3 = 0; i3 < ne3; i3++) {
  7685. for (int i2 = ith; i2 < ne2; i2 += nth) {
  7686. if (i2 < ne02) { // src0
  7687. for (int i1 = 0; i1 < ne1; i1++) {
  7688. for (int i0 = 0; i0 < ne0; i0++) {
  7689. const float * x = (float *)((char *) src0->data + i0 * nb00 + i1 * nb01 + i2 * nb02 + i3 * nb03);
  7690. float * y = (float *)((char *)dst->data + i0 * nb0 + i1 * nb1 + i2 * nb2 + i3 * nb3);
  7691. *y = *x;
  7692. }
  7693. }
  7694. } // src1
  7695. else {
  7696. for (int i1 = 0; i1 < ne1; i1++) {
  7697. for (int i0 = 0; i0 < ne0; i0++) {
  7698. const float * x = (float *)((char *) src1->data + i0 * nb10 + i1 * nb11 + (i2 - ne02) * nb12 + i3 * nb13);
  7699. float * y = (float *)((char *)dst->data + i0 * nb0 + i1 * nb1 + i2 * nb2 + i3 * nb3);
  7700. *y = *x;
  7701. }
  7702. }
  7703. }
  7704. }
  7705. }
  7706. }
  7707. static void ggml_compute_forward_concat(
  7708. const struct ggml_compute_params* params,
  7709. struct ggml_tensor* dst) {
  7710. const struct ggml_tensor * src0 = dst->src[0];
  7711. switch (src0->type) {
  7712. case GGML_TYPE_F32:
  7713. case GGML_TYPE_I32:
  7714. {
  7715. ggml_compute_forward_concat_f32(params, dst);
  7716. } break;
  7717. default:
  7718. {
  7719. GGML_ASSERT(false);
  7720. } break;
  7721. }
  7722. }
  7723. // ggml_compute_forward_abs
  7724. static void ggml_compute_forward_abs_f32(
  7725. const struct ggml_compute_params * params,
  7726. struct ggml_tensor * dst) {
  7727. const struct ggml_tensor * src0 = dst->src[0];
  7728. assert(params->ith == 0);
  7729. assert(ggml_are_same_shape(src0, dst));
  7730. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7731. return;
  7732. }
  7733. const int n = ggml_nrows(src0);
  7734. const int nc = src0->ne[0];
  7735. assert(dst->nb[0] == sizeof(float));
  7736. assert(src0->nb[0] == sizeof(float));
  7737. for (int i = 0; i < n; i++) {
  7738. ggml_vec_abs_f32(nc,
  7739. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7740. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7741. }
  7742. }
  7743. static void ggml_compute_forward_abs(
  7744. const struct ggml_compute_params * params,
  7745. struct ggml_tensor * dst) {
  7746. const struct ggml_tensor * src0 = dst->src[0];
  7747. switch (src0->type) {
  7748. case GGML_TYPE_F32:
  7749. {
  7750. ggml_compute_forward_abs_f32(params, dst);
  7751. } break;
  7752. default:
  7753. {
  7754. GGML_ASSERT(false);
  7755. } break;
  7756. }
  7757. }
  7758. // ggml_compute_forward_sgn
  7759. static void ggml_compute_forward_sgn_f32(
  7760. const struct ggml_compute_params * params,
  7761. struct ggml_tensor * dst) {
  7762. const struct ggml_tensor * src0 = dst->src[0];
  7763. assert(params->ith == 0);
  7764. assert(ggml_are_same_shape(src0, dst));
  7765. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7766. return;
  7767. }
  7768. const int n = ggml_nrows(src0);
  7769. const int nc = src0->ne[0];
  7770. assert(dst->nb[0] == sizeof(float));
  7771. assert(src0->nb[0] == sizeof(float));
  7772. for (int i = 0; i < n; i++) {
  7773. ggml_vec_sgn_f32(nc,
  7774. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7775. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7776. }
  7777. }
  7778. static void ggml_compute_forward_sgn(
  7779. const struct ggml_compute_params * params,
  7780. struct ggml_tensor * dst) {
  7781. const struct ggml_tensor * src0 = dst->src[0];
  7782. switch (src0->type) {
  7783. case GGML_TYPE_F32:
  7784. {
  7785. ggml_compute_forward_sgn_f32(params, dst);
  7786. } break;
  7787. default:
  7788. {
  7789. GGML_ASSERT(false);
  7790. } break;
  7791. }
  7792. }
  7793. // ggml_compute_forward_neg
  7794. static void ggml_compute_forward_neg_f32(
  7795. const struct ggml_compute_params * params,
  7796. struct ggml_tensor * dst) {
  7797. const struct ggml_tensor * src0 = dst->src[0];
  7798. assert(params->ith == 0);
  7799. assert(ggml_are_same_shape(src0, dst));
  7800. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7801. return;
  7802. }
  7803. const int n = ggml_nrows(src0);
  7804. const int nc = src0->ne[0];
  7805. assert(dst->nb[0] == sizeof(float));
  7806. assert(src0->nb[0] == sizeof(float));
  7807. for (int i = 0; i < n; i++) {
  7808. ggml_vec_neg_f32(nc,
  7809. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7810. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7811. }
  7812. }
  7813. static void ggml_compute_forward_neg(
  7814. const struct ggml_compute_params * params,
  7815. struct ggml_tensor * dst) {
  7816. const struct ggml_tensor * src0 = dst->src[0];
  7817. switch (src0->type) {
  7818. case GGML_TYPE_F32:
  7819. {
  7820. ggml_compute_forward_neg_f32(params, dst);
  7821. } break;
  7822. default:
  7823. {
  7824. GGML_ASSERT(false);
  7825. } break;
  7826. }
  7827. }
  7828. // ggml_compute_forward_step
  7829. static void ggml_compute_forward_step_f32(
  7830. const struct ggml_compute_params * params,
  7831. struct ggml_tensor * dst) {
  7832. const struct ggml_tensor * src0 = dst->src[0];
  7833. assert(params->ith == 0);
  7834. assert(ggml_are_same_shape(src0, dst));
  7835. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7836. return;
  7837. }
  7838. const int n = ggml_nrows(src0);
  7839. const int nc = src0->ne[0];
  7840. assert(dst->nb[0] == sizeof(float));
  7841. assert(src0->nb[0] == sizeof(float));
  7842. for (int i = 0; i < n; i++) {
  7843. ggml_vec_step_f32(nc,
  7844. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7845. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7846. }
  7847. }
  7848. static void ggml_compute_forward_step(
  7849. const struct ggml_compute_params * params,
  7850. struct ggml_tensor * dst) {
  7851. const struct ggml_tensor * src0 = dst->src[0];
  7852. switch (src0->type) {
  7853. case GGML_TYPE_F32:
  7854. {
  7855. ggml_compute_forward_step_f32(params, dst);
  7856. } break;
  7857. default:
  7858. {
  7859. GGML_ASSERT(false);
  7860. } break;
  7861. }
  7862. }
  7863. // ggml_compute_forward_tanh
  7864. static void ggml_compute_forward_tanh_f32(
  7865. const struct ggml_compute_params * params,
  7866. struct ggml_tensor * dst) {
  7867. const struct ggml_tensor * src0 = dst->src[0];
  7868. assert(params->ith == 0);
  7869. assert(ggml_are_same_shape(src0, dst));
  7870. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7871. return;
  7872. }
  7873. const int n = ggml_nrows(src0);
  7874. const int nc = src0->ne[0];
  7875. assert(dst->nb[0] == sizeof(float));
  7876. assert(src0->nb[0] == sizeof(float));
  7877. for (int i = 0; i < n; i++) {
  7878. ggml_vec_tanh_f32(nc,
  7879. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7880. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7881. }
  7882. }
  7883. static void ggml_compute_forward_tanh(
  7884. const struct ggml_compute_params * params,
  7885. struct ggml_tensor * dst) {
  7886. const struct ggml_tensor * src0 = dst->src[0];
  7887. switch (src0->type) {
  7888. case GGML_TYPE_F32:
  7889. {
  7890. ggml_compute_forward_tanh_f32(params, dst);
  7891. } break;
  7892. default:
  7893. {
  7894. GGML_ASSERT(false);
  7895. } break;
  7896. }
  7897. }
  7898. // ggml_compute_forward_elu
  7899. static void ggml_compute_forward_elu_f32(
  7900. const struct ggml_compute_params * params,
  7901. struct ggml_tensor * dst) {
  7902. const struct ggml_tensor * src0 = dst->src[0];
  7903. assert(params->ith == 0);
  7904. assert(ggml_are_same_shape(src0, dst));
  7905. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7906. return;
  7907. }
  7908. const int n = ggml_nrows(src0);
  7909. const int nc = src0->ne[0];
  7910. assert(dst->nb[0] == sizeof(float));
  7911. assert(src0->nb[0] == sizeof(float));
  7912. for (int i = 0; i < n; i++) {
  7913. ggml_vec_elu_f32(nc,
  7914. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7915. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7916. }
  7917. }
  7918. static void ggml_compute_forward_elu(
  7919. const struct ggml_compute_params * params,
  7920. struct ggml_tensor * dst) {
  7921. const struct ggml_tensor * src0 = dst->src[0];
  7922. switch (src0->type) {
  7923. case GGML_TYPE_F32:
  7924. {
  7925. ggml_compute_forward_elu_f32(params, dst);
  7926. } break;
  7927. default:
  7928. {
  7929. GGML_ASSERT(false);
  7930. } break;
  7931. }
  7932. }
  7933. // ggml_compute_forward_relu
  7934. static void ggml_compute_forward_relu_f32(
  7935. const struct ggml_compute_params * params,
  7936. struct ggml_tensor * dst) {
  7937. const struct ggml_tensor * src0 = dst->src[0];
  7938. assert(params->ith == 0);
  7939. assert(ggml_are_same_shape(src0, dst));
  7940. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7941. return;
  7942. }
  7943. const int n = ggml_nrows(src0);
  7944. const int nc = src0->ne[0];
  7945. assert(dst->nb[0] == sizeof(float));
  7946. assert(src0->nb[0] == sizeof(float));
  7947. for (int i = 0; i < n; i++) {
  7948. ggml_vec_relu_f32(nc,
  7949. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7950. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7951. }
  7952. }
  7953. static void ggml_compute_forward_relu(
  7954. const struct ggml_compute_params * params,
  7955. struct ggml_tensor * dst) {
  7956. const struct ggml_tensor * src0 = dst->src[0];
  7957. switch (src0->type) {
  7958. case GGML_TYPE_F32:
  7959. {
  7960. ggml_compute_forward_relu_f32(params, dst);
  7961. } break;
  7962. default:
  7963. {
  7964. GGML_ASSERT(false);
  7965. } break;
  7966. }
  7967. }
  7968. // ggml_compute_forward_gelu
  7969. static void ggml_compute_forward_gelu_f32(
  7970. const struct ggml_compute_params * params,
  7971. struct ggml_tensor * dst) {
  7972. const struct ggml_tensor * src0 = dst->src[0];
  7973. GGML_ASSERT(ggml_is_contiguous_except_dim_1(src0));
  7974. GGML_ASSERT(ggml_is_contiguous_except_dim_1(dst));
  7975. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7976. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7977. return;
  7978. }
  7979. const int ith = params->ith;
  7980. const int nth = params->nth;
  7981. const int nc = src0->ne[0];
  7982. const int nr = ggml_nrows(src0);
  7983. // rows per thread
  7984. const int dr = (nr + nth - 1)/nth;
  7985. // row range for this thread
  7986. const int ir0 = dr*ith;
  7987. const int ir1 = MIN(ir0 + dr, nr);
  7988. for (int i1 = ir0; i1 < ir1; i1++) {
  7989. ggml_vec_gelu_f32(nc,
  7990. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  7991. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  7992. #ifndef NDEBUG
  7993. for (int k = 0; k < nc; k++) {
  7994. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  7995. UNUSED(x);
  7996. assert(!isnan(x));
  7997. assert(!isinf(x));
  7998. }
  7999. #endif
  8000. }
  8001. }
  8002. static void ggml_compute_forward_gelu(
  8003. const struct ggml_compute_params * params,
  8004. struct ggml_tensor * dst) {
  8005. const struct ggml_tensor * src0 = dst->src[0];
  8006. switch (src0->type) {
  8007. case GGML_TYPE_F32:
  8008. {
  8009. ggml_compute_forward_gelu_f32(params, dst);
  8010. } break;
  8011. default:
  8012. {
  8013. GGML_ASSERT(false);
  8014. } break;
  8015. }
  8016. }
  8017. // ggml_compute_forward_gelu_quick
  8018. static void ggml_compute_forward_gelu_quick_f32(
  8019. const struct ggml_compute_params * params,
  8020. struct ggml_tensor * dst) {
  8021. const struct ggml_tensor * src0 = dst->src[0];
  8022. GGML_ASSERT(ggml_is_contiguous_except_dim_1(src0));
  8023. GGML_ASSERT(ggml_is_contiguous_except_dim_1(dst));
  8024. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8025. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8026. return;
  8027. }
  8028. const int ith = params->ith;
  8029. const int nth = params->nth;
  8030. const int nc = src0->ne[0];
  8031. const int nr = ggml_nrows(src0);
  8032. // rows per thread
  8033. const int dr = (nr + nth - 1)/nth;
  8034. // row range for this thread
  8035. const int ir0 = dr*ith;
  8036. const int ir1 = MIN(ir0 + dr, nr);
  8037. for (int i1 = ir0; i1 < ir1; i1++) {
  8038. ggml_vec_gelu_quick_f32(nc,
  8039. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  8040. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  8041. #ifndef NDEBUG
  8042. for (int k = 0; k < nc; k++) {
  8043. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  8044. UNUSED(x);
  8045. assert(!isnan(x));
  8046. assert(!isinf(x));
  8047. }
  8048. #endif
  8049. }
  8050. }
  8051. static void ggml_compute_forward_gelu_quick(
  8052. const struct ggml_compute_params * params,
  8053. struct ggml_tensor * dst) {
  8054. const struct ggml_tensor * src0 = dst->src[0];
  8055. switch (src0->type) {
  8056. case GGML_TYPE_F32:
  8057. {
  8058. ggml_compute_forward_gelu_quick_f32(params, dst);
  8059. } break;
  8060. default:
  8061. {
  8062. GGML_ASSERT(false);
  8063. } break;
  8064. }
  8065. }
  8066. // ggml_compute_forward_silu
  8067. static void ggml_compute_forward_silu_f32(
  8068. const struct ggml_compute_params * params,
  8069. struct ggml_tensor * dst) {
  8070. const struct ggml_tensor * src0 = dst->src[0];
  8071. GGML_ASSERT(ggml_is_contiguous_except_dim_1(src0));
  8072. GGML_ASSERT(ggml_is_contiguous_except_dim_1(dst));
  8073. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8074. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8075. return;
  8076. }
  8077. const int ith = params->ith;
  8078. const int nth = params->nth;
  8079. const int nc = src0->ne[0];
  8080. const int nr = ggml_nrows(src0);
  8081. // rows per thread
  8082. const int dr = (nr + nth - 1)/nth;
  8083. // row range for this thread
  8084. const int ir0 = dr*ith;
  8085. const int ir1 = MIN(ir0 + dr, nr);
  8086. for (int i1 = ir0; i1 < ir1; i1++) {
  8087. ggml_vec_silu_f32(nc,
  8088. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  8089. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  8090. #ifndef NDEBUG
  8091. for (int k = 0; k < nc; k++) {
  8092. const float x = ((float *) ((char *) dst->data + i1*(dst->nb[1])))[k];
  8093. UNUSED(x);
  8094. assert(!isnan(x));
  8095. assert(!isinf(x));
  8096. }
  8097. #endif
  8098. }
  8099. }
  8100. static void ggml_compute_forward_silu(
  8101. const struct ggml_compute_params * params,
  8102. struct ggml_tensor * dst) {
  8103. const struct ggml_tensor * src0 = dst->src[0];
  8104. switch (src0->type) {
  8105. case GGML_TYPE_F32:
  8106. {
  8107. ggml_compute_forward_silu_f32(params, dst);
  8108. } break;
  8109. default:
  8110. {
  8111. GGML_ASSERT(false);
  8112. } break;
  8113. }
  8114. }
  8115. // ggml_compute_forward_leaky_relu
  8116. static void ggml_compute_forward_leaky_relu_f32(
  8117. const struct ggml_compute_params * params,
  8118. struct ggml_tensor * dst) {
  8119. const struct ggml_tensor * src0 = dst->src[0];
  8120. assert(params->ith == 0);
  8121. assert(ggml_are_same_shape(src0, dst));
  8122. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8123. return;
  8124. }
  8125. const int n = ggml_nrows(src0);
  8126. const int nc = src0->ne[0];
  8127. float negative_slope;
  8128. memcpy(&negative_slope, dst->op_params, sizeof(float));
  8129. assert(dst->nb[0] == sizeof(float));
  8130. assert(src0->nb[0] == sizeof(float));
  8131. for (int i = 0; i < n; i++) {
  8132. ggml_vec_leaky_relu_f32(nc,
  8133. (float *) ((char *) dst->data + i*( dst->nb[1])),
  8134. (float *) ((char *) src0->data + i*(src0->nb[1])), negative_slope);
  8135. }
  8136. }
  8137. static void ggml_compute_forward_leaky_relu(
  8138. const struct ggml_compute_params * params,
  8139. struct ggml_tensor * dst) {
  8140. const struct ggml_tensor * src0 = dst->src[0];
  8141. switch (src0->type) {
  8142. case GGML_TYPE_F32:
  8143. {
  8144. ggml_compute_forward_leaky_relu_f32(params, dst);
  8145. } break;
  8146. default:
  8147. {
  8148. GGML_ASSERT(false);
  8149. } break;
  8150. }
  8151. }
  8152. // ggml_compute_forward_silu_back
  8153. static void ggml_compute_forward_silu_back_f32(
  8154. const struct ggml_compute_params * params,
  8155. struct ggml_tensor * dst) {
  8156. const struct ggml_tensor * src0 = dst->src[0];
  8157. const struct ggml_tensor * grad = dst->src[1];
  8158. GGML_ASSERT(ggml_is_contiguous_except_dim_1(grad));
  8159. GGML_ASSERT(ggml_is_contiguous_except_dim_1(src0));
  8160. GGML_ASSERT(ggml_is_contiguous_except_dim_1(dst));
  8161. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8162. GGML_ASSERT(ggml_are_same_shape(src0, grad));
  8163. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8164. return;
  8165. }
  8166. const int ith = params->ith;
  8167. const int nth = params->nth;
  8168. const int nc = src0->ne[0];
  8169. const int nr = ggml_nrows(src0);
  8170. // rows per thread
  8171. const int dr = (nr + nth - 1)/nth;
  8172. // row range for this thread
  8173. const int ir0 = dr*ith;
  8174. const int ir1 = MIN(ir0 + dr, nr);
  8175. for (int i1 = ir0; i1 < ir1; i1++) {
  8176. ggml_vec_silu_backward_f32(nc,
  8177. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  8178. (float *) ((char *) src0->data + i1*(src0->nb[1])),
  8179. (float *) ((char *) grad->data + i1*(grad->nb[1])));
  8180. #ifndef NDEBUG
  8181. for (int k = 0; k < nc; k++) {
  8182. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  8183. UNUSED(x);
  8184. assert(!isnan(x));
  8185. assert(!isinf(x));
  8186. }
  8187. #endif
  8188. }
  8189. }
  8190. static void ggml_compute_forward_silu_back(
  8191. const struct ggml_compute_params * params,
  8192. struct ggml_tensor * dst) {
  8193. const struct ggml_tensor * src0 = dst->src[0];
  8194. switch (src0->type) {
  8195. case GGML_TYPE_F32:
  8196. {
  8197. ggml_compute_forward_silu_back_f32(params, dst);
  8198. } break;
  8199. default:
  8200. {
  8201. GGML_ASSERT(false);
  8202. } break;
  8203. }
  8204. }
  8205. static void ggml_compute_forward_hardswish_f32(
  8206. const struct ggml_compute_params * params,
  8207. struct ggml_tensor * dst) {
  8208. const struct ggml_tensor * src0 = dst->src[0];
  8209. assert(params->ith == 0);
  8210. assert(ggml_are_same_shape(src0, dst));
  8211. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8212. return;
  8213. }
  8214. const int n = ggml_nrows(src0);
  8215. const int nc = src0->ne[0];
  8216. assert(dst->nb[0] == sizeof(float));
  8217. assert(src0->nb[0] == sizeof(float));
  8218. for (int i = 0; i < n; i++) {
  8219. ggml_vec_hardswish_f32(nc,
  8220. (float *) ((char *) dst->data + i*( dst->nb[1])),
  8221. (float *) ((char *) src0->data + i*(src0->nb[1])));
  8222. }
  8223. }
  8224. static void ggml_compute_forward_hardswish(
  8225. const struct ggml_compute_params * params,
  8226. struct ggml_tensor * dst) {
  8227. const struct ggml_tensor * src0 = dst->src[0];
  8228. switch (src0->type) {
  8229. case GGML_TYPE_F32:
  8230. {
  8231. ggml_compute_forward_hardswish_f32(params, dst);
  8232. } break;
  8233. default:
  8234. {
  8235. GGML_ASSERT(false);
  8236. } break;
  8237. }
  8238. }
  8239. static void ggml_compute_forward_hardsigmoid_f32(
  8240. const struct ggml_compute_params * params,
  8241. struct ggml_tensor * dst) {
  8242. const struct ggml_tensor * src0 = dst->src[0];
  8243. assert(params->ith == 0);
  8244. assert(ggml_are_same_shape(src0, dst));
  8245. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8246. return;
  8247. }
  8248. const int n = ggml_nrows(src0);
  8249. const int nc = src0->ne[0];
  8250. assert(dst->nb[0] == sizeof(float));
  8251. assert(src0->nb[0] == sizeof(float));
  8252. for (int i = 0; i < n; i++) {
  8253. ggml_vec_hardsigmoid_f32(nc,
  8254. (float *) ((char *) dst->data + i*( dst->nb[1])),
  8255. (float *) ((char *) src0->data + i*(src0->nb[1])));
  8256. }
  8257. }
  8258. static void ggml_compute_forward_hardsigmoid(
  8259. const struct ggml_compute_params * params,
  8260. struct ggml_tensor * dst) {
  8261. const struct ggml_tensor * src0 = dst->src[0];
  8262. switch (src0->type) {
  8263. case GGML_TYPE_F32:
  8264. {
  8265. ggml_compute_forward_hardsigmoid_f32(params, dst);
  8266. } break;
  8267. default:
  8268. {
  8269. GGML_ASSERT(false);
  8270. } break;
  8271. }
  8272. }
  8273. // ggml_compute_forward_norm
  8274. static void ggml_compute_forward_norm_f32(
  8275. const struct ggml_compute_params * params,
  8276. struct ggml_tensor * dst) {
  8277. const struct ggml_tensor * src0 = dst->src[0];
  8278. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8279. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8280. return;
  8281. }
  8282. GGML_ASSERT(src0->nb[0] == sizeof(float));
  8283. const int ith = params->ith;
  8284. const int nth = params->nth;
  8285. GGML_TENSOR_UNARY_OP_LOCALS
  8286. float eps;
  8287. memcpy(&eps, dst->op_params, sizeof(float));
  8288. GGML_ASSERT(eps > 0.0f);
  8289. // TODO: optimize
  8290. for (int64_t i03 = 0; i03 < ne03; i03++) {
  8291. for (int64_t i02 = 0; i02 < ne02; i02++) {
  8292. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  8293. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  8294. ggml_float sum = 0.0;
  8295. for (int64_t i00 = 0; i00 < ne00; i00++) {
  8296. sum += (ggml_float)x[i00];
  8297. }
  8298. float mean = sum/ne00;
  8299. float * y = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  8300. ggml_float sum2 = 0.0;
  8301. for (int64_t i00 = 0; i00 < ne00; i00++) {
  8302. float v = x[i00] - mean;
  8303. y[i00] = v;
  8304. sum2 += (ggml_float)(v*v);
  8305. }
  8306. float variance = sum2/ne00;
  8307. const float scale = 1.0f/sqrtf(variance + eps);
  8308. ggml_vec_scale_f32(ne00, y, scale);
  8309. }
  8310. }
  8311. }
  8312. }
  8313. static void ggml_compute_forward_norm(
  8314. const struct ggml_compute_params * params,
  8315. struct ggml_tensor * dst) {
  8316. const struct ggml_tensor * src0 = dst->src[0];
  8317. switch (src0->type) {
  8318. case GGML_TYPE_F32:
  8319. {
  8320. ggml_compute_forward_norm_f32(params, dst);
  8321. } break;
  8322. default:
  8323. {
  8324. GGML_ASSERT(false);
  8325. } break;
  8326. }
  8327. }
  8328. // ggml_compute_forward_group_rms_norm
  8329. static void ggml_compute_forward_rms_norm_f32(
  8330. const struct ggml_compute_params * params,
  8331. struct ggml_tensor * dst) {
  8332. const struct ggml_tensor * src0 = dst->src[0];
  8333. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8334. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8335. return;
  8336. }
  8337. GGML_ASSERT(src0->nb[0] == sizeof(float));
  8338. const int ith = params->ith;
  8339. const int nth = params->nth;
  8340. GGML_TENSOR_UNARY_OP_LOCALS
  8341. float eps;
  8342. memcpy(&eps, dst->op_params, sizeof(float));
  8343. GGML_ASSERT(eps > 0.0f);
  8344. // TODO: optimize
  8345. for (int64_t i03 = 0; i03 < ne03; i03++) {
  8346. for (int64_t i02 = 0; i02 < ne02; i02++) {
  8347. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  8348. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  8349. ggml_float sum = 0.0;
  8350. for (int64_t i00 = 0; i00 < ne00; i00++) {
  8351. sum += (ggml_float)(x[i00] * x[i00]);
  8352. }
  8353. const float mean = sum/ne00;
  8354. float * y = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  8355. memcpy(y, x, ne00 * sizeof(float));
  8356. // for (int i00 = 0; i00 < ne00; i00++) {
  8357. // y[i00] = x[i00];
  8358. // }
  8359. const float scale = 1.0f/sqrtf(mean + eps);
  8360. ggml_vec_scale_f32(ne00, y, scale);
  8361. }
  8362. }
  8363. }
  8364. }
  8365. static void ggml_compute_forward_rms_norm(
  8366. const struct ggml_compute_params * params,
  8367. struct ggml_tensor * dst) {
  8368. const struct ggml_tensor * src0 = dst->src[0];
  8369. switch (src0->type) {
  8370. case GGML_TYPE_F32:
  8371. {
  8372. ggml_compute_forward_rms_norm_f32(params, dst);
  8373. } break;
  8374. default:
  8375. {
  8376. GGML_ASSERT(false);
  8377. } break;
  8378. }
  8379. }
  8380. static void ggml_compute_forward_rms_norm_back_f32(
  8381. const struct ggml_compute_params * params,
  8382. struct ggml_tensor * dst) {
  8383. const struct ggml_tensor * src0 = dst->src[0];
  8384. const struct ggml_tensor * src1 = dst->src[1];
  8385. GGML_ASSERT(ggml_are_same_shape(src0, dst) && ggml_are_same_shape(src0, src1));
  8386. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8387. return;
  8388. }
  8389. GGML_ASSERT(src0->nb[0] == sizeof(float));
  8390. const int ith = params->ith;
  8391. const int nth = params->nth;
  8392. GGML_TENSOR_BINARY_OP_LOCALS
  8393. float eps;
  8394. memcpy(&eps, dst->op_params, sizeof(float));
  8395. // TODO: optimize
  8396. for (int64_t i03 = 0; i03 < ne03; i03++) {
  8397. for (int64_t i02 = 0; i02 < ne02; i02++) {
  8398. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  8399. // src1 is same shape as src0 => same indices
  8400. const int64_t i11 = i01;
  8401. const int64_t i12 = i02;
  8402. const int64_t i13 = i03;
  8403. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  8404. const float * dz = (float *) ((char *) src1->data + i11*nb11 + i12*nb12 + i13*nb13);
  8405. ggml_float sum_xx = 0.0;
  8406. ggml_float sum_xdz = 0.0;
  8407. for (int64_t i00 = 0; i00 < ne00; i00++) {
  8408. sum_xx += (ggml_float)(x[i00] * x[i00]);
  8409. sum_xdz += (ggml_float)(x[i00] * dz[i00]);
  8410. }
  8411. //const float mean = (float)(sum_xx)/ne00;
  8412. const float mean_eps = (float)(sum_xx)/ne00 + eps;
  8413. const float sum_eps = (float)(sum_xx) + eps*ne00;
  8414. //const float mean_xdz = (float)(sum_xdz)/ne00;
  8415. // we could cache rms from forward pass to improve performance.
  8416. // to do this implement ggml_rms and compose ggml_rms_norm using ggml_rms.
  8417. //const float rms = sqrtf(mean_eps);
  8418. const float rrms = 1.0f / sqrtf(mean_eps);
  8419. //const float scale = -rrms/(ne00 * mean_eps); // -1/(n*rms**3)
  8420. {
  8421. // z = rms_norm(x)
  8422. //
  8423. // rms_norm(src0) =
  8424. // scale(
  8425. // src0,
  8426. // div(
  8427. // 1,
  8428. // sqrt(
  8429. // add(
  8430. // scale(
  8431. // sum(
  8432. // sqr(
  8433. // src0)),
  8434. // (1.0/N)),
  8435. // eps))));
  8436. // postorder:
  8437. // ## op args grad
  8438. // 00 param src0 grad[#00]
  8439. // 01 const 1
  8440. // 02 sqr (#00) grad[#02]
  8441. // 03 sum (#02) grad[#03]
  8442. // 04 const 1/N
  8443. // 05 scale (#03, #04) grad[#05]
  8444. // 06 const eps
  8445. // 07 add (#05, #06) grad[#07]
  8446. // 08 sqrt (#07) grad[#08]
  8447. // 09 div (#01,#08) grad[#09]
  8448. // 10 scale (#00,#09) grad[#10]
  8449. //
  8450. // backward pass, given grad[#10]
  8451. // #10: scale
  8452. // grad[#00] += scale(grad[#10],#09)
  8453. // grad[#09] += sum(mul(grad[#10],#00))
  8454. // #09: div
  8455. // grad[#08] += neg(mul(grad[#09], div(#09,#08)))
  8456. // #08: sqrt
  8457. // grad[#07] += mul(grad[#08], div(0.5, #08))
  8458. // #07: add
  8459. // grad[#05] += grad[#07]
  8460. // #05: scale
  8461. // grad[#03] += scale(grad[#05],#04)
  8462. // #03: sum
  8463. // grad[#02] += repeat(grad[#03], #02)
  8464. // #02:
  8465. // grad[#00] += scale(mul(#00, grad[#02]), 2.0)
  8466. //
  8467. // substitute and simplify:
  8468. // grad[#00] = scale(grad(#10), #09) + scale(mul(#00, grad[#02]), 2.0)
  8469. // grad[#02] = repeat(grad[#03], #02)
  8470. // grad[#02] = repeat(scale(grad[#05],#04), #02)
  8471. // grad[#02] = repeat(scale(grad[#07],#04), #02)
  8472. // grad[#02] = repeat(scale(mul(grad[#08], div(0.5, #08)),#04), #02)
  8473. // grad[#02] = repeat(scale(mul(neg(mul(grad[#09], div(#09,#08))), div(0.5, #08)),#04), #02)
  8474. // grad[#02] = repeat(scale(mul(neg(mul(sum(mul(grad[#10],#00)), div(#09,#08))), div(0.5, #08)),#04), #02)
  8475. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(#09,#08) * div(0.5, #08) * (1/N)), #02)
  8476. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(div(#01,#08),#08) * div(0.5, #08) * (1/N)), #02)
  8477. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(1,#08*#08) * div(0.5, #08) * (1/N)), #02)
  8478. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(1,#07) * div(0.5, #08) * (1/N)), #02)
  8479. // grad[#00] = scale(grad(#10), #09) + scale(mul(#00, grad[#02]), 2.0)
  8480. // grad[#00] = scale(grad(#10), #09) + scale(mul(#00, repeat(-(sum(mul(grad[#10],#00)) * div(1,#07) * div(0.5, #08) * (1/N)), #02)), 2.0)
  8481. // grad[#00] = scale(grad(#10), #09) + scale(scale(#00, -(sum(mul(grad[#10],#00)) * div(1,#07) * div(0.5, #08) * (1/N))), 2.0)
  8482. // grad[#00] = scale(grad(#10), #09) + scale(#00, -(sum(mul(grad[#10],#00)) * div(1,#07) * div(1,#08) * (1/N)))
  8483. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(1,#07*#08) * (-1/N))
  8484. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(1,#07*#08) * (-1/N))
  8485. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(1,mean_eps*rms) * (-1/N))
  8486. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(-1,rms*N*mean_eps))
  8487. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(-1,rms*N*(sum_xx/N+eps)))
  8488. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(-1,rms*N*sum_xx+rms*N*eps))
  8489. // grad[#00] = scale(dz, rrms) + scale(x, sum(mul(dz,x)) * div(-1,rms*N*mean_eps))
  8490. // grad[#00] = scale(dz, rrms) + scale(x, sum_xdz * div(-1,rms*N*mean_eps))
  8491. // a = b*c + d*e
  8492. // a = b*c*f/f + d*e*f/f
  8493. // a = (b*c*f + d*e*f)*(1/f)
  8494. // a = (b*c*(1/c) + d*e*(1/c))*(1/(1/c))
  8495. // a = (b + d*e/c)*c
  8496. // b = dz, c = rrms, d = x, e = sum_xdz * div(-1,rms*N*mean_eps)
  8497. // a = (dz + x*sum_xdz * div(-1,rms*N*mean_eps)/rrms)*rrms
  8498. // a = (dz + x*sum_xdz * div(-1,rms*N*mean_eps)*rms)*rrms
  8499. // a = (dz + x*sum_xdz * div(-rms,rms*N*mean_eps))*rrms
  8500. // a = (dz + x*sum_xdz * div(-1,N*mean_eps))*rrms
  8501. // a = (dz + x*div(-sum_xdz,N*mean_eps))*rrms
  8502. // a = (dz + x*div(-mean_xdz,mean_eps))*rrms
  8503. // grad[#00] = scale(dz + scale(x, div(-mean_xdz,mean_eps)),rrms)
  8504. // grad[#00] = scale(dz + scale(x, -mean_xdz/mean_eps),rrms)
  8505. // dx = scale(dz + scale(x, -mean_xdz/mean_eps),rrms)
  8506. }
  8507. // dx = scale(dz + scale(x, -mean_xdz/mean_eps),rrms)
  8508. // post-order:
  8509. // dx := x
  8510. // dx := scale(dx,-mean_xdz/mean_eps)
  8511. // dx := add(dx, dz)
  8512. // dx := scale(dx, rrms)
  8513. float * dx = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  8514. ggml_vec_cpy_f32 (ne00, dx, x);
  8515. // ggml_vec_scale_f32(ne00, dx, -mean_xdz/mean_eps);
  8516. ggml_vec_scale_f32(ne00, dx, (float)(-sum_xdz)/sum_eps);
  8517. ggml_vec_acc_f32 (ne00, dx, dz);
  8518. ggml_vec_scale_f32(ne00, dx, rrms);
  8519. }
  8520. }
  8521. }
  8522. }
  8523. static void ggml_compute_forward_rms_norm_back(
  8524. const struct ggml_compute_params * params,
  8525. struct ggml_tensor * dst) {
  8526. const struct ggml_tensor * src0 = dst->src[0];
  8527. switch (src0->type) {
  8528. case GGML_TYPE_F32:
  8529. {
  8530. ggml_compute_forward_rms_norm_back_f32(params, dst);
  8531. } break;
  8532. default:
  8533. {
  8534. GGML_ASSERT(false);
  8535. } break;
  8536. }
  8537. }
  8538. // ggml_compute_forward_group_norm
  8539. static void ggml_compute_forward_group_norm_f32(
  8540. const struct ggml_compute_params * params,
  8541. struct ggml_tensor * dst) {
  8542. const struct ggml_tensor * src0 = dst->src[0];
  8543. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8544. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8545. return;
  8546. }
  8547. GGML_ASSERT(src0->nb[0] == sizeof(float));
  8548. const int ith = params->ith;
  8549. const int nth = params->nth;
  8550. GGML_TENSOR_UNARY_OP_LOCALS
  8551. const float eps = 1e-6f; // TODO: make this a parameter
  8552. // TODO: optimize
  8553. int n_channels = src0->ne[2];
  8554. int n_groups = dst->op_params[0];
  8555. int n_channels_per_group = (n_channels + n_groups - 1) / n_groups;
  8556. for (int i = ith; i < n_groups; i += nth) {
  8557. int start = i * n_channels_per_group;
  8558. int end = start + n_channels_per_group;
  8559. if (end > n_channels) {
  8560. end = n_channels;
  8561. }
  8562. int step = end - start;
  8563. for (int64_t i03 = 0; i03 < ne03; i03++) {
  8564. ggml_float sum = 0.0;
  8565. for (int64_t i02 = start; i02 < end; i02++) {
  8566. for (int64_t i01 = 0; i01 < ne01; i01++) {
  8567. const float * x = (float *)((char *) src0->data + i01 * nb01 + i02 * nb02 + i03 * nb03);
  8568. ggml_float sumr = 0.0;
  8569. for (int64_t i00 = 0; i00 < ne00; i00++) {
  8570. sumr += (ggml_float)x[i00];
  8571. }
  8572. sum += sumr;
  8573. }
  8574. }
  8575. const float mean = sum / (ne00 * ne01 * step);
  8576. ggml_float sum2 = 0.0;
  8577. for (int64_t i02 = start; i02 < end; i02++) {
  8578. for (int64_t i01 = 0; i01 < ne01; i01++) {
  8579. const float * x = (float *)((char *) src0->data + i01 * nb01 + i02 * nb02 + i03 * nb03);
  8580. float * y = (float *)((char *) dst->data + i01 * nb1 + i02 * nb2 + i03 * nb3);
  8581. ggml_float sumr = 0.0;
  8582. for (int64_t i00 = 0; i00 < ne00; i00++) {
  8583. float v = x[i00] - mean;
  8584. y[i00] = v;
  8585. sumr += (ggml_float)(v * v);
  8586. }
  8587. sum2 += sumr;
  8588. }
  8589. }
  8590. const float variance = sum2 / (ne00 * ne01 * step);
  8591. const float scale = 1.0f / sqrtf(variance + eps);
  8592. for (int64_t i02 = start; i02 < end; i02++) {
  8593. for (int64_t i01 = 0; i01 < ne01; i01++) {
  8594. float * y = (float *)((char *) dst->data + i01 * nb1 + i02 * nb2 + i03 * nb3);
  8595. ggml_vec_scale_f32(ne00, y, scale);
  8596. }
  8597. }
  8598. }
  8599. }
  8600. }
  8601. static void ggml_compute_forward_group_norm(
  8602. const struct ggml_compute_params * params,
  8603. struct ggml_tensor * dst) {
  8604. const struct ggml_tensor * src0 = dst->src[0];
  8605. switch (src0->type) {
  8606. case GGML_TYPE_F32:
  8607. {
  8608. ggml_compute_forward_group_norm_f32(params, dst);
  8609. } break;
  8610. default:
  8611. {
  8612. GGML_ASSERT(false);
  8613. } break;
  8614. }
  8615. }
  8616. // ggml_compute_forward_mul_mat
  8617. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  8618. // helper function to determine if it is better to use BLAS or not
  8619. // for large matrices, BLAS is faster
  8620. static bool ggml_compute_forward_mul_mat_use_blas(struct ggml_tensor * dst) {
  8621. const struct ggml_tensor * src0 = dst->src[0];
  8622. const struct ggml_tensor * src1 = dst->src[1];
  8623. //const int64_t ne00 = src0->ne[0];
  8624. //const int64_t ne01 = src0->ne[1];
  8625. const int64_t ne10 = src1->ne[0];
  8626. const int64_t ne0 = dst->ne[0];
  8627. const int64_t ne1 = dst->ne[1];
  8628. // NOTE: with GGML_OP_MUL_MAT_ID we don't want to go through the BLAS branch because it will dequantize (to_float)
  8629. // all the experts for each batch element and the processing would become incredibly slow
  8630. // TODO: find the optimal values for these
  8631. if (dst->op != GGML_OP_MUL_MAT_ID &&
  8632. ggml_is_contiguous(src0) &&
  8633. ggml_is_contiguous(src1) &&
  8634. //src0->type == GGML_TYPE_F32 &&
  8635. src1->type == GGML_TYPE_F32 &&
  8636. (ne0 >= 32 && ne1 >= 32 && ne10 >= 32)) {
  8637. /*printf("BLAS: %d %d %d %d %d\n", ne0, ne1, ne10, ne00, ne01);*/
  8638. return true;
  8639. }
  8640. return false;
  8641. }
  8642. #endif
  8643. static void ggml_compute_forward_mul_mat(
  8644. const struct ggml_compute_params * params,
  8645. struct ggml_tensor * dst) {
  8646. const struct ggml_tensor * src0 = dst->src[0];
  8647. const struct ggml_tensor * src1 = dst->src[1];
  8648. int64_t t0 = ggml_perf_time_us();
  8649. UNUSED(t0);
  8650. GGML_TENSOR_BINARY_OP_LOCALS
  8651. const int ith = params->ith;
  8652. const int nth = params->nth;
  8653. const enum ggml_type type = src0->type;
  8654. const bool src1_cont = ggml_is_contiguous(src1);
  8655. ggml_vec_dot_t const vec_dot = type_traits[type].vec_dot;
  8656. enum ggml_type const vec_dot_type = type_traits[type].vec_dot_type;
  8657. ggml_from_float_t const from_float_to_vec_dot = type_traits[vec_dot_type].from_float;
  8658. int64_t const vec_dot_num_rows = type_traits[type].nrows;
  8659. GGML_ASSERT(ne0 == ne01);
  8660. GGML_ASSERT(ne1 == ne11);
  8661. GGML_ASSERT(ne2 == ne12);
  8662. GGML_ASSERT(ne3 == ne13);
  8663. // we don't support permuted src0 or src1
  8664. GGML_ASSERT(nb00 == ggml_type_size(type));
  8665. GGML_ASSERT(nb10 == ggml_type_size(src1->type));
  8666. // dst cannot be transposed or permuted
  8667. GGML_ASSERT(nb0 == sizeof(float));
  8668. GGML_ASSERT(nb0 <= nb1);
  8669. GGML_ASSERT(nb1 <= nb2);
  8670. GGML_ASSERT(nb2 <= nb3);
  8671. // broadcast factors
  8672. const int64_t r2 = ne12/ne02;
  8673. const int64_t r3 = ne13/ne03;
  8674. // nb01 >= nb00 - src0 is not transposed
  8675. // compute by src0 rows
  8676. #if defined(GGML_USE_CLBLAST)
  8677. if (ggml_cl_can_mul_mat(src0, src1, dst)) {
  8678. if (params->ith == 0 && params->type == GGML_TASK_TYPE_COMPUTE) {
  8679. ggml_cl_mul_mat(src0, src1, dst, params->wdata, params->wsize);
  8680. }
  8681. return;
  8682. }
  8683. #endif
  8684. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  8685. if (ggml_compute_forward_mul_mat_use_blas(dst)) {
  8686. const int64_t ne_plane = ne01*ne00;
  8687. const size_t desired_wsize = ne13*ne12*ne_plane*sizeof(float);
  8688. UNUSED(desired_wsize);
  8689. if (params->type == GGML_TASK_TYPE_INIT) {
  8690. if (type != GGML_TYPE_F32) {
  8691. assert(params->wsize >= desired_wsize);
  8692. // parallelize by src0 rows
  8693. for (int64_t i13 = 0; i13 < ne13; i13++) {
  8694. for (int64_t i12 = 0; i12 < ne12; i12++) {
  8695. // broadcast src0 into src1 across 2nd,3rd dimension
  8696. const int64_t i03 = i13/r3;
  8697. const int64_t i02 = i12/r2;
  8698. const void * x = (char *) src0->data + i02*nb02 + i03*nb03;
  8699. float * const wdata = (float *) params->wdata + i13*ne12*ne_plane + i12*ne_plane;
  8700. ggml_to_float_t const to_float = type_traits[type].to_float;
  8701. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  8702. to_float((const char *) x + i01*nb01, wdata + i01*ne00, ne00);
  8703. }
  8704. }
  8705. }
  8706. }
  8707. return;
  8708. }
  8709. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  8710. return;
  8711. }
  8712. // perform sgemm, parallelization controlled by blas lib
  8713. if (ith != 0) {
  8714. return;
  8715. }
  8716. //const int64_t tgemm0 = ggml_perf_time_us();
  8717. for (int64_t i13 = 0; i13 < ne13; i13++) {
  8718. for (int64_t i12 = 0; i12 < ne12; i12++) {
  8719. const int64_t i03 = i13/r3;
  8720. const int64_t i02 = i12/r2;
  8721. const void * x = (char *) src0->data + i02*nb02 + i03*nb03;
  8722. const float * y = (float *) ((char *) src1->data + i12*nb12 + i13*nb13);
  8723. float * d = (float *) ((char *) dst->data + i12*nb2 + i13*nb3);
  8724. if (type != GGML_TYPE_F32) {
  8725. x = (float *) params->wdata + i13*ne12*ne_plane + i12*ne_plane;
  8726. }
  8727. cblas_sgemm(CblasRowMajor, CblasNoTrans, CblasTrans,
  8728. ne1, ne01, ne10,
  8729. 1.0f, y, ne10,
  8730. x, ne00,
  8731. 0.0f, d, ne01);
  8732. }
  8733. }
  8734. //printf("cblas_sgemm = %.3f ms, %lld flops\n", (ggml_perf_time_us() - tgemm0)/1000.0, ne13*ne12*ne1*ne01*ne10*2);
  8735. //printf("CBLAS = %f ms, %d x %d x %d x %d\n", (ggml_perf_time_us() - t0)/1000.0, ne0, ne1, ne2, ne3);
  8736. return;
  8737. }
  8738. #endif
  8739. if (params->type == GGML_TASK_TYPE_INIT) {
  8740. if (ith != 0) {
  8741. return;
  8742. }
  8743. if (src1->type != vec_dot_type) {
  8744. char * wdata = params->wdata;
  8745. const size_t row_size = ggml_row_size(vec_dot_type, ne10);
  8746. assert(params->wsize >= ne11*ne12*ne13*row_size);
  8747. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  8748. for (int64_t i13 = 0; i13 < ne13; ++i13) {
  8749. for (int64_t i12 = 0; i12 < ne12; ++i12) {
  8750. for (int64_t i11 = 0; i11 < ne11; ++i11) {
  8751. from_float_to_vec_dot((float *)((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11), (void *) wdata, ne10);
  8752. wdata += row_size;
  8753. }
  8754. }
  8755. }
  8756. }
  8757. return;
  8758. }
  8759. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  8760. return;
  8761. }
  8762. const void * wdata = (src1->type == vec_dot_type) ? src1->data : params->wdata;
  8763. const size_t row_size = ggml_row_size(vec_dot_type, ne10);
  8764. const int64_t nr0 = ne01; // src0 rows
  8765. const int64_t nr1 = ne1*ne12*ne13; // src1 rows
  8766. //printf("nr0 = %lld, nr1 = %lld\n", nr0, nr1);
  8767. // distribute the thread work across the inner or outer loop based on which one is larger
  8768. const int64_t nth0 = nr0 > nr1 ? nth : 1; // parallelize by src0 rows
  8769. const int64_t nth1 = nr0 > nr1 ? 1 : nth; // parallelize by src1 rows
  8770. const int64_t ith0 = ith % nth0;
  8771. const int64_t ith1 = ith / nth0;
  8772. const int64_t dr0 = (nr0 + nth0 - 1)/nth0;
  8773. const int64_t dr1 = (nr1 + nth1 - 1)/nth1;
  8774. const int64_t ir010 = dr0*ith0;
  8775. const int64_t ir011 = MIN(ir010 + dr0, nr0);
  8776. const int64_t ir110 = dr1*ith1;
  8777. const int64_t ir111 = MIN(ir110 + dr1, nr1);
  8778. //printf("ir010 = %6lld, ir011 = %6lld, ir110 = %6lld, ir111 = %6lld\n", ir010, ir011, ir110, ir111);
  8779. // threads with no work simply yield (not sure if it helps)
  8780. if (ir010 >= ir011 || ir110 >= ir111) {
  8781. sched_yield();
  8782. return;
  8783. }
  8784. assert(ne12 % ne02 == 0);
  8785. assert(ne13 % ne03 == 0);
  8786. // block-tiling attempt
  8787. const int64_t blck_0 = 16;
  8788. const int64_t blck_1 = 16;
  8789. // dot kernels can handle 1 row and col at a time, but mmla kernels can process 2 rows and cols
  8790. int64_t nrc = vec_dot_num_rows;
  8791. // TODO: currently the mmla kernels support only even numbered rows/cols.
  8792. // this check can be removed once they are extended to support odd numbered rows/cols too
  8793. if ((nr0 % 2 != 0) || (ne11 % 2 != 0)) {
  8794. nrc = 1;
  8795. }
  8796. const size_t src1_col_stride = src1_cont || src1->type != vec_dot_type ? row_size : nb11;
  8797. // attempt to reduce false-sharing (does not seem to make a difference)
  8798. // 16 * 2, accounting for mmla kernels
  8799. float tmp[32];
  8800. for (int64_t iir1 = ir110; iir1 < ir111; iir1 += blck_1) {
  8801. for (int64_t iir0 = ir010; iir0 < ir011; iir0 += blck_0) {
  8802. for (int64_t ir1 = iir1; ir1 < iir1 + blck_1 && ir1 < ir111; ir1 += nrc) {
  8803. const int64_t i13 = (ir1/(ne12*ne1));
  8804. const int64_t i12 = (ir1 - i13*ne12*ne1)/ne1;
  8805. const int64_t i11 = (ir1 - i13*ne12*ne1 - i12*ne1);
  8806. // broadcast src0 into src1
  8807. const int64_t i03 = i13/r3;
  8808. const int64_t i02 = i12/r2;
  8809. const int64_t i1 = i11;
  8810. const int64_t i2 = i12;
  8811. const int64_t i3 = i13;
  8812. const char * src0_row = (const char *) src0->data + (0 + i02*nb02 + i03*nb03);
  8813. // desc: when src1 is not a contiguous memory block we have to calculate the offset using the strides
  8814. // if it is, then we have either copied the data to params->wdata and made it contiguous or we are using
  8815. // the original src1 data pointer, so we should index using the indices directly
  8816. // TODO: this is a bit of a hack, we should probably have a better way to handle this
  8817. const char * src1_col = (const char *) wdata +
  8818. (src1_cont || src1->type != vec_dot_type
  8819. ? (i11 + i12*ne11 + i13*ne12*ne11)*row_size
  8820. : (i11*nb11 + i12*nb12 + i13*nb13));
  8821. float * dst_col = (float *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3));
  8822. //for (int64_t ir0 = iir0; ir0 < iir0 + blck_0 && ir0 < ir011; ++ir0) {
  8823. // vec_dot(ne00, &dst_col[ir0], src0_row + ir0*nb01, src1_col);
  8824. //}
  8825. for (int64_t ir0 = iir0; ir0 < iir0 + blck_0 && ir0 < ir011; ir0 += nrc) {
  8826. vec_dot(ne00, &tmp[ir0 - iir0], (nrc>1 ? 16 : 0), src0_row + ir0*nb01, (nrc>1 ? nb01 : 0), src1_col, (nrc>1 ? src1_col_stride : 0), nrc);
  8827. }
  8828. for (int cn = 0; cn < nrc; ++cn) {
  8829. memcpy(&dst_col[iir0 + cn*nb1/nb0], tmp + (cn*16), (MIN(iir0 + blck_0, ir011) - iir0)*sizeof(float));
  8830. }
  8831. }
  8832. }
  8833. }
  8834. }
  8835. // ggml_compute_forward_mul_mat_id
  8836. static void ggml_compute_forward_mul_mat_id(
  8837. const struct ggml_compute_params * params,
  8838. struct ggml_tensor * dst) {
  8839. const struct ggml_tensor * ids = dst->src[0];
  8840. const struct ggml_tensor * src1 = dst->src[1];
  8841. const struct ggml_tensor * src0 = dst->src[2]; // only for GGML_TENSOR_BINARY_OP_LOCALS
  8842. GGML_TENSOR_BINARY_OP_LOCALS
  8843. const int ith = params->ith;
  8844. const int nth = params->nth;
  8845. const enum ggml_type type = src0->type;
  8846. const bool src1_cont = ggml_is_contiguous(src1);
  8847. ggml_vec_dot_t const vec_dot = type_traits[type].vec_dot;
  8848. enum ggml_type const vec_dot_type = type_traits[type].vec_dot_type;
  8849. ggml_from_float_t const from_float_to_vec_dot = type_traits[vec_dot_type].from_float;
  8850. GGML_ASSERT(ne0 == ne01);
  8851. GGML_ASSERT(ne1 == ne11);
  8852. GGML_ASSERT(ne2 == ne12);
  8853. GGML_ASSERT(ne3 == ne13);
  8854. // we don't support permuted src0 or src1
  8855. GGML_ASSERT(nb00 == ggml_type_size(type));
  8856. GGML_ASSERT(nb10 == ggml_type_size(src1->type));
  8857. // dst cannot be transposed or permuted
  8858. GGML_ASSERT(nb0 == sizeof(float));
  8859. GGML_ASSERT(nb0 <= nb1);
  8860. GGML_ASSERT(nb1 <= nb2);
  8861. GGML_ASSERT(nb2 <= nb3);
  8862. // broadcast factors
  8863. const int64_t r2 = ne12/ne02;
  8864. const int64_t r3 = ne13/ne03;
  8865. // row groups
  8866. const int id = ggml_get_op_params_i32(dst, 0);
  8867. const int n_as = ggml_get_op_params_i32(dst, 1);
  8868. char * wdata_src1_end = (src1->type == vec_dot_type) ?
  8869. (char *) params->wdata :
  8870. (char *) params->wdata + GGML_PAD(ggml_row_size(vec_dot_type, ggml_nelements(src1)), sizeof(int64_t));
  8871. int64_t * matrix_row_counts = (int64_t *) (wdata_src1_end); // [n_as]
  8872. int64_t * matrix_rows = matrix_row_counts + n_as; // [n_as][ne11]
  8873. #define MMID_MATRIX_ROW(row_id, i1) matrix_rows[(row_id)*ne11 + (i1)]
  8874. if (params->type == GGML_TASK_TYPE_INIT) {
  8875. if (ith != 0) {
  8876. return;
  8877. }
  8878. char * wdata = params->wdata;
  8879. if (src1->type != vec_dot_type) {
  8880. const size_t row_size = ggml_row_size(vec_dot_type, ne10);
  8881. assert(params->wsize >= ne11*ne12*ne13*row_size);
  8882. assert(src1->type == GGML_TYPE_F32);
  8883. for (int64_t i13 = 0; i13 < ne13; ++i13) {
  8884. for (int64_t i12 = 0; i12 < ne12; ++i12) {
  8885. for (int64_t i11 = 0; i11 < ne11; ++i11) {
  8886. from_float_to_vec_dot((float *)((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11), (void *) wdata, ne10);
  8887. wdata += row_size;
  8888. }
  8889. }
  8890. }
  8891. }
  8892. // initialize matrix_row_counts
  8893. GGML_ASSERT(wdata == wdata_src1_end);
  8894. memset(matrix_row_counts, 0, n_as*sizeof(int64_t));
  8895. // group rows by src0 matrix
  8896. for (int64_t i01 = 0; i01 < ids->ne[1]; i01++) {
  8897. const int32_t row_id = *(const int32_t *) ((const char *) ids->data + i01*ids->nb[1] + id*ids->nb[0]);
  8898. GGML_ASSERT(row_id >= 0 && row_id < n_as);
  8899. MMID_MATRIX_ROW(row_id, matrix_row_counts[row_id]) = i01;
  8900. matrix_row_counts[row_id] += 1;
  8901. }
  8902. return;
  8903. }
  8904. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  8905. return;
  8906. }
  8907. // compute each matrix multiplication in sequence
  8908. for (int cur_a = 0; cur_a < n_as; ++cur_a) {
  8909. const int64_t cne1 = matrix_row_counts[cur_a];
  8910. if (cne1 == 0) {
  8911. continue;
  8912. }
  8913. const struct ggml_tensor * src0_cur = dst->src[cur_a + 2];
  8914. const void * wdata = (src1->type == vec_dot_type) ? src1->data : params->wdata;
  8915. const size_t row_size = ggml_row_size(vec_dot_type, ne10);
  8916. const int64_t nr0 = ne01; // src0 rows
  8917. const int64_t nr1 = cne1*ne12*ne13; // src1 rows
  8918. //printf("nr0 = %lld, nr1 = %lld\n", nr0, nr1);
  8919. // distribute the thread work across the inner or outer loop based on which one is larger
  8920. const int64_t nth0 = nr0 > nr1 ? nth : 1; // parallelize by src0 rows
  8921. const int64_t nth1 = nr0 > nr1 ? 1 : nth; // parallelize by src1 rows
  8922. const int64_t ith0 = ith % nth0;
  8923. const int64_t ith1 = ith / nth0;
  8924. const int64_t dr0 = (nr0 + nth0 - 1)/nth0;
  8925. const int64_t dr1 = (nr1 + nth1 - 1)/nth1;
  8926. const int64_t ir010 = dr0*ith0;
  8927. const int64_t ir011 = MIN(ir010 + dr0, nr0);
  8928. const int64_t ir110 = dr1*ith1;
  8929. const int64_t ir111 = MIN(ir110 + dr1, nr1);
  8930. //printf("ir010 = %6lld, ir011 = %6lld, ir110 = %6lld, ir111 = %6lld\n", ir010, ir011, ir110, ir111);
  8931. // threads with no work simply yield (not sure if it helps)
  8932. if (ir010 >= ir011 || ir110 >= ir111) {
  8933. sched_yield();
  8934. continue;
  8935. }
  8936. assert(ne12 % ne02 == 0);
  8937. assert(ne13 % ne03 == 0);
  8938. // block-tiling attempt
  8939. const int64_t blck_0 = 16;
  8940. const int64_t blck_1 = 16;
  8941. // attempt to reduce false-sharing (does not seem to make a difference)
  8942. float tmp[16];
  8943. for (int64_t iir1 = ir110; iir1 < ir111; iir1 += blck_1) {
  8944. for (int64_t iir0 = ir010; iir0 < ir011; iir0 += blck_0) {
  8945. for (int64_t ir1 = iir1; ir1 < iir1 + blck_1 && ir1 < ir111; ++ir1) {
  8946. const int64_t i13 = (ir1/(ne12*cne1)); // Note: currently, src1 is always a matrix
  8947. const int64_t i12 = (ir1 - i13*ne12*cne1)/cne1;
  8948. const int64_t _i11 = (ir1 - i13*ne12*cne1 - i12*cne1);
  8949. const int64_t i11 = MMID_MATRIX_ROW(cur_a, _i11);
  8950. // broadcast src0 into src1
  8951. const int64_t i03 = i13/r3;
  8952. const int64_t i02 = i12/r2;
  8953. const int64_t i1 = i11;
  8954. const int64_t i2 = i12;
  8955. const int64_t i3 = i13;
  8956. const char * src0_row = (const char *) src0_cur->data + (0 + i02*nb02 + i03*nb03);
  8957. // desc: when src1 is not a contiguous memory block we have to calculate the offset using the strides
  8958. // if it is, then we have either copied the data to params->wdata and made it contiguous or we are using
  8959. // the original src1 data pointer, so we should index using the indices directly
  8960. // TODO: this is a bit of a hack, we should probably have a better way to handle this
  8961. const char * src1_col = (const char *) wdata +
  8962. (src1_cont || src1->type != vec_dot_type
  8963. ? (i11 + i12*ne11 + i13*ne12*ne11)*row_size
  8964. : (i11*nb11 + i12*nb12 + i13*nb13));
  8965. float * dst_col = (float *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3));
  8966. //for (int64_t ir0 = iir0; ir0 < iir0 + blck_0 && ir0 < ir011; ++ir0) {
  8967. // vec_dot(ne00, &dst_col[ir0], src0_row + ir0*nb01, src1_col);
  8968. //}
  8969. for (int64_t ir0 = iir0; ir0 < iir0 + blck_0 && ir0 < ir011; ++ir0) {
  8970. vec_dot(ne00, &tmp[ir0 - iir0], 0, src0_row + ir0*nb01, 0, src1_col, 0, 1);
  8971. }
  8972. memcpy(&dst_col[iir0], tmp, (MIN(iir0 + blck_0, ir011) - iir0)*sizeof(float));
  8973. }
  8974. }
  8975. }
  8976. }
  8977. #undef MMID_MATRIX_ROW
  8978. }
  8979. // ggml_compute_forward_out_prod
  8980. static void ggml_compute_forward_out_prod_f32(
  8981. const struct ggml_compute_params * params,
  8982. struct ggml_tensor * dst) {
  8983. const struct ggml_tensor * src0 = dst->src[0];
  8984. const struct ggml_tensor * src1 = dst->src[1];
  8985. // int64_t t0 = ggml_perf_time_us();
  8986. // UNUSED(t0);
  8987. GGML_TENSOR_BINARY_OP_LOCALS
  8988. const int ith = params->ith;
  8989. const int nth = params->nth;
  8990. GGML_ASSERT(ne0 == ne00);
  8991. GGML_ASSERT(ne1 == ne10);
  8992. GGML_ASSERT(ne2 == ne02);
  8993. GGML_ASSERT(ne02 == ne12);
  8994. GGML_ASSERT(ne3 == ne13);
  8995. GGML_ASSERT(ne03 == ne13);
  8996. // we don't support permuted src0 or src1
  8997. GGML_ASSERT(nb00 == sizeof(float));
  8998. // dst cannot be transposed or permuted
  8999. GGML_ASSERT(nb0 == sizeof(float));
  9000. // GGML_ASSERT(nb0 <= nb1);
  9001. // GGML_ASSERT(nb1 <= nb2);
  9002. // GGML_ASSERT(nb2 <= nb3);
  9003. // nb01 >= nb00 - src0 is not transposed
  9004. // compute by src0 rows
  9005. // TODO: #if defined(GGML_USE_CLBLAST)
  9006. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  9007. bool use_blas = ggml_is_matrix(src0) &&
  9008. ggml_is_matrix(src1) &&
  9009. ggml_is_contiguous(src0) &&
  9010. (ggml_is_contiguous(src1) || ggml_is_transposed(src1));
  9011. #endif
  9012. if (params->type == GGML_TASK_TYPE_INIT) {
  9013. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) // gemm beta will zero dst
  9014. if (use_blas) {
  9015. return;
  9016. }
  9017. #endif
  9018. if (ith != 0) {
  9019. return;
  9020. }
  9021. ggml_vec_set_f32(ne0*ne1*ne2*ne3, dst->data, 0);
  9022. return;
  9023. }
  9024. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  9025. return;
  9026. }
  9027. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  9028. if (use_blas) {
  9029. if (params->ith != 0) { // All threads other than the first do no work.
  9030. return;
  9031. }
  9032. // Arguments to ggml_compute_forward_out_prod (expressed as major,minor)
  9033. // src0: (k,n)
  9034. // src1: (k,m)
  9035. // dst: (m,n)
  9036. //
  9037. // Arguments to sgemm (see https://github.com/Reference-LAPACK/lapack/blob/master/BLAS/SRC/sgemm.f)
  9038. // Also expressed as (major,minor)
  9039. // a: (m,k): so src1 transposed
  9040. // b: (k,n): so src0
  9041. // c: (m,n)
  9042. //
  9043. // However, if ggml_is_transposed(src1) is true, then
  9044. // src1->data already contains a transposed version, so sgemm mustn't
  9045. // transpose it further.
  9046. int n = src0->ne[0];
  9047. int k = src0->ne[1];
  9048. int m = src1->ne[0];
  9049. int transposeA, lda;
  9050. if (!ggml_is_transposed(src1)) {
  9051. transposeA = CblasTrans;
  9052. lda = m;
  9053. } else {
  9054. transposeA = CblasNoTrans;
  9055. lda = k;
  9056. }
  9057. float * a = (float *) ((char *) src1->data);
  9058. float * b = (float *) ((char *) src0->data);
  9059. float * c = (float *) ((char *) dst->data);
  9060. cblas_sgemm(CblasRowMajor, transposeA, CblasNoTrans, m, n, k, 1.0, a, lda, b, n, 0.0, c, n);
  9061. return;
  9062. }
  9063. #endif
  9064. // dst[:,:,:,:] = 0
  9065. // for i2,i3:
  9066. // for i1:
  9067. // for i01:
  9068. // for i0:
  9069. // dst[i0,i1,i2,i3] += src0[i0,i01,i2,i3] * src1[i1,i01,i2,i3]
  9070. // parallelize by last three dimensions
  9071. // total rows in dst
  9072. const int64_t nr = ne1*ne2*ne3;
  9073. // rows per thread
  9074. const int64_t dr = (nr + nth - 1)/nth;
  9075. // row range for this thread
  9076. const int64_t ir0 = dr*ith;
  9077. const int64_t ir1 = MIN(ir0 + dr, nr);
  9078. // block-tiling attempt
  9079. const int64_t blck_0 = MAX(GGML_VEC_MAD_UNROLL, 32);
  9080. const int64_t blck_1 = 16;
  9081. for (int64_t bir = ir0; bir < ir1; bir += blck_1) {
  9082. const int64_t bir1 = MIN(bir + blck_1, ir1);
  9083. for (int64_t bi01 = 0; bi01 < ne01; bi01 += blck_0) {
  9084. const int64_t bne01 = MIN(bi01 + blck_0, ne01);
  9085. for (int64_t ir = bir; ir < bir1; ++ir) {
  9086. // dst indices
  9087. const int64_t i3 = ir/(ne2*ne1);
  9088. const int64_t i2 = (ir - i3*ne2*ne1)/ne1;
  9089. const int64_t i1 = (ir - i3*ne2*ne1 - i2*ne1);
  9090. const int64_t i02 = i2;
  9091. const int64_t i03 = i3;
  9092. //const int64_t i10 = i1;
  9093. const int64_t i12 = i2;
  9094. const int64_t i13 = i3;
  9095. #if GGML_VEC_MAD_UNROLL > 2
  9096. const int64_t bne01_unroll = bne01 - (bne01 % GGML_VEC_MAD_UNROLL);
  9097. for (int64_t i01 = bi01; i01 < bne01_unroll; i01 += GGML_VEC_MAD_UNROLL) {
  9098. const int64_t i11 = i01;
  9099. float * s0 = (float *) ((char *) src0->data + ( i01*nb01 + i02*nb02 + i03*nb03));
  9100. float * s1 = (float *) ((char *) src1->data + (i1*nb10 + i11*nb11 + i12*nb12 + i13*nb13));
  9101. float * d = (float *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
  9102. ggml_vec_mad_f32_unroll(ne0, nb01, nb11, d, s0, s1);
  9103. }
  9104. for (int64_t i01 = bne01_unroll; i01 < bne01; ++i01) {
  9105. const int64_t i11 = i01;
  9106. float * s0 = (float *) ((char *) src0->data + ( i01*nb01 + i02*nb02 + i03*nb03));
  9107. float * s1 = (float *) ((char *) src1->data + (i1*nb10 + i11*nb11 + i12*nb12 + i13*nb13));
  9108. float * d = (float *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
  9109. ggml_vec_mad_f32(ne0, d, s0, *s1);
  9110. }
  9111. #else
  9112. for (int64_t i01 = bi01; i01 < bne01; ++i01) {
  9113. const int64_t i11 = i01;
  9114. float * s0 = (float *) ((char *) src0->data + ( i01*nb01 + i02*nb02 + i03*nb03));
  9115. float * s1 = (float *) ((char *) src1->data + (i1*nb10 + i11*nb11 + i12*nb12 + i13*nb13));
  9116. float * d = (float *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
  9117. ggml_vec_mad_f32(ne0, d, s0, *s1);
  9118. }
  9119. #endif
  9120. }
  9121. }
  9122. }
  9123. //int64_t t1 = ggml_perf_time_us();
  9124. //static int64_t acc = 0;
  9125. //acc += t1 - t0;
  9126. //if (t1 - t0 > 10) {
  9127. // printf("\n");
  9128. // printf("ne00 = %5d, ne01 = %5d, ne02 = %5d, ne03 = %5d\n", ne00, ne01, ne02, ne03);
  9129. // printf("nb00 = %5d, nb01 = %5d, nb02 = %5d, nb03 = %5d\n", nb00, nb01, nb02, nb03);
  9130. // printf("ne10 = %5d, ne11 = %5d, ne12 = %5d, ne13 = %5d\n", ne10, ne11, ne12, ne13);
  9131. // printf("nb10 = %5d, nb11 = %5d, nb12 = %5d, nb13 = %5d\n", nb10, nb11, nb12, nb13);
  9132. // printf("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX task %d/%d: %d us, acc = %d\n", ith, nth, (int) (t1 - t0), (int) acc);
  9133. //}
  9134. }
  9135. static void ggml_compute_forward_out_prod_q_f32(
  9136. const struct ggml_compute_params * params,
  9137. struct ggml_tensor * dst) {
  9138. const struct ggml_tensor * src0 = dst->src[0];
  9139. const struct ggml_tensor * src1 = dst->src[1];
  9140. // int64_t t0 = ggml_perf_time_us();
  9141. // UNUSED(t0);
  9142. GGML_TENSOR_BINARY_OP_LOCALS;
  9143. const int ith = params->ith;
  9144. const int nth = params->nth;
  9145. const enum ggml_type type = src0->type;
  9146. ggml_to_float_t const dequantize_row_q = type_traits[type].to_float;
  9147. GGML_ASSERT(ne02 == ne12);
  9148. GGML_ASSERT(ne03 == ne13);
  9149. GGML_ASSERT(ne2 == ne12);
  9150. GGML_ASSERT(ne3 == ne13);
  9151. // we don't support permuted src0 dim0
  9152. GGML_ASSERT(nb00 == ggml_type_size(type));
  9153. // dst dim0 cannot be transposed or permuted
  9154. GGML_ASSERT(nb0 == sizeof(float));
  9155. // GGML_ASSERT(nb0 <= nb1);
  9156. // GGML_ASSERT(nb1 <= nb2);
  9157. // GGML_ASSERT(nb2 <= nb3);
  9158. GGML_ASSERT(ne0 == ne00);
  9159. GGML_ASSERT(ne1 == ne10);
  9160. GGML_ASSERT(ne2 == ne02);
  9161. GGML_ASSERT(ne3 == ne03);
  9162. // nb01 >= nb00 - src0 is not transposed
  9163. // compute by src0 rows
  9164. // TODO: #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CLBLAST)
  9165. if (params->type == GGML_TASK_TYPE_INIT) {
  9166. if (ith != 0) {
  9167. return;
  9168. }
  9169. ggml_vec_set_f32(ne0*ne1*ne2*ne3, dst->data, 0);
  9170. return;
  9171. }
  9172. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  9173. return;
  9174. }
  9175. // parallelize by last three dimensions
  9176. // total rows in dst
  9177. const int64_t nr = ne1*ne2*ne3;
  9178. // rows per thread
  9179. const int64_t dr = (nr + nth - 1)/nth;
  9180. // row range for this thread
  9181. const int64_t ir0 = dr*ith;
  9182. const int64_t ir1 = MIN(ir0 + dr, nr);
  9183. // dst[:,:,:,:] = 0
  9184. // for i2,i3:
  9185. // for i1:
  9186. // for i01:
  9187. // for i0:
  9188. // dst[i0,i1,i2,i3] += src0[i0,i01,i2,i3] * src1[i1,i01,i2,i3]
  9189. float * wdata = (float *) params->wdata + (ne0 + CACHE_LINE_SIZE_F32) * ith;
  9190. for (int64_t ir = ir0; ir < ir1; ++ir) {
  9191. // dst indices
  9192. const int64_t i3 = ir/(ne2*ne1);
  9193. const int64_t i2 = (ir - i3*ne2*ne1)/ne1;
  9194. const int64_t i1 = (ir - i3*ne2*ne1 - i2*ne1);
  9195. const int64_t i02 = i2;
  9196. const int64_t i03 = i3;
  9197. //const int64_t i10 = i1;
  9198. const int64_t i12 = i2;
  9199. const int64_t i13 = i3;
  9200. for (int64_t i01 = 0; i01 < ne01; ++i01) {
  9201. const int64_t i11 = i01;
  9202. float * s0 = (float *) ((char *) src0->data + ( i01*nb01 + i02*nb02 + i03*nb03));
  9203. float * s1 = (float *) ((char *) src1->data + (i1*nb10 + i11*nb11 + i12*nb12 + i13*nb13));
  9204. float * d = (float *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
  9205. dequantize_row_q(s0, wdata, ne0);
  9206. ggml_vec_mad_f32(ne0, d, wdata, *s1);
  9207. }
  9208. }
  9209. //int64_t t1 = ggml_perf_time_us();
  9210. //static int64_t acc = 0;
  9211. //acc += t1 - t0;
  9212. //if (t1 - t0 > 10) {
  9213. // printf("\n");
  9214. // printf("ne00 = %5d, ne01 = %5d, ne02 = %5d, ne03 = %5d\n", ne00, ne01, ne02, ne03);
  9215. // printf("nb00 = %5d, nb01 = %5d, nb02 = %5d, nb03 = %5d\n", nb00, nb01, nb02, nb03);
  9216. // printf("ne10 = %5d, ne11 = %5d, ne12 = %5d, ne13 = %5d\n", ne10, ne11, ne12, ne13);
  9217. // printf("nb10 = %5d, nb11 = %5d, nb12 = %5d, nb13 = %5d\n", nb10, nb11, nb12, nb13);
  9218. // printf("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX task %d/%d: %d us, acc = %d\n", ith, nth, (int) (t1 - t0), (int) acc);
  9219. //}
  9220. }
  9221. static void ggml_compute_forward_out_prod(
  9222. const struct ggml_compute_params * params,
  9223. struct ggml_tensor * dst) {
  9224. const struct ggml_tensor * src0 = dst->src[0];
  9225. switch (src0->type) {
  9226. case GGML_TYPE_Q4_0:
  9227. case GGML_TYPE_Q4_1:
  9228. case GGML_TYPE_Q5_0:
  9229. case GGML_TYPE_Q5_1:
  9230. case GGML_TYPE_Q8_0:
  9231. case GGML_TYPE_Q2_K:
  9232. case GGML_TYPE_Q3_K:
  9233. case GGML_TYPE_Q4_K:
  9234. case GGML_TYPE_Q5_K:
  9235. case GGML_TYPE_Q6_K:
  9236. case GGML_TYPE_IQ2_XXS:
  9237. case GGML_TYPE_IQ2_XS:
  9238. case GGML_TYPE_IQ3_XXS:
  9239. case GGML_TYPE_IQ1_S:
  9240. case GGML_TYPE_IQ4_NL:
  9241. case GGML_TYPE_IQ4_XS:
  9242. case GGML_TYPE_IQ3_S:
  9243. case GGML_TYPE_IQ2_S:
  9244. {
  9245. ggml_compute_forward_out_prod_q_f32(params, dst);
  9246. } break;
  9247. case GGML_TYPE_F16:
  9248. {
  9249. GGML_ASSERT(false); // todo
  9250. // ggml_compute_forward_out_prod_f16_f32(params, dst);
  9251. } break;
  9252. case GGML_TYPE_F32:
  9253. {
  9254. ggml_compute_forward_out_prod_f32(params, dst);
  9255. } break;
  9256. default:
  9257. {
  9258. GGML_ASSERT(false);
  9259. } break;
  9260. }
  9261. }
  9262. // ggml_compute_forward_scale
  9263. static void ggml_compute_forward_scale_f32(
  9264. const struct ggml_compute_params * params,
  9265. struct ggml_tensor * dst) {
  9266. const struct ggml_tensor * src0 = dst->src[0];
  9267. GGML_ASSERT(ggml_is_contiguous(src0));
  9268. GGML_ASSERT(ggml_is_contiguous(dst));
  9269. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  9270. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9271. return;
  9272. }
  9273. // scale factor
  9274. float v;
  9275. memcpy(&v, dst->op_params, sizeof(float));
  9276. const int ith = params->ith;
  9277. const int nth = params->nth;
  9278. const int nc = src0->ne[0];
  9279. const int nr = ggml_nrows(src0);
  9280. // rows per thread
  9281. const int dr = (nr + nth - 1)/nth;
  9282. // row range for this thread
  9283. const int ir0 = dr*ith;
  9284. const int ir1 = MIN(ir0 + dr, nr);
  9285. const size_t nb01 = src0->nb[1];
  9286. const size_t nb1 = dst->nb[1];
  9287. for (int i1 = ir0; i1 < ir1; i1++) {
  9288. if (dst->data != src0->data) {
  9289. // src0 is same shape as dst => same indices
  9290. memcpy((char *)dst->data + i1*nb1, (char *)src0->data + i1*nb01, nc * sizeof(float));
  9291. }
  9292. ggml_vec_scale_f32(nc, (float *) ((char *) dst->data + i1*nb1), v);
  9293. }
  9294. }
  9295. static void ggml_compute_forward_scale(
  9296. const struct ggml_compute_params * params,
  9297. struct ggml_tensor * dst) {
  9298. const struct ggml_tensor * src0 = dst->src[0];
  9299. switch (src0->type) {
  9300. case GGML_TYPE_F32:
  9301. {
  9302. ggml_compute_forward_scale_f32(params, dst);
  9303. } break;
  9304. default:
  9305. {
  9306. GGML_ASSERT(false);
  9307. } break;
  9308. }
  9309. }
  9310. // ggml_compute_forward_set
  9311. static void ggml_compute_forward_set_f32(
  9312. const struct ggml_compute_params * params,
  9313. struct ggml_tensor * dst) {
  9314. const struct ggml_tensor * src0 = dst->src[0];
  9315. const struct ggml_tensor * src1 = dst->src[1];
  9316. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  9317. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  9318. // view src0 and dst with these strides and data offset inbytes during set
  9319. // nb0 is implicitly element_size because src0 and dst are contiguous
  9320. size_t nb1 = ((int32_t *) dst->op_params)[0];
  9321. size_t nb2 = ((int32_t *) dst->op_params)[1];
  9322. size_t nb3 = ((int32_t *) dst->op_params)[2];
  9323. size_t offset = ((int32_t *) dst->op_params)[3];
  9324. bool inplace = (bool) ((int32_t *) dst->op_params)[4];
  9325. if (!inplace && (params->type == GGML_TASK_TYPE_INIT)) {
  9326. if (params->ith != 0) {
  9327. return;
  9328. }
  9329. // memcpy needs to be synchronized across threads to avoid race conditions.
  9330. // => do it in INIT phase
  9331. memcpy(
  9332. ((char *) dst->data),
  9333. ((char *) src0->data),
  9334. ggml_nbytes(dst));
  9335. }
  9336. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9337. return;
  9338. }
  9339. const int ith = params->ith;
  9340. const int nth = params->nth;
  9341. const int nr = ggml_nrows(src1);
  9342. const int nc = src1->ne[0];
  9343. GGML_TENSOR_LOCALS(int64_t, ne1, src1, ne)
  9344. GGML_TENSOR_LOCALS(size_t, nb1, src1, nb)
  9345. // src0 and dst as viewed during set
  9346. const size_t nb0 = ggml_element_size(src0);
  9347. const int im0 = (ne10 == 0 ? 0 : ne10-1);
  9348. const int im1 = (ne11 == 0 ? 0 : ne11-1);
  9349. const int im2 = (ne12 == 0 ? 0 : ne12-1);
  9350. const int im3 = (ne13 == 0 ? 0 : ne13-1);
  9351. GGML_ASSERT(offset + im0*nb0 + im1*nb1 + im2*nb2 + im3*nb3 <= ggml_nbytes(dst));
  9352. GGML_ASSERT(nb10 == sizeof(float));
  9353. // rows per thread
  9354. const int dr = (nr + nth - 1)/nth;
  9355. // row range for this thread
  9356. const int ir0 = dr*ith;
  9357. const int ir1 = MIN(ir0 + dr, nr);
  9358. for (int ir = ir0; ir < ir1; ++ir) {
  9359. // src0 and dst are viewed with shape of src1 and offset
  9360. // => same indices
  9361. const int i3 = ir/(ne12*ne11);
  9362. const int i2 = (ir - i3*ne12*ne11)/ne11;
  9363. const int i1 = (ir - i3*ne12*ne11 - i2*ne11);
  9364. ggml_vec_cpy_f32(nc,
  9365. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + offset),
  9366. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
  9367. }
  9368. }
  9369. static void ggml_compute_forward_set(
  9370. const struct ggml_compute_params * params,
  9371. struct ggml_tensor * dst) {
  9372. const struct ggml_tensor * src0 = dst->src[0];
  9373. switch (src0->type) {
  9374. case GGML_TYPE_F32:
  9375. {
  9376. ggml_compute_forward_set_f32(params, dst);
  9377. } break;
  9378. case GGML_TYPE_F16:
  9379. case GGML_TYPE_Q4_0:
  9380. case GGML_TYPE_Q4_1:
  9381. case GGML_TYPE_Q5_0:
  9382. case GGML_TYPE_Q5_1:
  9383. case GGML_TYPE_Q8_0:
  9384. case GGML_TYPE_Q8_1:
  9385. case GGML_TYPE_Q2_K:
  9386. case GGML_TYPE_Q3_K:
  9387. case GGML_TYPE_Q4_K:
  9388. case GGML_TYPE_Q5_K:
  9389. case GGML_TYPE_Q6_K:
  9390. case GGML_TYPE_IQ2_XXS:
  9391. case GGML_TYPE_IQ2_XS:
  9392. case GGML_TYPE_IQ3_XXS:
  9393. case GGML_TYPE_IQ1_S:
  9394. case GGML_TYPE_IQ4_NL:
  9395. case GGML_TYPE_IQ4_XS:
  9396. case GGML_TYPE_IQ3_S:
  9397. case GGML_TYPE_IQ2_S:
  9398. default:
  9399. {
  9400. GGML_ASSERT(false);
  9401. } break;
  9402. }
  9403. }
  9404. // ggml_compute_forward_cpy
  9405. static void ggml_compute_forward_cpy(
  9406. const struct ggml_compute_params * params,
  9407. struct ggml_tensor * dst) {
  9408. ggml_compute_forward_dup(params, dst);
  9409. }
  9410. // ggml_compute_forward_cont
  9411. static void ggml_compute_forward_cont(
  9412. const struct ggml_compute_params * params,
  9413. struct ggml_tensor * dst) {
  9414. ggml_compute_forward_dup(params, dst);
  9415. }
  9416. // ggml_compute_forward_reshape
  9417. static void ggml_compute_forward_reshape(
  9418. const struct ggml_compute_params * params,
  9419. struct ggml_tensor * dst) {
  9420. // NOP
  9421. UNUSED(params);
  9422. UNUSED(dst);
  9423. }
  9424. // ggml_compute_forward_view
  9425. static void ggml_compute_forward_view(
  9426. const struct ggml_compute_params * params,
  9427. const struct ggml_tensor * dst) {
  9428. // NOP
  9429. UNUSED(params);
  9430. UNUSED(dst);
  9431. }
  9432. // ggml_compute_forward_permute
  9433. static void ggml_compute_forward_permute(
  9434. const struct ggml_compute_params * params,
  9435. const struct ggml_tensor * dst) {
  9436. // NOP
  9437. UNUSED(params);
  9438. UNUSED(dst);
  9439. }
  9440. // ggml_compute_forward_transpose
  9441. static void ggml_compute_forward_transpose(
  9442. const struct ggml_compute_params * params,
  9443. const struct ggml_tensor * dst) {
  9444. // NOP
  9445. UNUSED(params);
  9446. UNUSED(dst);
  9447. }
  9448. // ggml_compute_forward_get_rows
  9449. static void ggml_compute_forward_get_rows_q(
  9450. const struct ggml_compute_params * params,
  9451. struct ggml_tensor * dst) {
  9452. const struct ggml_tensor * src0 = dst->src[0];
  9453. const struct ggml_tensor * src1 = dst->src[1];
  9454. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9455. return;
  9456. }
  9457. GGML_TENSOR_BINARY_OP_LOCALS
  9458. const int64_t nc = ne00;
  9459. const int64_t nr = ggml_nelements(src1);
  9460. const enum ggml_type type = src0->type;
  9461. ggml_to_float_t const dequantize_row_q = type_traits[type].to_float;
  9462. assert(ne0 == nc);
  9463. assert(ne02 == ne11);
  9464. assert(nb00 == ggml_type_size(type));
  9465. assert(ggml_nrows(dst) == nr);
  9466. const int ith = params->ith;
  9467. const int nth = params->nth;
  9468. // rows per thread
  9469. const int dr = (nr + nth - 1)/nth;
  9470. // row range for this thread
  9471. const int ir0 = dr*ith;
  9472. const int ir1 = MIN(ir0 + dr, nr);
  9473. for (int64_t i = ir0; i < ir1; ++i) {
  9474. const int64_t i12 = i/(ne11*ne10);
  9475. const int64_t i11 = (i - i12*ne11*ne10)/ne10;
  9476. const int64_t i10 = (i - i12*ne11*ne10 - i11*ne10);
  9477. const int64_t i01 = *(int32_t *) ((char *) src1->data + i10*nb10 + i11*nb11 + i12*nb12);
  9478. dequantize_row_q(
  9479. (const void *) ((char *) src0->data + i01*nb01 + i11*nb02 + i12*nb03),
  9480. (float *) ((char *) dst->data + i10*nb1 + i11*nb2 + i12*nb3), nc);
  9481. }
  9482. }
  9483. static void ggml_compute_forward_get_rows_f16(
  9484. const struct ggml_compute_params * params,
  9485. struct ggml_tensor * dst) {
  9486. const struct ggml_tensor * src0 = dst->src[0];
  9487. const struct ggml_tensor * src1 = dst->src[1];
  9488. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9489. return;
  9490. }
  9491. GGML_TENSOR_BINARY_OP_LOCALS
  9492. const int64_t nc = ne00;
  9493. const int64_t nr = ggml_nelements(src1);
  9494. assert(ne0 == nc);
  9495. assert(ne02 == ne11);
  9496. assert(nb00 == sizeof(ggml_fp16_t));
  9497. assert(ggml_nrows(dst) == nr);
  9498. const int ith = params->ith;
  9499. const int nth = params->nth;
  9500. // rows per thread
  9501. const int dr = (nr + nth - 1)/nth;
  9502. // row range for this thread
  9503. const int ir0 = dr*ith;
  9504. const int ir1 = MIN(ir0 + dr, nr);
  9505. for (int64_t i = ir0; i < ir1; ++i) {
  9506. const int64_t i12 = i/(ne11*ne10);
  9507. const int64_t i11 = (i - i12*ne11*ne10)/ne10;
  9508. const int64_t i10 = (i - i12*ne11*ne10 - i11*ne10);
  9509. const int64_t i01 = *(int32_t *) ((char *) src1->data + i10*nb10 + i11*nb11 + i12*nb12);
  9510. ggml_fp16_to_fp32_row(
  9511. (const void *) ((char *) src0->data + i01*nb01 + i11*nb02 + i12*nb03),
  9512. (float *) ((char *) dst->data + i10*nb1 + i11*nb2 + i12*nb3), nc);
  9513. }
  9514. }
  9515. static void ggml_compute_forward_get_rows_f32(
  9516. const struct ggml_compute_params * params,
  9517. struct ggml_tensor * dst) {
  9518. const struct ggml_tensor * src0 = dst->src[0];
  9519. const struct ggml_tensor * src1 = dst->src[1];
  9520. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9521. return;
  9522. }
  9523. GGML_TENSOR_BINARY_OP_LOCALS
  9524. const int64_t nc = ne00;
  9525. const int64_t nr = ggml_nelements(src1);
  9526. assert(ne0 == nc);
  9527. assert(ne02 == ne11);
  9528. assert(nb00 == sizeof(float));
  9529. assert(ggml_nrows(dst) == nr);
  9530. const int ith = params->ith;
  9531. const int nth = params->nth;
  9532. // rows per thread
  9533. const int dr = (nr + nth - 1)/nth;
  9534. // row range for this thread
  9535. const int ir0 = dr*ith;
  9536. const int ir1 = MIN(ir0 + dr, nr);
  9537. for (int64_t i = ir0; i < ir1; ++i) {
  9538. const int64_t i12 = i/(ne11*ne10);
  9539. const int64_t i11 = (i - i12*ne11*ne10)/ne10;
  9540. const int64_t i10 = (i - i12*ne11*ne10 - i11*ne10);
  9541. const int64_t i01 = *(int32_t *) ((char *) src1->data + i10*nb10 + i11*nb11 + i12*nb12);
  9542. ggml_vec_cpy_f32(nc,
  9543. (float *) ((char *) dst->data + i10*nb1 + i11*nb2 + i12*nb3),
  9544. (float *) ((char *) src0->data + i01*nb01 + i11*nb02 + i12*nb03));
  9545. }
  9546. }
  9547. static void ggml_compute_forward_get_rows(
  9548. const struct ggml_compute_params * params,
  9549. struct ggml_tensor * dst) {
  9550. const struct ggml_tensor * src0 = dst->src[0];
  9551. switch (src0->type) {
  9552. case GGML_TYPE_Q4_0:
  9553. case GGML_TYPE_Q4_1:
  9554. case GGML_TYPE_Q5_0:
  9555. case GGML_TYPE_Q5_1:
  9556. case GGML_TYPE_Q8_0:
  9557. case GGML_TYPE_Q8_1:
  9558. case GGML_TYPE_Q2_K:
  9559. case GGML_TYPE_Q3_K:
  9560. case GGML_TYPE_Q4_K:
  9561. case GGML_TYPE_Q5_K:
  9562. case GGML_TYPE_Q6_K:
  9563. case GGML_TYPE_IQ2_XXS:
  9564. case GGML_TYPE_IQ2_XS:
  9565. case GGML_TYPE_IQ3_XXS:
  9566. case GGML_TYPE_IQ1_S:
  9567. case GGML_TYPE_IQ4_NL:
  9568. case GGML_TYPE_IQ4_XS:
  9569. case GGML_TYPE_IQ3_S:
  9570. case GGML_TYPE_IQ2_S:
  9571. {
  9572. ggml_compute_forward_get_rows_q(params, dst);
  9573. } break;
  9574. case GGML_TYPE_F16:
  9575. {
  9576. ggml_compute_forward_get_rows_f16(params, dst);
  9577. } break;
  9578. case GGML_TYPE_F32:
  9579. case GGML_TYPE_I32:
  9580. {
  9581. ggml_compute_forward_get_rows_f32(params, dst);
  9582. } break;
  9583. default:
  9584. {
  9585. GGML_ASSERT(false);
  9586. } break;
  9587. }
  9588. //static bool first = true;
  9589. //printf("ne0 = %d, ne1 = %d, ne2 = %d\n", dst->ne[0], dst->ne[1], dst->ne[2]);
  9590. //if (first) {
  9591. // first = false;
  9592. //} else {
  9593. // for (int k = 0; k < dst->ne[1]; ++k) {
  9594. // for (int j = 0; j < dst->ne[0]/16; ++j) {
  9595. // for (int i = 0; i < 16; ++i) {
  9596. // printf("%8.4f ", ((float *) dst->data)[k*dst->ne[0] + j*16 + i]);
  9597. // }
  9598. // printf("\n");
  9599. // }
  9600. // printf("\n");
  9601. // }
  9602. // printf("\n");
  9603. // exit(0);
  9604. //}
  9605. }
  9606. // ggml_compute_forward_get_rows_back
  9607. static void ggml_compute_forward_get_rows_back_f32_f16(
  9608. const struct ggml_compute_params * params,
  9609. struct ggml_tensor * dst) {
  9610. const struct ggml_tensor * src0 = dst->src[0];
  9611. const struct ggml_tensor * src1 = dst->src[1];
  9612. GGML_ASSERT(params->ith == 0);
  9613. GGML_ASSERT(ggml_is_contiguous(dst));
  9614. // ggml_compute_forward_dup_same_cont(params, opt0, dst);
  9615. if (params->type == GGML_TASK_TYPE_INIT) {
  9616. if (params->ith != 0) {
  9617. return;
  9618. }
  9619. memset(dst->data, 0, ggml_nbytes(dst));
  9620. }
  9621. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9622. return;
  9623. }
  9624. const int nc = src0->ne[0];
  9625. const int nr = ggml_nelements(src1);
  9626. GGML_ASSERT( dst->ne[0] == nc);
  9627. GGML_ASSERT(src0->nb[0] == sizeof(ggml_fp16_t));
  9628. for (int i = 0; i < nr; ++i) {
  9629. const int r = ((int32_t *) src1->data)[i];
  9630. for (int j = 0; j < nc; ++j) {
  9631. ggml_fp16_t v = ((ggml_fp16_t *) ((char *) src0->data + i*src0->nb[1]))[j];
  9632. ((float *) ((char *) dst->data + r*dst->nb[1]))[j] += GGML_FP16_TO_FP32(v);
  9633. }
  9634. }
  9635. }
  9636. static void ggml_compute_forward_get_rows_back_f32(
  9637. const struct ggml_compute_params * params,
  9638. struct ggml_tensor * dst) {
  9639. const struct ggml_tensor * src0 = dst->src[0];
  9640. const struct ggml_tensor * src1 = dst->src[1];
  9641. GGML_ASSERT(params->ith == 0);
  9642. GGML_ASSERT(ggml_is_contiguous(dst));
  9643. // ggml_compute_forward_dup_same_cont(params, opt0, dst);
  9644. if (params->type == GGML_TASK_TYPE_INIT) {
  9645. if (params->ith != 0) {
  9646. return;
  9647. }
  9648. memset(dst->data, 0, ggml_nbytes(dst));
  9649. }
  9650. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9651. return;
  9652. }
  9653. const int nc = src0->ne[0];
  9654. const int nr = ggml_nelements(src1);
  9655. GGML_ASSERT( dst->ne[0] == nc);
  9656. GGML_ASSERT(src0->nb[0] == sizeof(float));
  9657. for (int i = 0; i < nr; ++i) {
  9658. const int r = ((int32_t *) src1->data)[i];
  9659. ggml_vec_add_f32(nc,
  9660. (float *) ((char *) dst->data + r*dst->nb[1]),
  9661. (float *) ((char *) dst->data + r*dst->nb[1]),
  9662. (float *) ((char *) src0->data + i*src0->nb[1]));
  9663. }
  9664. }
  9665. static void ggml_compute_forward_get_rows_back(
  9666. const struct ggml_compute_params * params,
  9667. struct ggml_tensor * dst) {
  9668. const struct ggml_tensor * src0 = dst->src[0];
  9669. switch (src0->type) {
  9670. case GGML_TYPE_F16:
  9671. {
  9672. ggml_compute_forward_get_rows_back_f32_f16(params, dst);
  9673. } break;
  9674. case GGML_TYPE_F32:
  9675. {
  9676. ggml_compute_forward_get_rows_back_f32(params, dst);
  9677. } break;
  9678. default:
  9679. {
  9680. GGML_ASSERT(false);
  9681. } break;
  9682. }
  9683. //static bool first = true;
  9684. //printf("ne0 = %d, ne1 = %d, ne2 = %d\n", dst->ne[0], dst->ne[1], dst->ne[2]);
  9685. //if (first) {
  9686. // first = false;
  9687. //} else {
  9688. // for (int k = 0; k < dst->ne[1]; ++k) {
  9689. // for (int j = 0; j < dst->ne[0]/16; ++j) {
  9690. // for (int i = 0; i < 16; ++i) {
  9691. // printf("%8.4f ", ((float *) dst->data)[k*dst->ne[0] + j*16 + i]);
  9692. // }
  9693. // printf("\n");
  9694. // }
  9695. // printf("\n");
  9696. // }
  9697. // printf("\n");
  9698. // exit(0);
  9699. //}
  9700. }
  9701. // ggml_compute_forward_diag
  9702. static void ggml_compute_forward_diag_f32(
  9703. const struct ggml_compute_params * params,
  9704. struct ggml_tensor * dst) {
  9705. const struct ggml_tensor * src0 = dst->src[0];
  9706. GGML_ASSERT(params->ith == 0);
  9707. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9708. return;
  9709. }
  9710. // TODO: handle transposed/permuted matrices
  9711. GGML_TENSOR_UNARY_OP_LOCALS
  9712. GGML_ASSERT(ne00 == ne0);
  9713. GGML_ASSERT(ne00 == ne1);
  9714. GGML_ASSERT(ne01 == 1);
  9715. GGML_ASSERT(ne02 == ne2);
  9716. GGML_ASSERT(ne03 == ne3);
  9717. GGML_ASSERT(nb00 == sizeof(float));
  9718. GGML_ASSERT(nb0 == sizeof(float));
  9719. for (int i3 = 0; i3 < ne3; i3++) {
  9720. for (int i2 = 0; i2 < ne2; i2++) {
  9721. for (int i1 = 0; i1 < ne1; i1++) {
  9722. float * d = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  9723. float * s = (float *)((char *) src0->data + i3*nb03 + i2*nb02);
  9724. for (int i0 = 0; i0 < i1; i0++) {
  9725. d[i0] = 0;
  9726. }
  9727. d[i1] = s[i1];
  9728. for (int i0 = i1+1; i0 < ne0; i0++) {
  9729. d[i0] = 0;
  9730. }
  9731. }
  9732. }
  9733. }
  9734. }
  9735. static void ggml_compute_forward_diag(
  9736. const struct ggml_compute_params * params,
  9737. struct ggml_tensor * dst) {
  9738. const struct ggml_tensor * src0 = dst->src[0];
  9739. switch (src0->type) {
  9740. case GGML_TYPE_F32:
  9741. {
  9742. ggml_compute_forward_diag_f32(params, dst);
  9743. } break;
  9744. default:
  9745. {
  9746. GGML_ASSERT(false);
  9747. } break;
  9748. }
  9749. }
  9750. // ggml_compute_forward_diag_mask_inf
  9751. static void ggml_compute_forward_diag_mask_f32(
  9752. const struct ggml_compute_params * params,
  9753. struct ggml_tensor * dst,
  9754. const float value) {
  9755. const struct ggml_tensor * src0 = dst->src[0];
  9756. const int ith = params->ith;
  9757. const int nth = params->nth;
  9758. const int n_past = ((int32_t *) dst->op_params)[0];
  9759. const bool inplace = src0->data == dst->data;
  9760. GGML_ASSERT(n_past >= 0);
  9761. if (!inplace && (params->type == GGML_TASK_TYPE_INIT)) {
  9762. if (ith != 0) {
  9763. return;
  9764. }
  9765. // memcpy needs to be synchronized across threads to avoid race conditions.
  9766. // => do it in INIT phase
  9767. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  9768. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  9769. memcpy(
  9770. ((char *) dst->data),
  9771. ((char *) src0->data),
  9772. ggml_nbytes(dst));
  9773. }
  9774. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9775. return;
  9776. }
  9777. // TODO: handle transposed/permuted matrices
  9778. const int n = ggml_nrows(src0);
  9779. const int nc = src0->ne[0];
  9780. const int nr = src0->ne[1];
  9781. const int nz = n/nr;
  9782. GGML_ASSERT( dst->nb[0] == sizeof(float));
  9783. GGML_ASSERT(src0->nb[0] == sizeof(float));
  9784. for (int k = 0; k < nz; k++) {
  9785. for (int j = ith; j < nr; j += nth) {
  9786. for (int i = n_past; i < nc; i++) {
  9787. if (i > n_past + j) {
  9788. *(float *)((char *) dst->data + k*dst->nb[2] + j*dst->nb[1] + i*dst->nb[0]) = value;
  9789. }
  9790. }
  9791. }
  9792. }
  9793. }
  9794. static void ggml_compute_forward_diag_mask_inf(
  9795. const struct ggml_compute_params * params,
  9796. struct ggml_tensor * dst) {
  9797. const struct ggml_tensor * src0 = dst->src[0];
  9798. switch (src0->type) {
  9799. case GGML_TYPE_F32:
  9800. {
  9801. ggml_compute_forward_diag_mask_f32(params, dst, -INFINITY);
  9802. } break;
  9803. default:
  9804. {
  9805. GGML_ASSERT(false);
  9806. } break;
  9807. }
  9808. }
  9809. static void ggml_compute_forward_diag_mask_zero(
  9810. const struct ggml_compute_params * params,
  9811. struct ggml_tensor * dst) {
  9812. const struct ggml_tensor * src0 = dst->src[0];
  9813. switch (src0->type) {
  9814. case GGML_TYPE_F32:
  9815. {
  9816. ggml_compute_forward_diag_mask_f32(params, dst, 0);
  9817. } break;
  9818. default:
  9819. {
  9820. GGML_ASSERT(false);
  9821. } break;
  9822. }
  9823. }
  9824. // ggml_compute_forward_soft_max
  9825. static void ggml_compute_forward_soft_max_f32(
  9826. const struct ggml_compute_params * params,
  9827. struct ggml_tensor * dst) {
  9828. const struct ggml_tensor * src0 = dst->src[0];
  9829. const struct ggml_tensor * src1 = dst->src[1];
  9830. const struct ggml_tensor * src2 = dst->src[2];
  9831. assert(ggml_is_contiguous(dst));
  9832. assert(ggml_are_same_shape(src0, dst));
  9833. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9834. return;
  9835. }
  9836. float scale = 1.0f;
  9837. float max_bias = 0.0f;
  9838. memcpy(&scale, (float *) dst->op_params + 0, sizeof(float));
  9839. memcpy(&max_bias, (float *) dst->op_params + 1, sizeof(float));
  9840. // TODO: handle transposed/permuted matrices
  9841. const int ith = params->ith;
  9842. const int nth = params->nth;
  9843. GGML_TENSOR_UNARY_OP_LOCALS
  9844. const int64_t ne11 = src1 ? src1->ne[1] : 1;
  9845. // TODO: is this supposed to be ceil instead of floor?
  9846. // https://huggingface.co/mosaicml/mpt-7b/blob/main/attention.py#L370
  9847. const uint32_t n_head_kv = ne02;
  9848. const uint32_t n_head_log2 = 1u << (uint32_t) floor(log2(n_head_kv));
  9849. const float m0 = powf(2.0f, -(max_bias ) / n_head_log2);
  9850. const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_head_log2);
  9851. const int nc = src0->ne[0];
  9852. const int nr = ggml_nrows(src0);
  9853. // rows per thread
  9854. const int dr = (nr + nth - 1)/nth;
  9855. // row range for this thread
  9856. const int ir0 = dr*ith;
  9857. const int ir1 = MIN(ir0 + dr, nr);
  9858. float * wp = (float *) params->wdata + (nc + CACHE_LINE_SIZE_F32) * ith;
  9859. // when max_bias <= 0.0f, src2 is not used and we default it to src0 to avoid branching
  9860. float * pos = src2 ? (float *) src2->data : src0->data;
  9861. for (int i1 = ir0; i1 < ir1; i1++) {
  9862. float * sp = (float *)((char *) src0->data + i1*src0->nb[1]);
  9863. float * dp = (float *)((char *) dst->data + i1*dst->nb[1]);
  9864. // broadcast the mask across rows
  9865. float * mp = src1 ? (float *)((char *) src1->data + (i1%ne11)*src1->nb[1]) : NULL;
  9866. ggml_vec_cpy_f32 (nc, wp, sp);
  9867. ggml_vec_scale_f32(nc, wp, scale);
  9868. if (mp) {
  9869. ggml_vec_acc_f32(nc, wp, mp);
  9870. }
  9871. // ALiBi bias
  9872. if (max_bias > 0.0f) {
  9873. const uint32_t h = (i1/ne01)%ne02; // head
  9874. const float slope = h < n_head_log2 ? powf(m0, h + 1) : powf(m1, 2*(h - n_head_log2) + 1);
  9875. for (int i = 0; i < nc; i++) {
  9876. wp[i] = wp[i] + slope*pos[i];
  9877. }
  9878. }
  9879. #ifndef NDEBUG
  9880. for (int i = 0; i < nc; ++i) {
  9881. //printf("p[%d] = %f\n", i, p[i]);
  9882. assert(!isnan(wp[i]));
  9883. }
  9884. #endif
  9885. float max = -INFINITY;
  9886. ggml_vec_max_f32(nc, &max, wp);
  9887. ggml_float sum = 0.0;
  9888. uint16_t scvt;
  9889. for (int i = 0; i < nc; i++) {
  9890. if (wp[i] == -INFINITY) {
  9891. dp[i] = 0.0f;
  9892. } else {
  9893. // const float val = (wp[i] == -INFINITY) ? 0.0 : exp(wp[i] - max);
  9894. ggml_fp16_t s = GGML_FP32_TO_FP16(wp[i] - max);
  9895. memcpy(&scvt, &s, sizeof(scvt));
  9896. const float val = GGML_FP16_TO_FP32(ggml_table_exp_f16[scvt]);
  9897. sum += (ggml_float)val;
  9898. dp[i] = val;
  9899. }
  9900. }
  9901. assert(sum > 0.0);
  9902. sum = 1.0/sum;
  9903. ggml_vec_scale_f32(nc, dp, sum);
  9904. #ifndef NDEBUG
  9905. for (int i = 0; i < nc; ++i) {
  9906. assert(!isnan(dp[i]));
  9907. assert(!isinf(dp[i]));
  9908. }
  9909. #endif
  9910. }
  9911. }
  9912. static void ggml_compute_forward_soft_max(
  9913. const struct ggml_compute_params * params,
  9914. struct ggml_tensor * dst) {
  9915. const struct ggml_tensor * src0 = dst->src[0];
  9916. switch (src0->type) {
  9917. case GGML_TYPE_F32:
  9918. {
  9919. ggml_compute_forward_soft_max_f32(params, dst);
  9920. } break;
  9921. default:
  9922. {
  9923. GGML_ASSERT(false);
  9924. } break;
  9925. }
  9926. }
  9927. // ggml_compute_forward_soft_max_back
  9928. static void ggml_compute_forward_soft_max_back_f32(
  9929. const struct ggml_compute_params * params,
  9930. struct ggml_tensor * dst) {
  9931. const struct ggml_tensor * src0 = dst->src[0];
  9932. const struct ggml_tensor * src1 = dst->src[1];
  9933. GGML_ASSERT(ggml_is_contiguous(src0));
  9934. GGML_ASSERT(ggml_is_contiguous(src1));
  9935. GGML_ASSERT(ggml_is_contiguous(dst));
  9936. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  9937. GGML_ASSERT(ggml_are_same_shape(src1, dst));
  9938. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9939. return;
  9940. }
  9941. // TODO: handle transposed/permuted matrices
  9942. const int ith = params->ith;
  9943. const int nth = params->nth;
  9944. const int nc = src0->ne[0];
  9945. const int nr = ggml_nrows(src0);
  9946. // rows per thread
  9947. const int dr = (nr + nth - 1)/nth;
  9948. // row range for this thread
  9949. const int ir0 = dr*ith;
  9950. const int ir1 = MIN(ir0 + dr, nr);
  9951. for (int i1 = ir0; i1 < ir1; i1++) {
  9952. float *dy = (float *)((char *) src0->data + i1*src0->nb[1]);
  9953. float *y = (float *)((char *) src1->data + i1*src1->nb[1]);
  9954. float *dx = (float *)((char *) dst->data + i1*dst->nb[1]);
  9955. #ifndef NDEBUG
  9956. for (int i = 0; i < nc; ++i) {
  9957. //printf("p[%d] = %f\n", i, p[i]);
  9958. assert(!isnan(dy[i]));
  9959. assert(!isnan(y[i]));
  9960. }
  9961. #endif
  9962. // Jii = yi - yi*yi
  9963. // Jij = -yi*yj
  9964. // J = diag(y)-y.T*y
  9965. // dx = J * dy
  9966. // dxk = sum_i(Jki * dyi)
  9967. // dxk = sum_i(-yk*yi * dyi) - (-yk*yk)*dyk + (yk - yk*yk)*dyk
  9968. // dxk = sum_i(-yk*yi * dyi) + yk*yk*dyk + yk*dyk - yk*yk*dyk
  9969. // dxk = sum_i(-yk*yi * dyi) + yk*dyk
  9970. // dxk = -yk * sum_i(yi * dyi) + yk*dyk
  9971. // dxk = -yk * dot(y, dy) + yk*dyk
  9972. // dxk = yk * (- dot(y, dy) + dyk)
  9973. // dxk = yk * (dyk - dot(y, dy))
  9974. //
  9975. // post-order:
  9976. // dot_y_dy := dot(y, dy)
  9977. // dx := dy
  9978. // dx := dx - dot_y_dy
  9979. // dx := dx * y
  9980. // linear runtime, no additional memory
  9981. float dot_y_dy = 0;
  9982. ggml_vec_dot_f32 (nc, &dot_y_dy, 0, y, 0, dy, 0, 1);
  9983. ggml_vec_cpy_f32 (nc, dx, dy);
  9984. ggml_vec_acc1_f32(nc, dx, -dot_y_dy);
  9985. ggml_vec_mul_f32 (nc, dx, dx, y);
  9986. #ifndef NDEBUG
  9987. for (int i = 0; i < nc; ++i) {
  9988. assert(!isnan(dx[i]));
  9989. assert(!isinf(dx[i]));
  9990. }
  9991. #endif
  9992. }
  9993. }
  9994. static void ggml_compute_forward_soft_max_back(
  9995. const struct ggml_compute_params * params,
  9996. struct ggml_tensor * dst) {
  9997. const struct ggml_tensor * src0 = dst->src[0];
  9998. switch (src0->type) {
  9999. case GGML_TYPE_F32:
  10000. {
  10001. ggml_compute_forward_soft_max_back_f32(params, dst);
  10002. } break;
  10003. default:
  10004. {
  10005. GGML_ASSERT(false);
  10006. } break;
  10007. }
  10008. }
  10009. // ggml_compute_forward_alibi
  10010. static void ggml_compute_forward_alibi_f32(
  10011. const struct ggml_compute_params * params,
  10012. struct ggml_tensor * dst) {
  10013. const struct ggml_tensor * src0 = dst->src[0];
  10014. assert(params->ith == 0);
  10015. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  10016. return;
  10017. }
  10018. //const int n_past = ((int32_t *) dst->op_params)[0];
  10019. const int n_head = ((int32_t *) dst->op_params)[1];
  10020. float max_bias;
  10021. memcpy(&max_bias, (int32_t *) dst->op_params + 2, sizeof(float));
  10022. const int64_t ne0 = src0->ne[0]; // all_seq_len = n_past + ne1
  10023. const int64_t ne1 = src0->ne[1]; // seq_len_without_past
  10024. const int64_t ne2 = src0->ne[2]; // n_head -> this is k
  10025. //const int64_t ne3 = src0->ne[3]; // 1 -> bsz
  10026. const int64_t n = ggml_nrows(src0);
  10027. const int64_t ne2_ne3 = n/ne1; // ne2*ne3
  10028. const size_t nb0 = src0->nb[0];
  10029. const size_t nb1 = src0->nb[1];
  10030. const size_t nb2 = src0->nb[2];
  10031. //const int nb3 = src0->nb[3];
  10032. GGML_ASSERT(nb0 == sizeof(float));
  10033. GGML_ASSERT(n_head == ne2);
  10034. // add alibi to src0 (KQ_scaled)
  10035. const int n_heads_log2_floor = 1 << (int) floor(log2(n_head));
  10036. const float m0 = powf(2.0f, -(max_bias) / n_heads_log2_floor);
  10037. const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_heads_log2_floor);
  10038. for (int64_t k = 0; k < ne2_ne3; k++) {
  10039. // TODO: k*nb2 or k*nb3
  10040. float m_k;
  10041. if (k < n_heads_log2_floor) {
  10042. m_k = powf(m0, k + 1);
  10043. } else {
  10044. m_k = powf(m1, 2 * (k - n_heads_log2_floor) + 1);
  10045. }
  10046. for (int64_t i = 0; i < ne0; i++) {
  10047. for (int64_t j = 0; j < ne1; j++) {
  10048. float * const src = (float *)((char *) src0->data + i*nb0 + j*nb1 + k*nb2);
  10049. float * pdst = (float *)((char *) dst->data + i*nb0 + j*nb1 + k*nb2);
  10050. pdst[0] = i * m_k + src[0];
  10051. }
  10052. }
  10053. }
  10054. }
  10055. static void ggml_compute_forward_alibi_f16(
  10056. const struct ggml_compute_params * params,
  10057. struct ggml_tensor * dst) {
  10058. const struct ggml_tensor * src0 = dst->src[0];
  10059. assert(params->ith == 0);
  10060. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  10061. return;
  10062. }
  10063. //const int n_past = ((int32_t *) dst->op_params)[0];
  10064. const int n_head = ((int32_t *) dst->op_params)[1];
  10065. float max_bias;
  10066. memcpy(&max_bias, (int32_t *) dst->op_params + 2, sizeof(float));
  10067. const int ne0 = src0->ne[0]; // all_seq_len = n_past + ne1
  10068. const int ne1 = src0->ne[1]; // seq_len_without_past
  10069. const int ne2 = src0->ne[2]; // n_head -> this is k
  10070. //const int ne3 = src0->ne[3]; // 1 -> bsz
  10071. const int n = ggml_nrows(src0);
  10072. const int ne2_ne3 = n/ne1; // ne2*ne3
  10073. const int nb0 = src0->nb[0];
  10074. const int nb1 = src0->nb[1];
  10075. const int nb2 = src0->nb[2];
  10076. //const int nb3 = src0->nb[3];
  10077. GGML_ASSERT(nb0 == sizeof(ggml_fp16_t));
  10078. //GGML_ASSERT(ne1 + n_past == ne0); (void) n_past;
  10079. GGML_ASSERT(n_head == ne2);
  10080. // add alibi to src0 (KQ_scaled)
  10081. const int n_heads_log2_floor = 1 << (int) floor(log2(n_head));
  10082. const float m0 = powf(2.0f, -(max_bias) / n_heads_log2_floor);
  10083. const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_heads_log2_floor);
  10084. for (int k = 0; k < ne2_ne3; k++) {
  10085. // TODO: k*nb2 or k*nb3
  10086. float m_k;
  10087. if (k < n_heads_log2_floor) {
  10088. m_k = powf(m0, k + 1);
  10089. } else {
  10090. m_k = powf(m1, 2 * (k - n_heads_log2_floor) + 1);
  10091. }
  10092. for (int i = 0; i < ne0; i++) {
  10093. for (int j = 0; j < ne1; j++) {
  10094. ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i*nb0 + j*nb1 + k*nb2);
  10095. float * pdst = (float *)((char *) dst->data + i*nb0 + j*nb1 + k*nb2);
  10096. // we return F32
  10097. pdst[0] = i * m_k + GGML_FP16_TO_FP32(src[0]);
  10098. }
  10099. }
  10100. }
  10101. }
  10102. static void ggml_compute_forward_alibi(
  10103. const struct ggml_compute_params * params,
  10104. struct ggml_tensor * dst) {
  10105. const struct ggml_tensor * src0 = dst->src[0];
  10106. switch (src0->type) {
  10107. case GGML_TYPE_F16:
  10108. {
  10109. ggml_compute_forward_alibi_f16(params, dst);
  10110. } break;
  10111. case GGML_TYPE_F32:
  10112. {
  10113. ggml_compute_forward_alibi_f32(params, dst);
  10114. } break;
  10115. case GGML_TYPE_Q4_0:
  10116. case GGML_TYPE_Q4_1:
  10117. case GGML_TYPE_Q5_0:
  10118. case GGML_TYPE_Q5_1:
  10119. case GGML_TYPE_Q8_0:
  10120. case GGML_TYPE_Q8_1:
  10121. case GGML_TYPE_Q2_K:
  10122. case GGML_TYPE_Q3_K:
  10123. case GGML_TYPE_Q4_K:
  10124. case GGML_TYPE_Q5_K:
  10125. case GGML_TYPE_Q6_K:
  10126. case GGML_TYPE_IQ2_XXS:
  10127. case GGML_TYPE_IQ2_XS:
  10128. case GGML_TYPE_IQ3_XXS:
  10129. case GGML_TYPE_IQ1_S:
  10130. case GGML_TYPE_IQ4_NL:
  10131. case GGML_TYPE_IQ4_XS:
  10132. case GGML_TYPE_IQ3_S:
  10133. case GGML_TYPE_IQ2_S:
  10134. case GGML_TYPE_Q8_K:
  10135. case GGML_TYPE_I8:
  10136. case GGML_TYPE_I16:
  10137. case GGML_TYPE_I32:
  10138. case GGML_TYPE_I64:
  10139. case GGML_TYPE_F64:
  10140. case GGML_TYPE_COUNT:
  10141. {
  10142. GGML_ASSERT(false);
  10143. } break;
  10144. }
  10145. }
  10146. // ggml_compute_forward_clamp
  10147. static void ggml_compute_forward_clamp_f32(
  10148. const struct ggml_compute_params * params,
  10149. struct ggml_tensor * dst) {
  10150. const struct ggml_tensor * src0 = dst->src[0];
  10151. assert(params->ith == 0);
  10152. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  10153. return;
  10154. }
  10155. float min;
  10156. float max;
  10157. memcpy(&min, (float *) dst->op_params + 0, sizeof(float));
  10158. memcpy(&max, (float *) dst->op_params + 1, sizeof(float));
  10159. const int ith = params->ith;
  10160. const int nth = params->nth;
  10161. const int n = ggml_nrows(src0);
  10162. const int nc = src0->ne[0];
  10163. const size_t nb00 = src0->nb[0];
  10164. const size_t nb01 = src0->nb[1];
  10165. const size_t nb0 = dst->nb[0];
  10166. const size_t nb1 = dst->nb[1];
  10167. GGML_ASSERT( nb0 == sizeof(float));
  10168. GGML_ASSERT(nb00 == sizeof(float));
  10169. for (int j = ith; j < n; j += nth) {
  10170. float * dst_ptr = (float *) ((char *) dst->data + j*nb1);
  10171. float * src0_ptr = (float *) ((char *) src0->data + j*nb01);
  10172. for (int i = 0; i < nc; i++) {
  10173. dst_ptr[i] = MAX(MIN(src0_ptr[i], max), min);
  10174. }
  10175. }
  10176. }
  10177. static void ggml_compute_forward_clamp(
  10178. const struct ggml_compute_params * params,
  10179. struct ggml_tensor * dst) {
  10180. const struct ggml_tensor * src0 = dst->src[0];
  10181. switch (src0->type) {
  10182. case GGML_TYPE_F32:
  10183. {
  10184. ggml_compute_forward_clamp_f32(params, dst);
  10185. } break;
  10186. case GGML_TYPE_F16:
  10187. case GGML_TYPE_Q4_0:
  10188. case GGML_TYPE_Q4_1:
  10189. case GGML_TYPE_Q5_0:
  10190. case GGML_TYPE_Q5_1:
  10191. case GGML_TYPE_Q8_0:
  10192. case GGML_TYPE_Q8_1:
  10193. case GGML_TYPE_Q2_K:
  10194. case GGML_TYPE_Q3_K:
  10195. case GGML_TYPE_Q4_K:
  10196. case GGML_TYPE_Q5_K:
  10197. case GGML_TYPE_Q6_K:
  10198. case GGML_TYPE_IQ2_XXS:
  10199. case GGML_TYPE_IQ2_XS:
  10200. case GGML_TYPE_IQ3_XXS:
  10201. case GGML_TYPE_IQ1_S:
  10202. case GGML_TYPE_IQ4_NL:
  10203. case GGML_TYPE_IQ4_XS:
  10204. case GGML_TYPE_IQ3_S:
  10205. case GGML_TYPE_IQ2_S:
  10206. case GGML_TYPE_Q8_K:
  10207. case GGML_TYPE_I8:
  10208. case GGML_TYPE_I16:
  10209. case GGML_TYPE_I32:
  10210. case GGML_TYPE_I64:
  10211. case GGML_TYPE_F64:
  10212. case GGML_TYPE_COUNT:
  10213. {
  10214. GGML_ASSERT(false);
  10215. } break;
  10216. }
  10217. }
  10218. // ggml_compute_forward_rope
  10219. static float rope_yarn_ramp(const float low, const float high, const int i0) {
  10220. const float y = (i0 / 2 - low) / MAX(0.001f, high - low);
  10221. return 1 - MIN(1, MAX(0, y));
  10222. }
  10223. // YaRN algorithm based on LlamaYaRNScaledRotaryEmbedding.py from https://github.com/jquesnelle/yarn
  10224. // MIT licensed. Copyright (c) 2023 Jeffrey Quesnelle and Bowen Peng.
  10225. static void rope_yarn(
  10226. float theta_extrap, float freq_scale, float corr_dims[2], int64_t i0, float ext_factor, float mscale,
  10227. float * cos_theta, float * sin_theta
  10228. ) {
  10229. // Get n-d rotational scaling corrected for extrapolation
  10230. float theta_interp = freq_scale * theta_extrap;
  10231. float theta = theta_interp;
  10232. if (ext_factor != 0.0f) {
  10233. float ramp_mix = rope_yarn_ramp(corr_dims[0], corr_dims[1], i0) * ext_factor;
  10234. theta = theta_interp * (1 - ramp_mix) + theta_extrap * ramp_mix;
  10235. // Get n-d magnitude scaling corrected for interpolation
  10236. mscale *= 1.0f + 0.1f * logf(1.0f / freq_scale);
  10237. }
  10238. *cos_theta = cosf(theta) * mscale;
  10239. *sin_theta = sinf(theta) * mscale;
  10240. }
  10241. // Apparently solving `n_rot = 2pi * x * base^((2 * max_pos_emb) / n_dims)` for x, we get
  10242. // `corr_dim(n_rot) = n_dims * log(max_pos_emb / (n_rot * 2pi)) / (2 * log(base))`
  10243. static float ggml_rope_yarn_corr_dim(int n_dims, int n_orig_ctx, float n_rot, float base) {
  10244. return n_dims * logf(n_orig_ctx / (n_rot * 2 * (float)M_PI)) / (2 * logf(base));
  10245. }
  10246. static void ggml_rope_cache_init(
  10247. float theta_base, float freq_scale, float corr_dims[2], int64_t ne0, float ext_factor, float mscale,
  10248. float * cache, float sin_sign, float theta_scale
  10249. ) {
  10250. float theta = theta_base;
  10251. for (int64_t i0 = 0; i0 < ne0; i0 += 2) {
  10252. rope_yarn(
  10253. theta, freq_scale, corr_dims, i0, ext_factor, mscale, &cache[i0 + 0], &cache[i0 + 1]
  10254. );
  10255. cache[i0 + 1] *= sin_sign;
  10256. theta *= theta_scale;
  10257. }
  10258. }
  10259. GGML_CALL void ggml_rope_yarn_corr_dims(
  10260. int n_dims, int n_orig_ctx, float freq_base, float beta_fast, float beta_slow, float dims[2]
  10261. ) {
  10262. // start and end correction dims
  10263. float start = floorf(ggml_rope_yarn_corr_dim(n_dims, n_orig_ctx, beta_fast, freq_base));
  10264. float end = ceilf(ggml_rope_yarn_corr_dim(n_dims, n_orig_ctx, beta_slow, freq_base));
  10265. dims[0] = MAX(0, start);
  10266. dims[1] = MIN(n_dims - 1, end);
  10267. }
  10268. static void ggml_compute_forward_rope_f32(
  10269. const struct ggml_compute_params * params,
  10270. struct ggml_tensor * dst,
  10271. const bool forward) {
  10272. const struct ggml_tensor * src0 = dst->src[0];
  10273. const struct ggml_tensor * src1 = dst->src[1];
  10274. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  10275. return;
  10276. }
  10277. float freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow;
  10278. // these two only relevant for xPos RoPE:
  10279. float xpos_base;
  10280. bool xpos_down;
  10281. //const int n_past = ((int32_t *) dst->op_params)[0];
  10282. const int n_dims = ((int32_t *) dst->op_params)[1];
  10283. const int mode = ((int32_t *) dst->op_params)[2];
  10284. const int n_ctx = ((int32_t *) dst->op_params)[3];
  10285. const int n_orig_ctx = ((int32_t *) dst->op_params)[4];
  10286. memcpy(&freq_base, (int32_t *) dst->op_params + 5, sizeof(float));
  10287. memcpy(&freq_scale, (int32_t *) dst->op_params + 6, sizeof(float));
  10288. memcpy(&ext_factor, (int32_t *) dst->op_params + 7, sizeof(float));
  10289. memcpy(&attn_factor, (int32_t *) dst->op_params + 8, sizeof(float));
  10290. memcpy(&beta_fast, (int32_t *) dst->op_params + 9, sizeof(float));
  10291. memcpy(&beta_slow, (int32_t *) dst->op_params + 10, sizeof(float));
  10292. memcpy(&xpos_base, (int32_t *) dst->op_params + 11, sizeof(float));
  10293. memcpy(&xpos_down, (int32_t *) dst->op_params + 12, sizeof(bool));
  10294. GGML_TENSOR_UNARY_OP_LOCALS
  10295. //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
  10296. //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
  10297. GGML_ASSERT(nb00 == sizeof(float));
  10298. const int ith = params->ith;
  10299. const int nth = params->nth;
  10300. const int nr = ggml_nrows(dst);
  10301. GGML_ASSERT(n_dims <= ne0);
  10302. GGML_ASSERT(n_dims % 2 == 0);
  10303. // rows per thread
  10304. const int dr = (nr + nth - 1)/nth;
  10305. // row range for this thread
  10306. const int ir0 = dr*ith;
  10307. const int ir1 = MIN(ir0 + dr, nr);
  10308. // row index used to determine which thread to use
  10309. int ir = 0;
  10310. const float theta_scale = powf(freq_base, -2.0f/n_dims);
  10311. const float inv_ndims = -1.f/n_dims;
  10312. float corr_dims[2];
  10313. ggml_rope_yarn_corr_dims(n_dims, n_orig_ctx, freq_base, beta_fast, beta_slow, corr_dims);
  10314. const bool is_neox = mode & 2;
  10315. const bool is_glm = mode & 4;
  10316. // backward process uses inverse rotation by cos and sin.
  10317. // cos and sin build a rotation matrix, where the inverse is the transpose.
  10318. // this essentially just switches the sign of sin.
  10319. const float sin_sign = forward ? 1.0f : -1.0f;
  10320. const int32_t * pos = (const int32_t *) src1->data;
  10321. for (int64_t i3 = 0; i3 < ne3; i3++) {
  10322. for (int64_t i2 = 0; i2 < ne2; i2++) {
  10323. const int64_t p = pos[i2];
  10324. float * cache = (float *) params->wdata + (ne0 + CACHE_LINE_SIZE_F32)*ith;
  10325. if (!is_glm && !is_neox) { // TODO: cache sin/cos for glm, neox
  10326. ggml_rope_cache_init(p, freq_scale, corr_dims, ne0, ext_factor, attn_factor, cache, sin_sign, theta_scale);
  10327. }
  10328. for (int64_t i1 = 0; i1 < ne1; i1++) {
  10329. if (ir++ < ir0) continue;
  10330. if (ir > ir1) break;
  10331. float theta_base = (float)p;
  10332. if (is_glm) {
  10333. theta_base = MIN(p, n_ctx - 2);
  10334. float block_theta = MAX(p - (n_ctx - 2), 0);
  10335. for (int64_t i0 = 0; i0 < ne0 / 4; i0++) {
  10336. const float cos_theta = cosf(theta_base);
  10337. const float sin_theta = sinf(theta_base) * sin_sign;
  10338. const float cos_block_theta = cosf(block_theta);
  10339. const float sin_block_theta = sinf(block_theta) * sin_sign;
  10340. theta_base *= theta_scale;
  10341. block_theta *= theta_scale;
  10342. const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  10343. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  10344. const float x0 = src[0];
  10345. const float x1 = src[n_dims/2];
  10346. const float x2 = src[n_dims];
  10347. const float x3 = src[n_dims/2*3];
  10348. dst_data[0] = x0*cos_theta - x1*sin_theta;
  10349. dst_data[n_dims/2] = x0*sin_theta + x1*cos_theta;
  10350. dst_data[n_dims] = x2*cos_block_theta - x3*sin_block_theta;
  10351. dst_data[n_dims/2*3] = x2*sin_block_theta + x3*cos_block_theta;
  10352. }
  10353. } else if (!is_neox) {
  10354. for (int64_t i0 = 0; i0 < ne0; i0 += 2) {
  10355. const float cos_theta = cache[i0 + 0];
  10356. const float sin_theta = cache[i0 + 1];
  10357. // zeta scaling for xPos only:
  10358. float zeta = xpos_base != 0.0f ? powf((i0 + 0.4f * ne0) / (1.4f * ne0), p / xpos_base) : 1.0f;
  10359. if (xpos_down) zeta = 1.0f / zeta;
  10360. const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  10361. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  10362. const float x0 = src[0];
  10363. const float x1 = src[1];
  10364. dst_data[0] = x0*cos_theta*zeta - x1*sin_theta*zeta;
  10365. dst_data[1] = x0*sin_theta*zeta + x1*cos_theta*zeta;
  10366. }
  10367. } else {
  10368. // TODO: this might be wrong for ne0 != n_dims - need double check
  10369. // it seems we have to rope just the first n_dims elements and do nothing with the rest
  10370. // ref: https://github.com/ml-explore/mlx/blob/dc2edc762c797e3b8de50b1dad4dc0a131691033/benchmarks/python/llama_jax_bench.py#L11-L26
  10371. theta_base *= freq_scale;
  10372. for (int64_t ic = 0; ic < ne0; ic += 2) {
  10373. if (ic < n_dims) {
  10374. const int64_t ib = 0;
  10375. // simplified from `(ib * n_dims + ic) * inv_ndims`
  10376. float cur_rot = inv_ndims * ic - ib;
  10377. float cos_theta, sin_theta;
  10378. rope_yarn(
  10379. theta_base, freq_scale, corr_dims, cur_rot, ext_factor, attn_factor,
  10380. &cos_theta, &sin_theta
  10381. );
  10382. sin_theta *= sin_sign;
  10383. theta_base *= theta_scale;
  10384. const int64_t i0 = ib*n_dims + ic/2;
  10385. const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  10386. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  10387. const float x0 = src[0];
  10388. const float x1 = src[n_dims/2];
  10389. dst_data[0] = x0*cos_theta - x1*sin_theta;
  10390. dst_data[n_dims/2] = x0*sin_theta + x1*cos_theta;
  10391. } else {
  10392. const int64_t i0 = ic;
  10393. const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  10394. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  10395. dst_data[0] = src[0];
  10396. dst_data[1] = src[1];
  10397. }
  10398. }
  10399. }
  10400. }
  10401. }
  10402. }
  10403. }
  10404. static void ggml_compute_forward_rope_f16(
  10405. const struct ggml_compute_params * params,
  10406. struct ggml_tensor * dst,
  10407. const bool forward) {
  10408. const struct ggml_tensor * src0 = dst->src[0];
  10409. const struct ggml_tensor * src1 = dst->src[1];
  10410. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  10411. return;
  10412. }
  10413. float freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow;
  10414. //const int n_past = ((int32_t *) dst->op_params)[0];
  10415. const int n_dims = ((int32_t *) dst->op_params)[1];
  10416. const int mode = ((int32_t *) dst->op_params)[2];
  10417. const int n_ctx = ((int32_t *) dst->op_params)[3];
  10418. const int n_orig_ctx = ((int32_t *) dst->op_params)[4];
  10419. memcpy(&freq_base, (int32_t *) dst->op_params + 5, sizeof(float));
  10420. memcpy(&freq_scale, (int32_t *) dst->op_params + 6, sizeof(float));
  10421. memcpy(&ext_factor, (int32_t *) dst->op_params + 7, sizeof(float));
  10422. memcpy(&attn_factor, (int32_t *) dst->op_params + 8, sizeof(float));
  10423. memcpy(&beta_fast, (int32_t *) dst->op_params + 9, sizeof(float));
  10424. memcpy(&beta_slow, (int32_t *) dst->op_params + 10, sizeof(float));
  10425. GGML_TENSOR_UNARY_OP_LOCALS
  10426. //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
  10427. //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
  10428. GGML_ASSERT(nb0 == sizeof(ggml_fp16_t));
  10429. const int ith = params->ith;
  10430. const int nth = params->nth;
  10431. const int nr = ggml_nrows(dst);
  10432. GGML_ASSERT(n_dims <= ne0);
  10433. GGML_ASSERT(n_dims % 2 == 0);
  10434. // rows per thread
  10435. const int dr = (nr + nth - 1)/nth;
  10436. // row range for this thread
  10437. const int ir0 = dr*ith;
  10438. const int ir1 = MIN(ir0 + dr, nr);
  10439. // row index used to determine which thread to use
  10440. int ir = 0;
  10441. const float theta_scale = powf(freq_base, -2.0f/n_dims);
  10442. const float inv_ndims = -1.f/n_dims;
  10443. float corr_dims[2];
  10444. ggml_rope_yarn_corr_dims(n_dims, n_orig_ctx, freq_base, beta_fast, beta_slow, corr_dims);
  10445. const bool is_neox = mode & 2;
  10446. const bool is_glm = mode & 4;
  10447. // backward process uses inverse rotation by cos and sin.
  10448. // cos and sin build a rotation matrix, where the inverse is the transpose.
  10449. // this essentially just switches the sign of sin.
  10450. const float sin_sign = forward ? 1.0f : -1.0f;
  10451. const int32_t * pos = (const int32_t *) src1->data;
  10452. for (int64_t i3 = 0; i3 < ne3; i3++) {
  10453. for (int64_t i2 = 0; i2 < ne2; i2++) {
  10454. const int64_t p = pos[i2];
  10455. float * cache = (float *) params->wdata + (ne0 + CACHE_LINE_SIZE_F32)*ith;
  10456. if (!is_glm && !is_neox) { // TODO: cache sin/cos for glm, neox
  10457. ggml_rope_cache_init(p, freq_scale, corr_dims, ne0, ext_factor, attn_factor, cache, sin_sign, theta_scale);
  10458. }
  10459. for (int64_t i1 = 0; i1 < ne1; i1++) {
  10460. if (ir++ < ir0) continue;
  10461. if (ir > ir1) break;
  10462. float theta_base = (float)p;
  10463. if (is_glm) {
  10464. theta_base = MIN(p, n_ctx - 2);
  10465. float block_theta = MAX(p - (n_ctx - 2), 0);
  10466. for (int64_t i0 = 0; i0 < ne0 / 4; i0++) {
  10467. const float cos_theta = cosf(theta_base);
  10468. const float sin_theta = sinf(theta_base) * sin_sign;
  10469. const float cos_block_theta = cosf(block_theta);
  10470. const float sin_block_theta = sinf(block_theta) * sin_sign;
  10471. theta_base *= theta_scale;
  10472. block_theta *= theta_scale;
  10473. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  10474. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  10475. const float x0 = GGML_FP16_TO_FP32(src[0]);
  10476. const float x1 = GGML_FP16_TO_FP32(src[n_dims/2]);
  10477. const float x2 = GGML_FP16_TO_FP32(src[n_dims]);
  10478. const float x3 = GGML_FP16_TO_FP32(src[n_dims/2*3]);
  10479. dst_data[0] = GGML_FP32_TO_FP16(x0*cos_theta - x1*sin_theta);
  10480. dst_data[n_dims/2] = GGML_FP32_TO_FP16(x0*sin_theta + x1*cos_theta);
  10481. dst_data[n_dims] = GGML_FP32_TO_FP16(x2*cos_block_theta - x3*sin_block_theta);
  10482. dst_data[n_dims/2*3] = GGML_FP32_TO_FP16(x2*sin_block_theta + x3*cos_block_theta);
  10483. }
  10484. } else if (!is_neox) {
  10485. for (int64_t i0 = 0; i0 < ne0; i0 += 2) {
  10486. const float cos_theta = cache[i0 + 0];
  10487. const float sin_theta = cache[i0 + 1];
  10488. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  10489. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  10490. const float x0 = GGML_FP16_TO_FP32(src[0]);
  10491. const float x1 = GGML_FP16_TO_FP32(src[1]);
  10492. dst_data[0] = GGML_FP32_TO_FP16(x0*cos_theta - x1*sin_theta);
  10493. dst_data[1] = GGML_FP32_TO_FP16(x0*sin_theta + x1*cos_theta);
  10494. }
  10495. } else {
  10496. // TODO: this might be wrong for ne0 != n_dims - need double check
  10497. // it seems we have to rope just the first n_dims elements and do nothing with the rest
  10498. // ref: https://github.com/ml-explore/mlx/blob/dc2edc762c797e3b8de50b1dad4dc0a131691033/benchmarks/python/llama_jax_bench.py#L11-L26
  10499. theta_base *= freq_scale;
  10500. for (int64_t ic = 0; ic < ne0; ic += 2) {
  10501. if (ic < n_dims) {
  10502. const int64_t ib = 0;
  10503. // simplified from `(ib * n_dims + ic) * inv_ndims`
  10504. float cur_rot = inv_ndims * ic - ib;
  10505. float cos_theta, sin_theta;
  10506. rope_yarn(
  10507. theta_base, freq_scale, corr_dims, cur_rot, ext_factor, attn_factor,
  10508. &cos_theta, &sin_theta
  10509. );
  10510. sin_theta *= sin_sign;
  10511. theta_base *= theta_scale;
  10512. const int64_t i0 = ib*n_dims + ic/2;
  10513. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  10514. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  10515. const float x0 = GGML_FP16_TO_FP32(src[0]);
  10516. const float x1 = GGML_FP16_TO_FP32(src[n_dims/2]);
  10517. dst_data[0] = GGML_FP32_TO_FP16(x0*cos_theta - x1*sin_theta);
  10518. dst_data[n_dims/2] = GGML_FP32_TO_FP16(x0*sin_theta + x1*cos_theta);
  10519. } else {
  10520. const int64_t i0 = ic;
  10521. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  10522. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  10523. dst_data[0] = src[0];
  10524. dst_data[1] = src[1];
  10525. }
  10526. }
  10527. }
  10528. }
  10529. }
  10530. }
  10531. }
  10532. static void ggml_compute_forward_rope(
  10533. const struct ggml_compute_params * params,
  10534. struct ggml_tensor * dst) {
  10535. const struct ggml_tensor * src0 = dst->src[0];
  10536. switch (src0->type) {
  10537. case GGML_TYPE_F16:
  10538. {
  10539. ggml_compute_forward_rope_f16(params, dst, true);
  10540. } break;
  10541. case GGML_TYPE_F32:
  10542. {
  10543. ggml_compute_forward_rope_f32(params, dst, true);
  10544. } break;
  10545. default:
  10546. {
  10547. GGML_ASSERT(false);
  10548. } break;
  10549. }
  10550. }
  10551. // ggml_compute_forward_rope_back
  10552. static void ggml_compute_forward_rope_back(
  10553. const struct ggml_compute_params * params,
  10554. struct ggml_tensor * dst) {
  10555. const struct ggml_tensor * src0 = dst->src[0];
  10556. switch (src0->type) {
  10557. case GGML_TYPE_F16:
  10558. {
  10559. ggml_compute_forward_rope_f16(params, dst, false);
  10560. } break;
  10561. case GGML_TYPE_F32:
  10562. {
  10563. ggml_compute_forward_rope_f32(params, dst, false);
  10564. } break;
  10565. default:
  10566. {
  10567. GGML_ASSERT(false);
  10568. } break;
  10569. }
  10570. }
  10571. // ggml_compute_forward_conv_transpose_1d
  10572. static void ggml_compute_forward_conv_transpose_1d_f16_f32(
  10573. const struct ggml_compute_params * params,
  10574. struct ggml_tensor * dst) {
  10575. const struct ggml_tensor * src0 = dst->src[0];
  10576. const struct ggml_tensor * src1 = dst->src[1];
  10577. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  10578. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  10579. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  10580. int64_t t0 = ggml_perf_time_us();
  10581. UNUSED(t0);
  10582. GGML_TENSOR_BINARY_OP_LOCALS
  10583. const int ith = params->ith;
  10584. const int nth = params->nth;
  10585. const int nk = ne00*ne01*ne02;
  10586. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  10587. GGML_ASSERT(nb10 == sizeof(float));
  10588. if (params->type == GGML_TASK_TYPE_INIT) {
  10589. if (ith != 0) {
  10590. return;
  10591. }
  10592. memset(params->wdata, 0, params->wsize);
  10593. // permute kernel data (src0) from (K x Cout x Cin) to (Cin x K x Cout)
  10594. {
  10595. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  10596. for (int64_t i02 = 0; i02 < ne02; i02++) {
  10597. for (int64_t i01 = 0; i01 < ne01; i01++) {
  10598. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i02*nb02 + i01*nb01);
  10599. ggml_fp16_t * dst_data = wdata + i01*ne00*ne02;
  10600. for (int64_t i00 = 0; i00 < ne00; i00++) {
  10601. dst_data[i00*ne02 + i02] = src[i00];
  10602. }
  10603. }
  10604. }
  10605. }
  10606. // permute source data (src1) from (L x Cin) to (Cin x L)
  10607. {
  10608. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + nk;
  10609. ggml_fp16_t * dst_data = wdata;
  10610. for (int64_t i11 = 0; i11 < ne11; i11++) {
  10611. const float * const src = (float *)((char *) src1->data + i11*nb11);
  10612. for (int64_t i10 = 0; i10 < ne10; i10++) {
  10613. dst_data[i10*ne11 + i11] = GGML_FP32_TO_FP16(src[i10]);
  10614. }
  10615. }
  10616. }
  10617. // need to zero dst since we are accumulating into it
  10618. memset(dst->data, 0, ggml_nbytes(dst));
  10619. return;
  10620. }
  10621. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  10622. return;
  10623. }
  10624. const int32_t s0 = ((const int32_t*)(dst->op_params))[0];
  10625. // total rows in dst
  10626. const int nr = ne1;
  10627. // rows per thread
  10628. const int dr = (nr + nth - 1)/nth;
  10629. // row range for this thread
  10630. const int ir0 = dr*ith;
  10631. const int ir1 = MIN(ir0 + dr, nr);
  10632. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  10633. ggml_fp16_t * const wdata_src = wdata + nk;
  10634. for (int i1 = ir0; i1 < ir1; i1++) {
  10635. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  10636. ggml_fp16_t * wdata_kernel = wdata + i1*ne02*ne00;
  10637. for (int i10 = 0; i10 < ne10; i10++) {
  10638. const int i1n = i10*ne11;
  10639. for (int i00 = 0; i00 < ne00; i00++) {
  10640. float v = 0;
  10641. ggml_vec_dot_f16(ne02, &v, 0,
  10642. (ggml_fp16_t *) wdata_src + i1n, 0,
  10643. (ggml_fp16_t *) wdata_kernel + i00*ne02, 0, 1);
  10644. dst_data[i10*s0 + i00] += v;
  10645. }
  10646. }
  10647. }
  10648. }
  10649. static void ggml_compute_forward_conv_transpose_1d_f32(
  10650. const struct ggml_compute_params * params,
  10651. struct ggml_tensor * dst) {
  10652. const struct ggml_tensor * src0 = dst->src[0];
  10653. const struct ggml_tensor * src1 = dst->src[1];
  10654. GGML_ASSERT(src0->type == GGML_TYPE_F32);
  10655. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  10656. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  10657. int64_t t0 = ggml_perf_time_us();
  10658. UNUSED(t0);
  10659. GGML_TENSOR_BINARY_OP_LOCALS
  10660. const int ith = params->ith;
  10661. const int nth = params->nth;
  10662. const int nk = ne00*ne01*ne02;
  10663. GGML_ASSERT(nb00 == sizeof(float));
  10664. GGML_ASSERT(nb10 == sizeof(float));
  10665. if (params->type == GGML_TASK_TYPE_INIT) {
  10666. if (ith != 0) {
  10667. return;
  10668. }
  10669. memset(params->wdata, 0, params->wsize);
  10670. // prepare kernel data (src0) from (K x Cout x Cin) to (Cin x K x Cout)
  10671. {
  10672. float * const wdata = (float *) params->wdata + 0;
  10673. for (int64_t i02 = 0; i02 < ne02; i02++) {
  10674. for (int64_t i01 = 0; i01 < ne01; i01++) {
  10675. const float * const src = (float *)((char *) src0->data + i02*nb02 + i01*nb01);
  10676. float * dst_data = wdata + i01*ne00*ne02;
  10677. for (int64_t i00 = 0; i00 < ne00; i00++) {
  10678. dst_data[i00*ne02 + i02] = src[i00];
  10679. }
  10680. }
  10681. }
  10682. }
  10683. // prepare source data (src1)
  10684. {
  10685. float * const wdata = (float *) params->wdata + nk;
  10686. float * dst_data = wdata;
  10687. for (int64_t i11 = 0; i11 < ne11; i11++) {
  10688. const float * const src = (float *)((char *) src1->data + i11*nb11);
  10689. for (int64_t i10 = 0; i10 < ne10; i10++) {
  10690. dst_data[i10*ne11 + i11] = src[i10];
  10691. }
  10692. }
  10693. }
  10694. // need to zero dst since we are accumulating into it
  10695. memset(dst->data, 0, ggml_nbytes(dst));
  10696. return;
  10697. }
  10698. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  10699. return;
  10700. }
  10701. const int32_t s0 = ((const int32_t*)(dst->op_params))[0];
  10702. // total rows in dst
  10703. const int nr = ne1;
  10704. // rows per thread
  10705. const int dr = (nr + nth - 1)/nth;
  10706. // row range for this thread
  10707. const int ir0 = dr*ith;
  10708. const int ir1 = MIN(ir0 + dr, nr);
  10709. float * const wdata = (float *) params->wdata + 0;
  10710. float * const wdata_src = wdata + nk;
  10711. for (int i1 = ir0; i1 < ir1; i1++) {
  10712. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  10713. float * wdata_kernel = wdata + i1*ne02*ne00;
  10714. for (int i10 = 0; i10 < ne10; i10++) {
  10715. const int i1n = i10*ne11;
  10716. for (int i00 = 0; i00 < ne00; i00++) {
  10717. float v = 0;
  10718. ggml_vec_dot_f32(ne02, &v, 0,
  10719. wdata_src + i1n, 0,
  10720. wdata_kernel + i00*ne02, 0, 1);
  10721. dst_data[i10*s0 + i00] += v;
  10722. }
  10723. }
  10724. }
  10725. }
  10726. static void ggml_compute_forward_conv_transpose_1d(
  10727. const struct ggml_compute_params * params,
  10728. struct ggml_tensor * dst) {
  10729. const struct ggml_tensor * src0 = dst->src[0];
  10730. switch (src0->type) {
  10731. case GGML_TYPE_F16:
  10732. {
  10733. ggml_compute_forward_conv_transpose_1d_f16_f32(params, dst);
  10734. } break;
  10735. case GGML_TYPE_F32:
  10736. {
  10737. ggml_compute_forward_conv_transpose_1d_f32(params, dst);
  10738. } break;
  10739. default:
  10740. {
  10741. GGML_ASSERT(false);
  10742. } break;
  10743. }
  10744. }
  10745. // src0: kernel [OC, IC, KH, KW]
  10746. // src1: image [N, IC, IH, IW]
  10747. // dst: result [N, OH, OW, IC*KH*KW]
  10748. static void ggml_compute_forward_im2col_f32(
  10749. const struct ggml_compute_params * params,
  10750. struct ggml_tensor * dst) {
  10751. const struct ggml_tensor * src0 = dst->src[0];
  10752. const struct ggml_tensor * src1 = dst->src[1];
  10753. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  10754. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  10755. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  10756. int64_t t0 = ggml_perf_time_us();
  10757. UNUSED(t0);
  10758. GGML_TENSOR_BINARY_OP_LOCALS;
  10759. const int32_t s0 = ((const int32_t *)(dst->op_params))[0];
  10760. const int32_t s1 = ((const int32_t *)(dst->op_params))[1];
  10761. const int32_t p0 = ((const int32_t *)(dst->op_params))[2];
  10762. const int32_t p1 = ((const int32_t *)(dst->op_params))[3];
  10763. const int32_t d0 = ((const int32_t *)(dst->op_params))[4];
  10764. const int32_t d1 = ((const int32_t *)(dst->op_params))[5];
  10765. const bool is_2D = ((const int32_t *)(dst->op_params))[6] == 1;
  10766. const int ith = params->ith;
  10767. const int nth = params->nth;
  10768. const int64_t N = is_2D ? ne13 : ne12;
  10769. const int64_t IC = is_2D ? ne12 : ne11;
  10770. const int64_t IH = is_2D ? ne11 : 1;
  10771. const int64_t IW = ne10;
  10772. const int64_t KH = is_2D ? ne01 : 1;
  10773. const int64_t KW = ne00;
  10774. const int64_t OH = is_2D ? ne2 : 1;
  10775. const int64_t OW = ne1;
  10776. int ofs0 = is_2D ? nb13 : nb12;
  10777. int ofs1 = is_2D ? nb12 : nb11;
  10778. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  10779. GGML_ASSERT(nb10 == sizeof(float));
  10780. if (params->type == GGML_TASK_TYPE_INIT) {
  10781. return;
  10782. }
  10783. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  10784. return;
  10785. }
  10786. // im2col: [N, IC, IH, IW] => [N, OH, OW, IC*KH*KW]
  10787. {
  10788. float * const wdata = (float *) dst->data;
  10789. for (int64_t in = 0; in < N; in++) {
  10790. for (int64_t ioh = 0; ioh < OH; ioh++) { // 1
  10791. for (int64_t iow = 0; iow < OW; iow++) {
  10792. for (int64_t iic = ith; iic < IC; iic += nth) {
  10793. // micro kernel
  10794. float * dst_data = wdata + (in*OH*OW + ioh*OW + iow)*(IC*KH*KW); // [IC, KH, KW]
  10795. const float * const src_data = (float *)((char *) src1->data + in*ofs0 + iic*ofs1); // [IH, IW]
  10796. for (int64_t ikh = 0; ikh < KH; ikh++) { // 1
  10797. for (int64_t ikw = 0; ikw < KW; ikw++) {
  10798. const int64_t iiw = iow*s0 + ikw*d0 - p0;
  10799. const int64_t iih = ioh*s1 + ikh*d1 - p1;
  10800. if (iih < 0 || iih >= IH || iiw < 0 || iiw >= IW) {
  10801. dst_data[iic*(KH*KW) + ikh*KW + ikw] = 0;
  10802. } else {
  10803. dst_data[iic*(KH*KW) + ikh*KW + ikw] = (src_data[iih*IW + iiw]);
  10804. }
  10805. }
  10806. }
  10807. }
  10808. }
  10809. }
  10810. }
  10811. }
  10812. }
  10813. // src0: kernel [OC, IC, KH, KW]
  10814. // src1: image [N, IC, IH, IW]
  10815. // dst: result [N, OH, OW, IC*KH*KW]
  10816. static void ggml_compute_forward_im2col_f16(
  10817. const struct ggml_compute_params * params,
  10818. struct ggml_tensor * dst) {
  10819. const struct ggml_tensor * src0 = dst->src[0];
  10820. const struct ggml_tensor * src1 = dst->src[1];
  10821. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  10822. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  10823. GGML_ASSERT( dst->type == GGML_TYPE_F16);
  10824. int64_t t0 = ggml_perf_time_us();
  10825. UNUSED(t0);
  10826. GGML_TENSOR_BINARY_OP_LOCALS;
  10827. const int32_t s0 = ((const int32_t *)(dst->op_params))[0];
  10828. const int32_t s1 = ((const int32_t *)(dst->op_params))[1];
  10829. const int32_t p0 = ((const int32_t *)(dst->op_params))[2];
  10830. const int32_t p1 = ((const int32_t *)(dst->op_params))[3];
  10831. const int32_t d0 = ((const int32_t *)(dst->op_params))[4];
  10832. const int32_t d1 = ((const int32_t *)(dst->op_params))[5];
  10833. const bool is_2D = ((const int32_t *)(dst->op_params))[6] == 1;
  10834. const int ith = params->ith;
  10835. const int nth = params->nth;
  10836. const int64_t N = is_2D ? ne13 : ne12;
  10837. const int64_t IC = is_2D ? ne12 : ne11;
  10838. const int64_t IH = is_2D ? ne11 : 1;
  10839. const int64_t IW = ne10;
  10840. const int64_t KH = is_2D ? ne01 : 1;
  10841. const int64_t KW = ne00;
  10842. const int64_t OH = is_2D ? ne2 : 1;
  10843. const int64_t OW = ne1;
  10844. int ofs0 = is_2D ? nb13 : nb12;
  10845. int ofs1 = is_2D ? nb12 : nb11;
  10846. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  10847. GGML_ASSERT(nb10 == sizeof(float));
  10848. if (params->type == GGML_TASK_TYPE_INIT) {
  10849. return;
  10850. }
  10851. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  10852. return;
  10853. }
  10854. // im2col: [N, IC, IH, IW] => [N, OH, OW, IC*KH*KW]
  10855. {
  10856. ggml_fp16_t * const wdata = (ggml_fp16_t *) dst->data;
  10857. for (int64_t in = 0; in < N; in++) {
  10858. for (int64_t ioh = 0; ioh < OH; ioh++) { // 1
  10859. for (int64_t iow = 0; iow < OW; iow++) {
  10860. for (int64_t iic = ith; iic < IC; iic += nth) {
  10861. // micro kernel
  10862. ggml_fp16_t * dst_data = wdata + (in*OH*OW + ioh*OW + iow)*(IC*KH*KW); // [IC, KH, KW]
  10863. const float * const src_data = (float *)((char *) src1->data + in*ofs0 + iic*ofs1); // [IH, IW]
  10864. for (int64_t ikh = 0; ikh < KH; ikh++) { // 1
  10865. for (int64_t ikw = 0; ikw < KW; ikw++) {
  10866. const int64_t iiw = iow*s0 + ikw*d0 - p0;
  10867. const int64_t iih = ioh*s1 + ikh*d1 - p1;
  10868. if (iih < 0 || iih >= IH || iiw < 0 || iiw >= IW) {
  10869. dst_data[iic*(KH*KW) + ikh*KW + ikw] = 0;
  10870. } else {
  10871. dst_data[iic*(KH*KW) + ikh*KW + ikw] = GGML_FP32_TO_FP16(src_data[iih*IW + iiw]);
  10872. }
  10873. }
  10874. }
  10875. }
  10876. }
  10877. }
  10878. }
  10879. }
  10880. }
  10881. static void ggml_compute_forward_im2col(
  10882. const struct ggml_compute_params * params,
  10883. struct ggml_tensor * dst) {
  10884. switch (dst->type) {
  10885. case GGML_TYPE_F16:
  10886. {
  10887. ggml_compute_forward_im2col_f16(params, dst);
  10888. } break;
  10889. case GGML_TYPE_F32:
  10890. {
  10891. ggml_compute_forward_im2col_f32(params, dst);
  10892. } break;
  10893. default:
  10894. {
  10895. GGML_ASSERT(false);
  10896. } break;
  10897. }
  10898. }
  10899. // ggml_compute_forward_conv_transpose_2d
  10900. static void ggml_compute_forward_conv_transpose_2d(
  10901. const struct ggml_compute_params * params,
  10902. struct ggml_tensor * dst) {
  10903. const struct ggml_tensor * src0 = dst->src[0];
  10904. const struct ggml_tensor * src1 = dst->src[1];
  10905. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  10906. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  10907. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  10908. int64_t t0 = ggml_perf_time_us();
  10909. UNUSED(t0);
  10910. GGML_TENSOR_BINARY_OP_LOCALS
  10911. const int ith = params->ith;
  10912. const int nth = params->nth;
  10913. const int nk = ne00*ne01*ne02*ne03;
  10914. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  10915. GGML_ASSERT(nb10 == sizeof(float));
  10916. if (params->type == GGML_TASK_TYPE_INIT) {
  10917. if (ith != 0) {
  10918. return;
  10919. }
  10920. memset(params->wdata, 0, params->wsize);
  10921. // permute kernel data (src0) from (Kw x Kh x Cout x Cin) to (Cin x Kw x Kh x Cout)
  10922. {
  10923. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  10924. for (int64_t i03 = 0; i03 < ne03; i03++) {
  10925. for (int64_t i02 = 0; i02 < ne02; i02++) {
  10926. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i03*nb03 + i02*nb02);
  10927. ggml_fp16_t * dst_data = wdata + i02*ne01*ne00*ne03;
  10928. for (int64_t i01 = 0; i01 < ne01; i01++) {
  10929. for (int64_t i00 = 0; i00 < ne00; i00++) {
  10930. dst_data[i01*ne00*ne03 + i00*ne03 + i03] = src[i01 * ne00 + i00];
  10931. }
  10932. }
  10933. }
  10934. }
  10935. }
  10936. // permute source data (src1) from (Sw x Sh x Cin) to (Cin x Sw x Sh)
  10937. {
  10938. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + nk;
  10939. for (int i12 = 0; i12 < ne12; i12++) {
  10940. for (int i11 = 0; i11 < ne11; i11++) {
  10941. const float * const src = (float *)((char *) src1->data + i12*nb12 + i11*nb11);
  10942. ggml_fp16_t * dst_data = wdata + i11*ne10*ne12;
  10943. for (int i10 = 0; i10 < ne10; i10++) {
  10944. dst_data[i10*ne12 + i12] = GGML_FP32_TO_FP16(src[i10]);
  10945. }
  10946. }
  10947. }
  10948. }
  10949. memset(dst->data, 0, ggml_nbytes(dst));
  10950. return;
  10951. }
  10952. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  10953. return;
  10954. }
  10955. const int32_t stride = ggml_get_op_params_i32(dst, 0);
  10956. // total patches in dst
  10957. const int np = ne2;
  10958. // patches per thread
  10959. const int dp = (np + nth - 1)/nth;
  10960. // patch range for this thread
  10961. const int ip0 = dp*ith;
  10962. const int ip1 = MIN(ip0 + dp, np);
  10963. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  10964. ggml_fp16_t * const wdata_src = wdata + nk;
  10965. for (int i2 = ip0; i2 < ip1; i2++) { // Cout
  10966. float * dst_data = (float *)((char *) dst->data + i2*nb2);
  10967. ggml_fp16_t * wdata_kernel = wdata + i2*ne01*ne00*ne03;
  10968. for (int i11 = 0; i11 < ne11; i11++) {
  10969. for (int i10 = 0; i10 < ne10; i10++) {
  10970. const int i1n = i11*ne10*ne12 + i10*ne12;
  10971. for (int i01 = 0; i01 < ne01; i01++) {
  10972. for (int i00 = 0; i00 < ne00; i00++) {
  10973. float v = 0;
  10974. ggml_vec_dot_f16(ne03, &v, 0,
  10975. wdata_src + i1n, 0,
  10976. wdata_kernel + i01*ne00*ne03 + i00*ne03, 0, 1);
  10977. dst_data[(i11*stride + i01)*ne0 + i10*stride + i00] += v;
  10978. }
  10979. }
  10980. }
  10981. }
  10982. }
  10983. }
  10984. // ggml_compute_forward_pool_1d_sk_p0
  10985. static void ggml_compute_forward_pool_1d_sk_p0(
  10986. const struct ggml_compute_params * params,
  10987. const enum ggml_op_pool op,
  10988. const int k,
  10989. struct ggml_tensor * dst) {
  10990. const struct ggml_tensor * src = dst->src[0];
  10991. assert(src->type == GGML_TYPE_F32);
  10992. assert(params->ith == 0);
  10993. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  10994. return;
  10995. }
  10996. const char * cdata = (const char *)src->data;
  10997. const char * const data_end = cdata + ggml_nbytes(src);
  10998. float * drow = (float *)dst->data;
  10999. const int64_t rs = dst->ne[0];
  11000. while (cdata < data_end) {
  11001. const float * const srow = (const float *)cdata;
  11002. int j = 0;
  11003. for (int64_t i = 0; i < rs; ++i) {
  11004. switch (op) {
  11005. case GGML_OP_POOL_AVG: drow[i] = 0; break;
  11006. case GGML_OP_POOL_MAX: drow[i] = -FLT_MAX; break;
  11007. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  11008. }
  11009. for (int ki = 0; ki < k; ++ki) {
  11010. switch (op) {
  11011. case GGML_OP_POOL_AVG: drow[i] += srow[j]; break;
  11012. case GGML_OP_POOL_MAX: if (srow[j] > drow[i]) drow[i] = srow[j]; break;
  11013. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  11014. }
  11015. ++j;
  11016. }
  11017. switch (op) {
  11018. case GGML_OP_POOL_AVG: drow[i] /= k; break;
  11019. case GGML_OP_POOL_MAX: break;
  11020. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  11021. }
  11022. }
  11023. cdata += src->nb[1];
  11024. drow += rs;
  11025. }
  11026. }
  11027. // ggml_compute_forward_pool_1d
  11028. static void ggml_compute_forward_pool_1d(
  11029. const struct ggml_compute_params * params,
  11030. struct ggml_tensor * dst) {
  11031. const int32_t * opts = (const int32_t *)dst->op_params;
  11032. enum ggml_op_pool op = opts[0];
  11033. const int k0 = opts[1];
  11034. const int s0 = opts[2];
  11035. const int p0 = opts[3];
  11036. GGML_ASSERT(p0 == 0); // padding not supported
  11037. GGML_ASSERT(k0 == s0); // only s = k supported
  11038. ggml_compute_forward_pool_1d_sk_p0(params, op, k0, dst);
  11039. }
  11040. // ggml_compute_forward_pool_2d
  11041. static void ggml_compute_forward_pool_2d(
  11042. const struct ggml_compute_params * params,
  11043. struct ggml_tensor * dst) {
  11044. const struct ggml_tensor * src = dst->src[0];
  11045. GGML_ASSERT(src->type == GGML_TYPE_F32);
  11046. GGML_ASSERT(params->ith == 0);
  11047. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  11048. return;
  11049. }
  11050. const int32_t * opts = (const int32_t *)dst->op_params;
  11051. enum ggml_op_pool op = opts[0];
  11052. const int k0 = opts[1];
  11053. const int k1 = opts[2];
  11054. const int s0 = opts[3];
  11055. const int s1 = opts[4];
  11056. const int p0 = opts[5];
  11057. const int p1 = opts[6];
  11058. const char * cdata = (const char*)src->data;
  11059. const char * const data_end = cdata + ggml_nbytes(src);
  11060. const int64_t px = dst->ne[0];
  11061. const int64_t py = dst->ne[1];
  11062. const int64_t pa = px * py;
  11063. float * dplane = (float *)dst->data;
  11064. const int ka = k0 * k1;
  11065. const int offset0 = -p0;
  11066. const int offset1 = -p1;
  11067. while (cdata < data_end) {
  11068. for (int oy = 0; oy < py; ++oy) {
  11069. float * const drow = dplane + oy * px;
  11070. for (int ox = 0; ox < px; ++ox) {
  11071. float * const out = drow + ox;
  11072. switch (op) {
  11073. case GGML_OP_POOL_AVG: *out = 0; break;
  11074. case GGML_OP_POOL_MAX: *out = -FLT_MAX; break;
  11075. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  11076. }
  11077. const int ix = offset0 + ox * s0;
  11078. const int iy = offset1 + oy * s1;
  11079. for (int ky = 0; ky < k1; ++ky) {
  11080. if (iy + ky < 0 || iy + ky >= src->ne[1]) continue;
  11081. const float * const srow = (const float *)(cdata + src->nb[1] * (iy + ky));
  11082. for (int kx = 0; kx < k0; ++kx) {
  11083. int j = ix + kx;
  11084. if (j < 0 || j >= src->ne[0]) continue;
  11085. switch (op) {
  11086. case GGML_OP_POOL_AVG: *out += srow[j]; break;
  11087. case GGML_OP_POOL_MAX: if (srow[j] > *out) *out = srow[j]; break;
  11088. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  11089. }
  11090. }
  11091. }
  11092. switch (op) {
  11093. case GGML_OP_POOL_AVG: *out /= ka; break;
  11094. case GGML_OP_POOL_MAX: break;
  11095. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  11096. }
  11097. }
  11098. }
  11099. cdata += src->nb[2];
  11100. dplane += pa;
  11101. }
  11102. }
  11103. // ggml_compute_forward_upscale
  11104. static void ggml_compute_forward_upscale_f32(
  11105. const struct ggml_compute_params * params,
  11106. struct ggml_tensor * dst) {
  11107. const struct ggml_tensor * src0 = dst->src[0];
  11108. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  11109. return;
  11110. }
  11111. GGML_ASSERT(src0->nb[0] == sizeof(float));
  11112. const int ith = params->ith;
  11113. const int nth = params->nth;
  11114. GGML_TENSOR_UNARY_OP_LOCALS
  11115. const int scale_factor = dst->op_params[0];
  11116. // TODO: optimize
  11117. for (int64_t i3 = 0; i3 < ne3; i3++) {
  11118. const int64_t i03 = i3;
  11119. for (int64_t i2 = ith; i2 < ne2; i2 += nth) {
  11120. const int64_t i02 = i2;
  11121. for (int64_t i1 = 0; i1 < ne1; i1++) {
  11122. const int64_t i01 = i1 / scale_factor;
  11123. for (int64_t i0 = 0; i0 < ne0; i0++) {
  11124. const int64_t i00 = i0 / scale_factor;
  11125. const float * x = (float *)((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  11126. float * y = (float *)((char *) dst->data + i0*nb0 + i1*nb1 + i2*nb2 + i3*nb3);
  11127. *y = *x;
  11128. }
  11129. }
  11130. }
  11131. }
  11132. }
  11133. static void ggml_compute_forward_upscale(
  11134. const struct ggml_compute_params * params,
  11135. struct ggml_tensor * dst) {
  11136. const struct ggml_tensor * src0 = dst->src[0];
  11137. switch (src0->type) {
  11138. case GGML_TYPE_F32:
  11139. {
  11140. ggml_compute_forward_upscale_f32(params, dst);
  11141. } break;
  11142. default:
  11143. {
  11144. GGML_ASSERT(false);
  11145. } break;
  11146. }
  11147. }
  11148. // ggml_compute_forward_pad
  11149. static void ggml_compute_forward_pad_f32(
  11150. const struct ggml_compute_params * params,
  11151. struct ggml_tensor * dst) {
  11152. const struct ggml_tensor * src0 = dst->src[0];
  11153. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  11154. return;
  11155. }
  11156. GGML_ASSERT(src0->nb[0] == sizeof(float));
  11157. GGML_ASSERT( dst->nb[0] == sizeof(float));
  11158. const int ith = params->ith;
  11159. const int nth = params->nth;
  11160. GGML_TENSOR_UNARY_OP_LOCALS
  11161. float * dst_ptr = (float *) dst->data;
  11162. // TODO: optimize
  11163. for (int64_t i2 = 0; i2 < ne2; ++i2) {
  11164. for (int64_t i1 = ith; i1 < ne1; i1 += nth) {
  11165. for (int64_t i0 = 0; i0 < ne0; ++i0) {
  11166. for (int64_t i3 = 0; i3 < ne3; ++i3) {
  11167. const int64_t dst_idx = i3*(ne0*ne1*ne2) + i2*(ne0*ne1) + i1*ne0 + i0;
  11168. const float * src_ptr = (const float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  11169. if (i0 < ne00 && i1 < ne01 && i2 < ne02 && i3 < ne03) {
  11170. dst_ptr[dst_idx] = *src_ptr;
  11171. } else {
  11172. dst_ptr[dst_idx] = 0;
  11173. }
  11174. }
  11175. }
  11176. }
  11177. }
  11178. }
  11179. static void ggml_compute_forward_pad(
  11180. const struct ggml_compute_params * params,
  11181. struct ggml_tensor * dst) {
  11182. const struct ggml_tensor * src0 = dst->src[0];
  11183. switch (src0->type) {
  11184. case GGML_TYPE_F32:
  11185. {
  11186. ggml_compute_forward_pad_f32(params, dst);
  11187. } break;
  11188. default:
  11189. {
  11190. GGML_ASSERT(false);
  11191. } break;
  11192. }
  11193. }
  11194. // ggml_compute_forward_arange
  11195. static void ggml_compute_forward_arange_f32(
  11196. const struct ggml_compute_params * params,
  11197. struct ggml_tensor * dst) {
  11198. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  11199. return;
  11200. }
  11201. GGML_ASSERT(dst->nb[0] == sizeof(float));
  11202. const int ith = params->ith;
  11203. const int nth = params->nth;
  11204. const float start = ggml_get_op_params_f32(dst, 0);
  11205. const float stop = ggml_get_op_params_f32(dst, 1);
  11206. const float step = ggml_get_op_params_f32(dst, 2);
  11207. const int64_t steps = (int64_t) ceilf((stop - start) / step);
  11208. GGML_ASSERT(ggml_nelements(dst) == steps);
  11209. for (int64_t i = ith; i < steps; i+= nth) {
  11210. float value = start + step * i;
  11211. ((float *)dst->data)[i] = value;
  11212. }
  11213. }
  11214. static void ggml_compute_forward_arange(
  11215. const struct ggml_compute_params * params,
  11216. struct ggml_tensor * dst) {
  11217. switch (dst->type) {
  11218. case GGML_TYPE_F32:
  11219. {
  11220. ggml_compute_forward_arange_f32(params, dst);
  11221. } break;
  11222. default:
  11223. {
  11224. GGML_ASSERT(false);
  11225. } break;
  11226. }
  11227. }
  11228. static void ggml_compute_forward_timestep_embedding_f32(
  11229. const struct ggml_compute_params * params,
  11230. struct ggml_tensor * dst) {
  11231. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  11232. return;
  11233. }
  11234. const struct ggml_tensor * src0 = dst->src[0];
  11235. GGML_ASSERT(src0->nb[0] == sizeof(float));
  11236. const int ith = params->ith;
  11237. const int nth = params->nth;
  11238. GGML_TENSOR_UNARY_OP_LOCALS
  11239. const int dim = ggml_get_op_params_i32(dst, 0);
  11240. const int max_period = ggml_get_op_params_i32(dst, 1);
  11241. int half = dim / 2;
  11242. for (int64_t i = 0; i < ne00; i++) {
  11243. float * embed_data = (float *)((char *) dst->data + i*nb1);
  11244. for (int64_t j = ith; j < half; j += nth) {
  11245. float timestep = ((float *)src0->data)[i];
  11246. float freq = (float)expf(-logf(max_period) * j / half);
  11247. float arg = timestep * freq;
  11248. embed_data[j] = cosf(arg);
  11249. embed_data[j + half] = sinf(arg);
  11250. }
  11251. if (dim % 2 != 0 && ith == 0) {
  11252. embed_data[dim] = 0.f;
  11253. }
  11254. }
  11255. }
  11256. static void ggml_compute_forward_timestep_embedding(
  11257. const struct ggml_compute_params * params,
  11258. struct ggml_tensor * dst) {
  11259. const struct ggml_tensor * src0 = dst->src[0];
  11260. switch (src0->type) {
  11261. case GGML_TYPE_F32:
  11262. {
  11263. ggml_compute_forward_timestep_embedding_f32(params, dst);
  11264. } break;
  11265. default:
  11266. {
  11267. GGML_ASSERT(false);
  11268. } break;
  11269. }
  11270. }
  11271. // ggml_compute_forward_argsort
  11272. static void ggml_compute_forward_argsort_f32(
  11273. const struct ggml_compute_params * params,
  11274. struct ggml_tensor * dst) {
  11275. const struct ggml_tensor * src0 = dst->src[0];
  11276. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  11277. return;
  11278. }
  11279. GGML_TENSOR_UNARY_OP_LOCALS
  11280. GGML_ASSERT(nb0 == sizeof(float));
  11281. const int ith = params->ith;
  11282. const int nth = params->nth;
  11283. const int64_t nr = ggml_nrows(src0);
  11284. enum ggml_sort_order order = (enum ggml_sort_order) ggml_get_op_params_i32(dst, 0);
  11285. for (int64_t i = ith; i < nr; i += nth) {
  11286. int32_t * dst_data = (int32_t *)((char *) dst->data + i*nb1);
  11287. const float * src_data = (float *)((char *) src0->data + i*nb01);
  11288. for (int64_t j = 0; j < ne0; j++) {
  11289. dst_data[j] = j;
  11290. }
  11291. // C doesn't have a functional sort, so we do a bubble sort instead
  11292. for (int64_t j = 0; j < ne0; j++) {
  11293. for (int64_t k = j + 1; k < ne0; k++) {
  11294. if ((order == GGML_SORT_ORDER_ASC && src_data[dst_data[j]] > src_data[dst_data[k]]) ||
  11295. (order == GGML_SORT_ORDER_DESC && src_data[dst_data[j]] < src_data[dst_data[k]])) {
  11296. int32_t tmp = dst_data[j];
  11297. dst_data[j] = dst_data[k];
  11298. dst_data[k] = tmp;
  11299. }
  11300. }
  11301. }
  11302. }
  11303. }
  11304. static void ggml_compute_forward_argsort(
  11305. const struct ggml_compute_params * params,
  11306. struct ggml_tensor * dst) {
  11307. const struct ggml_tensor * src0 = dst->src[0];
  11308. switch (src0->type) {
  11309. case GGML_TYPE_F32:
  11310. {
  11311. ggml_compute_forward_argsort_f32(params, dst);
  11312. } break;
  11313. default:
  11314. {
  11315. GGML_ASSERT(false);
  11316. } break;
  11317. }
  11318. }
  11319. // ggml_compute_forward_flash_attn
  11320. static void ggml_compute_forward_flash_attn_f32(
  11321. const struct ggml_compute_params * params,
  11322. const bool masked,
  11323. struct ggml_tensor * dst) {
  11324. const struct ggml_tensor * q = dst->src[0];
  11325. const struct ggml_tensor * k = dst->src[1];
  11326. const struct ggml_tensor * v = dst->src[2];
  11327. int64_t t0 = ggml_perf_time_us();
  11328. UNUSED(t0);
  11329. GGML_TENSOR_LOCALS(int64_t, neq, q, ne)
  11330. GGML_TENSOR_LOCALS(size_t, nbq, q, nb)
  11331. GGML_TENSOR_LOCALS(int64_t, nek, k, ne)
  11332. GGML_TENSOR_LOCALS(size_t, nbk, k, nb)
  11333. GGML_TENSOR_LOCALS(int64_t, nev, v, ne)
  11334. GGML_TENSOR_LOCALS(size_t, nbv, v, nb)
  11335. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
  11336. GGML_TENSOR_LOCALS(size_t, nb, dst, nb)
  11337. const int ith = params->ith;
  11338. const int nth = params->nth;
  11339. const int64_t D = neq0;
  11340. const int64_t N = neq1;
  11341. const int64_t P = nek1 - N;
  11342. const int64_t M = P + N;
  11343. const int Mup = ggml_up(M, GGML_SOFT_MAX_UNROLL);
  11344. GGML_ASSERT(ne0 == D);
  11345. GGML_ASSERT(ne1 == N);
  11346. GGML_ASSERT(P >= 0);
  11347. GGML_ASSERT(nbq0 == sizeof(float));
  11348. GGML_ASSERT(nbk0 == sizeof(float));
  11349. GGML_ASSERT(nbv0 == sizeof(float));
  11350. GGML_ASSERT(neq0 == D);
  11351. GGML_ASSERT(nek0 == D);
  11352. GGML_ASSERT(nev1 == D);
  11353. GGML_ASSERT(neq1 == N);
  11354. GGML_ASSERT(nek1 == N + P);
  11355. GGML_ASSERT(nev1 == D);
  11356. // dst cannot be transposed or permuted
  11357. GGML_ASSERT(nb0 == sizeof(float));
  11358. GGML_ASSERT(nb0 <= nb1);
  11359. GGML_ASSERT(nb1 <= nb2);
  11360. GGML_ASSERT(nb2 <= nb3);
  11361. if (params->type == GGML_TASK_TYPE_INIT) {
  11362. return;
  11363. }
  11364. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  11365. return;
  11366. }
  11367. // parallelize by q rows using ggml_vec_dot_f32
  11368. // total rows in q
  11369. const int nr = neq1*neq2*neq3;
  11370. // rows per thread
  11371. const int dr = (nr + nth - 1)/nth;
  11372. // row range for this thread
  11373. const int ir0 = dr*ith;
  11374. const int ir1 = MIN(ir0 + dr, nr);
  11375. const float scale = 1.0f/sqrtf(D);
  11376. //printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale);
  11377. for (int ir = ir0; ir < ir1; ++ir) {
  11378. // q indices
  11379. const int iq3 = ir/(neq2*neq1);
  11380. const int iq2 = (ir - iq3*neq2*neq1)/neq1;
  11381. const int iq1 = (ir - iq3*neq2*neq1 - iq2*neq1);
  11382. float * S = (float *) params->wdata + ith*(Mup + CACHE_LINE_SIZE_F32);
  11383. for (int i = M; i < Mup; ++i) {
  11384. S[i] = -INFINITY;
  11385. }
  11386. const int64_t masked_begin = masked ? (P + iq1 + 1) : M;
  11387. for (int64_t ic = 0; ic < masked_begin; ++ic) {
  11388. // k indices
  11389. const int ik3 = iq3;
  11390. const int ik2 = iq2 % nek2;
  11391. const int ik1 = ic;
  11392. // S indices
  11393. const int i1 = ik1;
  11394. ggml_vec_dot_f32(neq0,
  11395. S + i1, 0,
  11396. (float *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)), 0,
  11397. (float *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)), 0, 1);
  11398. }
  11399. // scale
  11400. ggml_vec_scale_f32(masked_begin, S, scale);
  11401. for (int64_t i = masked_begin; i < M; i++) {
  11402. S[i] = -INFINITY;
  11403. }
  11404. // softmax
  11405. // exclude known -INF S[..] values from max and loop
  11406. // dont forget to set their SW values to zero
  11407. {
  11408. float max = -INFINITY;
  11409. ggml_vec_max_f32(masked_begin, &max, S);
  11410. ggml_float sum = 0.0;
  11411. {
  11412. #ifdef GGML_SOFT_MAX_ACCELERATE
  11413. max = -max;
  11414. vDSP_vsadd(S, 1, &max, S, 1, Mup);
  11415. vvexpf(S, S, &Mup);
  11416. ggml_vec_sum_f32(Mup, &sum, S);
  11417. #else
  11418. uint16_t scvt[GGML_SOFT_MAX_UNROLL]; UNUSED(scvt);
  11419. ggml_float sump[GGML_SOFT_MAX_UNROLL] = { 0.0 };
  11420. for (int i = 0; i < Mup; i += GGML_SOFT_MAX_UNROLL) {
  11421. if (i >= masked_begin) {
  11422. break;
  11423. }
  11424. float * SS = S + i;
  11425. for (int j = 0; j < GGML_SOFT_MAX_UNROLL; ++j) {
  11426. if (i + j >= masked_begin) {
  11427. break;
  11428. } else if (SS[j] == -INFINITY) {
  11429. SS[j] = 0.0f;
  11430. } else {
  11431. #ifndef GGML_FLASH_ATTN_EXP_FP16
  11432. const float val = expf(SS[j] - max);
  11433. #else
  11434. ggml_fp16_t s = GGML_FP32_TO_FP16(SS[j] - max);
  11435. memcpy(&scvt[j], &s, sizeof(uint16_t));
  11436. const float val = GGML_FP16_TO_FP32(ggml_table_exp_f16[scvt[j]]);
  11437. #endif
  11438. sump[j] += (ggml_float)val;
  11439. SS[j] = val;
  11440. }
  11441. }
  11442. }
  11443. for (int i = 0; i < GGML_SOFT_MAX_UNROLL; i++) {
  11444. sum += sump[i];
  11445. }
  11446. #endif
  11447. }
  11448. assert(sum > 0.0);
  11449. sum = 1.0/sum;
  11450. ggml_vec_scale_f32(masked_begin, S, sum);
  11451. #ifndef NDEBUG
  11452. for (int i = 0; i < masked_begin; ++i) {
  11453. assert(!isnan(S[i]));
  11454. assert(!isinf(S[i]));
  11455. }
  11456. #endif
  11457. }
  11458. for (int64_t ic = 0; ic < nev1; ++ic) {
  11459. // dst indices
  11460. const int i1 = iq1;
  11461. const int i2 = iq2;
  11462. const int i3 = iq3;
  11463. // v indices
  11464. const int iv2 = iq2 % nev2;
  11465. const int iv3 = iq3;
  11466. ggml_vec_dot_f32(masked_begin,
  11467. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)), 0,
  11468. (float *) ((char *) v->data + ( ic*nbv1 + iv2*nbv2 + iv3*nbv3)), 0,
  11469. S, 0, 1);
  11470. }
  11471. }
  11472. }
  11473. static void ggml_compute_forward_flash_attn_f16(
  11474. const struct ggml_compute_params * params,
  11475. const bool masked,
  11476. struct ggml_tensor * dst) {
  11477. const struct ggml_tensor * q = dst->src[0];
  11478. const struct ggml_tensor * k = dst->src[1];
  11479. const struct ggml_tensor * v = dst->src[2];
  11480. int64_t t0 = ggml_perf_time_us();
  11481. UNUSED(t0);
  11482. GGML_TENSOR_LOCALS(int64_t, neq, q, ne)
  11483. GGML_TENSOR_LOCALS(size_t, nbq, q, nb)
  11484. GGML_TENSOR_LOCALS(int64_t, nek, k, ne)
  11485. GGML_TENSOR_LOCALS(size_t, nbk, k, nb)
  11486. GGML_TENSOR_LOCALS(int64_t, nev, v, ne)
  11487. GGML_TENSOR_LOCALS(size_t, nbv, v, nb)
  11488. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
  11489. GGML_TENSOR_LOCALS(size_t, nb, dst, nb)
  11490. const int ith = params->ith;
  11491. const int nth = params->nth;
  11492. const int64_t D = neq0;
  11493. const int64_t N = neq1;
  11494. const int64_t P = nek1 - N;
  11495. const int64_t M = P + N;
  11496. const int Mup = ggml_up(M, GGML_SOFT_MAX_UNROLL);
  11497. GGML_ASSERT(ne0 == D);
  11498. GGML_ASSERT(ne1 == N);
  11499. GGML_ASSERT(P >= 0);
  11500. GGML_ASSERT(nbq0 == sizeof(ggml_fp16_t));
  11501. GGML_ASSERT(nbk0 == sizeof(ggml_fp16_t));
  11502. GGML_ASSERT(nbv0 == sizeof(ggml_fp16_t));
  11503. GGML_ASSERT(neq0 == D);
  11504. GGML_ASSERT(nek0 == D);
  11505. GGML_ASSERT(nev1 == D);
  11506. GGML_ASSERT(neq1 == N);
  11507. GGML_ASSERT(nek1 == N + P);
  11508. GGML_ASSERT(nev1 == D);
  11509. // dst cannot be transposed or permuted
  11510. GGML_ASSERT(nb0 == sizeof(float));
  11511. GGML_ASSERT(nb0 <= nb1);
  11512. GGML_ASSERT(nb1 <= nb2);
  11513. GGML_ASSERT(nb2 <= nb3);
  11514. if (params->type == GGML_TASK_TYPE_INIT) {
  11515. return;
  11516. }
  11517. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  11518. return;
  11519. }
  11520. // parallelize by q rows using ggml_vec_dot_f32
  11521. // total rows in q
  11522. const int nr = neq1*neq2*neq3;
  11523. // rows per thread
  11524. const int dr = (nr + nth - 1)/nth;
  11525. // row range for this thread
  11526. const int ir0 = dr*ith;
  11527. const int ir1 = MIN(ir0 + dr, nr);
  11528. const float scale = 1.0f/sqrtf(D);
  11529. //printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale);
  11530. for (int ir = ir0; ir < ir1; ++ir) {
  11531. // q indices
  11532. const int iq3 = ir/(neq2*neq1);
  11533. const int iq2 = (ir - iq3*neq2*neq1)/neq1;
  11534. const int iq1 = (ir - iq3*neq2*neq1 - iq2*neq1);
  11535. float * S = (float *) params->wdata + ith*(2*Mup + CACHE_LINE_SIZE_F32);
  11536. for (int i = M; i < Mup; ++i) {
  11537. S[i] = -INFINITY;
  11538. }
  11539. if (GGML_VEC_DOT_UNROLL > 2 || nek1 % GGML_VEC_DOT_UNROLL != 0) {
  11540. for (int64_t ic = 0; ic < nek1; ++ic) {
  11541. // k indices
  11542. const int ik3 = iq3;
  11543. const int ik2 = iq2 % nek2;
  11544. const int ik1 = ic;
  11545. // S indices
  11546. const int i1 = ik1;
  11547. ggml_vec_dot_f16(neq0,
  11548. S + i1, 0,
  11549. (ggml_fp16_t *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)), 0,
  11550. (ggml_fp16_t *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)), 0, 1);
  11551. }
  11552. } else {
  11553. for (int64_t ic = 0; ic < nek1; ic += GGML_VEC_DOT_UNROLL) {
  11554. // k indices
  11555. const int ik3 = iq3;
  11556. const int ik2 = iq2 % nek2;
  11557. const int ik1 = ic;
  11558. // S indices
  11559. const int i1 = ik1;
  11560. ggml_vec_dot_f16_unroll(neq0, nbk1,
  11561. S + i1,
  11562. ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
  11563. (ggml_fp16_t *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
  11564. }
  11565. }
  11566. // scale
  11567. ggml_vec_scale_f32(nek1, S, scale);
  11568. if (masked) {
  11569. for (int64_t i = P; i < M; i++) {
  11570. if (i > P + iq1) {
  11571. S[i] = -INFINITY;
  11572. }
  11573. }
  11574. }
  11575. // softmax
  11576. // todo: exclude known -INF S[..] values from max and loop, assuming their results to be zero.
  11577. // dont forget to set their S values to zero
  11578. {
  11579. float max = -INFINITY;
  11580. ggml_vec_max_f32(M, &max, S);
  11581. ggml_float sum = 0.0;
  11582. {
  11583. #ifdef GGML_SOFT_MAX_ACCELERATE
  11584. max = -max;
  11585. vDSP_vsadd(S, 1, &max, S, 1, Mup);
  11586. vvexpf(S, S, &Mup);
  11587. ggml_vec_sum_f32(Mup, &sum, S);
  11588. #else
  11589. uint16_t scvt[GGML_SOFT_MAX_UNROLL];
  11590. ggml_float sump[GGML_SOFT_MAX_UNROLL] = { 0.0 };
  11591. for (int i = 0; i < Mup; i += GGML_SOFT_MAX_UNROLL) {
  11592. float * SS = S + i;
  11593. for (int j = 0; j < GGML_SOFT_MAX_UNROLL; ++j) {
  11594. if (SS[j] == -INFINITY) {
  11595. SS[j] = 0.0f;
  11596. } else {
  11597. ggml_fp16_t s = GGML_FP32_TO_FP16(SS[j] - max);
  11598. memcpy(&scvt[j], &s, sizeof(uint16_t));
  11599. const float val = GGML_FP16_TO_FP32(ggml_table_exp_f16[scvt[j]]);
  11600. sump[j] += (ggml_float)val;
  11601. SS[j] = val;
  11602. }
  11603. }
  11604. }
  11605. for (int i = 0; i < GGML_SOFT_MAX_UNROLL; i++) {
  11606. sum += sump[i];
  11607. }
  11608. #endif
  11609. }
  11610. assert(sum > 0.0);
  11611. sum = 1.0/sum;
  11612. ggml_vec_scale_f32(M, S, sum);
  11613. #ifndef NDEBUG
  11614. for (int i = 0; i < M; ++i) {
  11615. assert(!isnan(S[i]));
  11616. assert(!isinf(S[i]));
  11617. }
  11618. #endif
  11619. }
  11620. ggml_fp16_t * S16 = (ggml_fp16_t *) ((float *) params->wdata + ith*(2*Mup + CACHE_LINE_SIZE_F32) + Mup);
  11621. for (int64_t i = 0; i < M; i++) {
  11622. S16[i] = GGML_FP32_TO_FP16(S[i]);
  11623. }
  11624. // todo: exclude known zero S[..] values from dot (reducing nev0 and increasing begin of v and S16).
  11625. if (GGML_VEC_DOT_UNROLL == 1 || (nev1 % GGML_VEC_DOT_UNROLL != 0)) {
  11626. for (int64_t ic = 0; ic < nev1; ++ic) {
  11627. // dst indices
  11628. const int i1 = iq1;
  11629. const int i2 = iq2;
  11630. const int i3 = iq3;
  11631. // v indices
  11632. const int iv2 = iq2 % nev2;
  11633. const int iv3 = iq3;
  11634. ggml_vec_dot_f16(nev0,
  11635. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)), 0,
  11636. (ggml_fp16_t *) ((char *) v->data + ( ic*nbv1 + iv2*nbv2 + iv3*nbv3)), 0,
  11637. S16, 0, 1);
  11638. }
  11639. } else {
  11640. for (int64_t ic = 0; ic < nev1; ic += GGML_VEC_DOT_UNROLL) {
  11641. // dst indices
  11642. const int i1 = iq1;
  11643. const int i2 = iq2;
  11644. const int i3 = iq3;
  11645. // v indices
  11646. const int iv2 = iq2 % nev2;
  11647. const int iv3 = iq3;
  11648. ggml_vec_dot_f16_unroll(nev0, nbv1,
  11649. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  11650. ((char *) v->data + ( ic*nbv1 + iv2*nbv2 + iv3*nbv3)),
  11651. S16);
  11652. }
  11653. }
  11654. }
  11655. }
  11656. static void ggml_compute_forward_flash_attn(
  11657. const struct ggml_compute_params * params,
  11658. const bool masked,
  11659. struct ggml_tensor * dst) {
  11660. const struct ggml_tensor * q = dst->src[0];
  11661. switch (q->type) {
  11662. case GGML_TYPE_F16:
  11663. {
  11664. ggml_compute_forward_flash_attn_f16(params, masked, dst);
  11665. } break;
  11666. case GGML_TYPE_F32:
  11667. {
  11668. ggml_compute_forward_flash_attn_f32(params, masked, dst);
  11669. } break;
  11670. default:
  11671. {
  11672. GGML_ASSERT(false);
  11673. } break;
  11674. }
  11675. }
  11676. // ggml_compute_forward_flash_ff
  11677. static void ggml_compute_forward_flash_ff_f16(
  11678. const struct ggml_compute_params * params,
  11679. struct ggml_tensor * dst) {
  11680. const struct ggml_tensor * a = dst->src[0]; // F16
  11681. const struct ggml_tensor * b0 = dst->src[1]; // F16 fc_w
  11682. const struct ggml_tensor * b1 = dst->src[2]; // F32 fc_b
  11683. const struct ggml_tensor * c0 = dst->src[3]; // F16 proj_w
  11684. const struct ggml_tensor * c1 = dst->src[4]; // F32 proj_b
  11685. int64_t t0 = ggml_perf_time_us();
  11686. UNUSED(t0);
  11687. GGML_TENSOR_LOCALS(int64_t, nea, a, ne)
  11688. GGML_TENSOR_LOCALS(size_t, nba, a, nb)
  11689. GGML_TENSOR_LOCALS(int64_t, neb0, b0, ne)
  11690. GGML_TENSOR_LOCALS(size_t, nbb0, b0, nb)
  11691. GGML_TENSOR_LOCALS(int64_t, neb1, b1, ne)
  11692. GGML_TENSOR_LOCALS(size_t, nbb1, b1, nb)
  11693. GGML_TENSOR_LOCALS(int64_t, nec0, c0, ne)
  11694. GGML_TENSOR_LOCALS(size_t, nbc0, c0, nb)
  11695. GGML_TENSOR_LOCALS(int64_t, nec1, c1, ne)
  11696. GGML_TENSOR_LOCALS(size_t, nbc1, c1, nb)
  11697. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
  11698. GGML_TENSOR_LOCALS(size_t, nb, dst, nb)
  11699. const int ith = params->ith;
  11700. const int nth = params->nth;
  11701. const int64_t D = nea0;
  11702. //const int64_t N = nea1;
  11703. const int64_t M = neb01;
  11704. GGML_ASSERT(ne0 == nea0);
  11705. GGML_ASSERT(ne1 == nea1);
  11706. GGML_ASSERT(ne2 == nea2);
  11707. GGML_ASSERT(nba0 == sizeof(ggml_fp16_t));
  11708. GGML_ASSERT(nbb00 == sizeof(ggml_fp16_t));
  11709. GGML_ASSERT(nbb10 == sizeof(float));
  11710. GGML_ASSERT(nbc00 == sizeof(ggml_fp16_t));
  11711. GGML_ASSERT(nbc10 == sizeof(float));
  11712. GGML_ASSERT(neb00 == D);
  11713. GGML_ASSERT(neb01 == M);
  11714. GGML_ASSERT(neb10 == M);
  11715. GGML_ASSERT(neb11 == 1);
  11716. GGML_ASSERT(nec00 == M);
  11717. GGML_ASSERT(nec01 == D);
  11718. GGML_ASSERT(nec10 == D);
  11719. GGML_ASSERT(nec11 == 1);
  11720. // dst cannot be transposed or permuted
  11721. GGML_ASSERT(nb0 == sizeof(float));
  11722. GGML_ASSERT(nb0 <= nb1);
  11723. GGML_ASSERT(nb1 <= nb2);
  11724. GGML_ASSERT(nb2 <= nb3);
  11725. if (params->type == GGML_TASK_TYPE_INIT) {
  11726. return;
  11727. }
  11728. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  11729. return;
  11730. }
  11731. // parallelize by a rows using ggml_vec_dot_f32
  11732. // total rows in a
  11733. const int nr = nea1*nea2*nea3;
  11734. // rows per thread
  11735. const int dr = (nr + nth - 1)/nth;
  11736. // row range for this thread
  11737. const int ir0 = dr*ith;
  11738. const int ir1 = MIN(ir0 + dr, nr);
  11739. for (int ir = ir0; ir < ir1; ++ir) {
  11740. // a indices
  11741. const int ia3 = ir/(nea2*nea1);
  11742. const int ia2 = (ir - ia3*nea2*nea1)/nea1;
  11743. const int ia1 = (ir - ia3*nea2*nea1 - ia2*nea1);
  11744. float * S = (float *) params->wdata + ith*(2*M + CACHE_LINE_SIZE_F32);
  11745. for (int64_t ic = 0; ic < neb01; ++ic) {
  11746. // b0 indices
  11747. const int ib03 = ia3;
  11748. const int ib02 = ia2;
  11749. const int ib01 = ic;
  11750. // S indices
  11751. const int i1 = ib01;
  11752. ggml_vec_dot_f16(nea0,
  11753. S + i1, 0,
  11754. (ggml_fp16_t *) ((char *) b0->data + (ib01*nbb01 + ib02*nbb02 + ib03*nbb03)), 0,
  11755. (ggml_fp16_t *) ((char *) a->data + ( ia1*nba1 + ia2*nba2 + ia3*nba3)), 0, 1);
  11756. }
  11757. ggml_vec_add_f32(neb01, S, S, (float *) b1->data);
  11758. //ggml_vec_gelu_f32(neb01, S, S);
  11759. ggml_fp16_t * S16 = (ggml_fp16_t *) ((float *) params->wdata + ith*(2*M + CACHE_LINE_SIZE_F32) + M);
  11760. for (int64_t i = 0; i < M; i++) {
  11761. S16[i] = GGML_FP32_TO_FP16(S[i]);
  11762. }
  11763. ggml_vec_gelu_f16(neb01, S16, S16);
  11764. {
  11765. // dst indices
  11766. const int i1 = ia1;
  11767. const int i2 = ia2;
  11768. const int i3 = ia3;
  11769. for (int64_t ic = 0; ic < nec01; ++ic) {
  11770. ggml_vec_dot_f16(neb01,
  11771. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)), 0,
  11772. (ggml_fp16_t *) ((char *) c0->data + ( ic*nbc01 + i2*nbc02 + i3*nbc03)), 0,
  11773. S16, 0, 1);
  11774. }
  11775. ggml_vec_add_f32(nec01,
  11776. (float *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3)),
  11777. (float *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3)),
  11778. (float *) c1->data);
  11779. }
  11780. }
  11781. }
  11782. static void ggml_compute_forward_flash_ff(
  11783. const struct ggml_compute_params * params,
  11784. struct ggml_tensor * dst) {
  11785. const struct ggml_tensor * b0 = dst->src[1];
  11786. switch (b0->type) {
  11787. case GGML_TYPE_F16:
  11788. {
  11789. ggml_compute_forward_flash_ff_f16(params, dst);
  11790. } break;
  11791. case GGML_TYPE_F32:
  11792. {
  11793. GGML_ASSERT(false); // TODO
  11794. } break;
  11795. default:
  11796. {
  11797. GGML_ASSERT(false);
  11798. } break;
  11799. }
  11800. }
  11801. // ggml_compute_forward_flash_attn_back
  11802. static void ggml_compute_forward_flash_attn_back_f32(
  11803. const struct ggml_compute_params * params,
  11804. const bool masked,
  11805. struct ggml_tensor * dst) {
  11806. const struct ggml_tensor * q = dst->src[0];
  11807. const struct ggml_tensor * k = dst->src[1];
  11808. const struct ggml_tensor * v = dst->src[2];
  11809. const struct ggml_tensor * d = dst->src[3];
  11810. int64_t t0 = ggml_perf_time_us();
  11811. UNUSED(t0);
  11812. GGML_TENSOR_LOCALS(int64_t, neq, q, ne)
  11813. GGML_TENSOR_LOCALS(size_t, nbq, q, nb)
  11814. GGML_TENSOR_LOCALS(int64_t, nek, k, ne)
  11815. GGML_TENSOR_LOCALS(size_t, nbk, k, nb)
  11816. GGML_TENSOR_LOCALS(int64_t, nev, v, ne)
  11817. GGML_TENSOR_LOCALS(size_t, nbv, v, nb)
  11818. GGML_TENSOR_LOCALS(int64_t, ned, d, ne)
  11819. GGML_TENSOR_LOCALS(size_t, nbd, d, nb)
  11820. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
  11821. GGML_TENSOR_LOCALS(size_t, nb, dst, nb)
  11822. const int ith = params->ith;
  11823. const int nth = params->nth;
  11824. const int64_t D = neq0;
  11825. const int64_t N = neq1;
  11826. const int64_t P = nek1 - N;
  11827. const int64_t M = P + N;
  11828. const int Mup = ggml_up(M, GGML_SOFT_MAX_UNROLL);
  11829. const int mxDM = MAX(D, Mup);
  11830. // GGML_ASSERT(ne0 == D);
  11831. // GGML_ASSERT(ne1 == N);
  11832. GGML_ASSERT(P >= 0);
  11833. GGML_ASSERT(nbq0 == sizeof(float));
  11834. GGML_ASSERT(nbk0 == sizeof(float));
  11835. GGML_ASSERT(nbv0 == sizeof(float));
  11836. GGML_ASSERT(neq0 == D);
  11837. GGML_ASSERT(nek0 == D);
  11838. GGML_ASSERT(nev1 == D);
  11839. GGML_ASSERT(ned0 == D);
  11840. GGML_ASSERT(neq1 == N);
  11841. GGML_ASSERT(nek1 == N + P);
  11842. GGML_ASSERT(nev1 == D);
  11843. GGML_ASSERT(ned1 == N);
  11844. // dst cannot be transposed or permuted
  11845. GGML_ASSERT(nb0 == sizeof(float));
  11846. GGML_ASSERT(nb0 <= nb1);
  11847. GGML_ASSERT(nb1 <= nb2);
  11848. GGML_ASSERT(nb2 <= nb3);
  11849. if (params->type == GGML_TASK_TYPE_INIT) {
  11850. if (ith == 0) {
  11851. memset(dst->data, 0, nb0*ne0*ne1*ne2*ne3);
  11852. }
  11853. return;
  11854. }
  11855. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  11856. return;
  11857. }
  11858. const int64_t elem_q = ggml_nelements(q);
  11859. const int64_t elem_k = ggml_nelements(k);
  11860. enum ggml_type result_type = dst->type;
  11861. GGML_ASSERT(ggml_blck_size(result_type) == 1);
  11862. const size_t tsize = ggml_type_size(result_type);
  11863. const size_t offs_q = 0;
  11864. const size_t offs_k = offs_q + GGML_PAD(elem_q * tsize, GGML_MEM_ALIGN);
  11865. const size_t offs_v = offs_k + GGML_PAD(elem_k * tsize, GGML_MEM_ALIGN);
  11866. void * grad_q = (char *) dst->data;
  11867. void * grad_k = (char *) dst->data + offs_k;
  11868. void * grad_v = (char *) dst->data + offs_v;
  11869. const size_t nbgq1 = nb0*neq0;
  11870. const size_t nbgq2 = nb0*neq0*neq1;
  11871. const size_t nbgq3 = nb0*neq0*neq1*neq2;
  11872. const size_t nbgk1 = nb0*nek0;
  11873. const size_t nbgk2 = nb0*nek0*nek1;
  11874. const size_t nbgk3 = nb0*nek0*nek1*neq2;
  11875. const size_t nbgv1 = nb0*nev0;
  11876. const size_t nbgv2 = nb0*nev0*nev1;
  11877. const size_t nbgv3 = nb0*nev0*nev1*neq2;
  11878. // parallelize by k rows using ggml_vec_dot_f32
  11879. // total rows in k
  11880. const int nr = nek2*nek3;
  11881. // rows per thread
  11882. const int dr = (nr + nth - 1)/nth;
  11883. // row range for this thread
  11884. const int ir0 = dr*ith;
  11885. const int ir1 = MIN(ir0 + dr, nr);
  11886. const float scale = 1.0f/sqrtf(D);
  11887. //printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale);
  11888. // how often k2 (and v2) is repeated in q2
  11889. int nrep = neq2/nek2;
  11890. for (int ir = ir0; ir < ir1; ++ir) {
  11891. // q indices
  11892. const int ik3 = ir/(nek2);
  11893. const int ik2 = ir - ik3*nek2;
  11894. const int iq3 = ik3;
  11895. const int id3 = ik3;
  11896. const int iv3 = ik3;
  11897. const int iv2 = ik2;
  11898. for (int irep = 0; irep < nrep; ++irep) {
  11899. const int iq2 = ik2 + irep*nek2;
  11900. const int id2 = iq2;
  11901. // (ik2 + irep*nek2) % nek2 == ik2
  11902. for (int iq1 = 0; iq1 < neq1; ++iq1) {
  11903. const int id1 = iq1;
  11904. // not sure about CACHE_LINE_SIZE_F32..
  11905. // - maybe it must not be multiplied by 2 and excluded from .. in SM 1*(..) offset?
  11906. float * S = (float *) params->wdata + ith*2*(mxDM + CACHE_LINE_SIZE_F32) + 0*(mxDM+CACHE_LINE_SIZE_F32);
  11907. float * SM = (float *) params->wdata + ith*2*(mxDM + CACHE_LINE_SIZE_F32) + 1*(mxDM+CACHE_LINE_SIZE_F32);
  11908. for (int i = M; i < Mup; ++i) {
  11909. S[i] = -INFINITY;
  11910. }
  11911. const int64_t masked_begin = masked ? (P + iq1 + 1) : M;
  11912. for (int64_t ic = 0; ic < masked_begin; ++ic) {
  11913. // k indices
  11914. const int ik1 = ic;
  11915. // S indices
  11916. const int i1 = ik1;
  11917. ggml_vec_dot_f32(neq0,
  11918. S + i1, 0,
  11919. (float *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)), 0,
  11920. (float *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)), 0, 1);
  11921. }
  11922. // scale
  11923. ggml_vec_scale_f32(masked_begin, S, scale);
  11924. for (int64_t i = masked_begin; i < M; i++) {
  11925. S[i] = -INFINITY;
  11926. }
  11927. // softmax
  11928. // exclude known -INF S[..] values from max and loop
  11929. // dont forget to set their SM values to zero
  11930. {
  11931. float max = -INFINITY;
  11932. ggml_vec_max_f32(masked_begin, &max, S);
  11933. ggml_float sum = 0.0;
  11934. {
  11935. #ifdef GGML_SOFT_MAX_ACCELERATE
  11936. max = -max;
  11937. vDSP_vsadd(SM, 1, &max, SM, 1, Mup);
  11938. vvexpf(SM, SM, &Mup);
  11939. ggml_vec_sum_f32(Mup, &sum, SM);
  11940. #else
  11941. uint16_t scvt[GGML_SOFT_MAX_UNROLL]; UNUSED(scvt);
  11942. ggml_float sump[GGML_SOFT_MAX_UNROLL] = { 0.0 };
  11943. for (int i = 0; i < Mup; i += GGML_SOFT_MAX_UNROLL) {
  11944. if (i >= masked_begin) {
  11945. break;
  11946. }
  11947. float * SR = S + i;
  11948. float * SW = SM + i;
  11949. for (int j = 0; j < GGML_SOFT_MAX_UNROLL; ++j) {
  11950. if (i + j >= masked_begin) {
  11951. break;
  11952. } else if (SR[j] == -INFINITY) {
  11953. SW[j] = 0.0f;
  11954. } else {
  11955. #ifndef GGML_FLASH_ATTN_EXP_FP16
  11956. const float val = expf(SR[j] - max);
  11957. #else
  11958. ggml_fp16_t s = GGML_FP32_TO_FP16(SR[j] - max);
  11959. memcpy(&scvt[j], &s, sizeof(uint16_t));
  11960. const float val = GGML_FP16_TO_FP32(ggml_table_exp_f16[scvt[j]]);
  11961. #endif
  11962. sump[j] += (ggml_float)val;
  11963. SW[j] = val;
  11964. }
  11965. }
  11966. }
  11967. for (int i = 0; i < GGML_SOFT_MAX_UNROLL; i++) {
  11968. sum += sump[i];
  11969. }
  11970. #endif
  11971. }
  11972. assert(sum > 0.0);
  11973. sum = 1.0/sum;
  11974. ggml_vec_scale_f32(masked_begin, SM, sum);
  11975. }
  11976. // step-by-step explanation
  11977. {
  11978. // forward-process shape grads from backward process
  11979. // parallel_for ik2,ik3:
  11980. // for irep:
  11981. // iq2 = ik2 + irep*nek2
  11982. // k[:D,:M,:,:] [D,M,:,:] grad[k][:D,:M,ik2,ik3] += grad[kcur]
  11983. // q[:D,:N,:,:] [D,N,:,:] grad[q][:D,iq1,iq2,iq3] += grad[qcur]
  11984. // v[:M,:D,:,:] [M,D,:,:] grad[v][:M,:D,iv2,iv3] += grad[vcur]
  11985. // for iq1:
  11986. // kcur = k[:D,:M,ik2,ik3] [D,M,1,1] grad[kcur] = grad[S1].T @ qcur
  11987. // qcur = q[:D,iq1,iq2,iq3] [D,1,1,1] grad[qcur] = grad[S1] @ kcur
  11988. // vcur = v[:M,:D,iv2,iv3] [M,D,1,1] grad[vcur] = grad[S5].T @ S4
  11989. // S0 = -Inf [D,1,1,1]
  11990. // ~S1[i] = dot(kcur[:D,i], qcur)
  11991. // S1 = qcur @ kcur.T [M,1,1,1] grad[S1] = grad[S2] * scale
  11992. // S2 = S1 * scale [M,1,1,1] grad[S2] = diag_mask_zero(grad[S3], P)
  11993. // S3 = diag_mask_inf(S2, P) [M,1,1,1] grad[S3] = S4 * (grad[S4] - dot(S4, grad[S4]))
  11994. // S4 = softmax(S3) [M,1,1,1] grad[S4] = grad[S5] @ vcur
  11995. // ~S5[i] = dot(vcur[:,i], S4)
  11996. // S5 = S4 @ vcur.T [D,1,1,1] grad[S5] = d[:D,id1,id2,id3]
  11997. // ~dst[i,iq1,iq2,iq3] = S5[i] ^
  11998. // dst[:D,iq1,iq2,iq3] = S5 | grad[dst[:D,iq1,iq2,iq3]] = d[:D,id1,id2,id3]
  11999. // dst backward-/ grad[dst] = d
  12000. //
  12001. // output gradients with their dependencies:
  12002. //
  12003. // grad[kcur] = grad[S1].T @ qcur
  12004. // grad[S1] = diag_mask_zero(grad[S3], P) * scale
  12005. // grad[S3] = S4 * (grad[S4] - dot(S4, grad[S4]))
  12006. // grad[S4] = grad[S5] @ vcur
  12007. // grad[S4] = d[:D,id1,id2,id3] @ vcur
  12008. // grad[qcur] = grad[S1] @ kcur
  12009. // grad[vcur] = grad[S5].T @ S4
  12010. // grad[vcur] = d[:D,id1,id2,id3].T @ S4
  12011. //
  12012. // in post-order:
  12013. //
  12014. // S1 = qcur @ kcur.T
  12015. // S2 = S1 * scale
  12016. // S3 = diag_mask_inf(S2, P)
  12017. // S4 = softmax(S3)
  12018. // grad[S4] = d[:D,id1,id2,id3] @ vcur
  12019. // grad[S3] = S4 * (grad[S4] - dot(S4, grad[S4]))
  12020. // grad[S1] = diag_mask_zero(grad[S3], P) * scale
  12021. // grad[qcur] = grad[S1] @ kcur
  12022. // grad[kcur] = grad[S1].T @ qcur
  12023. // grad[vcur] = d[:D,id1,id2,id3].T @ S4
  12024. //
  12025. // using less variables (SM=S4):
  12026. //
  12027. // S = diag_mask_inf(qcur @ kcur.T * scale, P)
  12028. // SM = softmax(S)
  12029. // S = d[:D,iq1,iq2,iq3] @ vcur
  12030. // dot_SM_gradSM = dot(SM, S)
  12031. // S = SM * (S - dot(SM, S))
  12032. // S = diag_mask_zero(S, P) * scale
  12033. //
  12034. // grad[q][:D,iq1,iq2,iq3] += S @ kcur
  12035. // grad[k][:D,:M,ik2,ik3] += S.T @ qcur
  12036. // grad[v][:M,:D,iv2,iv3] += d[:D,id1,id2,id3].T @ SM
  12037. }
  12038. // S = gradSM = d[:D,id1,id2,id3] @ vcur[:,:,iv2,iv3]
  12039. // S = d[:D,id1,id2,id3] @ vcur[:,:,iv2,iv3]
  12040. // for ic:
  12041. // S[:M] += vcur[:M,ic,iv2,iv3] * d[ic,id1,id2,id3]
  12042. // exclude known future zero S[..] values from operation
  12043. ggml_vec_set_f32(masked_begin, S, 0);
  12044. for (int64_t ic = 0; ic < D; ++ic) {
  12045. ggml_vec_mad_f32(masked_begin,
  12046. S,
  12047. (float *) ((char *) v->data + ( ic*nbv1 + iv2*nbv2 + iv3*nbv3)),
  12048. *(float *) ((char *) d->data + (ic*nbd0 + id1*nbd1 + id2*nbd2 + id3*nbd3)));
  12049. }
  12050. // S = SM * (S - dot(SM, S))
  12051. float dot_SM_gradSM = 0;
  12052. ggml_vec_dot_f32 (masked_begin, &dot_SM_gradSM, 0, SM, 0, S, 0, 1);
  12053. ggml_vec_acc1_f32(M, S, -dot_SM_gradSM);
  12054. ggml_vec_mul_f32 (masked_begin, S, S, SM);
  12055. // S = diag_mask_zero(S, P) * scale
  12056. // already done by above ggml_vec_set_f32
  12057. // exclude known zero S[..] values from operation
  12058. ggml_vec_scale_f32(masked_begin, S, scale);
  12059. // S shape [M,1]
  12060. // SM shape [M,1]
  12061. // kcur shape [D,M]
  12062. // qcur shape [D,1]
  12063. // vcur shape [M,D]
  12064. // grad[q][:D,iq1,iq2,iq3] += S @ kcur
  12065. // grad[q][:D,iq1,iq2,iq3] += shape[M,1] @ shape[D,M]
  12066. // for ic:
  12067. // grad[q][:D,iq1,iq2,iq3] += S[ic] * kcur[:D,ic,ik2,ik3]
  12068. // exclude known zero S[..] values from loop
  12069. for (int64_t ic = 0; ic < masked_begin; ++ic) {
  12070. ggml_vec_mad_f32(D,
  12071. (float *) ((char *) grad_q + (iq1*nbgq1 + iq2*nbgq2 + iq3*nbgq3)),
  12072. (float *) ((char *) k->data + (ic*nbk1 + ik2*nbk2 + ik3*nbk3)),
  12073. S[ic]);
  12074. }
  12075. // grad[k][:D,:M,iq2,iq3] += S.T @ qcur
  12076. // for ic:
  12077. // grad[k][:D,ic,iq2,iq3] += S.T[0,ic] * qcur[:D,0]
  12078. // grad[k][:D,ic,iq2,iq3] += S[ic] * qcur[:D,0]
  12079. // exclude known zero S[..] values from loop
  12080. for (int64_t ic = 0; ic < masked_begin; ++ic) {
  12081. ggml_vec_mad_f32(D,
  12082. (float *) ((char *) grad_k + (ic*nbgk1 + ik2*nbgk2 + ik3*nbgk3)),
  12083. (float *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)),
  12084. S[ic]);
  12085. }
  12086. // grad[v][:M,:D,iv2,iv3] += d[:D,id1,id2,id3].T @ SM
  12087. // for ic:
  12088. // grad[v][:M,ic,iv2,iv3] += d[:D,id1,id2,id3].T[0,ic] * SM[:M]
  12089. // grad[v][:M,ic,iv2,iv3] += d[ic,id1,id2,id3] * SM[:M]
  12090. // exclude known zero SM[..] values from mad
  12091. for (int64_t ic = 0; ic < D; ++ic) {
  12092. ggml_vec_mad_f32(masked_begin,
  12093. (float *) ((char *) grad_v + ( ic*nbgv1 + iv2*nbgv2 + iv3*nbgv3)),
  12094. SM,
  12095. *(float *) ((char *) d->data + (ic*nbd0 + id1*nbd1 + id2*nbd2 + id3*nbd3)));
  12096. }
  12097. }
  12098. }
  12099. }
  12100. }
  12101. static void ggml_compute_forward_flash_attn_back(
  12102. const struct ggml_compute_params * params,
  12103. const bool masked,
  12104. struct ggml_tensor * dst) {
  12105. const struct ggml_tensor * q = dst->src[0];
  12106. switch (q->type) {
  12107. case GGML_TYPE_F32:
  12108. {
  12109. ggml_compute_forward_flash_attn_back_f32(params, masked, dst);
  12110. } break;
  12111. default:
  12112. {
  12113. GGML_ASSERT(false);
  12114. } break;
  12115. }
  12116. }
  12117. // ggml_compute_forward_ssm_conv
  12118. static void ggml_compute_forward_ssm_conv_f32(
  12119. const struct ggml_compute_params * params,
  12120. struct ggml_tensor * dst) {
  12121. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  12122. return;
  12123. }
  12124. const struct ggml_tensor * src0 = dst->src[0]; // conv_state
  12125. const struct ggml_tensor * src1 = dst->src[1]; // x
  12126. const struct ggml_tensor * src2 = dst->src[2]; // conv1d.weight
  12127. const struct ggml_tensor * src3 = dst->src[3]; // state_seq
  12128. const int ith = params->ith;
  12129. const int nth = params->nth;
  12130. const int nc = src2->ne[0]; // d_conv
  12131. const int nr = src0->ne[1]; // d_inner
  12132. const int n_t = src1->ne[1]; // n_tokens
  12133. const int n_kv = src0->ne[2]; // max number of sequences in the batch
  12134. GGML_ASSERT((nr*n_t) + (nc*nr*n_kv) == ggml_nelements(dst));
  12135. GGML_ASSERT(src0->nb[0] == sizeof(float));
  12136. GGML_ASSERT(src1->nb[0] == sizeof(float));
  12137. GGML_ASSERT(src2->nb[0] == sizeof(float));
  12138. GGML_ASSERT(src3->nb[0] == sizeof(int32_t));
  12139. GGML_ASSERT(src0->nb[1] == src0->ne[0]*sizeof(float));
  12140. // for use with the destination state offset between sequences
  12141. GGML_ASSERT(src2->nb[2] == src2->ne[1]*src2->ne[0]*sizeof(float));
  12142. // rows per thread
  12143. const int dr = (nr + nth - 1)/nth;
  12144. // row range for this thread
  12145. const int ir0 = dr*ith;
  12146. const int ir1 = MIN(ir0 + dr, nr);
  12147. const int ir = ir1 - ir0;
  12148. if (n_kv > 1) {
  12149. // multiple sequences means it's hard to know when it's the first time a state is read,
  12150. // so copy them all over to the destination, just to be sure.
  12151. for (int i3 = 0; i3 < n_kv; ++i3) {
  12152. float * s0 = (float *) ((char *) src0->data + ir0*(src0->nb[1]) + i3*(src0->nb[2]));
  12153. float * s = (float *) ((char *) dst->data + ir0*(src2->nb[1]) + i3*(src2->nb[2]) + nr*n_t*sizeof(float));
  12154. // can't use memcpy because of d_conv vs d_conv - 1
  12155. for (int i1 = 0; i1 < ir; ++i1) {
  12156. for (int i0 = 0; i0 < nc - 1; ++i0) {
  12157. // copy s0 to last (d_conv - 1) columns of s
  12158. s[1 + i0 + i1*nc] = s0[i0 + i1*(nc - 1)];
  12159. }
  12160. }
  12161. }
  12162. }
  12163. for (int i2 = 0; i2 < n_t; ++i2) {
  12164. int32_t * sq = (int32_t *) ((char *) src3->data + i2*(src3->nb[1])); // {n_kv, n_tokens}
  12165. float * x = (float *) ((char *) dst->data + ir0*sizeof(float) + i2*(nr*sizeof(float))); // {d_inner, n_tokens}
  12166. float * s = (float *) ((char *) dst->data + ir0*(src2->nb[1]) + sq[0]*(src2->nb[2]) + nr*n_t*sizeof(float)); // {d_conv, d_inner, n_kv}
  12167. float * s0; // {d_conv - 1, d_inner, n_kv}
  12168. float * x0 = (float *) ((char *) src1->data + ir0*(src1->nb[0]) + i2*(src1->nb[1])); // {d_inner, n_tokens}
  12169. float * c = (float *) ((char *) src2->data + ir0*(src2->nb[1])); // {d_conv, d_inner}
  12170. int ne0s0;
  12171. GGML_ASSERT(0 <= sq[0] && sq[0] < n_kv);
  12172. // avoid needing to copy the state for the first token
  12173. if (i2 == 0) {
  12174. s0 = (float *) ((char *) src0->data + ir0*(src0->nb[1]) + sq[0]*(src0->nb[2])); // {d_conv - 1, d_inner, n_kv}
  12175. ne0s0 = src0->ne[0];
  12176. } else {
  12177. // the source is the last (d_conv - 1) columns of the destination
  12178. s0 = s + 1;
  12179. ne0s0 = nc;
  12180. }
  12181. // d_inner
  12182. for (int i1 = 0; i1 < ir; ++i1) {
  12183. // shift state left
  12184. for (int i0 = 0; i0 < nc - 1; ++i0) {
  12185. s[i0 + i1*nc] = s0[i0 + i1*ne0s0];
  12186. }
  12187. // insert x on the last column
  12188. s[(nc - 1) + i1*nc] = x0[i1];
  12189. }
  12190. // handle copies when there are multiple output states
  12191. for (int i3 = 1; i3 < n_kv; ++i3) {
  12192. int32_t seq = sq[i3];
  12193. if (0 <= seq && seq < n_kv) {
  12194. float * s1 = s + (seq - sq[0])*nc*nr;
  12195. memcpy(s1, s, nc*ir*sizeof(float));
  12196. } else {
  12197. // stop at negative or too big seq_ids
  12198. break;
  12199. }
  12200. }
  12201. // it seems a little faster when this is separate from the state shift
  12202. for (int i1 = 0; i1 < ir; ++i1) {
  12203. // rowwise dot product
  12204. float sumf = 0.0f;
  12205. for (int i0 = 0; i0 < nc; ++i0) {
  12206. int i = i0 + i1*nc;
  12207. sumf += s[i] * c[i];
  12208. }
  12209. x[i1] = sumf;
  12210. }
  12211. }
  12212. }
  12213. static void ggml_compute_forward_ssm_conv(
  12214. const struct ggml_compute_params * params,
  12215. struct ggml_tensor * dst) {
  12216. switch (dst->src[0]->type) {
  12217. case GGML_TYPE_F32:
  12218. {
  12219. ggml_compute_forward_ssm_conv_f32(params, dst);
  12220. } break;
  12221. default:
  12222. {
  12223. GGML_ASSERT(false);
  12224. } break;
  12225. }
  12226. }
  12227. // ggml_compute_forward_ssm_scan
  12228. static void ggml_compute_forward_ssm_scan_f32(
  12229. const struct ggml_compute_params * params,
  12230. struct ggml_tensor * dst) {
  12231. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  12232. return;
  12233. }
  12234. const struct ggml_tensor * src0 = dst->src[0]; // s
  12235. const struct ggml_tensor * src1 = dst->src[1]; // x
  12236. const struct ggml_tensor * src2 = dst->src[2]; // dt
  12237. const struct ggml_tensor * src3 = dst->src[3]; // A
  12238. const struct ggml_tensor * src4 = dst->src[4]; // B
  12239. const struct ggml_tensor * src5 = dst->src[5]; // C
  12240. const struct ggml_tensor * src6 = dst->src[6]; // sq
  12241. const int ith = params->ith;
  12242. const int nth = params->nth;
  12243. const int64_t nc = src0->ne[0]; // d_state
  12244. const int64_t nr = src0->ne[1]; // d_inner
  12245. const int64_t n_t = src1->ne[1]; // number of tokens in the batch
  12246. const int64_t n_kv = src0->ne[2]; // max number of sequences in the batch
  12247. GGML_ASSERT(ggml_nelements(src1) + ggml_nelements(src0) == ggml_nelements(dst));
  12248. GGML_ASSERT(src0->nb[0] == sizeof(float));
  12249. GGML_ASSERT(src1->nb[0] == sizeof(float));
  12250. GGML_ASSERT(src2->nb[0] == sizeof(float));
  12251. GGML_ASSERT(src3->nb[0] == sizeof(float));
  12252. GGML_ASSERT(src4->nb[0] == sizeof(float));
  12253. GGML_ASSERT(src5->nb[0] == sizeof(float));
  12254. // required for the dot product between s and C, and when copying the states
  12255. GGML_ASSERT(src0->nb[1] == src0->ne[0]*sizeof(float));
  12256. // required for per-sequence offsets for states
  12257. GGML_ASSERT(src0->nb[2] == src0->ne[0]*src0->ne[1]*sizeof(float));
  12258. // required to get correct offset for state destination (i.e. src1->nb[2])
  12259. GGML_ASSERT(src1->nb[2] == src1->ne[0]*src1->ne[1]*sizeof(float));
  12260. // rows per thread
  12261. const int dr = (nr + nth - 1)/nth;
  12262. // row range for this thread
  12263. const int ir0 = dr*ith;
  12264. const int ir1 = MIN(ir0 + dr, nr);
  12265. const int ir = ir1 - ir0;
  12266. if (n_kv > 1) {
  12267. // it's hard to know if the source states have already been copied
  12268. // when there are multiple, so copy them already.
  12269. for (int i3 = 0; i3 < n_kv; ++i3) {
  12270. float * s0 = (float *) ((char *) src0->data + ir0*(src0->nb[1]) + i3*(src0->nb[2]));
  12271. float * s = (float *) ((char *) dst->data + ir0*(src0->nb[1]) + i3*(src0->nb[2]) + src1->nb[2]);
  12272. memcpy(s, s0, nc*ir*sizeof(float));
  12273. }
  12274. }
  12275. for (int i2 = 0; i2 < n_t; ++i2) {
  12276. int32_t * sq = (int32_t *) ((char *) src6->data + i2*(src6->nb[1])); // {n_kv, n_tokens}
  12277. float * y = (float *) ((char *) dst->data + ir0*(src1->nb[0]) + i2*(src1->nb[1])); // {d_inner, n_tokens}
  12278. float * s = (float *) ((char *) dst->data + ir0*(src0->nb[1]) + sq[0]*(src0->nb[2]) + src1->nb[2]); // {d_state, d_inner, n_kv}
  12279. float * s0;
  12280. float * x = (float *) ((char *) src1->data + ir0*(src1->nb[0]) + i2*(src1->nb[1])); // {d_inner, n_tokens}
  12281. float * dt = (float *) ((char *) src2->data + ir0*(src2->nb[0]) + i2*(src2->nb[1])); // {d_inner, n_tokens}
  12282. float * A = (float *) ((char *) src3->data + ir0*(src3->nb[1])); // {d_state, d_inner}
  12283. float * B = (float *) ((char *) src4->data + i2*(src4->nb[1])); // {d_state, n_tokens}
  12284. float * C = (float *) ((char *) src5->data + i2*(src5->nb[1])); // {d_state, n_tokens}
  12285. GGML_ASSERT(0 <= sq[0] && sq[0] < n_kv);
  12286. // avoid needing to copy the state for the first token
  12287. if (i2 == 0) {
  12288. s0 = (float *) ((char *) src0->data + ir0*(src0->nb[1]) + sq[0]*(src0->nb[2])); // {d_state, d_inner, n_kv}
  12289. } else {
  12290. // otherwise the source is the same as the destination
  12291. s0 = s;
  12292. }
  12293. // d_inner
  12294. for (int i1 = 0; i1 < ir; ++i1) {
  12295. // ref: https://github.com/state-spaces/mamba/blob/34076d664838588a3c97727b263478ab9f621a07/mamba_ssm/ops/triton/selective_state_update.py#L78
  12296. float dt_soft_plus = dt[i1] <= 20.0f ? log1pf(expf(dt[i1])) : dt[i1];
  12297. float x_dt = x[i1] * dt_soft_plus;
  12298. float sumf = 0.0f;
  12299. // d_state
  12300. for (int i0 = 0; i0 < nc; ++i0) {
  12301. int i = i0 + i1*nc;
  12302. // state = prev_state * dA + dB * x
  12303. float state = (s0[i] * expf(dt_soft_plus * A[i])) + (B[i0] * x_dt);
  12304. // y = rowwise_dotprod(state, C)
  12305. sumf += state * C[i0];
  12306. s[i] = state;
  12307. }
  12308. y[i1] = sumf;
  12309. }
  12310. // handle copies when there are multiple output states
  12311. for (int i3 = 1; i3 < n_kv; ++i3) {
  12312. int32_t seq = sq[i3];
  12313. if (0 <= seq && seq < n_kv) {
  12314. float * s1 = s + (seq - sq[0])*nc*nr;
  12315. memcpy(s1, s, nc*ir*sizeof(float));
  12316. } else {
  12317. // stop at negative or too big seq_ids
  12318. break;
  12319. }
  12320. }
  12321. }
  12322. }
  12323. static void ggml_compute_forward_ssm_scan(
  12324. const struct ggml_compute_params * params,
  12325. struct ggml_tensor * dst) {
  12326. switch (dst->src[0]->type) {
  12327. case GGML_TYPE_F32:
  12328. {
  12329. ggml_compute_forward_ssm_scan_f32(params, dst);
  12330. } break;
  12331. default:
  12332. {
  12333. GGML_ASSERT(false);
  12334. } break;
  12335. }
  12336. }
  12337. // ggml_compute_forward_win_part
  12338. static void ggml_compute_forward_win_part_f32(
  12339. const struct ggml_compute_params * params,
  12340. struct ggml_tensor * dst) {
  12341. const struct ggml_tensor * src0 = dst->src[0];
  12342. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  12343. return;
  12344. }
  12345. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne)
  12346. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
  12347. const int32_t nep0 = ((const int32_t *)(dst->op_params))[0];
  12348. const int32_t nep1 = ((const int32_t *)(dst->op_params))[1];
  12349. const int32_t w = ((const int32_t *)(dst->op_params))[2];
  12350. assert(ne00 == ne0);
  12351. assert(ne3 == nep0*nep1);
  12352. // TODO: optimize / multi-thread
  12353. for (int py = 0; py < nep1; ++py) {
  12354. for (int px = 0; px < nep0; ++px) {
  12355. const int64_t i3 = py*nep0 + px;
  12356. for (int64_t i2 = 0; i2 < ne2; ++i2) {
  12357. for (int64_t i1 = 0; i1 < ne1; ++i1) {
  12358. for (int64_t i0 = 0; i0 < ne0; ++i0) {
  12359. const int64_t i02 = py*w + i2;
  12360. const int64_t i01 = px*w + i1;
  12361. const int64_t i00 = i0;
  12362. const int64_t i = i3*ne2*ne1*ne0 + i2*ne1*ne0 + i1*ne0 + i0;
  12363. const int64_t j = i02*ne01*ne00 + i01*ne00 + i00;
  12364. if (py*w + i2 >= ne02 || px*w + i1 >= ne01) {
  12365. ((float *) dst->data)[i] = 0.0f;
  12366. } else {
  12367. ((float *) dst->data)[i] = ((float *) src0->data)[j];
  12368. }
  12369. }
  12370. }
  12371. }
  12372. }
  12373. }
  12374. }
  12375. static void ggml_compute_forward_win_part(
  12376. const struct ggml_compute_params * params,
  12377. struct ggml_tensor * dst) {
  12378. const struct ggml_tensor * src0 = dst->src[0];
  12379. switch (src0->type) {
  12380. case GGML_TYPE_F32:
  12381. {
  12382. ggml_compute_forward_win_part_f32(params, dst);
  12383. } break;
  12384. default:
  12385. {
  12386. GGML_ASSERT(false);
  12387. } break;
  12388. }
  12389. }
  12390. // ggml_compute_forward_win_unpart
  12391. static void ggml_compute_forward_win_unpart_f32(
  12392. const struct ggml_compute_params * params,
  12393. struct ggml_tensor * dst) {
  12394. const struct ggml_tensor * src0 = dst->src[0];
  12395. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  12396. return;
  12397. }
  12398. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne)
  12399. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
  12400. const int32_t w = ((const int32_t *)(dst->op_params))[0];
  12401. // padding
  12402. const int px = (w - ne1%w)%w;
  12403. //const int py = (w - ne2%w)%w;
  12404. const int npx = (px + ne1)/w;
  12405. //const int npy = (py + ne2)/w;
  12406. assert(ne0 == ne00);
  12407. // TODO: optimize / multi-thread
  12408. for (int64_t i2 = 0; i2 < ne2; ++i2) {
  12409. for (int64_t i1 = 0; i1 < ne1; ++i1) {
  12410. for (int64_t i0 = 0; i0 < ne0; ++i0) {
  12411. const int ip2 = i2/w;
  12412. const int ip1 = i1/w;
  12413. const int64_t i02 = i2%w;
  12414. const int64_t i01 = i1%w;
  12415. const int64_t i00 = i0;
  12416. const int64_t i = (ip2*npx + ip1)*ne02*ne01*ne00 + i02*ne01*ne00 + i01*ne00 + i00;
  12417. const int64_t j = i2*ne1*ne0 + i1*ne0 + i0;
  12418. ((float *) dst->data)[j] = ((float *) src0->data)[i];
  12419. }
  12420. }
  12421. }
  12422. }
  12423. static void ggml_compute_forward_win_unpart(
  12424. const struct ggml_compute_params * params,
  12425. struct ggml_tensor * dst) {
  12426. const struct ggml_tensor * src0 = dst->src[0];
  12427. switch (src0->type) {
  12428. case GGML_TYPE_F32:
  12429. {
  12430. ggml_compute_forward_win_unpart_f32(params, dst);
  12431. } break;
  12432. default:
  12433. {
  12434. GGML_ASSERT(false);
  12435. } break;
  12436. }
  12437. }
  12438. //gmml_compute_forward_unary
  12439. static void ggml_compute_forward_unary(
  12440. const struct ggml_compute_params * params,
  12441. struct ggml_tensor * dst) {
  12442. const enum ggml_unary_op op = ggml_get_unary_op(dst);
  12443. switch (op) {
  12444. case GGML_UNARY_OP_ABS:
  12445. {
  12446. ggml_compute_forward_abs(params, dst);
  12447. } break;
  12448. case GGML_UNARY_OP_SGN:
  12449. {
  12450. ggml_compute_forward_sgn(params, dst);
  12451. } break;
  12452. case GGML_UNARY_OP_NEG:
  12453. {
  12454. ggml_compute_forward_neg(params, dst);
  12455. } break;
  12456. case GGML_UNARY_OP_STEP:
  12457. {
  12458. ggml_compute_forward_step(params, dst);
  12459. } break;
  12460. case GGML_UNARY_OP_TANH:
  12461. {
  12462. ggml_compute_forward_tanh(params, dst);
  12463. } break;
  12464. case GGML_UNARY_OP_ELU:
  12465. {
  12466. ggml_compute_forward_elu(params, dst);
  12467. } break;
  12468. case GGML_UNARY_OP_RELU:
  12469. {
  12470. ggml_compute_forward_relu(params, dst);
  12471. } break;
  12472. case GGML_UNARY_OP_GELU:
  12473. {
  12474. ggml_compute_forward_gelu(params, dst);
  12475. } break;
  12476. case GGML_UNARY_OP_GELU_QUICK:
  12477. {
  12478. ggml_compute_forward_gelu_quick(params, dst);
  12479. } break;
  12480. case GGML_UNARY_OP_SILU:
  12481. {
  12482. ggml_compute_forward_silu(params, dst);
  12483. } break;
  12484. case GGML_UNARY_OP_HARDSWISH:
  12485. {
  12486. ggml_compute_forward_hardswish(params, dst);
  12487. } break;
  12488. case GGML_UNARY_OP_HARDSIGMOID:
  12489. {
  12490. ggml_compute_forward_hardsigmoid(params, dst);
  12491. } break;
  12492. default:
  12493. {
  12494. GGML_ASSERT(false);
  12495. } break;
  12496. }
  12497. }
  12498. // ggml_compute_forward_get_rel_pos
  12499. static void ggml_compute_forward_get_rel_pos_f16(
  12500. const struct ggml_compute_params * params,
  12501. struct ggml_tensor * dst) {
  12502. const struct ggml_tensor * src0 = dst->src[0];
  12503. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  12504. return;
  12505. }
  12506. // ref: https://github.com/facebookresearch/segment-anything/blob/main/segment_anything/modeling/image_encoder.py#L292-L322
  12507. GGML_TENSOR_UNARY_OP_LOCALS
  12508. const int64_t w = ne1;
  12509. ggml_fp16_t * src0_data = (ggml_fp16_t *) src0->data;
  12510. ggml_fp16_t * dst_data = (ggml_fp16_t *) dst->data;
  12511. for (int64_t i2 = 0; i2 < ne2; ++i2) {
  12512. for (int64_t i1 = 0; i1 < ne1; ++i1) {
  12513. const int64_t pos = (w - i1 - 1) + i2;
  12514. for (int64_t i0 = 0; i0 < ne0; ++i0) {
  12515. dst_data[i2*ne1*ne0 + i1*ne0 + i0] = src0_data[pos*ne00 + i0];
  12516. }
  12517. }
  12518. }
  12519. }
  12520. static void ggml_compute_forward_get_rel_pos(
  12521. const struct ggml_compute_params * params,
  12522. struct ggml_tensor * dst) {
  12523. const struct ggml_tensor * src0 = dst->src[0];
  12524. switch (src0->type) {
  12525. case GGML_TYPE_F16:
  12526. {
  12527. ggml_compute_forward_get_rel_pos_f16(params, dst);
  12528. } break;
  12529. default:
  12530. {
  12531. GGML_ASSERT(false);
  12532. } break;
  12533. }
  12534. }
  12535. // ggml_compute_forward_add_rel_pos
  12536. static void ggml_compute_forward_add_rel_pos_f32(
  12537. const struct ggml_compute_params * params,
  12538. struct ggml_tensor * dst) {
  12539. const struct ggml_tensor * src0 = dst->src[0];
  12540. const struct ggml_tensor * src1 = dst->src[1];
  12541. const struct ggml_tensor * src2 = dst->src[2];
  12542. const bool inplace = (bool) ((int32_t *) dst->op_params)[0];
  12543. if (!inplace && params->type == GGML_TASK_TYPE_INIT) {
  12544. if (params->ith != 0) {
  12545. return;
  12546. }
  12547. memcpy((char *) dst->data, (char *) src0->data, ggml_nbytes(dst));
  12548. return;
  12549. }
  12550. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  12551. return;
  12552. }
  12553. int64_t t0 = ggml_perf_time_us();
  12554. UNUSED(t0);
  12555. // ref: https://github.com/facebookresearch/segment-anything/blob/main/segment_anything/modeling/image_encoder.py#L357-L359
  12556. float * src1_data = (float *) src1->data;
  12557. float * src2_data = (float *) src2->data;
  12558. float * dst_data = (float *) dst->data;
  12559. const int64_t ne10 = src1->ne[0];
  12560. const int64_t ne11 = src1->ne[1];
  12561. const int64_t ne12 = src1->ne[2];
  12562. const int64_t ne13 = src1->ne[3];
  12563. const int ith = params->ith;
  12564. const int nth = params->nth;
  12565. // total patches in dst
  12566. const int np = ne13;
  12567. // patches per thread
  12568. const int dp = (np + nth - 1)/nth;
  12569. // patch range for this thread
  12570. const int ip0 = dp*ith;
  12571. const int ip1 = MIN(ip0 + dp, np);
  12572. for (int64_t i13 = ip0; i13 < ip1; ++i13) {
  12573. for (int64_t i12 = 0; i12 < ne12; ++i12) {
  12574. for (int64_t i11 = 0; i11 < ne11; ++i11) {
  12575. const int64_t jp1 = i13*ne12*ne11*ne10 + i12*ne11*ne10 + i11*ne10;
  12576. for (int64_t i10 = 0; i10 < ne10; ++i10) {
  12577. const int64_t jp0 = jp1 + i10;
  12578. const float src1_e = src1_data[jp0];
  12579. const float src2_e = src2_data[jp0];
  12580. const int64_t jdh = jp0 * ne10;
  12581. const int64_t jdw = jdh - (ne10 - 1) * i10;
  12582. for (int64_t j = 0; j < ne10; ++j) {
  12583. dst_data[jdh + j ] += src2_e;
  12584. dst_data[jdw + j*ne10] += src1_e;
  12585. }
  12586. }
  12587. }
  12588. }
  12589. }
  12590. }
  12591. static void ggml_compute_forward_add_rel_pos(
  12592. const struct ggml_compute_params * params,
  12593. struct ggml_tensor * dst) {
  12594. const struct ggml_tensor * src0 = dst->src[0];
  12595. switch (src0->type) {
  12596. case GGML_TYPE_F32:
  12597. {
  12598. ggml_compute_forward_add_rel_pos_f32(params, dst);
  12599. } break;
  12600. default:
  12601. {
  12602. GGML_ASSERT(false);
  12603. } break;
  12604. }
  12605. }
  12606. // ggml_compute_forward_map_unary
  12607. static void ggml_compute_forward_map_unary_f32(
  12608. const struct ggml_compute_params * params,
  12609. struct ggml_tensor * dst,
  12610. const ggml_unary_op_f32_t fun) {
  12611. const struct ggml_tensor * src0 = dst->src[0];
  12612. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  12613. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  12614. return;
  12615. }
  12616. const int n = ggml_nrows(src0);
  12617. const int nc = src0->ne[0];
  12618. assert( dst->nb[0] == sizeof(float));
  12619. assert(src0->nb[0] == sizeof(float));
  12620. for (int i = 0; i < n; i++) {
  12621. fun(nc,
  12622. (float *) ((char *) dst->data + i*( dst->nb[1])),
  12623. (float *) ((char *) src0->data + i*(src0->nb[1])));
  12624. }
  12625. }
  12626. static void ggml_compute_forward_map_unary(
  12627. const struct ggml_compute_params * params,
  12628. struct ggml_tensor * dst,
  12629. const ggml_unary_op_f32_t fun) {
  12630. const struct ggml_tensor * src0 = dst->src[0];
  12631. switch (src0->type) {
  12632. case GGML_TYPE_F32:
  12633. {
  12634. ggml_compute_forward_map_unary_f32(params, dst, fun);
  12635. } break;
  12636. default:
  12637. {
  12638. GGML_ASSERT(false);
  12639. } break;
  12640. }
  12641. }
  12642. // ggml_compute_forward_map_binary
  12643. static void ggml_compute_forward_map_binary_f32(
  12644. const struct ggml_compute_params * params,
  12645. struct ggml_tensor * dst,
  12646. const ggml_binary_op_f32_t fun) {
  12647. const struct ggml_tensor * src0 = dst->src[0];
  12648. const struct ggml_tensor * src1 = dst->src[1];
  12649. assert(params->ith == 0);
  12650. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  12651. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  12652. return;
  12653. }
  12654. const int n = ggml_nrows(src0);
  12655. const int nc = src0->ne[0];
  12656. assert( dst->nb[0] == sizeof(float));
  12657. assert(src0->nb[0] == sizeof(float));
  12658. assert(src1->nb[0] == sizeof(float));
  12659. for (int i = 0; i < n; i++) {
  12660. fun(nc,
  12661. (float *) ((char *) dst->data + i*( dst->nb[1])),
  12662. (float *) ((char *) src0->data + i*(src0->nb[1])),
  12663. (float *) ((char *) src1->data + i*(src1->nb[1])));
  12664. }
  12665. }
  12666. static void ggml_compute_forward_map_binary(
  12667. const struct ggml_compute_params * params,
  12668. struct ggml_tensor * dst,
  12669. const ggml_binary_op_f32_t fun) {
  12670. const struct ggml_tensor * src0 = dst->src[0];
  12671. switch (src0->type) {
  12672. case GGML_TYPE_F32:
  12673. {
  12674. ggml_compute_forward_map_binary_f32(params, dst, fun);
  12675. } break;
  12676. default:
  12677. {
  12678. GGML_ASSERT(false);
  12679. } break;
  12680. }
  12681. }
  12682. // ggml_compute_forward_map_custom1
  12683. static void ggml_compute_forward_map_custom1_f32(
  12684. const struct ggml_compute_params * params,
  12685. struct ggml_tensor * dst,
  12686. const ggml_custom1_op_f32_t fun) {
  12687. const struct ggml_tensor * a = dst->src[0];
  12688. assert(params->ith == 0);
  12689. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  12690. return;
  12691. }
  12692. fun(dst, a);
  12693. }
  12694. // ggml_compute_forward_map_custom2
  12695. static void ggml_compute_forward_map_custom2_f32(
  12696. const struct ggml_compute_params * params,
  12697. struct ggml_tensor * dst,
  12698. const ggml_custom2_op_f32_t fun) {
  12699. const struct ggml_tensor * a = dst->src[0];
  12700. const struct ggml_tensor * b = dst->src[1];
  12701. assert(params->ith == 0);
  12702. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  12703. return;
  12704. }
  12705. fun(dst, a, b);
  12706. }
  12707. // ggml_compute_forward_map_custom3
  12708. static void ggml_compute_forward_map_custom3_f32(
  12709. const struct ggml_compute_params * params,
  12710. struct ggml_tensor * dst,
  12711. const ggml_custom3_op_f32_t fun) {
  12712. const struct ggml_tensor * a = dst->src[0];
  12713. const struct ggml_tensor * b = dst->src[1];
  12714. const struct ggml_tensor * c = dst->src[1];
  12715. assert(params->ith == 0);
  12716. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  12717. return;
  12718. }
  12719. fun(dst, a, b, c);
  12720. }
  12721. // ggml_compute_forward_map_custom1
  12722. static void ggml_compute_forward_map_custom1(
  12723. const struct ggml_compute_params * params,
  12724. struct ggml_tensor * dst) {
  12725. const struct ggml_tensor * a = dst->src[0];
  12726. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  12727. return;
  12728. }
  12729. struct ggml_map_custom1_op_params p;
  12730. memcpy(&p, dst->op_params, sizeof(p));
  12731. p.fun(dst, a, params->ith, params->nth, p.userdata);
  12732. }
  12733. // ggml_compute_forward_map_custom2
  12734. static void ggml_compute_forward_map_custom2(
  12735. const struct ggml_compute_params * params,
  12736. struct ggml_tensor * dst) {
  12737. const struct ggml_tensor * a = dst->src[0];
  12738. const struct ggml_tensor * b = dst->src[1];
  12739. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  12740. return;
  12741. }
  12742. struct ggml_map_custom2_op_params p;
  12743. memcpy(&p, dst->op_params, sizeof(p));
  12744. p.fun(dst, a, b, params->ith, params->nth, p.userdata);
  12745. }
  12746. // ggml_compute_forward_map_custom3
  12747. static void ggml_compute_forward_map_custom3(
  12748. const struct ggml_compute_params * params,
  12749. struct ggml_tensor * dst) {
  12750. const struct ggml_tensor * a = dst->src[0];
  12751. const struct ggml_tensor * b = dst->src[1];
  12752. const struct ggml_tensor * c = dst->src[2];
  12753. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  12754. return;
  12755. }
  12756. struct ggml_map_custom3_op_params p;
  12757. memcpy(&p, dst->op_params, sizeof(p));
  12758. p.fun(dst, a, b, c, params->ith, params->nth, p.userdata);
  12759. }
  12760. // ggml_compute_forward_cross_entropy_loss
  12761. static void ggml_compute_forward_cross_entropy_loss_f32(
  12762. const struct ggml_compute_params * params,
  12763. struct ggml_tensor * dst) {
  12764. const struct ggml_tensor * src0 = dst->src[0];
  12765. const struct ggml_tensor * src1 = dst->src[1];
  12766. GGML_ASSERT(ggml_is_contiguous(src0));
  12767. GGML_ASSERT(ggml_is_contiguous(src1));
  12768. GGML_ASSERT(ggml_is_scalar(dst));
  12769. GGML_ASSERT(ggml_are_same_shape(src0, src1));
  12770. const int ith = params->ith;
  12771. const int nth = params->nth;
  12772. float * sums = (float *) params->wdata;
  12773. // TODO: handle transposed/permuted matrices
  12774. const int nc = src0->ne[0];
  12775. const int nr = ggml_nrows(src0);
  12776. GGML_ASSERT(params->wsize >= sizeof(float) * (nth + nth * nc));
  12777. if (params->type == GGML_TASK_TYPE_INIT) {
  12778. if (ith == 0) {
  12779. memset(sums, 0, sizeof(float) * (nth + nth * nc));
  12780. }
  12781. return;
  12782. }
  12783. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  12784. if (ith == 0) {
  12785. float * dp = (float *) dst->data;
  12786. ggml_vec_sum_f32(nth, dp, sums);
  12787. dp[0] *= -1.0f / (float) nr;
  12788. }
  12789. return;
  12790. }
  12791. const double eps = 1e-9;
  12792. // rows per thread
  12793. const int dr = (nr + nth - 1)/nth;
  12794. // row range for this thread
  12795. const int ir0 = dr*ith;
  12796. const int ir1 = MIN(ir0 + dr, nr);
  12797. for (int i1 = ir0; i1 < ir1; i1++) {
  12798. float * s0 = (float *)((char *) src0->data + i1*src0->nb[1]);
  12799. float * s1 = (float *)((char *) src1->data + i1*src1->nb[1]);
  12800. float * st = ((float *) params->wdata) + nth + ith*nc;
  12801. #ifndef NDEBUG
  12802. for (int i = 0; i < nc; ++i) {
  12803. //printf("p[%d] = %f\n", i, p[i]);
  12804. assert(!isnan(s0[i]));
  12805. assert(!isnan(s1[i]));
  12806. }
  12807. #endif
  12808. // soft_max
  12809. ggml_float sum = 0.0;
  12810. {
  12811. float max = -INFINITY;
  12812. ggml_vec_max_f32(nc, &max, s0);
  12813. uint16_t scvt; UNUSED(scvt);
  12814. for (int i = 0; i < nc; i++) {
  12815. if (s0[i] == -INFINITY) {
  12816. st[i] = 0.0f;
  12817. } else {
  12818. #ifndef GGML_CROSS_ENTROPY_EXP_FP16
  12819. const float s = s0[i] - max;
  12820. const float val = expf(s);
  12821. #else
  12822. ggml_fp16_t s = GGML_FP32_TO_FP16(s0[i] - max);
  12823. memcpy(&scvt, &s, sizeof(scvt));
  12824. const float val = GGML_FP16_TO_FP32(ggml_table_exp_f16[scvt]);
  12825. #endif
  12826. sum += (ggml_float)val;
  12827. st[i] = val;
  12828. }
  12829. }
  12830. assert(sum > 0.0);
  12831. // sum = 1.0/sum;
  12832. }
  12833. // avoid log(0) by rescaling from [0..1] to [eps..1]
  12834. sum = (1.0 - eps) / sum;
  12835. ggml_vec_scale_f32(nc, st, sum);
  12836. ggml_vec_add1_f32(nc, st, st, eps);
  12837. ggml_vec_log_f32(nc, st, st);
  12838. ggml_vec_mul_f32(nc, st, st, s1);
  12839. float st_sum = 0;
  12840. ggml_vec_sum_f32(nc, &st_sum, st);
  12841. sums[ith] += st_sum;
  12842. #ifndef NDEBUG
  12843. for (int i = 0; i < nc; ++i) {
  12844. assert(!isnan(st[i]));
  12845. assert(!isinf(st[i]));
  12846. }
  12847. #endif
  12848. }
  12849. }
  12850. static void ggml_compute_forward_cross_entropy_loss(
  12851. const struct ggml_compute_params * params,
  12852. struct ggml_tensor * dst) {
  12853. const struct ggml_tensor * src0 = dst->src[0];
  12854. switch (src0->type) {
  12855. case GGML_TYPE_F32:
  12856. {
  12857. ggml_compute_forward_cross_entropy_loss_f32(params, dst);
  12858. } break;
  12859. default:
  12860. {
  12861. GGML_ASSERT(false);
  12862. } break;
  12863. }
  12864. }
  12865. // ggml_compute_forward_cross_entropy_loss_back
  12866. static void ggml_compute_forward_cross_entropy_loss_back_f32(
  12867. const struct ggml_compute_params * params,
  12868. struct ggml_tensor * dst) {
  12869. const struct ggml_tensor * src0 = dst->src[0];
  12870. const struct ggml_tensor * src1 = dst->src[1];
  12871. const struct ggml_tensor * opt0 = dst->src[2];
  12872. GGML_ASSERT(ggml_is_contiguous(dst));
  12873. GGML_ASSERT(ggml_is_contiguous(src0));
  12874. GGML_ASSERT(ggml_is_contiguous(src1));
  12875. GGML_ASSERT(ggml_is_contiguous(opt0));
  12876. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  12877. const int64_t ith = params->ith;
  12878. const int64_t nth = params->nth;
  12879. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  12880. return;
  12881. }
  12882. const double eps = 1e-9;
  12883. // TODO: handle transposed/permuted matrices
  12884. const int64_t nc = src0->ne[0];
  12885. const int64_t nr = ggml_nrows(src0);
  12886. // rows per thread
  12887. const int64_t dr = (nr + nth - 1)/nth;
  12888. // row range for this thread
  12889. const int64_t ir0 = dr*ith;
  12890. const int64_t ir1 = MIN(ir0 + dr, nr);
  12891. float * d = (float *) opt0->data;
  12892. for (int64_t i1 = ir0; i1 < ir1; i1++) {
  12893. float * ds0 = (float *)((char *) dst->data + i1*dst->nb[1]);
  12894. float * s0 = (float *)((char *) src0->data + i1*src0->nb[1]);
  12895. float * s1 = (float *)((char *) src1->data + i1*src1->nb[1]);
  12896. #ifndef NDEBUG
  12897. for (int i = 0; i < nc; ++i) {
  12898. //printf("p[%d] = %f\n", i, p[i]);
  12899. assert(!isnan(s0[i]));
  12900. assert(!isnan(s1[i]));
  12901. }
  12902. #endif
  12903. // soft_max
  12904. ggml_float sum = 0.0;
  12905. {
  12906. float max = -INFINITY;
  12907. ggml_vec_max_f32(nc, &max, s0);
  12908. uint16_t scvt; UNUSED(scvt);
  12909. for (int i = 0; i < nc; i++) {
  12910. if (s0[i] == -INFINITY) {
  12911. ds0[i] = 0.0f;
  12912. } else {
  12913. #ifndef GGML_CROSS_ENTROPY_EXP_FP16
  12914. const float s = s0[i] - max;
  12915. const float val = expf(s);
  12916. #else
  12917. ggml_fp16_t s = GGML_FP32_TO_FP16(s0[i] - max);
  12918. memcpy(&scvt, &s, sizeof(scvt));
  12919. const float val = GGML_FP16_TO_FP32(ggml_table_exp_f16[scvt]);
  12920. #endif
  12921. sum += (ggml_float)val;
  12922. ds0[i] = val;
  12923. }
  12924. }
  12925. assert(sum > 0.0);
  12926. sum = (1.0 - eps)/sum;
  12927. }
  12928. // grad(src0) = (softmax(src0) - src1) * grad(cross_entropy_loss(src0, src1)) / nr
  12929. ggml_vec_scale_f32(nc, ds0, sum);
  12930. ggml_vec_add1_f32(nc, ds0, ds0, eps);
  12931. ggml_vec_sub_f32(nc, ds0, ds0, s1);
  12932. ggml_vec_scale_f32(nc, ds0, d[0] / (float) nr);
  12933. #ifndef NDEBUG
  12934. for (int i = 0; i < nc; ++i) {
  12935. assert(!isnan(ds0[i]));
  12936. assert(!isinf(ds0[i]));
  12937. }
  12938. #endif
  12939. }
  12940. }
  12941. static void ggml_compute_forward_cross_entropy_loss_back(
  12942. const struct ggml_compute_params * params,
  12943. struct ggml_tensor * dst) {
  12944. const struct ggml_tensor * src0 = dst->src[0];
  12945. switch (src0->type) {
  12946. case GGML_TYPE_F32:
  12947. {
  12948. ggml_compute_forward_cross_entropy_loss_back_f32(params, dst);
  12949. } break;
  12950. default:
  12951. {
  12952. GGML_ASSERT(false);
  12953. } break;
  12954. }
  12955. }
  12956. /////////////////////////////////
  12957. static void ggml_compute_forward(struct ggml_compute_params * params, struct ggml_tensor * tensor) {
  12958. GGML_ASSERT(params);
  12959. if (tensor->op == GGML_OP_NONE) {
  12960. return;
  12961. }
  12962. #if defined(GGML_USE_VULKAN)
  12963. const bool skip_cpu = ggml_vk_compute_forward_cpu_assist(params, tensor);
  12964. #ifdef GGML_VULKAN_CHECK_RESULTS
  12965. if (skip_cpu) {
  12966. ggml_vk_check_results_1_cpu_assist(params, tensor);
  12967. }
  12968. #endif
  12969. if (skip_cpu) {
  12970. return;
  12971. }
  12972. GGML_ASSERT(tensor->src[0] == NULL || tensor->src[0]->backend == GGML_BACKEND_TYPE_CPU);
  12973. GGML_ASSERT(tensor->src[1] == NULL || tensor->src[1]->backend == GGML_BACKEND_TYPE_CPU);
  12974. #endif // GGML_USE_VULKAN
  12975. #ifdef GGML_USE_SYCL
  12976. bool skip_cpu = ggml_sycl_compute_forward(params, tensor);
  12977. if (skip_cpu) {
  12978. return;
  12979. }
  12980. #endif // GGML_USE_SYCL
  12981. switch (tensor->op) {
  12982. case GGML_OP_DUP:
  12983. {
  12984. ggml_compute_forward_dup(params, tensor);
  12985. } break;
  12986. case GGML_OP_ADD:
  12987. {
  12988. ggml_compute_forward_add(params, tensor);
  12989. } break;
  12990. case GGML_OP_ADD1:
  12991. {
  12992. ggml_compute_forward_add1(params, tensor);
  12993. } break;
  12994. case GGML_OP_ACC:
  12995. {
  12996. ggml_compute_forward_acc(params, tensor);
  12997. } break;
  12998. case GGML_OP_SUB:
  12999. {
  13000. ggml_compute_forward_sub(params, tensor);
  13001. } break;
  13002. case GGML_OP_MUL:
  13003. {
  13004. ggml_compute_forward_mul(params, tensor);
  13005. } break;
  13006. case GGML_OP_DIV:
  13007. {
  13008. ggml_compute_forward_div(params, tensor);
  13009. } break;
  13010. case GGML_OP_SQR:
  13011. {
  13012. ggml_compute_forward_sqr(params, tensor);
  13013. } break;
  13014. case GGML_OP_SQRT:
  13015. {
  13016. ggml_compute_forward_sqrt(params, tensor);
  13017. } break;
  13018. case GGML_OP_LOG:
  13019. {
  13020. ggml_compute_forward_log(params, tensor);
  13021. } break;
  13022. case GGML_OP_SUM:
  13023. {
  13024. ggml_compute_forward_sum(params, tensor);
  13025. } break;
  13026. case GGML_OP_SUM_ROWS:
  13027. {
  13028. ggml_compute_forward_sum_rows(params, tensor);
  13029. } break;
  13030. case GGML_OP_MEAN:
  13031. {
  13032. ggml_compute_forward_mean(params, tensor);
  13033. } break;
  13034. case GGML_OP_ARGMAX:
  13035. {
  13036. ggml_compute_forward_argmax(params, tensor);
  13037. } break;
  13038. case GGML_OP_REPEAT:
  13039. {
  13040. ggml_compute_forward_repeat(params, tensor);
  13041. } break;
  13042. case GGML_OP_REPEAT_BACK:
  13043. {
  13044. ggml_compute_forward_repeat_back(params, tensor);
  13045. } break;
  13046. case GGML_OP_CONCAT:
  13047. {
  13048. ggml_compute_forward_concat(params, tensor);
  13049. } break;
  13050. case GGML_OP_SILU_BACK:
  13051. {
  13052. ggml_compute_forward_silu_back(params, tensor);
  13053. } break;
  13054. case GGML_OP_NORM:
  13055. {
  13056. ggml_compute_forward_norm(params, tensor);
  13057. } break;
  13058. case GGML_OP_RMS_NORM:
  13059. {
  13060. ggml_compute_forward_rms_norm(params, tensor);
  13061. } break;
  13062. case GGML_OP_RMS_NORM_BACK:
  13063. {
  13064. ggml_compute_forward_rms_norm_back(params, tensor);
  13065. } break;
  13066. case GGML_OP_GROUP_NORM:
  13067. {
  13068. ggml_compute_forward_group_norm(params, tensor);
  13069. } break;
  13070. case GGML_OP_MUL_MAT:
  13071. {
  13072. ggml_compute_forward_mul_mat(params, tensor);
  13073. } break;
  13074. case GGML_OP_MUL_MAT_ID:
  13075. {
  13076. ggml_compute_forward_mul_mat_id(params, tensor);
  13077. } break;
  13078. case GGML_OP_OUT_PROD:
  13079. {
  13080. ggml_compute_forward_out_prod(params, tensor);
  13081. } break;
  13082. case GGML_OP_SCALE:
  13083. {
  13084. ggml_compute_forward_scale(params, tensor);
  13085. } break;
  13086. case GGML_OP_SET:
  13087. {
  13088. ggml_compute_forward_set(params, tensor);
  13089. } break;
  13090. case GGML_OP_CPY:
  13091. {
  13092. ggml_compute_forward_cpy(params, tensor);
  13093. } break;
  13094. case GGML_OP_CONT:
  13095. {
  13096. ggml_compute_forward_cont(params, tensor);
  13097. } break;
  13098. case GGML_OP_RESHAPE:
  13099. {
  13100. ggml_compute_forward_reshape(params, tensor);
  13101. } break;
  13102. case GGML_OP_VIEW:
  13103. {
  13104. ggml_compute_forward_view(params, tensor);
  13105. } break;
  13106. case GGML_OP_PERMUTE:
  13107. {
  13108. ggml_compute_forward_permute(params, tensor);
  13109. } break;
  13110. case GGML_OP_TRANSPOSE:
  13111. {
  13112. ggml_compute_forward_transpose(params, tensor);
  13113. } break;
  13114. case GGML_OP_GET_ROWS:
  13115. {
  13116. ggml_compute_forward_get_rows(params, tensor);
  13117. } break;
  13118. case GGML_OP_GET_ROWS_BACK:
  13119. {
  13120. ggml_compute_forward_get_rows_back(params, tensor);
  13121. } break;
  13122. case GGML_OP_DIAG:
  13123. {
  13124. ggml_compute_forward_diag(params, tensor);
  13125. } break;
  13126. case GGML_OP_DIAG_MASK_INF:
  13127. {
  13128. ggml_compute_forward_diag_mask_inf(params, tensor);
  13129. } break;
  13130. case GGML_OP_DIAG_MASK_ZERO:
  13131. {
  13132. ggml_compute_forward_diag_mask_zero(params, tensor);
  13133. } break;
  13134. case GGML_OP_SOFT_MAX:
  13135. {
  13136. ggml_compute_forward_soft_max(params, tensor);
  13137. } break;
  13138. case GGML_OP_SOFT_MAX_BACK:
  13139. {
  13140. ggml_compute_forward_soft_max_back(params, tensor);
  13141. } break;
  13142. case GGML_OP_ROPE:
  13143. {
  13144. ggml_compute_forward_rope(params, tensor);
  13145. } break;
  13146. case GGML_OP_ROPE_BACK:
  13147. {
  13148. ggml_compute_forward_rope_back(params, tensor);
  13149. } break;
  13150. case GGML_OP_ALIBI:
  13151. {
  13152. ggml_compute_forward_alibi(params, tensor);
  13153. } break;
  13154. case GGML_OP_CLAMP:
  13155. {
  13156. ggml_compute_forward_clamp(params, tensor);
  13157. } break;
  13158. case GGML_OP_CONV_TRANSPOSE_1D:
  13159. {
  13160. ggml_compute_forward_conv_transpose_1d(params, tensor);
  13161. } break;
  13162. case GGML_OP_IM2COL:
  13163. {
  13164. ggml_compute_forward_im2col(params, tensor);
  13165. } break;
  13166. case GGML_OP_CONV_TRANSPOSE_2D:
  13167. {
  13168. ggml_compute_forward_conv_transpose_2d(params, tensor);
  13169. } break;
  13170. case GGML_OP_POOL_1D:
  13171. {
  13172. ggml_compute_forward_pool_1d(params, tensor);
  13173. } break;
  13174. case GGML_OP_POOL_2D:
  13175. {
  13176. ggml_compute_forward_pool_2d(params, tensor);
  13177. } break;
  13178. case GGML_OP_UPSCALE:
  13179. {
  13180. ggml_compute_forward_upscale(params, tensor);
  13181. } break;
  13182. case GGML_OP_PAD:
  13183. {
  13184. ggml_compute_forward_pad(params, tensor);
  13185. } break;
  13186. case GGML_OP_ARANGE:
  13187. {
  13188. ggml_compute_forward_arange(params, tensor);
  13189. } break;
  13190. case GGML_OP_TIMESTEP_EMBEDDING:
  13191. {
  13192. ggml_compute_forward_timestep_embedding(params, tensor);
  13193. } break;
  13194. case GGML_OP_ARGSORT:
  13195. {
  13196. ggml_compute_forward_argsort(params, tensor);
  13197. } break;
  13198. case GGML_OP_LEAKY_RELU:
  13199. {
  13200. ggml_compute_forward_leaky_relu(params, tensor);
  13201. } break;
  13202. case GGML_OP_FLASH_ATTN:
  13203. {
  13204. const int32_t t = ggml_get_op_params_i32(tensor, 0);
  13205. GGML_ASSERT(t == 0 || t == 1);
  13206. const bool masked = t != 0;
  13207. ggml_compute_forward_flash_attn(params, masked, tensor);
  13208. } break;
  13209. case GGML_OP_FLASH_FF:
  13210. {
  13211. ggml_compute_forward_flash_ff(params, tensor);
  13212. } break;
  13213. case GGML_OP_FLASH_ATTN_BACK:
  13214. {
  13215. int32_t t = ggml_get_op_params_i32(tensor, 0);
  13216. GGML_ASSERT(t == 0 || t == 1);
  13217. bool masked = t != 0;
  13218. ggml_compute_forward_flash_attn_back(params, masked, tensor);
  13219. } break;
  13220. case GGML_OP_SSM_CONV:
  13221. {
  13222. ggml_compute_forward_ssm_conv(params, tensor);
  13223. } break;
  13224. case GGML_OP_SSM_SCAN:
  13225. {
  13226. ggml_compute_forward_ssm_scan(params, tensor);
  13227. } break;
  13228. case GGML_OP_WIN_PART:
  13229. {
  13230. ggml_compute_forward_win_part(params, tensor);
  13231. } break;
  13232. case GGML_OP_WIN_UNPART:
  13233. {
  13234. ggml_compute_forward_win_unpart(params, tensor);
  13235. } break;
  13236. case GGML_OP_UNARY:
  13237. {
  13238. ggml_compute_forward_unary(params, tensor);
  13239. } break;
  13240. case GGML_OP_GET_REL_POS:
  13241. {
  13242. ggml_compute_forward_get_rel_pos(params, tensor);
  13243. } break;
  13244. case GGML_OP_ADD_REL_POS:
  13245. {
  13246. ggml_compute_forward_add_rel_pos(params, tensor);
  13247. } break;
  13248. case GGML_OP_MAP_UNARY:
  13249. {
  13250. ggml_unary_op_f32_t fun;
  13251. memcpy(&fun, tensor->op_params, sizeof(fun));
  13252. ggml_compute_forward_map_unary(params, tensor, fun);
  13253. }
  13254. break;
  13255. case GGML_OP_MAP_BINARY:
  13256. {
  13257. ggml_binary_op_f32_t fun;
  13258. memcpy(&fun, tensor->op_params, sizeof(fun));
  13259. ggml_compute_forward_map_binary(params, tensor, fun);
  13260. }
  13261. break;
  13262. case GGML_OP_MAP_CUSTOM1_F32:
  13263. {
  13264. ggml_custom1_op_f32_t fun;
  13265. memcpy(&fun, tensor->op_params, sizeof(fun));
  13266. ggml_compute_forward_map_custom1_f32(params, tensor, fun);
  13267. }
  13268. break;
  13269. case GGML_OP_MAP_CUSTOM2_F32:
  13270. {
  13271. ggml_custom2_op_f32_t fun;
  13272. memcpy(&fun, tensor->op_params, sizeof(fun));
  13273. ggml_compute_forward_map_custom2_f32(params, tensor, fun);
  13274. }
  13275. break;
  13276. case GGML_OP_MAP_CUSTOM3_F32:
  13277. {
  13278. ggml_custom3_op_f32_t fun;
  13279. memcpy(&fun, tensor->op_params, sizeof(fun));
  13280. ggml_compute_forward_map_custom3_f32(params, tensor, fun);
  13281. }
  13282. break;
  13283. case GGML_OP_MAP_CUSTOM1:
  13284. {
  13285. ggml_compute_forward_map_custom1(params, tensor);
  13286. }
  13287. break;
  13288. case GGML_OP_MAP_CUSTOM2:
  13289. {
  13290. ggml_compute_forward_map_custom2(params, tensor);
  13291. }
  13292. break;
  13293. case GGML_OP_MAP_CUSTOM3:
  13294. {
  13295. ggml_compute_forward_map_custom3(params, tensor);
  13296. }
  13297. break;
  13298. case GGML_OP_CROSS_ENTROPY_LOSS:
  13299. {
  13300. ggml_compute_forward_cross_entropy_loss(params, tensor);
  13301. }
  13302. break;
  13303. case GGML_OP_CROSS_ENTROPY_LOSS_BACK:
  13304. {
  13305. ggml_compute_forward_cross_entropy_loss_back(params, tensor);
  13306. }
  13307. break;
  13308. case GGML_OP_NONE:
  13309. {
  13310. // nop
  13311. } break;
  13312. case GGML_OP_COUNT:
  13313. {
  13314. GGML_ASSERT(false);
  13315. } break;
  13316. }
  13317. }
  13318. ////////////////////////////////////////////////////////////////////////////////
  13319. static size_t ggml_hash_size(size_t min_sz) {
  13320. // next primes after powers of two
  13321. static const size_t primes[] = {
  13322. 2, 3, 5, 11, 17, 37, 67, 131, 257, 521, 1031,
  13323. 2053, 4099, 8209, 16411, 32771, 65537, 131101,
  13324. 262147, 524309, 1048583, 2097169, 4194319, 8388617,
  13325. 16777259, 33554467, 67108879, 134217757, 268435459,
  13326. 536870923, 1073741827, 2147483659
  13327. };
  13328. static const size_t n_primes = sizeof(primes)/sizeof(primes[0]);
  13329. // find the smallest prime that is larger or equal to min_sz
  13330. size_t l = 0;
  13331. size_t r = n_primes;
  13332. while (l < r) {
  13333. size_t m = (l + r)/2;
  13334. if (primes[m] < min_sz) {
  13335. l = m + 1;
  13336. } else {
  13337. r = m;
  13338. }
  13339. }
  13340. size_t sz = l < n_primes ? primes[l] : min_sz | 1;
  13341. return sz;
  13342. }
  13343. static size_t ggml_hash(const void * p) {
  13344. return (size_t)p;
  13345. }
  13346. size_t ggml_hash_find(const struct ggml_hash_set hash_set, struct ggml_tensor * key) {
  13347. size_t h = ggml_hash(key) % hash_set.size;
  13348. // linear probing
  13349. size_t i = h;
  13350. while (hash_set.keys[i] != NULL && hash_set.keys[i] != key) {
  13351. i = (i + 1) % hash_set.size;
  13352. if (i == h) {
  13353. // visited all hash table entries -> not found
  13354. return GGML_HASHTABLE_FULL;
  13355. }
  13356. }
  13357. return i;
  13358. }
  13359. bool ggml_hash_contains(struct ggml_hash_set hash_set, struct ggml_tensor * key) {
  13360. size_t i = ggml_hash_find(hash_set, key);
  13361. return i != GGML_HASHTABLE_FULL && hash_set.keys[i] == key;
  13362. }
  13363. size_t ggml_hash_insert(struct ggml_hash_set hash_set, struct ggml_tensor * key) {
  13364. size_t i = ggml_hash_find(hash_set, key);
  13365. GGML_ASSERT(i != GGML_HASHTABLE_FULL);
  13366. if (hash_set.keys[i] == key) {
  13367. return GGML_HASHTABLE_ALREADY_EXISTS;
  13368. }
  13369. // insert
  13370. GGML_ASSERT(hash_set.keys[i] == NULL);
  13371. hash_set.keys[i] = key;
  13372. return i;
  13373. }
  13374. size_t ggml_hash_find_or_insert(struct ggml_hash_set hash_set, struct ggml_tensor * key) {
  13375. size_t i = ggml_hash_find(hash_set, key);
  13376. GGML_ASSERT(i != GGML_HASHTABLE_FULL);
  13377. hash_set.keys[i] = key;
  13378. return i;
  13379. }
  13380. struct ggml_hash_set ggml_hash_set_new(size_t size) {
  13381. size = ggml_hash_size(size);
  13382. struct ggml_hash_set result;
  13383. result.size = size;
  13384. result.keys = GGML_MALLOC(sizeof(struct ggml_tensor *) * size);
  13385. memset(result.keys, 0, sizeof(struct ggml_tensor *) * size);
  13386. return result;
  13387. }
  13388. static void ggml_hash_set_free(struct ggml_hash_set hash_set) {
  13389. GGML_FREE(hash_set.keys);
  13390. }
  13391. struct hash_map {
  13392. struct ggml_hash_set set;
  13393. struct ggml_tensor ** vals;
  13394. };
  13395. static struct hash_map * ggml_new_hash_map(size_t size) {
  13396. struct hash_map * result = GGML_MALLOC(sizeof(struct hash_map));
  13397. result->set = ggml_hash_set_new(size);
  13398. result->vals = GGML_MALLOC(sizeof(struct ggml_tensor *) * result->set.size);
  13399. memset(result->vals, 0, sizeof(struct ggml_tensor *) * result->set.size);
  13400. return result;
  13401. }
  13402. static void ggml_hash_map_free(struct hash_map * map) {
  13403. ggml_hash_set_free(map->set);
  13404. GGML_FREE(map->vals);
  13405. GGML_FREE(map);
  13406. }
  13407. // gradient checkpointing
  13408. static struct ggml_tensor * ggml_recompute_graph_node(
  13409. struct ggml_context * ctx,
  13410. struct ggml_cgraph * graph,
  13411. struct hash_map * replacements,
  13412. struct ggml_tensor * node) {
  13413. if (node == NULL) {
  13414. return NULL;
  13415. }
  13416. if (node->flags & GGML_TENSOR_FLAG_PARAM) {
  13417. return node;
  13418. }
  13419. if (!ggml_hash_contains(graph->visited_hash_table, node)) {
  13420. return node;
  13421. }
  13422. int count_children = 0;
  13423. for (int k = 0; k < GGML_MAX_SRC; ++k) {
  13424. if (node->src[k]) {
  13425. ++count_children;
  13426. }
  13427. }
  13428. if (count_children == 0) {
  13429. return node;
  13430. }
  13431. size_t i = ggml_hash_find(replacements->set, node);
  13432. GGML_ASSERT(i != GGML_HASHTABLE_FULL); // assert that not full
  13433. if (replacements->set.keys[i] == node) {
  13434. return replacements->vals[i];
  13435. }
  13436. struct ggml_tensor * clone = ggml_new_tensor(ctx, node->type, GGML_MAX_DIMS, node->ne);
  13437. // insert clone into replacements
  13438. GGML_ASSERT(replacements->set.keys[i] == NULL); // assert that we don't overwrite
  13439. replacements->set.keys[i] = node;
  13440. replacements->vals[i] = clone;
  13441. clone->op = node->op;
  13442. clone->grad = node->grad;
  13443. clone->flags = node->flags;
  13444. clone->extra = node->extra;
  13445. for (int k = 0; k < GGML_MAX_DIMS; ++k) {
  13446. clone->nb[k] = node->nb[k];
  13447. }
  13448. for (int k = 0; k < GGML_MAX_SRC; ++k) {
  13449. clone->src[k] = ggml_recompute_graph_node(ctx, graph, replacements, node->src[k]);
  13450. }
  13451. if (node->view_src != NULL) {
  13452. clone->data = (node->view_src->data == NULL)
  13453. ? NULL // view_src not yet allocated
  13454. : (char *) node->view_src->data // view_src already allocated
  13455. + node->view_offs;
  13456. clone->view_src = node->view_src;
  13457. clone->view_offs = node->view_offs;
  13458. }
  13459. GGML_ASSERT(sizeof(node->op_params) == sizeof(int32_t) * (GGML_MAX_OP_PARAMS / sizeof(int32_t)));
  13460. GGML_ASSERT(sizeof(node->name) == GGML_MAX_NAME);
  13461. memcpy(clone->op_params, node->op_params, sizeof(node->op_params));
  13462. ggml_format_name(clone, "%s (clone)", ggml_get_name(node));
  13463. return clone;
  13464. }
  13465. void ggml_build_backward_gradient_checkpointing(
  13466. struct ggml_context * ctx,
  13467. struct ggml_cgraph * gf,
  13468. struct ggml_cgraph * gb,
  13469. struct ggml_cgraph * gb_tmp,
  13470. struct ggml_tensor * * checkpoints,
  13471. int n_checkpoints) {
  13472. ggml_graph_cpy(gf, gb_tmp);
  13473. ggml_build_backward_expand(ctx, gf, gb_tmp, true);
  13474. if (n_checkpoints <= 0) {
  13475. ggml_graph_cpy(gb_tmp, gb);
  13476. return;
  13477. }
  13478. struct hash_map * replacements = ggml_new_hash_map(gf->n_nodes + gf->n_leafs + n_checkpoints);
  13479. // insert checkpoints in replacements
  13480. for (int i = 0; i < n_checkpoints; ++i) {
  13481. size_t k = ggml_hash_find(replacements->set, checkpoints[i]);
  13482. GGML_ASSERT(k != GGML_HASHTABLE_FULL); // assert that not full
  13483. GGML_ASSERT(replacements->set.keys[k] == NULL); // assert that we don't overwrite
  13484. replacements->set.keys[k] = checkpoints[i];
  13485. replacements->vals[k] = checkpoints[i];
  13486. }
  13487. ggml_graph_cpy(gf, gb);
  13488. // rewrite gb_tmp->nodes[gf->n_nodes:gb_tmp->n_nodes],
  13489. // replacing references to gb_tmp->nodes[0:gf->n_nodes] ( == gf->nodes[0:gf->n_nodes]),
  13490. // by recomputing them from checkpoints
  13491. for (int i = gf->n_nodes; i<gb_tmp->n_nodes; ++i) {
  13492. struct ggml_tensor * node = gb_tmp->nodes[i];
  13493. for (int k = 0; k < GGML_MAX_SRC; ++k) {
  13494. // insert new tensors recomputing src, reusing already made replacements,
  13495. // remember replacements: remember new tensors with mapping from corresponding gf nodes
  13496. // recurse for input tensors,
  13497. // unless (i.e. terminating when) input tensors are replacements (like checkpoints)
  13498. node->src[k] = ggml_recompute_graph_node(ctx, gf, replacements, node->src[k]);
  13499. }
  13500. // insert rewritten backward node with replacements made into resulting backward graph gb
  13501. ggml_build_forward_expand(gb, node);
  13502. }
  13503. ggml_hash_map_free(replacements);
  13504. }
  13505. // functions to change gradients considering the case that input a might be initial gradient with zero value
  13506. static struct ggml_tensor * ggml_add_or_set(struct ggml_context * ctx, struct ggml_tensor * a, struct ggml_tensor * b, struct ggml_hash_set zero_table) {
  13507. if (ggml_hash_contains(zero_table, a)) {
  13508. return b;
  13509. } else {
  13510. return ggml_add_impl(ctx, a, b, false);
  13511. }
  13512. }
  13513. static struct ggml_tensor * ggml_acc_or_set(struct ggml_context * ctx, struct ggml_tensor * a, struct ggml_tensor * b, size_t nb1, size_t nb2, size_t nb3, size_t offset, struct ggml_hash_set zero_table) {
  13514. if (ggml_hash_contains(zero_table, a)) {
  13515. struct ggml_tensor * a_zero = ggml_scale(ctx, a, 0.0f);
  13516. return ggml_acc_impl(ctx, a_zero, b, nb1, nb2, nb3, offset, false);
  13517. } else {
  13518. return ggml_acc_impl(ctx, a, b, nb1, nb2, nb3, offset, false);
  13519. }
  13520. }
  13521. static struct ggml_tensor * ggml_add1_or_set(struct ggml_context * ctx, struct ggml_tensor * a, struct ggml_tensor * b, struct ggml_hash_set zero_table) {
  13522. if (ggml_hash_contains(zero_table, a)) {
  13523. return ggml_repeat(ctx, b, a);
  13524. } else {
  13525. return ggml_add1_impl(ctx, a, b, false);
  13526. }
  13527. }
  13528. static struct ggml_tensor * ggml_sub_or_set(struct ggml_context * ctx, struct ggml_tensor * a, struct ggml_tensor * b, struct ggml_hash_set zero_table) {
  13529. if (ggml_hash_contains(zero_table, a)) {
  13530. return ggml_neg(ctx, b);
  13531. } else {
  13532. return ggml_sub_impl(ctx, a, b, false);
  13533. }
  13534. }
  13535. static void ggml_compute_backward(struct ggml_context * ctx, struct ggml_tensor * tensor, struct ggml_hash_set zero_table) {
  13536. struct ggml_tensor * src0 = tensor->src[0];
  13537. struct ggml_tensor * src1 = tensor->src[1];
  13538. switch (tensor->op) {
  13539. case GGML_OP_DUP:
  13540. {
  13541. if (src0->grad) {
  13542. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  13543. }
  13544. } break;
  13545. case GGML_OP_ADD:
  13546. {
  13547. if (src0->grad) {
  13548. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  13549. }
  13550. if (src1->grad) {
  13551. src1->grad = ggml_add_or_set(ctx, src1->grad, tensor->grad, zero_table);
  13552. }
  13553. } break;
  13554. case GGML_OP_ADD1:
  13555. {
  13556. if (src0->grad) {
  13557. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  13558. }
  13559. if (src1->grad) {
  13560. src1->grad = ggml_add_or_set(ctx,
  13561. src1->grad,
  13562. ggml_mean(ctx, tensor->grad), // TODO: should probably be sum instead of mean
  13563. zero_table);
  13564. }
  13565. } break;
  13566. case GGML_OP_ACC:
  13567. {
  13568. if (src0->grad) {
  13569. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  13570. }
  13571. if (src1->grad) {
  13572. const size_t nb1 = ((int32_t *) tensor->op_params)[0];
  13573. const size_t nb2 = ((int32_t *) tensor->op_params)[1];
  13574. const size_t nb3 = ((int32_t *) tensor->op_params)[2];
  13575. const size_t offset = ((int32_t *) tensor->op_params)[3];
  13576. struct ggml_tensor * tensor_grad_view = ggml_view_4d(ctx,
  13577. tensor->grad,
  13578. src1->grad->ne[0],
  13579. src1->grad->ne[1],
  13580. src1->grad->ne[2],
  13581. src1->grad->ne[3],
  13582. nb1, nb2, nb3, offset);
  13583. src1->grad =
  13584. ggml_add_or_set(ctx,
  13585. src1->grad,
  13586. ggml_reshape(ctx,
  13587. ggml_cont(ctx, tensor_grad_view),
  13588. src1->grad),
  13589. zero_table);
  13590. }
  13591. } break;
  13592. case GGML_OP_SUB:
  13593. {
  13594. if (src0->grad) {
  13595. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  13596. }
  13597. if (src1->grad) {
  13598. src1->grad = ggml_sub_or_set(ctx, src1->grad, tensor->grad, zero_table);
  13599. }
  13600. } break;
  13601. case GGML_OP_MUL:
  13602. {
  13603. if (src0->grad) {
  13604. src0->grad =
  13605. ggml_add_or_set(ctx,
  13606. src0->grad,
  13607. ggml_mul(ctx, src1, tensor->grad),
  13608. zero_table);
  13609. }
  13610. if (src1->grad) {
  13611. src1->grad =
  13612. ggml_add_or_set(ctx,
  13613. src1->grad,
  13614. ggml_mul(ctx, src0, tensor->grad),
  13615. zero_table);
  13616. }
  13617. } break;
  13618. case GGML_OP_DIV:
  13619. {
  13620. if (src0->grad) {
  13621. src0->grad =
  13622. ggml_add_or_set(ctx,
  13623. src0->grad,
  13624. ggml_div(ctx, tensor->grad, src1),
  13625. zero_table);
  13626. }
  13627. if (src1->grad) {
  13628. src1->grad =
  13629. ggml_sub_or_set(ctx,
  13630. src1->grad,
  13631. ggml_mul(ctx,
  13632. tensor->grad,
  13633. ggml_div(ctx, tensor, src1)),
  13634. zero_table);
  13635. }
  13636. } break;
  13637. case GGML_OP_SQR:
  13638. {
  13639. if (src0->grad) {
  13640. src0->grad =
  13641. ggml_add_or_set(ctx,
  13642. src0->grad,
  13643. ggml_scale(ctx,
  13644. ggml_mul(ctx, src0, tensor->grad),
  13645. 2.0f),
  13646. zero_table);
  13647. }
  13648. } break;
  13649. case GGML_OP_SQRT:
  13650. {
  13651. if (src0->grad) {
  13652. src0->grad =
  13653. ggml_add_or_set(ctx,
  13654. src0->grad,
  13655. ggml_scale(ctx,
  13656. ggml_div(ctx,
  13657. tensor->grad,
  13658. tensor),
  13659. 0.5f),
  13660. zero_table);
  13661. }
  13662. } break;
  13663. case GGML_OP_LOG:
  13664. {
  13665. if (src0->grad) {
  13666. src0->grad =
  13667. ggml_add_or_set(ctx,
  13668. src0->grad,
  13669. ggml_div(ctx,
  13670. tensor->grad,
  13671. src0),
  13672. zero_table);
  13673. }
  13674. } break;
  13675. case GGML_OP_SUM:
  13676. {
  13677. if (src0->grad) {
  13678. src0->grad =
  13679. ggml_add1_or_set(ctx,
  13680. src0->grad,
  13681. tensor->grad,
  13682. zero_table);
  13683. }
  13684. } break;
  13685. case GGML_OP_SUM_ROWS:
  13686. {
  13687. if (src0->grad) {
  13688. src0->grad =
  13689. ggml_add_or_set(ctx,
  13690. src0->grad,
  13691. ggml_repeat(ctx,
  13692. tensor->grad,
  13693. src0->grad),
  13694. zero_table);
  13695. }
  13696. } break;
  13697. case GGML_OP_MEAN:
  13698. case GGML_OP_ARGMAX:
  13699. {
  13700. GGML_ASSERT(false); // TODO: implement
  13701. } break;
  13702. case GGML_OP_REPEAT:
  13703. {
  13704. // necessary for llama
  13705. if (src0->grad) {
  13706. src0->grad = ggml_add_or_set(ctx,
  13707. src0->grad,
  13708. ggml_repeat_back(ctx, tensor->grad, src0->grad),
  13709. zero_table);
  13710. }
  13711. } break;
  13712. case GGML_OP_REPEAT_BACK:
  13713. {
  13714. if (src0->grad) {
  13715. // TODO: test this
  13716. src0->grad = ggml_add_or_set(ctx,
  13717. src0->grad,
  13718. ggml_repeat(ctx, tensor->grad, src0->grad),
  13719. zero_table);
  13720. }
  13721. } break;
  13722. case GGML_OP_CONCAT:
  13723. {
  13724. GGML_ASSERT(false); // TODO: implement
  13725. } break;
  13726. case GGML_OP_SILU_BACK:
  13727. {
  13728. GGML_ASSERT(false); // TODO: not implemented
  13729. } break;
  13730. case GGML_OP_NORM:
  13731. {
  13732. GGML_ASSERT(false); // TODO: not implemented
  13733. } break;
  13734. case GGML_OP_RMS_NORM:
  13735. {
  13736. // necessary for llama
  13737. if (src0->grad) {
  13738. float eps;
  13739. memcpy(&eps, tensor->op_params, sizeof(float));
  13740. src0->grad = ggml_add_or_set(ctx,
  13741. src0->grad,
  13742. ggml_rms_norm_back(ctx, src0, tensor->grad, eps),
  13743. zero_table);
  13744. }
  13745. } break;
  13746. case GGML_OP_RMS_NORM_BACK:
  13747. {
  13748. GGML_ASSERT(false); // TODO: not implemented
  13749. } break;
  13750. case GGML_OP_GROUP_NORM:
  13751. {
  13752. GGML_ASSERT(false); // TODO: not implemented
  13753. } break;
  13754. case GGML_OP_MUL_MAT:
  13755. {
  13756. // https://cs231n.github.io/optimization-2/#staged
  13757. // # forward pass
  13758. // s0 = np.random.randn(5, 10)
  13759. // s1 = np.random.randn(10, 3)
  13760. // t = s0.dot(s1)
  13761. // # now suppose we had the gradient on t from above in the circuit
  13762. // dt = np.random.randn(*t.shape) # same shape as t
  13763. // ds0 = dt.dot(s1.T) #.T gives the transpose of the matrix
  13764. // ds1 = t.T.dot(dt)
  13765. // tensor.shape [m,p,qq,rr]
  13766. // src0.shape [n,m,q1,r1]
  13767. // src1.shape [n,p,qq,rr]
  13768. // necessary for llama
  13769. if (src0->grad) {
  13770. struct ggml_tensor * s1_tg =
  13771. ggml_out_prod(ctx, // [n,m,qq,rr]
  13772. src1, // [n,p,qq,rr]
  13773. tensor->grad); // [m,p,qq,rr]
  13774. const int64_t qq = s1_tg->ne[2];
  13775. const int64_t rr = s1_tg->ne[3];
  13776. const int64_t q1 = src0->ne[2];
  13777. const int64_t r1 = src0->ne[3];
  13778. const bool ne2_broadcasted = qq > q1;
  13779. const bool ne3_broadcasted = rr > r1;
  13780. if (ne2_broadcasted || ne3_broadcasted) {
  13781. // sum broadcast repetitions of s1_tg into shape of src0
  13782. s1_tg = ggml_repeat_back(ctx, s1_tg, src0);
  13783. }
  13784. src0->grad =
  13785. ggml_add_or_set(ctx,
  13786. src0->grad, // [n,m,q1,r1]
  13787. s1_tg, // [n,m,q1,r1]
  13788. zero_table);
  13789. }
  13790. if (src1->grad) {
  13791. src1->grad =
  13792. ggml_add_or_set(ctx,
  13793. src1->grad, // [n,p,qq,rr]
  13794. // ggml_mul_mat(ctx, // [n,p,qq,rr]
  13795. // ggml_cont(ctx, // [m,n,q1,r1]
  13796. // ggml_transpose(ctx, src0)), // [m,n,q1,r1]
  13797. // tensor->grad), // [m,p,qq,rr]
  13798. // // when src0 is bigger than tensor->grad (this is mostly the case in llama),
  13799. // // avoid transpose of src0, rather transpose smaller tensor->grad
  13800. // // and then use ggml_out_prod
  13801. ggml_out_prod(ctx, // [n,p,qq,rr]
  13802. src0, // [n,m,q1,r1]
  13803. ggml_transpose(ctx, // [p,m,qq,rr]
  13804. tensor->grad)), // [m,p,qq,rr]
  13805. zero_table);
  13806. }
  13807. } break;
  13808. case GGML_OP_MUL_MAT_ID:
  13809. {
  13810. GGML_ASSERT(false); // TODO: not implemented
  13811. } break;
  13812. case GGML_OP_OUT_PROD:
  13813. {
  13814. GGML_ASSERT(false); // TODO: not implemented
  13815. } break;
  13816. case GGML_OP_SCALE:
  13817. {
  13818. // necessary for llama
  13819. if (src0->grad) {
  13820. float s;
  13821. memcpy(&s, tensor->op_params, sizeof(float));
  13822. src0->grad =
  13823. ggml_add_or_set(ctx,
  13824. src0->grad,
  13825. ggml_scale_impl(ctx, tensor->grad, s, false),
  13826. zero_table);
  13827. }
  13828. } break;
  13829. case GGML_OP_SET:
  13830. {
  13831. const size_t nb1 = ((int32_t *) tensor->op_params)[0];
  13832. const size_t nb2 = ((int32_t *) tensor->op_params)[1];
  13833. const size_t nb3 = ((int32_t *) tensor->op_params)[2];
  13834. const size_t offset = ((int32_t *) tensor->op_params)[3];
  13835. struct ggml_tensor * tensor_grad_view = NULL;
  13836. if (src0->grad || src1->grad) {
  13837. GGML_ASSERT(src0->type == tensor->type);
  13838. GGML_ASSERT(tensor->grad->type == tensor->type);
  13839. GGML_ASSERT(tensor->grad->type == src1->grad->type);
  13840. tensor_grad_view = ggml_view_4d(ctx,
  13841. tensor->grad,
  13842. src1->grad->ne[0],
  13843. src1->grad->ne[1],
  13844. src1->grad->ne[2],
  13845. src1->grad->ne[3],
  13846. nb1, nb2, nb3, offset);
  13847. }
  13848. if (src0->grad) {
  13849. src0->grad = ggml_add_or_set(ctx,
  13850. src0->grad,
  13851. ggml_acc_impl(ctx,
  13852. tensor->grad,
  13853. ggml_neg(ctx, tensor_grad_view),
  13854. nb1, nb2, nb3, offset, false),
  13855. zero_table);
  13856. }
  13857. if (src1->grad) {
  13858. src1->grad =
  13859. ggml_add_or_set(ctx,
  13860. src1->grad,
  13861. ggml_reshape(ctx,
  13862. ggml_cont(ctx, tensor_grad_view),
  13863. src1->grad),
  13864. zero_table);
  13865. }
  13866. } break;
  13867. case GGML_OP_CPY:
  13868. {
  13869. // necessary for llama
  13870. // cpy overwrites value of src1 by src0 and returns view(src1)
  13871. // the overwriting is mathematically equivalent to:
  13872. // tensor = src0 * 1 + src1 * 0
  13873. if (src0->grad) {
  13874. // dsrc0 = dtensor * 1
  13875. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  13876. }
  13877. if (src1->grad) {
  13878. // dsrc1 = dtensor * 0 -> noop
  13879. }
  13880. } break;
  13881. case GGML_OP_CONT:
  13882. {
  13883. // same as cpy
  13884. if (src0->grad) {
  13885. GGML_ASSERT(ggml_is_contiguous(src0->grad));
  13886. GGML_ASSERT(ggml_is_contiguous(tensor->grad));
  13887. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  13888. }
  13889. } break;
  13890. case GGML_OP_RESHAPE:
  13891. {
  13892. // necessary for llama
  13893. if (src0->grad) {
  13894. src0->grad =
  13895. ggml_add_or_set(ctx, src0->grad,
  13896. ggml_reshape(ctx,
  13897. ggml_is_contiguous(tensor->grad)
  13898. ? tensor->grad
  13899. : ggml_cont(ctx, tensor->grad),
  13900. src0->grad),
  13901. zero_table);
  13902. }
  13903. } break;
  13904. case GGML_OP_VIEW:
  13905. {
  13906. // necessary for llama
  13907. if (src0->grad) {
  13908. size_t offset;
  13909. memcpy(&offset, tensor->op_params, sizeof(offset));
  13910. size_t nb1 = tensor->nb[1];
  13911. size_t nb2 = tensor->nb[2];
  13912. size_t nb3 = tensor->nb[3];
  13913. if (src0->type != src0->grad->type) {
  13914. // gradient is typically F32, but src0 could be other type
  13915. size_t ng = ggml_element_size(src0->grad);
  13916. size_t n0 = ggml_element_size(src0);
  13917. GGML_ASSERT(offset % n0 == 0);
  13918. GGML_ASSERT(nb1 % n0 == 0);
  13919. GGML_ASSERT(nb2 % n0 == 0);
  13920. GGML_ASSERT(nb3 % n0 == 0);
  13921. offset = (offset / n0) * ng;
  13922. nb1 = (nb1 / n0) * ng;
  13923. nb2 = (nb2 / n0) * ng;
  13924. nb3 = (nb3 / n0) * ng;
  13925. }
  13926. src0->grad = ggml_acc_or_set(ctx, src0->grad, tensor->grad, nb1, nb2, nb3, offset, zero_table);
  13927. }
  13928. } break;
  13929. case GGML_OP_PERMUTE:
  13930. {
  13931. // necessary for llama
  13932. if (src0->grad) {
  13933. int32_t * axes = (int32_t *) tensor->op_params;
  13934. int axis0 = axes[0] & 0x3;
  13935. int axis1 = axes[1] & 0x3;
  13936. int axis2 = axes[2] & 0x3;
  13937. int axis3 = axes[3] & 0x3;
  13938. int axes_backward[4] = {0,0,0,0};
  13939. axes_backward[axis0] = 0;
  13940. axes_backward[axis1] = 1;
  13941. axes_backward[axis2] = 2;
  13942. axes_backward[axis3] = 3;
  13943. src0->grad =
  13944. ggml_add_or_set(ctx, src0->grad,
  13945. ggml_permute(ctx,
  13946. tensor->grad,
  13947. axes_backward[0],
  13948. axes_backward[1],
  13949. axes_backward[2],
  13950. axes_backward[3]),
  13951. zero_table);
  13952. }
  13953. } break;
  13954. case GGML_OP_TRANSPOSE:
  13955. {
  13956. // necessary for llama
  13957. if (src0->grad) {
  13958. src0->grad =
  13959. ggml_add_or_set(ctx, src0->grad,
  13960. ggml_transpose(ctx, tensor->grad),
  13961. zero_table);
  13962. }
  13963. } break;
  13964. case GGML_OP_GET_ROWS:
  13965. {
  13966. // necessary for llama (only for tokenizer)
  13967. if (src0->grad) {
  13968. src0->grad =
  13969. ggml_add_or_set(ctx, src0->grad,
  13970. // last ggml_get_rows_back argument src0->grad is only
  13971. // necessary to setup correct output shape
  13972. ggml_get_rows_back(ctx, tensor->grad, src1, src0->grad),
  13973. zero_table);
  13974. }
  13975. if (src1->grad) {
  13976. // noop
  13977. }
  13978. } break;
  13979. case GGML_OP_GET_ROWS_BACK:
  13980. {
  13981. GGML_ASSERT(false); // TODO: not implemented
  13982. } break;
  13983. case GGML_OP_DIAG:
  13984. {
  13985. GGML_ASSERT(false); // TODO: not implemented
  13986. } break;
  13987. case GGML_OP_DIAG_MASK_INF:
  13988. {
  13989. // necessary for llama
  13990. if (src0->grad) {
  13991. const int n_past = ((int32_t *) tensor->op_params)[0];
  13992. src0->grad =
  13993. ggml_add_or_set(ctx, src0->grad,
  13994. /* ggml_diag_mask_inf_impl() shouldn't be here */
  13995. /* ref: https://github.com/ggerganov/llama.cpp/pull/4203#discussion_r1412377992 */
  13996. ggml_diag_mask_zero_impl(ctx, tensor->grad, n_past, false),
  13997. zero_table);
  13998. }
  13999. } break;
  14000. case GGML_OP_DIAG_MASK_ZERO:
  14001. {
  14002. // necessary for llama
  14003. if (src0->grad) {
  14004. const int n_past = ((int32_t *) tensor->op_params)[0];
  14005. src0->grad =
  14006. ggml_add_or_set(ctx, src0->grad,
  14007. ggml_diag_mask_zero_impl(ctx, tensor->grad, n_past, false),
  14008. zero_table);
  14009. }
  14010. } break;
  14011. case GGML_OP_SOFT_MAX:
  14012. {
  14013. // necessary for llama
  14014. if (src0->grad) {
  14015. src0->grad =
  14016. ggml_add_or_set(ctx, src0->grad,
  14017. ggml_soft_max_back(ctx, tensor->grad, tensor),
  14018. zero_table);
  14019. }
  14020. } break;
  14021. case GGML_OP_SOFT_MAX_BACK:
  14022. {
  14023. GGML_ASSERT(false); // TODO: not implemented
  14024. } break;
  14025. case GGML_OP_ROPE:
  14026. {
  14027. // necessary for llama
  14028. if (src0->grad) {
  14029. //const int n_past = ((int32_t *) tensor->op_params)[0];
  14030. const int n_dims = ((int32_t *) tensor->op_params)[1];
  14031. const int mode = ((int32_t *) tensor->op_params)[2];
  14032. const int n_ctx = ((int32_t *) tensor->op_params)[3];
  14033. const int n_orig_ctx = ((int32_t *) tensor->op_params)[4];
  14034. float freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow, xpos_base, xpos_down;
  14035. memcpy(&freq_base, (int32_t *) tensor->op_params + 5, sizeof(float));
  14036. memcpy(&freq_scale, (int32_t *) tensor->op_params + 6, sizeof(float));
  14037. memcpy(&ext_factor, (int32_t *) tensor->op_params + 7, sizeof(float));
  14038. memcpy(&attn_factor, (int32_t *) tensor->op_params + 8, sizeof(float));
  14039. memcpy(&beta_fast, (int32_t *) tensor->op_params + 9, sizeof(float));
  14040. memcpy(&beta_slow, (int32_t *) tensor->op_params + 10, sizeof(float));
  14041. memcpy(&xpos_base, (int32_t *) tensor->op_params + 11, sizeof(float));
  14042. memcpy(&xpos_down, (int32_t *) tensor->op_params + 12, sizeof(bool));
  14043. src0->grad = ggml_add_or_set(ctx,
  14044. src0->grad,
  14045. ggml_rope_back(ctx,
  14046. tensor->grad,
  14047. src1,
  14048. n_dims,
  14049. mode,
  14050. n_ctx,
  14051. n_orig_ctx,
  14052. freq_base,
  14053. freq_scale,
  14054. ext_factor,
  14055. attn_factor,
  14056. beta_fast,
  14057. beta_slow,
  14058. xpos_base,
  14059. xpos_down),
  14060. zero_table);
  14061. }
  14062. } break;
  14063. case GGML_OP_ROPE_BACK:
  14064. {
  14065. if (src0->grad) {
  14066. //const int n_past = ((int32_t *) tensor->op_params)[0];
  14067. const int n_dims = ((int32_t *) tensor->op_params)[1];
  14068. const int mode = ((int32_t *) tensor->op_params)[2];
  14069. const int n_ctx = ((int32_t *) tensor->op_params)[3];
  14070. const int n_orig_ctx = ((int32_t *) tensor->op_params)[4];
  14071. float freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow, xpos_base, xpos_down;
  14072. memcpy(&freq_base, (int32_t *) tensor->op_params + 5, sizeof(float));
  14073. memcpy(&freq_scale, (int32_t *) tensor->op_params + 6, sizeof(float));
  14074. memcpy(&ext_factor, (int32_t *) tensor->op_params + 7, sizeof(float));
  14075. memcpy(&attn_factor, (int32_t *) tensor->op_params + 8, sizeof(float));
  14076. memcpy(&beta_fast, (int32_t *) tensor->op_params + 9, sizeof(float));
  14077. memcpy(&beta_slow, (int32_t *) tensor->op_params + 10, sizeof(float));
  14078. memcpy(&xpos_base, (int32_t *) tensor->op_params + 11, sizeof(float));
  14079. memcpy(&xpos_down, (int32_t *) tensor->op_params + 12, sizeof(bool));
  14080. src0->grad = ggml_add_or_set(ctx,
  14081. src0->grad,
  14082. ggml_rope_impl(ctx,
  14083. tensor->grad,
  14084. src1,
  14085. n_dims,
  14086. mode,
  14087. n_ctx,
  14088. n_orig_ctx,
  14089. freq_base,
  14090. freq_scale,
  14091. ext_factor,
  14092. attn_factor,
  14093. beta_fast,
  14094. beta_slow,
  14095. xpos_base,
  14096. xpos_down,
  14097. false),
  14098. zero_table);
  14099. }
  14100. } break;
  14101. case GGML_OP_ALIBI:
  14102. {
  14103. GGML_ASSERT(false); // TODO: not implemented
  14104. } break;
  14105. case GGML_OP_CLAMP:
  14106. {
  14107. GGML_ASSERT(false); // TODO: not implemented
  14108. } break;
  14109. case GGML_OP_CONV_TRANSPOSE_1D:
  14110. {
  14111. GGML_ASSERT(false); // TODO: not implemented
  14112. } break;
  14113. case GGML_OP_IM2COL:
  14114. {
  14115. GGML_ASSERT(false); // TODO: not implemented
  14116. } break;
  14117. case GGML_OP_CONV_TRANSPOSE_2D:
  14118. {
  14119. GGML_ASSERT(false); // TODO: not implemented
  14120. } break;
  14121. case GGML_OP_POOL_1D:
  14122. {
  14123. GGML_ASSERT(false); // TODO: not implemented
  14124. } break;
  14125. case GGML_OP_POOL_2D:
  14126. {
  14127. GGML_ASSERT(false); // TODO: not implemented
  14128. } break;
  14129. case GGML_OP_UPSCALE:
  14130. {
  14131. GGML_ASSERT(false); // TODO: not implemented
  14132. } break;
  14133. case GGML_OP_PAD:
  14134. {
  14135. GGML_ASSERT(false); // TODO: not implemented
  14136. } break;
  14137. case GGML_OP_ARANGE:
  14138. {
  14139. GGML_ASSERT(false); // TODO: not implemented
  14140. } break;
  14141. case GGML_OP_TIMESTEP_EMBEDDING:
  14142. {
  14143. GGML_ASSERT(false); // TODO: not implemented
  14144. } break;
  14145. case GGML_OP_ARGSORT:
  14146. {
  14147. GGML_ASSERT(false); // TODO: not implemented
  14148. } break;
  14149. case GGML_OP_LEAKY_RELU:
  14150. {
  14151. GGML_ASSERT(false); // TODO: not implemented
  14152. } break;
  14153. case GGML_OP_FLASH_ATTN:
  14154. {
  14155. struct ggml_tensor * flash_grad = NULL;
  14156. if (src0->grad || src1->grad || tensor->src[2]->grad) {
  14157. int32_t t = ggml_get_op_params_i32(tensor, 0);
  14158. GGML_ASSERT(t == 0 || t == 1);
  14159. bool masked = t != 0;
  14160. flash_grad =
  14161. ggml_flash_attn_back(ctx,
  14162. src0,
  14163. src1,
  14164. tensor->src[2],
  14165. tensor->grad,
  14166. masked);
  14167. }
  14168. struct ggml_tensor * src2 = tensor->src[2];
  14169. const int64_t elem_q = ggml_nelements(src0);
  14170. const int64_t elem_k = ggml_nelements(src1);
  14171. const int64_t elem_v = ggml_nelements(src2);
  14172. enum ggml_type result_type = flash_grad->type;
  14173. GGML_ASSERT(ggml_blck_size(result_type) == 1);
  14174. const size_t tsize = ggml_type_size(result_type);
  14175. const size_t offs_q = 0;
  14176. const size_t offs_k = offs_q + GGML_PAD(elem_q * tsize, GGML_MEM_ALIGN);
  14177. const size_t offs_v = offs_k + GGML_PAD(elem_k * tsize, GGML_MEM_ALIGN);
  14178. if (src0->grad) {
  14179. struct ggml_tensor * view_q = ggml_view_1d(ctx, flash_grad, elem_q, offs_q);
  14180. struct ggml_tensor * grad_q = ggml_reshape(ctx, view_q, src0);
  14181. src0->grad = ggml_add_or_set(ctx,
  14182. src0->grad,
  14183. grad_q,
  14184. zero_table);
  14185. }
  14186. if (src1->grad) {
  14187. struct ggml_tensor * view_k = ggml_view_1d(ctx, flash_grad, elem_k, offs_k);
  14188. struct ggml_tensor * grad_k = ggml_reshape(ctx, view_k, src1);
  14189. src1->grad = ggml_add_or_set(ctx,
  14190. src1->grad,
  14191. grad_k,
  14192. zero_table);
  14193. }
  14194. if (src2->grad) {
  14195. struct ggml_tensor * view_v = ggml_view_1d(ctx, flash_grad, elem_v, offs_v);
  14196. struct ggml_tensor * grad_v = ggml_reshape(ctx, view_v, src2);
  14197. src2->grad = ggml_add_or_set(ctx,
  14198. src2->grad,
  14199. grad_v,
  14200. zero_table);
  14201. }
  14202. } break;
  14203. case GGML_OP_FLASH_FF:
  14204. {
  14205. GGML_ASSERT(false); // not supported
  14206. } break;
  14207. case GGML_OP_FLASH_ATTN_BACK:
  14208. {
  14209. GGML_ASSERT(false); // not supported
  14210. } break;
  14211. case GGML_OP_SSM_CONV:
  14212. case GGML_OP_SSM_SCAN:
  14213. {
  14214. GGML_ASSERT(false); // TODO: not implemented
  14215. } break;
  14216. case GGML_OP_WIN_PART:
  14217. case GGML_OP_WIN_UNPART:
  14218. case GGML_OP_UNARY:
  14219. {
  14220. switch (ggml_get_unary_op(tensor)) {
  14221. case GGML_UNARY_OP_ABS:
  14222. {
  14223. if (src0->grad) {
  14224. src0->grad =
  14225. ggml_add_or_set(ctx,
  14226. src0->grad,
  14227. ggml_mul(ctx,
  14228. ggml_sgn(ctx, src0),
  14229. tensor->grad),
  14230. zero_table);
  14231. }
  14232. } break;
  14233. case GGML_UNARY_OP_SGN:
  14234. {
  14235. if (src0->grad) {
  14236. // noop
  14237. }
  14238. } break;
  14239. case GGML_UNARY_OP_NEG:
  14240. {
  14241. if (src0->grad) {
  14242. src0->grad = ggml_sub_or_set(ctx, src0->grad, tensor->grad, zero_table);
  14243. }
  14244. } break;
  14245. case GGML_UNARY_OP_STEP:
  14246. {
  14247. if (src0->grad) {
  14248. // noop
  14249. }
  14250. } break;
  14251. case GGML_UNARY_OP_TANH:
  14252. {
  14253. GGML_ASSERT(false); // TODO: not implemented
  14254. } break;
  14255. case GGML_UNARY_OP_ELU:
  14256. {
  14257. GGML_ASSERT(false); // TODO: not implemented
  14258. } break;
  14259. case GGML_UNARY_OP_RELU:
  14260. {
  14261. if (src0->grad) {
  14262. src0->grad = ggml_add_or_set(ctx,
  14263. src0->grad,
  14264. ggml_mul(ctx,
  14265. ggml_step(ctx, src0),
  14266. tensor->grad),
  14267. zero_table);
  14268. }
  14269. } break;
  14270. case GGML_UNARY_OP_GELU:
  14271. {
  14272. GGML_ASSERT(false); // TODO: not implemented
  14273. } break;
  14274. case GGML_UNARY_OP_GELU_QUICK:
  14275. {
  14276. GGML_ASSERT(false); // TODO: not implemented
  14277. } break;
  14278. case GGML_UNARY_OP_SILU:
  14279. {
  14280. // necessary for llama
  14281. if (src0->grad) {
  14282. src0->grad = ggml_add_or_set(ctx,
  14283. src0->grad,
  14284. ggml_silu_back(ctx, src0, tensor->grad),
  14285. zero_table);
  14286. }
  14287. } break;
  14288. default:
  14289. GGML_ASSERT(false);
  14290. }
  14291. } break;
  14292. case GGML_OP_GET_REL_POS:
  14293. case GGML_OP_ADD_REL_POS:
  14294. case GGML_OP_MAP_UNARY:
  14295. case GGML_OP_MAP_BINARY:
  14296. case GGML_OP_MAP_CUSTOM1_F32:
  14297. case GGML_OP_MAP_CUSTOM2_F32:
  14298. case GGML_OP_MAP_CUSTOM3_F32:
  14299. case GGML_OP_MAP_CUSTOM1:
  14300. case GGML_OP_MAP_CUSTOM2:
  14301. case GGML_OP_MAP_CUSTOM3:
  14302. {
  14303. GGML_ASSERT(false); // not supported
  14304. } break;
  14305. case GGML_OP_CROSS_ENTROPY_LOSS:
  14306. {
  14307. if (src0->grad) {
  14308. src0->grad = ggml_add_or_set(ctx,
  14309. src0->grad,
  14310. ggml_cross_entropy_loss_back(ctx,
  14311. src0,
  14312. src1,
  14313. tensor->grad),
  14314. zero_table);
  14315. }
  14316. } break;
  14317. case GGML_OP_CROSS_ENTROPY_LOSS_BACK:
  14318. {
  14319. GGML_ASSERT(false); // not supported
  14320. } break;
  14321. case GGML_OP_NONE:
  14322. {
  14323. // nop
  14324. } break;
  14325. case GGML_OP_COUNT:
  14326. {
  14327. GGML_ASSERT(false);
  14328. } break;
  14329. }
  14330. for (int i = 0; i < GGML_MAX_SRC; ++i) {
  14331. if (tensor->src[i] && tensor->src[i]->grad) {
  14332. GGML_ASSERT(ggml_are_same_shape(tensor->src[i], tensor->src[i]->grad));
  14333. }
  14334. }
  14335. }
  14336. static void ggml_visit_parents(struct ggml_cgraph * cgraph, struct ggml_tensor * node) {
  14337. if (node->grad == NULL) {
  14338. // this usually happens when we generate intermediate nodes from constants in the backward pass
  14339. // it can also happen during forward pass, if the user performs computations with constants
  14340. if (node->op != GGML_OP_NONE) {
  14341. //GGML_PRINT_DEBUG("%s: warning: node %p has no grad, but op %d\n", __func__, (void *) node, node->op);
  14342. }
  14343. }
  14344. // check if already visited
  14345. if (ggml_hash_insert(cgraph->visited_hash_table, node) == GGML_HASHTABLE_ALREADY_EXISTS) {
  14346. return;
  14347. }
  14348. for (int i = 0; i < GGML_MAX_SRC; ++i) {
  14349. const int k =
  14350. (cgraph->order == GGML_CGRAPH_EVAL_ORDER_LEFT_TO_RIGHT) ? i :
  14351. (cgraph->order == GGML_CGRAPH_EVAL_ORDER_RIGHT_TO_LEFT) ? (GGML_MAX_SRC-1-i) :
  14352. /* unknown order, just fall back to using i*/ i;
  14353. if (node->src[k]) {
  14354. ggml_visit_parents(cgraph, node->src[k]);
  14355. }
  14356. }
  14357. if (node->op == GGML_OP_NONE && node->grad == NULL) {
  14358. // reached a leaf node, not part of the gradient graph (e.g. a constant)
  14359. GGML_ASSERT(cgraph->n_leafs < cgraph->size);
  14360. if (strlen(node->name) == 0) {
  14361. ggml_format_name(node, "leaf_%d", cgraph->n_leafs);
  14362. }
  14363. cgraph->leafs[cgraph->n_leafs] = node;
  14364. cgraph->n_leafs++;
  14365. } else {
  14366. GGML_ASSERT(cgraph->n_nodes < cgraph->size);
  14367. if (strlen(node->name) == 0) {
  14368. ggml_format_name(node, "node_%d", cgraph->n_nodes);
  14369. }
  14370. cgraph->nodes[cgraph->n_nodes] = node;
  14371. if (cgraph->grads) {
  14372. cgraph->grads[cgraph->n_nodes] = node->grad;
  14373. }
  14374. cgraph->n_nodes++;
  14375. }
  14376. }
  14377. static void ggml_build_forward_impl(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor, bool expand) {
  14378. if (!expand) {
  14379. // TODO: this branch isn't accessible anymore, maybe move this to ggml_build_forward_expand
  14380. ggml_graph_clear(cgraph);
  14381. }
  14382. const int n0 = cgraph->n_nodes;
  14383. UNUSED(n0);
  14384. ggml_visit_parents(cgraph, tensor);
  14385. const int n_new = cgraph->n_nodes - n0;
  14386. GGML_PRINT_DEBUG("%s: visited %d new nodes\n", __func__, n_new);
  14387. if (n_new > 0) {
  14388. // the last added node should always be starting point
  14389. GGML_ASSERT(cgraph->nodes[cgraph->n_nodes - 1] == tensor);
  14390. }
  14391. }
  14392. void ggml_build_forward_expand(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor) {
  14393. ggml_build_forward_impl(cgraph, tensor, true);
  14394. }
  14395. void ggml_build_backward_expand(struct ggml_context * ctx, struct ggml_cgraph * gf, struct ggml_cgraph * gb, bool keep) {
  14396. GGML_ASSERT(gf->n_nodes > 0);
  14397. // if we are keeping the gradient graph, we have to detach the gradient nodes from the original graph
  14398. if (keep) {
  14399. for (int i = 0; i < gf->n_nodes; i++) {
  14400. struct ggml_tensor * node = gf->nodes[i];
  14401. if (node->grad) {
  14402. node->grad = ggml_dup_tensor(ctx, node);
  14403. gf->grads[i] = node->grad;
  14404. }
  14405. }
  14406. }
  14407. // remember original gradients which start with zero values
  14408. struct ggml_hash_set zero_table = ggml_hash_set_new(gf->size);
  14409. for (int i = 0; i < gf->n_nodes; i++) {
  14410. if (gf->grads[i]) {
  14411. ggml_hash_insert(zero_table, gf->grads[i]);
  14412. }
  14413. }
  14414. for (int i = gf->n_nodes - 1; i >= 0; i--) {
  14415. struct ggml_tensor * node = gf->nodes[i];
  14416. // inplace operations to add gradients are not created by ggml_compute_backward
  14417. // use allocator to automatically make inplace operations
  14418. if (node->grad) {
  14419. ggml_compute_backward(ctx, node, zero_table);
  14420. }
  14421. }
  14422. for (int i = 0; i < gf->n_nodes; i++) {
  14423. struct ggml_tensor * node = gf->nodes[i];
  14424. if (node->flags & GGML_TENSOR_FLAG_PARAM) {
  14425. GGML_PRINT_DEBUG("%s: found root node %p\n", __func__, (void *) node);
  14426. ggml_build_forward_expand(gb, node->grad);
  14427. }
  14428. }
  14429. ggml_hash_set_free(zero_table);
  14430. }
  14431. static size_t ggml_graph_nbytes(size_t size, bool grads) {
  14432. size_t nbytes = sizeof(struct ggml_cgraph);
  14433. nbytes += size * sizeof(struct ggml_tensor *) * 2; // leafs + nodes
  14434. if (grads) {
  14435. nbytes += size * sizeof(struct ggml_tensor *); // grads
  14436. }
  14437. nbytes += ggml_hash_size(size * 2) * sizeof(struct ggml_tensor *); // hash set
  14438. return nbytes;
  14439. }
  14440. size_t ggml_graph_overhead_custom(size_t size, bool grads) {
  14441. return GGML_OBJECT_SIZE + GGML_PAD(ggml_graph_nbytes(size, grads), GGML_MEM_ALIGN);
  14442. }
  14443. size_t ggml_graph_overhead(void) {
  14444. return ggml_graph_overhead_custom(GGML_DEFAULT_GRAPH_SIZE, false);
  14445. }
  14446. struct ggml_cgraph * ggml_new_graph_custom(struct ggml_context * ctx, size_t size, bool grads) {
  14447. const size_t obj_size = ggml_graph_nbytes(size, grads);
  14448. struct ggml_object * obj = ggml_new_object(ctx, GGML_OBJECT_TYPE_GRAPH, obj_size);
  14449. struct ggml_cgraph * cgraph = (struct ggml_cgraph *) ((char *) ctx->mem_buffer + obj->offs);
  14450. struct ggml_tensor ** data_start = (struct ggml_tensor **) (cgraph + 1);
  14451. size_t hash_size = ggml_hash_size(size * 2);
  14452. struct ggml_tensor ** nodes_ptr = data_start;
  14453. struct ggml_tensor ** leafs_ptr = nodes_ptr + size;
  14454. struct ggml_tensor ** hash_keys_ptr = leafs_ptr + size;
  14455. struct ggml_tensor ** grads_ptr = grads ? hash_keys_ptr + hash_size : NULL;
  14456. // check that we allocated the correct amount of memory
  14457. assert(obj_size == (size_t) (
  14458. (grads ? (char *)(grads_ptr + size) : (char *)(hash_keys_ptr + hash_size)) - (char *)cgraph));
  14459. memset(hash_keys_ptr, 0, hash_size * sizeof(struct ggml_tensor *));
  14460. *cgraph = (struct ggml_cgraph) {
  14461. /*.size =*/ size,
  14462. /*.n_nodes =*/ 0,
  14463. /*.n_leafs =*/ 0,
  14464. /*.nodes =*/ nodes_ptr,
  14465. /*.grads =*/ grads_ptr,
  14466. /*.leafs =*/ leafs_ptr,
  14467. /*.hash_table =*/ { hash_size, hash_keys_ptr },
  14468. /*.order =*/ GGML_CGRAPH_EVAL_ORDER_LEFT_TO_RIGHT,
  14469. /*.perf_runs =*/ 0,
  14470. /*.perf_cycles =*/ 0,
  14471. /*.perf_time_us =*/ 0,
  14472. };
  14473. return cgraph;
  14474. }
  14475. struct ggml_cgraph * ggml_new_graph(struct ggml_context * ctx) {
  14476. return ggml_new_graph_custom(ctx, GGML_DEFAULT_GRAPH_SIZE, false);
  14477. }
  14478. struct ggml_cgraph ggml_graph_view(struct ggml_cgraph * cgraph0, int i0, int i1) {
  14479. struct ggml_cgraph cgraph = {
  14480. /*.size =*/ 0,
  14481. /*.n_nodes =*/ i1 - i0,
  14482. /*.n_leafs =*/ 0,
  14483. /*.nodes =*/ cgraph0->nodes + i0,
  14484. /*.grads =*/ cgraph0->grads ? cgraph0->grads + i0 : NULL,
  14485. /*.leafs =*/ NULL,
  14486. /*.hash_table =*/ { 0, NULL },
  14487. /*.order =*/ cgraph0->order,
  14488. /*.perf_runs =*/ 0,
  14489. /*.perf_cycles =*/ 0,
  14490. /*.perf_time_us =*/ 0,
  14491. };
  14492. return cgraph;
  14493. }
  14494. void ggml_graph_cpy(struct ggml_cgraph * src, struct ggml_cgraph * dst) {
  14495. GGML_ASSERT(dst->size >= src->n_leafs);
  14496. GGML_ASSERT(dst->size >= src->n_nodes);
  14497. GGML_ASSERT(dst->visited_hash_table.size >= src->visited_hash_table.size);
  14498. dst->n_leafs = src->n_leafs;
  14499. dst->n_nodes = src->n_nodes;
  14500. dst->order = src->order;
  14501. for (int i = 0; i < src->n_leafs; ++i) {
  14502. dst->leafs[i] = src->leafs[i];
  14503. }
  14504. for (int i = 0; i < src->n_nodes; ++i) {
  14505. dst->nodes[i] = src->nodes[i];
  14506. }
  14507. if (src->grads) {
  14508. GGML_ASSERT(dst->grads != NULL);
  14509. for (int i = 0; i < src->n_nodes; ++i) {
  14510. dst->grads[i] = src->grads[i];
  14511. }
  14512. }
  14513. for (size_t i = 0; i < src->visited_hash_table.size; ++i) {
  14514. if (src->visited_hash_table.keys[i]) {
  14515. ggml_hash_insert(dst->visited_hash_table, src->visited_hash_table.keys[i]);
  14516. }
  14517. }
  14518. }
  14519. struct ggml_cgraph * ggml_graph_dup(struct ggml_context * ctx, struct ggml_cgraph * cgraph) {
  14520. struct ggml_cgraph * result = ggml_new_graph_custom(ctx, cgraph->size, cgraph->grads != NULL);
  14521. ggml_graph_cpy(cgraph, result);
  14522. return result;
  14523. }
  14524. void ggml_graph_reset(struct ggml_cgraph * cgraph) {
  14525. GGML_ASSERT(cgraph->grads != NULL);
  14526. for (int i = 0; i < cgraph->n_nodes; i++) {
  14527. struct ggml_tensor * grad = cgraph->grads[i];
  14528. if (grad) {
  14529. ggml_set_zero(grad);
  14530. }
  14531. }
  14532. }
  14533. void ggml_graph_clear(struct ggml_cgraph * cgraph) {
  14534. cgraph->n_leafs = 0;
  14535. cgraph->n_nodes = 0;
  14536. memset(cgraph->visited_hash_table.keys, 0, cgraph->visited_hash_table.size * sizeof(struct ggml_tensor *));
  14537. }
  14538. //
  14539. // thread data
  14540. //
  14541. // synchronization is done via busy loops
  14542. // I tried using spin locks, but not sure how to use them correctly - the things I tried were slower than busy loops
  14543. //
  14544. #ifdef __APPLE__
  14545. //#include <os/lock.h>
  14546. //
  14547. //typedef os_unfair_lock ggml_lock_t;
  14548. //
  14549. //#define ggml_lock_init(x) UNUSED(x)
  14550. //#define ggml_lock_destroy(x) UNUSED(x)
  14551. //#define ggml_lock_lock os_unfair_lock_lock
  14552. //#define ggml_lock_unlock os_unfair_lock_unlock
  14553. //
  14554. //#define GGML_LOCK_INITIALIZER OS_UNFAIR_LOCK_INIT
  14555. typedef int ggml_lock_t;
  14556. #define ggml_lock_init(x) UNUSED(x)
  14557. #define ggml_lock_destroy(x) UNUSED(x)
  14558. #define ggml_lock_lock(x) UNUSED(x)
  14559. #define ggml_lock_unlock(x) UNUSED(x)
  14560. #define GGML_LOCK_INITIALIZER 0
  14561. typedef pthread_t ggml_thread_t;
  14562. #define ggml_thread_create pthread_create
  14563. #define ggml_thread_join pthread_join
  14564. #else
  14565. //typedef pthread_spinlock_t ggml_lock_t;
  14566. //#define ggml_lock_init(x) pthread_spin_init(x, PTHREAD_PROCESS_PRIVATE)
  14567. //#define ggml_lock_destroy pthread_spin_destroy
  14568. //#define ggml_lock_lock pthread_spin_lock
  14569. //#define ggml_lock_unlock pthread_spin_unlock
  14570. typedef int ggml_lock_t;
  14571. #define ggml_lock_init(x) UNUSED(x)
  14572. #define ggml_lock_destroy(x) UNUSED(x)
  14573. #if defined(__x86_64__) || (defined(_MSC_VER) && defined(_M_AMD64))
  14574. #define ggml_lock_lock(x) _mm_pause()
  14575. #else
  14576. #define ggml_lock_lock(x) UNUSED(x)
  14577. #endif
  14578. #define ggml_lock_unlock(x) UNUSED(x)
  14579. #define GGML_LOCK_INITIALIZER 0
  14580. typedef pthread_t ggml_thread_t;
  14581. #define ggml_thread_create pthread_create
  14582. #define ggml_thread_join pthread_join
  14583. #endif
  14584. // Android's libc implementation "bionic" does not support setting affinity
  14585. #if defined(__gnu_linux__)
  14586. static void set_numa_thread_affinity(int thread_n) {
  14587. if (!ggml_is_numa()) {
  14588. return;
  14589. }
  14590. int node_num;
  14591. int rv;
  14592. size_t setsize = CPU_ALLOC_SIZE(g_state.numa.total_cpus);
  14593. switch(g_state.numa.numa_strategy) {
  14594. case GGML_NUMA_STRATEGY_DISTRIBUTE:
  14595. // run thread on node_num thread_n / (threads per node)
  14596. node_num = thread_n % g_state.numa.n_nodes;
  14597. break;
  14598. case GGML_NUMA_STRATEGY_ISOLATE:
  14599. // run thread on current_node
  14600. node_num = g_state.numa.current_node;
  14601. break;
  14602. case GGML_NUMA_STRATEGY_NUMACTL:
  14603. // use the cpuset that numactl gave us
  14604. rv = pthread_setaffinity_np(pthread_self(), setsize, &g_state.numa.cpuset);
  14605. if (rv) {
  14606. fprintf(stderr, "warning: pthread_setaffinity_np() failed: %s\n",strerror(rv));
  14607. }
  14608. return;
  14609. default:
  14610. return;
  14611. }
  14612. struct ggml_numa_node * node = &g_state.numa.nodes[node_num];
  14613. cpu_set_t * cpus = CPU_ALLOC(g_state.numa.total_cpus);
  14614. CPU_ZERO_S(setsize, cpus);
  14615. for (size_t i = 0; i < node->n_cpus; ++i) {
  14616. CPU_SET_S(node->cpus[i], setsize, cpus);
  14617. }
  14618. rv = pthread_setaffinity_np(pthread_self(), setsize, cpus);
  14619. if (rv) {
  14620. fprintf(stderr, "warning: pthread_setaffinity_np() failed: %s\n", strerror(rv));
  14621. }
  14622. CPU_FREE(cpus);
  14623. }
  14624. static void clear_numa_thread_affinity(void) {
  14625. if (!ggml_is_numa()) {
  14626. return;
  14627. }
  14628. size_t setsize = CPU_ALLOC_SIZE(g_state.numa.total_cpus);
  14629. cpu_set_t * cpus = CPU_ALLOC(g_state.numa.total_cpus);
  14630. CPU_ZERO_S(setsize, cpus);
  14631. for (unsigned i = 0; i < g_state.numa.total_cpus; ++i) {
  14632. CPU_SET_S(i, setsize, cpus);
  14633. }
  14634. int rv = pthread_setaffinity_np(pthread_self(), setsize, cpus);
  14635. if (rv) {
  14636. fprintf(stderr, "warning: pthread_setaffinity_np() failed: %s\n", strerror(rv));
  14637. }
  14638. CPU_FREE(cpus);
  14639. }
  14640. #else
  14641. // TODO: Windows etc.
  14642. // (the linux implementation may also work on BSD, someone should test)
  14643. static void set_numa_thread_affinity(int thread_n) { UNUSED(thread_n); }
  14644. static void clear_numa_thread_affinity(void) {}
  14645. #endif
  14646. struct ggml_compute_state_shared {
  14647. const struct ggml_cgraph * cgraph;
  14648. const struct ggml_cplan * cplan;
  14649. int64_t perf_node_start_cycles;
  14650. int64_t perf_node_start_time_us;
  14651. const int n_threads;
  14652. // synchronization primitives
  14653. atomic_int n_active; // num active threads
  14654. atomic_int node_n; // active graph node
  14655. atomic_int node_task; // active graph node task phase
  14656. ggml_abort_callback abort_callback; // abort ggml_graph_compute when true
  14657. void * abort_callback_data;
  14658. };
  14659. struct ggml_compute_state {
  14660. ggml_thread_t thrd;
  14661. int ith;
  14662. struct ggml_compute_state_shared * shared;
  14663. enum ggml_status ec;
  14664. };
  14665. static void ggml_graph_compute_perf_stats_node(struct ggml_tensor * node, const struct ggml_compute_state_shared * st) {
  14666. int64_t cycles_cur = ggml_perf_cycles() - st->perf_node_start_cycles;
  14667. int64_t time_us_cur = ggml_perf_time_us() - st->perf_node_start_time_us;
  14668. node->perf_runs++;
  14669. node->perf_cycles += cycles_cur;
  14670. node->perf_time_us += time_us_cur;
  14671. }
  14672. static int ggml_get_n_tasks(struct ggml_tensor * node, int n_threads, int n_cur_threads) {
  14673. int n_tasks = 0;
  14674. switch (node->op) {
  14675. case GGML_OP_CPY:
  14676. case GGML_OP_DUP:
  14677. case GGML_OP_ADD:
  14678. case GGML_OP_ADD1:
  14679. case GGML_OP_ACC:
  14680. {
  14681. n_tasks = n_threads;
  14682. } break;
  14683. case GGML_OP_SUB:
  14684. case GGML_OP_SQR:
  14685. case GGML_OP_SQRT:
  14686. case GGML_OP_LOG:
  14687. case GGML_OP_SUM:
  14688. case GGML_OP_SUM_ROWS:
  14689. case GGML_OP_MEAN:
  14690. case GGML_OP_ARGMAX:
  14691. case GGML_OP_REPEAT:
  14692. case GGML_OP_REPEAT_BACK:
  14693. case GGML_OP_LEAKY_RELU:
  14694. {
  14695. n_tasks = 1;
  14696. } break;
  14697. case GGML_OP_UNARY:
  14698. switch (ggml_get_unary_op(node)) {
  14699. case GGML_UNARY_OP_ABS:
  14700. case GGML_UNARY_OP_SGN:
  14701. case GGML_UNARY_OP_NEG:
  14702. case GGML_UNARY_OP_STEP:
  14703. case GGML_UNARY_OP_TANH:
  14704. case GGML_UNARY_OP_ELU:
  14705. case GGML_UNARY_OP_RELU:
  14706. case GGML_UNARY_OP_HARDSWISH: // to opt for multiple threads
  14707. case GGML_UNARY_OP_HARDSIGMOID: // to opt for multiple threads
  14708. {
  14709. n_tasks = 1;
  14710. } break;
  14711. case GGML_UNARY_OP_GELU:
  14712. case GGML_UNARY_OP_GELU_QUICK:
  14713. case GGML_UNARY_OP_SILU:
  14714. {
  14715. n_tasks = n_threads;
  14716. } break;
  14717. default:
  14718. GGML_ASSERT(false);
  14719. }
  14720. break;
  14721. case GGML_OP_SILU_BACK:
  14722. case GGML_OP_MUL:
  14723. case GGML_OP_DIV:
  14724. case GGML_OP_NORM:
  14725. case GGML_OP_RMS_NORM:
  14726. case GGML_OP_RMS_NORM_BACK:
  14727. case GGML_OP_GROUP_NORM:
  14728. case GGML_OP_CONCAT:
  14729. {
  14730. n_tasks = n_threads;
  14731. } break;
  14732. case GGML_OP_MUL_MAT:
  14733. {
  14734. n_tasks = n_threads;
  14735. // TODO: use different scheduling for different matrix sizes
  14736. //const int nr0 = ggml_nrows(node->src[0]);
  14737. //const int nr1 = ggml_nrows(node->src[1]);
  14738. //n_tasks = MIN(n_threads, MAX(1, nr0/128));
  14739. //printf("nr0 = %8d, nr1 = %8d, nr0*nr1 = %8d, n_tasks%d\n", nr0, nr1, nr0*nr1, n_tasks);
  14740. } break;
  14741. case GGML_OP_MUL_MAT_ID:
  14742. {
  14743. n_tasks = n_threads;
  14744. } break;
  14745. case GGML_OP_OUT_PROD:
  14746. {
  14747. n_tasks = n_threads;
  14748. } break;
  14749. case GGML_OP_GET_ROWS:
  14750. {
  14751. // FIXME: the cost of launching additional threads decreases performance with GPU offloading
  14752. //n_tasks = MIN(n_threads, ggml_nelements(node->src[1]));
  14753. n_tasks = MIN(n_cur_threads, ggml_nelements(node->src[1]));
  14754. } break;
  14755. case GGML_OP_SCALE:
  14756. case GGML_OP_SET:
  14757. case GGML_OP_CONT:
  14758. case GGML_OP_RESHAPE:
  14759. case GGML_OP_VIEW:
  14760. case GGML_OP_PERMUTE:
  14761. case GGML_OP_TRANSPOSE:
  14762. case GGML_OP_GET_ROWS_BACK:
  14763. case GGML_OP_DIAG:
  14764. {
  14765. n_tasks = 1;
  14766. } break;
  14767. case GGML_OP_DIAG_MASK_ZERO:
  14768. case GGML_OP_DIAG_MASK_INF:
  14769. case GGML_OP_SOFT_MAX_BACK:
  14770. case GGML_OP_ROPE:
  14771. case GGML_OP_ROPE_BACK:
  14772. case GGML_OP_ADD_REL_POS:
  14773. {
  14774. n_tasks = n_threads;
  14775. } break;
  14776. case GGML_OP_ALIBI:
  14777. {
  14778. n_tasks = 1; //TODO
  14779. } break;
  14780. case GGML_OP_CLAMP:
  14781. {
  14782. n_tasks = 1; //TODO
  14783. } break;
  14784. case GGML_OP_SOFT_MAX:
  14785. {
  14786. n_tasks = MIN(n_threads, ggml_nrows(node->src[0]));
  14787. } break;
  14788. case GGML_OP_CONV_TRANSPOSE_1D:
  14789. {
  14790. n_tasks = n_threads;
  14791. } break;
  14792. case GGML_OP_IM2COL:
  14793. {
  14794. n_tasks = n_threads;
  14795. } break;
  14796. case GGML_OP_CONV_TRANSPOSE_2D:
  14797. {
  14798. n_tasks = n_threads;
  14799. } break;
  14800. case GGML_OP_POOL_1D:
  14801. case GGML_OP_POOL_2D:
  14802. {
  14803. n_tasks = 1;
  14804. } break;
  14805. case GGML_OP_UPSCALE:
  14806. {
  14807. n_tasks = n_threads;
  14808. } break;
  14809. case GGML_OP_PAD:
  14810. {
  14811. n_tasks = n_threads;
  14812. } break;
  14813. case GGML_OP_ARANGE:
  14814. {
  14815. n_tasks = n_threads;
  14816. } break;
  14817. case GGML_OP_TIMESTEP_EMBEDDING:
  14818. {
  14819. n_tasks = n_threads;
  14820. } break;
  14821. case GGML_OP_ARGSORT:
  14822. {
  14823. n_tasks = n_threads;
  14824. } break;
  14825. case GGML_OP_FLASH_ATTN:
  14826. {
  14827. n_tasks = n_threads;
  14828. } break;
  14829. case GGML_OP_FLASH_FF:
  14830. {
  14831. n_tasks = n_threads;
  14832. } break;
  14833. case GGML_OP_FLASH_ATTN_BACK:
  14834. {
  14835. n_tasks = n_threads;
  14836. } break;
  14837. case GGML_OP_SSM_CONV:
  14838. case GGML_OP_SSM_SCAN:
  14839. {
  14840. n_tasks = n_threads;
  14841. } break;
  14842. case GGML_OP_WIN_PART:
  14843. case GGML_OP_WIN_UNPART:
  14844. case GGML_OP_GET_REL_POS:
  14845. case GGML_OP_MAP_UNARY:
  14846. case GGML_OP_MAP_BINARY:
  14847. case GGML_OP_MAP_CUSTOM1_F32:
  14848. case GGML_OP_MAP_CUSTOM2_F32:
  14849. case GGML_OP_MAP_CUSTOM3_F32:
  14850. {
  14851. n_tasks = 1;
  14852. } break;
  14853. case GGML_OP_MAP_CUSTOM1:
  14854. {
  14855. struct ggml_map_custom1_op_params p;
  14856. memcpy(&p, node->op_params, sizeof(p));
  14857. if (p.n_tasks == GGML_N_TASKS_MAX) {
  14858. n_tasks = n_threads;
  14859. } else {
  14860. n_tasks = MIN(p.n_tasks, n_threads);
  14861. }
  14862. } break;
  14863. case GGML_OP_MAP_CUSTOM2:
  14864. {
  14865. struct ggml_map_custom2_op_params p;
  14866. memcpy(&p, node->op_params, sizeof(p));
  14867. if (p.n_tasks == GGML_N_TASKS_MAX) {
  14868. n_tasks = n_threads;
  14869. } else {
  14870. n_tasks = MIN(p.n_tasks, n_threads);
  14871. }
  14872. } break;
  14873. case GGML_OP_MAP_CUSTOM3:
  14874. {
  14875. struct ggml_map_custom3_op_params p;
  14876. memcpy(&p, node->op_params, sizeof(p));
  14877. if (p.n_tasks == GGML_N_TASKS_MAX) {
  14878. n_tasks = n_threads;
  14879. } else {
  14880. n_tasks = MIN(p.n_tasks, n_threads);
  14881. }
  14882. } break;
  14883. case GGML_OP_CROSS_ENTROPY_LOSS:
  14884. {
  14885. n_tasks = n_threads;
  14886. } break;
  14887. case GGML_OP_CROSS_ENTROPY_LOSS_BACK:
  14888. {
  14889. n_tasks = n_threads;
  14890. } break;
  14891. case GGML_OP_NONE:
  14892. {
  14893. n_tasks = 1;
  14894. } break;
  14895. case GGML_OP_COUNT:
  14896. {
  14897. GGML_ASSERT(false);
  14898. } break;
  14899. default:
  14900. {
  14901. fprintf(stderr, "%s: op not implemented: ", __func__);
  14902. if (node->op < GGML_OP_COUNT) {
  14903. fprintf(stderr, "%s\n", ggml_op_name(node->op));
  14904. } else {
  14905. fprintf(stderr, "%d\n", node->op);
  14906. }
  14907. GGML_ASSERT(false);
  14908. } break;
  14909. }
  14910. assert(n_tasks > 0);
  14911. return n_tasks;
  14912. }
  14913. static void ggml_graph_compute_thread_sync_node(int * node_n, struct ggml_compute_state * state, const bool do_yield) {
  14914. // wait for other threads to finish
  14915. const int last_node_n = * node_n;
  14916. while (true) {
  14917. if (do_yield) {
  14918. sched_yield();
  14919. }
  14920. * node_n = atomic_load(&state->shared->node_n);
  14921. if (* node_n != last_node_n) break;
  14922. }
  14923. }
  14924. static void ggml_graph_compute_thread_sync_task(int * task_phase, struct ggml_compute_state * state, const bool do_yield) {
  14925. // wait for other threads to finish
  14926. const int last_task_phase = * task_phase;
  14927. while (true) {
  14928. if (do_yield) {
  14929. sched_yield();
  14930. }
  14931. * task_phase = atomic_load(&state->shared->node_task);
  14932. if (* task_phase != last_task_phase) break;
  14933. }
  14934. }
  14935. static thread_ret_t ggml_graph_compute_thread(void * data) {
  14936. struct ggml_compute_state * state = (struct ggml_compute_state *) data;
  14937. const struct ggml_cgraph * cgraph = state->shared->cgraph;
  14938. const struct ggml_cplan * cplan = state->shared->cplan;
  14939. const int n_threads = state->shared->n_threads;
  14940. set_numa_thread_affinity(state->ith);
  14941. int node_n = -1;
  14942. int task_phase = GGML_TASK_TYPE_FINALIZE;
  14943. while (true) {
  14944. if (cplan->abort_callback && cplan->abort_callback(cplan->abort_callback_data)) {
  14945. state->shared->node_n += 1;
  14946. state->ec = GGML_STATUS_ABORTED;
  14947. return 0;
  14948. }
  14949. if (atomic_fetch_sub(&state->shared->n_active, 1) == 1) {
  14950. // all other threads are finished and spinning
  14951. // do finalize and init here so we don't have synchronize again
  14952. struct ggml_compute_params params = {
  14953. /*.type =*/ GGML_TASK_TYPE_FINALIZE,
  14954. /*.ith =*/ 0,
  14955. /*.nth =*/ 0,
  14956. /*.wsize =*/ cplan->work_size,
  14957. /*.wdata =*/ cplan->work_data,
  14958. };
  14959. if (node_n != -1) {
  14960. /* FINALIZE */
  14961. struct ggml_tensor * node = cgraph->nodes[node_n];
  14962. if (GGML_OP_HAS_FINALIZE[node->op]) {
  14963. params.nth = ggml_get_n_tasks(node, n_threads, state->shared->n_threads);
  14964. ggml_compute_forward(&params, node);
  14965. }
  14966. ggml_graph_compute_perf_stats_node(node, state->shared);
  14967. }
  14968. // distribute new work or execute it direct if 1T
  14969. while (++node_n < cgraph->n_nodes) {
  14970. GGML_PRINT_DEBUG_5("%s: %d/%d\n", __func__, node_n, cgraph->n_nodes);
  14971. struct ggml_tensor * node = cgraph->nodes[node_n];
  14972. const int n_tasks = ggml_get_n_tasks(node, n_threads, state->shared->n_threads);
  14973. state->shared->perf_node_start_cycles = ggml_perf_cycles();
  14974. state->shared->perf_node_start_time_us = ggml_perf_time_us();
  14975. params.nth = n_tasks;
  14976. if (n_tasks == 1) {
  14977. /* INIT */
  14978. if (GGML_OP_HAS_INIT[node->op]) {
  14979. params.type = GGML_TASK_TYPE_INIT;
  14980. ggml_compute_forward(&params, node);
  14981. }
  14982. // TODO: maybe push node_n to the atomic but if other threads see n_tasks is 1,
  14983. // they do something more efficient than spinning (?)
  14984. params.type = GGML_TASK_TYPE_COMPUTE;
  14985. ggml_compute_forward(&params, node);
  14986. if (GGML_OP_HAS_FINALIZE[node->op]) {
  14987. params.type = GGML_TASK_TYPE_FINALIZE;
  14988. ggml_compute_forward(&params, node);
  14989. }
  14990. ggml_graph_compute_perf_stats_node(node, state->shared);
  14991. } else {
  14992. break;
  14993. }
  14994. if (cplan->abort_callback && cplan->abort_callback(cplan->abort_callback_data)) {
  14995. break;
  14996. }
  14997. }
  14998. task_phase = GGML_TASK_TYPE_INIT;
  14999. atomic_store(&state->shared->n_active, n_threads);
  15000. atomic_store(&state->shared->node_n, node_n);
  15001. atomic_store(&state->shared->node_task, task_phase);
  15002. } else {
  15003. ggml_graph_compute_thread_sync_node(&node_n, state, false);
  15004. ggml_graph_compute_thread_sync_task(&task_phase, state, false);
  15005. }
  15006. // check if we should stop
  15007. if (node_n >= cgraph->n_nodes) break;
  15008. /* INIT & COMPUTE */
  15009. struct ggml_tensor * node = cgraph->nodes[node_n];
  15010. const int n_tasks = ggml_get_n_tasks(node, n_threads, state->shared->n_threads);
  15011. struct ggml_compute_params params = {
  15012. /*.type =*/ GGML_TASK_TYPE_INIT,
  15013. /*.ith =*/ state->ith,
  15014. /*.nth =*/ n_tasks,
  15015. /*.wsize =*/ cplan->work_size,
  15016. /*.wdata =*/ cplan->work_data,
  15017. };
  15018. if (state->ith < n_tasks) {
  15019. if (GGML_OP_HAS_INIT[node->op]) {
  15020. ggml_compute_forward(&params, node);
  15021. }
  15022. }
  15023. if (atomic_fetch_sub(&state->shared->n_active, 1) == 1) {
  15024. task_phase = GGML_TASK_TYPE_COMPUTE;
  15025. atomic_store(&state->shared->n_active, n_threads);
  15026. atomic_store(&state->shared->node_task, task_phase);
  15027. }
  15028. else {
  15029. // TODO: this sched_yield can have significant impact on the performance - either positive or negative
  15030. // depending on the workload and the operating system.
  15031. // since it is not clear what is the best approach, it should potentially become user-configurable
  15032. // ref: https://github.com/ggerganov/ggml/issues/291
  15033. // UPD: adding the do_yield flag seems to resolve the issue universally
  15034. const bool do_yield = node_n < 0 || cgraph->nodes[node_n]->op == GGML_OP_MUL_MAT;
  15035. ggml_graph_compute_thread_sync_task(&task_phase, state, do_yield);
  15036. }
  15037. if (state->ith < n_tasks) {
  15038. params.type = GGML_TASK_TYPE_COMPUTE;
  15039. ggml_compute_forward(&params, node);
  15040. }
  15041. if (atomic_fetch_sub(&state->shared->n_active, 1) == 1) {
  15042. task_phase = GGML_TASK_TYPE_FINALIZE;
  15043. atomic_store(&state->shared->n_active, n_threads);
  15044. atomic_store(&state->shared->node_task, task_phase);
  15045. }
  15046. else {
  15047. ggml_graph_compute_thread_sync_task(&task_phase, state, false);
  15048. }
  15049. }
  15050. return 0;
  15051. }
  15052. struct ggml_cplan ggml_graph_plan(const struct ggml_cgraph * cgraph, int n_threads) {
  15053. if (n_threads <= 0) {
  15054. n_threads = GGML_DEFAULT_N_THREADS;
  15055. }
  15056. size_t work_size = 0;
  15057. struct ggml_cplan cplan;
  15058. memset(&cplan, 0, sizeof(struct ggml_cplan));
  15059. int max_tasks = 1;
  15060. // thread scheduling for the different operations + work buffer size estimation
  15061. for (int i = 0; i < cgraph->n_nodes; i++) {
  15062. struct ggml_tensor * node = cgraph->nodes[i];
  15063. const int n_tasks = ggml_get_n_tasks(node, n_threads, 1);
  15064. max_tasks = MAX(max_tasks, n_tasks);
  15065. size_t cur = 0;
  15066. switch (node->op) {
  15067. case GGML_OP_CPY:
  15068. case GGML_OP_DUP:
  15069. {
  15070. if (ggml_is_quantized(node->type)) {
  15071. cur = ggml_type_size(GGML_TYPE_F32) * node->ne[0] * n_tasks;
  15072. }
  15073. } break;
  15074. case GGML_OP_ADD:
  15075. case GGML_OP_ADD1:
  15076. {
  15077. if (ggml_is_quantized(node->src[0]->type)) {
  15078. cur = ggml_type_size(GGML_TYPE_F32) * node->src[0]->ne[0] * n_tasks;
  15079. }
  15080. } break;
  15081. case GGML_OP_ACC:
  15082. {
  15083. if (ggml_is_quantized(node->src[0]->type)) {
  15084. cur = ggml_type_size(GGML_TYPE_F32) * node->src[1]->ne[0] * n_tasks;
  15085. }
  15086. } break;
  15087. case GGML_OP_MUL_MAT:
  15088. {
  15089. const enum ggml_type vec_dot_type = type_traits[node->src[0]->type].vec_dot_type;
  15090. #if defined(GGML_USE_CLBLAST)
  15091. if (ggml_cl_can_mul_mat(node->src[0], node->src[1], node)) {
  15092. cur = ggml_cl_mul_mat_get_wsize(node->src[0], node->src[1], node);
  15093. } else
  15094. #endif
  15095. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  15096. if (ggml_compute_forward_mul_mat_use_blas(node)) {
  15097. if (node->src[0]->type != GGML_TYPE_F32) {
  15098. // here we need memory for fully dequantized matrix from src0
  15099. // take into account that src0 can be broadcasted into src1[2,3]
  15100. cur = ggml_type_size(GGML_TYPE_F32)
  15101. * node->src[0]->ne[0]*node->src[0]->ne[1]
  15102. * node->src[1]->ne[2]*node->src[1]->ne[3];
  15103. }
  15104. } else
  15105. #endif
  15106. if (node->src[1]->type != vec_dot_type) {
  15107. cur = ggml_row_size(vec_dot_type, ggml_nelements(node->src[1]));
  15108. }
  15109. } break;
  15110. case GGML_OP_MUL_MAT_ID:
  15111. {
  15112. cur = 0;
  15113. const struct ggml_tensor * src0 = node->src[2];
  15114. const struct ggml_tensor * src1 = node->src[1];
  15115. const enum ggml_type vec_dot_type = type_traits[src0->type].vec_dot_type;
  15116. if (src1->type != vec_dot_type) {
  15117. cur += ggml_row_size(vec_dot_type, ggml_nelements(src1));
  15118. }
  15119. const int n_as = ggml_get_op_params_i32(node, 1);
  15120. cur += GGML_PAD(cur, sizeof(int64_t)); // align
  15121. cur += n_as * sizeof(int64_t); // matrix_row_counts
  15122. cur += n_as * src1->ne[1] * sizeof(int64_t); // matrix_rows
  15123. } break;
  15124. case GGML_OP_OUT_PROD:
  15125. {
  15126. if (ggml_is_quantized(node->src[0]->type)) {
  15127. cur = ggml_type_size(GGML_TYPE_F32) * node->src[0]->ne[0] * n_tasks;
  15128. }
  15129. } break;
  15130. case GGML_OP_SOFT_MAX:
  15131. case GGML_OP_ROPE:
  15132. {
  15133. cur = ggml_type_size(GGML_TYPE_F32) * node->ne[0] * n_tasks;
  15134. } break;
  15135. case GGML_OP_CONV_TRANSPOSE_1D:
  15136. {
  15137. GGML_ASSERT(node->src[0]->ne[3] == 1);
  15138. GGML_ASSERT(node->src[1]->ne[2] == 1);
  15139. GGML_ASSERT(node->src[1]->ne[3] == 1);
  15140. const int64_t ne00 = node->src[0]->ne[0]; // K
  15141. const int64_t ne01 = node->src[0]->ne[1]; // Cout
  15142. const int64_t ne02 = node->src[0]->ne[2]; // Cin
  15143. const int64_t ne10 = node->src[1]->ne[0]; // L
  15144. const int64_t ne11 = node->src[1]->ne[1]; // Cin
  15145. if (node->src[0]->type == GGML_TYPE_F16 &&
  15146. node->src[1]->type == GGML_TYPE_F32) {
  15147. cur += sizeof(ggml_fp16_t)*ne00*ne01*ne02;
  15148. cur += sizeof(ggml_fp16_t)*ne10*ne11;
  15149. } else if (node->src[0]->type == GGML_TYPE_F32 &&
  15150. node->src[1]->type == GGML_TYPE_F32) {
  15151. cur += sizeof(float)*ne00*ne01*ne02;
  15152. cur += sizeof(float)*ne10*ne11;
  15153. } else {
  15154. GGML_ASSERT(false);
  15155. }
  15156. } break;
  15157. case GGML_OP_CONV_TRANSPOSE_2D:
  15158. {
  15159. const int64_t ne00 = node->src[0]->ne[0]; // W
  15160. const int64_t ne01 = node->src[0]->ne[1]; // H
  15161. const int64_t ne02 = node->src[0]->ne[2]; // Channels Out
  15162. const int64_t ne03 = node->src[0]->ne[3]; // Channels In
  15163. const int64_t ne10 = node->src[1]->ne[0]; // W
  15164. const int64_t ne11 = node->src[1]->ne[1]; // H
  15165. const int64_t ne12 = node->src[1]->ne[2]; // Channels In
  15166. cur += sizeof(ggml_fp16_t)*ne00*ne01*ne02*ne03;
  15167. cur += sizeof(ggml_fp16_t)*ne10*ne11*ne12;
  15168. } break;
  15169. case GGML_OP_FLASH_ATTN:
  15170. {
  15171. const int64_t ne11 = ggml_up(node->src[1]->ne[1], GGML_SOFT_MAX_UNROLL);
  15172. if (node->src[1]->type == GGML_TYPE_F32) {
  15173. cur = sizeof(float)*ne11*n_tasks; // TODO: this can become (n_tasks-1)
  15174. cur += sizeof(float)*ne11*n_tasks; // this is overestimated by x2
  15175. } else if (node->src[1]->type == GGML_TYPE_F16) {
  15176. cur = sizeof(float)*ne11*n_tasks; // TODO: this can become (n_tasks-1)
  15177. cur += sizeof(float)*ne11*n_tasks; // this is overestimated by x2
  15178. }
  15179. } break;
  15180. case GGML_OP_FLASH_FF:
  15181. {
  15182. if (node->src[1]->type == GGML_TYPE_F32) {
  15183. cur = sizeof(float)*node->src[1]->ne[1]*n_tasks; // TODO: this can become (n_tasks-1)
  15184. cur += sizeof(float)*node->src[1]->ne[1]*n_tasks; // this is overestimated by x2
  15185. } else if (node->src[1]->type == GGML_TYPE_F16) {
  15186. cur = sizeof(float)*node->src[1]->ne[1]*n_tasks; // TODO: this can become (n_tasks-1)
  15187. cur += sizeof(float)*node->src[1]->ne[1]*n_tasks; // this is overestimated by x2
  15188. }
  15189. } break;
  15190. case GGML_OP_FLASH_ATTN_BACK:
  15191. {
  15192. const int64_t D = node->src[0]->ne[0];
  15193. const int64_t ne11 = ggml_up(node->src[1]->ne[1], GGML_SOFT_MAX_UNROLL);
  15194. const int64_t mxDn = MAX(D, ne11) * 2; // *2 because of S and SM in ggml_compute_forward_flash_attn_back
  15195. if (node->src[1]->type == GGML_TYPE_F32) {
  15196. cur = sizeof(float)*mxDn*n_tasks; // TODO: this can become (n_tasks-1)
  15197. cur += sizeof(float)*mxDn*n_tasks; // this is overestimated by x2
  15198. } else if (node->src[1]->type == GGML_TYPE_F16) {
  15199. cur = sizeof(float)*mxDn*n_tasks; // TODO: this can become (n_tasks-1)
  15200. cur += sizeof(float)*mxDn*n_tasks; // this is overestimated by x2
  15201. }
  15202. } break;
  15203. case GGML_OP_CROSS_ENTROPY_LOSS:
  15204. {
  15205. cur = ggml_type_size(node->type)*(n_tasks + node->src[0]->ne[0]*n_tasks);
  15206. } break;
  15207. case GGML_OP_COUNT:
  15208. {
  15209. GGML_ASSERT(false);
  15210. } break;
  15211. default:
  15212. break;
  15213. }
  15214. work_size = MAX(work_size, cur);
  15215. }
  15216. if (work_size > 0) {
  15217. work_size += CACHE_LINE_SIZE*(n_threads - 1);
  15218. }
  15219. cplan.n_threads = MIN(max_tasks, n_threads);
  15220. cplan.work_size = work_size;
  15221. cplan.work_data = NULL;
  15222. return cplan;
  15223. }
  15224. enum ggml_status ggml_graph_compute(struct ggml_cgraph * cgraph, struct ggml_cplan * cplan) {
  15225. {
  15226. GGML_ASSERT(cplan);
  15227. GGML_ASSERT(cplan->n_threads > 0);
  15228. if (cplan->work_size > 0) {
  15229. GGML_ASSERT(cplan->work_data);
  15230. }
  15231. }
  15232. #ifdef GGML_USE_VULKAN
  15233. for (int i = 0; i < cgraph->n_nodes; i++) {
  15234. ggml_vk_preallocate_buffers_graph_cpu_assist(cgraph->nodes[i]);
  15235. }
  15236. ggml_vk_preallocate_buffers_cpu_assist();
  15237. for (int i = 0; i < cgraph->n_nodes; i++) {
  15238. ggml_vk_build_graph_cpu_assist(cgraph->nodes[i], i == cgraph->n_nodes - 1);
  15239. }
  15240. #endif
  15241. const int n_threads = cplan->n_threads;
  15242. struct ggml_compute_state_shared state_shared = {
  15243. /*.cgraph =*/ cgraph,
  15244. /*.cgraph_plan =*/ cplan,
  15245. /*.perf_node_start_cycles =*/ 0,
  15246. /*.perf_node_start_time_us =*/ 0,
  15247. /*.n_threads =*/ n_threads,
  15248. /*.n_active =*/ n_threads,
  15249. /*.node_n =*/ -1,
  15250. /*.node_task =*/ GGML_TASK_TYPE_FINALIZE,
  15251. /*.abort_callback =*/ NULL,
  15252. /*.abort_callback_data =*/ NULL,
  15253. };
  15254. struct ggml_compute_state * workers = alloca(sizeof(struct ggml_compute_state)*n_threads);
  15255. // create thread pool
  15256. if (n_threads > 1) {
  15257. for (int j = 1; j < n_threads; ++j) {
  15258. workers[j] = (struct ggml_compute_state) {
  15259. .thrd = 0,
  15260. .ith = j,
  15261. .shared = &state_shared,
  15262. .ec = GGML_STATUS_SUCCESS,
  15263. };
  15264. const int rc = ggml_thread_create(&workers[j].thrd, NULL, ggml_graph_compute_thread, &workers[j]);
  15265. GGML_ASSERT(rc == 0);
  15266. UNUSED(rc);
  15267. }
  15268. }
  15269. workers[0].ith = 0;
  15270. workers[0].shared = &state_shared;
  15271. workers[0].ec = GGML_STATUS_SUCCESS;
  15272. const int64_t perf_start_cycles = ggml_perf_cycles();
  15273. const int64_t perf_start_time_us = ggml_perf_time_us();
  15274. // this is a work thread too
  15275. ggml_graph_compute_thread(&workers[0]);
  15276. enum ggml_status compute_status = workers[0].ec;
  15277. // don't leave affinity set on the main thread
  15278. clear_numa_thread_affinity();
  15279. // join or kill thread pool
  15280. if (n_threads > 1) {
  15281. for (int j = 1; j < n_threads; j++) {
  15282. const int rc = ggml_thread_join(workers[j].thrd, NULL);
  15283. GGML_ASSERT(rc == 0);
  15284. if (workers[j].ec != GGML_STATUS_SUCCESS)
  15285. compute_status = workers[j].ec;
  15286. }
  15287. }
  15288. #ifdef GGML_USE_VULKAN
  15289. ggml_vk_graph_cleanup_cpu_assist();
  15290. #endif
  15291. // performance stats (graph)
  15292. {
  15293. int64_t perf_cycles_cur = ggml_perf_cycles() - perf_start_cycles;
  15294. int64_t perf_time_us_cur = ggml_perf_time_us() - perf_start_time_us;
  15295. cgraph->perf_runs++;
  15296. cgraph->perf_cycles += perf_cycles_cur;
  15297. cgraph->perf_time_us += perf_time_us_cur;
  15298. GGML_PRINT_DEBUG("%s: perf (%d) - cpu = %.3f / %.3f ms, wall = %.3f / %.3f ms\n",
  15299. __func__, cgraph->perf_runs,
  15300. (double) perf_cycles_cur / (double) ggml_cycles_per_ms(),
  15301. (double) cgraph->perf_cycles / (double) ggml_cycles_per_ms() / (double) cgraph->perf_runs,
  15302. (double) perf_time_us_cur / 1000.0,
  15303. (double) cgraph->perf_time_us / 1000.0 / cgraph->perf_runs);
  15304. }
  15305. return compute_status;
  15306. }
  15307. enum ggml_status ggml_graph_compute_with_ctx(struct ggml_context * ctx, struct ggml_cgraph * cgraph, int n_threads) {
  15308. struct ggml_cplan cplan = ggml_graph_plan(cgraph, n_threads);
  15309. struct ggml_object * obj = ggml_new_object(ctx, GGML_OBJECT_TYPE_WORK_BUFFER, cplan.work_size);
  15310. cplan.work_data = (uint8_t *)ctx->mem_buffer + obj->offs;
  15311. return ggml_graph_compute(cgraph, &cplan);
  15312. }
  15313. struct ggml_tensor * ggml_graph_get_tensor(struct ggml_cgraph * cgraph, const char * name) {
  15314. for (int i = 0; i < cgraph->n_leafs; i++) {
  15315. struct ggml_tensor * leaf = cgraph->leafs[i];
  15316. if (strcmp(leaf->name, name) == 0) {
  15317. return leaf;
  15318. }
  15319. }
  15320. for (int i = 0; i < cgraph->n_nodes; i++) {
  15321. struct ggml_tensor * node = cgraph->nodes[i];
  15322. if (strcmp(node->name, name) == 0) {
  15323. return node;
  15324. }
  15325. }
  15326. return NULL;
  15327. }
  15328. static void ggml_graph_export_leaf(const struct ggml_tensor * tensor, FILE * fout) {
  15329. const int64_t * ne = tensor->ne;
  15330. const size_t * nb = tensor->nb;
  15331. fprintf(fout, "%-6s %-12s %8d %" PRId64 " %" PRId64 " %" PRId64 " %" PRId64 " %16zu %16zu %16zu %16zu %16p %32s\n",
  15332. ggml_type_name(tensor->type),
  15333. ggml_op_name (tensor->op),
  15334. ggml_n_dims(tensor),
  15335. ne[0], ne[1], ne[2], ne[3],
  15336. nb[0], nb[1], nb[2], nb[3],
  15337. tensor->data,
  15338. tensor->name);
  15339. }
  15340. static void ggml_graph_export_node(const struct ggml_tensor * tensor, const char * arg, FILE * fout) {
  15341. const int64_t * ne = tensor->ne;
  15342. const size_t * nb = tensor->nb;
  15343. fprintf(fout, "%-6s %-6s %-12s %8d %" PRId64 " %" PRId64 " %" PRId64 " %" PRId64 " %16zu %16zu %16zu %16zu %16p %32s\n",
  15344. arg,
  15345. ggml_type_name(tensor->type),
  15346. ggml_op_name (tensor->op),
  15347. ggml_n_dims(tensor),
  15348. ne[0], ne[1], ne[2], ne[3],
  15349. nb[0], nb[1], nb[2], nb[3],
  15350. tensor->data,
  15351. tensor->name);
  15352. }
  15353. void ggml_graph_export(const struct ggml_cgraph * cgraph, const char * fname) {
  15354. uint64_t size_eval = 0;
  15355. // compute size of intermediate results
  15356. // TODO: does not take into account scratch buffers !!!!
  15357. for (int i = 0; i < cgraph->n_nodes; ++i) {
  15358. size_eval += ggml_nbytes_pad(cgraph->nodes[i]);
  15359. }
  15360. // print
  15361. {
  15362. FILE * fout = stdout;
  15363. fprintf(fout, "\n");
  15364. fprintf(fout, "%-16s %8x\n", "magic", GGML_FILE_MAGIC);
  15365. fprintf(fout, "%-16s %8d\n", "version", GGML_FILE_VERSION);
  15366. fprintf(fout, "%-16s %8d\n", "leafs", cgraph->n_leafs);
  15367. fprintf(fout, "%-16s %8d\n", "nodes", cgraph->n_nodes);
  15368. fprintf(fout, "%-16s %" PRIu64 "\n", "eval", size_eval);
  15369. // header
  15370. fprintf(fout, "\n");
  15371. fprintf(fout, "%-6s %-12s %8s %8s %8s %8s %8s %16s %16s %16s %16s %16s %16s\n",
  15372. "TYPE", "OP", "NDIMS", "NE0", "NE1", "NE2", "NE3", "NB0", "NB1", "NB2", "NB3", "DATA", "NAME");
  15373. for (int i = 0; i < cgraph->n_leafs; ++i) {
  15374. ggml_graph_export_leaf(cgraph->leafs[i], fout);
  15375. GGML_ASSERT(cgraph->leafs[i]->op == GGML_OP_NONE);
  15376. GGML_ASSERT(cgraph->leafs[i]->src[0] == NULL);
  15377. GGML_ASSERT(cgraph->leafs[i]->src[1] == NULL);
  15378. }
  15379. // header
  15380. fprintf(fout, "\n");
  15381. fprintf(fout, "%-6s %-6s %-12s %8s %8s %8s %8s %8s %16s %16s %16s %16s %8s %16s %16s\n",
  15382. "ARG", "TYPE", "OP", "NDIMS", "NE0", "NE1", "NE2", "NE3", "NB0", "NB1", "NB2", "NB3", "NTASKS", "DATA", "NAME");
  15383. for (int i = 0; i < cgraph->n_nodes; ++i) {
  15384. ggml_graph_export_node(cgraph->nodes[i], "DST", fout);
  15385. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  15386. if (cgraph->nodes[i]->src[j]) {
  15387. ggml_graph_export_node(cgraph->nodes[i]->src[j], "SRC", fout);
  15388. }
  15389. }
  15390. fprintf(fout, "\n");
  15391. }
  15392. fprintf(fout, "\n");
  15393. }
  15394. // write binary data
  15395. {
  15396. FILE * fout = fopen(fname, "wb");
  15397. if (!fout) {
  15398. fprintf(stderr, "%s: failed to open %s\n", __func__, fname);
  15399. return;
  15400. }
  15401. // header
  15402. {
  15403. const uint32_t magic = GGML_FILE_MAGIC;
  15404. const uint32_t version = GGML_FILE_VERSION;
  15405. const uint32_t n_leafs = cgraph->n_leafs;
  15406. const uint32_t n_nodes = cgraph->n_nodes;
  15407. fwrite(&magic, sizeof(uint32_t), 1, fout);
  15408. fwrite(&version, sizeof(uint32_t), 1, fout);
  15409. fwrite(&n_leafs, sizeof(uint32_t), 1, fout);
  15410. fwrite(&n_nodes, sizeof(uint32_t), 1, fout);
  15411. fwrite(&size_eval, sizeof(uint64_t), 1, fout);
  15412. }
  15413. // leafs
  15414. {
  15415. for (int i = 0; i < cgraph->n_leafs; ++i) {
  15416. const struct ggml_tensor * tensor = cgraph->leafs[i];
  15417. const uint32_t type = tensor->type;
  15418. const uint32_t op = tensor->op;
  15419. fwrite(&type, sizeof(uint32_t), 1, fout);
  15420. fwrite(&op, sizeof(uint32_t), 1, fout);
  15421. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  15422. const uint64_t ne = tensor->ne[j];
  15423. const uint64_t nb = tensor->nb[j];
  15424. fwrite(&ne, sizeof(uint64_t), 1, fout);
  15425. fwrite(&nb, sizeof(uint64_t), 1, fout);
  15426. }
  15427. fwrite(tensor->name, sizeof(char), GGML_MAX_NAME, fout);
  15428. fwrite(tensor->op_params, sizeof(char), GGML_MAX_OP_PARAMS, fout);
  15429. // dump the data
  15430. // TODO: pad this to 32 byte boundary
  15431. {
  15432. const size_t size = ggml_nbytes(tensor);
  15433. fwrite(tensor->data, sizeof(char), size, fout);
  15434. }
  15435. }
  15436. }
  15437. // nodes
  15438. {
  15439. for (int i = 0; i < cgraph->n_nodes; ++i) {
  15440. const struct ggml_tensor * tensor = cgraph->nodes[i];
  15441. const uint32_t type = tensor->type;
  15442. const uint32_t op = tensor->op;
  15443. fwrite(&type, sizeof(uint32_t), 1, fout);
  15444. fwrite(&op, sizeof(uint32_t), 1, fout);
  15445. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  15446. const uint64_t ne = tensor->ne[j];
  15447. const uint64_t nb = tensor->nb[j];
  15448. fwrite(&ne, sizeof(uint64_t), 1, fout);
  15449. fwrite(&nb, sizeof(uint64_t), 1, fout);
  15450. }
  15451. fwrite(tensor->name, sizeof(char), GGML_MAX_NAME, fout);
  15452. fwrite(tensor->op_params, sizeof(char), GGML_MAX_OP_PARAMS, fout);
  15453. // output the op arguments
  15454. {
  15455. struct ggml_tensor * args[GGML_MAX_SRC] = { NULL };
  15456. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  15457. args[j] = tensor->src[j];
  15458. }
  15459. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  15460. if (args[j]) {
  15461. int32_t idx = -1;
  15462. // check if leaf
  15463. {
  15464. for (int k = 0; k < cgraph->n_leafs; ++k) {
  15465. if (args[j] == cgraph->leafs[k]) {
  15466. idx = k;
  15467. break;
  15468. }
  15469. }
  15470. }
  15471. // check if node
  15472. if (idx == -1) {
  15473. for (int k = 0; k < cgraph->n_nodes; ++k) {
  15474. if (args[j] == cgraph->nodes[k]) {
  15475. idx = cgraph->n_leafs + k;
  15476. break;
  15477. }
  15478. }
  15479. }
  15480. if (idx == -1) {
  15481. fprintf(stderr, "%s: failed to find tensor, arg = %d, node = %d\n", __func__, j, i);
  15482. fclose(fout);
  15483. return;
  15484. }
  15485. fwrite(&idx, sizeof(int32_t), 1, fout);
  15486. } else {
  15487. const int32_t nul = -1;
  15488. fwrite(&nul, sizeof(int32_t), 1, fout);
  15489. }
  15490. }
  15491. }
  15492. }
  15493. }
  15494. fclose(fout);
  15495. }
  15496. }
  15497. struct ggml_cgraph * ggml_graph_import(const char * fname, struct ggml_context ** ctx_data, struct ggml_context ** ctx_eval) {
  15498. assert(*ctx_data == NULL);
  15499. assert(*ctx_eval == NULL);
  15500. struct ggml_cgraph * result = NULL;
  15501. struct ggml_tensor * data = NULL;
  15502. // read file into data
  15503. {
  15504. FILE * fin = fopen(fname, "rb");
  15505. if (!fin) {
  15506. fprintf(stderr, "%s: failed to open %s\n", __func__, fname);
  15507. return result;
  15508. }
  15509. size_t fsize = 0;
  15510. fseek(fin, 0, SEEK_END);
  15511. fsize = ftell(fin);
  15512. fseek(fin, 0, SEEK_SET);
  15513. // create the data context
  15514. {
  15515. const size_t overhead = 1*ggml_tensor_overhead();
  15516. struct ggml_init_params params = {
  15517. .mem_size = fsize + overhead,
  15518. .mem_buffer = NULL,
  15519. .no_alloc = false,
  15520. };
  15521. *ctx_data = ggml_init(params);
  15522. if (!*ctx_data) {
  15523. fprintf(stderr, "%s: failed to create ggml context\n", __func__);
  15524. fclose(fin);
  15525. return result;
  15526. }
  15527. }
  15528. data = ggml_new_tensor_1d(*ctx_data, GGML_TYPE_I8, fsize);
  15529. {
  15530. const size_t ret = fread(data->data, sizeof(char), fsize, fin);
  15531. if (ret != fsize) {
  15532. fprintf(stderr, "%s: failed to read %s\n", __func__, fname);
  15533. fclose(fin);
  15534. return result;
  15535. }
  15536. }
  15537. fclose(fin);
  15538. }
  15539. // populate result
  15540. {
  15541. char * ptr = (char *) data->data;
  15542. const uint32_t magic = *(const uint32_t *) ptr; ptr += sizeof(magic);
  15543. if (magic != GGML_FILE_MAGIC) {
  15544. fprintf(stderr, "%s: invalid magic number, got %08x\n", __func__, magic);
  15545. return result;
  15546. }
  15547. const uint32_t version = *(const uint32_t *) ptr; ptr += sizeof(version);
  15548. if (version != GGML_FILE_VERSION) {
  15549. fprintf(stderr, "%s: invalid version number\n", __func__);
  15550. return result;
  15551. }
  15552. const uint32_t n_leafs = *(const uint32_t *) ptr; ptr += sizeof(n_leafs);
  15553. const uint32_t n_nodes = *(const uint32_t *) ptr; ptr += sizeof(n_nodes);
  15554. const uint64_t size_eval = *(const uint64_t *) ptr; ptr += sizeof(size_eval);
  15555. const int graph_size = MAX(n_leafs, n_nodes);
  15556. // create the data context
  15557. {
  15558. const size_t overhead = (n_leafs + n_nodes)*ggml_tensor_overhead() + ggml_graph_overhead_custom(graph_size, false);
  15559. struct ggml_init_params params = {
  15560. .mem_size = size_eval + overhead,
  15561. .mem_buffer = NULL,
  15562. .no_alloc = true,
  15563. };
  15564. *ctx_eval = ggml_init(params);
  15565. if (!*ctx_eval) {
  15566. fprintf(stderr, "%s: failed to create ggml context\n", __func__);
  15567. return result;
  15568. }
  15569. }
  15570. result = ggml_new_graph_custom(*ctx_eval, graph_size, false);
  15571. result->n_leafs = n_leafs;
  15572. result->n_nodes = n_nodes;
  15573. // leafs
  15574. {
  15575. uint32_t type;
  15576. uint32_t op;
  15577. for (uint32_t i = 0; i < n_leafs; ++i) {
  15578. type = *(const uint32_t *) ptr; ptr += sizeof(type);
  15579. op = *(const uint32_t *) ptr; ptr += sizeof(op);
  15580. int64_t ne[GGML_MAX_DIMS];
  15581. size_t nb[GGML_MAX_DIMS];
  15582. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  15583. uint64_t ne_cur;
  15584. uint64_t nb_cur;
  15585. ne_cur = *(const uint64_t *) ptr; ptr += sizeof(ne_cur);
  15586. nb_cur = *(const uint64_t *) ptr; ptr += sizeof(nb_cur);
  15587. ne[j] = ne_cur;
  15588. nb[j] = nb_cur;
  15589. }
  15590. struct ggml_tensor * tensor = ggml_new_tensor(*ctx_eval, (enum ggml_type) type, GGML_MAX_DIMS, ne);
  15591. tensor->op = (enum ggml_op) op;
  15592. memcpy(tensor->name, ptr, GGML_MAX_NAME); ptr += GGML_MAX_NAME;
  15593. memcpy(tensor->op_params, ptr, GGML_MAX_OP_PARAMS); ptr += GGML_MAX_OP_PARAMS;
  15594. tensor->data = (void *) ptr;
  15595. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  15596. tensor->nb[j] = nb[j];
  15597. }
  15598. result->leafs[i] = tensor;
  15599. ptr += ggml_nbytes(tensor);
  15600. fprintf(stderr, "%s: loaded leaf %u: '%16s', %9zu bytes\n", __func__, i, tensor->name, ggml_nbytes(tensor));
  15601. }
  15602. }
  15603. ggml_set_no_alloc(*ctx_eval, false);
  15604. // nodes
  15605. {
  15606. uint32_t type;
  15607. uint32_t op;
  15608. for (uint32_t i = 0; i < n_nodes; ++i) {
  15609. type = *(const uint32_t *) ptr; ptr += sizeof(type);
  15610. op = *(const uint32_t *) ptr; ptr += sizeof(op);
  15611. enum ggml_op eop = (enum ggml_op) op;
  15612. int64_t ne[GGML_MAX_DIMS];
  15613. size_t nb[GGML_MAX_DIMS];
  15614. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  15615. uint64_t ne_cur;
  15616. uint64_t nb_cur;
  15617. ne_cur = *(const uint64_t *) ptr; ptr += sizeof(ne_cur);
  15618. nb_cur = *(const uint64_t *) ptr; ptr += sizeof(nb_cur);
  15619. ne[j] = ne_cur;
  15620. nb[j] = nb_cur;
  15621. }
  15622. const char * ptr_name = ptr; ptr += GGML_MAX_NAME;
  15623. const char * ptr_op_params = ptr; ptr += GGML_MAX_OP_PARAMS;
  15624. const int32_t * ptr_arg_idx = (const int32_t *) ptr; ptr += GGML_MAX_SRC*sizeof(int32_t);
  15625. struct ggml_tensor * args[GGML_MAX_SRC] = { NULL };
  15626. // parse args
  15627. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  15628. const int32_t arg_idx = ptr_arg_idx[j];
  15629. if (arg_idx == -1) {
  15630. continue;
  15631. }
  15632. if (arg_idx < result->n_leafs) {
  15633. args[j] = result->leafs[arg_idx];
  15634. } else {
  15635. args[j] = result->nodes[arg_idx - result->n_leafs];
  15636. }
  15637. }
  15638. // create the tensor
  15639. // "view" operations are handled differently
  15640. // TODO: handle inplace ops - currently a copy is always made
  15641. struct ggml_tensor * tensor = NULL;
  15642. switch (eop) {
  15643. // TODO: implement other view ops
  15644. case GGML_OP_RESHAPE:
  15645. {
  15646. tensor = ggml_reshape_4d(*ctx_eval, args[0], ne[0], ne[1], ne[2], ne[3]);
  15647. } break;
  15648. case GGML_OP_VIEW:
  15649. {
  15650. tensor = ggml_view_4d(*ctx_eval, args[0], ne[0], ne[1], ne[2], ne[3], 0, 0, 0, 0);
  15651. size_t offs;
  15652. memcpy(&offs, ptr_op_params, sizeof(offs));
  15653. tensor->data = ((char *) tensor->data) + offs;
  15654. } break;
  15655. case GGML_OP_TRANSPOSE:
  15656. {
  15657. tensor = ggml_transpose(*ctx_eval, args[0]);
  15658. } break;
  15659. case GGML_OP_PERMUTE:
  15660. {
  15661. tensor = ggml_view_4d(*ctx_eval, args[0], ne[0], ne[1], ne[2], ne[3], 0, 0, 0, 0);
  15662. } break;
  15663. default:
  15664. {
  15665. tensor = ggml_new_tensor(*ctx_eval, (enum ggml_type) type, GGML_MAX_DIMS, ne);
  15666. tensor->op = eop;
  15667. } break;
  15668. }
  15669. memcpy(tensor->name, ptr_name, GGML_MAX_NAME);
  15670. memcpy(tensor->op_params, ptr_op_params, GGML_MAX_OP_PARAMS);
  15671. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  15672. tensor->nb[j] = nb[j];
  15673. }
  15674. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  15675. tensor->src[j] = args[j];
  15676. }
  15677. result->nodes[i] = tensor;
  15678. fprintf(stderr, "%s: loaded node %u: '%16s', %9zu bytes\n", __func__, i, tensor->name, ggml_nbytes(tensor));
  15679. }
  15680. }
  15681. }
  15682. return result;
  15683. }
  15684. void ggml_graph_print(const struct ggml_cgraph * cgraph) {
  15685. int64_t perf_total_per_op_us[GGML_OP_COUNT] = {0};
  15686. GGML_PRINT("=== GRAPH ===\n");
  15687. GGML_PRINT("n_nodes = %d\n", cgraph->n_nodes);
  15688. for (int i = 0; i < cgraph->n_nodes; i++) {
  15689. struct ggml_tensor * node = cgraph->nodes[i];
  15690. perf_total_per_op_us[node->op] += MAX(1, node->perf_time_us);
  15691. GGML_PRINT(" - %3d: [ %5" PRId64 ", %5" PRId64 ", %5" PRId64 "] %16s %s (%3d) cpu = %7.3f / %7.3f ms, wall = %7.3f / %7.3f ms\n",
  15692. i,
  15693. node->ne[0], node->ne[1], node->ne[2],
  15694. ggml_op_name(node->op), (node->flags & GGML_TENSOR_FLAG_PARAM) ? "x" : node->grad ? "g" : " ", node->perf_runs,
  15695. (double) node->perf_cycles / (double) ggml_cycles_per_ms(),
  15696. (double) node->perf_cycles / (double) ggml_cycles_per_ms() / (double) node->perf_runs,
  15697. (double) node->perf_time_us / 1000.0,
  15698. (double) node->perf_time_us / 1000.0 / node->perf_runs);
  15699. }
  15700. GGML_PRINT("n_leafs = %d\n", cgraph->n_leafs);
  15701. for (int i = 0; i < cgraph->n_leafs; i++) {
  15702. struct ggml_tensor * node = cgraph->leafs[i];
  15703. GGML_PRINT(" - %3d: [ %5" PRId64 ", %5" PRId64 "] %8s %16s\n",
  15704. i,
  15705. node->ne[0], node->ne[1],
  15706. ggml_op_name(node->op),
  15707. ggml_get_name(node));
  15708. }
  15709. for (int i = 0; i < GGML_OP_COUNT; i++) {
  15710. if (perf_total_per_op_us[i] == 0) {
  15711. continue;
  15712. }
  15713. GGML_PRINT("perf_total_per_op_us[%16s] = %7.3f ms\n", ggml_op_name(i), (double) perf_total_per_op_us[i] / 1000.0);
  15714. }
  15715. GGML_PRINT("========================================\n");
  15716. }
  15717. // check if node is part of the graph
  15718. static bool ggml_graph_find(const struct ggml_cgraph * cgraph, const struct ggml_tensor * node) {
  15719. if (cgraph == NULL) {
  15720. return true;
  15721. }
  15722. for (int i = 0; i < cgraph->n_nodes; i++) {
  15723. if (cgraph->nodes[i] == node) {
  15724. return true;
  15725. }
  15726. }
  15727. return false;
  15728. }
  15729. static struct ggml_tensor * ggml_graph_get_parent(const struct ggml_cgraph * cgraph, const struct ggml_tensor * node) {
  15730. for (int i = 0; i < cgraph->n_nodes; i++) {
  15731. struct ggml_tensor * parent = cgraph->nodes[i];
  15732. if (parent->grad == node) {
  15733. return parent;
  15734. }
  15735. }
  15736. return NULL;
  15737. }
  15738. static void ggml_graph_dump_dot_node_edge(FILE * fp, const struct ggml_cgraph * gb, struct ggml_tensor * node, struct ggml_tensor * parent, const char * label) {
  15739. struct ggml_tensor * gparent = ggml_graph_get_parent(gb, node);
  15740. struct ggml_tensor * gparent0 = ggml_graph_get_parent(gb, parent);
  15741. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ arrowhead = %s; style = %s; label = \"%s\"; ]\n",
  15742. gparent0 ? (void *) gparent0 : (void *) parent,
  15743. gparent0 ? "g" : "x",
  15744. gparent ? (void *) gparent : (void *) node,
  15745. gparent ? "g" : "x",
  15746. gparent ? "empty" : "vee",
  15747. gparent ? "dashed" : "solid",
  15748. label);
  15749. }
  15750. static void ggml_graph_dump_dot_leaf_edge(FILE * fp, struct ggml_tensor * node, struct ggml_tensor * parent, const char * label) {
  15751. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ label = \"%s\"; ]\n",
  15752. (void *) parent, "x",
  15753. (void *) node, "x",
  15754. label);
  15755. }
  15756. void ggml_graph_dump_dot(const struct ggml_cgraph * gb, const struct ggml_cgraph * gf, const char * filename) {
  15757. char color[16];
  15758. FILE * fp = fopen(filename, "w");
  15759. GGML_ASSERT(fp);
  15760. fprintf(fp, "digraph G {\n");
  15761. fprintf(fp, " newrank = true;\n");
  15762. fprintf(fp, " rankdir = LR;\n");
  15763. for (int i = 0; i < gb->n_nodes; i++) {
  15764. struct ggml_tensor * node = gb->nodes[i];
  15765. if (ggml_graph_get_parent(gb, node) != NULL) {
  15766. continue;
  15767. }
  15768. if (node->flags & GGML_TENSOR_FLAG_PARAM) {
  15769. snprintf(color, sizeof(color), "yellow");
  15770. } else if (node->grad) {
  15771. if (ggml_graph_find(gf, node)) {
  15772. snprintf(color, sizeof(color), "green");
  15773. } else {
  15774. snprintf(color, sizeof(color), "lightblue");
  15775. }
  15776. } else {
  15777. snprintf(color, sizeof(color), "white");
  15778. }
  15779. fprintf(fp, " \"%p\" [ "
  15780. "style = filled; fillcolor = %s; shape = record; "
  15781. "label=\"",
  15782. (void *) node, color);
  15783. if (strlen(node->name) > 0) {
  15784. fprintf(fp, "%s (%s)|", node->name, ggml_type_name(node->type));
  15785. } else {
  15786. fprintf(fp, "(%s)|", ggml_type_name(node->type));
  15787. }
  15788. if (ggml_is_matrix(node)) {
  15789. fprintf(fp, "%d [%" PRId64 ", %" PRId64 "] | <x>%s", i, node->ne[0], node->ne[1], ggml_op_symbol(node->op));
  15790. } else {
  15791. fprintf(fp, "%d [%" PRId64 ", %" PRId64 ", %" PRId64 "] | <x>%s", i, node->ne[0], node->ne[1], node->ne[2], ggml_op_symbol(node->op));
  15792. }
  15793. if (node->grad) {
  15794. fprintf(fp, " | <g>%s\"; ]\n", ggml_op_symbol(node->grad->op));
  15795. } else {
  15796. fprintf(fp, "\"; ]\n");
  15797. }
  15798. }
  15799. for (int i = 0; i < gb->n_leafs; i++) {
  15800. struct ggml_tensor * node = gb->leafs[i];
  15801. snprintf(color, sizeof(color), "pink");
  15802. fprintf(fp, " \"%p\" [ "
  15803. "style = filled; fillcolor = %s; shape = record; "
  15804. "label=\"<x>",
  15805. (void *) node, color);
  15806. if (strlen(node->name) > 0) {
  15807. fprintf(fp, "%s (%s)|", node->name, ggml_type_name(node->type));
  15808. } else {
  15809. fprintf(fp, "(%s)|", ggml_type_name(node->type));
  15810. }
  15811. fprintf(fp, "CONST %d [%" PRId64 ", %" PRId64 "]", i, node->ne[0], node->ne[1]);
  15812. if (ggml_nelements(node) < 5) {
  15813. fprintf(fp, " | (");
  15814. for (int j = 0; j < ggml_nelements(node); j++) {
  15815. if (node->type == GGML_TYPE_I8 || node->type == GGML_TYPE_I16 || node->type == GGML_TYPE_I32) {
  15816. fprintf(fp, "%d", ggml_get_i32_1d(node, j));
  15817. }
  15818. else if (node->type == GGML_TYPE_F32 || node->type == GGML_TYPE_F16) {
  15819. fprintf(fp, "%.1e", (double)ggml_get_f32_1d(node, j));
  15820. }
  15821. else {
  15822. fprintf(fp, "#");
  15823. }
  15824. if (j < ggml_nelements(node) - 1) {
  15825. fprintf(fp, ", ");
  15826. }
  15827. }
  15828. fprintf(fp, ")");
  15829. }
  15830. fprintf(fp, "\"; ]\n");
  15831. }
  15832. for (int i = 0; i < gb->n_nodes; i++) {
  15833. struct ggml_tensor * node = gb->nodes[i];
  15834. for (int j = 0; j < GGML_MAX_SRC; j++) {
  15835. if (node->src[j]) {
  15836. char label[16];
  15837. snprintf(label, sizeof(label), "src %d", j);
  15838. ggml_graph_dump_dot_node_edge(fp, gb, node, node->src[j], label);
  15839. }
  15840. }
  15841. }
  15842. for (int i = 0; i < gb->n_leafs; i++) {
  15843. struct ggml_tensor * node = gb->leafs[i];
  15844. for (int j = 0; j < GGML_MAX_SRC; j++) {
  15845. if (node->src[j]) {
  15846. char label[16];
  15847. snprintf(label, sizeof(label), "src %d", j);
  15848. ggml_graph_dump_dot_leaf_edge(fp, node, node->src[j], label);
  15849. }
  15850. }
  15851. }
  15852. fprintf(fp, "}\n");
  15853. fclose(fp);
  15854. GGML_PRINT("%s: dot -Tpng %s -o %s.png && open %s.png\n", __func__, filename, filename, filename);
  15855. }
  15856. ////////////////////////////////////////////////////////////////////////////////
  15857. static void ggml_opt_set_params(int np, struct ggml_tensor * const ps[], const float * x) {
  15858. int i = 0;
  15859. for (int p = 0; p < np; ++p) {
  15860. const int64_t ne = ggml_nelements(ps[p]) ;
  15861. // TODO: add function to set tensor from array
  15862. for (int64_t j = 0; j < ne; ++j) {
  15863. ggml_set_f32_1d(ps[p], j, x[i++]);
  15864. }
  15865. }
  15866. }
  15867. static void ggml_opt_get_params(int np, struct ggml_tensor * const ps[], float * x) {
  15868. int i = 0;
  15869. for (int p = 0; p < np; ++p) {
  15870. const int64_t ne = ggml_nelements(ps[p]) ;
  15871. // TODO: add function to get all elements at once
  15872. for (int64_t j = 0; j < ne; ++j) {
  15873. x[i++] = ggml_get_f32_1d(ps[p], j);
  15874. }
  15875. }
  15876. }
  15877. static void ggml_opt_get_grad(int np, struct ggml_tensor * const ps[], float * g) {
  15878. int64_t i = 0;
  15879. for (int p = 0; p < np; ++p) {
  15880. const int64_t ne = ggml_nelements(ps[p]) ;
  15881. // TODO: add function to get all elements at once
  15882. for (int64_t j = 0; j < ne; ++j) {
  15883. g[i++] = ggml_get_f32_1d(ps[p]->grad, j);
  15884. }
  15885. }
  15886. }
  15887. static void ggml_opt_acc_grad(int np, struct ggml_tensor * const ps[], float * g, float scale) {
  15888. int64_t i = 0;
  15889. for (int p = 0; p < np; ++p) {
  15890. const int64_t ne = ggml_nelements(ps[p]) ;
  15891. // TODO: add function to get all elements at once
  15892. for (int64_t j = 0; j < ne; ++j) {
  15893. g[i++] += ggml_get_f32_1d(ps[p]->grad, j) * scale;
  15894. }
  15895. }
  15896. }
  15897. //
  15898. // Using AdamW - ref: https://arxiv.org/pdf/1711.05101v3.pdf
  15899. //
  15900. // (Original Adam - ref: https://arxiv.org/pdf/1412.6980.pdf)
  15901. //
  15902. static enum ggml_opt_result ggml_opt_adam(
  15903. struct ggml_context * ctx,
  15904. struct ggml_opt_context * opt,
  15905. struct ggml_opt_params params,
  15906. struct ggml_tensor * f,
  15907. struct ggml_cgraph * gf,
  15908. struct ggml_cgraph * gb,
  15909. ggml_opt_callback callback,
  15910. void * callback_data) {
  15911. GGML_ASSERT(ggml_is_scalar(f));
  15912. // these will store the parameters we want to optimize
  15913. struct ggml_tensor * ps[GGML_MAX_PARAMS];
  15914. int np = 0;
  15915. int64_t nx = 0;
  15916. for (int i = 0; i < gf->n_nodes; ++i) {
  15917. if (gf->nodes[i]->flags & GGML_TENSOR_FLAG_PARAM) {
  15918. GGML_PRINT_DEBUG("found param %d: grad->op = %d\n", np, gf->nodes[i]->grad->op);
  15919. GGML_ASSERT(np < GGML_MAX_PARAMS);
  15920. ps[np++] = gf->nodes[i];
  15921. nx += ggml_nelements(gf->nodes[i]);
  15922. }
  15923. }
  15924. if ((opt->params.type != params.type) || (opt->nx != nx) || (opt->params.past != params.past)) {
  15925. int iter = opt->iter;
  15926. ggml_opt_init(opt->ctx, opt, params, nx);
  15927. opt->iter = iter;
  15928. }
  15929. // constants
  15930. float sched = params.adam.sched;
  15931. const float alpha = params.adam.alpha;
  15932. const float decay = params.adam.decay * alpha;
  15933. const float beta1 = params.adam.beta1;
  15934. const float beta2 = params.adam.beta2;
  15935. const float eps = params.adam.eps;
  15936. const float gclip = params.adam.gclip;
  15937. const int decay_min_ndim = params.adam.decay_min_ndim;
  15938. const int n_accum = MAX(1, params.n_gradient_accumulation);
  15939. const float accum_norm = 1.0f / (float) n_accum;
  15940. float * g = opt->adam.g->data; // gradients
  15941. float * m = opt->adam.m->data; // first moment
  15942. float * v = opt->adam.v->data; // second moment
  15943. float * pf = params.past > 0 ? opt->adam.pf->data : NULL; // past function values
  15944. struct ggml_cplan cplan = ggml_graph_plan(gb, params.n_threads);
  15945. struct ggml_object * obj = ggml_new_object(ctx, GGML_OBJECT_TYPE_WORK_BUFFER, cplan.work_size);
  15946. cplan.work_data = (uint8_t *)ctx->mem_buffer + obj->offs;
  15947. bool cancel = false;
  15948. // compute the function value
  15949. float fx = 0;
  15950. ggml_set_zero(opt->adam.g);
  15951. for (int accum_step = 0; accum_step < n_accum; ++accum_step) {
  15952. if (callback) {
  15953. callback(callback_data, accum_step, &sched, &cancel);
  15954. if (cancel) {
  15955. return GGML_OPT_RESULT_CANCEL;
  15956. }
  15957. }
  15958. // ggml_graph_reset (gf);
  15959. ggml_set_f32 (f->grad, 1.0f);
  15960. ggml_graph_compute(gb, &cplan);
  15961. ggml_opt_acc_grad(np, ps, g, accum_norm);
  15962. fx += ggml_get_f32_1d(f, 0);
  15963. }
  15964. fx *= accum_norm;
  15965. opt->adam.fx_prev = fx;
  15966. opt->adam.fx_best = opt->adam.fx_prev;
  15967. if (pf) {
  15968. pf[opt->iter % params.past] = opt->adam.fx_prev;
  15969. }
  15970. opt->loss_before = opt->adam.fx_prev;
  15971. opt->loss_after = opt->adam.fx_prev;
  15972. // initialize
  15973. if (opt->just_initialized) {
  15974. opt->adam.n_no_improvement = 0;
  15975. opt->just_initialized = false;
  15976. }
  15977. float * fx_best = &opt->adam.fx_best;
  15978. float * fx_prev = &opt->adam.fx_prev;
  15979. int * n_no_improvement = &opt->adam.n_no_improvement;
  15980. int iter0 = opt->iter;
  15981. // run the optimizer
  15982. for (int t = 0; t < params.adam.n_iter; ++t) {
  15983. opt->iter = iter0 + t + 1;
  15984. GGML_PRINT_DEBUG ("=== iter %d ===\n", t);
  15985. GGML_PRINT_DEBUG ("f = %10.6f\n", ggml_get_f32_1d(f, 0));
  15986. GGML_PRINT_DEBUG_5("df/dx0 = %10.6f\n", ggml_get_f32_1d(ps[0]->grad, 0));
  15987. GGML_PRINT_DEBUG_5("df/dx1 = %10.6f\n", ggml_get_f32_1d(ps[1]->grad, 0));
  15988. for (int i = 0; i < np; ++i) {
  15989. GGML_PRINT_DEBUG("param %d: %10.6f, g = %10.6f\n", i,
  15990. ggml_get_f32_1d(ps[i], 0), ggml_get_f32_1d(ps[i]->grad, 0));
  15991. }
  15992. const int64_t t_start_wall = ggml_time_us();
  15993. const int64_t t_start_cpu = ggml_cycles();
  15994. UNUSED(t_start_wall);
  15995. UNUSED(t_start_cpu);
  15996. {
  15997. float gnorm = 1.0f;
  15998. if (gclip > 0.0f) {
  15999. // gradient clipping
  16000. ggml_float sum = 0.0;
  16001. for (int64_t i = 0; i < nx; ++i) {
  16002. sum += (ggml_float)(g[i]*g[i]);
  16003. }
  16004. ggml_float norm = sqrt(sum);
  16005. if (norm > (ggml_float) gclip) {
  16006. gnorm = (float) ((ggml_float) gclip / norm);
  16007. }
  16008. }
  16009. const float beta1h = alpha*sched/(1.0f - powf(beta1, opt->iter));
  16010. const float beta2h = 1.0f/(1.0f - powf(beta2, opt->iter));
  16011. int64_t i = 0;
  16012. for (int p = 0; p < np; ++p) {
  16013. const int64_t ne = ggml_nelements(ps[p]);
  16014. const float p_decay = ((ggml_n_dims(ps[p]) >= decay_min_ndim) ? decay : 0.0f) * sched;
  16015. for (int64_t j = 0; j < ne; ++j) {
  16016. float x = ggml_get_f32_1d(ps[p], j);
  16017. float g_ = g[i]*gnorm;
  16018. m[i] = m[i]*beta1 + g_*(1.0f - beta1);
  16019. v[i] = v[i]*beta2 + g_*g_*(1.0f - beta2);
  16020. float mh = m[i]*beta1h;
  16021. float vh = v[i]*beta2h;
  16022. vh = sqrtf(vh) + eps;
  16023. x = x*(1.0f - p_decay) - mh/vh;
  16024. ggml_set_f32_1d(ps[p], j, x);
  16025. ++i;
  16026. }
  16027. }
  16028. }
  16029. fx = 0;
  16030. ggml_set_zero(opt->adam.g);
  16031. for (int accum_step = 0; accum_step < n_accum; ++accum_step) {
  16032. if (callback) {
  16033. callback(callback_data, accum_step, &sched, &cancel);
  16034. if (cancel) {
  16035. return GGML_OPT_RESULT_CANCEL;;
  16036. }
  16037. }
  16038. // ggml_graph_reset (gf);
  16039. ggml_set_f32 (f->grad, 1.0f);
  16040. ggml_graph_compute(gb, &cplan);
  16041. ggml_opt_acc_grad(np, ps, g, accum_norm);
  16042. fx += ggml_get_f32_1d(f, 0);
  16043. }
  16044. fx *= accum_norm;
  16045. opt->loss_after = fx;
  16046. // check convergence
  16047. if (fabsf(fx - fx_prev[0])/fx < params.adam.eps_f) {
  16048. GGML_PRINT_DEBUG("converged\n");
  16049. return GGML_OPT_RESULT_OK;
  16050. }
  16051. // delta-based convergence test
  16052. if (pf != NULL) {
  16053. // need at least params.past iterations to start checking for convergence
  16054. if (params.past <= iter0 + t) {
  16055. const float rate = (pf[(iter0 + t)%params.past] - fx)/fx;
  16056. if (fabsf(rate) < params.delta) {
  16057. return GGML_OPT_RESULT_OK;
  16058. }
  16059. }
  16060. pf[(iter0 + t)%params.past] = fx;
  16061. }
  16062. // check for improvement
  16063. if (params.max_no_improvement > 0) {
  16064. if (fx_best[0] > fx) {
  16065. fx_best[0] = fx;
  16066. n_no_improvement[0] = 0;
  16067. } else {
  16068. ++n_no_improvement[0];
  16069. if (n_no_improvement[0] >= params.max_no_improvement) {
  16070. return GGML_OPT_RESULT_OK;
  16071. }
  16072. }
  16073. }
  16074. fx_prev[0] = fx;
  16075. {
  16076. const int64_t t_end_cpu = ggml_cycles();
  16077. GGML_PRINT_DEBUG("time iter: %5.3f s\n", ((float)(t_end_cpu - t_start_cpu))/CLOCKS_PER_SEC);
  16078. UNUSED(t_end_cpu);
  16079. const int64_t t_end_wall = ggml_time_us();
  16080. GGML_PRINT_DEBUG("wall time iter: %5.3f s\n", (t_end_wall - t_start_wall)/1e6);
  16081. UNUSED(t_end_wall);
  16082. }
  16083. }
  16084. return GGML_OPT_RESULT_DID_NOT_CONVERGE;
  16085. }
  16086. //
  16087. // L-BFGS
  16088. //
  16089. // the L-BFGS implementation below is based on the following implementation:
  16090. //
  16091. // https://github.com/chokkan/liblbfgs
  16092. //
  16093. struct ggml_lbfgs_iteration_data {
  16094. float alpha;
  16095. float ys;
  16096. float * s;
  16097. float * y;
  16098. };
  16099. static enum ggml_opt_result linesearch_backtracking(
  16100. const struct ggml_opt_params * params,
  16101. int nx,
  16102. float * x,
  16103. float * fx,
  16104. float * g,
  16105. float * d,
  16106. float * step,
  16107. const float * xp,
  16108. struct ggml_tensor * f,
  16109. struct ggml_cgraph * gb,
  16110. struct ggml_cplan * cplan,
  16111. const int np,
  16112. struct ggml_tensor * ps[],
  16113. bool * cancel,
  16114. ggml_opt_callback callback,
  16115. void * callback_data) {
  16116. int count = 0;
  16117. float width = 0.0f;
  16118. float dg = 0.0f;
  16119. float finit = 0.0f;
  16120. float dginit = 0.0f;
  16121. float dgtest = 0.0f;
  16122. const float dec = 0.5f;
  16123. const float inc = 2.1f;
  16124. const int n_accum = MAX(1, params->n_gradient_accumulation);
  16125. const float accum_norm = 1.0f / (float) n_accum;
  16126. if (*step <= 0.f) {
  16127. return GGML_LINESEARCH_INVALID_PARAMETERS;
  16128. }
  16129. // compute the initial gradient in the search direction
  16130. ggml_vec_dot_f32(nx, &dginit, 0, g, 0, d, 0, 1);
  16131. // make sure that d points to a descent direction
  16132. if (0 < dginit) {
  16133. return GGML_LINESEARCH_FAIL;
  16134. }
  16135. // initialize local variables
  16136. finit = *fx;
  16137. dgtest = params->lbfgs.ftol*dginit;
  16138. while (true) {
  16139. ggml_vec_cpy_f32(nx, x, xp);
  16140. ggml_vec_mad_f32(nx, x, d, *step);
  16141. // evaluate the function and gradient values
  16142. {
  16143. ggml_opt_set_params(np, ps, x);
  16144. *fx = 0;
  16145. memset(g, 0, sizeof(float)*nx);
  16146. for (int accum_step = 0; accum_step < n_accum; ++accum_step) {
  16147. if (callback) {
  16148. // LBFG-S does not support learning rate -> ignore learning schedule
  16149. float sched = 0;
  16150. callback(callback_data, accum_step, &sched, cancel);
  16151. if (*cancel) {
  16152. return GGML_OPT_RESULT_CANCEL;
  16153. }
  16154. }
  16155. // ggml_graph_reset (gf);
  16156. ggml_set_f32 (f->grad, 1.0f);
  16157. ggml_graph_compute(gb, cplan);
  16158. ggml_opt_acc_grad(np, ps, g, accum_norm);
  16159. *fx += ggml_get_f32_1d(f, 0);
  16160. }
  16161. *fx *= accum_norm;
  16162. }
  16163. ++count;
  16164. if (*fx > finit + (*step)*dgtest) {
  16165. width = dec;
  16166. } else {
  16167. // Armijo condition is satisfied
  16168. if (params->lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_ARMIJO) {
  16169. return count;
  16170. }
  16171. ggml_vec_dot_f32(nx, &dg, 0, g, 0, d, 0, 1);
  16172. // check the Wolfe condition
  16173. if (dg < params->lbfgs.wolfe * dginit) {
  16174. width = inc;
  16175. } else {
  16176. if(params->lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_WOLFE) {
  16177. // regular Wolfe conditions
  16178. return count;
  16179. }
  16180. if(dg > -params->lbfgs.wolfe*dginit) {
  16181. width = dec;
  16182. } else {
  16183. // strong Wolfe condition (GGML_LINESEARCH_BACKTRACKING_STRONG_WOLFE)
  16184. return count;
  16185. }
  16186. }
  16187. }
  16188. if (*step < params->lbfgs.min_step) {
  16189. return GGML_LINESEARCH_MINIMUM_STEP;
  16190. }
  16191. if (*step > params->lbfgs.max_step) {
  16192. return GGML_LINESEARCH_MAXIMUM_STEP;
  16193. }
  16194. if (params->lbfgs.max_linesearch <= count) {
  16195. return GGML_LINESEARCH_MAXIMUM_ITERATIONS;
  16196. }
  16197. (*step) *= width;
  16198. }
  16199. GGML_ASSERT(false && "line search failed");
  16200. return GGML_LINESEARCH_FAIL;
  16201. }
  16202. static enum ggml_opt_result ggml_opt_lbfgs(
  16203. struct ggml_context * ctx,
  16204. struct ggml_opt_context * opt,
  16205. struct ggml_opt_params params,
  16206. struct ggml_tensor * f,
  16207. struct ggml_cgraph * gf,
  16208. struct ggml_cgraph * gb,
  16209. ggml_opt_callback callback,
  16210. void * callback_data) {
  16211. if (params.lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_WOLFE ||
  16212. params.lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_STRONG_WOLFE) {
  16213. if (params.lbfgs.wolfe <= params.lbfgs.ftol || 1.f <= params.lbfgs.wolfe) {
  16214. return GGML_OPT_RESULT_INVALID_WOLFE;
  16215. }
  16216. }
  16217. const int m = params.lbfgs.m;
  16218. // these will store the parameters we want to optimize
  16219. struct ggml_tensor * ps[GGML_MAX_PARAMS];
  16220. int np = 0;
  16221. int nx = 0;
  16222. for (int i = 0; i < gf->n_nodes; ++i) {
  16223. if (gf->nodes[i]->flags & GGML_TENSOR_FLAG_PARAM) {
  16224. GGML_PRINT_DEBUG("found param %d: grad->op = %d\n", np, gf->nodes[i]->grad->op);
  16225. GGML_ASSERT(np < GGML_MAX_PARAMS);
  16226. ps[np++] = gf->nodes[i];
  16227. nx += ggml_nelements(gf->nodes[i]);
  16228. }
  16229. }
  16230. if ((opt->params.type != params.type) || (opt->nx != nx) || (opt->params.past != params.past) || (opt->params.lbfgs.m != params.lbfgs.m)) {
  16231. int iter = opt->iter;
  16232. ggml_opt_init(ctx, opt, params, nx);
  16233. opt->iter = iter;
  16234. }
  16235. struct ggml_cplan cplan = ggml_graph_plan(gb, params.n_threads);
  16236. struct ggml_object * obj = ggml_new_object(ctx, GGML_OBJECT_TYPE_WORK_BUFFER, cplan.work_size);
  16237. cplan.work_data = (uint8_t *)ctx->mem_buffer + obj->offs;
  16238. float * x = opt->lbfgs.x->data; // current parameters
  16239. float * xp = opt->lbfgs.xp->data; // previous parameters
  16240. float * g = opt->lbfgs.g->data; // current gradient
  16241. float * gp = opt->lbfgs.gp->data; // previous gradient
  16242. float * d = opt->lbfgs.d->data; // search direction
  16243. float * pf = params.past > 0 ? opt->lbfgs.pf->data : NULL; // past function values
  16244. const int n_accum = MAX(1, params.n_gradient_accumulation);
  16245. const float accum_norm = 1.0f / (float) n_accum;
  16246. float fx = 0.0f; // cost function value
  16247. float xnorm = 0.0f; // ||x||
  16248. float gnorm = 0.0f; // ||g||
  16249. // initialize x from the graph nodes
  16250. ggml_opt_get_params(np, ps, x);
  16251. // the L-BFGS memory
  16252. float * lm_alpha = opt->lbfgs.lmal->data;
  16253. float * lm_ys = opt->lbfgs.lmys->data;
  16254. float * lm_s = opt->lbfgs.lms->data;
  16255. float * lm_y = opt->lbfgs.lmy->data;
  16256. bool cancel = false;
  16257. // evaluate the function value and its gradient
  16258. {
  16259. ggml_opt_set_params(np, ps, x);
  16260. fx = 0;
  16261. memset(g, 0, sizeof(float)*nx);
  16262. for (int accum_step = 0; accum_step < n_accum; ++accum_step) {
  16263. if (callback) {
  16264. // LBFG-S does not support learning rate -> ignore learning schedule
  16265. float sched = 0;
  16266. callback(callback_data, accum_step, &sched, &cancel);
  16267. if (cancel) {
  16268. return GGML_OPT_RESULT_CANCEL;
  16269. }
  16270. }
  16271. // ggml_graph_reset (gf);
  16272. ggml_set_f32 (f->grad, 1.0f);
  16273. ggml_graph_compute(gb, &cplan);
  16274. ggml_opt_acc_grad(np, ps, g, accum_norm);
  16275. fx += ggml_get_f32_1d(f, 0);
  16276. }
  16277. fx *= accum_norm;
  16278. opt->loss_before = fx;
  16279. opt->loss_after = fx;
  16280. }
  16281. // search direction = -gradient
  16282. ggml_vec_neg_f32(nx, d, g);
  16283. // ||x||, ||g||
  16284. ggml_vec_norm_f32(nx, &xnorm, x);
  16285. ggml_vec_norm_f32(nx, &gnorm, g);
  16286. if (xnorm < 1.0f) {
  16287. xnorm = 1.0f;
  16288. }
  16289. // already optimized
  16290. if (gnorm/xnorm <= params.lbfgs.eps) {
  16291. return GGML_OPT_RESULT_OK;
  16292. }
  16293. if (opt->just_initialized) {
  16294. if (pf) {
  16295. pf[0] = fx;
  16296. }
  16297. opt->lbfgs.fx_best = fx;
  16298. // initial step
  16299. ggml_vec_norm_inv_f32(nx, &opt->lbfgs.step, d);
  16300. opt->lbfgs.j = 0;
  16301. opt->lbfgs.k = 1;
  16302. opt->lbfgs.end = 0;
  16303. opt->lbfgs.n_no_improvement = 0;
  16304. opt->just_initialized = false;
  16305. }
  16306. float * fx_best = &opt->lbfgs.fx_best;
  16307. float * step = &opt->lbfgs.step;
  16308. int * j = &opt->lbfgs.j;
  16309. int * k = &opt->lbfgs.k;
  16310. int * end = &opt->lbfgs.end;
  16311. int * n_no_improvement = &opt->lbfgs.n_no_improvement;
  16312. int ls = 0;
  16313. int bound = 0;
  16314. float ys = 0.0f;
  16315. float yy = 0.0f;
  16316. float beta = 0.0f;
  16317. int it = 0;
  16318. while (true) {
  16319. // store the current position and gradient vectors
  16320. ggml_vec_cpy_f32(nx, xp, x);
  16321. ggml_vec_cpy_f32(nx, gp, g);
  16322. // TODO: instead of passing &cancel here, use the return code of the linesearch
  16323. // to determine if the optimization should be cancelled
  16324. // this is a simple change, but not doing this atm, since I don't have a nice
  16325. // way to test and don't want to break something with so many changes lined up
  16326. ls = linesearch_backtracking(&params, nx, x, &fx, g, d, step, xp, f, gb, &cplan, np, ps, &cancel, callback, callback_data);
  16327. if (cancel) {
  16328. return GGML_OPT_RESULT_CANCEL;
  16329. }
  16330. if (ls < 0) {
  16331. // linesearch failed - go back to the previous point and return
  16332. ggml_vec_cpy_f32(nx, x, xp);
  16333. ggml_vec_cpy_f32(nx, g, gp);
  16334. return ls;
  16335. }
  16336. opt->loss_after = fx;
  16337. ggml_vec_norm_f32(nx, &xnorm, x);
  16338. ggml_vec_norm_f32(nx, &gnorm, g);
  16339. GGML_PRINT_DEBUG("f = %10.6f\n", ggml_get_f32_1d(f, 0));
  16340. if (xnorm < 1.0f) {
  16341. xnorm = 1.0f;
  16342. }
  16343. if (gnorm/xnorm <= params.lbfgs.eps) {
  16344. // converged
  16345. return GGML_OPT_RESULT_OK;
  16346. }
  16347. // delta-based convergence test
  16348. if (pf != NULL) {
  16349. // need at least params.past iterations to start checking for convergence
  16350. if (params.past <= k[0]) {
  16351. const float rate = (pf[k[0]%params.past] - fx)/fx;
  16352. if (fabsf(rate) < params.delta) {
  16353. return GGML_OPT_RESULT_OK;
  16354. }
  16355. }
  16356. pf[k[0]%params.past] = fx;
  16357. }
  16358. // check for improvement
  16359. if (params.max_no_improvement > 0) {
  16360. if (fx < fx_best[0]) {
  16361. fx_best[0] = fx;
  16362. n_no_improvement[0] = 0;
  16363. } else {
  16364. n_no_improvement[0]++;
  16365. if (n_no_improvement[0] >= params.max_no_improvement) {
  16366. return GGML_OPT_RESULT_OK;
  16367. }
  16368. }
  16369. }
  16370. if (params.lbfgs.n_iter != 0 && params.lbfgs.n_iter < it + 1) {
  16371. // reached the maximum number of iterations
  16372. return GGML_OPT_RESULT_DID_NOT_CONVERGE;
  16373. }
  16374. // update vectors s and y:
  16375. // s_{k+1} = x_{k+1} - x_{k} = \step * d_{k}.
  16376. // y_{k+1} = g_{k+1} - g_{k}.
  16377. //
  16378. ggml_vec_sub_f32(nx, &lm_s[end[0]*nx], x, xp);
  16379. ggml_vec_sub_f32(nx, &lm_y[end[0]*nx], g, gp);
  16380. // compute scalars ys and yy:
  16381. // ys = y^t \cdot s -> 1 / \rho.
  16382. // yy = y^t \cdot y.
  16383. //
  16384. ggml_vec_dot_f32(nx, &ys, 0, &lm_y[end[0]*nx], 0, &lm_s[end[0]*nx], 0, 1);
  16385. ggml_vec_dot_f32(nx, &yy, 0, &lm_y[end[0]*nx], 0, &lm_y[end[0]*nx], 0, 1);
  16386. lm_ys[end[0]] = ys;
  16387. // find new search direction
  16388. // ref: https://en.wikipedia.org/wiki/Limited-memory_BFGS
  16389. bound = (m <= k[0]) ? m : k[0];
  16390. k[0]++;
  16391. it++;
  16392. end[0] = (end[0] + 1)%m;
  16393. // initialize search direction with -g
  16394. ggml_vec_neg_f32(nx, d, g);
  16395. j[0] = end[0];
  16396. for (int i = 0; i < bound; ++i) {
  16397. j[0] = (j[0] + m - 1) % m;
  16398. // \alpha_{j} = \rho_{j} s^{t}_{j} \cdot q_{k+1}
  16399. ggml_vec_dot_f32(nx, &lm_alpha[j[0]], 0, &lm_s[j[0]*nx], 0, d, 0, 1);
  16400. lm_alpha[j[0]] /= lm_ys[j[0]];
  16401. // q_{i} = q_{i+1} - \alpha_{i} y_{i}
  16402. ggml_vec_mad_f32(nx, d, &lm_y[j[0]*nx], -lm_alpha[j[0]]);
  16403. }
  16404. ggml_vec_scale_f32(nx, d, ys/yy);
  16405. for (int i = 0; i < bound; ++i) {
  16406. // \beta_{j} = \rho_{j} y^t_{j} \cdot \gamma_{i}
  16407. ggml_vec_dot_f32(nx, &beta, 0, &lm_y[j[0]*nx], 0, d, 0, 1);
  16408. beta /= lm_ys[j[0]];
  16409. // \gamma_{i+1} = \gamma_{i} + (\alpha_{j} - \beta_{j}) s_{j}
  16410. ggml_vec_mad_f32(nx, d, &lm_s[j[0]*nx], lm_alpha[j[0]] - beta);
  16411. j[0] = (j[0] + 1)%m;
  16412. }
  16413. step[0] = 1.0;
  16414. }
  16415. GGML_ASSERT(false && "lbfgs failed");
  16416. return GGML_OPT_RESULT_DID_NOT_CONVERGE;
  16417. }
  16418. struct ggml_opt_params ggml_opt_default_params(enum ggml_opt_type type) {
  16419. struct ggml_opt_params result;
  16420. switch (type) {
  16421. case GGML_OPT_TYPE_ADAM:
  16422. {
  16423. result = (struct ggml_opt_params) {
  16424. .type = GGML_OPT_TYPE_ADAM,
  16425. .graph_size = GGML_DEFAULT_GRAPH_SIZE,
  16426. .n_threads = 1, // FIXME: GGML_DEFAULT_N_THREADS ?
  16427. .past = 0,
  16428. .delta = 1e-5f,
  16429. .max_no_improvement = 100,
  16430. .print_forward_graph = true,
  16431. .print_backward_graph = true,
  16432. .n_gradient_accumulation = 1,
  16433. .adam = {
  16434. .n_iter = 10000,
  16435. .sched = 1.000f,
  16436. .decay = 0.0f,
  16437. .decay_min_ndim = 2,
  16438. .alpha = 0.001f,
  16439. .beta1 = 0.9f,
  16440. .beta2 = 0.999f,
  16441. .eps = 1e-8f,
  16442. .eps_f = 1e-5f,
  16443. .eps_g = 1e-3f,
  16444. .gclip = 0.0f,
  16445. },
  16446. };
  16447. } break;
  16448. case GGML_OPT_TYPE_LBFGS:
  16449. {
  16450. result = (struct ggml_opt_params) {
  16451. .type = GGML_OPT_TYPE_LBFGS,
  16452. .graph_size = GGML_DEFAULT_GRAPH_SIZE,
  16453. .n_threads = 1,
  16454. .past = 0,
  16455. .delta = 1e-5f,
  16456. .max_no_improvement = 0,
  16457. .print_forward_graph = true,
  16458. .print_backward_graph = true,
  16459. .n_gradient_accumulation = 1,
  16460. .lbfgs = {
  16461. .m = 6,
  16462. .n_iter = 100,
  16463. .max_linesearch = 20,
  16464. .eps = 1e-5f,
  16465. .ftol = 1e-4f,
  16466. .wolfe = 0.9f,
  16467. .min_step = 1e-20f,
  16468. .max_step = 1e+20f,
  16469. .linesearch = GGML_LINESEARCH_DEFAULT,
  16470. },
  16471. };
  16472. } break;
  16473. }
  16474. return result;
  16475. }
  16476. GGML_API void ggml_opt_init(
  16477. struct ggml_context * ctx,
  16478. struct ggml_opt_context * opt,
  16479. struct ggml_opt_params params,
  16480. int64_t nx) {
  16481. opt->ctx = ctx;
  16482. opt->params = params;
  16483. opt->iter = 0;
  16484. opt->nx = nx;
  16485. opt->just_initialized = true;
  16486. if (opt->ctx == NULL) {
  16487. struct ggml_init_params ctx_opt_params;
  16488. if (opt->params.type == GGML_OPT_TYPE_ADAM) {
  16489. ctx_opt_params.mem_size = GGML_MEM_ALIGN*3 + ggml_tensor_overhead()*3 + ggml_type_size(GGML_TYPE_F32)*nx*3;
  16490. if (opt->params.past > 0) {
  16491. ctx_opt_params.mem_size += GGML_MEM_ALIGN + ggml_tensor_overhead() + ggml_type_size(GGML_TYPE_F32)*opt->params.past;
  16492. }
  16493. } else if (opt->params.type == GGML_OPT_TYPE_LBFGS) {
  16494. ctx_opt_params.mem_size = GGML_MEM_ALIGN*9 + ggml_tensor_overhead()*9 + ggml_type_size(GGML_TYPE_F32)*(nx*5 + opt->params.lbfgs.m*2 + nx*opt->params.lbfgs.m*2);
  16495. if (opt->params.past > 0) {
  16496. ctx_opt_params.mem_size += GGML_MEM_ALIGN + ggml_tensor_overhead() + ggml_type_size(GGML_TYPE_F32)*opt->params.past;
  16497. }
  16498. }
  16499. ctx_opt_params.mem_buffer = NULL;
  16500. ctx_opt_params.no_alloc = false;
  16501. opt->ctx = ggml_init(ctx_opt_params);
  16502. }
  16503. switch (opt->params.type) {
  16504. case GGML_OPT_TYPE_ADAM:
  16505. {
  16506. opt->adam.g = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  16507. opt->adam.m = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  16508. opt->adam.v = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  16509. opt->adam.pf = params.past > 0
  16510. ? ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, params.past)
  16511. : NULL;
  16512. ggml_set_zero(opt->adam.m);
  16513. ggml_set_zero(opt->adam.v);
  16514. if (opt->adam.pf) {
  16515. ggml_set_zero(opt->adam.pf);
  16516. }
  16517. } break;
  16518. case GGML_OPT_TYPE_LBFGS:
  16519. {
  16520. opt->lbfgs.x = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  16521. opt->lbfgs.xp = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  16522. opt->lbfgs.g = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  16523. opt->lbfgs.gp = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  16524. opt->lbfgs.d = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  16525. opt->lbfgs.pf = params.past > 0
  16526. ? ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, params.past)
  16527. : NULL;
  16528. opt->lbfgs.lmal = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, params.lbfgs.m);
  16529. opt->lbfgs.lmys = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, params.lbfgs.m);
  16530. opt->lbfgs.lms = ggml_new_tensor_2d(opt->ctx, GGML_TYPE_F32, nx, params.lbfgs.m);
  16531. opt->lbfgs.lmy = ggml_new_tensor_2d(opt->ctx, GGML_TYPE_F32, nx, params.lbfgs.m);
  16532. ggml_set_zero(opt->lbfgs.x);
  16533. ggml_set_zero(opt->lbfgs.xp);
  16534. ggml_set_zero(opt->lbfgs.g);
  16535. ggml_set_zero(opt->lbfgs.gp);
  16536. ggml_set_zero(opt->lbfgs.d);
  16537. if (opt->lbfgs.pf) {
  16538. ggml_set_zero(opt->lbfgs.pf);
  16539. }
  16540. ggml_set_zero(opt->lbfgs.lmal);
  16541. ggml_set_zero(opt->lbfgs.lmys);
  16542. ggml_set_zero(opt->lbfgs.lms);
  16543. ggml_set_zero(opt->lbfgs.lmy);
  16544. } break;
  16545. }
  16546. }
  16547. enum ggml_opt_result ggml_opt(
  16548. struct ggml_context * ctx,
  16549. struct ggml_opt_params params,
  16550. struct ggml_tensor * f) {
  16551. bool free_ctx = false;
  16552. if (ctx == NULL) {
  16553. struct ggml_init_params params_ctx = {
  16554. .mem_size = 16*1024*1024,
  16555. .mem_buffer = NULL,
  16556. .no_alloc = false,
  16557. };
  16558. ctx = ggml_init(params_ctx);
  16559. if (ctx == NULL) {
  16560. return GGML_OPT_RESULT_NO_CONTEXT;
  16561. }
  16562. free_ctx = true;
  16563. }
  16564. enum ggml_opt_result result = GGML_OPT_RESULT_OK;
  16565. struct ggml_opt_context * opt = (struct ggml_opt_context *) alloca(sizeof(struct ggml_opt_context));
  16566. ggml_opt_init(ctx, opt, params, 0);
  16567. result = ggml_opt_resume(ctx, opt, f);
  16568. if (free_ctx) {
  16569. ggml_free(ctx);
  16570. }
  16571. return result;
  16572. }
  16573. enum ggml_opt_result ggml_opt_resume(
  16574. struct ggml_context * ctx,
  16575. struct ggml_opt_context * opt,
  16576. struct ggml_tensor * f) {
  16577. // build forward + backward compute graphs
  16578. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx, opt->params.graph_size, true);
  16579. ggml_build_forward_expand(gf, f);
  16580. struct ggml_cgraph * gb = ggml_graph_dup(ctx, gf);
  16581. ggml_build_backward_expand(ctx, gf, gb, true);
  16582. return ggml_opt_resume_g(ctx, opt, f, gf, gb, NULL, NULL);
  16583. }
  16584. enum ggml_opt_result ggml_opt_resume_g(
  16585. struct ggml_context * ctx,
  16586. struct ggml_opt_context * opt,
  16587. struct ggml_tensor * f,
  16588. struct ggml_cgraph * gf,
  16589. struct ggml_cgraph * gb,
  16590. ggml_opt_callback callback,
  16591. void * callback_data) {
  16592. // build forward + backward compute graphs
  16593. enum ggml_opt_result result = GGML_OPT_RESULT_OK;
  16594. switch (opt->params.type) {
  16595. case GGML_OPT_TYPE_ADAM:
  16596. {
  16597. result = ggml_opt_adam(ctx, opt, opt->params, f, gf, gb, callback, callback_data);
  16598. } break;
  16599. case GGML_OPT_TYPE_LBFGS:
  16600. {
  16601. result = ggml_opt_lbfgs(ctx, opt, opt->params, f, gf, gb, callback, callback_data);
  16602. } break;
  16603. }
  16604. if (opt->params.print_forward_graph) {
  16605. ggml_graph_print (gf);
  16606. ggml_graph_dump_dot(gf, NULL, "opt-forward.dot");
  16607. }
  16608. if (opt->params.print_backward_graph) {
  16609. ggml_graph_print (gb);
  16610. ggml_graph_dump_dot(gb, gf, "opt-backward.dot");
  16611. }
  16612. return result;
  16613. }
  16614. ////////////////////////////////////////////////////////////////////////////////
  16615. void ggml_set_input(struct ggml_tensor * tensor) {
  16616. tensor->flags |= GGML_TENSOR_FLAG_INPUT;
  16617. }
  16618. void ggml_set_output(struct ggml_tensor * tensor) {
  16619. tensor->flags |= GGML_TENSOR_FLAG_OUTPUT;
  16620. }
  16621. ////////////////////////////////////////////////////////////////////////////////
  16622. void ggml_quantize_init(enum ggml_type type) {
  16623. ggml_critical_section_start();
  16624. switch (type) {
  16625. case GGML_TYPE_IQ2_XXS:
  16626. case GGML_TYPE_IQ2_XS:
  16627. case GGML_TYPE_IQ2_S:
  16628. case GGML_TYPE_IQ1_S: iq2xs_init_impl(type); break;
  16629. case GGML_TYPE_IQ3_XXS: iq3xs_init_impl(256); break;
  16630. case GGML_TYPE_IQ3_S: iq3xs_init_impl(512); break;
  16631. default: // nothing
  16632. break;
  16633. }
  16634. ggml_critical_section_end();
  16635. }
  16636. void ggml_quantize_free(void) {
  16637. ggml_critical_section_start();
  16638. iq2xs_free_impl(GGML_TYPE_IQ2_XXS);
  16639. iq2xs_free_impl(GGML_TYPE_IQ2_XS);
  16640. iq2xs_free_impl(GGML_TYPE_IQ1_S);
  16641. iq3xs_free_impl(256);
  16642. ggml_critical_section_end();
  16643. }
  16644. bool ggml_quantize_requires_imatrix(enum ggml_type type) {
  16645. return
  16646. type == GGML_TYPE_IQ2_XXS ||
  16647. type == GGML_TYPE_IQ2_XS ||
  16648. type == GGML_TYPE_IQ1_S;
  16649. }
  16650. size_t ggml_quantize_chunk(
  16651. enum ggml_type type,
  16652. const float * src,
  16653. void * dst,
  16654. int start,
  16655. int nrows,
  16656. int n_per_row,
  16657. const float * imatrix) {
  16658. const int n = nrows * n_per_row;
  16659. if (ggml_quantize_requires_imatrix(type)) {
  16660. GGML_ASSERT(imatrix != NULL);
  16661. }
  16662. GGML_ASSERT(start % type_traits[type].blck_size == 0);
  16663. GGML_ASSERT(start % n_per_row == 0);
  16664. ggml_quantize_init(type); // this is noop if already initialized
  16665. const size_t start_row = start / n_per_row;
  16666. const size_t row_size = ggml_row_size(type, n_per_row);
  16667. size_t result = 0;
  16668. switch (type) {
  16669. case GGML_TYPE_Q4_0: result = quantize_q4_0(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  16670. case GGML_TYPE_Q4_1: result = quantize_q4_1(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  16671. case GGML_TYPE_Q5_0: result = quantize_q5_0(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  16672. case GGML_TYPE_Q5_1: result = quantize_q5_1(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  16673. case GGML_TYPE_Q8_0: result = quantize_q8_0(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  16674. case GGML_TYPE_Q2_K: result = quantize_q2_K(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  16675. case GGML_TYPE_Q3_K: result = quantize_q3_K(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  16676. case GGML_TYPE_Q4_K: result = quantize_q4_K(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  16677. case GGML_TYPE_Q5_K: result = quantize_q5_K(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  16678. case GGML_TYPE_Q6_K: result = quantize_q6_K(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  16679. case GGML_TYPE_IQ2_XXS: result = quantize_iq2_xxs(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  16680. case GGML_TYPE_IQ2_XS: result = quantize_iq2_xs (src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  16681. case GGML_TYPE_IQ3_XXS: result = quantize_iq3_xxs(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  16682. case GGML_TYPE_IQ3_S: result = quantize_iq3_s (src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  16683. case GGML_TYPE_IQ2_S: result = quantize_iq2_s (src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  16684. case GGML_TYPE_IQ1_S: result = quantize_iq1_s (src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  16685. case GGML_TYPE_IQ4_NL: result = quantize_iq4_nl (src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  16686. #if QK_K == 64
  16687. case GGML_TYPE_IQ4_XS: result = quantize_iq4_nl (src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  16688. #else
  16689. case GGML_TYPE_IQ4_XS: result = quantize_iq4_xs (src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  16690. #endif
  16691. case GGML_TYPE_F16:
  16692. {
  16693. size_t elemsize = sizeof(ggml_fp16_t);
  16694. ggml_fp32_to_fp16_row(src + start, (ggml_fp16_t *)dst + start, n);
  16695. result = n * elemsize;
  16696. } break;
  16697. case GGML_TYPE_F32:
  16698. {
  16699. size_t elemsize = sizeof(float);
  16700. result = n * elemsize;
  16701. memcpy((uint8_t *)dst + start * elemsize, src + start, result);
  16702. } break;
  16703. default:
  16704. assert(false);
  16705. }
  16706. GGML_ASSERT(result == nrows * row_size);
  16707. return result;
  16708. }
  16709. ////////////////////////////////////////////////////////////////////////////////
  16710. struct gguf_str {
  16711. uint64_t n; // GGUFv2
  16712. char * data;
  16713. };
  16714. static const size_t GGUF_TYPE_SIZE[GGUF_TYPE_COUNT] = {
  16715. [GGUF_TYPE_UINT8] = sizeof(uint8_t),
  16716. [GGUF_TYPE_INT8] = sizeof(int8_t),
  16717. [GGUF_TYPE_UINT16] = sizeof(uint16_t),
  16718. [GGUF_TYPE_INT16] = sizeof(int16_t),
  16719. [GGUF_TYPE_UINT32] = sizeof(uint32_t),
  16720. [GGUF_TYPE_INT32] = sizeof(int32_t),
  16721. [GGUF_TYPE_FLOAT32] = sizeof(float),
  16722. [GGUF_TYPE_BOOL] = sizeof(bool),
  16723. [GGUF_TYPE_STRING] = sizeof(struct gguf_str),
  16724. [GGUF_TYPE_UINT64] = sizeof(uint64_t),
  16725. [GGUF_TYPE_INT64] = sizeof(int64_t),
  16726. [GGUF_TYPE_FLOAT64] = sizeof(double),
  16727. [GGUF_TYPE_ARRAY] = 0, // undefined
  16728. };
  16729. static_assert(GGUF_TYPE_COUNT == 13, "GGUF_TYPE_COUNT != 13");
  16730. static const char * GGUF_TYPE_NAME[GGUF_TYPE_COUNT] = {
  16731. [GGUF_TYPE_UINT8] = "u8",
  16732. [GGUF_TYPE_INT8] = "i8",
  16733. [GGUF_TYPE_UINT16] = "u16",
  16734. [GGUF_TYPE_INT16] = "i16",
  16735. [GGUF_TYPE_UINT32] = "u32",
  16736. [GGUF_TYPE_INT32] = "i32",
  16737. [GGUF_TYPE_FLOAT32] = "f32",
  16738. [GGUF_TYPE_BOOL] = "bool",
  16739. [GGUF_TYPE_STRING] = "str",
  16740. [GGUF_TYPE_ARRAY] = "arr",
  16741. [GGUF_TYPE_UINT64] = "u64",
  16742. [GGUF_TYPE_INT64] = "i64",
  16743. [GGUF_TYPE_FLOAT64] = "f64",
  16744. };
  16745. static_assert(GGUF_TYPE_COUNT == 13, "GGUF_TYPE_COUNT != 13");
  16746. union gguf_value {
  16747. uint8_t uint8;
  16748. int8_t int8;
  16749. uint16_t uint16;
  16750. int16_t int16;
  16751. uint32_t uint32;
  16752. int32_t int32;
  16753. float float32;
  16754. uint64_t uint64;
  16755. int64_t int64;
  16756. double float64;
  16757. bool bool_;
  16758. struct gguf_str str;
  16759. struct {
  16760. enum gguf_type type;
  16761. uint64_t n; // GGUFv2
  16762. void * data;
  16763. } arr;
  16764. };
  16765. struct gguf_kv {
  16766. struct gguf_str key;
  16767. enum gguf_type type;
  16768. union gguf_value value;
  16769. };
  16770. struct gguf_header {
  16771. char magic[4];
  16772. uint32_t version;
  16773. uint64_t n_tensors; // GGUFv2
  16774. uint64_t n_kv; // GGUFv2
  16775. };
  16776. struct gguf_tensor_info {
  16777. struct gguf_str name;
  16778. uint32_t n_dims;
  16779. uint64_t ne[GGML_MAX_DIMS];
  16780. enum ggml_type type;
  16781. uint64_t offset; // offset from start of `data`, must be a multiple of `ALIGNMENT`
  16782. // for writing API
  16783. const void * data;
  16784. size_t size;
  16785. };
  16786. struct gguf_context {
  16787. struct gguf_header header;
  16788. struct gguf_kv * kv;
  16789. struct gguf_tensor_info * infos;
  16790. size_t alignment;
  16791. size_t offset; // offset of `data` from beginning of file
  16792. size_t size; // size of `data` in bytes
  16793. //uint8_t * padding;
  16794. void * data;
  16795. };
  16796. static size_t gguf_type_size(enum gguf_type type) {
  16797. GGML_ASSERT(0 <= type && type < GGUF_TYPE_COUNT);
  16798. return GGUF_TYPE_SIZE[type];
  16799. }
  16800. static void gguf_tensor_info_sanitize(struct gguf_tensor_info * info) {
  16801. GGML_ASSERT(info->n_dims <= GGML_MAX_DIMS);
  16802. GGML_ASSERT(0 <= info->type && info->type < GGML_TYPE_COUNT);
  16803. for (uint32_t i = 0; i < info->n_dims; ++i) {
  16804. GGML_ASSERT(info->ne[i] > 0);
  16805. }
  16806. // prevent overflow for total number of elements
  16807. GGML_ASSERT(INT64_MAX/info->ne[1] > info->ne[0]);
  16808. GGML_ASSERT(INT64_MAX/info->ne[2] > info->ne[0]*info->ne[1]);
  16809. GGML_ASSERT(INT64_MAX/info->ne[3] > info->ne[0]*info->ne[1]*info->ne[2]);
  16810. }
  16811. static bool gguf_fread_el(FILE * file, void * dst, size_t size, size_t * offset) {
  16812. const size_t n = fread(dst, 1, size, file);
  16813. *offset += n;
  16814. return n == size;
  16815. }
  16816. static bool gguf_fread_str(FILE * file, struct gguf_str * p, size_t * offset) {
  16817. p->n = 0;
  16818. p->data = NULL;
  16819. bool ok = true;
  16820. ok = ok && gguf_fread_el(file, &p->n, sizeof(p->n), offset);
  16821. // early exit if string length is invalid, prevents from integer overflow
  16822. if (p->n == SIZE_MAX) {
  16823. fprintf(stderr, "%s: invalid string length (%" PRIu64 ")\n", __func__, p->n);
  16824. return false;
  16825. }
  16826. p->data = GGML_CALLOC(p->n + 1, 1);
  16827. ok = ok && gguf_fread_el(file, p->data, p->n, offset);
  16828. return ok;
  16829. }
  16830. struct gguf_context * gguf_init_empty(void) {
  16831. struct gguf_context * ctx = GGML_ALIGNED_MALLOC(sizeof(struct gguf_context));
  16832. memcpy(ctx->header.magic, GGUF_MAGIC, sizeof(ctx->header.magic));
  16833. ctx->header.version = GGUF_VERSION;
  16834. ctx->header.n_tensors = 0;
  16835. ctx->header.n_kv = 0;
  16836. ctx->kv = NULL;
  16837. ctx->infos = NULL;
  16838. ctx->alignment = GGUF_DEFAULT_ALIGNMENT;
  16839. ctx->offset = 0;
  16840. ctx->size = 0;
  16841. ctx->data = NULL;
  16842. return ctx;
  16843. }
  16844. struct gguf_context * gguf_init_from_file(const char * fname, struct gguf_init_params params) {
  16845. FILE * file = fopen(fname, "rb");
  16846. if (!file) {
  16847. return NULL;
  16848. }
  16849. // offset from start of file
  16850. size_t offset = 0;
  16851. char magic[4];
  16852. // check the magic before making allocations
  16853. {
  16854. gguf_fread_el(file, &magic, sizeof(magic), &offset);
  16855. for (uint32_t i = 0; i < sizeof(magic); i++) {
  16856. if (magic[i] != GGUF_MAGIC[i]) {
  16857. fprintf(stderr, "%s: invalid magic characters '%c%c%c%c'\n", __func__, magic[0], magic[1], magic[2], magic[3]);
  16858. fclose(file);
  16859. return NULL;
  16860. }
  16861. }
  16862. }
  16863. bool ok = true;
  16864. struct gguf_context * ctx = GGML_ALIGNED_MALLOC(sizeof(struct gguf_context));
  16865. // read the header
  16866. {
  16867. strncpy(ctx->header.magic, magic, 4);
  16868. ctx->kv = NULL;
  16869. ctx->infos = NULL;
  16870. ctx->data = NULL;
  16871. ok = ok && gguf_fread_el(file, &ctx->header.version, sizeof(ctx->header.version), &offset);
  16872. ok = ok && gguf_fread_el(file, &ctx->header.n_tensors, sizeof(ctx->header.n_tensors), &offset);
  16873. ok = ok && gguf_fread_el(file, &ctx->header.n_kv, sizeof(ctx->header.n_kv), &offset);
  16874. if (ctx->header.version == 1) {
  16875. fprintf(stderr, "%s: GGUFv1 is no longer supported. please use a more up-to-date version\n", __func__);
  16876. fclose(file);
  16877. gguf_free(ctx);
  16878. return NULL;
  16879. }
  16880. // sanity-checks to prevent from integer/buffer overflows
  16881. ok = ok && (ctx->header.n_tensors < (SIZE_MAX/2)/sizeof(struct gguf_tensor_info));
  16882. ok = ok && (ctx->header.n_tensors < (SIZE_MAX/2)/ggml_tensor_overhead());
  16883. ok = ok && (ctx->header.n_kv < (SIZE_MAX/2)/sizeof(struct gguf_kv));
  16884. if (!ok) {
  16885. fprintf(stderr, "%s: failed to read header\n", __func__);
  16886. fclose(file);
  16887. gguf_free(ctx);
  16888. return NULL;
  16889. }
  16890. }
  16891. // read the kv pairs
  16892. {
  16893. ctx->kv = GGML_MALLOC(ctx->header.n_kv * sizeof(struct gguf_kv));
  16894. for (uint64_t i = 0; i < ctx->header.n_kv; ++i) {
  16895. struct gguf_kv * kv = &ctx->kv[i];
  16896. //fprintf(stderr, "%s: reading kv %d\n", __func__, i);
  16897. ok = ok && gguf_fread_str(file, &kv->key, &offset);
  16898. ok = ok && gguf_fread_el (file, &kv->type, sizeof(kv->type), &offset);
  16899. //fprintf(stderr, "%s: reading kv with key %s\n", __func__, kv->key.data);
  16900. switch (kv->type) {
  16901. case GGUF_TYPE_UINT8: ok = ok && gguf_fread_el (file, &kv->value.uint8, sizeof(kv->value.uint8), &offset); break;
  16902. case GGUF_TYPE_INT8: ok = ok && gguf_fread_el (file, &kv->value.int8, sizeof(kv->value.int8), &offset); break;
  16903. case GGUF_TYPE_UINT16: ok = ok && gguf_fread_el (file, &kv->value.uint16, sizeof(kv->value.uint16), &offset); break;
  16904. case GGUF_TYPE_INT16: ok = ok && gguf_fread_el (file, &kv->value.int16, sizeof(kv->value.int16), &offset); break;
  16905. case GGUF_TYPE_UINT32: ok = ok && gguf_fread_el (file, &kv->value.uint32, sizeof(kv->value.uint32), &offset); break;
  16906. case GGUF_TYPE_INT32: ok = ok && gguf_fread_el (file, &kv->value.int32, sizeof(kv->value.int32), &offset); break;
  16907. case GGUF_TYPE_FLOAT32: ok = ok && gguf_fread_el (file, &kv->value.float32, sizeof(kv->value.float32), &offset); break;
  16908. case GGUF_TYPE_UINT64: ok = ok && gguf_fread_el (file, &kv->value.uint64, sizeof(kv->value.uint64), &offset); break;
  16909. case GGUF_TYPE_INT64: ok = ok && gguf_fread_el (file, &kv->value.int64, sizeof(kv->value.int64), &offset); break;
  16910. case GGUF_TYPE_FLOAT64: ok = ok && gguf_fread_el (file, &kv->value.float64, sizeof(kv->value.float64), &offset); break;
  16911. case GGUF_TYPE_BOOL: ok = ok && gguf_fread_el (file, &kv->value.bool_, sizeof(kv->value.bool_), &offset); break;
  16912. case GGUF_TYPE_STRING: ok = ok && gguf_fread_str(file, &kv->value.str, &offset); break;
  16913. case GGUF_TYPE_ARRAY:
  16914. {
  16915. ok = ok && gguf_fread_el(file, &kv->value.arr.type, sizeof(kv->value.arr.type), &offset);
  16916. ok = ok && gguf_fread_el(file, &kv->value.arr.n, sizeof(kv->value.arr.n), &offset);
  16917. switch (kv->value.arr.type) {
  16918. case GGUF_TYPE_UINT8:
  16919. case GGUF_TYPE_INT8:
  16920. case GGUF_TYPE_UINT16:
  16921. case GGUF_TYPE_INT16:
  16922. case GGUF_TYPE_UINT32:
  16923. case GGUF_TYPE_INT32:
  16924. case GGUF_TYPE_FLOAT32:
  16925. case GGUF_TYPE_UINT64:
  16926. case GGUF_TYPE_INT64:
  16927. case GGUF_TYPE_FLOAT64:
  16928. case GGUF_TYPE_BOOL:
  16929. {
  16930. // prevent from integer overflow in the malloc below
  16931. if (kv->value.arr.n >= SIZE_MAX/gguf_type_size(kv->value.arr.type)) {
  16932. fprintf(stderr, "%s: array size is too large (%" PRIu64 ")\n", __func__, kv->value.arr.n);
  16933. fclose(file);
  16934. gguf_free(ctx);
  16935. return NULL;
  16936. }
  16937. kv->value.arr.data = GGML_MALLOC(kv->value.arr.n * gguf_type_size(kv->value.arr.type));
  16938. ok = ok && gguf_fread_el(file, kv->value.arr.data, kv->value.arr.n * gguf_type_size(kv->value.arr.type), &offset);
  16939. } break;
  16940. case GGUF_TYPE_STRING:
  16941. {
  16942. // prevent from integer overflow in the malloc below
  16943. if (kv->value.arr.n >= SIZE_MAX/sizeof(struct gguf_str)) {
  16944. fprintf(stderr, "%s: array size is too large (%" PRIu64 ")\n", __func__, kv->value.arr.n);
  16945. fclose(file);
  16946. gguf_free(ctx);
  16947. return NULL;
  16948. }
  16949. kv->value.arr.data = GGML_MALLOC(kv->value.arr.n * sizeof(struct gguf_str));
  16950. for (uint64_t j = 0; j < kv->value.arr.n; ++j) {
  16951. ok = ok && gguf_fread_str(file, &((struct gguf_str *) kv->value.arr.data)[j], &offset);
  16952. }
  16953. } break;
  16954. case GGUF_TYPE_ARRAY:
  16955. default: GGML_ASSERT(false && "invalid type"); break;
  16956. }
  16957. } break;
  16958. default: GGML_ASSERT(false && "invalid type");
  16959. }
  16960. if (!ok) {
  16961. break;
  16962. }
  16963. }
  16964. if (!ok) {
  16965. fprintf(stderr, "%s: failed to read key-value pairs\n", __func__);
  16966. fclose(file);
  16967. gguf_free(ctx);
  16968. return NULL;
  16969. }
  16970. }
  16971. // read the tensor infos
  16972. {
  16973. ctx->infos = GGML_MALLOC(ctx->header.n_tensors * sizeof(struct gguf_tensor_info));
  16974. for (uint64_t i = 0; i < ctx->header.n_tensors; ++i) {
  16975. struct gguf_tensor_info * info = &ctx->infos[i];
  16976. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  16977. info->ne[j] = 1;
  16978. }
  16979. ok = ok && gguf_fread_str(file, &info->name, &offset);
  16980. ok = ok && gguf_fread_el (file, &info->n_dims, sizeof(info->n_dims), &offset);
  16981. ok = ok && (info->n_dims <= GGML_MAX_DIMS);
  16982. for (uint32_t j = 0; j < info->n_dims; ++j) {
  16983. ok = ok && gguf_fread_el(file, &info->ne[j], sizeof(info->ne[j]), &offset);
  16984. }
  16985. ok = ok && gguf_fread_el (file, &info->type, sizeof(info->type), &offset);
  16986. ok = ok && gguf_fread_el (file, &info->offset, sizeof(info->offset), &offset);
  16987. gguf_tensor_info_sanitize(info);
  16988. if (!ok) {
  16989. fprintf(stderr, "%s: failed to read tensor info\n", __func__);
  16990. fclose(file);
  16991. gguf_free(ctx);
  16992. return NULL;
  16993. }
  16994. }
  16995. }
  16996. ctx->alignment = GGUF_DEFAULT_ALIGNMENT;
  16997. int alignment_idx = gguf_find_key(ctx, "general.alignment");
  16998. if (alignment_idx != -1) {
  16999. ctx->alignment = gguf_get_val_u32(ctx, alignment_idx);
  17000. }
  17001. // we require the data section to be aligned, so take into account any padding
  17002. {
  17003. const size_t offset_pad = offset % ctx->alignment;
  17004. if (offset_pad != 0) {
  17005. offset += ctx->alignment - offset_pad;
  17006. fseek(file, offset, SEEK_SET);
  17007. }
  17008. }
  17009. // store the current file offset - this is where the data section starts
  17010. ctx->offset = offset;
  17011. // compute the total size of the data section, taking into account the alignment
  17012. {
  17013. ctx->size = 0;
  17014. for (uint64_t i = 0; i < ctx->header.n_tensors; ++i) {
  17015. struct gguf_tensor_info * info = &ctx->infos[i];
  17016. const int64_t ne =
  17017. (int64_t) info->ne[0] *
  17018. (int64_t) info->ne[1] *
  17019. (int64_t) info->ne[2] *
  17020. (int64_t) info->ne[3];
  17021. if (ne % ggml_blck_size(info->type) != 0) {
  17022. fprintf(stderr, "%s: tensor '%s' of type %d (%s) number of elements (%" PRId64 ") is not a multiple of block size (%d)\n",
  17023. __func__, info->name.data, (int)info->type, ggml_type_name(info->type), ne, ggml_blck_size(info->type));
  17024. fclose(file);
  17025. gguf_free(ctx);
  17026. return NULL;
  17027. }
  17028. const size_t size_cur = ggml_row_size(info->type, ne);
  17029. ctx->size += GGML_PAD(size_cur, ctx->alignment);
  17030. }
  17031. }
  17032. // load the tensor data only if requested
  17033. if (params.ctx != NULL) {
  17034. // if the provided gguf_context is no_alloc, then we create "empty" tensors and do not read the binary blob
  17035. // otherwise, we load the binary blob into the created ggml_context as well, and point the "data" members of
  17036. // the ggml_tensor structs to the appropriate locations in the binary blob
  17037. // compute the exact size needed for the new ggml_context
  17038. const size_t mem_size =
  17039. params.no_alloc ?
  17040. (ctx->header.n_tensors )*ggml_tensor_overhead() :
  17041. (ctx->header.n_tensors + 1)*ggml_tensor_overhead() + ctx->size;
  17042. struct ggml_init_params pdata = {
  17043. .mem_size = mem_size,
  17044. .mem_buffer = NULL,
  17045. .no_alloc = params.no_alloc,
  17046. };
  17047. *params.ctx = ggml_init(pdata);
  17048. struct ggml_context * ctx_data = *params.ctx;
  17049. struct ggml_tensor * data = NULL;
  17050. if (!params.no_alloc) {
  17051. data = ggml_new_tensor_1d(ctx_data, GGML_TYPE_I8, ctx->size);
  17052. ok = ok && data != NULL;
  17053. // read the binary blob with the tensor data
  17054. ok = ok && gguf_fread_el(file, data->data, ctx->size, &offset);
  17055. if (!ok) {
  17056. fprintf(stderr, "%s: failed to read tensor data\n", __func__);
  17057. fclose(file);
  17058. ggml_free(ctx_data);
  17059. gguf_free(ctx);
  17060. return NULL;
  17061. }
  17062. ctx->data = data->data;
  17063. }
  17064. ggml_set_no_alloc(ctx_data, true);
  17065. // create the tensors
  17066. for (uint64_t i = 0; i < ctx->header.n_tensors; ++i) {
  17067. const int64_t ne[GGML_MAX_DIMS] = {
  17068. ctx->infos[i].ne[0],
  17069. ctx->infos[i].ne[1],
  17070. ctx->infos[i].ne[2],
  17071. ctx->infos[i].ne[3],
  17072. };
  17073. struct ggml_tensor * cur = ggml_new_tensor(ctx_data, ctx->infos[i].type, ctx->infos[i].n_dims, ne);
  17074. ok = ok && cur != NULL;
  17075. ggml_set_name(cur, ctx->infos[i].name.data);
  17076. if (!ok) {
  17077. break;
  17078. }
  17079. // point the data member to the appropriate location in the binary blob using the tensor infos
  17080. if (!params.no_alloc) {
  17081. //cur->data = (char *) data->data + ctx->infos[i].offset - ctx->offset; // offset from start of file
  17082. cur->data = (char *) data->data + ctx->infos[i].offset; // offset from data
  17083. }
  17084. }
  17085. if (!ok) {
  17086. fprintf(stderr, "%s: failed to read the tensor data\n", __func__);
  17087. fclose(file);
  17088. ggml_free(ctx_data);
  17089. gguf_free(ctx);
  17090. return NULL;
  17091. }
  17092. ggml_set_no_alloc(ctx_data, params.no_alloc);
  17093. }
  17094. fclose(file);
  17095. return ctx;
  17096. }
  17097. void gguf_free(struct gguf_context * ctx) {
  17098. if (ctx == NULL) {
  17099. return;
  17100. }
  17101. if (ctx->kv) {
  17102. // free string memory - not great..
  17103. for (uint64_t i = 0; i < ctx->header.n_kv; ++i) {
  17104. struct gguf_kv * kv = &ctx->kv[i];
  17105. if (kv->key.data) {
  17106. GGML_FREE(kv->key.data);
  17107. }
  17108. if (kv->type == GGUF_TYPE_STRING) {
  17109. if (kv->value.str.data) {
  17110. GGML_FREE(kv->value.str.data);
  17111. }
  17112. }
  17113. if (kv->type == GGUF_TYPE_ARRAY) {
  17114. if (kv->value.arr.data) {
  17115. if (kv->value.arr.type == GGUF_TYPE_STRING) {
  17116. for (uint64_t j = 0; j < kv->value.arr.n; ++j) {
  17117. struct gguf_str * str = &((struct gguf_str *) kv->value.arr.data)[j];
  17118. if (str->data) {
  17119. GGML_FREE(str->data);
  17120. }
  17121. }
  17122. }
  17123. GGML_FREE(kv->value.arr.data);
  17124. }
  17125. }
  17126. }
  17127. GGML_FREE(ctx->kv);
  17128. }
  17129. if (ctx->infos) {
  17130. for (uint64_t i = 0; i < ctx->header.n_tensors; ++i) {
  17131. struct gguf_tensor_info * info = &ctx->infos[i];
  17132. if (info->name.data) {
  17133. GGML_FREE(info->name.data);
  17134. }
  17135. }
  17136. GGML_FREE(ctx->infos);
  17137. }
  17138. GGML_ALIGNED_FREE(ctx);
  17139. }
  17140. const char * gguf_type_name(enum gguf_type type) {
  17141. return GGUF_TYPE_NAME[type];
  17142. }
  17143. int gguf_get_version(const struct gguf_context * ctx) {
  17144. return ctx->header.version;
  17145. }
  17146. size_t gguf_get_alignment(const struct gguf_context * ctx) {
  17147. return ctx->alignment;
  17148. }
  17149. size_t gguf_get_data_offset(const struct gguf_context * ctx) {
  17150. return ctx->offset;
  17151. }
  17152. void * gguf_get_data(const struct gguf_context * ctx) {
  17153. return ctx->data;
  17154. }
  17155. int gguf_get_n_kv(const struct gguf_context * ctx) {
  17156. return ctx->header.n_kv;
  17157. }
  17158. int gguf_find_key(const struct gguf_context * ctx, const char * key) {
  17159. // return -1 if key not found
  17160. int keyfound = -1;
  17161. const int n_kv = gguf_get_n_kv(ctx);
  17162. for (int i = 0; i < n_kv; ++i) {
  17163. if (strcmp(key, gguf_get_key(ctx, i)) == 0) {
  17164. keyfound = i;
  17165. break;
  17166. }
  17167. }
  17168. return keyfound;
  17169. }
  17170. const char * gguf_get_key(const struct gguf_context * ctx, int key_id) {
  17171. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  17172. return ctx->kv[key_id].key.data;
  17173. }
  17174. enum gguf_type gguf_get_kv_type(const struct gguf_context * ctx, int key_id) {
  17175. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  17176. return ctx->kv[key_id].type;
  17177. }
  17178. enum gguf_type gguf_get_arr_type(const struct gguf_context * ctx, int key_id) {
  17179. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  17180. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_ARRAY);
  17181. return ctx->kv[key_id].value.arr.type;
  17182. }
  17183. const void * gguf_get_arr_data(const struct gguf_context * ctx, int key_id) {
  17184. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  17185. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_ARRAY);
  17186. return ctx->kv[key_id].value.arr.data;
  17187. }
  17188. const char * gguf_get_arr_str(const struct gguf_context * ctx, int key_id, int i) {
  17189. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  17190. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_ARRAY);
  17191. struct gguf_kv * kv = &ctx->kv[key_id];
  17192. struct gguf_str * str = &((struct gguf_str *) kv->value.arr.data)[i];
  17193. return str->data;
  17194. }
  17195. int gguf_get_arr_n(const struct gguf_context * ctx, int key_id) {
  17196. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  17197. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_ARRAY);
  17198. return ctx->kv[key_id].value.arr.n;
  17199. }
  17200. uint8_t gguf_get_val_u8(const struct gguf_context * ctx, int key_id) {
  17201. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  17202. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_UINT8);
  17203. return ctx->kv[key_id].value.uint8;
  17204. }
  17205. int8_t gguf_get_val_i8(const struct gguf_context * ctx, int key_id) {
  17206. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  17207. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_INT8);
  17208. return ctx->kv[key_id].value.int8;
  17209. }
  17210. uint16_t gguf_get_val_u16(const struct gguf_context * ctx, int key_id) {
  17211. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  17212. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_UINT16);
  17213. return ctx->kv[key_id].value.uint16;
  17214. }
  17215. int16_t gguf_get_val_i16(const struct gguf_context * ctx, int key_id) {
  17216. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  17217. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_INT16);
  17218. return ctx->kv[key_id].value.int16;
  17219. }
  17220. uint32_t gguf_get_val_u32(const struct gguf_context * ctx, int key_id) {
  17221. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  17222. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_UINT32);
  17223. return ctx->kv[key_id].value.uint32;
  17224. }
  17225. int32_t gguf_get_val_i32(const struct gguf_context * ctx, int key_id) {
  17226. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  17227. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_INT32);
  17228. return ctx->kv[key_id].value.int32;
  17229. }
  17230. float gguf_get_val_f32(const struct gguf_context * ctx, int key_id) {
  17231. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  17232. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_FLOAT32);
  17233. return ctx->kv[key_id].value.float32;
  17234. }
  17235. uint64_t gguf_get_val_u64(const struct gguf_context * ctx, int key_id) {
  17236. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  17237. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_UINT64);
  17238. return ctx->kv[key_id].value.uint64;
  17239. }
  17240. int64_t gguf_get_val_i64(const struct gguf_context * ctx, int key_id) {
  17241. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  17242. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_INT64);
  17243. return ctx->kv[key_id].value.int64;
  17244. }
  17245. double gguf_get_val_f64(const struct gguf_context * ctx, int key_id) {
  17246. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  17247. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_FLOAT64);
  17248. return ctx->kv[key_id].value.float64;
  17249. }
  17250. bool gguf_get_val_bool(const struct gguf_context * ctx, int key_id) {
  17251. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  17252. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_BOOL);
  17253. return ctx->kv[key_id].value.bool_;
  17254. }
  17255. const char * gguf_get_val_str(const struct gguf_context * ctx, int key_id) {
  17256. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  17257. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_STRING);
  17258. return ctx->kv[key_id].value.str.data;
  17259. }
  17260. const void * gguf_get_val_data(const struct gguf_context * ctx, int key_id) {
  17261. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  17262. GGML_ASSERT(ctx->kv[key_id].type != GGUF_TYPE_ARRAY);
  17263. GGML_ASSERT(ctx->kv[key_id].type != GGUF_TYPE_STRING);
  17264. return &ctx->kv[key_id].value;
  17265. }
  17266. int gguf_get_n_tensors(const struct gguf_context * ctx) {
  17267. return ctx->header.n_tensors;
  17268. }
  17269. int gguf_find_tensor(const struct gguf_context * ctx, const char * name) {
  17270. // return -1 if tensor not found
  17271. int tensorfound = -1;
  17272. const int n_tensors = gguf_get_n_tensors(ctx);
  17273. for (int i = 0; i < n_tensors; ++i) {
  17274. if (strcmp(name, gguf_get_tensor_name(ctx, i)) == 0) {
  17275. tensorfound = i;
  17276. break;
  17277. }
  17278. }
  17279. return tensorfound;
  17280. }
  17281. size_t gguf_get_tensor_offset(const struct gguf_context * ctx, int i) {
  17282. return ctx->infos[i].offset;
  17283. }
  17284. char * gguf_get_tensor_name(const struct gguf_context * ctx, int i) {
  17285. return ctx->infos[i].name.data;
  17286. }
  17287. enum ggml_type gguf_get_tensor_type(const struct gguf_context * ctx, int i) {
  17288. return ctx->infos[i].type;
  17289. }
  17290. // returns the index
  17291. static int gguf_get_or_add_key(struct gguf_context * ctx, const char * key) {
  17292. const int idx = gguf_find_key(ctx, key);
  17293. if (idx >= 0) {
  17294. return idx;
  17295. }
  17296. const int n_kv = gguf_get_n_kv(ctx);
  17297. ctx->kv = realloc(ctx->kv, (n_kv + 1) * sizeof(struct gguf_kv));
  17298. ctx->kv[n_kv].key.n = strlen(key);
  17299. ctx->kv[n_kv].key.data = strdup(key);
  17300. ctx->header.n_kv++;
  17301. return n_kv;
  17302. }
  17303. void gguf_set_val_u8(struct gguf_context * ctx, const char * key, uint8_t val) {
  17304. const int idx = gguf_get_or_add_key(ctx, key);
  17305. ctx->kv[idx].type = GGUF_TYPE_UINT8;
  17306. ctx->kv[idx].value.uint8 = val;
  17307. }
  17308. void gguf_set_val_i8(struct gguf_context * ctx, const char * key, int8_t val) {
  17309. const int idx = gguf_get_or_add_key(ctx, key);
  17310. ctx->kv[idx].type = GGUF_TYPE_INT8;
  17311. ctx->kv[idx].value.int8 = val;
  17312. }
  17313. void gguf_set_val_u16(struct gguf_context * ctx, const char * key, uint16_t val) {
  17314. const int idx = gguf_get_or_add_key(ctx, key);
  17315. ctx->kv[idx].type = GGUF_TYPE_UINT16;
  17316. ctx->kv[idx].value.uint16 = val;
  17317. }
  17318. void gguf_set_val_i16(struct gguf_context * ctx, const char * key, int16_t val) {
  17319. const int idx = gguf_get_or_add_key(ctx, key);
  17320. ctx->kv[idx].type = GGUF_TYPE_INT16;
  17321. ctx->kv[idx].value.int16 = val;
  17322. }
  17323. void gguf_set_val_u32(struct gguf_context * ctx, const char * key, uint32_t val) {
  17324. const int idx = gguf_get_or_add_key(ctx, key);
  17325. ctx->kv[idx].type = GGUF_TYPE_UINT32;
  17326. ctx->kv[idx].value.uint32 = val;
  17327. }
  17328. void gguf_set_val_i32(struct gguf_context * ctx, const char * key, int32_t val) {
  17329. const int idx = gguf_get_or_add_key(ctx, key);
  17330. ctx->kv[idx].type = GGUF_TYPE_INT32;
  17331. ctx->kv[idx].value.int32 = val;
  17332. }
  17333. void gguf_set_val_f32(struct gguf_context * ctx, const char * key, float val) {
  17334. const int idx = gguf_get_or_add_key(ctx, key);
  17335. ctx->kv[idx].type = GGUF_TYPE_FLOAT32;
  17336. ctx->kv[idx].value.float32 = val;
  17337. }
  17338. void gguf_set_val_u64(struct gguf_context * ctx, const char * key, uint64_t val) {
  17339. const int idx = gguf_get_or_add_key(ctx, key);
  17340. ctx->kv[idx].type = GGUF_TYPE_UINT64;
  17341. ctx->kv[idx].value.uint64 = val;
  17342. }
  17343. void gguf_set_val_i64(struct gguf_context * ctx, const char * key, int64_t val) {
  17344. const int idx = gguf_get_or_add_key(ctx, key);
  17345. ctx->kv[idx].type = GGUF_TYPE_INT64;
  17346. ctx->kv[idx].value.int64 = val;
  17347. }
  17348. void gguf_set_val_f64(struct gguf_context * ctx, const char * key, double val) {
  17349. const int idx = gguf_get_or_add_key(ctx, key);
  17350. ctx->kv[idx].type = GGUF_TYPE_FLOAT64;
  17351. ctx->kv[idx].value.float64 = val;
  17352. }
  17353. void gguf_set_val_bool(struct gguf_context * ctx, const char * key, bool val) {
  17354. const int idx = gguf_get_or_add_key(ctx, key);
  17355. ctx->kv[idx].type = GGUF_TYPE_BOOL;
  17356. ctx->kv[idx].value.bool_ = val;
  17357. }
  17358. void gguf_set_val_str(struct gguf_context * ctx, const char * key, const char * val) {
  17359. const int idx = gguf_get_or_add_key(ctx, key);
  17360. ctx->kv[idx].type = GGUF_TYPE_STRING;
  17361. ctx->kv[idx].value.str.n = strlen(val);
  17362. ctx->kv[idx].value.str.data = strdup(val);
  17363. }
  17364. void gguf_set_arr_data(struct gguf_context * ctx, const char * key, enum gguf_type type, const void * data, int n) {
  17365. const int idx = gguf_get_or_add_key(ctx, key);
  17366. ctx->kv[idx].type = GGUF_TYPE_ARRAY;
  17367. ctx->kv[idx].value.arr.type = type;
  17368. ctx->kv[idx].value.arr.n = n;
  17369. ctx->kv[idx].value.arr.data = GGML_MALLOC(n*gguf_type_size(type));
  17370. memcpy(ctx->kv[idx].value.arr.data, data, n*gguf_type_size(type));
  17371. }
  17372. void gguf_set_arr_str(struct gguf_context * ctx, const char * key, const char ** data, int n) {
  17373. const int idx = gguf_get_or_add_key(ctx, key);
  17374. ctx->kv[idx].type = GGUF_TYPE_ARRAY;
  17375. ctx->kv[idx].value.arr.type = GGUF_TYPE_STRING;
  17376. ctx->kv[idx].value.arr.n = n;
  17377. ctx->kv[idx].value.arr.data = GGML_MALLOC(n*sizeof(struct gguf_str));
  17378. for (int i = 0; i < n; i++) {
  17379. struct gguf_str * str = &((struct gguf_str *)ctx->kv[idx].value.arr.data)[i];
  17380. str->n = strlen(data[i]);
  17381. str->data = strdup(data[i]);
  17382. }
  17383. }
  17384. // set or add KV pairs from another context
  17385. void gguf_set_kv(struct gguf_context * ctx, struct gguf_context * src) {
  17386. for (uint32_t i = 0; i < src->header.n_kv; i++) {
  17387. switch (src->kv[i].type) {
  17388. case GGUF_TYPE_UINT8: gguf_set_val_u8 (ctx, src->kv[i].key.data, src->kv[i].value.uint8); break;
  17389. case GGUF_TYPE_INT8: gguf_set_val_i8 (ctx, src->kv[i].key.data, src->kv[i].value.int8); break;
  17390. case GGUF_TYPE_UINT16: gguf_set_val_u16 (ctx, src->kv[i].key.data, src->kv[i].value.uint16); break;
  17391. case GGUF_TYPE_INT16: gguf_set_val_i16 (ctx, src->kv[i].key.data, src->kv[i].value.int16); break;
  17392. case GGUF_TYPE_UINT32: gguf_set_val_u32 (ctx, src->kv[i].key.data, src->kv[i].value.uint32); break;
  17393. case GGUF_TYPE_INT32: gguf_set_val_i32 (ctx, src->kv[i].key.data, src->kv[i].value.int32); break;
  17394. case GGUF_TYPE_FLOAT32: gguf_set_val_f32 (ctx, src->kv[i].key.data, src->kv[i].value.float32); break;
  17395. case GGUF_TYPE_UINT64: gguf_set_val_u64 (ctx, src->kv[i].key.data, src->kv[i].value.uint64); break;
  17396. case GGUF_TYPE_INT64: gguf_set_val_i64 (ctx, src->kv[i].key.data, src->kv[i].value.int64); break;
  17397. case GGUF_TYPE_FLOAT64: gguf_set_val_f64 (ctx, src->kv[i].key.data, src->kv[i].value.float64); break;
  17398. case GGUF_TYPE_BOOL: gguf_set_val_bool(ctx, src->kv[i].key.data, src->kv[i].value.bool_); break;
  17399. case GGUF_TYPE_STRING: gguf_set_val_str (ctx, src->kv[i].key.data, src->kv[i].value.str.data); break;
  17400. case GGUF_TYPE_ARRAY:
  17401. {
  17402. if (src->kv[i].value.arr.type == GGUF_TYPE_STRING) {
  17403. const char ** data = GGML_MALLOC(src->kv[i].value.arr.n*sizeof(char *));
  17404. for (uint32_t j = 0; j < src->kv[i].value.arr.n; j++) {
  17405. data[j] = ((struct gguf_str *)src->kv[i].value.arr.data)[j].data;
  17406. }
  17407. gguf_set_arr_str(ctx, src->kv[i].key.data, data, src->kv[i].value.arr.n);
  17408. GGML_FREE((void *)data);
  17409. } else if (src->kv[i].value.arr.type == GGUF_TYPE_ARRAY) {
  17410. GGML_ASSERT(false && "nested arrays not supported");
  17411. } else {
  17412. gguf_set_arr_data(ctx, src->kv[i].key.data, src->kv[i].value.arr.type, src->kv[i].value.arr.data, src->kv[i].value.arr.n);
  17413. }
  17414. } break;
  17415. default: GGML_ASSERT(false && "invalid type"); break;
  17416. }
  17417. }
  17418. }
  17419. void gguf_add_tensor(
  17420. struct gguf_context * ctx,
  17421. const struct ggml_tensor * tensor) {
  17422. const int idx = ctx->header.n_tensors;
  17423. ctx->infos = realloc(ctx->infos, (idx + 1)*sizeof(struct gguf_tensor_info));
  17424. ctx->infos[idx].name.n = strlen(tensor->name);
  17425. ctx->infos[idx].name.data = strdup(tensor->name);
  17426. for (int i = 0; i < GGML_MAX_DIMS; ++i) {
  17427. ctx->infos[idx].ne[i] = 1;
  17428. }
  17429. ctx->infos[idx].n_dims = ggml_n_dims(tensor);
  17430. for (uint32_t i = 0; i < ctx->infos[idx].n_dims; i++) {
  17431. ctx->infos[idx].ne[i] = tensor->ne[i];
  17432. }
  17433. ctx->infos[idx].type = tensor->type;
  17434. ctx->infos[idx].offset = 0;
  17435. ctx->infos[idx].data = tensor->data;
  17436. ctx->infos[idx].size = ggml_nbytes(tensor);
  17437. if (ctx->header.n_tensors > 0) {
  17438. ctx->infos[idx].offset = ctx->infos[idx - 1].offset + GGML_PAD(ctx->infos[idx - 1].size, ctx->alignment);
  17439. }
  17440. ctx->header.n_tensors++;
  17441. }
  17442. void gguf_set_tensor_type(struct gguf_context * ctx, const char * name, enum ggml_type type) {
  17443. const int idx = gguf_find_tensor(ctx, name);
  17444. if (idx < 0) {
  17445. GGML_ASSERT(false && "tensor not found");
  17446. }
  17447. ctx->infos[idx].type = type;
  17448. }
  17449. void gguf_set_tensor_data(struct gguf_context * ctx, const char * name, const void * data, size_t size) {
  17450. const int idx = gguf_find_tensor(ctx, name);
  17451. if (idx < 0) {
  17452. GGML_ASSERT(false && "tensor not found");
  17453. }
  17454. ctx->infos[idx].data = data;
  17455. ctx->infos[idx].size = size;
  17456. // update offsets
  17457. for (uint32_t i = idx + 1; i < ctx->header.n_tensors; ++i) {
  17458. ctx->infos[i].offset = ctx->infos[i - 1].offset + GGML_PAD(ctx->infos[i - 1].size, ctx->alignment);
  17459. }
  17460. }
  17461. //static void gguf_fwrite_str(FILE * file, const struct gguf_str * val) {
  17462. // fwrite(&val->n, sizeof(val->n), 1, file);
  17463. // fwrite(val->data, sizeof(char), val->n, file);
  17464. //}
  17465. //
  17466. //static void gguf_fwrite_el(FILE * file, const void * val, size_t size) {
  17467. // fwrite(val, sizeof(char), size, file);
  17468. //}
  17469. struct gguf_buf {
  17470. void * data;
  17471. size_t size;
  17472. size_t offset;
  17473. };
  17474. static struct gguf_buf gguf_buf_init(size_t size) {
  17475. struct gguf_buf buf = {
  17476. /*buf.data =*/ size == 0 ? NULL : GGML_MALLOC(size),
  17477. /*buf.size =*/ size,
  17478. /*buf.offset =*/ 0,
  17479. };
  17480. return buf;
  17481. }
  17482. static void gguf_buf_free(struct gguf_buf buf) {
  17483. if (buf.data) {
  17484. GGML_FREE(buf.data);
  17485. }
  17486. }
  17487. static void gguf_buf_grow(struct gguf_buf * buf, size_t size) {
  17488. if (buf->offset + size > buf->size) {
  17489. buf->size = 1.5*(buf->offset + size);
  17490. if (buf->data) {
  17491. buf->data = realloc(buf->data, buf->size);
  17492. }
  17493. }
  17494. }
  17495. static void gguf_bwrite_str(struct gguf_buf * buf, const struct gguf_str * val) {
  17496. gguf_buf_grow(buf, sizeof(val->n) + val->n);
  17497. if (buf->data) {
  17498. memcpy((char *) buf->data + buf->offset, &val->n, sizeof(val->n));
  17499. }
  17500. buf->offset += sizeof(val->n);
  17501. if (buf->data) {
  17502. memcpy((char *) buf->data + buf->offset, val->data, val->n);
  17503. }
  17504. buf->offset += val->n;
  17505. }
  17506. static void gguf_bwrite_el(struct gguf_buf * buf, const void * val, size_t el_size) {
  17507. gguf_buf_grow(buf, el_size);
  17508. if (buf->data) {
  17509. memcpy((char *) buf->data + buf->offset, val, el_size);
  17510. }
  17511. buf->offset += el_size;
  17512. }
  17513. static void gguf_write_to_buf(const struct gguf_context * ctx, struct gguf_buf * buf, bool only_meta) {
  17514. // write header
  17515. gguf_bwrite_el(buf, &ctx->header.magic, sizeof(ctx->header.magic));
  17516. gguf_bwrite_el(buf, &ctx->header.version, sizeof(ctx->header.version));
  17517. gguf_bwrite_el(buf, &ctx->header.n_tensors, sizeof(ctx->header.n_tensors));
  17518. gguf_bwrite_el(buf, &ctx->header.n_kv, sizeof(ctx->header.n_kv));
  17519. // write key-value pairs
  17520. for (uint32_t i = 0; i < ctx->header.n_kv; ++i) {
  17521. struct gguf_kv * kv = &ctx->kv[i];
  17522. gguf_bwrite_str(buf, &kv->key);
  17523. gguf_bwrite_el (buf, &kv->type, sizeof(kv->type));
  17524. switch (kv->type) {
  17525. case GGUF_TYPE_UINT8: gguf_bwrite_el( buf, &kv->value.uint8, sizeof(kv->value.uint8) ); break;
  17526. case GGUF_TYPE_INT8: gguf_bwrite_el (buf, &kv->value.int8, sizeof(kv->value.int8) ); break;
  17527. case GGUF_TYPE_UINT16: gguf_bwrite_el (buf, &kv->value.uint16, sizeof(kv->value.uint16) ); break;
  17528. case GGUF_TYPE_INT16: gguf_bwrite_el (buf, &kv->value.int16, sizeof(kv->value.int16) ); break;
  17529. case GGUF_TYPE_UINT32: gguf_bwrite_el (buf, &kv->value.uint32, sizeof(kv->value.uint32) ); break;
  17530. case GGUF_TYPE_INT32: gguf_bwrite_el (buf, &kv->value.int32, sizeof(kv->value.int32) ); break;
  17531. case GGUF_TYPE_FLOAT32: gguf_bwrite_el (buf, &kv->value.float32, sizeof(kv->value.float32)); break;
  17532. case GGUF_TYPE_UINT64: gguf_bwrite_el (buf, &kv->value.uint64, sizeof(kv->value.uint64) ); break;
  17533. case GGUF_TYPE_INT64: gguf_bwrite_el (buf, &kv->value.int64, sizeof(kv->value.int64) ); break;
  17534. case GGUF_TYPE_FLOAT64: gguf_bwrite_el (buf, &kv->value.float64, sizeof(kv->value.float64)); break;
  17535. case GGUF_TYPE_BOOL: gguf_bwrite_el (buf, &kv->value.bool_, sizeof(kv->value.bool_) ); break;
  17536. case GGUF_TYPE_STRING: gguf_bwrite_str(buf, &kv->value.str ); break;
  17537. case GGUF_TYPE_ARRAY:
  17538. {
  17539. gguf_bwrite_el(buf, &kv->value.arr.type, sizeof(kv->value.arr.type));
  17540. gguf_bwrite_el(buf, &kv->value.arr.n, sizeof(kv->value.arr.n) );
  17541. switch (kv->value.arr.type) {
  17542. case GGUF_TYPE_UINT8:
  17543. case GGUF_TYPE_INT8:
  17544. case GGUF_TYPE_UINT16:
  17545. case GGUF_TYPE_INT16:
  17546. case GGUF_TYPE_UINT32:
  17547. case GGUF_TYPE_INT32:
  17548. case GGUF_TYPE_FLOAT32:
  17549. case GGUF_TYPE_UINT64:
  17550. case GGUF_TYPE_INT64:
  17551. case GGUF_TYPE_FLOAT64:
  17552. case GGUF_TYPE_BOOL:
  17553. {
  17554. gguf_bwrite_el(buf, kv->value.arr.data, kv->value.arr.n * gguf_type_size(kv->value.arr.type));
  17555. } break;
  17556. case GGUF_TYPE_STRING:
  17557. {
  17558. for (uint32_t j = 0; j < kv->value.arr.n; ++j) {
  17559. gguf_bwrite_str(buf, &((struct gguf_str *) kv->value.arr.data)[j]);
  17560. }
  17561. } break;
  17562. case GGUF_TYPE_ARRAY:
  17563. default: GGML_ASSERT(false && "invalid type"); break;
  17564. }
  17565. } break;
  17566. default: GGML_ASSERT(false && "invalid type");
  17567. }
  17568. }
  17569. // write tensor infos
  17570. for (uint32_t i = 0; i < ctx->header.n_tensors; ++i) {
  17571. struct gguf_tensor_info * info = &ctx->infos[i];
  17572. gguf_bwrite_str(buf, &info->name);
  17573. gguf_bwrite_el (buf, &info->n_dims, sizeof(info->n_dims));
  17574. for (uint32_t j = 0; j < info->n_dims; ++j) {
  17575. gguf_bwrite_el(buf, &info->ne[j], sizeof(info->ne[j]));
  17576. }
  17577. gguf_bwrite_el(buf, &info->type, sizeof(info->type));
  17578. gguf_bwrite_el(buf, &info->offset, sizeof(info->offset));
  17579. }
  17580. // we require the data section to be aligned, so take into account any padding
  17581. {
  17582. const size_t offset = buf->offset;
  17583. const size_t offset_pad = GGML_PAD(offset, ctx->alignment);
  17584. if (offset_pad != offset) {
  17585. uint8_t pad = 0;
  17586. for (size_t i = 0; i < offset_pad - offset; ++i) {
  17587. gguf_bwrite_el(buf, &pad, sizeof(pad));
  17588. }
  17589. }
  17590. }
  17591. if (only_meta) {
  17592. return;
  17593. }
  17594. size_t offset = 0;
  17595. // write tensor data
  17596. for (uint32_t i = 0; i < ctx->header.n_tensors; ++i) {
  17597. struct gguf_tensor_info * info = &ctx->infos[i];
  17598. const size_t size = info->size;
  17599. const size_t size_pad = GGML_PAD(size, ctx->alignment);
  17600. gguf_bwrite_el(buf, info->data, size);
  17601. if (size_pad != size) {
  17602. uint8_t pad = 0;
  17603. for (size_t j = 0; j < size_pad - size; ++j) {
  17604. gguf_bwrite_el(buf, &pad, sizeof(pad));
  17605. }
  17606. }
  17607. GGML_ASSERT(offset == info->offset);
  17608. offset += size_pad;
  17609. }
  17610. }
  17611. void gguf_write_to_file(const struct gguf_context * ctx, const char * fname, bool only_meta) {
  17612. FILE * file = fopen(fname, "wb");
  17613. if (!file) {
  17614. GGML_ASSERT(false && "failed to open file for writing");
  17615. }
  17616. struct gguf_buf buf = gguf_buf_init(16*1024);
  17617. gguf_write_to_buf(ctx, &buf, only_meta);
  17618. fwrite(buf.data, 1, buf.offset, file);
  17619. gguf_buf_free(buf);
  17620. fclose(file);
  17621. }
  17622. size_t gguf_get_meta_size(const struct gguf_context * ctx) {
  17623. // no allocs - only compute size
  17624. struct gguf_buf buf = gguf_buf_init(0);
  17625. gguf_write_to_buf(ctx, &buf, true);
  17626. return buf.offset;
  17627. }
  17628. void gguf_get_meta_data(const struct gguf_context * ctx, void * data) {
  17629. struct gguf_buf buf = gguf_buf_init(16*1024);
  17630. gguf_write_to_buf(ctx, &buf, true);
  17631. memcpy(data, buf.data, buf.offset);
  17632. gguf_buf_free(buf);
  17633. }
  17634. ////////////////////////////////////////////////////////////////////////////////
  17635. int ggml_cpu_has_avx(void) {
  17636. #if defined(__AVX__)
  17637. return 1;
  17638. #else
  17639. return 0;
  17640. #endif
  17641. }
  17642. int ggml_cpu_has_avx_vnni(void) {
  17643. #if defined(__AVXVNNI__)
  17644. return 1;
  17645. #else
  17646. return 0;
  17647. #endif
  17648. }
  17649. int ggml_cpu_has_avx2(void) {
  17650. #if defined(__AVX2__)
  17651. return 1;
  17652. #else
  17653. return 0;
  17654. #endif
  17655. }
  17656. int ggml_cpu_has_avx512(void) {
  17657. #if defined(__AVX512F__)
  17658. return 1;
  17659. #else
  17660. return 0;
  17661. #endif
  17662. }
  17663. int ggml_cpu_has_avx512_vbmi(void) {
  17664. #if defined(__AVX512VBMI__)
  17665. return 1;
  17666. #else
  17667. return 0;
  17668. #endif
  17669. }
  17670. int ggml_cpu_has_avx512_vnni(void) {
  17671. #if defined(__AVX512VNNI__)
  17672. return 1;
  17673. #else
  17674. return 0;
  17675. #endif
  17676. }
  17677. int ggml_cpu_has_fma(void) {
  17678. #if defined(__FMA__)
  17679. return 1;
  17680. #else
  17681. return 0;
  17682. #endif
  17683. }
  17684. int ggml_cpu_has_neon(void) {
  17685. #if defined(__ARM_NEON)
  17686. return 1;
  17687. #else
  17688. return 0;
  17689. #endif
  17690. }
  17691. int ggml_cpu_has_arm_fma(void) {
  17692. #if defined(__ARM_FEATURE_FMA)
  17693. return 1;
  17694. #else
  17695. return 0;
  17696. #endif
  17697. }
  17698. int ggml_cpu_has_metal(void) {
  17699. #if defined(GGML_USE_METAL)
  17700. return 1;
  17701. #else
  17702. return 0;
  17703. #endif
  17704. }
  17705. int ggml_cpu_has_f16c(void) {
  17706. #if defined(__F16C__)
  17707. return 1;
  17708. #else
  17709. return 0;
  17710. #endif
  17711. }
  17712. int ggml_cpu_has_fp16_va(void) {
  17713. #if defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC)
  17714. return 1;
  17715. #else
  17716. return 0;
  17717. #endif
  17718. }
  17719. int ggml_cpu_has_wasm_simd(void) {
  17720. #if defined(__wasm_simd128__)
  17721. return 1;
  17722. #else
  17723. return 0;
  17724. #endif
  17725. }
  17726. int ggml_cpu_has_blas(void) {
  17727. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CUBLAS) || defined(GGML_USE_VULKAN) || defined(GGML_USE_CLBLAST) || defined(GGML_USE_SYCL)
  17728. return 1;
  17729. #else
  17730. return 0;
  17731. #endif
  17732. }
  17733. int ggml_cpu_has_cublas(void) {
  17734. #if defined(GGML_USE_CUBLAS)
  17735. return 1;
  17736. #else
  17737. return 0;
  17738. #endif
  17739. }
  17740. int ggml_cpu_has_clblast(void) {
  17741. #if defined(GGML_USE_CLBLAST)
  17742. return 1;
  17743. #else
  17744. return 0;
  17745. #endif
  17746. }
  17747. int ggml_cpu_has_vulkan(void) {
  17748. #if defined(GGML_USE_VULKAN)
  17749. return 1;
  17750. #else
  17751. return 0;
  17752. #endif
  17753. }
  17754. int ggml_cpu_has_kompute(void) {
  17755. #if defined(GGML_USE_KOMPUTE)
  17756. return 1;
  17757. #else
  17758. return 0;
  17759. #endif
  17760. }
  17761. int ggml_cpu_has_sycl(void) {
  17762. #if defined(GGML_USE_SYCL)
  17763. return 1;
  17764. #else
  17765. return 0;
  17766. #endif
  17767. }
  17768. int ggml_cpu_has_gpublas(void) {
  17769. return ggml_cpu_has_cublas() || ggml_cpu_has_clblast() || ggml_cpu_has_vulkan() || ggml_cpu_has_kompute() ||
  17770. ggml_cpu_has_sycl();
  17771. }
  17772. int ggml_cpu_has_sse3(void) {
  17773. #if defined(__SSE3__)
  17774. return 1;
  17775. #else
  17776. return 0;
  17777. #endif
  17778. }
  17779. int ggml_cpu_has_ssse3(void) {
  17780. #if defined(__SSSE3__)
  17781. return 1;
  17782. #else
  17783. return 0;
  17784. #endif
  17785. }
  17786. int ggml_cpu_has_vsx(void) {
  17787. #if defined(__POWER9_VECTOR__)
  17788. return 1;
  17789. #else
  17790. return 0;
  17791. #endif
  17792. }
  17793. int ggml_cpu_has_matmul_int8(void) {
  17794. #if defined(__ARM_FEATURE_MATMUL_INT8)
  17795. return 1;
  17796. #else
  17797. return 0;
  17798. #endif
  17799. }
  17800. ////////////////////////////////////////////////////////////////////////////////