ggml-cpu.c 463 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124512551265127512851295130513151325133513451355136513751385139514051415142514351445145514651475148514951505151515251535154515551565157515851595160516151625163516451655166516751685169517051715172517351745175517651775178517951805181518251835184518551865187518851895190519151925193519451955196519751985199520052015202520352045205520652075208520952105211521252135214521552165217521852195220522152225223522452255226522752285229523052315232523352345235523652375238523952405241524252435244524552465247524852495250525152525253525452555256525752585259526052615262526352645265526652675268526952705271527252735274527552765277527852795280528152825283528452855286528752885289529052915292529352945295529652975298529953005301530253035304530553065307530853095310531153125313531453155316531753185319532053215322532353245325532653275328532953305331533253335334533553365337533853395340534153425343534453455346534753485349535053515352535353545355535653575358535953605361536253635364536553665367536853695370537153725373537453755376537753785379538053815382538353845385538653875388538953905391539253935394539553965397539853995400540154025403540454055406540754085409541054115412541354145415541654175418541954205421542254235424542554265427542854295430543154325433543454355436543754385439544054415442544354445445544654475448544954505451545254535454545554565457545854595460546154625463546454655466546754685469547054715472547354745475547654775478547954805481548254835484548554865487548854895490549154925493549454955496549754985499550055015502550355045505550655075508550955105511551255135514551555165517551855195520552155225523552455255526552755285529553055315532553355345535553655375538553955405541554255435544554555465547554855495550555155525553555455555556555755585559556055615562556355645565556655675568556955705571557255735574557555765577557855795580558155825583558455855586558755885589559055915592559355945595559655975598559956005601560256035604560556065607560856095610561156125613561456155616561756185619562056215622562356245625562656275628562956305631563256335634563556365637563856395640564156425643564456455646564756485649565056515652565356545655565656575658565956605661566256635664566556665667566856695670567156725673567456755676567756785679568056815682568356845685568656875688568956905691569256935694569556965697569856995700570157025703570457055706570757085709571057115712571357145715571657175718571957205721572257235724572557265727572857295730573157325733573457355736573757385739574057415742574357445745574657475748574957505751575257535754575557565757575857595760576157625763576457655766576757685769577057715772577357745775577657775778577957805781578257835784578557865787578857895790579157925793579457955796579757985799580058015802580358045805580658075808580958105811581258135814581558165817581858195820582158225823582458255826582758285829583058315832583358345835583658375838583958405841584258435844584558465847584858495850585158525853585458555856585758585859586058615862586358645865586658675868586958705871587258735874587558765877587858795880588158825883588458855886588758885889589058915892589358945895589658975898589959005901590259035904590559065907590859095910591159125913591459155916591759185919592059215922592359245925592659275928592959305931593259335934593559365937593859395940594159425943594459455946594759485949595059515952595359545955595659575958595959605961596259635964596559665967596859695970597159725973597459755976597759785979598059815982598359845985598659875988598959905991599259935994599559965997599859996000600160026003600460056006600760086009601060116012601360146015601660176018601960206021602260236024602560266027602860296030603160326033603460356036603760386039604060416042604360446045604660476048604960506051605260536054605560566057605860596060606160626063606460656066606760686069607060716072607360746075607660776078607960806081608260836084608560866087608860896090609160926093609460956096609760986099610061016102610361046105610661076108610961106111611261136114611561166117611861196120612161226123612461256126612761286129613061316132613361346135613661376138613961406141614261436144614561466147614861496150615161526153615461556156615761586159616061616162616361646165616661676168616961706171617261736174617561766177617861796180618161826183618461856186618761886189619061916192619361946195619661976198619962006201620262036204620562066207620862096210621162126213621462156216621762186219622062216222622362246225622662276228622962306231623262336234623562366237623862396240624162426243624462456246624762486249625062516252625362546255625662576258625962606261626262636264626562666267626862696270627162726273627462756276627762786279628062816282628362846285628662876288628962906291629262936294629562966297629862996300630163026303630463056306630763086309631063116312631363146315631663176318631963206321632263236324632563266327632863296330633163326333633463356336633763386339634063416342634363446345634663476348634963506351635263536354635563566357635863596360636163626363636463656366636763686369637063716372637363746375637663776378637963806381638263836384638563866387638863896390639163926393639463956396639763986399640064016402640364046405640664076408640964106411641264136414641564166417641864196420642164226423642464256426642764286429643064316432643364346435643664376438643964406441644264436444644564466447644864496450645164526453645464556456645764586459646064616462646364646465646664676468646964706471647264736474647564766477647864796480648164826483648464856486648764886489649064916492649364946495649664976498649965006501650265036504650565066507650865096510651165126513651465156516651765186519652065216522652365246525652665276528652965306531653265336534653565366537653865396540654165426543654465456546654765486549655065516552655365546555655665576558655965606561656265636564656565666567656865696570657165726573657465756576657765786579658065816582658365846585658665876588658965906591659265936594659565966597659865996600660166026603660466056606660766086609661066116612661366146615661666176618661966206621662266236624662566266627662866296630663166326633663466356636663766386639664066416642664366446645664666476648664966506651665266536654665566566657665866596660666166626663666466656666666766686669667066716672667366746675667666776678667966806681668266836684668566866687668866896690669166926693669466956696669766986699670067016702670367046705670667076708670967106711671267136714671567166717671867196720672167226723672467256726672767286729673067316732673367346735673667376738673967406741674267436744674567466747674867496750675167526753675467556756675767586759676067616762676367646765676667676768676967706771677267736774677567766777677867796780678167826783678467856786678767886789679067916792679367946795679667976798679968006801680268036804680568066807680868096810681168126813681468156816681768186819682068216822682368246825682668276828682968306831683268336834683568366837683868396840684168426843684468456846684768486849685068516852685368546855685668576858685968606861686268636864686568666867686868696870687168726873687468756876687768786879688068816882688368846885688668876888688968906891689268936894689568966897689868996900690169026903690469056906690769086909691069116912691369146915691669176918691969206921692269236924692569266927692869296930693169326933693469356936693769386939694069416942694369446945694669476948694969506951695269536954695569566957695869596960696169626963696469656966696769686969697069716972697369746975697669776978697969806981698269836984698569866987698869896990699169926993699469956996699769986999700070017002700370047005700670077008700970107011701270137014701570167017701870197020702170227023702470257026702770287029703070317032703370347035703670377038703970407041704270437044704570467047704870497050705170527053705470557056705770587059706070617062706370647065706670677068706970707071707270737074707570767077707870797080708170827083708470857086708770887089709070917092709370947095709670977098709971007101710271037104710571067107710871097110711171127113711471157116711771187119712071217122712371247125712671277128712971307131713271337134713571367137713871397140714171427143714471457146714771487149715071517152715371547155715671577158715971607161716271637164716571667167716871697170717171727173717471757176717771787179718071817182718371847185718671877188718971907191719271937194719571967197719871997200720172027203720472057206720772087209721072117212721372147215721672177218721972207221722272237224722572267227722872297230723172327233723472357236723772387239724072417242724372447245724672477248724972507251725272537254725572567257725872597260726172627263726472657266726772687269727072717272727372747275727672777278727972807281728272837284728572867287728872897290729172927293729472957296729772987299730073017302730373047305730673077308730973107311731273137314731573167317731873197320732173227323732473257326732773287329733073317332733373347335733673377338733973407341734273437344734573467347734873497350735173527353735473557356735773587359736073617362736373647365736673677368736973707371737273737374737573767377737873797380738173827383738473857386738773887389739073917392739373947395739673977398739974007401740274037404740574067407740874097410741174127413741474157416741774187419742074217422742374247425742674277428742974307431743274337434743574367437743874397440744174427443744474457446744774487449745074517452745374547455745674577458745974607461746274637464746574667467746874697470747174727473747474757476747774787479748074817482748374847485748674877488748974907491749274937494749574967497749874997500750175027503750475057506750775087509751075117512751375147515751675177518751975207521752275237524752575267527752875297530753175327533753475357536753775387539754075417542754375447545754675477548754975507551755275537554755575567557755875597560756175627563756475657566756775687569757075717572757375747575757675777578757975807581758275837584758575867587758875897590759175927593759475957596759775987599760076017602760376047605760676077608760976107611761276137614761576167617761876197620762176227623762476257626762776287629763076317632763376347635763676377638763976407641764276437644764576467647764876497650765176527653765476557656765776587659766076617662766376647665766676677668766976707671767276737674767576767677767876797680768176827683768476857686768776887689769076917692769376947695769676977698769977007701770277037704770577067707770877097710771177127713771477157716771777187719772077217722772377247725772677277728772977307731773277337734773577367737773877397740774177427743774477457746774777487749775077517752775377547755775677577758775977607761776277637764776577667767776877697770777177727773777477757776777777787779778077817782778377847785778677877788778977907791779277937794779577967797779877997800780178027803780478057806780778087809781078117812781378147815781678177818781978207821782278237824782578267827782878297830783178327833783478357836783778387839784078417842784378447845784678477848784978507851785278537854785578567857785878597860786178627863786478657866786778687869787078717872787378747875787678777878787978807881788278837884788578867887788878897890789178927893789478957896789778987899790079017902790379047905790679077908790979107911791279137914791579167917791879197920792179227923792479257926792779287929793079317932793379347935793679377938793979407941794279437944794579467947794879497950795179527953795479557956795779587959796079617962796379647965796679677968796979707971797279737974797579767977797879797980798179827983798479857986798779887989799079917992799379947995799679977998799980008001800280038004800580068007800880098010801180128013801480158016801780188019802080218022802380248025802680278028802980308031803280338034803580368037803880398040804180428043804480458046804780488049805080518052805380548055805680578058805980608061806280638064806580668067806880698070807180728073807480758076807780788079808080818082808380848085808680878088808980908091809280938094809580968097809880998100810181028103810481058106810781088109811081118112811381148115811681178118811981208121812281238124812581268127812881298130813181328133813481358136813781388139814081418142814381448145814681478148814981508151815281538154815581568157815881598160816181628163816481658166816781688169817081718172817381748175817681778178817981808181818281838184818581868187818881898190819181928193819481958196819781988199820082018202820382048205820682078208820982108211821282138214821582168217821882198220822182228223822482258226822782288229823082318232823382348235823682378238823982408241824282438244824582468247824882498250825182528253825482558256825782588259826082618262826382648265826682678268826982708271827282738274827582768277827882798280828182828283828482858286828782888289829082918292829382948295829682978298829983008301830283038304830583068307830883098310831183128313831483158316831783188319832083218322832383248325832683278328832983308331833283338334833583368337833883398340834183428343834483458346834783488349835083518352835383548355835683578358835983608361836283638364836583668367836883698370837183728373837483758376837783788379838083818382838383848385838683878388838983908391839283938394839583968397839883998400840184028403840484058406840784088409841084118412841384148415841684178418841984208421842284238424842584268427842884298430843184328433843484358436843784388439844084418442844384448445844684478448844984508451845284538454845584568457845884598460846184628463846484658466846784688469847084718472847384748475847684778478847984808481848284838484848584868487848884898490849184928493849484958496849784988499850085018502850385048505850685078508850985108511851285138514851585168517851885198520852185228523852485258526852785288529853085318532853385348535853685378538853985408541854285438544854585468547854885498550855185528553855485558556855785588559856085618562856385648565856685678568856985708571857285738574857585768577857885798580858185828583858485858586858785888589859085918592859385948595859685978598859986008601860286038604860586068607860886098610861186128613861486158616861786188619862086218622862386248625862686278628862986308631863286338634863586368637863886398640864186428643864486458646864786488649865086518652865386548655865686578658865986608661866286638664866586668667866886698670867186728673867486758676867786788679868086818682868386848685868686878688868986908691869286938694869586968697869886998700870187028703870487058706870787088709871087118712871387148715871687178718871987208721872287238724872587268727872887298730873187328733873487358736873787388739874087418742874387448745874687478748874987508751875287538754875587568757875887598760876187628763876487658766876787688769877087718772877387748775877687778778877987808781878287838784878587868787878887898790879187928793879487958796879787988799880088018802880388048805880688078808880988108811881288138814881588168817881888198820882188228823882488258826882788288829883088318832883388348835883688378838883988408841884288438844884588468847884888498850885188528853885488558856885788588859886088618862886388648865886688678868886988708871887288738874887588768877887888798880888188828883888488858886888788888889889088918892889388948895889688978898889989008901890289038904890589068907890889098910891189128913891489158916891789188919892089218922892389248925892689278928892989308931893289338934893589368937893889398940894189428943894489458946894789488949895089518952895389548955895689578958895989608961896289638964896589668967896889698970897189728973897489758976897789788979898089818982898389848985898689878988898989908991899289938994899589968997899889999000900190029003900490059006900790089009901090119012901390149015901690179018901990209021902290239024902590269027902890299030903190329033903490359036903790389039904090419042904390449045904690479048904990509051905290539054905590569057905890599060906190629063906490659066906790689069907090719072907390749075907690779078907990809081908290839084908590869087908890899090909190929093909490959096909790989099910091019102910391049105910691079108910991109111911291139114911591169117911891199120912191229123912491259126912791289129913091319132913391349135913691379138913991409141914291439144914591469147914891499150915191529153915491559156915791589159916091619162916391649165916691679168916991709171917291739174917591769177917891799180918191829183918491859186918791889189919091919192919391949195919691979198919992009201920292039204920592069207920892099210921192129213921492159216921792189219922092219222922392249225922692279228922992309231923292339234923592369237923892399240924192429243924492459246924792489249925092519252925392549255925692579258925992609261926292639264926592669267926892699270927192729273927492759276927792789279928092819282928392849285928692879288928992909291929292939294929592969297929892999300930193029303930493059306930793089309931093119312931393149315931693179318931993209321932293239324932593269327932893299330933193329333933493359336933793389339934093419342934393449345934693479348934993509351935293539354935593569357935893599360936193629363936493659366936793689369937093719372937393749375937693779378937993809381938293839384938593869387938893899390939193929393939493959396939793989399940094019402940394049405940694079408940994109411941294139414941594169417941894199420942194229423942494259426942794289429943094319432943394349435943694379438943994409441944294439444944594469447944894499450945194529453945494559456945794589459946094619462946394649465946694679468946994709471947294739474947594769477947894799480948194829483948494859486948794889489949094919492949394949495949694979498949995009501950295039504950595069507950895099510951195129513951495159516951795189519952095219522952395249525952695279528952995309531953295339534953595369537953895399540954195429543954495459546954795489549955095519552955395549555955695579558955995609561956295639564956595669567956895699570957195729573957495759576957795789579958095819582958395849585958695879588958995909591959295939594959595969597959895999600960196029603960496059606960796089609961096119612961396149615961696179618961996209621962296239624962596269627962896299630963196329633963496359636963796389639964096419642964396449645964696479648964996509651965296539654965596569657965896599660966196629663966496659666966796689669967096719672967396749675967696779678967996809681968296839684968596869687968896899690969196929693969496959696969796989699970097019702970397049705970697079708970997109711971297139714971597169717971897199720972197229723972497259726972797289729973097319732973397349735973697379738973997409741974297439744974597469747974897499750975197529753975497559756975797589759976097619762976397649765976697679768976997709771977297739774977597769777977897799780978197829783978497859786978797889789979097919792979397949795979697979798979998009801980298039804980598069807980898099810981198129813981498159816981798189819982098219822982398249825982698279828982998309831983298339834983598369837983898399840984198429843984498459846984798489849985098519852985398549855985698579858985998609861986298639864986598669867986898699870987198729873987498759876987798789879988098819882988398849885988698879888988998909891989298939894989598969897989898999900990199029903990499059906990799089909991099119912991399149915991699179918991999209921992299239924992599269927992899299930993199329933993499359936993799389939994099419942994399449945994699479948994999509951995299539954995599569957995899599960996199629963996499659966996799689969997099719972997399749975997699779978997999809981998299839984998599869987998899899990999199929993999499959996999799989999100001000110002100031000410005100061000710008100091001010011100121001310014100151001610017100181001910020100211002210023100241002510026100271002810029100301003110032100331003410035100361003710038100391004010041100421004310044100451004610047100481004910050100511005210053100541005510056100571005810059100601006110062100631006410065100661006710068100691007010071100721007310074100751007610077100781007910080100811008210083100841008510086100871008810089100901009110092100931009410095100961009710098100991010010101101021010310104101051010610107101081010910110101111011210113101141011510116101171011810119101201012110122101231012410125101261012710128101291013010131101321013310134101351013610137101381013910140101411014210143101441014510146101471014810149101501015110152101531015410155101561015710158101591016010161101621016310164101651016610167101681016910170101711017210173101741017510176101771017810179101801018110182101831018410185101861018710188101891019010191101921019310194101951019610197101981019910200102011020210203102041020510206102071020810209102101021110212102131021410215102161021710218102191022010221102221022310224102251022610227102281022910230102311023210233102341023510236102371023810239102401024110242102431024410245102461024710248102491025010251102521025310254102551025610257102581025910260102611026210263102641026510266102671026810269102701027110272102731027410275102761027710278102791028010281102821028310284102851028610287102881028910290102911029210293102941029510296102971029810299103001030110302103031030410305103061030710308103091031010311103121031310314103151031610317103181031910320103211032210323103241032510326103271032810329103301033110332103331033410335103361033710338103391034010341103421034310344103451034610347103481034910350103511035210353103541035510356103571035810359103601036110362103631036410365103661036710368103691037010371103721037310374103751037610377103781037910380103811038210383103841038510386103871038810389103901039110392103931039410395103961039710398103991040010401104021040310404104051040610407104081040910410104111041210413104141041510416104171041810419104201042110422104231042410425104261042710428104291043010431104321043310434104351043610437104381043910440104411044210443104441044510446104471044810449104501045110452104531045410455104561045710458104591046010461104621046310464104651046610467104681046910470104711047210473104741047510476104771047810479104801048110482104831048410485104861048710488104891049010491104921049310494104951049610497104981049910500105011050210503105041050510506105071050810509105101051110512105131051410515105161051710518105191052010521105221052310524105251052610527105281052910530105311053210533105341053510536105371053810539105401054110542105431054410545105461054710548105491055010551105521055310554105551055610557105581055910560105611056210563105641056510566105671056810569105701057110572105731057410575105761057710578105791058010581105821058310584105851058610587105881058910590105911059210593105941059510596105971059810599106001060110602106031060410605106061060710608106091061010611106121061310614106151061610617106181061910620106211062210623106241062510626106271062810629106301063110632106331063410635106361063710638106391064010641106421064310644106451064610647106481064910650106511065210653106541065510656106571065810659106601066110662106631066410665106661066710668106691067010671106721067310674106751067610677106781067910680106811068210683106841068510686106871068810689106901069110692106931069410695106961069710698106991070010701107021070310704107051070610707107081070910710107111071210713107141071510716107171071810719107201072110722107231072410725107261072710728107291073010731107321073310734107351073610737107381073910740107411074210743107441074510746107471074810749107501075110752107531075410755107561075710758107591076010761107621076310764107651076610767107681076910770107711077210773107741077510776107771077810779107801078110782107831078410785107861078710788107891079010791107921079310794107951079610797107981079910800108011080210803108041080510806108071080810809108101081110812108131081410815108161081710818108191082010821108221082310824108251082610827108281082910830108311083210833108341083510836108371083810839108401084110842108431084410845108461084710848108491085010851108521085310854108551085610857108581085910860108611086210863108641086510866108671086810869108701087110872108731087410875108761087710878108791088010881108821088310884108851088610887108881088910890108911089210893108941089510896108971089810899109001090110902109031090410905109061090710908109091091010911109121091310914109151091610917109181091910920109211092210923109241092510926109271092810929109301093110932109331093410935109361093710938109391094010941109421094310944109451094610947109481094910950109511095210953109541095510956109571095810959109601096110962109631096410965109661096710968109691097010971109721097310974109751097610977109781097910980109811098210983109841098510986109871098810989109901099110992109931099410995109961099710998109991100011001110021100311004110051100611007110081100911010110111101211013110141101511016110171101811019110201102111022110231102411025110261102711028110291103011031110321103311034110351103611037110381103911040110411104211043110441104511046110471104811049110501105111052110531105411055110561105711058110591106011061110621106311064110651106611067110681106911070110711107211073110741107511076110771107811079110801108111082110831108411085110861108711088110891109011091110921109311094110951109611097110981109911100111011110211103111041110511106111071110811109111101111111112111131111411115111161111711118111191112011121111221112311124111251112611127111281112911130111311113211133111341113511136111371113811139111401114111142111431114411145111461114711148111491115011151111521115311154111551115611157111581115911160111611116211163111641116511166111671116811169111701117111172111731117411175111761117711178111791118011181111821118311184111851118611187111881118911190111911119211193111941119511196111971119811199112001120111202112031120411205112061120711208112091121011211112121121311214112151121611217112181121911220112211122211223112241122511226112271122811229112301123111232112331123411235112361123711238112391124011241112421124311244112451124611247112481124911250112511125211253112541125511256112571125811259112601126111262112631126411265112661126711268112691127011271112721127311274112751127611277112781127911280112811128211283112841128511286112871128811289112901129111292112931129411295112961129711298112991130011301113021130311304113051130611307113081130911310113111131211313113141131511316113171131811319113201132111322113231132411325113261132711328113291133011331113321133311334113351133611337113381133911340113411134211343113441134511346113471134811349113501135111352113531135411355113561135711358113591136011361113621136311364113651136611367113681136911370113711137211373113741137511376113771137811379113801138111382113831138411385113861138711388113891139011391113921139311394113951139611397113981139911400114011140211403114041140511406114071140811409114101141111412114131141411415114161141711418114191142011421114221142311424114251142611427114281142911430114311143211433114341143511436114371143811439114401144111442114431144411445114461144711448114491145011451114521145311454114551145611457114581145911460114611146211463114641146511466114671146811469114701147111472114731147411475114761147711478114791148011481114821148311484114851148611487114881148911490114911149211493114941149511496114971149811499115001150111502115031150411505115061150711508115091151011511115121151311514115151151611517115181151911520115211152211523115241152511526115271152811529115301153111532115331153411535115361153711538115391154011541115421154311544115451154611547115481154911550115511155211553115541155511556115571155811559115601156111562115631156411565115661156711568115691157011571115721157311574115751157611577115781157911580115811158211583115841158511586115871158811589115901159111592115931159411595115961159711598115991160011601116021160311604116051160611607116081160911610116111161211613116141161511616116171161811619116201162111622116231162411625116261162711628116291163011631116321163311634116351163611637116381163911640116411164211643116441164511646116471164811649116501165111652116531165411655116561165711658116591166011661116621166311664116651166611667116681166911670116711167211673116741167511676116771167811679116801168111682116831168411685116861168711688116891169011691116921169311694116951169611697116981169911700117011170211703117041170511706117071170811709117101171111712117131171411715117161171711718117191172011721117221172311724117251172611727117281172911730117311173211733117341173511736117371173811739117401174111742117431174411745117461174711748117491175011751117521175311754117551175611757117581175911760117611176211763117641176511766117671176811769117701177111772117731177411775117761177711778117791178011781117821178311784117851178611787117881178911790117911179211793117941179511796117971179811799118001180111802118031180411805118061180711808118091181011811118121181311814118151181611817118181181911820118211182211823118241182511826118271182811829118301183111832118331183411835118361183711838118391184011841118421184311844118451184611847118481184911850118511185211853118541185511856118571185811859118601186111862118631186411865118661186711868118691187011871118721187311874118751187611877118781187911880118811188211883118841188511886118871188811889118901189111892118931189411895118961189711898118991190011901119021190311904119051190611907119081190911910119111191211913119141191511916119171191811919119201192111922119231192411925119261192711928119291193011931119321193311934119351193611937119381193911940119411194211943119441194511946119471194811949119501195111952119531195411955119561195711958119591196011961119621196311964119651196611967119681196911970119711197211973119741197511976119771197811979119801198111982119831198411985119861198711988119891199011991119921199311994119951199611997119981199912000120011200212003120041200512006120071200812009120101201112012120131201412015120161201712018120191202012021120221202312024120251202612027120281202912030120311203212033120341203512036120371203812039120401204112042120431204412045120461204712048120491205012051120521205312054120551205612057120581205912060120611206212063120641206512066120671206812069120701207112072120731207412075120761207712078120791208012081120821208312084120851208612087120881208912090120911209212093120941209512096120971209812099121001210112102121031210412105121061210712108121091211012111121121211312114121151211612117121181211912120121211212212123121241212512126121271212812129121301213112132121331213412135121361213712138121391214012141121421214312144121451214612147121481214912150121511215212153121541215512156121571215812159121601216112162121631216412165121661216712168121691217012171121721217312174121751217612177121781217912180121811218212183121841218512186121871218812189121901219112192121931219412195121961219712198121991220012201122021220312204122051220612207122081220912210122111221212213122141221512216122171221812219122201222112222122231222412225122261222712228122291223012231122321223312234122351223612237122381223912240122411224212243122441224512246122471224812249122501225112252122531225412255122561225712258122591226012261122621226312264122651226612267122681226912270122711227212273122741227512276122771227812279122801228112282122831228412285122861228712288122891229012291122921229312294122951229612297122981229912300123011230212303123041230512306123071230812309123101231112312123131231412315123161231712318123191232012321123221232312324123251232612327123281232912330123311233212333123341233512336123371233812339123401234112342123431234412345123461234712348123491235012351123521235312354123551235612357123581235912360123611236212363123641236512366123671236812369123701237112372123731237412375123761237712378123791238012381123821238312384123851238612387123881238912390123911239212393123941239512396123971239812399124001240112402124031240412405124061240712408124091241012411124121241312414124151241612417124181241912420124211242212423124241242512426124271242812429124301243112432124331243412435124361243712438124391244012441124421244312444124451244612447124481244912450124511245212453124541245512456124571245812459124601246112462124631246412465124661246712468124691247012471124721247312474124751247612477124781247912480124811248212483124841248512486124871248812489124901249112492124931249412495124961249712498124991250012501125021250312504125051250612507125081250912510125111251212513125141251512516125171251812519125201252112522125231252412525125261252712528125291253012531125321253312534125351253612537125381253912540125411254212543125441254512546125471254812549125501255112552125531255412555125561255712558125591256012561125621256312564125651256612567125681256912570125711257212573125741257512576125771257812579125801258112582125831258412585125861258712588125891259012591125921259312594125951259612597125981259912600126011260212603126041260512606126071260812609126101261112612126131261412615126161261712618126191262012621126221262312624126251262612627126281262912630126311263212633126341263512636126371263812639126401264112642126431264412645126461264712648126491265012651126521265312654126551265612657126581265912660126611266212663126641266512666126671266812669126701267112672126731267412675126761267712678126791268012681126821268312684126851268612687126881268912690126911269212693126941269512696126971269812699127001270112702127031270412705127061270712708127091271012711127121271312714127151271612717127181271912720127211272212723127241272512726127271272812729127301273112732127331273412735127361273712738127391274012741127421274312744127451274612747127481274912750127511275212753127541275512756127571275812759127601276112762127631276412765127661276712768127691277012771127721277312774127751277612777127781277912780127811278212783127841278512786127871278812789127901279112792127931279412795127961279712798127991280012801128021280312804128051280612807128081280912810128111281212813128141281512816128171281812819128201282112822128231282412825128261282712828128291283012831128321283312834128351283612837128381283912840128411284212843128441284512846128471284812849128501285112852128531285412855128561285712858128591286012861128621286312864128651286612867128681286912870128711287212873128741287512876128771287812879128801288112882128831288412885128861288712888128891289012891128921289312894128951289612897128981289912900129011290212903129041290512906129071290812909129101291112912129131291412915129161291712918129191292012921129221292312924129251292612927129281292912930129311293212933129341293512936129371293812939129401294112942129431294412945129461294712948129491295012951129521295312954129551295612957129581295912960129611296212963129641296512966129671296812969129701297112972129731297412975129761297712978129791298012981129821298312984129851298612987129881298912990129911299212993129941299512996129971299812999130001300113002130031300413005130061300713008130091301013011130121301313014130151301613017130181301913020130211302213023130241302513026130271302813029130301303113032130331303413035130361303713038130391304013041130421304313044130451304613047130481304913050130511305213053130541305513056130571305813059130601306113062130631306413065130661306713068130691307013071130721307313074130751307613077130781307913080130811308213083130841308513086130871308813089130901309113092130931309413095130961309713098130991310013101131021310313104131051310613107131081310913110131111311213113131141311513116131171311813119131201312113122131231312413125131261312713128131291313013131131321313313134131351313613137131381313913140131411314213143131441314513146131471314813149131501315113152131531315413155131561315713158131591316013161131621316313164131651316613167131681316913170131711317213173131741317513176131771317813179131801318113182131831318413185131861318713188131891319013191131921319313194131951319613197131981319913200132011320213203132041320513206132071320813209132101321113212132131321413215132161321713218132191322013221132221322313224132251322613227132281322913230132311323213233132341323513236132371323813239132401324113242132431324413245132461324713248132491325013251132521325313254132551325613257132581325913260132611326213263132641326513266132671326813269132701327113272132731327413275132761327713278132791328013281132821328313284132851328613287132881328913290132911329213293132941329513296132971329813299133001330113302133031330413305133061330713308133091331013311133121331313314133151331613317133181331913320133211332213323133241332513326133271332813329133301333113332133331333413335133361333713338133391334013341133421334313344133451334613347133481334913350133511335213353133541335513356133571335813359133601336113362133631336413365133661336713368133691337013371133721337313374133751337613377133781337913380133811338213383133841338513386133871338813389133901339113392133931339413395133961339713398133991340013401134021340313404134051340613407134081340913410134111341213413134141341513416134171341813419134201342113422134231342413425134261342713428134291343013431134321343313434134351343613437134381343913440134411344213443134441344513446134471344813449134501345113452134531345413455134561345713458134591346013461134621346313464134651346613467134681346913470134711347213473134741347513476134771347813479134801348113482134831348413485134861348713488134891349013491134921349313494134951349613497134981349913500135011350213503135041350513506135071350813509135101351113512135131351413515135161351713518135191352013521135221352313524135251352613527135281352913530135311353213533135341353513536135371353813539135401354113542135431354413545135461354713548135491355013551135521355313554135551355613557135581355913560135611356213563135641356513566135671356813569135701357113572135731357413575135761357713578135791358013581135821358313584135851358613587135881358913590135911359213593135941359513596135971359813599136001360113602136031360413605136061360713608136091361013611136121361313614136151361613617136181361913620136211362213623136241362513626136271362813629136301363113632136331363413635136361363713638136391364013641136421364313644136451364613647136481364913650136511365213653136541365513656136571365813659136601366113662136631366413665136661366713668136691367013671136721367313674136751367613677136781367913680136811368213683136841368513686136871368813689136901369113692136931369413695136961369713698136991370013701137021370313704137051370613707137081370913710137111371213713137141371513716137171371813719137201372113722137231372413725137261372713728137291373013731137321373313734137351373613737137381373913740137411374213743137441374513746137471374813749137501375113752137531375413755137561375713758137591376013761137621376313764137651376613767137681376913770137711377213773137741377513776137771377813779137801378113782137831378413785137861378713788137891379013791137921379313794137951379613797137981379913800138011380213803138041380513806138071380813809138101381113812138131381413815138161381713818138191382013821138221382313824138251382613827138281382913830138311383213833138341383513836138371383813839138401384113842138431384413845138461384713848138491385013851138521385313854138551385613857138581385913860138611386213863138641386513866138671386813869138701387113872138731387413875138761387713878138791388013881138821388313884138851388613887138881388913890138911389213893138941389513896138971389813899139001390113902139031390413905139061390713908139091391013911139121391313914139151391613917139181391913920139211392213923139241392513926139271392813929139301393113932139331393413935139361393713938139391394013941139421394313944139451394613947139481394913950139511395213953139541395513956139571395813959139601396113962139631396413965139661396713968139691397013971
  1. #define _CRT_SECURE_NO_DEPRECATE // Disables "unsafe" warnings on Windows
  2. #define _USE_MATH_DEFINES // For M_PI on MSVC
  3. #include "ggml-backend-impl.h"
  4. #include "ggml-backend.h"
  5. #include "ggml-cpu-aarch64.h"
  6. #include "ggml-cpu-impl.h"
  7. #include "ggml-cpu.h"
  8. #include "ggml-impl.h"
  9. #include "ggml-quants.h"
  10. #include "ggml-cpu-quants.h"
  11. #include "ggml-threading.h"
  12. #include "amx/amx.h"
  13. #include "ggml.h"
  14. #if defined(_MSC_VER) || defined(__MINGW32__)
  15. #include <malloc.h> // using malloc.h with MSC/MINGW
  16. #elif !defined(__FreeBSD__) && !defined(__NetBSD__) && !defined(__OpenBSD__)
  17. #include <alloca.h>
  18. #endif
  19. #include <assert.h>
  20. #include <errno.h>
  21. #include <time.h>
  22. #include <math.h>
  23. #include <stdlib.h>
  24. #include <string.h>
  25. #include <stdint.h>
  26. #include <inttypes.h>
  27. #include <stdio.h>
  28. #include <float.h>
  29. #include <limits.h>
  30. #include <stdarg.h>
  31. #include <signal.h>
  32. #if defined(__gnu_linux__)
  33. #include <syscall.h>
  34. #endif
  35. #ifdef GGML_USE_OPENMP
  36. #include <omp.h>
  37. #endif
  38. #if defined(__ARM_FEATURE_SVE) || defined(__ARM_FEATURE_MATMUL_INT8)
  39. #undef GGML_USE_LLAMAFILE
  40. #endif
  41. #ifdef GGML_USE_LLAMAFILE
  42. #include "llamafile/sgemm.h"
  43. #endif
  44. #if defined(_MSC_VER)
  45. // disable "possible loss of data" to avoid hundreds of casts
  46. // we should just be careful :)
  47. #pragma warning(disable: 4244 4267)
  48. // disable POSIX deprecation warnings
  49. // these functions are never going away, anyway
  50. #pragma warning(disable: 4996)
  51. // unreachable code because of multiple instances of code after GGML_ABORT
  52. #pragma warning(disable: 4702)
  53. #endif
  54. // Note: once we move threading into a separate C++ file
  55. // will use std::hardware_destructive_interference_size instead of hardcoding it here
  56. // and we'll use C++ attribute syntax.
  57. #define GGML_CACHE_LINE 64
  58. #if defined(__clang__) || defined(__GNUC__)
  59. #define GGML_CACHE_ALIGN __attribute__((aligned(GGML_CACHE_LINE)))
  60. #endif
  61. #if defined(__has_feature)
  62. #if __has_feature(thread_sanitizer)
  63. #define GGML_TSAN_ENABLED 1
  64. #endif
  65. #else // __has_feature
  66. #if defined(__SANITIZE_THREAD__)
  67. #define GGML_TSAN_ENABLED 1
  68. #endif
  69. #endif // __has_feature
  70. #define UNUSED GGML_UNUSED
  71. #define SWAP(x, y, T) do { T SWAP = x; (x) = y; (y) = SWAP; } while (0)
  72. #if defined(GGML_USE_ACCELERATE)
  73. #include <Accelerate/Accelerate.h>
  74. #endif
  75. // floating point type used to accumulate sums
  76. typedef double ggml_float;
  77. #define GGML_GELU_FP16
  78. #define GGML_GELU_QUICK_FP16
  79. #define GGML_SOFT_MAX_UNROLL 4
  80. #define GGML_VEC_DOT_UNROLL 2
  81. #define GGML_VEC_MAD_UNROLL 32
  82. //
  83. // global data
  84. //
  85. // precomputed gelu table for f16 (128 KB)
  86. static ggml_fp16_t ggml_table_gelu_f16[1 << 16];
  87. // precomputed quick gelu table for f16 (128 KB)
  88. static ggml_fp16_t ggml_table_gelu_quick_f16[1 << 16];
  89. #if defined(__ARM_ARCH)
  90. struct ggml_arm_arch_features_type {
  91. int has_neon;
  92. int has_dotprod;
  93. int has_i8mm;
  94. int has_sve;
  95. int sve_cnt;
  96. } ggml_arm_arch_features = {-1, -1, -1, -1, 0};
  97. #endif
  98. #if defined(_WIN32)
  99. #define WIN32_LEAN_AND_MEAN
  100. #ifndef NOMINMAX
  101. #define NOMINMAX
  102. #endif
  103. #include <windows.h>
  104. #if !defined(__clang__)
  105. #define GGML_CACHE_ALIGN __declspec(align(GGML_CACHE_LINE))
  106. typedef volatile LONG atomic_int;
  107. typedef atomic_int atomic_bool;
  108. typedef atomic_int atomic_flag;
  109. #define ATOMIC_FLAG_INIT 0
  110. typedef enum {
  111. memory_order_relaxed,
  112. memory_order_consume,
  113. memory_order_acquire,
  114. memory_order_release,
  115. memory_order_acq_rel,
  116. memory_order_seq_cst
  117. } memory_order;
  118. static void atomic_store(atomic_int * ptr, LONG val) {
  119. InterlockedExchange(ptr, val);
  120. }
  121. static void atomic_store_explicit(atomic_int * ptr, LONG val, memory_order mo) {
  122. // TODO: add support for explicit memory order
  123. InterlockedExchange(ptr, val);
  124. }
  125. static LONG atomic_load(atomic_int * ptr) {
  126. return InterlockedCompareExchange(ptr, 0, 0);
  127. }
  128. static LONG atomic_load_explicit(atomic_int * ptr, memory_order mo) {
  129. // TODO: add support for explicit memory order
  130. return InterlockedCompareExchange(ptr, 0, 0);
  131. }
  132. static LONG atomic_fetch_add(atomic_int * ptr, LONG inc) {
  133. return InterlockedExchangeAdd(ptr, inc);
  134. }
  135. static LONG atomic_fetch_add_explicit(atomic_int * ptr, LONG inc, memory_order mo) {
  136. // TODO: add support for explicit memory order
  137. return InterlockedExchangeAdd(ptr, inc);
  138. }
  139. static atomic_bool atomic_flag_test_and_set(atomic_flag * ptr) {
  140. return InterlockedExchange(ptr, 1);
  141. }
  142. static void atomic_flag_clear(atomic_flag * ptr) {
  143. InterlockedExchange(ptr, 0);
  144. }
  145. static void atomic_thread_fence(memory_order mo) {
  146. MemoryBarrier();
  147. }
  148. #else // clang
  149. #include <stdatomic.h>
  150. #endif
  151. typedef HANDLE pthread_t;
  152. typedef DWORD thread_ret_t;
  153. static int pthread_create(pthread_t * out, void * unused, thread_ret_t(*func)(void *), void * arg) {
  154. (void) unused;
  155. HANDLE handle = CreateThread(NULL, 0, (LPTHREAD_START_ROUTINE) func, arg, 0, NULL);
  156. if (handle == NULL)
  157. {
  158. return EAGAIN;
  159. }
  160. *out = handle;
  161. return 0;
  162. }
  163. static int pthread_join(pthread_t thread, void * unused) {
  164. (void) unused;
  165. int ret = (int) WaitForSingleObject(thread, INFINITE);
  166. CloseHandle(thread);
  167. return ret;
  168. }
  169. static int sched_yield (void) {
  170. Sleep (0);
  171. return 0;
  172. }
  173. #else
  174. #include <pthread.h>
  175. #include <stdatomic.h>
  176. #include <sched.h>
  177. #if defined(__FreeBSD__)
  178. #include <pthread_np.h>
  179. #endif
  180. typedef void * thread_ret_t;
  181. #include <sys/types.h>
  182. #include <sys/stat.h>
  183. #include <unistd.h>
  184. #endif
  185. typedef pthread_t ggml_thread_t;
  186. #ifdef GGML_USE_CPU_HBM
  187. #include <hbwmalloc.h>
  188. #endif
  189. #if defined(__APPLE__)
  190. #include <unistd.h>
  191. #include <mach/mach.h>
  192. #include <TargetConditionals.h>
  193. #endif
  194. //
  195. // cache line
  196. //
  197. #if defined(__cpp_lib_hardware_interference_size)
  198. #define CACHE_LINE_SIZE hardware_destructive_interference_size
  199. #else
  200. #if defined(__POWER9_VECTOR__)
  201. #define CACHE_LINE_SIZE 128
  202. #else
  203. #define CACHE_LINE_SIZE 64
  204. #endif
  205. #endif
  206. static const size_t CACHE_LINE_SIZE_F32 = CACHE_LINE_SIZE/sizeof(float);
  207. static void ggml_vec_dot_f32(int n, float * restrict s, size_t bs, const float * restrict x, size_t bx, const float * restrict y, size_t by, int nrc);
  208. static void ggml_vec_dot_f16(int n, float * restrict s, size_t bs, ggml_fp16_t * restrict x, size_t bx, ggml_fp16_t * restrict y, size_t by, int nrc);
  209. static void ggml_vec_dot_bf16(int n, float * restrict s, size_t bs, ggml_bf16_t * restrict x, size_t bx, ggml_bf16_t * restrict y, size_t by, int nrc);
  210. static const struct ggml_type_traits_cpu type_traits_cpu[GGML_TYPE_COUNT] = {
  211. [GGML_TYPE_F32] = {
  212. .vec_dot = (ggml_vec_dot_t) ggml_vec_dot_f32,
  213. .vec_dot_type = GGML_TYPE_F32,
  214. .nrows = 1,
  215. },
  216. [GGML_TYPE_F16] = {
  217. .from_float = (ggml_from_float_t) ggml_fp32_to_fp16_row,
  218. .vec_dot = (ggml_vec_dot_t) ggml_vec_dot_f16,
  219. .vec_dot_type = GGML_TYPE_F16,
  220. .nrows = 1,
  221. },
  222. [GGML_TYPE_Q4_0] = {
  223. .from_float = quantize_row_q4_0,
  224. .vec_dot = ggml_vec_dot_q4_0_q8_0,
  225. .vec_dot_type = GGML_TYPE_Q8_0,
  226. #if defined (__ARM_FEATURE_MATMUL_INT8)
  227. .nrows = 2,
  228. #else
  229. .nrows = 1,
  230. #endif
  231. },
  232. [GGML_TYPE_Q4_1] = {
  233. .from_float = quantize_row_q4_1,
  234. .vec_dot = ggml_vec_dot_q4_1_q8_1,
  235. .vec_dot_type = GGML_TYPE_Q8_1,
  236. #if defined (__ARM_FEATURE_MATMUL_INT8)
  237. .nrows = 2,
  238. #else
  239. .nrows = 1,
  240. #endif
  241. },
  242. [GGML_TYPE_Q5_0] = {
  243. .from_float = quantize_row_q5_0,
  244. .vec_dot = ggml_vec_dot_q5_0_q8_0,
  245. .vec_dot_type = GGML_TYPE_Q8_0,
  246. .nrows = 1,
  247. },
  248. [GGML_TYPE_Q5_1] = {
  249. .from_float = quantize_row_q5_1,
  250. .vec_dot = ggml_vec_dot_q5_1_q8_1,
  251. .vec_dot_type = GGML_TYPE_Q8_1,
  252. .nrows = 1,
  253. },
  254. [GGML_TYPE_Q8_0] = {
  255. .from_float = quantize_row_q8_0,
  256. .from_float_to_mat = quantize_mat_q8_0,
  257. .vec_dot = ggml_vec_dot_q8_0_q8_0,
  258. .vec_dot_type = GGML_TYPE_Q8_0,
  259. #if defined (__ARM_FEATURE_MATMUL_INT8)
  260. .nrows = 2,
  261. #else
  262. .nrows = 1,
  263. #endif
  264. },
  265. [GGML_TYPE_Q8_1] = {
  266. .from_float = quantize_row_q8_1,
  267. .vec_dot_type = GGML_TYPE_Q8_1,
  268. .nrows = 1,
  269. },
  270. [GGML_TYPE_Q2_K] = {
  271. .from_float = quantize_row_q2_K,
  272. .vec_dot = ggml_vec_dot_q2_K_q8_K,
  273. .vec_dot_type = GGML_TYPE_Q8_K,
  274. .nrows = 1,
  275. },
  276. [GGML_TYPE_Q3_K] = {
  277. .from_float = quantize_row_q3_K,
  278. .vec_dot = ggml_vec_dot_q3_K_q8_K,
  279. .vec_dot_type = GGML_TYPE_Q8_K,
  280. .nrows = 1,
  281. },
  282. [GGML_TYPE_Q4_K] = {
  283. .from_float = quantize_row_q4_K,
  284. .vec_dot = ggml_vec_dot_q4_K_q8_K,
  285. .vec_dot_type = GGML_TYPE_Q8_K,
  286. .nrows = 1,
  287. },
  288. [GGML_TYPE_Q5_K] = {
  289. .from_float = quantize_row_q5_K,
  290. .vec_dot = ggml_vec_dot_q5_K_q8_K,
  291. .vec_dot_type = GGML_TYPE_Q8_K,
  292. .nrows = 1,
  293. },
  294. [GGML_TYPE_Q6_K] = {
  295. .from_float = quantize_row_q6_K,
  296. .vec_dot = ggml_vec_dot_q6_K_q8_K,
  297. .vec_dot_type = GGML_TYPE_Q8_K,
  298. .nrows = 1,
  299. },
  300. [GGML_TYPE_IQ2_XXS] = {
  301. .from_float = NULL,
  302. .vec_dot = ggml_vec_dot_iq2_xxs_q8_K,
  303. .vec_dot_type = GGML_TYPE_Q8_K,
  304. .nrows = 1,
  305. },
  306. [GGML_TYPE_IQ2_XS] = {
  307. .from_float = NULL,
  308. .vec_dot = ggml_vec_dot_iq2_xs_q8_K,
  309. .vec_dot_type = GGML_TYPE_Q8_K,
  310. .nrows = 1,
  311. },
  312. [GGML_TYPE_IQ3_XXS] = {
  313. // NOTE: from_float for iq3 and iq2_s was removed because these quants require initialization in ggml_quantize_init
  314. //.from_float = quantize_row_iq3_xxs,
  315. .vec_dot = ggml_vec_dot_iq3_xxs_q8_K,
  316. .vec_dot_type = GGML_TYPE_Q8_K,
  317. .nrows = 1,
  318. },
  319. [GGML_TYPE_IQ3_S] = {
  320. //.from_float = quantize_row_iq3_s,
  321. .vec_dot = ggml_vec_dot_iq3_s_q8_K,
  322. .vec_dot_type = GGML_TYPE_Q8_K,
  323. .nrows = 1,
  324. },
  325. [GGML_TYPE_IQ2_S] = {
  326. //.from_float = quantize_row_iq2_s,
  327. .vec_dot = ggml_vec_dot_iq2_s_q8_K,
  328. .vec_dot_type = GGML_TYPE_Q8_K,
  329. .nrows = 1,
  330. },
  331. [GGML_TYPE_IQ1_S] = {
  332. .from_float = NULL,
  333. .vec_dot = ggml_vec_dot_iq1_s_q8_K,
  334. .vec_dot_type = GGML_TYPE_Q8_K,
  335. .nrows = 1,
  336. },
  337. [GGML_TYPE_IQ1_M] = {
  338. .from_float = NULL,
  339. .vec_dot = ggml_vec_dot_iq1_m_q8_K,
  340. .vec_dot_type = GGML_TYPE_Q8_K,
  341. .nrows = 1,
  342. },
  343. [GGML_TYPE_IQ4_NL] = {
  344. .from_float = quantize_row_iq4_nl,
  345. .vec_dot = ggml_vec_dot_iq4_nl_q8_0,
  346. .vec_dot_type = GGML_TYPE_Q8_0,
  347. .nrows = 1,
  348. },
  349. [GGML_TYPE_IQ4_XS] = {
  350. .from_float = quantize_row_iq4_xs,
  351. .vec_dot = ggml_vec_dot_iq4_xs_q8_K,
  352. .vec_dot_type = GGML_TYPE_Q8_K,
  353. .nrows = 1,
  354. },
  355. [GGML_TYPE_Q8_K] = {
  356. .from_float = quantize_row_q8_K,
  357. },
  358. [GGML_TYPE_BF16] = {
  359. .from_float = (ggml_from_float_t) ggml_fp32_to_bf16_row,
  360. .vec_dot = (ggml_vec_dot_t) ggml_vec_dot_bf16,
  361. .vec_dot_type = GGML_TYPE_BF16,
  362. .nrows = 1,
  363. },
  364. [GGML_TYPE_Q4_0_4_4] = {
  365. .from_float = NULL,
  366. .vec_dot = NULL,
  367. .vec_dot_type = GGML_TYPE_Q8_0,
  368. .nrows = 1,
  369. .ncols = 4,
  370. .gemv = ggml_gemv_q4_0_4x4_q8_0,
  371. .gemm = ggml_gemm_q4_0_4x4_q8_0,
  372. },
  373. [GGML_TYPE_Q4_0_4_8] = {
  374. .from_float = NULL,
  375. .vec_dot = NULL,
  376. .vec_dot_type = GGML_TYPE_Q8_0,
  377. .nrows = 1,
  378. .ncols = 4,
  379. .gemv = ggml_gemv_q4_0_4x8_q8_0,
  380. .gemm = ggml_gemm_q4_0_4x8_q8_0,
  381. },
  382. [GGML_TYPE_Q4_0_8_8] = {
  383. .from_float = NULL,
  384. .vec_dot = NULL,
  385. .vec_dot_type = GGML_TYPE_Q8_0,
  386. .nrows = 1,
  387. .ncols = 8,
  388. .gemv = ggml_gemv_q4_0_8x8_q8_0,
  389. .gemm = ggml_gemm_q4_0_8x8_q8_0,
  390. },
  391. [GGML_TYPE_TQ1_0] = {
  392. .from_float = quantize_row_tq1_0,
  393. .vec_dot = ggml_vec_dot_tq1_0_q8_K,
  394. .vec_dot_type = GGML_TYPE_Q8_K,
  395. .nrows = 1,
  396. },
  397. [GGML_TYPE_TQ2_0] = {
  398. .from_float = quantize_row_tq2_0,
  399. .vec_dot = ggml_vec_dot_tq2_0_q8_K,
  400. .vec_dot_type = GGML_TYPE_Q8_K,
  401. .nrows = 1,
  402. },
  403. [GGML_TYPE_IQ4_NL_4_4] = {
  404. .from_float = NULL,
  405. .vec_dot = NULL,
  406. .vec_dot_type = GGML_TYPE_Q8_0,
  407. .nrows = 1,
  408. .ncols = 4,
  409. .gemv = ggml_gemv_iq4_nl_4x4_q8_0,
  410. .gemm = ggml_gemm_iq4_nl_4x4_q8_0,
  411. },
  412. };
  413. const struct ggml_type_traits_cpu * ggml_get_type_traits_cpu(enum ggml_type type) {
  414. return &type_traits_cpu[type];
  415. }
  416. //
  417. // simd mappings
  418. //
  419. // we define a common set of C macros which map to specific intrinsics based on the current architecture
  420. // we then implement the fundamental computation operations below using only these macros
  421. // adding support for new architectures requires to define the corresponding SIMD macros
  422. //
  423. // GGML_F32_STEP / GGML_F16_STEP
  424. // number of elements to process in a single step
  425. //
  426. // GGML_F32_EPR / GGML_F16_EPR
  427. // number of elements to fit in a single register
  428. //
  429. #if defined(__ARM_NEON) && defined(__ARM_FEATURE_FMA)
  430. #define GGML_SIMD
  431. // F32 NEON
  432. #define GGML_F32_STEP 16
  433. #define GGML_F32_EPR 4
  434. #define GGML_F32x4 float32x4_t
  435. #define GGML_F32x4_ZERO vdupq_n_f32(0.0f)
  436. #define GGML_F32x4_SET1(x) vdupq_n_f32(x)
  437. #define GGML_F32x4_LOAD vld1q_f32
  438. #define GGML_F32x4_STORE vst1q_f32
  439. #define GGML_F32x4_FMA(a, b, c) vfmaq_f32(a, b, c)
  440. #define GGML_F32x4_ADD vaddq_f32
  441. #define GGML_F32x4_MUL vmulq_f32
  442. #define GGML_F32x4_REDUCE_ONE(x) vaddvq_f32(x)
  443. #define GGML_F32x4_REDUCE(res, x) \
  444. { \
  445. int offset = GGML_F32_ARR >> 1; \
  446. for (int i = 0; i < offset; ++i) { \
  447. (x)[i] = vaddq_f32((x)[i], (x)[offset+i]); \
  448. } \
  449. offset >>= 1; \
  450. for (int i = 0; i < offset; ++i) { \
  451. (x)[i] = vaddq_f32((x)[i], (x)[offset+i]); \
  452. } \
  453. offset >>= 1; \
  454. for (int i = 0; i < offset; ++i) { \
  455. (x)[i] = vaddq_f32((x)[i], (x)[offset+i]); \
  456. } \
  457. (res) = GGML_F32x4_REDUCE_ONE((x)[0]); \
  458. }
  459. #define GGML_F32_VEC GGML_F32x4
  460. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  461. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  462. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  463. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  464. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  465. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  466. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  467. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  468. // F16 NEON
  469. #if defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC)
  470. #define GGML_F16_STEP 32
  471. #define GGML_F16_EPR 8
  472. #define GGML_F16x8 float16x8_t
  473. #define GGML_F16x8_ZERO vdupq_n_f16(0.0f)
  474. #define GGML_F16x8_SET1(x) vdupq_n_f16(x)
  475. #define GGML_F16x8_LOAD(x) vld1q_f16((const ggml_fp16_internal_t *)(x))
  476. #define GGML_F16x8_STORE vst1q_f16
  477. #define GGML_F16x8_FMA(a, b, c) vfmaq_f16(a, b, c)
  478. #define GGML_F16x8_ADD vaddq_f16
  479. #define GGML_F16x8_MUL vmulq_f16
  480. #define GGML_F16x8_REDUCE(res, x) \
  481. do { \
  482. int offset = GGML_F16_ARR >> 1; \
  483. for (int i = 0; i < offset; ++i) { \
  484. (x)[i] = vaddq_f16((x)[i], (x)[offset+i]); \
  485. } \
  486. offset >>= 1; \
  487. for (int i = 0; i < offset; ++i) { \
  488. (x)[i] = vaddq_f16((x)[i], (x)[offset+i]); \
  489. } \
  490. offset >>= 1; \
  491. for (int i = 0; i < offset; ++i) { \
  492. (x)[i] = vaddq_f16((x)[i], (x)[offset+i]); \
  493. } \
  494. const float32x4_t t0 = vcvt_f32_f16(vget_low_f16 ((x)[0])); \
  495. const float32x4_t t1 = vcvt_f32_f16(vget_high_f16((x)[0])); \
  496. (res) = (ggml_float) vaddvq_f32(vaddq_f32(t0, t1)); \
  497. } while (0)
  498. #define GGML_F16_VEC GGML_F16x8
  499. #define GGML_F16_VEC_ZERO GGML_F16x8_ZERO
  500. #define GGML_F16_VEC_SET1 GGML_F16x8_SET1
  501. #define GGML_F16_VEC_LOAD(p, i) GGML_F16x8_LOAD(p)
  502. #define GGML_F16_VEC_STORE(p, r, i) GGML_F16x8_STORE((ggml_fp16_internal_t *)(p), (r)[i])
  503. #define GGML_F16_VEC_FMA GGML_F16x8_FMA
  504. #define GGML_F16_VEC_ADD GGML_F16x8_ADD
  505. #define GGML_F16_VEC_MUL GGML_F16x8_MUL
  506. #define GGML_F16_VEC_REDUCE GGML_F16x8_REDUCE
  507. #else
  508. // if FP16 vector arithmetic is not supported, we use FP32 instead
  509. // and take advantage of the vcvt_ functions to convert to/from FP16
  510. #define GGML_F16_STEP 16
  511. #define GGML_F16_EPR 4
  512. #define GGML_F32Cx4 float32x4_t
  513. #define GGML_F32Cx4_ZERO vdupq_n_f32(0.0f)
  514. #define GGML_F32Cx4_SET1(x) vdupq_n_f32(x)
  515. #define GGML_F32Cx4_LOAD(x) vcvt_f32_f16(vld1_f16((const ggml_fp16_internal_t *)(x)))
  516. #define GGML_F32Cx4_STORE(x, y) vst1_f16(x, vcvt_f16_f32(y))
  517. #define GGML_F32Cx4_FMA(a, b, c) vfmaq_f32(a, b, c)
  518. #define GGML_F32Cx4_ADD vaddq_f32
  519. #define GGML_F32Cx4_MUL vmulq_f32
  520. #define GGML_F32Cx4_REDUCE GGML_F32x4_REDUCE
  521. #define GGML_F16_VEC GGML_F32Cx4
  522. #define GGML_F16_VEC_ZERO GGML_F32Cx4_ZERO
  523. #define GGML_F16_VEC_SET1 GGML_F32Cx4_SET1
  524. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx4_LOAD(p)
  525. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx4_STORE((ggml_fp16_internal_t *)(p), r[i])
  526. #define GGML_F16_VEC_FMA GGML_F32Cx4_FMA
  527. #define GGML_F16_VEC_ADD GGML_F32Cx4_ADD
  528. #define GGML_F16_VEC_MUL GGML_F32Cx4_MUL
  529. #define GGML_F16_VEC_REDUCE GGML_F32Cx4_REDUCE
  530. #endif
  531. #elif defined(__AVX512F__)
  532. #define GGML_SIMD
  533. // F32 AVX512
  534. #define GGML_F32_STEP 64
  535. #define GGML_F32_EPR 16
  536. #define GGML_F32x16 __m512
  537. #define GGML_F32x16_ZERO _mm512_setzero_ps()
  538. #define GGML_F32x16_SET1(x) _mm512_set1_ps(x)
  539. #define GGML_F32x16_LOAD _mm512_loadu_ps
  540. #define GGML_F32x16_STORE _mm512_storeu_ps
  541. // _mm512_fmadd_ps is defined in AVX512F so no guard is required
  542. #define GGML_F32x16_FMA(a, b, c) _mm512_fmadd_ps(b, c, a)
  543. #define GGML_F32x16_ADD _mm512_add_ps
  544. #define GGML_F32x16_MUL _mm512_mul_ps
  545. #define GGML_F32x16_REDUCE(res, x) \
  546. do { \
  547. int offset = GGML_F32_ARR >> 1; \
  548. for (int i = 0; i < offset; ++i) { \
  549. x[i] = _mm512_add_ps(x[i], x[offset+i]); \
  550. } \
  551. offset >>= 1; \
  552. for (int i = 0; i < offset; ++i) { \
  553. x[i] = _mm512_add_ps(x[i], x[offset+i]); \
  554. } \
  555. offset >>= 1; \
  556. for (int i = 0; i < offset; ++i) { \
  557. x[i] = _mm512_add_ps(x[i], x[offset+i]); \
  558. } \
  559. res = (ggml_float) _mm512_reduce_add_ps(x[0]); \
  560. } while (0)
  561. // TODO: is this optimal ?
  562. #define GGML_F32_VEC GGML_F32x16
  563. #define GGML_F32_VEC_ZERO GGML_F32x16_ZERO
  564. #define GGML_F32_VEC_SET1 GGML_F32x16_SET1
  565. #define GGML_F32_VEC_LOAD GGML_F32x16_LOAD
  566. #define GGML_F32_VEC_STORE GGML_F32x16_STORE
  567. #define GGML_F32_VEC_FMA GGML_F32x16_FMA
  568. #define GGML_F32_VEC_ADD GGML_F32x16_ADD
  569. #define GGML_F32_VEC_MUL GGML_F32x16_MUL
  570. #define GGML_F32_VEC_REDUCE GGML_F32x16_REDUCE
  571. // F16 AVX512
  572. // F16 AVX
  573. #define GGML_F16_STEP 64
  574. #define GGML_F16_EPR 16
  575. // AVX512 has FP16 extension (AVX512_FP16) but I don't have it on my machine so I use FP32 instead
  576. #define GGML_F32Cx16 __m512
  577. #define GGML_F32Cx16_ZERO _mm512_setzero_ps()
  578. #define GGML_F32Cx16_SET1(x) _mm512_set1_ps(x)
  579. // unlike _mm256_cvt intrinsics that require F16C, _mm512_cvt is defined in AVX512F
  580. // so F16C guard isn't required
  581. #define GGML_F32Cx16_LOAD(x) _mm512_cvtph_ps(_mm256_loadu_si256((const __m256i *)(x)))
  582. #define GGML_F32Cx16_STORE(x, y) _mm256_storeu_si256((__m256i *)(x), _mm512_cvtps_ph(y, 0))
  583. #define GGML_F32Cx16_FMA(a, b, c) _mm512_fmadd_ps(b, c, a)
  584. #define GGML_F32Cx16_ADD _mm512_add_ps
  585. #define GGML_F32Cx16_MUL _mm512_mul_ps
  586. #define GGML_F32Cx16_REDUCE(res, x) \
  587. do { \
  588. int offset = GGML_F32_ARR >> 1; \
  589. for (int i = 0; i < offset; ++i) { \
  590. x[i] = _mm512_add_ps(x[i], x[offset+i]); \
  591. } \
  592. offset >>= 1; \
  593. for (int i = 0; i < offset; ++i) { \
  594. x[i] = _mm512_add_ps(x[i], x[offset+i]); \
  595. } \
  596. offset >>= 1; \
  597. for (int i = 0; i < offset; ++i) { \
  598. x[i] = _mm512_add_ps(x[i], x[offset+i]); \
  599. } \
  600. res = (ggml_float) _mm512_reduce_add_ps(x[0]); \
  601. } while (0)
  602. #define GGML_F16_VEC GGML_F32Cx16
  603. #define GGML_F16_VEC_ZERO GGML_F32Cx16_ZERO
  604. #define GGML_F16_VEC_SET1 GGML_F32Cx16_SET1
  605. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx16_LOAD(p)
  606. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx16_STORE(p, r[i])
  607. #define GGML_F16_VEC_FMA GGML_F32Cx16_FMA
  608. #define GGML_F16_VEC_ADD GGML_F32Cx16_ADD
  609. #define GGML_F16_VEC_MUL GGML_F32Cx16_MUL
  610. #define GGML_F16_VEC_REDUCE GGML_F32Cx16_REDUCE
  611. #elif defined(__AVX__)
  612. #define GGML_SIMD
  613. // F32 AVX
  614. #define GGML_F32_STEP 32
  615. #define GGML_F32_EPR 8
  616. #define GGML_F32x8 __m256
  617. #define GGML_F32x8_ZERO _mm256_setzero_ps()
  618. #define GGML_F32x8_SET1(x) _mm256_set1_ps(x)
  619. #define GGML_F32x8_LOAD _mm256_loadu_ps
  620. #define GGML_F32x8_STORE _mm256_storeu_ps
  621. #if defined(__FMA__)
  622. #define GGML_F32x8_FMA(a, b, c) _mm256_fmadd_ps(b, c, a)
  623. #else
  624. #define GGML_F32x8_FMA(a, b, c) _mm256_add_ps(_mm256_mul_ps(b, c), a)
  625. #endif
  626. #define GGML_F32x8_ADD _mm256_add_ps
  627. #define GGML_F32x8_MUL _mm256_mul_ps
  628. #define GGML_F32x8_REDUCE(res, x) \
  629. do { \
  630. int offset = GGML_F32_ARR >> 1; \
  631. for (int i = 0; i < offset; ++i) { \
  632. x[i] = _mm256_add_ps(x[i], x[offset+i]); \
  633. } \
  634. offset >>= 1; \
  635. for (int i = 0; i < offset; ++i) { \
  636. x[i] = _mm256_add_ps(x[i], x[offset+i]); \
  637. } \
  638. offset >>= 1; \
  639. for (int i = 0; i < offset; ++i) { \
  640. x[i] = _mm256_add_ps(x[i], x[offset+i]); \
  641. } \
  642. const __m128 t0 = _mm_add_ps(_mm256_castps256_ps128(x[0]), \
  643. _mm256_extractf128_ps(x[0], 1)); \
  644. const __m128 t1 = _mm_hadd_ps(t0, t0); \
  645. res = (ggml_float) _mm_cvtss_f32(_mm_hadd_ps(t1, t1)); \
  646. } while (0)
  647. // TODO: is this optimal ?
  648. #define GGML_F32_VEC GGML_F32x8
  649. #define GGML_F32_VEC_ZERO GGML_F32x8_ZERO
  650. #define GGML_F32_VEC_SET1 GGML_F32x8_SET1
  651. #define GGML_F32_VEC_LOAD GGML_F32x8_LOAD
  652. #define GGML_F32_VEC_STORE GGML_F32x8_STORE
  653. #define GGML_F32_VEC_FMA GGML_F32x8_FMA
  654. #define GGML_F32_VEC_ADD GGML_F32x8_ADD
  655. #define GGML_F32_VEC_MUL GGML_F32x8_MUL
  656. #define GGML_F32_VEC_REDUCE GGML_F32x8_REDUCE
  657. // F16 AVX
  658. #define GGML_F16_STEP 32
  659. #define GGML_F16_EPR 8
  660. // F16 arithmetic is not supported by AVX, so we use F32 instead
  661. #define GGML_F32Cx8 __m256
  662. #define GGML_F32Cx8_ZERO _mm256_setzero_ps()
  663. #define GGML_F32Cx8_SET1(x) _mm256_set1_ps(x)
  664. #if defined(__F16C__)
  665. // the _mm256_cvt intrinsics require F16C
  666. #define GGML_F32Cx8_LOAD(x) _mm256_cvtph_ps(_mm_loadu_si128((const __m128i *)(x)))
  667. #define GGML_F32Cx8_STORE(x, y) _mm_storeu_si128((__m128i *)(x), _mm256_cvtps_ph(y, 0))
  668. #else
  669. static inline __m256 __avx_f32cx8_load(const ggml_fp16_t * x) {
  670. float tmp[8];
  671. for (int i = 0; i < 8; i++) {
  672. tmp[i] = GGML_FP16_TO_FP32(x[i]);
  673. }
  674. return _mm256_loadu_ps(tmp);
  675. }
  676. static inline void __avx_f32cx8_store(ggml_fp16_t *x, __m256 y) {
  677. float arr[8];
  678. _mm256_storeu_ps(arr, y);
  679. for (int i = 0; i < 8; i++)
  680. x[i] = GGML_FP32_TO_FP16(arr[i]);
  681. }
  682. #define GGML_F32Cx8_LOAD(x) __avx_f32cx8_load(x)
  683. #define GGML_F32Cx8_STORE(x, y) __avx_f32cx8_store(x, y)
  684. #endif
  685. #define GGML_F32Cx8_FMA GGML_F32x8_FMA
  686. #define GGML_F32Cx8_ADD _mm256_add_ps
  687. #define GGML_F32Cx8_MUL _mm256_mul_ps
  688. #define GGML_F32Cx8_REDUCE GGML_F32x8_REDUCE
  689. #define GGML_F16_VEC GGML_F32Cx8
  690. #define GGML_F16_VEC_ZERO GGML_F32Cx8_ZERO
  691. #define GGML_F16_VEC_SET1 GGML_F32Cx8_SET1
  692. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx8_LOAD(p)
  693. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx8_STORE(p, r[i])
  694. #define GGML_F16_VEC_FMA GGML_F32Cx8_FMA
  695. #define GGML_F16_VEC_ADD GGML_F32Cx8_ADD
  696. #define GGML_F16_VEC_MUL GGML_F32Cx8_MUL
  697. #define GGML_F16_VEC_REDUCE GGML_F32Cx8_REDUCE
  698. #elif defined(__POWER9_VECTOR__)
  699. #define GGML_SIMD
  700. // F32 POWER9
  701. #define GGML_F32_STEP 32
  702. #define GGML_F32_EPR 4
  703. #define GGML_F32x4 vector float
  704. #define GGML_F32x4_ZERO 0.0f
  705. #define GGML_F32x4_SET1 vec_splats
  706. #define GGML_F32x4_LOAD(p) vec_xl(0, p)
  707. #define GGML_F32x4_STORE(p, r) vec_xst(r, 0, p)
  708. #define GGML_F32x4_FMA(a, b, c) vec_madd(b, c, a)
  709. #define GGML_F32x4_ADD vec_add
  710. #define GGML_F32x4_MUL vec_mul
  711. #define GGML_F32x4_REDUCE(res, x) \
  712. { \
  713. int offset = GGML_F32_ARR >> 1; \
  714. for (int i = 0; i < offset; ++i) { \
  715. x[i] = vec_add(x[i], x[offset+i]); \
  716. } \
  717. offset >>= 1; \
  718. for (int i = 0; i < offset; ++i) { \
  719. x[i] = vec_add(x[i], x[offset+i]); \
  720. } \
  721. offset >>= 1; \
  722. for (int i = 0; i < offset; ++i) { \
  723. x[i] = vec_add(x[i], x[offset+i]); \
  724. } \
  725. res = vec_extract(x[0], 0) + \
  726. vec_extract(x[0], 1) + \
  727. vec_extract(x[0], 2) + \
  728. vec_extract(x[0], 3); \
  729. }
  730. #define GGML_F32_VEC GGML_F32x4
  731. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  732. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  733. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  734. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  735. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  736. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  737. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  738. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  739. // F16 POWER9
  740. #define GGML_F16_STEP GGML_F32_STEP
  741. #define GGML_F16_EPR GGML_F32_EPR
  742. #define GGML_F16_VEC GGML_F32x4
  743. #define GGML_F16_VEC_ZERO GGML_F32x4_ZERO
  744. #define GGML_F16_VEC_SET1 GGML_F32x4_SET1
  745. #define GGML_F16_VEC_FMA GGML_F32x4_FMA
  746. #define GGML_F16_VEC_ADD GGML_F32x4_ADD
  747. #define GGML_F16_VEC_MUL GGML_F32x4_MUL
  748. #define GGML_F16_VEC_REDUCE GGML_F32x4_REDUCE
  749. // Use vec_xl, not vec_ld, in case the load address is not aligned.
  750. #define GGML_F16_VEC_LOAD(p, i) (i & 0x1) ? \
  751. vec_extract_fp32_from_shorth(vec_xl(0, p - GGML_F16_EPR)) : \
  752. vec_extract_fp32_from_shortl(vec_xl(0, p))
  753. #define GGML_ENDIAN_BYTE(i) ((unsigned char *)&(uint16_t){1})[i]
  754. #define GGML_F16_VEC_STORE(p, r, i) \
  755. if (i & 0x1) \
  756. vec_xst(vec_pack_to_short_fp32(r[i - GGML_ENDIAN_BYTE(1)], \
  757. r[i - GGML_ENDIAN_BYTE(0)]), \
  758. 0, p - GGML_F16_EPR)
  759. #elif defined(__wasm_simd128__)
  760. #define GGML_SIMD
  761. // F32 WASM
  762. #define GGML_F32_STEP 16
  763. #define GGML_F32_EPR 4
  764. #define GGML_F32x4 v128_t
  765. #define GGML_F32x4_ZERO wasm_f32x4_splat(0.0f)
  766. #define GGML_F32x4_SET1(x) wasm_f32x4_splat(x)
  767. #define GGML_F32x4_LOAD wasm_v128_load
  768. #define GGML_F32x4_STORE wasm_v128_store
  769. #define GGML_F32x4_FMA(a, b, c) wasm_f32x4_add(wasm_f32x4_mul(b, c), a)
  770. #define GGML_F32x4_ADD wasm_f32x4_add
  771. #define GGML_F32x4_MUL wasm_f32x4_mul
  772. #define GGML_F32x4_REDUCE(res, x) \
  773. { \
  774. int offset = GGML_F32_ARR >> 1; \
  775. for (int i = 0; i < offset; ++i) { \
  776. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  777. } \
  778. offset >>= 1; \
  779. for (int i = 0; i < offset; ++i) { \
  780. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  781. } \
  782. offset >>= 1; \
  783. for (int i = 0; i < offset; ++i) { \
  784. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  785. } \
  786. res = wasm_f32x4_extract_lane(x[0], 0) + \
  787. wasm_f32x4_extract_lane(x[0], 1) + \
  788. wasm_f32x4_extract_lane(x[0], 2) + \
  789. wasm_f32x4_extract_lane(x[0], 3); \
  790. }
  791. #define GGML_F32_VEC GGML_F32x4
  792. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  793. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  794. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  795. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  796. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  797. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  798. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  799. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  800. // F16 WASM
  801. #define GGML_F16_STEP 16
  802. #define GGML_F16_EPR 4
  803. inline static v128_t __wasm_f16x4_load(const ggml_fp16_t * p) {
  804. float tmp[4];
  805. tmp[0] = GGML_FP16_TO_FP32(p[0]);
  806. tmp[1] = GGML_FP16_TO_FP32(p[1]);
  807. tmp[2] = GGML_FP16_TO_FP32(p[2]);
  808. tmp[3] = GGML_FP16_TO_FP32(p[3]);
  809. return wasm_v128_load(tmp);
  810. }
  811. inline static void __wasm_f16x4_store(ggml_fp16_t * p, v128_t x) {
  812. float tmp[4];
  813. wasm_v128_store(tmp, x);
  814. p[0] = GGML_FP32_TO_FP16(tmp[0]);
  815. p[1] = GGML_FP32_TO_FP16(tmp[1]);
  816. p[2] = GGML_FP32_TO_FP16(tmp[2]);
  817. p[3] = GGML_FP32_TO_FP16(tmp[3]);
  818. }
  819. #define GGML_F16x4 v128_t
  820. #define GGML_F16x4_ZERO wasm_f32x4_splat(0.0f)
  821. #define GGML_F16x4_SET1(x) wasm_f32x4_splat(x)
  822. #define GGML_F16x4_LOAD(x) __wasm_f16x4_load(x)
  823. #define GGML_F16x4_STORE(x, y) __wasm_f16x4_store(x, y)
  824. #define GGML_F16x4_FMA GGML_F32x4_FMA
  825. #define GGML_F16x4_ADD wasm_f32x4_add
  826. #define GGML_F16x4_MUL wasm_f32x4_mul
  827. #define GGML_F16x4_REDUCE(res, x) \
  828. { \
  829. int offset = GGML_F16_ARR >> 1; \
  830. for (int i = 0; i < offset; ++i) { \
  831. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  832. } \
  833. offset >>= 1; \
  834. for (int i = 0; i < offset; ++i) { \
  835. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  836. } \
  837. offset >>= 1; \
  838. for (int i = 0; i < offset; ++i) { \
  839. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  840. } \
  841. res = wasm_f32x4_extract_lane(x[0], 0) + \
  842. wasm_f32x4_extract_lane(x[0], 1) + \
  843. wasm_f32x4_extract_lane(x[0], 2) + \
  844. wasm_f32x4_extract_lane(x[0], 3); \
  845. }
  846. #define GGML_F16_VEC GGML_F16x4
  847. #define GGML_F16_VEC_ZERO GGML_F16x4_ZERO
  848. #define GGML_F16_VEC_SET1 GGML_F16x4_SET1
  849. #define GGML_F16_VEC_LOAD(p, i) GGML_F16x4_LOAD(p)
  850. #define GGML_F16_VEC_STORE(p, r, i) GGML_F16x4_STORE(p, r[i])
  851. #define GGML_F16_VEC_FMA GGML_F16x4_FMA
  852. #define GGML_F16_VEC_ADD GGML_F16x4_ADD
  853. #define GGML_F16_VEC_MUL GGML_F16x4_MUL
  854. #define GGML_F16_VEC_REDUCE GGML_F16x4_REDUCE
  855. #elif defined(__SSE3__)
  856. #define GGML_SIMD
  857. // F32 SSE
  858. #define GGML_F32_STEP 32
  859. #define GGML_F32_EPR 4
  860. #define GGML_F32x4 __m128
  861. #define GGML_F32x4_ZERO _mm_setzero_ps()
  862. #define GGML_F32x4_SET1(x) _mm_set1_ps(x)
  863. #define GGML_F32x4_LOAD _mm_loadu_ps
  864. #define GGML_F32x4_STORE _mm_storeu_ps
  865. #if defined(__FMA__)
  866. // TODO: Does this work?
  867. #define GGML_F32x4_FMA(a, b, c) _mm_fmadd_ps(b, c, a)
  868. #else
  869. #define GGML_F32x4_FMA(a, b, c) _mm_add_ps(_mm_mul_ps(b, c), a)
  870. #endif
  871. #define GGML_F32x4_ADD _mm_add_ps
  872. #define GGML_F32x4_MUL _mm_mul_ps
  873. #define GGML_F32x4_REDUCE(res, x) \
  874. { \
  875. int offset = GGML_F32_ARR >> 1; \
  876. for (int i = 0; i < offset; ++i) { \
  877. x[i] = _mm_add_ps(x[i], x[offset+i]); \
  878. } \
  879. offset >>= 1; \
  880. for (int i = 0; i < offset; ++i) { \
  881. x[i] = _mm_add_ps(x[i], x[offset+i]); \
  882. } \
  883. offset >>= 1; \
  884. for (int i = 0; i < offset; ++i) { \
  885. x[i] = _mm_add_ps(x[i], x[offset+i]); \
  886. } \
  887. const __m128 t0 = _mm_hadd_ps(x[0], x[0]); \
  888. res = (ggml_float) _mm_cvtss_f32(_mm_hadd_ps(t0, t0)); \
  889. }
  890. // TODO: is this optimal ?
  891. #define GGML_F32_VEC GGML_F32x4
  892. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  893. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  894. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  895. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  896. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  897. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  898. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  899. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  900. // F16 SSE
  901. #define GGML_F16_STEP 32
  902. #define GGML_F16_EPR 4
  903. static inline __m128 __sse_f16x4_load(ggml_fp16_t *x) {
  904. float tmp[4];
  905. tmp[0] = GGML_FP16_TO_FP32(x[0]);
  906. tmp[1] = GGML_FP16_TO_FP32(x[1]);
  907. tmp[2] = GGML_FP16_TO_FP32(x[2]);
  908. tmp[3] = GGML_FP16_TO_FP32(x[3]);
  909. return _mm_loadu_ps(tmp);
  910. }
  911. static inline void __sse_f16x4_store(ggml_fp16_t *x, __m128 y) {
  912. float arr[4];
  913. _mm_storeu_ps(arr, y);
  914. x[0] = GGML_FP32_TO_FP16(arr[0]);
  915. x[1] = GGML_FP32_TO_FP16(arr[1]);
  916. x[2] = GGML_FP32_TO_FP16(arr[2]);
  917. x[3] = GGML_FP32_TO_FP16(arr[3]);
  918. }
  919. #define GGML_F32Cx4 __m128
  920. #define GGML_F32Cx4_ZERO _mm_setzero_ps()
  921. #define GGML_F32Cx4_SET1(x) _mm_set1_ps(x)
  922. #define GGML_F32Cx4_LOAD(x) __sse_f16x4_load(x)
  923. #define GGML_F32Cx4_STORE(x, y) __sse_f16x4_store(x, y)
  924. #define GGML_F32Cx4_FMA GGML_F32x4_FMA
  925. #define GGML_F32Cx4_ADD _mm_add_ps
  926. #define GGML_F32Cx4_MUL _mm_mul_ps
  927. #define GGML_F32Cx4_REDUCE GGML_F32x4_REDUCE
  928. #define GGML_F16_VEC GGML_F32Cx4
  929. #define GGML_F16_VEC_ZERO GGML_F32Cx4_ZERO
  930. #define GGML_F16_VEC_SET1 GGML_F32Cx4_SET1
  931. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx4_LOAD(p)
  932. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx4_STORE(p, r[i])
  933. #define GGML_F16_VEC_FMA GGML_F32Cx4_FMA
  934. #define GGML_F16_VEC_ADD GGML_F32Cx4_ADD
  935. #define GGML_F16_VEC_MUL GGML_F32Cx4_MUL
  936. #define GGML_F16_VEC_REDUCE GGML_F32Cx4_REDUCE
  937. #elif defined(__loongarch_asx)
  938. #define GGML_SIMD
  939. // F32 LASX
  940. #define GGML_F32_STEP 32
  941. #define GGML_F32_EPR 8
  942. #define GGML_F32x8 __m256
  943. #define GGML_F32x8_ZERO (__m256)__lasx_xvldi(0)
  944. #define GGML_F32x8_SET1(x) (__m256)__lasx_xvreplfr2vr_s((x))
  945. #define GGML_F32x8_LOAD(x) (__m256)__lasx_xvld((x), 0)
  946. #define GGML_F32x8_STORE(x,y) __lasx_xvst((y), (x), 0)
  947. #define GGML_F32x8_FMA(a, b, c) __lasx_xvfmadd_s(b, c, a)
  948. #define GGML_F32x8_ADD __lasx_xvfadd_s
  949. #define GGML_F32x8_MUL __lasx_xvfmul_s
  950. #define GGML_F32x8_REDUCE(res, x) \
  951. do { \
  952. int offset = GGML_F32_ARR >> 1; \
  953. for (int i = 0; i < offset; ++i) { \
  954. x[i] = __lasx_xvfadd_s(x[i], x[offset+i]); \
  955. } \
  956. offset >>= 1; \
  957. for (int i = 0; i < offset; ++i) { \
  958. x[i] = __lasx_xvfadd_s(x[i], x[offset+i]); \
  959. } \
  960. offset >>= 1; \
  961. for (int i = 0; i < offset; ++i) { \
  962. x[i] = __lasx_xvfadd_s(x[i], x[offset+i]); \
  963. } \
  964. float *tmp_p = (float *)&x[0]; \
  965. res = tmp_p[0] + tmp_p[1] + tmp_p[2] + tmp_p[3] + tmp_p[4] + tmp_p[5] + tmp_p[6] + tmp_p[7]; \
  966. } while (0)
  967. // TODO: is this optimal ?
  968. #define GGML_F32_VEC GGML_F32x8
  969. #define GGML_F32_VEC_ZERO GGML_F32x8_ZERO
  970. #define GGML_F32_VEC_SET1 GGML_F32x8_SET1
  971. #define GGML_F32_VEC_LOAD GGML_F32x8_LOAD
  972. #define GGML_F32_VEC_STORE GGML_F32x8_STORE
  973. #define GGML_F32_VEC_FMA GGML_F32x8_FMA
  974. #define GGML_F32_VEC_ADD GGML_F32x8_ADD
  975. #define GGML_F32_VEC_MUL GGML_F32x8_MUL
  976. #define GGML_F32_VEC_REDUCE GGML_F32x8_REDUCE
  977. // F16 LASX
  978. #define GGML_F16_STEP 32
  979. #define GGML_F16_EPR 8
  980. // F16 arithmetic is not supported by AVX, so we use F32 instead
  981. #define GGML_F32Cx8 __m256
  982. #define GGML_F32Cx8_ZERO (__m256)__lasx_xvldi(0)
  983. #define GGML_F32Cx8_SET1(x) (__m256)__lasx_xvreplgr2vr_w((x))
  984. static inline __m256 __lasx_f32cx8_load(const ggml_fp16_t * x) {
  985. float tmp[8];
  986. for (int i = 0; i < 8; i++) {
  987. tmp[i] = GGML_FP16_TO_FP32(x[i]);
  988. }
  989. return (__m256)__lasx_xvld(tmp, 0);
  990. }
  991. static inline void __lasx_f32cx8_store(ggml_fp16_t * x, __m256 y) {
  992. float arr[8];
  993. __lasx_xvst(y, arr, 0);
  994. for (int i = 0; i < 8; i++) {
  995. x[i] = GGML_FP32_TO_FP16(arr[i]);
  996. }
  997. }
  998. #define GGML_F32Cx8_LOAD(x) __lasx_f32cx8_load(x)
  999. #define GGML_F32Cx8_STORE(x, y) __lasx_f32cx8_store(x, y)
  1000. #define GGML_F32Cx8_FMA GGML_F32x8_FMA
  1001. #define GGML_F32Cx8_ADD __lasx_xvfadd_s
  1002. #define GGML_F32Cx8_MUL __lasx_xvfmul_s
  1003. #define GGML_F32Cx8_REDUCE GGML_F32x8_REDUCE
  1004. #define GGML_F16_VEC GGML_F32Cx8
  1005. #define GGML_F16_VEC_ZERO GGML_F32Cx8_ZERO
  1006. #define GGML_F16_VEC_SET1 GGML_F32Cx8_SET1
  1007. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx8_LOAD(p)
  1008. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx8_STORE(p, r[i])
  1009. #define GGML_F16_VEC_FMA GGML_F32Cx8_FMA
  1010. #define GGML_F16_VEC_ADD GGML_F32Cx8_ADD
  1011. #define GGML_F16_VEC_MUL GGML_F32Cx8_MUL
  1012. #define GGML_F16_VEC_REDUCE GGML_F32Cx8_REDUCE
  1013. #elif defined(__loongarch_sx)
  1014. #define GGML_SIMD
  1015. // F32 LSX
  1016. #define GGML_F32_STEP 32
  1017. #define GGML_F32_EPR 4
  1018. #define GGML_F32x4 __m128
  1019. #define GGML_F32x4_ZERO __lsx_vldi(0)
  1020. #define GGML_F32x4_SET1(x) __lsx_vinsgr2vr_w(__lsx_vldi(0),(x), 0)
  1021. #define GGML_F32x4_LOAD(x) __lsx_vld((x), 0)
  1022. #define GGML_F32x4_STORE((x),(y)) __lsx_vst((y), (x), 0)
  1023. #define GGML_F32x4_FMA(a, b, c) __lsx_vfmadd_s(b, c, a)
  1024. #define GGML_F32x4_ADD __lsx_vfadd_s
  1025. #define GGML_F32x4_MUL __lsx_vfmul_s
  1026. #define GGML_F32x4_REDUCE(res, x) \
  1027. { \
  1028. int offset = GGML_F32_ARR >> 1; \
  1029. for (int i = 0; i < offset; ++i) { \
  1030. x[i] = __lsx_vfadd_s(x[i], x[offset + i]); \
  1031. } \
  1032. offset >>= 1; \
  1033. for (int i = 0; i < offset; ++i) { \
  1034. x[i] = __lsx_vfadd_s(x[i], x[offset + i]); \
  1035. } \
  1036. offset >>= 1; \
  1037. for (int i = 0; i < offset; ++i) { \
  1038. x[i] = __lsx_vfadd_s(x[i], x[offset + i]); \
  1039. } \
  1040. __m128i tmp = __lsx_vsrli_d((__m128i) x[0], 32); \
  1041. tmp = (__m128i) __lsx_vfadd_s((__m128) tmp, x[0]); \
  1042. tmp = __lsx_vpickev_w(__lsx_vldi(0), tmp); \
  1043. const __m128 t0 = __lsx_vshuf4i_w(tmp, 0x88); \
  1044. tmp = __lsx_vsrli_d((__m128i) t0, 32); \
  1045. tmp = (__m128i) __lsx_vfadd_s((__m128) tmp, t0); \
  1046. tmp = __lsx_vpickev_w(__lsx_vldi(0), tmp); \
  1047. res = (ggml_float) __lsx_vpickve2gr_w(__lsx_vshuf4i_w(tmp, 0x88), 0); \
  1048. }
  1049. #define GGML_F32_VEC GGML_F32x4
  1050. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1051. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1052. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1053. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1054. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1055. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1056. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1057. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1058. // F16 LSX
  1059. #define GGML_F16_STEP 32
  1060. #define GGML_F16_EPR 4
  1061. static inline __m128 __lsx_f16x4_load(const ggml_fp16_t * x) {
  1062. float tmp[4];
  1063. tmp[0] = GGML_FP16_TO_FP32(x[0]);
  1064. tmp[1] = GGML_FP16_TO_FP32(x[1]);
  1065. tmp[2] = GGML_FP16_TO_FP32(x[2]);
  1066. tmp[3] = GGML_FP16_TO_FP32(x[3]);
  1067. return __lsx_vld(tmp, 0);
  1068. }
  1069. static inline void __lsx_f16x4_store(ggml_fp16_t * x, __m128 y) {
  1070. float arr[4];
  1071. __lsx_vst(y, arr, 0);
  1072. x[0] = GGML_FP32_TO_FP16(arr[0]);
  1073. x[1] = GGML_FP32_TO_FP16(arr[1]);
  1074. x[2] = GGML_FP32_TO_FP16(arr[2]);
  1075. x[3] = GGML_FP32_TO_FP16(arr[3]);
  1076. }
  1077. #define GGML_F32Cx4 __m128
  1078. #define GGML_F32Cx4_ZERO __lsx_vldi(0)
  1079. #define GGML_F32Cx4_SET1(x) __lsx_vinsgr2vr_w(__lsx_vldi(0),(x), 0)
  1080. #define GGML_F32Cx4_LOAD(x) __lsx_f16x4_load(x)
  1081. #define GGML_F32Cx4_STORE(x, y) __lsx_f16x4_store(x, y)
  1082. #define GGML_F32Cx4_FMA GGML_F32x4_FMA
  1083. #define GGML_F32Cx4_ADD __lsx_vfadd_s
  1084. #define GGML_F32Cx4_MUL __lsx_vfmul_s
  1085. #define GGML_F32Cx4_REDUCE GGML_F32x4_REDUCE
  1086. #define GGML_F16_VEC GGML_F32Cx4
  1087. #define GGML_F16_VEC_ZERO GGML_F32Cx4_ZERO
  1088. #define GGML_F16_VEC_SET1 GGML_F32Cx4_SET1
  1089. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx4_LOAD(p)
  1090. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx4_STORE(p, r[i])
  1091. #define GGML_F16_VEC_FMA GGML_F32Cx4_FMA
  1092. #define GGML_F16_VEC_ADD GGML_F32Cx4_ADD
  1093. #define GGML_F16_VEC_MUL GGML_F32Cx4_MUL
  1094. #define GGML_F16_VEC_REDUCE GGML_F32Cx4_REDUCE
  1095. #endif
  1096. // GGML_F32_ARR / GGML_F16_ARR
  1097. // number of registers to use per step
  1098. #ifdef GGML_SIMD
  1099. #define GGML_F32_ARR (GGML_F32_STEP/GGML_F32_EPR)
  1100. #define GGML_F16_ARR (GGML_F16_STEP/GGML_F16_EPR)
  1101. #endif
  1102. //
  1103. // Threading defs
  1104. //
  1105. typedef pthread_t ggml_thread_t;
  1106. #if defined(_WIN32)
  1107. typedef CONDITION_VARIABLE ggml_cond_t;
  1108. typedef SRWLOCK ggml_mutex_t;
  1109. #define ggml_mutex_init(m) InitializeSRWLock(m)
  1110. #define ggml_mutex_destroy(m)
  1111. #define ggml_mutex_lock(m) AcquireSRWLockExclusive(m)
  1112. #define ggml_mutex_unlock(m) ReleaseSRWLockExclusive(m)
  1113. #define ggml_mutex_lock_shared(m) AcquireSRWLockShared(m)
  1114. #define ggml_mutex_unlock_shared(m) ReleaseSRWLockShared(m)
  1115. #define ggml_cond_init(c) InitializeConditionVariable(c)
  1116. #define ggml_cond_destroy(c)
  1117. #define ggml_cond_wait(c, m) SleepConditionVariableSRW(c, m, INFINITE, CONDITION_VARIABLE_LOCKMODE_SHARED)
  1118. #define ggml_cond_broadcast(c) WakeAllConditionVariable(c)
  1119. #define ggml_thread_create pthread_create
  1120. #define ggml_thread_join pthread_join
  1121. #else
  1122. typedef pthread_cond_t ggml_cond_t;
  1123. typedef pthread_mutex_t ggml_mutex_t;
  1124. #define ggml_mutex_init(m) pthread_mutex_init(m, NULL)
  1125. #define ggml_mutex_destroy(m) pthread_mutex_destroy(m)
  1126. #define ggml_mutex_lock(m) pthread_mutex_lock(m)
  1127. #define ggml_mutex_unlock(m) pthread_mutex_unlock(m)
  1128. #define ggml_mutex_lock_shared(m) pthread_mutex_lock(m)
  1129. #define ggml_mutex_unlock_shared(m) pthread_mutex_unlock(m)
  1130. #define ggml_lock_init(x) UNUSED(x)
  1131. #define ggml_lock_destroy(x) UNUSED(x)
  1132. #if defined(__x86_64__) || (defined(_MSC_VER) && defined(_M_AMD64))
  1133. #define ggml_lock_lock(x) _mm_pause()
  1134. #else
  1135. #define ggml_lock_lock(x) UNUSED(x)
  1136. #endif
  1137. #define ggml_lock_unlock(x) UNUSED(x)
  1138. #define GGML_LOCK_INITIALIZER 0
  1139. #define ggml_cond_init(c) pthread_cond_init(c, NULL)
  1140. #define ggml_cond_destroy(c) pthread_cond_destroy(c)
  1141. #define ggml_cond_wait(c, m) pthread_cond_wait(c, m)
  1142. #define ggml_cond_broadcast(c) pthread_cond_broadcast(c)
  1143. #define ggml_thread_create pthread_create
  1144. #define ggml_thread_join pthread_join
  1145. #endif
  1146. // Threadpool def
  1147. struct ggml_threadpool {
  1148. ggml_mutex_t mutex; // mutex for cond.var
  1149. ggml_cond_t cond; // cond.var for waiting for new work
  1150. struct ggml_cgraph * cgraph;
  1151. struct ggml_cplan * cplan;
  1152. // synchronization primitives
  1153. atomic_int n_graph; // incremented when there is work to be done (i.e each graph)
  1154. atomic_int GGML_CACHE_ALIGN n_barrier;
  1155. atomic_int GGML_CACHE_ALIGN n_barrier_passed;
  1156. atomic_int current_chunk; // currently processing chunk during Mat_Mul, shared between all the threads.
  1157. // these are atomic as an annotation for thread-sanitizer
  1158. atomic_bool stop; // Used for stopping the threadpool altogether
  1159. atomic_bool pause; // Used for pausing the threadpool or individual threads
  1160. atomic_bool abort; // Used for aborting processing of a graph
  1161. struct ggml_compute_state * workers; // per thread state
  1162. int n_threads_max; // number of threads in the pool
  1163. atomic_int n_threads_cur; // number of threads used in the current graph
  1164. int32_t prio; // Scheduling priority
  1165. uint32_t poll; // Polling level (0 - no polling)
  1166. enum ggml_status ec;
  1167. };
  1168. // Per-thread state
  1169. struct ggml_compute_state {
  1170. #ifndef GGML_USE_OPENMP
  1171. ggml_thread_t thrd;
  1172. bool cpumask[GGML_MAX_N_THREADS];
  1173. int last_graph;
  1174. bool pending;
  1175. #endif
  1176. struct ggml_threadpool * threadpool;
  1177. int ith;
  1178. };
  1179. //
  1180. // fundamental operations
  1181. //
  1182. inline static void ggml_vec_set_i8(const int n, int8_t * x, const int8_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1183. inline static void ggml_vec_set_i16(const int n, int16_t * x, const int16_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1184. inline static void ggml_vec_set_i32(const int n, int32_t * x, const int32_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1185. inline static void ggml_vec_set_f16(const int n, ggml_fp16_t * x, const int32_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1186. inline static void ggml_vec_set_bf16(const int n, ggml_bf16_t * x, const ggml_bf16_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1187. inline static void ggml_vec_add_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i] + y[i]; }
  1188. inline static void ggml_vec_add1_f32(const int n, float * z, const float * x, const float v) { for (int i = 0; i < n; ++i) z[i] = x[i] + v; }
  1189. inline static void ggml_vec_acc_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] += x[i]; }
  1190. inline static void ggml_vec_acc1_f32(const int n, float * y, const float v) { for (int i = 0; i < n; ++i) y[i] += v; }
  1191. inline static void ggml_vec_sub_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i] - y[i]; }
  1192. inline static void ggml_vec_set_f32 (const int n, float * x, const float v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1193. inline static void ggml_vec_cpy_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i]; }
  1194. inline static void ggml_vec_neg_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = -x[i]; }
  1195. inline static void ggml_vec_mul_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i]*y[i]; }
  1196. inline static void ggml_vec_div_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i]/y[i]; }
  1197. static void ggml_vec_dot_f32(int n, float * restrict s, size_t bs, const float * restrict x, size_t bx, const float * restrict y, size_t by, int nrc) {
  1198. assert(nrc == 1);
  1199. UNUSED(nrc);
  1200. UNUSED(bx);
  1201. UNUSED(by);
  1202. UNUSED(bs);
  1203. #if defined(GGML_SIMD)
  1204. float sumf = 0.0f;
  1205. const int np = (n & ~(GGML_F32_STEP - 1));
  1206. GGML_F32_VEC sum[GGML_F32_ARR] = { GGML_F32_VEC_ZERO };
  1207. GGML_F32_VEC ax[GGML_F32_ARR];
  1208. GGML_F32_VEC ay[GGML_F32_ARR];
  1209. for (int i = 0; i < np; i += GGML_F32_STEP) {
  1210. for (int j = 0; j < GGML_F32_ARR; j++) {
  1211. ax[j] = GGML_F32_VEC_LOAD(x + i + j*GGML_F32_EPR);
  1212. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  1213. sum[j] = GGML_F32_VEC_FMA(sum[j], ax[j], ay[j]);
  1214. }
  1215. }
  1216. // reduce sum0..sum3 to sum0
  1217. GGML_F32_VEC_REDUCE(sumf, sum);
  1218. // leftovers
  1219. for (int i = np; i < n; ++i) {
  1220. sumf += x[i]*y[i];
  1221. }
  1222. #else
  1223. // scalar
  1224. ggml_float sumf = 0.0;
  1225. for (int i = 0; i < n; ++i) {
  1226. sumf += (ggml_float)(x[i]*y[i]);
  1227. }
  1228. #endif
  1229. *s = sumf;
  1230. }
  1231. static void ggml_vec_dot_bf16(int n, float * restrict s, size_t bs, ggml_bf16_t * restrict x, size_t bx, ggml_bf16_t * restrict y, size_t by, int nrc) {
  1232. assert(nrc == 1);
  1233. UNUSED(nrc);
  1234. UNUSED(bx);
  1235. UNUSED(by);
  1236. UNUSED(bs);
  1237. int i = 0;
  1238. ggml_float sumf = 0;
  1239. #if defined(__AVX512BF16__)
  1240. __m512 c1 = _mm512_setzero_ps();
  1241. __m512 c2 = _mm512_setzero_ps();
  1242. for (; i + 64 <= n; i += 64) {
  1243. c1 = _mm512_dpbf16_ps(c1, m512bh(_mm512_loadu_si512((x + i))),
  1244. m512bh(_mm512_loadu_si512((y + i))));
  1245. c2 = _mm512_dpbf16_ps(c2, m512bh(_mm512_loadu_si512((x + i + 32))),
  1246. m512bh(_mm512_loadu_si512((y + i + 32))));
  1247. }
  1248. sumf += (ggml_float)_mm512_reduce_add_ps(c1);
  1249. sumf += (ggml_float)_mm512_reduce_add_ps(c2);
  1250. #elif defined(__AVX512F__)
  1251. #define LOAD(p) _mm512_castsi512_ps(_mm512_slli_epi32(_mm512_cvtepu16_epi32(_mm256_loadu_si256((const __m256i *)(p))), 16))
  1252. __m512 c1 = _mm512_setzero_ps();
  1253. __m512 c2 = _mm512_setzero_ps();
  1254. for (; i + 32 <= n; i += 32) {
  1255. c1 = _mm512_add_ps(_mm512_mul_ps(LOAD(x + i), LOAD(y + i)), c1);
  1256. c2 = _mm512_add_ps(_mm512_mul_ps(LOAD(x + i + 16), LOAD(y + i + 16)), c2);
  1257. }
  1258. sumf += (ggml_float)_mm512_reduce_add_ps(c1);
  1259. sumf += (ggml_float)_mm512_reduce_add_ps(c2);
  1260. #undef LOAD
  1261. #elif defined(__AVX2__) || defined(__AVX__)
  1262. #if defined(__AVX2__)
  1263. #define LOAD(p) _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_cvtepu16_epi32(_mm_loadu_si128((const __m128i *)(p))), 16))
  1264. #else
  1265. #define LOAD(p) _mm256_castsi256_ps(_mm256_insertf128_si256(_mm256_castsi128_si256(_mm_slli_epi32(_mm_cvtepu16_epi32(_mm_loadu_si128((const __m128i *)(p))), 16)), (_mm_slli_epi32(_mm_cvtepu16_epi32(_mm_bsrli_si128(_mm_loadu_si128((const __m128i *)(p)), 8)), 16)), 1))
  1266. #endif
  1267. __m256 c1 = _mm256_setzero_ps();
  1268. __m256 c2 = _mm256_setzero_ps();
  1269. __m256 c3 = _mm256_setzero_ps();
  1270. __m256 c4 = _mm256_setzero_ps();
  1271. for (; i + 32 <= n; i += 32) {
  1272. c1 = _mm256_add_ps(_mm256_mul_ps(LOAD(x + i), LOAD(y + i)), c1);
  1273. c2 = _mm256_add_ps(_mm256_mul_ps(LOAD(x + i + 8), LOAD(y + i + 8)), c2);
  1274. c3 = _mm256_add_ps(_mm256_mul_ps(LOAD(x + i + 16), LOAD(y + i + 16)), c3);
  1275. c4 = _mm256_add_ps(_mm256_mul_ps(LOAD(x + i + 24), LOAD(y + i + 24)), c4);
  1276. }
  1277. __m128 g;
  1278. c1 = _mm256_add_ps(_mm256_add_ps(c1, c3),
  1279. _mm256_add_ps(c2, c4));
  1280. g = _mm_add_ps(_mm256_extractf128_ps(c1, 1),
  1281. _mm256_castps256_ps128(c1));
  1282. g = _mm_add_ps(g, _mm_movehl_ps(g, g));
  1283. g = _mm_add_ss(g, _mm_movehdup_ps(g));
  1284. sumf += (ggml_float)_mm_cvtss_f32(g);
  1285. #undef LOAD
  1286. #endif
  1287. for (; i < n; ++i) {
  1288. sumf += (ggml_float)(GGML_BF16_TO_FP32(x[i]) *
  1289. GGML_BF16_TO_FP32(y[i]));
  1290. }
  1291. *s = sumf;
  1292. }
  1293. static void ggml_vec_dot_f16(int n, float * restrict s, size_t bs, ggml_fp16_t * restrict x, size_t bx, ggml_fp16_t * restrict y, size_t by, int nrc) {
  1294. assert(nrc == 1);
  1295. UNUSED(nrc);
  1296. UNUSED(bx);
  1297. UNUSED(by);
  1298. UNUSED(bs);
  1299. ggml_float sumf = 0.0;
  1300. #if defined(GGML_SIMD)
  1301. const int np = (n & ~(GGML_F16_STEP - 1));
  1302. GGML_F16_VEC sum[GGML_F16_ARR] = { GGML_F16_VEC_ZERO };
  1303. GGML_F16_VEC ax[GGML_F16_ARR];
  1304. GGML_F16_VEC ay[GGML_F16_ARR];
  1305. for (int i = 0; i < np; i += GGML_F16_STEP) {
  1306. for (int j = 0; j < GGML_F16_ARR; j++) {
  1307. ax[j] = GGML_F16_VEC_LOAD(x + i + j*GGML_F16_EPR, j);
  1308. ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
  1309. sum[j] = GGML_F16_VEC_FMA(sum[j], ax[j], ay[j]);
  1310. }
  1311. }
  1312. // reduce sum0..sum3 to sum0
  1313. GGML_F16_VEC_REDUCE(sumf, sum);
  1314. // leftovers
  1315. for (int i = np; i < n; ++i) {
  1316. sumf += (ggml_float)(GGML_FP16_TO_FP32(x[i])*GGML_FP16_TO_FP32(y[i]));
  1317. }
  1318. #else
  1319. for (int i = 0; i < n; ++i) {
  1320. sumf += (ggml_float)(GGML_FP16_TO_FP32(x[i])*GGML_FP16_TO_FP32(y[i]));
  1321. }
  1322. #endif
  1323. *s = sumf;
  1324. }
  1325. // compute GGML_VEC_DOT_UNROLL dot products at once
  1326. // xs - x row stride in bytes
  1327. inline static void ggml_vec_dot_f16_unroll(const int n, const int xs, float * restrict s, void * restrict xv, ggml_fp16_t * restrict y) {
  1328. ggml_float sumf[GGML_VEC_DOT_UNROLL] = { 0.0 };
  1329. ggml_fp16_t * restrict x[GGML_VEC_DOT_UNROLL];
  1330. for (int i = 0; i < GGML_VEC_DOT_UNROLL; ++i) {
  1331. x[i] = (ggml_fp16_t *) ((char *) xv + i*xs);
  1332. }
  1333. #if defined(GGML_SIMD)
  1334. const int np = (n & ~(GGML_F16_STEP - 1));
  1335. GGML_F16_VEC sum[GGML_VEC_DOT_UNROLL][GGML_F16_ARR] = { { GGML_F16_VEC_ZERO } };
  1336. GGML_F16_VEC ax[GGML_F16_ARR];
  1337. GGML_F16_VEC ay[GGML_F16_ARR];
  1338. for (int i = 0; i < np; i += GGML_F16_STEP) {
  1339. for (int j = 0; j < GGML_F16_ARR; j++) {
  1340. ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
  1341. for (int k = 0; k < GGML_VEC_DOT_UNROLL; ++k) {
  1342. ax[j] = GGML_F16_VEC_LOAD(x[k] + i + j*GGML_F16_EPR, j);
  1343. sum[k][j] = GGML_F16_VEC_FMA(sum[k][j], ax[j], ay[j]);
  1344. }
  1345. }
  1346. }
  1347. // reduce sum0..sum3 to sum0
  1348. for (int k = 0; k < GGML_VEC_DOT_UNROLL; ++k) {
  1349. GGML_F16_VEC_REDUCE(sumf[k], sum[k]);
  1350. }
  1351. // leftovers
  1352. for (int i = np; i < n; ++i) {
  1353. for (int j = 0; j < GGML_VEC_DOT_UNROLL; ++j) {
  1354. sumf[j] += (ggml_float)(GGML_FP16_TO_FP32(x[j][i])*GGML_FP16_TO_FP32(y[i]));
  1355. }
  1356. }
  1357. #else
  1358. for (int i = 0; i < n; ++i) {
  1359. for (int j = 0; j < GGML_VEC_DOT_UNROLL; ++j) {
  1360. sumf[j] += (ggml_float)(GGML_FP16_TO_FP32(x[j][i])*GGML_FP16_TO_FP32(y[i]));
  1361. }
  1362. }
  1363. #endif
  1364. for (int i = 0; i < GGML_VEC_DOT_UNROLL; ++i) {
  1365. s[i] = sumf[i];
  1366. }
  1367. }
  1368. inline static void ggml_vec_mad_f32(const int n, float * restrict y, const float * restrict x, const float v) {
  1369. #if defined(GGML_SIMD)
  1370. const int np = (n & ~(GGML_F32_STEP - 1));
  1371. GGML_F32_VEC vx = GGML_F32_VEC_SET1(v);
  1372. GGML_F32_VEC ax[GGML_F32_ARR];
  1373. GGML_F32_VEC ay[GGML_F32_ARR];
  1374. for (int i = 0; i < np; i += GGML_F32_STEP) {
  1375. for (int j = 0; j < GGML_F32_ARR; j++) {
  1376. ax[j] = GGML_F32_VEC_LOAD(x + i + j*GGML_F32_EPR);
  1377. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  1378. ay[j] = GGML_F32_VEC_FMA(ay[j], ax[j], vx);
  1379. GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
  1380. }
  1381. }
  1382. // leftovers
  1383. for (int i = np; i < n; ++i) {
  1384. y[i] += x[i]*v;
  1385. }
  1386. #else
  1387. // scalar
  1388. for (int i = 0; i < n; ++i) {
  1389. y[i] += x[i]*v;
  1390. }
  1391. #endif
  1392. }
  1393. inline static void ggml_vec_mad_f16(const int n, ggml_fp16_t * restrict y, const ggml_fp16_t * restrict x, const float v) {
  1394. #if defined(GGML_SIMD)
  1395. const int np = (n & ~(GGML_F16_STEP - 1));
  1396. GGML_F16_VEC vx = GGML_F16_VEC_SET1(v);
  1397. GGML_F16_VEC ax[GGML_F16_ARR];
  1398. GGML_F16_VEC ay[GGML_F16_ARR];
  1399. for (int i = 0; i < np; i += GGML_F16_STEP) {
  1400. for (int j = 0; j < GGML_F16_ARR; j++) {
  1401. ax[j] = GGML_F16_VEC_LOAD(x + i + j*GGML_F16_EPR, j);
  1402. ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
  1403. ay[j] = GGML_F16_VEC_FMA(ay[j], ax[j], vx);
  1404. GGML_F16_VEC_STORE(y + i + j*GGML_F16_EPR, ay, j);
  1405. }
  1406. }
  1407. // leftovers
  1408. for (int i = np; i < n; ++i) {
  1409. y[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(y[i]) + GGML_FP16_TO_FP32(x[i])*v);
  1410. }
  1411. #else
  1412. // scalar
  1413. for (int i = 0; i < n; ++i) {
  1414. y[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(y[i]) + GGML_FP16_TO_FP32(x[i])*v);
  1415. }
  1416. #endif
  1417. }
  1418. // xs and vs are byte strides of x and v
  1419. inline static void ggml_vec_mad_f32_unroll(const int n, const int xs, const int vs, float * restrict y, const float * restrict xv, const float * restrict vv) {
  1420. const float * restrict x[GGML_VEC_MAD_UNROLL];
  1421. const float * restrict v[GGML_VEC_MAD_UNROLL];
  1422. for (int i = 0; i < GGML_VEC_MAD_UNROLL; ++i) {
  1423. x[i] = (const float *) ((const char *) xv + i*xs);
  1424. v[i] = (const float *) ((const char *) vv + i*vs);
  1425. }
  1426. #if defined(GGML_SIMD)
  1427. const int np = (n & ~(GGML_F32_STEP - 1));
  1428. GGML_F32_VEC vx[GGML_VEC_MAD_UNROLL];
  1429. for (int k = 0; k < GGML_VEC_MAD_UNROLL; ++k) {
  1430. vx[k] = GGML_F32_VEC_SET1(v[k][0]);
  1431. }
  1432. GGML_F32_VEC ax[GGML_VEC_MAD_UNROLL][GGML_F32_ARR];
  1433. GGML_F32_VEC ay[GGML_F32_ARR];
  1434. for (int i = 0; i < np; i += GGML_F32_STEP) {
  1435. for (int j = 0; j < GGML_F32_ARR; j++) {
  1436. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  1437. for (int k = 0; k < GGML_VEC_MAD_UNROLL; ++k) {
  1438. ax[k][j] = GGML_F32_VEC_LOAD(x[k] + i + j*GGML_F32_EPR);
  1439. ay[j] = GGML_F32_VEC_FMA(ay[j], ax[k][j], vx[k]);
  1440. }
  1441. GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
  1442. }
  1443. }
  1444. // leftovers
  1445. for (int k = 0; k < GGML_VEC_MAD_UNROLL; ++k) {
  1446. for (int i = np; i < n; ++i) {
  1447. y[i] += x[k][i]*v[k][0];
  1448. }
  1449. }
  1450. #else
  1451. // scalar
  1452. for (int k = 0; k < GGML_VEC_MAD_UNROLL; ++k) {
  1453. for (int i = 0; i < n; ++i) {
  1454. y[i] += x[k][i]*v[k][0];
  1455. }
  1456. }
  1457. #endif
  1458. }
  1459. //inline static void ggml_vec_scale_f32(const int n, float * y, const float v) { for (int i = 0; i < n; ++i) y[i] *= v; }
  1460. inline static void ggml_vec_scale_f32(const int n, float * y, const float v) {
  1461. #if defined(GGML_USE_ACCELERATE)
  1462. vDSP_vsmul(y, 1, &v, y, 1, n);
  1463. #elif defined(GGML_SIMD)
  1464. const int np = (n & ~(GGML_F32_STEP - 1));
  1465. GGML_F32_VEC vx = GGML_F32_VEC_SET1(v);
  1466. GGML_F32_VEC ay[GGML_F32_ARR];
  1467. for (int i = 0; i < np; i += GGML_F32_STEP) {
  1468. for (int j = 0; j < GGML_F32_ARR; j++) {
  1469. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  1470. ay[j] = GGML_F32_VEC_MUL(ay[j], vx);
  1471. GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
  1472. }
  1473. }
  1474. // leftovers
  1475. for (int i = np; i < n; ++i) {
  1476. y[i] *= v;
  1477. }
  1478. #else
  1479. // scalar
  1480. for (int i = 0; i < n; ++i) {
  1481. y[i] *= v;
  1482. }
  1483. #endif
  1484. }
  1485. inline static void ggml_vec_scale_f16(const int n, ggml_fp16_t * y, const float v) {
  1486. #if defined(GGML_SIMD)
  1487. const int np = (n & ~(GGML_F16_STEP - 1));
  1488. GGML_F16_VEC vx = GGML_F16_VEC_SET1(v);
  1489. GGML_F16_VEC ay[GGML_F16_ARR];
  1490. for (int i = 0; i < np; i += GGML_F16_STEP) {
  1491. for (int j = 0; j < GGML_F16_ARR; j++) {
  1492. ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
  1493. ay[j] = GGML_F16_VEC_MUL(ay[j], vx);
  1494. GGML_F16_VEC_STORE(y + i + j*GGML_F16_EPR, ay, j);
  1495. }
  1496. }
  1497. // leftovers
  1498. for (int i = np; i < n; ++i) {
  1499. y[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(y[i])*v);
  1500. }
  1501. #else
  1502. // scalar
  1503. for (int i = 0; i < n; ++i) {
  1504. y[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(y[i])*v);
  1505. }
  1506. #endif
  1507. }
  1508. inline static void ggml_vec_norm_f32 (const int n, float * s, const float * x) { ggml_vec_dot_f32(n, s, 0, x, 0, x, 0, 1); *s = sqrtf(*s); }
  1509. inline static void ggml_vec_sqr_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i]*x[i]; }
  1510. inline static void ggml_vec_sqrt_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = sqrtf(x[i]); }
  1511. inline static void ggml_vec_log_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = logf(x[i]); }
  1512. inline static void ggml_vec_sin_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = sinf(x[i]); }
  1513. inline static void ggml_vec_cos_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = cosf(x[i]); }
  1514. inline static void ggml_vec_abs_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = fabsf(x[i]); }
  1515. inline static void ggml_vec_sgn_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? 1.f : ((x[i] < 0.f) ? -1.f : 0.f); }
  1516. inline static void ggml_vec_step_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? 1.f : 0.f; }
  1517. inline static void ggml_vec_tanh_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = tanhf(x[i]); }
  1518. inline static void ggml_vec_elu_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? x[i] : expm1f(x[i]); }
  1519. inline static void ggml_vec_relu_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? x[i] : 0.f; }
  1520. inline static void ggml_vec_leaky_relu_f32 (const int n, float * y, const float * x, const float ns) { for (int i = 0; i < n; ++i) y[i] = ((x[i] > 0.f) ? x[i] : 0.f) + ns * ((x[i] < 0.0f) ? x[i] : 0.f); }
  1521. inline static void ggml_vec_sigmoid_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = 1.f / (1.f + expf(-x[i])); }
  1522. // TODO: optimize performance
  1523. inline static void ggml_vec_hardswish_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i] * fminf(1.0f, fmaxf(0.0f, (x[i] + 3.0f) / 6.0f)); }
  1524. inline static void ggml_vec_hardsigmoid_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = fminf(1.0f, fmaxf(0.0f, (x[i] + 3.0f) / 6.0f)); }
  1525. inline static void ggml_vec_exp_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = expf(x[i]); }
  1526. static const float GELU_COEF_A = 0.044715f;
  1527. static const float GELU_QUICK_COEF = -1.702f;
  1528. static const float SQRT_2_OVER_PI = 0.79788456080286535587989211986876f;
  1529. inline static float ggml_gelu_f32(float x) {
  1530. return 0.5f*x*(1.0f + tanhf(SQRT_2_OVER_PI*x*(1.0f + GELU_COEF_A*x*x)));
  1531. }
  1532. inline static void ggml_vec_gelu_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
  1533. const uint16_t * i16 = (const uint16_t *) x;
  1534. for (int i = 0; i < n; ++i) {
  1535. y[i] = ggml_table_gelu_f16[i16[i]];
  1536. }
  1537. }
  1538. #ifdef GGML_GELU_FP16
  1539. inline static void ggml_vec_gelu_f32(const int n, float * y, const float * x) {
  1540. uint16_t t;
  1541. for (int i = 0; i < n; ++i) {
  1542. if (x[i] <= -10.0f) {
  1543. y[i] = 0.0f;
  1544. } else if (x[i] >= 10.0f) {
  1545. y[i] = x[i];
  1546. } else {
  1547. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  1548. memcpy(&t, &fp16, sizeof(uint16_t));
  1549. y[i] = GGML_FP16_TO_FP32(ggml_table_gelu_f16[t]);
  1550. }
  1551. }
  1552. }
  1553. #else
  1554. inline static void ggml_vec_gelu_f32(const int n, float * y, const float * x) {
  1555. for (int i = 0; i < n; ++i) {
  1556. y[i] = ggml_gelu_f32(x[i]);
  1557. }
  1558. }
  1559. #endif
  1560. inline static float ggml_gelu_quick_f32(float x) {
  1561. return x*(1.0f/(1.0f+expf(GELU_QUICK_COEF*x)));
  1562. }
  1563. //inline static void ggml_vec_gelu_quick_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
  1564. // const uint16_t * i16 = (const uint16_t *) x;
  1565. // for (int i = 0; i < n; ++i) {
  1566. // y[i] = ggml_table_gelu_quick_f16[i16[i]];
  1567. // }
  1568. //}
  1569. #ifdef GGML_GELU_QUICK_FP16
  1570. inline static void ggml_vec_gelu_quick_f32(const int n, float * y, const float * x) {
  1571. uint16_t t;
  1572. for (int i = 0; i < n; ++i) {
  1573. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  1574. memcpy(&t, &fp16, sizeof(uint16_t));
  1575. y[i] = GGML_FP16_TO_FP32(ggml_table_gelu_quick_f16[t]);
  1576. }
  1577. }
  1578. #else
  1579. inline static void ggml_vec_gelu_quick_f32(const int n, float * y, const float * x) {
  1580. for (int i = 0; i < n; ++i) {
  1581. y[i] = ggml_gelu_quick_f32(x[i]);
  1582. }
  1583. }
  1584. #endif
  1585. // Sigmoid Linear Unit (SiLU) function
  1586. inline static float ggml_silu_f32(float x) {
  1587. return x/(1.0f + expf(-x));
  1588. }
  1589. #if __FINITE_MATH_ONLY__
  1590. #error "some routines in ggml.c require non-finite math arithmetics -- pass -fno-finite-math-only to the compiler to fix"
  1591. #error "ref: https://github.com/ggerganov/llama.cpp/pull/7154#issuecomment-2143844461"
  1592. #endif
  1593. #if defined(__ARM_NEON) && defined(__aarch64__)
  1594. // adapted from arm limited optimized routine
  1595. // the maximum error is 1.45358 plus 0.5 ulps
  1596. // numbers above 88.38 will flush to infinity
  1597. // numbers beneath -103.97 will flush to zero
  1598. inline static float32x4_t ggml_v_expf(float32x4_t x) {
  1599. const float32x4_t r = vdupq_n_f32(0x1.8p23f);
  1600. const float32x4_t z = vfmaq_f32(r, x, vdupq_n_f32(0x1.715476p+0f));
  1601. const float32x4_t n = vsubq_f32(z, r);
  1602. const float32x4_t b = vfmsq_f32(vfmsq_f32(x, n, vdupq_n_f32(0x1.62e4p-1f)), n,
  1603. vdupq_n_f32(0x1.7f7d1cp-20f));
  1604. const uint32x4_t e = vshlq_n_u32(vreinterpretq_u32_f32(z), 23);
  1605. const float32x4_t k = vreinterpretq_f32_u32(vaddq_u32(e, vreinterpretq_u32_f32(vdupq_n_f32(1))));
  1606. const uint32x4_t c = vcagtq_f32(n, vdupq_n_f32(126));
  1607. const float32x4_t u = vmulq_f32(b, b);
  1608. const float32x4_t j = vfmaq_f32(
  1609. vmulq_f32(vdupq_n_f32(0x1.ffffecp-1f), b),
  1610. vfmaq_f32(vfmaq_f32(vdupq_n_f32(0x1.fffdb6p-2f), vdupq_n_f32(0x1.555e66p-3f), b),
  1611. vfmaq_f32(vdupq_n_f32(0x1.573e2ep-5f), vdupq_n_f32(0x1.0e4020p-7f), b), u), u);
  1612. if (!vpaddd_u64(vreinterpretq_u64_u32(c)))
  1613. return vfmaq_f32(k, j, k);
  1614. const uint32x4_t d = vandq_u32(vclezq_f32(n), vdupq_n_u32(0x82000000));
  1615. const float32x4_t s1 = vreinterpretq_f32_u32(vaddq_u32(d, vdupq_n_u32(0x7f000000)));
  1616. const float32x4_t s2 = vreinterpretq_f32_u32(vsubq_u32(e, d));
  1617. return vbslq_f32(vcagtq_f32(n, vdupq_n_f32(192)), vmulq_f32(s1, s1),
  1618. vbslq_f32(c, vmulq_f32(vfmaq_f32(s2, s2, j), s1), vfmaq_f32(k, k, j)));
  1619. }
  1620. // computes silu x/(1+exp(-x)) in single precision vector
  1621. inline static float32x4_t ggml_v_silu(float32x4_t x) {
  1622. const float32x4_t one = vdupq_n_f32(1.0f);
  1623. const float32x4_t zero = vdupq_n_f32(0.0f);
  1624. const float32x4_t neg_x = vsubq_f32(zero, x);
  1625. const float32x4_t exp_neg_x = ggml_v_expf(neg_x);
  1626. const float32x4_t one_plus_exp_neg_x = vaddq_f32(one, exp_neg_x);
  1627. return vdivq_f32(x, one_plus_exp_neg_x);
  1628. }
  1629. #elif defined(__AVX512F__) && defined(__AVX512DQ__)
  1630. // adapted from arm limited optimized routine
  1631. // the maximum error is 1.45358 plus 0.5 ulps
  1632. // numbers above 88.38 will flush to infinity
  1633. // numbers beneath -103.97 will flush to zero
  1634. inline static __m512 ggml_v_expf(__m512 x) {
  1635. const __m512 r = _mm512_set1_ps(0x1.8p23f);
  1636. const __m512 z = _mm512_fmadd_ps(x, _mm512_set1_ps(0x1.715476p+0f), r);
  1637. const __m512 n = _mm512_sub_ps(z, r);
  1638. const __m512 b =
  1639. _mm512_fnmadd_ps(n, _mm512_set1_ps(0x1.7f7d1cp-20f),
  1640. _mm512_fnmadd_ps(n, _mm512_set1_ps(0x1.62e4p-1f), x));
  1641. const __mmask16 d =
  1642. _mm512_cmp_ps_mask(_mm512_abs_ps(n), _mm512_set1_ps(192), _CMP_GT_OQ);
  1643. const __m512 u = _mm512_mul_ps(b, b);
  1644. const __m512 j = _mm512_fmadd_ps(
  1645. _mm512_fmadd_ps(_mm512_fmadd_ps(_mm512_set1_ps(0x1.0e4020p-7f), b,
  1646. _mm512_set1_ps(0x1.573e2ep-5f)),
  1647. u,
  1648. _mm512_fmadd_ps(_mm512_set1_ps(0x1.555e66p-3f), b,
  1649. _mm512_set1_ps(0x1.fffdb6p-2f))),
  1650. u,
  1651. _mm512_fmadd_ps(_mm512_set1_ps(0x1.ffffecp-1f), b, _mm512_set1_ps(1.0F)));
  1652. const __m512 res = _mm512_scalef_ps(j, n);
  1653. if (_mm512_kortestz(d, d))
  1654. return res;
  1655. const __m512 zero = _mm512_setzero_ps();
  1656. const __m512 alt = _mm512_mask_blend_ps(
  1657. _mm512_cmp_ps_mask(n, zero, _CMP_LE_OQ), _mm512_set1_ps(INFINITY), zero);
  1658. return _mm512_mask_blend_ps(d, res, alt);
  1659. }
  1660. // computes silu x/(1+exp(-x)) in single precision vector
  1661. inline static __m512 ggml_v_silu(__m512 x) {
  1662. const __m512 one = _mm512_set1_ps(1);
  1663. const __m512 zero = _mm512_setzero_ps();
  1664. const __m512 neg_x = _mm512_sub_ps(zero, x);
  1665. const __m512 exp_neg_x = ggml_v_expf(neg_x);
  1666. const __m512 one_plus_exp_neg_x = _mm512_add_ps(one, exp_neg_x);
  1667. return _mm512_div_ps(x, one_plus_exp_neg_x);
  1668. }
  1669. #elif defined(__AVX2__) && defined(__FMA__)
  1670. // adapted from arm limited optimized routine
  1671. // the maximum error is 1.45358 plus 0.5 ulps
  1672. // numbers above 88.38 will flush to infinity
  1673. // numbers beneath -103.97 will flush to zero
  1674. inline static __m256 ggml_v_expf(__m256 x) {
  1675. const __m256 r = _mm256_set1_ps(0x1.8p23f);
  1676. const __m256 z = _mm256_fmadd_ps(x, _mm256_set1_ps(0x1.715476p+0f), r);
  1677. const __m256 n = _mm256_sub_ps(z, r);
  1678. const __m256 b = _mm256_fnmadd_ps(n, _mm256_set1_ps(0x1.7f7d1cp-20f),
  1679. _mm256_fnmadd_ps(n, _mm256_set1_ps(0x1.62e4p-1f), x));
  1680. const __m256i e = _mm256_slli_epi32(_mm256_castps_si256(z), 23);
  1681. const __m256 k = _mm256_castsi256_ps(
  1682. _mm256_add_epi32(e, _mm256_castps_si256(_mm256_set1_ps(1))));
  1683. const __m256i c = _mm256_castps_si256(
  1684. _mm256_cmp_ps(_mm256_andnot_ps(_mm256_set1_ps(-0.f), n),
  1685. _mm256_set1_ps(126), _CMP_GT_OQ));
  1686. const __m256 u = _mm256_mul_ps(b, b);
  1687. const __m256 j = _mm256_fmadd_ps(_mm256_fmadd_ps(_mm256_fmadd_ps(_mm256_set1_ps(0x1.0e4020p-7f), b,
  1688. _mm256_set1_ps(0x1.573e2ep-5f)), u,
  1689. _mm256_fmadd_ps(_mm256_set1_ps(0x1.555e66p-3f), b,
  1690. _mm256_set1_ps(0x1.fffdb6p-2f))),
  1691. u, _mm256_mul_ps(_mm256_set1_ps(0x1.ffffecp-1f), b));
  1692. if (!_mm256_movemask_ps(_mm256_castsi256_ps(c)))
  1693. return _mm256_fmadd_ps(j, k, k);
  1694. const __m256i g = _mm256_and_si256(
  1695. _mm256_castps_si256(_mm256_cmp_ps(n, _mm256_setzero_ps(), _CMP_LE_OQ)),
  1696. _mm256_set1_epi32(0x82000000u));
  1697. const __m256 s1 =
  1698. _mm256_castsi256_ps(_mm256_add_epi32(g, _mm256_set1_epi32(0x7f000000u)));
  1699. const __m256 s2 = _mm256_castsi256_ps(_mm256_sub_epi32(e, g));
  1700. const __m256i d = _mm256_castps_si256(
  1701. _mm256_cmp_ps(_mm256_andnot_ps(_mm256_set1_ps(-0.f), n),
  1702. _mm256_set1_ps(192), _CMP_GT_OQ));
  1703. return _mm256_or_ps(
  1704. _mm256_and_ps(_mm256_castsi256_ps(d), _mm256_mul_ps(s1, s1)),
  1705. _mm256_andnot_ps(
  1706. _mm256_castsi256_ps(d),
  1707. _mm256_or_ps(
  1708. _mm256_and_ps(_mm256_castsi256_ps(c),
  1709. _mm256_mul_ps(_mm256_fmadd_ps(s2, j, s2), s1)),
  1710. _mm256_andnot_ps(_mm256_castsi256_ps(c), _mm256_fmadd_ps(k, j, k)))));
  1711. }
  1712. // computes silu x/(1+exp(-x)) in single precision vector
  1713. inline static __m256 ggml_v_silu(__m256 x) {
  1714. const __m256 one = _mm256_set1_ps(1);
  1715. const __m256 zero = _mm256_setzero_ps();
  1716. const __m256 neg_x = _mm256_sub_ps(zero, x);
  1717. const __m256 exp_neg_x = ggml_v_expf(neg_x);
  1718. const __m256 one_plus_exp_neg_x = _mm256_add_ps(one, exp_neg_x);
  1719. return _mm256_div_ps(x, one_plus_exp_neg_x);
  1720. }
  1721. #elif defined(__SSE2__) // __AVX2__ / __ARM_NEON
  1722. #if defined(__FMA__)
  1723. #define MADD128(x, y, z) _mm_fmadd_ps(x, y, z)
  1724. #define NMADD128(x, y, z) _mm_fnmadd_ps(x, y, z)
  1725. #else
  1726. #define MADD128(x, y, z) _mm_add_ps(_mm_mul_ps(x, y), z)
  1727. #define NMADD128(x, y, z) _mm_sub_ps(z, _mm_mul_ps(x, y))
  1728. #endif
  1729. // adapted from arm limited optimized routine
  1730. // the maximum error is 1.45358 plus 0.5 ulps
  1731. // numbers above 88.38 will flush to infinity
  1732. // numbers beneath -103.97 will flush to zero
  1733. inline static __m128 ggml_v_expf(__m128 x) {
  1734. const __m128 r = _mm_set1_ps(0x1.8p23f);
  1735. const __m128 z = MADD128(x, _mm_set1_ps(0x1.715476p+0f), r);
  1736. const __m128 n = _mm_sub_ps(z, r);
  1737. const __m128 b =
  1738. NMADD128(n, _mm_set1_ps(0x1.7f7d1cp-20f), NMADD128(n, _mm_set1_ps(0x1.62e4p-1f), x));
  1739. const __m128i e = _mm_slli_epi32(_mm_castps_si128(z), 23);
  1740. const __m128 k = _mm_castsi128_ps(_mm_add_epi32(e, _mm_castps_si128(_mm_set1_ps(1))));
  1741. const __m128i c =
  1742. _mm_castps_si128(_mm_cmpgt_ps(_mm_andnot_ps(_mm_set1_ps(-0.f), n), _mm_set1_ps(126)));
  1743. const __m128 u = _mm_mul_ps(b, b);
  1744. const __m128 j =
  1745. MADD128(MADD128(MADD128(_mm_set1_ps(0x1.0e4020p-7f), b, _mm_set1_ps(0x1.573e2ep-5f)), u,
  1746. MADD128(_mm_set1_ps(0x1.555e66p-3f), b, _mm_set1_ps(0x1.fffdb6p-2f))),
  1747. u, _mm_mul_ps(_mm_set1_ps(0x1.ffffecp-1f), b));
  1748. if (!_mm_movemask_epi8(c))
  1749. return MADD128(j, k, k);
  1750. const __m128i g = _mm_and_si128(_mm_castps_si128(_mm_cmple_ps(n, _mm_setzero_ps())),
  1751. _mm_set1_epi32(0x82000000u));
  1752. const __m128 s1 = _mm_castsi128_ps(_mm_add_epi32(g, _mm_set1_epi32(0x7f000000u)));
  1753. const __m128 s2 = _mm_castsi128_ps(_mm_sub_epi32(e, g));
  1754. const __m128i d =
  1755. _mm_castps_si128(_mm_cmpgt_ps(_mm_andnot_ps(_mm_set1_ps(-0.f), n), _mm_set1_ps(192)));
  1756. return _mm_or_ps(
  1757. _mm_and_ps(_mm_castsi128_ps(d), _mm_mul_ps(s1, s1)),
  1758. _mm_andnot_ps(_mm_castsi128_ps(d),
  1759. _mm_or_ps(_mm_and_ps(_mm_castsi128_ps(c), _mm_mul_ps(MADD128(s2, j, s2), s1)),
  1760. _mm_andnot_ps(_mm_castsi128_ps(c), MADD128(k, j, k)))));
  1761. }
  1762. // computes silu x/(1+exp(-x)) in single precision vector
  1763. inline static __m128 ggml_v_silu(__m128 x) {
  1764. const __m128 one = _mm_set1_ps(1);
  1765. const __m128 zero = _mm_setzero_ps();
  1766. const __m128 neg_x = _mm_sub_ps(zero, x);
  1767. const __m128 exp_neg_x = ggml_v_expf(neg_x);
  1768. const __m128 one_plus_exp_neg_x = _mm_add_ps(one, exp_neg_x);
  1769. return _mm_div_ps(x, one_plus_exp_neg_x);
  1770. }
  1771. #endif // __ARM_NEON / __AVX2__ / __SSE2__
  1772. static void ggml_vec_silu_f32(const int n, float * y, const float * x) {
  1773. int i = 0;
  1774. #if defined(__AVX512F__) && defined(__AVX512DQ__)
  1775. for (; i + 15 < n; i += 16) {
  1776. _mm512_storeu_ps(y + i, ggml_v_silu(_mm512_loadu_ps(x + i)));
  1777. }
  1778. #elif defined(__AVX2__) && defined(__FMA__)
  1779. for (; i + 7 < n; i += 8) {
  1780. _mm256_storeu_ps(y + i, ggml_v_silu(_mm256_loadu_ps(x + i)));
  1781. }
  1782. #elif defined(__SSE2__)
  1783. for (; i + 3 < n; i += 4) {
  1784. _mm_storeu_ps(y + i, ggml_v_silu(_mm_loadu_ps(x + i)));
  1785. }
  1786. #elif defined(__ARM_NEON) && defined(__aarch64__)
  1787. for (; i + 3 < n; i += 4) {
  1788. vst1q_f32(y + i, ggml_v_silu(vld1q_f32(x + i)));
  1789. }
  1790. #endif
  1791. for (; i < n; ++i) {
  1792. y[i] = ggml_silu_f32(x[i]);
  1793. }
  1794. }
  1795. static ggml_float ggml_vec_soft_max_f32(const int n, float * y, const float * x, float max) {
  1796. int i = 0;
  1797. ggml_float sum = 0;
  1798. #if defined(__AVX512F__) && defined(__AVX512DQ__)
  1799. for (; i + 15 < n; i += 16) {
  1800. __m512 val = ggml_v_expf(_mm512_sub_ps(_mm512_loadu_ps(x + i),
  1801. _mm512_set1_ps(max)));
  1802. _mm512_storeu_ps(y + i, val);
  1803. sum += (ggml_float)_mm512_reduce_add_ps(val);
  1804. }
  1805. #elif defined(__AVX2__) && defined(__FMA__)
  1806. for (; i + 7 < n; i += 8) {
  1807. __m256 val = ggml_v_expf(_mm256_sub_ps(_mm256_loadu_ps(x + i),
  1808. _mm256_set1_ps(max)));
  1809. _mm256_storeu_ps(y + i, val);
  1810. __m128 val2 = _mm_add_ps(_mm256_extractf128_ps(val, 1),
  1811. _mm256_castps256_ps128(val));
  1812. val2 = _mm_add_ps(val2, _mm_movehl_ps(val2, val2));
  1813. val2 = _mm_add_ss(val2, _mm_movehdup_ps(val2));
  1814. sum += (ggml_float)_mm_cvtss_f32(val2);
  1815. }
  1816. #elif defined(__SSE2__)
  1817. for (; i + 3 < n; i += 4) {
  1818. __m128 val = ggml_v_expf(_mm_sub_ps(_mm_loadu_ps(x + i),
  1819. _mm_set1_ps(max)));
  1820. _mm_storeu_ps(y + i, val);
  1821. #if defined(__AVX__) || defined(__AVX2__) || defined(__AVX512F__)
  1822. val = _mm_add_ps(val, _mm_movehl_ps(val, val));
  1823. val = _mm_add_ss(val, _mm_movehdup_ps(val));
  1824. #else
  1825. __m128 tmp = _mm_shuffle_ps(val, val, _MM_SHUFFLE(2, 3, 0, 1));
  1826. val = _mm_add_ps(val, tmp);
  1827. tmp = _mm_movehl_ps(tmp, val);
  1828. val = _mm_add_ss(val, tmp);
  1829. #endif
  1830. sum += (ggml_float)_mm_cvtss_f32(val);
  1831. }
  1832. #elif defined(__ARM_NEON) && defined(__aarch64__)
  1833. for (; i + 3 < n; i += 4) {
  1834. float32x4_t val = ggml_v_expf(vsubq_f32(vld1q_f32(x + i),
  1835. vdupq_n_f32(max)));
  1836. vst1q_f32(y + i, val);
  1837. sum += (ggml_float)vaddvq_f32(val);
  1838. }
  1839. #endif
  1840. for (; i < n; ++i) {
  1841. float val = expf(x[i] - max);
  1842. sum += (ggml_float)val;
  1843. y[i] = val;
  1844. }
  1845. return sum;
  1846. }
  1847. static ggml_float ggml_vec_log_soft_max_f32(const int n, float * y, const float * x, float max) {
  1848. // log(soft_max) = log(soft_max_i / soft_max_sum) = log(soft_max_i) - log(soft_max_sum) = (logit_i - max) - log(soft_max_i)
  1849. int i = 0;
  1850. ggml_float sum = 0;
  1851. for (; i < n; ++i) {
  1852. float val = x[i] - max;
  1853. y[i] = val;
  1854. sum += (ggml_float)expf(val);
  1855. }
  1856. return sum = (ggml_float)logf(sum);
  1857. }
  1858. inline static float ggml_silu_backward_f32(float x, float dy) {
  1859. const float s = 1.0f/(1.0f + expf(-x));
  1860. return dy*s*(1.0f + x*(1.0f - s));
  1861. }
  1862. inline static void ggml_vec_silu_backward_f32(const int n, float * dx, const float * x, const float * dy) {
  1863. for (int i = 0; i < n; ++i) {
  1864. dx[i] = ggml_silu_backward_f32(x[i], dy[i]);
  1865. }
  1866. }
  1867. inline static void ggml_vec_sum_f32(const int n, float * s, const float * x) {
  1868. #ifndef GGML_USE_ACCELERATE
  1869. ggml_float sum = 0.0;
  1870. for (int i = 0; i < n; ++i) {
  1871. sum += (ggml_float)x[i];
  1872. }
  1873. *s = sum;
  1874. #else
  1875. vDSP_sve(x, 1, s, n);
  1876. #endif
  1877. }
  1878. inline static void ggml_vec_sum_f32_ggf(const int n, ggml_float * s, const float * x) {
  1879. ggml_float sum = 0.0;
  1880. for (int i = 0; i < n; ++i) {
  1881. sum += (ggml_float)x[i];
  1882. }
  1883. *s = sum;
  1884. }
  1885. inline static void ggml_vec_sum_f16_ggf(const int n, float * s, const ggml_fp16_t * x) {
  1886. float sum = 0.0f;
  1887. for (int i = 0; i < n; ++i) {
  1888. sum += GGML_FP16_TO_FP32(x[i]);
  1889. }
  1890. *s = sum;
  1891. }
  1892. inline static void ggml_vec_sum_bf16_ggf(const int n, float * s, const ggml_bf16_t * x) {
  1893. float sum = 0.0f;
  1894. for (int i = 0; i < n; ++i) {
  1895. sum += GGML_BF16_TO_FP32(x[i]);
  1896. }
  1897. *s = sum;
  1898. }
  1899. inline static void ggml_vec_max_f32(const int n, float * s, const float * x) {
  1900. #ifndef GGML_USE_ACCELERATE
  1901. float max = -INFINITY;
  1902. for (int i = 0; i < n; ++i) {
  1903. max = MAX(max, x[i]);
  1904. }
  1905. *s = max;
  1906. #else
  1907. vDSP_maxv(x, 1, s, n);
  1908. #endif
  1909. }
  1910. inline static void ggml_vec_norm_inv_f32(const int n, float * s, const float * x) {
  1911. ggml_vec_norm_f32(n, s, x);
  1912. *s = 1.f/(*s);
  1913. }
  1914. inline static void ggml_vec_argmax_f32(const int n, int * s, const float * x) {
  1915. float max = -INFINITY;
  1916. int idx = 0;
  1917. for (int i = 0; i < n; ++i) {
  1918. max = MAX(max, x[i]);
  1919. if (max == x[i]) { idx = i; }
  1920. }
  1921. *s = idx;
  1922. }
  1923. // Helpers for polling loops
  1924. #if defined(__aarch64__) && ( defined(__clang__) || defined(__GNUC__) )
  1925. static inline void ggml_thread_cpu_relax(void) {
  1926. __asm__ volatile("yield" ::: "memory");
  1927. }
  1928. #elif defined(__x86_64__)
  1929. static inline void ggml_thread_cpu_relax(void) {
  1930. _mm_pause();
  1931. }
  1932. #else
  1933. static inline void ggml_thread_cpu_relax(void) {;}
  1934. #endif
  1935. //
  1936. // NUMA support
  1937. //
  1938. #define GGML_NUMA_MAX_NODES 8
  1939. #define GGML_NUMA_MAX_CPUS 512
  1940. struct ggml_numa_node {
  1941. uint32_t cpus[GGML_NUMA_MAX_CPUS]; // hardware threads on this node
  1942. uint32_t n_cpus;
  1943. };
  1944. struct ggml_numa_nodes {
  1945. enum ggml_numa_strategy numa_strategy;
  1946. struct ggml_numa_node nodes[GGML_NUMA_MAX_NODES];
  1947. uint32_t n_nodes;
  1948. uint32_t total_cpus; // hardware threads on system
  1949. uint32_t current_node; // node on which main process is execting
  1950. #if defined(__gnu_linux__)
  1951. cpu_set_t cpuset; // cpuset from numactl
  1952. #else
  1953. uint32_t cpuset; // no NUMA support outside of Linux at this time. Use a portable datatype
  1954. #endif
  1955. };
  1956. //
  1957. // ggml state
  1958. //
  1959. struct ggml_state {
  1960. struct ggml_numa_nodes numa;
  1961. };
  1962. static struct ggml_state g_state = {0};
  1963. void ggml_barrier(struct ggml_threadpool * tp) {
  1964. int n_threads = atomic_load_explicit(&tp->n_threads_cur, memory_order_relaxed);
  1965. if (n_threads == 1) {
  1966. return;
  1967. }
  1968. #ifdef GGML_USE_OPENMP
  1969. #pragma omp barrier
  1970. #else
  1971. int n_passed = atomic_load_explicit(&tp->n_barrier_passed, memory_order_relaxed);
  1972. // enter barrier (full seq-cst fence)
  1973. int n_barrier = atomic_fetch_add_explicit(&tp->n_barrier, 1, memory_order_seq_cst);
  1974. if (n_barrier == (n_threads - 1)) {
  1975. // last thread
  1976. atomic_store_explicit(&tp->n_barrier, 0, memory_order_relaxed);
  1977. // exit barrier (fill seq-cst fence)
  1978. atomic_fetch_add_explicit(&tp->n_barrier_passed, 1, memory_order_seq_cst);
  1979. return;
  1980. }
  1981. // wait for other threads
  1982. while (atomic_load_explicit(&tp->n_barrier_passed, memory_order_relaxed) == n_passed) {
  1983. ggml_thread_cpu_relax();
  1984. }
  1985. // exit barrier (full seq-cst fence)
  1986. // TSAN doesn't support standalone fence yet, we use a dummy read-modify-write instead
  1987. #ifdef GGML_TSAN_ENABLED
  1988. atomic_fetch_add_explicit(&tp->n_barrier_passed, 0, memory_order_seq_cst);
  1989. #else
  1990. atomic_thread_fence(memory_order_seq_cst);
  1991. #endif
  1992. #endif
  1993. }
  1994. #if defined(__gnu_linux__)
  1995. static cpu_set_t ggml_get_numa_affinity(void) {
  1996. cpu_set_t cpuset;
  1997. pthread_t thread;
  1998. thread = pthread_self();
  1999. CPU_ZERO(&cpuset);
  2000. pthread_getaffinity_np(thread, sizeof(cpu_set_t), &cpuset);
  2001. return cpuset;
  2002. }
  2003. #else
  2004. static uint32_t ggml_get_numa_affinity(void) {
  2005. return 0; // no NUMA support
  2006. }
  2007. #endif
  2008. void ggml_numa_init(enum ggml_numa_strategy numa_flag) {
  2009. if (g_state.numa.n_nodes > 0) {
  2010. fprintf(stderr, "ggml_numa_init: NUMA already initialized\n");
  2011. return;
  2012. }
  2013. #if defined(__gnu_linux__)
  2014. struct stat st;
  2015. char path[256];
  2016. int rv;
  2017. // set numa scheme
  2018. g_state.numa.numa_strategy = numa_flag;
  2019. GGML_PRINT_DEBUG("numa strategy %u\n",g_state.numa.numa_strategy);
  2020. g_state.numa.cpuset = ggml_get_numa_affinity();
  2021. // enumerate nodes
  2022. while (g_state.numa.n_nodes < GGML_NUMA_MAX_NODES) {
  2023. rv = snprintf(path, sizeof(path), "/sys/devices/system/node/node%u", g_state.numa.n_nodes);
  2024. GGML_ASSERT(rv > 0 && (unsigned)rv < sizeof(path));
  2025. if (stat(path, &st) != 0) { break; }
  2026. ++g_state.numa.n_nodes;
  2027. }
  2028. // enumerate CPUs
  2029. while (g_state.numa.total_cpus < GGML_NUMA_MAX_CPUS) {
  2030. rv = snprintf(path, sizeof(path), "/sys/devices/system/cpu/cpu%u", g_state.numa.total_cpus);
  2031. GGML_ASSERT(rv > 0 && (unsigned)rv < sizeof(path));
  2032. if (stat(path, &st) != 0) { break; }
  2033. ++g_state.numa.total_cpus;
  2034. }
  2035. GGML_PRINT_DEBUG("found %u numa nodes, %u CPUs\n", g_state.numa.n_nodes, g_state.numa.total_cpus);
  2036. // figure out which node we're on
  2037. uint current_cpu;
  2038. int getcpu_ret = 0;
  2039. #if __GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ > 33) || defined(__COSMOPOLITAN__)
  2040. getcpu_ret = getcpu(&current_cpu, &g_state.numa.current_node);
  2041. #else
  2042. // old glibc doesn't have a wrapper for this call. Fall back on direct syscall
  2043. # if !defined(SYS_getcpu) && defined(SYS_get_cpu)
  2044. # define SYS_getcpu SYS_get_cpu // some older glibc versions use this name
  2045. # endif
  2046. getcpu_ret = syscall(SYS_getcpu, &current_cpu, &g_state.numa.current_node);
  2047. #endif
  2048. if (g_state.numa.n_nodes < 1 || g_state.numa.total_cpus < 1 || getcpu_ret != 0) {
  2049. g_state.numa.n_nodes = 0;
  2050. return;
  2051. }
  2052. GGML_PRINT_DEBUG("found our process on numa node %u, CPU %u\n", g_state.numa.current_node, current_cpu);
  2053. for (uint32_t n = 0; n < g_state.numa.n_nodes; ++n) {
  2054. struct ggml_numa_node * node = &g_state.numa.nodes[n];
  2055. GGML_PRINT_DEBUG("CPUs on node %u:", n);
  2056. node->n_cpus = 0;
  2057. for (uint32_t c = 0; c < g_state.numa.total_cpus; ++c) {
  2058. rv = snprintf(path, sizeof(path), "/sys/devices/system/node/node%u/cpu%u", n, c);
  2059. GGML_ASSERT(rv > 0 && (unsigned)rv < sizeof(path));
  2060. if (stat(path, &st) == 0) {
  2061. node->cpus[node->n_cpus++] = c;
  2062. GGML_PRINT_DEBUG(" %u", c);
  2063. }
  2064. }
  2065. GGML_PRINT_DEBUG("\n");
  2066. }
  2067. if (ggml_is_numa()) {
  2068. FILE *fptr = fopen("/proc/sys/kernel/numa_balancing", "r");
  2069. if (fptr != NULL) {
  2070. char buf[42];
  2071. if (fgets(buf, sizeof(buf), fptr) && strncmp(buf, "0\n", sizeof(buf)) != 0) {
  2072. GGML_LOG_WARN("/proc/sys/kernel/numa_balancing is enabled, this has been observed to impair performance\n");
  2073. }
  2074. fclose(fptr);
  2075. }
  2076. }
  2077. #else
  2078. UNUSED(numa_flag);
  2079. // TODO
  2080. #endif
  2081. }
  2082. bool ggml_is_numa(void) {
  2083. return g_state.numa.n_nodes > 1;
  2084. }
  2085. #if defined(__ARM_ARCH)
  2086. #if defined(__linux__) && defined(__aarch64__)
  2087. #include <sys/auxv.h>
  2088. #elif defined(__APPLE__)
  2089. #include <sys/sysctl.h>
  2090. #endif
  2091. #if !defined(HWCAP2_I8MM)
  2092. #define HWCAP2_I8MM (1 << 13)
  2093. #endif
  2094. static void ggml_init_arm_arch_features(void) {
  2095. #if defined(__linux__) && defined(__aarch64__)
  2096. uint32_t hwcap = getauxval(AT_HWCAP);
  2097. uint32_t hwcap2 = getauxval(AT_HWCAP2);
  2098. ggml_arm_arch_features.has_neon = !!(hwcap & HWCAP_ASIMD);
  2099. ggml_arm_arch_features.has_dotprod = !!(hwcap && HWCAP_ASIMDDP);
  2100. ggml_arm_arch_features.has_i8mm = !!(hwcap2 & HWCAP2_I8MM);
  2101. ggml_arm_arch_features.has_sve = !!(hwcap & HWCAP_SVE);
  2102. #if defined(__ARM_FEATURE_SVE)
  2103. ggml_arm_arch_features.sve_cnt = PR_SVE_VL_LEN_MASK & prctl(PR_SVE_GET_VL);
  2104. #endif
  2105. #elif defined(__APPLE__)
  2106. int oldp = 0;
  2107. size_t size = sizeof(oldp);
  2108. if (sysctlbyname("hw.optional.AdvSIMD", &oldp, &size, NULL, 0) != 0) {
  2109. oldp = 0;
  2110. }
  2111. ggml_arm_arch_features.has_neon = oldp;
  2112. if (sysctlbyname("hw.optional.arm.FEAT_DotProd", &oldp, &size, NULL, 0) != 0) {
  2113. oldp = 0;
  2114. }
  2115. ggml_arm_arch_features.has_dotprod = oldp;
  2116. if (sysctlbyname("hw.optional.arm.FEAT_I8MM", &oldp, &size, NULL, 0) != 0) {
  2117. oldp = 0;
  2118. }
  2119. ggml_arm_arch_features.has_i8mm = oldp;
  2120. ggml_arm_arch_features.has_sve = 0;
  2121. ggml_arm_arch_features.sve_cnt = 0;
  2122. #else
  2123. // Run-time CPU feature detection not implemented for this platform, fallback to compile time
  2124. #if defined(__ARM_NEON)
  2125. ggml_arm_arch_features.has_neon = 1;
  2126. #else
  2127. ggml_arm_arch_features.has_neon = 0;
  2128. #endif
  2129. #if defined(__ARM_FEATURE_MATMUL_INT8)
  2130. ggml_arm_arch_features.has_i8mm = 1;
  2131. #else
  2132. ggml_arm_arch_features.has_i8mm = 0;
  2133. #endif
  2134. #if defined(__ARM_FEATURE_SVE)
  2135. ggml_arm_arch_features.has_sve = 1;
  2136. ggml_arm_arch_features.sve_cnt = 16;
  2137. #else
  2138. ggml_arm_arch_features.has_sve = 0;
  2139. ggml_arm_arch_features.sve_cnt = 0;
  2140. #endif
  2141. #endif
  2142. }
  2143. #endif
  2144. struct ggml_tensor * ggml_new_i32(struct ggml_context * ctx, int32_t value) {
  2145. GGML_ASSERT(!ggml_get_no_alloc(ctx));
  2146. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 1);
  2147. ggml_set_i32(result, value);
  2148. return result;
  2149. }
  2150. struct ggml_tensor * ggml_new_f32(struct ggml_context * ctx, float value) {
  2151. GGML_ASSERT(!ggml_get_no_alloc(ctx));
  2152. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 1);
  2153. ggml_set_f32(result, value);
  2154. return result;
  2155. }
  2156. struct ggml_tensor * ggml_set_i32 (struct ggml_tensor * tensor, int32_t value) {
  2157. const int n = ggml_nrows(tensor);
  2158. const int nc = tensor->ne[0];
  2159. const size_t n1 = tensor->nb[1];
  2160. char * const data = tensor->data;
  2161. switch (tensor->type) {
  2162. case GGML_TYPE_I8:
  2163. {
  2164. assert(tensor->nb[0] == sizeof(int8_t));
  2165. for (int i = 0; i < n; i++) {
  2166. ggml_vec_set_i8(nc, (int8_t *)(data + i*n1), value);
  2167. }
  2168. } break;
  2169. case GGML_TYPE_I16:
  2170. {
  2171. assert(tensor->nb[0] == sizeof(int16_t));
  2172. for (int i = 0; i < n; i++) {
  2173. ggml_vec_set_i16(nc, (int16_t *)(data + i*n1), value);
  2174. }
  2175. } break;
  2176. case GGML_TYPE_I32:
  2177. {
  2178. assert(tensor->nb[0] == sizeof(int32_t));
  2179. for (int i = 0; i < n; i++) {
  2180. ggml_vec_set_i32(nc, (int32_t *)(data + i*n1), value);
  2181. }
  2182. } break;
  2183. case GGML_TYPE_F16:
  2184. {
  2185. assert(tensor->nb[0] == sizeof(ggml_fp16_t));
  2186. for (int i = 0; i < n; i++) {
  2187. ggml_vec_set_f16(nc, (ggml_fp16_t *)(data + i*n1), GGML_FP32_TO_FP16(value));
  2188. }
  2189. } break;
  2190. case GGML_TYPE_BF16:
  2191. {
  2192. assert(tensor->nb[0] == sizeof(ggml_fp16_t));
  2193. for (int i = 0; i < n; i++) {
  2194. ggml_vec_set_bf16(nc, (ggml_bf16_t *)(data + i*n1), GGML_FP32_TO_BF16(value));
  2195. }
  2196. } break;
  2197. case GGML_TYPE_F32:
  2198. {
  2199. assert(tensor->nb[0] == sizeof(float));
  2200. for (int i = 0; i < n; i++) {
  2201. ggml_vec_set_f32(nc, (float *)(data + i*n1), value);
  2202. }
  2203. } break;
  2204. default:
  2205. {
  2206. GGML_ABORT("fatal error");
  2207. }
  2208. }
  2209. return tensor;
  2210. }
  2211. struct ggml_tensor * ggml_set_f32(struct ggml_tensor * tensor, float value) {
  2212. const int n = ggml_nrows(tensor);
  2213. const int nc = tensor->ne[0];
  2214. const size_t n1 = tensor->nb[1];
  2215. char * const data = tensor->data;
  2216. switch (tensor->type) {
  2217. case GGML_TYPE_I8:
  2218. {
  2219. assert(tensor->nb[0] == sizeof(int8_t));
  2220. for (int i = 0; i < n; i++) {
  2221. ggml_vec_set_i8(nc, (int8_t *)(data + i*n1), value);
  2222. }
  2223. } break;
  2224. case GGML_TYPE_I16:
  2225. {
  2226. assert(tensor->nb[0] == sizeof(int16_t));
  2227. for (int i = 0; i < n; i++) {
  2228. ggml_vec_set_i16(nc, (int16_t *)(data + i*n1), value);
  2229. }
  2230. } break;
  2231. case GGML_TYPE_I32:
  2232. {
  2233. assert(tensor->nb[0] == sizeof(int32_t));
  2234. for (int i = 0; i < n; i++) {
  2235. ggml_vec_set_i32(nc, (int32_t *)(data + i*n1), value);
  2236. }
  2237. } break;
  2238. case GGML_TYPE_F16:
  2239. {
  2240. assert(tensor->nb[0] == sizeof(ggml_fp16_t));
  2241. for (int i = 0; i < n; i++) {
  2242. ggml_vec_set_f16(nc, (ggml_fp16_t *)(data + i*n1), GGML_FP32_TO_FP16(value));
  2243. }
  2244. } break;
  2245. case GGML_TYPE_BF16:
  2246. {
  2247. assert(tensor->nb[0] == sizeof(ggml_bf16_t));
  2248. for (int i = 0; i < n; i++) {
  2249. ggml_vec_set_bf16(nc, (ggml_bf16_t *)(data + i*n1), GGML_FP32_TO_BF16(value));
  2250. }
  2251. } break;
  2252. case GGML_TYPE_F32:
  2253. {
  2254. assert(tensor->nb[0] == sizeof(float));
  2255. for (int i = 0; i < n; i++) {
  2256. ggml_vec_set_f32(nc, (float *)(data + i*n1), value);
  2257. }
  2258. } break;
  2259. default:
  2260. {
  2261. GGML_ABORT("fatal error");
  2262. }
  2263. }
  2264. return tensor;
  2265. }
  2266. int32_t ggml_get_i32_1d(const struct ggml_tensor * tensor, int i) {
  2267. if (!ggml_is_contiguous(tensor)) {
  2268. int64_t id[4] = { 0, 0, 0, 0 };
  2269. ggml_unravel_index(tensor, i, &id[0], &id[1], &id[2], &id[3]);
  2270. return ggml_get_i32_nd(tensor, id[0], id[1], id[2], id[3]);
  2271. }
  2272. switch (tensor->type) {
  2273. case GGML_TYPE_I8:
  2274. {
  2275. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  2276. return ((int8_t *)(tensor->data))[i];
  2277. }
  2278. case GGML_TYPE_I16:
  2279. {
  2280. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  2281. return ((int16_t *)(tensor->data))[i];
  2282. }
  2283. case GGML_TYPE_I32:
  2284. {
  2285. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  2286. return ((int32_t *)(tensor->data))[i];
  2287. }
  2288. case GGML_TYPE_F16:
  2289. {
  2290. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  2291. return GGML_FP16_TO_FP32(((ggml_fp16_t *)(tensor->data))[i]);
  2292. }
  2293. case GGML_TYPE_BF16:
  2294. {
  2295. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_bf16_t));
  2296. return GGML_BF16_TO_FP32(((ggml_bf16_t *)(tensor->data))[i]);
  2297. }
  2298. case GGML_TYPE_F32:
  2299. {
  2300. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  2301. return ((float *)(tensor->data))[i];
  2302. }
  2303. default:
  2304. {
  2305. GGML_ABORT("fatal error");
  2306. }
  2307. }
  2308. }
  2309. void ggml_set_i32_1d(const struct ggml_tensor * tensor, int i, int32_t value) {
  2310. if (!ggml_is_contiguous(tensor)) {
  2311. int64_t id[4] = { 0, 0, 0, 0 };
  2312. ggml_unravel_index(tensor, i, &id[0], &id[1], &id[2], &id[3]);
  2313. ggml_set_i32_nd(tensor, id[0], id[1], id[2], id[3], value);
  2314. return;
  2315. }
  2316. switch (tensor->type) {
  2317. case GGML_TYPE_I8:
  2318. {
  2319. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  2320. ((int8_t *)(tensor->data))[i] = value;
  2321. } break;
  2322. case GGML_TYPE_I16:
  2323. {
  2324. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  2325. ((int16_t *)(tensor->data))[i] = value;
  2326. } break;
  2327. case GGML_TYPE_I32:
  2328. {
  2329. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  2330. ((int32_t *)(tensor->data))[i] = value;
  2331. } break;
  2332. case GGML_TYPE_F16:
  2333. {
  2334. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  2335. ((ggml_fp16_t *)(tensor->data))[i] = GGML_FP32_TO_FP16(value);
  2336. } break;
  2337. case GGML_TYPE_BF16:
  2338. {
  2339. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_bf16_t));
  2340. ((ggml_bf16_t *)(tensor->data))[i] = GGML_FP32_TO_BF16(value);
  2341. } break;
  2342. case GGML_TYPE_F32:
  2343. {
  2344. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  2345. ((float *)(tensor->data))[i] = value;
  2346. } break;
  2347. default:
  2348. {
  2349. GGML_ABORT("fatal error");
  2350. }
  2351. }
  2352. }
  2353. int32_t ggml_get_i32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3) {
  2354. void * data = (char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1] + i2*tensor->nb[2] + i3*tensor->nb[3];
  2355. switch (tensor->type) {
  2356. case GGML_TYPE_I8:
  2357. return ((int8_t *) data)[0];
  2358. case GGML_TYPE_I16:
  2359. return ((int16_t *) data)[0];
  2360. case GGML_TYPE_I32:
  2361. return ((int32_t *) data)[0];
  2362. case GGML_TYPE_F16:
  2363. return GGML_FP16_TO_FP32(((ggml_fp16_t *) data)[0]);
  2364. case GGML_TYPE_BF16:
  2365. return GGML_BF16_TO_FP32(((ggml_bf16_t *) data)[0]);
  2366. case GGML_TYPE_F32:
  2367. return ((float *) data)[0];
  2368. default:
  2369. GGML_ABORT("fatal error");
  2370. }
  2371. }
  2372. void ggml_set_i32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3, int32_t value) {
  2373. void * data = (char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1] + i2*tensor->nb[2] + i3*tensor->nb[3];
  2374. switch (tensor->type) {
  2375. case GGML_TYPE_I8:
  2376. {
  2377. ((int8_t *)(data))[0] = value;
  2378. } break;
  2379. case GGML_TYPE_I16:
  2380. {
  2381. ((int16_t *)(data))[0] = value;
  2382. } break;
  2383. case GGML_TYPE_I32:
  2384. {
  2385. ((int32_t *)(data))[0] = value;
  2386. } break;
  2387. case GGML_TYPE_F16:
  2388. {
  2389. ((ggml_fp16_t *)(data))[0] = GGML_FP32_TO_FP16(value);
  2390. } break;
  2391. case GGML_TYPE_BF16:
  2392. {
  2393. ((ggml_bf16_t *)(data))[0] = GGML_FP32_TO_BF16(value);
  2394. } break;
  2395. case GGML_TYPE_F32:
  2396. {
  2397. ((float *)(data))[0] = value;
  2398. } break;
  2399. default:
  2400. {
  2401. GGML_ABORT("fatal error");
  2402. }
  2403. }
  2404. }
  2405. float ggml_get_f32_1d(const struct ggml_tensor * tensor, int i) {
  2406. if (!ggml_is_contiguous(tensor)) {
  2407. int64_t id[4] = { 0, 0, 0, 0 };
  2408. ggml_unravel_index(tensor, i, &id[0], &id[1], &id[2], &id[3]);
  2409. return ggml_get_f32_nd(tensor, id[0], id[1], id[2], id[3]);
  2410. }
  2411. switch (tensor->type) {
  2412. case GGML_TYPE_I8:
  2413. {
  2414. return ((int8_t *)(tensor->data))[i];
  2415. }
  2416. case GGML_TYPE_I16:
  2417. {
  2418. return ((int16_t *)(tensor->data))[i];
  2419. }
  2420. case GGML_TYPE_I32:
  2421. {
  2422. return ((int32_t *)(tensor->data))[i];
  2423. }
  2424. case GGML_TYPE_F16:
  2425. {
  2426. return GGML_FP16_TO_FP32(((ggml_fp16_t *)(tensor->data))[i]);
  2427. }
  2428. case GGML_TYPE_BF16:
  2429. {
  2430. return GGML_BF16_TO_FP32(((ggml_bf16_t *)(tensor->data))[i]);
  2431. }
  2432. case GGML_TYPE_F32:
  2433. {
  2434. return ((float *)(tensor->data))[i];
  2435. }
  2436. default:
  2437. {
  2438. GGML_ABORT("fatal error");
  2439. }
  2440. }
  2441. }
  2442. void ggml_set_f32_1d(const struct ggml_tensor * tensor, int i, float value) {
  2443. if (!ggml_is_contiguous(tensor)) {
  2444. int64_t id[4] = { 0, 0, 0, 0 };
  2445. ggml_unravel_index(tensor, i, &id[0], &id[1], &id[2], &id[3]);
  2446. ggml_set_f32_nd(tensor, id[0], id[1], id[2], id[3], value);
  2447. return;
  2448. }
  2449. switch (tensor->type) {
  2450. case GGML_TYPE_I8:
  2451. {
  2452. ((int8_t *)(tensor->data))[i] = value;
  2453. } break;
  2454. case GGML_TYPE_I16:
  2455. {
  2456. ((int16_t *)(tensor->data))[i] = value;
  2457. } break;
  2458. case GGML_TYPE_I32:
  2459. {
  2460. ((int32_t *)(tensor->data))[i] = value;
  2461. } break;
  2462. case GGML_TYPE_F16:
  2463. {
  2464. ((ggml_fp16_t *)(tensor->data))[i] = GGML_FP32_TO_FP16(value);
  2465. } break;
  2466. case GGML_TYPE_BF16:
  2467. {
  2468. ((ggml_bf16_t *)(tensor->data))[i] = GGML_FP32_TO_BF16(value);
  2469. } break;
  2470. case GGML_TYPE_F32:
  2471. {
  2472. ((float *)(tensor->data))[i] = value;
  2473. } break;
  2474. default:
  2475. {
  2476. GGML_ABORT("fatal error");
  2477. }
  2478. }
  2479. }
  2480. float ggml_get_f32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3) {
  2481. void * data = (char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1] + i2*tensor->nb[2] + i3*tensor->nb[3];
  2482. switch (tensor->type) {
  2483. case GGML_TYPE_I8:
  2484. return ((int8_t *) data)[0];
  2485. case GGML_TYPE_I16:
  2486. return ((int16_t *) data)[0];
  2487. case GGML_TYPE_I32:
  2488. return ((int32_t *) data)[0];
  2489. case GGML_TYPE_F16:
  2490. return GGML_FP16_TO_FP32(((ggml_fp16_t *) data)[0]);
  2491. case GGML_TYPE_BF16:
  2492. return GGML_BF16_TO_FP32(((ggml_bf16_t *) data)[0]);
  2493. case GGML_TYPE_F32:
  2494. return ((float *) data)[0];
  2495. default:
  2496. GGML_ABORT("fatal error");
  2497. }
  2498. }
  2499. void ggml_set_f32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3, float value) {
  2500. void * data = (char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1] + i2*tensor->nb[2] + i3*tensor->nb[3];
  2501. switch (tensor->type) {
  2502. case GGML_TYPE_I8:
  2503. {
  2504. ((int8_t *)(data))[0] = value;
  2505. } break;
  2506. case GGML_TYPE_I16:
  2507. {
  2508. ((int16_t *)(data))[0] = value;
  2509. } break;
  2510. case GGML_TYPE_I32:
  2511. {
  2512. ((int32_t *)(data))[0] = value;
  2513. } break;
  2514. case GGML_TYPE_F16:
  2515. {
  2516. ((ggml_fp16_t *)(data))[0] = GGML_FP32_TO_FP16(value);
  2517. } break;
  2518. case GGML_TYPE_BF16:
  2519. {
  2520. ((ggml_bf16_t *)(data))[0] = GGML_FP32_TO_BF16(value);
  2521. } break;
  2522. case GGML_TYPE_F32:
  2523. {
  2524. ((float *)(data))[0] = value;
  2525. } break;
  2526. default:
  2527. {
  2528. GGML_ABORT("fatal error");
  2529. }
  2530. }
  2531. }
  2532. ////////////////////////////////////////////////////////////////////////////////
  2533. // ggml_compute_forward_dup
  2534. static void ggml_compute_forward_dup_same_cont(
  2535. const struct ggml_compute_params * params,
  2536. struct ggml_tensor * dst) {
  2537. const struct ggml_tensor * src0 = dst->src[0];
  2538. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  2539. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  2540. GGML_ASSERT(src0->type == dst->type);
  2541. const size_t nb0 = ggml_type_size(src0->type);
  2542. const int ith = params->ith; // thread index
  2543. const int nth = params->nth; // number of threads
  2544. // parallelize by elements
  2545. const int ne = ggml_nelements(dst);
  2546. const int dr = (ne + nth - 1) / nth;
  2547. const int ie0 = dr * ith;
  2548. const int ie1 = MIN(ie0 + dr, ne);
  2549. if (ie0 < ie1) {
  2550. memcpy(
  2551. ((char *) dst->data + ie0*nb0),
  2552. ((char *) src0->data + ie0*nb0),
  2553. (ie1 - ie0) * nb0);
  2554. }
  2555. }
  2556. static void ggml_compute_forward_dup_f16(
  2557. const struct ggml_compute_params * params,
  2558. struct ggml_tensor * dst) {
  2559. const struct ggml_tensor * src0 = dst->src[0];
  2560. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  2561. GGML_TENSOR_UNARY_OP_LOCALS
  2562. const int ith = params->ith; // thread index
  2563. const int nth = params->nth; // number of threads
  2564. // parallelize by rows
  2565. const int nr = ne01;
  2566. // number of rows per thread
  2567. const int dr = (nr + nth - 1) / nth;
  2568. // row range for this thread
  2569. const int ir0 = dr * ith;
  2570. const int ir1 = MIN(ir0 + dr, nr);
  2571. if (src0->type == dst->type &&
  2572. ne00 == ne0 &&
  2573. nb00 == ggml_type_size(src0->type) && nb0 == ggml_type_size(dst->type)) {
  2574. // copy by rows
  2575. const size_t rs = ne00*nb00;
  2576. for (int64_t i03 = 0; i03 < ne03; i03++) {
  2577. for (int64_t i02 = 0; i02 < ne02; i02++) {
  2578. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  2579. memcpy(
  2580. ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  2581. ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
  2582. rs);
  2583. }
  2584. }
  2585. }
  2586. return;
  2587. }
  2588. // TODO: add more special-case implementations for tensor shapes/strides that can benefit from memcpy
  2589. if (ggml_is_contiguous(dst)) {
  2590. if (nb00 == sizeof(ggml_fp16_t)) {
  2591. if (dst->type == GGML_TYPE_F16) {
  2592. size_t id = 0;
  2593. const size_t rs = ne00 * nb00;
  2594. char * dst_ptr = (char *) dst->data;
  2595. for (int i03 = 0; i03 < ne03; i03++) {
  2596. for (int i02 = 0; i02 < ne02; i02++) {
  2597. id += rs * ir0;
  2598. for (int i01 = ir0; i01 < ir1; i01++) {
  2599. const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
  2600. memcpy(dst_ptr + id, src0_ptr, rs);
  2601. id += rs;
  2602. }
  2603. id += rs * (ne01 - ir1);
  2604. }
  2605. }
  2606. } else if (dst->type == GGML_TYPE_F32) {
  2607. size_t id = 0;
  2608. float * dst_ptr = (float *) dst->data;
  2609. for (int i03 = 0; i03 < ne03; i03++) {
  2610. for (int i02 = 0; i02 < ne02; i02++) {
  2611. id += ne00 * ir0;
  2612. for (int i01 = ir0; i01 < ir1; i01++) {
  2613. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  2614. for (int i00 = 0; i00 < ne00; i00++) {
  2615. dst_ptr[id] = GGML_FP16_TO_FP32(src0_ptr[i00]);
  2616. id++;
  2617. }
  2618. }
  2619. id += ne00 * (ne01 - ir1);
  2620. }
  2621. }
  2622. } else if (ggml_get_type_traits_cpu(dst->type)->from_float) {
  2623. ggml_from_float_t const quantize_row_q = ggml_get_type_traits_cpu(dst->type)->from_float;
  2624. float * src0_f32 = (float *) params->wdata + (ne00 + CACHE_LINE_SIZE_F32) * ith;
  2625. size_t id = 0;
  2626. size_t rs = nb0 * (ne00 / ggml_blck_size(dst->type));
  2627. char * dst_ptr = (char *) dst->data;
  2628. for (int i03 = 0; i03 < ne03; i03++) {
  2629. for (int i02 = 0; i02 < ne02; i02++) {
  2630. id += rs * ir0;
  2631. for (int i01 = ir0; i01 < ir1; i01++) {
  2632. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  2633. for (int i00 = 0; i00 < ne00; i00++) {
  2634. src0_f32[i00] = GGML_FP16_TO_FP32(src0_ptr[i00]);
  2635. }
  2636. quantize_row_q(src0_f32, dst_ptr + id, ne00);
  2637. id += rs;
  2638. }
  2639. id += rs * (ne01 - ir1);
  2640. }
  2641. }
  2642. } else {
  2643. GGML_ABORT("fatal error"); // TODO: implement
  2644. }
  2645. } else {
  2646. //printf("%s: this is not optimal - fix me\n", __func__);
  2647. if (dst->type == GGML_TYPE_F32) {
  2648. size_t id = 0;
  2649. float * dst_ptr = (float *) dst->data;
  2650. for (int i03 = 0; i03 < ne03; i03++) {
  2651. for (int i02 = 0; i02 < ne02; i02++) {
  2652. id += ne00 * ir0;
  2653. for (int i01 = ir0; i01 < ir1; i01++) {
  2654. for (int i00 = 0; i00 < ne00; i00++) {
  2655. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  2656. dst_ptr[id] = GGML_FP16_TO_FP32(*src0_ptr);
  2657. id++;
  2658. }
  2659. }
  2660. id += ne00 * (ne01 - ir1);
  2661. }
  2662. }
  2663. } else if (dst->type == GGML_TYPE_F16) {
  2664. size_t id = 0;
  2665. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  2666. for (int i03 = 0; i03 < ne03; i03++) {
  2667. for (int i02 = 0; i02 < ne02; i02++) {
  2668. id += ne00 * ir0;
  2669. for (int i01 = ir0; i01 < ir1; i01++) {
  2670. for (int i00 = 0; i00 < ne00; i00++) {
  2671. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  2672. dst_ptr[id] = *src0_ptr;
  2673. id++;
  2674. }
  2675. }
  2676. id += ne00 * (ne01 - ir1);
  2677. }
  2678. }
  2679. } else {
  2680. GGML_ABORT("fatal error"); // TODO: implement
  2681. }
  2682. }
  2683. return;
  2684. }
  2685. // dst counters
  2686. int64_t i10 = 0;
  2687. int64_t i11 = 0;
  2688. int64_t i12 = 0;
  2689. int64_t i13 = 0;
  2690. if (dst->type == GGML_TYPE_F16) {
  2691. for (int64_t i03 = 0; i03 < ne03; i03++) {
  2692. for (int64_t i02 = 0; i02 < ne02; i02++) {
  2693. i10 += ne00 * ir0;
  2694. while (i10 >= ne0) {
  2695. i10 -= ne0;
  2696. if (++i11 == ne1) {
  2697. i11 = 0;
  2698. if (++i12 == ne2) {
  2699. i12 = 0;
  2700. if (++i13 == ne3) {
  2701. i13 = 0;
  2702. }
  2703. }
  2704. }
  2705. }
  2706. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  2707. for (int64_t i00 = 0; i00 < ne00; i00++) {
  2708. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  2709. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  2710. memcpy(dst_ptr, src0_ptr, sizeof(ggml_fp16_t));
  2711. if (++i10 == ne00) {
  2712. i10 = 0;
  2713. if (++i11 == ne01) {
  2714. i11 = 0;
  2715. if (++i12 == ne02) {
  2716. i12 = 0;
  2717. if (++i13 == ne03) {
  2718. i13 = 0;
  2719. }
  2720. }
  2721. }
  2722. }
  2723. }
  2724. }
  2725. i10 += ne00 * (ne01 - ir1);
  2726. while (i10 >= ne0) {
  2727. i10 -= ne0;
  2728. if (++i11 == ne1) {
  2729. i11 = 0;
  2730. if (++i12 == ne2) {
  2731. i12 = 0;
  2732. if (++i13 == ne3) {
  2733. i13 = 0;
  2734. }
  2735. }
  2736. }
  2737. }
  2738. }
  2739. }
  2740. } else if (dst->type == GGML_TYPE_F32) {
  2741. for (int64_t i03 = 0; i03 < ne03; i03++) {
  2742. for (int64_t i02 = 0; i02 < ne02; i02++) {
  2743. i10 += ne00 * ir0;
  2744. while (i10 >= ne0) {
  2745. i10 -= ne0;
  2746. if (++i11 == ne1) {
  2747. i11 = 0;
  2748. if (++i12 == ne2) {
  2749. i12 = 0;
  2750. if (++i13 == ne3) {
  2751. i13 = 0;
  2752. }
  2753. }
  2754. }
  2755. }
  2756. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  2757. for (int64_t i00 = 0; i00 < ne00; i00++) {
  2758. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  2759. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  2760. *(float *) dst_ptr = GGML_FP16_TO_FP32(*(const ggml_fp16_t *) src0_ptr);
  2761. if (++i10 == ne0) {
  2762. i10 = 0;
  2763. if (++i11 == ne1) {
  2764. i11 = 0;
  2765. if (++i12 == ne2) {
  2766. i12 = 0;
  2767. if (++i13 == ne3) {
  2768. i13 = 0;
  2769. }
  2770. }
  2771. }
  2772. }
  2773. }
  2774. }
  2775. i10 += ne00 * (ne01 - ir1);
  2776. while (i10 >= ne0) {
  2777. i10 -= ne0;
  2778. if (++i11 == ne1) {
  2779. i11 = 0;
  2780. if (++i12 == ne2) {
  2781. i12 = 0;
  2782. if (++i13 == ne3) {
  2783. i13 = 0;
  2784. }
  2785. }
  2786. }
  2787. }
  2788. }
  2789. }
  2790. } else {
  2791. GGML_ABORT("fatal error"); // TODO: implement
  2792. }
  2793. }
  2794. static void ggml_compute_forward_dup_bf16(
  2795. const struct ggml_compute_params * params,
  2796. struct ggml_tensor * dst) {
  2797. const struct ggml_tensor * src0 = dst->src[0];
  2798. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  2799. GGML_TENSOR_UNARY_OP_LOCALS
  2800. const int ith = params->ith; // thread index
  2801. const int nth = params->nth; // number of threads
  2802. // parallelize by rows
  2803. const int nr = ne01;
  2804. // number of rows per thread
  2805. const int dr = (nr + nth - 1) / nth;
  2806. // row range for this thread
  2807. const int ir0 = dr * ith;
  2808. const int ir1 = MIN(ir0 + dr, nr);
  2809. if (src0->type == dst->type &&
  2810. ne00 == ne0 &&
  2811. nb00 == ggml_type_size(src0->type) && nb0 == ggml_type_size(dst->type)) {
  2812. // copy by rows
  2813. const size_t rs = ne00*nb00;
  2814. for (int64_t i03 = 0; i03 < ne03; i03++) {
  2815. for (int64_t i02 = 0; i02 < ne02; i02++) {
  2816. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  2817. memcpy(
  2818. ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  2819. ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
  2820. rs);
  2821. }
  2822. }
  2823. }
  2824. return;
  2825. }
  2826. // TODO: add more special-case implementations for tensor shapes/strides that can benefit from memcpy
  2827. if (ggml_is_contiguous(dst)) {
  2828. if (nb00 == sizeof(ggml_bf16_t)) {
  2829. if (dst->type == GGML_TYPE_BF16) {
  2830. size_t id = 0;
  2831. const size_t rs = ne00 * nb00;
  2832. char * dst_ptr = (char *) dst->data;
  2833. for (int i03 = 0; i03 < ne03; i03++) {
  2834. for (int i02 = 0; i02 < ne02; i02++) {
  2835. id += rs * ir0;
  2836. for (int i01 = ir0; i01 < ir1; i01++) {
  2837. const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
  2838. memcpy(dst_ptr + id, src0_ptr, rs);
  2839. id += rs;
  2840. }
  2841. id += rs * (ne01 - ir1);
  2842. }
  2843. }
  2844. } else if (dst->type == GGML_TYPE_F16) {
  2845. size_t id = 0;
  2846. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  2847. for (int i03 = 0; i03 < ne03; i03++) {
  2848. for (int i02 = 0; i02 < ne02; i02++) {
  2849. id += ne00 * ir0;
  2850. for (int i01 = ir0; i01 < ir1; i01++) {
  2851. const ggml_bf16_t * src0_ptr = (ggml_bf16_t *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  2852. for (int i00 = 0; i00 < ne00; i00++) {
  2853. dst_ptr[id] = GGML_FP32_TO_FP16(GGML_BF16_TO_FP32(src0_ptr[i00]));
  2854. id++;
  2855. }
  2856. }
  2857. id += ne00 * (ne01 - ir1);
  2858. }
  2859. }
  2860. } else if (dst->type == GGML_TYPE_F32) {
  2861. size_t id = 0;
  2862. float * dst_ptr = (float *) dst->data;
  2863. for (int i03 = 0; i03 < ne03; i03++) {
  2864. for (int i02 = 0; i02 < ne02; i02++) {
  2865. id += ne00 * ir0;
  2866. for (int i01 = ir0; i01 < ir1; i01++) {
  2867. const ggml_bf16_t * src0_ptr = (ggml_bf16_t *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  2868. for (int i00 = 0; i00 < ne00; i00++) {
  2869. dst_ptr[id] = GGML_BF16_TO_FP32(src0_ptr[i00]);
  2870. id++;
  2871. }
  2872. }
  2873. id += ne00 * (ne01 - ir1);
  2874. }
  2875. }
  2876. } else if (ggml_get_type_traits_cpu(dst->type)->from_float) {
  2877. ggml_from_float_t const quantize_row_q = ggml_get_type_traits_cpu(dst->type)->from_float;
  2878. float * src0_f32 = (float *) params->wdata + (ne00 + CACHE_LINE_SIZE_F32) * ith;
  2879. size_t id = 0;
  2880. size_t rs = nb0 * (ne00 / ggml_blck_size(dst->type));
  2881. char * dst_ptr = (char *) dst->data;
  2882. for (int i03 = 0; i03 < ne03; i03++) {
  2883. for (int i02 = 0; i02 < ne02; i02++) {
  2884. id += rs * ir0;
  2885. for (int i01 = ir0; i01 < ir1; i01++) {
  2886. const ggml_bf16_t * src0_ptr = (ggml_bf16_t *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  2887. for (int i00 = 0; i00 < ne00; i00++) {
  2888. src0_f32[i00] = GGML_BF16_TO_FP32(src0_ptr[i00]);
  2889. }
  2890. quantize_row_q(src0_f32, dst_ptr + id, ne00);
  2891. id += rs;
  2892. }
  2893. id += rs * (ne01 - ir1);
  2894. }
  2895. }
  2896. } else {
  2897. GGML_ABORT("fatal error"); // TODO: implement
  2898. }
  2899. } else {
  2900. //printf("%s: this is not optimal - fix me\n", __func__);
  2901. if (dst->type == GGML_TYPE_F32) {
  2902. size_t id = 0;
  2903. float * dst_ptr = (float *) dst->data;
  2904. for (int i03 = 0; i03 < ne03; i03++) {
  2905. for (int i02 = 0; i02 < ne02; i02++) {
  2906. id += ne00 * ir0;
  2907. for (int i01 = ir0; i01 < ir1; i01++) {
  2908. for (int i00 = 0; i00 < ne00; i00++) {
  2909. const ggml_bf16_t * src0_ptr = (ggml_bf16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  2910. dst_ptr[id] = GGML_BF16_TO_FP32(*src0_ptr);
  2911. id++;
  2912. }
  2913. }
  2914. id += ne00 * (ne01 - ir1);
  2915. }
  2916. }
  2917. } else if (dst->type == GGML_TYPE_BF16) {
  2918. size_t id = 0;
  2919. ggml_bf16_t * dst_ptr = (ggml_bf16_t *) dst->data;
  2920. for (int i03 = 0; i03 < ne03; i03++) {
  2921. for (int i02 = 0; i02 < ne02; i02++) {
  2922. id += ne00 * ir0;
  2923. for (int i01 = ir0; i01 < ir1; i01++) {
  2924. for (int i00 = 0; i00 < ne00; i00++) {
  2925. const ggml_bf16_t * src0_ptr = (ggml_bf16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  2926. dst_ptr[id] = *src0_ptr;
  2927. id++;
  2928. }
  2929. }
  2930. id += ne00 * (ne01 - ir1);
  2931. }
  2932. }
  2933. } else if (dst->type == GGML_TYPE_F16) {
  2934. size_t id = 0;
  2935. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  2936. for (int i03 = 0; i03 < ne03; i03++) {
  2937. for (int i02 = 0; i02 < ne02; i02++) {
  2938. id += ne00 * ir0;
  2939. for (int i01 = ir0; i01 < ir1; i01++) {
  2940. for (int i00 = 0; i00 < ne00; i00++) {
  2941. const ggml_bf16_t * src0_ptr = (ggml_bf16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  2942. dst_ptr[id] = GGML_FP32_TO_FP16(GGML_BF16_TO_FP32(*src0_ptr));
  2943. id++;
  2944. }
  2945. }
  2946. id += ne00 * (ne01 - ir1);
  2947. }
  2948. }
  2949. } else {
  2950. GGML_ABORT("fatal error"); // TODO: implement
  2951. }
  2952. }
  2953. return;
  2954. }
  2955. // dst counters
  2956. int64_t i10 = 0;
  2957. int64_t i11 = 0;
  2958. int64_t i12 = 0;
  2959. int64_t i13 = 0;
  2960. if (dst->type == GGML_TYPE_BF16) {
  2961. for (int64_t i03 = 0; i03 < ne03; i03++) {
  2962. for (int64_t i02 = 0; i02 < ne02; i02++) {
  2963. i10 += ne00 * ir0;
  2964. while (i10 >= ne0) {
  2965. i10 -= ne0;
  2966. if (++i11 == ne1) {
  2967. i11 = 0;
  2968. if (++i12 == ne2) {
  2969. i12 = 0;
  2970. if (++i13 == ne3) {
  2971. i13 = 0;
  2972. }
  2973. }
  2974. }
  2975. }
  2976. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  2977. for (int64_t i00 = 0; i00 < ne00; i00++) {
  2978. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  2979. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  2980. memcpy(dst_ptr, src0_ptr, sizeof(ggml_bf16_t));
  2981. if (++i10 == ne00) {
  2982. i10 = 0;
  2983. if (++i11 == ne01) {
  2984. i11 = 0;
  2985. if (++i12 == ne02) {
  2986. i12 = 0;
  2987. if (++i13 == ne03) {
  2988. i13 = 0;
  2989. }
  2990. }
  2991. }
  2992. }
  2993. }
  2994. }
  2995. i10 += ne00 * (ne01 - ir1);
  2996. while (i10 >= ne0) {
  2997. i10 -= ne0;
  2998. if (++i11 == ne1) {
  2999. i11 = 0;
  3000. if (++i12 == ne2) {
  3001. i12 = 0;
  3002. if (++i13 == ne3) {
  3003. i13 = 0;
  3004. }
  3005. }
  3006. }
  3007. }
  3008. }
  3009. }
  3010. } else if (dst->type == GGML_TYPE_F16) {
  3011. for (int64_t i03 = 0; i03 < ne03; i03++) {
  3012. for (int64_t i02 = 0; i02 < ne02; i02++) {
  3013. i10 += ne00 * ir0;
  3014. while (i10 >= ne0) {
  3015. i10 -= ne0;
  3016. if (++i11 == ne1) {
  3017. i11 = 0;
  3018. if (++i12 == ne2) {
  3019. i12 = 0;
  3020. if (++i13 == ne3) {
  3021. i13 = 0;
  3022. }
  3023. }
  3024. }
  3025. }
  3026. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  3027. for (int64_t i00 = 0; i00 < ne00; i00++) {
  3028. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  3029. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  3030. *(ggml_fp16_t *) dst_ptr = GGML_FP32_TO_FP16(GGML_BF16_TO_FP32(*(const ggml_bf16_t *) src0_ptr));
  3031. if (++i10 == ne0) {
  3032. i10 = 0;
  3033. if (++i11 == ne1) {
  3034. i11 = 0;
  3035. if (++i12 == ne2) {
  3036. i12 = 0;
  3037. if (++i13 == ne3) {
  3038. i13 = 0;
  3039. }
  3040. }
  3041. }
  3042. }
  3043. }
  3044. }
  3045. i10 += ne00 * (ne01 - ir1);
  3046. while (i10 >= ne0) {
  3047. i10 -= ne0;
  3048. if (++i11 == ne1) {
  3049. i11 = 0;
  3050. if (++i12 == ne2) {
  3051. i12 = 0;
  3052. if (++i13 == ne3) {
  3053. i13 = 0;
  3054. }
  3055. }
  3056. }
  3057. }
  3058. }
  3059. }
  3060. } else if (dst->type == GGML_TYPE_F32) {
  3061. for (int64_t i03 = 0; i03 < ne03; i03++) {
  3062. for (int64_t i02 = 0; i02 < ne02; i02++) {
  3063. i10 += ne00 * ir0;
  3064. while (i10 >= ne0) {
  3065. i10 -= ne0;
  3066. if (++i11 == ne1) {
  3067. i11 = 0;
  3068. if (++i12 == ne2) {
  3069. i12 = 0;
  3070. if (++i13 == ne3) {
  3071. i13 = 0;
  3072. }
  3073. }
  3074. }
  3075. }
  3076. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  3077. for (int64_t i00 = 0; i00 < ne00; i00++) {
  3078. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  3079. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  3080. *(float *) dst_ptr = GGML_BF16_TO_FP32(*(const ggml_bf16_t *) src0_ptr);
  3081. if (++i10 == ne0) {
  3082. i10 = 0;
  3083. if (++i11 == ne1) {
  3084. i11 = 0;
  3085. if (++i12 == ne2) {
  3086. i12 = 0;
  3087. if (++i13 == ne3) {
  3088. i13 = 0;
  3089. }
  3090. }
  3091. }
  3092. }
  3093. }
  3094. }
  3095. i10 += ne00 * (ne01 - ir1);
  3096. while (i10 >= ne0) {
  3097. i10 -= ne0;
  3098. if (++i11 == ne1) {
  3099. i11 = 0;
  3100. if (++i12 == ne2) {
  3101. i12 = 0;
  3102. if (++i13 == ne3) {
  3103. i13 = 0;
  3104. }
  3105. }
  3106. }
  3107. }
  3108. }
  3109. }
  3110. } else {
  3111. GGML_ABORT("fatal error"); // TODO: implement
  3112. }
  3113. }
  3114. static void ggml_compute_forward_dup_f32(
  3115. const struct ggml_compute_params * params,
  3116. struct ggml_tensor * dst) {
  3117. const struct ggml_tensor * src0 = dst->src[0];
  3118. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  3119. GGML_TENSOR_UNARY_OP_LOCALS
  3120. const int ith = params->ith; // thread index
  3121. const int nth = params->nth; // number of threads
  3122. // parallelize by rows
  3123. const int nr = ne01;
  3124. // number of rows per thread
  3125. const int dr = (nr + nth - 1) / nth;
  3126. // row range for this thread
  3127. const int ir0 = dr * ith;
  3128. const int ir1 = MIN(ir0 + dr, nr);
  3129. if (src0->type == dst->type &&
  3130. ne00 == ne0 &&
  3131. nb00 == ggml_type_size(src0->type) && nb0 == ggml_type_size(dst->type)) {
  3132. // copy by rows
  3133. const size_t rs = ne00*nb00;
  3134. for (int64_t i03 = 0; i03 < ne03; i03++) {
  3135. for (int64_t i02 = 0; i02 < ne02; i02++) {
  3136. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  3137. memcpy(
  3138. ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  3139. ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
  3140. rs);
  3141. }
  3142. }
  3143. }
  3144. return;
  3145. }
  3146. if (ggml_is_contiguous(dst)) {
  3147. // TODO: simplify
  3148. if (nb00 == sizeof(float)) {
  3149. if (dst->type == GGML_TYPE_F32) {
  3150. size_t id = 0;
  3151. const size_t rs = ne00 * nb00;
  3152. char * dst_ptr = (char *) dst->data;
  3153. for (int i03 = 0; i03 < ne03; i03++) {
  3154. for (int i02 = 0; i02 < ne02; i02++) {
  3155. id += rs * ir0;
  3156. for (int i01 = ir0; i01 < ir1; i01++) {
  3157. const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
  3158. memcpy(dst_ptr + id, src0_ptr, rs);
  3159. id += rs;
  3160. }
  3161. id += rs * (ne01 - ir1);
  3162. }
  3163. }
  3164. } else if (ggml_get_type_traits_cpu(dst->type)->from_float) {
  3165. ggml_from_float_t const quantize_row_q = ggml_get_type_traits_cpu(dst->type)->from_float;
  3166. size_t id = 0;
  3167. size_t rs = nb0 * (ne00 / ggml_blck_size(dst->type));
  3168. char * dst_ptr = (char *) dst->data;
  3169. for (int i03 = 0; i03 < ne03; i03++) {
  3170. for (int i02 = 0; i02 < ne02; i02++) {
  3171. id += rs * ir0;
  3172. for (int i01 = ir0; i01 < ir1; i01++) {
  3173. const float * src0_ptr = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  3174. quantize_row_q(src0_ptr, dst_ptr + id, ne00);
  3175. id += rs;
  3176. }
  3177. id += rs * (ne01 - ir1);
  3178. }
  3179. }
  3180. } else {
  3181. GGML_ABORT("fatal error"); // TODO: implement
  3182. }
  3183. } else {
  3184. //printf("%s: this is not optimal - fix me\n", __func__);
  3185. if (dst->type == GGML_TYPE_F32) {
  3186. size_t id = 0;
  3187. float * dst_ptr = (float *) dst->data;
  3188. for (int i03 = 0; i03 < ne03; i03++) {
  3189. for (int i02 = 0; i02 < ne02; i02++) {
  3190. id += ne00 * ir0;
  3191. for (int i01 = ir0; i01 < ir1; i01++) {
  3192. for (int i00 = 0; i00 < ne00; i00++) {
  3193. const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  3194. dst_ptr[id] = *src0_ptr;
  3195. id++;
  3196. }
  3197. }
  3198. id += ne00 * (ne01 - ir1);
  3199. }
  3200. }
  3201. } else if (dst->type == GGML_TYPE_F16) {
  3202. size_t id = 0;
  3203. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  3204. for (int i03 = 0; i03 < ne03; i03++) {
  3205. for (int i02 = 0; i02 < ne02; i02++) {
  3206. id += ne00 * ir0;
  3207. for (int i01 = ir0; i01 < ir1; i01++) {
  3208. for (int i00 = 0; i00 < ne00; i00++) {
  3209. const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  3210. dst_ptr[id] = GGML_FP32_TO_FP16(*src0_ptr);
  3211. id++;
  3212. }
  3213. }
  3214. id += ne00 * (ne01 - ir1);
  3215. }
  3216. }
  3217. } else if (dst->type == GGML_TYPE_BF16) {
  3218. size_t id = 0;
  3219. ggml_bf16_t * dst_ptr = (ggml_bf16_t *) dst->data;
  3220. for (int i03 = 0; i03 < ne03; i03++) {
  3221. for (int i02 = 0; i02 < ne02; i02++) {
  3222. id += ne00 * ir0;
  3223. for (int i01 = ir0; i01 < ir1; i01++) {
  3224. for (int i00 = 0; i00 < ne00; i00++) {
  3225. const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  3226. dst_ptr[id] = GGML_FP32_TO_BF16(*src0_ptr);
  3227. id++;
  3228. }
  3229. }
  3230. id += ne00 * (ne01 - ir1);
  3231. }
  3232. }
  3233. } else {
  3234. GGML_ABORT("fatal error"); // TODO: implement
  3235. }
  3236. }
  3237. return;
  3238. }
  3239. // dst counters
  3240. int64_t i10 = 0;
  3241. int64_t i11 = 0;
  3242. int64_t i12 = 0;
  3243. int64_t i13 = 0;
  3244. if (dst->type == GGML_TYPE_F32) {
  3245. for (int64_t i03 = 0; i03 < ne03; i03++) {
  3246. for (int64_t i02 = 0; i02 < ne02; i02++) {
  3247. i10 += ne00 * ir0;
  3248. while (i10 >= ne0) {
  3249. i10 -= ne0;
  3250. if (++i11 == ne1) {
  3251. i11 = 0;
  3252. if (++i12 == ne2) {
  3253. i12 = 0;
  3254. if (++i13 == ne3) {
  3255. i13 = 0;
  3256. }
  3257. }
  3258. }
  3259. }
  3260. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  3261. for (int64_t i00 = 0; i00 < ne00; i00++) {
  3262. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  3263. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  3264. memcpy(dst_ptr, src0_ptr, sizeof(float));
  3265. if (++i10 == ne0) {
  3266. i10 = 0;
  3267. if (++i11 == ne1) {
  3268. i11 = 0;
  3269. if (++i12 == ne2) {
  3270. i12 = 0;
  3271. if (++i13 == ne3) {
  3272. i13 = 0;
  3273. }
  3274. }
  3275. }
  3276. }
  3277. }
  3278. }
  3279. i10 += ne00 * (ne01 - ir1);
  3280. while (i10 >= ne0) {
  3281. i10 -= ne0;
  3282. if (++i11 == ne1) {
  3283. i11 = 0;
  3284. if (++i12 == ne2) {
  3285. i12 = 0;
  3286. if (++i13 == ne3) {
  3287. i13 = 0;
  3288. }
  3289. }
  3290. }
  3291. }
  3292. }
  3293. }
  3294. } else if (dst->type == GGML_TYPE_F16) {
  3295. for (int64_t i03 = 0; i03 < ne03; i03++) {
  3296. for (int64_t i02 = 0; i02 < ne02; i02++) {
  3297. i10 += ne00 * ir0;
  3298. while (i10 >= ne0) {
  3299. i10 -= ne0;
  3300. if (++i11 == ne1) {
  3301. i11 = 0;
  3302. if (++i12 == ne2) {
  3303. i12 = 0;
  3304. if (++i13 == ne3) {
  3305. i13 = 0;
  3306. }
  3307. }
  3308. }
  3309. }
  3310. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  3311. for (int64_t i00 = 0; i00 < ne00; i00++) {
  3312. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  3313. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  3314. *(ggml_fp16_t *) dst_ptr = GGML_FP32_TO_FP16(*(const float *) src0_ptr);
  3315. if (++i10 == ne0) {
  3316. i10 = 0;
  3317. if (++i11 == ne1) {
  3318. i11 = 0;
  3319. if (++i12 == ne2) {
  3320. i12 = 0;
  3321. if (++i13 == ne3) {
  3322. i13 = 0;
  3323. }
  3324. }
  3325. }
  3326. }
  3327. }
  3328. }
  3329. i10 += ne00 * (ne01 - ir1);
  3330. while (i10 >= ne0) {
  3331. i10 -= ne0;
  3332. if (++i11 == ne1) {
  3333. i11 = 0;
  3334. if (++i12 == ne2) {
  3335. i12 = 0;
  3336. if (++i13 == ne3) {
  3337. i13 = 0;
  3338. }
  3339. }
  3340. }
  3341. }
  3342. }
  3343. }
  3344. } else if (dst->type == GGML_TYPE_BF16) {
  3345. for (int64_t i03 = 0; i03 < ne03; i03++) {
  3346. for (int64_t i02 = 0; i02 < ne02; i02++) {
  3347. i10 += ne00 * ir0;
  3348. while (i10 >= ne0) {
  3349. i10 -= ne0;
  3350. if (++i11 == ne1) {
  3351. i11 = 0;
  3352. if (++i12 == ne2) {
  3353. i12 = 0;
  3354. if (++i13 == ne3) {
  3355. i13 = 0;
  3356. }
  3357. }
  3358. }
  3359. }
  3360. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  3361. for (int64_t i00 = 0; i00 < ne00; i00++) {
  3362. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  3363. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  3364. *(ggml_bf16_t *) dst_ptr = GGML_FP32_TO_BF16(*(const float *) src0_ptr);
  3365. if (++i10 == ne0) {
  3366. i10 = 0;
  3367. if (++i11 == ne1) {
  3368. i11 = 0;
  3369. if (++i12 == ne2) {
  3370. i12 = 0;
  3371. if (++i13 == ne3) {
  3372. i13 = 0;
  3373. }
  3374. }
  3375. }
  3376. }
  3377. }
  3378. }
  3379. i10 += ne00 * (ne01 - ir1);
  3380. while (i10 >= ne0) {
  3381. i10 -= ne0;
  3382. if (++i11 == ne1) {
  3383. i11 = 0;
  3384. if (++i12 == ne2) {
  3385. i12 = 0;
  3386. if (++i13 == ne3) {
  3387. i13 = 0;
  3388. }
  3389. }
  3390. }
  3391. }
  3392. }
  3393. }
  3394. } else {
  3395. GGML_ABORT("fatal error"); // TODO: implement
  3396. }
  3397. }
  3398. // A simplified version of ggml_compute_forward_dup that doesn't do float upcasting, and just plain old memcpy.
  3399. static void ggml_compute_forward_dup_bytes(
  3400. const struct ggml_compute_params * params,
  3401. struct ggml_tensor * dst) {
  3402. const struct ggml_tensor * src0 = dst->src[0];
  3403. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  3404. GGML_ASSERT(src0->type == dst->type);
  3405. GGML_TENSOR_UNARY_OP_LOCALS;
  3406. if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst)) {
  3407. ggml_compute_forward_dup_same_cont(params, dst);
  3408. return;
  3409. }
  3410. const size_t type_size = ggml_type_size(src0->type);
  3411. const int ith = params->ith; // thread index
  3412. const int nth = params->nth; // number of threads
  3413. // parallelize by rows
  3414. const int nr = ne01;
  3415. // number of rows per thread
  3416. const int dr = (nr + nth - 1) / nth;
  3417. // row range for this thread
  3418. const int ir0 = dr * ith;
  3419. const int ir1 = MIN(ir0 + dr, nr);
  3420. if (src0->type == dst->type &&
  3421. ne00 == ne0 &&
  3422. nb00 == type_size && nb0 == type_size) {
  3423. // copy by rows
  3424. const size_t rs = ne00 * type_size;
  3425. for (int64_t i03 = 0; i03 < ne03; i03++) {
  3426. for (int64_t i02 = 0; i02 < ne02; i02++) {
  3427. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  3428. memcpy(
  3429. ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  3430. ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
  3431. rs);
  3432. }
  3433. }
  3434. }
  3435. return;
  3436. }
  3437. if (ggml_is_contiguous(dst)) {
  3438. size_t id = 0;
  3439. char * dst_ptr = (char *) dst->data;
  3440. const size_t rs = ne00 * type_size;
  3441. if (nb00 == type_size) {
  3442. // src0 is contigous on first dimension, copy by rows
  3443. for (int64_t i03 = 0; i03 < ne03; i03++) {
  3444. for (int64_t i02 = 0; i02 < ne02; i02++) {
  3445. id += rs * ir0;
  3446. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  3447. const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
  3448. memcpy(dst_ptr + id, src0_ptr, rs);
  3449. id += rs;
  3450. }
  3451. id += rs * (ne01 - ir1);
  3452. }
  3453. }
  3454. } else {
  3455. //printf("%s: this is not optimal - fix me\n", __func__);
  3456. for (int64_t i03 = 0; i03 < ne03; i03++) {
  3457. for (int64_t i02 = 0; i02 < ne02; i02++) {
  3458. id += rs * ir0;
  3459. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  3460. for (int64_t i00 = 0; i00 < ne00; i00++) {
  3461. const char * src0_ptr = (char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03;
  3462. memcpy(dst_ptr + id, src0_ptr, type_size);
  3463. id += type_size;
  3464. }
  3465. }
  3466. id += rs * (ne01 - ir1);
  3467. }
  3468. }
  3469. }
  3470. return;
  3471. }
  3472. // dst counters
  3473. int64_t i10 = 0;
  3474. int64_t i11 = 0;
  3475. int64_t i12 = 0;
  3476. int64_t i13 = 0;
  3477. for (int64_t i03 = 0; i03 < ne03; i03++) {
  3478. for (int64_t i02 = 0; i02 < ne02; i02++) {
  3479. i10 += ne00 * ir0;
  3480. while (i10 >= ne0) {
  3481. i10 -= ne0;
  3482. if (++i11 == ne1) {
  3483. i11 = 0;
  3484. if (++i12 == ne2) {
  3485. i12 = 0;
  3486. if (++i13 == ne3) {
  3487. i13 = 0;
  3488. }
  3489. }
  3490. }
  3491. }
  3492. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  3493. for (int64_t i00 = 0; i00 < ne00; i00++) {
  3494. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  3495. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  3496. memcpy(dst_ptr, src0_ptr, type_size);
  3497. if (++i10 == ne0) {
  3498. i10 = 0;
  3499. if (++i11 == ne1) {
  3500. i11 = 0;
  3501. if (++i12 == ne2) {
  3502. i12 = 0;
  3503. if (++i13 == ne3) {
  3504. i13 = 0;
  3505. }
  3506. }
  3507. }
  3508. }
  3509. }
  3510. }
  3511. i10 += ne00 * (ne01 - ir1);
  3512. while (i10 >= ne0) {
  3513. i10 -= ne0;
  3514. if (++i11 == ne1) {
  3515. i11 = 0;
  3516. if (++i12 == ne2) {
  3517. i12 = 0;
  3518. if (++i13 == ne3) {
  3519. i13 = 0;
  3520. }
  3521. }
  3522. }
  3523. }
  3524. }
  3525. }
  3526. }
  3527. static void ggml_compute_forward_dup(
  3528. const struct ggml_compute_params * params,
  3529. struct ggml_tensor * dst) {
  3530. const struct ggml_tensor * src0 = dst->src[0];
  3531. if (src0->type == dst->type) {
  3532. ggml_compute_forward_dup_bytes(params, dst);
  3533. return;
  3534. }
  3535. switch (src0->type) {
  3536. case GGML_TYPE_F16:
  3537. {
  3538. ggml_compute_forward_dup_f16(params, dst);
  3539. } break;
  3540. case GGML_TYPE_BF16:
  3541. {
  3542. ggml_compute_forward_dup_bf16(params, dst);
  3543. } break;
  3544. case GGML_TYPE_F32:
  3545. {
  3546. ggml_compute_forward_dup_f32(params, dst);
  3547. } break;
  3548. default:
  3549. {
  3550. GGML_ABORT("fatal error");
  3551. }
  3552. }
  3553. }
  3554. // ggml_compute_forward_add
  3555. static void ggml_compute_forward_add_f32(
  3556. const struct ggml_compute_params * params,
  3557. struct ggml_tensor * dst) {
  3558. const struct ggml_tensor * src0 = dst->src[0];
  3559. const struct ggml_tensor * src1 = dst->src[1];
  3560. GGML_ASSERT(ggml_can_repeat(src1, src0) && ggml_are_same_shape(src0, dst));
  3561. const int ith = params->ith;
  3562. const int nth = params->nth;
  3563. const int nr = ggml_nrows(src0);
  3564. GGML_TENSOR_BINARY_OP_LOCALS
  3565. GGML_ASSERT( nb0 == sizeof(float));
  3566. GGML_ASSERT(nb00 == sizeof(float));
  3567. // rows per thread
  3568. const int dr = (nr + nth - 1)/nth;
  3569. // row range for this thread
  3570. const int ir0 = dr*ith;
  3571. const int ir1 = MIN(ir0 + dr, nr);
  3572. if (nb10 == sizeof(float)) {
  3573. for (int ir = ir0; ir < ir1; ++ir) {
  3574. // src1 is broadcastable across src0 and dst in i1, i2, i3
  3575. const int64_t i03 = ir/(ne02*ne01);
  3576. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  3577. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  3578. const int64_t i13 = i03 % ne13;
  3579. const int64_t i12 = i02 % ne12;
  3580. const int64_t i11 = i01 % ne11;
  3581. const int64_t nr0 = ne00 / ne10;
  3582. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  3583. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  3584. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11);
  3585. for (int64_t r = 0; r < nr0; ++r) {
  3586. #ifdef GGML_USE_ACCELERATE
  3587. vDSP_vadd(src0_ptr + r*ne10, 1, src1_ptr, 1, dst_ptr + r*ne10, 1, ne10);
  3588. #else
  3589. ggml_vec_add_f32(ne10, dst_ptr + r*ne10, src0_ptr + r*ne10, src1_ptr);
  3590. #endif
  3591. }
  3592. }
  3593. } else {
  3594. // src1 is not contiguous
  3595. for (int ir = ir0; ir < ir1; ++ir) {
  3596. // src1 is broadcastable across src0 and dst in i1, i2, i3
  3597. const int64_t i03 = ir/(ne02*ne01);
  3598. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  3599. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  3600. const int64_t i13 = i03 % ne13;
  3601. const int64_t i12 = i02 % ne12;
  3602. const int64_t i11 = i01 % ne11;
  3603. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  3604. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  3605. for (int64_t i0 = 0; i0 < ne0; ++i0) {
  3606. const int64_t i10 = i0 % ne10;
  3607. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11 + i10*nb10);
  3608. dst_ptr[i0] = src0_ptr[i0] + *src1_ptr;
  3609. }
  3610. }
  3611. }
  3612. }
  3613. static void ggml_compute_forward_add_f16_f32(
  3614. const struct ggml_compute_params * params,
  3615. struct ggml_tensor * dst) {
  3616. const struct ggml_tensor * src0 = dst->src[0];
  3617. const struct ggml_tensor * src1 = dst->src[1];
  3618. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  3619. const int ith = params->ith;
  3620. const int nth = params->nth;
  3621. const int nr = ggml_nrows(src0);
  3622. GGML_TENSOR_BINARY_OP_LOCALS
  3623. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  3624. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  3625. if (dst->type == GGML_TYPE_F32) {
  3626. GGML_ASSERT( nb0 == sizeof(float));
  3627. }
  3628. else {
  3629. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  3630. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  3631. }
  3632. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  3633. // rows per thread
  3634. const int dr = (nr + nth - 1)/nth;
  3635. // row range for this thread
  3636. const int ir0 = dr*ith;
  3637. const int ir1 = MIN(ir0 + dr, nr);
  3638. if (nb10 == sizeof(float)) {
  3639. if (dst->type == GGML_TYPE_F16) {
  3640. for (int ir = ir0; ir < ir1; ++ir) {
  3641. // src0, src1 and dst are same shape => same indices
  3642. const int i3 = ir/(ne2*ne1);
  3643. const int i2 = (ir - i3*ne2*ne1)/ne1;
  3644. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  3645. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  3646. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  3647. float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11);
  3648. for (int i = 0; i < ne0; i++) {
  3649. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + src1_ptr[i]);
  3650. }
  3651. }
  3652. } else {
  3653. for (int ir = ir0; ir < ir1; ++ir) {
  3654. // src0, src1 and dst are same shape => same indices
  3655. const int i3 = ir/(ne2*ne1);
  3656. const int i2 = (ir - i3*ne2*ne1)/ne1;
  3657. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  3658. float * dst_ptr = (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  3659. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  3660. float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11);
  3661. for (int i = 0; i < ne0; i++) {
  3662. dst_ptr[i] = GGML_FP16_TO_FP32(src0_ptr[i]) + src1_ptr[i];
  3663. }
  3664. }
  3665. }
  3666. }
  3667. else {
  3668. // src1 is not contiguous
  3669. GGML_ABORT("fatal error");
  3670. }
  3671. }
  3672. static void ggml_compute_forward_add_bf16_f32(
  3673. const struct ggml_compute_params * params,
  3674. struct ggml_tensor * dst) {
  3675. const struct ggml_tensor * src0 = dst->src[0];
  3676. const struct ggml_tensor * src1 = dst->src[1];
  3677. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  3678. const int ith = params->ith;
  3679. const int nth = params->nth;
  3680. const int nr = ggml_nrows(src0);
  3681. GGML_TENSOR_BINARY_OP_LOCALS
  3682. GGML_ASSERT(src0->type == GGML_TYPE_BF16);
  3683. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  3684. if (dst->type == GGML_TYPE_F32) {
  3685. GGML_ASSERT( nb0 == sizeof(float));
  3686. }
  3687. else {
  3688. GGML_ASSERT(dst->type == GGML_TYPE_BF16);
  3689. GGML_ASSERT( nb0 == sizeof(ggml_bf16_t));
  3690. }
  3691. GGML_ASSERT(nb00 == sizeof(ggml_bf16_t));
  3692. // rows per thread
  3693. const int dr = (nr + nth - 1)/nth;
  3694. // row range for this thread
  3695. const int ir0 = dr*ith;
  3696. const int ir1 = MIN(ir0 + dr, nr);
  3697. if (nb10 == sizeof(float)) {
  3698. if (dst->type == GGML_TYPE_BF16) {
  3699. for (int ir = ir0; ir < ir1; ++ir) {
  3700. // src0, src1 and dst are same shape => same indices
  3701. const int i3 = ir/(ne2*ne1);
  3702. const int i2 = (ir - i3*ne2*ne1)/ne1;
  3703. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  3704. ggml_bf16_t * dst_ptr = (ggml_bf16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  3705. ggml_bf16_t * src0_ptr = (ggml_bf16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  3706. float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11);
  3707. for (int i = 0; i < ne0; i++) {
  3708. dst_ptr[i] = GGML_FP32_TO_BF16(GGML_BF16_TO_FP32(src0_ptr[i]) + src1_ptr[i]);
  3709. }
  3710. }
  3711. } else {
  3712. for (int ir = ir0; ir < ir1; ++ir) {
  3713. // src0, src1 and dst are same shape => same indices
  3714. const int i3 = ir/(ne2*ne1);
  3715. const int i2 = (ir - i3*ne2*ne1)/ne1;
  3716. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  3717. float * dst_ptr = (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  3718. ggml_bf16_t * src0_ptr = (ggml_bf16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  3719. float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11);
  3720. for (int i = 0; i < ne0; i++) {
  3721. dst_ptr[i] = GGML_BF16_TO_FP32(src0_ptr[i]) + src1_ptr[i];
  3722. }
  3723. }
  3724. }
  3725. }
  3726. else {
  3727. // src1 is not contiguous
  3728. GGML_ABORT("fatal error");
  3729. }
  3730. }
  3731. static void ggml_compute_forward_add_f16_f16(
  3732. const struct ggml_compute_params * params,
  3733. struct ggml_tensor * dst) {
  3734. const struct ggml_tensor * src0 = dst->src[0];
  3735. const struct ggml_tensor * src1 = dst->src[1];
  3736. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  3737. const int ith = params->ith;
  3738. const int nth = params->nth;
  3739. const int nr = ggml_nrows(src0);
  3740. GGML_TENSOR_BINARY_OP_LOCALS
  3741. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  3742. GGML_ASSERT(src1->type == GGML_TYPE_F16);
  3743. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  3744. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  3745. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  3746. // rows per thread
  3747. const int dr = (nr + nth - 1)/nth;
  3748. // row range for this thread
  3749. const int ir0 = dr*ith;
  3750. const int ir1 = MIN(ir0 + dr, nr);
  3751. if (nb10 == sizeof(ggml_fp16_t)) {
  3752. for (int ir = ir0; ir < ir1; ++ir) {
  3753. // src0, src1 and dst are same shape => same indices
  3754. const int i3 = ir/(ne2*ne1);
  3755. const int i2 = (ir - i3*ne2*ne1)/ne1;
  3756. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  3757. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  3758. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  3759. ggml_fp16_t * src1_ptr = (ggml_fp16_t *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11);
  3760. for (int i = 0; i < ne0; i++) {
  3761. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + GGML_FP16_TO_FP32(src1_ptr[i]));
  3762. }
  3763. }
  3764. }
  3765. else {
  3766. // src1 is not contiguous
  3767. GGML_ABORT("fatal error");
  3768. }
  3769. }
  3770. static void ggml_compute_forward_add_bf16_bf16(
  3771. const struct ggml_compute_params * params,
  3772. struct ggml_tensor * dst) {
  3773. const struct ggml_tensor * src0 = dst->src[0];
  3774. const struct ggml_tensor * src1 = dst->src[1];
  3775. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  3776. const int ith = params->ith;
  3777. const int nth = params->nth;
  3778. const int nr = ggml_nrows(src0);
  3779. GGML_TENSOR_BINARY_OP_LOCALS
  3780. GGML_ASSERT(src0->type == GGML_TYPE_BF16);
  3781. GGML_ASSERT(src1->type == GGML_TYPE_BF16);
  3782. GGML_ASSERT(dst->type == GGML_TYPE_BF16);
  3783. GGML_ASSERT( nb0 == sizeof(ggml_bf16_t));
  3784. GGML_ASSERT(nb00 == sizeof(ggml_bf16_t));
  3785. // rows per thread
  3786. const int dr = (nr + nth - 1)/nth;
  3787. // row range for this thread
  3788. const int ir0 = dr*ith;
  3789. const int ir1 = MIN(ir0 + dr, nr);
  3790. if (nb10 == sizeof(ggml_bf16_t)) {
  3791. for (int ir = ir0; ir < ir1; ++ir) {
  3792. // src0, src1 and dst are same shape => same indices
  3793. const int i3 = ir/(ne2*ne1);
  3794. const int i2 = (ir - i3*ne2*ne1)/ne1;
  3795. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  3796. ggml_bf16_t * dst_ptr = (ggml_bf16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  3797. ggml_bf16_t * src0_ptr = (ggml_bf16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  3798. ggml_bf16_t * src1_ptr = (ggml_bf16_t *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11);
  3799. for (int i = 0; i < ne0; i++) {
  3800. dst_ptr[i] = GGML_FP32_TO_BF16(GGML_BF16_TO_FP32(src0_ptr[i]) + GGML_BF16_TO_FP32(src1_ptr[i]));
  3801. }
  3802. }
  3803. }
  3804. else {
  3805. // src1 is not contiguous
  3806. GGML_ABORT("fatal error");
  3807. }
  3808. }
  3809. static void ggml_compute_forward_add_q_f32(
  3810. const struct ggml_compute_params * params,
  3811. struct ggml_tensor * dst) {
  3812. const struct ggml_tensor * src0 = dst->src[0];
  3813. const struct ggml_tensor * src1 = dst->src[1];
  3814. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  3815. const int nr = ggml_nrows(src0);
  3816. GGML_TENSOR_BINARY_OP_LOCALS
  3817. const int ith = params->ith;
  3818. const int nth = params->nth;
  3819. const enum ggml_type type = src0->type;
  3820. const enum ggml_type dtype = dst->type;
  3821. ggml_to_float_t const dequantize_row_q = ggml_get_type_traits(type)->to_float;
  3822. ggml_from_float_t const quantize_row_q = ggml_get_type_traits_cpu(dtype)->from_float;
  3823. // we don't support permuted src0 or src1
  3824. GGML_ASSERT(nb00 == ggml_type_size(type));
  3825. GGML_ASSERT(nb10 == sizeof(float));
  3826. // dst cannot be transposed or permuted
  3827. GGML_ASSERT(nb0 <= nb1);
  3828. GGML_ASSERT(nb1 <= nb2);
  3829. GGML_ASSERT(nb2 <= nb3);
  3830. GGML_ASSERT(ggml_is_quantized(src0->type));
  3831. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  3832. // rows per thread
  3833. const int dr = (nr + nth - 1)/nth;
  3834. // row range for this thread
  3835. const int ir0 = dr*ith;
  3836. const int ir1 = MIN(ir0 + dr, nr);
  3837. float * wdata = (float *) params->wdata + (ne00 + CACHE_LINE_SIZE_F32) * ith;
  3838. for (int ir = ir0; ir < ir1; ++ir) {
  3839. // src0 indices
  3840. const int i03 = ir/(ne02*ne01);
  3841. const int i02 = (ir - i03*ne02*ne01)/ne01;
  3842. const int i01 = (ir - i03*ne02*ne01 - i02*ne01);
  3843. // src1 and dst are same shape as src0 => same indices
  3844. const int i13 = i03;
  3845. const int i12 = i02;
  3846. const int i11 = i01;
  3847. const int i3 = i03;
  3848. const int i2 = i02;
  3849. const int i1 = i01;
  3850. void * src0_row = (void *) ((char *) src0->data + (i01*nb01 + i02*nb02 + i03*nb03));
  3851. float * src1_row = (float *)((char *) src1->data + (i11*nb11 + i12*nb12 + i13*nb13));
  3852. void * dst_row = (void *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
  3853. assert(ne00 % 32 == 0);
  3854. // unquantize row from src0 to temp buffer
  3855. dequantize_row_q(src0_row, wdata, ne00);
  3856. // add src1
  3857. ggml_vec_acc_f32(ne00, wdata, src1_row);
  3858. // quantize row to dst
  3859. if (quantize_row_q != NULL) {
  3860. quantize_row_q(wdata, dst_row, ne00);
  3861. } else {
  3862. memcpy(dst_row, wdata, ne0*nb0);
  3863. }
  3864. }
  3865. }
  3866. static void ggml_compute_forward_add(
  3867. const struct ggml_compute_params * params,
  3868. struct ggml_tensor * dst) {
  3869. const struct ggml_tensor * src0 = dst->src[0];
  3870. const struct ggml_tensor * src1 = dst->src[1];
  3871. switch (src0->type) {
  3872. case GGML_TYPE_F32:
  3873. {
  3874. if (src1->type == GGML_TYPE_F32) {
  3875. ggml_compute_forward_add_f32(params, dst);
  3876. }
  3877. else {
  3878. GGML_ABORT("fatal error");
  3879. }
  3880. } break;
  3881. case GGML_TYPE_F16:
  3882. {
  3883. if (src1->type == GGML_TYPE_F16) {
  3884. ggml_compute_forward_add_f16_f16(params, dst);
  3885. }
  3886. else if (src1->type == GGML_TYPE_F32) {
  3887. ggml_compute_forward_add_f16_f32(params, dst);
  3888. }
  3889. else {
  3890. GGML_ABORT("fatal error");
  3891. }
  3892. } break;
  3893. case GGML_TYPE_BF16:
  3894. {
  3895. if (src1->type == GGML_TYPE_BF16) {
  3896. ggml_compute_forward_add_bf16_bf16(params, dst);
  3897. }
  3898. else if (src1->type == GGML_TYPE_F32) {
  3899. ggml_compute_forward_add_bf16_f32(params, dst);
  3900. }
  3901. else {
  3902. GGML_ABORT("fatal error");
  3903. }
  3904. } break;
  3905. case GGML_TYPE_Q4_0:
  3906. case GGML_TYPE_Q4_1:
  3907. case GGML_TYPE_Q5_0:
  3908. case GGML_TYPE_Q5_1:
  3909. case GGML_TYPE_Q8_0:
  3910. case GGML_TYPE_Q2_K:
  3911. case GGML_TYPE_Q3_K:
  3912. case GGML_TYPE_Q4_K:
  3913. case GGML_TYPE_Q5_K:
  3914. case GGML_TYPE_Q6_K:
  3915. case GGML_TYPE_TQ1_0:
  3916. case GGML_TYPE_TQ2_0:
  3917. case GGML_TYPE_IQ2_XXS:
  3918. case GGML_TYPE_IQ2_XS:
  3919. case GGML_TYPE_IQ3_XXS:
  3920. case GGML_TYPE_IQ1_S:
  3921. case GGML_TYPE_IQ1_M:
  3922. case GGML_TYPE_IQ4_NL:
  3923. case GGML_TYPE_IQ4_XS:
  3924. case GGML_TYPE_IQ3_S:
  3925. case GGML_TYPE_IQ2_S:
  3926. case GGML_TYPE_Q4_0_4_4:
  3927. case GGML_TYPE_Q4_0_4_8:
  3928. case GGML_TYPE_Q4_0_8_8:
  3929. {
  3930. ggml_compute_forward_add_q_f32(params, dst);
  3931. } break;
  3932. default:
  3933. {
  3934. GGML_ABORT("fatal error");
  3935. }
  3936. }
  3937. }
  3938. // ggml_compute_forward_add1
  3939. static void ggml_compute_forward_add1_f32(
  3940. const struct ggml_compute_params * params,
  3941. struct ggml_tensor * dst) {
  3942. const struct ggml_tensor * src0 = dst->src[0];
  3943. const struct ggml_tensor * src1 = dst->src[1];
  3944. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  3945. GGML_ASSERT(ggml_is_scalar(src1));
  3946. const int ith = params->ith;
  3947. const int nth = params->nth;
  3948. const int nr = ggml_nrows(src0);
  3949. GGML_TENSOR_UNARY_OP_LOCALS
  3950. GGML_ASSERT( nb0 == sizeof(float));
  3951. GGML_ASSERT(nb00 == sizeof(float));
  3952. // rows per thread
  3953. const int dr = (nr + nth - 1)/nth;
  3954. // row range for this thread
  3955. const int ir0 = dr*ith;
  3956. const int ir1 = MIN(ir0 + dr, nr);
  3957. for (int ir = ir0; ir < ir1; ++ir) {
  3958. // src0 and dst are same shape => same indices
  3959. const int i3 = ir/(ne2*ne1);
  3960. const int i2 = (ir - i3*ne2*ne1)/ne1;
  3961. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  3962. #ifdef GGML_USE_ACCELERATE
  3963. UNUSED(ggml_vec_add1_f32);
  3964. vDSP_vadd(
  3965. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01), 1,
  3966. (float *) ((char *) src1->data), 0,
  3967. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ), 1,
  3968. ne0);
  3969. #else
  3970. ggml_vec_add1_f32(ne0,
  3971. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ),
  3972. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01),
  3973. *(float *) src1->data);
  3974. #endif
  3975. }
  3976. }
  3977. static void ggml_compute_forward_add1_f16_f32(
  3978. const struct ggml_compute_params * params,
  3979. struct ggml_tensor * dst) {
  3980. const struct ggml_tensor * src0 = dst->src[0];
  3981. const struct ggml_tensor * src1 = dst->src[1];
  3982. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  3983. GGML_ASSERT(ggml_is_scalar(src1));
  3984. // scalar to add
  3985. const float v = *(float *) src1->data;
  3986. const int ith = params->ith;
  3987. const int nth = params->nth;
  3988. const int nr = ggml_nrows(src0);
  3989. GGML_TENSOR_UNARY_OP_LOCALS
  3990. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  3991. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  3992. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  3993. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  3994. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  3995. // rows per thread
  3996. const int dr = (nr + nth - 1)/nth;
  3997. // row range for this thread
  3998. const int ir0 = dr*ith;
  3999. const int ir1 = MIN(ir0 + dr, nr);
  4000. for (int ir = ir0; ir < ir1; ++ir) {
  4001. // src0 and dst are same shape => same indices
  4002. const int i3 = ir/(ne2*ne1);
  4003. const int i2 = (ir - i3*ne2*ne1)/ne1;
  4004. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  4005. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  4006. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  4007. for (int i = 0; i < ne0; i++) {
  4008. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + v);
  4009. }
  4010. }
  4011. }
  4012. static void ggml_compute_forward_add1_f16_f16(
  4013. const struct ggml_compute_params * params,
  4014. struct ggml_tensor * dst) {
  4015. const struct ggml_tensor * src0 = dst->src[0];
  4016. const struct ggml_tensor * src1 = dst->src[1];
  4017. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  4018. GGML_ASSERT(ggml_is_scalar(src1));
  4019. // scalar to add
  4020. const float v = GGML_FP16_TO_FP32(*(ggml_fp16_t *) src1->data);
  4021. const int ith = params->ith;
  4022. const int nth = params->nth;
  4023. const int nr = ggml_nrows(src0);
  4024. GGML_TENSOR_UNARY_OP_LOCALS
  4025. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  4026. GGML_ASSERT(src1->type == GGML_TYPE_F16);
  4027. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  4028. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  4029. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  4030. // rows per thread
  4031. const int dr = (nr + nth - 1)/nth;
  4032. // row range for this thread
  4033. const int ir0 = dr*ith;
  4034. const int ir1 = MIN(ir0 + dr, nr);
  4035. for (int ir = ir0; ir < ir1; ++ir) {
  4036. // src0 and dst are same shape => same indices
  4037. const int i3 = ir/(ne2*ne1);
  4038. const int i2 = (ir - i3*ne2*ne1)/ne1;
  4039. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  4040. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  4041. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  4042. for (int i = 0; i < ne0; i++) {
  4043. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + v);
  4044. }
  4045. }
  4046. }
  4047. static void ggml_compute_forward_add1_q_f32(
  4048. const struct ggml_compute_params * params,
  4049. struct ggml_tensor * dst) {
  4050. const struct ggml_tensor * src0 = dst->src[0];
  4051. const struct ggml_tensor * src1 = dst->src[1];
  4052. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  4053. GGML_ASSERT(ggml_is_scalar(src1));
  4054. // scalar to add
  4055. const float v = *(float *) src1->data;
  4056. const int ith = params->ith;
  4057. const int nth = params->nth;
  4058. const int nr = ggml_nrows(src0);
  4059. GGML_TENSOR_UNARY_OP_LOCALS
  4060. const enum ggml_type type = src0->type;
  4061. ggml_to_float_t const dequantize_row_q = ggml_get_type_traits(type)->to_float;
  4062. ggml_from_float_t const quantize_row_q = ggml_get_type_traits_cpu(type)->from_float;
  4063. // we don't support permuted src0
  4064. GGML_ASSERT(nb00 == ggml_type_size(type));
  4065. // dst cannot be transposed or permuted
  4066. GGML_ASSERT(nb0 <= nb1);
  4067. GGML_ASSERT(nb1 <= nb2);
  4068. GGML_ASSERT(nb2 <= nb3);
  4069. GGML_ASSERT(ggml_is_quantized(src0->type));
  4070. GGML_ASSERT(dst->type == src0->type);
  4071. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  4072. // rows per thread
  4073. const int dr = (nr + nth - 1)/nth;
  4074. // row range for this thread
  4075. const int ir0 = dr*ith;
  4076. const int ir1 = MIN(ir0 + dr, nr);
  4077. float * wdata = (float *) params->wdata + (ne0 + CACHE_LINE_SIZE_F32) * ith;
  4078. for (int ir = ir0; ir < ir1; ++ir) {
  4079. // src0 and dst are same shape => same indices
  4080. const int i3 = ir/(ne2*ne1);
  4081. const int i2 = (ir - i3*ne2*ne1)/ne1;
  4082. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  4083. void * src0_row = (void *) ((char *) src0->data + (i1*nb01 + i2*nb02 + i3*nb03));
  4084. void * dst_row = (void *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb0 ));
  4085. assert(ne0 % 32 == 0);
  4086. // unquantize row from src0 to temp buffer
  4087. dequantize_row_q(src0_row, wdata, ne0);
  4088. // add src1
  4089. ggml_vec_acc1_f32(ne0, wdata, v);
  4090. // quantize row to dst
  4091. quantize_row_q(wdata, dst_row, ne0);
  4092. }
  4093. }
  4094. static void ggml_compute_forward_add1_bf16_f32(
  4095. const struct ggml_compute_params * params,
  4096. struct ggml_tensor * dst) {
  4097. const struct ggml_tensor * src0 = dst->src[0];
  4098. const struct ggml_tensor * src1 = dst->src[1];
  4099. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  4100. GGML_ASSERT(ggml_is_scalar(src1));
  4101. // scalar to add
  4102. const float v = *(float *) src1->data;
  4103. const int ith = params->ith;
  4104. const int nth = params->nth;
  4105. const int nr = ggml_nrows(src0);
  4106. GGML_TENSOR_UNARY_OP_LOCALS
  4107. GGML_ASSERT(src0->type == GGML_TYPE_BF16);
  4108. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  4109. GGML_ASSERT(dst->type == GGML_TYPE_BF16);
  4110. GGML_ASSERT( nb0 == sizeof(ggml_bf16_t));
  4111. GGML_ASSERT(nb00 == sizeof(ggml_bf16_t));
  4112. // rows per thread
  4113. const int dr = (nr + nth - 1)/nth;
  4114. // row range for this thread
  4115. const int ir0 = dr*ith;
  4116. const int ir1 = MIN(ir0 + dr, nr);
  4117. for (int ir = ir0; ir < ir1; ++ir) {
  4118. // src0 and dst are same shape => same indices
  4119. const int i3 = ir/(ne2*ne1);
  4120. const int i2 = (ir - i3*ne2*ne1)/ne1;
  4121. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  4122. ggml_bf16_t * dst_ptr = (ggml_bf16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  4123. ggml_bf16_t * src0_ptr = (ggml_bf16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  4124. for (int i = 0; i < ne0; i++) {
  4125. dst_ptr[i] = GGML_FP32_TO_BF16(GGML_BF16_TO_FP32(src0_ptr[i]) + v);
  4126. }
  4127. }
  4128. }
  4129. static void ggml_compute_forward_add1_bf16_bf16(
  4130. const struct ggml_compute_params * params,
  4131. struct ggml_tensor * dst) {
  4132. const struct ggml_tensor * src0 = dst->src[0];
  4133. const struct ggml_tensor * src1 = dst->src[1];
  4134. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  4135. GGML_ASSERT(ggml_is_scalar(src1));
  4136. // scalar to add
  4137. const float v = GGML_BF16_TO_FP32(*(ggml_bf16_t *) src1->data);
  4138. const int ith = params->ith;
  4139. const int nth = params->nth;
  4140. const int nr = ggml_nrows(src0);
  4141. GGML_TENSOR_UNARY_OP_LOCALS
  4142. GGML_ASSERT(src0->type == GGML_TYPE_BF16);
  4143. GGML_ASSERT(src1->type == GGML_TYPE_BF16);
  4144. GGML_ASSERT(dst->type == GGML_TYPE_BF16);
  4145. GGML_ASSERT( nb0 == sizeof(ggml_bf16_t));
  4146. GGML_ASSERT(nb00 == sizeof(ggml_bf16_t));
  4147. // rows per thread
  4148. const int dr = (nr + nth - 1)/nth;
  4149. // row range for this thread
  4150. const int ir0 = dr*ith;
  4151. const int ir1 = MIN(ir0 + dr, nr);
  4152. for (int ir = ir0; ir < ir1; ++ir) {
  4153. // src0 and dst are same shape => same indices
  4154. const int i3 = ir/(ne2*ne1);
  4155. const int i2 = (ir - i3*ne2*ne1)/ne1;
  4156. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  4157. ggml_bf16_t * dst_ptr = (ggml_bf16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  4158. ggml_bf16_t * src0_ptr = (ggml_bf16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  4159. for (int i = 0; i < ne0; i++) {
  4160. dst_ptr[i] = GGML_FP32_TO_BF16(GGML_BF16_TO_FP32(src0_ptr[i]) + v);
  4161. }
  4162. }
  4163. }
  4164. static void ggml_compute_forward_add1(
  4165. const struct ggml_compute_params * params,
  4166. struct ggml_tensor * dst) {
  4167. const struct ggml_tensor * src0 = dst->src[0];
  4168. const struct ggml_tensor * src1 = dst->src[1];
  4169. switch (src0->type) {
  4170. case GGML_TYPE_F32:
  4171. {
  4172. ggml_compute_forward_add1_f32(params, dst);
  4173. } break;
  4174. case GGML_TYPE_F16:
  4175. {
  4176. if (src1->type == GGML_TYPE_F16) {
  4177. ggml_compute_forward_add1_f16_f16(params, dst);
  4178. }
  4179. else if (src1->type == GGML_TYPE_F32) {
  4180. ggml_compute_forward_add1_f16_f32(params, dst);
  4181. }
  4182. else {
  4183. GGML_ABORT("fatal error");
  4184. }
  4185. } break;
  4186. case GGML_TYPE_BF16:
  4187. {
  4188. if (src1->type == GGML_TYPE_BF16) {
  4189. ggml_compute_forward_add1_bf16_bf16(params, dst);
  4190. }
  4191. else if (src1->type == GGML_TYPE_F32) {
  4192. ggml_compute_forward_add1_bf16_f32(params, dst);
  4193. }
  4194. else {
  4195. GGML_ABORT("fatal error");
  4196. }
  4197. } break;
  4198. case GGML_TYPE_Q4_0:
  4199. case GGML_TYPE_Q4_1:
  4200. case GGML_TYPE_Q5_0:
  4201. case GGML_TYPE_Q5_1:
  4202. case GGML_TYPE_Q8_0:
  4203. case GGML_TYPE_Q8_1:
  4204. case GGML_TYPE_Q2_K:
  4205. case GGML_TYPE_Q3_K:
  4206. case GGML_TYPE_Q4_K:
  4207. case GGML_TYPE_Q5_K:
  4208. case GGML_TYPE_Q6_K:
  4209. case GGML_TYPE_TQ1_0:
  4210. case GGML_TYPE_TQ2_0:
  4211. case GGML_TYPE_IQ2_XXS:
  4212. case GGML_TYPE_IQ2_XS:
  4213. case GGML_TYPE_IQ3_XXS:
  4214. case GGML_TYPE_IQ1_S:
  4215. case GGML_TYPE_IQ1_M:
  4216. case GGML_TYPE_IQ4_NL:
  4217. case GGML_TYPE_IQ4_XS:
  4218. case GGML_TYPE_IQ3_S:
  4219. case GGML_TYPE_IQ2_S:
  4220. case GGML_TYPE_Q4_0_4_4:
  4221. case GGML_TYPE_Q4_0_4_8:
  4222. case GGML_TYPE_Q4_0_8_8:
  4223. {
  4224. ggml_compute_forward_add1_q_f32(params, dst);
  4225. } break;
  4226. default:
  4227. {
  4228. GGML_ABORT("fatal error");
  4229. }
  4230. }
  4231. }
  4232. // ggml_compute_forward_acc
  4233. static void ggml_compute_forward_acc_f32(
  4234. const struct ggml_compute_params * params,
  4235. struct ggml_tensor * dst) {
  4236. const struct ggml_tensor * src0 = dst->src[0];
  4237. const struct ggml_tensor * src1 = dst->src[1];
  4238. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  4239. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  4240. // view src0 and dst with these strides and data offset inbytes during acc
  4241. // nb0 is implicitly element_size because src0 and dst are contiguous
  4242. size_t nb1 = ((int32_t *) dst->op_params)[0];
  4243. size_t nb2 = ((int32_t *) dst->op_params)[1];
  4244. size_t nb3 = ((int32_t *) dst->op_params)[2];
  4245. size_t offset = ((int32_t *) dst->op_params)[3];
  4246. bool inplace = (bool) ((int32_t *) dst->op_params)[4];
  4247. if (!inplace) {
  4248. if (params->ith == 0) {
  4249. // memcpy needs to be synchronized across threads to avoid race conditions.
  4250. // => do it in INIT phase
  4251. memcpy(
  4252. ((char *) dst->data),
  4253. ((char *) src0->data),
  4254. ggml_nbytes(dst));
  4255. }
  4256. ggml_barrier(params->threadpool);
  4257. }
  4258. const int ith = params->ith;
  4259. const int nth = params->nth;
  4260. const int nr = ggml_nrows(src1);
  4261. const int nc = src1->ne[0];
  4262. GGML_TENSOR_LOCALS(int64_t, ne1, src1, ne)
  4263. GGML_TENSOR_LOCALS(size_t, nb1, src1, nb)
  4264. // src0 and dst as viewed during acc
  4265. const size_t nb0 = ggml_element_size(src0);
  4266. const size_t nb00 = nb0;
  4267. const size_t nb01 = nb1;
  4268. const size_t nb02 = nb2;
  4269. const size_t nb03 = nb3;
  4270. GGML_ASSERT(offset + (ne10 == 0 ? 0 : ne10-1)*nb0 + (ne11 == 0 ? 0 : ne11-1)*nb1 + (ne12 == 0 ? 0 : ne12-1)*nb2 + (ne13 == 0 ? 0 : ne13-1)*nb3 < ggml_nbytes(dst));
  4271. GGML_ASSERT(offset + (ne10 == 0 ? 0 : ne10-1)*nb00 + (ne11 == 0 ? 0 : ne11-1)*nb01 + (ne12 == 0 ? 0 : ne12-1)*nb02 + (ne13 == 0 ? 0 : ne13-1)*nb03 < ggml_nbytes(src0));
  4272. GGML_ASSERT(nb10 == sizeof(float));
  4273. // rows per thread
  4274. const int dr = (nr + nth - 1)/nth;
  4275. // row range for this thread
  4276. const int ir0 = dr*ith;
  4277. const int ir1 = MIN(ir0 + dr, nr);
  4278. for (int ir = ir0; ir < ir1; ++ir) {
  4279. // src0 and dst are viewed with shape of src1 and offset
  4280. // => same indices
  4281. const int i3 = ir/(ne12*ne11);
  4282. const int i2 = (ir - i3*ne12*ne11)/ne11;
  4283. const int i1 = (ir - i3*ne12*ne11 - i2*ne11);
  4284. #ifdef GGML_USE_ACCELERATE
  4285. vDSP_vadd(
  4286. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + offset), 1,
  4287. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11), 1,
  4288. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + offset), 1, nc);
  4289. #else
  4290. ggml_vec_add_f32(nc,
  4291. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + offset),
  4292. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + offset),
  4293. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
  4294. #endif
  4295. }
  4296. }
  4297. static void ggml_compute_forward_acc(
  4298. const struct ggml_compute_params * params,
  4299. struct ggml_tensor * dst) {
  4300. const struct ggml_tensor * src0 = dst->src[0];
  4301. switch (src0->type) {
  4302. case GGML_TYPE_F32:
  4303. {
  4304. ggml_compute_forward_acc_f32(params, dst);
  4305. } break;
  4306. case GGML_TYPE_F16:
  4307. case GGML_TYPE_BF16:
  4308. case GGML_TYPE_Q4_0:
  4309. case GGML_TYPE_Q4_1:
  4310. case GGML_TYPE_Q5_0:
  4311. case GGML_TYPE_Q5_1:
  4312. case GGML_TYPE_Q8_0:
  4313. case GGML_TYPE_Q8_1:
  4314. case GGML_TYPE_Q2_K:
  4315. case GGML_TYPE_Q3_K:
  4316. case GGML_TYPE_Q4_K:
  4317. case GGML_TYPE_Q5_K:
  4318. case GGML_TYPE_Q6_K:
  4319. case GGML_TYPE_TQ1_0:
  4320. case GGML_TYPE_TQ2_0:
  4321. case GGML_TYPE_IQ2_XXS:
  4322. case GGML_TYPE_IQ2_XS:
  4323. case GGML_TYPE_IQ3_XXS:
  4324. case GGML_TYPE_IQ1_S:
  4325. case GGML_TYPE_IQ1_M:
  4326. case GGML_TYPE_IQ4_NL:
  4327. case GGML_TYPE_IQ4_XS:
  4328. case GGML_TYPE_IQ3_S:
  4329. case GGML_TYPE_IQ2_S:
  4330. case GGML_TYPE_Q4_0_4_4:
  4331. case GGML_TYPE_Q4_0_4_8:
  4332. case GGML_TYPE_Q4_0_8_8:
  4333. default:
  4334. {
  4335. GGML_ABORT("fatal error");
  4336. }
  4337. }
  4338. }
  4339. // ggml_compute_forward_sub
  4340. static void ggml_compute_forward_sub_f32(
  4341. const struct ggml_compute_params * params,
  4342. struct ggml_tensor * dst) {
  4343. const struct ggml_tensor * src0 = dst->src[0];
  4344. const struct ggml_tensor * src1 = dst->src[1];
  4345. assert(ggml_can_repeat(src1, src0) && ggml_are_same_shape(src0, dst));
  4346. const int ith = params->ith;
  4347. const int nth = params->nth;
  4348. const int nr = ggml_nrows(src0);
  4349. GGML_TENSOR_BINARY_OP_LOCALS
  4350. GGML_ASSERT( nb0 == sizeof(float));
  4351. GGML_ASSERT(nb00 == sizeof(float));
  4352. // rows per thread
  4353. const int dr = (nr + nth - 1)/nth;
  4354. // row range for this thread
  4355. const int ir0 = dr*ith;
  4356. const int ir1 = MIN(ir0 + dr, nr);
  4357. if (nb10 == sizeof(float)) {
  4358. for (int ir = ir0; ir < ir1; ++ir) {
  4359. // src1 is broadcastable across src0 and dst in i1, i2, i3
  4360. const int64_t i03 = ir/(ne02*ne01);
  4361. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  4362. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  4363. const int64_t i13 = i03 % ne13;
  4364. const int64_t i12 = i02 % ne12;
  4365. const int64_t i11 = i01 % ne11;
  4366. const int64_t nr0 = ne00 / ne10;
  4367. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  4368. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  4369. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11);
  4370. for (int64_t r = 0; r < nr0; ++r) {
  4371. #ifdef GGML_USE_ACCELERATE
  4372. vDSP_vsub(src1_ptr, 1, src0_ptr + r*ne10, 1, dst_ptr + r*ne10, 1, ne10);
  4373. #else
  4374. ggml_vec_sub_f32(ne10, dst_ptr + r*ne10, src0_ptr + r*ne10, src1_ptr);
  4375. #endif
  4376. }
  4377. }
  4378. } else {
  4379. // src1 is not contiguous
  4380. for (int ir = ir0; ir < ir1; ++ir) {
  4381. // src1 is broadcastable across src0 and dst in i1, i2, i3
  4382. const int64_t i03 = ir/(ne02*ne01);
  4383. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  4384. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  4385. const int64_t i13 = i03 % ne13;
  4386. const int64_t i12 = i02 % ne12;
  4387. const int64_t i11 = i01 % ne11;
  4388. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  4389. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  4390. for (int64_t i0 = 0; i0 < ne0; ++i0) {
  4391. const int64_t i10 = i0 % ne10;
  4392. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11 + i10*nb10);
  4393. dst_ptr[i0] = src0_ptr[i0] - *src1_ptr;
  4394. }
  4395. }
  4396. }
  4397. }
  4398. static void ggml_compute_forward_sub(
  4399. const struct ggml_compute_params * params,
  4400. struct ggml_tensor * dst) {
  4401. const struct ggml_tensor * src0 = dst->src[0];
  4402. switch (src0->type) {
  4403. case GGML_TYPE_F32:
  4404. {
  4405. ggml_compute_forward_sub_f32(params, dst);
  4406. } break;
  4407. default:
  4408. {
  4409. GGML_ABORT("fatal error");
  4410. }
  4411. }
  4412. }
  4413. // ggml_compute_forward_mul
  4414. static void ggml_compute_forward_mul_f32(
  4415. const struct ggml_compute_params * params,
  4416. struct ggml_tensor * dst) {
  4417. const struct ggml_tensor * src0 = dst->src[0];
  4418. const struct ggml_tensor * src1 = dst->src[1];
  4419. GGML_ASSERT(ggml_can_repeat(src1, src0) && ggml_are_same_shape(src0, dst));
  4420. const int ith = params->ith;
  4421. const int nth = params->nth;
  4422. const int64_t nr = ggml_nrows(src0);
  4423. GGML_TENSOR_BINARY_OP_LOCALS
  4424. GGML_ASSERT( nb0 == sizeof(float));
  4425. GGML_ASSERT(nb00 == sizeof(float));
  4426. if (nb10 == sizeof(float)) {
  4427. for (int64_t ir = ith; ir < nr; ir += nth) {
  4428. // src0 and dst are same shape => same indices
  4429. const int64_t i03 = ir/(ne02*ne01);
  4430. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  4431. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  4432. const int64_t i13 = i03 % ne13;
  4433. const int64_t i12 = i02 % ne12;
  4434. const int64_t i11 = i01 % ne11;
  4435. const int64_t nr0 = ne00 / ne10;
  4436. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  4437. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  4438. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11);
  4439. for (int64_t r = 0 ; r < nr0; ++r) {
  4440. #ifdef GGML_USE_ACCELERATE
  4441. UNUSED(ggml_vec_mul_f32);
  4442. vDSP_vmul(src0_ptr + r*ne10, 1, src1_ptr, 1, dst_ptr + r*ne10, 1, ne10);
  4443. #else
  4444. ggml_vec_mul_f32(ne10, dst_ptr + r*ne10, src0_ptr + r*ne10, src1_ptr);
  4445. #endif
  4446. }
  4447. }
  4448. } else {
  4449. // src1 is not contiguous
  4450. for (int64_t ir = ith; ir < nr; ir += nth) {
  4451. // src0 and dst are same shape => same indices
  4452. // src1 is broadcastable across src0 and dst in i1, i2, i3
  4453. const int64_t i03 = ir/(ne02*ne01);
  4454. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  4455. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  4456. const int64_t i13 = i03 % ne13;
  4457. const int64_t i12 = i02 % ne12;
  4458. const int64_t i11 = i01 % ne11;
  4459. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  4460. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  4461. for (int64_t i0 = 0; i0 < ne00; ++i0) {
  4462. const int64_t i10 = i0 % ne10;
  4463. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11 + i10*nb10);
  4464. dst_ptr[i0] = src0_ptr[i0] * (*src1_ptr);
  4465. }
  4466. }
  4467. }
  4468. }
  4469. static void ggml_compute_forward_mul(
  4470. const struct ggml_compute_params * params,
  4471. struct ggml_tensor * dst) {
  4472. const struct ggml_tensor * src0 = dst->src[0];
  4473. const struct ggml_tensor * src1 = dst->src[1];
  4474. GGML_ASSERT(src1->type == GGML_TYPE_F32 && "only f32 src1 supported for now");
  4475. switch (src0->type) {
  4476. case GGML_TYPE_F32:
  4477. {
  4478. ggml_compute_forward_mul_f32(params, dst);
  4479. } break;
  4480. default:
  4481. {
  4482. GGML_ABORT("fatal error");
  4483. }
  4484. }
  4485. }
  4486. // ggml_compute_forward_div
  4487. static void ggml_compute_forward_div_f32(
  4488. const struct ggml_compute_params * params,
  4489. struct ggml_tensor * dst) {
  4490. const struct ggml_tensor * src0 = dst->src[0];
  4491. const struct ggml_tensor * src1 = dst->src[1];
  4492. GGML_ASSERT(ggml_can_repeat(src1, src0) && ggml_are_same_shape(src0, dst));
  4493. const int ith = params->ith;
  4494. const int nth = params->nth;
  4495. const int64_t nr = ggml_nrows(src0);
  4496. GGML_TENSOR_BINARY_OP_LOCALS
  4497. GGML_ASSERT( nb0 == sizeof(float));
  4498. GGML_ASSERT(nb00 == sizeof(float));
  4499. if (nb10 == sizeof(float)) {
  4500. for (int64_t ir = ith; ir < nr; ir += nth) {
  4501. // src0 and dst are same shape => same indices
  4502. const int64_t i03 = ir/(ne02*ne01);
  4503. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  4504. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  4505. const int64_t i13 = i03 % ne13;
  4506. const int64_t i12 = i02 % ne12;
  4507. const int64_t i11 = i01 % ne11;
  4508. const int64_t nr0 = ne00 / ne10;
  4509. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  4510. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  4511. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11);
  4512. for (int64_t r = 0; r < nr0; ++r) {
  4513. #ifdef GGML_USE_ACCELERATE
  4514. UNUSED(ggml_vec_div_f32);
  4515. vDSP_vdiv(src1_ptr, 1, src0_ptr + r*ne10, 1, dst_ptr + r*ne10, 1, ne10);
  4516. #else
  4517. ggml_vec_div_f32(ne10, dst_ptr + r*ne10, src0_ptr + r*ne10, src1_ptr);
  4518. #endif
  4519. }
  4520. }
  4521. } else {
  4522. // src1 is not contiguous
  4523. for (int64_t ir = ith; ir < nr; ir += nth) {
  4524. // src0 and dst are same shape => same indices
  4525. // src1 is broadcastable across src0 and dst in i1, i2, i3
  4526. const int64_t i03 = ir/(ne02*ne01);
  4527. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  4528. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  4529. const int64_t i13 = i03 % ne13;
  4530. const int64_t i12 = i02 % ne12;
  4531. const int64_t i11 = i01 % ne11;
  4532. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  4533. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  4534. for (int64_t i0 = 0; i0 < ne00; ++i0) {
  4535. const int64_t i10 = i0 % ne10;
  4536. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11 + i10*nb10);
  4537. dst_ptr[i0] = src0_ptr[i0] / (*src1_ptr);
  4538. }
  4539. }
  4540. }
  4541. }
  4542. static void ggml_compute_forward_div(
  4543. const struct ggml_compute_params * params,
  4544. struct ggml_tensor * dst) {
  4545. const struct ggml_tensor * src0 = dst->src[0];
  4546. switch (src0->type) {
  4547. case GGML_TYPE_F32:
  4548. {
  4549. ggml_compute_forward_div_f32(params, dst);
  4550. } break;
  4551. default:
  4552. {
  4553. GGML_ABORT("fatal error");
  4554. }
  4555. }
  4556. }
  4557. // ggml_compute_forward_sqr
  4558. static void ggml_compute_forward_sqr_f32(
  4559. const struct ggml_compute_params * params,
  4560. struct ggml_tensor * dst) {
  4561. const struct ggml_tensor * src0 = dst->src[0];
  4562. if (params->ith != 0) {
  4563. return;
  4564. }
  4565. assert(ggml_are_same_shape(src0, dst));
  4566. const int n = ggml_nrows(src0);
  4567. const int nc = src0->ne[0];
  4568. assert( dst->nb[0] == sizeof(float));
  4569. assert(src0->nb[0] == sizeof(float));
  4570. for (int i = 0; i < n; i++) {
  4571. ggml_vec_sqr_f32(nc,
  4572. (float *) ((char *) dst->data + i*( dst->nb[1])),
  4573. (float *) ((char *) src0->data + i*(src0->nb[1])));
  4574. }
  4575. }
  4576. static void ggml_compute_forward_sqr(
  4577. const struct ggml_compute_params * params,
  4578. struct ggml_tensor * dst) {
  4579. const struct ggml_tensor * src0 = dst->src[0];
  4580. switch (src0->type) {
  4581. case GGML_TYPE_F32:
  4582. {
  4583. ggml_compute_forward_sqr_f32(params, dst);
  4584. } break;
  4585. default:
  4586. {
  4587. GGML_ABORT("fatal error");
  4588. }
  4589. }
  4590. }
  4591. // ggml_compute_forward_sqrt
  4592. static void ggml_compute_forward_sqrt_f32(
  4593. const struct ggml_compute_params * params,
  4594. struct ggml_tensor * dst) {
  4595. const struct ggml_tensor * src0 = dst->src[0];
  4596. if (params->ith != 0) {
  4597. return;
  4598. }
  4599. assert(ggml_are_same_shape(src0, dst));
  4600. const int n = ggml_nrows(src0);
  4601. const int nc = src0->ne[0];
  4602. assert( dst->nb[0] == sizeof(float));
  4603. assert(src0->nb[0] == sizeof(float));
  4604. for (int i = 0; i < n; i++) {
  4605. ggml_vec_sqrt_f32(nc,
  4606. (float *) ((char *) dst->data + i*( dst->nb[1])),
  4607. (float *) ((char *) src0->data + i*(src0->nb[1])));
  4608. }
  4609. }
  4610. static void ggml_compute_forward_sqrt(
  4611. const struct ggml_compute_params * params,
  4612. struct ggml_tensor * dst) {
  4613. const struct ggml_tensor * src0 = dst->src[0];
  4614. switch (src0->type) {
  4615. case GGML_TYPE_F32:
  4616. {
  4617. ggml_compute_forward_sqrt_f32(params, dst);
  4618. } break;
  4619. default:
  4620. {
  4621. GGML_ABORT("fatal error");
  4622. }
  4623. }
  4624. }
  4625. // ggml_compute_forward_log
  4626. static void ggml_compute_forward_log_f32(
  4627. const struct ggml_compute_params * params,
  4628. struct ggml_tensor * dst) {
  4629. const struct ggml_tensor * src0 = dst->src[0];
  4630. if (params->ith != 0) {
  4631. return;
  4632. }
  4633. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  4634. const int n = ggml_nrows(src0);
  4635. const int nc = src0->ne[0];
  4636. GGML_ASSERT( dst->nb[0] == sizeof(float));
  4637. GGML_ASSERT(src0->nb[0] == sizeof(float));
  4638. for (int i = 0; i < n; i++) {
  4639. ggml_vec_log_f32(nc,
  4640. (float *) ((char *) dst->data + i*( dst->nb[1])),
  4641. (float *) ((char *) src0->data + i*(src0->nb[1])));
  4642. }
  4643. }
  4644. static void ggml_compute_forward_log(
  4645. const struct ggml_compute_params * params,
  4646. struct ggml_tensor * dst) {
  4647. const struct ggml_tensor * src0 = dst->src[0];
  4648. switch (src0->type) {
  4649. case GGML_TYPE_F32:
  4650. {
  4651. ggml_compute_forward_log_f32(params, dst);
  4652. } break;
  4653. default:
  4654. {
  4655. GGML_ABORT("fatal error");
  4656. }
  4657. }
  4658. }
  4659. // ggml_compute_forward_sin
  4660. static void ggml_compute_forward_sin_f32(
  4661. const struct ggml_compute_params * params,
  4662. struct ggml_tensor * dst) {
  4663. const struct ggml_tensor * src0 = dst->src[0];
  4664. if (params->ith != 0) {
  4665. return;
  4666. }
  4667. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  4668. const int n = ggml_nrows(src0);
  4669. const int nc = src0->ne[0];
  4670. GGML_ASSERT( dst->nb[0] == sizeof(float));
  4671. GGML_ASSERT(src0->nb[0] == sizeof(float));
  4672. for (int i = 0; i < n; i++) {
  4673. ggml_vec_sin_f32(nc,
  4674. (float *) ((char *) dst->data + i*( dst->nb[1])),
  4675. (float *) ((char *) src0->data + i*(src0->nb[1])));
  4676. }
  4677. }
  4678. static void ggml_compute_forward_sin(
  4679. const struct ggml_compute_params * params,
  4680. struct ggml_tensor * dst) {
  4681. const struct ggml_tensor * src0 = dst->src[0];
  4682. switch (src0->type) {
  4683. case GGML_TYPE_F32:
  4684. {
  4685. ggml_compute_forward_sin_f32(params, dst);
  4686. } break;
  4687. default:
  4688. {
  4689. GGML_ABORT("fatal error");
  4690. }
  4691. }
  4692. }
  4693. // ggml_compute_forward_cos
  4694. static void ggml_compute_forward_cos_f32(
  4695. const struct ggml_compute_params * params,
  4696. struct ggml_tensor * dst) {
  4697. const struct ggml_tensor * src0 = dst->src[0];
  4698. if (params->ith != 0) {
  4699. return;
  4700. }
  4701. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  4702. const int n = ggml_nrows(src0);
  4703. const int nc = src0->ne[0];
  4704. GGML_ASSERT( dst->nb[0] == sizeof(float));
  4705. GGML_ASSERT(src0->nb[0] == sizeof(float));
  4706. for (int i = 0; i < n; i++) {
  4707. ggml_vec_cos_f32(nc,
  4708. (float *) ((char *) dst->data + i*( dst->nb[1])),
  4709. (float *) ((char *) src0->data + i*(src0->nb[1])));
  4710. }
  4711. }
  4712. static void ggml_compute_forward_cos(
  4713. const struct ggml_compute_params * params,
  4714. struct ggml_tensor * dst) {
  4715. const struct ggml_tensor * src0 = dst->src[0];
  4716. switch (src0->type) {
  4717. case GGML_TYPE_F32:
  4718. {
  4719. ggml_compute_forward_cos_f32(params, dst);
  4720. } break;
  4721. default:
  4722. {
  4723. GGML_ABORT("fatal error");
  4724. }
  4725. }
  4726. }
  4727. // ggml_compute_forward_sum
  4728. static void ggml_compute_forward_sum_f32(
  4729. const struct ggml_compute_params * params,
  4730. struct ggml_tensor * dst) {
  4731. const struct ggml_tensor * src0 = dst->src[0];
  4732. if (params->ith != 0) {
  4733. return;
  4734. }
  4735. assert(ggml_is_scalar(dst));
  4736. assert(src0->nb[0] == sizeof(float));
  4737. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne)
  4738. GGML_TENSOR_LOCALS(size_t, nb0, src0, nb)
  4739. ggml_float sum = 0;
  4740. ggml_float row_sum = 0;
  4741. for (int64_t i03 = 0; i03 < ne03; i03++) {
  4742. for (int64_t i02 = 0; i02 < ne02; i02++) {
  4743. for (int64_t i01 = 0; i01 < ne01; i01++) {
  4744. ggml_vec_sum_f32_ggf(ne00,
  4745. &row_sum,
  4746. (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03));
  4747. sum += row_sum;
  4748. }
  4749. }
  4750. }
  4751. ((float *) dst->data)[0] = sum;
  4752. }
  4753. static void ggml_compute_forward_sum_f16(
  4754. const struct ggml_compute_params * params,
  4755. struct ggml_tensor * dst) {
  4756. const struct ggml_tensor * src0 = dst->src[0];
  4757. if (params->ith != 0) {
  4758. return;
  4759. }
  4760. assert(ggml_is_scalar(dst));
  4761. assert(src0->nb[0] == sizeof(ggml_fp16_t));
  4762. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne)
  4763. GGML_TENSOR_LOCALS(size_t, nb0, src0, nb)
  4764. float sum = 0;
  4765. float row_sum = 0;
  4766. for (int64_t i03 = 0; i03 < ne03; i03++) {
  4767. for (int64_t i02 = 0; i02 < ne02; i02++) {
  4768. for (int64_t i01 = 0; i01 < ne01; i01++) {
  4769. ggml_vec_sum_f16_ggf(ne00,
  4770. &row_sum,
  4771. (ggml_fp16_t *) ((char *) src0->data + i01 * nb01 + i02 * nb02 + i03 * nb03));
  4772. sum += row_sum;
  4773. }
  4774. }
  4775. }
  4776. ((ggml_fp16_t *) dst->data)[0] = GGML_FP32_TO_FP16(sum);
  4777. }
  4778. static void ggml_compute_forward_sum_bf16(
  4779. const struct ggml_compute_params * params,
  4780. struct ggml_tensor * dst) {
  4781. const struct ggml_tensor * src0 = dst->src[0];
  4782. if (params->ith != 0) {
  4783. return;
  4784. }
  4785. assert(ggml_is_scalar(dst));
  4786. assert(src0->nb[0] == sizeof(ggml_bf16_t));
  4787. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne)
  4788. GGML_TENSOR_LOCALS(size_t, nb0, src0, nb)
  4789. float sum = 0;
  4790. float row_sum = 0;
  4791. for (int64_t i03 = 0; i03 < ne03; i03++) {
  4792. for (int64_t i02 = 0; i02 < ne02; i02++) {
  4793. for (int64_t i01 = 0; i01 < ne01; i01++) {
  4794. ggml_vec_sum_bf16_ggf(ne00,
  4795. &row_sum,
  4796. (ggml_bf16_t *) ((char *) src0->data + i01 * nb01 + i02 * nb02 + i03 * nb03));
  4797. sum += row_sum;
  4798. }
  4799. }
  4800. }
  4801. ((ggml_bf16_t *) dst->data)[0] = GGML_FP32_TO_BF16(sum);
  4802. }
  4803. static void ggml_compute_forward_sum(
  4804. const struct ggml_compute_params * params,
  4805. struct ggml_tensor * dst) {
  4806. const struct ggml_tensor * src0 = dst->src[0];
  4807. switch (src0->type) {
  4808. case GGML_TYPE_F32:
  4809. {
  4810. ggml_compute_forward_sum_f32(params, dst);
  4811. } break;
  4812. case GGML_TYPE_F16:
  4813. {
  4814. ggml_compute_forward_sum_f16(params, dst);
  4815. } break;
  4816. case GGML_TYPE_BF16:
  4817. {
  4818. ggml_compute_forward_sum_bf16(params, dst);
  4819. } break;
  4820. default:
  4821. {
  4822. GGML_ABORT("fatal error");
  4823. }
  4824. }
  4825. }
  4826. // ggml_compute_forward_sum_rows
  4827. static void ggml_compute_forward_sum_rows_f32(
  4828. const struct ggml_compute_params * params,
  4829. struct ggml_tensor * dst) {
  4830. const struct ggml_tensor * src0 = dst->src[0];
  4831. if (params->ith != 0) {
  4832. return;
  4833. }
  4834. GGML_ASSERT(src0->nb[0] == sizeof(float));
  4835. GGML_ASSERT(dst->nb[0] == sizeof(float));
  4836. GGML_TENSOR_UNARY_OP_LOCALS
  4837. GGML_ASSERT(ne0 == 1);
  4838. GGML_ASSERT(ne1 == ne01);
  4839. GGML_ASSERT(ne2 == ne02);
  4840. GGML_ASSERT(ne3 == ne03);
  4841. for (int64_t i3 = 0; i3 < ne03; i3++) {
  4842. for (int64_t i2 = 0; i2 < ne02; i2++) {
  4843. for (int64_t i1 = 0; i1 < ne01; i1++) {
  4844. float * src_row = (float *) ((char *) src0->data + i1*nb01 + i2*nb02 + i3*nb03);
  4845. float * dst_row = (float *) ((char *) dst->data + i1*nb1 + i2*nb2 + i3*nb3);
  4846. float row_sum = 0;
  4847. ggml_vec_sum_f32(ne00, &row_sum, src_row);
  4848. dst_row[0] = row_sum;
  4849. }
  4850. }
  4851. }
  4852. }
  4853. static void ggml_compute_forward_sum_rows(
  4854. const struct ggml_compute_params * params,
  4855. struct ggml_tensor * dst) {
  4856. const struct ggml_tensor * src0 = dst->src[0];
  4857. switch (src0->type) {
  4858. case GGML_TYPE_F32:
  4859. {
  4860. ggml_compute_forward_sum_rows_f32(params, dst);
  4861. } break;
  4862. default:
  4863. {
  4864. GGML_ABORT("fatal error");
  4865. }
  4866. }
  4867. }
  4868. // ggml_compute_forward_mean
  4869. static void ggml_compute_forward_mean_f32(
  4870. const struct ggml_compute_params * params,
  4871. struct ggml_tensor * dst) {
  4872. const struct ggml_tensor * src0 = dst->src[0];
  4873. if (params->ith != 0) {
  4874. return;
  4875. }
  4876. assert(src0->nb[0] == sizeof(float));
  4877. GGML_TENSOR_UNARY_OP_LOCALS
  4878. assert(ne0 == 1);
  4879. assert(ne1 == ne01);
  4880. assert(ne2 == ne02);
  4881. assert(ne3 == ne03);
  4882. UNUSED(ne0);
  4883. UNUSED(ne1);
  4884. UNUSED(ne2);
  4885. UNUSED(ne3);
  4886. for (int64_t i03 = 0; i03 < ne03; i03++) {
  4887. for (int64_t i02 = 0; i02 < ne02; i02++) {
  4888. for (int64_t i01 = 0; i01 < ne01; i01++) {
  4889. ggml_vec_sum_f32(ne00,
  4890. (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  4891. (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03));
  4892. *(float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3) /= (float) ne00;
  4893. }
  4894. }
  4895. }
  4896. }
  4897. static void ggml_compute_forward_mean(
  4898. const struct ggml_compute_params * params,
  4899. struct ggml_tensor * dst) {
  4900. const struct ggml_tensor * src0 = dst->src[0];
  4901. switch (src0->type) {
  4902. case GGML_TYPE_F32:
  4903. {
  4904. ggml_compute_forward_mean_f32(params, dst);
  4905. } break;
  4906. default:
  4907. {
  4908. GGML_ABORT("fatal error");
  4909. }
  4910. }
  4911. }
  4912. // ggml_compute_forward_argmax
  4913. static void ggml_compute_forward_argmax_f32(
  4914. const struct ggml_compute_params * params,
  4915. struct ggml_tensor * dst) {
  4916. const struct ggml_tensor * src0 = dst->src[0];
  4917. if (params->ith != 0) {
  4918. return;
  4919. }
  4920. assert(src0->nb[0] == sizeof(float));
  4921. assert(dst->nb[0] == sizeof(float));
  4922. const int64_t ne00 = src0->ne[0];
  4923. const int64_t ne01 = src0->ne[1];
  4924. const size_t nb01 = src0->nb[1];
  4925. const size_t nb0 = dst->nb[0];
  4926. for (int64_t i1 = 0; i1 < ne01; i1++) {
  4927. float * src = (float *) ((char *) src0->data + i1*nb01);
  4928. int32_t * dst_ = (int32_t *) ((char *) dst->data + i1*nb0);
  4929. int v = 0;
  4930. ggml_vec_argmax_f32(ne00, &v, src);
  4931. dst_[0] = v;
  4932. }
  4933. }
  4934. static void ggml_compute_forward_argmax(
  4935. const struct ggml_compute_params * params,
  4936. struct ggml_tensor * dst) {
  4937. const struct ggml_tensor * src0 = dst->src[0];
  4938. switch (src0->type) {
  4939. case GGML_TYPE_F32:
  4940. {
  4941. ggml_compute_forward_argmax_f32(params, dst);
  4942. } break;
  4943. default:
  4944. {
  4945. GGML_ABORT("fatal error");
  4946. }
  4947. }
  4948. }
  4949. // ggml_compute_forward_count_equal
  4950. static void ggml_compute_forward_count_equal_i32(
  4951. const struct ggml_compute_params * params,
  4952. struct ggml_tensor * dst) {
  4953. const struct ggml_tensor * src0 = dst->src[0];
  4954. const struct ggml_tensor * src1 = dst->src[1];
  4955. GGML_TENSOR_BINARY_OP_LOCALS;
  4956. GGML_ASSERT(src0->type == GGML_TYPE_I32);
  4957. GGML_ASSERT(src1->type == GGML_TYPE_I32);
  4958. GGML_ASSERT(ggml_are_same_shape(src0, src1));
  4959. GGML_ASSERT(ggml_is_scalar(dst));
  4960. GGML_ASSERT(dst->type == GGML_TYPE_I64);
  4961. const int64_t nr = ggml_nrows(src0);
  4962. const int ith = params->ith;
  4963. const int nth = params->nth;
  4964. int64_t * sums = (int64_t *) params->wdata;
  4965. int64_t sum_thread = 0;
  4966. // rows per thread
  4967. const int64_t dr = (nr + nth - 1)/nth;
  4968. // row range for this thread
  4969. const int64_t ir0 = dr*ith;
  4970. const int64_t ir1 = MIN(ir0 + dr, nr);
  4971. for (int64_t ir = ir0; ir < ir1; ++ir) {
  4972. const int64_t i03 = ir / (ne02*ne01);
  4973. const int64_t i02 = (ir - i03*ne03) / ne01;
  4974. const int64_t i01 = ir - i03*ne03 - i02*ne02;
  4975. const char * data0 = (const char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01;
  4976. const char * data1 = (const char *) src1->data + i03*nb13 + i02*nb12 + i01*nb11;
  4977. for (int64_t i00 = 0; i00 < ne00; ++i00) {
  4978. const int32_t val0 = *((const int32_t *) (data0 + i00*nb00));
  4979. const int32_t val1 = *((const int32_t *) (data1 + i00*nb10));
  4980. sum_thread += val0 == val1;
  4981. }
  4982. }
  4983. if (ith != 0) {
  4984. sums[ith] = sum_thread;
  4985. }
  4986. ggml_barrier(params->threadpool);
  4987. if (ith != 0) {
  4988. return;
  4989. }
  4990. for (int ith_other = 1; ith_other < nth; ++ith_other) {
  4991. sum_thread += sums[ith_other];
  4992. }
  4993. *((int64_t *) dst->data) = sum_thread;
  4994. }
  4995. static void ggml_compute_forward_count_equal(
  4996. const struct ggml_compute_params * params,
  4997. struct ggml_tensor * dst) {
  4998. const struct ggml_tensor * src0 = dst->src[0];
  4999. switch (src0->type) {
  5000. case GGML_TYPE_I32:
  5001. {
  5002. ggml_compute_forward_count_equal_i32(params, dst);
  5003. } break;
  5004. default:
  5005. {
  5006. GGML_ABORT("fatal error");
  5007. }
  5008. }
  5009. }
  5010. // ggml_compute_forward_repeat
  5011. static void ggml_compute_forward_repeat_f32(
  5012. const struct ggml_compute_params * params,
  5013. struct ggml_tensor * dst) {
  5014. const struct ggml_tensor * src0 = dst->src[0];
  5015. if (params->ith != 0) {
  5016. return;
  5017. }
  5018. GGML_ASSERT(ggml_can_repeat(src0, dst));
  5019. GGML_TENSOR_UNARY_OP_LOCALS
  5020. // guaranteed to be an integer due to the check in ggml_can_repeat
  5021. const int nr0 = (int)(ne0/ne00);
  5022. const int nr1 = (int)(ne1/ne01);
  5023. const int nr2 = (int)(ne2/ne02);
  5024. const int nr3 = (int)(ne3/ne03);
  5025. // TODO: support for transposed / permuted tensors
  5026. GGML_ASSERT(nb0 == sizeof(float));
  5027. GGML_ASSERT(nb00 == sizeof(float));
  5028. // TODO: maybe this is not optimal?
  5029. for (int i3 = 0; i3 < nr3; i3++) {
  5030. for (int k3 = 0; k3 < ne03; k3++) {
  5031. for (int i2 = 0; i2 < nr2; i2++) {
  5032. for (int k2 = 0; k2 < ne02; k2++) {
  5033. for (int i1 = 0; i1 < nr1; i1++) {
  5034. for (int k1 = 0; k1 < ne01; k1++) {
  5035. for (int i0 = 0; i0 < nr0; i0++) {
  5036. ggml_vec_cpy_f32(ne00,
  5037. (float *) ((char *) dst->data + (i3*ne03 + k3)*nb3 + (i2*ne02 + k2)*nb2 + (i1*ne01 + k1)*nb1 + (i0*ne00)*nb0),
  5038. (float *) ((char *) src0->data + ( k3)*nb03 + ( k2)*nb02 + ( k1)*nb01));
  5039. }
  5040. }
  5041. }
  5042. }
  5043. }
  5044. }
  5045. }
  5046. }
  5047. static void ggml_compute_forward_repeat_f16(
  5048. const struct ggml_compute_params * params,
  5049. struct ggml_tensor * dst) {
  5050. const struct ggml_tensor * src0 = dst->src[0];
  5051. if (params->ith != 0) {
  5052. return;
  5053. }
  5054. GGML_ASSERT(ggml_can_repeat(src0, dst));
  5055. GGML_TENSOR_UNARY_OP_LOCALS
  5056. // guaranteed to be an integer due to the check in ggml_can_repeat
  5057. const int nr0 = (int)(ne0/ne00);
  5058. const int nr1 = (int)(ne1/ne01);
  5059. const int nr2 = (int)(ne2/ne02);
  5060. const int nr3 = (int)(ne3/ne03);
  5061. // TODO: support for transposed / permuted tensors
  5062. GGML_ASSERT(nb0 == sizeof(ggml_fp16_t));
  5063. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  5064. // TODO: maybe this is not optimal?
  5065. for (int i3 = 0; i3 < nr3; i3++) {
  5066. for (int k3 = 0; k3 < ne03; k3++) {
  5067. for (int i2 = 0; i2 < nr2; i2++) {
  5068. for (int k2 = 0; k2 < ne02; k2++) {
  5069. for (int i1 = 0; i1 < nr1; i1++) {
  5070. for (int k1 = 0; k1 < ne01; k1++) {
  5071. for (int i0 = 0; i0 < nr0; i0++) {
  5072. ggml_fp16_t * y = (ggml_fp16_t *) ((char *) dst->data + (i3*ne03 + k3)*nb3 + (i2*ne02 + k2)*nb2 + (i1*ne01 + k1)*nb1 + (i0*ne00)*nb0);
  5073. ggml_fp16_t * x = (ggml_fp16_t *) ((char *) src0->data + ( k3)*nb03 + ( k2)*nb02 + ( k1)*nb01);
  5074. // ggml_vec_cpy_f16(ne00, y, x)
  5075. for (int i = 0; i < ne00; ++i) {
  5076. y[i] = x[i];
  5077. }
  5078. }
  5079. }
  5080. }
  5081. }
  5082. }
  5083. }
  5084. }
  5085. }
  5086. static void ggml_compute_forward_repeat(
  5087. const struct ggml_compute_params * params,
  5088. struct ggml_tensor * dst) {
  5089. const struct ggml_tensor * src0 = dst->src[0];
  5090. switch (src0->type) {
  5091. case GGML_TYPE_F16:
  5092. case GGML_TYPE_BF16:
  5093. case GGML_TYPE_I16:
  5094. {
  5095. ggml_compute_forward_repeat_f16(params, dst);
  5096. } break;
  5097. case GGML_TYPE_F32:
  5098. case GGML_TYPE_I32:
  5099. {
  5100. ggml_compute_forward_repeat_f32(params, dst);
  5101. } break;
  5102. default:
  5103. {
  5104. GGML_ABORT("fatal error");
  5105. }
  5106. }
  5107. }
  5108. // ggml_compute_forward_repeat_back
  5109. static void ggml_compute_forward_repeat_back_f32(
  5110. const struct ggml_compute_params * params,
  5111. struct ggml_tensor * dst) {
  5112. const struct ggml_tensor * src0 = dst->src[0];
  5113. if (params->ith != 0) {
  5114. return;
  5115. }
  5116. GGML_ASSERT(ggml_can_repeat(dst, src0));
  5117. GGML_TENSOR_UNARY_OP_LOCALS
  5118. // guaranteed to be an integer due to the check in ggml_can_repeat
  5119. const int nr0 = (int)(ne00/ne0);
  5120. const int nr1 = (int)(ne01/ne1);
  5121. const int nr2 = (int)(ne02/ne2);
  5122. const int nr3 = (int)(ne03/ne3);
  5123. // TODO: support for transposed / permuted tensors
  5124. GGML_ASSERT(nb0 == sizeof(float));
  5125. GGML_ASSERT(nb00 == sizeof(float));
  5126. if (ggml_is_contiguous(dst)) {
  5127. ggml_vec_set_f32(ne0*ne1*ne2*ne3, dst->data, 0);
  5128. } else {
  5129. for (int k3 = 0; k3 < ne3; k3++) {
  5130. for (int k2 = 0; k2 < ne2; k2++) {
  5131. for (int k1 = 0; k1 < ne1; k1++) {
  5132. ggml_vec_set_f32(ne0,
  5133. (float *) ((char *) dst->data + k1*nb1 + k2*nb2 + k3*nb3),
  5134. 0);
  5135. }
  5136. }
  5137. }
  5138. }
  5139. // TODO: maybe this is not optimal?
  5140. for (int i3 = 0; i3 < nr3; i3++) {
  5141. for (int k3 = 0; k3 < ne3; k3++) {
  5142. for (int i2 = 0; i2 < nr2; i2++) {
  5143. for (int k2 = 0; k2 < ne2; k2++) {
  5144. for (int i1 = 0; i1 < nr1; i1++) {
  5145. for (int k1 = 0; k1 < ne1; k1++) {
  5146. for (int i0 = 0; i0 < nr0; i0++) {
  5147. ggml_vec_acc_f32(ne0,
  5148. (float *) ((char *) dst->data + ( k3)*nb3 + ( k2)*nb2 + ( k1)*nb1),
  5149. (float *) ((char *) src0->data + (i3*ne3 + k3)*nb03 + (i2*ne2 + k2)*nb02 + (i1*ne1 + k1)*nb01 + (i0*ne0)*nb00));
  5150. }
  5151. }
  5152. }
  5153. }
  5154. }
  5155. }
  5156. }
  5157. }
  5158. static void ggml_compute_forward_repeat_back(
  5159. const struct ggml_compute_params * params,
  5160. struct ggml_tensor * dst) {
  5161. const struct ggml_tensor * src0 = dst->src[0];
  5162. switch (src0->type) {
  5163. case GGML_TYPE_F32:
  5164. {
  5165. ggml_compute_forward_repeat_back_f32(params, dst);
  5166. } break;
  5167. default:
  5168. {
  5169. GGML_ABORT("fatal error");
  5170. }
  5171. }
  5172. }
  5173. // ggml_compute_forward_concat
  5174. static void ggml_compute_forward_concat_f32(
  5175. const struct ggml_compute_params * params,
  5176. struct ggml_tensor * dst) {
  5177. const struct ggml_tensor * src0 = dst->src[0];
  5178. const struct ggml_tensor * src1 = dst->src[1];
  5179. GGML_ASSERT(src0->nb[0] == sizeof(float));
  5180. const int ith = params->ith;
  5181. const int nth = params->nth;
  5182. GGML_TENSOR_BINARY_OP_LOCALS
  5183. const int32_t dim = ggml_get_op_params_i32(dst, 0);
  5184. GGML_ASSERT(dim >= 0 && dim < 4);
  5185. int64_t o[4] = {0, 0, 0, 0};
  5186. o[dim] = src0->ne[dim];
  5187. const float * x;
  5188. // TODO: smarter multi-theading
  5189. for (int i3 = 0; i3 < ne3; i3++) {
  5190. for (int i2 = ith; i2 < ne2; i2 += nth) {
  5191. for (int i1 = 0; i1 < ne1; i1++) {
  5192. for (int i0 = 0; i0 < ne0; i0++) {
  5193. if (i0 < ne00 && i1 < ne01 && i2 < ne02 && i3 < ne03) {
  5194. x = (const float *) ((const char *)src0->data + (i0 )*nb00 + (i1 )*nb01 + (i2 )*nb02 + (i3 )*nb03);
  5195. } else {
  5196. x = (const float *) ((const char *)src1->data + (i0 - o[0])*nb10 + (i1 - o[1])*nb11 + (i2 - o[2])*nb12 + (i3 - o[3])*nb13);
  5197. }
  5198. float * y = (float *)((char *)dst->data + i0*nb0 + i1*nb1 + i2*nb2 + i3*nb3);
  5199. *y = *x;
  5200. }
  5201. }
  5202. }
  5203. }
  5204. }
  5205. static void ggml_compute_forward_concat(
  5206. const struct ggml_compute_params * params,
  5207. struct ggml_tensor * dst) {
  5208. const struct ggml_tensor * src0 = dst->src[0];
  5209. switch (src0->type) {
  5210. case GGML_TYPE_F32:
  5211. case GGML_TYPE_I32:
  5212. {
  5213. ggml_compute_forward_concat_f32(params, dst);
  5214. } break;
  5215. default:
  5216. {
  5217. GGML_ABORT("fatal error");
  5218. }
  5219. }
  5220. }
  5221. // ggml_compute_forward_abs
  5222. static void ggml_compute_forward_abs_f32(
  5223. const struct ggml_compute_params * params,
  5224. struct ggml_tensor * dst) {
  5225. const struct ggml_tensor * src0 = dst->src[0];
  5226. if (params->ith != 0) {
  5227. return;
  5228. }
  5229. assert(ggml_is_contiguous_1(src0));
  5230. assert(ggml_is_contiguous_1(dst));
  5231. assert(ggml_are_same_shape(src0, dst));
  5232. const int n = ggml_nrows(src0);
  5233. const int nc = src0->ne[0];
  5234. for (int i = 0; i < n; i++) {
  5235. ggml_vec_abs_f32(nc,
  5236. (float *) ((char *) dst->data + i*( dst->nb[1])),
  5237. (float *) ((char *) src0->data + i*(src0->nb[1])));
  5238. }
  5239. }
  5240. static void ggml_compute_forward_abs(
  5241. const struct ggml_compute_params * params,
  5242. struct ggml_tensor * dst) {
  5243. const struct ggml_tensor * src0 = dst->src[0];
  5244. switch (src0->type) {
  5245. case GGML_TYPE_F32:
  5246. {
  5247. ggml_compute_forward_abs_f32(params, dst);
  5248. } break;
  5249. default:
  5250. {
  5251. GGML_ABORT("fatal error");
  5252. }
  5253. }
  5254. }
  5255. // ggml_compute_forward_sgn
  5256. static void ggml_compute_forward_sgn_f32(
  5257. const struct ggml_compute_params * params,
  5258. struct ggml_tensor * dst) {
  5259. const struct ggml_tensor * src0 = dst->src[0];
  5260. if (params->ith != 0) {
  5261. return;
  5262. }
  5263. assert(ggml_is_contiguous_1(src0));
  5264. assert(ggml_is_contiguous_1(dst));
  5265. assert(ggml_are_same_shape(src0, dst));
  5266. const int n = ggml_nrows(src0);
  5267. const int nc = src0->ne[0];
  5268. for (int i = 0; i < n; i++) {
  5269. ggml_vec_sgn_f32(nc,
  5270. (float *) ((char *) dst->data + i*( dst->nb[1])),
  5271. (float *) ((char *) src0->data + i*(src0->nb[1])));
  5272. }
  5273. }
  5274. static void ggml_compute_forward_sgn(
  5275. const struct ggml_compute_params * params,
  5276. struct ggml_tensor * dst) {
  5277. const struct ggml_tensor * src0 = dst->src[0];
  5278. switch (src0->type) {
  5279. case GGML_TYPE_F32:
  5280. {
  5281. ggml_compute_forward_sgn_f32(params, dst);
  5282. } break;
  5283. default:
  5284. {
  5285. GGML_ABORT("fatal error");
  5286. }
  5287. }
  5288. }
  5289. // ggml_compute_forward_neg
  5290. static void ggml_compute_forward_neg_f32(
  5291. const struct ggml_compute_params * params,
  5292. struct ggml_tensor * dst) {
  5293. const struct ggml_tensor * src0 = dst->src[0];
  5294. if (params->ith != 0) {
  5295. return;
  5296. }
  5297. assert(ggml_is_contiguous_1(src0));
  5298. assert(ggml_is_contiguous_1(dst));
  5299. assert(ggml_are_same_shape(src0, dst));
  5300. const int n = ggml_nrows(src0);
  5301. const int nc = src0->ne[0];
  5302. for (int i = 0; i < n; i++) {
  5303. ggml_vec_neg_f32(nc,
  5304. (float *) ((char *) dst->data + i*( dst->nb[1])),
  5305. (float *) ((char *) src0->data + i*(src0->nb[1])));
  5306. }
  5307. }
  5308. static void ggml_compute_forward_neg(
  5309. const struct ggml_compute_params * params,
  5310. struct ggml_tensor * dst) {
  5311. const struct ggml_tensor * src0 = dst->src[0];
  5312. switch (src0->type) {
  5313. case GGML_TYPE_F32:
  5314. {
  5315. ggml_compute_forward_neg_f32(params, dst);
  5316. } break;
  5317. default:
  5318. {
  5319. GGML_ABORT("fatal error");
  5320. }
  5321. }
  5322. }
  5323. // ggml_compute_forward_step
  5324. static void ggml_compute_forward_step_f32(
  5325. const struct ggml_compute_params * params,
  5326. struct ggml_tensor * dst) {
  5327. const struct ggml_tensor * src0 = dst->src[0];
  5328. if (params->ith != 0) {
  5329. return;
  5330. }
  5331. assert(ggml_is_contiguous_1(src0));
  5332. assert(ggml_is_contiguous_1(dst));
  5333. assert(ggml_are_same_shape(src0, dst));
  5334. const int n = ggml_nrows(src0);
  5335. const int nc = src0->ne[0];
  5336. for (int i = 0; i < n; i++) {
  5337. ggml_vec_step_f32(nc,
  5338. (float *) ((char *) dst->data + i*( dst->nb[1])),
  5339. (float *) ((char *) src0->data + i*(src0->nb[1])));
  5340. }
  5341. }
  5342. static void ggml_compute_forward_step(
  5343. const struct ggml_compute_params * params,
  5344. struct ggml_tensor * dst) {
  5345. const struct ggml_tensor * src0 = dst->src[0];
  5346. switch (src0->type) {
  5347. case GGML_TYPE_F32:
  5348. {
  5349. ggml_compute_forward_step_f32(params, dst);
  5350. } break;
  5351. default:
  5352. {
  5353. GGML_ABORT("fatal error");
  5354. }
  5355. }
  5356. }
  5357. // ggml_compute_forward_tanh
  5358. static void ggml_compute_forward_tanh_f32(
  5359. const struct ggml_compute_params * params,
  5360. struct ggml_tensor * dst) {
  5361. const struct ggml_tensor * src0 = dst->src[0];
  5362. if (params->ith != 0) {
  5363. return;
  5364. }
  5365. assert(ggml_is_contiguous_1(src0));
  5366. assert(ggml_is_contiguous_1(dst));
  5367. assert(ggml_are_same_shape(src0, dst));
  5368. const int n = ggml_nrows(src0);
  5369. const int nc = src0->ne[0];
  5370. for (int i = 0; i < n; i++) {
  5371. ggml_vec_tanh_f32(nc,
  5372. (float *) ((char *) dst->data + i*( dst->nb[1])),
  5373. (float *) ((char *) src0->data + i*(src0->nb[1])));
  5374. }
  5375. }
  5376. static void ggml_compute_forward_tanh(
  5377. const struct ggml_compute_params * params,
  5378. struct ggml_tensor * dst) {
  5379. const struct ggml_tensor * src0 = dst->src[0];
  5380. switch (src0->type) {
  5381. case GGML_TYPE_F32:
  5382. {
  5383. ggml_compute_forward_tanh_f32(params, dst);
  5384. } break;
  5385. default:
  5386. {
  5387. GGML_ABORT("fatal error");
  5388. }
  5389. }
  5390. }
  5391. // ggml_compute_forward_elu
  5392. static void ggml_compute_forward_elu_f32(
  5393. const struct ggml_compute_params * params,
  5394. struct ggml_tensor * dst) {
  5395. const struct ggml_tensor * src0 = dst->src[0];
  5396. if (params->ith != 0) {
  5397. return;
  5398. }
  5399. assert(ggml_is_contiguous_1(src0));
  5400. assert(ggml_is_contiguous_1(dst));
  5401. assert(ggml_are_same_shape(src0, dst));
  5402. const int n = ggml_nrows(src0);
  5403. const int nc = src0->ne[0];
  5404. for (int i = 0; i < n; i++) {
  5405. ggml_vec_elu_f32(nc,
  5406. (float *) ((char *) dst->data + i*( dst->nb[1])),
  5407. (float *) ((char *) src0->data + i*(src0->nb[1])));
  5408. }
  5409. }
  5410. static void ggml_compute_forward_elu(
  5411. const struct ggml_compute_params * params,
  5412. struct ggml_tensor * dst) {
  5413. const struct ggml_tensor * src0 = dst->src[0];
  5414. switch (src0->type) {
  5415. case GGML_TYPE_F32:
  5416. {
  5417. ggml_compute_forward_elu_f32(params, dst);
  5418. } break;
  5419. default:
  5420. {
  5421. GGML_ABORT("fatal error");
  5422. }
  5423. }
  5424. }
  5425. // ggml_compute_forward_relu
  5426. static void ggml_compute_forward_relu_f32(
  5427. const struct ggml_compute_params * params,
  5428. struct ggml_tensor * dst) {
  5429. const struct ggml_tensor * src0 = dst->src[0];
  5430. if (params->ith != 0) {
  5431. return;
  5432. }
  5433. assert(ggml_is_contiguous_1(src0));
  5434. assert(ggml_is_contiguous_1(dst));
  5435. assert(ggml_are_same_shape(src0, dst));
  5436. const int n = ggml_nrows(src0);
  5437. const int nc = src0->ne[0];
  5438. for (int i = 0; i < n; i++) {
  5439. ggml_vec_relu_f32(nc,
  5440. (float *) ((char *) dst->data + i*( dst->nb[1])),
  5441. (float *) ((char *) src0->data + i*(src0->nb[1])));
  5442. }
  5443. }
  5444. static void ggml_compute_forward_relu(
  5445. const struct ggml_compute_params * params,
  5446. struct ggml_tensor * dst) {
  5447. const struct ggml_tensor * src0 = dst->src[0];
  5448. switch (src0->type) {
  5449. case GGML_TYPE_F32:
  5450. {
  5451. ggml_compute_forward_relu_f32(params, dst);
  5452. } break;
  5453. default:
  5454. {
  5455. GGML_ABORT("fatal error");
  5456. }
  5457. }
  5458. }
  5459. // ggml_compute_forward_sigmoid
  5460. static void ggml_compute_forward_sigmoid_f32(
  5461. const struct ggml_compute_params * params,
  5462. struct ggml_tensor * dst) {
  5463. const struct ggml_tensor * src0 = dst->src[0];
  5464. if (params->ith != 0) {
  5465. return;
  5466. }
  5467. assert(ggml_is_contiguous_1(src0));
  5468. assert(ggml_is_contiguous_1(dst));
  5469. assert(ggml_are_same_shape(src0, dst));
  5470. const int n = ggml_nrows(src0);
  5471. const int nc = src0->ne[0];
  5472. for (int i = 0; i < n; i++) {
  5473. ggml_vec_sigmoid_f32(nc,
  5474. (float *) ((char *) dst->data + i*( dst->nb[1])),
  5475. (float *) ((char *) src0->data + i*(src0->nb[1])));
  5476. }
  5477. }
  5478. static void ggml_compute_forward_sigmoid(
  5479. const struct ggml_compute_params * params,
  5480. struct ggml_tensor * dst) {
  5481. const struct ggml_tensor * src0 = dst->src[0];
  5482. switch (src0->type) {
  5483. case GGML_TYPE_F32:
  5484. {
  5485. ggml_compute_forward_sigmoid_f32(params, dst);
  5486. } break;
  5487. default:
  5488. {
  5489. GGML_ABORT("fatal error");
  5490. }
  5491. }
  5492. }
  5493. // ggml_compute_forward_gelu
  5494. static void ggml_compute_forward_gelu_f32(
  5495. const struct ggml_compute_params * params,
  5496. struct ggml_tensor * dst) {
  5497. const struct ggml_tensor * src0 = dst->src[0];
  5498. assert(ggml_is_contiguous_1(src0));
  5499. assert(ggml_is_contiguous_1(dst));
  5500. assert(ggml_are_same_shape(src0, dst));
  5501. const int ith = params->ith;
  5502. const int nth = params->nth;
  5503. const int nc = src0->ne[0];
  5504. const int nr = ggml_nrows(src0);
  5505. // rows per thread
  5506. const int dr = (nr + nth - 1)/nth;
  5507. // row range for this thread
  5508. const int ir0 = dr*ith;
  5509. const int ir1 = MIN(ir0 + dr, nr);
  5510. for (int i1 = ir0; i1 < ir1; i1++) {
  5511. ggml_vec_gelu_f32(nc,
  5512. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  5513. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  5514. #ifndef NDEBUG
  5515. for (int k = 0; k < nc; k++) {
  5516. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  5517. UNUSED(x);
  5518. assert(!isnan(x));
  5519. assert(!isinf(x));
  5520. }
  5521. #endif
  5522. }
  5523. }
  5524. static void ggml_compute_forward_gelu(
  5525. const struct ggml_compute_params * params,
  5526. struct ggml_tensor * dst) {
  5527. const struct ggml_tensor * src0 = dst->src[0];
  5528. switch (src0->type) {
  5529. case GGML_TYPE_F32:
  5530. {
  5531. ggml_compute_forward_gelu_f32(params, dst);
  5532. } break;
  5533. default:
  5534. {
  5535. GGML_ABORT("fatal error");
  5536. }
  5537. }
  5538. }
  5539. // ggml_compute_forward_gelu_quick
  5540. static void ggml_compute_forward_gelu_quick_f32(
  5541. const struct ggml_compute_params * params,
  5542. struct ggml_tensor * dst) {
  5543. const struct ggml_tensor * src0 = dst->src[0];
  5544. assert(ggml_is_contiguous_1(src0));
  5545. assert(ggml_is_contiguous_1(dst));
  5546. assert(ggml_are_same_shape(src0, dst));
  5547. const int ith = params->ith;
  5548. const int nth = params->nth;
  5549. const int nc = src0->ne[0];
  5550. const int nr = ggml_nrows(src0);
  5551. // rows per thread
  5552. const int dr = (nr + nth - 1)/nth;
  5553. // row range for this thread
  5554. const int ir0 = dr*ith;
  5555. const int ir1 = MIN(ir0 + dr, nr);
  5556. for (int i1 = ir0; i1 < ir1; i1++) {
  5557. ggml_vec_gelu_quick_f32(nc,
  5558. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  5559. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  5560. #ifndef NDEBUG
  5561. for (int k = 0; k < nc; k++) {
  5562. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  5563. UNUSED(x);
  5564. assert(!isnan(x));
  5565. assert(!isinf(x));
  5566. }
  5567. #endif
  5568. }
  5569. }
  5570. static void ggml_compute_forward_gelu_quick(
  5571. const struct ggml_compute_params * params,
  5572. struct ggml_tensor * dst) {
  5573. const struct ggml_tensor * src0 = dst->src[0];
  5574. switch (src0->type) {
  5575. case GGML_TYPE_F32:
  5576. {
  5577. ggml_compute_forward_gelu_quick_f32(params, dst);
  5578. } break;
  5579. default:
  5580. {
  5581. GGML_ABORT("fatal error");
  5582. }
  5583. }
  5584. }
  5585. // ggml_compute_forward_silu
  5586. static void ggml_compute_forward_silu_f32(
  5587. const struct ggml_compute_params * params,
  5588. struct ggml_tensor * dst) {
  5589. const struct ggml_tensor * src0 = dst->src[0];
  5590. assert(ggml_is_contiguous_1(src0));
  5591. assert(ggml_is_contiguous_1(dst));
  5592. assert(ggml_are_same_shape(src0, dst));
  5593. const int ith = params->ith;
  5594. const int nth = params->nth;
  5595. const int nc = src0->ne[0];
  5596. const int nr = ggml_nrows(src0);
  5597. // rows per thread
  5598. const int dr = (nr + nth - 1)/nth;
  5599. // row range for this thread
  5600. const int ir0 = dr*ith;
  5601. const int ir1 = MIN(ir0 + dr, nr);
  5602. for (int i1 = ir0; i1 < ir1; i1++) {
  5603. ggml_vec_silu_f32(nc,
  5604. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  5605. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  5606. #ifndef NDEBUG
  5607. for (int k = 0; k < nc; k++) {
  5608. const float x = ((float *) ((char *) dst->data + i1*(dst->nb[1])))[k];
  5609. UNUSED(x);
  5610. assert(!isnan(x));
  5611. assert(!isinf(x));
  5612. }
  5613. #endif
  5614. }
  5615. }
  5616. static void ggml_compute_forward_silu(
  5617. const struct ggml_compute_params * params,
  5618. struct ggml_tensor * dst) {
  5619. const struct ggml_tensor * src0 = dst->src[0];
  5620. switch (src0->type) {
  5621. case GGML_TYPE_F32:
  5622. {
  5623. ggml_compute_forward_silu_f32(params, dst);
  5624. } break;
  5625. default:
  5626. {
  5627. GGML_ABORT("fatal error");
  5628. }
  5629. }
  5630. }
  5631. // ggml_compute_forward_leaky_relu
  5632. static void ggml_compute_forward_leaky_relu_f32(
  5633. const struct ggml_compute_params * params,
  5634. struct ggml_tensor * dst) {
  5635. const struct ggml_tensor * src0 = dst->src[0];
  5636. if (params->ith != 0) {
  5637. return;
  5638. }
  5639. assert(ggml_is_contiguous_1(src0));
  5640. assert(ggml_is_contiguous_1(dst));
  5641. assert(ggml_are_same_shape(src0, dst));
  5642. const int n = ggml_nrows(src0);
  5643. const int nc = src0->ne[0];
  5644. float negative_slope;
  5645. memcpy(&negative_slope, dst->op_params, sizeof(float));
  5646. assert(dst->nb[0] == sizeof(float));
  5647. assert(src0->nb[0] == sizeof(float));
  5648. for (int i = 0; i < n; i++) {
  5649. ggml_vec_leaky_relu_f32(nc,
  5650. (float *) ((char *) dst->data + i*( dst->nb[1])),
  5651. (float *) ((char *) src0->data + i*(src0->nb[1])), negative_slope);
  5652. }
  5653. }
  5654. static void ggml_compute_forward_leaky_relu(
  5655. const struct ggml_compute_params * params,
  5656. struct ggml_tensor * dst) {
  5657. const struct ggml_tensor * src0 = dst->src[0];
  5658. switch (src0->type) {
  5659. case GGML_TYPE_F32:
  5660. {
  5661. ggml_compute_forward_leaky_relu_f32(params, dst);
  5662. } break;
  5663. default:
  5664. {
  5665. GGML_ABORT("fatal error");
  5666. }
  5667. }
  5668. }
  5669. // ggml_compute_forward_silu_back
  5670. static void ggml_compute_forward_silu_back_f32(
  5671. const struct ggml_compute_params * params,
  5672. struct ggml_tensor * dst) {
  5673. const struct ggml_tensor * src0 = dst->src[0];
  5674. const struct ggml_tensor * grad = dst->src[1];
  5675. assert(ggml_is_contiguous_1(grad));
  5676. assert(ggml_is_contiguous_1(src0));
  5677. assert(ggml_is_contiguous_1(dst));
  5678. assert(ggml_are_same_shape(src0, dst));
  5679. assert(ggml_are_same_shape(src0, grad));
  5680. const int ith = params->ith;
  5681. const int nth = params->nth;
  5682. const int nc = src0->ne[0];
  5683. const int nr = ggml_nrows(src0);
  5684. // rows per thread
  5685. const int dr = (nr + nth - 1)/nth;
  5686. // row range for this thread
  5687. const int ir0 = dr*ith;
  5688. const int ir1 = MIN(ir0 + dr, nr);
  5689. for (int i1 = ir0; i1 < ir1; i1++) {
  5690. ggml_vec_silu_backward_f32(nc,
  5691. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  5692. (float *) ((char *) src0->data + i1*(src0->nb[1])),
  5693. (float *) ((char *) grad->data + i1*(grad->nb[1])));
  5694. #ifndef NDEBUG
  5695. for (int k = 0; k < nc; k++) {
  5696. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  5697. UNUSED(x);
  5698. assert(!isnan(x));
  5699. assert(!isinf(x));
  5700. }
  5701. #endif
  5702. }
  5703. }
  5704. static void ggml_compute_forward_silu_back(
  5705. const struct ggml_compute_params * params,
  5706. struct ggml_tensor * dst) {
  5707. const struct ggml_tensor * src0 = dst->src[0];
  5708. switch (src0->type) {
  5709. case GGML_TYPE_F32:
  5710. {
  5711. ggml_compute_forward_silu_back_f32(params, dst);
  5712. } break;
  5713. default:
  5714. {
  5715. GGML_ABORT("fatal error");
  5716. }
  5717. }
  5718. }
  5719. static void ggml_compute_forward_hardswish_f32(
  5720. const struct ggml_compute_params * params,
  5721. struct ggml_tensor * dst) {
  5722. const struct ggml_tensor * src0 = dst->src[0];
  5723. if (params->ith != 0) {
  5724. return;
  5725. }
  5726. assert(ggml_is_contiguous_1(src0));
  5727. assert(ggml_is_contiguous_1(dst));
  5728. assert(ggml_are_same_shape(src0, dst));
  5729. const int n = ggml_nrows(src0);
  5730. const int nc = src0->ne[0];
  5731. for (int i = 0; i < n; i++) {
  5732. ggml_vec_hardswish_f32(nc,
  5733. (float *) ((char *) dst->data + i*( dst->nb[1])),
  5734. (float *) ((char *) src0->data + i*(src0->nb[1])));
  5735. }
  5736. }
  5737. static void ggml_compute_forward_hardswish(
  5738. const struct ggml_compute_params * params,
  5739. struct ggml_tensor * dst) {
  5740. const struct ggml_tensor * src0 = dst->src[0];
  5741. switch (src0->type) {
  5742. case GGML_TYPE_F32:
  5743. {
  5744. ggml_compute_forward_hardswish_f32(params, dst);
  5745. } break;
  5746. default:
  5747. {
  5748. GGML_ABORT("fatal error");
  5749. }
  5750. }
  5751. }
  5752. static void ggml_compute_forward_hardsigmoid_f32(
  5753. const struct ggml_compute_params * params,
  5754. struct ggml_tensor * dst) {
  5755. const struct ggml_tensor * src0 = dst->src[0];
  5756. if (params->ith != 0) {
  5757. return;
  5758. }
  5759. assert(ggml_is_contiguous_1(src0));
  5760. assert(ggml_is_contiguous_1(dst));
  5761. assert(ggml_are_same_shape(src0, dst));
  5762. const int n = ggml_nrows(src0);
  5763. const int nc = src0->ne[0];
  5764. for (int i = 0; i < n; i++) {
  5765. ggml_vec_hardsigmoid_f32(nc,
  5766. (float *) ((char *) dst->data + i*( dst->nb[1])),
  5767. (float *) ((char *) src0->data + i*(src0->nb[1])));
  5768. }
  5769. }
  5770. static void ggml_compute_forward_hardsigmoid(
  5771. const struct ggml_compute_params * params,
  5772. struct ggml_tensor * dst) {
  5773. const struct ggml_tensor * src0 = dst->src[0];
  5774. switch (src0->type) {
  5775. case GGML_TYPE_F32:
  5776. {
  5777. ggml_compute_forward_hardsigmoid_f32(params, dst);
  5778. } break;
  5779. default:
  5780. {
  5781. GGML_ABORT("fatal error");
  5782. }
  5783. }
  5784. }
  5785. static void ggml_compute_forward_exp_f32(
  5786. const struct ggml_compute_params * params,
  5787. struct ggml_tensor * dst) {
  5788. const struct ggml_tensor * src0 = dst->src[0];
  5789. if (params->ith != 0) {
  5790. return;
  5791. }
  5792. assert(ggml_is_contiguous_1(src0));
  5793. assert(ggml_is_contiguous_1(dst));
  5794. assert(ggml_are_same_shape(src0, dst));
  5795. const int n = ggml_nrows(src0);
  5796. const int nc = src0->ne[0];
  5797. for (int i = 0; i < n; i++) {
  5798. ggml_vec_exp_f32(nc,
  5799. (float *) ((char *) dst->data + i*( dst->nb[1])),
  5800. (float *) ((char *) src0->data + i*(src0->nb[1])));
  5801. }
  5802. }
  5803. static void ggml_compute_forward_exp(
  5804. const struct ggml_compute_params * params,
  5805. struct ggml_tensor * dst) {
  5806. const struct ggml_tensor * src0 = dst->src[0];
  5807. switch (src0->type) {
  5808. case GGML_TYPE_F32:
  5809. {
  5810. ggml_compute_forward_exp_f32(params, dst);
  5811. } break;
  5812. default:
  5813. {
  5814. GGML_ABORT("fatal error");
  5815. }
  5816. }
  5817. }
  5818. // ggml_compute_forward_norm
  5819. static void ggml_compute_forward_norm_f32(
  5820. const struct ggml_compute_params * params,
  5821. struct ggml_tensor * dst) {
  5822. const struct ggml_tensor * src0 = dst->src[0];
  5823. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  5824. GGML_ASSERT(src0->nb[0] == sizeof(float));
  5825. const int ith = params->ith;
  5826. const int nth = params->nth;
  5827. GGML_TENSOR_UNARY_OP_LOCALS
  5828. float eps;
  5829. memcpy(&eps, dst->op_params, sizeof(float));
  5830. GGML_ASSERT(eps > 0.0f);
  5831. // TODO: optimize
  5832. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5833. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5834. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  5835. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  5836. ggml_float sum = 0.0;
  5837. for (int64_t i00 = 0; i00 < ne00; i00++) {
  5838. sum += (ggml_float)x[i00];
  5839. }
  5840. float mean = sum/ne00;
  5841. float * y = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  5842. ggml_float sum2 = 0.0;
  5843. for (int64_t i00 = 0; i00 < ne00; i00++) {
  5844. float v = x[i00] - mean;
  5845. y[i00] = v;
  5846. sum2 += (ggml_float)(v*v);
  5847. }
  5848. float variance = sum2/ne00;
  5849. const float scale = 1.0f/sqrtf(variance + eps);
  5850. ggml_vec_scale_f32(ne00, y, scale);
  5851. }
  5852. }
  5853. }
  5854. }
  5855. static void ggml_compute_forward_norm(
  5856. const struct ggml_compute_params * params,
  5857. struct ggml_tensor * dst) {
  5858. const struct ggml_tensor * src0 = dst->src[0];
  5859. switch (src0->type) {
  5860. case GGML_TYPE_F32:
  5861. {
  5862. ggml_compute_forward_norm_f32(params, dst);
  5863. } break;
  5864. default:
  5865. {
  5866. GGML_ABORT("fatal error");
  5867. }
  5868. }
  5869. }
  5870. // ggml_compute_forward_group_rms_norm
  5871. static void ggml_compute_forward_rms_norm_f32(
  5872. const struct ggml_compute_params * params,
  5873. struct ggml_tensor * dst) {
  5874. const struct ggml_tensor * src0 = dst->src[0];
  5875. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  5876. GGML_ASSERT(src0->nb[0] == sizeof(float));
  5877. const int ith = params->ith;
  5878. const int nth = params->nth;
  5879. GGML_TENSOR_UNARY_OP_LOCALS
  5880. float eps;
  5881. memcpy(&eps, dst->op_params, sizeof(float));
  5882. GGML_ASSERT(eps > 0.0f);
  5883. // TODO: optimize
  5884. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5885. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5886. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  5887. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  5888. ggml_float sum = 0.0;
  5889. for (int64_t i00 = 0; i00 < ne00; i00++) {
  5890. sum += (ggml_float)(x[i00] * x[i00]);
  5891. }
  5892. const float mean = sum/ne00;
  5893. float * y = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  5894. memcpy(y, x, ne00 * sizeof(float));
  5895. // for (int i00 = 0; i00 < ne00; i00++) {
  5896. // y[i00] = x[i00];
  5897. // }
  5898. const float scale = 1.0f/sqrtf(mean + eps);
  5899. ggml_vec_scale_f32(ne00, y, scale);
  5900. }
  5901. }
  5902. }
  5903. }
  5904. static void ggml_compute_forward_rms_norm(
  5905. const struct ggml_compute_params * params,
  5906. struct ggml_tensor * dst) {
  5907. const struct ggml_tensor * src0 = dst->src[0];
  5908. switch (src0->type) {
  5909. case GGML_TYPE_F32:
  5910. {
  5911. ggml_compute_forward_rms_norm_f32(params, dst);
  5912. } break;
  5913. default:
  5914. {
  5915. GGML_ABORT("fatal error");
  5916. }
  5917. }
  5918. }
  5919. static void ggml_compute_forward_rms_norm_back_f32(
  5920. const struct ggml_compute_params * params,
  5921. struct ggml_tensor * dst) {
  5922. const struct ggml_tensor * src0 = dst->src[0];
  5923. const struct ggml_tensor * src1 = dst->src[1];
  5924. GGML_ASSERT(ggml_are_same_shape(src0, dst) && ggml_are_same_shape(src0, src1));
  5925. GGML_ASSERT(src0->nb[0] == sizeof(float));
  5926. const int ith = params->ith;
  5927. const int nth = params->nth;
  5928. GGML_TENSOR_BINARY_OP_LOCALS
  5929. float eps;
  5930. memcpy(&eps, dst->op_params, sizeof(float));
  5931. // TODO: optimize
  5932. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5933. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5934. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  5935. // src1 is same shape as src0 => same indices
  5936. const int64_t i11 = i01;
  5937. const int64_t i12 = i02;
  5938. const int64_t i13 = i03;
  5939. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  5940. const float * dz = (float *) ((char *) src1->data + i11*nb11 + i12*nb12 + i13*nb13);
  5941. ggml_float sum_xx = 0.0;
  5942. ggml_float sum_xdz = 0.0;
  5943. for (int64_t i00 = 0; i00 < ne00; i00++) {
  5944. sum_xx += (ggml_float)(x[i00] * x[i00]);
  5945. sum_xdz += (ggml_float)(x[i00] * dz[i00]);
  5946. }
  5947. //const float mean = (float)(sum_xx)/ne00;
  5948. const float mean_eps = (float)(sum_xx)/ne00 + eps;
  5949. const float sum_eps = (float)(sum_xx) + eps*ne00;
  5950. //const float mean_xdz = (float)(sum_xdz)/ne00;
  5951. // we could cache rms from forward pass to improve performance.
  5952. // to do this implement ggml_rms and compose ggml_rms_norm using ggml_rms.
  5953. //const float rms = sqrtf(mean_eps);
  5954. const float rrms = 1.0f / sqrtf(mean_eps);
  5955. //const float scale = -rrms/(ne00 * mean_eps); // -1/(n*rms**3)
  5956. {
  5957. // z = rms_norm(x)
  5958. //
  5959. // rms_norm(src0) =
  5960. // scale(
  5961. // src0,
  5962. // div(
  5963. // 1,
  5964. // sqrt(
  5965. // add(
  5966. // scale(
  5967. // sum(
  5968. // sqr(
  5969. // src0)),
  5970. // (1.0/N)),
  5971. // eps))));
  5972. // postorder:
  5973. // ## op args grad
  5974. // 00 param src0 grad[#00]
  5975. // 01 const 1
  5976. // 02 sqr (#00) grad[#02]
  5977. // 03 sum (#02) grad[#03]
  5978. // 04 const 1/N
  5979. // 05 scale (#03, #04) grad[#05]
  5980. // 06 const eps
  5981. // 07 add (#05, #06) grad[#07]
  5982. // 08 sqrt (#07) grad[#08]
  5983. // 09 div (#01,#08) grad[#09]
  5984. // 10 scale (#00,#09) grad[#10]
  5985. //
  5986. // backward pass, given grad[#10]
  5987. // #10: scale
  5988. // grad[#00] += scale(grad[#10],#09)
  5989. // grad[#09] += sum(mul(grad[#10],#00))
  5990. // #09: div
  5991. // grad[#08] += neg(mul(grad[#09], div(#09,#08)))
  5992. // #08: sqrt
  5993. // grad[#07] += mul(grad[#08], div(0.5, #08))
  5994. // #07: add
  5995. // grad[#05] += grad[#07]
  5996. // #05: scale
  5997. // grad[#03] += scale(grad[#05],#04)
  5998. // #03: sum
  5999. // grad[#02] += repeat(grad[#03], #02)
  6000. // #02:
  6001. // grad[#00] += scale(mul(#00, grad[#02]), 2.0)
  6002. //
  6003. // substitute and simplify:
  6004. // grad[#00] = scale(grad(#10), #09) + scale(mul(#00, grad[#02]), 2.0)
  6005. // grad[#02] = repeat(grad[#03], #02)
  6006. // grad[#02] = repeat(scale(grad[#05],#04), #02)
  6007. // grad[#02] = repeat(scale(grad[#07],#04), #02)
  6008. // grad[#02] = repeat(scale(mul(grad[#08], div(0.5, #08)),#04), #02)
  6009. // grad[#02] = repeat(scale(mul(neg(mul(grad[#09], div(#09,#08))), div(0.5, #08)),#04), #02)
  6010. // grad[#02] = repeat(scale(mul(neg(mul(sum(mul(grad[#10],#00)), div(#09,#08))), div(0.5, #08)),#04), #02)
  6011. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(#09,#08) * div(0.5, #08) * (1/N)), #02)
  6012. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(div(#01,#08),#08) * div(0.5, #08) * (1/N)), #02)
  6013. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(1,#08*#08) * div(0.5, #08) * (1/N)), #02)
  6014. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(1,#07) * div(0.5, #08) * (1/N)), #02)
  6015. // grad[#00] = scale(grad(#10), #09) + scale(mul(#00, grad[#02]), 2.0)
  6016. // grad[#00] = scale(grad(#10), #09) + scale(mul(#00, repeat(-(sum(mul(grad[#10],#00)) * div(1,#07) * div(0.5, #08) * (1/N)), #02)), 2.0)
  6017. // grad[#00] = scale(grad(#10), #09) + scale(scale(#00, -(sum(mul(grad[#10],#00)) * div(1,#07) * div(0.5, #08) * (1/N))), 2.0)
  6018. // grad[#00] = scale(grad(#10), #09) + scale(#00, -(sum(mul(grad[#10],#00)) * div(1,#07) * div(1,#08) * (1/N)))
  6019. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(1,#07*#08) * (-1/N))
  6020. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(1,#07*#08) * (-1/N))
  6021. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(1,mean_eps*rms) * (-1/N))
  6022. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(-1,rms*N*mean_eps))
  6023. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(-1,rms*N*(sum_xx/N+eps)))
  6024. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(-1,rms*N*sum_xx+rms*N*eps))
  6025. // grad[#00] = scale(dz, rrms) + scale(x, sum(mul(dz,x)) * div(-1,rms*N*mean_eps))
  6026. // grad[#00] = scale(dz, rrms) + scale(x, sum_xdz * div(-1,rms*N*mean_eps))
  6027. // a = b*c + d*e
  6028. // a = b*c*f/f + d*e*f/f
  6029. // a = (b*c*f + d*e*f)*(1/f)
  6030. // a = (b*c*(1/c) + d*e*(1/c))*(1/(1/c))
  6031. // a = (b + d*e/c)*c
  6032. // b = dz, c = rrms, d = x, e = sum_xdz * div(-1,rms*N*mean_eps)
  6033. // a = (dz + x*sum_xdz * div(-1,rms*N*mean_eps)/rrms)*rrms
  6034. // a = (dz + x*sum_xdz * div(-1,rms*N*mean_eps)*rms)*rrms
  6035. // a = (dz + x*sum_xdz * div(-rms,rms*N*mean_eps))*rrms
  6036. // a = (dz + x*sum_xdz * div(-1,N*mean_eps))*rrms
  6037. // a = (dz + x*div(-sum_xdz,N*mean_eps))*rrms
  6038. // a = (dz + x*div(-mean_xdz,mean_eps))*rrms
  6039. // grad[#00] = scale(dz + scale(x, div(-mean_xdz,mean_eps)),rrms)
  6040. // grad[#00] = scale(dz + scale(x, -mean_xdz/mean_eps),rrms)
  6041. // dx = scale(dz + scale(x, -mean_xdz/mean_eps),rrms)
  6042. }
  6043. // dx = scale(dz + scale(x, -mean_xdz/mean_eps),rrms)
  6044. // post-order:
  6045. // dx := x
  6046. // dx := scale(dx,-mean_xdz/mean_eps)
  6047. // dx := add(dx, dz)
  6048. // dx := scale(dx, rrms)
  6049. float * dx = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  6050. ggml_vec_cpy_f32 (ne00, dx, x);
  6051. // ggml_vec_scale_f32(ne00, dx, -mean_xdz/mean_eps);
  6052. ggml_vec_scale_f32(ne00, dx, (float)(-sum_xdz)/sum_eps);
  6053. ggml_vec_acc_f32 (ne00, dx, dz);
  6054. ggml_vec_scale_f32(ne00, dx, rrms);
  6055. }
  6056. }
  6057. }
  6058. }
  6059. static void ggml_compute_forward_rms_norm_back(
  6060. const struct ggml_compute_params * params,
  6061. struct ggml_tensor * dst) {
  6062. const struct ggml_tensor * src0 = dst->src[0];
  6063. switch (src0->type) {
  6064. case GGML_TYPE_F32:
  6065. {
  6066. ggml_compute_forward_rms_norm_back_f32(params, dst);
  6067. } break;
  6068. default:
  6069. {
  6070. GGML_ABORT("fatal error");
  6071. }
  6072. }
  6073. }
  6074. // ggml_compute_forward_group_norm
  6075. static void ggml_compute_forward_group_norm_f32(
  6076. const struct ggml_compute_params * params,
  6077. struct ggml_tensor * dst) {
  6078. const struct ggml_tensor * src0 = dst->src[0];
  6079. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6080. GGML_ASSERT(src0->nb[0] == sizeof(float));
  6081. const int ith = params->ith;
  6082. const int nth = params->nth;
  6083. GGML_TENSOR_UNARY_OP_LOCALS
  6084. // TODO: optimize
  6085. float eps;
  6086. memcpy(&eps, dst->op_params + 1, sizeof(float));
  6087. int n_channels = src0->ne[2];
  6088. int n_groups = dst->op_params[0];
  6089. int n_channels_per_group = (n_channels + n_groups - 1) / n_groups;
  6090. for (int i = ith; i < n_groups; i += nth) {
  6091. int start = i * n_channels_per_group;
  6092. int end = start + n_channels_per_group;
  6093. if (end > n_channels) {
  6094. end = n_channels;
  6095. }
  6096. int step = end - start;
  6097. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6098. ggml_float sum = 0.0;
  6099. for (int64_t i02 = start; i02 < end; i02++) {
  6100. for (int64_t i01 = 0; i01 < ne01; i01++) {
  6101. const float * x = (float *)((char *) src0->data + i01 * nb01 + i02 * nb02 + i03 * nb03);
  6102. ggml_float sumr = 0.0;
  6103. for (int64_t i00 = 0; i00 < ne00; i00++) {
  6104. sumr += (ggml_float)x[i00];
  6105. }
  6106. sum += sumr;
  6107. }
  6108. }
  6109. const float mean = sum / (ne00 * ne01 * step);
  6110. ggml_float sum2 = 0.0;
  6111. for (int64_t i02 = start; i02 < end; i02++) {
  6112. for (int64_t i01 = 0; i01 < ne01; i01++) {
  6113. const float * x = (float *)((char *) src0->data + i01 * nb01 + i02 * nb02 + i03 * nb03);
  6114. float * y = (float *)((char *) dst->data + i01 * nb1 + i02 * nb2 + i03 * nb3);
  6115. ggml_float sumr = 0.0;
  6116. for (int64_t i00 = 0; i00 < ne00; i00++) {
  6117. float v = x[i00] - mean;
  6118. y[i00] = v;
  6119. sumr += (ggml_float)(v * v);
  6120. }
  6121. sum2 += sumr;
  6122. }
  6123. }
  6124. const float variance = sum2 / (ne00 * ne01 * step);
  6125. const float scale = 1.0f / sqrtf(variance + eps);
  6126. for (int64_t i02 = start; i02 < end; i02++) {
  6127. for (int64_t i01 = 0; i01 < ne01; i01++) {
  6128. float * y = (float *)((char *) dst->data + i01 * nb1 + i02 * nb2 + i03 * nb3);
  6129. ggml_vec_scale_f32(ne00, y, scale);
  6130. }
  6131. }
  6132. }
  6133. }
  6134. }
  6135. static void ggml_compute_forward_group_norm(
  6136. const struct ggml_compute_params * params,
  6137. struct ggml_tensor * dst) {
  6138. const struct ggml_tensor * src0 = dst->src[0];
  6139. switch (src0->type) {
  6140. case GGML_TYPE_F32:
  6141. {
  6142. ggml_compute_forward_group_norm_f32(params, dst);
  6143. } break;
  6144. default:
  6145. {
  6146. GGML_ABORT("fatal error");
  6147. }
  6148. }
  6149. }
  6150. // ggml_compute_forward_mul_mat
  6151. static void ggml_compute_forward_mul_mat_one_chunk(
  6152. const struct ggml_compute_params * params,
  6153. struct ggml_tensor * dst,
  6154. const enum ggml_type type,
  6155. const int64_t num_rows_per_vec_dot,
  6156. const int64_t ir0_start,
  6157. const int64_t ir0_end,
  6158. const int64_t ir1_start,
  6159. const int64_t ir1_end) {
  6160. const struct ggml_tensor * src0 = dst->src[0];
  6161. const struct ggml_tensor * src1 = dst->src[1];
  6162. GGML_TENSOR_BINARY_OP_LOCALS
  6163. const bool src1_cont = ggml_is_contiguous(src1);
  6164. ggml_vec_dot_t const vec_dot = type_traits_cpu[type].vec_dot;
  6165. enum ggml_type const vec_dot_type = type_traits_cpu[type].vec_dot_type;
  6166. // broadcast factors
  6167. const int64_t r2 = ne12 / ne02;
  6168. const int64_t r3 = ne13 / ne03;
  6169. //printf("ir0_start = %6lld, ir0_end = %6lld, ir1_start = %6lld, ir1_end = %6lld\n", ir0_start, ir0_end, ir1_start, ir1_end);
  6170. // threads with no work simply yield (not sure if it helps)
  6171. if (ir0_start >= ir0_end || ir1_start >= ir1_end) {
  6172. return;
  6173. }
  6174. const void * wdata = (src1->type == vec_dot_type) ? src1->data : params->wdata;
  6175. const size_t row_size = ggml_row_size(vec_dot_type, ne10);
  6176. assert(ne12 % ne02 == 0);
  6177. assert(ne13 % ne03 == 0);
  6178. // block-tiling attempt
  6179. const int64_t blck_0 = 16;
  6180. const int64_t blck_1 = 16;
  6181. const size_t src1_col_stride = src1_cont || src1->type != vec_dot_type ? row_size : nb11;
  6182. // attempt to reduce false-sharing (does not seem to make a difference)
  6183. // 16 * 2, accounting for mmla kernels
  6184. float tmp[32];
  6185. for (int64_t iir1 = ir1_start; iir1 < ir1_end; iir1 += blck_1) {
  6186. for (int64_t iir0 = ir0_start; iir0 < ir0_end; iir0 += blck_0) {
  6187. for (int64_t ir1 = iir1; ir1 < iir1 + blck_1 && ir1 < ir1_end; ir1 += num_rows_per_vec_dot) {
  6188. const int64_t i13 = (ir1 / (ne12 * ne1));
  6189. const int64_t i12 = (ir1 - i13 * ne12 * ne1) / ne1;
  6190. const int64_t i11 = (ir1 - i13 * ne12 * ne1 - i12 * ne1);
  6191. // broadcast src0 into src1
  6192. const int64_t i03 = i13 / r3;
  6193. const int64_t i02 = i12 / r2;
  6194. const int64_t i1 = i11;
  6195. const int64_t i2 = i12;
  6196. const int64_t i3 = i13;
  6197. const char * src0_row = (const char*)src0->data + (0 + i02 * nb02 + i03 * nb03);
  6198. // desc: when src1 is not a contiguous memory block we have to calculate the offset using the strides
  6199. // if it is, then we have either copied the data to params->wdata and made it contiguous or we are using
  6200. // the original src1 data pointer, so we should index using the indices directly
  6201. // TODO: this is a bit of a hack, we should probably have a better way to handle this
  6202. const char * src1_col = (const char*)wdata +
  6203. (src1_cont || src1->type != vec_dot_type
  6204. ? (i11 + i12 * ne11 + i13 * ne12 * ne11) * row_size
  6205. : (i11 * nb11 + i12 * nb12 + i13 * nb13));
  6206. float * dst_col = (float*)((char*)dst->data + (i1 * nb1 + i2 * nb2 + i3 * nb3));
  6207. //for (int64_t ir0 = iir0; ir0 < iir0 + blck_0 && ir0 < ir0_end; ++ir0) {
  6208. // vec_dot(ne00, &dst_col[ir0], src0_row + ir0*nb01, src1_col);
  6209. //}
  6210. for (int64_t ir0 = iir0; ir0 < iir0 + blck_0 && ir0 < ir0_end; ir0 += num_rows_per_vec_dot) {
  6211. vec_dot(ne00, &tmp[ir0 - iir0], (num_rows_per_vec_dot > 1 ? 16 : 0), src0_row + ir0 * nb01, (num_rows_per_vec_dot > 1 ? nb01 : 0), src1_col, (num_rows_per_vec_dot > 1 ? src1_col_stride : 0), num_rows_per_vec_dot);
  6212. }
  6213. for (int cn = 0; cn < num_rows_per_vec_dot; ++cn) {
  6214. memcpy(&dst_col[iir0 + cn * nb1 / nb0], tmp + (cn * 16), (MIN(iir0 + blck_0, ir0_end) - iir0) * sizeof(float));
  6215. }
  6216. }
  6217. }
  6218. }
  6219. }
  6220. static void ggml_compute_forward_mul_mat(
  6221. const struct ggml_compute_params * params,
  6222. struct ggml_tensor * dst) {
  6223. const struct ggml_tensor * src0 = dst->src[0];
  6224. const struct ggml_tensor * src1 = dst->src[1];
  6225. GGML_TENSOR_BINARY_OP_LOCALS
  6226. const int ith = params->ith;
  6227. const int nth = params->nth;
  6228. enum ggml_type type = src0->type;
  6229. if (src0->buffer && ggml_backend_cpu_buft_is_aarch64(src0->buffer->buft)) {
  6230. type = (enum ggml_type)(intptr_t)src0->extra;
  6231. }
  6232. #if defined(__AMX_INT8__) && defined(__AVX512VNNI__)
  6233. if (src0->buffer && ggml_backend_amx_buft_is_amx(src0->buffer->buft)) {
  6234. ggml_backend_amx_mul_mat(params, dst);
  6235. return;
  6236. }
  6237. #endif
  6238. enum ggml_type const vec_dot_type = type_traits_cpu[type].vec_dot_type;
  6239. ggml_from_float_t const from_float = type_traits_cpu[vec_dot_type].from_float;
  6240. ggml_from_float_to_mat_t const from_float_to_mat = type_traits_cpu[vec_dot_type].from_float_to_mat;
  6241. int64_t const vec_dot_num_rows = type_traits_cpu[type].nrows;
  6242. int64_t const matmul_num_cols = type_traits_cpu[type].ncols;
  6243. int64_t const blck_size_interleave = ggml_get_type_traits(type)->blck_size_interleave;
  6244. ggml_gemv_t const gemv = type_traits_cpu[type].gemv;
  6245. ggml_gemm_t const gemm = type_traits_cpu[type].gemm;
  6246. GGML_ASSERT(ne0 == ne01);
  6247. GGML_ASSERT(ne1 == ne11);
  6248. GGML_ASSERT(ne2 == ne12);
  6249. GGML_ASSERT(ne3 == ne13);
  6250. // we don't support permuted src0 or src1
  6251. GGML_ASSERT(nb00 == ggml_type_size(type));
  6252. GGML_ASSERT(nb10 == ggml_type_size(src1->type));
  6253. // dst cannot be transposed or permuted
  6254. GGML_ASSERT(nb0 == sizeof(float));
  6255. GGML_ASSERT(nb0 <= nb1);
  6256. GGML_ASSERT(nb1 <= nb2);
  6257. GGML_ASSERT(nb2 <= nb3);
  6258. // nb01 >= nb00 - src0 is not transposed
  6259. // compute by src0 rows
  6260. #if GGML_USE_LLAMAFILE
  6261. // broadcast factors
  6262. const int64_t r2 = ne12 / ne02;
  6263. const int64_t r3 = ne13 / ne03;
  6264. const bool src1_cont = ggml_is_contiguous(src1);
  6265. if (src1_cont) {
  6266. for (int64_t i13 = 0; i13 < ne13; i13++)
  6267. for (int64_t i12 = 0; i12 < ne12; i12++)
  6268. if (!llamafile_sgemm(ne01, ne11, ne00/ggml_blck_size(type),
  6269. (const char *)src0->data + i12/r2*nb02 + i13/r3*nb03,
  6270. nb01/ggml_type_size(type),
  6271. (const char *)src1->data + i12*nb12 + i13*nb13,
  6272. nb11/ggml_type_size(src1->type),
  6273. (char *)dst->data + i12*nb2 + i13*nb3,
  6274. nb1/ggml_type_size(dst->type),
  6275. ith, nth,
  6276. type,
  6277. src1->type,
  6278. dst->type))
  6279. goto UseGgmlGemm1;
  6280. return;
  6281. }
  6282. UseGgmlGemm1:;
  6283. #endif
  6284. if (src1->type != vec_dot_type) {
  6285. char * wdata = params->wdata;
  6286. const size_t nbw1 = ggml_row_size(vec_dot_type, ne10);
  6287. const size_t nbw2 = nbw1*ne11;
  6288. const size_t nbw3 = nbw2*ne12;
  6289. assert(params->wsize >= ne13*nbw3);
  6290. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  6291. for (int64_t i13 = 0; i13 < ne13; ++i13) {
  6292. for (int64_t i12 = 0; i12 < ne12; ++i12) {
  6293. int64_t i11_processed = 0;
  6294. if ((ggml_n_dims(src1) == 2) && from_float_to_mat && gemm) {
  6295. for (int64_t i11 = ith * 4; i11 < ne11 - ne11 % 4; i11 += nth * 4) {
  6296. from_float_to_mat((float *)((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11),
  6297. (void *) (wdata + i13*nbw3 + i12*nbw2 + i11*nbw1),
  6298. 4, ne10, blck_size_interleave);
  6299. }
  6300. i11_processed = ne11 - ne11 % 4;
  6301. }
  6302. for (int64_t i11 = i11_processed + ith; i11 < ne11; i11 += nth) {
  6303. from_float((float *)((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11),
  6304. (void *) (wdata + i13*nbw3 + i12*nbw2 + i11*nbw1),
  6305. ne10);
  6306. }
  6307. }
  6308. }
  6309. }
  6310. if (ith == 0) {
  6311. // Every thread starts at ith, so the first unprocessed chunk is nth. This save a bit of coordination right at the start.
  6312. atomic_store_explicit(&params->threadpool->current_chunk, nth, memory_order_relaxed);
  6313. }
  6314. ggml_barrier(params->threadpool);
  6315. #if GGML_USE_LLAMAFILE
  6316. if (src1->type != vec_dot_type) {
  6317. const void* wdata = (src1->type == vec_dot_type) ? src1->data : params->wdata;
  6318. const size_t row_size = ggml_row_size(vec_dot_type, ne10);
  6319. for (int64_t i13 = 0; i13 < ne13; i13++)
  6320. for (int64_t i12 = 0; i12 < ne12; i12++)
  6321. if (!llamafile_sgemm(ne01, ne11, ne00/ggml_blck_size(type),
  6322. (const char *)src0->data + i12/r2*nb02 + i13/r3*nb03,
  6323. nb01/ggml_type_size(type),
  6324. (const char *)wdata + (i12*ne11 + i13*ne12*ne11)*row_size,
  6325. row_size/ggml_type_size(vec_dot_type),
  6326. (char *)dst->data + i12*nb2 + i13*nb3,
  6327. nb1/ggml_type_size(dst->type),
  6328. ith, nth,
  6329. type,
  6330. vec_dot_type,
  6331. dst->type))
  6332. goto UseGgmlGemm2;
  6333. return;
  6334. }
  6335. UseGgmlGemm2:;
  6336. #endif
  6337. // This is the size of the first dimension of the result, so we can iterate that way. (see the ASSERT above, these are the same numbers)
  6338. const int64_t nr0 = ne0;
  6339. // This is the size of the rest of the dimensions of the result
  6340. const int64_t nr1 = ne1 * ne2 * ne3;
  6341. // Now select a reasonable chunk size.
  6342. int chunk_size = 16;
  6343. // We need to step up the size if it's small
  6344. if (nr0 == 1 || nr1 == 1) {
  6345. chunk_size = 64;
  6346. }
  6347. // distribute the work across the inner or outer loop based on which one is larger
  6348. // The number of chunks in the 0/1 dim.
  6349. // CEIL(nr0/chunk_size)
  6350. int64_t nchunk0 = (nr0 + chunk_size - 1) / chunk_size;
  6351. int64_t nchunk1 = (nr1 + chunk_size - 1) / chunk_size;
  6352. // If the chunking is poor for the number of threads on this setup, scrap the whole plan. Re-chunk it by thread.
  6353. // Also, chunking by thread was measured to have perform better on NUMA systems. See https://github.com/ggerganov/llama.cpp/pull/6915
  6354. // In theory, chunking should be just as useful on NUMA and non NUMA systems, but testing disagreed with that.
  6355. if (nchunk0 * nchunk1 < nth * 4 || ggml_is_numa()) {
  6356. // distribute the thread work across the inner or outer loop based on which one is larger
  6357. nchunk0 = nr0 > nr1 ? nth : 1; // parallelize by src0 rows
  6358. nchunk1 = nr0 > nr1 ? 1 : nth; // parallelize by src1 rows
  6359. }
  6360. // The number of elements in each chunk
  6361. const int64_t dr0 = (nr0 + nchunk0 - 1) / nchunk0;
  6362. const int64_t dr1 = (nr1 + nchunk1 - 1) / nchunk1;
  6363. if ((ggml_n_dims(src0) == 2) && gemv) {
  6364. const void * src1_wdata = (src1->type == vec_dot_type) ? src1->data : params->wdata;
  6365. const size_t src1_col_stride = ggml_is_contiguous(src1) || src1->type != vec_dot_type ? ggml_row_size(vec_dot_type, ne10) : nb11;
  6366. int64_t src0_start = (ith * ne01) / nth;
  6367. int64_t src0_end = ((ith + 1) * ne01) / nth;
  6368. src0_start = (src0_start % matmul_num_cols) ? src0_start + matmul_num_cols - (src0_start % matmul_num_cols): src0_start;
  6369. src0_end = (src0_end % matmul_num_cols) ? src0_end + matmul_num_cols - (src0_end % matmul_num_cols): src0_end;
  6370. if (src0_start >= src0_end) return;
  6371. // If there are more than three rows in src1, use gemm; otherwise, use gemv.
  6372. if (gemm && (ne11 > 3)) {
  6373. gemm(ne00, (float *)((char *) dst->data) + src0_start, ne01, (const char *) src0->data + src0_start * nb01,
  6374. (const char *) src1_wdata, ne11 - ne11 % 4, src0_end - src0_start);
  6375. }
  6376. for (int iter = gemm ? ne11 - ne11 % 4 : 0; iter < ne11; iter++) {
  6377. gemv(ne00, (float *)((char *) dst->data + (iter * nb1)) + src0_start, ne01,
  6378. (const char *) src0->data + src0_start * nb01, (const char *) src1_wdata + (src1_col_stride * iter), 1,
  6379. src0_end - src0_start);
  6380. }
  6381. return;
  6382. }
  6383. // The first chunk comes from our thread_id, the rest will get auto-assigned.
  6384. int current_chunk = ith;
  6385. while (current_chunk < nchunk0 * nchunk1) {
  6386. const int64_t ith0 = current_chunk % nchunk0;
  6387. const int64_t ith1 = current_chunk / nchunk0;
  6388. const int64_t ir0_start = dr0 * ith0;
  6389. const int64_t ir0_end = MIN(ir0_start + dr0, nr0);
  6390. const int64_t ir1_start = dr1 * ith1;
  6391. const int64_t ir1_end = MIN(ir1_start + dr1, nr1);
  6392. // dot kernels can handle 1 row and col at a time, but mmla kernels can process 2 rows and cols
  6393. int64_t num_rows_per_vec_dot = vec_dot_num_rows;
  6394. // these checks are needed to avoid crossing dim1 boundaries
  6395. // can be optimized, but the logic would become more complicated, so keeping it like this for simplicity
  6396. if ((nr0 % 2 != 0) || (ne11 % 2 != 0) || ((ir0_end - ir0_start) % 2 != 0) || ((ir1_end - ir1_start) % 2 != 0)) {
  6397. num_rows_per_vec_dot = 1;
  6398. }
  6399. ggml_compute_forward_mul_mat_one_chunk(params, dst, type, num_rows_per_vec_dot, ir0_start, ir0_end, ir1_start, ir1_end);
  6400. if (nth >= nchunk0 * nchunk1) {
  6401. break;
  6402. }
  6403. current_chunk = atomic_fetch_add_explicit(&params->threadpool->current_chunk, 1, memory_order_relaxed);
  6404. }
  6405. }
  6406. // ggml_compute_forward_mul_mat_id
  6407. static void ggml_compute_forward_mul_mat_id(
  6408. const struct ggml_compute_params * params,
  6409. struct ggml_tensor * dst) {
  6410. const struct ggml_tensor * src0 = dst->src[0];
  6411. const struct ggml_tensor * src1 = dst->src[1];
  6412. const struct ggml_tensor * ids = dst->src[2];
  6413. GGML_TENSOR_BINARY_OP_LOCALS
  6414. const int ith = params->ith;
  6415. const int nth = params->nth;
  6416. const enum ggml_type type = src0->type;
  6417. const bool src1_cont = ggml_is_contiguous(src1);
  6418. ggml_vec_dot_t const vec_dot = type_traits_cpu[type].vec_dot;
  6419. enum ggml_type const vec_dot_type = type_traits_cpu[type].vec_dot_type;
  6420. ggml_from_float_t const from_float = type_traits_cpu[vec_dot_type].from_float;
  6421. int64_t const matmul_num_cols = type_traits_cpu[type].ncols;
  6422. ggml_gemv_t const gemv = type_traits_cpu[type].gemv;
  6423. // we don't support permuted src0 or src1
  6424. GGML_ASSERT(nb00 == ggml_type_size(type));
  6425. GGML_ASSERT(nb10 == ggml_type_size(src1->type));
  6426. // dst cannot be transposed or permuted
  6427. GGML_ASSERT(nb0 == sizeof(float));
  6428. GGML_ASSERT(nb0 <= nb1);
  6429. GGML_ASSERT(nb1 <= nb2);
  6430. GGML_ASSERT(nb2 <= nb3);
  6431. // row groups
  6432. const int n_ids = ids->ne[0]; // n_expert_used
  6433. const int n_as = ne02; // n_expert
  6434. char * wdata_src1_end = (src1->type == vec_dot_type) ?
  6435. (char *) params->wdata :
  6436. (char *) params->wdata + GGML_PAD(ggml_row_size(vec_dot_type, ggml_nelements(src1)), sizeof(int64_t));
  6437. struct mmid_row_mapping {
  6438. int32_t i1;
  6439. int32_t i2;
  6440. };
  6441. int64_t * matrix_row_counts = (int64_t *) (wdata_src1_end); // [n_as]
  6442. struct mmid_row_mapping * matrix_rows = (struct mmid_row_mapping *)(matrix_row_counts + n_as); // [n_as][ne11]
  6443. if (src1->type != vec_dot_type) {
  6444. char * wdata = params->wdata;
  6445. const size_t nbw1 = ggml_row_size(vec_dot_type, ne10);
  6446. const size_t nbw2 = nbw1*ne11;
  6447. const size_t nbw3 = nbw2*ne12;
  6448. assert(params->wsize >= ne13*nbw3);
  6449. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  6450. for (int64_t i13 = 0; i13 < ne13; ++i13) {
  6451. for (int64_t i12 = 0; i12 < ne12; ++i12) {
  6452. for (int64_t i11 = ith; i11 < ne11; i11 += nth) {
  6453. from_float((float *)((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11),
  6454. (void *) (wdata + i13*nbw3 + i12*nbw2 + i11*nbw1),
  6455. ne10);
  6456. }
  6457. }
  6458. }
  6459. }
  6460. #define MMID_MATRIX_ROW(row_id, i1) matrix_rows[(row_id)*ne12 + (i1)]
  6461. if (ith == 0) {
  6462. // initialize matrix_row_counts
  6463. memset(matrix_row_counts, 0, n_as*sizeof(int64_t));
  6464. // group rows by src0 matrix
  6465. for (int64_t iid1 = 0; iid1 < ids->ne[1]; ++iid1) {
  6466. for (int id = 0; id < n_ids; ++id) {
  6467. const int32_t i02 = *(const int32_t *) ((const char *) ids->data + iid1*ids->nb[1] + id*ids->nb[0]);
  6468. assert(i02 >= 0 && i02 < n_as);
  6469. MMID_MATRIX_ROW(i02, matrix_row_counts[i02]) = (struct mmid_row_mapping) {id, iid1};
  6470. matrix_row_counts[i02] += 1;
  6471. }
  6472. }
  6473. }
  6474. ggml_barrier(params->threadpool);
  6475. // compute each matrix multiplication in sequence
  6476. for (int cur_a = 0; cur_a < n_as; ++cur_a) {
  6477. const int64_t cne1 = matrix_row_counts[cur_a];
  6478. if (cne1 == 0) {
  6479. continue;
  6480. }
  6481. const char * src0_cur = (const char *) src0->data + cur_a*nb02;
  6482. const void * wdata = (src1->type == vec_dot_type) ? src1->data : params->wdata;
  6483. const size_t row_size = ggml_row_size(vec_dot_type, ne10);
  6484. const int64_t nr0 = ne01; // src0 rows
  6485. const int64_t nr1 = cne1; // src1 rows
  6486. if (((ggml_n_dims(src0) - 1) == 2) && gemv) {
  6487. int64_t src0_cur_start = (ith * ne01) / nth;
  6488. int64_t src0_cur_end = ((ith + 1) * ne01) / nth;
  6489. src0_cur_start = (src0_cur_start % matmul_num_cols) ? src0_cur_start + matmul_num_cols - (src0_cur_start % matmul_num_cols): src0_cur_start;
  6490. src0_cur_end = (src0_cur_end % matmul_num_cols) ? src0_cur_end + matmul_num_cols - (src0_cur_end % matmul_num_cols): src0_cur_end;
  6491. if (src0_cur_start >= src0_cur_end) return;
  6492. for (int ir1 = 0; ir1 < nr1; ir1++) {
  6493. struct mmid_row_mapping row_mapping = MMID_MATRIX_ROW(cur_a, ir1);
  6494. const int id = row_mapping.i1; // selected expert index
  6495. const int64_t i11 = id % ne11;
  6496. const int64_t i12 = row_mapping.i2; // row index in src1
  6497. const int64_t i1 = id; // selected expert index
  6498. const int64_t i2 = i12; // row
  6499. const char * src1_col = (const char *) wdata +
  6500. (src1_cont || src1->type != vec_dot_type
  6501. ? (i11 + i12 * ne11) * row_size
  6502. : (i11 * nb11 + i12 * nb12));
  6503. gemv(ne00, (float *)((char *) dst->data + (i1 * nb1 + i2 * nb2)) + src0_cur_start, ne01,
  6504. (const char *) src0_cur + src0_cur_start * nb01, src1_col, 1, src0_cur_end - src0_cur_start);
  6505. }
  6506. continue;
  6507. }
  6508. // distribute the thread work across the inner or outer loop based on which one is larger
  6509. const int64_t nth0 = nr0 > nr1 ? nth : 1; // parallelize by src0 rows
  6510. const int64_t nth1 = nr0 > nr1 ? 1 : nth; // parallelize by src1 rows
  6511. const int64_t ith0 = ith % nth0;
  6512. const int64_t ith1 = ith / nth0;
  6513. const int64_t dr0 = (nr0 + nth0 - 1)/nth0;
  6514. const int64_t dr1 = (nr1 + nth1 - 1)/nth1;
  6515. const int64_t ir010 = dr0*ith0;
  6516. const int64_t ir011 = MIN(ir010 + dr0, nr0);
  6517. const int64_t ir110 = dr1*ith1;
  6518. const int64_t ir111 = MIN(ir110 + dr1, nr1);
  6519. // threads with no work simply yield (not sure if it helps)
  6520. //if (ir010 >= ir011 || ir110 >= ir111) {
  6521. // sched_yield();
  6522. // continue;
  6523. //}
  6524. // block-tiling attempt
  6525. const int64_t blck_0 = 16;
  6526. const int64_t blck_1 = 16;
  6527. // attempt to reduce false-sharing (does not seem to make a difference)
  6528. float tmp[16];
  6529. for (int64_t iir1 = ir110; iir1 < ir111; iir1 += blck_1) {
  6530. for (int64_t iir0 = ir010; iir0 < ir011; iir0 += blck_0) {
  6531. for (int64_t ir1 = iir1; ir1 < iir1 + blck_1 && ir1 < ir111; ++ir1) {
  6532. const int64_t _i12 = ir1; // logical row index for this expert
  6533. struct mmid_row_mapping row_mapping = MMID_MATRIX_ROW(cur_a, _i12);
  6534. const int id = row_mapping.i1; // selected expert index
  6535. const int64_t i11 = id % ne11;
  6536. const int64_t i12 = row_mapping.i2; // row index in src1
  6537. const int64_t i1 = id; // selected expert index
  6538. const int64_t i2 = i12; // row
  6539. // desc: when src1 is not a contiguous memory block we have to calculate the offset using the strides
  6540. // if it is, then we have either copied the data to params->wdata and made it contiguous or we are using
  6541. // the original src1 data pointer, so we should index using the indices directly
  6542. // TODO: this is a bit of a hack, we should probably have a better way to handle this
  6543. const char * src1_col = (const char *) wdata +
  6544. (src1_cont || src1->type != vec_dot_type
  6545. ? (i11 + i12*ne11)*row_size
  6546. : (i11*nb11 + i12*nb12));
  6547. float * dst_col = (float *) ((char *) dst->data + (i1*nb1 + i2*nb2));
  6548. //for (int64_t ir0 = iir0; ir0 < iir0 + blck_0 && ir0 < ir011; ++ir0) {
  6549. // vec_dot(ne00, &dst_col[ir0], src0_row + ir0*nb01, src1_col);
  6550. //}
  6551. for (int64_t ir0 = iir0; ir0 < iir0 + blck_0 && ir0 < ir011; ++ir0) {
  6552. vec_dot(ne00, &tmp[ir0 - iir0], 0, src0_cur + ir0*nb01, 0, src1_col, 0, 1);
  6553. }
  6554. memcpy(&dst_col[iir0], tmp, (MIN(iir0 + blck_0, ir011) - iir0)*sizeof(float));
  6555. }
  6556. }
  6557. }
  6558. }
  6559. #undef MMID_MATRIX_ROW
  6560. }
  6561. // ggml_compute_forward_out_prod
  6562. static void ggml_compute_forward_out_prod_f32(
  6563. const struct ggml_compute_params * params,
  6564. struct ggml_tensor * dst) {
  6565. const struct ggml_tensor * src0 = dst->src[0];
  6566. const struct ggml_tensor * src1 = dst->src[1];
  6567. GGML_TENSOR_BINARY_OP_LOCALS
  6568. GGML_ASSERT(dst->type == GGML_TYPE_F32);
  6569. GGML_ASSERT(src0->type == GGML_TYPE_F32);
  6570. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  6571. const int ith = params->ith;
  6572. const int nth = params->nth;
  6573. GGML_ASSERT(ne0 == ne00);
  6574. GGML_ASSERT(ne1 == ne10);
  6575. GGML_ASSERT(ne2 == ne02);
  6576. GGML_ASSERT(ne02 == ne12);
  6577. GGML_ASSERT(ne3 == ne13);
  6578. GGML_ASSERT(ne03 == ne13);
  6579. // we don't support permuted src0 or src1
  6580. GGML_ASSERT(nb00 == sizeof(float));
  6581. // dst cannot be transposed or permuted
  6582. GGML_ASSERT(nb0 == sizeof(float));
  6583. // GGML_ASSERT(nb0 <= nb1);
  6584. // GGML_ASSERT(nb1 <= nb2);
  6585. // GGML_ASSERT(nb2 <= nb3);
  6586. // nb01 >= nb00 - src0 is not transposed
  6587. // compute by src0 rows
  6588. if (ith == 0) {
  6589. ggml_vec_set_f32(ne0*ne1*ne2*ne3, dst->data, 0);
  6590. }
  6591. ggml_barrier(params->threadpool);
  6592. // dst[:,:,:,:] = 0
  6593. // for i2,i3:
  6594. // for i1:
  6595. // for i01:
  6596. // for i0:
  6597. // dst[i0,i1,i2,i3] += src0[i0,i01,i2,i3] * src1[i1,i01,i2,i3]
  6598. // parallelize by last three dimensions
  6599. // total rows in dst
  6600. const int64_t nr = ne1*ne2*ne3;
  6601. // rows per thread
  6602. const int64_t dr = (nr + nth - 1)/nth;
  6603. // row range for this thread
  6604. const int64_t ir0 = dr*ith;
  6605. const int64_t ir1 = MIN(ir0 + dr, nr);
  6606. // block-tiling attempt
  6607. const int64_t blck_0 = MAX(GGML_VEC_MAD_UNROLL, 32);
  6608. const int64_t blck_1 = 16;
  6609. for (int64_t bir = ir0; bir < ir1; bir += blck_1) {
  6610. const int64_t bir1 = MIN(bir + blck_1, ir1);
  6611. for (int64_t bi01 = 0; bi01 < ne01; bi01 += blck_0) {
  6612. const int64_t bne01 = MIN(bi01 + blck_0, ne01);
  6613. for (int64_t ir = bir; ir < bir1; ++ir) {
  6614. // dst indices
  6615. const int64_t i3 = ir/(ne2*ne1);
  6616. const int64_t i2 = (ir - i3*ne2*ne1)/ne1;
  6617. const int64_t i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6618. const int64_t i02 = i2;
  6619. const int64_t i03 = i3;
  6620. //const int64_t i10 = i1;
  6621. const int64_t i12 = i2;
  6622. const int64_t i13 = i3;
  6623. #if GGML_VEC_MAD_UNROLL > 2
  6624. const int64_t bne01_unroll = bne01 - (bne01 % GGML_VEC_MAD_UNROLL);
  6625. for (int64_t i01 = bi01; i01 < bne01_unroll; i01 += GGML_VEC_MAD_UNROLL) {
  6626. const int64_t i11 = i01;
  6627. float * s0 = (float *) ((char *) src0->data + ( i01*nb01 + i02*nb02 + i03*nb03));
  6628. float * s1 = (float *) ((char *) src1->data + (i1*nb10 + i11*nb11 + i12*nb12 + i13*nb13));
  6629. float * d = (float *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
  6630. ggml_vec_mad_f32_unroll(ne0, nb01, nb11, d, s0, s1);
  6631. }
  6632. for (int64_t i01 = bne01_unroll; i01 < bne01; ++i01) {
  6633. const int64_t i11 = i01;
  6634. float * s0 = (float *) ((char *) src0->data + ( i01*nb01 + i02*nb02 + i03*nb03));
  6635. float * s1 = (float *) ((char *) src1->data + (i1*nb10 + i11*nb11 + i12*nb12 + i13*nb13));
  6636. float * d = (float *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
  6637. ggml_vec_mad_f32(ne0, d, s0, *s1);
  6638. }
  6639. #else
  6640. for (int64_t i01 = bi01; i01 < bne01; ++i01) {
  6641. const int64_t i11 = i01;
  6642. float * s0 = (float *) ((char *) src0->data + ( i01*nb01 + i02*nb02 + i03*nb03));
  6643. float * s1 = (float *) ((char *) src1->data + (i1*nb10 + i11*nb11 + i12*nb12 + i13*nb13));
  6644. float * d = (float *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
  6645. ggml_vec_mad_f32(ne0, d, s0, *s1);
  6646. }
  6647. #endif
  6648. }
  6649. }
  6650. }
  6651. }
  6652. static void ggml_compute_forward_out_prod_q_f32(
  6653. const struct ggml_compute_params * params,
  6654. struct ggml_tensor * dst) {
  6655. const struct ggml_tensor * src0 = dst->src[0];
  6656. const struct ggml_tensor * src1 = dst->src[1];
  6657. GGML_TENSOR_BINARY_OP_LOCALS;
  6658. const int ith = params->ith;
  6659. const int nth = params->nth;
  6660. const enum ggml_type type = src0->type;
  6661. ggml_to_float_t const dequantize_row_q = ggml_get_type_traits(type)->to_float;
  6662. GGML_ASSERT(ne02 == ne12);
  6663. GGML_ASSERT(ne03 == ne13);
  6664. GGML_ASSERT(ne2 == ne12);
  6665. GGML_ASSERT(ne3 == ne13);
  6666. // we don't support permuted src0 dim0
  6667. GGML_ASSERT(nb00 == ggml_type_size(type));
  6668. // dst dim0 cannot be transposed or permuted
  6669. GGML_ASSERT(nb0 == sizeof(float));
  6670. // GGML_ASSERT(nb0 <= nb1);
  6671. // GGML_ASSERT(nb1 <= nb2);
  6672. // GGML_ASSERT(nb2 <= nb3);
  6673. GGML_ASSERT(ne0 == ne00);
  6674. GGML_ASSERT(ne1 == ne10);
  6675. GGML_ASSERT(ne2 == ne02);
  6676. GGML_ASSERT(ne3 == ne03);
  6677. // nb01 >= nb00 - src0 is not transposed
  6678. // compute by src0 rows
  6679. if (ith == 0) {
  6680. ggml_vec_set_f32(ne0*ne1*ne2*ne3, dst->data, 0);
  6681. }
  6682. ggml_barrier(params->threadpool);
  6683. // parallelize by last three dimensions
  6684. // total rows in dst
  6685. const int64_t nr = ne1*ne2*ne3;
  6686. // rows per thread
  6687. const int64_t dr = (nr + nth - 1)/nth;
  6688. // row range for this thread
  6689. const int64_t ir0 = dr*ith;
  6690. const int64_t ir1 = MIN(ir0 + dr, nr);
  6691. // dst[:,:,:,:] = 0
  6692. // for i2,i3:
  6693. // for i1:
  6694. // for i01:
  6695. // for i0:
  6696. // dst[i0,i1,i2,i3] += src0[i0,i01,i2,i3] * src1[i1,i01,i2,i3]
  6697. float * wdata = (float *) params->wdata + (ne0 + CACHE_LINE_SIZE_F32) * ith;
  6698. for (int64_t ir = ir0; ir < ir1; ++ir) {
  6699. // dst indices
  6700. const int64_t i3 = ir/(ne2*ne1);
  6701. const int64_t i2 = (ir - i3*ne2*ne1)/ne1;
  6702. const int64_t i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6703. const int64_t i02 = i2;
  6704. const int64_t i03 = i3;
  6705. //const int64_t i10 = i1;
  6706. const int64_t i12 = i2;
  6707. const int64_t i13 = i3;
  6708. for (int64_t i01 = 0; i01 < ne01; ++i01) {
  6709. const int64_t i11 = i01;
  6710. float * s0 = (float *) ((char *) src0->data + ( i01*nb01 + i02*nb02 + i03*nb03));
  6711. float * s1 = (float *) ((char *) src1->data + (i1*nb10 + i11*nb11 + i12*nb12 + i13*nb13));
  6712. float * d = (float *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
  6713. dequantize_row_q(s0, wdata, ne0);
  6714. ggml_vec_mad_f32(ne0, d, wdata, *s1);
  6715. }
  6716. }
  6717. }
  6718. static void ggml_compute_forward_out_prod(
  6719. const struct ggml_compute_params * params,
  6720. struct ggml_tensor * dst) {
  6721. const struct ggml_tensor * src0 = dst->src[0];
  6722. switch (src0->type) {
  6723. case GGML_TYPE_Q4_0:
  6724. case GGML_TYPE_Q4_1:
  6725. case GGML_TYPE_Q5_0:
  6726. case GGML_TYPE_Q5_1:
  6727. case GGML_TYPE_Q8_0:
  6728. case GGML_TYPE_Q2_K:
  6729. case GGML_TYPE_Q3_K:
  6730. case GGML_TYPE_Q4_K:
  6731. case GGML_TYPE_Q5_K:
  6732. case GGML_TYPE_Q6_K:
  6733. case GGML_TYPE_TQ1_0:
  6734. case GGML_TYPE_TQ2_0:
  6735. case GGML_TYPE_IQ2_XXS:
  6736. case GGML_TYPE_IQ2_XS:
  6737. case GGML_TYPE_IQ3_XXS:
  6738. case GGML_TYPE_IQ1_S:
  6739. case GGML_TYPE_IQ1_M:
  6740. case GGML_TYPE_IQ4_NL:
  6741. case GGML_TYPE_IQ4_XS:
  6742. case GGML_TYPE_IQ3_S:
  6743. case GGML_TYPE_IQ2_S:
  6744. case GGML_TYPE_Q4_0_4_4:
  6745. case GGML_TYPE_Q4_0_4_8:
  6746. case GGML_TYPE_Q4_0_8_8:
  6747. {
  6748. ggml_compute_forward_out_prod_q_f32(params, dst);
  6749. } break;
  6750. case GGML_TYPE_F16:
  6751. {
  6752. GGML_ABORT("fatal error"); // todo
  6753. // ggml_compute_forward_out_prod_f16_f32(params, dst);
  6754. }
  6755. case GGML_TYPE_F32:
  6756. {
  6757. ggml_compute_forward_out_prod_f32(params, dst);
  6758. } break;
  6759. default:
  6760. {
  6761. GGML_ABORT("fatal error");
  6762. }
  6763. }
  6764. }
  6765. // ggml_compute_forward_scale
  6766. static void ggml_compute_forward_scale_f32(
  6767. const struct ggml_compute_params * params,
  6768. struct ggml_tensor * dst) {
  6769. const struct ggml_tensor * src0 = dst->src[0];
  6770. GGML_ASSERT(ggml_is_contiguous(src0));
  6771. GGML_ASSERT(ggml_is_contiguous(dst));
  6772. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6773. // scale factor
  6774. float v;
  6775. memcpy(&v, dst->op_params, sizeof(float));
  6776. const int ith = params->ith;
  6777. const int nth = params->nth;
  6778. const int nc = src0->ne[0];
  6779. const int nr = ggml_nrows(src0);
  6780. // rows per thread
  6781. const int dr = (nr + nth - 1)/nth;
  6782. // row range for this thread
  6783. const int ir0 = dr*ith;
  6784. const int ir1 = MIN(ir0 + dr, nr);
  6785. const size_t nb01 = src0->nb[1];
  6786. const size_t nb1 = dst->nb[1];
  6787. for (int i1 = ir0; i1 < ir1; i1++) {
  6788. if (dst->data != src0->data) {
  6789. // src0 is same shape as dst => same indices
  6790. memcpy((char *)dst->data + i1*nb1, (char *)src0->data + i1*nb01, nc * sizeof(float));
  6791. }
  6792. ggml_vec_scale_f32(nc, (float *) ((char *) dst->data + i1*nb1), v);
  6793. }
  6794. }
  6795. static void ggml_compute_forward_scale(
  6796. const struct ggml_compute_params * params,
  6797. struct ggml_tensor * dst) {
  6798. const struct ggml_tensor * src0 = dst->src[0];
  6799. switch (src0->type) {
  6800. case GGML_TYPE_F32:
  6801. {
  6802. ggml_compute_forward_scale_f32(params, dst);
  6803. } break;
  6804. default:
  6805. {
  6806. GGML_ABORT("fatal error");
  6807. }
  6808. }
  6809. }
  6810. // ggml_compute_forward_set
  6811. static void ggml_compute_forward_set_f32(
  6812. const struct ggml_compute_params * params,
  6813. struct ggml_tensor * dst) {
  6814. const struct ggml_tensor * src0 = dst->src[0];
  6815. const struct ggml_tensor * src1 = dst->src[1];
  6816. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6817. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  6818. // view src0 and dst with these strides and data offset inbytes during set
  6819. // nb0 is implicitly element_size because src0 and dst are contiguous
  6820. size_t nb1 = ((int32_t *) dst->op_params)[0];
  6821. size_t nb2 = ((int32_t *) dst->op_params)[1];
  6822. size_t nb3 = ((int32_t *) dst->op_params)[2];
  6823. size_t offset = ((int32_t *) dst->op_params)[3];
  6824. bool inplace = (bool) ((int32_t *) dst->op_params)[4];
  6825. if (!inplace) {
  6826. if (params->ith == 0) {
  6827. // memcpy needs to be synchronized across threads to avoid race conditions.
  6828. // => do it in INIT phase
  6829. memcpy(
  6830. ((char *) dst->data),
  6831. ((char *) src0->data),
  6832. ggml_nbytes(dst));
  6833. }
  6834. ggml_barrier(params->threadpool);
  6835. }
  6836. const int ith = params->ith;
  6837. const int nth = params->nth;
  6838. const int nr = ggml_nrows(src1);
  6839. const int nc = src1->ne[0];
  6840. GGML_TENSOR_LOCALS(int64_t, ne1, src1, ne)
  6841. GGML_TENSOR_LOCALS(size_t, nb1, src1, nb)
  6842. // src0 and dst as viewed during set
  6843. const size_t nb0 = ggml_element_size(src0);
  6844. const int im0 = (ne10 == 0 ? 0 : ne10-1);
  6845. const int im1 = (ne11 == 0 ? 0 : ne11-1);
  6846. const int im2 = (ne12 == 0 ? 0 : ne12-1);
  6847. const int im3 = (ne13 == 0 ? 0 : ne13-1);
  6848. GGML_ASSERT(offset + im0*nb0 + im1*nb1 + im2*nb2 + im3*nb3 <= ggml_nbytes(dst));
  6849. GGML_ASSERT(nb10 == sizeof(float));
  6850. // rows per thread
  6851. const int dr = (nr + nth - 1)/nth;
  6852. // row range for this thread
  6853. const int ir0 = dr*ith;
  6854. const int ir1 = MIN(ir0 + dr, nr);
  6855. for (int ir = ir0; ir < ir1; ++ir) {
  6856. // src0 and dst are viewed with shape of src1 and offset
  6857. // => same indices
  6858. const int i3 = ir/(ne12*ne11);
  6859. const int i2 = (ir - i3*ne12*ne11)/ne11;
  6860. const int i1 = (ir - i3*ne12*ne11 - i2*ne11);
  6861. ggml_vec_cpy_f32(nc,
  6862. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + offset),
  6863. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
  6864. }
  6865. }
  6866. static void ggml_compute_forward_set(
  6867. const struct ggml_compute_params * params,
  6868. struct ggml_tensor * dst) {
  6869. const struct ggml_tensor * src0 = dst->src[0];
  6870. switch (src0->type) {
  6871. case GGML_TYPE_F32:
  6872. {
  6873. ggml_compute_forward_set_f32(params, dst);
  6874. } break;
  6875. case GGML_TYPE_F16:
  6876. case GGML_TYPE_BF16:
  6877. case GGML_TYPE_Q4_0:
  6878. case GGML_TYPE_Q4_1:
  6879. case GGML_TYPE_Q5_0:
  6880. case GGML_TYPE_Q5_1:
  6881. case GGML_TYPE_Q8_0:
  6882. case GGML_TYPE_Q8_1:
  6883. case GGML_TYPE_Q2_K:
  6884. case GGML_TYPE_Q3_K:
  6885. case GGML_TYPE_Q4_K:
  6886. case GGML_TYPE_Q5_K:
  6887. case GGML_TYPE_Q6_K:
  6888. case GGML_TYPE_TQ1_0:
  6889. case GGML_TYPE_TQ2_0:
  6890. case GGML_TYPE_IQ2_XXS:
  6891. case GGML_TYPE_IQ2_XS:
  6892. case GGML_TYPE_IQ3_XXS:
  6893. case GGML_TYPE_IQ1_S:
  6894. case GGML_TYPE_IQ1_M:
  6895. case GGML_TYPE_IQ4_NL:
  6896. case GGML_TYPE_IQ4_XS:
  6897. case GGML_TYPE_IQ3_S:
  6898. case GGML_TYPE_IQ2_S:
  6899. case GGML_TYPE_Q4_0_4_4:
  6900. case GGML_TYPE_Q4_0_4_8:
  6901. case GGML_TYPE_Q4_0_8_8:
  6902. default:
  6903. {
  6904. GGML_ABORT("fatal error");
  6905. }
  6906. }
  6907. }
  6908. // ggml_compute_forward_cpy
  6909. static void ggml_compute_forward_cpy(
  6910. const struct ggml_compute_params * params,
  6911. struct ggml_tensor * dst) {
  6912. ggml_compute_forward_dup(params, dst);
  6913. }
  6914. // ggml_compute_forward_cont
  6915. static void ggml_compute_forward_cont(
  6916. const struct ggml_compute_params * params,
  6917. struct ggml_tensor * dst) {
  6918. ggml_compute_forward_dup(params, dst);
  6919. }
  6920. // ggml_compute_forward_reshape
  6921. static void ggml_compute_forward_reshape(
  6922. const struct ggml_compute_params * params,
  6923. struct ggml_tensor * dst) {
  6924. // NOP
  6925. UNUSED(params);
  6926. UNUSED(dst);
  6927. }
  6928. // ggml_compute_forward_view
  6929. static void ggml_compute_forward_view(
  6930. const struct ggml_compute_params * params,
  6931. const struct ggml_tensor * dst) {
  6932. // NOP
  6933. UNUSED(params);
  6934. UNUSED(dst);
  6935. }
  6936. // ggml_compute_forward_permute
  6937. static void ggml_compute_forward_permute(
  6938. const struct ggml_compute_params * params,
  6939. const struct ggml_tensor * dst) {
  6940. // NOP
  6941. UNUSED(params);
  6942. UNUSED(dst);
  6943. }
  6944. // ggml_compute_forward_transpose
  6945. static void ggml_compute_forward_transpose(
  6946. const struct ggml_compute_params * params,
  6947. const struct ggml_tensor * dst) {
  6948. // NOP
  6949. UNUSED(params);
  6950. UNUSED(dst);
  6951. }
  6952. // ggml_compute_forward_get_rows
  6953. static void ggml_compute_forward_get_rows_q(
  6954. const struct ggml_compute_params * params,
  6955. struct ggml_tensor * dst) {
  6956. const struct ggml_tensor * src0 = dst->src[0];
  6957. const struct ggml_tensor * src1 = dst->src[1];
  6958. GGML_TENSOR_BINARY_OP_LOCALS
  6959. const int64_t nc = ne00;
  6960. const int64_t nr = ggml_nelements(src1);
  6961. const enum ggml_type type = src0->type;
  6962. ggml_to_float_t const dequantize_row_q = ggml_get_type_traits(type)->to_float;
  6963. assert(ne0 == nc);
  6964. assert(ne02 == ne11);
  6965. assert(nb00 == ggml_type_size(type));
  6966. assert(ggml_nrows(dst) == nr);
  6967. const int ith = params->ith;
  6968. const int nth = params->nth;
  6969. // rows per thread
  6970. const int dr = (nr + nth - 1)/nth;
  6971. // row range for this thread
  6972. const int ir0 = dr*ith;
  6973. const int ir1 = MIN(ir0 + dr, nr);
  6974. for (int64_t i = ir0; i < ir1; ++i) {
  6975. const int64_t i12 = i/(ne11*ne10);
  6976. const int64_t i11 = (i - i12*ne11*ne10)/ne10;
  6977. const int64_t i10 = (i - i12*ne11*ne10 - i11*ne10);
  6978. const int64_t i01 = *(int32_t *) ((char *) src1->data + i10*nb10 + i11*nb11 + i12*nb12);
  6979. GGML_ASSERT(i01 >= 0 && i01 < ne01);
  6980. dequantize_row_q(
  6981. (const void *) ((char *) src0->data + i01*nb01 + i11*nb02 + i12*nb03),
  6982. (float *) ((char *) dst->data + i10*nb1 + i11*nb2 + i12*nb3), nc);
  6983. }
  6984. }
  6985. static void ggml_compute_forward_get_rows_f16(
  6986. const struct ggml_compute_params * params,
  6987. struct ggml_tensor * dst) {
  6988. const struct ggml_tensor * src0 = dst->src[0];
  6989. const struct ggml_tensor * src1 = dst->src[1];
  6990. GGML_TENSOR_BINARY_OP_LOCALS
  6991. const int64_t nc = ne00;
  6992. const int64_t nr = ggml_nelements(src1);
  6993. assert(ne0 == nc);
  6994. assert(ne02 == ne11);
  6995. assert(nb00 == sizeof(ggml_fp16_t));
  6996. assert(ggml_nrows(dst) == nr);
  6997. const int ith = params->ith;
  6998. const int nth = params->nth;
  6999. // rows per thread
  7000. const int dr = (nr + nth - 1)/nth;
  7001. // row range for this thread
  7002. const int ir0 = dr*ith;
  7003. const int ir1 = MIN(ir0 + dr, nr);
  7004. for (int64_t i = ir0; i < ir1; ++i) {
  7005. const int64_t i12 = i/(ne11*ne10);
  7006. const int64_t i11 = (i - i12*ne11*ne10)/ne10;
  7007. const int64_t i10 = (i - i12*ne11*ne10 - i11*ne10);
  7008. const int64_t i01 = *(int32_t *) ((char *) src1->data + i10*nb10 + i11*nb11 + i12*nb12);
  7009. GGML_ASSERT(i01 >= 0 && i01 < ne01);
  7010. ggml_fp16_to_fp32_row(
  7011. (const void *) ((char *) src0->data + i01*nb01 + i11*nb02 + i12*nb03),
  7012. (float *) ((char *) dst->data + i10*nb1 + i11*nb2 + i12*nb3), nc);
  7013. }
  7014. }
  7015. static void ggml_compute_forward_get_rows_bf16(
  7016. const struct ggml_compute_params * params,
  7017. struct ggml_tensor * dst) {
  7018. const struct ggml_tensor * src0 = dst->src[0];
  7019. const struct ggml_tensor * src1 = dst->src[1];
  7020. GGML_TENSOR_BINARY_OP_LOCALS
  7021. const int64_t nc = ne00;
  7022. const int64_t nr = ggml_nelements(src1);
  7023. assert(ne0 == nc);
  7024. assert(ne02 == ne11);
  7025. assert(nb00 == sizeof(ggml_bf16_t));
  7026. assert(ggml_nrows(dst) == nr);
  7027. const int ith = params->ith;
  7028. const int nth = params->nth;
  7029. // rows per thread
  7030. const int dr = (nr + nth - 1)/nth;
  7031. // row range for this thread
  7032. const int ir0 = dr*ith;
  7033. const int ir1 = MIN(ir0 + dr, nr);
  7034. for (int64_t i = ir0; i < ir1; ++i) {
  7035. const int64_t i12 = i/(ne11*ne10);
  7036. const int64_t i11 = (i - i12*ne11*ne10)/ne10;
  7037. const int64_t i10 = (i - i12*ne11*ne10 - i11*ne10);
  7038. const int64_t i01 = *(int32_t *) ((char *) src1->data + i10*nb10 + i11*nb11 + i12*nb12);
  7039. GGML_ASSERT(i01 >= 0 && i01 < ne01);
  7040. ggml_bf16_to_fp32_row(
  7041. (const void *) ((char *) src0->data + i01*nb01 + i11*nb02 + i12*nb03),
  7042. (float *) ((char *) dst->data + i10*nb1 + i11*nb2 + i12*nb3), nc);
  7043. }
  7044. }
  7045. static void ggml_compute_forward_get_rows_f32(
  7046. const struct ggml_compute_params * params,
  7047. struct ggml_tensor * dst) {
  7048. const struct ggml_tensor * src0 = dst->src[0];
  7049. const struct ggml_tensor * src1 = dst->src[1];
  7050. GGML_TENSOR_BINARY_OP_LOCALS
  7051. const int64_t nc = ne00;
  7052. const int64_t nr = ggml_nelements(src1);
  7053. assert(ne0 == nc);
  7054. assert(ne02 == ne11);
  7055. assert(nb00 == sizeof(float));
  7056. assert(ggml_nrows(dst) == nr);
  7057. const int ith = params->ith;
  7058. const int nth = params->nth;
  7059. // rows per thread
  7060. const int dr = (nr + nth - 1)/nth;
  7061. // row range for this thread
  7062. const int ir0 = dr*ith;
  7063. const int ir1 = MIN(ir0 + dr, nr);
  7064. for (int64_t i = ir0; i < ir1; ++i) {
  7065. const int64_t i12 = i/(ne11*ne10);
  7066. const int64_t i11 = (i - i12*ne11*ne10)/ne10;
  7067. const int64_t i10 = (i - i12*ne11*ne10 - i11*ne10);
  7068. const int64_t i01 = *(int32_t *) ((char *) src1->data + i10*nb10 + i11*nb11 + i12*nb12);
  7069. GGML_ASSERT(i01 >= 0 && i01 < ne01);
  7070. ggml_vec_cpy_f32(nc,
  7071. (float *) ((char *) dst->data + i10*nb1 + i11*nb2 + i12*nb3),
  7072. (float *) ((char *) src0->data + i01*nb01 + i11*nb02 + i12*nb03));
  7073. }
  7074. }
  7075. static void ggml_compute_forward_get_rows(
  7076. const struct ggml_compute_params * params,
  7077. struct ggml_tensor * dst) {
  7078. const struct ggml_tensor * src0 = dst->src[0];
  7079. switch (src0->type) {
  7080. case GGML_TYPE_Q4_0:
  7081. case GGML_TYPE_Q4_1:
  7082. case GGML_TYPE_Q5_0:
  7083. case GGML_TYPE_Q5_1:
  7084. case GGML_TYPE_Q8_0:
  7085. case GGML_TYPE_Q8_1:
  7086. case GGML_TYPE_Q2_K:
  7087. case GGML_TYPE_Q3_K:
  7088. case GGML_TYPE_Q4_K:
  7089. case GGML_TYPE_Q5_K:
  7090. case GGML_TYPE_Q6_K:
  7091. case GGML_TYPE_TQ1_0:
  7092. case GGML_TYPE_TQ2_0:
  7093. case GGML_TYPE_IQ2_XXS:
  7094. case GGML_TYPE_IQ2_XS:
  7095. case GGML_TYPE_IQ3_XXS:
  7096. case GGML_TYPE_IQ1_S:
  7097. case GGML_TYPE_IQ1_M:
  7098. case GGML_TYPE_IQ4_NL:
  7099. case GGML_TYPE_IQ4_XS:
  7100. case GGML_TYPE_IQ3_S:
  7101. case GGML_TYPE_IQ2_S:
  7102. case GGML_TYPE_Q4_0_4_4:
  7103. case GGML_TYPE_Q4_0_4_8:
  7104. case GGML_TYPE_Q4_0_8_8:
  7105. {
  7106. ggml_compute_forward_get_rows_q(params, dst);
  7107. } break;
  7108. case GGML_TYPE_F16:
  7109. {
  7110. ggml_compute_forward_get_rows_f16(params, dst);
  7111. } break;
  7112. case GGML_TYPE_BF16:
  7113. {
  7114. ggml_compute_forward_get_rows_bf16(params, dst);
  7115. } break;
  7116. case GGML_TYPE_F32:
  7117. case GGML_TYPE_I32:
  7118. {
  7119. ggml_compute_forward_get_rows_f32(params, dst);
  7120. } break;
  7121. default:
  7122. {
  7123. GGML_ABORT("fatal error");
  7124. }
  7125. }
  7126. //static bool first = true;
  7127. //printf("ne0 = %d, ne1 = %d, ne2 = %d\n", dst->ne[0], dst->ne[1], dst->ne[2]);
  7128. //if (first) {
  7129. // first = false;
  7130. //} else {
  7131. // for (int k = 0; k < dst->ne[1]; ++k) {
  7132. // for (int j = 0; j < dst->ne[0]/16; ++j) {
  7133. // for (int i = 0; i < 16; ++i) {
  7134. // printf("%8.4f ", ((float *) dst->data)[k*dst->ne[0] + j*16 + i]);
  7135. // }
  7136. // printf("\n");
  7137. // }
  7138. // printf("\n");
  7139. // }
  7140. // printf("\n");
  7141. // exit(0);
  7142. //}
  7143. }
  7144. // ggml_compute_forward_get_rows_back
  7145. static void ggml_compute_forward_get_rows_back_f32_f16(
  7146. const struct ggml_compute_params * params,
  7147. struct ggml_tensor * dst) {
  7148. const struct ggml_tensor * src0 = dst->src[0];
  7149. const struct ggml_tensor * src1 = dst->src[1];
  7150. if (params->ith != 0) {
  7151. return;
  7152. }
  7153. GGML_ASSERT(ggml_is_contiguous(dst));
  7154. // ggml_compute_forward_dup_same_cont(params, opt0, dst);
  7155. memset(dst->data, 0, ggml_nbytes(dst));
  7156. const int nc = src0->ne[0];
  7157. const int nr = ggml_nelements(src1);
  7158. GGML_ASSERT( dst->ne[0] == nc);
  7159. GGML_ASSERT(src0->nb[0] == sizeof(ggml_fp16_t));
  7160. for (int i = 0; i < nr; ++i) {
  7161. const int r = ((int32_t *) src1->data)[i];
  7162. for (int j = 0; j < nc; ++j) {
  7163. ggml_fp16_t v = ((ggml_fp16_t *) ((char *) src0->data + i*src0->nb[1]))[j];
  7164. ((float *) ((char *) dst->data + r*dst->nb[1]))[j] += GGML_FP16_TO_FP32(v);
  7165. }
  7166. }
  7167. }
  7168. static void ggml_compute_forward_get_rows_back_f32(
  7169. const struct ggml_compute_params * params,
  7170. struct ggml_tensor * dst) {
  7171. const struct ggml_tensor * src0 = dst->src[0];
  7172. const struct ggml_tensor * src1 = dst->src[1];
  7173. if (params->ith != 0) {
  7174. return;
  7175. }
  7176. GGML_ASSERT(ggml_is_contiguous(dst));
  7177. // ggml_compute_forward_dup_same_cont(params, opt0, dst);
  7178. memset(dst->data, 0, ggml_nbytes(dst));
  7179. const int nc = src0->ne[0];
  7180. const int nr = ggml_nelements(src1);
  7181. GGML_ASSERT( dst->ne[0] == nc);
  7182. GGML_ASSERT(src0->nb[0] == sizeof(float));
  7183. for (int i = 0; i < nr; ++i) {
  7184. const int r = ((int32_t *) src1->data)[i];
  7185. ggml_vec_add_f32(nc,
  7186. (float *) ((char *) dst->data + r*dst->nb[1]),
  7187. (float *) ((char *) dst->data + r*dst->nb[1]),
  7188. (float *) ((char *) src0->data + i*src0->nb[1]));
  7189. }
  7190. }
  7191. static void ggml_compute_forward_get_rows_back(
  7192. const struct ggml_compute_params * params,
  7193. struct ggml_tensor * dst) {
  7194. const struct ggml_tensor * src0 = dst->src[0];
  7195. switch (src0->type) {
  7196. case GGML_TYPE_F16:
  7197. {
  7198. ggml_compute_forward_get_rows_back_f32_f16(params, dst);
  7199. } break;
  7200. case GGML_TYPE_F32:
  7201. {
  7202. ggml_compute_forward_get_rows_back_f32(params, dst);
  7203. } break;
  7204. default:
  7205. {
  7206. GGML_ABORT("fatal error");
  7207. }
  7208. }
  7209. //static bool first = true;
  7210. //printf("ne0 = %d, ne1 = %d, ne2 = %d\n", dst->ne[0], dst->ne[1], dst->ne[2]);
  7211. //if (first) {
  7212. // first = false;
  7213. //} else {
  7214. // for (int k = 0; k < dst->ne[1]; ++k) {
  7215. // for (int j = 0; j < dst->ne[0]/16; ++j) {
  7216. // for (int i = 0; i < 16; ++i) {
  7217. // printf("%8.4f ", ((float *) dst->data)[k*dst->ne[0] + j*16 + i]);
  7218. // }
  7219. // printf("\n");
  7220. // }
  7221. // printf("\n");
  7222. // }
  7223. // printf("\n");
  7224. // exit(0);
  7225. //}
  7226. }
  7227. // ggml_compute_forward_diag
  7228. static void ggml_compute_forward_diag_f32(
  7229. const struct ggml_compute_params * params,
  7230. struct ggml_tensor * dst) {
  7231. const struct ggml_tensor * src0 = dst->src[0];
  7232. if (params->ith != 0) {
  7233. return;
  7234. }
  7235. // TODO: handle transposed/permuted matrices
  7236. GGML_TENSOR_UNARY_OP_LOCALS
  7237. GGML_ASSERT(ne00 == ne0);
  7238. GGML_ASSERT(ne00 == ne1);
  7239. GGML_ASSERT(ne01 == 1);
  7240. GGML_ASSERT(ne02 == ne2);
  7241. GGML_ASSERT(ne03 == ne3);
  7242. GGML_ASSERT(nb00 == sizeof(float));
  7243. GGML_ASSERT(nb0 == sizeof(float));
  7244. for (int i3 = 0; i3 < ne3; i3++) {
  7245. for (int i2 = 0; i2 < ne2; i2++) {
  7246. for (int i1 = 0; i1 < ne1; i1++) {
  7247. float * d = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  7248. float * s = (float *)((char *) src0->data + i3*nb03 + i2*nb02);
  7249. for (int i0 = 0; i0 < i1; i0++) {
  7250. d[i0] = 0;
  7251. }
  7252. d[i1] = s[i1];
  7253. for (int i0 = i1+1; i0 < ne0; i0++) {
  7254. d[i0] = 0;
  7255. }
  7256. }
  7257. }
  7258. }
  7259. }
  7260. static void ggml_compute_forward_diag(
  7261. const struct ggml_compute_params * params,
  7262. struct ggml_tensor * dst) {
  7263. const struct ggml_tensor * src0 = dst->src[0];
  7264. switch (src0->type) {
  7265. case GGML_TYPE_F32:
  7266. {
  7267. ggml_compute_forward_diag_f32(params, dst);
  7268. } break;
  7269. default:
  7270. {
  7271. GGML_ABORT("fatal error");
  7272. }
  7273. }
  7274. }
  7275. // ggml_compute_forward_diag_mask_inf
  7276. static void ggml_compute_forward_diag_mask_f32(
  7277. const struct ggml_compute_params * params,
  7278. struct ggml_tensor * dst,
  7279. const float value) {
  7280. const struct ggml_tensor * src0 = dst->src[0];
  7281. const int ith = params->ith;
  7282. const int nth = params->nth;
  7283. const int n_past = ((int32_t *) dst->op_params)[0];
  7284. const bool inplace = src0->data == dst->data;
  7285. GGML_ASSERT(n_past >= 0);
  7286. if (!inplace) {
  7287. if (ith == 0) {
  7288. // memcpy needs to be synchronized across threads to avoid race conditions.
  7289. // => do it in INIT phase
  7290. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  7291. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  7292. memcpy(
  7293. ((char *) dst->data),
  7294. ((char *) src0->data),
  7295. ggml_nbytes(dst));
  7296. }
  7297. ggml_barrier(params->threadpool);
  7298. }
  7299. // TODO: handle transposed/permuted matrices
  7300. const int n = ggml_nrows(src0);
  7301. const int nc = src0->ne[0];
  7302. const int nr = src0->ne[1];
  7303. const int nz = n/nr;
  7304. GGML_ASSERT( dst->nb[0] == sizeof(float));
  7305. GGML_ASSERT(src0->nb[0] == sizeof(float));
  7306. for (int k = 0; k < nz; k++) {
  7307. for (int j = ith; j < nr; j += nth) {
  7308. for (int i = n_past; i < nc; i++) {
  7309. if (i > n_past + j) {
  7310. *(float *)((char *) dst->data + k*dst->nb[2] + j*dst->nb[1] + i*dst->nb[0]) = value;
  7311. }
  7312. }
  7313. }
  7314. }
  7315. }
  7316. static void ggml_compute_forward_diag_mask_inf(
  7317. const struct ggml_compute_params * params,
  7318. struct ggml_tensor * dst) {
  7319. const struct ggml_tensor * src0 = dst->src[0];
  7320. switch (src0->type) {
  7321. case GGML_TYPE_F32:
  7322. {
  7323. ggml_compute_forward_diag_mask_f32(params, dst, -INFINITY);
  7324. } break;
  7325. default:
  7326. {
  7327. GGML_ABORT("fatal error");
  7328. }
  7329. }
  7330. }
  7331. static void ggml_compute_forward_diag_mask_zero(
  7332. const struct ggml_compute_params * params,
  7333. struct ggml_tensor * dst) {
  7334. const struct ggml_tensor * src0 = dst->src[0];
  7335. switch (src0->type) {
  7336. case GGML_TYPE_F32:
  7337. {
  7338. ggml_compute_forward_diag_mask_f32(params, dst, 0);
  7339. } break;
  7340. default:
  7341. {
  7342. GGML_ABORT("fatal error");
  7343. }
  7344. }
  7345. }
  7346. // ggml_compute_forward_soft_max
  7347. static void ggml_compute_forward_soft_max_f32(
  7348. const struct ggml_compute_params * params,
  7349. struct ggml_tensor * dst) {
  7350. const struct ggml_tensor * src0 = dst->src[0];
  7351. const struct ggml_tensor * src1 = dst->src[1];
  7352. assert(ggml_is_contiguous(dst));
  7353. assert(ggml_are_same_shape(src0, dst));
  7354. float scale = 1.0f;
  7355. float max_bias = 0.0f;
  7356. memcpy(&scale, (float *) dst->op_params + 0, sizeof(float));
  7357. memcpy(&max_bias, (float *) dst->op_params + 1, sizeof(float));
  7358. // TODO: handle transposed/permuted matrices
  7359. const int ith = params->ith;
  7360. const int nth = params->nth;
  7361. GGML_TENSOR_UNARY_OP_LOCALS
  7362. //const int64_t ne11 = src1 ? src1->ne[1] : 1;
  7363. // TODO: is this supposed to be ceil instead of floor?
  7364. // https://huggingface.co/mosaicml/mpt-7b/blob/main/attention.py#L370
  7365. const uint32_t n_head = ne02;
  7366. const uint32_t n_head_log2 = 1u << (uint32_t) floor(log2(n_head));
  7367. const float m0 = powf(2.0f, -(max_bias ) / n_head_log2);
  7368. const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_head_log2);
  7369. const int nc = src0->ne[0];
  7370. const int nr = ggml_nrows(src0);
  7371. // rows per thread
  7372. const int dr = (nr + nth - 1)/nth;
  7373. // row range for this thread
  7374. const int ir0 = dr*ith;
  7375. const int ir1 = MIN(ir0 + dr, nr);
  7376. float * wp = (float *) params->wdata + (nc + CACHE_LINE_SIZE_F32) * ith;
  7377. const bool use_f16 = (src1 && src1->type == GGML_TYPE_F16);
  7378. for (int i1 = ir0; i1 < ir1; i1++) {
  7379. // ALiBi
  7380. const uint32_t h = (i1/ne01)%ne02; // head
  7381. const float slope = (max_bias > 0.0f) ? h < n_head_log2 ? powf(m0, h + 1) : powf(m1, 2*(h - n_head_log2) + 1) : 1.0f;
  7382. float * sp = (float *)((char *) src0->data + i1*src0->nb[1]);
  7383. float * dp = (float *)((char *) dst->data + i1*dst->nb[1]);
  7384. // broadcast the mask across rows
  7385. ggml_fp16_t * mp_f16 = src1 ? (ggml_fp16_t *)((char *) src1->data) + (i1%ne01)*ne00 : NULL;
  7386. float * mp_f32 = src1 ? (float *)((char *) src1->data) + (i1%ne01)*ne00 : NULL;
  7387. ggml_vec_cpy_f32 (nc, wp, sp);
  7388. ggml_vec_scale_f32(nc, wp, scale);
  7389. if (mp_f32) {
  7390. if (use_f16) {
  7391. for (int i = 0; i < nc; ++i) {
  7392. wp[i] += slope*GGML_FP16_TO_FP32(mp_f16[i]);
  7393. }
  7394. } else {
  7395. for (int i = 0; i < nc; ++i) {
  7396. wp[i] += slope*mp_f32[i];
  7397. }
  7398. }
  7399. }
  7400. #ifndef NDEBUG
  7401. for (int i = 0; i < nc; ++i) {
  7402. //printf("p[%d] = %f\n", i, p[i]);
  7403. assert(!isnan(wp[i]));
  7404. }
  7405. #endif
  7406. float max = -INFINITY;
  7407. ggml_vec_max_f32(nc, &max, wp);
  7408. ggml_float sum = ggml_vec_soft_max_f32(nc, dp, wp, max);
  7409. assert(sum > 0.0);
  7410. sum = 1.0/sum;
  7411. ggml_vec_scale_f32(nc, dp, sum);
  7412. #ifndef NDEBUG
  7413. for (int i = 0; i < nc; ++i) {
  7414. assert(!isnan(dp[i]));
  7415. assert(!isinf(dp[i]));
  7416. }
  7417. #endif
  7418. }
  7419. }
  7420. static void ggml_compute_forward_soft_max(
  7421. const struct ggml_compute_params * params,
  7422. struct ggml_tensor * dst) {
  7423. const struct ggml_tensor * src0 = dst->src[0];
  7424. switch (src0->type) {
  7425. case GGML_TYPE_F32:
  7426. {
  7427. ggml_compute_forward_soft_max_f32(params, dst);
  7428. } break;
  7429. default:
  7430. {
  7431. GGML_ABORT("fatal error");
  7432. }
  7433. }
  7434. }
  7435. // ggml_compute_forward_soft_max_back
  7436. static void ggml_compute_forward_soft_max_back_f32(
  7437. const struct ggml_compute_params * params,
  7438. struct ggml_tensor * dst) {
  7439. const struct ggml_tensor * src0 = dst->src[0];
  7440. const struct ggml_tensor * src1 = dst->src[1];
  7441. GGML_ASSERT(ggml_is_contiguous(src0));
  7442. GGML_ASSERT(ggml_is_contiguous(src1));
  7443. GGML_ASSERT(ggml_is_contiguous(dst));
  7444. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7445. GGML_ASSERT(ggml_are_same_shape(src1, dst));
  7446. // TODO: handle transposed/permuted matrices
  7447. const int ith = params->ith;
  7448. const int nth = params->nth;
  7449. const int nc = src0->ne[0];
  7450. const int nr = ggml_nrows(src0);
  7451. // rows per thread
  7452. const int dr = (nr + nth - 1)/nth;
  7453. // row range for this thread
  7454. const int ir0 = dr*ith;
  7455. const int ir1 = MIN(ir0 + dr, nr);
  7456. for (int i1 = ir0; i1 < ir1; i1++) {
  7457. float *dy = (float *)((char *) src0->data + i1*src0->nb[1]);
  7458. float *y = (float *)((char *) src1->data + i1*src1->nb[1]);
  7459. float *dx = (float *)((char *) dst->data + i1*dst->nb[1]);
  7460. #ifndef NDEBUG
  7461. for (int i = 0; i < nc; ++i) {
  7462. //printf("p[%d] = %f\n", i, p[i]);
  7463. assert(!isnan(dy[i]));
  7464. assert(!isnan(y[i]));
  7465. }
  7466. #endif
  7467. // Jii = yi - yi*yi
  7468. // Jij = -yi*yj
  7469. // J = diag(y)-y.T*y
  7470. // dx = J * dy
  7471. // dxk = sum_i(Jki * dyi)
  7472. // dxk = sum_i(-yk*yi * dyi) - (-yk*yk)*dyk + (yk - yk*yk)*dyk
  7473. // dxk = sum_i(-yk*yi * dyi) + yk*yk*dyk + yk*dyk - yk*yk*dyk
  7474. // dxk = sum_i(-yk*yi * dyi) + yk*dyk
  7475. // dxk = -yk * sum_i(yi * dyi) + yk*dyk
  7476. // dxk = -yk * dot(y, dy) + yk*dyk
  7477. // dxk = yk * (- dot(y, dy) + dyk)
  7478. // dxk = yk * (dyk - dot(y, dy))
  7479. //
  7480. // post-order:
  7481. // dot_y_dy := dot(y, dy)
  7482. // dx := dy
  7483. // dx := dx - dot_y_dy
  7484. // dx := dx * y
  7485. // linear runtime, no additional memory
  7486. float dot_y_dy = 0;
  7487. ggml_vec_dot_f32 (nc, &dot_y_dy, 0, y, 0, dy, 0, 1);
  7488. ggml_vec_cpy_f32 (nc, dx, dy);
  7489. ggml_vec_acc1_f32(nc, dx, -dot_y_dy);
  7490. ggml_vec_mul_f32 (nc, dx, dx, y);
  7491. #ifndef NDEBUG
  7492. for (int i = 0; i < nc; ++i) {
  7493. assert(!isnan(dx[i]));
  7494. assert(!isinf(dx[i]));
  7495. }
  7496. #endif
  7497. }
  7498. }
  7499. static void ggml_compute_forward_soft_max_back(
  7500. const struct ggml_compute_params * params,
  7501. struct ggml_tensor * dst) {
  7502. const struct ggml_tensor * src0 = dst->src[0];
  7503. switch (src0->type) {
  7504. case GGML_TYPE_F32:
  7505. {
  7506. ggml_compute_forward_soft_max_back_f32(params, dst);
  7507. } break;
  7508. default:
  7509. {
  7510. GGML_ABORT("fatal error");
  7511. }
  7512. }
  7513. }
  7514. // ggml_compute_forward_clamp
  7515. static void ggml_compute_forward_clamp_f32(
  7516. const struct ggml_compute_params * params,
  7517. struct ggml_tensor * dst) {
  7518. const struct ggml_tensor * src0 = dst->src[0];
  7519. if (params->ith != 0) {
  7520. return;
  7521. }
  7522. float min;
  7523. float max;
  7524. memcpy(&min, (float *) dst->op_params + 0, sizeof(float));
  7525. memcpy(&max, (float *) dst->op_params + 1, sizeof(float));
  7526. const int ith = params->ith;
  7527. const int nth = params->nth;
  7528. const int n = ggml_nrows(src0);
  7529. const int nc = src0->ne[0];
  7530. const size_t nb00 = src0->nb[0];
  7531. const size_t nb01 = src0->nb[1];
  7532. const size_t nb0 = dst->nb[0];
  7533. const size_t nb1 = dst->nb[1];
  7534. GGML_ASSERT( nb0 == sizeof(float));
  7535. GGML_ASSERT(nb00 == sizeof(float));
  7536. for (int j = ith; j < n; j += nth) {
  7537. float * dst_ptr = (float *) ((char *) dst->data + j*nb1);
  7538. float * src0_ptr = (float *) ((char *) src0->data + j*nb01);
  7539. for (int i = 0; i < nc; i++) {
  7540. dst_ptr[i] = MAX(MIN(src0_ptr[i], max), min);
  7541. }
  7542. }
  7543. }
  7544. static void ggml_compute_forward_clamp(
  7545. const struct ggml_compute_params * params,
  7546. struct ggml_tensor * dst) {
  7547. const struct ggml_tensor * src0 = dst->src[0];
  7548. switch (src0->type) {
  7549. case GGML_TYPE_F32:
  7550. {
  7551. ggml_compute_forward_clamp_f32(params, dst);
  7552. } break;
  7553. case GGML_TYPE_F16:
  7554. case GGML_TYPE_BF16:
  7555. case GGML_TYPE_Q4_0:
  7556. case GGML_TYPE_Q4_1:
  7557. case GGML_TYPE_Q5_0:
  7558. case GGML_TYPE_Q5_1:
  7559. case GGML_TYPE_Q8_0:
  7560. case GGML_TYPE_Q8_1:
  7561. case GGML_TYPE_Q2_K:
  7562. case GGML_TYPE_Q3_K:
  7563. case GGML_TYPE_Q4_K:
  7564. case GGML_TYPE_Q5_K:
  7565. case GGML_TYPE_Q6_K:
  7566. case GGML_TYPE_TQ1_0:
  7567. case GGML_TYPE_TQ2_0:
  7568. case GGML_TYPE_IQ2_XXS:
  7569. case GGML_TYPE_IQ2_XS:
  7570. case GGML_TYPE_IQ3_XXS:
  7571. case GGML_TYPE_IQ1_S:
  7572. case GGML_TYPE_IQ1_M:
  7573. case GGML_TYPE_IQ4_NL:
  7574. case GGML_TYPE_IQ4_XS:
  7575. case GGML_TYPE_IQ3_S:
  7576. case GGML_TYPE_IQ2_S:
  7577. case GGML_TYPE_Q8_K:
  7578. case GGML_TYPE_Q4_0_4_4:
  7579. case GGML_TYPE_Q4_0_4_8:
  7580. case GGML_TYPE_Q4_0_8_8:
  7581. case GGML_TYPE_IQ4_NL_4_4:
  7582. case GGML_TYPE_I8:
  7583. case GGML_TYPE_I16:
  7584. case GGML_TYPE_I32:
  7585. case GGML_TYPE_I64:
  7586. case GGML_TYPE_F64:
  7587. case GGML_TYPE_COUNT:
  7588. {
  7589. GGML_ABORT("fatal error");
  7590. }
  7591. }
  7592. }
  7593. // ggml_compute_forward_rope
  7594. static float rope_yarn_ramp(const float low, const float high, const int i0) {
  7595. const float y = (i0 / 2 - low) / MAX(0.001f, high - low);
  7596. return 1 - MIN(1, MAX(0, y));
  7597. }
  7598. // YaRN algorithm based on LlamaYaRNScaledRotaryEmbedding.py from https://github.com/jquesnelle/yarn
  7599. // MIT licensed. Copyright (c) 2023 Jeffrey Quesnelle and Bowen Peng.
  7600. static void rope_yarn(
  7601. float theta_extrap, float freq_scale, float corr_dims[2], int64_t i0, float ext_factor, float mscale,
  7602. float * cos_theta, float * sin_theta) {
  7603. // Get n-d rotational scaling corrected for extrapolation
  7604. float theta_interp = freq_scale * theta_extrap;
  7605. float theta = theta_interp;
  7606. if (ext_factor != 0.0f) {
  7607. float ramp_mix = rope_yarn_ramp(corr_dims[0], corr_dims[1], i0) * ext_factor;
  7608. theta = theta_interp * (1 - ramp_mix) + theta_extrap * ramp_mix;
  7609. // Get n-d magnitude scaling corrected for interpolation
  7610. mscale *= 1.0f + 0.1f * logf(1.0f / freq_scale);
  7611. }
  7612. *cos_theta = cosf(theta) * mscale;
  7613. *sin_theta = sinf(theta) * mscale;
  7614. }
  7615. static void ggml_rope_cache_init(
  7616. float theta_base, float freq_scale, const float * freq_factors, float corr_dims[2], int64_t ne0, float ext_factor, float mscale,
  7617. float * cache, float sin_sign, float theta_scale) {
  7618. // ref: https://github.com/jquesnelle/yarn/blob/master/scaled_rope/LlamaYaRNScaledRotaryEmbedding.py
  7619. float theta = theta_base;
  7620. for (int64_t i0 = 0; i0 < ne0; i0 += 2) {
  7621. const float ff = freq_factors ? freq_factors[i0/2] : 1.0f;
  7622. rope_yarn(
  7623. theta/ff, freq_scale, corr_dims, i0, ext_factor, mscale, &cache[i0 + 0], &cache[i0 + 1]
  7624. );
  7625. cache[i0 + 1] *= sin_sign;
  7626. theta *= theta_scale;
  7627. }
  7628. }
  7629. static void ggml_compute_forward_rope_f32(
  7630. const struct ggml_compute_params * params,
  7631. struct ggml_tensor * dst,
  7632. const bool forward) {
  7633. const struct ggml_tensor * src0 = dst->src[0];
  7634. const struct ggml_tensor * src1 = dst->src[1];
  7635. const struct ggml_tensor * src2 = dst->src[2];
  7636. float freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow;
  7637. //const int n_past = ((int32_t *) dst->op_params)[0];
  7638. const int n_dims = ((int32_t *) dst->op_params)[1];
  7639. const int mode = ((int32_t *) dst->op_params)[2];
  7640. //const int n_ctx = ((int32_t *) dst->op_params)[3];
  7641. const int n_ctx_orig = ((int32_t *) dst->op_params)[4];
  7642. memcpy(&freq_base, (int32_t *) dst->op_params + 5, sizeof(float));
  7643. memcpy(&freq_scale, (int32_t *) dst->op_params + 6, sizeof(float));
  7644. memcpy(&ext_factor, (int32_t *) dst->op_params + 7, sizeof(float));
  7645. memcpy(&attn_factor, (int32_t *) dst->op_params + 8, sizeof(float));
  7646. memcpy(&beta_fast, (int32_t *) dst->op_params + 9, sizeof(float));
  7647. memcpy(&beta_slow, (int32_t *) dst->op_params + 10, sizeof(float));
  7648. GGML_TENSOR_UNARY_OP_LOCALS
  7649. //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
  7650. //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
  7651. GGML_ASSERT(nb00 == sizeof(float));
  7652. const int ith = params->ith;
  7653. const int nth = params->nth;
  7654. const int nr = ggml_nrows(dst);
  7655. GGML_ASSERT(n_dims <= ne0);
  7656. GGML_ASSERT(n_dims % 2 == 0);
  7657. // rows per thread
  7658. const int dr = (nr + nth - 1)/nth;
  7659. // row range for this thread
  7660. const int ir0 = dr*ith;
  7661. const int ir1 = MIN(ir0 + dr, nr);
  7662. // row index used to determine which thread to use
  7663. int ir = 0;
  7664. const float theta_scale = powf(freq_base, -2.0f/n_dims);
  7665. float corr_dims[2];
  7666. ggml_rope_yarn_corr_dims(n_dims, n_ctx_orig, freq_base, beta_fast, beta_slow, corr_dims);
  7667. const bool is_neox = mode & GGML_ROPE_TYPE_NEOX;
  7668. const float * freq_factors = NULL;
  7669. if (src2 != NULL) {
  7670. GGML_ASSERT(src2->type == GGML_TYPE_F32);
  7671. GGML_ASSERT(src2->ne[0] >= n_dims / 2);
  7672. freq_factors = (const float *) src2->data;
  7673. }
  7674. // backward process uses inverse rotation by cos and sin.
  7675. // cos and sin build a rotation matrix, where the inverse is the transpose.
  7676. // this essentially just switches the sign of sin.
  7677. const float sin_sign = forward ? 1.0f : -1.0f;
  7678. const int32_t * pos = (const int32_t *) src1->data;
  7679. for (int64_t i3 = 0; i3 < ne3; i3++) {
  7680. for (int64_t i2 = 0; i2 < ne2; i2++) {
  7681. const int64_t p = pos[i2];
  7682. float * cache = (float *) params->wdata + (ne0 + CACHE_LINE_SIZE_F32)*ith;
  7683. ggml_rope_cache_init(p, freq_scale, freq_factors, corr_dims, ne0, ext_factor, attn_factor, cache, sin_sign, theta_scale);
  7684. for (int64_t i1 = 0; i1 < ne1; i1++) {
  7685. if (ir++ < ir0) continue;
  7686. if (ir > ir1) break;
  7687. if (!is_neox) {
  7688. for (int64_t i0 = 0; i0 < n_dims; i0 += 2) {
  7689. const float cos_theta = cache[i0 + 0];
  7690. const float sin_theta = cache[i0 + 1];
  7691. const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  7692. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  7693. const float x0 = src[0];
  7694. const float x1 = src[1];
  7695. dst_data[0] = x0*cos_theta - x1*sin_theta;
  7696. dst_data[1] = x0*sin_theta + x1*cos_theta;
  7697. }
  7698. } else {
  7699. for (int64_t i0 = 0; i0 < n_dims; i0 += 2) {
  7700. const int64_t ic = i0/2;
  7701. const float cos_theta = cache[i0 + 0];
  7702. const float sin_theta = cache[i0 + 1];
  7703. const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + ic*nb00);
  7704. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + ic*nb0);
  7705. const float x0 = src[0];
  7706. const float x1 = src[n_dims/2];
  7707. dst_data[0] = x0*cos_theta - x1*sin_theta;
  7708. dst_data[n_dims/2] = x0*sin_theta + x1*cos_theta;
  7709. }
  7710. }
  7711. for (int64_t i0 = n_dims; i0 < ne0; i0 += 2) {
  7712. const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  7713. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  7714. dst_data[0] = src[0];
  7715. dst_data[1] = src[1];
  7716. }
  7717. }
  7718. }
  7719. }
  7720. }
  7721. // TODO: deduplicate f16/f32 code
  7722. static void ggml_compute_forward_rope_f16(
  7723. const struct ggml_compute_params * params,
  7724. struct ggml_tensor * dst,
  7725. const bool forward) {
  7726. const struct ggml_tensor * src0 = dst->src[0];
  7727. const struct ggml_tensor * src1 = dst->src[1];
  7728. const struct ggml_tensor * src2 = dst->src[2];
  7729. float freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow;
  7730. //const int n_past = ((int32_t *) dst->op_params)[0];
  7731. const int n_dims = ((int32_t *) dst->op_params)[1];
  7732. const int mode = ((int32_t *) dst->op_params)[2];
  7733. //const int n_ctx = ((int32_t *) dst->op_params)[3];
  7734. const int n_ctx_orig = ((int32_t *) dst->op_params)[4];
  7735. memcpy(&freq_base, (int32_t *) dst->op_params + 5, sizeof(float));
  7736. memcpy(&freq_scale, (int32_t *) dst->op_params + 6, sizeof(float));
  7737. memcpy(&ext_factor, (int32_t *) dst->op_params + 7, sizeof(float));
  7738. memcpy(&attn_factor, (int32_t *) dst->op_params + 8, sizeof(float));
  7739. memcpy(&beta_fast, (int32_t *) dst->op_params + 9, sizeof(float));
  7740. memcpy(&beta_slow, (int32_t *) dst->op_params + 10, sizeof(float));
  7741. GGML_TENSOR_UNARY_OP_LOCALS
  7742. //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
  7743. //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
  7744. GGML_ASSERT(nb0 == sizeof(ggml_fp16_t));
  7745. const int ith = params->ith;
  7746. const int nth = params->nth;
  7747. const int nr = ggml_nrows(dst);
  7748. GGML_ASSERT(n_dims <= ne0);
  7749. GGML_ASSERT(n_dims % 2 == 0);
  7750. // rows per thread
  7751. const int dr = (nr + nth - 1)/nth;
  7752. // row range for this thread
  7753. const int ir0 = dr*ith;
  7754. const int ir1 = MIN(ir0 + dr, nr);
  7755. // row index used to determine which thread to use
  7756. int ir = 0;
  7757. const float theta_scale = powf(freq_base, -2.0f/n_dims);
  7758. float corr_dims[2];
  7759. ggml_rope_yarn_corr_dims(n_dims, n_ctx_orig, freq_base, beta_fast, beta_slow, corr_dims);
  7760. const bool is_neox = mode & GGML_ROPE_TYPE_NEOX;
  7761. const float * freq_factors = NULL;
  7762. if (src2 != NULL) {
  7763. GGML_ASSERT(src2->type == GGML_TYPE_F32);
  7764. GGML_ASSERT(src2->ne[0] >= n_dims / 2);
  7765. freq_factors = (const float *) src2->data;
  7766. }
  7767. // backward process uses inverse rotation by cos and sin.
  7768. // cos and sin build a rotation matrix, where the inverse is the transpose.
  7769. // this essentially just switches the sign of sin.
  7770. const float sin_sign = forward ? 1.0f : -1.0f;
  7771. const int32_t * pos = (const int32_t *) src1->data;
  7772. for (int64_t i3 = 0; i3 < ne3; i3++) {
  7773. for (int64_t i2 = 0; i2 < ne2; i2++) {
  7774. const int64_t p = pos[i2];
  7775. float * cache = (float *) params->wdata + (ne0 + CACHE_LINE_SIZE_F32)*ith;
  7776. ggml_rope_cache_init(p, freq_scale, freq_factors, corr_dims, ne0, ext_factor, attn_factor, cache, sin_sign, theta_scale);
  7777. for (int64_t i1 = 0; i1 < ne1; i1++) {
  7778. if (ir++ < ir0) continue;
  7779. if (ir > ir1) break;
  7780. if (!is_neox) {
  7781. for (int64_t i0 = 0; i0 < n_dims; i0 += 2) {
  7782. const float cos_theta = cache[i0 + 0];
  7783. const float sin_theta = cache[i0 + 1];
  7784. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  7785. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  7786. const float x0 = GGML_FP16_TO_FP32(src[0]);
  7787. const float x1 = GGML_FP16_TO_FP32(src[1]);
  7788. dst_data[0] = GGML_FP32_TO_FP16(x0*cos_theta - x1*sin_theta);
  7789. dst_data[1] = GGML_FP32_TO_FP16(x0*sin_theta + x1*cos_theta);
  7790. }
  7791. } else {
  7792. for (int64_t i0 = 0; i0 < n_dims; i0 += 2) {
  7793. const int64_t ic = i0/2;
  7794. const float cos_theta = cache[i0 + 0];
  7795. const float sin_theta = cache[i0 + 1];
  7796. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + ic*nb00);
  7797. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + ic*nb0);
  7798. const float x0 = GGML_FP16_TO_FP32(src[0]);
  7799. const float x1 = GGML_FP16_TO_FP32(src[n_dims/2]);
  7800. dst_data[0] = GGML_FP32_TO_FP16(x0*cos_theta - x1*sin_theta);
  7801. dst_data[n_dims/2] = GGML_FP32_TO_FP16(x0*sin_theta + x1*cos_theta);
  7802. }
  7803. }
  7804. for (int64_t i0 = n_dims; i0 < ne0; i0 += 2) {
  7805. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  7806. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  7807. dst_data[0] = src[0];
  7808. dst_data[1] = src[1];
  7809. }
  7810. }
  7811. }
  7812. }
  7813. }
  7814. static void ggml_compute_forward_rope(
  7815. const struct ggml_compute_params * params,
  7816. struct ggml_tensor * dst) {
  7817. const struct ggml_tensor * src0 = dst->src[0];
  7818. switch (src0->type) {
  7819. case GGML_TYPE_F16:
  7820. {
  7821. ggml_compute_forward_rope_f16(params, dst, true);
  7822. } break;
  7823. case GGML_TYPE_F32:
  7824. {
  7825. ggml_compute_forward_rope_f32(params, dst, true);
  7826. } break;
  7827. default:
  7828. {
  7829. GGML_ABORT("fatal error");
  7830. }
  7831. }
  7832. }
  7833. // ggml_compute_forward_rope_back
  7834. static void ggml_compute_forward_rope_back(
  7835. const struct ggml_compute_params * params,
  7836. struct ggml_tensor * dst) {
  7837. const struct ggml_tensor * src0 = dst->src[0];
  7838. switch (src0->type) {
  7839. case GGML_TYPE_F16:
  7840. {
  7841. ggml_compute_forward_rope_f16(params, dst, false);
  7842. } break;
  7843. case GGML_TYPE_F32:
  7844. {
  7845. ggml_compute_forward_rope_f32(params, dst, false);
  7846. } break;
  7847. default:
  7848. {
  7849. GGML_ABORT("fatal error");
  7850. }
  7851. }
  7852. }
  7853. // ggml_compute_forward_conv_transpose_1d
  7854. static void ggml_compute_forward_conv_transpose_1d_f16_f32(
  7855. const struct ggml_compute_params * params,
  7856. struct ggml_tensor * dst) {
  7857. const struct ggml_tensor * src0 = dst->src[0];
  7858. const struct ggml_tensor * src1 = dst->src[1];
  7859. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  7860. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  7861. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  7862. GGML_TENSOR_BINARY_OP_LOCALS
  7863. const int ith = params->ith;
  7864. const int nth = params->nth;
  7865. const int nk = ne00*ne01*ne02;
  7866. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  7867. GGML_ASSERT(nb10 == sizeof(float));
  7868. if (ith == 0) {
  7869. memset(params->wdata, 0, params->wsize);
  7870. // permute kernel data (src0) from (K x Cout x Cin) to (Cin x K x Cout)
  7871. {
  7872. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  7873. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7874. for (int64_t i01 = 0; i01 < ne01; i01++) {
  7875. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i02*nb02 + i01*nb01);
  7876. ggml_fp16_t * dst_data = wdata + i01*ne00*ne02;
  7877. for (int64_t i00 = 0; i00 < ne00; i00++) {
  7878. dst_data[i00*ne02 + i02] = src[i00];
  7879. }
  7880. }
  7881. }
  7882. }
  7883. // permute source data (src1) from (L x Cin) to (Cin x L)
  7884. {
  7885. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + nk;
  7886. ggml_fp16_t * dst_data = wdata;
  7887. for (int64_t i11 = 0; i11 < ne11; i11++) {
  7888. const float * const src = (float *)((char *) src1->data + i11*nb11);
  7889. for (int64_t i10 = 0; i10 < ne10; i10++) {
  7890. dst_data[i10*ne11 + i11] = GGML_FP32_TO_FP16(src[i10]);
  7891. }
  7892. }
  7893. }
  7894. // need to zero dst since we are accumulating into it
  7895. memset(dst->data, 0, ggml_nbytes(dst));
  7896. }
  7897. ggml_barrier(params->threadpool);
  7898. const int32_t s0 = ((const int32_t*)(dst->op_params))[0];
  7899. // total rows in dst
  7900. const int nr = ne1;
  7901. // rows per thread
  7902. const int dr = (nr + nth - 1)/nth;
  7903. // row range for this thread
  7904. const int ir0 = dr*ith;
  7905. const int ir1 = MIN(ir0 + dr, nr);
  7906. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  7907. ggml_fp16_t * const wdata_src = wdata + nk;
  7908. for (int i1 = ir0; i1 < ir1; i1++) {
  7909. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  7910. ggml_fp16_t * wdata_kernel = wdata + i1*ne02*ne00;
  7911. for (int i10 = 0; i10 < ne10; i10++) {
  7912. const int i1n = i10*ne11;
  7913. for (int i00 = 0; i00 < ne00; i00++) {
  7914. float v = 0;
  7915. ggml_vec_dot_f16(ne02, &v, 0,
  7916. (ggml_fp16_t *) wdata_src + i1n, 0,
  7917. (ggml_fp16_t *) wdata_kernel + i00*ne02, 0, 1);
  7918. dst_data[i10*s0 + i00] += v;
  7919. }
  7920. }
  7921. }
  7922. }
  7923. static void ggml_compute_forward_conv_transpose_1d_f32(
  7924. const struct ggml_compute_params * params,
  7925. struct ggml_tensor * dst) {
  7926. const struct ggml_tensor * src0 = dst->src[0];
  7927. const struct ggml_tensor * src1 = dst->src[1];
  7928. GGML_ASSERT(src0->type == GGML_TYPE_F32);
  7929. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  7930. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  7931. GGML_TENSOR_BINARY_OP_LOCALS
  7932. const int ith = params->ith;
  7933. const int nth = params->nth;
  7934. const int nk = ne00*ne01*ne02;
  7935. GGML_ASSERT(nb00 == sizeof(float));
  7936. GGML_ASSERT(nb10 == sizeof(float));
  7937. if (ith == 0) {
  7938. memset(params->wdata, 0, params->wsize);
  7939. // prepare kernel data (src0) from (K x Cout x Cin) to (Cin x K x Cout)
  7940. {
  7941. float * const wdata = (float *) params->wdata + 0;
  7942. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7943. for (int64_t i01 = 0; i01 < ne01; i01++) {
  7944. const float * const src = (float *)((char *) src0->data + i02*nb02 + i01*nb01);
  7945. float * dst_data = wdata + i01*ne00*ne02;
  7946. for (int64_t i00 = 0; i00 < ne00; i00++) {
  7947. dst_data[i00*ne02 + i02] = src[i00];
  7948. }
  7949. }
  7950. }
  7951. }
  7952. // prepare source data (src1)
  7953. {
  7954. float * const wdata = (float *) params->wdata + nk;
  7955. float * dst_data = wdata;
  7956. for (int64_t i11 = 0; i11 < ne11; i11++) {
  7957. const float * const src = (float *)((char *) src1->data + i11*nb11);
  7958. for (int64_t i10 = 0; i10 < ne10; i10++) {
  7959. dst_data[i10*ne11 + i11] = src[i10];
  7960. }
  7961. }
  7962. }
  7963. // need to zero dst since we are accumulating into it
  7964. memset(dst->data, 0, ggml_nbytes(dst));
  7965. }
  7966. ggml_barrier(params->threadpool);
  7967. const int32_t s0 = ((const int32_t*)(dst->op_params))[0];
  7968. // total rows in dst
  7969. const int nr = ne1;
  7970. // rows per thread
  7971. const int dr = (nr + nth - 1)/nth;
  7972. // row range for this thread
  7973. const int ir0 = dr*ith;
  7974. const int ir1 = MIN(ir0 + dr, nr);
  7975. float * const wdata = (float *) params->wdata + 0;
  7976. float * const wdata_src = wdata + nk;
  7977. for (int i1 = ir0; i1 < ir1; i1++) {
  7978. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  7979. float * wdata_kernel = wdata + i1*ne02*ne00;
  7980. for (int i10 = 0; i10 < ne10; i10++) {
  7981. const int i1n = i10*ne11;
  7982. for (int i00 = 0; i00 < ne00; i00++) {
  7983. float v = 0;
  7984. ggml_vec_dot_f32(ne02, &v, 0,
  7985. wdata_src + i1n, 0,
  7986. wdata_kernel + i00*ne02, 0, 1);
  7987. dst_data[i10*s0 + i00] += v;
  7988. }
  7989. }
  7990. }
  7991. }
  7992. static void ggml_compute_forward_conv_transpose_1d(
  7993. const struct ggml_compute_params * params,
  7994. struct ggml_tensor * dst) {
  7995. const struct ggml_tensor * src0 = dst->src[0];
  7996. switch (src0->type) {
  7997. case GGML_TYPE_F16:
  7998. {
  7999. ggml_compute_forward_conv_transpose_1d_f16_f32(params, dst);
  8000. } break;
  8001. case GGML_TYPE_F32:
  8002. {
  8003. ggml_compute_forward_conv_transpose_1d_f32(params, dst);
  8004. } break;
  8005. default:
  8006. {
  8007. GGML_ABORT("fatal error");
  8008. }
  8009. }
  8010. }
  8011. // ggml_compute_forward_im2col_f32
  8012. // src0: kernel [OC, IC, KH, KW]
  8013. // src1: image [N, IC, IH, IW]
  8014. // dst: result [N, OH, OW, IC*KH*KW]
  8015. static void ggml_compute_forward_im2col_f32(
  8016. const struct ggml_compute_params * params,
  8017. struct ggml_tensor * dst) {
  8018. const struct ggml_tensor * src0 = dst->src[0];
  8019. const struct ggml_tensor * src1 = dst->src[1];
  8020. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  8021. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  8022. GGML_TENSOR_BINARY_OP_LOCALS;
  8023. const int32_t s0 = ((const int32_t *)(dst->op_params))[0];
  8024. const int32_t s1 = ((const int32_t *)(dst->op_params))[1];
  8025. const int32_t p0 = ((const int32_t *)(dst->op_params))[2];
  8026. const int32_t p1 = ((const int32_t *)(dst->op_params))[3];
  8027. const int32_t d0 = ((const int32_t *)(dst->op_params))[4];
  8028. const int32_t d1 = ((const int32_t *)(dst->op_params))[5];
  8029. const bool is_2D = ((const int32_t *)(dst->op_params))[6] == 1;
  8030. const int ith = params->ith;
  8031. const int nth = params->nth;
  8032. const int64_t N = is_2D ? ne13 : ne12;
  8033. const int64_t IC = is_2D ? ne12 : ne11;
  8034. const int64_t IH = is_2D ? ne11 : 1;
  8035. const int64_t IW = ne10;
  8036. const int64_t KH = is_2D ? ne01 : 1;
  8037. const int64_t KW = ne00;
  8038. const int64_t OH = is_2D ? ne2 : 1;
  8039. const int64_t OW = ne1;
  8040. int ofs0 = is_2D ? nb13 : nb12;
  8041. int ofs1 = is_2D ? nb12 : nb11;
  8042. GGML_ASSERT(nb10 == sizeof(float));
  8043. // im2col: [N, IC, IH, IW] => [N, OH, OW, IC*KH*KW]
  8044. {
  8045. float * const wdata = (float *) dst->data;
  8046. for (int64_t in = 0; in < N; in++) {
  8047. for (int64_t ioh = 0; ioh < OH; ioh++) { // 1
  8048. for (int64_t iow = 0; iow < OW; iow++) {
  8049. for (int64_t iic = ith; iic < IC; iic += nth) {
  8050. // micro kernel
  8051. float * dst_data = wdata + (in*OH*OW + ioh*OW + iow)*(IC*KH*KW); // [IC, KH, KW]
  8052. const float * const src_data = (float *)((char *) src1->data + in*ofs0 + iic*ofs1); // [IH, IW]
  8053. for (int64_t ikh = 0; ikh < KH; ikh++) { // 1
  8054. for (int64_t ikw = 0; ikw < KW; ikw++) {
  8055. const int64_t iiw = iow*s0 + ikw*d0 - p0;
  8056. const int64_t iih = ioh*s1 + ikh*d1 - p1;
  8057. if (iih < 0 || iih >= IH || iiw < 0 || iiw >= IW) {
  8058. dst_data[iic*(KH*KW) + ikh*KW + ikw] = 0;
  8059. } else {
  8060. dst_data[iic*(KH*KW) + ikh*KW + ikw] = (src_data[iih*IW + iiw]);
  8061. }
  8062. }
  8063. }
  8064. }
  8065. }
  8066. }
  8067. }
  8068. }
  8069. }
  8070. // ggml_compute_forward_im2col_f16
  8071. // src0: kernel [OC, IC, KH, KW]
  8072. // src1: image [N, IC, IH, IW]
  8073. // dst: result [N, OH, OW, IC*KH*KW]
  8074. static void ggml_compute_forward_im2col_f16(
  8075. const struct ggml_compute_params * params,
  8076. struct ggml_tensor * dst) {
  8077. const struct ggml_tensor * src0 = dst->src[0];
  8078. const struct ggml_tensor * src1 = dst->src[1];
  8079. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  8080. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  8081. GGML_ASSERT( dst->type == GGML_TYPE_F16);
  8082. GGML_TENSOR_BINARY_OP_LOCALS;
  8083. const int32_t s0 = ((const int32_t *)(dst->op_params))[0];
  8084. const int32_t s1 = ((const int32_t *)(dst->op_params))[1];
  8085. const int32_t p0 = ((const int32_t *)(dst->op_params))[2];
  8086. const int32_t p1 = ((const int32_t *)(dst->op_params))[3];
  8087. const int32_t d0 = ((const int32_t *)(dst->op_params))[4];
  8088. const int32_t d1 = ((const int32_t *)(dst->op_params))[5];
  8089. const bool is_2D = ((const int32_t *)(dst->op_params))[6] == 1;
  8090. const int ith = params->ith;
  8091. const int nth = params->nth;
  8092. const int64_t N = is_2D ? ne13 : ne12;
  8093. const int64_t IC = is_2D ? ne12 : ne11;
  8094. const int64_t IH = is_2D ? ne11 : 1;
  8095. const int64_t IW = ne10;
  8096. const int64_t KH = is_2D ? ne01 : 1;
  8097. const int64_t KW = ne00;
  8098. const int64_t OH = is_2D ? ne2 : 1;
  8099. const int64_t OW = ne1;
  8100. int ofs0 = is_2D ? nb13 : nb12;
  8101. int ofs1 = is_2D ? nb12 : nb11;
  8102. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  8103. GGML_ASSERT(nb10 == sizeof(float));
  8104. // im2col: [N, IC, IH, IW] => [N, OH, OW, IC*KH*KW]
  8105. {
  8106. ggml_fp16_t * const wdata = (ggml_fp16_t *) dst->data;
  8107. for (int64_t in = 0; in < N; in++) {
  8108. for (int64_t ioh = 0; ioh < OH; ioh++) { // 1
  8109. for (int64_t iow = 0; iow < OW; iow++) {
  8110. for (int64_t iic = ith; iic < IC; iic += nth) {
  8111. // micro kernel
  8112. ggml_fp16_t * dst_data = wdata + (in*OH*OW + ioh*OW + iow)*(IC*KH*KW); // [IC, KH, KW]
  8113. const float * const src_data = (float *)((char *) src1->data + in*ofs0 + iic*ofs1); // [IH, IW]
  8114. for (int64_t ikh = 0; ikh < KH; ikh++) { // 1
  8115. for (int64_t ikw = 0; ikw < KW; ikw++) {
  8116. const int64_t iiw = iow*s0 + ikw*d0 - p0;
  8117. const int64_t iih = ioh*s1 + ikh*d1 - p1;
  8118. if (iih < 0 || iih >= IH || iiw < 0 || iiw >= IW) {
  8119. dst_data[iic*(KH*KW) + ikh*KW + ikw] = 0;
  8120. } else {
  8121. dst_data[iic*(KH*KW) + ikh*KW + ikw] = GGML_FP32_TO_FP16(src_data[iih*IW + iiw]);
  8122. }
  8123. }
  8124. }
  8125. }
  8126. }
  8127. }
  8128. }
  8129. }
  8130. }
  8131. static void ggml_compute_forward_im2col(
  8132. const struct ggml_compute_params * params,
  8133. struct ggml_tensor * dst) {
  8134. switch (dst->type) {
  8135. case GGML_TYPE_F16:
  8136. {
  8137. ggml_compute_forward_im2col_f16(params, dst);
  8138. } break;
  8139. case GGML_TYPE_F32:
  8140. {
  8141. ggml_compute_forward_im2col_f32(params, dst);
  8142. } break;
  8143. default:
  8144. {
  8145. GGML_ABORT("fatal error");
  8146. }
  8147. }
  8148. }
  8149. // ggml_compute_forward_im2col_back_f32
  8150. static void ggml_compute_forward_im2col_back_f32(
  8151. const struct ggml_compute_params * params,
  8152. struct ggml_tensor * dst) {
  8153. const struct ggml_tensor * src0 = dst->src[0];
  8154. const struct ggml_tensor * src1 = dst->src[1];
  8155. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  8156. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  8157. GGML_TENSOR_BINARY_OP_LOCALS;
  8158. const int32_t s0 = ((const int32_t *)(dst->op_params))[0];
  8159. const int32_t s1 = ((const int32_t *)(dst->op_params))[1];
  8160. const int32_t p0 = ((const int32_t *)(dst->op_params))[2];
  8161. const int32_t p1 = ((const int32_t *)(dst->op_params))[3];
  8162. const int32_t d0 = ((const int32_t *)(dst->op_params))[4];
  8163. const int32_t d1 = ((const int32_t *)(dst->op_params))[5];
  8164. const bool is_2D = ((const int32_t *)(dst->op_params))[6] == 1;
  8165. const int ith = params->ith;
  8166. const int nth = params->nth;
  8167. const int64_t N = is_2D ? ne3 : ne2;
  8168. const int64_t IC = is_2D ? ne2 : ne1;
  8169. const int64_t IH = is_2D ? ne1 : 1;
  8170. const int64_t IW = ne0;
  8171. const int64_t KH = is_2D ? ne01 : 1;
  8172. const int64_t KW = ne00;
  8173. const int64_t OH = is_2D ? ne12 : 1;
  8174. const int64_t OW = ne11;
  8175. int ofs0 = is_2D ? nb3 : nb2;
  8176. int ofs1 = is_2D ? nb2 : nb1;
  8177. GGML_ASSERT(nb0 == sizeof(float));
  8178. // im2col: [N, IC, IH, IW] => [N, OH, OW, IC*KH*KW]
  8179. {
  8180. float * const wdata = (float *) dst->data;
  8181. for (int64_t in = 0; in < N; in++) {
  8182. for (int64_t iic = ith; iic < IC; iic += nth) {
  8183. for (int64_t iih = 0; iih < IH; iih++) {
  8184. for (int64_t iiw = 0; iiw < IW; iiw++) {
  8185. // micro kernel
  8186. float grad = 0.0f;
  8187. for (int64_t ikh = 0; ikh < KH; ikh++) {
  8188. for (int64_t ikw = 0; ikw < KW; ikw++) {
  8189. // For s0 > 1 some values were skipped over in the forward pass.
  8190. // These values have tmpw % s0 != 0 and need to be skipped in the backwards pass as well.
  8191. const int64_t tmpw = (iiw + p0 - ikw*d0);
  8192. if (tmpw % s0 != 0) {
  8193. continue;
  8194. }
  8195. const int64_t iow = tmpw / s0;
  8196. // Equivalent logic as above except for s1.
  8197. int64_t ioh;
  8198. if (is_2D) {
  8199. const int64_t tmph = iih + p1 - ikh*d1;
  8200. if (tmph % s1 != 0) {
  8201. continue;
  8202. }
  8203. ioh = tmph / s1;
  8204. } else {
  8205. ioh = 0;
  8206. }
  8207. if (iow < 0 || iow >= OW || ioh < 0 || ioh >= OH) {
  8208. continue;
  8209. }
  8210. const float * const src_data = (const float *) src1->data
  8211. + (in*OH*OW + ioh*OW + iow)*(IC*KH*KW); // [IC, KH, KW]
  8212. grad += src_data[iic*(KH*KW) + ikh*KW + ikw];
  8213. }
  8214. }
  8215. float * dst_data = (float *)((char *) wdata + (in*ofs0 + iic*ofs1)); // [IH, IW]
  8216. dst_data[iih*IW + iiw] = grad;
  8217. }
  8218. }
  8219. }
  8220. }
  8221. }
  8222. }
  8223. // ggml_compute_forward_conv_transpose_2d
  8224. static void ggml_compute_forward_conv_transpose_2d(
  8225. const struct ggml_compute_params * params,
  8226. struct ggml_tensor * dst) {
  8227. const struct ggml_tensor * src0 = dst->src[0];
  8228. const struct ggml_tensor * src1 = dst->src[1];
  8229. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  8230. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  8231. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  8232. GGML_TENSOR_BINARY_OP_LOCALS
  8233. const int ith = params->ith;
  8234. const int nth = params->nth;
  8235. const int nk = ne00*ne01*ne02*ne03;
  8236. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  8237. GGML_ASSERT(nb10 == sizeof(float));
  8238. if (ith == 0) {
  8239. memset(params->wdata, 0, params->wsize);
  8240. // permute kernel data (src0) from (Kw x Kh x Cout x Cin) to (Cin x Kw x Kh x Cout)
  8241. {
  8242. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  8243. for (int64_t i03 = 0; i03 < ne03; i03++) {
  8244. for (int64_t i02 = 0; i02 < ne02; i02++) {
  8245. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i03*nb03 + i02*nb02);
  8246. ggml_fp16_t * dst_data = wdata + i02*ne01*ne00*ne03;
  8247. for (int64_t i01 = 0; i01 < ne01; i01++) {
  8248. for (int64_t i00 = 0; i00 < ne00; i00++) {
  8249. dst_data[i01*ne00*ne03 + i00*ne03 + i03] = src[i01 * ne00 + i00];
  8250. }
  8251. }
  8252. }
  8253. }
  8254. }
  8255. // permute source data (src1) from (Sw x Sh x Cin) to (Cin x Sw x Sh)
  8256. {
  8257. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + nk;
  8258. for (int i12 = 0; i12 < ne12; i12++) {
  8259. for (int i11 = 0; i11 < ne11; i11++) {
  8260. const float * const src = (float *)((char *) src1->data + i12*nb12 + i11*nb11);
  8261. ggml_fp16_t * dst_data = wdata + i11*ne10*ne12;
  8262. for (int i10 = 0; i10 < ne10; i10++) {
  8263. dst_data[i10*ne12 + i12] = GGML_FP32_TO_FP16(src[i10]);
  8264. }
  8265. }
  8266. }
  8267. }
  8268. memset(dst->data, 0, ggml_nbytes(dst));
  8269. }
  8270. ggml_barrier(params->threadpool);
  8271. const int32_t stride = ggml_get_op_params_i32(dst, 0);
  8272. // total patches in dst
  8273. const int np = ne2;
  8274. // patches per thread
  8275. const int dp = (np + nth - 1)/nth;
  8276. // patch range for this thread
  8277. const int ip0 = dp*ith;
  8278. const int ip1 = MIN(ip0 + dp, np);
  8279. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  8280. ggml_fp16_t * const wdata_src = wdata + nk;
  8281. for (int i2 = ip0; i2 < ip1; i2++) { // Cout
  8282. float * dst_data = (float *)((char *) dst->data + i2*nb2);
  8283. ggml_fp16_t * wdata_kernel = wdata + i2*ne01*ne00*ne03;
  8284. for (int i11 = 0; i11 < ne11; i11++) {
  8285. for (int i10 = 0; i10 < ne10; i10++) {
  8286. const int i1n = i11*ne10*ne12 + i10*ne12;
  8287. for (int i01 = 0; i01 < ne01; i01++) {
  8288. for (int i00 = 0; i00 < ne00; i00++) {
  8289. float v = 0;
  8290. ggml_vec_dot_f16(ne03, &v, 0,
  8291. wdata_src + i1n, 0,
  8292. wdata_kernel + i01*ne00*ne03 + i00*ne03, 0, 1);
  8293. dst_data[(i11*stride + i01)*ne0 + i10*stride + i00] += v;
  8294. }
  8295. }
  8296. }
  8297. }
  8298. }
  8299. }
  8300. // ggml_compute_forward_pool_1d_sk_p0
  8301. static void ggml_compute_forward_pool_1d_sk_p0(
  8302. const struct ggml_compute_params * params,
  8303. const enum ggml_op_pool op,
  8304. const int k,
  8305. struct ggml_tensor * dst) {
  8306. const struct ggml_tensor * src = dst->src[0];
  8307. assert(src->type == GGML_TYPE_F32 || src->type == GGML_TYPE_F16);
  8308. if (params->ith != 0) {
  8309. return;
  8310. }
  8311. const char * cdata = (const char *)src->data;
  8312. const char * const data_end = cdata + ggml_nbytes(src);
  8313. float * drow = (float *)dst->data;
  8314. const int64_t rs = dst->ne[0];
  8315. while (cdata < data_end) {
  8316. const void * srow = (const void *)cdata;
  8317. int j = 0;
  8318. for (int64_t i = 0; i < rs; ++i) {
  8319. switch (op) {
  8320. case GGML_OP_POOL_AVG: drow[i] = 0; break;
  8321. case GGML_OP_POOL_MAX: drow[i] = -FLT_MAX; break;
  8322. case GGML_OP_POOL_COUNT: GGML_ABORT("fatal error");
  8323. }
  8324. for (int ki = 0; ki < k; ++ki) {
  8325. const float srow_j = (src->type == GGML_TYPE_F32) ? ((const float*)srow)[j] : GGML_FP16_TO_FP32(((const ggml_fp16_t*)srow)[j]);
  8326. switch (op) {
  8327. case GGML_OP_POOL_AVG: drow[i] += srow_j; break;
  8328. case GGML_OP_POOL_MAX: if (srow_j > drow[i]) drow[i] = srow_j; break;
  8329. case GGML_OP_POOL_COUNT: GGML_ABORT("fatal error");
  8330. }
  8331. ++j;
  8332. }
  8333. switch (op) {
  8334. case GGML_OP_POOL_AVG: drow[i] /= k; break;
  8335. case GGML_OP_POOL_MAX: break;
  8336. case GGML_OP_POOL_COUNT: GGML_ABORT("fatal error");
  8337. }
  8338. }
  8339. cdata += src->nb[1];
  8340. drow += rs;
  8341. }
  8342. }
  8343. // ggml_compute_forward_pool_1d
  8344. static void ggml_compute_forward_pool_1d(
  8345. const struct ggml_compute_params * params,
  8346. struct ggml_tensor * dst) {
  8347. const int32_t * opts = (const int32_t *)dst->op_params;
  8348. enum ggml_op_pool op = opts[0];
  8349. const int k0 = opts[1];
  8350. const int s0 = opts[2];
  8351. const int p0 = opts[3];
  8352. GGML_ASSERT(p0 == 0); // padding not supported
  8353. GGML_ASSERT(k0 == s0); // only s = k supported
  8354. ggml_compute_forward_pool_1d_sk_p0(params, op, k0, dst);
  8355. }
  8356. // ggml_compute_forward_pool_2d
  8357. static void ggml_compute_forward_pool_2d(
  8358. const struct ggml_compute_params * params,
  8359. struct ggml_tensor * dst) {
  8360. const struct ggml_tensor * src = dst->src[0];
  8361. assert(src->type == GGML_TYPE_F32 || src->type == GGML_TYPE_F16);
  8362. if (params->ith != 0) {
  8363. return;
  8364. }
  8365. const int32_t * opts = (const int32_t *)dst->op_params;
  8366. enum ggml_op_pool op = opts[0];
  8367. const int k0 = opts[1];
  8368. const int k1 = opts[2];
  8369. const int s0 = opts[3];
  8370. const int s1 = opts[4];
  8371. const int p0 = opts[5];
  8372. const int p1 = opts[6];
  8373. const char * cdata = (const char*)src->data;
  8374. const char * const data_end = cdata + ggml_nbytes(src);
  8375. const int64_t px = dst->ne[0];
  8376. const int64_t py = dst->ne[1];
  8377. const int64_t pa = px * py;
  8378. float * dplane = (float *)dst->data;
  8379. const int ka = k0 * k1;
  8380. const int offset0 = -p0;
  8381. const int offset1 = -p1;
  8382. while (cdata < data_end) {
  8383. for (int oy = 0; oy < py; ++oy) {
  8384. float * const drow = dplane + oy * px;
  8385. for (int ox = 0; ox < px; ++ox) {
  8386. float * const out = drow + ox;
  8387. switch (op) {
  8388. case GGML_OP_POOL_AVG: *out = 0; break;
  8389. case GGML_OP_POOL_MAX: *out = -FLT_MAX; break;
  8390. case GGML_OP_POOL_COUNT: GGML_ABORT("fatal error");
  8391. }
  8392. const int ix = offset0 + ox * s0;
  8393. const int iy = offset1 + oy * s1;
  8394. for (int ky = 0; ky < k1; ++ky) {
  8395. if (iy + ky < 0 || iy + ky >= src->ne[1]) continue;
  8396. const void * srow = (const void *)(cdata + src->nb[1] * (iy + ky));
  8397. for (int kx = 0; kx < k0; ++kx) {
  8398. int j = ix + kx;
  8399. if (j < 0 || j >= src->ne[0]) continue;
  8400. const float srow_j = (src->type == GGML_TYPE_F32) ? ((const float*)srow)[j] : GGML_FP16_TO_FP32(((const ggml_fp16_t*)srow)[j]);
  8401. switch (op) {
  8402. case GGML_OP_POOL_AVG: *out += srow_j; break;
  8403. case GGML_OP_POOL_MAX: if (srow_j > *out) *out = srow_j; break;
  8404. case GGML_OP_POOL_COUNT: GGML_ABORT("fatal error");
  8405. }
  8406. }
  8407. }
  8408. switch (op) {
  8409. case GGML_OP_POOL_AVG: *out /= ka; break;
  8410. case GGML_OP_POOL_MAX: break;
  8411. case GGML_OP_POOL_COUNT: GGML_ABORT("fatal error");
  8412. }
  8413. }
  8414. }
  8415. cdata += src->nb[2];
  8416. dplane += pa;
  8417. }
  8418. }
  8419. // ggml_compute_forward_pool_2d_back
  8420. static void ggml_compute_forward_pool_2d_back(
  8421. const struct ggml_compute_params * params,
  8422. struct ggml_tensor * dst) {
  8423. const struct ggml_tensor * src = dst->src[0];
  8424. const struct ggml_tensor * dstf = dst->src[1]; // forward tensor of dst
  8425. assert(dst->type == GGML_TYPE_F32 || dst->type == GGML_TYPE_F16);
  8426. if (params->ith != 0) {
  8427. return;
  8428. }
  8429. const int32_t * opts = (const int32_t *)dst->op_params;
  8430. enum ggml_op_pool op = opts[0];
  8431. const int k0 = opts[1];
  8432. const int k1 = opts[2];
  8433. const int s0 = opts[3];
  8434. const int s1 = opts[4];
  8435. const int p0 = opts[5];
  8436. const int p1 = opts[6];
  8437. char * cdata = (char *) dst->data;
  8438. const char * cdataf = (const char *) dstf->data;
  8439. const char * const data_end = cdata + ggml_nbytes(dst);
  8440. GGML_ASSERT(params->ith == 0);
  8441. memset(cdata, 0, ggml_nbytes(dst));
  8442. const int64_t px = src->ne[0];
  8443. const int64_t py = src->ne[1];
  8444. const int64_t pa = px * py;
  8445. const float * splane = (const float *) src->data;
  8446. const int ka = k0 * k1;
  8447. const int offset0 = -p0;
  8448. const int offset1 = -p1;
  8449. while (cdata < data_end) {
  8450. for (int oy = 0; oy < py; ++oy) {
  8451. const float * const srow = splane + oy * px;
  8452. for (int ox = 0; ox < px; ++ox) {
  8453. const float grad0 = srow[ox];
  8454. const int ix = offset0 + ox * s0;
  8455. const int iy = offset1 + oy * s1;
  8456. if (op == GGML_OP_POOL_MAX) {
  8457. float maxval = -FLT_MAX;
  8458. int kxmax = -1;
  8459. int kymax = -1;
  8460. for (int ky = 0; ky < k1; ++ky) {
  8461. if (iy + ky < 0 || iy + ky >= dst->ne[1]) {
  8462. continue;
  8463. }
  8464. const void * drowf = (const void *)(cdataf + dst->nb[1] * (iy + ky));
  8465. for (int kx = 0; kx < k0; ++kx) {
  8466. int j = ix + kx;
  8467. if (j < 0 || j >= dst->ne[0]) {
  8468. continue;
  8469. }
  8470. const float val = dst->type == GGML_TYPE_F32 ?
  8471. ((const float *) drowf)[j] : GGML_FP16_TO_FP32(((const ggml_fp16_t *) drowf)[j]);
  8472. if (val <= maxval) {
  8473. continue;
  8474. }
  8475. maxval = val;
  8476. kxmax = kx;
  8477. kymax = ky;
  8478. }
  8479. }
  8480. if (kxmax == -1 || kymax == -1) {
  8481. continue;
  8482. }
  8483. void * drow = (void *)(cdata + dst->nb[1] * (iy + kymax));
  8484. const int j = ix + kxmax;
  8485. if (dst->type == GGML_TYPE_F32) {
  8486. ((float *) drow)[j] += grad0;
  8487. } else {
  8488. ((ggml_fp16_t *) drow)[j] = GGML_FP32_TO_FP16(grad0 + GGML_FP16_TO_FP32(((const ggml_fp16_t *) drow)[j]));
  8489. }
  8490. } else if (op == GGML_OP_POOL_AVG) {
  8491. const float grad = grad0 / ka;
  8492. for (int ky = 0; ky < k1; ++ky) {
  8493. if (iy + ky < 0 || iy + ky >= dst->ne[1]) {
  8494. continue;
  8495. }
  8496. void * drow = (void *)(cdata + dst->nb[1] * (iy + ky));
  8497. for (int kx = 0; kx < k0; ++kx) {
  8498. int j = ix + kx;
  8499. if (j < 0 || j >= dst->ne[0]) {
  8500. continue;
  8501. }
  8502. if (dst->type == GGML_TYPE_F32) {
  8503. ((float *) drow)[j] += grad;
  8504. } else {
  8505. ((ggml_fp16_t *) drow)[j] += GGML_FP32_TO_FP16(grad);
  8506. }
  8507. }
  8508. }
  8509. } else {
  8510. GGML_ASSERT(false);
  8511. }
  8512. }
  8513. }
  8514. cdata += dst->nb[2];
  8515. cdataf += dst->nb[2];
  8516. splane += pa;
  8517. }
  8518. }
  8519. // ggml_compute_forward_upscale
  8520. static void ggml_compute_forward_upscale_f32(
  8521. const struct ggml_compute_params * params,
  8522. struct ggml_tensor * dst) {
  8523. const struct ggml_tensor * src0 = dst->src[0];
  8524. GGML_ASSERT(src0->type == GGML_TYPE_F32);
  8525. const int ith = params->ith;
  8526. const int nth = params->nth;
  8527. GGML_TENSOR_UNARY_OP_LOCALS
  8528. const float sf0 = (float)ne0/src0->ne[0];
  8529. const float sf1 = (float)ne1/src0->ne[1];
  8530. const float sf2 = (float)ne2/src0->ne[2];
  8531. const float sf3 = (float)ne3/src0->ne[3];
  8532. // TODO: optimize
  8533. for (int64_t i3 = 0; i3 < ne3; i3++) {
  8534. const int64_t i03 = i3 / sf3;
  8535. for (int64_t i2 = ith; i2 < ne2; i2 += nth) {
  8536. const int64_t i02 = i2 / sf2;
  8537. for (int64_t i1 = 0; i1 < ne1; i1++) {
  8538. const int64_t i01 = i1 / sf1;
  8539. for (int64_t i0 = 0; i0 < ne0; i0++) {
  8540. const int64_t i00 = i0 / sf0;
  8541. const float * x = (float *)((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  8542. float * y = (float *)((char *) dst->data + i0*nb0 + i1*nb1 + i2*nb2 + i3*nb3);
  8543. *y = *x;
  8544. }
  8545. }
  8546. }
  8547. }
  8548. }
  8549. static void ggml_compute_forward_upscale(
  8550. const struct ggml_compute_params * params,
  8551. struct ggml_tensor * dst) {
  8552. const struct ggml_tensor * src0 = dst->src[0];
  8553. switch (src0->type) {
  8554. case GGML_TYPE_F32:
  8555. {
  8556. ggml_compute_forward_upscale_f32(params, dst);
  8557. } break;
  8558. default:
  8559. {
  8560. GGML_ABORT("fatal error");
  8561. }
  8562. }
  8563. }
  8564. // ggml_compute_forward_pad
  8565. static void ggml_compute_forward_pad_f32(
  8566. const struct ggml_compute_params * params,
  8567. struct ggml_tensor * dst) {
  8568. const struct ggml_tensor * src0 = dst->src[0];
  8569. GGML_ASSERT(src0->nb[0] == sizeof(float));
  8570. GGML_ASSERT( dst->nb[0] == sizeof(float));
  8571. const int ith = params->ith;
  8572. const int nth = params->nth;
  8573. GGML_TENSOR_UNARY_OP_LOCALS
  8574. float * dst_ptr = (float *) dst->data;
  8575. // TODO: optimize
  8576. for (int64_t i2 = 0; i2 < ne2; ++i2) {
  8577. for (int64_t i1 = ith; i1 < ne1; i1 += nth) {
  8578. for (int64_t i0 = 0; i0 < ne0; ++i0) {
  8579. for (int64_t i3 = 0; i3 < ne3; ++i3) {
  8580. const int64_t dst_idx = i3*(ne0*ne1*ne2) + i2*(ne0*ne1) + i1*ne0 + i0;
  8581. const float * src_ptr = (const float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  8582. if (i0 < ne00 && i1 < ne01 && i2 < ne02 && i3 < ne03) {
  8583. dst_ptr[dst_idx] = *src_ptr;
  8584. } else {
  8585. dst_ptr[dst_idx] = 0;
  8586. }
  8587. }
  8588. }
  8589. }
  8590. }
  8591. }
  8592. static void ggml_compute_forward_pad(
  8593. const struct ggml_compute_params * params,
  8594. struct ggml_tensor * dst) {
  8595. const struct ggml_tensor * src0 = dst->src[0];
  8596. switch (src0->type) {
  8597. case GGML_TYPE_F32:
  8598. {
  8599. ggml_compute_forward_pad_f32(params, dst);
  8600. } break;
  8601. default:
  8602. {
  8603. GGML_ABORT("fatal error");
  8604. }
  8605. }
  8606. }
  8607. // ggml_compute_forward_arange
  8608. static void ggml_compute_forward_arange_f32(
  8609. const struct ggml_compute_params * params,
  8610. struct ggml_tensor * dst) {
  8611. GGML_ASSERT(dst->nb[0] == sizeof(float));
  8612. const int ith = params->ith;
  8613. const int nth = params->nth;
  8614. const float start = ggml_get_op_params_f32(dst, 0);
  8615. const float stop = ggml_get_op_params_f32(dst, 1);
  8616. const float step = ggml_get_op_params_f32(dst, 2);
  8617. const int64_t steps = (int64_t) ceilf((stop - start) / step);
  8618. GGML_ASSERT(ggml_nelements(dst) == steps);
  8619. for (int64_t i = ith; i < steps; i+= nth) {
  8620. float value = start + step * i;
  8621. ((float *)dst->data)[i] = value;
  8622. }
  8623. }
  8624. static void ggml_compute_forward_arange(
  8625. const struct ggml_compute_params * params,
  8626. struct ggml_tensor * dst) {
  8627. switch (dst->type) {
  8628. case GGML_TYPE_F32:
  8629. {
  8630. ggml_compute_forward_arange_f32(params, dst);
  8631. } break;
  8632. default:
  8633. {
  8634. GGML_ABORT("fatal error");
  8635. }
  8636. }
  8637. }
  8638. static void ggml_compute_forward_timestep_embedding_f32(
  8639. const struct ggml_compute_params * params,
  8640. struct ggml_tensor * dst) {
  8641. const struct ggml_tensor * src0 = dst->src[0];
  8642. GGML_ASSERT(src0->nb[0] == sizeof(float));
  8643. const int ith = params->ith;
  8644. const int nth = params->nth;
  8645. GGML_TENSOR_UNARY_OP_LOCALS
  8646. const int dim = ggml_get_op_params_i32(dst, 0);
  8647. const int max_period = ggml_get_op_params_i32(dst, 1);
  8648. int half = dim / 2;
  8649. for (int64_t i = 0; i < ne00; i++) {
  8650. float * embed_data = (float *)((char *) dst->data + i*nb1);
  8651. for (int64_t j = ith; j < half; j += nth) {
  8652. float timestep = ((float *)src0->data)[i];
  8653. float freq = (float)expf(-logf(max_period) * j / half);
  8654. float arg = timestep * freq;
  8655. embed_data[j] = cosf(arg);
  8656. embed_data[j + half] = sinf(arg);
  8657. }
  8658. if (dim % 2 != 0 && ith == 0) {
  8659. embed_data[dim] = 0.f;
  8660. }
  8661. }
  8662. }
  8663. static void ggml_compute_forward_timestep_embedding(
  8664. const struct ggml_compute_params * params,
  8665. struct ggml_tensor * dst) {
  8666. const struct ggml_tensor * src0 = dst->src[0];
  8667. switch (src0->type) {
  8668. case GGML_TYPE_F32:
  8669. {
  8670. ggml_compute_forward_timestep_embedding_f32(params, dst);
  8671. } break;
  8672. default:
  8673. {
  8674. GGML_ABORT("fatal error");
  8675. }
  8676. }
  8677. }
  8678. // ggml_compute_forward_argsort
  8679. static void ggml_compute_forward_argsort_f32(
  8680. const struct ggml_compute_params * params,
  8681. struct ggml_tensor * dst) {
  8682. const struct ggml_tensor * src0 = dst->src[0];
  8683. GGML_TENSOR_UNARY_OP_LOCALS
  8684. GGML_ASSERT(nb0 == sizeof(float));
  8685. const int ith = params->ith;
  8686. const int nth = params->nth;
  8687. const int64_t nr = ggml_nrows(src0);
  8688. enum ggml_sort_order order = (enum ggml_sort_order) ggml_get_op_params_i32(dst, 0);
  8689. for (int64_t i = ith; i < nr; i += nth) {
  8690. int32_t * dst_data = (int32_t *)((char *) dst->data + i*nb1);
  8691. const float * src_data = (float *)((char *) src0->data + i*nb01);
  8692. for (int64_t j = 0; j < ne0; j++) {
  8693. dst_data[j] = j;
  8694. }
  8695. // C doesn't have a functional sort, so we do a bubble sort instead
  8696. for (int64_t j = 0; j < ne0; j++) {
  8697. for (int64_t k = j + 1; k < ne0; k++) {
  8698. if ((order == GGML_SORT_ORDER_ASC && src_data[dst_data[j]] > src_data[dst_data[k]]) ||
  8699. (order == GGML_SORT_ORDER_DESC && src_data[dst_data[j]] < src_data[dst_data[k]])) {
  8700. int32_t tmp = dst_data[j];
  8701. dst_data[j] = dst_data[k];
  8702. dst_data[k] = tmp;
  8703. }
  8704. }
  8705. }
  8706. }
  8707. }
  8708. static void ggml_compute_forward_argsort(
  8709. const struct ggml_compute_params * params,
  8710. struct ggml_tensor * dst) {
  8711. const struct ggml_tensor * src0 = dst->src[0];
  8712. switch (src0->type) {
  8713. case GGML_TYPE_F32:
  8714. {
  8715. ggml_compute_forward_argsort_f32(params, dst);
  8716. } break;
  8717. default:
  8718. {
  8719. GGML_ABORT("fatal error");
  8720. }
  8721. }
  8722. }
  8723. // ggml_compute_forward_flash_attn_ext
  8724. static void ggml_compute_forward_flash_attn_ext_f16(
  8725. const struct ggml_compute_params * params,
  8726. const struct ggml_tensor * q,
  8727. const struct ggml_tensor * k,
  8728. const struct ggml_tensor * v,
  8729. const struct ggml_tensor * mask,
  8730. struct ggml_tensor * dst) {
  8731. GGML_TENSOR_LOCALS(int64_t, neq, q, ne)
  8732. GGML_TENSOR_LOCALS(size_t, nbq, q, nb)
  8733. GGML_TENSOR_LOCALS(int64_t, nek, k, ne)
  8734. GGML_TENSOR_LOCALS(size_t, nbk, k, nb)
  8735. GGML_TENSOR_LOCALS(int64_t, nev, v, ne)
  8736. GGML_TENSOR_LOCALS(size_t, nbv, v, nb)
  8737. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
  8738. GGML_TENSOR_LOCALS(size_t, nb, dst, nb)
  8739. const int ith = params->ith;
  8740. const int nth = params->nth;
  8741. const int64_t D = neq0;
  8742. const int64_t N = neq1;
  8743. GGML_ASSERT(ne0 == D);
  8744. GGML_ASSERT(ne2 == N);
  8745. // input tensor rows must be contiguous
  8746. GGML_ASSERT(nbq0 == ggml_type_size(q->type));
  8747. GGML_ASSERT(nbk0 == ggml_type_size(k->type));
  8748. GGML_ASSERT(nbv0 == ggml_type_size(v->type));
  8749. GGML_ASSERT(neq0 == D);
  8750. GGML_ASSERT(nek0 == D);
  8751. GGML_ASSERT(nev0 == D);
  8752. GGML_ASSERT(neq1 == N);
  8753. GGML_ASSERT(nev0 == D);
  8754. // dst cannot be transposed or permuted
  8755. GGML_ASSERT(nb0 == sizeof(float));
  8756. GGML_ASSERT(nb0 <= nb1);
  8757. GGML_ASSERT(nb1 <= nb2);
  8758. GGML_ASSERT(nb2 <= nb3);
  8759. // broadcast factors
  8760. const int64_t rk2 = neq2/nek2;
  8761. const int64_t rk3 = neq3/nek3;
  8762. const int64_t rv2 = neq2/nev2;
  8763. const int64_t rv3 = neq3/nev3;
  8764. // parallelize by q rows using ggml_vec_dot_f32
  8765. // total rows in q
  8766. const int nr = neq1*neq2*neq3;
  8767. // rows per thread
  8768. const int dr = (nr + nth - 1)/nth;
  8769. // row range for this thread
  8770. const int ir0 = dr*ith;
  8771. const int ir1 = MIN(ir0 + dr, nr);
  8772. float scale = 1.0f;
  8773. float max_bias = 0.0f;
  8774. float logit_softcap = 0.0f;
  8775. memcpy(&scale, (float *) dst->op_params + 0, sizeof(float));
  8776. memcpy(&max_bias, (float *) dst->op_params + 1, sizeof(float));
  8777. memcpy(&logit_softcap, (float *) dst->op_params + 2, sizeof(float));
  8778. if (logit_softcap != 0) {
  8779. scale /= logit_softcap;
  8780. }
  8781. const uint32_t n_head = neq2;
  8782. const uint32_t n_head_log2 = 1u << (uint32_t) floor(log2(n_head));
  8783. const float m0 = powf(2.0f, -(max_bias ) / n_head_log2);
  8784. const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_head_log2);
  8785. enum ggml_type const k_vec_dot_type = type_traits_cpu[k->type].vec_dot_type;
  8786. ggml_from_float_t const q_to_vec_dot = type_traits_cpu[k_vec_dot_type].from_float;
  8787. ggml_vec_dot_t const kq_vec_dot = type_traits_cpu[k->type].vec_dot;
  8788. ggml_to_float_t const v_to_float = ggml_get_type_traits(v->type)->to_float;
  8789. GGML_ASSERT(q_to_vec_dot && "fattn: unsupported K-type");
  8790. GGML_ASSERT(v_to_float && "fattn: unsupported V-type");
  8791. // loop over n_batch and n_head
  8792. for (int ir = ir0; ir < ir1; ++ir) {
  8793. // q indices
  8794. const int iq3 = ir/(neq2*neq1);
  8795. const int iq2 = (ir - iq3*neq2*neq1)/neq1;
  8796. const int iq1 = (ir - iq3*neq2*neq1 - iq2*neq1);
  8797. const uint32_t h = iq2; // head index
  8798. const float slope = (max_bias > 0.0f) ? h < n_head_log2 ? powf(m0, h + 1) : powf(m1, 2*(h - n_head_log2) + 1) : 1.0f;
  8799. float S = 0.0f; // sum
  8800. float M = -INFINITY; // maximum KQ value
  8801. float * VKQ32 = (float *) params->wdata + ith*(3*D + CACHE_LINE_SIZE_F32); // FP32 VKQ accumulator
  8802. float * V32 = (VKQ32 + 1*D); // (temporary) FP32 V buffer
  8803. ggml_fp16_t * VKQ16 = (ggml_fp16_t *) (VKQ32 + 1*D); // (temporary) FP16 VKQ accumulator
  8804. ggml_fp16_t * Q_q = (ggml_fp16_t *) (VKQ32 + 2*D); // (temporary) buffer for Q converted to quantized/FP16
  8805. if (v->type == GGML_TYPE_F16) {
  8806. memset(VKQ16, 0, D*sizeof(ggml_fp16_t));
  8807. } else {
  8808. memset(VKQ32, 0, D*sizeof(float));
  8809. }
  8810. const ggml_fp16_t * mp = mask ? (ggml_fp16_t *)((char *) mask->data + iq1*mask->nb[1]) : NULL;
  8811. // k indices
  8812. const int ik3 = iq3 / rk3;
  8813. const int ik2 = iq2 / rk2;
  8814. // v indices
  8815. const int iv3 = iq3 / rv3;
  8816. const int iv2 = iq2 / rv2;
  8817. const float * pq = (const float *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3));
  8818. q_to_vec_dot(pq, Q_q, D);
  8819. // online softmax / attention
  8820. // loop over n_kv and n_head_kv
  8821. // ref: https://arxiv.org/pdf/2112.05682.pdf
  8822. for (int64_t ic = 0; ic < nek1; ++ic) {
  8823. const float mv = mp ? slope*GGML_FP16_TO_FP32(mp[ic]) : 0.0f;
  8824. if (mv == -INFINITY) {
  8825. continue;
  8826. }
  8827. float s; // KQ value
  8828. const char * k_data = (const char *) k->data + ( ic*nbk1 + ik2*nbk2 + ik3*nbk3);
  8829. kq_vec_dot(D, &s, 0, k_data, 0, Q_q, 0, 1);
  8830. s = s*scale; // scale KQ value
  8831. if (logit_softcap != 0.0f) {
  8832. s = logit_softcap*tanhf(s);
  8833. }
  8834. s += mv; // apply mask
  8835. const float Mold = M;
  8836. float ms = 1.0f; // upon new higher max val, scale VKQ and KQ sum with this value
  8837. float vs = 1.0f; // post-softmax KQ value, expf(s - M)
  8838. const char * v_data = ((const char *) v->data + (ic*nbv1 + iv2*nbv2 + iv3*nbv3));
  8839. if (v->type == GGML_TYPE_F16) {
  8840. if (s > M) {
  8841. // s is new maximum, ms < 1.0f, vs == expf(s - s) == 1.0f
  8842. M = s;
  8843. ms = expf(Mold - M);
  8844. // V = V*expf(Mold - M)
  8845. ggml_vec_scale_f16(D, VKQ16, ms);
  8846. } else {
  8847. // no new maximum, ms == 1.0f, vs != 1.0f
  8848. vs = expf(s - M);
  8849. }
  8850. // V += v*expf(s - M)
  8851. ggml_vec_mad_f16(D, VKQ16, (const ggml_fp16_t *) v_data, vs);
  8852. } else {
  8853. if (s > M) {
  8854. // s is new maximum, ms < 1.0f, vs == expf(s - s) == 1.0f
  8855. M = s;
  8856. ms = expf(Mold - M);
  8857. // V = V*expf(Mold - M)
  8858. ggml_vec_scale_f32(D, VKQ32, ms);
  8859. } else {
  8860. // no new maximum, ms == 1.0f, vs != 1.0f
  8861. vs = expf(s - M);
  8862. }
  8863. v_to_float(v_data, V32, D);
  8864. // V += v*expf(s - M)
  8865. ggml_vec_mad_f32(D, VKQ32, V32, vs);
  8866. }
  8867. S = S*ms + vs; // scale and increment sum with partial sum
  8868. }
  8869. if (v->type == GGML_TYPE_F16) {
  8870. for (int64_t d = 0; d < D; ++d) {
  8871. VKQ32[d] = GGML_FP16_TO_FP32(VKQ16[d]);
  8872. }
  8873. }
  8874. // V /= S
  8875. const float S_inv = 1.0f/S;
  8876. ggml_vec_scale_f32(D, VKQ32, S_inv);
  8877. // dst indices
  8878. const int i1 = iq1;
  8879. const int i2 = iq2;
  8880. const int i3 = iq3;
  8881. // original
  8882. //memcpy((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3), V, nev0*sizeof(float));
  8883. // permute(0, 2, 1, 3)
  8884. memcpy((char *) dst->data + (i3*ne2*ne1 + i2 + i1*ne1)*nb1, VKQ32, nb1);
  8885. }
  8886. }
  8887. static void ggml_compute_forward_flash_attn_ext(
  8888. const struct ggml_compute_params * params,
  8889. const struct ggml_tensor * q,
  8890. const struct ggml_tensor * k,
  8891. const struct ggml_tensor * v,
  8892. const struct ggml_tensor * mask,
  8893. struct ggml_tensor * dst) {
  8894. switch (dst->op_params[3]) {
  8895. case GGML_PREC_DEFAULT:
  8896. case GGML_PREC_F32:
  8897. {
  8898. // uses F32 accumulators
  8899. ggml_compute_forward_flash_attn_ext_f16(params, q, k, v, mask, dst);
  8900. } break;
  8901. default:
  8902. {
  8903. GGML_ABORT("fatal error");
  8904. }
  8905. }
  8906. }
  8907. // ggml_compute_forward_flash_attn_back
  8908. static void ggml_compute_forward_flash_attn_back_f32(
  8909. const struct ggml_compute_params * params,
  8910. const bool masked,
  8911. struct ggml_tensor * dst) {
  8912. const struct ggml_tensor * q = dst->src[0];
  8913. const struct ggml_tensor * k = dst->src[1];
  8914. const struct ggml_tensor * v = dst->src[2];
  8915. const struct ggml_tensor * d = dst->src[3];
  8916. GGML_TENSOR_LOCALS(int64_t, neq, q, ne)
  8917. GGML_TENSOR_LOCALS(size_t, nbq, q, nb)
  8918. GGML_TENSOR_LOCALS(int64_t, nek, k, ne)
  8919. GGML_TENSOR_LOCALS(size_t, nbk, k, nb)
  8920. GGML_TENSOR_LOCALS(int64_t, nev, v, ne)
  8921. GGML_TENSOR_LOCALS(size_t, nbv, v, nb)
  8922. GGML_TENSOR_LOCALS(int64_t, ned, d, ne)
  8923. GGML_TENSOR_LOCALS(size_t, nbd, d, nb)
  8924. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
  8925. GGML_TENSOR_LOCALS(size_t, nb, dst, nb)
  8926. const int ith = params->ith;
  8927. const int nth = params->nth;
  8928. const int64_t D = neq0;
  8929. const int64_t N = neq1;
  8930. const int64_t P = nek1 - N;
  8931. const int64_t M = P + N;
  8932. const int Mup = ggml_up(M, GGML_SOFT_MAX_UNROLL);
  8933. const int mxDM = MAX(D, Mup);
  8934. // GGML_ASSERT(ne0 == D);
  8935. // GGML_ASSERT(ne1 == N);
  8936. GGML_ASSERT(P >= 0);
  8937. GGML_ASSERT(nbq0 == sizeof(float));
  8938. GGML_ASSERT(nbk0 == sizeof(float));
  8939. GGML_ASSERT(nbv0 == sizeof(float));
  8940. GGML_ASSERT(neq0 == D);
  8941. GGML_ASSERT(nek0 == D);
  8942. GGML_ASSERT(nev1 == D);
  8943. GGML_ASSERT(ned0 == D);
  8944. GGML_ASSERT(neq1 == N);
  8945. GGML_ASSERT(nek1 == N + P);
  8946. GGML_ASSERT(nev1 == D);
  8947. GGML_ASSERT(ned1 == N);
  8948. // dst cannot be transposed or permuted
  8949. GGML_ASSERT(nb0 == sizeof(float));
  8950. GGML_ASSERT(nb0 <= nb1);
  8951. GGML_ASSERT(nb1 <= nb2);
  8952. GGML_ASSERT(nb2 <= nb3);
  8953. if (ith == 0) {
  8954. memset(dst->data, 0, nb0*ne0*ne1*ne2*ne3);
  8955. }
  8956. ggml_barrier(params->threadpool);
  8957. const int64_t elem_q = ggml_nelements(q);
  8958. const int64_t elem_k = ggml_nelements(k);
  8959. enum ggml_type result_type = dst->type;
  8960. GGML_ASSERT(ggml_blck_size(result_type) == 1);
  8961. const size_t tsize = ggml_type_size(result_type);
  8962. const size_t offs_q = 0;
  8963. const size_t offs_k = offs_q + GGML_PAD(elem_q * tsize, GGML_MEM_ALIGN);
  8964. const size_t offs_v = offs_k + GGML_PAD(elem_k * tsize, GGML_MEM_ALIGN);
  8965. void * grad_q = (char *) dst->data;
  8966. void * grad_k = (char *) dst->data + offs_k;
  8967. void * grad_v = (char *) dst->data + offs_v;
  8968. const size_t nbgq1 = nb0*neq0;
  8969. const size_t nbgq2 = nb0*neq0*neq1;
  8970. const size_t nbgq3 = nb0*neq0*neq1*neq2;
  8971. const size_t nbgk1 = nb0*nek0;
  8972. const size_t nbgk2 = nb0*nek0*nek1;
  8973. const size_t nbgk3 = nb0*nek0*nek1*neq2;
  8974. const size_t nbgv1 = nb0*nev0;
  8975. const size_t nbgv2 = nb0*nev0*nev1;
  8976. const size_t nbgv3 = nb0*nev0*nev1*neq2;
  8977. // parallelize by k rows using ggml_vec_dot_f32
  8978. // total rows in k
  8979. const int nr = nek2*nek3;
  8980. // rows per thread
  8981. const int dr = (nr + nth - 1)/nth;
  8982. // row range for this thread
  8983. const int ir0 = dr*ith;
  8984. const int ir1 = MIN(ir0 + dr, nr);
  8985. const float scale = 1.0f/sqrtf(D);
  8986. //printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale);
  8987. // how often k2 (and v2) is repeated in q2
  8988. int nrep = neq2/nek2;
  8989. for (int ir = ir0; ir < ir1; ++ir) {
  8990. // q indices
  8991. const int ik3 = ir/(nek2);
  8992. const int ik2 = ir - ik3*nek2;
  8993. const int iq3 = ik3;
  8994. const int id3 = ik3;
  8995. const int iv3 = ik3;
  8996. const int iv2 = ik2;
  8997. for (int irep = 0; irep < nrep; ++irep) {
  8998. const int iq2 = ik2 + irep*nek2;
  8999. const int id2 = iq2;
  9000. // (ik2 + irep*nek2) % nek2 == ik2
  9001. for (int iq1 = 0; iq1 < neq1; ++iq1) {
  9002. const int id1 = iq1;
  9003. // not sure about CACHE_LINE_SIZE_F32..
  9004. // - maybe it must not be multiplied by 2 and excluded from .. in SM 1*(..) offset?
  9005. float * S = (float *) params->wdata + ith*2*(mxDM + CACHE_LINE_SIZE_F32) + 0*(mxDM+CACHE_LINE_SIZE_F32);
  9006. float * SM = (float *) params->wdata + ith*2*(mxDM + CACHE_LINE_SIZE_F32) + 1*(mxDM+CACHE_LINE_SIZE_F32);
  9007. for (int i = M; i < Mup; ++i) {
  9008. S[i] = -INFINITY;
  9009. }
  9010. const int64_t masked_begin = masked ? (P + iq1 + 1) : M;
  9011. for (int64_t ic = 0; ic < masked_begin; ++ic) {
  9012. // k indices
  9013. const int ik1 = ic;
  9014. // S indices
  9015. const int i1 = ik1;
  9016. ggml_vec_dot_f32(neq0,
  9017. S + i1, 0,
  9018. (float *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)), 0,
  9019. (float *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)), 0, 1);
  9020. }
  9021. // scale
  9022. ggml_vec_scale_f32(masked_begin, S, scale);
  9023. for (int64_t i = masked_begin; i < M; i++) {
  9024. S[i] = -INFINITY;
  9025. }
  9026. // softmax
  9027. // exclude known -INF S[..] values from max and loop
  9028. // dont forget to set their SM values to zero
  9029. {
  9030. float max = -INFINITY;
  9031. ggml_vec_max_f32(masked_begin, &max, S);
  9032. ggml_float sum = 0.0;
  9033. {
  9034. #ifdef GGML_SOFT_MAX_ACCELERATE
  9035. max = -max;
  9036. vDSP_vsadd(SM, 1, &max, SM, 1, Mup);
  9037. vvexpf(SM, SM, &Mup);
  9038. ggml_vec_sum_f32(Mup, &sum, SM);
  9039. #else
  9040. sum = ggml_vec_soft_max_f32(Mup, SM, S, max);
  9041. #endif
  9042. }
  9043. assert(sum > 0.0);
  9044. sum = 1.0/sum;
  9045. ggml_vec_scale_f32(masked_begin, SM, sum);
  9046. }
  9047. // step-by-step explanation
  9048. {
  9049. // forward-process shape grads from backward process
  9050. // parallel_for ik2,ik3:
  9051. // for irep:
  9052. // iq2 = ik2 + irep*nek2
  9053. // k[:D,:M,:,:] [D,M,:,:] grad[k][:D,:M,ik2,ik3] += grad[kcur]
  9054. // q[:D,:N,:,:] [D,N,:,:] grad[q][:D,iq1,iq2,iq3] += grad[qcur]
  9055. // v[:M,:D,:,:] [M,D,:,:] grad[v][:M,:D,iv2,iv3] += grad[vcur]
  9056. // for iq1:
  9057. // kcur = k[:D,:M,ik2,ik3] [D,M,1,1] grad[kcur] = grad[S1].T @ qcur
  9058. // qcur = q[:D,iq1,iq2,iq3] [D,1,1,1] grad[qcur] = grad[S1] @ kcur
  9059. // vcur = v[:M,:D,iv2,iv3] [M,D,1,1] grad[vcur] = grad[S5].T @ S4
  9060. // S0 = -Inf [D,1,1,1]
  9061. // ~S1[i] = dot(kcur[:D,i], qcur)
  9062. // S1 = qcur @ kcur.T [M,1,1,1] grad[S1] = grad[S2] * scale
  9063. // S2 = S1 * scale [M,1,1,1] grad[S2] = diag_mask_zero(grad[S3], P)
  9064. // S3 = diag_mask_inf(S2, P) [M,1,1,1] grad[S3] = S4 * (grad[S4] - dot(S4, grad[S4]))
  9065. // S4 = softmax(S3) [M,1,1,1] grad[S4] = grad[S5] @ vcur
  9066. // ~S5[i] = dot(vcur[:,i], S4)
  9067. // S5 = S4 @ vcur.T [D,1,1,1] grad[S5] = d[:D,id1,id2,id3]
  9068. // ~dst[i,iq1,iq2,iq3] = S5[i] ^
  9069. // dst[:D,iq1,iq2,iq3] = S5 | grad[dst[:D,iq1,iq2,iq3]] = d[:D,id1,id2,id3]
  9070. // dst backward-/ grad[dst] = d
  9071. //
  9072. // output gradients with their dependencies:
  9073. //
  9074. // grad[kcur] = grad[S1].T @ qcur
  9075. // grad[S1] = diag_mask_zero(grad[S3], P) * scale
  9076. // grad[S3] = S4 * (grad[S4] - dot(S4, grad[S4]))
  9077. // grad[S4] = grad[S5] @ vcur
  9078. // grad[S4] = d[:D,id1,id2,id3] @ vcur
  9079. // grad[qcur] = grad[S1] @ kcur
  9080. // grad[vcur] = grad[S5].T @ S4
  9081. // grad[vcur] = d[:D,id1,id2,id3].T @ S4
  9082. //
  9083. // in post-order:
  9084. //
  9085. // S1 = qcur @ kcur.T
  9086. // S2 = S1 * scale
  9087. // S3 = diag_mask_inf(S2, P)
  9088. // S4 = softmax(S3)
  9089. // grad[S4] = d[:D,id1,id2,id3] @ vcur
  9090. // grad[S3] = S4 * (grad[S4] - dot(S4, grad[S4]))
  9091. // grad[S1] = diag_mask_zero(grad[S3], P) * scale
  9092. // grad[qcur] = grad[S1] @ kcur
  9093. // grad[kcur] = grad[S1].T @ qcur
  9094. // grad[vcur] = d[:D,id1,id2,id3].T @ S4
  9095. //
  9096. // using less variables (SM=S4):
  9097. //
  9098. // S = diag_mask_inf(qcur @ kcur.T * scale, P)
  9099. // SM = softmax(S)
  9100. // S = d[:D,iq1,iq2,iq3] @ vcur
  9101. // dot_SM_gradSM = dot(SM, S)
  9102. // S = SM * (S - dot(SM, S))
  9103. // S = diag_mask_zero(S, P) * scale
  9104. //
  9105. // grad[q][:D,iq1,iq2,iq3] += S @ kcur
  9106. // grad[k][:D,:M,ik2,ik3] += S.T @ qcur
  9107. // grad[v][:M,:D,iv2,iv3] += d[:D,id1,id2,id3].T @ SM
  9108. }
  9109. // S = gradSM = d[:D,id1,id2,id3] @ vcur[:,:,iv2,iv3]
  9110. // S = d[:D,id1,id2,id3] @ vcur[:,:,iv2,iv3]
  9111. // for ic:
  9112. // S[:M] += vcur[:M,ic,iv2,iv3] * d[ic,id1,id2,id3]
  9113. // exclude known future zero S[..] values from operation
  9114. ggml_vec_set_f32(masked_begin, S, 0);
  9115. for (int64_t ic = 0; ic < D; ++ic) {
  9116. ggml_vec_mad_f32(masked_begin,
  9117. S,
  9118. (float *) ((char *) v->data + ( ic*nbv1 + iv2*nbv2 + iv3*nbv3)),
  9119. *(float *) ((char *) d->data + (ic*nbd0 + id1*nbd1 + id2*nbd2 + id3*nbd3)));
  9120. }
  9121. // S = SM * (S - dot(SM, S))
  9122. float dot_SM_gradSM = 0;
  9123. ggml_vec_dot_f32 (masked_begin, &dot_SM_gradSM, 0, SM, 0, S, 0, 1);
  9124. ggml_vec_acc1_f32(M, S, -dot_SM_gradSM);
  9125. ggml_vec_mul_f32 (masked_begin, S, S, SM);
  9126. // S = diag_mask_zero(S, P) * scale
  9127. // already done by above ggml_vec_set_f32
  9128. // exclude known zero S[..] values from operation
  9129. ggml_vec_scale_f32(masked_begin, S, scale);
  9130. // S shape [M,1]
  9131. // SM shape [M,1]
  9132. // kcur shape [D,M]
  9133. // qcur shape [D,1]
  9134. // vcur shape [M,D]
  9135. // grad[q][:D,iq1,iq2,iq3] += S @ kcur
  9136. // grad[q][:D,iq1,iq2,iq3] += shape[M,1] @ shape[D,M]
  9137. // for ic:
  9138. // grad[q][:D,iq1,iq2,iq3] += S[ic] * kcur[:D,ic,ik2,ik3]
  9139. // exclude known zero S[..] values from loop
  9140. for (int64_t ic = 0; ic < masked_begin; ++ic) {
  9141. ggml_vec_mad_f32(D,
  9142. (float *) ((char *) grad_q + (iq1*nbgq1 + iq2*nbgq2 + iq3*nbgq3)),
  9143. (float *) ((char *) k->data + (ic*nbk1 + ik2*nbk2 + ik3*nbk3)),
  9144. S[ic]);
  9145. }
  9146. // grad[k][:D,:M,iq2,iq3] += S.T @ qcur
  9147. // for ic:
  9148. // grad[k][:D,ic,iq2,iq3] += S.T[0,ic] * qcur[:D,0]
  9149. // grad[k][:D,ic,iq2,iq3] += S[ic] * qcur[:D,0]
  9150. // exclude known zero S[..] values from loop
  9151. for (int64_t ic = 0; ic < masked_begin; ++ic) {
  9152. ggml_vec_mad_f32(D,
  9153. (float *) ((char *) grad_k + (ic*nbgk1 + ik2*nbgk2 + ik3*nbgk3)),
  9154. (float *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)),
  9155. S[ic]);
  9156. }
  9157. // grad[v][:M,:D,iv2,iv3] += d[:D,id1,id2,id3].T @ SM
  9158. // for ic:
  9159. // grad[v][:M,ic,iv2,iv3] += d[:D,id1,id2,id3].T[0,ic] * SM[:M]
  9160. // grad[v][:M,ic,iv2,iv3] += d[ic,id1,id2,id3] * SM[:M]
  9161. // exclude known zero SM[..] values from mad
  9162. for (int64_t ic = 0; ic < D; ++ic) {
  9163. ggml_vec_mad_f32(masked_begin,
  9164. (float *) ((char *) grad_v + ( ic*nbgv1 + iv2*nbgv2 + iv3*nbgv3)),
  9165. SM,
  9166. *(float *) ((char *) d->data + (ic*nbd0 + id1*nbd1 + id2*nbd2 + id3*nbd3)));
  9167. }
  9168. }
  9169. }
  9170. }
  9171. }
  9172. static void ggml_compute_forward_flash_attn_back(
  9173. const struct ggml_compute_params * params,
  9174. const bool masked,
  9175. struct ggml_tensor * dst) {
  9176. const struct ggml_tensor * q = dst->src[0];
  9177. switch (q->type) {
  9178. case GGML_TYPE_F32:
  9179. {
  9180. ggml_compute_forward_flash_attn_back_f32(params, masked, dst);
  9181. } break;
  9182. default:
  9183. {
  9184. GGML_ABORT("fatal error");
  9185. }
  9186. }
  9187. }
  9188. // ggml_compute_forward_ssm_conv
  9189. static void ggml_compute_forward_ssm_conv_f32(
  9190. const struct ggml_compute_params * params,
  9191. struct ggml_tensor * dst) {
  9192. const struct ggml_tensor * src0 = dst->src[0]; // conv_x
  9193. const struct ggml_tensor * src1 = dst->src[1]; // conv1d.weight
  9194. const int ith = params->ith;
  9195. const int nth = params->nth;
  9196. const int nc = src1->ne[0]; // d_conv
  9197. const int ncs = src0->ne[0]; // d_conv - 1 + n_t
  9198. const int nr = src0->ne[1]; // d_inner
  9199. const int n_t = dst->ne[1]; // tokens per sequence
  9200. const int n_s = dst->ne[2]; // number of sequences in the batch
  9201. GGML_ASSERT( dst->ne[0] == nr);
  9202. GGML_ASSERT(src0->nb[0] == sizeof(float));
  9203. GGML_ASSERT(src1->nb[0] == sizeof(float));
  9204. GGML_ASSERT(src0->nb[1] == src0->ne[0]*sizeof(float));
  9205. // rows per thread
  9206. const int dr = (nr + nth - 1)/nth;
  9207. // row range for this thread
  9208. const int ir0 = dr*ith;
  9209. const int ir1 = MIN(ir0 + dr, nr);
  9210. const int ir = ir1 - ir0;
  9211. for (int i3 = 0; i3 < n_s; ++i3) {
  9212. for (int i2 = 0; i2 < n_t; ++i2) {
  9213. // {d_conv - 1 + n_t, d_inner, n_seqs}
  9214. // sliding window
  9215. const float * s = (const float *) ((const char *) src0->data + ir0*(src0->nb[1]) + i2*(src0->nb[0]) + i3*(src0->nb[2])); // {d_conv, d_inner, n_s}
  9216. const float * c = (const float *) ((const char *) src1->data + ir0*(src1->nb[1])); // {d_conv, d_inner}
  9217. float * x = (float *) ((char *) dst->data + ir0*(dst->nb[0]) + i2*(dst->nb[1]) + i3*(dst->nb[2])); // {d_inner, n_t, n_s}
  9218. // TODO: transpose the output for smaller strides for big batches?
  9219. // d_inner
  9220. for (int i1 = 0; i1 < ir; ++i1) {
  9221. // rowwise dot product
  9222. // NOTE: not using ggml_vec_dot_f32, because its sum is in double precision
  9223. float sumf = 0.0f;
  9224. // d_conv
  9225. for (int i0 = 0; i0 < nc; ++i0) {
  9226. sumf += s[i0 + i1*ncs] * c[i0 + i1*nc];
  9227. }
  9228. x[i1] = sumf;
  9229. }
  9230. }
  9231. }
  9232. }
  9233. static void ggml_compute_forward_ssm_conv(
  9234. const struct ggml_compute_params * params,
  9235. struct ggml_tensor * dst) {
  9236. switch (dst->src[0]->type) {
  9237. case GGML_TYPE_F32:
  9238. {
  9239. ggml_compute_forward_ssm_conv_f32(params, dst);
  9240. } break;
  9241. default:
  9242. {
  9243. GGML_ABORT("fatal error");
  9244. }
  9245. }
  9246. }
  9247. // ggml_compute_forward_ssm_scan
  9248. static void ggml_compute_forward_ssm_scan_f32(
  9249. const struct ggml_compute_params * params,
  9250. struct ggml_tensor * dst) {
  9251. const struct ggml_tensor * src0 = dst->src[0]; // s
  9252. const struct ggml_tensor * src1 = dst->src[1]; // x
  9253. const struct ggml_tensor * src2 = dst->src[2]; // dt
  9254. const struct ggml_tensor * src3 = dst->src[3]; // A
  9255. const struct ggml_tensor * src4 = dst->src[4]; // B
  9256. const struct ggml_tensor * src5 = dst->src[5]; // C
  9257. const int ith = params->ith;
  9258. const int nth = params->nth;
  9259. const int64_t nc = src0->ne[0]; // d_state
  9260. const int64_t nr = src0->ne[1]; // d_inner
  9261. const int64_t n_t = src1->ne[1]; // number of tokens per sequence
  9262. const int64_t n_s = src0->ne[2]; // number of sequences in the batch
  9263. GGML_ASSERT(ggml_nelements(src1) + ggml_nelements(src0) == ggml_nelements(dst));
  9264. GGML_ASSERT(src0->nb[0] == sizeof(float));
  9265. GGML_ASSERT(src1->nb[0] == sizeof(float));
  9266. GGML_ASSERT(src2->nb[0] == sizeof(float));
  9267. GGML_ASSERT(src3->nb[0] == sizeof(float));
  9268. GGML_ASSERT(src4->nb[0] == sizeof(float));
  9269. GGML_ASSERT(src5->nb[0] == sizeof(float));
  9270. // required for the dot product between s and C
  9271. GGML_ASSERT(src0->nb[1] == src0->ne[0]*sizeof(float));
  9272. // required for per-sequence offsets for states
  9273. GGML_ASSERT(src0->nb[2] == src0->ne[0]*src0->ne[1]*sizeof(float));
  9274. // required to get correct offset for state destination (i.e. src1->nb[3])
  9275. GGML_ASSERT(src1->nb[3] == src1->ne[0]*src1->ne[1]*src1->ne[2]*sizeof(float));
  9276. // rows per thread
  9277. const int dr = (nr + nth - 1)/nth;
  9278. // row range for this thread
  9279. const int ir0 = dr*ith;
  9280. const int ir1 = MIN(ir0 + dr, nr);
  9281. const int ir = ir1 - ir0;
  9282. for (int i3 = 0; i3 < n_s; ++i3) {
  9283. for (int i2 = 0; i2 < n_t; ++i2) {
  9284. const float * s0 = (const float *) ((const char *) src0->data + ir0*(src0->nb[1]) + i3*(src0->nb[2])); // {d_state, d_inner, n_s}
  9285. const float * x = (const float *) ((const char *) src1->data + ir0*(src1->nb[0]) + i2*(src1->nb[1]) + i3*(src1->nb[2])); // {d_inner, n_t, n_s}
  9286. const float * dt = (const float *) ((const char *) src2->data + ir0*(src2->nb[0]) + i2*(src2->nb[1]) + i3*(src2->nb[2])); // {d_inner, n_t, n_s}
  9287. const float * A = (const float *) ((const char *) src3->data + ir0*(src3->nb[1])); // {d_state, d_inner}
  9288. const float * B = (const float *) ((const char *) src4->data + i2*(src4->nb[1]) + i3*(src4->nb[2])); // {d_state, n_t, n_s}
  9289. const float * C = (const float *) ((const char *) src5->data + i2*(src5->nb[1]) + i3*(src5->nb[2])); // {d_state, n_t, n_s}
  9290. float * y = ( float *) (( char *) dst->data + ir0*(src1->nb[0]) + i2*(src1->nb[1]) + i3*(src1->nb[2])); // {d_inner, n_t, n_s}
  9291. float * s = ( float *) (( char *) dst->data + ir0*(src0->nb[1]) + i3*(src0->nb[2]) + src1->nb[3]); // {d_state, d_inner, n_s}
  9292. // use the output as the source for the next token-wise iterations
  9293. if (i2 > 0) { s0 = s; }
  9294. // d_inner
  9295. for (int i1 = 0; i1 < ir; ++i1) {
  9296. // ref: https://github.com/state-spaces/mamba/blob/34076d664838588a3c97727b263478ab9f621a07/mamba_ssm/ops/triton/selective_state_update.py#L78
  9297. float dt_soft_plus = dt[i1] <= 20.0f ? log1pf(expf(dt[i1])) : dt[i1];
  9298. float x_dt = x[i1] * dt_soft_plus;
  9299. float sumf = 0.0f;
  9300. // d_state
  9301. for (int i0 = 0; i0 < nc; ++i0) {
  9302. int i = i0 + i1*nc;
  9303. // state = prev_state * dA + dB * x
  9304. float state = (s0[i] * expf(dt_soft_plus * A[i])) + (B[i0] * x_dt);
  9305. // y = rowwise_dotprod(state, C)
  9306. sumf += state * C[i0];
  9307. s[i] = state;
  9308. }
  9309. y[i1] = sumf;
  9310. }
  9311. }
  9312. }
  9313. }
  9314. static void ggml_compute_forward_ssm_scan(
  9315. const struct ggml_compute_params * params,
  9316. struct ggml_tensor * dst) {
  9317. switch (dst->src[0]->type) {
  9318. case GGML_TYPE_F32:
  9319. {
  9320. ggml_compute_forward_ssm_scan_f32(params, dst);
  9321. } break;
  9322. default:
  9323. {
  9324. GGML_ABORT("fatal error");
  9325. }
  9326. }
  9327. }
  9328. // ggml_compute_forward_win_part
  9329. static void ggml_compute_forward_win_part_f32(
  9330. const struct ggml_compute_params * params,
  9331. struct ggml_tensor * dst) {
  9332. UNUSED(params);
  9333. const struct ggml_tensor * src0 = dst->src[0];
  9334. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne)
  9335. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
  9336. const int32_t nep0 = ((const int32_t *)(dst->op_params))[0];
  9337. const int32_t nep1 = ((const int32_t *)(dst->op_params))[1];
  9338. const int32_t w = ((const int32_t *)(dst->op_params))[2];
  9339. assert(ne00 == ne0);
  9340. assert(ne3 == nep0*nep1);
  9341. // TODO: optimize / multi-thread
  9342. for (int py = 0; py < nep1; ++py) {
  9343. for (int px = 0; px < nep0; ++px) {
  9344. const int64_t i3 = py*nep0 + px;
  9345. for (int64_t i2 = 0; i2 < ne2; ++i2) {
  9346. for (int64_t i1 = 0; i1 < ne1; ++i1) {
  9347. for (int64_t i0 = 0; i0 < ne0; ++i0) {
  9348. const int64_t i02 = py*w + i2;
  9349. const int64_t i01 = px*w + i1;
  9350. const int64_t i00 = i0;
  9351. const int64_t i = i3*ne2*ne1*ne0 + i2*ne1*ne0 + i1*ne0 + i0;
  9352. const int64_t j = i02*ne01*ne00 + i01*ne00 + i00;
  9353. if (py*w + i2 >= ne02 || px*w + i1 >= ne01) {
  9354. ((float *) dst->data)[i] = 0.0f;
  9355. } else {
  9356. ((float *) dst->data)[i] = ((float *) src0->data)[j];
  9357. }
  9358. }
  9359. }
  9360. }
  9361. }
  9362. }
  9363. }
  9364. static void ggml_compute_forward_win_part(
  9365. const struct ggml_compute_params * params,
  9366. struct ggml_tensor * dst) {
  9367. const struct ggml_tensor * src0 = dst->src[0];
  9368. switch (src0->type) {
  9369. case GGML_TYPE_F32:
  9370. {
  9371. ggml_compute_forward_win_part_f32(params, dst);
  9372. } break;
  9373. default:
  9374. {
  9375. GGML_ABORT("fatal error");
  9376. }
  9377. }
  9378. }
  9379. // ggml_compute_forward_win_unpart
  9380. static void ggml_compute_forward_win_unpart_f32(
  9381. const struct ggml_compute_params * params,
  9382. struct ggml_tensor * dst) {
  9383. UNUSED(params);
  9384. const struct ggml_tensor * src0 = dst->src[0];
  9385. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne)
  9386. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
  9387. const int32_t w = ((const int32_t *)(dst->op_params))[0];
  9388. // padding
  9389. const int px = (w - ne1%w)%w;
  9390. //const int py = (w - ne2%w)%w;
  9391. const int npx = (px + ne1)/w;
  9392. //const int npy = (py + ne2)/w;
  9393. assert(ne0 == ne00);
  9394. // TODO: optimize / multi-thread
  9395. for (int64_t i2 = 0; i2 < ne2; ++i2) {
  9396. for (int64_t i1 = 0; i1 < ne1; ++i1) {
  9397. for (int64_t i0 = 0; i0 < ne0; ++i0) {
  9398. const int ip2 = i2/w;
  9399. const int ip1 = i1/w;
  9400. const int64_t i02 = i2%w;
  9401. const int64_t i01 = i1%w;
  9402. const int64_t i00 = i0;
  9403. const int64_t i = (ip2*npx + ip1)*ne02*ne01*ne00 + i02*ne01*ne00 + i01*ne00 + i00;
  9404. const int64_t j = i2*ne1*ne0 + i1*ne0 + i0;
  9405. ((float *) dst->data)[j] = ((float *) src0->data)[i];
  9406. }
  9407. }
  9408. }
  9409. }
  9410. static void ggml_compute_forward_win_unpart(
  9411. const struct ggml_compute_params * params,
  9412. struct ggml_tensor * dst) {
  9413. const struct ggml_tensor * src0 = dst->src[0];
  9414. switch (src0->type) {
  9415. case GGML_TYPE_F32:
  9416. {
  9417. ggml_compute_forward_win_unpart_f32(params, dst);
  9418. } break;
  9419. default:
  9420. {
  9421. GGML_ABORT("fatal error");
  9422. }
  9423. }
  9424. }
  9425. //gmml_compute_forward_unary
  9426. static void ggml_compute_forward_unary(
  9427. const struct ggml_compute_params * params,
  9428. struct ggml_tensor * dst) {
  9429. const enum ggml_unary_op op = ggml_get_unary_op(dst);
  9430. switch (op) {
  9431. case GGML_UNARY_OP_ABS:
  9432. {
  9433. ggml_compute_forward_abs(params, dst);
  9434. } break;
  9435. case GGML_UNARY_OP_SGN:
  9436. {
  9437. ggml_compute_forward_sgn(params, dst);
  9438. } break;
  9439. case GGML_UNARY_OP_NEG:
  9440. {
  9441. ggml_compute_forward_neg(params, dst);
  9442. } break;
  9443. case GGML_UNARY_OP_STEP:
  9444. {
  9445. ggml_compute_forward_step(params, dst);
  9446. } break;
  9447. case GGML_UNARY_OP_TANH:
  9448. {
  9449. ggml_compute_forward_tanh(params, dst);
  9450. } break;
  9451. case GGML_UNARY_OP_ELU:
  9452. {
  9453. ggml_compute_forward_elu(params, dst);
  9454. } break;
  9455. case GGML_UNARY_OP_RELU:
  9456. {
  9457. ggml_compute_forward_relu(params, dst);
  9458. } break;
  9459. case GGML_UNARY_OP_SIGMOID:
  9460. {
  9461. ggml_compute_forward_sigmoid(params, dst);
  9462. } break;
  9463. case GGML_UNARY_OP_GELU:
  9464. {
  9465. ggml_compute_forward_gelu(params, dst);
  9466. } break;
  9467. case GGML_UNARY_OP_GELU_QUICK:
  9468. {
  9469. ggml_compute_forward_gelu_quick(params, dst);
  9470. } break;
  9471. case GGML_UNARY_OP_SILU:
  9472. {
  9473. ggml_compute_forward_silu(params, dst);
  9474. } break;
  9475. case GGML_UNARY_OP_HARDSWISH:
  9476. {
  9477. ggml_compute_forward_hardswish(params, dst);
  9478. } break;
  9479. case GGML_UNARY_OP_HARDSIGMOID:
  9480. {
  9481. ggml_compute_forward_hardsigmoid(params, dst);
  9482. } break;
  9483. case GGML_UNARY_OP_EXP:
  9484. {
  9485. ggml_compute_forward_exp(params, dst);
  9486. } break;
  9487. default:
  9488. {
  9489. GGML_ABORT("fatal error");
  9490. }
  9491. }
  9492. }
  9493. // ggml_compute_forward_get_rel_pos
  9494. static void ggml_compute_forward_get_rel_pos_f16(
  9495. const struct ggml_compute_params * params,
  9496. struct ggml_tensor * dst) {
  9497. UNUSED(params);
  9498. const struct ggml_tensor * src0 = dst->src[0];
  9499. // ref: https://github.com/facebookresearch/segment-anything/blob/main/segment_anything/modeling/image_encoder.py#L292-L322
  9500. GGML_TENSOR_UNARY_OP_LOCALS
  9501. const int64_t w = ne1;
  9502. ggml_fp16_t * src0_data = (ggml_fp16_t *) src0->data;
  9503. ggml_fp16_t * dst_data = (ggml_fp16_t *) dst->data;
  9504. for (int64_t i2 = 0; i2 < ne2; ++i2) {
  9505. for (int64_t i1 = 0; i1 < ne1; ++i1) {
  9506. const int64_t pos = (w - i1 - 1) + i2;
  9507. for (int64_t i0 = 0; i0 < ne0; ++i0) {
  9508. dst_data[i2*ne1*ne0 + i1*ne0 + i0] = src0_data[pos*ne00 + i0];
  9509. }
  9510. }
  9511. }
  9512. }
  9513. static void ggml_compute_forward_get_rel_pos(
  9514. const struct ggml_compute_params * params,
  9515. struct ggml_tensor * dst) {
  9516. const struct ggml_tensor * src0 = dst->src[0];
  9517. switch (src0->type) {
  9518. case GGML_TYPE_F16:
  9519. case GGML_TYPE_BF16:
  9520. {
  9521. ggml_compute_forward_get_rel_pos_f16(params, dst);
  9522. } break;
  9523. default:
  9524. {
  9525. GGML_ABORT("fatal error");
  9526. }
  9527. }
  9528. }
  9529. // ggml_compute_forward_add_rel_pos
  9530. static void ggml_compute_forward_add_rel_pos_f32(
  9531. const struct ggml_compute_params * params,
  9532. struct ggml_tensor * dst) {
  9533. const struct ggml_tensor * src0 = dst->src[0];
  9534. const struct ggml_tensor * src1 = dst->src[1];
  9535. const struct ggml_tensor * src2 = dst->src[2];
  9536. const bool inplace = (bool) ((int32_t *) dst->op_params)[0];
  9537. if (!inplace) {
  9538. if (params->ith == 0) {
  9539. memcpy((char *) dst->data, (char *) src0->data, ggml_nbytes(dst));
  9540. }
  9541. ggml_barrier(params->threadpool);
  9542. }
  9543. // ref: https://github.com/facebookresearch/segment-anything/blob/main/segment_anything/modeling/image_encoder.py#L357-L359
  9544. float * src1_data = (float *) src1->data;
  9545. float * src2_data = (float *) src2->data;
  9546. float * dst_data = (float *) dst->data;
  9547. const int64_t ne10 = src1->ne[0];
  9548. const int64_t ne11 = src1->ne[1];
  9549. const int64_t ne12 = src1->ne[2];
  9550. const int64_t ne13 = src1->ne[3];
  9551. const int ith = params->ith;
  9552. const int nth = params->nth;
  9553. // total patches in dst
  9554. const int np = ne13;
  9555. // patches per thread
  9556. const int dp = (np + nth - 1)/nth;
  9557. // patch range for this thread
  9558. const int ip0 = dp*ith;
  9559. const int ip1 = MIN(ip0 + dp, np);
  9560. for (int64_t i13 = ip0; i13 < ip1; ++i13) {
  9561. for (int64_t i12 = 0; i12 < ne12; ++i12) {
  9562. for (int64_t i11 = 0; i11 < ne11; ++i11) {
  9563. const int64_t jp1 = i13*ne12*ne11*ne10 + i12*ne11*ne10 + i11*ne10;
  9564. for (int64_t i10 = 0; i10 < ne10; ++i10) {
  9565. const int64_t jp0 = jp1 + i10;
  9566. const float src1_e = src1_data[jp0];
  9567. const float src2_e = src2_data[jp0];
  9568. const int64_t jdh = jp0 * ne10;
  9569. const int64_t jdw = jdh - (ne10 - 1) * i10;
  9570. for (int64_t j = 0; j < ne10; ++j) {
  9571. dst_data[jdh + j ] += src2_e;
  9572. dst_data[jdw + j*ne10] += src1_e;
  9573. }
  9574. }
  9575. }
  9576. }
  9577. }
  9578. }
  9579. static void ggml_compute_forward_add_rel_pos(
  9580. const struct ggml_compute_params * params,
  9581. struct ggml_tensor * dst) {
  9582. const struct ggml_tensor * src0 = dst->src[0];
  9583. switch (src0->type) {
  9584. case GGML_TYPE_F32:
  9585. {
  9586. ggml_compute_forward_add_rel_pos_f32(params, dst);
  9587. } break;
  9588. default:
  9589. {
  9590. GGML_ABORT("fatal error");
  9591. }
  9592. }
  9593. }
  9594. // ggml_compute_forward_rwkv_wkv6
  9595. static void ggml_compute_forward_rwkv_wkv6_f32(
  9596. const struct ggml_compute_params * params,
  9597. struct ggml_tensor * dst) {
  9598. const int64_t T = dst->src[1]->ne[3];
  9599. const int64_t C = dst->ne[0];
  9600. const int64_t HEADS = dst->src[1]->ne[2];
  9601. const int64_t n_seqs = dst->src[5]->ne[1];
  9602. const int64_t head_size = C / HEADS;
  9603. float * dst_data = (float *) dst->data;
  9604. float * state = ((float *) dst->data) + C * T;
  9605. const int ith = params->ith;
  9606. const int nth = params->nth;
  9607. if (ith >= HEADS) {
  9608. return;
  9609. }
  9610. const int h_start = (HEADS * ith) / nth;
  9611. const int h_end = ((HEADS * (ith + 1)) / nth < HEADS) ?
  9612. (HEADS * (ith + 1)) / nth : HEADS;
  9613. float * k = (float *) dst->src[0]->data;
  9614. float * v = (float *) dst->src[1]->data;
  9615. float * r = (float *) dst->src[2]->data;
  9616. float * time_faaaa = (float *) dst->src[3]->data;
  9617. float * time_decay = (float *) dst->src[4]->data;
  9618. size_t t_stride = HEADS * head_size; // Same to C
  9619. size_t h_stride = C / HEADS;
  9620. GGML_ASSERT(C % HEADS == 0); // C must be divisible by HEADS
  9621. size_t h_stride_2d = head_size * head_size;
  9622. if (ith == 0) {
  9623. memset(dst_data, 0, T * C * sizeof(float));
  9624. }
  9625. ggml_barrier(params->threadpool);
  9626. #if defined(__AVX__) && !defined(__AVX512F__)
  9627. #define GGML_F32X GGML_F32x8
  9628. #define GGML_F32X_SET1 GGML_F32x8_SET1
  9629. #define GGML_F32X_LOAD GGML_F32x8_LOAD
  9630. #define GGML_F32X_STORE GGML_F32x8_STORE
  9631. #define GGML_F32X_MUL GGML_F32x8_MUL
  9632. #define GGML_F32X_FMA GGML_F32x8_FMA
  9633. #define WKV_VECTOR_SIZE 8
  9634. #elif defined(__AVX512F__)
  9635. #define GGML_F32X GGML_F32x16
  9636. #define GGML_F32X_SET1 GGML_F32x16_SET1
  9637. #define GGML_F32X_LOAD GGML_F32x16_LOAD
  9638. #define GGML_F32X_STORE GGML_F32x16_STORE
  9639. #define GGML_F32X_MUL GGML_F32x16_MUL
  9640. #define GGML_F32X_FMA GGML_F32x16_FMA
  9641. #define WKV_VECTOR_SIZE 16
  9642. #elif defined(__ARM_NEON) && defined(__aarch64__)
  9643. #define GGML_F32X GGML_F32x4
  9644. #define GGML_F32X_SET1 GGML_F32x4_SET1
  9645. #define GGML_F32X_LOAD GGML_F32x4_LOAD
  9646. #define GGML_F32X_STORE GGML_F32x4_STORE
  9647. #define GGML_F32X_MUL GGML_F32x4_MUL
  9648. #define GGML_F32X_FMA GGML_F32x4_FMA
  9649. #define WKV_VECTOR_SIZE 4
  9650. #endif
  9651. #ifdef WKV_VECTOR_SIZE
  9652. const int64_t vec_count = head_size / WKV_VECTOR_SIZE;
  9653. for (int64_t t = 0; t < T; t++) {
  9654. size_t t_offset = t * t_stride;
  9655. size_t state_offset = head_size * C * (t / (T / n_seqs));
  9656. float * state_cur = state + state_offset;
  9657. float * state_prev = t % (T / n_seqs) ? state_cur : (float*)dst->src[5]->data + state_offset;
  9658. for (int64_t h = h_start; h < h_end; h++) {
  9659. size_t h_offset = h * h_stride;
  9660. size_t t_h_offset = t_offset + h_offset;
  9661. size_t h_2d_offset = h * h_stride_2d;
  9662. for (int64_t i = 0; i < head_size; i++) {
  9663. size_t t_h_i_offset = t_h_offset + i;
  9664. size_t h_i_offset = h_offset + i;
  9665. size_t h_2d_i_offset = h_2d_offset + i * h_stride;
  9666. float k_val = k[t_h_i_offset];
  9667. float r_val = r[t_h_i_offset];
  9668. float time_faaaa_val = time_faaaa[h_i_offset];
  9669. float time_decay_val = time_decay[t_h_i_offset];
  9670. // Broadcast scalar values to vectors
  9671. GGML_F32X k_vec = GGML_F32X_SET1(k_val);
  9672. GGML_F32X r_vec = GGML_F32X_SET1(r_val);
  9673. GGML_F32X time_faaaa_vec = GGML_F32X_SET1(time_faaaa_val);
  9674. GGML_F32X time_decay_vec = GGML_F32X_SET1(time_decay_val);
  9675. for (int64_t j = 0; j < vec_count; j++) {
  9676. size_t base_j = j * WKV_VECTOR_SIZE;
  9677. size_t t_h_j_offset = t_h_offset + base_j;
  9678. size_t h_2d_i_j_offset = h_2d_i_offset + base_j;
  9679. // Load x elements at once
  9680. GGML_F32X v_vec = GGML_F32X_LOAD(&v[t_h_j_offset]);
  9681. GGML_F32X prev_state_vec = GGML_F32X_LOAD(&state_prev[h_2d_i_j_offset]);
  9682. GGML_F32X dst_vec = GGML_F32X_LOAD(&dst_data[t_h_j_offset]);
  9683. // Compute kv = v * k
  9684. GGML_F32X kv_vec = GGML_F32X_MUL(v_vec, k_vec);
  9685. // Compute temp = kv * time_faaaa + prev_state
  9686. GGML_F32X temp_vec = GGML_F32X_FMA(prev_state_vec, kv_vec, time_faaaa_vec);
  9687. // Update dst: dst += temp * r
  9688. dst_vec = GGML_F32X_FMA(dst_vec, temp_vec, r_vec);
  9689. GGML_F32X_STORE(&dst_data[t_h_j_offset], dst_vec);
  9690. // Update state: state = prev_state * time_decay + kv
  9691. GGML_F32X new_state_vec = GGML_F32X_FMA(kv_vec, prev_state_vec, time_decay_vec);
  9692. GGML_F32X_STORE(&state_cur[h_2d_i_j_offset], new_state_vec);
  9693. }
  9694. // Handle remaining elements, this will not be used.
  9695. for (int64_t j = vec_count * WKV_VECTOR_SIZE; j < head_size; j++) {
  9696. size_t t_h_j_offset = t_h_offset + j;
  9697. size_t h_2d_i_j_offset = h_2d_i_offset + j;
  9698. float v_val = v[t_h_j_offset];
  9699. float kv_val = v_val * k_val;
  9700. float prev_state_val = state_prev[h_2d_i_j_offset];
  9701. float temp_val = kv_val * time_faaaa_val + prev_state_val;
  9702. dst_data[t_h_j_offset] += temp_val * r_val;
  9703. state_cur[h_2d_i_j_offset] = prev_state_val * time_decay_val + kv_val;
  9704. }
  9705. }
  9706. }
  9707. }
  9708. #else
  9709. // basically fused operations:
  9710. // dst = r @ (time_faaaa * (k @ v) + state),
  9711. // state = time_decay * state + (k @ v),
  9712. // recursive through each token
  9713. for (int64_t t = 0; t < T; t++) {
  9714. size_t t_offset = t * t_stride;
  9715. size_t state_offset = head_size * C * (t / (T / n_seqs));
  9716. float * state_cur = state + state_offset;
  9717. float * state_prev = t % (T / n_seqs) ? state_cur : (float*)dst->src[5]->data + state_offset;
  9718. for (int64_t h = h_start; h < h_end; h++) {
  9719. size_t h_offset = h * h_stride;
  9720. size_t t_h_offset = t_offset + h_offset;
  9721. size_t h_2d_offset = h * h_stride_2d;
  9722. for (int64_t i = 0; i < head_size; i++) {
  9723. size_t t_h_i_offset = t_h_offset + i;
  9724. size_t h_i_offset = h_offset + i;
  9725. size_t h_2d_i_offset = h_2d_offset + i * h_stride;
  9726. float k_val = k[t_h_i_offset];
  9727. float r_val = r[t_h_i_offset];
  9728. float time_faaaa_val = time_faaaa[h_i_offset];
  9729. // RWKV v6: different time_decay for each token.
  9730. float time_decay_val = time_decay[t_h_i_offset];
  9731. for (int64_t j = 0; j < head_size; j++) {
  9732. size_t t_h_j_offset = t_h_offset + j;
  9733. size_t h_2d_i_j_offset = h_2d_i_offset + j;
  9734. float v_val = v[t_h_j_offset];
  9735. float kv_val = v_val * k_val;
  9736. float prev_state_val = state_prev[h_2d_i_j_offset];
  9737. float temp_val = kv_val * time_faaaa_val + prev_state_val;
  9738. dst_data[t_h_j_offset] += temp_val * r_val;
  9739. state_cur[h_2d_i_j_offset] = prev_state_val * time_decay_val + kv_val;
  9740. }
  9741. }
  9742. }
  9743. }
  9744. #endif
  9745. }
  9746. static void ggml_compute_forward_rwkv_wkv6(
  9747. const struct ggml_compute_params * params,
  9748. struct ggml_tensor * dst) {
  9749. const struct ggml_tensor * src0 = dst->src[0];
  9750. switch (src0->type) {
  9751. case GGML_TYPE_F32:
  9752. {
  9753. ggml_compute_forward_rwkv_wkv6_f32(params, dst);
  9754. } break;
  9755. default:
  9756. {
  9757. GGML_ABORT("fatal error");
  9758. }
  9759. }
  9760. }
  9761. // ggml_compute_forward_map_unary
  9762. static void ggml_compute_forward_map_unary_f32(
  9763. const struct ggml_compute_params * params,
  9764. struct ggml_tensor * dst,
  9765. const ggml_unary_op_f32_t fun) {
  9766. const struct ggml_tensor * src0 = dst->src[0];
  9767. if (params->ith != 0) {
  9768. return;
  9769. }
  9770. assert(ggml_is_contiguous_1(src0));
  9771. assert(ggml_is_contiguous_1(dst));
  9772. assert(ggml_are_same_shape(src0, dst));
  9773. const int n = ggml_nrows(src0);
  9774. const int nc = src0->ne[0];
  9775. for (int i = 0; i < n; i++) {
  9776. fun(nc,
  9777. (float *) ((char *) dst->data + i*( dst->nb[1])),
  9778. (float *) ((char *) src0->data + i*(src0->nb[1])));
  9779. }
  9780. }
  9781. static void ggml_compute_forward_map_unary(
  9782. const struct ggml_compute_params * params,
  9783. struct ggml_tensor * dst,
  9784. const ggml_unary_op_f32_t fun) {
  9785. const struct ggml_tensor * src0 = dst->src[0];
  9786. switch (src0->type) {
  9787. case GGML_TYPE_F32:
  9788. {
  9789. ggml_compute_forward_map_unary_f32(params, dst, fun);
  9790. } break;
  9791. default:
  9792. {
  9793. GGML_ABORT("fatal error");
  9794. }
  9795. }
  9796. }
  9797. // ggml_compute_forward_map_binary
  9798. static void ggml_compute_forward_map_binary_f32(
  9799. const struct ggml_compute_params * params,
  9800. struct ggml_tensor * dst,
  9801. const ggml_binary_op_f32_t fun) {
  9802. const struct ggml_tensor * src0 = dst->src[0];
  9803. const struct ggml_tensor * src1 = dst->src[1];
  9804. if (params->ith != 0) {
  9805. return;
  9806. }
  9807. assert(ggml_is_contiguous_1(src0));
  9808. assert(ggml_is_contiguous_1(src1));
  9809. assert(ggml_is_contiguous_1(dst));
  9810. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  9811. const int n = ggml_nrows(src0);
  9812. const int nc = src0->ne[0];
  9813. for (int i = 0; i < n; i++) {
  9814. fun(nc,
  9815. (float *) ((char *) dst->data + i*( dst->nb[1])),
  9816. (float *) ((char *) src0->data + i*(src0->nb[1])),
  9817. (float *) ((char *) src1->data + i*(src1->nb[1])));
  9818. }
  9819. }
  9820. static void ggml_compute_forward_map_binary(
  9821. const struct ggml_compute_params * params,
  9822. struct ggml_tensor * dst,
  9823. const ggml_binary_op_f32_t fun) {
  9824. const struct ggml_tensor * src0 = dst->src[0];
  9825. switch (src0->type) {
  9826. case GGML_TYPE_F32:
  9827. {
  9828. ggml_compute_forward_map_binary_f32(params, dst, fun);
  9829. } break;
  9830. default:
  9831. {
  9832. GGML_ABORT("fatal error");
  9833. }
  9834. }
  9835. }
  9836. // ggml_compute_forward_map_custom1
  9837. static void ggml_compute_forward_map_custom1_f32(
  9838. const struct ggml_compute_params * params,
  9839. struct ggml_tensor * dst,
  9840. const ggml_custom1_op_f32_t fun) {
  9841. const struct ggml_tensor * a = dst->src[0];
  9842. if (params->ith != 0) {
  9843. return;
  9844. }
  9845. fun(dst, a);
  9846. }
  9847. // ggml_compute_forward_map_custom2
  9848. static void ggml_compute_forward_map_custom2_f32(
  9849. const struct ggml_compute_params * params,
  9850. struct ggml_tensor * dst,
  9851. const ggml_custom2_op_f32_t fun) {
  9852. const struct ggml_tensor * a = dst->src[0];
  9853. const struct ggml_tensor * b = dst->src[1];
  9854. if (params->ith != 0) {
  9855. return;
  9856. }
  9857. fun(dst, a, b);
  9858. }
  9859. // ggml_compute_forward_map_custom3
  9860. static void ggml_compute_forward_map_custom3_f32(
  9861. const struct ggml_compute_params * params,
  9862. struct ggml_tensor * dst,
  9863. const ggml_custom3_op_f32_t fun) {
  9864. const struct ggml_tensor * a = dst->src[0];
  9865. const struct ggml_tensor * b = dst->src[1];
  9866. const struct ggml_tensor * c = dst->src[1];
  9867. if (params->ith != 0) {
  9868. return;
  9869. }
  9870. fun(dst, a, b, c);
  9871. }
  9872. // ggml_compute_forward_map_custom1
  9873. static void ggml_compute_forward_map_custom1(
  9874. const struct ggml_compute_params * params,
  9875. struct ggml_tensor * dst) {
  9876. const struct ggml_tensor * a = dst->src[0];
  9877. struct ggml_map_custom1_op_params p;
  9878. memcpy(&p, dst->op_params, sizeof(p));
  9879. p.fun(dst, a, params->ith, params->nth, p.userdata);
  9880. }
  9881. // ggml_compute_forward_map_custom2
  9882. static void ggml_compute_forward_map_custom2(
  9883. const struct ggml_compute_params * params,
  9884. struct ggml_tensor * dst) {
  9885. const struct ggml_tensor * a = dst->src[0];
  9886. const struct ggml_tensor * b = dst->src[1];
  9887. struct ggml_map_custom2_op_params p;
  9888. memcpy(&p, dst->op_params, sizeof(p));
  9889. p.fun(dst, a, b, params->ith, params->nth, p.userdata);
  9890. }
  9891. // ggml_compute_forward_map_custom3
  9892. static void ggml_compute_forward_map_custom3(
  9893. const struct ggml_compute_params * params,
  9894. struct ggml_tensor * dst) {
  9895. const struct ggml_tensor * a = dst->src[0];
  9896. const struct ggml_tensor * b = dst->src[1];
  9897. const struct ggml_tensor * c = dst->src[2];
  9898. struct ggml_map_custom3_op_params p;
  9899. memcpy(&p, dst->op_params, sizeof(p));
  9900. p.fun(dst, a, b, c, params->ith, params->nth, p.userdata);
  9901. }
  9902. // ggml_compute_forward_cross_entropy_loss
  9903. static void ggml_compute_forward_cross_entropy_loss_f32(
  9904. const struct ggml_compute_params * params,
  9905. struct ggml_tensor * dst) {
  9906. const struct ggml_tensor * src0 = dst->src[0];
  9907. const struct ggml_tensor * src1 = dst->src[1];
  9908. GGML_ASSERT(src0->type == GGML_TYPE_F32);
  9909. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  9910. GGML_ASSERT(src0->nb[0] == ggml_type_size(src0->type));
  9911. GGML_ASSERT(src1->nb[0] == ggml_type_size(src1->type));
  9912. GGML_ASSERT(ggml_are_same_shape(src0, src1));
  9913. GGML_ASSERT(ggml_is_scalar(dst));
  9914. GGML_ASSERT(dst->type == GGML_TYPE_F32);
  9915. // TODO: handle transposed/permuted matrices
  9916. const int64_t nc = src0->ne[0];
  9917. const int64_t nr = ggml_nrows(src0);
  9918. const int ith = params->ith;
  9919. const int nth = params->nth;
  9920. float * sums = (float *) params->wdata;
  9921. float * st = ((float *) params->wdata) + nth + ith*nc;
  9922. float sum_thread = 0.0f;
  9923. GGML_ASSERT(params->wsize >= sizeof(float) * (nth + nth * nc));
  9924. // rows per thread
  9925. const int64_t dr = (nr + nth - 1)/nth;
  9926. // row range for this thread
  9927. const int64_t ir0 = dr*ith;
  9928. const int64_t ir1 = MIN(ir0 + dr, nr);
  9929. for (int64_t i1 = ir0; i1 < ir1; ++i1) {
  9930. const float * s0 = (const float *)((const char *) src0->data + i1*src0->nb[1]);
  9931. const float * s1 = (const float *)((const char *) src1->data + i1*src1->nb[1]);
  9932. #ifndef NDEBUG
  9933. for (int64_t i = 0; i < nc; ++i) {
  9934. //printf("p[%d] = %f\n", i, p[i]);
  9935. assert(!isnan(s0[i]));
  9936. assert(!isnan(s1[i]));
  9937. }
  9938. #endif
  9939. float max = -INFINITY;
  9940. ggml_vec_max_f32(nc, &max, s0);
  9941. const ggml_float sum_softmax = ggml_vec_log_soft_max_f32(nc, st, s0, max);
  9942. assert(sum_softmax >= 0.0);
  9943. ggml_vec_add1_f32(nc, st, st, -sum_softmax);
  9944. ggml_vec_mul_f32(nc, st, st, s1);
  9945. float sum_st = 0.0f;
  9946. ggml_vec_sum_f32(nc, &sum_st, st);
  9947. sum_thread += sum_st;
  9948. #ifndef NDEBUG
  9949. for (int64_t i = 0; i < nc; ++i) {
  9950. assert(!isnan(st[i]));
  9951. assert(!isinf(st[i]));
  9952. }
  9953. #endif
  9954. }
  9955. sums[ith] = sum_thread;
  9956. ggml_barrier(params->threadpool);
  9957. if (ith == 0) {
  9958. float * dp = (float *) dst->data;
  9959. ggml_vec_sum_f32(nth, dp, sums);
  9960. dp[0] *= -1.0f / (float) nr;
  9961. }
  9962. }
  9963. static void ggml_compute_forward_cross_entropy_loss(
  9964. const struct ggml_compute_params * params,
  9965. struct ggml_tensor * dst) {
  9966. const struct ggml_tensor * src0 = dst->src[0];
  9967. switch (src0->type) {
  9968. case GGML_TYPE_F32:
  9969. {
  9970. ggml_compute_forward_cross_entropy_loss_f32(params, dst);
  9971. } break;
  9972. default:
  9973. {
  9974. GGML_ABORT("fatal error");
  9975. }
  9976. }
  9977. }
  9978. // ggml_compute_forward_cross_entropy_loss_back
  9979. static void ggml_compute_forward_cross_entropy_loss_back_f32(
  9980. const struct ggml_compute_params * params,
  9981. struct ggml_tensor * dst) {
  9982. const struct ggml_tensor * src0 = dst->src[0];
  9983. const struct ggml_tensor * src1 = dst->src[1];
  9984. const struct ggml_tensor * opt0 = dst->src[2];
  9985. GGML_ASSERT(ggml_is_contiguous(dst));
  9986. GGML_ASSERT(ggml_is_contiguous(src0));
  9987. GGML_ASSERT(ggml_is_contiguous(src1));
  9988. GGML_ASSERT(ggml_is_contiguous(opt0));
  9989. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  9990. const int64_t ith = params->ith;
  9991. const int64_t nth = params->nth;
  9992. // TODO: handle transposed/permuted matrices
  9993. const int64_t nc = src0->ne[0];
  9994. const int64_t nr = ggml_nrows(src0);
  9995. // rows per thread
  9996. const int64_t dr = (nr + nth - 1)/nth;
  9997. // row range for this thread
  9998. const int64_t ir0 = dr*ith;
  9999. const int64_t ir1 = MIN(ir0 + dr, nr);
  10000. const float d_by_nr = ((const float *) opt0->data)[0] / (float) nr;
  10001. for (int64_t i1 = ir0; i1 < ir1; i1++) {
  10002. float * ds0 = (float *)((char *) dst->data + i1*dst->nb[1]);
  10003. float * s0 = (float *)((char *) src0->data + i1*src0->nb[1]);
  10004. float * s1 = (float *)((char *) src1->data + i1*src1->nb[1]);
  10005. #ifndef NDEBUG
  10006. for (int64_t i = 0; i < nc; ++i) {
  10007. //printf("p[%d] = %f\n", i, p[i]);
  10008. assert(!isnan(s0[i]));
  10009. assert(!isnan(s1[i]));
  10010. }
  10011. #endif
  10012. // soft_max
  10013. float max = -INFINITY;
  10014. ggml_vec_max_f32(nc, &max, s0);
  10015. ggml_float sum = ggml_vec_soft_max_f32(nc, ds0, s0, max);
  10016. assert(sum > 0.0);
  10017. ggml_vec_scale_f32(nc, ds0, 1.0/sum);
  10018. // grad(src0) = (softmax(src0) - src1) * grad(cross_entropy_loss(src0, src1)) / nr
  10019. ggml_vec_sub_f32(nc, ds0, ds0, s1);
  10020. ggml_vec_scale_f32(nc, ds0, d_by_nr);
  10021. #ifndef NDEBUG
  10022. for (int64_t i = 0; i < nc; ++i) {
  10023. assert(!isnan(ds0[i]));
  10024. assert(!isinf(ds0[i]));
  10025. }
  10026. #endif
  10027. }
  10028. }
  10029. static void ggml_compute_forward_cross_entropy_loss_back(
  10030. const struct ggml_compute_params * params,
  10031. struct ggml_tensor * dst) {
  10032. const struct ggml_tensor * src0 = dst->src[0];
  10033. switch (src0->type) {
  10034. case GGML_TYPE_F32:
  10035. {
  10036. ggml_compute_forward_cross_entropy_loss_back_f32(params, dst);
  10037. } break;
  10038. default:
  10039. {
  10040. GGML_ABORT("fatal error");
  10041. }
  10042. }
  10043. }
  10044. static void ggml_compute_forward_opt_step_adamw_f32(
  10045. const struct ggml_compute_params * params,
  10046. struct ggml_tensor * dst) {
  10047. const struct ggml_tensor * src0 = dst->src[0];
  10048. const struct ggml_tensor * src0_grad = dst->src[1];
  10049. const struct ggml_tensor * src0_grad_m = dst->src[2];
  10050. const struct ggml_tensor * src0_grad_v = dst->src[3];
  10051. const struct ggml_tensor * adamw_params = dst->src[4];
  10052. GGML_ASSERT(ggml_are_same_shape(src0, src0_grad));
  10053. GGML_ASSERT(ggml_are_same_shape(src0, src0_grad_m));
  10054. GGML_ASSERT(ggml_are_same_shape(src0, src0_grad_v));
  10055. GGML_ASSERT(ggml_nelements(adamw_params) == 7);
  10056. const int ith = params->ith;
  10057. const int nth = params->nth;
  10058. const int nr = ggml_nrows(src0);
  10059. GGML_TENSOR_UNARY_OP_LOCALS
  10060. GGML_ASSERT(nb00 == sizeof(float));
  10061. // rows per thread
  10062. const int dr = (nr + nth - 1)/nth;
  10063. // row range for this thread
  10064. const int ir0 = dr*ith;
  10065. const int ir1 = MIN(ir0 + dr, nr);
  10066. const float * adamw_params_ptr = ggml_get_data_f32(adamw_params);
  10067. const float alpha = adamw_params_ptr[0];
  10068. const float beta1 = adamw_params_ptr[1];
  10069. const float beta2 = adamw_params_ptr[2];
  10070. const float eps = adamw_params_ptr[3];
  10071. const float wd = adamw_params_ptr[4];
  10072. const float beta1h = adamw_params_ptr[5];
  10073. const float beta2h = adamw_params_ptr[6];
  10074. for (int ir = ir0; ir < ir1; ++ir) {
  10075. const int64_t i03 = ir/(ne02*ne01);
  10076. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  10077. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  10078. const size_t offset = i03*nb03 + i02*nb02 + i01*nb01;
  10079. float * w = (float *) ((char *) src0->data + offset); // weight
  10080. const float * g = (const float *) ((const char *) src0_grad->data + offset); // grad
  10081. float * m = (float *) ((char *) src0_grad_m->data + offset);
  10082. float * v = (float *) ((char *) src0_grad_v->data + offset);
  10083. for (int i00 = 0; i00 < ne00; ++i00) {
  10084. m[i00] = m[i00]*beta1 + g[i00]*(1.0f - beta1);
  10085. v[i00] = v[i00]*beta2 + g[i00]*g[i00]*(1.0f - beta2);
  10086. const float mh = m[i00]*beta1h;
  10087. const float vh = sqrtf(v[i00]*beta2h) + eps;
  10088. // The weight decay is applied independently of the Adam momenta m and v.
  10089. // This is NOT equivalent to l2 regularization that adds w[i00]*w[i00] to the loss.
  10090. // See: https://arxiv.org/pdf/1711.05101v3.pdf
  10091. w[i00] = w[i00]*(1.0f - alpha*wd) - alpha*mh/vh;
  10092. }
  10093. }
  10094. }
  10095. static void ggml_compute_forward_opt_step_adamw(
  10096. const struct ggml_compute_params * params,
  10097. struct ggml_tensor * dst) {
  10098. const struct ggml_tensor * src0 = dst->src[0];
  10099. switch (src0->type) {
  10100. case GGML_TYPE_F32:
  10101. {
  10102. ggml_compute_forward_opt_step_adamw_f32(params, dst);
  10103. } break;
  10104. default:
  10105. {
  10106. GGML_ABORT("fatal error");
  10107. }
  10108. }
  10109. }
  10110. /////////////////////////////////
  10111. static void ggml_compute_forward(struct ggml_compute_params * params, struct ggml_tensor * tensor) {
  10112. GGML_ASSERT(params);
  10113. if (tensor->op == GGML_OP_NONE || ggml_is_empty(tensor)) {
  10114. return;
  10115. }
  10116. switch (tensor->op) {
  10117. case GGML_OP_DUP:
  10118. {
  10119. ggml_compute_forward_dup(params, tensor);
  10120. } break;
  10121. case GGML_OP_ADD:
  10122. {
  10123. ggml_compute_forward_add(params, tensor);
  10124. } break;
  10125. case GGML_OP_ADD1:
  10126. {
  10127. ggml_compute_forward_add1(params, tensor);
  10128. } break;
  10129. case GGML_OP_ACC:
  10130. {
  10131. ggml_compute_forward_acc(params, tensor);
  10132. } break;
  10133. case GGML_OP_SUB:
  10134. {
  10135. ggml_compute_forward_sub(params, tensor);
  10136. } break;
  10137. case GGML_OP_MUL:
  10138. {
  10139. ggml_compute_forward_mul(params, tensor);
  10140. } break;
  10141. case GGML_OP_DIV:
  10142. {
  10143. ggml_compute_forward_div(params, tensor);
  10144. } break;
  10145. case GGML_OP_SQR:
  10146. {
  10147. ggml_compute_forward_sqr(params, tensor);
  10148. } break;
  10149. case GGML_OP_SQRT:
  10150. {
  10151. ggml_compute_forward_sqrt(params, tensor);
  10152. } break;
  10153. case GGML_OP_LOG:
  10154. {
  10155. ggml_compute_forward_log(params, tensor);
  10156. } break;
  10157. case GGML_OP_SIN:
  10158. {
  10159. ggml_compute_forward_sin(params, tensor);
  10160. } break;
  10161. case GGML_OP_COS:
  10162. {
  10163. ggml_compute_forward_cos(params, tensor);
  10164. } break;
  10165. case GGML_OP_SUM:
  10166. {
  10167. ggml_compute_forward_sum(params, tensor);
  10168. } break;
  10169. case GGML_OP_SUM_ROWS:
  10170. {
  10171. ggml_compute_forward_sum_rows(params, tensor);
  10172. } break;
  10173. case GGML_OP_MEAN:
  10174. {
  10175. ggml_compute_forward_mean(params, tensor);
  10176. } break;
  10177. case GGML_OP_ARGMAX:
  10178. {
  10179. ggml_compute_forward_argmax(params, tensor);
  10180. } break;
  10181. case GGML_OP_COUNT_EQUAL:
  10182. {
  10183. ggml_compute_forward_count_equal(params, tensor);
  10184. } break;
  10185. case GGML_OP_REPEAT:
  10186. {
  10187. ggml_compute_forward_repeat(params, tensor);
  10188. } break;
  10189. case GGML_OP_REPEAT_BACK:
  10190. {
  10191. ggml_compute_forward_repeat_back(params, tensor);
  10192. } break;
  10193. case GGML_OP_CONCAT:
  10194. {
  10195. ggml_compute_forward_concat(params, tensor);
  10196. } break;
  10197. case GGML_OP_SILU_BACK:
  10198. {
  10199. ggml_compute_forward_silu_back(params, tensor);
  10200. } break;
  10201. case GGML_OP_NORM:
  10202. {
  10203. ggml_compute_forward_norm(params, tensor);
  10204. } break;
  10205. case GGML_OP_RMS_NORM:
  10206. {
  10207. ggml_compute_forward_rms_norm(params, tensor);
  10208. } break;
  10209. case GGML_OP_RMS_NORM_BACK:
  10210. {
  10211. ggml_compute_forward_rms_norm_back(params, tensor);
  10212. } break;
  10213. case GGML_OP_GROUP_NORM:
  10214. {
  10215. ggml_compute_forward_group_norm(params, tensor);
  10216. } break;
  10217. case GGML_OP_MUL_MAT:
  10218. {
  10219. ggml_compute_forward_mul_mat(params, tensor);
  10220. } break;
  10221. case GGML_OP_MUL_MAT_ID:
  10222. {
  10223. ggml_compute_forward_mul_mat_id(params, tensor);
  10224. } break;
  10225. case GGML_OP_OUT_PROD:
  10226. {
  10227. ggml_compute_forward_out_prod(params, tensor);
  10228. } break;
  10229. case GGML_OP_SCALE:
  10230. {
  10231. ggml_compute_forward_scale(params, tensor);
  10232. } break;
  10233. case GGML_OP_SET:
  10234. {
  10235. ggml_compute_forward_set(params, tensor);
  10236. } break;
  10237. case GGML_OP_CPY:
  10238. {
  10239. ggml_compute_forward_cpy(params, tensor);
  10240. } break;
  10241. case GGML_OP_CONT:
  10242. {
  10243. ggml_compute_forward_cont(params, tensor);
  10244. } break;
  10245. case GGML_OP_RESHAPE:
  10246. {
  10247. ggml_compute_forward_reshape(params, tensor);
  10248. } break;
  10249. case GGML_OP_VIEW:
  10250. {
  10251. ggml_compute_forward_view(params, tensor);
  10252. } break;
  10253. case GGML_OP_PERMUTE:
  10254. {
  10255. ggml_compute_forward_permute(params, tensor);
  10256. } break;
  10257. case GGML_OP_TRANSPOSE:
  10258. {
  10259. ggml_compute_forward_transpose(params, tensor);
  10260. } break;
  10261. case GGML_OP_GET_ROWS:
  10262. {
  10263. ggml_compute_forward_get_rows(params, tensor);
  10264. } break;
  10265. case GGML_OP_GET_ROWS_BACK:
  10266. {
  10267. ggml_compute_forward_get_rows_back(params, tensor);
  10268. } break;
  10269. case GGML_OP_DIAG:
  10270. {
  10271. ggml_compute_forward_diag(params, tensor);
  10272. } break;
  10273. case GGML_OP_DIAG_MASK_INF:
  10274. {
  10275. ggml_compute_forward_diag_mask_inf(params, tensor);
  10276. } break;
  10277. case GGML_OP_DIAG_MASK_ZERO:
  10278. {
  10279. ggml_compute_forward_diag_mask_zero(params, tensor);
  10280. } break;
  10281. case GGML_OP_SOFT_MAX:
  10282. {
  10283. ggml_compute_forward_soft_max(params, tensor);
  10284. } break;
  10285. case GGML_OP_SOFT_MAX_BACK:
  10286. {
  10287. ggml_compute_forward_soft_max_back(params, tensor);
  10288. } break;
  10289. case GGML_OP_ROPE:
  10290. {
  10291. ggml_compute_forward_rope(params, tensor);
  10292. } break;
  10293. case GGML_OP_ROPE_BACK:
  10294. {
  10295. ggml_compute_forward_rope_back(params, tensor);
  10296. } break;
  10297. case GGML_OP_CLAMP:
  10298. {
  10299. ggml_compute_forward_clamp(params, tensor);
  10300. } break;
  10301. case GGML_OP_CONV_TRANSPOSE_1D:
  10302. {
  10303. ggml_compute_forward_conv_transpose_1d(params, tensor);
  10304. } break;
  10305. case GGML_OP_IM2COL:
  10306. {
  10307. ggml_compute_forward_im2col(params, tensor);
  10308. } break;
  10309. case GGML_OP_IM2COL_BACK:
  10310. {
  10311. ggml_compute_forward_im2col_back_f32(params, tensor);
  10312. } break;
  10313. case GGML_OP_CONV_TRANSPOSE_2D:
  10314. {
  10315. ggml_compute_forward_conv_transpose_2d(params, tensor);
  10316. } break;
  10317. case GGML_OP_POOL_1D:
  10318. {
  10319. ggml_compute_forward_pool_1d(params, tensor);
  10320. } break;
  10321. case GGML_OP_POOL_2D:
  10322. {
  10323. ggml_compute_forward_pool_2d(params, tensor);
  10324. } break;
  10325. case GGML_OP_POOL_2D_BACK:
  10326. {
  10327. ggml_compute_forward_pool_2d_back(params, tensor);
  10328. } break;
  10329. case GGML_OP_UPSCALE:
  10330. {
  10331. ggml_compute_forward_upscale(params, tensor);
  10332. } break;
  10333. case GGML_OP_PAD:
  10334. {
  10335. ggml_compute_forward_pad(params, tensor);
  10336. } break;
  10337. case GGML_OP_ARANGE:
  10338. {
  10339. ggml_compute_forward_arange(params, tensor);
  10340. } break;
  10341. case GGML_OP_TIMESTEP_EMBEDDING:
  10342. {
  10343. ggml_compute_forward_timestep_embedding(params, tensor);
  10344. } break;
  10345. case GGML_OP_ARGSORT:
  10346. {
  10347. ggml_compute_forward_argsort(params, tensor);
  10348. } break;
  10349. case GGML_OP_LEAKY_RELU:
  10350. {
  10351. ggml_compute_forward_leaky_relu(params, tensor);
  10352. } break;
  10353. case GGML_OP_FLASH_ATTN_EXT:
  10354. {
  10355. ggml_compute_forward_flash_attn_ext(params, tensor->src[0], tensor->src[1], tensor->src[2], tensor->src[3], tensor);
  10356. } break;
  10357. case GGML_OP_FLASH_ATTN_BACK:
  10358. {
  10359. int32_t t = ggml_get_op_params_i32(tensor, 0);
  10360. GGML_ASSERT(t == 0 || t == 1);
  10361. bool masked = t != 0;
  10362. ggml_compute_forward_flash_attn_back(params, masked, tensor);
  10363. } break;
  10364. case GGML_OP_SSM_CONV:
  10365. {
  10366. ggml_compute_forward_ssm_conv(params, tensor);
  10367. } break;
  10368. case GGML_OP_SSM_SCAN:
  10369. {
  10370. ggml_compute_forward_ssm_scan(params, tensor);
  10371. } break;
  10372. case GGML_OP_WIN_PART:
  10373. {
  10374. ggml_compute_forward_win_part(params, tensor);
  10375. } break;
  10376. case GGML_OP_WIN_UNPART:
  10377. {
  10378. ggml_compute_forward_win_unpart(params, tensor);
  10379. } break;
  10380. case GGML_OP_UNARY:
  10381. {
  10382. ggml_compute_forward_unary(params, tensor);
  10383. } break;
  10384. case GGML_OP_GET_REL_POS:
  10385. {
  10386. ggml_compute_forward_get_rel_pos(params, tensor);
  10387. } break;
  10388. case GGML_OP_ADD_REL_POS:
  10389. {
  10390. ggml_compute_forward_add_rel_pos(params, tensor);
  10391. } break;
  10392. case GGML_OP_RWKV_WKV6:
  10393. {
  10394. ggml_compute_forward_rwkv_wkv6(params, tensor);
  10395. } break;
  10396. case GGML_OP_MAP_UNARY:
  10397. {
  10398. ggml_unary_op_f32_t fun;
  10399. memcpy(&fun, tensor->op_params, sizeof(fun));
  10400. ggml_compute_forward_map_unary(params, tensor, fun);
  10401. }
  10402. break;
  10403. case GGML_OP_MAP_BINARY:
  10404. {
  10405. ggml_binary_op_f32_t fun;
  10406. memcpy(&fun, tensor->op_params, sizeof(fun));
  10407. ggml_compute_forward_map_binary(params, tensor, fun);
  10408. }
  10409. break;
  10410. case GGML_OP_MAP_CUSTOM1_F32:
  10411. {
  10412. ggml_custom1_op_f32_t fun;
  10413. memcpy(&fun, tensor->op_params, sizeof(fun));
  10414. ggml_compute_forward_map_custom1_f32(params, tensor, fun);
  10415. }
  10416. break;
  10417. case GGML_OP_MAP_CUSTOM2_F32:
  10418. {
  10419. ggml_custom2_op_f32_t fun;
  10420. memcpy(&fun, tensor->op_params, sizeof(fun));
  10421. ggml_compute_forward_map_custom2_f32(params, tensor, fun);
  10422. }
  10423. break;
  10424. case GGML_OP_MAP_CUSTOM3_F32:
  10425. {
  10426. ggml_custom3_op_f32_t fun;
  10427. memcpy(&fun, tensor->op_params, sizeof(fun));
  10428. ggml_compute_forward_map_custom3_f32(params, tensor, fun);
  10429. }
  10430. break;
  10431. case GGML_OP_MAP_CUSTOM1:
  10432. {
  10433. ggml_compute_forward_map_custom1(params, tensor);
  10434. }
  10435. break;
  10436. case GGML_OP_MAP_CUSTOM2:
  10437. {
  10438. ggml_compute_forward_map_custom2(params, tensor);
  10439. }
  10440. break;
  10441. case GGML_OP_MAP_CUSTOM3:
  10442. {
  10443. ggml_compute_forward_map_custom3(params, tensor);
  10444. }
  10445. break;
  10446. case GGML_OP_CROSS_ENTROPY_LOSS:
  10447. {
  10448. ggml_compute_forward_cross_entropy_loss(params, tensor);
  10449. }
  10450. break;
  10451. case GGML_OP_CROSS_ENTROPY_LOSS_BACK:
  10452. {
  10453. ggml_compute_forward_cross_entropy_loss_back(params, tensor);
  10454. }
  10455. break;
  10456. case GGML_OP_OPT_STEP_ADAMW:
  10457. {
  10458. ggml_compute_forward_opt_step_adamw(params, tensor);
  10459. }
  10460. break;
  10461. case GGML_OP_NONE:
  10462. {
  10463. // nop
  10464. } break;
  10465. case GGML_OP_COUNT:
  10466. {
  10467. GGML_ABORT("fatal error");
  10468. }
  10469. }
  10470. }
  10471. // Android's libc implementation "bionic" does not support setting affinity
  10472. #if defined(__gnu_linux__)
  10473. static void set_numa_thread_affinity(int thread_n) {
  10474. if (!ggml_is_numa()) {
  10475. return;
  10476. }
  10477. int node_num;
  10478. int rv;
  10479. size_t setsize = CPU_ALLOC_SIZE(g_state.numa.total_cpus);
  10480. switch(g_state.numa.numa_strategy) {
  10481. case GGML_NUMA_STRATEGY_DISTRIBUTE:
  10482. // run thread on node_num thread_n / (threads per node)
  10483. node_num = thread_n % g_state.numa.n_nodes;
  10484. break;
  10485. case GGML_NUMA_STRATEGY_ISOLATE:
  10486. // run thread on current_node
  10487. node_num = g_state.numa.current_node;
  10488. break;
  10489. case GGML_NUMA_STRATEGY_NUMACTL:
  10490. // use the cpuset that numactl gave us
  10491. rv = pthread_setaffinity_np(pthread_self(), setsize, &g_state.numa.cpuset);
  10492. if (rv) {
  10493. fprintf(stderr, "warning: pthread_setaffinity_np() failed: %s\n",strerror(rv));
  10494. }
  10495. return;
  10496. default:
  10497. return;
  10498. }
  10499. struct ggml_numa_node * node = &g_state.numa.nodes[node_num];
  10500. cpu_set_t * cpus = CPU_ALLOC(g_state.numa.total_cpus);
  10501. CPU_ZERO_S(setsize, cpus);
  10502. for (size_t i = 0; i < node->n_cpus; ++i) {
  10503. CPU_SET_S(node->cpus[i], setsize, cpus);
  10504. }
  10505. rv = pthread_setaffinity_np(pthread_self(), setsize, cpus);
  10506. if (rv) {
  10507. fprintf(stderr, "warning: pthread_setaffinity_np() failed: %s\n", strerror(rv));
  10508. }
  10509. CPU_FREE(cpus);
  10510. }
  10511. static void clear_numa_thread_affinity(void) {
  10512. if (!ggml_is_numa()) {
  10513. return;
  10514. }
  10515. size_t setsize = CPU_ALLOC_SIZE(g_state.numa.total_cpus);
  10516. cpu_set_t * cpus = CPU_ALLOC(g_state.numa.total_cpus);
  10517. CPU_ZERO_S(setsize, cpus);
  10518. for (unsigned i = 0; i < g_state.numa.total_cpus; ++i) {
  10519. CPU_SET_S(i, setsize, cpus);
  10520. }
  10521. int rv = pthread_setaffinity_np(pthread_self(), setsize, cpus);
  10522. if (rv) {
  10523. fprintf(stderr, "warning: pthread_setaffinity_np() failed: %s\n", strerror(rv));
  10524. }
  10525. CPU_FREE(cpus);
  10526. }
  10527. #else
  10528. // TODO: Windows etc.
  10529. // (the linux implementation may also work on BSD, someone should test)
  10530. static void set_numa_thread_affinity(int thread_n) { UNUSED(thread_n); }
  10531. static void clear_numa_thread_affinity(void) {}
  10532. #endif
  10533. static int ggml_get_n_tasks(struct ggml_tensor * node, int n_threads) {
  10534. int n_tasks = 0;
  10535. if (ggml_is_empty(node)) {
  10536. // no need to multi-thread a no-op
  10537. n_tasks = 1;
  10538. return n_tasks;
  10539. }
  10540. switch (node->op) {
  10541. case GGML_OP_CPY:
  10542. case GGML_OP_DUP:
  10543. case GGML_OP_CONT:
  10544. case GGML_OP_ADD:
  10545. case GGML_OP_ADD1:
  10546. case GGML_OP_ACC:
  10547. {
  10548. n_tasks = n_threads;
  10549. } break;
  10550. case GGML_OP_SUB:
  10551. case GGML_OP_SQR:
  10552. case GGML_OP_SQRT:
  10553. case GGML_OP_LOG:
  10554. case GGML_OP_SIN:
  10555. case GGML_OP_COS:
  10556. case GGML_OP_SUM:
  10557. case GGML_OP_SUM_ROWS:
  10558. case GGML_OP_MEAN:
  10559. case GGML_OP_ARGMAX:
  10560. {
  10561. n_tasks = 1;
  10562. } break;
  10563. case GGML_OP_COUNT_EQUAL:
  10564. {
  10565. n_tasks = n_threads;
  10566. } break;
  10567. case GGML_OP_REPEAT:
  10568. case GGML_OP_REPEAT_BACK:
  10569. case GGML_OP_LEAKY_RELU:
  10570. {
  10571. n_tasks = 1;
  10572. } break;
  10573. case GGML_OP_UNARY:
  10574. switch (ggml_get_unary_op(node)) {
  10575. case GGML_UNARY_OP_ABS:
  10576. case GGML_UNARY_OP_SGN:
  10577. case GGML_UNARY_OP_NEG:
  10578. case GGML_UNARY_OP_STEP:
  10579. case GGML_UNARY_OP_TANH:
  10580. case GGML_UNARY_OP_ELU:
  10581. case GGML_UNARY_OP_RELU:
  10582. case GGML_UNARY_OP_SIGMOID:
  10583. case GGML_UNARY_OP_HARDSWISH:
  10584. case GGML_UNARY_OP_HARDSIGMOID:
  10585. case GGML_UNARY_OP_EXP:
  10586. {
  10587. n_tasks = 1;
  10588. } break;
  10589. case GGML_UNARY_OP_GELU:
  10590. case GGML_UNARY_OP_GELU_QUICK:
  10591. case GGML_UNARY_OP_SILU:
  10592. {
  10593. n_tasks = n_threads;
  10594. } break;
  10595. default:
  10596. GGML_ABORT("fatal error");
  10597. }
  10598. break;
  10599. case GGML_OP_SILU_BACK:
  10600. case GGML_OP_MUL:
  10601. case GGML_OP_DIV:
  10602. case GGML_OP_NORM:
  10603. case GGML_OP_RMS_NORM:
  10604. case GGML_OP_RMS_NORM_BACK:
  10605. case GGML_OP_GROUP_NORM:
  10606. case GGML_OP_CONCAT:
  10607. case GGML_OP_MUL_MAT:
  10608. case GGML_OP_MUL_MAT_ID:
  10609. case GGML_OP_OUT_PROD:
  10610. {
  10611. n_tasks = n_threads;
  10612. } break;
  10613. case GGML_OP_GET_ROWS:
  10614. {
  10615. // FIXME: get_rows can use additional threads, but the cost of launching additional threads
  10616. // decreases performance with GPU offloading
  10617. //n_tasks = n_threads;
  10618. n_tasks = 1;
  10619. } break;
  10620. case GGML_OP_SCALE:
  10621. case GGML_OP_SET:
  10622. case GGML_OP_RESHAPE:
  10623. case GGML_OP_VIEW:
  10624. case GGML_OP_PERMUTE:
  10625. case GGML_OP_TRANSPOSE:
  10626. case GGML_OP_GET_ROWS_BACK:
  10627. case GGML_OP_DIAG:
  10628. {
  10629. n_tasks = 1;
  10630. } break;
  10631. case GGML_OP_DIAG_MASK_ZERO:
  10632. case GGML_OP_DIAG_MASK_INF:
  10633. case GGML_OP_SOFT_MAX_BACK:
  10634. case GGML_OP_ROPE:
  10635. case GGML_OP_ROPE_BACK:
  10636. case GGML_OP_ADD_REL_POS:
  10637. {
  10638. n_tasks = n_threads;
  10639. } break;
  10640. case GGML_OP_CLAMP:
  10641. {
  10642. n_tasks = 1; //TODO
  10643. } break;
  10644. case GGML_OP_SOFT_MAX:
  10645. {
  10646. n_tasks = MIN(n_threads, ggml_nrows(node->src[0]));
  10647. } break;
  10648. case GGML_OP_IM2COL:
  10649. case GGML_OP_IM2COL_BACK:
  10650. case GGML_OP_CONV_TRANSPOSE_1D:
  10651. case GGML_OP_CONV_TRANSPOSE_2D:
  10652. {
  10653. n_tasks = n_threads;
  10654. } break;
  10655. case GGML_OP_POOL_1D:
  10656. case GGML_OP_POOL_2D:
  10657. case GGML_OP_POOL_2D_BACK:
  10658. {
  10659. n_tasks = 1;
  10660. } break;
  10661. case GGML_OP_UPSCALE:
  10662. case GGML_OP_PAD:
  10663. case GGML_OP_ARANGE:
  10664. case GGML_OP_TIMESTEP_EMBEDDING:
  10665. case GGML_OP_ARGSORT:
  10666. case GGML_OP_FLASH_ATTN_EXT:
  10667. case GGML_OP_FLASH_ATTN_BACK:
  10668. case GGML_OP_SSM_CONV:
  10669. case GGML_OP_SSM_SCAN:
  10670. {
  10671. n_tasks = n_threads;
  10672. } break;
  10673. case GGML_OP_WIN_PART:
  10674. case GGML_OP_WIN_UNPART:
  10675. case GGML_OP_GET_REL_POS:
  10676. case GGML_OP_RWKV_WKV6:
  10677. case GGML_OP_MAP_UNARY:
  10678. case GGML_OP_MAP_BINARY:
  10679. case GGML_OP_MAP_CUSTOM1_F32:
  10680. case GGML_OP_MAP_CUSTOM2_F32:
  10681. case GGML_OP_MAP_CUSTOM3_F32:
  10682. {
  10683. n_tasks = 1;
  10684. } break;
  10685. case GGML_OP_MAP_CUSTOM1:
  10686. {
  10687. struct ggml_map_custom1_op_params p;
  10688. memcpy(&p, node->op_params, sizeof(p));
  10689. if (p.n_tasks == GGML_N_TASKS_MAX) {
  10690. n_tasks = n_threads;
  10691. } else {
  10692. n_tasks = MIN(p.n_tasks, n_threads);
  10693. }
  10694. } break;
  10695. case GGML_OP_MAP_CUSTOM2:
  10696. {
  10697. struct ggml_map_custom2_op_params p;
  10698. memcpy(&p, node->op_params, sizeof(p));
  10699. if (p.n_tasks == GGML_N_TASKS_MAX) {
  10700. n_tasks = n_threads;
  10701. } else {
  10702. n_tasks = MIN(p.n_tasks, n_threads);
  10703. }
  10704. } break;
  10705. case GGML_OP_MAP_CUSTOM3:
  10706. {
  10707. struct ggml_map_custom3_op_params p;
  10708. memcpy(&p, node->op_params, sizeof(p));
  10709. if (p.n_tasks == GGML_N_TASKS_MAX) {
  10710. n_tasks = n_threads;
  10711. } else {
  10712. n_tasks = MIN(p.n_tasks, n_threads);
  10713. }
  10714. } break;
  10715. case GGML_OP_CROSS_ENTROPY_LOSS:
  10716. case GGML_OP_CROSS_ENTROPY_LOSS_BACK:
  10717. case GGML_OP_OPT_STEP_ADAMW:
  10718. {
  10719. n_tasks = n_threads;
  10720. } break;
  10721. case GGML_OP_NONE:
  10722. {
  10723. n_tasks = 1;
  10724. } break;
  10725. case GGML_OP_COUNT:
  10726. {
  10727. GGML_ABORT("fatal error");
  10728. }
  10729. default:
  10730. {
  10731. fprintf(stderr, "%s: op not implemented: ", __func__);
  10732. if (node->op < GGML_OP_COUNT) {
  10733. fprintf(stderr, "%s\n", ggml_op_name(node->op));
  10734. } else {
  10735. fprintf(stderr, "%d\n", node->op);
  10736. }
  10737. GGML_ABORT("fatal error");
  10738. }
  10739. }
  10740. assert(n_tasks > 0);
  10741. return n_tasks;
  10742. }
  10743. static thread_ret_t ggml_graph_compute_secondary_thread(void* data);
  10744. #if defined(_WIN32)
  10745. #include "windows.h"
  10746. // TODO: support > 64 CPUs
  10747. bool ggml_thread_apply_affinity(bool * mask) {
  10748. HANDLE h = GetCurrentThread();
  10749. uint64_t bitmask = 0ULL;
  10750. assert(GGML_MAX_N_THREADS >= 64);
  10751. for (int32_t i = 0; i < 8; i++) {
  10752. int32_t idx = i * 8;
  10753. uint8_t val = 0;
  10754. val |= mask[idx + 0] << 0;
  10755. val |= mask[idx + 1] << 1;
  10756. val |= mask[idx + 2] << 2;
  10757. val |= mask[idx + 3] << 3;
  10758. val |= mask[idx + 4] << 4;
  10759. val |= mask[idx + 5] << 5;
  10760. val |= mask[idx + 6] << 6;
  10761. val |= mask[idx + 7] << 7;
  10762. bitmask |= (uint64_t)val << idx;
  10763. }
  10764. for (int32_t i = 64; i < GGML_MAX_N_THREADS; i++) {
  10765. if (mask[i]) {
  10766. fprintf(stderr, "warn: setting thread-affinity for > 64 CPUs isn't supported on windows!\n");
  10767. break;
  10768. }
  10769. }
  10770. DWORD_PTR m = (DWORD_PTR)bitmask;
  10771. m = SetThreadAffinityMask(h, m);
  10772. return m != 0;
  10773. }
  10774. static bool ggml_thread_apply_priority(int32_t prio) {
  10775. // Note that on Windows the Process Priority Class must be updated in order to set Thread priority.
  10776. // This is up to the applications.
  10777. DWORD p = THREAD_PRIORITY_NORMAL;
  10778. switch (prio) {
  10779. case GGML_SCHED_PRIO_NORMAL: p = THREAD_PRIORITY_NORMAL; break;
  10780. case GGML_SCHED_PRIO_MEDIUM: p = THREAD_PRIORITY_ABOVE_NORMAL; break;
  10781. case GGML_SCHED_PRIO_HIGH: p = THREAD_PRIORITY_HIGHEST; break;
  10782. case GGML_SCHED_PRIO_REALTIME: p = THREAD_PRIORITY_TIME_CRITICAL; break;
  10783. }
  10784. if (prio == GGML_SCHED_PRIO_NORMAL) {
  10785. // Keep inherited policy/priority
  10786. return true;
  10787. }
  10788. if (!SetThreadPriority(GetCurrentThread(), p)) {
  10789. fprintf(stderr, "warn: failed to set thread priority %d : (%d)\n", prio, (int) GetLastError());
  10790. return false;
  10791. }
  10792. return true;
  10793. }
  10794. #elif defined(__APPLE__)
  10795. #include <sys/types.h>
  10796. #include <sys/resource.h>
  10797. static bool ggml_thread_apply_affinity(const bool * mask) {
  10798. // Not supported on Apple platforms
  10799. UNUSED(mask);
  10800. return true;
  10801. }
  10802. static bool ggml_thread_apply_priority(int32_t prio) {
  10803. struct sched_param p;
  10804. int32_t policy = SCHED_OTHER;
  10805. switch (prio) {
  10806. case GGML_SCHED_PRIO_NORMAL: policy = SCHED_OTHER; p.sched_priority = 0; break;
  10807. case GGML_SCHED_PRIO_MEDIUM: policy = SCHED_FIFO; p.sched_priority = 40; break;
  10808. case GGML_SCHED_PRIO_HIGH: policy = SCHED_FIFO; p.sched_priority = 80; break;
  10809. case GGML_SCHED_PRIO_REALTIME: policy = SCHED_FIFO; p.sched_priority = 90; break;
  10810. }
  10811. if (prio == GGML_SCHED_PRIO_NORMAL) {
  10812. // Keep inherited policy/priority
  10813. return true;
  10814. }
  10815. int32_t err = pthread_setschedparam(pthread_self(), policy, &p);
  10816. if (err != 0) {
  10817. fprintf(stderr, "warn: failed to set thread priority %d : %s (%d)\n", prio, strerror(err), err);
  10818. return false;
  10819. }
  10820. return true;
  10821. }
  10822. #elif defined(__gnu_linux__)
  10823. // TODO: this may not work on BSD, to be verified
  10824. static bool ggml_thread_apply_affinity(const bool * mask) {
  10825. cpu_set_t cpuset;
  10826. int err;
  10827. CPU_ZERO(&cpuset);
  10828. for (uint32_t i = 0; i < GGML_MAX_N_THREADS; i++) {
  10829. if (mask[i]) {
  10830. GGML_PRINT_DEBUG("Thread %lx: adding %d to cpuset\n", pthread_self(), i);
  10831. CPU_SET(i, &cpuset);
  10832. }
  10833. }
  10834. #ifdef __ANDROID__
  10835. err = sched_setaffinity(0, sizeof(cpuset), &cpuset);
  10836. if (err < 0) {
  10837. err = errno;
  10838. }
  10839. #else
  10840. err = pthread_setaffinity_np(pthread_self(), sizeof(cpuset), &cpuset);
  10841. #endif
  10842. if (err != 0) {
  10843. fprintf(stderr, "warn: failed to set affinity mask 0x%llx : %s (%d)\n", (unsigned long long)mask, strerror(err), err);
  10844. return false;
  10845. }
  10846. return true;
  10847. }
  10848. static bool ggml_thread_apply_priority(int32_t prio) {
  10849. struct sched_param p;
  10850. int32_t policy = SCHED_OTHER;
  10851. switch (prio) {
  10852. case GGML_SCHED_PRIO_NORMAL: policy = SCHED_OTHER; p.sched_priority = 0; break;
  10853. case GGML_SCHED_PRIO_MEDIUM: policy = SCHED_FIFO; p.sched_priority = 40; break;
  10854. case GGML_SCHED_PRIO_HIGH: policy = SCHED_FIFO; p.sched_priority = 80; break;
  10855. case GGML_SCHED_PRIO_REALTIME: policy = SCHED_FIFO; p.sched_priority = 90; break;
  10856. }
  10857. if (prio == GGML_SCHED_PRIO_NORMAL) {
  10858. // Keep inherited policy/priority
  10859. return true;
  10860. }
  10861. int32_t err = pthread_setschedparam(pthread_self(), policy, &p);
  10862. if (err != 0) {
  10863. fprintf(stderr, "warn: failed to set thread priority %d : %s (%d)\n", prio, strerror(err), err);
  10864. return false;
  10865. }
  10866. return true;
  10867. }
  10868. #else // unsupported platforms
  10869. static bool ggml_thread_apply_affinity(const bool * mask) {
  10870. UNUSED(mask);
  10871. return true;
  10872. }
  10873. static bool ggml_thread_apply_priority(int32_t prio) {
  10874. UNUSED(prio);
  10875. return true;
  10876. }
  10877. #endif
  10878. static bool ggml_thread_cpumask_is_valid(const bool * mask) {
  10879. for (int i = 0; i < GGML_MAX_N_THREADS; i++) {
  10880. if (mask[i]) { return true; }
  10881. }
  10882. return false;
  10883. }
  10884. static void ggml_thread_cpumask_next(const bool * global_mask, bool * local_mask, bool strict, int32_t* iter) {
  10885. if (!strict) {
  10886. memcpy(local_mask, global_mask, GGML_MAX_N_THREADS);
  10887. return;
  10888. } else {
  10889. memset(local_mask, 0, GGML_MAX_N_THREADS);
  10890. int32_t base_idx = *iter;
  10891. for (int32_t i = 0; i < GGML_MAX_N_THREADS; i++) {
  10892. int32_t idx = base_idx + i;
  10893. if (idx >= GGML_MAX_N_THREADS) {
  10894. // Just a cheaper modulo
  10895. idx -= GGML_MAX_N_THREADS;
  10896. }
  10897. if (global_mask[idx]) {
  10898. local_mask[idx] = 1;
  10899. *iter = idx + 1;
  10900. return;
  10901. }
  10902. }
  10903. }
  10904. }
  10905. void ggml_threadpool_free(struct ggml_threadpool* threadpool) {
  10906. if (!threadpool) return;
  10907. const int n_threads = threadpool->n_threads_max;
  10908. #ifndef GGML_USE_OPENMP
  10909. struct ggml_compute_state* workers = threadpool->workers;
  10910. ggml_mutex_lock(&threadpool->mutex);
  10911. threadpool->stop = true;
  10912. threadpool->pause = false;
  10913. ggml_cond_broadcast(&threadpool->cond);
  10914. ggml_mutex_unlock(&threadpool->mutex);
  10915. for (int j = 1; j < n_threads; j++) {
  10916. int32_t rc = ggml_thread_join(workers[j].thrd, NULL);
  10917. GGML_ASSERT(rc == GGML_EXIT_SUCCESS || rc == GGML_EXIT_ABORTED);
  10918. UNUSED(rc);
  10919. }
  10920. ggml_mutex_destroy(&threadpool->mutex);
  10921. ggml_cond_destroy(&threadpool->cond);
  10922. #endif // GGML_USE_OPENMP
  10923. const size_t workers_size = sizeof(struct ggml_compute_state) * n_threads;
  10924. ggml_aligned_free(threadpool->workers, workers_size);
  10925. ggml_aligned_free(threadpool, sizeof(struct ggml_threadpool));
  10926. }
  10927. #ifndef GGML_USE_OPENMP
  10928. // pause/resume must be called under mutex
  10929. static void ggml_threadpool_pause_locked(struct ggml_threadpool * threadpool) {
  10930. GGML_PRINT_DEBUG("Pausing threadpool\n");
  10931. threadpool->pause = true;
  10932. ggml_cond_broadcast(&threadpool->cond);
  10933. }
  10934. static void ggml_threadpool_resume_locked(struct ggml_threadpool * threadpool) {
  10935. GGML_PRINT_DEBUG("Resuming threadpool\n");
  10936. threadpool->pause = false;
  10937. ggml_cond_broadcast(&threadpool->cond);
  10938. }
  10939. #endif
  10940. void ggml_threadpool_pause(struct ggml_threadpool * threadpool) {
  10941. #ifndef GGML_USE_OPENMP
  10942. ggml_mutex_lock(&threadpool->mutex);
  10943. if (!threadpool->pause) {
  10944. ggml_threadpool_pause_locked(threadpool);
  10945. }
  10946. ggml_mutex_unlock(&threadpool->mutex);
  10947. #else
  10948. UNUSED(threadpool);
  10949. #endif
  10950. }
  10951. void ggml_threadpool_resume(struct ggml_threadpool * threadpool) {
  10952. #ifndef GGML_USE_OPENMP
  10953. ggml_mutex_lock(&threadpool->mutex);
  10954. if (threadpool->pause) {
  10955. ggml_threadpool_resume_locked(threadpool);
  10956. }
  10957. ggml_mutex_unlock(&threadpool->mutex);
  10958. #else
  10959. UNUSED(threadpool);
  10960. #endif
  10961. }
  10962. struct ggml_cplan ggml_graph_plan(
  10963. const struct ggml_cgraph * cgraph,
  10964. int n_threads,
  10965. struct ggml_threadpool * threadpool) {
  10966. if (threadpool == NULL) {
  10967. //GGML_PRINT_DEBUG("Threadpool is not specified. Will create a disposable threadpool : n_threads %d\n", n_threads);
  10968. }
  10969. if (n_threads <= 0) {
  10970. n_threads = threadpool ? threadpool->n_threads_max : GGML_DEFAULT_N_THREADS;
  10971. }
  10972. size_t work_size = 0;
  10973. struct ggml_cplan cplan;
  10974. memset(&cplan, 0, sizeof(struct ggml_cplan));
  10975. int max_tasks = 1;
  10976. // thread scheduling for the different operations + work buffer size estimation
  10977. for (int i = 0; i < cgraph->n_nodes; i++) {
  10978. struct ggml_tensor * node = cgraph->nodes[i];
  10979. const int n_tasks = ggml_get_n_tasks(node, n_threads);
  10980. max_tasks = MAX(max_tasks, n_tasks);
  10981. size_t cur = 0;
  10982. switch (node->op) {
  10983. case GGML_OP_CPY:
  10984. case GGML_OP_DUP:
  10985. {
  10986. if (ggml_is_quantized(node->type) ||
  10987. // F16 -> BF16 and BF16 -> F16 copies go through intermediate F32
  10988. (node->src[0]->type == GGML_TYPE_F16 && node->src[1] && node->src[1]->type == GGML_TYPE_BF16) ||
  10989. (node->src[0]->type == GGML_TYPE_BF16 && node->src[1] && node->src[1]->type == GGML_TYPE_F16)) {
  10990. cur = ggml_type_size(GGML_TYPE_F32) * node->ne[0] * n_tasks;
  10991. }
  10992. } break;
  10993. case GGML_OP_ADD:
  10994. case GGML_OP_ADD1:
  10995. {
  10996. if (ggml_is_quantized(node->src[0]->type)) {
  10997. cur = ggml_type_size(GGML_TYPE_F32) * node->src[0]->ne[0] * n_tasks;
  10998. }
  10999. } break;
  11000. case GGML_OP_ACC:
  11001. {
  11002. if (ggml_is_quantized(node->src[0]->type)) {
  11003. cur = ggml_type_size(GGML_TYPE_F32) * node->src[1]->ne[0] * n_tasks;
  11004. }
  11005. } break;
  11006. case GGML_OP_COUNT_EQUAL:
  11007. {
  11008. cur = ggml_type_size(node->type)*n_tasks;
  11009. } break;
  11010. case GGML_OP_MUL_MAT:
  11011. {
  11012. #if defined(__AMX_INT8__) && defined(__AVX512VNNI__)
  11013. if (node->src[0]->buffer && ggml_backend_amx_buft_is_amx(node->src[0]->buffer->buft)) {
  11014. cur = ggml_backend_amx_desired_wsize(node);
  11015. }
  11016. #endif
  11017. const enum ggml_type vec_dot_type = type_traits_cpu[node->src[0]->type].vec_dot_type;
  11018. if (node->src[1]->type != vec_dot_type) {
  11019. size_t cur2 = ggml_row_size(vec_dot_type, ggml_nelements(node->src[1]));
  11020. cur = MAX(cur, cur2);
  11021. }
  11022. } break;
  11023. case GGML_OP_MUL_MAT_ID:
  11024. {
  11025. cur = 0;
  11026. const struct ggml_tensor * src0 = node->src[0];
  11027. const struct ggml_tensor * src1 = node->src[1];
  11028. const enum ggml_type vec_dot_type = type_traits_cpu[src0->type].vec_dot_type;
  11029. if (src1->type != vec_dot_type) {
  11030. cur += ggml_row_size(vec_dot_type, ggml_nelements(src1));
  11031. }
  11032. const int n_as = src0->ne[2];
  11033. cur += GGML_PAD(cur, sizeof(int64_t)); // align
  11034. cur += n_as * sizeof(int64_t); // matrix_row_counts
  11035. cur += n_as * src1->ne[2] * sizeof(int64_t); // matrix_rows
  11036. } break;
  11037. case GGML_OP_OUT_PROD:
  11038. {
  11039. if (ggml_is_quantized(node->src[0]->type)) {
  11040. cur = ggml_type_size(GGML_TYPE_F32) * node->src[0]->ne[0] * n_tasks;
  11041. }
  11042. } break;
  11043. case GGML_OP_SOFT_MAX:
  11044. case GGML_OP_ROPE:
  11045. {
  11046. cur = ggml_type_size(GGML_TYPE_F32) * node->ne[0] * n_tasks;
  11047. } break;
  11048. case GGML_OP_CONV_TRANSPOSE_1D:
  11049. {
  11050. GGML_ASSERT(node->src[0]->ne[3] == 1);
  11051. GGML_ASSERT(node->src[1]->ne[2] == 1);
  11052. GGML_ASSERT(node->src[1]->ne[3] == 1);
  11053. const int64_t ne00 = node->src[0]->ne[0]; // K
  11054. const int64_t ne01 = node->src[0]->ne[1]; // Cout
  11055. const int64_t ne02 = node->src[0]->ne[2]; // Cin
  11056. const int64_t ne10 = node->src[1]->ne[0]; // L
  11057. const int64_t ne11 = node->src[1]->ne[1]; // Cin
  11058. if ((node->src[0]->type == GGML_TYPE_F16 ||
  11059. node->src[0]->type == GGML_TYPE_BF16) &&
  11060. node->src[1]->type == GGML_TYPE_F32) {
  11061. cur += sizeof(ggml_fp16_t)*ne00*ne01*ne02;
  11062. cur += sizeof(ggml_fp16_t)*ne10*ne11;
  11063. } else if (node->src[0]->type == GGML_TYPE_F32 &&
  11064. node->src[1]->type == GGML_TYPE_F32) {
  11065. cur += sizeof(float)*ne00*ne01*ne02;
  11066. cur += sizeof(float)*ne10*ne11;
  11067. } else {
  11068. GGML_ABORT("fatal error");
  11069. }
  11070. } break;
  11071. case GGML_OP_CONV_TRANSPOSE_2D:
  11072. {
  11073. const int64_t ne00 = node->src[0]->ne[0]; // W
  11074. const int64_t ne01 = node->src[0]->ne[1]; // H
  11075. const int64_t ne02 = node->src[0]->ne[2]; // Channels Out
  11076. const int64_t ne03 = node->src[0]->ne[3]; // Channels In
  11077. const int64_t ne10 = node->src[1]->ne[0]; // W
  11078. const int64_t ne11 = node->src[1]->ne[1]; // H
  11079. const int64_t ne12 = node->src[1]->ne[2]; // Channels In
  11080. cur += sizeof(ggml_fp16_t)*ne00*ne01*ne02*ne03;
  11081. cur += sizeof(ggml_fp16_t)*ne10*ne11*ne12;
  11082. } break;
  11083. case GGML_OP_FLASH_ATTN_EXT:
  11084. {
  11085. const int64_t ne00 = node->src[0]->ne[0]; // D
  11086. cur = 3*sizeof(float)*ne00*n_tasks; // 3x head size/thread
  11087. } break;
  11088. case GGML_OP_FLASH_ATTN_BACK:
  11089. {
  11090. const int64_t D = node->src[0]->ne[0];
  11091. const int64_t ne11 = ggml_up(node->src[1]->ne[1], GGML_SOFT_MAX_UNROLL);
  11092. const int64_t mxDn = MAX(D, ne11) * 2; // *2 because of S and SM in ggml_compute_forward_flash_attn_back
  11093. if (node->src[1]->type == GGML_TYPE_F32) {
  11094. cur = sizeof(float)*mxDn*n_tasks; // TODO: this can become (n_tasks-1)
  11095. cur += sizeof(float)*mxDn*n_tasks; // this is overestimated by x2
  11096. } else if (node->src[1]->type == GGML_TYPE_F16) {
  11097. cur = sizeof(float)*mxDn*n_tasks; // TODO: this can become (n_tasks-1)
  11098. cur += sizeof(float)*mxDn*n_tasks; // this is overestimated by x2
  11099. } else if (node->src[1]->type == GGML_TYPE_BF16) {
  11100. cur = sizeof(float)*mxDn*n_tasks; // TODO: this can become (n_tasks-1)
  11101. cur += sizeof(float)*mxDn*n_tasks; // this is overestimated by x2
  11102. }
  11103. } break;
  11104. case GGML_OP_CROSS_ENTROPY_LOSS:
  11105. {
  11106. cur = ggml_type_size(node->type)*(n_tasks + node->src[0]->ne[0]*n_tasks);
  11107. } break;
  11108. case GGML_OP_COUNT:
  11109. {
  11110. GGML_ABORT("fatal error");
  11111. }
  11112. default:
  11113. break;
  11114. }
  11115. work_size = MAX(work_size, cur);
  11116. }
  11117. if (work_size > 0) {
  11118. work_size += CACHE_LINE_SIZE*(n_threads);
  11119. }
  11120. cplan.threadpool = threadpool;
  11121. cplan.n_threads = MIN(max_tasks, n_threads);
  11122. cplan.work_size = work_size;
  11123. cplan.work_data = NULL;
  11124. return cplan;
  11125. }
  11126. static thread_ret_t ggml_graph_compute_thread(void * data) {
  11127. struct ggml_compute_state * state = (struct ggml_compute_state *) data;
  11128. struct ggml_threadpool * tp = state->threadpool;
  11129. const struct ggml_cgraph * cgraph = tp->cgraph;
  11130. const struct ggml_cplan * cplan = tp->cplan;
  11131. set_numa_thread_affinity(state->ith);
  11132. struct ggml_compute_params params = {
  11133. /*.ith =*/ state->ith,
  11134. /*.nth =*/ atomic_load_explicit(&tp->n_threads_cur, memory_order_relaxed),
  11135. /*.wsize =*/ cplan->work_size,
  11136. /*.wdata =*/ cplan->work_data,
  11137. /*.threadpool=*/ tp,
  11138. };
  11139. for (int node_n = 0; node_n < cgraph->n_nodes && !tp->abort; node_n++) {
  11140. struct ggml_tensor * node = cgraph->nodes[node_n];
  11141. ggml_compute_forward(&params, node);
  11142. if (state->ith == 0 && cplan->abort_callback &&
  11143. cplan->abort_callback(cplan->abort_callback_data)) {
  11144. tp->abort = true;
  11145. tp->ec = GGML_STATUS_ABORTED;
  11146. }
  11147. ggml_barrier(state->threadpool);
  11148. }
  11149. return 0;
  11150. }
  11151. #ifndef GGML_USE_OPENMP
  11152. // check if thread is active
  11153. static inline bool ggml_graph_compute_thread_active(struct ggml_compute_state * state) {
  11154. struct ggml_threadpool * threadpool = state->threadpool;
  11155. int n_threads = atomic_load_explicit(&threadpool->n_threads_cur, memory_order_relaxed);
  11156. return (state->ith < n_threads);
  11157. }
  11158. // check if thread is ready to proceed (exit from polling or sleeping)
  11159. static inline bool ggml_graph_compute_thread_ready(struct ggml_compute_state * state) {
  11160. struct ggml_threadpool * threadpool = state->threadpool;
  11161. if (state->pending || threadpool->stop || threadpool->pause) { return true; }
  11162. // check for new graph/work
  11163. int new_graph = atomic_load_explicit(&threadpool->n_graph, memory_order_relaxed);
  11164. if (new_graph != state->last_graph) {
  11165. state->pending = ggml_graph_compute_thread_active(state);
  11166. state->last_graph = new_graph;
  11167. }
  11168. return state->pending;
  11169. }
  11170. // sync thread state after polling
  11171. static inline void ggml_graph_compute_thread_sync(struct ggml_compute_state * state) {
  11172. // TSAN doesn't support standalone fence yet, we use a dummy read-modify-write instead
  11173. #ifdef GGML_TSAN_ENABLED
  11174. atomic_fetch_add_explicit(&state->threadpool->n_graph, 0, memory_order_seq_cst);
  11175. #else
  11176. atomic_thread_fence(memory_order_seq_cst);
  11177. #endif
  11178. UNUSED(state);
  11179. }
  11180. static inline bool ggml_graph_compute_poll_for_work(struct ggml_compute_state * state) {
  11181. struct ggml_threadpool * threadpool = state->threadpool;
  11182. // Skip polling for unused threads
  11183. if (!ggml_graph_compute_thread_active(state)) {
  11184. return state->pending;
  11185. }
  11186. // This seems to make 0 ... 100 a decent range for polling level across modern processors.
  11187. // Perhaps, we can adjust it dynamically based on load and things.
  11188. const uint64_t n_rounds = 1024UL * 128 * threadpool->poll;
  11189. for (uint64_t i=0; !ggml_graph_compute_thread_ready(state) && i < n_rounds; i++) {
  11190. // No new work. Keep polling.
  11191. ggml_thread_cpu_relax();
  11192. }
  11193. return state->pending;
  11194. }
  11195. static inline bool ggml_graph_compute_check_for_work(struct ggml_compute_state * state) {
  11196. struct ggml_threadpool * threadpool = state->threadpool;
  11197. if (ggml_graph_compute_poll_for_work(state)) {
  11198. ggml_graph_compute_thread_sync(state);
  11199. return state->pending;
  11200. }
  11201. ggml_mutex_lock_shared(&threadpool->mutex);
  11202. while (!ggml_graph_compute_thread_ready(state)) {
  11203. // No new work. Wait for the signal.
  11204. GGML_PRINT_DEBUG("thread #%d waiting for work (sleeping)\n", state->ith);
  11205. ggml_cond_wait(&threadpool->cond, &threadpool->mutex);
  11206. }
  11207. ggml_mutex_unlock_shared(&threadpool->mutex);
  11208. return state->pending;
  11209. }
  11210. static thread_ret_t ggml_graph_compute_secondary_thread(void* data) {
  11211. struct ggml_compute_state * state = (struct ggml_compute_state *) data;
  11212. struct ggml_threadpool * threadpool = state->threadpool;
  11213. ggml_thread_apply_priority(threadpool->prio);
  11214. if (ggml_thread_cpumask_is_valid(state->cpumask)) {
  11215. ggml_thread_apply_affinity(state->cpumask);
  11216. }
  11217. while (true) {
  11218. // Check if we need to sleep
  11219. while (threadpool->pause) {
  11220. GGML_PRINT_DEBUG("thread #%d inside pause loop\n", state->ith);
  11221. ggml_mutex_lock_shared(&threadpool->mutex);
  11222. if (threadpool->pause) {
  11223. ggml_cond_wait(&threadpool->cond, &threadpool->mutex);
  11224. }
  11225. GGML_PRINT_DEBUG("thread #%d resuming after wait\n", state->ith);
  11226. ggml_mutex_unlock_shared(&threadpool->mutex);
  11227. }
  11228. // This needs to be checked for after the cond_wait
  11229. if (threadpool->stop) break;
  11230. // Check if there is new work
  11231. // The main thread is the only one that can dispatch new work
  11232. ggml_graph_compute_check_for_work(state);
  11233. if (state->pending) {
  11234. state->pending = false;
  11235. ggml_graph_compute_thread(state);
  11236. }
  11237. }
  11238. return (thread_ret_t) 0;
  11239. }
  11240. // Start processing new graph
  11241. static void ggml_graph_compute_kickoff(struct ggml_threadpool * threadpool, int n_threads)
  11242. {
  11243. // Always take the mutex here because the worker threads are doing hybrid poll/wait
  11244. ggml_mutex_lock(&threadpool->mutex);
  11245. GGML_PRINT_DEBUG("threadpool: n_threads_cur %d n_threads %d\n", threadpool->n_threads_cur, n_threads);
  11246. // Update the number of active threads
  11247. atomic_store_explicit(&threadpool->n_threads_cur, n_threads, memory_order_relaxed);
  11248. // Indicate the graph is ready to be processed
  11249. // We need the full seq-cst fence here because of the polling threads (used in thread_sync)
  11250. atomic_fetch_add_explicit(&threadpool->n_graph, 1, memory_order_seq_cst);
  11251. if (threadpool->pause) {
  11252. // Update main thread prio and affinity to match the threadpool settings
  11253. ggml_thread_apply_priority(threadpool->prio);
  11254. if (ggml_thread_cpumask_is_valid(threadpool->workers[0].cpumask)) {
  11255. ggml_thread_apply_affinity(threadpool->workers[0].cpumask);
  11256. }
  11257. // resume does cond broadcast
  11258. ggml_threadpool_resume_locked(threadpool);
  11259. } else {
  11260. ggml_cond_broadcast(&threadpool->cond);
  11261. }
  11262. ggml_mutex_unlock(&threadpool->mutex);
  11263. }
  11264. #endif // GGML_USE_OPENMP
  11265. static struct ggml_threadpool * ggml_threadpool_new_impl(
  11266. struct ggml_threadpool_params * tpp,
  11267. struct ggml_cgraph * cgraph,
  11268. struct ggml_cplan * cplan) {
  11269. struct ggml_threadpool * threadpool =
  11270. ggml_aligned_malloc(sizeof(struct ggml_threadpool));
  11271. {
  11272. threadpool->cgraph = cgraph;
  11273. threadpool->cplan = cplan;
  11274. threadpool->n_graph = 0;
  11275. threadpool->n_barrier = 0;
  11276. threadpool->n_barrier_passed = 0;
  11277. threadpool->current_chunk = 0;
  11278. threadpool->stop = false;
  11279. threadpool->pause = tpp->paused;
  11280. threadpool->abort = false;
  11281. threadpool->workers = NULL;
  11282. threadpool->n_threads_max = tpp->n_threads;
  11283. threadpool->n_threads_cur = tpp->n_threads;
  11284. threadpool->poll = tpp->poll;
  11285. threadpool->prio = tpp->prio;
  11286. threadpool->ec = GGML_STATUS_SUCCESS;
  11287. }
  11288. // Allocate and init workers state
  11289. const size_t workers_size = sizeof(struct ggml_compute_state) * tpp->n_threads;
  11290. struct ggml_compute_state * workers = ggml_aligned_malloc(workers_size);
  11291. memset(workers, 0, workers_size);
  11292. for (int j = 0; j < tpp->n_threads; j++) {
  11293. workers[j].threadpool = threadpool;
  11294. workers[j].ith = j;
  11295. }
  11296. threadpool->workers = workers;
  11297. #ifndef GGML_USE_OPENMP
  11298. ggml_mutex_init(&threadpool->mutex);
  11299. ggml_cond_init(&threadpool->cond);
  11300. // Spin the threads for all workers, and update CPU placements.
  11301. // Place the main thread last (towards the higher numbered CPU cores).
  11302. int32_t cpumask_iter = 0;
  11303. for (int j = 1; j < tpp->n_threads; j++) {
  11304. ggml_thread_cpumask_next(tpp->cpumask, workers[j].cpumask, tpp->strict_cpu, &cpumask_iter);
  11305. int32_t rc = ggml_thread_create(&workers[j].thrd, NULL, ggml_graph_compute_secondary_thread, &workers[j]);
  11306. GGML_ASSERT(rc == 0);
  11307. }
  11308. ggml_thread_cpumask_next(tpp->cpumask, workers[0].cpumask, tpp->strict_cpu, &cpumask_iter);
  11309. if (!threadpool->pause) {
  11310. // Update main thread prio and affinity at the start, otherwise we'll do it in resume
  11311. ggml_thread_apply_priority(threadpool->prio);
  11312. if (ggml_thread_cpumask_is_valid(threadpool->workers[0].cpumask)) {
  11313. ggml_thread_apply_affinity(threadpool->workers[0].cpumask);
  11314. }
  11315. }
  11316. #endif // GGML_USE_OPENMP
  11317. return threadpool;
  11318. }
  11319. struct ggml_threadpool * ggml_threadpool_new(struct ggml_threadpool_params * tpp) {
  11320. return ggml_threadpool_new_impl(tpp, NULL, NULL);
  11321. }
  11322. enum ggml_status ggml_graph_compute(struct ggml_cgraph * cgraph, struct ggml_cplan * cplan) {
  11323. ggml_cpu_init();
  11324. GGML_ASSERT(cplan);
  11325. GGML_ASSERT(cplan->n_threads > 0);
  11326. GGML_ASSERT(cplan->work_size == 0 || cplan->work_data != NULL);
  11327. int n_threads = cplan->n_threads;
  11328. struct ggml_threadpool * threadpool = cplan->threadpool;
  11329. bool disposable_threadpool = false;
  11330. if (threadpool == NULL) {
  11331. //GGML_PRINT_DEBUG("Threadpool is not specified. Will create a disposable threadpool : n_threads %d\n", n_threads);
  11332. disposable_threadpool = true;
  11333. struct ggml_threadpool_params ttp = ggml_threadpool_params_default(n_threads);
  11334. threadpool = ggml_threadpool_new_impl(&ttp, cgraph, cplan);
  11335. } else {
  11336. // Reset some of the parameters that need resetting
  11337. // No worker threads should be accessing the parameters below at this stage
  11338. threadpool->cgraph = cgraph;
  11339. threadpool->cplan = cplan;
  11340. threadpool->current_chunk = 0;
  11341. threadpool->abort = false;
  11342. threadpool->ec = GGML_STATUS_SUCCESS;
  11343. }
  11344. #ifdef GGML_USE_OPENMP
  11345. if (n_threads > 1) {
  11346. #pragma omp parallel num_threads(n_threads)
  11347. {
  11348. #pragma omp single
  11349. {
  11350. // update the number of threads from the actual number of threads that we got from OpenMP
  11351. n_threads = omp_get_num_threads();
  11352. atomic_store_explicit(&threadpool->n_threads_cur, n_threads, memory_order_relaxed);
  11353. }
  11354. ggml_graph_compute_thread(&threadpool->workers[omp_get_thread_num()]);
  11355. }
  11356. } else {
  11357. atomic_store_explicit(&threadpool->n_threads_cur, 1, memory_order_relaxed);
  11358. ggml_graph_compute_thread(&threadpool->workers[0]);
  11359. }
  11360. #else
  11361. if (n_threads > threadpool->n_threads_max) {
  11362. GGML_LOG_WARN("cplan requested more threads (%d) than available (%d)\n", n_threads, threadpool->n_threads_max);
  11363. n_threads = threadpool->n_threads_max;
  11364. }
  11365. // Kick all threads to start the new graph
  11366. ggml_graph_compute_kickoff(threadpool, n_threads);
  11367. // This is a work thread too
  11368. ggml_graph_compute_thread(&threadpool->workers[0]);
  11369. #endif
  11370. // don't leave affinity set on the main thread
  11371. clear_numa_thread_affinity();
  11372. enum ggml_status ret = threadpool->ec;
  11373. if (disposable_threadpool) {
  11374. ggml_threadpool_free(threadpool);
  11375. }
  11376. return ret;
  11377. }
  11378. enum ggml_status ggml_graph_compute_with_ctx(struct ggml_context * ctx, struct ggml_cgraph * cgraph, int n_threads) {
  11379. struct ggml_cplan cplan = ggml_graph_plan(cgraph, n_threads, NULL);
  11380. cplan.work_data = (uint8_t *)ggml_new_buffer(ctx, cplan.work_size);
  11381. return ggml_graph_compute(cgraph, &cplan);
  11382. }
  11383. int ggml_cpu_has_avx(void) {
  11384. #if defined(__AVX__)
  11385. return 1;
  11386. #else
  11387. return 0;
  11388. #endif
  11389. }
  11390. int ggml_cpu_has_avx_vnni(void) {
  11391. #if defined(__AVXVNNI__)
  11392. return 1;
  11393. #else
  11394. return 0;
  11395. #endif
  11396. }
  11397. int ggml_cpu_has_avx2(void) {
  11398. #if defined(__AVX2__)
  11399. return 1;
  11400. #else
  11401. return 0;
  11402. #endif
  11403. }
  11404. int ggml_cpu_has_avx512(void) {
  11405. #if defined(__AVX512F__)
  11406. return 1;
  11407. #else
  11408. return 0;
  11409. #endif
  11410. }
  11411. int ggml_cpu_has_avx512_vbmi(void) {
  11412. #if defined(__AVX512VBMI__)
  11413. return 1;
  11414. #else
  11415. return 0;
  11416. #endif
  11417. }
  11418. int ggml_cpu_has_avx512_vnni(void) {
  11419. #if defined(__AVX512VNNI__)
  11420. return 1;
  11421. #else
  11422. return 0;
  11423. #endif
  11424. }
  11425. int ggml_cpu_has_avx512_bf16(void) {
  11426. #if defined(__AVX512BF16__)
  11427. return 1;
  11428. #else
  11429. return 0;
  11430. #endif
  11431. }
  11432. int ggml_cpu_has_amx_int8(void) {
  11433. #if defined(__AMX_INT8__)
  11434. return 1;
  11435. #else
  11436. return 0;
  11437. #endif
  11438. }
  11439. int ggml_cpu_has_fma(void) {
  11440. #if defined(__FMA__)
  11441. return 1;
  11442. #else
  11443. return 0;
  11444. #endif
  11445. }
  11446. int ggml_cpu_has_arm_fma(void) {
  11447. #if defined(__ARM_FEATURE_FMA)
  11448. return 1;
  11449. #else
  11450. return 0;
  11451. #endif
  11452. }
  11453. int ggml_cpu_has_riscv_v(void) {
  11454. #if defined(__riscv_v_intrinsic)
  11455. return 1;
  11456. #else
  11457. return 0;
  11458. #endif
  11459. }
  11460. int ggml_cpu_has_f16c(void) {
  11461. #if defined(__F16C__)
  11462. return 1;
  11463. #else
  11464. return 0;
  11465. #endif
  11466. }
  11467. int ggml_cpu_has_fp16_va(void) {
  11468. #if defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC)
  11469. return 1;
  11470. #else
  11471. return 0;
  11472. #endif
  11473. }
  11474. int ggml_cpu_has_wasm_simd(void) {
  11475. #if defined(__wasm_simd128__)
  11476. return 1;
  11477. #else
  11478. return 0;
  11479. #endif
  11480. }
  11481. int ggml_cpu_has_llamafile(void) {
  11482. #if defined(GGML_USE_LLAMAFILE)
  11483. return 1;
  11484. #else
  11485. return 0;
  11486. #endif
  11487. }
  11488. int ggml_cpu_has_sse3(void) {
  11489. #if defined(__SSE3__)
  11490. return 1;
  11491. #else
  11492. return 0;
  11493. #endif
  11494. }
  11495. int ggml_cpu_has_ssse3(void) {
  11496. #if defined(__SSSE3__)
  11497. return 1;
  11498. #else
  11499. return 0;
  11500. #endif
  11501. }
  11502. int ggml_cpu_has_vsx(void) {
  11503. #if defined(__POWER9_VECTOR__)
  11504. return 1;
  11505. #else
  11506. return 0;
  11507. #endif
  11508. }
  11509. int ggml_cpu_has_neon(void) {
  11510. #if defined(__ARM_ARCH) && defined(__ARM_NEON)
  11511. return ggml_arm_arch_features.has_neon;
  11512. #else
  11513. return 0;
  11514. #endif
  11515. }
  11516. int ggml_cpu_has_dotprod(void) {
  11517. #if defined(__ARM_ARCH) && defined(__ARM_FEATURE_DOTPROD)
  11518. return ggml_arm_arch_features.has_dotprod;
  11519. #else
  11520. return 0;
  11521. #endif
  11522. }
  11523. int ggml_cpu_has_sve(void) {
  11524. #if defined(__ARM_ARCH) && defined(__ARM_FEATURE_SVE)
  11525. return ggml_arm_arch_features.has_sve;
  11526. #else
  11527. return 0;
  11528. #endif
  11529. }
  11530. int ggml_cpu_has_matmul_int8(void) {
  11531. #if defined(__ARM_ARCH) && defined(__ARM_FEATURE_MATMUL_INT8)
  11532. return ggml_arm_arch_features.has_i8mm;
  11533. #else
  11534. return 0;
  11535. #endif
  11536. }
  11537. int ggml_cpu_get_sve_cnt(void) {
  11538. #if defined(__ARM_ARCH) && defined(__ARM_FEATURE_SVE)
  11539. return ggml_arm_arch_features.sve_cnt;
  11540. #else
  11541. return 0;
  11542. #endif
  11543. }
  11544. void ggml_cpu_init(void) {
  11545. // needed to initialize f16 tables
  11546. {
  11547. struct ggml_init_params params = { 0, NULL, false };
  11548. struct ggml_context * ctx = ggml_init(params);
  11549. ggml_free(ctx);
  11550. }
  11551. ggml_critical_section_start();
  11552. static bool is_first_call = true;
  11553. if (is_first_call) {
  11554. // initialize GELU, Quick GELU, SILU and EXP F32 tables
  11555. {
  11556. const uint64_t t_start = ggml_time_us(); UNUSED(t_start);
  11557. for (int i = 0; i < (1 << 16); ++i) {
  11558. union {
  11559. uint16_t u16;
  11560. ggml_fp16_t fp16;
  11561. } u = {i};
  11562. float f = GGML_FP16_TO_FP32(u.fp16);
  11563. ggml_table_gelu_f16[i] = GGML_FP32_TO_FP16(ggml_gelu_f32(f));
  11564. ggml_table_gelu_quick_f16[i] = GGML_FP32_TO_FP16(ggml_gelu_quick_f32(f));
  11565. }
  11566. const uint64_t t_end = ggml_time_us(); UNUSED(t_end);
  11567. GGML_PRINT_DEBUG("%s: GELU, Quick GELU, SILU and EXP tables initialized in %f ms\n", __func__, (t_end - t_start)/1000.0);
  11568. }
  11569. #if defined(__ARM_ARCH)
  11570. ggml_init_arm_arch_features();
  11571. #endif
  11572. is_first_call = false;
  11573. }
  11574. ggml_critical_section_end();
  11575. }