common.cpp 66 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578
  1. #include "common.h"
  2. #include "llama.h"
  3. #include <algorithm>
  4. #include <cassert>
  5. #include <cmath>
  6. #include <cstring>
  7. #include <ctime>
  8. #include <fstream>
  9. #include <iterator>
  10. #include <iostream>
  11. #include <regex>
  12. #include <sstream>
  13. #include <string>
  14. #include <unordered_map>
  15. #include <unordered_set>
  16. #include <vector>
  17. #include <cinttypes>
  18. #if defined(__APPLE__) && defined(__MACH__)
  19. #include <sys/types.h>
  20. #include <sys/sysctl.h>
  21. #endif
  22. #if defined(_WIN32)
  23. #define WIN32_LEAN_AND_MEAN
  24. #ifndef NOMINMAX
  25. # define NOMINMAX
  26. #endif
  27. #include <codecvt>
  28. #include <locale>
  29. #include <windows.h>
  30. #include <fcntl.h>
  31. #include <io.h>
  32. #else
  33. #include <sys/ioctl.h>
  34. #include <sys/stat.h>
  35. #include <unistd.h>
  36. #endif
  37. #if defined(_MSC_VER)
  38. #pragma warning(disable: 4244 4267) // possible loss of data
  39. #endif
  40. int32_t get_num_physical_cores() {
  41. #ifdef __linux__
  42. // enumerate the set of thread siblings, num entries is num cores
  43. std::unordered_set<std::string> siblings;
  44. for (uint32_t cpu=0; cpu < UINT32_MAX; ++cpu) {
  45. std::ifstream thread_siblings("/sys/devices/system/cpu"
  46. + std::to_string(cpu) + "/topology/thread_siblings");
  47. if (!thread_siblings.is_open()) {
  48. break; // no more cpus
  49. }
  50. std::string line;
  51. if (std::getline(thread_siblings, line)) {
  52. siblings.insert(line);
  53. }
  54. }
  55. if (!siblings.empty()) {
  56. return static_cast<int32_t>(siblings.size());
  57. }
  58. #elif defined(__APPLE__) && defined(__MACH__)
  59. int32_t num_physical_cores;
  60. size_t len = sizeof(num_physical_cores);
  61. int result = sysctlbyname("hw.perflevel0.physicalcpu", &num_physical_cores, &len, NULL, 0);
  62. if (result == 0) {
  63. return num_physical_cores;
  64. }
  65. result = sysctlbyname("hw.physicalcpu", &num_physical_cores, &len, NULL, 0);
  66. if (result == 0) {
  67. return num_physical_cores;
  68. }
  69. #elif defined(_WIN32)
  70. //TODO: Implement
  71. #endif
  72. unsigned int n_threads = std::thread::hardware_concurrency();
  73. return n_threads > 0 ? (n_threads <= 4 ? n_threads : n_threads / 2) : 4;
  74. }
  75. void process_escapes(std::string& input) {
  76. std::size_t input_len = input.length();
  77. std::size_t output_idx = 0;
  78. for (std::size_t input_idx = 0; input_idx < input_len; ++input_idx) {
  79. if (input[input_idx] == '\\' && input_idx + 1 < input_len) {
  80. switch (input[++input_idx]) {
  81. case 'n': input[output_idx++] = '\n'; break;
  82. case 'r': input[output_idx++] = '\r'; break;
  83. case 't': input[output_idx++] = '\t'; break;
  84. case '\'': input[output_idx++] = '\''; break;
  85. case '\"': input[output_idx++] = '\"'; break;
  86. case '\\': input[output_idx++] = '\\'; break;
  87. case 'x':
  88. // Handle \x12, etc
  89. if (input_idx + 2 < input_len) {
  90. const char x[3] = { input[input_idx + 1], input[input_idx + 2], 0 };
  91. char *err_p = nullptr;
  92. const long val = std::strtol(x, &err_p, 16);
  93. if (err_p == x + 2) {
  94. input_idx += 2;
  95. input[output_idx++] = char(val);
  96. break;
  97. }
  98. }
  99. // fall through
  100. default: input[output_idx++] = '\\';
  101. input[output_idx++] = input[input_idx]; break;
  102. }
  103. } else {
  104. input[output_idx++] = input[input_idx];
  105. }
  106. }
  107. input.resize(output_idx);
  108. }
  109. bool gpt_params_parse(int argc, char ** argv, gpt_params & params) {
  110. bool result = true;
  111. try {
  112. if (!gpt_params_parse_ex(argc, argv, params)) {
  113. gpt_print_usage(argc, argv, gpt_params());
  114. exit(0);
  115. }
  116. }
  117. catch (const std::invalid_argument & ex) {
  118. fprintf(stderr, "%s\n", ex.what());
  119. gpt_print_usage(argc, argv, gpt_params());
  120. exit(1);
  121. }
  122. return result;
  123. }
  124. bool gpt_params_parse_ex(int argc, char ** argv, gpt_params & params) {
  125. bool invalid_param = false;
  126. std::string arg;
  127. const std::string arg_prefix = "--";
  128. llama_sampling_params & sparams = params.sparams;
  129. for (int i = 1; i < argc; i++) {
  130. arg = argv[i];
  131. if (arg.compare(0, arg_prefix.size(), arg_prefix) == 0) {
  132. std::replace(arg.begin(), arg.end(), '_', '-');
  133. }
  134. if (arg == "-s" || arg == "--seed") {
  135. if (++i >= argc) {
  136. invalid_param = true;
  137. break;
  138. }
  139. params.seed = std::stoul(argv[i]);
  140. } else if (arg == "-t" || arg == "--threads") {
  141. if (++i >= argc) {
  142. invalid_param = true;
  143. break;
  144. }
  145. params.n_threads = std::stoi(argv[i]);
  146. if (params.n_threads <= 0) {
  147. params.n_threads = std::thread::hardware_concurrency();
  148. }
  149. } else if (arg == "-tb" || arg == "--threads-batch") {
  150. if (++i >= argc) {
  151. invalid_param = true;
  152. break;
  153. }
  154. params.n_threads_batch = std::stoi(argv[i]);
  155. if (params.n_threads_batch <= 0) {
  156. params.n_threads_batch = std::thread::hardware_concurrency();
  157. }
  158. } else if (arg == "-p" || arg == "--prompt") {
  159. if (++i >= argc) {
  160. invalid_param = true;
  161. break;
  162. }
  163. params.prompt = argv[i];
  164. } else if (arg == "-e" || arg == "--escape") {
  165. params.escape = true;
  166. } else if (arg == "--prompt-cache") {
  167. if (++i >= argc) {
  168. invalid_param = true;
  169. break;
  170. }
  171. params.path_prompt_cache = argv[i];
  172. } else if (arg == "--prompt-cache-all") {
  173. params.prompt_cache_all = true;
  174. } else if (arg == "--prompt-cache-ro") {
  175. params.prompt_cache_ro = true;
  176. } else if (arg == "-f" || arg == "--file") {
  177. if (++i >= argc) {
  178. invalid_param = true;
  179. break;
  180. }
  181. std::ifstream file(argv[i]);
  182. if (!file) {
  183. fprintf(stderr, "error: failed to open file '%s'\n", argv[i]);
  184. invalid_param = true;
  185. break;
  186. }
  187. // store the external file name in params
  188. params.prompt_file = argv[i];
  189. std::copy(std::istreambuf_iterator<char>(file), std::istreambuf_iterator<char>(), back_inserter(params.prompt));
  190. if (!params.prompt.empty() && params.prompt.back() == '\n') {
  191. params.prompt.pop_back();
  192. }
  193. } else if (arg == "-n" || arg == "--n-predict") {
  194. if (++i >= argc) {
  195. invalid_param = true;
  196. break;
  197. }
  198. params.n_predict = std::stoi(argv[i]);
  199. } else if (arg == "--top-k") {
  200. if (++i >= argc) {
  201. invalid_param = true;
  202. break;
  203. }
  204. sparams.top_k = std::stoi(argv[i]);
  205. } else if (arg == "-c" || arg == "--ctx-size") {
  206. if (++i >= argc) {
  207. invalid_param = true;
  208. break;
  209. }
  210. params.n_ctx = std::stoi(argv[i]);
  211. } else if (arg == "--rope-freq-base") {
  212. if (++i >= argc) {
  213. invalid_param = true;
  214. break;
  215. }
  216. params.rope_freq_base = std::stof(argv[i]);
  217. } else if (arg == "--rope-freq-scale") {
  218. if (++i >= argc) {
  219. invalid_param = true;
  220. break;
  221. }
  222. params.rope_freq_scale = std::stof(argv[i]);
  223. } else if (arg == "--rope-scaling") {
  224. if (++i >= argc) {
  225. invalid_param = true;
  226. break;
  227. }
  228. std::string value(argv[i]);
  229. /**/ if (value == "none") { params.rope_scaling_type = LLAMA_ROPE_SCALING_NONE; }
  230. else if (value == "linear") { params.rope_scaling_type = LLAMA_ROPE_SCALING_LINEAR; }
  231. else if (value == "yarn") { params.rope_scaling_type = LLAMA_ROPE_SCALING_YARN; }
  232. else { invalid_param = true; break; }
  233. } else if (arg == "--rope-scale") {
  234. if (++i >= argc) {
  235. invalid_param = true;
  236. break;
  237. }
  238. params.rope_freq_scale = 1.0f/std::stof(argv[i]);
  239. } else if (arg == "--yarn-orig-ctx") {
  240. if (++i >= argc) {
  241. invalid_param = true;
  242. break;
  243. }
  244. params.yarn_orig_ctx = std::stoi(argv[i]);
  245. } else if (arg == "--yarn-ext-factor") {
  246. if (++i >= argc) {
  247. invalid_param = true;
  248. break;
  249. }
  250. params.yarn_ext_factor = std::stof(argv[i]);
  251. } else if (arg == "--yarn-attn-factor") {
  252. if (++i >= argc) {
  253. invalid_param = true;
  254. break;
  255. }
  256. params.yarn_attn_factor = std::stof(argv[i]);
  257. } else if (arg == "--yarn-beta-fast") {
  258. if (++i >= argc) {
  259. invalid_param = true;
  260. break;
  261. }
  262. params.yarn_beta_fast = std::stof(argv[i]);
  263. } else if (arg == "--yarn-beta-slow") {
  264. if (++i >= argc) {
  265. invalid_param = true;
  266. break;
  267. }
  268. params.yarn_beta_slow = std::stof(argv[i]);
  269. } else if (arg == "--memory-f32") {
  270. params.memory_f16 = false;
  271. } else if (arg == "--samplers") {
  272. if (++i >= argc) {
  273. invalid_param = true;
  274. break;
  275. }
  276. sparams.samplers_sequence = parse_samplers_input(argv[i]);
  277. } else if (arg == "--sampling-seq") {
  278. if (++i >= argc) {
  279. invalid_param = true;
  280. break;
  281. }
  282. sparams.samplers_sequence = argv[i];
  283. } else if (arg == "--top-p") {
  284. if (++i >= argc) {
  285. invalid_param = true;
  286. break;
  287. }
  288. sparams.top_p = std::stof(argv[i]);
  289. } else if (arg == "--min-p") {
  290. if (++i >= argc) {
  291. invalid_param = true;
  292. break;
  293. }
  294. sparams.min_p = std::stof(argv[i]);
  295. } else if (arg == "--temp") {
  296. if (++i >= argc) {
  297. invalid_param = true;
  298. break;
  299. }
  300. sparams.temp = std::stof(argv[i]);
  301. sparams.temp = std::max(sparams.temp, 0.0f);
  302. } else if (arg == "--tfs") {
  303. if (++i >= argc) {
  304. invalid_param = true;
  305. break;
  306. }
  307. sparams.tfs_z = std::stof(argv[i]);
  308. } else if (arg == "--typical") {
  309. if (++i >= argc) {
  310. invalid_param = true;
  311. break;
  312. }
  313. sparams.typical_p = std::stof(argv[i]);
  314. } else if (arg == "--repeat-last-n") {
  315. if (++i >= argc) {
  316. invalid_param = true;
  317. break;
  318. }
  319. sparams.penalty_last_n = std::stoi(argv[i]);
  320. sparams.n_prev = std::max(sparams.n_prev, sparams.penalty_last_n);
  321. } else if (arg == "--repeat-penalty") {
  322. if (++i >= argc) {
  323. invalid_param = true;
  324. break;
  325. }
  326. sparams.penalty_repeat = std::stof(argv[i]);
  327. } else if (arg == "--frequency-penalty") {
  328. if (++i >= argc) {
  329. invalid_param = true;
  330. break;
  331. }
  332. sparams.penalty_freq = std::stof(argv[i]);
  333. } else if (arg == "--presence-penalty") {
  334. if (++i >= argc) {
  335. invalid_param = true;
  336. break;
  337. }
  338. sparams.penalty_present = std::stof(argv[i]);
  339. } else if (arg == "--mirostat") {
  340. if (++i >= argc) {
  341. invalid_param = true;
  342. break;
  343. }
  344. sparams.mirostat = std::stoi(argv[i]);
  345. } else if (arg == "--mirostat-lr") {
  346. if (++i >= argc) {
  347. invalid_param = true;
  348. break;
  349. }
  350. sparams.mirostat_eta = std::stof(argv[i]);
  351. } else if (arg == "--mirostat-ent") {
  352. if (++i >= argc) {
  353. invalid_param = true;
  354. break;
  355. }
  356. sparams.mirostat_tau = std::stof(argv[i]);
  357. } else if (arg == "--cfg-negative-prompt") {
  358. if (++i >= argc) {
  359. invalid_param = true;
  360. break;
  361. }
  362. sparams.cfg_negative_prompt = argv[i];
  363. } else if (arg == "--cfg-negative-prompt-file") {
  364. if (++i >= argc) {
  365. invalid_param = true;
  366. break;
  367. }
  368. std::ifstream file(argv[i]);
  369. if (!file) {
  370. fprintf(stderr, "error: failed to open file '%s'\n", argv[i]);
  371. invalid_param = true;
  372. break;
  373. }
  374. std::copy(std::istreambuf_iterator<char>(file), std::istreambuf_iterator<char>(), back_inserter(sparams.cfg_negative_prompt));
  375. if (!sparams.cfg_negative_prompt.empty() && sparams.cfg_negative_prompt.back() == '\n') {
  376. sparams.cfg_negative_prompt.pop_back();
  377. }
  378. } else if (arg == "--cfg-scale") {
  379. if (++i >= argc) {
  380. invalid_param = true;
  381. break;
  382. }
  383. sparams.cfg_scale = std::stof(argv[i]);
  384. } else if (arg == "-b" || arg == "--batch-size") {
  385. if (++i >= argc) {
  386. invalid_param = true;
  387. break;
  388. }
  389. params.n_batch = std::stoi(argv[i]);
  390. } else if (arg == "--keep") {
  391. if (++i >= argc) {
  392. invalid_param = true;
  393. break;
  394. }
  395. params.n_keep = std::stoi(argv[i]);
  396. } else if (arg == "--draft") {
  397. if (++i >= argc) {
  398. invalid_param = true;
  399. break;
  400. }
  401. params.n_draft = std::stoi(argv[i]);
  402. } else if (arg == "--chunks") {
  403. if (++i >= argc) {
  404. invalid_param = true;
  405. break;
  406. }
  407. params.n_chunks = std::stoi(argv[i]);
  408. } else if (arg == "-np" || arg == "--parallel") {
  409. if (++i >= argc) {
  410. invalid_param = true;
  411. break;
  412. }
  413. params.n_parallel = std::stoi(argv[i]);
  414. } else if (arg == "-ns" || arg == "--sequences") {
  415. if (++i >= argc) {
  416. invalid_param = true;
  417. break;
  418. }
  419. params.n_sequences = std::stoi(argv[i]);
  420. } else if (arg == "--p-accept" || arg == "-pa") {
  421. if (++i >= argc) {
  422. invalid_param = true;
  423. break;
  424. }
  425. params.p_accept = std::stof(argv[i]);
  426. } else if (arg == "--p-split" || arg == "-ps") {
  427. if (++i >= argc) {
  428. invalid_param = true;
  429. break;
  430. }
  431. params.p_split = std::stof(argv[i]);
  432. } else if (arg == "-m" || arg == "--model") {
  433. if (++i >= argc) {
  434. invalid_param = true;
  435. break;
  436. }
  437. params.model = argv[i];
  438. } else if (arg == "-md" || arg == "--model-draft") {
  439. if (++i >= argc) {
  440. invalid_param = true;
  441. break;
  442. }
  443. params.model_draft = argv[i];
  444. } else if (arg == "-a" || arg == "--alias") {
  445. if (++i >= argc) {
  446. invalid_param = true;
  447. break;
  448. }
  449. params.model_alias = argv[i];
  450. } else if (arg == "--lora") {
  451. if (++i >= argc) {
  452. invalid_param = true;
  453. break;
  454. }
  455. params.lora_adapter.push_back(std::make_tuple(argv[i], 1.0f));
  456. params.use_mmap = false;
  457. } else if (arg == "--lora-scaled") {
  458. if (++i >= argc) {
  459. invalid_param = true;
  460. break;
  461. }
  462. const char * lora_adapter = argv[i];
  463. if (++i >= argc) {
  464. invalid_param = true;
  465. break;
  466. }
  467. params.lora_adapter.push_back(std::make_tuple(lora_adapter, std::stof(argv[i])));
  468. params.use_mmap = false;
  469. } else if (arg == "--lora-base") {
  470. if (++i >= argc) {
  471. invalid_param = true;
  472. break;
  473. }
  474. params.lora_base = argv[i];
  475. } else if (arg == "--mmproj") {
  476. if (++i >= argc) {
  477. invalid_param = true;
  478. break;
  479. }
  480. params.mmproj = argv[i];
  481. } else if (arg == "--image") {
  482. if (++i >= argc) {
  483. invalid_param = true;
  484. break;
  485. }
  486. params.image = argv[i];
  487. } else if (arg == "-i" || arg == "--interactive") {
  488. params.interactive = true;
  489. } else if (arg == "--embedding") {
  490. params.embedding = true;
  491. } else if (arg == "--interactive-first") {
  492. params.interactive_first = true;
  493. } else if (arg == "-ins" || arg == "--instruct") {
  494. params.instruct = true;
  495. } else if (arg == "-cml" || arg == "--chatml") {
  496. params.chatml = true;
  497. } else if (arg == "--infill") {
  498. params.infill = true;
  499. } else if (arg == "-dkvc" || arg == "--dump-kv-cache") {
  500. params.dump_kv_cache = true;
  501. } else if (arg == "--multiline-input") {
  502. params.multiline_input = true;
  503. } else if (arg == "--simple-io") {
  504. params.simple_io = true;
  505. } else if (arg == "-cb" || arg == "--cont-batching") {
  506. params.cont_batching = true;
  507. } else if (arg == "--color") {
  508. params.use_color = true;
  509. } else if (arg == "--mlock") {
  510. params.use_mlock = true;
  511. } else if (arg == "--gpu-layers" || arg == "-ngl" || arg == "--n-gpu-layers") {
  512. if (++i >= argc) {
  513. invalid_param = true;
  514. break;
  515. }
  516. #ifdef LLAMA_SUPPORTS_GPU_OFFLOAD
  517. params.n_gpu_layers = std::stoi(argv[i]);
  518. #else
  519. fprintf(stderr, "warning: not compiled with GPU offload support, --n-gpu-layers option will be ignored\n");
  520. fprintf(stderr, "warning: see main README.md for information on enabling GPU BLAS support\n");
  521. #endif
  522. } else if (arg == "--gpu-layers-draft" || arg == "-ngld" || arg == "--n-gpu-layers-draft") {
  523. if (++i >= argc) {
  524. invalid_param = true;
  525. break;
  526. }
  527. #ifdef LLAMA_SUPPORTS_GPU_OFFLOAD
  528. params.n_gpu_layers_draft = std::stoi(argv[i]);
  529. #else
  530. fprintf(stderr, "warning: not compiled with GPU offload support, --n-gpu-layers-draft option will be ignored\n");
  531. fprintf(stderr, "warning: see main README.md for information on enabling GPU BLAS support\n");
  532. #endif
  533. } else if (arg == "--main-gpu" || arg == "-mg") {
  534. if (++i >= argc) {
  535. invalid_param = true;
  536. break;
  537. }
  538. #ifdef GGML_USE_CUBLAS
  539. params.main_gpu = std::stoi(argv[i]);
  540. #else
  541. fprintf(stderr, "warning: llama.cpp was compiled without cuBLAS. It is not possible to set a main GPU.\n");
  542. #endif
  543. } else if (arg == "--tensor-split" || arg == "-ts") {
  544. if (++i >= argc) {
  545. invalid_param = true;
  546. break;
  547. }
  548. #ifdef GGML_USE_CUBLAS
  549. std::string arg_next = argv[i];
  550. // split string by , and /
  551. const std::regex regex{R"([,/]+)"};
  552. std::sregex_token_iterator it{arg_next.begin(), arg_next.end(), regex, -1};
  553. std::vector<std::string> split_arg{it, {}};
  554. GGML_ASSERT(split_arg.size() <= LLAMA_MAX_DEVICES);
  555. for (size_t i = 0; i < LLAMA_MAX_DEVICES; ++i) {
  556. if (i < split_arg.size()) {
  557. params.tensor_split[i] = std::stof(split_arg[i]);
  558. } else {
  559. params.tensor_split[i] = 0.0f;
  560. }
  561. }
  562. #else
  563. fprintf(stderr, "warning: llama.cpp was compiled without cuBLAS. It is not possible to set a tensor split.\n");
  564. #endif // GGML_USE_CUBLAS
  565. } else if (arg == "--no-mul-mat-q" || arg == "-nommq") {
  566. #ifdef GGML_USE_CUBLAS
  567. params.mul_mat_q = false;
  568. #else
  569. fprintf(stderr, "warning: llama.cpp was compiled without cuBLAS. Disabling mul_mat_q kernels has no effect.\n");
  570. #endif // GGML_USE_CUBLAS
  571. } else if (arg == "--no-mmap") {
  572. params.use_mmap = false;
  573. } else if (arg == "--numa") {
  574. params.numa = true;
  575. } else if (arg == "--verbose-prompt") {
  576. params.verbose_prompt = true;
  577. } else if (arg == "-r" || arg == "--reverse-prompt") {
  578. if (++i >= argc) {
  579. invalid_param = true;
  580. break;
  581. }
  582. params.antiprompt.push_back(argv[i]);
  583. } else if (arg == "-ld" || arg == "--logdir") {
  584. if (++i >= argc) {
  585. invalid_param = true;
  586. break;
  587. }
  588. params.logdir = argv[i];
  589. if (params.logdir.back() != DIRECTORY_SEPARATOR) {
  590. params.logdir += DIRECTORY_SEPARATOR;
  591. }
  592. } else if (arg == "--perplexity" || arg == "--all-logits") {
  593. params.logits_all = true;
  594. } else if (arg == "--ppl-stride") {
  595. if (++i >= argc) {
  596. invalid_param = true;
  597. break;
  598. }
  599. params.ppl_stride = std::stoi(argv[i]);
  600. } else if (arg == "--ppl-output-type") {
  601. if (++i >= argc) {
  602. invalid_param = true;
  603. break;
  604. }
  605. params.ppl_output_type = std::stoi(argv[i]);
  606. } else if (arg == "--hellaswag") {
  607. params.hellaswag = true;
  608. } else if (arg == "--hellaswag-tasks") {
  609. if (++i >= argc) {
  610. invalid_param = true;
  611. break;
  612. }
  613. params.hellaswag_tasks = std::stoi(argv[i]);
  614. } else if (arg == "--ignore-eos") {
  615. params.ignore_eos = true;
  616. } else if (arg == "--no-penalize-nl") {
  617. sparams.penalize_nl = false;
  618. } else if (arg == "-l" || arg == "--logit-bias") {
  619. if (++i >= argc) {
  620. invalid_param = true;
  621. break;
  622. }
  623. std::stringstream ss(argv[i]);
  624. llama_token key;
  625. char sign;
  626. std::string value_str;
  627. try {
  628. if (ss >> key && ss >> sign && std::getline(ss, value_str) && (sign == '+' || sign == '-')) {
  629. sparams.logit_bias[key] = std::stof(value_str) * ((sign == '-') ? -1.0f : 1.0f);
  630. } else {
  631. throw std::exception();
  632. }
  633. } catch (const std::exception&) {
  634. invalid_param = true;
  635. break;
  636. }
  637. } else if (arg == "-h" || arg == "--help") {
  638. return false;
  639. } else if (arg == "--random-prompt") {
  640. params.random_prompt = true;
  641. } else if (arg == "--in-prefix-bos") {
  642. params.input_prefix_bos = true;
  643. } else if (arg == "--in-prefix") {
  644. if (++i >= argc) {
  645. invalid_param = true;
  646. break;
  647. }
  648. params.input_prefix = argv[i];
  649. } else if (arg == "--in-suffix") {
  650. if (++i >= argc) {
  651. invalid_param = true;
  652. break;
  653. }
  654. params.input_suffix = argv[i];
  655. } else if (arg == "--grammar") {
  656. if (++i >= argc) {
  657. invalid_param = true;
  658. break;
  659. }
  660. sparams.grammar = argv[i];
  661. } else if (arg == "--grammar-file") {
  662. if (++i >= argc) {
  663. invalid_param = true;
  664. break;
  665. }
  666. std::ifstream file(argv[i]);
  667. if (!file) {
  668. fprintf(stderr, "error: failed to open file '%s'\n", argv[i]);
  669. invalid_param = true;
  670. break;
  671. }
  672. std::copy(
  673. std::istreambuf_iterator<char>(file),
  674. std::istreambuf_iterator<char>(),
  675. std::back_inserter(sparams.grammar)
  676. );
  677. } else if (arg == "--override-kv") {
  678. if (++i >= argc) {
  679. invalid_param = true;
  680. break;
  681. }
  682. char * sep = strchr(argv[i], '=');
  683. if (sep == nullptr || sep - argv[i] >= 128) {
  684. fprintf(stderr, "error: Malformed KV override: %s\n", argv[i]);
  685. invalid_param = true;
  686. break;
  687. }
  688. struct llama_model_kv_override kvo;
  689. std::strncpy(kvo.key, argv[i], sep - argv[i]);
  690. kvo.key[sep - argv[i]] = 0;
  691. sep++;
  692. if (strncmp(sep, "int:", 4) == 0) {
  693. sep += 4;
  694. kvo.tag = LLAMA_KV_OVERRIDE_INT;
  695. kvo.int_value = std::atol(sep);
  696. } else if (strncmp(sep, "float:", 6) == 0) {
  697. sep += 6;
  698. kvo.tag = LLAMA_KV_OVERRIDE_FLOAT;
  699. kvo.float_value = std::atof(sep);
  700. } else if (strncmp(sep, "bool:", 5) == 0) {
  701. sep += 5;
  702. kvo.tag = LLAMA_KV_OVERRIDE_BOOL;
  703. if (std::strcmp(sep, "true") == 0) {
  704. kvo.bool_value = true;
  705. } else if (std::strcmp(sep, "false") == 0) {
  706. kvo.bool_value = false;
  707. } else {
  708. fprintf(stderr, "error: Invalid boolean value for KV override: %s\n", argv[i]);
  709. invalid_param = true;
  710. break;
  711. }
  712. } else {
  713. fprintf(stderr, "error: Invalid type for KV override: %s\n", argv[i]);
  714. invalid_param = true;
  715. break;
  716. }
  717. params.kv_overrides.push_back(kvo);
  718. #ifndef LOG_DISABLE_LOGS
  719. // Parse args for logging parameters
  720. } else if ( log_param_single_parse( argv[i] ) ) {
  721. // Do nothing, log_param_single_parse automatically does it's thing
  722. // and returns if a match was found and parsed.
  723. } else if ( log_param_pair_parse( /*check_but_dont_parse*/ true, argv[i] ) ) {
  724. // We have a matching known parameter requiring an argument,
  725. // now we need to check if there is anything after this argv
  726. // and flag invalid_param or parse it.
  727. if (++i >= argc) {
  728. invalid_param = true;
  729. break;
  730. }
  731. if( !log_param_pair_parse( /*check_but_dont_parse*/ false, argv[i-1], argv[i]) ) {
  732. invalid_param = true;
  733. break;
  734. }
  735. // End of Parse args for logging parameters
  736. #endif // LOG_DISABLE_LOGS
  737. } else {
  738. throw std::invalid_argument("error: unknown argument: " + arg);
  739. }
  740. }
  741. if (invalid_param) {
  742. throw std::invalid_argument("error: invalid parameter for argument: " + arg);
  743. }
  744. if (params.prompt_cache_all &&
  745. (params.interactive || params.interactive_first ||
  746. params.instruct)) {
  747. throw std::invalid_argument("error: --prompt-cache-all not supported in interactive mode yet\n");
  748. }
  749. if (params.escape) {
  750. process_escapes(params.prompt);
  751. process_escapes(params.input_prefix);
  752. process_escapes(params.input_suffix);
  753. process_escapes(sparams.cfg_negative_prompt);
  754. for (auto & antiprompt : params.antiprompt) {
  755. process_escapes(antiprompt);
  756. }
  757. }
  758. if (!params.kv_overrides.empty()) {
  759. params.kv_overrides.emplace_back(llama_model_kv_override());
  760. params.kv_overrides.back().key[0] = 0;
  761. }
  762. return true;
  763. }
  764. void gpt_print_usage(int /*argc*/, char ** argv, const gpt_params & params) {
  765. const llama_sampling_params & sparams = params.sparams;
  766. printf("\n");
  767. printf("usage: %s [options]\n", argv[0]);
  768. printf("\n");
  769. printf("options:\n");
  770. printf(" -h, --help show this help message and exit\n");
  771. printf(" -i, --interactive run in interactive mode\n");
  772. printf(" --interactive-first run in interactive mode and wait for input right away\n");
  773. printf(" -ins, --instruct run in instruction mode (use with Alpaca models)\n");
  774. printf(" -cml, --chatml run in chatml mode (use with ChatML-compatible models)\n");
  775. printf(" --multiline-input allows you to write or paste multiple lines without ending each in '\\'\n");
  776. printf(" -r PROMPT, --reverse-prompt PROMPT\n");
  777. printf(" halt generation at PROMPT, return control in interactive mode\n");
  778. printf(" (can be specified more than once for multiple prompts).\n");
  779. printf(" --color colorise output to distinguish prompt and user input from generations\n");
  780. printf(" -s SEED, --seed SEED RNG seed (default: -1, use random seed for < 0)\n");
  781. printf(" -t N, --threads N number of threads to use during generation (default: %d)\n", params.n_threads);
  782. printf(" -tb N, --threads-batch N\n");
  783. printf(" number of threads to use during batch and prompt processing (default: same as --threads)\n");
  784. printf(" -p PROMPT, --prompt PROMPT\n");
  785. printf(" prompt to start generation with (default: empty)\n");
  786. printf(" -e, --escape process prompt escapes sequences (\\n, \\r, \\t, \\', \\\", \\\\)\n");
  787. printf(" --prompt-cache FNAME file to cache prompt state for faster startup (default: none)\n");
  788. printf(" --prompt-cache-all if specified, saves user input and generations to cache as well.\n");
  789. printf(" not supported with --interactive or other interactive options\n");
  790. printf(" --prompt-cache-ro if specified, uses the prompt cache but does not update it.\n");
  791. printf(" --random-prompt start with a randomized prompt.\n");
  792. printf(" --in-prefix-bos prefix BOS to user inputs, preceding the `--in-prefix` string\n");
  793. printf(" --in-prefix STRING string to prefix user inputs with (default: empty)\n");
  794. printf(" --in-suffix STRING string to suffix after user inputs with (default: empty)\n");
  795. printf(" -f FNAME, --file FNAME\n");
  796. printf(" prompt file to start generation.\n");
  797. printf(" -n N, --n-predict N number of tokens to predict (default: %d, -1 = infinity, -2 = until context filled)\n", params.n_predict);
  798. printf(" -c N, --ctx-size N size of the prompt context (default: %d, 0 = loaded from model)\n", params.n_ctx);
  799. printf(" -b N, --batch-size N batch size for prompt processing (default: %d)\n", params.n_batch);
  800. printf(" --samplers samplers that will be used for generation in the order, separated by \';\', for example: \"top_k;tfs;typical;top_p;min_p;temp\"\n");
  801. printf(" --sampling-seq simplified sequence for samplers that will be used (default: %s)\n", sparams.samplers_sequence.c_str());
  802. printf(" --top-k N top-k sampling (default: %d, 0 = disabled)\n", sparams.top_k);
  803. printf(" --top-p N top-p sampling (default: %.1f, 1.0 = disabled)\n", (double)sparams.top_p);
  804. printf(" --min-p N min-p sampling (default: %.1f, 0.0 = disabled)\n", (double)sparams.min_p);
  805. printf(" --tfs N tail free sampling, parameter z (default: %.1f, 1.0 = disabled)\n", (double)sparams.tfs_z);
  806. printf(" --typical N locally typical sampling, parameter p (default: %.1f, 1.0 = disabled)\n", (double)sparams.typical_p);
  807. printf(" --repeat-last-n N last n tokens to consider for penalize (default: %d, 0 = disabled, -1 = ctx_size)\n", sparams.penalty_last_n);
  808. printf(" --repeat-penalty N penalize repeat sequence of tokens (default: %.1f, 1.0 = disabled)\n", (double)sparams.penalty_repeat);
  809. printf(" --presence-penalty N repeat alpha presence penalty (default: %.1f, 0.0 = disabled)\n", (double)sparams.penalty_present);
  810. printf(" --frequency-penalty N repeat alpha frequency penalty (default: %.1f, 0.0 = disabled)\n", (double)sparams.penalty_freq);
  811. printf(" --mirostat N use Mirostat sampling.\n");
  812. printf(" Top K, Nucleus, Tail Free and Locally Typical samplers are ignored if used.\n");
  813. printf(" (default: %d, 0 = disabled, 1 = Mirostat, 2 = Mirostat 2.0)\n", sparams.mirostat);
  814. printf(" --mirostat-lr N Mirostat learning rate, parameter eta (default: %.1f)\n", (double)sparams.mirostat_eta);
  815. printf(" --mirostat-ent N Mirostat target entropy, parameter tau (default: %.1f)\n", (double)sparams.mirostat_tau);
  816. printf(" -l TOKEN_ID(+/-)BIAS, --logit-bias TOKEN_ID(+/-)BIAS\n");
  817. printf(" modifies the likelihood of token appearing in the completion,\n");
  818. printf(" i.e. `--logit-bias 15043+1` to increase likelihood of token ' Hello',\n");
  819. printf(" or `--logit-bias 15043-1` to decrease likelihood of token ' Hello'\n");
  820. printf(" --grammar GRAMMAR BNF-like grammar to constrain generations (see samples in grammars/ dir)\n");
  821. printf(" --grammar-file FNAME file to read grammar from\n");
  822. printf(" --cfg-negative-prompt PROMPT\n");
  823. printf(" negative prompt to use for guidance. (default: empty)\n");
  824. printf(" --cfg-negative-prompt-file FNAME\n");
  825. printf(" negative prompt file to use for guidance. (default: empty)\n");
  826. printf(" --cfg-scale N strength of guidance (default: %f, 1.0 = disable)\n", sparams.cfg_scale);
  827. printf(" --rope-scaling {none,linear,yarn}\n");
  828. printf(" RoPE frequency scaling method, defaults to linear unless specified by the model\n");
  829. printf(" --rope-scale N RoPE context scaling factor, expands context by a factor of N\n");
  830. printf(" --rope-freq-base N RoPE base frequency, used by NTK-aware scaling (default: loaded from model)\n");
  831. printf(" --rope-freq-scale N RoPE frequency scaling factor, expands context by a factor of 1/N\n");
  832. printf(" --yarn-orig-ctx N YaRN: original context size of model (default: 0 = model training context size)\n");
  833. printf(" --yarn-ext-factor N YaRN: extrapolation mix factor (default: 1.0, 0.0 = full interpolation)\n");
  834. printf(" --yarn-attn-factor N YaRN: scale sqrt(t) or attention magnitude (default: 1.0)\n");
  835. printf(" --yarn-beta-slow N YaRN: high correction dim or alpha (default: %.1f)\n", params.yarn_beta_slow);
  836. printf(" --yarn-beta-fast N YaRN: low correction dim or beta (default: %.1f)\n", params.yarn_beta_fast);
  837. printf(" --ignore-eos ignore end of stream token and continue generating (implies --logit-bias 2-inf)\n");
  838. printf(" --no-penalize-nl do not penalize newline token\n");
  839. printf(" --memory-f32 use f32 instead of f16 for memory key+value (default: disabled)\n");
  840. printf(" not recommended: doubles context memory required and no measurable increase in quality\n");
  841. printf(" --temp N temperature (default: %.1f)\n", (double)sparams.temp);
  842. printf(" --logits-all return logits for all tokens in the batch (default: disabled)\n");
  843. printf(" --hellaswag compute HellaSwag score over random tasks from datafile supplied with -f\n");
  844. printf(" --hellaswag-tasks N number of tasks to use when computing the HellaSwag score (default: %zu)\n", params.hellaswag_tasks);
  845. printf(" --keep N number of tokens to keep from the initial prompt (default: %d, -1 = all)\n", params.n_keep);
  846. printf(" --draft N number of tokens to draft for speculative decoding (default: %d)\n", params.n_draft);
  847. printf(" --chunks N max number of chunks to process (default: %d, -1 = all)\n", params.n_chunks);
  848. printf(" -np N, --parallel N number of parallel sequences to decode (default: %d)\n", params.n_parallel);
  849. printf(" -ns N, --sequences N number of sequences to decode (default: %d)\n", params.n_sequences);
  850. printf(" -pa N, --p-accept N speculative decoding accept probability (default: %.1f)\n", (double)params.p_accept);
  851. printf(" -ps N, --p-split N speculative decoding split probability (default: %.1f)\n", (double)params.p_split);
  852. printf(" -cb, --cont-batching enable continuous batching (a.k.a dynamic batching) (default: disabled)\n");
  853. printf(" --mmproj MMPROJ_FILE path to a multimodal projector file for LLaVA. see examples/llava/README.md\n");
  854. printf(" --image IMAGE_FILE path to an image file. use with multimodal models\n");
  855. if (llama_mlock_supported()) {
  856. printf(" --mlock force system to keep model in RAM rather than swapping or compressing\n");
  857. }
  858. if (llama_mmap_supported()) {
  859. printf(" --no-mmap do not memory-map model (slower load but may reduce pageouts if not using mlock)\n");
  860. }
  861. printf(" --numa attempt optimizations that help on some NUMA systems\n");
  862. printf(" if run without this previously, it is recommended to drop the system page cache before using this\n");
  863. printf(" see https://github.com/ggerganov/llama.cpp/issues/1437\n");
  864. #ifdef LLAMA_SUPPORTS_GPU_OFFLOAD
  865. printf(" -ngl N, --n-gpu-layers N\n");
  866. printf(" number of layers to store in VRAM\n");
  867. printf(" -ngld N, --n-gpu-layers-draft N\n");
  868. printf(" number of layers to store in VRAM for the draft model\n");
  869. printf(" -ts SPLIT --tensor-split SPLIT\n");
  870. printf(" how to split tensors across multiple GPUs, comma-separated list of proportions, e.g. 3,1\n");
  871. printf(" -mg i, --main-gpu i the GPU to use for scratch and small tensors\n");
  872. #ifdef GGML_USE_CUBLAS
  873. printf(" -nommq, --no-mul-mat-q\n");
  874. printf(" use " GGML_CUBLAS_NAME " instead of custom mul_mat_q " GGML_CUDA_NAME " kernels.\n");
  875. printf(" Not recommended since this is both slower and uses more VRAM.\n");
  876. #endif // GGML_USE_CUBLAS
  877. #endif
  878. printf(" --verbose-prompt print prompt before generation\n");
  879. printf(" -dkvc, --dump-kv-cache\n");
  880. printf(" verbose print of the KV cache\n");
  881. printf(" --simple-io use basic IO for better compatibility in subprocesses and limited consoles\n");
  882. printf(" --lora FNAME apply LoRA adapter (implies --no-mmap)\n");
  883. printf(" --lora-scaled FNAME S apply LoRA adapter with user defined scaling S (implies --no-mmap)\n");
  884. printf(" --lora-base FNAME optional model to use as a base for the layers modified by the LoRA adapter\n");
  885. printf(" -m FNAME, --model FNAME\n");
  886. printf(" model path (default: %s)\n", params.model.c_str());
  887. printf(" -md FNAME, --model-draft FNAME\n");
  888. printf(" draft model for speculative decoding (default: %s)\n", params.model.c_str());
  889. printf(" -ld LOGDIR, --logdir LOGDIR\n");
  890. printf(" path under which to save YAML logs (no logging if unset)\n");
  891. printf(" --override-kv KEY=TYPE:VALUE\n");
  892. printf(" advanced option to override model metadata by key. may be specified multiple times.\n");
  893. printf(" types: int, float, bool. example: --override-kv tokenizer.ggml.add_bos_token=bool:false\n");
  894. printf("\n");
  895. #ifndef LOG_DISABLE_LOGS
  896. log_print_usage();
  897. #endif // LOG_DISABLE_LOGS
  898. }
  899. std::string get_system_info(const gpt_params & params) {
  900. std::ostringstream os;
  901. os << "system_info: n_threads = " << params.n_threads;
  902. if (params.n_threads_batch != -1) {
  903. os << " (n_threads_batch = " << params.n_threads_batch << ")";
  904. }
  905. os << " / " << std::thread::hardware_concurrency() << " | " << llama_print_system_info();
  906. return os.str();
  907. }
  908. std::string gpt_random_prompt(std::mt19937 & rng) {
  909. const int r = rng() % 10;
  910. switch (r) {
  911. case 0: return "So";
  912. case 1: return "Once upon a time";
  913. case 2: return "When";
  914. case 3: return "The";
  915. case 4: return "After";
  916. case 5: return "If";
  917. case 6: return "import";
  918. case 7: return "He";
  919. case 8: return "She";
  920. case 9: return "They";
  921. }
  922. GGML_UNREACHABLE();
  923. }
  924. //
  925. // String parsing
  926. //
  927. std::string parse_samplers_input(std::string input) {
  928. std::string output = "";
  929. // since samplers names are written multiple ways
  930. // make it ready for both system names and input names
  931. std::unordered_map<std::string, char> samplers_symbols {
  932. {"top_k", 'k'},
  933. {"top-k", 'k'},
  934. {"top_p", 'p'},
  935. {"top-p", 'p'},
  936. {"nucleus", 'p'},
  937. {"typical_p", 'y'},
  938. {"typical-p", 'y'},
  939. {"typical", 'y'},
  940. {"min_p", 'm'},
  941. {"min-p", 'm'},
  942. {"tfs_z", 'f'},
  943. {"tfs-z", 'f'},
  944. {"tfs", 'f'},
  945. {"temp", 't'},
  946. {"temperature",'t'}
  947. };
  948. // expected format example: "temp;top_k;tfs_z;typical_p;top_p;min_p"
  949. size_t separator = input.find(';');
  950. while (separator != input.npos) {
  951. std::string name = input.substr(0,separator);
  952. input = input.substr(separator+1);
  953. separator = input.find(';');
  954. if (samplers_symbols.find(name) != samplers_symbols.end()) {
  955. output += samplers_symbols[name];
  956. }
  957. }
  958. if (samplers_symbols.find(input) != samplers_symbols.end()) {
  959. output += samplers_symbols[input];
  960. }
  961. return output;
  962. }
  963. //
  964. // Model utils
  965. //
  966. struct llama_model_params llama_model_params_from_gpt_params(const gpt_params & params) {
  967. auto mparams = llama_model_default_params();
  968. if (params.n_gpu_layers != -1) {
  969. mparams.n_gpu_layers = params.n_gpu_layers;
  970. }
  971. mparams.main_gpu = params.main_gpu;
  972. mparams.tensor_split = params.tensor_split;
  973. mparams.use_mmap = params.use_mmap;
  974. mparams.use_mlock = params.use_mlock;
  975. if (params.kv_overrides.empty()) {
  976. mparams.kv_overrides = NULL;
  977. } else {
  978. GGML_ASSERT(params.kv_overrides.back().key[0] == 0 && "KV overrides not terminated with empty key");
  979. mparams.kv_overrides = params.kv_overrides.data();
  980. }
  981. return mparams;
  982. }
  983. struct llama_context_params llama_context_params_from_gpt_params(const gpt_params & params) {
  984. auto cparams = llama_context_default_params();
  985. cparams.n_ctx = params.n_ctx;
  986. cparams.n_batch = params.n_batch;
  987. cparams.n_threads = params.n_threads;
  988. cparams.n_threads_batch = params.n_threads_batch == -1 ? params.n_threads : params.n_threads_batch;
  989. cparams.mul_mat_q = params.mul_mat_q;
  990. cparams.seed = params.seed;
  991. cparams.f16_kv = params.memory_f16;
  992. cparams.logits_all = params.logits_all;
  993. cparams.embedding = params.embedding;
  994. cparams.rope_scaling_type = params.rope_scaling_type;
  995. cparams.rope_freq_base = params.rope_freq_base;
  996. cparams.rope_freq_scale = params.rope_freq_scale;
  997. cparams.yarn_ext_factor = params.yarn_ext_factor;
  998. cparams.yarn_attn_factor = params.yarn_attn_factor;
  999. cparams.yarn_beta_fast = params.yarn_beta_fast;
  1000. cparams.yarn_beta_slow = params.yarn_beta_slow;
  1001. cparams.yarn_orig_ctx = params.yarn_orig_ctx;
  1002. return cparams;
  1003. }
  1004. void llama_batch_clear(struct llama_batch & batch) {
  1005. batch.n_tokens = 0;
  1006. }
  1007. void llama_batch_add(
  1008. struct llama_batch & batch,
  1009. llama_token id,
  1010. llama_pos pos,
  1011. const std::vector<llama_seq_id> & seq_ids,
  1012. bool logits) {
  1013. batch.token [batch.n_tokens] = id;
  1014. batch.pos [batch.n_tokens] = pos;
  1015. batch.n_seq_id[batch.n_tokens] = seq_ids.size();
  1016. for (size_t i = 0; i < seq_ids.size(); ++i) {
  1017. batch.seq_id[batch.n_tokens][i] = seq_ids[i];
  1018. }
  1019. batch.logits [batch.n_tokens] = logits;
  1020. batch.n_tokens++;
  1021. }
  1022. std::tuple<struct llama_model *, struct llama_context *> llama_init_from_gpt_params(gpt_params & params) {
  1023. auto mparams = llama_model_params_from_gpt_params(params);
  1024. llama_model * model = llama_load_model_from_file(params.model.c_str(), mparams);
  1025. if (model == NULL) {
  1026. fprintf(stderr, "%s: error: failed to load model '%s'\n", __func__, params.model.c_str());
  1027. return std::make_tuple(nullptr, nullptr);
  1028. }
  1029. auto cparams = llama_context_params_from_gpt_params(params);
  1030. llama_context * lctx = llama_new_context_with_model(model, cparams);
  1031. if (lctx == NULL) {
  1032. fprintf(stderr, "%s: error: failed to create context with model '%s'\n", __func__, params.model.c_str());
  1033. llama_free_model(model);
  1034. return std::make_tuple(nullptr, nullptr);
  1035. }
  1036. for (unsigned int i = 0; i < params.lora_adapter.size(); ++i) {
  1037. const std::string& lora_adapter = std::get<0>(params.lora_adapter[i]);
  1038. float lora_scale = std::get<1>(params.lora_adapter[i]);
  1039. int err = llama_model_apply_lora_from_file(model,
  1040. lora_adapter.c_str(),
  1041. lora_scale,
  1042. ((i > 0) || params.lora_base.empty())
  1043. ? NULL
  1044. : params.lora_base.c_str(),
  1045. params.n_threads);
  1046. if (err != 0) {
  1047. fprintf(stderr, "%s: error: failed to apply lora adapter\n", __func__);
  1048. llama_free(lctx);
  1049. llama_free_model(model);
  1050. return std::make_tuple(nullptr, nullptr);
  1051. }
  1052. }
  1053. if (params.ignore_eos) {
  1054. params.sparams.logit_bias[llama_token_eos(model)] = -INFINITY;
  1055. }
  1056. {
  1057. LOG("warming up the model with an empty run\n");
  1058. std::vector<llama_token> tmp = { llama_token_bos(model), llama_token_eos(model), };
  1059. llama_decode(lctx, llama_batch_get_one(tmp.data(), std::min(tmp.size(), (size_t) params.n_batch), 0, 0));
  1060. llama_kv_cache_clear(lctx);
  1061. llama_reset_timings(lctx);
  1062. }
  1063. return std::make_tuple(model, lctx);
  1064. }
  1065. //
  1066. // Vocab utils
  1067. //
  1068. std::vector<llama_token> llama_tokenize(
  1069. const struct llama_context * ctx,
  1070. const std::string & text,
  1071. bool add_bos,
  1072. bool special) {
  1073. return llama_tokenize(llama_get_model(ctx), text, add_bos, special);
  1074. }
  1075. std::vector<llama_token> llama_tokenize(
  1076. const struct llama_model * model,
  1077. const std::string & text,
  1078. bool add_bos,
  1079. bool special) {
  1080. // upper limit for the number of tokens
  1081. int n_tokens = text.length() + add_bos;
  1082. std::vector<llama_token> result(n_tokens);
  1083. n_tokens = llama_tokenize(model, text.data(), text.length(), result.data(), result.size(), add_bos, special);
  1084. if (n_tokens < 0) {
  1085. result.resize(-n_tokens);
  1086. int check = llama_tokenize(model, text.data(), text.length(), result.data(), result.size(), add_bos, special);
  1087. GGML_ASSERT(check == -n_tokens);
  1088. } else {
  1089. result.resize(n_tokens);
  1090. }
  1091. return result;
  1092. }
  1093. std::string llama_token_to_piece(const struct llama_context * ctx, llama_token token) {
  1094. std::vector<char> result(8, 0);
  1095. const int n_tokens = llama_token_to_piece(llama_get_model(ctx), token, result.data(), result.size());
  1096. if (n_tokens < 0) {
  1097. result.resize(-n_tokens);
  1098. int check = llama_token_to_piece(llama_get_model(ctx), token, result.data(), result.size());
  1099. GGML_ASSERT(check == -n_tokens);
  1100. } else {
  1101. result.resize(n_tokens);
  1102. }
  1103. return std::string(result.data(), result.size());
  1104. }
  1105. std::string llama_detokenize_spm(llama_context * ctx, const std::vector<llama_token> & tokens) {
  1106. const llama_token bos_id = llama_token_bos(llama_get_model(ctx));
  1107. std::string piece;
  1108. std::string result;
  1109. for (size_t i = 0; i < tokens.size(); ++i) {
  1110. piece = llama_token_to_piece(ctx, tokens[i]);
  1111. // remove the leading space of the first non-BOS token
  1112. if (((tokens[0] == bos_id && i == 1) || (tokens[0] != bos_id && i == 0)) && piece[0] == ' ') {
  1113. piece = piece.substr(1);
  1114. }
  1115. result += piece;
  1116. }
  1117. return result;
  1118. }
  1119. std::string llama_detokenize_bpe(llama_context * ctx, const std::vector<llama_token> & tokens) {
  1120. std::string piece;
  1121. std::string result;
  1122. for (size_t i = 0; i < tokens.size(); ++i) {
  1123. piece = llama_token_to_piece(ctx, tokens[i]);
  1124. result += piece;
  1125. }
  1126. // NOTE: the original tokenizer decodes bytes after collecting the pieces.
  1127. return result;
  1128. }
  1129. bool llama_should_add_bos_token(const llama_model * model) {
  1130. const int add_bos = llama_add_bos_token(model);
  1131. return add_bos != -1 ? bool(add_bos) : (llama_vocab_type(model) == LLAMA_VOCAB_TYPE_SPM);
  1132. }
  1133. //
  1134. // YAML utils
  1135. //
  1136. // returns true if successful, false otherwise
  1137. bool create_directory_with_parents(const std::string & path) {
  1138. #ifdef _WIN32
  1139. std::wstring_convert<std::codecvt_utf8<wchar_t>> converter;
  1140. std::wstring wpath = converter.from_bytes(path);
  1141. // if the path already exists, check whether it's a directory
  1142. const DWORD attributes = GetFileAttributesW(wpath.c_str());
  1143. if ((attributes != INVALID_FILE_ATTRIBUTES) && (attributes & FILE_ATTRIBUTE_DIRECTORY)) {
  1144. return true;
  1145. }
  1146. size_t pos_slash = 0;
  1147. // process path from front to back, procedurally creating directories
  1148. while ((pos_slash = path.find('\\', pos_slash)) != std::string::npos) {
  1149. const std::wstring subpath = wpath.substr(0, pos_slash);
  1150. const wchar_t * test = subpath.c_str();
  1151. const bool success = CreateDirectoryW(test, NULL);
  1152. if (!success) {
  1153. const DWORD error = GetLastError();
  1154. // if the path already exists, ensure that it's a directory
  1155. if (error == ERROR_ALREADY_EXISTS) {
  1156. const DWORD attributes = GetFileAttributesW(subpath.c_str());
  1157. if (attributes == INVALID_FILE_ATTRIBUTES || !(attributes & FILE_ATTRIBUTE_DIRECTORY)) {
  1158. return false;
  1159. }
  1160. } else {
  1161. return false;
  1162. }
  1163. }
  1164. pos_slash += 1;
  1165. }
  1166. return true;
  1167. #else
  1168. // if the path already exists, check whether it's a directory
  1169. struct stat info;
  1170. if (stat(path.c_str(), &info) == 0) {
  1171. return S_ISDIR(info.st_mode);
  1172. }
  1173. size_t pos_slash = 1; // skip leading slashes for directory creation
  1174. // process path from front to back, procedurally creating directories
  1175. while ((pos_slash = path.find('/', pos_slash)) != std::string::npos) {
  1176. const std::string subpath = path.substr(0, pos_slash);
  1177. struct stat info;
  1178. // if the path already exists, ensure that it's a directory
  1179. if (stat(subpath.c_str(), &info) == 0) {
  1180. if (!S_ISDIR(info.st_mode)) {
  1181. return false;
  1182. }
  1183. } else {
  1184. // create parent directories
  1185. const int ret = mkdir(subpath.c_str(), 0755);
  1186. if (ret != 0) {
  1187. return false;
  1188. }
  1189. }
  1190. pos_slash += 1;
  1191. }
  1192. return true;
  1193. #endif // _WIN32
  1194. }
  1195. void dump_vector_float_yaml(FILE * stream, const char * prop_name, const std::vector<float> & data) {
  1196. if (data.empty()) {
  1197. fprintf(stream, "%s:\n", prop_name);
  1198. return;
  1199. }
  1200. fprintf(stream, "%s: [", prop_name);
  1201. for (size_t i = 0; i < data.size() - 1; ++i) {
  1202. fprintf(stream, "%e, ", data[i]);
  1203. }
  1204. fprintf(stream, "%e]\n", data.back());
  1205. }
  1206. void dump_vector_int_yaml(FILE * stream, const char * prop_name, const std::vector<int> & data) {
  1207. if (data.empty()) {
  1208. fprintf(stream, "%s:\n", prop_name);
  1209. return;
  1210. }
  1211. fprintf(stream, "%s: [", prop_name);
  1212. for (size_t i = 0; i < data.size() - 1; ++i) {
  1213. fprintf(stream, "%d, ", data[i]);
  1214. }
  1215. fprintf(stream, "%d]\n", data.back());
  1216. }
  1217. void dump_string_yaml_multiline(FILE * stream, const char * prop_name, const char * data) {
  1218. std::string data_str(data == NULL ? "" : data);
  1219. if (data_str.empty()) {
  1220. fprintf(stream, "%s:\n", prop_name);
  1221. return;
  1222. }
  1223. size_t pos_start = 0;
  1224. size_t pos_found = 0;
  1225. if (!data_str.empty() && (std::isspace(data_str[0]) || std::isspace(data_str.back()))) {
  1226. data_str = std::regex_replace(data_str, std::regex("\n"), "\\n");
  1227. data_str = std::regex_replace(data_str, std::regex("\""), "\\\"");
  1228. data_str = std::regex_replace(data_str, std::regex(R"(\\[^n"])"), R"(\$&)");
  1229. data_str = "\"" + data_str + "\"";
  1230. fprintf(stream, "%s: %s\n", prop_name, data_str.c_str());
  1231. return;
  1232. }
  1233. if (data_str.find('\n') == std::string::npos) {
  1234. fprintf(stream, "%s: %s\n", prop_name, data_str.c_str());
  1235. return;
  1236. }
  1237. fprintf(stream, "%s: |\n", prop_name);
  1238. while ((pos_found = data_str.find('\n', pos_start)) != std::string::npos) {
  1239. fprintf(stream, " %s\n", data_str.substr(pos_start, pos_found-pos_start).c_str());
  1240. pos_start = pos_found + 1;
  1241. }
  1242. }
  1243. std::string get_sortable_timestamp() {
  1244. using clock = std::chrono::system_clock;
  1245. const clock::time_point current_time = clock::now();
  1246. const time_t as_time_t = clock::to_time_t(current_time);
  1247. char timestamp_no_ns[100];
  1248. std::strftime(timestamp_no_ns, 100, "%Y_%m_%d-%H_%M_%S", std::localtime(&as_time_t));
  1249. const int64_t ns = std::chrono::duration_cast<std::chrono::nanoseconds>(
  1250. current_time.time_since_epoch() % 1000000000).count();
  1251. char timestamp_ns[11];
  1252. snprintf(timestamp_ns, 11, "%09" PRId64, ns);
  1253. return std::string(timestamp_no_ns) + "." + std::string(timestamp_ns);
  1254. }
  1255. void dump_non_result_info_yaml(FILE * stream, const gpt_params & params, const llama_context * lctx,
  1256. const std::string & timestamp, const std::vector<int> & prompt_tokens, const char * model_desc) {
  1257. const llama_sampling_params & sparams = params.sparams;
  1258. fprintf(stream, "build_commit: %s\n", LLAMA_COMMIT);
  1259. fprintf(stream, "build_number: %d\n", LLAMA_BUILD_NUMBER);
  1260. fprintf(stream, "cpu_has_arm_fma: %s\n", ggml_cpu_has_arm_fma() ? "true" : "false");
  1261. fprintf(stream, "cpu_has_avx: %s\n", ggml_cpu_has_avx() ? "true" : "false");
  1262. fprintf(stream, "cpu_has_avx2: %s\n", ggml_cpu_has_avx2() ? "true" : "false");
  1263. fprintf(stream, "cpu_has_avx512: %s\n", ggml_cpu_has_avx512() ? "true" : "false");
  1264. fprintf(stream, "cpu_has_avx512_vbmi: %s\n", ggml_cpu_has_avx512_vbmi() ? "true" : "false");
  1265. fprintf(stream, "cpu_has_avx512_vnni: %s\n", ggml_cpu_has_avx512_vnni() ? "true" : "false");
  1266. fprintf(stream, "cpu_has_blas: %s\n", ggml_cpu_has_blas() ? "true" : "false");
  1267. fprintf(stream, "cpu_has_cublas: %s\n", ggml_cpu_has_cublas() ? "true" : "false");
  1268. fprintf(stream, "cpu_has_clblast: %s\n", ggml_cpu_has_clblast() ? "true" : "false");
  1269. fprintf(stream, "cpu_has_fma: %s\n", ggml_cpu_has_fma() ? "true" : "false");
  1270. fprintf(stream, "cpu_has_gpublas: %s\n", ggml_cpu_has_gpublas() ? "true" : "false");
  1271. fprintf(stream, "cpu_has_neon: %s\n", ggml_cpu_has_neon() ? "true" : "false");
  1272. fprintf(stream, "cpu_has_f16c: %s\n", ggml_cpu_has_f16c() ? "true" : "false");
  1273. fprintf(stream, "cpu_has_fp16_va: %s\n", ggml_cpu_has_fp16_va() ? "true" : "false");
  1274. fprintf(stream, "cpu_has_wasm_simd: %s\n", ggml_cpu_has_wasm_simd() ? "true" : "false");
  1275. fprintf(stream, "cpu_has_blas: %s\n", ggml_cpu_has_blas() ? "true" : "false");
  1276. fprintf(stream, "cpu_has_sse3: %s\n", ggml_cpu_has_sse3() ? "true" : "false");
  1277. fprintf(stream, "cpu_has_vsx: %s\n", ggml_cpu_has_vsx() ? "true" : "false");
  1278. #ifdef NDEBUG
  1279. fprintf(stream, "debug: false\n");
  1280. #else
  1281. fprintf(stream, "debug: true\n");
  1282. #endif // NDEBUG
  1283. fprintf(stream, "model_desc: %s\n", model_desc);
  1284. fprintf(stream, "n_vocab: %d # output size of the final layer, 32001 for some models\n", llama_n_vocab(llama_get_model(lctx)));
  1285. #ifdef __OPTIMIZE__
  1286. fprintf(stream, "optimize: true\n");
  1287. #else
  1288. fprintf(stream, "optimize: false\n");
  1289. #endif // __OPTIMIZE__
  1290. fprintf(stream, "time: %s\n", timestamp.c_str());
  1291. fprintf(stream, "\n");
  1292. fprintf(stream, "###############\n");
  1293. fprintf(stream, "# User Inputs #\n");
  1294. fprintf(stream, "###############\n");
  1295. fprintf(stream, "\n");
  1296. fprintf(stream, "alias: %s # default: unknown\n", params.model_alias.c_str());
  1297. fprintf(stream, "batch_size: %d # default: 512\n", params.n_batch);
  1298. dump_string_yaml_multiline(stream, "cfg_negative_prompt", sparams.cfg_negative_prompt.c_str());
  1299. fprintf(stream, "cfg_scale: %f # default: 1.0\n", sparams.cfg_scale);
  1300. fprintf(stream, "chunks: %d # default: -1 (unlimited)\n", params.n_chunks);
  1301. fprintf(stream, "color: %s # default: false\n", params.use_color ? "true" : "false");
  1302. fprintf(stream, "ctx_size: %d # default: 512\n", params.n_ctx);
  1303. fprintf(stream, "escape: %s # default: false\n", params.escape ? "true" : "false");
  1304. fprintf(stream, "file: # never logged, see prompt instead. Can still be specified for input.\n");
  1305. fprintf(stream, "frequency_penalty: %f # default: 0.0 \n", sparams.penalty_freq);
  1306. dump_string_yaml_multiline(stream, "grammar", sparams.grammar.c_str());
  1307. fprintf(stream, "grammar-file: # never logged, see grammar instead. Can still be specified for input.\n");
  1308. fprintf(stream, "hellaswag: %s # default: false\n", params.hellaswag ? "true" : "false");
  1309. fprintf(stream, "hellaswag_tasks: %zu # default: 400\n", params.hellaswag_tasks);
  1310. const auto logit_bias_eos = sparams.logit_bias.find(llama_token_eos(llama_get_model(lctx)));
  1311. const bool ignore_eos = logit_bias_eos != sparams.logit_bias.end() && logit_bias_eos->second == -INFINITY;
  1312. fprintf(stream, "ignore_eos: %s # default: false\n", ignore_eos ? "true" : "false");
  1313. dump_string_yaml_multiline(stream, "in_prefix", params.input_prefix.c_str());
  1314. fprintf(stream, "in_prefix_bos: %s # default: false\n", params.input_prefix_bos ? "true" : "false");
  1315. dump_string_yaml_multiline(stream, "in_suffix", params.input_prefix.c_str());
  1316. fprintf(stream, "instruct: %s # default: false\n", params.instruct ? "true" : "false");
  1317. fprintf(stream, "interactive: %s # default: false\n", params.interactive ? "true" : "false");
  1318. fprintf(stream, "interactive_first: %s # default: false\n", params.interactive_first ? "true" : "false");
  1319. fprintf(stream, "keep: %d # default: 0\n", params.n_keep);
  1320. fprintf(stream, "logdir: %s # default: unset (no logging)\n", params.logdir.c_str());
  1321. fprintf(stream, "logit_bias:\n");
  1322. for (std::pair<llama_token, float> lb : sparams.logit_bias) {
  1323. if (ignore_eos && lb.first == logit_bias_eos->first) {
  1324. continue;
  1325. }
  1326. fprintf(stream, " %d: %f", lb.first, lb.second);
  1327. }
  1328. fprintf(stream, "lora:\n");
  1329. for (std::tuple<std::string, float> la : params.lora_adapter) {
  1330. if (std::get<1>(la) != 1.0f) {
  1331. continue;
  1332. }
  1333. fprintf(stream, " - %s\n", std::get<0>(la).c_str());
  1334. }
  1335. fprintf(stream, "lora_scaled:\n");
  1336. for (std::tuple<std::string, float> la : params.lora_adapter) {
  1337. if (std::get<1>(la) == 1.0f) {
  1338. continue;
  1339. }
  1340. fprintf(stream, " - %s: %f\n", std::get<0>(la).c_str(), std::get<1>(la));
  1341. }
  1342. fprintf(stream, "lora_base: %s\n", params.lora_base.c_str());
  1343. fprintf(stream, "main_gpu: %d # default: 0\n", params.main_gpu);
  1344. fprintf(stream, "memory_f32: %s # default: false\n", !params.memory_f16 ? "true" : "false");
  1345. fprintf(stream, "mirostat: %d # default: 0 (disabled)\n", sparams.mirostat);
  1346. fprintf(stream, "mirostat_ent: %f # default: 5.0\n", sparams.mirostat_tau);
  1347. fprintf(stream, "mirostat_lr: %f # default: 0.1\n", sparams.mirostat_eta);
  1348. fprintf(stream, "mlock: %s # default: false\n", params.use_mlock ? "true" : "false");
  1349. fprintf(stream, "model: %s # default: models/7B/ggml-model.bin\n", params.model.c_str());
  1350. fprintf(stream, "model_draft: %s # default:\n", params.model_draft.c_str());
  1351. fprintf(stream, "multiline_input: %s # default: false\n", params.multiline_input ? "true" : "false");
  1352. fprintf(stream, "n_gpu_layers: %d # default: -1\n", params.n_gpu_layers);
  1353. fprintf(stream, "n_predict: %d # default: -1 (unlimited)\n", params.n_predict);
  1354. fprintf(stream, "n_probs: %d # only used by server binary, default: 0\n", sparams.n_probs);
  1355. fprintf(stream, "no_mmap: %s # default: false\n", !params.use_mmap ? "true" : "false");
  1356. fprintf(stream, "no_mul_mat_q: %s # default: false\n", !params.mul_mat_q ? "true" : "false");
  1357. fprintf(stream, "no_penalize_nl: %s # default: false\n", !sparams.penalize_nl ? "true" : "false");
  1358. fprintf(stream, "numa: %s # default: false\n", params.numa ? "true" : "false");
  1359. fprintf(stream, "ppl_output_type: %d # default: 0\n", params.ppl_output_type);
  1360. fprintf(stream, "ppl_stride: %d # default: 0\n", params.ppl_stride);
  1361. fprintf(stream, "presence_penalty: %f # default: 0.0\n", sparams.penalty_present);
  1362. dump_string_yaml_multiline(stream, "prompt", params.prompt.c_str());
  1363. fprintf(stream, "prompt_cache: %s\n", params.path_prompt_cache.c_str());
  1364. fprintf(stream, "prompt_cache_all: %s # default: false\n", params.prompt_cache_all ? "true" : "false");
  1365. fprintf(stream, "prompt_cache_ro: %s # default: false\n", params.prompt_cache_ro ? "true" : "false");
  1366. dump_vector_int_yaml(stream, "prompt_tokens", prompt_tokens);
  1367. fprintf(stream, "random_prompt: %s # default: false\n", params.random_prompt ? "true" : "false");
  1368. fprintf(stream, "repeat_penalty: %f # default: 1.1\n", sparams.penalty_repeat);
  1369. fprintf(stream, "reverse_prompt:\n");
  1370. for (std::string ap : params.antiprompt) {
  1371. size_t pos = 0;
  1372. while ((pos = ap.find('\n', pos)) != std::string::npos) {
  1373. ap.replace(pos, 1, "\\n");
  1374. pos += 1;
  1375. }
  1376. fprintf(stream, " - %s\n", ap.c_str());
  1377. }
  1378. fprintf(stream, "rope_freq_base: %f # default: 10000.0\n", params.rope_freq_base);
  1379. fprintf(stream, "rope_freq_scale: %f # default: 1.0\n", params.rope_freq_scale);
  1380. fprintf(stream, "seed: %d # default: -1 (random seed)\n", params.seed);
  1381. fprintf(stream, "simple_io: %s # default: false\n", params.simple_io ? "true" : "false");
  1382. fprintf(stream, "cont_batching: %s # default: false\n", params.cont_batching ? "true" : "false");
  1383. fprintf(stream, "temp: %f # default: 0.8\n", sparams.temp);
  1384. const std::vector<float> tensor_split_vector(params.tensor_split, params.tensor_split + LLAMA_MAX_DEVICES);
  1385. dump_vector_float_yaml(stream, "tensor_split", tensor_split_vector);
  1386. fprintf(stream, "tfs: %f # default: 1.0\n", sparams.tfs_z);
  1387. fprintf(stream, "threads: %d # default: %d\n", params.n_threads, std::thread::hardware_concurrency());
  1388. fprintf(stream, "top_k: %d # default: 40\n", sparams.top_k);
  1389. fprintf(stream, "top_p: %f # default: 0.95\n", sparams.top_p);
  1390. fprintf(stream, "min_p: %f # default: 0.0\n", sparams.min_p);
  1391. fprintf(stream, "typical_p: %f # default: 1.0\n", sparams.typical_p);
  1392. fprintf(stream, "verbose_prompt: %s # default: false\n", params.verbose_prompt ? "true" : "false");
  1393. }
  1394. //
  1395. // KV cache utils
  1396. //
  1397. void dump_kv_cache_view(const llama_kv_cache_view & view, int row_size) {
  1398. static const char slot_chars[] = ".123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz+";
  1399. printf("=== Dumping KV cache. total cells %d, max sequences per cell %d, populated cells %d, total tokens in cache %d, largest empty slot=%d @ %d",
  1400. view.n_cells, view.n_max_seq, view.used_cells, view.token_count, view.max_contiguous, view.max_contiguous_idx);
  1401. llama_kv_cache_view_cell * c_curr = view.cells;
  1402. llama_seq_id * cs_curr = view.cells_sequences;
  1403. for (int i = 0; i < view.n_cells; i++, c_curr++, cs_curr += view.n_max_seq) {
  1404. if (i % row_size == 0) {
  1405. printf("\n%5d: ", i);
  1406. }
  1407. int seq_count = 0;
  1408. for (int j = 0; j < view.n_max_seq; j++) {
  1409. if (cs_curr[j] >= 0) { seq_count++; }
  1410. }
  1411. putchar(slot_chars[std::min(sizeof(slot_chars) - 2, size_t(seq_count))]);
  1412. }
  1413. printf("\n=== Done dumping\n");
  1414. }
  1415. void dump_kv_cache_view_seqs(const llama_kv_cache_view & view, int row_size) {
  1416. static const char slot_chars[] = "0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz";
  1417. printf("=== Dumping KV cache. total cells %d, max sequences per cell %d, populated cells %d, total tokens in cache %d, largest empty slot=%d @ %d\n",
  1418. view.n_cells, view.n_max_seq, view.used_cells, view.token_count, view.max_contiguous, view.max_contiguous_idx);
  1419. std::unordered_map<llama_seq_id, size_t> seqs;
  1420. llama_kv_cache_view_cell * c_curr = view.cells;
  1421. llama_seq_id * cs_curr = view.cells_sequences;
  1422. for (int i = 0; i < view.n_cells; i++, c_curr++, cs_curr += view.n_max_seq) {
  1423. for (int j = 0; j < view.n_max_seq; j++) {
  1424. if (cs_curr[j] < 0) { continue; }
  1425. if (seqs.find(cs_curr[j]) == seqs.end()) {
  1426. if (seqs.size() + 1 >= sizeof(slot_chars)) { break; }
  1427. seqs[cs_curr[j]] = seqs.size();
  1428. }
  1429. }
  1430. if (seqs.size() + 1 >= sizeof(slot_chars)) { break; }
  1431. }
  1432. printf("=== Sequence legend: ");
  1433. for (const auto & it : seqs) {
  1434. printf("%zu=%d, ", it.second, it.first);
  1435. }
  1436. printf("'+'=other sequence ids");
  1437. c_curr = view.cells;
  1438. cs_curr = view.cells_sequences;
  1439. for (int i = 0; i < view.n_cells; i++, c_curr++, cs_curr += view.n_max_seq) {
  1440. if (i % row_size == 0) {
  1441. printf("\n%5d: ", i);
  1442. }
  1443. for (int j = 0; j < view.n_max_seq; j++) {
  1444. if (cs_curr[j] >= 0) {
  1445. const auto & it = seqs.find(cs_curr[j]);
  1446. putchar(it != seqs.end() ? int(slot_chars[it->second]) : '+');
  1447. } else {
  1448. putchar('.');
  1449. }
  1450. }
  1451. putchar(' ');
  1452. }
  1453. printf("\n=== Done dumping\n");
  1454. }