| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284 |
- #include "getrows.cuh"
- #include "dequantize.cuh"
- #include "convert.cuh"
- template<int qk, int qr, dequantize_kernel_t dequantize_kernel, typename dst_t>
- static __global__ void k_get_rows(
- const void * __restrict__ src0, const int32_t * __restrict__ src1, dst_t * __restrict__ dst,
- const int64_t ne00, /*const int64_t ne01, const int64_t ne02, const int64_t ne03,*/
- /*const int64_t ne10, const int64_t ne11,*/ const int64_t ne12, /*const int64_t ne13,*/
- /*const size_t s0,*/ const size_t s1, const size_t s2, const size_t s3,
- /*const size_t nb00,*/ const size_t nb01, const size_t nb02, const size_t nb03,
- const size_t s10, const size_t s11, const size_t s12/*, const size_t s13*/) {
- // The x and y dimensions of the grid are swapped because the maximum allowed grid size for x is higher.
- const int i00 = (blockIdx.y * blockDim.x + threadIdx.x)*2;
- const int i10 = blockIdx.x;
- const int i11 = blockIdx.z / ne12;
- const int i12 = blockIdx.z % ne12;
- if (i00 >= ne00) {
- return;
- }
- const int i01 = src1[i10*s10 + i11*s11 + i12*s12];
- dst_t * dst_row = dst + i10*s1 + i11*s2 + i12*s3;
- const void * src0_row = (const char *) src0 + i01*nb01 + i11*nb02 + i12*nb03;
- const int ib = i00/qk; // block index
- const int iqs = (i00%qk)/qr; // quant index
- const int iybs = i00 - i00%qk; // dst block start index
- const int y_offset = qr == 1 ? 1 : qk/2;
- // dequantize
- dfloat2 v;
- dequantize_kernel(src0_row, ib, iqs, v);
- dst_row[iybs + iqs + 0] = ggml_cuda_cast<dst_t>(v.x);
- dst_row[iybs + iqs + y_offset] = ggml_cuda_cast<dst_t>(v.y);
- }
- template<typename src0_t, typename dst_t>
- static __global__ void k_get_rows_float(
- const src0_t * __restrict__ src0, const int32_t * __restrict__ src1, dst_t * __restrict__ dst,
- const int64_t ne00, /*const int64_t ne01, const int64_t ne02, const int64_t ne03,*/
- /*const int64_t ne10, const int64_t ne11,*/ const int64_t ne12, /*const int64_t ne13,*/
- /*const size_t s0,*/ const size_t s1, const size_t s2, const size_t s3,
- /*const size_t nb00,*/ const size_t nb01, const size_t nb02, const size_t nb03,
- const size_t s10, const size_t s11, const size_t s12/*, const size_t s13*/) {
- // The x and y dimensions of the grid are swapped because the maximum allowed grid size for x is higher.
- const int i00 = blockIdx.y * blockDim.x + threadIdx.x;
- const int i10 = blockIdx.x;
- const int i11 = blockIdx.z / ne12;
- const int i12 = blockIdx.z % ne12;
- if (i00 >= ne00) {
- return;
- }
- const int i01 = src1[i10*s10 + i11*s11 + i12*s12];
- dst_t * dst_row = dst + i10*s1 + i11*s2 + i12*s3;
- const src0_t * src0_row = (const src0_t *)((const char *) src0 + i01*nb01 + i11*nb02 + i12*nb03);
- dst_row[i00] = ggml_cuda_cast<dst_t>(src0_row[i00]);
- }
- template<typename grad_t, typename dst_t>
- static __global__ void k_get_rows_back_float(
- const grad_t * __restrict__ grad, const int32_t * __restrict__ rows, dst_t * __restrict__ dst, const int64_t ncols, const int64_t nrows_grad) {
- const int col = blockIdx.x*blockDim.x + threadIdx.x;
- if (col >= ncols) {
- return;
- }
- const int dst_row = blockIdx.y*blockDim.y + threadIdx.y;
- float sum = 0.0f;
- for (int64_t i = 0; i < nrows_grad; ++i) {
- if (rows[i] != dst_row) {
- continue;
- }
- sum += grad[i*ncols + col];
- }
- dst[dst_row*ncols + col] = sum;
- }
- template<int qk, int qr, dequantize_kernel_t dq, typename dst_t>
- static void get_rows_cuda_q(
- const void * src0_d, const int32_t * src1_d, dst_t * dst_d,
- const int64_t ne00, const size_t nb01, const size_t nb02, const size_t nb03,
- const int64_t ne10, const int64_t ne11, const int64_t ne12, const size_t nb10, const size_t nb11, const size_t nb12,
- const size_t nb1, const size_t nb2, const size_t nb3,
- cudaStream_t stream) {
- const dim3 block_dims(CUDA_GET_ROWS_BLOCK_SIZE, 1, 1);
- const int block_num_y = (ne00 + 2*CUDA_GET_ROWS_BLOCK_SIZE - 1) / (2*CUDA_GET_ROWS_BLOCK_SIZE);
- const dim3 block_nums(ne10, block_num_y, ne11*ne12);
- // strides in elements
- // const size_t s0 = nb0 / sizeof(dst_t);
- const size_t s1 = nb1 / sizeof(dst_t);
- const size_t s2 = nb2 / sizeof(dst_t);
- const size_t s3 = nb3 / sizeof(dst_t);
- const size_t s10 = nb10 / sizeof(int32_t);
- const size_t s11 = nb11 / sizeof(int32_t);
- const size_t s12 = nb12 / sizeof(int32_t);
- // const size_t s13 = nb13 / sizeof(int32_t);
- GGML_ASSERT(ne00 % 2 == 0);
- k_get_rows<qk, qr, dq><<<block_nums, block_dims, 0, stream>>>(
- src0_d, src1_d, dst_d,
- ne00, /*ne01, ne02, ne03,*/
- /*ne10, ne11,*/ ne12, /*ne13,*/
- /* s0,*/ s1, s2, s3,
- /* nb00,*/ nb01, nb02, nb03,
- s10, s11, s12/*, s13*/);
- }
- template<typename src0_t, typename dst_t>
- static void get_rows_cuda_float(
- const src0_t * src0_d, const int32_t * src1_d, dst_t * dst_d,
- const int64_t ne00, const size_t nb01, const size_t nb02, const size_t nb03,
- const int64_t ne10, const int64_t ne11, const int64_t ne12, const size_t nb10, const size_t nb11, const size_t nb12,
- const size_t nb1, const size_t nb2, const size_t nb3,
- cudaStream_t stream) {
- const dim3 block_dims(CUDA_GET_ROWS_BLOCK_SIZE, 1, 1);
- const int block_num_y = (ne00 + CUDA_GET_ROWS_BLOCK_SIZE - 1) / CUDA_GET_ROWS_BLOCK_SIZE;
- const dim3 block_nums(ne10, block_num_y, ne11*ne12);
- // strides in elements
- // const size_t s0 = nb0 / sizeof(dst_t);
- const size_t s1 = nb1 / sizeof(dst_t);
- const size_t s2 = nb2 / sizeof(dst_t);
- const size_t s3 = nb3 / sizeof(dst_t);
- const size_t s10 = nb10 / sizeof(int32_t);
- const size_t s11 = nb11 / sizeof(int32_t);
- const size_t s12 = nb12 / sizeof(int32_t);
- // const size_t s13 = nb13 / sizeof(int32_t);
- k_get_rows_float<<<block_nums, block_dims, 0, stream>>>(
- src0_d, src1_d, dst_d,
- ne00, /*ne01, ne02, ne03,*/
- /*ne10, ne11,*/ ne12, /*ne13,*/
- /* s0,*/ s1, s2, s3,
- /* nb00,*/ nb01, nb02, nb03,
- s10, s11, s12/*, s13*/);
- }
- template <typename dst_t>
- static void ggml_cuda_get_rows_switch_src0_type(
- const void * src0_d, const ggml_type src0_type, const int32_t * src1_d, dst_t * dst_d,
- const int64_t ne00, const size_t nb01, const size_t nb02, const size_t nb03,
- const int64_t ne10, const int64_t ne11, const int64_t ne12, const size_t nb10, const size_t nb11, const size_t nb12,
- const size_t nb1, const size_t nb2, const size_t nb3,
- cudaStream_t stream) {
- switch (src0_type) {
- case GGML_TYPE_F16:
- get_rows_cuda_float((const half *) src0_d, src1_d, dst_d,
- ne00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb1, nb2, nb3, stream);
- break;
- case GGML_TYPE_F32:
- get_rows_cuda_float((const float *) src0_d, src1_d, dst_d,
- ne00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb1, nb2, nb3, stream);
- break;
- case GGML_TYPE_I32:
- get_rows_cuda_float((const int32_t *) src0_d, src1_d, dst_d,
- ne00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb1, nb2, nb3, stream);
- break;
- case GGML_TYPE_BF16:
- get_rows_cuda_float((const nv_bfloat16 *) src0_d, src1_d, dst_d,
- ne00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb1, nb2, nb3, stream);
- break;
- case GGML_TYPE_Q4_0:
- get_rows_cuda_q<QK4_0, QR4_0, dequantize_q4_0>(src0_d, src1_d, dst_d,
- ne00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb1, nb2, nb3, stream);
- break;
- case GGML_TYPE_Q4_1:
- get_rows_cuda_q<QK4_1, QR4_1, dequantize_q4_1>(src0_d, src1_d, dst_d,
- ne00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb1, nb2, nb3, stream);
- break;
- case GGML_TYPE_Q5_0:
- get_rows_cuda_q<QK5_0, QR5_0, dequantize_q5_0>(src0_d, src1_d, dst_d,
- ne00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb1, nb2, nb3, stream);
- break;
- case GGML_TYPE_Q5_1:
- get_rows_cuda_q<QK5_1, QR5_1, dequantize_q5_1>(src0_d, src1_d, dst_d,
- ne00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb1, nb2, nb3, stream);
- break;
- case GGML_TYPE_Q8_0:
- get_rows_cuda_q<QK8_0, QR8_0, dequantize_q8_0>(src0_d, src1_d, dst_d,
- ne00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb1, nb2, nb3, stream);
- break;
- default:
- // TODO: k-quants
- GGML_ABORT("%s: unsupported src0 type: %s\n", __func__, ggml_type_name(src0_type));
- break;
- }
- }
- void get_rows_cuda(
- const void * src0_d, ggml_type src0_type, const int32_t * src1_d, void * dst_d, ggml_type dst_type,
- int64_t ne00, size_t nb01, size_t nb02, size_t nb03,
- int64_t ne10, int64_t ne11, int64_t ne12, size_t nb10, size_t nb11, size_t nb12,
- size_t nb1, size_t nb2, size_t nb3,
- cudaStream_t stream) {
- switch (dst_type) {
- case GGML_TYPE_F32:
- ggml_cuda_get_rows_switch_src0_type(src0_d, src0_type, src1_d, (float *) dst_d,
- ne00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb1, nb2, nb3, stream);
- break;
- case GGML_TYPE_I32:
- ggml_cuda_get_rows_switch_src0_type(src0_d, src0_type, src1_d, (int32_t *) dst_d,
- ne00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb1, nb2, nb3, stream);
- break;
- case GGML_TYPE_F16:
- ggml_cuda_get_rows_switch_src0_type(src0_d, src0_type, src1_d, (half *) dst_d,
- ne00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb1, nb2, nb3, stream);
- break;
- case GGML_TYPE_BF16:
- ggml_cuda_get_rows_switch_src0_type(src0_d, src0_type, src1_d, (nv_bfloat16 *) dst_d,
- ne00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb1, nb2, nb3, stream);
- break;
- default:
- GGML_ABORT("%s: unsupported dst type: %s\n", __func__, ggml_type_name(dst_type));
- break;
- }
- }
- void ggml_cuda_op_get_rows(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
- const ggml_tensor * src0 = dst->src[0];
- const ggml_tensor * src1 = dst->src[1];
- cudaStream_t stream = ctx.stream();
- GGML_TENSOR_BINARY_OP_LOCALS
- GGML_ASSERT(src1->type == GGML_TYPE_I32);
- GGML_ASSERT(ne13 == 1);
- GGML_ASSERT(src0->nb[0] == ggml_type_size(src0->type));
- GGML_ASSERT(src1->nb[0] == ggml_type_size(src1->type));
- GGML_ASSERT(dst->nb[0] == ggml_type_size(dst->type));
- get_rows_cuda(src0->data, src0->type, (const int32_t *) src1->data, dst->data, dst->type,
- ne00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb1, nb2, nb3, stream);
- }
- void ggml_cuda_op_get_rows_back(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
- const ggml_tensor * src0 = dst->src[0]; // gradients of forward pass output
- const ggml_tensor * src1 = dst->src[1]; // src1 in forward pass
- GGML_TENSOR_BINARY_OP_LOCALS
- const float * src0_d = (const float *) src0->data;
- const int32_t * src1_d = (const int32_t *) src1->data;
- float * dst_d = (float *) dst->data;
- cudaStream_t stream = ctx.stream();
- GGML_ASSERT(src0->type == GGML_TYPE_F32);
- GGML_ASSERT(src1->type == GGML_TYPE_I32);
- GGML_ASSERT(dst->type == GGML_TYPE_F32);
- GGML_ASSERT(ggml_is_contiguous(src0));
- GGML_ASSERT(ggml_is_contiguous(src1));
- GGML_ASSERT(ggml_is_contiguous(dst));
- GGML_ASSERT(ne02*ne03 == 1);
- GGML_ASSERT(ne12*ne13 == 1);
- GGML_ASSERT(ne2*ne3 == 1);
- const dim3 block_dims(CUDA_GET_ROWS_BACK_BLOCK_SIZE, 1, 1);
- const int block_num_x = (ne00 + CUDA_GET_ROWS_BACK_BLOCK_SIZE - 1) / CUDA_GET_ROWS_BACK_BLOCK_SIZE;
- const dim3 block_nums(block_num_x, ne1, 1);
- k_get_rows_back_float<<<block_nums, block_dims, 0, stream>>>(src0_d, src1_d, dst_d, ne00, ne10);
- }
|