llama.cpp 338 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284528552865287528852895290529152925293529452955296529752985299530053015302530353045305530653075308530953105311531253135314531553165317531853195320532153225323532453255326532753285329533053315332533353345335533653375338533953405341534253435344534553465347534853495350535153525353535453555356535753585359536053615362536353645365536653675368536953705371537253735374537553765377537853795380538153825383538453855386538753885389539053915392539353945395539653975398539954005401540254035404540554065407540854095410541154125413541454155416541754185419542054215422542354245425542654275428542954305431543254335434543554365437543854395440544154425443544454455446544754485449545054515452545354545455545654575458545954605461546254635464546554665467546854695470547154725473547454755476547754785479548054815482548354845485548654875488548954905491549254935494549554965497549854995500550155025503550455055506550755085509551055115512551355145515551655175518551955205521552255235524552555265527552855295530553155325533553455355536553755385539554055415542554355445545554655475548554955505551555255535554555555565557555855595560556155625563556455655566556755685569557055715572557355745575557655775578557955805581558255835584558555865587558855895590559155925593559455955596559755985599560056015602560356045605560656075608560956105611561256135614561556165617561856195620562156225623562456255626562756285629563056315632563356345635563656375638563956405641564256435644564556465647564856495650565156525653565456555656565756585659566056615662566356645665566656675668566956705671567256735674567556765677567856795680568156825683568456855686568756885689569056915692569356945695569656975698569957005701570257035704570557065707570857095710571157125713571457155716571757185719572057215722572357245725572657275728572957305731573257335734573557365737573857395740574157425743574457455746574757485749575057515752575357545755575657575758575957605761576257635764576557665767576857695770577157725773577457755776577757785779578057815782578357845785578657875788578957905791579257935794579557965797579857995800580158025803580458055806580758085809581058115812581358145815581658175818581958205821582258235824582558265827582858295830583158325833583458355836583758385839584058415842584358445845584658475848584958505851585258535854585558565857585858595860586158625863586458655866586758685869587058715872587358745875587658775878587958805881588258835884588558865887588858895890589158925893589458955896589758985899590059015902590359045905590659075908590959105911591259135914591559165917591859195920592159225923592459255926592759285929593059315932593359345935593659375938593959405941594259435944594559465947594859495950595159525953595459555956595759585959596059615962596359645965596659675968596959705971597259735974597559765977597859795980598159825983598459855986598759885989599059915992599359945995599659975998599960006001600260036004600560066007600860096010601160126013601460156016601760186019602060216022602360246025602660276028602960306031603260336034603560366037603860396040604160426043604460456046604760486049605060516052605360546055605660576058605960606061606260636064606560666067606860696070607160726073607460756076607760786079608060816082608360846085608660876088608960906091609260936094609560966097609860996100610161026103610461056106610761086109611061116112611361146115611661176118611961206121612261236124612561266127612861296130613161326133613461356136613761386139614061416142614361446145614661476148614961506151615261536154615561566157615861596160616161626163616461656166616761686169617061716172617361746175617661776178617961806181618261836184618561866187618861896190619161926193619461956196619761986199620062016202620362046205620662076208620962106211621262136214621562166217621862196220622162226223622462256226622762286229623062316232623362346235623662376238623962406241624262436244624562466247624862496250625162526253625462556256625762586259626062616262626362646265626662676268626962706271627262736274627562766277627862796280628162826283628462856286628762886289629062916292629362946295629662976298629963006301630263036304630563066307630863096310631163126313631463156316631763186319632063216322632363246325632663276328632963306331633263336334633563366337633863396340634163426343634463456346634763486349635063516352635363546355635663576358635963606361636263636364636563666367636863696370637163726373637463756376637763786379638063816382638363846385638663876388638963906391639263936394639563966397639863996400640164026403640464056406640764086409641064116412641364146415641664176418641964206421642264236424642564266427642864296430643164326433643464356436643764386439644064416442644364446445644664476448644964506451645264536454645564566457645864596460646164626463646464656466646764686469647064716472647364746475647664776478647964806481648264836484648564866487648864896490649164926493649464956496649764986499650065016502650365046505650665076508650965106511651265136514651565166517651865196520652165226523652465256526652765286529653065316532653365346535653665376538653965406541654265436544654565466547654865496550655165526553655465556556655765586559656065616562656365646565656665676568656965706571657265736574657565766577657865796580658165826583658465856586658765886589659065916592659365946595659665976598659966006601660266036604660566066607660866096610661166126613661466156616661766186619662066216622662366246625662666276628662966306631663266336634663566366637663866396640664166426643664466456646664766486649665066516652665366546655665666576658665966606661666266636664666566666667666866696670667166726673667466756676667766786679668066816682668366846685668666876688668966906691669266936694669566966697669866996700670167026703670467056706670767086709671067116712671367146715671667176718671967206721672267236724672567266727672867296730673167326733673467356736673767386739674067416742674367446745674667476748674967506751675267536754675567566757675867596760676167626763676467656766676767686769677067716772677367746775677667776778677967806781678267836784678567866787678867896790679167926793679467956796679767986799680068016802680368046805680668076808680968106811681268136814681568166817681868196820682168226823682468256826682768286829683068316832683368346835683668376838683968406841684268436844684568466847684868496850685168526853685468556856685768586859686068616862686368646865686668676868686968706871687268736874687568766877687868796880688168826883688468856886688768886889689068916892689368946895689668976898689969006901690269036904690569066907690869096910691169126913691469156916691769186919692069216922692369246925692669276928692969306931693269336934693569366937693869396940694169426943694469456946694769486949695069516952695369546955695669576958695969606961696269636964696569666967696869696970697169726973697469756976697769786979698069816982698369846985698669876988698969906991699269936994699569966997699869997000700170027003700470057006700770087009701070117012701370147015701670177018701970207021702270237024702570267027702870297030703170327033703470357036703770387039704070417042704370447045704670477048704970507051705270537054705570567057705870597060706170627063706470657066706770687069707070717072707370747075707670777078707970807081708270837084708570867087708870897090709170927093709470957096709770987099710071017102710371047105710671077108710971107111711271137114711571167117711871197120712171227123712471257126712771287129713071317132713371347135713671377138713971407141714271437144714571467147714871497150715171527153715471557156715771587159716071617162716371647165716671677168716971707171717271737174717571767177717871797180718171827183718471857186718771887189719071917192719371947195719671977198719972007201720272037204720572067207720872097210721172127213721472157216721772187219722072217222722372247225722672277228722972307231723272337234723572367237723872397240724172427243724472457246724772487249725072517252725372547255725672577258725972607261726272637264726572667267726872697270727172727273727472757276727772787279728072817282728372847285728672877288728972907291729272937294729572967297729872997300730173027303730473057306730773087309731073117312731373147315731673177318731973207321732273237324732573267327732873297330733173327333733473357336733773387339734073417342734373447345734673477348734973507351735273537354735573567357735873597360736173627363736473657366736773687369737073717372737373747375737673777378737973807381738273837384738573867387738873897390739173927393739473957396739773987399740074017402740374047405740674077408740974107411741274137414741574167417741874197420742174227423742474257426742774287429743074317432743374347435743674377438743974407441744274437444744574467447744874497450745174527453745474557456745774587459746074617462746374647465746674677468746974707471747274737474747574767477747874797480748174827483748474857486748774887489749074917492749374947495749674977498749975007501750275037504750575067507750875097510751175127513751475157516751775187519752075217522752375247525752675277528752975307531753275337534753575367537753875397540754175427543754475457546754775487549755075517552755375547555755675577558755975607561756275637564756575667567756875697570757175727573757475757576757775787579758075817582758375847585758675877588758975907591759275937594759575967597759875997600760176027603760476057606760776087609761076117612761376147615761676177618761976207621762276237624762576267627762876297630763176327633763476357636763776387639764076417642764376447645764676477648764976507651765276537654765576567657765876597660766176627663766476657666766776687669767076717672767376747675767676777678767976807681768276837684768576867687768876897690769176927693769476957696769776987699770077017702770377047705770677077708770977107711771277137714771577167717771877197720772177227723772477257726772777287729773077317732773377347735773677377738773977407741774277437744774577467747774877497750775177527753775477557756775777587759776077617762776377647765776677677768776977707771777277737774777577767777777877797780778177827783778477857786778777887789779077917792779377947795779677977798779978007801780278037804780578067807780878097810781178127813781478157816781778187819782078217822782378247825782678277828782978307831783278337834783578367837783878397840784178427843784478457846784778487849785078517852785378547855785678577858785978607861786278637864786578667867786878697870787178727873787478757876787778787879788078817882788378847885788678877888788978907891789278937894789578967897789878997900790179027903790479057906790779087909791079117912791379147915791679177918791979207921792279237924792579267927792879297930793179327933793479357936793779387939794079417942794379447945794679477948794979507951795279537954795579567957795879597960796179627963796479657966796779687969797079717972797379747975797679777978797979807981798279837984798579867987798879897990799179927993799479957996799779987999800080018002800380048005800680078008800980108011801280138014801580168017801880198020802180228023802480258026802780288029803080318032803380348035803680378038803980408041804280438044804580468047804880498050805180528053805480558056805780588059806080618062806380648065806680678068806980708071807280738074807580768077807880798080808180828083808480858086808780888089809080918092809380948095809680978098809981008101810281038104810581068107810881098110811181128113811481158116811781188119812081218122812381248125812681278128812981308131813281338134813581368137813881398140814181428143814481458146814781488149815081518152815381548155815681578158815981608161816281638164816581668167816881698170817181728173817481758176817781788179818081818182818381848185818681878188818981908191819281938194819581968197819881998200820182028203820482058206820782088209821082118212821382148215821682178218821982208221822282238224822582268227822882298230823182328233823482358236823782388239824082418242824382448245824682478248824982508251825282538254825582568257825882598260826182628263826482658266826782688269827082718272827382748275827682778278827982808281828282838284828582868287828882898290829182928293829482958296829782988299830083018302830383048305830683078308830983108311831283138314831583168317831883198320832183228323832483258326832783288329833083318332833383348335833683378338833983408341834283438344834583468347834883498350835183528353835483558356835783588359836083618362836383648365836683678368836983708371837283738374837583768377837883798380838183828383838483858386838783888389839083918392839383948395839683978398839984008401840284038404840584068407840884098410841184128413841484158416841784188419842084218422842384248425842684278428842984308431843284338434843584368437843884398440844184428443844484458446844784488449845084518452845384548455845684578458845984608461846284638464846584668467846884698470847184728473847484758476847784788479848084818482848384848485848684878488848984908491849284938494849584968497849884998500850185028503850485058506850785088509851085118512851385148515851685178518851985208521852285238524852585268527852885298530853185328533853485358536853785388539854085418542854385448545854685478548854985508551855285538554855585568557855885598560856185628563856485658566856785688569857085718572857385748575857685778578857985808581858285838584858585868587858885898590859185928593859485958596859785988599860086018602860386048605860686078608860986108611861286138614861586168617861886198620862186228623862486258626862786288629863086318632863386348635863686378638863986408641864286438644864586468647864886498650865186528653865486558656865786588659866086618662866386648665866686678668866986708671867286738674867586768677867886798680868186828683868486858686868786888689869086918692869386948695869686978698869987008701870287038704870587068707870887098710871187128713871487158716871787188719872087218722872387248725872687278728872987308731873287338734873587368737873887398740874187428743874487458746874787488749875087518752875387548755875687578758875987608761876287638764876587668767876887698770877187728773877487758776877787788779878087818782878387848785878687878788878987908791879287938794879587968797879887998800880188028803880488058806880788088809881088118812881388148815881688178818881988208821882288238824882588268827882888298830883188328833883488358836883788388839884088418842884388448845884688478848884988508851885288538854885588568857885888598860886188628863886488658866886788688869887088718872887388748875887688778878887988808881888288838884888588868887888888898890889188928893889488958896889788988899890089018902890389048905890689078908890989108911891289138914891589168917891889198920892189228923892489258926892789288929893089318932893389348935893689378938893989408941894289438944894589468947894889498950895189528953895489558956895789588959896089618962896389648965896689678968896989708971897289738974897589768977897889798980898189828983898489858986898789888989899089918992899389948995899689978998899990009001900290039004900590069007900890099010901190129013901490159016901790189019902090219022902390249025902690279028902990309031903290339034903590369037903890399040904190429043904490459046904790489049905090519052905390549055905690579058905990609061906290639064906590669067906890699070907190729073907490759076907790789079908090819082908390849085908690879088908990909091909290939094909590969097909890999100910191029103910491059106910791089109911091119112911391149115911691179118911991209121912291239124912591269127912891299130913191329133913491359136913791389139914091419142914391449145914691479148914991509151915291539154915591569157915891599160916191629163916491659166916791689169917091719172917391749175917691779178917991809181918291839184918591869187918891899190919191929193919491959196919791989199920092019202
  1. #define LLAMA_API_INTERNAL
  2. #include "llama.h"
  3. #include "unicode.h"
  4. #include "ggml.h"
  5. #include "ggml-alloc.h"
  6. #ifdef GGML_USE_CUBLAS
  7. # include "ggml-cuda.h"
  8. #elif defined(GGML_USE_CLBLAST)
  9. # include "ggml-opencl.h"
  10. #endif
  11. #ifdef GGML_USE_METAL
  12. # include "ggml-metal.h"
  13. #endif
  14. #ifdef GGML_USE_MPI
  15. # include "ggml-mpi.h"
  16. #endif
  17. #ifndef QK_K
  18. # ifdef GGML_QKK_64
  19. # define QK_K 64
  20. # else
  21. # define QK_K 256
  22. # endif
  23. #endif
  24. #ifdef __has_include
  25. #if __has_include(<unistd.h>)
  26. #include <unistd.h>
  27. #if defined(_POSIX_MAPPED_FILES)
  28. #include <sys/mman.h>
  29. #endif
  30. #if defined(_POSIX_MEMLOCK_RANGE)
  31. #include <sys/resource.h>
  32. #endif
  33. #endif
  34. #endif
  35. #if defined(_WIN32)
  36. #define WIN32_LEAN_AND_MEAN
  37. #ifndef NOMINMAX
  38. #define NOMINMAX
  39. #endif
  40. #include <windows.h>
  41. #include <io.h>
  42. #include <stdio.h> // for _fseeki64
  43. #endif
  44. #include <algorithm>
  45. #include <array>
  46. #include <cassert>
  47. #include <cinttypes>
  48. #include <climits>
  49. #include <cmath>
  50. #include <cstdarg>
  51. #include <cstddef>
  52. #include <cstdint>
  53. #include <cstdio>
  54. #include <cstring>
  55. #include <ctime>
  56. #include <forward_list>
  57. #include <fstream>
  58. #include <functional>
  59. #include <initializer_list>
  60. #include <map>
  61. #include <memory>
  62. #include <mutex>
  63. #include <numeric>
  64. #include <queue>
  65. #include <random>
  66. #include <regex>
  67. #include <set>
  68. #include <sstream>
  69. #include <thread>
  70. #include <unordered_map>
  71. #if defined(_MSC_VER)
  72. #pragma warning(disable: 4244 4267) // possible loss of data
  73. #endif
  74. #ifdef __GNUC__
  75. #ifdef __MINGW32__
  76. #define LLAMA_ATTRIBUTE_FORMAT(...) __attribute__((format(gnu_printf, __VA_ARGS__)))
  77. #else
  78. #define LLAMA_ATTRIBUTE_FORMAT(...) __attribute__((format(printf, __VA_ARGS__)))
  79. #endif
  80. #else
  81. #define LLAMA_ATTRIBUTE_FORMAT(...)
  82. #endif
  83. //
  84. // logging
  85. //
  86. LLAMA_ATTRIBUTE_FORMAT(2, 3)
  87. static void llama_log_internal (ggml_log_level level, const char* format, ...);
  88. static void llama_log_callback_default(ggml_log_level level, const char * text, void * user_data);
  89. #define LLAMA_LOG_INFO(...) llama_log_internal(GGML_LOG_LEVEL_INFO , __VA_ARGS__)
  90. #define LLAMA_LOG_WARN(...) llama_log_internal(GGML_LOG_LEVEL_WARN , __VA_ARGS__)
  91. #define LLAMA_LOG_ERROR(...) llama_log_internal(GGML_LOG_LEVEL_ERROR, __VA_ARGS__)
  92. //
  93. // helpers
  94. //
  95. static size_t utf8_len(char src) {
  96. const size_t lookup[] = { 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 3, 4 };
  97. uint8_t highbits = static_cast<uint8_t>(src) >> 4;
  98. return lookup[highbits];
  99. }
  100. static void replace_all(std::string & s, const std::string & search, const std::string & replace) {
  101. std::string result;
  102. for (size_t pos = 0; ; pos += search.length()) {
  103. auto new_pos = s.find(search, pos);
  104. if (new_pos == std::string::npos) {
  105. result += s.substr(pos, s.size() - pos);
  106. break;
  107. }
  108. result += s.substr(pos, new_pos - pos) + replace;
  109. pos = new_pos;
  110. }
  111. s = std::move(result);
  112. }
  113. static bool is_float_close(float a, float b, float abs_tol) {
  114. // Check for non-negative tolerance
  115. if (abs_tol < 0.0) {
  116. throw std::invalid_argument("Tolerance must be non-negative");
  117. }
  118. // Exact equality check
  119. if (a == b) {
  120. return true;
  121. }
  122. // Check for infinities
  123. if (std::isinf(a) || std::isinf(b)) {
  124. return false;
  125. }
  126. // Regular comparison using the provided absolute tolerance
  127. return std::fabs(b - a) <= abs_tol;
  128. }
  129. #ifdef GGML_USE_CPU_HBM
  130. #include <hbwmalloc.h>
  131. #endif
  132. static void zeros(std::ofstream & file, size_t n) {
  133. char zero = 0;
  134. for (size_t i = 0; i < n; ++i) {
  135. file.write(&zero, 1);
  136. }
  137. }
  138. LLAMA_ATTRIBUTE_FORMAT(1, 2)
  139. static std::string format(const char * fmt, ...) {
  140. va_list ap;
  141. va_list ap2;
  142. va_start(ap, fmt);
  143. va_copy(ap2, ap);
  144. int size = vsnprintf(NULL, 0, fmt, ap);
  145. GGML_ASSERT(size >= 0 && size < INT_MAX); // NOLINT
  146. std::vector<char> buf(size + 1);
  147. int size2 = vsnprintf(buf.data(), size + 1, fmt, ap2);
  148. GGML_ASSERT(size2 == size);
  149. va_end(ap2);
  150. va_end(ap);
  151. return std::string(buf.data(), size);
  152. }
  153. //
  154. // gguf constants (sync with gguf.py)
  155. //
  156. enum llm_arch {
  157. LLM_ARCH_LLAMA,
  158. LLM_ARCH_FALCON,
  159. LLM_ARCH_BAICHUAN,
  160. LLM_ARCH_GPT2,
  161. LLM_ARCH_GPTJ,
  162. LLM_ARCH_GPTNEOX,
  163. LLM_ARCH_MPT,
  164. LLM_ARCH_STARCODER,
  165. LLM_ARCH_PERSIMMON,
  166. LLM_ARCH_REFACT,
  167. LLM_ARCH_BLOOM,
  168. LLM_ARCH_UNKNOWN,
  169. };
  170. static std::map<llm_arch, std::string> LLM_ARCH_NAMES = {
  171. { LLM_ARCH_LLAMA, "llama" },
  172. { LLM_ARCH_FALCON, "falcon" },
  173. { LLM_ARCH_GPT2, "gpt2" },
  174. { LLM_ARCH_GPTJ, "gptj" },
  175. { LLM_ARCH_GPTNEOX, "gptneox" },
  176. { LLM_ARCH_MPT, "mpt" },
  177. { LLM_ARCH_BAICHUAN, "baichuan" },
  178. { LLM_ARCH_STARCODER, "starcoder" },
  179. { LLM_ARCH_PERSIMMON, "persimmon" },
  180. { LLM_ARCH_REFACT, "refact" },
  181. { LLM_ARCH_BLOOM, "bloom" },
  182. };
  183. enum llm_kv {
  184. LLM_KV_GENERAL_ARCHITECTURE,
  185. LLM_KV_GENERAL_QUANTIZATION_VERSION,
  186. LLM_KV_GENERAL_ALIGNMENT,
  187. LLM_KV_GENERAL_NAME,
  188. LLM_KV_GENERAL_AUTHOR,
  189. LLM_KV_GENERAL_URL,
  190. LLM_KV_GENERAL_DESCRIPTION,
  191. LLM_KV_GENERAL_LICENSE,
  192. LLM_KV_GENERAL_SOURCE_URL,
  193. LLM_KV_GENERAL_SOURCE_HF_REPO,
  194. LLM_KV_CONTEXT_LENGTH,
  195. LLM_KV_EMBEDDING_LENGTH,
  196. LLM_KV_BLOCK_COUNT,
  197. LLM_KV_FEED_FORWARD_LENGTH,
  198. LLM_KV_USE_PARALLEL_RESIDUAL,
  199. LLM_KV_TENSOR_DATA_LAYOUT,
  200. LLM_KV_ATTENTION_HEAD_COUNT,
  201. LLM_KV_ATTENTION_HEAD_COUNT_KV,
  202. LLM_KV_ATTENTION_MAX_ALIBI_BIAS,
  203. LLM_KV_ATTENTION_CLAMP_KQV,
  204. LLM_KV_ATTENTION_LAYERNORM_EPS,
  205. LLM_KV_ATTENTION_LAYERNORM_RMS_EPS,
  206. LLM_KV_ROPE_DIMENSION_COUNT,
  207. LLM_KV_ROPE_FREQ_BASE,
  208. LLM_KV_ROPE_SCALE_LINEAR,
  209. LLM_KV_ROPE_SCALING_TYPE,
  210. LLM_KV_ROPE_SCALING_FACTOR,
  211. LLM_KV_ROPE_SCALING_ORIG_CTX_LEN,
  212. LLM_KV_ROPE_SCALING_FINETUNED,
  213. LLM_KV_TOKENIZER_MODEL,
  214. LLM_KV_TOKENIZER_LIST,
  215. LLM_KV_TOKENIZER_TOKEN_TYPE,
  216. LLM_KV_TOKENIZER_SCORES,
  217. LLM_KV_TOKENIZER_MERGES,
  218. LLM_KV_TOKENIZER_BOS_ID,
  219. LLM_KV_TOKENIZER_EOS_ID,
  220. LLM_KV_TOKENIZER_UNK_ID,
  221. LLM_KV_TOKENIZER_SEP_ID,
  222. LLM_KV_TOKENIZER_PAD_ID,
  223. LLM_KV_TOKENIZER_HF_JSON,
  224. LLM_KV_TOKENIZER_RWKV,
  225. };
  226. static std::map<llm_kv, std::string> LLM_KV_NAMES = {
  227. { LLM_KV_GENERAL_ARCHITECTURE, "general.architecture" },
  228. { LLM_KV_GENERAL_QUANTIZATION_VERSION, "general.quantization_version" },
  229. { LLM_KV_GENERAL_ALIGNMENT, "general.alignment" },
  230. { LLM_KV_GENERAL_NAME, "general.name" },
  231. { LLM_KV_GENERAL_AUTHOR, "general.author" },
  232. { LLM_KV_GENERAL_URL, "general.url" },
  233. { LLM_KV_GENERAL_DESCRIPTION, "general.description" },
  234. { LLM_KV_GENERAL_LICENSE, "general.license" },
  235. { LLM_KV_GENERAL_SOURCE_URL, "general.source.url" },
  236. { LLM_KV_GENERAL_SOURCE_HF_REPO, "general.source.huggingface.repository" },
  237. { LLM_KV_CONTEXT_LENGTH, "%s.context_length" },
  238. { LLM_KV_EMBEDDING_LENGTH, "%s.embedding_length" },
  239. { LLM_KV_BLOCK_COUNT, "%s.block_count" },
  240. { LLM_KV_FEED_FORWARD_LENGTH, "%s.feed_forward_length" },
  241. { LLM_KV_USE_PARALLEL_RESIDUAL, "%s.use_parallel_residual" },
  242. { LLM_KV_TENSOR_DATA_LAYOUT, "%s.tensor_data_layout" },
  243. { LLM_KV_ATTENTION_HEAD_COUNT, "%s.attention.head_count" },
  244. { LLM_KV_ATTENTION_HEAD_COUNT_KV, "%s.attention.head_count_kv" },
  245. { LLM_KV_ATTENTION_MAX_ALIBI_BIAS, "%s.attention.max_alibi_bias" },
  246. { LLM_KV_ATTENTION_CLAMP_KQV, "%s.attention.clamp_kqv" },
  247. { LLM_KV_ATTENTION_LAYERNORM_EPS, "%s.attention.layer_norm_epsilon" },
  248. { LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, "%s.attention.layer_norm_rms_epsilon" },
  249. { LLM_KV_ROPE_DIMENSION_COUNT, "%s.rope.dimension_count" },
  250. { LLM_KV_ROPE_FREQ_BASE, "%s.rope.freq_base" },
  251. { LLM_KV_ROPE_SCALE_LINEAR, "%s.rope.scale_linear" },
  252. { LLM_KV_ROPE_SCALING_TYPE, "%s.rope.scaling.type" },
  253. { LLM_KV_ROPE_SCALING_FACTOR, "%s.rope.scaling.factor" },
  254. { LLM_KV_ROPE_SCALING_ORIG_CTX_LEN, "%s.rope.scaling.original_context_length" },
  255. { LLM_KV_ROPE_SCALING_FINETUNED, "%s.rope.scaling.finetuned" },
  256. { LLM_KV_TOKENIZER_MODEL, "tokenizer.ggml.model" },
  257. { LLM_KV_TOKENIZER_LIST, "tokenizer.ggml.tokens" },
  258. { LLM_KV_TOKENIZER_TOKEN_TYPE, "tokenizer.ggml.token_type" },
  259. { LLM_KV_TOKENIZER_SCORES, "tokenizer.ggml.scores" },
  260. { LLM_KV_TOKENIZER_MERGES, "tokenizer.ggml.merges" },
  261. { LLM_KV_TOKENIZER_BOS_ID, "tokenizer.ggml.bos_token_id" },
  262. { LLM_KV_TOKENIZER_EOS_ID, "tokenizer.ggml.eos_token_id" },
  263. { LLM_KV_TOKENIZER_UNK_ID, "tokenizer.ggml.unknown_token_id" },
  264. { LLM_KV_TOKENIZER_SEP_ID, "tokenizer.ggml.seperator_token_id" },
  265. { LLM_KV_TOKENIZER_PAD_ID, "tokenizer.ggml.padding_token_id" },
  266. { LLM_KV_TOKENIZER_HF_JSON, "tokenizer.huggingface.json" },
  267. { LLM_KV_TOKENIZER_RWKV, "tokenizer.rwkv.world" },
  268. };
  269. struct LLM_KV {
  270. LLM_KV(llm_arch arch) : arch(arch) {}
  271. llm_arch arch;
  272. std::string operator()(llm_kv kv) const {
  273. return ::format(LLM_KV_NAMES[kv].c_str(), LLM_ARCH_NAMES[arch].c_str());
  274. }
  275. };
  276. enum llm_tensor {
  277. LLM_TENSOR_TOKEN_EMBD,
  278. LLM_TENSOR_TOKEN_EMBD_NORM,
  279. LLM_TENSOR_POS_EMBD,
  280. LLM_TENSOR_OUTPUT,
  281. LLM_TENSOR_OUTPUT_NORM,
  282. LLM_TENSOR_ROPE_FREQS,
  283. LLM_TENSOR_ATTN_Q,
  284. LLM_TENSOR_ATTN_K,
  285. LLM_TENSOR_ATTN_V,
  286. LLM_TENSOR_ATTN_QKV,
  287. LLM_TENSOR_ATTN_OUT,
  288. LLM_TENSOR_ATTN_NORM,
  289. LLM_TENSOR_ATTN_NORM_2,
  290. LLM_TENSOR_ATTN_ROT_EMBD,
  291. LLM_TENSOR_FFN_GATE,
  292. LLM_TENSOR_FFN_DOWN,
  293. LLM_TENSOR_FFN_UP,
  294. LLM_TENSOR_FFN_NORM,
  295. LLM_TENSOR_ATTN_Q_NORM,
  296. LLM_TENSOR_ATTN_K_NORM,
  297. };
  298. static std::map<llm_arch, std::map<llm_tensor, std::string>> LLM_TENSOR_NAMES = {
  299. {
  300. LLM_ARCH_LLAMA,
  301. {
  302. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  303. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  304. { LLM_TENSOR_OUTPUT, "output" },
  305. { LLM_TENSOR_ROPE_FREQS, "rope_freqs" },
  306. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  307. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  308. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  309. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  310. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  311. { LLM_TENSOR_ATTN_ROT_EMBD, "blk.%d.attn_rot_embd" },
  312. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  313. { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
  314. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  315. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  316. },
  317. },
  318. {
  319. LLM_ARCH_BAICHUAN,
  320. {
  321. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  322. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  323. { LLM_TENSOR_OUTPUT, "output" },
  324. { LLM_TENSOR_ROPE_FREQS, "rope_freqs" },
  325. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  326. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  327. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  328. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  329. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  330. { LLM_TENSOR_ATTN_ROT_EMBD, "blk.%d.attn_rot_embd" },
  331. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  332. { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
  333. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  334. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  335. },
  336. },
  337. {
  338. LLM_ARCH_FALCON,
  339. {
  340. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  341. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  342. { LLM_TENSOR_OUTPUT, "output" },
  343. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  344. { LLM_TENSOR_ATTN_NORM_2, "blk.%d.attn_norm_2" },
  345. { LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" },
  346. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  347. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  348. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  349. },
  350. },
  351. {
  352. LLM_ARCH_GPT2,
  353. {
  354. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  355. },
  356. },
  357. {
  358. LLM_ARCH_GPTJ,
  359. {
  360. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  361. },
  362. },
  363. {
  364. LLM_ARCH_GPTNEOX,
  365. {
  366. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  367. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  368. { LLM_TENSOR_OUTPUT, "output" },
  369. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  370. { LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" },
  371. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  372. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  373. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  374. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  375. },
  376. },
  377. {
  378. LLM_ARCH_PERSIMMON,
  379. {
  380. { LLM_TENSOR_TOKEN_EMBD, "token_embd"},
  381. { LLM_TENSOR_OUTPUT_NORM, "output_norm"},
  382. { LLM_TENSOR_OUTPUT, "output"},
  383. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm"},
  384. { LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv"},
  385. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output"},
  386. { LLM_TENSOR_ATTN_Q_NORM, "blk.%d.attn_q_norm"},
  387. { LLM_TENSOR_ATTN_K_NORM, "blk.%d.attn_k_norm"},
  388. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm"},
  389. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down"},
  390. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up"},
  391. { LLM_TENSOR_ATTN_ROT_EMBD, "blk.%d.attn_rot_embd"},
  392. },
  393. },
  394. {
  395. LLM_ARCH_MPT,
  396. {
  397. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  398. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  399. { LLM_TENSOR_OUTPUT, "output" },
  400. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  401. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  402. { LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" },
  403. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  404. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  405. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  406. },
  407. },
  408. {
  409. LLM_ARCH_STARCODER,
  410. {
  411. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  412. { LLM_TENSOR_POS_EMBD, "position_embd" },
  413. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  414. { LLM_TENSOR_OUTPUT, "output" },
  415. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  416. { LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" },
  417. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  418. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  419. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  420. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  421. },
  422. },
  423. {
  424. LLM_ARCH_REFACT,
  425. {
  426. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  427. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  428. { LLM_TENSOR_OUTPUT, "output" },
  429. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  430. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  431. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  432. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  433. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  434. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  435. { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
  436. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  437. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  438. },
  439. },
  440. {
  441. LLM_ARCH_BLOOM,
  442. {
  443. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  444. { LLM_TENSOR_TOKEN_EMBD_NORM, "token_embd_norm" },
  445. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  446. { LLM_TENSOR_OUTPUT, "output" },
  447. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  448. { LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" },
  449. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  450. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  451. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  452. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  453. },
  454. },
  455. {
  456. LLM_ARCH_UNKNOWN,
  457. {
  458. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  459. },
  460. },
  461. };
  462. static llm_arch llm_arch_from_string(const std::string & name) {
  463. for (const auto & kv : LLM_ARCH_NAMES) { // NOLINT
  464. if (kv.second == name) {
  465. return kv.first;
  466. }
  467. }
  468. return LLM_ARCH_UNKNOWN;
  469. }
  470. // helper to handle gguf constants
  471. // usage:
  472. //
  473. // const auto tn = LLM_TN(LLM_ARCH_LLAMA);
  474. //
  475. // std::string name = tn(LLM_TENSOR_OUTPUT); -> "output"
  476. // std::string name = tn(LLM_TENSOR_TOKEN_EMBD, "bias"); -> "token_embd.bias"
  477. // std::string name = tn(LLM_TENSOR_ATTN_NORM, "weight", 3); -> "blk.3.attn_norm.weight"
  478. //
  479. struct LLM_TN {
  480. LLM_TN(llm_arch arch) : arch(arch) {}
  481. llm_arch arch;
  482. std::string operator()(llm_tensor tensor) const {
  483. return LLM_TENSOR_NAMES[arch].at(tensor);
  484. }
  485. std::string operator()(llm_tensor tensor, const std::string & suffix) const {
  486. return LLM_TENSOR_NAMES[arch].at(tensor) + "." + suffix;
  487. }
  488. std::string operator()(llm_tensor tensor, int bid) const {
  489. return ::format(LLM_TENSOR_NAMES[arch].at(tensor).c_str(), bid);
  490. }
  491. std::string operator()(llm_tensor tensor, const std::string & suffix, int bid) const {
  492. return ::format(LLM_TENSOR_NAMES[arch].at(tensor).c_str(), bid) + "." + suffix;
  493. }
  494. };
  495. //
  496. // gguf helpers
  497. //
  498. #define GGUF_GET_KEY(ctx, dst, func, type, req, key) \
  499. do { \
  500. const std::string skey(key); \
  501. const int kid = gguf_find_key(ctx, skey.c_str()); \
  502. if (kid >= 0) { \
  503. enum gguf_type ktype = gguf_get_kv_type(ctx, kid); \
  504. if (ktype != (type)) { \
  505. throw std::runtime_error(format("key %s has wrong type: %s", skey.c_str(), gguf_type_name(ktype))); \
  506. } \
  507. (dst) = func(ctx, kid); \
  508. } else if (req) { \
  509. throw std::runtime_error(format("key not found in model: %s", skey.c_str())); \
  510. } \
  511. } while (0)
  512. static std::map<int8_t, std::string> LLAMA_ROPE_SCALING_TYPES = {
  513. { LLAMA_ROPE_SCALING_NONE, "none" },
  514. { LLAMA_ROPE_SCALING_LINEAR, "linear" },
  515. { LLAMA_ROPE_SCALING_YARN, "yarn" },
  516. };
  517. static int8_t llama_rope_scaling_type_from_string(const std::string & name) {
  518. for (const auto & kv : LLAMA_ROPE_SCALING_TYPES) {
  519. if (kv.second == name) {
  520. return kv.first;
  521. }
  522. }
  523. return LLAMA_ROPE_SCALING_UNSPECIFIED;
  524. }
  525. //
  526. // ggml helpers
  527. //
  528. static void ggml_graph_compute_helper(std::vector<uint8_t> & buf, ggml_cgraph * graph, int n_threads) {
  529. struct ggml_cplan plan = ggml_graph_plan(graph, n_threads);
  530. if (plan.work_size > 0) {
  531. buf.resize(plan.work_size);
  532. plan.work_data = buf.data();
  533. }
  534. ggml_graph_compute(graph, &plan);
  535. }
  536. //
  537. // llama helpers
  538. //
  539. #ifdef GGML_USE_CUBLAS
  540. # define llama_host_malloc(n) ggml_cuda_host_malloc(n)
  541. # define llama_host_free(data) ggml_cuda_host_free(data)
  542. #elif GGML_USE_METAL
  543. # define llama_host_malloc(n) ggml_metal_host_malloc(n)
  544. # define llama_host_free(data) ggml_metal_host_free(data)
  545. #elif GGML_USE_CPU_HBM
  546. # define llama_host_malloc(n) hbw_malloc(n)
  547. # define llama_host_free(data) if (data != NULL) hbw_free(data)
  548. #else
  549. # define llama_host_malloc(n) malloc(n)
  550. # define llama_host_free(data) free(data)
  551. #endif
  552. #if defined(_WIN32)
  553. static std::string llama_format_win_err(DWORD err) {
  554. LPSTR buf;
  555. size_t size = FormatMessageA(FORMAT_MESSAGE_ALLOCATE_BUFFER | FORMAT_MESSAGE_FROM_SYSTEM | FORMAT_MESSAGE_IGNORE_INSERTS,
  556. NULL, err, MAKELANGID(LANG_NEUTRAL, SUBLANG_DEFAULT), (LPSTR)&buf, 0, NULL);
  557. if (!size) {
  558. return "FormatMessageA failed";
  559. }
  560. std::string ret(buf, size);
  561. LocalFree(buf);
  562. return ret;
  563. }
  564. #endif
  565. struct llama_buffer {
  566. void * data = NULL;
  567. size_t size = 0;
  568. // fallback to malloc / free
  569. // useful in cases where CUDA can try to allocate PINNED memory
  570. bool fallback = false;
  571. void resize(size_t n) {
  572. llama_host_free(data);
  573. data = llama_host_malloc(n);
  574. if (!data) {
  575. fallback = true;
  576. data = malloc(n);
  577. } else {
  578. fallback = false;
  579. }
  580. GGML_ASSERT(data);
  581. size = n;
  582. }
  583. ~llama_buffer() {
  584. if (data) {
  585. if (fallback) { // NOLINT
  586. free(data);
  587. } else {
  588. llama_host_free(data);
  589. }
  590. }
  591. data = NULL;
  592. }
  593. };
  594. struct llama_file {
  595. // use FILE * so we don't have to re-open the file to mmap
  596. FILE * fp;
  597. size_t size;
  598. llama_file(const char * fname, const char * mode) {
  599. fp = std::fopen(fname, mode);
  600. if (fp == NULL) {
  601. throw std::runtime_error(format("failed to open %s: %s", fname, strerror(errno)));
  602. }
  603. seek(0, SEEK_END);
  604. size = tell();
  605. seek(0, SEEK_SET);
  606. }
  607. size_t tell() const {
  608. #ifdef _WIN32
  609. __int64 ret = _ftelli64(fp);
  610. #else
  611. long ret = std::ftell(fp);
  612. #endif
  613. GGML_ASSERT(ret != -1); // this really shouldn't fail
  614. return (size_t) ret;
  615. }
  616. void seek(size_t offset, int whence) const {
  617. #ifdef _WIN32
  618. int ret = _fseeki64(fp, (__int64) offset, whence);
  619. #else
  620. int ret = std::fseek(fp, (long) offset, whence);
  621. #endif
  622. GGML_ASSERT(ret == 0); // same
  623. }
  624. void read_raw(void * ptr, size_t len) const {
  625. if (len == 0) {
  626. return;
  627. }
  628. errno = 0;
  629. std::size_t ret = std::fread(ptr, len, 1, fp);
  630. if (ferror(fp)) {
  631. throw std::runtime_error(format("read error: %s", strerror(errno)));
  632. }
  633. if (ret != 1) {
  634. throw std::runtime_error(std::string("unexpectedly reached end of file"));
  635. }
  636. }
  637. uint32_t read_u32() const {
  638. uint32_t ret;
  639. read_raw(&ret, sizeof(ret));
  640. return ret;
  641. }
  642. void write_raw(const void * ptr, size_t len) const {
  643. if (len == 0) {
  644. return;
  645. }
  646. errno = 0;
  647. size_t ret = std::fwrite(ptr, len, 1, fp);
  648. if (ret != 1) {
  649. throw std::runtime_error(format("write error: %s", strerror(errno)));
  650. }
  651. }
  652. void write_u32(std::uint32_t val) const {
  653. write_raw(&val, sizeof(val));
  654. }
  655. ~llama_file() {
  656. if (fp) {
  657. std::fclose(fp);
  658. }
  659. }
  660. };
  661. struct llama_mmap {
  662. void * addr;
  663. size_t size;
  664. llama_mmap(const llama_mmap &) = delete;
  665. #ifdef _POSIX_MAPPED_FILES
  666. static constexpr bool SUPPORTED = true;
  667. llama_mmap(struct llama_file * file, size_t prefetch = (size_t) -1 /* -1 = max value */, bool numa = false) {
  668. size = file->size;
  669. int fd = fileno(file->fp);
  670. int flags = MAP_SHARED;
  671. // prefetch/readahead impairs performance on NUMA systems
  672. if (numa) { prefetch = 0; }
  673. #ifdef __linux__
  674. if (prefetch) { flags |= MAP_POPULATE; }
  675. #endif
  676. addr = mmap(NULL, file->size, PROT_READ, flags, fd, 0);
  677. if (addr == MAP_FAILED) {
  678. throw std::runtime_error(format("mmap failed: %s", strerror(errno)));
  679. }
  680. if (prefetch > 0) {
  681. // Advise the kernel to preload the mapped memory
  682. if (posix_madvise(addr, std::min(file->size, prefetch), POSIX_MADV_WILLNEED)) {
  683. fprintf(stderr, "warning: posix_madvise(.., POSIX_MADV_WILLNEED) failed: %s\n",
  684. strerror(errno));
  685. }
  686. }
  687. if (numa) {
  688. // advise the kernel not to use readahead
  689. // (because the next page might not belong on the same node)
  690. if (posix_madvise(addr, file->size, POSIX_MADV_RANDOM)) {
  691. fprintf(stderr, "warning: posix_madvise(.., POSIX_MADV_RANDOM) failed: %s\n",
  692. strerror(errno));
  693. }
  694. }
  695. }
  696. ~llama_mmap() {
  697. munmap(addr, size);
  698. }
  699. #elif defined(_WIN32)
  700. static constexpr bool SUPPORTED = true;
  701. llama_mmap(struct llama_file * file, bool prefetch = true, bool numa = false) {
  702. (void) numa;
  703. size = file->size;
  704. HANDLE hFile = (HANDLE) _get_osfhandle(_fileno(file->fp));
  705. HANDLE hMapping = CreateFileMappingA(hFile, NULL, PAGE_READONLY, 0, 0, NULL);
  706. DWORD error = GetLastError();
  707. if (hMapping == NULL) {
  708. throw std::runtime_error(format("CreateFileMappingA failed: %s", llama_format_win_err(error).c_str()));
  709. }
  710. addr = MapViewOfFile(hMapping, FILE_MAP_READ, 0, 0, 0);
  711. error = GetLastError();
  712. CloseHandle(hMapping);
  713. if (addr == NULL) {
  714. throw std::runtime_error(format("MapViewOfFile failed: %s", llama_format_win_err(error).c_str()));
  715. }
  716. if (prefetch) {
  717. // PrefetchVirtualMemory is only present on Windows 8 and above, so we dynamically load it
  718. BOOL (WINAPI *pPrefetchVirtualMemory) (HANDLE, ULONG_PTR, PWIN32_MEMORY_RANGE_ENTRY, ULONG);
  719. HMODULE hKernel32 = GetModuleHandleW(L"kernel32.dll");
  720. // may fail on pre-Windows 8 systems
  721. pPrefetchVirtualMemory = reinterpret_cast<decltype(pPrefetchVirtualMemory)> (GetProcAddress(hKernel32, "PrefetchVirtualMemory"));
  722. if (pPrefetchVirtualMemory) {
  723. // advise the kernel to preload the mapped memory
  724. WIN32_MEMORY_RANGE_ENTRY range;
  725. range.VirtualAddress = addr;
  726. range.NumberOfBytes = (SIZE_T)size;
  727. if (!pPrefetchVirtualMemory(GetCurrentProcess(), 1, &range, 0)) {
  728. fprintf(stderr, "warning: PrefetchVirtualMemory failed: %s\n",
  729. llama_format_win_err(GetLastError()).c_str());
  730. }
  731. }
  732. }
  733. }
  734. ~llama_mmap() {
  735. if (!UnmapViewOfFile(addr)) {
  736. fprintf(stderr, "warning: UnmapViewOfFile failed: %s\n",
  737. llama_format_win_err(GetLastError()).c_str());
  738. }
  739. }
  740. #else
  741. static constexpr bool SUPPORTED = false;
  742. llama_mmap(struct llama_file * file, bool prefetch = true, bool numa = false) {
  743. (void) file;
  744. (void) prefetch;
  745. (void) numa;
  746. throw std::runtime_error(std::string("mmap not supported"));
  747. }
  748. #endif
  749. };
  750. // Represents some region of memory being locked using mlock or VirtualLock;
  751. // will automatically unlock on destruction.
  752. struct llama_mlock {
  753. void * addr = NULL;
  754. size_t size = 0;
  755. bool failed_already = false;
  756. llama_mlock() {}
  757. llama_mlock(const llama_mlock &) = delete;
  758. ~llama_mlock() {
  759. if (size) {
  760. raw_unlock(addr, size);
  761. }
  762. }
  763. void init(void * ptr) {
  764. GGML_ASSERT(addr == NULL && size == 0); // NOLINT
  765. addr = ptr;
  766. }
  767. void grow_to(size_t target_size) {
  768. GGML_ASSERT(addr);
  769. if (failed_already) {
  770. return;
  771. }
  772. size_t granularity = lock_granularity();
  773. target_size = (target_size + granularity - 1) & ~(granularity - 1);
  774. if (target_size > size) {
  775. if (raw_lock((uint8_t *) addr + size, target_size - size)) {
  776. size = target_size;
  777. } else {
  778. failed_already = true;
  779. }
  780. }
  781. }
  782. #ifdef _POSIX_MEMLOCK_RANGE
  783. static constexpr bool SUPPORTED = true;
  784. static size_t lock_granularity() {
  785. return (size_t) sysconf(_SC_PAGESIZE);
  786. }
  787. #ifdef __APPLE__
  788. #define MLOCK_SUGGESTION \
  789. "Try increasing the sysctl values 'vm.user_wire_limit' and 'vm.global_user_wire_limit' and/or " \
  790. "decreasing 'vm.global_no_user_wire_amount'. Also try increasing RLIMIT_MLOCK (ulimit -l).\n"
  791. #else
  792. #define MLOCK_SUGGESTION \
  793. "Try increasing RLIMIT_MLOCK ('ulimit -l' as root).\n"
  794. #endif
  795. bool raw_lock(const void * addr, size_t size) const {
  796. if (!mlock(addr, size)) {
  797. return true;
  798. }
  799. char* errmsg = std::strerror(errno);
  800. bool suggest = (errno == ENOMEM);
  801. // Check if the resource limit is fine after all
  802. struct rlimit lock_limit;
  803. if (suggest && getrlimit(RLIMIT_MEMLOCK, &lock_limit)) {
  804. suggest = false;
  805. }
  806. if (suggest && (lock_limit.rlim_max > lock_limit.rlim_cur + size)) {
  807. suggest = false;
  808. }
  809. fprintf(stderr, "warning: failed to mlock %zu-byte buffer (after previously locking %zu bytes): %s\n%s",
  810. size, this->size, errmsg, suggest ? MLOCK_SUGGESTION : "");
  811. return false;
  812. }
  813. #undef MLOCK_SUGGESTION
  814. static void raw_unlock(void * addr, size_t size) {
  815. if (munlock(addr, size)) {
  816. fprintf(stderr, "warning: failed to munlock buffer: %s\n", std::strerror(errno));
  817. }
  818. }
  819. #elif defined(_WIN32)
  820. static constexpr bool SUPPORTED = true;
  821. static size_t lock_granularity() {
  822. SYSTEM_INFO si;
  823. GetSystemInfo(&si);
  824. return (size_t) si.dwPageSize;
  825. }
  826. bool raw_lock(void * ptr, size_t len) const {
  827. for (int tries = 1; ; tries++) {
  828. if (VirtualLock(ptr, len)) {
  829. return true;
  830. }
  831. if (tries == 2) {
  832. fprintf(stderr, "warning: failed to VirtualLock %zu-byte buffer (after previously locking %zu bytes): %s\n",
  833. len, size, llama_format_win_err(GetLastError()).c_str());
  834. return false;
  835. }
  836. // It failed but this was only the first try; increase the working
  837. // set size and try again.
  838. SIZE_T min_ws_size, max_ws_size;
  839. if (!GetProcessWorkingSetSize(GetCurrentProcess(), &min_ws_size, &max_ws_size)) {
  840. fprintf(stderr, "warning: GetProcessWorkingSetSize failed: %s\n",
  841. llama_format_win_err(GetLastError()).c_str());
  842. return false;
  843. }
  844. // Per MSDN: "The maximum number of pages that a process can lock
  845. // is equal to the number of pages in its minimum working set minus
  846. // a small overhead."
  847. // Hopefully a megabyte is enough overhead:
  848. size_t increment = len + 1048576;
  849. // The minimum must be <= the maximum, so we need to increase both:
  850. min_ws_size += increment;
  851. max_ws_size += increment;
  852. if (!SetProcessWorkingSetSize(GetCurrentProcess(), min_ws_size, max_ws_size)) {
  853. fprintf(stderr, "warning: SetProcessWorkingSetSize failed: %s\n",
  854. llama_format_win_err(GetLastError()).c_str());
  855. return false;
  856. }
  857. }
  858. }
  859. static void raw_unlock(void * ptr, size_t len) {
  860. if (!VirtualUnlock(ptr, len)) {
  861. fprintf(stderr, "warning: failed to VirtualUnlock buffer: %s\n",
  862. llama_format_win_err(GetLastError()).c_str());
  863. }
  864. }
  865. #else
  866. static constexpr bool SUPPORTED = false;
  867. static size_t lock_granularity() {
  868. return (size_t) 65536;
  869. }
  870. bool raw_lock(const void * addr, size_t len) const {
  871. fprintf(stderr, "warning: mlock not supported on this system\n");
  872. return false;
  873. }
  874. static void raw_unlock(const void * addr, size_t len) {}
  875. #endif
  876. };
  877. typedef void (*offload_func_t)(struct ggml_tensor * tensor);
  878. static void ggml_offload_nop(struct ggml_tensor * tensor) {
  879. (void) tensor;
  880. }
  881. static std::string llama_token_to_piece(const struct llama_context * ctx, llama_token token) {
  882. std::vector<char> result(8, 0);
  883. const int n_tokens = llama_token_to_piece(llama_get_model(ctx), token, result.data(), result.size());
  884. if (n_tokens < 0) {
  885. result.resize(-n_tokens);
  886. int check = llama_token_to_piece(llama_get_model(ctx), token, result.data(), result.size());
  887. GGML_ASSERT(check == -n_tokens);
  888. }
  889. else {
  890. result.resize(n_tokens);
  891. }
  892. return std::string(result.data(), result.size());
  893. }
  894. //
  895. // globals
  896. //
  897. struct llama_state {
  898. // We save the log callback globally
  899. ggml_log_callback log_callback = llama_log_callback_default;
  900. void * log_callback_user_data = nullptr;
  901. };
  902. static llama_state g_state;
  903. // available llama models
  904. enum e_model {
  905. MODEL_UNKNOWN,
  906. MODEL_1B,
  907. MODEL_3B,
  908. MODEL_7B,
  909. MODEL_8B,
  910. MODEL_13B,
  911. MODEL_15B,
  912. MODEL_30B,
  913. MODEL_34B,
  914. MODEL_40B,
  915. MODEL_65B,
  916. MODEL_70B,
  917. };
  918. static const size_t kB = 1024;
  919. static const size_t MB = 1024*kB;
  920. static const size_t GB = 1024*MB;
  921. struct llama_hparams {
  922. bool vocab_only;
  923. uint32_t n_vocab;
  924. uint32_t n_ctx_train; // context size the model was trained on
  925. uint32_t n_embd;
  926. uint32_t n_head;
  927. uint32_t n_head_kv;
  928. uint32_t n_layer;
  929. uint32_t n_rot;
  930. uint32_t n_ff;
  931. float f_norm_eps;
  932. float f_norm_rms_eps;
  933. float rope_freq_base_train;
  934. float rope_freq_scale_train;
  935. uint32_t n_yarn_orig_ctx;
  936. int8_t rope_scaling_type_train : 3;
  937. bool rope_finetuned : 1;
  938. float f_clamp_kqv;
  939. float f_max_alibi_bias;
  940. bool operator!=(const llama_hparams & other) const {
  941. if (this->vocab_only != other.vocab_only) return true;
  942. if (this->n_vocab != other.n_vocab) return true;
  943. if (this->n_ctx_train != other.n_ctx_train) return true;
  944. if (this->n_embd != other.n_embd) return true;
  945. if (this->n_head != other.n_head) return true;
  946. if (this->n_head_kv != other.n_head_kv) return true;
  947. if (this->n_layer != other.n_layer) return true;
  948. if (this->n_rot != other.n_rot) return true;
  949. if (this->n_ff != other.n_ff) return true;
  950. if (this->rope_finetuned != other.rope_finetuned) return true;
  951. if (this->n_yarn_orig_ctx != other.n_yarn_orig_ctx) return true;
  952. const float EPSILON = 1e-9;
  953. if (!is_float_close(this->f_norm_eps, other.f_norm_eps, EPSILON)) return true;
  954. if (!is_float_close(this->f_norm_rms_eps, other.f_norm_rms_eps, EPSILON)) return true;
  955. if (!is_float_close(this->rope_freq_base_train, other.rope_freq_base_train, EPSILON)) return true;
  956. if (!is_float_close(this->rope_freq_scale_train, other.rope_freq_scale_train, EPSILON)) return true;
  957. return false;
  958. }
  959. uint32_t n_gqa() const {
  960. return n_head/n_head_kv;
  961. }
  962. uint32_t n_embd_head() const {
  963. return n_embd/n_head;
  964. }
  965. uint32_t n_embd_gqa() const {
  966. return n_embd/n_gqa();
  967. }
  968. };
  969. struct llama_cparams {
  970. uint32_t n_ctx; // context size used during inference
  971. uint32_t n_batch;
  972. uint32_t n_threads; // number of threads to use for generation
  973. uint32_t n_threads_batch; // number of threads to use for batch processing
  974. float rope_freq_base;
  975. float rope_freq_scale;
  976. uint32_t n_yarn_orig_ctx;
  977. // These hyperparameters are not exposed in GGUF, because all
  978. // existing YaRN models use the same values for them.
  979. float yarn_ext_factor;
  980. float yarn_attn_factor;
  981. float yarn_beta_fast;
  982. float yarn_beta_slow;
  983. bool mul_mat_q;
  984. };
  985. struct llama_layer {
  986. // normalization
  987. struct ggml_tensor * attn_norm;
  988. struct ggml_tensor * attn_norm_b;
  989. struct ggml_tensor * attn_norm_2;
  990. struct ggml_tensor * attn_norm_2_b;
  991. struct ggml_tensor * attn_q_norm;
  992. struct ggml_tensor * attn_q_norm_b;
  993. struct ggml_tensor * attn_k_norm;
  994. struct ggml_tensor * attn_k_norm_b;
  995. // attention
  996. struct ggml_tensor * wq;
  997. struct ggml_tensor * wk;
  998. struct ggml_tensor * wv;
  999. struct ggml_tensor * wo;
  1000. struct ggml_tensor * wqkv;
  1001. // attention bias
  1002. struct ggml_tensor * bo;
  1003. struct ggml_tensor * bqkv;
  1004. // normalization
  1005. struct ggml_tensor * ffn_norm;
  1006. struct ggml_tensor * ffn_norm_b;
  1007. // ff
  1008. struct ggml_tensor * ffn_gate; // w1
  1009. struct ggml_tensor * ffn_down; // w2
  1010. struct ggml_tensor * ffn_up; // w3
  1011. // ff bias
  1012. struct ggml_tensor * ffn_down_b; // b2
  1013. struct ggml_tensor * ffn_up_b; // b3
  1014. };
  1015. struct llama_kv_cell {
  1016. llama_pos pos = -1;
  1017. llama_pos delta = 0;
  1018. std::set<llama_seq_id> seq_id;
  1019. bool has_seq_id(const llama_seq_id & id) const {
  1020. return seq_id.find(id) != seq_id.end();
  1021. }
  1022. };
  1023. // ring-buffer of cached KV data
  1024. struct llama_kv_cache {
  1025. bool has_shift = false;
  1026. // Note: The value of head isn't only used to optimize searching
  1027. // for a free KV slot. llama_decode_internal also uses it, so it
  1028. // cannot be freely changed after a slot has been allocated.
  1029. uint32_t head = 0;
  1030. uint32_t size = 0;
  1031. // computed before each graph build
  1032. uint32_t n = 0;
  1033. std::vector<llama_kv_cell> cells;
  1034. struct ggml_tensor * k = NULL;
  1035. struct ggml_tensor * v = NULL;
  1036. struct ggml_context * ctx = NULL;
  1037. llama_buffer buf;
  1038. ~llama_kv_cache() {
  1039. if (ctx) {
  1040. ggml_free(ctx);
  1041. }
  1042. #ifdef GGML_USE_CUBLAS
  1043. ggml_cuda_free_data(k);
  1044. ggml_cuda_free_data(v);
  1045. #endif // GGML_USE_CUBLAS
  1046. }
  1047. };
  1048. struct llama_vocab {
  1049. using id = int32_t;
  1050. using token = std::string;
  1051. using ttype = llama_token_type;
  1052. struct token_data {
  1053. token text;
  1054. float score;
  1055. ttype type;
  1056. };
  1057. enum llama_vocab_type type = LLAMA_VOCAB_TYPE_SPM;
  1058. std::unordered_map<token, id> token_to_id;
  1059. std::vector<token_data> id_to_token;
  1060. std::unordered_map<token, id> special_tokens_cache;
  1061. std::map<std::pair<std::string, std::string>, int> bpe_ranks;
  1062. // default LLaMA special tokens
  1063. id special_bos_id = 1;
  1064. id special_eos_id = 2;
  1065. id special_unk_id = 0;
  1066. id special_sep_id = -1;
  1067. id special_pad_id = -1;
  1068. id linefeed_id = 13;
  1069. id special_prefix_id = 32007;
  1070. id special_middle_id = 32009;
  1071. id special_suffix_id = 32008;
  1072. id special_eot_id = 32010;
  1073. int find_bpe_rank(std::string token_left, std::string token_right) const {
  1074. GGML_ASSERT(token_left.find(" ") == std::string::npos);
  1075. GGML_ASSERT(token_left.find("\n") == std::string::npos);
  1076. GGML_ASSERT(token_right.find(" ") == std::string::npos);
  1077. GGML_ASSERT(token_right.find("\n") == std::string::npos);
  1078. auto it = bpe_ranks.find(std::make_pair(token_left, token_right));
  1079. if (it == bpe_ranks.end()) {
  1080. return -1;
  1081. }
  1082. return it->second;
  1083. }
  1084. };
  1085. struct llama_model {
  1086. e_model type = MODEL_UNKNOWN;
  1087. llm_arch arch = LLM_ARCH_UNKNOWN;
  1088. llama_ftype ftype = LLAMA_FTYPE_ALL_F32;
  1089. std::string name = "n/a";
  1090. llama_hparams hparams = {};
  1091. llama_vocab vocab;
  1092. struct ggml_tensor * tok_embd;
  1093. struct ggml_tensor * pos_embd;
  1094. struct ggml_tensor * tok_norm;
  1095. struct ggml_tensor * tok_norm_b;
  1096. struct ggml_tensor * output_norm;
  1097. struct ggml_tensor * output_norm_b;
  1098. struct ggml_tensor * output;
  1099. std::vector<llama_layer> layers;
  1100. int n_gpu_layers;
  1101. // context
  1102. struct ggml_context * ctx = NULL;
  1103. // the model memory buffer
  1104. llama_buffer buf;
  1105. // model memory mapped file
  1106. std::unique_ptr<llama_mmap> mapping;
  1107. // objects representing data potentially being locked in memory
  1108. llama_mlock mlock_buf;
  1109. llama_mlock mlock_mmap;
  1110. // for quantize-stats only
  1111. std::vector<std::pair<std::string, struct ggml_tensor *>> tensors_by_name;
  1112. int64_t t_load_us = 0;
  1113. int64_t t_start_us = 0;
  1114. ~llama_model() {
  1115. if (ctx) {
  1116. ggml_free(ctx);
  1117. }
  1118. #ifdef GGML_USE_CUBLAS
  1119. for (size_t i = 0; i < tensors_by_name.size(); ++i) {
  1120. ggml_cuda_free_data(tensors_by_name[i].second);
  1121. }
  1122. ggml_cuda_free_scratch();
  1123. #elif defined(GGML_USE_CLBLAST)
  1124. for (size_t i = 0; i < tensors_by_name.size(); ++i) {
  1125. ggml_cl_free_data(tensors_by_name[i].second);
  1126. }
  1127. #endif
  1128. }
  1129. };
  1130. struct llama_context {
  1131. llama_context(const llama_model & model) : model(model), t_start_us(model.t_start_us), t_load_us(model.t_load_us) {}
  1132. ~llama_context() {
  1133. #ifdef GGML_USE_METAL
  1134. if (ctx_metal) {
  1135. ggml_metal_free(ctx_metal);
  1136. }
  1137. #endif
  1138. if (alloc) {
  1139. ggml_allocr_free(alloc);
  1140. }
  1141. }
  1142. llama_cparams cparams;
  1143. const llama_model & model;
  1144. // key + value cache for the self attention
  1145. struct llama_kv_cache kv_self;
  1146. std::mt19937 rng;
  1147. bool has_evaluated_once = false;
  1148. int64_t t_start_us;
  1149. int64_t t_load_us;
  1150. int64_t t_sample_us = 0;
  1151. int64_t t_p_eval_us = 0;
  1152. int64_t t_eval_us = 0;
  1153. int32_t n_sample = 0; // number of tokens sampled
  1154. int32_t n_p_eval = 0; // number of tokens in eval calls for the prompt (with batch size > 1)
  1155. int32_t n_eval = 0; // number of eval calls
  1156. // decode output (2-dimensional array: [n_tokens][n_vocab])
  1157. std::vector<float> logits;
  1158. bool logits_all = false;
  1159. // input embedding (1-dimensional array: [n_embd])
  1160. std::vector<float> embedding;
  1161. // reusable buffer for `struct ggml_graph_plan.work_data`
  1162. std::vector<uint8_t> work_buffer;
  1163. // memory buffers used to evaluate the model
  1164. llama_buffer buf_compute;
  1165. llama_buffer buf_alloc;
  1166. ggml_allocr * alloc = NULL;
  1167. #ifdef GGML_USE_METAL
  1168. ggml_metal_context * ctx_metal = NULL;
  1169. #endif
  1170. #ifdef GGML_USE_MPI
  1171. ggml_mpi_context * ctx_mpi = NULL;
  1172. #endif
  1173. };
  1174. //
  1175. // kv cache helpers
  1176. //
  1177. static bool llama_kv_cache_init(
  1178. const struct llama_hparams & hparams,
  1179. struct llama_kv_cache & cache,
  1180. ggml_type wtype,
  1181. uint32_t n_ctx,
  1182. int n_gpu_layers) {
  1183. const uint32_t n_embd = hparams.n_embd_gqa();
  1184. const uint32_t n_layer = hparams.n_layer;
  1185. const int64_t n_mem = n_layer*n_ctx;
  1186. const int64_t n_elements = n_embd*n_mem;
  1187. cache.has_shift = false;
  1188. cache.head = 0;
  1189. cache.size = n_ctx;
  1190. cache.cells.clear();
  1191. cache.cells.resize(n_ctx);
  1192. cache.buf.resize(2u*n_elements*ggml_type_size(wtype) + 2u*ggml_tensor_overhead());
  1193. memset(cache.buf.data, 0, cache.buf.size);
  1194. struct ggml_init_params params;
  1195. params.mem_size = cache.buf.size;
  1196. params.mem_buffer = cache.buf.data;
  1197. params.no_alloc = false;
  1198. cache.ctx = ggml_init(params);
  1199. if (!cache.ctx) {
  1200. LLAMA_LOG_ERROR("%s: failed to allocate memory for kv cache\n", __func__);
  1201. return false;
  1202. }
  1203. cache.k = ggml_new_tensor_1d(cache.ctx, wtype, n_elements);
  1204. cache.v = ggml_new_tensor_1d(cache.ctx, wtype, n_elements);
  1205. ggml_set_name(cache.k, "cache_k");
  1206. ggml_set_name(cache.v, "cache_v");
  1207. (void) n_gpu_layers;
  1208. #ifdef GGML_USE_CUBLAS
  1209. size_t vram_kv_cache = 0;
  1210. if (n_gpu_layers > (int)n_layer + 1) {
  1211. ggml_cuda_assign_buffers_no_scratch(cache.v);
  1212. LLAMA_LOG_INFO("%s: offloading v cache to GPU\n", __func__);
  1213. vram_kv_cache += ggml_nbytes(cache.v);
  1214. }
  1215. if (n_gpu_layers > (int)n_layer + 2) {
  1216. ggml_cuda_assign_buffers_no_scratch(cache.k);
  1217. LLAMA_LOG_INFO("%s: offloading k cache to GPU\n", __func__);
  1218. vram_kv_cache += ggml_nbytes(cache.k);
  1219. }
  1220. if (vram_kv_cache > 0) {
  1221. LLAMA_LOG_INFO("%s: VRAM kv self = %.2f MB\n", __func__, vram_kv_cache / 1024.0 / 1024.0);
  1222. }
  1223. #endif // GGML_USE_CUBLAS
  1224. return true;
  1225. }
  1226. // find an empty slot of size "n_tokens" in the cache
  1227. // updates the cache head
  1228. // Note: On success, it's important that cache.head points
  1229. // to the first cell of the slot.
  1230. static bool llama_kv_cache_find_slot(
  1231. struct llama_kv_cache & cache,
  1232. const struct llama_batch & batch) {
  1233. const uint32_t n_ctx = cache.size;
  1234. const uint32_t n_tokens = batch.n_tokens;
  1235. if (n_tokens > n_ctx) {
  1236. LLAMA_LOG_ERROR("%s: n_tokens=%d > n_ctx=%d\n", __func__, n_tokens, n_ctx);
  1237. return false;
  1238. }
  1239. uint32_t n_tested = 0;
  1240. while (true) {
  1241. if (cache.head + n_tokens > n_ctx) {
  1242. n_tested += n_ctx - cache.head;
  1243. cache.head = 0;
  1244. continue;
  1245. }
  1246. bool found = true;
  1247. for (uint32_t i = 0; i < n_tokens; i++) {
  1248. if (cache.cells[cache.head + i].pos >= 0) {
  1249. found = false;
  1250. cache.head += i + 1;
  1251. n_tested += i + 1;
  1252. break;
  1253. }
  1254. }
  1255. if (found) {
  1256. break;
  1257. }
  1258. if (n_tested >= n_ctx) {
  1259. //LLAMA_LOG_ERROR("%s: failed to find a slot for %d tokens\n", __func__, n_tokens);
  1260. return false;
  1261. }
  1262. }
  1263. for (uint32_t i = 0; i < n_tokens; i++) {
  1264. cache.cells[cache.head + i].pos = batch.pos[i];
  1265. for (int32_t j = 0; j < batch.n_seq_id[i]; j++) {
  1266. cache.cells[cache.head + i].seq_id.insert(batch.seq_id[i][j]);
  1267. }
  1268. }
  1269. return true;
  1270. }
  1271. // find how many cells are currently in use
  1272. static int32_t llama_kv_cache_cell_max(const struct llama_kv_cache & cache) {
  1273. for (uint32_t i = cache.size - 1; i > 0; --i) {
  1274. if (cache.cells[i].pos >= 0 && !cache.cells[i].seq_id.empty()) {
  1275. return i + 1;
  1276. }
  1277. }
  1278. return 0;
  1279. }
  1280. static void llama_kv_cache_clear(struct llama_kv_cache & cache) {
  1281. for (int32_t i = 0; i < (int32_t) cache.size; ++i) {
  1282. cache.cells[i].pos = -1;
  1283. cache.cells[i].seq_id.clear();
  1284. }
  1285. cache.head = 0;
  1286. }
  1287. static void llama_kv_cache_seq_rm(
  1288. struct llama_kv_cache & cache,
  1289. llama_seq_id seq_id,
  1290. llama_pos p0,
  1291. llama_pos p1) {
  1292. uint32_t new_head = cache.size;
  1293. if (p0 < 0) p0 = 0;
  1294. if (p1 < 0) p1 = std::numeric_limits<llama_pos>::max();
  1295. for (uint32_t i = 0; i < cache.size; ++i) {
  1296. if (cache.cells[i].pos >= p0 && cache.cells[i].pos < p1) {
  1297. if (seq_id < 0) {
  1298. cache.cells[i].seq_id.clear();
  1299. } else if (cache.cells[i].has_seq_id(seq_id)) {
  1300. cache.cells[i].seq_id.erase(seq_id);
  1301. } else {
  1302. continue;
  1303. }
  1304. if (cache.cells[i].seq_id.empty()) {
  1305. cache.cells[i].pos = -1;
  1306. if (new_head == cache.size) new_head = i;
  1307. }
  1308. }
  1309. }
  1310. // If we freed up a slot, set head to it so searching can start there.
  1311. if (new_head != cache.size) cache.head = new_head;
  1312. }
  1313. static void llama_kv_cache_seq_cp(
  1314. struct llama_kv_cache & cache,
  1315. llama_seq_id seq_id_src,
  1316. llama_seq_id seq_id_dst,
  1317. llama_pos p0,
  1318. llama_pos p1) {
  1319. if (p0 < 0) p0 = 0;
  1320. if (p1 < 0) p1 = std::numeric_limits<llama_pos>::max();
  1321. cache.head = 0;
  1322. for (uint32_t i = 0; i < cache.size; ++i) {
  1323. if (cache.cells[i].has_seq_id(seq_id_src) && cache.cells[i].pos >= p0 && cache.cells[i].pos < p1) {
  1324. cache.cells[i].seq_id.insert(seq_id_dst);
  1325. }
  1326. }
  1327. }
  1328. static void llama_kv_cache_seq_keep(struct llama_kv_cache & cache, llama_seq_id seq_id) {
  1329. uint32_t new_head = cache.size;
  1330. for (uint32_t i = 0; i < cache.size; ++i) {
  1331. if (!cache.cells[i].has_seq_id(seq_id)) {
  1332. cache.cells[i].pos = -1;
  1333. cache.cells[i].seq_id.clear();
  1334. if (new_head == cache.size) new_head = i;
  1335. } else {
  1336. cache.cells[i].seq_id.clear();
  1337. cache.cells[i].seq_id.insert(seq_id);
  1338. }
  1339. }
  1340. // If we freed up a slot, set head to it so searching can start there.
  1341. if (new_head != cache.size) cache.head = new_head;
  1342. }
  1343. static void llama_kv_cache_seq_shift(
  1344. struct llama_kv_cache & cache,
  1345. llama_seq_id seq_id,
  1346. llama_pos p0,
  1347. llama_pos p1,
  1348. llama_pos delta) {
  1349. uint32_t new_head = cache.size;
  1350. if (p0 < 0) p0 = 0;
  1351. if (p1 < 0) p1 = std::numeric_limits<llama_pos>::max();
  1352. for (uint32_t i = 0; i < cache.size; ++i) {
  1353. if (cache.cells[i].has_seq_id(seq_id) && cache.cells[i].pos >= p0 && cache.cells[i].pos < p1) {
  1354. cache.has_shift = true;
  1355. cache.cells[i].pos += delta;
  1356. cache.cells[i].delta += delta;
  1357. if (cache.cells[i].pos < 0) {
  1358. cache.cells[i].pos = -1;
  1359. cache.cells[i].seq_id.clear();
  1360. if (new_head == cache.size) new_head = i;
  1361. }
  1362. }
  1363. }
  1364. // If we freed up a slot, set head to it so searching can start there.
  1365. // Otherwise we just start the next search from the beginning.
  1366. cache.head = new_head != cache.size ? new_head : 0;
  1367. }
  1368. //
  1369. // model loading and saving
  1370. //
  1371. enum llama_fver {
  1372. GGUF_FILE_VERSION_V1 = 1,
  1373. GGUF_FILE_VERSION_V2 = 2,
  1374. GGUF_FILE_VERSION_V3 = 3,
  1375. };
  1376. static const char * llama_file_version_name(llama_fver version) {
  1377. switch (version) {
  1378. case GGUF_FILE_VERSION_V1: return "GGUF V1 (support until nov 2023)";
  1379. case GGUF_FILE_VERSION_V2: return "GGUF V2";
  1380. case GGUF_FILE_VERSION_V3: return "GGUF V3 (latest)";
  1381. }
  1382. return "unknown";
  1383. }
  1384. static std::string llama_format_tensor_shape(const std::vector<int64_t> & ne) {
  1385. char buf[256];
  1386. snprintf(buf, sizeof(buf), "%5" PRId64, ne.at(0));
  1387. for (size_t i = 1; i < ne.size(); i++) {
  1388. snprintf(buf + strlen(buf), sizeof(buf) - strlen(buf), ", %5" PRId64, ne.at(i));
  1389. }
  1390. return buf;
  1391. }
  1392. static std::string llama_format_tensor_shape(const struct ggml_tensor * t) {
  1393. char buf[256];
  1394. snprintf(buf, sizeof(buf), "%5" PRId64, t->ne[0]);
  1395. for (int i = 1; i < GGML_MAX_DIMS; i++) {
  1396. snprintf(buf + strlen(buf), sizeof(buf) - strlen(buf), ", %5" PRId64, t->ne[i]);
  1397. }
  1398. return buf;
  1399. }
  1400. struct llama_model_loader {
  1401. int n_kv = 0;
  1402. int n_tensors = 0;
  1403. int n_created = 0;
  1404. int64_t n_elements = 0;
  1405. size_t n_bytes = 0;
  1406. bool use_mmap = false;
  1407. llama_file file;
  1408. llama_ftype ftype;
  1409. llama_fver fver;
  1410. std::unique_ptr<llama_mmap> mapping;
  1411. struct gguf_context * ctx_gguf = NULL;
  1412. struct ggml_context * ctx_meta = NULL;
  1413. llama_model_loader(const std::string & fname, bool use_mmap) : file(fname.c_str(), "rb") {
  1414. struct gguf_init_params params = {
  1415. /*.no_alloc = */ true,
  1416. /*.ctx = */ &ctx_meta,
  1417. };
  1418. ctx_gguf = gguf_init_from_file(fname.c_str(), params);
  1419. if (!ctx_gguf) {
  1420. throw std::runtime_error(format("%s: failed to load model from %s\n", __func__, fname.c_str()));
  1421. }
  1422. n_kv = gguf_get_n_kv(ctx_gguf);
  1423. n_tensors = gguf_get_n_tensors(ctx_gguf);
  1424. fver = (enum llama_fver ) gguf_get_version(ctx_gguf);
  1425. for (int i = 0; i < n_tensors; i++) {
  1426. const char * name = gguf_get_tensor_name(ctx_gguf, i);
  1427. struct ggml_tensor * t = ggml_get_tensor(ctx_meta, name);
  1428. n_elements += ggml_nelements(t);
  1429. n_bytes += ggml_nbytes(t);
  1430. }
  1431. LLAMA_LOG_INFO("%s: loaded meta data with %d key-value pairs and %d tensors from %s (version %s)\n",
  1432. __func__, n_kv, n_tensors, fname.c_str(), llama_file_version_name(fver));
  1433. // determine file type based on the number of tensors for each quantization and print meta data
  1434. // TODO: make optional
  1435. {
  1436. std::map<enum ggml_type, uint32_t> n_type;
  1437. uint32_t n_type_max = 0;
  1438. enum ggml_type type_max = GGML_TYPE_F32;
  1439. for (int i = 0; i < n_tensors; i++) {
  1440. const char * name = gguf_get_tensor_name(ctx_gguf, i);
  1441. struct ggml_tensor * meta = ggml_get_tensor(ctx_meta, name);
  1442. n_type[meta->type]++;
  1443. if (n_type_max < n_type[meta->type]) {
  1444. n_type_max = n_type[meta->type];
  1445. type_max = meta->type;
  1446. }
  1447. LLAMA_LOG_INFO("%s: - tensor %4d: %32s %-8s [ %s ]\n", __func__, i, name, ggml_type_name(meta->type), llama_format_tensor_shape(meta).c_str());
  1448. }
  1449. switch (type_max) {
  1450. case GGML_TYPE_F32: ftype = LLAMA_FTYPE_ALL_F32; break;
  1451. case GGML_TYPE_F16: ftype = LLAMA_FTYPE_MOSTLY_F16; break;
  1452. case GGML_TYPE_Q4_0: ftype = LLAMA_FTYPE_MOSTLY_Q4_0; break;
  1453. case GGML_TYPE_Q4_1: ftype = LLAMA_FTYPE_MOSTLY_Q4_1; break;
  1454. case GGML_TYPE_Q5_0: ftype = LLAMA_FTYPE_MOSTLY_Q5_0; break;
  1455. case GGML_TYPE_Q5_1: ftype = LLAMA_FTYPE_MOSTLY_Q5_1; break;
  1456. case GGML_TYPE_Q8_0: ftype = LLAMA_FTYPE_MOSTLY_Q8_0; break;
  1457. case GGML_TYPE_Q2_K: ftype = LLAMA_FTYPE_MOSTLY_Q2_K; break;
  1458. case GGML_TYPE_Q3_K: ftype = LLAMA_FTYPE_MOSTLY_Q3_K_M; break;
  1459. case GGML_TYPE_Q4_K: ftype = LLAMA_FTYPE_MOSTLY_Q4_K_M; break;
  1460. case GGML_TYPE_Q5_K: ftype = LLAMA_FTYPE_MOSTLY_Q5_K_M; break;
  1461. case GGML_TYPE_Q6_K: ftype = LLAMA_FTYPE_MOSTLY_Q6_K; break;
  1462. default:
  1463. {
  1464. LLAMA_LOG_WARN("%s: unknown type %s\n", __func__, ggml_type_name(type_max));
  1465. ftype = LLAMA_FTYPE_ALL_F32;
  1466. } break;
  1467. }
  1468. // this is a way to mark that we have "guessed" the file type
  1469. ftype = (llama_ftype) (ftype | LLAMA_FTYPE_GUESSED);
  1470. {
  1471. const int kid = gguf_find_key(ctx_gguf, "general.file_type");
  1472. if (kid >= 0) {
  1473. ftype = (llama_ftype) gguf_get_val_u32(ctx_gguf, kid);
  1474. }
  1475. }
  1476. for (int i = 0; i < n_kv; i++) {
  1477. const char * name = gguf_get_key(ctx_gguf, i);
  1478. const enum gguf_type type = gguf_get_kv_type(ctx_gguf, i);
  1479. LLAMA_LOG_INFO("%s: - kv %3d: %42s %-8s\n", __func__, i, name, gguf_type_name(type));
  1480. }
  1481. // print type counts
  1482. for (auto & kv : n_type) {
  1483. if (kv.second == 0) {
  1484. continue;
  1485. }
  1486. LLAMA_LOG_INFO("%s: - type %4s: %4d tensors\n", __func__, ggml_type_name(kv.first), kv.second);
  1487. }
  1488. }
  1489. if (!llama_mmap::SUPPORTED) {
  1490. LLAMA_LOG_WARN("%s: mmap is not supported on this platform\n", __func__);
  1491. use_mmap = false;
  1492. }
  1493. this->use_mmap = use_mmap;
  1494. }
  1495. ~llama_model_loader() {
  1496. if (ctx_gguf) {
  1497. gguf_free(ctx_gguf);
  1498. }
  1499. if (ctx_meta) {
  1500. ggml_free(ctx_meta);
  1501. }
  1502. }
  1503. std::string get_arch_name() const {
  1504. const auto kv = LLM_KV(LLM_ARCH_UNKNOWN);
  1505. std::string arch_name;
  1506. GGUF_GET_KEY(ctx_gguf, arch_name, gguf_get_val_str, GGUF_TYPE_STRING, false, kv(LLM_KV_GENERAL_ARCHITECTURE));
  1507. return arch_name;
  1508. }
  1509. enum llm_arch get_arch() const {
  1510. const std::string arch_name = get_arch_name();
  1511. return llm_arch_from_string(arch_name);
  1512. }
  1513. const char * get_tensor_name(int i) const {
  1514. return gguf_get_tensor_name(ctx_gguf, i);
  1515. }
  1516. struct ggml_tensor * get_tensor_meta(int i) const {
  1517. return ggml_get_tensor(ctx_meta, get_tensor_name(i));
  1518. }
  1519. void calc_sizes(size_t & ctx_size_p, size_t & mmapped_size_p) const {
  1520. ctx_size_p = 0;
  1521. mmapped_size_p = 0;
  1522. for (int i = 0; i < n_tensors; i++) {
  1523. struct ggml_tensor * meta = get_tensor_meta(i);
  1524. ctx_size_p += sizeof(struct ggml_tensor) + GGML_OBJECT_SIZE;
  1525. (use_mmap ? mmapped_size_p : ctx_size_p) += ggml_nbytes_pad(meta);
  1526. }
  1527. }
  1528. struct ggml_tensor * create_tensor_for(struct ggml_context * ctx, struct ggml_tensor * meta, ggml_backend_type backend) {
  1529. if (backend != GGML_BACKEND_CPU) {
  1530. ggml_set_no_alloc(ctx, true);
  1531. }
  1532. struct ggml_tensor * tensor = ggml_dup_tensor(ctx, meta);
  1533. tensor->backend = backend; // TODO: ggml_set_backend
  1534. ggml_set_name(tensor, ggml_get_name(meta));
  1535. if (backend != GGML_BACKEND_CPU) {
  1536. ggml_set_no_alloc(ctx, use_mmap);
  1537. }
  1538. n_created++;
  1539. return tensor;
  1540. }
  1541. struct ggml_tensor * create_tensor(struct ggml_context * ctx, const std::string & name, const std::vector<int64_t> & ne, ggml_backend_type backend) {
  1542. struct ggml_tensor * cur = ggml_get_tensor(ctx_meta, name.c_str());
  1543. if (cur == NULL) {
  1544. throw std::runtime_error(format("%s: tensor '%s' not found", __func__, name.c_str()));
  1545. }
  1546. if (backend == GGML_BACKEND_GPU_SPLIT) {
  1547. if (ne.size() == 1) {
  1548. throw std::runtime_error(format("%s: 1-dimensional tensor '%s' cannot be split on the GPU", __func__, name.c_str()));
  1549. }
  1550. }
  1551. {
  1552. bool is_ok = true;
  1553. for (size_t i = 0; i < ne.size(); ++i) {
  1554. if (ne[i] != cur->ne[i]) {
  1555. is_ok = false;
  1556. break;
  1557. }
  1558. }
  1559. if (!is_ok) {
  1560. throw std::runtime_error(
  1561. format("%s: tensor '%s' has wrong shape; expected %s, got %s",
  1562. __func__, name.c_str(),
  1563. llama_format_tensor_shape(ne).c_str(),
  1564. llama_format_tensor_shape(cur).c_str()));
  1565. }
  1566. }
  1567. return create_tensor_for(ctx, cur, backend);
  1568. }
  1569. void done_getting_tensors() const {
  1570. if (n_created != n_tensors) {
  1571. throw std::runtime_error(format("%s: wrong number of tensors; expected %d, got %d", __func__, n_tensors, n_created));
  1572. }
  1573. }
  1574. size_t file_offset(const char * name) const {
  1575. const int idx = gguf_find_tensor(ctx_gguf, name);
  1576. if (idx < 0) {
  1577. throw std::runtime_error(format("%s: tensor '%s' not found in the file", __func__, name));
  1578. }
  1579. return gguf_get_data_offset(ctx_gguf) + gguf_get_tensor_offset(ctx_gguf, idx);
  1580. }
  1581. void load_data_for(struct ggml_tensor * cur) const {
  1582. const size_t offs = file_offset(ggml_get_name(cur));
  1583. if (use_mmap) {
  1584. cur->data = (uint8_t *) mapping->addr + offs;
  1585. } else {
  1586. file.seek(offs, SEEK_SET);
  1587. file.read_raw(cur->data, ggml_nbytes(cur));
  1588. }
  1589. }
  1590. void load_all_data(struct ggml_context * ctx, llama_progress_callback progress_callback, void * progress_callback_user_data, llama_mlock * lmlock) {
  1591. size_t size_data = 0;
  1592. size_t size_lock = 0;
  1593. size_t size_pref = 0; // prefetch
  1594. for (int i = 0; i < gguf_get_n_tensors(ctx_gguf); i++) {
  1595. struct ggml_tensor * cur = ggml_get_tensor(ctx, gguf_get_tensor_name(ctx_gguf, i));
  1596. size_data += ggml_nbytes(cur);
  1597. if (cur->backend == GGML_BACKEND_CPU) {
  1598. size_pref += ggml_nbytes(cur);
  1599. }
  1600. }
  1601. if (use_mmap) {
  1602. mapping.reset(new llama_mmap(&file, size_pref, ggml_is_numa()));
  1603. if (lmlock) {
  1604. lmlock->init(mapping->addr);
  1605. }
  1606. }
  1607. size_t done_size = 0;
  1608. for (int i = 0; i < gguf_get_n_tensors(ctx_gguf); i++) {
  1609. struct ggml_tensor * cur = ggml_get_tensor(ctx, gguf_get_tensor_name(ctx_gguf, i));
  1610. GGML_ASSERT(cur); // unused tensors should have been caught by load_data already
  1611. if (progress_callback) {
  1612. progress_callback((float) done_size / size_data, progress_callback_user_data);
  1613. }
  1614. // allocate temp buffer if not using mmap
  1615. if (!use_mmap && cur->data == NULL) {
  1616. GGML_ASSERT(cur->backend != GGML_BACKEND_CPU);
  1617. #ifdef GGML_USE_CPU_HBM
  1618. cur->data = (uint8_t*)hbw_malloc(ggml_nbytes(cur));
  1619. #else
  1620. cur->data = (uint8_t*)malloc(ggml_nbytes(cur));
  1621. #endif
  1622. }
  1623. load_data_for(cur);
  1624. switch (cur->backend) {
  1625. case GGML_BACKEND_CPU:
  1626. if (use_mmap && lmlock) {
  1627. size_lock += ggml_nbytes(cur);
  1628. lmlock->grow_to(size_lock);
  1629. }
  1630. break;
  1631. #ifdef GGML_USE_CUBLAS
  1632. case GGML_BACKEND_GPU:
  1633. case GGML_BACKEND_GPU_SPLIT:
  1634. // old code:
  1635. //ggml_cuda_transform_tensor(lt.data, lt.ggml_tensor);
  1636. // TODO: test if this works !!
  1637. ggml_cuda_transform_tensor(cur->data, cur);
  1638. if (!use_mmap) {
  1639. free(cur->data);
  1640. }
  1641. break;
  1642. #elif defined(GGML_USE_CLBLAST)
  1643. case GGML_BACKEND_GPU:
  1644. ggml_cl_transform_tensor(cur->data, cur);
  1645. if (!use_mmap) {
  1646. free(cur->data);
  1647. }
  1648. break;
  1649. #endif
  1650. default:
  1651. continue;
  1652. }
  1653. done_size += ggml_nbytes(cur);
  1654. }
  1655. }
  1656. };
  1657. //
  1658. // load LLaMA models
  1659. //
  1660. static std::string llama_model_arch_name(llm_arch arch) {
  1661. auto it = LLM_ARCH_NAMES.find(arch);
  1662. if (it == LLM_ARCH_NAMES.end()) {
  1663. return "unknown";
  1664. }
  1665. return it->second;
  1666. }
  1667. static std::string llama_model_ftype_name(llama_ftype ftype) {
  1668. if (ftype & LLAMA_FTYPE_GUESSED) {
  1669. return llama_model_ftype_name((enum llama_ftype) (ftype & ~LLAMA_FTYPE_GUESSED)) + " (guessed)";
  1670. }
  1671. switch (ftype) {
  1672. case LLAMA_FTYPE_ALL_F32: return "all F32";
  1673. case LLAMA_FTYPE_MOSTLY_F16: return "mostly F16";
  1674. case LLAMA_FTYPE_MOSTLY_Q4_0: return "mostly Q4_0";
  1675. case LLAMA_FTYPE_MOSTLY_Q4_1: return "mostly Q4_1";
  1676. case LLAMA_FTYPE_MOSTLY_Q4_1_SOME_F16:
  1677. return "mostly Q4_1, some F16";
  1678. case LLAMA_FTYPE_MOSTLY_Q5_0: return "mostly Q5_0";
  1679. case LLAMA_FTYPE_MOSTLY_Q5_1: return "mostly Q5_1";
  1680. case LLAMA_FTYPE_MOSTLY_Q8_0: return "mostly Q8_0";
  1681. // K-quants
  1682. case LLAMA_FTYPE_MOSTLY_Q2_K: return "mostly Q2_K";
  1683. case LLAMA_FTYPE_MOSTLY_Q3_K_S: return "mostly Q3_K - Small";
  1684. case LLAMA_FTYPE_MOSTLY_Q3_K_M: return "mostly Q3_K - Medium";
  1685. case LLAMA_FTYPE_MOSTLY_Q3_K_L: return "mostly Q3_K - Large";
  1686. case LLAMA_FTYPE_MOSTLY_Q4_K_S: return "mostly Q4_K - Small";
  1687. case LLAMA_FTYPE_MOSTLY_Q4_K_M: return "mostly Q4_K - Medium";
  1688. case LLAMA_FTYPE_MOSTLY_Q5_K_S: return "mostly Q5_K - Small";
  1689. case LLAMA_FTYPE_MOSTLY_Q5_K_M: return "mostly Q5_K - Medium";
  1690. case LLAMA_FTYPE_MOSTLY_Q6_K: return "mostly Q6_K";
  1691. default: return "unknown, may not work";
  1692. }
  1693. }
  1694. static const char * llama_model_type_name(e_model type) {
  1695. switch (type) {
  1696. case MODEL_1B: return "1B";
  1697. case MODEL_3B: return "3B";
  1698. case MODEL_7B: return "7B";
  1699. case MODEL_8B: return "8B";
  1700. case MODEL_13B: return "13B";
  1701. case MODEL_15B: return "15B";
  1702. case MODEL_30B: return "30B";
  1703. case MODEL_34B: return "34B";
  1704. case MODEL_40B: return "40B";
  1705. case MODEL_65B: return "65B";
  1706. case MODEL_70B: return "70B";
  1707. default: return "?B";
  1708. }
  1709. }
  1710. static void llm_load_arch(llama_model_loader & ml, llama_model & model) {
  1711. model.arch = ml.get_arch();
  1712. if (model.arch == LLM_ARCH_UNKNOWN) {
  1713. throw std::runtime_error("unknown model architecture: '" + ml.get_arch_name() + "'");
  1714. }
  1715. }
  1716. static void llm_load_hparams(
  1717. llama_model_loader & ml,
  1718. llama_model & model) {
  1719. struct gguf_context * ctx = ml.ctx_gguf;
  1720. const auto kv = LLM_KV(model.arch);
  1721. auto & hparams = model.hparams;
  1722. // get general kv
  1723. GGUF_GET_KEY(ctx, model.name, gguf_get_val_str, GGUF_TYPE_STRING, false, kv(LLM_KV_GENERAL_NAME));
  1724. // get hparams kv
  1725. GGUF_GET_KEY(ctx, hparams.n_vocab, gguf_get_arr_n, GGUF_TYPE_ARRAY, true, kv(LLM_KV_TOKENIZER_LIST));
  1726. GGUF_GET_KEY(ctx, hparams.n_ctx_train, gguf_get_val_u32, GGUF_TYPE_UINT32, true, kv(LLM_KV_CONTEXT_LENGTH));
  1727. GGUF_GET_KEY(ctx, hparams.n_embd, gguf_get_val_u32, GGUF_TYPE_UINT32, true, kv(LLM_KV_EMBEDDING_LENGTH));
  1728. GGUF_GET_KEY(ctx, hparams.n_ff, gguf_get_val_u32, GGUF_TYPE_UINT32, true, kv(LLM_KV_FEED_FORWARD_LENGTH));
  1729. GGUF_GET_KEY(ctx, hparams.n_head, gguf_get_val_u32, GGUF_TYPE_UINT32, true, kv(LLM_KV_ATTENTION_HEAD_COUNT));
  1730. GGUF_GET_KEY(ctx, hparams.n_layer, gguf_get_val_u32, GGUF_TYPE_UINT32, true, kv(LLM_KV_BLOCK_COUNT));
  1731. // n_head_kv is optional, default to n_head
  1732. hparams.n_head_kv = hparams.n_head;
  1733. GGUF_GET_KEY(ctx, hparams.n_head_kv, gguf_get_val_u32, GGUF_TYPE_UINT32, false, kv(LLM_KV_ATTENTION_HEAD_COUNT_KV));
  1734. hparams.rope_finetuned = false;
  1735. GGUF_GET_KEY(ctx, hparams.rope_finetuned, gguf_get_val_bool, GGUF_TYPE_BOOL, false,
  1736. kv(LLM_KV_ROPE_SCALING_FINETUNED));
  1737. hparams.n_yarn_orig_ctx = hparams.n_ctx_train;
  1738. GGUF_GET_KEY(ctx, hparams.n_yarn_orig_ctx, gguf_get_val_u32, GGUF_TYPE_UINT32, false,
  1739. kv(LLM_KV_ROPE_SCALING_ORIG_CTX_LEN));
  1740. // rope_freq_base (optional)
  1741. hparams.rope_freq_base_train = 10000.0f;
  1742. GGUF_GET_KEY(ctx, hparams.rope_freq_base_train, gguf_get_val_f32, GGUF_TYPE_FLOAT32, false, kv(LLM_KV_ROPE_FREQ_BASE));
  1743. std::string rope_scaling("linear");
  1744. GGUF_GET_KEY(ctx, rope_scaling, gguf_get_val_str, GGUF_TYPE_STRING, false, kv(LLM_KV_ROPE_SCALING_TYPE));
  1745. hparams.rope_scaling_type_train = llama_rope_scaling_type_from_string(rope_scaling);
  1746. GGML_ASSERT(hparams.rope_scaling_type_train != LLAMA_ROPE_SCALING_UNSPECIFIED);
  1747. // rope_freq_scale (inverse of the kv) is optional
  1748. float ropescale = 0.0f;
  1749. GGUF_GET_KEY(ctx, ropescale, gguf_get_val_f32, GGUF_TYPE_FLOAT32, false, kv(LLM_KV_ROPE_SCALING_FACTOR));
  1750. if (ropescale == 0.0f) { // try the old key name
  1751. GGUF_GET_KEY(ctx, ropescale, gguf_get_val_f32, GGUF_TYPE_FLOAT32, false, kv(LLM_KV_ROPE_SCALE_LINEAR));
  1752. }
  1753. hparams.rope_freq_scale_train = ropescale == 0.0f ? 1.0f : 1.0f/ropescale;
  1754. // sanity check for n_rot (optional)
  1755. {
  1756. hparams.n_rot = hparams.n_embd / hparams.n_head;
  1757. GGUF_GET_KEY(ctx, hparams.n_rot, gguf_get_val_u32, GGUF_TYPE_UINT32, false, kv(LLM_KV_ROPE_DIMENSION_COUNT));
  1758. if (model.arch == LLM_ARCH_LLAMA || model.arch == LLM_ARCH_FALCON) {
  1759. if (hparams.n_rot != hparams.n_embd / hparams.n_head) {
  1760. throw std::runtime_error(format("invalid n_rot: %u, expected %u", hparams.n_rot, hparams.n_embd / hparams.n_head));
  1761. }
  1762. }
  1763. // gpt-neox n_rot = rotary_pct * (n_embd / n_head)
  1764. // gpt-j n_rot = rotary_dim
  1765. }
  1766. // arch-specific KVs
  1767. switch (model.arch) {
  1768. case LLM_ARCH_LLAMA:
  1769. {
  1770. GGUF_GET_KEY(ctx, hparams.f_norm_rms_eps, gguf_get_val_f32, GGUF_TYPE_FLOAT32, true, kv(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS));
  1771. switch (hparams.n_layer) {
  1772. case 26: model.type = e_model::MODEL_3B; break;
  1773. case 32: model.type = e_model::MODEL_7B; break;
  1774. case 40: model.type = e_model::MODEL_13B; break;
  1775. case 48: model.type = e_model::MODEL_34B; break;
  1776. case 60: model.type = e_model::MODEL_30B; break;
  1777. case 80: model.type = hparams.n_head == hparams.n_head_kv ? e_model::MODEL_65B : e_model::MODEL_70B; break;
  1778. default: model.type = e_model::MODEL_UNKNOWN;
  1779. }
  1780. } break;
  1781. case LLM_ARCH_FALCON:
  1782. {
  1783. GGUF_GET_KEY(ctx, hparams.f_norm_eps, gguf_get_val_f32, GGUF_TYPE_FLOAT32, true, kv(LLM_KV_ATTENTION_LAYERNORM_EPS));
  1784. switch (hparams.n_layer) {
  1785. case 32: model.type = e_model::MODEL_7B; break;
  1786. case 60: model.type = e_model::MODEL_40B; break;
  1787. default: model.type = e_model::MODEL_UNKNOWN;
  1788. }
  1789. } break;
  1790. case LLM_ARCH_BAICHUAN:
  1791. {
  1792. GGUF_GET_KEY(ctx, hparams.f_norm_rms_eps, gguf_get_val_f32, GGUF_TYPE_FLOAT32, true, kv(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS));
  1793. switch (hparams.n_layer) {
  1794. case 32: model.type = e_model::MODEL_7B; break;
  1795. case 40: model.type = e_model::MODEL_13B; break;
  1796. default: model.type = e_model::MODEL_UNKNOWN;
  1797. }
  1798. } break;
  1799. case LLM_ARCH_STARCODER:
  1800. {
  1801. GGUF_GET_KEY(ctx, hparams.f_norm_eps, gguf_get_val_f32, GGUF_TYPE_FLOAT32, true, kv(LLM_KV_ATTENTION_LAYERNORM_EPS));
  1802. switch (hparams.n_layer) {
  1803. case 24: model.type = e_model::MODEL_1B; break;
  1804. case 36: model.type = e_model::MODEL_3B; break;
  1805. case 42: model.type = e_model::MODEL_7B; break;
  1806. case 40: model.type = e_model::MODEL_15B; break;
  1807. default: model.type = e_model::MODEL_UNKNOWN;
  1808. }
  1809. } break;
  1810. case LLM_ARCH_PERSIMMON:
  1811. {
  1812. GGUF_GET_KEY(ctx, hparams.f_norm_eps, gguf_get_val_f32, GGUF_TYPE_FLOAT32, true, kv(LLM_KV_ATTENTION_LAYERNORM_EPS));
  1813. switch (hparams.n_layer) {
  1814. case 36: model.type = e_model::MODEL_8B; break;
  1815. default: model.type = e_model::MODEL_UNKNOWN;
  1816. }
  1817. } break;
  1818. case LLM_ARCH_REFACT:
  1819. {
  1820. GGUF_GET_KEY(ctx, hparams.f_norm_rms_eps, gguf_get_val_f32, GGUF_TYPE_FLOAT32, true, kv(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS));
  1821. switch (hparams.n_layer) {
  1822. case 32: model.type = e_model::MODEL_1B; break;
  1823. default: model.type = e_model::MODEL_UNKNOWN;
  1824. }
  1825. } break;
  1826. case LLM_ARCH_BLOOM:
  1827. {
  1828. GGUF_GET_KEY(ctx, hparams.f_norm_eps, gguf_get_val_f32, GGUF_TYPE_FLOAT32, true, kv(LLM_KV_ATTENTION_LAYERNORM_EPS));
  1829. switch (hparams.n_layer) {
  1830. case 24: model.type = e_model::MODEL_1B; break;
  1831. case 30:
  1832. switch (hparams.n_embd) {
  1833. case 2560: model.type = e_model::MODEL_3B; break;
  1834. case 4096: model.type = e_model::MODEL_7B; break;
  1835. } break;
  1836. }
  1837. } break;
  1838. case LLM_ARCH_MPT:
  1839. {
  1840. hparams.f_clamp_kqv = 0.0f;
  1841. GGUF_GET_KEY(ctx, hparams.f_norm_eps, gguf_get_val_f32, GGUF_TYPE_FLOAT32, true, kv(LLM_KV_ATTENTION_LAYERNORM_EPS));
  1842. GGUF_GET_KEY(ctx, hparams.f_clamp_kqv, gguf_get_val_f32, GGUF_TYPE_FLOAT32, false, kv(LLM_KV_ATTENTION_CLAMP_KQV));
  1843. GGUF_GET_KEY(ctx, hparams.f_max_alibi_bias, gguf_get_val_f32, GGUF_TYPE_FLOAT32, true, kv(LLM_KV_ATTENTION_MAX_ALIBI_BIAS));
  1844. switch (hparams.n_layer) {
  1845. case 32: model.type = e_model::MODEL_7B; break;
  1846. case 48: model.type = e_model::MODEL_30B; break;
  1847. default: model.type = e_model::MODEL_UNKNOWN;
  1848. }
  1849. } break;
  1850. default: (void)0;
  1851. }
  1852. model.ftype = ml.ftype;
  1853. }
  1854. // TODO: This should probably be in llama.h
  1855. static std::vector<llama_vocab::id> llama_tokenize_internal(const llama_vocab & vocab, std::string raw_text, bool bos, bool special = false);
  1856. static llama_token llama_byte_to_token(const llama_vocab & vocab, uint8_t ch);
  1857. static void llm_load_vocab(
  1858. llama_model_loader & ml,
  1859. llama_model & model) {
  1860. auto & vocab = model.vocab;
  1861. struct gguf_context * ctx = ml.ctx_gguf;
  1862. const auto kv = LLM_KV(model.arch);
  1863. const int token_idx = gguf_find_key(ctx, kv(LLM_KV_TOKENIZER_LIST).c_str());
  1864. if (token_idx == -1) {
  1865. throw std::runtime_error("cannot find tokenizer vocab in model file\n");
  1866. }
  1867. const float * scores = nullptr;
  1868. const int score_idx = gguf_find_key(ctx, kv(LLM_KV_TOKENIZER_SCORES).c_str());
  1869. if (score_idx != -1) {
  1870. scores = (const float * ) gguf_get_arr_data(ctx, score_idx);
  1871. }
  1872. const int * toktypes = nullptr;
  1873. const int toktype_idx = gguf_find_key(ctx, kv(LLM_KV_TOKENIZER_TOKEN_TYPE).c_str());
  1874. if (toktype_idx != -1) {
  1875. toktypes = (const int * ) gguf_get_arr_data(ctx, toktype_idx);
  1876. }
  1877. // determine vocab type
  1878. {
  1879. std::string tokenizer_name;
  1880. GGUF_GET_KEY(ctx, tokenizer_name, gguf_get_val_str, GGUF_TYPE_STRING, true, kv(LLM_KV_TOKENIZER_MODEL));
  1881. if (tokenizer_name == "llama") {
  1882. vocab.type = LLAMA_VOCAB_TYPE_SPM;
  1883. // default special tokens
  1884. vocab.special_bos_id = 1;
  1885. vocab.special_eos_id = 2;
  1886. vocab.special_unk_id = 0;
  1887. vocab.special_sep_id = -1;
  1888. vocab.special_pad_id = -1;
  1889. } else if (tokenizer_name == "gpt2") {
  1890. vocab.type = LLAMA_VOCAB_TYPE_BPE;
  1891. // read bpe merges and populate bpe ranks
  1892. const int merges_keyidx = gguf_find_key(ctx, kv(LLM_KV_TOKENIZER_MERGES).c_str());
  1893. if (merges_keyidx == -1) {
  1894. throw std::runtime_error("cannot find tokenizer merges in model file\n");
  1895. }
  1896. const int n_merges = gguf_get_arr_n(ctx, merges_keyidx);
  1897. for (int i = 0; i < n_merges; i++) {
  1898. const std::string word = gguf_get_arr_str(ctx, merges_keyidx, i);
  1899. GGML_ASSERT(codepoints_from_utf8(word).size() > 0);
  1900. std::string first;
  1901. std::string second;
  1902. const size_t pos = word.find(' ', 1);
  1903. if (pos != std::string::npos) {
  1904. first = word.substr(0, pos);
  1905. second = word.substr(pos + 1);
  1906. }
  1907. vocab.bpe_ranks.emplace(std::make_pair(first, second), i);
  1908. }
  1909. // default special tokens
  1910. vocab.special_bos_id = 11;
  1911. vocab.special_eos_id = 11;
  1912. vocab.special_unk_id = -1;
  1913. vocab.special_sep_id = -1;
  1914. vocab.special_pad_id = -1;
  1915. } else {
  1916. LLAMA_LOG_WARN("%s: unknown tokenizer: '%s'", __func__, tokenizer_name.c_str());
  1917. LLAMA_LOG_WARN("%s: using default tokenizer: 'llama'", __func__);
  1918. vocab.type = LLAMA_VOCAB_TYPE_SPM;
  1919. }
  1920. }
  1921. const uint32_t n_vocab = gguf_get_arr_n(ctx, token_idx);
  1922. vocab.id_to_token.resize(n_vocab);
  1923. for (uint32_t i = 0; i < n_vocab; i++) {
  1924. std::string word = gguf_get_arr_str(ctx, token_idx, i);
  1925. GGML_ASSERT(codepoints_from_utf8(word).size() > 0);
  1926. vocab.token_to_id[word] = i;
  1927. auto & token_data = vocab.id_to_token[i];
  1928. token_data.text = std::move(word);
  1929. token_data.score = scores ? scores[i] : 0.0f;
  1930. token_data.type = toktypes ? (llama_token_type) toktypes[i] : LLAMA_TOKEN_TYPE_NORMAL;
  1931. }
  1932. GGML_ASSERT(vocab.id_to_token.size() == vocab.token_to_id.size());
  1933. // determine the newline token: LLaMA "<0x0A>" == 10 == '\n', Falcon 193 == '\n'
  1934. if (vocab.type == LLAMA_VOCAB_TYPE_SPM) {
  1935. vocab.linefeed_id = llama_byte_to_token(vocab, '\n');
  1936. } else {
  1937. const std::vector<int> ids = llama_tokenize_internal(vocab, "\u010A", false);
  1938. GGML_ASSERT(!ids.empty() && "model vocab missing newline token");
  1939. vocab.linefeed_id = ids[0];
  1940. }
  1941. // special tokens
  1942. {
  1943. const std::vector<std::pair<enum llm_kv, int32_t &>> special_token_types = {
  1944. { LLM_KV_TOKENIZER_BOS_ID, vocab.special_bos_id },
  1945. { LLM_KV_TOKENIZER_EOS_ID, vocab.special_eos_id },
  1946. { LLM_KV_TOKENIZER_UNK_ID, vocab.special_unk_id },
  1947. { LLM_KV_TOKENIZER_SEP_ID, vocab.special_sep_id },
  1948. { LLM_KV_TOKENIZER_PAD_ID, vocab.special_pad_id },
  1949. };
  1950. for (const auto & it : special_token_types) {
  1951. const std::string & key = kv(std::get<0>(it));
  1952. int32_t & id = std::get<1>(it), old_id = id;
  1953. GGUF_GET_KEY(ctx, id, gguf_get_val_u32, GGUF_TYPE_UINT32, false, key);
  1954. // Must be >= -1 and < vocab size. Since the key is unsigned, -1
  1955. // can only come from the default value, so there's no point in
  1956. // validating that.
  1957. if (size_t(id + 1) > vocab.id_to_token.size()) {
  1958. LLAMA_LOG_WARN("%s: bad special token: '%s' = %d, using default id %d\n",
  1959. __func__, key.c_str(), id, old_id);
  1960. id = old_id;
  1961. }
  1962. }
  1963. }
  1964. // build special tokens cache
  1965. {
  1966. // TODO: It is unclear (to me) at this point, whether special tokes are guaranteed to be of a deterministic type,
  1967. // and will always be correctly labeled in 'added_tokens.json' etc.
  1968. // The assumption is, since special tokens aren't meant to be exposed to end user, they are designed
  1969. // to be unmatchable by the tokenizer, therefore tokens from the vocab, which are unmatchable by the tokenizer
  1970. // are special tokens.
  1971. // From testing, this appears to corelate 1:1 with special tokens.
  1972. //
  1973. // Counting special tokens and verifying in only one direction
  1974. // is sufficient to detect difference in those two sets.
  1975. //
  1976. uint32_t special_tokens_count_by_type = 0;
  1977. uint32_t special_tokens_count_from_verification = 0;
  1978. bool special_tokens_definition_mismatch = false;
  1979. for (const auto & t : vocab.token_to_id) {
  1980. const auto & token = t.first;
  1981. const auto & id = t.second;
  1982. // Count all non-normal tokens in the vocab while iterating
  1983. if (vocab.id_to_token[id].type != LLAMA_TOKEN_TYPE_NORMAL) {
  1984. special_tokens_count_by_type++;
  1985. }
  1986. // Skip single character tokens
  1987. if (token.length() > 1) {
  1988. bool is_tokenizable = false;
  1989. // Split token string representation in two, in all possible ways
  1990. // and check if both halves can be matched to a valid token
  1991. for (unsigned i = 1; i < token.length();) {
  1992. const auto left = token.substr(0, i);
  1993. const auto right = token.substr(i);
  1994. // check if we didnt partition in the middle of a utf sequence
  1995. auto utf = utf8_len(left.at(left.length() - 1));
  1996. if (utf == 1) {
  1997. if (vocab.token_to_id.find(left) != vocab.token_to_id.end() &&
  1998. vocab.token_to_id.find(right) != vocab.token_to_id.end() ) {
  1999. is_tokenizable = true;
  2000. break;
  2001. }
  2002. i++;
  2003. } else {
  2004. // skip over the rest of multibyte utf sequence
  2005. i += utf - 1;
  2006. }
  2007. }
  2008. if (!is_tokenizable) {
  2009. // Some tokens are multibyte, but they are utf sequences with equivalent text length of 1
  2010. // it's faster to re-filter them here, since there are way less candidates now
  2011. // Calculate a total "utf" length of a token string representation
  2012. size_t utf8_str_len = 0;
  2013. for (unsigned i = 0; i < token.length();) {
  2014. utf8_str_len++;
  2015. i += utf8_len(token.at(i));
  2016. }
  2017. // And skip the ones which are one character
  2018. if (utf8_str_len > 1) {
  2019. // At this point what we have left are special tokens only
  2020. vocab.special_tokens_cache[token] = id;
  2021. // Count manually found special tokens
  2022. special_tokens_count_from_verification++;
  2023. // If this manually found special token is not marked as such, flag a mismatch
  2024. if (vocab.id_to_token[id].type == LLAMA_TOKEN_TYPE_NORMAL) {
  2025. special_tokens_definition_mismatch = true;
  2026. }
  2027. }
  2028. }
  2029. }
  2030. }
  2031. if (special_tokens_definition_mismatch || special_tokens_count_from_verification != special_tokens_count_by_type) {
  2032. LLAMA_LOG_WARN("%s: mismatch in special tokens definition ( %u/%zu vs %u/%zu ).\n",
  2033. __func__,
  2034. special_tokens_count_from_verification, vocab.id_to_token.size(),
  2035. special_tokens_count_by_type, vocab.id_to_token.size()
  2036. );
  2037. } else {
  2038. LLAMA_LOG_INFO("%s: special tokens definition check successful ( %u/%zu ).\n",
  2039. __func__,
  2040. special_tokens_count_from_verification, vocab.id_to_token.size()
  2041. );
  2042. }
  2043. }
  2044. }
  2045. static void llm_load_print_meta(llama_model_loader & ml, llama_model & model) {
  2046. const auto & hparams = model.hparams;
  2047. const auto & vocab = model.vocab;
  2048. const auto rope_scaling_type = LLAMA_ROPE_SCALING_TYPES.at(hparams.rope_scaling_type_train);
  2049. // hparams
  2050. LLAMA_LOG_INFO("%s: format = %s\n", __func__, llama_file_version_name(ml.fver));
  2051. LLAMA_LOG_INFO("%s: arch = %s\n", __func__, LLM_ARCH_NAMES.at(model.arch).c_str());
  2052. LLAMA_LOG_INFO("%s: vocab type = %s\n", __func__, vocab.type == LLAMA_VOCAB_TYPE_SPM ? "SPM" : "BPE"); // TODO: fix
  2053. LLAMA_LOG_INFO("%s: n_vocab = %u\n", __func__, hparams.n_vocab);
  2054. LLAMA_LOG_INFO("%s: n_merges = %u\n", __func__, (int) vocab.bpe_ranks.size());
  2055. LLAMA_LOG_INFO("%s: n_ctx_train = %u\n", __func__, hparams.n_ctx_train);
  2056. LLAMA_LOG_INFO("%s: n_embd = %u\n", __func__, hparams.n_embd);
  2057. LLAMA_LOG_INFO("%s: n_head = %u\n", __func__, hparams.n_head);
  2058. LLAMA_LOG_INFO("%s: n_head_kv = %u\n", __func__, hparams.n_head_kv);
  2059. LLAMA_LOG_INFO("%s: n_layer = %u\n", __func__, hparams.n_layer);
  2060. LLAMA_LOG_INFO("%s: n_rot = %u\n", __func__, hparams.n_rot); // a.k.a. n_embd_head, n_head_dim
  2061. LLAMA_LOG_INFO("%s: n_gqa = %u\n", __func__, hparams.n_gqa());
  2062. LLAMA_LOG_INFO("%s: f_norm_eps = %.1e\n", __func__, hparams.f_norm_eps);
  2063. LLAMA_LOG_INFO("%s: f_norm_rms_eps = %.1e\n", __func__, hparams.f_norm_rms_eps);
  2064. LLAMA_LOG_INFO("%s: f_clamp_kqv = %.1e\n", __func__, hparams.f_clamp_kqv);
  2065. LLAMA_LOG_INFO("%s: f_max_alibi_bias = %.1e\n", __func__, hparams.f_max_alibi_bias);
  2066. LLAMA_LOG_INFO("%s: n_ff = %u\n", __func__, hparams.n_ff);
  2067. LLAMA_LOG_INFO("%s: rope scaling = %s\n", __func__, rope_scaling_type.c_str());
  2068. LLAMA_LOG_INFO("%s: freq_base_train = %.1f\n", __func__, hparams.rope_freq_base_train);
  2069. LLAMA_LOG_INFO("%s: freq_scale_train = %g\n", __func__, hparams.rope_freq_scale_train);
  2070. LLAMA_LOG_INFO("%s: n_yarn_orig_ctx = %u\n", __func__, hparams.n_yarn_orig_ctx);
  2071. LLAMA_LOG_INFO("%s: rope_finetuned = %s\n", __func__, hparams.rope_finetuned ? "yes" : "unknown");
  2072. LLAMA_LOG_INFO("%s: model type = %s\n", __func__, llama_model_type_name(model.type));
  2073. LLAMA_LOG_INFO("%s: model ftype = %s\n", __func__, llama_model_ftype_name(model.ftype).c_str());
  2074. LLAMA_LOG_INFO("%s: model params = %.2f B\n", __func__, ml.n_elements*1e-9);
  2075. if (ml.n_bytes < GB) {
  2076. LLAMA_LOG_INFO("%s: model size = %.2f MiB (%.2f BPW) \n", __func__, ml.n_bytes/1024.0/1024.0, ml.n_bytes*8.0/ml.n_elements);
  2077. } else {
  2078. LLAMA_LOG_INFO("%s: model size = %.2f GiB (%.2f BPW) \n", __func__, ml.n_bytes/1024.0/1024.0/1024.0, ml.n_bytes*8.0/ml.n_elements);
  2079. }
  2080. // general kv
  2081. LLAMA_LOG_INFO("%s: general.name = %s\n", __func__, model.name.c_str());
  2082. // special tokens
  2083. if (vocab.special_bos_id != -1) { LLAMA_LOG_INFO( "%s: BOS token = %d '%s'\n", __func__, vocab.special_bos_id, vocab.id_to_token[vocab.special_bos_id].text.c_str() ); }
  2084. if (vocab.special_eos_id != -1) { LLAMA_LOG_INFO( "%s: EOS token = %d '%s'\n", __func__, vocab.special_eos_id, vocab.id_to_token[vocab.special_eos_id].text.c_str() ); }
  2085. if (vocab.special_unk_id != -1) { LLAMA_LOG_INFO( "%s: UNK token = %d '%s'\n", __func__, vocab.special_unk_id, vocab.id_to_token[vocab.special_unk_id].text.c_str() ); }
  2086. if (vocab.special_sep_id != -1) { LLAMA_LOG_INFO( "%s: SEP token = %d '%s'\n", __func__, vocab.special_sep_id, vocab.id_to_token[vocab.special_sep_id].text.c_str() ); }
  2087. if (vocab.special_pad_id != -1) { LLAMA_LOG_INFO( "%s: PAD token = %d '%s'\n", __func__, vocab.special_pad_id, vocab.id_to_token[vocab.special_pad_id].text.c_str() ); }
  2088. if (vocab.linefeed_id != -1) { LLAMA_LOG_INFO( "%s: LF token = %d '%s'\n", __func__, vocab.linefeed_id, vocab.id_to_token[vocab.linefeed_id].text.c_str() ); }
  2089. }
  2090. static void llm_load_tensors(
  2091. llama_model_loader & ml,
  2092. llama_model & model,
  2093. int n_gpu_layers,
  2094. int main_gpu,
  2095. const float * tensor_split,
  2096. bool use_mlock,
  2097. llama_progress_callback progress_callback,
  2098. void * progress_callback_user_data) {
  2099. model.t_start_us = ggml_time_us();
  2100. auto & ctx = model.ctx;
  2101. auto & hparams = model.hparams;
  2102. model.n_gpu_layers = n_gpu_layers;
  2103. size_t ctx_size;
  2104. size_t mmapped_size;
  2105. ml.calc_sizes(ctx_size, mmapped_size);
  2106. LLAMA_LOG_INFO("%s: ggml ctx size = %7.2f MB\n", __func__, ctx_size/1024.0/1024.0);
  2107. // create the ggml context
  2108. {
  2109. model.buf.resize(ctx_size);
  2110. if (use_mlock) {
  2111. model.mlock_buf.init (model.buf.data);
  2112. model.mlock_buf.grow_to(model.buf.size);
  2113. }
  2114. struct ggml_init_params params = {
  2115. /*.mem_size =*/ model.buf.size,
  2116. /*.mem_buffer =*/ model.buf.data,
  2117. /*.no_alloc =*/ ml.use_mmap,
  2118. };
  2119. model.ctx = ggml_init(params);
  2120. if (!model.ctx) {
  2121. throw std::runtime_error(format("ggml_init() failed"));
  2122. }
  2123. }
  2124. (void) main_gpu;
  2125. #ifdef GGML_USE_CUBLAS
  2126. LLAMA_LOG_INFO("%s: using " GGML_CUDA_NAME " for GPU acceleration\n", __func__);
  2127. ggml_cuda_set_main_device(main_gpu);
  2128. #define LLAMA_BACKEND_OFFLOAD GGML_BACKEND_GPU
  2129. #define LLAMA_BACKEND_OFFLOAD_SPLIT GGML_BACKEND_GPU_SPLIT
  2130. #elif defined(GGML_USE_CLBLAST)
  2131. LLAMA_LOG_INFO("%s: using OpenCL for GPU acceleration\n", __func__);
  2132. #define LLAMA_BACKEND_OFFLOAD GGML_BACKEND_GPU
  2133. #define LLAMA_BACKEND_OFFLOAD_SPLIT GGML_BACKEND_GPU
  2134. #else
  2135. #define LLAMA_BACKEND_OFFLOAD GGML_BACKEND_CPU
  2136. #define LLAMA_BACKEND_OFFLOAD_SPLIT GGML_BACKEND_CPU
  2137. #endif
  2138. // prepare memory for the weights
  2139. size_t vram_weights = 0;
  2140. {
  2141. const int64_t n_embd = hparams.n_embd;
  2142. const int64_t n_embd_gqa = hparams.n_embd_gqa();
  2143. const int64_t n_layer = hparams.n_layer;
  2144. const int64_t n_vocab = hparams.n_vocab;
  2145. const auto tn = LLM_TN(model.arch);
  2146. switch (model.arch) {
  2147. case LLM_ARCH_LLAMA:
  2148. case LLM_ARCH_REFACT:
  2149. {
  2150. model.tok_embd = ml.create_tensor(ctx, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, GGML_BACKEND_CPU);
  2151. // output
  2152. {
  2153. ggml_backend_type backend_norm;
  2154. ggml_backend_type backend_output;
  2155. if (n_gpu_layers > int(n_layer)) {
  2156. // norm is not performance relevant on its own but keeping it in VRAM reduces data copying
  2157. // on Windows however this is detrimental unless everything is on the GPU
  2158. #ifndef _WIN32
  2159. backend_norm = LLAMA_BACKEND_OFFLOAD;
  2160. #else
  2161. backend_norm = n_gpu_layers <= (int) n_layer + 2 ? GGML_BACKEND_CPU : LLAMA_BACKEND_OFFLOAD;
  2162. #endif // _WIN32
  2163. backend_output = LLAMA_BACKEND_OFFLOAD_SPLIT;
  2164. } else {
  2165. backend_norm = GGML_BACKEND_CPU;
  2166. backend_output = GGML_BACKEND_CPU;
  2167. }
  2168. model.output_norm = ml.create_tensor(ctx, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, backend_norm);
  2169. model.output = ml.create_tensor(ctx, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, backend_output);
  2170. if (backend_norm == GGML_BACKEND_GPU) {
  2171. vram_weights += ggml_nbytes(model.output_norm);
  2172. }
  2173. if (backend_output == GGML_BACKEND_GPU_SPLIT) {
  2174. vram_weights += ggml_nbytes(model.output);
  2175. }
  2176. }
  2177. const uint32_t n_ff = hparams.n_ff;
  2178. const int i_gpu_start = n_layer - n_gpu_layers;
  2179. model.layers.resize(n_layer);
  2180. for (uint32_t i = 0; i < n_layer; ++i) {
  2181. const ggml_backend_type backend = int(i) < i_gpu_start ? GGML_BACKEND_CPU : LLAMA_BACKEND_OFFLOAD; // NOLINT
  2182. const ggml_backend_type backend_split = int(i) < i_gpu_start ? GGML_BACKEND_CPU : LLAMA_BACKEND_OFFLOAD_SPLIT; // NOLINT
  2183. auto & layer = model.layers[i];
  2184. layer.attn_norm = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, backend);
  2185. layer.wq = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}, backend_split);
  2186. layer.wk = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}, backend_split);
  2187. layer.wv = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}, backend_split);
  2188. layer.wo = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, backend_split);
  2189. layer.ffn_norm = ml.create_tensor(ctx, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, backend);
  2190. layer.ffn_gate = ml.create_tensor(ctx, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, backend_split);
  2191. layer.ffn_down = ml.create_tensor(ctx, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, backend_split);
  2192. layer.ffn_up = ml.create_tensor(ctx, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, backend_split);
  2193. if (backend == GGML_BACKEND_GPU) {
  2194. vram_weights +=
  2195. ggml_nbytes(layer.attn_norm) + ggml_nbytes(layer.wq) + ggml_nbytes(layer.wk) +
  2196. ggml_nbytes(layer.wv) + ggml_nbytes(layer.wo) + ggml_nbytes(layer.ffn_norm) +
  2197. ggml_nbytes(layer.ffn_gate) + ggml_nbytes(layer.ffn_down) + ggml_nbytes(layer.ffn_up);
  2198. }
  2199. }
  2200. } break;
  2201. case LLM_ARCH_BAICHUAN:
  2202. {
  2203. model.tok_embd = ml.create_tensor(ctx, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, GGML_BACKEND_CPU);
  2204. {
  2205. ggml_backend_type backend_norm;
  2206. ggml_backend_type backend_output;
  2207. if (n_gpu_layers > int(n_layer)) {
  2208. // norm is not performance relevant on its own but keeping it in VRAM reduces data copying
  2209. // on Windows however this is detrimental unless everything is on the GPU
  2210. #ifndef _WIN32
  2211. backend_norm = LLAMA_BACKEND_OFFLOAD;
  2212. #else
  2213. backend_norm = n_gpu_layers <= (int) n_layer + 2 ? GGML_BACKEND_CPU : LLAMA_BACKEND_OFFLOAD;
  2214. #endif // _WIN32
  2215. backend_output = LLAMA_BACKEND_OFFLOAD_SPLIT;
  2216. } else {
  2217. backend_norm = GGML_BACKEND_CPU;
  2218. backend_output = GGML_BACKEND_CPU;
  2219. }
  2220. model.output_norm = ml.create_tensor(ctx, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, backend_norm);
  2221. model.output = ml.create_tensor(ctx, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, backend_output);
  2222. if (backend_norm == GGML_BACKEND_GPU) {
  2223. vram_weights += ggml_nbytes(model.output_norm);
  2224. }
  2225. if (backend_output == GGML_BACKEND_GPU_SPLIT) {
  2226. vram_weights += ggml_nbytes(model.output);
  2227. }
  2228. }
  2229. const uint32_t n_ff = hparams.n_ff;
  2230. const int i_gpu_start = n_layer - n_gpu_layers;
  2231. model.layers.resize(n_layer);
  2232. for (uint32_t i = 0; i < n_layer; ++i) {
  2233. const ggml_backend_type backend = int(i) < i_gpu_start ? GGML_BACKEND_CPU : LLAMA_BACKEND_OFFLOAD; // NOLINT
  2234. const ggml_backend_type backend_split = int(i) < i_gpu_start ? GGML_BACKEND_CPU : LLAMA_BACKEND_OFFLOAD_SPLIT; // NOLINT
  2235. auto & layer = model.layers[i];
  2236. layer.attn_norm = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, backend);
  2237. layer.wq = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}, backend_split);
  2238. layer.wk = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}, backend_split);
  2239. layer.wv = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}, backend_split);
  2240. layer.wo = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, backend_split);
  2241. layer.ffn_norm = ml.create_tensor(ctx, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, backend);
  2242. layer.ffn_gate = ml.create_tensor(ctx, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, backend_split);
  2243. layer.ffn_down = ml.create_tensor(ctx, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, backend_split);
  2244. layer.ffn_up = ml.create_tensor(ctx, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, backend_split);
  2245. if (backend == GGML_BACKEND_GPU) {
  2246. vram_weights +=
  2247. ggml_nbytes(layer.attn_norm) + ggml_nbytes(layer.wq) + ggml_nbytes(layer.wk) +
  2248. ggml_nbytes(layer.wv) + ggml_nbytes(layer.wo) + ggml_nbytes(layer.ffn_norm) +
  2249. ggml_nbytes(layer.ffn_gate) + ggml_nbytes(layer.ffn_down) + ggml_nbytes(layer.ffn_up);
  2250. }
  2251. }
  2252. } break;
  2253. case LLM_ARCH_FALCON:
  2254. {
  2255. // TODO: CPU-only for now
  2256. model.tok_embd = ml.create_tensor(ctx, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, GGML_BACKEND_CPU);
  2257. // output
  2258. {
  2259. ggml_backend_type backend_norm;
  2260. ggml_backend_type backend_output;
  2261. if (n_gpu_layers > int(n_layer)) {
  2262. // norm is not performance relevant on its own but keeping it in VRAM reduces data copying
  2263. // on Windows however this is detrimental unless everything is on the GPU
  2264. #ifndef _WIN32
  2265. backend_norm = LLAMA_BACKEND_OFFLOAD;
  2266. #else
  2267. backend_norm = n_gpu_layers <= (int) n_layer + 2 ? GGML_BACKEND_CPU : LLAMA_BACKEND_OFFLOAD;
  2268. #endif // _WIN32
  2269. backend_output = LLAMA_BACKEND_OFFLOAD_SPLIT;
  2270. } else {
  2271. backend_norm = GGML_BACKEND_CPU;
  2272. backend_output = GGML_BACKEND_CPU;
  2273. }
  2274. model.output_norm = ml.create_tensor(ctx, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, backend_norm);
  2275. model.output_norm_b = ml.create_tensor(ctx, tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd}, backend_norm);
  2276. model.output = ml.create_tensor(ctx, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, backend_output);
  2277. if (backend_norm == GGML_BACKEND_GPU) {
  2278. vram_weights += ggml_nbytes(model.output_norm);
  2279. vram_weights += ggml_nbytes(model.output_norm_b);
  2280. }
  2281. if (backend_output == GGML_BACKEND_GPU_SPLIT) {
  2282. vram_weights += ggml_nbytes(model.output);
  2283. }
  2284. }
  2285. const uint32_t n_ff = hparams.n_ff;
  2286. const int i_gpu_start = n_layer - n_gpu_layers;
  2287. model.layers.resize(n_layer);
  2288. for (uint32_t i = 0; i < n_layer; ++i) {
  2289. const ggml_backend_type backend = int(i) < i_gpu_start ? GGML_BACKEND_CPU : LLAMA_BACKEND_OFFLOAD; // NOLINT
  2290. const ggml_backend_type backend_split = int(i) < i_gpu_start ? GGML_BACKEND_CPU : LLAMA_BACKEND_OFFLOAD_SPLIT; // NOLINT
  2291. auto & layer = model.layers[i];
  2292. layer.attn_norm = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, backend);
  2293. layer.attn_norm_b = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd}, backend);
  2294. if (gguf_find_tensor(ml.ctx_gguf, tn(LLM_TENSOR_ATTN_NORM_2, "weight", i).c_str()) >= 0) {
  2295. layer.attn_norm_2 = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_NORM_2, "weight", i), {n_embd}, backend);
  2296. layer.attn_norm_2_b = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_NORM_2, "bias", i), {n_embd}, backend);
  2297. if (backend == GGML_BACKEND_GPU) {
  2298. vram_weights += ggml_nbytes(layer.attn_norm_2);
  2299. vram_weights += ggml_nbytes(layer.attn_norm_2_b);
  2300. }
  2301. }
  2302. layer.wqkv = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa}, backend_split);
  2303. layer.wo = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, backend_split);
  2304. layer.ffn_down = ml.create_tensor(ctx, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, backend_split);
  2305. layer.ffn_up = ml.create_tensor(ctx, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, backend_split);
  2306. if (backend == GGML_BACKEND_GPU) {
  2307. vram_weights +=
  2308. ggml_nbytes(layer.attn_norm) + ggml_nbytes(layer.attn_norm_b) +
  2309. ggml_nbytes(layer.wqkv) + ggml_nbytes(layer.wo) +
  2310. ggml_nbytes(layer.ffn_down) + ggml_nbytes(layer.ffn_up);
  2311. }
  2312. }
  2313. } break;
  2314. case LLM_ARCH_STARCODER:
  2315. {
  2316. model.tok_embd = ml.create_tensor(ctx, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, GGML_BACKEND_CPU);
  2317. model.pos_embd = ml.create_tensor(ctx, tn(LLM_TENSOR_POS_EMBD, "weight"), {n_embd, hparams.n_ctx_train}, GGML_BACKEND_CPU);
  2318. // output
  2319. {
  2320. ggml_backend_type backend_norm;
  2321. ggml_backend_type backend_output;
  2322. if (n_gpu_layers > int(n_layer)) {
  2323. // norm is not performance relevant on its own but keeping it in VRAM reduces data copying
  2324. // on Windows however this is detrimental unless everything is on the GPU
  2325. #ifndef _WIN32
  2326. backend_norm = LLAMA_BACKEND_OFFLOAD;
  2327. #else
  2328. backend_norm = n_gpu_layers <= (int) n_layer + 2 ? GGML_BACKEND_CPU : LLAMA_BACKEND_OFFLOAD;
  2329. #endif // _WIN32
  2330. backend_output = LLAMA_BACKEND_OFFLOAD_SPLIT;
  2331. } else {
  2332. backend_norm = GGML_BACKEND_CPU;
  2333. backend_output = GGML_BACKEND_CPU;
  2334. }
  2335. model.output_norm = ml.create_tensor(ctx, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, backend_norm);
  2336. model.output_norm_b = ml.create_tensor(ctx, tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd}, backend_norm);
  2337. model.output = ml.create_tensor(ctx, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, backend_output);
  2338. if (backend_norm == GGML_BACKEND_GPU) {
  2339. vram_weights += ggml_nbytes(model.output_norm);
  2340. vram_weights += ggml_nbytes(model.output_norm_b);
  2341. }
  2342. if (backend_output == GGML_BACKEND_GPU_SPLIT) {
  2343. vram_weights += ggml_nbytes(model.output);
  2344. }
  2345. }
  2346. const uint32_t n_ff = hparams.n_ff;
  2347. const int i_gpu_start = n_layer - n_gpu_layers;
  2348. model.layers.resize(n_layer);
  2349. for (uint32_t i = 0; i < n_layer; ++i) {
  2350. const ggml_backend_type backend = int(i) < i_gpu_start ? GGML_BACKEND_CPU : LLAMA_BACKEND_OFFLOAD; // NOLINT
  2351. const ggml_backend_type backend_split = int(i) < i_gpu_start ? GGML_BACKEND_CPU : LLAMA_BACKEND_OFFLOAD_SPLIT; // NOLINT
  2352. auto & layer = model.layers[i];
  2353. layer.attn_norm = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, backend);
  2354. layer.attn_norm_b = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd}, backend);
  2355. layer.wqkv = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa}, backend_split);
  2356. layer.bqkv = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd + 2*n_embd_gqa}, backend);
  2357. layer.wo = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, backend_split);
  2358. layer.bo = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd}, backend);
  2359. layer.ffn_norm = ml.create_tensor(ctx, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, backend);
  2360. layer.ffn_norm_b = ml.create_tensor(ctx, tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd}, backend);
  2361. layer.ffn_down = ml.create_tensor(ctx, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd}, backend_split);
  2362. layer.ffn_down_b = ml.create_tensor(ctx, tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd}, backend);
  2363. layer.ffn_up = ml.create_tensor(ctx, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, backend_split);
  2364. layer.ffn_up_b = ml.create_tensor(ctx, tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff}, backend);
  2365. if (backend == GGML_BACKEND_GPU) {
  2366. vram_weights +=
  2367. ggml_nbytes(layer.attn_norm) + ggml_nbytes(layer.attn_norm_b) +
  2368. ggml_nbytes(layer.wqkv) + ggml_nbytes(layer.bqkv) +
  2369. ggml_nbytes(layer.wo) + ggml_nbytes(layer.bo) +
  2370. ggml_nbytes(layer.ffn_norm) + ggml_nbytes(layer.ffn_norm_b) +
  2371. ggml_nbytes(layer.ffn_down) + ggml_nbytes(layer.ffn_down_b) +
  2372. ggml_nbytes(layer.ffn_up) + ggml_nbytes(layer.ffn_up_b);
  2373. }
  2374. }
  2375. } break;
  2376. case LLM_ARCH_PERSIMMON:
  2377. {
  2378. model.tok_embd = ml.create_tensor(ctx, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, GGML_BACKEND_CPU);
  2379. {
  2380. ggml_backend_type backend_norm;
  2381. ggml_backend_type backend_output;
  2382. if (n_gpu_layers > int(n_layer)) {
  2383. // norm is not performance relevant on its own but keeping it in VRAM reduces data copying
  2384. // on Windows however this is detrimental unless everything is on the GPU
  2385. #ifndef _WIN32
  2386. backend_norm = LLAMA_BACKEND_OFFLOAD;
  2387. #else
  2388. backend_norm = n_gpu_layers <= (int) n_layer + 2 ? GGML_BACKEND_CPU : LLAMA_BACKEND_OFFLOAD;
  2389. #endif // _WIN32
  2390. backend_output = LLAMA_BACKEND_OFFLOAD_SPLIT;
  2391. } else {
  2392. backend_norm = GGML_BACKEND_CPU;
  2393. backend_output = GGML_BACKEND_CPU;
  2394. }
  2395. model.output_norm = ml.create_tensor(ctx, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, backend_norm);
  2396. model.output_norm_b = ml.create_tensor(ctx, tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd}, backend_norm);
  2397. model.output = ml.create_tensor(ctx, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, backend_output);
  2398. if (backend_norm == GGML_BACKEND_GPU) {
  2399. vram_weights += ggml_nbytes(model.output_norm);
  2400. vram_weights += ggml_nbytes(model.output_norm_b);
  2401. }
  2402. if (backend_output == GGML_BACKEND_GPU_SPLIT) {
  2403. vram_weights += ggml_nbytes(model.output);
  2404. }
  2405. }
  2406. const uint32_t n_ff = hparams.n_ff;
  2407. const int i_gpu_start = n_layer - n_gpu_layers;
  2408. model.layers.resize(n_layer);
  2409. for (uint32_t i = 0; i < n_layer; ++i) {
  2410. const ggml_backend_type backend = int(i) < i_gpu_start ? GGML_BACKEND_CPU : LLAMA_BACKEND_OFFLOAD;
  2411. const ggml_backend_type backend_split = int(i) < i_gpu_start ? GGML_BACKEND_CPU : LLAMA_BACKEND_OFFLOAD_SPLIT;
  2412. auto & layer = model.layers[i];
  2413. layer.attn_norm = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, backend);
  2414. layer.attn_norm_b = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd}, backend);
  2415. layer.wqkv = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa}, backend_split);
  2416. layer.bqkv = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd + 2*n_embd_gqa}, backend);
  2417. layer.wo = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, backend_split);
  2418. layer.bo = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd}, backend);
  2419. layer.ffn_down = ml.create_tensor(ctx, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd}, backend_split);
  2420. layer.ffn_down_b = ml.create_tensor(ctx, tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd}, backend);
  2421. layer.ffn_up = ml.create_tensor(ctx, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, backend_split);
  2422. layer.ffn_up_b = ml.create_tensor(ctx, tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff}, backend);
  2423. layer.ffn_norm = ml.create_tensor(ctx, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, backend);
  2424. layer.ffn_norm_b = ml.create_tensor(ctx, tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd}, backend);
  2425. layer.attn_q_norm = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), {64}, backend);
  2426. layer.attn_q_norm_b = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_Q_NORM, "bias", i), {64}, backend);
  2427. layer.attn_k_norm = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), {64}, backend);
  2428. layer.attn_k_norm_b = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_K_NORM, "bias", i), {64}, backend);
  2429. }
  2430. } break;
  2431. case LLM_ARCH_BLOOM:
  2432. {
  2433. // TODO: CPU-only for now
  2434. model.tok_embd = ml.create_tensor(ctx, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, GGML_BACKEND_CPU);
  2435. model.tok_norm = ml.create_tensor(ctx, tn(LLM_TENSOR_TOKEN_EMBD_NORM, "weight"), {n_embd}, GGML_BACKEND_CPU);
  2436. model.tok_norm_b = ml.create_tensor(ctx, tn(LLM_TENSOR_TOKEN_EMBD_NORM, "bias"), {n_embd}, GGML_BACKEND_CPU);
  2437. // output
  2438. {
  2439. ggml_backend_type backend_norm;
  2440. ggml_backend_type backend_output;
  2441. if (n_gpu_layers > int(n_layer)) {
  2442. // norm is not performance relevant on its own but keeping it in VRAM reduces data copying
  2443. // on Windows however this is detrimental unless everything is on the GPU
  2444. #ifndef _WIN32
  2445. backend_norm = LLAMA_BACKEND_OFFLOAD;
  2446. #else
  2447. backend_norm = n_gpu_layers <= (int) n_layer + 2 ? GGML_BACKEND_CPU : LLAMA_BACKEND_OFFLOAD;
  2448. #endif // _WIN32
  2449. backend_output = LLAMA_BACKEND_OFFLOAD_SPLIT;
  2450. } else {
  2451. backend_norm = GGML_BACKEND_CPU;
  2452. backend_output = GGML_BACKEND_CPU;
  2453. }
  2454. model.output_norm = ml.create_tensor(ctx, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, backend_norm);
  2455. model.output_norm_b = ml.create_tensor(ctx, tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd}, backend_norm);
  2456. model.output = ml.create_tensor(ctx, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, backend_output);
  2457. if (backend_norm == GGML_BACKEND_GPU) {
  2458. vram_weights += ggml_nbytes(model.output_norm);
  2459. vram_weights += ggml_nbytes(model.output_norm_b);
  2460. }
  2461. if (backend_output == GGML_BACKEND_GPU_SPLIT) {
  2462. vram_weights += ggml_nbytes(model.output);
  2463. }
  2464. }
  2465. const uint32_t n_ff = hparams.n_ff;
  2466. const int i_gpu_start = n_layer - n_gpu_layers;
  2467. model.layers.resize(n_layer);
  2468. for (uint32_t i = 0; i < n_layer; ++i) {
  2469. const ggml_backend_type backend = int(i) < i_gpu_start ? GGML_BACKEND_CPU : LLAMA_BACKEND_OFFLOAD; // NOLINT
  2470. const ggml_backend_type backend_split = int(i) < i_gpu_start ? GGML_BACKEND_CPU : LLAMA_BACKEND_OFFLOAD_SPLIT; // NOLINT
  2471. auto & layer = model.layers[i];
  2472. layer.attn_norm = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, backend);
  2473. layer.attn_norm_b = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd}, backend);
  2474. layer.wqkv = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa}, backend_split);
  2475. layer.bqkv = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd + 2*n_embd_gqa}, backend);
  2476. layer.wo = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, backend_split);
  2477. layer.bo = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd}, backend);
  2478. layer.ffn_norm = ml.create_tensor(ctx, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, backend);
  2479. layer.ffn_norm_b = ml.create_tensor(ctx, tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd}, backend);
  2480. layer.ffn_down = ml.create_tensor(ctx, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd}, backend_split);
  2481. layer.ffn_down_b = ml.create_tensor(ctx, tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd}, backend);
  2482. layer.ffn_up = ml.create_tensor(ctx, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, backend_split);
  2483. layer.ffn_up_b = ml.create_tensor(ctx, tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff}, backend);
  2484. if (backend == GGML_BACKEND_GPU) {
  2485. vram_weights +=
  2486. ggml_nbytes(layer.attn_norm) + ggml_nbytes(layer.attn_norm_b) +
  2487. ggml_nbytes(layer.wqkv) + ggml_nbytes(layer.bqkv) +
  2488. ggml_nbytes(layer.wo) + ggml_nbytes(layer.bo) +
  2489. ggml_nbytes(layer.ffn_norm) + ggml_nbytes(layer.ffn_norm_b) +
  2490. ggml_nbytes(layer.ffn_up) + ggml_nbytes(layer.ffn_up_b) +
  2491. ggml_nbytes(layer.ffn_down) + ggml_nbytes(layer.ffn_down_b);
  2492. }
  2493. }
  2494. } break;
  2495. case LLM_ARCH_MPT:
  2496. {
  2497. model.tok_embd = ml.create_tensor(ctx, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, GGML_BACKEND_CPU);
  2498. // output
  2499. {
  2500. ggml_backend_type backend_norm;
  2501. ggml_backend_type backend_output;
  2502. if (n_gpu_layers > int(n_layer)) {
  2503. // norm is not performance relevant on its own but keeping it in VRAM reduces data copying
  2504. // on Windows however this is detrimental unless everything is on the GPU
  2505. #ifndef _WIN32
  2506. backend_norm = LLAMA_BACKEND_OFFLOAD;
  2507. #else
  2508. backend_norm = n_gpu_layers <= (int) n_layer + 2 ? GGML_BACKEND_CPU : LLAMA_BACKEND_OFFLOAD;
  2509. #endif // _WIN32
  2510. backend_output = LLAMA_BACKEND_OFFLOAD_SPLIT;
  2511. } else {
  2512. backend_norm = GGML_BACKEND_CPU;
  2513. backend_output = GGML_BACKEND_CPU;
  2514. }
  2515. model.output_norm = ml.create_tensor(ctx, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, backend_norm);
  2516. model.output = ml.create_tensor(ctx, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, backend_output);
  2517. if (backend_norm == GGML_BACKEND_GPU) {
  2518. vram_weights += ggml_nbytes(model.output_norm);
  2519. }
  2520. if (backend_output == GGML_BACKEND_GPU_SPLIT) {
  2521. vram_weights += ggml_nbytes(model.output);
  2522. }
  2523. }
  2524. const uint32_t n_ff = hparams.n_ff;
  2525. const int i_gpu_start = n_layer - n_gpu_layers;
  2526. model.layers.resize(n_layer);
  2527. for (uint32_t i = 0; i < n_layer; ++i) {
  2528. const ggml_backend_type backend = int(i) < i_gpu_start ? GGML_BACKEND_CPU : LLAMA_BACKEND_OFFLOAD; // NOLINT
  2529. const ggml_backend_type backend_split = int(i) < i_gpu_start ? GGML_BACKEND_CPU : LLAMA_BACKEND_OFFLOAD_SPLIT; // NOLINT
  2530. auto & layer = model.layers[i];
  2531. layer.attn_norm = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, backend);
  2532. layer.wqkv = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa}, backend_split);
  2533. layer.wo = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, backend_split);
  2534. layer.ffn_norm = ml.create_tensor(ctx, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, backend);
  2535. layer.ffn_down = ml.create_tensor(ctx, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, backend_split);
  2536. layer.ffn_up = ml.create_tensor(ctx, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, backend_split);
  2537. if (backend == GGML_BACKEND_GPU) {
  2538. vram_weights +=
  2539. ggml_nbytes(layer.attn_norm) +
  2540. ggml_nbytes(layer.wqkv) +
  2541. ggml_nbytes(layer.wo) +
  2542. ggml_nbytes(layer.ffn_norm) +
  2543. ggml_nbytes(layer.ffn_down) +
  2544. ggml_nbytes(layer.ffn_up);
  2545. }
  2546. }
  2547. } break;
  2548. default:
  2549. throw std::runtime_error("unknown architecture");
  2550. }
  2551. }
  2552. ml.done_getting_tensors();
  2553. // print memory requirements
  2554. {
  2555. // this is the total memory required to run the inference
  2556. size_t mem_required =
  2557. ctx_size +
  2558. mmapped_size - vram_weights; // weights in VRAM not in memory
  2559. LLAMA_LOG_INFO("%s: mem required = %7.2f MB\n", __func__, mem_required / 1024.0 / 1024.0);
  2560. #if defined(GGML_USE_CUBLAS) || defined(GGML_USE_CLBLAST)
  2561. const int n_gpu = std::min(n_gpu_layers, int(hparams.n_layer));
  2562. LLAMA_LOG_INFO("%s: offloading %d repeating layers to GPU\n", __func__, n_gpu);
  2563. if (n_gpu_layers > (int) hparams.n_layer) {
  2564. LLAMA_LOG_INFO("%s: offloading non-repeating layers to GPU\n", __func__);
  2565. }
  2566. #ifdef GGML_USE_CUBLAS
  2567. const int max_backend_supported_layers = hparams.n_layer + 3;
  2568. const int max_offloadable_layers = hparams.n_layer + 3;
  2569. #elif GGML_USE_CLBLAST
  2570. const int max_backend_supported_layers = hparams.n_layer + 1;
  2571. const int max_offloadable_layers = hparams.n_layer + 1;
  2572. #endif // GGML_USE_CUBLAS
  2573. LLAMA_LOG_INFO("%s: offloaded %d/%d layers to GPU\n", __func__, std::min(n_gpu_layers, max_offloadable_layers), max_backend_supported_layers);
  2574. LLAMA_LOG_INFO("%s: VRAM used: %.2f MB\n", __func__, vram_weights / 1024.0 / 1024.0);
  2575. #else
  2576. (void) n_gpu_layers;
  2577. #endif // defined(GGML_USE_CUBLAS) || defined(GGML_USE_CLBLAST)
  2578. }
  2579. // populate `tensors_by_name`
  2580. for (int i = 0; i < ml.n_tensors; ++i) {
  2581. struct ggml_tensor * cur = ggml_get_tensor(ctx, ml.get_tensor_name(i));
  2582. model.tensors_by_name.emplace_back(ggml_get_name(cur), cur);
  2583. }
  2584. (void) tensor_split;
  2585. #ifdef GGML_USE_CUBLAS
  2586. {
  2587. ggml_cuda_set_tensor_split(tensor_split);
  2588. }
  2589. #endif
  2590. ml.load_all_data(ctx, progress_callback, progress_callback_user_data, use_mlock ? &model.mlock_mmap : NULL);
  2591. if (progress_callback) {
  2592. progress_callback(1.0f, progress_callback_user_data);
  2593. }
  2594. model.mapping = std::move(ml.mapping);
  2595. // loading time will be recalculate after the first eval, so
  2596. // we take page faults deferred by mmap() into consideration
  2597. model.t_load_us = ggml_time_us() - model.t_start_us;
  2598. }
  2599. static bool llama_model_load(const std::string & fname, llama_model & model, const llama_model_params & params) {
  2600. try {
  2601. llama_model_loader ml(fname, params.use_mmap);
  2602. model.hparams.vocab_only = params.vocab_only;
  2603. llm_load_arch (ml, model);
  2604. llm_load_hparams(ml, model);
  2605. llm_load_vocab (ml, model);
  2606. llm_load_print_meta(ml, model);
  2607. if (model.hparams.n_vocab != model.vocab.id_to_token.size()) {
  2608. throw std::runtime_error("vocab size mismatch");
  2609. }
  2610. if (params.vocab_only) {
  2611. LLAMA_LOG_INFO("%s: vocab only - skipping tensors\n", __func__);
  2612. return true;
  2613. }
  2614. llm_load_tensors(
  2615. ml, model, params.n_gpu_layers, params.main_gpu, params.tensor_split, params.use_mlock,
  2616. params.progress_callback, params.progress_callback_user_data
  2617. );
  2618. } catch (const std::exception & err) {
  2619. LLAMA_LOG_ERROR("error loading model: %s\n", err.what());
  2620. return false;
  2621. }
  2622. return true;
  2623. }
  2624. //
  2625. // llm_build
  2626. //
  2627. using llm_build_cb = std::function<void(struct ggml_tensor * cur, const char * name, int nl)>;
  2628. enum llm_rope_type {
  2629. LLM_ROPE,
  2630. LLM_ROPE_NEOX,
  2631. LLM_ROPE_GLM,
  2632. };
  2633. enum llm_ffn_op_type {
  2634. LLM_FFN_SILU,
  2635. LLM_FFN_GELU,
  2636. LLM_FFN_RELU,
  2637. LLM_FFN_RELU_SQR,
  2638. };
  2639. enum llm_ffn_gate_type {
  2640. LLM_FFN_SEQ,
  2641. LLM_FFN_PAR, // ffn_gate is parallel to ffn_up
  2642. };
  2643. enum llm_norm_type {
  2644. LLM_NORM,
  2645. LLM_NORM_RMS,
  2646. };
  2647. static struct ggml_tensor * llm_build_inp_embd(
  2648. struct ggml_context * ctx,
  2649. const llama_hparams & hparams,
  2650. const llama_batch & batch,
  2651. struct ggml_tensor * tok_embd,
  2652. const llm_build_cb & cb) {
  2653. const int64_t n_embd = hparams.n_embd;
  2654. struct ggml_tensor * inpL;
  2655. if (batch.token) {
  2656. struct ggml_tensor * inp_tokens = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, batch.n_tokens);
  2657. cb(inp_tokens, "inp_tokens", -1);
  2658. inpL = ggml_get_rows(ctx, tok_embd, inp_tokens);
  2659. } else {
  2660. #ifdef GGML_USE_MPI
  2661. GGML_ASSERT(false && "not implemented");
  2662. #endif
  2663. inpL = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd, batch.n_tokens);
  2664. }
  2665. return inpL;
  2666. }
  2667. // Persimmon: n_rot = n_embd_head/2
  2668. // Other: n_rot = n_embd_head
  2669. static void llm_build_k_shift(
  2670. struct ggml_context * ctx,
  2671. const llama_hparams & hparams,
  2672. const llama_cparams & cparams,
  2673. const llama_kv_cache & kv,
  2674. struct ggml_cgraph * graph,
  2675. llm_rope_type type,
  2676. int64_t n_ctx,
  2677. int64_t n_rot,
  2678. float freq_base,
  2679. float freq_scale,
  2680. const llm_build_cb & cb) {
  2681. const int64_t n_layer = hparams.n_layer;
  2682. const int64_t n_head_kv = hparams.n_head_kv;
  2683. const int64_t n_embd_gqa = hparams.n_embd_gqa();
  2684. const int64_t n_embd_head = hparams.n_embd_head();
  2685. const int32_t n_orig_ctx = cparams.n_yarn_orig_ctx;
  2686. const float ext_factor = cparams.yarn_ext_factor;
  2687. const float attn_factor = cparams.yarn_attn_factor;
  2688. const float beta_fast = cparams.yarn_beta_fast;
  2689. const float beta_slow = cparams.yarn_beta_slow;
  2690. GGML_ASSERT(n_embd_head % n_rot == 0);
  2691. struct ggml_tensor * K_shift = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, n_ctx);
  2692. cb(K_shift, "K_shift", -1);
  2693. int rope_type = 0;
  2694. switch (type) {
  2695. case LLM_ROPE: rope_type = 0; break;
  2696. case LLM_ROPE_NEOX: rope_type = 2; break;
  2697. case LLM_ROPE_GLM: rope_type = 4; break;
  2698. }
  2699. for (int il = 0; il < n_layer; ++il) {
  2700. struct ggml_tensor * tmp =
  2701. // we rotate only the first n_rot dimensions
  2702. ggml_rope_custom_inplace(ctx,
  2703. ggml_view_3d(ctx, kv.k,
  2704. n_rot, n_head_kv, n_ctx,
  2705. ggml_element_size(kv.k)*n_embd_head,
  2706. ggml_element_size(kv.k)*n_embd_gqa,
  2707. ggml_element_size(kv.k)*n_embd_gqa*n_ctx*il),
  2708. K_shift, n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  2709. ext_factor, attn_factor, beta_fast, beta_slow);
  2710. cb(tmp, "K_shifted", il);
  2711. ggml_build_forward_expand(graph, tmp);
  2712. }
  2713. }
  2714. static void llm_build_kv_store(
  2715. struct ggml_context * ctx,
  2716. const llama_hparams & hparams,
  2717. const llama_kv_cache & kv,
  2718. struct ggml_cgraph * graph,
  2719. struct ggml_tensor * k_cur,
  2720. struct ggml_tensor * v_cur,
  2721. int64_t n_ctx,
  2722. int32_t n_tokens,
  2723. int32_t kv_head,
  2724. const llm_build_cb & cb,
  2725. int64_t il) {
  2726. const int64_t n_embd_gqa = hparams.n_embd_gqa();
  2727. // compute the transposed [n_tokens, n_embd] V matrix
  2728. struct ggml_tensor * v_cur_t = ggml_transpose(ctx, ggml_reshape_2d(ctx, v_cur, n_embd_gqa, n_tokens));
  2729. //struct ggml_tensor * v_cur_t = ggml_transpose(ctx, v_cur); // TODO: reshape above is likely not needed
  2730. cb(v_cur_t, "v_cur_t", il);
  2731. struct ggml_tensor * k_cache_view = ggml_view_1d(ctx, kv.k, n_tokens*n_embd_gqa,
  2732. (ggml_element_size(kv.k)*n_embd_gqa)*(il*n_ctx + kv_head));
  2733. cb(k_cache_view, "k_cache_view", il);
  2734. struct ggml_tensor * v_cache_view = ggml_view_2d(ctx, kv.v, n_tokens, n_embd_gqa,
  2735. ( n_ctx)*ggml_element_size(kv.v),
  2736. (il*n_ctx)*ggml_element_size(kv.v)*n_embd_gqa + kv_head*ggml_element_size(kv.v));
  2737. cb(v_cache_view, "v_cache_view", il);
  2738. // important: storing RoPE-ed version of K in the KV cache!
  2739. ggml_build_forward_expand(graph, ggml_cpy(ctx, k_cur, k_cache_view));
  2740. ggml_build_forward_expand(graph, ggml_cpy(ctx, v_cur_t, v_cache_view));
  2741. }
  2742. static struct ggml_tensor * llm_build_norm(
  2743. struct ggml_context * ctx,
  2744. struct ggml_tensor * cur,
  2745. const llama_hparams & hparams,
  2746. struct ggml_tensor * mw,
  2747. struct ggml_tensor * mb,
  2748. llm_norm_type type,
  2749. const llm_build_cb & cb,
  2750. int il) {
  2751. switch (type) {
  2752. case LLM_NORM: cur = ggml_norm (ctx, cur, hparams.f_norm_eps); break;
  2753. case LLM_NORM_RMS: cur = ggml_rms_norm(ctx, cur, hparams.f_norm_rms_eps); break;
  2754. }
  2755. if (mw || mb) {
  2756. cb(cur, "norm", il);
  2757. }
  2758. if (mw) {
  2759. cur = ggml_mul(ctx, cur, mw);
  2760. if (mb) {
  2761. cb(cur, "norm_w", il);
  2762. }
  2763. }
  2764. if (mb) {
  2765. cur = ggml_add(ctx, cur, mb);
  2766. }
  2767. return cur;
  2768. }
  2769. static struct ggml_tensor * llm_build_ffn(
  2770. struct ggml_context * ctx,
  2771. struct ggml_tensor * cur,
  2772. struct ggml_tensor * up,
  2773. struct ggml_tensor * up_b,
  2774. struct ggml_tensor * gate,
  2775. struct ggml_tensor * gate_b,
  2776. struct ggml_tensor * down,
  2777. struct ggml_tensor * down_b,
  2778. llm_ffn_op_type type_op,
  2779. llm_ffn_gate_type type_gate,
  2780. const llm_build_cb & cb,
  2781. int il) {
  2782. struct ggml_tensor * tmp = ggml_mul_mat(ctx, up, cur);
  2783. cb(tmp, "ffn_up", il);
  2784. if (up_b) {
  2785. tmp = ggml_add(ctx, tmp, up_b);
  2786. cb(tmp, "ffn_up_b", il);
  2787. }
  2788. if (gate) {
  2789. switch (type_gate) {
  2790. case LLM_FFN_SEQ:
  2791. {
  2792. cur = ggml_mul_mat(ctx, gate, tmp);
  2793. cb(cur, "ffn_gate", il);
  2794. } break;
  2795. case LLM_FFN_PAR:
  2796. {
  2797. cur = ggml_mul_mat(ctx, gate, cur);
  2798. cb(cur, "ffn_gate", il);
  2799. } break;
  2800. }
  2801. if (gate_b) {
  2802. cur = ggml_add(ctx, cur, gate_b);
  2803. cb(cur, "ffn_gate_b", il);
  2804. }
  2805. } else {
  2806. cur = tmp;
  2807. }
  2808. switch (type_op) {
  2809. case LLM_FFN_SILU:
  2810. {
  2811. cur = ggml_silu(ctx, cur);
  2812. cb(cur, "ffn_silu", il);
  2813. } break;
  2814. case LLM_FFN_GELU:
  2815. {
  2816. cur = ggml_gelu(ctx, cur);
  2817. cb(cur, "ffn_gelu", il);
  2818. } break;
  2819. case LLM_FFN_RELU:
  2820. {
  2821. cur = ggml_relu(ctx, cur);
  2822. cb(cur, "ffn_relu", il);
  2823. } break;
  2824. case LLM_FFN_RELU_SQR:
  2825. {
  2826. cur = ggml_relu(ctx, cur);
  2827. cb(cur, "ffn_relu", il);
  2828. cur = ggml_sqr(ctx, cur);
  2829. cb(cur, "ffn_sqr(relu)", il);
  2830. } break;
  2831. }
  2832. if (type_gate == LLM_FFN_PAR) {
  2833. cur = ggml_mul(ctx, cur, tmp);
  2834. cb(cur, "ffn_gate_par", il);
  2835. }
  2836. cur = ggml_mul_mat(ctx, down, cur);
  2837. if (down_b) {
  2838. cb(cur, "ffn_down", il);
  2839. }
  2840. if (down_b) {
  2841. cur = ggml_add(ctx, cur, down_b);
  2842. }
  2843. return cur;
  2844. }
  2845. // if max_alibi_bias > 0 then apply ALiBi
  2846. static struct ggml_tensor * llm_build_kqv(
  2847. struct ggml_context * ctx,
  2848. const llama_hparams & hparams,
  2849. const llama_kv_cache & kv,
  2850. struct ggml_tensor * wo,
  2851. struct ggml_tensor * wo_b,
  2852. struct ggml_tensor * q_cur,
  2853. struct ggml_tensor * kq_scale,
  2854. struct ggml_tensor * kq_mask,
  2855. int64_t n_ctx,
  2856. int32_t n_tokens,
  2857. int32_t n_kv,
  2858. float max_alibi_bias,
  2859. const llm_build_cb & cb,
  2860. int il) {
  2861. const int64_t n_embd = hparams.n_embd;
  2862. const int64_t n_head = hparams.n_head;
  2863. const int64_t n_head_kv = hparams.n_head_kv;
  2864. const int64_t n_embd_head = hparams.n_embd_head();
  2865. const int64_t n_embd_gqa = hparams.n_embd_gqa();
  2866. struct ggml_tensor * q = ggml_permute(ctx, q_cur, 0, 2, 1, 3);
  2867. cb(q, "q", il);
  2868. struct ggml_tensor * k =
  2869. ggml_view_3d(ctx, kv.k,
  2870. n_embd_head, n_kv, n_head_kv,
  2871. ggml_element_size(kv.k)*n_embd_gqa,
  2872. ggml_element_size(kv.k)*n_embd_head,
  2873. ggml_element_size(kv.k)*n_embd_gqa*n_ctx*il);
  2874. cb(k, "k", il);
  2875. struct ggml_tensor * kq = ggml_mul_mat(ctx, k, q);
  2876. cb(kq, "kq", il);
  2877. kq = ggml_scale(ctx, kq, kq_scale);
  2878. cb(kq, "kq_scaled", il);
  2879. if (max_alibi_bias > 0.0f) {
  2880. // TODO: n_head or n_head_kv
  2881. // TODO: K-shift is likely not working
  2882. // TODO: change to ggml_add
  2883. kq = ggml_alibi(ctx, kq, /*n_past*/ 0, n_head, max_alibi_bias);
  2884. cb(kq, "kq_scaled_alibi", il);
  2885. }
  2886. kq = ggml_add(ctx, kq, kq_mask);
  2887. cb(kq, "kq_masked", il);
  2888. kq = ggml_soft_max(ctx, kq);
  2889. cb(kq, "kq_soft_max", il);
  2890. // split cached v into n_head heads
  2891. struct ggml_tensor * v =
  2892. ggml_view_3d(ctx, kv.v,
  2893. n_kv, n_embd_head, n_head_kv,
  2894. ggml_element_size(kv.v)*n_ctx,
  2895. ggml_element_size(kv.v)*n_ctx*n_embd_head,
  2896. ggml_element_size(kv.v)*n_ctx*n_embd_gqa*il);
  2897. cb(v, "v", il);
  2898. struct ggml_tensor * kqv = ggml_mul_mat(ctx, v, kq);
  2899. cb(kqv, "kqv", il);
  2900. struct ggml_tensor * kqv_merged = ggml_permute(ctx, kqv, 0, 2, 1, 3);
  2901. cb(kqv_merged, "kqv_merged", il);
  2902. struct ggml_tensor * cur = ggml_cont_2d(ctx, kqv_merged, n_embd, n_tokens);
  2903. cb(cur, "kqv_merged_cont", il);
  2904. cur = ggml_mul_mat(ctx, wo, cur);
  2905. if (wo_b) {
  2906. cb(cur, "kqv_wo", il);
  2907. }
  2908. if (wo_b) {
  2909. cur = ggml_add(ctx, cur, wo_b);
  2910. }
  2911. return cur;
  2912. }
  2913. struct llm_build_context {
  2914. const llama_model & model;
  2915. const llama_hparams & hparams;
  2916. const llama_cparams & cparams;
  2917. const llama_batch & batch;
  2918. const llama_kv_cache & kv_self;
  2919. const int64_t n_embd;
  2920. const int64_t n_layer;
  2921. const int64_t n_ctx; // user-specified context size (can be different from n_ctx_train)
  2922. const int64_t n_head;
  2923. const int64_t n_head_kv;
  2924. const int64_t n_embd_head;
  2925. const int64_t n_embd_gqa;
  2926. const float freq_base;
  2927. const float freq_scale;
  2928. const float ext_factor;
  2929. const float attn_factor;
  2930. const float beta_fast;
  2931. const float beta_slow;
  2932. const float norm_eps;
  2933. const float norm_rms_eps;
  2934. const int32_t n_tokens;
  2935. const int32_t n_kv; // size of KV cache to consider (n_kv <= n_ctx)
  2936. const int32_t kv_head; // index of where we store new KV data in the cache
  2937. const int32_t n_orig_ctx;
  2938. const bool do_rope_shift;
  2939. const llm_build_cb & cb;
  2940. llama_buffer & buf_compute;
  2941. struct ggml_context * ctx0 = nullptr;
  2942. // TODO: consider making the entire interface noexcept
  2943. llm_build_context(
  2944. llama_context & lctx,
  2945. const llama_batch & batch,
  2946. const llm_build_cb & cb,
  2947. bool worst_case) :
  2948. model (lctx.model),
  2949. hparams (model.hparams),
  2950. cparams (lctx.cparams),
  2951. batch (batch),
  2952. kv_self (lctx.kv_self),
  2953. n_embd (hparams.n_embd),
  2954. n_layer (hparams.n_layer),
  2955. n_ctx (cparams.n_ctx),
  2956. n_head (hparams.n_head),
  2957. n_head_kv (hparams.n_head_kv),
  2958. n_embd_head (hparams.n_embd_head()),
  2959. n_embd_gqa (hparams.n_embd_gqa()),
  2960. freq_base (cparams.rope_freq_base),
  2961. freq_scale (cparams.rope_freq_scale),
  2962. ext_factor (cparams.yarn_ext_factor),
  2963. attn_factor (cparams.yarn_attn_factor),
  2964. beta_fast (cparams.yarn_beta_fast),
  2965. beta_slow (cparams.yarn_beta_slow),
  2966. norm_eps (hparams.f_norm_eps),
  2967. norm_rms_eps (hparams.f_norm_rms_eps),
  2968. n_tokens (batch.n_tokens),
  2969. n_kv (worst_case ? n_ctx : kv_self.n),
  2970. kv_head (worst_case ? n_ctx - n_tokens : kv_self.head),
  2971. n_orig_ctx (cparams.n_yarn_orig_ctx),
  2972. do_rope_shift (worst_case || kv_self.has_shift),
  2973. cb (cb),
  2974. buf_compute (lctx.buf_compute) {
  2975. GGML_ASSERT(!!kv_self.ctx);
  2976. // all initializations should be done in init()
  2977. }
  2978. void init() {
  2979. struct ggml_init_params params = {
  2980. /*.mem_size =*/ buf_compute.size,
  2981. /*.mem_buffer =*/ buf_compute.data,
  2982. /*.no_alloc =*/ true,
  2983. };
  2984. ctx0 = ggml_init(params);
  2985. }
  2986. void free() {
  2987. if (ctx0) {
  2988. ggml_free(ctx0);
  2989. ctx0 = nullptr;
  2990. }
  2991. }
  2992. struct ggml_cgraph * build_llama() {
  2993. struct ggml_cgraph * gf = ggml_new_graph(ctx0);
  2994. GGML_ASSERT(n_embd_head == hparams.n_rot);
  2995. struct ggml_tensor * cur;
  2996. struct ggml_tensor * inpL;
  2997. inpL = llm_build_inp_embd(ctx0, hparams, batch, model.tok_embd, cb);
  2998. cb(inpL, "inp_embd", -1);
  2999. // inp_pos - contains the positions
  3000. struct ggml_tensor * inp_pos = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_tokens);
  3001. cb(inp_pos, "inp_pos", -1);
  3002. // KQ_scale
  3003. struct ggml_tensor * KQ_scale = ggml_new_tensor_1d(ctx0, GGML_TYPE_F32, 1);
  3004. cb(KQ_scale, "KQ_scale", -1);
  3005. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  3006. struct ggml_tensor * KQ_mask = ggml_new_tensor_3d(ctx0, GGML_TYPE_F32, n_kv, n_tokens, 1);
  3007. cb(KQ_mask, "KQ_mask", -1);
  3008. // shift the entire K-cache if needed
  3009. if (do_rope_shift) {
  3010. llm_build_k_shift(ctx0, hparams, cparams, kv_self, gf, LLM_ROPE, n_ctx, n_embd_head, freq_base, freq_scale, cb);
  3011. }
  3012. for (int il = 0; il < n_layer; ++il) {
  3013. struct ggml_tensor * inpSA = inpL;
  3014. // norm
  3015. cur = llm_build_norm(ctx0, inpL, hparams,
  3016. model.layers[il].attn_norm, NULL,
  3017. LLM_NORM_RMS, cb, il);
  3018. cb(cur, "attn_norm", il);
  3019. // self-attention
  3020. {
  3021. // compute Q and K and RoPE them
  3022. struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
  3023. cb(Qcur, "Qcur", il);
  3024. struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
  3025. cb(Kcur, "Kcur", il);
  3026. struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
  3027. cb(Vcur, "Vcur", il);
  3028. Qcur = ggml_rope_custom(
  3029. ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos,
  3030. n_embd_head, 0, 0, n_orig_ctx, freq_base, freq_scale,
  3031. ext_factor, attn_factor, beta_fast, beta_slow
  3032. );
  3033. cb(Qcur, "Qcur", il);
  3034. Kcur = ggml_rope_custom(
  3035. ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos,
  3036. n_embd_head, 0, 0, n_orig_ctx, freq_base, freq_scale,
  3037. ext_factor, attn_factor, beta_fast, beta_slow
  3038. );
  3039. cb(Kcur, "Kcur", il);
  3040. llm_build_kv_store(ctx0, hparams, kv_self, gf, Kcur, Vcur, n_ctx, n_tokens, kv_head, cb, il);
  3041. cur = llm_build_kqv(ctx0, hparams, kv_self,
  3042. model.layers[il].wo, NULL,
  3043. Qcur, KQ_scale, KQ_mask, n_ctx, n_tokens, n_kv, -1.0f, cb, il);
  3044. cb(cur, "kqv_out", il);
  3045. }
  3046. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  3047. cb(ffn_inp, "ffn_inp", il);
  3048. // feed-forward network
  3049. {
  3050. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  3051. model.layers[il].ffn_norm, NULL,
  3052. LLM_NORM_RMS, cb, il);
  3053. cb(cur, "ffn_norm", il);
  3054. cur = llm_build_ffn(ctx0, cur,
  3055. model.layers[il].ffn_up, NULL,
  3056. model.layers[il].ffn_gate, NULL,
  3057. model.layers[il].ffn_down, NULL,
  3058. LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
  3059. cb(cur, "ffn_out", il);
  3060. }
  3061. cur = ggml_add(ctx0, cur, ffn_inp);
  3062. cb(cur, "l_out", il);
  3063. // input for next layer
  3064. inpL = cur;
  3065. }
  3066. cur = inpL;
  3067. cur = llm_build_norm(ctx0, cur, hparams,
  3068. model.output_norm, NULL,
  3069. LLM_NORM_RMS, cb, -1);
  3070. cb(cur, "result_norm", -1);
  3071. // lm_head
  3072. cur = ggml_mul_mat(ctx0, model.output, cur);
  3073. cb(cur, "result_output", -1);
  3074. ggml_build_forward_expand(gf, cur);
  3075. return gf;
  3076. }
  3077. struct ggml_cgraph * build_baichuan() {
  3078. struct ggml_cgraph * gf = ggml_new_graph(ctx0);
  3079. struct ggml_tensor * cur;
  3080. struct ggml_tensor * inpL;
  3081. inpL = llm_build_inp_embd(ctx0, hparams, batch, model.tok_embd, cb);
  3082. cb(inpL, "inp_embd", -1);
  3083. // inp_pos - contains the positions
  3084. struct ggml_tensor * inp_pos = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_tokens);
  3085. cb(inp_pos, "inp_pos", -1);
  3086. // KQ_scale
  3087. struct ggml_tensor * KQ_scale = ggml_new_tensor_1d(ctx0, GGML_TYPE_F32, 1);
  3088. cb(KQ_scale, "KQ_scale", -1);
  3089. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  3090. struct ggml_tensor * KQ_mask = ggml_new_tensor_3d(ctx0, GGML_TYPE_F32, n_kv, n_tokens, 1);
  3091. cb(KQ_mask, "KQ_mask", -1);
  3092. // shift the entire K-cache if needed
  3093. if (do_rope_shift) {
  3094. llm_build_k_shift(ctx0, hparams, cparams, kv_self, gf, LLM_ROPE, n_ctx, n_embd_head, freq_base, freq_scale, cb);
  3095. }
  3096. for (int il = 0; il < n_layer; ++il) {
  3097. struct ggml_tensor * inpSA = inpL;
  3098. cur = llm_build_norm(ctx0, inpL, hparams,
  3099. model.layers[il].attn_norm, NULL,
  3100. LLM_NORM_RMS, cb, il);
  3101. cb(cur, "attn_norm", il);
  3102. // self-attention
  3103. {
  3104. struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
  3105. cb(Qcur, "Qcur", il);
  3106. struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
  3107. cb(Kcur, "Kcur", il);
  3108. struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
  3109. cb(Vcur, "Vcur", il);
  3110. switch (model.type) {
  3111. case MODEL_7B:
  3112. Qcur = ggml_rope_custom(
  3113. ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos,
  3114. n_embd_head, 0, 0, n_orig_ctx, freq_base, freq_scale,
  3115. ext_factor, attn_factor, beta_fast, beta_slow
  3116. );
  3117. Kcur = ggml_rope_custom(
  3118. ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos,
  3119. n_embd_head, 0, 0, n_orig_ctx, freq_base, freq_scale,
  3120. ext_factor, attn_factor, beta_fast, beta_slow
  3121. );
  3122. break;
  3123. case MODEL_13B:
  3124. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd/n_head, n_head, n_tokens);
  3125. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd/n_head, n_head, n_tokens);
  3126. break;
  3127. default:
  3128. GGML_ASSERT(false);
  3129. }
  3130. cb(Qcur, "Qcur", il);
  3131. cb(Kcur, "Kcur", il);
  3132. llm_build_kv_store(ctx0, hparams, kv_self, gf, Kcur, Vcur, n_ctx, n_tokens, kv_head, cb, il);
  3133. // apply ALiBi for 13B model
  3134. const float max_alibi_bias = model.type == MODEL_13B ? 8.0f : -1.0f;
  3135. cur = llm_build_kqv(ctx0, hparams, kv_self,
  3136. model.layers[il].wo, NULL,
  3137. Qcur, KQ_scale, KQ_mask, n_ctx, n_tokens, n_kv, max_alibi_bias, cb, il);
  3138. cb(cur, "kqv_out", il);
  3139. }
  3140. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  3141. cb(ffn_inp, "ffn_inp", il);
  3142. // feed-forward network
  3143. {
  3144. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  3145. model.layers[il].ffn_norm, NULL,
  3146. LLM_NORM_RMS, cb, il);
  3147. cb(cur, "ffn_norm", il);
  3148. cur = llm_build_ffn(ctx0, cur,
  3149. model.layers[il].ffn_up, NULL,
  3150. model.layers[il].ffn_gate, NULL,
  3151. model.layers[il].ffn_down, NULL,
  3152. LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
  3153. cb(cur, "ffn_out", il);
  3154. }
  3155. cur = ggml_add(ctx0, cur, ffn_inp);
  3156. cb(cur, "l_out", il);
  3157. // input for next layer
  3158. inpL = cur;
  3159. }
  3160. cur = inpL;
  3161. cur = llm_build_norm(ctx0, cur, hparams,
  3162. model.output_norm, NULL,
  3163. LLM_NORM_RMS, cb, -1);
  3164. cb(cur, "result_norm", -1);
  3165. // lm_head
  3166. cur = ggml_mul_mat(ctx0, model.output, cur);
  3167. cb(cur, "result_output", -1);
  3168. ggml_build_forward_expand(gf, cur);
  3169. return gf;
  3170. }
  3171. struct ggml_cgraph * build_falcon() {
  3172. struct ggml_cgraph * gf = ggml_new_graph(ctx0);
  3173. struct ggml_tensor * cur;
  3174. struct ggml_tensor * inpL;
  3175. inpL = llm_build_inp_embd(ctx0, hparams, batch, model.tok_embd, cb);
  3176. cb(inpL, "inp_embd", -1);
  3177. // inp_pos - contains the positions
  3178. struct ggml_tensor * inp_pos = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_tokens);
  3179. cb(inp_pos, "inp_pos", -1);
  3180. // KQ_scale
  3181. struct ggml_tensor * KQ_scale = ggml_new_tensor_1d(ctx0, GGML_TYPE_F32, 1);
  3182. cb(KQ_scale, "KQ_scale", -1);
  3183. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  3184. struct ggml_tensor * KQ_mask = ggml_new_tensor_3d(ctx0, GGML_TYPE_F32, n_kv, n_tokens, 1);
  3185. cb(KQ_mask, "KQ_mask", -1);
  3186. // shift the entire K-cache if needed
  3187. if (do_rope_shift) {
  3188. llm_build_k_shift(ctx0, hparams, cparams, kv_self, gf, LLM_ROPE_NEOX, n_ctx, n_embd_head, freq_base, freq_scale, cb);
  3189. }
  3190. for (int il = 0; il < n_layer; ++il) {
  3191. struct ggml_tensor * attn_norm;
  3192. attn_norm = llm_build_norm(ctx0, inpL, hparams,
  3193. model.layers[il].attn_norm,
  3194. model.layers[il].attn_norm_b,
  3195. LLM_NORM, cb, il);
  3196. cb(attn_norm, "attn_norm", il);
  3197. // self-attention
  3198. {
  3199. if (model.layers[il].attn_norm_2) {
  3200. // Falcon-40B
  3201. cur = llm_build_norm(ctx0, inpL, hparams,
  3202. model.layers[il].attn_norm_2,
  3203. model.layers[il].attn_norm_2_b,
  3204. LLM_NORM, cb, il);
  3205. cb(cur, "attn_norm_2", il);
  3206. } else {
  3207. cur = attn_norm;
  3208. }
  3209. cur = ggml_mul_mat(ctx0, model.layers[il].wqkv, cur);
  3210. cb(cur, "wqkv", il);
  3211. struct ggml_tensor * Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd)));
  3212. struct ggml_tensor * Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd)));
  3213. struct ggml_tensor * Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa)));
  3214. cb(Qcur, "Qcur", il);
  3215. cb(Kcur, "Kcur", il);
  3216. cb(Vcur, "Vcur", il);
  3217. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  3218. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  3219. // using mode = 2 for neox mode
  3220. Qcur = ggml_rope_custom(
  3221. ctx0, Qcur, inp_pos, n_embd_head, 2, 0, n_orig_ctx,
  3222. freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow
  3223. );
  3224. cb(Qcur, "Qcur", il);
  3225. Kcur = ggml_rope_custom(
  3226. ctx0, Kcur, inp_pos, n_embd_head, 2, 0, n_orig_ctx,
  3227. freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow
  3228. );
  3229. cb(Kcur, "Kcur", il);
  3230. llm_build_kv_store(ctx0, hparams, kv_self, gf, Kcur, Vcur, n_ctx, n_tokens, kv_head, cb, il);
  3231. cur = llm_build_kqv(ctx0, hparams, kv_self,
  3232. model.layers[il].wo, NULL,
  3233. Qcur, KQ_scale, KQ_mask, n_ctx, n_tokens, n_kv, -1.0f, cb, il);
  3234. cb(cur, "kqv_out", il);
  3235. }
  3236. struct ggml_tensor * ffn_inp = cur;
  3237. // feed forward
  3238. {
  3239. cur = llm_build_ffn(ctx0, attn_norm, // !! use the attn norm, not the result
  3240. model.layers[il].ffn_up, NULL,
  3241. NULL, NULL,
  3242. model.layers[il].ffn_down, NULL,
  3243. LLM_FFN_GELU, LLM_FFN_SEQ, cb, il);
  3244. cb(cur, "ffn_out", il);
  3245. }
  3246. cur = ggml_add(ctx0, cur, ffn_inp);
  3247. cb(cur, "l_out", il);
  3248. cur = ggml_add(ctx0, cur, inpL);
  3249. cb(cur, "l_out", il);
  3250. // input for next layer
  3251. inpL = cur;
  3252. }
  3253. cur = inpL;
  3254. // norm
  3255. cur = llm_build_norm(ctx0, cur, hparams,
  3256. model.output_norm,
  3257. model.output_norm_b,
  3258. LLM_NORM, cb, -1);
  3259. cb(cur, "result_norm", -1);
  3260. cur = ggml_mul_mat(ctx0, model.output, cur);
  3261. cb(cur, "result_output", -1);
  3262. ggml_build_forward_expand(gf, cur);
  3263. return gf;
  3264. }
  3265. struct ggml_cgraph * build_starcoder() {
  3266. struct ggml_cgraph * gf = ggml_new_graph(ctx0);
  3267. struct ggml_tensor * cur;
  3268. struct ggml_tensor * pos;
  3269. struct ggml_tensor * inpL;
  3270. inpL = llm_build_inp_embd(ctx0, hparams, batch, model.tok_embd, cb);
  3271. cb(inpL, "inp_embd", -1);
  3272. // inp_pos - contains the positions
  3273. struct ggml_tensor * inp_pos = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_tokens);
  3274. cb(inp_pos, "inp_pos", -1);
  3275. // KQ_scale
  3276. struct ggml_tensor * KQ_scale = ggml_new_tensor_1d(ctx0, GGML_TYPE_F32, 1);
  3277. cb(KQ_scale, "KQ_scale", -1);
  3278. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  3279. struct ggml_tensor * KQ_mask = ggml_new_tensor_3d(ctx0, GGML_TYPE_F32, n_kv, n_tokens, 1);
  3280. cb(KQ_mask, "KQ_mask", -1);
  3281. pos = ggml_get_rows(ctx0, model.pos_embd, inp_pos);
  3282. cb(pos, "pos_embd", -1);
  3283. inpL = ggml_add(ctx0, inpL, pos);
  3284. cb(inpL, "inpL", -1);
  3285. for (int il = 0; il < n_layer; ++il) {
  3286. cur = llm_build_norm(ctx0, inpL, hparams,
  3287. model.layers[il].attn_norm,
  3288. model.layers[il].attn_norm_b,
  3289. LLM_NORM, cb, il);
  3290. cb(cur, "attn_norm", il);
  3291. // self-attention
  3292. {
  3293. cur = ggml_mul_mat(ctx0, model.layers[il].wqkv, cur);
  3294. cb(cur, "wqkv", il);
  3295. cur = ggml_add(ctx0, cur, model.layers[il].bqkv);
  3296. cb(cur, "bqkv", il);
  3297. struct ggml_tensor * Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd)));
  3298. struct ggml_tensor * Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd)));
  3299. struct ggml_tensor * Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa)));
  3300. cb(Qcur, "Qcur", il);
  3301. cb(Kcur, "Kcur", il);
  3302. cb(Vcur, "Vcur", il);
  3303. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  3304. llm_build_kv_store(ctx0, hparams, kv_self, gf, Kcur, Vcur, n_ctx, n_tokens, kv_head, cb, il);
  3305. cur = llm_build_kqv(ctx0, hparams, kv_self,
  3306. model.layers[il].wo, model.layers[il].bo,
  3307. Qcur, KQ_scale, KQ_mask, n_ctx, n_tokens, n_kv, -1.0f, cb, il);
  3308. cb(cur, "kqv_out", il);
  3309. }
  3310. // add the input
  3311. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpL);
  3312. cb(ffn_inp, "ffn_inp", il);
  3313. // FF
  3314. {
  3315. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  3316. model.layers[il].ffn_norm,
  3317. model.layers[il].ffn_norm_b,
  3318. LLM_NORM, cb, il);
  3319. cb(cur, "ffn_norm", il);
  3320. cur = llm_build_ffn(ctx0, cur,
  3321. model.layers[il].ffn_up, model.layers[il].ffn_up_b,
  3322. NULL, NULL,
  3323. model.layers[il].ffn_down, model.layers[il].ffn_down_b,
  3324. LLM_FFN_GELU, LLM_FFN_SEQ, cb, il);
  3325. cb(cur, "ffn_out", il);
  3326. }
  3327. inpL = ggml_add(ctx0, cur, ffn_inp);
  3328. cb(inpL, "l_out", il);
  3329. }
  3330. cur = llm_build_norm(ctx0, inpL, hparams,
  3331. model.output_norm,
  3332. model.output_norm_b,
  3333. LLM_NORM, cb, -1);
  3334. cb(cur, "result_norm", -1);
  3335. cur = ggml_mul_mat(ctx0, model.output, cur);
  3336. cb(cur, "result_output", -1);
  3337. ggml_build_forward_expand(gf, cur);
  3338. return gf;
  3339. }
  3340. struct ggml_cgraph * build_persimmon() {
  3341. struct ggml_cgraph * gf = ggml_new_graph(ctx0);
  3342. const int64_t n_rot = n_embd_head / 2;
  3343. struct ggml_tensor * cur;
  3344. struct ggml_tensor * inpL;
  3345. inpL = llm_build_inp_embd(ctx0, hparams, batch, model.tok_embd, cb);
  3346. cb(inpL, "imp_embd", -1);
  3347. struct ggml_tensor * inp_pos = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_tokens);
  3348. cb(inp_pos, "inp_pos", -1);
  3349. // KQ_scale
  3350. struct ggml_tensor * KQ_scale = ggml_new_tensor_1d(ctx0, GGML_TYPE_F32, 1);
  3351. cb(KQ_scale, "KQ_scale", -1);
  3352. struct ggml_tensor * KQ_mask = ggml_new_tensor_3d(ctx0, GGML_TYPE_F32, n_kv, n_tokens, 1);
  3353. cb(KQ_mask, "KQ_mask", -1);
  3354. if (do_rope_shift) {
  3355. llm_build_k_shift(ctx0, hparams, cparams, kv_self, gf, LLM_ROPE_NEOX, n_ctx, n_embd_head, freq_base, freq_scale, cb);
  3356. }
  3357. for (int il = 0; il < n_layer; ++il) {
  3358. struct ggml_tensor * residual = inpL;
  3359. cur = llm_build_norm(ctx0, inpL, hparams,
  3360. model.layers[il].attn_norm,
  3361. model.layers[il].attn_norm_b,
  3362. LLM_NORM, cb, il);
  3363. cb(cur, "attn_norm", il);
  3364. // self attention
  3365. {
  3366. cur = ggml_mul_mat(ctx0, model.layers[il].wqkv, cur);
  3367. cb(cur, "wqkv", il);
  3368. cur = ggml_add(ctx0, cur, model.layers[il].bqkv);
  3369. cb(cur, "bqkv", il);
  3370. // split qkv
  3371. GGML_ASSERT(n_head_kv == n_head);
  3372. struct ggml_tensor * tmpqkv = ggml_reshape_4d(ctx0, cur, n_embd_head, 3, n_head, n_tokens);
  3373. cb(tmpqkv, "tmpqkv", il);
  3374. struct ggml_tensor * tmpqkv_perm = ggml_cont(ctx0, ggml_permute(ctx0, tmpqkv, 0, 3, 1, 2));
  3375. cb(tmpqkv_perm, "tmpqkv", il);
  3376. struct ggml_tensor * tmpq = ggml_view_3d(
  3377. ctx0, tmpqkv_perm, n_embd_head, n_head, n_tokens,
  3378. ggml_element_size(tmpqkv_perm) * n_embd_head,
  3379. ggml_element_size(tmpqkv_perm) * n_embd_head * n_head,
  3380. 0
  3381. );
  3382. cb(tmpq, "tmpq", il);
  3383. struct ggml_tensor * tmpk = ggml_view_3d(
  3384. ctx0, tmpqkv_perm, n_embd_head, n_head, n_tokens,
  3385. ggml_element_size(tmpqkv_perm) * n_embd_head,
  3386. ggml_element_size(tmpqkv_perm) * n_embd_head * n_head,
  3387. ggml_element_size(tmpqkv_perm) * n_embd_head * n_head * n_tokens
  3388. );
  3389. cb(tmpk, "tmpk", il);
  3390. // Q/K Layernorm
  3391. tmpq = llm_build_norm(ctx0, tmpq, hparams,
  3392. model.layers[il].attn_q_norm,
  3393. model.layers[il].attn_q_norm_b,
  3394. LLM_NORM, cb, il);
  3395. cb(tmpq, "tmpq", il);
  3396. tmpk = llm_build_norm(ctx0, tmpk, hparams,
  3397. model.layers[il].attn_k_norm,
  3398. model.layers[il].attn_k_norm_b,
  3399. LLM_NORM, cb, il);
  3400. cb(tmpk, "tmpk", il);
  3401. // RoPE the first n_rot of q/k, pass the other half, and concat.
  3402. struct ggml_tensor * qrot = ggml_view_3d(
  3403. ctx0, tmpq, n_rot, n_head, n_tokens,
  3404. ggml_element_size(tmpq) * n_embd_head,
  3405. ggml_element_size(tmpq) * n_embd_head * n_head,
  3406. 0
  3407. );
  3408. cb(qrot, "qrot", il);
  3409. struct ggml_tensor * krot = ggml_view_3d(
  3410. ctx0, tmpk, n_rot, n_head, n_tokens,
  3411. ggml_element_size(tmpk) * n_embd_head,
  3412. ggml_element_size(tmpk) * n_embd_head * n_head,
  3413. 0
  3414. );
  3415. cb(krot, "krot", il);
  3416. // get the second half of tmpq, e.g tmpq[n_rot:, :, :]
  3417. struct ggml_tensor * qpass = ggml_view_3d(
  3418. ctx0, tmpq, n_rot, n_head, n_tokens,
  3419. ggml_element_size(tmpq) * n_embd_head,
  3420. ggml_element_size(tmpq) * n_embd_head * n_head,
  3421. ggml_element_size(tmpq) * n_rot
  3422. );
  3423. cb(qpass, "qpass", il);
  3424. struct ggml_tensor * kpass = ggml_view_3d(
  3425. ctx0, tmpk, n_rot, n_head, n_tokens,
  3426. ggml_element_size(tmpk) * n_embd_head,
  3427. ggml_element_size(tmpk) * n_embd_head * n_head,
  3428. ggml_element_size(tmpk) * n_rot
  3429. );
  3430. cb(kpass, "kpass", il);
  3431. struct ggml_tensor * qrotated = ggml_rope_custom(
  3432. ctx0, qrot, inp_pos, n_rot, 2, 0, n_orig_ctx,
  3433. freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow
  3434. );
  3435. cb(qrotated, "qrotated", il);
  3436. struct ggml_tensor * krotated = ggml_rope_custom(
  3437. ctx0, krot, inp_pos, n_rot, 2, 0, n_orig_ctx,
  3438. freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow
  3439. );
  3440. cb(krotated, "krotated", il);
  3441. // ggml currently only supports concatenation on dim=2
  3442. // so we need to permute qrot, qpass, concat, then permute back.
  3443. qrotated = ggml_cont(ctx0, ggml_permute(ctx0, qrotated, 2, 1, 0, 3));
  3444. cb(qrotated, "qrotated", il);
  3445. krotated = ggml_cont(ctx0, ggml_permute(ctx0, krotated, 2, 1, 0, 3));
  3446. cb(krotated, "krotated", il);
  3447. qpass = ggml_cont(ctx0, ggml_permute(ctx0, qpass, 2, 1, 0, 3));
  3448. cb(qpass, "qpass", il);
  3449. kpass = ggml_cont(ctx0, ggml_permute(ctx0, kpass, 2, 1, 0, 3));
  3450. cb(kpass, "kpass", il);
  3451. struct ggml_tensor * Qcur = ggml_concat(ctx0, qrotated, qpass);
  3452. cb(Qcur, "Qcur", il);
  3453. struct ggml_tensor * Kcur = ggml_concat(ctx0, krotated, kpass);
  3454. cb(Kcur, "Kcur", il);
  3455. struct ggml_tensor * Q = ggml_cont(ctx0, ggml_permute(ctx0, Qcur, 1, 2, 0, 3));
  3456. cb(Q, "Q", il);
  3457. Kcur = ggml_cont(ctx0, ggml_permute(ctx0, Kcur, 2, 1, 0, 3));
  3458. cb(Kcur, "Kcur", il);
  3459. struct ggml_tensor * Vcur = ggml_view_3d(
  3460. ctx0, tmpqkv_perm, n_embd_head, n_head, n_tokens,
  3461. ggml_element_size(tmpqkv_perm) * n_embd_head,
  3462. ggml_element_size(tmpqkv_perm) * n_embd_head * n_head,
  3463. ggml_element_size(tmpqkv_perm) * n_embd_head * n_head * n_tokens * 2
  3464. );
  3465. cb(Vcur, "Vcur", il);
  3466. llm_build_kv_store(ctx0, hparams, kv_self, gf, Kcur, Vcur, n_ctx, n_tokens, kv_head, cb, il);
  3467. // TODO: not tested, could be broken
  3468. cur = llm_build_kqv(ctx0, hparams, kv_self,
  3469. model.layers[il].wo, model.layers[il].bo,
  3470. Q, KQ_scale, KQ_mask, n_ctx, n_tokens, n_kv, -1.0f, cb, il);
  3471. cb(cur, "kqv_out", il);
  3472. }
  3473. struct ggml_tensor * ffn_inp = ggml_add(ctx0, residual, cur);
  3474. cb(ffn_inp, "ffn_inp", il);
  3475. // feed-forward network
  3476. {
  3477. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  3478. model.layers[il].ffn_norm,
  3479. model.layers[il].ffn_norm_b,
  3480. LLM_NORM, cb, il);
  3481. cb(cur, "ffn_norm", il);
  3482. cur = llm_build_ffn(ctx0, cur,
  3483. model.layers[il].ffn_up, model.layers[il].ffn_up_b,
  3484. NULL, NULL,
  3485. model.layers[il].ffn_down, model.layers[il].ffn_down_b,
  3486. LLM_FFN_RELU_SQR, LLM_FFN_SEQ, cb, il);
  3487. cb(cur, "ffn_out", il);
  3488. }
  3489. cur = ggml_add(ctx0, cur, ffn_inp);
  3490. cb(cur, "l_out", il);
  3491. inpL = cur;
  3492. }
  3493. cur = inpL;
  3494. cur = llm_build_norm(ctx0, cur, hparams,
  3495. model.output_norm,
  3496. model.output_norm_b,
  3497. LLM_NORM, cb, -1);
  3498. cb(cur, "result_norm", -1);
  3499. cur = ggml_mul_mat(ctx0, model.output, cur);
  3500. cb(cur, "result_output", -1);
  3501. ggml_build_forward_expand(gf, cur);
  3502. return gf;
  3503. }
  3504. struct ggml_cgraph * build_refact() {
  3505. struct ggml_cgraph * gf = ggml_new_graph(ctx0);
  3506. struct ggml_tensor * cur;
  3507. struct ggml_tensor * inpL;
  3508. inpL = llm_build_inp_embd(ctx0, hparams, batch, model.tok_embd, cb);
  3509. cb(inpL, "inp_embd", -1);
  3510. // KQ_scale
  3511. struct ggml_tensor * KQ_scale = ggml_new_tensor_1d(ctx0, GGML_TYPE_F32, 1);
  3512. cb(KQ_scale, "KQ_scale", -1);
  3513. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  3514. struct ggml_tensor * KQ_mask = ggml_new_tensor_3d(ctx0, GGML_TYPE_F32, n_kv, n_tokens, 1);
  3515. cb(KQ_mask, "KQ_mask", -1);
  3516. for (int il = 0; il < n_layer; ++il) {
  3517. struct ggml_tensor * inpSA = inpL;
  3518. cur = llm_build_norm(ctx0, inpL, hparams,
  3519. model.layers[il].attn_norm, NULL,
  3520. LLM_NORM_RMS, cb, il);
  3521. cb(cur, "attn_norm", il);
  3522. // self-attention
  3523. {
  3524. struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
  3525. cb(Qcur, "Qcur", il);
  3526. struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
  3527. cb(Kcur, "Kcur", il);
  3528. struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
  3529. cb(Vcur, "Vcur", il);
  3530. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  3531. cb(Kcur, "Kcur", il);
  3532. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  3533. cb(Qcur, "Qcur", il);
  3534. llm_build_kv_store(ctx0, hparams, kv_self, gf, Kcur, Vcur, n_ctx, n_tokens, kv_head, cb, il);
  3535. cur = llm_build_kqv(ctx0, hparams, kv_self,
  3536. model.layers[il].wo, NULL,
  3537. Qcur, KQ_scale, KQ_mask, n_ctx, n_tokens, n_kv, 8.0f, cb, il);
  3538. cb(cur, "kqv_out", il);
  3539. }
  3540. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  3541. cb(ffn_inp, "ffn_inp", il);
  3542. // feed-forward network
  3543. {
  3544. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  3545. model.layers[il].ffn_norm, NULL,
  3546. LLM_NORM_RMS, cb, il);
  3547. cb(cur, "ffn_norm", il);
  3548. cur = llm_build_ffn(ctx0, cur,
  3549. model.layers[il].ffn_up, NULL,
  3550. model.layers[il].ffn_gate, NULL,
  3551. model.layers[il].ffn_down, NULL,
  3552. LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
  3553. cb(cur, "ffn_out", il);
  3554. }
  3555. cur = ggml_add(ctx0, cur, ffn_inp);
  3556. cb(cur, "l_out", il);
  3557. // input for next layer
  3558. inpL = cur;
  3559. }
  3560. cur = inpL;
  3561. cur = llm_build_norm(ctx0, cur, hparams,
  3562. model.output_norm, NULL,
  3563. LLM_NORM_RMS, cb, -1);
  3564. cb(cur, "result_norm", -1);
  3565. // lm_head
  3566. cur = ggml_mul_mat(ctx0, model.output, cur);
  3567. cb(cur, "result_output", -1);
  3568. ggml_build_forward_expand(gf, cur);
  3569. return gf;
  3570. }
  3571. struct ggml_cgraph * build_bloom() {
  3572. struct ggml_cgraph * gf = ggml_new_graph(ctx0);
  3573. struct ggml_tensor * cur;
  3574. struct ggml_tensor * inpL;
  3575. inpL = llm_build_inp_embd(ctx0, hparams, batch, model.tok_embd, cb);
  3576. cb(inpL, "inp_embd", -1);
  3577. // KQ_scale
  3578. struct ggml_tensor * KQ_scale = ggml_new_tensor_1d(ctx0, GGML_TYPE_F32, 1);
  3579. cb(KQ_scale, "KQ_scale", -1);
  3580. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  3581. struct ggml_tensor * KQ_mask = ggml_new_tensor_3d(ctx0, GGML_TYPE_F32, n_kv, n_tokens, 1);
  3582. cb(KQ_mask, "KQ_mask", -1);
  3583. inpL = llm_build_norm(ctx0, inpL, hparams,
  3584. model.tok_norm,
  3585. model.tok_norm_b,
  3586. LLM_NORM, cb, -1);
  3587. cb(inpL, "inp_norm", -1);
  3588. for (int il = 0; il < n_layer; ++il) {
  3589. cur = llm_build_norm(ctx0, inpL, hparams,
  3590. model.layers[il].attn_norm,
  3591. model.layers[il].attn_norm_b,
  3592. LLM_NORM, cb, il);
  3593. cb(cur, "attn_norm", il);
  3594. // self-attention
  3595. {
  3596. cur = ggml_mul_mat(ctx0, model.layers[il].wqkv, cur);
  3597. cb(cur, "wqkv", il);
  3598. cur = ggml_add(ctx0, cur, model.layers[il].bqkv);
  3599. cb(cur, "bqkv", il);
  3600. struct ggml_tensor * Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd)));
  3601. struct ggml_tensor * Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd)));
  3602. struct ggml_tensor * Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa)));
  3603. cb(Qcur, "Qcur", il);
  3604. cb(Kcur, "Kcur", il);
  3605. cb(Vcur, "Vcur", il);
  3606. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  3607. llm_build_kv_store(ctx0, hparams, kv_self, gf, Kcur, Vcur, n_ctx, n_tokens, kv_head, cb, il);
  3608. cur = llm_build_kqv(ctx0, hparams, kv_self,
  3609. model.layers[il].wo, model.layers[il].bo,
  3610. Qcur, KQ_scale, KQ_mask, n_ctx, n_tokens, n_kv, 8.0f, cb, il);
  3611. cb(cur, "kqv_out", il);
  3612. }
  3613. // Add the input
  3614. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpL);
  3615. cb(ffn_inp, "ffn_inp", il);
  3616. // FF
  3617. {
  3618. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  3619. model.layers[il].ffn_norm,
  3620. model.layers[il].ffn_norm_b,
  3621. LLM_NORM, cb, il);
  3622. cb(cur, "ffn_norm", il);
  3623. cur = llm_build_ffn(ctx0, cur,
  3624. model.layers[il].ffn_up, model.layers[il].ffn_up_b,
  3625. NULL, NULL,
  3626. model.layers[il].ffn_down, model.layers[il].ffn_down_b,
  3627. LLM_FFN_GELU, LLM_FFN_SEQ, cb, il);
  3628. cb(cur, "ffn_out", il);
  3629. }
  3630. inpL = ggml_add(ctx0, cur, ffn_inp);
  3631. cb(inpL, "l_out", il);
  3632. }
  3633. cur = llm_build_norm(ctx0, inpL, hparams,
  3634. model.output_norm,
  3635. model.output_norm_b,
  3636. LLM_NORM, cb, -1);
  3637. cb(cur, "result_norm", -1);
  3638. cur = ggml_mul_mat(ctx0, model.output, cur);
  3639. cb(cur, "result_output", -1);
  3640. ggml_build_forward_expand(gf, cur);
  3641. return gf;
  3642. }
  3643. struct ggml_cgraph * build_mpt() {
  3644. struct ggml_cgraph * gf = ggml_new_graph(ctx0);
  3645. struct ggml_tensor * cur;
  3646. struct ggml_tensor * inpL;
  3647. inpL = llm_build_inp_embd(ctx0, hparams, batch, model.tok_embd, cb);
  3648. cb(inpL, "inp_embd", -1);
  3649. // KQ_scale
  3650. struct ggml_tensor * KQ_scale = ggml_new_tensor_1d(ctx0, GGML_TYPE_F32, 1);
  3651. cb(KQ_scale, "KQ_scale", -1);
  3652. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  3653. struct ggml_tensor * KQ_mask = ggml_new_tensor_3d(ctx0, GGML_TYPE_F32, n_kv, n_tokens, 1);
  3654. cb(KQ_mask, "KQ_mask", -1);
  3655. for (int il = 0; il < n_layer; ++il) {
  3656. struct ggml_tensor * attn_norm;
  3657. attn_norm = llm_build_norm(ctx0, inpL, hparams,
  3658. model.layers[il].attn_norm,
  3659. NULL,
  3660. LLM_NORM, cb, il);
  3661. cb(attn_norm, "attn_norm", il);
  3662. // self-attention
  3663. {
  3664. cur = attn_norm;
  3665. cur = ggml_mul_mat(ctx0, model.layers[il].wqkv, cur);
  3666. cb(cur, "wqkv", il);
  3667. if (hparams.f_clamp_kqv > 0.0f) {
  3668. cur = ggml_clamp(ctx0, cur, -hparams.f_clamp_kqv, hparams.f_clamp_kqv);
  3669. cb(cur, "wqkv_clamped", il);
  3670. }
  3671. struct ggml_tensor * Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd)));
  3672. struct ggml_tensor * Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd)));
  3673. struct ggml_tensor * Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa)));
  3674. cb(Qcur, "Qcur", il);
  3675. cb(Kcur, "Kcur", il);
  3676. cb(Vcur, "Vcur", il);
  3677. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  3678. llm_build_kv_store(ctx0, hparams, kv_self, gf, Kcur, Vcur, n_ctx, n_tokens, kv_head, cb, il);
  3679. cur = llm_build_kqv(ctx0, hparams, kv_self,
  3680. model.layers[il].wo, NULL,
  3681. Qcur, KQ_scale, KQ_mask, n_ctx, n_tokens, n_kv, hparams.f_max_alibi_bias, cb, il);
  3682. cb(cur, "kqv_out", il);
  3683. }
  3684. // Add the input
  3685. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpL);
  3686. cb(ffn_inp, "ffn_inp", il);
  3687. // feed forward
  3688. {
  3689. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  3690. model.layers[il].ffn_norm,
  3691. NULL,
  3692. LLM_NORM, cb, il);
  3693. cb(cur, "ffn_norm", il);
  3694. cur = llm_build_ffn(ctx0, cur,
  3695. model.layers[il].ffn_up, NULL,
  3696. NULL, NULL,
  3697. model.layers[il].ffn_down, NULL,
  3698. LLM_FFN_GELU, LLM_FFN_SEQ, cb, il);
  3699. cb(cur, "ffn_out", il);
  3700. }
  3701. cur = ggml_add(ctx0, cur, ffn_inp);
  3702. cb(cur, "l_out", il);
  3703. // input for next layer
  3704. inpL = cur;
  3705. }
  3706. cur = inpL;
  3707. cur = llm_build_norm(ctx0, cur, hparams,
  3708. model.output_norm,
  3709. NULL,
  3710. LLM_NORM, cb, -1);
  3711. cb(cur, "result_norm", -1);
  3712. cur = ggml_mul_mat(ctx0, model.output, cur);
  3713. cb(cur, "result_output", -1);
  3714. ggml_build_forward_expand(gf, cur);
  3715. return gf;
  3716. }
  3717. };
  3718. //
  3719. // tensor offloading helpers
  3720. //
  3721. // TODO: will be removed with backend v2
  3722. enum llm_offload_func_e {
  3723. OFFLOAD_FUNC_NOP,
  3724. OFFLOAD_FUNC,
  3725. OFFLOAD_FUNC_KQ,
  3726. OFFLOAD_FUNC_V,
  3727. OFFLOAD_FUNC_NR,
  3728. OFFLOAD_FUNC_EMB,
  3729. OFFLOAD_FUNC_OUT,
  3730. };
  3731. // TODO: will be removed with backend v2
  3732. struct llm_offload_trie {
  3733. struct node {
  3734. ~node() {
  3735. for (int i = 0; i < 256; ++i) {
  3736. if (children[i]) {
  3737. delete children[i];
  3738. }
  3739. }
  3740. }
  3741. node * children[256] = { nullptr };
  3742. llm_offload_func_e func = OFFLOAD_FUNC_NOP;
  3743. };
  3744. llm_offload_trie() {
  3745. root = new node;
  3746. }
  3747. llm_offload_trie(const std::unordered_map<const char *, llm_offload_func_e> & map) {
  3748. root = new node;
  3749. for (const auto & kv : map) {
  3750. add(kv.first, kv.second);
  3751. }
  3752. }
  3753. ~llm_offload_trie() {
  3754. delete root;
  3755. }
  3756. void add(const char * name, llm_offload_func_e func) {
  3757. node * cur = root;
  3758. for (int i = 0; ; ++i) {
  3759. const uint8_t c = name[i];
  3760. if (!c) {
  3761. break;
  3762. }
  3763. if (!cur->children[c]) {
  3764. cur->children[c] = new node;
  3765. }
  3766. cur = cur->children[c];
  3767. }
  3768. cur->func = func;
  3769. }
  3770. llm_offload_func_e find(const char * name) const {
  3771. const node * cur = root;
  3772. for (int i = 0; ; ++i) {
  3773. const uint8_t c = name[i];
  3774. if (!c) {
  3775. break;
  3776. }
  3777. if (!cur->children[c]) {
  3778. return OFFLOAD_FUNC_NOP;
  3779. }
  3780. cur = cur->children[c];
  3781. }
  3782. return cur->func;
  3783. }
  3784. node * root = nullptr;
  3785. };
  3786. // TODO: will be removed with backend v2
  3787. static const std::unordered_map<const char *, llm_offload_func_e> k_offload_map = {
  3788. //{ "inp_tokens", OFFLOAD_FUNC_NR }, // TODO: missing K-quants get_rows kernel
  3789. //{ "inp_embd", OFFLOAD_FUNC_NR }, // TODO: missing K-quants get_rows kernel
  3790. { "pos_embd", OFFLOAD_FUNC_NR },
  3791. { "inp_pos", OFFLOAD_FUNC_KQ }, // this is often used for KQ ops (e.g. rope)
  3792. { "KQ_scale", OFFLOAD_FUNC_KQ },
  3793. { "KQ_mask", OFFLOAD_FUNC_KQ },
  3794. { "K_shift", OFFLOAD_FUNC_KQ },
  3795. { "K_shifted", OFFLOAD_FUNC_KQ },
  3796. { "inp_norm", OFFLOAD_FUNC_NR },
  3797. { "inp_norm_w", OFFLOAD_FUNC_NR },
  3798. { "inp_norm_wb", OFFLOAD_FUNC_NR },
  3799. { "norm", OFFLOAD_FUNC },
  3800. { "norm_w", OFFLOAD_FUNC },
  3801. { "norm_wb", OFFLOAD_FUNC },
  3802. { "attn_norm", OFFLOAD_FUNC },
  3803. { "attn_norm_2", OFFLOAD_FUNC },
  3804. { "wqkv", OFFLOAD_FUNC_KQ },
  3805. { "bqkv", OFFLOAD_FUNC_KQ },
  3806. { "wqkv_clamped", OFFLOAD_FUNC_KQ },
  3807. { "tmpk", OFFLOAD_FUNC_KQ },
  3808. { "tmpq", OFFLOAD_FUNC_KQ },
  3809. { "tmpv", OFFLOAD_FUNC_V },
  3810. { "Kcur", OFFLOAD_FUNC_KQ },
  3811. { "Qcur", OFFLOAD_FUNC_KQ },
  3812. { "Vcur", OFFLOAD_FUNC_V },
  3813. { "krot", OFFLOAD_FUNC_KQ },
  3814. { "qrot", OFFLOAD_FUNC_KQ },
  3815. { "kpass", OFFLOAD_FUNC_KQ },
  3816. { "qpass", OFFLOAD_FUNC_KQ },
  3817. { "krotated", OFFLOAD_FUNC_KQ },
  3818. { "qrotated", OFFLOAD_FUNC_KQ },
  3819. { "q", OFFLOAD_FUNC_KQ },
  3820. { "k", OFFLOAD_FUNC_KQ },
  3821. { "kq", OFFLOAD_FUNC_KQ },
  3822. { "kq_scaled", OFFLOAD_FUNC_KQ },
  3823. { "kq_scaled_alibi", OFFLOAD_FUNC_KQ },
  3824. { "kq_masked", OFFLOAD_FUNC_KQ },
  3825. { "kq_soft_max", OFFLOAD_FUNC_V },
  3826. { "v", OFFLOAD_FUNC_V },
  3827. { "kqv", OFFLOAD_FUNC_V },
  3828. { "kqv_merged", OFFLOAD_FUNC_V },
  3829. { "kqv_merged_cont", OFFLOAD_FUNC_V },
  3830. { "kqv_wo", OFFLOAD_FUNC_V },
  3831. { "kqv_out", OFFLOAD_FUNC_V },
  3832. { "ffn_inp", OFFLOAD_FUNC },
  3833. { "ffn_norm", OFFLOAD_FUNC },
  3834. { "ffn_up", OFFLOAD_FUNC },
  3835. { "ffn_up_b", OFFLOAD_FUNC },
  3836. { "ffn_gate", OFFLOAD_FUNC },
  3837. { "ffn_gate_b", OFFLOAD_FUNC },
  3838. { "ffn_gate_par", OFFLOAD_FUNC },
  3839. { "ffn_down", OFFLOAD_FUNC },
  3840. { "ffn_down_b", OFFLOAD_FUNC },
  3841. { "ffn_out", OFFLOAD_FUNC },
  3842. { "ffn_silu", OFFLOAD_FUNC },
  3843. { "ffn_gelu", OFFLOAD_FUNC },
  3844. { "ffn_relu", OFFLOAD_FUNC },
  3845. { "ffn_sqr(relu)", OFFLOAD_FUNC },
  3846. { "l_out", OFFLOAD_FUNC },
  3847. { "result_norm", OFFLOAD_FUNC_EMB },
  3848. { "result_output", OFFLOAD_FUNC_OUT },
  3849. };
  3850. static llm_offload_trie k_offload_func_trie(k_offload_map);
  3851. static struct ggml_cgraph * llama_build_graph(
  3852. llama_context & lctx,
  3853. const llama_batch & batch) {
  3854. const auto & model = lctx.model;
  3855. // check if we should build the worst-case graph (for memory measurement)
  3856. const bool worst_case = ggml_allocr_is_measure(lctx.alloc);
  3857. // keep track of the input that has already been allocated
  3858. bool alloc_inp_tokens = false;
  3859. bool alloc_inp_embd = false;
  3860. bool alloc_inp_pos = false;
  3861. bool alloc_inp_KQ_scale = false;
  3862. bool alloc_inp_KQ_mask = false;
  3863. bool alloc_inp_K_shift = false;
  3864. #ifdef GGML_USE_CUBLAS
  3865. const bool do_offload = true;
  3866. #else
  3867. const bool do_offload = true; // TODO: set to false after finishing refactoring
  3868. #endif
  3869. int n_non_view = 0; // number of non-view tensors that have been processed by the callback
  3870. // this callback allows us to apply custom logic to each tensor (e.g. ggml-alloc, offloading, etc.)
  3871. // TODO: will be removed with backend v2
  3872. llm_build_cb cb = [&](struct ggml_tensor * cur, const char * name, int il) {
  3873. if (il >= 0) {
  3874. ggml_format_name(cur, "%s-%d", name, il);
  3875. } else {
  3876. ggml_set_name(cur, name);
  3877. }
  3878. //
  3879. // allocate input tensors and set input data
  3880. //
  3881. // TODO: will be removed with backend v2
  3882. if (!alloc_inp_tokens && strcmp(name, "inp_tokens") == 0) {
  3883. ggml_allocr_alloc(lctx.alloc, cur);
  3884. if (!ggml_allocr_is_measure(lctx.alloc) && batch.token) {
  3885. const int64_t n_tokens = cur->ne[0];
  3886. memcpy(cur->data, batch.token, n_tokens*ggml_element_size(cur));
  3887. }
  3888. alloc_inp_tokens = true;
  3889. }
  3890. if (!alloc_inp_embd && strcmp(name, "inp_embd") == 0) {
  3891. ggml_allocr_alloc(lctx.alloc, cur);
  3892. if (!ggml_allocr_is_measure(lctx.alloc) && batch.embd) {
  3893. const int64_t n_embd = cur->ne[0];
  3894. const int64_t n_tokens = cur->ne[1];
  3895. memcpy(cur->data, batch.embd, n_tokens*n_embd*ggml_element_size(cur));
  3896. }
  3897. alloc_inp_embd = true;
  3898. }
  3899. if (!alloc_inp_pos && strcmp(name, "inp_pos") == 0) {
  3900. ggml_allocr_alloc(lctx.alloc, cur);
  3901. if (!ggml_allocr_is_measure(lctx.alloc) && batch.pos) {
  3902. const int64_t n_tokens = cur->ne[0];
  3903. int32_t * data = (int32_t *) cur->data;
  3904. for (int i = 0; i < n_tokens; ++i) {
  3905. data[i] = batch.pos[i];
  3906. }
  3907. }
  3908. alloc_inp_pos = true;
  3909. }
  3910. if (!alloc_inp_KQ_scale && strcmp(name, "KQ_scale") == 0) {
  3911. ggml_allocr_alloc(lctx.alloc, cur);
  3912. if (!ggml_allocr_is_measure(lctx.alloc)) {
  3913. const int64_t n_embd_head = model.hparams.n_embd_head();
  3914. ggml_set_f32(cur, 1.0f/sqrtf(float(n_embd_head)));
  3915. }
  3916. alloc_inp_KQ_scale = true;
  3917. }
  3918. if (!alloc_inp_KQ_mask && strcmp(name, "KQ_mask") == 0) {
  3919. ggml_allocr_alloc(lctx.alloc, cur);
  3920. if (!ggml_allocr_is_measure(lctx.alloc)) {
  3921. const int64_t n_kv = cur->ne[0];
  3922. const int64_t n_tokens = cur->ne[1];
  3923. float * data = (float *) cur->data;
  3924. memset(data, 0, ggml_nbytes(cur));
  3925. for (int h = 0; h < 1; ++h) {
  3926. for (int j = 0; j < n_tokens; ++j) {
  3927. const llama_pos pos = batch.pos[j];
  3928. const llama_seq_id seq_id = batch.seq_id[j][0];
  3929. for (int i = 0; i < n_kv; ++i) {
  3930. if (!lctx.kv_self.cells[i].has_seq_id(seq_id) || lctx.kv_self.cells[i].pos > pos) {
  3931. data[h*(n_kv*n_tokens) + j*n_kv + i] = -INFINITY;
  3932. }
  3933. }
  3934. }
  3935. }
  3936. }
  3937. alloc_inp_KQ_mask = true;
  3938. }
  3939. if (!alloc_inp_K_shift && strcmp(name, "K_shift") == 0) {
  3940. ggml_allocr_alloc(lctx.alloc, cur);
  3941. if (!ggml_allocr_is_measure(lctx.alloc)) {
  3942. const int64_t n_ctx = cur->ne[0];
  3943. int32_t * data = (int32_t *) cur->data;
  3944. for (int i = 0; i < n_ctx; ++i) {
  3945. data[i] = lctx.kv_self.cells[i].delta;
  3946. }
  3947. }
  3948. alloc_inp_K_shift = true;
  3949. }
  3950. // view tensors are not processed further
  3951. if (cur->view_src != nullptr) {
  3952. return;
  3953. }
  3954. if (cur->op != GGML_OP_NONE) {
  3955. n_non_view++;
  3956. }
  3957. //
  3958. // offload layers
  3959. //
  3960. // TODO: will be removed with backend v2
  3961. //#define LLAMA_OFFLOAD_DEBUG
  3962. if (!do_offload) {
  3963. return;
  3964. }
  3965. const int n_layer = model.hparams.n_layer;
  3966. const int n_gpu_layers = model.n_gpu_layers;
  3967. const int i_gpu_start = n_layer - n_gpu_layers;
  3968. // should we offload the final norm? yes if we are not computing embeddings
  3969. const bool offload_emb = lctx.embedding.empty();
  3970. static const std::unordered_map<llm_offload_func_e, std::string, std::hash<int>> k_offload_func_name = {
  3971. { OFFLOAD_FUNC_NOP, "CPU" },
  3972. { OFFLOAD_FUNC_OUT, "CPU" },
  3973. #ifdef GGML_USE_CUBLAS
  3974. { OFFLOAD_FUNC, "GPU (CUDA)" },
  3975. { OFFLOAD_FUNC_KQ, "GPU (CUDA) KQ" },
  3976. { OFFLOAD_FUNC_V, "GPU (CUDA) V" },
  3977. { OFFLOAD_FUNC_NR, "GPU (CUDA) NR" },
  3978. { OFFLOAD_FUNC_EMB, "GPU (CUDA) EMB" },
  3979. #else
  3980. { OFFLOAD_FUNC, "CPU" },
  3981. { OFFLOAD_FUNC_KQ, "CPU" },
  3982. { OFFLOAD_FUNC_V, "CPU" },
  3983. { OFFLOAD_FUNC_NR, "CPU" },
  3984. { OFFLOAD_FUNC_EMB, "CPU" },
  3985. #endif // GGML_USE_CUBLAS
  3986. };
  3987. // check the global map for what offload function to use for this tensor
  3988. llm_offload_func_e func_e = k_offload_func_trie.find(name);
  3989. if (func_e == OFFLOAD_FUNC_NOP) {
  3990. #ifdef LLAMA_OFFLOAD_DEBUG
  3991. // if a tensor hasn't been offloaded, we warn the user
  3992. if (worst_case) {
  3993. LLAMA_LOG_WARN("%s: %32s: not offloaded (ref: %s)\n", __func__,
  3994. cur->name, "https://github.com/ggerganov/llama.cpp/pull/3837");
  3995. }
  3996. #endif
  3997. return;
  3998. }
  3999. // count the number of layers and respect the provided n_gpu_layers
  4000. switch (func_e) {
  4001. case OFFLOAD_FUNC_NOP:
  4002. case OFFLOAD_FUNC_OUT:
  4003. break;
  4004. case OFFLOAD_FUNC:
  4005. if (n_gpu_layers < n_layer) {
  4006. if (il < i_gpu_start) {
  4007. func_e = OFFLOAD_FUNC_NOP;
  4008. }
  4009. }
  4010. break;
  4011. case OFFLOAD_FUNC_NR:
  4012. if (n_gpu_layers <= n_layer + 0) {
  4013. func_e = OFFLOAD_FUNC_NOP;
  4014. }
  4015. break;
  4016. case OFFLOAD_FUNC_V:
  4017. if (n_gpu_layers <= n_layer + 1) {
  4018. func_e = OFFLOAD_FUNC_NOP;
  4019. }
  4020. break;
  4021. case OFFLOAD_FUNC_KQ:
  4022. if (n_gpu_layers <= n_layer + 2) {
  4023. func_e = OFFLOAD_FUNC_NOP;
  4024. }
  4025. break;
  4026. case OFFLOAD_FUNC_EMB:
  4027. if (!offload_emb || n_gpu_layers < n_layer) {
  4028. func_e = OFFLOAD_FUNC_NOP;
  4029. }
  4030. break;
  4031. default: GGML_ASSERT(false);
  4032. }
  4033. offload_func_t func = ggml_offload_nop;
  4034. // this is needed for compatibility with Metal for example
  4035. #ifdef GGML_USE_CUBLAS
  4036. static offload_func_t ggml_offload_gpu = ggml_cuda_assign_buffers_no_alloc;
  4037. #else
  4038. static offload_func_t ggml_offload_gpu = ggml_offload_nop;
  4039. #endif
  4040. switch (func_e) {
  4041. case OFFLOAD_FUNC_NOP:
  4042. case OFFLOAD_FUNC_OUT: func = ggml_offload_nop; break;
  4043. case OFFLOAD_FUNC:
  4044. case OFFLOAD_FUNC_KQ:
  4045. case OFFLOAD_FUNC_V:
  4046. case OFFLOAD_FUNC_NR:
  4047. case OFFLOAD_FUNC_EMB: func = ggml_offload_gpu; break;
  4048. default: GGML_ASSERT(false);
  4049. }
  4050. // apply offload function to the tensor
  4051. func(cur);
  4052. #ifdef LLAMA_OFFLOAD_DEBUG
  4053. if (worst_case) {
  4054. LLAMA_LOG_INFO("%s: %32s: %s\n", __func__, cur->name, k_offload_func_name.at(func_e).c_str());
  4055. }
  4056. #endif
  4057. };
  4058. struct ggml_cgraph * result = NULL;
  4059. struct llm_build_context llm(lctx, batch, cb, worst_case);
  4060. llm.init();
  4061. switch (model.arch) {
  4062. case LLM_ARCH_LLAMA:
  4063. {
  4064. result = llm.build_llama();
  4065. } break;
  4066. case LLM_ARCH_BAICHUAN:
  4067. {
  4068. result = llm.build_baichuan();
  4069. } break;
  4070. case LLM_ARCH_FALCON:
  4071. {
  4072. result = llm.build_falcon();
  4073. } break;
  4074. case LLM_ARCH_STARCODER:
  4075. {
  4076. result = llm.build_starcoder();
  4077. } break;
  4078. case LLM_ARCH_PERSIMMON:
  4079. {
  4080. result = llm.build_persimmon();
  4081. } break;
  4082. case LLM_ARCH_REFACT:
  4083. {
  4084. result = llm.build_refact();
  4085. } break;
  4086. case LLM_ARCH_BLOOM:
  4087. {
  4088. result = llm.build_bloom();
  4089. } break;
  4090. case LLM_ARCH_MPT:
  4091. {
  4092. result = llm.build_mpt();
  4093. } break;
  4094. default:
  4095. GGML_ASSERT(false);
  4096. }
  4097. llm.free();
  4098. if (worst_case) {
  4099. int n_non_view_total = 0;
  4100. for (int i = 0; i < result->n_nodes; ++i) {
  4101. if (result->nodes[i]->view_src == nullptr) {
  4102. n_non_view_total++;
  4103. }
  4104. }
  4105. LLAMA_LOG_INFO("%s: non-view tensors processed: %d/%d\n", __func__, n_non_view, n_non_view_total);
  4106. if (n_non_view != n_non_view_total) {
  4107. LLAMA_LOG_WARN("%s: ****************************************************************\n", __func__);
  4108. LLAMA_LOG_WARN("%s: not all non-view tensors have been processed with a callback\n", __func__);
  4109. LLAMA_LOG_WARN("%s: this can indicate an inefficiency in the graph implementation\n", __func__);
  4110. LLAMA_LOG_WARN("%s: build with LLAMA_OFFLOAD_DEBUG for more info\n", __func__);
  4111. LLAMA_LOG_WARN("%s: ref: https://github.com/ggerganov/llama.cpp/pull/3837\n", __func__);
  4112. LLAMA_LOG_WARN("%s: ****************************************************************\n", __func__);
  4113. }
  4114. }
  4115. return result;
  4116. }
  4117. // decode a batch of tokens by evaluating the transformer
  4118. //
  4119. // - lctx: llama context
  4120. // - batch: batch to evaluate
  4121. //
  4122. // return 0 on success
  4123. // return positive int on warning
  4124. // return negative int on error
  4125. //
  4126. static int llama_decode_internal(
  4127. llama_context & lctx,
  4128. llama_batch batch) {
  4129. const uint32_t n_tokens = batch.n_tokens;
  4130. if (n_tokens == 0) {
  4131. LLAMA_LOG_ERROR("%s: n_tokens == 0", __func__);
  4132. return -1;
  4133. }
  4134. const auto & model = lctx.model;
  4135. const auto & hparams = model.hparams;
  4136. const auto & cparams = lctx.cparams;
  4137. const auto n_batch = cparams.n_batch;
  4138. GGML_ASSERT(n_tokens <= n_batch);
  4139. int n_threads = n_tokens == 1 ? cparams.n_threads : cparams.n_threads_batch;
  4140. GGML_ASSERT((!batch.token && batch.embd) || (batch.token && !batch.embd)); // NOLINT
  4141. const int64_t t_start_us = ggml_time_us();
  4142. #ifdef GGML_USE_MPI
  4143. // TODO: needs fix after #3228
  4144. GGML_ASSERT(false && "not implemented");
  4145. //ggml_mpi_eval_init(lctx.ctx_mpi, &n_tokens, &n_past, &n_threads);
  4146. #endif
  4147. GGML_ASSERT(n_threads > 0);
  4148. auto & kv_self = lctx.kv_self;
  4149. GGML_ASSERT(!!kv_self.ctx);
  4150. const int64_t n_embd = hparams.n_embd;
  4151. const int64_t n_vocab = hparams.n_vocab;
  4152. // helpers for smoother batch API transistion
  4153. // after deprecating the llama_eval calls, these will be removed
  4154. std::vector<llama_pos> pos;
  4155. std::vector<int32_t> n_seq_id;
  4156. std::vector<llama_seq_id *> seq_id_arr;
  4157. std::vector<std::vector<llama_seq_id>> seq_id;
  4158. if (batch.pos == nullptr) {
  4159. pos.resize(n_tokens);
  4160. for (uint32_t i = 0; i < n_tokens; i++) {
  4161. pos[i] = batch.all_pos_0 + i*batch.all_pos_1;
  4162. }
  4163. batch.pos = pos.data();
  4164. }
  4165. if (batch.seq_id == nullptr) {
  4166. n_seq_id.resize(n_tokens);
  4167. seq_id.resize(n_tokens);
  4168. seq_id_arr.resize(n_tokens);
  4169. for (uint32_t i = 0; i < n_tokens; i++) {
  4170. n_seq_id[i] = 1;
  4171. seq_id[i].resize(1);
  4172. seq_id[i][0] = batch.all_seq_id;
  4173. seq_id_arr[i] = seq_id[i].data();
  4174. }
  4175. batch.n_seq_id = n_seq_id.data();
  4176. batch.seq_id = seq_id_arr.data();
  4177. }
  4178. if (!llama_kv_cache_find_slot(kv_self, batch)) {
  4179. return 1;
  4180. }
  4181. // a heuristic, to avoid attending the full cache if it is not yet utilized
  4182. // after enough generations, the benefit from this heuristic disappears
  4183. // if we start defragmenting the cache, the benefit from this will be more important
  4184. //kv_self.n = std::max(32, GGML_PAD(llama_kv_cache_cell_max(kv_self), 32)); // TODO: this might be better for CUDA?
  4185. kv_self.n = std::min((int32_t) cparams.n_ctx, std::max(32, llama_kv_cache_cell_max(kv_self)));
  4186. //printf("kv_self.n = %d\n", kv_self.n);
  4187. ggml_allocr_reset(lctx.alloc);
  4188. ggml_cgraph * gf = llama_build_graph(lctx, batch);
  4189. ggml_allocr_alloc_graph(lctx.alloc, gf);
  4190. struct ggml_tensor * res = gf->nodes[gf->n_nodes - 1];
  4191. struct ggml_tensor * embeddings = gf->nodes[gf->n_nodes - 2];
  4192. GGML_ASSERT(strcmp(res->name, "result_output") == 0);
  4193. GGML_ASSERT(strcmp(embeddings->name, "result_norm") == 0);
  4194. #ifdef GGML_USE_CUBLAS
  4195. for (int i = 0; i < gf->n_leafs; i++) {
  4196. ggml_tensor * node = gf->leafs[i];
  4197. if (node->backend == GGML_BACKEND_GPU && node->extra == NULL) {
  4198. ggml_cuda_assign_scratch_offset(node, (char*)node->data - (char *) lctx.buf_alloc.data);
  4199. ggml_cuda_copy_to_device(node);
  4200. }
  4201. }
  4202. for (int i = 0; i < gf->n_nodes; i++) {
  4203. ggml_tensor * node = gf->nodes[i];
  4204. if (node->backend == GGML_BACKEND_GPU && node->extra == NULL) {
  4205. ggml_cuda_assign_scratch_offset(node, (char*)node->data - (char *) lctx.buf_alloc.data);
  4206. }
  4207. }
  4208. // HACK: ggml-alloc may change the tensor backend when reusing a parent, so force output to be on the CPU here if needed
  4209. if (!lctx.embedding.empty()) {
  4210. embeddings->backend = GGML_BACKEND_CPU;
  4211. }
  4212. res->backend = GGML_BACKEND_CPU;
  4213. #endif
  4214. // LLAMA_LOG_INFO("graph build time: %.3f ms (%d nodes, %d leafs)\n", (ggml_time_us() - t_start_us)/1000.0, gf->n_nodes, gf->n_leafs);
  4215. // for big prompts, if BLAS is enabled, it is better to use only one thread
  4216. // otherwise, the threads are spin-lock waiting for the BLAS calls and are degrading the performance
  4217. // TODO: this is mostly important for Apple Silicon where CBLAS is still performing very well
  4218. // we still need some threads to process all non-mul_mat ops, but not too much to avoid interfering
  4219. // with the BLAS calls. need a better solution
  4220. if (n_tokens >= 32 && ggml_cpu_has_blas() && !ggml_cpu_has_gpublas()) {
  4221. n_threads = std::min(4, n_threads);
  4222. }
  4223. // If all tensors can be run on the GPU then using more than 1 thread is detrimental.
  4224. const bool full_offload_supported =
  4225. model.arch == LLM_ARCH_LLAMA ||
  4226. model.arch == LLM_ARCH_BAICHUAN ||
  4227. model.arch == LLM_ARCH_FALCON ||
  4228. model.arch == LLM_ARCH_REFACT ||
  4229. model.arch == LLM_ARCH_MPT;
  4230. const bool fully_offloaded = model.n_gpu_layers >= (int) hparams.n_layer + 3;
  4231. if (ggml_cpu_has_cublas() && full_offload_supported && fully_offloaded) {
  4232. n_threads = 1;
  4233. }
  4234. #if GGML_USE_MPI
  4235. const int64_t n_layer = hparams.n_layer;
  4236. ggml_mpi_graph_compute_pre(lctx.ctx_mpi, gf, n_layer);
  4237. #endif
  4238. #ifdef GGML_USE_METAL
  4239. if (lctx.ctx_metal) {
  4240. ggml_metal_set_n_cb (lctx.ctx_metal, n_threads);
  4241. ggml_metal_graph_compute(lctx.ctx_metal, gf);
  4242. } else {
  4243. ggml_graph_compute_helper(lctx.work_buffer, gf, n_threads);
  4244. }
  4245. #else
  4246. ggml_graph_compute_helper(lctx.work_buffer, gf, n_threads);
  4247. #endif
  4248. #if GGML_USE_MPI
  4249. ggml_mpi_graph_compute_post(lctx.ctx_mpi, gf, n_layer);
  4250. #endif
  4251. // update the kv ring buffer
  4252. {
  4253. if (kv_self.has_shift) {
  4254. kv_self.has_shift = false;
  4255. for (uint32_t i = 0; i < kv_self.size; ++i) {
  4256. kv_self.cells[i].delta = 0;
  4257. }
  4258. }
  4259. kv_self.head += n_tokens;
  4260. // Ensure kv cache head points to a valid index.
  4261. if (kv_self.head >= kv_self.size) {
  4262. kv_self.head = 0;
  4263. }
  4264. }
  4265. #ifdef GGML_PERF
  4266. // print timing information per ggml operation (for debugging purposes)
  4267. // requires GGML_PERF to be defined
  4268. ggml_graph_print(gf);
  4269. #endif
  4270. // plot the computation graph in dot format (for debugging purposes)
  4271. //if (n_past%100 == 0) {
  4272. // ggml_graph_dump_dot(gf, NULL, "llama.dot");
  4273. //}
  4274. // extract logits
  4275. // TODO: do not compute and extract logits if only embeddings are needed
  4276. // need to update the graphs to skip "result_output"
  4277. {
  4278. auto & logits_out = lctx.logits;
  4279. if (batch.logits) {
  4280. logits_out.resize(n_vocab * n_tokens);
  4281. for (uint32_t i = 0; i < n_tokens; i++) {
  4282. if (batch.logits[i] == 0) {
  4283. continue;
  4284. }
  4285. memcpy(logits_out.data() + (n_vocab*i), (float *) ggml_get_data(res) + (n_vocab*i), sizeof(float)*n_vocab);
  4286. }
  4287. } else if (lctx.logits_all) {
  4288. logits_out.resize(n_vocab * n_tokens);
  4289. memcpy(logits_out.data(), (float *) ggml_get_data(res), sizeof(float)*n_vocab*n_tokens);
  4290. } else {
  4291. logits_out.resize(n_vocab);
  4292. memcpy(logits_out.data(), (float *) ggml_get_data(res) + (n_vocab*(n_tokens - 1)), sizeof(float)*n_vocab);
  4293. }
  4294. }
  4295. // extract embeddings
  4296. if (!lctx.embedding.empty()) {
  4297. auto & embedding_out = lctx.embedding;
  4298. embedding_out.resize(n_embd);
  4299. memcpy(embedding_out.data(), (float *) ggml_get_data(embeddings) + (n_embd*(n_tokens - 1)), sizeof(float)*n_embd);
  4300. }
  4301. // measure the performance only for the single-token evals
  4302. if (n_tokens == 1) {
  4303. lctx.t_eval_us += ggml_time_us() - t_start_us;
  4304. lctx.n_eval++;
  4305. }
  4306. else if (n_tokens > 1) {
  4307. lctx.t_p_eval_us += ggml_time_us() - t_start_us;
  4308. lctx.n_p_eval += n_tokens;
  4309. }
  4310. // get a more accurate load time, upon first eval
  4311. // TODO: fix this
  4312. if (!lctx.has_evaluated_once) {
  4313. lctx.t_load_us = ggml_time_us() - lctx.t_start_us;
  4314. lctx.has_evaluated_once = true;
  4315. }
  4316. return 0;
  4317. }
  4318. //
  4319. // tokenizer
  4320. //
  4321. static enum llama_vocab_type llama_vocab_get_type(const llama_vocab & vocab) {
  4322. return vocab.type;
  4323. }
  4324. static bool llama_is_normal_token(const llama_vocab & vocab, llama_token id) {
  4325. return vocab.id_to_token[id].type == LLAMA_TOKEN_TYPE_NORMAL;
  4326. }
  4327. static bool llama_is_unknown_token(const llama_vocab & vocab, llama_token id) {
  4328. return vocab.id_to_token[id].type == LLAMA_TOKEN_TYPE_UNKNOWN;
  4329. }
  4330. static bool llama_is_control_token(const llama_vocab & vocab, llama_token id) {
  4331. return vocab.id_to_token[id].type == LLAMA_TOKEN_TYPE_CONTROL;
  4332. }
  4333. static bool llama_is_byte_token(const llama_vocab & vocab, llama_token id) {
  4334. return vocab.id_to_token[id].type == LLAMA_TOKEN_TYPE_BYTE;
  4335. }
  4336. static bool llama_is_user_defined_token(const llama_vocab& vocab, llama_token id) {
  4337. return vocab.id_to_token[id].type == LLAMA_TOKEN_TYPE_USER_DEFINED;
  4338. }
  4339. static uint8_t llama_token_to_byte(const llama_vocab& vocab, llama_token id) {
  4340. GGML_ASSERT(llama_is_byte_token(vocab, id));
  4341. const auto& token_data = vocab.id_to_token.at(id);
  4342. switch (llama_vocab_get_type(vocab)) {
  4343. case LLAMA_VOCAB_TYPE_SPM: {
  4344. auto buf = token_data.text.substr(3, 2);
  4345. return strtol(buf.c_str(), NULL, 16);
  4346. }
  4347. case LLAMA_VOCAB_TYPE_BPE: {
  4348. GGML_ASSERT(false);
  4349. return unicode_to_bytes_bpe(token_data.text);
  4350. }
  4351. default:
  4352. GGML_ASSERT(false);
  4353. }
  4354. }
  4355. static llama_token llama_byte_to_token(const llama_vocab & vocab, uint8_t ch) {
  4356. static const char * hex = "0123456789ABCDEF";
  4357. switch (llama_vocab_get_type(vocab)) {
  4358. case LLAMA_VOCAB_TYPE_SPM: {
  4359. const char buf[7] = { '<', '0', 'x', hex[ch >> 4], hex[ch & 15], '>', 0 };
  4360. return vocab.token_to_id.at(buf);
  4361. }
  4362. case LLAMA_VOCAB_TYPE_BPE: {
  4363. return vocab.token_to_id.at(bytes_to_unicode_bpe(ch));
  4364. }
  4365. default:
  4366. GGML_ASSERT(false);
  4367. }
  4368. }
  4369. static void llama_escape_whitespace(std::string & text) {
  4370. replace_all(text, " ", "\xe2\x96\x81");
  4371. }
  4372. static void llama_unescape_whitespace(std::string & word) {
  4373. replace_all(word, "\xe2\x96\x81", " ");
  4374. }
  4375. struct llm_symbol {
  4376. using index = int;
  4377. index prev;
  4378. index next;
  4379. const char * text;
  4380. size_t n;
  4381. };
  4382. static_assert(std::is_trivially_copyable<llm_symbol>::value, "llm_symbol is not trivially copyable");
  4383. // SPM tokenizer
  4384. // original implementation:
  4385. // https://github.com/ggerganov/llama.cpp/commit/074bea2eb1f1349a0118239c4152914aecaa1be4
  4386. struct llm_bigram_spm {
  4387. struct comparator {
  4388. bool operator()(llm_bigram_spm & l, llm_bigram_spm & r) {
  4389. return (l.score < r.score) || (l.score == r.score && l.left > r.left);
  4390. }
  4391. };
  4392. using queue_storage = std::vector<llm_bigram_spm>;
  4393. using queue = std::priority_queue<llm_bigram_spm, queue_storage, comparator>;
  4394. llm_symbol::index left;
  4395. llm_symbol::index right;
  4396. float score;
  4397. size_t size;
  4398. };
  4399. struct llm_tokenizer_spm {
  4400. llm_tokenizer_spm(const llama_vocab & vocab): vocab(vocab) {}
  4401. void tokenize(const std::string & text, std::vector<llama_vocab::id> & output) {
  4402. // split string into utf8 chars
  4403. int index = 0;
  4404. size_t offs = 0;
  4405. while (offs < text.size()) {
  4406. llm_symbol sym;
  4407. size_t len = utf8_len(text[offs]);
  4408. sym.text = text.c_str() + offs;
  4409. sym.n = std::min(len, text.size() - offs);
  4410. offs += sym.n;
  4411. sym.prev = index - 1;
  4412. sym.next = offs == text.size() ? -1 : index + 1;
  4413. index++;
  4414. symbols.emplace_back(sym);
  4415. }
  4416. // seed the work queue with all possible 2-character tokens.
  4417. for (size_t i = 1; i < symbols.size(); ++i) {
  4418. try_add_bigram(i - 1, i);
  4419. }
  4420. // keep substituting the highest frequency pairs for as long as we can.
  4421. while (!work_queue.empty()) {
  4422. auto bigram = work_queue.top();
  4423. work_queue.pop();
  4424. auto & left_sym = symbols[bigram.left];
  4425. auto & right_sym = symbols[bigram.right];
  4426. // if one of the symbols already got merged, skip it.
  4427. if (left_sym.n == 0 || right_sym.n == 0 ||
  4428. left_sym.n + right_sym.n != bigram.size) {
  4429. continue;
  4430. }
  4431. // merge the right sym into the left one
  4432. left_sym.n += right_sym.n;
  4433. right_sym.n = 0;
  4434. //LLAMA_LOG_INFO("left = '%*s' size = %zu\n", (int) left_sym.n, left_sym.text, bigram.size);
  4435. // remove the right sym from the chain
  4436. left_sym.next = right_sym.next;
  4437. if (right_sym.next >= 0) {
  4438. symbols[right_sym.next].prev = bigram.left;
  4439. }
  4440. // find more substitutions
  4441. try_add_bigram(left_sym.prev, bigram.left);
  4442. try_add_bigram(bigram.left, left_sym.next);
  4443. }
  4444. for (int i = 0; i != -1; i = symbols[i].next) {
  4445. auto & symbol = symbols[i];
  4446. resegment(symbol, output);
  4447. }
  4448. }
  4449. private:
  4450. void resegment(llm_symbol & symbol, std::vector<llama_vocab::id> & output) {
  4451. auto text = std::string(symbol.text, symbol.n);
  4452. auto token = vocab.token_to_id.find(text);
  4453. // Do we need to support is_unused?
  4454. if (token != vocab.token_to_id.end()) {
  4455. output.push_back((*token).second);
  4456. return;
  4457. }
  4458. const auto p = rev_merge.find(text);
  4459. if (p == rev_merge.end()) {
  4460. // output any symbols that did not form tokens as bytes.
  4461. for (int j = 0; j < (int)symbol.n; ++j) {
  4462. llama_vocab::id token_id = llama_byte_to_token(vocab, symbol.text[j]);
  4463. output.push_back(token_id);
  4464. }
  4465. return;
  4466. }
  4467. resegment(symbols[p->second.first], output);
  4468. resegment(symbols[p->second.second], output);
  4469. }
  4470. void try_add_bigram(int left, int right) {
  4471. if (left == -1 || right == -1) {
  4472. return;
  4473. }
  4474. const std::string text = std::string(symbols[left].text, symbols[left].n + symbols[right].n);
  4475. auto token = vocab.token_to_id.find(text);
  4476. if (token == vocab.token_to_id.end()) {
  4477. return;
  4478. }
  4479. if (static_cast<size_t>((*token).second) >= vocab.id_to_token.size()) {
  4480. return;
  4481. }
  4482. const auto & tok_data = vocab.id_to_token[(*token).second];
  4483. llm_bigram_spm bigram;
  4484. bigram.left = left;
  4485. bigram.right = right;
  4486. bigram.score = tok_data.score;
  4487. bigram.size = text.size();
  4488. work_queue.push(bigram);
  4489. // Do we need to support is_unused?
  4490. rev_merge[text] = std::make_pair(left, right);
  4491. }
  4492. const llama_vocab & vocab;
  4493. std::vector<llm_symbol> symbols;
  4494. llm_bigram_spm::queue work_queue;
  4495. std::map<std::string, std::pair<int, int>> rev_merge;
  4496. };
  4497. // BPE tokenizer
  4498. // adapted from https://github.com/cmp-nct/ggllm.cpp [MIT License]
  4499. // tried to simplify unicode stuff, so most likely does not work 100% correctly!
  4500. // TODO: there are a lot of common parts between spm and bpe tokenizers, should be refactored and reused
  4501. struct llm_bigram_bpe {
  4502. struct comparator {
  4503. bool operator()(const llm_bigram_bpe & l, const llm_bigram_bpe & r) const {
  4504. return l.rank > r.rank || (l.rank == r.rank && l.left > r.left);
  4505. }
  4506. };
  4507. using queue_storage = std::vector<llm_bigram_bpe>;
  4508. using queue = std::priority_queue<llm_bigram_bpe, queue_storage, comparator>;
  4509. llm_symbol::index left;
  4510. llm_symbol::index right;
  4511. std::string text;
  4512. int rank;
  4513. size_t size;
  4514. };
  4515. struct llm_tokenizer_bpe {
  4516. llm_tokenizer_bpe(const llama_vocab & vocab): vocab(vocab) {}
  4517. void tokenize(const std::string & text, std::vector<llama_vocab::id> & output) {
  4518. int final_prev_index = -1;
  4519. auto word_collection = bpe_gpt2_preprocess(text);
  4520. symbols_final.clear();
  4521. for (auto & word : word_collection) {
  4522. work_queue = llm_bigram_bpe::queue();
  4523. symbols.clear();
  4524. int index = 0;
  4525. size_t offset = 0;
  4526. while (offset < word.size()) {
  4527. llm_symbol sym;
  4528. size_t char_len = std::min(word.size() - offset, (size_t) ::utf8_len(word[offset]));
  4529. sym.text = word.c_str() + offset;
  4530. sym.n = char_len;
  4531. offset += sym.n;
  4532. sym.prev = index - 1;
  4533. sym.next = offset == word.size() ? -1 : index + 1;
  4534. index++;
  4535. symbols.emplace_back(sym);
  4536. }
  4537. for (size_t i = 1; i < symbols.size(); ++i) {
  4538. add_new_bigram(i - 1, i);
  4539. }
  4540. // build token(s)
  4541. while (!work_queue.empty()) {
  4542. auto bigram = work_queue.top();
  4543. work_queue.pop();
  4544. auto & left_symbol = symbols[bigram.left];
  4545. auto & right_symbol = symbols[bigram.right];
  4546. if (left_symbol.n == 0 || right_symbol.n == 0) {
  4547. continue;
  4548. }
  4549. std::string left_token = std::string(left_symbol.text, left_symbol.n);
  4550. std::string right_token = std::string(right_symbol.text, right_symbol.n);
  4551. if (left_token + right_token != bigram.text) {
  4552. continue; // Skip this bigram if it's outdated
  4553. }
  4554. // merge the right sym into the left one
  4555. left_symbol.n += right_symbol.n;
  4556. right_symbol.n = 0;
  4557. // remove the right sym from the chain
  4558. left_symbol.next = right_symbol.next;
  4559. if (right_symbol.next >= 0) {
  4560. symbols[right_symbol.next].prev = bigram.left;
  4561. }
  4562. add_new_bigram(left_symbol.prev, bigram.left); // left side of current symbol
  4563. add_new_bigram(bigram.left, left_symbol.next); // right side of current symbol
  4564. }
  4565. // add the fnished tokens to the final list keeping correct order for next and prev
  4566. for (auto & sym : symbols) {
  4567. if (sym.n > 0) {
  4568. sym.prev = final_prev_index;
  4569. sym.next = -1;
  4570. if (final_prev_index != -1) {
  4571. symbols_final[final_prev_index].next = symbols_final.size();
  4572. }
  4573. symbols_final.emplace_back(sym);
  4574. final_prev_index = symbols_final.size() - 1;
  4575. }
  4576. }
  4577. }
  4578. symbols = symbols_final;
  4579. if (!symbols.empty()) {
  4580. for (int i = 0; i != -1; i = symbols[i].next) {
  4581. auto & symbol = symbols[i];
  4582. if (symbol.n == 0) {
  4583. continue;
  4584. }
  4585. const std::string str = std::string(symbol.text, symbol.n);
  4586. const auto token = vocab.token_to_id.find(str);
  4587. if (token == vocab.token_to_id.end()) {
  4588. for (auto j = str.begin(); j != str.end(); ++j) {
  4589. std::string byte_str(1, *j);
  4590. auto token_multibyte = vocab.token_to_id.find(byte_str);
  4591. if (token_multibyte == vocab.token_to_id.end()) {
  4592. throw std::runtime_error("ERROR: byte not found in vocab");
  4593. }
  4594. output.push_back((*token_multibyte).second);
  4595. }
  4596. } else {
  4597. output.push_back((*token).second);
  4598. }
  4599. }
  4600. }
  4601. }
  4602. private:
  4603. void add_new_bigram(int left, int right) {
  4604. if (left == -1 || right == -1) {
  4605. return;
  4606. }
  4607. std::string left_token = std::string(symbols[left].text, symbols[left].n);
  4608. std::string right_token = std::string(symbols[right].text, symbols[right].n);
  4609. int rank_found = -1;
  4610. rank_found = vocab.find_bpe_rank(left_token, right_token);
  4611. if (rank_found < 0) {
  4612. return;
  4613. }
  4614. llm_bigram_bpe bigram;
  4615. bigram.left = left;
  4616. bigram.right = right;
  4617. bigram.text = left_token + right_token;
  4618. bigram.size = left_token.size() + right_token.size();
  4619. bigram.rank = rank_found;
  4620. work_queue.push(bigram);
  4621. }
  4622. std::vector<std::string> bpe_gpt2_preprocess(const std::string & text) {
  4623. std::vector<std::string> bpe_words;
  4624. std::vector<std::string> bpe_encoded_words;
  4625. std::string token = "";
  4626. // GPT2 system regex: 's|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+
  4627. bool collecting_numeric = false;
  4628. bool collecting_letter = false;
  4629. bool collecting_special = false;
  4630. bool collecting_whitespace_lookahead = false;
  4631. bool collecting = false;
  4632. std::vector<std::string> text_utf;
  4633. text_utf.reserve(text.size());
  4634. bpe_words.reserve(text.size());
  4635. bpe_encoded_words.reserve(text.size());
  4636. auto cps = codepoints_from_utf8(text);
  4637. for (size_t i = 0; i < cps.size(); ++i)
  4638. text_utf.emplace_back(codepoint_to_utf8(cps[i]));
  4639. for (int i = 0; i < (int)text_utf.size(); i++) {
  4640. const std::string & utf_char = text_utf[i];
  4641. bool split_condition = false;
  4642. int bytes_remain = text_utf.size() - i;
  4643. // forward backward lookups
  4644. const std::string & utf_char_next = (i + 1 < (int)text_utf.size()) ? text_utf[i + 1] : "";
  4645. const std::string & utf_char_next_next = (i + 2 < (int)text_utf.size()) ? text_utf[i + 2] : "";
  4646. // handling contractions
  4647. if (!split_condition && bytes_remain >= 2) {
  4648. // 's|'t|'m|'d
  4649. if (utf_char == "\'" && (utf_char_next == "s" || utf_char_next == "t" || utf_char_next == "m" || utf_char_next == "d")) {
  4650. split_condition = true;
  4651. }
  4652. if (split_condition) {
  4653. if (token.size()) {
  4654. bpe_words.emplace_back(token); // push previous content as token
  4655. }
  4656. token = utf_char + utf_char_next;
  4657. bpe_words.emplace_back(token);
  4658. token = "";
  4659. i++;
  4660. continue;
  4661. }
  4662. }
  4663. if (!split_condition && bytes_remain >= 3) {
  4664. // 're|'ve|'ll
  4665. if (utf_char == "\'" && (
  4666. (utf_char_next == "r" && utf_char_next_next == "e") ||
  4667. (utf_char_next == "v" && utf_char_next_next == "e") ||
  4668. (utf_char_next == "l" && utf_char_next_next == "l"))
  4669. ) {
  4670. split_condition = true;
  4671. }
  4672. if (split_condition) {
  4673. // current token + next token can be defined
  4674. if (token.size()) {
  4675. bpe_words.emplace_back(token); // push previous content as token
  4676. }
  4677. token = utf_char + utf_char_next + utf_char_next_next;
  4678. bpe_words.emplace_back(token); // the contraction
  4679. token = "";
  4680. i += 2;
  4681. continue;
  4682. }
  4683. }
  4684. if (!split_condition && !collecting) {
  4685. if (codepoint_type(utf_char) == CODEPOINT_TYPE_LETTER || (!token.size() && utf_char == " " && codepoint_type(utf_char_next) == CODEPOINT_TYPE_LETTER)) {
  4686. collecting_letter = true;
  4687. collecting = true;
  4688. }
  4689. else if (codepoint_type(utf_char) == CODEPOINT_TYPE_DIGIT || (!token.size() && utf_char == " " && codepoint_type(utf_char_next) == CODEPOINT_TYPE_DIGIT)) {
  4690. collecting_numeric = true;
  4691. collecting = true;
  4692. }
  4693. else if (
  4694. ((codepoint_type(utf_char) != CODEPOINT_TYPE_LETTER && codepoint_type(utf_char) != CODEPOINT_TYPE_DIGIT) && (codepoint_type(utf_char) != CODEPOINT_TYPE_WHITESPACE)) ||
  4695. (!token.size() && utf_char == " " && codepoint_type(utf_char_next) != CODEPOINT_TYPE_LETTER && codepoint_type(utf_char_next) != CODEPOINT_TYPE_DIGIT && codepoint_type(utf_char_next) != CODEPOINT_TYPE_WHITESPACE)
  4696. ) {
  4697. collecting_special = true;
  4698. collecting = true;
  4699. }
  4700. else if (codepoint_type(utf_char) == CODEPOINT_TYPE_WHITESPACE && codepoint_type(utf_char_next) == CODEPOINT_TYPE_WHITESPACE) {
  4701. collecting_whitespace_lookahead = true;
  4702. collecting = true;
  4703. }
  4704. else if (codepoint_type(utf_char) == CODEPOINT_TYPE_WHITESPACE) {
  4705. split_condition = true;
  4706. }
  4707. }
  4708. else if (!split_condition && collecting) {
  4709. if (collecting_letter && codepoint_type(utf_char) != CODEPOINT_TYPE_LETTER) {
  4710. split_condition = true;
  4711. }
  4712. else if (collecting_numeric && codepoint_type(utf_char) != CODEPOINT_TYPE_DIGIT) {
  4713. split_condition = true;
  4714. }
  4715. else if (collecting_special && (codepoint_type(utf_char) == CODEPOINT_TYPE_LETTER || codepoint_type(utf_char) == CODEPOINT_TYPE_DIGIT || codepoint_type(utf_char) == CODEPOINT_TYPE_WHITESPACE)) {
  4716. split_condition = true;
  4717. }
  4718. else if (collecting_whitespace_lookahead && (codepoint_type(utf_char_next) == CODEPOINT_TYPE_LETTER || codepoint_type(utf_char_next) == CODEPOINT_TYPE_DIGIT)) {
  4719. split_condition = true;
  4720. }
  4721. }
  4722. if (utf_char_next == "") {
  4723. split_condition = true; // final
  4724. token += utf_char;
  4725. }
  4726. if (split_condition) {
  4727. if (token.size()) {
  4728. bpe_words.emplace_back(token);
  4729. }
  4730. token = utf_char;
  4731. collecting = false;
  4732. collecting_letter = false;
  4733. collecting_numeric = false;
  4734. collecting_special = false;
  4735. collecting_whitespace_lookahead = false;
  4736. }
  4737. else {
  4738. token += utf_char;
  4739. }
  4740. }
  4741. for (std::string & word : bpe_words) {
  4742. std::string encoded_token = "";
  4743. for (char & c : word) {
  4744. encoded_token += bytes_to_unicode_bpe(c);
  4745. }
  4746. bpe_encoded_words.emplace_back(encoded_token);
  4747. }
  4748. return bpe_encoded_words;
  4749. }
  4750. const llama_vocab & vocab;
  4751. std::vector<llm_symbol> symbols;
  4752. std::vector<llm_symbol> symbols_final;
  4753. llm_bigram_bpe::queue work_queue;
  4754. };
  4755. typedef enum FRAGMENT_BUFFER_VARIANT_TYPE{
  4756. FRAGMENT_BUFFER_VARIANT_TYPE_TOKEN,
  4757. FRAGMENT_BUFFER_VARIANT_TYPE_RAW_TEXT
  4758. } FRAGMENT_BUFFER_VARIANT_TYPE;
  4759. struct fragment_buffer_variant{
  4760. fragment_buffer_variant(llama_vocab::id _token)
  4761. :
  4762. type(FRAGMENT_BUFFER_VARIANT_TYPE_TOKEN),
  4763. token(_token),
  4764. raw_text(_dummy),
  4765. offset(0),
  4766. length(0){}
  4767. fragment_buffer_variant(const std::string & _raw_text, int64_t _offset, int64_t _length)
  4768. :
  4769. type(FRAGMENT_BUFFER_VARIANT_TYPE_RAW_TEXT),
  4770. token((llama_vocab::id)-1),
  4771. raw_text(_raw_text),
  4772. offset(_offset),
  4773. length(_length){
  4774. GGML_ASSERT( _offset >= 0 );
  4775. GGML_ASSERT( _length >= 1 );
  4776. GGML_ASSERT( offset + length <= raw_text.length() );
  4777. }
  4778. const FRAGMENT_BUFFER_VARIANT_TYPE type;
  4779. const llama_vocab::id token;
  4780. const std::string _dummy;
  4781. const std::string & raw_text;
  4782. const uint64_t offset;
  4783. const uint64_t length;
  4784. };
  4785. // #define PRETOKENIZERDEBUG
  4786. static void tokenizer_st_partition(const llama_vocab & vocab, std::forward_list<fragment_buffer_variant> & buffer)
  4787. {
  4788. // for each special token
  4789. for (const auto & st: vocab.special_tokens_cache) {
  4790. const auto & special_token = st.first;
  4791. const auto & special_id = st.second;
  4792. // for each text fragment
  4793. std::forward_list<fragment_buffer_variant>::iterator it = buffer.begin();
  4794. while (it != buffer.end()) {
  4795. auto & fragment = (*it);
  4796. // if a fragment is text ( not yet processed )
  4797. if (fragment.type == FRAGMENT_BUFFER_VARIANT_TYPE_RAW_TEXT) {
  4798. auto * raw_text = &(fragment.raw_text);
  4799. auto raw_text_base_offset = fragment.offset;
  4800. auto raw_text_base_length = fragment.length;
  4801. // loop over the text
  4802. while (true) {
  4803. // find the first occurence of a given special token in this fragment
  4804. // passing offset argument only limit the "search area" but match coordinates
  4805. // are still relative to the source full raw_text
  4806. auto match = raw_text->find(special_token, raw_text_base_offset);
  4807. // no occurences found, stop processing this fragment for a given special token
  4808. if (match == std::string::npos) break;
  4809. // check if match is within bounds of offset <-> length
  4810. if (match + special_token.length() > raw_text_base_offset + raw_text_base_length) break;
  4811. #ifdef PRETOKENIZERDEBUG
  4812. fprintf(stderr, "FF: (%ld %ld %ld) '%s'\n", raw_text->length(), raw_text_base_offset, raw_text_base_length, raw_text->substr(raw_text_base_offset, raw_text_base_length).c_str());
  4813. #endif
  4814. auto source = std::distance(buffer.begin(), it);
  4815. // if match is further than base offset
  4816. // then we have some text to the left of it
  4817. if (match > raw_text_base_offset) {
  4818. // left
  4819. const int64_t left_reminder_offset = raw_text_base_offset + 0;
  4820. const int64_t left_reminder_length = match - raw_text_base_offset;
  4821. buffer.emplace_after(it, (*raw_text), left_reminder_offset, left_reminder_length);
  4822. #ifdef PRETOKENIZERDEBUG
  4823. fprintf(stderr, "FL: (%ld %ld) '%s'\n", left_reminder_offset, left_reminder_length, raw_text->substr(left_reminder_offset, left_reminder_length).c_str());
  4824. #endif
  4825. it++;
  4826. }
  4827. // special token
  4828. buffer.emplace_after(it, special_id);
  4829. it++;
  4830. // right
  4831. if (match + special_token.length() < raw_text_base_offset + raw_text_base_length) {
  4832. const int64_t right_reminder_offset = match + special_token.length();
  4833. const int64_t right_reminder_length = raw_text_base_length - ((match - raw_text_base_offset) + special_token.length());
  4834. buffer.emplace_after(it, (*raw_text), right_reminder_offset, right_reminder_length);
  4835. #ifdef PRETOKENIZERDEBUG
  4836. fprintf(stderr, "FR: (%ld %ld) '%s'\n", right_reminder_offset, right_reminder_length, raw_text->substr(right_reminder_offset, right_reminder_length).c_str());
  4837. #endif
  4838. it++;
  4839. if (source == 0) {
  4840. buffer.erase_after(buffer.before_begin());
  4841. } else {
  4842. buffer.erase_after(std::next(buffer.begin(), (source-1)));
  4843. }
  4844. // repeat for the right side
  4845. raw_text_base_offset = right_reminder_offset;
  4846. raw_text_base_length = right_reminder_length;
  4847. #ifdef PRETOKENIZERDEBUG
  4848. fprintf(stderr, "RR: (%ld %ld) '%s'\n", raw_text_base_offset, raw_text_base_length, raw_text->substr(raw_text_base_offset, raw_text_base_length).c_str());
  4849. #endif
  4850. } else {
  4851. if (source == 0) {
  4852. buffer.erase_after(buffer.before_begin());
  4853. } else {
  4854. buffer.erase_after(std::next(buffer.begin(), (source-1)));
  4855. }
  4856. break;
  4857. }
  4858. }
  4859. }
  4860. it++;
  4861. }
  4862. }
  4863. }
  4864. static std::vector<llama_vocab::id> llama_tokenize_internal(const llama_vocab & vocab, std::string raw_text, bool bos, bool special) {
  4865. std::vector<llama_vocab::id> output;
  4866. // OG tokenizer behavior:
  4867. //
  4868. // tokenizer.encode('', add_bos=True) returns [1]
  4869. // tokenizer.encode('', add_bos=False) returns []
  4870. if (bos && vocab.special_bos_id != -1) {
  4871. output.push_back(vocab.special_bos_id);
  4872. }
  4873. if (raw_text.empty()) {
  4874. return output;
  4875. }
  4876. std::forward_list<fragment_buffer_variant> fragment_buffer;
  4877. fragment_buffer.emplace_front( raw_text, 0, raw_text.length() );
  4878. if (special) tokenizer_st_partition( vocab, fragment_buffer );
  4879. switch (vocab.type) {
  4880. case LLAMA_VOCAB_TYPE_SPM:
  4881. {
  4882. for (const auto & fragment: fragment_buffer)
  4883. {
  4884. if (fragment.type == FRAGMENT_BUFFER_VARIANT_TYPE_RAW_TEXT)
  4885. {
  4886. // without adding this leading whitespace, we do not get the same results as the original tokenizer
  4887. // TODO: It's likely possible to get rid of this string copy entirely
  4888. // by modifying llm_tokenizer_x to operate with string offsets like pre-tokenizer
  4889. // and passing 'add space prefix' as bool argument
  4890. //
  4891. auto raw_text = (special ? "" : " ") + fragment.raw_text.substr(fragment.offset, fragment.length);
  4892. #ifdef PRETOKENIZERDEBUG
  4893. fprintf(stderr,"TT: (%ld %ld %ld) '%s'\n", raw_text.length(), fragment.offset, fragment.length, raw_text.c_str());
  4894. #endif
  4895. llm_tokenizer_spm tokenizer(vocab);
  4896. llama_escape_whitespace(raw_text);
  4897. tokenizer.tokenize(raw_text, output);
  4898. }
  4899. else // if (fragment.type == FRAGMENT_BUFFER_VARIANT_TYPE_TOKEN)
  4900. {
  4901. output.push_back(fragment.token);
  4902. }
  4903. }
  4904. } break;
  4905. case LLAMA_VOCAB_TYPE_BPE:
  4906. {
  4907. for (const auto & fragment: fragment_buffer)
  4908. {
  4909. if (fragment.type == FRAGMENT_BUFFER_VARIANT_TYPE_RAW_TEXT)
  4910. {
  4911. auto raw_text = fragment.raw_text.substr(fragment.offset, fragment.length);
  4912. #ifdef PRETOKENIZERDEBUG
  4913. fprintf(stderr,"TT: (%ld %ld %ld) '%s'\n", raw_text.length(), fragment.offset, fragment.length, raw_text.c_str());
  4914. #endif
  4915. llm_tokenizer_bpe tokenizer(vocab);
  4916. tokenizer.tokenize(raw_text, output);
  4917. }
  4918. else // if (fragment.type == FRAGMENT_BUFFER_VARIANT_TYPE_TOKEN)
  4919. {
  4920. output.push_back(fragment.token);
  4921. }
  4922. }
  4923. } break;
  4924. }
  4925. return output;
  4926. }
  4927. //
  4928. // grammar - internal
  4929. //
  4930. struct llama_partial_utf8 {
  4931. uint32_t value; // bit value so far (unshifted)
  4932. int n_remain; // num bytes remaining; -1 indicates invalid sequence
  4933. };
  4934. struct llama_grammar {
  4935. const std::vector<std::vector<llama_grammar_element>> rules;
  4936. std::vector<std::vector<const llama_grammar_element *>> stacks;
  4937. // buffer for partially generated UTF-8 sequence from accepted tokens
  4938. llama_partial_utf8 partial_utf8;
  4939. };
  4940. struct llama_grammar_candidate {
  4941. size_t index;
  4942. const uint32_t * code_points;
  4943. llama_partial_utf8 partial_utf8;
  4944. };
  4945. // Decodes a UTF-8 string which may end in an incomplete sequence. Adds a terminating 0 for use as
  4946. // pointer. If an invalid sequence is encountered, returns `llama_partial_utf8.n_remain == -1`.
  4947. static std::pair<std::vector<uint32_t>, llama_partial_utf8> decode_utf8(
  4948. const char * src,
  4949. llama_partial_utf8 partial_start) {
  4950. static const int lookup[] = { 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 2, 2, 3, 4 };
  4951. const char * pos = src;
  4952. std::vector<uint32_t> code_points;
  4953. uint32_t value = partial_start.value;
  4954. int n_remain = partial_start.n_remain;
  4955. // continue previous decode, if applicable
  4956. while (*pos != 0 && n_remain > 0) {
  4957. uint8_t next_byte = static_cast<uint8_t>(*pos);
  4958. if ((next_byte >> 6) != 2) {
  4959. // invalid sequence, abort
  4960. code_points.push_back(0);
  4961. return std::make_pair(std::move(code_points), llama_partial_utf8{ 0, -1 });
  4962. }
  4963. value = (value << 6) + (next_byte & 0x3F);
  4964. ++pos;
  4965. --n_remain;
  4966. }
  4967. if (partial_start.n_remain > 0 && n_remain == 0) {
  4968. code_points.push_back(value);
  4969. }
  4970. // decode any subsequent utf-8 sequences, which may end in an incomplete one
  4971. while (*pos != 0) {
  4972. uint8_t first_byte = static_cast<uint8_t>(*pos);
  4973. uint8_t highbits = first_byte >> 4;
  4974. n_remain = lookup[highbits] - 1;
  4975. if (n_remain < 0) {
  4976. // invalid sequence, abort
  4977. code_points.clear();
  4978. code_points.push_back(0);
  4979. return std::make_pair(std::move(code_points), llama_partial_utf8{ 0, n_remain });
  4980. }
  4981. uint8_t mask = (1 << (7 - n_remain)) - 1;
  4982. value = first_byte & mask;
  4983. ++pos;
  4984. while (*pos != 0 && n_remain > 0) {
  4985. value = (value << 6) + (static_cast<uint8_t>(*pos) & 0x3F);
  4986. ++pos;
  4987. --n_remain;
  4988. }
  4989. if (n_remain == 0) {
  4990. code_points.push_back(value);
  4991. }
  4992. }
  4993. code_points.push_back(0);
  4994. return std::make_pair(std::move(code_points), llama_partial_utf8{ value, n_remain });
  4995. }
  4996. // returns true iff pos points to the end of one of the definitions of a rule
  4997. static bool llama_grammar_is_end_of_sequence(const llama_grammar_element * pos) {
  4998. switch (pos->type) {
  4999. case LLAMA_GRETYPE_END: return true; // NOLINT
  5000. case LLAMA_GRETYPE_ALT: return true; // NOLINT
  5001. default: return false;
  5002. }
  5003. }
  5004. // returns true iff chr satisfies the char range at pos (regular or inverse range)
  5005. // asserts that pos is pointing to a char range element
  5006. static std::pair<bool, const llama_grammar_element *> llama_grammar_match_char(
  5007. const llama_grammar_element * pos,
  5008. const uint32_t chr) {
  5009. bool found = false;
  5010. bool is_positive_char = pos->type == LLAMA_GRETYPE_CHAR;
  5011. GGML_ASSERT(is_positive_char || pos->type == LLAMA_GRETYPE_CHAR_NOT); // NOLINT
  5012. do {
  5013. if (pos[1].type == LLAMA_GRETYPE_CHAR_RNG_UPPER) {
  5014. // inclusive range, e.g. [a-z]
  5015. found = found || (pos->value <= chr && chr <= pos[1].value);
  5016. pos += 2;
  5017. } else {
  5018. // exact char match, e.g. [a] or "a"
  5019. found = found || pos->value == chr;
  5020. pos += 1;
  5021. }
  5022. } while (pos->type == LLAMA_GRETYPE_CHAR_ALT);
  5023. return std::make_pair(found == is_positive_char, pos);
  5024. }
  5025. // returns true iff some continuation of the given partial UTF-8 sequence could satisfy the char
  5026. // range at pos (regular or inverse range)
  5027. // asserts that pos is pointing to a char range element
  5028. static bool llama_grammar_match_partial_char(
  5029. const llama_grammar_element * pos,
  5030. const llama_partial_utf8 partial_utf8) {
  5031. bool is_positive_char = pos->type == LLAMA_GRETYPE_CHAR;
  5032. GGML_ASSERT(is_positive_char || pos->type == LLAMA_GRETYPE_CHAR_NOT);
  5033. uint32_t partial_value = partial_utf8.value;
  5034. int n_remain = partial_utf8.n_remain;
  5035. // invalid sequence or 7-bit char split across 2 bytes (overlong)
  5036. if (n_remain < 0 || (n_remain == 1 && partial_value < 2)) {
  5037. return false;
  5038. }
  5039. // range of possible code points this partial UTF-8 sequence could complete to
  5040. uint32_t low = partial_value << (n_remain * 6);
  5041. uint32_t high = low | ((1 << (n_remain * 6)) - 1);
  5042. if (low == 0) {
  5043. if (n_remain == 2) {
  5044. low = 1 << 11;
  5045. } else if (n_remain == 3) {
  5046. low = 1 << 16;
  5047. }
  5048. }
  5049. do {
  5050. if (pos[1].type == LLAMA_GRETYPE_CHAR_RNG_UPPER) {
  5051. // inclusive range, e.g. [a-z]
  5052. if (pos->value <= high && low <= pos[1].value) {
  5053. return is_positive_char;
  5054. }
  5055. pos += 2;
  5056. } else {
  5057. // exact char match, e.g. [a] or "a"
  5058. if (low <= pos->value && pos->value <= high) {
  5059. return is_positive_char;
  5060. }
  5061. pos += 1;
  5062. }
  5063. } while (pos->type == LLAMA_GRETYPE_CHAR_ALT);
  5064. return !is_positive_char;
  5065. }
  5066. // transforms a grammar pushdown stack into N possible stacks, all ending
  5067. // at a character range (terminal element)
  5068. static void llama_grammar_advance_stack(
  5069. const std::vector<std::vector<llama_grammar_element>> & rules,
  5070. const std::vector<const llama_grammar_element *> & stack,
  5071. std::vector<std::vector<const llama_grammar_element *>> & new_stacks) {
  5072. if (stack.empty()) {
  5073. new_stacks.emplace_back(stack);
  5074. return;
  5075. }
  5076. const llama_grammar_element * pos = stack.back();
  5077. switch (pos->type) {
  5078. case LLAMA_GRETYPE_RULE_REF: {
  5079. const size_t rule_id = static_cast<size_t>(pos->value);
  5080. const llama_grammar_element * subpos = rules[rule_id].data();
  5081. do {
  5082. // init new stack without the top (pos)
  5083. std::vector<const llama_grammar_element *> new_stack(stack.begin(), stack.end() - 1);
  5084. if (!llama_grammar_is_end_of_sequence(pos + 1)) {
  5085. // if this rule ref is followed by another element, add that to stack
  5086. new_stack.push_back(pos + 1);
  5087. }
  5088. if (!llama_grammar_is_end_of_sequence(subpos)) {
  5089. // if alternate is nonempty, add to stack
  5090. new_stack.push_back(subpos);
  5091. }
  5092. llama_grammar_advance_stack(rules, new_stack, new_stacks);
  5093. while (!llama_grammar_is_end_of_sequence(subpos)) {
  5094. // scan to end of alternate def
  5095. subpos++;
  5096. }
  5097. if (subpos->type == LLAMA_GRETYPE_ALT) {
  5098. // there's another alternate def of this rule to process
  5099. subpos++;
  5100. } else {
  5101. break;
  5102. }
  5103. } while (true);
  5104. break;
  5105. }
  5106. case LLAMA_GRETYPE_CHAR:
  5107. case LLAMA_GRETYPE_CHAR_NOT:
  5108. new_stacks.emplace_back(stack);
  5109. break;
  5110. default:
  5111. // end of alternate (LLAMA_GRETYPE_END, LLAMA_GRETYPE_ALT) or middle of char range
  5112. // (LLAMA_GRETYPE_CHAR_ALT, LLAMA_GRETYPE_CHAR_RNG_UPPER); stack should never be left on
  5113. // those
  5114. GGML_ASSERT(false);
  5115. }
  5116. }
  5117. // takes a set of possible pushdown stacks on a grammar, which are required to
  5118. // be positioned at a character range (see `llama_grammar_advance_stack`), and
  5119. // produces the N possible stacks if the given char is accepted at those
  5120. // positions
  5121. static std::vector<std::vector<const llama_grammar_element *>> llama_grammar_accept(
  5122. const std::vector<std::vector<llama_grammar_element>> & rules,
  5123. const std::vector<std::vector<const llama_grammar_element *>> & stacks,
  5124. const uint32_t chr) {
  5125. std::vector<std::vector<const llama_grammar_element *>> new_stacks;
  5126. for (const auto & stack : stacks) {
  5127. if (stack.empty()) {
  5128. continue;
  5129. }
  5130. auto match = llama_grammar_match_char(stack.back(), chr);
  5131. if (match.first) {
  5132. const llama_grammar_element * pos = match.second;
  5133. // update top of stack to next element, if any
  5134. std::vector<const llama_grammar_element *> new_stack(stack.begin(), stack.end() - 1);
  5135. if (!llama_grammar_is_end_of_sequence(pos)) {
  5136. new_stack.push_back(pos);
  5137. }
  5138. llama_grammar_advance_stack(rules, new_stack, new_stacks);
  5139. }
  5140. }
  5141. return new_stacks;
  5142. }
  5143. static std::vector<llama_grammar_candidate> llama_grammar_reject_candidates(
  5144. const std::vector<std::vector<llama_grammar_element>> & rules,
  5145. const std::vector<std::vector<const llama_grammar_element *>> & stacks,
  5146. const std::vector<llama_grammar_candidate> & candidates);
  5147. static std::vector<llama_grammar_candidate> llama_grammar_reject_candidates_for_stack(
  5148. const std::vector<std::vector<llama_grammar_element>> & rules,
  5149. const std::vector<const llama_grammar_element *> & stack,
  5150. const std::vector<llama_grammar_candidate> & candidates) {
  5151. std::vector<llama_grammar_candidate> rejects;
  5152. if (stack.empty()) {
  5153. for (const auto & tok : candidates) {
  5154. if (*tok.code_points != 0 || tok.partial_utf8.n_remain != 0) {
  5155. rejects.push_back(tok);
  5156. }
  5157. }
  5158. return rejects;
  5159. }
  5160. const llama_grammar_element * stack_pos = stack.back();
  5161. std::vector<llama_grammar_candidate> next_candidates;
  5162. for (const auto & tok : candidates) {
  5163. if (*tok.code_points == 0) {
  5164. // reached end of full codepoints in token, reject iff it ended in a partial sequence
  5165. // that cannot satisfy this position in grammar
  5166. if (tok.partial_utf8.n_remain != 0 &&
  5167. !llama_grammar_match_partial_char(stack_pos, tok.partial_utf8)) {
  5168. rejects.push_back(tok);
  5169. }
  5170. } else if (llama_grammar_match_char(stack_pos, *tok.code_points).first) {
  5171. next_candidates.push_back({ tok.index, tok.code_points + 1, tok.partial_utf8 });
  5172. } else {
  5173. rejects.push_back(tok);
  5174. }
  5175. }
  5176. const auto * stack_pos_after = llama_grammar_match_char(stack_pos, 0).second;
  5177. // update top of stack to next element, if any
  5178. std::vector<const llama_grammar_element *> stack_after(stack.begin(), stack.end() - 1);
  5179. if (!llama_grammar_is_end_of_sequence(stack_pos_after)) {
  5180. stack_after.push_back(stack_pos_after);
  5181. }
  5182. std::vector<std::vector<const llama_grammar_element *>> next_stacks;
  5183. llama_grammar_advance_stack(rules, stack_after, next_stacks);
  5184. auto next_rejects = llama_grammar_reject_candidates(rules, next_stacks, next_candidates);
  5185. for (const auto & tok : next_rejects) {
  5186. rejects.push_back({ tok.index, tok.code_points - 1, tok.partial_utf8 });
  5187. }
  5188. return rejects;
  5189. }
  5190. static std::vector<llama_grammar_candidate> llama_grammar_reject_candidates(
  5191. const std::vector<std::vector<llama_grammar_element>> & rules,
  5192. const std::vector<std::vector<const llama_grammar_element *>> & stacks,
  5193. const std::vector<llama_grammar_candidate> & candidates) {
  5194. GGML_ASSERT(!stacks.empty()); // REVIEW
  5195. if (candidates.empty()) {
  5196. return std::vector<llama_grammar_candidate>();
  5197. }
  5198. auto rejects = llama_grammar_reject_candidates_for_stack(rules, stacks.front(), candidates);
  5199. for (size_t i = 1, size = stacks.size(); i < size; ++i) {
  5200. rejects = llama_grammar_reject_candidates_for_stack(rules, stacks[i], rejects);
  5201. }
  5202. return rejects;
  5203. }
  5204. //
  5205. // grammar - external
  5206. //
  5207. struct llama_grammar * llama_grammar_init(
  5208. const llama_grammar_element ** rules,
  5209. size_t n_rules,
  5210. size_t start_rule_index) {
  5211. const llama_grammar_element * pos;
  5212. // copy rule definitions into vectors
  5213. std::vector<std::vector<llama_grammar_element>> vec_rules(n_rules);
  5214. for (size_t i = 0; i < n_rules; i++) {
  5215. for (pos = rules[i]; pos->type != LLAMA_GRETYPE_END; pos++) {
  5216. vec_rules[i].push_back(*pos);
  5217. }
  5218. vec_rules[i].push_back({LLAMA_GRETYPE_END, 0});
  5219. }
  5220. // loop over alternates of start rule to build initial stacks
  5221. std::vector<std::vector<const llama_grammar_element *>> stacks;
  5222. pos = rules[start_rule_index];
  5223. do {
  5224. std::vector<const llama_grammar_element *> stack;
  5225. if (!llama_grammar_is_end_of_sequence(pos)) {
  5226. // if alternate is nonempty, add to stack
  5227. stack.push_back(pos);
  5228. }
  5229. llama_grammar_advance_stack(vec_rules, stack, stacks);
  5230. while (!llama_grammar_is_end_of_sequence(pos)) {
  5231. // scan to end of alternate def
  5232. pos++;
  5233. }
  5234. if (pos->type == LLAMA_GRETYPE_ALT) {
  5235. // there's another alternate def of this rule to process
  5236. pos++;
  5237. } else {
  5238. break;
  5239. }
  5240. } while (true);
  5241. return new llama_grammar{ std::move(vec_rules), std::move(stacks), {} };
  5242. }
  5243. void llama_grammar_free(struct llama_grammar * grammar) {
  5244. delete grammar;
  5245. }
  5246. struct llama_grammar * llama_grammar_copy(const struct llama_grammar * grammar) {
  5247. llama_grammar * result = new llama_grammar{ grammar->rules, grammar->stacks, grammar->partial_utf8 };
  5248. // redirect elements in stacks to point to new rules
  5249. for (size_t is = 0; is < result->stacks.size(); is++) {
  5250. for (size_t ie = 0; ie < result->stacks[is].size(); ie++) {
  5251. for (size_t ir0 = 0; ir0 < grammar->rules.size(); ir0++) {
  5252. for (size_t ir1 = 0; ir1 < grammar->rules[ir0].size(); ir1++) {
  5253. if (grammar->stacks[is][ie] == &grammar->rules[ir0][ir1]) {
  5254. result->stacks[is][ie] = &result->rules[ir0][ir1];
  5255. }
  5256. }
  5257. }
  5258. }
  5259. }
  5260. return result;
  5261. }
  5262. //
  5263. // sampling
  5264. //
  5265. void llama_set_rng_seed(struct llama_context * ctx, uint32_t seed) {
  5266. if (seed == LLAMA_DEFAULT_SEED) {
  5267. seed = time(NULL);
  5268. }
  5269. ctx->rng.seed(seed);
  5270. }
  5271. void llama_sample_softmax(struct llama_context * ctx, llama_token_data_array * candidates) {
  5272. GGML_ASSERT(candidates->size > 0);
  5273. const int64_t t_start_sample_us = ggml_time_us();
  5274. // Sort the logits in descending order
  5275. if (!candidates->sorted) {
  5276. std::sort(candidates->data, candidates->data + candidates->size, [](const llama_token_data & a, const llama_token_data & b) {
  5277. return a.logit > b.logit;
  5278. });
  5279. candidates->sorted = true;
  5280. }
  5281. float max_l = candidates->data[0].logit;
  5282. float cum_sum = 0.0f;
  5283. for (size_t i = 0; i < candidates->size; ++i) {
  5284. float p = expf(candidates->data[i].logit - max_l);
  5285. candidates->data[i].p = p;
  5286. cum_sum += p;
  5287. }
  5288. for (size_t i = 0; i < candidates->size; ++i) {
  5289. candidates->data[i].p /= cum_sum;
  5290. }
  5291. if (ctx) {
  5292. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  5293. }
  5294. }
  5295. void llama_sample_top_k(struct llama_context * ctx, llama_token_data_array * candidates, int k, size_t min_keep) {
  5296. const int64_t t_start_sample_us = ggml_time_us();
  5297. k = std::max(k, (int) min_keep);
  5298. k = std::min(k, (int) candidates->size);
  5299. // Sort scores in descending order
  5300. if (!candidates->sorted) {
  5301. auto comp = [](const llama_token_data & a, const llama_token_data & b) {
  5302. return a.logit > b.logit;
  5303. };
  5304. if (k == (int) candidates->size) {
  5305. std::sort(candidates->data, candidates->data + candidates->size, comp);
  5306. } else {
  5307. std::partial_sort(candidates->data, candidates->data + k, candidates->data + candidates->size, comp);
  5308. }
  5309. candidates->sorted = true;
  5310. }
  5311. candidates->size = k;
  5312. if (ctx) {
  5313. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  5314. }
  5315. }
  5316. void llama_sample_top_p(struct llama_context * ctx, llama_token_data_array * candidates, float p, size_t min_keep) {
  5317. if (p >= 1.0f) {
  5318. return;
  5319. }
  5320. llama_sample_softmax(ctx, candidates);
  5321. const int64_t t_start_sample_us = ggml_time_us();
  5322. // Compute the cumulative probabilities
  5323. float cum_sum = 0.0f;
  5324. size_t last_idx = candidates->size;
  5325. for (size_t i = 0; i < candidates->size; ++i) {
  5326. cum_sum += candidates->data[i].p;
  5327. // Check if the running sum is at least p or if we have kept at least min_keep tokens
  5328. // we set the last index to i+1 to indicate that the current iterate should be included in the set
  5329. if (cum_sum >= p && i + 1 >= min_keep) {
  5330. last_idx = i + 1;
  5331. break;
  5332. }
  5333. }
  5334. // Resize the output vector to keep only the top-p tokens
  5335. candidates->size = last_idx;
  5336. if (ctx) {
  5337. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  5338. }
  5339. }
  5340. void llama_sample_min_p(struct llama_context * ctx, llama_token_data_array * candidates, float p, size_t min_keep) {
  5341. if (p <= 0.0f || !candidates->size) {
  5342. return;
  5343. }
  5344. llama_sample_softmax(ctx, candidates);
  5345. const int64_t t_start_sample_us = ggml_time_us();
  5346. float scale = candidates->data[0].p; // scale by max prob
  5347. size_t i = 1; // first token always matches
  5348. for (; i < candidates->size; ++i) {
  5349. if (candidates->data[i].p < p * scale && i >= min_keep) {
  5350. break; // prob too small
  5351. }
  5352. }
  5353. // Resize the output vector to keep only the matching tokens
  5354. candidates->size = i;
  5355. if (ctx) {
  5356. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  5357. }
  5358. }
  5359. void llama_sample_tail_free(struct llama_context * ctx, llama_token_data_array * candidates, float z, size_t min_keep) {
  5360. if (z >= 1.0f || candidates->size <= 2) {
  5361. return;
  5362. }
  5363. llama_sample_softmax(nullptr, candidates);
  5364. const int64_t t_start_sample_us = ggml_time_us();
  5365. // Compute the first and second derivatives
  5366. std::vector<float> first_derivatives(candidates->size - 1);
  5367. std::vector<float> second_derivatives(candidates->size - 2);
  5368. for (size_t i = 0; i < first_derivatives.size(); ++i) {
  5369. first_derivatives[i] = candidates->data[i].p - candidates->data[i + 1].p;
  5370. }
  5371. for (size_t i = 0; i < second_derivatives.size(); ++i) {
  5372. second_derivatives[i] = first_derivatives[i] - first_derivatives[i + 1];
  5373. }
  5374. // Calculate absolute value of second derivatives
  5375. for (size_t i = 0; i < second_derivatives.size(); ++i) {
  5376. second_derivatives[i] = std::abs(second_derivatives[i]);
  5377. }
  5378. // Normalize the second derivatives
  5379. {
  5380. const float second_derivatives_sum = std::accumulate(second_derivatives.begin(), second_derivatives.end(), 0.0f);
  5381. if (second_derivatives_sum > 1e-6f) {
  5382. for (float & value : second_derivatives) {
  5383. value /= second_derivatives_sum;
  5384. }
  5385. } else {
  5386. for (float & value : second_derivatives) {
  5387. value = 1.0f / second_derivatives.size();
  5388. }
  5389. }
  5390. }
  5391. float cum_sum = 0.0f;
  5392. size_t last_idx = candidates->size;
  5393. for (size_t i = 0; i < second_derivatives.size(); ++i) {
  5394. cum_sum += second_derivatives[i];
  5395. // Check if the running sum is greater than z or if we have kept at least min_keep tokens
  5396. if (cum_sum > z && i >= min_keep) {
  5397. last_idx = i;
  5398. break;
  5399. }
  5400. }
  5401. // Resize the output vector to keep only the tokens above the tail location
  5402. candidates->size = last_idx;
  5403. if (ctx) {
  5404. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  5405. }
  5406. }
  5407. void llama_sample_typical(struct llama_context * ctx, llama_token_data_array * candidates, float p, size_t min_keep) {
  5408. // Reference implementation:
  5409. // https://github.com/huggingface/transformers/compare/main...cimeister:typical-sampling:typical-pr
  5410. if (p >= 1.0f) {
  5411. return;
  5412. }
  5413. // Compute the softmax of logits and calculate entropy
  5414. llama_sample_softmax(nullptr, candidates);
  5415. const int64_t t_start_sample_us = ggml_time_us();
  5416. float entropy = 0.0f;
  5417. for (size_t i = 0; i < candidates->size; ++i) {
  5418. entropy += -candidates->data[i].p * logf(candidates->data[i].p);
  5419. }
  5420. // Compute the absolute difference between negative log probability and entropy for each candidate
  5421. std::vector<float> shifted_scores;
  5422. for (size_t i = 0; i < candidates->size; ++i) {
  5423. float shifted_score = fabsf(-logf(candidates->data[i].p) - entropy);
  5424. shifted_scores.push_back(shifted_score);
  5425. }
  5426. // Sort tokens based on the shifted_scores and their corresponding indices
  5427. std::vector<size_t> indices(candidates->size);
  5428. std::iota(indices.begin(), indices.end(), 0);
  5429. std::sort(indices.begin(), indices.end(), [&](size_t a, size_t b) {
  5430. return shifted_scores[a] < shifted_scores[b];
  5431. });
  5432. // Compute the cumulative probabilities
  5433. float cum_sum = 0.0f;
  5434. size_t last_idx = indices.size();
  5435. for (size_t i = 0; i < indices.size(); ++i) {
  5436. size_t idx = indices[i];
  5437. cum_sum += candidates->data[idx].p;
  5438. // Check if the running sum is greater than typical or if we have kept at least min_keep tokens
  5439. if (cum_sum > p && i >= min_keep - 1) {
  5440. last_idx = i + 1;
  5441. break;
  5442. }
  5443. }
  5444. // Resize the output vector to keep only the locally typical tokens
  5445. std::vector<llama_token_data> new_candidates;
  5446. for (size_t i = 0; i < last_idx; ++i) {
  5447. size_t idx = indices[i];
  5448. new_candidates.push_back(candidates->data[idx]);
  5449. }
  5450. // Replace the data in candidates with the new_candidates data
  5451. std::copy(new_candidates.begin(), new_candidates.end(), candidates->data);
  5452. candidates->size = new_candidates.size();
  5453. if (ctx) {
  5454. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  5455. }
  5456. }
  5457. void llama_sample_temp(struct llama_context * ctx, llama_token_data_array * candidates_p, float temp) {
  5458. const int64_t t_start_sample_us = ggml_time_us();
  5459. for (size_t i = 0; i < candidates_p->size; ++i) {
  5460. candidates_p->data[i].logit /= temp;
  5461. }
  5462. if (ctx) {
  5463. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  5464. }
  5465. }
  5466. void llama_sample_temperature(struct llama_context * ctx, llama_token_data_array * candidates_p, float temp) {
  5467. llama_sample_temp(ctx, candidates_p, temp);
  5468. }
  5469. void llama_sample_repetition_penalties(
  5470. struct llama_context * ctx,
  5471. llama_token_data_array * candidates,
  5472. const llama_token * last_tokens,
  5473. size_t penalty_last_n,
  5474. float penalty_repeat,
  5475. float penalty_freq,
  5476. float penalty_present) {
  5477. if (penalty_last_n == 0 || (penalty_repeat == 1.0f && penalty_freq == 0.0f && penalty_present == 0.0f)) {
  5478. return;
  5479. }
  5480. const int64_t t_start_sample_us = ggml_time_us();
  5481. // Create a frequency map to count occurrences of each token in last_tokens
  5482. std::unordered_map<llama_token, int> token_count;
  5483. for (size_t i = 0; i < penalty_last_n; ++i) {
  5484. token_count[last_tokens[i]]++;
  5485. }
  5486. // Apply frequency and presence penalties to the candidates
  5487. for (size_t i = 0; i < candidates->size; ++i) {
  5488. const auto token_iter = token_count.find(candidates->data[i].id);
  5489. if (token_iter == token_count.end()) {
  5490. continue;
  5491. }
  5492. const int count = token_iter->second;
  5493. // The academic publication that described this technique actually just only divided, but that would cause tokens with negative logits to become more likely, which is obviously wrong.
  5494. // This is common fix for this problem, which is to multiply by the penalty instead of dividing.
  5495. if (candidates->data[i].logit <= 0) {
  5496. candidates->data[i].logit *= penalty_repeat;
  5497. } else {
  5498. candidates->data[i].logit /= penalty_repeat;
  5499. }
  5500. candidates->data[i].logit -= float(count) * penalty_freq + float(count > 0) * penalty_present;
  5501. }
  5502. candidates->sorted = false;
  5503. if (ctx) {
  5504. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  5505. }
  5506. }
  5507. void llama_sample_grammar(struct llama_context * ctx, llama_token_data_array * candidates, const struct llama_grammar * grammar) {
  5508. GGML_ASSERT(ctx);
  5509. const int64_t t_start_sample_us = ggml_time_us();
  5510. bool allow_eos = false;
  5511. for (const auto & stack : grammar->stacks) {
  5512. if (stack.empty()) {
  5513. allow_eos = true;
  5514. break;
  5515. }
  5516. }
  5517. const llama_token eos = llama_token_eos(&ctx->model);
  5518. std::vector<std::pair<std::vector<uint32_t>, llama_partial_utf8>> candidates_decoded;
  5519. std::vector<llama_grammar_candidate> candidates_grammar;
  5520. for (size_t i = 0; i < candidates->size; ++i) {
  5521. const llama_token id = candidates->data[i].id;
  5522. const std::string piece = llama_token_to_piece(ctx, id);
  5523. if (id == eos) {
  5524. if (!allow_eos) {
  5525. candidates->data[i].logit = -INFINITY;
  5526. }
  5527. } else if (piece.empty() || piece[0] == 0) {
  5528. candidates->data[i].logit = -INFINITY;
  5529. } else {
  5530. candidates_decoded.push_back(decode_utf8(piece.c_str(), grammar->partial_utf8));
  5531. candidates_grammar.push_back({ i, candidates_decoded.back().first.data(), candidates_decoded.back().second });
  5532. }
  5533. }
  5534. const auto rejects = llama_grammar_reject_candidates(grammar->rules, grammar->stacks, candidates_grammar);
  5535. for (const auto & reject : rejects) {
  5536. candidates->data[reject.index].logit = -INFINITY;
  5537. }
  5538. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  5539. }
  5540. static void llama_log_softmax(float * array, size_t size) {
  5541. float max_l = *std::max_element(array, array + size);
  5542. float sum = 0.f;
  5543. for (size_t i = 0; i < size; ++i) {
  5544. float p = expf(array[i] - max_l);
  5545. sum += p;
  5546. array[i] = p;
  5547. }
  5548. for (size_t i = 0; i < size; ++i) {
  5549. array[i] = logf(array[i] / sum);
  5550. }
  5551. }
  5552. void llama_sample_classifier_free_guidance(
  5553. struct llama_context * ctx,
  5554. llama_token_data_array * candidates,
  5555. struct llama_context * guidance_ctx,
  5556. float scale) {
  5557. int64_t t_start_sample_us = ggml_time_us();
  5558. GGML_ASSERT(ctx);
  5559. auto n_vocab = llama_n_vocab(llama_get_model(ctx));
  5560. GGML_ASSERT(n_vocab == (int)candidates->size);
  5561. GGML_ASSERT(!candidates->sorted);
  5562. std::vector<float> logits_base;
  5563. logits_base.reserve(candidates->size);
  5564. for (size_t i = 0; i < candidates->size; ++i) {
  5565. logits_base.push_back(candidates->data[i].logit);
  5566. }
  5567. llama_log_softmax(logits_base.data(), candidates->size);
  5568. float* logits_guidance = llama_get_logits(guidance_ctx);
  5569. llama_log_softmax(logits_guidance, n_vocab);
  5570. for (int i = 0; i < n_vocab; ++i) {
  5571. float logit_guidance = logits_guidance[i];
  5572. float logit_base = logits_base[i];
  5573. candidates->data[i].logit = scale * (logit_base - logit_guidance) + logit_guidance;
  5574. }
  5575. if (ctx) {
  5576. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  5577. }
  5578. }
  5579. llama_token llama_sample_token_mirostat(struct llama_context * ctx, llama_token_data_array * candidates, float tau, float eta, int m, float * mu) {
  5580. GGML_ASSERT(ctx);
  5581. auto N = float(llama_n_vocab(llama_get_model(ctx)));
  5582. int64_t t_start_sample_us;
  5583. t_start_sample_us = ggml_time_us();
  5584. llama_sample_softmax(nullptr, candidates);
  5585. // Estimate s_hat using the most probable m tokens
  5586. float s_hat = 0.0;
  5587. float sum_ti_bi = 0.0;
  5588. float sum_ti_sq = 0.0;
  5589. for (size_t i = 0; i < size_t(m - 1) && i < candidates->size - 1; ++i) {
  5590. float t_i = logf(float(i + 2) / float(i + 1));
  5591. float b_i = logf(candidates->data[i].p / candidates->data[i + 1].p);
  5592. sum_ti_bi += t_i * b_i;
  5593. sum_ti_sq += t_i * t_i;
  5594. }
  5595. s_hat = sum_ti_bi / sum_ti_sq;
  5596. // Compute k from the estimated s_hat and target surprise value
  5597. float epsilon_hat = s_hat - 1;
  5598. float k = powf((epsilon_hat * powf(2, *mu)) / (1 - powf(N, -epsilon_hat)), 1 / s_hat);
  5599. // Sample the next word X using top-k sampling
  5600. llama_sample_top_k(nullptr, candidates, int(k), 1);
  5601. if (ctx) {
  5602. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  5603. }
  5604. llama_token X = llama_sample_token(ctx, candidates);
  5605. t_start_sample_us = ggml_time_us();
  5606. // Compute error as the difference between observed surprise and target surprise value
  5607. size_t X_idx = std::distance(candidates->data, std::find_if(candidates->data, candidates->data + candidates->size, [&](const llama_token_data & candidate) {
  5608. return candidate.id == X;
  5609. }));
  5610. float observed_surprise = -log2f(candidates->data[X_idx].p);
  5611. float e = observed_surprise - tau;
  5612. // Update mu using the learning rate and error
  5613. *mu = *mu - eta * e;
  5614. if (ctx) {
  5615. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  5616. }
  5617. return X;
  5618. }
  5619. llama_token llama_sample_token_mirostat_v2(struct llama_context * ctx, llama_token_data_array * candidates, float tau, float eta, float * mu) {
  5620. int64_t t_start_sample_us;
  5621. t_start_sample_us = ggml_time_us();
  5622. llama_sample_softmax(ctx, candidates);
  5623. // Truncate the words with surprise values greater than mu
  5624. candidates->size = std::distance(candidates->data, std::find_if(candidates->data, candidates->data + candidates->size, [&](const llama_token_data & candidate) {
  5625. return -log2f(candidate.p) > *mu;
  5626. }));
  5627. if (candidates->size == 0) {
  5628. candidates->size = 1;
  5629. }
  5630. if (ctx) {
  5631. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  5632. }
  5633. // Normalize the probabilities of the remaining words
  5634. llama_sample_softmax(ctx, candidates);
  5635. // Sample the next word X from the remaining words
  5636. llama_token X = llama_sample_token(ctx, candidates);
  5637. t_start_sample_us = ggml_time_us();
  5638. // Compute error as the difference between observed surprise and target surprise value
  5639. size_t X_idx = std::distance(candidates->data, std::find_if(candidates->data, candidates->data + candidates->size, [&](const llama_token_data & candidate) {
  5640. return candidate.id == X;
  5641. }));
  5642. float observed_surprise = -log2f(candidates->data[X_idx].p);
  5643. float e = observed_surprise - tau;
  5644. // Update mu using the learning rate and error
  5645. *mu = *mu - eta * e;
  5646. if (ctx) {
  5647. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  5648. }
  5649. return X;
  5650. }
  5651. llama_token llama_sample_token_greedy(struct llama_context * ctx, llama_token_data_array * candidates) {
  5652. const int64_t t_start_sample_us = ggml_time_us();
  5653. // Find max element
  5654. auto * max_iter = std::max_element(candidates->data, candidates->data + candidates->size, [](const llama_token_data & a, const llama_token_data & b) {
  5655. return a.logit < b.logit;
  5656. });
  5657. llama_token result = max_iter->id;
  5658. if (ctx) {
  5659. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  5660. ctx->n_sample++;
  5661. }
  5662. return result;
  5663. }
  5664. llama_token llama_sample_token(struct llama_context * ctx, llama_token_data_array * candidates) {
  5665. GGML_ASSERT(ctx);
  5666. const int64_t t_start_sample_us = ggml_time_us();
  5667. llama_sample_softmax(nullptr, candidates);
  5668. std::vector<float> probs;
  5669. probs.reserve(candidates->size);
  5670. for (size_t i = 0; i < candidates->size; ++i) {
  5671. probs.push_back(candidates->data[i].p);
  5672. }
  5673. std::discrete_distribution<> dist(probs.begin(), probs.end());
  5674. auto & rng = ctx->rng;
  5675. int idx = dist(rng);
  5676. llama_token result = candidates->data[idx].id;
  5677. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  5678. ctx->n_sample++;
  5679. return result;
  5680. }
  5681. void llama_grammar_accept_token(struct llama_context * ctx, struct llama_grammar * grammar, llama_token token) {
  5682. const int64_t t_start_sample_us = ggml_time_us();
  5683. if (token == llama_token_eos(&ctx->model)) {
  5684. for (const auto & stack : grammar->stacks) {
  5685. if (stack.empty()) {
  5686. return;
  5687. }
  5688. }
  5689. GGML_ASSERT(false);
  5690. }
  5691. const std::string piece = llama_token_to_piece(ctx, token);
  5692. // Note terminating 0 in decoded string
  5693. const auto decoded = decode_utf8(piece.c_str(), grammar->partial_utf8);
  5694. const auto & code_points = decoded.first;
  5695. for (auto it = code_points.begin(), end = code_points.end() - 1; it != end; ++it) {
  5696. grammar->stacks = llama_grammar_accept(grammar->rules, grammar->stacks, *it);
  5697. }
  5698. grammar->partial_utf8 = decoded.second;
  5699. GGML_ASSERT(!grammar->stacks.empty());
  5700. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  5701. }
  5702. //
  5703. // Beam search
  5704. //
  5705. struct llama_beam {
  5706. std::vector<llama_token> tokens;
  5707. float p; // Cumulative beam probability (renormalized relative to all beams)
  5708. bool eob; // Initialize end-of-beam to false. Callback sets this to true.
  5709. // Sort beams by probability. In case of ties, prefer beams at eob.
  5710. bool operator<(const llama_beam & rhs) const {
  5711. return std::make_pair(p, eob) < std::make_pair(rhs.p, rhs.eob);
  5712. }
  5713. // Shift off first n tokens and discard them.
  5714. void shift_tokens(const size_t n) {
  5715. if (n) {
  5716. std::copy(tokens.begin() + n, tokens.end(), tokens.begin());
  5717. tokens.resize(tokens.size() - n);
  5718. }
  5719. }
  5720. llama_beam_view view() const { return {tokens.data(), tokens.size(), p, eob}; }
  5721. };
  5722. // A struct for calculating logit-related info.
  5723. struct llama_logit_info {
  5724. const float * const logits;
  5725. const int n_vocab;
  5726. const float max_l;
  5727. const float normalizer;
  5728. struct sum_exp {
  5729. float max_l;
  5730. float operator()(float sum, float l) const { return sum + std::exp(l - max_l); }
  5731. };
  5732. llama_logit_info(llama_context * ctx)
  5733. : logits(llama_get_logits(ctx))
  5734. , n_vocab(llama_n_vocab(llama_get_model(ctx)))
  5735. , max_l(*std::max_element(logits, logits + n_vocab))
  5736. , normalizer(1.0f / std::accumulate(logits, logits + n_vocab, 0.0f, sum_exp{max_l}))
  5737. { }
  5738. llama_token_data get_token_data(const llama_token token_id) const {
  5739. constexpr auto p = std::numeric_limits<float>::quiet_NaN(); // never used
  5740. return {token_id, logits[token_id], p};
  5741. }
  5742. // Return top k token_data by logit.
  5743. std::vector<llama_token_data> top_k(size_t k) {
  5744. std::vector<llama_token_data> min_heap; // min-heap by logit
  5745. const llama_token k_min = std::min(static_cast<llama_token>(k), n_vocab);
  5746. min_heap.reserve(k_min);
  5747. for (llama_token token_id = 0 ; token_id < k_min ; ++token_id) {
  5748. min_heap.push_back(get_token_data(token_id));
  5749. }
  5750. auto comp = [](const llama_token_data & a, const llama_token_data & b) { return a.logit > b.logit; };
  5751. std::make_heap(min_heap.begin(), min_heap.end(), comp);
  5752. for (llama_token token_id = k_min ; token_id < n_vocab ; ++token_id) {
  5753. if (min_heap.front().logit < logits[token_id]) {
  5754. std::pop_heap(min_heap.begin(), min_heap.end(), comp);
  5755. min_heap.back().id = token_id;
  5756. min_heap.back().logit = logits[token_id];
  5757. std::push_heap(min_heap.begin(), min_heap.end(), comp);
  5758. }
  5759. }
  5760. return min_heap;
  5761. }
  5762. float probability_from_logit(float logit) const {
  5763. return normalizer * std::exp(logit - max_l);
  5764. }
  5765. };
  5766. struct llama_beam_search_data {
  5767. llama_context * ctx;
  5768. size_t n_beams;
  5769. int n_past;
  5770. int n_predict;
  5771. std::vector<llama_beam> beams;
  5772. std::vector<llama_beam> next_beams;
  5773. // Re-calculated on each loop iteration
  5774. size_t common_prefix_length;
  5775. // Used to communicate to/from callback on beams state.
  5776. std::vector<llama_beam_view> beam_views;
  5777. llama_beam_search_data(llama_context * ctx, size_t n_beams, int n_past, int n_predict)
  5778. : ctx(ctx)
  5779. , n_beams(n_beams)
  5780. , n_past(n_past)
  5781. , n_predict(n_predict)
  5782. , beam_views(n_beams) {
  5783. beams.reserve(n_beams);
  5784. next_beams.reserve(n_beams);
  5785. }
  5786. // Collapse beams to a single beam given by index.
  5787. void collapse_beams(const size_t beam_idx) {
  5788. if (0u < beam_idx) {
  5789. std::swap(beams[0], beams[beam_idx]);
  5790. }
  5791. beams.resize(1);
  5792. }
  5793. // Min-heaps are used to efficiently collect the top-k elements (k=n_beams).
  5794. // The repetative patterns below reflect the 2 stages of heaps:
  5795. // * Gather elements until the vector is full, then call std::make_heap() on it.
  5796. // * If the heap is full and a new element is found that should be included, pop the
  5797. // least element to the back(), replace it with the new, then push it into the heap.
  5798. void fill_next_beams_by_top_probabilities(llama_beam & beam) {
  5799. // Min-heaps use a greater-than comparator.
  5800. const auto comp = [](const llama_beam & a, const llama_beam & b) { return a.p > b.p; };
  5801. if (beam.eob) {
  5802. // beam is at end-of-sentence, so just copy it to next_beams if its probability is high enough.
  5803. if (next_beams.size() < n_beams) {
  5804. next_beams.push_back(std::move(beam));
  5805. if (next_beams.size() == n_beams) {
  5806. std::make_heap(next_beams.begin(), next_beams.end(), comp);
  5807. }
  5808. } else if (next_beams.front().p < beam.p) {
  5809. std::pop_heap(next_beams.begin(), next_beams.end(), comp);
  5810. next_beams.back() = std::move(beam);
  5811. std::push_heap(next_beams.begin(), next_beams.end(), comp);
  5812. }
  5813. } else {
  5814. // beam is not at end-of-sentence, so branch with next top_k tokens.
  5815. if (!beam.tokens.empty()) {
  5816. llama_decode(ctx, llama_batch_get_one(beam.tokens.data(), beam.tokens.size(), n_past, 0));
  5817. }
  5818. llama_logit_info logit_info(ctx);
  5819. std::vector<llama_token_data> next_tokens = logit_info.top_k(n_beams);
  5820. size_t i=0;
  5821. if (next_beams.size() < n_beams) {
  5822. for (; next_beams.size() < n_beams ; ++i) {
  5823. llama_beam next_beam = beam;
  5824. next_beam.tokens.push_back(next_tokens[i].id);
  5825. next_beam.p *= logit_info.probability_from_logit(next_tokens[i].logit);
  5826. next_beams.push_back(std::move(next_beam));
  5827. }
  5828. std::make_heap(next_beams.begin(), next_beams.end(), comp);
  5829. } else {
  5830. for (; next_beams.front().p == 0.0f ; ++i) {
  5831. std::pop_heap(next_beams.begin(), next_beams.end(), comp);
  5832. next_beams.back() = beam;
  5833. next_beams.back().tokens.push_back(next_tokens[i].id);
  5834. next_beams.back().p *= logit_info.probability_from_logit(next_tokens[i].logit);
  5835. std::push_heap(next_beams.begin(), next_beams.end(), comp);
  5836. }
  5837. }
  5838. for (; i < n_beams ; ++i) {
  5839. const float next_p = beam.p * logit_info.probability_from_logit(next_tokens[i].logit);
  5840. if (next_beams.front().p < next_p) {
  5841. std::pop_heap(next_beams.begin(), next_beams.end(), comp);
  5842. next_beams.back() = beam;
  5843. next_beams.back().tokens.push_back(next_tokens[i].id);
  5844. next_beams.back().p = next_p;
  5845. std::push_heap(next_beams.begin(), next_beams.end(), comp);
  5846. }
  5847. }
  5848. }
  5849. }
  5850. // Find common_prefix_length based on beams.
  5851. // Requires beams is not empty.
  5852. size_t find_common_prefix_length() {
  5853. size_t common_prefix_length = beams[0].tokens.size();
  5854. for (size_t i = 1 ; i < beams.size() ; ++i) {
  5855. common_prefix_length = std::min(common_prefix_length, beams[i].tokens.size());
  5856. for (size_t j = 0 ; j < common_prefix_length ; ++j) {
  5857. if (beams[0].tokens[j] != beams[i].tokens[j]) {
  5858. common_prefix_length = j;
  5859. break;
  5860. }
  5861. }
  5862. }
  5863. return common_prefix_length;
  5864. }
  5865. // Construct beams_state to send back to caller via the callback function.
  5866. // Side effect: set common_prefix_length = find_common_prefix_length();
  5867. llama_beams_state get_beams_state(const bool last_call) {
  5868. for (size_t i = 0 ; i < beams.size() ; ++i) {
  5869. beam_views[i] = beams[i].view();
  5870. }
  5871. common_prefix_length = find_common_prefix_length();
  5872. return {beam_views.data(), beams.size(), common_prefix_length, last_call};
  5873. }
  5874. // Loop:
  5875. // * while i < n_predict, AND
  5876. // * any of the beams have not yet reached end-of-beam (eob), AND
  5877. // * the highest probability beam(s) (plural in case of ties) are not at end-of-sentence
  5878. // (since all other beam probabilities can only decrease)
  5879. void loop(const llama_beam_search_callback_fn_t callback, void * const callback_data) {
  5880. beams.push_back({{}, 1.0f, false}); // Start with one empty beam w/ probability = 1.0 and !eob.
  5881. const auto not_eob = [](const llama_beam & beam) { return !beam.eob; };
  5882. for (int i = 0 ; i < n_predict && std::any_of(beams.begin(),beams.end(),not_eob) &&
  5883. !beams[top_beam_index()].eob ; ++i) {
  5884. callback(callback_data, get_beams_state(false)); // Sets common_prefix_length
  5885. update_beams_from_beam_views(); // Update values (p,eob) that callback may have changed.
  5886. if (common_prefix_length) {
  5887. llama_decode(ctx, llama_batch_get_one(beams[0].tokens.data(), common_prefix_length, n_past, 0));
  5888. n_past += common_prefix_length;
  5889. }
  5890. // Zero-out next_beam probabilities to place them last in following min-heap.
  5891. std::for_each(next_beams.begin(), next_beams.end(), [](llama_beam & beam) { beam.p = 0.0f; });
  5892. for (llama_beam & beam : beams) {
  5893. beam.shift_tokens(common_prefix_length);
  5894. fill_next_beams_by_top_probabilities(beam);
  5895. }
  5896. // next_beams become the beams of next/final iteration. Swap them to re-use memory.
  5897. beams.swap(next_beams);
  5898. renormalize_beam_probabilities(beams);
  5899. }
  5900. collapse_beams(top_beam_index());
  5901. callback(callback_data, get_beams_state(true));
  5902. }
  5903. // As beams grow, the cumulative probabilities decrease.
  5904. // Renormalize them to avoid floating point underflow.
  5905. static void renormalize_beam_probabilities(std::vector<llama_beam> & beams) {
  5906. const auto sum_p = [](float sum, llama_beam & beam) { return sum + beam.p; };
  5907. const float inv_sum = 1.0f / std::accumulate(beams.begin(), beams.end(), 0.0f, sum_p);
  5908. std::for_each(beams.begin(), beams.end(), [=](llama_beam & beam) { beam.p *= inv_sum; });
  5909. }
  5910. // Assumes beams is non-empty. Uses llama_beam::operator<() for ordering.
  5911. size_t top_beam_index() {
  5912. return std::max_element(beams.begin(), beams.end()) - beams.begin();
  5913. }
  5914. // Copy (p,eob) for each beam which may have been changed by the callback.
  5915. void update_beams_from_beam_views() {
  5916. for (size_t i = 0 ; i < beams.size() ; ++i) {
  5917. beams[i].p = beam_views[i].p;
  5918. beams[i].eob = beam_views[i].eob;
  5919. }
  5920. }
  5921. };
  5922. void llama_beam_search(llama_context * ctx,
  5923. llama_beam_search_callback_fn_t callback, void * callback_data,
  5924. size_t n_beams, int n_past, int n_predict) {
  5925. assert(ctx);
  5926. const int64_t t_start_sample_us = ggml_time_us();
  5927. llama_beam_search_data beam_search_data(ctx, n_beams, n_past, n_predict);
  5928. beam_search_data.loop(callback, callback_data);
  5929. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  5930. ctx->n_sample++;
  5931. }
  5932. //
  5933. // quantization
  5934. //
  5935. template <typename T>
  5936. struct no_init {
  5937. T value;
  5938. no_init() { /* do nothing */ }
  5939. };
  5940. struct quantize_state_internal {
  5941. const llama_model & model;
  5942. const llama_model_quantize_params * params;
  5943. int n_attention_wv = 0;
  5944. int n_feed_forward_w2 = 0;
  5945. int i_attention_wv = 0;
  5946. int i_feed_forward_w2 = 0;
  5947. int n_k_quantized = 0;
  5948. int n_fallback = 0;
  5949. quantize_state_internal(const llama_model & model, const llama_model_quantize_params * params)
  5950. : model(model)
  5951. , params(params)
  5952. {}
  5953. };
  5954. static void llama_convert_tensor_internal(
  5955. struct ggml_tensor * tensor, std::vector<no_init<float>> & output, std::vector<std::thread> & workers,
  5956. const size_t nelements, const int nthread
  5957. ) {
  5958. if (output.size() < nelements) {
  5959. output.resize(nelements);
  5960. }
  5961. float * f32_output = (float *) output.data();
  5962. ggml_type_traits_t qtype;
  5963. if (ggml_is_quantized(tensor->type)) {
  5964. qtype = ggml_internal_get_type_traits(tensor->type);
  5965. if (qtype.to_float == NULL) {
  5966. throw std::runtime_error(format("type %s unsupported for integer quantization: no dequantization available", ggml_type_name(tensor->type)));
  5967. }
  5968. } else if (tensor->type != GGML_TYPE_F16) {
  5969. throw std::runtime_error(format("cannot dequantize/convert tensor type %s", ggml_type_name(tensor->type)));
  5970. }
  5971. if (nthread < 2) {
  5972. if (tensor->type == GGML_TYPE_F16) {
  5973. ggml_fp16_to_fp32_row((ggml_fp16_t *)tensor->data, f32_output, nelements);
  5974. } else if (ggml_is_quantized(tensor->type)) {
  5975. qtype.to_float(tensor->data, f32_output, nelements);
  5976. } else {
  5977. GGML_ASSERT(false); // unreachable
  5978. }
  5979. return;
  5980. }
  5981. auto block_size = tensor->type == GGML_TYPE_F16 ? 1 : (size_t)ggml_blck_size(tensor->type);
  5982. auto block_size_bytes = ggml_type_size(tensor->type);
  5983. GGML_ASSERT(nelements % block_size == 0);
  5984. auto nblocks = nelements / block_size;
  5985. auto blocks_per_thread = nblocks / nthread;
  5986. auto spare_blocks = nblocks - (blocks_per_thread * nthread); // if blocks aren't divisible by thread count
  5987. for (auto tnum = 0, in_buff_offs = 0, out_buff_offs = 0; tnum < nthread; tnum++) {
  5988. auto thr_blocks = blocks_per_thread + (tnum == nthread - 1 ? spare_blocks : 0); // num blocks for this thread
  5989. auto thr_elems = thr_blocks * block_size; // number of elements for this thread
  5990. auto thr_block_bytes = thr_blocks * block_size_bytes; // number of input bytes for this thread
  5991. auto compute = [qtype] (ggml_type typ, uint8_t * inbuf, float * outbuf, int nels) {
  5992. if (typ == GGML_TYPE_F16) {
  5993. ggml_fp16_to_fp32_row((ggml_fp16_t *)inbuf, outbuf, nels);
  5994. } else {
  5995. qtype.to_float(inbuf, outbuf, nels);
  5996. }
  5997. };
  5998. workers.emplace_back(compute, tensor->type, (uint8_t *) tensor->data + in_buff_offs, f32_output + out_buff_offs, thr_elems);
  5999. in_buff_offs += thr_block_bytes;
  6000. out_buff_offs += thr_elems;
  6001. }
  6002. for (auto & w : workers) { w.join(); }
  6003. workers.clear();
  6004. }
  6005. static ggml_type get_k_quant_type(
  6006. quantize_state_internal & qs,
  6007. ggml_type new_type, const ggml_tensor * tensor, llama_ftype ftype
  6008. ) {
  6009. const std::string name = ggml_get_name(tensor);
  6010. // TODO: avoid hardcoded tensor names - use the TN_* constants
  6011. const llm_arch arch = qs.model.arch;
  6012. const auto tn = LLM_TN(arch);
  6013. auto use_more_bits = [](int i_layer, int num_layers) -> bool {
  6014. return i_layer < num_layers/8 || i_layer >= 7*num_layers/8 || (i_layer - num_layers/8)%3 == 2;
  6015. };
  6016. if (name == tn(LLM_TENSOR_OUTPUT, "weight")) {
  6017. int nx = tensor->ne[0];
  6018. if (arch == LLM_ARCH_FALCON || nx % QK_K != 0) {
  6019. new_type = GGML_TYPE_Q8_0;
  6020. }
  6021. else if (new_type != GGML_TYPE_Q8_0) {
  6022. new_type = GGML_TYPE_Q6_K;
  6023. }
  6024. } else if (name.find("attn_v.weight") != std::string::npos) {
  6025. if (ftype == LLAMA_FTYPE_MOSTLY_Q2_K) new_type = GGML_TYPE_Q3_K;
  6026. else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_M) {
  6027. new_type = qs.i_attention_wv < 2 ? GGML_TYPE_Q5_K : GGML_TYPE_Q4_K;
  6028. }
  6029. else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_L) new_type = GGML_TYPE_Q5_K;
  6030. else if ((ftype == LLAMA_FTYPE_MOSTLY_Q4_K_M || ftype == LLAMA_FTYPE_MOSTLY_Q5_K_M) &&
  6031. use_more_bits(qs.i_attention_wv, qs.n_attention_wv)) new_type = GGML_TYPE_Q6_K;
  6032. else if (ftype == LLAMA_FTYPE_MOSTLY_Q4_K_S && qs.i_attention_wv < 4) new_type = GGML_TYPE_Q5_K;
  6033. else if (QK_K == 64 && (ftype == LLAMA_FTYPE_MOSTLY_Q4_K_S || ftype == LLAMA_FTYPE_MOSTLY_Q3_K_S) &&
  6034. (qs.i_attention_wv < qs.n_attention_wv/8 || qs.i_attention_wv >= 7*qs.n_attention_wv/8)) new_type = GGML_TYPE_Q6_K;
  6035. if (qs.model.type == MODEL_70B) {
  6036. // In the 70B model we have 8 heads sharing the same attn_v weights. As a result, the attn_v.weight tensor is
  6037. // 8x smaller compared to attn_q.weight. Hence, we can get a nice boost in quantization accuracy with
  6038. // nearly negligible increase in model size by quantizing this tensor with more bits:
  6039. if (new_type == GGML_TYPE_Q3_K || new_type == GGML_TYPE_Q4_K) new_type = GGML_TYPE_Q5_K;
  6040. }
  6041. ++qs.i_attention_wv;
  6042. } else if (name.find("ffn_down.weight") != std::string::npos) {
  6043. if (ftype == LLAMA_FTYPE_MOSTLY_Q2_K) new_type = GGML_TYPE_Q3_K;
  6044. else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_M) {
  6045. new_type = qs.i_feed_forward_w2 < 2 ? GGML_TYPE_Q5_K
  6046. : arch != LLM_ARCH_FALCON || use_more_bits(qs.i_feed_forward_w2, qs.n_feed_forward_w2) ? GGML_TYPE_Q4_K
  6047. : GGML_TYPE_Q3_K;
  6048. }
  6049. else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_L) {
  6050. new_type = arch == LLM_ARCH_FALCON ? GGML_TYPE_Q4_K : GGML_TYPE_Q5_K;
  6051. }
  6052. else if (ftype == LLAMA_FTYPE_MOSTLY_Q4_K_M) {
  6053. if (arch == LLM_ARCH_FALCON) {
  6054. new_type = qs.i_feed_forward_w2 < 2 ? GGML_TYPE_Q6_K :
  6055. use_more_bits(qs.i_feed_forward_w2, qs.n_feed_forward_w2) ? GGML_TYPE_Q5_K : GGML_TYPE_Q4_K;
  6056. } else {
  6057. if (use_more_bits(qs.i_feed_forward_w2, qs.n_feed_forward_w2)) new_type = GGML_TYPE_Q6_K;
  6058. }
  6059. }
  6060. else if (ftype == LLAMA_FTYPE_MOSTLY_Q5_K_M && use_more_bits(qs.i_feed_forward_w2, qs.n_feed_forward_w2)) new_type = GGML_TYPE_Q6_K;
  6061. else if (ftype == LLAMA_FTYPE_MOSTLY_Q4_K_S && arch != LLM_ARCH_FALCON && qs.i_feed_forward_w2 < 4) {
  6062. new_type = GGML_TYPE_Q5_K;
  6063. }
  6064. ++qs.i_feed_forward_w2;
  6065. } else if (name.find("attn_output.weight") != std::string::npos) {
  6066. if (arch != LLM_ARCH_FALCON) {
  6067. if (ftype == LLAMA_FTYPE_MOSTLY_Q2_K ) new_type = GGML_TYPE_Q3_K;
  6068. else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_M) new_type = GGML_TYPE_Q4_K;
  6069. else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_L) new_type = GGML_TYPE_Q5_K;
  6070. } else {
  6071. if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_L) new_type = GGML_TYPE_Q4_K;
  6072. }
  6073. }
  6074. else if (name.find("attn_qkv.weight") != std::string::npos) {
  6075. if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_M || ftype == LLAMA_FTYPE_MOSTLY_Q3_K_L) new_type = GGML_TYPE_Q4_K;
  6076. else if (ftype == LLAMA_FTYPE_MOSTLY_Q4_K_M) new_type = GGML_TYPE_Q5_K;
  6077. else if (ftype == LLAMA_FTYPE_MOSTLY_Q5_K_M) new_type = GGML_TYPE_Q6_K;
  6078. }
  6079. else if (name.find("ffn_gate.weight") != std::string::npos || name.find("ffn_up.weight") != std::string::npos) {
  6080. if (ftype == LLAMA_FTYPE_MOSTLY_Q2_K) new_type = GGML_TYPE_Q3_K;
  6081. }
  6082. // This can be used to reduce the size of the Q5_K_S model.
  6083. // The associated PPL increase is fully in line with the size reduction
  6084. //else {
  6085. // if (ftype == LLAMA_FTYPE_MOSTLY_Q5_K_S) new_type = GGML_TYPE_Q4_K;
  6086. //}
  6087. bool convert_incompatible_tensor = false;
  6088. if (new_type == GGML_TYPE_Q2_K || new_type == GGML_TYPE_Q3_K || new_type == GGML_TYPE_Q4_K ||
  6089. new_type == GGML_TYPE_Q5_K || new_type == GGML_TYPE_Q6_K) {
  6090. int nx = tensor->ne[0];
  6091. int ny = tensor->ne[1];
  6092. if (nx % QK_K != 0) {
  6093. LLAMA_LOG_WARN("\n\n%s : tensor cols %d x %d are not divisible by %d, required for %s", __func__, nx, ny, QK_K, ggml_type_name(new_type));
  6094. convert_incompatible_tensor = true;
  6095. } else {
  6096. ++qs.n_k_quantized;
  6097. }
  6098. }
  6099. if (convert_incompatible_tensor) {
  6100. switch (new_type) {
  6101. case GGML_TYPE_Q2_K: new_type = GGML_TYPE_Q4_0; break;
  6102. case GGML_TYPE_Q3_K: new_type = GGML_TYPE_Q4_1; break;
  6103. case GGML_TYPE_Q4_K: new_type = GGML_TYPE_Q5_0; break;
  6104. case GGML_TYPE_Q5_K: new_type = GGML_TYPE_Q5_1; break;
  6105. case GGML_TYPE_Q6_K: new_type = GGML_TYPE_Q8_0; break;
  6106. default: throw std::runtime_error("\nUnsupported tensor size encountered\n");
  6107. }
  6108. LLAMA_LOG_WARN(" - using fallback quantization %s\n", ggml_type_name(new_type));
  6109. ++qs.n_fallback;
  6110. }
  6111. return new_type;
  6112. }
  6113. static void llama_model_quantize_internal(const std::string & fname_inp, const std::string & fname_out, const llama_model_quantize_params * params) {
  6114. ggml_type quantized_type;
  6115. llama_ftype ftype = params->ftype;
  6116. switch (params->ftype) {
  6117. case LLAMA_FTYPE_MOSTLY_Q4_0: quantized_type = GGML_TYPE_Q4_0; break;
  6118. case LLAMA_FTYPE_MOSTLY_Q4_1: quantized_type = GGML_TYPE_Q4_1; break;
  6119. case LLAMA_FTYPE_MOSTLY_Q5_0: quantized_type = GGML_TYPE_Q5_0; break;
  6120. case LLAMA_FTYPE_MOSTLY_Q5_1: quantized_type = GGML_TYPE_Q5_1; break;
  6121. case LLAMA_FTYPE_MOSTLY_Q8_0: quantized_type = GGML_TYPE_Q8_0; break;
  6122. case LLAMA_FTYPE_MOSTLY_F16: quantized_type = GGML_TYPE_F16; break;
  6123. case LLAMA_FTYPE_ALL_F32: quantized_type = GGML_TYPE_F32; break;
  6124. // K-quants
  6125. case LLAMA_FTYPE_MOSTLY_Q2_K: quantized_type = GGML_TYPE_Q2_K; break;
  6126. case LLAMA_FTYPE_MOSTLY_Q3_K_S:
  6127. case LLAMA_FTYPE_MOSTLY_Q3_K_M:
  6128. case LLAMA_FTYPE_MOSTLY_Q3_K_L: quantized_type = GGML_TYPE_Q3_K; break;
  6129. case LLAMA_FTYPE_MOSTLY_Q4_K_S:
  6130. case LLAMA_FTYPE_MOSTLY_Q4_K_M: quantized_type = GGML_TYPE_Q4_K; break;
  6131. case LLAMA_FTYPE_MOSTLY_Q5_K_S:
  6132. case LLAMA_FTYPE_MOSTLY_Q5_K_M: quantized_type = GGML_TYPE_Q5_K; break;
  6133. case LLAMA_FTYPE_MOSTLY_Q6_K: quantized_type = GGML_TYPE_Q6_K; break;
  6134. default: throw std::runtime_error(format("invalid output file type %d\n", ftype));
  6135. }
  6136. int nthread = params->nthread;
  6137. if (nthread <= 0) {
  6138. nthread = std::thread::hardware_concurrency();
  6139. }
  6140. // mmap consistently increases speed Linux, and also increases speed on Windows with
  6141. // hot cache. It may cause a slowdown on macOS, possibly related to free memory.
  6142. #if defined(__linux__) || defined(_WIN32)
  6143. constexpr bool use_mmap = true;
  6144. #else
  6145. constexpr bool use_mmap = false;
  6146. #endif
  6147. llama_model_loader ml(fname_inp, use_mmap);
  6148. if (ml.use_mmap) {
  6149. ml.mapping.reset(new llama_mmap(&ml.file, /* prefetch */ 0, ggml_is_numa()));
  6150. }
  6151. llama_model model;
  6152. llm_load_arch(ml, model);
  6153. llm_load_hparams(ml, model);
  6154. struct quantize_state_internal qs(model, params);
  6155. if (params->only_copy) {
  6156. ftype = model.ftype;
  6157. }
  6158. const size_t align = GGUF_DEFAULT_ALIGNMENT;
  6159. struct gguf_context * ctx_out = gguf_init_empty();
  6160. // copy the KV pairs from the input file
  6161. gguf_set_kv (ctx_out, ml.ctx_gguf);
  6162. gguf_set_val_u32(ctx_out, "general.quantization_version", GGML_QNT_VERSION);
  6163. gguf_set_val_u32(ctx_out, "general.file_type", ftype);
  6164. for (int i = 0; i < ml.n_tensors; ++i) {
  6165. struct ggml_tensor * meta = ml.get_tensor_meta(i);
  6166. const std::string name = ggml_get_name(meta);
  6167. // TODO: avoid hardcoded tensor names - use the TN_* constants
  6168. if (name.find("attn_v.weight") != std::string::npos || name.find("attn_qkv.weight") != std::string::npos) {
  6169. ++qs.n_attention_wv;
  6170. }
  6171. else if (name.find("ffn_down.weight") != std::string::npos) {
  6172. ++qs.n_feed_forward_w2;
  6173. }
  6174. }
  6175. if (qs.n_attention_wv != qs.n_feed_forward_w2 || (uint32_t)qs.n_attention_wv != model.hparams.n_layer) {
  6176. LLAMA_LOG_WARN("%s ============ Strange model: n_attention_wv = %d, n_feed_forward_w2 = %d, hparams.n_layer = %d\n",
  6177. __func__, qs.n_attention_wv, qs.n_feed_forward_w2, model.hparams.n_layer);
  6178. }
  6179. size_t total_size_org = 0;
  6180. size_t total_size_new = 0;
  6181. std::vector<int64_t> hist_all(1 << 4, 0);
  6182. std::vector<std::thread> workers;
  6183. workers.reserve(nthread);
  6184. std::mutex mutex;
  6185. int idx = 0;
  6186. std::vector<no_init<uint8_t>> read_data;
  6187. std::vector<no_init<uint8_t>> work;
  6188. std::vector<no_init<float>> f32_conv_buf;
  6189. // populate the original tensors so we get an initial meta data
  6190. for (int i = 0; i < ml.n_tensors; ++i) {
  6191. struct ggml_tensor * meta = ml.get_tensor_meta(i);
  6192. gguf_add_tensor(ctx_out, meta);
  6193. }
  6194. std::ofstream fout(fname_out, std::ios::binary);
  6195. fout.exceptions(std::ofstream::failbit); // fail fast on write errors
  6196. const size_t meta_size = gguf_get_meta_size(ctx_out);
  6197. LLAMA_LOG_INFO("%s: meta size = %zu bytes\n", __func__, meta_size);
  6198. // placeholder for the meta data
  6199. ::zeros(fout, meta_size);
  6200. for (int i = 0; i < ml.n_tensors; ++i) {
  6201. struct ggml_tensor * tensor = ml.get_tensor_meta(i);
  6202. const std::string name = ggml_get_name(tensor);
  6203. if (!ml.use_mmap) {
  6204. if (read_data.size() < ggml_nbytes(tensor)) {
  6205. read_data.resize(ggml_nbytes(tensor));
  6206. }
  6207. tensor->data = read_data.data();
  6208. }
  6209. ml.load_data_for(tensor);
  6210. LLAMA_LOG_INFO("[%4d/%4d] %36s - [%s], type = %6s, ",
  6211. ++idx, ml.n_tensors,
  6212. ggml_get_name(tensor),
  6213. llama_format_tensor_shape(tensor).c_str(),
  6214. ggml_type_name(tensor->type));
  6215. // This used to be a regex, but <regex> has an extreme cost to compile times.
  6216. bool quantize = name.rfind("weight") == name.size() - 6; // ends with 'weight'?
  6217. // quantize only 2D tensors
  6218. quantize &= (tensor->n_dims == 2);
  6219. quantize &= params->quantize_output_tensor || name != "output.weight";
  6220. quantize &= !params->only_copy;
  6221. enum ggml_type new_type;
  6222. void * new_data;
  6223. size_t new_size;
  6224. if (quantize) {
  6225. new_type = quantized_type;
  6226. if (!params->pure) {
  6227. new_type = get_k_quant_type(qs, new_type, tensor, ftype);
  6228. }
  6229. // If we've decided to quantize to the same type the tensor is already
  6230. // in then there's nothing to do.
  6231. quantize = tensor->type != new_type;
  6232. }
  6233. if (!quantize) {
  6234. new_type = tensor->type;
  6235. new_data = tensor->data;
  6236. new_size = ggml_nbytes(tensor);
  6237. LLAMA_LOG_INFO("size = %8.3f MB\n", ggml_nbytes(tensor)/1024.0/1024.0);
  6238. } else {
  6239. const size_t nelements = ggml_nelements(tensor);
  6240. float * f32_data;
  6241. if (tensor->type == GGML_TYPE_F32) {
  6242. f32_data = (float *) tensor->data;
  6243. } else if (ggml_is_quantized(tensor->type) && !params->allow_requantize) {
  6244. throw std::runtime_error(format("requantizing from type %s is disabled", ggml_type_name(tensor->type)));
  6245. } else {
  6246. llama_convert_tensor_internal(tensor, f32_conv_buf, workers, nelements, nthread);
  6247. f32_data = (float *) f32_conv_buf.data();
  6248. }
  6249. LLAMA_LOG_INFO("quantizing to %s .. ", ggml_type_name(new_type));
  6250. fflush(stdout);
  6251. if (work.size() < nelements * 4) {
  6252. work.resize(nelements * 4); // upper bound on size
  6253. }
  6254. new_data = work.data();
  6255. std::array<int64_t, 1 << 4> hist_cur = {};
  6256. static const int chunk_size = 32 * 512;
  6257. const int nchunk = (nelements + chunk_size - 1)/chunk_size;
  6258. const int nthread_use = nthread > 1 ? std::max(1, std::min(nthread, nchunk)) : 1;
  6259. if (nthread_use < 2) {
  6260. new_size = ggml_quantize_chunk(new_type, f32_data, new_data, 0, nelements, hist_cur.data());
  6261. } else {
  6262. size_t counter = 0;
  6263. new_size = 0;
  6264. auto compute = [&mutex, &counter, &hist_cur, &new_size, new_type, f32_data, new_data, nelements]() {
  6265. std::array<int64_t, 1 << 4> local_hist = {};
  6266. size_t local_size = 0;
  6267. while (true) {
  6268. std::unique_lock<std::mutex> lock(mutex);
  6269. size_t first = counter; counter += chunk_size;
  6270. if (first >= nelements) {
  6271. if (local_size > 0) {
  6272. for (int j=0; j<int(local_hist.size()); ++j) {
  6273. hist_cur[j] += local_hist[j];
  6274. }
  6275. new_size += local_size;
  6276. }
  6277. break;
  6278. }
  6279. lock.unlock();
  6280. size_t last = std::min(nelements, first + chunk_size);
  6281. local_size += ggml_quantize_chunk(new_type, f32_data, new_data, first, last - first, local_hist.data());
  6282. }
  6283. };
  6284. for (int it = 0; it < nthread_use - 1; ++it) {
  6285. workers.emplace_back(compute);
  6286. }
  6287. compute();
  6288. for (auto & w : workers) { w.join(); }
  6289. workers.clear();
  6290. }
  6291. LLAMA_LOG_INFO("size = %8.2f MB -> %8.2f MB | hist: ", ggml_nbytes(tensor)/1024.0/1024.0, new_size/1024.0/1024.0);
  6292. int64_t tot_count = 0;
  6293. for (size_t i = 0; i < hist_cur.size(); i++) {
  6294. hist_all[i] += hist_cur[i];
  6295. tot_count += hist_cur[i];
  6296. }
  6297. if (tot_count > 0) {
  6298. for (size_t i = 0; i < hist_cur.size(); i++) {
  6299. LLAMA_LOG_INFO("%5.3f ", hist_cur[i] / float(nelements));
  6300. }
  6301. }
  6302. LLAMA_LOG_INFO("\n");
  6303. }
  6304. total_size_org += ggml_nbytes(tensor);
  6305. total_size_new += new_size;
  6306. // update the gguf meta data as we go
  6307. gguf_set_tensor_type(ctx_out, name.c_str(), new_type);
  6308. gguf_set_tensor_data(ctx_out, name.c_str(), new_data, new_size);
  6309. // write tensor data + padding
  6310. fout.write((const char *) new_data, new_size);
  6311. zeros(fout, GGML_PAD(new_size, align) - new_size);
  6312. }
  6313. // go back to beginning of file and write the updated meta data
  6314. {
  6315. fout.seekp(0);
  6316. std::vector<uint8_t> data(gguf_get_meta_size(ctx_out));
  6317. gguf_get_meta_data(ctx_out, data.data());
  6318. fout.write((const char *) data.data(), data.size());
  6319. }
  6320. fout.close();
  6321. gguf_free(ctx_out);
  6322. LLAMA_LOG_INFO("%s: model size = %8.2f MB\n", __func__, total_size_org/1024.0/1024.0);
  6323. LLAMA_LOG_INFO("%s: quant size = %8.2f MB\n", __func__, total_size_new/1024.0/1024.0);
  6324. // print histogram for all tensors
  6325. {
  6326. int64_t sum_all = 0;
  6327. for (size_t i = 0; i < hist_all.size(); i++) {
  6328. sum_all += hist_all[i];
  6329. }
  6330. if (sum_all > 0) {
  6331. LLAMA_LOG_INFO("%s: hist: ", __func__);
  6332. for (size_t i = 0; i < hist_all.size(); i++) {
  6333. LLAMA_LOG_INFO("%5.3f ", hist_all[i] / float(sum_all));
  6334. }
  6335. LLAMA_LOG_INFO("\n");
  6336. }
  6337. }
  6338. if (qs.n_fallback > 0) {
  6339. LLAMA_LOG_WARN("%s: WARNING: %d of %d tensor(s) incompatible with k-quants and required fallback quantization\n",
  6340. __func__, qs.n_fallback, qs.n_k_quantized + qs.n_fallback);
  6341. }
  6342. }
  6343. static int llama_apply_lora_from_file_internal(
  6344. const struct llama_model & model, const char * path_lora, float scale, const char * path_base_model, int n_threads
  6345. ) {
  6346. LLAMA_LOG_INFO("%s: applying lora adapter from '%s' - please wait ...\n", __func__, path_lora);
  6347. const int64_t t_start_lora_us = ggml_time_us();
  6348. auto fin = std::ifstream(path_lora, std::ios::binary);
  6349. if (!fin) {
  6350. LLAMA_LOG_ERROR("%s: failed to open '%s'\n", __func__, path_lora);
  6351. return 1;
  6352. }
  6353. // verify magic and version
  6354. {
  6355. uint32_t magic;
  6356. fin.read((char *) &magic, sizeof(magic));
  6357. uint32_t format_version;
  6358. fin.read((char *) &format_version, sizeof(format_version));
  6359. if (format_version != 1) {
  6360. LLAMA_LOG_ERROR("%s: unsupported file version\n", __func__ );
  6361. return 1;
  6362. }
  6363. }
  6364. int32_t lora_r;
  6365. int32_t lora_alpha;
  6366. fin.read((char *) &lora_r, sizeof(lora_r));
  6367. fin.read((char *) &lora_alpha, sizeof(lora_alpha));
  6368. float scaling = scale * (float)lora_alpha / (float)lora_r;
  6369. LLAMA_LOG_INFO("%s: r = %d, alpha = %d, scaling = %.2f\n", __func__, lora_r, lora_alpha, scaling);
  6370. // create a temporary ggml context to store the lora tensors
  6371. // todo: calculate size from biggest possible tensor
  6372. std::vector<uint8_t> lora_buf(1024ull * 1024ull * 1024ull);
  6373. struct ggml_init_params params;
  6374. params.mem_size = lora_buf.size();
  6375. params.mem_buffer = lora_buf.data();
  6376. params.no_alloc = false;
  6377. ggml_context * lora_ctx = ggml_init(params);
  6378. std::unordered_map<std::string, struct ggml_tensor *> lora_tensors;
  6379. // create a name -> tensor map of the model to accelerate lookups
  6380. std::unordered_map<std::string, struct ggml_tensor*> model_tensors;
  6381. for (const auto & kv : model.tensors_by_name) {
  6382. model_tensors.insert(kv);
  6383. }
  6384. // load base model
  6385. std::unique_ptr<llama_model_loader> ml;
  6386. ggml_context * base_ctx = NULL;
  6387. std::vector<uint8_t> base_buf;
  6388. if (path_base_model) {
  6389. LLAMA_LOG_INFO("%s: loading base model from '%s'\n", __func__, path_base_model);
  6390. ml.reset(new llama_model_loader(path_base_model, /*use_mmap*/ true));
  6391. size_t ctx_size;
  6392. size_t mmapped_size;
  6393. ml->calc_sizes(ctx_size, mmapped_size);
  6394. base_buf.resize(ctx_size);
  6395. ggml_init_params base_params;
  6396. base_params.mem_size = base_buf.size();
  6397. base_params.mem_buffer = base_buf.data();
  6398. base_params.no_alloc = ml->use_mmap;
  6399. base_ctx = ggml_init(base_params);
  6400. // maybe this should in llama_model_loader
  6401. if (ml->use_mmap) {
  6402. ml->mapping.reset(new llama_mmap(&ml->file, /* prefetch */ 0, ggml_is_numa()));
  6403. }
  6404. }
  6405. // read tensors and apply
  6406. bool warned = false;
  6407. int n_tensors = 0;
  6408. std::vector<uint8_t> work_buffer;
  6409. while (true) {
  6410. int32_t n_dims;
  6411. int32_t length;
  6412. int32_t ftype;
  6413. fin.read(reinterpret_cast<char *>(&n_dims), sizeof(n_dims));
  6414. fin.read(reinterpret_cast<char *>(&length), sizeof(length));
  6415. fin.read(reinterpret_cast<char *>(&ftype), sizeof(ftype));
  6416. if (fin.eof()) {
  6417. break;
  6418. }
  6419. int32_t ne[2] = { 1, 1 };
  6420. for (int i = 0; i < n_dims; ++i) {
  6421. fin.read(reinterpret_cast<char *>(&ne[i]), sizeof(ne[i]));
  6422. }
  6423. std::string name;
  6424. {
  6425. char buf[1024];
  6426. fin.read(buf, length);
  6427. name = std::string(buf, length);
  6428. }
  6429. // check for lora suffix and get the type of tensor
  6430. const std::string lora_suffix = ".lora";
  6431. size_t pos = name.rfind(lora_suffix);
  6432. if (pos == std::string::npos) {
  6433. LLAMA_LOG_ERROR("%s: error: '%s' is not a lora tensor\n", __func__, name.c_str());
  6434. return 1;
  6435. }
  6436. std::string lora_type = name.substr(pos + lora_suffix.length());
  6437. std::string base_name = name;
  6438. base_name.erase(pos);
  6439. // LLAMA_LOG_INFO("%s: %s => %s (lora type %s) \n", __func__, name.c_str(),base_name.c_str(), lora_type.c_str());
  6440. if (model_tensors.find(base_name) == model_tensors.end()) {
  6441. LLAMA_LOG_ERROR("%s: unknown tensor '%s' in lora adapter\n", __func__, name.data());
  6442. return 1;
  6443. }
  6444. // create ggml tensor
  6445. ggml_type wtype;
  6446. switch (ftype) {
  6447. case 0: wtype = GGML_TYPE_F32; break;
  6448. case 1: wtype = GGML_TYPE_F16; break;
  6449. default:
  6450. {
  6451. LLAMA_LOG_ERROR("%s: invalid tensor data type '%d'\n",
  6452. __func__, ftype);
  6453. return false;
  6454. }
  6455. }
  6456. ggml_tensor * lora_tensor;
  6457. if (n_dims == 2) {
  6458. lora_tensor = ggml_new_tensor_2d(lora_ctx, wtype, ne[0], ne[1]);
  6459. }
  6460. else {
  6461. LLAMA_LOG_ERROR("%s: unsupported tensor dimension %d\n", __func__, n_dims);
  6462. return 1;
  6463. }
  6464. ggml_set_name(lora_tensor, "lora_tensor");
  6465. // load tensor data
  6466. size_t offset = fin.tellg();
  6467. size_t tensor_data_size = ggml_nbytes(lora_tensor);
  6468. offset = (offset + 31) & -32;
  6469. fin.seekg(offset);
  6470. fin.read((char*)lora_tensor->data, tensor_data_size);
  6471. lora_tensors[name] = lora_tensor;
  6472. // check if we have both A and B tensors and apply
  6473. if (lora_tensors.find(base_name + ".loraA") != lora_tensors.end() &&
  6474. lora_tensors.find(base_name + ".loraB") != lora_tensors.end()) {
  6475. ggml_tensor * dest_t = model_tensors[base_name];
  6476. offload_func_t offload_func = ggml_offload_nop;
  6477. offload_func_t offload_func_force_inplace = ggml_offload_nop;
  6478. #ifdef GGML_USE_CUBLAS
  6479. if (dest_t->backend == GGML_BACKEND_GPU || dest_t->backend == GGML_BACKEND_GPU_SPLIT) {
  6480. if (dest_t->type != GGML_TYPE_F16) {
  6481. throw std::runtime_error(format(
  6482. "%s: error: the simultaneous use of LoRAs and GPU acceleration is only supported for f16 models. dest_t->type: %d", __func__, dest_t->type));
  6483. }
  6484. offload_func = ggml_cuda_assign_buffers;
  6485. offload_func_force_inplace = ggml_cuda_assign_buffers_force_inplace;
  6486. }
  6487. #endif // GGML_USE_CUBLAS
  6488. ggml_tensor * base_t;
  6489. if (ml) {
  6490. struct gguf_context * ctx_gguf = ml->ctx_gguf;
  6491. // load from base model
  6492. if (gguf_find_tensor(ctx_gguf, base_name.c_str()) < 0) {
  6493. // TODO: throw
  6494. LLAMA_LOG_ERROR("%s: error: tensor '%s' not found in base model\n", __func__, base_name.c_str());
  6495. return 1;
  6496. }
  6497. // TODO: not tested!! maybe not working!
  6498. base_t = ml->create_tensor(base_ctx, base_name, { (uint32_t)dest_t->ne[0], (uint32_t)dest_t->ne[1] }, GGML_BACKEND_CPU);
  6499. ml->load_data_for(base_t);
  6500. } else {
  6501. base_t = dest_t;
  6502. }
  6503. if (ggml_is_quantized(base_t->type)) {
  6504. if (!warned) {
  6505. LLAMA_LOG_WARN("%s: warning: using a lora adapter with a quantized model may result in poor quality, "
  6506. "use a f16 or f32 base model with --lora-base\n", __func__);
  6507. warned = true;
  6508. }
  6509. }
  6510. ggml_tensor * loraA = lora_tensors[base_name + ".loraA"];
  6511. GGML_ASSERT(loraA->type == GGML_TYPE_F32);
  6512. ggml_set_name(loraA, "loraA");
  6513. ggml_tensor * loraB = lora_tensors[base_name + ".loraB"];
  6514. GGML_ASSERT(loraB->type == GGML_TYPE_F32);
  6515. ggml_set_name(loraB, "loraB");
  6516. if (base_t->ne[0] != loraA->ne[1] || base_t->ne[1] != loraB->ne[1]) {
  6517. LLAMA_LOG_ERROR("%s: incompatible tensor dimensions (%" PRId64 " and %" PRId64 ");"
  6518. " are you sure that this adapter is for this model?\n", __func__, base_t->ne[0], loraA->ne[1]);
  6519. return 1;
  6520. }
  6521. // w = w + BA*s
  6522. ggml_tensor * BA = ggml_mul_mat(lora_ctx, loraA, loraB);
  6523. offload_func(BA);
  6524. ggml_set_name(BA, "BA");
  6525. if (scaling != 1.0f) {
  6526. ggml_tensor * scale_tensor = ggml_new_f32(lora_ctx, scaling);
  6527. ggml_set_name(scale_tensor, "scale_tensor");
  6528. BA = ggml_scale_inplace(lora_ctx, BA, scale_tensor);
  6529. offload_func(BA);
  6530. ggml_set_name(BA, "BA_scaled");
  6531. }
  6532. ggml_tensor * r;
  6533. if (base_t == dest_t) {
  6534. r = ggml_add_inplace(lora_ctx, dest_t, BA);
  6535. offload_func_force_inplace(r);
  6536. ggml_set_name(r, "r_add_inplace");
  6537. }
  6538. else {
  6539. r = ggml_add(lora_ctx, base_t, BA);
  6540. offload_func(r);
  6541. ggml_set_name(r, "r_add");
  6542. r = ggml_cpy(lora_ctx, r, dest_t);
  6543. offload_func(r);
  6544. ggml_set_name(r, "r_cpy");
  6545. }
  6546. struct ggml_cgraph * gf = ggml_new_graph(lora_ctx);
  6547. ggml_build_forward_expand(gf, r);
  6548. ggml_graph_compute_helper(work_buffer, gf, n_threads);
  6549. // we won't need these tensors again, reset the context to save memory
  6550. ggml_free(lora_ctx);
  6551. lora_ctx = ggml_init(params);
  6552. lora_tensors.clear();
  6553. n_tensors++;
  6554. if (n_tensors % 4 == 0) {
  6555. LLAMA_LOG_INFO(".");
  6556. }
  6557. }
  6558. }
  6559. // TODO: this should be in a destructor, it will leak on failure
  6560. ggml_free(lora_ctx);
  6561. if (base_ctx) {
  6562. ggml_free(base_ctx);
  6563. }
  6564. const int64_t t_lora_us = ggml_time_us() - t_start_lora_us;
  6565. LLAMA_LOG_INFO(" done (%.2f ms)\n", t_lora_us / 1000.0);
  6566. return 0;
  6567. }
  6568. //
  6569. // interface implementation
  6570. //
  6571. struct llama_model_params llama_model_default_params() {
  6572. struct llama_model_params result = {
  6573. /*.n_gpu_layers =*/ 0,
  6574. /*.main_gpu =*/ 0,
  6575. /*.tensor_split =*/ nullptr,
  6576. /*.progress_callback =*/ nullptr,
  6577. /*.progress_callback_user_data =*/ nullptr,
  6578. /*.vocab_only =*/ false,
  6579. /*.use_mmap =*/ true,
  6580. /*.use_mlock =*/ false,
  6581. };
  6582. #ifdef GGML_USE_METAL
  6583. result.n_gpu_layers = 1;
  6584. #endif
  6585. return result;
  6586. }
  6587. struct llama_context_params llama_context_default_params() {
  6588. struct llama_context_params result = {
  6589. /*.seed =*/ LLAMA_DEFAULT_SEED,
  6590. /*.n_ctx =*/ 512,
  6591. /*.n_batch =*/ 512,
  6592. /*.n_threads =*/ GGML_DEFAULT_N_THREADS, // TODO: better default
  6593. /*.n_threads_batch =*/ GGML_DEFAULT_N_THREADS,
  6594. /*.rope_scaling_type =*/ LLAMA_ROPE_SCALING_UNSPECIFIED,
  6595. /*.rope_freq_base =*/ 0.0f,
  6596. /*.rope_freq_scale =*/ 0.0f,
  6597. /*.yarn_ext_factor =*/ -1.0f,
  6598. /*.yarn_attn_factor =*/ 1.0f,
  6599. /*.yarn_beta_fast =*/ 32.0f,
  6600. /*.yarn_beta_slow =*/ 1.0f,
  6601. /*.yarn_orig_ctx =*/ 0,
  6602. /*.mul_mat_q =*/ true,
  6603. /*.f16_kv =*/ true,
  6604. /*.logits_all =*/ false,
  6605. /*.embedding =*/ false,
  6606. };
  6607. return result;
  6608. }
  6609. struct llama_model_quantize_params llama_model_quantize_default_params() {
  6610. struct llama_model_quantize_params result = {
  6611. /*.nthread =*/ 0,
  6612. /*.ftype =*/ LLAMA_FTYPE_MOSTLY_Q5_1,
  6613. /*.allow_requantize =*/ false,
  6614. /*.quantize_output_tensor =*/ true,
  6615. /*.only_copy =*/ false,
  6616. /*.pure =*/ false,
  6617. };
  6618. return result;
  6619. }
  6620. int llama_max_devices(void) {
  6621. return LLAMA_MAX_DEVICES;
  6622. }
  6623. bool llama_mmap_supported(void) {
  6624. return llama_mmap::SUPPORTED;
  6625. }
  6626. bool llama_mlock_supported(void) {
  6627. return llama_mlock::SUPPORTED;
  6628. }
  6629. void llama_backend_init(bool numa) {
  6630. ggml_time_init();
  6631. // needed to initialize f16 tables
  6632. {
  6633. struct ggml_init_params params = { 0, NULL, false };
  6634. struct ggml_context * ctx = ggml_init(params);
  6635. ggml_free(ctx);
  6636. }
  6637. if (numa) {
  6638. ggml_numa_init();
  6639. }
  6640. #ifdef GGML_USE_MPI
  6641. ggml_mpi_backend_init();
  6642. #endif
  6643. }
  6644. void llama_backend_free(void) {
  6645. #ifdef GGML_USE_MPI
  6646. ggml_mpi_backend_free();
  6647. #endif
  6648. }
  6649. int64_t llama_time_us(void) {
  6650. return ggml_time_us();
  6651. }
  6652. struct llama_model * llama_load_model_from_file(
  6653. const char * path_model,
  6654. struct llama_model_params params) {
  6655. ggml_time_init();
  6656. llama_model * model = new llama_model;
  6657. unsigned cur_percentage = 0;
  6658. if (params.progress_callback == NULL) {
  6659. params.progress_callback_user_data = &cur_percentage;
  6660. params.progress_callback = [](float progress, void * ctx) {
  6661. unsigned * cur_percentage_p = (unsigned *) ctx;
  6662. unsigned percentage = (unsigned) (100 * progress);
  6663. while (percentage > *cur_percentage_p) {
  6664. *cur_percentage_p = percentage;
  6665. LLAMA_LOG_INFO(".");
  6666. if (percentage >= 100) {
  6667. LLAMA_LOG_INFO("\n");
  6668. }
  6669. }
  6670. };
  6671. }
  6672. if (!llama_model_load(path_model, *model, params)) {
  6673. LLAMA_LOG_ERROR("%s: failed to load model\n", __func__);
  6674. delete model;
  6675. return nullptr;
  6676. }
  6677. return model;
  6678. }
  6679. void llama_free_model(struct llama_model * model) {
  6680. delete model;
  6681. }
  6682. struct llama_context * llama_new_context_with_model(
  6683. struct llama_model * model,
  6684. struct llama_context_params params) {
  6685. if (!model) {
  6686. return nullptr;
  6687. }
  6688. llama_context * ctx = new llama_context(*model);
  6689. const auto & hparams = model->hparams;
  6690. auto & cparams = ctx->cparams;
  6691. cparams.n_batch = params.n_batch;
  6692. cparams.n_threads = params.n_threads;
  6693. cparams.n_threads_batch = params.n_threads_batch;
  6694. cparams.yarn_ext_factor = params.yarn_ext_factor;
  6695. cparams.yarn_attn_factor = params.yarn_attn_factor;
  6696. cparams.yarn_beta_fast = params.yarn_beta_fast;
  6697. cparams.yarn_beta_slow = params.yarn_beta_slow;
  6698. cparams.mul_mat_q = params.mul_mat_q;
  6699. cparams.n_ctx = params.n_ctx == 0 ? hparams.n_ctx_train : params.n_ctx;
  6700. cparams.rope_freq_base = params.rope_freq_base == 0.0f ? hparams.rope_freq_base_train : params.rope_freq_base;
  6701. cparams.rope_freq_scale = params.rope_freq_scale == 0.0f ? hparams.rope_freq_scale_train : params.rope_freq_scale;
  6702. cparams.n_yarn_orig_ctx = params.yarn_orig_ctx != 0 ? params.yarn_orig_ctx :
  6703. hparams.n_yarn_orig_ctx != 0 ? hparams.n_yarn_orig_ctx :
  6704. hparams.n_ctx_train;
  6705. auto rope_scaling_type = params.rope_scaling_type;
  6706. if (rope_scaling_type == LLAMA_ROPE_SCALING_UNSPECIFIED) {
  6707. rope_scaling_type = hparams.rope_scaling_type_train;
  6708. }
  6709. if (rope_scaling_type == LLAMA_ROPE_SCALING_NONE) {
  6710. cparams.rope_freq_scale = 1.0f; // never scale if scaling type is none
  6711. }
  6712. if (cparams.yarn_ext_factor < 0.0f) { // negative indicates 'not set'
  6713. cparams.yarn_ext_factor = rope_scaling_type == LLAMA_ROPE_SCALING_YARN ? 1.0f : 0.0f;
  6714. }
  6715. if (params.seed == LLAMA_DEFAULT_SEED) {
  6716. params.seed = time(NULL);
  6717. }
  6718. LLAMA_LOG_INFO("%s: n_ctx = %u\n", __func__, cparams.n_ctx);
  6719. LLAMA_LOG_INFO("%s: freq_base = %.1f\n", __func__, cparams.rope_freq_base);
  6720. LLAMA_LOG_INFO("%s: freq_scale = %g\n", __func__, cparams.rope_freq_scale);
  6721. ctx->rng = std::mt19937(params.seed);
  6722. ctx->logits_all = params.logits_all;
  6723. ggml_type memory_type = params.f16_kv ? GGML_TYPE_F16 : GGML_TYPE_F32;
  6724. // reserve memory for context buffers
  6725. if (!hparams.vocab_only) {
  6726. if (!llama_kv_cache_init(ctx->model.hparams, ctx->kv_self, memory_type, cparams.n_ctx, model->n_gpu_layers)) {
  6727. LLAMA_LOG_ERROR("%s: llama_kv_cache_init() failed for self-attention cache\n", __func__);
  6728. llama_free(ctx);
  6729. return nullptr;
  6730. }
  6731. {
  6732. const size_t memory_size = ggml_nbytes(ctx->kv_self.k) + ggml_nbytes(ctx->kv_self.v);
  6733. LLAMA_LOG_INFO("%s: kv self size = %7.2f MB\n", __func__, memory_size / 1024.0 / 1024.0);
  6734. }
  6735. // resized during inference
  6736. if (params.logits_all) {
  6737. ctx->logits.reserve(cparams.n_ctx*hparams.n_vocab);
  6738. } else {
  6739. ctx->logits.reserve(hparams.n_vocab);
  6740. }
  6741. if (params.embedding){
  6742. ctx->embedding.resize(hparams.n_embd);
  6743. }
  6744. {
  6745. static const size_t tensor_alignment = 32;
  6746. // the compute buffer is used to store the tensor and graph structs, while the allocator buffer is used for the tensor data
  6747. ctx->buf_compute.resize(ggml_tensor_overhead()*GGML_MAX_NODES + ggml_graph_overhead());
  6748. // create measure allocator
  6749. ctx->alloc = ggml_allocr_new_measure(tensor_alignment);
  6750. // build worst-case graph
  6751. int n_tokens = (int)std::min(cparams.n_ctx, cparams.n_batch);
  6752. int n_past = cparams.n_ctx - n_tokens;
  6753. llama_token token = llama_token_bos(&ctx->model); // not actually used by llama_build_graph, but required to choose between token and embedding inputs graph
  6754. ggml_cgraph * gf = llama_build_graph(*ctx, llama_batch_get_one(&token, n_tokens, n_past, 0));
  6755. #ifdef GGML_USE_METAL
  6756. if (model->n_gpu_layers > 0) {
  6757. ggml_metal_log_set_callback(llama_log_callback_default, NULL);
  6758. ctx->ctx_metal = ggml_metal_init(1);
  6759. if (!ctx->ctx_metal) {
  6760. LLAMA_LOG_ERROR("%s: ggml_metal_init() failed\n", __func__);
  6761. llama_free(ctx);
  6762. return NULL;
  6763. }
  6764. //ggml_metal_graph_find_concurrency(ctx->ctx_metal, gf, false);
  6765. //ggml_allocr_set_parse_seq(ctx->alloc, ggml_metal_get_concur_list(ctx->ctx_metal), ggml_metal_if_optimized(ctx->ctx_metal));
  6766. }
  6767. #endif
  6768. // measure memory requirements for the graph
  6769. size_t alloc_size = ggml_allocr_alloc_graph(ctx->alloc, gf) + tensor_alignment;
  6770. LLAMA_LOG_INFO("%s: compute buffer total size = %.2f MB\n", __func__, (ctx->buf_compute.size + alloc_size) / 1024.0 / 1024.0);
  6771. // recreate allocator with exact memory requirements
  6772. ggml_allocr_free(ctx->alloc);
  6773. ctx->buf_alloc.resize(alloc_size);
  6774. ctx->alloc = ggml_allocr_new(ctx->buf_alloc.data, ctx->buf_alloc.size, tensor_alignment);
  6775. #ifdef GGML_USE_METAL
  6776. if (ctx->ctx_metal) {
  6777. //ggml_allocr_set_parse_seq(ctx->alloc, ggml_metal_get_concur_list(ctx->ctx_metal), ggml_metal_if_optimized(ctx->ctx_metal));
  6778. }
  6779. #endif
  6780. #ifdef GGML_USE_CUBLAS
  6781. ggml_cuda_set_scratch_size(alloc_size);
  6782. LLAMA_LOG_INFO("%s: VRAM scratch buffer: %.2f MB\n", __func__, alloc_size / 1024.0 / 1024.0);
  6783. // calculate total VRAM usage
  6784. auto add_tensor = [](const ggml_tensor * t, size_t & size) {
  6785. if (t->backend == GGML_BACKEND_GPU || t->backend == GGML_BACKEND_GPU_SPLIT) {
  6786. size += ggml_nbytes(t);
  6787. }
  6788. };
  6789. size_t model_vram_size = 0;
  6790. for (const auto & kv : model->tensors_by_name) {
  6791. add_tensor(kv.second, model_vram_size);
  6792. }
  6793. size_t kv_vram_size = 0;
  6794. add_tensor(ctx->kv_self.k, kv_vram_size);
  6795. add_tensor(ctx->kv_self.v, kv_vram_size);
  6796. size_t ctx_vram_size = alloc_size + kv_vram_size;
  6797. size_t total_vram_size = model_vram_size + ctx_vram_size;
  6798. LLAMA_LOG_INFO("%s: total VRAM used: %.2f MB (model: %.2f MB, context: %.2f MB)\n", __func__,
  6799. total_vram_size / 1024.0 / 1024.0,
  6800. model_vram_size / 1024.0 / 1024.0,
  6801. ctx_vram_size / 1024.0 / 1024.0);
  6802. #endif
  6803. }
  6804. #ifdef GGML_USE_METAL
  6805. if (model->n_gpu_layers > 0) {
  6806. // this allocates all Metal resources and memory buffers
  6807. void * data_ptr = NULL;
  6808. size_t data_size = 0;
  6809. if (ctx->model.mapping) {
  6810. data_ptr = ctx->model.mapping->addr;
  6811. data_size = ctx->model.mapping->size;
  6812. } else {
  6813. data_ptr = ggml_get_mem_buffer(ctx->model.ctx);
  6814. data_size = ggml_get_mem_size (ctx->model.ctx);
  6815. }
  6816. const size_t max_size = ggml_get_max_tensor_size(ctx->model.ctx);
  6817. LLAMA_LOG_INFO("%s: max tensor size = %8.2f MB\n", __func__, max_size/1024.0/1024.0);
  6818. #define LLAMA_METAL_CHECK_BUF(result) \
  6819. if (!(result)) { \
  6820. LLAMA_LOG_ERROR("%s: failed to add buffer\n", __func__); \
  6821. llama_free(ctx); \
  6822. return NULL; \
  6823. }
  6824. LLAMA_METAL_CHECK_BUF(ggml_metal_add_buffer(ctx->ctx_metal, "data", data_ptr, data_size, max_size));
  6825. LLAMA_METAL_CHECK_BUF(ggml_metal_add_buffer(ctx->ctx_metal, "kv", ctx->kv_self.buf.data, ctx->kv_self.buf.size, 0));
  6826. LLAMA_METAL_CHECK_BUF(ggml_metal_add_buffer(ctx->ctx_metal, "alloc", ctx->buf_alloc.data, ctx->buf_alloc.size, 0));
  6827. #undef LLAMA_METAL_CHECK_BUF
  6828. }
  6829. #endif
  6830. }
  6831. #ifdef GGML_USE_MPI
  6832. ctx->ctx_mpi = ggml_mpi_init();
  6833. if (ggml_mpi_rank(ctx->ctx_mpi) > 0) {
  6834. // Enter a blocking eval loop with dummy input, letting rank=0 drive the process
  6835. // TODO: needs fix after #3228
  6836. GGML_ASSERT(false && "not implemented");
  6837. //const std::vector<llama_token> tmp(ctx->model.hparams.n_ctx, llama_token_bos(ctx));
  6838. //while (!llama_eval(ctx, tmp.data(), tmp.size(), 0, 0)) {};
  6839. llama_backend_free();
  6840. exit(1);
  6841. }
  6842. #endif
  6843. return ctx;
  6844. }
  6845. void llama_free(struct llama_context * ctx) {
  6846. delete ctx;
  6847. }
  6848. const llama_model * llama_get_model(const struct llama_context * ctx) {
  6849. return &ctx->model;
  6850. }
  6851. int llama_n_ctx(const struct llama_context * ctx) {
  6852. return ctx->cparams.n_ctx;
  6853. }
  6854. enum llama_vocab_type llama_vocab_type(const struct llama_model * model) {
  6855. return model->vocab.type;
  6856. }
  6857. int llama_n_vocab(const struct llama_model * model) {
  6858. return model->vocab.id_to_token.size();
  6859. }
  6860. int llama_n_ctx_train(const struct llama_model * model) {
  6861. return model->hparams.n_ctx_train;
  6862. }
  6863. int llama_n_embd(const struct llama_model * model) {
  6864. return model->hparams.n_embd;
  6865. }
  6866. float llama_rope_freq_scale_train(const struct llama_model * model) {
  6867. return model->hparams.rope_freq_scale_train;
  6868. }
  6869. int llama_model_desc(const struct llama_model * model, char * buf, size_t buf_size) {
  6870. return snprintf(buf, buf_size, "%s %s %s",
  6871. llama_model_arch_name(model->arch).c_str(),
  6872. llama_model_type_name(model->type),
  6873. llama_model_ftype_name(model->ftype).c_str());
  6874. }
  6875. uint64_t llama_model_size(const struct llama_model * model) {
  6876. uint64_t size = 0;
  6877. for (const auto & it : model->tensors_by_name) {
  6878. size += ggml_nbytes(it.second);
  6879. }
  6880. return size;
  6881. }
  6882. uint64_t llama_model_n_params(const struct llama_model * model) {
  6883. uint64_t nparams = 0;
  6884. for (const auto & it : model->tensors_by_name) {
  6885. nparams += ggml_nelements(it.second);
  6886. }
  6887. return nparams;
  6888. }
  6889. struct ggml_tensor * llama_get_model_tensor(struct llama_model * model, const char * name) {
  6890. return ggml_get_tensor(model->ctx, name);
  6891. }
  6892. int llama_model_quantize(
  6893. const char * fname_inp,
  6894. const char * fname_out,
  6895. const llama_model_quantize_params * params) {
  6896. try {
  6897. llama_model_quantize_internal(fname_inp, fname_out, params);
  6898. return 0;
  6899. } catch (const std::exception & err) {
  6900. LLAMA_LOG_ERROR("%s: failed to quantize: %s\n", __func__, err.what());
  6901. return 1;
  6902. }
  6903. }
  6904. int llama_apply_lora_from_file(struct llama_context * ctx, const char * path_lora, float scale, const char * path_base_model, int n_threads) {
  6905. try {
  6906. return llama_apply_lora_from_file_internal(ctx->model, path_lora, scale, path_base_model, n_threads);
  6907. } catch (const std::exception & err) {
  6908. LLAMA_LOG_ERROR("%s: failed to apply lora adapter: %s\n", __func__, err.what());
  6909. return 1;
  6910. }
  6911. }
  6912. int llama_model_apply_lora_from_file(const struct llama_model * model, const char * path_lora, float scale, const char * path_base_model, int n_threads) {
  6913. try {
  6914. return llama_apply_lora_from_file_internal(*model, path_lora, scale, path_base_model, n_threads);
  6915. } catch (const std::exception & err) {
  6916. LLAMA_LOG_ERROR("%s: failed to apply lora adapter: %s\n", __func__, err.what());
  6917. return 1;
  6918. }
  6919. }
  6920. int llama_get_kv_cache_token_count(const struct llama_context * ctx) {
  6921. return ctx->kv_self.head;
  6922. }
  6923. void llama_kv_cache_clear(struct llama_context * ctx) {
  6924. llama_kv_cache_clear(ctx->kv_self);
  6925. }
  6926. void llama_kv_cache_seq_rm(struct llama_context * ctx, llama_seq_id seq_id, llama_pos p0, llama_pos p1) {
  6927. llama_kv_cache_seq_rm(ctx->kv_self, seq_id, p0, p1);
  6928. }
  6929. void llama_kv_cache_seq_cp(struct llama_context * ctx, llama_seq_id seq_id_src, llama_seq_id seq_id_dst, llama_pos p0, llama_pos p1) {
  6930. if (seq_id_src == seq_id_dst) {
  6931. return;
  6932. }
  6933. llama_kv_cache_seq_cp(ctx->kv_self, seq_id_src, seq_id_dst, p0, p1);
  6934. }
  6935. void llama_kv_cache_seq_keep(struct llama_context * ctx, llama_seq_id seq_id) {
  6936. llama_kv_cache_seq_keep(ctx->kv_self, seq_id);
  6937. }
  6938. void llama_kv_cache_seq_shift(struct llama_context * ctx, llama_seq_id seq_id, llama_pos p0, llama_pos p1, llama_pos delta) {
  6939. llama_kv_cache_seq_shift(ctx->kv_self, seq_id, p0, p1, delta);
  6940. }
  6941. // Returns the *maximum* size of the state
  6942. size_t llama_get_state_size(const struct llama_context * ctx) {
  6943. // we don't know size of rng until we actually serialize it. so reserve more than enough memory for its serialized state.
  6944. // for reference, std::mt19937(1337) serializes to 6701 bytes.
  6945. const size_t s_rng_size = sizeof(size_t);
  6946. const size_t s_rng = LLAMA_MAX_RNG_STATE;
  6947. const size_t s_logits_capacity = sizeof(size_t);
  6948. const size_t s_logits_size = sizeof(size_t);
  6949. const size_t s_logits = ctx->logits.capacity() * sizeof(float);
  6950. const size_t s_embedding_size = sizeof(size_t);
  6951. const size_t s_embedding = ctx->embedding.size() * sizeof(float);
  6952. const size_t s_kv_size = sizeof(size_t);
  6953. const size_t s_kv_ntok = sizeof(int);
  6954. const size_t s_kv = ctx->kv_self.buf.size;
  6955. const size_t s_total = (
  6956. + s_rng_size
  6957. + s_rng
  6958. + s_logits_capacity
  6959. + s_logits_size
  6960. + s_logits
  6961. + s_embedding_size
  6962. + s_embedding
  6963. + s_kv_size
  6964. + s_kv_ntok
  6965. + s_kv
  6966. );
  6967. return s_total;
  6968. }
  6969. // llama_context_data
  6970. struct llama_data_context {
  6971. virtual void write(const void * src, size_t size) = 0;
  6972. virtual size_t get_size_written() = 0;
  6973. virtual ~llama_data_context() = default;
  6974. };
  6975. struct llama_data_buffer_context : llama_data_context {
  6976. uint8_t * ptr;
  6977. size_t size_written = 0;
  6978. llama_data_buffer_context(uint8_t * p) : ptr(p) {}
  6979. void write(const void * src, size_t size) override {
  6980. memcpy(ptr, src, size);
  6981. ptr += size;
  6982. size_written += size;
  6983. }
  6984. size_t get_size_written() override {
  6985. return size_written;
  6986. }
  6987. };
  6988. struct llama_data_file_context : llama_data_context {
  6989. llama_file * file;
  6990. size_t size_written = 0;
  6991. llama_data_file_context(llama_file * f) : file(f) {}
  6992. void write(const void * src, size_t size) override {
  6993. file->write_raw(src, size);
  6994. size_written += size;
  6995. }
  6996. size_t get_size_written() override {
  6997. return size_written;
  6998. }
  6999. };
  7000. /** copy state data into either a buffer or file depending on the passed in context
  7001. *
  7002. * file context:
  7003. * llama_file file("/path", "wb");
  7004. * llama_data_file_context data_ctx(&file);
  7005. * llama_copy_state_data(ctx, &data_ctx);
  7006. *
  7007. * buffer context:
  7008. * std::vector<uint8_t> buf(max_size, 0);
  7009. * llama_data_buffer_context data_ctx(&buf.data());
  7010. * llama_copy_state_data(ctx, &data_ctx);
  7011. *
  7012. */
  7013. static void llama_copy_state_data_internal(struct llama_context * ctx, llama_data_context * data_ctx) {
  7014. // copy rng
  7015. {
  7016. std::stringstream rng_ss;
  7017. rng_ss << ctx->rng;
  7018. const size_t rng_size = rng_ss.str().size();
  7019. char rng_buf[LLAMA_MAX_RNG_STATE];
  7020. memset(&rng_buf[0], 0, LLAMA_MAX_RNG_STATE);
  7021. memcpy(&rng_buf[0], rng_ss.str().data(), rng_ss.str().size());
  7022. data_ctx->write(&rng_size, sizeof(rng_size));
  7023. data_ctx->write(&rng_buf[0], LLAMA_MAX_RNG_STATE);
  7024. }
  7025. // copy logits
  7026. {
  7027. const size_t logits_cap = ctx->logits.capacity();
  7028. const size_t logits_size = ctx->logits.size();
  7029. data_ctx->write(&logits_cap, sizeof(logits_cap));
  7030. data_ctx->write(&logits_size, sizeof(logits_size));
  7031. if (logits_size) {
  7032. data_ctx->write(ctx->logits.data(), logits_size * sizeof(float));
  7033. }
  7034. // If there is a gap between the size and the capacity, write padding
  7035. size_t padding_size = (logits_cap - logits_size) * sizeof(float);
  7036. if (padding_size > 0) {
  7037. std::vector<uint8_t> padding(padding_size, 0); // Create a buffer filled with zeros
  7038. data_ctx->write(padding.data(), padding_size);
  7039. }
  7040. }
  7041. // copy embeddings
  7042. {
  7043. const size_t embedding_size = ctx->embedding.size();
  7044. data_ctx->write(&embedding_size, sizeof(embedding_size));
  7045. if (embedding_size) {
  7046. data_ctx->write(ctx->embedding.data(), embedding_size * sizeof(float));
  7047. }
  7048. }
  7049. // copy kv cache
  7050. {
  7051. const auto & kv_self = ctx->kv_self;
  7052. const auto & hparams = ctx->model.hparams;
  7053. const auto & cparams = ctx->cparams;
  7054. const auto n_layer = hparams.n_layer;
  7055. const auto n_embd = hparams.n_embd_gqa();
  7056. const auto n_ctx = cparams.n_ctx;
  7057. const size_t kv_buf_size = kv_self.buf.size;
  7058. const uint32_t kv_head = kv_self.head;
  7059. const uint32_t kv_size = kv_self.size;
  7060. data_ctx->write(&kv_buf_size, sizeof(kv_buf_size));
  7061. data_ctx->write(&kv_head, sizeof(kv_head));
  7062. data_ctx->write(&kv_size, sizeof(kv_size));
  7063. if (kv_buf_size) {
  7064. const size_t elt_size = ggml_element_size(kv_self.k);
  7065. ggml_context * cpy_ctx = ggml_init({ 4096, NULL, /* no_alloc */ true });
  7066. ggml_cgraph gf{};
  7067. ggml_tensor * kout3d = ggml_new_tensor_3d(cpy_ctx, kv_self.k->type, n_embd, kv_head, n_layer);
  7068. std::vector<uint8_t> kout3d_data(ggml_nbytes(kout3d), 0);
  7069. kout3d->data = kout3d_data.data();
  7070. ggml_tensor * vout3d = ggml_new_tensor_3d(cpy_ctx, kv_self.v->type, kv_head, n_embd, n_layer);
  7071. std::vector<uint8_t> vout3d_data(ggml_nbytes(vout3d), 0);
  7072. vout3d->data = vout3d_data.data();
  7073. ggml_tensor * k3d = ggml_view_3d(cpy_ctx, kv_self.k,
  7074. n_embd, kv_head, n_layer,
  7075. elt_size*n_embd, elt_size*n_embd*n_ctx, 0);
  7076. ggml_tensor * v3d = ggml_view_3d(cpy_ctx, kv_self.v,
  7077. kv_head, n_embd, n_layer,
  7078. elt_size*n_ctx, elt_size*n_ctx*n_embd, 0);
  7079. ggml_build_forward_expand(&gf, ggml_cpy(cpy_ctx, k3d, kout3d));
  7080. ggml_build_forward_expand(&gf, ggml_cpy(cpy_ctx, v3d, vout3d));
  7081. ggml_graph_compute_helper(ctx->work_buffer, &gf, /*n_threads*/ 1);
  7082. ggml_free(cpy_ctx);
  7083. // our data is now in the kout3d_data and vout3d_data buffers
  7084. // write them to file
  7085. data_ctx->write(kout3d_data.data(), kout3d_data.size());
  7086. data_ctx->write(vout3d_data.data(), vout3d_data.size());
  7087. }
  7088. for (uint32_t i = 0; i < kv_size; ++i) {
  7089. const auto & cell = kv_self.cells[i];
  7090. const llama_pos pos = cell.pos;
  7091. const size_t seq_id_size = cell.seq_id.size();
  7092. data_ctx->write(&pos, sizeof(pos));
  7093. data_ctx->write(&seq_id_size, sizeof(seq_id_size));
  7094. for (auto seq_id : cell.seq_id) {
  7095. data_ctx->write(&seq_id, sizeof(seq_id));
  7096. }
  7097. }
  7098. }
  7099. }
  7100. size_t llama_copy_state_data(struct llama_context * ctx, uint8_t * dst) {
  7101. llama_data_buffer_context data_ctx(dst);
  7102. llama_copy_state_data_internal(ctx, &data_ctx);
  7103. return data_ctx.get_size_written();
  7104. }
  7105. // Sets the state reading from the specified source address
  7106. size_t llama_set_state_data(struct llama_context * ctx, uint8_t * src) {
  7107. uint8_t * inp = src;
  7108. // set rng
  7109. {
  7110. size_t rng_size;
  7111. char rng_buf[LLAMA_MAX_RNG_STATE];
  7112. memcpy(&rng_size, inp, sizeof(rng_size)); inp += sizeof(rng_size);
  7113. memcpy(&rng_buf[0], inp, LLAMA_MAX_RNG_STATE); inp += LLAMA_MAX_RNG_STATE;
  7114. std::stringstream rng_ss;
  7115. rng_ss.str(std::string(&rng_buf[0], rng_size));
  7116. rng_ss >> ctx->rng;
  7117. GGML_ASSERT(!rng_ss.fail());
  7118. }
  7119. // set logits
  7120. {
  7121. size_t logits_cap;
  7122. size_t logits_size;
  7123. memcpy(&logits_cap, inp, sizeof(logits_cap)); inp += sizeof(logits_cap);
  7124. memcpy(&logits_size, inp, sizeof(logits_size)); inp += sizeof(logits_size);
  7125. GGML_ASSERT(ctx->logits.capacity() == logits_cap);
  7126. if (logits_size) {
  7127. ctx->logits.resize(logits_size);
  7128. memcpy(ctx->logits.data(), inp, logits_size * sizeof(float));
  7129. }
  7130. inp += logits_cap * sizeof(float);
  7131. }
  7132. // set embeddings
  7133. {
  7134. size_t embedding_size;
  7135. memcpy(&embedding_size, inp, sizeof(embedding_size)); inp += sizeof(embedding_size);
  7136. GGML_ASSERT(ctx->embedding.capacity() == embedding_size);
  7137. if (embedding_size) {
  7138. memcpy(ctx->embedding.data(), inp, embedding_size * sizeof(float));
  7139. inp += embedding_size * sizeof(float);
  7140. }
  7141. }
  7142. // set kv cache
  7143. {
  7144. const auto & kv_self = ctx->kv_self;
  7145. const auto & hparams = ctx->model.hparams;
  7146. const auto & cparams = ctx->cparams;
  7147. const int n_layer = hparams.n_layer;
  7148. const int n_embd = hparams.n_embd_gqa();
  7149. const int n_ctx = cparams.n_ctx;
  7150. size_t kv_buf_size;
  7151. uint32_t kv_head;
  7152. uint32_t kv_size;
  7153. memcpy(&kv_buf_size, inp, sizeof(kv_buf_size)); inp += sizeof(kv_buf_size);
  7154. memcpy(&kv_head, inp, sizeof(kv_head)); inp += sizeof(kv_head);
  7155. memcpy(&kv_size, inp, sizeof(kv_size)); inp += sizeof(kv_size);
  7156. if (kv_buf_size) {
  7157. GGML_ASSERT(kv_self.buf.size == kv_buf_size);
  7158. const size_t elt_size = ggml_element_size(kv_self.k);
  7159. ggml_context * cpy_ctx = ggml_init({ 4096, NULL, /* no_alloc */ true });
  7160. ggml_cgraph gf{};
  7161. ggml_tensor * kin3d = ggml_new_tensor_3d(cpy_ctx, kv_self.k->type, n_embd, kv_head, n_layer);
  7162. kin3d->data = (void *) inp;
  7163. inp += ggml_nbytes(kin3d);
  7164. ggml_tensor * vin3d = ggml_new_tensor_3d(cpy_ctx, kv_self.v->type, kv_head, n_embd, n_layer);
  7165. vin3d->data = (void *) inp;
  7166. inp += ggml_nbytes(vin3d);
  7167. ggml_tensor * k3d = ggml_view_3d(cpy_ctx, kv_self.k,
  7168. n_embd, kv_head, n_layer,
  7169. elt_size*n_embd, elt_size*n_embd*n_ctx, 0);
  7170. ggml_tensor * v3d = ggml_view_3d(cpy_ctx, kv_self.v,
  7171. kv_head, n_embd, n_layer,
  7172. elt_size*n_ctx, elt_size*n_ctx*n_embd, 0);
  7173. ggml_build_forward_expand(&gf, ggml_cpy(cpy_ctx, kin3d, k3d));
  7174. ggml_build_forward_expand(&gf, ggml_cpy(cpy_ctx, vin3d, v3d));
  7175. ggml_graph_compute_helper(ctx->work_buffer, &gf, /*n_threads*/ 1);
  7176. ggml_free(cpy_ctx);
  7177. }
  7178. ctx->kv_self.head = kv_head;
  7179. ctx->kv_self.size = kv_size;
  7180. ctx->kv_self.cells.resize(kv_size);
  7181. for (uint32_t i = 0; i < kv_size; ++i) {
  7182. llama_pos pos;
  7183. size_t seq_id_size;
  7184. memcpy(&pos, inp, sizeof(pos)); inp += sizeof(pos);
  7185. memcpy(&seq_id_size, inp, sizeof(seq_id_size)); inp += sizeof(seq_id_size);
  7186. ctx->kv_self.cells[i].pos = pos;
  7187. llama_seq_id seq_id;
  7188. for (size_t j = 0; j < seq_id_size; ++j) {
  7189. memcpy(&seq_id, inp, sizeof(seq_id)); inp += sizeof(seq_id);
  7190. ctx->kv_self.cells[i].seq_id.insert(seq_id);
  7191. }
  7192. }
  7193. }
  7194. const size_t nread = inp - src;
  7195. const size_t max_size = llama_get_state_size(ctx);
  7196. GGML_ASSERT(nread <= max_size);
  7197. return nread;
  7198. }
  7199. static bool llama_load_session_file_internal(struct llama_context * ctx, const char * path_session, llama_token * tokens_out, size_t n_token_capacity, size_t * n_token_count_out) {
  7200. llama_file file(path_session, "rb");
  7201. // sanity checks
  7202. {
  7203. const uint32_t magic = file.read_u32();
  7204. const uint32_t version = file.read_u32();
  7205. if (magic != LLAMA_SESSION_MAGIC || version != LLAMA_SESSION_VERSION) {
  7206. LLAMA_LOG_ERROR("%s : unknown (magic, version) for session file: %08x, %08x\n", __func__, magic, version);
  7207. return false;
  7208. }
  7209. llama_hparams session_hparams;
  7210. file.read_raw(&session_hparams, sizeof(llama_hparams));
  7211. if (session_hparams != ctx->model.hparams) {
  7212. LLAMA_LOG_INFO("%s : model hparams didn't match from session file!\n", __func__);
  7213. return false;
  7214. }
  7215. }
  7216. // load the prompt
  7217. {
  7218. const uint32_t n_token_count = file.read_u32();
  7219. if (n_token_count > n_token_capacity) {
  7220. LLAMA_LOG_ERROR("%s : token count in session file exceeded capacity! %u > %zu\n", __func__, n_token_count, n_token_capacity);
  7221. return false;
  7222. }
  7223. file.read_raw(tokens_out, sizeof(llama_token) * n_token_count);
  7224. *n_token_count_out = n_token_count;
  7225. }
  7226. // restore the context state
  7227. {
  7228. const size_t n_state_size_cur = file.size - file.tell();
  7229. const size_t n_state_size_max = llama_get_state_size(ctx);
  7230. if (n_state_size_cur > n_state_size_max) {
  7231. LLAMA_LOG_ERROR("%s : the state size in session file is too big! max %zu, got %zu\n", __func__, n_state_size_max, n_state_size_cur);
  7232. return false;
  7233. }
  7234. std::vector<uint8_t> state_data(n_state_size_max);
  7235. file.read_raw(state_data.data(), n_state_size_cur);
  7236. llama_set_state_data(ctx, state_data.data());
  7237. }
  7238. return true;
  7239. }
  7240. bool llama_load_session_file(struct llama_context * ctx, const char * path_session, llama_token * tokens_out, size_t n_token_capacity, size_t * n_token_count_out) {
  7241. try {
  7242. return llama_load_session_file_internal(ctx, path_session, tokens_out, n_token_capacity, n_token_count_out);
  7243. } catch (const std::exception & err) {
  7244. LLAMA_LOG_ERROR("error loading session file: %s\n", err.what());
  7245. return false;
  7246. }
  7247. }
  7248. bool llama_save_session_file(struct llama_context * ctx, const char * path_session, const llama_token * tokens, size_t n_token_count) {
  7249. llama_file file(path_session, "wb");
  7250. file.write_u32(LLAMA_SESSION_MAGIC);
  7251. file.write_u32(LLAMA_SESSION_VERSION);
  7252. file.write_raw(&ctx->model.hparams, sizeof(llama_hparams));
  7253. // save the prompt
  7254. file.write_u32((uint32_t) n_token_count);
  7255. file.write_raw(tokens, sizeof(llama_token) * n_token_count);
  7256. // save the context state using stream saving
  7257. llama_data_file_context data_ctx(&file);
  7258. llama_copy_state_data_internal(ctx, &data_ctx);
  7259. return true;
  7260. }
  7261. int llama_eval(
  7262. struct llama_context * ctx,
  7263. llama_token * tokens,
  7264. int32_t n_tokens,
  7265. int n_past) {
  7266. llama_kv_cache_seq_rm(ctx->kv_self, -1, n_past, -1);
  7267. const int ret = llama_decode_internal(*ctx, llama_batch_get_one(tokens, n_tokens, n_past, 0));
  7268. if (ret < 0) {
  7269. LLAMA_LOG_ERROR("%s: failed to decode, ret = %d\n", __func__, ret);
  7270. }
  7271. return ret;
  7272. }
  7273. int llama_eval_embd(
  7274. struct llama_context * ctx,
  7275. float * embd,
  7276. int32_t n_tokens,
  7277. int n_past) {
  7278. llama_kv_cache_seq_rm(ctx->kv_self, -1, n_past, -1);
  7279. llama_batch batch = { n_tokens, nullptr, embd, nullptr, nullptr, nullptr, nullptr, n_past, 1, 0, };
  7280. const int ret = llama_decode_internal(*ctx, batch);
  7281. if (ret < 0) {
  7282. LLAMA_LOG_ERROR("%s: failed to decode, ret = %d\n", __func__, ret);
  7283. }
  7284. return ret;
  7285. }
  7286. void llama_set_n_threads(struct llama_context * ctx, uint32_t n_threads, uint32_t n_threads_batch) {
  7287. ctx->cparams.n_threads = n_threads;
  7288. ctx->cparams.n_threads_batch = n_threads_batch;
  7289. }
  7290. struct llama_batch llama_batch_get_one(
  7291. llama_token * tokens,
  7292. int32_t n_tokens,
  7293. llama_pos pos_0,
  7294. llama_seq_id seq_id) {
  7295. return {
  7296. /*n_tokens =*/ n_tokens,
  7297. /*tokens =*/ tokens,
  7298. /*embd =*/ nullptr,
  7299. /*pos =*/ nullptr,
  7300. /*n_seq_id =*/ nullptr,
  7301. /*seq_id =*/ nullptr,
  7302. /*logits =*/ nullptr,
  7303. /*all_pos_0 =*/ pos_0,
  7304. /*all_pos_1 =*/ 1,
  7305. /*all_seq_id =*/ seq_id,
  7306. };
  7307. }
  7308. struct llama_batch llama_batch_init(int32_t n_tokens, int32_t embd, int32_t n_seq_max) {
  7309. llama_batch batch = { 0, nullptr, nullptr, nullptr, nullptr, nullptr, nullptr, 0, 0, 0, };
  7310. if (embd) {
  7311. batch.embd = (float *) malloc(sizeof(float) * n_tokens * embd);
  7312. } else {
  7313. batch.token = (llama_token *) malloc(sizeof(llama_token) * n_tokens);
  7314. }
  7315. batch.pos = (llama_pos *) malloc(sizeof(llama_pos) * n_tokens);
  7316. batch.n_seq_id = (int32_t *) malloc(sizeof(int32_t) * n_tokens);
  7317. batch.seq_id = (llama_seq_id **) malloc(sizeof(llama_seq_id *) * n_tokens);
  7318. for (int i = 0; i < n_tokens; ++i) {
  7319. batch.seq_id[i] = (llama_seq_id *) malloc(sizeof(llama_seq_id) * n_seq_max);
  7320. }
  7321. batch.logits = (int8_t *) malloc(sizeof(int8_t) * n_tokens);
  7322. return batch;
  7323. }
  7324. void llama_batch_free(struct llama_batch batch) {
  7325. if (batch.token) free(batch.token);
  7326. if (batch.embd) free(batch.embd);
  7327. if (batch.pos) free(batch.pos);
  7328. if (batch.n_seq_id) free(batch.n_seq_id);
  7329. if (batch.seq_id) {
  7330. for (int i = 0; i < batch.n_tokens; ++i) {
  7331. free(batch.seq_id[i]);
  7332. }
  7333. free(batch.seq_id);
  7334. }
  7335. if (batch.logits) free(batch.logits);
  7336. }
  7337. int llama_decode(
  7338. struct llama_context * ctx,
  7339. struct llama_batch batch) {
  7340. const int ret = llama_decode_internal(*ctx, batch);
  7341. if (ret < 0) {
  7342. LLAMA_LOG_ERROR("%s: failed to decode, ret = %d\n", __func__, ret);
  7343. }
  7344. return ret;
  7345. }
  7346. float * llama_get_logits(struct llama_context * ctx) {
  7347. return ctx->logits.data();
  7348. }
  7349. float * llama_get_logits_ith(struct llama_context * ctx, int32_t i) {
  7350. return ctx->logits.data() + i*ctx->model.hparams.n_vocab;
  7351. }
  7352. float * llama_get_embeddings(struct llama_context * ctx) {
  7353. return ctx->embedding.data();
  7354. }
  7355. const char * llama_token_get_text(const struct llama_model * model, llama_token token) {
  7356. return model->vocab.id_to_token[token].text.c_str();
  7357. }
  7358. float llama_token_get_score(const struct llama_model * model, llama_token token) {
  7359. return model->vocab.id_to_token[token].score;
  7360. }
  7361. llama_token_type llama_token_get_type(const struct llama_model * model, llama_token token) {
  7362. return model->vocab.id_to_token[token].type;
  7363. }
  7364. llama_token llama_token_bos(const struct llama_model * model) {
  7365. return model->vocab.special_bos_id;
  7366. }
  7367. llama_token llama_token_eos(const struct llama_model * model) {
  7368. return model->vocab.special_eos_id;
  7369. }
  7370. llama_token llama_token_nl(const struct llama_model * model) {
  7371. return model->vocab.linefeed_id;
  7372. }
  7373. llama_token llama_token_prefix(const struct llama_model * model) {
  7374. return model->vocab.special_prefix_id;
  7375. }
  7376. llama_token llama_token_middle(const struct llama_model * model) {
  7377. return model->vocab.special_middle_id;
  7378. }
  7379. llama_token llama_token_suffix(const struct llama_model * model) {
  7380. return model->vocab.special_suffix_id;
  7381. }
  7382. llama_token llama_token_eot(const struct llama_model * model) {
  7383. return model->vocab.special_eot_id;
  7384. }
  7385. int llama_tokenize(
  7386. const struct llama_model * model,
  7387. const char * text,
  7388. int text_len,
  7389. llama_token * tokens,
  7390. int n_max_tokens,
  7391. bool add_bos,
  7392. bool special) {
  7393. auto res = llama_tokenize_internal(model->vocab, std::string(text, text_len), add_bos, special);
  7394. if (n_max_tokens < (int) res.size()) {
  7395. // LLAMA_LOG_ERROR("%s: too many tokens\n", __func__);
  7396. return -((int) res.size());
  7397. }
  7398. for (size_t i = 0; i < res.size(); i++) {
  7399. tokens[i] = res[i];
  7400. }
  7401. return res.size();
  7402. }
  7403. static std::string llama_decode_text(const std::string & text) {
  7404. std::string decoded_text;
  7405. auto unicode_sequences = codepoints_from_utf8(text);
  7406. for (auto& unicode_sequence : unicode_sequences) {
  7407. decoded_text += unicode_to_bytes_bpe(codepoint_to_utf8(unicode_sequence));
  7408. }
  7409. return decoded_text;
  7410. }
  7411. // does not write null-terminator to buf
  7412. int llama_token_to_piece(const struct llama_model * model, llama_token token, char * buf, int length) {
  7413. if (0 <= token && token < llama_n_vocab(model)) {
  7414. switch (llama_vocab_get_type(model->vocab)) {
  7415. case LLAMA_VOCAB_TYPE_SPM: {
  7416. if (llama_is_normal_token(model->vocab, token)) {
  7417. std::string result = model->vocab.id_to_token[token].text;
  7418. llama_unescape_whitespace(result);
  7419. if (length < (int) result.length()) {
  7420. return -result.length();
  7421. }
  7422. memcpy(buf, result.c_str(), result.length());
  7423. return result.length();
  7424. } else if (llama_is_unknown_token(model->vocab, token)) { // NOLINT
  7425. if (length < 3) {
  7426. return -3;
  7427. }
  7428. memcpy(buf, "\xe2\x96\x85", 3);
  7429. return 3;
  7430. } else if (llama_is_control_token(model->vocab, token)) {
  7431. ;
  7432. } else if (llama_is_byte_token(model->vocab, token)) {
  7433. if (length < 1) {
  7434. return -1;
  7435. }
  7436. buf[0] = llama_token_to_byte(model->vocab, token);
  7437. return 1;
  7438. } else {
  7439. // TODO: for now we accept all unsupported token types,
  7440. // suppressing them like CONTROL tokens.
  7441. // GGML_ASSERT(false);
  7442. }
  7443. break;
  7444. }
  7445. case LLAMA_VOCAB_TYPE_BPE: {
  7446. if (llama_is_normal_token(model->vocab, token)) {
  7447. std::string result = model->vocab.id_to_token[token].text;
  7448. result = llama_decode_text(result);
  7449. if (length < (int) result.length()) {
  7450. return -result.length();
  7451. }
  7452. memcpy(buf, result.c_str(), result.length());
  7453. return result.length();
  7454. } else if (llama_is_control_token(model->vocab, token)) {
  7455. ;
  7456. } else {
  7457. // TODO: for now we accept all unsupported token types,
  7458. // suppressing them like CONTROL tokens.
  7459. // GGML_ASSERT(false);
  7460. }
  7461. break;
  7462. }
  7463. default:
  7464. GGML_ASSERT(false);
  7465. }
  7466. }
  7467. return 0;
  7468. }
  7469. struct llama_timings llama_get_timings(struct llama_context * ctx) {
  7470. struct llama_timings result = {
  7471. /*.t_start_ms =*/ 1e-3 * ctx->t_start_us,
  7472. /*.t_end_ms =*/ 1.00 * ggml_time_ms(),
  7473. /*.t_load_ms =*/ 1e-3 * ctx->t_load_us,
  7474. /*.t_sample_ms =*/ 1e-3 * ctx->t_sample_us,
  7475. /*.t_p_eval_ms =*/ 1e-3 * ctx->t_p_eval_us,
  7476. /*.t_eval_ms =*/ 1e-3 * ctx->t_eval_us,
  7477. /*.n_sample =*/ std::max(1, ctx->n_sample),
  7478. /*.n_p_eval =*/ std::max(1, ctx->n_p_eval),
  7479. /*.n_eval =*/ std::max(1, ctx->n_eval),
  7480. };
  7481. return result;
  7482. }
  7483. void llama_print_timings(struct llama_context * ctx) {
  7484. const llama_timings timings = llama_get_timings(ctx);
  7485. LLAMA_LOG_INFO("\n");
  7486. LLAMA_LOG_INFO("%s: load time = %10.2f ms\n", __func__, timings.t_load_ms);
  7487. LLAMA_LOG_INFO("%s: sample time = %10.2f ms / %5d runs (%8.2f ms per token, %8.2f tokens per second)\n",
  7488. __func__, timings.t_sample_ms, timings.n_sample, timings.t_sample_ms / timings.n_sample, 1e3 / timings.t_sample_ms * timings.n_sample);
  7489. LLAMA_LOG_INFO("%s: prompt eval time = %10.2f ms / %5d tokens (%8.2f ms per token, %8.2f tokens per second)\n",
  7490. __func__, timings.t_p_eval_ms, timings.n_p_eval, timings.t_p_eval_ms / timings.n_p_eval, 1e3 / timings.t_p_eval_ms * timings.n_p_eval);
  7491. LLAMA_LOG_INFO("%s: eval time = %10.2f ms / %5d runs (%8.2f ms per token, %8.2f tokens per second)\n",
  7492. __func__, timings.t_eval_ms, timings.n_eval, timings.t_eval_ms / timings.n_eval, 1e3 / timings.t_eval_ms * timings.n_eval);
  7493. LLAMA_LOG_INFO("%s: total time = %10.2f ms\n", __func__, (timings.t_end_ms - timings.t_start_ms));
  7494. }
  7495. void llama_reset_timings(struct llama_context * ctx) {
  7496. ctx->t_start_us = ggml_time_us();
  7497. ctx->t_sample_us = ctx->n_sample = 0;
  7498. ctx->t_eval_us = ctx->n_eval = 0;
  7499. ctx->t_p_eval_us = ctx->n_p_eval = 0;
  7500. }
  7501. const char * llama_print_system_info(void) {
  7502. static std::string s;
  7503. s = "";
  7504. s += "AVX = " + std::to_string(ggml_cpu_has_avx()) + " | ";
  7505. s += "AVX2 = " + std::to_string(ggml_cpu_has_avx2()) + " | ";
  7506. s += "AVX512 = " + std::to_string(ggml_cpu_has_avx512()) + " | ";
  7507. s += "AVX512_VBMI = " + std::to_string(ggml_cpu_has_avx512_vbmi()) + " | ";
  7508. s += "AVX512_VNNI = " + std::to_string(ggml_cpu_has_avx512_vnni()) + " | ";
  7509. s += "FMA = " + std::to_string(ggml_cpu_has_fma()) + " | ";
  7510. s += "NEON = " + std::to_string(ggml_cpu_has_neon()) + " | ";
  7511. s += "ARM_FMA = " + std::to_string(ggml_cpu_has_arm_fma()) + " | ";
  7512. s += "F16C = " + std::to_string(ggml_cpu_has_f16c()) + " | ";
  7513. s += "FP16_VA = " + std::to_string(ggml_cpu_has_fp16_va()) + " | ";
  7514. s += "WASM_SIMD = " + std::to_string(ggml_cpu_has_wasm_simd()) + " | ";
  7515. s += "BLAS = " + std::to_string(ggml_cpu_has_blas()) + " | ";
  7516. s += "SSE3 = " + std::to_string(ggml_cpu_has_sse3()) + " | ";
  7517. s += "SSSE3 = " + std::to_string(ggml_cpu_has_ssse3()) + " | ";
  7518. s += "VSX = " + std::to_string(ggml_cpu_has_vsx()) + " | ";
  7519. return s.c_str();
  7520. }
  7521. void llama_dump_timing_info_yaml(FILE * stream, const llama_context * ctx) {
  7522. fprintf(stream, "\n");
  7523. fprintf(stream, "###########\n");
  7524. fprintf(stream, "# Timings #\n");
  7525. fprintf(stream, "###########\n");
  7526. fprintf(stream, "\n");
  7527. fprintf(stream, "mst_eval: %.2f # ms / token during generation\n",
  7528. 1.0e-3 * ctx->t_eval_us / ctx->n_eval);
  7529. fprintf(stream, "mst_p_eval: %.2f # ms / token during prompt processing\n",
  7530. 1.0e-3 * ctx->t_p_eval_us / ctx->n_p_eval);
  7531. fprintf(stream, "mst_sample: %.2f # ms / token during sampling\n",
  7532. 1.0e-3 * ctx->t_sample_us / ctx->n_sample);
  7533. fprintf(stream, "n_eval: %d # number of tokens generated (excluding the first one)\n", ctx->n_eval);
  7534. fprintf(stream, "n_p_eval: %d # number of tokens processed in batches at the beginning\n", ctx->n_p_eval);
  7535. fprintf(stream, "n_sample: %d # number of sampled tokens\n", ctx->n_sample);
  7536. fprintf(stream, "t_eval_us: %" PRId64 " # total microseconds spent generating tokens\n", ctx->t_eval_us);
  7537. fprintf(stream, "t_load_us: %" PRId64 " # total microseconds spent loading the model\n", ctx->t_load_us);
  7538. fprintf(stream, "t_p_eval_us: %" PRId64 " # total microseconds spent prompt processing\n", ctx->t_p_eval_us);
  7539. fprintf(stream, "t_sample_us: %" PRId64 " # total microseconds spent sampling\n", ctx->t_sample_us);
  7540. fprintf(stream, "ts_eval: %.2f # tokens / second during generation\n",
  7541. 1.0e6 * ctx->n_eval / ctx->t_eval_us);
  7542. fprintf(stream, "ts_p_eval: %.2f # tokens / second during prompt processing\n",
  7543. 1.0e6 * ctx->n_p_eval / ctx->t_p_eval_us);
  7544. fprintf(stream, "ts_sample: %.2f # tokens / second during sampling\n",
  7545. 1.0e6 * ctx->n_sample / ctx->t_sample_us);
  7546. }
  7547. // For internal test use
  7548. const std::vector<std::pair<std::string, struct ggml_tensor *>> & llama_internal_get_tensor_map(
  7549. struct llama_context * ctx
  7550. ) {
  7551. return ctx->model.tensors_by_name;
  7552. }
  7553. void llama_log_set(ggml_log_callback log_callback, void * user_data) {
  7554. g_state.log_callback = log_callback ? log_callback : llama_log_callback_default;
  7555. g_state.log_callback_user_data = user_data;
  7556. }
  7557. static void llama_log_internal_v(ggml_log_level level, const char * format, va_list args) {
  7558. va_list args_copy;
  7559. va_copy(args_copy, args);
  7560. char buffer[128];
  7561. int len = vsnprintf(buffer, 128, format, args);
  7562. if (len < 128) {
  7563. g_state.log_callback(level, buffer, g_state.log_callback_user_data);
  7564. } else {
  7565. char* buffer2 = new char[len+1];
  7566. vsnprintf(buffer2, len+1, format, args_copy);
  7567. buffer2[len] = 0;
  7568. g_state.log_callback(level, buffer2, g_state.log_callback_user_data);
  7569. delete[] buffer2;
  7570. }
  7571. va_end(args_copy);
  7572. }
  7573. static void llama_log_internal(ggml_log_level level, const char * format, ...) {
  7574. va_list args;
  7575. va_start(args, format);
  7576. llama_log_internal_v(level, format, args);
  7577. va_end(args);
  7578. }
  7579. static void llama_log_callback_default(ggml_log_level level, const char * text, void * user_data) {
  7580. (void) level;
  7581. (void) user_data;
  7582. fputs(text, stderr);
  7583. fflush(stderr);
  7584. }