| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485 |
- #include "arg.h"
- #include "common.h"
- #include "sampling.h"
- #include "log.h"
- #include "llama.h"
- #include <cstdio>
- #include <string>
- #include <vector>
- #include <algorithm>
- struct ngram_data {
- bool active = false;
- llama_seq_id seq_id = -1;
- std::vector<int> i_batch;
- std::vector<llama_token> tokens;
- };
- // n-gram container
- struct ngram_container {
- ngram_container(int n_vocab, int N, int G) {
- cnt.resize(n_vocab);
- head.resize(n_vocab);
- tokens.resize(n_vocab * G * (N - 1));
- }
- int n_total = 0;
- std::vector<int> cnt;
- std::vector<int> head;
- // [n_vocab][G][N - 1]
- // for each token of the vocab, keep a ring-buffer of capacity G of n-grams of size N - 1
- std::vector<llama_token> tokens;
- };
- int main(int argc, char ** argv) {
- common_params params;
- if (!common_params_parse(argc, argv, params, LLAMA_EXAMPLE_COMMON)) {
- return 1;
- }
- common_init();
- const int W = 15; // lookahead window
- const int N = 5; // n-gram size
- const int G = 15; // max verification n-grams
- const bool dump_kv_cache = params.dump_kv_cache;
- // init llama.cpp
- llama_backend_init();
- llama_numa_init(params.numa);
- // load the target model
- common_init_result llama_init = common_init_from_params(params);
- llama_model * model = llama_init.model.get();
- llama_context * ctx = llama_init.context.get();
- const llama_vocab * vocab = llama_model_get_vocab(model);
- // Tokenize the prompt
- std::vector<llama_token> inp;
- std::vector<llama_token> all;
- inp = common_tokenize(ctx, params.prompt, true, true);
- all = inp;
- const int max_context_size = llama_n_ctx(ctx);
- const int max_tokens_list_size = max_context_size - 4;
- if ((int) inp.size() > max_tokens_list_size) {
- LOG_ERR("%s: prompt too long (%d tokens, max %d)\n", __func__, (int) inp.size(), max_tokens_list_size);
- return 1;
- }
- LOG("\n\n");
- for (auto id : inp) {
- LOG("%s", common_token_to_piece(ctx, id).c_str());
- }
- fflush(stderr);
- const int n_input = inp.size();
- const auto t_enc_start = ggml_time_us();
- // eval the prompt
- llama_decode(ctx, llama_batch_get_one( inp.data(), n_input - 1));
- llama_decode(ctx, llama_batch_get_one(&inp.back(), 1));
- for (int s = 1; s < W + G + 1; ++s) {
- llama_kv_cache_seq_cp(ctx, 0, s, -1, -1);
- }
- const auto t_enc_end = ggml_time_us();
- int n_predict = 0;
- int n_accept = 0;
- int n_past = inp.size();
- llama_token id = 0;
- // used to determine end of generation
- bool has_eos = false;
- // for each decoded batch, we have at most W + G + 1 distinct sequences:
- // seq_id == 0 : the current input token
- // seq_id [1, W] : tokens from the past N - 1 Jacobi iterations
- // seq_id [W + 1, W + G] : verification n-grams
- llama_batch batch = llama_batch_init(params.n_ctx, 0, W + G + 1);
- // target model sampling context
- struct common_sampler * smpl = common_sampler_init(model, params.sampling);
- // verification n-grams
- std::vector<ngram_data> ngrams_cur(G);
- // tokens for the past N - 1 Jacobi iterations
- std::vector<llama_token> tokens_j_prev(W);
- std::vector<std::vector<llama_token>> tokens_j(N - 1);
- for (int j = 0; j < N - 1; j++) {
- tokens_j[j].resize(W);
- for (int i = 0; i < W; i++) {
- // there are different ways to init these tokens
- if (0) {
- // initialize randomly from the prompt tokens
- tokens_j[j][i] = all[1 + rand() % (all.size() - 1)];
- } else {
- // initialize with a sequence of increasing numbers
- tokens_j[j][i] = 100 + i;
- }
- }
- }
- std::vector<llama_seq_id> seq_id_look;
- // the input token belongs both to all sequences
- std::vector<llama_seq_id> seq_id_all(W + G + 1);
- for (int i = 0; i < W + G + 1; i++) {
- seq_id_all[i] = i;
- }
- // here we keep adding new n-grams as we go
- ngram_container ngrams_observed(llama_vocab_n_tokens(vocab), N, G);
- // debug
- struct llama_kv_cache_view kvc_view = llama_kv_cache_view_init(ctx, W + G + 1);
- const auto t_dec_start = ggml_time_us();
- // sample first token
- {
- id = common_sampler_sample(smpl, ctx, 0);
- common_sampler_accept(smpl, id, true);
- {
- const std::string token_str = common_token_to_piece(ctx, id);
- LOG("%s", token_str.c_str());
- fflush(stdout);
- }
- }
- while (true) {
- // debug
- if (dump_kv_cache) {
- llama_kv_cache_view_update(ctx, &kvc_view);
- common_kv_cache_dump_view_seqs(kvc_view, 40);
- }
- // build the mask from https://lmsys.org/blog/2023-11-21-lookahead-decoding/
- //
- // Example for W = 5, N = 4, G = 2:
- // (I = input, L = lookahead, V = verification)
- //
- // Batch: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
- // T: -2 -2 -2 -2 -1 -1 -1 -1 -1 0 0 0 0 0 0
- // Info: I L L L L L L L L L L L L L L V V V V V V
- // Pos: 0 1 2 3 4 1 2 3 4 5 2 3 4 5 6 1 2 3 1 2 3 (+ n_past)
- // Logits: 1 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1
- // ---------------------------------------------------------------------
- // Seq: 0
- // 1 1 1
- // 2 2 2 2
- // 3 3 3 3 3
- // 4 4 4 4 4 4
- // 5 5 5 5 5 5 5
- // 6 6 6 6
- // 7 7 7 7
- // ---------------------------------------------------------------------
- // | | | | | | | | | | |
- // V V V V V | | | | | |
- // j_tokens | | | | | |
- // V V V V V V
- // id
- {
- common_batch_clear(batch);
- // current token - first token of the first level
- common_batch_add(batch, id, n_past, seq_id_all, true);
- // verification n-grams - queue this before the lookahead tokens for less KV cache fragmentation
- {
- const int g_cur = ngrams_observed.cnt[id];
- ngrams_cur.resize(g_cur);
- for (int g = 0; g < g_cur; g++) {
- ngrams_cur[g].active = true;
- ngrams_cur[g].tokens.resize(N);
- ngrams_cur[g].i_batch.resize(N);
- ngrams_cur[g].seq_id = W + 1 + g;
- ngrams_cur[g].i_batch[0] = 0;
- ngrams_cur[g].tokens [0] = id;
- }
- for (int j = 0; j < N - 1; j++) {
- for (int g = 0; g < g_cur; g++) {
- const int idx = id*(N - 1)*G + g*(N - 1);
- const llama_token t = ngrams_observed.tokens[idx + j];
- ngrams_cur[g].tokens [j + 1] = t;
- ngrams_cur[g].i_batch[j + 1] = batch.n_tokens;
- common_batch_add(batch, t, n_past + j + 1, { W + 1 + g }, true);
- }
- }
- }
- // fill the remaining W - 1 tokens for the first level
- for (int i = 1; i < W; i++) {
- seq_id_look.resize(W - i);
- for (int j = 0; j < W - i; j++) {
- seq_id_look[j] = i + j + 1;
- }
- common_batch_add(batch, tokens_j[0][i], n_past + i, seq_id_look, false);
- }
- // fill the rest of the levels
- for (int j = 1; j < N - 1; j++) {
- for (int i = 0; i < W; i++) {
- common_batch_add(batch, tokens_j[j][i], n_past + j + i, { i + 1 }, j == N - 2);
- }
- }
- }
- if (llama_decode(ctx, batch) != 0) {
- LOG_ERR("\n\n%s: llama_decode failed - increase KV cache size\n", __func__);
- return 1;
- }
- int seq_id_best = 0;
- for (int v = 0; v < N; ++v) {
- int i_batch = 0;
- // if no active ngrams are left, it means the sampled token does not pass the verification
- if (v > 0) {
- for (int g = 0; g < (int) ngrams_cur.size(); g++) {
- if (ngrams_cur[g].active) {
- i_batch = ngrams_cur[g].i_batch[v];
- seq_id_best = ngrams_cur[g].seq_id;
- ++n_accept;
- break;
- }
- }
- // no more matches -> create a new batch
- if (i_batch == 0) {
- break;
- }
- }
- // sample the next token
- id = common_sampler_sample(smpl, ctx, i_batch);
- common_sampler_accept(smpl, id, true);
- // print
- {
- const std::string token_str = common_token_to_piece(ctx, id);
- if (v == 0) {
- LOG("%s", token_str.c_str());
- } else {
- // print light cyan
- LOG("\033[0;96m%s\033[0m", token_str.c_str());
- }
- fflush(stdout);
- if (llama_vocab_is_eog(vocab, id)) {
- has_eos = true;
- }
- all.push_back(id);
- }
- ++n_predict;
- ++n_past;
- if ((params.n_predict >= 0 && n_predict > params.n_predict) || has_eos) {
- break;
- }
- // verify across active n-grams
- for (int g = 0; g < (int) ngrams_cur.size(); g++) {
- if (ngrams_cur[g].active) {
- if (v == N - 1) {
- ngrams_cur[g].active = false;
- } else {
- if (id != ngrams_cur[g].tokens[v + 1]) {
- ngrams_cur[g].active = false;
- }
- }
- }
- }
- // print known n-grams starting with token id (debug)
- if (0 && v == 0) {
- if (ngrams_observed.cnt[id] > 0) {
- LOG("\n - %d n-grams starting with '%s'\n", ngrams_observed.cnt[id], common_token_to_piece(ctx, id).c_str());
- }
- for (int i = 0; i < ngrams_observed.cnt[id]; i++) {
- LOG(" - ngram %2d: ", i);
- const int idx = id*(N - 1)*G + i*(N - 1);
- for (int j = 0; j < N - 1; j++) {
- const std::string token_str = common_token_to_piece(ctx, ngrams_observed.tokens[idx + j]);
- LOG("%s", token_str.c_str());
- }
- LOG("\n");
- }
- }
- // update lookahead tokens
- {
- for (int i = 0; i < W; i++) {
- tokens_j_prev[i] = tokens_j[0][i];
- }
- for (int j = 0; j < N - 2; j++) {
- tokens_j[j] = tokens_j[j + 1];
- }
- if (v == 0) {
- // sample from the last level
- for (int i = 0; i < W; i++) {
- tokens_j[N - 2][i] = common_sampler_sample(smpl, ctx, ngrams_cur.size()*(N-1) + W*(N - 2) + i);
- }
- } else {
- for (int i = 0; i < W; i++) {
- // there are different ways to init these tokens
- if (0) {
- // random init
- tokens_j[N - 2][i] = all[1 + rand() % (all.size() - 1)];
- } else {
- // init from the previous level
- tokens_j[N - 2][i] = tokens_j[0][i];
- }
- }
- }
- }
- // update observed ngrams
- if (v == 0) {
- // the first token of the n-gram is determined by the index in the container so it is not stored
- std::vector<llama_token> ngram(N - 1);
- // n-gram generation
- // ref: https://github.com/hao-ai-lab/LookaheadDecoding/issues/14#issuecomment-1826198518
- for (int f = 0; f < W; ++f) {
- const int ft = tokens_j_prev[f]; // first token of the n-gram
- for (int j = 0; j < N - 1; ++j) {
- ngram[j] = tokens_j[j][f];
- }
- // filter-out repeating n-grams
- {
- bool is_unique = true;
- for (int k = 0; k < ngrams_observed.cnt[ft]; ++k) {
- const int idx = ft*(N - 1)*G + k*(N - 1);
- bool is_match = true;
- for (int j = 0; j < N - 1; ++j) {
- if (ngrams_observed.tokens[idx + j] != ngram[j]) {
- is_match = false;
- break;
- }
- }
- if (is_match) {
- is_unique = false;
- break;
- }
- }
- if (!is_unique) {
- continue;
- }
- }
- const int head = ngrams_observed.head[ft];
- const int idx = ft*(N - 1)*G + head*(N - 1);
- for (int i = 0; i < N - 1; i++) {
- ngrams_observed.tokens[idx + i] = ngram[i];
- }
- ngrams_observed.cnt[ft] = std::min(G, ngrams_observed.cnt[ft] + 1);
- ngrams_observed.head[ft] = (head + 1) % G;
- ngrams_observed.n_total++;
- }
- }
- }
- if ((params.n_predict >= 0 && n_predict > params.n_predict) || has_eos) {
- break;
- }
- // KV cache management
- // if no verification token matched, we simply remove all cells from this batch -> no fragmentation
- llama_kv_cache_seq_rm(ctx, -1, n_past, -1);
- if (seq_id_best != 0) {
- // if a verification token matched, we keep the best sequence and remove the rest
- // this leads to some KV cache fragmentation
- llama_kv_cache_seq_keep(ctx, seq_id_best);
- llama_kv_cache_seq_cp (ctx, seq_id_best, 0, -1, -1);
- llama_kv_cache_seq_rm (ctx, seq_id_best, -1, -1);
- for (int s = 1; s < W + G + 1; ++s) {
- llama_kv_cache_seq_cp(ctx, 0, s, -1, -1);
- }
- }
- }
- auto t_dec_end = ggml_time_us();
- LOG("\n\n");
- LOG_INF("encoded %4d tokens in %8.3f seconds, speed: %8.3f t/s\n", n_input, (t_enc_end - t_enc_start) / 1e6f, inp.size() / ((t_enc_end - t_enc_start) / 1e6f));
- LOG_INF("decoded %4d tokens in %8.3f seconds, speed: %8.3f t/s\n", n_predict, (t_dec_end - t_dec_start) / 1e6f, n_predict / ((t_dec_end - t_dec_start) / 1e6f));
- LOG_INF("\n");
- LOG_INF("W = %2d\n", W);
- LOG_INF("N = %2d\n", N);
- LOG_INF("G = %2d\n", G);
- LOG_INF("\n");
- LOG_INF("n_predict = %d\n", n_predict);
- LOG_INF("n_accept = %d\n", n_accept);
- LOG_INF("\n");
- common_perf_print(ctx, smpl);
- common_sampler_free(smpl);
- llama_kv_cache_view_free(&kvc_view);
- llama_batch_free(batch);
- llama_backend_free();
- LOG("\n\n");
- return 0;
- }
|