| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469 |
- #include "common.h"
- #include "llama.h"
- #include <cstdio>
- #include <cstring>
- #include <vector>
- #include <string>
- #include <unordered_map>
- #include <fstream>
- #include <cmath>
- #include <cctype>
- struct quant_option {
- std::string name;
- llama_ftype ftype;
- std::string desc;
- };
- static const std::vector<struct quant_option> QUANT_OPTIONS = {
- { "Q4_0", LLAMA_FTYPE_MOSTLY_Q4_0, " 4.34G, +0.4685 ppl @ Llama-3-8B", },
- { "Q4_1", LLAMA_FTYPE_MOSTLY_Q4_1, " 4.78G, +0.4511 ppl @ Llama-3-8B", },
- { "Q5_0", LLAMA_FTYPE_MOSTLY_Q5_0, " 5.21G, +0.1316 ppl @ Llama-3-8B", },
- { "Q5_1", LLAMA_FTYPE_MOSTLY_Q5_1, " 5.65G, +0.1062 ppl @ Llama-3-8B", },
- { "IQ2_XXS", LLAMA_FTYPE_MOSTLY_IQ2_XXS, " 2.06 bpw quantization", },
- { "IQ2_XS", LLAMA_FTYPE_MOSTLY_IQ2_XS, " 2.31 bpw quantization", },
- { "IQ2_S", LLAMA_FTYPE_MOSTLY_IQ2_S, " 2.5 bpw quantization", },
- { "IQ2_M", LLAMA_FTYPE_MOSTLY_IQ2_M, " 2.7 bpw quantization", },
- { "IQ1_S", LLAMA_FTYPE_MOSTLY_IQ1_S, " 1.56 bpw quantization", },
- { "IQ1_M", LLAMA_FTYPE_MOSTLY_IQ1_M, " 1.75 bpw quantization", },
- { "TQ1_0", LLAMA_FTYPE_MOSTLY_TQ1_0, " 1.69 bpw ternarization", },
- { "TQ2_0", LLAMA_FTYPE_MOSTLY_TQ2_0, " 2.06 bpw ternarization", },
- { "Q2_K", LLAMA_FTYPE_MOSTLY_Q2_K, " 2.96G, +3.5199 ppl @ Llama-3-8B", },
- { "Q2_K_S", LLAMA_FTYPE_MOSTLY_Q2_K_S, " 2.96G, +3.1836 ppl @ Llama-3-8B", },
- { "IQ3_XXS", LLAMA_FTYPE_MOSTLY_IQ3_XXS, " 3.06 bpw quantization", },
- { "IQ3_S", LLAMA_FTYPE_MOSTLY_IQ3_S, " 3.44 bpw quantization", },
- { "IQ3_M", LLAMA_FTYPE_MOSTLY_IQ3_M, " 3.66 bpw quantization mix", },
- { "Q3_K", LLAMA_FTYPE_MOSTLY_Q3_K_M, "alias for Q3_K_M" },
- { "IQ3_XS", LLAMA_FTYPE_MOSTLY_IQ3_XS, " 3.3 bpw quantization", },
- { "Q3_K_S", LLAMA_FTYPE_MOSTLY_Q3_K_S, " 3.41G, +1.6321 ppl @ Llama-3-8B", },
- { "Q3_K_M", LLAMA_FTYPE_MOSTLY_Q3_K_M, " 3.74G, +0.6569 ppl @ Llama-3-8B", },
- { "Q3_K_L", LLAMA_FTYPE_MOSTLY_Q3_K_L, " 4.03G, +0.5562 ppl @ Llama-3-8B", },
- { "IQ4_NL", LLAMA_FTYPE_MOSTLY_IQ4_NL, " 4.50 bpw non-linear quantization", },
- { "IQ4_XS", LLAMA_FTYPE_MOSTLY_IQ4_XS, " 4.25 bpw non-linear quantization", },
- { "Q4_K", LLAMA_FTYPE_MOSTLY_Q4_K_M, "alias for Q4_K_M", },
- { "Q4_K_S", LLAMA_FTYPE_MOSTLY_Q4_K_S, " 4.37G, +0.2689 ppl @ Llama-3-8B", },
- { "Q4_K_M", LLAMA_FTYPE_MOSTLY_Q4_K_M, " 4.58G, +0.1754 ppl @ Llama-3-8B", },
- { "Q5_K", LLAMA_FTYPE_MOSTLY_Q5_K_M, "alias for Q5_K_M", },
- { "Q5_K_S", LLAMA_FTYPE_MOSTLY_Q5_K_S, " 5.21G, +0.1049 ppl @ Llama-3-8B", },
- { "Q5_K_M", LLAMA_FTYPE_MOSTLY_Q5_K_M, " 5.33G, +0.0569 ppl @ Llama-3-8B", },
- { "Q6_K", LLAMA_FTYPE_MOSTLY_Q6_K, " 6.14G, +0.0217 ppl @ Llama-3-8B", },
- { "Q8_0", LLAMA_FTYPE_MOSTLY_Q8_0, " 7.96G, +0.0026 ppl @ Llama-3-8B", },
- { "F16", LLAMA_FTYPE_MOSTLY_F16, "14.00G, +0.0020 ppl @ Mistral-7B", },
- { "BF16", LLAMA_FTYPE_MOSTLY_BF16, "14.00G, -0.0050 ppl @ Mistral-7B", },
- { "F32", LLAMA_FTYPE_ALL_F32, "26.00G @ 7B", },
- // Note: Ensure COPY comes after F32 to avoid ftype 0 from matching.
- { "COPY", LLAMA_FTYPE_ALL_F32, "only copy tensors, no quantizing", },
- };
- static const char * const LLM_KV_QUANTIZE_IMATRIX_FILE = "quantize.imatrix.file";
- static const char * const LLM_KV_QUANTIZE_IMATRIX_DATASET = "quantize.imatrix.dataset";
- static const char * const LLM_KV_QUANTIZE_IMATRIX_N_ENTRIES = "quantize.imatrix.entries_count";
- static const char * const LLM_KV_QUANTIZE_IMATRIX_N_CHUNKS = "quantize.imatrix.chunks_count";
- static bool striequals(const char * a, const char * b) {
- while (*a && *b) {
- if (std::tolower(*a) != std::tolower(*b)) {
- return false;
- }
- a++; b++;
- }
- return *a == *b;
- }
- static bool try_parse_ftype(const std::string & ftype_str_in, llama_ftype & ftype, std::string & ftype_str_out) {
- std::string ftype_str;
- for (auto ch : ftype_str_in) {
- ftype_str.push_back(std::toupper(ch));
- }
- for (auto & it : QUANT_OPTIONS) {
- if (striequals(it.name.c_str(), ftype_str.c_str())) {
- ftype = it.ftype;
- ftype_str_out = it.name;
- return true;
- }
- }
- try {
- int ftype_int = std::stoi(ftype_str);
- for (auto & it : QUANT_OPTIONS) {
- if (it.ftype == ftype_int) {
- ftype = it.ftype;
- ftype_str_out = it.name;
- return true;
- }
- }
- }
- catch (...) {
- // stoi failed
- }
- return false;
- }
- // usage:
- // ./llama-quantize [--allow-requantize] [--leave-output-tensor] [--pure] models/llama/ggml-model.gguf [models/llama/ggml-model-quant.gguf] type [nthreads]
- //
- [[noreturn]]
- static void usage(const char * executable) {
- printf("usage: %s [--help] [--allow-requantize] [--leave-output-tensor] [--pure] [--imatrix] [--include-weights] [--exclude-weights] [--output-tensor-type] [--token-embedding-type] [--override-kv] model-f32.gguf [model-quant.gguf] type [nthreads]\n\n", executable);
- printf(" --allow-requantize: Allows requantizing tensors that have already been quantized. Warning: This can severely reduce quality compared to quantizing from 16bit or 32bit\n");
- printf(" --leave-output-tensor: Will leave output.weight un(re)quantized. Increases model size but may also increase quality, especially when requantizing\n");
- printf(" --pure: Disable k-quant mixtures and quantize all tensors to the same type\n");
- printf(" --imatrix file_name: use data in file_name as importance matrix for quant optimizations\n");
- printf(" --include-weights tensor_name: use importance matrix for this/these tensor(s)\n");
- printf(" --exclude-weights tensor_name: use importance matrix for this/these tensor(s)\n");
- printf(" --output-tensor-type ggml_type: use this ggml_type for the output.weight tensor\n");
- printf(" --token-embedding-type ggml_type: use this ggml_type for the token embeddings tensor\n");
- printf(" --keep-split: will generate quantized model in the same shards as input\n");
- printf(" --override-kv KEY=TYPE:VALUE\n");
- printf(" Advanced option to override model metadata by key in the quantized model. May be specified multiple times.\n");
- printf("Note: --include-weights and --exclude-weights cannot be used together\n");
- printf("\nAllowed quantization types:\n");
- for (auto & it : QUANT_OPTIONS) {
- if (it.name != "COPY") {
- printf(" %2d or ", it.ftype);
- } else {
- printf(" ");
- }
- printf("%-7s : %s\n", it.name.c_str(), it.desc.c_str());
- }
- exit(1);
- }
- static int load_imatrix(const std::string & imatrix_file, std::string & imatrix_dataset, std::unordered_map<std::string, std::vector<float>> & imatrix_data) {
- std::ifstream in(imatrix_file.c_str(), std::ios::binary);
- if (!in) {
- printf("%s: failed to open %s\n",__func__, imatrix_file.c_str());
- exit(1);
- }
- int n_entries;
- in.read((char *)&n_entries, sizeof(n_entries));
- if (in.fail() || n_entries < 1) {
- printf("%s: no data in file %s\n", __func__, imatrix_file.c_str());
- exit(1);
- }
- for (int i = 0; i < n_entries; ++i) {
- int len; in.read((char *)&len, sizeof(len));
- std::vector<char> name_as_vec(len+1);
- in.read((char *)name_as_vec.data(), len);
- if (in.fail()) {
- printf("%s: failed reading name for entry %d from %s\n", __func__, i+1, imatrix_file.c_str());
- exit(1);
- }
- name_as_vec[len] = 0;
- std::string name{name_as_vec.data()};
- auto & e = imatrix_data[name];
- int ncall;
- in.read((char *)&ncall, sizeof(ncall));
- int nval;
- in.read((char *)&nval, sizeof(nval));
- if (in.fail() || nval < 1) {
- printf("%s: failed reading number of values for entry %d\n", __func__, i);
- imatrix_data = {};
- exit(1);
- }
- e.resize(nval);
- in.read((char *)e.data(), nval*sizeof(float));
- if (in.fail()) {
- printf("%s: failed reading data for entry %d\n", __func__, i);
- imatrix_data = {};
- exit(1);
- }
- if (ncall > 0) {
- for (auto& v : e) v /= ncall;
- }
- if (getenv("LLAMA_TRACE")) {
- printf("%s: loaded data (size = %6d, ncall = %6d) for '%s'\n", __func__, int(e.size()), ncall, name.c_str());
- }
- }
- // latest imatrix version contains the dataset filename at the end of the file
- int m_last_call = 0;
- if (in.peek() != EOF) {
- in.read((char *)&m_last_call, sizeof(m_last_call));
- int dataset_len;
- in.read((char *)&dataset_len, sizeof(dataset_len));
- std::vector<char> dataset_as_vec(dataset_len);
- in.read(dataset_as_vec.data(), dataset_len);
- imatrix_dataset.assign(dataset_as_vec.begin(), dataset_as_vec.end());
- printf("%s: imatrix dataset='%s'\n", __func__, imatrix_dataset.c_str());
- }
- printf("%s: loaded %d importance matrix entries from %s computed on %d chunks\n", __func__, int(imatrix_data.size()), imatrix_file.c_str(), m_last_call);
- return m_last_call;
- }
- static int prepare_imatrix(const std::string & imatrix_file,
- std::string & imatrix_dataset,
- const std::vector<std::string> & included_weights,
- const std::vector<std::string> & excluded_weights,
- std::unordered_map<std::string, std::vector<float>> & imatrix_data) {
- int m_last_call = -1;
- if (!imatrix_file.empty()) {
- m_last_call = load_imatrix(imatrix_file, imatrix_dataset, imatrix_data);
- }
- if (imatrix_data.empty()) {
- return m_last_call;
- }
- if (!excluded_weights.empty()) {
- for (auto& name : excluded_weights) {
- for (auto it = imatrix_data.begin(); it != imatrix_data.end(); ) {
- auto pos = it->first.find(name);
- if (pos != std::string::npos) it = imatrix_data.erase(it);
- else ++it;
- }
- }
- }
- if (!included_weights.empty()) {
- std::unordered_map<std::string, std::vector<float>> tmp;
- for (auto& name : included_weights) {
- for (auto& e : imatrix_data) {
- auto pos = e.first.find(name);
- if (pos != std::string::npos) {
- tmp.emplace(std::move(e));
- }
- }
- }
- imatrix_data = std::move(tmp);
- }
- if (!imatrix_data.empty()) {
- printf("%s: have %d importance matrix entries\n", __func__, int(imatrix_data.size()));
- }
- return m_last_call;
- }
- static ggml_type parse_ggml_type(const char * arg) {
- for (int i = 0; i < GGML_TYPE_COUNT; ++i) {
- auto type = (ggml_type)i;
- const auto * name = ggml_type_name(type);
- if (name && striequals(name, arg)) {
- return type;
- }
- }
- fprintf(stderr, "%s: invalid ggml_type '%s'\n", __func__, arg);
- return GGML_TYPE_COUNT;
- }
- int main(int argc, char ** argv) {
- if (argc < 3) {
- usage(argv[0]);
- }
- llama_model_quantize_params params = llama_model_quantize_default_params();
- int arg_idx = 1;
- std::string imatrix_file;
- std::vector<std::string> included_weights, excluded_weights;
- std::vector<llama_model_kv_override> kv_overrides;
- for (; arg_idx < argc && strncmp(argv[arg_idx], "--", 2) == 0; arg_idx++) {
- if (strcmp(argv[arg_idx], "--leave-output-tensor") == 0) {
- params.quantize_output_tensor = false;
- } else if (strcmp(argv[arg_idx], "--output-tensor-type") == 0) {
- if (arg_idx < argc-1) {
- params.output_tensor_type = parse_ggml_type(argv[++arg_idx]);
- if (params.output_tensor_type == GGML_TYPE_COUNT) {
- usage(argv[0]);
- }
- } else {
- usage(argv[0]);
- }
- } else if (strcmp(argv[arg_idx], "--token-embedding-type") == 0) {
- if (arg_idx < argc-1) {
- params.token_embedding_type = parse_ggml_type(argv[++arg_idx]);
- if (params.token_embedding_type == GGML_TYPE_COUNT) {
- usage(argv[0]);
- }
- } else {
- usage(argv[0]);
- }
- } else if (strcmp(argv[arg_idx], "--override-kv") == 0) {
- if (arg_idx == argc-1 || !string_parse_kv_override(argv[++arg_idx], kv_overrides)) {
- usage(argv[0]);
- }
- } else if (strcmp(argv[arg_idx], "--allow-requantize") == 0) {
- params.allow_requantize = true;
- } else if (strcmp(argv[arg_idx], "--pure") == 0) {
- params.pure = true;
- } else if (strcmp(argv[arg_idx], "--imatrix") == 0) {
- if (arg_idx < argc-1) {
- imatrix_file = argv[++arg_idx];
- } else {
- usage(argv[0]);
- }
- } else if (strcmp(argv[arg_idx], "--include-weights") == 0) {
- if (arg_idx < argc-1) {
- included_weights.emplace_back(argv[++arg_idx]);
- } else {
- usage(argv[0]);
- }
- } else if (strcmp(argv[arg_idx], "--exclude-weights") == 0) {
- if (arg_idx < argc-1) {
- excluded_weights.emplace_back(argv[++arg_idx]);
- } else {
- usage(argv[0]);
- }
- } else if (strcmp(argv[arg_idx], "--keep-split") == 0) {
- params.keep_split = true;
- } else {
- usage(argv[0]);
- }
- }
- if (argc - arg_idx < 2) {
- printf("%s: bad arguments\n", argv[0]);
- usage(argv[0]);
- }
- if (!included_weights.empty() && !excluded_weights.empty()) {
- usage(argv[0]);
- }
- std::string imatrix_dataset;
- std::unordered_map<std::string, std::vector<float>> imatrix_data;
- int m_last_call = prepare_imatrix(imatrix_file, imatrix_dataset, included_weights, excluded_weights, imatrix_data);
- if (!imatrix_data.empty()) {
- params.imatrix = &imatrix_data;
- {
- llama_model_kv_override kvo;
- std::strcpy(kvo.key, LLM_KV_QUANTIZE_IMATRIX_FILE);
- kvo.tag = LLAMA_KV_OVERRIDE_TYPE_STR;
- strncpy(kvo.val_str, imatrix_file.c_str(), 127);
- kvo.val_str[127] = '\0';
- kv_overrides.emplace_back(std::move(kvo));
- }
- if (!imatrix_dataset.empty()) {
- llama_model_kv_override kvo;
- std::strcpy(kvo.key, LLM_KV_QUANTIZE_IMATRIX_DATASET);
- kvo.tag = LLAMA_KV_OVERRIDE_TYPE_STR;
- strncpy(kvo.val_str, imatrix_dataset.c_str(), 127);
- kvo.val_str[127] = '\0';
- kv_overrides.emplace_back(std::move(kvo));
- }
- {
- llama_model_kv_override kvo;
- std::strcpy(kvo.key, LLM_KV_QUANTIZE_IMATRIX_N_ENTRIES);
- kvo.tag = LLAMA_KV_OVERRIDE_TYPE_INT;
- kvo.val_i64 = imatrix_data.size();
- kv_overrides.emplace_back(std::move(kvo));
- }
- if (m_last_call > 0) {
- llama_model_kv_override kvo;
- std::strcpy(kvo.key, LLM_KV_QUANTIZE_IMATRIX_N_CHUNKS);
- kvo.tag = LLAMA_KV_OVERRIDE_TYPE_INT;
- kvo.val_i64 = m_last_call;
- kv_overrides.emplace_back(std::move(kvo));
- }
- }
- if (!kv_overrides.empty()) {
- kv_overrides.emplace_back();
- kv_overrides.back().key[0] = 0;
- params.kv_overrides = &kv_overrides;
- }
- llama_backend_init();
- // parse command line arguments
- const std::string fname_inp = argv[arg_idx];
- arg_idx++;
- std::string fname_out;
- std::string ftype_str;
- std::string suffix = ".gguf";
- if (try_parse_ftype(argv[arg_idx], params.ftype, ftype_str)) {
- std::string fpath;
- const size_t pos = fname_inp.find_last_of("/\\");
- if (pos != std::string::npos) {
- fpath = fname_inp.substr(0, pos + 1);
- }
- // export as [inp path]/ggml-model-[ftype]. Only add extension if there is no splitting
- fname_out = fpath + "ggml-model-" + ftype_str;
- if (!params.keep_split) {
- fname_out += suffix;
- }
- arg_idx++;
- if (ftype_str == "COPY") {
- params.only_copy = true;
- }
- } else {
- fname_out = argv[arg_idx];
- if (params.keep_split && fname_out.find(suffix) != std::string::npos) {
- fname_out = fname_out.substr(0, fname_out.length() - suffix.length());
- }
- arg_idx++;
- if (argc <= arg_idx) {
- fprintf(stderr, "%s: missing ftype\n", __func__);
- return 1;
- }
- if (!try_parse_ftype(argv[arg_idx], params.ftype, ftype_str)) {
- fprintf(stderr, "%s: invalid ftype '%s'\n", __func__, argv[3]);
- return 1;
- }
- if (ftype_str == "COPY") {
- params.only_copy = true;
- }
- arg_idx++;
- }
- // parse nthreads
- if (argc > arg_idx) {
- try {
- params.nthread = std::stoi(argv[arg_idx]);
- }
- catch (const std::exception & e) {
- fprintf(stderr, "%s: invalid nthread '%s' (%s)\n", __func__, argv[arg_idx], e.what());
- return 1;
- }
- }
- if ((params.ftype == LLAMA_FTYPE_MOSTLY_IQ2_XS || params.ftype == LLAMA_FTYPE_MOSTLY_IQ2_XXS ||
- params.ftype == LLAMA_FTYPE_MOSTLY_IQ2_S ||
- params.ftype == LLAMA_FTYPE_MOSTLY_Q2_K_S ||
- params.ftype == LLAMA_FTYPE_MOSTLY_IQ1_S ||
- params.ftype == LLAMA_FTYPE_MOSTLY_IQ1_M) && imatrix_data.empty()) {
- fprintf(stderr, "\n==========================================================================================================\n");
- fprintf(stderr, "Please do not use IQ1_S, IQ1_M, IQ2_S, IQ2_XXS, IQ2_XS or Q2_K_S quantization without an importance matrix\n");
- fprintf(stderr, "==========================================================================================================\n\n\n");
- return 1;
- }
- print_build_info();
- fprintf(stderr, "%s: quantizing '%s' to '%s' as %s", __func__, fname_inp.c_str(), fname_out.c_str(), ftype_str.c_str());
- if (params.nthread > 0) {
- fprintf(stderr, " using %d threads", params.nthread);
- }
- fprintf(stderr, "\n");
- const int64_t t_main_start_us = llama_time_us();
- int64_t t_quantize_us = 0;
- // load the model
- {
- const int64_t t_start_us = llama_time_us();
- if (llama_model_quantize(fname_inp.c_str(), fname_out.c_str(), ¶ms)) {
- fprintf(stderr, "%s: failed to quantize model from '%s'\n", __func__, fname_inp.c_str());
- return 1;
- }
- t_quantize_us = llama_time_us() - t_start_us;
- }
- // report timing
- {
- const int64_t t_main_end_us = llama_time_us();
- printf("\n");
- printf("%s: quantize time = %8.2f ms\n", __func__, t_quantize_us/1000.0);
- printf("%s: total time = %8.2f ms\n", __func__, (t_main_end_us - t_main_start_us)/1000.0);
- }
- llama_backend_free();
- return 0;
- }
|