ggml.c 584 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124512551265127512851295130513151325133513451355136513751385139514051415142514351445145514651475148514951505151515251535154515551565157515851595160516151625163516451655166516751685169517051715172517351745175517651775178517951805181518251835184518551865187518851895190519151925193519451955196519751985199520052015202520352045205520652075208520952105211521252135214521552165217521852195220522152225223522452255226522752285229523052315232523352345235523652375238523952405241524252435244524552465247524852495250525152525253525452555256525752585259526052615262526352645265526652675268526952705271527252735274527552765277527852795280528152825283528452855286528752885289529052915292529352945295529652975298529953005301530253035304530553065307530853095310531153125313531453155316531753185319532053215322532353245325532653275328532953305331533253335334533553365337533853395340534153425343534453455346534753485349535053515352535353545355535653575358535953605361536253635364536553665367536853695370537153725373537453755376537753785379538053815382538353845385538653875388538953905391539253935394539553965397539853995400540154025403540454055406540754085409541054115412541354145415541654175418541954205421542254235424542554265427542854295430543154325433543454355436543754385439544054415442544354445445544654475448544954505451545254535454545554565457545854595460546154625463546454655466546754685469547054715472547354745475547654775478547954805481548254835484548554865487548854895490549154925493549454955496549754985499550055015502550355045505550655075508550955105511551255135514551555165517551855195520552155225523552455255526552755285529553055315532553355345535553655375538553955405541554255435544554555465547554855495550555155525553555455555556555755585559556055615562556355645565556655675568556955705571557255735574557555765577557855795580558155825583558455855586558755885589559055915592559355945595559655975598559956005601560256035604560556065607560856095610561156125613561456155616561756185619562056215622562356245625562656275628562956305631563256335634563556365637563856395640564156425643564456455646564756485649565056515652565356545655565656575658565956605661566256635664566556665667566856695670567156725673567456755676567756785679568056815682568356845685568656875688568956905691569256935694569556965697569856995700570157025703570457055706570757085709571057115712571357145715571657175718571957205721572257235724572557265727572857295730573157325733573457355736573757385739574057415742574357445745574657475748574957505751575257535754575557565757575857595760576157625763576457655766576757685769577057715772577357745775577657775778577957805781578257835784578557865787578857895790579157925793579457955796579757985799580058015802580358045805580658075808580958105811581258135814581558165817581858195820582158225823582458255826582758285829583058315832583358345835583658375838583958405841584258435844584558465847584858495850585158525853585458555856585758585859586058615862586358645865586658675868586958705871587258735874587558765877587858795880588158825883588458855886588758885889589058915892589358945895589658975898589959005901590259035904590559065907590859095910591159125913591459155916591759185919592059215922592359245925592659275928592959305931593259335934593559365937593859395940594159425943594459455946594759485949595059515952595359545955595659575958595959605961596259635964596559665967596859695970597159725973597459755976597759785979598059815982598359845985598659875988598959905991599259935994599559965997599859996000600160026003600460056006600760086009601060116012601360146015601660176018601960206021602260236024602560266027602860296030603160326033603460356036603760386039604060416042604360446045604660476048604960506051605260536054605560566057605860596060606160626063606460656066606760686069607060716072607360746075607660776078607960806081608260836084608560866087608860896090609160926093609460956096609760986099610061016102610361046105610661076108610961106111611261136114611561166117611861196120612161226123612461256126612761286129613061316132613361346135613661376138613961406141614261436144614561466147614861496150615161526153615461556156615761586159616061616162616361646165616661676168616961706171617261736174617561766177617861796180618161826183618461856186618761886189619061916192619361946195619661976198619962006201620262036204620562066207620862096210621162126213621462156216621762186219622062216222622362246225622662276228622962306231623262336234623562366237623862396240624162426243624462456246624762486249625062516252625362546255625662576258625962606261626262636264626562666267626862696270627162726273627462756276627762786279628062816282628362846285628662876288628962906291629262936294629562966297629862996300630163026303630463056306630763086309631063116312631363146315631663176318631963206321632263236324632563266327632863296330633163326333633463356336633763386339634063416342634363446345634663476348634963506351635263536354635563566357635863596360636163626363636463656366636763686369637063716372637363746375637663776378637963806381638263836384638563866387638863896390639163926393639463956396639763986399640064016402640364046405640664076408640964106411641264136414641564166417641864196420642164226423642464256426642764286429643064316432643364346435643664376438643964406441644264436444644564466447644864496450645164526453645464556456645764586459646064616462646364646465646664676468646964706471647264736474647564766477647864796480648164826483648464856486648764886489649064916492649364946495649664976498649965006501650265036504650565066507650865096510651165126513651465156516651765186519652065216522652365246525652665276528652965306531653265336534653565366537653865396540654165426543654465456546654765486549655065516552655365546555655665576558655965606561656265636564656565666567656865696570657165726573657465756576657765786579658065816582658365846585658665876588658965906591659265936594659565966597659865996600660166026603660466056606660766086609661066116612661366146615661666176618661966206621662266236624662566266627662866296630663166326633663466356636663766386639664066416642664366446645664666476648664966506651665266536654665566566657665866596660666166626663666466656666666766686669667066716672667366746675667666776678667966806681668266836684668566866687668866896690669166926693669466956696669766986699670067016702670367046705670667076708670967106711671267136714671567166717671867196720672167226723672467256726672767286729673067316732673367346735673667376738673967406741674267436744674567466747674867496750675167526753675467556756675767586759676067616762676367646765676667676768676967706771677267736774677567766777677867796780678167826783678467856786678767886789679067916792679367946795679667976798679968006801680268036804680568066807680868096810681168126813681468156816681768186819682068216822682368246825682668276828682968306831683268336834683568366837683868396840684168426843684468456846684768486849685068516852685368546855685668576858685968606861686268636864686568666867686868696870687168726873687468756876687768786879688068816882688368846885688668876888688968906891689268936894689568966897689868996900690169026903690469056906690769086909691069116912691369146915691669176918691969206921692269236924692569266927692869296930693169326933693469356936693769386939694069416942694369446945694669476948694969506951695269536954695569566957695869596960696169626963696469656966696769686969697069716972697369746975697669776978697969806981698269836984698569866987698869896990699169926993699469956996699769986999700070017002700370047005700670077008700970107011701270137014701570167017701870197020702170227023702470257026702770287029703070317032703370347035703670377038703970407041704270437044704570467047704870497050705170527053705470557056705770587059706070617062706370647065706670677068706970707071707270737074707570767077707870797080708170827083708470857086708770887089709070917092709370947095709670977098709971007101710271037104710571067107710871097110711171127113711471157116711771187119712071217122712371247125712671277128712971307131713271337134713571367137713871397140714171427143714471457146714771487149715071517152715371547155715671577158715971607161716271637164716571667167716871697170717171727173717471757176717771787179718071817182718371847185718671877188718971907191719271937194719571967197719871997200720172027203720472057206720772087209721072117212721372147215721672177218721972207221722272237224722572267227722872297230723172327233723472357236723772387239724072417242724372447245724672477248724972507251725272537254725572567257725872597260726172627263726472657266726772687269727072717272727372747275727672777278727972807281728272837284728572867287728872897290729172927293729472957296729772987299730073017302730373047305730673077308730973107311731273137314731573167317731873197320732173227323732473257326732773287329733073317332733373347335733673377338733973407341734273437344734573467347734873497350735173527353735473557356735773587359736073617362736373647365736673677368736973707371737273737374737573767377737873797380738173827383738473857386738773887389739073917392739373947395739673977398739974007401740274037404740574067407740874097410741174127413741474157416741774187419742074217422742374247425742674277428742974307431743274337434743574367437743874397440744174427443744474457446744774487449745074517452745374547455745674577458745974607461746274637464746574667467746874697470747174727473747474757476747774787479748074817482748374847485748674877488748974907491749274937494749574967497749874997500750175027503750475057506750775087509751075117512751375147515751675177518751975207521752275237524752575267527752875297530753175327533753475357536753775387539754075417542754375447545754675477548754975507551755275537554755575567557755875597560756175627563756475657566756775687569757075717572757375747575757675777578757975807581758275837584758575867587758875897590759175927593759475957596759775987599760076017602760376047605760676077608760976107611761276137614761576167617761876197620762176227623762476257626762776287629763076317632763376347635763676377638763976407641764276437644764576467647764876497650765176527653765476557656765776587659766076617662766376647665766676677668766976707671767276737674767576767677767876797680768176827683768476857686768776887689769076917692769376947695769676977698769977007701770277037704770577067707770877097710771177127713771477157716771777187719772077217722772377247725772677277728772977307731773277337734773577367737773877397740774177427743774477457746774777487749775077517752775377547755775677577758775977607761776277637764776577667767776877697770777177727773777477757776777777787779778077817782778377847785778677877788778977907791779277937794779577967797779877997800780178027803780478057806780778087809781078117812781378147815781678177818781978207821782278237824782578267827782878297830783178327833783478357836783778387839784078417842784378447845784678477848784978507851785278537854785578567857785878597860786178627863786478657866786778687869787078717872787378747875787678777878787978807881788278837884788578867887788878897890789178927893789478957896789778987899790079017902790379047905790679077908790979107911791279137914791579167917791879197920792179227923792479257926792779287929793079317932793379347935793679377938793979407941794279437944794579467947794879497950795179527953795479557956795779587959796079617962796379647965796679677968796979707971797279737974797579767977797879797980798179827983798479857986798779887989799079917992799379947995799679977998799980008001800280038004800580068007800880098010801180128013801480158016801780188019802080218022802380248025802680278028802980308031803280338034803580368037803880398040804180428043804480458046804780488049805080518052805380548055805680578058805980608061806280638064806580668067806880698070807180728073807480758076807780788079808080818082808380848085808680878088808980908091809280938094809580968097809880998100810181028103810481058106810781088109811081118112811381148115811681178118811981208121812281238124812581268127812881298130813181328133813481358136813781388139814081418142814381448145814681478148814981508151815281538154815581568157815881598160816181628163816481658166816781688169817081718172817381748175817681778178817981808181818281838184818581868187818881898190819181928193819481958196819781988199820082018202820382048205820682078208820982108211821282138214821582168217821882198220822182228223822482258226822782288229823082318232823382348235823682378238823982408241824282438244824582468247824882498250825182528253825482558256825782588259826082618262826382648265826682678268826982708271827282738274827582768277827882798280828182828283828482858286828782888289829082918292829382948295829682978298829983008301830283038304830583068307830883098310831183128313831483158316831783188319832083218322832383248325832683278328832983308331833283338334833583368337833883398340834183428343834483458346834783488349835083518352835383548355835683578358835983608361836283638364836583668367836883698370837183728373837483758376837783788379838083818382838383848385838683878388838983908391839283938394839583968397839883998400840184028403840484058406840784088409841084118412841384148415841684178418841984208421842284238424842584268427842884298430843184328433843484358436843784388439844084418442844384448445844684478448844984508451845284538454845584568457845884598460846184628463846484658466846784688469847084718472847384748475847684778478847984808481848284838484848584868487848884898490849184928493849484958496849784988499850085018502850385048505850685078508850985108511851285138514851585168517851885198520852185228523852485258526852785288529853085318532853385348535853685378538853985408541854285438544854585468547854885498550855185528553855485558556855785588559856085618562856385648565856685678568856985708571857285738574857585768577857885798580858185828583858485858586858785888589859085918592859385948595859685978598859986008601860286038604860586068607860886098610861186128613861486158616861786188619862086218622862386248625862686278628862986308631863286338634863586368637863886398640864186428643864486458646864786488649865086518652865386548655865686578658865986608661866286638664866586668667866886698670867186728673867486758676867786788679868086818682868386848685868686878688868986908691869286938694869586968697869886998700870187028703870487058706870787088709871087118712871387148715871687178718871987208721872287238724872587268727872887298730873187328733873487358736873787388739874087418742874387448745874687478748874987508751875287538754875587568757875887598760876187628763876487658766876787688769877087718772877387748775877687778778877987808781878287838784878587868787878887898790879187928793879487958796879787988799880088018802880388048805880688078808880988108811881288138814881588168817881888198820882188228823882488258826882788288829883088318832883388348835883688378838883988408841884288438844884588468847884888498850885188528853885488558856885788588859886088618862886388648865886688678868886988708871887288738874887588768877887888798880888188828883888488858886888788888889889088918892889388948895889688978898889989008901890289038904890589068907890889098910891189128913891489158916891789188919892089218922892389248925892689278928892989308931893289338934893589368937893889398940894189428943894489458946894789488949895089518952895389548955895689578958895989608961896289638964896589668967896889698970897189728973897489758976897789788979898089818982898389848985898689878988898989908991899289938994899589968997899889999000900190029003900490059006900790089009901090119012901390149015901690179018901990209021902290239024902590269027902890299030903190329033903490359036903790389039904090419042904390449045904690479048904990509051905290539054905590569057905890599060906190629063906490659066906790689069907090719072907390749075907690779078907990809081908290839084908590869087908890899090909190929093909490959096909790989099910091019102910391049105910691079108910991109111911291139114911591169117911891199120912191229123912491259126912791289129913091319132913391349135913691379138913991409141914291439144914591469147914891499150915191529153915491559156915791589159916091619162916391649165916691679168916991709171917291739174917591769177917891799180918191829183918491859186918791889189919091919192919391949195919691979198919992009201920292039204920592069207920892099210921192129213921492159216921792189219922092219222922392249225922692279228922992309231923292339234923592369237923892399240924192429243924492459246924792489249925092519252925392549255925692579258925992609261926292639264926592669267926892699270927192729273927492759276927792789279928092819282928392849285928692879288928992909291929292939294929592969297929892999300930193029303930493059306930793089309931093119312931393149315931693179318931993209321932293239324932593269327932893299330933193329333933493359336933793389339934093419342934393449345934693479348934993509351935293539354935593569357935893599360936193629363936493659366936793689369937093719372937393749375937693779378937993809381938293839384938593869387938893899390939193929393939493959396939793989399940094019402940394049405940694079408940994109411941294139414941594169417941894199420942194229423942494259426942794289429943094319432943394349435943694379438943994409441944294439444944594469447944894499450945194529453945494559456945794589459946094619462946394649465946694679468946994709471947294739474947594769477947894799480948194829483948494859486948794889489949094919492949394949495949694979498949995009501950295039504950595069507950895099510951195129513951495159516951795189519952095219522952395249525952695279528952995309531953295339534953595369537953895399540954195429543954495459546954795489549955095519552955395549555955695579558955995609561956295639564956595669567956895699570957195729573957495759576957795789579958095819582958395849585958695879588958995909591959295939594959595969597959895999600960196029603960496059606960796089609961096119612961396149615961696179618961996209621962296239624962596269627962896299630963196329633963496359636963796389639964096419642964396449645964696479648964996509651965296539654965596569657965896599660966196629663966496659666966796689669967096719672967396749675967696779678967996809681968296839684968596869687968896899690969196929693969496959696969796989699970097019702970397049705970697079708970997109711971297139714971597169717971897199720972197229723972497259726972797289729973097319732973397349735973697379738973997409741974297439744974597469747974897499750975197529753975497559756975797589759976097619762976397649765976697679768976997709771977297739774977597769777977897799780978197829783978497859786978797889789979097919792979397949795979697979798979998009801980298039804980598069807980898099810981198129813981498159816981798189819982098219822982398249825982698279828982998309831983298339834983598369837983898399840984198429843984498459846984798489849985098519852985398549855985698579858985998609861986298639864986598669867986898699870987198729873987498759876987798789879988098819882988398849885988698879888988998909891989298939894989598969897989898999900990199029903990499059906990799089909991099119912991399149915991699179918991999209921992299239924992599269927992899299930993199329933993499359936993799389939994099419942994399449945994699479948994999509951995299539954995599569957995899599960996199629963996499659966996799689969997099719972997399749975997699779978997999809981998299839984998599869987998899899990999199929993999499959996999799989999100001000110002100031000410005100061000710008100091001010011100121001310014100151001610017100181001910020100211002210023100241002510026100271002810029100301003110032100331003410035100361003710038100391004010041100421004310044100451004610047100481004910050100511005210053100541005510056100571005810059100601006110062100631006410065100661006710068100691007010071100721007310074100751007610077100781007910080100811008210083100841008510086100871008810089100901009110092100931009410095100961009710098100991010010101101021010310104101051010610107101081010910110101111011210113101141011510116101171011810119101201012110122101231012410125101261012710128101291013010131101321013310134101351013610137101381013910140101411014210143101441014510146101471014810149101501015110152101531015410155101561015710158101591016010161101621016310164101651016610167101681016910170101711017210173101741017510176101771017810179101801018110182101831018410185101861018710188101891019010191101921019310194101951019610197101981019910200102011020210203102041020510206102071020810209102101021110212102131021410215102161021710218102191022010221102221022310224102251022610227102281022910230102311023210233102341023510236102371023810239102401024110242102431024410245102461024710248102491025010251102521025310254102551025610257102581025910260102611026210263102641026510266102671026810269102701027110272102731027410275102761027710278102791028010281102821028310284102851028610287102881028910290102911029210293102941029510296102971029810299103001030110302103031030410305103061030710308103091031010311103121031310314103151031610317103181031910320103211032210323103241032510326103271032810329103301033110332103331033410335103361033710338103391034010341103421034310344103451034610347103481034910350103511035210353103541035510356103571035810359103601036110362103631036410365103661036710368103691037010371103721037310374103751037610377103781037910380103811038210383103841038510386103871038810389103901039110392103931039410395103961039710398103991040010401104021040310404104051040610407104081040910410104111041210413104141041510416104171041810419104201042110422104231042410425104261042710428104291043010431104321043310434104351043610437104381043910440104411044210443104441044510446104471044810449104501045110452104531045410455104561045710458104591046010461104621046310464104651046610467104681046910470104711047210473104741047510476104771047810479104801048110482104831048410485104861048710488104891049010491104921049310494104951049610497104981049910500105011050210503105041050510506105071050810509105101051110512105131051410515105161051710518105191052010521105221052310524105251052610527105281052910530105311053210533105341053510536105371053810539105401054110542105431054410545105461054710548105491055010551105521055310554105551055610557105581055910560105611056210563105641056510566105671056810569105701057110572105731057410575105761057710578105791058010581105821058310584105851058610587105881058910590105911059210593105941059510596105971059810599106001060110602106031060410605106061060710608106091061010611106121061310614106151061610617106181061910620106211062210623106241062510626106271062810629106301063110632106331063410635106361063710638106391064010641106421064310644106451064610647106481064910650106511065210653106541065510656106571065810659106601066110662106631066410665106661066710668106691067010671106721067310674106751067610677106781067910680106811068210683106841068510686106871068810689106901069110692106931069410695106961069710698106991070010701107021070310704107051070610707107081070910710107111071210713107141071510716107171071810719107201072110722107231072410725107261072710728107291073010731107321073310734107351073610737107381073910740107411074210743107441074510746107471074810749107501075110752107531075410755107561075710758107591076010761107621076310764107651076610767107681076910770107711077210773107741077510776107771077810779107801078110782107831078410785107861078710788107891079010791107921079310794107951079610797107981079910800108011080210803108041080510806108071080810809108101081110812108131081410815108161081710818108191082010821108221082310824108251082610827108281082910830108311083210833108341083510836108371083810839108401084110842108431084410845108461084710848108491085010851108521085310854108551085610857108581085910860108611086210863108641086510866108671086810869108701087110872108731087410875108761087710878108791088010881108821088310884108851088610887108881088910890108911089210893108941089510896108971089810899109001090110902109031090410905109061090710908109091091010911109121091310914109151091610917109181091910920109211092210923109241092510926109271092810929109301093110932109331093410935109361093710938109391094010941109421094310944109451094610947109481094910950109511095210953109541095510956109571095810959109601096110962109631096410965109661096710968109691097010971109721097310974109751097610977109781097910980109811098210983109841098510986109871098810989109901099110992109931099410995109961099710998109991100011001110021100311004110051100611007110081100911010110111101211013110141101511016110171101811019110201102111022110231102411025110261102711028110291103011031110321103311034110351103611037110381103911040110411104211043110441104511046110471104811049110501105111052110531105411055110561105711058110591106011061110621106311064110651106611067110681106911070110711107211073110741107511076110771107811079110801108111082110831108411085110861108711088110891109011091110921109311094110951109611097110981109911100111011110211103111041110511106111071110811109111101111111112111131111411115111161111711118111191112011121111221112311124111251112611127111281112911130111311113211133111341113511136111371113811139111401114111142111431114411145111461114711148111491115011151111521115311154111551115611157111581115911160111611116211163111641116511166111671116811169111701117111172111731117411175111761117711178111791118011181111821118311184111851118611187111881118911190111911119211193111941119511196111971119811199112001120111202112031120411205112061120711208112091121011211112121121311214112151121611217112181121911220112211122211223112241122511226112271122811229112301123111232112331123411235112361123711238112391124011241112421124311244112451124611247112481124911250112511125211253112541125511256112571125811259112601126111262112631126411265112661126711268112691127011271112721127311274112751127611277112781127911280112811128211283112841128511286112871128811289112901129111292112931129411295112961129711298112991130011301113021130311304113051130611307113081130911310113111131211313113141131511316113171131811319113201132111322113231132411325113261132711328113291133011331113321133311334113351133611337113381133911340113411134211343113441134511346113471134811349113501135111352113531135411355113561135711358113591136011361113621136311364113651136611367113681136911370113711137211373113741137511376113771137811379113801138111382113831138411385113861138711388113891139011391113921139311394113951139611397113981139911400114011140211403114041140511406114071140811409114101141111412114131141411415114161141711418114191142011421114221142311424114251142611427114281142911430114311143211433114341143511436114371143811439114401144111442114431144411445114461144711448114491145011451114521145311454114551145611457114581145911460114611146211463114641146511466114671146811469114701147111472114731147411475114761147711478114791148011481114821148311484114851148611487114881148911490114911149211493114941149511496114971149811499115001150111502115031150411505115061150711508115091151011511115121151311514115151151611517115181151911520115211152211523115241152511526115271152811529115301153111532115331153411535115361153711538115391154011541115421154311544115451154611547115481154911550115511155211553115541155511556115571155811559115601156111562115631156411565115661156711568115691157011571115721157311574115751157611577115781157911580115811158211583115841158511586115871158811589115901159111592115931159411595115961159711598115991160011601116021160311604116051160611607116081160911610116111161211613116141161511616116171161811619116201162111622116231162411625116261162711628116291163011631116321163311634116351163611637116381163911640116411164211643116441164511646116471164811649116501165111652116531165411655116561165711658116591166011661116621166311664116651166611667116681166911670116711167211673116741167511676116771167811679116801168111682116831168411685116861168711688116891169011691116921169311694116951169611697116981169911700117011170211703117041170511706117071170811709117101171111712117131171411715117161171711718117191172011721117221172311724117251172611727117281172911730117311173211733117341173511736117371173811739117401174111742117431174411745117461174711748117491175011751117521175311754117551175611757117581175911760117611176211763117641176511766117671176811769117701177111772117731177411775117761177711778117791178011781117821178311784117851178611787117881178911790117911179211793117941179511796117971179811799118001180111802118031180411805118061180711808118091181011811118121181311814118151181611817118181181911820118211182211823118241182511826118271182811829118301183111832118331183411835118361183711838118391184011841118421184311844118451184611847118481184911850118511185211853118541185511856118571185811859118601186111862118631186411865118661186711868118691187011871118721187311874118751187611877118781187911880118811188211883118841188511886118871188811889118901189111892118931189411895118961189711898118991190011901119021190311904119051190611907119081190911910119111191211913119141191511916119171191811919119201192111922119231192411925119261192711928119291193011931119321193311934119351193611937119381193911940119411194211943119441194511946119471194811949119501195111952119531195411955119561195711958119591196011961119621196311964119651196611967119681196911970119711197211973119741197511976119771197811979119801198111982119831198411985119861198711988119891199011991119921199311994119951199611997119981199912000120011200212003120041200512006120071200812009120101201112012120131201412015120161201712018120191202012021120221202312024120251202612027120281202912030120311203212033120341203512036120371203812039120401204112042120431204412045120461204712048120491205012051120521205312054120551205612057120581205912060120611206212063120641206512066120671206812069120701207112072120731207412075120761207712078120791208012081120821208312084120851208612087120881208912090120911209212093120941209512096120971209812099121001210112102121031210412105121061210712108121091211012111121121211312114121151211612117121181211912120121211212212123121241212512126121271212812129121301213112132121331213412135121361213712138121391214012141121421214312144121451214612147121481214912150121511215212153121541215512156121571215812159121601216112162121631216412165121661216712168121691217012171121721217312174121751217612177121781217912180121811218212183121841218512186121871218812189121901219112192121931219412195121961219712198121991220012201122021220312204122051220612207122081220912210122111221212213122141221512216122171221812219122201222112222122231222412225122261222712228122291223012231122321223312234122351223612237122381223912240122411224212243122441224512246122471224812249122501225112252122531225412255122561225712258122591226012261122621226312264122651226612267122681226912270122711227212273122741227512276122771227812279122801228112282122831228412285122861228712288122891229012291122921229312294122951229612297122981229912300123011230212303123041230512306123071230812309123101231112312123131231412315123161231712318123191232012321123221232312324123251232612327123281232912330123311233212333123341233512336123371233812339123401234112342123431234412345123461234712348123491235012351123521235312354123551235612357123581235912360123611236212363123641236512366123671236812369123701237112372123731237412375123761237712378123791238012381123821238312384123851238612387123881238912390123911239212393123941239512396123971239812399124001240112402124031240412405124061240712408124091241012411124121241312414124151241612417124181241912420124211242212423124241242512426124271242812429124301243112432124331243412435124361243712438124391244012441124421244312444124451244612447124481244912450124511245212453124541245512456124571245812459124601246112462124631246412465124661246712468124691247012471124721247312474124751247612477124781247912480124811248212483124841248512486124871248812489124901249112492124931249412495124961249712498124991250012501125021250312504125051250612507125081250912510125111251212513125141251512516125171251812519125201252112522125231252412525125261252712528125291253012531125321253312534125351253612537125381253912540125411254212543125441254512546125471254812549125501255112552125531255412555125561255712558125591256012561125621256312564125651256612567125681256912570125711257212573125741257512576125771257812579125801258112582125831258412585125861258712588125891259012591125921259312594125951259612597125981259912600126011260212603126041260512606126071260812609126101261112612126131261412615126161261712618126191262012621126221262312624126251262612627126281262912630126311263212633126341263512636126371263812639126401264112642126431264412645126461264712648126491265012651126521265312654126551265612657126581265912660126611266212663126641266512666126671266812669126701267112672126731267412675126761267712678126791268012681126821268312684126851268612687126881268912690126911269212693126941269512696126971269812699127001270112702127031270412705127061270712708127091271012711127121271312714127151271612717127181271912720127211272212723127241272512726127271272812729127301273112732127331273412735127361273712738127391274012741127421274312744127451274612747127481274912750127511275212753127541275512756127571275812759127601276112762127631276412765127661276712768127691277012771127721277312774127751277612777127781277912780127811278212783127841278512786127871278812789127901279112792127931279412795127961279712798127991280012801128021280312804128051280612807128081280912810128111281212813128141281512816128171281812819128201282112822128231282412825128261282712828128291283012831128321283312834128351283612837128381283912840128411284212843128441284512846128471284812849128501285112852128531285412855128561285712858128591286012861128621286312864128651286612867128681286912870128711287212873128741287512876128771287812879128801288112882128831288412885128861288712888128891289012891128921289312894128951289612897128981289912900129011290212903129041290512906129071290812909129101291112912129131291412915129161291712918129191292012921129221292312924129251292612927129281292912930129311293212933129341293512936129371293812939129401294112942129431294412945129461294712948129491295012951129521295312954129551295612957129581295912960129611296212963129641296512966129671296812969129701297112972129731297412975129761297712978129791298012981129821298312984129851298612987129881298912990129911299212993129941299512996129971299812999130001300113002130031300413005130061300713008130091301013011130121301313014130151301613017130181301913020130211302213023130241302513026130271302813029130301303113032130331303413035130361303713038130391304013041130421304313044130451304613047130481304913050130511305213053130541305513056130571305813059130601306113062130631306413065130661306713068130691307013071130721307313074130751307613077130781307913080130811308213083130841308513086130871308813089130901309113092130931309413095130961309713098130991310013101131021310313104131051310613107131081310913110131111311213113131141311513116131171311813119131201312113122131231312413125131261312713128131291313013131131321313313134131351313613137131381313913140131411314213143131441314513146131471314813149131501315113152131531315413155131561315713158131591316013161131621316313164131651316613167131681316913170131711317213173131741317513176131771317813179131801318113182131831318413185131861318713188131891319013191131921319313194131951319613197131981319913200132011320213203132041320513206132071320813209132101321113212132131321413215132161321713218132191322013221132221322313224132251322613227132281322913230132311323213233132341323513236132371323813239132401324113242132431324413245132461324713248132491325013251132521325313254132551325613257132581325913260132611326213263132641326513266132671326813269132701327113272132731327413275132761327713278132791328013281132821328313284132851328613287132881328913290132911329213293132941329513296132971329813299133001330113302133031330413305133061330713308133091331013311133121331313314133151331613317133181331913320133211332213323133241332513326133271332813329133301333113332133331333413335133361333713338133391334013341133421334313344133451334613347133481334913350133511335213353133541335513356133571335813359133601336113362133631336413365133661336713368133691337013371133721337313374133751337613377133781337913380133811338213383133841338513386133871338813389133901339113392133931339413395133961339713398133991340013401134021340313404134051340613407134081340913410134111341213413134141341513416134171341813419134201342113422134231342413425134261342713428134291343013431134321343313434134351343613437134381343913440134411344213443134441344513446134471344813449134501345113452134531345413455134561345713458134591346013461134621346313464134651346613467134681346913470134711347213473134741347513476134771347813479134801348113482134831348413485134861348713488134891349013491134921349313494134951349613497134981349913500135011350213503135041350513506135071350813509135101351113512135131351413515135161351713518135191352013521135221352313524135251352613527135281352913530135311353213533135341353513536135371353813539135401354113542135431354413545135461354713548135491355013551135521355313554135551355613557135581355913560135611356213563135641356513566135671356813569135701357113572135731357413575135761357713578135791358013581135821358313584135851358613587135881358913590135911359213593135941359513596135971359813599136001360113602136031360413605136061360713608136091361013611136121361313614136151361613617136181361913620136211362213623136241362513626136271362813629136301363113632136331363413635136361363713638136391364013641136421364313644136451364613647136481364913650136511365213653136541365513656136571365813659136601366113662136631366413665136661366713668136691367013671136721367313674136751367613677136781367913680136811368213683136841368513686136871368813689136901369113692136931369413695136961369713698136991370013701137021370313704137051370613707137081370913710137111371213713137141371513716137171371813719137201372113722137231372413725137261372713728137291373013731137321373313734137351373613737137381373913740137411374213743137441374513746137471374813749137501375113752137531375413755137561375713758137591376013761137621376313764137651376613767137681376913770137711377213773137741377513776137771377813779137801378113782137831378413785137861378713788137891379013791137921379313794137951379613797137981379913800138011380213803138041380513806138071380813809138101381113812138131381413815138161381713818138191382013821138221382313824138251382613827138281382913830138311383213833138341383513836138371383813839138401384113842138431384413845138461384713848138491385013851138521385313854138551385613857138581385913860138611386213863138641386513866138671386813869138701387113872138731387413875138761387713878138791388013881138821388313884138851388613887138881388913890138911389213893138941389513896138971389813899139001390113902139031390413905139061390713908139091391013911139121391313914139151391613917139181391913920139211392213923139241392513926139271392813929139301393113932139331393413935139361393713938139391394013941139421394313944139451394613947139481394913950139511395213953139541395513956139571395813959139601396113962139631396413965139661396713968139691397013971139721397313974139751397613977139781397913980139811398213983139841398513986139871398813989139901399113992139931399413995139961399713998139991400014001140021400314004140051400614007140081400914010140111401214013140141401514016140171401814019140201402114022140231402414025140261402714028140291403014031140321403314034140351403614037140381403914040140411404214043140441404514046140471404814049140501405114052140531405414055140561405714058140591406014061140621406314064140651406614067140681406914070140711407214073140741407514076140771407814079140801408114082140831408414085140861408714088140891409014091140921409314094140951409614097140981409914100141011410214103141041410514106141071410814109141101411114112141131411414115141161411714118141191412014121141221412314124141251412614127141281412914130141311413214133141341413514136141371413814139141401414114142141431414414145141461414714148141491415014151141521415314154141551415614157141581415914160141611416214163141641416514166141671416814169141701417114172141731417414175141761417714178141791418014181141821418314184141851418614187141881418914190141911419214193141941419514196141971419814199142001420114202142031420414205142061420714208142091421014211142121421314214142151421614217142181421914220142211422214223142241422514226142271422814229142301423114232142331423414235142361423714238142391424014241142421424314244142451424614247142481424914250142511425214253142541425514256142571425814259142601426114262142631426414265142661426714268142691427014271142721427314274142751427614277142781427914280142811428214283142841428514286142871428814289142901429114292142931429414295142961429714298142991430014301143021430314304143051430614307143081430914310143111431214313143141431514316143171431814319143201432114322143231432414325143261432714328143291433014331143321433314334143351433614337143381433914340143411434214343143441434514346143471434814349143501435114352143531435414355143561435714358143591436014361143621436314364143651436614367143681436914370143711437214373143741437514376143771437814379143801438114382143831438414385143861438714388143891439014391143921439314394143951439614397143981439914400144011440214403144041440514406144071440814409144101441114412144131441414415144161441714418144191442014421144221442314424144251442614427144281442914430144311443214433144341443514436144371443814439144401444114442144431444414445144461444714448144491445014451144521445314454144551445614457144581445914460144611446214463144641446514466144671446814469144701447114472144731447414475144761447714478144791448014481144821448314484144851448614487144881448914490144911449214493144941449514496144971449814499145001450114502145031450414505145061450714508145091451014511145121451314514145151451614517145181451914520145211452214523145241452514526145271452814529145301453114532145331453414535145361453714538145391454014541145421454314544145451454614547145481454914550145511455214553145541455514556145571455814559145601456114562145631456414565145661456714568145691457014571145721457314574145751457614577145781457914580145811458214583145841458514586145871458814589145901459114592145931459414595145961459714598145991460014601146021460314604146051460614607146081460914610146111461214613146141461514616146171461814619146201462114622146231462414625146261462714628146291463014631146321463314634146351463614637146381463914640146411464214643146441464514646146471464814649146501465114652146531465414655146561465714658146591466014661146621466314664146651466614667146681466914670146711467214673146741467514676146771467814679146801468114682146831468414685146861468714688146891469014691146921469314694146951469614697146981469914700147011470214703147041470514706147071470814709147101471114712147131471414715147161471714718147191472014721147221472314724147251472614727147281472914730147311473214733147341473514736147371473814739147401474114742147431474414745147461474714748147491475014751147521475314754147551475614757147581475914760147611476214763147641476514766147671476814769147701477114772147731477414775147761477714778147791478014781147821478314784147851478614787147881478914790147911479214793147941479514796147971479814799148001480114802148031480414805148061480714808148091481014811148121481314814148151481614817148181481914820148211482214823148241482514826148271482814829148301483114832148331483414835148361483714838148391484014841148421484314844148451484614847148481484914850148511485214853148541485514856148571485814859148601486114862148631486414865148661486714868148691487014871148721487314874148751487614877148781487914880148811488214883148841488514886148871488814889148901489114892148931489414895148961489714898148991490014901149021490314904149051490614907149081490914910149111491214913149141491514916149171491814919149201492114922149231492414925149261492714928149291493014931149321493314934149351493614937149381493914940149411494214943149441494514946149471494814949149501495114952149531495414955149561495714958149591496014961149621496314964149651496614967149681496914970149711497214973149741497514976149771497814979149801498114982149831498414985149861498714988149891499014991149921499314994149951499614997149981499915000150011500215003150041500515006150071500815009150101501115012150131501415015150161501715018150191502015021150221502315024150251502615027150281502915030150311503215033150341503515036150371503815039150401504115042150431504415045150461504715048150491505015051150521505315054150551505615057150581505915060150611506215063150641506515066150671506815069150701507115072150731507415075150761507715078150791508015081150821508315084150851508615087150881508915090150911509215093150941509515096150971509815099151001510115102151031510415105151061510715108151091511015111151121511315114151151511615117151181511915120151211512215123151241512515126151271512815129151301513115132151331513415135151361513715138151391514015141151421514315144151451514615147151481514915150151511515215153151541515515156151571515815159151601516115162151631516415165151661516715168151691517015171151721517315174151751517615177151781517915180151811518215183151841518515186151871518815189151901519115192151931519415195151961519715198151991520015201152021520315204152051520615207152081520915210152111521215213152141521515216152171521815219152201522115222152231522415225152261522715228152291523015231152321523315234152351523615237152381523915240152411524215243152441524515246152471524815249152501525115252152531525415255152561525715258152591526015261152621526315264152651526615267152681526915270152711527215273152741527515276152771527815279152801528115282152831528415285152861528715288152891529015291152921529315294152951529615297152981529915300153011530215303153041530515306153071530815309153101531115312153131531415315153161531715318153191532015321153221532315324153251532615327153281532915330153311533215333153341533515336153371533815339153401534115342153431534415345153461534715348153491535015351153521535315354153551535615357153581535915360153611536215363153641536515366153671536815369153701537115372153731537415375153761537715378153791538015381153821538315384153851538615387153881538915390153911539215393153941539515396153971539815399154001540115402154031540415405154061540715408154091541015411154121541315414154151541615417154181541915420154211542215423154241542515426154271542815429154301543115432154331543415435154361543715438154391544015441154421544315444154451544615447154481544915450154511545215453154541545515456154571545815459154601546115462154631546415465154661546715468154691547015471154721547315474154751547615477154781547915480154811548215483154841548515486154871548815489154901549115492154931549415495154961549715498154991550015501155021550315504155051550615507155081550915510155111551215513155141551515516155171551815519155201552115522155231552415525155261552715528155291553015531155321553315534155351553615537155381553915540155411554215543155441554515546155471554815549155501555115552155531555415555155561555715558155591556015561155621556315564155651556615567155681556915570155711557215573155741557515576155771557815579155801558115582155831558415585155861558715588155891559015591155921559315594155951559615597155981559915600156011560215603156041560515606156071560815609156101561115612156131561415615156161561715618156191562015621156221562315624156251562615627156281562915630156311563215633156341563515636156371563815639156401564115642156431564415645156461564715648156491565015651156521565315654156551565615657156581565915660156611566215663156641566515666156671566815669156701567115672156731567415675156761567715678156791568015681156821568315684156851568615687156881568915690156911569215693156941569515696156971569815699157001570115702157031570415705157061570715708157091571015711157121571315714157151571615717157181571915720157211572215723157241572515726157271572815729157301573115732157331573415735157361573715738157391574015741157421574315744157451574615747157481574915750157511575215753157541575515756157571575815759157601576115762157631576415765157661576715768157691577015771157721577315774157751577615777157781577915780157811578215783157841578515786157871578815789157901579115792157931579415795157961579715798157991580015801158021580315804158051580615807158081580915810158111581215813158141581515816158171581815819158201582115822158231582415825158261582715828158291583015831158321583315834158351583615837158381583915840158411584215843158441584515846158471584815849158501585115852158531585415855158561585715858158591586015861158621586315864158651586615867158681586915870158711587215873158741587515876158771587815879158801588115882158831588415885158861588715888158891589015891158921589315894158951589615897158981589915900159011590215903159041590515906159071590815909159101591115912159131591415915159161591715918159191592015921159221592315924159251592615927159281592915930159311593215933159341593515936159371593815939159401594115942159431594415945159461594715948159491595015951159521595315954159551595615957159581595915960159611596215963159641596515966159671596815969159701597115972159731597415975159761597715978159791598015981159821598315984159851598615987159881598915990159911599215993159941599515996159971599815999160001600116002160031600416005160061600716008160091601016011160121601316014160151601616017160181601916020160211602216023160241602516026160271602816029160301603116032160331603416035160361603716038160391604016041160421604316044160451604616047160481604916050160511605216053160541605516056160571605816059160601606116062160631606416065160661606716068160691607016071160721607316074160751607616077160781607916080160811608216083160841608516086160871608816089160901609116092160931609416095160961609716098160991610016101161021610316104161051610616107161081610916110161111611216113161141611516116161171611816119161201612116122161231612416125161261612716128161291613016131161321613316134161351613616137161381613916140161411614216143161441614516146161471614816149161501615116152161531615416155161561615716158161591616016161161621616316164161651616616167161681616916170161711617216173161741617516176161771617816179161801618116182161831618416185161861618716188161891619016191161921619316194161951619616197161981619916200162011620216203162041620516206162071620816209162101621116212162131621416215162161621716218162191622016221162221622316224162251622616227162281622916230162311623216233162341623516236162371623816239162401624116242162431624416245162461624716248162491625016251162521625316254162551625616257162581625916260162611626216263162641626516266162671626816269162701627116272162731627416275162761627716278162791628016281162821628316284162851628616287162881628916290162911629216293162941629516296162971629816299163001630116302163031630416305163061630716308163091631016311163121631316314163151631616317163181631916320163211632216323163241632516326163271632816329163301633116332163331633416335163361633716338163391634016341163421634316344163451634616347163481634916350163511635216353163541635516356163571635816359163601636116362163631636416365163661636716368163691637016371163721637316374163751637616377163781637916380163811638216383163841638516386163871638816389163901639116392163931639416395163961639716398163991640016401164021640316404164051640616407164081640916410164111641216413164141641516416164171641816419164201642116422164231642416425164261642716428164291643016431164321643316434164351643616437164381643916440164411644216443164441644516446164471644816449164501645116452164531645416455164561645716458164591646016461164621646316464164651646616467164681646916470164711647216473164741647516476164771647816479164801648116482164831648416485164861648716488164891649016491164921649316494164951649616497164981649916500165011650216503165041650516506165071650816509165101651116512165131651416515165161651716518165191652016521165221652316524165251652616527165281652916530165311653216533165341653516536165371653816539165401654116542165431654416545165461654716548165491655016551165521655316554165551655616557165581655916560165611656216563165641656516566165671656816569165701657116572165731657416575165761657716578165791658016581165821658316584165851658616587165881658916590165911659216593165941659516596165971659816599166001660116602166031660416605166061660716608166091661016611166121661316614166151661616617166181661916620166211662216623166241662516626166271662816629166301663116632166331663416635166361663716638166391664016641166421664316644166451664616647166481664916650166511665216653166541665516656166571665816659166601666116662166631666416665166661666716668166691667016671166721667316674166751667616677166781667916680166811668216683166841668516686166871668816689166901669116692166931669416695166961669716698166991670016701167021670316704167051670616707167081670916710167111671216713167141671516716167171671816719167201672116722167231672416725167261672716728167291673016731167321673316734167351673616737167381673916740167411674216743167441674516746167471674816749167501675116752167531675416755167561675716758167591676016761167621676316764167651676616767167681676916770167711677216773167741677516776167771677816779167801678116782167831678416785167861678716788167891679016791167921679316794167951679616797167981679916800168011680216803168041680516806168071680816809168101681116812168131681416815168161681716818168191682016821168221682316824168251682616827168281682916830168311683216833168341683516836168371683816839168401684116842168431684416845168461684716848168491685016851168521685316854168551685616857168581685916860168611686216863168641686516866168671686816869168701687116872168731687416875168761687716878168791688016881168821688316884168851688616887168881688916890168911689216893168941689516896168971689816899169001690116902169031690416905169061690716908169091691016911169121691316914169151691616917169181691916920169211692216923169241692516926169271692816929169301693116932169331693416935169361693716938169391694016941169421694316944169451694616947169481694916950169511695216953169541695516956169571695816959169601696116962169631696416965169661696716968169691697016971169721697316974169751697616977169781697916980169811698216983169841698516986169871698816989169901699116992169931699416995169961699716998169991700017001170021700317004170051700617007170081700917010170111701217013170141701517016170171701817019170201702117022170231702417025170261702717028170291703017031170321703317034170351703617037170381703917040170411704217043170441704517046170471704817049170501705117052170531705417055170561705717058170591706017061170621706317064170651706617067170681706917070170711707217073170741707517076170771707817079170801708117082170831708417085170861708717088170891709017091170921709317094170951709617097170981709917100171011710217103171041710517106171071710817109171101711117112171131711417115171161711717118171191712017121171221712317124171251712617127171281712917130171311713217133171341713517136171371713817139171401714117142171431714417145171461714717148171491715017151171521715317154171551715617157171581715917160171611716217163171641716517166171671716817169171701717117172171731717417175171761717717178171791718017181171821718317184171851718617187171881718917190171911719217193171941719517196171971719817199172001720117202172031720417205172061720717208172091721017211172121721317214172151721617217172181721917220172211722217223172241722517226172271722817229172301723117232172331723417235172361723717238172391724017241172421724317244172451724617247172481724917250172511725217253172541725517256172571725817259172601726117262172631726417265172661726717268172691727017271172721727317274172751727617277172781727917280172811728217283172841728517286172871728817289172901729117292172931729417295172961729717298172991730017301173021730317304173051730617307173081730917310173111731217313173141731517316173171731817319173201732117322173231732417325173261732717328173291733017331173321733317334173351733617337173381733917340173411734217343173441734517346173471734817349173501735117352173531735417355173561735717358173591736017361173621736317364173651736617367173681736917370173711737217373173741737517376173771737817379173801738117382173831738417385173861738717388173891739017391173921739317394173951739617397173981739917400174011740217403174041740517406174071740817409174101741117412174131741417415174161741717418174191742017421174221742317424174251742617427174281742917430174311743217433174341743517436174371743817439174401744117442174431744417445174461744717448174491745017451174521745317454174551745617457174581745917460174611746217463174641746517466174671746817469174701747117472174731747417475174761747717478174791748017481174821748317484174851748617487174881748917490174911749217493174941749517496174971749817499175001750117502175031750417505175061750717508175091751017511175121751317514175151751617517175181751917520175211752217523175241752517526175271752817529175301753117532175331753417535175361753717538175391754017541175421754317544175451754617547175481754917550175511755217553175541755517556175571755817559175601756117562175631756417565175661756717568175691757017571175721757317574175751757617577175781757917580175811758217583175841758517586175871758817589175901759117592175931759417595175961759717598175991760017601176021760317604176051760617607176081760917610176111761217613176141761517616176171761817619176201762117622176231762417625176261762717628176291763017631176321763317634176351763617637176381763917640176411764217643176441764517646176471764817649176501765117652176531765417655176561765717658176591766017661176621766317664176651766617667176681766917670176711767217673176741767517676176771767817679176801768117682176831768417685176861768717688176891769017691176921769317694176951769617697176981769917700177011770217703177041770517706177071770817709177101771117712177131771417715177161771717718177191772017721177221772317724177251772617727177281772917730177311773217733177341773517736177371773817739177401774117742177431774417745177461774717748177491775017751177521775317754177551775617757177581775917760177611776217763177641776517766177671776817769177701777117772177731777417775177761777717778177791778017781177821778317784177851778617787177881778917790177911779217793177941779517796177971779817799178001780117802178031780417805178061780717808178091781017811178121781317814178151781617817178181781917820178211782217823178241782517826178271782817829178301783117832178331783417835178361783717838178391784017841178421784317844178451784617847178481784917850178511785217853178541785517856178571785817859178601786117862178631786417865178661786717868178691787017871178721787317874178751787617877178781787917880178811788217883178841788517886178871788817889178901789117892178931789417895178961789717898178991790017901179021790317904179051790617907179081790917910179111791217913179141791517916179171791817919179201792117922179231792417925179261792717928179291793017931179321793317934179351793617937179381793917940179411794217943179441794517946179471794817949179501795117952179531795417955179561795717958179591796017961179621796317964179651796617967179681796917970179711797217973179741797517976179771797817979179801798117982179831798417985179861798717988179891799017991179921799317994179951799617997179981799918000180011800218003180041800518006180071800818009180101801118012180131801418015180161801718018180191802018021180221802318024180251802618027180281802918030180311803218033180341803518036180371803818039180401804118042180431804418045180461804718048180491805018051180521805318054180551805618057180581805918060180611806218063180641806518066180671806818069180701807118072180731807418075180761807718078180791808018081180821808318084180851808618087180881808918090180911809218093180941809518096180971809818099181001810118102181031810418105181061810718108181091811018111181121811318114181151811618117181181811918120181211812218123181241812518126181271812818129181301813118132181331813418135181361813718138181391814018141181421814318144181451814618147181481814918150181511815218153181541815518156181571815818159181601816118162181631816418165181661816718168181691817018171181721817318174181751817618177181781817918180181811818218183181841818518186181871818818189181901819118192181931819418195181961819718198181991820018201182021820318204182051820618207182081820918210182111821218213182141821518216182171821818219182201822118222182231822418225182261822718228182291823018231182321823318234182351823618237182381823918240182411824218243182441824518246182471824818249182501825118252182531825418255182561825718258182591826018261182621826318264182651826618267182681826918270182711827218273182741827518276182771827818279182801828118282182831828418285182861828718288182891829018291182921829318294182951829618297182981829918300183011830218303183041830518306183071830818309183101831118312183131831418315183161831718318183191832018321183221832318324183251832618327183281832918330183311833218333183341833518336183371833818339183401834118342183431834418345183461834718348183491835018351183521835318354
  1. #define _GNU_SOURCE // Defines CLOCK_MONOTONIC on Linux
  2. #define _CRT_SECURE_NO_DEPRECATE // Disables ridiculous "unsafe" warnigns on Windows
  3. #include "ggml.h"
  4. #ifdef GGML_USE_K_QUANTS
  5. #include "k_quants.h"
  6. #endif
  7. #if defined(_MSC_VER) || defined(__MINGW32__)
  8. #include <malloc.h> // using malloc.h with MSC/MINGW
  9. #elif !defined(__FreeBSD__) && !defined(__NetBSD__) && !defined(__OpenBSD__)
  10. #include <alloca.h>
  11. #endif
  12. #include <assert.h>
  13. #include <errno.h>
  14. #include <time.h>
  15. #include <math.h>
  16. #include <stdlib.h>
  17. #include <string.h>
  18. #include <stdint.h>
  19. #include <inttypes.h>
  20. #include <stdio.h>
  21. #include <float.h>
  22. #include <limits.h>
  23. #include <stdarg.h>
  24. #ifdef GGML_USE_METAL
  25. #include <unistd.h>
  26. #endif
  27. // if C99 - static_assert is noop
  28. // ref: https://stackoverflow.com/a/53923785/4039976
  29. #ifndef static_assert
  30. #define static_assert(cond, msg) struct global_scope_noop_trick
  31. #endif
  32. #if defined(_MSC_VER)
  33. // disable "possible loss of data" to avoid hundreds of casts
  34. // we should just be careful :)
  35. #pragma warning(disable: 4244 4267)
  36. #endif
  37. #if defined(_WIN32)
  38. #include <windows.h>
  39. typedef volatile LONG atomic_int;
  40. typedef atomic_int atomic_bool;
  41. static void atomic_store(atomic_int* ptr, LONG val) {
  42. InterlockedExchange(ptr, val);
  43. }
  44. static LONG atomic_load(atomic_int* ptr) {
  45. return InterlockedCompareExchange(ptr, 0, 0);
  46. }
  47. static LONG atomic_fetch_add(atomic_int* ptr, LONG inc) {
  48. return InterlockedExchangeAdd(ptr, inc);
  49. }
  50. static LONG atomic_fetch_sub(atomic_int* ptr, LONG dec) {
  51. return atomic_fetch_add(ptr, -(dec));
  52. }
  53. typedef HANDLE pthread_t;
  54. typedef DWORD thread_ret_t;
  55. static int pthread_create(pthread_t* out, void* unused, thread_ret_t(*func)(void*), void* arg) {
  56. (void) unused;
  57. HANDLE handle = CreateThread(NULL, 0, (LPTHREAD_START_ROUTINE) func, arg, 0, NULL);
  58. if (handle == NULL)
  59. {
  60. return EAGAIN;
  61. }
  62. *out = handle;
  63. return 0;
  64. }
  65. static int pthread_join(pthread_t thread, void* unused) {
  66. (void) unused;
  67. return (int) WaitForSingleObject(thread, INFINITE);
  68. }
  69. static int sched_yield (void) {
  70. Sleep (0);
  71. return 0;
  72. }
  73. #else
  74. #include <pthread.h>
  75. #include <stdatomic.h>
  76. typedef void* thread_ret_t;
  77. #include <sys/types.h>
  78. #include <sys/stat.h>
  79. #include <unistd.h>
  80. #endif
  81. // __FMA__ and __F16C__ are not defined in MSVC, however they are implied with AVX2/AVX512
  82. #if defined(_MSC_VER) && (defined(__AVX2__) || defined(__AVX512F__))
  83. #ifndef __FMA__
  84. #define __FMA__
  85. #endif
  86. #ifndef __F16C__
  87. #define __F16C__
  88. #endif
  89. #ifndef __SSE3__
  90. #define __SSE3__
  91. #endif
  92. #endif
  93. #ifdef __HAIKU__
  94. #define static_assert(cond, msg) _Static_assert(cond, msg)
  95. #endif
  96. /*#define GGML_PERF*/
  97. #define GGML_DEBUG 0
  98. #define GGML_GELU_FP16
  99. #define GGML_GELU_QUICK_FP16
  100. #define GGML_SILU_FP16
  101. #define GGML_SOFT_MAX_UNROLL 4
  102. #define GGML_VEC_DOT_UNROLL 2
  103. //
  104. // logging
  105. //
  106. #if (GGML_DEBUG >= 1)
  107. #define GGML_PRINT_DEBUG(...) printf(__VA_ARGS__)
  108. #else
  109. #define GGML_PRINT_DEBUG(...)
  110. #endif
  111. #if (GGML_DEBUG >= 5)
  112. #define GGML_PRINT_DEBUG_5(...) printf(__VA_ARGS__)
  113. #else
  114. #define GGML_PRINT_DEBUG_5(...)
  115. #endif
  116. #if (GGML_DEBUG >= 10)
  117. #define GGML_PRINT_DEBUG_10(...) printf(__VA_ARGS__)
  118. #else
  119. #define GGML_PRINT_DEBUG_10(...)
  120. #endif
  121. #define GGML_PRINT(...) printf(__VA_ARGS__)
  122. #ifdef GGML_USE_ACCELERATE
  123. // uncomment to use vDSP for soft max computation
  124. // note: not sure if it is actually faster
  125. //#define GGML_SOFT_MAX_ACCELERATE
  126. #endif
  127. #if UINTPTR_MAX == 0xFFFFFFFF
  128. #define GGML_MEM_ALIGN 4
  129. #else
  130. #define GGML_MEM_ALIGN 16
  131. #endif
  132. //
  133. // logging
  134. //
  135. #if (GGML_DEBUG >= 1)
  136. #define GGML_PRINT_DEBUG(...) printf(__VA_ARGS__)
  137. #else
  138. #define GGML_PRINT_DEBUG(...)
  139. #endif
  140. #if (GGML_DEBUG >= 5)
  141. #define GGML_PRINT_DEBUG_5(...) printf(__VA_ARGS__)
  142. #else
  143. #define GGML_PRINT_DEBUG_5(...)
  144. #endif
  145. #if (GGML_DEBUG >= 10)
  146. #define GGML_PRINT_DEBUG_10(...) printf(__VA_ARGS__)
  147. #else
  148. #define GGML_PRINT_DEBUG_10(...)
  149. #endif
  150. #define GGML_PRINT(...) printf(__VA_ARGS__)
  151. //
  152. // end of logging block
  153. //
  154. #if defined(_MSC_VER) || defined(__MINGW32__)
  155. #define GGML_ALIGNED_MALLOC(size) _aligned_malloc(size, GGML_MEM_ALIGN)
  156. #define GGML_ALIGNED_FREE(ptr) _aligned_free(ptr)
  157. #else
  158. inline static void* ggml_aligned_malloc(size_t size) {
  159. void* aligned_memory = NULL;
  160. #ifdef GGML_USE_METAL
  161. int result = posix_memalign(&aligned_memory, getpagesize(), size);
  162. #else
  163. int result = posix_memalign(&aligned_memory, GGML_MEM_ALIGN, size);
  164. #endif
  165. if (result != 0) {
  166. // Handle allocation failure
  167. const char *error_desc = "unknown allocation error";
  168. switch (result) {
  169. case EINVAL:
  170. error_desc = "invalid alignment value";
  171. break;
  172. case ENOMEM:
  173. error_desc = "insufficient memory";
  174. break;
  175. }
  176. GGML_PRINT("%s: %s (attempted to allocate %6.2f MB)\n",
  177. __func__, error_desc, size/(1024.0*1024.0));
  178. return NULL;
  179. }
  180. return aligned_memory;
  181. }
  182. #define GGML_ALIGNED_MALLOC(size) ggml_aligned_malloc(size)
  183. #define GGML_ALIGNED_FREE(ptr) free(ptr)
  184. #endif
  185. #define UNUSED GGML_UNUSED
  186. #define SWAP(x, y, T) do { T SWAP = x; x = y; y = SWAP; } while (0)
  187. //
  188. // tensor access macros
  189. //
  190. #define GGML_TENSOR_UNARY_OP_LOCALS \
  191. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne); \
  192. GGML_TENSOR_LOCALS(size_t, nb0, src0, nb); \
  193. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne); \
  194. GGML_TENSOR_LOCALS(size_t, nb, dst, nb);
  195. #define GGML_TENSOR_BINARY_OP_LOCALS \
  196. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne); \
  197. GGML_TENSOR_LOCALS(size_t, nb0, src0, nb); \
  198. GGML_TENSOR_LOCALS(int64_t, ne1, src1, ne); \
  199. GGML_TENSOR_LOCALS(size_t, nb1, src1, nb); \
  200. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne); \
  201. GGML_TENSOR_LOCALS(size_t, nb, dst, nb);
  202. #if defined(GGML_USE_ACCELERATE)
  203. #include <Accelerate/Accelerate.h>
  204. #if defined(GGML_USE_CLBLAST) // allow usage of CLBlast alongside Accelerate functions
  205. #include "ggml-opencl.h"
  206. #endif
  207. #elif defined(GGML_USE_OPENBLAS)
  208. #if defined(GGML_BLAS_USE_MKL)
  209. #include <mkl.h>
  210. #else
  211. #include <cblas.h>
  212. #endif
  213. #elif defined(GGML_USE_CUBLAS)
  214. #include "ggml-cuda.h"
  215. #elif defined(GGML_USE_CLBLAST)
  216. #include "ggml-opencl.h"
  217. #endif
  218. #undef MIN
  219. #undef MAX
  220. #define MIN(a, b) ((a) < (b) ? (a) : (b))
  221. #define MAX(a, b) ((a) > (b) ? (a) : (b))
  222. // floating point type used to accumulate sums
  223. typedef double ggml_float;
  224. // 16-bit float
  225. // on Arm, we use __fp16
  226. // on x86, we use uint16_t
  227. #ifdef __ARM_NEON
  228. // if YCM cannot find <arm_neon.h>, make a symbolic link to it, for example:
  229. //
  230. // $ ln -sfn /Library/Developer/CommandLineTools/usr/lib/clang/13.1.6/include/arm_neon.h ./src/
  231. //
  232. #include <arm_neon.h>
  233. #define GGML_COMPUTE_FP16_TO_FP32(x) ((float) (x))
  234. #define GGML_COMPUTE_FP32_TO_FP16(x) (x)
  235. #define GGML_FP16_TO_FP32(x) ((float) (x))
  236. #define GGML_FP32_TO_FP16(x) (x)
  237. #else
  238. #ifdef __wasm_simd128__
  239. #include <wasm_simd128.h>
  240. #else
  241. #ifdef __POWER9_VECTOR__
  242. #include <altivec.h>
  243. #undef bool
  244. #define bool _Bool
  245. #else
  246. #if defined(_MSC_VER) || defined(__MINGW32__)
  247. #include <intrin.h>
  248. #else
  249. #if !defined(__riscv)
  250. #include <immintrin.h>
  251. #endif
  252. #endif
  253. #endif
  254. #endif
  255. #ifdef __F16C__
  256. #ifdef _MSC_VER
  257. #define GGML_COMPUTE_FP16_TO_FP32(x) _mm_cvtss_f32(_mm_cvtph_ps(_mm_cvtsi32_si128(x)))
  258. #define GGML_COMPUTE_FP32_TO_FP16(x) _mm_extract_epi16(_mm_cvtps_ph(_mm_set_ss(x), 0), 0)
  259. #else
  260. #define GGML_COMPUTE_FP16_TO_FP32(x) _cvtsh_ss(x)
  261. #define GGML_COMPUTE_FP32_TO_FP16(x) _cvtss_sh(x, 0)
  262. #endif
  263. #elif defined(__POWER9_VECTOR__)
  264. #define GGML_COMPUTE_FP16_TO_FP32(x) ggml_compute_fp16_to_fp32(x)
  265. #define GGML_COMPUTE_FP32_TO_FP16(x) ggml_compute_fp32_to_fp16(x)
  266. /* the inline asm below is about 12% faster than the lookup method */
  267. #define GGML_FP16_TO_FP32(x) GGML_COMPUTE_FP16_TO_FP32(x)
  268. #define GGML_FP32_TO_FP16(x) GGML_COMPUTE_FP32_TO_FP16(x)
  269. static inline float ggml_compute_fp16_to_fp32(ggml_fp16_t h) {
  270. register float f;
  271. register double d;
  272. __asm__(
  273. "mtfprd %0,%2\n"
  274. "xscvhpdp %0,%0\n"
  275. "frsp %1,%0\n" :
  276. /* temp */ "=d"(d),
  277. /* out */ "=f"(f):
  278. /* in */ "r"(h));
  279. return f;
  280. }
  281. static inline ggml_fp16_t ggml_compute_fp32_to_fp16(float f) {
  282. register double d;
  283. register ggml_fp16_t r;
  284. __asm__( /* xscvdphp can work on double or single precision */
  285. "xscvdphp %0,%2\n"
  286. "mffprd %1,%0\n" :
  287. /* temp */ "=d"(d),
  288. /* out */ "=r"(r):
  289. /* in */ "f"(f));
  290. return r;
  291. }
  292. #else
  293. // FP16 <-> FP32
  294. // ref: https://github.com/Maratyszcza/FP16
  295. static inline float fp32_from_bits(uint32_t w) {
  296. union {
  297. uint32_t as_bits;
  298. float as_value;
  299. } fp32;
  300. fp32.as_bits = w;
  301. return fp32.as_value;
  302. }
  303. static inline uint32_t fp32_to_bits(float f) {
  304. union {
  305. float as_value;
  306. uint32_t as_bits;
  307. } fp32;
  308. fp32.as_value = f;
  309. return fp32.as_bits;
  310. }
  311. static inline float ggml_compute_fp16_to_fp32(ggml_fp16_t h) {
  312. const uint32_t w = (uint32_t) h << 16;
  313. const uint32_t sign = w & UINT32_C(0x80000000);
  314. const uint32_t two_w = w + w;
  315. const uint32_t exp_offset = UINT32_C(0xE0) << 23;
  316. #if defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) || defined(__GNUC__) && !defined(__STRICT_ANSI__)
  317. const float exp_scale = 0x1.0p-112f;
  318. #else
  319. const float exp_scale = fp32_from_bits(UINT32_C(0x7800000));
  320. #endif
  321. const float normalized_value = fp32_from_bits((two_w >> 4) + exp_offset) * exp_scale;
  322. const uint32_t magic_mask = UINT32_C(126) << 23;
  323. const float magic_bias = 0.5f;
  324. const float denormalized_value = fp32_from_bits((two_w >> 17) | magic_mask) - magic_bias;
  325. const uint32_t denormalized_cutoff = UINT32_C(1) << 27;
  326. const uint32_t result = sign |
  327. (two_w < denormalized_cutoff ? fp32_to_bits(denormalized_value) : fp32_to_bits(normalized_value));
  328. return fp32_from_bits(result);
  329. }
  330. static inline ggml_fp16_t ggml_compute_fp32_to_fp16(float f) {
  331. #if defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) || defined(__GNUC__) && !defined(__STRICT_ANSI__)
  332. const float scale_to_inf = 0x1.0p+112f;
  333. const float scale_to_zero = 0x1.0p-110f;
  334. #else
  335. const float scale_to_inf = fp32_from_bits(UINT32_C(0x77800000));
  336. const float scale_to_zero = fp32_from_bits(UINT32_C(0x08800000));
  337. #endif
  338. float base = (fabsf(f) * scale_to_inf) * scale_to_zero;
  339. const uint32_t w = fp32_to_bits(f);
  340. const uint32_t shl1_w = w + w;
  341. const uint32_t sign = w & UINT32_C(0x80000000);
  342. uint32_t bias = shl1_w & UINT32_C(0xFF000000);
  343. if (bias < UINT32_C(0x71000000)) {
  344. bias = UINT32_C(0x71000000);
  345. }
  346. base = fp32_from_bits((bias >> 1) + UINT32_C(0x07800000)) + base;
  347. const uint32_t bits = fp32_to_bits(base);
  348. const uint32_t exp_bits = (bits >> 13) & UINT32_C(0x00007C00);
  349. const uint32_t mantissa_bits = bits & UINT32_C(0x00000FFF);
  350. const uint32_t nonsign = exp_bits + mantissa_bits;
  351. return (sign >> 16) | (shl1_w > UINT32_C(0xFF000000) ? UINT16_C(0x7E00) : nonsign);
  352. }
  353. #define GGML_COMPUTE_FP16_TO_FP32(x) ggml_compute_fp16_to_fp32(x)
  354. #define GGML_COMPUTE_FP32_TO_FP16(x) ggml_compute_fp32_to_fp16(x)
  355. #endif // __F16C__
  356. #endif // __ARM_NEON
  357. //
  358. // global data
  359. //
  360. // precomputed gelu table for f16 (128 KB)
  361. static ggml_fp16_t table_gelu_f16[1 << 16];
  362. // precomputed quick gelu table for f16 (128 KB)
  363. static ggml_fp16_t table_gelu_quick_f16[1 << 16];
  364. // precomputed silu table for f16 (128 KB)
  365. static ggml_fp16_t table_silu_f16[1 << 16];
  366. // precomputed exp table for f16 (128 KB)
  367. static ggml_fp16_t table_exp_f16[1 << 16];
  368. // precomputed f32 table for f16 (256 KB)
  369. static float table_f32_f16[1 << 16];
  370. #if defined(__ARM_NEON) || defined(__wasm_simd128__)
  371. #define B1(c,s,n) 0x ## n ## c , 0x ## n ## s
  372. #define B2(c,s,n) B1(c,s,n ## c), B1(c,s,n ## s)
  373. #define B3(c,s,n) B2(c,s,n ## c), B2(c,s,n ## s)
  374. #define B4(c,s,n) B3(c,s,n ## c), B3(c,s,n ## s)
  375. #define B5(c,s,n) B4(c,s,n ## c), B4(c,s,n ## s)
  376. #define B6(c,s,n) B5(c,s,n ## c), B5(c,s,n ## s)
  377. #define B7(c,s,n) B6(c,s,n ## c), B6(c,s,n ## s)
  378. #define B8(c,s ) B7(c,s, c), B7(c,s, s)
  379. // precomputed tables for expanding 8bits to 8 bytes:
  380. static const uint64_t table_b2b_0[1 << 8] = { B8(00, 10) }; // ( b) << 4
  381. static const uint64_t table_b2b_1[1 << 8] = { B8(10, 00) }; // (!b) << 4
  382. #endif
  383. // On ARM NEON, it's quicker to directly convert x -> x instead of calling into ggml_lookup_fp16_to_fp32,
  384. // so we define GGML_FP16_TO_FP32 and GGML_FP32_TO_FP16 elsewhere for NEON.
  385. // This is also true for POWER9.
  386. #if !defined(GGML_FP16_TO_FP32) || !defined(GGML_FP32_TO_FP16)
  387. inline static float ggml_lookup_fp16_to_fp32(ggml_fp16_t f) {
  388. uint16_t s;
  389. memcpy(&s, &f, sizeof(uint16_t));
  390. return table_f32_f16[s];
  391. }
  392. #define GGML_FP16_TO_FP32(x) ggml_lookup_fp16_to_fp32(x)
  393. #define GGML_FP32_TO_FP16(x) GGML_COMPUTE_FP32_TO_FP16(x)
  394. #endif
  395. // note: do not use these inside ggml.c
  396. // these are meant to be used via the ggml.h API
  397. float ggml_fp16_to_fp32(ggml_fp16_t x) {
  398. return (float) GGML_FP16_TO_FP32(x);
  399. }
  400. ggml_fp16_t ggml_fp32_to_fp16(float x) {
  401. return GGML_FP32_TO_FP16(x);
  402. }
  403. void ggml_fp16_to_fp32_row(const ggml_fp16_t * x, float * y, int n) {
  404. for (int i = 0; i < n; i++) {
  405. y[i] = GGML_FP16_TO_FP32(x[i]);
  406. }
  407. }
  408. void ggml_fp32_to_fp16_row(const float * x, ggml_fp16_t * y, int n) {
  409. int i = 0;
  410. #if defined(__F16C__)
  411. for (; i + 7 < n; i += 8) {
  412. __m256 x_vec = _mm256_loadu_ps(x + i);
  413. __m128i y_vec = _mm256_cvtps_ph(x_vec, _MM_FROUND_TO_NEAREST_INT);
  414. _mm_storeu_si128((__m128i *)(y + i), y_vec);
  415. }
  416. for(; i + 3 < n; i += 4) {
  417. __m128 x_vec = _mm_loadu_ps(x + i);
  418. __m128i y_vec = _mm_cvtps_ph(x_vec, _MM_FROUND_TO_NEAREST_INT);
  419. _mm_storel_epi64((__m128i *)(y + i), y_vec);
  420. }
  421. #endif
  422. for (; i < n; i++) {
  423. y[i] = GGML_FP32_TO_FP16(x[i]);
  424. }
  425. }
  426. //
  427. // timing
  428. //
  429. #if defined(_MSC_VER) || defined(__MINGW32__)
  430. static int64_t timer_freq, timer_start;
  431. void ggml_time_init(void) {
  432. LARGE_INTEGER t;
  433. QueryPerformanceFrequency(&t);
  434. timer_freq = t.QuadPart;
  435. // The multiplication by 1000 or 1000000 below can cause an overflow if timer_freq
  436. // and the uptime is high enough.
  437. // We subtract the program start time to reduce the likelihood of that happening.
  438. QueryPerformanceCounter(&t);
  439. timer_start = t.QuadPart;
  440. }
  441. int64_t ggml_time_ms(void) {
  442. LARGE_INTEGER t;
  443. QueryPerformanceCounter(&t);
  444. return ((t.QuadPart-timer_start) * 1000) / timer_freq;
  445. }
  446. int64_t ggml_time_us(void) {
  447. LARGE_INTEGER t;
  448. QueryPerformanceCounter(&t);
  449. return ((t.QuadPart-timer_start) * 1000000) / timer_freq;
  450. }
  451. #else
  452. void ggml_time_init(void) {}
  453. int64_t ggml_time_ms(void) {
  454. struct timespec ts;
  455. clock_gettime(CLOCK_MONOTONIC, &ts);
  456. return (int64_t)ts.tv_sec*1000 + (int64_t)ts.tv_nsec/1000000;
  457. }
  458. int64_t ggml_time_us(void) {
  459. struct timespec ts;
  460. clock_gettime(CLOCK_MONOTONIC, &ts);
  461. return (int64_t)ts.tv_sec*1000000 + (int64_t)ts.tv_nsec/1000;
  462. }
  463. #endif
  464. int64_t ggml_cycles(void) {
  465. return clock();
  466. }
  467. int64_t ggml_cycles_per_ms(void) {
  468. return CLOCKS_PER_SEC/1000;
  469. }
  470. #ifdef GGML_PERF
  471. #define ggml_perf_time_ms() ggml_time_ms()
  472. #define ggml_perf_time_us() ggml_time_us()
  473. #define ggml_perf_cycles() ggml_cycles()
  474. #define ggml_perf_cycles_per_ms() ggml_cycles_per_ms()
  475. #else
  476. #define ggml_perf_time_ms() 0
  477. #define ggml_perf_time_us() 0
  478. #define ggml_perf_cycles() 0
  479. #define ggml_perf_cycles_per_ms() 0
  480. #endif
  481. //
  482. // cache line
  483. //
  484. #if defined(__cpp_lib_hardware_interference_size)
  485. #define CACHE_LINE_SIZE hardware_destructive_interference_size
  486. #else
  487. #if defined(__POWER9_VECTOR__)
  488. #define CACHE_LINE_SIZE 128
  489. #else
  490. #define CACHE_LINE_SIZE 64
  491. #endif
  492. #endif
  493. static const size_t CACHE_LINE_SIZE_F32 = CACHE_LINE_SIZE/sizeof(float);
  494. //
  495. // quantization
  496. //
  497. #define MM256_SET_M128I(a, b) _mm256_insertf128_si256(_mm256_castsi128_si256(b), (a), 1)
  498. #if defined(__AVX__) || defined(__AVX2__) || defined(__AVX512F__) || defined(__SSSE3__)
  499. // multiply int8_t, add results pairwise twice
  500. static inline __m128i mul_sum_i8_pairs(const __m128i x, const __m128i y) {
  501. // Get absolute values of x vectors
  502. const __m128i ax = _mm_sign_epi8(x, x);
  503. // Sign the values of the y vectors
  504. const __m128i sy = _mm_sign_epi8(y, x);
  505. // Perform multiplication and create 16-bit values
  506. const __m128i dot = _mm_maddubs_epi16(ax, sy);
  507. const __m128i ones = _mm_set1_epi16(1);
  508. return _mm_madd_epi16(ones, dot);
  509. }
  510. #if __AVX__ || __AVX2__ || __AVX512F__
  511. // horizontally add 8 floats
  512. static inline float hsum_float_8(const __m256 x) {
  513. __m128 res = _mm256_extractf128_ps(x, 1);
  514. res = _mm_add_ps(res, _mm256_castps256_ps128(x));
  515. res = _mm_add_ps(res, _mm_movehl_ps(res, res));
  516. res = _mm_add_ss(res, _mm_movehdup_ps(res));
  517. return _mm_cvtss_f32(res);
  518. }
  519. // horizontally add 8 int32_t
  520. static inline int hsum_i32_8(const __m256i a) {
  521. const __m128i sum128 = _mm_add_epi32(_mm256_castsi256_si128(a), _mm256_extractf128_si256(a, 1));
  522. const __m128i hi64 = _mm_unpackhi_epi64(sum128, sum128);
  523. const __m128i sum64 = _mm_add_epi32(hi64, sum128);
  524. const __m128i hi32 = _mm_shuffle_epi32(sum64, _MM_SHUFFLE(2, 3, 0, 1));
  525. return _mm_cvtsi128_si32(_mm_add_epi32(sum64, hi32));
  526. }
  527. // horizontally add 4 int32_t
  528. static inline int hsum_i32_4(const __m128i a) {
  529. const __m128i hi64 = _mm_unpackhi_epi64(a, a);
  530. const __m128i sum64 = _mm_add_epi32(hi64, a);
  531. const __m128i hi32 = _mm_shuffle_epi32(sum64, _MM_SHUFFLE(2, 3, 0, 1));
  532. return _mm_cvtsi128_si32(_mm_add_epi32(sum64, hi32));
  533. }
  534. #if defined(__AVX2__) || defined(__AVX512F__)
  535. // spread 32 bits to 32 bytes { 0x00, 0xFF }
  536. static inline __m256i bytes_from_bits_32(const uint8_t * x) {
  537. uint32_t x32;
  538. memcpy(&x32, x, sizeof(uint32_t));
  539. const __m256i shuf_mask = _mm256_set_epi64x(
  540. 0x0303030303030303, 0x0202020202020202,
  541. 0x0101010101010101, 0x0000000000000000);
  542. __m256i bytes = _mm256_shuffle_epi8(_mm256_set1_epi32(x32), shuf_mask);
  543. const __m256i bit_mask = _mm256_set1_epi64x(0x7fbfdfeff7fbfdfe);
  544. bytes = _mm256_or_si256(bytes, bit_mask);
  545. return _mm256_cmpeq_epi8(bytes, _mm256_set1_epi64x(-1));
  546. }
  547. // Unpack 32 4-bit fields into 32 bytes
  548. // The output vector contains 32 bytes, each one in [ 0 .. 15 ] interval
  549. static inline __m256i bytes_from_nibbles_32(const uint8_t * rsi)
  550. {
  551. const __m128i tmp = _mm_loadu_si128((const __m128i *)rsi);
  552. const __m256i bytes = MM256_SET_M128I(_mm_srli_epi16(tmp, 4), tmp);
  553. const __m256i lowMask = _mm256_set1_epi8( 0xF );
  554. return _mm256_and_si256(lowMask, bytes);
  555. }
  556. // add int16_t pairwise and return as float vector
  557. static inline __m256 sum_i16_pairs_float(const __m256i x) {
  558. const __m256i ones = _mm256_set1_epi16(1);
  559. const __m256i summed_pairs = _mm256_madd_epi16(ones, x);
  560. return _mm256_cvtepi32_ps(summed_pairs);
  561. }
  562. static inline __m256 mul_sum_us8_pairs_float(const __m256i ax, const __m256i sy) {
  563. #if __AVXVNNI__
  564. const __m256i zero = _mm256_setzero_si256();
  565. const __m256i summed_pairs = _mm256_dpbusd_epi32(zero, ax, sy);
  566. return _mm256_cvtepi32_ps(summed_pairs);
  567. #else
  568. // Perform multiplication and create 16-bit values
  569. const __m256i dot = _mm256_maddubs_epi16(ax, sy);
  570. return sum_i16_pairs_float(dot);
  571. #endif
  572. }
  573. // multiply int8_t, add results pairwise twice and return as float vector
  574. static inline __m256 mul_sum_i8_pairs_float(const __m256i x, const __m256i y) {
  575. #if __AVXVNNIINT8__
  576. const __m256i zero = _mm256_setzero_si256();
  577. const __m256i summed_pairs = _mm256_dpbssd_epi32(zero, x, y);
  578. return _mm256_cvtepi32_ps(summed_pairs);
  579. #else
  580. // Get absolute values of x vectors
  581. const __m256i ax = _mm256_sign_epi8(x, x);
  582. // Sign the values of the y vectors
  583. const __m256i sy = _mm256_sign_epi8(y, x);
  584. return mul_sum_us8_pairs_float(ax, sy);
  585. #endif
  586. }
  587. static inline __m128i packNibbles( __m256i bytes )
  588. {
  589. // Move bits within 16-bit lanes from 0000_abcd_0000_efgh into 0000_0000_abcd_efgh
  590. #if __AVX512F__
  591. const __m256i bytes_srli_4 = _mm256_srli_epi16(bytes, 4); // 0000_0000_abcd_0000
  592. bytes = _mm256_or_si256(bytes, bytes_srli_4); // 0000_abcd_abcd_efgh
  593. return _mm256_cvtepi16_epi8(bytes); // abcd_efgh
  594. #else
  595. const __m256i lowByte = _mm256_set1_epi16( 0xFF );
  596. __m256i high = _mm256_andnot_si256( lowByte, bytes );
  597. __m256i low = _mm256_and_si256( lowByte, bytes );
  598. high = _mm256_srli_epi16( high, 4 );
  599. bytes = _mm256_or_si256( low, high );
  600. // Compress uint16_t lanes into bytes
  601. __m128i r0 = _mm256_castsi256_si128( bytes );
  602. __m128i r1 = _mm256_extracti128_si256( bytes, 1 );
  603. return _mm_packus_epi16( r0, r1 );
  604. #endif
  605. }
  606. #elif defined(__AVX__)
  607. // spread 32 bits to 32 bytes { 0x00, 0xFF }
  608. static inline __m256i bytes_from_bits_32(const uint8_t * x) {
  609. uint32_t x32;
  610. memcpy(&x32, x, sizeof(uint32_t));
  611. const __m128i shuf_maskl = _mm_set_epi64x(0x0101010101010101, 0x0000000000000000);
  612. const __m128i shuf_maskh = _mm_set_epi64x(0x0303030303030303, 0x0202020202020202);
  613. __m128i bytesl = _mm_shuffle_epi8(_mm_set1_epi32(x32), shuf_maskl);
  614. __m128i bytesh = _mm_shuffle_epi8(_mm_set1_epi32(x32), shuf_maskh);
  615. const __m128i bit_mask = _mm_set1_epi64x(0x7fbfdfeff7fbfdfe);
  616. bytesl = _mm_or_si128(bytesl, bit_mask);
  617. bytesh = _mm_or_si128(bytesh, bit_mask);
  618. bytesl = _mm_cmpeq_epi8(bytesl, _mm_set1_epi64x(-1));
  619. bytesh = _mm_cmpeq_epi8(bytesh, _mm_set1_epi64x(-1));
  620. return MM256_SET_M128I(bytesh, bytesl);
  621. }
  622. // Unpack 32 4-bit fields into 32 bytes
  623. // The output vector contains 32 bytes, each one in [ 0 .. 15 ] interval
  624. static inline __m256i bytes_from_nibbles_32(const uint8_t * rsi)
  625. {
  626. // Load 16 bytes from memory
  627. __m128i tmpl = _mm_loadu_si128((const __m128i *)rsi);
  628. __m128i tmph = _mm_srli_epi16(tmpl, 4);
  629. const __m128i lowMask = _mm_set1_epi8(0xF);
  630. tmpl = _mm_and_si128(lowMask, tmpl);
  631. tmph = _mm_and_si128(lowMask, tmph);
  632. return MM256_SET_M128I(tmph, tmpl);
  633. }
  634. // add int16_t pairwise and return as float vector
  635. static inline __m256 sum_i16_pairs_float(const __m128i xh, const __m128i xl) {
  636. const __m128i ones = _mm_set1_epi16(1);
  637. const __m128i summed_pairsl = _mm_madd_epi16(ones, xl);
  638. const __m128i summed_pairsh = _mm_madd_epi16(ones, xh);
  639. const __m256i summed_pairs = MM256_SET_M128I(summed_pairsh, summed_pairsl);
  640. return _mm256_cvtepi32_ps(summed_pairs);
  641. }
  642. static inline __m256 mul_sum_us8_pairs_float(const __m256i ax, const __m256i sy) {
  643. const __m128i axl = _mm256_castsi256_si128(ax);
  644. const __m128i axh = _mm256_extractf128_si256(ax, 1);
  645. const __m128i syl = _mm256_castsi256_si128(sy);
  646. const __m128i syh = _mm256_extractf128_si256(sy, 1);
  647. // Perform multiplication and create 16-bit values
  648. const __m128i dotl = _mm_maddubs_epi16(axl, syl);
  649. const __m128i doth = _mm_maddubs_epi16(axh, syh);
  650. return sum_i16_pairs_float(doth, dotl);
  651. }
  652. // multiply int8_t, add results pairwise twice and return as float vector
  653. static inline __m256 mul_sum_i8_pairs_float(const __m256i x, const __m256i y) {
  654. const __m128i xl = _mm256_castsi256_si128(x);
  655. const __m128i xh = _mm256_extractf128_si256(x, 1);
  656. const __m128i yl = _mm256_castsi256_si128(y);
  657. const __m128i yh = _mm256_extractf128_si256(y, 1);
  658. // Get absolute values of x vectors
  659. const __m128i axl = _mm_sign_epi8(xl, xl);
  660. const __m128i axh = _mm_sign_epi8(xh, xh);
  661. // Sign the values of the y vectors
  662. const __m128i syl = _mm_sign_epi8(yl, xl);
  663. const __m128i syh = _mm_sign_epi8(yh, xh);
  664. // Perform multiplication and create 16-bit values
  665. const __m128i dotl = _mm_maddubs_epi16(axl, syl);
  666. const __m128i doth = _mm_maddubs_epi16(axh, syh);
  667. return sum_i16_pairs_float(doth, dotl);
  668. }
  669. static inline __m128i packNibbles( __m128i bytes1, __m128i bytes2 )
  670. {
  671. // Move bits within 16-bit lanes from 0000_abcd_0000_efgh into 0000_0000_abcd_efgh
  672. const __m128i lowByte = _mm_set1_epi16( 0xFF );
  673. __m128i high = _mm_andnot_si128( lowByte, bytes1 );
  674. __m128i low = _mm_and_si128( lowByte, bytes1 );
  675. high = _mm_srli_epi16( high, 4 );
  676. bytes1 = _mm_or_si128( low, high );
  677. high = _mm_andnot_si128( lowByte, bytes2 );
  678. low = _mm_and_si128( lowByte, bytes2 );
  679. high = _mm_srli_epi16( high, 4 );
  680. bytes2 = _mm_or_si128( low, high );
  681. return _mm_packus_epi16( bytes1, bytes2);
  682. }
  683. #endif
  684. #elif defined(__SSSE3__)
  685. // horizontally add 4x4 floats
  686. static inline float hsum_float_4x4(const __m128 a, const __m128 b, const __m128 c, const __m128 d) {
  687. __m128 res_0 =_mm_hadd_ps(a, b);
  688. __m128 res_1 =_mm_hadd_ps(c, d);
  689. __m128 res =_mm_hadd_ps(res_0, res_1);
  690. res =_mm_hadd_ps(res, res);
  691. res =_mm_hadd_ps(res, res);
  692. return _mm_cvtss_f32(res);
  693. }
  694. #endif // __AVX__ || __AVX2__ || __AVX512F__
  695. #endif // defined(__AVX__) || defined(__AVX2__) || defined(__AVX512F__) || defined(__SSSE3__)
  696. #if defined(__ARM_NEON)
  697. #if !defined(__aarch64__)
  698. inline static uint16_t vaddvq_u8(uint8x16_t v) {
  699. return
  700. (uint16_t)vgetq_lane_u8(v, 0) + (uint16_t)vgetq_lane_u8(v, 1) +
  701. (uint16_t)vgetq_lane_u8(v, 2) + (uint16_t)vgetq_lane_u8(v, 3) +
  702. (uint16_t)vgetq_lane_u8(v, 4) + (uint16_t)vgetq_lane_u8(v, 5) +
  703. (uint16_t)vgetq_lane_u8(v, 6) + (uint16_t)vgetq_lane_u8(v, 7) +
  704. (uint16_t)vgetq_lane_u8(v, 8) + (uint16_t)vgetq_lane_u8(v, 9) +
  705. (uint16_t)vgetq_lane_u8(v, 10) + (uint16_t)vgetq_lane_u8(v, 11) +
  706. (uint16_t)vgetq_lane_u8(v, 12) + (uint16_t)vgetq_lane_u8(v, 13) +
  707. (uint16_t)vgetq_lane_u8(v, 14) + (uint16_t)vgetq_lane_u8(v, 15);
  708. }
  709. inline static int16_t vaddvq_s8(int8x16_t v) {
  710. return
  711. (int16_t)vgetq_lane_s8(v, 0) + (int16_t)vgetq_lane_s8(v, 1) +
  712. (int16_t)vgetq_lane_s8(v, 2) + (int16_t)vgetq_lane_s8(v, 3) +
  713. (int16_t)vgetq_lane_s8(v, 4) + (int16_t)vgetq_lane_s8(v, 5) +
  714. (int16_t)vgetq_lane_s8(v, 6) + (int16_t)vgetq_lane_s8(v, 7) +
  715. (int16_t)vgetq_lane_s8(v, 8) + (int16_t)vgetq_lane_s8(v, 9) +
  716. (int16_t)vgetq_lane_s8(v, 10) + (int16_t)vgetq_lane_s8(v, 11) +
  717. (int16_t)vgetq_lane_s8(v, 12) + (int16_t)vgetq_lane_s8(v, 13) +
  718. (int16_t)vgetq_lane_s8(v, 14) + (int16_t)vgetq_lane_s8(v, 15);
  719. }
  720. inline static int32_t vaddvq_s16(int16x8_t v) {
  721. return
  722. (int32_t)vgetq_lane_s16(v, 0) + (int32_t)vgetq_lane_s16(v, 1) +
  723. (int32_t)vgetq_lane_s16(v, 2) + (int32_t)vgetq_lane_s16(v, 3) +
  724. (int32_t)vgetq_lane_s16(v, 4) + (int32_t)vgetq_lane_s16(v, 5) +
  725. (int32_t)vgetq_lane_s16(v, 6) + (int32_t)vgetq_lane_s16(v, 7);
  726. }
  727. inline static uint32_t vaddvq_u16(uint16x8_t v) {
  728. return
  729. (uint32_t)vgetq_lane_u16(v, 0) + (uint32_t)vgetq_lane_u16(v, 1) +
  730. (uint32_t)vgetq_lane_u16(v, 2) + (uint32_t)vgetq_lane_u16(v, 3) +
  731. (uint32_t)vgetq_lane_u16(v, 4) + (uint32_t)vgetq_lane_u16(v, 5) +
  732. (uint32_t)vgetq_lane_u16(v, 6) + (uint32_t)vgetq_lane_u16(v, 7);
  733. }
  734. inline static int32_t vaddvq_s32(int32x4_t v) {
  735. return vgetq_lane_s32(v, 0) + vgetq_lane_s32(v, 1) + vgetq_lane_s32(v, 2) + vgetq_lane_s32(v, 3);
  736. }
  737. inline static float vaddvq_f32(float32x4_t v) {
  738. return vgetq_lane_f32(v, 0) + vgetq_lane_f32(v, 1) + vgetq_lane_f32(v, 2) + vgetq_lane_f32(v, 3);
  739. }
  740. inline static float vminvq_f32(float32x4_t v) {
  741. return
  742. MIN(MIN(vgetq_lane_f32(v, 0), vgetq_lane_f32(v, 1)),
  743. MIN(vgetq_lane_f32(v, 2), vgetq_lane_f32(v, 3)));
  744. }
  745. inline static float vmaxvq_f32(float32x4_t v) {
  746. return
  747. MAX(MAX(vgetq_lane_f32(v, 0), vgetq_lane_f32(v, 1)),
  748. MAX(vgetq_lane_f32(v, 2), vgetq_lane_f32(v, 3)));
  749. }
  750. inline static int32x4_t vcvtnq_s32_f32(float32x4_t v) {
  751. int32x4_t res;
  752. res[0] = roundf(vgetq_lane_f32(v, 0));
  753. res[1] = roundf(vgetq_lane_f32(v, 1));
  754. res[2] = roundf(vgetq_lane_f32(v, 2));
  755. res[3] = roundf(vgetq_lane_f32(v, 3));
  756. return res;
  757. }
  758. #endif
  759. #endif
  760. #define QK4_0 32
  761. typedef struct {
  762. ggml_fp16_t d; // delta
  763. uint8_t qs[QK4_0 / 2]; // nibbles / quants
  764. } block_q4_0;
  765. static_assert(sizeof(block_q4_0) == sizeof(ggml_fp16_t) + QK4_0 / 2, "wrong q4_0 block size/padding");
  766. #define QK4_1 32
  767. typedef struct {
  768. ggml_fp16_t d; // delta
  769. ggml_fp16_t m; // min
  770. uint8_t qs[QK4_1 / 2]; // nibbles / quants
  771. } block_q4_1;
  772. static_assert(sizeof(block_q4_1) == 2 * sizeof(ggml_fp16_t) + QK4_1 / 2, "wrong q4_1 block size/padding");
  773. #define QK5_0 32
  774. typedef struct {
  775. ggml_fp16_t d; // delta
  776. uint8_t qh[4]; // 5-th bit of quants
  777. uint8_t qs[QK5_0 / 2]; // nibbles / quants
  778. } block_q5_0;
  779. static_assert(sizeof(block_q5_0) == sizeof(ggml_fp16_t) + sizeof(uint32_t) + QK5_0 / 2, "wrong q5_0 block size/padding");
  780. #define QK5_1 32
  781. typedef struct {
  782. ggml_fp16_t d; // delta
  783. ggml_fp16_t m; // min
  784. uint8_t qh[4]; // 5-th bit of quants
  785. uint8_t qs[QK5_1 / 2]; // nibbles / quants
  786. } block_q5_1;
  787. static_assert(sizeof(block_q5_1) == 2 * sizeof(ggml_fp16_t) + sizeof(uint32_t) + QK5_1 / 2, "wrong q5_1 block size/padding");
  788. #define QK8_0 32
  789. typedef struct {
  790. ggml_fp16_t d; // delta
  791. int8_t qs[QK8_0]; // quants
  792. } block_q8_0;
  793. static_assert(sizeof(block_q8_0) == sizeof(ggml_fp16_t) + QK8_0, "wrong q8_0 block size/padding");
  794. #define QK8_1 32
  795. typedef struct {
  796. float d; // delta
  797. float s; // d * sum(qs[i])
  798. int8_t qs[QK8_1]; // quants
  799. } block_q8_1;
  800. static_assert(sizeof(block_q8_1) == 2*sizeof(float) + QK8_1, "wrong q8_1 block size/padding");
  801. // reference implementation for deterministic creation of model files
  802. static void quantize_row_q4_0_reference(const float * restrict x, block_q4_0 * restrict y, int k) {
  803. static const int qk = QK4_0;
  804. assert(k % qk == 0);
  805. const int nb = k / qk;
  806. for (int i = 0; i < nb; i++) {
  807. float amax = 0.0f; // absolute max
  808. float max = 0.0f;
  809. for (int j = 0; j < qk; j++) {
  810. const float v = x[i*qk + j];
  811. if (amax < fabsf(v)) {
  812. amax = fabsf(v);
  813. max = v;
  814. }
  815. }
  816. const float d = max / -8;
  817. const float id = d ? 1.0f/d : 0.0f;
  818. y[i].d = GGML_FP32_TO_FP16(d);
  819. for (int j = 0; j < qk/2; ++j) {
  820. const float x0 = x[i*qk + 0 + j]*id;
  821. const float x1 = x[i*qk + qk/2 + j]*id;
  822. const uint8_t xi0 = MIN(15, (int8_t)(x0 + 8.5f));
  823. const uint8_t xi1 = MIN(15, (int8_t)(x1 + 8.5f));
  824. y[i].qs[j] = xi0;
  825. y[i].qs[j] |= xi1 << 4;
  826. }
  827. }
  828. }
  829. static void quantize_row_q4_0(const float * restrict x, void * restrict y, int k) {
  830. quantize_row_q4_0_reference(x, y, k);
  831. }
  832. static void quantize_row_q4_1_reference(const float * restrict x, block_q4_1 * restrict y, int k) {
  833. const int qk = QK4_1;
  834. assert(k % qk == 0);
  835. const int nb = k / qk;
  836. for (int i = 0; i < nb; i++) {
  837. float min = FLT_MAX;
  838. float max = -FLT_MAX;
  839. for (int j = 0; j < qk; j++) {
  840. const float v = x[i*qk + j];
  841. if (v < min) min = v;
  842. if (v > max) max = v;
  843. }
  844. const float d = (max - min) / ((1 << 4) - 1);
  845. const float id = d ? 1.0f/d : 0.0f;
  846. y[i].d = GGML_FP32_TO_FP16(d);
  847. y[i].m = GGML_FP32_TO_FP16(min);
  848. for (int j = 0; j < qk/2; ++j) {
  849. const float x0 = (x[i*qk + 0 + j] - min)*id;
  850. const float x1 = (x[i*qk + qk/2 + j] - min)*id;
  851. const uint8_t xi0 = MIN(15, (int8_t)(x0 + 0.5f));
  852. const uint8_t xi1 = MIN(15, (int8_t)(x1 + 0.5f));
  853. y[i].qs[j] = xi0;
  854. y[i].qs[j] |= xi1 << 4;
  855. }
  856. }
  857. }
  858. static void quantize_row_q4_1(const float * restrict x, void * restrict y, int k) {
  859. quantize_row_q4_1_reference(x, y, k);
  860. }
  861. static void quantize_row_q5_0_reference(const float * restrict x, block_q5_0 * restrict y, int k) {
  862. static const int qk = QK5_0;
  863. assert(k % qk == 0);
  864. const int nb = k / qk;
  865. for (int i = 0; i < nb; i++) {
  866. float amax = 0.0f; // absolute max
  867. float max = 0.0f;
  868. for (int j = 0; j < qk; j++) {
  869. const float v = x[i*qk + j];
  870. if (amax < fabsf(v)) {
  871. amax = fabsf(v);
  872. max = v;
  873. }
  874. }
  875. const float d = max / -16;
  876. const float id = d ? 1.0f/d : 0.0f;
  877. y[i].d = GGML_FP32_TO_FP16(d);
  878. uint32_t qh = 0;
  879. for (int j = 0; j < qk/2; ++j) {
  880. const float x0 = x[i*qk + 0 + j]*id;
  881. const float x1 = x[i*qk + qk/2 + j]*id;
  882. const uint8_t xi0 = MIN(31, (int8_t)(x0 + 16.5f));
  883. const uint8_t xi1 = MIN(31, (int8_t)(x1 + 16.5f));
  884. y[i].qs[j] = (xi0 & 0x0F) | ((xi1 & 0x0F) << 4);
  885. // get the 5-th bit and store it in qh at the right position
  886. qh |= ((xi0 & 0x10) >> 4) << (j + 0);
  887. qh |= ((xi1 & 0x10) >> 4) << (j + qk/2);
  888. }
  889. memcpy(&y[i].qh, &qh, sizeof(qh));
  890. }
  891. }
  892. static void quantize_row_q5_0(const float * restrict x, void * restrict y, int k) {
  893. quantize_row_q5_0_reference(x, y, k);
  894. }
  895. static void quantize_row_q5_1_reference(const float * restrict x, block_q5_1 * restrict y, int k) {
  896. const int qk = QK5_1;
  897. assert(k % qk == 0);
  898. const int nb = k / qk;
  899. for (int i = 0; i < nb; i++) {
  900. float min = FLT_MAX;
  901. float max = -FLT_MAX;
  902. for (int j = 0; j < qk; j++) {
  903. const float v = x[i*qk + j];
  904. if (v < min) min = v;
  905. if (v > max) max = v;
  906. }
  907. const float d = (max - min) / ((1 << 5) - 1);
  908. const float id = d ? 1.0f/d : 0.0f;
  909. y[i].d = GGML_FP32_TO_FP16(d);
  910. y[i].m = GGML_FP32_TO_FP16(min);
  911. uint32_t qh = 0;
  912. for (int j = 0; j < qk/2; ++j) {
  913. const float x0 = (x[i*qk + 0 + j] - min)*id;
  914. const float x1 = (x[i*qk + qk/2 + j] - min)*id;
  915. const uint8_t xi0 = (uint8_t)(x0 + 0.5f);
  916. const uint8_t xi1 = (uint8_t)(x1 + 0.5f);
  917. y[i].qs[j] = (xi0 & 0x0F) | ((xi1 & 0x0F) << 4);
  918. // get the 5-th bit and store it in qh at the right position
  919. qh |= ((xi0 & 0x10) >> 4) << (j + 0);
  920. qh |= ((xi1 & 0x10) >> 4) << (j + qk/2);
  921. }
  922. memcpy(&y[i].qh, &qh, sizeof(y[i].qh));
  923. }
  924. }
  925. static void quantize_row_q5_1(const float * restrict x, void * restrict y, int k) {
  926. quantize_row_q5_1_reference(x, y, k);
  927. }
  928. // reference implementation for deterministic creation of model files
  929. static void quantize_row_q8_0_reference(const float * restrict x, block_q8_0 * restrict y, int k) {
  930. assert(k % QK8_0 == 0);
  931. const int nb = k / QK8_0;
  932. for (int i = 0; i < nb; i++) {
  933. float amax = 0.0f; // absolute max
  934. for (int j = 0; j < QK8_0; j++) {
  935. const float v = x[i*QK8_0 + j];
  936. amax = MAX(amax, fabsf(v));
  937. }
  938. const float d = amax / ((1 << 7) - 1);
  939. const float id = d ? 1.0f/d : 0.0f;
  940. y[i].d = GGML_FP32_TO_FP16(d);
  941. for (int j = 0; j < QK8_0; ++j) {
  942. const float x0 = x[i*QK8_0 + j]*id;
  943. y[i].qs[j] = roundf(x0);
  944. }
  945. }
  946. }
  947. static void quantize_row_q8_0(const float * restrict x, void * restrict vy, int k) {
  948. assert(QK8_0 == 32);
  949. assert(k % QK8_0 == 0);
  950. const int nb = k / QK8_0;
  951. block_q8_0 * restrict y = vy;
  952. #if defined(__ARM_NEON)
  953. for (int i = 0; i < nb; i++) {
  954. float32x4_t srcv [8];
  955. float32x4_t asrcv[8];
  956. float32x4_t amaxv[8];
  957. for (int j = 0; j < 8; j++) srcv[j] = vld1q_f32(x + i*32 + 4*j);
  958. for (int j = 0; j < 8; j++) asrcv[j] = vabsq_f32(srcv[j]);
  959. for (int j = 0; j < 4; j++) amaxv[2*j] = vmaxq_f32(asrcv[2*j], asrcv[2*j+1]);
  960. for (int j = 0; j < 2; j++) amaxv[4*j] = vmaxq_f32(amaxv[4*j], amaxv[4*j+2]);
  961. for (int j = 0; j < 1; j++) amaxv[8*j] = vmaxq_f32(amaxv[8*j], amaxv[8*j+4]);
  962. const float amax = vmaxvq_f32(amaxv[0]);
  963. const float d = amax / ((1 << 7) - 1);
  964. const float id = d ? 1.0f/d : 0.0f;
  965. y[i].d = GGML_FP32_TO_FP16(d);
  966. for (int j = 0; j < 8; j++) {
  967. const float32x4_t v = vmulq_n_f32(srcv[j], id);
  968. const int32x4_t vi = vcvtnq_s32_f32(v);
  969. y[i].qs[4*j + 0] = vgetq_lane_s32(vi, 0);
  970. y[i].qs[4*j + 1] = vgetq_lane_s32(vi, 1);
  971. y[i].qs[4*j + 2] = vgetq_lane_s32(vi, 2);
  972. y[i].qs[4*j + 3] = vgetq_lane_s32(vi, 3);
  973. }
  974. }
  975. #elif defined(__wasm_simd128__)
  976. for (int i = 0; i < nb; i++) {
  977. v128_t srcv [8];
  978. v128_t asrcv[8];
  979. v128_t amaxv[8];
  980. for (int j = 0; j < 8; j++) srcv[j] = wasm_v128_load(x + i*32 + 4*j);
  981. for (int j = 0; j < 8; j++) asrcv[j] = wasm_f32x4_abs(srcv[j]);
  982. for (int j = 0; j < 4; j++) amaxv[2*j] = wasm_f32x4_max(asrcv[2*j], asrcv[2*j+1]);
  983. for (int j = 0; j < 2; j++) amaxv[4*j] = wasm_f32x4_max(amaxv[4*j], amaxv[4*j+2]);
  984. for (int j = 0; j < 1; j++) amaxv[8*j] = wasm_f32x4_max(amaxv[8*j], amaxv[8*j+4]);
  985. const float amax = MAX(MAX(wasm_f32x4_extract_lane(amaxv[0], 0),
  986. wasm_f32x4_extract_lane(amaxv[0], 1)),
  987. MAX(wasm_f32x4_extract_lane(amaxv[0], 2),
  988. wasm_f32x4_extract_lane(amaxv[0], 3)));
  989. const float d = amax / ((1 << 7) - 1);
  990. const float id = d ? 1.0f/d : 0.0f;
  991. y[i].d = GGML_FP32_TO_FP16(d);
  992. for (int j = 0; j < 8; j++) {
  993. const v128_t v = wasm_f32x4_mul(srcv[j], wasm_f32x4_splat(id));
  994. const v128_t vi = wasm_i32x4_trunc_sat_f32x4(v);
  995. y[i].qs[4*j + 0] = wasm_i32x4_extract_lane(vi, 0);
  996. y[i].qs[4*j + 1] = wasm_i32x4_extract_lane(vi, 1);
  997. y[i].qs[4*j + 2] = wasm_i32x4_extract_lane(vi, 2);
  998. y[i].qs[4*j + 3] = wasm_i32x4_extract_lane(vi, 3);
  999. }
  1000. }
  1001. #elif defined(__AVX2__) || defined(__AVX__)
  1002. for (int i = 0; i < nb; i++) {
  1003. // Load elements into 4 AVX vectors
  1004. __m256 v0 = _mm256_loadu_ps( x );
  1005. __m256 v1 = _mm256_loadu_ps( x + 8 );
  1006. __m256 v2 = _mm256_loadu_ps( x + 16 );
  1007. __m256 v3 = _mm256_loadu_ps( x + 24 );
  1008. x += 32;
  1009. // Compute max(abs(e)) for the block
  1010. const __m256 signBit = _mm256_set1_ps( -0.0f );
  1011. __m256 maxAbs = _mm256_andnot_ps( signBit, v0 );
  1012. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v1 ) );
  1013. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v2 ) );
  1014. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v3 ) );
  1015. __m128 max4 = _mm_max_ps( _mm256_extractf128_ps( maxAbs, 1 ), _mm256_castps256_ps128( maxAbs ) );
  1016. max4 = _mm_max_ps( max4, _mm_movehl_ps( max4, max4 ) );
  1017. max4 = _mm_max_ss( max4, _mm_movehdup_ps( max4 ) );
  1018. const float maxScalar = _mm_cvtss_f32( max4 );
  1019. // Quantize these floats
  1020. const float d = maxScalar / 127.f;
  1021. y[i].d = GGML_FP32_TO_FP16(d);
  1022. const float id = ( maxScalar != 0.0f ) ? 127.f / maxScalar : 0.0f;
  1023. const __m256 mul = _mm256_set1_ps( id );
  1024. // Apply the multiplier
  1025. v0 = _mm256_mul_ps( v0, mul );
  1026. v1 = _mm256_mul_ps( v1, mul );
  1027. v2 = _mm256_mul_ps( v2, mul );
  1028. v3 = _mm256_mul_ps( v3, mul );
  1029. // Round to nearest integer
  1030. v0 = _mm256_round_ps( v0, _MM_ROUND_NEAREST );
  1031. v1 = _mm256_round_ps( v1, _MM_ROUND_NEAREST );
  1032. v2 = _mm256_round_ps( v2, _MM_ROUND_NEAREST );
  1033. v3 = _mm256_round_ps( v3, _MM_ROUND_NEAREST );
  1034. // Convert floats to integers
  1035. __m256i i0 = _mm256_cvtps_epi32( v0 );
  1036. __m256i i1 = _mm256_cvtps_epi32( v1 );
  1037. __m256i i2 = _mm256_cvtps_epi32( v2 );
  1038. __m256i i3 = _mm256_cvtps_epi32( v3 );
  1039. #if defined(__AVX2__)
  1040. // Convert int32 to int16
  1041. i0 = _mm256_packs_epi32( i0, i1 ); // 0, 1, 2, 3, 8, 9, 10, 11, 4, 5, 6, 7, 12, 13, 14, 15
  1042. i2 = _mm256_packs_epi32( i2, i3 ); // 16, 17, 18, 19, 24, 25, 26, 27, 20, 21, 22, 23, 28, 29, 30, 31
  1043. // Convert int16 to int8
  1044. i0 = _mm256_packs_epi16( i0, i2 ); // 0, 1, 2, 3, 8, 9, 10, 11, 16, 17, 18, 19, 24, 25, 26, 27, 4, 5, 6, 7, 12, 13, 14, 15, 20, 21, 22, 23, 28, 29, 30, 31
  1045. // We got our precious signed bytes, but the order is now wrong
  1046. // These AVX2 pack instructions process 16-byte pieces independently
  1047. // The following instruction is fixing the order
  1048. const __m256i perm = _mm256_setr_epi32( 0, 4, 1, 5, 2, 6, 3, 7 );
  1049. i0 = _mm256_permutevar8x32_epi32( i0, perm );
  1050. _mm256_storeu_si256((__m256i *)y[i].qs, i0);
  1051. #else
  1052. // Since we don't have in AVX some necessary functions,
  1053. // we split the registers in half and call AVX2 analogs from SSE
  1054. __m128i ni0 = _mm256_castsi256_si128( i0 );
  1055. __m128i ni1 = _mm256_extractf128_si256( i0, 1);
  1056. __m128i ni2 = _mm256_castsi256_si128( i1 );
  1057. __m128i ni3 = _mm256_extractf128_si256( i1, 1);
  1058. __m128i ni4 = _mm256_castsi256_si128( i2 );
  1059. __m128i ni5 = _mm256_extractf128_si256( i2, 1);
  1060. __m128i ni6 = _mm256_castsi256_si128( i3 );
  1061. __m128i ni7 = _mm256_extractf128_si256( i3, 1);
  1062. // Convert int32 to int16
  1063. ni0 = _mm_packs_epi32( ni0, ni1 );
  1064. ni2 = _mm_packs_epi32( ni2, ni3 );
  1065. ni4 = _mm_packs_epi32( ni4, ni5 );
  1066. ni6 = _mm_packs_epi32( ni6, ni7 );
  1067. // Convert int16 to int8
  1068. ni0 = _mm_packs_epi16( ni0, ni2 );
  1069. ni4 = _mm_packs_epi16( ni4, ni6 );
  1070. _mm_storeu_si128((__m128i *)(y[i].qs + 0), ni0);
  1071. _mm_storeu_si128((__m128i *)(y[i].qs + 16), ni4);
  1072. #endif
  1073. }
  1074. #else
  1075. // scalar
  1076. quantize_row_q8_0_reference(x, y, k);
  1077. #endif
  1078. }
  1079. // reference implementation for deterministic creation of model files
  1080. static void quantize_row_q8_1_reference(const float * restrict x, block_q8_1 * restrict y, int k) {
  1081. assert(QK8_1 == 32);
  1082. assert(k % QK8_1 == 0);
  1083. const int nb = k / QK8_1;
  1084. for (int i = 0; i < nb; i++) {
  1085. float amax = 0.0f; // absolute max
  1086. for (int j = 0; j < QK8_1; j++) {
  1087. const float v = x[i*QK8_1 + j];
  1088. amax = MAX(amax, fabsf(v));
  1089. }
  1090. const float d = amax / ((1 << 7) - 1);
  1091. const float id = d ? 1.0f/d : 0.0f;
  1092. y[i].d = d;
  1093. int sum = 0;
  1094. for (int j = 0; j < QK8_1/2; ++j) {
  1095. const float v0 = x[i*QK8_1 + j]*id;
  1096. const float v1 = x[i*QK8_1 + QK8_1/2 + j]*id;
  1097. y[i].qs[ j] = roundf(v0);
  1098. y[i].qs[QK8_1/2 + j] = roundf(v1);
  1099. sum += y[i].qs[ j];
  1100. sum += y[i].qs[QK8_1/2 + j];
  1101. }
  1102. y[i].s = sum*d;
  1103. }
  1104. }
  1105. static void quantize_row_q8_1(const float * restrict x, void * restrict vy, int k) {
  1106. assert(k % QK8_1 == 0);
  1107. const int nb = k / QK8_1;
  1108. block_q8_1 * restrict y = vy;
  1109. #if defined(__ARM_NEON)
  1110. for (int i = 0; i < nb; i++) {
  1111. float32x4_t srcv [8];
  1112. float32x4_t asrcv[8];
  1113. float32x4_t amaxv[8];
  1114. for (int j = 0; j < 8; j++) srcv[j] = vld1q_f32(x + i*32 + 4*j);
  1115. for (int j = 0; j < 8; j++) asrcv[j] = vabsq_f32(srcv[j]);
  1116. for (int j = 0; j < 4; j++) amaxv[2*j] = vmaxq_f32(asrcv[2*j], asrcv[2*j+1]);
  1117. for (int j = 0; j < 2; j++) amaxv[4*j] = vmaxq_f32(amaxv[4*j], amaxv[4*j+2]);
  1118. for (int j = 0; j < 1; j++) amaxv[8*j] = vmaxq_f32(amaxv[8*j], amaxv[8*j+4]);
  1119. const float amax = vmaxvq_f32(amaxv[0]);
  1120. const float d = amax / ((1 << 7) - 1);
  1121. const float id = d ? 1.0f/d : 0.0f;
  1122. y[i].d = d;
  1123. int32x4_t accv = vdupq_n_s32(0);
  1124. for (int j = 0; j < 8; j++) {
  1125. const float32x4_t v = vmulq_n_f32(srcv[j], id);
  1126. const int32x4_t vi = vcvtnq_s32_f32(v);
  1127. y[i].qs[4*j + 0] = vgetq_lane_s32(vi, 0);
  1128. y[i].qs[4*j + 1] = vgetq_lane_s32(vi, 1);
  1129. y[i].qs[4*j + 2] = vgetq_lane_s32(vi, 2);
  1130. y[i].qs[4*j + 3] = vgetq_lane_s32(vi, 3);
  1131. accv = vaddq_s32(accv, vi);
  1132. }
  1133. y[i].s = d * vaddvq_s32(accv);
  1134. }
  1135. #elif defined(__wasm_simd128__)
  1136. for (int i = 0; i < nb; i++) {
  1137. v128_t srcv [8];
  1138. v128_t asrcv[8];
  1139. v128_t amaxv[8];
  1140. for (int j = 0; j < 8; j++) srcv[j] = wasm_v128_load(x + i*32 + 4*j);
  1141. for (int j = 0; j < 8; j++) asrcv[j] = wasm_f32x4_abs(srcv[j]);
  1142. for (int j = 0; j < 4; j++) amaxv[2*j] = wasm_f32x4_max(asrcv[2*j], asrcv[2*j+1]);
  1143. for (int j = 0; j < 2; j++) amaxv[4*j] = wasm_f32x4_max(amaxv[4*j], amaxv[4*j+2]);
  1144. for (int j = 0; j < 1; j++) amaxv[8*j] = wasm_f32x4_max(amaxv[8*j], amaxv[8*j+4]);
  1145. const float amax = MAX(MAX(wasm_f32x4_extract_lane(amaxv[0], 0),
  1146. wasm_f32x4_extract_lane(amaxv[0], 1)),
  1147. MAX(wasm_f32x4_extract_lane(amaxv[0], 2),
  1148. wasm_f32x4_extract_lane(amaxv[0], 3)));
  1149. const float d = amax / ((1 << 7) - 1);
  1150. const float id = d ? 1.0f/d : 0.0f;
  1151. y[i].d = d;
  1152. v128_t accv = wasm_i32x4_splat(0);
  1153. for (int j = 0; j < 8; j++) {
  1154. const v128_t v = wasm_f32x4_mul(srcv[j], wasm_f32x4_splat(id));
  1155. const v128_t vi = wasm_i32x4_trunc_sat_f32x4(v);
  1156. y[i].qs[4*j + 0] = wasm_i32x4_extract_lane(vi, 0);
  1157. y[i].qs[4*j + 1] = wasm_i32x4_extract_lane(vi, 1);
  1158. y[i].qs[4*j + 2] = wasm_i32x4_extract_lane(vi, 2);
  1159. y[i].qs[4*j + 3] = wasm_i32x4_extract_lane(vi, 3);
  1160. accv = wasm_i32x4_add(accv, vi);
  1161. }
  1162. y[i].s = d * (wasm_i32x4_extract_lane(accv, 0) +
  1163. wasm_i32x4_extract_lane(accv, 1) +
  1164. wasm_i32x4_extract_lane(accv, 2) +
  1165. wasm_i32x4_extract_lane(accv, 3));
  1166. }
  1167. #elif defined(__AVX2__) || defined(__AVX__)
  1168. for (int i = 0; i < nb; i++) {
  1169. // Load elements into 4 AVX vectors
  1170. __m256 v0 = _mm256_loadu_ps( x );
  1171. __m256 v1 = _mm256_loadu_ps( x + 8 );
  1172. __m256 v2 = _mm256_loadu_ps( x + 16 );
  1173. __m256 v3 = _mm256_loadu_ps( x + 24 );
  1174. x += 32;
  1175. // Compute max(abs(e)) for the block
  1176. const __m256 signBit = _mm256_set1_ps( -0.0f );
  1177. __m256 maxAbs = _mm256_andnot_ps( signBit, v0 );
  1178. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v1 ) );
  1179. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v2 ) );
  1180. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v3 ) );
  1181. __m128 max4 = _mm_max_ps( _mm256_extractf128_ps( maxAbs, 1 ), _mm256_castps256_ps128( maxAbs ) );
  1182. max4 = _mm_max_ps( max4, _mm_movehl_ps( max4, max4 ) );
  1183. max4 = _mm_max_ss( max4, _mm_movehdup_ps( max4 ) );
  1184. const float maxScalar = _mm_cvtss_f32( max4 );
  1185. // Quantize these floats
  1186. const float d = maxScalar / 127.f;
  1187. y[i].d = d;
  1188. const float id = ( maxScalar != 0.0f ) ? 127.f / maxScalar : 0.0f;
  1189. const __m256 mul = _mm256_set1_ps( id );
  1190. // Apply the multiplier
  1191. v0 = _mm256_mul_ps( v0, mul );
  1192. v1 = _mm256_mul_ps( v1, mul );
  1193. v2 = _mm256_mul_ps( v2, mul );
  1194. v3 = _mm256_mul_ps( v3, mul );
  1195. // Round to nearest integer
  1196. v0 = _mm256_round_ps( v0, _MM_ROUND_NEAREST );
  1197. v1 = _mm256_round_ps( v1, _MM_ROUND_NEAREST );
  1198. v2 = _mm256_round_ps( v2, _MM_ROUND_NEAREST );
  1199. v3 = _mm256_round_ps( v3, _MM_ROUND_NEAREST );
  1200. // Convert floats to integers
  1201. __m256i i0 = _mm256_cvtps_epi32( v0 );
  1202. __m256i i1 = _mm256_cvtps_epi32( v1 );
  1203. __m256i i2 = _mm256_cvtps_epi32( v2 );
  1204. __m256i i3 = _mm256_cvtps_epi32( v3 );
  1205. #if defined(__AVX2__)
  1206. // Compute the sum of the quants and set y[i].s
  1207. y[i].s = d * hsum_i32_8(_mm256_add_epi32(_mm256_add_epi32(i0, i1), _mm256_add_epi32(i2, i3)));
  1208. // Convert int32 to int16
  1209. i0 = _mm256_packs_epi32( i0, i1 ); // 0, 1, 2, 3, 8, 9, 10, 11, 4, 5, 6, 7, 12, 13, 14, 15
  1210. i2 = _mm256_packs_epi32( i2, i3 ); // 16, 17, 18, 19, 24, 25, 26, 27, 20, 21, 22, 23, 28, 29, 30, 31
  1211. // Convert int16 to int8
  1212. i0 = _mm256_packs_epi16( i0, i2 ); // 0, 1, 2, 3, 8, 9, 10, 11, 16, 17, 18, 19, 24, 25, 26, 27, 4, 5, 6, 7, 12, 13, 14, 15, 20, 21, 22, 23, 28, 29, 30, 31
  1213. // We got our precious signed bytes, but the order is now wrong
  1214. // These AVX2 pack instructions process 16-byte pieces independently
  1215. // The following instruction is fixing the order
  1216. const __m256i perm = _mm256_setr_epi32( 0, 4, 1, 5, 2, 6, 3, 7 );
  1217. i0 = _mm256_permutevar8x32_epi32( i0, perm );
  1218. _mm256_storeu_si256((__m256i *)y[i].qs, i0);
  1219. #else
  1220. // Since we don't have in AVX some necessary functions,
  1221. // we split the registers in half and call AVX2 analogs from SSE
  1222. __m128i ni0 = _mm256_castsi256_si128( i0 );
  1223. __m128i ni1 = _mm256_extractf128_si256( i0, 1);
  1224. __m128i ni2 = _mm256_castsi256_si128( i1 );
  1225. __m128i ni3 = _mm256_extractf128_si256( i1, 1);
  1226. __m128i ni4 = _mm256_castsi256_si128( i2 );
  1227. __m128i ni5 = _mm256_extractf128_si256( i2, 1);
  1228. __m128i ni6 = _mm256_castsi256_si128( i3 );
  1229. __m128i ni7 = _mm256_extractf128_si256( i3, 1);
  1230. // Compute the sum of the quants and set y[i].s
  1231. const __m128i s0 = _mm_add_epi32(_mm_add_epi32(ni0, ni1), _mm_add_epi32(ni2, ni3));
  1232. const __m128i s1 = _mm_add_epi32(_mm_add_epi32(ni4, ni5), _mm_add_epi32(ni6, ni7));
  1233. y[i].s = d * hsum_i32_4(_mm_add_epi32(s0, s1));
  1234. // Convert int32 to int16
  1235. ni0 = _mm_packs_epi32( ni0, ni1 );
  1236. ni2 = _mm_packs_epi32( ni2, ni3 );
  1237. ni4 = _mm_packs_epi32( ni4, ni5 );
  1238. ni6 = _mm_packs_epi32( ni6, ni7 );
  1239. // Convert int16 to int8
  1240. ni0 = _mm_packs_epi16( ni0, ni2 );
  1241. ni4 = _mm_packs_epi16( ni4, ni6 );
  1242. _mm_storeu_si128((__m128i *)(y[i].qs + 0), ni0);
  1243. _mm_storeu_si128((__m128i *)(y[i].qs + 16), ni4);
  1244. #endif
  1245. }
  1246. #else
  1247. // scalar
  1248. quantize_row_q8_1_reference(x, y, k);
  1249. #endif
  1250. }
  1251. static void dequantize_row_q4_0(const block_q4_0 * restrict x, float * restrict y, int k) {
  1252. static const int qk = QK4_0;
  1253. assert(k % qk == 0);
  1254. const int nb = k / qk;
  1255. for (int i = 0; i < nb; i++) {
  1256. const float d = GGML_FP16_TO_FP32(x[i].d);
  1257. for (int j = 0; j < qk/2; ++j) {
  1258. const int x0 = (x[i].qs[j] & 0x0F) - 8;
  1259. const int x1 = (x[i].qs[j] >> 4) - 8;
  1260. y[i*qk + j + 0 ] = x0*d;
  1261. y[i*qk + j + qk/2] = x1*d;
  1262. }
  1263. }
  1264. }
  1265. static void dequantize_row_q4_1(const block_q4_1 * restrict x, float * restrict y, int k) {
  1266. static const int qk = QK4_1;
  1267. assert(k % qk == 0);
  1268. const int nb = k / qk;
  1269. for (int i = 0; i < nb; i++) {
  1270. const float d = GGML_FP16_TO_FP32(x[i].d);
  1271. const float m = GGML_FP16_TO_FP32(x[i].m);
  1272. for (int j = 0; j < qk/2; ++j) {
  1273. const int x0 = (x[i].qs[j] & 0x0F);
  1274. const int x1 = (x[i].qs[j] >> 4);
  1275. y[i*qk + j + 0 ] = x0*d + m;
  1276. y[i*qk + j + qk/2] = x1*d + m;
  1277. }
  1278. }
  1279. }
  1280. static void dequantize_row_q5_0(const block_q5_0 * restrict x, float * restrict y, int k) {
  1281. static const int qk = QK5_0;
  1282. assert(k % qk == 0);
  1283. const int nb = k / qk;
  1284. for (int i = 0; i < nb; i++) {
  1285. const float d = GGML_FP16_TO_FP32(x[i].d);
  1286. uint32_t qh;
  1287. memcpy(&qh, x[i].qh, sizeof(qh));
  1288. for (int j = 0; j < qk/2; ++j) {
  1289. const uint8_t xh_0 = ((qh >> (j + 0)) << 4) & 0x10;
  1290. const uint8_t xh_1 = ((qh >> (j + 12)) ) & 0x10;
  1291. const int32_t x0 = ((x[i].qs[j] & 0x0F) | xh_0) - 16;
  1292. const int32_t x1 = ((x[i].qs[j] >> 4) | xh_1) - 16;
  1293. y[i*qk + j + 0 ] = x0*d;
  1294. y[i*qk + j + qk/2] = x1*d;
  1295. }
  1296. }
  1297. }
  1298. static void dequantize_row_q5_1(const block_q5_1 * restrict x, float * restrict y, int k) {
  1299. static const int qk = QK5_1;
  1300. assert(k % qk == 0);
  1301. const int nb = k / qk;
  1302. for (int i = 0; i < nb; i++) {
  1303. const float d = GGML_FP16_TO_FP32(x[i].d);
  1304. const float m = GGML_FP16_TO_FP32(x[i].m);
  1305. uint32_t qh;
  1306. memcpy(&qh, x[i].qh, sizeof(qh));
  1307. for (int j = 0; j < qk/2; ++j) {
  1308. const uint8_t xh_0 = ((qh >> (j + 0)) << 4) & 0x10;
  1309. const uint8_t xh_1 = ((qh >> (j + 12)) ) & 0x10;
  1310. const int x0 = (x[i].qs[j] & 0x0F) | xh_0;
  1311. const int x1 = (x[i].qs[j] >> 4) | xh_1;
  1312. y[i*qk + j + 0 ] = x0*d + m;
  1313. y[i*qk + j + qk/2] = x1*d + m;
  1314. }
  1315. }
  1316. }
  1317. static void dequantize_row_q8_0(const void * restrict vx, float * restrict y, int k) {
  1318. static const int qk = QK8_0;
  1319. assert(k % qk == 0);
  1320. const int nb = k / qk;
  1321. const block_q8_0 * restrict x = vx;
  1322. for (int i = 0; i < nb; i++) {
  1323. const float d = GGML_FP16_TO_FP32(x[i].d);
  1324. for (int j = 0; j < qk; ++j) {
  1325. y[i*qk + j] = x[i].qs[j]*d;
  1326. }
  1327. }
  1328. }
  1329. static void ggml_vec_dot_f32(const int n, float * restrict s, const float * restrict x, const float * restrict y);
  1330. static void ggml_vec_dot_f16(const int n, float * restrict s, ggml_fp16_t * restrict x, ggml_fp16_t * restrict y);
  1331. static void ggml_vec_dot_q4_0_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy);
  1332. static void ggml_vec_dot_q4_1_q8_1(const int n, float * restrict s, const void * restrict vx, const void * restrict vy);
  1333. static void ggml_vec_dot_q5_0_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy);
  1334. static void ggml_vec_dot_q5_1_q8_1(const int n, float * restrict s, const void * restrict vx, const void * restrict vy);
  1335. static void ggml_vec_dot_q8_0_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy);
  1336. static const ggml_type_traits_t type_traits[GGML_TYPE_COUNT] = {
  1337. [GGML_TYPE_F32] = {
  1338. .vec_dot = (ggml_vec_dot_t) ggml_vec_dot_f32,
  1339. .vec_dot_type = GGML_TYPE_F32,
  1340. },
  1341. [GGML_TYPE_F16] = {
  1342. .to_float = (ggml_to_float_t) ggml_fp16_to_fp32_row,
  1343. .from_float = (ggml_from_float_t) ggml_fp32_to_fp16_row,
  1344. .from_float_reference = (ggml_from_float_t) ggml_fp32_to_fp16_row,
  1345. .vec_dot = (ggml_vec_dot_t) ggml_vec_dot_f16,
  1346. .vec_dot_type = GGML_TYPE_F16,
  1347. },
  1348. [GGML_TYPE_Q4_0] = {
  1349. .to_float = (ggml_to_float_t) dequantize_row_q4_0,
  1350. .from_float = quantize_row_q4_0,
  1351. .from_float_reference = (ggml_from_float_t) quantize_row_q4_0_reference,
  1352. .vec_dot = ggml_vec_dot_q4_0_q8_0,
  1353. .vec_dot_type = GGML_TYPE_Q8_0,
  1354. },
  1355. [GGML_TYPE_Q4_1] = {
  1356. .to_float = (ggml_to_float_t) dequantize_row_q4_1,
  1357. .from_float = quantize_row_q4_1,
  1358. .from_float_reference = (ggml_from_float_t) quantize_row_q4_1_reference,
  1359. .vec_dot = ggml_vec_dot_q4_1_q8_1,
  1360. .vec_dot_type = GGML_TYPE_Q8_1,
  1361. },
  1362. [GGML_TYPE_Q5_0] = {
  1363. .to_float = (ggml_to_float_t) dequantize_row_q5_0,
  1364. .from_float = quantize_row_q5_0,
  1365. .from_float_reference = (ggml_from_float_t) quantize_row_q5_0_reference,
  1366. .vec_dot = ggml_vec_dot_q5_0_q8_0,
  1367. .vec_dot_type = GGML_TYPE_Q8_0,
  1368. },
  1369. [GGML_TYPE_Q5_1] = {
  1370. .to_float = (ggml_to_float_t) dequantize_row_q5_1,
  1371. .from_float = quantize_row_q5_1,
  1372. .from_float_reference = (ggml_from_float_t) quantize_row_q5_1_reference,
  1373. .vec_dot = ggml_vec_dot_q5_1_q8_1,
  1374. .vec_dot_type = GGML_TYPE_Q8_1,
  1375. },
  1376. [GGML_TYPE_Q8_0] = {
  1377. .to_float = dequantize_row_q8_0,
  1378. .from_float = quantize_row_q8_0,
  1379. .from_float_reference = (ggml_from_float_t) quantize_row_q8_0_reference,
  1380. .vec_dot = ggml_vec_dot_q8_0_q8_0,
  1381. .vec_dot_type = GGML_TYPE_Q8_0,
  1382. },
  1383. [GGML_TYPE_Q8_1] = {
  1384. .from_float = quantize_row_q8_1,
  1385. .from_float_reference = (ggml_from_float_t) quantize_row_q8_1_reference,
  1386. .vec_dot_type = GGML_TYPE_Q8_1,
  1387. },
  1388. #ifdef GGML_USE_K_QUANTS
  1389. [GGML_TYPE_Q2_K] = {
  1390. .to_float = (ggml_to_float_t) dequantize_row_q2_K,
  1391. .from_float = quantize_row_q2_K,
  1392. .from_float_reference = (ggml_from_float_t) quantize_row_q2_K_reference,
  1393. .vec_dot = ggml_vec_dot_q2_K_q8_K,
  1394. .vec_dot_type = GGML_TYPE_Q8_K,
  1395. },
  1396. [GGML_TYPE_Q3_K] = {
  1397. .to_float = (ggml_to_float_t) dequantize_row_q3_K,
  1398. .from_float = quantize_row_q3_K,
  1399. .from_float_reference = (ggml_from_float_t) quantize_row_q3_K_reference,
  1400. .vec_dot = ggml_vec_dot_q3_K_q8_K,
  1401. .vec_dot_type = GGML_TYPE_Q8_K,
  1402. },
  1403. [GGML_TYPE_Q4_K] = {
  1404. .to_float = (ggml_to_float_t) dequantize_row_q4_K,
  1405. .from_float = quantize_row_q4_K,
  1406. .from_float_reference = (ggml_from_float_t) quantize_row_q4_K_reference,
  1407. .vec_dot = ggml_vec_dot_q4_K_q8_K,
  1408. .vec_dot_type = GGML_TYPE_Q8_K,
  1409. },
  1410. [GGML_TYPE_Q5_K] = {
  1411. .to_float = (ggml_to_float_t) dequantize_row_q5_K,
  1412. .from_float = quantize_row_q5_K,
  1413. .from_float_reference = (ggml_from_float_t) quantize_row_q5_K_reference,
  1414. .vec_dot = ggml_vec_dot_q5_K_q8_K,
  1415. .vec_dot_type = GGML_TYPE_Q8_K,
  1416. },
  1417. [GGML_TYPE_Q6_K] = {
  1418. .to_float = (ggml_to_float_t) dequantize_row_q6_K,
  1419. .from_float = quantize_row_q6_K,
  1420. .from_float_reference = (ggml_from_float_t) quantize_row_q6_K_reference,
  1421. .vec_dot = ggml_vec_dot_q6_K_q8_K,
  1422. .vec_dot_type = GGML_TYPE_Q8_K,
  1423. },
  1424. [GGML_TYPE_Q8_K] = {
  1425. .from_float = quantize_row_q8_K,
  1426. }
  1427. #endif
  1428. };
  1429. // For internal test use
  1430. ggml_type_traits_t ggml_internal_get_type_traits(enum ggml_type i) {
  1431. GGML_ASSERT(i < GGML_TYPE_COUNT);
  1432. return type_traits[i];
  1433. }
  1434. //
  1435. // simd mappings
  1436. //
  1437. // we define a common set of C macros which map to specific intrinsics based on the current architecture
  1438. // we then implement the fundamental computation operations below using only these macros
  1439. // adding support for new architectures requires to define the corresponding SIMD macros
  1440. //
  1441. // GGML_F32_STEP / GGML_F16_STEP
  1442. // number of elements to process in a single step
  1443. //
  1444. // GGML_F32_EPR / GGML_F16_EPR
  1445. // number of elements to fit in a single register
  1446. //
  1447. #if defined(__ARM_NEON) && defined(__ARM_FEATURE_FMA)
  1448. #define GGML_SIMD
  1449. // F32 NEON
  1450. #define GGML_F32_STEP 16
  1451. #define GGML_F32_EPR 4
  1452. #define GGML_F32x4 float32x4_t
  1453. #define GGML_F32x4_ZERO vdupq_n_f32(0.0f)
  1454. #define GGML_F32x4_SET1(x) vdupq_n_f32(x)
  1455. #define GGML_F32x4_LOAD vld1q_f32
  1456. #define GGML_F32x4_STORE vst1q_f32
  1457. #define GGML_F32x4_FMA(a, b, c) vfmaq_f32(a, b, c)
  1458. #define GGML_F32x4_ADD vaddq_f32
  1459. #define GGML_F32x4_MUL vmulq_f32
  1460. #define GGML_F32x4_REDUCE_ONE(x) vaddvq_f32(x)
  1461. #define GGML_F32x4_REDUCE(res, x) \
  1462. { \
  1463. int offset = GGML_F32_ARR >> 1; \
  1464. for (int i = 0; i < offset; ++i) { \
  1465. x[i] = vaddq_f32(x[i], x[offset+i]); \
  1466. } \
  1467. offset >>= 1; \
  1468. for (int i = 0; i < offset; ++i) { \
  1469. x[i] = vaddq_f32(x[i], x[offset+i]); \
  1470. } \
  1471. offset >>= 1; \
  1472. for (int i = 0; i < offset; ++i) { \
  1473. x[i] = vaddq_f32(x[i], x[offset+i]); \
  1474. } \
  1475. res = GGML_F32x4_REDUCE_ONE(x[0]); \
  1476. }
  1477. #define GGML_F32_VEC GGML_F32x4
  1478. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1479. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1480. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1481. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1482. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1483. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1484. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1485. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1486. // F16 NEON
  1487. #if defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC)
  1488. #define GGML_F16_STEP 32
  1489. #define GGML_F16_EPR 8
  1490. #define GGML_F16x8 float16x8_t
  1491. #define GGML_F16x8_ZERO vdupq_n_f16(0.0f)
  1492. #define GGML_F16x8_SET1(x) vdupq_n_f16(x)
  1493. #define GGML_F16x8_LOAD vld1q_f16
  1494. #define GGML_F16x8_STORE vst1q_f16
  1495. #define GGML_F16x8_FMA(a, b, c) vfmaq_f16(a, b, c)
  1496. #define GGML_F16x8_ADD vaddq_f16
  1497. #define GGML_F16x8_MUL vmulq_f16
  1498. #define GGML_F16x8_REDUCE(res, x) \
  1499. { \
  1500. int offset = GGML_F16_ARR >> 1; \
  1501. for (int i = 0; i < offset; ++i) { \
  1502. x[i] = vaddq_f16(x[i], x[offset+i]); \
  1503. } \
  1504. offset >>= 1; \
  1505. for (int i = 0; i < offset; ++i) { \
  1506. x[i] = vaddq_f16(x[i], x[offset+i]); \
  1507. } \
  1508. offset >>= 1; \
  1509. for (int i = 0; i < offset; ++i) { \
  1510. x[i] = vaddq_f16(x[i], x[offset+i]); \
  1511. } \
  1512. const float32x4_t t0 = vcvt_f32_f16(vget_low_f16 (x[0])); \
  1513. const float32x4_t t1 = vcvt_f32_f16(vget_high_f16(x[0])); \
  1514. res = (ggml_float) vaddvq_f32(vaddq_f32(t0, t1)); \
  1515. }
  1516. #define GGML_F16_VEC GGML_F16x8
  1517. #define GGML_F16_VEC_ZERO GGML_F16x8_ZERO
  1518. #define GGML_F16_VEC_SET1 GGML_F16x8_SET1
  1519. #define GGML_F16_VEC_LOAD(p, i) GGML_F16x8_LOAD(p)
  1520. #define GGML_F16_VEC_STORE(p, r, i) GGML_F16x8_STORE(p, r[i])
  1521. #define GGML_F16_VEC_FMA GGML_F16x8_FMA
  1522. #define GGML_F16_VEC_ADD GGML_F16x8_ADD
  1523. #define GGML_F16_VEC_MUL GGML_F16x8_MUL
  1524. #define GGML_F16_VEC_REDUCE GGML_F16x8_REDUCE
  1525. #else
  1526. // if FP16 vector arithmetic is not supported, we use FP32 instead
  1527. // and take advantage of the vcvt_ functions to convert to/from FP16
  1528. #define GGML_F16_STEP 16
  1529. #define GGML_F16_EPR 4
  1530. #define GGML_F32Cx4 float32x4_t
  1531. #define GGML_F32Cx4_ZERO vdupq_n_f32(0.0f)
  1532. #define GGML_F32Cx4_SET1(x) vdupq_n_f32(x)
  1533. #define GGML_F32Cx4_LOAD(x) vcvt_f32_f16(vld1_f16(x))
  1534. #define GGML_F32Cx4_STORE(x, y) vst1_f16(x, vcvt_f16_f32(y))
  1535. #define GGML_F32Cx4_FMA(a, b, c) vfmaq_f32(a, b, c)
  1536. #define GGML_F32Cx4_ADD vaddq_f32
  1537. #define GGML_F32Cx4_MUL vmulq_f32
  1538. #define GGML_F32Cx4_REDUCE GGML_F32x4_REDUCE
  1539. #define GGML_F16_VEC GGML_F32Cx4
  1540. #define GGML_F16_VEC_ZERO GGML_F32Cx4_ZERO
  1541. #define GGML_F16_VEC_SET1 GGML_F32Cx4_SET1
  1542. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx4_LOAD(p)
  1543. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx4_STORE(p, r[i])
  1544. #define GGML_F16_VEC_FMA GGML_F32Cx4_FMA
  1545. #define GGML_F16_VEC_ADD GGML_F32Cx4_ADD
  1546. #define GGML_F16_VEC_MUL GGML_F32Cx4_MUL
  1547. #define GGML_F16_VEC_REDUCE GGML_F32Cx4_REDUCE
  1548. #endif
  1549. #elif defined(__AVX__)
  1550. #define GGML_SIMD
  1551. // F32 AVX
  1552. #define GGML_F32_STEP 32
  1553. #define GGML_F32_EPR 8
  1554. #define GGML_F32x8 __m256
  1555. #define GGML_F32x8_ZERO _mm256_setzero_ps()
  1556. #define GGML_F32x8_SET1(x) _mm256_set1_ps(x)
  1557. #define GGML_F32x8_LOAD _mm256_loadu_ps
  1558. #define GGML_F32x8_STORE _mm256_storeu_ps
  1559. #if defined(__FMA__)
  1560. #define GGML_F32x8_FMA(a, b, c) _mm256_fmadd_ps(b, c, a)
  1561. #else
  1562. #define GGML_F32x8_FMA(a, b, c) _mm256_add_ps(_mm256_mul_ps(b, c), a)
  1563. #endif
  1564. #define GGML_F32x8_ADD _mm256_add_ps
  1565. #define GGML_F32x8_MUL _mm256_mul_ps
  1566. #define GGML_F32x8_REDUCE(res, x) \
  1567. { \
  1568. int offset = GGML_F32_ARR >> 1; \
  1569. for (int i = 0; i < offset; ++i) { \
  1570. x[i] = _mm256_add_ps(x[i], x[offset+i]); \
  1571. } \
  1572. offset >>= 1; \
  1573. for (int i = 0; i < offset; ++i) { \
  1574. x[i] = _mm256_add_ps(x[i], x[offset+i]); \
  1575. } \
  1576. offset >>= 1; \
  1577. for (int i = 0; i < offset; ++i) { \
  1578. x[i] = _mm256_add_ps(x[i], x[offset+i]); \
  1579. } \
  1580. const __m128 t0 = _mm_add_ps(_mm256_castps256_ps128(x[0]), \
  1581. _mm256_extractf128_ps(x[0], 1)); \
  1582. const __m128 t1 = _mm_hadd_ps(t0, t0); \
  1583. res = _mm_cvtss_f32(_mm_hadd_ps(t1, t1)); \
  1584. }
  1585. // TODO: is this optimal ?
  1586. #define GGML_F32_VEC GGML_F32x8
  1587. #define GGML_F32_VEC_ZERO GGML_F32x8_ZERO
  1588. #define GGML_F32_VEC_SET1 GGML_F32x8_SET1
  1589. #define GGML_F32_VEC_LOAD GGML_F32x8_LOAD
  1590. #define GGML_F32_VEC_STORE GGML_F32x8_STORE
  1591. #define GGML_F32_VEC_FMA GGML_F32x8_FMA
  1592. #define GGML_F32_VEC_ADD GGML_F32x8_ADD
  1593. #define GGML_F32_VEC_MUL GGML_F32x8_MUL
  1594. #define GGML_F32_VEC_REDUCE GGML_F32x8_REDUCE
  1595. // F16 AVX
  1596. #define GGML_F16_STEP 32
  1597. #define GGML_F16_EPR 8
  1598. // F16 arithmetic is not supported by AVX, so we use F32 instead
  1599. #define GGML_F32Cx8 __m256
  1600. #define GGML_F32Cx8_ZERO _mm256_setzero_ps()
  1601. #define GGML_F32Cx8_SET1(x) _mm256_set1_ps(x)
  1602. #if defined(__F16C__)
  1603. // the _mm256_cvt intrinsics require F16C
  1604. #define GGML_F32Cx8_LOAD(x) _mm256_cvtph_ps(_mm_loadu_si128((__m128i *)(x)))
  1605. #define GGML_F32Cx8_STORE(x, y) _mm_storeu_si128((__m128i *)(x), _mm256_cvtps_ph(y, 0))
  1606. #else
  1607. static inline __m256 __avx_f32cx8_load(ggml_fp16_t *x) {
  1608. float tmp[8];
  1609. for (int i = 0; i < 8; i++) {
  1610. tmp[i] = GGML_FP16_TO_FP32(x[i]);
  1611. }
  1612. return _mm256_loadu_ps(tmp);
  1613. }
  1614. static inline void __avx_f32cx8_store(ggml_fp16_t *x, __m256 y) {
  1615. float arr[8];
  1616. _mm256_storeu_ps(arr, y);
  1617. for (int i = 0; i < 8; i++)
  1618. x[i] = GGML_FP32_TO_FP16(arr[i]);
  1619. }
  1620. #define GGML_F32Cx8_LOAD(x) __avx_f32cx8_load(x)
  1621. #define GGML_F32Cx8_STORE(x, y) __avx_f32cx8_store(x, y)
  1622. #endif
  1623. #define GGML_F32Cx8_FMA GGML_F32x8_FMA
  1624. #define GGML_F32Cx8_ADD _mm256_add_ps
  1625. #define GGML_F32Cx8_MUL _mm256_mul_ps
  1626. #define GGML_F32Cx8_REDUCE GGML_F32x8_REDUCE
  1627. #define GGML_F16_VEC GGML_F32Cx8
  1628. #define GGML_F16_VEC_ZERO GGML_F32Cx8_ZERO
  1629. #define GGML_F16_VEC_SET1 GGML_F32Cx8_SET1
  1630. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx8_LOAD(p)
  1631. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx8_STORE(p, r[i])
  1632. #define GGML_F16_VEC_FMA GGML_F32Cx8_FMA
  1633. #define GGML_F16_VEC_ADD GGML_F32Cx8_ADD
  1634. #define GGML_F16_VEC_MUL GGML_F32Cx8_MUL
  1635. #define GGML_F16_VEC_REDUCE GGML_F32Cx8_REDUCE
  1636. #elif defined(__POWER9_VECTOR__)
  1637. #define GGML_SIMD
  1638. // F32 POWER9
  1639. #define GGML_F32_STEP 32
  1640. #define GGML_F32_EPR 4
  1641. #define GGML_F32x4 vector float
  1642. #define GGML_F32x4_ZERO 0.0f
  1643. #define GGML_F32x4_SET1 vec_splats
  1644. #define GGML_F32x4_LOAD(p) vec_xl(0, p)
  1645. #define GGML_F32x4_STORE(p, r) vec_xst(r, 0, p)
  1646. #define GGML_F32x4_FMA(a, b, c) vec_madd(b, c, a)
  1647. #define GGML_F32x4_ADD vec_add
  1648. #define GGML_F32x4_MUL vec_mul
  1649. #define GGML_F32x4_REDUCE(res, x) \
  1650. { \
  1651. int offset = GGML_F32_ARR >> 1; \
  1652. for (int i = 0; i < offset; ++i) { \
  1653. x[i] = vec_add(x[i], x[offset+i]); \
  1654. } \
  1655. offset >>= 1; \
  1656. for (int i = 0; i < offset; ++i) { \
  1657. x[i] = vec_add(x[i], x[offset+i]); \
  1658. } \
  1659. offset >>= 1; \
  1660. for (int i = 0; i < offset; ++i) { \
  1661. x[i] = vec_add(x[i], x[offset+i]); \
  1662. } \
  1663. res = vec_extract(x[0], 0) + \
  1664. vec_extract(x[0], 1) + \
  1665. vec_extract(x[0], 2) + \
  1666. vec_extract(x[0], 3); \
  1667. }
  1668. #define GGML_F32_VEC GGML_F32x4
  1669. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1670. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1671. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1672. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1673. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1674. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1675. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1676. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1677. // F16 POWER9
  1678. #define GGML_F16_STEP GGML_F32_STEP
  1679. #define GGML_F16_EPR GGML_F32_EPR
  1680. #define GGML_F16_VEC GGML_F32x4
  1681. #define GGML_F16_VEC_ZERO GGML_F32x4_ZERO
  1682. #define GGML_F16_VEC_SET1 GGML_F32x4_SET1
  1683. #define GGML_F16_VEC_FMA GGML_F32x4_FMA
  1684. #define GGML_F16_VEC_REDUCE GGML_F32x4_REDUCE
  1685. // Use vec_xl, not vec_ld, in case the load address is not aligned.
  1686. #define GGML_F16_VEC_LOAD(p, i) (i & 0x1) ? \
  1687. vec_extract_fp32_from_shorth(vec_xl(0, p - GGML_F16_EPR)) : \
  1688. vec_extract_fp32_from_shortl(vec_xl(0, p))
  1689. #define GGML_ENDIAN_BYTE(i) ((unsigned char *)&(uint16_t){1})[i]
  1690. #define GGML_F16_VEC_STORE(p, r, i) \
  1691. if (i & 0x1) \
  1692. vec_xst(vec_pack_to_short_fp32(r[i - GGML_ENDIAN_BYTE(1)], \
  1693. r[i - GGML_ENDIAN_BYTE(0)]), \
  1694. 0, p - GGML_F16_EPR)
  1695. #elif defined(__wasm_simd128__)
  1696. #define GGML_SIMD
  1697. // F32 WASM
  1698. #define GGML_F32_STEP 16
  1699. #define GGML_F32_EPR 4
  1700. #define GGML_F32x4 v128_t
  1701. #define GGML_F32x4_ZERO wasm_f32x4_splat(0.0f)
  1702. #define GGML_F32x4_SET1(x) wasm_f32x4_splat(x)
  1703. #define GGML_F32x4_LOAD wasm_v128_load
  1704. #define GGML_F32x4_STORE wasm_v128_store
  1705. #define GGML_F32x4_FMA(a, b, c) wasm_f32x4_add(wasm_f32x4_mul(b, c), a)
  1706. #define GGML_F32x4_ADD wasm_f32x4_add
  1707. #define GGML_F32x4_MUL wasm_f32x4_mul
  1708. #define GGML_F32x4_REDUCE(res, x) \
  1709. { \
  1710. int offset = GGML_F32_ARR >> 1; \
  1711. for (int i = 0; i < offset; ++i) { \
  1712. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  1713. } \
  1714. offset >>= 1; \
  1715. for (int i = 0; i < offset; ++i) { \
  1716. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  1717. } \
  1718. offset >>= 1; \
  1719. for (int i = 0; i < offset; ++i) { \
  1720. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  1721. } \
  1722. res = wasm_f32x4_extract_lane(x[0], 0) + \
  1723. wasm_f32x4_extract_lane(x[0], 1) + \
  1724. wasm_f32x4_extract_lane(x[0], 2) + \
  1725. wasm_f32x4_extract_lane(x[0], 3); \
  1726. }
  1727. #define GGML_F32_VEC GGML_F32x4
  1728. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1729. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1730. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1731. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1732. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1733. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1734. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1735. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1736. // F16 WASM
  1737. #define GGML_F16_STEP 16
  1738. #define GGML_F16_EPR 4
  1739. inline static v128_t __wasm_f16x4_load(const ggml_fp16_t * p) {
  1740. float tmp[4];
  1741. tmp[0] = GGML_FP16_TO_FP32(p[0]);
  1742. tmp[1] = GGML_FP16_TO_FP32(p[1]);
  1743. tmp[2] = GGML_FP16_TO_FP32(p[2]);
  1744. tmp[3] = GGML_FP16_TO_FP32(p[3]);
  1745. return wasm_v128_load(tmp);
  1746. }
  1747. inline static void __wasm_f16x4_store(ggml_fp16_t * p, v128_t x) {
  1748. float tmp[4];
  1749. wasm_v128_store(tmp, x);
  1750. p[0] = GGML_FP32_TO_FP16(tmp[0]);
  1751. p[1] = GGML_FP32_TO_FP16(tmp[1]);
  1752. p[2] = GGML_FP32_TO_FP16(tmp[2]);
  1753. p[3] = GGML_FP32_TO_FP16(tmp[3]);
  1754. }
  1755. #define GGML_F16x4 v128_t
  1756. #define GGML_F16x4_ZERO wasm_f32x4_splat(0.0f)
  1757. #define GGML_F16x4_SET1(x) wasm_f32x4_splat(x)
  1758. #define GGML_F16x4_LOAD(x) __wasm_f16x4_load(x)
  1759. #define GGML_F16x4_STORE(x, y) __wasm_f16x4_store(x, y)
  1760. #define GGML_F16x4_FMA GGML_F32x4_FMA
  1761. #define GGML_F16x4_ADD wasm_f32x4_add
  1762. #define GGML_F16x4_MUL wasm_f32x4_mul
  1763. #define GGML_F16x4_REDUCE(res, x) \
  1764. { \
  1765. int offset = GGML_F16_ARR >> 1; \
  1766. for (int i = 0; i < offset; ++i) { \
  1767. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  1768. } \
  1769. offset >>= 1; \
  1770. for (int i = 0; i < offset; ++i) { \
  1771. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  1772. } \
  1773. offset >>= 1; \
  1774. for (int i = 0; i < offset; ++i) { \
  1775. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  1776. } \
  1777. res = wasm_f32x4_extract_lane(x[0], 0) + \
  1778. wasm_f32x4_extract_lane(x[0], 1) + \
  1779. wasm_f32x4_extract_lane(x[0], 2) + \
  1780. wasm_f32x4_extract_lane(x[0], 3); \
  1781. }
  1782. #define GGML_F16_VEC GGML_F16x4
  1783. #define GGML_F16_VEC_ZERO GGML_F16x4_ZERO
  1784. #define GGML_F16_VEC_SET1 GGML_F16x4_SET1
  1785. #define GGML_F16_VEC_LOAD(p, i) GGML_F16x4_LOAD(p)
  1786. #define GGML_F16_VEC_STORE(p, r, i) GGML_F16x4_STORE(p, r[i])
  1787. #define GGML_F16_VEC_FMA GGML_F16x4_FMA
  1788. #define GGML_F16_VEC_ADD GGML_F16x4_ADD
  1789. #define GGML_F16_VEC_MUL GGML_F16x4_MUL
  1790. #define GGML_F16_VEC_REDUCE GGML_F16x4_REDUCE
  1791. #elif defined(__SSE3__)
  1792. #define GGML_SIMD
  1793. // F32 SSE
  1794. #define GGML_F32_STEP 32
  1795. #define GGML_F32_EPR 4
  1796. #define GGML_F32x4 __m128
  1797. #define GGML_F32x4_ZERO _mm_setzero_ps()
  1798. #define GGML_F32x4_SET1(x) _mm_set1_ps(x)
  1799. #define GGML_F32x4_LOAD _mm_loadu_ps
  1800. #define GGML_F32x4_STORE _mm_storeu_ps
  1801. #if defined(__FMA__)
  1802. // TODO: Does this work?
  1803. #define GGML_F32x4_FMA(a, b, c) _mm_fmadd_ps(b, c, a)
  1804. #else
  1805. #define GGML_F32x4_FMA(a, b, c) _mm_add_ps(_mm_mul_ps(b, c), a)
  1806. #endif
  1807. #define GGML_F32x4_ADD _mm_add_ps
  1808. #define GGML_F32x4_MUL _mm_mul_ps
  1809. #define GGML_F32x4_REDUCE(res, x) \
  1810. { \
  1811. int offset = GGML_F32_ARR >> 1; \
  1812. for (int i = 0; i < offset; ++i) { \
  1813. x[i] = _mm_add_ps(x[i], x[offset+i]); \
  1814. } \
  1815. offset >>= 1; \
  1816. for (int i = 0; i < offset; ++i) { \
  1817. x[i] = _mm_add_ps(x[i], x[offset+i]); \
  1818. } \
  1819. offset >>= 1; \
  1820. for (int i = 0; i < offset; ++i) { \
  1821. x[i] = _mm_add_ps(x[i], x[offset+i]); \
  1822. } \
  1823. const __m128 t0 = _mm_hadd_ps(x[0], x[0]); \
  1824. res = _mm_cvtss_f32(_mm_hadd_ps(t0, t0)); \
  1825. }
  1826. // TODO: is this optimal ?
  1827. #define GGML_F32_VEC GGML_F32x4
  1828. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1829. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1830. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1831. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1832. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1833. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1834. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1835. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1836. // F16 SSE
  1837. #define GGML_F16_STEP 32
  1838. #define GGML_F16_EPR 4
  1839. static inline __m128 __sse_f16x4_load(ggml_fp16_t *x) {
  1840. float tmp[4];
  1841. tmp[0] = GGML_FP16_TO_FP32(x[0]);
  1842. tmp[1] = GGML_FP16_TO_FP32(x[1]);
  1843. tmp[2] = GGML_FP16_TO_FP32(x[2]);
  1844. tmp[3] = GGML_FP16_TO_FP32(x[3]);
  1845. return _mm_loadu_ps(tmp);
  1846. }
  1847. static inline void __sse_f16x4_store(ggml_fp16_t *x, __m128 y) {
  1848. float arr[4];
  1849. _mm_storeu_ps(arr, y);
  1850. x[0] = GGML_FP32_TO_FP16(arr[0]);
  1851. x[1] = GGML_FP32_TO_FP16(arr[1]);
  1852. x[2] = GGML_FP32_TO_FP16(arr[2]);
  1853. x[3] = GGML_FP32_TO_FP16(arr[3]);
  1854. }
  1855. #define GGML_F32Cx4 __m128
  1856. #define GGML_F32Cx4_ZERO _mm_setzero_ps()
  1857. #define GGML_F32Cx4_SET1(x) _mm_set1_ps(x)
  1858. #define GGML_F32Cx4_LOAD(x) __sse_f16x4_load(x)
  1859. #define GGML_F32Cx4_STORE(x, y) __sse_f16x4_store(x, y)
  1860. #define GGML_F32Cx4_FMA GGML_F32x4_FMA
  1861. #define GGML_F32Cx4_ADD _mm_add_ps
  1862. #define GGML_F32Cx4_MUL _mm_mul_ps
  1863. #define GGML_F32Cx4_REDUCE GGML_F32x4_REDUCE
  1864. #define GGML_F16_VEC GGML_F32Cx4
  1865. #define GGML_F16_VEC_ZERO GGML_F32Cx4_ZERO
  1866. #define GGML_F16_VEC_SET1 GGML_F32Cx4_SET1
  1867. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx4_LOAD(p)
  1868. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx4_STORE(p, r[i])
  1869. #define GGML_F16_VEC_FMA GGML_F32Cx4_FMA
  1870. #define GGML_F16_VEC_ADD GGML_F32Cx4_ADD
  1871. #define GGML_F16_VEC_MUL GGML_F32Cx4_MUL
  1872. #define GGML_F16_VEC_REDUCE GGML_F32Cx4_REDUCE
  1873. #endif
  1874. // GGML_F32_ARR / GGML_F16_ARR
  1875. // number of registers to use per step
  1876. #ifdef GGML_SIMD
  1877. #define GGML_F32_ARR (GGML_F32_STEP/GGML_F32_EPR)
  1878. #define GGML_F16_ARR (GGML_F16_STEP/GGML_F16_EPR)
  1879. #endif
  1880. //
  1881. // fundamental operations
  1882. //
  1883. inline static void ggml_vec_set_i8(const int n, int8_t * x, const int8_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1884. inline static void ggml_vec_set_i16(const int n, int16_t * x, const int16_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1885. inline static void ggml_vec_set_i32(const int n, int32_t * x, const int32_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1886. inline static void ggml_vec_set_f16(const int n, ggml_fp16_t * x, const int32_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1887. inline static void ggml_vec_add_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i] + y[i]; }
  1888. inline static void ggml_vec_add1_f32(const int n, float * z, const float * x, const float v) { for (int i = 0; i < n; ++i) z[i] = x[i] + v; }
  1889. inline static void ggml_vec_acc_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] += x[i]; }
  1890. inline static void ggml_vec_acc1_f32(const int n, float * y, const float v) { for (int i = 0; i < n; ++i) y[i] += v; }
  1891. inline static void ggml_vec_sub_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i] - y[i]; }
  1892. inline static void ggml_vec_set_f32 (const int n, float * x, const float v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1893. inline static void ggml_vec_cpy_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i]; }
  1894. inline static void ggml_vec_neg_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = -x[i]; }
  1895. inline static void ggml_vec_mul_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i]*y[i]; }
  1896. inline static void ggml_vec_div_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i]/y[i]; }
  1897. static void ggml_vec_dot_f32(const int n, float * restrict s, const float * restrict x, const float * restrict y) {
  1898. #ifdef GGML_SIMD
  1899. float sumf = 0.0f;
  1900. const int np = (n & ~(GGML_F32_STEP - 1));
  1901. GGML_F32_VEC sum[GGML_F32_ARR] = { GGML_F32_VEC_ZERO };
  1902. GGML_F32_VEC ax[GGML_F32_ARR];
  1903. GGML_F32_VEC ay[GGML_F32_ARR];
  1904. for (int i = 0; i < np; i += GGML_F32_STEP) {
  1905. for (int j = 0; j < GGML_F32_ARR; j++) {
  1906. ax[j] = GGML_F32_VEC_LOAD(x + i + j*GGML_F32_EPR);
  1907. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  1908. sum[j] = GGML_F32_VEC_FMA(sum[j], ax[j], ay[j]);
  1909. }
  1910. }
  1911. // reduce sum0..sum3 to sum0
  1912. GGML_F32_VEC_REDUCE(sumf, sum);
  1913. // leftovers
  1914. for (int i = np; i < n; ++i) {
  1915. sumf += x[i]*y[i];
  1916. }
  1917. #else
  1918. // scalar
  1919. ggml_float sumf = 0.0;
  1920. for (int i = 0; i < n; ++i) {
  1921. sumf += (ggml_float)(x[i]*y[i]);
  1922. }
  1923. #endif
  1924. *s = sumf;
  1925. }
  1926. static void ggml_vec_dot_f16(const int n, float * restrict s, ggml_fp16_t * restrict x, ggml_fp16_t * restrict y) {
  1927. ggml_float sumf = 0.0;
  1928. #if defined(GGML_SIMD)
  1929. const int np = (n & ~(GGML_F16_STEP - 1));
  1930. GGML_F16_VEC sum[GGML_F16_ARR] = { GGML_F16_VEC_ZERO };
  1931. GGML_F16_VEC ax[GGML_F16_ARR];
  1932. GGML_F16_VEC ay[GGML_F16_ARR];
  1933. for (int i = 0; i < np; i += GGML_F16_STEP) {
  1934. for (int j = 0; j < GGML_F16_ARR; j++) {
  1935. ax[j] = GGML_F16_VEC_LOAD(x + i + j*GGML_F16_EPR, j);
  1936. ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
  1937. sum[j] = GGML_F16_VEC_FMA(sum[j], ax[j], ay[j]);
  1938. }
  1939. }
  1940. // reduce sum0..sum3 to sum0
  1941. GGML_F16_VEC_REDUCE(sumf, sum);
  1942. // leftovers
  1943. for (int i = np; i < n; ++i) {
  1944. sumf += (ggml_float)(GGML_FP16_TO_FP32(x[i])*GGML_FP16_TO_FP32(y[i]));
  1945. }
  1946. #else
  1947. for (int i = 0; i < n; ++i) {
  1948. sumf += (ggml_float)(GGML_FP16_TO_FP32(x[i])*GGML_FP16_TO_FP32(y[i]));
  1949. }
  1950. #endif
  1951. *s = sumf;
  1952. }
  1953. static void ggml_vec_dot_q4_0_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  1954. const int qk = QK8_0;
  1955. const int nb = n / qk;
  1956. assert(n % qk == 0);
  1957. assert(nb % 2 == 0);
  1958. const block_q4_0 * restrict x = vx;
  1959. const block_q8_0 * restrict y = vy;
  1960. #if defined(__ARM_NEON)
  1961. float32x4_t sumv0 = vdupq_n_f32(0.0f);
  1962. float32x4_t sumv1 = vdupq_n_f32(0.0f);
  1963. for (int i = 0; i < nb; i += 2) {
  1964. const block_q4_0 * restrict x0 = &x[i + 0];
  1965. const block_q4_0 * restrict x1 = &x[i + 1];
  1966. const block_q8_0 * restrict y0 = &y[i + 0];
  1967. const block_q8_0 * restrict y1 = &y[i + 1];
  1968. const uint8x16_t m4b = vdupq_n_u8(0x0F);
  1969. const int8x16_t s8b = vdupq_n_s8(0x8);
  1970. const uint8x16_t v0_0 = vld1q_u8(x0->qs);
  1971. const uint8x16_t v0_1 = vld1q_u8(x1->qs);
  1972. // 4-bit -> 8-bit
  1973. const int8x16_t v0_0l = vreinterpretq_s8_u8(vandq_u8 (v0_0, m4b));
  1974. const int8x16_t v0_0h = vreinterpretq_s8_u8(vshrq_n_u8(v0_0, 4));
  1975. const int8x16_t v0_1l = vreinterpretq_s8_u8(vandq_u8 (v0_1, m4b));
  1976. const int8x16_t v0_1h = vreinterpretq_s8_u8(vshrq_n_u8(v0_1, 4));
  1977. // sub 8
  1978. const int8x16_t v0_0ls = vsubq_s8(v0_0l, s8b);
  1979. const int8x16_t v0_0hs = vsubq_s8(v0_0h, s8b);
  1980. const int8x16_t v0_1ls = vsubq_s8(v0_1l, s8b);
  1981. const int8x16_t v0_1hs = vsubq_s8(v0_1h, s8b);
  1982. // load y
  1983. const int8x16_t v1_0l = vld1q_s8(y0->qs);
  1984. const int8x16_t v1_0h = vld1q_s8(y0->qs + 16);
  1985. const int8x16_t v1_1l = vld1q_s8(y1->qs);
  1986. const int8x16_t v1_1h = vld1q_s8(y1->qs + 16);
  1987. #if defined(__ARM_FEATURE_DOTPROD)
  1988. // dot product into int32x4_t
  1989. const int32x4_t p_0 = vdotq_s32(vdotq_s32(vdupq_n_s32(0), v0_0ls, v1_0l), v0_0hs, v1_0h);
  1990. const int32x4_t p_1 = vdotq_s32(vdotq_s32(vdupq_n_s32(0), v0_1ls, v1_1l), v0_1hs, v1_1h);
  1991. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(p_0), GGML_FP16_TO_FP32(x0->d)*GGML_FP16_TO_FP32(y0->d));
  1992. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(p_1), GGML_FP16_TO_FP32(x1->d)*GGML_FP16_TO_FP32(y1->d));
  1993. #else
  1994. const int16x8_t pl0l = vmull_s8(vget_low_s8 (v0_0ls), vget_low_s8 (v1_0l));
  1995. const int16x8_t pl0h = vmull_s8(vget_high_s8(v0_0ls), vget_high_s8(v1_0l));
  1996. const int16x8_t ph0l = vmull_s8(vget_low_s8 (v0_0hs), vget_low_s8 (v1_0h));
  1997. const int16x8_t ph0h = vmull_s8(vget_high_s8(v0_0hs), vget_high_s8(v1_0h));
  1998. const int16x8_t pl1l = vmull_s8(vget_low_s8 (v0_1ls), vget_low_s8 (v1_1l));
  1999. const int16x8_t pl1h = vmull_s8(vget_high_s8(v0_1ls), vget_high_s8(v1_1l));
  2000. const int16x8_t ph1l = vmull_s8(vget_low_s8 (v0_1hs), vget_low_s8 (v1_1h));
  2001. const int16x8_t ph1h = vmull_s8(vget_high_s8(v0_1hs), vget_high_s8(v1_1h));
  2002. const int32x4_t pl0 = vaddq_s32(vpaddlq_s16(pl0l), vpaddlq_s16(pl0h));
  2003. const int32x4_t ph0 = vaddq_s32(vpaddlq_s16(ph0l), vpaddlq_s16(ph0h));
  2004. const int32x4_t pl1 = vaddq_s32(vpaddlq_s16(pl1l), vpaddlq_s16(pl1h));
  2005. const int32x4_t ph1 = vaddq_s32(vpaddlq_s16(ph1l), vpaddlq_s16(ph1h));
  2006. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(pl0, ph0)), GGML_FP16_TO_FP32(x0->d)*GGML_FP16_TO_FP32(y0->d));
  2007. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(pl1, ph1)), GGML_FP16_TO_FP32(x1->d)*GGML_FP16_TO_FP32(y1->d));
  2008. #endif
  2009. }
  2010. *s = vaddvq_f32(sumv0) + vaddvq_f32(sumv1);
  2011. #elif defined(__AVX2__)
  2012. // Initialize accumulator with zeros
  2013. __m256 acc = _mm256_setzero_ps();
  2014. // Main loop
  2015. for (int i = 0; i < nb; ++i) {
  2016. /* Compute combined scale for the block */
  2017. const __m256 d = _mm256_set1_ps( GGML_FP16_TO_FP32(x[i].d) * GGML_FP16_TO_FP32(y[i].d) );
  2018. __m256i bx = bytes_from_nibbles_32(x[i].qs);
  2019. // Now we have a vector with bytes in [ 0 .. 15 ] interval. Offset them into [ -8 .. +7 ] interval.
  2020. const __m256i off = _mm256_set1_epi8( 8 );
  2021. bx = _mm256_sub_epi8( bx, off );
  2022. __m256i by = _mm256_loadu_si256((const __m256i *)y[i].qs);
  2023. const __m256 q = mul_sum_i8_pairs_float(bx, by);
  2024. /* Multiply q with scale and accumulate */
  2025. acc = _mm256_fmadd_ps( d, q, acc );
  2026. }
  2027. *s = hsum_float_8(acc);
  2028. #elif defined(__AVX__)
  2029. // Initialize accumulator with zeros
  2030. __m256 acc = _mm256_setzero_ps();
  2031. // Main loop
  2032. for (int i = 0; i < nb; ++i) {
  2033. // Compute combined scale for the block
  2034. const __m256 d = _mm256_set1_ps( GGML_FP16_TO_FP32(x[i].d) * GGML_FP16_TO_FP32(y[i].d) );
  2035. const __m128i lowMask = _mm_set1_epi8(0xF);
  2036. const __m128i off = _mm_set1_epi8(8);
  2037. const __m128i tmp = _mm_loadu_si128((const __m128i *)x[i].qs);
  2038. __m128i bx = _mm_and_si128(lowMask, tmp);
  2039. __m128i by = _mm_loadu_si128((const __m128i *)y[i].qs);
  2040. bx = _mm_sub_epi8(bx, off);
  2041. const __m128i i32_0 = mul_sum_i8_pairs(bx, by);
  2042. bx = _mm_and_si128(lowMask, _mm_srli_epi64(tmp, 4));
  2043. by = _mm_loadu_si128((const __m128i *)(y[i].qs + 16));
  2044. bx = _mm_sub_epi8(bx, off);
  2045. const __m128i i32_1 = mul_sum_i8_pairs(bx, by);
  2046. // Convert int32_t to float
  2047. __m256 p = _mm256_cvtepi32_ps(MM256_SET_M128I(i32_0, i32_1));
  2048. // Apply the scale, and accumulate
  2049. acc = _mm256_add_ps(_mm256_mul_ps( d, p ), acc);
  2050. }
  2051. *s = hsum_float_8(acc);
  2052. #elif defined(__SSSE3__)
  2053. // set constants
  2054. const __m128i lowMask = _mm_set1_epi8(0xF);
  2055. const __m128i off = _mm_set1_epi8(8);
  2056. // Initialize accumulator with zeros
  2057. __m128 acc_0 = _mm_setzero_ps();
  2058. __m128 acc_1 = _mm_setzero_ps();
  2059. __m128 acc_2 = _mm_setzero_ps();
  2060. __m128 acc_3 = _mm_setzero_ps();
  2061. // First round without accumulation
  2062. {
  2063. _mm_prefetch(&x[0] + sizeof(block_q4_0), _MM_HINT_T0);
  2064. _mm_prefetch(&y[0] + sizeof(block_q8_0), _MM_HINT_T0);
  2065. // Compute combined scale for the block 0 and 1
  2066. const __m128 d_0_1 = _mm_set1_ps( GGML_FP16_TO_FP32(x[0].d) * GGML_FP16_TO_FP32(y[0].d) );
  2067. const __m128i tmp_0_1 = _mm_loadu_si128((const __m128i *)x[0].qs);
  2068. __m128i bx_0 = _mm_and_si128(lowMask, tmp_0_1);
  2069. __m128i by_0 = _mm_loadu_si128((const __m128i *)y[0].qs);
  2070. bx_0 = _mm_sub_epi8(bx_0, off);
  2071. const __m128i i32_0 = mul_sum_i8_pairs(bx_0, by_0);
  2072. __m128i bx_1 = _mm_and_si128(lowMask, _mm_srli_epi64(tmp_0_1, 4));
  2073. __m128i by_1 = _mm_loadu_si128((const __m128i *)(y[0].qs + 16));
  2074. bx_1 = _mm_sub_epi8(bx_1, off);
  2075. const __m128i i32_1 = mul_sum_i8_pairs(bx_1, by_1);
  2076. _mm_prefetch(&x[1] + sizeof(block_q4_0), _MM_HINT_T0);
  2077. _mm_prefetch(&y[1] + sizeof(block_q8_0), _MM_HINT_T0);
  2078. // Compute combined scale for the block 2 and 3
  2079. const __m128 d_2_3 = _mm_set1_ps( GGML_FP16_TO_FP32(x[1].d) * GGML_FP16_TO_FP32(y[1].d) );
  2080. const __m128i tmp_2_3 = _mm_loadu_si128((const __m128i *)x[1].qs);
  2081. __m128i bx_2 = _mm_and_si128(lowMask, tmp_2_3);
  2082. __m128i by_2 = _mm_loadu_si128((const __m128i *)y[1].qs);
  2083. bx_2 = _mm_sub_epi8(bx_2, off);
  2084. const __m128i i32_2 = mul_sum_i8_pairs(bx_2, by_2);
  2085. __m128i bx_3 = _mm_and_si128(lowMask, _mm_srli_epi64(tmp_2_3, 4));
  2086. __m128i by_3 = _mm_loadu_si128((const __m128i *)(y[1].qs + 16));
  2087. bx_3 = _mm_sub_epi8(bx_3, off);
  2088. const __m128i i32_3 = mul_sum_i8_pairs(bx_3, by_3);
  2089. // Convert int32_t to float
  2090. __m128 p0 = _mm_cvtepi32_ps(i32_0);
  2091. __m128 p1 = _mm_cvtepi32_ps(i32_1);
  2092. __m128 p2 = _mm_cvtepi32_ps(i32_2);
  2093. __m128 p3 = _mm_cvtepi32_ps(i32_3);
  2094. // Apply the scale
  2095. acc_0 = _mm_mul_ps( d_0_1, p0 );
  2096. acc_1 = _mm_mul_ps( d_0_1, p1 );
  2097. acc_2 = _mm_mul_ps( d_2_3, p2 );
  2098. acc_3 = _mm_mul_ps( d_2_3, p3 );
  2099. }
  2100. // Main loop
  2101. for (int i = 2; i < nb; i+=2) {
  2102. _mm_prefetch(&x[i] + sizeof(block_q4_0), _MM_HINT_T0);
  2103. _mm_prefetch(&y[i] + sizeof(block_q8_0), _MM_HINT_T0);
  2104. // Compute combined scale for the block 0 and 1
  2105. const __m128 d_0_1 = _mm_set1_ps( GGML_FP16_TO_FP32(x[i].d) * GGML_FP16_TO_FP32(y[i].d) );
  2106. const __m128i tmp_0_1 = _mm_loadu_si128((const __m128i *)x[i].qs);
  2107. __m128i bx_0 = _mm_and_si128(lowMask, tmp_0_1);
  2108. __m128i by_0 = _mm_loadu_si128((const __m128i *)y[i].qs);
  2109. bx_0 = _mm_sub_epi8(bx_0, off);
  2110. const __m128i i32_0 = mul_sum_i8_pairs(bx_0, by_0);
  2111. __m128i bx_1 = _mm_and_si128(lowMask, _mm_srli_epi64(tmp_0_1, 4));
  2112. __m128i by_1 = _mm_loadu_si128((const __m128i *)(y[i].qs + 16));
  2113. bx_1 = _mm_sub_epi8(bx_1, off);
  2114. const __m128i i32_1 = mul_sum_i8_pairs(bx_1, by_1);
  2115. _mm_prefetch(&x[i] + 2 * sizeof(block_q4_0), _MM_HINT_T0);
  2116. _mm_prefetch(&y[i] + 2 * sizeof(block_q8_0), _MM_HINT_T0);
  2117. // Compute combined scale for the block 2 and 3
  2118. const __m128 d_2_3 = _mm_set1_ps( GGML_FP16_TO_FP32(x[i + 1].d) * GGML_FP16_TO_FP32(y[i + 1].d) );
  2119. const __m128i tmp_2_3 = _mm_loadu_si128((const __m128i *)x[i + 1].qs);
  2120. __m128i bx_2 = _mm_and_si128(lowMask, tmp_2_3);
  2121. __m128i by_2 = _mm_loadu_si128((const __m128i *)y[i + 1].qs);
  2122. bx_2 = _mm_sub_epi8(bx_2, off);
  2123. const __m128i i32_2 = mul_sum_i8_pairs(bx_2, by_2);
  2124. __m128i bx_3 = _mm_and_si128(lowMask, _mm_srli_epi64(tmp_2_3, 4));
  2125. __m128i by_3 = _mm_loadu_si128((const __m128i *)(y[i + 1].qs + 16));
  2126. bx_3 = _mm_sub_epi8(bx_3, off);
  2127. const __m128i i32_3 = mul_sum_i8_pairs(bx_3, by_3);
  2128. // Convert int32_t to float
  2129. __m128 p0 = _mm_cvtepi32_ps(i32_0);
  2130. __m128 p1 = _mm_cvtepi32_ps(i32_1);
  2131. __m128 p2 = _mm_cvtepi32_ps(i32_2);
  2132. __m128 p3 = _mm_cvtepi32_ps(i32_3);
  2133. // Apply the scale
  2134. __m128 p0_d = _mm_mul_ps( d_0_1, p0 );
  2135. __m128 p1_d = _mm_mul_ps( d_0_1, p1 );
  2136. __m128 p2_d = _mm_mul_ps( d_2_3, p2 );
  2137. __m128 p3_d = _mm_mul_ps( d_2_3, p3 );
  2138. // Acummulate
  2139. acc_0 = _mm_add_ps(p0_d, acc_0);
  2140. acc_1 = _mm_add_ps(p1_d, acc_1);
  2141. acc_2 = _mm_add_ps(p2_d, acc_2);
  2142. acc_3 = _mm_add_ps(p3_d, acc_3);
  2143. }
  2144. *s = hsum_float_4x4(acc_0, acc_1, acc_2, acc_3);
  2145. #else
  2146. // scalar
  2147. float sumf = 0.0;
  2148. for (int i = 0; i < nb; i++) {
  2149. int sumi = 0;
  2150. for (int j = 0; j < qk/2; ++j) {
  2151. const int v0 = (x[i].qs[j] & 0x0F) - 8;
  2152. const int v1 = (x[i].qs[j] >> 4) - 8;
  2153. sumi += (v0 * y[i].qs[j]) + (v1 * y[i].qs[j + qk/2]);
  2154. }
  2155. sumf += sumi*GGML_FP16_TO_FP32(x[i].d)*GGML_FP16_TO_FP32(y[i].d);
  2156. }
  2157. *s = sumf;
  2158. #endif
  2159. }
  2160. static void ggml_vec_dot_q4_1_q8_1(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  2161. const int qk = QK8_1;
  2162. const int nb = n / qk;
  2163. assert(n % qk == 0);
  2164. assert(nb % 2 == 0);
  2165. const block_q4_1 * restrict x = vx;
  2166. const block_q8_1 * restrict y = vy;
  2167. // TODO: add WASM SIMD
  2168. #if defined(__ARM_NEON)
  2169. float32x4_t sumv0 = vdupq_n_f32(0.0f);
  2170. float32x4_t sumv1 = vdupq_n_f32(0.0f);
  2171. float summs = 0;
  2172. for (int i = 0; i < nb; i += 2) {
  2173. const block_q4_1 * restrict x0 = &x[i + 0];
  2174. const block_q4_1 * restrict x1 = &x[i + 1];
  2175. const block_q8_1 * restrict y0 = &y[i + 0];
  2176. const block_q8_1 * restrict y1 = &y[i + 1];
  2177. summs += GGML_FP16_TO_FP32(x0->m) * y0->s + GGML_FP16_TO_FP32(x1->m) * y1->s;
  2178. const uint8x16_t m4b = vdupq_n_u8(0x0F);
  2179. const uint8x16_t v0_0 = vld1q_u8(x0->qs);
  2180. const uint8x16_t v0_1 = vld1q_u8(x1->qs);
  2181. // 4-bit -> 8-bit
  2182. const int8x16_t v0_0l = vreinterpretq_s8_u8(vandq_u8 (v0_0, m4b));
  2183. const int8x16_t v0_0h = vreinterpretq_s8_u8(vshrq_n_u8(v0_0, 4));
  2184. const int8x16_t v0_1l = vreinterpretq_s8_u8(vandq_u8 (v0_1, m4b));
  2185. const int8x16_t v0_1h = vreinterpretq_s8_u8(vshrq_n_u8(v0_1, 4));
  2186. // load y
  2187. const int8x16_t v1_0l = vld1q_s8(y0->qs);
  2188. const int8x16_t v1_0h = vld1q_s8(y0->qs + 16);
  2189. const int8x16_t v1_1l = vld1q_s8(y1->qs);
  2190. const int8x16_t v1_1h = vld1q_s8(y1->qs + 16);
  2191. #if defined(__ARM_FEATURE_DOTPROD)
  2192. // dot product into int32x4_t
  2193. const int32x4_t p_0 = vdotq_s32(vdotq_s32(vdupq_n_s32(0), v0_0l, v1_0l), v0_0h, v1_0h);
  2194. const int32x4_t p_1 = vdotq_s32(vdotq_s32(vdupq_n_s32(0), v0_1l, v1_1l), v0_1h, v1_1h);
  2195. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(p_0), GGML_FP16_TO_FP32(x0->d)*y0->d);
  2196. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(p_1), GGML_FP16_TO_FP32(x1->d)*y1->d);
  2197. #else
  2198. const int16x8_t pl0l = vmull_s8(vget_low_s8 (v0_0l), vget_low_s8 (v1_0l));
  2199. const int16x8_t pl0h = vmull_s8(vget_high_s8(v0_0l), vget_high_s8(v1_0l));
  2200. const int16x8_t ph0l = vmull_s8(vget_low_s8 (v0_0h), vget_low_s8 (v1_0h));
  2201. const int16x8_t ph0h = vmull_s8(vget_high_s8(v0_0h), vget_high_s8(v1_0h));
  2202. const int16x8_t pl1l = vmull_s8(vget_low_s8 (v0_1l), vget_low_s8 (v1_1l));
  2203. const int16x8_t pl1h = vmull_s8(vget_high_s8(v0_1l), vget_high_s8(v1_1l));
  2204. const int16x8_t ph1l = vmull_s8(vget_low_s8 (v0_1h), vget_low_s8 (v1_1h));
  2205. const int16x8_t ph1h = vmull_s8(vget_high_s8(v0_1h), vget_high_s8(v1_1h));
  2206. const int32x4_t pl0 = vaddq_s32(vpaddlq_s16(pl0l), vpaddlq_s16(pl0h));
  2207. const int32x4_t ph0 = vaddq_s32(vpaddlq_s16(ph0l), vpaddlq_s16(ph0h));
  2208. const int32x4_t pl1 = vaddq_s32(vpaddlq_s16(pl1l), vpaddlq_s16(pl1h));
  2209. const int32x4_t ph1 = vaddq_s32(vpaddlq_s16(ph1l), vpaddlq_s16(ph1h));
  2210. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(pl0, ph0)), GGML_FP16_TO_FP32(x0->d)*y0->d);
  2211. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(pl1, ph1)), GGML_FP16_TO_FP32(x1->d)*y1->d);
  2212. #endif
  2213. }
  2214. *s = vaddvq_f32(sumv0) + vaddvq_f32(sumv1) + summs;
  2215. #elif defined(__AVX2__) || defined(__AVX__)
  2216. // Initialize accumulator with zeros
  2217. __m256 acc = _mm256_setzero_ps();
  2218. float summs = 0;
  2219. // Main loop
  2220. for (int i = 0; i < nb; ++i) {
  2221. const float d0 = GGML_FP16_TO_FP32(x[i].d);
  2222. const float d1 = y[i].d;
  2223. summs += GGML_FP16_TO_FP32(x[i].m) * y[i].s;
  2224. const __m256 d0v = _mm256_set1_ps( d0 );
  2225. const __m256 d1v = _mm256_set1_ps( d1 );
  2226. // Compute combined scales
  2227. const __m256 d0d1 = _mm256_mul_ps( d0v, d1v );
  2228. // Load 16 bytes, and unpack 4 bit fields into bytes, making 32 bytes
  2229. const __m256i bx = bytes_from_nibbles_32(x[i].qs);
  2230. const __m256i by = _mm256_loadu_si256( (const __m256i *)y[i].qs );
  2231. const __m256 xy = mul_sum_us8_pairs_float(bx, by);
  2232. // Accumulate d0*d1*x*y
  2233. #if defined(__AVX2__)
  2234. acc = _mm256_fmadd_ps( d0d1, xy, acc );
  2235. #else
  2236. acc = _mm256_add_ps( _mm256_mul_ps( d0d1, xy ), acc );
  2237. #endif
  2238. }
  2239. *s = hsum_float_8(acc) + summs;
  2240. #else
  2241. // scalar
  2242. float sumf = 0.0;
  2243. for (int i = 0; i < nb; i++) {
  2244. int sumi = 0;
  2245. for (int j = 0; j < qk/2; ++j) {
  2246. const int v0 = (x[i].qs[j] & 0x0F);
  2247. const int v1 = (x[i].qs[j] >> 4);
  2248. sumi += (v0 * y[i].qs[j]) + (v1 * y[i].qs[j + qk/2]);
  2249. }
  2250. sumf += (GGML_FP16_TO_FP32(x[i].d)*y[i].d)*sumi + GGML_FP16_TO_FP32(x[i].m)*y[i].s;
  2251. }
  2252. *s = sumf;
  2253. #endif
  2254. }
  2255. static void ggml_vec_dot_q5_0_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  2256. const int qk = QK8_0;
  2257. const int nb = n / qk;
  2258. assert(n % qk == 0);
  2259. assert(nb % 2 == 0);
  2260. assert(qk == QK5_0);
  2261. const block_q5_0 * restrict x = vx;
  2262. const block_q8_0 * restrict y = vy;
  2263. #if defined(__ARM_NEON)
  2264. float32x4_t sumv0 = vdupq_n_f32(0.0f);
  2265. float32x4_t sumv1 = vdupq_n_f32(0.0f);
  2266. uint32_t qh0;
  2267. uint32_t qh1;
  2268. uint64_t tmp0[4];
  2269. uint64_t tmp1[4];
  2270. for (int i = 0; i < nb; i += 2) {
  2271. const block_q5_0 * restrict x0 = &x[i];
  2272. const block_q5_0 * restrict x1 = &x[i + 1];
  2273. const block_q8_0 * restrict y0 = &y[i];
  2274. const block_q8_0 * restrict y1 = &y[i + 1];
  2275. const uint8x16_t m4b = vdupq_n_u8(0x0F);
  2276. // extract the 5th bit via lookup table ((!b) << 4)
  2277. memcpy(&qh0, x0->qh, sizeof(qh0));
  2278. memcpy(&qh1, x1->qh, sizeof(qh1));
  2279. tmp0[0] = table_b2b_1[(qh0 >> 0) & 0xFF];
  2280. tmp0[1] = table_b2b_1[(qh0 >> 8) & 0xFF];
  2281. tmp0[2] = table_b2b_1[(qh0 >> 16) & 0xFF];
  2282. tmp0[3] = table_b2b_1[(qh0 >> 24) ];
  2283. tmp1[0] = table_b2b_1[(qh1 >> 0) & 0xFF];
  2284. tmp1[1] = table_b2b_1[(qh1 >> 8) & 0xFF];
  2285. tmp1[2] = table_b2b_1[(qh1 >> 16) & 0xFF];
  2286. tmp1[3] = table_b2b_1[(qh1 >> 24) ];
  2287. const int8x16_t qhl0 = vld1q_s8((const int8_t *)(tmp0 + 0));
  2288. const int8x16_t qhh0 = vld1q_s8((const int8_t *)(tmp0 + 2));
  2289. const int8x16_t qhl1 = vld1q_s8((const int8_t *)(tmp1 + 0));
  2290. const int8x16_t qhh1 = vld1q_s8((const int8_t *)(tmp1 + 2));
  2291. const uint8x16_t v0_0 = vld1q_u8(x0->qs);
  2292. const uint8x16_t v0_1 = vld1q_u8(x1->qs);
  2293. // 4-bit -> 8-bit
  2294. int8x16_t v0_0l = vreinterpretq_s8_u8(vandq_u8 (v0_0, m4b));
  2295. int8x16_t v0_0h = vreinterpretq_s8_u8(vshrq_n_u8(v0_0, 4));
  2296. int8x16_t v0_1l = vreinterpretq_s8_u8(vandq_u8 (v0_1, m4b));
  2297. int8x16_t v0_1h = vreinterpretq_s8_u8(vshrq_n_u8(v0_1, 4));
  2298. // add high bit and sub 16 (equivalent to sub 0x10 when bit is zero)
  2299. const int8x16_t v0_0lf = vsubq_s8(v0_0l, qhl0);
  2300. const int8x16_t v0_0hf = vsubq_s8(v0_0h, qhh0);
  2301. const int8x16_t v0_1lf = vsubq_s8(v0_1l, qhl1);
  2302. const int8x16_t v0_1hf = vsubq_s8(v0_1h, qhh1);
  2303. // load y
  2304. const int8x16_t v1_0l = vld1q_s8(y0->qs);
  2305. const int8x16_t v1_0h = vld1q_s8(y0->qs + 16);
  2306. const int8x16_t v1_1l = vld1q_s8(y1->qs);
  2307. const int8x16_t v1_1h = vld1q_s8(y1->qs + 16);
  2308. #if defined(__ARM_FEATURE_DOTPROD)
  2309. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(
  2310. vdotq_s32(vdupq_n_s32(0), v0_0lf, v1_0l),
  2311. vdotq_s32(vdupq_n_s32(0), v0_0hf, v1_0h))), GGML_FP16_TO_FP32(x0->d)*GGML_FP16_TO_FP32(y0->d));
  2312. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(
  2313. vdotq_s32(vdupq_n_s32(0), v0_1lf, v1_1l),
  2314. vdotq_s32(vdupq_n_s32(0), v0_1hf, v1_1h))), GGML_FP16_TO_FP32(x1->d)*GGML_FP16_TO_FP32(y1->d));
  2315. #else
  2316. const int16x8_t pl0l = vmull_s8(vget_low_s8 (v0_0lf), vget_low_s8 (v1_0l));
  2317. const int16x8_t pl0h = vmull_s8(vget_high_s8(v0_0lf), vget_high_s8(v1_0l));
  2318. const int16x8_t ph0l = vmull_s8(vget_low_s8 (v0_0hf), vget_low_s8 (v1_0h));
  2319. const int16x8_t ph0h = vmull_s8(vget_high_s8(v0_0hf), vget_high_s8(v1_0h));
  2320. const int16x8_t pl1l = vmull_s8(vget_low_s8 (v0_1lf), vget_low_s8 (v1_1l));
  2321. const int16x8_t pl1h = vmull_s8(vget_high_s8(v0_1lf), vget_high_s8(v1_1l));
  2322. const int16x8_t ph1l = vmull_s8(vget_low_s8 (v0_1hf), vget_low_s8 (v1_1h));
  2323. const int16x8_t ph1h = vmull_s8(vget_high_s8(v0_1hf), vget_high_s8(v1_1h));
  2324. const int32x4_t pl0 = vaddq_s32(vpaddlq_s16(pl0l), vpaddlq_s16(pl0h));
  2325. const int32x4_t ph0 = vaddq_s32(vpaddlq_s16(ph0l), vpaddlq_s16(ph0h));
  2326. const int32x4_t pl1 = vaddq_s32(vpaddlq_s16(pl1l), vpaddlq_s16(pl1h));
  2327. const int32x4_t ph1 = vaddq_s32(vpaddlq_s16(ph1l), vpaddlq_s16(ph1h));
  2328. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(pl0, ph0)), GGML_FP16_TO_FP32(x0->d)*GGML_FP16_TO_FP32(y0->d));
  2329. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(pl1, ph1)), GGML_FP16_TO_FP32(x1->d)*GGML_FP16_TO_FP32(y1->d));
  2330. #endif
  2331. }
  2332. *s = vaddvq_f32(sumv0) + vaddvq_f32(sumv1);
  2333. #elif defined(__wasm_simd128__)
  2334. v128_t sumv = wasm_f32x4_splat(0.0f);
  2335. uint32_t qh;
  2336. uint64_t tmp[4];
  2337. // TODO: check if unrolling this is better
  2338. for (int i = 0; i < nb; ++i) {
  2339. const block_q5_0 * restrict x0 = &x[i];
  2340. const block_q8_0 * restrict y0 = &y[i];
  2341. const v128_t m4b = wasm_i8x16_splat(0x0F);
  2342. // extract the 5th bit
  2343. memcpy(&qh, x0->qh, sizeof(qh));
  2344. tmp[0] = table_b2b_1[(qh >> 0) & 0xFF];
  2345. tmp[1] = table_b2b_1[(qh >> 8) & 0xFF];
  2346. tmp[2] = table_b2b_1[(qh >> 16) & 0xFF];
  2347. tmp[3] = table_b2b_1[(qh >> 24) ];
  2348. const v128_t qhl = wasm_v128_load(tmp + 0);
  2349. const v128_t qhh = wasm_v128_load(tmp + 2);
  2350. const v128_t v0 = wasm_v128_load(x0->qs);
  2351. // 4-bit -> 8-bit
  2352. const v128_t v0l = wasm_v128_and (v0, m4b);
  2353. const v128_t v0h = wasm_u8x16_shr(v0, 4);
  2354. // add high bit and sub 16 (equivalent to sub 0x10 when bit is zero)
  2355. const v128_t v0lf = wasm_i8x16_sub(v0l, qhl);
  2356. const v128_t v0hf = wasm_i8x16_sub(v0h, qhh);
  2357. // load y
  2358. const v128_t v1l = wasm_v128_load(y0->qs);
  2359. const v128_t v1h = wasm_v128_load(y0->qs + 16);
  2360. // int8x16 -> int16x8
  2361. const v128_t v0lfl = wasm_i16x8_extend_low_i8x16 (v0lf);
  2362. const v128_t v0lfh = wasm_i16x8_extend_high_i8x16(v0lf);
  2363. const v128_t v0hfl = wasm_i16x8_extend_low_i8x16 (v0hf);
  2364. const v128_t v0hfh = wasm_i16x8_extend_high_i8x16(v0hf);
  2365. const v128_t v1ll = wasm_i16x8_extend_low_i8x16 (v1l);
  2366. const v128_t v1lh = wasm_i16x8_extend_high_i8x16(v1l);
  2367. const v128_t v1hl = wasm_i16x8_extend_low_i8x16 (v1h);
  2368. const v128_t v1hh = wasm_i16x8_extend_high_i8x16(v1h);
  2369. // dot product
  2370. sumv = wasm_f32x4_add(sumv, wasm_f32x4_mul(wasm_f32x4_convert_i32x4(
  2371. wasm_i32x4_add(
  2372. wasm_i32x4_add(wasm_i32x4_dot_i16x8(v0lfl, v1ll),
  2373. wasm_i32x4_dot_i16x8(v0lfh, v1lh)),
  2374. wasm_i32x4_add(wasm_i32x4_dot_i16x8(v0hfl, v1hl),
  2375. wasm_i32x4_dot_i16x8(v0hfh, v1hh)))),
  2376. wasm_f32x4_splat(GGML_FP16_TO_FP32(x0->d) * GGML_FP16_TO_FP32(y0->d))));
  2377. }
  2378. *s = wasm_f32x4_extract_lane(sumv, 0) + wasm_f32x4_extract_lane(sumv, 1) +
  2379. wasm_f32x4_extract_lane(sumv, 2) + wasm_f32x4_extract_lane(sumv, 3);
  2380. #elif defined(__AVX2__)
  2381. // Initialize accumulator with zeros
  2382. __m256 acc = _mm256_setzero_ps();
  2383. // Main loop
  2384. for (int i = 0; i < nb; i++) {
  2385. /* Compute combined scale for the block */
  2386. const __m256 d = _mm256_set1_ps(GGML_FP16_TO_FP32(x[i].d) * GGML_FP16_TO_FP32(y[i].d));
  2387. __m256i bx = bytes_from_nibbles_32(x[i].qs);
  2388. __m256i bxhi = bytes_from_bits_32(x[i].qh);
  2389. bxhi = _mm256_andnot_si256(bxhi, _mm256_set1_epi8((char)0xF0));
  2390. bx = _mm256_or_si256(bx, bxhi);
  2391. __m256i by = _mm256_loadu_si256((const __m256i *)y[i].qs);
  2392. const __m256 q = mul_sum_i8_pairs_float(bx, by);
  2393. /* Multiply q with scale and accumulate */
  2394. acc = _mm256_fmadd_ps(d, q, acc);
  2395. }
  2396. *s = hsum_float_8(acc);
  2397. #elif defined(__AVX__)
  2398. // Initialize accumulator with zeros
  2399. __m256 acc = _mm256_setzero_ps();
  2400. __m128i mask = _mm_set1_epi8((char)0xF0);
  2401. // Main loop
  2402. for (int i = 0; i < nb; i++) {
  2403. /* Compute combined scale for the block */
  2404. const __m256 d = _mm256_set1_ps(GGML_FP16_TO_FP32(x[i].d) * GGML_FP16_TO_FP32(y[i].d));
  2405. __m256i bx = bytes_from_nibbles_32(x[i].qs);
  2406. const __m256i bxhi = bytes_from_bits_32(x[i].qh);
  2407. __m128i bxhil = _mm256_castsi256_si128(bxhi);
  2408. __m128i bxhih = _mm256_extractf128_si256(bxhi, 1);
  2409. bxhil = _mm_andnot_si128(bxhil, mask);
  2410. bxhih = _mm_andnot_si128(bxhih, mask);
  2411. __m128i bxl = _mm256_castsi256_si128(bx);
  2412. __m128i bxh = _mm256_extractf128_si256(bx, 1);
  2413. bxl = _mm_or_si128(bxl, bxhil);
  2414. bxh = _mm_or_si128(bxh, bxhih);
  2415. bx = MM256_SET_M128I(bxh, bxl);
  2416. const __m256i by = _mm256_loadu_si256((const __m256i *)y[i].qs);
  2417. const __m256 q = mul_sum_i8_pairs_float(bx, by);
  2418. /* Multiply q with scale and accumulate */
  2419. acc = _mm256_add_ps(_mm256_mul_ps(d, q), acc);
  2420. }
  2421. *s = hsum_float_8(acc);
  2422. #else
  2423. // scalar
  2424. float sumf = 0.0;
  2425. for (int i = 0; i < nb; i++) {
  2426. uint32_t qh;
  2427. memcpy(&qh, x[i].qh, sizeof(qh));
  2428. int sumi = 0;
  2429. for (int j = 0; j < qk/2; ++j) {
  2430. const uint8_t xh_0 = ((qh & (1u << (j + 0 ))) >> (j + 0 )) << 4;
  2431. const uint8_t xh_1 = ((qh & (1u << (j + 16))) >> (j + 12));
  2432. const int32_t x0 = ((x[i].qs[j] & 0x0F) | xh_0) - 16;
  2433. const int32_t x1 = ((x[i].qs[j] >> 4) | xh_1) - 16;
  2434. sumi += (x0 * y[i].qs[j]) + (x1 * y[i].qs[j + qk/2]);
  2435. }
  2436. sumf += (GGML_FP16_TO_FP32(x[i].d)*GGML_FP16_TO_FP32(y[i].d)) * sumi;
  2437. }
  2438. *s = sumf;
  2439. #endif
  2440. }
  2441. static void ggml_vec_dot_q5_1_q8_1(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  2442. const int qk = QK8_1;
  2443. const int nb = n / qk;
  2444. assert(n % qk == 0);
  2445. assert(nb % 2 == 0);
  2446. assert(qk == QK5_1);
  2447. const block_q5_1 * restrict x = vx;
  2448. const block_q8_1 * restrict y = vy;
  2449. #if defined(__ARM_NEON)
  2450. float32x4_t sumv0 = vdupq_n_f32(0.0f);
  2451. float32x4_t sumv1 = vdupq_n_f32(0.0f);
  2452. float summs0 = 0.0f;
  2453. float summs1 = 0.0f;
  2454. uint32_t qh0;
  2455. uint32_t qh1;
  2456. uint64_t tmp0[4];
  2457. uint64_t tmp1[4];
  2458. for (int i = 0; i < nb; i += 2) {
  2459. const block_q5_1 * restrict x0 = &x[i];
  2460. const block_q5_1 * restrict x1 = &x[i + 1];
  2461. const block_q8_1 * restrict y0 = &y[i];
  2462. const block_q8_1 * restrict y1 = &y[i + 1];
  2463. const uint8x16_t m4b = vdupq_n_u8(0x0F);
  2464. summs0 += GGML_FP16_TO_FP32(x0->m) * y0->s;
  2465. summs1 += GGML_FP16_TO_FP32(x1->m) * y1->s;
  2466. // extract the 5th bit via lookup table ((b) << 4)
  2467. memcpy(&qh0, x0->qh, sizeof(qh0));
  2468. memcpy(&qh1, x1->qh, sizeof(qh1));
  2469. tmp0[0] = table_b2b_0[(qh0 >> 0) & 0xFF];
  2470. tmp0[1] = table_b2b_0[(qh0 >> 8) & 0xFF];
  2471. tmp0[2] = table_b2b_0[(qh0 >> 16) & 0xFF];
  2472. tmp0[3] = table_b2b_0[(qh0 >> 24) ];
  2473. tmp1[0] = table_b2b_0[(qh1 >> 0) & 0xFF];
  2474. tmp1[1] = table_b2b_0[(qh1 >> 8) & 0xFF];
  2475. tmp1[2] = table_b2b_0[(qh1 >> 16) & 0xFF];
  2476. tmp1[3] = table_b2b_0[(qh1 >> 24) ];
  2477. const int8x16_t qhl0 = vld1q_s8((const int8_t *)(tmp0 + 0));
  2478. const int8x16_t qhh0 = vld1q_s8((const int8_t *)(tmp0 + 2));
  2479. const int8x16_t qhl1 = vld1q_s8((const int8_t *)(tmp1 + 0));
  2480. const int8x16_t qhh1 = vld1q_s8((const int8_t *)(tmp1 + 2));
  2481. const uint8x16_t v0_0 = vld1q_u8(x0->qs);
  2482. const uint8x16_t v0_1 = vld1q_u8(x1->qs);
  2483. // 4-bit -> 8-bit
  2484. const int8x16_t v0_0l = vreinterpretq_s8_u8(vandq_u8 (v0_0, m4b));
  2485. const int8x16_t v0_0h = vreinterpretq_s8_u8(vshrq_n_u8(v0_0, 4));
  2486. const int8x16_t v0_1l = vreinterpretq_s8_u8(vandq_u8 (v0_1, m4b));
  2487. const int8x16_t v0_1h = vreinterpretq_s8_u8(vshrq_n_u8(v0_1, 4));
  2488. // add high bit
  2489. const int8x16_t v0_0lf = vorrq_s8(v0_0l, qhl0);
  2490. const int8x16_t v0_0hf = vorrq_s8(v0_0h, qhh0);
  2491. const int8x16_t v0_1lf = vorrq_s8(v0_1l, qhl1);
  2492. const int8x16_t v0_1hf = vorrq_s8(v0_1h, qhh1);
  2493. // load y
  2494. const int8x16_t v1_0l = vld1q_s8(y0->qs);
  2495. const int8x16_t v1_0h = vld1q_s8(y0->qs + 16);
  2496. const int8x16_t v1_1l = vld1q_s8(y1->qs);
  2497. const int8x16_t v1_1h = vld1q_s8(y1->qs + 16);
  2498. #if defined(__ARM_FEATURE_DOTPROD)
  2499. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(
  2500. vdotq_s32(vdupq_n_s32(0), v0_0lf, v1_0l),
  2501. vdotq_s32(vdupq_n_s32(0), v0_0hf, v1_0h))), GGML_FP16_TO_FP32(x0->d)*y0->d);
  2502. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(
  2503. vdotq_s32(vdupq_n_s32(0), v0_1lf, v1_1l),
  2504. vdotq_s32(vdupq_n_s32(0), v0_1hf, v1_1h))), GGML_FP16_TO_FP32(x1->d)*y1->d);
  2505. #else
  2506. const int16x8_t pl0l = vmull_s8(vget_low_s8 (v0_0lf), vget_low_s8 (v1_0l));
  2507. const int16x8_t pl0h = vmull_s8(vget_high_s8(v0_0lf), vget_high_s8(v1_0l));
  2508. const int16x8_t ph0l = vmull_s8(vget_low_s8 (v0_0hf), vget_low_s8 (v1_0h));
  2509. const int16x8_t ph0h = vmull_s8(vget_high_s8(v0_0hf), vget_high_s8(v1_0h));
  2510. const int16x8_t pl1l = vmull_s8(vget_low_s8 (v0_1lf), vget_low_s8 (v1_1l));
  2511. const int16x8_t pl1h = vmull_s8(vget_high_s8(v0_1lf), vget_high_s8(v1_1l));
  2512. const int16x8_t ph1l = vmull_s8(vget_low_s8 (v0_1hf), vget_low_s8 (v1_1h));
  2513. const int16x8_t ph1h = vmull_s8(vget_high_s8(v0_1hf), vget_high_s8(v1_1h));
  2514. const int32x4_t pl0 = vaddq_s32(vpaddlq_s16(pl0l), vpaddlq_s16(pl0h));
  2515. const int32x4_t ph0 = vaddq_s32(vpaddlq_s16(ph0l), vpaddlq_s16(ph0h));
  2516. const int32x4_t pl1 = vaddq_s32(vpaddlq_s16(pl1l), vpaddlq_s16(pl1h));
  2517. const int32x4_t ph1 = vaddq_s32(vpaddlq_s16(ph1l), vpaddlq_s16(ph1h));
  2518. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(pl0, ph0)), GGML_FP16_TO_FP32(x0->d)*y0->d);
  2519. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(pl1, ph1)), GGML_FP16_TO_FP32(x1->d)*y1->d);
  2520. #endif
  2521. }
  2522. *s = vaddvq_f32(sumv0) + vaddvq_f32(sumv1) + summs0 + summs1;
  2523. #elif defined(__wasm_simd128__)
  2524. v128_t sumv = wasm_f32x4_splat(0.0f);
  2525. float summs = 0.0f;
  2526. uint32_t qh;
  2527. uint64_t tmp[4];
  2528. // TODO: check if unrolling this is better
  2529. for (int i = 0; i < nb; ++i) {
  2530. const block_q5_1 * restrict x0 = &x[i];
  2531. const block_q8_1 * restrict y0 = &y[i];
  2532. summs += GGML_FP16_TO_FP32(x0->m) * y0->s;
  2533. const v128_t m4b = wasm_i8x16_splat(0x0F);
  2534. // extract the 5th bit
  2535. memcpy(&qh, x0->qh, sizeof(qh));
  2536. tmp[0] = table_b2b_0[(qh >> 0) & 0xFF];
  2537. tmp[1] = table_b2b_0[(qh >> 8) & 0xFF];
  2538. tmp[2] = table_b2b_0[(qh >> 16) & 0xFF];
  2539. tmp[3] = table_b2b_0[(qh >> 24) ];
  2540. const v128_t qhl = wasm_v128_load(tmp + 0);
  2541. const v128_t qhh = wasm_v128_load(tmp + 2);
  2542. const v128_t v0 = wasm_v128_load(x0->qs);
  2543. // 4-bit -> 8-bit
  2544. const v128_t v0l = wasm_v128_and (v0, m4b);
  2545. const v128_t v0h = wasm_u8x16_shr(v0, 4);
  2546. // add high bit
  2547. const v128_t v0lf = wasm_v128_or(v0l, qhl);
  2548. const v128_t v0hf = wasm_v128_or(v0h, qhh);
  2549. // load y
  2550. const v128_t v1l = wasm_v128_load(y0->qs);
  2551. const v128_t v1h = wasm_v128_load(y0->qs + 16);
  2552. // int8x16 -> int16x8
  2553. const v128_t v0lfl = wasm_i16x8_extend_low_i8x16 (v0lf);
  2554. const v128_t v0lfh = wasm_i16x8_extend_high_i8x16(v0lf);
  2555. const v128_t v0hfl = wasm_i16x8_extend_low_i8x16 (v0hf);
  2556. const v128_t v0hfh = wasm_i16x8_extend_high_i8x16(v0hf);
  2557. const v128_t v1ll = wasm_i16x8_extend_low_i8x16 (v1l);
  2558. const v128_t v1lh = wasm_i16x8_extend_high_i8x16(v1l);
  2559. const v128_t v1hl = wasm_i16x8_extend_low_i8x16 (v1h);
  2560. const v128_t v1hh = wasm_i16x8_extend_high_i8x16(v1h);
  2561. // dot product
  2562. sumv = wasm_f32x4_add(sumv,
  2563. wasm_f32x4_mul(wasm_f32x4_convert_i32x4(wasm_i32x4_add(
  2564. wasm_i32x4_add(wasm_i32x4_dot_i16x8(v0lfl, v1ll),
  2565. wasm_i32x4_dot_i16x8(v0lfh, v1lh)),
  2566. wasm_i32x4_add(wasm_i32x4_dot_i16x8(v0hfl, v1hl),
  2567. wasm_i32x4_dot_i16x8(v0hfh, v1hh)))),
  2568. wasm_f32x4_splat(GGML_FP16_TO_FP32(x0->d) * y0->d)));
  2569. }
  2570. *s = wasm_f32x4_extract_lane(sumv, 0) + wasm_f32x4_extract_lane(sumv, 1) +
  2571. wasm_f32x4_extract_lane(sumv, 2) + wasm_f32x4_extract_lane(sumv, 3) + summs;
  2572. #elif defined(__AVX2__)
  2573. // Initialize accumulator with zeros
  2574. __m256 acc = _mm256_setzero_ps();
  2575. float summs = 0.0f;
  2576. // Main loop
  2577. for (int i = 0; i < nb; i++) {
  2578. const __m256 dx = _mm256_set1_ps(GGML_FP16_TO_FP32(x[i].d));
  2579. summs += GGML_FP16_TO_FP32(x[i].m) * y[i].s;
  2580. __m256i bx = bytes_from_nibbles_32(x[i].qs);
  2581. __m256i bxhi = bytes_from_bits_32(x[i].qh);
  2582. bxhi = _mm256_and_si256(bxhi, _mm256_set1_epi8(0x10));
  2583. bx = _mm256_or_si256(bx, bxhi);
  2584. const __m256 dy = _mm256_set1_ps(y[i].d);
  2585. const __m256i by = _mm256_loadu_si256((const __m256i *)y[i].qs);
  2586. const __m256 q = mul_sum_us8_pairs_float(bx, by);
  2587. acc = _mm256_fmadd_ps(q, _mm256_mul_ps(dx, dy), acc);
  2588. }
  2589. *s = hsum_float_8(acc) + summs;
  2590. #elif defined(__AVX__)
  2591. // Initialize accumulator with zeros
  2592. __m256 acc = _mm256_setzero_ps();
  2593. __m128i mask = _mm_set1_epi8(0x10);
  2594. float summs = 0.0f;
  2595. // Main loop
  2596. for (int i = 0; i < nb; i++) {
  2597. const __m256 dx = _mm256_set1_ps(GGML_FP16_TO_FP32(x[i].d));
  2598. summs += GGML_FP16_TO_FP32(x[i].m) * y[i].s;
  2599. __m256i bx = bytes_from_nibbles_32(x[i].qs);
  2600. const __m256i bxhi = bytes_from_bits_32(x[i].qh);
  2601. __m128i bxhil = _mm256_castsi256_si128(bxhi);
  2602. __m128i bxhih = _mm256_extractf128_si256(bxhi, 1);
  2603. bxhil = _mm_and_si128(bxhil, mask);
  2604. bxhih = _mm_and_si128(bxhih, mask);
  2605. __m128i bxl = _mm256_castsi256_si128(bx);
  2606. __m128i bxh = _mm256_extractf128_si256(bx, 1);
  2607. bxl = _mm_or_si128(bxl, bxhil);
  2608. bxh = _mm_or_si128(bxh, bxhih);
  2609. bx = MM256_SET_M128I(bxh, bxl);
  2610. const __m256 dy = _mm256_set1_ps(y[i].d);
  2611. const __m256i by = _mm256_loadu_si256((const __m256i *)y[i].qs);
  2612. const __m256 q = mul_sum_us8_pairs_float(bx, by);
  2613. acc = _mm256_add_ps(_mm256_mul_ps(q, _mm256_mul_ps(dx, dy)), acc);
  2614. }
  2615. *s = hsum_float_8(acc) + summs;
  2616. #else
  2617. // scalar
  2618. float sumf = 0.0;
  2619. for (int i = 0; i < nb; i++) {
  2620. uint32_t qh;
  2621. memcpy(&qh, x[i].qh, sizeof(qh));
  2622. int sumi = 0;
  2623. for (int j = 0; j < qk/2; ++j) {
  2624. const uint8_t xh_0 = ((qh >> (j + 0)) << 4) & 0x10;
  2625. const uint8_t xh_1 = ((qh >> (j + 12)) ) & 0x10;
  2626. const int32_t x0 = (x[i].qs[j] & 0xF) | xh_0;
  2627. const int32_t x1 = (x[i].qs[j] >> 4) | xh_1;
  2628. sumi += (x0 * y[i].qs[j]) + (x1 * y[i].qs[j + qk/2]);
  2629. }
  2630. sumf += (GGML_FP16_TO_FP32(x[i].d)*y[i].d)*sumi + GGML_FP16_TO_FP32(x[i].m)*y[i].s;
  2631. }
  2632. *s = sumf;
  2633. #endif
  2634. }
  2635. static void ggml_vec_dot_q8_0_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  2636. const int qk = QK8_0;
  2637. const int nb = n / qk;
  2638. assert(n % qk == 0);
  2639. assert(nb % 2 == 0);
  2640. const block_q8_0 * restrict x = vx;
  2641. const block_q8_0 * restrict y = vy;
  2642. #if defined(__ARM_NEON)
  2643. float32x4_t sumv0 = vdupq_n_f32(0.0f);
  2644. float32x4_t sumv1 = vdupq_n_f32(0.0f);
  2645. for (int i = 0; i < nb; i += 2) {
  2646. const block_q8_0 * restrict x0 = &x[i + 0];
  2647. const block_q8_0 * restrict x1 = &x[i + 1];
  2648. const block_q8_0 * restrict y0 = &y[i + 0];
  2649. const block_q8_0 * restrict y1 = &y[i + 1];
  2650. const int8x16_t x0_0 = vld1q_s8(x0->qs);
  2651. const int8x16_t x0_1 = vld1q_s8(x0->qs + 16);
  2652. const int8x16_t x1_0 = vld1q_s8(x1->qs);
  2653. const int8x16_t x1_1 = vld1q_s8(x1->qs + 16);
  2654. // load y
  2655. const int8x16_t y0_0 = vld1q_s8(y0->qs);
  2656. const int8x16_t y0_1 = vld1q_s8(y0->qs + 16);
  2657. const int8x16_t y1_0 = vld1q_s8(y1->qs);
  2658. const int8x16_t y1_1 = vld1q_s8(y1->qs + 16);
  2659. #if defined(__ARM_FEATURE_DOTPROD)
  2660. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(
  2661. vdotq_s32(vdupq_n_s32(0), x0_0, y0_0),
  2662. vdotq_s32(vdupq_n_s32(0), x0_1, y0_1))), GGML_FP16_TO_FP32(x0->d)*GGML_FP16_TO_FP32(y0->d));
  2663. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(
  2664. vdotq_s32(vdupq_n_s32(0), x1_0, y1_0),
  2665. vdotq_s32(vdupq_n_s32(0), x1_1, y1_1))), GGML_FP16_TO_FP32(x1->d)*GGML_FP16_TO_FP32(y1->d));
  2666. #else
  2667. const int16x8_t p0_0 = vmull_s8(vget_low_s8 (x0_0), vget_low_s8 (y0_0));
  2668. const int16x8_t p0_1 = vmull_s8(vget_high_s8(x0_0), vget_high_s8(y0_0));
  2669. const int16x8_t p0_2 = vmull_s8(vget_low_s8 (x0_1), vget_low_s8 (y0_1));
  2670. const int16x8_t p0_3 = vmull_s8(vget_high_s8(x0_1), vget_high_s8(y0_1));
  2671. const int16x8_t p1_0 = vmull_s8(vget_low_s8 (x1_0), vget_low_s8 (y1_0));
  2672. const int16x8_t p1_1 = vmull_s8(vget_high_s8(x1_0), vget_high_s8(y1_0));
  2673. const int16x8_t p1_2 = vmull_s8(vget_low_s8 (x1_1), vget_low_s8 (y1_1));
  2674. const int16x8_t p1_3 = vmull_s8(vget_high_s8(x1_1), vget_high_s8(y1_1));
  2675. const int32x4_t p0 = vaddq_s32(vpaddlq_s16(p0_0), vpaddlq_s16(p0_1));
  2676. const int32x4_t p1 = vaddq_s32(vpaddlq_s16(p0_2), vpaddlq_s16(p0_3));
  2677. const int32x4_t p2 = vaddq_s32(vpaddlq_s16(p1_0), vpaddlq_s16(p1_1));
  2678. const int32x4_t p3 = vaddq_s32(vpaddlq_s16(p1_2), vpaddlq_s16(p1_3));
  2679. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(p0, p1)), GGML_FP16_TO_FP32(x0->d)*GGML_FP16_TO_FP32(y0->d));
  2680. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(p2, p3)), GGML_FP16_TO_FP32(x1->d)*GGML_FP16_TO_FP32(y1->d));
  2681. #endif
  2682. }
  2683. *s = vaddvq_f32(sumv0) + vaddvq_f32(sumv1);
  2684. #elif defined(__AVX2__) || defined(__AVX__)
  2685. // Initialize accumulator with zeros
  2686. __m256 acc = _mm256_setzero_ps();
  2687. // Main loop
  2688. for (int i = 0; i < nb; ++i) {
  2689. // Compute combined scale for the block
  2690. const __m256 d = _mm256_set1_ps(GGML_FP16_TO_FP32(x[i].d) * GGML_FP16_TO_FP32(y[i].d));
  2691. __m256i bx = _mm256_loadu_si256((const __m256i *)x[i].qs);
  2692. __m256i by = _mm256_loadu_si256((const __m256i *)y[i].qs);
  2693. const __m256 q = mul_sum_i8_pairs_float(bx, by);
  2694. // Multiply q with scale and accumulate
  2695. #if defined(__AVX2__)
  2696. acc = _mm256_fmadd_ps( d, q, acc );
  2697. #else
  2698. acc = _mm256_add_ps( _mm256_mul_ps( d, q ), acc );
  2699. #endif
  2700. }
  2701. *s = hsum_float_8(acc);
  2702. #else
  2703. // scalar
  2704. float sumf = 0.0;
  2705. for (int i = 0; i < nb; i++) {
  2706. int sumi = 0;
  2707. for (int j = 0; j < qk; j++) {
  2708. sumi += x[i].qs[j]*y[i].qs[j];
  2709. }
  2710. sumf += sumi*(GGML_FP16_TO_FP32(x[i].d)*GGML_FP16_TO_FP32(y[i].d));
  2711. }
  2712. *s = sumf;
  2713. #endif
  2714. }
  2715. // compute GGML_VEC_DOT_UNROLL dot products at once
  2716. // xs - x row stride in bytes
  2717. inline static void ggml_vec_dot_f16_unroll(const int n, const int xs, float * restrict s, void * restrict xv, ggml_fp16_t * restrict y) {
  2718. ggml_float sumf[GGML_VEC_DOT_UNROLL] = { 0.0 };
  2719. ggml_fp16_t * restrict x[GGML_VEC_DOT_UNROLL];
  2720. for (int i = 0; i < GGML_VEC_DOT_UNROLL; ++i) {
  2721. x[i] = (ggml_fp16_t *) ((char *) xv + i*xs);
  2722. }
  2723. #if defined(GGML_SIMD)
  2724. const int np = (n & ~(GGML_F16_STEP - 1));
  2725. GGML_F16_VEC sum[GGML_VEC_DOT_UNROLL][GGML_F16_ARR] = { { GGML_F16_VEC_ZERO } };
  2726. GGML_F16_VEC ax[GGML_F16_ARR];
  2727. GGML_F16_VEC ay[GGML_F16_ARR];
  2728. for (int i = 0; i < np; i += GGML_F16_STEP) {
  2729. for (int j = 0; j < GGML_F16_ARR; j++) {
  2730. ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
  2731. for (int k = 0; k < GGML_VEC_DOT_UNROLL; ++k) {
  2732. ax[j] = GGML_F16_VEC_LOAD(x[k] + i + j*GGML_F16_EPR, j);
  2733. sum[k][j] = GGML_F16_VEC_FMA(sum[k][j], ax[j], ay[j]);
  2734. }
  2735. }
  2736. }
  2737. // reduce sum0..sum3 to sum0
  2738. for (int k = 0; k < GGML_VEC_DOT_UNROLL; ++k) {
  2739. GGML_F16_VEC_REDUCE(sumf[k], sum[k]);
  2740. }
  2741. // leftovers
  2742. for (int i = np; i < n; ++i) {
  2743. for (int j = 0; j < GGML_VEC_DOT_UNROLL; ++j) {
  2744. sumf[j] += (ggml_float)(GGML_FP16_TO_FP32(x[j][i])*GGML_FP16_TO_FP32(y[i]));
  2745. }
  2746. }
  2747. #else
  2748. for (int i = 0; i < n; ++i) {
  2749. for (int j = 0; j < GGML_VEC_DOT_UNROLL; ++j) {
  2750. sumf[j] += (ggml_float)(GGML_FP16_TO_FP32(x[j][i])*GGML_FP16_TO_FP32(y[i]));
  2751. }
  2752. }
  2753. #endif
  2754. for (int i = 0; i < GGML_VEC_DOT_UNROLL; ++i) {
  2755. s[i] = sumf[i];
  2756. }
  2757. }
  2758. inline static void ggml_vec_mad_f32(const int n, float * restrict y, const float * restrict x, const float v) {
  2759. #if defined(GGML_SIMD)
  2760. const int np = (n & ~(GGML_F32_STEP - 1));
  2761. GGML_F32_VEC vx = GGML_F32_VEC_SET1(v);
  2762. GGML_F32_VEC ax[GGML_F32_ARR];
  2763. GGML_F32_VEC ay[GGML_F32_ARR];
  2764. for (int i = 0; i < np; i += GGML_F32_STEP) {
  2765. for (int j = 0; j < GGML_F32_ARR; j++) {
  2766. ax[j] = GGML_F32_VEC_LOAD(x + i + j*GGML_F32_EPR);
  2767. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  2768. ay[j] = GGML_F32_VEC_FMA(ay[j], ax[j], vx);
  2769. GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
  2770. }
  2771. }
  2772. // leftovers
  2773. for (int i = np; i < n; ++i) {
  2774. y[i] += x[i]*v;
  2775. }
  2776. #else
  2777. // scalar
  2778. for (int i = 0; i < n; ++i) {
  2779. y[i] += x[i]*v;
  2780. }
  2781. #endif
  2782. }
  2783. //inline static void ggml_vec_scale_f32(const int n, float * y, const float v) { for (int i = 0; i < n; ++i) y[i] *= v; }
  2784. inline static void ggml_vec_scale_f32(const int n, float * y, const float v) {
  2785. #if defined(GGML_SIMD)
  2786. const int np = (n & ~(GGML_F32_STEP - 1));
  2787. GGML_F32_VEC vx = GGML_F32_VEC_SET1(v);
  2788. GGML_F32_VEC ay[GGML_F32_ARR];
  2789. for (int i = 0; i < np; i += GGML_F32_STEP) {
  2790. for (int j = 0; j < GGML_F32_ARR; j++) {
  2791. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  2792. ay[j] = GGML_F32_VEC_MUL(ay[j], vx);
  2793. GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
  2794. }
  2795. }
  2796. // leftovers
  2797. for (int i = np; i < n; ++i) {
  2798. y[i] *= v;
  2799. }
  2800. #else
  2801. // scalar
  2802. for (int i = 0; i < n; ++i) {
  2803. y[i] *= v;
  2804. }
  2805. #endif
  2806. }
  2807. inline static void ggml_vec_norm_f32 (const int n, float * s, const float * x) { ggml_vec_dot_f32(n, s, x, x); *s = sqrtf(*s); }
  2808. inline static void ggml_vec_sqr_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i]*x[i]; }
  2809. inline static void ggml_vec_sqrt_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = sqrtf(x[i]); }
  2810. inline static void ggml_vec_log_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = logf(x[i]); }
  2811. inline static void ggml_vec_abs_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = fabsf(x[i]); }
  2812. inline static void ggml_vec_sgn_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? 1.f : ((x[i] < 0.f) ? -1.f : 0.f); }
  2813. inline static void ggml_vec_step_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? 1.f : 0.f; }
  2814. inline static void ggml_vec_tanh_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = tanhf(x[i]); }
  2815. inline static void ggml_vec_elu_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? x[i] : expf(x[i])-1; }
  2816. inline static void ggml_vec_relu_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? x[i] : 0.f; }
  2817. static const float GELU_COEF_A = 0.044715f;
  2818. static const float GELU_QUICK_COEF = -1.702f;
  2819. static const float SQRT_2_OVER_PI = 0.79788456080286535587989211986876f;
  2820. inline static float ggml_gelu_f32(float x) {
  2821. return 0.5f*x*(1.0f + tanhf(SQRT_2_OVER_PI*x*(1.0f + GELU_COEF_A*x*x)));
  2822. }
  2823. inline static void ggml_vec_gelu_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
  2824. const uint16_t * i16 = (const uint16_t *) x;
  2825. for (int i = 0; i < n; ++i) {
  2826. y[i] = table_gelu_f16[i16[i]];
  2827. }
  2828. }
  2829. #ifdef GGML_GELU_FP16
  2830. inline static void ggml_vec_gelu_f32(const int n, float * y, const float * x) {
  2831. uint16_t t;
  2832. for (int i = 0; i < n; ++i) {
  2833. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  2834. memcpy(&t, &fp16, sizeof(uint16_t));
  2835. y[i] = GGML_FP16_TO_FP32(table_gelu_f16[t]);
  2836. }
  2837. }
  2838. #else
  2839. inline static void ggml_vec_gelu_f32(const int n, float * y, const float * x) {
  2840. for (int i = 0; i < n; ++i) {
  2841. y[i] = ggml_gelu_f32(x[i]);
  2842. }
  2843. }
  2844. #endif
  2845. inline static float ggml_gelu_quick_f32(float x) {
  2846. return x*(1.0f/(1.0f+expf(GELU_QUICK_COEF*x)));
  2847. }
  2848. //inline static void ggml_vec_gelu_quick_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
  2849. // const uint16_t * i16 = (const uint16_t *) x;
  2850. // for (int i = 0; i < n; ++i) {
  2851. // y[i] = table_gelu_quick_f16[i16[i]];
  2852. // }
  2853. //}
  2854. #ifdef GGML_GELU_QUICK_FP16
  2855. inline static void ggml_vec_gelu_quick_f32(const int n, float * y, const float * x) {
  2856. uint16_t t;
  2857. for (int i = 0; i < n; ++i) {
  2858. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  2859. memcpy(&t, &fp16, sizeof(uint16_t));
  2860. y[i] = GGML_FP16_TO_FP32(table_gelu_quick_f16[t]);
  2861. }
  2862. }
  2863. #else
  2864. inline static void ggml_vec_gelu_quick_f32(const int n, float * y, const float * x) {
  2865. for (int i = 0; i < n; ++i) {
  2866. y[i] = ggml_gelu_quick_f32(x[i]);
  2867. }
  2868. }
  2869. #endif
  2870. // Sigmoid Linear Unit (SiLU) function
  2871. inline static float ggml_silu_f32(float x) {
  2872. return x/(1.0f + expf(-x));
  2873. }
  2874. //inline static void ggml_vec_silu_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
  2875. // const uint16_t * i16 = (const uint16_t *) x;
  2876. // for (int i = 0; i < n; ++i) {
  2877. // y[i] = table_silu_f16[i16[i]];
  2878. // }
  2879. //}
  2880. #ifdef GGML_SILU_FP16
  2881. inline static void ggml_vec_silu_f32(const int n, float * y, const float * x) {
  2882. uint16_t t;
  2883. for (int i = 0; i < n; ++i) {
  2884. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  2885. memcpy(&t, &fp16, sizeof(uint16_t));
  2886. y[i] = GGML_FP16_TO_FP32(table_silu_f16[t]);
  2887. }
  2888. }
  2889. #else
  2890. inline static void ggml_vec_silu_f32(const int n, float * y, const float * x) {
  2891. for (int i = 0; i < n; ++i) {
  2892. y[i] = ggml_silu_f32(x[i]);
  2893. }
  2894. }
  2895. #endif
  2896. inline static float ggml_silu_backward_f32(float x, float dy) {
  2897. const float s = 1.0f/(1.0f + expf(-x));
  2898. return dy*s*(1.0f + x*(1.0f - s));
  2899. }
  2900. #ifdef GGML_SILU_FP16
  2901. inline static void ggml_vec_silu_backward_f32(const int n, float * dx, const float * x, const float * dy) {
  2902. for (int i = 0; i < n; ++i) {
  2903. // we did not use x[i] to compute forward silu but its f16 equivalent
  2904. // take derivative at f16 of x[i]:
  2905. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  2906. float usedx = GGML_FP16_TO_FP32(fp16);
  2907. dx[i] = ggml_silu_backward_f32(usedx, dy[i]);
  2908. }
  2909. }
  2910. #else
  2911. inline static void ggml_vec_silu_backward_f32(const int n, float * dx, const float * x, const float * dy) {
  2912. for (int i = 0; i < n; ++i) {
  2913. dx[i] = ggml_silu_backward_f32(x[i], dy[i]);
  2914. }
  2915. }
  2916. #endif
  2917. inline static void ggml_vec_sum_f32(const int n, float * s, const float * x) {
  2918. #ifndef GGML_USE_ACCELERATE
  2919. ggml_float sum = 0.0;
  2920. for (int i = 0; i < n; ++i) {
  2921. sum += (ggml_float)x[i];
  2922. }
  2923. *s = sum;
  2924. #else
  2925. vDSP_sve(x, 1, s, n);
  2926. #endif
  2927. }
  2928. inline static void ggml_vec_sum_ggf(const int n, ggml_float * s, const float * x) {
  2929. ggml_float sum = 0.0;
  2930. for (int i = 0; i < n; ++i) {
  2931. sum += (ggml_float)x[i];
  2932. }
  2933. *s = sum;
  2934. }
  2935. inline static void ggml_vec_max_f32(const int n, float * s, const float * x) {
  2936. #ifndef GGML_USE_ACCELERATE
  2937. float max = -INFINITY;
  2938. for (int i = 0; i < n; ++i) {
  2939. max = MAX(max, x[i]);
  2940. }
  2941. *s = max;
  2942. #else
  2943. vDSP_maxv(x, 1, s, n);
  2944. #endif
  2945. }
  2946. inline static void ggml_vec_norm_inv_f32(const int n, float * s, const float * x) {
  2947. ggml_vec_norm_f32(n, s, x);
  2948. *s = 1.f/(*s);
  2949. }
  2950. inline static void ggml_vec_argmax_f32(const int n, int * s, const float * x) {
  2951. float max = -INFINITY;
  2952. int idx = 0;
  2953. for (int i = 0; i < n; ++i) {
  2954. max = MAX(max, x[i]);
  2955. if (max == x[i]) { idx = i; }
  2956. }
  2957. *s = idx;
  2958. }
  2959. //
  2960. // data types
  2961. //
  2962. static const int GGML_BLCK_SIZE[GGML_TYPE_COUNT] = {
  2963. [GGML_TYPE_F32] = 1,
  2964. [GGML_TYPE_F16] = 1,
  2965. [GGML_TYPE_Q4_0] = QK4_0,
  2966. [GGML_TYPE_Q4_1] = QK4_1,
  2967. [GGML_TYPE_Q5_0] = QK5_0,
  2968. [GGML_TYPE_Q5_1] = QK5_1,
  2969. [GGML_TYPE_Q8_0] = QK8_0,
  2970. [GGML_TYPE_Q8_1] = QK8_1,
  2971. #ifdef GGML_USE_K_QUANTS
  2972. [GGML_TYPE_Q2_K] = QK_K,
  2973. [GGML_TYPE_Q3_K] = QK_K,
  2974. [GGML_TYPE_Q4_K] = QK_K,
  2975. [GGML_TYPE_Q5_K] = QK_K,
  2976. [GGML_TYPE_Q6_K] = QK_K,
  2977. [GGML_TYPE_Q8_K] = QK_K,
  2978. #endif
  2979. [GGML_TYPE_I8] = 1,
  2980. [GGML_TYPE_I16] = 1,
  2981. [GGML_TYPE_I32] = 1,
  2982. };
  2983. static_assert(GGML_TYPE_COUNT == 19, "GGML_BLCK_SIZE is outdated");
  2984. static const size_t GGML_TYPE_SIZE[GGML_TYPE_COUNT] = {
  2985. [GGML_TYPE_F32] = sizeof(float),
  2986. [GGML_TYPE_F16] = sizeof(ggml_fp16_t),
  2987. [GGML_TYPE_Q4_0] = sizeof(block_q4_0),
  2988. [GGML_TYPE_Q4_1] = sizeof(block_q4_1),
  2989. [GGML_TYPE_Q5_0] = sizeof(block_q5_0),
  2990. [GGML_TYPE_Q5_1] = sizeof(block_q5_1),
  2991. [GGML_TYPE_Q8_0] = sizeof(block_q8_0),
  2992. [GGML_TYPE_Q8_1] = sizeof(block_q8_1),
  2993. #ifdef GGML_USE_K_QUANTS
  2994. [GGML_TYPE_Q2_K] = sizeof(block_q2_K),
  2995. [GGML_TYPE_Q3_K] = sizeof(block_q3_K),
  2996. [GGML_TYPE_Q4_K] = sizeof(block_q4_K),
  2997. [GGML_TYPE_Q5_K] = sizeof(block_q5_K),
  2998. [GGML_TYPE_Q6_K] = sizeof(block_q6_K),
  2999. [GGML_TYPE_Q8_K] = sizeof(block_q8_K),
  3000. #endif
  3001. [GGML_TYPE_I8] = sizeof(int8_t),
  3002. [GGML_TYPE_I16] = sizeof(int16_t),
  3003. [GGML_TYPE_I32] = sizeof(int32_t),
  3004. };
  3005. static_assert(GGML_TYPE_COUNT == 19, "GGML_TYPE_SIZE is outdated");
  3006. static const char * GGML_TYPE_NAME[GGML_TYPE_COUNT] = {
  3007. [GGML_TYPE_F32] = "f32",
  3008. [GGML_TYPE_F16] = "f16",
  3009. [GGML_TYPE_Q4_0] = "q4_0",
  3010. [GGML_TYPE_Q4_1] = "q4_1",
  3011. [GGML_TYPE_Q5_0] = "q5_0",
  3012. [GGML_TYPE_Q5_1] = "q5_1",
  3013. [GGML_TYPE_Q8_0] = "q8_0",
  3014. [GGML_TYPE_Q8_1] = "q8_1",
  3015. [GGML_TYPE_Q2_K] = "q2_K",
  3016. [GGML_TYPE_Q3_K] = "q3_K",
  3017. [GGML_TYPE_Q4_K] = "q4_K",
  3018. [GGML_TYPE_Q5_K] = "q5_K",
  3019. [GGML_TYPE_Q6_K] = "q6_K",
  3020. [GGML_TYPE_Q8_K] = "q8_K",
  3021. [GGML_TYPE_I8] = "i8",
  3022. [GGML_TYPE_I16] = "i16",
  3023. [GGML_TYPE_I32] = "i32",
  3024. };
  3025. static_assert(GGML_TYPE_COUNT == 19, "GGML_TYPE_NAME is outdated");
  3026. static bool GGML_IS_QUANTIZED[GGML_TYPE_COUNT] = {
  3027. [GGML_TYPE_F32] = false,
  3028. [GGML_TYPE_F16] = false,
  3029. [GGML_TYPE_Q4_0] = true,
  3030. [GGML_TYPE_Q4_1] = true,
  3031. [GGML_TYPE_Q5_0] = true,
  3032. [GGML_TYPE_Q5_1] = true,
  3033. [GGML_TYPE_Q8_0] = true,
  3034. [GGML_TYPE_Q8_1] = true,
  3035. [GGML_TYPE_Q2_K] = true,
  3036. [GGML_TYPE_Q3_K] = true,
  3037. [GGML_TYPE_Q4_K] = true,
  3038. [GGML_TYPE_Q5_K] = true,
  3039. [GGML_TYPE_Q6_K] = true,
  3040. [GGML_TYPE_Q8_K] = true,
  3041. [GGML_TYPE_I8] = false,
  3042. [GGML_TYPE_I16] = false,
  3043. [GGML_TYPE_I32] = false,
  3044. };
  3045. static_assert(GGML_TYPE_COUNT == 19, "GGML_IS_QUANTIZED is outdated");
  3046. static const char * GGML_OP_NAME[GGML_OP_COUNT] = {
  3047. "NONE",
  3048. "DUP",
  3049. "ADD",
  3050. "ADD1",
  3051. "ACC",
  3052. "SUB",
  3053. "MUL",
  3054. "DIV",
  3055. "SQR",
  3056. "SQRT",
  3057. "LOG",
  3058. "SUM",
  3059. "SUM_ROWS",
  3060. "MEAN",
  3061. "ARGMAX",
  3062. "REPEAT",
  3063. "REPEAT_BACK",
  3064. "ABS",
  3065. "SGN",
  3066. "NEG",
  3067. "STEP",
  3068. "TANH",
  3069. "ELU",
  3070. "RELU",
  3071. "GELU",
  3072. "GELU_QUICK",
  3073. "SILU",
  3074. "SILU_BACK",
  3075. "NORM",
  3076. "RMS_NORM",
  3077. "RMS_NORM_BACK",
  3078. "MUL_MAT",
  3079. "OUT_PROD",
  3080. "SCALE",
  3081. "SET",
  3082. "CPY",
  3083. "CONT",
  3084. "RESHAPE",
  3085. "VIEW",
  3086. "PERMUTE",
  3087. "TRANSPOSE",
  3088. "GET_ROWS",
  3089. "GET_ROWS_BACK",
  3090. "DIAG",
  3091. "DIAG_MASK_INF",
  3092. "DIAG_MASK_ZERO",
  3093. "SOFT_MAX",
  3094. "SOFT_MAX_BACK",
  3095. "ROPE",
  3096. "ROPE_BACK",
  3097. "ALIBI",
  3098. "CLAMP",
  3099. "CONV_1D",
  3100. "CONV_2D",
  3101. "FLASH_ATTN",
  3102. "FLASH_FF",
  3103. "FLASH_ATTN_BACK",
  3104. "WIN_PART",
  3105. "WIN_UNPART",
  3106. "MAP_UNARY",
  3107. "MAP_BINARY",
  3108. "MAP_CUSTOM1",
  3109. "MAP_CUSTOM2",
  3110. "MAP_CUSTOM3",
  3111. "CROSS_ENTROPY_LOSS",
  3112. "CROSS_ENTROPY_LOSS_BACK",
  3113. };
  3114. static_assert(GGML_OP_COUNT == 66, "GGML_OP_COUNT != 66");
  3115. static const char * GGML_OP_SYMBOL[GGML_OP_COUNT] = {
  3116. "none",
  3117. "x",
  3118. "x+y",
  3119. "x+y",
  3120. "view(x,nb,offset)+=y->x",
  3121. "x-y",
  3122. "x*y",
  3123. "x/y",
  3124. "x^2",
  3125. "√x",
  3126. "log(x)",
  3127. "Σx",
  3128. "Σx_k",
  3129. "Σx/n",
  3130. "argmax(x)",
  3131. "repeat(x)",
  3132. "repeat_back(x)",
  3133. "abs(x)",
  3134. "sgn(x)",
  3135. "-x",
  3136. "step(x)",
  3137. "tanh(x)",
  3138. "elu(x)",
  3139. "relu(x)",
  3140. "gelu(x)",
  3141. "gelu_quick(x)",
  3142. "silu(x)",
  3143. "silu_back(x)",
  3144. "norm(x)",
  3145. "rms_norm(x)",
  3146. "rms_norm_back(x)",
  3147. "X*Y",
  3148. "X*Y",
  3149. "x*v",
  3150. "y-\\>view(x)",
  3151. "x-\\>y",
  3152. "cont(x)",
  3153. "reshape(x)",
  3154. "view(x)",
  3155. "permute(x)",
  3156. "transpose(x)",
  3157. "get_rows(x)",
  3158. "get_rows_back(x)",
  3159. "diag(x)",
  3160. "diag_mask_inf(x)",
  3161. "diag_mask_zero(x)",
  3162. "soft_max(x)",
  3163. "soft_max_back(x)",
  3164. "rope(x)",
  3165. "rope_back(x)",
  3166. "alibi(x)",
  3167. "clamp(x)",
  3168. "conv_1d(x)",
  3169. "conv_2d(x)",
  3170. "flash_attn(x)",
  3171. "flash_ff(x)",
  3172. "flash_attn_back(x)",
  3173. "win_part(x)",
  3174. "win_unpart(x)",
  3175. "f(x)",
  3176. "f(x,y)",
  3177. "custom(x)",
  3178. "custom(x,y)",
  3179. "custom(x,y,z)",
  3180. "cross_entropy_loss(x,y)",
  3181. "cross_entropy_loss_back(x,y)",
  3182. };
  3183. static_assert(GGML_OP_COUNT == 66, "GGML_OP_COUNT != 66");
  3184. static_assert(sizeof(struct ggml_object)%GGML_MEM_ALIGN == 0, "ggml_object size must be a multiple of GGML_MEM_ALIGN");
  3185. static_assert(sizeof(struct ggml_tensor)%GGML_MEM_ALIGN == 0, "ggml_tensor size must be a multiple of GGML_MEM_ALIGN");
  3186. // WARN:
  3187. // Mis-confguration can lead to problem that's hard to reason about:
  3188. // * At best it crash or talks nosense.
  3189. // * At worst it talks slightly difference but hard to perceive.
  3190. //
  3191. // An op has to enable INIT or FINALIZE when any of it's branch needs that pass.
  3192. // Take care about compile options (e.g., GGML_USE_xxx).
  3193. static bool GGML_OP_HAS_INIT [GGML_OP_COUNT] = { 0 };
  3194. static bool GGML_OP_HAS_FINALIZE[GGML_OP_COUNT] = { 0 };
  3195. static void ggml_setup_op_has_task_pass(void) {
  3196. { // INIT
  3197. bool * p = GGML_OP_HAS_INIT;
  3198. p[GGML_OP_ACC ] = true;
  3199. p[GGML_OP_MUL_MAT ] = true;
  3200. p[GGML_OP_OUT_PROD ] = true;
  3201. p[GGML_OP_SET ] = true;
  3202. p[GGML_OP_GET_ROWS_BACK ] = true;
  3203. p[GGML_OP_DIAG_MASK_INF ] = true;
  3204. p[GGML_OP_DIAG_MASK_ZERO ] = true;
  3205. p[GGML_OP_CONV_1D ] = true;
  3206. p[GGML_OP_CONV_2D ] = true;
  3207. p[GGML_OP_FLASH_ATTN_BACK ] = true;
  3208. p[GGML_OP_CROSS_ENTROPY_LOSS ] = true;
  3209. }
  3210. { // FINALIZE
  3211. bool * p = GGML_OP_HAS_FINALIZE;
  3212. p[GGML_OP_CROSS_ENTROPY_LOSS ] = true;
  3213. }
  3214. }
  3215. //
  3216. // ggml context
  3217. //
  3218. struct ggml_context {
  3219. size_t mem_size;
  3220. void * mem_buffer;
  3221. bool mem_buffer_owned;
  3222. bool no_alloc;
  3223. bool no_alloc_save; // this is used to save the no_alloc state when using scratch buffers
  3224. int n_objects;
  3225. struct ggml_object * objects_begin;
  3226. struct ggml_object * objects_end;
  3227. struct ggml_scratch scratch;
  3228. struct ggml_scratch scratch_save;
  3229. };
  3230. struct ggml_context_container {
  3231. bool used;
  3232. struct ggml_context context;
  3233. };
  3234. //
  3235. // NUMA support
  3236. //
  3237. #define GGML_NUMA_MAX_NODES 8
  3238. #define GGML_NUMA_MAX_CPUS 512
  3239. struct ggml_numa_node {
  3240. uint32_t cpus[GGML_NUMA_MAX_CPUS]; // hardware threads on this node
  3241. uint32_t n_cpus;
  3242. };
  3243. struct ggml_numa_nodes {
  3244. struct ggml_numa_node nodes[GGML_NUMA_MAX_NODES];
  3245. uint32_t n_nodes;
  3246. uint32_t total_cpus; // hardware threads on system
  3247. };
  3248. //
  3249. // ggml state
  3250. //
  3251. struct ggml_state {
  3252. struct ggml_context_container contexts[GGML_MAX_CONTEXTS];
  3253. struct ggml_numa_nodes numa;
  3254. };
  3255. // global state
  3256. static struct ggml_state g_state;
  3257. static atomic_int g_state_barrier = 0;
  3258. // barrier via spin lock
  3259. inline static void ggml_critical_section_start(void) {
  3260. int processing = atomic_fetch_add(&g_state_barrier, 1);
  3261. while (processing > 0) {
  3262. // wait for other threads to finish
  3263. atomic_fetch_sub(&g_state_barrier, 1);
  3264. sched_yield(); // TODO: reconsider this
  3265. processing = atomic_fetch_add(&g_state_barrier, 1);
  3266. }
  3267. }
  3268. // TODO: make this somehow automatically executed
  3269. // some sort of "sentry" mechanism
  3270. inline static void ggml_critical_section_end(void) {
  3271. atomic_fetch_sub(&g_state_barrier, 1);
  3272. }
  3273. void ggml_numa_init(void) {
  3274. if (g_state.numa.n_nodes > 0) {
  3275. fprintf(stderr, "ggml_numa_init: NUMA already initialized\n");
  3276. return;
  3277. }
  3278. #ifdef __linux__
  3279. struct stat st;
  3280. char path[256];
  3281. int rv;
  3282. // enumerate nodes
  3283. while (g_state.numa.n_nodes < GGML_NUMA_MAX_NODES) {
  3284. rv = snprintf(path, sizeof(path), "/sys/devices/system/node/node%u", g_state.numa.n_nodes);
  3285. GGML_ASSERT(rv > 0 && (unsigned)rv < sizeof(path));
  3286. if (stat(path, &st) != 0) { break; }
  3287. ++g_state.numa.n_nodes;
  3288. }
  3289. // enumerate CPUs
  3290. while (g_state.numa.total_cpus < GGML_NUMA_MAX_CPUS) {
  3291. rv = snprintf(path, sizeof(path), "/sys/devices/system/cpu/cpu%u", g_state.numa.total_cpus);
  3292. GGML_ASSERT(rv > 0 && (unsigned)rv < sizeof(path));
  3293. if (stat(path, &st) != 0) { break; }
  3294. ++g_state.numa.total_cpus;
  3295. }
  3296. GGML_PRINT_DEBUG("found %u numa nodes, %u CPUs\n", g_state.numa.n_nodes, g_state.numa.total_cpus);
  3297. if (g_state.numa.n_nodes < 1 || g_state.numa.total_cpus < 1) {
  3298. g_state.numa.n_nodes = 0;
  3299. return;
  3300. }
  3301. for (uint32_t n = 0; n < g_state.numa.n_nodes; ++n) {
  3302. struct ggml_numa_node * node = &g_state.numa.nodes[n];
  3303. GGML_PRINT_DEBUG("CPUs on node %u:", n);
  3304. node->n_cpus = 0;
  3305. for (uint32_t c = 0; c < g_state.numa.total_cpus; ++c) {
  3306. rv = snprintf(path, sizeof(path), "/sys/devices/system/node/node%u/cpu%u", n, c);
  3307. GGML_ASSERT(rv > 0 && (unsigned)rv < sizeof(path));
  3308. if (stat(path, &st) == 0) {
  3309. node->cpus[node->n_cpus++] = c;
  3310. GGML_PRINT_DEBUG(" %u", c);
  3311. }
  3312. }
  3313. GGML_PRINT_DEBUG("\n");
  3314. }
  3315. if (ggml_is_numa()) {
  3316. FILE *fptr = fopen("/proc/sys/kernel/numa_balancing", "r");
  3317. if (fptr != NULL) {
  3318. char buf[42];
  3319. if (fgets(buf, sizeof(buf), fptr) && strncmp(buf, "0\n", sizeof(buf)) != 0) {
  3320. GGML_PRINT("WARNING: /proc/sys/kernel/numa_balancing is enabled, this has been observed to impair performance\n");
  3321. }
  3322. fclose(fptr);
  3323. }
  3324. }
  3325. #else
  3326. // TODO
  3327. #endif
  3328. }
  3329. bool ggml_is_numa(void) {
  3330. return g_state.numa.n_nodes > 1;
  3331. }
  3332. ////////////////////////////////////////////////////////////////////////////////
  3333. void ggml_print_object(const struct ggml_object * obj) {
  3334. GGML_PRINT(" - ggml_object: offset = %zu, size = %zu, next = %p\n",
  3335. obj->offs, obj->size, (const void *) obj->next);
  3336. }
  3337. void ggml_print_objects(const struct ggml_context * ctx) {
  3338. struct ggml_object * obj = ctx->objects_begin;
  3339. GGML_PRINT("%s: objects in context %p:\n", __func__, (const void *) ctx);
  3340. while (obj != NULL) {
  3341. ggml_print_object(obj);
  3342. obj = obj->next;
  3343. }
  3344. GGML_PRINT("%s: --- end ---\n", __func__);
  3345. }
  3346. int64_t ggml_nelements(const struct ggml_tensor * tensor) {
  3347. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3348. return tensor->ne[0]*tensor->ne[1]*tensor->ne[2]*tensor->ne[3];
  3349. }
  3350. int64_t ggml_nrows(const struct ggml_tensor * tensor) {
  3351. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3352. return tensor->ne[1]*tensor->ne[2]*tensor->ne[3];
  3353. }
  3354. size_t ggml_nbytes(const struct ggml_tensor * tensor) {
  3355. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3356. // this should handle cases where the tensor is not contiguous in memory
  3357. // probaby just:
  3358. //
  3359. // return tensor->ne[3]*tensor->nb[3]
  3360. //
  3361. // is enough, but just in case, adding the second part
  3362. return MAX(tensor->ne[3]*tensor->nb[3], (ggml_nelements(tensor)*GGML_TYPE_SIZE[tensor->type])/GGML_BLCK_SIZE[tensor->type]);
  3363. }
  3364. size_t ggml_nbytes_split(const struct ggml_tensor * tensor, int nrows_split) {
  3365. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3366. return (nrows_split*tensor->ne[0]*GGML_TYPE_SIZE[tensor->type])/GGML_BLCK_SIZE[tensor->type];
  3367. }
  3368. int ggml_blck_size(enum ggml_type type) {
  3369. return GGML_BLCK_SIZE[type];
  3370. }
  3371. size_t ggml_type_size(enum ggml_type type) {
  3372. return GGML_TYPE_SIZE[type];
  3373. }
  3374. float ggml_type_sizef(enum ggml_type type) {
  3375. return ((float)(GGML_TYPE_SIZE[type]))/GGML_BLCK_SIZE[type];
  3376. }
  3377. const char * ggml_type_name(enum ggml_type type) {
  3378. return GGML_TYPE_NAME[type];
  3379. }
  3380. const char * ggml_op_name(enum ggml_op op) {
  3381. return GGML_OP_NAME[op];
  3382. }
  3383. size_t ggml_element_size(const struct ggml_tensor * tensor) {
  3384. return GGML_TYPE_SIZE[tensor->type];
  3385. }
  3386. static inline bool ggml_is_scalar(const struct ggml_tensor * tensor) {
  3387. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3388. return tensor->ne[0] == 1 && tensor->ne[1] == 1 && tensor->ne[2] == 1 && tensor->ne[3] == 1;
  3389. }
  3390. static inline bool ggml_is_vector(const struct ggml_tensor * tensor) {
  3391. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3392. return tensor->ne[1] == 1 && tensor->ne[2] == 1 && tensor->ne[3] == 1;
  3393. }
  3394. static inline bool ggml_is_matrix(const struct ggml_tensor * tensor) {
  3395. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3396. return tensor->ne[2] == 1 && tensor->ne[3] == 1;
  3397. }
  3398. static inline bool ggml_can_mul_mat(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  3399. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3400. return
  3401. (t0->ne[0] == t1->ne[0]) &&
  3402. (t0->ne[2] == t1->ne[2]) &&
  3403. (t0->ne[3] == t1->ne[3]);
  3404. }
  3405. static inline bool ggml_can_out_prod(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  3406. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3407. return
  3408. (t0->ne[1] == t1->ne[1]) &&
  3409. (t0->ne[2] == t1->ne[2]) &&
  3410. (t0->ne[3] == t1->ne[3]);
  3411. }
  3412. bool ggml_is_quantized(enum ggml_type type) {
  3413. return GGML_IS_QUANTIZED[type];
  3414. }
  3415. enum ggml_type ggml_ftype_to_ggml_type(enum ggml_ftype ftype) {
  3416. enum ggml_type wtype = GGML_TYPE_COUNT;
  3417. switch (ftype) {
  3418. case GGML_FTYPE_ALL_F32: wtype = GGML_TYPE_F32; break;
  3419. case GGML_FTYPE_MOSTLY_F16: wtype = GGML_TYPE_F16; break;
  3420. case GGML_FTYPE_MOSTLY_Q4_0: wtype = GGML_TYPE_Q4_0; break;
  3421. case GGML_FTYPE_MOSTLY_Q4_1: wtype = GGML_TYPE_Q4_1; break;
  3422. case GGML_FTYPE_MOSTLY_Q5_0: wtype = GGML_TYPE_Q5_0; break;
  3423. case GGML_FTYPE_MOSTLY_Q5_1: wtype = GGML_TYPE_Q5_1; break;
  3424. case GGML_FTYPE_MOSTLY_Q8_0: wtype = GGML_TYPE_Q8_0; break;
  3425. case GGML_FTYPE_MOSTLY_Q2_K: wtype = GGML_TYPE_Q2_K; break;
  3426. case GGML_FTYPE_MOSTLY_Q3_K: wtype = GGML_TYPE_Q3_K; break;
  3427. case GGML_FTYPE_MOSTLY_Q4_K: wtype = GGML_TYPE_Q4_K; break;
  3428. case GGML_FTYPE_MOSTLY_Q5_K: wtype = GGML_TYPE_Q5_K; break;
  3429. case GGML_FTYPE_MOSTLY_Q6_K: wtype = GGML_TYPE_Q6_K; break;
  3430. case GGML_FTYPE_UNKNOWN: wtype = GGML_TYPE_COUNT; break;
  3431. case GGML_FTYPE_MOSTLY_Q4_1_SOME_F16: wtype = GGML_TYPE_COUNT; break;
  3432. }
  3433. GGML_ASSERT(wtype != GGML_TYPE_COUNT);
  3434. return wtype;
  3435. }
  3436. size_t ggml_tensor_overhead(void) {
  3437. return GGML_OBJECT_SIZE + GGML_TENSOR_SIZE + 16;
  3438. }
  3439. bool ggml_is_transposed(const struct ggml_tensor * tensor) {
  3440. return tensor->nb[0] > tensor->nb[1];
  3441. }
  3442. bool ggml_is_contiguous(const struct ggml_tensor * tensor) {
  3443. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3444. return
  3445. tensor->nb[0] == GGML_TYPE_SIZE[tensor->type] &&
  3446. tensor->nb[1] == (tensor->nb[0]*tensor->ne[0])/GGML_BLCK_SIZE[tensor->type] &&
  3447. tensor->nb[2] == tensor->nb[1]*tensor->ne[1] &&
  3448. tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
  3449. }
  3450. bool ggml_is_permuted(const struct ggml_tensor * tensor) {
  3451. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3452. return tensor->nb[0] > tensor->nb[1] || tensor->nb[1] > tensor->nb[2] || tensor->nb[2] > tensor->nb[3];
  3453. }
  3454. static inline bool ggml_is_padded_1d(const struct ggml_tensor * tensor) {
  3455. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3456. return
  3457. tensor->nb[0] == GGML_TYPE_SIZE[tensor->type] &&
  3458. tensor->nb[2] == tensor->nb[1]*tensor->ne[1] &&
  3459. tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
  3460. }
  3461. static inline bool ggml_are_same_shape(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  3462. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3463. return
  3464. (t0->ne[0] == t1->ne[0] ) &&
  3465. (t0->ne[1] == t1->ne[1] ) &&
  3466. (t0->ne[2] == t1->ne[2] ) &&
  3467. (t0->ne[3] == t1->ne[3] );
  3468. }
  3469. // check if t1 can be represented as a repeatition of t0
  3470. static inline bool ggml_can_repeat(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  3471. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3472. return
  3473. (t1->ne[0]%t0->ne[0] == 0) &&
  3474. (t1->ne[1]%t0->ne[1] == 0) &&
  3475. (t1->ne[2]%t0->ne[2] == 0) &&
  3476. (t1->ne[3]%t0->ne[3] == 0);
  3477. }
  3478. static inline bool ggml_can_repeat_rows(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  3479. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3480. return (t0->ne[0] == t1->ne[0]) && ggml_can_repeat(t0, t1);
  3481. }
  3482. static inline int ggml_up32(int n) {
  3483. return (n + 31) & ~31;
  3484. }
  3485. //static inline int ggml_up64(int n) {
  3486. // return (n + 63) & ~63;
  3487. //}
  3488. static inline int ggml_up(int n, int m) {
  3489. // assert m is a power of 2
  3490. GGML_ASSERT((m & (m - 1)) == 0);
  3491. return (n + m - 1) & ~(m - 1);
  3492. }
  3493. // assert that pointer is aligned to GGML_MEM_ALIGN
  3494. #define ggml_assert_aligned(ptr) \
  3495. GGML_ASSERT(((uintptr_t) (ptr))%GGML_MEM_ALIGN == 0)
  3496. ////////////////////////////////////////////////////////////////////////////////
  3497. struct ggml_context * ggml_init(struct ggml_init_params params) {
  3498. // make this function thread safe
  3499. ggml_critical_section_start();
  3500. static bool is_first_call = true;
  3501. if (is_first_call) {
  3502. // initialize time system (required on Windows)
  3503. ggml_time_init();
  3504. // initialize GELU, Quick GELU, SILU and EXP F32 tables
  3505. {
  3506. const uint64_t t_start = ggml_time_us(); UNUSED(t_start);
  3507. ggml_fp16_t ii;
  3508. for (int i = 0; i < (1 << 16); ++i) {
  3509. uint16_t ui = i;
  3510. memcpy(&ii, &ui, sizeof(ii));
  3511. const float f = table_f32_f16[i] = GGML_COMPUTE_FP16_TO_FP32(ii);
  3512. table_gelu_f16[i] = GGML_FP32_TO_FP16(ggml_gelu_f32(f));
  3513. table_gelu_quick_f16[i] = GGML_FP32_TO_FP16(ggml_gelu_quick_f32(f));
  3514. table_silu_f16[i] = GGML_FP32_TO_FP16(ggml_silu_f32(f));
  3515. table_exp_f16[i] = GGML_FP32_TO_FP16(expf(f));
  3516. }
  3517. const uint64_t t_end = ggml_time_us(); UNUSED(t_end);
  3518. GGML_PRINT_DEBUG("%s: GELU, Quick GELU, SILU and EXP tables initialized in %f ms\n", __func__, (t_end - t_start)/1000.0f);
  3519. }
  3520. // initialize g_state
  3521. {
  3522. const uint64_t t_start = ggml_time_us(); UNUSED(t_start);
  3523. g_state = (struct ggml_state) {
  3524. /*.contexts =*/ { { 0 } },
  3525. /*.numa =*/ {
  3526. .n_nodes = 0,
  3527. .total_cpus = 0,
  3528. },
  3529. };
  3530. for (int i = 0; i < GGML_MAX_CONTEXTS; ++i) {
  3531. g_state.contexts[i].used = false;
  3532. }
  3533. const uint64_t t_end = ggml_time_us(); UNUSED(t_end);
  3534. GGML_PRINT_DEBUG("%s: g_state initialized in %f ms\n", __func__, (t_end - t_start)/1000.0f);
  3535. }
  3536. #if defined(GGML_USE_CUBLAS)
  3537. ggml_init_cublas();
  3538. #elif defined(GGML_USE_CLBLAST)
  3539. ggml_cl_init();
  3540. #endif
  3541. ggml_setup_op_has_task_pass();
  3542. is_first_call = false;
  3543. }
  3544. // find non-used context in g_state
  3545. struct ggml_context * ctx = NULL;
  3546. for (int i = 0; i < GGML_MAX_CONTEXTS; i++) {
  3547. if (!g_state.contexts[i].used) {
  3548. g_state.contexts[i].used = true;
  3549. ctx = &g_state.contexts[i].context;
  3550. GGML_PRINT_DEBUG("%s: found unused context %d\n", __func__, i);
  3551. break;
  3552. }
  3553. }
  3554. if (ctx == NULL) {
  3555. GGML_PRINT_DEBUG("%s: no unused context found\n", __func__);
  3556. ggml_critical_section_end();
  3557. return NULL;
  3558. }
  3559. const size_t mem_size = (params.mem_size + GGML_MEM_ALIGN - 1) & ~(GGML_MEM_ALIGN - 1);
  3560. *ctx = (struct ggml_context) {
  3561. /*.mem_size =*/ mem_size,
  3562. /*.mem_buffer =*/ params.mem_buffer ? params.mem_buffer : GGML_ALIGNED_MALLOC(mem_size),
  3563. /*.mem_buffer_owned =*/ params.mem_buffer ? false : true,
  3564. /*.no_alloc =*/ params.no_alloc,
  3565. /*.no_alloc_save =*/ params.no_alloc,
  3566. /*.n_objects =*/ 0,
  3567. /*.objects_begin =*/ NULL,
  3568. /*.objects_end =*/ NULL,
  3569. /*.scratch =*/ { 0, 0, NULL, },
  3570. /*.scratch_save =*/ { 0, 0, NULL, },
  3571. };
  3572. GGML_ASSERT(ctx->mem_buffer != NULL);
  3573. ggml_assert_aligned(ctx->mem_buffer);
  3574. GGML_PRINT_DEBUG("%s: context initialized\n", __func__);
  3575. ggml_critical_section_end();
  3576. return ctx;
  3577. }
  3578. void ggml_free(struct ggml_context * ctx) {
  3579. // make this function thread safe
  3580. ggml_critical_section_start();
  3581. bool found = false;
  3582. for (int i = 0; i < GGML_MAX_CONTEXTS; i++) {
  3583. if (&g_state.contexts[i].context == ctx) {
  3584. g_state.contexts[i].used = false;
  3585. GGML_PRINT_DEBUG("%s: context %d with %d objects has been freed. memory used = %zu\n",
  3586. __func__, i, ctx->n_objects, ctx->objects_end->offs + ctx->objects_end->size);
  3587. if (ctx->mem_buffer_owned) {
  3588. GGML_ALIGNED_FREE(ctx->mem_buffer);
  3589. }
  3590. found = true;
  3591. break;
  3592. }
  3593. }
  3594. if (!found) {
  3595. GGML_PRINT_DEBUG("%s: context not found\n", __func__);
  3596. }
  3597. ggml_critical_section_end();
  3598. }
  3599. size_t ggml_used_mem(const struct ggml_context * ctx) {
  3600. return ctx->objects_end == NULL ? 0 : ctx->objects_end->offs + ctx->objects_end->size;
  3601. }
  3602. size_t ggml_set_scratch(struct ggml_context * ctx, struct ggml_scratch scratch) {
  3603. const size_t result = ctx->scratch.data ? ctx->scratch.offs : 0;
  3604. ctx->scratch = scratch;
  3605. return result;
  3606. }
  3607. void ggml_set_no_alloc(struct ggml_context * ctx, bool no_alloc) {
  3608. ctx->no_alloc = no_alloc;
  3609. }
  3610. void * ggml_get_mem_buffer(const struct ggml_context * ctx) {
  3611. return ctx->mem_buffer;
  3612. }
  3613. size_t ggml_get_mem_size(const struct ggml_context * ctx) {
  3614. return ctx->mem_size;
  3615. }
  3616. size_t ggml_get_max_tensor_size(const struct ggml_context * ctx) {
  3617. size_t max_size = 0;
  3618. struct ggml_object * obj = ctx->objects_begin;
  3619. while (obj != NULL) {
  3620. struct ggml_tensor * tensor = (struct ggml_tensor *) ((char *) ctx->mem_buffer + obj->offs);
  3621. const size_t size = ggml_nbytes(tensor);
  3622. if (max_size < size) {
  3623. max_size = size;
  3624. }
  3625. obj = obj->next;
  3626. }
  3627. return max_size;
  3628. }
  3629. // IMPORTANT:
  3630. // when creating "opt" tensors, always save and load the scratch buffer
  3631. // this is an error prone process, but it is necessary to support inplace
  3632. // operators when using scratch buffers
  3633. // TODO: implement a better way
  3634. void ggml_scratch_save(struct ggml_context * ctx) {
  3635. // this is needed to allow opt tensors to store their data
  3636. // TODO: again, need to find a better way
  3637. ctx->no_alloc_save = ctx->no_alloc;
  3638. ctx->no_alloc = false;
  3639. ctx->scratch_save = ctx->scratch;
  3640. ctx->scratch.data = NULL;
  3641. }
  3642. void ggml_scratch_load(struct ggml_context * ctx) {
  3643. ctx->no_alloc = ctx->no_alloc_save;
  3644. ctx->scratch = ctx->scratch_save;
  3645. }
  3646. ////////////////////////////////////////////////////////////////////////////////
  3647. struct ggml_tensor * ggml_new_tensor_impl(
  3648. struct ggml_context * ctx,
  3649. enum ggml_type type,
  3650. int n_dims,
  3651. const int64_t* ne,
  3652. void* data) {
  3653. // always insert objects at the end of the context's memory pool
  3654. struct ggml_object * obj_cur = ctx->objects_end;
  3655. const size_t cur_offs = obj_cur == NULL ? 0 : obj_cur->offs;
  3656. const size_t cur_size = obj_cur == NULL ? 0 : obj_cur->size;
  3657. const size_t cur_end = cur_offs + cur_size;
  3658. size_t size_needed = 0;
  3659. if (data == NULL && !ctx->no_alloc) {
  3660. size_needed += GGML_TYPE_SIZE[type]*(ne[0]/GGML_BLCK_SIZE[type]);
  3661. for (int i = 1; i < n_dims; i++) {
  3662. size_needed *= ne[i];
  3663. }
  3664. // align to GGML_MEM_ALIGN
  3665. size_needed = ((size_needed + GGML_MEM_ALIGN - 1)/GGML_MEM_ALIGN)*GGML_MEM_ALIGN;
  3666. }
  3667. char * const mem_buffer = ctx->mem_buffer;
  3668. struct ggml_object * const obj_new = (struct ggml_object *)(mem_buffer + cur_end);
  3669. if (ctx->scratch.data == NULL || data != NULL) {
  3670. size_needed += GGML_TENSOR_SIZE;
  3671. if (cur_end + size_needed + GGML_OBJECT_SIZE > ctx->mem_size) {
  3672. GGML_PRINT("%s: not enough space in the context's memory pool (needed %zu, available %zu)\n",
  3673. __func__, cur_end + size_needed + GGML_OBJECT_SIZE, ctx->mem_size);
  3674. assert(false);
  3675. return NULL;
  3676. }
  3677. *obj_new = (struct ggml_object) {
  3678. .offs = cur_end + GGML_OBJECT_SIZE,
  3679. .size = size_needed,
  3680. .next = NULL,
  3681. };
  3682. } else {
  3683. if (ctx->scratch.offs + size_needed > ctx->scratch.size) {
  3684. GGML_PRINT("%s: not enough space in the scratch memory pool (needed %zu, available %zu)\n",
  3685. __func__, ctx->scratch.offs + size_needed, ctx->scratch.size);
  3686. assert(false);
  3687. return NULL;
  3688. }
  3689. if (cur_end + GGML_TENSOR_SIZE + GGML_OBJECT_SIZE > ctx->mem_size) {
  3690. GGML_PRINT("%s: not enough space in the context's memory pool (needed %zu, available %zu)\n",
  3691. __func__, cur_end + GGML_TENSOR_SIZE + GGML_OBJECT_SIZE, ctx->mem_size);
  3692. assert(false);
  3693. return NULL;
  3694. }
  3695. data = (char * const) ctx->scratch.data + ctx->scratch.offs;
  3696. *obj_new = (struct ggml_object) {
  3697. .offs = cur_end + GGML_OBJECT_SIZE,
  3698. .size = GGML_TENSOR_SIZE,
  3699. .next = NULL,
  3700. };
  3701. //printf("scratch offs = %zu, size_needed = %zu\n", ctx->scratch.offs, size_needed);
  3702. ctx->scratch.offs += size_needed;
  3703. }
  3704. if (obj_cur != NULL) {
  3705. obj_cur->next = obj_new;
  3706. } else {
  3707. // this is the first object in this context
  3708. ctx->objects_begin = obj_new;
  3709. }
  3710. ctx->objects_end = obj_new;
  3711. //printf("%s: inserted new object at %zu, size = %zu\n", __func__, cur_end, obj_new->size);
  3712. struct ggml_tensor * const result = (struct ggml_tensor *)(mem_buffer + obj_new->offs);
  3713. ggml_assert_aligned(result);
  3714. *result = (struct ggml_tensor) {
  3715. /*.type =*/ type,
  3716. /*.backend =*/ GGML_BACKEND_CPU,
  3717. /*.n_dims =*/ n_dims,
  3718. /*.ne =*/ { 1, 1, 1, 1 },
  3719. /*.nb =*/ { 0, 0, 0, 0 },
  3720. /*.op =*/ GGML_OP_NONE,
  3721. /*.is_param =*/ false,
  3722. /*.grad =*/ NULL,
  3723. /*.src =*/ { NULL },
  3724. /*.perf_runs =*/ 0,
  3725. /*.perf_cycles =*/ 0,
  3726. /*.perf_time_us =*/ 0,
  3727. /*.data =*/ (data == NULL && !ctx->no_alloc) ? (void *)(result + 1) : data,
  3728. /*.name =*/ { 0 },
  3729. /*.extra =*/ NULL,
  3730. /*.padding =*/ { 0 },
  3731. };
  3732. // TODO: this should not be needed as long as we don't rely on aligned SIMD loads
  3733. //ggml_assert_aligned(result->data);
  3734. for (int i = 0; i < n_dims; i++) {
  3735. result->ne[i] = ne[i];
  3736. }
  3737. result->nb[0] = GGML_TYPE_SIZE[type];
  3738. result->nb[1] = result->nb[0]*(result->ne[0]/GGML_BLCK_SIZE[type]);
  3739. for (int i = 2; i < GGML_MAX_DIMS; i++) {
  3740. result->nb[i] = result->nb[i - 1]*result->ne[i - 1];
  3741. }
  3742. ctx->n_objects++;
  3743. return result;
  3744. }
  3745. struct ggml_tensor * ggml_new_tensor(
  3746. struct ggml_context * ctx,
  3747. enum ggml_type type,
  3748. int n_dims,
  3749. const int64_t * ne) {
  3750. return ggml_new_tensor_impl(ctx, type, n_dims, ne, NULL);
  3751. }
  3752. struct ggml_tensor * ggml_new_tensor_1d(
  3753. struct ggml_context * ctx,
  3754. enum ggml_type type,
  3755. int64_t ne0) {
  3756. return ggml_new_tensor(ctx, type, 1, &ne0);
  3757. }
  3758. struct ggml_tensor * ggml_new_tensor_2d(
  3759. struct ggml_context * ctx,
  3760. enum ggml_type type,
  3761. int64_t ne0,
  3762. int64_t ne1) {
  3763. const int64_t ne[2] = { ne0, ne1 };
  3764. return ggml_new_tensor(ctx, type, 2, ne);
  3765. }
  3766. struct ggml_tensor * ggml_new_tensor_3d(
  3767. struct ggml_context * ctx,
  3768. enum ggml_type type,
  3769. int64_t ne0,
  3770. int64_t ne1,
  3771. int64_t ne2) {
  3772. const int64_t ne[3] = { ne0, ne1, ne2 };
  3773. return ggml_new_tensor(ctx, type, 3, ne);
  3774. }
  3775. struct ggml_tensor * ggml_new_tensor_4d(
  3776. struct ggml_context * ctx,
  3777. enum ggml_type type,
  3778. int64_t ne0,
  3779. int64_t ne1,
  3780. int64_t ne2,
  3781. int64_t ne3) {
  3782. const int64_t ne[4] = { ne0, ne1, ne2, ne3 };
  3783. return ggml_new_tensor(ctx, type, 4, ne);
  3784. }
  3785. struct ggml_tensor * ggml_new_i32(struct ggml_context * ctx, int32_t value) {
  3786. ggml_scratch_save(ctx);
  3787. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 1);
  3788. ggml_scratch_load(ctx);
  3789. ggml_set_i32(result, value);
  3790. return result;
  3791. }
  3792. struct ggml_tensor * ggml_new_f32(struct ggml_context * ctx, float value) {
  3793. ggml_scratch_save(ctx);
  3794. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 1);
  3795. ggml_scratch_load(ctx);
  3796. ggml_set_f32(result, value);
  3797. return result;
  3798. }
  3799. struct ggml_tensor * ggml_dup_tensor(struct ggml_context * ctx, const struct ggml_tensor * src) {
  3800. return ggml_new_tensor_impl(ctx, src->type, src->n_dims, src->ne, NULL);
  3801. }
  3802. struct ggml_tensor * ggml_set_zero(struct ggml_tensor * tensor) {
  3803. memset(tensor->data, 0, ggml_nbytes(tensor));
  3804. return tensor;
  3805. }
  3806. struct ggml_tensor * ggml_set_i32 (struct ggml_tensor * tensor, int32_t value) {
  3807. const int n = ggml_nrows(tensor);
  3808. const int nc = tensor->ne[0];
  3809. const size_t n1 = tensor->nb[1];
  3810. char * const data = tensor->data;
  3811. switch (tensor->type) {
  3812. case GGML_TYPE_I8:
  3813. {
  3814. assert(tensor->nb[0] == sizeof(int8_t));
  3815. for (int i = 0; i < n; i++) {
  3816. ggml_vec_set_i8(nc, (int8_t *)(data + i*n1), value);
  3817. }
  3818. } break;
  3819. case GGML_TYPE_I16:
  3820. {
  3821. assert(tensor->nb[0] == sizeof(int16_t));
  3822. for (int i = 0; i < n; i++) {
  3823. ggml_vec_set_i16(nc, (int16_t *)(data + i*n1), value);
  3824. }
  3825. } break;
  3826. case GGML_TYPE_I32:
  3827. {
  3828. assert(tensor->nb[0] == sizeof(int32_t));
  3829. for (int i = 0; i < n; i++) {
  3830. ggml_vec_set_i32(nc, (int32_t *)(data + i*n1), value);
  3831. }
  3832. } break;
  3833. case GGML_TYPE_F16:
  3834. {
  3835. assert(tensor->nb[0] == sizeof(ggml_fp16_t));
  3836. for (int i = 0; i < n; i++) {
  3837. ggml_vec_set_f16(nc, (ggml_fp16_t *)(data + i*n1), value);
  3838. }
  3839. } break;
  3840. case GGML_TYPE_F32:
  3841. {
  3842. assert(tensor->nb[0] == sizeof(float));
  3843. for (int i = 0; i < n; i++) {
  3844. ggml_vec_set_f32(nc, (float *)(data + i*n1), value);
  3845. }
  3846. } break;
  3847. default:
  3848. {
  3849. GGML_ASSERT(false);
  3850. } break;
  3851. }
  3852. return tensor;
  3853. }
  3854. struct ggml_tensor * ggml_set_f32(struct ggml_tensor * tensor, float value) {
  3855. const int n = ggml_nrows(tensor);
  3856. const int nc = tensor->ne[0];
  3857. const size_t n1 = tensor->nb[1];
  3858. char * const data = tensor->data;
  3859. switch (tensor->type) {
  3860. case GGML_TYPE_I8:
  3861. {
  3862. assert(tensor->nb[0] == sizeof(int8_t));
  3863. for (int i = 0; i < n; i++) {
  3864. ggml_vec_set_i8(nc, (int8_t *)(data + i*n1), value);
  3865. }
  3866. } break;
  3867. case GGML_TYPE_I16:
  3868. {
  3869. assert(tensor->nb[0] == sizeof(int16_t));
  3870. for (int i = 0; i < n; i++) {
  3871. ggml_vec_set_i16(nc, (int16_t *)(data + i*n1), value);
  3872. }
  3873. } break;
  3874. case GGML_TYPE_I32:
  3875. {
  3876. assert(tensor->nb[0] == sizeof(int32_t));
  3877. for (int i = 0; i < n; i++) {
  3878. ggml_vec_set_i32(nc, (int32_t *)(data + i*n1), value);
  3879. }
  3880. } break;
  3881. case GGML_TYPE_F16:
  3882. {
  3883. assert(tensor->nb[0] == sizeof(ggml_fp16_t));
  3884. for (int i = 0; i < n; i++) {
  3885. ggml_vec_set_f16(nc, (ggml_fp16_t *)(data + i*n1), value);
  3886. }
  3887. } break;
  3888. case GGML_TYPE_F32:
  3889. {
  3890. assert(tensor->nb[0] == sizeof(float));
  3891. for (int i = 0; i < n; i++) {
  3892. ggml_vec_set_f32(nc, (float *)(data + i*n1), value);
  3893. }
  3894. } break;
  3895. default:
  3896. {
  3897. GGML_ASSERT(false);
  3898. } break;
  3899. }
  3900. return tensor;
  3901. }
  3902. int32_t ggml_get_i32_1d(const struct ggml_tensor * tensor, int i) {
  3903. switch (tensor->type) {
  3904. case GGML_TYPE_I8:
  3905. {
  3906. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  3907. return ((int8_t *)(tensor->data))[i];
  3908. } break;
  3909. case GGML_TYPE_I16:
  3910. {
  3911. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  3912. return ((int16_t *)(tensor->data))[i];
  3913. } break;
  3914. case GGML_TYPE_I32:
  3915. {
  3916. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  3917. return ((int32_t *)(tensor->data))[i];
  3918. } break;
  3919. case GGML_TYPE_F16:
  3920. {
  3921. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  3922. return GGML_FP16_TO_FP32(((ggml_fp16_t *)(tensor->data))[i]);
  3923. } break;
  3924. case GGML_TYPE_F32:
  3925. {
  3926. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  3927. return ((float *)(tensor->data))[i];
  3928. } break;
  3929. default:
  3930. {
  3931. GGML_ASSERT(false);
  3932. } break;
  3933. }
  3934. return 0.0f;
  3935. }
  3936. void ggml_set_i32_1d(const struct ggml_tensor * tensor, int i, int32_t value) {
  3937. switch (tensor->type) {
  3938. case GGML_TYPE_I8:
  3939. {
  3940. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  3941. ((int8_t *)(tensor->data))[i] = value;
  3942. } break;
  3943. case GGML_TYPE_I16:
  3944. {
  3945. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  3946. ((int16_t *)(tensor->data))[i] = value;
  3947. } break;
  3948. case GGML_TYPE_I32:
  3949. {
  3950. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  3951. ((int32_t *)(tensor->data))[i] = value;
  3952. } break;
  3953. case GGML_TYPE_F16:
  3954. {
  3955. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  3956. ((ggml_fp16_t *)(tensor->data))[i] = GGML_FP32_TO_FP16(value);
  3957. } break;
  3958. case GGML_TYPE_F32:
  3959. {
  3960. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  3961. ((float *)(tensor->data))[i] = value;
  3962. } break;
  3963. default:
  3964. {
  3965. GGML_ASSERT(false);
  3966. } break;
  3967. }
  3968. }
  3969. float ggml_get_f32_1d(const struct ggml_tensor * tensor, int i) {
  3970. switch (tensor->type) {
  3971. case GGML_TYPE_I8:
  3972. {
  3973. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  3974. return ((int8_t *)(tensor->data))[i];
  3975. } break;
  3976. case GGML_TYPE_I16:
  3977. {
  3978. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  3979. return ((int16_t *)(tensor->data))[i];
  3980. } break;
  3981. case GGML_TYPE_I32:
  3982. {
  3983. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  3984. return ((int32_t *)(tensor->data))[i];
  3985. } break;
  3986. case GGML_TYPE_F16:
  3987. {
  3988. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  3989. return GGML_FP16_TO_FP32(((ggml_fp16_t *)(tensor->data))[i]);
  3990. } break;
  3991. case GGML_TYPE_F32:
  3992. {
  3993. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  3994. return ((float *)(tensor->data))[i];
  3995. } break;
  3996. default:
  3997. {
  3998. GGML_ASSERT(false);
  3999. } break;
  4000. }
  4001. return 0.0f;
  4002. }
  4003. void ggml_set_f32_1d(const struct ggml_tensor * tensor, int i, float value) {
  4004. switch (tensor->type) {
  4005. case GGML_TYPE_I8:
  4006. {
  4007. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  4008. ((int8_t *)(tensor->data))[i] = value;
  4009. } break;
  4010. case GGML_TYPE_I16:
  4011. {
  4012. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  4013. ((int16_t *)(tensor->data))[i] = value;
  4014. } break;
  4015. case GGML_TYPE_I32:
  4016. {
  4017. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  4018. ((int32_t *)(tensor->data))[i] = value;
  4019. } break;
  4020. case GGML_TYPE_F16:
  4021. {
  4022. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  4023. ((ggml_fp16_t *)(tensor->data))[i] = GGML_FP32_TO_FP16(value);
  4024. } break;
  4025. case GGML_TYPE_F32:
  4026. {
  4027. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  4028. ((float *)(tensor->data))[i] = value;
  4029. } break;
  4030. default:
  4031. {
  4032. GGML_ASSERT(false);
  4033. } break;
  4034. }
  4035. }
  4036. void * ggml_get_data(const struct ggml_tensor * tensor) {
  4037. return tensor->data;
  4038. }
  4039. float * ggml_get_data_f32(const struct ggml_tensor * tensor) {
  4040. assert(tensor->type == GGML_TYPE_F32);
  4041. return (float *)(tensor->data);
  4042. }
  4043. const char * ggml_get_name(const struct ggml_tensor * tensor) {
  4044. return tensor->name;
  4045. }
  4046. struct ggml_tensor * ggml_set_name(struct ggml_tensor * tensor, const char * name) {
  4047. strncpy(tensor->name, name, sizeof(tensor->name));
  4048. tensor->name[sizeof(tensor->name) - 1] = '\0';
  4049. return tensor;
  4050. }
  4051. struct ggml_tensor * ggml_format_name(struct ggml_tensor * tensor, const char * fmt, ...) {
  4052. va_list args;
  4053. va_start(args, fmt);
  4054. vsnprintf(tensor->name, sizeof(tensor->name), fmt, args);
  4055. va_end(args);
  4056. return tensor;
  4057. }
  4058. struct ggml_tensor * ggml_view_tensor(
  4059. struct ggml_context * ctx,
  4060. const struct ggml_tensor * src) {
  4061. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, src->type, src->n_dims, src->ne, src->data);
  4062. ggml_format_name(result, "%s (view)", src->name);
  4063. result->nb[0] = src->nb[0];
  4064. result->nb[1] = src->nb[1];
  4065. result->nb[2] = src->nb[2];
  4066. result->nb[3] = src->nb[3];
  4067. return result;
  4068. }
  4069. struct ggml_tensor * ggml_get_tensor(struct ggml_context * ctx, const char * name) {
  4070. struct ggml_object * obj = ctx->objects_begin;
  4071. char * const mem_buffer = ctx->mem_buffer;
  4072. while (obj != NULL) {
  4073. struct ggml_tensor * cur = (struct ggml_tensor *)(mem_buffer + obj->offs);
  4074. if (strcmp(cur->name, name) == 0) {
  4075. return cur;
  4076. }
  4077. obj = obj->next;
  4078. }
  4079. return NULL;
  4080. }
  4081. ////////////////////////////////////////////////////////////////////////////////
  4082. // ggml_dup
  4083. struct ggml_tensor * ggml_dup_impl(
  4084. struct ggml_context * ctx,
  4085. struct ggml_tensor * a,
  4086. bool inplace) {
  4087. bool is_node = false;
  4088. if (!inplace && (a->grad)) {
  4089. is_node = true;
  4090. }
  4091. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4092. result->op = GGML_OP_DUP;
  4093. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4094. result->src[0] = a;
  4095. result->src[1] = NULL;
  4096. return result;
  4097. }
  4098. struct ggml_tensor * ggml_dup(
  4099. struct ggml_context * ctx,
  4100. struct ggml_tensor * a) {
  4101. return ggml_dup_impl(ctx, a, false);
  4102. }
  4103. struct ggml_tensor * ggml_dup_inplace(
  4104. struct ggml_context * ctx,
  4105. struct ggml_tensor * a) {
  4106. return ggml_dup_impl(ctx, a, true);
  4107. }
  4108. // ggml_add
  4109. struct ggml_tensor * ggml_add_impl(
  4110. struct ggml_context * ctx,
  4111. struct ggml_tensor * a,
  4112. struct ggml_tensor * b,
  4113. bool inplace) {
  4114. GGML_ASSERT(ggml_are_same_shape(a, b));
  4115. bool is_node = false;
  4116. if (a->grad || b->grad) {
  4117. is_node = true;
  4118. }
  4119. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4120. result->op = GGML_OP_ADD;
  4121. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4122. result->src[0] = a;
  4123. result->src[1] = b;
  4124. return result;
  4125. }
  4126. struct ggml_tensor * ggml_add(
  4127. struct ggml_context * ctx,
  4128. struct ggml_tensor * a,
  4129. struct ggml_tensor * b) {
  4130. return ggml_add_impl(ctx, a, b, false);
  4131. }
  4132. struct ggml_tensor * ggml_add_inplace(
  4133. struct ggml_context * ctx,
  4134. struct ggml_tensor * a,
  4135. struct ggml_tensor * b) {
  4136. return ggml_add_impl(ctx, a, b, true);
  4137. }
  4138. // ggml_add1
  4139. struct ggml_tensor * ggml_add1_impl(
  4140. struct ggml_context * ctx,
  4141. struct ggml_tensor * a,
  4142. struct ggml_tensor * b,
  4143. bool inplace) {
  4144. GGML_ASSERT(ggml_is_scalar(b));
  4145. GGML_ASSERT(ggml_is_padded_1d(a));
  4146. bool is_node = false;
  4147. if (a->grad || b->grad) {
  4148. is_node = true;
  4149. }
  4150. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4151. result->op = GGML_OP_ADD1;
  4152. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4153. result->src[0] = a;
  4154. result->src[1] = b;
  4155. return result;
  4156. }
  4157. struct ggml_tensor * ggml_add1(
  4158. struct ggml_context * ctx,
  4159. struct ggml_tensor * a,
  4160. struct ggml_tensor * b) {
  4161. return ggml_add1_impl(ctx, a, b, false);
  4162. }
  4163. struct ggml_tensor * ggml_add1_inplace(
  4164. struct ggml_context * ctx,
  4165. struct ggml_tensor * a,
  4166. struct ggml_tensor * b) {
  4167. return ggml_add1_impl(ctx, a, b, true);
  4168. }
  4169. // ggml_acc
  4170. struct ggml_tensor * ggml_acc_impl(
  4171. struct ggml_context * ctx,
  4172. struct ggml_tensor * a,
  4173. struct ggml_tensor * b,
  4174. size_t nb1,
  4175. size_t nb2,
  4176. size_t nb3,
  4177. size_t offset,
  4178. bool inplace) {
  4179. GGML_ASSERT(ggml_nelements(b) <= ggml_nelements(a));
  4180. GGML_ASSERT(ggml_is_contiguous(a));
  4181. GGML_ASSERT(a->type == GGML_TYPE_F32);
  4182. GGML_ASSERT(b->type == GGML_TYPE_F32);
  4183. bool is_node = false;
  4184. if (!inplace && (a->grad || b->grad)) {
  4185. is_node = true;
  4186. }
  4187. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4188. ggml_scratch_save(ctx);
  4189. struct ggml_tensor * c = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 5);
  4190. ((int32_t *) c->data)[0] = nb1;
  4191. ((int32_t *) c->data)[1] = nb2;
  4192. ((int32_t *) c->data)[2] = nb3;
  4193. ((int32_t *) c->data)[3] = offset;
  4194. ((int32_t *) c->data)[4] = inplace ? 1 : 0;
  4195. ggml_scratch_load(ctx);
  4196. result->op = GGML_OP_ACC;
  4197. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4198. result->src[0] = a;
  4199. result->src[1] = b;
  4200. result->src[2] = c;
  4201. return result;
  4202. }
  4203. struct ggml_tensor * ggml_acc(
  4204. struct ggml_context * ctx,
  4205. struct ggml_tensor * a,
  4206. struct ggml_tensor * b,
  4207. size_t nb1,
  4208. size_t nb2,
  4209. size_t nb3,
  4210. size_t offset) {
  4211. return ggml_acc_impl(ctx, a, b, nb1, nb2, nb3, offset, false);
  4212. }
  4213. struct ggml_tensor * ggml_acc_inplace(
  4214. struct ggml_context * ctx,
  4215. struct ggml_tensor * a,
  4216. struct ggml_tensor * b,
  4217. size_t nb1,
  4218. size_t nb2,
  4219. size_t nb3,
  4220. size_t offset) {
  4221. return ggml_acc_impl(ctx, a, b, nb1, nb2, nb3, offset, true);
  4222. }
  4223. // ggml_sub
  4224. struct ggml_tensor * ggml_sub_impl(
  4225. struct ggml_context * ctx,
  4226. struct ggml_tensor * a,
  4227. struct ggml_tensor * b,
  4228. bool inplace) {
  4229. GGML_ASSERT(ggml_are_same_shape(a, b));
  4230. bool is_node = false;
  4231. if (!inplace && (a->grad || b->grad)) {
  4232. is_node = true;
  4233. }
  4234. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4235. result->op = GGML_OP_SUB;
  4236. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4237. result->src[0] = a;
  4238. result->src[1] = b;
  4239. return result;
  4240. }
  4241. struct ggml_tensor * ggml_sub(
  4242. struct ggml_context * ctx,
  4243. struct ggml_tensor * a,
  4244. struct ggml_tensor * b) {
  4245. return ggml_sub_impl(ctx, a, b, false);
  4246. }
  4247. struct ggml_tensor * ggml_sub_inplace(
  4248. struct ggml_context * ctx,
  4249. struct ggml_tensor * a,
  4250. struct ggml_tensor * b) {
  4251. return ggml_sub_impl(ctx, a, b, true);
  4252. }
  4253. // ggml_mul
  4254. struct ggml_tensor * ggml_mul_impl(
  4255. struct ggml_context * ctx,
  4256. struct ggml_tensor * a,
  4257. struct ggml_tensor * b,
  4258. bool inplace) {
  4259. // TODO: support less-strict constraint
  4260. // GGML_ASSERT(ggml_can_repeat(b, a));
  4261. GGML_ASSERT(ggml_can_repeat_rows(b, a));
  4262. bool is_node = false;
  4263. if (!inplace && (a->grad || b->grad)) {
  4264. // TODO: support backward pass for broadcasting
  4265. GGML_ASSERT(ggml_are_same_shape(a, b));
  4266. is_node = true;
  4267. }
  4268. if (inplace) {
  4269. GGML_ASSERT(is_node == false);
  4270. }
  4271. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4272. result->op = GGML_OP_MUL;
  4273. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4274. result->src[0] = a;
  4275. result->src[1] = b;
  4276. return result;
  4277. }
  4278. struct ggml_tensor * ggml_mul(
  4279. struct ggml_context * ctx,
  4280. struct ggml_tensor * a,
  4281. struct ggml_tensor * b) {
  4282. return ggml_mul_impl(ctx, a, b, false);
  4283. }
  4284. struct ggml_tensor * ggml_mul_inplace(
  4285. struct ggml_context * ctx,
  4286. struct ggml_tensor * a,
  4287. struct ggml_tensor * b) {
  4288. return ggml_mul_impl(ctx, a, b, true);
  4289. }
  4290. // ggml_div
  4291. struct ggml_tensor * ggml_div_impl(
  4292. struct ggml_context * ctx,
  4293. struct ggml_tensor * a,
  4294. struct ggml_tensor * b,
  4295. bool inplace) {
  4296. GGML_ASSERT(ggml_are_same_shape(a, b));
  4297. bool is_node = false;
  4298. if (!inplace && (a->grad || b->grad)) {
  4299. is_node = true;
  4300. }
  4301. if (inplace) {
  4302. GGML_ASSERT(is_node == false);
  4303. }
  4304. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4305. result->op = GGML_OP_DIV;
  4306. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4307. result->src[0] = a;
  4308. result->src[1] = b;
  4309. return result;
  4310. }
  4311. struct ggml_tensor * ggml_div(
  4312. struct ggml_context * ctx,
  4313. struct ggml_tensor * a,
  4314. struct ggml_tensor * b) {
  4315. return ggml_div_impl(ctx, a, b, false);
  4316. }
  4317. struct ggml_tensor * ggml_div_inplace(
  4318. struct ggml_context * ctx,
  4319. struct ggml_tensor * a,
  4320. struct ggml_tensor * b) {
  4321. return ggml_div_impl(ctx, a, b, true);
  4322. }
  4323. // ggml_sqr
  4324. struct ggml_tensor * ggml_sqr_impl(
  4325. struct ggml_context * ctx,
  4326. struct ggml_tensor * a,
  4327. bool inplace) {
  4328. bool is_node = false;
  4329. if (!inplace && (a->grad)) {
  4330. is_node = true;
  4331. }
  4332. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4333. result->op = GGML_OP_SQR;
  4334. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4335. result->src[0] = a;
  4336. result->src[1] = NULL;
  4337. return result;
  4338. }
  4339. struct ggml_tensor * ggml_sqr(
  4340. struct ggml_context * ctx,
  4341. struct ggml_tensor * a) {
  4342. return ggml_sqr_impl(ctx, a, false);
  4343. }
  4344. struct ggml_tensor * ggml_sqr_inplace(
  4345. struct ggml_context * ctx,
  4346. struct ggml_tensor * a) {
  4347. return ggml_sqr_impl(ctx, a, true);
  4348. }
  4349. // ggml_sqrt
  4350. struct ggml_tensor * ggml_sqrt_impl(
  4351. struct ggml_context * ctx,
  4352. struct ggml_tensor * a,
  4353. bool inplace) {
  4354. bool is_node = false;
  4355. if (!inplace && (a->grad)) {
  4356. is_node = true;
  4357. }
  4358. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4359. result->op = GGML_OP_SQRT;
  4360. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4361. result->src[0] = a;
  4362. result->src[1] = NULL;
  4363. return result;
  4364. }
  4365. struct ggml_tensor * ggml_sqrt(
  4366. struct ggml_context * ctx,
  4367. struct ggml_tensor * a) {
  4368. return ggml_sqrt_impl(ctx, a, false);
  4369. }
  4370. struct ggml_tensor * ggml_sqrt_inplace(
  4371. struct ggml_context * ctx,
  4372. struct ggml_tensor * a) {
  4373. return ggml_sqrt_impl(ctx, a, true);
  4374. }
  4375. // ggml_log
  4376. struct ggml_tensor * ggml_log_impl(
  4377. struct ggml_context * ctx,
  4378. struct ggml_tensor * a,
  4379. bool inplace) {
  4380. bool is_node = false;
  4381. if (!inplace && (a->grad)) {
  4382. is_node = true;
  4383. }
  4384. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4385. result->op = GGML_OP_LOG;
  4386. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4387. result->src[0] = a;
  4388. result->src[1] = NULL;
  4389. return result;
  4390. }
  4391. struct ggml_tensor * ggml_log(
  4392. struct ggml_context * ctx,
  4393. struct ggml_tensor * a) {
  4394. return ggml_log_impl(ctx, a, false);
  4395. }
  4396. struct ggml_tensor * ggml_log_inplace(
  4397. struct ggml_context * ctx,
  4398. struct ggml_tensor * a) {
  4399. return ggml_log_impl(ctx, a, true);
  4400. }
  4401. // ggml_sum
  4402. struct ggml_tensor * ggml_sum(
  4403. struct ggml_context * ctx,
  4404. struct ggml_tensor * a) {
  4405. bool is_node = false;
  4406. if (a->grad) {
  4407. is_node = true;
  4408. }
  4409. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, a->type, 1);
  4410. result->op = GGML_OP_SUM;
  4411. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4412. result->src[0] = a;
  4413. result->src[1] = NULL;
  4414. return result;
  4415. }
  4416. // ggml_sum_rows
  4417. struct ggml_tensor * ggml_sum_rows(
  4418. struct ggml_context * ctx,
  4419. struct ggml_tensor * a) {
  4420. bool is_node = false;
  4421. if (a->grad) {
  4422. is_node = true;
  4423. }
  4424. int64_t ne[4] = {1,1,1,1};
  4425. for (int i=1; i<a->n_dims; ++i) {
  4426. ne[i] = a->ne[i];
  4427. }
  4428. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, a->n_dims, ne);
  4429. result->op = GGML_OP_SUM_ROWS;
  4430. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4431. result->src[0] = a;
  4432. result->src[1] = NULL;
  4433. return result;
  4434. }
  4435. // ggml_mean
  4436. struct ggml_tensor * ggml_mean(
  4437. struct ggml_context * ctx,
  4438. struct ggml_tensor * a) {
  4439. bool is_node = false;
  4440. if (a->grad) {
  4441. GGML_ASSERT(false); // TODO: implement
  4442. is_node = true;
  4443. }
  4444. int64_t ne[GGML_MAX_DIMS] = { 1, a->ne[1], a->ne[2], a->ne[3] };
  4445. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, a->n_dims, ne);
  4446. result->op = GGML_OP_MEAN;
  4447. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4448. result->src[0] = a;
  4449. result->src[1] = NULL;
  4450. return result;
  4451. }
  4452. // ggml_argmax
  4453. struct ggml_tensor * ggml_argmax(
  4454. struct ggml_context * ctx,
  4455. struct ggml_tensor * a) {
  4456. GGML_ASSERT(ggml_is_matrix(a));
  4457. bool is_node = false;
  4458. if (a->grad) {
  4459. GGML_ASSERT(false);
  4460. is_node = true;
  4461. }
  4462. int64_t ne[GGML_MAX_DIMS] = { a->ne[1], 1, 1, 1 };
  4463. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_I32, a->n_dims, ne);
  4464. result->op = GGML_OP_ARGMAX;
  4465. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4466. result->src[0] = a;
  4467. result->src[1] = NULL;
  4468. return result;
  4469. }
  4470. // ggml_repeat
  4471. struct ggml_tensor * ggml_repeat(
  4472. struct ggml_context * ctx,
  4473. struct ggml_tensor * a,
  4474. struct ggml_tensor * b) {
  4475. GGML_ASSERT(ggml_can_repeat(a, b));
  4476. bool is_node = false;
  4477. if (a->grad) {
  4478. is_node = true;
  4479. }
  4480. if (ggml_are_same_shape(a, b) && !is_node) {
  4481. return a;
  4482. }
  4483. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, b->n_dims, b->ne);
  4484. result->op = GGML_OP_REPEAT;
  4485. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4486. result->src[0] = a;
  4487. result->src[1] = b;
  4488. return result;
  4489. }
  4490. // ggml_repeat_back
  4491. struct ggml_tensor * ggml_repeat_back(
  4492. struct ggml_context * ctx,
  4493. struct ggml_tensor * a,
  4494. struct ggml_tensor * b) {
  4495. GGML_ASSERT(ggml_can_repeat(b, a));
  4496. bool is_node = false;
  4497. if (a->grad) {
  4498. is_node = true;
  4499. }
  4500. if (ggml_are_same_shape(a, b) && !is_node) {
  4501. return a;
  4502. }
  4503. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, b->n_dims, b->ne);
  4504. result->op = GGML_OP_REPEAT_BACK;
  4505. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4506. result->src[0] = a;
  4507. result->src[1] = b;
  4508. return result;
  4509. }
  4510. // ggml_abs
  4511. struct ggml_tensor * ggml_abs_impl(
  4512. struct ggml_context * ctx,
  4513. struct ggml_tensor * a,
  4514. bool inplace) {
  4515. bool is_node = false;
  4516. if (!inplace && (a->grad)) {
  4517. is_node = true;
  4518. }
  4519. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4520. result->op = GGML_OP_ABS;
  4521. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4522. result->src[0] = a;
  4523. result->src[1] = NULL;
  4524. return result;
  4525. }
  4526. struct ggml_tensor * ggml_abs(
  4527. struct ggml_context * ctx,
  4528. struct ggml_tensor * a) {
  4529. return ggml_abs_impl(ctx, a, false);
  4530. }
  4531. struct ggml_tensor * ggml_abs_inplace(
  4532. struct ggml_context * ctx,
  4533. struct ggml_tensor * a) {
  4534. return ggml_abs_impl(ctx, a, true);
  4535. }
  4536. // ggml_sgn
  4537. struct ggml_tensor * ggml_sgn_impl(
  4538. struct ggml_context * ctx,
  4539. struct ggml_tensor * a,
  4540. bool inplace) {
  4541. bool is_node = false;
  4542. if (!inplace && (a->grad)) {
  4543. is_node = true;
  4544. }
  4545. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4546. result->op = GGML_OP_SGN;
  4547. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4548. result->src[0] = a;
  4549. result->src[1] = NULL;
  4550. return result;
  4551. }
  4552. struct ggml_tensor * ggml_sgn(
  4553. struct ggml_context * ctx,
  4554. struct ggml_tensor * a) {
  4555. return ggml_sgn_impl(ctx, a, false);
  4556. }
  4557. struct ggml_tensor * ggml_sgn_inplace(
  4558. struct ggml_context * ctx,
  4559. struct ggml_tensor * a) {
  4560. return ggml_sgn_impl(ctx, a, true);
  4561. }
  4562. // ggml_neg
  4563. struct ggml_tensor * ggml_neg_impl(
  4564. struct ggml_context * ctx,
  4565. struct ggml_tensor * a,
  4566. bool inplace) {
  4567. bool is_node = false;
  4568. if (!inplace && (a->grad)) {
  4569. is_node = true;
  4570. }
  4571. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4572. result->op = GGML_OP_NEG;
  4573. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4574. result->src[0] = a;
  4575. result->src[1] = NULL;
  4576. return result;
  4577. }
  4578. struct ggml_tensor * ggml_neg(
  4579. struct ggml_context * ctx,
  4580. struct ggml_tensor * a) {
  4581. return ggml_neg_impl(ctx, a, false);
  4582. }
  4583. struct ggml_tensor * ggml_neg_inplace(
  4584. struct ggml_context * ctx,
  4585. struct ggml_tensor * a) {
  4586. return ggml_neg_impl(ctx, a, true);
  4587. }
  4588. // ggml_step
  4589. struct ggml_tensor * ggml_step_impl(
  4590. struct ggml_context * ctx,
  4591. struct ggml_tensor * a,
  4592. bool inplace) {
  4593. bool is_node = false;
  4594. if (!inplace && (a->grad)) {
  4595. is_node = true;
  4596. }
  4597. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4598. result->op = GGML_OP_STEP;
  4599. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4600. result->src[0] = a;
  4601. result->src[1] = NULL;
  4602. return result;
  4603. }
  4604. struct ggml_tensor * ggml_step(
  4605. struct ggml_context * ctx,
  4606. struct ggml_tensor * a) {
  4607. return ggml_step_impl(ctx, a, false);
  4608. }
  4609. struct ggml_tensor * ggml_step_inplace(
  4610. struct ggml_context * ctx,
  4611. struct ggml_tensor * a) {
  4612. return ggml_step_impl(ctx, a, true);
  4613. }
  4614. // ggml_tanh
  4615. struct ggml_tensor * ggml_tanh_impl(
  4616. struct ggml_context * ctx,
  4617. struct ggml_tensor * a,
  4618. bool inplace) {
  4619. bool is_node = false;
  4620. if (!inplace && (a->grad)) {
  4621. is_node = true;
  4622. }
  4623. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4624. result->op = GGML_OP_TANH;
  4625. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4626. result->src[0] = a;
  4627. result->src[1] = NULL;
  4628. return result;
  4629. }
  4630. struct ggml_tensor * ggml_tanh(
  4631. struct ggml_context * ctx,
  4632. struct ggml_tensor * a) {
  4633. return ggml_tanh_impl(ctx, a, false);
  4634. }
  4635. struct ggml_tensor * ggml_tanh_inplace(
  4636. struct ggml_context * ctx,
  4637. struct ggml_tensor * a) {
  4638. return ggml_tanh_impl(ctx, a, true);
  4639. }
  4640. // ggml_elu
  4641. struct ggml_tensor * ggml_elu_impl(
  4642. struct ggml_context * ctx,
  4643. struct ggml_tensor * a,
  4644. bool inplace) {
  4645. bool is_node = false;
  4646. if (!inplace && (a->grad)) {
  4647. is_node = true;
  4648. }
  4649. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4650. result->op = GGML_OP_ELU;
  4651. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4652. result->src[0] = a;
  4653. result->src[1] = NULL;
  4654. return result;
  4655. }
  4656. struct ggml_tensor * ggml_elu(
  4657. struct ggml_context * ctx,
  4658. struct ggml_tensor * a) {
  4659. return ggml_elu_impl(ctx, a, false);
  4660. }
  4661. struct ggml_tensor * ggml_elu_inplace(
  4662. struct ggml_context * ctx,
  4663. struct ggml_tensor * a) {
  4664. return ggml_elu_impl(ctx, a, true);
  4665. }
  4666. // ggml_relu
  4667. struct ggml_tensor * ggml_relu_impl(
  4668. struct ggml_context * ctx,
  4669. struct ggml_tensor * a,
  4670. bool inplace) {
  4671. bool is_node = false;
  4672. if (!inplace && (a->grad)) {
  4673. is_node = true;
  4674. }
  4675. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4676. result->op = GGML_OP_RELU;
  4677. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4678. result->src[0] = a;
  4679. result->src[1] = NULL;
  4680. return result;
  4681. }
  4682. struct ggml_tensor * ggml_relu(
  4683. struct ggml_context * ctx,
  4684. struct ggml_tensor * a) {
  4685. return ggml_relu_impl(ctx, a, false);
  4686. }
  4687. struct ggml_tensor * ggml_relu_inplace(
  4688. struct ggml_context * ctx,
  4689. struct ggml_tensor * a) {
  4690. return ggml_relu_impl(ctx, a, true);
  4691. }
  4692. // ggml_gelu
  4693. struct ggml_tensor * ggml_gelu_impl(
  4694. struct ggml_context * ctx,
  4695. struct ggml_tensor * a,
  4696. bool inplace) {
  4697. bool is_node = false;
  4698. if (!inplace && (a->grad)) {
  4699. is_node = true;
  4700. }
  4701. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4702. result->op = GGML_OP_GELU;
  4703. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4704. result->src[0] = a;
  4705. result->src[1] = NULL;
  4706. return result;
  4707. }
  4708. struct ggml_tensor * ggml_gelu(
  4709. struct ggml_context * ctx,
  4710. struct ggml_tensor * a) {
  4711. return ggml_gelu_impl(ctx, a, false);
  4712. }
  4713. struct ggml_tensor * ggml_gelu_inplace(
  4714. struct ggml_context * ctx,
  4715. struct ggml_tensor * a) {
  4716. return ggml_gelu_impl(ctx, a, true);
  4717. }
  4718. // ggml_gelu_quick
  4719. struct ggml_tensor * ggml_gelu_quick_impl(
  4720. struct ggml_context * ctx,
  4721. struct ggml_tensor * a,
  4722. bool inplace) {
  4723. bool is_node = false;
  4724. if (!inplace && (a->grad)) {
  4725. is_node = true;
  4726. }
  4727. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4728. result->op = GGML_OP_GELU_QUICK;
  4729. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4730. result->src[0] = a;
  4731. result->src[1] = NULL;
  4732. return result;
  4733. }
  4734. struct ggml_tensor * ggml_gelu_quick(
  4735. struct ggml_context * ctx,
  4736. struct ggml_tensor * a) {
  4737. return ggml_gelu_quick_impl(ctx, a, false);
  4738. }
  4739. struct ggml_tensor * ggml_gelu_quick_inplace(
  4740. struct ggml_context * ctx,
  4741. struct ggml_tensor * a) {
  4742. return ggml_gelu_quick_impl(ctx, a, true);
  4743. }
  4744. // ggml_silu
  4745. struct ggml_tensor * ggml_silu_impl(
  4746. struct ggml_context * ctx,
  4747. struct ggml_tensor * a,
  4748. bool inplace) {
  4749. bool is_node = false;
  4750. if (!inplace && (a->grad)) {
  4751. is_node = true;
  4752. }
  4753. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4754. result->op = GGML_OP_SILU;
  4755. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4756. result->src[0] = a;
  4757. result->src[1] = NULL;
  4758. return result;
  4759. }
  4760. struct ggml_tensor * ggml_silu(
  4761. struct ggml_context * ctx,
  4762. struct ggml_tensor * a) {
  4763. return ggml_silu_impl(ctx, a, false);
  4764. }
  4765. struct ggml_tensor * ggml_silu_inplace(
  4766. struct ggml_context * ctx,
  4767. struct ggml_tensor * a) {
  4768. return ggml_silu_impl(ctx, a, true);
  4769. }
  4770. // ggml_silu_back
  4771. struct ggml_tensor * ggml_silu_back(
  4772. struct ggml_context * ctx,
  4773. struct ggml_tensor * a,
  4774. struct ggml_tensor * b) {
  4775. bool is_node = false;
  4776. if (a->grad || b->grad) {
  4777. // TODO: implement backward
  4778. is_node = true;
  4779. }
  4780. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  4781. result->op = GGML_OP_SILU_BACK;
  4782. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4783. result->src[0] = a;
  4784. result->src[1] = b;
  4785. return result;
  4786. }
  4787. // ggml_norm
  4788. struct ggml_tensor * ggml_norm_impl(
  4789. struct ggml_context * ctx,
  4790. struct ggml_tensor * a,
  4791. bool inplace) {
  4792. bool is_node = false;
  4793. if (!inplace && (a->grad)) {
  4794. GGML_ASSERT(false); // TODO: implement backward
  4795. is_node = true;
  4796. }
  4797. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4798. result->op = GGML_OP_NORM;
  4799. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4800. result->src[0] = a;
  4801. result->src[1] = NULL; // TODO: maybe store epsilon here?
  4802. return result;
  4803. }
  4804. struct ggml_tensor * ggml_norm(
  4805. struct ggml_context * ctx,
  4806. struct ggml_tensor * a) {
  4807. return ggml_norm_impl(ctx, a, false);
  4808. }
  4809. struct ggml_tensor * ggml_norm_inplace(
  4810. struct ggml_context * ctx,
  4811. struct ggml_tensor * a) {
  4812. return ggml_norm_impl(ctx, a, true);
  4813. }
  4814. struct ggml_tensor * ggml_rms_norm_impl(
  4815. struct ggml_context * ctx,
  4816. struct ggml_tensor * a,
  4817. bool inplace) {
  4818. bool is_node = false;
  4819. if (!inplace && (a->grad)) {
  4820. is_node = true;
  4821. }
  4822. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4823. result->op = GGML_OP_RMS_NORM;
  4824. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4825. result->src[0] = a;
  4826. result->src[1] = NULL; // TODO: maybe store epsilon here?
  4827. return result;
  4828. }
  4829. struct ggml_tensor * ggml_rms_norm(
  4830. struct ggml_context * ctx,
  4831. struct ggml_tensor * a) {
  4832. return ggml_rms_norm_impl(ctx, a, false);
  4833. }
  4834. struct ggml_tensor * ggml_rms_norm_inplace(
  4835. struct ggml_context * ctx,
  4836. struct ggml_tensor * a) {
  4837. return ggml_rms_norm_impl(ctx, a, true);
  4838. }
  4839. struct ggml_tensor * ggml_rms_norm_back(
  4840. struct ggml_context * ctx,
  4841. struct ggml_tensor * a,
  4842. struct ggml_tensor * b) {
  4843. bool is_node = false;
  4844. if (a->grad) {
  4845. // TODO: implement backward
  4846. is_node = true;
  4847. }
  4848. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  4849. result->op = GGML_OP_RMS_NORM_BACK;
  4850. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4851. result->src[0] = a;
  4852. result->src[1] = b;
  4853. return result;
  4854. }
  4855. // ggml_mul_mat
  4856. struct ggml_tensor * ggml_mul_mat(
  4857. struct ggml_context * ctx,
  4858. struct ggml_tensor * a,
  4859. struct ggml_tensor * b) {
  4860. GGML_ASSERT(ggml_can_mul_mat(a, b));
  4861. GGML_ASSERT(!ggml_is_transposed(a));
  4862. bool is_node = false;
  4863. if (a->grad || b->grad) {
  4864. is_node = true;
  4865. }
  4866. const int64_t ne[4] = { a->ne[1], b->ne[1], a->ne[2], b->ne[3] };
  4867. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, MIN(a->n_dims, b->n_dims), ne);
  4868. result->op = GGML_OP_MUL_MAT;
  4869. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4870. result->src[0] = a;
  4871. result->src[1] = b;
  4872. return result;
  4873. }
  4874. // ggml_out_prod
  4875. struct ggml_tensor * ggml_out_prod(
  4876. struct ggml_context * ctx,
  4877. struct ggml_tensor * a,
  4878. struct ggml_tensor * b) {
  4879. GGML_ASSERT(ggml_can_out_prod(a, b));
  4880. GGML_ASSERT(!ggml_is_transposed(a));
  4881. bool is_node = false;
  4882. if (a->grad || b->grad) {
  4883. is_node = true;
  4884. }
  4885. const int64_t ne[4] = { a->ne[0], b->ne[0], a->ne[2], b->ne[3] };
  4886. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, MIN(a->n_dims, b->n_dims), ne);
  4887. result->op = GGML_OP_OUT_PROD;
  4888. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4889. result->src[0] = a;
  4890. result->src[1] = b;
  4891. return result;
  4892. }
  4893. // ggml_scale
  4894. struct ggml_tensor * ggml_scale_impl(
  4895. struct ggml_context * ctx,
  4896. struct ggml_tensor * a,
  4897. struct ggml_tensor * b,
  4898. bool inplace) {
  4899. GGML_ASSERT(ggml_is_scalar(b));
  4900. GGML_ASSERT(ggml_is_padded_1d(a));
  4901. bool is_node = false;
  4902. if (a->grad || b->grad) {
  4903. is_node = true;
  4904. }
  4905. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4906. result->op = GGML_OP_SCALE;
  4907. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4908. result->src[0] = a;
  4909. result->src[1] = b;
  4910. return result;
  4911. }
  4912. struct ggml_tensor * ggml_scale(
  4913. struct ggml_context * ctx,
  4914. struct ggml_tensor * a,
  4915. struct ggml_tensor * b) {
  4916. return ggml_scale_impl(ctx, a, b, false);
  4917. }
  4918. struct ggml_tensor * ggml_scale_inplace(
  4919. struct ggml_context * ctx,
  4920. struct ggml_tensor * a,
  4921. struct ggml_tensor * b) {
  4922. return ggml_scale_impl(ctx, a, b, true);
  4923. }
  4924. // ggml_set
  4925. struct ggml_tensor * ggml_set_impl(
  4926. struct ggml_context * ctx,
  4927. struct ggml_tensor * a,
  4928. struct ggml_tensor * b,
  4929. size_t nb1,
  4930. size_t nb2,
  4931. size_t nb3,
  4932. size_t offset,
  4933. bool inplace) {
  4934. GGML_ASSERT(ggml_nelements(a) >= ggml_nelements(b));
  4935. bool is_node = false;
  4936. if (a->grad || b->grad) {
  4937. is_node = true;
  4938. }
  4939. // make a view of the destination
  4940. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4941. ggml_scratch_save(ctx);
  4942. struct ggml_tensor * c = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 5);
  4943. (( int32_t * ) c->data)[0] = nb1;
  4944. (( int32_t * ) c->data)[1] = nb2;
  4945. (( int32_t * ) c->data)[2] = nb3;
  4946. (( int32_t * ) c->data)[3] = offset;
  4947. (( int32_t * ) c->data)[4] = inplace ? 1 : 0;
  4948. ggml_scratch_load(ctx);
  4949. result->op = GGML_OP_SET;
  4950. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4951. result->src[0] = a;
  4952. result->src[1] = b;
  4953. result->src[2] = c;
  4954. return result;
  4955. }
  4956. struct ggml_tensor * ggml_set(
  4957. struct ggml_context * ctx,
  4958. struct ggml_tensor * a,
  4959. struct ggml_tensor * b,
  4960. size_t nb1,
  4961. size_t nb2,
  4962. size_t nb3,
  4963. size_t offset) {
  4964. return ggml_set_impl(ctx, a, b, nb1, nb2, nb3, offset, false);
  4965. }
  4966. struct ggml_tensor * ggml_set_inplace(
  4967. struct ggml_context * ctx,
  4968. struct ggml_tensor * a,
  4969. struct ggml_tensor * b,
  4970. size_t nb1,
  4971. size_t nb2,
  4972. size_t nb3,
  4973. size_t offset) {
  4974. return ggml_set_impl(ctx, a, b, nb1, nb2, nb3, offset, true);
  4975. }
  4976. struct ggml_tensor * ggml_set_1d(
  4977. struct ggml_context * ctx,
  4978. struct ggml_tensor * a,
  4979. struct ggml_tensor * b,
  4980. size_t offset) {
  4981. return ggml_set_impl(ctx, a, b, a->nb[1], a->nb[2], a->nb[3], offset, false);
  4982. }
  4983. struct ggml_tensor * ggml_set_1d_inplace(
  4984. struct ggml_context * ctx,
  4985. struct ggml_tensor * a,
  4986. struct ggml_tensor * b,
  4987. size_t offset) {
  4988. return ggml_set_impl(ctx, a, b, a->nb[1], a->nb[2], a->nb[3], offset, true);
  4989. }
  4990. struct ggml_tensor * ggml_set_2d(
  4991. struct ggml_context * ctx,
  4992. struct ggml_tensor * a,
  4993. struct ggml_tensor * b,
  4994. size_t nb1,
  4995. size_t offset) {
  4996. return ggml_set_impl(ctx, a, b, nb1, a->nb[2], a->nb[3], offset, false);
  4997. }
  4998. struct ggml_tensor * ggml_set_2d_inplace(
  4999. struct ggml_context * ctx,
  5000. struct ggml_tensor * a,
  5001. struct ggml_tensor * b,
  5002. size_t nb1,
  5003. size_t offset) {
  5004. return ggml_set_impl(ctx, a, b, nb1, a->nb[2], a->nb[3], offset, false);
  5005. }
  5006. // ggml_cpy
  5007. struct ggml_tensor * ggml_cpy_impl(
  5008. struct ggml_context * ctx,
  5009. struct ggml_tensor * a,
  5010. struct ggml_tensor * b,
  5011. bool inplace) {
  5012. GGML_ASSERT(ggml_nelements(a) == ggml_nelements(b));
  5013. bool is_node = false;
  5014. if (!inplace && (a->grad || b->grad)) {
  5015. is_node = true;
  5016. }
  5017. // make a view of the destination
  5018. struct ggml_tensor * result = ggml_view_tensor(ctx, b);
  5019. if (strlen(b->name) > 0) {
  5020. ggml_format_name(result, "%s (copy of %s)", b->name, a->name);
  5021. } else {
  5022. ggml_format_name(result, "%s (copy)", a->name);
  5023. }
  5024. result->op = GGML_OP_CPY;
  5025. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5026. result->src[0] = a;
  5027. result->src[1] = b;
  5028. return result;
  5029. }
  5030. struct ggml_tensor * ggml_cpy(
  5031. struct ggml_context * ctx,
  5032. struct ggml_tensor * a,
  5033. struct ggml_tensor * b) {
  5034. return ggml_cpy_impl(ctx, a, b, false);
  5035. }
  5036. struct ggml_tensor * ggml_cpy_inplace(
  5037. struct ggml_context * ctx,
  5038. struct ggml_tensor * a,
  5039. struct ggml_tensor * b) {
  5040. return ggml_cpy_impl(ctx, a, b, true);
  5041. }
  5042. // ggml_cont
  5043. struct ggml_tensor * ggml_cont_impl(
  5044. struct ggml_context * ctx,
  5045. struct ggml_tensor * a,
  5046. bool inplace) {
  5047. bool is_node = false;
  5048. if (!inplace && a->grad) {
  5049. is_node = true;
  5050. }
  5051. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5052. ggml_format_name(result, "%s (cont)", a->name);
  5053. result->op = GGML_OP_CONT;
  5054. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5055. result->src[0] = a;
  5056. result->src[1] = NULL;
  5057. return result;
  5058. }
  5059. struct ggml_tensor * ggml_cont(
  5060. struct ggml_context * ctx,
  5061. struct ggml_tensor * a) {
  5062. return ggml_cont_impl(ctx, a, false);
  5063. }
  5064. struct ggml_tensor * ggml_cont_inplace(
  5065. struct ggml_context * ctx,
  5066. struct ggml_tensor * a) {
  5067. return ggml_cont_impl(ctx, a, true);
  5068. }
  5069. // ggml_reshape
  5070. struct ggml_tensor * ggml_reshape(
  5071. struct ggml_context * ctx,
  5072. struct ggml_tensor * a,
  5073. struct ggml_tensor * b) {
  5074. GGML_ASSERT(ggml_is_contiguous(a));
  5075. GGML_ASSERT(ggml_is_contiguous(b));
  5076. GGML_ASSERT(ggml_nelements(a) == ggml_nelements(b));
  5077. bool is_node = false;
  5078. if (a->grad) {
  5079. is_node = true;
  5080. }
  5081. if (b->grad) {
  5082. // gradient propagation is not supported
  5083. //GGML_ASSERT(false);
  5084. }
  5085. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, b->n_dims, b->ne, a->data);
  5086. ggml_format_name(result, "%s (reshaped)", a->name);
  5087. result->op = GGML_OP_RESHAPE;
  5088. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5089. result->src[0] = a;
  5090. result->src[1] = NULL;
  5091. return result;
  5092. }
  5093. struct ggml_tensor * ggml_reshape_1d(
  5094. struct ggml_context * ctx,
  5095. struct ggml_tensor * a,
  5096. int64_t ne0) {
  5097. GGML_ASSERT(ggml_is_contiguous(a));
  5098. GGML_ASSERT(ggml_nelements(a) == ne0);
  5099. bool is_node = false;
  5100. if (a->grad) {
  5101. is_node = true;
  5102. }
  5103. const int64_t ne[1] = { ne0 };
  5104. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 1, ne, a->data);
  5105. ggml_format_name(result, "%s (reshaped)", a->name);
  5106. result->op = GGML_OP_RESHAPE;
  5107. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5108. result->src[0] = a;
  5109. result->src[1] = NULL;
  5110. return result;
  5111. }
  5112. struct ggml_tensor * ggml_reshape_2d(
  5113. struct ggml_context * ctx,
  5114. struct ggml_tensor * a,
  5115. int64_t ne0,
  5116. int64_t ne1) {
  5117. GGML_ASSERT(ggml_is_contiguous(a));
  5118. GGML_ASSERT(ggml_nelements(a) == ne0*ne1);
  5119. bool is_node = false;
  5120. if (a->grad) {
  5121. is_node = true;
  5122. }
  5123. const int64_t ne[2] = { ne0, ne1 };
  5124. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 2, ne, a->data);
  5125. ggml_format_name(result, "%s (reshaped)", a->name);
  5126. result->op = GGML_OP_RESHAPE;
  5127. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5128. result->src[0] = a;
  5129. result->src[1] = NULL;
  5130. return result;
  5131. }
  5132. struct ggml_tensor * ggml_reshape_3d(
  5133. struct ggml_context * ctx,
  5134. struct ggml_tensor * a,
  5135. int64_t ne0,
  5136. int64_t ne1,
  5137. int64_t ne2) {
  5138. GGML_ASSERT(ggml_is_contiguous(a));
  5139. GGML_ASSERT(ggml_nelements(a) == ne0*ne1*ne2);
  5140. bool is_node = false;
  5141. if (a->grad) {
  5142. is_node = true;
  5143. }
  5144. const int64_t ne[3] = { ne0, ne1, ne2 };
  5145. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 3, ne, a->data);
  5146. ggml_format_name(result, "%s (reshaped)", a->name);
  5147. result->op = GGML_OP_RESHAPE;
  5148. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5149. result->src[0] = a;
  5150. result->src[1] = NULL;
  5151. return result;
  5152. }
  5153. struct ggml_tensor * ggml_reshape_4d(
  5154. struct ggml_context * ctx,
  5155. struct ggml_tensor * a,
  5156. int64_t ne0,
  5157. int64_t ne1,
  5158. int64_t ne2,
  5159. int64_t ne3) {
  5160. GGML_ASSERT(ggml_is_contiguous(a));
  5161. GGML_ASSERT(ggml_nelements(a) == ne0*ne1*ne2*ne3);
  5162. bool is_node = false;
  5163. if (a->grad) {
  5164. is_node = true;
  5165. }
  5166. const int64_t ne[4] = { ne0, ne1, ne2, ne3 };
  5167. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 4, ne, a->data);
  5168. ggml_format_name(result, "%s (reshaped)", a->name);
  5169. result->op = GGML_OP_RESHAPE;
  5170. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5171. result->src[0] = a;
  5172. result->src[1] = NULL;
  5173. return result;
  5174. }
  5175. // ggml_view_1d
  5176. struct ggml_tensor * ggml_view_1d(
  5177. struct ggml_context * ctx,
  5178. struct ggml_tensor * a,
  5179. int64_t ne0,
  5180. size_t offset) {
  5181. bool is_node = false;
  5182. if (a->grad) {
  5183. is_node = true;
  5184. }
  5185. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 1, &ne0, (char *) a->data + offset);
  5186. ggml_format_name(result, "%s (view)", a->name);
  5187. ggml_scratch_save(ctx);
  5188. struct ggml_tensor * offs = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 2);
  5189. ggml_set_name(offs, "offset");
  5190. memcpy(offs->data, &offset, 2*sizeof(int32_t));
  5191. ggml_scratch_load(ctx);
  5192. result->op = GGML_OP_VIEW;
  5193. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5194. result->src[0] = a;
  5195. result->src[1] = NULL;
  5196. result->src[2] = offs;
  5197. return result;
  5198. }
  5199. // ggml_view_2d
  5200. struct ggml_tensor * ggml_view_2d(
  5201. struct ggml_context * ctx,
  5202. struct ggml_tensor * a,
  5203. int64_t ne0,
  5204. int64_t ne1,
  5205. size_t nb1,
  5206. size_t offset) {
  5207. bool is_node = false;
  5208. if (a->grad) {
  5209. is_node = true;
  5210. }
  5211. const int64_t ne[GGML_MAX_DIMS] = { ne0, ne1, 1, 1 };
  5212. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 2, ne, (char *) a->data + offset);
  5213. ggml_format_name(result, "%s (view)", a->name);
  5214. ggml_scratch_save(ctx);
  5215. struct ggml_tensor * offs = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 2);
  5216. ggml_set_name(offs, "offset");
  5217. memcpy(offs->data, &offset, 2*sizeof(int32_t));
  5218. ggml_scratch_load(ctx);
  5219. result->nb[1] = nb1;
  5220. result->nb[2] = result->nb[1]*ne1;
  5221. result->nb[3] = result->nb[2];
  5222. result->op = GGML_OP_VIEW;
  5223. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5224. result->src[0] = a;
  5225. result->src[1] = NULL;
  5226. result->src[2] = offs;
  5227. return result;
  5228. }
  5229. // ggml_view_3d
  5230. struct ggml_tensor * ggml_view_3d(
  5231. struct ggml_context * ctx,
  5232. struct ggml_tensor * a,
  5233. int64_t ne0,
  5234. int64_t ne1,
  5235. int64_t ne2,
  5236. size_t nb1,
  5237. size_t nb2,
  5238. size_t offset) {
  5239. bool is_node = false;
  5240. if (a->grad) {
  5241. is_node = true;
  5242. }
  5243. const int64_t ne[GGML_MAX_DIMS] = { ne0, ne1, ne2, 1 };
  5244. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 3, ne, (char *) a->data + offset);
  5245. ggml_format_name(result, "%s (view)", a->name);
  5246. ggml_scratch_save(ctx);
  5247. struct ggml_tensor * offs = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 2);
  5248. ggml_set_name(offs, "offset");
  5249. memcpy(offs->data, &offset, 2*sizeof(int32_t));
  5250. ggml_scratch_load(ctx);
  5251. result->nb[1] = nb1;
  5252. result->nb[2] = nb2;
  5253. result->nb[3] = result->nb[2]*ne2;
  5254. result->op = GGML_OP_VIEW;
  5255. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5256. result->src[0] = a;
  5257. result->src[1] = NULL;
  5258. result->src[2] = offs;
  5259. return result;
  5260. }
  5261. // ggml_view_4d
  5262. struct ggml_tensor * ggml_view_4d(
  5263. struct ggml_context * ctx,
  5264. struct ggml_tensor * a,
  5265. int64_t ne0,
  5266. int64_t ne1,
  5267. int64_t ne2,
  5268. int64_t ne3,
  5269. size_t nb1,
  5270. size_t nb2,
  5271. size_t nb3,
  5272. size_t offset) {
  5273. bool is_node = false;
  5274. if (a->grad) {
  5275. is_node = true;
  5276. }
  5277. const int64_t ne[GGML_MAX_DIMS] = { ne0, ne1, ne2, ne3 };
  5278. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 4, ne, (char *) a->data + offset);
  5279. ggml_format_name(result, "%s (view)", a->name);
  5280. ggml_scratch_save(ctx);
  5281. struct ggml_tensor * offs = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 2);
  5282. ggml_set_name(offs, "offset");
  5283. memcpy(offs->data, &offset, 2*sizeof(int32_t));
  5284. ggml_scratch_load(ctx);
  5285. result->nb[1] = nb1;
  5286. result->nb[2] = nb2;
  5287. result->nb[3] = nb3;
  5288. result->op = GGML_OP_VIEW;
  5289. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5290. result->src[0] = a;
  5291. result->src[1] = NULL;
  5292. result->src[2] = offs;
  5293. return result;
  5294. }
  5295. // ggml_permute
  5296. struct ggml_tensor * ggml_permute(
  5297. struct ggml_context * ctx,
  5298. struct ggml_tensor * a,
  5299. int axis0,
  5300. int axis1,
  5301. int axis2,
  5302. int axis3) {
  5303. GGML_ASSERT(axis0 >= 0 && axis0 < GGML_MAX_DIMS);
  5304. GGML_ASSERT(axis1 >= 0 && axis1 < GGML_MAX_DIMS);
  5305. GGML_ASSERT(axis2 >= 0 && axis2 < GGML_MAX_DIMS);
  5306. GGML_ASSERT(axis3 >= 0 && axis3 < GGML_MAX_DIMS);
  5307. GGML_ASSERT(axis0 != axis1);
  5308. GGML_ASSERT(axis0 != axis2);
  5309. GGML_ASSERT(axis0 != axis3);
  5310. GGML_ASSERT(axis1 != axis2);
  5311. GGML_ASSERT(axis1 != axis3);
  5312. GGML_ASSERT(axis2 != axis3);
  5313. bool is_node = false;
  5314. if (a->grad) {
  5315. is_node = true;
  5316. }
  5317. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  5318. ggml_format_name(result, "%s (permuted)", a->name);
  5319. int ne[GGML_MAX_DIMS];
  5320. int nb[GGML_MAX_DIMS];
  5321. ne[axis0] = a->ne[0];
  5322. ne[axis1] = a->ne[1];
  5323. ne[axis2] = a->ne[2];
  5324. ne[axis3] = a->ne[3];
  5325. nb[axis0] = a->nb[0];
  5326. nb[axis1] = a->nb[1];
  5327. nb[axis2] = a->nb[2];
  5328. nb[axis3] = a->nb[3];
  5329. result->ne[0] = ne[0];
  5330. result->ne[1] = ne[1];
  5331. result->ne[2] = ne[2];
  5332. result->ne[3] = ne[3];
  5333. result->nb[0] = nb[0];
  5334. result->nb[1] = nb[1];
  5335. result->nb[2] = nb[2];
  5336. result->nb[3] = nb[3];
  5337. result->op = GGML_OP_PERMUTE;
  5338. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5339. result->src[0] = a;
  5340. result->src[1] = NULL;
  5341. if (is_node) {
  5342. ggml_scratch_save(ctx);
  5343. struct ggml_tensor * b = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 4);
  5344. ((int32_t *) b->data)[0] = axis0;
  5345. ((int32_t *) b->data)[1] = axis1;
  5346. ((int32_t *) b->data)[2] = axis2;
  5347. ((int32_t *) b->data)[3] = axis3;
  5348. ggml_scratch_load(ctx);
  5349. result->src[2] = b;
  5350. }
  5351. return result;
  5352. }
  5353. // ggml_transpose
  5354. struct ggml_tensor * ggml_transpose(
  5355. struct ggml_context * ctx,
  5356. struct ggml_tensor * a) {
  5357. bool is_node = false;
  5358. if (a->grad) {
  5359. is_node = true;
  5360. }
  5361. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  5362. ggml_format_name(result, "%s (transposed)", a->name);
  5363. result->ne[0] = a->ne[1];
  5364. result->ne[1] = a->ne[0];
  5365. result->nb[0] = a->nb[1];
  5366. result->nb[1] = a->nb[0];
  5367. result->op = GGML_OP_TRANSPOSE;
  5368. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5369. result->src[0] = a;
  5370. result->src[1] = NULL;
  5371. return result;
  5372. }
  5373. // ggml_get_rows
  5374. struct ggml_tensor * ggml_get_rows(
  5375. struct ggml_context * ctx,
  5376. struct ggml_tensor * a,
  5377. struct ggml_tensor * b) {
  5378. GGML_ASSERT(ggml_is_matrix(a) && ggml_is_vector(b) && b->type == GGML_TYPE_I32);
  5379. bool is_node = false;
  5380. if (a->grad || b->grad) {
  5381. is_node = true;
  5382. }
  5383. // TODO: implement non F32 return
  5384. //struct ggml_tensor * result = ggml_new_tensor_2d(ctx, a->type, a->ne[0], b->ne[0]);
  5385. struct ggml_tensor * result = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, a->ne[0], b->ne[0]);
  5386. result->op = GGML_OP_GET_ROWS;
  5387. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5388. result->src[0] = a;
  5389. result->src[1] = b;
  5390. return result;
  5391. }
  5392. // ggml_get_rows_back
  5393. struct ggml_tensor * ggml_get_rows_back(
  5394. struct ggml_context * ctx,
  5395. struct ggml_tensor * a,
  5396. struct ggml_tensor * b,
  5397. struct ggml_tensor * c) {
  5398. GGML_ASSERT(ggml_is_matrix(a) && ggml_is_vector(b) && b->type == GGML_TYPE_I32);
  5399. GGML_ASSERT(ggml_is_matrix(c) && (a->ne[0] == c->ne[0]));
  5400. bool is_node = false;
  5401. if (a->grad || b->grad) {
  5402. is_node = true;
  5403. }
  5404. // TODO: implement non F32 return
  5405. //struct ggml_tensor * result = ggml_new_tensor_2d(ctx, a->type, a->ne[0], b->ne[0]);
  5406. struct ggml_tensor * result = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, c->ne[0], c->ne[1]);
  5407. result->op = GGML_OP_GET_ROWS_BACK;
  5408. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5409. result->src[0] = a;
  5410. result->src[1] = b;
  5411. result->src[2] = c;
  5412. return result;
  5413. }
  5414. // ggml_diag
  5415. struct ggml_tensor * ggml_diag(
  5416. struct ggml_context * ctx,
  5417. struct ggml_tensor * a) {
  5418. GGML_ASSERT(a->ne[1] == 1);
  5419. bool is_node = false;
  5420. if (a->grad) {
  5421. is_node = true;
  5422. }
  5423. const int64_t ne[4] = { a->ne[0], a->ne[0], a->ne[2], a->ne[3] };
  5424. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, MAX(a->n_dims, 2), ne);
  5425. result->op = GGML_OP_DIAG;
  5426. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5427. result->src[0] = a;
  5428. result->src[1] = NULL;
  5429. return result;
  5430. }
  5431. // ggml_diag_mask_inf
  5432. struct ggml_tensor * ggml_diag_mask_inf_impl(
  5433. struct ggml_context * ctx,
  5434. struct ggml_tensor * a,
  5435. int n_past,
  5436. bool inplace) {
  5437. bool is_node = false;
  5438. if (a->grad) {
  5439. is_node = true;
  5440. }
  5441. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5442. ggml_scratch_save(ctx);
  5443. struct ggml_tensor * b = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 2);
  5444. ((int32_t *) b->data)[0] = n_past;
  5445. ((int32_t *) b->data)[1] = inplace ? 1 : 0;
  5446. ggml_scratch_load(ctx);
  5447. result->op = GGML_OP_DIAG_MASK_INF;
  5448. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5449. result->src[0] = a;
  5450. result->src[1] = b;
  5451. return result;
  5452. }
  5453. struct ggml_tensor * ggml_diag_mask_inf(
  5454. struct ggml_context * ctx,
  5455. struct ggml_tensor * a,
  5456. int n_past) {
  5457. return ggml_diag_mask_inf_impl(ctx, a, n_past, false);
  5458. }
  5459. struct ggml_tensor * ggml_diag_mask_inf_inplace(
  5460. struct ggml_context * ctx,
  5461. struct ggml_tensor * a,
  5462. int n_past) {
  5463. return ggml_diag_mask_inf_impl(ctx, a, n_past, true);
  5464. }
  5465. // ggml_diag_mask_zero
  5466. struct ggml_tensor * ggml_diag_mask_zero_impl(
  5467. struct ggml_context * ctx,
  5468. struct ggml_tensor * a,
  5469. int n_past,
  5470. bool inplace) {
  5471. bool is_node = false;
  5472. if (a->grad) {
  5473. is_node = true;
  5474. }
  5475. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5476. ggml_scratch_save(ctx);
  5477. struct ggml_tensor * b = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 2);
  5478. ggml_set_name(b, "n_past, inplace");
  5479. ((int32_t *) b->data)[0] = n_past;
  5480. ((int32_t *) b->data)[1] = inplace ? 1 : 0;
  5481. ggml_scratch_load(ctx);
  5482. result->op = GGML_OP_DIAG_MASK_ZERO;
  5483. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5484. result->src[0] = a;
  5485. result->src[1] = b;
  5486. return result;
  5487. }
  5488. struct ggml_tensor * ggml_diag_mask_zero(
  5489. struct ggml_context * ctx,
  5490. struct ggml_tensor * a,
  5491. int n_past) {
  5492. return ggml_diag_mask_zero_impl(ctx, a, n_past, false);
  5493. }
  5494. struct ggml_tensor * ggml_diag_mask_zero_inplace(
  5495. struct ggml_context * ctx,
  5496. struct ggml_tensor * a,
  5497. int n_past) {
  5498. return ggml_diag_mask_zero_impl(ctx, a, n_past, true);
  5499. }
  5500. // ggml_soft_max
  5501. struct ggml_tensor * ggml_soft_max_impl(
  5502. struct ggml_context * ctx,
  5503. struct ggml_tensor * a,
  5504. bool inplace) {
  5505. bool is_node = false;
  5506. if (a->grad) {
  5507. is_node = true;
  5508. }
  5509. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5510. result->op = GGML_OP_SOFT_MAX;
  5511. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5512. result->src[0] = a;
  5513. result->src[1] = NULL;
  5514. return result;
  5515. }
  5516. struct ggml_tensor * ggml_soft_max(
  5517. struct ggml_context * ctx,
  5518. struct ggml_tensor * a) {
  5519. return ggml_soft_max_impl(ctx, a, false);
  5520. }
  5521. struct ggml_tensor * ggml_soft_max_inplace(
  5522. struct ggml_context * ctx,
  5523. struct ggml_tensor * a) {
  5524. return ggml_soft_max_impl(ctx, a, true);
  5525. }
  5526. // ggml_soft_max_back
  5527. struct ggml_tensor * ggml_soft_max_back_impl(
  5528. struct ggml_context * ctx,
  5529. struct ggml_tensor * a,
  5530. struct ggml_tensor * b,
  5531. bool inplace) {
  5532. bool is_node = false;
  5533. if (a->grad || b->grad) {
  5534. is_node = true; // TODO : implement backward pass
  5535. }
  5536. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5537. result->op = GGML_OP_SOFT_MAX_BACK;
  5538. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5539. result->src[0] = a;
  5540. result->src[1] = b;
  5541. return result;
  5542. }
  5543. struct ggml_tensor * ggml_soft_max_back(
  5544. struct ggml_context * ctx,
  5545. struct ggml_tensor * a,
  5546. struct ggml_tensor * b) {
  5547. return ggml_soft_max_back_impl(ctx, a, b, false);
  5548. }
  5549. struct ggml_tensor * ggml_soft_max_back_inplace(
  5550. struct ggml_context * ctx,
  5551. struct ggml_tensor * a,
  5552. struct ggml_tensor * b) {
  5553. return ggml_soft_max_back_impl(ctx, a, b, true);
  5554. }
  5555. // ggml_rope
  5556. struct ggml_tensor * ggml_rope_impl(
  5557. struct ggml_context * ctx,
  5558. struct ggml_tensor * a,
  5559. int n_past,
  5560. int n_dims,
  5561. int mode,
  5562. int n_ctx,
  5563. bool inplace) {
  5564. GGML_ASSERT(n_past >= 0);
  5565. bool is_node = false;
  5566. if (a->grad) {
  5567. is_node = true;
  5568. }
  5569. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5570. ggml_scratch_save(ctx);
  5571. struct ggml_tensor * b = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 4);
  5572. ((int32_t *) b->data)[0] = n_past;
  5573. ((int32_t *) b->data)[1] = n_dims;
  5574. ((int32_t *) b->data)[2] = mode;
  5575. ((int32_t *) b->data)[3] = n_ctx;
  5576. ggml_scratch_load(ctx);
  5577. result->op = GGML_OP_ROPE;
  5578. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5579. result->src[0] = a;
  5580. result->src[1] = b;
  5581. return result;
  5582. }
  5583. struct ggml_tensor * ggml_rope(
  5584. struct ggml_context * ctx,
  5585. struct ggml_tensor * a,
  5586. int n_past,
  5587. int n_dims,
  5588. int mode,
  5589. int n_ctx) {
  5590. return ggml_rope_impl(ctx, a, n_past, n_dims, mode, n_ctx, false);
  5591. }
  5592. struct ggml_tensor * ggml_rope_inplace(
  5593. struct ggml_context * ctx,
  5594. struct ggml_tensor * a,
  5595. int n_past,
  5596. int n_dims,
  5597. int mode,
  5598. int n_ctx) {
  5599. return ggml_rope_impl(ctx, a, n_past, n_dims, mode, n_ctx, true);
  5600. }
  5601. // ggml_rope_back
  5602. struct ggml_tensor * ggml_rope_back(
  5603. struct ggml_context * ctx,
  5604. struct ggml_tensor * a,
  5605. int n_past,
  5606. int n_dims,
  5607. int mode) {
  5608. GGML_ASSERT(n_past >= 0);
  5609. GGML_ASSERT((mode & 4) == 0 && "ggml_rope_back() for ChatGLM not implemented yet");
  5610. bool is_node = false;
  5611. if (a->grad) {
  5612. is_node = false; // TODO: implement backward
  5613. }
  5614. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  5615. ggml_scratch_save(ctx);
  5616. struct ggml_tensor * b = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 3);
  5617. ggml_set_name(b, "n_past, n_dims, mode");
  5618. ((int32_t *) b->data)[0] = n_past;
  5619. ((int32_t *) b->data)[1] = n_dims;
  5620. ((int32_t *) b->data)[2] = mode;
  5621. ggml_scratch_load(ctx);
  5622. result->op = GGML_OP_ROPE_BACK;
  5623. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5624. result->src[0] = a;
  5625. result->src[1] = b;
  5626. return result;
  5627. }
  5628. // ggml_alibi
  5629. struct ggml_tensor * ggml_alibi(
  5630. struct ggml_context * ctx,
  5631. struct ggml_tensor * a,
  5632. int n_past,
  5633. int n_head,
  5634. float bias_max) {
  5635. GGML_ASSERT(n_past >= 0);
  5636. bool is_node = false;
  5637. if (a->grad) {
  5638. GGML_ASSERT(false); // TODO: implement backward
  5639. is_node = true;
  5640. }
  5641. // TODO: when implement backward, fix this:
  5642. //struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5643. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  5644. ggml_scratch_save(ctx);
  5645. struct ggml_tensor * b = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 3);
  5646. ((int32_t *) b->data)[0] = n_past;
  5647. ((int32_t *) b->data)[1] = n_head;
  5648. GGML_ASSERT(sizeof(float) == sizeof(int32_t));
  5649. (((float *) b->data)[2]) = bias_max;
  5650. ggml_scratch_load(ctx);
  5651. result->op = GGML_OP_ALIBI;
  5652. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5653. result->src[0] = a;
  5654. result->src[1] = b;
  5655. return result;
  5656. }
  5657. // ggml_clamp
  5658. struct ggml_tensor * ggml_clamp(
  5659. struct ggml_context * ctx,
  5660. struct ggml_tensor * a,
  5661. float min,
  5662. float max) {
  5663. bool is_node = false;
  5664. if (a->grad) {
  5665. GGML_ASSERT(false); // TODO: implement backward
  5666. is_node = true;
  5667. }
  5668. // TODO: when implement backward, fix this:
  5669. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  5670. ggml_scratch_save(ctx);
  5671. struct ggml_tensor * b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 2);
  5672. ((float *) b->data)[0] = min;
  5673. ((float *) b->data)[1] = max;
  5674. ggml_scratch_load(ctx);
  5675. result->op = GGML_OP_CLAMP;
  5676. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5677. result->src[0] = a;
  5678. result->src[1] = b;
  5679. return result;
  5680. }
  5681. // ggml_conv_1d
  5682. static int64_t ggml_calc_conv_output_size(int64_t ins, int64_t ks, int s, int p, int d) {
  5683. return (ins + 2 * p - d * (ks - 1) - 1) / s + 1;
  5684. }
  5685. GGML_API struct ggml_tensor * ggml_conv_1d(
  5686. struct ggml_context * ctx,
  5687. struct ggml_tensor * a,
  5688. struct ggml_tensor * b,
  5689. int s0,
  5690. int p0,
  5691. int d0) {
  5692. GGML_ASSERT(ggml_is_matrix(b));
  5693. GGML_ASSERT(a->ne[1] == b->ne[1]);
  5694. bool is_node = false;
  5695. if (a->grad || b->grad) {
  5696. GGML_ASSERT(false); // TODO: implement backward
  5697. is_node = true;
  5698. }
  5699. const int64_t ne[4] = {
  5700. ggml_calc_conv_output_size(b->ne[0], a->ne[0], s0, p0, d0),
  5701. a->ne[2], 1, 1,
  5702. };
  5703. struct ggml_tensor* result = ggml_new_tensor(ctx, GGML_TYPE_F32, 2, ne);
  5704. ggml_scratch_save(ctx);
  5705. struct ggml_tensor* c = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 3);
  5706. ((int32_t*)c->data)[0] = s0;
  5707. ((int32_t*)c->data)[1] = p0;
  5708. ((int32_t*)c->data)[2] = d0;
  5709. ggml_scratch_load(ctx);
  5710. result->op = GGML_OP_CONV_1D;
  5711. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5712. result->src[0] = a;
  5713. result->src[1] = b;
  5714. result->src[2] = c;
  5715. return result;
  5716. }
  5717. // ggml_conv_2d
  5718. struct ggml_tensor* ggml_conv_2d(
  5719. struct ggml_context* ctx,
  5720. struct ggml_tensor * a,
  5721. struct ggml_tensor * b,
  5722. int s0,
  5723. int s1,
  5724. int p0,
  5725. int p1,
  5726. int d0,
  5727. int d1) {
  5728. GGML_ASSERT(b->ne[3] == 1);
  5729. GGML_ASSERT(a->ne[2] == b->ne[2]);
  5730. bool is_node = false;
  5731. if (a->grad || b->grad) {
  5732. GGML_ASSERT(false); // TODO: implement backward
  5733. is_node = true;
  5734. }
  5735. const int64_t ne[4] = {
  5736. ggml_calc_conv_output_size(b->ne[0], a->ne[0], s0, p0, d0),
  5737. ggml_calc_conv_output_size(b->ne[1], a->ne[1], s1, p1, d1),
  5738. a->ne[3], 1,
  5739. };
  5740. struct ggml_tensor* result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  5741. ggml_scratch_save(ctx);
  5742. struct ggml_tensor* c = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 6);
  5743. ((int32_t*)c->data)[0] = s0;
  5744. ((int32_t*)c->data)[1] = s1;
  5745. ((int32_t*)c->data)[2] = p0;
  5746. ((int32_t*)c->data)[3] = p1;
  5747. ((int32_t*)c->data)[4] = d0;
  5748. ((int32_t*)c->data)[5] = d1;
  5749. ggml_scratch_load(ctx);
  5750. result->op = GGML_OP_CONV_2D;
  5751. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5752. result->src[0] = a;
  5753. result->src[1] = b;
  5754. result->src[2] = c;
  5755. return result;
  5756. }
  5757. // ggml_conv_1d_ph
  5758. struct ggml_tensor* ggml_conv_1d_ph(
  5759. struct ggml_context * ctx,
  5760. struct ggml_tensor * a,
  5761. struct ggml_tensor * b,
  5762. int s,
  5763. int d) {
  5764. return ggml_conv_1d(ctx, a, b, s, a->ne[0] / 2, d);
  5765. }
  5766. // ggml_flash_attn
  5767. struct ggml_tensor * ggml_flash_attn(
  5768. struct ggml_context * ctx,
  5769. struct ggml_tensor * q,
  5770. struct ggml_tensor * k,
  5771. struct ggml_tensor * v,
  5772. bool masked) {
  5773. GGML_ASSERT(ggml_can_mul_mat(k, q));
  5774. // TODO: check if vT can be multiplied by (k*qT)
  5775. bool is_node = false;
  5776. if (q->grad || k->grad || v->grad) {
  5777. is_node = true;
  5778. }
  5779. //struct ggml_tensor * result = ggml_dup_tensor(ctx, q);
  5780. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, q->ne);
  5781. result->op = GGML_OP_FLASH_ATTN;
  5782. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5783. result->src[0] = q;
  5784. result->src[1] = k;
  5785. result->src[2] = v;
  5786. result->src[3] = ggml_new_i32(ctx, masked ? 1 : 0);
  5787. return result;
  5788. }
  5789. // ggml_flash_ff
  5790. struct ggml_tensor * ggml_flash_ff(
  5791. struct ggml_context * ctx,
  5792. struct ggml_tensor * a,
  5793. struct ggml_tensor * b0,
  5794. struct ggml_tensor * b1,
  5795. struct ggml_tensor * c0,
  5796. struct ggml_tensor * c1) {
  5797. GGML_ASSERT(ggml_can_mul_mat(b0, a));
  5798. // TODO: more checks
  5799. bool is_node = false;
  5800. if (a->grad || b0->grad || b1->grad || c0->grad || c1->grad) {
  5801. is_node = true;
  5802. }
  5803. //struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  5804. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, a->ne);
  5805. result->op = GGML_OP_FLASH_FF;
  5806. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5807. result->src[0] = a;
  5808. result->src[1] = b0;
  5809. result->src[2] = b1;
  5810. result->src[3] = c0;
  5811. result->src[4] = c1;
  5812. return result;
  5813. }
  5814. // ggml_flash_attn_back
  5815. struct ggml_tensor * ggml_flash_attn_back(
  5816. struct ggml_context * ctx,
  5817. struct ggml_tensor * q,
  5818. struct ggml_tensor * k,
  5819. struct ggml_tensor * v,
  5820. struct ggml_tensor * d,
  5821. bool masked) {
  5822. GGML_ASSERT(ggml_can_mul_mat(k, q));
  5823. // TODO: check if vT can be multiplied by (k*qT)
  5824. // d shape [D,N,ne2,ne3]
  5825. // q shape [D,N,ne2,ne3]
  5826. // k shape [D,M,ne2,ne3]
  5827. // v shape [M,D,ne2,ne3]
  5828. const int64_t D = q->ne[0];
  5829. const int64_t N = q->ne[1];
  5830. const int64_t M = k->ne[1];
  5831. const int64_t ne2 = q->ne[2];
  5832. const int64_t ne3 = q->ne[3];
  5833. GGML_ASSERT(k->ne[0] == D);
  5834. GGML_ASSERT(v->ne[0] == M);
  5835. GGML_ASSERT(v->ne[1] == D);
  5836. GGML_ASSERT(d->ne[0] == D);
  5837. GGML_ASSERT(d->ne[1] == N);
  5838. GGML_ASSERT(k->ne[2] == ne2);
  5839. GGML_ASSERT(k->ne[3] == ne3);
  5840. GGML_ASSERT(v->ne[2] == ne2);
  5841. GGML_ASSERT(v->ne[3] == ne3);
  5842. GGML_ASSERT(d->ne[2] == ne2);
  5843. GGML_ASSERT(d->ne[3] == ne3);
  5844. bool is_node = false;
  5845. if (q->grad || k->grad || v->grad) {
  5846. // when using this operation (in backwards pass) these grads are set.
  5847. // we don't want to create (big) grad of our result, so is_node is false.
  5848. is_node = false;
  5849. }
  5850. // store gradients of q, k and v as continuous tensors concatenated in result.
  5851. // q shape[D,N,ne2,ne3] ; k shape [D,M,ne2,ne3] ; v shape [M,D,ne2,ne3]
  5852. // gradq->data = result->data
  5853. // gradk->data = result->data + nb0*D*N*ne2*ne3
  5854. // gradv->data = result->data + nb0*D*N*ne2*ne3 + nb0*D*M*ne2*ne3
  5855. // note: v and gradv are actually transposed, i.e. v->ne[0] != D.
  5856. int64_t ne[4] = {D,M+N+M,ne2,ne3};
  5857. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  5858. result->op = GGML_OP_FLASH_ATTN_BACK;
  5859. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5860. result->src[0] = q;
  5861. result->src[1] = k;
  5862. result->src[2] = v;
  5863. result->src[3] = d;
  5864. result->src[4] = ggml_new_i32(ctx, masked ? 1 : 0);
  5865. return result;
  5866. }
  5867. // ggml_win_part
  5868. struct ggml_tensor * ggml_win_part(
  5869. struct ggml_context * ctx,
  5870. struct ggml_tensor * a,
  5871. int w) {
  5872. GGML_ASSERT(a->ne[3] == 1);
  5873. GGML_ASSERT(a->type == GGML_TYPE_F32);
  5874. bool is_node = false;
  5875. if (a->grad) {
  5876. GGML_ASSERT(false); // TODO: implement backward
  5877. is_node = true;
  5878. }
  5879. // padding
  5880. const int px = (w - a->ne[1]%w)%w;
  5881. const int py = (w - a->ne[2]%w)%w;
  5882. const int npx = (px + a->ne[1])/w;
  5883. const int npy = (py + a->ne[2])/w;
  5884. const int np = npx*npy;
  5885. const int64_t ne[4] = { a->ne[0], w, w, np, };
  5886. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  5887. ggml_scratch_save(ctx);
  5888. struct ggml_tensor * b = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 3);
  5889. ((int32_t *) b->data)[0] = npx;
  5890. ((int32_t *) b->data)[1] = npy;
  5891. ((int32_t *) b->data)[2] = w;
  5892. ggml_scratch_load(ctx);
  5893. result->op = GGML_OP_WIN_PART;
  5894. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5895. result->src[0] = a;
  5896. result->src[1] = NULL;
  5897. result->src[2] = b;
  5898. return result;
  5899. }
  5900. // ggml_win_unpart
  5901. struct ggml_tensor * ggml_win_unpart(
  5902. struct ggml_context * ctx,
  5903. struct ggml_tensor * a,
  5904. int w0,
  5905. int h0,
  5906. int w) {
  5907. GGML_ASSERT(a->type == GGML_TYPE_F32);
  5908. bool is_node = false;
  5909. if (a->grad) {
  5910. GGML_ASSERT(false); // TODO: implement backward
  5911. is_node = true;
  5912. }
  5913. const int64_t ne[4] = { a->ne[0], w0, h0, 1, };
  5914. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 3, ne);
  5915. ggml_scratch_save(ctx);
  5916. struct ggml_tensor * b = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 1);
  5917. ((int32_t *) b->data)[0] = w;
  5918. ggml_scratch_load(ctx);
  5919. result->op = GGML_OP_WIN_UNPART;
  5920. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5921. result->src[0] = a;
  5922. result->src[1] = NULL;
  5923. result->src[2] = b;
  5924. return result;
  5925. }
  5926. // ggml_map_unary
  5927. struct ggml_tensor * ggml_map_unary_impl_f32(
  5928. struct ggml_context * ctx,
  5929. struct ggml_tensor * a,
  5930. const ggml_unary_op_f32_t fun,
  5931. bool inplace) {
  5932. bool is_node = false;
  5933. if (!inplace && a->grad) {
  5934. is_node = true;
  5935. }
  5936. struct ggml_tensor *result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5937. ggml_scratch_save(ctx);
  5938. struct ggml_tensor * addr_tensor = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, sizeof(void *) / sizeof(int32_t));
  5939. *((void (**)(void))addr_tensor->data) = (void (*)(void))fun;
  5940. ggml_scratch_load(ctx);
  5941. result->op = GGML_OP_MAP_UNARY;
  5942. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5943. result->src[0] = a;
  5944. result->src[2] = addr_tensor;
  5945. return result;
  5946. }
  5947. struct ggml_tensor * ggml_map_unary_f32(
  5948. struct ggml_context * ctx,
  5949. struct ggml_tensor * a,
  5950. const ggml_unary_op_f32_t fun) {
  5951. return ggml_map_unary_impl_f32(ctx, a, fun, false);
  5952. }
  5953. struct ggml_tensor * ggml_map_unary_inplace_f32(
  5954. struct ggml_context * ctx,
  5955. struct ggml_tensor * a,
  5956. const ggml_unary_op_f32_t fun) {
  5957. return ggml_map_unary_impl_f32(ctx, a, fun, true);
  5958. }
  5959. // ggml_map_binary
  5960. struct ggml_tensor * ggml_map_binary_impl_f32(
  5961. struct ggml_context * ctx,
  5962. struct ggml_tensor * a,
  5963. struct ggml_tensor * b,
  5964. const ggml_binary_op_f32_t fun,
  5965. bool inplace) {
  5966. GGML_ASSERT(ggml_are_same_shape(a, b));
  5967. bool is_node = false;
  5968. if (!inplace && (a->grad || b->grad)) {
  5969. is_node = true;
  5970. }
  5971. struct ggml_tensor *result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5972. ggml_scratch_save(ctx);
  5973. struct ggml_tensor * addr_tensor = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, sizeof(void *) / sizeof(int32_t));
  5974. *((void (**)(void))addr_tensor->data) = (void (*)(void))fun;
  5975. ggml_scratch_load(ctx);
  5976. result->op = GGML_OP_MAP_BINARY;
  5977. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5978. result->src[0] = a;
  5979. result->src[1] = b;
  5980. result->src[2] = addr_tensor;
  5981. return result;
  5982. }
  5983. struct ggml_tensor * ggml_map_binary_f32(
  5984. struct ggml_context * ctx,
  5985. struct ggml_tensor * a,
  5986. struct ggml_tensor * b,
  5987. const ggml_binary_op_f32_t fun) {
  5988. return ggml_map_binary_impl_f32(ctx, a, b, fun, false);
  5989. }
  5990. struct ggml_tensor * ggml_map_binary_inplace_f32(
  5991. struct ggml_context * ctx,
  5992. struct ggml_tensor * a,
  5993. struct ggml_tensor * b,
  5994. const ggml_binary_op_f32_t fun) {
  5995. return ggml_map_binary_impl_f32(ctx, a, b, fun, true);
  5996. }
  5997. // ggml_map_custom1
  5998. struct ggml_tensor * ggml_map_custom1_impl_f32(
  5999. struct ggml_context * ctx,
  6000. struct ggml_tensor * a,
  6001. const ggml_custom1_op_f32_t fun,
  6002. bool inplace) {
  6003. bool is_node = false;
  6004. if (!inplace && a->grad) {
  6005. is_node = true;
  6006. }
  6007. struct ggml_tensor *result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  6008. ggml_scratch_save(ctx);
  6009. struct ggml_tensor * addr_tensor = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, sizeof(void *) / sizeof(int32_t));
  6010. *((void (**)(void))addr_tensor->data) = (void (*)(void))fun;
  6011. ggml_scratch_load(ctx);
  6012. result->op = GGML_OP_MAP_CUSTOM1;
  6013. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6014. result->src[0] = a;
  6015. result->src[2] = addr_tensor;
  6016. return result;
  6017. }
  6018. struct ggml_tensor * ggml_map_custom1_f32(
  6019. struct ggml_context * ctx,
  6020. struct ggml_tensor * a,
  6021. const ggml_custom1_op_f32_t fun) {
  6022. return ggml_map_custom1_impl_f32(ctx, a, fun, false);
  6023. }
  6024. struct ggml_tensor * ggml_map_custom1_inplace_f32(
  6025. struct ggml_context * ctx,
  6026. struct ggml_tensor * a,
  6027. const ggml_custom1_op_f32_t fun) {
  6028. return ggml_map_custom1_impl_f32(ctx, a, fun, true);
  6029. }
  6030. // ggml_map_custom2
  6031. struct ggml_tensor * ggml_map_custom2_impl_f32(
  6032. struct ggml_context * ctx,
  6033. struct ggml_tensor * a,
  6034. struct ggml_tensor * b,
  6035. const ggml_custom2_op_f32_t fun,
  6036. bool inplace) {
  6037. bool is_node = false;
  6038. if (!inplace && (a->grad || b->grad)) {
  6039. is_node = true;
  6040. }
  6041. struct ggml_tensor *result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  6042. ggml_scratch_save(ctx);
  6043. struct ggml_tensor * addr_tensor = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, sizeof(void *) / sizeof(int32_t));
  6044. *((void (**)(void))addr_tensor->data) = (void (*)(void))fun;
  6045. ggml_scratch_load(ctx);
  6046. result->op = GGML_OP_MAP_CUSTOM2;
  6047. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6048. result->src[0] = a;
  6049. result->src[1] = b;
  6050. result->src[2] = addr_tensor;
  6051. return result;
  6052. }
  6053. struct ggml_tensor * ggml_map_custom2_f32(
  6054. struct ggml_context * ctx,
  6055. struct ggml_tensor * a,
  6056. struct ggml_tensor * b,
  6057. const ggml_custom2_op_f32_t fun) {
  6058. return ggml_map_custom2_impl_f32(ctx, a, b, fun, false);
  6059. }
  6060. struct ggml_tensor * ggml_map_custom2_inplace_f32(
  6061. struct ggml_context * ctx,
  6062. struct ggml_tensor * a,
  6063. struct ggml_tensor * b,
  6064. const ggml_custom2_op_f32_t fun) {
  6065. return ggml_map_custom2_impl_f32(ctx, a, b, fun, true);
  6066. }
  6067. // ggml_map_custom3
  6068. struct ggml_tensor * ggml_map_custom3_impl_f32(
  6069. struct ggml_context * ctx,
  6070. struct ggml_tensor * a,
  6071. struct ggml_tensor * b,
  6072. struct ggml_tensor * c,
  6073. const ggml_custom3_op_f32_t fun,
  6074. bool inplace) {
  6075. bool is_node = false;
  6076. if (!inplace && (a->grad || b->grad || c->grad)) {
  6077. is_node = true;
  6078. }
  6079. struct ggml_tensor *result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  6080. ggml_scratch_save(ctx);
  6081. struct ggml_tensor * addr_tensor = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, sizeof(void *) / sizeof(int32_t));
  6082. *((void (**)(void))addr_tensor->data) = (void (*)(void))fun;
  6083. ggml_scratch_load(ctx);
  6084. result->op = GGML_OP_MAP_CUSTOM3;
  6085. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6086. result->src[0] = a;
  6087. result->src[1] = b;
  6088. result->src[2] = addr_tensor;
  6089. result->src[3] = c;
  6090. return result;
  6091. }
  6092. struct ggml_tensor * ggml_map_custom3_f32(
  6093. struct ggml_context * ctx,
  6094. struct ggml_tensor * a,
  6095. struct ggml_tensor * b,
  6096. struct ggml_tensor * c,
  6097. const ggml_custom3_op_f32_t fun) {
  6098. return ggml_map_custom3_impl_f32(ctx, a, b, c, fun, false);
  6099. }
  6100. struct ggml_tensor * ggml_map_custom3_inplace_f32(
  6101. struct ggml_context * ctx,
  6102. struct ggml_tensor * a,
  6103. struct ggml_tensor * b,
  6104. struct ggml_tensor * c,
  6105. const ggml_custom3_op_f32_t fun) {
  6106. return ggml_map_custom3_impl_f32(ctx, a, b, c, fun, true);
  6107. }
  6108. // ggml_cross_entropy_loss
  6109. struct ggml_tensor * ggml_cross_entropy_loss(
  6110. struct ggml_context * ctx,
  6111. struct ggml_tensor * a,
  6112. struct ggml_tensor * b) {
  6113. GGML_ASSERT(ggml_are_same_shape(a, b));
  6114. bool is_node = false;
  6115. if (a->grad || b->grad) {
  6116. is_node = true;
  6117. }
  6118. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, a->type, 1);
  6119. result->op = GGML_OP_CROSS_ENTROPY_LOSS;
  6120. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6121. result->src[0] = a;
  6122. result->src[1] = b;
  6123. return result;
  6124. }
  6125. // ggml_cross_entropy_loss_back
  6126. struct ggml_tensor * ggml_cross_entropy_loss_back(
  6127. struct ggml_context * ctx,
  6128. struct ggml_tensor * a,
  6129. struct ggml_tensor * b,
  6130. struct ggml_tensor * c) {
  6131. GGML_ASSERT(ggml_are_same_shape(a, b));
  6132. GGML_ASSERT(ggml_is_scalar(c));
  6133. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  6134. result->op = GGML_OP_CROSS_ENTROPY_LOSS_BACK;
  6135. result->grad = NULL;
  6136. result->src[0] = a;
  6137. result->src[1] = b;
  6138. result->src[2] = c;
  6139. return result;
  6140. }
  6141. ////////////////////////////////////////////////////////////////////////////////
  6142. void ggml_set_param(
  6143. struct ggml_context * ctx,
  6144. struct ggml_tensor * tensor) {
  6145. tensor->is_param = true;
  6146. GGML_ASSERT(tensor->grad == NULL);
  6147. tensor->grad = ggml_dup_tensor(ctx, tensor);
  6148. }
  6149. // ggml_compute_forward_dup
  6150. static void ggml_compute_forward_dup_same_cont(
  6151. const struct ggml_compute_params * params,
  6152. const struct ggml_tensor * src0,
  6153. struct ggml_tensor * dst) {
  6154. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  6155. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  6156. GGML_ASSERT(src0->type == dst->type);
  6157. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6158. return;
  6159. }
  6160. const size_t nb00 = src0->nb[0];
  6161. const size_t nb0 = dst->nb[0];
  6162. const int ith = params->ith; // thread index
  6163. const int nth = params->nth; // number of threads
  6164. // parallelize by elements
  6165. const int ne = ggml_nelements(dst);
  6166. const int dr = (ne + nth - 1) / nth;
  6167. const int ie0 = dr * ith;
  6168. const int ie1 = MIN(ie0 + dr, ne);
  6169. if (ie0 < ie1) {
  6170. memcpy(
  6171. ((char *) dst->data + ie0*nb0),
  6172. ((char *) src0->data + ie0*nb00),
  6173. (ie1 - ie0) * GGML_TYPE_SIZE[src0->type]);
  6174. }
  6175. }
  6176. static void ggml_compute_forward_dup_f16(
  6177. const struct ggml_compute_params * params,
  6178. const struct ggml_tensor * src0,
  6179. struct ggml_tensor * dst) {
  6180. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  6181. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6182. return;
  6183. }
  6184. GGML_TENSOR_UNARY_OP_LOCALS;
  6185. const int ith = params->ith; // thread index
  6186. const int nth = params->nth; // number of threads
  6187. if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst) && src0->type == dst->type) {
  6188. ggml_compute_forward_dup_same_cont(params, src0, dst);
  6189. return;
  6190. }
  6191. // parallelize by rows
  6192. const int nr = ne01;
  6193. // number of rows per thread
  6194. const int dr = (nr + nth - 1) / nth;
  6195. // row range for this thread
  6196. const int ir0 = dr * ith;
  6197. const int ir1 = MIN(ir0 + dr, nr);
  6198. if (src0->type == dst->type &&
  6199. ne00 == ne0 &&
  6200. nb00 == GGML_TYPE_SIZE[src0->type] && nb0 == GGML_TYPE_SIZE[dst->type]) {
  6201. // copy by rows
  6202. const size_t rs = ne00*nb00;
  6203. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6204. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6205. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  6206. memcpy(
  6207. ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  6208. ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
  6209. rs);
  6210. }
  6211. }
  6212. }
  6213. return;
  6214. }
  6215. // TODO: add more special-case implementations for tensor shapes/strides that can benefit from memcpy
  6216. if (ggml_is_contiguous(dst)) {
  6217. if (nb00 == sizeof(ggml_fp16_t)) {
  6218. if (dst->type == GGML_TYPE_F16) {
  6219. size_t id = 0;
  6220. const size_t rs = ne00 * nb00;
  6221. char * dst_ptr = (char *) dst->data;
  6222. for (int i03 = 0; i03 < ne03; i03++) {
  6223. for (int i02 = 0; i02 < ne02; i02++) {
  6224. id += rs * ir0;
  6225. for (int i01 = ir0; i01 < ir1; i01++) {
  6226. const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
  6227. memcpy(dst_ptr + id, src0_ptr, rs);
  6228. id += rs;
  6229. }
  6230. id += rs * (ne01 - ir1);
  6231. }
  6232. }
  6233. } else if (dst->type == GGML_TYPE_F32) {
  6234. size_t id = 0;
  6235. float * dst_ptr = (float *) dst->data;
  6236. for (int i03 = 0; i03 < ne03; i03++) {
  6237. for (int i02 = 0; i02 < ne02; i02++) {
  6238. id += ne00 * ir0;
  6239. for (int i01 = ir0; i01 < ir1; i01++) {
  6240. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  6241. for (int i00 = 0; i00 < ne00; i00++) {
  6242. dst_ptr[id] = GGML_FP16_TO_FP32(src0_ptr[i00]);
  6243. id++;
  6244. }
  6245. }
  6246. id += ne00 * (ne01 - ir1);
  6247. }
  6248. }
  6249. } else if (type_traits[dst->type].from_float) {
  6250. ggml_from_float_t const quantize_row_q = type_traits[dst->type].from_float;
  6251. float * src0_f32 = (float *) params->wdata + (ne00 + CACHE_LINE_SIZE_F32) * ith;
  6252. size_t id = 0;
  6253. size_t rs = nb0 * (ne00 / GGML_BLCK_SIZE[dst->type]);
  6254. char * dst_ptr = (char *) dst->data;
  6255. for (int i03 = 0; i03 < ne03; i03++) {
  6256. for (int i02 = 0; i02 < ne02; i02++) {
  6257. id += rs * ir0;
  6258. for (int i01 = ir0; i01 < ir1; i01++) {
  6259. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  6260. for (int i00 = 0; i00 < ne00; i00++) {
  6261. src0_f32[i00] = GGML_FP16_TO_FP32(src0_ptr[i00]);
  6262. }
  6263. quantize_row_q(src0_f32, dst_ptr + id, ne00);
  6264. id += rs;
  6265. }
  6266. id += rs * (ne01 - ir1);
  6267. }
  6268. }
  6269. } else {
  6270. GGML_ASSERT(false); // TODO: implement
  6271. }
  6272. } else {
  6273. //printf("%s: this is not optimal - fix me\n", __func__);
  6274. if (dst->type == GGML_TYPE_F32) {
  6275. size_t id = 0;
  6276. float * dst_ptr = (float *) dst->data;
  6277. for (int i03 = 0; i03 < ne03; i03++) {
  6278. for (int i02 = 0; i02 < ne02; i02++) {
  6279. id += ne00 * ir0;
  6280. for (int i01 = ir0; i01 < ir1; i01++) {
  6281. for (int i00 = 0; i00 < ne00; i00++) {
  6282. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6283. dst_ptr[id] = GGML_FP16_TO_FP32(*src0_ptr);
  6284. id++;
  6285. }
  6286. }
  6287. id += ne00 * (ne01 - ir1);
  6288. }
  6289. }
  6290. } else if (dst->type == GGML_TYPE_F16) {
  6291. size_t id = 0;
  6292. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  6293. for (int i03 = 0; i03 < ne03; i03++) {
  6294. for (int i02 = 0; i02 < ne02; i02++) {
  6295. id += ne00 * ir0;
  6296. for (int i01 = ir0; i01 < ir1; i01++) {
  6297. for (int i00 = 0; i00 < ne00; i00++) {
  6298. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6299. dst_ptr[id] = *src0_ptr;
  6300. id++;
  6301. }
  6302. }
  6303. id += ne00 * (ne01 - ir1);
  6304. }
  6305. }
  6306. } else {
  6307. GGML_ASSERT(false); // TODO: implement
  6308. }
  6309. }
  6310. return;
  6311. }
  6312. // dst counters
  6313. int64_t i10 = 0;
  6314. int64_t i11 = 0;
  6315. int64_t i12 = 0;
  6316. int64_t i13 = 0;
  6317. if (dst->type == GGML_TYPE_F16) {
  6318. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6319. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6320. i10 += ne00 * ir0;
  6321. while (i10 >= ne0) {
  6322. i10 -= ne0;
  6323. if (++i11 == ne1) {
  6324. i11 = 0;
  6325. if (++i12 == ne2) {
  6326. i12 = 0;
  6327. if (++i13 == ne3) {
  6328. i13 = 0;
  6329. }
  6330. }
  6331. }
  6332. }
  6333. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  6334. for (int64_t i00 = 0; i00 < ne00; i00++) {
  6335. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6336. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  6337. memcpy(dst_ptr, src0_ptr, sizeof(ggml_fp16_t));
  6338. if (++i10 == ne00) {
  6339. i10 = 0;
  6340. if (++i11 == ne01) {
  6341. i11 = 0;
  6342. if (++i12 == ne02) {
  6343. i12 = 0;
  6344. if (++i13 == ne03) {
  6345. i13 = 0;
  6346. }
  6347. }
  6348. }
  6349. }
  6350. }
  6351. }
  6352. i10 += ne00 * (ne01 - ir1);
  6353. while (i10 >= ne0) {
  6354. i10 -= ne0;
  6355. if (++i11 == ne1) {
  6356. i11 = 0;
  6357. if (++i12 == ne2) {
  6358. i12 = 0;
  6359. if (++i13 == ne3) {
  6360. i13 = 0;
  6361. }
  6362. }
  6363. }
  6364. }
  6365. }
  6366. }
  6367. } else if (dst->type == GGML_TYPE_F32) {
  6368. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6369. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6370. i10 += ne00 * ir0;
  6371. while (i10 >= ne0) {
  6372. i10 -= ne0;
  6373. if (++i11 == ne1) {
  6374. i11 = 0;
  6375. if (++i12 == ne2) {
  6376. i12 = 0;
  6377. if (++i13 == ne3) {
  6378. i13 = 0;
  6379. }
  6380. }
  6381. }
  6382. }
  6383. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  6384. for (int64_t i00 = 0; i00 < ne00; i00++) {
  6385. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6386. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  6387. *(float *) dst_ptr = GGML_FP16_TO_FP32(*(const ggml_fp16_t *) src0_ptr);
  6388. if (++i10 == ne0) {
  6389. i10 = 0;
  6390. if (++i11 == ne1) {
  6391. i11 = 0;
  6392. if (++i12 == ne2) {
  6393. i12 = 0;
  6394. if (++i13 == ne3) {
  6395. i13 = 0;
  6396. }
  6397. }
  6398. }
  6399. }
  6400. }
  6401. }
  6402. i10 += ne00 * (ne01 - ir1);
  6403. while (i10 >= ne0) {
  6404. i10 -= ne0;
  6405. if (++i11 == ne1) {
  6406. i11 = 0;
  6407. if (++i12 == ne2) {
  6408. i12 = 0;
  6409. if (++i13 == ne3) {
  6410. i13 = 0;
  6411. }
  6412. }
  6413. }
  6414. }
  6415. }
  6416. }
  6417. } else {
  6418. GGML_ASSERT(false); // TODO: implement
  6419. }
  6420. }
  6421. static void ggml_compute_forward_dup_f32(
  6422. const struct ggml_compute_params * params,
  6423. const struct ggml_tensor * src0,
  6424. struct ggml_tensor * dst) {
  6425. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  6426. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6427. return;
  6428. }
  6429. GGML_TENSOR_UNARY_OP_LOCALS;
  6430. const int ith = params->ith; // thread index
  6431. const int nth = params->nth; // number of threads
  6432. if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst) && src0->type == dst->type) {
  6433. ggml_compute_forward_dup_same_cont(params, src0, dst);
  6434. return;
  6435. }
  6436. // parallelize by rows
  6437. const int nr = ne01;
  6438. // number of rows per thread
  6439. const int dr = (nr + nth - 1) / nth;
  6440. // row range for this thread
  6441. const int ir0 = dr * ith;
  6442. const int ir1 = MIN(ir0 + dr, nr);
  6443. if (src0->type == dst->type &&
  6444. ne00 == ne0 &&
  6445. nb00 == GGML_TYPE_SIZE[src0->type] && nb0 == GGML_TYPE_SIZE[dst->type]) {
  6446. // copy by rows
  6447. const size_t rs = ne00*nb00;
  6448. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6449. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6450. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  6451. memcpy(
  6452. ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  6453. ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
  6454. rs);
  6455. }
  6456. }
  6457. }
  6458. return;
  6459. }
  6460. if (ggml_is_contiguous(dst)) {
  6461. // TODO: simplify
  6462. if (nb00 == sizeof(float)) {
  6463. if (dst->type == GGML_TYPE_F32) {
  6464. size_t id = 0;
  6465. const size_t rs = ne00 * nb00;
  6466. char * dst_ptr = (char *) dst->data;
  6467. for (int i03 = 0; i03 < ne03; i03++) {
  6468. for (int i02 = 0; i02 < ne02; i02++) {
  6469. id += rs * ir0;
  6470. for (int i01 = ir0; i01 < ir1; i01++) {
  6471. const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
  6472. memcpy(dst_ptr + id, src0_ptr, rs);
  6473. id += rs;
  6474. }
  6475. id += rs * (ne01 - ir1);
  6476. }
  6477. }
  6478. } else if (type_traits[dst->type].from_float) {
  6479. ggml_from_float_t const quantize_row_q = type_traits[dst->type].from_float;
  6480. size_t id = 0;
  6481. size_t rs = nb0 * (ne00 / GGML_BLCK_SIZE[dst->type]);
  6482. char * dst_ptr = (char *) dst->data;
  6483. for (int i03 = 0; i03 < ne03; i03++) {
  6484. for (int i02 = 0; i02 < ne02; i02++) {
  6485. id += rs * ir0;
  6486. for (int i01 = ir0; i01 < ir1; i01++) {
  6487. const float * src0_ptr = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  6488. quantize_row_q(src0_ptr, dst_ptr + id, ne00);
  6489. id += rs;
  6490. }
  6491. id += rs * (ne01 - ir1);
  6492. }
  6493. }
  6494. } else {
  6495. GGML_ASSERT(false); // TODO: implement
  6496. }
  6497. } else {
  6498. //printf("%s: this is not optimal - fix me\n", __func__);
  6499. if (dst->type == GGML_TYPE_F32) {
  6500. size_t id = 0;
  6501. float * dst_ptr = (float *) dst->data;
  6502. for (int i03 = 0; i03 < ne03; i03++) {
  6503. for (int i02 = 0; i02 < ne02; i02++) {
  6504. id += ne00 * ir0;
  6505. for (int i01 = ir0; i01 < ir1; i01++) {
  6506. for (int i00 = 0; i00 < ne00; i00++) {
  6507. const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6508. dst_ptr[id] = *src0_ptr;
  6509. id++;
  6510. }
  6511. }
  6512. id += ne00 * (ne01 - ir1);
  6513. }
  6514. }
  6515. } else if (dst->type == GGML_TYPE_F16) {
  6516. size_t id = 0;
  6517. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  6518. for (int i03 = 0; i03 < ne03; i03++) {
  6519. for (int i02 = 0; i02 < ne02; i02++) {
  6520. id += ne00 * ir0;
  6521. for (int i01 = ir0; i01 < ir1; i01++) {
  6522. for (int i00 = 0; i00 < ne00; i00++) {
  6523. const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6524. dst_ptr[id] = GGML_FP32_TO_FP16(*src0_ptr);
  6525. id++;
  6526. }
  6527. }
  6528. id += ne00 * (ne01 - ir1);
  6529. }
  6530. }
  6531. } else {
  6532. GGML_ASSERT(false); // TODO: implement
  6533. }
  6534. }
  6535. return;
  6536. }
  6537. // dst counters
  6538. int64_t i10 = 0;
  6539. int64_t i11 = 0;
  6540. int64_t i12 = 0;
  6541. int64_t i13 = 0;
  6542. if (dst->type == GGML_TYPE_F32) {
  6543. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6544. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6545. i10 += ne00 * ir0;
  6546. while (i10 >= ne0) {
  6547. i10 -= ne0;
  6548. if (++i11 == ne1) {
  6549. i11 = 0;
  6550. if (++i12 == ne2) {
  6551. i12 = 0;
  6552. if (++i13 == ne3) {
  6553. i13 = 0;
  6554. }
  6555. }
  6556. }
  6557. }
  6558. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  6559. for (int64_t i00 = 0; i00 < ne00; i00++) {
  6560. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6561. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  6562. memcpy(dst_ptr, src0_ptr, sizeof(float));
  6563. if (++i10 == ne0) {
  6564. i10 = 0;
  6565. if (++i11 == ne1) {
  6566. i11 = 0;
  6567. if (++i12 == ne2) {
  6568. i12 = 0;
  6569. if (++i13 == ne3) {
  6570. i13 = 0;
  6571. }
  6572. }
  6573. }
  6574. }
  6575. }
  6576. }
  6577. i10 += ne00 * (ne01 - ir1);
  6578. while (i10 >= ne0) {
  6579. i10 -= ne0;
  6580. if (++i11 == ne1) {
  6581. i11 = 0;
  6582. if (++i12 == ne2) {
  6583. i12 = 0;
  6584. if (++i13 == ne3) {
  6585. i13 = 0;
  6586. }
  6587. }
  6588. }
  6589. }
  6590. }
  6591. }
  6592. } else if (dst->type == GGML_TYPE_F16) {
  6593. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6594. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6595. i10 += ne00 * ir0;
  6596. while (i10 >= ne0) {
  6597. i10 -= ne0;
  6598. if (++i11 == ne1) {
  6599. i11 = 0;
  6600. if (++i12 == ne2) {
  6601. i12 = 0;
  6602. if (++i13 == ne3) {
  6603. i13 = 0;
  6604. }
  6605. }
  6606. }
  6607. }
  6608. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  6609. for (int64_t i00 = 0; i00 < ne00; i00++) {
  6610. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6611. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  6612. *(ggml_fp16_t *) dst_ptr = GGML_FP32_TO_FP16(*(const float *) src0_ptr);
  6613. if (++i10 == ne0) {
  6614. i10 = 0;
  6615. if (++i11 == ne1) {
  6616. i11 = 0;
  6617. if (++i12 == ne2) {
  6618. i12 = 0;
  6619. if (++i13 == ne3) {
  6620. i13 = 0;
  6621. }
  6622. }
  6623. }
  6624. }
  6625. }
  6626. }
  6627. i10 += ne00 * (ne01 - ir1);
  6628. while (i10 >= ne0) {
  6629. i10 -= ne0;
  6630. if (++i11 == ne1) {
  6631. i11 = 0;
  6632. if (++i12 == ne2) {
  6633. i12 = 0;
  6634. if (++i13 == ne3) {
  6635. i13 = 0;
  6636. }
  6637. }
  6638. }
  6639. }
  6640. }
  6641. }
  6642. } else {
  6643. GGML_ASSERT(false); // TODO: implement
  6644. }
  6645. }
  6646. static void ggml_compute_forward_dup(
  6647. const struct ggml_compute_params * params,
  6648. const struct ggml_tensor * src0,
  6649. struct ggml_tensor * dst) {
  6650. if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst) && src0->type == dst->type) {
  6651. ggml_compute_forward_dup_same_cont(params, src0, dst);
  6652. return;
  6653. }
  6654. switch (src0->type) {
  6655. case GGML_TYPE_F16:
  6656. {
  6657. ggml_compute_forward_dup_f16(params, src0, dst);
  6658. } break;
  6659. case GGML_TYPE_F32:
  6660. {
  6661. ggml_compute_forward_dup_f32(params, src0, dst);
  6662. } break;
  6663. default:
  6664. {
  6665. GGML_ASSERT(false);
  6666. } break;
  6667. }
  6668. }
  6669. // ggml_compute_forward_add
  6670. static void ggml_compute_forward_add_f32(
  6671. const struct ggml_compute_params * params,
  6672. const struct ggml_tensor * src0,
  6673. const struct ggml_tensor * src1,
  6674. struct ggml_tensor * dst) {
  6675. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  6676. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6677. return;
  6678. }
  6679. const int ith = params->ith;
  6680. const int nth = params->nth;
  6681. const int nr = ggml_nrows(src0);
  6682. GGML_TENSOR_BINARY_OP_LOCALS;
  6683. GGML_ASSERT( nb0 == sizeof(float));
  6684. GGML_ASSERT(nb00 == sizeof(float));
  6685. // rows per thread
  6686. const int dr = (nr + nth - 1)/nth;
  6687. // row range for this thread
  6688. const int ir0 = dr*ith;
  6689. const int ir1 = MIN(ir0 + dr, nr);
  6690. if (nb10 == sizeof(float)) {
  6691. for (int ir = ir0; ir < ir1; ++ir) {
  6692. // src0, src1 and dst are same shape => same indices
  6693. const int i3 = ir/(ne2*ne1);
  6694. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6695. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6696. #ifdef GGML_USE_ACCELERATE
  6697. vDSP_vadd(
  6698. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01), 1,
  6699. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11), 1,
  6700. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ), 1,
  6701. ne0);
  6702. #else
  6703. ggml_vec_add_f32(ne0,
  6704. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ),
  6705. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01),
  6706. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
  6707. #endif
  6708. // }
  6709. // }
  6710. }
  6711. } else {
  6712. // src1 is not contiguous
  6713. for (int ir = ir0; ir < ir1; ++ir) {
  6714. // src0, src1 and dst are same shape => same indices
  6715. const int i3 = ir/(ne2*ne1);
  6716. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6717. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6718. float * dst_ptr = (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  6719. float * src0_ptr = (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  6720. for (int i0 = 0; i0 < ne0; i0++) {
  6721. float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11 + i0*nb10);
  6722. dst_ptr[i0] = src0_ptr[i0] + *src1_ptr;
  6723. }
  6724. }
  6725. }
  6726. }
  6727. static void ggml_compute_forward_add_f16_f32(
  6728. const struct ggml_compute_params * params,
  6729. const struct ggml_tensor * src0,
  6730. const struct ggml_tensor * src1,
  6731. struct ggml_tensor * dst) {
  6732. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  6733. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6734. return;
  6735. }
  6736. const int ith = params->ith;
  6737. const int nth = params->nth;
  6738. const int nr = ggml_nrows(src0);
  6739. GGML_TENSOR_BINARY_OP_LOCALS;
  6740. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  6741. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  6742. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  6743. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  6744. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  6745. // rows per thread
  6746. const int dr = (nr + nth - 1)/nth;
  6747. // row range for this thread
  6748. const int ir0 = dr*ith;
  6749. const int ir1 = MIN(ir0 + dr, nr);
  6750. if (nb10 == sizeof(float)) {
  6751. for (int ir = ir0; ir < ir1; ++ir) {
  6752. // src0, src1 and dst are same shape => same indices
  6753. const int i3 = ir/(ne2*ne1);
  6754. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6755. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6756. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  6757. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  6758. float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11);
  6759. for (int i = 0; i < ne0; i++) {
  6760. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + src1_ptr[i]);
  6761. }
  6762. }
  6763. }
  6764. else {
  6765. // src1 is not contiguous
  6766. GGML_ASSERT(false);
  6767. }
  6768. }
  6769. static void ggml_compute_forward_add_f16_f16(
  6770. const struct ggml_compute_params * params,
  6771. const struct ggml_tensor * src0,
  6772. const struct ggml_tensor * src1,
  6773. struct ggml_tensor * dst) {
  6774. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  6775. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6776. return;
  6777. }
  6778. const int ith = params->ith;
  6779. const int nth = params->nth;
  6780. const int nr = ggml_nrows(src0);
  6781. GGML_TENSOR_BINARY_OP_LOCALS;
  6782. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  6783. GGML_ASSERT(src1->type == GGML_TYPE_F16);
  6784. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  6785. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  6786. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  6787. // rows per thread
  6788. const int dr = (nr + nth - 1)/nth;
  6789. // row range for this thread
  6790. const int ir0 = dr*ith;
  6791. const int ir1 = MIN(ir0 + dr, nr);
  6792. if (nb10 == sizeof(ggml_fp16_t)) {
  6793. for (int ir = ir0; ir < ir1; ++ir) {
  6794. // src0, src1 and dst are same shape => same indices
  6795. const int i3 = ir/(ne2*ne1);
  6796. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6797. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6798. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  6799. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  6800. ggml_fp16_t * src1_ptr = (ggml_fp16_t *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11);
  6801. for (int i = 0; i < ne0; i++) {
  6802. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + GGML_FP16_TO_FP32(src1_ptr[i]));
  6803. }
  6804. }
  6805. }
  6806. else {
  6807. // src1 is not contiguous
  6808. GGML_ASSERT(false);
  6809. }
  6810. }
  6811. static void ggml_compute_forward_add_q_f32(
  6812. const struct ggml_compute_params * params,
  6813. const struct ggml_tensor * src0,
  6814. const struct ggml_tensor * src1,
  6815. struct ggml_tensor * dst) {
  6816. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  6817. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6818. return;
  6819. }
  6820. const int nr = ggml_nrows(src0);
  6821. GGML_TENSOR_BINARY_OP_LOCALS;
  6822. const int ith = params->ith;
  6823. const int nth = params->nth;
  6824. const enum ggml_type type = src0->type;
  6825. ggml_to_float_t const dequantize_row_q = type_traits[type].to_float;
  6826. ggml_from_float_t const quantize_row_q = type_traits[type].from_float;
  6827. // we don't support permuted src0 or src1
  6828. GGML_ASSERT(nb00 == GGML_TYPE_SIZE[type]);
  6829. GGML_ASSERT(nb10 == sizeof(float));
  6830. // dst cannot be transposed or permuted
  6831. GGML_ASSERT(nb0 <= nb1);
  6832. GGML_ASSERT(nb1 <= nb2);
  6833. GGML_ASSERT(nb2 <= nb3);
  6834. GGML_ASSERT(ggml_is_quantized(src0->type));
  6835. GGML_ASSERT(dst->type == src0->type);
  6836. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  6837. // rows per thread
  6838. const int dr = (nr + nth - 1)/nth;
  6839. // row range for this thread
  6840. const int ir0 = dr*ith;
  6841. const int ir1 = MIN(ir0 + dr, nr);
  6842. float * wdata = (float *) params->wdata + (ne00 + CACHE_LINE_SIZE_F32) * ith;
  6843. for (int ir = ir0; ir < ir1; ++ir) {
  6844. // src0 indices
  6845. const int i03 = ir/(ne02*ne01);
  6846. const int i02 = (ir - i03*ne02*ne01)/ne01;
  6847. const int i01 = (ir - i03*ne02*ne01 - i02*ne01);
  6848. // src1 and dst are same shape as src0 => same indices
  6849. const int i13 = i03;
  6850. const int i12 = i02;
  6851. const int i11 = i01;
  6852. const int i3 = i03;
  6853. const int i2 = i02;
  6854. const int i1 = i01;
  6855. void * src0_row = (void *) ((char *) src0->data + (i01*nb01 + i02*nb02 + i03*nb03));
  6856. float * src1_row = (float *)((char *) src1->data + (i11*nb11 + i12*nb12 + i13*nb13));
  6857. void * dst_row = (void *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
  6858. assert(ne00 % 32 == 0);
  6859. // unquantize row from src0 to temp buffer
  6860. dequantize_row_q(src0_row, wdata, ne00);
  6861. // add src1
  6862. ggml_vec_acc_f32(ne00, wdata, src1_row);
  6863. // quantize row to dst
  6864. quantize_row_q(wdata, dst_row, ne00);
  6865. }
  6866. }
  6867. static void ggml_compute_forward_add(
  6868. const struct ggml_compute_params * params,
  6869. const struct ggml_tensor * src0,
  6870. const struct ggml_tensor * src1,
  6871. struct ggml_tensor * dst) {
  6872. switch (src0->type) {
  6873. case GGML_TYPE_F32:
  6874. {
  6875. ggml_compute_forward_add_f32(params, src0, src1, dst);
  6876. } break;
  6877. case GGML_TYPE_F16:
  6878. {
  6879. if (src1->type == GGML_TYPE_F16) {
  6880. ggml_compute_forward_add_f16_f16(params, src0, src1, dst);
  6881. }
  6882. else if (src1->type == GGML_TYPE_F32) {
  6883. ggml_compute_forward_add_f16_f32(params, src0, src1, dst);
  6884. }
  6885. else {
  6886. GGML_ASSERT(false);
  6887. }
  6888. } break;
  6889. case GGML_TYPE_Q4_0:
  6890. case GGML_TYPE_Q4_1:
  6891. case GGML_TYPE_Q5_0:
  6892. case GGML_TYPE_Q5_1:
  6893. case GGML_TYPE_Q8_0:
  6894. case GGML_TYPE_Q2_K:
  6895. case GGML_TYPE_Q3_K:
  6896. case GGML_TYPE_Q4_K:
  6897. case GGML_TYPE_Q5_K:
  6898. case GGML_TYPE_Q6_K:
  6899. {
  6900. ggml_compute_forward_add_q_f32(params, src0, src1, dst);
  6901. } break;
  6902. default:
  6903. {
  6904. GGML_ASSERT(false);
  6905. } break;
  6906. }
  6907. }
  6908. // ggml_compute_forward_add1
  6909. static void ggml_compute_forward_add1_f32(
  6910. const struct ggml_compute_params * params,
  6911. const struct ggml_tensor * src0,
  6912. const struct ggml_tensor * src1,
  6913. struct ggml_tensor * dst) {
  6914. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6915. GGML_ASSERT(ggml_is_scalar(src1));
  6916. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6917. return;
  6918. }
  6919. const int ith = params->ith;
  6920. const int nth = params->nth;
  6921. const int nr = ggml_nrows(src0);
  6922. GGML_TENSOR_UNARY_OP_LOCALS;
  6923. GGML_ASSERT( nb0 == sizeof(float));
  6924. GGML_ASSERT(nb00 == sizeof(float));
  6925. // rows per thread
  6926. const int dr = (nr + nth - 1)/nth;
  6927. // row range for this thread
  6928. const int ir0 = dr*ith;
  6929. const int ir1 = MIN(ir0 + dr, nr);
  6930. for (int ir = ir0; ir < ir1; ++ir) {
  6931. // src0 and dst are same shape => same indices
  6932. const int i3 = ir/(ne2*ne1);
  6933. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6934. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6935. #ifdef GGML_USE_ACCELERATE
  6936. UNUSED(ggml_vec_add1_f32);
  6937. vDSP_vadd(
  6938. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01), 1,
  6939. (float *) ((char *) src1->data), 0,
  6940. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ), 1,
  6941. ne0);
  6942. #else
  6943. ggml_vec_add1_f32(ne0,
  6944. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ),
  6945. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01),
  6946. *(float *) src1->data);
  6947. #endif
  6948. }
  6949. }
  6950. static void ggml_compute_forward_add1_f16_f32(
  6951. const struct ggml_compute_params * params,
  6952. const struct ggml_tensor * src0,
  6953. const struct ggml_tensor * src1,
  6954. struct ggml_tensor * dst) {
  6955. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6956. GGML_ASSERT(ggml_is_scalar(src1));
  6957. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6958. return;
  6959. }
  6960. // scalar to add
  6961. const float v = *(float *) src1->data;
  6962. const int ith = params->ith;
  6963. const int nth = params->nth;
  6964. const int nr = ggml_nrows(src0);
  6965. GGML_TENSOR_UNARY_OP_LOCALS;
  6966. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  6967. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  6968. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  6969. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  6970. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  6971. // rows per thread
  6972. const int dr = (nr + nth - 1)/nth;
  6973. // row range for this thread
  6974. const int ir0 = dr*ith;
  6975. const int ir1 = MIN(ir0 + dr, nr);
  6976. for (int ir = ir0; ir < ir1; ++ir) {
  6977. // src0 and dst are same shape => same indices
  6978. const int i3 = ir/(ne2*ne1);
  6979. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6980. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6981. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  6982. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  6983. for (int i = 0; i < ne0; i++) {
  6984. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + v);
  6985. }
  6986. }
  6987. }
  6988. static void ggml_compute_forward_add1_f16_f16(
  6989. const struct ggml_compute_params * params,
  6990. const struct ggml_tensor * src0,
  6991. const struct ggml_tensor * src1,
  6992. struct ggml_tensor * dst) {
  6993. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6994. GGML_ASSERT(ggml_is_scalar(src1));
  6995. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6996. return;
  6997. }
  6998. // scalar to add
  6999. const float v = GGML_FP16_TO_FP32(*(ggml_fp16_t *) src1->data);
  7000. const int ith = params->ith;
  7001. const int nth = params->nth;
  7002. const int nr = ggml_nrows(src0);
  7003. GGML_TENSOR_UNARY_OP_LOCALS;
  7004. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  7005. GGML_ASSERT(src1->type == GGML_TYPE_F16);
  7006. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  7007. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  7008. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  7009. // rows per thread
  7010. const int dr = (nr + nth - 1)/nth;
  7011. // row range for this thread
  7012. const int ir0 = dr*ith;
  7013. const int ir1 = MIN(ir0 + dr, nr);
  7014. for (int ir = ir0; ir < ir1; ++ir) {
  7015. // src0 and dst are same shape => same indices
  7016. const int i3 = ir/(ne2*ne1);
  7017. const int i2 = (ir - i3*ne2*ne1)/ne1;
  7018. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  7019. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  7020. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  7021. for (int i = 0; i < ne0; i++) {
  7022. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + v);
  7023. }
  7024. }
  7025. }
  7026. static void ggml_compute_forward_add1_q_f32(
  7027. const struct ggml_compute_params * params,
  7028. const struct ggml_tensor * src0,
  7029. const struct ggml_tensor * src1,
  7030. struct ggml_tensor * dst) {
  7031. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7032. GGML_ASSERT(ggml_is_scalar(src1));
  7033. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7034. return;
  7035. }
  7036. // scalar to add
  7037. const float v = *(float *) src1->data;
  7038. const int ith = params->ith;
  7039. const int nth = params->nth;
  7040. const int nr = ggml_nrows(src0);
  7041. GGML_TENSOR_UNARY_OP_LOCALS;
  7042. const enum ggml_type type = src0->type;
  7043. ggml_to_float_t const dequantize_row_q = type_traits[type].to_float;
  7044. ggml_from_float_t const quantize_row_q = type_traits[type].from_float;
  7045. // we don't support permuted src0
  7046. GGML_ASSERT(nb00 == GGML_TYPE_SIZE[type]);
  7047. // dst cannot be transposed or permuted
  7048. GGML_ASSERT(nb0 <= nb1);
  7049. GGML_ASSERT(nb1 <= nb2);
  7050. GGML_ASSERT(nb2 <= nb3);
  7051. GGML_ASSERT(ggml_is_quantized(src0->type));
  7052. GGML_ASSERT(dst->type == src0->type);
  7053. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  7054. // rows per thread
  7055. const int dr = (nr + nth - 1)/nth;
  7056. // row range for this thread
  7057. const int ir0 = dr*ith;
  7058. const int ir1 = MIN(ir0 + dr, nr);
  7059. float * wdata = (float *) params->wdata + (ne0 + CACHE_LINE_SIZE_F32) * ith;
  7060. for (int ir = ir0; ir < ir1; ++ir) {
  7061. // src0 and dst are same shape => same indices
  7062. const int i3 = ir/(ne2*ne1);
  7063. const int i2 = (ir - i3*ne2*ne1)/ne1;
  7064. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  7065. void * src0_row = (void *) ((char *) src0->data + (i1*nb01 + i2*nb02 + i3*nb03));
  7066. void * dst_row = (void *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb0 ));
  7067. assert(ne0 % 32 == 0);
  7068. // unquantize row from src0 to temp buffer
  7069. dequantize_row_q(src0_row, wdata, ne0);
  7070. // add src1
  7071. ggml_vec_acc1_f32(ne0, wdata, v);
  7072. // quantize row to dst
  7073. quantize_row_q(wdata, dst_row, ne0);
  7074. }
  7075. }
  7076. static void ggml_compute_forward_add1(
  7077. const struct ggml_compute_params * params,
  7078. const struct ggml_tensor * src0,
  7079. const struct ggml_tensor * src1,
  7080. struct ggml_tensor * dst) {
  7081. switch (src0->type) {
  7082. case GGML_TYPE_F32:
  7083. {
  7084. ggml_compute_forward_add1_f32(params, src0, src1, dst);
  7085. } break;
  7086. case GGML_TYPE_F16:
  7087. {
  7088. if (src1->type == GGML_TYPE_F16) {
  7089. ggml_compute_forward_add1_f16_f16(params, src0, src1, dst);
  7090. }
  7091. else if (src1->type == GGML_TYPE_F32) {
  7092. ggml_compute_forward_add1_f16_f32(params, src0, src1, dst);
  7093. }
  7094. else {
  7095. GGML_ASSERT(false);
  7096. }
  7097. } break;
  7098. case GGML_TYPE_Q4_0:
  7099. case GGML_TYPE_Q4_1:
  7100. case GGML_TYPE_Q5_0:
  7101. case GGML_TYPE_Q5_1:
  7102. case GGML_TYPE_Q8_0:
  7103. case GGML_TYPE_Q8_1:
  7104. case GGML_TYPE_Q2_K:
  7105. case GGML_TYPE_Q3_K:
  7106. case GGML_TYPE_Q4_K:
  7107. case GGML_TYPE_Q5_K:
  7108. case GGML_TYPE_Q6_K:
  7109. {
  7110. ggml_compute_forward_add1_q_f32(params, src0, src1, dst);
  7111. } break;
  7112. default:
  7113. {
  7114. GGML_ASSERT(false);
  7115. } break;
  7116. }
  7117. }
  7118. // ggml_compute_forward_acc
  7119. static void ggml_compute_forward_acc_f32(
  7120. const struct ggml_compute_params * params,
  7121. const struct ggml_tensor * src0,
  7122. const struct ggml_tensor * src1,
  7123. const struct ggml_tensor * opt0,
  7124. struct ggml_tensor * dst) {
  7125. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7126. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  7127. GGML_ASSERT(opt0->type == GGML_TYPE_I32);
  7128. GGML_ASSERT(ggml_nelements(opt0) == 5);
  7129. // view src0 and dst with these strides and data offset inbytes during acc
  7130. // nb0 is implicitely element_size because src0 and dst are contiguous
  7131. size_t nb1 = ((int32_t *) opt0->data)[0];
  7132. size_t nb2 = ((int32_t *) opt0->data)[1];
  7133. size_t nb3 = ((int32_t *) opt0->data)[2];
  7134. size_t offset = ((int32_t *) opt0->data)[3];
  7135. bool inplace = (bool) ((int32_t *) opt0->data)[4];
  7136. if (!inplace && (params->type == GGML_TASK_INIT)) {
  7137. // memcpy needs to be synchronized across threads to avoid race conditions.
  7138. // => do it in INIT phase
  7139. memcpy(
  7140. ((char *) dst->data),
  7141. ((char *) src0->data),
  7142. ggml_nbytes(dst));
  7143. }
  7144. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7145. return;
  7146. }
  7147. const int ith = params->ith;
  7148. const int nth = params->nth;
  7149. const int nr = ggml_nrows(src1);
  7150. const int nc = src1->ne[0];
  7151. GGML_TENSOR_LOCALS(int64_t, ne1, src1, ne);
  7152. GGML_TENSOR_LOCALS(size_t, nb1, src1, nb);
  7153. // src0 and dst as viewed during acc
  7154. const size_t nb0 = ggml_element_size(src0);
  7155. const size_t nb00 = nb0;
  7156. const size_t nb01 = nb1;
  7157. const size_t nb02 = nb2;
  7158. const size_t nb03 = nb3;
  7159. GGML_ASSERT(offset + (ne10 == 0 ? 0 : ne10-1)*nb0 + (ne11 == 0 ? 0 : ne11-1)*nb1 + (ne12 == 0 ? 0 : ne12-1)*nb2 + (ne13 == 0 ? 0 : ne13-1)*nb3 < ggml_nbytes(dst));
  7160. GGML_ASSERT(offset + (ne10 == 0 ? 0 : ne10-1)*nb00 + (ne11 == 0 ? 0 : ne11-1)*nb01 + (ne12 == 0 ? 0 : ne12-1)*nb02 + (ne13 == 0 ? 0 : ne13-1)*nb03 < ggml_nbytes(src0));
  7161. GGML_ASSERT(nb10 == sizeof(float));
  7162. // rows per thread
  7163. const int dr = (nr + nth - 1)/nth;
  7164. // row range for this thread
  7165. const int ir0 = dr*ith;
  7166. const int ir1 = MIN(ir0 + dr, nr);
  7167. for (int ir = ir0; ir < ir1; ++ir) {
  7168. // src0 and dst are viewed with shape of src1 and offset
  7169. // => same indices
  7170. const int i3 = ir/(ne12*ne11);
  7171. const int i2 = (ir - i3*ne12*ne11)/ne11;
  7172. const int i1 = (ir - i3*ne12*ne11 - i2*ne11);
  7173. #ifdef GGML_USE_ACCELERATE
  7174. vDSP_vadd(
  7175. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + offset), 1,
  7176. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11), 1,
  7177. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + offset), 1, nc);
  7178. #else
  7179. ggml_vec_add_f32(nc,
  7180. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + offset),
  7181. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + offset),
  7182. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
  7183. #endif
  7184. }
  7185. }
  7186. static void ggml_compute_forward_acc(
  7187. const struct ggml_compute_params * params,
  7188. const struct ggml_tensor * src0,
  7189. const struct ggml_tensor * src1,
  7190. const struct ggml_tensor * opt0,
  7191. struct ggml_tensor * dst) {
  7192. switch (src0->type) {
  7193. case GGML_TYPE_F32:
  7194. {
  7195. ggml_compute_forward_acc_f32(params, src0, src1, opt0, dst);
  7196. } break;
  7197. case GGML_TYPE_F16:
  7198. case GGML_TYPE_Q4_0:
  7199. case GGML_TYPE_Q4_1:
  7200. case GGML_TYPE_Q5_0:
  7201. case GGML_TYPE_Q5_1:
  7202. case GGML_TYPE_Q8_0:
  7203. case GGML_TYPE_Q8_1:
  7204. case GGML_TYPE_Q2_K:
  7205. case GGML_TYPE_Q3_K:
  7206. case GGML_TYPE_Q4_K:
  7207. case GGML_TYPE_Q5_K:
  7208. case GGML_TYPE_Q6_K:
  7209. default:
  7210. {
  7211. GGML_ASSERT(false);
  7212. } break;
  7213. }
  7214. }
  7215. // ggml_compute_forward_sub
  7216. static void ggml_compute_forward_sub_f32(
  7217. const struct ggml_compute_params * params,
  7218. const struct ggml_tensor * src0,
  7219. const struct ggml_tensor * src1,
  7220. struct ggml_tensor * dst) {
  7221. assert(params->ith == 0);
  7222. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  7223. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7224. return;
  7225. }
  7226. const int nr = ggml_nrows(src0);
  7227. GGML_TENSOR_BINARY_OP_LOCALS;
  7228. GGML_ASSERT( nb0 == sizeof(float));
  7229. GGML_ASSERT(nb00 == sizeof(float));
  7230. if (nb10 == sizeof(float)) {
  7231. for (int ir = 0; ir < nr; ++ir) {
  7232. // src0, src1 and dst are same shape => same indices
  7233. const int i3 = ir/(ne2*ne1);
  7234. const int i2 = (ir - i3*ne2*ne1)/ne1;
  7235. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  7236. #ifdef GGML_USE_ACCELERATE
  7237. vDSP_vsub(
  7238. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11), 1,
  7239. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01), 1,
  7240. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ), 1,
  7241. ne0);
  7242. #else
  7243. ggml_vec_sub_f32(ne0,
  7244. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ),
  7245. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01),
  7246. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
  7247. #endif
  7248. // }
  7249. // }
  7250. }
  7251. } else {
  7252. // src1 is not contiguous
  7253. for (int ir = 0; ir < nr; ++ir) {
  7254. // src0, src1 and dst are same shape => same indices
  7255. const int i3 = ir/(ne2*ne1);
  7256. const int i2 = (ir - i3*ne2*ne1)/ne1;
  7257. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  7258. float * dst_ptr = (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  7259. float * src0_ptr = (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  7260. for (int i0 = 0; i0 < ne0; i0++) {
  7261. float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11 + i0*nb10);
  7262. dst_ptr[i0] = src0_ptr[i0] - *src1_ptr;
  7263. }
  7264. }
  7265. }
  7266. }
  7267. static void ggml_compute_forward_sub(
  7268. const struct ggml_compute_params * params,
  7269. const struct ggml_tensor * src0,
  7270. const struct ggml_tensor * src1,
  7271. struct ggml_tensor * dst) {
  7272. switch (src0->type) {
  7273. case GGML_TYPE_F32:
  7274. {
  7275. ggml_compute_forward_sub_f32(params, src0, src1, dst);
  7276. } break;
  7277. default:
  7278. {
  7279. GGML_ASSERT(false);
  7280. } break;
  7281. }
  7282. }
  7283. // ggml_compute_forward_mul
  7284. static void ggml_compute_forward_mul_f32(
  7285. const struct ggml_compute_params * params,
  7286. const struct ggml_tensor * src0,
  7287. const struct ggml_tensor * src1,
  7288. struct ggml_tensor * dst) {
  7289. GGML_ASSERT(ggml_can_repeat_rows(src1, src0) && ggml_are_same_shape(src0, dst));
  7290. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7291. return;
  7292. }
  7293. const int ith = params->ith;
  7294. const int nth = params->nth;
  7295. #ifdef GGML_USE_CLBLAST
  7296. if (src1->backend == GGML_BACKEND_GPU) {
  7297. if (ith == 0) {
  7298. ggml_cl_mul(src0, src1, dst);
  7299. }
  7300. return;
  7301. }
  7302. #endif
  7303. const int64_t nr = ggml_nrows(src0);
  7304. GGML_TENSOR_BINARY_OP_LOCALS;
  7305. GGML_ASSERT( nb0 == sizeof(float));
  7306. GGML_ASSERT(nb00 == sizeof(float));
  7307. GGML_ASSERT(ne00 == ne10);
  7308. if (nb10 == sizeof(float)) {
  7309. for (int64_t ir = ith; ir < nr; ir += nth) {
  7310. // src0 and dst are same shape => same indices
  7311. const int64_t i03 = ir/(ne02*ne01);
  7312. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  7313. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  7314. const int64_t i13 = i03 % ne13;
  7315. const int64_t i12 = i02 % ne12;
  7316. const int64_t i11 = i01 % ne11;
  7317. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  7318. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  7319. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11);
  7320. #ifdef GGML_USE_ACCELERATE
  7321. UNUSED(ggml_vec_mul_f32);
  7322. vDSP_vmul( src0_ptr, 1, src1_ptr, 1, dst_ptr, 1, ne00);
  7323. #else
  7324. ggml_vec_mul_f32(ne00, dst_ptr, src0_ptr, src1_ptr);
  7325. #endif
  7326. // }
  7327. // }
  7328. }
  7329. } else {
  7330. // src1 is not contiguous
  7331. for (int64_t ir = ith; ir < nr; ir += nth) {
  7332. // src0 and dst are same shape => same indices
  7333. // src1 is broadcastable across src0 and dst in i1, i2, i3
  7334. const int64_t i03 = ir/(ne02*ne01);
  7335. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  7336. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  7337. const int64_t i13 = i03 % ne13;
  7338. const int64_t i12 = i02 % ne12;
  7339. const int64_t i11 = i01 % ne11;
  7340. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  7341. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  7342. for (int64_t i0 = 0; i0 < ne00; i0++) {
  7343. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11 + i0*nb10);
  7344. dst_ptr[i0] = src0_ptr[i0] * (*src1_ptr);
  7345. }
  7346. }
  7347. }
  7348. }
  7349. static void ggml_compute_forward_mul(
  7350. const struct ggml_compute_params * params,
  7351. const struct ggml_tensor * src0,
  7352. const struct ggml_tensor * src1,
  7353. struct ggml_tensor * dst) {
  7354. switch (src0->type) {
  7355. case GGML_TYPE_F32:
  7356. {
  7357. ggml_compute_forward_mul_f32(params, src0, src1, dst);
  7358. } break;
  7359. default:
  7360. {
  7361. GGML_ASSERT(false);
  7362. } break;
  7363. }
  7364. }
  7365. // ggml_compute_forward_div
  7366. static void ggml_compute_forward_div_f32(
  7367. const struct ggml_compute_params * params,
  7368. const struct ggml_tensor * src0,
  7369. const struct ggml_tensor * src1,
  7370. struct ggml_tensor * dst) {
  7371. assert(params->ith == 0);
  7372. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  7373. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7374. return;
  7375. }
  7376. const int nr = ggml_nrows(src0);
  7377. GGML_TENSOR_BINARY_OP_LOCALS;
  7378. GGML_ASSERT( nb0 == sizeof(float));
  7379. GGML_ASSERT(nb00 == sizeof(float));
  7380. if (nb10 == sizeof(float)) {
  7381. for (int ir = 0; ir < nr; ++ir) {
  7382. // src0, src1 and dst are same shape => same indices
  7383. const int i3 = ir/(ne2*ne1);
  7384. const int i2 = (ir - i3*ne2*ne1)/ne1;
  7385. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  7386. #ifdef GGML_USE_ACCELERATE
  7387. vDSP_vdiv(
  7388. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11), 1,
  7389. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01), 1,
  7390. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ), 1,
  7391. ne0);
  7392. #else
  7393. ggml_vec_div_f32(ne0,
  7394. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ),
  7395. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01),
  7396. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
  7397. #endif
  7398. // }
  7399. // }
  7400. }
  7401. } else {
  7402. // src1 is not contiguous
  7403. for (int ir = 0; ir < nr; ++ir) {
  7404. // src0, src1 and dst are same shape => same indices
  7405. const int i3 = ir/(ne2*ne1);
  7406. const int i2 = (ir - i3*ne2*ne1)/ne1;
  7407. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  7408. float * dst_ptr = (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  7409. float * src0_ptr = (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  7410. for (int i0 = 0; i0 < ne0; i0++) {
  7411. float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11 + i0*nb10);
  7412. dst_ptr[i0] = src0_ptr[i0] / (*src1_ptr);
  7413. }
  7414. }
  7415. }
  7416. }
  7417. static void ggml_compute_forward_div(
  7418. const struct ggml_compute_params * params,
  7419. const struct ggml_tensor * src0,
  7420. const struct ggml_tensor * src1,
  7421. struct ggml_tensor * dst) {
  7422. switch (src0->type) {
  7423. case GGML_TYPE_F32:
  7424. {
  7425. ggml_compute_forward_div_f32(params, src0, src1, dst);
  7426. } break;
  7427. default:
  7428. {
  7429. GGML_ASSERT(false);
  7430. } break;
  7431. }
  7432. }
  7433. // ggml_compute_forward_sqr
  7434. static void ggml_compute_forward_sqr_f32(
  7435. const struct ggml_compute_params * params,
  7436. const struct ggml_tensor * src0,
  7437. struct ggml_tensor * dst) {
  7438. assert(params->ith == 0);
  7439. assert(ggml_are_same_shape(src0, dst));
  7440. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7441. return;
  7442. }
  7443. const int n = ggml_nrows(src0);
  7444. const int nc = src0->ne[0];
  7445. assert( dst->nb[0] == sizeof(float));
  7446. assert(src0->nb[0] == sizeof(float));
  7447. for (int i = 0; i < n; i++) {
  7448. ggml_vec_sqr_f32(nc,
  7449. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7450. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7451. }
  7452. }
  7453. static void ggml_compute_forward_sqr(
  7454. const struct ggml_compute_params * params,
  7455. const struct ggml_tensor * src0,
  7456. struct ggml_tensor * dst) {
  7457. switch (src0->type) {
  7458. case GGML_TYPE_F32:
  7459. {
  7460. ggml_compute_forward_sqr_f32(params, src0, dst);
  7461. } break;
  7462. default:
  7463. {
  7464. GGML_ASSERT(false);
  7465. } break;
  7466. }
  7467. }
  7468. // ggml_compute_forward_sqrt
  7469. static void ggml_compute_forward_sqrt_f32(
  7470. const struct ggml_compute_params * params,
  7471. const struct ggml_tensor * src0,
  7472. struct ggml_tensor * dst) {
  7473. assert(params->ith == 0);
  7474. assert(ggml_are_same_shape(src0, dst));
  7475. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7476. return;
  7477. }
  7478. const int n = ggml_nrows(src0);
  7479. const int nc = src0->ne[0];
  7480. assert( dst->nb[0] == sizeof(float));
  7481. assert(src0->nb[0] == sizeof(float));
  7482. for (int i = 0; i < n; i++) {
  7483. ggml_vec_sqrt_f32(nc,
  7484. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7485. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7486. }
  7487. }
  7488. static void ggml_compute_forward_sqrt(
  7489. const struct ggml_compute_params * params,
  7490. const struct ggml_tensor * src0,
  7491. struct ggml_tensor * dst) {
  7492. switch (src0->type) {
  7493. case GGML_TYPE_F32:
  7494. {
  7495. ggml_compute_forward_sqrt_f32(params, src0, dst);
  7496. } break;
  7497. default:
  7498. {
  7499. GGML_ASSERT(false);
  7500. } break;
  7501. }
  7502. }
  7503. // ggml_compute_forward_log
  7504. static void ggml_compute_forward_log_f32(
  7505. const struct ggml_compute_params * params,
  7506. const struct ggml_tensor * src0,
  7507. struct ggml_tensor * dst) {
  7508. GGML_ASSERT(params->ith == 0);
  7509. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7510. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7511. return;
  7512. }
  7513. const int n = ggml_nrows(src0);
  7514. const int nc = src0->ne[0];
  7515. GGML_ASSERT( dst->nb[0] == sizeof(float));
  7516. GGML_ASSERT(src0->nb[0] == sizeof(float));
  7517. for (int i = 0; i < n; i++) {
  7518. ggml_vec_log_f32(nc,
  7519. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7520. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7521. }
  7522. }
  7523. static void ggml_compute_forward_log(
  7524. const struct ggml_compute_params * params,
  7525. const struct ggml_tensor * src0,
  7526. struct ggml_tensor * dst) {
  7527. switch (src0->type) {
  7528. case GGML_TYPE_F32:
  7529. {
  7530. ggml_compute_forward_log_f32(params, src0, dst);
  7531. } break;
  7532. default:
  7533. {
  7534. GGML_ASSERT(false);
  7535. } break;
  7536. }
  7537. }
  7538. // ggml_compute_forward_sum
  7539. static void ggml_compute_forward_sum_f32(
  7540. const struct ggml_compute_params * params,
  7541. const struct ggml_tensor * src0,
  7542. struct ggml_tensor * dst) {
  7543. assert(params->ith == 0);
  7544. assert(ggml_is_scalar(dst));
  7545. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7546. return;
  7547. }
  7548. assert(ggml_is_scalar(dst));
  7549. assert(src0->nb[0] == sizeof(float));
  7550. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne);
  7551. GGML_TENSOR_LOCALS(size_t, nb0, src0, nb);
  7552. ggml_float sum = 0;
  7553. ggml_float row_sum = 0;
  7554. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7555. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7556. for (int64_t i01 = 0; i01 < ne01; i01++) {
  7557. ggml_vec_sum_ggf(ne00,
  7558. &row_sum,
  7559. (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03));
  7560. sum += row_sum;
  7561. }
  7562. }
  7563. }
  7564. ((float *) dst->data)[0] = sum;
  7565. }
  7566. static void ggml_compute_forward_sum(
  7567. const struct ggml_compute_params * params,
  7568. const struct ggml_tensor * src0,
  7569. struct ggml_tensor * dst) {
  7570. switch (src0->type) {
  7571. case GGML_TYPE_F32:
  7572. {
  7573. ggml_compute_forward_sum_f32(params, src0, dst);
  7574. } break;
  7575. default:
  7576. {
  7577. GGML_ASSERT(false);
  7578. } break;
  7579. }
  7580. }
  7581. // ggml_compute_forward_sum_rows
  7582. static void ggml_compute_forward_sum_rows_f32(
  7583. const struct ggml_compute_params * params,
  7584. const struct ggml_tensor * src0,
  7585. struct ggml_tensor * dst) {
  7586. GGML_ASSERT(params->ith == 0);
  7587. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7588. return;
  7589. }
  7590. GGML_ASSERT(src0->nb[0] == sizeof(float));
  7591. GGML_ASSERT(dst->nb[0] == sizeof(float));
  7592. GGML_TENSOR_UNARY_OP_LOCALS;
  7593. GGML_ASSERT(ne0 == 1);
  7594. GGML_ASSERT(ne1 == ne01);
  7595. GGML_ASSERT(ne2 == ne02);
  7596. GGML_ASSERT(ne3 == ne03);
  7597. for (int64_t i3 = 0; i3 < ne03; i3++) {
  7598. for (int64_t i2 = 0; i2 < ne02; i2++) {
  7599. for (int64_t i1 = 0; i1 < ne01; i1++) {
  7600. float* src_row = (float *) ((char *) src0->data + i1*nb01 + i2*nb02 + i3*nb03);
  7601. float* dst_row = (float *) ((char *) dst->data + i1*nb1 + i2*nb2 + i3*nb3);
  7602. float row_sum = 0;
  7603. ggml_vec_sum_f32(ne00, &row_sum, src_row);
  7604. dst_row[0] = row_sum;
  7605. }
  7606. }
  7607. }
  7608. }
  7609. static void ggml_compute_forward_sum_rows(
  7610. const struct ggml_compute_params * params,
  7611. const struct ggml_tensor * src0,
  7612. struct ggml_tensor * dst) {
  7613. switch (src0->type) {
  7614. case GGML_TYPE_F32:
  7615. {
  7616. ggml_compute_forward_sum_rows_f32(params, src0, dst);
  7617. } break;
  7618. default:
  7619. {
  7620. GGML_ASSERT(false);
  7621. } break;
  7622. }
  7623. }
  7624. // ggml_compute_forward_mean
  7625. static void ggml_compute_forward_mean_f32(
  7626. const struct ggml_compute_params * params,
  7627. const struct ggml_tensor * src0,
  7628. struct ggml_tensor * dst) {
  7629. assert(params->ith == 0);
  7630. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7631. return;
  7632. }
  7633. assert(src0->nb[0] == sizeof(float));
  7634. GGML_TENSOR_UNARY_OP_LOCALS;
  7635. assert(ne0 == 1);
  7636. assert(ne1 == ne01);
  7637. assert(ne2 == ne02);
  7638. assert(ne3 == ne03);
  7639. UNUSED(ne0);
  7640. UNUSED(ne1);
  7641. UNUSED(ne2);
  7642. UNUSED(ne3);
  7643. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7644. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7645. for (int64_t i01 = 0; i01 < ne01; i01++) {
  7646. ggml_vec_sum_f32(ne00,
  7647. (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  7648. (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03));
  7649. *(float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3) /= (float) ne00;
  7650. }
  7651. }
  7652. }
  7653. }
  7654. static void ggml_compute_forward_mean(
  7655. const struct ggml_compute_params * params,
  7656. const struct ggml_tensor * src0,
  7657. struct ggml_tensor * dst) {
  7658. switch (src0->type) {
  7659. case GGML_TYPE_F32:
  7660. {
  7661. ggml_compute_forward_mean_f32(params, src0, dst);
  7662. } break;
  7663. default:
  7664. {
  7665. GGML_ASSERT(false);
  7666. } break;
  7667. }
  7668. }
  7669. // ggml_compute_forward_argmax
  7670. static void ggml_compute_forward_argmax_f32(
  7671. const struct ggml_compute_params * params,
  7672. const struct ggml_tensor * src0,
  7673. struct ggml_tensor * dst) {
  7674. assert(params->ith == 0);
  7675. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7676. return;
  7677. }
  7678. assert(src0->nb[0] == sizeof(float));
  7679. assert(dst->nb[0] == sizeof(float));
  7680. const int64_t ne00 = src0->ne[0];
  7681. const int64_t ne01 = src0->ne[1];
  7682. const size_t nb01 = src0->nb[1];
  7683. const size_t nb0 = dst->nb[0];
  7684. for (int64_t i1 = 0; i1 < ne01; i1++) {
  7685. float * src = (float *) ((char *) src0->data + i1*nb01);
  7686. int32_t * dst_ = (int32_t *) ((char *) dst->data + i1*nb0);
  7687. int v = 0;
  7688. ggml_vec_argmax_f32(ne00, &v, src);
  7689. dst_[0] = v;
  7690. }
  7691. }
  7692. static void ggml_compute_forward_argmax(
  7693. const struct ggml_compute_params * params,
  7694. const struct ggml_tensor * src0,
  7695. struct ggml_tensor * dst) {
  7696. switch (src0->type) {
  7697. case GGML_TYPE_F32:
  7698. {
  7699. ggml_compute_forward_argmax_f32(params, src0, dst);
  7700. } break;
  7701. default:
  7702. {
  7703. GGML_ASSERT(false);
  7704. } break;
  7705. }
  7706. }
  7707. // ggml_compute_forward_repeat
  7708. static void ggml_compute_forward_repeat_f32(
  7709. const struct ggml_compute_params * params,
  7710. const struct ggml_tensor * src0,
  7711. struct ggml_tensor * dst) {
  7712. GGML_ASSERT(params->ith == 0);
  7713. GGML_ASSERT(ggml_can_repeat(src0, dst));
  7714. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7715. return;
  7716. }
  7717. GGML_TENSOR_UNARY_OP_LOCALS;
  7718. // guaranteed to be an integer due to the check in ggml_can_repeat
  7719. const int nr0 = (int)(ne0/ne00);
  7720. const int nr1 = (int)(ne1/ne01);
  7721. const int nr2 = (int)(ne2/ne02);
  7722. const int nr3 = (int)(ne3/ne03);
  7723. // TODO: support for transposed / permuted tensors
  7724. GGML_ASSERT(nb0 == sizeof(float));
  7725. GGML_ASSERT(nb00 == sizeof(float));
  7726. // TODO: maybe this is not optimal?
  7727. for (int i3 = 0; i3 < nr3; i3++) {
  7728. for (int k3 = 0; k3 < ne03; k3++) {
  7729. for (int i2 = 0; i2 < nr2; i2++) {
  7730. for (int k2 = 0; k2 < ne02; k2++) {
  7731. for (int i1 = 0; i1 < nr1; i1++) {
  7732. for (int k1 = 0; k1 < ne01; k1++) {
  7733. for (int i0 = 0; i0 < nr0; i0++) {
  7734. ggml_vec_cpy_f32(ne00,
  7735. (float *) ((char *) dst->data + (i3*ne03 + k3)*nb3 + (i2*ne02 + k2)*nb2 + (i1*ne01 + k1)*nb1 + (i0*ne00)*nb0),
  7736. (float *) ((char *) src0->data + ( k3)*nb03 + ( k2)*nb02 + ( k1)*nb01));
  7737. }
  7738. }
  7739. }
  7740. }
  7741. }
  7742. }
  7743. }
  7744. }
  7745. static void ggml_compute_forward_repeat(
  7746. const struct ggml_compute_params * params,
  7747. const struct ggml_tensor * src0,
  7748. struct ggml_tensor * dst) {
  7749. switch (src0->type) {
  7750. case GGML_TYPE_F32:
  7751. {
  7752. ggml_compute_forward_repeat_f32(params, src0, dst);
  7753. } break;
  7754. default:
  7755. {
  7756. GGML_ASSERT(false);
  7757. } break;
  7758. }
  7759. }
  7760. // ggml_compute_forward_repeat_back
  7761. static void ggml_compute_forward_repeat_back_f32(
  7762. const struct ggml_compute_params * params,
  7763. const struct ggml_tensor * src0,
  7764. struct ggml_tensor * dst) {
  7765. GGML_ASSERT(params->ith == 0);
  7766. GGML_ASSERT(ggml_can_repeat(dst, src0));
  7767. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7768. return;
  7769. }
  7770. GGML_TENSOR_UNARY_OP_LOCALS;
  7771. // guaranteed to be an integer due to the check in ggml_can_repeat
  7772. const int nr0 = (int)(ne00/ne0);
  7773. const int nr1 = (int)(ne01/ne1);
  7774. const int nr2 = (int)(ne02/ne2);
  7775. const int nr3 = (int)(ne03/ne3);
  7776. // TODO: support for transposed / permuted tensors
  7777. GGML_ASSERT(nb0 == sizeof(float));
  7778. GGML_ASSERT(nb00 == sizeof(float));
  7779. if (ggml_is_contiguous(dst)) {
  7780. ggml_vec_set_f32(ne0*ne1*ne2*ne3, dst->data, 0);
  7781. } else {
  7782. for (int k3 = 0; k3 < ne3; k3++) {
  7783. for (int k2 = 0; k2 < ne2; k2++) {
  7784. for (int k1 = 0; k1 < ne1; k1++) {
  7785. ggml_vec_set_f32(ne0,
  7786. (float *) ((char *) dst->data + k1*nb1 + k2*nb2 + k3*nb3),
  7787. 0);
  7788. }
  7789. }
  7790. }
  7791. }
  7792. // TODO: maybe this is not optimal?
  7793. for (int i3 = 0; i3 < nr3; i3++) {
  7794. for (int k3 = 0; k3 < ne3; k3++) {
  7795. for (int i2 = 0; i2 < nr2; i2++) {
  7796. for (int k2 = 0; k2 < ne2; k2++) {
  7797. for (int i1 = 0; i1 < nr1; i1++) {
  7798. for (int k1 = 0; k1 < ne1; k1++) {
  7799. for (int i0 = 0; i0 < nr0; i0++) {
  7800. ggml_vec_acc_f32(ne0,
  7801. (float *) ((char *) dst->data + ( k3)*nb3 + ( k2)*nb2 + ( k1)*nb1),
  7802. (float *) ((char *) src0->data + (i3*ne3 + k3)*nb03 + (i2*ne2 + k2)*nb02 + (i1*ne1 + k1)*nb01 + (i0*ne0)*nb00));
  7803. }
  7804. }
  7805. }
  7806. }
  7807. }
  7808. }
  7809. }
  7810. }
  7811. static void ggml_compute_forward_repeat_back(
  7812. const struct ggml_compute_params * params,
  7813. const struct ggml_tensor * src0,
  7814. struct ggml_tensor * dst) {
  7815. switch (src0->type) {
  7816. case GGML_TYPE_F32:
  7817. {
  7818. ggml_compute_forward_repeat_back_f32(params, src0, dst);
  7819. } break;
  7820. default:
  7821. {
  7822. GGML_ASSERT(false);
  7823. } break;
  7824. }
  7825. }
  7826. // ggml_compute_forward_abs
  7827. static void ggml_compute_forward_abs_f32(
  7828. const struct ggml_compute_params * params,
  7829. const struct ggml_tensor * src0,
  7830. struct ggml_tensor * dst) {
  7831. assert(params->ith == 0);
  7832. assert(ggml_are_same_shape(src0, dst));
  7833. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7834. return;
  7835. }
  7836. const int n = ggml_nrows(src0);
  7837. const int nc = src0->ne[0];
  7838. assert(dst->nb[0] == sizeof(float));
  7839. assert(src0->nb[0] == sizeof(float));
  7840. for (int i = 0; i < n; i++) {
  7841. ggml_vec_abs_f32(nc,
  7842. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7843. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7844. }
  7845. }
  7846. static void ggml_compute_forward_abs(
  7847. const struct ggml_compute_params * params,
  7848. const struct ggml_tensor * src0,
  7849. struct ggml_tensor * dst) {
  7850. switch (src0->type) {
  7851. case GGML_TYPE_F32:
  7852. {
  7853. ggml_compute_forward_abs_f32(params, src0, dst);
  7854. } break;
  7855. default:
  7856. {
  7857. GGML_ASSERT(false);
  7858. } break;
  7859. }
  7860. }
  7861. // ggml_compute_forward_sgn
  7862. static void ggml_compute_forward_sgn_f32(
  7863. const struct ggml_compute_params * params,
  7864. const struct ggml_tensor * src0,
  7865. struct ggml_tensor * dst) {
  7866. assert(params->ith == 0);
  7867. assert(ggml_are_same_shape(src0, dst));
  7868. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7869. return;
  7870. }
  7871. const int n = ggml_nrows(src0);
  7872. const int nc = src0->ne[0];
  7873. assert(dst->nb[0] == sizeof(float));
  7874. assert(src0->nb[0] == sizeof(float));
  7875. for (int i = 0; i < n; i++) {
  7876. ggml_vec_sgn_f32(nc,
  7877. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7878. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7879. }
  7880. }
  7881. static void ggml_compute_forward_sgn(
  7882. const struct ggml_compute_params * params,
  7883. const struct ggml_tensor * src0,
  7884. struct ggml_tensor * dst) {
  7885. switch (src0->type) {
  7886. case GGML_TYPE_F32:
  7887. {
  7888. ggml_compute_forward_sgn_f32(params, src0, dst);
  7889. } break;
  7890. default:
  7891. {
  7892. GGML_ASSERT(false);
  7893. } break;
  7894. }
  7895. }
  7896. // ggml_compute_forward_neg
  7897. static void ggml_compute_forward_neg_f32(
  7898. const struct ggml_compute_params * params,
  7899. const struct ggml_tensor * src0,
  7900. struct ggml_tensor * dst) {
  7901. assert(params->ith == 0);
  7902. assert(ggml_are_same_shape(src0, dst));
  7903. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7904. return;
  7905. }
  7906. const int n = ggml_nrows(src0);
  7907. const int nc = src0->ne[0];
  7908. assert(dst->nb[0] == sizeof(float));
  7909. assert(src0->nb[0] == sizeof(float));
  7910. for (int i = 0; i < n; i++) {
  7911. ggml_vec_neg_f32(nc,
  7912. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7913. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7914. }
  7915. }
  7916. static void ggml_compute_forward_neg(
  7917. const struct ggml_compute_params * params,
  7918. const struct ggml_tensor * src0,
  7919. struct ggml_tensor * dst) {
  7920. switch (src0->type) {
  7921. case GGML_TYPE_F32:
  7922. {
  7923. ggml_compute_forward_neg_f32(params, src0, dst);
  7924. } break;
  7925. default:
  7926. {
  7927. GGML_ASSERT(false);
  7928. } break;
  7929. }
  7930. }
  7931. // ggml_compute_forward_step
  7932. static void ggml_compute_forward_step_f32(
  7933. const struct ggml_compute_params * params,
  7934. const struct ggml_tensor * src0,
  7935. struct ggml_tensor * dst) {
  7936. assert(params->ith == 0);
  7937. assert(ggml_are_same_shape(src0, dst));
  7938. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7939. return;
  7940. }
  7941. const int n = ggml_nrows(src0);
  7942. const int nc = src0->ne[0];
  7943. assert(dst->nb[0] == sizeof(float));
  7944. assert(src0->nb[0] == sizeof(float));
  7945. for (int i = 0; i < n; i++) {
  7946. ggml_vec_step_f32(nc,
  7947. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7948. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7949. }
  7950. }
  7951. static void ggml_compute_forward_step(
  7952. const struct ggml_compute_params * params,
  7953. const struct ggml_tensor * src0,
  7954. struct ggml_tensor * dst) {
  7955. switch (src0->type) {
  7956. case GGML_TYPE_F32:
  7957. {
  7958. ggml_compute_forward_step_f32(params, src0, dst);
  7959. } break;
  7960. default:
  7961. {
  7962. GGML_ASSERT(false);
  7963. } break;
  7964. }
  7965. }
  7966. // ggml_compute_forward_tanh
  7967. static void ggml_compute_forward_tanh_f32(
  7968. const struct ggml_compute_params * params,
  7969. const struct ggml_tensor * src0,
  7970. struct ggml_tensor * dst) {
  7971. assert(params->ith == 0);
  7972. assert(ggml_are_same_shape(src0, dst));
  7973. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7974. return;
  7975. }
  7976. const int n = ggml_nrows(src0);
  7977. const int nc = src0->ne[0];
  7978. assert(dst->nb[0] == sizeof(float));
  7979. assert(src0->nb[0] == sizeof(float));
  7980. for (int i = 0; i < n; i++) {
  7981. ggml_vec_tanh_f32(nc,
  7982. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7983. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7984. }
  7985. }
  7986. static void ggml_compute_forward_tanh(
  7987. const struct ggml_compute_params * params,
  7988. const struct ggml_tensor * src0,
  7989. struct ggml_tensor * dst) {
  7990. switch (src0->type) {
  7991. case GGML_TYPE_F32:
  7992. {
  7993. ggml_compute_forward_tanh_f32(params, src0, dst);
  7994. } break;
  7995. default:
  7996. {
  7997. GGML_ASSERT(false);
  7998. } break;
  7999. }
  8000. }
  8001. // ggml_compute_forward_elu
  8002. static void ggml_compute_forward_elu_f32(
  8003. const struct ggml_compute_params * params,
  8004. const struct ggml_tensor * src0,
  8005. struct ggml_tensor * dst) {
  8006. assert(params->ith == 0);
  8007. assert(ggml_are_same_shape(src0, dst));
  8008. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8009. return;
  8010. }
  8011. const int n = ggml_nrows(src0);
  8012. const int nc = src0->ne[0];
  8013. assert(dst->nb[0] == sizeof(float));
  8014. assert(src0->nb[0] == sizeof(float));
  8015. for (int i = 0; i < n; i++) {
  8016. ggml_vec_elu_f32(nc,
  8017. (float *) ((char *) dst->data + i*( dst->nb[1])),
  8018. (float *) ((char *) src0->data + i*(src0->nb[1])));
  8019. }
  8020. }
  8021. static void ggml_compute_forward_elu(
  8022. const struct ggml_compute_params * params,
  8023. const struct ggml_tensor * src0,
  8024. struct ggml_tensor * dst) {
  8025. switch (src0->type) {
  8026. case GGML_TYPE_F32:
  8027. {
  8028. ggml_compute_forward_elu_f32(params, src0, dst);
  8029. } break;
  8030. default:
  8031. {
  8032. GGML_ASSERT(false);
  8033. } break;
  8034. }
  8035. }
  8036. // ggml_compute_forward_relu
  8037. static void ggml_compute_forward_relu_f32(
  8038. const struct ggml_compute_params * params,
  8039. const struct ggml_tensor * src0,
  8040. struct ggml_tensor * dst) {
  8041. assert(params->ith == 0);
  8042. assert(ggml_are_same_shape(src0, dst));
  8043. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8044. return;
  8045. }
  8046. const int n = ggml_nrows(src0);
  8047. const int nc = src0->ne[0];
  8048. assert(dst->nb[0] == sizeof(float));
  8049. assert(src0->nb[0] == sizeof(float));
  8050. for (int i = 0; i < n; i++) {
  8051. ggml_vec_relu_f32(nc,
  8052. (float *) ((char *) dst->data + i*( dst->nb[1])),
  8053. (float *) ((char *) src0->data + i*(src0->nb[1])));
  8054. }
  8055. }
  8056. static void ggml_compute_forward_relu(
  8057. const struct ggml_compute_params * params,
  8058. const struct ggml_tensor * src0,
  8059. struct ggml_tensor * dst) {
  8060. switch (src0->type) {
  8061. case GGML_TYPE_F32:
  8062. {
  8063. ggml_compute_forward_relu_f32(params, src0, dst);
  8064. } break;
  8065. default:
  8066. {
  8067. GGML_ASSERT(false);
  8068. } break;
  8069. }
  8070. }
  8071. // ggml_compute_forward_gelu
  8072. static void ggml_compute_forward_gelu_f32(
  8073. const struct ggml_compute_params * params,
  8074. const struct ggml_tensor * src0,
  8075. struct ggml_tensor * dst) {
  8076. GGML_ASSERT(ggml_is_contiguous(src0));
  8077. GGML_ASSERT(ggml_is_contiguous(dst));
  8078. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8079. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8080. return;
  8081. }
  8082. const int ith = params->ith;
  8083. const int nth = params->nth;
  8084. const int nc = src0->ne[0];
  8085. const int nr = ggml_nrows(src0);
  8086. // rows per thread
  8087. const int dr = (nr + nth - 1)/nth;
  8088. // row range for this thread
  8089. const int ir0 = dr*ith;
  8090. const int ir1 = MIN(ir0 + dr, nr);
  8091. for (int i1 = ir0; i1 < ir1; i1++) {
  8092. ggml_vec_gelu_f32(nc,
  8093. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  8094. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  8095. #ifndef NDEBUG
  8096. for (int k = 0; k < nc; k++) {
  8097. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  8098. UNUSED(x);
  8099. assert(!isnan(x));
  8100. assert(!isinf(x));
  8101. }
  8102. #endif
  8103. }
  8104. }
  8105. static void ggml_compute_forward_gelu(
  8106. const struct ggml_compute_params * params,
  8107. const struct ggml_tensor * src0,
  8108. struct ggml_tensor * dst) {
  8109. switch (src0->type) {
  8110. case GGML_TYPE_F32:
  8111. {
  8112. ggml_compute_forward_gelu_f32(params, src0, dst);
  8113. } break;
  8114. default:
  8115. {
  8116. GGML_ASSERT(false);
  8117. } break;
  8118. }
  8119. }
  8120. // ggml_compute_forward_gelu_quick
  8121. static void ggml_compute_forward_gelu_quick_f32(
  8122. const struct ggml_compute_params * params,
  8123. const struct ggml_tensor * src0,
  8124. struct ggml_tensor * dst) {
  8125. GGML_ASSERT(ggml_is_contiguous(src0));
  8126. GGML_ASSERT(ggml_is_contiguous(dst));
  8127. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8128. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8129. return;
  8130. }
  8131. const int ith = params->ith;
  8132. const int nth = params->nth;
  8133. const int nc = src0->ne[0];
  8134. const int nr = ggml_nrows(src0);
  8135. // rows per thread
  8136. const int dr = (nr + nth - 1)/nth;
  8137. // row range for this thread
  8138. const int ir0 = dr*ith;
  8139. const int ir1 = MIN(ir0 + dr, nr);
  8140. for (int i1 = ir0; i1 < ir1; i1++) {
  8141. ggml_vec_gelu_quick_f32(nc,
  8142. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  8143. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  8144. #ifndef NDEBUG
  8145. for (int k = 0; k < nc; k++) {
  8146. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  8147. UNUSED(x);
  8148. assert(!isnan(x));
  8149. assert(!isinf(x));
  8150. }
  8151. #endif
  8152. }
  8153. }
  8154. static void ggml_compute_forward_gelu_quick(
  8155. const struct ggml_compute_params * params,
  8156. const struct ggml_tensor * src0,
  8157. struct ggml_tensor * dst) {
  8158. switch (src0->type) {
  8159. case GGML_TYPE_F32:
  8160. {
  8161. ggml_compute_forward_gelu_quick_f32(params, src0, dst);
  8162. } break;
  8163. default:
  8164. {
  8165. GGML_ASSERT(false);
  8166. } break;
  8167. }
  8168. }
  8169. // ggml_compute_forward_silu
  8170. static void ggml_compute_forward_silu_f32(
  8171. const struct ggml_compute_params * params,
  8172. const struct ggml_tensor * src0,
  8173. struct ggml_tensor * dst) {
  8174. GGML_ASSERT(ggml_is_contiguous(src0));
  8175. GGML_ASSERT(ggml_is_contiguous(dst));
  8176. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8177. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8178. return;
  8179. }
  8180. const int ith = params->ith;
  8181. const int nth = params->nth;
  8182. const int nc = src0->ne[0];
  8183. const int nr = ggml_nrows(src0);
  8184. // rows per thread
  8185. const int dr = (nr + nth - 1)/nth;
  8186. // row range for this thread
  8187. const int ir0 = dr*ith;
  8188. const int ir1 = MIN(ir0 + dr, nr);
  8189. for (int i1 = ir0; i1 < ir1; i1++) {
  8190. ggml_vec_silu_f32(nc,
  8191. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  8192. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  8193. #ifndef NDEBUG
  8194. for (int k = 0; k < nc; k++) {
  8195. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  8196. UNUSED(x);
  8197. assert(!isnan(x));
  8198. assert(!isinf(x));
  8199. }
  8200. #endif
  8201. }
  8202. }
  8203. static void ggml_compute_forward_silu(
  8204. const struct ggml_compute_params * params,
  8205. const struct ggml_tensor * src0,
  8206. struct ggml_tensor * dst) {
  8207. switch (src0->type) {
  8208. case GGML_TYPE_F32:
  8209. {
  8210. ggml_compute_forward_silu_f32(params, src0, dst);
  8211. } break;
  8212. default:
  8213. {
  8214. GGML_ASSERT(false);
  8215. } break;
  8216. }
  8217. }
  8218. // ggml_compute_forward_silu_back
  8219. static void ggml_compute_forward_silu_back_f32(
  8220. const struct ggml_compute_params * params,
  8221. const struct ggml_tensor * src0,
  8222. const struct ggml_tensor * grad,
  8223. struct ggml_tensor * dst) {
  8224. GGML_ASSERT(ggml_is_contiguous(grad));
  8225. GGML_ASSERT(ggml_is_contiguous(src0));
  8226. GGML_ASSERT(ggml_is_contiguous(dst));
  8227. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8228. GGML_ASSERT(ggml_are_same_shape(src0, grad));
  8229. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8230. return;
  8231. }
  8232. const int ith = params->ith;
  8233. const int nth = params->nth;
  8234. const int nc = src0->ne[0];
  8235. const int nr = ggml_nrows(src0);
  8236. // rows per thread
  8237. const int dr = (nr + nth - 1)/nth;
  8238. // row range for this thread
  8239. const int ir0 = dr*ith;
  8240. const int ir1 = MIN(ir0 + dr, nr);
  8241. for (int i1 = ir0; i1 < ir1; i1++) {
  8242. ggml_vec_silu_backward_f32(nc,
  8243. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  8244. (float *) ((char *) src0->data + i1*(src0->nb[1])),
  8245. (float *) ((char *) grad->data + i1*(grad->nb[1])));
  8246. #ifndef NDEBUG
  8247. for (int k = 0; k < nc; k++) {
  8248. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  8249. UNUSED(x);
  8250. assert(!isnan(x));
  8251. assert(!isinf(x));
  8252. }
  8253. #endif
  8254. }
  8255. }
  8256. static void ggml_compute_forward_silu_back(
  8257. const struct ggml_compute_params * params,
  8258. const struct ggml_tensor * src0,
  8259. const struct ggml_tensor * grad,
  8260. struct ggml_tensor * dst) {
  8261. switch (src0->type) {
  8262. case GGML_TYPE_F32:
  8263. {
  8264. ggml_compute_forward_silu_back_f32(params, src0, grad, dst);
  8265. } break;
  8266. default:
  8267. {
  8268. GGML_ASSERT(false);
  8269. } break;
  8270. }
  8271. }
  8272. // ggml_compute_forward_norm
  8273. static void ggml_compute_forward_norm_f32(
  8274. const struct ggml_compute_params * params,
  8275. const struct ggml_tensor * src0,
  8276. struct ggml_tensor * dst) {
  8277. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8278. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8279. return;
  8280. }
  8281. GGML_ASSERT(src0->nb[0] == sizeof(float));
  8282. const int ith = params->ith;
  8283. const int nth = params->nth;
  8284. GGML_TENSOR_UNARY_OP_LOCALS;
  8285. const float eps = 1e-5f; // TODO: make this a parameter
  8286. // TODO: optimize
  8287. for (int64_t i03 = 0; i03 < ne03; i03++) {
  8288. for (int64_t i02 = 0; i02 < ne02; i02++) {
  8289. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  8290. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  8291. ggml_float sum = 0.0;
  8292. for (int64_t i00 = 0; i00 < ne00; i00++) {
  8293. sum += (ggml_float)x[i00];
  8294. }
  8295. float mean = sum/ne00;
  8296. float * y = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  8297. ggml_float sum2 = 0.0;
  8298. for (int64_t i00 = 0; i00 < ne00; i00++) {
  8299. float v = x[i00] - mean;
  8300. y[i00] = v;
  8301. sum2 += (ggml_float)(v*v);
  8302. }
  8303. float variance = sum2/ne00;
  8304. const float scale = 1.0f/sqrtf(variance + eps);
  8305. ggml_vec_scale_f32(ne00, y, scale);
  8306. }
  8307. }
  8308. }
  8309. }
  8310. static void ggml_compute_forward_norm(
  8311. const struct ggml_compute_params * params,
  8312. const struct ggml_tensor * src0,
  8313. struct ggml_tensor * dst) {
  8314. switch (src0->type) {
  8315. case GGML_TYPE_F32:
  8316. {
  8317. ggml_compute_forward_norm_f32(params, src0, dst);
  8318. } break;
  8319. default:
  8320. {
  8321. GGML_ASSERT(false);
  8322. } break;
  8323. }
  8324. }
  8325. static void ggml_compute_forward_rms_norm_f32(
  8326. const struct ggml_compute_params * params,
  8327. const struct ggml_tensor * src0,
  8328. struct ggml_tensor * dst) {
  8329. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8330. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8331. return;
  8332. }
  8333. GGML_ASSERT(src0->nb[0] == sizeof(float));
  8334. const int ith = params->ith;
  8335. const int nth = params->nth;
  8336. GGML_TENSOR_UNARY_OP_LOCALS;
  8337. const float eps = 1e-6f; // TODO: make this a parameter
  8338. // TODO: optimize
  8339. for (int64_t i03 = 0; i03 < ne03; i03++) {
  8340. for (int64_t i02 = 0; i02 < ne02; i02++) {
  8341. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  8342. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  8343. ggml_float sum = 0.0;
  8344. for (int64_t i00 = 0; i00 < ne00; i00++) {
  8345. sum += (ggml_float)(x[i00] * x[i00]);
  8346. }
  8347. const float mean = sum/ne00;
  8348. float * y = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  8349. memcpy(y, x, ne00 * sizeof(float));
  8350. // for (int i00 = 0; i00 < ne00; i00++) {
  8351. // y[i00] = x[i00];
  8352. // }
  8353. const float scale = 1.0f/sqrtf(mean + eps);
  8354. ggml_vec_scale_f32(ne00, y, scale);
  8355. }
  8356. }
  8357. }
  8358. }
  8359. static void ggml_compute_forward_rms_norm(
  8360. const struct ggml_compute_params * params,
  8361. const struct ggml_tensor * src0,
  8362. struct ggml_tensor * dst) {
  8363. switch (src0->type) {
  8364. case GGML_TYPE_F32:
  8365. {
  8366. ggml_compute_forward_rms_norm_f32(params, src0, dst);
  8367. } break;
  8368. default:
  8369. {
  8370. GGML_ASSERT(false);
  8371. } break;
  8372. }
  8373. }
  8374. static void ggml_compute_forward_rms_norm_back_f32(
  8375. const struct ggml_compute_params * params,
  8376. const struct ggml_tensor * src0,
  8377. const struct ggml_tensor * src1,
  8378. struct ggml_tensor * dst) {
  8379. GGML_ASSERT(ggml_are_same_shape(src0, dst) && ggml_are_same_shape(src0, src1));
  8380. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8381. return;
  8382. }
  8383. GGML_ASSERT(src0->nb[0] == sizeof(float));
  8384. const int ith = params->ith;
  8385. const int nth = params->nth;
  8386. GGML_TENSOR_BINARY_OP_LOCALS;
  8387. const float eps = 1e-6f; // TODO: make this a parameter
  8388. // TODO: optimize
  8389. for (int64_t i03 = 0; i03 < ne03; i03++) {
  8390. for (int64_t i02 = 0; i02 < ne02; i02++) {
  8391. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  8392. // src1 is same shape as src0 => same indices
  8393. const int64_t i11 = i01;
  8394. const int64_t i12 = i02;
  8395. const int64_t i13 = i03;
  8396. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  8397. const float * dz = (float *) ((char *) src1->data + i11*nb11 + i12*nb12 + i13*nb13);
  8398. ggml_float sum_xx = 0.0;
  8399. ggml_float sum_xdz = 0.0;
  8400. for (int64_t i00 = 0; i00 < ne00; i00++) {
  8401. sum_xx += (ggml_float)(x[i00] * x[i00]);
  8402. sum_xdz += (ggml_float)(x[i00] * dz[i00]);
  8403. }
  8404. //const float mean = (float)(sum_xx)/ne00;
  8405. const float mean_eps = (float)(sum_xx)/ne00 + eps;
  8406. const float sum_eps = (float)(sum_xx) + eps*ne00;
  8407. //const float mean_xdz = (float)(sum_xdz)/ne00;
  8408. // we could cache rms from forward pass to improve performance.
  8409. // to do this implement ggml_rms and compose ggml_rms_norm using ggml_rms.
  8410. //const float rms = sqrtf(mean_eps);
  8411. const float rrms = 1.0f / sqrtf(mean_eps);
  8412. //const float scale = -rrms/(ne00 * mean_eps); // -1/(n*rms**3)
  8413. {
  8414. // z = rms_norm(x)
  8415. //
  8416. // rms_norm(src0) =
  8417. // scale(
  8418. // src0,
  8419. // div(
  8420. // 1,
  8421. // sqrt(
  8422. // add(
  8423. // scale(
  8424. // sum(
  8425. // sqr(
  8426. // src0)),
  8427. // (1.0/N)),
  8428. // eps))));
  8429. // postorder:
  8430. // ## op args grad
  8431. // 00 param src0 grad[#00]
  8432. // 01 const 1
  8433. // 02 sqr (#00) grad[#02]
  8434. // 03 sum (#02) grad[#03]
  8435. // 04 const 1/N
  8436. // 05 scale (#03, #04) grad[#05]
  8437. // 06 const eps
  8438. // 07 add (#05, #06) grad[#07]
  8439. // 08 sqrt (#07) grad[#08]
  8440. // 09 div (#01,#08) grad[#09]
  8441. // 10 scale (#00,#09) grad[#10]
  8442. //
  8443. // backward pass, given grad[#10]
  8444. // #10: scale
  8445. // grad[#00] += scale(grad[#10],#09)
  8446. // grad[#09] += sum(mul(grad[#10],#00))
  8447. // #09: div
  8448. // grad[#08] += neg(mul(grad[#09], div(#09,#08)))
  8449. // #08: sqrt
  8450. // grad[#07] += mul(grad[#08], div(0.5, #08))
  8451. // #07: add
  8452. // grad[#05] += grad[#07]
  8453. // #05: scale
  8454. // grad[#03] += scale(grad[#05],#04)
  8455. // #03: sum
  8456. // grad[#02] += repeat(grad[#03], #02)
  8457. // #02:
  8458. // grad[#00] += scale(mul(#00, grad[#02]), 2.0)
  8459. //
  8460. // substitute and simplify:
  8461. // grad[#00] = scale(grad(#10), #09) + scale(mul(#00, grad[#02]), 2.0)
  8462. // grad[#02] = repeat(grad[#03], #02)
  8463. // grad[#02] = repeat(scale(grad[#05],#04), #02)
  8464. // grad[#02] = repeat(scale(grad[#07],#04), #02)
  8465. // grad[#02] = repeat(scale(mul(grad[#08], div(0.5, #08)),#04), #02)
  8466. // grad[#02] = repeat(scale(mul(neg(mul(grad[#09], div(#09,#08))), div(0.5, #08)),#04), #02)
  8467. // grad[#02] = repeat(scale(mul(neg(mul(sum(mul(grad[#10],#00)), div(#09,#08))), div(0.5, #08)),#04), #02)
  8468. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(#09,#08) * div(0.5, #08) * (1/N)), #02)
  8469. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(div(#01,#08),#08) * div(0.5, #08) * (1/N)), #02)
  8470. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(1,#08*#08) * div(0.5, #08) * (1/N)), #02)
  8471. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(1,#07) * div(0.5, #08) * (1/N)), #02)
  8472. // grad[#00] = scale(grad(#10), #09) + scale(mul(#00, grad[#02]), 2.0)
  8473. // grad[#00] = scale(grad(#10), #09) + scale(mul(#00, repeat(-(sum(mul(grad[#10],#00)) * div(1,#07) * div(0.5, #08) * (1/N)), #02)), 2.0)
  8474. // grad[#00] = scale(grad(#10), #09) + scale(scale(#00, -(sum(mul(grad[#10],#00)) * div(1,#07) * div(0.5, #08) * (1/N))), 2.0)
  8475. // grad[#00] = scale(grad(#10), #09) + scale(#00, -(sum(mul(grad[#10],#00)) * div(1,#07) * div(1,#08) * (1/N)))
  8476. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(1,#07*#08) * (-1/N))
  8477. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(1,#07*#08) * (-1/N))
  8478. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(1,mean_eps*rms) * (-1/N))
  8479. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(-1,rms*N*mean_eps))
  8480. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(-1,rms*N*(sum_xx/N+eps)))
  8481. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(-1,rms*N*sum_xx+rms*N*eps))
  8482. // grad[#00] = scale(dz, rrms) + scale(x, sum(mul(dz,x)) * div(-1,rms*N*mean_eps))
  8483. // grad[#00] = scale(dz, rrms) + scale(x, sum_xdz * div(-1,rms*N*mean_eps))
  8484. // a = b*c + d*e
  8485. // a = b*c*f/f + d*e*f/f
  8486. // a = (b*c*f + d*e*f)*(1/f)
  8487. // a = (b*c*(1/c) + d*e*(1/c))*(1/(1/c))
  8488. // a = (b + d*e/c)*c
  8489. // b = dz, c = rrms, d = x, e = sum_xdz * div(-1,rms*N*mean_eps)
  8490. // a = (dz + x*sum_xdz * div(-1,rms*N*mean_eps)/rrms)*rrms
  8491. // a = (dz + x*sum_xdz * div(-1,rms*N*mean_eps)*rms)*rrms
  8492. // a = (dz + x*sum_xdz * div(-rms,rms*N*mean_eps))*rrms
  8493. // a = (dz + x*sum_xdz * div(-1,N*mean_eps))*rrms
  8494. // a = (dz + x*div(-sum_xdz,N*mean_eps))*rrms
  8495. // a = (dz + x*div(-mean_xdz,mean_eps))*rrms
  8496. // grad[#00] = scale(dz + scale(x, div(-mean_xdz,mean_eps)),rrms)
  8497. // grad[#00] = scale(dz + scale(x, -mean_xdz/mean_eps),rrms)
  8498. // dx = scale(dz + scale(x, -mean_xdz/mean_eps),rrms)
  8499. }
  8500. // dx = scale(dz + scale(x, -mean_xdz/mean_eps),rrms)
  8501. // post-order:
  8502. // dx := x
  8503. // dx := scale(dx,-mean_xdz/mean_eps)
  8504. // dx := add(dx, dz)
  8505. // dx := scale(dx, rrms)
  8506. float * dx = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  8507. ggml_vec_cpy_f32 (ne00, dx, x);
  8508. // ggml_vec_scale_f32(ne00, dx, -mean_xdz/mean_eps);
  8509. ggml_vec_scale_f32(ne00, dx, (float)(-sum_xdz)/sum_eps);
  8510. ggml_vec_acc_f32 (ne00, dx, dz);
  8511. ggml_vec_scale_f32(ne00, dx, rrms);
  8512. }
  8513. }
  8514. }
  8515. }
  8516. static void ggml_compute_forward_rms_norm_back(
  8517. const struct ggml_compute_params * params,
  8518. const struct ggml_tensor * src0,
  8519. const struct ggml_tensor * src1,
  8520. struct ggml_tensor * dst) {
  8521. switch (src0->type) {
  8522. case GGML_TYPE_F32:
  8523. {
  8524. ggml_compute_forward_rms_norm_back_f32(params, src0, src1, dst);
  8525. } break;
  8526. default:
  8527. {
  8528. GGML_ASSERT(false);
  8529. } break;
  8530. }
  8531. }
  8532. // ggml_compute_forward_mul_mat
  8533. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  8534. // helper function to determine if it is better to use BLAS or not
  8535. // for large matrices, BLAS is faster
  8536. static bool ggml_compute_forward_mul_mat_use_blas(
  8537. const struct ggml_tensor * src0,
  8538. const struct ggml_tensor * src1,
  8539. struct ggml_tensor * dst) {
  8540. //const int64_t ne00 = src0->ne[0];
  8541. //const int64_t ne01 = src0->ne[1];
  8542. const int64_t ne10 = src1->ne[0];
  8543. const int64_t ne0 = dst->ne[0];
  8544. const int64_t ne1 = dst->ne[1];
  8545. // TODO: find the optimal values for these
  8546. if (ggml_is_contiguous(src0) &&
  8547. ggml_is_contiguous(src1) &&
  8548. (ne0 >= 32 && ne1 >= 32 && ne10 >= 32)) {
  8549. /*printf("BLAS: %d %d %d %d %d\n", ne0, ne1, ne10, ne00, ne01);*/
  8550. return true;
  8551. }
  8552. return false;
  8553. }
  8554. #endif
  8555. static void ggml_compute_forward_mul_mat(
  8556. const struct ggml_compute_params * params,
  8557. const struct ggml_tensor * src0,
  8558. const struct ggml_tensor * src1,
  8559. struct ggml_tensor * dst) {
  8560. int64_t t0 = ggml_perf_time_us();
  8561. UNUSED(t0);
  8562. GGML_TENSOR_BINARY_OP_LOCALS;
  8563. const int ith = params->ith;
  8564. const int nth = params->nth;
  8565. GGML_ASSERT(ne02 == ne12);
  8566. GGML_ASSERT(ne03 == ne13);
  8567. GGML_ASSERT(ne2 == ne12);
  8568. GGML_ASSERT(ne3 == ne13);
  8569. const enum ggml_type type = src0->type;
  8570. ggml_vec_dot_t const vec_dot = type_traits[type].vec_dot;
  8571. enum ggml_type const vec_dot_type = type_traits[type].vec_dot_type;
  8572. ggml_from_float_t const from_float_to_vec_dot = type_traits[vec_dot_type].from_float;
  8573. // we don't support permuted src0 or src1
  8574. GGML_ASSERT(nb00 == GGML_TYPE_SIZE[type]);
  8575. GGML_ASSERT(nb10 == sizeof(float));
  8576. // dst cannot be transposed or permuted
  8577. GGML_ASSERT(nb0 == sizeof(float));
  8578. GGML_ASSERT(nb0 <= nb1);
  8579. GGML_ASSERT(nb1 <= nb2);
  8580. GGML_ASSERT(nb2 <= nb3);
  8581. GGML_ASSERT(ne0 == ne01);
  8582. GGML_ASSERT(ne1 == ne11);
  8583. GGML_ASSERT(ne2 == ne02);
  8584. GGML_ASSERT(ne3 == ne03);
  8585. // nb01 >= nb00 - src0 is not transposed
  8586. // compute by src0 rows
  8587. #if defined(GGML_USE_CLBLAST)
  8588. if (ggml_cl_can_mul_mat(src0, src1, dst)) {
  8589. if (params->ith == 0 && params->type == GGML_TASK_COMPUTE) {
  8590. ggml_cl_mul_mat(src0, src1, dst, params->wdata, params->wsize);
  8591. }
  8592. return;
  8593. }
  8594. #endif
  8595. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  8596. if (ggml_compute_forward_mul_mat_use_blas(src0, src1, dst)) {
  8597. if (params->ith != 0) {
  8598. return;
  8599. }
  8600. if (params->type == GGML_TASK_INIT) {
  8601. return;
  8602. }
  8603. if (params->type == GGML_TASK_FINALIZE) {
  8604. return;
  8605. }
  8606. for (int64_t i03 = 0; i03 < ne03; i03++) {
  8607. for (int64_t i02 = 0; i02 < ne02; i02++) {
  8608. const void * x = (char *) src0->data + i03*nb03 + i02*nb02;
  8609. const float * y = (float *) ((char *) src1->data + i02*nb12 + i03*nb13);
  8610. float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3);
  8611. if (type != GGML_TYPE_F32) {
  8612. float * const wdata = params->wdata;
  8613. ggml_to_float_t const to_float = type_traits[type].to_float;
  8614. size_t id = 0;
  8615. for (int64_t i01 = 0; i01 < ne01; ++i01) {
  8616. to_float((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01, wdata + id, ne00);
  8617. id += ne00;
  8618. }
  8619. assert(id*sizeof(float) <= params->wsize);
  8620. x = wdata;
  8621. }
  8622. cblas_sgemm(CblasRowMajor, CblasNoTrans, CblasTrans,
  8623. ne11, ne01, ne10,
  8624. 1.0f, y, ne10,
  8625. x, ne00,
  8626. 0.0f, d, ne01);
  8627. }
  8628. }
  8629. //printf("CBLAS = %f ms, %d x %d x %d x %d\n", (ggml_perf_time_us() - t0)/1000.0, ne0, ne1, ne2, ne3);
  8630. return;
  8631. }
  8632. #endif
  8633. if (params->type == GGML_TASK_INIT) {
  8634. if (src1->type != vec_dot_type) {
  8635. char * wdata = params->wdata;
  8636. const size_t row_size = ne10*GGML_TYPE_SIZE[vec_dot_type]/GGML_BLCK_SIZE[vec_dot_type];
  8637. for (int64_t i13 = 0; i13 < ne13; ++i13) {
  8638. for (int64_t i12 = 0; i12 < ne12; ++i12) {
  8639. for (int64_t i11 = 0; i11 < ne11; ++i11) {
  8640. from_float_to_vec_dot((float *)((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11), (void *) wdata, ne10);
  8641. wdata += row_size;
  8642. }
  8643. }
  8644. }
  8645. }
  8646. return;
  8647. }
  8648. if (params->type == GGML_TASK_FINALIZE) {
  8649. return;
  8650. }
  8651. // parallelize by src0 rows using ggml_vec_dot_q
  8652. // total rows in src0
  8653. const int nr = ne01*ne02*ne03;
  8654. // rows per thread
  8655. const int dr = (nr + nth - 1)/nth;
  8656. // row range for this thread
  8657. const int ir0 = dr*ith;
  8658. const int ir1 = MIN(ir0 + dr, nr);
  8659. void * wdata = (src1->type == vec_dot_type) ? src1->data : params->wdata;
  8660. const size_t row_size = ne00*GGML_TYPE_SIZE[vec_dot_type]/GGML_BLCK_SIZE[vec_dot_type];
  8661. for (int ir = ir0; ir < ir1; ++ir) {
  8662. // src0 indices
  8663. const int i03 = ir/(ne02*ne01);
  8664. const int i02 = (ir - i03*ne02*ne01)/ne01;
  8665. const int i01 = (ir - i03*ne02*ne01 - i02*ne01);
  8666. const int i13 = i03;
  8667. const int i12 = i02;
  8668. const int i0 = i01;
  8669. const int i2 = i02;
  8670. const int i3 = i03;
  8671. void * src0_row = (void *) ((char *) src0->data + (i01*nb01 + i02*nb02 + i03*nb03));
  8672. char * src1_col = ((char *) wdata + ( (0 + i12*ne11 + i13*ne12*ne11)*row_size));
  8673. float * dst_col = (float *) ((char *) dst->data + (i0*nb0 + 0*nb1 + i2*nb2 + i3*nb3));
  8674. for (int64_t ic = 0; ic < ne11; ++ic) {
  8675. vec_dot(ne00, &dst_col[ic*ne0], src0_row, (void *) (src1_col + ic*row_size));
  8676. }
  8677. }
  8678. //int64_t t1 = ggml_time_us();
  8679. //static int64_t acc = 0;
  8680. //acc += t1 - t0;
  8681. //if (t1 - t0 > 10) {
  8682. // printf("\n");
  8683. // printf("ne00 = %5d, ne01 = %5d, ne02 = %5d, ne03 = %5d\n", ne00, ne01, ne02, ne03);
  8684. // printf("nb00 = %5d, nb01 = %5d, nb02 = %5d, nb03 = %5d\n", nb00, nb01, nb02, nb03);
  8685. // printf("ne10 = %5d, ne11 = %5d, ne12 = %5d, ne13 = %5d\n", ne10, ne11, ne12, ne13);
  8686. // printf("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX task %d/%d: %d us, acc = %d\n", ith, nth, (int) (t1 - t0), (int) acc);
  8687. //}
  8688. }
  8689. // ggml_compute_forward_out_prod
  8690. static void ggml_compute_forward_out_prod_f32(
  8691. const struct ggml_compute_params * params,
  8692. const struct ggml_tensor * src0,
  8693. const struct ggml_tensor * src1,
  8694. struct ggml_tensor * dst) {
  8695. int64_t t0 = ggml_perf_time_us();
  8696. UNUSED(t0);
  8697. GGML_TENSOR_BINARY_OP_LOCALS;
  8698. const int ith = params->ith;
  8699. const int nth = params->nth;
  8700. GGML_ASSERT(ne02 == ne12);
  8701. GGML_ASSERT(ne03 == ne13);
  8702. GGML_ASSERT(ne2 == ne12);
  8703. GGML_ASSERT(ne3 == ne13);
  8704. // we don't support permuted src0 or src1
  8705. GGML_ASSERT(nb00 == sizeof(float));
  8706. // dst cannot be transposed or permuted
  8707. GGML_ASSERT(nb0 == sizeof(float));
  8708. // GGML_ASSERT(nb0 <= nb1);
  8709. // GGML_ASSERT(nb1 <= nb2);
  8710. // GGML_ASSERT(nb2 <= nb3);
  8711. GGML_ASSERT(ne0 == ne00);
  8712. GGML_ASSERT(ne1 == ne10);
  8713. GGML_ASSERT(ne2 == ne02);
  8714. GGML_ASSERT(ne3 == ne03);
  8715. // nb01 >= nb00 - src0 is not transposed
  8716. // compute by src0 rows
  8717. // TODO: #if defined(GGML_USE_CUBLAS) ggml_cuda_out_prod
  8718. // TODO: #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CLBLAST)
  8719. if (params->type == GGML_TASK_INIT) {
  8720. ggml_vec_set_f32(ne0*ne1*ne2*ne3, dst->data, 0);
  8721. return;
  8722. }
  8723. if (params->type == GGML_TASK_FINALIZE) {
  8724. return;
  8725. }
  8726. // parallelize by last three dimensions
  8727. // total rows in dst
  8728. const int64_t nr = ne1*ne2*ne3;
  8729. // rows per thread
  8730. const int64_t dr = (nr + nth - 1)/nth;
  8731. // row range for this thread
  8732. const int64_t ir0 = dr*ith;
  8733. const int64_t ir1 = MIN(ir0 + dr, nr);
  8734. // dst[:,:,:,:] = 0
  8735. // for i2,i3:
  8736. // for i1:
  8737. // for i01:
  8738. // for i0:
  8739. // dst[i0,i1,i2,i3] += src0[i0,i01,i2,i3] * src1[i1,i01,i2,i3]
  8740. for (int64_t ir = ir0; ir < ir1; ++ir) {
  8741. // dst indices
  8742. const int64_t i3 = ir/(ne2*ne1);
  8743. const int64_t i2 = (ir - i3*ne2*ne1)/ne1;
  8744. const int64_t i1 = (ir - i3*ne2*ne1 - i2*ne1);
  8745. const int64_t i02 = i2;
  8746. const int64_t i03 = i3;
  8747. //const int64_t i10 = i1;
  8748. const int64_t i12 = i2;
  8749. const int64_t i13 = i3;
  8750. for (int64_t i01 = 0; i01 < ne01; ++i01) {
  8751. const int64_t i11 = i01;
  8752. float * s0 = (float *) ((char *) src0->data + ( i01*nb01 + i02*nb02 + i03*nb03));
  8753. float * s1 = (float *) ((char *) src1->data + (i1*nb10 + i11*nb11 + i12*nb12 + i13*nb13));
  8754. float * d = (float *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
  8755. ggml_vec_mad_f32(ne0, d, s0, *s1);
  8756. // for (int64_t i0 = 0; i0 < ne0; ++i0) {
  8757. // d[i0] += s0[i0] * s1[i1];
  8758. // }
  8759. }
  8760. }
  8761. //int64_t t1 = ggml_perf_time_us();
  8762. //static int64_t acc = 0;
  8763. //acc += t1 - t0;
  8764. //if (t1 - t0 > 10) {
  8765. // printf("\n");
  8766. // printf("ne00 = %5d, ne01 = %5d, ne02 = %5d, ne03 = %5d\n", ne00, ne01, ne02, ne03);
  8767. // printf("nb00 = %5d, nb01 = %5d, nb02 = %5d, nb03 = %5d\n", nb00, nb01, nb02, nb03);
  8768. // printf("ne10 = %5d, ne11 = %5d, ne12 = %5d, ne13 = %5d\n", ne10, ne11, ne12, ne13);
  8769. // printf("nb10 = %5d, nb11 = %5d, nb12 = %5d, nb13 = %5d\n", nb10, nb11, nb12, nb13);
  8770. // printf("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX task %d/%d: %d us, acc = %d\n", ith, nth, (int) (t1 - t0), (int) acc);
  8771. //}
  8772. }
  8773. static void ggml_compute_forward_out_prod(
  8774. const struct ggml_compute_params * params,
  8775. const struct ggml_tensor * src0,
  8776. const struct ggml_tensor * src1,
  8777. struct ggml_tensor * dst) {
  8778. switch (src0->type) {
  8779. case GGML_TYPE_Q4_0:
  8780. case GGML_TYPE_Q4_1:
  8781. case GGML_TYPE_Q5_0:
  8782. case GGML_TYPE_Q5_1:
  8783. case GGML_TYPE_Q8_0:
  8784. case GGML_TYPE_Q8_1:
  8785. {
  8786. GGML_ASSERT(false); // todo
  8787. // ggml_compute_forward_out_prod_q_f32(params, src0, src1, dst);
  8788. } break;
  8789. case GGML_TYPE_F16:
  8790. {
  8791. GGML_ASSERT(false); // todo
  8792. // ggml_compute_forward_out_prod_f16_f32(params, src0, src1, dst);
  8793. } break;
  8794. case GGML_TYPE_F32:
  8795. {
  8796. ggml_compute_forward_out_prod_f32(params, src0, src1, dst);
  8797. } break;
  8798. default:
  8799. {
  8800. GGML_ASSERT(false);
  8801. } break;
  8802. }
  8803. }
  8804. // ggml_compute_forward_scale
  8805. static void ggml_compute_forward_scale_f32(
  8806. const struct ggml_compute_params * params,
  8807. const struct ggml_tensor * src0,
  8808. const struct ggml_tensor * src1,
  8809. struct ggml_tensor * dst) {
  8810. GGML_ASSERT(ggml_is_contiguous(src0));
  8811. GGML_ASSERT(ggml_is_contiguous(dst));
  8812. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8813. GGML_ASSERT(ggml_is_scalar(src1));
  8814. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8815. return;
  8816. }
  8817. // scale factor
  8818. const float v = *(float *) src1->data;
  8819. const int ith = params->ith;
  8820. const int nth = params->nth;
  8821. const int nc = src0->ne[0];
  8822. const int nr = ggml_nrows(src0);
  8823. // rows per thread
  8824. const int dr = (nr + nth - 1)/nth;
  8825. // row range for this thread
  8826. const int ir0 = dr*ith;
  8827. const int ir1 = MIN(ir0 + dr, nr);
  8828. const size_t nb01 = src0->nb[1];
  8829. const size_t nb1 = dst->nb[1];
  8830. for (int i1 = ir0; i1 < ir1; i1++) {
  8831. if (dst->data != src0->data) {
  8832. // src0 is same shape as dst => same indices
  8833. memcpy((char *)dst->data + i1*nb1, (char *)src0->data + i1*nb01, nc * sizeof(float));
  8834. }
  8835. ggml_vec_scale_f32(nc, (float *) ((char *) dst->data + i1*nb1), v);
  8836. }
  8837. }
  8838. static void ggml_compute_forward_scale(
  8839. const struct ggml_compute_params * params,
  8840. const struct ggml_tensor * src0,
  8841. const struct ggml_tensor * src1,
  8842. struct ggml_tensor * dst) {
  8843. switch (src0->type) {
  8844. case GGML_TYPE_F32:
  8845. {
  8846. ggml_compute_forward_scale_f32(params, src0, src1, dst);
  8847. } break;
  8848. default:
  8849. {
  8850. GGML_ASSERT(false);
  8851. } break;
  8852. }
  8853. }
  8854. // ggml_compute_forward_set
  8855. static void ggml_compute_forward_set_f32(
  8856. const struct ggml_compute_params * params,
  8857. const struct ggml_tensor * src0,
  8858. const struct ggml_tensor * src1,
  8859. const struct ggml_tensor * opt0,
  8860. struct ggml_tensor * dst) {
  8861. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8862. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  8863. GGML_ASSERT(opt0->type == GGML_TYPE_I32);
  8864. GGML_ASSERT(ggml_nelements(opt0) == 5);
  8865. // view src0 and dst with these strides and data offset inbytes during set
  8866. // nb0 is implicitely element_size because src0 and dst are contiguous
  8867. size_t nb1 = ((int32_t *) opt0->data)[0];
  8868. size_t nb2 = ((int32_t *) opt0->data)[1];
  8869. size_t nb3 = ((int32_t *) opt0->data)[2];
  8870. size_t offset = ((int32_t *) opt0->data)[3];
  8871. bool inplace = (bool) ((int32_t *) opt0->data)[4];
  8872. if (!inplace && (params->type == GGML_TASK_INIT)) {
  8873. // memcpy needs to be synchronized across threads to avoid race conditions.
  8874. // => do it in INIT phase
  8875. memcpy(
  8876. ((char *) dst->data),
  8877. ((char *) src0->data),
  8878. ggml_nbytes(dst));
  8879. }
  8880. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8881. return;
  8882. }
  8883. const int ith = params->ith;
  8884. const int nth = params->nth;
  8885. const int nr = ggml_nrows(src1);
  8886. const int nc = src1->ne[0];
  8887. GGML_TENSOR_LOCALS(int64_t, ne1, src1, ne);
  8888. GGML_TENSOR_LOCALS(size_t, nb1, src1, nb);
  8889. // src0 and dst as viewed during set
  8890. const size_t nb0 = ggml_element_size(src0);
  8891. const int im0 = (ne10 == 0 ? 0 : ne10-1);
  8892. const int im1 = (ne11 == 0 ? 0 : ne11-1);
  8893. const int im2 = (ne12 == 0 ? 0 : ne12-1);
  8894. const int im3 = (ne13 == 0 ? 0 : ne13-1);
  8895. GGML_ASSERT(offset + im0*nb0 + im1*nb1 + im2*nb2 + im3*nb3 <= ggml_nbytes(dst));
  8896. GGML_ASSERT(nb10 == sizeof(float));
  8897. // rows per thread
  8898. const int dr = (nr + nth - 1)/nth;
  8899. // row range for this thread
  8900. const int ir0 = dr*ith;
  8901. const int ir1 = MIN(ir0 + dr, nr);
  8902. for (int ir = ir0; ir < ir1; ++ir) {
  8903. // src0 and dst are viewed with shape of src1 and offset
  8904. // => same indices
  8905. const int i3 = ir/(ne12*ne11);
  8906. const int i2 = (ir - i3*ne12*ne11)/ne11;
  8907. const int i1 = (ir - i3*ne12*ne11 - i2*ne11);
  8908. ggml_vec_cpy_f32(nc,
  8909. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + offset),
  8910. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
  8911. }
  8912. }
  8913. static void ggml_compute_forward_set(
  8914. const struct ggml_compute_params * params,
  8915. const struct ggml_tensor * src0,
  8916. const struct ggml_tensor * src1,
  8917. const struct ggml_tensor * opt0,
  8918. struct ggml_tensor * dst) {
  8919. switch (src0->type) {
  8920. case GGML_TYPE_F32:
  8921. {
  8922. ggml_compute_forward_set_f32(params, src0, src1, opt0, dst);
  8923. } break;
  8924. case GGML_TYPE_F16:
  8925. case GGML_TYPE_Q4_0:
  8926. case GGML_TYPE_Q4_1:
  8927. case GGML_TYPE_Q5_0:
  8928. case GGML_TYPE_Q5_1:
  8929. case GGML_TYPE_Q8_0:
  8930. case GGML_TYPE_Q8_1:
  8931. case GGML_TYPE_Q2_K:
  8932. case GGML_TYPE_Q3_K:
  8933. case GGML_TYPE_Q4_K:
  8934. case GGML_TYPE_Q5_K:
  8935. case GGML_TYPE_Q6_K:
  8936. default:
  8937. {
  8938. GGML_ASSERT(false);
  8939. } break;
  8940. }
  8941. }
  8942. // ggml_compute_forward_cpy
  8943. static void ggml_compute_forward_cpy(
  8944. const struct ggml_compute_params * params,
  8945. const struct ggml_tensor * src0,
  8946. struct ggml_tensor * dst) {
  8947. ggml_compute_forward_dup(params, src0, dst);
  8948. }
  8949. // ggml_compute_forward_cont
  8950. static void ggml_compute_forward_cont(
  8951. const struct ggml_compute_params * params,
  8952. const struct ggml_tensor * src0,
  8953. struct ggml_tensor * dst) {
  8954. ggml_compute_forward_dup(params, src0, dst);
  8955. }
  8956. // ggml_compute_forward_reshape
  8957. static void ggml_compute_forward_reshape(
  8958. const struct ggml_compute_params * params,
  8959. const struct ggml_tensor * src0,
  8960. struct ggml_tensor * dst) {
  8961. // NOP
  8962. UNUSED(params);
  8963. UNUSED(src0);
  8964. UNUSED(dst);
  8965. }
  8966. // ggml_compute_forward_view
  8967. static void ggml_compute_forward_view(
  8968. const struct ggml_compute_params * params,
  8969. const struct ggml_tensor * src0) {
  8970. // NOP
  8971. UNUSED(params);
  8972. UNUSED(src0);
  8973. }
  8974. // ggml_compute_forward_permute
  8975. static void ggml_compute_forward_permute(
  8976. const struct ggml_compute_params * params,
  8977. const struct ggml_tensor * src0) {
  8978. // NOP
  8979. UNUSED(params);
  8980. UNUSED(src0);
  8981. }
  8982. // ggml_compute_forward_transpose
  8983. static void ggml_compute_forward_transpose(
  8984. const struct ggml_compute_params * params,
  8985. const struct ggml_tensor * src0) {
  8986. // NOP
  8987. UNUSED(params);
  8988. UNUSED(src0);
  8989. }
  8990. // ggml_compute_forward_get_rows
  8991. static void ggml_compute_forward_get_rows_q(
  8992. const struct ggml_compute_params * params,
  8993. const struct ggml_tensor * src0,
  8994. const struct ggml_tensor * src1,
  8995. struct ggml_tensor * dst) {
  8996. assert(params->ith == 0);
  8997. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8998. return;
  8999. }
  9000. const int nc = src0->ne[0];
  9001. const int nr = ggml_nelements(src1);
  9002. const enum ggml_type type = src0->type;
  9003. ggml_to_float_t const dequantize_row_q = type_traits[type].to_float;
  9004. assert( dst->ne[0] == nc);
  9005. assert( dst->ne[1] == nr);
  9006. assert(src0->nb[0] == GGML_TYPE_SIZE[type]);
  9007. for (int i = 0; i < nr; ++i) {
  9008. const int r = ((int32_t *) src1->data)[i];
  9009. dequantize_row_q(
  9010. (const void *) ((char *) src0->data + r*src0->nb[1]),
  9011. (float *) ((char *) dst->data + i*dst->nb[1]), nc);
  9012. }
  9013. }
  9014. static void ggml_compute_forward_get_rows_f16(
  9015. const struct ggml_compute_params * params,
  9016. const struct ggml_tensor * src0,
  9017. const struct ggml_tensor * src1,
  9018. struct ggml_tensor * dst) {
  9019. assert(params->ith == 0);
  9020. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9021. return;
  9022. }
  9023. const int nc = src0->ne[0];
  9024. const int nr = ggml_nelements(src1);
  9025. assert( dst->ne[0] == nc);
  9026. assert( dst->ne[1] == nr);
  9027. assert(src0->nb[0] == sizeof(ggml_fp16_t));
  9028. for (int i = 0; i < nr; ++i) {
  9029. const int r = ((int32_t *) src1->data)[i];
  9030. for (int j = 0; j < nc; ++j) {
  9031. ggml_fp16_t v = ((ggml_fp16_t *) ((char *) src0->data + r*src0->nb[1]))[j];
  9032. ((float *) ((char *) dst->data + i*dst->nb[1]))[j] = GGML_FP16_TO_FP32(v);
  9033. }
  9034. }
  9035. }
  9036. static void ggml_compute_forward_get_rows_f32(
  9037. const struct ggml_compute_params * params,
  9038. const struct ggml_tensor * src0,
  9039. const struct ggml_tensor * src1,
  9040. struct ggml_tensor * dst) {
  9041. assert(params->ith == 0);
  9042. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9043. return;
  9044. }
  9045. const int nc = src0->ne[0];
  9046. const int nr = ggml_nelements(src1);
  9047. assert( dst->ne[0] == nc);
  9048. assert( dst->ne[1] == nr);
  9049. assert(src0->nb[0] == sizeof(float));
  9050. for (int i = 0; i < nr; ++i) {
  9051. const int r = ((int32_t *) src1->data)[i];
  9052. ggml_vec_cpy_f32(nc,
  9053. (float *) ((char *) dst->data + i*dst->nb[1]),
  9054. (float *) ((char *) src0->data + r*src0->nb[1]));
  9055. }
  9056. }
  9057. static void ggml_compute_forward_get_rows(
  9058. const struct ggml_compute_params * params,
  9059. const struct ggml_tensor * src0,
  9060. const struct ggml_tensor * src1,
  9061. struct ggml_tensor * dst) {
  9062. switch (src0->type) {
  9063. case GGML_TYPE_Q4_0:
  9064. case GGML_TYPE_Q4_1:
  9065. case GGML_TYPE_Q5_0:
  9066. case GGML_TYPE_Q5_1:
  9067. case GGML_TYPE_Q8_0:
  9068. case GGML_TYPE_Q8_1:
  9069. case GGML_TYPE_Q2_K:
  9070. case GGML_TYPE_Q3_K:
  9071. case GGML_TYPE_Q4_K:
  9072. case GGML_TYPE_Q5_K:
  9073. case GGML_TYPE_Q6_K:
  9074. {
  9075. ggml_compute_forward_get_rows_q(params, src0, src1, dst);
  9076. } break;
  9077. case GGML_TYPE_F16:
  9078. {
  9079. ggml_compute_forward_get_rows_f16(params, src0, src1, dst);
  9080. } break;
  9081. case GGML_TYPE_F32:
  9082. {
  9083. ggml_compute_forward_get_rows_f32(params, src0, src1, dst);
  9084. } break;
  9085. default:
  9086. {
  9087. GGML_ASSERT(false);
  9088. } break;
  9089. }
  9090. //static bool first = true;
  9091. //printf("ne0 = %d, ne1 = %d, ne2 = %d\n", dst->ne[0], dst->ne[1], dst->ne[2]);
  9092. //if (first) {
  9093. // first = false;
  9094. //} else {
  9095. // for (int k = 0; k < dst->ne[1]; ++k) {
  9096. // for (int j = 0; j < dst->ne[0]/16; ++j) {
  9097. // for (int i = 0; i < 16; ++i) {
  9098. // printf("%8.4f ", ((float *) dst->data)[k*dst->ne[0] + j*16 + i]);
  9099. // }
  9100. // printf("\n");
  9101. // }
  9102. // printf("\n");
  9103. // }
  9104. // printf("\n");
  9105. // exit(0);
  9106. //}
  9107. }
  9108. // ggml_compute_forward_get_rows_back
  9109. static void ggml_compute_forward_get_rows_back_f32_f16(
  9110. const struct ggml_compute_params * params,
  9111. const struct ggml_tensor * src0,
  9112. const struct ggml_tensor * src1,
  9113. const struct ggml_tensor * opt0,
  9114. struct ggml_tensor * dst) {
  9115. GGML_ASSERT(params->ith == 0);
  9116. GGML_ASSERT(ggml_are_same_shape(opt0, dst));
  9117. GGML_ASSERT(ggml_is_contiguous(opt0));
  9118. GGML_ASSERT(ggml_is_contiguous(dst));
  9119. ggml_compute_forward_dup_same_cont(params, opt0, dst);
  9120. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9121. return;
  9122. }
  9123. const int nc = src0->ne[0];
  9124. const int nr = ggml_nelements(src1);
  9125. GGML_ASSERT( dst->ne[0] == nc);
  9126. GGML_ASSERT(src0->nb[0] == sizeof(ggml_fp16_t));
  9127. for (int i = 0; i < nr; ++i) {
  9128. const int r = ((int32_t *) src1->data)[i];
  9129. for (int j = 0; j < nc; ++j) {
  9130. ggml_fp16_t v = ((ggml_fp16_t *) ((char *) src0->data + i*src0->nb[1]))[j];
  9131. ((float *) ((char *) dst->data + r*dst->nb[1]))[j] += GGML_FP16_TO_FP32(v);
  9132. }
  9133. }
  9134. }
  9135. static void ggml_compute_forward_get_rows_back_f32(
  9136. const struct ggml_compute_params * params,
  9137. const struct ggml_tensor * src0,
  9138. const struct ggml_tensor * src1,
  9139. const struct ggml_tensor * opt0,
  9140. struct ggml_tensor * dst) {
  9141. GGML_ASSERT(params->ith == 0);
  9142. GGML_ASSERT(ggml_are_same_shape(opt0, dst));
  9143. GGML_ASSERT(ggml_is_contiguous(opt0));
  9144. GGML_ASSERT(ggml_is_contiguous(dst));
  9145. // ggml_compute_forward_dup_same_cont(params, opt0, dst);
  9146. if (params->type == GGML_TASK_INIT) {
  9147. memset(dst->data, 0, ggml_nbytes(dst));
  9148. }
  9149. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9150. return;
  9151. }
  9152. const int nc = src0->ne[0];
  9153. const int nr = ggml_nelements(src1);
  9154. GGML_ASSERT( dst->ne[0] == nc);
  9155. GGML_ASSERT(src0->nb[0] == sizeof(float));
  9156. for (int i = 0; i < nr; ++i) {
  9157. const int r = ((int32_t *) src1->data)[i];
  9158. ggml_vec_add_f32(nc,
  9159. (float *) ((char *) dst->data + r*dst->nb[1]),
  9160. (float *) ((char *) dst->data + r*dst->nb[1]),
  9161. (float *) ((char *) src0->data + i*src0->nb[1]));
  9162. }
  9163. }
  9164. static void ggml_compute_forward_get_rows_back(
  9165. const struct ggml_compute_params * params,
  9166. const struct ggml_tensor * src0,
  9167. const struct ggml_tensor * src1,
  9168. const struct ggml_tensor * opt0,
  9169. struct ggml_tensor * dst) {
  9170. switch (src0->type) {
  9171. case GGML_TYPE_F16:
  9172. {
  9173. ggml_compute_forward_get_rows_back_f32_f16(params, src0, src1, opt0, dst);
  9174. } break;
  9175. case GGML_TYPE_F32:
  9176. {
  9177. ggml_compute_forward_get_rows_back_f32(params, src0, src1, opt0, dst);
  9178. } break;
  9179. default:
  9180. {
  9181. GGML_ASSERT(false);
  9182. } break;
  9183. }
  9184. //static bool first = true;
  9185. //printf("ne0 = %d, ne1 = %d, ne2 = %d\n", dst->ne[0], dst->ne[1], dst->ne[2]);
  9186. //if (first) {
  9187. // first = false;
  9188. //} else {
  9189. // for (int k = 0; k < dst->ne[1]; ++k) {
  9190. // for (int j = 0; j < dst->ne[0]/16; ++j) {
  9191. // for (int i = 0; i < 16; ++i) {
  9192. // printf("%8.4f ", ((float *) dst->data)[k*dst->ne[0] + j*16 + i]);
  9193. // }
  9194. // printf("\n");
  9195. // }
  9196. // printf("\n");
  9197. // }
  9198. // printf("\n");
  9199. // exit(0);
  9200. //}
  9201. }
  9202. // ggml_compute_forward_diag
  9203. static void ggml_compute_forward_diag_f32(
  9204. const struct ggml_compute_params * params,
  9205. const struct ggml_tensor * src0,
  9206. struct ggml_tensor * dst) {
  9207. GGML_ASSERT(params->ith == 0);
  9208. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9209. return;
  9210. }
  9211. // TODO: handle transposed/permuted matrices
  9212. GGML_TENSOR_UNARY_OP_LOCALS;
  9213. GGML_ASSERT(ne00 == ne0);
  9214. GGML_ASSERT(ne00 == ne1);
  9215. GGML_ASSERT(ne01 == 1);
  9216. GGML_ASSERT(ne02 == ne2);
  9217. GGML_ASSERT(ne03 == ne3);
  9218. GGML_ASSERT(nb00 == sizeof(float));
  9219. GGML_ASSERT(nb0 == sizeof(float));
  9220. for (int i3 = 0; i3 < ne3; i3++) {
  9221. for (int i2 = 0; i2 < ne2; i2++) {
  9222. for (int i1 = 0; i1 < ne1; i1++) {
  9223. float * d = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  9224. float * s = (float *)((char *) src0->data + i3*nb03 + i2*nb02);
  9225. for (int i0 = 0; i0 < i1; i0++) {
  9226. d[i0] = 0;
  9227. }
  9228. d[i1] = s[i1];
  9229. for (int i0 = i1+1; i0 < ne0; i0++) {
  9230. d[i0] = 0;
  9231. }
  9232. }
  9233. }
  9234. }
  9235. }
  9236. static void ggml_compute_forward_diag(
  9237. const struct ggml_compute_params * params,
  9238. const struct ggml_tensor * src0,
  9239. struct ggml_tensor * dst) {
  9240. switch (src0->type) {
  9241. case GGML_TYPE_F32:
  9242. {
  9243. ggml_compute_forward_diag_f32(params, src0, dst);
  9244. } break;
  9245. default:
  9246. {
  9247. GGML_ASSERT(false);
  9248. } break;
  9249. }
  9250. }
  9251. // ggml_compute_forward_diag_mask_inf
  9252. static void ggml_compute_forward_diag_mask_f32(
  9253. const struct ggml_compute_params * params,
  9254. const struct ggml_tensor * src0,
  9255. const struct ggml_tensor * src1,
  9256. struct ggml_tensor * dst,
  9257. const float value) {
  9258. GGML_ASSERT(src1->type == GGML_TYPE_I32);
  9259. GGML_ASSERT(ggml_nelements(src1) == 2);
  9260. const int ith = params->ith;
  9261. const int nth = params->nth;
  9262. const int n_past = ((int32_t *) src1->data)[0];
  9263. const bool inplace = (bool)((int32_t *) src1->data)[1];
  9264. GGML_ASSERT(n_past >= 0);
  9265. if (!inplace && (params->type == GGML_TASK_INIT)) {
  9266. // memcpy needs to be synchronized across threads to avoid race conditions.
  9267. // => do it in INIT phase
  9268. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  9269. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  9270. memcpy(
  9271. ((char *) dst->data),
  9272. ((char *) src0->data),
  9273. ggml_nbytes(dst));
  9274. }
  9275. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9276. return;
  9277. }
  9278. // TODO: handle transposed/permuted matrices
  9279. const int n = ggml_nrows(src0);
  9280. const int nc = src0->ne[0];
  9281. const int nr = src0->ne[1];
  9282. const int nz = n/nr;
  9283. GGML_ASSERT( dst->nb[0] == sizeof(float));
  9284. GGML_ASSERT(src0->nb[0] == sizeof(float));
  9285. for (int k = 0; k < nz; k++) {
  9286. for (int j = ith; j < nr; j += nth) {
  9287. for (int i = n_past; i < nc; i++) {
  9288. if (i > n_past + j) {
  9289. *(float *)((char *) dst->data + k*dst->nb[2] + j*dst->nb[1] + i*dst->nb[0]) = value;
  9290. }
  9291. }
  9292. }
  9293. }
  9294. }
  9295. static void ggml_compute_forward_diag_mask_inf(
  9296. const struct ggml_compute_params * params,
  9297. const struct ggml_tensor * src0,
  9298. const struct ggml_tensor * src1,
  9299. struct ggml_tensor * dst) {
  9300. switch (src0->type) {
  9301. case GGML_TYPE_F32:
  9302. {
  9303. ggml_compute_forward_diag_mask_f32(params, src0, src1, dst, -INFINITY);
  9304. } break;
  9305. default:
  9306. {
  9307. GGML_ASSERT(false);
  9308. } break;
  9309. }
  9310. }
  9311. static void ggml_compute_forward_diag_mask_zero(
  9312. const struct ggml_compute_params * params,
  9313. const struct ggml_tensor * src0,
  9314. const struct ggml_tensor * src1,
  9315. struct ggml_tensor * dst) {
  9316. switch (src0->type) {
  9317. case GGML_TYPE_F32:
  9318. {
  9319. ggml_compute_forward_diag_mask_f32(params, src0, src1, dst, 0);
  9320. } break;
  9321. default:
  9322. {
  9323. GGML_ASSERT(false);
  9324. } break;
  9325. }
  9326. }
  9327. // ggml_compute_forward_soft_max
  9328. static void ggml_compute_forward_soft_max_f32(
  9329. const struct ggml_compute_params * params,
  9330. const struct ggml_tensor * src0,
  9331. struct ggml_tensor * dst) {
  9332. GGML_ASSERT(ggml_is_contiguous(src0));
  9333. GGML_ASSERT(ggml_is_contiguous(dst));
  9334. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  9335. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9336. return;
  9337. }
  9338. // TODO: handle transposed/permuted matrices
  9339. const int ith = params->ith;
  9340. const int nth = params->nth;
  9341. const int nc = src0->ne[0];
  9342. const int nr = ggml_nrows(src0);
  9343. // rows per thread
  9344. const int dr = (nr + nth - 1)/nth;
  9345. // row range for this thread
  9346. const int ir0 = dr*ith;
  9347. const int ir1 = MIN(ir0 + dr, nr);
  9348. for (int i1 = ir0; i1 < ir1; i1++) {
  9349. float *sp = (float *)((char *) src0->data + i1*src0->nb[1]);
  9350. float *dp = (float *)((char *) dst->data + i1*dst->nb[1]);
  9351. #ifndef NDEBUG
  9352. for (int i = 0; i < nc; ++i) {
  9353. //printf("p[%d] = %f\n", i, p[i]);
  9354. assert(!isnan(sp[i]));
  9355. }
  9356. #endif
  9357. float max = -INFINITY;
  9358. ggml_vec_max_f32(nc, &max, sp);
  9359. ggml_float sum = 0.0;
  9360. uint16_t scvt;
  9361. for (int i = 0; i < nc; i++) {
  9362. if (sp[i] == -INFINITY) {
  9363. dp[i] = 0.0f;
  9364. } else {
  9365. // const float val = (sp[i] == -INFINITY) ? 0.0 : exp(sp[i] - max);
  9366. ggml_fp16_t s = GGML_FP32_TO_FP16(sp[i] - max);
  9367. memcpy(&scvt, &s, sizeof(scvt));
  9368. const float val = GGML_FP16_TO_FP32(table_exp_f16[scvt]);
  9369. sum += (ggml_float)val;
  9370. dp[i] = val;
  9371. }
  9372. }
  9373. assert(sum > 0.0);
  9374. sum = 1.0/sum;
  9375. ggml_vec_scale_f32(nc, dp, sum);
  9376. #ifndef NDEBUG
  9377. for (int i = 0; i < nc; ++i) {
  9378. assert(!isnan(dp[i]));
  9379. assert(!isinf(dp[i]));
  9380. }
  9381. #endif
  9382. }
  9383. }
  9384. static void ggml_compute_forward_soft_max(
  9385. const struct ggml_compute_params * params,
  9386. const struct ggml_tensor * src0,
  9387. struct ggml_tensor * dst) {
  9388. switch (src0->type) {
  9389. case GGML_TYPE_F32:
  9390. {
  9391. ggml_compute_forward_soft_max_f32(params, src0, dst);
  9392. } break;
  9393. default:
  9394. {
  9395. GGML_ASSERT(false);
  9396. } break;
  9397. }
  9398. }
  9399. // ggml_compute_forward_soft_max_back
  9400. static void ggml_compute_forward_soft_max_back_f32(
  9401. const struct ggml_compute_params * params,
  9402. const struct ggml_tensor * src0,
  9403. const struct ggml_tensor * src1,
  9404. struct ggml_tensor * dst) {
  9405. GGML_ASSERT(ggml_is_contiguous(src0));
  9406. GGML_ASSERT(ggml_is_contiguous(src1));
  9407. GGML_ASSERT(ggml_is_contiguous(dst));
  9408. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  9409. GGML_ASSERT(ggml_are_same_shape(src1, dst));
  9410. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9411. return;
  9412. }
  9413. // TODO: handle transposed/permuted matrices
  9414. const int ith = params->ith;
  9415. const int nth = params->nth;
  9416. const int nc = src0->ne[0];
  9417. const int nr = ggml_nrows(src0);
  9418. // rows per thread
  9419. const int dr = (nr + nth - 1)/nth;
  9420. // row range for this thread
  9421. const int ir0 = dr*ith;
  9422. const int ir1 = MIN(ir0 + dr, nr);
  9423. for (int i1 = ir0; i1 < ir1; i1++) {
  9424. float *dy = (float *)((char *) src0->data + i1*src0->nb[1]);
  9425. float *y = (float *)((char *) src1->data + i1*src1->nb[1]);
  9426. float *dx = (float *)((char *) dst->data + i1*dst->nb[1]);
  9427. #ifndef NDEBUG
  9428. for (int i = 0; i < nc; ++i) {
  9429. //printf("p[%d] = %f\n", i, p[i]);
  9430. assert(!isnan(dy[i]));
  9431. assert(!isnan(y[i]));
  9432. }
  9433. #endif
  9434. // Jii = yi - yi*yi
  9435. // Jij = -yi*yj
  9436. // J = diag(y)-y.T*y
  9437. // dx = J * dy
  9438. // dxk = sum_i(Jki * dyi)
  9439. // dxk = sum_i(-yk*yi * dyi) - (-yk*yk)*dyk + (yk - yk*yk)*dyk
  9440. // dxk = sum_i(-yk*yi * dyi) + yk*dyk
  9441. // dxk = -yk * sum_i(yi * dyi) + yk*dyk
  9442. // dxk = -yk * dot(y, dy) + yk*dyk
  9443. // dxk = yk * (- dot(y, dy) + dyk)
  9444. // dxk = yk * (dyk - dot(y, dy))
  9445. //
  9446. // post-order:
  9447. // dot_y_dy := dot(y, dy)
  9448. // dx := dy
  9449. // dx := dx - dot_y_dy
  9450. // dx := dx * y
  9451. // linear runtime, no additional memory
  9452. float dot_y_dy = 0;
  9453. ggml_vec_dot_f32 (nc, &dot_y_dy, y, dy);
  9454. ggml_vec_cpy_f32 (nc, dx, dy);
  9455. ggml_vec_acc1_f32(nc, dx, -dot_y_dy);
  9456. ggml_vec_mul_f32 (nc, dx, dx, y);
  9457. #ifndef NDEBUG
  9458. for (int i = 0; i < nc; ++i) {
  9459. assert(!isnan(dx[i]));
  9460. assert(!isinf(dx[i]));
  9461. }
  9462. #endif
  9463. }
  9464. }
  9465. static void ggml_compute_forward_soft_max_back(
  9466. const struct ggml_compute_params * params,
  9467. const struct ggml_tensor * src0,
  9468. const struct ggml_tensor * src1,
  9469. struct ggml_tensor * dst) {
  9470. switch (src0->type) {
  9471. case GGML_TYPE_F32:
  9472. {
  9473. ggml_compute_forward_soft_max_back_f32(params, src0, src1, dst);
  9474. } break;
  9475. default:
  9476. {
  9477. GGML_ASSERT(false);
  9478. } break;
  9479. }
  9480. }
  9481. // ggml_compute_forward_alibi
  9482. static void ggml_compute_forward_alibi_f32(
  9483. const struct ggml_compute_params * params,
  9484. const struct ggml_tensor * src0,
  9485. const struct ggml_tensor * src1,
  9486. struct ggml_tensor * dst) {
  9487. assert(params->ith == 0);
  9488. GGML_ASSERT(src1->type == GGML_TYPE_I32);
  9489. GGML_ASSERT(ggml_nelements(src1) == 3);
  9490. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9491. return;
  9492. }
  9493. const int n_past = ((int32_t *) src1->data)[0];
  9494. const int n_head = ((int32_t *) src1->data)[1];
  9495. const float max_bias = ((float *) src1->data)[2];
  9496. assert(n_past >= 0);
  9497. const int ne0 = src0->ne[0]; // all_seq_len = n_past + ne1
  9498. const int ne1 = src0->ne[1]; // seq_len_without_past
  9499. //const int ne2 = src0->ne[2]; // n_head -> this is k
  9500. //const int ne3 = src0->ne[3]; // 1 -> bsz
  9501. const int n = ggml_nrows(src0);
  9502. const int ne2_ne3 = n/ne1; // ne2*ne3
  9503. const int nb0 = src0->nb[0];
  9504. const int nb1 = src0->nb[1];
  9505. const int nb2 = src0->nb[2];
  9506. //const int nb3 = src0->nb[3];
  9507. assert(nb0 == sizeof(float));
  9508. assert(ne1 + n_past == ne0); (void) n_past;
  9509. // add alibi to src0 (KQ_scaled)
  9510. const int n_heads_log2_floor = 1 << (int) floor(log2(n_head));
  9511. const float m0 = powf(2.0f, -(max_bias) / n_heads_log2_floor);
  9512. const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_heads_log2_floor);
  9513. for (int i = 0; i < ne0; i++) {
  9514. for (int j = 0; j < ne1; j++) {
  9515. for (int k = 0; k < ne2_ne3; k++) {
  9516. float * const src = (float *)((char *) src0->data + i*nb0 + j*nb1 + k*nb2);
  9517. float * pdst = (float *)((char *) dst->data + i*nb0 + j*nb1 + k*nb2);
  9518. // TODO: k*nb2 or k*nb3
  9519. float m_k;
  9520. if (k < n_heads_log2_floor) {
  9521. m_k = powf(m0, k + 1);
  9522. } else {
  9523. m_k = powf(m1, 2 * (k - n_heads_log2_floor) + 1);
  9524. }
  9525. pdst[0] = (i-ne0+1) * m_k + src[0];
  9526. }
  9527. }
  9528. }
  9529. }
  9530. static void ggml_compute_forward_alibi_f16(
  9531. const struct ggml_compute_params * params,
  9532. const struct ggml_tensor * src0,
  9533. const struct ggml_tensor * src1,
  9534. struct ggml_tensor * dst) {
  9535. assert(params->ith == 0);
  9536. GGML_ASSERT(src1->type == GGML_TYPE_I32);
  9537. GGML_ASSERT(ggml_nelements(src1) == 3);
  9538. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9539. return;
  9540. }
  9541. const int n_past = ((int32_t *) src1->data)[0];
  9542. const int n_head = ((int32_t *) src1->data)[1];
  9543. const float max_bias = ((float *) src1->data)[2];
  9544. assert(n_past >= 0);
  9545. const int ne0 = src0->ne[0]; // all_seq_len = n_past + ne1
  9546. const int ne1 = src0->ne[1]; // seq_len_without_past
  9547. //const int ne2 = src0->ne[2]; // n_head -> this is k
  9548. //const int ne3 = src0->ne[3]; // 1 -> bsz
  9549. const int n = ggml_nrows(src0);
  9550. const int ne2_ne3 = n/ne1; // ne2*ne3
  9551. const int nb0 = src0->nb[0];
  9552. const int nb1 = src0->nb[1];
  9553. const int nb2 = src0->nb[2];
  9554. //const int nb3 = src0->nb[3];
  9555. assert(nb0 == sizeof(ggml_fp16_t));
  9556. assert(ne1 + n_past == ne0); (void) n_past;
  9557. // add alibi to src0 (KQ_scaled)
  9558. const int n_heads_log2_floor = 1 << (int) floor(log2(n_head));
  9559. const float m0 = powf(2.0f, -(max_bias) / n_heads_log2_floor);
  9560. const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_heads_log2_floor);
  9561. for (int i = 0; i < ne0; i++) {
  9562. for (int j = 0; j < ne1; j++) {
  9563. for (int k = 0; k < ne2_ne3; k++) {
  9564. ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i*nb0 + j*nb1 + k*nb2);
  9565. float * pdst = (float *)((char *) dst->data + i*nb0 + j*nb1 + k*nb2);
  9566. // TODO: k*nb2 or k*nb3
  9567. float m_k;
  9568. if (k < n_heads_log2_floor) {
  9569. m_k = powf(m0, k + 1);
  9570. } else {
  9571. m_k = powf(m1, 2 * (k - n_heads_log2_floor) + 1);
  9572. }
  9573. // we return F32
  9574. pdst[0] = (i-ne0+1) * m_k + GGML_FP16_TO_FP32(src[0]);
  9575. }
  9576. }
  9577. }
  9578. }
  9579. static void ggml_compute_forward_alibi(
  9580. const struct ggml_compute_params * params,
  9581. const struct ggml_tensor * src0,
  9582. const struct ggml_tensor * src1,
  9583. struct ggml_tensor * dst) {
  9584. switch (src0->type) {
  9585. case GGML_TYPE_F16:
  9586. {
  9587. ggml_compute_forward_alibi_f16(params, src0, src1, dst);
  9588. } break;
  9589. case GGML_TYPE_F32:
  9590. {
  9591. ggml_compute_forward_alibi_f32(params, src0, src1, dst);
  9592. } break;
  9593. case GGML_TYPE_Q4_0:
  9594. case GGML_TYPE_Q4_1:
  9595. case GGML_TYPE_Q5_0:
  9596. case GGML_TYPE_Q5_1:
  9597. case GGML_TYPE_Q8_0:
  9598. case GGML_TYPE_Q8_1:
  9599. case GGML_TYPE_Q2_K:
  9600. case GGML_TYPE_Q3_K:
  9601. case GGML_TYPE_Q4_K:
  9602. case GGML_TYPE_Q5_K:
  9603. case GGML_TYPE_Q6_K:
  9604. case GGML_TYPE_Q8_K:
  9605. case GGML_TYPE_I8:
  9606. case GGML_TYPE_I16:
  9607. case GGML_TYPE_I32:
  9608. case GGML_TYPE_COUNT:
  9609. {
  9610. GGML_ASSERT(false);
  9611. } break;
  9612. }
  9613. }
  9614. // ggml_compute_forward_clamp
  9615. static void ggml_compute_forward_clamp_f32(
  9616. const struct ggml_compute_params * params,
  9617. const struct ggml_tensor * src0,
  9618. const struct ggml_tensor * src1,
  9619. struct ggml_tensor * dst) {
  9620. assert(params->ith == 0);
  9621. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  9622. GGML_ASSERT(ggml_nelements(src1) == 2);
  9623. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9624. return;
  9625. }
  9626. const float min = ((float *) src1->data)[0];
  9627. const float max = ((float *) src1->data)[1];
  9628. const int ith = params->ith;
  9629. const int nth = params->nth;
  9630. const int n = ggml_nrows(src0);
  9631. const int nc = src0->ne[0];
  9632. const size_t nb00 = src0->nb[0];
  9633. const size_t nb01 = src0->nb[1];
  9634. const size_t nb0 = dst->nb[0];
  9635. const size_t nb1 = dst->nb[1];
  9636. GGML_ASSERT( nb0 == sizeof(float));
  9637. GGML_ASSERT(nb00 == sizeof(float));
  9638. for (int j = ith; j < n; j += nth) {
  9639. float * dst_ptr = (float *) ((char *) dst->data + j*nb1);
  9640. float * src0_ptr = (float *) ((char *) src0->data + j*nb01);
  9641. for (int i = 0; i < nc; i++) {
  9642. dst_ptr[i] = MAX(MIN(src0_ptr[i], max), min);
  9643. }
  9644. }
  9645. }
  9646. static void ggml_compute_forward_clamp(
  9647. const struct ggml_compute_params * params,
  9648. const struct ggml_tensor * src0,
  9649. const struct ggml_tensor * src1,
  9650. struct ggml_tensor * dst) {
  9651. switch (src0->type) {
  9652. case GGML_TYPE_F32:
  9653. {
  9654. ggml_compute_forward_clamp_f32(params, src0, src1, dst);
  9655. } break;
  9656. case GGML_TYPE_F16:
  9657. case GGML_TYPE_Q4_0:
  9658. case GGML_TYPE_Q4_1:
  9659. case GGML_TYPE_Q5_0:
  9660. case GGML_TYPE_Q5_1:
  9661. case GGML_TYPE_Q8_0:
  9662. case GGML_TYPE_Q8_1:
  9663. case GGML_TYPE_Q2_K:
  9664. case GGML_TYPE_Q3_K:
  9665. case GGML_TYPE_Q4_K:
  9666. case GGML_TYPE_Q5_K:
  9667. case GGML_TYPE_Q6_K:
  9668. case GGML_TYPE_Q8_K:
  9669. case GGML_TYPE_I8:
  9670. case GGML_TYPE_I16:
  9671. case GGML_TYPE_I32:
  9672. case GGML_TYPE_COUNT:
  9673. {
  9674. GGML_ASSERT(false);
  9675. } break;
  9676. }
  9677. }
  9678. // ggml_compute_forward_rope
  9679. static void ggml_compute_forward_rope_f32(
  9680. const struct ggml_compute_params * params,
  9681. const struct ggml_tensor * src0,
  9682. const struct ggml_tensor * src1,
  9683. struct ggml_tensor * dst) {
  9684. GGML_ASSERT(src1->type == GGML_TYPE_I32);
  9685. GGML_ASSERT(ggml_nelements(src1) == 4);
  9686. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9687. return;
  9688. }
  9689. const int n_past = ((int32_t *) src1->data)[0];
  9690. const int n_dims = ((int32_t *) src1->data)[1];
  9691. const int mode = ((int32_t *) src1->data)[2];
  9692. const int n_ctx = ((int32_t *) src1->data)[3];
  9693. assert(n_past >= 0);
  9694. GGML_TENSOR_UNARY_OP_LOCALS;
  9695. //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
  9696. //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
  9697. GGML_ASSERT(nb00 == sizeof(float));
  9698. const int ith = params->ith;
  9699. const int nth = params->nth;
  9700. const int nr = ggml_nrows(dst);
  9701. GGML_ASSERT(n_dims <= ne0);
  9702. GGML_ASSERT(n_dims % 2 == 0);
  9703. // rows per thread
  9704. const int dr = (nr + nth - 1)/nth;
  9705. // row range for this thread
  9706. const int ir0 = dr*ith;
  9707. const int ir1 = MIN(ir0 + dr, nr);
  9708. // row index used to determine which thread to use
  9709. int ir = 0;
  9710. const float theta_scale = powf(10000.0, -2.0f/n_dims);
  9711. const bool is_neox = mode & 2;
  9712. const bool is_glm = mode & 4;
  9713. for (int64_t i3 = 0; i3 < ne3; i3++) {
  9714. for (int64_t i2 = ((mode & 1) == 0 ? 0 : n_past); i2 < ne2; i2++) {
  9715. const int64_t p = ((mode & 1) == 0 ? n_past + i2 : i2);
  9716. for (int64_t i1 = 0; i1 < ne1; i1++) {
  9717. if (ir++ < ir0) continue;
  9718. if (ir > ir1) break;
  9719. float theta = (float)p;
  9720. if (is_glm) {
  9721. theta = MIN(p, n_ctx - 2);
  9722. float block_theta = MAX(p - (n_ctx - 2), 0);
  9723. for (int64_t i0 = 0; i0 < ne0 / 4; i0++) {
  9724. const float cos_theta = cosf(theta);
  9725. const float sin_theta = sinf(theta);
  9726. const float cos_block_theta = cosf(block_theta);
  9727. const float sin_block_theta = sinf(block_theta);
  9728. theta *= theta_scale;
  9729. block_theta *= theta_scale;
  9730. const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  9731. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  9732. const float x0 = src[0];
  9733. const float x1 = src[n_dims/2];
  9734. const float x2 = src[n_dims];
  9735. const float x3 = src[n_dims/2*3];
  9736. dst_data[0] = x0*cos_theta - x1*sin_theta;
  9737. dst_data[n_dims/2] = x0*sin_theta + x1*cos_theta;
  9738. dst_data[n_dims] = x2*cos_block_theta - x3*sin_block_theta;
  9739. dst_data[n_dims/2*3] = x2*sin_block_theta + x3*cos_block_theta;
  9740. }
  9741. } else if (!is_neox) {
  9742. for (int64_t i0 = 0; i0 < ne0; i0 += 2) {
  9743. const float cos_theta = cosf(theta);
  9744. const float sin_theta = sinf(theta);
  9745. theta *= theta_scale;
  9746. const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  9747. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  9748. const float x0 = src[0];
  9749. const float x1 = src[1];
  9750. dst_data[0] = x0*cos_theta - x1*sin_theta;
  9751. dst_data[1] = x0*sin_theta + x1*cos_theta;
  9752. }
  9753. } else {
  9754. // TODO: this is probably wrong, but I can't figure it out ..
  9755. // ref: https://github.com/huggingface/transformers/blob/main/src/transformers/models/gpt_neox/modeling_gpt_neox.py#LL251C1-L294C28
  9756. for (int64_t ib = 0; ib < ne0/n_dims; ++ib) {
  9757. for (int64_t ic = 0; ic < n_dims; ic += 2) {
  9758. const float cos_theta = cosf(theta);
  9759. const float sin_theta = sinf(theta);
  9760. theta *= theta_scale;
  9761. const int64_t i0 = ib*n_dims + ic/2;
  9762. const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  9763. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  9764. const float x0 = src[0];
  9765. const float x1 = src[n_dims/2];
  9766. dst_data[0] = x0*cos_theta - x1*sin_theta;
  9767. dst_data[n_dims/2] = x0*sin_theta + x1*cos_theta;
  9768. }
  9769. }
  9770. }
  9771. }
  9772. }
  9773. }
  9774. }
  9775. static void ggml_compute_forward_rope_f16(
  9776. const struct ggml_compute_params * params,
  9777. const struct ggml_tensor * src0,
  9778. const struct ggml_tensor * src1,
  9779. struct ggml_tensor * dst) {
  9780. GGML_ASSERT(src1->type == GGML_TYPE_I32);
  9781. GGML_ASSERT(ggml_nelements(src1) == 4);
  9782. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9783. return;
  9784. }
  9785. const int n_past = ((int32_t *) src1->data)[0];
  9786. const int n_dims = ((int32_t *) src1->data)[1];
  9787. const int mode = ((int32_t *) src1->data)[2];
  9788. const int n_ctx = ((int32_t *) src1->data)[3];
  9789. assert(n_past >= 0);
  9790. GGML_TENSOR_UNARY_OP_LOCALS;
  9791. //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
  9792. //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
  9793. GGML_ASSERT(nb0 == sizeof(ggml_fp16_t));
  9794. const int ith = params->ith;
  9795. const int nth = params->nth;
  9796. const int nr = ggml_nrows(dst);
  9797. GGML_ASSERT(n_dims <= ne0);
  9798. GGML_ASSERT(n_dims % 2 == 0);
  9799. // rows per thread
  9800. const int dr = (nr + nth - 1)/nth;
  9801. // row range for this thread
  9802. const int ir0 = dr*ith;
  9803. const int ir1 = MIN(ir0 + dr, nr);
  9804. // row index used to determine which thread to use
  9805. int ir = 0;
  9806. const float theta_scale = powf(10000.0, -2.0f/n_dims);
  9807. const bool is_neox = mode & 2;
  9808. const bool is_glm = mode & 4;
  9809. for (int64_t i3 = 0; i3 < ne3; i3++) {
  9810. for (int64_t i2 = ((mode & 1) == 0 ? 0 : n_past); i2 < ne2; i2++) {
  9811. const int64_t p = ((mode & 1) == 0 ? n_past + i2 : i2);
  9812. for (int64_t i1 = 0; i1 < ne1; i1++) {
  9813. if (ir++ < ir0) continue;
  9814. if (ir > ir1) break;
  9815. float theta = (float)p;
  9816. if (is_glm) {
  9817. theta = MIN(p, n_ctx - 2);
  9818. float block_theta = MAX(p - (n_ctx - 2), 0);
  9819. for (int64_t i0 = 0; i0 < ne0 / 4; i0++) {
  9820. const float cos_theta = cosf(theta);
  9821. const float sin_theta = sinf(theta);
  9822. const float cos_block_theta = cosf(block_theta);
  9823. const float sin_block_theta = sinf(block_theta);
  9824. theta *= theta_scale;
  9825. block_theta *= theta_scale;
  9826. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  9827. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  9828. const float x0 = GGML_FP16_TO_FP32(src[0]);
  9829. const float x1 = GGML_FP16_TO_FP32(src[n_dims/2]);
  9830. const float x2 = GGML_FP16_TO_FP32(src[n_dims]);
  9831. const float x3 = GGML_FP16_TO_FP32(src[n_dims/2*3]);
  9832. dst_data[0] = GGML_FP32_TO_FP16(x0*cos_theta - x1*sin_theta);
  9833. dst_data[n_dims/2] = GGML_FP32_TO_FP16(x0*sin_theta + x1*cos_theta);
  9834. dst_data[n_dims] = GGML_FP32_TO_FP16(x2*cos_block_theta - x3*sin_block_theta);
  9835. dst_data[n_dims/2*3] = GGML_FP32_TO_FP16(x2*sin_block_theta + x3*cos_block_theta);
  9836. }
  9837. } if (!is_neox) {
  9838. for (int64_t i0 = 0; i0 < ne0; i0 += 2) {
  9839. const float cos_theta = cosf(theta);
  9840. const float sin_theta = sinf(theta);
  9841. theta *= theta_scale;
  9842. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  9843. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  9844. const float x0 = GGML_FP16_TO_FP32(src[0]);
  9845. const float x1 = GGML_FP16_TO_FP32(src[1]);
  9846. dst_data[0] = GGML_FP32_TO_FP16(x0*cos_theta - x1*sin_theta);
  9847. dst_data[1] = GGML_FP32_TO_FP16(x0*sin_theta + x1*cos_theta);
  9848. }
  9849. } else {
  9850. // TODO: this is probably wrong, but I can't figure it out ..
  9851. // ref: https://github.com/huggingface/transformers/blob/main/src/transformers/models/gpt_neox/modeling_gpt_neox.py#LL251C1-L294C28
  9852. for (int64_t ib = 0; ib < ne0/n_dims; ++ib) {
  9853. for (int64_t ic = 0; ic < n_dims; ic += 2) {
  9854. const float cos_theta = cosf(theta);
  9855. const float sin_theta = sinf(theta);
  9856. theta *= theta_scale;
  9857. const int64_t i0 = ib*n_dims + ic/2;
  9858. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  9859. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  9860. const float x0 = GGML_FP16_TO_FP32(src[0]);
  9861. const float x1 = GGML_FP16_TO_FP32(src[n_dims/2]);
  9862. dst_data[0] = GGML_FP32_TO_FP16(x0*cos_theta - x1*sin_theta);
  9863. dst_data[n_dims/2] = GGML_FP32_TO_FP16(x0*sin_theta + x1*cos_theta);
  9864. }
  9865. }
  9866. }
  9867. }
  9868. }
  9869. }
  9870. }
  9871. static void ggml_compute_forward_rope(
  9872. const struct ggml_compute_params * params,
  9873. const struct ggml_tensor * src0,
  9874. const struct ggml_tensor * src1,
  9875. struct ggml_tensor * dst) {
  9876. switch (src0->type) {
  9877. case GGML_TYPE_F16:
  9878. {
  9879. ggml_compute_forward_rope_f16(params, src0, src1, dst);
  9880. } break;
  9881. case GGML_TYPE_F32:
  9882. {
  9883. ggml_compute_forward_rope_f32(params, src0, src1, dst);
  9884. } break;
  9885. default:
  9886. {
  9887. GGML_ASSERT(false);
  9888. } break;
  9889. }
  9890. }
  9891. // ggml_compute_forward_rope_back
  9892. static void ggml_compute_forward_rope_back_f32(
  9893. const struct ggml_compute_params * params,
  9894. const struct ggml_tensor * src0,
  9895. const struct ggml_tensor * src1,
  9896. struct ggml_tensor * dst) {
  9897. assert(src1->type == GGML_TYPE_I32);
  9898. assert(ggml_nelements(src1) == 3);
  9899. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9900. return;
  9901. }
  9902. // y = rope(x, src1)
  9903. // dx = rope_back(dy, src1)
  9904. // src0 is dy, src1 contains options
  9905. const int n_past = ((int32_t *) src1->data)[0];
  9906. const int n_dims = ((int32_t *) src1->data)[1];
  9907. const int mode = ((int32_t *) src1->data)[2];
  9908. assert(n_past >= 0);
  9909. GGML_TENSOR_UNARY_OP_LOCALS;
  9910. //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
  9911. //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
  9912. assert(nb0 == sizeof(float));
  9913. const int ith = params->ith;
  9914. const int nth = params->nth;
  9915. const int nr = ggml_nrows(dst);
  9916. // rows per thread
  9917. const int dr = (nr + nth - 1)/nth;
  9918. // row range for this thread
  9919. const int ir0 = dr*ith;
  9920. const int ir1 = MIN(ir0 + dr, nr);
  9921. // row index used to determine which thread to use
  9922. int ir = 0;
  9923. const float theta_scale = powf(10000.0, -2.0f/n_dims);
  9924. const bool is_neox = mode & 2;
  9925. for (int64_t i3 = 0; i3 < ne3; i3++) {
  9926. for (int64_t i2 = ((mode & 1) == 0 ? 0 : n_past); i2 < ne2; i2++) {
  9927. const int64_t p = ((mode & 1) == 0 ? n_past + i2 : i2);
  9928. for (int64_t i1 = 0; i1 < ne1; i1++) {
  9929. if (ir++ < ir0) continue;
  9930. if (ir > ir1) break;
  9931. float theta = (float)p;
  9932. if (!is_neox) {
  9933. for (int64_t i0 = 0; i0 < ne0; i0 += 2) {
  9934. const float cos_theta = cosf(theta);
  9935. const float sin_theta = sinf(theta);
  9936. theta *= theta_scale;
  9937. const float * const dy = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  9938. float * dx = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  9939. const float dy0 = dy[0];
  9940. const float dy1 = dy[1];
  9941. dx[0] = dy0*cos_theta + dy1*sin_theta;
  9942. dx[1] = - dy0*sin_theta + dy1*cos_theta;
  9943. }
  9944. } else {
  9945. for (int64_t ib = 0; ib < ne0/n_dims; ++ib) {
  9946. for (int64_t ic = 0; ic < n_dims; ic += 2) {
  9947. const float cos_theta = cosf(theta);
  9948. const float sin_theta = sinf(theta);
  9949. theta *= theta_scale;
  9950. const int64_t i0 = ib*n_dims + ic/2;
  9951. const float * const dy = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  9952. float * dx = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  9953. const float dy0 = dy[0];
  9954. const float dy1 = dy[n_dims/2];
  9955. dx[0] = dy0*cos_theta + dy1*sin_theta;
  9956. dx[n_dims/2] = - dy0*sin_theta + dy1*cos_theta;
  9957. }
  9958. }
  9959. }
  9960. }
  9961. }
  9962. }
  9963. }
  9964. static void ggml_compute_forward_rope_back_f16(
  9965. const struct ggml_compute_params * params,
  9966. const struct ggml_tensor * src0,
  9967. const struct ggml_tensor * src1,
  9968. struct ggml_tensor * dst) {
  9969. assert(src1->type == GGML_TYPE_I32);
  9970. assert(ggml_nelements(src1) == 3);
  9971. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9972. return;
  9973. }
  9974. // y = rope(x, src1)
  9975. // dx = rope_back(dy, src1)
  9976. // src0 is dy, src1 contains options
  9977. const int n_past = ((int32_t *) src1->data)[0];
  9978. const int n_dims = ((int32_t *) src1->data)[1];
  9979. const int mode = ((int32_t *) src1->data)[2];
  9980. assert(n_past >= 0);
  9981. GGML_TENSOR_UNARY_OP_LOCALS;
  9982. //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
  9983. //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
  9984. assert(nb0 == sizeof(ggml_fp16_t));
  9985. const int ith = params->ith;
  9986. const int nth = params->nth;
  9987. const int nr = ggml_nrows(dst);
  9988. // rows per thread
  9989. const int dr = (nr + nth - 1)/nth;
  9990. // row range for this thread
  9991. const int ir0 = dr*ith;
  9992. const int ir1 = MIN(ir0 + dr, nr);
  9993. // row index used to determine which thread to use
  9994. int ir = 0;
  9995. const float theta_scale = powf(10000.0, -2.0f/n_dims);
  9996. const bool is_neox = mode & 2;
  9997. for (int64_t i3 = 0; i3 < ne3; i3++) {
  9998. for (int64_t i2 = ((mode & 1) == 0 ? 0 : n_past); i2 < ne2; i2++) {
  9999. const int64_t p = ((mode & 1) == 0 ? n_past + i2 : i2);
  10000. for (int64_t i1 = 0; i1 < ne1; i1++) {
  10001. if (ir++ < ir0) continue;
  10002. if (ir > ir1) break;
  10003. float theta = (float)p;
  10004. if (!is_neox) {
  10005. for (int64_t i0 = 0; i0 < ne0; i0 += 2) {
  10006. const float cos_theta = cosf(theta);
  10007. const float sin_theta = sinf(theta);
  10008. theta *= theta_scale;
  10009. const ggml_fp16_t * const dy = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  10010. ggml_fp16_t * dx = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  10011. const float dy0 = GGML_FP16_TO_FP32(dy[0]);
  10012. const float dy1 = GGML_FP16_TO_FP32(dy[1]);
  10013. dx[0] = GGML_FP32_TO_FP16( dy0*cos_theta + dy1*sin_theta);
  10014. dx[1] = GGML_FP32_TO_FP16(-dy0*sin_theta + dy1*cos_theta);
  10015. }
  10016. } else {
  10017. for (int64_t ib = 0; ib < ne0/n_dims; ++ib) {
  10018. for (int64_t ic = 0; ic < n_dims; ic += 2) {
  10019. const float cos_theta = cosf(theta);
  10020. const float sin_theta = sinf(theta);
  10021. theta *= theta_scale;
  10022. const int64_t i0 = ib*n_dims + ic/2;
  10023. const ggml_fp16_t * const dy = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  10024. ggml_fp16_t * dx = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  10025. const float dy0 = GGML_FP16_TO_FP32(dy[0]);
  10026. const float dy1 = GGML_FP16_TO_FP32(dy[n_dims/2]);
  10027. dx[0] = GGML_FP32_TO_FP16( dy0*cos_theta + dy1*sin_theta);
  10028. dx[n_dims/2] = GGML_FP32_TO_FP16(-dy0*sin_theta + dy1*cos_theta);
  10029. }
  10030. }
  10031. }
  10032. }
  10033. }
  10034. }
  10035. }
  10036. static void ggml_compute_forward_rope_back(
  10037. const struct ggml_compute_params * params,
  10038. const struct ggml_tensor * src0,
  10039. const struct ggml_tensor * src1,
  10040. struct ggml_tensor * dst) {
  10041. switch (src0->type) {
  10042. case GGML_TYPE_F16:
  10043. {
  10044. ggml_compute_forward_rope_back_f16(params, src0, src1, dst);
  10045. } break;
  10046. case GGML_TYPE_F32:
  10047. {
  10048. ggml_compute_forward_rope_back_f32(params, src0, src1, dst);
  10049. } break;
  10050. default:
  10051. {
  10052. GGML_ASSERT(false);
  10053. } break;
  10054. }
  10055. }
  10056. // ggml_compute_forward_conv_1d
  10057. static void ggml_compute_forward_conv_1d_s1_ph_f16_f32(
  10058. const struct ggml_compute_params * params,
  10059. const struct ggml_tensor * src0,
  10060. const struct ggml_tensor * src1,
  10061. struct ggml_tensor * dst) {
  10062. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  10063. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  10064. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  10065. int64_t t0 = ggml_perf_time_us();
  10066. UNUSED(t0);
  10067. GGML_TENSOR_BINARY_OP_LOCALS;
  10068. const int ith = params->ith;
  10069. const int nth = params->nth;
  10070. const int nk = ne00;
  10071. const int nh = nk/2;
  10072. const int ew0 = ggml_up32(ne01);
  10073. GGML_ASSERT(ne00 % 2 == 1); // TODO: support even kernel sizes
  10074. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  10075. GGML_ASSERT(nb10 == sizeof(float));
  10076. if (params->type == GGML_TASK_INIT) {
  10077. // TODO: fix this memset (wsize is overestimated)
  10078. memset(params->wdata, 0, params->wsize);
  10079. // prepare kernel data (src0)
  10080. {
  10081. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  10082. for (int64_t i02 = 0; i02 < ne02; i02++) {
  10083. for (int64_t i01 = 0; i01 < ne01; i01++) {
  10084. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i02*nb02 + i01*nb01);
  10085. ggml_fp16_t * dst_data = wdata + i02*ew0*ne00;
  10086. for (int64_t i00 = 0; i00 < ne00; i00++) {
  10087. dst_data[i00*ew0 + i01] = src[i00];
  10088. }
  10089. }
  10090. }
  10091. }
  10092. // prepare source data (src1)
  10093. {
  10094. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + ne02*ew0*ne00;
  10095. for (int64_t i11 = 0; i11 < ne11; i11++) {
  10096. const float * const src = (float *)((char *) src1->data + i11*nb11);
  10097. ggml_fp16_t * dst_data = wdata;
  10098. for (int64_t i10 = 0; i10 < ne10; i10++) {
  10099. dst_data[(i10 + nh)*ew0 + i11] = GGML_FP32_TO_FP16(src[i10]);
  10100. }
  10101. }
  10102. }
  10103. return;
  10104. }
  10105. if (params->type == GGML_TASK_FINALIZE) {
  10106. return;
  10107. }
  10108. // total rows in dst
  10109. const int nr = ne02;
  10110. // rows per thread
  10111. const int dr = (nr + nth - 1)/nth;
  10112. // row range for this thread
  10113. const int ir0 = dr*ith;
  10114. const int ir1 = MIN(ir0 + dr, nr);
  10115. for (int i1 = ir0; i1 < ir1; i1++) {
  10116. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  10117. for (int64_t i0 = 0; i0 < ne10; ++i0) {
  10118. dst_data[i0] = 0;
  10119. for (int k = -nh; k <= nh; k++) {
  10120. float v = 0.0f;
  10121. ggml_vec_dot_f16(ew0, &v,
  10122. (ggml_fp16_t *) params->wdata + i1*ew0*ne00 + (nh + k)*ew0,
  10123. (ggml_fp16_t *) params->wdata + ne02*ew0*ne00 + (i0 + nh + k)*ew0);
  10124. dst_data[i0] += v;
  10125. }
  10126. }
  10127. }
  10128. }
  10129. static void ggml_compute_forward_conv_1d_s1_ph_f32(
  10130. const struct ggml_compute_params * params,
  10131. const struct ggml_tensor * src0,
  10132. const struct ggml_tensor * src1,
  10133. struct ggml_tensor * dst) {
  10134. GGML_ASSERT(src0->type == GGML_TYPE_F32);
  10135. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  10136. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  10137. int64_t t0 = ggml_perf_time_us();
  10138. UNUSED(t0);
  10139. GGML_TENSOR_BINARY_OP_LOCALS;
  10140. const int ith = params->ith;
  10141. const int nth = params->nth;
  10142. const int nk = ne00;
  10143. const int nh = nk/2;
  10144. const int ew0 = ggml_up32(ne01);
  10145. GGML_ASSERT(ne00 % 2 == 1); // TODO: support even kernel sizes
  10146. GGML_ASSERT(nb00 == sizeof(float));
  10147. GGML_ASSERT(nb10 == sizeof(float));
  10148. if (params->type == GGML_TASK_INIT) {
  10149. // TODO: fix this memset (wsize is overestimated)
  10150. memset(params->wdata, 0, params->wsize);
  10151. // prepare kernel data (src0)
  10152. {
  10153. float * const wdata = (float *) params->wdata + 0;
  10154. for (int64_t i02 = 0; i02 < ne02; i02++) {
  10155. for (int64_t i01 = 0; i01 < ne01; i01++) {
  10156. const float * const src = (float *)((char *) src0->data + i02*nb02 + i01*nb01);
  10157. float * dst_data = wdata + i02*ew0*ne00;
  10158. for (int64_t i00 = 0; i00 < ne00; i00++) {
  10159. dst_data[i00*ew0 + i01] = src[i00];
  10160. }
  10161. }
  10162. }
  10163. }
  10164. // prepare source data (src1)
  10165. {
  10166. float * const wdata = (float *) params->wdata + ne02*ew0*ne00;
  10167. for (int64_t i11 = 0; i11 < ne11; i11++) {
  10168. const float * const src = (float *)((char *) src1->data + i11*nb11);
  10169. float * dst_data = wdata;
  10170. for (int64_t i10 = 0; i10 < ne10; i10++) {
  10171. dst_data[(i10 + nh)*ew0 + i11] = src[i10];
  10172. }
  10173. }
  10174. }
  10175. return;
  10176. }
  10177. if (params->type == GGML_TASK_FINALIZE) {
  10178. return;
  10179. }
  10180. // total rows in dst
  10181. const int nr = ne02;
  10182. // rows per thread
  10183. const int dr = (nr + nth - 1)/nth;
  10184. // row range for this thread
  10185. const int ir0 = dr*ith;
  10186. const int ir1 = MIN(ir0 + dr, nr);
  10187. for (int i1 = ir0; i1 < ir1; i1++) {
  10188. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  10189. for (int64_t i0 = 0; i0 < ne10; ++i0) {
  10190. dst_data[i0] = 0;
  10191. for (int k = -nh; k <= nh; k++) {
  10192. float v = 0.0f;
  10193. ggml_vec_dot_f32(ew0, &v,
  10194. (float *) params->wdata + i1*ew0*ne00 + (nh + k)*ew0,
  10195. (float *) params->wdata + ne02*ew0*ne00 + (i0 + nh + k)*ew0);
  10196. dst_data[i0] += v;
  10197. }
  10198. }
  10199. }
  10200. }
  10201. static void ggml_compute_forward_conv_1d_s1_ph(
  10202. const struct ggml_compute_params * params,
  10203. const struct ggml_tensor * src0,
  10204. const struct ggml_tensor * src1,
  10205. struct ggml_tensor * dst) {
  10206. switch (src0->type) {
  10207. case GGML_TYPE_F16:
  10208. {
  10209. ggml_compute_forward_conv_1d_s1_ph_f16_f32(params, src0, src1, dst);
  10210. } break;
  10211. case GGML_TYPE_F32:
  10212. {
  10213. ggml_compute_forward_conv_1d_s1_ph_f32(params, src0, src1, dst);
  10214. } break;
  10215. default:
  10216. {
  10217. GGML_ASSERT(false);
  10218. } break;
  10219. }
  10220. }
  10221. static void ggml_compute_forward_conv_1d_s2_ph_f16_f32(
  10222. const struct ggml_compute_params * params,
  10223. const struct ggml_tensor * src0,
  10224. const struct ggml_tensor * src1,
  10225. struct ggml_tensor * dst) {
  10226. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  10227. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  10228. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  10229. int64_t t0 = ggml_perf_time_us();
  10230. UNUSED(t0);
  10231. GGML_TENSOR_BINARY_OP_LOCALS;
  10232. const int ith = params->ith;
  10233. const int nth = params->nth;
  10234. const int nk = ne00;
  10235. const int nh = nk/2;
  10236. const int ew0 = ggml_up32(ne01);
  10237. GGML_ASSERT(ne00 % 2 == 1); // TODO: support even kernel sizes
  10238. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  10239. GGML_ASSERT(nb10 == sizeof(float));
  10240. if (params->type == GGML_TASK_INIT) {
  10241. // TODO: fix this memset (wsize is overestimated)
  10242. memset(params->wdata, 0, params->wsize);
  10243. // prepare kernel data (src0)
  10244. {
  10245. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  10246. for (int64_t i02 = 0; i02 < ne02; i02++) {
  10247. for (int64_t i01 = 0; i01 < ne01; i01++) {
  10248. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i02*nb02 + i01*nb01);
  10249. ggml_fp16_t * dst_data = wdata + i02*ew0*ne00;
  10250. for (int64_t i00 = 0; i00 < ne00; i00++) {
  10251. dst_data[i00*ew0 + i01] = src[i00];
  10252. }
  10253. }
  10254. }
  10255. }
  10256. // prepare source data (src1)
  10257. {
  10258. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + ne02*ew0*ne00;
  10259. for (int64_t i11 = 0; i11 < ne11; i11++) {
  10260. const float * const src = (float *)((char *) src1->data + i11*nb11);
  10261. ggml_fp16_t * dst_data = wdata;
  10262. for (int64_t i10 = 0; i10 < ne10; i10++) {
  10263. dst_data[(i10 + nh)*ew0 + i11] = GGML_FP32_TO_FP16(src[i10]);
  10264. }
  10265. }
  10266. }
  10267. return;
  10268. }
  10269. if (params->type == GGML_TASK_FINALIZE) {
  10270. return;
  10271. }
  10272. // total rows in dst
  10273. const int nr = ne02;
  10274. // rows per thread
  10275. const int dr = (nr + nth - 1)/nth;
  10276. // row range for this thread
  10277. const int ir0 = dr*ith;
  10278. const int ir1 = MIN(ir0 + dr, nr);
  10279. for (int i1 = ir0; i1 < ir1; i1++) {
  10280. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  10281. for (int64_t i0 = 0; i0 < ne10; i0 += 2) {
  10282. dst_data[i0/2] = 0;
  10283. for (int k = -nh; k <= nh; k++) {
  10284. float v = 0.0f;
  10285. ggml_vec_dot_f16(ew0, &v,
  10286. (ggml_fp16_t *) params->wdata + i1*ew0*ne00 + (nh + k)*ew0,
  10287. (ggml_fp16_t *) params->wdata + ne02*ew0*ne00 + (i0 + nh + k)*ew0);
  10288. dst_data[i0/2] += v;
  10289. }
  10290. }
  10291. }
  10292. }
  10293. static void ggml_compute_forward_conv_1d_s2_ph_f32(
  10294. const struct ggml_compute_params * params,
  10295. const struct ggml_tensor * src0,
  10296. const struct ggml_tensor * src1,
  10297. struct ggml_tensor * dst) {
  10298. GGML_ASSERT(src0->type == GGML_TYPE_F32);
  10299. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  10300. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  10301. int64_t t0 = ggml_perf_time_us();
  10302. UNUSED(t0);
  10303. GGML_TENSOR_BINARY_OP_LOCALS;
  10304. const int ith = params->ith;
  10305. const int nth = params->nth;
  10306. const int nk = ne00;
  10307. const int nh = nk/2;
  10308. const int ew0 = ggml_up32(ne01);
  10309. GGML_ASSERT(ne00 % 2 == 1); // TODO: support even kernel sizes
  10310. GGML_ASSERT(nb00 == sizeof(float));
  10311. GGML_ASSERT(nb10 == sizeof(float));
  10312. if (params->type == GGML_TASK_INIT) {
  10313. // TODO: fix this memset (wsize is overestimated)
  10314. memset(params->wdata, 0, params->wsize);
  10315. // prepare kernel data (src0)
  10316. {
  10317. float * const wdata = (float *) params->wdata + 0;
  10318. for (int64_t i02 = 0; i02 < ne02; i02++) {
  10319. for (int64_t i01 = 0; i01 < ne01; i01++) {
  10320. const float * const src = (float *)((char *) src0->data + i02*nb02 + i01*nb01);
  10321. float * dst_data = wdata + i02*ew0*ne00;
  10322. for (int64_t i00 = 0; i00 < ne00; i00++) {
  10323. dst_data[i00*ew0 + i01] = src[i00];
  10324. }
  10325. }
  10326. }
  10327. }
  10328. // prepare source data (src1)
  10329. {
  10330. float * const wdata = (float *) params->wdata + ne02*ew0*ne00;
  10331. for (int64_t i11 = 0; i11 < ne11; i11++) {
  10332. const float * const src = (float *)((char *) src1->data + i11*nb11);
  10333. float * dst_data = wdata;
  10334. for (int64_t i10 = 0; i10 < ne10; i10++) {
  10335. dst_data[(i10 + nh)*ew0 + i11] = src[i10];
  10336. }
  10337. }
  10338. }
  10339. return;
  10340. }
  10341. if (params->type == GGML_TASK_FINALIZE) {
  10342. return;
  10343. }
  10344. // total rows in dst
  10345. const int nr = ne02;
  10346. // rows per thread
  10347. const int dr = (nr + nth - 1)/nth;
  10348. // row range for this thread
  10349. const int ir0 = dr*ith;
  10350. const int ir1 = MIN(ir0 + dr, nr);
  10351. for (int i1 = ir0; i1 < ir1; i1++) {
  10352. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  10353. for (int64_t i0 = 0; i0 < ne10; i0 += 2) {
  10354. dst_data[i0/2] = 0;
  10355. for (int k = -nh; k <= nh; k++) {
  10356. float v = 0.0f;
  10357. ggml_vec_dot_f32(ew0, &v,
  10358. (float *) params->wdata + i1*ew0*ne00 + (nh + k)*ew0,
  10359. (float *) params->wdata + ne02*ew0*ne00 + (i0 + nh + k)*ew0);
  10360. dst_data[i0/2] += v;
  10361. }
  10362. }
  10363. }
  10364. }
  10365. static void ggml_compute_forward_conv_1d_s2_ph(
  10366. const struct ggml_compute_params * params,
  10367. const struct ggml_tensor * src0,
  10368. const struct ggml_tensor * src1,
  10369. struct ggml_tensor * dst) {
  10370. switch (src0->type) {
  10371. case GGML_TYPE_F16:
  10372. {
  10373. ggml_compute_forward_conv_1d_s2_ph_f16_f32(params, src0, src1, dst);
  10374. } break;
  10375. case GGML_TYPE_F32:
  10376. {
  10377. ggml_compute_forward_conv_1d_s2_ph_f32(params, src0, src1, dst);
  10378. } break;
  10379. default:
  10380. {
  10381. GGML_ASSERT(false);
  10382. } break;
  10383. }
  10384. }
  10385. // ggml_compute_forward_conv_1d
  10386. static void ggml_compute_forward_conv_1d(
  10387. const struct ggml_compute_params * params,
  10388. const struct ggml_tensor * src0,
  10389. const struct ggml_tensor * src1,
  10390. const struct ggml_tensor * opt0,
  10391. struct ggml_tensor * dst) {
  10392. const int32_t s0 = ((const int32_t*)(opt0->data))[0];
  10393. const int32_t p0 = ((const int32_t*)(opt0->data))[1];
  10394. const int32_t d0 = ((const int32_t*)(opt0->data))[2];
  10395. GGML_ASSERT(d0 == 1); // dilation not supported
  10396. GGML_ASSERT(p0 == src0->ne[0]/2); // only half padding supported
  10397. if (s0 == 1) {
  10398. ggml_compute_forward_conv_1d_s1_ph(params, src0, src1, dst);
  10399. } else if (s0 == 2) {
  10400. ggml_compute_forward_conv_1d_s2_ph(params, src0, src1, dst);
  10401. } else {
  10402. GGML_ASSERT(false); // only stride 1 and 2 supported
  10403. };
  10404. }
  10405. // ggml_compute_forward_conv_2d_sk_p0
  10406. static void ggml_compute_forward_conv_2d_sk_p0_f16_f32(
  10407. const struct ggml_compute_params * params,
  10408. const struct ggml_tensor * src0,
  10409. const struct ggml_tensor * src1,
  10410. struct ggml_tensor * dst) {
  10411. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  10412. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  10413. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  10414. int64_t t0 = ggml_perf_time_us();
  10415. UNUSED(t0);
  10416. GGML_TENSOR_BINARY_OP_LOCALS;
  10417. const int ith = params->ith;
  10418. const int nth = params->nth;
  10419. const int nk0 = ne00;
  10420. const int nk1 = ne01;
  10421. // size of the convolution row - the kernel size unrolled across all channels
  10422. const int ew0 = nk0*nk1*ne02;
  10423. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  10424. GGML_ASSERT(nb10 == sizeof(float));
  10425. if (params->type == GGML_TASK_INIT) {
  10426. // TODO: fix this memset (wsize is overestimated)
  10427. memset(params->wdata, 0, params->wsize);
  10428. // prepare source data (src1)
  10429. {
  10430. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  10431. for (int i12 = 0; i12 < ne12; i12++) {
  10432. const float * const src = (float *)((char *) src1->data + i12*nb12);
  10433. ggml_fp16_t * dst_data = wdata;
  10434. for (int i1 = 0; i1 < ne1; i1++) {
  10435. for (int i0 = 0; i0 < ne0; i0++) {
  10436. for (int ik1 = 0; ik1 < nk1; ik1++) {
  10437. for (int ik0 = 0; ik0 < nk0; ik0++) {
  10438. dst_data[(i1*ne0 + i0)*ew0 + i12*(nk0*nk1) + ik1*nk0 + ik0] =
  10439. GGML_FP32_TO_FP16(src[(i1*nk1 + ik1)*ne10 + (i0*nk0 + ik0)]);
  10440. }
  10441. }
  10442. }
  10443. }
  10444. }
  10445. }
  10446. return;
  10447. }
  10448. if (params->type == GGML_TASK_FINALIZE) {
  10449. return;
  10450. }
  10451. // total patches in dst
  10452. const int np = ne2;
  10453. // patches per thread
  10454. const int dp = (np + nth - 1)/nth;
  10455. // patch range for this thread
  10456. const int ip0 = dp*ith;
  10457. const int ip1 = MIN(ip0 + dp, np);
  10458. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  10459. for (int i2 = ip0; i2 < ip1; i2++) {
  10460. float * dst_data = (float *)((char *) dst->data + i2*nb2);
  10461. for (int i1 = 0; i1 < ne1; ++i1) {
  10462. for (int i0 = 0; i0 < ne0; ++i0) {
  10463. ggml_vec_dot_f16(ew0, dst_data + i1*ne0 + i0,
  10464. (ggml_fp16_t *) ((char *) src0->data + i2*nb03),
  10465. (ggml_fp16_t *) wdata + (i1*ne0 + i0)*ew0);
  10466. }
  10467. }
  10468. }
  10469. }
  10470. static void ggml_compute_forward_conv_2d_sk_p0(
  10471. const struct ggml_compute_params * params,
  10472. const struct ggml_tensor * src0,
  10473. const struct ggml_tensor * src1,
  10474. struct ggml_tensor * dst) {
  10475. switch (src0->type) {
  10476. case GGML_TYPE_F16:
  10477. {
  10478. ggml_compute_forward_conv_2d_sk_p0_f16_f32(params, src0, src1, dst);
  10479. } break;
  10480. case GGML_TYPE_F32:
  10481. {
  10482. //ggml_compute_forward_conv_2d_sk_p0_f32(params, src0, src1, dst);
  10483. GGML_ASSERT(false);
  10484. } break;
  10485. default:
  10486. {
  10487. GGML_ASSERT(false);
  10488. } break;
  10489. }
  10490. }
  10491. // ggml_compute_forward_conv_2d
  10492. static void ggml_compute_forward_conv_2d(
  10493. const struct ggml_compute_params* params,
  10494. const struct ggml_tensor* src0,
  10495. const struct ggml_tensor* src1,
  10496. const struct ggml_tensor* opt0,
  10497. struct ggml_tensor* dst) {
  10498. const int32_t s0 = ((const int32_t*)(opt0->data))[0];
  10499. const int32_t s1 = ((const int32_t*)(opt0->data))[1];
  10500. const int32_t p0 = ((const int32_t*)(opt0->data))[2];
  10501. const int32_t p1 = ((const int32_t*)(opt0->data))[3];
  10502. const int32_t d0 = ((const int32_t*)(opt0->data))[4];
  10503. const int32_t d1 = ((const int32_t*)(opt0->data))[5];
  10504. GGML_ASSERT(d0 == 1); // dilation not supported
  10505. GGML_ASSERT(d1 == 1);
  10506. GGML_ASSERT(p0 == 0); // padding not supported
  10507. GGML_ASSERT(p1 == 0);
  10508. if (s0 == src0->ne[0] && s1 == src0->ne[1]) {
  10509. ggml_compute_forward_conv_2d_sk_p0(params, src0, src1, dst);
  10510. }
  10511. else {
  10512. GGML_ASSERT(false); // only stride equal to kernel size is supported
  10513. };
  10514. }
  10515. // ggml_compute_forward_flash_attn
  10516. static void ggml_compute_forward_flash_attn_f32(
  10517. const struct ggml_compute_params * params,
  10518. const struct ggml_tensor * q,
  10519. const struct ggml_tensor * k,
  10520. const struct ggml_tensor * v,
  10521. const bool masked,
  10522. struct ggml_tensor * dst) {
  10523. int64_t t0 = ggml_perf_time_us();
  10524. UNUSED(t0);
  10525. GGML_TENSOR_LOCALS(int64_t, neq, q, ne);
  10526. GGML_TENSOR_LOCALS(size_t, nbq, q, nb);
  10527. GGML_TENSOR_LOCALS(int64_t, nek, k, ne);
  10528. GGML_TENSOR_LOCALS(size_t, nbk, k, nb);
  10529. GGML_TENSOR_LOCALS(int64_t, nev, v, ne);
  10530. GGML_TENSOR_LOCALS(size_t, nbv, v, nb);
  10531. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne);
  10532. GGML_TENSOR_LOCALS(size_t, nb, dst, nb);
  10533. const int ith = params->ith;
  10534. const int nth = params->nth;
  10535. const int64_t D = neq0;
  10536. const int64_t N = neq1;
  10537. const int64_t P = nek1 - N;
  10538. const int64_t M = P + N;
  10539. const int Mup = ggml_up(M, GGML_SOFT_MAX_UNROLL);
  10540. GGML_ASSERT(ne0 == D);
  10541. GGML_ASSERT(ne1 == N);
  10542. GGML_ASSERT(P >= 0);
  10543. GGML_ASSERT(nbq0 == sizeof(float));
  10544. GGML_ASSERT(nbk0 == sizeof(float));
  10545. GGML_ASSERT(nbv0 == sizeof(float));
  10546. GGML_ASSERT(neq0 == D);
  10547. GGML_ASSERT(nek0 == D);
  10548. GGML_ASSERT(nev1 == D);
  10549. GGML_ASSERT(neq1 == N);
  10550. GGML_ASSERT(nek1 == N + P);
  10551. GGML_ASSERT(nev1 == D);
  10552. // dst cannot be transposed or permuted
  10553. GGML_ASSERT(nb0 == sizeof(float));
  10554. GGML_ASSERT(nb0 <= nb1);
  10555. GGML_ASSERT(nb1 <= nb2);
  10556. GGML_ASSERT(nb2 <= nb3);
  10557. if (params->type == GGML_TASK_INIT) {
  10558. return;
  10559. }
  10560. if (params->type == GGML_TASK_FINALIZE) {
  10561. return;
  10562. }
  10563. // parallelize by q rows using ggml_vec_dot_f32
  10564. // total rows in q
  10565. const int nr = neq1*neq2*neq3;
  10566. // rows per thread
  10567. const int dr = (nr + nth - 1)/nth;
  10568. // row range for this thread
  10569. const int ir0 = dr*ith;
  10570. const int ir1 = MIN(ir0 + dr, nr);
  10571. const float scale = 1.0f/sqrtf(D);
  10572. //printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale);
  10573. for (int ir = ir0; ir < ir1; ++ir) {
  10574. // q indices
  10575. const int iq3 = ir/(neq2*neq1);
  10576. const int iq2 = (ir - iq3*neq2*neq1)/neq1;
  10577. const int iq1 = (ir - iq3*neq2*neq1 - iq2*neq1);
  10578. float * S = (float *) params->wdata + ith*(Mup + CACHE_LINE_SIZE_F32);
  10579. for (int i = M; i < Mup; ++i) {
  10580. S[i] = -INFINITY;
  10581. }
  10582. for (int64_t ic = 0; ic < nek1; ++ic) {
  10583. // k indices
  10584. const int ik3 = iq3;
  10585. const int ik2 = iq2;
  10586. const int ik1 = ic;
  10587. // S indices
  10588. const int i1 = ik1;
  10589. ggml_vec_dot_f32(neq0,
  10590. S + i1,
  10591. (float *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
  10592. (float *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
  10593. }
  10594. // scale
  10595. ggml_vec_scale_f32(nek1, S, scale);
  10596. if (masked) {
  10597. for (int64_t i = P; i < M; i++) {
  10598. if (i > P + iq1) {
  10599. S[i] = -INFINITY;
  10600. }
  10601. }
  10602. }
  10603. // softmax
  10604. {
  10605. float max = -INFINITY;
  10606. ggml_vec_max_f32(M, &max, S);
  10607. ggml_float sum = 0.0;
  10608. {
  10609. #ifdef GGML_SOFT_MAX_ACCELERATE
  10610. max = -max;
  10611. vDSP_vsadd(S, 1, &max, S, 1, Mup);
  10612. vvexpf(S, S, &Mup);
  10613. ggml_vec_sum_f32(Mup, &sum, S);
  10614. #else
  10615. uint16_t scvt[GGML_SOFT_MAX_UNROLL];
  10616. ggml_float sump[GGML_SOFT_MAX_UNROLL] = { 0.0 };
  10617. for (int i = 0; i < Mup; i += GGML_SOFT_MAX_UNROLL) {
  10618. float * SS = S + i;
  10619. for (int j = 0; j < GGML_SOFT_MAX_UNROLL; ++j) {
  10620. if (SS[j] == -INFINITY) {
  10621. SS[j] = 0.0f;
  10622. } else {
  10623. ggml_fp16_t s = GGML_FP32_TO_FP16(SS[j] - max);
  10624. memcpy(&scvt[j], &s, sizeof(uint16_t));
  10625. const float val = GGML_FP16_TO_FP32(table_exp_f16[scvt[j]]);
  10626. sump[j] += (ggml_float)val;
  10627. SS[j] = val;
  10628. }
  10629. }
  10630. }
  10631. for (int i = 0; i < GGML_SOFT_MAX_UNROLL; i++) {
  10632. sum += sump[i];
  10633. }
  10634. #endif
  10635. }
  10636. assert(sum > 0.0);
  10637. sum = 1.0/sum;
  10638. ggml_vec_scale_f32(M, S, sum);
  10639. #ifndef NDEBUG
  10640. for (int i = 0; i < M; ++i) {
  10641. assert(!isnan(S[i]));
  10642. assert(!isinf(S[i]));
  10643. }
  10644. #endif
  10645. }
  10646. for (int64_t ic = 0; ic < nev1; ++ic) {
  10647. // dst indices
  10648. const int i1 = iq1;
  10649. const int i2 = iq2;
  10650. const int i3 = iq3;
  10651. ggml_vec_dot_f32(nek1,
  10652. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  10653. (float *) ((char *) v->data + ( ic*nbv1 + i2*nbv2 + i3*nbv3)),
  10654. S);
  10655. }
  10656. }
  10657. }
  10658. static void ggml_compute_forward_flash_attn_f16(
  10659. const struct ggml_compute_params * params,
  10660. const struct ggml_tensor * q,
  10661. const struct ggml_tensor * k,
  10662. const struct ggml_tensor * v,
  10663. const bool masked,
  10664. struct ggml_tensor * dst) {
  10665. int64_t t0 = ggml_perf_time_us();
  10666. UNUSED(t0);
  10667. GGML_TENSOR_LOCALS(int64_t, neq, q, ne);
  10668. GGML_TENSOR_LOCALS(size_t, nbq, q, nb);
  10669. GGML_TENSOR_LOCALS(int64_t, nek, k, ne);
  10670. GGML_TENSOR_LOCALS(size_t, nbk, k, nb);
  10671. GGML_TENSOR_LOCALS(int64_t, nev, v, ne);
  10672. GGML_TENSOR_LOCALS(size_t, nbv, v, nb);
  10673. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne);
  10674. GGML_TENSOR_LOCALS(size_t, nb, dst, nb);
  10675. const int ith = params->ith;
  10676. const int nth = params->nth;
  10677. const int64_t D = neq0;
  10678. const int64_t N = neq1;
  10679. const int64_t P = nek1 - N;
  10680. const int64_t M = P + N;
  10681. const int Mup = ggml_up(M, GGML_SOFT_MAX_UNROLL);
  10682. GGML_ASSERT(ne0 == D);
  10683. GGML_ASSERT(ne1 == N);
  10684. GGML_ASSERT(P >= 0);
  10685. GGML_ASSERT(nbq0 == sizeof(ggml_fp16_t));
  10686. GGML_ASSERT(nbk0 == sizeof(ggml_fp16_t));
  10687. GGML_ASSERT(nbv0 == sizeof(ggml_fp16_t));
  10688. GGML_ASSERT(neq0 == D);
  10689. GGML_ASSERT(nek0 == D);
  10690. GGML_ASSERT(nev1 == D);
  10691. GGML_ASSERT(neq1 == N);
  10692. GGML_ASSERT(nek1 == N + P);
  10693. GGML_ASSERT(nev1 == D);
  10694. // dst cannot be transposed or permuted
  10695. GGML_ASSERT(nb0 == sizeof(float));
  10696. GGML_ASSERT(nb0 <= nb1);
  10697. GGML_ASSERT(nb1 <= nb2);
  10698. GGML_ASSERT(nb2 <= nb3);
  10699. if (params->type == GGML_TASK_INIT) {
  10700. return;
  10701. }
  10702. if (params->type == GGML_TASK_FINALIZE) {
  10703. return;
  10704. }
  10705. // parallelize by q rows using ggml_vec_dot_f32
  10706. // total rows in q
  10707. const int nr = neq1*neq2*neq3;
  10708. // rows per thread
  10709. const int dr = (nr + nth - 1)/nth;
  10710. // row range for this thread
  10711. const int ir0 = dr*ith;
  10712. const int ir1 = MIN(ir0 + dr, nr);
  10713. const float scale = 1.0f/sqrtf(D);
  10714. //printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale);
  10715. for (int ir = ir0; ir < ir1; ++ir) {
  10716. // q indices
  10717. const int iq3 = ir/(neq2*neq1);
  10718. const int iq2 = (ir - iq3*neq2*neq1)/neq1;
  10719. const int iq1 = (ir - iq3*neq2*neq1 - iq2*neq1);
  10720. float * S = (float *) params->wdata + ith*(2*Mup + CACHE_LINE_SIZE_F32);
  10721. for (int i = M; i < Mup; ++i) {
  10722. S[i] = -INFINITY;
  10723. }
  10724. if (GGML_VEC_DOT_UNROLL > 2 || nek1 % GGML_VEC_DOT_UNROLL != 0) {
  10725. for (int64_t ic = 0; ic < nek1; ++ic) {
  10726. // k indices
  10727. const int ik3 = iq3;
  10728. const int ik2 = iq2;
  10729. const int ik1 = ic;
  10730. // S indices
  10731. const int i1 = ik1;
  10732. ggml_vec_dot_f16(neq0,
  10733. S + i1,
  10734. (ggml_fp16_t *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
  10735. (ggml_fp16_t *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
  10736. }
  10737. } else {
  10738. for (int64_t ic = 0; ic < nek1; ic += GGML_VEC_DOT_UNROLL) {
  10739. // k indices
  10740. const int ik3 = iq3;
  10741. const int ik2 = iq2;
  10742. const int ik1 = ic;
  10743. // S indices
  10744. const int i1 = ik1;
  10745. ggml_vec_dot_f16_unroll(neq0, nbk1,
  10746. S + i1,
  10747. ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
  10748. (ggml_fp16_t *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
  10749. }
  10750. }
  10751. // scale
  10752. ggml_vec_scale_f32(nek1, S, scale);
  10753. if (masked) {
  10754. for (int64_t i = P; i < M; i++) {
  10755. if (i > P + iq1) {
  10756. S[i] = -INFINITY;
  10757. }
  10758. }
  10759. }
  10760. // softmax
  10761. {
  10762. float max = -INFINITY;
  10763. ggml_vec_max_f32(M, &max, S);
  10764. ggml_float sum = 0.0;
  10765. {
  10766. #ifdef GGML_SOFT_MAX_ACCELERATE
  10767. max = -max;
  10768. vDSP_vsadd(S, 1, &max, S, 1, Mup);
  10769. vvexpf(S, S, &Mup);
  10770. ggml_vec_sum_f32(Mup, &sum, S);
  10771. #else
  10772. uint16_t scvt[GGML_SOFT_MAX_UNROLL];
  10773. ggml_float sump[GGML_SOFT_MAX_UNROLL] = { 0.0 };
  10774. for (int i = 0; i < Mup; i += GGML_SOFT_MAX_UNROLL) {
  10775. float * SS = S + i;
  10776. for (int j = 0; j < GGML_SOFT_MAX_UNROLL; ++j) {
  10777. if (SS[j] == -INFINITY) {
  10778. SS[j] = 0.0f;
  10779. } else {
  10780. ggml_fp16_t s = GGML_FP32_TO_FP16(SS[j] - max);
  10781. memcpy(&scvt[j], &s, sizeof(uint16_t));
  10782. const float val = GGML_FP16_TO_FP32(table_exp_f16[scvt[j]]);
  10783. sump[j] += (ggml_float)val;
  10784. SS[j] = val;
  10785. }
  10786. }
  10787. }
  10788. for (int i = 0; i < GGML_SOFT_MAX_UNROLL; i++) {
  10789. sum += sump[i];
  10790. }
  10791. #endif
  10792. }
  10793. assert(sum > 0.0);
  10794. sum = 1.0/sum;
  10795. ggml_vec_scale_f32(M, S, sum);
  10796. #ifndef NDEBUG
  10797. for (int i = 0; i < M; ++i) {
  10798. assert(!isnan(S[i]));
  10799. assert(!isinf(S[i]));
  10800. }
  10801. #endif
  10802. }
  10803. ggml_fp16_t * S16 = (ggml_fp16_t *) ((float *) params->wdata + ith*(2*Mup + CACHE_LINE_SIZE_F32) + Mup);
  10804. for (int64_t i = 0; i < M; i++) {
  10805. S16[i] = GGML_FP32_TO_FP16(S[i]);
  10806. }
  10807. if (GGML_VEC_DOT_UNROLL == 1 || (nev1 % GGML_VEC_DOT_UNROLL != 0)) {
  10808. for (int64_t ic = 0; ic < nev1; ++ic) {
  10809. // dst indices
  10810. const int i1 = iq1;
  10811. const int i2 = iq2;
  10812. const int i3 = iq3;
  10813. ggml_vec_dot_f16(nek1,
  10814. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  10815. (ggml_fp16_t *) ((char *) v->data + ( ic*nbv1 + i2*nbv2 + i3*nbv3)),
  10816. S16);
  10817. }
  10818. } else {
  10819. for (int64_t ic = 0; ic < nev1; ic += GGML_VEC_DOT_UNROLL) {
  10820. // dst indices
  10821. const int i1 = iq1;
  10822. const int i2 = iq2;
  10823. const int i3 = iq3;
  10824. ggml_vec_dot_f16_unroll(nek1, nbv1,
  10825. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  10826. ((char *) v->data + ( ic*nbv1 + i2*nbv2 + i3*nbv3)),
  10827. S16);
  10828. }
  10829. }
  10830. }
  10831. }
  10832. static void ggml_compute_forward_flash_attn(
  10833. const struct ggml_compute_params * params,
  10834. const struct ggml_tensor * q,
  10835. const struct ggml_tensor * k,
  10836. const struct ggml_tensor * v,
  10837. const bool masked,
  10838. struct ggml_tensor * dst) {
  10839. switch (q->type) {
  10840. case GGML_TYPE_F16:
  10841. {
  10842. ggml_compute_forward_flash_attn_f16(params, q, k, v, masked, dst);
  10843. } break;
  10844. case GGML_TYPE_F32:
  10845. {
  10846. ggml_compute_forward_flash_attn_f32(params, q, k, v, masked, dst);
  10847. } break;
  10848. default:
  10849. {
  10850. GGML_ASSERT(false);
  10851. } break;
  10852. }
  10853. }
  10854. // ggml_compute_forward_flash_ff
  10855. static void ggml_compute_forward_flash_ff_f16(
  10856. const struct ggml_compute_params * params,
  10857. const struct ggml_tensor * a, // F16
  10858. const struct ggml_tensor * b0, // F16 fc_w
  10859. const struct ggml_tensor * b1, // F32 fc_b
  10860. const struct ggml_tensor * c0, // F16 proj_w
  10861. const struct ggml_tensor * c1, // F32 proj_b
  10862. struct ggml_tensor * dst) {
  10863. int64_t t0 = ggml_perf_time_us();
  10864. UNUSED(t0);
  10865. GGML_TENSOR_LOCALS(int64_t, nea, a, ne);
  10866. GGML_TENSOR_LOCALS(size_t, nba, a, nb);
  10867. GGML_TENSOR_LOCALS(int64_t, neb0, b0, ne);
  10868. GGML_TENSOR_LOCALS(size_t, nbb0, b0, nb);
  10869. GGML_TENSOR_LOCALS(int64_t, neb1, b1, ne);
  10870. GGML_TENSOR_LOCALS(size_t, nbb1, b1, nb);
  10871. GGML_TENSOR_LOCALS(int64_t, nec0, c0, ne);
  10872. GGML_TENSOR_LOCALS(size_t, nbc0, c0, nb);
  10873. GGML_TENSOR_LOCALS(int64_t, nec1, c1, ne);
  10874. GGML_TENSOR_LOCALS(size_t, nbc1, c1, nb);
  10875. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne);
  10876. GGML_TENSOR_LOCALS(size_t, nb, dst, nb);
  10877. const int ith = params->ith;
  10878. const int nth = params->nth;
  10879. const int64_t D = nea0;
  10880. //const int64_t N = nea1;
  10881. const int64_t M = neb01;
  10882. GGML_ASSERT(ne0 == nea0);
  10883. GGML_ASSERT(ne1 == nea1);
  10884. GGML_ASSERT(ne2 == nea2);
  10885. GGML_ASSERT(nba0 == sizeof(ggml_fp16_t));
  10886. GGML_ASSERT(nbb00 == sizeof(ggml_fp16_t));
  10887. GGML_ASSERT(nbb10 == sizeof(float));
  10888. GGML_ASSERT(nbc00 == sizeof(ggml_fp16_t));
  10889. GGML_ASSERT(nbc10 == sizeof(float));
  10890. GGML_ASSERT(neb00 == D);
  10891. GGML_ASSERT(neb01 == M);
  10892. GGML_ASSERT(neb10 == M);
  10893. GGML_ASSERT(neb11 == 1);
  10894. GGML_ASSERT(nec00 == M);
  10895. GGML_ASSERT(nec01 == D);
  10896. GGML_ASSERT(nec10 == D);
  10897. GGML_ASSERT(nec11 == 1);
  10898. // dst cannot be transposed or permuted
  10899. GGML_ASSERT(nb0 == sizeof(float));
  10900. GGML_ASSERT(nb0 <= nb1);
  10901. GGML_ASSERT(nb1 <= nb2);
  10902. GGML_ASSERT(nb2 <= nb3);
  10903. if (params->type == GGML_TASK_INIT) {
  10904. return;
  10905. }
  10906. if (params->type == GGML_TASK_FINALIZE) {
  10907. return;
  10908. }
  10909. // parallelize by a rows using ggml_vec_dot_f32
  10910. // total rows in a
  10911. const int nr = nea1*nea2*nea3;
  10912. // rows per thread
  10913. const int dr = (nr + nth - 1)/nth;
  10914. // row range for this thread
  10915. const int ir0 = dr*ith;
  10916. const int ir1 = MIN(ir0 + dr, nr);
  10917. for (int ir = ir0; ir < ir1; ++ir) {
  10918. // a indices
  10919. const int ia3 = ir/(nea2*nea1);
  10920. const int ia2 = (ir - ia3*nea2*nea1)/nea1;
  10921. const int ia1 = (ir - ia3*nea2*nea1 - ia2*nea1);
  10922. float * S = (float *) params->wdata + ith*(2*M + CACHE_LINE_SIZE_F32);
  10923. for (int64_t ic = 0; ic < neb01; ++ic) {
  10924. // b0 indices
  10925. const int ib03 = ia3;
  10926. const int ib02 = ia2;
  10927. const int ib01 = ic;
  10928. // S indices
  10929. const int i1 = ib01;
  10930. ggml_vec_dot_f16(nea0,
  10931. S + i1,
  10932. (ggml_fp16_t *) ((char *) b0->data + (ib01*nbb01 + ib02*nbb02 + ib03*nbb03)),
  10933. (ggml_fp16_t *) ((char *) a->data + ( ia1*nba1 + ia2*nba2 + ia3*nba3)));
  10934. }
  10935. ggml_vec_add_f32(neb01, S, S, (float *) b1->data);
  10936. //ggml_vec_gelu_f32(neb01, S, S);
  10937. ggml_fp16_t * S16 = (ggml_fp16_t *) ((float *) params->wdata + ith*(2*M + CACHE_LINE_SIZE_F32) + M);
  10938. for (int64_t i = 0; i < M; i++) {
  10939. S16[i] = GGML_FP32_TO_FP16(S[i]);
  10940. }
  10941. ggml_vec_gelu_f16(neb01, S16, S16);
  10942. {
  10943. // dst indices
  10944. const int i1 = ia1;
  10945. const int i2 = ia2;
  10946. const int i3 = ia3;
  10947. for (int64_t ic = 0; ic < nec01; ++ic) {
  10948. ggml_vec_dot_f16(neb01,
  10949. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  10950. (ggml_fp16_t *) ((char *) c0->data + ( ic*nbc01 + i2*nbc02 + i3*nbc03)),
  10951. S16);
  10952. }
  10953. ggml_vec_add_f32(nec01,
  10954. (float *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3)),
  10955. (float *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3)),
  10956. (float *) c1->data);
  10957. }
  10958. }
  10959. }
  10960. static void ggml_compute_forward_flash_ff(
  10961. const struct ggml_compute_params * params,
  10962. const struct ggml_tensor * a,
  10963. const struct ggml_tensor * b0,
  10964. const struct ggml_tensor * b1,
  10965. const struct ggml_tensor * c0,
  10966. const struct ggml_tensor * c1,
  10967. struct ggml_tensor * dst) {
  10968. switch (b0->type) {
  10969. case GGML_TYPE_F16:
  10970. {
  10971. ggml_compute_forward_flash_ff_f16(params, a, b0, b1, c0, c1, dst);
  10972. } break;
  10973. case GGML_TYPE_F32:
  10974. {
  10975. GGML_ASSERT(false); // TODO
  10976. } break;
  10977. default:
  10978. {
  10979. GGML_ASSERT(false);
  10980. } break;
  10981. }
  10982. }
  10983. // ggml_compute_forward_flash_attn_back
  10984. static void ggml_compute_forward_flash_attn_back_f32(
  10985. const struct ggml_compute_params * params,
  10986. const struct ggml_tensor * q,
  10987. const struct ggml_tensor * k,
  10988. const struct ggml_tensor * v,
  10989. const struct ggml_tensor * d,
  10990. const bool masked,
  10991. struct ggml_tensor * dst) {
  10992. int64_t t0 = ggml_perf_time_us();
  10993. UNUSED(t0);
  10994. GGML_TENSOR_LOCALS(int64_t, neq, q, ne);
  10995. GGML_TENSOR_LOCALS(size_t, nbq, q, nb);
  10996. GGML_TENSOR_LOCALS(int64_t, nek, k, ne);
  10997. GGML_TENSOR_LOCALS(size_t, nbk, k, nb);
  10998. GGML_TENSOR_LOCALS(int64_t, nev, v, ne);
  10999. GGML_TENSOR_LOCALS(size_t, nbv, v, nb);
  11000. GGML_TENSOR_LOCALS(int64_t, ned, d, ne);
  11001. GGML_TENSOR_LOCALS(size_t, nbd, d, nb);
  11002. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne);
  11003. GGML_TENSOR_LOCALS(size_t, nb, dst, nb);
  11004. const int ith = params->ith;
  11005. const int nth = params->nth;
  11006. const int64_t D = neq0;
  11007. const int64_t N = neq1;
  11008. const int64_t P = nek1 - N;
  11009. const int64_t M = P + N;
  11010. const int Mup = ggml_up(M, GGML_SOFT_MAX_UNROLL);
  11011. const int mxDM = MAX(D, Mup);
  11012. // GGML_ASSERT(ne0 == D);
  11013. // GGML_ASSERT(ne1 == N);
  11014. GGML_ASSERT(P >= 0);
  11015. GGML_ASSERT(nbq0 == sizeof(float));
  11016. GGML_ASSERT(nbk0 == sizeof(float));
  11017. GGML_ASSERT(nbv0 == sizeof(float));
  11018. GGML_ASSERT(neq0 == D);
  11019. GGML_ASSERT(nek0 == D);
  11020. GGML_ASSERT(nev1 == D);
  11021. GGML_ASSERT(ned0 == D);
  11022. GGML_ASSERT(neq1 == N);
  11023. GGML_ASSERT(nek1 == N + P);
  11024. GGML_ASSERT(nev1 == D);
  11025. GGML_ASSERT(ned1 == N);
  11026. // dst cannot be transposed or permuted
  11027. GGML_ASSERT(nb0 == sizeof(float));
  11028. GGML_ASSERT(nb0 <= nb1);
  11029. GGML_ASSERT(nb1 <= nb2);
  11030. GGML_ASSERT(nb2 <= nb3);
  11031. if (params->type == GGML_TASK_INIT) {
  11032. if (ith == 0) {
  11033. memset(dst->data, 0, nb0*ne0*ne1*ne2*ne3);
  11034. }
  11035. return;
  11036. }
  11037. if (params->type == GGML_TASK_FINALIZE) {
  11038. return;
  11039. }
  11040. // parallelize by q rows using ggml_vec_dot_f32
  11041. // total rows in q
  11042. const int nr = neq2*neq3;
  11043. // rows per thread
  11044. const int dr = (nr + nth - 1)/nth;
  11045. // row range for this thread
  11046. const int ir0 = dr*ith;
  11047. const int ir1 = MIN(ir0 + dr, nr);
  11048. const float scale = 1.0f/sqrtf(D);
  11049. //printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale);
  11050. for (int ir = ir0; ir < ir1; ++ir) {
  11051. // q indices
  11052. const int iq3 = ir/(neq2);
  11053. const int iq2 = ir - iq3*neq2;
  11054. for ( int iq1 = 0; iq1 < neq1; ++iq1) {
  11055. // not sure about CACHE_LINE_SIZE_F32..
  11056. // - maybe it must not be multiplied by 2 and excluded from .. in SM 1*(..) offset?
  11057. float * S = (float *) params->wdata + ith*2*(mxDM + CACHE_LINE_SIZE_F32) + 0*(mxDM+CACHE_LINE_SIZE_F32);
  11058. float * SM = (float *) params->wdata + ith*2*(mxDM + CACHE_LINE_SIZE_F32) + 1*(mxDM+CACHE_LINE_SIZE_F32);
  11059. for (int i = M; i < Mup; ++i) {
  11060. S[i] = -INFINITY;
  11061. }
  11062. for (int64_t ic = 0; ic < nek1; ++ic) {
  11063. // k indices
  11064. const int ik3 = iq3;
  11065. const int ik2 = iq2;
  11066. const int ik1 = ic;
  11067. // S indices
  11068. const int i1 = ik1;
  11069. ggml_vec_dot_f32(neq0,
  11070. S + i1,
  11071. (float *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
  11072. (float *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
  11073. }
  11074. // scale
  11075. ggml_vec_scale_f32(nek1, S, scale);
  11076. if (masked) {
  11077. for (int64_t i = P; i < M; i++) {
  11078. if (i > P + iq1) {
  11079. S[i] = -INFINITY;
  11080. }
  11081. }
  11082. }
  11083. // softmax
  11084. {
  11085. float max = -INFINITY;
  11086. ggml_vec_max_f32(M, &max, S);
  11087. ggml_float sum = 0.0;
  11088. {
  11089. #ifdef GGML_SOFT_MAX_ACCELERATE
  11090. max = -max;
  11091. vDSP_vsadd(SM, 1, &max, SM, 1, Mup);
  11092. vvexpf(SM, SM, &Mup);
  11093. ggml_vec_sum_f32(Mup, &sum, SM);
  11094. #else
  11095. uint16_t scvt[GGML_SOFT_MAX_UNROLL];
  11096. ggml_float sump[GGML_SOFT_MAX_UNROLL] = { 0.0 };
  11097. for (int i = 0; i < Mup; i += GGML_SOFT_MAX_UNROLL) {
  11098. float * SR = S + i;
  11099. float * SW = SM + i;
  11100. for (int j = 0; j < GGML_SOFT_MAX_UNROLL; ++j) {
  11101. if (SR[j] == -INFINITY) {
  11102. SW[j] = 0.0f;
  11103. } else {
  11104. ggml_fp16_t s = GGML_FP32_TO_FP16(SR[j] - max);
  11105. memcpy(&scvt[j], &s, sizeof(uint16_t));
  11106. const float val = GGML_FP16_TO_FP32(table_exp_f16[scvt[j]]);
  11107. sump[j] += (ggml_float)val;
  11108. SW[j] = val;
  11109. }
  11110. }
  11111. }
  11112. for (int i = 0; i < GGML_SOFT_MAX_UNROLL; i++) {
  11113. sum += sump[i];
  11114. }
  11115. #endif
  11116. }
  11117. assert(sum > 0.0);
  11118. sum = 1.0/sum;
  11119. ggml_vec_scale_f32(M, SM, sum);
  11120. }
  11121. // step-by-step explanation
  11122. {
  11123. // forward-process shape grads from backward process
  11124. // parallel_for iq2,iq3:
  11125. // k[:D,:M,:,:] [D,M,:,:] grad[k][:D,:M,iq2,iq3] += grad[kcur]
  11126. // q[:D,:N,:,:] [D,N,:,:] grad[q][:D,iq1,iq2,iq3] += grad[qcur]
  11127. // v[:M,:D,:,:] [M,D,:,:] grad[v][:M,:D,iq2,iq3] += grad[vcur]
  11128. // for iq1:
  11129. // kcur = k[:D,:M,iq2,iq3] [D,M,1,1] grad[kcur] = grad[S1].T @ qcur
  11130. // qcur = q[:D,iq1,iq2,iq3] [D,1,1,1] grad[qcur] = grad[S1] @ kcur
  11131. // vcur = v[:M,:D,iq2,iq3] [M,D,1,1] grad[vcur] = grad[S5].T @ S4
  11132. // S0 = -Inf [D,1,1,1]
  11133. // ~S1[i] = dot(kcur[:D,i], qcur)
  11134. // S1 = qcur @ kcur.T [M,1,1,1] grad[S1] = grad[S2] * scale
  11135. // S2 = S1 * scale [M,1,1,1] grad[S2] = diag_mask_zero(grad[S3], P)
  11136. // S3 = diag_mask_inf(S2, P) [M,1,1,1] grad[S3] = S4 * (grad[S4] - dot(S4, grad[S4]))
  11137. // S4 = softmax(S3) [M,1,1,1] grad[S4] = grad[S5] @ vcur
  11138. // ~S5[i] = dot(vcur[:,i], S4)
  11139. // S5 = S4 @ vcur.T [D,1,1,1] grad[S5] = d[:D,iq1,iq2,iq3]
  11140. // ~dst[i,iq1,iq2,iq3] = S5[i] ^
  11141. // dst[:D,iq1,iq2,iq3] = S5 | grad[dst[:D,iq1,iq2,iq3]] = d[:D,iq1,iq2,iq3]
  11142. // dst backward-/ grad[dst] = d
  11143. //
  11144. // output gradients with their dependencies:
  11145. //
  11146. // grad[kcur] = grad[S1].T @ qcur
  11147. // grad[S1] = diag_mask_zero(grad[S3], P) * scale
  11148. // grad[S3] = S4 * (grad[S4] - dot(S4, grad[S4]))
  11149. // grad[S4] = grad[S5] @ vcur
  11150. // grad[S4] = d[:D,iq1,iq2,iq3] @ vcur
  11151. // grad[qcur] = grad[S1] @ kcur
  11152. // grad[vcur] = grad[S5].T @ S4
  11153. // grad[vcur] = d[:D,iq1,iq2,iq3].T @ S4
  11154. //
  11155. // in post-order:
  11156. //
  11157. // S1 = qcur @ kcur.T
  11158. // S2 = S1 * scale
  11159. // S3 = diag_mask_inf(S2, P)
  11160. // S4 = softmax(S3)
  11161. // grad[S4] = d[:D,iq1,iq2,iq3] @ vcur
  11162. // grad[S3] = S4 * (grad[S4] - dot(S4, grad[S4]))
  11163. // grad[S1] = diag_mask_zero(grad[S3], P) * scale
  11164. // grad[qcur] = grad[S1] @ kcur
  11165. // grad[kcur] = grad[S1].T @ qcur
  11166. // grad[vcur] = d[:D,iq1,iq2,iq3].T @ S4
  11167. //
  11168. // using less variables (SM=S4):
  11169. //
  11170. // S = diag_mask_inf(qcur @ kcur.T * scale, P)
  11171. // SM = softmax(S)
  11172. // S = d[:D,iq1,iq2,iq3] @ vcur
  11173. // dot_SM_gradSM = dot(SM, S)
  11174. // S = SM * (S - dot(SM, S))
  11175. // S = diag_mask_zero(S, P) * scale
  11176. //
  11177. // grad[q][:D,iq1,iq2,iq3] += S @ kcur
  11178. // grad[k][:D,:M,iq2,iq3] += S.T @ qcur
  11179. // grad[v][:M,:D,iq2,iq3] += d[:D,iq1,iq2,iq3].T @ SM
  11180. }
  11181. // S = gradSM = d[:D,iq1,iq2,iq3] @ vcur
  11182. // S = d[:D,iq1,iq2,iq3] @ vcur
  11183. // S[:M] += vcur[:M,ic] * d[ic,iq1,iq2,iq3]
  11184. ggml_vec_set_f32(M, S, 0);
  11185. for (int64_t ic = 0; ic < D; ++ic) {
  11186. // dst indices
  11187. const int i1 = iq1;
  11188. const int i2 = iq2;
  11189. const int i3 = iq3;
  11190. ggml_vec_mad_f32(M,
  11191. S,
  11192. (float *) ((char *) v->data + ( ic*nbv1 + i2*nbv2 + i3*nbv3)),
  11193. *(float *) ((char *) d->data + (ic*nbd0 + i1*nbd1 + i2*nbd2 + i3*nbd3)));
  11194. }
  11195. // S = SM * (S - dot(SM, S))
  11196. float dot_SM_gradSM = 0;
  11197. ggml_vec_dot_f32 (M, &dot_SM_gradSM, SM, S);
  11198. ggml_vec_acc1_f32(M, S, -dot_SM_gradSM);
  11199. ggml_vec_mul_f32 (M, S, S, SM);
  11200. // S = diag_mask_zero(S, P) * scale
  11201. if (masked) {
  11202. // for (int64_t i = P + iq1 + 1; i < M; i++) {
  11203. // S[i] = 0;
  11204. // }
  11205. for (int64_t i = P; i < M; i++) {
  11206. if (i > P + iq1) {
  11207. S[i] = 0;
  11208. }
  11209. }
  11210. }
  11211. ggml_vec_scale_f32(M, S, scale);
  11212. void * grad_q = (char *) dst->data;
  11213. void * grad_k = (char *) dst->data + nb0*D*N*neq2*neq3;
  11214. void * grad_v = (char *) dst->data + nb0*D*N*neq2*neq3 + nb0*D*M*neq2*neq3;
  11215. const size_t nbgq1 = nb0*neq0;
  11216. const size_t nbgq2 = nb0*neq0*neq1;
  11217. const size_t nbgq3 = nb0*neq0*neq1*neq2;
  11218. const size_t nbgk1 = nb0*nek0;
  11219. const size_t nbgk2 = nb0*nek0*nek1;
  11220. const size_t nbgk3 = nb0*nek0*nek1*neq2;
  11221. const size_t nbgv1 = nb0*nev0;
  11222. const size_t nbgv2 = nb0*nev0*nev1;
  11223. const size_t nbgv3 = nb0*nev0*nev1*neq2;
  11224. // S shape [M,1]
  11225. // SM shape [M,1]
  11226. // kcur shape [D,M]
  11227. // qcur shape [D,1]
  11228. // vcur shape [M,D]
  11229. //
  11230. // grad[q][:D,iq1,iq2,iq3] += S @ kcur
  11231. // grad[q][:D,iq1,iq2,iq3] += shape[M,1] @ shape[D,M]
  11232. // grad[q][:D,iq1,iq2,iq3] += S[ic] * kcur[:D,ic]
  11233. //
  11234. //// grad[q][ic,iq1,iq2,iq3] += dot(kcur[:,ic],S.T)
  11235. //// grad[q][ic,iq1,iq2,iq3] += dot(k[:D,ic,iq2,iq3],S.T)
  11236. for (int64_t ic = 0; ic < M; ++ic) {
  11237. // dst indices
  11238. const int i1 = iq1;
  11239. const int i2 = iq2;
  11240. const int i3 = iq3;
  11241. ggml_vec_mad_f32(D,
  11242. (float *) ((char *) grad_q + (i1*nbgq1 + i2*nbgq2 + i3*nbgq3)),
  11243. (float *) ((char *) k->data + (ic*nbk1 + i2*nbk2 + i3*nbk3)),
  11244. S[ic]);
  11245. }
  11246. // grad[k][:D,:M,iq2,iq3] += S.T @ qcur
  11247. // grad[k][:D,ic,iq2,iq3] += S.T[0,ic] * qcur[:D,0]
  11248. // grad[k][:D,ic,iq2,iq3] += S[ic] * qcur[:D,0]
  11249. for (int64_t ic = 0; ic < M; ++ic) {
  11250. // dst indices
  11251. const int i1 = iq1;
  11252. const int i2 = iq2;
  11253. const int i3 = iq3;
  11254. // ggml_vec_set_f32(D,
  11255. // (float *) ((char *) grad_k + (ic*nbgk1 + i2*nbgk2 + i3*nbgk3)),
  11256. // 0);
  11257. ggml_vec_mad_f32(D,
  11258. (float *) ((char *) grad_k + (ic*nbgk1 + i2*nbgk2 + i3*nbgk3)),
  11259. (float *) ((char *) q->data + (i1*nbq1 + i2*nbq2 + i3*nbq3)),
  11260. S[ic]);
  11261. }
  11262. // grad[v][:M,:D,iq2,iq3] += d[:D,iq1,iq2,iq3].T @ SM
  11263. // grad[v][:M,ic,iq2,iq3] += d[:D,iq1,iq2,iq3].T[0,ic] * SM[:M]
  11264. // grad[v][:M,ic,iq2,iq3] += d[ic,iq1,iq2,iq3] * SM[:M]
  11265. for (int64_t ic = 0; ic < D; ++ic) {
  11266. // dst indices
  11267. const int i1 = iq1;
  11268. const int i2 = iq2;
  11269. const int i3 = iq3;
  11270. // ggml_vec_set_f32(M,
  11271. // (float *) ((char *) grad_v + ( ic*nbgv1 + i2*nbgv2 + i3*nbgv3)),
  11272. // 0);
  11273. ggml_vec_mad_f32(M,
  11274. (float *) ((char *) grad_v + ( ic*nbgv1 + i2*nbgv2 + i3*nbgv3)),
  11275. SM,
  11276. *(float *) ((char *) d->data + (ic*nbd0 + i1*nbd1 + i2*nbd2 + i3*nbd3)));
  11277. }
  11278. }
  11279. }
  11280. }
  11281. static void ggml_compute_forward_flash_attn_back(
  11282. const struct ggml_compute_params * params,
  11283. const struct ggml_tensor * q,
  11284. const struct ggml_tensor * k,
  11285. const struct ggml_tensor * v,
  11286. const struct ggml_tensor * d,
  11287. const bool masked,
  11288. struct ggml_tensor * dst) {
  11289. switch (q->type) {
  11290. case GGML_TYPE_F32:
  11291. {
  11292. ggml_compute_forward_flash_attn_back_f32(params, q, k, v, d, masked, dst);
  11293. } break;
  11294. default:
  11295. {
  11296. GGML_ASSERT(false);
  11297. } break;
  11298. }
  11299. }
  11300. // ggml_compute_forward_win_part
  11301. static void ggml_compute_forward_win_part_f32(
  11302. const struct ggml_compute_params * params,
  11303. const struct ggml_tensor * src0,
  11304. const struct ggml_tensor * opt0,
  11305. struct ggml_tensor * dst) {
  11306. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11307. return;
  11308. }
  11309. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne);
  11310. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne);
  11311. const int32_t nep0 = ((const int32_t *)(opt0->data))[0];
  11312. const int32_t nep1 = ((const int32_t *)(opt0->data))[1];
  11313. const int32_t w = ((const int32_t *)(opt0->data))[2];
  11314. assert(ne00 == ne0);
  11315. assert(ne3 == nep0*nep1);
  11316. // TODO: optimize / multi-thread
  11317. for (int py = 0; py < nep1; ++py) {
  11318. for (int px = 0; px < nep0; ++px) {
  11319. const int64_t i3 = py*nep0 + px;
  11320. for (int64_t i2 = 0; i2 < ne2; ++i2) {
  11321. for (int64_t i1 = 0; i1 < ne1; ++i1) {
  11322. for (int64_t i0 = 0; i0 < ne0; ++i0) {
  11323. const int64_t i02 = py*w + i2;
  11324. const int64_t i01 = px*w + i1;
  11325. const int64_t i00 = i0;
  11326. const int64_t i = i3*ne2*ne1*ne0 + i2*ne1*ne0 + i1*ne0 + i0;
  11327. const int64_t j = i02*ne01*ne00 + i01*ne00 + i00;
  11328. if (py*w + i2 >= ne02 || px*w + i1 >= ne01) {
  11329. ((float *) dst->data)[i] = 0.0f;
  11330. } else {
  11331. ((float *) dst->data)[i] = ((float *) src0->data)[j];
  11332. }
  11333. }
  11334. }
  11335. }
  11336. }
  11337. }
  11338. }
  11339. static void ggml_compute_forward_win_part(
  11340. const struct ggml_compute_params * params,
  11341. const struct ggml_tensor * src0,
  11342. const struct ggml_tensor * opt0,
  11343. struct ggml_tensor * dst) {
  11344. switch (src0->type) {
  11345. case GGML_TYPE_F32:
  11346. {
  11347. ggml_compute_forward_win_part_f32(params, src0, opt0, dst);
  11348. } break;
  11349. default:
  11350. {
  11351. GGML_ASSERT(false);
  11352. } break;
  11353. }
  11354. }
  11355. // ggml_compute_forward_win_unpart
  11356. static void ggml_compute_forward_win_unpart_f32(
  11357. const struct ggml_compute_params * params,
  11358. const struct ggml_tensor * src0,
  11359. const struct ggml_tensor * opt0,
  11360. struct ggml_tensor * dst) {
  11361. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11362. return;
  11363. }
  11364. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne);
  11365. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne);
  11366. const int32_t w = ((const int32_t *)(opt0->data))[0];
  11367. // padding
  11368. const int px = (w - ne1%w)%w;
  11369. //const int py = (w - ne2%w)%w;
  11370. const int npx = (px + ne1)/w;
  11371. //const int npy = (py + ne2)/w;
  11372. assert(ne0 == ne00);
  11373. // TODO: optimize / multi-thread
  11374. for (int64_t i2 = 0; i2 < ne2; ++i2) {
  11375. for (int64_t i1 = 0; i1 < ne1; ++i1) {
  11376. for (int64_t i0 = 0; i0 < ne0; ++i0) {
  11377. const int ip2 = i2/w;
  11378. const int ip1 = i1/w;
  11379. const int64_t i02 = i2%w;
  11380. const int64_t i01 = i1%w;
  11381. const int64_t i00 = i0;
  11382. const int64_t i = (ip2*npx + ip1)*ne02*ne01*ne00 + i02*ne01*ne00 + i01*ne00 + i00;
  11383. const int64_t j = i2*ne1*ne0 + i1*ne0 + i0;
  11384. ((float *) dst->data)[j] = ((float *) src0->data)[i];
  11385. }
  11386. }
  11387. }
  11388. }
  11389. static void ggml_compute_forward_win_unpart(
  11390. const struct ggml_compute_params * params,
  11391. const struct ggml_tensor * src0,
  11392. const struct ggml_tensor * opt0,
  11393. struct ggml_tensor * dst) {
  11394. switch (src0->type) {
  11395. case GGML_TYPE_F32:
  11396. {
  11397. ggml_compute_forward_win_unpart_f32(params, src0, opt0, dst);
  11398. } break;
  11399. default:
  11400. {
  11401. GGML_ASSERT(false);
  11402. } break;
  11403. }
  11404. }
  11405. // ggml_compute_forward_map_unary
  11406. static void ggml_compute_forward_map_unary_f32(
  11407. const struct ggml_compute_params * params,
  11408. const struct ggml_tensor * src0,
  11409. struct ggml_tensor * dst,
  11410. const ggml_unary_op_f32_t fun) {
  11411. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  11412. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11413. return;
  11414. }
  11415. const int n = ggml_nrows(src0);
  11416. const int nc = src0->ne[0];
  11417. assert( dst->nb[0] == sizeof(float));
  11418. assert(src0->nb[0] == sizeof(float));
  11419. for (int i = 0; i < n; i++) {
  11420. fun(nc,
  11421. (float *) ((char *) dst->data + i*( dst->nb[1])),
  11422. (float *) ((char *) src0->data + i*(src0->nb[1])));
  11423. }
  11424. }
  11425. static void ggml_compute_forward_map_unary(
  11426. const struct ggml_compute_params * params,
  11427. const struct ggml_tensor * src0,
  11428. struct ggml_tensor * dst,
  11429. const ggml_unary_op_f32_t fun) {
  11430. switch (src0->type) {
  11431. case GGML_TYPE_F32:
  11432. {
  11433. ggml_compute_forward_map_unary_f32(params, src0, dst, fun);
  11434. } break;
  11435. default:
  11436. {
  11437. GGML_ASSERT(false);
  11438. } break;
  11439. }
  11440. }
  11441. // ggml_compute_forward_map_binary
  11442. static void ggml_compute_forward_map_binary_f32(
  11443. const struct ggml_compute_params * params,
  11444. const struct ggml_tensor * src0,
  11445. const struct ggml_tensor * src1,
  11446. struct ggml_tensor * dst,
  11447. const ggml_binary_op_f32_t fun) {
  11448. assert(params->ith == 0);
  11449. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  11450. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11451. return;
  11452. }
  11453. const int n = ggml_nrows(src0);
  11454. const int nc = src0->ne[0];
  11455. assert( dst->nb[0] == sizeof(float));
  11456. assert(src0->nb[0] == sizeof(float));
  11457. assert(src1->nb[0] == sizeof(float));
  11458. for (int i = 0; i < n; i++) {
  11459. fun(nc,
  11460. (float *) ((char *) dst->data + i*( dst->nb[1])),
  11461. (float *) ((char *) src0->data + i*(src0->nb[1])),
  11462. (float *) ((char *) src1->data + i*(src1->nb[1])));
  11463. }
  11464. }
  11465. static void ggml_compute_forward_map_binary(
  11466. const struct ggml_compute_params * params,
  11467. const struct ggml_tensor * src0,
  11468. const struct ggml_tensor * src1,
  11469. struct ggml_tensor * dst,
  11470. const ggml_binary_op_f32_t fun) {
  11471. switch (src0->type) {
  11472. case GGML_TYPE_F32:
  11473. {
  11474. ggml_compute_forward_map_binary_f32(params, src0, src1, dst, fun);
  11475. } break;
  11476. default:
  11477. {
  11478. GGML_ASSERT(false);
  11479. } break;
  11480. }
  11481. }
  11482. // ggml_compute_forward_map_custom1
  11483. static void ggml_compute_forward_map_custom1_f32(
  11484. const struct ggml_compute_params * params,
  11485. const struct ggml_tensor * a,
  11486. struct ggml_tensor * dst,
  11487. const ggml_custom1_op_f32_t fun) {
  11488. assert(params->ith == 0);
  11489. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11490. return;
  11491. }
  11492. fun(dst, a);
  11493. }
  11494. static void ggml_compute_forward_map_custom1(
  11495. const struct ggml_compute_params * params,
  11496. const struct ggml_tensor * a,
  11497. struct ggml_tensor * dst,
  11498. const ggml_custom1_op_f32_t fun) {
  11499. switch (a->type) {
  11500. case GGML_TYPE_F32:
  11501. {
  11502. ggml_compute_forward_map_custom1_f32(params, a, dst, fun);
  11503. } break;
  11504. default:
  11505. {
  11506. GGML_ASSERT(false);
  11507. } break;
  11508. }
  11509. }
  11510. // ggml_compute_forward_map_custom2
  11511. static void ggml_compute_forward_map_custom2_f32(
  11512. const struct ggml_compute_params * params,
  11513. const struct ggml_tensor * a,
  11514. const struct ggml_tensor * b,
  11515. struct ggml_tensor * dst,
  11516. const ggml_custom2_op_f32_t fun) {
  11517. assert(params->ith == 0);
  11518. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11519. return;
  11520. }
  11521. fun(dst, a, b);
  11522. }
  11523. static void ggml_compute_forward_map_custom2(
  11524. const struct ggml_compute_params * params,
  11525. const struct ggml_tensor * a,
  11526. const struct ggml_tensor * b,
  11527. struct ggml_tensor * dst,
  11528. const ggml_custom2_op_f32_t fun) {
  11529. switch (a->type) {
  11530. case GGML_TYPE_F32:
  11531. {
  11532. ggml_compute_forward_map_custom2_f32(params, a, b, dst, fun);
  11533. } break;
  11534. default:
  11535. {
  11536. GGML_ASSERT(false);
  11537. } break;
  11538. }
  11539. }
  11540. // ggml_compute_forward_map_custom3
  11541. static void ggml_compute_forward_map_custom3_f32(
  11542. const struct ggml_compute_params * params,
  11543. const struct ggml_tensor * a,
  11544. const struct ggml_tensor * b,
  11545. const struct ggml_tensor * c,
  11546. struct ggml_tensor * dst,
  11547. const ggml_custom3_op_f32_t fun) {
  11548. assert(params->ith == 0);
  11549. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11550. return;
  11551. }
  11552. fun(dst, a, b, c);
  11553. }
  11554. static void ggml_compute_forward_map_custom3(
  11555. const struct ggml_compute_params * params,
  11556. const struct ggml_tensor * a,
  11557. const struct ggml_tensor * b,
  11558. const struct ggml_tensor * c,
  11559. struct ggml_tensor * dst,
  11560. const ggml_custom3_op_f32_t fun) {
  11561. switch (a->type) {
  11562. case GGML_TYPE_F32:
  11563. {
  11564. ggml_compute_forward_map_custom3_f32(params, a, b, c, dst, fun);
  11565. } break;
  11566. default:
  11567. {
  11568. GGML_ASSERT(false);
  11569. } break;
  11570. }
  11571. }
  11572. // ggml_compute_forward_cross_entropy_loss
  11573. static void ggml_compute_forward_cross_entropy_loss_f32(
  11574. const struct ggml_compute_params * params,
  11575. const struct ggml_tensor * src0,
  11576. const struct ggml_tensor * src1,
  11577. struct ggml_tensor * dst) {
  11578. GGML_ASSERT(ggml_is_contiguous(src0));
  11579. GGML_ASSERT(ggml_is_contiguous(src1));
  11580. GGML_ASSERT(ggml_is_scalar(dst));
  11581. GGML_ASSERT(ggml_are_same_shape(src0, src1));
  11582. const int ith = params->ith;
  11583. const int nth = params->nth;
  11584. float * sums = (float *) params->wdata;
  11585. // TODO: handle transposed/permuted matrices
  11586. const int nc = src0->ne[0];
  11587. const int nr = ggml_nrows(src0);
  11588. if (params->type == GGML_TASK_INIT) {
  11589. if (ith == 0) {
  11590. memset(sums, 0, sizeof(float) * (nth + nth * nc));
  11591. }
  11592. return;
  11593. }
  11594. if (params->type == GGML_TASK_FINALIZE) {
  11595. if (ith == 0) {
  11596. float * dp = (float *) dst->data;
  11597. ggml_vec_sum_f32(nth, dp, sums);
  11598. dp[0] *= -1.0f;
  11599. }
  11600. return;
  11601. }
  11602. const double eps = 1e-9;
  11603. // rows per thread
  11604. const int dr = (nr + nth - 1)/nth;
  11605. // row range for this thread
  11606. const int ir0 = dr*ith;
  11607. const int ir1 = MIN(ir0 + dr, nr);
  11608. for (int i1 = ir0; i1 < ir1; i1++) {
  11609. float * s0 = (float *)((char *) src0->data + i1*src0->nb[1]);
  11610. float * s1 = (float *)((char *) src1->data + i1*src1->nb[1]);
  11611. float * st = (float *) params->wdata + nth + ith*nc;
  11612. #ifndef NDEBUG
  11613. for (int i = 0; i < nc; ++i) {
  11614. //printf("p[%d] = %f\n", i, p[i]);
  11615. assert(!isnan(s0[i]));
  11616. assert(!isnan(s1[i]));
  11617. }
  11618. #endif
  11619. // soft_max
  11620. ggml_float sum = 0.0;
  11621. {
  11622. float max = -INFINITY;
  11623. ggml_vec_max_f32(nc, &max, s0);
  11624. uint16_t scvt;
  11625. for (int i = 0; i < nc; i++) {
  11626. if (s0[i] == -INFINITY) {
  11627. st[i] = 0.0f;
  11628. } else {
  11629. // const float val = (s0[i] == -INFINITY) ? 0.0 : exp(s0[i] - max);
  11630. ggml_fp16_t s = GGML_FP32_TO_FP16(s0[i] - max);
  11631. memcpy(&scvt, &s, sizeof(scvt));
  11632. const float val = GGML_FP16_TO_FP32(table_exp_f16[scvt]);
  11633. sum += (ggml_float)val;
  11634. st[i] = val;
  11635. }
  11636. }
  11637. assert(sum > 0.0);
  11638. // sum = 1.0/sum;
  11639. }
  11640. // avoid log(0) by rescaling from [0..1] to [eps..1]
  11641. sum = (1.0 - eps) / sum;
  11642. ggml_vec_scale_f32(nc, st, sum);
  11643. ggml_vec_add1_f32(nc, st, st, eps);
  11644. ggml_vec_log_f32(nc, st, st);
  11645. ggml_vec_mul_f32(nc, st, st, s1);
  11646. ggml_vec_sum_f32(nc, sums + ith, st);
  11647. #ifndef NDEBUG
  11648. for (int i = 0; i < nc; ++i) {
  11649. assert(!isnan(st[i]));
  11650. assert(!isinf(st[i]));
  11651. }
  11652. #endif
  11653. }
  11654. }
  11655. static void ggml_compute_forward_cross_entropy_loss(
  11656. const struct ggml_compute_params * params,
  11657. const struct ggml_tensor * src0,
  11658. const struct ggml_tensor * src1,
  11659. struct ggml_tensor * dst) {
  11660. switch (src0->type) {
  11661. case GGML_TYPE_F32:
  11662. {
  11663. ggml_compute_forward_cross_entropy_loss_f32(params, src0, src1, dst);
  11664. } break;
  11665. default:
  11666. {
  11667. GGML_ASSERT(false);
  11668. } break;
  11669. }
  11670. }
  11671. // ggml_compute_forward_cross_entropy_loss_back
  11672. static void ggml_compute_forward_cross_entropy_loss_back_f32(
  11673. const struct ggml_compute_params * params,
  11674. const struct ggml_tensor * src0,
  11675. const struct ggml_tensor * src1,
  11676. const struct ggml_tensor * opt0,
  11677. struct ggml_tensor * dst) {
  11678. GGML_ASSERT(ggml_is_contiguous(dst));
  11679. GGML_ASSERT(ggml_is_contiguous(src0));
  11680. GGML_ASSERT(ggml_is_contiguous(src1));
  11681. GGML_ASSERT(ggml_is_contiguous(opt0));
  11682. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  11683. const int64_t ith = params->ith;
  11684. const int64_t nth = params->nth;
  11685. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11686. return;
  11687. }
  11688. const float eps = 1e-9f;
  11689. // TODO: handle transposed/permuted matrices
  11690. const int64_t nc = src0->ne[0];
  11691. const int64_t nr = ggml_nrows(src0);
  11692. // rows per thread
  11693. const int64_t dr = (nr + nth - 1)/nth;
  11694. // row range for this thread
  11695. const int64_t ir0 = dr*ith;
  11696. const int64_t ir1 = MIN(ir0 + dr, nr);
  11697. float * d = (float *) opt0->data;
  11698. for (int64_t i1 = ir0; i1 < ir1; i1++) {
  11699. float * ds0 = (float *)((char *) dst->data + i1*dst->nb[1]);
  11700. float * s0 = (float *)((char *) src0->data + i1*src0->nb[1]);
  11701. float * s1 = (float *)((char *) src1->data + i1*src1->nb[1]);
  11702. float * sm = (float *) params->wdata + ith*nc;
  11703. #ifndef NDEBUG
  11704. for (int i = 0; i < nc; ++i) {
  11705. //printf("p[%d] = %f\n", i, p[i]);
  11706. assert(!isnan(s0[i]));
  11707. assert(!isnan(s1[i]));
  11708. }
  11709. #endif
  11710. // step by step explanation:
  11711. {
  11712. //float * sums = (float *) params->wdata;
  11713. // forward pass with annotated gradients from backward pass
  11714. // (built by going in reverse operation order, adding to gradients of current operation args)
  11715. // st0 = exp(s0-max(s0)) grad[st0] = grad[st1]*(1.0 - eps)/sum
  11716. // from softmax_back: grad[s0] = st1_k * (grad[st1]_k - dot(st1, grad[st1]))
  11717. // ggml_vec_scale_f32(nc, st, sum); // st1 = st0*/sum = softmax(s0) grad[st1] = grad[st2]*(1.0 - eps)
  11718. // ggml_vec_scale_f32(nc, st, (1.0f - eps)); // st2 = st1*(1.0 - eps) grad[st2] = grad[st3]
  11719. // ggml_vec_add1_f32(nc, st, st, eps); // st3 = st2 + eps grad[st3] = grad[st4]/st3
  11720. // ggml_vec_log_f32(nc, st, st); // st4 = log(st3) grad[st4] = grad[st5] * s1
  11721. // ggml_vec_mul_f32(nc, st, st, s1); // st5 = st4 * s1 grad[st5] = grad[sums[ith]]
  11722. // ggml_vec_sum_f32(nc, sums + ith, st); // sums[ith] = st5 grad[sums[ith]] = grad[cross_entropy_loss] = -grad[cel]
  11723. // substitute into grad[st1], because we can reuse softmax_back from this point on
  11724. // grad[st1] = -grad[cel]*s1*(1.0 - eps)/(eps + softmax(s0)*(1.0 - eps))
  11725. // postorder:
  11726. // grad[st1] := softmax(s0)
  11727. // grad[st1] := grad[st1]*(1.0 - eps)
  11728. // grad[st1] := grad[st1] + eps
  11729. // grad[st1] := s1 / grad[st1]
  11730. // grad[st1] := grad[st1]*(1.0-eps)*-grad[cel]
  11731. // src0 gradients by going through softmax_back
  11732. // grad[s0] = st1_k * (grad[st1]_k - dot(st1, grad[st1]))
  11733. // from softmax_back:
  11734. // dxk = yk * (dyk - dot(y, dy))
  11735. // dot_y_dy := dot(y, dy)
  11736. // dx := dy
  11737. // dx := dx - dot_y_dy
  11738. // dx := dx * y
  11739. // postorder:
  11740. // dot_st1_dst1 := dot(st1, grad[st1])
  11741. // grad[s0] := grad[st1]
  11742. // grad[s0] := grad[s0] - dot_st1_dst1
  11743. // grad[s0] := grad[s0] * st1
  11744. // prepend postorder from grad[st1] directly using grad[s0] as memory location, as we will grad[s0] := grad[st1]
  11745. // sm := softmax(s0)
  11746. // grad[s0] := sm*(1.0 - eps)
  11747. // grad[s0] := grad[s0] + eps
  11748. // grad[s0] := s1 / grad[s0]
  11749. // grad[s0] := grad[s0]*(1.0-eps)*-grad[cel]
  11750. // dot_st1_dst1 := dot(sm, grad[s0])
  11751. // grad[s0] := grad[s0] - dot_st1_dst1
  11752. // grad[s0] := grad[s0] * sm
  11753. }
  11754. // soft_max
  11755. ggml_float sum = 0.0;
  11756. {
  11757. float max = -INFINITY;
  11758. ggml_vec_max_f32(nc, &max, s0);
  11759. uint16_t scvt;
  11760. for (int i = 0; i < nc; i++) {
  11761. if (s0[i] == -INFINITY) {
  11762. sm[i] = 0.0f;
  11763. } else {
  11764. // const float val = (s0[i] == -INFINITY) ? 0.0 : exp(s0[i] - max);
  11765. ggml_fp16_t s = GGML_FP32_TO_FP16(s0[i] - max);
  11766. memcpy(&scvt, &s, sizeof(scvt));
  11767. const float val = GGML_FP16_TO_FP32(table_exp_f16[scvt]);
  11768. sum += (ggml_float)val;
  11769. sm[i] = val;
  11770. }
  11771. }
  11772. assert(sum > 0.0);
  11773. sum = 1.0/sum;
  11774. }
  11775. float dot_st1_dst1 = 0;
  11776. ggml_vec_scale_f32(nc, sm, sum);
  11777. ggml_vec_cpy_f32 (nc, ds0, sm);
  11778. ggml_vec_scale_f32(nc, ds0, (1.0f - eps));
  11779. ggml_vec_add1_f32 (nc, ds0, ds0, eps);
  11780. ggml_vec_div_f32 (nc, ds0, s1, ds0);
  11781. ggml_vec_scale_f32(nc, ds0, -(1.0f - eps)*d[0]);
  11782. ggml_vec_dot_f32 (nc, &dot_st1_dst1, sm, ds0);
  11783. ggml_vec_acc1_f32 (nc, ds0, -dot_st1_dst1);
  11784. ggml_vec_mul_f32 (nc, ds0, ds0, sm);
  11785. #ifndef NDEBUG
  11786. for (int i = 0; i < nc; ++i) {
  11787. assert(!isnan(sm[i]));
  11788. assert(!isinf(sm[i]));
  11789. assert(!isnan(ds0[i]));
  11790. assert(!isinf(ds0[i]));
  11791. }
  11792. #endif
  11793. }
  11794. }
  11795. static void ggml_compute_forward_cross_entropy_loss_back(
  11796. const struct ggml_compute_params * params,
  11797. const struct ggml_tensor * src0,
  11798. const struct ggml_tensor * src1,
  11799. const struct ggml_tensor * opt0,
  11800. struct ggml_tensor * dst) {
  11801. switch (src0->type) {
  11802. case GGML_TYPE_F32:
  11803. {
  11804. ggml_compute_forward_cross_entropy_loss_back_f32(params, src0, src1, opt0, dst);
  11805. } break;
  11806. default:
  11807. {
  11808. GGML_ASSERT(false);
  11809. } break;
  11810. }
  11811. }
  11812. /////////////////////////////////
  11813. static void ggml_compute_forward(struct ggml_compute_params * params, struct ggml_tensor * tensor) {
  11814. GGML_ASSERT(params);
  11815. #ifdef GGML_USE_CUBLAS
  11816. bool skip_cpu = ggml_cuda_compute_forward(params, tensor);
  11817. if (skip_cpu) {
  11818. return;
  11819. }
  11820. GGML_ASSERT(tensor->src[0] == NULL || tensor->src[0]->backend == GGML_BACKEND_CPU);
  11821. GGML_ASSERT(tensor->src[1] == NULL || tensor->src[1]->backend == GGML_BACKEND_CPU);
  11822. #endif // GGML_USE_CUBLAS
  11823. switch (tensor->op) {
  11824. case GGML_OP_DUP:
  11825. {
  11826. ggml_compute_forward_dup(params, tensor->src[0], tensor);
  11827. } break;
  11828. case GGML_OP_ADD:
  11829. {
  11830. ggml_compute_forward_add(params, tensor->src[0], tensor->src[1], tensor);
  11831. } break;
  11832. case GGML_OP_ADD1:
  11833. {
  11834. ggml_compute_forward_add1(params, tensor->src[0], tensor->src[1], tensor);
  11835. } break;
  11836. case GGML_OP_ACC:
  11837. {
  11838. ggml_compute_forward_acc(params, tensor->src[0], tensor->src[1], tensor->src[2], tensor);
  11839. } break;
  11840. case GGML_OP_SUB:
  11841. {
  11842. ggml_compute_forward_sub(params, tensor->src[0], tensor->src[1], tensor);
  11843. } break;
  11844. case GGML_OP_MUL:
  11845. {
  11846. ggml_compute_forward_mul(params, tensor->src[0], tensor->src[1], tensor);
  11847. } break;
  11848. case GGML_OP_DIV:
  11849. {
  11850. ggml_compute_forward_div(params, tensor->src[0], tensor->src[1], tensor);
  11851. } break;
  11852. case GGML_OP_SQR:
  11853. {
  11854. ggml_compute_forward_sqr(params, tensor->src[0], tensor);
  11855. } break;
  11856. case GGML_OP_SQRT:
  11857. {
  11858. ggml_compute_forward_sqrt(params, tensor->src[0], tensor);
  11859. } break;
  11860. case GGML_OP_LOG:
  11861. {
  11862. ggml_compute_forward_log(params, tensor->src[0], tensor);
  11863. } break;
  11864. case GGML_OP_SUM:
  11865. {
  11866. ggml_compute_forward_sum(params, tensor->src[0], tensor);
  11867. } break;
  11868. case GGML_OP_SUM_ROWS:
  11869. {
  11870. ggml_compute_forward_sum_rows(params, tensor->src[0], tensor);
  11871. } break;
  11872. case GGML_OP_MEAN:
  11873. {
  11874. ggml_compute_forward_mean(params, tensor->src[0], tensor);
  11875. } break;
  11876. case GGML_OP_ARGMAX:
  11877. {
  11878. ggml_compute_forward_argmax(params, tensor->src[0], tensor);
  11879. } break;
  11880. case GGML_OP_REPEAT:
  11881. {
  11882. ggml_compute_forward_repeat(params, tensor->src[0], tensor);
  11883. } break;
  11884. case GGML_OP_REPEAT_BACK:
  11885. {
  11886. ggml_compute_forward_repeat_back(params, tensor->src[0], tensor);
  11887. } break;
  11888. case GGML_OP_ABS:
  11889. {
  11890. ggml_compute_forward_abs(params, tensor->src[0], tensor);
  11891. } break;
  11892. case GGML_OP_SGN:
  11893. {
  11894. ggml_compute_forward_sgn(params, tensor->src[0], tensor);
  11895. } break;
  11896. case GGML_OP_NEG:
  11897. {
  11898. ggml_compute_forward_neg(params, tensor->src[0], tensor);
  11899. } break;
  11900. case GGML_OP_STEP:
  11901. {
  11902. ggml_compute_forward_step(params, tensor->src[0], tensor);
  11903. } break;
  11904. case GGML_OP_TANH:
  11905. {
  11906. ggml_compute_forward_tanh(params, tensor->src[0], tensor);
  11907. } break;
  11908. case GGML_OP_ELU:
  11909. {
  11910. ggml_compute_forward_elu(params, tensor->src[0], tensor);
  11911. } break;
  11912. case GGML_OP_RELU:
  11913. {
  11914. ggml_compute_forward_relu(params, tensor->src[0], tensor);
  11915. } break;
  11916. case GGML_OP_GELU:
  11917. {
  11918. ggml_compute_forward_gelu(params, tensor->src[0], tensor);
  11919. } break;
  11920. case GGML_OP_GELU_QUICK:
  11921. {
  11922. ggml_compute_forward_gelu_quick(params, tensor->src[0], tensor);
  11923. } break;
  11924. case GGML_OP_SILU:
  11925. {
  11926. ggml_compute_forward_silu(params, tensor->src[0], tensor);
  11927. } break;
  11928. case GGML_OP_SILU_BACK:
  11929. {
  11930. ggml_compute_forward_silu_back(params, tensor->src[0], tensor->src[1], tensor);
  11931. } break;
  11932. case GGML_OP_NORM:
  11933. {
  11934. ggml_compute_forward_norm(params, tensor->src[0], tensor);
  11935. } break;
  11936. case GGML_OP_RMS_NORM:
  11937. {
  11938. ggml_compute_forward_rms_norm(params, tensor->src[0], tensor);
  11939. } break;
  11940. case GGML_OP_RMS_NORM_BACK:
  11941. {
  11942. ggml_compute_forward_rms_norm_back(params, tensor->src[0], tensor->src[1], tensor);
  11943. } break;
  11944. case GGML_OP_MUL_MAT:
  11945. {
  11946. ggml_compute_forward_mul_mat(params, tensor->src[0], tensor->src[1], tensor);
  11947. } break;
  11948. case GGML_OP_OUT_PROD:
  11949. {
  11950. ggml_compute_forward_out_prod(params, tensor->src[0], tensor->src[1], tensor);
  11951. } break;
  11952. case GGML_OP_SCALE:
  11953. {
  11954. ggml_compute_forward_scale(params, tensor->src[0], tensor->src[1], tensor);
  11955. } break;
  11956. case GGML_OP_SET:
  11957. {
  11958. ggml_compute_forward_set(params, tensor->src[0], tensor->src[1], tensor->src[2], tensor);
  11959. } break;
  11960. case GGML_OP_CPY:
  11961. {
  11962. ggml_compute_forward_cpy(params, tensor->src[0], tensor);
  11963. } break;
  11964. case GGML_OP_CONT:
  11965. {
  11966. ggml_compute_forward_cont(params, tensor->src[0], tensor);
  11967. } break;
  11968. case GGML_OP_RESHAPE:
  11969. {
  11970. ggml_compute_forward_reshape(params, tensor->src[0], tensor);
  11971. } break;
  11972. case GGML_OP_VIEW:
  11973. {
  11974. ggml_compute_forward_view(params, tensor->src[0]);
  11975. } break;
  11976. case GGML_OP_PERMUTE:
  11977. {
  11978. ggml_compute_forward_permute(params, tensor->src[0]);
  11979. } break;
  11980. case GGML_OP_TRANSPOSE:
  11981. {
  11982. ggml_compute_forward_transpose(params, tensor->src[0]);
  11983. } break;
  11984. case GGML_OP_GET_ROWS:
  11985. {
  11986. ggml_compute_forward_get_rows(params, tensor->src[0], tensor->src[1], tensor);
  11987. } break;
  11988. case GGML_OP_GET_ROWS_BACK:
  11989. {
  11990. ggml_compute_forward_get_rows_back(params, tensor->src[0], tensor->src[1], tensor->src[2], tensor);
  11991. } break;
  11992. case GGML_OP_DIAG:
  11993. {
  11994. ggml_compute_forward_diag(params, tensor->src[0], tensor);
  11995. } break;
  11996. case GGML_OP_DIAG_MASK_INF:
  11997. {
  11998. ggml_compute_forward_diag_mask_inf(params, tensor->src[0], tensor->src[1], tensor);
  11999. } break;
  12000. case GGML_OP_DIAG_MASK_ZERO:
  12001. {
  12002. ggml_compute_forward_diag_mask_zero(params, tensor->src[0], tensor->src[1], tensor);
  12003. } break;
  12004. case GGML_OP_SOFT_MAX:
  12005. {
  12006. ggml_compute_forward_soft_max(params, tensor->src[0], tensor);
  12007. } break;
  12008. case GGML_OP_SOFT_MAX_BACK:
  12009. {
  12010. ggml_compute_forward_soft_max_back(params, tensor->src[0], tensor->src[1], tensor);
  12011. } break;
  12012. case GGML_OP_ROPE:
  12013. {
  12014. ggml_compute_forward_rope(params, tensor->src[0], tensor->src[1], tensor);
  12015. } break;
  12016. case GGML_OP_ROPE_BACK:
  12017. {
  12018. ggml_compute_forward_rope_back(params, tensor->src[0], tensor->src[1], tensor);
  12019. } break;
  12020. case GGML_OP_ALIBI:
  12021. {
  12022. ggml_compute_forward_alibi(params, tensor->src[0], tensor->src[1], tensor);
  12023. } break;
  12024. case GGML_OP_CLAMP:
  12025. {
  12026. ggml_compute_forward_clamp(params, tensor->src[0], tensor->src[1], tensor);
  12027. } break;
  12028. case GGML_OP_CONV_1D:
  12029. {
  12030. ggml_compute_forward_conv_1d(params, tensor->src[0], tensor->src[1], tensor->src[2], tensor);
  12031. } break;
  12032. case GGML_OP_CONV_2D:
  12033. {
  12034. ggml_compute_forward_conv_2d(params, tensor->src[0], tensor->src[1], tensor->src[2], tensor);
  12035. } break;
  12036. case GGML_OP_FLASH_ATTN:
  12037. {
  12038. const int32_t t = ggml_get_i32_1d(tensor->src[3], 0);
  12039. GGML_ASSERT(t == 0 || t == 1);
  12040. const bool masked = t != 0;
  12041. ggml_compute_forward_flash_attn(params, tensor->src[0], tensor->src[1], tensor->src[2], masked, tensor);
  12042. } break;
  12043. case GGML_OP_FLASH_FF:
  12044. {
  12045. ggml_compute_forward_flash_ff(params, tensor->src[0], tensor->src[1], tensor->src[2], tensor->src[3], tensor->src[4], tensor);
  12046. } break;
  12047. case GGML_OP_FLASH_ATTN_BACK:
  12048. {
  12049. int32_t t = ggml_get_i32_1d(tensor->src[4], 0);
  12050. GGML_ASSERT(t == 0 || t == 1);
  12051. bool masked = t != 0;
  12052. ggml_compute_forward_flash_attn_back(params, tensor->src[0], tensor->src[1], tensor->src[2], tensor->src[3], masked, tensor);
  12053. } break;
  12054. case GGML_OP_WIN_PART:
  12055. {
  12056. ggml_compute_forward_win_part(params, tensor->src[0], tensor->src[2], tensor);
  12057. } break;
  12058. case GGML_OP_WIN_UNPART:
  12059. {
  12060. ggml_compute_forward_win_unpart(params, tensor->src[0], tensor->src[2], tensor);
  12061. } break;
  12062. case GGML_OP_MAP_UNARY:
  12063. {
  12064. const ggml_unary_op_f32_t fun = *((ggml_unary_op_f32_t *)tensor->src[2]->data);
  12065. ggml_compute_forward_map_unary(params, tensor->src[0], tensor, fun);
  12066. }
  12067. break;
  12068. case GGML_OP_MAP_BINARY:
  12069. {
  12070. const ggml_binary_op_f32_t fun = *((ggml_binary_op_f32_t *)tensor->src[2]->data);
  12071. ggml_compute_forward_map_binary(params, tensor->src[0], tensor->src[1], tensor, fun);
  12072. }
  12073. break;
  12074. case GGML_OP_MAP_CUSTOM1:
  12075. {
  12076. const ggml_custom1_op_f32_t fun = *((ggml_custom1_op_f32_t *)tensor->src[2]->data);
  12077. ggml_compute_forward_map_custom1(params, tensor->src[0], tensor, fun);
  12078. }
  12079. break;
  12080. case GGML_OP_MAP_CUSTOM2:
  12081. {
  12082. const ggml_custom2_op_f32_t fun = *((ggml_custom2_op_f32_t *)tensor->src[2]->data);
  12083. ggml_compute_forward_map_custom2(params, tensor->src[0], tensor->src[1], tensor, fun);
  12084. }
  12085. break;
  12086. case GGML_OP_MAP_CUSTOM3:
  12087. {
  12088. const ggml_custom3_op_f32_t fun = *((ggml_custom3_op_f32_t *)tensor->src[2]->data);
  12089. ggml_compute_forward_map_custom3(params, tensor->src[0], tensor->src[1], tensor->src[3], tensor, fun);
  12090. }
  12091. break;
  12092. case GGML_OP_CROSS_ENTROPY_LOSS:
  12093. {
  12094. ggml_compute_forward_cross_entropy_loss(params, tensor->src[0], tensor->src[1], tensor);
  12095. }
  12096. break;
  12097. case GGML_OP_CROSS_ENTROPY_LOSS_BACK:
  12098. {
  12099. ggml_compute_forward_cross_entropy_loss_back(params, tensor->src[0], tensor->src[1], tensor->src[2], tensor);
  12100. }
  12101. break;
  12102. case GGML_OP_NONE:
  12103. {
  12104. // nop
  12105. } break;
  12106. case GGML_OP_COUNT:
  12107. {
  12108. GGML_ASSERT(false);
  12109. } break;
  12110. }
  12111. }
  12112. ////////////////////////////////////////////////////////////////////////////////
  12113. static void ggml_compute_backward(struct ggml_context * ctx, struct ggml_tensor * tensor, bool inplace) {
  12114. struct ggml_tensor * src0 = tensor->src[0];
  12115. struct ggml_tensor * src1 = tensor->src[1];
  12116. switch (tensor->op) {
  12117. case GGML_OP_DUP:
  12118. {
  12119. if (src0->grad) {
  12120. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  12121. }
  12122. } break;
  12123. case GGML_OP_ADD:
  12124. {
  12125. if (src0->grad) {
  12126. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  12127. }
  12128. if (src1->grad) {
  12129. src1->grad = ggml_add_impl(ctx, src1->grad, tensor->grad, inplace);
  12130. }
  12131. } break;
  12132. case GGML_OP_ADD1:
  12133. {
  12134. if (src0->grad) {
  12135. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  12136. }
  12137. if (src1->grad) {
  12138. src1->grad = ggml_add_impl(ctx,
  12139. src1->grad,
  12140. ggml_mean(ctx, tensor->grad), // TODO: should probably be sum instead of mean
  12141. inplace);
  12142. }
  12143. } break;
  12144. case GGML_OP_ACC:
  12145. {
  12146. if (src0->grad) {
  12147. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  12148. }
  12149. if (src1->grad) {
  12150. GGML_ASSERT(ggml_nelements(tensor->src[2]) == 5);
  12151. GGML_ASSERT(tensor->src[2]->type == GGML_TYPE_I32);
  12152. const size_t nb1 = (( int32_t * ) tensor->src[2]->data)[0];
  12153. const size_t nb2 = (( int32_t * ) tensor->src[2]->data)[1];
  12154. const size_t nb3 = (( int32_t * ) tensor->src[2]->data)[2];
  12155. const size_t offset = (( int32_t * ) tensor->src[2]->data)[3];
  12156. struct ggml_tensor * tensor_grad_view = ggml_view_4d(ctx,
  12157. tensor->grad,
  12158. src1->grad->ne[0],
  12159. src1->grad->ne[1],
  12160. src1->grad->ne[2],
  12161. src1->grad->ne[3],
  12162. nb1, nb2, nb3, offset);
  12163. src1->grad =
  12164. ggml_add_impl(ctx,
  12165. src1->grad,
  12166. ggml_reshape(ctx,
  12167. ggml_cont(ctx, tensor_grad_view),
  12168. src1->grad),
  12169. inplace);
  12170. }
  12171. } break;
  12172. case GGML_OP_SUB:
  12173. {
  12174. if (src0->grad) {
  12175. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  12176. }
  12177. if (src1->grad) {
  12178. src1->grad = ggml_sub_impl(ctx, src1->grad, tensor->grad, inplace);
  12179. }
  12180. } break;
  12181. case GGML_OP_MUL:
  12182. {
  12183. if (src0->grad) {
  12184. src0->grad =
  12185. ggml_add_impl(ctx,
  12186. src0->grad,
  12187. ggml_mul(ctx, src1, tensor->grad),
  12188. inplace);
  12189. }
  12190. if (src1->grad) {
  12191. src1->grad =
  12192. ggml_add_impl(ctx,
  12193. src1->grad,
  12194. ggml_mul(ctx, src0, tensor->grad),
  12195. inplace);
  12196. }
  12197. } break;
  12198. case GGML_OP_DIV:
  12199. {
  12200. if (src0->grad) {
  12201. src0->grad =
  12202. ggml_add_impl(ctx,
  12203. src0->grad,
  12204. ggml_div(ctx, tensor->grad, src1),
  12205. inplace);
  12206. }
  12207. if (src1->grad) {
  12208. src1->grad =
  12209. ggml_sub_impl(ctx,
  12210. src1->grad,
  12211. ggml_mul(ctx,
  12212. tensor->grad,
  12213. ggml_div(ctx, tensor, src1)),
  12214. inplace);
  12215. }
  12216. } break;
  12217. case GGML_OP_SQR:
  12218. {
  12219. if (src0->grad) {
  12220. src0->grad =
  12221. ggml_add_impl(ctx,
  12222. src0->grad,
  12223. ggml_scale(ctx,
  12224. ggml_mul(ctx, src0, tensor->grad),
  12225. ggml_new_f32(ctx, 2.0f)),
  12226. inplace);
  12227. }
  12228. } break;
  12229. case GGML_OP_SQRT:
  12230. {
  12231. if (src0->grad) {
  12232. src0->grad =
  12233. ggml_add_impl(ctx,
  12234. src0->grad,
  12235. ggml_scale(ctx,
  12236. ggml_div(ctx,
  12237. tensor->grad,
  12238. tensor),
  12239. ggml_new_f32(ctx, 0.5f)),
  12240. inplace);
  12241. }
  12242. } break;
  12243. case GGML_OP_LOG:
  12244. {
  12245. if (src0->grad) {
  12246. src0->grad =
  12247. ggml_add_impl(ctx,
  12248. src0->grad,
  12249. ggml_div(ctx,
  12250. tensor->grad,
  12251. src0),
  12252. inplace);
  12253. }
  12254. } break;
  12255. case GGML_OP_SUM:
  12256. {
  12257. if (src0->grad) {
  12258. src0->grad =
  12259. ggml_add1_impl(ctx,
  12260. src0->grad,
  12261. tensor->grad,
  12262. inplace);
  12263. }
  12264. } break;
  12265. case GGML_OP_SUM_ROWS:
  12266. {
  12267. if (src0->grad) {
  12268. src0->grad =
  12269. ggml_add_impl(ctx,
  12270. src0->grad,
  12271. ggml_repeat(ctx,
  12272. tensor->grad,
  12273. src0->grad),
  12274. inplace);
  12275. }
  12276. } break;
  12277. case GGML_OP_MEAN:
  12278. case GGML_OP_ARGMAX:
  12279. {
  12280. GGML_ASSERT(false); // TODO: implement
  12281. } break;
  12282. case GGML_OP_REPEAT:
  12283. {
  12284. // necessary for llama
  12285. if (src0->grad) {
  12286. src0->grad = ggml_add_impl(ctx,
  12287. src0->grad,
  12288. ggml_repeat_back(ctx, tensor->grad, src0->grad),
  12289. inplace);
  12290. }
  12291. } break;
  12292. case GGML_OP_REPEAT_BACK:
  12293. {
  12294. if (src0->grad) {
  12295. // TODO: test this
  12296. src0->grad = ggml_add_impl(ctx,
  12297. src0->grad,
  12298. ggml_repeat(ctx, tensor->grad, src0->grad),
  12299. inplace);
  12300. }
  12301. } break;
  12302. case GGML_OP_ABS:
  12303. {
  12304. if (src0->grad) {
  12305. src0->grad =
  12306. ggml_add_impl(ctx,
  12307. src0->grad,
  12308. ggml_mul(ctx,
  12309. ggml_sgn(ctx, src0),
  12310. tensor->grad),
  12311. inplace);
  12312. }
  12313. } break;
  12314. case GGML_OP_SGN:
  12315. {
  12316. if (src0->grad) {
  12317. // noop
  12318. }
  12319. } break;
  12320. case GGML_OP_NEG:
  12321. {
  12322. if (src0->grad) {
  12323. src0->grad = ggml_sub_impl(ctx, src0->grad, tensor->grad, inplace);
  12324. }
  12325. } break;
  12326. case GGML_OP_STEP:
  12327. {
  12328. if (src0->grad) {
  12329. // noop
  12330. }
  12331. } break;
  12332. case GGML_OP_TANH:
  12333. {
  12334. GGML_ASSERT(false); // TODO: not implemented
  12335. } break;
  12336. case GGML_OP_ELU:
  12337. {
  12338. GGML_ASSERT(false); // TODO: not implemented
  12339. } break;
  12340. case GGML_OP_RELU:
  12341. {
  12342. if (src0->grad) {
  12343. src0->grad = ggml_sub_impl(ctx,
  12344. src0->grad,
  12345. ggml_mul(ctx,
  12346. ggml_step(ctx, src0),
  12347. tensor->grad),
  12348. inplace);
  12349. }
  12350. } break;
  12351. case GGML_OP_GELU:
  12352. {
  12353. GGML_ASSERT(false); // TODO: not implemented
  12354. } break;
  12355. case GGML_OP_GELU_QUICK:
  12356. {
  12357. GGML_ASSERT(false); // TODO: not implemented
  12358. } break;
  12359. case GGML_OP_SILU:
  12360. {
  12361. // necessary for llama
  12362. if (src0->grad) {
  12363. src0->grad = ggml_add_impl(ctx,
  12364. src0->grad,
  12365. ggml_silu_back(ctx, src0, tensor->grad),
  12366. inplace);
  12367. }
  12368. } break;
  12369. case GGML_OP_SILU_BACK:
  12370. {
  12371. GGML_ASSERT(false); // TODO: not implemented
  12372. } break;
  12373. case GGML_OP_NORM:
  12374. {
  12375. GGML_ASSERT(false); // TODO: not implemented
  12376. } break;
  12377. case GGML_OP_RMS_NORM:
  12378. {
  12379. // necessary for llama
  12380. if (src0->grad) {
  12381. src0->grad = ggml_add_impl(ctx,
  12382. src0->grad,
  12383. ggml_rms_norm_back(ctx, src0, tensor->grad),
  12384. inplace);
  12385. }
  12386. } break;
  12387. case GGML_OP_RMS_NORM_BACK:
  12388. {
  12389. GGML_ASSERT(false); // TODO: not implemented
  12390. } break;
  12391. case GGML_OP_MUL_MAT:
  12392. {
  12393. // https://cs231n.github.io/optimization-2/#staged
  12394. // # forward pass
  12395. // s0 = np.random.randn(5, 10)
  12396. // s1 = np.random.randn(10, 3)
  12397. // t = s0.dot(s1)
  12398. // # now suppose we had the gradient on t from above in the circuit
  12399. // dt = np.random.randn(*t.shape) # same shape as t
  12400. // ds0 = dt.dot(s1.T) #.T gives the transpose of the matrix
  12401. // ds1 = t.T.dot(dt)
  12402. // tensor.shape [m,p]
  12403. // src0.shape [n,m]
  12404. // src1.shape [n,p]
  12405. // necessary for llama
  12406. if (src0->grad) {
  12407. src0->grad =
  12408. ggml_add_impl(ctx,
  12409. src0->grad,
  12410. ggml_out_prod(ctx, // [n,m]
  12411. src1, // [n,p]
  12412. tensor->grad), // [m,p]
  12413. inplace);
  12414. }
  12415. if (src1->grad) {
  12416. src1->grad =
  12417. ggml_add_impl(ctx,
  12418. src1->grad,
  12419. // ggml_mul_mat(ctx, // [n,p]
  12420. // ggml_cont(ctx, // [m,n]
  12421. // ggml_transpose(ctx, src0)), // [m,n]
  12422. // tensor->grad), // [m,p]
  12423. // // when src0 is bigger than tensor->grad (this is mostly the case in llama),
  12424. // // avoid transpose of src0, rather transpose smaller tensor->grad
  12425. // // and then use ggml_out_prod
  12426. ggml_out_prod(ctx, // [n,p]
  12427. src0, // [n,m]
  12428. ggml_transpose(ctx, // [p,m]
  12429. tensor->grad)), // [m,p]
  12430. inplace);
  12431. }
  12432. } break;
  12433. case GGML_OP_OUT_PROD:
  12434. {
  12435. GGML_ASSERT(false); // TODO: not implemented
  12436. } break;
  12437. case GGML_OP_SCALE:
  12438. {
  12439. // necessary for llama
  12440. if (src0->grad) {
  12441. src0->grad =
  12442. ggml_add_impl(ctx,
  12443. src0->grad,
  12444. ggml_scale_impl(ctx, tensor->grad, src1, false),
  12445. inplace);
  12446. }
  12447. if (src1->grad) {
  12448. src1->grad =
  12449. ggml_add_impl(ctx,
  12450. src1->grad,
  12451. ggml_sum(ctx, ggml_mul_impl(ctx, tensor->grad, src0, false)),
  12452. inplace);
  12453. }
  12454. } break;
  12455. case GGML_OP_SET:
  12456. {
  12457. GGML_ASSERT(ggml_nelements(tensor->src[2]) == 5);
  12458. GGML_ASSERT(tensor->src[2]->type == GGML_TYPE_I32);
  12459. const size_t nb1 = (( int32_t * ) tensor->src[2]->data)[0];
  12460. const size_t nb2 = (( int32_t * ) tensor->src[2]->data)[1];
  12461. const size_t nb3 = (( int32_t * ) tensor->src[2]->data)[2];
  12462. const size_t offset = (( int32_t * ) tensor->src[2]->data)[3];
  12463. struct ggml_tensor * tensor_grad_view = NULL;
  12464. if (src0->grad || src1->grad) {
  12465. GGML_ASSERT(src0->type == tensor->type);
  12466. GGML_ASSERT(tensor->grad->type == tensor->type);
  12467. GGML_ASSERT(tensor->grad->type == src1->grad->type);
  12468. tensor_grad_view = ggml_view_4d(ctx,
  12469. tensor->grad,
  12470. src1->grad->ne[0],
  12471. src1->grad->ne[1],
  12472. src1->grad->ne[2],
  12473. src1->grad->ne[3],
  12474. nb1, nb2, nb3, offset);
  12475. }
  12476. if (src0->grad) {
  12477. src0->grad = ggml_add_impl(ctx,
  12478. src0->grad,
  12479. ggml_acc_impl(ctx,
  12480. tensor->grad,
  12481. ggml_neg(ctx, tensor_grad_view),
  12482. nb1, nb2, nb3, offset, false),
  12483. inplace);
  12484. }
  12485. if (src1->grad) {
  12486. src1->grad =
  12487. ggml_add_impl(ctx,
  12488. src1->grad,
  12489. ggml_reshape(ctx,
  12490. ggml_cont(ctx, tensor_grad_view),
  12491. src1->grad),
  12492. inplace);
  12493. }
  12494. } break;
  12495. case GGML_OP_CPY:
  12496. {
  12497. // necessary for llama
  12498. // cpy overwrites value of src1 by src0 and returns view(src1)
  12499. // the overwriting is mathematically equivalent to:
  12500. // tensor = src0 * 1 + src1 * 0
  12501. if (src0->grad) {
  12502. // dsrc0 = dtensor * 1
  12503. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  12504. }
  12505. if (src1->grad) {
  12506. // dsrc1 = dtensor * 0 -> noop
  12507. }
  12508. } break;
  12509. case GGML_OP_CONT:
  12510. {
  12511. // same as cpy
  12512. if (src0->grad) {
  12513. GGML_ASSERT(ggml_is_contiguous(src0->grad));
  12514. GGML_ASSERT(ggml_is_contiguous(tensor->grad));
  12515. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  12516. }
  12517. } break;
  12518. case GGML_OP_RESHAPE:
  12519. {
  12520. // necessary for llama
  12521. if (src0->grad) {
  12522. src0->grad =
  12523. ggml_add_impl(ctx, src0->grad,
  12524. ggml_reshape(ctx, tensor->grad, src0->grad),
  12525. inplace);
  12526. }
  12527. } break;
  12528. case GGML_OP_VIEW:
  12529. {
  12530. // necessary for llama
  12531. if (src0->grad) {
  12532. size_t offset;
  12533. GGML_ASSERT(sizeof(offset) <= ggml_nbytes(tensor->src[2]));
  12534. memcpy(&offset, tensor->src[2]->data, sizeof(offset));
  12535. size_t nb1 = tensor->nb[1];
  12536. size_t nb2 = tensor->nb[2];
  12537. size_t nb3 = tensor->nb[3];
  12538. if (src0->type != src0->grad->type) {
  12539. // gradient is typically F32, but src0 could be other type
  12540. size_t ng = ggml_element_size(src0->grad);
  12541. size_t n0 = ggml_element_size(src0);
  12542. GGML_ASSERT(offset % n0 == 0);
  12543. GGML_ASSERT(nb1 % n0 == 0);
  12544. GGML_ASSERT(nb2 % n0 == 0);
  12545. GGML_ASSERT(nb3 % n0 == 0);
  12546. offset = (offset / n0) * ng;
  12547. nb1 = (nb1 / n0) * ng;
  12548. nb2 = (nb2 / n0) * ng;
  12549. nb3 = (nb3 / n0) * ng;
  12550. }
  12551. src0->grad = ggml_acc_impl(ctx, src0->grad, tensor->grad, nb1, nb2, nb3, offset, inplace);
  12552. }
  12553. } break;
  12554. case GGML_OP_PERMUTE:
  12555. {
  12556. // necessary for llama
  12557. if (src0->grad) {
  12558. int32_t * axes = (int32_t *) tensor->src[2]->data;
  12559. int axis0 = axes[0] & 0x3;
  12560. int axis1 = axes[1] & 0x3;
  12561. int axis2 = axes[2] & 0x3;
  12562. int axis3 = axes[3] & 0x3;
  12563. int axes_backward[4] = {0,0,0,0};
  12564. axes_backward[axis0] = 0;
  12565. axes_backward[axis1] = 1;
  12566. axes_backward[axis2] = 2;
  12567. axes_backward[axis3] = 3;
  12568. src0->grad =
  12569. ggml_add_impl(ctx, src0->grad,
  12570. ggml_permute(ctx,
  12571. tensor->grad,
  12572. axes_backward[0],
  12573. axes_backward[1],
  12574. axes_backward[2],
  12575. axes_backward[3]),
  12576. inplace);
  12577. }
  12578. } break;
  12579. case GGML_OP_TRANSPOSE:
  12580. {
  12581. // necessary for llama
  12582. if (src0->grad) {
  12583. src0->grad =
  12584. ggml_add_impl(ctx, src0->grad,
  12585. ggml_transpose(ctx, tensor->grad),
  12586. inplace);
  12587. }
  12588. } break;
  12589. case GGML_OP_GET_ROWS:
  12590. {
  12591. // necessary for llama (only for tokenizer)
  12592. if (src0->grad) {
  12593. src0->grad =
  12594. ggml_add_impl(ctx, src0->grad,
  12595. ggml_get_rows_back(ctx, tensor->grad, src1, src0->grad),
  12596. inplace);
  12597. }
  12598. if (src1->grad) {
  12599. // noop
  12600. }
  12601. } break;
  12602. case GGML_OP_GET_ROWS_BACK:
  12603. {
  12604. GGML_ASSERT(false); // TODO: not implemented
  12605. } break;
  12606. case GGML_OP_DIAG:
  12607. {
  12608. GGML_ASSERT(false); // TODO: not implemented
  12609. } break;
  12610. case GGML_OP_DIAG_MASK_INF:
  12611. {
  12612. // necessary for llama
  12613. if (src0->grad) {
  12614. assert(src1->type == GGML_TYPE_I32);
  12615. assert(ggml_nelements(src1) == 2);
  12616. const int n_past = ((int32_t *) src1->data)[0];
  12617. src0->grad =
  12618. ggml_add_impl(ctx, src0->grad,
  12619. ggml_diag_mask_zero_impl(ctx, tensor->grad, n_past, false),
  12620. inplace);
  12621. }
  12622. if (src1->grad) {
  12623. // noop
  12624. }
  12625. } break;
  12626. case GGML_OP_DIAG_MASK_ZERO:
  12627. {
  12628. // necessary for llama
  12629. if (src0->grad) {
  12630. assert(src1->type == GGML_TYPE_I32);
  12631. assert(ggml_nelements(src1) == 2);
  12632. const int n_past = ((int32_t *) src1->data)[0];
  12633. src0->grad =
  12634. ggml_add_impl(ctx, src0->grad,
  12635. ggml_diag_mask_zero_impl(ctx, tensor->grad, n_past, false),
  12636. inplace);
  12637. }
  12638. if (src1->grad) {
  12639. // noop
  12640. }
  12641. } break;
  12642. case GGML_OP_SOFT_MAX:
  12643. {
  12644. // necessary for llama
  12645. if (src0->grad) {
  12646. src0->grad =
  12647. ggml_add_impl(ctx, src0->grad,
  12648. ggml_soft_max_back(ctx, tensor->grad, tensor),
  12649. inplace);
  12650. }
  12651. } break;
  12652. case GGML_OP_SOFT_MAX_BACK:
  12653. {
  12654. GGML_ASSERT(false); // TODO: not implemented
  12655. } break;
  12656. case GGML_OP_ROPE:
  12657. {
  12658. // necessary for llama
  12659. if (src0->grad) {
  12660. assert(src1->type == GGML_TYPE_I32);
  12661. assert(ggml_nelements(src1) == 4);
  12662. const int n_past = ((int32_t *) src1->data)[0];
  12663. const int n_dims = ((int32_t *) src1->data)[1];
  12664. const int mode = ((int32_t *) src1->data)[2];
  12665. src0->grad = ggml_add_impl(ctx,
  12666. src0->grad,
  12667. ggml_rope_back(ctx,
  12668. tensor->grad,
  12669. n_past,
  12670. n_dims,
  12671. mode),
  12672. inplace);
  12673. }
  12674. if (src1->grad) {
  12675. // noop
  12676. }
  12677. } break;
  12678. case GGML_OP_ROPE_BACK:
  12679. {
  12680. if (src0->grad) {
  12681. assert(src1->type == GGML_TYPE_I32);
  12682. assert(ggml_nelements(src1) == 4);
  12683. const int n_past = ((int32_t *) src1->data)[0];
  12684. const int n_dims = ((int32_t *) src1->data)[1];
  12685. const int mode = ((int32_t *) src1->data)[2];
  12686. const int n_ctx = ((int32_t *) src1->data)[3];
  12687. src0->grad = ggml_add_impl(ctx,
  12688. src0->grad,
  12689. ggml_rope(ctx,
  12690. tensor->grad,
  12691. n_past,
  12692. n_dims,
  12693. mode,
  12694. n_ctx),
  12695. inplace);
  12696. }
  12697. if (src1->grad) {
  12698. // noop
  12699. }
  12700. } break;
  12701. case GGML_OP_ALIBI:
  12702. {
  12703. GGML_ASSERT(false); // TODO: not implemented
  12704. } break;
  12705. case GGML_OP_CLAMP:
  12706. {
  12707. GGML_ASSERT(false); // TODO: not implemented
  12708. } break;
  12709. case GGML_OP_CONV_1D:
  12710. {
  12711. GGML_ASSERT(false); // TODO: not implemented
  12712. } break;
  12713. case GGML_OP_CONV_2D:
  12714. {
  12715. GGML_ASSERT(false); // TODO: not implemented
  12716. } break;
  12717. case GGML_OP_FLASH_ATTN:
  12718. {
  12719. struct ggml_tensor * flash_grad = NULL;
  12720. if (src0->grad || src1->grad || tensor->src[2]->grad) {
  12721. int32_t t = ggml_get_i32_1d(tensor->src[3], 0);
  12722. GGML_ASSERT(t == 0 || t == 1);
  12723. bool masked = t != 0;
  12724. flash_grad =
  12725. ggml_flash_attn_back(ctx,
  12726. src0,
  12727. src1,
  12728. tensor->src[2],
  12729. tensor->grad,
  12730. masked);
  12731. }
  12732. if (src0->grad) {
  12733. struct ggml_tensor * grad_q = NULL;
  12734. const size_t nb0 = flash_grad->nb[0];
  12735. const size_t offset = 0;
  12736. switch(src0->n_dims) {
  12737. case 2:
  12738. {
  12739. grad_q = ggml_view_2d(ctx,
  12740. flash_grad,
  12741. src0->ne[0],
  12742. src0->ne[1],
  12743. nb0*src0->ne[0],
  12744. offset);
  12745. } break;
  12746. case 3:
  12747. {
  12748. grad_q = ggml_view_3d(ctx,
  12749. flash_grad,
  12750. src0->ne[0],
  12751. src0->ne[1],
  12752. src0->ne[2],
  12753. nb0*src0->ne[0],
  12754. nb0*src0->ne[0]*src0->ne[1],
  12755. offset);
  12756. } break;
  12757. case 4:
  12758. {
  12759. grad_q = ggml_view_4d(ctx,
  12760. flash_grad,
  12761. src0->ne[0],
  12762. src0->ne[1],
  12763. src0->ne[2],
  12764. src0->ne[3],
  12765. nb0*src0->ne[0],
  12766. nb0*src0->ne[0]*src0->ne[1],
  12767. nb0*src0->ne[0]*src0->ne[1]*src0->ne[2],
  12768. offset);
  12769. } break;
  12770. }
  12771. src0->grad = ggml_add_impl(ctx,
  12772. src0->grad,
  12773. grad_q,
  12774. inplace);
  12775. }
  12776. if (src1->grad) {
  12777. struct ggml_tensor * grad_k = NULL;
  12778. const size_t nb0 = flash_grad->nb[0];
  12779. const size_t offset = nb0*src0->ne[0]*src0->ne[1]*src0->ne[2]*src0->ne[3];
  12780. switch(src1->n_dims) {
  12781. case 2:
  12782. {
  12783. grad_k = ggml_view_2d(ctx,
  12784. flash_grad,
  12785. src1->ne[0],
  12786. src1->ne[1],
  12787. nb0*src1->ne[0],
  12788. offset);
  12789. } break;
  12790. case 3:
  12791. {
  12792. grad_k = ggml_view_3d(ctx,
  12793. flash_grad,
  12794. src1->ne[0],
  12795. src1->ne[1],
  12796. src1->ne[2],
  12797. nb0*src1->ne[0],
  12798. nb0*src1->ne[0]*src1->ne[1],
  12799. offset);
  12800. } break;
  12801. case 4:
  12802. {
  12803. grad_k = ggml_view_4d(ctx,
  12804. flash_grad,
  12805. src1->ne[0],
  12806. src1->ne[1],
  12807. src1->ne[2],
  12808. src1->ne[3],
  12809. nb0*src1->ne[0],
  12810. nb0*src1->ne[0]*src1->ne[1],
  12811. nb0*src1->ne[0]*src1->ne[1]*src1->ne[2],
  12812. offset);
  12813. } break;
  12814. }
  12815. src1->grad = ggml_add_impl(ctx,
  12816. src1->grad,
  12817. grad_k,
  12818. inplace);
  12819. }
  12820. struct ggml_tensor * opt0 = tensor->src[2];
  12821. if (opt0->grad) {
  12822. struct ggml_tensor * grad_v = NULL;
  12823. const size_t nb0 = flash_grad->nb[0];
  12824. const size_t offset = nb0*src0->ne[0]*src0->ne[1]*src0->ne[2]*src0->ne[3]
  12825. + nb0*src1->ne[0]*src1->ne[1]*src1->ne[2]*src1->ne[3];
  12826. switch(opt0->n_dims) {
  12827. case 2:
  12828. {
  12829. grad_v = ggml_view_2d(ctx,
  12830. flash_grad,
  12831. opt0->ne[0],
  12832. opt0->ne[1],
  12833. nb0*opt0->ne[0],
  12834. offset);
  12835. } break;
  12836. case 3:
  12837. {
  12838. grad_v = ggml_view_3d(ctx,
  12839. flash_grad,
  12840. opt0->ne[0],
  12841. opt0->ne[1],
  12842. opt0->ne[2],
  12843. nb0*opt0->ne[0],
  12844. nb0*opt0->ne[0]*opt0->ne[1],
  12845. offset);
  12846. } break;
  12847. case 4:
  12848. {
  12849. grad_v = ggml_view_4d(ctx,
  12850. flash_grad,
  12851. opt0->ne[0],
  12852. opt0->ne[1],
  12853. opt0->ne[2],
  12854. opt0->ne[3],
  12855. nb0*opt0->ne[0],
  12856. nb0*opt0->ne[0]*opt0->ne[1],
  12857. nb0*opt0->ne[0]*opt0->ne[1]*opt0->ne[2],
  12858. offset);
  12859. } break;
  12860. }
  12861. opt0->grad = ggml_add_impl(ctx,
  12862. opt0->grad,
  12863. grad_v,
  12864. inplace);
  12865. }
  12866. } break;
  12867. case GGML_OP_FLASH_FF:
  12868. {
  12869. GGML_ASSERT(false); // not supported
  12870. } break;
  12871. case GGML_OP_FLASH_ATTN_BACK:
  12872. {
  12873. GGML_ASSERT(false); // not supported
  12874. } break;
  12875. case GGML_OP_WIN_PART:
  12876. case GGML_OP_WIN_UNPART:
  12877. case GGML_OP_MAP_UNARY:
  12878. case GGML_OP_MAP_BINARY:
  12879. case GGML_OP_MAP_CUSTOM1:
  12880. case GGML_OP_MAP_CUSTOM2:
  12881. case GGML_OP_MAP_CUSTOM3:
  12882. {
  12883. GGML_ASSERT(false); // not supported
  12884. } break;
  12885. case GGML_OP_CROSS_ENTROPY_LOSS:
  12886. {
  12887. if (src0->grad) {
  12888. src0->grad = ggml_add_impl(ctx,
  12889. src0->grad,
  12890. ggml_cross_entropy_loss_back(ctx,
  12891. src0,
  12892. src1,
  12893. tensor->grad),
  12894. inplace);
  12895. }
  12896. } break;
  12897. case GGML_OP_CROSS_ENTROPY_LOSS_BACK:
  12898. {
  12899. GGML_ASSERT(false); // not supported
  12900. } break;
  12901. case GGML_OP_NONE:
  12902. {
  12903. // nop
  12904. } break;
  12905. case GGML_OP_COUNT:
  12906. {
  12907. GGML_ASSERT(false);
  12908. } break;
  12909. }
  12910. }
  12911. static void ggml_visit_parents(struct ggml_cgraph * cgraph, struct ggml_tensor * node) {
  12912. if (node->grad == NULL) {
  12913. // this usually happens when we generate intermediate nodes from constants in the backward pass
  12914. // it can also happen during forward pass, if the user performs computations with constants
  12915. if (node->op != GGML_OP_NONE) {
  12916. //GGML_PRINT_DEBUG("%s: warning: node %p has no grad, but op %d\n", __func__, (void *) node, node->op);
  12917. }
  12918. }
  12919. // check if already visited
  12920. for (int i = 0; i < cgraph->n_nodes; i++) {
  12921. if (cgraph->nodes[i] == node) {
  12922. return;
  12923. }
  12924. }
  12925. for (int i = 0; i < cgraph->n_leafs; i++) {
  12926. if (cgraph->leafs[i] == node) {
  12927. return;
  12928. }
  12929. }
  12930. for (int i = 0; i < GGML_MAX_SRC; ++i) {
  12931. if (node->src[i]) {
  12932. ggml_visit_parents(cgraph, node->src[i]);
  12933. }
  12934. }
  12935. if (node->op == GGML_OP_NONE && node->grad == NULL) {
  12936. // reached a leaf node, not part of the gradient graph (e.g. a constant)
  12937. GGML_ASSERT(cgraph->n_leafs < GGML_MAX_NODES);
  12938. if (strlen(node->name) == 0) {
  12939. ggml_format_name(node, "leaf_%d", cgraph->n_leafs);
  12940. }
  12941. cgraph->leafs[cgraph->n_leafs] = node;
  12942. cgraph->n_leafs++;
  12943. } else {
  12944. GGML_ASSERT(cgraph->n_nodes < GGML_MAX_NODES);
  12945. if (strlen(node->name) == 0) {
  12946. ggml_format_name(node, "node_%d", cgraph->n_nodes);
  12947. }
  12948. cgraph->nodes[cgraph->n_nodes] = node;
  12949. cgraph->grads[cgraph->n_nodes] = node->grad;
  12950. cgraph->n_nodes++;
  12951. }
  12952. }
  12953. static void ggml_build_forward_impl(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor, bool expand) {
  12954. if (!expand) {
  12955. cgraph->n_nodes = 0;
  12956. cgraph->n_leafs = 0;
  12957. }
  12958. const int n0 = cgraph->n_nodes;
  12959. UNUSED(n0);
  12960. ggml_visit_parents(cgraph, tensor);
  12961. const int n_new = cgraph->n_nodes - n0;
  12962. GGML_PRINT_DEBUG("%s: visited %d new nodes\n", __func__, n_new);
  12963. if (n_new > 0) {
  12964. // the last added node should always be starting point
  12965. GGML_ASSERT(cgraph->nodes[cgraph->n_nodes - 1] == tensor);
  12966. }
  12967. }
  12968. void ggml_build_forward_expand(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor) {
  12969. ggml_build_forward_impl(cgraph, tensor, true);
  12970. }
  12971. struct ggml_cgraph ggml_build_forward(struct ggml_tensor * tensor) {
  12972. struct ggml_cgraph result = {
  12973. /*.n_nodes =*/ 0,
  12974. /*.n_leafs =*/ 0,
  12975. /*.nodes =*/ { NULL },
  12976. /*.grads =*/ { NULL },
  12977. /*.leafs =*/ { NULL },
  12978. /*.perf_runs =*/ 0,
  12979. /*.perf_cycles =*/ 0,
  12980. /*.perf_time_us =*/ 0,
  12981. };
  12982. ggml_build_forward_impl(&result, tensor, false);
  12983. return result;
  12984. }
  12985. struct ggml_cgraph ggml_build_backward(struct ggml_context * ctx, struct ggml_cgraph * gf, bool keep) {
  12986. struct ggml_cgraph result = *gf;
  12987. GGML_ASSERT(gf->n_nodes > 0);
  12988. // if we are keeping the gradient graph, we have to detach the gradient nodes from the original graph
  12989. if (keep) {
  12990. for (int i = 0; i < gf->n_nodes; i++) {
  12991. struct ggml_tensor * node = gf->nodes[i];
  12992. if (node->grad) {
  12993. node->grad = ggml_dup_tensor(ctx, node);
  12994. gf->grads[i] = node->grad;
  12995. }
  12996. }
  12997. }
  12998. for (int i = gf->n_nodes - 1; i >= 0; i--) {
  12999. struct ggml_tensor * node = gf->nodes[i];
  13000. // because we detached the grad nodes from the original graph, we can afford inplace operations
  13001. if (node->grad) {
  13002. ggml_compute_backward(ctx, node, keep);
  13003. }
  13004. }
  13005. for (int i = gf->n_nodes - 1; i >= 0; i--) {
  13006. struct ggml_tensor * node = gf->nodes[i];
  13007. if (node->is_param) {
  13008. GGML_PRINT_DEBUG("%s: found root node %p\n", __func__, (void *) node);
  13009. ggml_build_forward_impl(&result, node->grad, true);
  13010. }
  13011. }
  13012. return result;
  13013. }
  13014. //
  13015. // thread data
  13016. //
  13017. // synchronization is done via busy loops
  13018. // I tried using spin locks, but not sure how to use them correctly - the things I tried were slower than busy loops
  13019. //
  13020. #ifdef __APPLE__
  13021. //#include <os/lock.h>
  13022. //
  13023. //typedef os_unfair_lock ggml_lock_t;
  13024. //
  13025. //#define ggml_lock_init(x) UNUSED(x)
  13026. //#define ggml_lock_destroy(x) UNUSED(x)
  13027. //#define ggml_lock_lock os_unfair_lock_lock
  13028. //#define ggml_lock_unlock os_unfair_lock_unlock
  13029. //
  13030. //#define GGML_LOCK_INITIALIZER OS_UNFAIR_LOCK_INIT
  13031. typedef int ggml_lock_t;
  13032. #define ggml_lock_init(x) UNUSED(x)
  13033. #define ggml_lock_destroy(x) UNUSED(x)
  13034. #define ggml_lock_lock(x) UNUSED(x)
  13035. #define ggml_lock_unlock(x) UNUSED(x)
  13036. #define GGML_LOCK_INITIALIZER 0
  13037. typedef pthread_t ggml_thread_t;
  13038. #define ggml_thread_create pthread_create
  13039. #define ggml_thread_join pthread_join
  13040. #else
  13041. //typedef pthread_spinlock_t ggml_lock_t;
  13042. //#define ggml_lock_init(x) pthread_spin_init(x, PTHREAD_PROCESS_PRIVATE)
  13043. //#define ggml_lock_destroy pthread_spin_destroy
  13044. //#define ggml_lock_lock pthread_spin_lock
  13045. //#define ggml_lock_unlock pthread_spin_unlock
  13046. typedef int ggml_lock_t;
  13047. #define ggml_lock_init(x) UNUSED(x)
  13048. #define ggml_lock_destroy(x) UNUSED(x)
  13049. #if defined(__x86_64__) || (defined(_MSC_VER) && defined(_M_AMD64))
  13050. #define ggml_lock_lock(x) _mm_pause()
  13051. #else
  13052. #define ggml_lock_lock(x) UNUSED(x)
  13053. #endif
  13054. #define ggml_lock_unlock(x) UNUSED(x)
  13055. #define GGML_LOCK_INITIALIZER 0
  13056. typedef pthread_t ggml_thread_t;
  13057. #define ggml_thread_create pthread_create
  13058. #define ggml_thread_join pthread_join
  13059. #endif
  13060. // Android's libc implementation "bionic" does not support setting affinity
  13061. #if defined(__linux__) && !defined(__BIONIC__)
  13062. void set_numa_thread_affinity(int thread_n, int n_threads) {
  13063. if (!ggml_is_numa()) {
  13064. return;
  13065. }
  13066. // run thread on node_num thread_n / (threads per node)
  13067. const int node_num = thread_n / ((n_threads + g_state.numa.n_nodes - 1) / g_state.numa.n_nodes);
  13068. struct ggml_numa_node * node = &g_state.numa.nodes[node_num];
  13069. size_t setsize = CPU_ALLOC_SIZE(g_state.numa.total_cpus);
  13070. cpu_set_t * cpus = CPU_ALLOC(g_state.numa.total_cpus);
  13071. CPU_ZERO_S(setsize, cpus);
  13072. for (size_t i = 0; i < node->n_cpus; ++i) {
  13073. CPU_SET_S(node->cpus[i], setsize, cpus);
  13074. }
  13075. int rv = pthread_setaffinity_np(pthread_self(), setsize, cpus);
  13076. if (rv) {
  13077. fprintf(stderr, "warning: pthread_setaffinity_np() failed: %s\n",
  13078. strerror(rv));
  13079. }
  13080. CPU_FREE(cpus);
  13081. }
  13082. void clear_numa_thread_affinity(void) {
  13083. if (!ggml_is_numa()) {
  13084. return;
  13085. }
  13086. size_t setsize = CPU_ALLOC_SIZE(g_state.numa.total_cpus);
  13087. cpu_set_t * cpus = CPU_ALLOC(g_state.numa.total_cpus);
  13088. CPU_ZERO_S(setsize, cpus);
  13089. for (unsigned i = 0; i < g_state.numa.total_cpus; ++i) {
  13090. CPU_SET_S(i, setsize, cpus);
  13091. }
  13092. int rv = pthread_setaffinity_np(pthread_self(), setsize, cpus);
  13093. if (rv) {
  13094. fprintf(stderr, "warning: pthread_setaffinity_np() failed: %s\n",
  13095. strerror(rv));
  13096. }
  13097. CPU_FREE(cpus);
  13098. }
  13099. #else
  13100. // TODO: Windows etc.
  13101. // (the linux implementation may also work on BSD, someone should test)
  13102. void set_numa_thread_affinity(int thread_n, int n_threads) { UNUSED(thread_n); UNUSED(n_threads); }
  13103. void clear_numa_thread_affinity(void) {}
  13104. #endif
  13105. struct ggml_compute_state_shared {
  13106. const struct ggml_cgraph * cgraph;
  13107. const struct ggml_cplan * cplan;
  13108. int64_t perf_node_start_cycles;
  13109. int64_t perf_node_start_time_us;
  13110. const int n_threads;
  13111. // synchronization primitives
  13112. atomic_int n_active; // num active threads
  13113. atomic_int node_n; // active graph node
  13114. };
  13115. struct ggml_compute_state {
  13116. ggml_thread_t thrd;
  13117. int ith;
  13118. struct ggml_compute_state_shared * shared;
  13119. };
  13120. static void ggml_graph_compute_perf_stats_node(struct ggml_tensor * node, const struct ggml_compute_state_shared * st) {
  13121. int64_t cycles_cur = ggml_perf_cycles() - st->perf_node_start_cycles;
  13122. int64_t time_us_cur = ggml_perf_time_us() - st->perf_node_start_time_us;
  13123. node->perf_runs++;
  13124. node->perf_cycles += cycles_cur;
  13125. node->perf_time_us += time_us_cur;
  13126. }
  13127. static thread_ret_t ggml_graph_compute_thread(void * data) {
  13128. struct ggml_compute_state * state = (struct ggml_compute_state *) data;
  13129. const struct ggml_cgraph * cgraph = state->shared->cgraph;
  13130. const struct ggml_cplan * cplan = state->shared->cplan;
  13131. const int * n_tasks_arr = cplan->n_tasks;
  13132. const int n_threads = state->shared->n_threads;
  13133. set_numa_thread_affinity(state->ith, n_threads);
  13134. int node_n = -1;
  13135. while (true) {
  13136. if (atomic_fetch_sub(&state->shared->n_active, 1) == 1) {
  13137. // all other threads are finished and spinning
  13138. // do finalize and init here so we don't have synchronize again
  13139. struct ggml_compute_params params = {
  13140. /*.type =*/ GGML_TASK_FINALIZE,
  13141. /*.ith =*/ 0,
  13142. /*.nth =*/ 0,
  13143. /*.wsize =*/ cplan->work_size,
  13144. /*.wdata =*/ cplan->work_data,
  13145. };
  13146. if (node_n != -1) {
  13147. /* FINALIZE */
  13148. struct ggml_tensor * node = state->shared->cgraph->nodes[node_n];
  13149. if (GGML_OP_HAS_FINALIZE[node->op]) {
  13150. params.nth = n_tasks_arr[node_n];
  13151. ggml_compute_forward(&params, node);
  13152. ggml_graph_compute_perf_stats_node(node, state->shared);
  13153. }
  13154. }
  13155. // distribute new work or execute it direct if 1T
  13156. while (++node_n < cgraph->n_nodes) {
  13157. GGML_PRINT_DEBUG_5("%s: %d/%d\n", __func__, node_n, cgraph->n_nodes);
  13158. struct ggml_tensor * node = cgraph->nodes[node_n];
  13159. const int n_tasks = n_tasks_arr[node_n];
  13160. state->shared->perf_node_start_cycles = ggml_perf_cycles();
  13161. state->shared->perf_node_start_time_us = ggml_perf_time_us();
  13162. params.nth = n_tasks;
  13163. /* INIT */
  13164. if (GGML_OP_HAS_INIT[node->op]) {
  13165. params.type = GGML_TASK_INIT;
  13166. ggml_compute_forward(&params, node);
  13167. }
  13168. if (n_tasks == 1) {
  13169. // TODO: maybe push node_n to the atomic but if other threads see n_tasks is 1,
  13170. // they do something more efficient than spinning (?)
  13171. params.type = GGML_TASK_COMPUTE;
  13172. ggml_compute_forward(&params, node);
  13173. if (GGML_OP_HAS_FINALIZE[node->op]) {
  13174. params.type = GGML_TASK_FINALIZE;
  13175. ggml_compute_forward(&params, node);
  13176. ggml_graph_compute_perf_stats_node(node, state->shared);
  13177. }
  13178. } else {
  13179. break;
  13180. }
  13181. }
  13182. atomic_store(&state->shared->n_active, n_threads);
  13183. atomic_store(&state->shared->node_n, node_n);
  13184. } else {
  13185. // wait for other threads to finish
  13186. const int last = node_n;
  13187. do {
  13188. //sched_yield();
  13189. node_n = atomic_load(&state->shared->node_n);
  13190. } while (node_n == last);
  13191. }
  13192. // check if we should stop
  13193. if (node_n >= cgraph->n_nodes) break;
  13194. /* COMPUTE */
  13195. struct ggml_tensor * node = cgraph->nodes[node_n];
  13196. const int n_tasks = n_tasks_arr[node_n];
  13197. struct ggml_compute_params params = {
  13198. /*.type =*/ GGML_TASK_COMPUTE,
  13199. /*.ith =*/ state->ith,
  13200. /*.nth =*/ n_tasks,
  13201. /*.wsize =*/ cplan->work_size,
  13202. /*.wdata =*/ cplan->work_data,
  13203. };
  13204. if (state->ith < n_tasks) {
  13205. ggml_compute_forward(&params, node);
  13206. }
  13207. }
  13208. return 0;
  13209. }
  13210. struct ggml_cplan ggml_graph_plan(struct ggml_cgraph * cgraph, int n_threads) {
  13211. if (n_threads <= 0) {
  13212. n_threads = GGML_DEFAULT_N_THREADS;
  13213. }
  13214. size_t work_size = 0;
  13215. struct ggml_cplan cplan;
  13216. memset(&cplan, 0, sizeof(struct ggml_cplan));
  13217. // thread scheduling for the different operations + work buffer size estimation
  13218. for (int i = 0; i < cgraph->n_nodes; i++) {
  13219. int n_tasks = 1;
  13220. struct ggml_tensor * node = cgraph->nodes[i];
  13221. switch (node->op) {
  13222. case GGML_OP_CPY:
  13223. case GGML_OP_DUP:
  13224. {
  13225. n_tasks = n_threads;
  13226. size_t cur = 0;
  13227. if (ggml_is_quantized(node->type)) {
  13228. cur = GGML_TYPE_SIZE[GGML_TYPE_F32] * node->ne[0] * n_tasks;
  13229. }
  13230. work_size = MAX(work_size, cur);
  13231. } break;
  13232. case GGML_OP_ADD:
  13233. case GGML_OP_ADD1:
  13234. {
  13235. n_tasks = n_threads;
  13236. size_t cur = 0;
  13237. if (ggml_is_quantized(node->src[0]->type)) {
  13238. cur = GGML_TYPE_SIZE[GGML_TYPE_F32] * node->src[0]->ne[0] * n_tasks;
  13239. }
  13240. work_size = MAX(work_size, cur);
  13241. } break;
  13242. case GGML_OP_ACC:
  13243. {
  13244. n_tasks = n_threads;
  13245. size_t cur = 0;
  13246. if (ggml_is_quantized(node->src[0]->type)) {
  13247. cur = GGML_TYPE_SIZE[GGML_TYPE_F32] * node->src[1]->ne[0] * n_tasks;
  13248. }
  13249. work_size = MAX(work_size, cur);
  13250. } break;
  13251. case GGML_OP_SUB:
  13252. case GGML_OP_DIV:
  13253. case GGML_OP_SQR:
  13254. case GGML_OP_SQRT:
  13255. case GGML_OP_LOG:
  13256. case GGML_OP_SUM:
  13257. case GGML_OP_SUM_ROWS:
  13258. case GGML_OP_MEAN:
  13259. case GGML_OP_ARGMAX:
  13260. case GGML_OP_REPEAT:
  13261. case GGML_OP_REPEAT_BACK:
  13262. case GGML_OP_ABS:
  13263. case GGML_OP_SGN:
  13264. case GGML_OP_NEG:
  13265. case GGML_OP_STEP:
  13266. case GGML_OP_TANH:
  13267. case GGML_OP_ELU:
  13268. case GGML_OP_RELU:
  13269. {
  13270. n_tasks = 1;
  13271. } break;
  13272. case GGML_OP_MUL:
  13273. case GGML_OP_GELU:
  13274. case GGML_OP_GELU_QUICK:
  13275. case GGML_OP_SILU:
  13276. case GGML_OP_SILU_BACK:
  13277. case GGML_OP_NORM:
  13278. case GGML_OP_RMS_NORM:
  13279. case GGML_OP_RMS_NORM_BACK:
  13280. {
  13281. n_tasks = n_threads;
  13282. } break;
  13283. case GGML_OP_MUL_MAT:
  13284. case GGML_OP_OUT_PROD:
  13285. {
  13286. n_tasks = n_threads;
  13287. // TODO: use different scheduling for different matrix sizes
  13288. //const int nr0 = ggml_nrows(node->src[0]);
  13289. //const int nr1 = ggml_nrows(node->src[1]);
  13290. //n_tasks = MIN(n_threads, MAX(1, nr0/128));
  13291. //printf("nr0 = %8d, nr1 = %8d, nr0*nr1 = %8d, n_tasks%d\n", nr0, nr1, nr0*nr1, n_tasks);
  13292. size_t cur = 0;
  13293. const enum ggml_type vec_dot_type = type_traits[node->src[0]->type].vec_dot_type;
  13294. #if defined(GGML_USE_CUBLAS)
  13295. if (ggml_cuda_can_mul_mat(node->src[0], node->src[1], node)) {
  13296. n_tasks = 1; // TODO: this actually is doing nothing
  13297. // the threads are still spinning
  13298. } else
  13299. #elif defined(GGML_USE_CLBLAST)
  13300. if (ggml_cl_can_mul_mat(node->src[0], node->src[1], node)) {
  13301. n_tasks = 1; // TODO: this actually is doing nothing
  13302. // the threads are still spinning
  13303. cur = ggml_cl_mul_mat_get_wsize(node->src[0], node->src[1], node);
  13304. } else
  13305. #endif
  13306. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  13307. if (ggml_compute_forward_mul_mat_use_blas(node->src[0], node->src[1], node)) {
  13308. n_tasks = 1; // TODO: this actually is doing nothing
  13309. // the threads are still spinning
  13310. if (node->src[0]->type != GGML_TYPE_F32) {
  13311. // here we need memory just for single 2D matrix from src0
  13312. cur = GGML_TYPE_SIZE[GGML_TYPE_F32]*(node->src[0]->ne[0]*node->src[0]->ne[1]);
  13313. }
  13314. } else
  13315. #endif
  13316. if (node->src[1]->type != vec_dot_type) {
  13317. cur = GGML_TYPE_SIZE[vec_dot_type]*ggml_nelements(node->src[1])/GGML_BLCK_SIZE[vec_dot_type];
  13318. } else {
  13319. cur = 0;
  13320. }
  13321. work_size = MAX(work_size, cur);
  13322. } break;
  13323. case GGML_OP_SCALE:
  13324. {
  13325. n_tasks = 1;
  13326. } break;
  13327. case GGML_OP_SET:
  13328. case GGML_OP_CONT:
  13329. case GGML_OP_RESHAPE:
  13330. case GGML_OP_VIEW:
  13331. case GGML_OP_PERMUTE:
  13332. case GGML_OP_TRANSPOSE:
  13333. case GGML_OP_GET_ROWS:
  13334. case GGML_OP_GET_ROWS_BACK:
  13335. case GGML_OP_DIAG:
  13336. case GGML_OP_DIAG_MASK_ZERO:
  13337. {
  13338. n_tasks = 1;
  13339. } break;
  13340. case GGML_OP_DIAG_MASK_INF:
  13341. case GGML_OP_SOFT_MAX:
  13342. case GGML_OP_SOFT_MAX_BACK:
  13343. case GGML_OP_ROPE:
  13344. case GGML_OP_ROPE_BACK:
  13345. {
  13346. n_tasks = n_threads;
  13347. } break;
  13348. case GGML_OP_ALIBI:
  13349. {
  13350. n_tasks = 1; //TODO
  13351. } break;
  13352. case GGML_OP_CLAMP:
  13353. {
  13354. n_tasks = 1; //TODO
  13355. } break;
  13356. case GGML_OP_CONV_1D:
  13357. {
  13358. n_tasks = n_threads;
  13359. GGML_ASSERT(node->src[0]->ne[3] == 1);
  13360. GGML_ASSERT(node->src[1]->ne[2] == 1);
  13361. GGML_ASSERT(node->src[1]->ne[3] == 1);
  13362. size_t cur = 0;
  13363. const int nk = node->src[0]->ne[0];
  13364. if (node->src[0]->type == GGML_TYPE_F16 &&
  13365. node->src[1]->type == GGML_TYPE_F32) {
  13366. cur = sizeof(ggml_fp16_t)*(
  13367. nk*ggml_up32(node->src[0]->ne[1])*node->src[0]->ne[2] +
  13368. ( 2*(nk/2) + node->src[1]->ne[0])*node->src[1]->ne[1]
  13369. );
  13370. } else if (node->src[0]->type == GGML_TYPE_F32 &&
  13371. node->src[1]->type == GGML_TYPE_F32) {
  13372. cur = sizeof(float)*(
  13373. nk*ggml_up32(node->src[0]->ne[1])*node->src[0]->ne[2] +
  13374. ( 2*(nk/2) + node->src[1]->ne[0])*node->src[1]->ne[1]
  13375. );
  13376. } else {
  13377. GGML_ASSERT(false);
  13378. }
  13379. work_size = MAX(work_size, cur);
  13380. } break;
  13381. case GGML_OP_CONV_2D:
  13382. {
  13383. n_tasks = n_threads;
  13384. GGML_ASSERT(node->src[1]->ne[3] == 1);
  13385. const int64_t ne00 = node->src[0]->ne[0]; // W
  13386. const int64_t ne01 = node->src[0]->ne[1]; // H
  13387. const int64_t ne02 = node->src[0]->ne[2]; // C
  13388. const int64_t ne03 = node->src[0]->ne[3]; // N
  13389. const int64_t ne10 = node->src[1]->ne[0]; // W
  13390. const int64_t ne11 = node->src[1]->ne[1]; // H
  13391. const int64_t ne12 = node->src[1]->ne[2]; // C
  13392. const int64_t nk = ne00*ne01;
  13393. UNUSED(ne02);
  13394. UNUSED(ne03);
  13395. UNUSED(nk);
  13396. size_t cur = 0;
  13397. if (node->src[0]->type == GGML_TYPE_F16 &&
  13398. node->src[1]->type == GGML_TYPE_F32) {
  13399. cur = sizeof(ggml_fp16_t)*(ne10*ne11*ne12);
  13400. } else if (node->src[0]->type == GGML_TYPE_F32 &&
  13401. node->src[1]->type == GGML_TYPE_F32) {
  13402. cur = sizeof(float)* (ne10*ne11*ne12);
  13403. } else {
  13404. GGML_ASSERT(false);
  13405. }
  13406. work_size = MAX(work_size, cur);
  13407. } break;
  13408. case GGML_OP_FLASH_ATTN:
  13409. {
  13410. n_tasks = n_threads;
  13411. size_t cur = 0;
  13412. const int64_t ne11 = ggml_up(node->src[1]->ne[1], GGML_SOFT_MAX_UNROLL);
  13413. if (node->src[1]->type == GGML_TYPE_F32) {
  13414. cur = sizeof(float)*ne11*n_tasks; // TODO: this can become (n_tasks-1)
  13415. cur += sizeof(float)*ne11*n_tasks; // this is overestimated by x2
  13416. }
  13417. if (node->src[1]->type == GGML_TYPE_F16) {
  13418. cur = sizeof(float)*ne11*n_tasks; // TODO: this can become (n_tasks-1)
  13419. cur += sizeof(float)*ne11*n_tasks; // this is overestimated by x2
  13420. }
  13421. work_size = MAX(work_size, cur);
  13422. } break;
  13423. case GGML_OP_FLASH_FF:
  13424. {
  13425. n_tasks = n_threads;
  13426. size_t cur = 0;
  13427. if (node->src[1]->type == GGML_TYPE_F32) {
  13428. cur = sizeof(float)*node->src[1]->ne[1]*n_tasks; // TODO: this can become (n_tasks-1)
  13429. cur += sizeof(float)*node->src[1]->ne[1]*n_tasks; // this is overestimated by x2
  13430. }
  13431. if (node->src[1]->type == GGML_TYPE_F16) {
  13432. cur = sizeof(float)*node->src[1]->ne[1]*n_tasks; // TODO: this can become (n_tasks-1)
  13433. cur += sizeof(float)*node->src[1]->ne[1]*n_tasks; // this is overestimated by x2
  13434. }
  13435. work_size = MAX(work_size, cur);
  13436. } break;
  13437. case GGML_OP_FLASH_ATTN_BACK:
  13438. {
  13439. n_tasks = n_threads;
  13440. size_t cur = 0;
  13441. const int64_t D = node->src[0]->ne[0];
  13442. const int64_t ne11 = ggml_up(node->src[1]->ne[1], GGML_SOFT_MAX_UNROLL);
  13443. const int64_t mxDn = MAX(D, ne11) * 2; // *2 because of S and SM in ggml_compute_forward_flash_attn_back
  13444. if (node->src[1]->type == GGML_TYPE_F32) {
  13445. cur = sizeof(float)*mxDn*n_tasks; // TODO: this can become (n_tasks-1)
  13446. cur += sizeof(float)*mxDn*n_tasks; // this is overestimated by x2
  13447. }
  13448. if (node->src[1]->type == GGML_TYPE_F16) {
  13449. cur = sizeof(float)*mxDn*n_tasks; // TODO: this can become (n_tasks-1)
  13450. cur += sizeof(float)*mxDn*n_tasks; // this is overestimated by x2
  13451. }
  13452. work_size = MAX(work_size, cur);
  13453. } break;
  13454. case GGML_OP_WIN_PART:
  13455. case GGML_OP_WIN_UNPART:
  13456. case GGML_OP_MAP_UNARY:
  13457. case GGML_OP_MAP_BINARY:
  13458. case GGML_OP_MAP_CUSTOM1:
  13459. case GGML_OP_MAP_CUSTOM2:
  13460. case GGML_OP_MAP_CUSTOM3:
  13461. {
  13462. n_tasks = 1;
  13463. } break;
  13464. case GGML_OP_CROSS_ENTROPY_LOSS:
  13465. {
  13466. n_tasks = n_threads;
  13467. size_t cur = ggml_type_size(node->type)*(n_tasks + node->src[0]->ne[0]*n_tasks);
  13468. work_size = MAX(work_size, cur);
  13469. } break;
  13470. case GGML_OP_CROSS_ENTROPY_LOSS_BACK:
  13471. {
  13472. n_tasks = n_threads;
  13473. size_t cur = ggml_type_size(node->type)*node->src[0]->ne[0]*n_tasks;
  13474. work_size = MAX(work_size, cur);
  13475. } break;
  13476. case GGML_OP_NONE:
  13477. {
  13478. n_tasks = 1;
  13479. } break;
  13480. case GGML_OP_COUNT:
  13481. {
  13482. GGML_ASSERT(false);
  13483. } break;
  13484. }
  13485. cplan.n_tasks[i] = n_tasks;
  13486. }
  13487. if (work_size > 0) {
  13488. work_size += CACHE_LINE_SIZE*(n_threads - 1);
  13489. }
  13490. cplan.n_threads = n_threads;
  13491. cplan.work_size = work_size;
  13492. cplan.work_data = NULL;
  13493. return cplan;
  13494. }
  13495. void ggml_graph_compute(struct ggml_cgraph * cgraph, struct ggml_cplan * cplan) {
  13496. {
  13497. GGML_ASSERT(cplan);
  13498. GGML_ASSERT(cplan->n_threads > 0);
  13499. if (cplan->work_size > 0) {
  13500. GGML_ASSERT(cplan->work_data);
  13501. }
  13502. for (int i = 0; i < cgraph->n_nodes; ++i) {
  13503. if (cgraph->nodes[i]->op != GGML_OP_NONE) {
  13504. GGML_ASSERT(cplan->n_tasks[i] > 0);
  13505. }
  13506. }
  13507. }
  13508. const int n_threads = cplan->n_threads;
  13509. struct ggml_compute_state_shared state_shared = {
  13510. /*.cgraph =*/ cgraph,
  13511. /*.cgraph_plan =*/ cplan,
  13512. /*.perf_node_start_cycles =*/ 0,
  13513. /*.perf_node_start_time_us =*/ 0,
  13514. /*.n_threads =*/ n_threads,
  13515. /*.n_active =*/ n_threads,
  13516. /*.node_n =*/ -1,
  13517. };
  13518. struct ggml_compute_state * workers = alloca(sizeof(struct ggml_compute_state)*n_threads);
  13519. // create thread pool
  13520. if (n_threads > 1) {
  13521. for (int j = 1; j < n_threads; ++j) {
  13522. workers[j] = (struct ggml_compute_state) {
  13523. .thrd = 0,
  13524. .ith = j,
  13525. .shared = &state_shared,
  13526. };
  13527. const int rc = ggml_thread_create(&workers[j].thrd, NULL, ggml_graph_compute_thread, &workers[j]);
  13528. GGML_ASSERT(rc == 0);
  13529. }
  13530. }
  13531. workers[0].ith = 0;
  13532. workers[0].shared = &state_shared;
  13533. const int64_t perf_start_cycles = ggml_perf_cycles();
  13534. const int64_t perf_start_time_us = ggml_perf_time_us();
  13535. // this is a work thread too
  13536. ggml_graph_compute_thread(&workers[0]);
  13537. // don't leave affinity set on the main thread
  13538. clear_numa_thread_affinity();
  13539. // join thread pool
  13540. if (n_threads > 1) {
  13541. for (int j = 1; j < n_threads; j++) {
  13542. const int rc = ggml_thread_join(workers[j].thrd, NULL);
  13543. GGML_ASSERT(rc == 0);
  13544. }
  13545. }
  13546. // performance stats (graph)
  13547. {
  13548. int64_t perf_cycles_cur = ggml_perf_cycles() - perf_start_cycles;
  13549. int64_t perf_time_us_cur = ggml_perf_time_us() - perf_start_time_us;
  13550. cgraph->perf_runs++;
  13551. cgraph->perf_cycles += perf_cycles_cur;
  13552. cgraph->perf_time_us += perf_time_us_cur;
  13553. GGML_PRINT_DEBUG("%s: perf (%d) - cpu = %.3f / %.3f ms, wall = %.3f / %.3f ms\n",
  13554. __func__, cgraph->perf_runs,
  13555. (double) perf_cycles_cur / (double) ggml_cycles_per_ms(),
  13556. (double) cgraph->perf_cycles / (double) ggml_cycles_per_ms() / (double) cgraph->perf_runs,
  13557. (double) perf_time_us_cur / 1000.0,
  13558. (double) cgraph->perf_time_us / 1000.0 / cgraph->perf_runs);
  13559. }
  13560. }
  13561. void ggml_graph_reset(struct ggml_cgraph * cgraph) {
  13562. for (int i = 0; i < cgraph->n_nodes; i++) {
  13563. struct ggml_tensor * grad = cgraph->grads[i];
  13564. if (grad) {
  13565. ggml_set_zero(grad);
  13566. }
  13567. }
  13568. }
  13569. void ggml_graph_compute_with_ctx(struct ggml_context * ctx, struct ggml_cgraph * cgraph, int n_threads) {
  13570. struct ggml_cplan cplan = ggml_graph_plan(cgraph, n_threads);
  13571. struct ggml_tensor * buf = ggml_new_tensor_1d(ctx, GGML_TYPE_I8, cplan.work_size);
  13572. GGML_ASSERT(buf);
  13573. cplan.work_data = buf->data;
  13574. ggml_graph_compute(cgraph, &cplan);
  13575. }
  13576. struct ggml_tensor * ggml_graph_get_tensor(struct ggml_cgraph * cgraph, const char * name) {
  13577. for (int i = 0; i < cgraph->n_leafs; i++) {
  13578. struct ggml_tensor * leaf = cgraph->leafs[i];
  13579. if (strcmp(leaf->name, name) == 0) {
  13580. return leaf;
  13581. }
  13582. }
  13583. for (int i = 0; i < cgraph->n_nodes; i++) {
  13584. struct ggml_tensor * node = cgraph->nodes[i];
  13585. if (strcmp(node->name, name) == 0) {
  13586. return node;
  13587. }
  13588. }
  13589. return NULL;
  13590. }
  13591. static void ggml_graph_export_leaf(const struct ggml_tensor * tensor, FILE * fout) {
  13592. const int64_t * ne = tensor->ne;
  13593. const size_t * nb = tensor->nb;
  13594. fprintf(fout, "%-6s %-12s %8d %" PRId64 " %" PRId64 " %" PRId64 " %" PRId64 " %16zu %16zu %16zu %16zu %16p %32s\n",
  13595. ggml_type_name(tensor->type),
  13596. ggml_op_name (tensor->op),
  13597. tensor->n_dims,
  13598. ne[0], ne[1], ne[2], ne[3],
  13599. nb[0], nb[1], nb[2], nb[3],
  13600. tensor->data,
  13601. tensor->name);
  13602. }
  13603. static void ggml_graph_export_node(const struct ggml_tensor * tensor, const char * arg, FILE * fout) {
  13604. const int64_t * ne = tensor->ne;
  13605. const size_t * nb = tensor->nb;
  13606. fprintf(fout, "%-6s %-6s %-12s %8d %" PRId64 " %" PRId64 " %" PRId64 " %" PRId64 " %16zu %16zu %16zu %16zu %16p %32s\n",
  13607. arg,
  13608. ggml_type_name(tensor->type),
  13609. ggml_op_name (tensor->op),
  13610. tensor->n_dims,
  13611. ne[0], ne[1], ne[2], ne[3],
  13612. nb[0], nb[1], nb[2], nb[3],
  13613. tensor->data,
  13614. tensor->name);
  13615. }
  13616. void ggml_graph_export(const struct ggml_cgraph * cgraph, const char * fname) {
  13617. //assert(cgraph->work == NULL);
  13618. //assert(cgraph->work_size == 0);
  13619. uint64_t size_eval = 0;
  13620. // compute size of intermediate results
  13621. // TODO: does not take into account scratch buffers !!!!
  13622. for (int i = 0; i < cgraph->n_nodes; ++i) {
  13623. size_eval += ggml_nbytes(cgraph->nodes[i]);
  13624. }
  13625. // print
  13626. {
  13627. FILE * fout = stdout;
  13628. fprintf(fout, "\n");
  13629. fprintf(fout, "%-16s %8x\n", "magic", GGML_FILE_MAGIC);
  13630. fprintf(fout, "%-16s %8d\n", "version", GGML_FILE_VERSION);
  13631. fprintf(fout, "%-16s %8d\n", "leafs", cgraph->n_leafs);
  13632. fprintf(fout, "%-16s %8d\n", "nodes", cgraph->n_nodes);
  13633. fprintf(fout, "%-16s %" PRIu64 "\n", "eval", size_eval);
  13634. // header
  13635. fprintf(fout, "\n");
  13636. fprintf(fout, "%-6s %-12s %8s %8s %8s %8s %8s %16s %16s %16s %16s %16s %16s\n",
  13637. "TYPE", "OP", "NDIMS", "NE0", "NE1", "NE2", "NE3", "NB0", "NB1", "NB2", "NB3", "DATA", "NAME");
  13638. for (int i = 0; i < cgraph->n_leafs; ++i) {
  13639. ggml_graph_export_leaf(cgraph->leafs[i], fout);
  13640. GGML_ASSERT(cgraph->leafs[i]->op == GGML_OP_NONE);
  13641. GGML_ASSERT(cgraph->leafs[i]->src[0] == NULL);
  13642. GGML_ASSERT(cgraph->leafs[i]->src[1] == NULL);
  13643. }
  13644. // header
  13645. fprintf(fout, "\n");
  13646. fprintf(fout, "%-6s %-6s %-12s %8s %8s %8s %8s %8s %16s %16s %16s %16s %8s %16s %16s\n",
  13647. "ARG", "TYPE", "OP", "NDIMS", "NE0", "NE1", "NE2", "NE3", "NB0", "NB1", "NB2", "NB3", "NTASKS", "DATA", "NAME");
  13648. for (int i = 0; i < cgraph->n_nodes; ++i) {
  13649. ggml_graph_export_node(cgraph->nodes[i], "DST", fout);
  13650. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  13651. if (cgraph->nodes[i]->src[j]) {
  13652. ggml_graph_export_node(cgraph->nodes[i]->src[j], "SRC", fout);
  13653. }
  13654. }
  13655. fprintf(fout, "\n");
  13656. }
  13657. fprintf(fout, "\n");
  13658. }
  13659. // write binary data
  13660. {
  13661. FILE * fout = fopen(fname, "wb");
  13662. if (!fout) {
  13663. fprintf(stderr, "%s: failed to open %s\n", __func__, fname);
  13664. return;
  13665. }
  13666. // header
  13667. {
  13668. const uint32_t magic = GGML_FILE_MAGIC;
  13669. const uint32_t version = GGML_FILE_VERSION;
  13670. const uint32_t n_leafs = cgraph->n_leafs;
  13671. const uint32_t nodes = cgraph->n_nodes;
  13672. fwrite(&magic, sizeof(uint32_t), 1, fout);
  13673. fwrite(&version, sizeof(uint32_t), 1, fout);
  13674. fwrite(&n_leafs, sizeof(uint32_t), 1, fout);
  13675. fwrite(&nodes, sizeof(uint32_t), 1, fout);
  13676. fwrite(&size_eval, sizeof(uint64_t), 1, fout);
  13677. }
  13678. // leafs
  13679. {
  13680. for (int i = 0; i < cgraph->n_leafs; ++i) {
  13681. const struct ggml_tensor * tensor = cgraph->leafs[i];
  13682. const uint32_t type = tensor->type;
  13683. const uint32_t op = tensor->op;
  13684. const uint32_t n_dims = tensor->n_dims;
  13685. fwrite(&type, sizeof(uint32_t), 1, fout);
  13686. fwrite(&op, sizeof(uint32_t), 1, fout);
  13687. fwrite(&n_dims, sizeof(uint32_t), 1, fout);
  13688. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  13689. const uint64_t ne = tensor->ne[j];
  13690. const uint64_t nb = tensor->nb[j];
  13691. fwrite(&ne, sizeof(uint64_t), 1, fout);
  13692. fwrite(&nb, sizeof(uint64_t), 1, fout);
  13693. }
  13694. fwrite(tensor->name, sizeof(char), GGML_MAX_NAME, fout);
  13695. // dump the data
  13696. // TODO: pad this to 32 byte boundary
  13697. {
  13698. const size_t size = ggml_nbytes(tensor);
  13699. fwrite(tensor->data, sizeof(char), size, fout);
  13700. }
  13701. }
  13702. }
  13703. // nodes
  13704. {
  13705. for (int i = 0; i < cgraph->n_nodes; ++i) {
  13706. const struct ggml_tensor * tensor = cgraph->nodes[i];
  13707. const uint32_t type = tensor->type;
  13708. const uint32_t op = tensor->op;
  13709. const uint32_t n_dims = tensor->n_dims;
  13710. fwrite(&type, sizeof(uint32_t), 1, fout);
  13711. fwrite(&op, sizeof(uint32_t), 1, fout);
  13712. fwrite(&n_dims, sizeof(uint32_t), 1, fout);
  13713. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  13714. const uint64_t ne = tensor->ne[j];
  13715. const uint64_t nb = tensor->nb[j];
  13716. fwrite(&ne, sizeof(uint64_t), 1, fout);
  13717. fwrite(&nb, sizeof(uint64_t), 1, fout);
  13718. }
  13719. fwrite(tensor->name, sizeof(char), GGML_MAX_NAME, fout);
  13720. // output the op arguments
  13721. {
  13722. struct ggml_tensor * args[GGML_MAX_SRC] = { NULL };
  13723. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  13724. args[j] = tensor->src[j];
  13725. }
  13726. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  13727. if (args[j]) {
  13728. int32_t idx = -1;
  13729. // check if leaf
  13730. {
  13731. for (int k = 0; k < cgraph->n_leafs; ++k) {
  13732. if (args[j] == cgraph->leafs[k]) {
  13733. idx = k;
  13734. break;
  13735. }
  13736. }
  13737. }
  13738. // check if node
  13739. if (idx == -1) {
  13740. for (int k = 0; k < cgraph->n_nodes; ++k) {
  13741. if (args[j] == cgraph->nodes[k]) {
  13742. idx = GGML_MAX_NODES + k;
  13743. break;
  13744. }
  13745. }
  13746. }
  13747. if (idx == -1) {
  13748. fprintf(stderr, "%s: failed to find tensor, arg = %d, node = %d\n", __func__, j, i);
  13749. return;
  13750. }
  13751. fwrite(&idx, sizeof(int32_t), 1, fout);
  13752. } else {
  13753. const int32_t nul = -1;
  13754. fwrite(&nul, sizeof(int32_t), 1, fout);
  13755. }
  13756. }
  13757. }
  13758. }
  13759. }
  13760. fclose(fout);
  13761. }
  13762. }
  13763. struct ggml_cgraph ggml_graph_import(const char * fname, struct ggml_context ** ctx_data, struct ggml_context ** ctx_eval) {
  13764. assert(*ctx_data == NULL);
  13765. assert(*ctx_eval == NULL);
  13766. struct ggml_cgraph result = { 0 };
  13767. struct ggml_tensor * data = NULL;
  13768. // read file into data
  13769. {
  13770. FILE * fin = fopen(fname, "rb");
  13771. if (!fin) {
  13772. fprintf(stderr, "%s: failed to open %s\n", __func__, fname);
  13773. return result;
  13774. }
  13775. size_t fsize = 0;
  13776. fseek(fin, 0, SEEK_END);
  13777. fsize = ftell(fin);
  13778. fseek(fin, 0, SEEK_SET);
  13779. // create the data context
  13780. {
  13781. const size_t overhead = 1*ggml_tensor_overhead();
  13782. struct ggml_init_params params = {
  13783. .mem_size = fsize + overhead,
  13784. .mem_buffer = NULL,
  13785. .no_alloc = false,
  13786. };
  13787. *ctx_data = ggml_init(params);
  13788. if (!*ctx_data) {
  13789. fprintf(stderr, "%s: failed to create ggml context\n", __func__);
  13790. fclose(fin);
  13791. return result;
  13792. }
  13793. }
  13794. data = ggml_new_tensor_1d(*ctx_data, GGML_TYPE_I8, fsize);
  13795. {
  13796. const size_t ret = fread(data->data, sizeof(char), fsize, fin);
  13797. if (ret != fsize) {
  13798. fprintf(stderr, "%s: failed to read %s\n", __func__, fname);
  13799. fclose(fin);
  13800. return result;
  13801. }
  13802. }
  13803. fclose(fin);
  13804. }
  13805. // populate result
  13806. {
  13807. char * ptr = (char *) data->data;
  13808. const uint32_t magic = *(const uint32_t *) ptr; ptr += sizeof(magic);
  13809. if (magic != GGML_FILE_MAGIC) {
  13810. fprintf(stderr, "%s: invalid magic number, got %08x\n", __func__, magic);
  13811. return result;
  13812. }
  13813. const uint32_t version = *(const uint32_t *) ptr; ptr += sizeof(version);
  13814. if (version != GGML_FILE_VERSION) {
  13815. fprintf(stderr, "%s: invalid version number\n", __func__);
  13816. return result;
  13817. }
  13818. const uint32_t n_leafs = *(const uint32_t *) ptr; ptr += sizeof(n_leafs);
  13819. const uint32_t n_nodes = *(const uint32_t *) ptr; ptr += sizeof(n_nodes);
  13820. const uint64_t size_eval = *(const uint64_t *) ptr; ptr += sizeof(size_eval);
  13821. result.n_leafs = n_leafs;
  13822. result.n_nodes = n_nodes;
  13823. // create the data context
  13824. {
  13825. const size_t overhead = (n_leafs + n_nodes)*ggml_tensor_overhead();
  13826. struct ggml_init_params params = {
  13827. .mem_size = size_eval + overhead,
  13828. .mem_buffer = NULL,
  13829. .no_alloc = true,
  13830. };
  13831. *ctx_eval = ggml_init(params);
  13832. if (!*ctx_eval) {
  13833. fprintf(stderr, "%s: failed to create ggml context\n", __func__);
  13834. return result;
  13835. }
  13836. }
  13837. // leafs
  13838. {
  13839. uint32_t type;
  13840. uint32_t op;
  13841. uint32_t n_dims;
  13842. for (uint32_t i = 0; i < n_leafs; ++i) {
  13843. type = *(const uint32_t *) ptr; ptr += sizeof(type);
  13844. op = *(const uint32_t *) ptr; ptr += sizeof(op);
  13845. n_dims = *(const uint32_t *) ptr; ptr += sizeof(n_dims);
  13846. int64_t ne[GGML_MAX_DIMS];
  13847. size_t nb[GGML_MAX_DIMS];
  13848. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  13849. uint64_t ne_cur;
  13850. uint64_t nb_cur;
  13851. ne_cur = *(const uint64_t *) ptr; ptr += sizeof(ne_cur);
  13852. nb_cur = *(const uint64_t *) ptr; ptr += sizeof(nb_cur);
  13853. ne[j] = ne_cur;
  13854. nb[j] = nb_cur;
  13855. }
  13856. struct ggml_tensor * tensor = ggml_new_tensor(*ctx_eval, (enum ggml_type) type, n_dims, ne);
  13857. tensor->op = (enum ggml_op) op;
  13858. memcpy(tensor->name, ptr, GGML_MAX_NAME); ptr += GGML_MAX_NAME;
  13859. tensor->data = (void *) ptr;
  13860. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  13861. tensor->nb[j] = nb[j];
  13862. }
  13863. result.leafs[i] = tensor;
  13864. ptr += ggml_nbytes(tensor);
  13865. fprintf(stderr, "%s: loaded leaf %d: '%16s', %3d dims, %9zu bytes\n", __func__, i, tensor->name, n_dims, ggml_nbytes(tensor));
  13866. }
  13867. }
  13868. ggml_set_no_alloc(*ctx_eval, false);
  13869. // nodes
  13870. {
  13871. uint32_t type;
  13872. uint32_t op;
  13873. uint32_t n_dims;
  13874. for (uint32_t i = 0; i < n_nodes; ++i) {
  13875. type = *(const uint32_t *) ptr; ptr += sizeof(type);
  13876. op = *(const uint32_t *) ptr; ptr += sizeof(op);
  13877. n_dims = *(const uint32_t *) ptr; ptr += sizeof(n_dims);
  13878. enum ggml_op eop = (enum ggml_op) op;
  13879. int64_t ne[GGML_MAX_DIMS];
  13880. size_t nb[GGML_MAX_DIMS];
  13881. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  13882. uint64_t ne_cur;
  13883. uint64_t nb_cur;
  13884. ne_cur = *(const uint64_t *) ptr; ptr += sizeof(ne_cur);
  13885. nb_cur = *(const uint64_t *) ptr; ptr += sizeof(nb_cur);
  13886. ne[j] = ne_cur;
  13887. nb[j] = nb_cur;
  13888. }
  13889. const char * ptr_name = ptr; ptr += GGML_MAX_NAME;
  13890. const int32_t * ptr_arg_idx = (const int32_t *) ptr; ptr += GGML_MAX_SRC*sizeof(int32_t);
  13891. struct ggml_tensor * args[GGML_MAX_SRC] = { NULL };
  13892. // parse args
  13893. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  13894. const int32_t arg_idx = ptr_arg_idx[j];
  13895. if (arg_idx == -1) {
  13896. continue;
  13897. }
  13898. if (arg_idx < GGML_MAX_NODES) {
  13899. args[j] = result.leafs[arg_idx];
  13900. } else {
  13901. args[j] = result.nodes[arg_idx - GGML_MAX_NODES];
  13902. }
  13903. }
  13904. // create the tensor
  13905. // "view" operations are handled differently
  13906. // TODO: handle inplace ops - currently a copy is always made
  13907. struct ggml_tensor * tensor = NULL;
  13908. switch (eop) {
  13909. // TODO: implement other view ops
  13910. case GGML_OP_RESHAPE:
  13911. {
  13912. tensor = ggml_reshape_4d(*ctx_eval, args[0], ne[0], ne[1], ne[2], ne[3]);
  13913. } break;
  13914. case GGML_OP_VIEW:
  13915. {
  13916. tensor = ggml_view_4d(*ctx_eval, args[0], ne[0], ne[1], ne[2], ne[3], 0, 0, 0, 0);
  13917. uint64_t offs;
  13918. memcpy(&offs, args[2]->data, sizeof(offs));
  13919. tensor->data = ((char *) tensor->data) + offs;
  13920. } break;
  13921. case GGML_OP_TRANSPOSE:
  13922. {
  13923. tensor = ggml_transpose(*ctx_eval, args[0]);
  13924. } break;
  13925. case GGML_OP_PERMUTE:
  13926. {
  13927. tensor = ggml_view_4d(*ctx_eval, args[0], ne[0], ne[1], ne[2], ne[3], 0, 0, 0, 0);
  13928. } break;
  13929. default:
  13930. {
  13931. tensor = ggml_new_tensor(*ctx_eval, (enum ggml_type) type, n_dims, ne);
  13932. tensor->op = eop;
  13933. } break;
  13934. }
  13935. memcpy(tensor->name, ptr_name, GGML_MAX_NAME);
  13936. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  13937. tensor->nb[j] = nb[j];
  13938. }
  13939. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  13940. tensor->src[j] = args[j];
  13941. }
  13942. result.nodes[i] = tensor;
  13943. fprintf(stderr, "%s: loaded node %d: '%16s', %3d dims, %9zu bytes\n", __func__, i, tensor->name, n_dims, ggml_nbytes(tensor));
  13944. }
  13945. }
  13946. }
  13947. return result;
  13948. }
  13949. void ggml_graph_print(const struct ggml_cgraph * cgraph) {
  13950. int64_t perf_total_per_op_us[GGML_OP_COUNT] = {0};
  13951. GGML_PRINT("=== GRAPH ===\n");
  13952. GGML_PRINT_DEBUG("n_threads = %d\n", cgraph->n_threads);
  13953. GGML_PRINT_DEBUG("total work size = %zu bytes\n", cgraph->work_size);
  13954. GGML_PRINT("n_nodes = %d\n", cgraph->n_nodes);
  13955. for (int i = 0; i < cgraph->n_nodes; i++) {
  13956. struct ggml_tensor * node = cgraph->nodes[i];
  13957. perf_total_per_op_us[node->op] += MAX(1, node->perf_time_us);
  13958. GGML_PRINT(" - %3d: [ %5" PRId64 ", %5" PRId64 ", %5" PRId64 "] %16s %s (%3d) cpu = %7.3f / %7.3f ms, wall = %7.3f / %7.3f ms\n",
  13959. i,
  13960. node->ne[0], node->ne[1], node->ne[2],
  13961. GGML_OP_NAME[node->op], node->is_param ? "x" : node->grad ? "g" : " ", node->perf_runs,
  13962. (double) node->perf_cycles / (double) ggml_cycles_per_ms(),
  13963. (double) node->perf_cycles / (double) ggml_cycles_per_ms() / (double) node->perf_runs,
  13964. (double) node->perf_time_us / 1000.0,
  13965. (double) node->perf_time_us / 1000.0 / node->perf_runs);
  13966. }
  13967. GGML_PRINT("n_leafs = %d\n", cgraph->n_leafs);
  13968. for (int i = 0; i < cgraph->n_leafs; i++) {
  13969. struct ggml_tensor * node = cgraph->leafs[i];
  13970. GGML_PRINT(" - %3d: [ %5" PRId64 ", %5" PRId64 "] %8s\n",
  13971. i,
  13972. node->ne[0], node->ne[1],
  13973. GGML_OP_NAME[node->op]);
  13974. }
  13975. for (int i = 0; i < GGML_OP_COUNT; i++) {
  13976. if (perf_total_per_op_us[i] == 0) {
  13977. continue;
  13978. }
  13979. GGML_PRINT("perf_total_per_op_us[%16s] = %7.3f ms\n", GGML_OP_NAME[i], (double) perf_total_per_op_us[i] / 1000.0);
  13980. }
  13981. GGML_PRINT("========================================\n");
  13982. }
  13983. // check if node is part of the graph
  13984. static bool ggml_graph_find(const struct ggml_cgraph * cgraph, const struct ggml_tensor * node) {
  13985. if (cgraph == NULL) {
  13986. return true;
  13987. }
  13988. for (int i = 0; i < cgraph->n_nodes; i++) {
  13989. if (cgraph->nodes[i] == node) {
  13990. return true;
  13991. }
  13992. }
  13993. return false;
  13994. }
  13995. static struct ggml_tensor * ggml_graph_get_parent(const struct ggml_cgraph * cgraph, const struct ggml_tensor * node) {
  13996. for (int i = 0; i < cgraph->n_nodes; i++) {
  13997. struct ggml_tensor * parent = cgraph->nodes[i];
  13998. if (parent->grad == node) {
  13999. return parent;
  14000. }
  14001. }
  14002. return NULL;
  14003. }
  14004. static void ggml_graph_dump_dot_node_edge(FILE * fp, const struct ggml_cgraph * gb, struct ggml_tensor * node, struct ggml_tensor * parent, const char * label) {
  14005. struct ggml_tensor * gparent = ggml_graph_get_parent(gb, node);
  14006. struct ggml_tensor * gparent0 = ggml_graph_get_parent(gb, parent);
  14007. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ arrowhead = %s; style = %s; label = \"%s\"; ]\n",
  14008. gparent0 ? (void *) gparent0 : (void *) parent,
  14009. gparent0 ? "g" : "x",
  14010. gparent ? (void *) gparent : (void *) node,
  14011. gparent ? "g" : "x",
  14012. gparent ? "empty" : "vee",
  14013. gparent ? "dashed" : "solid",
  14014. label);
  14015. }
  14016. static void ggml_graph_dump_dot_leaf_edge(FILE * fp, struct ggml_tensor * node, struct ggml_tensor * parent, const char * label) {
  14017. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ label = \"%s\"; ]\n",
  14018. (void *) parent, "x",
  14019. (void *) node, "x",
  14020. label);
  14021. }
  14022. void ggml_graph_dump_dot(const struct ggml_cgraph * gb, const struct ggml_cgraph * gf, const char * filename) {
  14023. char color[16];
  14024. FILE * fp = fopen(filename, "w");
  14025. GGML_ASSERT(fp);
  14026. fprintf(fp, "digraph G {\n");
  14027. fprintf(fp, " newrank = true;\n");
  14028. fprintf(fp, " rankdir = LR;\n");
  14029. for (int i = 0; i < gb->n_nodes; i++) {
  14030. struct ggml_tensor * node = gb->nodes[i];
  14031. if (ggml_graph_get_parent(gb, node) != NULL) {
  14032. continue;
  14033. }
  14034. if (node->is_param) {
  14035. snprintf(color, sizeof(color), "yellow");
  14036. } else if (node->grad) {
  14037. if (ggml_graph_find(gf, node)) {
  14038. snprintf(color, sizeof(color), "green");
  14039. } else {
  14040. snprintf(color, sizeof(color), "lightblue");
  14041. }
  14042. } else {
  14043. snprintf(color, sizeof(color), "white");
  14044. }
  14045. fprintf(fp, " \"%p\" [ "
  14046. "style = filled; fillcolor = %s; shape = record; "
  14047. "label=\"",
  14048. (void *) node, color);
  14049. if (strlen(node->name) > 0) {
  14050. fprintf(fp, "%s (%s)|", node->name, ggml_type_name(node->type));
  14051. } else {
  14052. fprintf(fp, "(%s)|", ggml_type_name(node->type));
  14053. }
  14054. if (node->n_dims == 2) {
  14055. fprintf(fp, "%d [%" PRId64 ", %" PRId64 "] | <x>%s", i, node->ne[0], node->ne[1], GGML_OP_SYMBOL[node->op]);
  14056. } else {
  14057. fprintf(fp, "%d [%" PRId64 ", %" PRId64 ", %" PRId64 "] | <x>%s", i, node->ne[0], node->ne[1], node->ne[2], GGML_OP_SYMBOL[node->op]);
  14058. }
  14059. if (node->grad) {
  14060. fprintf(fp, " | <g>%s\"; ]\n", GGML_OP_SYMBOL[node->grad->op]);
  14061. } else {
  14062. fprintf(fp, "\"; ]\n");
  14063. }
  14064. }
  14065. for (int i = 0; i < gb->n_leafs; i++) {
  14066. struct ggml_tensor * node = gb->leafs[i];
  14067. snprintf(color, sizeof(color), "pink");
  14068. fprintf(fp, " \"%p\" [ "
  14069. "style = filled; fillcolor = %s; shape = record; "
  14070. "label=\"<x>",
  14071. (void *) node, color);
  14072. if (strlen(node->name) > 0) {
  14073. fprintf(fp, "%s (%s)|", node->name, ggml_type_name(node->type));
  14074. } else {
  14075. fprintf(fp, "(%s)|", ggml_type_name(node->type));
  14076. }
  14077. fprintf(fp, "CONST %d [%" PRId64 ", %" PRId64 "]", i, node->ne[0], node->ne[1]);
  14078. if (ggml_nelements(node) < 5) {
  14079. fprintf(fp, " | (");
  14080. for (int j = 0; j < ggml_nelements(node); j++) {
  14081. if (node->type == GGML_TYPE_I8 || node->type == GGML_TYPE_I16 || node->type == GGML_TYPE_I32) {
  14082. fprintf(fp, "%d", ggml_get_i32_1d(node, j));
  14083. }
  14084. else if (node->type == GGML_TYPE_F32 || node->type == GGML_TYPE_F16) {
  14085. fprintf(fp, "%.1e", (double)ggml_get_f32_1d(node, j));
  14086. }
  14087. else {
  14088. fprintf(fp, "#");
  14089. }
  14090. if (j < ggml_nelements(node) - 1) {
  14091. fprintf(fp, ", ");
  14092. }
  14093. }
  14094. fprintf(fp, ")");
  14095. }
  14096. fprintf(fp, "\"; ]\n");
  14097. }
  14098. for (int i = 0; i < gb->n_nodes; i++) {
  14099. struct ggml_tensor * node = gb->nodes[i];
  14100. for (int j = 0; j < GGML_MAX_SRC; j++) {
  14101. if (node->src[j]) {
  14102. char label[16];
  14103. snprintf(label, sizeof(label), "src %d", j);
  14104. ggml_graph_dump_dot_node_edge(fp, gb, node, node->src[j], label);
  14105. }
  14106. }
  14107. }
  14108. for (int i = 0; i < gb->n_leafs; i++) {
  14109. struct ggml_tensor * node = gb->leafs[i];
  14110. for (int j = 0; j < GGML_MAX_SRC; j++) {
  14111. if (node->src[j]) {
  14112. char label[16];
  14113. snprintf(label, sizeof(label), "src %d", j);
  14114. ggml_graph_dump_dot_leaf_edge(fp, node, node->src[j], label);
  14115. }
  14116. }
  14117. }
  14118. fprintf(fp, "}\n");
  14119. fclose(fp);
  14120. GGML_PRINT("%s: dot -Tpng %s -o %s.png && open %s.png\n", __func__, filename, filename, filename);
  14121. }
  14122. ////////////////////////////////////////////////////////////////////////////////
  14123. static void ggml_opt_set_params(int np, struct ggml_tensor * const ps[], const float * x) {
  14124. int i = 0;
  14125. for (int p = 0; p < np; ++p) {
  14126. const int64_t ne = ggml_nelements(ps[p]) ;
  14127. // TODO: add function to set tensor from array
  14128. for (int64_t j = 0; j < ne; ++j) {
  14129. ggml_set_f32_1d(ps[p], j, x[i++]);
  14130. }
  14131. }
  14132. }
  14133. static void ggml_opt_get_params(int np, struct ggml_tensor * const ps[], float * x) {
  14134. int i = 0;
  14135. for (int p = 0; p < np; ++p) {
  14136. const int64_t ne = ggml_nelements(ps[p]) ;
  14137. // TODO: add function to get all elements at once
  14138. for (int64_t j = 0; j < ne; ++j) {
  14139. x[i++] = ggml_get_f32_1d(ps[p], j);
  14140. }
  14141. }
  14142. }
  14143. static void ggml_opt_get_grad(int np, struct ggml_tensor * const ps[], float * g) {
  14144. int i = 0;
  14145. for (int p = 0; p < np; ++p) {
  14146. const int64_t ne = ggml_nelements(ps[p]) ;
  14147. // TODO: add function to get all elements at once
  14148. for (int64_t j = 0; j < ne; ++j) {
  14149. g[i++] = ggml_get_f32_1d(ps[p]->grad, j);
  14150. }
  14151. }
  14152. }
  14153. //
  14154. // ADAM
  14155. //
  14156. // ref: https://arxiv.org/pdf/1412.6980.pdf
  14157. //
  14158. static enum ggml_opt_result ggml_opt_adam(
  14159. struct ggml_context * ctx,
  14160. struct ggml_opt_context * opt,
  14161. struct ggml_opt_params params,
  14162. struct ggml_tensor * f,
  14163. struct ggml_cgraph * gf,
  14164. struct ggml_cgraph * gb) {
  14165. GGML_ASSERT(ggml_is_scalar(f));
  14166. // these will store the parameters we want to optimize
  14167. struct ggml_tensor * ps[GGML_MAX_PARAMS];
  14168. int np = 0;
  14169. int nx = 0;
  14170. for (int i = 0; i < gf->n_nodes; ++i) {
  14171. if (gf->nodes[i]->is_param) {
  14172. GGML_PRINT_DEBUG("found param %d: grad->op = %d\n", np, gf->nodes[i]->grad->op);
  14173. GGML_ASSERT(np < GGML_MAX_PARAMS);
  14174. ps[np++] = gf->nodes[i];
  14175. nx += ggml_nelements(gf->nodes[i]);
  14176. }
  14177. }
  14178. if ((opt->params.type != params.type) || (opt->nx != nx) || (opt->params.past != params.past)) {
  14179. int iter = opt->iter;
  14180. ggml_opt_init(opt->ctx, opt, params, nx);
  14181. opt->iter = iter;
  14182. }
  14183. // constants
  14184. const float sched = params.adam.sched;
  14185. const float decay = params.adam.decay * sched;
  14186. const float alpha = params.adam.alpha * sched;
  14187. const float beta1 = params.adam.beta1;
  14188. const float beta2 = params.adam.beta2;
  14189. const float eps = params.adam.eps;
  14190. float * x = opt->adam.x->data; // view of the parameters
  14191. float * g1 = opt->adam.g1->data; // gradient
  14192. float * g2 = opt->adam.g2->data; // gradient squared
  14193. float * m = opt->adam.m->data; // first moment
  14194. float * v = opt->adam.v->data; // second moment
  14195. float * mh = opt->adam.mh->data; // first moment hat
  14196. float * vh = opt->adam.vh->data; // second moment hat
  14197. float * pf = params.past > 0 ? opt->adam.pf->data : NULL; // past function values
  14198. // update view
  14199. ggml_opt_get_params(np, ps, x);
  14200. // compute the function value
  14201. ggml_graph_reset (gf);
  14202. ggml_set_f32 (f->grad, 1.0f);
  14203. ggml_graph_compute_with_ctx(ctx, gb, params.n_threads);
  14204. opt->adam.fx_prev = ggml_get_f32_1d(f, 0);
  14205. opt->adam.fx_best = opt->adam.fx_prev;
  14206. if (pf) {
  14207. pf[opt->iter % params.past] = opt->adam.fx_prev;
  14208. }
  14209. // initialize
  14210. if (opt->just_initialized) {
  14211. opt->adam.n_no_improvement = 0;
  14212. opt->just_initialized = false;
  14213. }
  14214. float * fx_best = &opt->adam.fx_best;
  14215. float * fx_prev = &opt->adam.fx_prev;
  14216. int * n_no_improvement = &opt->adam.n_no_improvement;
  14217. int iter0 = opt->iter;
  14218. // run the optimizer
  14219. for (int t = 0; t < params.adam.n_iter; ++t) {
  14220. opt->iter = iter0 + t + 1;
  14221. GGML_PRINT_DEBUG ("=== iter %d ===\n", t);
  14222. GGML_PRINT_DEBUG ("f = %10.6f\n", ggml_get_f32_1d(f, 0));
  14223. GGML_PRINT_DEBUG_5("df/dx0 = %10.6f\n", ggml_get_f32_1d(ps[0]->grad, 0));
  14224. GGML_PRINT_DEBUG_5("df/dx1 = %10.6f\n", ggml_get_f32_1d(ps[1]->grad, 0));
  14225. for (int i = 0; i < np; ++i) {
  14226. GGML_PRINT_DEBUG("param %d: %10.6f, g = %10.6f\n", i,
  14227. ggml_get_f32_1d(ps[i], 0), ggml_get_f32_1d(ps[i]->grad, 0));
  14228. }
  14229. const int64_t t_start_wall = ggml_time_us();
  14230. const int64_t t_start_cpu = ggml_cycles();
  14231. UNUSED(t_start_wall);
  14232. UNUSED(t_start_cpu);
  14233. {
  14234. // update the gradient
  14235. ggml_opt_get_grad(np, ps, g1);
  14236. // m_t = beta1*m_t-1 + (1 - beta1)*g_t
  14237. ggml_vec_scale_f32(nx, m, beta1);
  14238. ggml_vec_mad_f32 (nx, m, g1, 1.0f - beta1);
  14239. // g2 = g1^2
  14240. ggml_vec_sqr_f32 (nx, g2, g1);
  14241. // v_t = beta2*v_t-1 + (1 - beta2)*g_t^2
  14242. ggml_vec_scale_f32(nx, v, beta2);
  14243. ggml_vec_mad_f32 (nx, v, g2, 1.0f - beta2);
  14244. // m^hat = m_t / (1 - beta1^t)
  14245. // v^hat = v_t / (1 - beta2^t)
  14246. // x_t = x_t-1 - sched*(alpha*m^hat/(sqrt(v^hat) + eps) + decay*x_t-1)
  14247. // x_t = x_t-1 - sched*alpha*m^hat/(sqrt(v^hat) + eps) - sched*decay*x_t-1
  14248. // x_t = x_t-1*(1-sched*decay) - sched*alpha*m^hat/(sqrt(v^hat) + eps)
  14249. // x_t = x_t-1*(1-sched*decay) + sched*decay*(-alpha/decay)*m^hat/(sqrt(v^hat) + eps)
  14250. // x_t = mix(x_t-1, (-alpha/decay)*m^hat/(sqrt(v^hat) + eps), sched*decay)
  14251. ggml_vec_cpy_f32 (nx, mh, m);
  14252. ggml_vec_cpy_f32 (nx, vh, v);
  14253. ggml_vec_scale_f32(nx, mh, alpha/(1.0f - powf(beta1, opt->iter)));
  14254. ggml_vec_scale_f32(nx, vh, 1.0f/(1.0f - powf(beta2, opt->iter)));
  14255. ggml_vec_sqrt_f32 (nx, vh, vh);
  14256. ggml_vec_acc1_f32 (nx, vh, eps);
  14257. ggml_vec_div_f32 (nx, mh, mh, vh);
  14258. ggml_vec_scale_f32(nx, x, 1.0f - decay);
  14259. ggml_vec_sub_f32 (nx, x, x, mh);
  14260. // update the parameters
  14261. ggml_opt_set_params(np, ps, x);
  14262. }
  14263. ggml_graph_reset (gf);
  14264. ggml_set_f32 (f->grad, 1.0f);
  14265. ggml_graph_compute_with_ctx(ctx, gb, params.n_threads);
  14266. const float fx = ggml_get_f32_1d(f, 0);
  14267. // check convergence
  14268. if (fabsf(fx - fx_prev[0])/fx < params.adam.eps_f) {
  14269. GGML_PRINT_DEBUG("converged\n");
  14270. return GGML_OPT_OK;
  14271. }
  14272. // delta-based convergence test
  14273. if (pf != NULL) {
  14274. // need at least params.past iterations to start checking for convergence
  14275. if (params.past <= iter0 + t) {
  14276. const float rate = (pf[(iter0 + t)%params.past] - fx)/fx;
  14277. if (fabsf(rate) < params.delta) {
  14278. return GGML_OPT_OK;
  14279. }
  14280. }
  14281. pf[(iter0 + t)%params.past] = fx;
  14282. }
  14283. // check for improvement
  14284. if (params.max_no_improvement > 0) {
  14285. if (fx_best[0] > fx) {
  14286. fx_best[0] = fx;
  14287. n_no_improvement[0] = 0;
  14288. } else {
  14289. ++n_no_improvement[0];
  14290. if (n_no_improvement[0] >= params.max_no_improvement) {
  14291. return GGML_OPT_OK;
  14292. }
  14293. }
  14294. }
  14295. fx_prev[0] = fx;
  14296. {
  14297. const int64_t t_end_cpu = ggml_cycles();
  14298. GGML_PRINT_DEBUG("time iter: %5.3f s\n", ((float)(t_end_cpu - t_start_cpu))/CLOCKS_PER_SEC);
  14299. UNUSED(t_end_cpu);
  14300. const int64_t t_end_wall = ggml_time_us();
  14301. GGML_PRINT_DEBUG("wall time iter: %5.3f s\n", (t_end_wall - t_start_wall)/1e6);
  14302. UNUSED(t_end_wall);
  14303. }
  14304. }
  14305. return GGML_OPT_DID_NOT_CONVERGE;
  14306. }
  14307. //
  14308. // L-BFGS
  14309. //
  14310. // the L-BFGS implementation below is based on the following implementation:
  14311. //
  14312. // https://github.com/chokkan/liblbfgs
  14313. //
  14314. struct ggml_lbfgs_iteration_data {
  14315. float alpha;
  14316. float ys;
  14317. float * s;
  14318. float * y;
  14319. };
  14320. static enum ggml_opt_result linesearch_backtracking(
  14321. struct ggml_context * ctx,
  14322. const struct ggml_opt_params * params,
  14323. int nx,
  14324. float * x,
  14325. float * fx,
  14326. float * g,
  14327. float * d,
  14328. float * step,
  14329. const float * xp,
  14330. struct ggml_tensor * f,
  14331. struct ggml_cgraph * gf,
  14332. struct ggml_cgraph * gb,
  14333. const int np,
  14334. struct ggml_tensor * ps[]) {
  14335. int count = 0;
  14336. float width = 0.0f;
  14337. float dg = 0.0f;
  14338. float finit = 0.0f;
  14339. float dginit = 0.0f;
  14340. float dgtest = 0.0f;
  14341. const float dec = 0.5f;
  14342. const float inc = 2.1f;
  14343. if (*step <= 0.f) {
  14344. return GGML_LINESEARCH_INVALID_PARAMETERS;
  14345. }
  14346. // compute the initial gradient in the search direction
  14347. ggml_vec_dot_f32(nx, &dginit, g, d);
  14348. // make sure that d points to a descent direction
  14349. if (0 < dginit) {
  14350. return GGML_LINESEARCH_FAIL;
  14351. }
  14352. // initialize local variables
  14353. finit = *fx;
  14354. dgtest = params->lbfgs.ftol*dginit;
  14355. while (true) {
  14356. ggml_vec_cpy_f32(nx, x, xp);
  14357. ggml_vec_mad_f32(nx, x, d, *step);
  14358. // evaluate the function and gradient values
  14359. {
  14360. ggml_opt_set_params(np, ps, x);
  14361. ggml_graph_reset (gf);
  14362. ggml_set_f32 (f->grad, 1.0f);
  14363. ggml_graph_compute_with_ctx(ctx, gb, params->n_threads);
  14364. ggml_opt_get_grad(np, ps, g);
  14365. *fx = ggml_get_f32_1d(f, 0);
  14366. }
  14367. ++count;
  14368. if (*fx > finit + (*step)*dgtest) {
  14369. width = dec;
  14370. } else {
  14371. // Armijo condition is satisfied
  14372. if (params->lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_ARMIJO) {
  14373. return count;
  14374. }
  14375. ggml_vec_dot_f32(nx, &dg, g, d);
  14376. // check the Wolfe condition
  14377. if (dg < params->lbfgs.wolfe * dginit) {
  14378. width = inc;
  14379. } else {
  14380. if(params->lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_WOLFE) {
  14381. // regular Wolfe conditions
  14382. return count;
  14383. }
  14384. if(dg > -params->lbfgs.wolfe*dginit) {
  14385. width = dec;
  14386. } else {
  14387. // strong Wolfe condition (GGML_LINESEARCH_BACKTRACKING_STRONG_WOLFE)
  14388. return count;
  14389. }
  14390. return count;
  14391. }
  14392. }
  14393. if (*step < params->lbfgs.min_step) {
  14394. return GGML_LINESEARCH_MINIMUM_STEP;
  14395. }
  14396. if (*step > params->lbfgs.max_step) {
  14397. return GGML_LINESEARCH_MAXIMUM_STEP;
  14398. }
  14399. if (params->lbfgs.max_linesearch <= count) {
  14400. return GGML_LINESEARCH_MAXIMUM_ITERATIONS;
  14401. }
  14402. (*step) *= width;
  14403. }
  14404. return GGML_LINESEARCH_FAIL;
  14405. }
  14406. static enum ggml_opt_result ggml_opt_lbfgs(
  14407. struct ggml_context * ctx,
  14408. struct ggml_opt_context * opt,
  14409. struct ggml_opt_params params,
  14410. struct ggml_tensor * f,
  14411. struct ggml_cgraph * gf,
  14412. struct ggml_cgraph * gb) {
  14413. if (params.lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_WOLFE ||
  14414. params.lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_STRONG_WOLFE) {
  14415. if (params.lbfgs.wolfe <= params.lbfgs.ftol || 1.f <= params.lbfgs.wolfe) {
  14416. return GGML_OPT_INVALID_WOLFE;
  14417. }
  14418. }
  14419. const int m = params.lbfgs.m;
  14420. // these will store the parameters we want to optimize
  14421. struct ggml_tensor * ps[GGML_MAX_PARAMS];
  14422. int np = 0;
  14423. int nx = 0;
  14424. for (int i = 0; i < gf->n_nodes; ++i) {
  14425. if (gf->nodes[i]->is_param) {
  14426. GGML_PRINT_DEBUG("found param %d: grad->op = %d\n", np, gf->nodes[i]->grad->op);
  14427. GGML_ASSERT(np < GGML_MAX_PARAMS);
  14428. ps[np++] = gf->nodes[i];
  14429. nx += ggml_nelements(gf->nodes[i]);
  14430. }
  14431. }
  14432. if ((opt->params.type != params.type) || (opt->nx != nx) || (opt->params.past != params.past) || (opt->params.lbfgs.m != params.lbfgs.m)) {
  14433. int iter = opt->iter;
  14434. ggml_opt_init(ctx, opt, params, nx);
  14435. opt->iter = iter;
  14436. }
  14437. float * x = opt->lbfgs.x->data; // current parameters
  14438. float * xp = opt->lbfgs.xp->data; // previous parameters
  14439. float * g = opt->lbfgs.g->data; // current gradient
  14440. float * gp = opt->lbfgs.gp->data; // previous gradient
  14441. float * d = opt->lbfgs.d->data; // search direction
  14442. float * pf = params.past > 0 ? opt->lbfgs.pf->data : NULL; // past function values
  14443. float fx = 0.0f; // cost function value
  14444. float xnorm = 0.0f; // ||x||
  14445. float gnorm = 0.0f; // ||g||
  14446. // initialize x from the graph nodes
  14447. ggml_opt_get_params(np, ps, x);
  14448. // the L-BFGS memory
  14449. float * lm_alpha = opt->lbfgs.lmal->data;
  14450. float * lm_ys = opt->lbfgs.lmys->data;
  14451. float * lm_s = opt->lbfgs.lms->data;
  14452. float * lm_y = opt->lbfgs.lmy->data;
  14453. // evaluate the function value and its gradient
  14454. {
  14455. ggml_opt_set_params(np, ps, x);
  14456. ggml_graph_reset (gf);
  14457. ggml_set_f32 (f->grad, 1.0f);
  14458. ggml_graph_compute_with_ctx(ctx, gb, params.n_threads);
  14459. ggml_opt_get_grad(np, ps, g);
  14460. fx = ggml_get_f32_1d(f, 0);
  14461. }
  14462. // search direction = -gradient
  14463. ggml_vec_neg_f32(nx, d, g);
  14464. // ||x||, ||g||
  14465. ggml_vec_norm_f32(nx, &xnorm, x);
  14466. ggml_vec_norm_f32(nx, &gnorm, g);
  14467. if (xnorm < 1.0f) {
  14468. xnorm = 1.0f;
  14469. }
  14470. // already optimized
  14471. if (gnorm/xnorm <= params.lbfgs.eps) {
  14472. return GGML_OPT_OK;
  14473. }
  14474. if (opt->just_initialized) {
  14475. if (pf) {
  14476. pf[0] = fx;
  14477. }
  14478. opt->lbfgs.fx_best = fx;
  14479. // initial step
  14480. ggml_vec_norm_inv_f32(nx, &opt->lbfgs.step, d);
  14481. opt->lbfgs.j = 0;
  14482. opt->lbfgs.k = 1;
  14483. opt->lbfgs.end = 0;
  14484. opt->lbfgs.n_no_improvement = 0;
  14485. opt->just_initialized = false;
  14486. }
  14487. float * fx_best = &opt->lbfgs.fx_best;
  14488. float * step = &opt->lbfgs.step;
  14489. int * j = &opt->lbfgs.j;
  14490. int * k = &opt->lbfgs.k;
  14491. int * end = &opt->lbfgs.end;
  14492. int * n_no_improvement = &opt->lbfgs.n_no_improvement;
  14493. int ls = 0;
  14494. int bound = 0;
  14495. float ys = 0.0f;
  14496. float yy = 0.0f;
  14497. float beta = 0.0f;
  14498. int it = 0;
  14499. while (true) {
  14500. // store the current position and gradient vectors
  14501. ggml_vec_cpy_f32(nx, xp, x);
  14502. ggml_vec_cpy_f32(nx, gp, g);
  14503. ls = linesearch_backtracking(ctx, &params, nx, x, &fx, g, d, step, xp, f, gf, gb, np, ps);
  14504. if (ls < 0) {
  14505. // linesearch failed - go back to the previous point and return
  14506. ggml_vec_cpy_f32(nx, x, xp);
  14507. ggml_vec_cpy_f32(nx, g, gp);
  14508. return ls;
  14509. }
  14510. ggml_vec_norm_f32(nx, &xnorm, x);
  14511. ggml_vec_norm_f32(nx, &gnorm, g);
  14512. GGML_PRINT_DEBUG("f = %10.6f\n", ggml_get_f32_1d(f, 0));
  14513. if (xnorm < 1.0f) {
  14514. xnorm = 1.0f;
  14515. }
  14516. if (gnorm/xnorm <= params.lbfgs.eps) {
  14517. // converged
  14518. return GGML_OPT_OK;
  14519. }
  14520. // delta-based convergence test
  14521. if (pf != NULL) {
  14522. // need at least params.past iterations to start checking for convergence
  14523. if (params.past <= k[0]) {
  14524. const float rate = (pf[k[0]%params.past] - fx)/fx;
  14525. if (fabsf(rate) < params.delta) {
  14526. return GGML_OPT_OK;
  14527. }
  14528. }
  14529. pf[k[0]%params.past] = fx;
  14530. }
  14531. // check for improvement
  14532. if (params.max_no_improvement > 0) {
  14533. if (fx < fx_best[0]) {
  14534. fx_best[0] = fx;
  14535. n_no_improvement[0] = 0;
  14536. } else {
  14537. n_no_improvement[0]++;
  14538. if (n_no_improvement[0] >= params.max_no_improvement) {
  14539. return GGML_OPT_OK;
  14540. }
  14541. }
  14542. }
  14543. if (params.lbfgs.n_iter != 0 && params.lbfgs.n_iter < it + 1) {
  14544. // reached the maximum number of iterations
  14545. return GGML_OPT_DID_NOT_CONVERGE;
  14546. }
  14547. // update vectors s and y:
  14548. // s_{k+1} = x_{k+1} - x_{k} = \step * d_{k}.
  14549. // y_{k+1} = g_{k+1} - g_{k}.
  14550. //
  14551. ggml_vec_sub_f32(nx, &lm_s[end[0]*nx], x, xp);
  14552. ggml_vec_sub_f32(nx, &lm_y[end[0]*nx], g, gp);
  14553. // compute scalars ys and yy:
  14554. // ys = y^t \cdot s -> 1 / \rho.
  14555. // yy = y^t \cdot y.
  14556. //
  14557. ggml_vec_dot_f32(nx, &ys, &lm_y[end[0]*nx], &lm_s[end[0] *nx]);
  14558. ggml_vec_dot_f32(nx, &yy, &lm_y[end[0]*nx], &lm_y[end[0]*nx]);
  14559. lm_ys[end[0]] = ys;
  14560. // find new search direction
  14561. // ref: https://en.wikipedia.org/wiki/Limited-memory_BFGS
  14562. bound = (m <= k[0]) ? m : k[0];
  14563. k[0]++;
  14564. it++;
  14565. end[0] = (end[0] + 1)%m;
  14566. // initialize search direction with -g
  14567. ggml_vec_neg_f32(nx, d, g);
  14568. j[0] = end[0];
  14569. for (int i = 0; i < bound; ++i) {
  14570. j[0] = (j[0] + m - 1) % m;
  14571. // \alpha_{j} = \rho_{j} s^{t}_{j} \cdot q_{k+1}
  14572. ggml_vec_dot_f32(nx, &lm_alpha[j[0]], &lm_s[j[0]*nx], d);
  14573. lm_alpha[j[0]] /= lm_ys[j[0]];
  14574. // q_{i} = q_{i+1} - \alpha_{i} y_{i}
  14575. ggml_vec_mad_f32(nx, d, &lm_y[j[0]*nx], -lm_alpha[j[0]]);
  14576. }
  14577. ggml_vec_scale_f32(nx, d, ys/yy);
  14578. for (int i = 0; i < bound; ++i) {
  14579. // \beta_{j} = \rho_{j} y^t_{j} \cdot \gamma_{i}
  14580. ggml_vec_dot_f32(nx, &beta, &lm_y[j[0]*nx], d);
  14581. beta /= lm_ys[j[0]];
  14582. // \gamma_{i+1} = \gamma_{i} + (\alpha_{j} - \beta_{j}) s_{j}
  14583. ggml_vec_mad_f32(nx, d, &lm_s[j[0]*nx], lm_alpha[j[0]] - beta);
  14584. j[0] = (j[0] + 1)%m;
  14585. }
  14586. step[0] = 1.0;
  14587. }
  14588. return GGML_OPT_DID_NOT_CONVERGE;
  14589. }
  14590. struct ggml_opt_params ggml_opt_default_params(enum ggml_opt_type type) {
  14591. struct ggml_opt_params result;
  14592. switch (type) {
  14593. case GGML_OPT_ADAM:
  14594. {
  14595. result = (struct ggml_opt_params) {
  14596. .type = GGML_OPT_ADAM,
  14597. .n_threads = 1,
  14598. .past = 0,
  14599. .delta = 1e-5f,
  14600. .max_no_improvement = 100,
  14601. .print_forward_graph = true,
  14602. .print_backward_graph = true,
  14603. .adam = {
  14604. .n_iter = 10000,
  14605. .sched = 1.000f,
  14606. .decay = 0.001f,
  14607. .alpha = 0.001f,
  14608. .beta1 = 0.9f,
  14609. .beta2 = 0.999f,
  14610. .eps = 1e-8f,
  14611. .eps_f = 1e-5f,
  14612. .eps_g = 1e-3f,
  14613. },
  14614. };
  14615. } break;
  14616. case GGML_OPT_LBFGS:
  14617. {
  14618. result = (struct ggml_opt_params) {
  14619. .type = GGML_OPT_LBFGS,
  14620. .n_threads = 1,
  14621. .past = 0,
  14622. .delta = 1e-5f,
  14623. .max_no_improvement = 0,
  14624. .print_forward_graph = true,
  14625. .print_backward_graph = true,
  14626. .lbfgs = {
  14627. .m = 6,
  14628. .n_iter = 100,
  14629. .max_linesearch = 20,
  14630. .eps = 1e-5f,
  14631. .ftol = 1e-4f,
  14632. .wolfe = 0.9f,
  14633. .min_step = 1e-20f,
  14634. .max_step = 1e+20f,
  14635. .linesearch = GGML_LINESEARCH_DEFAULT,
  14636. },
  14637. };
  14638. } break;
  14639. }
  14640. return result;
  14641. }
  14642. GGML_API void ggml_opt_init(
  14643. struct ggml_context * ctx,
  14644. struct ggml_opt_context * opt,
  14645. struct ggml_opt_params params,
  14646. int64_t nx) {
  14647. opt->ctx = ctx;
  14648. opt->params = params;
  14649. opt->iter = 0;
  14650. opt->nx = nx;
  14651. opt->just_initialized = true;
  14652. switch (opt->params.type) {
  14653. case GGML_OPT_ADAM:
  14654. {
  14655. opt->adam.x = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx);
  14656. opt->adam.g1 = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx);
  14657. opt->adam.g2 = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx);
  14658. opt->adam.m = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx);
  14659. opt->adam.v = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx);
  14660. opt->adam.mh = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx);
  14661. opt->adam.vh = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx);
  14662. opt->adam.pf = params.past > 0
  14663. ? ggml_new_tensor_1d(ctx, GGML_TYPE_F32, params.past)
  14664. : NULL;
  14665. ggml_set_zero(opt->adam.x);
  14666. ggml_set_zero(opt->adam.g1);
  14667. ggml_set_zero(opt->adam.g2);
  14668. ggml_set_zero(opt->adam.m);
  14669. ggml_set_zero(opt->adam.v);
  14670. ggml_set_zero(opt->adam.mh);
  14671. ggml_set_zero(opt->adam.vh);
  14672. if (opt->adam.pf) {
  14673. ggml_set_zero(opt->adam.pf);
  14674. }
  14675. } break;
  14676. case GGML_OPT_LBFGS:
  14677. {
  14678. opt->lbfgs.x = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx);
  14679. opt->lbfgs.xp = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx);
  14680. opt->lbfgs.g = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx);
  14681. opt->lbfgs.gp = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx);
  14682. opt->lbfgs.d = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx);
  14683. opt->lbfgs.pf = params.past > 0
  14684. ? ggml_new_tensor_1d(ctx, GGML_TYPE_F32, params.past)
  14685. : NULL;
  14686. opt->lbfgs.lmal = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, params.lbfgs.m);
  14687. opt->lbfgs.lmys = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, params.lbfgs.m);
  14688. opt->lbfgs.lms = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, nx, params.lbfgs.m);
  14689. opt->lbfgs.lmy = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, nx, params.lbfgs.m);
  14690. ggml_set_zero(opt->lbfgs.x);
  14691. ggml_set_zero(opt->lbfgs.xp);
  14692. ggml_set_zero(opt->lbfgs.g);
  14693. ggml_set_zero(opt->lbfgs.gp);
  14694. ggml_set_zero(opt->lbfgs.d);
  14695. if (opt->lbfgs.pf) {
  14696. ggml_set_zero(opt->lbfgs.pf);
  14697. }
  14698. ggml_set_zero(opt->lbfgs.lmal);
  14699. ggml_set_zero(opt->lbfgs.lmys);
  14700. ggml_set_zero(opt->lbfgs.lms);
  14701. ggml_set_zero(opt->lbfgs.lmy);
  14702. } break;
  14703. }
  14704. }
  14705. enum ggml_opt_result ggml_opt(
  14706. struct ggml_context * ctx,
  14707. struct ggml_opt_params params,
  14708. struct ggml_tensor * f) {
  14709. bool free_ctx = false;
  14710. if (ctx == NULL) {
  14711. struct ggml_init_params params_ctx = {
  14712. .mem_size = 16*1024*1024,
  14713. .mem_buffer = NULL,
  14714. .no_alloc = false,
  14715. };
  14716. ctx = ggml_init(params_ctx);
  14717. if (ctx == NULL) {
  14718. return GGML_OPT_NO_CONTEXT;
  14719. }
  14720. free_ctx = true;
  14721. }
  14722. enum ggml_opt_result result = GGML_OPT_OK;
  14723. struct ggml_opt_context * opt = (struct ggml_opt_context *) alloca(sizeof(struct ggml_opt_context));
  14724. ggml_opt_init(ctx, opt, params, 0);
  14725. result = ggml_opt_resume(ctx, opt, f);
  14726. if (free_ctx) {
  14727. ggml_free(ctx);
  14728. }
  14729. return result;
  14730. }
  14731. enum ggml_opt_result ggml_opt_resume(
  14732. struct ggml_context * ctx,
  14733. struct ggml_opt_context * opt,
  14734. struct ggml_tensor * f) {
  14735. // build forward + backward compute graphs
  14736. struct ggml_tensor * gfbuf = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, sizeof(struct ggml_cgraph) / GGML_TYPE_SIZE[GGML_TYPE_I32]+ (sizeof(struct ggml_cgraph) % GGML_TYPE_SIZE[GGML_TYPE_I32] ? 1 : 0));
  14737. struct ggml_tensor * gbbuf = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, sizeof(struct ggml_cgraph) / GGML_TYPE_SIZE[GGML_TYPE_I32]+ (sizeof(struct ggml_cgraph) % GGML_TYPE_SIZE[GGML_TYPE_I32] ? 1 : 0));
  14738. struct ggml_cgraph * gf = (struct ggml_cgraph *) gfbuf->data;
  14739. struct ggml_cgraph * gb = (struct ggml_cgraph *) gbbuf->data;
  14740. *gf = ggml_build_forward (f);
  14741. *gb = ggml_build_backward(ctx, gf, true);
  14742. return ggml_opt_resume_g(ctx, opt, f, gf, gb);
  14743. }
  14744. enum ggml_opt_result ggml_opt_resume_g(
  14745. struct ggml_context * ctx,
  14746. struct ggml_opt_context * opt,
  14747. struct ggml_tensor * f,
  14748. struct ggml_cgraph * gf,
  14749. struct ggml_cgraph * gb) {
  14750. // build forward + backward compute graphs
  14751. enum ggml_opt_result result = GGML_OPT_OK;
  14752. switch (opt->params.type) {
  14753. case GGML_OPT_ADAM:
  14754. {
  14755. result = ggml_opt_adam(ctx, opt, opt->params, f, gf, gb);
  14756. } break;
  14757. case GGML_OPT_LBFGS:
  14758. {
  14759. result = ggml_opt_lbfgs(ctx, opt, opt->params, f, gf, gb);
  14760. } break;
  14761. }
  14762. if (opt->params.print_forward_graph) {
  14763. ggml_graph_print (gf);
  14764. ggml_graph_dump_dot(gf, NULL, "opt-forward.dot");
  14765. }
  14766. if (opt->params.print_backward_graph) {
  14767. ggml_graph_print (gb);
  14768. ggml_graph_dump_dot(gb, gf, "opt-backward.dot");
  14769. }
  14770. return result;
  14771. }
  14772. ////////////////////////////////////////////////////////////////////////////////
  14773. size_t ggml_quantize_q4_0(const float * src, void * dst, int n, int k, int64_t * hist) {
  14774. assert(k % QK4_0 == 0);
  14775. const int nb = k / QK4_0;
  14776. for (int b = 0; b < n; b += k) {
  14777. block_q4_0 * restrict y = (block_q4_0 *) dst + b/QK4_0;
  14778. quantize_row_q4_0_reference(src + b, y, k);
  14779. for (int i = 0; i < nb; i++) {
  14780. for (int j = 0; j < QK4_0; j += 2) {
  14781. const uint8_t vi0 = y[i].qs[j/2] & 0x0F;
  14782. const uint8_t vi1 = y[i].qs[j/2] >> 4;
  14783. hist[vi0]++;
  14784. hist[vi1]++;
  14785. }
  14786. }
  14787. }
  14788. return (n/QK4_0*sizeof(block_q4_0));
  14789. }
  14790. size_t ggml_quantize_q4_1(const float * src, void * dst, int n, int k, int64_t * hist) {
  14791. assert(k % QK4_1 == 0);
  14792. const int nb = k / QK4_1;
  14793. for (int b = 0; b < n; b += k) {
  14794. block_q4_1 * restrict y = (block_q4_1 *) dst + b/QK4_1;
  14795. quantize_row_q4_1_reference(src + b, y, k);
  14796. for (int i = 0; i < nb; i++) {
  14797. for (int j = 0; j < QK4_1; j += 2) {
  14798. const uint8_t vi0 = y[i].qs[j/2] & 0x0F;
  14799. const uint8_t vi1 = y[i].qs[j/2] >> 4;
  14800. hist[vi0]++;
  14801. hist[vi1]++;
  14802. }
  14803. }
  14804. }
  14805. return (n/QK4_1*sizeof(block_q4_1));
  14806. }
  14807. size_t ggml_quantize_q5_0(const float * src, void * dst, int n, int k, int64_t * hist) {
  14808. assert(k % QK5_0 == 0);
  14809. const int nb = k / QK5_0;
  14810. for (int b = 0; b < n; b += k) {
  14811. block_q5_0 * restrict y = (block_q5_0 *)dst + b/QK5_0;
  14812. quantize_row_q5_0_reference(src + b, y, k);
  14813. for (int i = 0; i < nb; i++) {
  14814. uint32_t qh;
  14815. memcpy(&qh, &y[i].qh, sizeof(qh));
  14816. for (int j = 0; j < QK5_0; j += 2) {
  14817. const uint8_t vh0 = ((qh & (1u << (j + 0 ))) >> (j + 0 )) << 4;
  14818. const uint8_t vh1 = ((qh & (1u << (j + 16))) >> (j + 12));
  14819. // cast to 16 bins
  14820. const uint8_t vi0 = ((y[i].qs[j/2] & 0x0F) | vh0) / 2;
  14821. const uint8_t vi1 = ((y[i].qs[j/2] >> 4) | vh1) / 2;
  14822. hist[vi0]++;
  14823. hist[vi1]++;
  14824. }
  14825. }
  14826. }
  14827. return (n/QK5_0*sizeof(block_q5_0));
  14828. }
  14829. size_t ggml_quantize_q5_1(const float * src, void * dst, int n, int k, int64_t * hist) {
  14830. assert(k % QK5_1 == 0);
  14831. const int nb = k / QK5_1;
  14832. for (int b = 0; b < n; b += k) {
  14833. block_q5_1 * restrict y = (block_q5_1 *)dst + b/QK5_1;
  14834. quantize_row_q5_1_reference(src + b, y, k);
  14835. for (int i = 0; i < nb; i++) {
  14836. uint32_t qh;
  14837. memcpy(&qh, &y[i].qh, sizeof(qh));
  14838. for (int j = 0; j < QK5_1; j += 2) {
  14839. const uint8_t vh0 = ((qh & (1u << (j + 0 ))) >> (j + 0 )) << 4;
  14840. const uint8_t vh1 = ((qh & (1u << (j + 16))) >> (j + 12));
  14841. // cast to 16 bins
  14842. const uint8_t vi0 = ((y[i].qs[j/2] & 0x0F) | vh0) / 2;
  14843. const uint8_t vi1 = ((y[i].qs[j/2] >> 4) | vh1) / 2;
  14844. hist[vi0]++;
  14845. hist[vi1]++;
  14846. }
  14847. }
  14848. }
  14849. return (n/QK5_1*sizeof(block_q5_1));
  14850. }
  14851. size_t ggml_quantize_q8_0(const float * src, void * dst, int n, int k, int64_t * hist) {
  14852. assert(k % QK8_0 == 0);
  14853. const int nb = k / QK8_0;
  14854. for (int b = 0; b < n; b += k) {
  14855. block_q8_0 * restrict y = (block_q8_0 *)dst + b/QK8_0;
  14856. quantize_row_q8_0_reference(src + b, y, k);
  14857. for (int i = 0; i < nb; i++) {
  14858. for (int j = 0; j < QK8_0; ++j) {
  14859. const int8_t vi = y[i].qs[j];
  14860. hist[vi/16 + 8]++;
  14861. }
  14862. }
  14863. }
  14864. return (n/QK8_0*sizeof(block_q8_0));
  14865. }
  14866. size_t ggml_quantize_chunk(enum ggml_type type, const float * src, void * dst, int start, int n, int64_t * hist) {
  14867. size_t result = 0;
  14868. switch (type) {
  14869. case GGML_TYPE_Q4_0:
  14870. {
  14871. GGML_ASSERT(start % QK4_0 == 0);
  14872. block_q4_0 * block = (block_q4_0*)dst + start / QK4_0;
  14873. result = ggml_quantize_q4_0(src + start, block, n, n, hist);
  14874. } break;
  14875. case GGML_TYPE_Q4_1:
  14876. {
  14877. GGML_ASSERT(start % QK4_1 == 0);
  14878. block_q4_1 * block = (block_q4_1*)dst + start / QK4_1;
  14879. result = ggml_quantize_q4_1(src + start, block, n, n, hist);
  14880. } break;
  14881. case GGML_TYPE_Q5_0:
  14882. {
  14883. GGML_ASSERT(start % QK5_0 == 0);
  14884. block_q5_0 * block = (block_q5_0*)dst + start / QK5_0;
  14885. result = ggml_quantize_q5_0(src + start, block, n, n, hist);
  14886. } break;
  14887. case GGML_TYPE_Q5_1:
  14888. {
  14889. GGML_ASSERT(start % QK5_1 == 0);
  14890. block_q5_1 * block = (block_q5_1*)dst + start / QK5_1;
  14891. result = ggml_quantize_q5_1(src + start, block, n, n, hist);
  14892. } break;
  14893. case GGML_TYPE_Q8_0:
  14894. {
  14895. GGML_ASSERT(start % QK8_0 == 0);
  14896. block_q8_0 * block = (block_q8_0*)dst + start / QK8_0;
  14897. result = ggml_quantize_q8_0(src + start, block, n, n, hist);
  14898. } break;
  14899. #ifdef GGML_USE_K_QUANTS
  14900. case GGML_TYPE_Q2_K:
  14901. {
  14902. GGML_ASSERT(start % QK_K == 0);
  14903. block_q2_K * block = (block_q2_K*)dst + start / QK_K;
  14904. result = ggml_quantize_q2_K(src + start, block, n, n, hist);
  14905. } break;
  14906. case GGML_TYPE_Q3_K:
  14907. {
  14908. GGML_ASSERT(start % QK_K == 0);
  14909. block_q3_K * block = (block_q3_K*)dst + start / QK_K;
  14910. result = ggml_quantize_q3_K(src + start, block, n, n, hist);
  14911. } break;
  14912. case GGML_TYPE_Q4_K:
  14913. {
  14914. GGML_ASSERT(start % QK_K == 0);
  14915. block_q4_K * block = (block_q4_K*)dst + start / QK_K;
  14916. result = ggml_quantize_q4_K(src + start, block, n, n, hist);
  14917. } break;
  14918. case GGML_TYPE_Q5_K:
  14919. {
  14920. GGML_ASSERT(start % QK_K == 0);
  14921. block_q5_K * block = (block_q5_K*)dst + start / QK_K;
  14922. result = ggml_quantize_q5_K(src + start, block, n, n, hist);
  14923. } break;
  14924. case GGML_TYPE_Q6_K:
  14925. {
  14926. GGML_ASSERT(start % QK_K == 0);
  14927. block_q6_K * block = (block_q6_K*)dst + start / QK_K;
  14928. result = ggml_quantize_q6_K(src + start, block, n, n, hist);
  14929. } break;
  14930. #endif
  14931. case GGML_TYPE_F16:
  14932. {
  14933. int elemsize = sizeof(ggml_fp16_t);
  14934. ggml_fp32_to_fp16_row(src + start, (ggml_fp16_t *)dst + start, n);
  14935. result = n * elemsize;
  14936. } break;
  14937. case GGML_TYPE_F32:
  14938. {
  14939. int elemsize = sizeof(float);
  14940. result = n * elemsize;
  14941. memcpy((uint8_t *)dst + start * elemsize, src + start, result);
  14942. } break;
  14943. default:
  14944. assert(false);
  14945. }
  14946. return result;
  14947. }
  14948. ////////////////////////////////////////////////////////////////////////////////
  14949. int ggml_cpu_has_avx(void) {
  14950. #if defined(__AVX__)
  14951. return 1;
  14952. #else
  14953. return 0;
  14954. #endif
  14955. }
  14956. int ggml_cpu_has_avx2(void) {
  14957. #if defined(__AVX2__)
  14958. return 1;
  14959. #else
  14960. return 0;
  14961. #endif
  14962. }
  14963. int ggml_cpu_has_avx512(void) {
  14964. #if defined(__AVX512F__)
  14965. return 1;
  14966. #else
  14967. return 0;
  14968. #endif
  14969. }
  14970. int ggml_cpu_has_avx512_vbmi(void) {
  14971. #if defined(__AVX512VBMI__)
  14972. return 1;
  14973. #else
  14974. return 0;
  14975. #endif
  14976. }
  14977. int ggml_cpu_has_avx512_vnni(void) {
  14978. #if defined(__AVX512VNNI__)
  14979. return 1;
  14980. #else
  14981. return 0;
  14982. #endif
  14983. }
  14984. int ggml_cpu_has_fma(void) {
  14985. #if defined(__FMA__)
  14986. return 1;
  14987. #else
  14988. return 0;
  14989. #endif
  14990. }
  14991. int ggml_cpu_has_neon(void) {
  14992. #if defined(__ARM_NEON)
  14993. return 1;
  14994. #else
  14995. return 0;
  14996. #endif
  14997. }
  14998. int ggml_cpu_has_arm_fma(void) {
  14999. #if defined(__ARM_FEATURE_FMA)
  15000. return 1;
  15001. #else
  15002. return 0;
  15003. #endif
  15004. }
  15005. int ggml_cpu_has_f16c(void) {
  15006. #if defined(__F16C__)
  15007. return 1;
  15008. #else
  15009. return 0;
  15010. #endif
  15011. }
  15012. int ggml_cpu_has_fp16_va(void) {
  15013. #if defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC)
  15014. return 1;
  15015. #else
  15016. return 0;
  15017. #endif
  15018. }
  15019. int ggml_cpu_has_wasm_simd(void) {
  15020. #if defined(__wasm_simd128__)
  15021. return 1;
  15022. #else
  15023. return 0;
  15024. #endif
  15025. }
  15026. int ggml_cpu_has_blas(void) {
  15027. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CUBLAS) || defined(GGML_USE_CLBLAST)
  15028. return 1;
  15029. #else
  15030. return 0;
  15031. #endif
  15032. }
  15033. int ggml_cpu_has_cublas(void) {
  15034. #if defined(GGML_USE_CUBLAS)
  15035. return 1;
  15036. #else
  15037. return 0;
  15038. #endif
  15039. }
  15040. int ggml_cpu_has_clblast(void) {
  15041. #if defined(GGML_USE_CLBLAST)
  15042. return 1;
  15043. #else
  15044. return 0;
  15045. #endif
  15046. }
  15047. int ggml_cpu_has_gpublas(void) {
  15048. return ggml_cpu_has_cublas() || ggml_cpu_has_clblast();
  15049. }
  15050. int ggml_cpu_has_sse3(void) {
  15051. #if defined(__SSE3__)
  15052. return 1;
  15053. #else
  15054. return 0;
  15055. #endif
  15056. }
  15057. int ggml_cpu_has_vsx(void) {
  15058. #if defined(__POWER9_VECTOR__)
  15059. return 1;
  15060. #else
  15061. return 0;
  15062. #endif
  15063. }
  15064. ////////////////////////////////////////////////////////////////////////////////