ggml-backend.c 51 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423
  1. #include "ggml-backend-impl.h"
  2. #include "ggml-alloc.h"
  3. #include "ggml-impl.h"
  4. #include <assert.h>
  5. #include <limits.h>
  6. #include <stdarg.h>
  7. #include <stdio.h>
  8. #include <stdlib.h>
  9. #include <string.h>
  10. #define MAX(a, b) ((a) > (b) ? (a) : (b))
  11. // backend buffer type
  12. ggml_backend_buffer_t ggml_backend_buft_alloc_buffer(ggml_backend_buffer_type_t buft, size_t size) {
  13. return buft->iface.alloc_buffer(buft, size);
  14. }
  15. size_t ggml_backend_buft_get_alignment(ggml_backend_buffer_type_t buft) {
  16. return buft->iface.get_alignment(buft);
  17. }
  18. size_t ggml_backend_buft_get_alloc_size(ggml_backend_buffer_type_t buft, struct ggml_tensor * tensor) {
  19. // get_alloc_size is optional, defaults to ggml_nbytes
  20. if (buft->iface.get_alloc_size) {
  21. return buft->iface.get_alloc_size(buft, tensor);
  22. }
  23. return ggml_nbytes(tensor);
  24. }
  25. bool ggml_backend_buft_supports_backend(ggml_backend_buffer_type_t buft, ggml_backend_t backend) {
  26. return buft->iface.supports_backend(buft, backend);
  27. }
  28. bool ggml_backend_buft_is_host(ggml_backend_buffer_type_t buft) {
  29. if (buft->iface.is_host) {
  30. return buft->iface.is_host(buft);
  31. }
  32. return false;
  33. }
  34. // backend buffer
  35. ggml_backend_buffer_t ggml_backend_buffer_init(
  36. ggml_backend_buffer_type_t buft,
  37. struct ggml_backend_buffer_i iface,
  38. ggml_backend_buffer_context_t context,
  39. size_t size) {
  40. ggml_backend_buffer_t buffer = malloc(sizeof(struct ggml_backend_buffer));
  41. GGML_ASSERT(iface.get_base != NULL);
  42. (*buffer) = (struct ggml_backend_buffer) {
  43. /* .interface = */ iface,
  44. /* .buft = */ buft,
  45. /* .context = */ context,
  46. /* .size = */ size,
  47. };
  48. return buffer;
  49. }
  50. void ggml_backend_buffer_free(ggml_backend_buffer_t buffer) {
  51. if (buffer == NULL) {
  52. return;
  53. }
  54. if (buffer->iface.free_buffer != NULL) {
  55. buffer->iface.free_buffer(buffer);
  56. }
  57. free(buffer);
  58. }
  59. size_t ggml_backend_buffer_get_size(ggml_backend_buffer_t buffer) {
  60. return buffer->size;
  61. }
  62. void * ggml_backend_buffer_get_base(ggml_backend_buffer_t buffer) {
  63. void * base = buffer->iface.get_base(buffer);
  64. GGML_ASSERT(base != NULL && "backend buffer base cannot be NULL");
  65. return base;
  66. }
  67. void ggml_backend_buffer_init_tensor(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor) {
  68. // init_tensor is optional
  69. if (buffer->iface.init_tensor) {
  70. buffer->iface.init_tensor(buffer, tensor);
  71. }
  72. }
  73. size_t ggml_backend_buffer_get_alignment (ggml_backend_buffer_t buffer) {
  74. return ggml_backend_buft_get_alignment(ggml_backend_buffer_type(buffer));
  75. }
  76. size_t ggml_backend_buffer_get_alloc_size(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor) {
  77. return ggml_backend_buft_get_alloc_size(ggml_backend_buffer_type(buffer), tensor);
  78. }
  79. void ggml_backend_buffer_clear(ggml_backend_buffer_t buffer, uint8_t value) {
  80. buffer->iface.clear(buffer, value);
  81. }
  82. bool ggml_backend_buffer_is_host(ggml_backend_buffer_t buffer) {
  83. return ggml_backend_buft_is_host(ggml_backend_buffer_type(buffer));
  84. }
  85. ggml_backend_buffer_type_t ggml_backend_buffer_type(ggml_backend_buffer_t buffer) {
  86. return buffer->buft;
  87. }
  88. // backend
  89. const char * ggml_backend_name(ggml_backend_t backend) {
  90. if (backend == NULL) {
  91. return "NULL";
  92. }
  93. return backend->iface.get_name(backend);
  94. }
  95. void ggml_backend_free(ggml_backend_t backend) {
  96. if (backend == NULL) {
  97. return;
  98. }
  99. backend->iface.free(backend);
  100. }
  101. ggml_backend_buffer_type_t ggml_backend_get_default_buffer_type(ggml_backend_t backend) {
  102. return backend->iface.get_default_buffer_type(backend);
  103. }
  104. ggml_backend_buffer_t ggml_backend_alloc_buffer(ggml_backend_t backend, size_t size) {
  105. return ggml_backend_buft_alloc_buffer(ggml_backend_get_default_buffer_type(backend), size);
  106. }
  107. size_t ggml_backend_get_alignment(ggml_backend_t backend) {
  108. return ggml_backend_buft_get_alignment(ggml_backend_get_default_buffer_type(backend));
  109. }
  110. void ggml_backend_tensor_set_async(ggml_backend_t backend, struct ggml_tensor * tensor, const void * data, size_t offset, size_t size) {
  111. GGML_ASSERT(tensor->data != NULL && "tensor not allocated");
  112. GGML_ASSERT(offset + size <= ggml_nbytes(tensor) && "tensor write out of bounds");
  113. backend->iface.set_tensor_async(backend, tensor, data, offset, size);
  114. }
  115. void ggml_backend_tensor_get_async(ggml_backend_t backend, const struct ggml_tensor * tensor, void * data, size_t offset, size_t size) {
  116. GGML_ASSERT(tensor->data != NULL && "tensor not allocated");
  117. GGML_ASSERT(offset + size <= ggml_nbytes(tensor) && "tensor read out of bounds");
  118. backend->iface.get_tensor_async(backend, tensor, data, offset, size);
  119. }
  120. void ggml_backend_tensor_set(struct ggml_tensor * tensor, const void * data, size_t offset, size_t size) {
  121. GGML_ASSERT(tensor->data != NULL && "tensor not allocated");
  122. GGML_ASSERT(tensor->buffer != NULL && "tensor buffer not set");
  123. GGML_ASSERT(offset + size <= ggml_nbytes(tensor) && "tensor write out of bounds");
  124. tensor->buffer->iface.set_tensor(tensor->buffer, tensor, data, offset, size);
  125. }
  126. void ggml_backend_tensor_get(const struct ggml_tensor * tensor, void * data, size_t offset, size_t size) {
  127. GGML_ASSERT(tensor->data != NULL && "tensor not allocated");
  128. GGML_ASSERT(tensor->buffer != NULL && "tensor buffer not set");
  129. GGML_ASSERT(offset + size <= ggml_nbytes(tensor) && "tensor read out of bounds");
  130. tensor->buffer->iface.get_tensor(tensor->buffer, tensor, data, offset, size);
  131. }
  132. void ggml_backend_synchronize(ggml_backend_t backend) {
  133. if (backend->iface.synchronize == NULL) {
  134. return;
  135. }
  136. backend->iface.synchronize(backend);
  137. }
  138. ggml_backend_graph_plan_t ggml_backend_graph_plan_create(ggml_backend_t backend, struct ggml_cgraph * cgraph) {
  139. return backend->iface.graph_plan_create(backend, cgraph);
  140. }
  141. void ggml_backend_graph_plan_free(ggml_backend_t backend, ggml_backend_graph_plan_t plan) {
  142. backend->iface.graph_plan_free(backend, plan);
  143. }
  144. void ggml_backend_graph_plan_compute(ggml_backend_t backend, ggml_backend_graph_plan_t plan) {
  145. backend->iface.graph_plan_compute(backend, plan);
  146. // TODO: optional sync
  147. ggml_backend_synchronize(backend);
  148. }
  149. void ggml_backend_graph_compute(ggml_backend_t backend, struct ggml_cgraph * cgraph) {
  150. backend->iface.graph_compute(backend, cgraph);
  151. // TODO: optional sync
  152. ggml_backend_synchronize(backend);
  153. }
  154. bool ggml_backend_supports_op(ggml_backend_t backend, const struct ggml_tensor * op) {
  155. return backend->iface.supports_op(backend, op);
  156. }
  157. // backend copy
  158. static bool ggml_are_same_layout(const struct ggml_tensor * a, const struct ggml_tensor * b) {
  159. if (a->type != b->type) {
  160. return false;
  161. }
  162. for (int i = 0; i < GGML_MAX_DIMS; i++) {
  163. if (a->ne[i] != b->ne[i]) {
  164. return false;
  165. }
  166. if (a->nb[i] != b->nb[i]) {
  167. return false;
  168. }
  169. }
  170. return true;
  171. }
  172. void ggml_backend_tensor_copy(struct ggml_tensor * src, struct ggml_tensor * dst) {
  173. //printf("src: %s ne: [%d %d %d %d] nb: [%d %d %d %d]\n", src->name, (int)src->ne[0], (int)src->ne[1], (int)src->ne[2], (int)src->ne[3], (int)src->nb[0], (int)src->nb[1], (int)src->nb[2], (int)src->nb[3]);
  174. //printf("dst: %s ne: [%d %d %d %d] nb: [%d %d %d %d]\n", dst->name, (int)dst->ne[0], (int)dst->ne[1], (int)dst->ne[2], (int)dst->ne[3], (int)dst->nb[0], (int)dst->nb[1], (int)dst->nb[2], (int)dst->nb[3]);
  175. GGML_ASSERT(ggml_are_same_layout(src, dst) && "cannot copy tensors with different layouts");
  176. // fprintf(stderr, "cpy tensor %s from %s to %s (%lu bytes)\n", src->name, ggml_backend_name(src->backend), ggml_backend_name(dst->backend), ggml_nbytes(src));
  177. if (src == dst) {
  178. return;
  179. }
  180. // TODO: allow backends to support copy to/from same backend
  181. if (dst->buffer->iface.cpy_tensor_from != NULL) {
  182. dst->buffer->iface.cpy_tensor_from(dst->buffer, src, dst);
  183. } else if (src->buffer->iface.cpy_tensor_to != NULL) {
  184. src->buffer->iface.cpy_tensor_to(src->buffer, src, dst);
  185. } else {
  186. // shouldn't be hit when copying from/to CPU
  187. #ifndef NDEBUG
  188. fprintf(stderr, "ggml_backend_tensor_copy: neither cpy_tensor_from nor cpy_tensor_to "
  189. "are implemented for %s and %s, falling back to get/set\n", src->name, dst->name);
  190. #endif
  191. size_t nbytes = ggml_nbytes(src);
  192. void * data = malloc(nbytes);
  193. ggml_backend_tensor_get(src, data, 0, nbytes);
  194. ggml_backend_tensor_set(dst, data, 0, nbytes);
  195. free(data);
  196. }
  197. }
  198. // backend registry
  199. #define GGML_MAX_BACKENDS_REG 16
  200. struct ggml_backend_reg {
  201. char name[128];
  202. ggml_backend_init_fn init_fn;
  203. ggml_backend_buffer_type_t default_buffer_type;
  204. void * user_data;
  205. };
  206. static struct ggml_backend_reg ggml_backend_registry[GGML_MAX_BACKENDS_REG];
  207. static size_t ggml_backend_registry_count = 0;
  208. static ggml_backend_t ggml_backend_reg_cpu_init(const char * params, void * user_data);
  209. static void ggml_backend_registry_init(void) {
  210. static bool initialized = false;
  211. if (initialized) {
  212. return;
  213. }
  214. initialized = true;
  215. ggml_backend_register("CPU", ggml_backend_reg_cpu_init, ggml_backend_cpu_buffer_type(), NULL);
  216. // add forward decls here to avoid including the backend headers
  217. #ifdef GGML_USE_CUBLAS
  218. extern void ggml_backend_cuda_reg_devices(void);
  219. ggml_backend_cuda_reg_devices();
  220. #endif
  221. #ifdef GGML_USE_METAL
  222. extern ggml_backend_t ggml_backend_reg_metal_init(const char * params, void * user_data);
  223. extern ggml_backend_buffer_type_t ggml_backend_metal_buffer_type(void);
  224. ggml_backend_register("Metal", ggml_backend_reg_metal_init, ggml_backend_metal_buffer_type(), NULL);
  225. #endif
  226. }
  227. void ggml_backend_register(const char * name, ggml_backend_init_fn init_fn, ggml_backend_buffer_type_t default_buffer_type, void * user_data) {
  228. GGML_ASSERT(ggml_backend_registry_count < GGML_MAX_BACKENDS_REG);
  229. size_t id = ggml_backend_registry_count;
  230. ggml_backend_registry[id] = (struct ggml_backend_reg) {
  231. /* .name = */ {0},
  232. /* .fn = */ init_fn,
  233. /* .default_buffer_type = */ default_buffer_type,
  234. /* .user_data = */ user_data,
  235. };
  236. snprintf(ggml_backend_registry[id].name, sizeof(ggml_backend_registry[id].name), "%s", name);
  237. #ifndef NDEBUG
  238. fprintf(stderr, "%s: registered backend %s\n", __func__, name);
  239. #endif
  240. ggml_backend_registry_count++;
  241. }
  242. size_t ggml_backend_reg_get_count(void) {
  243. ggml_backend_registry_init();
  244. return ggml_backend_registry_count;
  245. }
  246. size_t ggml_backend_reg_find_by_name(const char * name) {
  247. ggml_backend_registry_init();
  248. for (size_t i = 0; i < ggml_backend_registry_count; i++) {
  249. // TODO: case insensitive in a portable way
  250. if (strcmp(ggml_backend_registry[i].name, name) == 0) {
  251. return i;
  252. }
  253. }
  254. // not found
  255. return SIZE_MAX;
  256. }
  257. // init from backend:params string
  258. ggml_backend_t ggml_backend_reg_init_backend_from_str(const char * backend_str) {
  259. ggml_backend_registry_init();
  260. const char * params = strchr(backend_str, ':');
  261. char backend_name[128];
  262. if (params == NULL) {
  263. snprintf(backend_name, sizeof(backend_name), "%s", backend_str);
  264. params = "";
  265. } else {
  266. snprintf(backend_name, sizeof(backend_name), "%.*s", (int)(params - backend_str), backend_str);
  267. params++;
  268. }
  269. size_t backend_i = ggml_backend_reg_find_by_name(backend_name);
  270. if (backend_i == SIZE_MAX) {
  271. fprintf(stderr, "%s: backend %s not found\n", __func__, backend_name);
  272. return NULL;
  273. }
  274. return ggml_backend_reg_init_backend(backend_i, params);
  275. }
  276. const char * ggml_backend_reg_get_name(size_t i) {
  277. ggml_backend_registry_init();
  278. GGML_ASSERT(i < ggml_backend_registry_count);
  279. return ggml_backend_registry[i].name;
  280. }
  281. ggml_backend_t ggml_backend_reg_init_backend(size_t i, const char * params) {
  282. ggml_backend_registry_init();
  283. GGML_ASSERT(i < ggml_backend_registry_count);
  284. return ggml_backend_registry[i].init_fn(params, ggml_backend_registry[i].user_data);
  285. }
  286. ggml_backend_buffer_type_t ggml_backend_reg_get_default_buffer_type(size_t i) {
  287. ggml_backend_registry_init();
  288. GGML_ASSERT(i < ggml_backend_registry_count);
  289. return ggml_backend_registry[i].default_buffer_type;
  290. }
  291. ggml_backend_buffer_t ggml_backend_reg_alloc_buffer(size_t i, size_t size) {
  292. ggml_backend_registry_init();
  293. GGML_ASSERT(i < ggml_backend_registry_count);
  294. return ggml_backend_buft_alloc_buffer(ggml_backend_registry[i].default_buffer_type, size);
  295. }
  296. // backend CPU
  297. static void * ggml_backend_cpu_buffer_get_base(ggml_backend_buffer_t buffer) {
  298. return (void *)buffer->context;
  299. }
  300. static void ggml_backend_cpu_buffer_free_buffer(ggml_backend_buffer_t buffer) {
  301. free(buffer->context);
  302. }
  303. static void ggml_backend_cpu_buffer_set_tensor(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor, const void * data, size_t offset, size_t size) {
  304. memcpy((char *)tensor->data + offset, data, size);
  305. GGML_UNUSED(buffer);
  306. }
  307. static void ggml_backend_cpu_buffer_get_tensor(ggml_backend_buffer_t buffer, const struct ggml_tensor * tensor, void * data, size_t offset, size_t size) {
  308. memcpy(data, (const char *)tensor->data + offset, size);
  309. GGML_UNUSED(buffer);
  310. }
  311. static void ggml_backend_cpu_buffer_cpy_tensor_from(ggml_backend_buffer_t buffer, struct ggml_tensor * src, struct ggml_tensor * dst) {
  312. ggml_backend_tensor_get(src, dst->data, 0, ggml_nbytes(src));
  313. GGML_UNUSED(buffer);
  314. }
  315. static void ggml_backend_cpu_buffer_cpy_tensor_to(ggml_backend_buffer_t buffer, struct ggml_tensor * src, struct ggml_tensor * dst) {
  316. ggml_backend_tensor_set(dst, src->data, 0, ggml_nbytes(src));
  317. GGML_UNUSED(buffer);
  318. }
  319. static void ggml_backend_cpu_buffer_clear(ggml_backend_buffer_t buffer, uint8_t value) {
  320. memset(buffer->context, value, buffer->size);
  321. }
  322. static struct ggml_backend_buffer_i cpu_backend_buffer_i = {
  323. /* .free_buffer = */ ggml_backend_cpu_buffer_free_buffer,
  324. /* .get_base = */ ggml_backend_cpu_buffer_get_base,
  325. /* .init_tensor = */ NULL, // no initialization required
  326. /* .set_tensor = */ ggml_backend_cpu_buffer_set_tensor,
  327. /* .get_tensor = */ ggml_backend_cpu_buffer_get_tensor,
  328. /* .cpy_tensor_from = */ ggml_backend_cpu_buffer_cpy_tensor_from,
  329. /* .cpy_tensor_to = */ ggml_backend_cpu_buffer_cpy_tensor_to,
  330. /* .clear = */ ggml_backend_cpu_buffer_clear,
  331. };
  332. // for buffers from ptr, free is not called
  333. static struct ggml_backend_buffer_i cpu_backend_buffer_i_from_ptr = {
  334. /* .free_buffer = */ NULL, // ptr is not owned by the buffer, so it does not need to be freed
  335. /* .get_base = */ ggml_backend_cpu_buffer_get_base,
  336. /* .init_tensor = */ NULL, // no initialization required
  337. /* .set_tensor = */ ggml_backend_cpu_buffer_set_tensor,
  338. /* .get_tensor = */ ggml_backend_cpu_buffer_get_tensor,
  339. /* .cpy_tensor_from = */ ggml_backend_cpu_buffer_cpy_tensor_from,
  340. /* .cpy_tensor_to = */ ggml_backend_cpu_buffer_cpy_tensor_to,
  341. /* .clear = */ ggml_backend_cpu_buffer_clear,
  342. };
  343. static const size_t TENSOR_ALIGNMENT = 64; // should be enough for AVX 512
  344. static ggml_backend_buffer_t ggml_backend_cpu_buffer_type_alloc_buffer(ggml_backend_buffer_type_t buft, size_t size) {
  345. size += TENSOR_ALIGNMENT; // malloc may return an address that is not aligned
  346. void * data = malloc(size); // TODO: maybe use GGML_ALIGNED_MALLOC?
  347. GGML_ASSERT(data != NULL && "failed to allocate buffer");
  348. return ggml_backend_buffer_init(buft, cpu_backend_buffer_i, data, size);
  349. }
  350. static size_t ggml_backend_cpu_buffer_type_get_alignment(ggml_backend_buffer_type_t buft) {
  351. return TENSOR_ALIGNMENT;
  352. GGML_UNUSED(buft);
  353. }
  354. static bool ggml_backend_cpu_buffer_type_supports_backend(ggml_backend_buffer_type_t buft, ggml_backend_t backend) {
  355. return ggml_backend_is_cpu(backend);
  356. GGML_UNUSED(buft);
  357. }
  358. static bool ggml_backend_cpu_buffer_type_is_host(ggml_backend_buffer_type_t buft) {
  359. return true;
  360. GGML_UNUSED(buft);
  361. }
  362. ggml_backend_buffer_type_t ggml_backend_cpu_buffer_type(void) {
  363. static struct ggml_backend_buffer_type ggml_backend_cpu_buffer_type = {
  364. /* .iface = */ {
  365. /* .alloc_buffer = */ ggml_backend_cpu_buffer_type_alloc_buffer,
  366. /* .get_alignment = */ ggml_backend_cpu_buffer_type_get_alignment,
  367. /* .get_alloc_size = */ NULL, // defaults to ggml_nbytes
  368. /* .supports_backend = */ ggml_backend_cpu_buffer_type_supports_backend,
  369. /* .is_host = */ ggml_backend_cpu_buffer_type_is_host,
  370. },
  371. /* .context = */ NULL,
  372. };
  373. return &ggml_backend_cpu_buffer_type;
  374. }
  375. #ifdef GGML_USE_CPU_HBM
  376. // buffer type HBM
  377. #include <hbwmalloc.h>
  378. static void ggml_backend_cpu_hbm_buffer_free_buffer(ggml_backend_buffer_t buffer) {
  379. hbw_free(buffer->context);
  380. }
  381. static ggml_backend_buffer_t ggml_backend_cpu_hbm_buffer_type_alloc_buffer(ggml_backend_buffer_type_t buft, size_t size) {
  382. //void * ptr = hbw_malloc(size);
  383. void * ptr;
  384. int result = hbw_posix_memalign(&ptr, ggml_backend_cpu_buffer_type_get_alignment(buft), size);
  385. if (result != 0) {
  386. fprintf(stderr, "failed to allocate HBM buffer of size %zu\n", size);
  387. return NULL;
  388. }
  389. // FIXME: this is a hack to avoid having to implement a new buffer type
  390. ggml_backend_buffer_t buffer = ggml_backend_cpu_buffer_from_ptr(ptr, size);
  391. buffer->buft = buft;
  392. buffer->iface.free_buffer = ggml_backend_cpu_hbm_buffer_free_buffer;
  393. return buffer;
  394. }
  395. ggml_backend_buffer_type_t ggml_backend_cpu_hbm_buffer_type() {
  396. static struct ggml_backend_buffer_type ggml_backend_cpu_buffer_type_hbm = {
  397. /* .iface = */ {
  398. /* .alloc_buffer = */ ggml_backend_cpu_hbm_buffer_type_alloc_buffer,
  399. /* .get_alignment = */ ggml_backend_cpu_buffer_type_get_alignment,
  400. /* .get_alloc_size = */ NULL, // defaults to ggml_nbytes
  401. /* .supports_backend = */ ggml_backend_cpu_buffer_type_supports_backend,
  402. /* .is_host = */ ggml_backend_cpu_buffer_type_is_host,
  403. },
  404. /* .context = */ NULL,
  405. };
  406. return &ggml_backend_cpu_buffer_type_hbm;
  407. }
  408. #endif
  409. struct ggml_backend_cpu_context {
  410. int n_threads;
  411. void * work_data;
  412. size_t work_size;
  413. };
  414. static const char * ggml_backend_cpu_name(ggml_backend_t backend) {
  415. return "CPU";
  416. GGML_UNUSED(backend);
  417. }
  418. static void ggml_backend_cpu_free(ggml_backend_t backend) {
  419. struct ggml_backend_cpu_context * cpu_ctx = (struct ggml_backend_cpu_context *)backend->context;
  420. free(cpu_ctx->work_data);
  421. free(cpu_ctx);
  422. free(backend);
  423. }
  424. static ggml_backend_buffer_type_t ggml_backend_cpu_get_default_buffer_type(ggml_backend_t backend) {
  425. return ggml_backend_cpu_buffer_type();
  426. GGML_UNUSED(backend);
  427. }
  428. struct ggml_backend_plan_cpu {
  429. struct ggml_cplan cplan;
  430. struct ggml_cgraph cgraph;
  431. };
  432. static ggml_backend_graph_plan_t ggml_backend_cpu_graph_plan_create(ggml_backend_t backend, struct ggml_cgraph * cgraph) {
  433. struct ggml_backend_cpu_context * cpu_ctx = (struct ggml_backend_cpu_context *)backend->context;
  434. struct ggml_backend_plan_cpu * cpu_plan = malloc(sizeof(struct ggml_backend_plan_cpu));
  435. cpu_plan->cplan = ggml_graph_plan(cgraph, cpu_ctx->n_threads);
  436. cpu_plan->cgraph = *cgraph; // FIXME: deep copy
  437. if (cpu_plan->cplan.work_size > 0) {
  438. cpu_plan->cplan.work_data = malloc(cpu_plan->cplan.work_size);
  439. }
  440. return cpu_plan;
  441. }
  442. static void ggml_backend_cpu_graph_plan_free(ggml_backend_t backend, ggml_backend_graph_plan_t plan) {
  443. struct ggml_backend_plan_cpu * cpu_plan = (struct ggml_backend_plan_cpu *)plan;
  444. free(cpu_plan->cplan.work_data);
  445. free(cpu_plan);
  446. GGML_UNUSED(backend);
  447. }
  448. static void ggml_backend_cpu_graph_plan_compute(ggml_backend_t backend, ggml_backend_graph_plan_t plan) {
  449. struct ggml_backend_plan_cpu * cpu_plan = (struct ggml_backend_plan_cpu *)plan;
  450. ggml_graph_compute(&cpu_plan->cgraph, &cpu_plan->cplan);
  451. GGML_UNUSED(backend);
  452. }
  453. static void ggml_backend_cpu_graph_compute(ggml_backend_t backend, struct ggml_cgraph * cgraph) {
  454. struct ggml_backend_cpu_context * cpu_ctx = (struct ggml_backend_cpu_context *)backend->context;
  455. struct ggml_cplan cplan = ggml_graph_plan(cgraph, cpu_ctx->n_threads);
  456. if (cpu_ctx->work_size < cplan.work_size) {
  457. // TODO: may be faster to free and use malloc to avoid the copy
  458. cpu_ctx->work_data = realloc(cpu_ctx->work_data, cplan.work_size);
  459. cpu_ctx->work_size = cplan.work_size;
  460. }
  461. cplan.work_data = cpu_ctx->work_data;
  462. ggml_graph_compute(cgraph, &cplan);
  463. }
  464. static bool ggml_backend_cpu_supports_op(ggml_backend_t backend, const struct ggml_tensor * op) {
  465. return true;
  466. GGML_UNUSED(backend);
  467. GGML_UNUSED(op);
  468. }
  469. static struct ggml_backend_i cpu_backend_i = {
  470. /* .get_name = */ ggml_backend_cpu_name,
  471. /* .free = */ ggml_backend_cpu_free,
  472. /* .get_default_buffer_type = */ ggml_backend_cpu_get_default_buffer_type,
  473. /* .set_tensor_async = */ NULL,
  474. /* .get_tensor_async = */ NULL,
  475. /* .cpy_tensor_from_async = */ NULL,
  476. /* .cpy_tensor_to_async = */ NULL,
  477. /* .synchronize = */ NULL,
  478. /* .graph_plan_create = */ ggml_backend_cpu_graph_plan_create,
  479. /* .graph_plan_free = */ ggml_backend_cpu_graph_plan_free,
  480. /* .graph_plan_compute = */ ggml_backend_cpu_graph_plan_compute,
  481. /* .graph_compute = */ ggml_backend_cpu_graph_compute,
  482. /* .supports_op = */ ggml_backend_cpu_supports_op,
  483. };
  484. ggml_backend_t ggml_backend_cpu_init(void) {
  485. struct ggml_backend_cpu_context * ctx = malloc(sizeof(struct ggml_backend_cpu_context));
  486. ctx->n_threads = GGML_DEFAULT_N_THREADS;
  487. ctx->work_data = NULL;
  488. ctx->work_size = 0;
  489. ggml_backend_t cpu_backend = malloc(sizeof(struct ggml_backend));
  490. *cpu_backend = (struct ggml_backend) {
  491. /* .interface = */ cpu_backend_i,
  492. /* .context = */ ctx
  493. };
  494. return cpu_backend;
  495. }
  496. bool ggml_backend_is_cpu(ggml_backend_t backend) {
  497. return backend->iface.get_name == ggml_backend_cpu_name;
  498. }
  499. void ggml_backend_cpu_set_n_threads(ggml_backend_t backend_cpu, int n_threads) {
  500. GGML_ASSERT(ggml_backend_is_cpu(backend_cpu));
  501. struct ggml_backend_cpu_context * ctx = (struct ggml_backend_cpu_context *)backend_cpu->context;
  502. ctx->n_threads = n_threads;
  503. }
  504. ggml_backend_buffer_t ggml_backend_cpu_buffer_from_ptr(void * ptr, size_t size) {
  505. return ggml_backend_buffer_init(ggml_backend_cpu_buffer_type(), cpu_backend_buffer_i_from_ptr, ptr, size);
  506. }
  507. static ggml_backend_t ggml_backend_reg_cpu_init(const char * params, void * user_data) {
  508. return ggml_backend_cpu_init();
  509. GGML_UNUSED(params);
  510. GGML_UNUSED(user_data);
  511. }
  512. // scheduler
  513. #define GGML_MAX_BACKENDS 4
  514. #define GGML_MAX_SPLITS 256
  515. #define GGML_MAX_SPLIT_INPUTS 16
  516. struct ggml_backend_sched_split {
  517. ggml_tallocr_t tallocr;
  518. int i_start;
  519. int i_end;
  520. struct ggml_tensor * inputs[GGML_MAX_SPLIT_INPUTS];
  521. int n_inputs;
  522. struct ggml_cgraph graph;
  523. };
  524. struct ggml_backend_sched {
  525. int n_backends;
  526. ggml_backend_t backends[GGML_MAX_BACKENDS];
  527. ggml_tallocr_t tallocs[GGML_MAX_BACKENDS];
  528. ggml_gallocr_t galloc;
  529. struct ggml_hash_set hash_set;
  530. ggml_tallocr_t * node_talloc; // [hash_set.size]
  531. struct ggml_tensor * (* node_copies)[GGML_MAX_BACKENDS]; // [hash_set.size][GGML_MAX_BACKENDS]
  532. struct ggml_cgraph * graph;
  533. struct ggml_backend_sched_split splits[GGML_MAX_SPLITS];
  534. int n_splits;
  535. struct ggml_context * ctx;
  536. // align context_buffer to GGML_MEM_ALIGN
  537. #ifdef _MSC_VER
  538. __declspec(align(GGML_MEM_ALIGN))
  539. #else
  540. __attribute__((aligned(GGML_MEM_ALIGN)))
  541. #endif
  542. char context_buffer[GGML_MAX_SPLITS*GGML_MAX_SPLIT_INPUTS*sizeof(struct ggml_tensor) + sizeof(struct ggml_cgraph)];
  543. };
  544. #define hash_id(node) ggml_hash_find_or_insert(sched->hash_set, node)
  545. #define node_allocr(node) sched->node_talloc[hash_id(node)]
  546. static bool ggml_is_view_op(enum ggml_op op) {
  547. return op == GGML_OP_VIEW || op == GGML_OP_RESHAPE || op == GGML_OP_PERMUTE || op == GGML_OP_TRANSPOSE;
  548. }
  549. // returns the priority of the backend, lower is better
  550. static int sched_backend_prio(ggml_backend_sched_t sched, ggml_backend_t backend) {
  551. for (int i = 0; i < sched->n_backends; i++) {
  552. if (sched->backends[i] == backend) {
  553. return i;
  554. }
  555. }
  556. return INT_MAX;
  557. }
  558. static int sched_allocr_prio(ggml_backend_sched_t sched, ggml_tallocr_t allocr) {
  559. for (int i = 0; i < sched->n_backends; i++) {
  560. if (sched->tallocs[i] == allocr) {
  561. return i;
  562. }
  563. }
  564. return INT_MAX;
  565. }
  566. static ggml_backend_t get_buffer_backend(ggml_backend_sched_t sched, ggml_backend_buffer_t buffer) {
  567. if (buffer == NULL) {
  568. return NULL;
  569. }
  570. // find highest prio backend that supports the buffer type
  571. for (int i = 0; i < sched->n_backends; i++) {
  572. if (ggml_backend_buft_supports_backend(buffer->buft, sched->backends[i])) {
  573. return sched->backends[i];
  574. }
  575. }
  576. GGML_ASSERT(false && "tensor buffer type not supported by any backend");
  577. }
  578. static ggml_backend_t get_allocr_backend(ggml_backend_sched_t sched, ggml_tallocr_t allocr) {
  579. if (allocr == NULL) {
  580. return NULL;
  581. }
  582. // find highest prio backend that supports the buffer type
  583. for (int i = 0; i < sched->n_backends; i++) {
  584. if (sched->tallocs[i] == allocr) {
  585. return sched->backends[i];
  586. }
  587. }
  588. GGML_UNREACHABLE();
  589. }
  590. #if 0
  591. static char causes[GGML_DEFAULT_GRAPH_SIZE*8 + GGML_MAX_SPLITS*GGML_MAX_SPLIT_INPUTS][128]; // debug, remove
  592. #define SET_CAUSE(node, ...) sprintf(causes[hash_id(node)], __VA_ARGS__)
  593. #define GET_CAUSE(node) causes[hash_id(node)]
  594. #else
  595. #define SET_CAUSE(node, ...)
  596. #define GET_CAUSE(node) ""
  597. #endif
  598. // returns the backend that should be used for the node based on the current locations
  599. static ggml_backend_t sched_backend_from_cur(ggml_backend_sched_t sched, struct ggml_tensor * node) {
  600. // if the dst tensor is already allocated in a buffer, we must assume that it is critical to keep it there
  601. // ie. kv cache updates
  602. // note that this doesn't allow fallback to CPU. need to add output tensors to the splits to copy the data back to the original backend.
  603. // dst
  604. ggml_backend_t cur_backend = get_buffer_backend(sched, node->buffer);
  605. if (cur_backend != NULL) {
  606. SET_CAUSE(node, "1.dst");
  607. return cur_backend;
  608. }
  609. // view_src
  610. if (node->view_src != NULL && get_buffer_backend(sched, node->view_src->buffer) != NULL) {
  611. SET_CAUSE(node, "1.vsrc");
  612. return get_buffer_backend(sched, node->view_src->buffer);
  613. }
  614. // src
  615. int cur_prio = INT_MAX;
  616. size_t cur_size = 0;
  617. for (int i = 0; i < GGML_MAX_SRC; i++) {
  618. const struct ggml_tensor * src = node->src[i];
  619. if (src == NULL) {
  620. break;
  621. }
  622. ggml_backend_t src_backend = get_buffer_backend(sched, src->buffer);
  623. if (src_backend != NULL) {
  624. int src_prio = sched_backend_prio(sched, src_backend);
  625. size_t src_size = ggml_nbytes(src);
  626. if (src_prio < cur_prio && src_size >= cur_size) {
  627. cur_prio = src_prio;
  628. cur_size = src_size;
  629. cur_backend = src_backend;
  630. SET_CAUSE(node, "1.src%d", i);
  631. }
  632. }
  633. }
  634. return cur_backend;
  635. }
  636. static char * fmt_size(size_t size) {
  637. static char buffer[128];
  638. if (size >= 1024*1024) {
  639. sprintf(buffer, "%zuM", size/1024/1024);
  640. } else {
  641. sprintf(buffer, "%zuK", size/1024);
  642. }
  643. return buffer;
  644. }
  645. static void sched_print_assignments(ggml_backend_sched_t sched, struct ggml_cgraph * graph) {
  646. int cur_split = 0;
  647. for (int i = 0; i < graph->n_nodes; i++) {
  648. if (cur_split < sched->n_splits && i == sched->splits[cur_split].i_start) {
  649. ggml_backend_t split_backend = get_allocr_backend(sched, sched->splits[cur_split].tallocr);
  650. fprintf(stderr, "\n## SPLIT #%d: %s # %d inputs: ", cur_split, ggml_backend_name(split_backend),
  651. sched->splits[cur_split].n_inputs);
  652. for (int j = 0; j < sched->splits[cur_split].n_inputs; j++) {
  653. fprintf(stderr, "[%s (%5.5s)] ", sched->splits[cur_split].inputs[j]->name,
  654. fmt_size(ggml_nbytes(sched->splits[cur_split].inputs[j])));
  655. }
  656. fprintf(stderr, "\n");
  657. cur_split++;
  658. }
  659. struct ggml_tensor * node = graph->nodes[i];
  660. if (ggml_is_view_op(node->op)) {
  661. continue;
  662. }
  663. ggml_tallocr_t node_allocr = node_allocr(node);
  664. ggml_backend_t node_backend = node_allocr ? get_allocr_backend(sched, node_allocr) : NULL; // FIXME:
  665. fprintf(stderr, "node #%3d (%10.10s): %20.20s (%4.4s) [%4.4s %8.8s]:", i, ggml_op_name(node->op), node->name,
  666. fmt_size(ggml_nbytes(node)), node_allocr ? ggml_backend_name(node_backend) : "NULL", GET_CAUSE(node));
  667. for (int j = 0; j < GGML_MAX_SRC; j++) {
  668. struct ggml_tensor * src = node->src[j];
  669. if (src == NULL) {
  670. break;
  671. }
  672. ggml_tallocr_t src_allocr = node_allocr(src);
  673. ggml_backend_t src_backend = src_allocr ? get_allocr_backend(sched, src_allocr) : NULL;
  674. fprintf(stderr, " %20.20s (%4.4s) [%4.4s %8.8s]", src->name,
  675. fmt_size(ggml_nbytes(src)), src_backend ? ggml_backend_name(src_backend) : "NULL", GET_CAUSE(src));
  676. }
  677. fprintf(stderr, "\n");
  678. }
  679. }
  680. // creates a copy of the tensor with the same memory layout
  681. static struct ggml_tensor * ggml_dup_tensor_layout(struct ggml_context * ctx, const struct ggml_tensor * tensor) {
  682. struct ggml_tensor * dup = ggml_dup_tensor(ctx, tensor);
  683. for (int i = 0; i < GGML_MAX_DIMS; i++) {
  684. dup->nb[i] = tensor->nb[i];
  685. }
  686. return dup;
  687. }
  688. // assigns backends to ops and splits the graph into subgraphs that can be computed on the same backend
  689. // TODO: merge passes
  690. static void sched_split_graph(ggml_backend_sched_t sched, struct ggml_cgraph * graph) {
  691. // reset state
  692. size_t hash_size = sched->hash_set.size;
  693. memset(sched->hash_set.keys, 0, sizeof(sched->hash_set.keys[0]) * hash_size);
  694. memset(sched->node_talloc, 0, sizeof(sched->node_talloc[0]) * hash_size);
  695. memset(sched->node_copies, 0, sizeof(sched->node_copies[0]) * hash_size);
  696. sched->n_splits = 0;
  697. struct ggml_init_params params = {
  698. /* .mem_size = */ sizeof(sched->context_buffer),
  699. /* .mem_buffer = */ sched->context_buffer,
  700. /* .no_alloc = */ true
  701. };
  702. if (sched->ctx != NULL) {
  703. ggml_free(sched->ctx);
  704. }
  705. sched->ctx = ggml_init(params);
  706. // pass 1: assign backends to ops with allocated inputs
  707. for (int i = 0; i < graph->n_leafs; i++) {
  708. struct ggml_tensor * leaf = graph->leafs[i];
  709. if (node_allocr(leaf) != NULL) {
  710. // do not overwrite user assignments
  711. continue;
  712. }
  713. ggml_backend_t leaf_backend = get_buffer_backend(sched, leaf->buffer);
  714. if (leaf_backend == NULL && leaf->view_src != NULL) {
  715. leaf_backend = get_buffer_backend(sched, leaf->view_src->buffer);
  716. }
  717. if (leaf_backend != NULL) {
  718. node_allocr(leaf) = ggml_backend_sched_get_tallocr(sched, leaf_backend);
  719. }
  720. }
  721. for (int i = 0; i < graph->n_nodes; i++) {
  722. struct ggml_tensor * node = graph->nodes[i];
  723. if (node_allocr(node) != NULL) {
  724. // do not overwrite user assignments
  725. continue;
  726. }
  727. ggml_backend_t node_backend = sched_backend_from_cur(sched, node);
  728. if (node_backend != NULL) {
  729. node_allocr(node) = ggml_backend_sched_get_tallocr(sched, node_backend);
  730. }
  731. }
  732. //printf("PASS 1 ASSIGNMENTS\n"); sched_print_assignments(sched, graph);
  733. // pass 2: assign backends to ops from current assignments
  734. // TODO:
  735. // - reuse sched_backend_from_cur
  736. for (int i = 0; i < graph->n_nodes; i++) {
  737. struct ggml_tensor * node = graph->nodes[i];
  738. ggml_tallocr_t node_allocr = node_allocr(node);
  739. if (node_allocr == NULL) {
  740. int cur_prio = INT_MAX;
  741. size_t cur_size = 0;
  742. for (int j = 0; j < GGML_MAX_SRC; j++) {
  743. struct ggml_tensor * src = node->src[j];
  744. if (src == NULL) {
  745. break;
  746. }
  747. ggml_tallocr_t src_allocr = node_allocr(src);
  748. if (src_allocr != NULL) {
  749. int src_prio = sched_allocr_prio(sched, src_allocr);
  750. size_t src_size = ggml_nbytes(src);
  751. if (src_prio < cur_prio && src_size >= cur_size) {
  752. cur_prio = src_prio;
  753. cur_size = src_size;
  754. node_allocr = src_allocr;
  755. SET_CAUSE(node, "2.src%d", j);
  756. }
  757. }
  758. }
  759. if (node_allocr != NULL) {
  760. node_allocr(node) = node_allocr;
  761. }
  762. }
  763. }
  764. //printf("PASS 2 ASSIGNMENTS\n"); sched_print_assignments(sched, graph);
  765. // pass 3: assign backends to remaining src from dst (should only be leafs)
  766. for (int i = 0; i < graph->n_nodes; i++) {
  767. struct ggml_tensor * node = graph->nodes[i];
  768. ggml_tallocr_t node_allocr = node_allocr(node);
  769. for (int j = 0; j < GGML_MAX_SRC; j++) {
  770. struct ggml_tensor * src = node->src[j];
  771. if (src == NULL) {
  772. break;
  773. }
  774. ggml_tallocr_t src_allocr = node_allocr(src);
  775. if (src_allocr == NULL) {
  776. node_allocr(src) = node_allocr;
  777. }
  778. }
  779. }
  780. //printf("PASS 3 ASSIGNMENTS\n"); sched_print_assignments(sched, graph);
  781. // pass 4: split graph, find tensors that need to be copied
  782. // TODO:
  783. // - when switching from a less preferred backend to a more preferred backend, check if it is possible to move the switch to an earlier point for the same cost
  784. // find first backend
  785. int cur_split = 0;
  786. for (int i = 0; i < graph->n_nodes; i++) {
  787. struct ggml_tensor * node = graph->nodes[i];
  788. if (node->view_src == NULL) {
  789. sched->splits[0].tallocr = node_allocr(node);
  790. break;
  791. }
  792. }
  793. sched->splits[0].i_start = 0;
  794. sched->splits[0].n_inputs = 0;
  795. memset(sched->splits[0].inputs, 0, sizeof(sched->splits[0].inputs)); //HACK
  796. ggml_tallocr_t cur_allocr = sched->splits[0].tallocr;
  797. size_t cur_backend_id = sched_allocr_prio(sched, cur_allocr);
  798. for (int i = 0; i < graph->n_nodes; i++) {
  799. struct ggml_tensor * node = graph->nodes[i];
  800. if (ggml_is_view_op(node->op)) {
  801. continue;
  802. }
  803. ggml_tallocr_t node_allocr = node_allocr(node);
  804. if (node_allocr != cur_allocr) {
  805. sched->splits[cur_split].i_end = i;
  806. cur_split++;
  807. GGML_ASSERT(cur_split < GGML_MAX_SPLITS);
  808. sched->splits[cur_split].tallocr = node_allocr;
  809. sched->splits[cur_split].i_start = i;
  810. sched->splits[cur_split].n_inputs = 0;
  811. memset(sched->splits[cur_split].inputs, 0, sizeof(sched->splits[cur_split].inputs)); //HACK
  812. cur_allocr = node_allocr;
  813. cur_backend_id = sched_allocr_prio(sched, cur_allocr);
  814. }
  815. // find inputs that are not on the same backend
  816. for (int j = 0; j < GGML_MAX_SRC; j++) {
  817. struct ggml_tensor * src = node->src[j];
  818. if (src == NULL) {
  819. break;
  820. }
  821. ggml_tallocr_t src_allocr = node_allocr(src);
  822. if (src_allocr != node_allocr) {
  823. int n_inputs = sched->splits[cur_split].n_inputs++;
  824. GGML_ASSERT(n_inputs < GGML_MAX_SPLIT_INPUTS);
  825. sched->splits[cur_split].inputs[n_inputs] = (struct ggml_tensor *)src;
  826. // create copies
  827. size_t id = hash_id(src);
  828. if (sched->node_copies[id][cur_backend_id] == NULL) {
  829. struct ggml_tensor * tensor_copy = ggml_dup_tensor_layout(sched->ctx, src);
  830. sched->node_copies[id][cur_backend_id] = tensor_copy;
  831. node_allocr(tensor_copy) = cur_allocr;
  832. ggml_backend_t backend = get_allocr_backend(sched, cur_allocr);
  833. ggml_format_name(tensor_copy, "%s#%s", ggml_backend_name(backend), src->name);
  834. }
  835. node->src[j] = sched->node_copies[id][cur_backend_id];
  836. }
  837. }
  838. }
  839. sched->splits[cur_split].i_end = graph->n_nodes;
  840. sched->n_splits = cur_split + 1;
  841. //fprintf(stderr, "PASS 4 ASSIGNMENTS\n"); sched_print_assignments(sched, graph); fflush(stdout);
  842. #if 1
  843. // sanity check: all sources should have the same backend as the node
  844. for (int i = 0; i < graph->n_nodes; i++) {
  845. struct ggml_tensor * node = graph->nodes[i];
  846. ggml_tallocr_t node_allocr = node_allocr(node);
  847. if (node_allocr == NULL) {
  848. fprintf(stderr, "!!!!!!! %s has no backend\n", node->name);
  849. }
  850. for (int j = 0; j < GGML_MAX_SRC; j++) {
  851. struct ggml_tensor * src = node->src[j];
  852. if (src == NULL) {
  853. break;
  854. }
  855. ggml_tallocr_t src_allocr = node_allocr(src);
  856. if (src_allocr != node_allocr /* && src_backend != NULL */) { // ignore nulls for now
  857. fprintf(stderr, "!!!! %s has backend %s, src %d (%s) has backend %s\n",
  858. node->name, node_allocr ? ggml_backend_name(get_allocr_backend(sched, node_allocr)) : "NULL",
  859. j, src->name, src_allocr ? ggml_backend_name(get_allocr_backend(sched, src_allocr)) : "NULL");
  860. }
  861. }
  862. }
  863. #endif
  864. // create copies of the graph for each split
  865. // FIXME: avoid this copy, pass split inputs to ggml_gallocr_alloc_graph_n in some other way
  866. struct ggml_cgraph * graph_copy = ggml_new_graph_custom(sched->ctx, graph->n_nodes + sched->n_splits*GGML_MAX_SPLIT_INPUTS, false);
  867. for (int i = 0; i < sched->n_splits; i++) {
  868. struct ggml_backend_sched_split * split = &sched->splits[i];
  869. split->graph = ggml_graph_view(graph, split->i_start, split->i_end);
  870. // add inputs to the graph copy so that they are allocated by ggml-alloc at the start of the split
  871. for (int j = 0; j < split->n_inputs; j++) {
  872. struct ggml_tensor * input = split->inputs[j];
  873. struct ggml_tensor * input_cpy = sched->node_copies[hash_id(input)][sched_allocr_prio(sched, split->tallocr)];
  874. input_cpy->src[0] = input;
  875. graph_copy->nodes[graph_copy->n_nodes++] = input_cpy;
  876. }
  877. for (int j = split->i_start; j < split->i_end; j++) {
  878. graph_copy->nodes[graph_copy->n_nodes++] = graph->nodes[j];
  879. }
  880. }
  881. sched->graph = graph_copy;
  882. }
  883. static void sched_alloc_splits(ggml_backend_sched_t sched) {
  884. ggml_gallocr_alloc_graph_n(
  885. sched->galloc,
  886. sched->graph,
  887. sched->hash_set,
  888. sched->node_talloc);
  889. }
  890. static void sched_compute_splits(ggml_backend_sched_t sched) {
  891. uint64_t copy_us[GGML_MAX_BACKENDS] = {0};
  892. uint64_t compute_us[GGML_MAX_BACKENDS] = {0};
  893. struct ggml_backend_sched_split * splits = sched->splits;
  894. for (int i = 0; i < sched->n_splits; i++) {
  895. struct ggml_backend_sched_split * split = &splits[i];
  896. ggml_backend_t split_backend = get_allocr_backend(sched, split->tallocr);
  897. int split_backend_id = sched_backend_prio(sched, split_backend);
  898. // copy the input tensors to the split backend
  899. uint64_t copy_start_us = ggml_time_us();
  900. for (int j = 0; j < split->n_inputs; j++) {
  901. struct ggml_tensor * input = split->inputs[j];
  902. struct ggml_tensor * input_cpy = sched->node_copies[hash_id(input)][sched_backend_prio(sched, split_backend)];
  903. if (input->buffer == NULL) {
  904. if (input->view_src == NULL) {
  905. fprintf(stderr, "input %s has no buffer and no view_src\n", input->name);
  906. exit(1);
  907. }
  908. // FIXME: may need to use the sched buffer instead
  909. ggml_backend_view_init(input->view_src->buffer, input);
  910. }
  911. if (input_cpy->buffer == NULL) {
  912. fprintf(stderr, "input_cpy %s has no buffer\n", input_cpy->name);
  913. exit(1);
  914. }
  915. //GGML_ASSERT(input->buffer->backend != input_cpy->buffer->backend);
  916. //GGML_ASSERT(input_cpy->buffer->backend == split_backend);
  917. ggml_backend_tensor_copy(input, input_cpy);
  918. }
  919. // ggml_backend_synchronize(split_backend);
  920. int64_t copy_end_us = ggml_time_us();
  921. copy_us[split_backend_id] += copy_end_us - copy_start_us;
  922. #if 0
  923. char split_filename[GGML_MAX_NAME];
  924. snprintf(split_filename, GGML_MAX_NAME, "split_%i_%s.dot", i, ggml_backend_name(split_backend));
  925. ggml_graph_dump_dot(split->graph, NULL, split_filename);
  926. #endif
  927. uint64_t compute_start_us = ggml_time_us();
  928. ggml_backend_graph_compute(split_backend, &split->graph);
  929. // ggml_backend_synchronize(split_backend);
  930. uint64_t compute_end_us = ggml_time_us();
  931. compute_us[split_backend_id] += compute_end_us - compute_start_us;
  932. }
  933. #if 0
  934. // per-backend timings
  935. fprintf(stderr, "sched_compute_splits times (%d splits):\n", sched->n_splits);
  936. for (int i = 0; i < sched->n_backends; i++) {
  937. if (copy_us[i] > 0 || compute_us[i] > 0) {
  938. fprintf(stderr, "\t%5.5s: %lu us copy, %lu us compute\n", ggml_backend_name(sched->backends[i]), copy_us[i], compute_us[i]);
  939. }
  940. }
  941. #endif
  942. }
  943. static void sched_reset(ggml_backend_sched_t sched) {
  944. for (int i = 0; i < sched->n_backends; i++) {
  945. ggml_tallocr_reset(sched->tallocs[i]);
  946. }
  947. }
  948. ggml_backend_sched_t ggml_backend_sched_new(ggml_backend_t * backends, int n_backends) {
  949. GGML_ASSERT(n_backends <= GGML_MAX_BACKENDS);
  950. struct ggml_backend_sched * sched = malloc(sizeof(struct ggml_backend_sched));
  951. memset(sched, 0, sizeof(struct ggml_backend_sched));
  952. sched->n_backends = n_backends;
  953. for (int i = 0; i < n_backends; i++) {
  954. sched->backends[i] = backends[i];
  955. }
  956. sched->galloc = ggml_gallocr_new();
  957. // init measure allocs for each backend
  958. for (int i = 0; i < n_backends; i++) {
  959. sched->tallocs[i] = ggml_tallocr_new_measure_from_backend(backends[i]);
  960. }
  961. return sched;
  962. }
  963. void ggml_backend_sched_free(ggml_backend_sched_t sched) {
  964. if (sched == NULL) {
  965. return;
  966. }
  967. for (int i = 0; i < sched->n_backends; i++) {
  968. ggml_tallocr_free(sched->tallocs[i]);
  969. }
  970. ggml_gallocr_free(sched->galloc);
  971. free(sched->hash_set.keys);
  972. free(sched->node_talloc);
  973. free(sched->node_copies);
  974. free(sched);
  975. }
  976. void ggml_backend_sched_init_measure(ggml_backend_sched_t sched, struct ggml_cgraph * measure_graph) {
  977. // initialize hash tables
  978. size_t hash_size = measure_graph->visited_hash_table.size + GGML_MAX_SPLITS*GGML_MAX_SPLIT_INPUTS;
  979. sched->hash_set.size = hash_size;
  980. sched->hash_set.keys = malloc(sizeof(sched->hash_set.keys[0]) * hash_size);
  981. sched->node_talloc = malloc(sizeof(sched->node_talloc[0]) * hash_size);
  982. sched->node_copies = malloc(sizeof(sched->node_copies[0]) * hash_size);
  983. sched_split_graph(sched, measure_graph);
  984. sched_alloc_splits(sched);
  985. // allocate buffers and reset allocators
  986. for (int i = 0; i < sched->n_backends; i++) {
  987. size_t size = ggml_tallocr_max_size(sched->tallocs[i]);
  988. ggml_tallocr_free(sched->tallocs[i]);
  989. sched->tallocs[i] = ggml_tallocr_new_from_backend(sched->backends[i], size);
  990. }
  991. sched_reset(sched);
  992. }
  993. void ggml_backend_sched_graph_compute(ggml_backend_sched_t sched, struct ggml_cgraph * graph) {
  994. GGML_ASSERT(sched->hash_set.size >= graph->visited_hash_table.size + GGML_MAX_SPLITS*GGML_MAX_SPLIT_INPUTS);
  995. sched_split_graph(sched, graph);
  996. sched_alloc_splits(sched);
  997. sched_compute_splits(sched);
  998. sched_reset(sched);
  999. }
  1000. ggml_tallocr_t ggml_backend_sched_get_tallocr(ggml_backend_sched_t sched, ggml_backend_t backend) {
  1001. int backend_index = sched_backend_prio(sched, backend);
  1002. return sched->tallocs[backend_index];
  1003. }
  1004. ggml_backend_buffer_t ggml_backend_sched_get_buffer(ggml_backend_sched_t sched, ggml_backend_t backend) {
  1005. int backend_index = sched_backend_prio(sched, backend);
  1006. return ggml_tallocr_get_buffer(sched->tallocs[backend_index]);
  1007. }
  1008. void ggml_backend_sched_set_node_backend(ggml_backend_sched_t sched, struct ggml_tensor * node, ggml_backend_t backend) {
  1009. int backend_index = sched_backend_prio(sched, backend);
  1010. GGML_ASSERT(backend_index >= 0 && backend_index < sched->n_backends);
  1011. node_allocr(node) = sched->tallocs[backend_index];
  1012. }
  1013. // utils
  1014. void ggml_backend_view_init(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor) {
  1015. GGML_ASSERT(tensor->buffer == NULL);
  1016. //GGML_ASSERT(tensor->data == NULL); // views of pre-allocted tensors may have the data set, but still need to be initialized
  1017. GGML_ASSERT(tensor->view_src != NULL);
  1018. GGML_ASSERT(tensor->view_src->buffer != NULL);
  1019. GGML_ASSERT(tensor->view_src->data != NULL);
  1020. tensor->buffer = buffer;
  1021. tensor->data = (char *)tensor->view_src->data + tensor->view_offs;
  1022. tensor->backend = tensor->view_src->backend;
  1023. ggml_backend_buffer_init_tensor(buffer, tensor);
  1024. }
  1025. void ggml_backend_tensor_alloc(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor, void * addr) {
  1026. GGML_ASSERT(tensor->buffer == NULL);
  1027. GGML_ASSERT(tensor->data == NULL);
  1028. GGML_ASSERT(tensor->view_src == NULL);
  1029. GGML_ASSERT(addr >= ggml_backend_buffer_get_base(buffer));
  1030. GGML_ASSERT((char *)addr + ggml_backend_buffer_get_alloc_size(buffer, tensor) <=
  1031. (char *)ggml_backend_buffer_get_base(buffer) + ggml_backend_buffer_get_size(buffer));
  1032. tensor->buffer = buffer;
  1033. tensor->data = addr;
  1034. ggml_backend_buffer_init_tensor(buffer, tensor);
  1035. }
  1036. static struct ggml_tensor * graph_dup_tensor(struct ggml_hash_set hash_set, struct ggml_tensor ** node_copies,
  1037. struct ggml_context * ctx_allocated, struct ggml_context * ctx_unallocated, struct ggml_tensor * src) {
  1038. GGML_ASSERT(src != NULL);
  1039. GGML_ASSERT(src->data && "graph must be allocated");
  1040. size_t id = ggml_hash_insert(hash_set, src);
  1041. if (id == GGML_HASHTABLE_ALREADY_EXISTS) {
  1042. return node_copies[ggml_hash_find(hash_set, src)];
  1043. }
  1044. struct ggml_tensor * dst = ggml_dup_tensor_layout(src->data && !src->view_src ? ctx_allocated : ctx_unallocated, src);
  1045. if (src->view_src != NULL) {
  1046. dst->view_src = graph_dup_tensor(hash_set, node_copies, ctx_allocated, ctx_unallocated, src->view_src);
  1047. dst->view_offs = src->view_offs;
  1048. }
  1049. dst->op = src->op;
  1050. memcpy(dst->op_params, src->op_params, sizeof(dst->op_params));
  1051. ggml_set_name(dst, src->name);
  1052. // copy src
  1053. for (int i = 0; i < GGML_MAX_SRC; i++) {
  1054. struct ggml_tensor * s = src->src[i];
  1055. if (s == NULL) {
  1056. break;
  1057. }
  1058. dst->src[i] = graph_dup_tensor(hash_set, node_copies, ctx_allocated, ctx_unallocated, s);
  1059. }
  1060. node_copies[id] = dst;
  1061. return dst;
  1062. }
  1063. static void graph_init_tensor(struct ggml_hash_set hash_set, struct ggml_tensor ** node_copies, bool * node_init, struct ggml_tensor * src) {
  1064. size_t id = ggml_hash_find(hash_set, src);
  1065. if (node_init[id]) {
  1066. return;
  1067. }
  1068. node_init[id] = true;
  1069. struct ggml_tensor * dst = node_copies[id];
  1070. if (dst->view_src != NULL) {
  1071. ggml_backend_view_init(dst->view_src->buffer, dst);
  1072. }
  1073. else {
  1074. ggml_backend_tensor_copy(src, dst);
  1075. }
  1076. // init src
  1077. for (int i = 0; i < GGML_MAX_SRC; i++) {
  1078. struct ggml_tensor * s = src->src[i];
  1079. if (s == NULL) {
  1080. break;
  1081. }
  1082. graph_init_tensor(hash_set, node_copies, node_init, s);
  1083. }
  1084. }
  1085. struct ggml_backend_graph_copy ggml_backend_graph_copy(ggml_backend_t backend, struct ggml_cgraph * graph) {
  1086. struct ggml_hash_set hash_set = {
  1087. /* .size = */ graph->visited_hash_table.size,
  1088. /* .keys = */ calloc(sizeof(hash_set.keys[0]) * graph->visited_hash_table.size, 1)
  1089. };
  1090. struct ggml_tensor ** node_copies = calloc(sizeof(node_copies[0]) * hash_set.size, 1);
  1091. bool * node_init = calloc(sizeof(node_init[0]) * hash_set.size, 1);
  1092. struct ggml_init_params params = {
  1093. /* .mem_size = */ ggml_tensor_overhead()*hash_set.size + ggml_graph_overhead_custom(graph->size, false),
  1094. /* .mem_buffer = */ NULL,
  1095. /* .no_alloc = */ true
  1096. };
  1097. struct ggml_context * ctx_allocated = ggml_init(params);
  1098. struct ggml_context * ctx_unallocated = ggml_init(params);
  1099. // dup nodes
  1100. for (int i = 0; i < graph->n_nodes; i++) {
  1101. struct ggml_tensor * node = graph->nodes[i];
  1102. graph_dup_tensor(hash_set, node_copies, ctx_allocated, ctx_unallocated, node);
  1103. }
  1104. // allocate nodes
  1105. ggml_backend_buffer_t buffer = ggml_backend_alloc_ctx_tensors(ctx_allocated, backend);
  1106. //printf("copy buffer size: %zu MB\n", ggml_backend_buffer_get_size(buffer) / 1024 / 1024);
  1107. // copy data and init views
  1108. for (int i = 0; i < graph->n_nodes; i++) {
  1109. struct ggml_tensor * node = graph->nodes[i];
  1110. graph_init_tensor(hash_set, node_copies, node_init, node);
  1111. }
  1112. // build graph copy
  1113. struct ggml_cgraph * graph_copy = ggml_new_graph_custom(ctx_allocated, graph->size, false);
  1114. for (int i = 0; i < graph->n_nodes; i++) {
  1115. struct ggml_tensor * node = graph->nodes[i];
  1116. struct ggml_tensor * node_copy = node_copies[ggml_hash_find(hash_set, node)];
  1117. graph_copy->nodes[i] = node_copy;
  1118. }
  1119. graph_copy->n_nodes = graph->n_nodes;
  1120. free(hash_set.keys);
  1121. free(node_copies);
  1122. free(node_init);
  1123. return (struct ggml_backend_graph_copy) {
  1124. /* .buffer = */ buffer,
  1125. /* .ctx_allocated = */ ctx_allocated,
  1126. /* .ctx_unallocated = */ ctx_unallocated,
  1127. /* .graph = */ graph_copy,
  1128. };
  1129. }
  1130. void ggml_backend_graph_copy_free(struct ggml_backend_graph_copy copy) {
  1131. ggml_backend_buffer_free(copy.buffer);
  1132. ggml_free(copy.ctx_allocated);
  1133. ggml_free(copy.ctx_unallocated);
  1134. }
  1135. void ggml_backend_compare_graph_backend(ggml_backend_t backend1, ggml_backend_t backend2, struct ggml_cgraph * graph, ggml_backend_eval_callback callback, void * user_data) {
  1136. struct ggml_backend_graph_copy copy = ggml_backend_graph_copy(backend2, graph);
  1137. struct ggml_cgraph * g1 = graph;
  1138. struct ggml_cgraph * g2 = copy.graph;
  1139. assert(g1->n_nodes == g2->n_nodes);
  1140. for (int i = 0; i < g1->n_nodes; i++) {
  1141. //printf("eval %d/%d\n", i, g1->n_nodes);
  1142. struct ggml_tensor * t1 = g1->nodes[i];
  1143. struct ggml_tensor * t2 = g2->nodes[i];
  1144. assert(t1->op == t2->op && ggml_are_same_layout(t1, t2));
  1145. struct ggml_cgraph g1v = ggml_graph_view(g1, i, i + 1);
  1146. struct ggml_cgraph g2v = ggml_graph_view(g2, i, i + 1);
  1147. ggml_backend_graph_compute(backend1, &g1v);
  1148. ggml_backend_graph_compute(backend2, &g2v);
  1149. if (ggml_is_view_op(t1->op)) {
  1150. continue;
  1151. }
  1152. // compare results, calculate rms etc
  1153. if (!callback(i, t1, t2, user_data)) {
  1154. break;
  1155. }
  1156. }
  1157. ggml_backend_graph_copy_free(copy);
  1158. }