convert_hf_to_gguf.py 476 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284528552865287528852895290529152925293529452955296529752985299530053015302530353045305530653075308530953105311531253135314531553165317531853195320532153225323532453255326532753285329533053315332533353345335533653375338533953405341534253435344534553465347534853495350535153525353535453555356535753585359536053615362536353645365536653675368536953705371537253735374537553765377537853795380538153825383538453855386538753885389539053915392539353945395539653975398539954005401540254035404540554065407540854095410541154125413541454155416541754185419542054215422542354245425542654275428542954305431543254335434543554365437543854395440544154425443544454455446544754485449545054515452545354545455545654575458545954605461546254635464546554665467546854695470547154725473547454755476547754785479548054815482548354845485548654875488548954905491549254935494549554965497549854995500550155025503550455055506550755085509551055115512551355145515551655175518551955205521552255235524552555265527552855295530553155325533553455355536553755385539554055415542554355445545554655475548554955505551555255535554555555565557555855595560556155625563556455655566556755685569557055715572557355745575557655775578557955805581558255835584558555865587558855895590559155925593559455955596559755985599560056015602560356045605560656075608560956105611561256135614561556165617561856195620562156225623562456255626562756285629563056315632563356345635563656375638563956405641564256435644564556465647564856495650565156525653565456555656565756585659566056615662566356645665566656675668566956705671567256735674567556765677567856795680568156825683568456855686568756885689569056915692569356945695569656975698569957005701570257035704570557065707570857095710571157125713571457155716571757185719572057215722572357245725572657275728572957305731573257335734573557365737573857395740574157425743574457455746574757485749575057515752575357545755575657575758575957605761576257635764576557665767576857695770577157725773577457755776577757785779578057815782578357845785578657875788578957905791579257935794579557965797579857995800580158025803580458055806580758085809581058115812581358145815581658175818581958205821582258235824582558265827582858295830583158325833583458355836583758385839584058415842584358445845584658475848584958505851585258535854585558565857585858595860586158625863586458655866586758685869587058715872587358745875587658775878587958805881588258835884588558865887588858895890589158925893589458955896589758985899590059015902590359045905590659075908590959105911591259135914591559165917591859195920592159225923592459255926592759285929593059315932593359345935593659375938593959405941594259435944594559465947594859495950595159525953595459555956595759585959596059615962596359645965596659675968596959705971597259735974597559765977597859795980598159825983598459855986598759885989599059915992599359945995599659975998599960006001600260036004600560066007600860096010601160126013601460156016601760186019602060216022602360246025602660276028602960306031603260336034603560366037603860396040604160426043604460456046604760486049605060516052605360546055605660576058605960606061606260636064606560666067606860696070607160726073607460756076607760786079608060816082608360846085608660876088608960906091609260936094609560966097609860996100610161026103610461056106610761086109611061116112611361146115611661176118611961206121612261236124612561266127612861296130613161326133613461356136613761386139614061416142614361446145614661476148614961506151615261536154615561566157615861596160616161626163616461656166616761686169617061716172617361746175617661776178617961806181618261836184618561866187618861896190619161926193619461956196619761986199620062016202620362046205620662076208620962106211621262136214621562166217621862196220622162226223622462256226622762286229623062316232623362346235623662376238623962406241624262436244624562466247624862496250625162526253625462556256625762586259626062616262626362646265626662676268626962706271627262736274627562766277627862796280628162826283628462856286628762886289629062916292629362946295629662976298629963006301630263036304630563066307630863096310631163126313631463156316631763186319632063216322632363246325632663276328632963306331633263336334633563366337633863396340634163426343634463456346634763486349635063516352635363546355635663576358635963606361636263636364636563666367636863696370637163726373637463756376637763786379638063816382638363846385638663876388638963906391639263936394639563966397639863996400640164026403640464056406640764086409641064116412641364146415641664176418641964206421642264236424642564266427642864296430643164326433643464356436643764386439644064416442644364446445644664476448644964506451645264536454645564566457645864596460646164626463646464656466646764686469647064716472647364746475647664776478647964806481648264836484648564866487648864896490649164926493649464956496649764986499650065016502650365046505650665076508650965106511651265136514651565166517651865196520652165226523652465256526652765286529653065316532653365346535653665376538653965406541654265436544654565466547654865496550655165526553655465556556655765586559656065616562656365646565656665676568656965706571657265736574657565766577657865796580658165826583658465856586658765886589659065916592659365946595659665976598659966006601660266036604660566066607660866096610661166126613661466156616661766186619662066216622662366246625662666276628662966306631663266336634663566366637663866396640664166426643664466456646664766486649665066516652665366546655665666576658665966606661666266636664666566666667666866696670667166726673667466756676667766786679668066816682668366846685668666876688668966906691669266936694669566966697669866996700670167026703670467056706670767086709671067116712671367146715671667176718671967206721672267236724672567266727672867296730673167326733673467356736673767386739674067416742674367446745674667476748674967506751675267536754675567566757675867596760676167626763676467656766676767686769677067716772677367746775677667776778677967806781678267836784678567866787678867896790679167926793679467956796679767986799680068016802680368046805680668076808680968106811681268136814681568166817681868196820682168226823682468256826682768286829683068316832683368346835683668376838683968406841684268436844684568466847684868496850685168526853685468556856685768586859686068616862686368646865686668676868686968706871687268736874687568766877687868796880688168826883688468856886688768886889689068916892689368946895689668976898689969006901690269036904690569066907690869096910691169126913691469156916691769186919692069216922692369246925692669276928692969306931693269336934693569366937693869396940694169426943694469456946694769486949695069516952695369546955695669576958695969606961696269636964696569666967696869696970697169726973697469756976697769786979698069816982698369846985698669876988698969906991699269936994699569966997699869997000700170027003700470057006700770087009701070117012701370147015701670177018701970207021702270237024702570267027702870297030703170327033703470357036703770387039704070417042704370447045704670477048704970507051705270537054705570567057705870597060706170627063706470657066706770687069707070717072707370747075707670777078707970807081708270837084708570867087708870897090709170927093709470957096709770987099710071017102710371047105710671077108710971107111711271137114711571167117711871197120712171227123712471257126712771287129713071317132713371347135713671377138713971407141714271437144714571467147714871497150715171527153715471557156715771587159716071617162716371647165716671677168716971707171717271737174717571767177717871797180718171827183718471857186718771887189719071917192719371947195719671977198719972007201720272037204720572067207720872097210721172127213721472157216721772187219722072217222722372247225722672277228722972307231723272337234723572367237723872397240724172427243724472457246724772487249725072517252725372547255725672577258725972607261726272637264726572667267726872697270727172727273727472757276727772787279728072817282728372847285728672877288728972907291729272937294729572967297729872997300730173027303730473057306730773087309731073117312731373147315731673177318731973207321732273237324732573267327732873297330733173327333733473357336733773387339734073417342734373447345734673477348734973507351735273537354735573567357735873597360736173627363736473657366736773687369737073717372737373747375737673777378737973807381738273837384738573867387738873897390739173927393739473957396739773987399740074017402740374047405740674077408740974107411741274137414741574167417741874197420742174227423742474257426742774287429743074317432743374347435743674377438743974407441744274437444744574467447744874497450745174527453745474557456745774587459746074617462746374647465746674677468746974707471747274737474747574767477747874797480748174827483748474857486748774887489749074917492749374947495749674977498749975007501750275037504750575067507750875097510751175127513751475157516751775187519752075217522752375247525752675277528752975307531753275337534753575367537753875397540754175427543754475457546754775487549755075517552755375547555755675577558755975607561756275637564756575667567756875697570757175727573757475757576757775787579758075817582758375847585758675877588758975907591759275937594759575967597759875997600760176027603760476057606760776087609761076117612761376147615761676177618761976207621762276237624762576267627762876297630763176327633763476357636763776387639764076417642764376447645764676477648764976507651765276537654765576567657765876597660766176627663766476657666766776687669767076717672767376747675767676777678767976807681768276837684768576867687768876897690769176927693769476957696769776987699770077017702770377047705770677077708770977107711771277137714771577167717771877197720772177227723772477257726772777287729773077317732773377347735773677377738773977407741774277437744774577467747774877497750775177527753775477557756775777587759776077617762776377647765776677677768776977707771777277737774777577767777777877797780778177827783778477857786778777887789779077917792779377947795779677977798779978007801780278037804780578067807780878097810781178127813781478157816781778187819782078217822782378247825782678277828782978307831783278337834783578367837783878397840784178427843784478457846784778487849785078517852785378547855785678577858785978607861786278637864786578667867786878697870787178727873787478757876787778787879788078817882788378847885788678877888788978907891789278937894789578967897789878997900790179027903790479057906790779087909791079117912791379147915791679177918791979207921792279237924792579267927792879297930793179327933793479357936793779387939794079417942794379447945794679477948794979507951795279537954795579567957795879597960796179627963796479657966796779687969797079717972797379747975797679777978797979807981798279837984798579867987798879897990799179927993799479957996799779987999800080018002800380048005800680078008800980108011801280138014801580168017801880198020802180228023802480258026802780288029803080318032803380348035803680378038803980408041804280438044804580468047804880498050805180528053805480558056805780588059806080618062806380648065806680678068806980708071807280738074807580768077807880798080808180828083808480858086808780888089809080918092809380948095809680978098809981008101810281038104810581068107810881098110811181128113811481158116811781188119812081218122812381248125812681278128812981308131813281338134813581368137813881398140814181428143814481458146814781488149815081518152815381548155815681578158815981608161816281638164816581668167816881698170817181728173817481758176817781788179818081818182818381848185818681878188818981908191819281938194819581968197819881998200820182028203820482058206820782088209821082118212821382148215821682178218821982208221822282238224822582268227822882298230823182328233823482358236823782388239824082418242824382448245824682478248824982508251825282538254825582568257825882598260826182628263826482658266826782688269827082718272827382748275827682778278827982808281828282838284828582868287828882898290829182928293829482958296829782988299830083018302830383048305830683078308830983108311831283138314831583168317831883198320832183228323832483258326832783288329833083318332833383348335833683378338833983408341834283438344834583468347834883498350835183528353835483558356835783588359836083618362836383648365836683678368836983708371837283738374837583768377837883798380838183828383838483858386838783888389839083918392839383948395839683978398839984008401840284038404840584068407840884098410841184128413841484158416841784188419842084218422842384248425842684278428842984308431843284338434843584368437843884398440844184428443844484458446844784488449845084518452845384548455845684578458845984608461846284638464846584668467846884698470847184728473847484758476847784788479848084818482848384848485848684878488848984908491849284938494849584968497849884998500850185028503850485058506850785088509851085118512851385148515851685178518851985208521852285238524852585268527852885298530853185328533853485358536853785388539854085418542854385448545854685478548854985508551855285538554855585568557855885598560856185628563856485658566856785688569857085718572857385748575857685778578857985808581858285838584858585868587858885898590859185928593859485958596859785988599860086018602860386048605860686078608860986108611861286138614861586168617861886198620862186228623862486258626862786288629863086318632863386348635863686378638863986408641864286438644864586468647864886498650865186528653865486558656865786588659866086618662866386648665866686678668866986708671867286738674867586768677867886798680868186828683868486858686868786888689869086918692869386948695869686978698869987008701870287038704870587068707870887098710871187128713871487158716871787188719872087218722872387248725872687278728872987308731873287338734873587368737873887398740874187428743874487458746874787488749875087518752875387548755875687578758875987608761876287638764876587668767876887698770877187728773877487758776877787788779878087818782878387848785878687878788878987908791879287938794879587968797879887998800880188028803880488058806880788088809881088118812881388148815881688178818881988208821882288238824882588268827882888298830883188328833883488358836883788388839884088418842884388448845884688478848884988508851885288538854885588568857885888598860886188628863886488658866886788688869887088718872887388748875887688778878887988808881888288838884888588868887888888898890889188928893889488958896889788988899890089018902890389048905890689078908890989108911891289138914891589168917891889198920892189228923892489258926892789288929893089318932893389348935893689378938893989408941894289438944894589468947894889498950895189528953895489558956895789588959896089618962896389648965896689678968896989708971897289738974897589768977897889798980898189828983898489858986898789888989899089918992899389948995899689978998899990009001900290039004900590069007900890099010901190129013901490159016901790189019902090219022902390249025902690279028902990309031903290339034903590369037903890399040904190429043904490459046904790489049905090519052905390549055905690579058905990609061906290639064906590669067906890699070907190729073907490759076907790789079908090819082908390849085908690879088908990909091909290939094909590969097909890999100910191029103910491059106910791089109911091119112911391149115911691179118911991209121912291239124912591269127912891299130913191329133913491359136913791389139914091419142914391449145914691479148914991509151915291539154915591569157915891599160916191629163916491659166916791689169917091719172917391749175917691779178917991809181918291839184918591869187918891899190919191929193919491959196919791989199920092019202920392049205920692079208920992109211921292139214921592169217921892199220922192229223922492259226922792289229923092319232923392349235923692379238923992409241924292439244924592469247924892499250925192529253925492559256925792589259926092619262926392649265926692679268926992709271927292739274927592769277927892799280928192829283928492859286928792889289929092919292929392949295929692979298929993009301930293039304930593069307930893099310931193129313931493159316931793189319932093219322932393249325932693279328932993309331933293339334933593369337933893399340934193429343934493459346934793489349935093519352935393549355935693579358935993609361936293639364936593669367936893699370937193729373937493759376937793789379938093819382938393849385938693879388938993909391939293939394939593969397939893999400940194029403940494059406940794089409941094119412941394149415941694179418941994209421942294239424942594269427942894299430943194329433943494359436943794389439944094419442944394449445944694479448944994509451945294539454945594569457945894599460946194629463946494659466946794689469947094719472947394749475947694779478947994809481948294839484948594869487948894899490949194929493949494959496949794989499950095019502950395049505950695079508950995109511951295139514951595169517951895199520952195229523952495259526952795289529953095319532953395349535953695379538953995409541954295439544954595469547954895499550955195529553955495559556955795589559956095619562956395649565956695679568956995709571957295739574957595769577957895799580958195829583958495859586958795889589959095919592959395949595959695979598959996009601960296039604960596069607960896099610961196129613961496159616961796189619962096219622962396249625962696279628962996309631963296339634963596369637963896399640964196429643964496459646964796489649965096519652965396549655965696579658965996609661966296639664966596669667966896699670967196729673967496759676967796789679968096819682968396849685968696879688968996909691969296939694969596969697969896999700970197029703970497059706970797089709971097119712971397149715971697179718971997209721972297239724972597269727972897299730973197329733973497359736973797389739974097419742974397449745974697479748974997509751975297539754975597569757975897599760976197629763976497659766976797689769977097719772977397749775977697779778977997809781978297839784978597869787978897899790979197929793979497959796979797989799980098019802980398049805980698079808980998109811981298139814981598169817981898199820982198229823982498259826982798289829983098319832983398349835983698379838983998409841984298439844984598469847984898499850985198529853985498559856985798589859986098619862986398649865986698679868986998709871987298739874987598769877987898799880988198829883988498859886988798889889989098919892989398949895989698979898989999009901990299039904990599069907990899099910991199129913991499159916991799189919992099219922992399249925992699279928992999309931993299339934993599369937993899399940994199429943994499459946994799489949995099519952995399549955995699579958995999609961996299639964996599669967996899699970997199729973997499759976997799789979998099819982998399849985998699879988998999909991999299939994999599969997999899991000010001100021000310004100051000610007100081000910010100111001210013100141001510016100171001810019100201002110022100231002410025100261002710028100291003010031100321003310034100351003610037100381003910040100411004210043100441004510046100471004810049100501005110052100531005410055100561005710058100591006010061100621006310064100651006610067100681006910070100711007210073100741007510076100771007810079100801008110082100831008410085100861008710088100891009010091100921009310094100951009610097100981009910100101011010210103101041010510106101071010810109101101011110112101131011410115101161011710118101191012010121101221012310124101251012610127101281012910130101311013210133101341013510136101371013810139101401014110142101431014410145101461014710148101491015010151101521015310154101551015610157101581015910160101611016210163101641016510166101671016810169101701017110172101731017410175101761017710178101791018010181101821018310184101851018610187101881018910190101911019210193101941019510196101971019810199102001020110202102031020410205102061020710208102091021010211102121021310214102151021610217102181021910220102211022210223102241022510226102271022810229102301023110232102331023410235102361023710238102391024010241102421024310244102451024610247102481024910250102511025210253102541025510256102571025810259102601026110262102631026410265102661026710268102691027010271102721027310274102751027610277102781027910280102811028210283102841028510286102871028810289102901029110292102931029410295102961029710298102991030010301103021030310304103051030610307103081030910310103111031210313103141031510316103171031810319103201032110322103231032410325103261032710328103291033010331103321033310334103351033610337103381033910340103411034210343103441034510346103471034810349103501035110352103531035410355103561035710358103591036010361103621036310364103651036610367103681036910370103711037210373103741037510376103771037810379103801038110382103831038410385103861038710388103891039010391103921039310394103951039610397103981039910400104011040210403104041040510406104071040810409104101041110412104131041410415104161041710418104191042010421104221042310424104251042610427104281042910430104311043210433104341043510436104371043810439104401044110442104431044410445104461044710448104491045010451104521045310454104551045610457104581045910460104611046210463104641046510466104671046810469104701047110472104731047410475
  1. #!/usr/bin/env python3
  2. # -*- coding: utf-8 -*-
  3. from __future__ import annotations
  4. import ast
  5. import logging
  6. import argparse
  7. import contextlib
  8. import json
  9. import os
  10. import re
  11. import sys
  12. from enum import IntEnum
  13. from pathlib import Path
  14. from hashlib import sha256
  15. from typing import TYPE_CHECKING, Any, Callable, ContextManager, Iterable, Iterator, Literal, Sequence, TypeVar, cast
  16. from itertools import chain
  17. from transformers import AutoConfig
  18. import math
  19. import numpy as np
  20. import torch
  21. if TYPE_CHECKING:
  22. from torch import Tensor
  23. if 'NO_LOCAL_GGUF' not in os.environ:
  24. sys.path.insert(1, str(Path(__file__).parent / 'gguf-py'))
  25. import gguf
  26. from gguf.vocab import MistralTokenizerType, MistralVocab
  27. try:
  28. from mistral_common.tokens.tokenizers.base import TokenizerVersion # pyright: ignore[reportMissingImports]
  29. from mistral_common.tokens.tokenizers.multimodal import DATASET_MEAN as _MISTRAL_COMMON_DATASET_MEAN, DATASET_STD as _MISTRAL_COMMON_DATASET_STD # pyright: ignore[reportMissingImports]
  30. from mistral_common.tokens.tokenizers.tekken import Tekkenizer # pyright: ignore[reportMissingImports]
  31. from mistral_common.tokens.tokenizers.sentencepiece import ( # pyright: ignore[reportMissingImports]
  32. SentencePieceTokenizer,
  33. )
  34. _mistral_common_installed = True
  35. _mistral_import_error_msg = ""
  36. except ImportError:
  37. _MISTRAL_COMMON_DATASET_MEAN = (0.48145466, 0.4578275, 0.40821073)
  38. _MISTRAL_COMMON_DATASET_STD = (0.26862954, 0.26130258, 0.27577711)
  39. _mistral_common_installed = False
  40. TokenizerVersion = None
  41. Tekkenizer = None
  42. SentencePieceTokenizer = None
  43. _mistral_import_error_msg = (
  44. "Mistral format requires `mistral-common` to be installed. Please run "
  45. "`pip install mistral-common[image,audio]` to install it."
  46. )
  47. logger = logging.getLogger("hf-to-gguf")
  48. ###### MODEL DEFINITIONS ######
  49. class SentencePieceTokenTypes(IntEnum):
  50. NORMAL = 1
  51. UNKNOWN = 2
  52. CONTROL = 3
  53. USER_DEFINED = 4
  54. UNUSED = 5
  55. BYTE = 6
  56. class ModelType(IntEnum):
  57. TEXT = 1
  58. MMPROJ = 2
  59. AnyModel = TypeVar("AnyModel", bound="type[ModelBase]")
  60. class ModelBase:
  61. _model_classes: dict[ModelType, dict[str, type[ModelBase]]] = {
  62. ModelType.TEXT: {},
  63. ModelType.MMPROJ: {},
  64. }
  65. dir_model: Path
  66. ftype: gguf.LlamaFileType
  67. fname_out: Path
  68. is_big_endian: bool
  69. endianess: gguf.GGUFEndian
  70. use_temp_file: bool
  71. lazy: bool
  72. dry_run: bool
  73. hparams: dict[str, Any]
  74. model_tensors: dict[str, Callable[[], Tensor]]
  75. gguf_writer: gguf.GGUFWriter
  76. model_name: str | None
  77. metadata_override: Path | None
  78. dir_model_card: Path
  79. remote_hf_model_id: str | None
  80. # subclasses should define this!
  81. model_arch: gguf.MODEL_ARCH
  82. # subclasses should initialize this!
  83. block_count: int
  84. tensor_map: gguf.TensorNameMap
  85. # Mistral format specifics
  86. is_mistral_format: bool = False
  87. disable_mistral_community_chat_template: bool = False
  88. sentence_transformers_dense_modules: bool = False
  89. def __init__(self, dir_model: Path, ftype: gguf.LlamaFileType, fname_out: Path, *, is_big_endian: bool = False,
  90. use_temp_file: bool = False, eager: bool = False,
  91. metadata_override: Path | None = None, model_name: str | None = None,
  92. split_max_tensors: int = 0, split_max_size: int = 0, dry_run: bool = False,
  93. small_first_shard: bool = False, hparams: dict[str, Any] | None = None, remote_hf_model_id: str | None = None,
  94. disable_mistral_community_chat_template: bool = False,
  95. sentence_transformers_dense_modules: bool = False):
  96. if type(self) is ModelBase or \
  97. type(self) is TextModel or \
  98. type(self) is MmprojModel:
  99. raise TypeError(f"{type(self).__name__!r} should not be directly instantiated")
  100. if self.is_mistral_format and not _mistral_common_installed:
  101. raise ImportError(_mistral_import_error_msg)
  102. self.dir_model = dir_model
  103. self.ftype = ftype
  104. self.fname_out = fname_out
  105. self.is_big_endian = is_big_endian
  106. self.endianess = gguf.GGUFEndian.BIG if is_big_endian else gguf.GGUFEndian.LITTLE
  107. self.use_temp_file = use_temp_file
  108. self.lazy = not eager or (remote_hf_model_id is not None)
  109. self.dry_run = dry_run
  110. self.remote_hf_model_id = remote_hf_model_id
  111. self.sentence_transformers_dense_modules = sentence_transformers_dense_modules
  112. self.hparams = ModelBase.load_hparams(self.dir_model, self.is_mistral_format) if hparams is None else hparams
  113. self.rope_parameters = self.hparams.get("rope_parameters", self.hparams.get("rope_scaling")) or {}
  114. self.model_tensors = self.index_tensors(remote_hf_model_id=remote_hf_model_id)
  115. self.metadata_override = metadata_override
  116. self.model_name = model_name
  117. self.dir_model_card = dir_model # overridden in convert_lora_to_gguf.py
  118. # Ensure "rope_theta" and "rope_type" is mirrored in rope_parameters
  119. if "full_attention" not in self.rope_parameters and "sliding_attention" not in self.rope_parameters:
  120. if "rope_theta" not in self.rope_parameters and (rope_theta := self.find_hparam(["rope_theta", "global_rope_theta", "rotary_emb_base"], optional=True)) is not None:
  121. self.rope_parameters["rope_theta"] = rope_theta
  122. if "rope_type" not in self.rope_parameters and (rope_type := self.rope_parameters.get("type")) is not None:
  123. self.rope_parameters["rope_type"] = rope_type
  124. # Apply heuristics to figure out typical tensor encoding based on first layer tensor encoding type
  125. if self.ftype == gguf.LlamaFileType.GUESSED:
  126. # NOTE: can't use field "torch_dtype" in config.json, because some finetunes lie.
  127. _, first_tensor = next(self.get_tensors())
  128. if first_tensor.dtype == torch.float16:
  129. logger.info(f"choosing --outtype f16 from first tensor type ({first_tensor.dtype})")
  130. self.ftype = gguf.LlamaFileType.MOSTLY_F16
  131. else:
  132. logger.info(f"choosing --outtype bf16 from first tensor type ({first_tensor.dtype})")
  133. self.ftype = gguf.LlamaFileType.MOSTLY_BF16
  134. self.dequant_model()
  135. # Configure GGUF Writer
  136. self.gguf_writer = gguf.GGUFWriter(path=None, arch=gguf.MODEL_ARCH_NAMES[self.model_arch], endianess=self.endianess, use_temp_file=self.use_temp_file,
  137. split_max_tensors=split_max_tensors, split_max_size=split_max_size, dry_run=dry_run, small_first_shard=small_first_shard)
  138. # Mistral specific
  139. self.disable_mistral_community_chat_template = disable_mistral_community_chat_template
  140. @classmethod
  141. def add_prefix_to_filename(cls, path: Path, prefix: str) -> Path:
  142. stem, suffix = path.stem, path.suffix
  143. new_name = f"{prefix}{stem}{suffix}"
  144. return path.with_name(new_name)
  145. def find_hparam(self, keys: Iterable[str], optional: bool = False) -> Any:
  146. key = next((k for k in keys if k in self.hparams), None)
  147. if key is not None:
  148. return self.hparams[key]
  149. if optional:
  150. return None
  151. raise KeyError(f"could not find any of: {keys}")
  152. def index_tensors(self, remote_hf_model_id: str | None = None) -> dict[str, Callable[[], Tensor]]:
  153. tensors: dict[str, Callable[[], Tensor]] = {}
  154. if remote_hf_model_id is not None:
  155. is_safetensors = True
  156. logger.info(f"Using remote model with HuggingFace id: {remote_hf_model_id}")
  157. remote_tensors = gguf.utility.SafetensorRemote.get_list_tensors_hf_model(remote_hf_model_id)
  158. for name, remote_tensor in remote_tensors.items():
  159. tensors[name] = lambda r=remote_tensor: LazyTorchTensor.from_remote_tensor(r)
  160. return tensors
  161. prefix = "model" if not self.is_mistral_format else "consolidated"
  162. part_names: set[str] = set(ModelBase.get_model_part_names(self.dir_model, prefix, ".safetensors"))
  163. is_safetensors: bool = len(part_names) > 0
  164. if not is_safetensors:
  165. part_names = set(ModelBase.get_model_part_names(self.dir_model, "pytorch_model", ".bin"))
  166. tensor_names_from_index: set[str] = set()
  167. if not self.is_mistral_format:
  168. index_name = "model.safetensors" if is_safetensors else "pytorch_model.bin"
  169. index_name += ".index.json"
  170. index_file = self.dir_model / index_name
  171. if index_file.is_file():
  172. logger.info(f"gguf: loading model weight map from '{index_name}'")
  173. with open(index_file, "r", encoding="utf-8") as f:
  174. index: dict[str, Any] = json.load(f)
  175. weight_map = index.get("weight_map")
  176. if weight_map is None or not isinstance(weight_map, dict):
  177. raise ValueError(f"Can't load 'weight_map' from {index_name!r}")
  178. tensor_names_from_index.update(weight_map.keys())
  179. part_names |= set(weight_map.values())
  180. else:
  181. weight_map = {}
  182. else:
  183. weight_map = {}
  184. for part_name in part_names:
  185. logger.info(f"gguf: indexing model part '{part_name}'")
  186. ctx: ContextManager[Any]
  187. if is_safetensors:
  188. ctx = cast(ContextManager[Any], gguf.utility.SafetensorsLocal(self.dir_model / part_name))
  189. else:
  190. ctx = contextlib.nullcontext(torch.load(str(self.dir_model / part_name), map_location="cpu", mmap=True, weights_only=True))
  191. with ctx as model_part:
  192. assert model_part is not None
  193. for name in model_part.keys():
  194. if is_safetensors:
  195. data: gguf.utility.LocalTensor = model_part[name]
  196. if self.lazy:
  197. data_gen = lambda data=data: LazyTorchTensor.from_local_tensor(data) # noqa: E731
  198. else:
  199. dtype = LazyTorchTensor._dtype_str_map[data.dtype]
  200. data_gen = lambda data=data, dtype=dtype: torch.from_numpy(data.mmap_bytes()).view(dtype).reshape(data.shape) # noqa: E731
  201. else:
  202. data_torch: Tensor = model_part[name]
  203. if self.lazy:
  204. data_gen = lambda data=data_torch: LazyTorchTensor.from_eager(data) # noqa: E731
  205. else:
  206. data_gen = lambda data=data_torch: data # noqa: E731
  207. tensors[name] = data_gen
  208. # verify tensor name presence and identify potentially missing files
  209. if len(tensor_names_from_index) > 0:
  210. tensor_names_from_parts = set(tensors.keys())
  211. if len(tensor_names_from_parts.symmetric_difference(tensor_names_from_index)) > 0:
  212. missing = sorted(tensor_names_from_index.difference(tensor_names_from_parts))
  213. extra = sorted(tensor_names_from_parts.difference(tensor_names_from_index))
  214. missing_files = sorted(set(weight_map[n] for n in missing if n in weight_map))
  215. if len(extra) == 0 and len(missing_files) > 0:
  216. raise ValueError(f"Missing or incomplete model files: {missing_files}\n"
  217. f"Missing tensors: {missing}")
  218. else:
  219. raise ValueError("Mismatch between weight map and model parts for tensor names:\n"
  220. f"Missing tensors: {missing}\n"
  221. f"Extra tensors: {extra}")
  222. return tensors
  223. def dequant_model(self):
  224. tensors_to_remove: list[str] = []
  225. new_tensors: dict[str, Callable[[], Tensor]] = {}
  226. if (quant_config := self.hparams.get("quantization_config")) and isinstance(quant_config, dict):
  227. quant_method = quant_config.get("quant_method")
  228. def dequant_bitnet(weight: Tensor, scale: Tensor) -> Tensor:
  229. weight = weight.view(torch.uint8)
  230. orig_shape = weight.shape
  231. shift = torch.tensor([0, 2, 4, 6], dtype=torch.uint8).reshape((4, *(1 for _ in range(len(orig_shape)))))
  232. data = weight.unsqueeze(0).expand((4, *orig_shape)) >> shift
  233. data = data & 3
  234. data = (data.float() - 1).reshape((orig_shape[0] * 4, *orig_shape[1:]))
  235. # The scale is inverted
  236. return data / scale.float()
  237. def dequant_simple(weight: Tensor, scale: Tensor, block_size: Sequence[int] | None = None) -> Tensor:
  238. scale = scale.float()
  239. if block_size is not None:
  240. for i, size in enumerate(block_size):
  241. scale = scale.repeat_interleave(size, i)
  242. # unpad the scale (e.g. when the tensor size isn't a multiple of the block size)
  243. scale = scale[tuple(slice(0, size) for size in weight.shape)]
  244. return weight.float() * scale
  245. # ref: https://github.com/ModelCloud/GPTQModel/blob/037c5c0f6c9e33c500d975b038d02e7ca437546d/gptqmodel/nn_modules/qlinear/__init__.py#L437-L476
  246. def dequant_gptq(g_idx: Tensor, qweight: Tensor, qzeros: Tensor, scales: Tensor) -> Tensor:
  247. bits = quant_config["bits"]
  248. assert bits in (2, 3, 4, 8)
  249. assert qweight.dtype == qzeros.dtype
  250. maxq = (2 ** bits) - 1
  251. weight = None
  252. zeros = None
  253. pack_dtype_bits = qweight.dtype.itemsize * 8
  254. if bits in [2, 4, 8]:
  255. pack_factor = pack_dtype_bits // bits
  256. wf = torch.tensor(list(range(0, pack_dtype_bits, bits)), dtype=torch.int32).unsqueeze(0)
  257. if self.lazy:
  258. wf = LazyTorchTensor.from_eager(wf)
  259. zeros = torch.bitwise_right_shift(
  260. qzeros.unsqueeze(2).expand(-1, -1, pack_factor),
  261. wf.unsqueeze(0)
  262. ).to(torch.int16 if bits == 8 else torch.int8)
  263. zeros = torch.bitwise_and(zeros, maxq).reshape(scales.shape)
  264. weight = torch.bitwise_and(
  265. torch.bitwise_right_shift(
  266. qweight.unsqueeze(1).expand(-1, pack_factor, -1),
  267. wf.unsqueeze(-1)
  268. ).to(torch.int16 if bits == 8 else torch.int8),
  269. maxq
  270. )
  271. elif bits == 3:
  272. raise NotImplementedError("3-bit gptq dequantization is not yet implemented")
  273. assert weight is not None
  274. assert zeros is not None
  275. weight = weight.reshape(weight.shape[0] * weight.shape[1], weight.shape[2])
  276. # gptq_v2 doesn't need to offset zeros
  277. if quant_config.get("checkpoint_format", "gptq") == "gptq":
  278. zeros += 1
  279. return (scales[g_idx].float() * (weight - zeros[g_idx]).float()).T
  280. def dequant_packed(w: Tensor, scale: Tensor, shape_tensor: Tensor, zero_point: Tensor | None, num_bits: int, group_size: int):
  281. assert w.dtype == torch.int32
  282. shape = tuple(shape_tensor.tolist())
  283. assert len(shape) == 2
  284. mask = (1 << num_bits) - 1
  285. shifts = torch.arange(0, 32 - (num_bits - 1), num_bits, dtype=torch.int32)
  286. if self.lazy:
  287. shifts = LazyTorchTensor.from_eager(shifts)
  288. if zero_point is None:
  289. offset = 1 << (num_bits - 1)
  290. else:
  291. assert len(zero_point.shape) == 2
  292. offset = (zero_point.unsqueeze(1) >> shifts.reshape(1, -1, 1)) & mask
  293. offset = offset.reshape(-1, zero_point.shape[1])
  294. # trim padding, and prepare for broadcast
  295. # NOTE: the zero-point is packed along dim 0
  296. offset = offset[:shape[0], :].unsqueeze(-1)
  297. # extract values
  298. # NOTE: the weights are packed along dim 1
  299. unpacked = (w.unsqueeze(-1) >> shifts.reshape(1, 1, -1)) & mask
  300. unpacked = unpacked.reshape(shape[0], -1)
  301. # trim padding
  302. unpacked = unpacked[:, :shape[1]]
  303. # prepare for broadcast of the scale
  304. unpacked = unpacked.reshape(shape[0], (unpacked.shape[-1] + group_size - 1) // group_size, group_size)
  305. unpacked = unpacked - offset
  306. return (unpacked * scale.unsqueeze(-1).float()).reshape(shape)
  307. if quant_method == "bitnet":
  308. for name in self.model_tensors.keys():
  309. if name.endswith(".weight_scale"):
  310. weight_name = name.removesuffix("_scale")
  311. w = self.model_tensors[weight_name]
  312. s = self.model_tensors[name]
  313. self.model_tensors[weight_name] = lambda w=w, s=s: dequant_bitnet(w(), s())
  314. tensors_to_remove.append(name)
  315. elif quant_method == "fp8":
  316. block_size = quant_config.get("weight_block_size")
  317. for name in self.model_tensors.keys():
  318. if name.endswith(".weight_scale_inv"):
  319. weight_name = name.removesuffix("_scale_inv")
  320. w = self.model_tensors[weight_name]
  321. s = self.model_tensors[name]
  322. self.model_tensors[weight_name] = lambda w=w, s=s, bs=block_size: dequant_simple(w(), s(), bs)
  323. tensors_to_remove.append(name)
  324. if name.endswith(".activation_scale"): # unused
  325. tensors_to_remove.append(name)
  326. # mistral format
  327. if name.endswith(".qscale_weight"):
  328. weight_name = name.removesuffix("qscale_weight") + "weight"
  329. w = self.model_tensors[weight_name]
  330. s = self.model_tensors[name]
  331. self.model_tensors[weight_name] = lambda w=w, s=s, bs=block_size: dequant_simple(w(), s(), bs)
  332. tensors_to_remove.append(name)
  333. if name.endswith(".qscale_act"):
  334. tensors_to_remove.append(name)
  335. elif quant_method == "gptq":
  336. for name in self.model_tensors.keys():
  337. if name.endswith(".qweight"):
  338. base_name = name.removesuffix(".qweight")
  339. g_idx = self.model_tensors[base_name + ".g_idx"]
  340. qweight = self.model_tensors[base_name + ".qweight"]
  341. qzeros = self.model_tensors[base_name + ".qzeros"]
  342. scales = self.model_tensors[base_name + ".scales"]
  343. new_tensors[base_name + ".weight"] = (
  344. lambda g=g_idx, z=qzeros, w=qweight, s=scales: dequant_gptq(
  345. g(), w(), z(), s()
  346. )
  347. )
  348. tensors_to_remove += [
  349. base_name + n
  350. for n in (
  351. ".g_idx",
  352. ".qzeros",
  353. ".qweight",
  354. ".scales",
  355. )
  356. ]
  357. elif quant_method == "compressed-tensors":
  358. quant_format = quant_config["format"]
  359. groups = quant_config["config_groups"]
  360. if len(groups) > 1:
  361. raise NotImplementedError("Can't handle multiple config groups for compressed-tensors yet")
  362. weight_config = tuple(groups.values())[0]["weights"]
  363. if quant_format == "float-quantized" or quant_format == "int-quantized" or quant_format == "naive-quantized":
  364. block_size = weight_config.get("block_structure", None)
  365. strategy = weight_config.get("strategy")
  366. assert strategy == "channel" or strategy == "block"
  367. assert weight_config.get("group_size") is None # didn't find a model using this yet
  368. for name in self.model_tensors.keys():
  369. if name.endswith(".weight_scale"):
  370. weight_name = name.removesuffix("_scale")
  371. w = self.model_tensors[weight_name]
  372. s = self.model_tensors[name]
  373. self.model_tensors[weight_name] = lambda w=w, s=s: dequant_simple(w(), s(), block_size)
  374. tensors_to_remove.append(name)
  375. elif quant_format == "pack-quantized":
  376. assert weight_config.get("strategy") == "group"
  377. assert weight_config.get("type", "int") == "int"
  378. num_bits = weight_config.get("num_bits")
  379. group_size = weight_config.get("group_size")
  380. assert isinstance(num_bits, int)
  381. assert isinstance(group_size, int)
  382. for name in self.model_tensors.keys():
  383. if name.endswith(".weight_packed"):
  384. base_name = name.removesuffix("_packed")
  385. w = self.model_tensors[name]
  386. scale = self.model_tensors[base_name + "_scale"]
  387. shape = self.model_tensors[base_name + "_shape"]
  388. zero_point = self.model_tensors.get(base_name + "_zero_point", lambda: None)
  389. new_tensors[base_name] = (
  390. lambda w=w, scale=scale, shape=shape, zero_point=zero_point: dequant_packed(
  391. w(), scale(), shape(), zero_point(), num_bits, group_size,
  392. )
  393. )
  394. tensors_to_remove += [base_name + n for n in ("_packed", "_shape", "_scale")]
  395. if (base_name + "_zero_point") in self.model_tensors:
  396. tensors_to_remove.append(base_name + "_zero_point")
  397. else:
  398. raise NotImplementedError(f"Quant format {quant_format!r} for method {quant_method!r} is not yet supported")
  399. else:
  400. raise NotImplementedError(f"Quant method is not yet supported: {quant_method!r}")
  401. for name in tensors_to_remove:
  402. if name in self.model_tensors:
  403. del self.model_tensors[name]
  404. for name, value in new_tensors.items():
  405. self.model_tensors[name] = value
  406. def get_tensors(self) -> Iterator[tuple[str, Tensor]]:
  407. for name, gen in self.model_tensors.items():
  408. yield name, gen()
  409. def format_tensor_name(self, key: gguf.MODEL_TENSOR, bid: int | None = None, suffix: str = ".weight") -> str:
  410. if key not in gguf.MODEL_TENSORS[self.model_arch]:
  411. raise ValueError(f"Missing {key!r} for MODEL_TENSORS of {self.model_arch!r}")
  412. name: str = gguf.TENSOR_NAMES[key]
  413. if "{bid}" in name:
  414. assert bid is not None
  415. name = name.format(bid=bid)
  416. return name + suffix
  417. def match_model_tensor_name(self, name: str, key: gguf.MODEL_TENSOR, bid: int | None, suffix: str = ".weight") -> bool:
  418. if key not in gguf.MODEL_TENSORS[self.model_arch]:
  419. return False
  420. key_name: str = gguf.TENSOR_NAMES[key]
  421. if "{bid}" in key_name:
  422. if bid is None:
  423. return False
  424. key_name = key_name.format(bid=bid)
  425. else:
  426. if bid is not None:
  427. return False
  428. return name == (key_name + suffix)
  429. def map_tensor_name(self, name: str, try_suffixes: Sequence[str] = (".weight", ".bias")) -> str:
  430. new_name = self.tensor_map.get_name(key=name, try_suffixes=try_suffixes)
  431. if new_name is None:
  432. raise ValueError(f"Can not map tensor {name!r}")
  433. return new_name
  434. def set_gguf_parameters(self):
  435. raise NotImplementedError("set_gguf_parameters() must be implemented in subclasses")
  436. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  437. del bid # unused
  438. return [(self.map_tensor_name(name), data_torch)]
  439. def tensor_force_quant(self, name: str, new_name: str, bid: int | None, n_dims: int) -> gguf.GGMLQuantizationType | bool:
  440. del name, new_name, bid, n_dims # unused
  441. return False
  442. # some models need extra generated tensors (like rope_freqs)
  443. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  444. return ()
  445. def prepare_tensors(self):
  446. max_name_len = max(len(s) for _, s in self.tensor_map.mapping.values()) + len(".weight,")
  447. for name, data_torch in chain(self.generate_extra_tensors(), self.get_tensors()):
  448. # we don't need these
  449. if name.endswith((".attention.masked_bias", ".attention.bias", ".rotary_emb.inv_freq")):
  450. continue
  451. old_dtype = data_torch.dtype
  452. # convert any unsupported data types to float32
  453. if data_torch.dtype not in (torch.float16, torch.float32):
  454. data_torch = data_torch.to(torch.float32)
  455. # use the first number-like part of the tensor name as the block id
  456. bid = None
  457. for part in name.split("."):
  458. if part.isdecimal():
  459. bid = int(part)
  460. break
  461. for new_name, data_torch in (self.modify_tensors(data_torch, name, bid)):
  462. # TODO: why do we squeeze here?
  463. # data = data_torch.squeeze().numpy()
  464. data = data_torch.numpy()
  465. n_dims = len(data.shape)
  466. data_qtype: gguf.GGMLQuantizationType | bool = self.tensor_force_quant(name, new_name, bid, n_dims)
  467. # Most of the codebase that takes in 1D tensors or norms only handles F32 tensors
  468. if n_dims <= 1 or new_name.endswith("_norm.weight"):
  469. data_qtype = gguf.GGMLQuantizationType.F32
  470. # Conditions should closely match those in llama_model_quantize_internal in llama.cpp
  471. # Some tensor types are always in float32
  472. if data_qtype is False and (
  473. any(
  474. self.match_model_tensor_name(new_name, key, bid)
  475. for key in (
  476. gguf.MODEL_TENSOR.FFN_GATE_INP,
  477. gguf.MODEL_TENSOR.POS_EMBD,
  478. gguf.MODEL_TENSOR.TOKEN_TYPES,
  479. gguf.MODEL_TENSOR.SSM_CONV1D,
  480. gguf.MODEL_TENSOR.SHORTCONV_CONV,
  481. gguf.MODEL_TENSOR.TIME_MIX_FIRST,
  482. gguf.MODEL_TENSOR.TIME_MIX_W1,
  483. gguf.MODEL_TENSOR.TIME_MIX_W2,
  484. gguf.MODEL_TENSOR.TIME_MIX_DECAY_W1,
  485. gguf.MODEL_TENSOR.TIME_MIX_DECAY_W2,
  486. gguf.MODEL_TENSOR.TIME_MIX_LERP_FUSED,
  487. gguf.MODEL_TENSOR.POSNET_NORM1,
  488. gguf.MODEL_TENSOR.POSNET_NORM2,
  489. gguf.MODEL_TENSOR.V_ENC_EMBD_POS,
  490. gguf.MODEL_TENSOR.A_ENC_EMBD_POS,
  491. gguf.MODEL_TENSOR.ALTUP_CORRECT_COEF,
  492. gguf.MODEL_TENSOR.ALTUP_PREDICT_COEF,
  493. )
  494. )
  495. or new_name[-7:] not in (".weight", ".lora_a", ".lora_b")
  496. ):
  497. data_qtype = gguf.GGMLQuantizationType.F32
  498. if data_qtype is False and any(
  499. self.match_model_tensor_name(new_name, key, bid)
  500. for key in (
  501. gguf.MODEL_TENSOR.TOKEN_EMBD,
  502. gguf.MODEL_TENSOR.PER_LAYER_TOKEN_EMBD,
  503. gguf.MODEL_TENSOR.OUTPUT,
  504. gguf.MODEL_TENSOR.ALTUP_ROUTER,
  505. gguf.MODEL_TENSOR.LAUREL_L,
  506. gguf.MODEL_TENSOR.LAUREL_R,
  507. )
  508. ):
  509. if self.ftype in (
  510. gguf.LlamaFileType.MOSTLY_TQ1_0,
  511. gguf.LlamaFileType.MOSTLY_TQ2_0,
  512. ):
  513. # TODO: use Q4_K and Q6_K
  514. data_qtype = gguf.GGMLQuantizationType.F16
  515. # No override (data_qtype is False), or wants to be quantized (data_qtype is True)
  516. if isinstance(data_qtype, bool):
  517. if self.ftype == gguf.LlamaFileType.ALL_F32:
  518. data_qtype = gguf.GGMLQuantizationType.F32
  519. elif self.ftype == gguf.LlamaFileType.MOSTLY_F16:
  520. data_qtype = gguf.GGMLQuantizationType.F16
  521. elif self.ftype == gguf.LlamaFileType.MOSTLY_BF16:
  522. data_qtype = gguf.GGMLQuantizationType.BF16
  523. elif self.ftype == gguf.LlamaFileType.MOSTLY_Q8_0:
  524. data_qtype = gguf.GGMLQuantizationType.Q8_0
  525. elif self.ftype == gguf.LlamaFileType.MOSTLY_TQ1_0:
  526. data_qtype = gguf.GGMLQuantizationType.TQ1_0
  527. elif self.ftype == gguf.LlamaFileType.MOSTLY_TQ2_0:
  528. data_qtype = gguf.GGMLQuantizationType.TQ2_0
  529. else:
  530. raise ValueError(f"Unknown file type: {self.ftype.name}")
  531. try:
  532. data = gguf.quants.quantize(data, data_qtype)
  533. except gguf.QuantError as e:
  534. logger.warning("%s, %s", e, "falling back to F16")
  535. data_qtype = gguf.GGMLQuantizationType.F16
  536. data = gguf.quants.quantize(data, data_qtype)
  537. shape = gguf.quant_shape_from_byte_shape(data.shape, data_qtype) if data.dtype == np.uint8 else data.shape
  538. # reverse shape to make it similar to the internal ggml dimension order
  539. shape_str = f"{{{', '.join(str(n) for n in reversed(shape))}}}"
  540. # n_dims is implicit in the shape
  541. logger.info(f"{f'%-{max_name_len}s' % f'{new_name},'} {old_dtype} --> {data_qtype.name}, shape = {shape_str}")
  542. self.gguf_writer.add_tensor(new_name, data, raw_dtype=data_qtype)
  543. def set_type(self):
  544. self.gguf_writer.add_type(gguf.GGUFType.MODEL)
  545. def prepare_metadata(self, vocab_only: bool):
  546. total_params, shared_params, expert_params, expert_count = self.gguf_writer.get_total_parameter_count()
  547. self.metadata = gguf.Metadata.load(self.metadata_override, self.dir_model_card, self.model_name, total_params)
  548. # If we are using HF model id, set the metadata name to the model id
  549. if self.remote_hf_model_id:
  550. self.metadata.name = self.remote_hf_model_id
  551. # Fallback to model directory name if metadata name is still missing
  552. if self.metadata.name is None:
  553. self.metadata.name = self.dir_model.name
  554. # Generate parameter weight class (useful for leader boards) if not yet determined
  555. if self.metadata.size_label is None and total_params > 0:
  556. self.metadata.size_label = gguf.size_label(total_params, shared_params, expert_params, expert_count)
  557. self.set_type()
  558. logger.info("Set meta model")
  559. self.metadata.set_gguf_meta_model(self.gguf_writer)
  560. logger.info("Set model parameters")
  561. self.set_gguf_parameters()
  562. logger.info("Set model quantization version")
  563. self.gguf_writer.add_quantization_version(gguf.GGML_QUANT_VERSION)
  564. def write_vocab(self):
  565. raise NotImplementedError("write_vocab() must be implemented in subclasses")
  566. def write(self):
  567. self.prepare_tensors()
  568. self.prepare_metadata(vocab_only=False)
  569. self.gguf_writer.write_header_to_file(path=self.fname_out)
  570. self.gguf_writer.write_kv_data_to_file()
  571. self.gguf_writer.write_tensors_to_file(progress=True)
  572. self.gguf_writer.close()
  573. @staticmethod
  574. def get_model_part_names(dir_model: Path, prefix: str, suffix: str) -> list[str]:
  575. part_names: list[str] = []
  576. for filename in os.listdir(dir_model):
  577. if filename.startswith(prefix) and filename.endswith(suffix):
  578. part_names.append(filename)
  579. part_names.sort()
  580. return part_names
  581. @staticmethod
  582. def load_hparams(dir_model: Path, is_mistral_format: bool):
  583. if is_mistral_format:
  584. with open(dir_model / "params.json", "r", encoding="utf-8") as f:
  585. config = json.load(f)
  586. return config
  587. try:
  588. # for security reason, we don't allow loading remote code by default
  589. # if a model need remote code, we will fallback to config.json
  590. config = AutoConfig.from_pretrained(dir_model, trust_remote_code=False).to_dict()
  591. except Exception as e:
  592. logger.warning(f"Failed to load model config from {dir_model}: {e}")
  593. logger.warning("Trying to load config.json instead")
  594. with open(dir_model / "config.json", "r", encoding="utf-8") as f:
  595. config = json.load(f)
  596. if "llm_config" in config:
  597. # rename for InternVL
  598. config["text_config"] = config["llm_config"]
  599. if "thinker_config" in config:
  600. # rename for Qwen2.5-Omni
  601. config["text_config"] = config["thinker_config"]["text_config"]
  602. return config
  603. @classmethod
  604. def register(cls, *names: str) -> Callable[[AnyModel], AnyModel]:
  605. assert names
  606. def func(modelcls: AnyModel) -> AnyModel:
  607. model_type = ModelType.MMPROJ if modelcls.model_arch == gguf.MODEL_ARCH.MMPROJ else ModelType.TEXT
  608. for name in names:
  609. cls._model_classes[model_type][name] = modelcls
  610. return modelcls
  611. return func
  612. @classmethod
  613. def print_registered_models(cls):
  614. for model_type, model_classes in cls._model_classes.items():
  615. logger.error(f"{model_type.name} models:")
  616. for name in sorted(model_classes.keys()):
  617. logger.error(f" - {name}")
  618. @classmethod
  619. def from_model_architecture(cls, arch: str, model_type = ModelType.TEXT) -> type[ModelBase]:
  620. try:
  621. return cls._model_classes[model_type][arch]
  622. except KeyError:
  623. raise NotImplementedError(f'Architecture {arch!r} not supported!') from None
  624. class TextModel(ModelBase):
  625. model_type = ModelType.TEXT
  626. hf_arch: str
  627. def __init__(self, *args, **kwargs):
  628. super().__init__(*args, **kwargs)
  629. if not self.is_mistral_format:
  630. self.hf_arch = get_model_architecture(self.hparams, self.model_type)
  631. else:
  632. self.hf_arch = ""
  633. if "text_config" in self.hparams:
  634. # move the text_config to the root level
  635. self.hparams = {**self.hparams, **self.hparams["text_config"]}
  636. self.block_count = self.find_hparam(["n_layers", "num_hidden_layers", "n_layer", "num_layers"])
  637. self.tensor_map = gguf.get_tensor_name_map(self.model_arch, self.block_count)
  638. @classmethod
  639. def __init_subclass__(cls):
  640. # can't use an abstract property, because overriding it without type errors
  641. # would require using decorated functions instead of simply defining the property
  642. if "model_arch" not in cls.__dict__:
  643. raise TypeError(f"Missing property 'model_arch' for {cls.__name__!r}")
  644. def set_vocab(self):
  645. self._set_vocab_gpt2()
  646. def prepare_metadata(self, vocab_only: bool):
  647. super().prepare_metadata(vocab_only=vocab_only)
  648. total_params = self.gguf_writer.get_total_parameter_count()[0]
  649. # Extract the encoding scheme from the file type name. e.g. 'gguf.LlamaFileType.MOSTLY_Q8_0' --> 'Q8_0'
  650. output_type: str = self.ftype.name.partition("_")[2]
  651. # Filename Output
  652. if self.fname_out.is_dir():
  653. # Generate default filename based on model specification and available metadata
  654. if not vocab_only:
  655. fname_default: str = gguf.naming_convention(self.metadata.name, self.metadata.basename, self.metadata.finetune, self.metadata.version, self.metadata.size_label, output_type, model_type="LoRA" if total_params < 0 else None)
  656. else:
  657. fname_default: str = gguf.naming_convention(self.metadata.name, self.metadata.basename, self.metadata.finetune, self.metadata.version, size_label=None, output_type=None, model_type="vocab")
  658. # Use the default filename
  659. self.fname_out = self.fname_out / f"{fname_default}.gguf"
  660. else:
  661. # Output path is a custom defined templated filename
  662. # Note: `not is_dir()` is used because `.is_file()` will not detect
  663. # file template strings as it doesn't actually exist as a file
  664. # Process templated file name with the output ftype, useful with the "auto" ftype
  665. self.fname_out = self.fname_out.parent / gguf.fill_templated_filename(self.fname_out.name, output_type)
  666. logger.info("Set model tokenizer")
  667. self.set_vocab()
  668. def set_gguf_parameters(self):
  669. self.gguf_writer.add_block_count(self.block_count)
  670. if (n_ctx := self.find_hparam(["max_position_embeddings", "n_ctx", "n_positions", "max_length", "max_sequence_length", "model_max_length"], optional=True)) is not None:
  671. self.gguf_writer.add_context_length(n_ctx)
  672. logger.info(f"gguf: context length = {n_ctx}")
  673. if (n_embd := self.find_hparam(["hidden_size", "n_embd", "dim"], optional=True)) is not None:
  674. self.gguf_writer.add_embedding_length(n_embd)
  675. logger.info(f"gguf: embedding length = {n_embd}")
  676. if (n_ff := self.find_hparam(["intermediate_size", "n_inner", "hidden_dim"], optional=True)) is not None:
  677. self.gguf_writer.add_feed_forward_length(n_ff)
  678. logger.info(f"gguf: feed forward length = {n_ff}")
  679. if (n_head := self.find_hparam(["num_attention_heads", "n_head", "n_heads"], optional=True)) is not None:
  680. self.gguf_writer.add_head_count(n_head)
  681. logger.info(f"gguf: head count = {n_head}")
  682. if (n_head_kv := self.find_hparam(["num_key_value_heads", "n_kv_heads"], optional=True)) is not None:
  683. self.gguf_writer.add_head_count_kv(n_head_kv)
  684. logger.info(f"gguf: key-value head count = {n_head_kv}")
  685. rope_params = self.rope_parameters.get("full_attention", self.rope_parameters)
  686. if (rope_type := rope_params.get("rope_type")) is not None:
  687. rope_factor = rope_params.get("factor")
  688. rope_gguf_type = gguf.RopeScalingType.NONE
  689. if rope_type == "linear" and rope_factor is not None:
  690. rope_gguf_type = gguf.RopeScalingType.LINEAR
  691. self.gguf_writer.add_rope_scaling_type(rope_gguf_type)
  692. self.gguf_writer.add_rope_scaling_factor(rope_factor)
  693. elif rope_type == "yarn" and rope_factor is not None:
  694. rope_gguf_type = gguf.RopeScalingType.YARN
  695. self.gguf_writer.add_rope_scaling_type(rope_gguf_type)
  696. self.gguf_writer.add_rope_scaling_factor(rope_factor)
  697. self.gguf_writer.add_rope_scaling_orig_ctx_len(rope_params["original_max_position_embeddings"])
  698. if (yarn_ext_factor := rope_params.get("extrapolation_factor")) is not None:
  699. self.gguf_writer.add_rope_scaling_yarn_ext_factor(yarn_ext_factor)
  700. if (yarn_attn_factor := rope_params.get("attention_factor", rope_params.get("attn_factor"))) is not None:
  701. self.gguf_writer.add_rope_scaling_yarn_attn_factor(yarn_attn_factor)
  702. if (yarn_beta_fast := rope_params.get("beta_fast")) is not None:
  703. self.gguf_writer.add_rope_scaling_yarn_beta_fast(yarn_beta_fast)
  704. if (yarn_beta_slow := rope_params.get("beta_slow")) is not None:
  705. self.gguf_writer.add_rope_scaling_yarn_beta_slow(yarn_beta_slow)
  706. # self.gguf_writer.add_rope_scaling_yarn_log_mul(rope_params["mscale_all_dim"])
  707. elif rope_type == "su" or rope_type == "longrope":
  708. rope_gguf_type = gguf.RopeScalingType.LONGROPE
  709. self.gguf_writer.add_rope_scaling_type(rope_gguf_type)
  710. elif rope_type == "dynamic":
  711. # HunYuan, handled in model class
  712. pass
  713. elif rope_type.lower() == "llama3":
  714. # Handled in generate_extra_tensors
  715. pass
  716. else:
  717. logger.warning(f"Unknown RoPE type: {rope_type}")
  718. logger.info(f"gguf: rope scaling type = {rope_gguf_type.name}")
  719. if (rope_theta := rope_params.get("rope_theta")) is not None:
  720. self.gguf_writer.add_rope_freq_base(rope_theta)
  721. logger.info(f"gguf: rope theta = {rope_theta}")
  722. if (f_rms_eps := self.find_hparam(["rms_norm_eps", "norm_eps"], optional=True)) is not None:
  723. self.gguf_writer.add_layer_norm_rms_eps(f_rms_eps)
  724. logger.info(f"gguf: rms norm epsilon = {f_rms_eps}")
  725. if (f_norm_eps := self.find_hparam(["layer_norm_eps", "layer_norm_epsilon", "norm_epsilon"], optional=True)) is not None:
  726. self.gguf_writer.add_layer_norm_eps(f_norm_eps)
  727. logger.info(f"gguf: layer norm epsilon = {f_norm_eps}")
  728. if (n_experts := self.hparams.get("num_local_experts")) is not None:
  729. self.gguf_writer.add_expert_count(n_experts)
  730. logger.info(f"gguf: expert count = {n_experts}")
  731. if (n_experts_used := self.hparams.get("num_experts_per_tok")) is not None:
  732. self.gguf_writer.add_expert_used_count(n_experts_used)
  733. logger.info(f"gguf: experts used count = {n_experts_used}")
  734. if (n_expert_groups := self.hparams.get("n_group")) is not None:
  735. self.gguf_writer.add_expert_group_count(n_expert_groups)
  736. logger.info(f"gguf: expert groups count = {n_expert_groups}")
  737. if (n_group_used := self.hparams.get("topk_group")) is not None:
  738. self.gguf_writer.add_expert_group_used_count(n_group_used)
  739. logger.info(f"gguf: expert groups used count = {n_group_used}")
  740. if (score_func := self.find_hparam(["score_function", "scoring_func", "score_func"], optional=True)) is not None:
  741. if score_func == "sigmoid":
  742. self.gguf_writer.add_expert_gating_func(gguf.ExpertGatingFuncType.SIGMOID)
  743. elif score_func == "softmax":
  744. self.gguf_writer.add_expert_gating_func(gguf.ExpertGatingFuncType.SOFTMAX)
  745. else:
  746. raise ValueError(f"Unsupported expert score gating function value: {score_func}")
  747. logger.info(f"gguf: expert score gating function = {score_func}")
  748. if (head_dim := self.hparams.get("head_dim")) is not None:
  749. self.gguf_writer.add_key_length(head_dim)
  750. self.gguf_writer.add_value_length(head_dim)
  751. self.gguf_writer.add_file_type(self.ftype)
  752. logger.info(f"gguf: file type = {self.ftype}")
  753. def write_vocab(self):
  754. if len(self.gguf_writer.tensors) != 1:
  755. raise ValueError('Splitting the vocabulary is not supported')
  756. self.prepare_metadata(vocab_only=True)
  757. self.gguf_writer.write_header_to_file(path=self.fname_out)
  758. self.gguf_writer.write_kv_data_to_file()
  759. self.gguf_writer.close()
  760. def does_token_look_special(self, token: str | bytes) -> bool:
  761. if isinstance(token, (bytes, bytearray)):
  762. token_text = token.decode(encoding="utf-8")
  763. elif isinstance(token, memoryview):
  764. token_text = token.tobytes().decode(encoding="utf-8")
  765. else:
  766. token_text = token
  767. # Some models mark some added tokens which ought to be control tokens as not special.
  768. # (e.g. command-r, command-r-plus, deepseek-coder, gemma{,-2})
  769. seems_special = token_text in (
  770. "<pad>", # deepseek-coder
  771. "<mask>", "<2mass>", "[@BOS@]", # gemma{,-2}
  772. )
  773. seems_special = seems_special or (token_text.startswith("<|") and token_text.endswith("|>"))
  774. seems_special = seems_special or (token_text.startswith("<|") and token_text.endswith("|>")) # deepseek-coder
  775. # TODO: should these be marked as UNUSED instead? (maybe not)
  776. seems_special = seems_special or (token_text.startswith("<unused") and token_text.endswith(">")) # gemma{,-2}
  777. return seems_special
  778. # used for GPT-2 BPE and WordPiece vocabs
  779. def get_vocab_base(self) -> tuple[list[str], list[int], str]:
  780. tokens: list[str] = []
  781. toktypes: list[int] = []
  782. from transformers import AutoTokenizer
  783. tokenizer = AutoTokenizer.from_pretrained(self.dir_model)
  784. vocab_size = self.hparams.get("vocab_size", len(tokenizer.vocab))
  785. assert max(tokenizer.vocab.values()) < vocab_size
  786. tokpre = self.get_vocab_base_pre(tokenizer)
  787. reverse_vocab = {id_: encoded_tok for encoded_tok, id_ in tokenizer.vocab.items()}
  788. added_vocab = tokenizer.get_added_vocab()
  789. added_tokens_decoder = tokenizer.added_tokens_decoder
  790. for i in range(vocab_size):
  791. if i not in reverse_vocab:
  792. tokens.append(f"[PAD{i}]")
  793. toktypes.append(gguf.TokenType.UNUSED)
  794. else:
  795. token: str = reverse_vocab[i]
  796. if token in added_vocab:
  797. # The tokenizer in llama.cpp assumes the CONTROL and USER_DEFINED tokens are pre-normalized.
  798. # To avoid unexpected issues - we make sure to normalize non-normalized tokens
  799. if not added_tokens_decoder[i].normalized:
  800. previous_token = token
  801. token = tokenizer.decode(tokenizer.encode(token, add_special_tokens=False))
  802. if previous_token != token:
  803. logger.info(f"{repr(previous_token)} is encoded and decoded back to {repr(token)} using AutoTokenizer")
  804. if added_tokens_decoder[i].special or self.does_token_look_special(token):
  805. toktypes.append(gguf.TokenType.CONTROL)
  806. else:
  807. # NOTE: this was added for Gemma.
  808. # Encoding and decoding the tokens above isn't sufficient for this case.
  809. token = token.replace(b"\xe2\x96\x81".decode("utf-8"), " ") # pre-normalize user-defined spaces
  810. toktypes.append(gguf.TokenType.USER_DEFINED)
  811. else:
  812. toktypes.append(gguf.TokenType.NORMAL)
  813. tokens.append(token)
  814. return tokens, toktypes, tokpre
  815. # NOTE: this function is generated by convert_hf_to_gguf_update.py
  816. # do not modify it manually!
  817. # ref: https://github.com/ggml-org/llama.cpp/pull/6920
  818. # Marker: Start get_vocab_base_pre
  819. def get_vocab_base_pre(self, tokenizer) -> str:
  820. # encoding this string and hashing the resulting tokens would (hopefully) give us a unique identifier that
  821. # is specific for the BPE pre-tokenizer used by the model
  822. # we will use this unique identifier to write a "tokenizer.ggml.pre" entry in the GGUF file which we can
  823. # use in llama.cpp to implement the same pre-tokenizer
  824. chktxt = '\n \n\n \n\n\n \t \t\t \t\n \n \n \n \n🚀 (normal) 😶\u200d🌫️ (multiple emojis concatenated) ✅ 🦙🦙 3 33 333 3333 33333 333333 3333333 33333333 3.3 3..3 3...3 កាន់តែពិសេសអាច😁 ?我想在apple工作1314151天~ ------======= нещо на Български \'\'\'\'\'\'```````""""......!!!!!!?????? I\'ve been \'told he\'s there, \'RE you sure? \'M not sure I\'ll make it, \'D you like some tea? We\'Ve a\'lL'
  825. chktok = tokenizer.encode(chktxt)
  826. chkhsh = sha256(str(chktok).encode()).hexdigest()
  827. logger.debug(f"chktok: {chktok}")
  828. logger.debug(f"chkhsh: {chkhsh}")
  829. res = None
  830. # NOTE: if you get an error here, you need to update the convert_hf_to_gguf_update.py script
  831. # or pull the latest version of the model from Huggingface
  832. # don't edit the hashes manually!
  833. if chkhsh == "b6e8e1518dc4305be2fe39c313ed643381c4da5db34a98f6a04c093f8afbe99b":
  834. # ref: https://huggingface.co/THUDM/glm-4-9b-chat
  835. res = "chatglm-bpe"
  836. if chkhsh == "81d72c7348a9f0ebe86f23298d37debe0a5e71149e29bd283904c02262b27516":
  837. # ref: https://huggingface.co/THUDM/glm-4-9b-chat
  838. res = "chatglm-bpe"
  839. if chkhsh == "a1336059768a55c99a734006ffb02203cd450fed003e9a71886c88acf24fdbc2":
  840. # ref: https://huggingface.co/THUDM/glm-4-9b-hf
  841. res = "glm4"
  842. if chkhsh == "9ca2dd618e8afaf09731a7cf6e2105b373ba6a1821559f258b272fe83e6eb902":
  843. # ref: https://huggingface.co/zai-org/GLM-4.5-Air
  844. res = "glm4"
  845. if chkhsh == "1431a23e583c97432bc230bff598d103ddb5a1f89960c8f1d1051aaa944d0b35":
  846. # ref: https://huggingface.co/sapienzanlp/Minerva-7B-base-v1.0
  847. res = "minerva-7b"
  848. if chkhsh == "7e57df22b1fe23a7b1e1c7f3dc4e3f96d43a4eb0836d0c6bdc3436d7b2f1c664":
  849. # ref: https://huggingface.co/tencent/Hunyuan-A13B-Instruct
  850. res = "hunyuan"
  851. if chkhsh == "bba3b3366b646dbdded5dbc42d59598b849371afc42f7beafa914afaa5b70aa6":
  852. # ref: https://huggingface.co/tencent/Hunyuan-4B-Instruct
  853. res = "hunyuan-dense"
  854. if chkhsh == "a6b57017d60e6edb4d88ecc2845188e0eb333a70357e45dcc9b53964a73bbae6":
  855. # ref: https://huggingface.co/tiiuae/Falcon-H1-0.5B-Base
  856. res = "falcon-h1"
  857. if chkhsh == "60476e1243776c4fb1b993dbd7a5f15ac22f83c80afdf425fa5ae01c8d44ef86":
  858. # ref: https://huggingface.co/tiiuae/Falcon-H1-1B-Base
  859. res = "falcon-h1"
  860. if chkhsh == "3eda48b4c4dc7de733d1a8b3e3b4a85243dbbf704da2ee9d42c6beced8897896":
  861. # ref: https://huggingface.co/tiiuae/Falcon-H1-7B-Base
  862. res = "falcon-h1"
  863. if chkhsh == "48f8e02c0359c0bbdd82f26909171fac1c18a457bb47573ed1fe3bbb2c1cfd4b":
  864. # ref: https://huggingface.co/tiiuae/Falcon-H1-34B-Base
  865. res = "falcon-h1"
  866. if chkhsh == "81212dc7cdb7e0c1074ca62c5aeab0d43c9f52b8a737be7b12a777c953027890":
  867. # ref: https://huggingface.co/moonshotai/Kimi-K2-Base
  868. res = "kimi-k2"
  869. if chkhsh == "d4540891389ea895b53b399da6ac824becc30f2fba0e9ddbb98f92e55ca0e97c":
  870. # ref: https://huggingface.co/Qwen/Qwen3-Embedding-0.6B
  871. res = "qwen2"
  872. if chkhsh == "66b8d4e19ab16c3bfd89bce5d785fb7e0155e8648708a1f42077cb9fe002c273":
  873. # ref: https://huggingface.co/alvarobartt/grok-2-tokenizer
  874. res = "grok-2"
  875. if chkhsh == "0ef9807a4087ebef797fc749390439009c3b9eda9ad1a097abbe738f486c01e5":
  876. # ref: https://huggingface.co/meta-llama/Meta-Llama-3-8B
  877. res = "llama-bpe"
  878. if chkhsh == "049ecf7629871e3041641907f3de7c733e4dbfdc736f57d882ba0b0845599754":
  879. # ref: https://huggingface.co/deepseek-ai/deepseek-llm-7b-base
  880. res = "deepseek-llm"
  881. if chkhsh == "347715f544604f9118bb75ed199f68779f423cabb20db6de6f31b908d04d7821":
  882. # ref: https://huggingface.co/deepseek-ai/deepseek-coder-6.7b-base
  883. res = "deepseek-coder"
  884. if chkhsh == "8aeee3860c56296a157a1fe2fad249ec40aa59b1bb5709f4ade11c4e6fe652ed":
  885. # ref: https://huggingface.co/tiiuae/falcon-7b
  886. res = "falcon"
  887. if chkhsh == "0876d13b50744004aa9aeae05e7b0647eac9d801b5ba4668afc01e709c15e19f":
  888. # ref: https://huggingface.co/BAAI/bge-small-en-v1.5
  889. res = "bert-bge"
  890. if chkhsh == "9d032fcbd5501f4a38150912590928bfb36091efb5df11b8e2124b0390e3fb1e":
  891. # ref: https://huggingface.co/tiiuae/Falcon3-7B-Base
  892. res = "falcon3"
  893. if chkhsh == "8e62295832751ca1e8f92f2226f403dea30dc5165e448b5bfa05af5340c64ec7":
  894. # ref: https://huggingface.co/BAAI/bge-large-zh-v1.5
  895. res = "bert-bge-large"
  896. if chkhsh == "b6dc8df998e1cfbdc4eac8243701a65afe638679230920b50d6f17d81c098166":
  897. # ref: https://huggingface.co/mosaicml/mpt-7b
  898. res = "mpt"
  899. if chkhsh == "35d91631860c815f952d711435f48d356ebac988362536bed955d43bfa436e34":
  900. # ref: https://huggingface.co/bigcode/starcoder2-3b
  901. res = "starcoder"
  902. if chkhsh == "3ce83efda5659b07b1ad37ca97ca5797ea4285d9b9ab0dc679e4a720c9da7454":
  903. # ref: https://huggingface.co/openai-community/gpt2
  904. res = "gpt-2"
  905. if chkhsh == "32d85c31273f8019248f2559fed492d929ea28b17e51d81d3bb36fff23ca72b3":
  906. # ref: https://huggingface.co/stabilityai/stablelm-2-zephyr-1_6b
  907. res = "stablelm2"
  908. if chkhsh == "6221ad2852e85ce96f791f476e0b390cf9b474c9e3d1362f53a24a06dc8220ff":
  909. # ref: https://huggingface.co/smallcloudai/Refact-1_6-base
  910. res = "refact"
  911. if chkhsh == "9c2227e4dd922002fb81bde4fc02b0483ca4f12911410dee2255e4987644e3f8":
  912. # ref: https://huggingface.co/CohereForAI/c4ai-command-r-v01
  913. res = "command-r"
  914. if chkhsh == "e636dc30a262dcc0d8c323492e32ae2b70728f4df7dfe9737d9f920a282b8aea":
  915. # ref: https://huggingface.co/Qwen/Qwen1.5-7B
  916. res = "qwen2"
  917. if chkhsh == "b6dc8df998e1cfbdc4eac8243701a65afe638679230920b50d6f17d81c098166":
  918. # ref: https://huggingface.co/allenai/OLMo-1.7-7B-hf
  919. res = "olmo"
  920. if chkhsh == "a8594e3edff7c29c003940395316294b2c623e09894deebbc65f33f1515df79e":
  921. # ref: https://huggingface.co/databricks/dbrx-base
  922. res = "dbrx"
  923. if chkhsh == "c7699093ba4255a91e702aa38a596aa81669f3525dae06c2953267dde580f448":
  924. # ref: https://huggingface.co/jinaai/jina-reranker-v1-tiny-en
  925. res = "jina-v1-en"
  926. if chkhsh == "0876d13b50744004aa9aeae05e7b0647eac9d801b5ba4668afc01e709c15e19f":
  927. # ref: https://huggingface.co/jinaai/jina-embeddings-v2-base-en
  928. res = "jina-v2-en"
  929. if chkhsh == "171aeeedd6fb548d418a7461d053f11b6f1f1fc9b387bd66640d28a4b9f5c643":
  930. # ref: https://huggingface.co/jinaai/jina-embeddings-v2-base-es
  931. res = "jina-v2-es"
  932. if chkhsh == "27949a2493fc4a9f53f5b9b029c82689cfbe5d3a1929bb25e043089e28466de6":
  933. # ref: https://huggingface.co/jinaai/jina-embeddings-v2-base-de
  934. res = "jina-v2-de"
  935. if chkhsh == "c136ed14d01c2745d4f60a9596ae66800e2b61fa45643e72436041855ad4089d":
  936. # ref: https://huggingface.co/abacusai/Smaug-Llama-3-70B-Instruct
  937. res = "smaug-bpe"
  938. if chkhsh == "c7ea5862a53e4272c035c8238367063e2b270d51faa48c0f09e9d5b54746c360":
  939. # ref: https://huggingface.co/LumiOpen/Poro-34B-chat
  940. res = "poro-chat"
  941. if chkhsh == "7967bfa498ade6b757b064f31e964dddbb80f8f9a4d68d4ba7998fcf281c531a":
  942. # ref: https://huggingface.co/jinaai/jina-embeddings-v2-base-code
  943. res = "jina-v2-code"
  944. if chkhsh == "7fc505bd3104ca1083b150b17d088b59534ede9bde81f0dd2090967d7fe52cee":
  945. # ref: https://huggingface.co/LumiOpen/Viking-7B
  946. res = "viking"
  947. if chkhsh == "b53802fb28e26d645c3a310b34bfe07da813026ec7c7716883404d5e0f8b1901":
  948. # ref: https://huggingface.co/core42/jais-13b
  949. res = "jais"
  950. if chkhsh == "7b3e7548e4308f52a76e8229e4e6cc831195d0d1df43aed21ac6c93da05fec5f":
  951. # ref: https://huggingface.co/WisdomShell/CodeShell-7B
  952. res = "codeshell"
  953. if chkhsh == "63b97e4253352e6f357cc59ea5b583e3a680eaeaf2632188c2b952de2588485e":
  954. # ref: https://huggingface.co/mistralai/Mistral-Nemo-Base-2407
  955. res = "tekken"
  956. if chkhsh == "855059429035d75a914d1eda9f10a876752e281a054a7a3d421ef0533e5b6249":
  957. # ref: https://huggingface.co/HuggingFaceTB/SmolLM-135M
  958. res = "smollm"
  959. if chkhsh == "3c30d3ad1d6b64202cd222813e7736c2db6e1bd6d67197090fc1211fbc612ae7":
  960. # ref: https://huggingface.co/bigscience/bloom
  961. res = "bloom"
  962. if chkhsh == "bc01ce58980e1db43859146dc51b1758b3b88729b217a74792e9f8d43e479d21":
  963. # ref: https://huggingface.co/TurkuNLP/gpt3-finnish-small
  964. res = "gpt3-finnish"
  965. if chkhsh == "4e2b24cc4770243d65a2c9ec19770a72f08cffc161adbb73fcbb6b7dd45a0aae":
  966. # ref: https://huggingface.co/LGAI-EXAONE/EXAONE-3.0-7.8B-Instruct
  967. res = "exaone"
  968. if chkhsh == "fcace8b9cac38ce847670c970cd5892031a753a1ef381abd1d9af00f713da085":
  969. # ref: https://huggingface.co/microsoft/phi-2
  970. res = "phi-2"
  971. if chkhsh == "60824e3c0d9401f89943cbb2fff727f0e2d4c545ba4df2d6e4f09a6db0f5b450":
  972. # ref: https://huggingface.co/facebook/chameleon-7b
  973. res = "chameleon"
  974. if chkhsh == "8b5a93ed704057481f240da0be7e7dca721d7f8f4755263b6807227a2cbeae65":
  975. # ref: https://huggingface.co/sentence-transformers/stsb-roberta-base
  976. res = "roberta-bpe"
  977. if chkhsh == "ad851be1dba641f2e3711822f816db2c265f788b37c63b4e1aeacb9ee92de8eb":
  978. # ref: https://huggingface.co/ai-sage/GigaChat-20B-A3B-instruct
  979. res = "gigachat"
  980. if chkhsh == "d4c8f286ea6b520b3d495c4455483cfa2302c0cfcd4be05d781b6a8a0a7cdaf1":
  981. # ref: https://huggingface.co/Infinigence/Megrez-3B-Instruct
  982. res = "megrez"
  983. if chkhsh == "877081d19cf6996e2c4ff0e1236341e9b7bde288f5311a56a937f0afbbb3aeb5":
  984. # ref: https://huggingface.co/deepseek-ai/DeepSeek-V3
  985. res = "deepseek-v3"
  986. if chkhsh == "b3f499bb4255f8ca19fccd664443283318f2fd2414d5e0b040fbdd0cc195d6c5":
  987. # ref: https://huggingface.co/deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B
  988. res = "deepseek-r1-qwen"
  989. if chkhsh == "ccc2ef013c104be7bae2965776d611e1d7a8a2a9c547dd93a682c9a9fc80352e":
  990. # ref: https://huggingface.co/Xenova/gpt-4o
  991. res = "gpt-4o"
  992. if chkhsh == "7dec86086fcc38b66b7bc1575a160ae21cf705be7718b9d5598190d7c12db76f":
  993. # ref: https://huggingface.co/UW/OLMo2-8B-SuperBPE-t180k
  994. res = "superbpe"
  995. if chkhsh == "1994ffd01900cfb37395608534236ecd63f2bd5995d6cb1004dda1af50240f15":
  996. # ref: https://huggingface.co/trillionlabs/Trillion-7B-preview
  997. res = "trillion"
  998. if chkhsh == "96a5f08be6259352137b512d4157e333e21df7edd3fcd152990608735a65b224":
  999. # ref: https://huggingface.co/inclusionAI/Ling-lite
  1000. res = "bailingmoe"
  1001. if chkhsh == "d353350c764d8c3b39c763113960e4fb4919bea5fbf208a0e3b22e8469dc7406":
  1002. # ref: https://huggingface.co/meta-llama/Llama-4-Scout-17B-16E-Instruct
  1003. res = "llama4"
  1004. if chkhsh == "0e9433cbbb161f89e264eb32e8e64bfe69e834973ffca5d41d3948a604a3e2a3":
  1005. # ref: https://huggingface.co/mistral-community/pixtral-12b
  1006. res = "pixtral"
  1007. if chkhsh == "d5f1dd6f980fec569fb218a81a7658ac45fc56b38c5a0adeb1c232fbe04ef5ec":
  1008. # ref: https://huggingface.co/ByteDance-Seed/Seed-Coder-8B-Base
  1009. res = "seed-coder"
  1010. if chkhsh == "b0a6b1c0bd5998ebd9df08611efde34a4ff03faed45ae09c43e6b31ebd4b94cf":
  1011. # ref: https://huggingface.co/skt/A.X-4.0
  1012. res = "a.x-4.0"
  1013. if chkhsh == "f6791d196f87ce6b56a7d234be618e0d58f8cda3549416635b2bebcd22cd95c4":
  1014. # ref: https://huggingface.co/K-intelligence/Midm-2.0-Base-Instruct
  1015. res = "midm-2.0"
  1016. if chkhsh == "169bf0296a13c4d9b7672313f749eb36501d931022de052aad6e36f2bf34dd51":
  1017. # ref: https://huggingface.co/LiquidAI/LFM2-Tokenizer
  1018. res = "lfm2"
  1019. if chkhsh == "2085e1638f6c377a0aa4ead21b27bb4cb941bf800df86ed391011769c1758dfb":
  1020. # ref: https://huggingface.co/LGAI-EXAONE/EXAONE-4.0-32B
  1021. res = "exaone4"
  1022. if chkhsh == "a1e163ecab2e718a4c829d1148b6e86824ec36163bb71941c3dca9cd5ac25756":
  1023. # ref: https://huggingface.co/JetBrains/Mellum-4b-base
  1024. res = "mellum"
  1025. if chkhsh == "49fc0303c9e0d2c2c565c510f64b2d9b271276acdcdadff733249eda9f7d59df":
  1026. # ref: https://huggingface.co/arcee-ai/Trinity-Tokenizer
  1027. res = "afmoe"
  1028. if chkhsh == "9b1be57e70d20d9501b2b3186e792d81181ae36ada3903c26f9fea418cf87206":
  1029. # ref: https://huggingface.co/inclusionAI/Ling-mini-base-2.0
  1030. res = "bailingmoe2"
  1031. if chkhsh == "53e325976a6e142379c19b09afcae354f2f496f147afa8f9e189a33fe4e3024e":
  1032. # ref: https://huggingface.co/ibm-granite/granite-docling-258M
  1033. res = "granite-docling"
  1034. if chkhsh == "f4f37b6c8eb9ea29b3eac6bb8c8487c5ab7885f8d8022e67edc1c68ce8403e95":
  1035. # ref: https://huggingface.co/MiniMaxAI/MiniMax-M2
  1036. res = "minimax-m2"
  1037. if res is None:
  1038. logger.warning("\n")
  1039. logger.warning("**************************************************************************************")
  1040. logger.warning("** WARNING: The BPE pre-tokenizer was not recognized!")
  1041. logger.warning("** There are 2 possible reasons for this:")
  1042. logger.warning("** - the model has not been added to convert_hf_to_gguf_update.py yet")
  1043. logger.warning("** - the pre-tokenization config has changed upstream")
  1044. logger.warning("** Check your model files and convert_hf_to_gguf_update.py and update them accordingly.")
  1045. logger.warning("** ref: https://github.com/ggml-org/llama.cpp/pull/6920")
  1046. logger.warning("**")
  1047. logger.warning(f"** chkhsh: {chkhsh}")
  1048. logger.warning("**************************************************************************************")
  1049. logger.warning("\n")
  1050. raise NotImplementedError("BPE pre-tokenizer was not recognized - update get_vocab_base_pre()")
  1051. logger.debug(f"tokenizer.ggml.pre: {repr(res)}")
  1052. logger.debug(f"chkhsh: {chkhsh}")
  1053. return res
  1054. # Marker: End get_vocab_base_pre
  1055. def _set_vocab_none(self) -> None:
  1056. self.gguf_writer.add_tokenizer_model("none")
  1057. def _set_vocab_gpt2(self) -> None:
  1058. tokens, toktypes, tokpre = self.get_vocab_base()
  1059. self.gguf_writer.add_tokenizer_model("gpt2")
  1060. self.gguf_writer.add_tokenizer_pre(tokpre)
  1061. self.gguf_writer.add_token_list(tokens)
  1062. self.gguf_writer.add_token_types(toktypes)
  1063. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=True)
  1064. special_vocab.add_to_gguf(self.gguf_writer)
  1065. def _set_vocab_qwen(self):
  1066. dir_model = self.dir_model
  1067. hparams = self.hparams
  1068. tokens: list[str] = []
  1069. toktypes: list[int] = []
  1070. from transformers import AutoTokenizer
  1071. tokenizer = AutoTokenizer.from_pretrained(dir_model, trust_remote_code=True)
  1072. vocab_size = hparams["vocab_size"]
  1073. assert max(tokenizer.get_vocab().values()) < vocab_size
  1074. tokpre = self.get_vocab_base_pre(tokenizer)
  1075. merges = []
  1076. vocab = {}
  1077. mergeable_ranks = tokenizer.mergeable_ranks
  1078. for token, rank in mergeable_ranks.items():
  1079. vocab[QwenModel.token_bytes_to_string(token)] = rank
  1080. if len(token) == 1:
  1081. continue
  1082. merged = QwenModel.bpe(mergeable_ranks, token, max_rank=rank)
  1083. assert len(merged) == 2
  1084. merges.append(' '.join(map(QwenModel.token_bytes_to_string, merged)))
  1085. # for this kind of tokenizer, added_vocab is not a subset of vocab, so they need to be combined
  1086. added_vocab = tokenizer.special_tokens
  1087. reverse_vocab = {id_ : encoded_tok for encoded_tok, id_ in {**vocab, **added_vocab}.items()}
  1088. for i in range(vocab_size):
  1089. if i not in reverse_vocab:
  1090. tokens.append(f"[PAD{i}]")
  1091. toktypes.append(gguf.TokenType.UNUSED)
  1092. elif reverse_vocab[i] in added_vocab:
  1093. tokens.append(reverse_vocab[i])
  1094. toktypes.append(gguf.TokenType.CONTROL)
  1095. else:
  1096. tokens.append(reverse_vocab[i])
  1097. toktypes.append(gguf.TokenType.NORMAL)
  1098. self.gguf_writer.add_tokenizer_model("gpt2")
  1099. self.gguf_writer.add_tokenizer_pre(tokpre)
  1100. self.gguf_writer.add_token_list(tokens)
  1101. self.gguf_writer.add_token_types(toktypes)
  1102. special_vocab = gguf.SpecialVocab(dir_model, load_merges=False)
  1103. special_vocab.merges = merges
  1104. # only add special tokens when they were not already loaded from config.json
  1105. if len(special_vocab.special_token_ids) == 0:
  1106. special_vocab._set_special_token("bos", tokenizer.special_tokens["<|endoftext|>"])
  1107. special_vocab._set_special_token("eos", tokenizer.special_tokens["<|endoftext|>"])
  1108. # this one is usually not in config.json anyway
  1109. special_vocab._set_special_token("unk", tokenizer.special_tokens["<|endoftext|>"])
  1110. special_vocab.add_to_gguf(self.gguf_writer)
  1111. def _set_vocab_sentencepiece(self, add_to_gguf=True):
  1112. tokens, scores, toktypes = self._create_vocab_sentencepiece()
  1113. self.gguf_writer.add_tokenizer_model("llama")
  1114. self.gguf_writer.add_tokenizer_pre("default")
  1115. self.gguf_writer.add_token_list(tokens)
  1116. self.gguf_writer.add_token_scores(scores)
  1117. self.gguf_writer.add_token_types(toktypes)
  1118. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  1119. special_vocab.add_to_gguf(self.gguf_writer)
  1120. def _create_vocab_sentencepiece(self):
  1121. from sentencepiece import SentencePieceProcessor
  1122. tokenizer_path = self.dir_model / 'tokenizer.model'
  1123. if not tokenizer_path.is_file():
  1124. raise FileNotFoundError(f"File not found: {tokenizer_path}")
  1125. tokenizer = SentencePieceProcessor()
  1126. tokenizer.LoadFromFile(str(tokenizer_path))
  1127. vocab_size = self.find_hparam([
  1128. "vocab_size_per_layer_input", # gemma3n
  1129. "vocab_size",
  1130. ], optional=True) or tokenizer.vocab_size()
  1131. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  1132. scores: list[float] = [-10000.0] * vocab_size
  1133. toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
  1134. for token_id in range(tokenizer.vocab_size()):
  1135. if token_id >= vocab_size:
  1136. logger.warning(f'ignore tokens from {token_id}: id is out of range, max={vocab_size - 1}')
  1137. break
  1138. piece = tokenizer.IdToPiece(token_id)
  1139. text = piece.encode("utf-8")
  1140. score = tokenizer.GetScore(token_id)
  1141. toktype = SentencePieceTokenTypes.NORMAL
  1142. if tokenizer.IsUnknown(token_id):
  1143. toktype = SentencePieceTokenTypes.UNKNOWN
  1144. elif tokenizer.IsControl(token_id):
  1145. toktype = SentencePieceTokenTypes.CONTROL
  1146. elif tokenizer.IsUnused(token_id):
  1147. toktype = SentencePieceTokenTypes.UNUSED
  1148. elif tokenizer.IsByte(token_id):
  1149. toktype = SentencePieceTokenTypes.BYTE
  1150. tokens[token_id] = text
  1151. scores[token_id] = score
  1152. toktypes[token_id] = toktype
  1153. added_tokens_file = self.dir_model / 'added_tokens.json'
  1154. if added_tokens_file.is_file():
  1155. with open(added_tokens_file, "r", encoding="utf-8") as f:
  1156. added_tokens_json = json.load(f)
  1157. for key in added_tokens_json:
  1158. token_id = added_tokens_json[key]
  1159. if token_id >= vocab_size:
  1160. logger.warning(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
  1161. continue
  1162. tokens[token_id] = key.encode("utf-8")
  1163. scores[token_id] = -1000.0
  1164. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  1165. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  1166. if tokenizer_config_file.is_file():
  1167. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  1168. tokenizer_config_json = json.load(f)
  1169. added_tokens_decoder = tokenizer_config_json.get("added_tokens_decoder", {})
  1170. for token_id, token_data in added_tokens_decoder.items():
  1171. token_id = int(token_id)
  1172. token: str = token_data["content"]
  1173. if token_id >= vocab_size:
  1174. logger.warning(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
  1175. continue
  1176. if toktypes[token_id] != SentencePieceTokenTypes.UNUSED:
  1177. if tokens[token_id] != token.encode("utf-8"):
  1178. logger.warning(f'replacing token {token_id}: {tokens[token_id].decode("utf-8")!r} -> {token!r}')
  1179. if token_data.get("special") or self.does_token_look_special(token):
  1180. toktypes[token_id] = SentencePieceTokenTypes.CONTROL
  1181. else:
  1182. token = token.replace(b"\xe2\x96\x81".decode("utf-8"), " ") # pre-normalize user-defined spaces
  1183. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  1184. scores[token_id] = -1000.0
  1185. tokens[token_id] = token.encode("utf-8")
  1186. if vocab_size > len(tokens):
  1187. pad_count = vocab_size - len(tokens)
  1188. logger.debug(f"Padding vocab with {pad_count} token(s) - [PAD1] through [PAD{pad_count}]")
  1189. for i in range(1, pad_count + 1):
  1190. tokens.append(bytes(f"[PAD{i}]", encoding="utf-8"))
  1191. scores.append(-1000.0)
  1192. toktypes.append(SentencePieceTokenTypes.UNUSED)
  1193. return tokens, scores, toktypes
  1194. def _set_vocab_llama_hf(self):
  1195. vocab = gguf.LlamaHfVocab(self.dir_model)
  1196. tokens = []
  1197. scores = []
  1198. toktypes = []
  1199. for text, score, toktype in vocab.all_tokens():
  1200. tokens.append(text)
  1201. scores.append(score)
  1202. toktypes.append(toktype)
  1203. assert len(tokens) == vocab.vocab_size
  1204. self.gguf_writer.add_tokenizer_model("llama")
  1205. self.gguf_writer.add_tokenizer_pre("default")
  1206. self.gguf_writer.add_token_list(tokens)
  1207. self.gguf_writer.add_token_scores(scores)
  1208. self.gguf_writer.add_token_types(toktypes)
  1209. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  1210. special_vocab.add_to_gguf(self.gguf_writer)
  1211. def _set_vocab_rwkv_world(self):
  1212. assert (self.dir_model / "rwkv_vocab_v20230424.txt").is_file()
  1213. vocab_size = self.hparams.get("vocab_size", 65536)
  1214. tokens: list[bytes] = ['<s>'.encode("utf-8")]
  1215. toktypes: list[int] = [gguf.TokenType.CONTROL]
  1216. with open(self.dir_model / "rwkv_vocab_v20230424.txt", "r", encoding="utf-8") as f:
  1217. lines = f.readlines()
  1218. for line in lines:
  1219. parts = line.split(' ')
  1220. assert len(parts) >= 3
  1221. token, token_len = ast.literal_eval(' '.join(parts[1:-1])), int(parts[-1])
  1222. token = token.encode("utf-8") if isinstance(token, str) else token
  1223. assert isinstance(token, bytes)
  1224. assert len(token) == token_len
  1225. token_text: str = repr(token)[2:-1] # "b'\xff'" -> "\xff"
  1226. tokens.append(token_text.encode("utf-8"))
  1227. toktypes.append(gguf.TokenType.NORMAL)
  1228. remainder = vocab_size - len(tokens)
  1229. assert remainder >= 0
  1230. for i in range(len(tokens), vocab_size):
  1231. tokens.append(f"[PAD{i}]".encode("utf-8"))
  1232. toktypes.append(gguf.TokenType.UNUSED)
  1233. self.gguf_writer.add_tokenizer_model("rwkv")
  1234. self.gguf_writer.add_token_list(tokens)
  1235. self.gguf_writer.add_token_types(toktypes)
  1236. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=False)
  1237. if special_vocab.chat_template is None:
  1238. template_path = Path(__file__).parent / "models" / "templates" / "llama-cpp-rwkv-world.jinja"
  1239. if template_path.is_file():
  1240. with open(template_path, "r", encoding="utf-8") as f:
  1241. template = f.read()
  1242. else:
  1243. template = "rwkv-world"
  1244. special_vocab.chat_template = template
  1245. # hack: Add '\n\n' as the EOT token to make it chat normally
  1246. special_vocab._set_special_token("eot", 261)
  1247. # hack: Override these as they have already been set (incorrectly)
  1248. special_vocab.special_token_ids["bos"] = 0
  1249. special_vocab.special_token_ids["eos"] = 0
  1250. special_vocab.add_to_gguf(self.gguf_writer)
  1251. def _set_vocab_builtin(self, model_name: Literal["gpt-neox", "llama-spm"], vocab_size: int):
  1252. tokenizer_path = Path(sys.path[0]) / "models" / f"ggml-vocab-{model_name}.gguf"
  1253. logger.warning(f"Using tokenizer from '{os.path.relpath(tokenizer_path, os.getcwd())}'")
  1254. vocab_reader = gguf.GGUFReader(tokenizer_path, "r")
  1255. default_pre = "mpt" if model_name == "gpt-neox" else "default"
  1256. field = vocab_reader.get_field(gguf.Keys.Tokenizer.MODEL)
  1257. assert field # tokenizer model
  1258. self.gguf_writer.add_tokenizer_model(bytes(field.parts[-1]).decode("utf-8"))
  1259. field = vocab_reader.get_field(gguf.Keys.Tokenizer.PRE)
  1260. self.gguf_writer.add_tokenizer_pre(bytes(field.parts[-1]).decode("utf-8") if field else default_pre)
  1261. field = vocab_reader.get_field(gguf.Keys.Tokenizer.LIST)
  1262. assert field # token list
  1263. self.gguf_writer.add_token_list([bytes(field.parts[i]) for i in field.data][:vocab_size])
  1264. if model_name == "llama-spm":
  1265. field = vocab_reader.get_field(gguf.Keys.Tokenizer.SCORES)
  1266. assert field # token scores
  1267. self.gguf_writer.add_token_scores([field.parts[i].tolist()[0] for i in field.data][:vocab_size])
  1268. field = vocab_reader.get_field(gguf.Keys.Tokenizer.TOKEN_TYPE)
  1269. assert field # token types
  1270. self.gguf_writer.add_token_types([field.parts[i].tolist()[0] for i in field.data][:vocab_size])
  1271. if model_name != "llama-spm":
  1272. field = vocab_reader.get_field(gguf.Keys.Tokenizer.MERGES)
  1273. assert field # token merges
  1274. self.gguf_writer.add_token_merges([bytes(field.parts[i]) for i in field.data])
  1275. if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.BOS_ID)) is not None:
  1276. self.gguf_writer.add_bos_token_id(field.parts[-1].tolist()[0])
  1277. if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.EOS_ID)) is not None:
  1278. self.gguf_writer.add_eos_token_id(field.parts[-1].tolist()[0])
  1279. if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.UNK_ID)) is not None:
  1280. self.gguf_writer.add_unk_token_id(field.parts[-1].tolist()[0])
  1281. if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.PAD_ID)) is not None:
  1282. self.gguf_writer.add_pad_token_id(field.parts[-1].tolist()[0])
  1283. if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.ADD_BOS)) is not None:
  1284. self.gguf_writer.add_add_bos_token(field.parts[-1].tolist()[0])
  1285. if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.ADD_EOS)) is not None:
  1286. self.gguf_writer.add_add_eos_token(field.parts[-1].tolist()[0])
  1287. def _try_set_pooling_type(self) -> None:
  1288. # get pooling path
  1289. pooling_path = None
  1290. module_path = self.dir_model / "modules.json"
  1291. if module_path.is_file():
  1292. with open(module_path, encoding="utf-8") as f:
  1293. modules = json.load(f)
  1294. for mod in modules:
  1295. if mod["type"] == "sentence_transformers.models.Pooling":
  1296. pooling_path = mod["path"]
  1297. break
  1298. # get pooling type
  1299. if pooling_path is not None:
  1300. with open(self.dir_model / pooling_path / "config.json", encoding="utf-8") as f:
  1301. pooling = json.load(f)
  1302. if pooling["pooling_mode_mean_tokens"]:
  1303. pooling_type = gguf.PoolingType.MEAN
  1304. elif pooling["pooling_mode_cls_token"]:
  1305. pooling_type = gguf.PoolingType.CLS
  1306. elif pooling["pooling_mode_lasttoken"]:
  1307. pooling_type = gguf.PoolingType.LAST
  1308. else:
  1309. raise NotImplementedError("Only MEAN, CLS, and LAST pooling types supported")
  1310. self.gguf_writer.add_pooling_type(pooling_type)
  1311. def _set_vocab_interns1(self):
  1312. tokens: list[str] = []
  1313. toktypes: list[int] = []
  1314. from transformers import AutoTokenizer
  1315. tokenizer = AutoTokenizer.from_pretrained(self.dir_model, trust_remote_code=True)
  1316. vocab = getattr(tokenizer, 'vocab', tokenizer.get_vocab())
  1317. vocab_size = self.hparams.get("vocab_size", len(vocab))
  1318. assert max(vocab.values()) < vocab_size
  1319. tokpre = self.get_vocab_base_pre(tokenizer)
  1320. reverse_vocab = {id_: encoded_tok for encoded_tok, id_ in vocab.items()}
  1321. added_vocab = tokenizer.get_added_vocab()
  1322. added_tokens_decoder = tokenizer.added_tokens_decoder
  1323. for i in range(vocab_size):
  1324. if i not in reverse_vocab:
  1325. tokens.append(f"[PAD{i}]")
  1326. toktypes.append(gguf.TokenType.UNUSED)
  1327. else:
  1328. token: str = reverse_vocab[i]
  1329. if token in added_vocab:
  1330. # The tokenizer in llama.cpp assumes the CONTROL and USER_DEFINED tokens are pre-normalized.
  1331. # To avoid unexpected issues - we make sure to normalize non-normalized tokens
  1332. if not added_tokens_decoder[i].normalized:
  1333. previous_token = token
  1334. token = tokenizer.decode(tokenizer.encode(token, add_special_tokens=False))
  1335. if previous_token != token:
  1336. logger.info(f"{repr(previous_token)} is encoded and decoded back to {repr(token)} using AutoTokenizer")
  1337. if added_tokens_decoder[i].special or self.does_token_look_special(token):
  1338. toktypes.append(gguf.TokenType.CONTROL)
  1339. else:
  1340. toktypes.append(gguf.TokenType.USER_DEFINED)
  1341. else:
  1342. toktypes.append(gguf.TokenType.NORMAL)
  1343. tokens.append(token)
  1344. self.gguf_writer.add_tokenizer_model("gpt2")
  1345. self.gguf_writer.add_tokenizer_pre(tokpre)
  1346. self.gguf_writer.add_token_list(tokens)
  1347. self.gguf_writer.add_token_types(toktypes)
  1348. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=True)
  1349. special_vocab._set_special_token("bos", 151643)
  1350. special_vocab.add_to_gguf(self.gguf_writer)
  1351. def _set_vocab_mistral(self):
  1352. if not _mistral_common_installed:
  1353. raise ImportError(_mistral_import_error_msg)
  1354. vocab = MistralVocab(self.dir_model)
  1355. logger.info(
  1356. f"Converting tokenizer {vocab.tokenizer_type} of size {vocab.vocab_size}."
  1357. )
  1358. self.gguf_writer.add_tokenizer_model(vocab.gguf_tokenizer_model)
  1359. tokens = []
  1360. scores = []
  1361. toktypes = []
  1362. for text, score, toktype in vocab.all_tokens():
  1363. tokens.append(text)
  1364. scores.append(score)
  1365. toktypes.append(toktype)
  1366. assert len(tokens) == vocab.vocab_size, (
  1367. f"token count ({len(tokens)}) != vocab size ({vocab.vocab_size})"
  1368. )
  1369. if vocab.tokenizer_type == MistralTokenizerType.tekken:
  1370. self.gguf_writer.add_tokenizer_pre("tekken")
  1371. self.gguf_writer.add_token_merges(
  1372. vocab.extract_vocab_merges_from_model()
  1373. )
  1374. logger.info(
  1375. f"Setting bos, eos, unk and pad token IDs to {vocab.bos_id}, {vocab.eos_id}, {vocab.unk_id}, {vocab.pad_id}."
  1376. )
  1377. self.gguf_writer.add_bos_token_id(vocab.bos_id)
  1378. self.gguf_writer.add_eos_token_id(vocab.eos_id)
  1379. self.gguf_writer.add_unk_token_id(vocab.unk_id)
  1380. self.gguf_writer.add_pad_token_id(vocab.pad_id)
  1381. self.gguf_writer.add_token_list(tokens)
  1382. self.gguf_writer.add_token_scores(scores)
  1383. self.gguf_writer.add_token_types(toktypes)
  1384. self.gguf_writer.add_vocab_size(vocab.vocab_size)
  1385. self.gguf_writer.add_add_bos_token(True)
  1386. self.gguf_writer.add_add_eos_token(False)
  1387. local_template_file_path = self.dir_model / "chat_template.jinja"
  1388. if self.is_mistral_format and local_template_file_path.is_file():
  1389. # Ministral-3 and other new Mistral models come with chat templates.
  1390. # ref: https://huggingface.co/mistralai/Ministral-3-14B-Instruct-2512/tree/main
  1391. logger.info("Using an existing Mistral local chat template.")
  1392. with open(local_template_file_path, "r", encoding="utf-8") as f:
  1393. template = f.read()
  1394. elif not self.is_mistral_format or not self.disable_mistral_community_chat_template:
  1395. template_dir = Path(__file__).parent / "models/templates/"
  1396. # Log only for Mistral format that the official tokenization and detokenization is via `mistral-common`.
  1397. if self.is_mistral_format:
  1398. logger.info(
  1399. "Using a Mistral community chat template. These templates can be subject to errors in early days or weeks after a release. "
  1400. "Mistral recommends to use `mistral-common` to perform tokenization and detokenization."
  1401. )
  1402. template = MistralModel.get_community_chat_template(vocab, template_dir, self.is_mistral_format)
  1403. else:
  1404. logger.info("Not using a Mistral local or community chat template. Ensure to perform the tokenization and detokenization via `mistral-common`.")
  1405. template = None
  1406. if template is not None:
  1407. self.gguf_writer.add_chat_template(template)
  1408. class MmprojModel(ModelBase):
  1409. model_type = ModelType.MMPROJ
  1410. model_arch = gguf.MODEL_ARCH.MMPROJ
  1411. preprocessor_config: dict[str, Any]
  1412. global_config: dict[str, Any]
  1413. n_block_keys = ["n_layers", "num_hidden_layers", "n_layer", "num_layers", "depth"]
  1414. has_vision_encoder: bool = True # by default
  1415. has_audio_encoder: bool = False
  1416. # for models having multiple encoders, we need to separate their hparams
  1417. hparams_vision: dict[str, Any] | None = None
  1418. hparams_audio: dict[str, Any] | None = None
  1419. def __init__(self, *args, **kwargs):
  1420. super().__init__(*args, **kwargs)
  1421. if self.model_arch != gguf.MODEL_ARCH.MMPROJ:
  1422. raise TypeError("MmprojModel must be subclassed with model_arch = gguf.MODEL_ARCH.MMPROJ")
  1423. # get n_embd of the text model
  1424. if not self.is_mistral_format:
  1425. if "text_config" not in self.hparams:
  1426. self.hparams["text_config"] = {}
  1427. if "audio_config" not in self.hparams:
  1428. self.hparams["audio_config"] = {}
  1429. text_config = {**self.hparams, **self.hparams["text_config"]}
  1430. self.n_embd_text = text_config.get("hidden_size", text_config.get("n_embd", 0))
  1431. else:
  1432. text_config = {
  1433. k: v for k, v in self.hparams.items() if k not in ["vision_encoder", "audio_encoder"]
  1434. }
  1435. self.n_embd_text = text_config.get("hidden_dim", 0)
  1436. assert self.n_embd_text > 0, "n_embd not found in hparams"
  1437. # move vision config to the top level, while preserving the original hparams in global_config
  1438. import copy
  1439. self.global_config = copy.deepcopy(self.hparams)
  1440. self.hparams_vision = self.get_vision_config()
  1441. self.hparams_audio = self.get_audio_config()
  1442. if self.hparams_vision is None and self.hparams_audio is None:
  1443. raise ValueError("vision_config / audio_config not found in hparams")
  1444. # for compat with vision-only models
  1445. self.hparams = self.hparams_vision or self.hparams_audio or self.hparams
  1446. # TODO @ngxson : this is a hack to support both vision and audio encoders
  1447. have_multiple_encoders = self.has_audio_encoder and self.has_vision_encoder
  1448. self.block_count = 128 if have_multiple_encoders else self.find_hparam(self.n_block_keys, True)
  1449. self.tensor_map = gguf.get_tensor_name_map(gguf.MODEL_ARCH.MMPROJ, self.block_count)
  1450. # load preprocessor config
  1451. self.preprocessor_config = {}
  1452. # prefer preprocessor_config.json if possible
  1453. preprocessor_config_path = self.dir_model / "preprocessor_config.json"
  1454. if preprocessor_config_path.is_file():
  1455. with open(preprocessor_config_path, "r", encoding="utf-8") as f:
  1456. self.preprocessor_config = json.load(f)
  1457. # prefer processor_config.json if possible
  1458. processor_config_path = self.dir_model / "processor_config.json"
  1459. if processor_config_path.is_file():
  1460. with open(processor_config_path, "r", encoding="utf-8") as f:
  1461. cfg = json.load(f)
  1462. # move image_processor to root level for compat
  1463. if "image_processor" in cfg:
  1464. cfg = {
  1465. **cfg,
  1466. **cfg["image_processor"],
  1467. }
  1468. # merge configs
  1469. self.preprocessor_config = {**self.preprocessor_config, **cfg}
  1470. def get_vision_config(self) -> dict[str, Any] | None:
  1471. config_name = "vision_config" if not self.is_mistral_format else "vision_encoder"
  1472. return self.global_config.get(config_name)
  1473. def get_audio_config(self) -> dict[str, Any] | None:
  1474. return self.global_config.get("audio_config")
  1475. def set_type(self):
  1476. self.gguf_writer.add_type(gguf.GGUFType.MMPROJ)
  1477. def prepare_metadata(self, vocab_only: bool):
  1478. super().prepare_metadata(vocab_only=vocab_only)
  1479. output_type: str = self.ftype.name.partition("_")[2]
  1480. if self.fname_out.is_dir():
  1481. fname_default: str = gguf.naming_convention(self.metadata.name, self.metadata.basename, self.metadata.finetune, self.metadata.version, size_label=None, output_type=output_type, model_type=None)
  1482. self.fname_out = self.fname_out / f"mmproj-{fname_default}.gguf"
  1483. else:
  1484. self.fname_out = self.fname_out.parent / gguf.fill_templated_filename(self.fname_out.name, output_type)
  1485. def set_gguf_parameters(self):
  1486. self.gguf_writer.add_file_type(self.ftype)
  1487. if self.has_vision_encoder:
  1488. self.gguf_writer.add_clip_has_vision_encoder(True)
  1489. self.gguf_writer.add_vision_projection_dim(self.n_embd_text)
  1490. # vision config
  1491. self.image_size = self.find_vparam(["image_size"])
  1492. self.gguf_writer.add_vision_image_size(self.image_size)
  1493. self.gguf_writer.add_vision_patch_size(self.find_vparam(["patch_size"]))
  1494. self.gguf_writer.add_vision_embedding_length(self.find_vparam(["hidden_size"]))
  1495. self.gguf_writer.add_vision_feed_forward_length(self.find_vparam(["intermediate_size"]))
  1496. self.gguf_writer.add_vision_block_count(self.find_vparam(self.n_block_keys))
  1497. self.gguf_writer.add_vision_head_count(self.find_vparam(["num_attention_heads", "num_heads"]))
  1498. # preprocessor config
  1499. image_mean = _MISTRAL_COMMON_DATASET_MEAN if self.is_mistral_format else self.preprocessor_config["image_mean"]
  1500. image_std = _MISTRAL_COMMON_DATASET_STD if self.is_mistral_format else self.preprocessor_config["image_std"]
  1501. self.gguf_writer.add_vision_image_mean(image_mean)
  1502. self.gguf_writer.add_vision_image_std(image_std)
  1503. if self.has_audio_encoder:
  1504. self.gguf_writer.add_clip_has_audio_encoder(True)
  1505. self.gguf_writer.add_audio_projection_dim(self.n_embd_text)
  1506. # audio config
  1507. self.gguf_writer.add_audio_embedding_length(self.find_aparam(["hidden_size"]))
  1508. self.gguf_writer.add_audio_feed_forward_length(self.find_aparam(["intermediate_size"]))
  1509. self.gguf_writer.add_audio_block_count(self.find_aparam(self.n_block_keys))
  1510. self.gguf_writer.add_audio_head_count(self.find_aparam(["num_attention_heads"]))
  1511. if not self.has_vision_encoder and not self.has_audio_encoder:
  1512. raise ValueError("MmprojModel must have either vision or audio encoder")
  1513. def write_vocab(self):
  1514. raise ValueError("MmprojModel does not support vocab writing")
  1515. def find_vparam(self, keys: Iterable[str], optional: bool = False) -> Any:
  1516. assert self.hparams_vision is not None
  1517. return self._find_param(self.hparams_vision, keys, optional)
  1518. def find_aparam(self, keys: Iterable[str], optional: bool = False) -> Any:
  1519. assert self.hparams_audio is not None
  1520. return self._find_param(self.hparams_audio, keys, optional)
  1521. def _find_param(self, obj: dict[str, Any], keys: Iterable[str], optional: bool = False) -> Any:
  1522. key = next((k for k in keys if k in obj), None)
  1523. if key is not None:
  1524. return obj[key]
  1525. if optional:
  1526. return None
  1527. raise KeyError(f"could not find any of: {keys}")
  1528. def tensor_force_quant(self, name, new_name, bid, n_dims):
  1529. del bid, name, n_dims # unused
  1530. if ".patch_embd.weight" in new_name:
  1531. return gguf.GGMLQuantizationType.F16 if self.ftype == gguf.LlamaFileType.MOSTLY_F16 else gguf.GGMLQuantizationType.F32
  1532. return False
  1533. @ModelBase.register("GPTNeoXForCausalLM")
  1534. class GPTNeoXModel(TextModel):
  1535. model_arch = gguf.MODEL_ARCH.GPTNEOX
  1536. def set_gguf_parameters(self):
  1537. self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"])
  1538. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  1539. self.gguf_writer.add_block_count(self.block_count)
  1540. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  1541. self.gguf_writer.add_rope_dimension_count(
  1542. int(self.hparams["rotary_pct"] * (self.hparams["hidden_size"] // self.hparams["num_attention_heads"])),
  1543. )
  1544. self.gguf_writer.add_head_count(self.hparams["num_attention_heads"])
  1545. self.gguf_writer.add_parallel_residual(self.hparams.get("use_parallel_residual", True))
  1546. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_eps"])
  1547. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1548. del bid # unused
  1549. n_head = self.hparams.get("n_head", self.hparams.get("num_attention_heads"))
  1550. n_embed = self.hparams.get("hidden_size", self.hparams.get("n_embed"))
  1551. tensors: list[tuple[str, Tensor]] = []
  1552. if re.match(r"gpt_neox\.layers\.\d+\.attention\.query_key_value\.weight", name):
  1553. # Map bloom-style qkv_linear to gpt-style qkv_linear
  1554. # bloom: https://github.com/huggingface/transformers/blob/main/src/transformers/models/bloom/modeling_bloom.py#L238-L252 # noqa
  1555. # gpt-2: https://github.com/huggingface/transformers/blob/main/src/transformers/models/gpt2/modeling_gpt2.py#L312 # noqa
  1556. qkv_weights = data_torch.reshape((n_head, 3, n_embed // n_head, n_embed))
  1557. data_torch = torch.cat(
  1558. (
  1559. qkv_weights[:, 0, :, :].reshape((-1, n_embed)),
  1560. qkv_weights[:, 1, :, :].reshape((-1, n_embed)),
  1561. qkv_weights[:, 2, :, :].reshape((-1, n_embed)),
  1562. ),
  1563. dim=0,
  1564. )
  1565. logger.info("re-format attention.linear_qkv.weight")
  1566. elif re.match(r"gpt_neox\.layers\.\d+\.attention\.query_key_value\.bias", name):
  1567. qkv_bias = data_torch.reshape((n_head, 3, n_embed // n_head))
  1568. data_torch = torch.cat(
  1569. (
  1570. qkv_bias[:, 0, :].reshape((n_embed,)),
  1571. qkv_bias[:, 1, :].reshape((n_embed,)),
  1572. qkv_bias[:, 2, :].reshape((n_embed,)),
  1573. ),
  1574. dim=0,
  1575. )
  1576. logger.info("re-format attention.linear_qkv.bias")
  1577. tensors.append((self.map_tensor_name(name), data_torch))
  1578. return tensors
  1579. @ModelBase.register("BloomForCausalLM", "BloomModel")
  1580. class BloomModel(TextModel):
  1581. model_arch = gguf.MODEL_ARCH.BLOOM
  1582. def set_gguf_parameters(self):
  1583. n_embed = self.hparams.get("hidden_size", self.hparams.get("n_embed"))
  1584. n_head = self.hparams.get("n_head", self.hparams.get("num_attention_heads"))
  1585. self.gguf_writer.add_context_length(self.hparams.get("seq_length", n_embed))
  1586. self.gguf_writer.add_embedding_length(n_embed)
  1587. self.gguf_writer.add_feed_forward_length(4 * n_embed)
  1588. self.gguf_writer.add_block_count(self.block_count)
  1589. self.gguf_writer.add_head_count(n_head)
  1590. self.gguf_writer.add_head_count_kv(n_head)
  1591. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  1592. self.gguf_writer.add_file_type(self.ftype)
  1593. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1594. del bid # unused
  1595. n_head = self.hparams.get("n_head", self.hparams.get("num_attention_heads"))
  1596. n_embed = self.hparams.get("hidden_size", self.hparams.get("n_embed"))
  1597. name = re.sub(r'transformer\.', '', name)
  1598. tensors: list[tuple[str, Tensor]] = []
  1599. if re.match(r"h\.\d+\.self_attention\.query_key_value\.weight", name):
  1600. # Map bloom-style qkv_linear to gpt-style qkv_linear
  1601. # bloom: https://github.com/huggingface/transformers/blob/main/src/transformers/models/bloom/modeling_bloom.py#L238-L252 # noqa
  1602. # gpt-2: https://github.com/huggingface/transformers/blob/main/src/transformers/models/gpt2/modeling_gpt2.py#L312 # noqa
  1603. qkv_weights = data_torch.reshape((n_head, 3, n_embed // n_head, n_embed))
  1604. data_torch = torch.cat(
  1605. (
  1606. qkv_weights[:, 0, :, :].reshape((-1, n_embed)),
  1607. qkv_weights[:, 1, :, :].reshape((-1, n_embed)),
  1608. qkv_weights[:, 2, :, :].reshape((-1, n_embed)),
  1609. ),
  1610. dim=0,
  1611. )
  1612. logger.info("re-format attention.linear_qkv.weight")
  1613. elif re.match(r"h\.\d+\.self_attention\.query_key_value\.bias", name):
  1614. qkv_bias = data_torch.reshape((n_head, 3, n_embed // n_head))
  1615. data_torch = torch.cat(
  1616. (
  1617. qkv_bias[:, 0, :].reshape((n_embed,)),
  1618. qkv_bias[:, 1, :].reshape((n_embed,)),
  1619. qkv_bias[:, 2, :].reshape((n_embed,)),
  1620. ),
  1621. dim=0,
  1622. )
  1623. logger.info("re-format attention.linear_qkv.bias")
  1624. tensors.append((self.map_tensor_name(name), data_torch))
  1625. return tensors
  1626. @ModelBase.register("MPTForCausalLM")
  1627. class MPTModel(TextModel):
  1628. model_arch = gguf.MODEL_ARCH.MPT
  1629. def set_vocab(self):
  1630. try:
  1631. self._set_vocab_gpt2()
  1632. except Exception:
  1633. # Fallback for SEA-LION model
  1634. self._set_vocab_sentencepiece()
  1635. self.gguf_writer.add_add_bos_token(False)
  1636. self.gguf_writer.add_pad_token_id(3)
  1637. self.gguf_writer.add_eos_token_id(1)
  1638. self.gguf_writer.add_unk_token_id(0)
  1639. def set_gguf_parameters(self):
  1640. self.gguf_writer.add_context_length(self.hparams["max_seq_len"])
  1641. self.gguf_writer.add_embedding_length(self.hparams["d_model"])
  1642. self.gguf_writer.add_block_count(self.block_count)
  1643. self.gguf_writer.add_feed_forward_length(4 * self.hparams["d_model"])
  1644. self.gguf_writer.add_head_count(self.hparams["n_heads"])
  1645. if kv_n_heads := self.hparams["attn_config"].get("kv_n_heads"):
  1646. self.gguf_writer.add_head_count_kv(kv_n_heads)
  1647. self.gguf_writer.add_layer_norm_eps(1e-5)
  1648. if self.hparams["attn_config"]["clip_qkv"] is not None:
  1649. self.gguf_writer.add_clamp_kqv(self.hparams["attn_config"]["clip_qkv"])
  1650. if self.hparams["attn_config"]["alibi"]:
  1651. self.gguf_writer.add_max_alibi_bias(self.hparams["attn_config"]["alibi_bias_max"])
  1652. else:
  1653. self.gguf_writer.add_max_alibi_bias(0.0)
  1654. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1655. del bid # unused
  1656. if "scales" in name:
  1657. new_name = self.map_tensor_name(name, try_suffixes=(".weight", ".bias", ".scales"))
  1658. new_name = new_name.replace("scales", "act.scales")
  1659. else:
  1660. new_name = self.map_tensor_name(name, try_suffixes=(".weight", ".bias"))
  1661. return [(new_name, data_torch)]
  1662. @ModelBase.register("OrionForCausalLM")
  1663. class OrionModel(TextModel):
  1664. model_arch = gguf.MODEL_ARCH.ORION
  1665. def set_vocab(self):
  1666. self._set_vocab_sentencepiece()
  1667. def set_gguf_parameters(self):
  1668. head_count = self.hparams["num_attention_heads"]
  1669. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  1670. ctx_length = 0
  1671. if "max_sequence_length" in self.hparams:
  1672. ctx_length = self.hparams["max_sequence_length"]
  1673. elif "max_position_embeddings" in self.hparams:
  1674. ctx_length = self.hparams["max_position_embeddings"]
  1675. elif "model_max_length" in self.hparams:
  1676. ctx_length = self.hparams["model_max_length"]
  1677. else:
  1678. raise ValueError("gguf: can not find ctx length parameter.")
  1679. self.gguf_writer.add_file_type(self.ftype)
  1680. self.gguf_writer.add_tensor_data_layout("Meta AI original pth")
  1681. self.gguf_writer.add_context_length(ctx_length)
  1682. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  1683. self.gguf_writer.add_block_count(self.block_count)
  1684. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  1685. self.gguf_writer.add_head_count(head_count)
  1686. self.gguf_writer.add_head_count_kv(head_count_kv)
  1687. # note: config provides rms norm but it is actually layer norm
  1688. # ref: https://huggingface.co/OrionStarAI/Orion-14B-Chat/blob/276a17221ce42beb45f66fac657a41540e71f4f5/modeling_orion.py#L570-L571
  1689. self.gguf_writer.add_layer_norm_eps(self.hparams["rms_norm_eps"])
  1690. @ModelBase.register("BaichuanForCausalLM", "BaiChuanForCausalLM")
  1691. class BaichuanModel(TextModel):
  1692. model_arch = gguf.MODEL_ARCH.BAICHUAN
  1693. def set_vocab(self):
  1694. self._set_vocab_sentencepiece()
  1695. def set_gguf_parameters(self):
  1696. super().set_gguf_parameters()
  1697. self.gguf_writer.add_tensor_data_layout("Meta AI original pth")
  1698. self.gguf_writer.add_rope_dimension_count(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  1699. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1700. head_count = self.hparams["num_attention_heads"]
  1701. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  1702. tensors: list[tuple[str, Tensor]] = []
  1703. if bid is not None and name == f"model.layers.{bid}.self_attn.W_pack.weight":
  1704. logger.info(f"Unpacking and permuting layer {bid}")
  1705. tensors = [
  1706. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_Q, bid),
  1707. self._reverse_hf_permute_part(data_torch, 0, head_count, head_count)),
  1708. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_K, bid),
  1709. self._reverse_hf_permute_part(data_torch, 1, head_count, head_count_kv)),
  1710. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_V, bid),
  1711. self._reverse_hf_part(data_torch, 2)),
  1712. ]
  1713. else:
  1714. tensors = [(self.map_tensor_name(name), data_torch)]
  1715. return tensors
  1716. def _reverse_hf_permute(self, weights: Tensor, n_head: int, n_kv_head: int | None = None) -> Tensor:
  1717. if n_kv_head is not None and n_head != n_kv_head:
  1718. n_head //= n_kv_head
  1719. return (
  1720. weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  1721. .swapaxes(1, 2)
  1722. .reshape(weights.shape)
  1723. )
  1724. def _reverse_hf_permute_part(
  1725. self, weights: Tensor, n_part: int, n_head: int, n_head_kv: int | None = None,
  1726. ) -> Tensor:
  1727. r = weights.shape[0] // 3
  1728. return self._reverse_hf_permute(weights[r * n_part:r * n_part + r, ...], n_head, n_head_kv)
  1729. def _reverse_hf_part(self, weights: Tensor, n_part: int) -> Tensor:
  1730. r = weights.shape[0] // 3
  1731. return weights[r * n_part:r * n_part + r, ...]
  1732. @ModelBase.register("XverseForCausalLM")
  1733. class XverseModel(TextModel):
  1734. model_arch = gguf.MODEL_ARCH.XVERSE
  1735. def set_vocab(self):
  1736. assert (self.dir_model / "tokenizer.json").is_file()
  1737. dir_model = self.dir_model
  1738. hparams = self.hparams
  1739. tokens: list[bytes] = []
  1740. toktypes: list[int] = []
  1741. from transformers import AutoTokenizer
  1742. tokenizer = AutoTokenizer.from_pretrained(dir_model)
  1743. vocab_size = hparams.get("vocab_size", len(tokenizer.vocab))
  1744. # Since we are checking the maximum index, we need to ensure it's strictly less than vocab_size,
  1745. # because vocab_size is the count of items, and indexes start at 0.
  1746. max_vocab_index = max(tokenizer.get_vocab().values())
  1747. if max_vocab_index >= vocab_size:
  1748. raise ValueError("Vocabulary size exceeds expected maximum size.")
  1749. reverse_vocab: dict[int, str] = {id_: encoded_tok for encoded_tok, id_ in tokenizer.vocab.items()}
  1750. added_vocab = tokenizer.get_added_vocab()
  1751. for token_id in range(vocab_size):
  1752. token_text = reverse_vocab[token_id].encode('utf-8')
  1753. # replace "\x00" to string with length > 0
  1754. if token_text == b"\x00":
  1755. toktype = gguf.TokenType.BYTE # special
  1756. token_text = f"<{token_text}>".encode('utf-8')
  1757. elif re.fullmatch(br"<0x[0-9A-Fa-f]{2}>", token_text):
  1758. toktype = gguf.TokenType.BYTE # special
  1759. elif reverse_vocab[token_id] in added_vocab:
  1760. if tokenizer.added_tokens_decoder[token_id].special:
  1761. toktype = gguf.TokenType.CONTROL
  1762. else:
  1763. toktype = gguf.TokenType.USER_DEFINED
  1764. else:
  1765. toktype = gguf.TokenType.NORMAL
  1766. tokens.append(token_text)
  1767. toktypes.append(toktype)
  1768. self.gguf_writer.add_tokenizer_model("llama")
  1769. self.gguf_writer.add_tokenizer_pre("default")
  1770. self.gguf_writer.add_token_list(tokens)
  1771. self.gguf_writer.add_token_types(toktypes)
  1772. special_vocab = gguf.SpecialVocab(dir_model, n_vocab=len(tokens))
  1773. special_vocab.add_to_gguf(self.gguf_writer)
  1774. def set_gguf_parameters(self):
  1775. super().set_gguf_parameters()
  1776. self.gguf_writer.add_tensor_data_layout("Meta AI original pth")
  1777. self.gguf_writer.add_rope_dimension_count(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  1778. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1779. del bid # unused
  1780. head_count = self.hparams["num_attention_heads"]
  1781. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  1782. # HF models permute some of the tensors, so we need to undo that
  1783. if name.endswith("q_proj.weight"):
  1784. data_torch = self._reverse_hf_permute(data_torch, head_count, head_count)
  1785. if name.endswith("k_proj.weight"):
  1786. data_torch = self._reverse_hf_permute(data_torch, head_count, head_count_kv)
  1787. return [(self.map_tensor_name(name), data_torch)]
  1788. def _reverse_hf_permute(self, weights: Tensor, n_head: int, n_kv_head: int | None = None) -> Tensor:
  1789. if n_kv_head is not None and n_head != n_kv_head:
  1790. n_head //= n_kv_head
  1791. return (
  1792. weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  1793. .swapaxes(1, 2)
  1794. .reshape(weights.shape)
  1795. )
  1796. @ModelBase.register("FalconForCausalLM", "RWForCausalLM")
  1797. class FalconModel(TextModel):
  1798. model_arch = gguf.MODEL_ARCH.FALCON
  1799. def set_gguf_parameters(self):
  1800. n_head = self.hparams.get("num_attention_heads")
  1801. if n_head is None:
  1802. n_head = self.hparams["n_head"] # old name
  1803. n_head_kv = self.hparams.get("num_kv_heads")
  1804. if n_head_kv is None:
  1805. n_head_kv = self.hparams.get("n_head_kv", 1) # old name
  1806. self.gguf_writer.add_context_length(2048) # not in config.json
  1807. self.gguf_writer.add_tensor_data_layout("jploski") # qkv tensor transform
  1808. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  1809. self.gguf_writer.add_feed_forward_length(4 * self.hparams["hidden_size"])
  1810. self.gguf_writer.add_block_count(self.block_count)
  1811. self.gguf_writer.add_head_count(n_head)
  1812. self.gguf_writer.add_head_count_kv(n_head_kv)
  1813. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  1814. self.gguf_writer.add_file_type(self.ftype)
  1815. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1816. del bid # unused
  1817. # QKV tensor transform
  1818. # The original query_key_value tensor contains n_head_kv "kv groups",
  1819. # each consisting of n_head/n_head_kv query weights followed by one key
  1820. # and one value weight (shared by all query heads in the kv group).
  1821. # This layout makes it a big pain to work with in GGML.
  1822. # So we rearrange them here,, so that we have n_head query weights
  1823. # followed by n_head_kv key weights followed by n_head_kv value weights,
  1824. # in contiguous fashion.
  1825. # ref: https://github.com/jploski/ggml/blob/falcon40b/examples/falcon/convert-hf-to-ggml.py
  1826. if "query_key_value" in name:
  1827. n_head = self.find_hparam(["num_attention_heads", "n_head"])
  1828. n_head_kv = self.find_hparam(["num_kv_heads", "n_head_kv"], optional=True) or 1
  1829. head_dim = self.hparams["hidden_size"] // n_head
  1830. qkv = data_torch.view(n_head_kv, n_head // n_head_kv + 2, head_dim, head_dim * n_head)
  1831. q = qkv[:, :-2].reshape(n_head * head_dim, head_dim * n_head)
  1832. k = qkv[:, [-2]].reshape(n_head_kv * head_dim, head_dim * n_head)
  1833. v = qkv[:, [-1]].reshape(n_head_kv * head_dim, head_dim * n_head)
  1834. data_torch = torch.cat((q, k, v)).reshape_as(data_torch)
  1835. return [(self.map_tensor_name(name), data_torch)]
  1836. @ModelBase.register("GPTBigCodeForCausalLM")
  1837. class StarCoderModel(TextModel):
  1838. model_arch = gguf.MODEL_ARCH.STARCODER
  1839. def set_gguf_parameters(self):
  1840. self.gguf_writer.add_context_length(self.hparams["n_positions"])
  1841. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  1842. self.gguf_writer.add_feed_forward_length(4 * self.hparams["n_embd"])
  1843. self.gguf_writer.add_block_count(self.block_count)
  1844. self.gguf_writer.add_head_count(self.hparams["n_head"])
  1845. self.gguf_writer.add_head_count_kv(1)
  1846. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  1847. self.gguf_writer.add_file_type(self.ftype)
  1848. @ModelBase.register("GPTRefactForCausalLM")
  1849. class RefactModel(TextModel):
  1850. model_arch = gguf.MODEL_ARCH.REFACT
  1851. def set_vocab(self):
  1852. super().set_vocab()
  1853. # TODO: how to determine special FIM tokens automatically?
  1854. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=False,
  1855. special_token_types = ['prefix', 'suffix', 'middle', 'eot'])
  1856. special_vocab._set_special_token("prefix", 1)
  1857. special_vocab._set_special_token("suffix", 3)
  1858. special_vocab._set_special_token("middle", 2)
  1859. special_vocab.chat_template = None # do not add it twice
  1860. special_vocab.add_to_gguf(self.gguf_writer)
  1861. def set_gguf_parameters(self):
  1862. hidden_dim = self.hparams["n_embd"]
  1863. inner_dim = 4 * hidden_dim
  1864. hidden_dim = int(2 * inner_dim / 3)
  1865. multiple_of = 256
  1866. ff_dim = multiple_of * ((hidden_dim + multiple_of - 1) // multiple_of)
  1867. # refact uses Alibi. So this is from config.json which might be used by training.
  1868. self.gguf_writer.add_context_length(self.hparams["n_positions"])
  1869. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  1870. self.gguf_writer.add_feed_forward_length(ff_dim)
  1871. self.gguf_writer.add_block_count(self.block_count)
  1872. self.gguf_writer.add_head_count(self.hparams["n_head"])
  1873. self.gguf_writer.add_head_count_kv(1)
  1874. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["layer_norm_epsilon"])
  1875. self.gguf_writer.add_file_type(self.ftype)
  1876. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1877. hidden_dim = self.hparams["n_embd"]
  1878. inner_dim = 4 * hidden_dim
  1879. hidden_dim = int(2 * inner_dim / 3)
  1880. multiple_of = 256
  1881. ff_dim = multiple_of * ((hidden_dim + multiple_of - 1) // multiple_of)
  1882. n_head = self.hparams["n_head"]
  1883. n_head_kv = 1
  1884. head_dim = self.hparams["n_embd"] // n_head
  1885. tensors: list[tuple[str, Tensor]] = []
  1886. if bid is not None:
  1887. if name == f"transformer.h.{bid}.attn.kv.weight":
  1888. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_K, bid), data_torch[:n_head_kv * head_dim]))
  1889. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_V, bid), data_torch[n_head_kv * head_dim:]))
  1890. elif name == f"transformer.h.{bid}.attn.q.weight":
  1891. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_Q, bid), data_torch))
  1892. elif name == f"transformer.h.{bid}.mlp.gate_up_proj.weight":
  1893. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.FFN_GATE, bid), data_torch[:ff_dim]))
  1894. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.FFN_UP, bid), data_torch[ff_dim:]))
  1895. if len(tensors) == 0:
  1896. tensors.append((self.map_tensor_name(name), data_torch))
  1897. return tensors
  1898. @ModelBase.register("StableLmForCausalLM", "StableLMEpochForCausalLM", "LlavaStableLMEpochForCausalLM")
  1899. class StableLMModel(TextModel):
  1900. model_arch = gguf.MODEL_ARCH.STABLELM
  1901. def set_vocab(self):
  1902. if (self.dir_model / "tokenizer.json").is_file():
  1903. self._set_vocab_gpt2()
  1904. else:
  1905. # StableLM 2 1.6B used to have a vocab in a similar format to Qwen's vocab
  1906. self._set_vocab_qwen()
  1907. def set_gguf_parameters(self):
  1908. hparams = self.hparams
  1909. self.gguf_writer.add_context_length(hparams["max_position_embeddings"])
  1910. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  1911. self.gguf_writer.add_block_count(self.block_count)
  1912. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  1913. rotary_factor = self.find_hparam(["partial_rotary_factor", "rope_pct"])
  1914. self.gguf_writer.add_rope_dimension_count(int(rotary_factor * (hparams["hidden_size"] // hparams["num_attention_heads"])))
  1915. self.gguf_writer.add_head_count(hparams["num_attention_heads"])
  1916. self.gguf_writer.add_head_count_kv(hparams["num_key_value_heads"])
  1917. self.gguf_writer.add_parallel_residual(hparams["use_parallel_residual"] if "use_parallel_residual" in hparams else True)
  1918. self.gguf_writer.add_layer_norm_eps(self.find_hparam(["layer_norm_eps", "norm_eps"]))
  1919. self.gguf_writer.add_file_type(self.ftype)
  1920. _q_norms: list[dict[str, Tensor]] | None = None
  1921. _k_norms: list[dict[str, Tensor]] | None = None
  1922. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1923. n_head = self.hparams["num_attention_heads"]
  1924. n_kv_head = self.hparams["num_key_value_heads"]
  1925. if name.find("q_layernorm.norms") != -1:
  1926. assert bid is not None
  1927. if self._q_norms is None:
  1928. self._q_norms = [{} for _ in range(self.block_count)]
  1929. self._q_norms[bid][name] = data_torch
  1930. if len(self._q_norms[bid]) >= n_head:
  1931. return self._stack_qk_norm(bid, n_head, self._q_norms[bid], "q_layernorm")
  1932. else:
  1933. return []
  1934. if name.find("k_layernorm.norms") != -1:
  1935. assert bid is not None
  1936. if self._k_norms is None:
  1937. self._k_norms = [{} for _ in range(self.block_count)]
  1938. self._k_norms[bid][name] = data_torch
  1939. if len(self._k_norms[bid]) >= n_kv_head:
  1940. return self._stack_qk_norm(bid, n_kv_head, self._k_norms[bid], "k_layernorm")
  1941. else:
  1942. return []
  1943. return [(self.map_tensor_name(name), data_torch)]
  1944. def _stack_qk_norm(self, bid: int, n_head: int, norms: dict[str, Tensor], layer_name: str = "q_layernorm"):
  1945. datas: list[Tensor] = []
  1946. # extract the norms in order
  1947. for xid in range(n_head):
  1948. ename = f"model.layers.{bid}.self_attn.{layer_name}.norms.{xid}.weight"
  1949. datas.append(norms[ename])
  1950. del norms[ename]
  1951. data_torch = torch.stack(datas, dim=0)
  1952. merged_name = f"model.layers.{bid}.self_attn.{layer_name}.weight"
  1953. new_name = self.map_tensor_name(merged_name)
  1954. return [(new_name, data_torch)]
  1955. def prepare_tensors(self):
  1956. super().prepare_tensors()
  1957. if self._q_norms is not None or self._k_norms is not None:
  1958. # flatten two `list[dict[str, Tensor]]` into a single `list[str]`
  1959. norms = (
  1960. [k for d in self._q_norms for k in d.keys()] if self._q_norms is not None else []
  1961. ) + (
  1962. [k for d in self._k_norms for k in d.keys()] if self._k_norms is not None else []
  1963. )
  1964. if len(norms) > 0:
  1965. raise ValueError(f"Unprocessed norms: {norms}")
  1966. @ModelBase.register(
  1967. "LLaMAForCausalLM",
  1968. "LlamaForCausalLM",
  1969. "MistralForCausalLM",
  1970. "MixtralForCausalLM",
  1971. "VLlama3ForCausalLM",
  1972. "LlavaForConditionalGeneration",
  1973. "VoxtralForConditionalGeneration",
  1974. "LlamaModel")
  1975. class LlamaModel(TextModel):
  1976. model_arch = gguf.MODEL_ARCH.LLAMA
  1977. undo_permute = True
  1978. def __init__(self, *args, **kwargs):
  1979. super().__init__(*args, **kwargs)
  1980. # fix for SmolVLM2, missing `num_attention_heads` in config.json
  1981. if self.hf_arch == "VLlama3ForCausalLM":
  1982. self.hparams["num_attention_heads"] = self.hparams.get("num_attention_heads", 32)
  1983. def set_vocab(self):
  1984. if self.is_mistral_format:
  1985. return self._set_vocab_mistral()
  1986. path_tekken_json = self.dir_model / "tekken.json"
  1987. path_tokenizer_json = self.dir_model / "tokenizer.json"
  1988. if path_tekken_json.is_file() and not path_tokenizer_json.is_file():
  1989. self._set_vocab_mistral()
  1990. try:
  1991. self._set_vocab_sentencepiece()
  1992. except FileNotFoundError:
  1993. try:
  1994. self._set_vocab_llama_hf()
  1995. except (FileNotFoundError, TypeError):
  1996. # Llama 3
  1997. self._set_vocab_gpt2()
  1998. # Apply to CodeLlama only (and ignore for Llama 3 with a vocab size of 128256)
  1999. if self.hparams.get("vocab_size", 32000) == 32016:
  2000. special_vocab = gguf.SpecialVocab(
  2001. self.dir_model, load_merges=False,
  2002. special_token_types = ['prefix', 'suffix', 'middle', 'eot']
  2003. )
  2004. special_vocab._set_special_token("prefix", 32007)
  2005. special_vocab._set_special_token("suffix", 32008)
  2006. special_vocab._set_special_token("middle", 32009)
  2007. special_vocab._set_special_token("eot", 32010)
  2008. special_vocab.add_to_gguf(self.gguf_writer)
  2009. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  2010. if tokenizer_config_file.is_file():
  2011. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  2012. tokenizer_config_json = json.load(f)
  2013. if "add_prefix_space" in tokenizer_config_json:
  2014. self.gguf_writer.add_add_space_prefix(tokenizer_config_json["add_prefix_space"])
  2015. # Apply to granite small models only
  2016. if self.hparams.get("vocab_size", 32000) == 49152:
  2017. self.gguf_writer.add_add_bos_token(False)
  2018. def set_gguf_parameters(self):
  2019. super().set_gguf_parameters()
  2020. hparams = self.hparams
  2021. if not self.is_mistral_format:
  2022. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  2023. if (rope_dim := hparams.get("head_dim")) is None:
  2024. rope_dim = hparams["hidden_size"] // hparams["num_attention_heads"]
  2025. self.gguf_writer.add_rope_dimension_count(rope_dim)
  2026. @staticmethod
  2027. def permute(weights: Tensor, n_head: int, n_head_kv: int | None):
  2028. if n_head_kv is not None and n_head != n_head_kv:
  2029. n_head = n_head_kv
  2030. return (weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  2031. .swapaxes(1, 2)
  2032. .reshape(weights.shape))
  2033. _experts: list[dict[str, Tensor]] | None = None
  2034. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2035. n_head = self.find_hparam(["n_heads", "num_attention_heads"])
  2036. n_kv_head = self.find_hparam(["n_kv_heads", "num_key_value_heads"])
  2037. vision_prefixes = [
  2038. "vision_encoder.",
  2039. "vision_language_adapter.",
  2040. "patch_merger.",
  2041. "pre_mm_projector_norm",
  2042. ]
  2043. is_multimodal_tensor = "vision_tower" in name \
  2044. or "vision_model" in name \
  2045. or "audio_tower" in name \
  2046. or "model.connector" in name \
  2047. or "multi_modal_projector" in name \
  2048. or any(
  2049. name.startswith(prefix)
  2050. for prefix in vision_prefixes
  2051. )
  2052. if is_multimodal_tensor:
  2053. return [] # skip vision tensors
  2054. elif self.hf_arch == "LlamaModel":
  2055. name = "model." + name
  2056. elif name.startswith("model.text_model"):
  2057. name = name.replace("text_model.", "") # for SmolVLM
  2058. elif name.startswith("language_model."):
  2059. name = name.replace("language_model.", "") # for the rest
  2060. if self.undo_permute:
  2061. if name.endswith(("q_proj.weight", "q_proj.bias")):
  2062. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  2063. if name.endswith(("k_proj.weight", "k_proj.bias")):
  2064. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  2065. # process the experts separately
  2066. if name.find("block_sparse_moe.experts") != -1:
  2067. n_experts = self.hparams["num_local_experts"]
  2068. assert bid is not None
  2069. if self._experts is None:
  2070. self._experts = [{} for _ in range(self.block_count)]
  2071. self._experts[bid][name] = data_torch
  2072. if len(self._experts[bid]) >= n_experts * 3:
  2073. tensors: list[tuple[str, Tensor]] = []
  2074. # merge the experts into a single 3d tensor
  2075. for wid in ["w1", "w2", "w3"]:
  2076. datas: list[Tensor] = []
  2077. for xid in range(n_experts):
  2078. ename = f"model.layers.{bid}.block_sparse_moe.experts.{xid}.{wid}.weight"
  2079. datas.append(self._experts[bid][ename])
  2080. del self._experts[bid][ename]
  2081. data_torch = torch.stack(datas, dim=0)
  2082. merged_name = f"layers.{bid}.feed_forward.experts.{wid}.weight"
  2083. new_name = self.map_tensor_name(merged_name)
  2084. tensors.append((new_name, data_torch))
  2085. return tensors
  2086. else:
  2087. return []
  2088. return [(self.map_tensor_name(name), data_torch)]
  2089. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  2090. if rope_params := self.rope_parameters.get("full_attention", self.rope_parameters):
  2091. if rope_params.get("rope_type", '').lower() == "llama3":
  2092. base = rope_params.get("rope_theta", 10000.0)
  2093. if (dim := self.hparams.get("head_dim")) is None:
  2094. dim = self.hparams["hidden_size"] // self.hparams["num_attention_heads"]
  2095. freqs = 1.0 / (base ** (torch.arange(0, dim, 2, dtype=torch.float32) / dim))
  2096. factor = rope_params.get("factor", 8.0)
  2097. low_freq_factor = rope_params.get("low_freq_factor", 1.0)
  2098. high_freq_factor = rope_params.get("high_freq_factor", 4.0)
  2099. old_context_len = self.hparams.get("original_max_position_embeddings", 8192)
  2100. low_freq_wavelen = old_context_len / low_freq_factor
  2101. high_freq_wavelen = old_context_len / high_freq_factor
  2102. # assert low_freq_wavelen != high_freq_wavelen # Errors for Llama4
  2103. rope_factors = []
  2104. for freq in freqs:
  2105. wavelen = 2 * math.pi / freq
  2106. if wavelen < high_freq_wavelen:
  2107. rope_factors.append(1)
  2108. elif wavelen > low_freq_wavelen:
  2109. rope_factors.append(factor)
  2110. else:
  2111. smooth = (old_context_len / wavelen - low_freq_factor) / (high_freq_factor - low_freq_factor)
  2112. rope_factors.append(1 / ((1 - smooth) / factor + smooth))
  2113. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FREQS), torch.tensor(rope_factors, dtype=torch.float32))
  2114. def prepare_tensors(self):
  2115. super().prepare_tensors()
  2116. if self._experts is not None:
  2117. # flatten `list[dict[str, Tensor]]` into `list[str]`
  2118. experts = [k for d in self._experts for k in d.keys()]
  2119. if len(experts) > 0:
  2120. raise ValueError(f"Unprocessed experts: {experts}")
  2121. @ModelBase.register("ArceeForCausalLM")
  2122. class ArceeModel(LlamaModel):
  2123. model_arch = gguf.MODEL_ARCH.ARCEE
  2124. def set_gguf_parameters(self):
  2125. super().set_gguf_parameters()
  2126. self._try_set_pooling_type()
  2127. @ModelBase.register("AfmoeForCausalLM")
  2128. class AfmoeModel(LlamaModel):
  2129. model_arch = gguf.MODEL_ARCH.AFMOE
  2130. def set_gguf_parameters(self):
  2131. super().set_gguf_parameters()
  2132. # MoE parameters
  2133. if (n_experts := self.hparams.get("num_experts")) is not None:
  2134. self.gguf_writer.add_expert_count(n_experts)
  2135. if (n_shared_experts := self.hparams.get("num_shared_experts")) is not None:
  2136. self.gguf_writer.add_expert_shared_count(n_shared_experts)
  2137. if (moe_intermediate_size := self.hparams.get("moe_intermediate_size")) is not None:
  2138. self.gguf_writer.add_expert_feed_forward_length(moe_intermediate_size)
  2139. if (n_dense_layers := self.hparams.get("num_dense_layers")) is not None:
  2140. self.gguf_writer.add_leading_dense_block_count(n_dense_layers)
  2141. # Route normalization and scaling
  2142. if (route_norm := self.hparams.get("route_norm")) is not None:
  2143. self.gguf_writer.add_expert_weights_norm(route_norm)
  2144. if (route_scale := self.hparams.get("route_scale")) is not None:
  2145. self.gguf_writer.add_expert_weights_scale(route_scale)
  2146. # Sliding window attention
  2147. if (sliding_window := self.hparams.get("sliding_window")) is not None:
  2148. self.gguf_writer.add_sliding_window(sliding_window)
  2149. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2150. # Handle expert weights - they're already merged in the HF format
  2151. # process the experts separately
  2152. if name.find("mlp.experts") != -1:
  2153. n_experts = self.hparams["num_experts"]
  2154. assert bid is not None
  2155. if self._experts is None:
  2156. self._experts = [{} for _ in range(self.block_count)]
  2157. self._experts[bid][name] = data_torch
  2158. if len(self._experts[bid]) >= n_experts * 3:
  2159. tensors: list[tuple[str, Tensor]] = []
  2160. # merge the experts into a single 3d tensor
  2161. for w_name in ["gate_proj", "up_proj", "down_proj"]:
  2162. datas: list[Tensor] = []
  2163. for xid in range(n_experts):
  2164. ename_to_retrieve = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  2165. datas.append(self._experts[bid][ename_to_retrieve])
  2166. del self._experts[bid][ename_to_retrieve]
  2167. data_torch = torch.stack(datas, dim=0)
  2168. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  2169. new_name = self.map_tensor_name(merged_name)
  2170. tensors.append((new_name, data_torch))
  2171. return tensors
  2172. else:
  2173. return []
  2174. if name.endswith(".expert_bias"):
  2175. name = name.replace(".expert_bias", ".expert_bias.bias")
  2176. return [(self.map_tensor_name(name), data_torch)]
  2177. @ModelBase.register(
  2178. "LlavaForConditionalGeneration", # pixtral
  2179. "Mistral3ForConditionalGeneration", # mistral small 3.1
  2180. )
  2181. class LlavaVisionModel(MmprojModel):
  2182. img_break_tok_id = -1
  2183. use_break_tok = True
  2184. def __init__(self, *args, **kwargs):
  2185. super().__init__(*args, **kwargs)
  2186. if self.hparams.get("model_type") == "pixtral":
  2187. # layer_norm_eps is not in config.json, it is hard-coded in modeling_pixtral.py
  2188. self.hparams["layer_norm_eps"] = self.hparams.get("layer_norm_eps", 1e-5)
  2189. if self.use_break_tok:
  2190. self.img_break_tok_id = self.get_token_id("[IMG_BREAK]")
  2191. elif self.is_mistral_format:
  2192. # hparams is already vision config here so norm_eps is only defined in global_config.
  2193. self.hparams["norm_eps"] = self.global_config.get("norm_eps", None)
  2194. assert self.hparams["norm_eps"] is not None, "norm_eps not found in params.json"
  2195. if self.use_break_tok:
  2196. self.img_break_tok_id = self.find_vparam(["image_break_token_id"])
  2197. else:
  2198. raise ValueError(f"Unsupported model type: {self.hparams['model_type']}")
  2199. logger.info(f"Image break token id: {self.img_break_tok_id}")
  2200. def get_token_id(self, token: str) -> int:
  2201. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  2202. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  2203. added_tokens_decoder = json.load(f)['added_tokens_decoder']
  2204. for id_, token_data in added_tokens_decoder.items():
  2205. if token_data["content"] == token:
  2206. return int(id_)
  2207. raise ValueError(f"Token '{token}' not found in tokenizer config.")
  2208. def set_gguf_parameters(self):
  2209. super().set_gguf_parameters()
  2210. hparams = self.hparams
  2211. if hparams.get("model_type") == "pixtral":
  2212. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.PIXTRAL)
  2213. self.gguf_writer.add_vision_attention_layernorm_eps(hparams["layer_norm_eps"])
  2214. # hidden_act
  2215. if hparams["hidden_act"] == "silu":
  2216. self.gguf_writer.add_vision_use_silu(True)
  2217. elif hparams["hidden_act"] == "gelu":
  2218. self.gguf_writer.add_vision_use_gelu(True)
  2219. else:
  2220. raise ValueError(f"Unsupported hidden_act: {hparams['hidden_act']}")
  2221. # spatial_merge_size
  2222. if "spatial_merge_size" in self.global_config:
  2223. self.gguf_writer.add_vision_spatial_merge_size(self.global_config["spatial_merge_size"])
  2224. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2225. del bid # unused
  2226. n_head = (
  2227. self.hparams["num_attention_heads"] if not self.is_mistral_format else self.find_vparam(["num_attention_heads"])
  2228. )
  2229. n_kv_head = n_head
  2230. valid_prefixes = (
  2231. "multi_modal_projector.",
  2232. "vision_tower.",
  2233. "vision_encoder.",
  2234. "vision_language_adapter.",
  2235. "patch_merger.",
  2236. "pre_mm_projector_norm",
  2237. )
  2238. if any(name.startswith(prefix) for prefix in valid_prefixes):
  2239. # process vision tensors
  2240. if name.endswith(("q_proj.weight", "q_proj.bias")) and not self.is_mistral_format:
  2241. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  2242. if name.endswith(("k_proj.weight", "k_proj.bias")) and not self.is_mistral_format:
  2243. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  2244. return [(self.map_tensor_name(name), data_torch)]
  2245. embed_key = "embed_tokens.weight" if not self.is_mistral_format else "tok_embeddings.weight"
  2246. if self.img_break_tok_id > 0 and embed_key in name:
  2247. logger.info(f"Extracting [IMG_BREAK] token embedding from {name}")
  2248. # for pixtral model, we need to extract the [IMG_BREAK] token embedding
  2249. img_break_embd = data_torch[self.img_break_tok_id]
  2250. name = gguf.TENSOR_NAMES[gguf.MODEL_TENSOR.V_TOK_EMBD_IMG_BREAK]
  2251. return [(self.map_tensor_name(name), img_break_embd)]
  2252. return [] # skip other tensors
  2253. @ModelBase.register("Idefics3ForConditionalGeneration", "SmolVLMForConditionalGeneration")
  2254. class SmolVLMModel(MmprojModel):
  2255. def __init__(self, *args, **kwargs):
  2256. super().__init__(*args, **kwargs)
  2257. if self.hparams["model_type"] == "smolvlm_vision":
  2258. # fix for SmolVLM2, missing some keys in config.json
  2259. # default values are taken from transformers code
  2260. self.hparams["hidden_size"] = self.hparams.get("hidden_size", 1152)
  2261. self.hparams["num_attention_heads"] = self.hparams.get("num_attention_heads", 16)
  2262. self.hparams["intermediate_size"] = self.hparams.get("intermediate_size", 3072)
  2263. def set_gguf_parameters(self):
  2264. super().set_gguf_parameters()
  2265. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.IDEFICS3)
  2266. self.gguf_writer.add_vision_attention_layernorm_eps(self.hparams.get("layer_norm_eps", 1e-5))
  2267. self.gguf_writer.add_vision_projector_scale_factor(self.global_config.get("scale_factor", 2))
  2268. self.gguf_writer.add_vision_use_gelu(True)
  2269. # Add the preprocessor longest edge size
  2270. preproc_image_size = self.preprocessor_config.get("size", {}).get("longest_edge", self.image_size)
  2271. self.gguf_writer.add_vision_preproc_image_size(preproc_image_size)
  2272. def tensor_force_quant(self, name, new_name, bid, n_dims):
  2273. if ".embeddings." in name:
  2274. return gguf.GGMLQuantizationType.F32
  2275. return super().tensor_force_quant(name, new_name, bid, n_dims)
  2276. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2277. del bid # unused
  2278. is_vision_tensor = "vision_tower" in name or "vision_model" in name or "model.connector" in name
  2279. if is_vision_tensor:
  2280. return [(self.map_tensor_name(name), data_torch)]
  2281. return [] # skip other tensors
  2282. @ModelBase.register(
  2283. "Llama4ForConditionalGeneration",
  2284. "Llama4ForCausalLM",
  2285. )
  2286. class Llama4Model(LlamaModel):
  2287. model_arch = gguf.MODEL_ARCH.LLAMA4
  2288. undo_permute = False
  2289. def __init__(self, *args, **kwargs):
  2290. super().__init__(*args, **kwargs)
  2291. # IMPORTANT: the normal "intermediate_size" is renamed to "intermediate_size_mlp", we need to undo this
  2292. self.hparams["intermediate_size_moe"] = self.hparams["intermediate_size"]
  2293. self.hparams["intermediate_size"] = self.hparams["intermediate_size_mlp"]
  2294. def set_vocab(self):
  2295. self._set_vocab_gpt2()
  2296. def set_gguf_parameters(self):
  2297. super().set_gguf_parameters()
  2298. self.gguf_writer.add_interleave_moe_layer_step(self.hparams["interleave_moe_layer_step"])
  2299. self.gguf_writer.add_expert_feed_forward_length(self.hparams["intermediate_size_moe"])
  2300. if "layer_types" in self.hparams:
  2301. if all(lt == "full_attention" for lt in self.hparams["layer_types"]):
  2302. # all layers are full attention (for MobileLLM), disable swa
  2303. self.gguf_writer.add_sliding_window(0)
  2304. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None):
  2305. if name.startswith("language_model."):
  2306. name = name.replace("language_model.", "")
  2307. # split the gate_up into gate and up
  2308. if "gate_up_proj" in name:
  2309. name_up = name.replace("gate_up_proj", "up_proj.weight")
  2310. name_gate = name.replace("gate_up_proj", "gate_proj.weight")
  2311. dim_half = data_torch.shape[-1] // 2
  2312. gate_proj_weight, up_proj_weight = data_torch.transpose(-1, -2).split(dim_half, dim=-2)
  2313. return [
  2314. (self.map_tensor_name(name_gate), gate_proj_weight),
  2315. (self.map_tensor_name(name_up), up_proj_weight)
  2316. ]
  2317. if name.endswith("down_proj"):
  2318. name += ".weight"
  2319. data_torch = data_torch.transpose(-1, -2)
  2320. if "multi_modal_projector" in name or "vision_model" in name:
  2321. return []
  2322. return super().modify_tensors(data_torch, name, bid)
  2323. @ModelBase.register("Llama4ForConditionalGeneration")
  2324. class Llama4VisionModel(MmprojModel):
  2325. def set_gguf_parameters(self):
  2326. super().set_gguf_parameters()
  2327. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.LLAMA4)
  2328. self.gguf_writer.add_vision_attention_layernorm_eps(self.hparams["norm_eps"])
  2329. self.gguf_writer.add_vision_projector_scale_factor(int(1.0 / self.hparams["pixel_shuffle_ratio"]))
  2330. assert self.hparams["hidden_act"] == "gelu"
  2331. self.gguf_writer.add_vision_use_gelu(True)
  2332. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2333. del bid # unused
  2334. if "multi_modal_projector" in name or "vision_model" in name:
  2335. # process vision tensors
  2336. if "positional_embedding_vlm" in name and ".weight" not in name:
  2337. name += ".weight"
  2338. if "multi_modal_projector.linear_1" in name:
  2339. # despite the name with number postfix, this is a single fully connected layer
  2340. return [(gguf.TENSOR_NAMES[gguf.MODEL_TENSOR.V_MMPROJ_FC] + '.weight', data_torch)]
  2341. return [(self.map_tensor_name(name), data_torch)]
  2342. return []
  2343. @ModelBase.register("Mistral3ForConditionalGeneration")
  2344. class Mistral3Model(LlamaModel):
  2345. model_arch = gguf.MODEL_ARCH.MISTRAL3
  2346. def __init__(self, *args, **kwargs):
  2347. super().__init__(*args, **kwargs)
  2348. # for compatibility, we use LLAMA arch for older models
  2349. # TODO: remove this once everyone has migrated to newer version of llama.cpp
  2350. if self.hparams.get("model_type") != "ministral3":
  2351. self.model_arch = gguf.MODEL_ARCH.LLAMA
  2352. self.gguf_writer.arch = gguf.MODEL_ARCH_NAMES[self.model_arch]
  2353. self.gguf_writer.add_architecture()
  2354. self.tensor_map = gguf.get_tensor_name_map(self.model_arch, self.block_count)
  2355. def set_gguf_parameters(self):
  2356. super().set_gguf_parameters()
  2357. rope_params = self.rope_parameters
  2358. if self.hparams.get("model_type") == "ministral3":
  2359. assert rope_params, "ministral3 must have 'rope_parameters' config"
  2360. assert rope_params["rope_type"] == "yarn", "ministral3 rope_type must be 'yarn'"
  2361. self.gguf_writer.add_rope_scaling_yarn_log_mul(rope_params["mscale_all_dim"])
  2362. self.gguf_writer.add_attn_temperature_scale(rope_params["llama_4_scaling_beta"])
  2363. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None):
  2364. name = name.replace("language_model.", "")
  2365. if "multi_modal_projector" in name or "vision_tower" in name:
  2366. return []
  2367. return super().modify_tensors(data_torch, name, bid)
  2368. @ModelBase.register("DeciLMForCausalLM")
  2369. class DeciModel(TextModel):
  2370. model_arch = gguf.MODEL_ARCH.DECI
  2371. @staticmethod
  2372. def _ffn_mult_to_intermediate_size(ffn_mult: float, n_embd: int) -> int:
  2373. # DeciLM-specific code
  2374. intermediate_size = int(2 * ffn_mult * n_embd / 3)
  2375. return DeciModel._find_multiple(intermediate_size, 256)
  2376. @staticmethod
  2377. def _find_multiple(n: int, k: int) -> int:
  2378. # DeciLM-specific code
  2379. if n % k == 0:
  2380. return n
  2381. return n + k - (n % k)
  2382. def __init__(self, *args, **kwargs):
  2383. super().__init__(*args, **kwargs)
  2384. if "block_configs" in self.hparams: # Llama-3_1-Nemotron-51B
  2385. _block_configs: list[dict[str,Any]] = self.hparams["block_configs"]
  2386. assert self.block_count == len(_block_configs)
  2387. self._num_kv_heads = list()
  2388. self._num_heads = list()
  2389. _ffn_multipliers = list()
  2390. # ***linear attention layer***
  2391. # if n_heads_in_group is None and replace_with_linear is True
  2392. # then _num_kv_heads[il] is 0 and _num_heads[il] is num_attention_heads
  2393. # ***attention-free layer***
  2394. # if n_heads_in_group is None and replace_with_linear is False
  2395. # then _num_kv_heads[il] is 0 and _num_heads[il] is 0
  2396. # ***normal attention-layer***
  2397. # if n_heads_in_group is not None, then
  2398. # _num_kv_heads[il] is num_attention_head // n_heads_in_group and
  2399. # _num_heads[il] is num_attention_head
  2400. # ***dummy layer*** for nemotron 253B
  2401. # if n_heads_in_group is None and ffn_mult is None
  2402. # then _num_kv_heads[il] is 0 and _num_heads[il] is 0 and _ffn_dims is 0
  2403. for il in range(len(_block_configs)):
  2404. if _block_configs[il]["attention"]["n_heads_in_group"] is None:
  2405. if _block_configs[il]["attention"]["replace_with_linear"] is True:
  2406. self._num_kv_heads.append(0)
  2407. self._num_heads.append(self.hparams["num_attention_heads"])
  2408. else:
  2409. self._num_kv_heads.append(0)
  2410. self._num_heads.append(0)
  2411. else:
  2412. self._num_kv_heads.append(self.hparams["num_attention_heads"] // _block_configs[il]["attention"]["n_heads_in_group"])
  2413. self._num_heads.append(self.hparams["num_attention_heads"])
  2414. if _block_configs[il]["ffn"]["ffn_mult"] is None: # dummy layer
  2415. _ffn_multipliers.append(0.0)
  2416. else:
  2417. _ffn_multipliers.append(_block_configs[il]["ffn"]["ffn_mult"])
  2418. assert self.block_count == len(self._num_kv_heads)
  2419. assert self.block_count == len(self._num_heads)
  2420. assert self.block_count == len(_ffn_multipliers)
  2421. assert isinstance(self._num_kv_heads, list) and isinstance(self._num_kv_heads[0], int)
  2422. assert isinstance(self._num_heads, list) and isinstance(self._num_heads[0], int)
  2423. assert isinstance(_ffn_multipliers, list) and isinstance(_ffn_multipliers[0], float)
  2424. self._ffn_dims: list[int] = [
  2425. DeciModel._ffn_mult_to_intermediate_size(multiplier, self.hparams["hidden_size"])
  2426. for multiplier in _ffn_multipliers
  2427. ]
  2428. def set_vocab(self):
  2429. # Please change tokenizer_config.json of Llama-3_1-Nemotron-51B's
  2430. # eos_token from '|eot_id|' to '|end_of_text|'
  2431. if self.hparams.get("vocab_size", 128256) == 128256:
  2432. tokens, toktypes, tokpre = self.get_vocab_base()
  2433. self.gguf_writer.add_tokenizer_model("gpt2")
  2434. self.gguf_writer.add_tokenizer_pre(tokpre)
  2435. self.gguf_writer.add_token_list(tokens)
  2436. self.gguf_writer.add_token_types(toktypes)
  2437. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=True)
  2438. special_vocab.add_to_gguf(self.gguf_writer)
  2439. else:
  2440. # DeciLM-7B
  2441. self._set_vocab_llama_hf()
  2442. def set_gguf_parameters(self):
  2443. if "block_configs" in self.hparams: # Llama-3_1-Nemotron-51B
  2444. assert self.block_count == len(self._num_kv_heads)
  2445. assert self.block_count == len(self._num_heads)
  2446. assert self.block_count == len(self._ffn_dims)
  2447. if (rope_theta := self.rope_parameters.get("rope_theta")) is not None:
  2448. self.gguf_writer.add_rope_freq_base(rope_theta)
  2449. self.gguf_writer.add_head_count_kv(self._num_kv_heads)
  2450. self.gguf_writer.add_head_count(self._num_heads)
  2451. self.gguf_writer.add_feed_forward_length(self._ffn_dims)
  2452. self.gguf_writer.add_block_count(self.block_count)
  2453. self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"])
  2454. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  2455. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  2456. self.gguf_writer.add_key_length(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  2457. self.gguf_writer.add_value_length(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  2458. self.gguf_writer.add_file_type(self.ftype)
  2459. else: # DeciLM-7B
  2460. super().set_gguf_parameters()
  2461. if "num_key_value_heads_per_layer" in self.hparams: # DeciLM-7B
  2462. self._num_kv_heads: list[int] = self.hparams["num_key_value_heads_per_layer"]
  2463. assert self.block_count == len(self._num_kv_heads)
  2464. self.gguf_writer.add_head_count_kv(self._num_kv_heads)
  2465. hparams = self.hparams
  2466. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  2467. if (rope_dim := hparams.get("head_dim")) is None:
  2468. rope_dim = hparams["hidden_size"] // hparams["num_attention_heads"]
  2469. self.gguf_writer.add_rope_dimension_count(rope_dim)
  2470. @staticmethod
  2471. def permute(weights: Tensor, n_head: int, n_head_kv: int | None):
  2472. if n_head_kv is not None and n_head != n_head_kv:
  2473. n_head = n_head_kv
  2474. return (weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  2475. .swapaxes(1, 2)
  2476. .reshape(weights.shape))
  2477. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2478. n_head = self.hparams["num_attention_heads"]
  2479. if bid is not None:
  2480. if "num_key_value_heads_per_layer" in self.hparams:
  2481. n_kv_head = self.hparams["num_key_value_heads_per_layer"][bid]
  2482. elif "block_configs" in self.hparams:
  2483. n_kv_head = self._num_kv_heads[bid]
  2484. n_head = self._num_heads[bid]
  2485. else:
  2486. n_kv_head = self.hparams.get("num_key_value_heads")
  2487. else:
  2488. n_kv_head = self.hparams.get("num_key_value_heads")
  2489. if name.endswith(("q_proj.weight", "q_proj.bias")):
  2490. data_torch = DeciModel.permute(data_torch, n_head, n_head)
  2491. if name.endswith(("k_proj.weight", "k_proj.bias")):
  2492. data_torch = DeciModel.permute(data_torch, n_head, n_kv_head)
  2493. return [(self.map_tensor_name(name), data_torch)]
  2494. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  2495. if rope_params := self.rope_parameters.get("full_attention", self.rope_parameters):
  2496. if rope_params.get("rope_type", '').lower() == "llama3":
  2497. base = rope_params.get("rope_theta", 10000.0)
  2498. if (dim := self.hparams.get("head_dim")) is None:
  2499. dim = self.hparams["hidden_size"] // self.hparams["num_attention_heads"]
  2500. freqs = 1.0 / (base ** (torch.arange(0, dim, 2, dtype=torch.float32) / dim))
  2501. factor = rope_params.get("factor", 8.0)
  2502. low_freq_factor = rope_params.get("low_freq_factor", 1.0)
  2503. high_freq_factor = rope_params.get("high_freq_factor", 4.0)
  2504. old_context_len = self.hparams.get("original_max_position_embeddings", 8192)
  2505. low_freq_wavelen = old_context_len / low_freq_factor
  2506. high_freq_wavelen = old_context_len / high_freq_factor
  2507. assert low_freq_wavelen != high_freq_wavelen
  2508. rope_factors = []
  2509. for freq in freqs:
  2510. wavelen = 2 * math.pi / freq
  2511. if wavelen < high_freq_wavelen:
  2512. rope_factors.append(1)
  2513. elif wavelen > low_freq_wavelen:
  2514. rope_factors.append(factor)
  2515. else:
  2516. smooth = (old_context_len / wavelen - low_freq_factor) / (high_freq_factor - low_freq_factor)
  2517. rope_factors.append(1 / ((1 - smooth) / factor + smooth))
  2518. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FREQS), torch.tensor(rope_factors, dtype=torch.float32))
  2519. def prepare_tensors(self):
  2520. super().prepare_tensors()
  2521. @ModelBase.register("BitnetForCausalLM")
  2522. class BitnetModel(TextModel):
  2523. model_arch = gguf.MODEL_ARCH.BITNET
  2524. def set_vocab(self):
  2525. self._set_vocab_sentencepiece()
  2526. def set_gguf_parameters(self):
  2527. super().set_gguf_parameters()
  2528. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  2529. self.gguf_writer.add_rope_scaling_factor(1.0)
  2530. def weight_quant(self, weight: Tensor) -> Tensor:
  2531. dtype = weight.dtype
  2532. weight = weight.float()
  2533. scale = weight.abs().mean().clamp(min=1e-5)
  2534. iscale = 1 / scale
  2535. # TODO: multiply by the scale directly instead of inverting it twice
  2536. # (this is also unnecessarily doubly inverted upstream)
  2537. # ref: https://huggingface.co/1bitLLM/bitnet_b1_58-3B/blob/af89e318d78a70802061246bf037199d2fb97020/utils_quant.py#L10
  2538. result = (weight * iscale).round().clamp(-1, 1) / iscale
  2539. return result.type(dtype)
  2540. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2541. new_name = self.map_tensor_name(name)
  2542. if any(self.match_model_tensor_name(new_name, key, bid) for key in [
  2543. gguf.MODEL_TENSOR.ATTN_Q,
  2544. gguf.MODEL_TENSOR.ATTN_K,
  2545. gguf.MODEL_TENSOR.ATTN_V,
  2546. gguf.MODEL_TENSOR.ATTN_OUT,
  2547. gguf.MODEL_TENSOR.FFN_UP,
  2548. gguf.MODEL_TENSOR.FFN_DOWN,
  2549. gguf.MODEL_TENSOR.FFN_GATE,
  2550. ]):
  2551. # transform weight into 1/0/-1 (in fp32)
  2552. data_torch = self.weight_quant(data_torch)
  2553. yield (new_name, data_torch)
  2554. @ModelBase.register("GrokForCausalLM", "Grok1ForCausalLM")
  2555. class GrokModel(TextModel):
  2556. model_arch = gguf.MODEL_ARCH.GROK
  2557. def set_vocab(self):
  2558. if (self.dir_model / 'tokenizer.model').is_file():
  2559. self._set_vocab_sentencepiece()
  2560. return
  2561. if not (self.dir_model / 'tokenizer.json').is_file() or not (self.dir_model / 'chat_template.jinja').is_file():
  2562. logger.error('Error: Missing vocab and chat template, download files from https://huggingface.co/alvarobartt/grok-2-tokenizer')
  2563. sys.exit(1)
  2564. self._set_vocab_gpt2()
  2565. def __init__(self, *args, **kwargs):
  2566. super().__init__(*args, **kwargs)
  2567. def set_gguf_parameters(self):
  2568. super().set_gguf_parameters()
  2569. self.gguf_writer.add_attn_logit_softcapping(self.hparams.get("attn_logit_softcapping", 30.0))
  2570. self.gguf_writer.add_router_logit_softcapping(self.hparams.get("router_logit_softcapping", 30.0))
  2571. if (final_logit_softcap := self.hparams.get("final_logit_softcapping")):
  2572. self.gguf_writer.add_final_logit_softcapping(final_logit_softcap)
  2573. if (rope_dim := self.hparams.get("head_dim")) is None:
  2574. rope_dim = self.hparams["hidden_size"] // self.hparams["num_attention_heads"]
  2575. if (moe_intermediate_size := self.hparams.get("moe_intermediate_size")) is not None:
  2576. self.gguf_writer.add_expert_feed_forward_length(moe_intermediate_size)
  2577. # Treat "original" as "yarn", seems to have been a mistake
  2578. if self.hparams.get("rope_type") in ("yarn", "original"):
  2579. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.YARN)
  2580. self.gguf_writer.add_rope_scaling_factor(self.hparams["scaling_factor"])
  2581. self.gguf_writer.add_rope_scaling_orig_ctx_len(self.hparams["original_max_position_embeddings"])
  2582. self.gguf_writer.add_rope_scaling_yarn_ext_factor(self.hparams["extrapolation_factor"])
  2583. self.gguf_writer.add_rope_scaling_yarn_attn_factor(self.hparams["attn_factor"])
  2584. self.gguf_writer.add_rope_scaling_yarn_beta_fast(self.hparams["beta_fast"])
  2585. self.gguf_writer.add_rope_scaling_yarn_beta_slow(self.hparams["beta_slow"])
  2586. if temp_len := self.hparams.get("attn_temperature_len"):
  2587. self.gguf_writer.add_attn_temperature_length(temp_len)
  2588. self.gguf_writer.add_attn_output_scale(self.hparams.get("attn_output_multiplier", rope_dim**-0.5))
  2589. self.gguf_writer.add_embedding_scale(self.hparams["embedding_multiplier_scale"])
  2590. self.gguf_writer.add_logit_scale(self.hparams["output_multiplier_scale"])
  2591. _experts: list[dict[str, list[Tensor]]] | None = None
  2592. _cur_expert = ""
  2593. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2594. tensors: list[tuple[str, Tensor]] = []
  2595. is_expert = ".moe." in name or ".block_sparse_moe.experts." in name
  2596. if not is_expert:
  2597. tensors.append((self.map_tensor_name(name), data_torch))
  2598. # process the experts separately
  2599. if is_expert or self._cur_expert:
  2600. n_experts = self.hparams["num_local_experts"]
  2601. assert bid is not None
  2602. if self._experts is None:
  2603. self._experts = [{} for _ in range(self.block_count)]
  2604. # concatenate split tensors
  2605. if name in self._experts[bid]:
  2606. self._cur_expert = name
  2607. self._experts[bid][name].append(data_torch)
  2608. return []
  2609. elif is_expert:
  2610. self._cur_expert = name
  2611. self._experts[bid][name] = [data_torch]
  2612. return []
  2613. else:
  2614. self._cur_expert = ""
  2615. for bid in range(self.block_count):
  2616. if len(self._experts[bid]) >= n_experts * 3:
  2617. # merge the experts into a single 3d tensor
  2618. for wid in [("linear", "w1", 0), ("linear_1", "w2", 1), ("linear_v", "w3", 0)]:
  2619. datas: list[Tensor] = []
  2620. for xid in range(n_experts):
  2621. ename = f"transformer.decoder_layer.{bid}.moe.{xid}.{wid[0]}.weight"
  2622. if ename not in self._experts[bid]:
  2623. ename = f"model.layers.{bid}.block_sparse_moe.experts.{xid}.{wid[1]}.weight"
  2624. tensor_list = self._experts[bid][ename]
  2625. datas.append(torch.cat(tensor_list, dim=wid[2]) if len(tensor_list) > 1 else tensor_list[0])
  2626. del self._experts[bid][ename]
  2627. data_torch = torch.stack(datas, dim=0)
  2628. merged_name = f"transformer.decoder_layer.{bid}.moe.{wid[0]}.weight"
  2629. new_name = self.map_tensor_name(merged_name)
  2630. yield (new_name, data_torch)
  2631. yield from tensors
  2632. @ModelBase.register("DbrxForCausalLM")
  2633. class DbrxModel(TextModel):
  2634. model_arch = gguf.MODEL_ARCH.DBRX
  2635. def set_gguf_parameters(self):
  2636. ffn_config = self.hparams["ffn_config"]
  2637. attn_config = self.hparams["attn_config"]
  2638. self.gguf_writer.add_block_count(self.block_count)
  2639. self.gguf_writer.add_context_length(self.hparams["max_seq_len"])
  2640. self.gguf_writer.add_embedding_length(self.hparams["d_model"])
  2641. self.gguf_writer.add_feed_forward_length(ffn_config["ffn_hidden_size"])
  2642. self.gguf_writer.add_head_count(self.hparams["n_heads"])
  2643. self.gguf_writer.add_head_count_kv(attn_config["kv_n_heads"])
  2644. self.gguf_writer.add_rope_freq_base(attn_config["rope_theta"])
  2645. self.gguf_writer.add_clamp_kqv(attn_config["clip_qkv"])
  2646. self.gguf_writer.add_expert_count(ffn_config["moe_num_experts"])
  2647. self.gguf_writer.add_expert_used_count(ffn_config["moe_top_k"])
  2648. self.gguf_writer.add_layer_norm_eps(1e-5)
  2649. self.gguf_writer.add_file_type(self.ftype)
  2650. logger.info(f"gguf: file type = {self.ftype}")
  2651. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2652. del bid # unused
  2653. n_expert = self.hparams["ffn_config"]["moe_num_experts"]
  2654. n_ff = self.hparams["ffn_config"]["ffn_hidden_size"]
  2655. n_embd = self.hparams["d_model"]
  2656. # Specific behavior for experts tensors: suffix .weight, view as 3D and transpose
  2657. # original implementation expects (n_expert, n_ff, n_embd) for all experts weights
  2658. # But llama.cpp moe graph works differently
  2659. # AND the dimensions in ggml are typically in the reverse order of the pytorch dimensions
  2660. # so (n_expert, n_ff, n_embd) in pytorch is {n_embd, n_ff, n_expert} in ggml_tensor
  2661. exp_tensor_names = {"ffn.experts.mlp.w1": None, # LLM_TENSOR_FFN_GATE_EXPS ggml_tensor->ne{n_embd, n_ff, n_expert}
  2662. "ffn.experts.mlp.w2": (0, 2, 1), # LLM_TENSOR_FFN_DOWN_EXPS ggml_tensor->ne{n_ff, n_embd, n_expert}
  2663. "ffn.experts.mlp.v1": None} # LLM_TENSOR_FFN_UP_EXPS ggml_tensor->ne{n_embd, n_ff, n_expert}
  2664. experts = False
  2665. for exp_tensor_name in exp_tensor_names.keys():
  2666. if name.find(exp_tensor_name) != -1 and name.find(".weight") == -1:
  2667. experts = True
  2668. data_torch = data_torch.view(n_expert, n_ff, n_embd)
  2669. if (permute_tensor := exp_tensor_names[exp_tensor_name]) is not None:
  2670. data_torch = data_torch.permute(*permute_tensor)
  2671. break
  2672. # map tensor names
  2673. # In MoE models the ffn tensors are typically most of the model weights,
  2674. # and need to be quantizable. Quantize expects tensor names to be suffixed by .weight.
  2675. # Every other model has the weight names ending in .weight,
  2676. # let's assume that is the convention which is not the case for dbrx:
  2677. # https://huggingface.co/databricks/dbrx-instruct/blob/main/model.safetensors.index.json#L15
  2678. new_name = self.map_tensor_name(name if not experts else name + ".weight", try_suffixes=(".weight",))
  2679. return [(new_name, data_torch)]
  2680. def tensor_force_quant(self, name: str, new_name: str, bid: int | None, n_dims: int) -> gguf.GGMLQuantizationType | bool:
  2681. del name, new_name, bid # unused
  2682. return n_dims > 1
  2683. @ModelBase.register("MiniCPMForCausalLM")
  2684. class MiniCPMModel(TextModel):
  2685. model_arch = gguf.MODEL_ARCH.MINICPM
  2686. def set_gguf_parameters(self):
  2687. super().set_gguf_parameters()
  2688. embedding_scale = float(self.hparams["scale_emb"])
  2689. self.gguf_writer.add_embedding_scale(embedding_scale)
  2690. logger.info(f"gguf: (minicpm) embedding_scale = {embedding_scale}")
  2691. residual_scale = self.hparams["scale_depth"] / self.hparams["num_hidden_layers"] ** 0.5
  2692. self.gguf_writer.add_residual_scale(residual_scale)
  2693. logger.info(f"gguf: (minicpm) residual_scale = {residual_scale}")
  2694. logit_scale = self.hparams["hidden_size"] / self.hparams["dim_model_base"]
  2695. self.gguf_writer.add_logit_scale(logit_scale)
  2696. logger.info(f"gguf: (minicpm) logit_scale = {logit_scale}")
  2697. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  2698. rope_dims = self.hparams["hidden_size"] // self.hparams["num_attention_heads"]
  2699. rope_scaling = self.find_hparam(['rope_scaling'], True)
  2700. if rope_scaling is not None:
  2701. long_factors = rope_scaling.get('long_factor', None)
  2702. short_factors = rope_scaling.get('short_factor', None)
  2703. if long_factors is None or short_factors is None:
  2704. raise KeyError('Missing the required key rope_scaling.long_factor or rope_scaling_short_factor')
  2705. if len(long_factors) != len(short_factors) or len(long_factors) != rope_dims / 2:
  2706. raise ValueError(f'The length of rope long and short factors must be {rope_dims / 2}')
  2707. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FACTORS_LONG), torch.tensor(long_factors, dtype=torch.float32))
  2708. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FACTORS_SHORT), torch.tensor(short_factors, dtype=torch.float32))
  2709. def set_vocab(self):
  2710. self._set_vocab_sentencepiece()
  2711. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2712. del bid # unused
  2713. n_head = self.hparams["num_attention_heads"]
  2714. n_kv_head = self.hparams.get("num_key_value_heads")
  2715. # HF models permute some of the tensors, so we need to undo that
  2716. if name.endswith(("q_proj.weight")):
  2717. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  2718. if name.endswith(("k_proj.weight")):
  2719. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  2720. return [(self.map_tensor_name(name), data_torch)]
  2721. @ModelBase.register("MiniCPM3ForCausalLM")
  2722. class MiniCPM3Model(TextModel):
  2723. model_arch = gguf.MODEL_ARCH.MINICPM3
  2724. def set_gguf_parameters(self):
  2725. hparams = self.hparams
  2726. self.gguf_writer.add_file_type(self.ftype)
  2727. self.gguf_writer.add_context_length(hparams["max_position_embeddings"])
  2728. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  2729. self.gguf_writer.add_block_count(self.block_count)
  2730. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  2731. self.gguf_writer.add_head_count(hparams["num_attention_heads"])
  2732. self.gguf_writer.add_head_count_kv(hparams["num_key_value_heads"])
  2733. self.gguf_writer.add_layer_norm_rms_eps(hparams["rms_norm_eps"])
  2734. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  2735. if "q_lora_rank" in hparams and hparams["q_lora_rank"] is not None:
  2736. self.gguf_writer.add_q_lora_rank(hparams["q_lora_rank"])
  2737. self.gguf_writer.add_kv_lora_rank(hparams["kv_lora_rank"])
  2738. self.gguf_writer.add_key_length(hparams["qk_nope_head_dim"] + hparams["qk_rope_head_dim"])
  2739. self.gguf_writer.add_rope_dimension_count(hparams["qk_rope_head_dim"])
  2740. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  2741. rope_scaling = self.find_hparam(['rope_scaling'], True)
  2742. if rope_scaling is not None:
  2743. rope_dims = self.hparams["qk_rope_head_dim"]
  2744. long_factors = rope_scaling.get('long_factor', None)
  2745. short_factors = rope_scaling.get('short_factor', None)
  2746. if long_factors is None or short_factors is None:
  2747. raise KeyError('Missing the required key rope_scaling.long_factor or rope_scaling_short_factor')
  2748. if len(long_factors) != len(short_factors) or len(long_factors) != rope_dims / 2:
  2749. raise ValueError(f'The length of rope long and short factors must be {rope_dims / 2}')
  2750. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FACTORS_LONG), torch.tensor(long_factors, dtype=torch.float32))
  2751. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FACTORS_SHORT), torch.tensor(short_factors, dtype=torch.float32))
  2752. def set_vocab(self):
  2753. self._set_vocab_sentencepiece()
  2754. def _reverse_hf_permute(self, weights: Tensor, n_head: int, n_kv_head: int | None = None) -> Tensor:
  2755. if n_kv_head is not None and n_head != n_kv_head:
  2756. n_head //= n_kv_head
  2757. return (
  2758. weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  2759. .swapaxes(1, 2)
  2760. .reshape(weights.shape)
  2761. )
  2762. @ModelBase.register("QWenLMHeadModel")
  2763. class QwenModel(TextModel):
  2764. model_arch = gguf.MODEL_ARCH.QWEN
  2765. @staticmethod
  2766. def token_bytes_to_string(b):
  2767. from transformers.models.gpt2.tokenization_gpt2 import bytes_to_unicode
  2768. byte_encoder = bytes_to_unicode()
  2769. return ''.join([byte_encoder[ord(char)] for char in b.decode('latin-1')])
  2770. @staticmethod
  2771. def bpe(mergeable_ranks: dict[bytes, int], token: bytes, max_rank: int | None = None) -> list[bytes]:
  2772. parts = [bytes([b]) for b in token]
  2773. while True:
  2774. min_idx = None
  2775. min_rank = None
  2776. for i, pair in enumerate(zip(parts[:-1], parts[1:])):
  2777. rank = mergeable_ranks.get(pair[0] + pair[1])
  2778. if rank is not None and (min_rank is None or rank < min_rank):
  2779. min_idx = i
  2780. min_rank = rank
  2781. if min_rank is None or (max_rank is not None and min_rank >= max_rank):
  2782. break
  2783. assert min_idx is not None
  2784. parts = parts[:min_idx] + [parts[min_idx] + parts[min_idx + 1]] + parts[min_idx + 2:]
  2785. return parts
  2786. def set_vocab(self):
  2787. self._set_vocab_qwen()
  2788. @ModelBase.register("Qwen2Model", "Qwen2ForCausalLM", "Qwen2AudioForConditionalGeneration")
  2789. class Qwen2Model(TextModel):
  2790. model_arch = gguf.MODEL_ARCH.QWEN2
  2791. def set_vocab(self):
  2792. try:
  2793. self._set_vocab_sentencepiece()
  2794. except FileNotFoundError:
  2795. self._set_vocab_gpt2()
  2796. def set_gguf_parameters(self):
  2797. super().set_gguf_parameters()
  2798. self._try_set_pooling_type()
  2799. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2800. if self.hf_arch == "Qwen2Model":
  2801. name = f"model.{name}" # map to Qwen2ForCausalLM tensors
  2802. if "language_model." in name:
  2803. name = name.replace("language_model.", "") # for InternVL
  2804. if name.startswith("mlp") or name.startswith("multi_modal_projector") \
  2805. or name.startswith("vision_model") or name.startswith("audio_tower") \
  2806. or name.startswith("model.vision_tower") or name.startswith("model.multi_modal_projector"):
  2807. # skip vision and audio tensors
  2808. return []
  2809. yield from super().modify_tensors(data_torch, name, bid)
  2810. @ModelBase.register("DreamModel")
  2811. class DreamModel(TextModel):
  2812. model_arch = gguf.MODEL_ARCH.DREAM
  2813. def get_vocab_base(self) -> tuple[list[str], list[int], str]:
  2814. tokens: list[str] = []
  2815. toktypes: list[int] = []
  2816. from transformers import AutoTokenizer
  2817. tokenizer = AutoTokenizer.from_pretrained(self.dir_model, trust_remote_code=True)
  2818. vocab_dict = tokenizer.get_vocab()
  2819. vocab_size = self.hparams.get("vocab_size", len(vocab_dict))
  2820. assert max(vocab_dict.values()) < vocab_size
  2821. tokpre = self.get_vocab_base_pre(tokenizer)
  2822. reverse_vocab = {id_: encoded_tok for encoded_tok, id_ in vocab_dict.items()}
  2823. added_vocab = tokenizer.get_added_vocab()
  2824. for i in range(vocab_size):
  2825. if i not in reverse_vocab:
  2826. tokens.append(f"[PAD{i}]")
  2827. toktypes.append(gguf.TokenType.UNUSED)
  2828. elif reverse_vocab[i] in added_vocab:
  2829. tokens.append(reverse_vocab[i])
  2830. # Check if it's a special token - treat special tokens as CONTROL tokens
  2831. if hasattr(tokenizer, 'added_tokens_decoder') and i in tokenizer.added_tokens_decoder:
  2832. if tokenizer.added_tokens_decoder[i].special:
  2833. toktypes.append(gguf.TokenType.CONTROL)
  2834. else:
  2835. toktypes.append(gguf.TokenType.USER_DEFINED)
  2836. else:
  2837. # Fallback: treat all added vocab as control tokens for special tokens like <|im_start|>
  2838. toktypes.append(gguf.TokenType.CONTROL)
  2839. else:
  2840. tokens.append(reverse_vocab[i])
  2841. toktypes.append(gguf.TokenType.NORMAL)
  2842. return tokens, toktypes, tokpre
  2843. def set_vocab(self):
  2844. try:
  2845. self._set_vocab_sentencepiece()
  2846. except FileNotFoundError:
  2847. self._set_vocab_gpt2()
  2848. def set_gguf_parameters(self):
  2849. super().set_gguf_parameters()
  2850. self._try_set_pooling_type()
  2851. # Dream models use non-causal attention for diffusion
  2852. self.gguf_writer.add_causal_attention(False)
  2853. # Add Dream-specific parameters
  2854. mask_token_id = self.hparams.get("mask_token_id")
  2855. if mask_token_id is not None:
  2856. self.gguf_writer.add_mask_token_id(mask_token_id)
  2857. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2858. # Dream model tensors should be mapped directly since it's the base model
  2859. yield from super().modify_tensors(data_torch, name, bid)
  2860. @ModelBase.register("LLaDAModelLM")
  2861. class LLaDAModel(TextModel):
  2862. model_arch = gguf.MODEL_ARCH.LLADA
  2863. undo_permute = True
  2864. def get_vocab_base(self) -> tuple[list[str], list[int], str]:
  2865. tokens: list[str] = []
  2866. toktypes: list[int] = []
  2867. from transformers import AutoTokenizer
  2868. tokenizer = AutoTokenizer.from_pretrained(self.dir_model, trust_remote_code=True)
  2869. vocab_dict = tokenizer.get_vocab()
  2870. vocab_size = self.hparams.get("vocab_size", len(vocab_dict))
  2871. assert max(vocab_dict.values()) < vocab_size
  2872. tokpre = self.get_vocab_base_pre(tokenizer)
  2873. reverse_vocab = {id_: encoded_tok for encoded_tok, id_ in vocab_dict.items()}
  2874. added_vocab = tokenizer.get_added_vocab()
  2875. for i in range(vocab_size):
  2876. if i not in reverse_vocab:
  2877. tokens.append(f"[PAD{i}]")
  2878. toktypes.append(gguf.TokenType.UNUSED)
  2879. elif reverse_vocab[i] in added_vocab:
  2880. tokens.append(reverse_vocab[i])
  2881. # Check if it's a special token - treat special tokens as CONTROL tokens
  2882. if hasattr(tokenizer, 'added_tokens_decoder') and i in tokenizer.added_tokens_decoder:
  2883. if tokenizer.added_tokens_decoder[i].special:
  2884. toktypes.append(gguf.TokenType.CONTROL)
  2885. else:
  2886. toktypes.append(gguf.TokenType.USER_DEFINED)
  2887. else:
  2888. # Fallback: treat all added vocab as control tokens for special tokens like <|im_start|>
  2889. toktypes.append(gguf.TokenType.CONTROL)
  2890. else:
  2891. tokens.append(reverse_vocab[i])
  2892. toktypes.append(gguf.TokenType.NORMAL)
  2893. return tokens, toktypes, tokpre
  2894. def set_vocab(self):
  2895. self._set_vocab_gpt2()
  2896. # LLaDA specific parameters
  2897. self.gguf_writer.add_add_bos_token(True)
  2898. def set_gguf_parameters(self):
  2899. super().set_gguf_parameters()
  2900. self._try_set_pooling_type()
  2901. # Add parameters similar to LlamaModel
  2902. hparams = self.hparams
  2903. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  2904. if (rope_dim := hparams.get("head_dim")) is None:
  2905. n_heads = hparams.get("num_attention_heads", hparams.get("n_heads"))
  2906. rope_dim = hparams.get("hidden_size", hparams.get("d_model")) // n_heads
  2907. self.gguf_writer.add_rope_dimension_count(rope_dim)
  2908. # Set context length for LLaDA
  2909. context_length = self.hparams.get("max_sequence_length", 4096)
  2910. self.gguf_writer.add_context_length(context_length)
  2911. # Set embedding length (dimension size)
  2912. embedding_length = self.hparams.get("d_model", 4096)
  2913. self.gguf_writer.add_embedding_length(embedding_length)
  2914. # Set feed forward length (MLP hidden size)
  2915. feed_forward_length = self.hparams.get("mlp_hidden_size", 12288)
  2916. self.gguf_writer.add_feed_forward_length(feed_forward_length)
  2917. # LLaDA models use non-causal attention for diffusion, similar to Dream
  2918. self.gguf_writer.add_causal_attention(False)
  2919. # LLaDA models don't shift their logits
  2920. self.gguf_writer.add_diffusion_shift_logits(False)
  2921. @staticmethod
  2922. def permute(weights: Tensor, n_head: int, n_head_kv: int | None):
  2923. if n_head_kv is not None and n_head != n_head_kv:
  2924. n_head = n_head_kv
  2925. return (weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  2926. .swapaxes(1, 2)
  2927. .reshape(weights.shape))
  2928. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2929. n_head = self.hparams.get("num_attention_heads", self.hparams.get("n_heads"))
  2930. n_kv_head = self.hparams.get("num_key_value_heads", self.hparams.get("n_kv_heads"))
  2931. if self.undo_permute:
  2932. if name.endswith(("q_proj.weight", "q_proj.bias")):
  2933. data_torch = LLaDAModel.permute(data_torch, n_head, n_head)
  2934. if name.endswith(("k_proj.weight", "k_proj.bias")):
  2935. data_torch = LLaDAModel.permute(data_torch, n_head, n_kv_head)
  2936. # LLaDA model tensors should be mapped directly since it's the base model
  2937. yield from super().modify_tensors(data_torch, name, bid)
  2938. @ModelBase.register("Ernie4_5_ForCausalLM", "Ernie4_5ForCausalLM")
  2939. class Ernie4_5Model(TextModel):
  2940. model_arch = gguf.MODEL_ARCH.ERNIE4_5
  2941. def set_vocab(self):
  2942. self._set_vocab_sentencepiece()
  2943. def set_gguf_parameters(self):
  2944. super().set_gguf_parameters()
  2945. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2946. num_heads = self.hparams["num_attention_heads"]
  2947. num_kv_heads = self.hparams["num_key_value_heads"]
  2948. if (head_dim := self.hparams.get("head_dim")) is None:
  2949. head_dim = self.hparams["hidden_size"] // num_heads
  2950. if "ernie." in name:
  2951. name = name.replace("ernie.", "model.")
  2952. # split the qkv weights
  2953. # qkv_proj shape: [(num_heads + 2 * num_kv_heads) * head_dim, hidden_size]
  2954. if "qkv_proj" in name:
  2955. name_q = name.replace("qkv_proj.weight", "q_proj.weight")
  2956. name_k = name.replace("qkv_proj.weight", "k_proj.weight")
  2957. name_v = name.replace("qkv_proj.weight", "v_proj.weight")
  2958. total_q_dim = num_heads * head_dim
  2959. total_k_dim = num_kv_heads * head_dim
  2960. total_v_dim = num_kv_heads * head_dim
  2961. q_proj_weight, k_proj_weight, v_proj_weight = data_torch.split([total_q_dim, total_k_dim, total_v_dim], dim=0)
  2962. return [
  2963. (self.map_tensor_name(name_q), q_proj_weight),
  2964. (self.map_tensor_name(name_k), k_proj_weight),
  2965. (self.map_tensor_name(name_v), v_proj_weight)
  2966. ]
  2967. # split the up_gate_proj into gate and up
  2968. # up_gate_proj shape: [2 * intermediate_size, hidden_size]
  2969. if "up_gate_proj" in name:
  2970. name_up = name.replace("up_gate_proj.weight", "up_proj.weight")
  2971. name_gate = name.replace("up_gate_proj.weight", "gate_proj.weight")
  2972. dim_half = data_torch.shape[0] // 2
  2973. gate_proj_weight, up_proj_weight = data_torch.split(dim_half, dim=0)
  2974. return [
  2975. (self.map_tensor_name(name_gate), gate_proj_weight),
  2976. (self.map_tensor_name(name_up), up_proj_weight)
  2977. ]
  2978. return [(self.map_tensor_name(name), data_torch)]
  2979. @ModelBase.register("Ernie4_5_MoeForCausalLM")
  2980. class Ernie4_5MoeModel(Ernie4_5Model):
  2981. model_arch = gguf.MODEL_ARCH.ERNIE4_5_MOE
  2982. _experts: list[dict[str, Tensor]] | None = None
  2983. def __init__(self, *args, **kwargs):
  2984. super().__init__(*args, **kwargs)
  2985. self._experts = [{} for _ in range(self.block_count)]
  2986. def set_gguf_parameters(self):
  2987. super().set_gguf_parameters()
  2988. self.gguf_writer.add_expert_count(self.hparams["moe_num_experts"])
  2989. self.gguf_writer.add_expert_used_count(self.hparams["moe_k"])
  2990. self.gguf_writer.add_interleave_moe_layer_step(self.hparams["moe_layer_interval"])
  2991. self.gguf_writer.add_leading_dense_block_count(self.hparams["moe_layer_start_index"])
  2992. if (moe_intermediate_size := self.hparams.get("moe_intermediate_size")) is not None:
  2993. self.gguf_writer.add_expert_feed_forward_length(moe_intermediate_size)
  2994. if (shared_expert_count := self.hparams.get('moe_num_shared_experts')) is not None:
  2995. self.gguf_writer.add_expert_shared_count(shared_expert_count)
  2996. if shared_expert_count > 0 and (shared_expert_intermediate_size := self.hparams.get('intermediate_size')) is not None and (num_key_value_heads := self.hparams.get('num_key_value_heads')) is not None:
  2997. self.gguf_writer.add_expert_shared_feed_forward_length(shared_expert_intermediate_size // num_key_value_heads)
  2998. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2999. # Modify correction bias name as in DeepseekV2
  3000. if name.endswith("e_score_correction_bias"):
  3001. name = name.replace("e_score_correction_bias", "e_score_correction.bias")
  3002. # skip Multi-Token Prediction (MTP) layers (again, same as DeepseekV2)
  3003. match = re.match(r"model.mtp_block.(\d+)", name)
  3004. if match:
  3005. return []
  3006. # skip all other MTP tensors for now
  3007. match = re.match(r"model.mtp_emb_norm.(\d+)", name)
  3008. if match:
  3009. return []
  3010. match = re.match(r"model.mtp_hidden_norm.(\d+)", name)
  3011. if match:
  3012. return []
  3013. match = re.match(r"model.mtp_linear_proj.(\d+)", name)
  3014. if match:
  3015. return []
  3016. # process the experts separately
  3017. if name.find("mlp.experts") != -1:
  3018. n_experts = self.hparams["moe_num_experts"]
  3019. assert bid is not None
  3020. if self._experts is None:
  3021. self._experts = [{} for _ in range(self.block_count)]
  3022. self._experts[bid][name] = data_torch
  3023. if len(self._experts[bid]) >= n_experts * 3:
  3024. tensors: list[tuple[str, Tensor]] = []
  3025. # merge the experts into a single 3d tensor
  3026. for w_name in ["gate_proj", "up_proj", "down_proj"]:
  3027. datas: list[Tensor] = []
  3028. for xid in range(n_experts):
  3029. ename_to_retrieve = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  3030. datas.append(self._experts[bid][ename_to_retrieve])
  3031. del self._experts[bid][ename_to_retrieve]
  3032. data_torch = torch.stack(datas, dim=0)
  3033. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  3034. new_name = self.map_tensor_name(merged_name)
  3035. tensors.append((new_name, data_torch))
  3036. return tensors
  3037. else:
  3038. return []
  3039. return [(self.map_tensor_name(name), data_torch)]
  3040. def prepare_tensors(self):
  3041. super().prepare_tensors()
  3042. if self._experts is not None:
  3043. # flatten `list[dict[str, Tensor]]` into `list[str]`
  3044. experts = [k for d in self._experts for k in d.keys()]
  3045. if len(experts) > 0:
  3046. raise ValueError(f"Unprocessed experts: {experts}")
  3047. @ModelBase.register(
  3048. "Qwen2VLModel",
  3049. "Qwen2VLForConditionalGeneration",
  3050. "Qwen2_5_VLForConditionalGeneration",
  3051. "Qwen2_5OmniModel",
  3052. )
  3053. class Qwen2VLModel(TextModel):
  3054. model_arch = gguf.MODEL_ARCH.QWEN2VL
  3055. def set_gguf_parameters(self):
  3056. super().set_gguf_parameters()
  3057. mrope_section = self.hparams["rope_scaling"]["mrope_section"]
  3058. mrope_section += [0] * max(0, 4 - len(mrope_section))
  3059. self.gguf_writer.add_rope_dimension_sections(mrope_section)
  3060. def set_vocab(self):
  3061. try:
  3062. self._set_vocab_sentencepiece()
  3063. except FileNotFoundError:
  3064. self._set_vocab_gpt2()
  3065. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3066. del bid # unused
  3067. if name.startswith("thinker."):
  3068. name = name.replace("thinker.", "")
  3069. if name.startswith("visual") or name.startswith("audio") or \
  3070. name.startswith("talker") or name.startswith("token2wav"):
  3071. # skip multimodal tensors
  3072. return []
  3073. return [(self.map_tensor_name(name), data_torch)]
  3074. @ModelBase.register("Qwen2VLModel", "Qwen2VLForConditionalGeneration", "Qwen2_5_VLForConditionalGeneration")
  3075. class Qwen2VLVisionModel(MmprojModel):
  3076. def __init__(self, *args, **kwargs):
  3077. super().__init__(*args, **kwargs)
  3078. assert self.hparams_vision is not None
  3079. self.hparams_vision["image_size"] = self.hparams_vision.get("image_size", 560)
  3080. # rename config.json values
  3081. self.hparams_vision["num_attention_heads"] = self.hparams_vision.get("num_heads")
  3082. self.hparams_vision["num_hidden_layers"] = self.hparams_vision.get("depth")
  3083. if "embed_dim" in self.hparams_vision: # qwen2vl
  3084. self.hparams_vision["intermediate_size"] = self.hparams_vision.get("hidden_size")
  3085. self.hparams_vision["hidden_size"] = self.hparams_vision.get("embed_dim")
  3086. def set_gguf_parameters(self):
  3087. super().set_gguf_parameters()
  3088. assert self.hparams_vision is not None
  3089. hparams = self.hparams_vision
  3090. model_type = self.global_config['model_type']
  3091. if model_type == 'qwen2_vl':
  3092. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.QWEN2VL)
  3093. elif model_type == 'qwen2_5_vl' or model_type == 'qwen2_5_omni':
  3094. if model_type == 'qwen2_5_omni':
  3095. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.QWEN25O)
  3096. else:
  3097. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.QWEN25VL)
  3098. self.gguf_writer.add_vision_use_silu(True)
  3099. # find n_wa_pattern (window attention pattern)
  3100. fullatt_block_indexes = hparams.get("fullatt_block_indexes")
  3101. assert fullatt_block_indexes is not None, "fullatt_block_indexes is required for qwen2_5_vl"
  3102. n_wa_pattern = fullatt_block_indexes[0] + 1
  3103. # validate n_wa_pattern
  3104. for i in range(1, len(fullatt_block_indexes)):
  3105. if fullatt_block_indexes[i] - fullatt_block_indexes[i - 1] != n_wa_pattern:
  3106. raise ValueError(f"Invalid fullatt_block_indexes: {fullatt_block_indexes}")
  3107. self.gguf_writer.add_vision_n_wa_pattern(n_wa_pattern)
  3108. else:
  3109. raise ValueError(f"Unknown QwenVL model type: {self.global_config['model_type']}")
  3110. # default values below are taken from HF tranformers code
  3111. self.gguf_writer.add_vision_attention_layernorm_eps(self.global_config.get("rms_norm_eps", 1e-6))
  3112. def tensor_force_quant(self, name, new_name, bid, n_dims):
  3113. if ".position_embd." in new_name:
  3114. return gguf.GGMLQuantizationType.F32
  3115. return super().tensor_force_quant(name, new_name, bid, n_dims)
  3116. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3117. del bid # unused
  3118. if name.startswith("visual."):
  3119. # process visual tensors
  3120. # split QKV tensors if needed
  3121. if ".qkv." in name:
  3122. if data_torch.ndim == 2: # weight
  3123. c3, _ = data_torch.shape
  3124. else: # bias
  3125. c3 = data_torch.shape[0]
  3126. assert c3 % 3 == 0
  3127. c = c3 // 3
  3128. wq = data_torch[:c]
  3129. wk = data_torch[c: c * 2]
  3130. wv = data_torch[c * 2:]
  3131. return [
  3132. (self.map_tensor_name(name.replace("qkv", "q")), wq),
  3133. (self.map_tensor_name(name.replace("qkv", "k")), wk),
  3134. (self.map_tensor_name(name.replace("qkv", "v")), wv),
  3135. ]
  3136. elif 'patch_embed.proj.weight' in name:
  3137. # split Conv3D into Conv2Ds
  3138. c1, c2, kt, kh, kw = data_torch.shape
  3139. del c1, c2, kh, kw # unused
  3140. assert kt == 2, "Current implmentation only support temporal_patch_size of 2"
  3141. return [
  3142. (gguf.TENSOR_NAMES[gguf.MODEL_TENSOR.V_ENC_EMBD_PATCH] + ".weight" , data_torch[:, :, 0, ...]),
  3143. (gguf.TENSOR_NAMES[gguf.MODEL_TENSOR.V_ENC_EMBD_PATCH] + ".weight.1", data_torch[:, :, 1, ...]),
  3144. ]
  3145. else:
  3146. return [(self.map_tensor_name(name), data_torch)]
  3147. return [] # skip other tensors
  3148. @ModelBase.register("Qwen2_5OmniModel")
  3149. class Qwen25OmniModel(Qwen2VLVisionModel):
  3150. has_vision_encoder = True
  3151. has_audio_encoder = True
  3152. def __init__(self, *args, **kwargs):
  3153. super().__init__(*args, **kwargs)
  3154. assert self.hparams_audio is not None
  3155. self.hparams_audio["hidden_size"] = self.hparams_audio["d_model"]
  3156. self.hparams_audio["intermediate_size"] = self.hparams_audio["encoder_ffn_dim"]
  3157. self.hparams_audio["num_attention_heads"] = self.hparams_audio["encoder_attention_heads"]
  3158. def set_gguf_parameters(self):
  3159. super().set_gguf_parameters()
  3160. assert self.hparams_audio is not None
  3161. self.gguf_writer.add_audio_num_mel_bins(self.hparams_audio["num_mel_bins"])
  3162. self.gguf_writer.add_audio_attention_layernorm_eps(self.hparams_audio.get("layer_norm_eps", 1e-5))
  3163. def get_vision_config(self) -> dict[str, Any] | None:
  3164. return self.global_config["thinker_config"].get("vision_config")
  3165. def get_audio_config(self) -> dict[str, Any] | None:
  3166. return self.global_config["thinker_config"].get("audio_config")
  3167. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  3168. # SinusoidsPositionEmbedding
  3169. assert self.hparams_audio is not None
  3170. max_timescale = 10000
  3171. length = 1500
  3172. channels = self.hparams_audio["hidden_size"]
  3173. log_timescale_increment = np.log(max_timescale) / (channels // 2 - 1)
  3174. inv_timescales = torch.exp(-log_timescale_increment * torch.arange(channels // 2).float())
  3175. scaled_time = torch.arange(length)[:, np.newaxis] * inv_timescales[np.newaxis, :]
  3176. pos_embd = torch.cat([torch.sin(scaled_time), torch.cos(scaled_time)], dim=1).to(dtype=torch.float32)
  3177. yield ("audio_tower.embed_positions.weight", pos_embd)
  3178. def tensor_force_quant(self, name, new_name, bid, n_dims):
  3179. if ".conv" in name and ".weight" in name:
  3180. return gguf.GGMLQuantizationType.F16
  3181. return super().tensor_force_quant(name, new_name, bid, n_dims)
  3182. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3183. if name.startswith("thinker."):
  3184. name = name.replace("thinker.", "")
  3185. if name.startswith("audio_tower"):
  3186. # process audio tensors
  3187. if "conv1.bias" in name or "conv2.bias" in name:
  3188. # transpose conv1 and conv2 bias
  3189. data_torch = data_torch.unsqueeze(-1)
  3190. if "audio_bos_eos_token" in name:
  3191. # this tensor is left unused in transformers code
  3192. # https://github.com/huggingface/transformers/blob/6e3063422c4b1c014aa60c32b9254fd2902f0f28/src/transformers/models/qwen2_5_omni/modular_qwen2_5_omni.py#L1809
  3193. return []
  3194. return [(self.map_tensor_name(name), data_torch)]
  3195. return super().modify_tensors(data_torch, name, bid)
  3196. @ModelBase.register("InternVisionModel")
  3197. class InternVisionModel(MmprojModel):
  3198. def set_gguf_parameters(self):
  3199. assert self.hparams_vision is not None
  3200. if isinstance(self.hparams_vision['image_size'], list):
  3201. self.hparams_vision['image_size'] = self.hparams_vision['image_size'][0]
  3202. if isinstance(self.hparams_vision['patch_size'], list):
  3203. self.hparams_vision['patch_size'] = self.hparams_vision['patch_size'][0]
  3204. super().set_gguf_parameters()
  3205. hparams = self.hparams
  3206. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.INTERNVL)
  3207. self.gguf_writer.add_vision_attention_layernorm_eps(hparams["layer_norm_eps"])
  3208. # hidden_act
  3209. if hparams["hidden_act"] == "silu":
  3210. self.gguf_writer.add_vision_use_silu(True)
  3211. elif hparams["hidden_act"] == "gelu":
  3212. self.gguf_writer.add_vision_use_gelu(True)
  3213. else:
  3214. raise ValueError(f"Unsupported hidden_act: {hparams['hidden_act']}")
  3215. # downsample_ratio
  3216. downsample_ratio = self.global_config.get("downsample_ratio")
  3217. assert downsample_ratio is not None
  3218. self.gguf_writer.add_vision_projector_scale_factor(int(1.0 / downsample_ratio))
  3219. def tensor_force_quant(self, name, new_name, bid, n_dims):
  3220. if ".position_embd." in new_name:
  3221. return gguf.GGMLQuantizationType.F32
  3222. return super().tensor_force_quant(name, new_name, bid, n_dims)
  3223. def _mapping_interns1_name(self, name):
  3224. names_map = {
  3225. "model.multi_modal_projector.layer_norm.bias": "mlp1.0.bias",
  3226. "model.multi_modal_projector.layer_norm.weight": "mlp1.0.weight",
  3227. "model.multi_modal_projector.linear_1.bias": "mlp1.1.bias",
  3228. "model.multi_modal_projector.linear_1.weight": "mlp1.1.weight",
  3229. "model.multi_modal_projector.linear_2.bias": "mlp1.3.bias",
  3230. "model.multi_modal_projector.linear_2.weight": "mlp1.3.weight",
  3231. }
  3232. if name in names_map:
  3233. name = names_map[name]
  3234. return name
  3235. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3236. del bid # unused
  3237. vision_prefix = ['vision_model', 'mlp', 'model.vision_tower', 'model.multi_modal_projector']
  3238. # deal with intern-s1 special case
  3239. name = self._mapping_interns1_name(name)
  3240. if any([name.startswith(prefix) for prefix in vision_prefix]):
  3241. # process visual tensors
  3242. # correct name
  3243. if name.startswith("vision_model"):
  3244. name = "vision_tower." + name
  3245. if (".ls" in name or ".lambda_" in name or "position_embedding" in name) and not name.endswith(".weight"):
  3246. name += ".weight"
  3247. # split QKV tensors if needed
  3248. if ".qkv." in name:
  3249. if data_torch.ndim == 2: # weight
  3250. c3, _ = data_torch.shape
  3251. else: # bias
  3252. c3 = data_torch.shape[0]
  3253. assert c3 % 3 == 0
  3254. c = c3 // 3
  3255. wq = data_torch[:c]
  3256. wk = data_torch[c: c * 2]
  3257. wv = data_torch[c * 2:]
  3258. return [
  3259. (self.map_tensor_name(name.replace("attn.qkv", "self_attn.q_proj")), wq),
  3260. (self.map_tensor_name(name.replace("attn.qkv", "self_attn.k_proj")), wk),
  3261. (self.map_tensor_name(name.replace("attn.qkv", "self_attn.v_proj")), wv),
  3262. ]
  3263. return [(self.map_tensor_name(name), data_torch)]
  3264. return [] # skip other tensors
  3265. @ModelBase.register("WavTokenizerDec")
  3266. class WavTokenizerDecModel(TextModel):
  3267. model_arch = gguf.MODEL_ARCH.WAVTOKENIZER_DEC
  3268. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3269. del bid # unused
  3270. if \
  3271. name.endswith("codebook.cluster_size") or \
  3272. name.endswith("codebook.embed_avg") or \
  3273. name.endswith("codebook.inited"):
  3274. logger.debug(f"Skipping {name!r}")
  3275. return []
  3276. logger.info(f"{self.map_tensor_name(name)} -> {data_torch.shape}")
  3277. return [(self.map_tensor_name(name), data_torch)]
  3278. def set_vocab(self):
  3279. self._set_vocab_none()
  3280. def set_gguf_parameters(self):
  3281. super().set_gguf_parameters()
  3282. self.gguf_writer.add_vocab_size (self.hparams["vocab_size"])
  3283. self.gguf_writer.add_features_length (self.hparams["n_embd_features"])
  3284. self.gguf_writer.add_feed_forward_length(self.hparams["n_ff"])
  3285. self.gguf_writer.add_group_norm_eps (self.hparams["group_norm_epsilon"])
  3286. self.gguf_writer.add_group_norm_groups (self.hparams["group_norm_groups"])
  3287. self.gguf_writer.add_posnet_embedding_length(self.hparams["posnet"]["n_embd"])
  3288. self.gguf_writer.add_posnet_block_count (self.hparams["posnet"]["n_layer"])
  3289. self.gguf_writer.add_convnext_embedding_length(self.hparams["convnext"]["n_embd"])
  3290. self.gguf_writer.add_convnext_block_count (self.hparams["convnext"]["n_layer"])
  3291. self.gguf_writer.add_causal_attention(False)
  3292. @ModelBase.register("Qwen2MoeForCausalLM")
  3293. class Qwen2MoeModel(TextModel):
  3294. model_arch = gguf.MODEL_ARCH.QWEN2MOE
  3295. def set_gguf_parameters(self):
  3296. super().set_gguf_parameters()
  3297. if (n_experts := self.hparams.get("num_experts")) is not None:
  3298. self.gguf_writer.add_expert_count(n_experts)
  3299. if (moe_intermediate_size := self.hparams.get("moe_intermediate_size")) is not None:
  3300. self.gguf_writer.add_expert_feed_forward_length(moe_intermediate_size)
  3301. logger.info(f"gguf: expert feed forward length = {moe_intermediate_size}")
  3302. if (shared_expert_intermediate_size := self.hparams.get('shared_expert_intermediate_size')) is not None:
  3303. self.gguf_writer.add_expert_shared_feed_forward_length(shared_expert_intermediate_size)
  3304. logger.info(f"gguf: expert shared feed forward length = {shared_expert_intermediate_size}")
  3305. _experts: list[dict[str, Tensor]] | None = None
  3306. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3307. # process the experts separately
  3308. name = name.replace("language_model.", "") # InternVL
  3309. # handle aggregated expert tensors
  3310. # GGUF stores dimensions reversed from PyTorch, so:
  3311. # PyTorch (A,B,C) -> GGUF writes [C,B,A] -> GGML reads ne={C,B,A}
  3312. # Input shapes from HF: (n_expert, n_ff_exp, n_embd) or (n_expert, n_embd, n_ff_exp)
  3313. # Expected GGML ne: {n_embd, n_ff_exp, n_expert} for gate/up, {n_ff_exp, n_embd, n_expert} for down
  3314. if name.endswith("mlp.experts.down_proj") or name.endswith("mlp.experts.down_proj.weight"):
  3315. mapped = f"{name}.weight" if not name.endswith(".weight") else name
  3316. # Input: (n_expert=128, n_ff_exp=768, n_embd=2048)
  3317. # Want GGML ne: {n_ff_exp, n_embd, n_expert} = {768, 2048, 128}
  3318. # Need PyTorch: (128, 2048, 768) [reversed of GGML]
  3319. # So: permute(0, 2, 1): (128, 768, 2048) -> (128, 2048, 768)
  3320. permuted = data_torch.permute(0, 2, 1).contiguous()
  3321. return [(self.map_tensor_name(mapped), permuted)]
  3322. if name.endswith("mlp.experts.gate_up_proj") or name.endswith("mlp.experts.gate_up_proj.weight"):
  3323. if data_torch.ndim < 3 or data_torch.shape[-1] % 2 != 0:
  3324. raise ValueError(f"Unexpected gate_up_proj shape for {name}: {tuple(data_torch.shape)}")
  3325. split_dim = data_torch.shape[-1] // 2
  3326. gate = data_torch[..., :split_dim].contiguous()
  3327. up = data_torch[..., split_dim:].contiguous()
  3328. # Input gate/up: (n_expert=128, n_embd=2048, n_ff_exp=768)
  3329. # Want GGML ne: {n_embd, n_ff_exp, n_expert} = {2048, 768, 128}
  3330. # Need PyTorch: (128, 768, 2048) [reversed of GGML]
  3331. # So: permute(0, 2, 1): (128, 2048, 768) -> (128, 768, 2048)
  3332. base_name = name.removesuffix(".weight")
  3333. base = base_name.rsplit('.', 1)[0]
  3334. mapped_gate = f"{base}.gate_proj.weight"
  3335. mapped_up = f"{base}.up_proj.weight"
  3336. perm_gate = gate.permute(0, 2, 1).contiguous()
  3337. perm_up = up.permute(0, 2, 1).contiguous()
  3338. return [
  3339. (self.map_tensor_name(mapped_gate), perm_gate),
  3340. (self.map_tensor_name(mapped_up), perm_up),
  3341. ]
  3342. if name.startswith("mlp") or name.startswith("vision_model") or name.startswith("model.vision_tower") or name.startswith("model.multi_modal_projector") or name.startswith("model.visual"):
  3343. # skip visual tensors
  3344. return []
  3345. if name.find("experts") != -1:
  3346. n_experts = self.hparams["num_experts"]
  3347. assert bid is not None
  3348. if self._experts is None:
  3349. self._experts = [{} for _ in range(self.block_count)]
  3350. self._experts[bid][name] = data_torch
  3351. if len(self._experts[bid]) >= n_experts * 3:
  3352. tensors: list[tuple[str, Tensor]] = []
  3353. # merge the experts into a single 3d tensor
  3354. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  3355. datas: list[Tensor] = []
  3356. for xid in range(n_experts):
  3357. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  3358. datas.append(self._experts[bid][ename])
  3359. del self._experts[bid][ename]
  3360. data_torch = torch.stack(datas, dim=0)
  3361. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  3362. new_name = self.map_tensor_name(merged_name)
  3363. tensors.append((new_name, data_torch))
  3364. return tensors
  3365. else:
  3366. return []
  3367. return [(self.map_tensor_name(name), data_torch)]
  3368. def prepare_tensors(self):
  3369. super().prepare_tensors()
  3370. if self._experts is not None:
  3371. # flatten `list[dict[str, Tensor]]` into `list[str]`
  3372. experts = [k for d in self._experts for k in d.keys()]
  3373. if len(experts) > 0:
  3374. raise ValueError(f"Unprocessed experts: {experts}")
  3375. @ModelBase.register("Qwen3ForCausalLM")
  3376. class Qwen3Model(Qwen2Model):
  3377. model_arch = gguf.MODEL_ARCH.QWEN3
  3378. # extra logic for rerank models
  3379. is_rerank: bool = False
  3380. is_tied_embeddings: bool = False
  3381. token_false_id: int | None = None
  3382. token_true_id: int | None = None
  3383. def __init__(self, *args, **kwargs):
  3384. super().__init__(*args, **kwargs)
  3385. # track for intern-s1-mini
  3386. hparams = ModelBase.load_hparams(self.dir_model, is_mistral_format=False)
  3387. self.origin_hf_arch = hparams.get('architectures', [None])[0]
  3388. # a bit hacky, but currently the only way to detect if this is a rerank model
  3389. # ref: https://huggingface.co/Qwen/Qwen3-Reranker-0.6B
  3390. readme_path = self.dir_model / "README.md"
  3391. readme_text = ""
  3392. if readme_path.exists():
  3393. with readme_path.open("r", encoding="utf-8") as f:
  3394. readme_text = f.read()
  3395. if "# Qwen3-Reranker" in readme_text:
  3396. self._find_rerank_config()
  3397. def set_vocab(self):
  3398. # deal with intern-s1-mini
  3399. if self.origin_hf_arch == 'InternS1ForConditionalGeneration':
  3400. self._set_vocab_interns1()
  3401. return
  3402. super().set_vocab()
  3403. def _find_rerank_config(self):
  3404. from transformers import AutoTokenizer
  3405. tokenizer = AutoTokenizer.from_pretrained(self.dir_model)
  3406. self.is_rerank = True
  3407. self.is_tied_embeddings = self.hparams.get("tie_word_embeddings", False)
  3408. self.token_false_id = tokenizer.convert_tokens_to_ids("no")
  3409. self.token_true_id = tokenizer.convert_tokens_to_ids("yes")
  3410. self.sep_token_id = tokenizer.convert_tokens_to_ids("|")
  3411. assert self.token_false_id is not None and self.token_true_id is not None
  3412. def set_gguf_parameters(self):
  3413. super().set_gguf_parameters()
  3414. if self.is_rerank:
  3415. self.gguf_writer.add_pooling_type(gguf.PoolingType.RANK)
  3416. self.gguf_writer.add_classifier_output_labels(["yes", "no"])
  3417. self.gguf_writer.add_chat_template([{
  3418. "name": "rerank",
  3419. "template": "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n"
  3420. "<|im_start|>user\n<Instruct>: Given a web search query, retrieve relevant passages that answer the query\n<Query>: {query}\n<Document>: {document}<|im_end|>\n"
  3421. "<|im_start|>assistant\n<think>\n\n</think>\n\n"
  3422. }])
  3423. def _get_cls_out_tensor(self, data_torch: Tensor) -> Tensor:
  3424. # extract "yes" and "no" tokens from the output lm_head tensor
  3425. false_row = data_torch[self.token_false_id]
  3426. true_row = data_torch[self.token_true_id]
  3427. return torch.stack([true_row, false_row], dim=0)
  3428. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3429. if "model.vision_" in name:
  3430. # skip multimodal tensors
  3431. return []
  3432. if self.is_rerank:
  3433. is_tied_head = self.is_tied_embeddings and "embed_tokens" in name
  3434. is_real_head = not self.is_tied_embeddings and "lm_head" in name
  3435. if is_tied_head or is_real_head:
  3436. cls_out_head = (
  3437. gguf.TENSOR_NAMES[gguf.MODEL_TENSOR.CLS_OUT] + ".weight",
  3438. self._get_cls_out_tensor(data_torch),
  3439. )
  3440. if is_tied_head:
  3441. embed = (self.map_tensor_name(name), data_torch)
  3442. return [cls_out_head, embed]
  3443. if is_real_head:
  3444. return [cls_out_head]
  3445. return super().modify_tensors(data_torch, name, bid)
  3446. @ModelBase.register("Qwen3MoeForCausalLM")
  3447. class Qwen3MoeModel(Qwen2MoeModel):
  3448. model_arch = gguf.MODEL_ARCH.QWEN3MOE
  3449. def __init__(self, *args, **kwargs):
  3450. super().__init__(*args, **kwargs)
  3451. hparams = ModelBase.load_hparams(self.dir_model, False)
  3452. self.origin_hf_arch = hparams.get('architectures', [None])[0]
  3453. def set_vocab(self):
  3454. # deal with intern-s1
  3455. if self.origin_hf_arch == 'InternS1ForConditionalGeneration':
  3456. self._set_vocab_interns1()
  3457. return
  3458. super().set_vocab()
  3459. @ModelBase.register("Qwen3NextForCausalLM")
  3460. class Qwen3NextModel(Qwen2MoeModel):
  3461. model_arch = gguf.MODEL_ARCH.QWEN3NEXT
  3462. def set_gguf_parameters(self):
  3463. super().set_gguf_parameters()
  3464. self.gguf_writer.add_ssm_conv_kernel(self.hparams["linear_conv_kernel_dim"])
  3465. self.gguf_writer.add_ssm_state_size(self.hparams["linear_key_head_dim"])
  3466. self.gguf_writer.add_ssm_group_count(self.hparams["linear_num_key_heads"])
  3467. self.gguf_writer.add_ssm_time_step_rank(self.hparams["linear_num_value_heads"])
  3468. self.gguf_writer.add_ssm_inner_size(self.hparams["linear_value_head_dim"] * self.hparams["linear_num_value_heads"])
  3469. if (rope_dim := self.hparams.get("head_dim")) is None:
  3470. rope_dim = self.hparams["hidden_size"] // self.hparams["num_attention_heads"]
  3471. self.gguf_writer.add_rope_dimension_count(int(rope_dim * self.hparams.get("partial_rotary_factor", 0.25)))
  3472. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3473. if name.startswith("mtp"):
  3474. return [] # ignore MTP layers for now
  3475. if name.endswith(".A_log"):
  3476. data_torch = -torch.exp(data_torch)
  3477. elif name.endswith(".dt_bias"):
  3478. name = name.rpartition(".dt_bias")[0] + ".dt_proj.bias"
  3479. elif "conv1d" in name:
  3480. data_torch = data_torch.squeeze()
  3481. elif name.endswith("norm.weight") and not name.endswith("linear_attn.norm.weight"):
  3482. data_torch = data_torch + 1
  3483. yield from super().modify_tensors(data_torch, name, bid)
  3484. @ModelBase.register("RND1")
  3485. class RND1Model(Qwen2MoeModel):
  3486. model_arch = gguf.MODEL_ARCH.RND1
  3487. def set_gguf_parameters(self):
  3488. super().set_gguf_parameters()
  3489. # RND1 specific parameters
  3490. # RND1 uses bidirectional attention
  3491. self.gguf_writer.add_causal_attention(False)
  3492. if (mask_token_id := self.hparams.get("mask_token_id")) is not None:
  3493. self.gguf_writer.add_mask_token_id(mask_token_id)
  3494. @ModelBase.register("Qwen3VLForConditionalGeneration", "Qwen3VLMoeForConditionalGeneration")
  3495. class Qwen3VLVisionModel(MmprojModel):
  3496. def __init__(self, *args, **kwargs):
  3497. super().__init__(*args, **kwargs)
  3498. assert self.hparams_vision is not None
  3499. # Compute image_size if not present
  3500. if "image_size" not in self.hparams_vision:
  3501. # For Qwen3VL/Qwen3VLMoe, compute from num_position_embeddings
  3502. num_pos = self.hparams_vision.get("num_position_embeddings", 2304)
  3503. patch_size = self.hparams_vision.get("patch_size", 16)
  3504. # num_position_embeddings = (image_size / patch_size) ** 2
  3505. # So image_size = sqrt(num_position_embeddings) * patch_size
  3506. image_size = int(num_pos**0.5 * patch_size)
  3507. self.hparams_vision["image_size"] = image_size
  3508. # Rename config values for compatibility
  3509. self.hparams_vision["num_attention_heads"] = self.hparams_vision.get("num_heads")
  3510. self.hparams_vision["num_hidden_layers"] = self.hparams_vision.get("depth")
  3511. self.is_deepstack_layers = [False] * int(self.hparams_vision["num_hidden_layers"] or 0)
  3512. for idx in self.hparams_vision.get("deepstack_visual_indexes", []):
  3513. self.is_deepstack_layers[idx] = True
  3514. def set_gguf_parameters(self):
  3515. super().set_gguf_parameters()
  3516. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.QWEN3VL)
  3517. self.gguf_writer.add_vision_use_gelu(True)
  3518. if self.hparams_vision is not None:
  3519. merge_size = self.hparams_vision.get("spatial_merge_size")
  3520. if merge_size is not None:
  3521. self.gguf_writer.add_vision_spatial_merge_size(int(merge_size))
  3522. # Use text config's rms_norm_eps for vision attention layernorm eps
  3523. rms_norm_eps = self.global_config.get("text_config", {}).get("rms_norm_eps", 1e-6)
  3524. self.gguf_writer.add_vision_attention_layernorm_eps(rms_norm_eps)
  3525. if self.is_deepstack_layers:
  3526. self.gguf_writer.add_vision_is_deepstack_layers(self.is_deepstack_layers)
  3527. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3528. assert self.hparams_vision is not None
  3529. # Skip text model tensors - they go in the text model file
  3530. if name.startswith("model.language_model.") or name.startswith("lm_head."):
  3531. return []
  3532. if name.startswith("model.visual."):
  3533. name = name.replace("model.visual.", "visual.", 1)
  3534. if name.startswith("visual.deepstack_merger_list."):
  3535. prefix, rest = name.split(".", maxsplit=3)[2:]
  3536. # prefix is the layer index, convert to absolute clip layer index!
  3537. idx = self.hparams_vision.get("deepstack_visual_indexes", [])[int(prefix)]
  3538. target = rest
  3539. tensor_type: gguf.MODEL_TENSOR
  3540. if target.startswith("norm."):
  3541. tensor_type = gguf.MODEL_TENSOR.V_DS_NORM
  3542. suffix = target.split(".", 1)[1]
  3543. elif target.startswith("linear_fc1."):
  3544. tensor_type = gguf.MODEL_TENSOR.V_DS_FC1
  3545. suffix = target.split(".", 1)[1]
  3546. elif target.startswith("linear_fc2."):
  3547. tensor_type = gguf.MODEL_TENSOR.V_DS_FC2
  3548. suffix = target.split(".", 1)[1]
  3549. else:
  3550. raise ValueError(f"Unexpected deepstack tensor: {name}")
  3551. new_name = self.format_tensor_name(tensor_type, idx, suffix=f".{suffix}")
  3552. return [(new_name, data_torch)]
  3553. if name.startswith("visual.merger."):
  3554. suffix = name.split(".", 2)[2]
  3555. if suffix.startswith("linear_fc"):
  3556. fc_idx_str, tail = suffix.split(".", 1)
  3557. fc_num = int(fc_idx_str.replace("linear_fc", ""))
  3558. # Qwen3VL has linear_fc1 and linear_fc2
  3559. # Map to indices 0 and 2 (matching Qwen2VL which uses indices 0 and 2)
  3560. if fc_num == 1:
  3561. fc_idx = 0
  3562. elif fc_num == 2:
  3563. fc_idx = 2
  3564. else:
  3565. raise ValueError(f"unexpected fc index {fc_num} in {name}")
  3566. new_name = self.format_tensor_name(gguf.MODEL_TENSOR.V_MMPROJ, fc_idx, suffix=f".{tail}")
  3567. elif suffix.startswith("norm."):
  3568. new_name = self.format_tensor_name(gguf.MODEL_TENSOR.V_POST_NORM, suffix=f".{suffix.split('.', 1)[1]}")
  3569. else:
  3570. raise ValueError(f"Unexpected merger tensor: {name}")
  3571. return [(new_name, data_torch)]
  3572. if name == "visual.patch_embed.proj.weight":
  3573. # split Conv3D into Conv2Ds along temporal dimension
  3574. c1, c2, kt, _, _ = data_torch.shape
  3575. del c1, c2
  3576. if kt != 2:
  3577. raise ValueError("Current implementation only supports temporal_patch_size of 2")
  3578. return [
  3579. (gguf.TENSOR_NAMES[gguf.MODEL_TENSOR.V_ENC_EMBD_PATCH] + ".weight", data_torch[:, :, 0, ...]),
  3580. (gguf.TENSOR_NAMES[gguf.MODEL_TENSOR.V_ENC_EMBD_PATCH] + ".weight.1", data_torch[:, :, 1, ...]),
  3581. ]
  3582. if name == "visual.patch_embed.proj.bias":
  3583. # Include the bias - it's used by the C++ code
  3584. return [(gguf.TENSOR_NAMES[gguf.MODEL_TENSOR.V_ENC_EMBD_PATCH] + ".bias", data_torch)]
  3585. if name.startswith("visual."):
  3586. return [(self.map_tensor_name(name), data_torch)]
  3587. # Fall back to parent class for other tensors
  3588. return super().modify_tensors(data_torch, name, bid)
  3589. @ModelBase.register("Qwen3VLForConditionalGeneration")
  3590. class Qwen3VLTextModel(Qwen3Model):
  3591. model_arch = gguf.MODEL_ARCH.QWEN3VL
  3592. def set_gguf_parameters(self):
  3593. super().set_gguf_parameters()
  3594. # Handle MRoPE (Multi-axis Rotary Position Embedding) for Qwen3-VL
  3595. text_config = self.hparams.get("text_config", {})
  3596. # rope_scaling is deprecated in V5, use rope_parameters instead
  3597. rope_scaling = text_config.get("rope_scaling") or text_config.get("rope_parameters") or {}
  3598. if rope_scaling.get("mrope_section"):
  3599. # mrope_section contains [time, height, width] dimensions
  3600. mrope_section = rope_scaling["mrope_section"]
  3601. # Pad to 4 dimensions [time, height, width, extra]
  3602. while len(mrope_section) < 4:
  3603. mrope_section.append(0)
  3604. self.gguf_writer.add_rope_dimension_sections(mrope_section[:4])
  3605. logger.info(f"MRoPE sections: {mrope_section[:4]}")
  3606. vision_config = self.hparams.get("vision_config", {})
  3607. deepstack_layer_num = len(vision_config.get("deepstack_visual_indexes", []))
  3608. self.gguf_writer.add_num_deepstack_layers(deepstack_layer_num)
  3609. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3610. # Skip vision tensors - they go in the mmproj file
  3611. if name.startswith("model.visual."):
  3612. return []
  3613. return super().modify_tensors(data_torch, name, bid)
  3614. @ModelBase.register("Qwen3VLMoeForConditionalGeneration")
  3615. class Qwen3VLMoeTextModel(Qwen3MoeModel):
  3616. model_arch = gguf.MODEL_ARCH.QWEN3VLMOE
  3617. def set_gguf_parameters(self):
  3618. super().set_gguf_parameters()
  3619. # Handle MRoPE (Multi-axis Rotary Position Embedding) for Qwen3-VL
  3620. text_config = self.hparams.get("text_config", {})
  3621. # rope_scaling is deprecated in V5, use rope_parameters instead
  3622. rope_scaling = text_config.get("rope_scaling") or text_config.get("rope_parameters") or {}
  3623. if rope_scaling.get("mrope_section"):
  3624. # mrope_section contains [time, height, width] dimensions
  3625. mrope_section = rope_scaling["mrope_section"]
  3626. # Pad to 4 dimensions [time, height, width, extra]
  3627. while len(mrope_section) < 4:
  3628. mrope_section.append(0)
  3629. self.gguf_writer.add_rope_dimension_sections(mrope_section[:4])
  3630. logger.info(f"MRoPE sections: {mrope_section[:4]}")
  3631. vision_config = self.hparams.get("vision_config", {})
  3632. deepstack_layer_num = len(vision_config.get("deepstack_visual_indexes", []))
  3633. self.gguf_writer.add_num_deepstack_layers(deepstack_layer_num)
  3634. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3635. # Skip vision tensors - they go in the mmproj file
  3636. if name.startswith("model.visual."):
  3637. return []
  3638. return super().modify_tensors(data_torch, name, bid)
  3639. @ModelBase.register("GPT2LMHeadModel")
  3640. class GPT2Model(TextModel):
  3641. model_arch = gguf.MODEL_ARCH.GPT2
  3642. def set_gguf_parameters(self):
  3643. self.gguf_writer.add_block_count(self.block_count)
  3644. self.gguf_writer.add_context_length(self.hparams["n_ctx"])
  3645. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  3646. self.gguf_writer.add_feed_forward_length(4 * self.hparams["n_embd"])
  3647. self.gguf_writer.add_head_count(self.hparams["n_head"])
  3648. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  3649. self.gguf_writer.add_file_type(self.ftype)
  3650. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3651. del bid # unused
  3652. tensors: list[tuple[str, Tensor]] = []
  3653. # we don't need these
  3654. if name.endswith((".attn.bias", ".attn.masked_bias")):
  3655. return tensors
  3656. if name.endswith((".c_attn.weight", ".c_proj.weight", ".c_fc.weight", ".c_proj.weight")):
  3657. data_torch = data_torch.transpose(1, 0)
  3658. new_name = self.map_tensor_name(name)
  3659. tensors.append((new_name, data_torch))
  3660. return tensors
  3661. @ModelBase.register("PhiForCausalLM")
  3662. class Phi2Model(TextModel):
  3663. model_arch = gguf.MODEL_ARCH.PHI2
  3664. def set_gguf_parameters(self):
  3665. rot_pct = self.find_hparam(["partial_rotary_factor"])
  3666. n_embd = self.find_hparam(["hidden_size", "n_embd"])
  3667. n_head = self.find_hparam(["num_attention_heads", "n_head"])
  3668. self.gguf_writer.add_context_length(self.find_hparam(["n_positions", "max_position_embeddings"]))
  3669. self.gguf_writer.add_embedding_length(n_embd)
  3670. self.gguf_writer.add_feed_forward_length(4 * n_embd)
  3671. self.gguf_writer.add_block_count(self.block_count)
  3672. self.gguf_writer.add_head_count(n_head)
  3673. self.gguf_writer.add_head_count_kv(n_head)
  3674. self.gguf_writer.add_layer_norm_eps(self.find_hparam(["layer_norm_epsilon", "layer_norm_eps"]))
  3675. self.gguf_writer.add_rope_dimension_count(int(rot_pct * n_embd) // n_head)
  3676. self.gguf_writer.add_file_type(self.ftype)
  3677. self.gguf_writer.add_add_bos_token(False)
  3678. @ModelBase.register("Phi3ForCausalLM")
  3679. class Phi3MiniModel(TextModel):
  3680. model_arch = gguf.MODEL_ARCH.PHI3
  3681. def set_vocab(self):
  3682. # Phi-4 model uses GPT2Tokenizer
  3683. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  3684. if tokenizer_config_file.is_file():
  3685. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  3686. tokenizer_config_json = json.load(f)
  3687. tokenizer_class = tokenizer_config_json['tokenizer_class']
  3688. if tokenizer_class == 'GPT2Tokenizer':
  3689. return self._set_vocab_gpt2()
  3690. from sentencepiece import SentencePieceProcessor
  3691. tokenizer_path = self.dir_model / 'tokenizer.model'
  3692. if not tokenizer_path.is_file():
  3693. raise ValueError(f'Error: Missing {tokenizer_path}')
  3694. tokenizer = SentencePieceProcessor()
  3695. tokenizer.LoadFromFile(str(tokenizer_path))
  3696. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  3697. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  3698. scores: list[float] = [-10000.0] * vocab_size
  3699. toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
  3700. for token_id in range(tokenizer.vocab_size()):
  3701. piece = tokenizer.IdToPiece(token_id)
  3702. text = piece.encode("utf-8")
  3703. score = tokenizer.GetScore(token_id)
  3704. toktype = SentencePieceTokenTypes.NORMAL
  3705. if tokenizer.IsUnknown(token_id):
  3706. toktype = SentencePieceTokenTypes.UNKNOWN
  3707. elif tokenizer.IsControl(token_id):
  3708. toktype = SentencePieceTokenTypes.CONTROL
  3709. elif tokenizer.IsUnused(token_id):
  3710. toktype = SentencePieceTokenTypes.UNUSED
  3711. elif tokenizer.IsByte(token_id):
  3712. toktype = SentencePieceTokenTypes.BYTE
  3713. tokens[token_id] = text
  3714. scores[token_id] = score
  3715. toktypes[token_id] = toktype
  3716. added_tokens_file = self.dir_model / 'added_tokens.json'
  3717. if added_tokens_file.is_file():
  3718. with open(added_tokens_file, "r", encoding="utf-8") as f:
  3719. added_tokens_json = json.load(f)
  3720. for key in added_tokens_json:
  3721. token_id = added_tokens_json[key]
  3722. if token_id >= vocab_size:
  3723. logger.debug(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
  3724. continue
  3725. tokens[token_id] = key.encode("utf-8")
  3726. scores[token_id] = -1000.0
  3727. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  3728. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  3729. if tokenizer_config_file.is_file():
  3730. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  3731. tokenizer_config_json = json.load(f)
  3732. added_tokens_decoder = tokenizer_config_json.get("added_tokens_decoder", {})
  3733. for token_id, foken_data in added_tokens_decoder.items():
  3734. token_id = int(token_id)
  3735. token = foken_data["content"].encode("utf-8")
  3736. if toktypes[token_id] != SentencePieceTokenTypes.UNUSED:
  3737. if tokens[token_id] != token:
  3738. logger.warning(f'replacing token {token_id}: {tokens[token_id].decode("utf-8")!r} -> {token.decode("utf-8")!r}')
  3739. tokens[token_id] = token
  3740. scores[token_id] = -1000.0
  3741. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  3742. if foken_data.get("special"):
  3743. toktypes[token_id] = SentencePieceTokenTypes.CONTROL
  3744. tokenizer_file = self.dir_model / 'tokenizer.json'
  3745. if tokenizer_file.is_file():
  3746. with open(tokenizer_file, "r", encoding="utf-8") as f:
  3747. tokenizer_json = json.load(f)
  3748. added_tokens = tokenizer_json.get("added_tokens", [])
  3749. for foken_data in added_tokens:
  3750. token_id = int(foken_data["id"])
  3751. token = foken_data["content"].encode("utf-8")
  3752. if toktypes[token_id] != SentencePieceTokenTypes.UNUSED:
  3753. if tokens[token_id] != token:
  3754. logger.warning(f'replacing token {token_id}: {tokens[token_id].decode("utf-8")!r} -> {token.decode("utf-8")!r}')
  3755. tokens[token_id] = token
  3756. scores[token_id] = -1000.0
  3757. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  3758. if foken_data.get("special"):
  3759. toktypes[token_id] = SentencePieceTokenTypes.CONTROL
  3760. self.gguf_writer.add_tokenizer_model("llama")
  3761. self.gguf_writer.add_tokenizer_pre("default")
  3762. self.gguf_writer.add_token_list(tokens)
  3763. self.gguf_writer.add_token_scores(scores)
  3764. self.gguf_writer.add_token_types(toktypes)
  3765. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  3766. special_vocab.add_to_gguf(self.gguf_writer)
  3767. def set_gguf_parameters(self):
  3768. n_embd = self.find_hparam(["hidden_size", "n_embd"])
  3769. n_head = self.find_hparam(["num_attention_heads", "n_head"])
  3770. n_head_kv = self.find_hparam(["num_key_value_heads", "n_head_kv"])
  3771. rms_eps = self.find_hparam(["rms_norm_eps"])
  3772. max_pos_embds = self.find_hparam(["n_positions", "max_position_embeddings"])
  3773. orig_max_pos_embds = self.find_hparam(["original_max_position_embeddings"])
  3774. rot_pct = self.hparams.get("partial_rotary_factor", 1.0)
  3775. rope_dims = int(rot_pct * n_embd) // n_head
  3776. self.gguf_writer.add_context_length(max_pos_embds)
  3777. self.gguf_writer.add_rope_scaling_orig_ctx_len(orig_max_pos_embds)
  3778. self.gguf_writer.add_embedding_length(n_embd)
  3779. self.gguf_writer.add_feed_forward_length(self.find_hparam(["intermediate_size"]))
  3780. self.gguf_writer.add_block_count(self.block_count)
  3781. self.gguf_writer.add_head_count(n_head)
  3782. self.gguf_writer.add_head_count_kv(n_head_kv)
  3783. self.gguf_writer.add_layer_norm_rms_eps(rms_eps)
  3784. self.gguf_writer.add_rope_dimension_count(rope_dims)
  3785. self.gguf_writer.add_rope_freq_base(self.rope_parameters.get("full_attention", self.rope_parameters)["rope_theta"])
  3786. self.gguf_writer.add_file_type(self.ftype)
  3787. sliding_window = self.hparams.get("sliding_window")
  3788. # use zero value of sliding_window to distinguish Phi-4 from other PHI3 models
  3789. if sliding_window is None:
  3790. sliding_window = 0
  3791. self.gguf_writer.add_sliding_window(sliding_window)
  3792. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  3793. n_embd = self.find_hparam(["hidden_size", "n_embd"])
  3794. n_head = self.find_hparam(["num_attention_heads", "n_head"])
  3795. max_pos_embds = self.find_hparam(["n_positions", "max_position_embeddings"])
  3796. orig_max_pos_embds = self.find_hparam(["original_max_position_embeddings"])
  3797. rot_pct = self.hparams.get("partial_rotary_factor", 1.0)
  3798. rope_dims = int(rot_pct * n_embd) // n_head
  3799. # write rope scaling for long context (128k) model
  3800. rope_scaling = self.find_hparam(['rope_scaling'], True)
  3801. if rope_scaling is None:
  3802. return
  3803. scale = max_pos_embds / orig_max_pos_embds
  3804. rope_scaling_type = rope_scaling.get('rope_type', rope_scaling.get('type', '')).lower()
  3805. if len(rope_scaling_type) == 0:
  3806. raise KeyError('Missing the required key rope_scaling.type')
  3807. if rope_scaling_type == 'su' or rope_scaling_type == 'longrope':
  3808. attn_factor = math.sqrt(1 + math.log(scale) / math.log(orig_max_pos_embds)) if scale > 1.0 else 1.0
  3809. elif rope_scaling_type == 'yarn':
  3810. attn_factor = 0.1 * math.log(scale) + 1.0 if scale > 1.0 else 1.0
  3811. else:
  3812. raise NotImplementedError(f'The rope scaling type {rope_scaling_type} is not supported yet')
  3813. self.gguf_writer.add_rope_scaling_attn_factors(attn_factor)
  3814. long_factors = rope_scaling.get('long_factor', None)
  3815. short_factors = rope_scaling.get('short_factor', None)
  3816. if long_factors is None or short_factors is None:
  3817. raise KeyError('Missing the required key rope_scaling.long_factor or rope_scaling_short_factor')
  3818. if len(long_factors) != len(short_factors) or len(long_factors) != rope_dims / 2:
  3819. raise ValueError(f'The length of rope long and short factors must be {rope_dims / 2}. long_factors = {len(long_factors)}, short_factors = {len(short_factors)}.')
  3820. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FACTORS_LONG), torch.tensor(long_factors, dtype=torch.float32))
  3821. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FACTORS_SHORT), torch.tensor(short_factors, dtype=torch.float32))
  3822. @ModelBase.register("PhiMoEForCausalLM")
  3823. class PhiMoeModel(Phi3MiniModel):
  3824. model_arch = gguf.MODEL_ARCH.PHIMOE
  3825. _experts: list[dict[str, Tensor]] | None = None
  3826. def set_gguf_parameters(self):
  3827. super().set_gguf_parameters()
  3828. self.gguf_writer.add_expert_used_count(self.hparams["num_experts_per_tok"])
  3829. self.gguf_writer.add_expert_count(self.hparams["num_local_experts"])
  3830. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3831. # process the experts separately
  3832. if name.find("block_sparse_moe.experts") != -1:
  3833. n_experts = self.hparams["num_local_experts"]
  3834. assert bid is not None
  3835. if self._experts is None:
  3836. self._experts = [{} for _ in range(self.block_count)]
  3837. self._experts[bid][name] = data_torch
  3838. if len(self._experts[bid]) >= n_experts * 3:
  3839. tensors: list[tuple[str, Tensor]] = []
  3840. # merge the experts into a single 3d tensor
  3841. for w_name in ["w1", "w2", "w3"]:
  3842. datas: list[Tensor] = []
  3843. for xid in range(n_experts):
  3844. ename = f"model.layers.{bid}.block_sparse_moe.experts.{xid}.{w_name}.weight"
  3845. datas.append(self._experts[bid][ename])
  3846. del self._experts[bid][ename]
  3847. data_torch = torch.stack(datas, dim=0)
  3848. merged_name = f"model.layers.{bid}.block_sparse_moe.experts.{w_name}.weight"
  3849. new_name = self.map_tensor_name(merged_name)
  3850. tensors.append((new_name, data_torch))
  3851. return tensors
  3852. else:
  3853. return []
  3854. return [(self.map_tensor_name(name), data_torch)]
  3855. def prepare_tensors(self):
  3856. super().prepare_tensors()
  3857. if self._experts is not None:
  3858. # flatten `list[dict[str, Tensor]]` into `list[str]`
  3859. experts = [k for d in self._experts for k in d.keys()]
  3860. if len(experts) > 0:
  3861. raise ValueError(f"Unprocessed experts: {experts}")
  3862. @ModelBase.register("PlamoForCausalLM")
  3863. class PlamoModel(TextModel):
  3864. model_arch = gguf.MODEL_ARCH.PLAMO
  3865. def set_vocab(self):
  3866. self._set_vocab_sentencepiece()
  3867. def set_gguf_parameters(self):
  3868. hparams = self.hparams
  3869. self.gguf_writer.add_context_length(4096) # not in config.json
  3870. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  3871. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  3872. self.gguf_writer.add_block_count(self.block_count)
  3873. self.gguf_writer.add_head_count(hparams["num_attention_heads"])
  3874. self.gguf_writer.add_head_count_kv(5) # hparams["num_key_value_heads"]) is wrong
  3875. self.gguf_writer.add_layer_norm_rms_eps(hparams["rms_norm_eps"])
  3876. self.gguf_writer.add_file_type(self.ftype)
  3877. def shuffle_attn_q_weight(self, data_torch):
  3878. assert data_torch.size() == (5120, 5120)
  3879. data_torch = data_torch.reshape(8, 5, 128, 5120)
  3880. data_torch = torch.permute(data_torch, (1, 0, 2, 3))
  3881. data_torch = torch.reshape(data_torch, (5120, 5120))
  3882. return data_torch
  3883. def shuffle_attn_output_weight(self, data_torch):
  3884. assert data_torch.size() == (5120, 5120)
  3885. data_torch = data_torch.reshape(5120, 8, 5, 128)
  3886. data_torch = torch.permute(data_torch, (0, 2, 1, 3))
  3887. data_torch = torch.reshape(data_torch, (5120, 5120))
  3888. return data_torch
  3889. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3890. del bid # unused
  3891. new_name = self.map_tensor_name(name)
  3892. # shuffle for broadcasting of gqa in ggml_mul_mat
  3893. if new_name.endswith("attn_q.weight"):
  3894. data_torch = self.shuffle_attn_q_weight(data_torch)
  3895. elif new_name.endswith("attn_output.weight"):
  3896. data_torch = self.shuffle_attn_output_weight(data_torch)
  3897. return [(new_name, data_torch)]
  3898. @ModelBase.register("Plamo2ForCausalLM", "PLaMo2ForCausalLM")
  3899. class Plamo2Model(TextModel):
  3900. model_arch = gguf.MODEL_ARCH.PLAMO2
  3901. def set_vocab(self):
  3902. # PLaMo 2 uses a custom tokenizer with a .jsonl file
  3903. # We need to handle this specially
  3904. tokenizer_jsonl_path = self.dir_model / "tokenizer.jsonl"
  3905. tokenizer_config_path = self.dir_model / "tokenizer_config.json"
  3906. if not tokenizer_jsonl_path.is_file():
  3907. raise FileNotFoundError(f"PLaMo 2 tokenizer file not found: {tokenizer_jsonl_path}")
  3908. # Load tokenizer config
  3909. with open(tokenizer_config_path, 'r', encoding='utf-8') as f:
  3910. tokenizer_config = json.load(f)
  3911. # Load tokens from JSONL file (actually a list format)
  3912. tokens = []
  3913. scores = []
  3914. toktypes = []
  3915. with open(tokenizer_jsonl_path, 'r', encoding='utf-8') as f:
  3916. for line_num, line in enumerate(f):
  3917. if line.strip():
  3918. token_data = json.loads(line)
  3919. # Format: [token, score, type, ?, ?, ?, ?]
  3920. token = token_data[0].encode("utf-8")
  3921. score = float(token_data[1])
  3922. token_type_str = token_data[2] if len(token_data) > 2 else "NORMAL"
  3923. tokens.append(token)
  3924. scores.append(score)
  3925. # Map token type strings to GGUF token types
  3926. if token_type_str == "UNKNOWN":
  3927. toktypes.append(gguf.TokenType.UNKNOWN)
  3928. elif token_type_str == "CONTROL":
  3929. toktypes.append(gguf.TokenType.CONTROL)
  3930. elif token_type_str == "BYTE":
  3931. toktypes.append(gguf.TokenType.BYTE)
  3932. else:
  3933. # Check for PLaMo-2 special tokens
  3934. token_str = token_data[0]
  3935. if token_str.startswith("<|plamo:") and token_str.endswith("|>"):
  3936. toktypes.append(gguf.TokenType.CONTROL)
  3937. else:
  3938. toktypes.append(gguf.TokenType.NORMAL)
  3939. vocab_size = self.hparams["vocab_size"]
  3940. if vocab_size > len(tokens):
  3941. pad_count = vocab_size - len(tokens)
  3942. logger.debug(f"Padding vocab with {pad_count} token(s) - [PAD1] through [PAD{pad_count}]")
  3943. for i in range(1, pad_count + 1):
  3944. tokens.append(bytes(f"[PAD{i}]", encoding="utf-8"))
  3945. scores.append(-1000.0)
  3946. toktypes.append(gguf.TokenType.UNUSED)
  3947. # Use "plamo2" tokenizer type for PLaMo-2's custom Aho-Corasick tokenizer
  3948. self.gguf_writer.add_tokenizer_model("plamo2")
  3949. self.gguf_writer.add_tokenizer_pre("default")
  3950. self.gguf_writer.add_token_list(tokens)
  3951. self.gguf_writer.add_token_scores(scores)
  3952. self.gguf_writer.add_token_types(toktypes)
  3953. # Add special tokens from config
  3954. if "bos_token" in tokenizer_config and tokenizer_config["bos_token"] is not None:
  3955. token_id = tokens.index(tokenizer_config["bos_token"].encode("utf-8"))
  3956. self.gguf_writer.add_bos_token_id(token_id)
  3957. if "eos_token" in tokenizer_config and tokenizer_config["eos_token"] is not None:
  3958. token_id = tokens.index(tokenizer_config["eos_token"].encode("utf-8"))
  3959. self.gguf_writer.add_eos_token_id(token_id)
  3960. if "pad_token" in tokenizer_config and tokenizer_config["pad_token"] is not None:
  3961. token_id = tokens.index(tokenizer_config["pad_token"].encode("utf-8"))
  3962. self.gguf_writer.add_pad_token_id(token_id)
  3963. if "sep_token" in tokenizer_config and tokenizer_config["sep_token"] is not None:
  3964. token_id = tokens.index(tokenizer_config["sep_token"].encode("utf-8"))
  3965. self.gguf_writer.add_sep_token_id(token_id)
  3966. if "unk_token" in tokenizer_config and tokenizer_config["unk_token"] is not None:
  3967. token_id = tokens.index(tokenizer_config["unk_token"].encode("utf-8"))
  3968. self.gguf_writer.add_unk_token_id(token_id)
  3969. # Add <|plamo:op|> as EOT to ensure appropriate end of generation
  3970. self.gguf_writer.add_eot_token_id(4)
  3971. self.gguf_writer.add_add_space_prefix(False)
  3972. def set_gguf_parameters(self):
  3973. hparams = self.hparams
  3974. self.gguf_writer.add_vocab_size(self.hparams["vocab_size"])
  3975. # Which layers are Mamba layers
  3976. # PLaMo 2 uses mamba_step to indicate the pattern (e.g., 2 means every other layer)
  3977. # This logic matches modeling_plamo.py's is_mamba function
  3978. mamba_step = hparams.get("mamba_step", 2)
  3979. mamba_enabled = hparams.get("mamba_enabled", True)
  3980. num_key_value_heads = []
  3981. num_attention_heads = []
  3982. if mamba_enabled:
  3983. for i in range(self.block_count):
  3984. if self.block_count <= (mamba_step // 2):
  3985. # use attention in last layer
  3986. is_mamba = (i != self.block_count - 1)
  3987. else:
  3988. is_mamba = (i % mamba_step) != (mamba_step // 2)
  3989. if is_mamba:
  3990. num_key_value_heads.append(0)
  3991. num_attention_heads.append(0)
  3992. else:
  3993. num_key_value_heads.append(hparams.get("num_key_value_heads", 4))
  3994. num_attention_heads.append(hparams.get("num_attention_heads", 32))
  3995. if num_key_value_heads and num_attention_heads:
  3996. self.gguf_writer.add_head_count_kv(num_key_value_heads)
  3997. self.gguf_writer.add_head_count(num_attention_heads)
  3998. self.gguf_writer.add_context_length(hparams.get("max_position_embeddings", 2048))
  3999. self.gguf_writer.add_embedding_length(hparams.get("hidden_size", 4096))
  4000. self.gguf_writer.add_key_length(hparams.get("hidden_size_per_head", 128))
  4001. self.gguf_writer.add_value_length(hparams.get("hidden_size_per_head", 128))
  4002. self.gguf_writer.add_block_count(self.block_count)
  4003. self.gguf_writer.add_layer_norm_rms_eps(hparams.get("rms_norm_eps", 1e-06))
  4004. self.gguf_writer.add_rope_freq_base(self.rope_parameters.get("rope_theta", 10000))
  4005. # Mamba parameters
  4006. self.gguf_writer.add_ssm_state_size(hparams.get("mamba_d_state", 64))
  4007. self.gguf_writer.add_ssm_conv_kernel(hparams.get("mamba_d_conv", 4))
  4008. self.gguf_writer.add_ssm_time_step_rank(hparams.get("mamba_num_heads", 64))
  4009. intermediate_size = hparams.get("mamba_num_heads", 64) * hparams.get("hidden_size_per_head", 128)
  4010. self.gguf_writer.add_ssm_inner_size(intermediate_size)
  4011. self.gguf_writer.add_ssm_group_count(0)
  4012. # MLP feed forward parameters (for attention layers)
  4013. self.gguf_writer.add_feed_forward_length(hparams.get("intermediate_size", 13312))
  4014. self.gguf_writer.add_file_type(self.ftype)
  4015. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4016. del bid # unused
  4017. if name.endswith(".A_log"):
  4018. data_torch = -torch.exp(data_torch)
  4019. elif name.endswith(".dt_bias"):
  4020. name = name.rpartition(".dt_bias")[0] + ".dt_proj.bias"
  4021. elif name.endswith(".dt_norm_weight"):
  4022. name = name.rpartition(".dt_norm_weight")[0] + ".dt_norm.weight"
  4023. elif name.endswith(".B_norm_weight"):
  4024. name = name.rpartition(".B_norm_weight")[0] + ".B_norm.weight"
  4025. elif name.endswith(".C_norm_weight"):
  4026. name = name.rpartition(".C_norm_weight")[0] + ".C_norm.weight"
  4027. elif name.endswith(".k_weight"):
  4028. name = name.rpartition(".k_weight")[0] + ".k.weight"
  4029. elif name.endswith(".q_weight"):
  4030. name = name.rpartition(".q_weight")[0] + ".q.weight"
  4031. elif name.endswith(".conv1d.weight"):
  4032. data_torch = torch.squeeze(data_torch) # remove (, 1, )
  4033. assert data_torch.ndim == 2
  4034. elif name.endswith(".pre_mixer_norm.weight"):
  4035. data_torch += 1.0
  4036. elif name.endswith(".post_mixer_norm.weight"):
  4037. data_torch += 1.0 / 5
  4038. elif name.endswith(".pre_mlp_norm.weight"):
  4039. data_torch += 1.0
  4040. elif name.endswith(".post_mlp_norm.weight"):
  4041. data_torch += 1.0 / (5**1.5)
  4042. elif name.endswith(".norm.weight"):
  4043. data_torch += 1.0
  4044. new_name = self.map_tensor_name(name)
  4045. return [(new_name, data_torch)]
  4046. @ModelBase.register("CodeShellForCausalLM")
  4047. class CodeShellModel(TextModel):
  4048. model_arch = gguf.MODEL_ARCH.CODESHELL
  4049. def set_gguf_parameters(self):
  4050. self.gguf_writer.add_context_length(self.hparams["n_positions"])
  4051. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  4052. self.gguf_writer.add_feed_forward_length(4 * self.hparams["n_embd"])
  4053. self.gguf_writer.add_block_count(self.block_count)
  4054. self.gguf_writer.add_head_count(self.hparams["n_head"])
  4055. self.gguf_writer.add_head_count_kv(self.hparams["num_query_groups"])
  4056. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  4057. self.gguf_writer.add_file_type(self.ftype)
  4058. self.gguf_writer.add_rope_freq_base(10000.0)
  4059. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  4060. self.gguf_writer.add_rope_scaling_factor(1.0)
  4061. @ModelBase.register("InternLM2ForCausalLM")
  4062. class InternLM2Model(TextModel):
  4063. model_arch = gguf.MODEL_ARCH.INTERNLM2
  4064. def set_vocab(self):
  4065. # (TODO): Is there a better way?
  4066. # Copy from _set_vocab_sentencepiece, The only difference is that we will treat the character
  4067. # \x00 specially and convert it into an emoji character to prevent it from being mistakenly
  4068. # recognized as an empty string in C++.
  4069. from sentencepiece import SentencePieceProcessor
  4070. from sentencepiece import sentencepiece_model_pb2 as model
  4071. tokenizer_path = self.dir_model / 'tokenizer.model'
  4072. tokens: list[bytes] = []
  4073. scores: list[float] = []
  4074. toktypes: list[int] = []
  4075. if not tokenizer_path.is_file():
  4076. logger.error(f'Error: Missing {tokenizer_path}')
  4077. sys.exit(1)
  4078. sentencepiece_model = model.ModelProto() # pyright: ignore[reportAttributeAccessIssue]
  4079. sentencepiece_model.ParseFromString(open(tokenizer_path, "rb").read())
  4080. add_prefix = sentencepiece_model.normalizer_spec.add_dummy_prefix
  4081. tokenizer = SentencePieceProcessor()
  4082. tokenizer.LoadFromFile(str(tokenizer_path))
  4083. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  4084. for token_id in range(vocab_size):
  4085. piece = tokenizer.IdToPiece(token_id)
  4086. text = piece.encode("utf-8")
  4087. score = tokenizer.GetScore(token_id)
  4088. if text == b"\x00":
  4089. # (TODO): fixme
  4090. # Hack here and replace the \x00 characters.
  4091. logger.warning(f"InternLM2 convert token '{text}' to '🐉'!")
  4092. text = "🐉".encode("utf-8")
  4093. toktype = SentencePieceTokenTypes.NORMAL
  4094. if tokenizer.IsUnknown(token_id):
  4095. toktype = SentencePieceTokenTypes.UNKNOWN
  4096. elif tokenizer.IsControl(token_id):
  4097. toktype = SentencePieceTokenTypes.CONTROL
  4098. elif tokenizer.IsUnused(token_id):
  4099. toktype = SentencePieceTokenTypes.UNUSED
  4100. elif tokenizer.IsByte(token_id):
  4101. toktype = SentencePieceTokenTypes.BYTE
  4102. # take care of ununsed raw token
  4103. if piece.startswith('[UNUSED'):
  4104. toktype = SentencePieceTokenTypes.UNUSED
  4105. tokens.append(text)
  4106. scores.append(score)
  4107. toktypes.append(toktype)
  4108. added_tokens_file = self.dir_model / 'added_tokens.json'
  4109. if added_tokens_file.is_file():
  4110. with open(added_tokens_file, "r", encoding="utf-8") as f:
  4111. added_tokens_json = json.load(f)
  4112. for key in added_tokens_json:
  4113. tokens.append(key.encode("utf-8"))
  4114. scores.append(-1000.0)
  4115. toktypes.append(SentencePieceTokenTypes.USER_DEFINED)
  4116. chat_eos_token = '<|im_end|>'
  4117. chat_eos_token_id = None
  4118. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  4119. if tokenizer_config_file.is_file():
  4120. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  4121. tokenizer_config_json = json.load(f)
  4122. added_tokens_decoder = tokenizer_config_json.get("added_tokens_decoder", {})
  4123. for token_id, foken_data in added_tokens_decoder.items():
  4124. token_id = int(token_id)
  4125. token = foken_data["content"]
  4126. if token == chat_eos_token:
  4127. chat_eos_token_id = token_id
  4128. token = token.encode("utf-8")
  4129. if toktypes[token_id] != SentencePieceTokenTypes.UNUSED:
  4130. if tokens[token_id] != token:
  4131. logger.warning(f'replacing token {token_id}: {tokens[token_id].decode("utf-8")!r} -> {token.decode("utf-8")!r}')
  4132. tokens[token_id] = token
  4133. scores[token_id] = -1000.0
  4134. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  4135. if foken_data.get("special"):
  4136. toktypes[token_id] = SentencePieceTokenTypes.CONTROL
  4137. tokenizer_file = self.dir_model / 'tokenizer.json'
  4138. if tokenizer_file.is_file():
  4139. with open(tokenizer_file, "r", encoding="utf-8") as f:
  4140. tokenizer_json = json.load(f)
  4141. added_tokens = tokenizer_json.get("added_tokens", [])
  4142. for foken_data in added_tokens:
  4143. token_id = int(foken_data["id"])
  4144. token = foken_data["content"]
  4145. if token == chat_eos_token:
  4146. chat_eos_token_id = token_id
  4147. token = token.encode("utf-8")
  4148. if toktypes[token_id] != SentencePieceTokenTypes.UNUSED:
  4149. if tokens[token_id] != token:
  4150. logger.warning(f'replacing token {token_id}: {tokens[token_id].decode("utf-8")!r} -> {token.decode("utf-8")!r}')
  4151. tokens[token_id] = token
  4152. scores[token_id] = -1000.0
  4153. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  4154. if foken_data.get("special"):
  4155. toktypes[token_id] = SentencePieceTokenTypes.CONTROL
  4156. self.gguf_writer.add_tokenizer_model("llama")
  4157. self.gguf_writer.add_tokenizer_pre("default")
  4158. self.gguf_writer.add_token_list(tokens)
  4159. self.gguf_writer.add_token_scores(scores)
  4160. self.gguf_writer.add_token_types(toktypes)
  4161. self.gguf_writer.add_add_space_prefix(add_prefix)
  4162. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  4163. old_eos = special_vocab.special_token_ids["eos"]
  4164. if chat_eos_token_id is not None:
  4165. # For the chat model, we replace the eos with '<|im_end|>'.
  4166. # TODO: this is a hack, should be fixed
  4167. # https://github.com/ggml-org/llama.cpp/pull/6745#issuecomment-2067687048
  4168. special_vocab.special_token_ids["eos"] = chat_eos_token_id
  4169. logger.warning(f"Replace eos:{old_eos} with a special token:{chat_eos_token_id}"
  4170. " in chat mode so that the conversation can end normally.")
  4171. special_vocab.add_to_gguf(self.gguf_writer)
  4172. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4173. num_heads = self.hparams["num_attention_heads"]
  4174. num_kv_heads = self.hparams["num_key_value_heads"]
  4175. n_embd = self.hparams["hidden_size"]
  4176. q_per_kv = num_heads // num_kv_heads
  4177. head_dim = n_embd // num_heads
  4178. num_groups = num_heads // q_per_kv
  4179. name = name.replace("language_model.", "") # InternVL
  4180. if name.startswith("mlp") or name.startswith("vision_model"):
  4181. # skip visual tensors
  4182. return []
  4183. if bid is not None and f"model.layers.{bid}.attention.wqkv" in name:
  4184. qkv = data_torch
  4185. qkv = qkv.reshape((num_groups, q_per_kv + 2, head_dim, n_embd))
  4186. q, k, v = qkv[:, : q_per_kv], qkv[:, -2], qkv[:, -1]
  4187. # The model weights of q and k equire additional reshape.
  4188. q = LlamaModel.permute(q.reshape((-1, q.shape[-1])), num_heads, num_heads)
  4189. k = LlamaModel.permute(k.reshape((-1, k.shape[-1])), num_heads, num_kv_heads)
  4190. v = v.reshape((-1, v.shape[-1]))
  4191. return [
  4192. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_Q, bid), q),
  4193. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_K, bid), k),
  4194. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_V, bid), v),
  4195. ]
  4196. else:
  4197. return [(self.map_tensor_name(name), data_torch)]
  4198. @ModelBase.register("InternLM3ForCausalLM")
  4199. class InternLM3Model(TextModel):
  4200. model_arch = gguf.MODEL_ARCH.LLAMA
  4201. def set_vocab(self):
  4202. tokens, scores, toktypes = self._create_vocab_sentencepiece()
  4203. self.gguf_writer.add_tokenizer_model("llama")
  4204. self.gguf_writer.add_tokenizer_pre("default")
  4205. self.gguf_writer.add_token_list(tokens)
  4206. self.gguf_writer.add_token_scores(scores)
  4207. self.gguf_writer.add_token_types(toktypes)
  4208. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  4209. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  4210. if tokenizer_config_file.is_file():
  4211. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  4212. tokenizer_config_json = json.load(f)
  4213. if "add_prefix_space" in tokenizer_config_json:
  4214. self.gguf_writer.add_add_space_prefix(tokenizer_config_json["add_prefix_space"])
  4215. if "added_tokens_decoder" in tokenizer_config_json:
  4216. for token_id, token_data in tokenizer_config_json["added_tokens_decoder"].items():
  4217. if token_data.get("special"):
  4218. token_id = int(token_id)
  4219. token = token_data["content"]
  4220. special_vocab._set_special_token(token, token_id)
  4221. # update eos token
  4222. if token == '<|im_end|>' and "eos" in special_vocab.special_token_ids:
  4223. special_vocab.special_token_ids["eos"] = token_id
  4224. special_vocab.add_to_gguf(self.gguf_writer)
  4225. def set_gguf_parameters(self):
  4226. super().set_gguf_parameters()
  4227. hparams = self.hparams
  4228. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  4229. if (rope_dim := hparams.get("head_dim")) is None:
  4230. rope_dim = hparams["hidden_size"] // hparams["num_attention_heads"]
  4231. self.gguf_writer.add_rope_dimension_count(rope_dim)
  4232. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4233. n_head = self.hparams["num_attention_heads"]
  4234. n_kv_head = self.hparams.get("num_key_value_heads")
  4235. name = name.replace("language_model.", "") # InternVL
  4236. if name.startswith("mlp") or name.startswith("vision_model"):
  4237. # skip visual tensors
  4238. return []
  4239. if name.endswith(("q_proj.weight", "q_proj.bias")):
  4240. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  4241. if name.endswith(("k_proj.weight", "k_proj.bias")):
  4242. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  4243. return [(self.map_tensor_name(name), data_torch)]
  4244. @ModelBase.register("BertModel", "BertForMaskedLM", "CamembertModel", "BertForSequenceClassification")
  4245. class BertModel(TextModel):
  4246. model_arch = gguf.MODEL_ARCH.BERT
  4247. def __init__(self, *args, **kwargs):
  4248. super().__init__(*args, **kwargs)
  4249. self.vocab_size = None
  4250. if cls_out_labels := self.hparams.get("id2label"):
  4251. if len(cls_out_labels) == 2 and cls_out_labels[0] == "LABEL_0":
  4252. # Remove dummy labels added by AutoConfig
  4253. cls_out_labels = None
  4254. self.cls_out_labels = cls_out_labels
  4255. def set_gguf_parameters(self):
  4256. super().set_gguf_parameters()
  4257. self.gguf_writer.add_causal_attention(False)
  4258. self._try_set_pooling_type()
  4259. if self.cls_out_labels:
  4260. self.gguf_writer.add_classifier_output_labels([v for k, v in sorted(self.cls_out_labels.items())])
  4261. def set_vocab(self):
  4262. tokens, toktypes, tokpre = self.get_vocab_base()
  4263. self.vocab_size = len(tokens)
  4264. # we need this to validate the size of the token_type embeddings
  4265. # though currently we are passing all zeros to the token_type embeddings
  4266. # "Sequence A" or "Sequence B"
  4267. self.gguf_writer.add_token_type_count(self.hparams.get("type_vocab_size", 1))
  4268. # convert to phantom space vocab
  4269. def phantom(tok):
  4270. if tok.startswith("[") and tok.endswith("]"):
  4271. return tok
  4272. if tok.startswith("##"):
  4273. return tok[2:]
  4274. return "\u2581" + tok
  4275. tokens = list(map(phantom, tokens))
  4276. # add vocab to gguf
  4277. self.gguf_writer.add_tokenizer_model("bert")
  4278. self.gguf_writer.add_tokenizer_pre(tokpre)
  4279. self.gguf_writer.add_token_list(tokens)
  4280. self.gguf_writer.add_token_types(toktypes)
  4281. # handle special tokens
  4282. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  4283. special_vocab.add_to_gguf(self.gguf_writer)
  4284. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4285. del bid # unused
  4286. if name.startswith("bert."):
  4287. name = name[5:]
  4288. if name.endswith(".gamma"):
  4289. name = name[:-6] + ".weight"
  4290. if name.endswith(".beta"):
  4291. name = name[:-5] + ".bias"
  4292. # we are only using BERT for embeddings so we don't need the pooling layer
  4293. if name in ("embeddings.position_ids", "pooler.dense.weight", "pooler.dense.bias"):
  4294. return [] # we don't need these
  4295. if name.startswith("cls.predictions"):
  4296. return []
  4297. if name.startswith("cls.seq_relationship"):
  4298. return []
  4299. if self.cls_out_labels:
  4300. # For BertForSequenceClassification (direct projection layer)
  4301. if name == "classifier.weight":
  4302. name = "classifier.out_proj.weight"
  4303. if name == "classifier.bias":
  4304. name = "classifier.out_proj.bias"
  4305. return [(self.map_tensor_name(name), data_torch)]
  4306. def _xlmroberta_tokenizer_init(self) -> None:
  4307. # we need the pad_token_id to know how to chop down position_embd matrix
  4308. if (pad_token_id := self.hparams.get("pad_token_id")) is not None:
  4309. self._position_offset = 1 + pad_token_id
  4310. if "max_position_embeddings" in self.hparams:
  4311. self.hparams["max_position_embeddings"] -= self._position_offset
  4312. else:
  4313. self._position_offset = None
  4314. def _xlmroberta_set_vocab(self) -> None:
  4315. # to avoid TypeError: Descriptors cannot be created directly
  4316. # exception when importing sentencepiece_model_pb2
  4317. os.environ["PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION"] = "python"
  4318. from sentencepiece import SentencePieceProcessor
  4319. from sentencepiece import sentencepiece_model_pb2 as model
  4320. tokenizer_path = self.dir_model / 'sentencepiece.bpe.model'
  4321. tokenizer_json = {}
  4322. tokenizer_config_json = {}
  4323. if not tokenizer_path.is_file():
  4324. tokenizer_path = self.dir_model / 'tokenizer.json'
  4325. tokenizer_config_path = self.dir_model / 'tokenizer_config.json'
  4326. if not tokenizer_path.is_file():
  4327. raise FileNotFoundError(f"File not found: {tokenizer_path}")
  4328. from base64 import b64decode
  4329. from transformers import AutoTokenizer
  4330. tokenizer = AutoTokenizer.from_pretrained(self.dir_model)
  4331. with open(tokenizer_path, "r", encoding="utf-8") as fp:
  4332. tokenizer_json = json.load(fp)
  4333. if tokenizer_config_path.is_file():
  4334. with open(tokenizer_config_path, "r", encoding="utf-8") as fp:
  4335. tokenizer_config_json = json.load(fp)
  4336. add_prefix = tokenizer.add_prefix_space
  4337. remove_whitespaces = tokenizer.clean_up_tokenization_spaces
  4338. precompiled_charsmap = b64decode(tokenizer_json["normalizer"]["precompiled_charsmap"])
  4339. vocab_size = max(self.hparams.get("vocab_size", 0), tokenizer.vocab_size)
  4340. else:
  4341. sentencepiece_model = model.ModelProto() # pyright: ignore[reportAttributeAccessIssue]
  4342. sentencepiece_model.ParseFromString(open(tokenizer_path, "rb").read())
  4343. assert sentencepiece_model.trainer_spec.model_type == 1 # UNIGRAM
  4344. add_prefix = sentencepiece_model.normalizer_spec.add_dummy_prefix
  4345. remove_whitespaces = sentencepiece_model.normalizer_spec.remove_extra_whitespaces
  4346. precompiled_charsmap = sentencepiece_model.normalizer_spec.precompiled_charsmap
  4347. tokenizer = SentencePieceProcessor()
  4348. tokenizer.LoadFromFile(str(tokenizer_path))
  4349. vocab_size = max(self.hparams.get("vocab_size", 0), tokenizer.vocab_size())
  4350. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  4351. scores: list[float] = [-10000.0] * vocab_size
  4352. toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
  4353. if isinstance(tokenizer, SentencePieceProcessor):
  4354. for token_id in range(tokenizer.vocab_size()):
  4355. piece = tokenizer.IdToPiece(token_id)
  4356. text = piece.encode("utf-8")
  4357. score = tokenizer.GetScore(token_id)
  4358. toktype = SentencePieceTokenTypes.NORMAL
  4359. if tokenizer.IsUnknown(token_id):
  4360. toktype = SentencePieceTokenTypes.UNKNOWN
  4361. elif tokenizer.IsControl(token_id):
  4362. toktype = SentencePieceTokenTypes.CONTROL
  4363. elif tokenizer.IsUnused(token_id):
  4364. toktype = SentencePieceTokenTypes.UNUSED
  4365. elif tokenizer.IsByte(token_id):
  4366. toktype = SentencePieceTokenTypes.BYTE
  4367. tokens[token_id] = text
  4368. scores[token_id] = score
  4369. toktypes[token_id] = toktype
  4370. else:
  4371. added_vocab = tokenizer.get_added_vocab()
  4372. unk_token = tokenizer_config_json.get("unk_token")
  4373. unk_token_id = added_vocab.get(unk_token, tokenizer_json["model"].get("unk_id", 3))
  4374. for token_id in range(tokenizer.vocab_size):
  4375. piece = tokenizer._convert_id_to_token(token_id)
  4376. if (piece := tokenizer._convert_id_to_token(token_id)) is not None:
  4377. text = piece.encode("utf-8")
  4378. score = tokenizer_json["model"]["vocab"][token_id][1]
  4379. toktype = SentencePieceTokenTypes.NORMAL
  4380. if token_id == unk_token_id:
  4381. toktype = SentencePieceTokenTypes.UNKNOWN
  4382. elif token_id in tokenizer.all_special_ids:
  4383. toktype = SentencePieceTokenTypes.CONTROL
  4384. elif token_id in added_vocab.values():
  4385. toktype = SentencePieceTokenTypes.USER_DEFINED
  4386. # No reliable way to detect this, but jina doesn't have any
  4387. # elif tokenizer.IsByte(token_id):
  4388. # toktype = SentencePieceTokenTypes.BYTE
  4389. tokens[token_id] = text
  4390. scores[token_id] = score
  4391. toktypes[token_id] = toktype
  4392. if isinstance(tokenizer, SentencePieceProcessor):
  4393. # realign tokens (see HF tokenizer code)
  4394. tokens = [b'<s>', b'<pad>', b'</s>', b'<unk>'] + tokens[3:-1]
  4395. scores = [0.0, 0.0, 0.0, 0.0] + scores[3:-1]
  4396. toktypes = [
  4397. SentencePieceTokenTypes.CONTROL,
  4398. SentencePieceTokenTypes.CONTROL,
  4399. SentencePieceTokenTypes.CONTROL,
  4400. SentencePieceTokenTypes.UNKNOWN,
  4401. ] + toktypes[3:-1]
  4402. if self.model_arch == gguf.MODEL_ARCH.NOMIC_BERT_MOE:
  4403. # Add mask token missing from sentencepiece.bpe.model
  4404. tokens[250001] = b'<mask>'
  4405. scores[250001] = 0.0
  4406. toktypes[250001] = SentencePieceTokenTypes.CONTROL
  4407. self.gguf_writer.add_tokenizer_model("t5")
  4408. self.gguf_writer.add_tokenizer_pre("default")
  4409. self.gguf_writer.add_token_list(tokens)
  4410. self.gguf_writer.add_token_scores(scores)
  4411. self.gguf_writer.add_token_types(toktypes)
  4412. self.gguf_writer.add_add_space_prefix(add_prefix)
  4413. self.gguf_writer.add_token_type_count(self.hparams.get("type_vocab_size", 1))
  4414. self.gguf_writer.add_remove_extra_whitespaces(remove_whitespaces)
  4415. if precompiled_charsmap:
  4416. self.gguf_writer.add_precompiled_charsmap(precompiled_charsmap)
  4417. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  4418. special_vocab.add_to_gguf(self.gguf_writer)
  4419. @ModelBase.register("DistilBertModel", "DistilBertForMaskedLM", "DistilBertForSequenceClassification")
  4420. class DistilBertModel(BertModel):
  4421. model_arch = gguf.MODEL_ARCH.BERT
  4422. def set_gguf_parameters(self):
  4423. self.gguf_writer.add_layer_norm_eps(1e-12)
  4424. logger.info("gguf: layer norm epsilon = 1e-12")
  4425. super().set_gguf_parameters()
  4426. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4427. if name.startswith("distilbert."):
  4428. name = name[11:]
  4429. # These layers act as MLM head, so we don't need them
  4430. if name.startswith("vocab_"):
  4431. return []
  4432. return super().modify_tensors(data_torch, name, bid)
  4433. @ModelBase.register("RobertaModel", "RobertaForSequenceClassification")
  4434. class RobertaModel(BertModel):
  4435. model_arch = gguf.MODEL_ARCH.BERT
  4436. def __init__(self, *args, **kwargs):
  4437. super().__init__(*args, **kwargs)
  4438. # we need the pad_token_id to know how to chop down position_embd matrix
  4439. if (pad_token_id := self.hparams.get("pad_token_id")) is not None:
  4440. self._position_offset = 1 + pad_token_id
  4441. if "max_position_embeddings" in self.hparams:
  4442. self.hparams["max_position_embeddings"] -= self._position_offset
  4443. else:
  4444. self._position_offset = None
  4445. def set_vocab(self):
  4446. """Support BPE tokenizers for roberta models"""
  4447. bpe_tok_path = self.dir_model / "tokenizer.json"
  4448. if bpe_tok_path.exists():
  4449. self._set_vocab_gpt2()
  4450. # we need this to validate the size of the token_type embeddings
  4451. # though currently we are passing all zeros to the token_type embeddings
  4452. # "Sequence A" or "Sequence B"
  4453. self.gguf_writer.add_token_type_count(self.hparams.get("type_vocab_size", 1))
  4454. else:
  4455. return super().set_vocab()
  4456. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4457. # if name starts with "roberta.", remove the prefix
  4458. # e.g. https://huggingface.co/BAAI/bge-reranker-v2-m3/tree/main
  4459. if name.startswith("roberta."):
  4460. name = name[8:]
  4461. # position embeddings start at pad_token_id + 1, so just chop down the weight tensor
  4462. if name == "embeddings.position_embeddings.weight":
  4463. if self._position_offset is not None:
  4464. data_torch = data_torch[self._position_offset:,:]
  4465. return super().modify_tensors(data_torch, name, bid)
  4466. @ModelBase.register("NomicBertModel")
  4467. class NomicBertModel(BertModel):
  4468. model_arch = gguf.MODEL_ARCH.BERT
  4469. def __init__(self, dir_model: Path, ftype: gguf.LlamaFileType, fname_out: Path, **kwargs: Any):
  4470. hparams = kwargs.pop("hparams", None)
  4471. if hparams is None:
  4472. hparams = ModelBase.load_hparams(dir_model, False)
  4473. self.is_moe = bool(hparams.get("moe_every_n_layers"))
  4474. self.model_arch = gguf.MODEL_ARCH.NOMIC_BERT_MOE if self.is_moe else gguf.MODEL_ARCH.NOMIC_BERT
  4475. super().__init__(dir_model, ftype, fname_out, hparams=hparams, **kwargs)
  4476. self._tokenizer_is_xlmroberta = self._is_tokenizer_xlmroberta()
  4477. if self._tokenizer_is_xlmroberta:
  4478. self._xlmroberta_tokenizer_init()
  4479. npos, mtp = self.hparams["n_positions"], self.hparams.get("max_trained_positions", 2048)
  4480. if npos == 8192 and mtp == 2048:
  4481. self.hparams["n_positions"] = 2048 # nomic-embed-text v1 and v1.5 are trained for 2048 tokens.
  4482. elif npos == 2048 and mtp == 2048:
  4483. self.hparams["n_positions"] = 512 # nomic-embed-text-v2-moe is trained for 512 tokens.
  4484. else:
  4485. raise ValueError(f"unrecognized parameters: n_positions={npos}, max_trained_positions={mtp}")
  4486. assert self.hparams["activation_function"] == "gelu" if self.is_moe else "swiglu"
  4487. # this doesn't do anything in the HF version
  4488. assert self.hparams["causal"] is False
  4489. # no bias tensors unless MoE
  4490. assert self.hparams["qkv_proj_bias"] == self.is_moe
  4491. assert self.hparams["mlp_fc1_bias"] == self.is_moe
  4492. assert self.hparams["mlp_fc2_bias"] == self.is_moe
  4493. # norm at end of layer
  4494. assert self.hparams["prenorm"] is False
  4495. # standard RoPE
  4496. assert self.hparams["rotary_emb_fraction"] == 1.0
  4497. assert self.hparams["rotary_emb_interleaved"] is False
  4498. assert self.hparams["rotary_emb_scale_base"] is None
  4499. def set_vocab(self) -> None:
  4500. if self._tokenizer_is_xlmroberta:
  4501. return self._xlmroberta_set_vocab()
  4502. return super().set_vocab()
  4503. def modify_tensors(self, data_torch: torch.Tensor, name: str, bid: int | None) -> Iterable[tuple[str, torch.Tensor]]:
  4504. # If the tensor is an experts bias tensor, skip it by returning an empty list.
  4505. if "mlp.experts.bias" in name:
  4506. return [] # Explicitly return an empty list.
  4507. if "mlp.experts.mlp.w1" in name:
  4508. data_torch = data_torch.view(self.hparams["num_experts"], self.hparams["n_inner"], self.hparams["n_embd"])
  4509. name += ".weight"
  4510. if "mlp.experts.mlp.w2" in name:
  4511. data_torch = data_torch.view(self.hparams["num_experts"], self.hparams["n_inner"], self.hparams["n_embd"])
  4512. data_torch = data_torch.transpose(1, 2)
  4513. name += ".weight"
  4514. return [(self.map_tensor_name(name), data_torch)]
  4515. def set_gguf_parameters(self):
  4516. super().set_gguf_parameters()
  4517. if self.is_moe:
  4518. self.gguf_writer.add_moe_every_n_layers(self.hparams["moe_every_n_layers"])
  4519. self.gguf_writer.add_expert_count(self.hparams["num_experts"])
  4520. self.gguf_writer.add_expert_used_count(self.hparams["moe_top_k"])
  4521. def _is_tokenizer_xlmroberta(self) -> bool:
  4522. with open(self.dir_model / "tokenizer.json") as f:
  4523. tokenizer_json = json.load(f)
  4524. toktyp = tokenizer_json["model"]["type"]
  4525. if toktyp == "Unigram":
  4526. return True
  4527. if toktyp == "WordPiece":
  4528. return False
  4529. raise ValueError(f"unknown tokenizer: {toktyp}")
  4530. @ModelBase.register("NeoBERT", "NeoBERTLMHead", "NeoBERTForSequenceClassification")
  4531. class NeoBert(BertModel):
  4532. model_arch = gguf.MODEL_ARCH.NEO_BERT
  4533. def set_gguf_parameters(self):
  4534. super().set_gguf_parameters()
  4535. # NeoBERT uses 2/3 of the intermediate size as feed forward length
  4536. self.gguf_writer.add_feed_forward_length(int(2 * self.hparams["intermediate_size"] / 3))
  4537. self.gguf_writer.add_rope_freq_base(10000.0) # default value for NeoBERT
  4538. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
  4539. f_rms_eps = self.hparams.get("norm_eps", 1e-6) # default value for NeoBERT
  4540. self.gguf_writer.add_layer_norm_rms_eps(f_rms_eps)
  4541. logger.info(f"gguf: rms norm epsilon = {f_rms_eps}")
  4542. self.gguf_writer.add_pooling_type(gguf.PoolingType.CLS) # https://huggingface.co/chandar-lab/NeoBERT#how-to-use
  4543. def modify_tensors(self, data_torch, name, bid):
  4544. if name.startswith("decoder."):
  4545. return []
  4546. if name.startswith("model."):
  4547. name = name[6:]
  4548. return super().modify_tensors(data_torch, name, bid)
  4549. @ModelBase.register("XLMRobertaModel", "XLMRobertaForSequenceClassification")
  4550. class XLMRobertaModel(BertModel):
  4551. model_arch = gguf.MODEL_ARCH.BERT
  4552. _lora_files = {}
  4553. _lora_names = []
  4554. def __init__(self, dir_model: Path, ftype: gguf.LlamaFileType, fname_out: Path, **kwargs: Any):
  4555. hparams = kwargs.pop("hparams", None)
  4556. if hparams is None:
  4557. hparams = ModelBase.load_hparams(dir_model, False)
  4558. if lora_names := hparams.get("lora_adaptations"):
  4559. self._lora_names = lora_names
  4560. self.model_arch = gguf.MODEL_ARCH.JINA_BERT_V3
  4561. super().__init__(dir_model, ftype, fname_out, hparams=hparams, **kwargs)
  4562. self._xlmroberta_tokenizer_init()
  4563. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  4564. if self._lora_names:
  4565. for name in self._lora_names:
  4566. fname = self.add_prefix_to_filename(self.fname_out, f"lora-{name}-")
  4567. self._lora_files[name] = gguf.GGUFWriter(fname, arch=gguf.MODEL_ARCH_NAMES[self.model_arch], endianess=self.endianess, use_temp_file=self.use_temp_file, dry_run=self.dry_run)
  4568. return super().generate_extra_tensors()
  4569. def set_type(self):
  4570. for lora_writer in self._lora_files.values():
  4571. lora_writer.add_type(gguf.GGUFType.ADAPTER)
  4572. lora_writer.add_string(gguf.Keys.Adapter.TYPE, "lora")
  4573. super().set_type()
  4574. def set_vocab(self):
  4575. self._xlmroberta_set_vocab()
  4576. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4577. # if name starts with "roberta.", remove the prefix
  4578. # e.g. https://huggingface.co/BAAI/bge-reranker-v2-m3/tree/main
  4579. if name.startswith("roberta."):
  4580. name = name[8:]
  4581. # jina-embeddings-v3
  4582. if ".parametrizations." in name:
  4583. name = name.replace(".parametrizations.", ".")
  4584. if name.endswith(".original"):
  4585. name = name[:-9]
  4586. # position embeddings start at pad_token_id + 1, so just chop down the weight tensor
  4587. if name == "embeddings.position_embeddings.weight":
  4588. if self._position_offset is not None:
  4589. data_torch = data_torch[self._position_offset:,:]
  4590. if name.endswith(".0.lora_A") or name.endswith(".0.lora_B"):
  4591. if name.startswith("pooler.dense"):
  4592. return []
  4593. num_loras = data_torch.size(0)
  4594. assert num_loras == len(self._lora_names)
  4595. # Split out each LoRA in their own GGUF
  4596. for i, lora_writer in enumerate(self._lora_files.values()):
  4597. new_name = self.map_tensor_name(name[:-9]) + name[-7:].lower()
  4598. data = data_torch[i, :, :]
  4599. # Transpose/flip token_embd/types into correct shape
  4600. if new_name == "token_embd.weight.lora_b":
  4601. data = data.T
  4602. elif new_name.startswith("token_types.weight."):
  4603. new_name = new_name[:-1] + ("a" if new_name[-1:] == "b" else "b")
  4604. lora_writer.add_tensor(new_name, data.float().numpy(), raw_dtype=gguf.GGMLQuantizationType.F32)
  4605. return []
  4606. return super().modify_tensors(data_torch, name, bid)
  4607. def set_gguf_parameters(self):
  4608. super().set_gguf_parameters()
  4609. # jina-embeddings-v3
  4610. lora_alpha = self.hparams.get("lora_alpha")
  4611. if lora_prompt_prefixes := self.hparams.get("task_instructions"):
  4612. assert self._lora_files and all(lora_name in lora_prompt_prefixes for lora_name in self._lora_files.keys())
  4613. for lora_name, lora_writer in self._lora_files.items():
  4614. lora_writer.add_float32(gguf.Keys.Adapter.LORA_ALPHA, lora_alpha if lora_alpha is not None else 1.0)
  4615. lora_writer.add_string(gguf.Keys.Adapter.LORA_TASK_NAME, lora_name)
  4616. if lora_prompt_prefixes:
  4617. lora_writer.add_string(gguf.Keys.Adapter.LORA_PROMPT_PREFIX, lora_prompt_prefixes[lora_name])
  4618. def write(self):
  4619. super().write()
  4620. for lora_writer in self._lora_files.values():
  4621. lora_writer.write_header_to_file()
  4622. lora_writer.write_kv_data_to_file()
  4623. lora_writer.write_tensors_to_file(progress=True)
  4624. lora_writer.close()
  4625. @ModelBase.register("GemmaForCausalLM")
  4626. class GemmaModel(TextModel):
  4627. model_arch = gguf.MODEL_ARCH.GEMMA
  4628. def set_vocab(self):
  4629. self._set_vocab_sentencepiece()
  4630. # TODO: these special tokens should be exported only for the CodeGemma family
  4631. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=False,
  4632. special_token_types = ['prefix', 'suffix', 'middle', 'fsep', 'eot'])
  4633. special_vocab._set_special_token("prefix", 67)
  4634. special_vocab._set_special_token("suffix", 69)
  4635. special_vocab._set_special_token("middle", 68)
  4636. special_vocab._set_special_token("fsep", 70)
  4637. special_vocab._set_special_token("eot", 107)
  4638. special_vocab.chat_template = None # do not add it twice
  4639. special_vocab.add_to_gguf(self.gguf_writer)
  4640. self.gguf_writer.add_add_space_prefix(False)
  4641. def set_gguf_parameters(self):
  4642. hparams = self.hparams
  4643. self.gguf_writer.add_context_length(hparams["max_position_embeddings"])
  4644. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  4645. self.gguf_writer.add_block_count(self.block_count)
  4646. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  4647. self.gguf_writer.add_head_count(hparams["num_attention_heads"])
  4648. self.gguf_writer.add_head_count_kv(self.hparams["num_key_value_heads"] if "num_key_value_heads" in hparams else hparams["num_attention_heads"])
  4649. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  4650. self.gguf_writer.add_key_length(hparams["head_dim"])
  4651. self.gguf_writer.add_value_length(hparams["head_dim"])
  4652. self.gguf_writer.add_file_type(self.ftype)
  4653. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4654. del bid # unused
  4655. # lm_head is not used in llama.cpp, while autoawq will include this tensor in model
  4656. # To prevent errors, skip loading lm_head.weight.
  4657. if name == "lm_head.weight":
  4658. logger.debug(f"Skipping get tensor {name!r} in safetensors so that convert can end normally.")
  4659. return []
  4660. # ref: https://github.com/huggingface/transformers/blob/fc37f38915372c15992b540dfcbbe00a916d4fc6/src/transformers/models/gemma/modeling_gemma.py#L89
  4661. if name.endswith("norm.weight"):
  4662. data_torch = data_torch + 1
  4663. return [(self.map_tensor_name(name), data_torch)]
  4664. @ModelBase.register("Gemma2ForCausalLM")
  4665. class Gemma2Model(TextModel):
  4666. model_arch = gguf.MODEL_ARCH.GEMMA2
  4667. def set_vocab(self):
  4668. self._set_vocab_sentencepiece()
  4669. self.gguf_writer.add_add_space_prefix(False)
  4670. def set_gguf_parameters(self):
  4671. hparams = self.hparams
  4672. self.gguf_writer.add_context_length(hparams["max_position_embeddings"])
  4673. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  4674. self.gguf_writer.add_block_count(self.block_count)
  4675. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  4676. self.gguf_writer.add_head_count(hparams["num_attention_heads"])
  4677. self.gguf_writer.add_head_count_kv(self.hparams["num_key_value_heads"] if "num_key_value_heads" in hparams else hparams["num_attention_heads"])
  4678. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  4679. self.gguf_writer.add_key_length(hparams["head_dim"])
  4680. self.gguf_writer.add_value_length(hparams["head_dim"])
  4681. self.gguf_writer.add_file_type(self.ftype)
  4682. self.gguf_writer.add_attn_logit_softcapping(
  4683. self.hparams["attn_logit_softcapping"]
  4684. )
  4685. self.gguf_writer.add_final_logit_softcapping(
  4686. self.hparams["final_logit_softcapping"]
  4687. )
  4688. self.gguf_writer.add_sliding_window(self.hparams["sliding_window"])
  4689. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4690. del bid # unused
  4691. # lm_head is not used in llama.cpp, while autoawq will include this tensor in model
  4692. # To prevent errors, skip loading lm_head.weight.
  4693. if name == "lm_head.weight":
  4694. logger.debug(f"Skipping get tensor {name!r} in safetensors so that convert can end normally.")
  4695. return []
  4696. # ref: https://github.com/huggingface/transformers/blob/fc37f38915372c15992b540dfcbbe00a916d4fc6/src/transformers/models/gemma/modeling_gemma.py#L89
  4697. if name.endswith("norm.weight"):
  4698. data_torch = data_torch + 1
  4699. return [(self.map_tensor_name(name), data_torch)]
  4700. @ModelBase.register("Gemma3ForCausalLM", "Gemma3ForConditionalGeneration")
  4701. class Gemma3Model(TextModel):
  4702. model_arch = gguf.MODEL_ARCH.GEMMA3
  4703. norm_shift = 1.0 # Gemma3RMSNorm adds 1.0 to the norm value
  4704. def set_vocab(self):
  4705. if (self.dir_model / "tokenizer.model").is_file():
  4706. self._set_vocab_sentencepiece()
  4707. self.gguf_writer.add_add_space_prefix(False)
  4708. else:
  4709. self._set_vocab_gpt2()
  4710. def set_gguf_parameters(self):
  4711. super().set_gguf_parameters()
  4712. hparams = self.hparams
  4713. # some default values are not specified in the hparams
  4714. self.gguf_writer.add_context_length(hparams.get("max_position_embeddings", 131072))
  4715. self.gguf_writer.add_head_count(hparams.get("num_attention_heads", 8))
  4716. self.gguf_writer.add_layer_norm_rms_eps(self.hparams.get("rms_norm_eps", 1e-6))
  4717. self.gguf_writer.add_key_length(hparams.get("head_dim", 256))
  4718. self.gguf_writer.add_value_length(hparams.get("head_dim", 256))
  4719. self.gguf_writer.add_rope_freq_base(self.rope_parameters.get("full_attention", self.rope_parameters).get("rope_theta", 1_000_000.0)) # for global layers
  4720. # attn_logit_softcapping is removed in Gemma3
  4721. assert hparams.get("attn_logit_softcapping") is None
  4722. if (final_logit_softcap := hparams.get("final_logit_softcapping")):
  4723. self.gguf_writer.add_final_logit_softcapping(final_logit_softcap)
  4724. if hparams.get("sliding_window_pattern") != 1:
  4725. self.gguf_writer.add_sliding_window(hparams["sliding_window"])
  4726. self.gguf_writer.add_head_count_kv(hparams.get("num_key_value_heads", 4))
  4727. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4728. del bid # unused
  4729. if "language_model." in name:
  4730. name = name.replace("language_model.", "")
  4731. elif name.startswith("multi_modal_projector.") or name.startswith("vision_tower.") \
  4732. or name.startswith("multimodal_projector.") or name.startswith("vision_model."):
  4733. return [] # skip vision tensors
  4734. # remove OOV (out-of-vocabulary) rows in token_embd
  4735. if "embed_tokens.weight" in name:
  4736. if (self.dir_model / "tokenizer.model").is_file():
  4737. tokens = self._create_vocab_sentencepiece()[0]
  4738. else:
  4739. tokens = self.get_vocab_base()[0]
  4740. data_torch = data_torch[:len(tokens)]
  4741. # ref code in Gemma3RMSNorm
  4742. # output = output * (1.0 + self.weight.float())
  4743. # note: this is not the case on gemma3n
  4744. if name.endswith("norm.weight"):
  4745. data_torch = data_torch + self.norm_shift
  4746. return [(self.map_tensor_name(name), data_torch)]
  4747. @ModelBase.register("Gemma3TextModel")
  4748. class EmbeddingGemma(Gemma3Model):
  4749. model_arch = gguf.MODEL_ARCH.GEMMA_EMBEDDING
  4750. module_paths = []
  4751. dense_features_dims = {}
  4752. def __init__(self, *args, **kwargs):
  4753. super().__init__(*args, **kwargs)
  4754. if self.sentence_transformers_dense_modules:
  4755. # read modules.json to determine if model has Dense layers
  4756. modules_file = self.dir_model / "modules.json"
  4757. if modules_file.is_file():
  4758. with open(modules_file, encoding="utf-8") as modules_json_file:
  4759. mods = json.load(modules_json_file)
  4760. for mod in mods:
  4761. if mod["type"] == "sentence_transformers.models.Dense":
  4762. mod_path = mod["path"]
  4763. # check if model.safetensors file for Dense layer exists
  4764. model_tensors_file = self.dir_model / mod_path / "model.safetensors"
  4765. if model_tensors_file.is_file():
  4766. self.module_paths.append(mod_path)
  4767. # read config.json of the Dense layer to get in/out features
  4768. mod_conf_file = self.dir_model / mod_path / "config.json"
  4769. if mod_conf_file.is_file():
  4770. with open(mod_conf_file, encoding="utf-8") as mod_conf_json_file:
  4771. mod_conf = json.load(mod_conf_json_file)
  4772. # hparams dense_2_feat_out and dense_3_feat_in are required when loading model's dense weights
  4773. prefix = self._get_dense_prefix(mod_path)
  4774. if mod_conf["in_features"] is not None and mod_conf["out_features"] is not None:
  4775. self.dense_features_dims[prefix] = (mod_conf["in_features"], mod_conf["out_features"])
  4776. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  4777. from safetensors.torch import load_file
  4778. module_paths = list(self.module_paths)
  4779. for i, module_path in enumerate(module_paths):
  4780. tensors_file = self.dir_model / module_path / "model.safetensors"
  4781. local_tensors = load_file(tensors_file)
  4782. tensor_name = self._get_dense_prefix(module_path)
  4783. for name, local_tensor in local_tensors.items():
  4784. if not name.endswith(".weight"):
  4785. continue
  4786. orig_name = name.replace("linear", tensor_name)
  4787. name = self.map_tensor_name(orig_name)
  4788. yield name, local_tensor.clone()
  4789. @staticmethod
  4790. def _get_dense_prefix(module_path) -> str:
  4791. """Get the tensor name prefix for the Dense layer from module path."""
  4792. tensor_name = "dense_2" if module_path == "2_Dense" else "dense_3"
  4793. return tensor_name
  4794. def set_gguf_parameters(self):
  4795. super().set_gguf_parameters()
  4796. # Override the sliding window size as it gets adjusted by the Gemma3TextConfig
  4797. # constructor. We want to use the value from the original model's config.json.
  4798. # ref: https://github.com/huggingface/transformers/pull/40700
  4799. with open(self.dir_model / "config.json", "r", encoding="utf-8") as f:
  4800. config = json.load(f)
  4801. orig_sliding_window = config.get("sliding_window")
  4802. if orig_sliding_window is None:
  4803. raise ValueError("sliding_window not found in model config - this is required for the model")
  4804. logger.info(f"Using original sliding_window from config: {orig_sliding_window} "
  4805. f"instead of {self.hparams['sliding_window']}")
  4806. self.gguf_writer.add_sliding_window(orig_sliding_window)
  4807. if self.sentence_transformers_dense_modules:
  4808. for dense, dims in self.dense_features_dims.items():
  4809. logger.info(f"Setting dense layer {dense} in/out features to {dims}")
  4810. self.gguf_writer.add_dense_features_dims(dense, dims[0], dims[1])
  4811. self._try_set_pooling_type()
  4812. @ModelBase.register("Gemma3ForConditionalGeneration")
  4813. class Gemma3VisionModel(MmprojModel):
  4814. def set_gguf_parameters(self):
  4815. super().set_gguf_parameters()
  4816. hparams = self.hparams
  4817. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.GEMMA3)
  4818. # default values below are taken from HF tranformers code
  4819. self.gguf_writer.add_vision_attention_layernorm_eps(hparams.get("layer_norm_eps", 1e-6))
  4820. self.gguf_writer.add_vision_use_gelu(True)
  4821. # calculate proj_scale_factor (used by tinygemma3 test model)
  4822. image_seq_length = self.preprocessor_config.get("image_seq_length", 256)
  4823. n_per_side = int(image_seq_length ** 0.5)
  4824. image_size = self.hparams["image_size"]
  4825. patch_size = self.hparams["patch_size"]
  4826. proj_scale_factor = (image_size // patch_size) // n_per_side
  4827. if proj_scale_factor > 0 and proj_scale_factor != 4:
  4828. # we only need to write this if it's not the default value
  4829. # in this case, we are converting a test model
  4830. self.gguf_writer.add_vision_projector_scale_factor(proj_scale_factor)
  4831. def tensor_force_quant(self, name, new_name, bid, n_dims):
  4832. # related to https://github.com/ggml-org/llama.cpp/issues/13025
  4833. if "input_projection" in name:
  4834. return gguf.GGMLQuantizationType.F16
  4835. if ".embeddings." in name:
  4836. return gguf.GGMLQuantizationType.F32
  4837. return super().tensor_force_quant(name, new_name, bid, n_dims)
  4838. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4839. del bid # unused
  4840. if "vision_model.head." in name:
  4841. return [] # skip redundant tensors for tinygemma3
  4842. if name.startswith("multi_modal_projector.") or name.startswith("vision_tower.") \
  4843. or name.startswith("multimodal_projector.") or name.startswith("vision_model."):
  4844. # process vision tensors
  4845. name = name.replace("_weight", ".weight")
  4846. # correct norm value ; only this "soft_emb_norm" need to be corrected as it's part of Gemma projector
  4847. # the other norm values are part of SigLIP model, and they are already correct
  4848. # ref code: Gemma3RMSNorm
  4849. if "soft_emb_norm.weight" in name:
  4850. logger.info(f"Correcting norm value for '{name}'")
  4851. data_torch = data_torch + 1
  4852. return [(self.map_tensor_name(name), data_torch)]
  4853. return [] # skip other tensors
  4854. @ModelBase.register("Gemma3nForConditionalGeneration")
  4855. class Gemma3NModel(Gemma3Model):
  4856. model_arch = gguf.MODEL_ARCH.GEMMA3N
  4857. norm_shift = 0.0 # same value with Gemma3p5RMSNorm scale_shift on python code
  4858. _altup_proj: list[Tensor] = []
  4859. _altup_unembd: list[Tensor] = []
  4860. def __init__(self, *args, **kwargs):
  4861. super().__init__(*args, **kwargs)
  4862. assert self.hparams["altup_num_inputs"] == 4, "Current conversion only supports 4 altup inputs"
  4863. self._altup_proj = [
  4864. torch.Tensor(), # to be replaced
  4865. torch.Tensor(), # to be replaced
  4866. torch.Tensor(), # to be replaced
  4867. ]
  4868. self._altup_unembd = [
  4869. torch.Tensor(), # to be replaced
  4870. torch.Tensor(), # to be replaced
  4871. torch.Tensor(), # to be replaced
  4872. ]
  4873. def set_vocab(self):
  4874. super().set_vocab()
  4875. def set_gguf_parameters(self):
  4876. super().set_gguf_parameters()
  4877. self.gguf_writer.add_altup_active_idx(self.hparams["altup_active_idx"])
  4878. self.gguf_writer.add_altup_num_inputs(self.hparams["altup_num_inputs"])
  4879. self.gguf_writer.add_embedding_length_per_layer_input(self.hparams["hidden_size_per_layer_input"])
  4880. self.gguf_writer.add_shared_kv_layers(self.hparams["num_kv_shared_layers"])
  4881. activation_sparsity_scale = []
  4882. for s in self.hparams["activation_sparsity_pattern"]:
  4883. normal_dist = torch.distributions.normal.Normal(0, 1)
  4884. std_multiplier = normal_dist.icdf(torch.tensor(s, dtype=torch.float32))
  4885. activation_sparsity_scale.append(std_multiplier.item())
  4886. self.gguf_writer.add_activation_sparsity_scale(activation_sparsity_scale)
  4887. sliding_window_pattern = []
  4888. for t in self.hparams["layer_types"]:
  4889. sliding_window_pattern.append(t == "sliding_attention")
  4890. self.gguf_writer.add_sliding_window_pattern(sliding_window_pattern)
  4891. def _stack_matrices(self, matrices: list[Tensor]) -> Tensor | None:
  4892. has_all = all(m.numel() > 0 for m in matrices)
  4893. if not has_all:
  4894. return None
  4895. else:
  4896. return torch.stack(matrices, dim=0)
  4897. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4898. if name.endswith("_scale"):
  4899. name = name + ".weight"
  4900. # TODO: implement self.prediction_coefs.weight.clamp_(...)
  4901. if "language_model." not in name:
  4902. return [] # skip non-language model tensors
  4903. if "altup_unembed_projections" in name:
  4904. data_torch = data_torch.to(device="cpu")
  4905. if ".0." in name:
  4906. self._altup_unembd[0] = data_torch
  4907. elif ".1." in name:
  4908. self._altup_unembd[1] = data_torch
  4909. elif ".2." in name:
  4910. self._altup_unembd[2] = data_torch
  4911. else:
  4912. raise ValueError(f"Unknown name: {name}")
  4913. out = self._stack_matrices(self._altup_unembd)
  4914. if out is not None:
  4915. return [(self.map_tensor_name("model.altup_unembed_projections.weight"), out)]
  4916. else:
  4917. return []
  4918. if "altup_projections" in name:
  4919. data_torch = data_torch.to(device="cpu")
  4920. if ".0." in name:
  4921. self._altup_proj[0] = data_torch
  4922. elif ".1." in name:
  4923. self._altup_proj[1] = data_torch
  4924. elif ".2." in name:
  4925. self._altup_proj[2] = data_torch
  4926. else:
  4927. raise ValueError(f"Unknown name: {name}")
  4928. out = self._stack_matrices(self._altup_proj)
  4929. if out is not None:
  4930. return [(self.map_tensor_name("model.altup_projections.weight"), out)]
  4931. else:
  4932. return []
  4933. return super().modify_tensors(data_torch, name, bid)
  4934. @ModelBase.register("Starcoder2ForCausalLM")
  4935. class StarCoder2Model(TextModel):
  4936. model_arch = gguf.MODEL_ARCH.STARCODER2
  4937. @ModelBase.register("Rwkv6ForCausalLM")
  4938. class Rwkv6Model(TextModel):
  4939. model_arch = gguf.MODEL_ARCH.RWKV6
  4940. def set_vocab(self):
  4941. self._set_vocab_rwkv_world()
  4942. def set_gguf_parameters(self):
  4943. head_size = self.hparams["head_size"]
  4944. hidden_size = self.hparams["hidden_size"]
  4945. layer_norm_eps = self.hparams["layer_norm_epsilon"]
  4946. rescale_every_n_layers = self.hparams["rescale_every"]
  4947. intermediate_size = self.hparams["intermediate_size"] if self.hparams["intermediate_size"] is not None else int((hidden_size * 3.5) // 32 * 32)
  4948. time_mix_extra_dim = 64 if hidden_size == 4096 else 32
  4949. time_decay_extra_dim = 128 if hidden_size == 4096 else 64
  4950. # RWKV isn't context limited
  4951. self.gguf_writer.add_context_length(1048576)
  4952. self.gguf_writer.add_embedding_length(hidden_size)
  4953. self.gguf_writer.add_block_count(self.block_count)
  4954. self.gguf_writer.add_layer_norm_eps(layer_norm_eps)
  4955. self.gguf_writer.add_rescale_every_n_layers(rescale_every_n_layers)
  4956. self.gguf_writer.add_wkv_head_size(head_size)
  4957. self.gguf_writer.add_time_mix_extra_dim(time_mix_extra_dim)
  4958. self.gguf_writer.add_time_decay_extra_dim(time_decay_extra_dim)
  4959. self.gguf_writer.add_feed_forward_length(intermediate_size)
  4960. self.gguf_writer.add_file_type(self.ftype)
  4961. # required by llama.cpp, unused
  4962. self.gguf_writer.add_head_count(0)
  4963. lerp_weights: dict[int, dict[str, Tensor]] = {}
  4964. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4965. new_name = self.map_tensor_name(name)
  4966. if not (new_name.endswith(".weight") or new_name.endswith(".bias")):
  4967. new_name += ".weight"
  4968. if new_name.endswith("time_mix_w1.weight") or new_name.endswith("time_mix_decay_w1.weight") or new_name.endswith("time_mix_decay_w2.weight"):
  4969. data_torch = data_torch.transpose(0, 1)
  4970. if new_name.endswith("time_mix_w2.weight"):
  4971. data_torch = data_torch.permute(0, 2, 1)
  4972. if new_name.endswith("time_mix_decay.weight") or "lerp" in new_name:
  4973. data_torch = data_torch.squeeze()
  4974. try:
  4975. rescale_every_n_layers = self.hparams["rescale_every"]
  4976. if rescale_every_n_layers > 0:
  4977. if new_name.endswith("time_mix_output.weight") or new_name.endswith("channel_mix_value.weight"):
  4978. data_torch = data_torch.div_(2 ** int(bid // rescale_every_n_layers))
  4979. except KeyError:
  4980. pass
  4981. # concat time_mix_lerp weights to reduce some cpu overhead
  4982. # also reduces the number of tensors in the model
  4983. if bid is not None and "time_mix_lerp" in new_name and "time_mix_lerp_x" not in new_name:
  4984. try:
  4985. self.lerp_weights[bid][new_name] = data_torch
  4986. except KeyError:
  4987. self.lerp_weights[bid] = {new_name: data_torch}
  4988. if all(f"blk.{bid}.time_mix_lerp_{i}.weight" in self.lerp_weights[bid].keys() for i in ["w", "k", "v", "r", "g"]):
  4989. new_name = f"blk.{bid}.time_mix_lerp_fused.weight"
  4990. data = torch.stack([self.lerp_weights[bid][f"blk.{bid}.time_mix_lerp_{i}.weight"].unsqueeze(0) for i in ["w", "k", "v", "r", "g"]], dim=0).unsqueeze(1)
  4991. yield (new_name, data)
  4992. return
  4993. yield (new_name, data_torch)
  4994. @ModelBase.register("RWKV6Qwen2ForCausalLM")
  4995. class RWKV6Qwen2Model(Rwkv6Model):
  4996. model_arch = gguf.MODEL_ARCH.RWKV6QWEN2
  4997. def set_vocab(self):
  4998. try:
  4999. self._set_vocab_sentencepiece()
  5000. except FileNotFoundError:
  5001. self._set_vocab_gpt2()
  5002. def set_gguf_parameters(self):
  5003. num_attention_heads = self.hparams["num_attention_heads"]
  5004. num_key_value_heads = self.hparams["num_key_value_heads"]
  5005. hidden_size = self.hparams["hidden_size"]
  5006. head_size = hidden_size // num_attention_heads
  5007. rms_norm_eps = self.hparams["rms_norm_eps"]
  5008. intermediate_size = self.hparams["intermediate_size"]
  5009. time_mix_extra_dim = self.hparams.get("lora_rank_tokenshift", 64 if hidden_size >= 4096 else 32)
  5010. time_decay_extra_dim = self.hparams.get("lora_rank_decay", 128 if hidden_size >= 4096 else 64)
  5011. # RWKV isn't context limited
  5012. self.gguf_writer.add_context_length(1048576)
  5013. self.gguf_writer.add_embedding_length(hidden_size)
  5014. self.gguf_writer.add_block_count(self.block_count)
  5015. self.gguf_writer.add_wkv_head_size(head_size)
  5016. self.gguf_writer.add_time_mix_extra_dim(time_mix_extra_dim)
  5017. self.gguf_writer.add_time_decay_extra_dim(time_decay_extra_dim)
  5018. self.gguf_writer.add_feed_forward_length(intermediate_size)
  5019. self.gguf_writer.add_file_type(self.ftype)
  5020. # special parameters for time_mixing in RWKV6QWEN2
  5021. self.gguf_writer.add_layer_norm_rms_eps(rms_norm_eps)
  5022. self.gguf_writer.add_token_shift_count(1)
  5023. # RWKV6QWEN2 use grouped key/value like GQA
  5024. self.gguf_writer.add_head_count_kv(num_key_value_heads)
  5025. # required by llama.cpp, unused
  5026. self.gguf_writer.add_head_count(0)
  5027. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  5028. for new_name, data in super().modify_tensors(data_torch, name, bid):
  5029. if "time_mix_w1" in new_name or "time_mix_w2" in new_name:
  5030. data = data.view(5, -1, data.shape[-1])
  5031. # rwkv6qwen2 has a different order of rkvwg instead of the original wkvrg
  5032. # permute them here to avoid code changes
  5033. data = torch.stack([data[3], data[1], data[2], data[0], data[4]], dim=0).view(-1, data.shape[-1])
  5034. if "w2" in new_name:
  5035. data = data.view(5, -1, data.shape[-1])
  5036. yield (new_name, data)
  5037. continue
  5038. yield (new_name, data)
  5039. @ModelBase.register("Rwkv7ForCausalLM", "RWKV7ForCausalLM")
  5040. class Rwkv7Model(TextModel):
  5041. model_arch = gguf.MODEL_ARCH.RWKV7
  5042. def set_vocab(self):
  5043. self._set_vocab_rwkv_world()
  5044. def calc_lora_rank(self, hidden_size, exponent, multiplier):
  5045. return max(1, round(hidden_size ** exponent * multiplier / 32)) * 32
  5046. def set_gguf_parameters(self):
  5047. try:
  5048. head_size = self.hparams["head_size"]
  5049. layer_norm_eps = self.hparams["layer_norm_epsilon"]
  5050. except KeyError:
  5051. head_size = self.hparams["head_dim"]
  5052. layer_norm_eps = self.hparams["norm_eps"]
  5053. hidden_size = self.hparams["hidden_size"]
  5054. intermediate_size = self.hparams["intermediate_size"] if self.hparams["intermediate_size"] is not None else (hidden_size * 4)
  5055. # ICLR: In-Context-Learning-Rate
  5056. try:
  5057. lora_rank_decay = self.hparams["lora_rank_decay"] if self.hparams["lora_rank_decay"] is not None else self.calc_lora_rank(hidden_size, 0.5, 1.8)
  5058. lora_rank_iclr = self.hparams["lora_rank_iclr"] if self.hparams["lora_rank_iclr"] is not None else self.calc_lora_rank(hidden_size, 0.5, 1.8)
  5059. lora_rank_value_residual_mix = self.hparams["lora_rank_value_residual_mix"] if self.hparams["lora_rank_value_residual_mix"] is not None else self.calc_lora_rank(hidden_size, 0.5, 1.3)
  5060. lora_rank_gate = self.hparams["lora_rank_gate"] if self.hparams["lora_rank_gate"] is not None else self.calc_lora_rank(hidden_size, 0.8, 0.6)
  5061. except KeyError:
  5062. lora_rank_decay = self.hparams["decay_low_rank_dim"] if self.hparams["decay_low_rank_dim"] is not None else self.calc_lora_rank(hidden_size, 0.5, 1.8)
  5063. lora_rank_iclr = self.hparams["a_low_rank_dim"] if self.hparams["a_low_rank_dim"] is not None else self.calc_lora_rank(hidden_size, 0.5, 1.8)
  5064. lora_rank_value_residual_mix = self.hparams["v_low_rank_dim"] if self.hparams["v_low_rank_dim"] is not None else self.calc_lora_rank(hidden_size, 0.5, 1.3)
  5065. lora_rank_gate = self.hparams["gate_low_rank_dim"] if self.hparams["gate_low_rank_dim"] is not None else self.calc_lora_rank(hidden_size, 0.8, 0.6)
  5066. # RWKV isn't context limited
  5067. self.gguf_writer.add_context_length(1048576)
  5068. self.gguf_writer.add_embedding_length(hidden_size)
  5069. self.gguf_writer.add_block_count(self.block_count)
  5070. self.gguf_writer.add_layer_norm_eps(layer_norm_eps)
  5071. self.gguf_writer.add_wkv_head_size(head_size)
  5072. self.gguf_writer.add_decay_lora_rank(lora_rank_decay)
  5073. self.gguf_writer.add_iclr_lora_rank(lora_rank_iclr)
  5074. self.gguf_writer.add_value_residual_mix_lora_rank(lora_rank_value_residual_mix)
  5075. self.gguf_writer.add_gate_lora_rank(lora_rank_gate)
  5076. self.gguf_writer.add_feed_forward_length(intermediate_size)
  5077. self.gguf_writer.add_file_type(self.ftype)
  5078. # required by llama.cpp, unused
  5079. self.gguf_writer.add_head_count(0)
  5080. lerp_weights: dict[int, dict[str, Tensor]] = {}
  5081. lora_needs_transpose: bool = True
  5082. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  5083. # unify tensor names here to make life easier
  5084. name = name.replace("blocks", "layers").replace("ffn", "feed_forward")
  5085. name = name.replace("self_attn", "attention").replace("attn", "attention")
  5086. name = name.replace("time_mixer.", "")
  5087. # lora layer names in fla-hub's impl
  5088. if "_lora.lora" in name:
  5089. self.lora_needs_transpose = False
  5090. name = name.replace("_lora.lora.0.weight", "1.weight")
  5091. name = name.replace("_lora.lora.2.weight", "2.weight")
  5092. name = name.replace("_lora.lora.2.bias", "0.weight")
  5093. name = name.replace("feed_forward_norm", "ln2")
  5094. name = name.replace("g_norm", "ln_x")
  5095. if "attention.v" in name and "value" not in self.map_tensor_name(name) and bid == 0:
  5096. # some models have dummy v0/v1/v2 on first layer while others don't
  5097. # ignore them all since they are not used
  5098. return
  5099. wkv_has_gate = self.hparams.get("wkv_has_gate", True)
  5100. lerp_list = ["r", "w", "k", "v", "a", "g"] if wkv_has_gate else ["r", "w", "k", "v", "a"]
  5101. if bid is not None and "attention.x_" in name:
  5102. if "attention.x_x" in name:
  5103. # already concatenated
  5104. new_name = f"blk.{bid}.time_mix_lerp_fused.weight"
  5105. data = data_torch.reshape(len(lerp_list), 1, 1, -1)
  5106. yield (new_name, data)
  5107. else:
  5108. try:
  5109. self.lerp_weights[bid][name] = data_torch
  5110. except KeyError:
  5111. self.lerp_weights[bid] = {name: data_torch}
  5112. if all(f"model.layers.{bid}.attention.x_{i}" in self.lerp_weights[bid].keys() for i in lerp_list):
  5113. new_name = f"blk.{bid}.time_mix_lerp_fused.weight"
  5114. data = torch.stack([self.lerp_weights[bid][f"model.layers.{bid}.attention.x_{i}"] for i in lerp_list], dim=0)
  5115. yield (new_name, data)
  5116. return
  5117. else:
  5118. data_torch = data_torch.squeeze()
  5119. new_name = self.map_tensor_name(name)
  5120. if not (new_name.endswith(".weight") or new_name.endswith(".bias")):
  5121. new_name += ".weight"
  5122. if self.lora_needs_transpose and any(
  5123. new_name.endswith(t) for t in [
  5124. "time_mix_w1.weight", "time_mix_w2.weight",
  5125. "time_mix_a1.weight", "time_mix_a2.weight",
  5126. "time_mix_v1.weight", "time_mix_v2.weight",
  5127. "time_mix_g1.weight", "time_mix_g2.weight",
  5128. ]
  5129. ):
  5130. data_torch = data_torch.transpose(0, 1)
  5131. if 'r_k' in new_name:
  5132. data_torch = data_torch.flatten()
  5133. if bid == 0 and "time_mix_a" in new_name:
  5134. # dummy v0/v1/v2 on first layer
  5135. # easist way to make llama happy
  5136. yield (new_name.replace("time_mix_a", "time_mix_v"), data_torch)
  5137. yield (new_name, data_torch)
  5138. @ModelBase.register("RwkvHybridForCausalLM")
  5139. class ARwkv7Model(Rwkv7Model):
  5140. model_arch = gguf.MODEL_ARCH.ARWKV7
  5141. def set_vocab(self):
  5142. try:
  5143. self._set_vocab_sentencepiece()
  5144. except FileNotFoundError:
  5145. self._set_vocab_gpt2()
  5146. def set_gguf_parameters(self):
  5147. hidden_size = self.hparams["hidden_size"]
  5148. head_size = self.hparams["head_size"]
  5149. rms_norm_eps = self.hparams["rms_norm_eps"]
  5150. intermediate_size = self.hparams["intermediate_size"]
  5151. wkv_has_gate = self.hparams["wkv_has_gate"]
  5152. assert self.hparams["wkv_version"] == 7
  5153. # ICLR: In-Context-Learning-Rate
  5154. lora_rank_decay = 64
  5155. lora_rank_iclr = 64
  5156. lora_rank_value_residual_mix = 32
  5157. lora_rank_gate = 128 if wkv_has_gate else 0
  5158. # RWKV isn't context limited
  5159. self.gguf_writer.add_context_length(1048576)
  5160. self.gguf_writer.add_embedding_length(hidden_size)
  5161. self.gguf_writer.add_block_count(self.block_count)
  5162. self.gguf_writer.add_layer_norm_rms_eps(rms_norm_eps)
  5163. self.gguf_writer.add_wkv_head_size(head_size)
  5164. self.gguf_writer.add_decay_lora_rank(lora_rank_decay)
  5165. self.gguf_writer.add_iclr_lora_rank(lora_rank_iclr)
  5166. self.gguf_writer.add_value_residual_mix_lora_rank(lora_rank_value_residual_mix)
  5167. self.gguf_writer.add_gate_lora_rank(lora_rank_gate)
  5168. self.gguf_writer.add_feed_forward_length(intermediate_size)
  5169. self.gguf_writer.add_file_type(self.ftype)
  5170. self.gguf_writer.add_token_shift_count(1)
  5171. # required by llama.cpp, unused
  5172. self.gguf_writer.add_head_count(0)
  5173. @ModelBase.register("MambaForCausalLM", "MambaLMHeadModel", "FalconMambaForCausalLM")
  5174. class MambaModel(TextModel):
  5175. model_arch = gguf.MODEL_ARCH.MAMBA
  5176. def __init__(self, dir_model: Path, *args, **kwargs):
  5177. # Avoid using AutoConfig for hparams
  5178. hparams = kwargs.pop("hparams", None)
  5179. if hparams is None:
  5180. with open(dir_model / "config.json", "r", encoding="utf-8") as f:
  5181. hparams = json.load(f)
  5182. super().__init__(dir_model, *args, hparams=hparams, **kwargs)
  5183. def set_vocab(self):
  5184. vocab_size = self.hparams["vocab_size"]
  5185. # Round vocab size to next multiple of 8
  5186. pad_vocab = self.hparams.get("pad_vocab_size_multiple", 8)
  5187. # pad using ceiling division
  5188. # ref: https://stackoverflow.com/a/17511341/22827863
  5189. vocab_size = -(vocab_size // -pad_vocab) * pad_vocab
  5190. self.hparams["vocab_size"] = vocab_size
  5191. if (self.dir_model / "tokenizer.json").is_file():
  5192. self._set_vocab_gpt2()
  5193. elif (self.dir_model / "tokenizer.model").is_file():
  5194. self._set_vocab_sentencepiece()
  5195. else:
  5196. # Use the GPT-NeoX tokenizer when no tokenizer files are present
  5197. self._set_vocab_builtin("gpt-neox", vocab_size)
  5198. def set_gguf_parameters(self):
  5199. d_model = self.find_hparam(["hidden_size", "d_model"])
  5200. d_conv = self.find_hparam(["conv_kernel", "d_conv"], optional=True) or 4
  5201. d_inner = self.find_hparam(["intermediate_size", "d_inner"], optional=True) or 2 * d_model
  5202. d_state = self.find_hparam(["state_size", "d_state"], optional=True) or 16
  5203. # ceiling division
  5204. # ref: https://stackoverflow.com/a/17511341/22827863
  5205. # ref: https://github.com/state-spaces/mamba/blob/ce59daea3a090d011d6476c6e5b97f6d58ddad8b/mamba_ssm/modules/mamba_simple.py#L58
  5206. dt_rank = self.find_hparam(["time_step_rank", "dt_rank"], optional=True) or -(d_model // -16)
  5207. rms_norm_eps = self.find_hparam(["layer_norm_epsilon", "rms_norm_eps"], optional=True) or 1e-5
  5208. use_dt_b_c_norm = False
  5209. # For falconmamba we do apply RMS norm on B / DT and C layers
  5210. if self.find_hparam(["model_type"], optional=True) in ("falcon_mamba",):
  5211. use_dt_b_c_norm = True
  5212. # Fail early for models which don't have a block expansion factor of 2
  5213. assert d_inner == 2 * d_model
  5214. self.gguf_writer.add_context_length(2**20) # arbitrary value; for those who use the default
  5215. self.gguf_writer.add_embedding_length(d_model)
  5216. self.gguf_writer.add_feed_forward_length(0) # unused, but seemingly required when loading
  5217. self.gguf_writer.add_head_count(0) # unused, but seemingly required when loading
  5218. self.gguf_writer.add_block_count(self.block_count)
  5219. self.gguf_writer.add_ssm_conv_kernel(d_conv)
  5220. self.gguf_writer.add_ssm_inner_size(d_inner)
  5221. self.gguf_writer.add_ssm_state_size(d_state)
  5222. self.gguf_writer.add_ssm_time_step_rank(dt_rank)
  5223. self.gguf_writer.add_layer_norm_rms_eps(rms_norm_eps)
  5224. self.gguf_writer.add_ssm_dt_b_c_rms(use_dt_b_c_norm) # For classic Mamba we don't apply rms norm on B / DT layers
  5225. self.gguf_writer.add_file_type(self.ftype)
  5226. _tok_embd = None
  5227. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  5228. output_name = self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT)
  5229. tok_embd_name = self.format_tensor_name(gguf.MODEL_TENSOR.TOKEN_EMBD)
  5230. new_name = self.map_tensor_name(name)
  5231. if name.endswith(".A_log"):
  5232. logger.debug("A_log --> A ==> " + new_name)
  5233. data_torch = -torch.exp(data_torch)
  5234. # [4 1 8192 1] -> [4 8192 1 1]
  5235. if self.match_model_tensor_name(new_name, gguf.MODEL_TENSOR.SSM_CONV1D, bid):
  5236. data_torch = data_torch.squeeze()
  5237. # assuming token_embd.weight is seen before output.weight
  5238. if self._tok_embd is not None and new_name == output_name:
  5239. if torch.equal(self._tok_embd, data_torch):
  5240. logger.debug(f"{output_name} is equivalent to {tok_embd_name}, omitting")
  5241. return []
  5242. elif new_name == tok_embd_name:
  5243. self._tok_embd = data_torch
  5244. return [(new_name, data_torch)]
  5245. @ModelBase.register("Mamba2ForCausalLM")
  5246. class Mamba2Model(TextModel):
  5247. model_arch = gguf.MODEL_ARCH.MAMBA2
  5248. def __init__(self, dir_model: Path, *args, **kwargs):
  5249. # Avoid using AutoConfig for hparams
  5250. # It wrongly assumes all Mamba2 models are Mamba-Codestral-7B-v0.1
  5251. hparams = kwargs.pop("hparams", None)
  5252. if hparams is None:
  5253. with open(dir_model / "config.json", "r", encoding="utf-8") as f:
  5254. hparams = json.load(f)
  5255. super().__init__(dir_model, *args, hparams=hparams, **kwargs)
  5256. self.d_model = self.find_hparam(["hidden_size", "d_model", "dim"])
  5257. self.d_inner = self.find_hparam(["mamba_d_ssm", "intermediate_size", "d_inner"], optional=True) or 2 * self.d_model
  5258. self.n_group = self.find_hparam(["n_groups"], optional=True) or 1
  5259. def set_vocab(self):
  5260. vocab_size = self.hparams["vocab_size"]
  5261. # Round vocab size to next multiple of 16
  5262. pad_vocab = self.hparams.get("pad_vocab_size_multiple", 16)
  5263. # pad using ceiling division
  5264. # ref: https://stackoverflow.com/a/17511341/22827863
  5265. vocab_size = -(vocab_size // -pad_vocab) * pad_vocab
  5266. self.hparams["vocab_size"] = vocab_size
  5267. if (self.dir_model / "tokenizer.model").is_file():
  5268. self._set_vocab_sentencepiece()
  5269. elif (self.dir_model / "tokenizer.model.v3").is_file():
  5270. # mamba-codestral
  5271. raise NotImplementedError(f"Please rename {self.dir_model / 'tokenizer.model.v3'} to {self.dir_model / 'tokenizer.model'}")
  5272. elif (self.dir_model / "tokenizer.json").is_file():
  5273. self._set_vocab_gpt2()
  5274. else:
  5275. # Use the GPT-NeoX tokenizer when no tokenizer files are present
  5276. self._set_vocab_builtin("gpt-neox", vocab_size)
  5277. def set_gguf_parameters(self):
  5278. d_conv = self.find_hparam(["conv_kernel", "d_conv"], optional=True) or 4
  5279. d_state = self.find_hparam(["state_size", "d_state"], optional=True) or 128
  5280. head_dim = self.find_hparam(["mamba_d_head", "head_dim"], optional=True) or 64
  5281. rms_norm_eps = self.find_hparam(["layer_norm_epsilon", "rms_norm_eps"], optional=True) or 1e-5
  5282. # Fail early for models which don't have a block expansion factor of 2
  5283. # TODO: does this really matter?
  5284. # skip the assertion for FalconH1 Model
  5285. if self.model_arch != gguf.MODEL_ARCH.FALCON_H1:
  5286. assert self.d_inner == 2 * self.d_model
  5287. assert self.d_inner % head_dim == 0
  5288. self.gguf_writer.add_context_length(2**20) # arbitrary value; for those who use the default
  5289. self.gguf_writer.add_embedding_length(self.d_model)
  5290. self.gguf_writer.add_feed_forward_length(0) # unused, but seemingly required when loading
  5291. self.gguf_writer.add_head_count(0) # unused, but seemingly required when loading
  5292. self.gguf_writer.add_block_count(self.block_count)
  5293. self.gguf_writer.add_ssm_conv_kernel(d_conv)
  5294. self.gguf_writer.add_ssm_inner_size(self.d_inner)
  5295. self.gguf_writer.add_ssm_state_size(d_state)
  5296. self.gguf_writer.add_ssm_time_step_rank(self.d_inner // head_dim)
  5297. self.gguf_writer.add_ssm_group_count(self.n_group)
  5298. self.gguf_writer.add_layer_norm_rms_eps(rms_norm_eps)
  5299. self.gguf_writer.add_file_type(self.ftype)
  5300. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  5301. if name.startswith("model.backbone") or name.startswith("model.lm_head"):
  5302. # map Mamba-Codestral-7B-v0.1 tensor names to the names used by Mamba-2
  5303. name = name.removeprefix("model.")
  5304. if name.endswith(".dt_bias"):
  5305. name = name.rpartition(".dt_bias")[0] + ".dt_proj.bias"
  5306. new_name = self.map_tensor_name(name)
  5307. if self.match_model_tensor_name(new_name, gguf.MODEL_TENSOR.SSM_CONV1D, bid):
  5308. data_torch = data_torch.squeeze()
  5309. elif any(self.match_model_tensor_name(new_name, t, bid, suffix="") for t in [
  5310. gguf.MODEL_TENSOR.SSM_A,
  5311. gguf.MODEL_TENSOR.SSM_D,
  5312. ]):
  5313. # unsqueeze A to use similar shape semantics as Mamba-1
  5314. # (D is also unsqueezed, but for more straightforward broadcast internally)
  5315. data_torch = data_torch.reshape((*data_torch.shape, 1))
  5316. elif self.match_model_tensor_name(new_name, gguf.MODEL_TENSOR.SSM_NORM, bid):
  5317. data_torch = data_torch.reshape((self.n_group, self.d_inner // self.n_group))
  5318. if name.endswith(".A_log"):
  5319. logger.debug("A_log --> A ==> " + new_name)
  5320. data_torch = -torch.exp(data_torch)
  5321. yield (new_name, data_torch)
  5322. @ModelBase.register("JambaForCausalLM")
  5323. class JambaModel(TextModel):
  5324. model_arch = gguf.MODEL_ARCH.JAMBA
  5325. def set_vocab(self):
  5326. if (self.dir_model / "tokenizer.model").is_file():
  5327. self._set_vocab_sentencepiece()
  5328. else:
  5329. self._set_vocab_llama_hf()
  5330. self.gguf_writer.add_add_space_prefix(False)
  5331. def set_gguf_parameters(self):
  5332. d_model = self.find_hparam(["hidden_size", "mamba_d_model"])
  5333. d_conv = self.find_hparam(["mamba_d_conv"], optional=True) or 4
  5334. d_inner = self.hparams["mamba_expand"] * d_model
  5335. d_state = self.find_hparam(["mamba_d_state"], optional=True) or 16
  5336. # ceiling division
  5337. # ref: https://stackoverflow.com/a/17511341/22827863
  5338. # ref: https://github.com/state-spaces/mamba/blob/ce59daea3a090d011d6476c6e5b97f6d58ddad8b/mamba_ssm/modules/mamba_simple.py#L58
  5339. dt_rank = self.find_hparam(["mamba_dt_rank"], optional=True) or -(d_model // -16)
  5340. rms_norm_eps = self.find_hparam(["layer_norm_epsilon", "rms_norm_eps"], optional=True) or 1e-6
  5341. n_kv_head = self.hparams["num_key_value_heads"]
  5342. attn_offset = self.hparams["attn_layer_offset"]
  5343. attn_period = self.hparams["attn_layer_period"]
  5344. n_kv_vec = [0 for _ in range(attn_offset)] + [
  5345. n_kv_head if (i - attn_offset) % attn_period == 0 else 0 for i in range(attn_offset, self.block_count)
  5346. ]
  5347. self.gguf_writer.add_block_count(self.block_count)
  5348. self.gguf_writer.add_context_length(self.find_hparam(["max_position_embeddings", "n_ctx"]))
  5349. self.gguf_writer.add_embedding_length(d_model)
  5350. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  5351. self.gguf_writer.add_head_count(self.hparams["num_attention_heads"])
  5352. self.gguf_writer.add_head_count_kv(n_kv_vec)
  5353. self.gguf_writer.add_ssm_conv_kernel(d_conv)
  5354. self.gguf_writer.add_ssm_inner_size(d_inner)
  5355. self.gguf_writer.add_ssm_state_size(d_state)
  5356. self.gguf_writer.add_ssm_time_step_rank(dt_rank)
  5357. self.gguf_writer.add_layer_norm_rms_eps(rms_norm_eps)
  5358. self.gguf_writer.add_expert_count(self.hparams["num_experts"])
  5359. self.gguf_writer.add_expert_used_count(self.hparams["num_experts_per_tok"])
  5360. self.gguf_writer.add_file_type(self.ftype)
  5361. _experts: list[dict[str, Tensor]] | None = None
  5362. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  5363. # Mini-Jamba
  5364. name = name.replace(".moe.", ".feed_forward.")
  5365. if bid is not None:
  5366. moe_offset = self.hparams["expert_layer_offset"]
  5367. moe_period = self.hparams["expert_layer_period"]
  5368. if not (bid >= moe_offset and (bid - moe_offset) % moe_period == 0):
  5369. name = name.replace(".experts.0.", ".")
  5370. # process the experts separately
  5371. if ".feed_forward.experts." in name:
  5372. n_experts = self.hparams["num_experts"]
  5373. assert bid is not None
  5374. if self._experts is None:
  5375. self._experts = [{} for _ in range(self.block_count)]
  5376. self._experts[bid][name] = data_torch
  5377. if len(self._experts[bid]) >= n_experts * 3:
  5378. # merge the experts into a single 3d tensor
  5379. for wid in ["down_proj", "gate_proj", "up_proj"]:
  5380. datas: list[Tensor] = []
  5381. for xid in range(n_experts):
  5382. ename = f"model.layers.{bid}.feed_forward.experts.{xid}.{wid}.weight"
  5383. datas.append(self._experts[bid][ename])
  5384. del self._experts[bid][ename]
  5385. data_torch = torch.stack(datas, dim=0)
  5386. # using the same merged name as qwen2moe
  5387. merged_name = f"model.layers.{bid}.mlp.experts.{wid}.weight"
  5388. new_name = self.map_tensor_name(merged_name)
  5389. yield new_name, data_torch
  5390. return
  5391. new_name = self.map_tensor_name(name)
  5392. if self.match_model_tensor_name(new_name, gguf.MODEL_TENSOR.SSM_CONV1D, bid):
  5393. data_torch = data_torch.squeeze()
  5394. if name.endswith(".A_log"):
  5395. logger.debug("A_log --> A ==> " + new_name)
  5396. data_torch = -torch.exp(data_torch)
  5397. yield (new_name, data_torch)
  5398. def prepare_tensors(self):
  5399. super().prepare_tensors()
  5400. if self._experts is not None:
  5401. # flatten `list[dict[str, Tensor]]` into `list[str]`
  5402. experts = [k for d in self._experts for k in d.keys()]
  5403. if len(experts) > 0:
  5404. raise ValueError(f"Unprocessed experts: {experts}")
  5405. @ModelBase.register("CohereForCausalLM")
  5406. class CommandR2Model(TextModel):
  5407. model_arch = gguf.MODEL_ARCH.COMMAND_R
  5408. def __init__(self, *args, **kwargs):
  5409. super().__init__(*args, **kwargs)
  5410. # max_position_embeddings = 8192 in config.json but model was actually
  5411. # trained on 128k context length
  5412. # aya-23 models don't have model_max_length specified
  5413. self.hparams["max_position_embeddings"] = self.find_hparam(["model_max_length", "max_position_embeddings"])
  5414. def set_gguf_parameters(self):
  5415. super().set_gguf_parameters()
  5416. self.gguf_writer.add_logit_scale(self.hparams["logit_scale"])
  5417. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
  5418. @ModelBase.register("Cohere2ForCausalLM")
  5419. class Cohere2Model(TextModel):
  5420. model_arch = gguf.MODEL_ARCH.COHERE2
  5421. def set_gguf_parameters(self):
  5422. super().set_gguf_parameters()
  5423. self.gguf_writer.add_logit_scale(self.hparams["logit_scale"])
  5424. self.gguf_writer.add_sliding_window(self.hparams["sliding_window"])
  5425. self.gguf_writer.add_vocab_size(self.hparams["vocab_size"])
  5426. rotary_pct = self.hparams["rotary_pct"]
  5427. hidden_size = self.hparams["hidden_size"]
  5428. num_attention_heads = self.hparams["num_attention_heads"]
  5429. self.gguf_writer.add_rope_dimension_count(int(rotary_pct * (hidden_size // num_attention_heads)))
  5430. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
  5431. @ModelBase.register("OlmoForCausalLM")
  5432. @ModelBase.register("OLMoForCausalLM")
  5433. class OlmoModel(TextModel):
  5434. model_arch = gguf.MODEL_ARCH.OLMO
  5435. def set_gguf_parameters(self):
  5436. super().set_gguf_parameters()
  5437. self.gguf_writer.add_layer_norm_eps(1e-5)
  5438. clip_qkv = self.hparams.get("clip_qkv")
  5439. if clip_qkv is not None:
  5440. self.gguf_writer.add_clamp_kqv(clip_qkv)
  5441. # Same as super class, but permuting q_proj, k_proj
  5442. # Copied from: LlamaModel
  5443. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  5444. del bid # unused
  5445. n_head = self.hparams["num_attention_heads"]
  5446. n_kv_head = self.hparams.get("num_key_value_heads")
  5447. if name.endswith("q_proj.weight"):
  5448. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  5449. if name.endswith("k_proj.weight"):
  5450. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  5451. return [(self.map_tensor_name(name), data_torch)]
  5452. @ModelBase.register("SeedOssForCausalLM")
  5453. class SeedOssModel(TextModel):
  5454. model_arch = gguf.MODEL_ARCH.SEED_OSS
  5455. @ModelBase.register("Olmo2ForCausalLM")
  5456. @ModelBase.register("Olmo3ForCausalLM")
  5457. class Olmo2Model(TextModel):
  5458. model_arch = gguf.MODEL_ARCH.OLMO2
  5459. def set_gguf_parameters(self):
  5460. super().set_gguf_parameters()
  5461. if "sliding_window" in self.hparams:
  5462. self.gguf_writer.add_sliding_window(self.hparams["sliding_window"])
  5463. sliding_window_pattern = []
  5464. if "layer_types" in self.hparams:
  5465. sliding_window_pattern = [t == "sliding_attention" for t in self.hparams["layer_types"]]
  5466. else:
  5467. # Olmo2 does not use sliding window attention.
  5468. # Olmo3 defaults to using sliding window for all layers except every 4th.
  5469. for i in range(self.hparams["num_hidden_layers"]):
  5470. sliding_window_pattern.append((i + 1) % 4 != 0)
  5471. self.gguf_writer.add_sliding_window_pattern(sliding_window_pattern)
  5472. @ModelBase.register("OlmoeForCausalLM")
  5473. class OlmoeModel(TextModel):
  5474. model_arch = gguf.MODEL_ARCH.OLMOE
  5475. def set_gguf_parameters(self):
  5476. super().set_gguf_parameters()
  5477. self.gguf_writer.add_layer_norm_rms_eps(1e-5)
  5478. if (n_experts := self.hparams.get("num_experts")) is not None:
  5479. self.gguf_writer.add_expert_count(n_experts)
  5480. _experts: list[dict[str, Tensor]] | None = None
  5481. # Copied from: Qwen2MoeModel
  5482. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  5483. # process the experts separately
  5484. if name.find("experts") != -1:
  5485. n_experts = self.hparams["num_experts"]
  5486. assert bid is not None
  5487. if self._experts is None:
  5488. self._experts = [{} for _ in range(self.block_count)]
  5489. self._experts[bid][name] = data_torch
  5490. if len(self._experts[bid]) >= n_experts * 3:
  5491. tensors: list[tuple[str, Tensor]] = []
  5492. # merge the experts into a single 3d tensor
  5493. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  5494. datas: list[Tensor] = []
  5495. for xid in range(n_experts):
  5496. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  5497. datas.append(self._experts[bid][ename])
  5498. del self._experts[bid][ename]
  5499. data_torch = torch.stack(datas, dim=0)
  5500. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  5501. new_name = self.map_tensor_name(merged_name)
  5502. tensors.append((new_name, data_torch))
  5503. return tensors
  5504. else:
  5505. return []
  5506. return [(self.map_tensor_name(name), data_torch)]
  5507. # Copied from: Qwen2MoeModel
  5508. def prepare_tensors(self):
  5509. super().prepare_tensors()
  5510. if self._experts is not None:
  5511. # flatten `list[dict[str, Tensor]]` into `list[str]`
  5512. experts = [k for d in self._experts for k in d.keys()]
  5513. if len(experts) > 0:
  5514. raise ValueError(f"Unprocessed experts: {experts}")
  5515. @ModelBase.register("JinaBertModel", "JinaBertForMaskedLM")
  5516. class JinaBertV2Model(BertModel):
  5517. model_arch = gguf.MODEL_ARCH.JINA_BERT_V2
  5518. def set_vocab(self):
  5519. tokenizer_class = 'BertTokenizer'
  5520. with open(self.dir_model / "tokenizer_config.json", "r", encoding="utf-8") as f:
  5521. tokenizer_class = json.load(f)['tokenizer_class']
  5522. if tokenizer_class == 'BertTokenizer':
  5523. super().set_vocab()
  5524. elif tokenizer_class == 'RobertaTokenizer':
  5525. self._set_vocab_gpt2()
  5526. self.gguf_writer.add_token_type_count(2)
  5527. else:
  5528. raise NotImplementedError(f'Tokenizer {tokenizer_class} is not supported for JinaBertModel')
  5529. @ModelBase.register("OpenELMForCausalLM")
  5530. class OpenELMModel(TextModel):
  5531. model_arch = gguf.MODEL_ARCH.OPENELM
  5532. @staticmethod
  5533. def _make_divisible(v: float | int, divisor: int) -> int:
  5534. # ref: https://huggingface.co/apple/OpenELM-270M-Instruct/blob/eb111ff2e6724348e5b905984063d4064d4bc579/configuration_openelm.py#L34-L38
  5535. new_v = max(divisor, int(v + divisor / 2) // divisor * divisor)
  5536. # Make sure that round down does not go down by more than 10%.
  5537. if new_v < 0.9 * v:
  5538. new_v += divisor
  5539. return new_v
  5540. def __init__(self, *args, **kwargs):
  5541. super().__init__(*args, **kwargs)
  5542. ffn_multipliers: list[float] = self.hparams["ffn_multipliers"]
  5543. ffn_dim_divisor: int = self.hparams["ffn_dim_divisor"]
  5544. self._n_embd: int = self.hparams["model_dim"]
  5545. self._num_kv_heads: list[int] = self.hparams["num_kv_heads"]
  5546. self._num_query_heads: list[int] = self.hparams["num_query_heads"]
  5547. self._ffn_dims: list[int] = [
  5548. OpenELMModel._make_divisible(multiplier * self._n_embd, ffn_dim_divisor)
  5549. for multiplier in ffn_multipliers
  5550. ]
  5551. assert isinstance(self._num_kv_heads, list) and isinstance(self._num_kv_heads[0], int)
  5552. assert isinstance(self._num_query_heads, list) and isinstance(self._num_query_heads[0], int)
  5553. # Uses the tokenizer from meta-llama/Llama-2-7b-hf
  5554. def set_vocab(self):
  5555. try:
  5556. self._set_vocab_sentencepiece()
  5557. except FileNotFoundError:
  5558. self._set_vocab_builtin("llama-spm", self.hparams["vocab_size"])
  5559. def set_gguf_parameters(self):
  5560. n_embd = self._n_embd
  5561. head_dim = self.hparams["head_dim"]
  5562. rot_pct = 1.0
  5563. assert self.block_count == len(self._num_kv_heads)
  5564. assert self.block_count == len(self._num_query_heads)
  5565. assert self.block_count == len(self._ffn_dims)
  5566. self.gguf_writer.add_block_count(self.block_count)
  5567. self.gguf_writer.add_context_length(self.hparams["max_context_length"])
  5568. self.gguf_writer.add_embedding_length(n_embd)
  5569. self.gguf_writer.add_feed_forward_length(self._ffn_dims)
  5570. self.gguf_writer.add_head_count(self._num_query_heads)
  5571. self.gguf_writer.add_head_count_kv(self._num_kv_heads)
  5572. self.gguf_writer.add_rope_freq_base(self.hparams["rope_freq_constant"])
  5573. # https://huggingface.co/apple/OpenELM-270M-Instruct/blob/c401df2/modeling_openelm.py#L30
  5574. self.gguf_writer.add_layer_norm_rms_eps(1e-6)
  5575. self.gguf_writer.add_rope_dimension_count(int(rot_pct * head_dim))
  5576. self.gguf_writer.add_key_length(head_dim)
  5577. self.gguf_writer.add_value_length(head_dim)
  5578. self.gguf_writer.add_file_type(self.ftype)
  5579. def find_hparam(self, keys: Iterable[str], optional: bool = False) -> Any:
  5580. if "n_layers" in keys:
  5581. return self.hparams["num_transformer_layers"]
  5582. return super().find_hparam(keys, optional)
  5583. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  5584. # split ff
  5585. if bid is not None and name == f"transformer.layers.{bid}.ffn.proj_1.weight":
  5586. ff_dim = self._ffn_dims[bid]
  5587. yield (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_GATE, bid), data_torch[:ff_dim])
  5588. yield (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_UP, bid), data_torch[ff_dim:])
  5589. return
  5590. yield (self.map_tensor_name(name), data_torch)
  5591. @ModelBase.register("ArcticForCausalLM")
  5592. class ArcticModel(TextModel):
  5593. model_arch = gguf.MODEL_ARCH.ARCTIC
  5594. def set_vocab(self):
  5595. # The reason for using a custom implementation here is that the
  5596. # snowflake-arctic-instruct model redefined tokens 31998 and 31999 from
  5597. # tokenizer.model and used them as BOS and EOS instead of adding new tokens.
  5598. from sentencepiece import SentencePieceProcessor
  5599. tokenizer_path = self.dir_model / 'tokenizer.model'
  5600. if not tokenizer_path.is_file():
  5601. logger.error(f'Error: Missing {tokenizer_path}')
  5602. sys.exit(1)
  5603. # Read the whole vocabulary from the tokenizer.model file
  5604. tokenizer = SentencePieceProcessor()
  5605. tokenizer.LoadFromFile(str(tokenizer_path))
  5606. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  5607. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  5608. scores: list[float] = [-10000.0] * vocab_size
  5609. toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
  5610. for token_id in range(tokenizer.vocab_size()):
  5611. piece = tokenizer.IdToPiece(token_id)
  5612. text = piece.encode("utf-8")
  5613. score = tokenizer.GetScore(token_id)
  5614. toktype = SentencePieceTokenTypes.NORMAL
  5615. if tokenizer.IsUnknown(token_id):
  5616. toktype = SentencePieceTokenTypes.UNKNOWN
  5617. elif tokenizer.IsControl(token_id):
  5618. toktype = SentencePieceTokenTypes.CONTROL
  5619. elif tokenizer.IsUnused(token_id):
  5620. toktype = SentencePieceTokenTypes.UNUSED
  5621. elif tokenizer.IsByte(token_id):
  5622. toktype = SentencePieceTokenTypes.BYTE
  5623. tokens[token_id] = text
  5624. scores[token_id] = score
  5625. toktypes[token_id] = toktype
  5626. # Use the added_tokens_decoder field from tokeniser_config.json as the source
  5627. # of information about added/redefined tokens and modify them accordingly.
  5628. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  5629. if tokenizer_config_file.is_file():
  5630. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  5631. tokenizer_config_json = json.load(f)
  5632. if "added_tokens_decoder" in tokenizer_config_json:
  5633. added_tokens_decoder = tokenizer_config_json["added_tokens_decoder"]
  5634. for token_id, token_json in added_tokens_decoder.items():
  5635. token_id = int(token_id)
  5636. if token_id >= vocab_size:
  5637. logger.debug(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
  5638. continue
  5639. token_content = token_json["content"]
  5640. token_type = SentencePieceTokenTypes.USER_DEFINED
  5641. token_score = -10000.0
  5642. # Map unk_token to UNKNOWN, other special tokens to CONTROL
  5643. # Set the score to 0.0 as in the original tokenizer.model
  5644. if ("special" in token_json) and token_json["special"]:
  5645. if token_content == tokenizer_config_json["unk_token"]:
  5646. token_type = SentencePieceTokenTypes.UNKNOWN
  5647. else:
  5648. token_type = SentencePieceTokenTypes.CONTROL
  5649. token_score = 0.0
  5650. logger.info(f"Setting added token {token_id} to '{token_content}' (type: {token_type}, score: {token_score:.2f})")
  5651. tokens[token_id] = token_content.encode("utf-8")
  5652. toktypes[token_id] = token_type
  5653. scores[token_id] = token_score
  5654. self.gguf_writer.add_tokenizer_model("llama")
  5655. self.gguf_writer.add_tokenizer_pre("default")
  5656. self.gguf_writer.add_token_list(tokens)
  5657. self.gguf_writer.add_token_scores(scores)
  5658. self.gguf_writer.add_token_types(toktypes)
  5659. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  5660. special_vocab.add_to_gguf(self.gguf_writer)
  5661. def set_gguf_parameters(self):
  5662. super().set_gguf_parameters()
  5663. hparams = self.hparams
  5664. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  5665. self.gguf_writer.add_rope_dimension_count(hparams["hidden_size"] // hparams["num_attention_heads"])
  5666. _experts: list[dict[str, Tensor]] | None = None
  5667. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  5668. n_head = self.hparams["num_attention_heads"]
  5669. n_kv_head = self.hparams.get("num_key_value_heads")
  5670. if name.endswith("q_proj.weight"):
  5671. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  5672. if name.endswith("k_proj.weight"):
  5673. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  5674. # process the experts separately
  5675. if name.find("block_sparse_moe.experts") != -1:
  5676. n_experts = self.hparams["num_local_experts"]
  5677. assert bid is not None
  5678. if self._experts is None:
  5679. self._experts = [{} for _ in range(self.block_count)]
  5680. self._experts[bid][name] = data_torch
  5681. if len(self._experts[bid]) >= n_experts * 3:
  5682. tensors: list[tuple[str, Tensor]] = []
  5683. # merge the experts into a single 3d tensor
  5684. for wid in ["w1", "w2", "w3"]:
  5685. datas: list[Tensor] = []
  5686. for xid in range(n_experts):
  5687. ename = f"model.layers.{bid}.block_sparse_moe.experts.{xid}.{wid}.weight"
  5688. datas.append(self._experts[bid][ename])
  5689. del self._experts[bid][ename]
  5690. data_torch = torch.stack(datas, dim=0)
  5691. merged_name = f"layers.{bid}.feed_forward.experts.{wid}.weight"
  5692. new_name = self.map_tensor_name(merged_name)
  5693. tensors.append((new_name, data_torch))
  5694. return tensors
  5695. else:
  5696. return []
  5697. return [(self.map_tensor_name(name), data_torch)]
  5698. def prepare_tensors(self):
  5699. super().prepare_tensors()
  5700. if self._experts is not None:
  5701. # flatten `list[dict[str, Tensor]]` into `list[str]`
  5702. experts = [k for d in self._experts for k in d.keys()]
  5703. if len(experts) > 0:
  5704. raise ValueError(f"Unprocessed experts: {experts}")
  5705. @ModelBase.register("DeepseekForCausalLM")
  5706. class DeepseekModel(TextModel):
  5707. model_arch = gguf.MODEL_ARCH.DEEPSEEK
  5708. def set_vocab(self):
  5709. try:
  5710. self._set_vocab_sentencepiece()
  5711. except FileNotFoundError:
  5712. self._set_vocab_gpt2()
  5713. def set_gguf_parameters(self):
  5714. super().set_gguf_parameters()
  5715. hparams = self.hparams
  5716. if (rope_dim := hparams.get("head_dim")) is None:
  5717. rope_dim = hparams["hidden_size"] // hparams["num_attention_heads"]
  5718. self.gguf_writer.add_rope_dimension_count(rope_dim)
  5719. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
  5720. self.gguf_writer.add_leading_dense_block_count(hparams["first_k_dense_replace"])
  5721. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  5722. self.gguf_writer.add_expert_feed_forward_length(hparams["moe_intermediate_size"])
  5723. self.gguf_writer.add_expert_weights_scale(1.0)
  5724. self.gguf_writer.add_expert_count(hparams["n_routed_experts"])
  5725. self.gguf_writer.add_expert_shared_count(hparams["n_shared_experts"])
  5726. _experts: list[dict[str, Tensor]] | None = None
  5727. @staticmethod
  5728. def permute(weights: Tensor, n_head: int, n_head_kv: int | None):
  5729. if n_head_kv is not None and n_head != n_head_kv:
  5730. n_head = n_head_kv
  5731. return (weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  5732. .swapaxes(1, 2)
  5733. .reshape(weights.shape))
  5734. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  5735. n_head = self.hparams["num_attention_heads"]
  5736. n_kv_head = self.hparams.get("num_key_value_heads")
  5737. if name.endswith(("q_proj.weight", "q_proj.bias")):
  5738. data_torch = DeepseekModel.permute(data_torch, n_head, n_head)
  5739. if name.endswith(("k_proj.weight", "k_proj.bias")):
  5740. data_torch = DeepseekModel.permute(data_torch, n_head, n_kv_head)
  5741. # process the experts separately
  5742. if name.find("mlp.experts") != -1:
  5743. n_experts = self.hparams["n_routed_experts"]
  5744. assert bid is not None
  5745. if self._experts is None:
  5746. self._experts = [{} for _ in range(self.block_count)]
  5747. self._experts[bid][name] = data_torch
  5748. if len(self._experts[bid]) >= n_experts * 3:
  5749. tensors: list[tuple[str, Tensor]] = []
  5750. # merge the experts into a single 3d tensor
  5751. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  5752. datas: list[Tensor] = []
  5753. for xid in range(n_experts):
  5754. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  5755. datas.append(self._experts[bid][ename])
  5756. del self._experts[bid][ename]
  5757. data_torch = torch.stack(datas, dim=0)
  5758. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  5759. new_name = self.map_tensor_name(merged_name)
  5760. tensors.append((new_name, data_torch))
  5761. return tensors
  5762. else:
  5763. return []
  5764. return [(self.map_tensor_name(name), data_torch)]
  5765. def prepare_tensors(self):
  5766. super().prepare_tensors()
  5767. if self._experts is not None:
  5768. # flatten `list[dict[str, Tensor]]` into `list[str]`
  5769. experts = [k for d in self._experts for k in d.keys()]
  5770. if len(experts) > 0:
  5771. raise ValueError(f"Unprocessed experts: {experts}")
  5772. @ModelBase.register(
  5773. "DeepseekV2ForCausalLM",
  5774. "DeepseekV3ForCausalLM",
  5775. "KimiVLForConditionalGeneration",
  5776. )
  5777. class DeepseekV2Model(TextModel):
  5778. model_arch = gguf.MODEL_ARCH.DEEPSEEK2
  5779. def set_vocab(self):
  5780. try:
  5781. self._set_vocab_gpt2()
  5782. return
  5783. except Exception:
  5784. pass
  5785. from transformers import AutoTokenizer
  5786. tokenizer = AutoTokenizer.from_pretrained(self.dir_model, trust_remote_code=True)
  5787. tokpre = self.get_vocab_base_pre(tokenizer)
  5788. if tokpre == "kimi-k2":
  5789. # Build merges list using the approach similar to HunYuanMoE
  5790. merges = []
  5791. vocab = {}
  5792. mergeable_ranks = tokenizer.model._mergeable_ranks
  5793. for token, rank in mergeable_ranks.items():
  5794. vocab[QwenModel.token_bytes_to_string(token)] = rank
  5795. if len(token) == 1:
  5796. continue
  5797. merged = QwenModel.bpe(mergeable_ranks, token, max_rank=rank)
  5798. if len(merged) == 2:
  5799. merges.append(' '.join(map(QwenModel.token_bytes_to_string, merged)))
  5800. # Build token list
  5801. vocab_size = self.hparams["vocab_size"]
  5802. special_tokens = tokenizer.special_tokens
  5803. reverse_vocab = {id_ : encoded_tok for encoded_tok, id_ in {**vocab, **special_tokens}.items()}
  5804. tokens: list[str] = []
  5805. toktypes: list[int] = []
  5806. for i in range(vocab_size):
  5807. if i not in reverse_vocab:
  5808. tokens.append(f"[PAD{i}]")
  5809. toktypes.append(gguf.TokenType.UNUSED)
  5810. else:
  5811. token = reverse_vocab[i]
  5812. tokens.append(token)
  5813. if i in special_tokens.values():
  5814. toktypes.append(gguf.TokenType.CONTROL)
  5815. else:
  5816. toktypes.append(gguf.TokenType.NORMAL)
  5817. self.gguf_writer.add_tokenizer_model("gpt2")
  5818. self.gguf_writer.add_tokenizer_pre(tokpre)
  5819. self.gguf_writer.add_token_list(tokens)
  5820. self.gguf_writer.add_token_types(toktypes)
  5821. self.gguf_writer.add_token_merges(merges)
  5822. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=False)
  5823. special_vocab.add_to_gguf(self.gguf_writer)
  5824. else:
  5825. raise NotImplementedError(f"Deepseek pre-tokenizer {tokpre!r} is not supported yet!")
  5826. def set_gguf_parameters(self):
  5827. # note: deepseek2 using MLA converts into MQA (ie: GQA with 1 group)
  5828. self.hparams["num_key_value_heads"] = 1
  5829. super().set_gguf_parameters()
  5830. hparams = self.hparams
  5831. self.gguf_writer.add_leading_dense_block_count(hparams["first_k_dense_replace"])
  5832. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  5833. if "q_lora_rank" in hparams and hparams["q_lora_rank"] is not None:
  5834. self.gguf_writer.add_q_lora_rank(hparams["q_lora_rank"])
  5835. self.gguf_writer.add_kv_lora_rank(hparams["kv_lora_rank"])
  5836. # note: deepseek2 using MLA converts into MQA with larger heads, then decompresses to MHA
  5837. self.gguf_writer.add_key_length(hparams["kv_lora_rank"] + hparams["qk_rope_head_dim"])
  5838. self.gguf_writer.add_value_length(hparams["kv_lora_rank"])
  5839. self.gguf_writer.add_key_length_mla(hparams["qk_nope_head_dim"] + hparams["qk_rope_head_dim"])
  5840. self.gguf_writer.add_value_length_mla(hparams["v_head_dim"])
  5841. self.gguf_writer.add_expert_feed_forward_length(hparams["moe_intermediate_size"])
  5842. self.gguf_writer.add_expert_count(hparams["n_routed_experts"])
  5843. self.gguf_writer.add_expert_shared_count(hparams["n_shared_experts"])
  5844. self.gguf_writer.add_expert_weights_scale(hparams["routed_scaling_factor"])
  5845. self.gguf_writer.add_expert_weights_norm(hparams["norm_topk_prob"])
  5846. self.gguf_writer.add_rope_dimension_count(hparams["qk_rope_head_dim"])
  5847. if (rope_mscale_all := self.rope_parameters.get("mscale_all_dim")) is not None:
  5848. # [TAG_DEEPSEEK2_YARN_LOG_MUL_FIX]
  5849. # note: for legacy reasons, this is not consistent with the other usages of self.gguf_writer.add_rope_scaling_yarn_log_mul
  5850. # ref https://github.com/ggml-org/llama.cpp/pull/17945
  5851. self.gguf_writer.add_rope_scaling_yarn_log_mul(0.1 * rope_mscale_all)
  5852. _experts: list[dict[str, Tensor]] | None = None
  5853. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  5854. # skip vision tensors and remove "language_model." for Kimi-VL
  5855. if "vision_tower" in name or "multi_modal_projector" in name:
  5856. return []
  5857. if name.startswith("language_model."):
  5858. name = name.replace("language_model.", "")
  5859. # rename e_score_correction_bias tensors
  5860. if name.endswith("e_score_correction_bias"):
  5861. name = name.replace("e_score_correction_bias", "e_score_correction.bias")
  5862. # skip Multi-Token Prediction (MTP) layers
  5863. block_count = self.hparams["num_hidden_layers"]
  5864. match = re.match(r"model.layers.(\d+)", name)
  5865. if match and int(match.group(1)) >= block_count:
  5866. return []
  5867. # process the experts separately
  5868. if name.find("mlp.experts") != -1:
  5869. n_experts = self.hparams["n_routed_experts"]
  5870. assert bid is not None
  5871. if self._experts is None:
  5872. self._experts = [{} for _ in range(self.block_count)]
  5873. self._experts[bid][name] = data_torch
  5874. if len(self._experts[bid]) >= n_experts * 3:
  5875. tensors: list[tuple[str, Tensor]] = []
  5876. # merge the experts into a single 3d tensor
  5877. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  5878. datas: list[Tensor] = []
  5879. for xid in range(n_experts):
  5880. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  5881. datas.append(self._experts[bid][ename])
  5882. del self._experts[bid][ename]
  5883. data_torch = torch.stack(datas, dim=0)
  5884. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  5885. new_name = self.map_tensor_name(merged_name)
  5886. tensors.append((new_name, data_torch))
  5887. return tensors
  5888. else:
  5889. return []
  5890. # note: MLA with the absorption optimization, needs these two split and k_b_proj transposed
  5891. if name.endswith("kv_b_proj.weight"):
  5892. name_kb = name.replace("kv_b_proj", "k_b_proj")
  5893. name_vb = name.replace("kv_b_proj", "v_b_proj")
  5894. n_head_kv = self.hparams["num_key_value_heads"]
  5895. v_head_dim = self.hparams["v_head_dim"]
  5896. qk_nope_head_dim = self.hparams["qk_nope_head_dim"]
  5897. assert data_torch.shape[0] == n_head_kv * (v_head_dim + qk_nope_head_dim)
  5898. kv_b = data_torch.view(n_head_kv, v_head_dim + qk_nope_head_dim, data_torch.shape[-1])
  5899. k_b, v_b = torch.split(kv_b, [qk_nope_head_dim, v_head_dim], dim=1)
  5900. k_b = k_b.transpose(1, 2)
  5901. return [
  5902. (self.map_tensor_name(name_kb), k_b),
  5903. (self.map_tensor_name(name_vb), v_b)
  5904. ]
  5905. return [(self.map_tensor_name(name), data_torch)]
  5906. def prepare_tensors(self):
  5907. super().prepare_tensors()
  5908. if self._experts is not None:
  5909. # flatten `list[dict[str, Tensor]]` into `list[str]`
  5910. experts = [k for d in self._experts for k in d.keys()]
  5911. if len(experts) > 0:
  5912. raise ValueError(f"Unprocessed experts: {experts}")
  5913. @ModelBase.register("MiniMaxM2ForCausalLM")
  5914. class MiniMaxM2Model(TextModel):
  5915. model_arch = gguf.MODEL_ARCH.MINIMAXM2
  5916. _experts_cache: dict[int, dict[str, Tensor]] = {}
  5917. def __init__(self, *args, **kwargs):
  5918. super().__init__(*args, **kwargs)
  5919. self.hparams["num_experts"] = self.hparams["num_local_experts"]
  5920. def set_gguf_parameters(self):
  5921. super().set_gguf_parameters()
  5922. self.gguf_writer.add_expert_feed_forward_length(self.find_hparam(["intermediate_size"]))
  5923. self.gguf_writer.add_rope_dimension_count(self.find_hparam(["rotary_dim"]))
  5924. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None):
  5925. if name.endswith("e_score_correction_bias"):
  5926. name = name.replace("e_score_correction_bias", "e_score_correction.bias")
  5927. # merge expert weights
  5928. if 'experts' in name:
  5929. n_experts = self.hparams["num_experts"]
  5930. assert bid is not None
  5931. expert_cache = self._experts_cache.setdefault(bid, {})
  5932. expert_cache[name] = data_torch
  5933. expert_weights = ["w1", "w2", "w3"]
  5934. # not enough expert weights to merge
  5935. if len(expert_cache) < n_experts * len(expert_weights):
  5936. return []
  5937. tensors: list[tuple[str, Tensor]] = []
  5938. for w_name in expert_weights:
  5939. datas: list[Tensor] = []
  5940. for xid in range(n_experts):
  5941. ename = f"model.layers.{bid}.block_sparse_moe.experts.{xid}.{w_name}.weight"
  5942. datas.append(expert_cache[ename])
  5943. del expert_cache[ename]
  5944. data_torch = torch.stack(datas, dim=0)
  5945. merged_name = f"model.layers.{bid}.block_sparse_moe.experts.{w_name}.weight"
  5946. new_name = self.map_tensor_name(merged_name)
  5947. tensors.append((new_name, data_torch))
  5948. del self._experts_cache[bid]
  5949. return tensors
  5950. return super().modify_tensors(data_torch, name, bid)
  5951. @ModelBase.register("PanguEmbeddedForCausalLM")
  5952. class PanguEmbeddedModel(TextModel):
  5953. model_arch = gguf.MODEL_ARCH.PANGU_EMBED
  5954. def set_vocab(self):
  5955. self._set_vocab_sentencepiece()
  5956. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  5957. if tokenizer_config_file.is_file():
  5958. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  5959. tokenizer_config_json = json.load(f)
  5960. if "add_prefix_space" in tokenizer_config_json:
  5961. self.gguf_writer.add_add_space_prefix(tokenizer_config_json["add_prefix_space"])
  5962. def set_gguf_parameters(self):
  5963. super().set_gguf_parameters()
  5964. hparams = self.hparams
  5965. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  5966. # PanguEmbedded's hparam loaded from config.json without head_dim
  5967. if (rope_dim := hparams.get("head_dim")) is None:
  5968. rope_dim = hparams["hidden_size"] // hparams["num_attention_heads"]
  5969. self.gguf_writer.add_rope_dimension_count(rope_dim)
  5970. if hparams.get("head_dim") is None:
  5971. self.gguf_writer.add_key_length(rope_dim)
  5972. self.gguf_writer.add_value_length(rope_dim)
  5973. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  5974. if name == "lm_head.weight":
  5975. if self.hparams.get("tie_word_embeddings", False):
  5976. logger.info("Skipping tied output layer 'lm_head.weight'")
  5977. return []
  5978. return [(self.map_tensor_name(name), data_torch)]
  5979. @ModelBase.register("Dots1ForCausalLM")
  5980. class Dots1Model(Qwen2MoeModel):
  5981. model_arch = gguf.MODEL_ARCH.DOTS1
  5982. def __init__(self, *args, **kwargs):
  5983. super().__init__(*args, **kwargs)
  5984. self.hparams["num_experts"] = self.hparams["n_routed_experts"]
  5985. def set_gguf_parameters(self):
  5986. super().set_gguf_parameters()
  5987. self.gguf_writer.add_leading_dense_block_count(self.hparams["first_k_dense_replace"])
  5988. self.gguf_writer.add_expert_shared_count(self.hparams["n_shared_experts"])
  5989. self.gguf_writer.add_expert_weights_scale(self.hparams["routed_scaling_factor"])
  5990. self.gguf_writer.add_expert_weights_norm(self.hparams["norm_topk_prob"])
  5991. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None):
  5992. if name.endswith("e_score_correction_bias"):
  5993. name = name.replace("e_score_correction_bias", "e_score_correction.bias")
  5994. if "shared_experts" in name:
  5995. return [(self.map_tensor_name(name), data_torch)]
  5996. return super().modify_tensors(data_torch, name, bid)
  5997. @ModelBase.register("PLMForCausalLM")
  5998. class PLMModel(TextModel):
  5999. model_arch = gguf.MODEL_ARCH.PLM
  6000. def set_vocab(self):
  6001. self._set_vocab_gpt2()
  6002. def set_gguf_parameters(self):
  6003. super().set_gguf_parameters()
  6004. hparams = self.hparams
  6005. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  6006. self.gguf_writer.add_kv_lora_rank(hparams["kv_lora_rank"])
  6007. self.gguf_writer.add_key_length(hparams["qk_nope_head_dim"] + hparams["qk_rope_head_dim"])
  6008. self.gguf_writer.add_value_length(hparams["v_head_dim"])
  6009. self.gguf_writer.add_rope_dimension_count(hparams["qk_rope_head_dim"])
  6010. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  6011. return [(self.map_tensor_name(name), data_torch)]
  6012. def prepare_tensors(self):
  6013. super().prepare_tensors()
  6014. @ModelBase.register("T5WithLMHeadModel")
  6015. @ModelBase.register("T5ForConditionalGeneration")
  6016. @ModelBase.register("MT5ForConditionalGeneration")
  6017. @ModelBase.register("UMT5ForConditionalGeneration")
  6018. @ModelBase.register("UMT5Model")
  6019. class T5Model(TextModel):
  6020. model_arch = gguf.MODEL_ARCH.T5
  6021. def __init__(self, *args, **kwargs):
  6022. super().__init__(*args, **kwargs)
  6023. self.shared_token_embeddings_found = False
  6024. def set_vocab(self):
  6025. # to avoid TypeError: Descriptors cannot be created directly
  6026. # exception when importing sentencepiece_model_pb2
  6027. os.environ["PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION"] = "python"
  6028. from sentencepiece import SentencePieceProcessor
  6029. from sentencepiece import sentencepiece_model_pb2 as model
  6030. tokenizer_path = self.dir_model / 'tokenizer.model'
  6031. # many older models use spiece.model tokenizer model filename
  6032. if not tokenizer_path.is_file():
  6033. tokenizer_path = self.dir_model / 'spiece.model'
  6034. if not tokenizer_path.is_file():
  6035. raise FileNotFoundError(f"File not found: {tokenizer_path}")
  6036. sentencepiece_model = model.ModelProto() # pyright: ignore[reportAttributeAccessIssue]
  6037. sentencepiece_model.ParseFromString(open(tokenizer_path, "rb").read())
  6038. # some models like Pile-T5 family use BPE tokenizer instead of Unigram
  6039. if sentencepiece_model.trainer_spec.model_type == 2: # BPE
  6040. # assure the tokenizer model file name is correct
  6041. assert tokenizer_path.name == 'tokenizer.model'
  6042. return self._set_vocab_sentencepiece()
  6043. else:
  6044. assert sentencepiece_model.trainer_spec.model_type == 1 # UNIGRAM
  6045. add_prefix = sentencepiece_model.normalizer_spec.add_dummy_prefix
  6046. remove_whitespaces = sentencepiece_model.normalizer_spec.remove_extra_whitespaces
  6047. precompiled_charsmap = sentencepiece_model.normalizer_spec.precompiled_charsmap
  6048. tokenizer = SentencePieceProcessor()
  6049. tokenizer.LoadFromFile(str(tokenizer_path))
  6050. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  6051. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  6052. scores: list[float] = [-10000.0] * vocab_size
  6053. toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
  6054. for token_id in range(tokenizer.vocab_size()):
  6055. piece = tokenizer.IdToPiece(token_id)
  6056. text = piece.encode("utf-8")
  6057. score = tokenizer.GetScore(token_id)
  6058. toktype = SentencePieceTokenTypes.NORMAL
  6059. if tokenizer.IsUnknown(token_id):
  6060. toktype = SentencePieceTokenTypes.UNKNOWN
  6061. elif tokenizer.IsControl(token_id):
  6062. toktype = SentencePieceTokenTypes.CONTROL
  6063. elif tokenizer.IsUnused(token_id):
  6064. toktype = SentencePieceTokenTypes.UNUSED
  6065. elif tokenizer.IsByte(token_id):
  6066. toktype = SentencePieceTokenTypes.BYTE
  6067. tokens[token_id] = text
  6068. scores[token_id] = score
  6069. toktypes[token_id] = toktype
  6070. added_tokens_file = self.dir_model / 'added_tokens.json'
  6071. if added_tokens_file.is_file():
  6072. with open(added_tokens_file, "r", encoding="utf-8") as f:
  6073. added_tokens_json = json.load(f)
  6074. for key in added_tokens_json:
  6075. token_id = added_tokens_json[key]
  6076. if token_id >= vocab_size:
  6077. logger.warning(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
  6078. continue
  6079. tokens[token_id] = key.encode("utf-8")
  6080. scores[token_id] = -1000.0
  6081. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  6082. if vocab_size > len(tokens):
  6083. pad_count = vocab_size - len(tokens)
  6084. logger.debug(f"Padding vocab with {pad_count} token(s) - [PAD1] through [PAD{pad_count}]")
  6085. for i in range(1, pad_count + 1):
  6086. tokens.append(bytes(f"[PAD{i}]", encoding="utf-8"))
  6087. scores.append(-1000.0)
  6088. toktypes.append(SentencePieceTokenTypes.UNUSED)
  6089. self.gguf_writer.add_tokenizer_model("t5")
  6090. self.gguf_writer.add_tokenizer_pre("default")
  6091. self.gguf_writer.add_token_list(tokens)
  6092. self.gguf_writer.add_token_scores(scores)
  6093. self.gguf_writer.add_token_types(toktypes)
  6094. self.gguf_writer.add_add_space_prefix(add_prefix)
  6095. self.gguf_writer.add_remove_extra_whitespaces(remove_whitespaces)
  6096. if precompiled_charsmap:
  6097. self.gguf_writer.add_precompiled_charsmap(precompiled_charsmap)
  6098. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  6099. special_vocab.add_to_gguf(self.gguf_writer)
  6100. def set_gguf_parameters(self):
  6101. if (n_ctx := self.find_hparam(["n_positions"], optional=True)) is None:
  6102. logger.warning("Couldn't find context length in config.json, assuming default value of 512")
  6103. n_ctx = 512
  6104. self.gguf_writer.add_context_length(n_ctx)
  6105. self.gguf_writer.add_embedding_length(self.hparams["d_model"])
  6106. self.gguf_writer.add_feed_forward_length(self.hparams["d_ff"])
  6107. self.gguf_writer.add_block_count(self.block_count)
  6108. if (dec_n_layer := self.hparams.get("num_decoder_layers")) is not None:
  6109. self.gguf_writer.add_decoder_block_count(dec_n_layer)
  6110. self.gguf_writer.add_head_count(self.hparams["num_heads"])
  6111. self.gguf_writer.add_key_length(self.hparams["d_kv"])
  6112. self.gguf_writer.add_value_length(self.hparams["d_kv"])
  6113. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  6114. self.gguf_writer.add_relative_attn_buckets_count(self.hparams["relative_attention_num_buckets"])
  6115. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["layer_norm_epsilon"])
  6116. self.gguf_writer.add_decoder_start_token_id(self.hparams["decoder_start_token_id"])
  6117. self.gguf_writer.add_file_type(self.ftype)
  6118. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  6119. del bid # unused
  6120. # T5 based models contain shared token embeddings tensors saved randomly as either "encoder.embed_tokens.weight",
  6121. # "decoder.embed_tokens.weight" or "shared.weight" tensor. In some models there are even multiple of them stored
  6122. # in the safetensors files. We use the first tensor from these three as the token embeddings for both encoder
  6123. # and decoder and ignore the remaining ones.
  6124. if name in ["decoder.embed_tokens.weight", "encoder.embed_tokens.weight", "shared.weight"]:
  6125. if not self.shared_token_embeddings_found:
  6126. name = "shared.weight"
  6127. self.shared_token_embeddings_found = True
  6128. else:
  6129. logger.debug(f"Skipping shared tensor {name!r} in safetensors so that convert can end normally.")
  6130. return []
  6131. return [(self.map_tensor_name(name), data_torch)]
  6132. @ModelBase.register("T5EncoderModel")
  6133. class T5EncoderModel(TextModel):
  6134. model_arch = gguf.MODEL_ARCH.T5ENCODER
  6135. def __init__(self, *args, **kwargs):
  6136. super().__init__(*args, **kwargs)
  6137. self.shared_token_embeddings_found = False
  6138. def set_vocab(self):
  6139. # to avoid TypeError: Descriptors cannot be created directly
  6140. # exception when importing sentencepiece_model_pb2
  6141. os.environ["PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION"] = "python"
  6142. from sentencepiece import SentencePieceProcessor
  6143. from sentencepiece import sentencepiece_model_pb2 as model
  6144. tokenizer_path = self.dir_model / 'tokenizer.model'
  6145. # many older models use spiece.model tokenizer model filename
  6146. if not tokenizer_path.is_file():
  6147. tokenizer_path = self.dir_model / 'spiece.model'
  6148. if not tokenizer_path.is_file():
  6149. raise FileNotFoundError(f"File not found: {tokenizer_path}")
  6150. sentencepiece_model = model.ModelProto() # pyright: ignore[reportAttributeAccessIssue]
  6151. sentencepiece_model.ParseFromString(open(tokenizer_path, "rb").read())
  6152. # some models like Pile-T5 family use BPE tokenizer instead of Unigram
  6153. if sentencepiece_model.trainer_spec.model_type == 2: # BPE
  6154. # assure the tokenizer model file name is correct
  6155. assert tokenizer_path.name == 'tokenizer.model'
  6156. return self._set_vocab_sentencepiece()
  6157. else:
  6158. assert sentencepiece_model.trainer_spec.model_type == 1 # UNIGRAM
  6159. add_prefix = sentencepiece_model.normalizer_spec.add_dummy_prefix
  6160. remove_whitespaces = sentencepiece_model.normalizer_spec.remove_extra_whitespaces
  6161. precompiled_charsmap = sentencepiece_model.normalizer_spec.precompiled_charsmap
  6162. tokenizer = SentencePieceProcessor()
  6163. tokenizer.LoadFromFile(str(tokenizer_path))
  6164. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  6165. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  6166. scores: list[float] = [-10000.0] * vocab_size
  6167. toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
  6168. for token_id in range(tokenizer.vocab_size()):
  6169. piece = tokenizer.IdToPiece(token_id)
  6170. text = piece.encode("utf-8")
  6171. score = tokenizer.GetScore(token_id)
  6172. toktype = SentencePieceTokenTypes.NORMAL
  6173. if tokenizer.IsUnknown(token_id):
  6174. toktype = SentencePieceTokenTypes.UNKNOWN
  6175. elif tokenizer.IsControl(token_id):
  6176. toktype = SentencePieceTokenTypes.CONTROL
  6177. elif tokenizer.IsUnused(token_id):
  6178. toktype = SentencePieceTokenTypes.UNUSED
  6179. elif tokenizer.IsByte(token_id):
  6180. toktype = SentencePieceTokenTypes.BYTE
  6181. tokens[token_id] = text
  6182. scores[token_id] = score
  6183. toktypes[token_id] = toktype
  6184. added_tokens_file = self.dir_model / 'added_tokens.json'
  6185. if added_tokens_file.is_file():
  6186. with open(added_tokens_file, "r", encoding="utf-8") as f:
  6187. added_tokens_json = json.load(f)
  6188. for key in added_tokens_json:
  6189. token_id = added_tokens_json[key]
  6190. if token_id >= vocab_size:
  6191. logger.warning(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
  6192. continue
  6193. tokens[token_id] = key.encode("utf-8")
  6194. scores[token_id] = -1000.0
  6195. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  6196. if vocab_size > len(tokens):
  6197. pad_count = vocab_size - len(tokens)
  6198. logger.debug(f"Padding vocab with {pad_count} token(s) - [PAD1] through [PAD{pad_count}]")
  6199. for i in range(1, pad_count + 1):
  6200. tokens.append(bytes(f"[PAD{i}]", encoding="utf-8"))
  6201. scores.append(-1000.0)
  6202. toktypes.append(SentencePieceTokenTypes.UNUSED)
  6203. self.gguf_writer.add_tokenizer_model("t5")
  6204. self.gguf_writer.add_tokenizer_pre("default")
  6205. self.gguf_writer.add_token_list(tokens)
  6206. self.gguf_writer.add_token_scores(scores)
  6207. self.gguf_writer.add_token_types(toktypes)
  6208. self.gguf_writer.add_add_space_prefix(add_prefix)
  6209. self.gguf_writer.add_remove_extra_whitespaces(remove_whitespaces)
  6210. if precompiled_charsmap:
  6211. self.gguf_writer.add_precompiled_charsmap(precompiled_charsmap)
  6212. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  6213. special_vocab.add_to_gguf(self.gguf_writer)
  6214. def set_gguf_parameters(self):
  6215. if (n_ctx := self.find_hparam(["n_positions"], optional=True)) is None:
  6216. logger.warning("Couldn't find context length in config.json, assuming default value of 512")
  6217. n_ctx = 512
  6218. self.gguf_writer.add_context_length(n_ctx)
  6219. self.gguf_writer.add_embedding_length(self.hparams["d_model"])
  6220. self.gguf_writer.add_feed_forward_length(self.hparams["d_ff"])
  6221. self.gguf_writer.add_block_count(self.block_count)
  6222. self.gguf_writer.add_head_count(self.hparams["num_heads"])
  6223. self.gguf_writer.add_key_length(self.hparams["d_kv"])
  6224. self.gguf_writer.add_value_length(self.hparams["d_kv"])
  6225. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  6226. self.gguf_writer.add_relative_attn_buckets_count(self.hparams["relative_attention_num_buckets"])
  6227. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["layer_norm_epsilon"])
  6228. self.gguf_writer.add_file_type(self.ftype)
  6229. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  6230. del bid # unused
  6231. # T5 based models contain shared token embeddings tensors saved randomly as either "encoder.embed_tokens.weight",
  6232. # "decoder.embed_tokens.weight" or "shared.weight" tensor. In some models there are even multiple of them stored
  6233. # in the safetensors files. We use the first tensor from these three as the token embeddings for both encoder
  6234. # and decoder and ignore the remaining ones.
  6235. if name in ["decoder.embed_tokens.weight", "encoder.embed_tokens.weight", "shared.weight"]:
  6236. if not self.shared_token_embeddings_found:
  6237. name = "shared.weight"
  6238. self.shared_token_embeddings_found = True
  6239. else:
  6240. logger.debug(f"Skipping shared tensor {name!r} in safetensors so that convert can end normally.")
  6241. return []
  6242. return [(self.map_tensor_name(name), data_torch)]
  6243. @ModelBase.register("JAISLMHeadModel")
  6244. class JaisModel(TextModel):
  6245. model_arch = gguf.MODEL_ARCH.JAIS
  6246. def __init__(self, *args, **kwargs):
  6247. super().__init__(*args, **kwargs)
  6248. # SwigLU activation
  6249. assert self.hparams["activation_function"] == "swiglu"
  6250. # ALiBi position embedding
  6251. assert self.hparams["position_embedding_type"] == "alibi"
  6252. # Embeddings scale
  6253. self.embeddings_scale = 1.0
  6254. if 'mup_embeddings_scale' in self.hparams:
  6255. self.embeddings_scale = self.hparams['mup_embeddings_scale']
  6256. elif 'embeddings_scale' in self.hparams:
  6257. self.embeddings_scale = self.hparams['embeddings_scale']
  6258. else:
  6259. assert False
  6260. self.width_scale = 1.0
  6261. if 'mup_output_alpha' in self.hparams:
  6262. assert 'mup_width_scale' in self.hparams
  6263. self.width_scale = self.hparams['mup_output_alpha'] * self.hparams['mup_width_scale']
  6264. elif 'width_scale' in self.hparams:
  6265. self.width_scale = self.hparams['width_scale']
  6266. else:
  6267. assert False
  6268. self.max_alibi_bias = 8.0
  6269. def set_vocab(self):
  6270. self._set_vocab_gpt2()
  6271. def set_gguf_parameters(self):
  6272. self.gguf_writer.add_block_count(self.block_count)
  6273. self.gguf_writer.add_context_length(self.hparams["n_positions"])
  6274. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  6275. self.gguf_writer.add_feed_forward_length(self.hparams["n_inner"])
  6276. self.gguf_writer.add_head_count(self.hparams["n_head"])
  6277. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  6278. self.gguf_writer.add_file_type(self.ftype)
  6279. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  6280. del bid # unused
  6281. tensors: list[tuple[str, Tensor]] = []
  6282. # we don't need these
  6283. if name.endswith((".attn.bias")):
  6284. return tensors
  6285. if name.endswith(("relative_pe.slopes")):
  6286. # Calculate max ALiBi bias (this is the inverse of the ALiBi calculation)
  6287. # Some other models has max_alibi_bias spelled out explicitly in the hyperparams,
  6288. # but Jais's PyTorch model simply precalculates the slope values and places them
  6289. # in relative_pes.slopes
  6290. n_head_closest_log2 = 2 ** math.floor(math.log2(self.hparams["n_head"]))
  6291. first_val = float(data_torch[0].item())
  6292. self.max_alibi_bias = -round(math.log2(first_val) * n_head_closest_log2)
  6293. return tensors
  6294. if name.endswith((".c_attn.weight", ".c_proj.weight", ".c_fc.weight", ".c_fc2.weight")):
  6295. data_torch = data_torch.transpose(1, 0)
  6296. new_name = self.map_tensor_name(name)
  6297. if new_name == self.format_tensor_name(gguf.MODEL_TENSOR.TOKEN_EMBD):
  6298. tensors.append((new_name, data_torch * self.embeddings_scale))
  6299. elif new_name == self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT):
  6300. tensors.append((new_name, data_torch * self.width_scale))
  6301. else:
  6302. tensors.append((new_name, data_torch))
  6303. return tensors
  6304. def prepare_tensors(self):
  6305. super().prepare_tensors()
  6306. self.gguf_writer.add_max_alibi_bias(self.max_alibi_bias)
  6307. @ModelBase.register("Glm4ForCausalLM", "Glm4vForConditionalGeneration")
  6308. class Glm4Model(TextModel):
  6309. model_arch = gguf.MODEL_ARCH.GLM4
  6310. def set_vocab(self):
  6311. from transformers import AutoTokenizer
  6312. tokenizer = AutoTokenizer.from_pretrained(self.dir_model, trust_remote_code=True)
  6313. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=True)
  6314. tokens, toktypes, tokpre = self.get_vocab_base()
  6315. self.gguf_writer.add_tokenizer_model("gpt2")
  6316. self.gguf_writer.add_tokenizer_pre(tokpre)
  6317. self.gguf_writer.add_token_list(tokens)
  6318. self.gguf_writer.add_token_types(toktypes)
  6319. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=True)
  6320. special_vocab._set_special_token("eos", tokenizer.get_added_vocab()["<|endoftext|>"])
  6321. special_vocab._set_special_token("eot", tokenizer.get_added_vocab()["<|user|>"])
  6322. special_vocab._set_special_token("unk", tokenizer.get_added_vocab()["<|endoftext|>"])
  6323. special_vocab._set_special_token("bos", tokenizer.get_added_vocab()["<|endoftext|>"])
  6324. special_vocab.add_to_gguf(self.gguf_writer)
  6325. def set_gguf_parameters(self):
  6326. super().set_gguf_parameters()
  6327. if (rope_dim := self.hparams.get("head_dim")) is None:
  6328. rope_dim = self.hparams["hidden_size"] // self.hparams["num_attention_heads"]
  6329. self.gguf_writer.add_rope_dimension_count(int(rope_dim * self.hparams.get("partial_rotary_factor", 0.5)))
  6330. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  6331. if name.startswith("model.visual."): # ignore visual part of Glm4v
  6332. return []
  6333. elif name.startswith("model.language_model."):
  6334. name = name.replace("language_model.", "") # for Glm4v
  6335. return super().modify_tensors(data_torch, name, bid)
  6336. @ModelBase.register("Glm4MoeForCausalLM")
  6337. class Glm4MoeModel(TextModel):
  6338. model_arch = gguf.MODEL_ARCH.GLM4_MOE
  6339. def __init__(self, *args, **kwargs):
  6340. super().__init__(*args, **kwargs)
  6341. # GLM4_MOE has num_hidden_layers + 1 actual layers (including NextN layer)
  6342. self.block_count = self.hparams["num_hidden_layers"] + self.hparams.get("num_nextn_predict_layers", 0)
  6343. self.tensor_map = gguf.get_tensor_name_map(self.model_arch, self.block_count)
  6344. def set_vocab(self):
  6345. from transformers import AutoTokenizer
  6346. tokenizer = AutoTokenizer.from_pretrained(self.dir_model)
  6347. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=True)
  6348. tokens, toktypes, tokpre = self.get_vocab_base()
  6349. self.gguf_writer.add_tokenizer_model("gpt2")
  6350. self.gguf_writer.add_tokenizer_pre(tokpre)
  6351. self.gguf_writer.add_token_list(tokens)
  6352. self.gguf_writer.add_token_types(toktypes)
  6353. # Special tokens
  6354. # Note: Using <|endoftext|> (151329) for eot causes endless generation
  6355. special_vocab._set_special_token("bos", tokenizer.get_added_vocab()["[gMASK]"]) # 151331
  6356. special_vocab._set_special_token("eot", tokenizer.get_added_vocab()["<|user|>"]) # 151336
  6357. special_vocab._set_special_token("unk", tokenizer.get_added_vocab()["<|endoftext|>"]) # 151329
  6358. special_vocab._set_special_token("eom", tokenizer.get_added_vocab()["<|observation|>"]) # 151338
  6359. special_vocab.add_to_gguf(self.gguf_writer)
  6360. def set_gguf_parameters(self):
  6361. super().set_gguf_parameters()
  6362. if (rope_dim := self.hparams.get("head_dim")) is None:
  6363. rope_dim = (
  6364. self.hparams["hidden_size"] // self.hparams["num_attention_heads"]
  6365. )
  6366. self.gguf_writer.add_rope_dimension_count(
  6367. int(rope_dim * self.hparams.get("partial_rotary_factor", 0.5))
  6368. )
  6369. # MoE parameters - Use only routed expert count (shared experts handled separately)
  6370. if (n_routed_experts := self.hparams.get("n_routed_experts")) is not None:
  6371. self.gguf_writer.add_expert_count(n_routed_experts)
  6372. if (moe_intermediate_size := self.hparams.get("moe_intermediate_size")) is not None:
  6373. self.gguf_writer.add_expert_feed_forward_length(moe_intermediate_size)
  6374. if (n_shared_experts := self.hparams.get("n_shared_experts")) is not None:
  6375. self.gguf_writer.add_expert_shared_count(n_shared_experts)
  6376. if (first_k_dense_replace := self.hparams.get("first_k_dense_replace")) is not None:
  6377. self.gguf_writer.add_leading_dense_block_count(first_k_dense_replace)
  6378. # Expert gating function (sigmoid for GLM4_MOE)
  6379. self.gguf_writer.add_expert_gating_func(gguf.ExpertGatingFuncType.SIGMOID)
  6380. # Routed scaling factor
  6381. if (routed_scaling_factor := self.hparams.get("routed_scaling_factor")) is not None:
  6382. self.gguf_writer.add_expert_weights_scale(routed_scaling_factor)
  6383. # Normalise topk probabilities
  6384. if (norm_topk_prob := self.hparams.get("norm_topk_prob")) is not None:
  6385. self.gguf_writer.add_expert_weights_norm(norm_topk_prob)
  6386. # NextN/MTP prediction layers
  6387. if (num_nextn_predict_layers := self.hparams.get("num_nextn_predict_layers")) is not None:
  6388. self.gguf_writer.add_nextn_predict_layers(num_nextn_predict_layers)
  6389. _experts: list[dict[str, Tensor]] | None = None
  6390. def modify_tensors(
  6391. self, data_torch: Tensor, name: str, bid: int | None
  6392. ) -> Iterable[tuple[str, Tensor]]:
  6393. if name.startswith("model.visual."): # ignore visual part
  6394. return []
  6395. elif name.startswith("model.language_model."):
  6396. name = name.replace("language_model.", "") # for multimodal variants
  6397. # Handle main token embedding (but not layer-specific NextN embeddings)
  6398. if name == "model.embed_tokens.weight" and ".layers." not in name:
  6399. return [(self.map_tensor_name("token_embd.weight"), data_torch)]
  6400. # Handle routed experts
  6401. if name.find("mlp.experts") != -1:
  6402. n_experts = self.hparams["n_routed_experts"]
  6403. assert bid is not None
  6404. if self._experts is None:
  6405. self._experts = [{} for _ in range(self.block_count)]
  6406. self._experts[bid][name] = data_torch
  6407. if len(self._experts[bid]) >= n_experts * 3:
  6408. tensors: list[tuple[str, Tensor]] = []
  6409. # merge the experts into a single 3d tensor
  6410. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  6411. datas: list[Tensor] = []
  6412. for xid in range(n_experts):
  6413. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  6414. datas.append(self._experts[bid][ename])
  6415. del self._experts[bid][ename]
  6416. data_torch = torch.stack(datas, dim=0)
  6417. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  6418. new_name = self.map_tensor_name(merged_name)
  6419. tensors.append((new_name, data_torch))
  6420. return tensors
  6421. else:
  6422. return []
  6423. if name.endswith("e_score_correction_bias"):
  6424. name = name.replace("e_score_correction_bias", "e_score_correction.bias")
  6425. new_name = self.map_tensor_name(name)
  6426. return [(new_name, data_torch)]
  6427. def prepare_tensors(self):
  6428. super().prepare_tensors()
  6429. if self._experts is not None:
  6430. # flatten `list[dict[str, Tensor]]` into `list[str]`
  6431. experts = [k for d in self._experts for k in d.keys()]
  6432. if len(experts) > 0:
  6433. raise ValueError(f"Unprocessed experts: {experts}")
  6434. @ModelBase.register("GlmForCausalLM", "ChatGLMModel", "ChatGLMForConditionalGeneration")
  6435. class ChatGLMModel(TextModel):
  6436. model_arch = gguf.MODEL_ARCH.CHATGLM
  6437. def set_vocab_chatglm3(self):
  6438. dir_model = self.dir_model
  6439. hparams = self.hparams
  6440. tokens: list[bytes] = []
  6441. toktypes: list[int] = []
  6442. scores: list[float] = []
  6443. from transformers import AutoTokenizer
  6444. tokenizer = AutoTokenizer.from_pretrained(dir_model, trust_remote_code=True)
  6445. vocab_size = hparams.get("padded_vocab_size", len(tokenizer.get_vocab()))
  6446. assert max(tokenizer.get_vocab().values()) < vocab_size
  6447. role_special_tokens = ["<|system|>", "<|user|>", "<|assistant|>", "<|observation|>"]
  6448. special_tokens = ["[MASK]", "[gMASK]", "[sMASK]", "sop", "eop"] + role_special_tokens
  6449. for token_id in range(vocab_size):
  6450. piece = tokenizer._convert_id_to_token(token_id)
  6451. if token_id == 0:
  6452. piece = "<unk>"
  6453. elif token_id == 1:
  6454. piece = "<bos>"
  6455. elif token_id == 2:
  6456. piece = "<eos>"
  6457. text = piece.encode("utf-8")
  6458. score = 0.0
  6459. # Referencing the tokenizer Python implementation(https://huggingface.co/THUDM/chatglm3-6b/blob/main/tokenization_chatglm.py),
  6460. # it is only valid if it is less than tokenizer.tokenizer.sp_model.vocab_size()
  6461. if len(piece) != 0 and token_id < tokenizer.tokenizer.sp_model.vocab_size():
  6462. score = tokenizer.tokenizer.sp_model.get_score(token_id)
  6463. if token_id >= tokenizer.tokenizer.sp_model.vocab_size():
  6464. if piece in special_tokens:
  6465. toktype = SentencePieceTokenTypes.CONTROL
  6466. elif len(piece) == 0:
  6467. text = f"[PAD{token_id}]".encode("utf-8")
  6468. toktype = SentencePieceTokenTypes.UNUSED
  6469. else:
  6470. toktype = SentencePieceTokenTypes.USER_DEFINED
  6471. tokens.append(text)
  6472. scores.append(score)
  6473. toktypes.append(toktype)
  6474. continue
  6475. toktype = SentencePieceTokenTypes.NORMAL
  6476. if tokenizer.tokenizer.sp_model.is_unknown(token_id):
  6477. toktype = SentencePieceTokenTypes.UNKNOWN
  6478. elif tokenizer.tokenizer.sp_model.is_control(token_id):
  6479. toktype = SentencePieceTokenTypes.CONTROL
  6480. elif tokenizer.tokenizer.sp_model.is_unused(token_id):
  6481. toktype = SentencePieceTokenTypes.UNUSED
  6482. elif tokenizer.tokenizer.sp_model.is_byte(token_id):
  6483. toktype = SentencePieceTokenTypes.BYTE
  6484. tokens.append(text)
  6485. scores.append(score)
  6486. toktypes.append(toktype)
  6487. self.gguf_writer.add_tokenizer_model("llama")
  6488. # glm3 needs prefix and suffix formatted as:
  6489. # prompt = "[gMASK]sop<|user|>\n" + prompt + "<|assistant|>"
  6490. self.gguf_writer.add_tokenizer_pre("chatglm-spm")
  6491. self.gguf_writer.add_token_list(tokens)
  6492. self.gguf_writer.add_token_scores(scores)
  6493. self.gguf_writer.add_token_types(toktypes)
  6494. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  6495. special_vocab.add_to_gguf(self.gguf_writer)
  6496. @staticmethod
  6497. def token_bytes_to_string(b):
  6498. from transformers.models.gpt2.tokenization_gpt2 import bytes_to_unicode
  6499. byte_encoder = bytes_to_unicode()
  6500. return ''.join([byte_encoder[ord(char)] for char in b.decode('latin-1')])
  6501. @staticmethod
  6502. def bpe(mergeable_ranks: dict[bytes, int], token: bytes, max_rank: int | None = None) -> list[bytes]:
  6503. parts = [bytes([b]) for b in token]
  6504. while True:
  6505. min_idx = None
  6506. min_rank = None
  6507. for i, pair in enumerate(zip(parts[:-1], parts[1:])):
  6508. rank = mergeable_ranks.get(pair[0] + pair[1])
  6509. if rank is not None and (min_rank is None or rank < min_rank):
  6510. min_idx = i
  6511. min_rank = rank
  6512. if min_rank is None or (max_rank is not None and min_rank >= max_rank):
  6513. break
  6514. assert min_idx is not None
  6515. parts = parts[:min_idx] + [parts[min_idx] + parts[min_idx + 1]] + parts[min_idx + 2:]
  6516. return parts
  6517. def set_vocab(self):
  6518. if "THUDM/chatglm3-6b" in self.hparams.get("_name_or_path", ""):
  6519. self.set_vocab_chatglm3()
  6520. return
  6521. dir_model = self.dir_model
  6522. hparams = self.hparams
  6523. tokens: list[str] = []
  6524. toktypes: list[int] = []
  6525. from transformers import AutoTokenizer
  6526. tokenizer = AutoTokenizer.from_pretrained(dir_model, trust_remote_code=True)
  6527. vocab_size = hparams.get("padded_vocab_size",hparams["vocab_size"])
  6528. assert max(tokenizer.get_vocab().values()) < vocab_size
  6529. tokens, toktypes, tokpre = self.get_vocab_base()
  6530. self.gguf_writer.add_tokenizer_model("gpt2")
  6531. self.gguf_writer.add_tokenizer_pre(tokpre)
  6532. self.gguf_writer.add_token_list(tokens)
  6533. self.gguf_writer.add_token_types(toktypes)
  6534. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=True)
  6535. # only add special tokens when they were not already loaded from config.json
  6536. special_vocab._set_special_token("eos", tokenizer.get_added_vocab()["<|endoftext|>"])
  6537. special_vocab._set_special_token("eot", tokenizer.get_added_vocab()["<|user|>"])
  6538. # this one is usually not in config.json anyway
  6539. special_vocab._set_special_token("unk", tokenizer.get_added_vocab()["<|endoftext|>"])
  6540. special_vocab.add_to_gguf(self.gguf_writer)
  6541. def set_gguf_parameters(self):
  6542. n_embed = self.hparams.get("hidden_size", self.hparams.get("n_embed"))
  6543. n_head = self.hparams.get("n_head", self.hparams.get("num_attention_heads"))
  6544. n_head_kv = self.hparams.get("multi_query_group_num", self.hparams.get("num_key_value_heads", n_head))
  6545. self.gguf_writer.add_context_length(self.hparams.get("seq_length", n_embed))
  6546. self.gguf_writer.add_embedding_length(n_embed)
  6547. self.gguf_writer.add_feed_forward_length(self.hparams.get("ffn_hidden_size", self.hparams.get("intermediate_size", 4 * n_embed)))
  6548. self.gguf_writer.add_block_count(self.block_count)
  6549. self.gguf_writer.add_head_count(n_head)
  6550. self.gguf_writer.add_head_count_kv(n_head_kv)
  6551. self.gguf_writer.add_layer_norm_rms_eps(self.hparams.get("layernorm_epsilon",1e-5))
  6552. self.gguf_writer.add_file_type(self.ftype)
  6553. if "attention_dim" in self.hparams:
  6554. rope_dim = self.hparams["attention_dim"]
  6555. else:
  6556. rope_dim = self.hparams["hidden_size"] // self.hparams["num_attention_heads"]
  6557. self.gguf_writer.add_rope_dimension_count(int(rope_dim * self.hparams.get("partial_rotary_factor", 0.5)))
  6558. self.gguf_writer.add_add_bos_token(False)
  6559. rope_freq = 10000
  6560. if "rope_ratio" in self.hparams:
  6561. rope_freq = rope_freq * self.hparams["rope_ratio"]
  6562. self.gguf_writer.add_rope_freq_base(rope_freq)
  6563. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  6564. del bid # unused
  6565. if name.endswith(".rotary_pos_emb.inv_freq") or name.startswith("model.vision."):
  6566. return []
  6567. name = name.removeprefix("transformer.")
  6568. return [(self.map_tensor_name(name), data_torch)]
  6569. @ModelBase.register("NemotronForCausalLM")
  6570. class NemotronModel(TextModel):
  6571. model_arch = gguf.MODEL_ARCH.NEMOTRON
  6572. def set_vocab(self):
  6573. self._set_vocab_sentencepiece()
  6574. self.gguf_writer.add_pad_token_id(0)
  6575. self.gguf_writer.add_unk_token_id(1)
  6576. def set_gguf_parameters(self):
  6577. super().set_gguf_parameters()
  6578. hparams = self.hparams
  6579. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  6580. f_norm_eps = self.find_hparam(["layer_norm_eps", "layer_norm_epsilon", "norm_epsilon", "norm_eps"])
  6581. self.gguf_writer.add_layer_norm_eps(f_norm_eps)
  6582. # * Partial RoPE
  6583. rot_pct = self.find_hparam(["partial_rotary_factor", "rope_pct", "rope_percent"])
  6584. n_embd = self.find_hparam(["hidden_size", "n_embd"])
  6585. n_head = self.find_hparam(["num_attention_heads", "n_head"])
  6586. self.gguf_writer.add_rope_dimension_count(int(rot_pct * n_embd) // n_head)
  6587. # * RopeScaling for Nemotron
  6588. if "rope_scaling" not in self.hparams or self.hparams["rope_scaling"] is None:
  6589. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
  6590. else:
  6591. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  6592. self.gguf_writer.add_rope_scaling_factor(self.hparams["factor"])
  6593. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  6594. # * Adding +1 to LayerNorm's weights here to implement layernorm1p w/o changing anything on the GGML engine side
  6595. # model.layers.{l}.input_layernorm.weight
  6596. # model.layers.{l}.post_attention_layernorm.weight
  6597. # model.norm.weight
  6598. if name.endswith("norm.weight"):
  6599. data_torch = data_torch + 1
  6600. return [(self.map_tensor_name(name), data_torch)]
  6601. @ModelBase.register("ExaoneForCausalLM")
  6602. class ExaoneModel(TextModel):
  6603. model_arch = gguf.MODEL_ARCH.EXAONE
  6604. def set_gguf_parameters(self):
  6605. super().set_gguf_parameters()
  6606. hparams = self.hparams
  6607. assert (hparams["activation_function"] == "silu")
  6608. rotary_factor = self.find_hparam(["partial_rotary_factor", "rope_pct"], optional=True)
  6609. rotary_factor = rotary_factor if rotary_factor is not None else 1.0
  6610. self.gguf_writer.add_rope_dimension_count(int(rotary_factor * (hparams["hidden_size"] // hparams["num_attention_heads"])))
  6611. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  6612. if rope_params := self.rope_parameters.get("full_attention", self.rope_parameters):
  6613. if rope_params.get("rope_type", '').lower() == "llama3":
  6614. base = self.rope_parameters.get("rope_theta", 10000.0)
  6615. if (dim := self.hparams.get("head_dim")) is None:
  6616. dim = self.hparams["hidden_size"] // self.hparams["num_attention_heads"]
  6617. freqs = 1.0 / (base ** (torch.arange(0, dim, 2, dtype=torch.float32) / dim))
  6618. factor = rope_params.get("factor", 8.0)
  6619. low_freq_factor = rope_params.get("low_freq_factor", 1.0)
  6620. high_freq_factor = rope_params.get("high_freq_factor", 4.0)
  6621. old_context_len = self.hparams.get("original_max_position_embeddings", 8192)
  6622. low_freq_wavelen = old_context_len / low_freq_factor
  6623. high_freq_wavelen = old_context_len / high_freq_factor
  6624. assert low_freq_wavelen != high_freq_wavelen
  6625. rope_factors = []
  6626. for freq in freqs:
  6627. wavelen = 2 * math.pi / freq
  6628. if wavelen < high_freq_wavelen:
  6629. rope_factors.append(1)
  6630. elif wavelen > low_freq_wavelen:
  6631. rope_factors.append(factor)
  6632. else:
  6633. smooth = (old_context_len / wavelen - low_freq_factor) / (high_freq_factor - low_freq_factor)
  6634. rope_factors.append(1 / ((1 - smooth) / factor + smooth))
  6635. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FREQS), torch.tensor(rope_factors, dtype=torch.float32))
  6636. @ModelBase.register("Exaone4ForCausalLM")
  6637. class Exaone4Model(TextModel):
  6638. model_arch = gguf.MODEL_ARCH.EXAONE4
  6639. def set_vocab(self):
  6640. tokens, toktypes, tokpre = self.get_vocab_base()
  6641. self.gguf_writer.add_tokenizer_model("gpt2")
  6642. self.gguf_writer.add_tokenizer_pre(tokpre)
  6643. self.gguf_writer.add_token_list(tokens)
  6644. self.gguf_writer.add_token_types(toktypes)
  6645. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=True)
  6646. special_vocab.add_to_gguf(self.gguf_writer)
  6647. def set_gguf_parameters(self):
  6648. super().set_gguf_parameters()
  6649. hparams = self.hparams
  6650. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  6651. if hparams.get("sliding_window") is not None:
  6652. self.gguf_writer.add_sliding_window(hparams["sliding_window"])
  6653. if "layer_types" in hparams:
  6654. self.gguf_writer.add_sliding_window_pattern([t == "sliding_attention" for t in hparams["layer_types"]])
  6655. elif "sliding_window_pattern" in hparams:
  6656. sliding_window_pattern = []
  6657. if isinstance(hparams["sliding_window_pattern"], str): # e.g. LLLG
  6658. for i in range(hparams["num_hidden_layers"]):
  6659. sliding_window_pattern.append(hparams["sliding_window_pattern"][i % len(hparams["sliding_window_pattern"])] == "L")
  6660. if isinstance(hparams["sliding_window_pattern"], int): # e.g. 4
  6661. for i in range(hparams["num_hidden_layers"]):
  6662. sliding_window_pattern.append((i + 1) % hparams["sliding_window_pattern"] != 0)
  6663. if len(sliding_window_pattern) == hparams["num_hidden_layers"]:
  6664. self.gguf_writer.add_sliding_window_pattern(sliding_window_pattern)
  6665. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  6666. if rope_params := self.rope_parameters.get("full_attention", self.rope_parameters):
  6667. if rope_params.get("rope_type", '').lower() == "llama3":
  6668. base = rope_params.get("rope_theta", 10_000.0)
  6669. if (dim := self.hparams.get("head_dim")) is None:
  6670. dim = self.hparams["hidden_size"] // self.hparams["num_attention_heads"]
  6671. freqs = 1.0 / (base ** (torch.arange(0, dim, 2, dtype=torch.float32) / dim))
  6672. factor = rope_params.get("factor", 16.0)
  6673. low_freq_factor = rope_params.get("low_freq_factor", 1.0)
  6674. high_freq_factor = rope_params.get("high_freq_factor", 4.0)
  6675. old_context_len = self.hparams.get("original_max_position_embeddings", 8192)
  6676. low_freq_wavelen = old_context_len / low_freq_factor
  6677. high_freq_wavelen = old_context_len / high_freq_factor
  6678. rope_factors = []
  6679. for freq in freqs:
  6680. wavelen = 2 * math.pi / freq
  6681. if wavelen < high_freq_wavelen:
  6682. rope_factors.append(1)
  6683. elif wavelen > low_freq_wavelen:
  6684. rope_factors.append(factor)
  6685. else:
  6686. smooth = (old_context_len / wavelen - low_freq_factor) / (high_freq_factor - low_freq_factor)
  6687. rope_factors.append(1 / ((1 - smooth) / factor + smooth))
  6688. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FREQS), torch.tensor(rope_factors, dtype=torch.float32))
  6689. @ModelBase.register("GraniteForCausalLM")
  6690. class GraniteModel(LlamaModel):
  6691. """Conversion for IBM's GraniteForCausalLM"""
  6692. model_arch = gguf.MODEL_ARCH.GRANITE
  6693. def set_gguf_parameters(self):
  6694. """Granite uses standard llama parameters with the following differences:
  6695. - No head_dim support
  6696. - New multiplier params:
  6697. - attention_scale
  6698. - embedding_scale
  6699. - residual_scale
  6700. - logits_scaling
  6701. """
  6702. if head_dim := self.hparams.pop("head_dim", None):
  6703. logger.warning("Ignoring head_dim (%s) from config for Granite", head_dim)
  6704. super().set_gguf_parameters()
  6705. # NOTE: Convert _multiplier params to _scale params for naming
  6706. # consistency
  6707. if attention_scale := self.hparams.get("attention_multiplier"):
  6708. self.gguf_writer.add_attention_scale(attention_scale)
  6709. logger.info("gguf: (granite) attention_scale = %s", attention_scale)
  6710. if embedding_scale := self.hparams.get("embedding_multiplier"):
  6711. self.gguf_writer.add_embedding_scale(embedding_scale)
  6712. logger.info("gguf: (granite) embedding_scale = %s", embedding_scale)
  6713. if residual_scale := self.hparams.get("residual_multiplier"):
  6714. self.gguf_writer.add_residual_scale(residual_scale)
  6715. logger.info("gguf: (granite) residual_scale = %s", residual_scale)
  6716. if logits_scale := self.hparams.get("logits_scaling"):
  6717. self.gguf_writer.add_logit_scale(logits_scale)
  6718. logger.info("gguf: (granite) logits_scale = %s", logits_scale)
  6719. @ModelBase.register("GraniteMoeForCausalLM", "GraniteMoeSharedForCausalLM")
  6720. class GraniteMoeModel(GraniteModel):
  6721. """Conversion for IBM's GraniteMoeForCausalLM"""
  6722. model_arch = gguf.MODEL_ARCH.GRANITE_MOE
  6723. def set_gguf_parameters(self):
  6724. """GraniteMoeShared uses GraniteMoe parameters plus the following:
  6725. - shared_intermediate_size
  6726. """
  6727. super().set_gguf_parameters()
  6728. if shared_feed_forward_length := self.hparams.get("shared_intermediate_size"):
  6729. self.gguf_writer.add_expert_shared_feed_forward_length(shared_feed_forward_length)
  6730. logger.info("gguf: (granitemoeshared) shared_feed_forward_length = %s", shared_feed_forward_length)
  6731. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  6732. """In modeling_granitemoe, the JetMoe implementation of parallel experts
  6733. is used. This essentially merges w1 and w3 into a single tensor with 2x
  6734. the hidden size that is then split during forward. To keep compatibility
  6735. with existing mixtral support, we pull them apart here.
  6736. """
  6737. if name.endswith("block_sparse_moe.input_linear.weight"):
  6738. ffn_dim = self.hparams["intermediate_size"]
  6739. assert data_torch.shape[-2] == 2 * ffn_dim, "Merged FFN tensor size must be 2 * intermediate_size"
  6740. gate, up = data_torch.split(ffn_dim, dim=-2)
  6741. return [
  6742. (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_GATE_EXP, bid), gate),
  6743. (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_UP_EXP, bid), up),
  6744. ]
  6745. has_experts = bool(self.hparams.get('num_local_experts'))
  6746. if name.endswith("shared_mlp.input_linear.weight"):
  6747. ffn_dim = self.hparams["shared_intermediate_size"]
  6748. assert data_torch.shape[-2] == 2 * ffn_dim, "Merged FFN tensor size must be 2 * shared_intermediate_size"
  6749. gate, up = data_torch.split(ffn_dim, dim=-2)
  6750. if has_experts:
  6751. return [
  6752. (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_GATE_SHEXP, bid), gate),
  6753. (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_UP_SHEXP, bid), up),
  6754. ]
  6755. return [
  6756. (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_GATE, bid), gate),
  6757. (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_UP, bid), up),
  6758. ]
  6759. if not has_experts and name.endswith("shared_mlp.output_linear.weight"):
  6760. return [
  6761. (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_DOWN, bid), data_torch)
  6762. ]
  6763. return super().modify_tensors(data_torch, name, bid)
  6764. @ModelBase.register("GraniteMoeHybridForCausalLM", "BambaForCausalLM")
  6765. class GraniteHybridModel(Mamba2Model, GraniteMoeModel):
  6766. """GraniteHybrid is a hybrid SSM + Attention model that uses Mamba2 SSM
  6767. layers and optionally uses MoE w/ a shared expert"""
  6768. model_arch = gguf.MODEL_ARCH.GRANITE_HYBRID
  6769. undo_permute = True
  6770. def __init__(self, *args, **kwargs):
  6771. # Hybrid mamba models use a prefix for the mamba-specific params.
  6772. # TODO: Extend this if the prefix(es) need to be configurable
  6773. self.hparam_prefixes = ["mamba"]
  6774. super().__init__(*args, **kwargs)
  6775. # Lists of which layers use ssm vs attention
  6776. self._attn_layers = self.get_attn_layers()
  6777. self._ssm_layers = [
  6778. i for i in range(self.block_count)
  6779. if i not in self._attn_layers
  6780. ]
  6781. # There are some models in this family that are non-hybrid, but keep the
  6782. # same parent class by setting all layers to "attention." If this is the
  6783. # case, the model architecture needs to be updated to a standard
  6784. # "granite" or "granitemoe" model
  6785. if not self._ssm_layers:
  6786. has_experts = self.find_hparam(["num_experts_per_tok"], optional=True)
  6787. new_arch = (
  6788. gguf.MODEL_ARCH.GRANITE_MOE
  6789. if has_experts else
  6790. gguf.MODEL_ARCH.GRANITE
  6791. )
  6792. self.model_arch = new_arch
  6793. self.gguf_writer.arch = gguf.MODEL_ARCH_NAMES[new_arch]
  6794. self.gguf_writer.add_architecture()
  6795. # n_group and d_inner are used during reshape_tensors for mamba2
  6796. # NOTE: Explicitly include hparam prefix prefix for d_model to
  6797. # disambiguate with top-level head_dim
  6798. # NOTE 2: If needed for future models, this can be isolated in a method
  6799. # to separate the prefix setting and teh keys used
  6800. self.d_model = self.find_hparam([f"{self.hparam_prefixes[0]}_head_dim", "hidden_size", "d_model"])
  6801. self.n_group = self.find_hparam(["n_groups", "num_groups"])
  6802. self.d_inner = self.find_hparam(["expand", "num_heads"]) * self.d_model
  6803. def get_attn_layers(self):
  6804. # Explicit list of layer type names
  6805. if layer_types := self.hparams.get("layer_types"):
  6806. return [
  6807. i for i, typ in enumerate(layer_types)
  6808. if typ == "attention"
  6809. ]
  6810. # Layer types indicated by index or period
  6811. attn_layers = self.hparams.get("attn_layer_indices", [])
  6812. if not attn_layers:
  6813. attn_period = self.hparams.get("attn_layer_period")
  6814. assert attn_period, "Didn't find attn_layer_indices or attn_layer_period"
  6815. attn_offset = self.hparams.get("attn_layer_offset")
  6816. assert attn_offset is not None, "No attention layer offset set with attn_layer_period"
  6817. attn_layers = [
  6818. i for i in range(self.block_count)
  6819. if i % attn_period == attn_offset
  6820. ]
  6821. return attn_layers
  6822. def find_hparam(self, keys: Iterable[str], *args, **kwargs) -> Any:
  6823. prefixed = []
  6824. for pfx in self.hparam_prefixes:
  6825. prefixed.extend(
  6826. "_".join([pfx, k])
  6827. for k in keys
  6828. )
  6829. keys = list(keys) + prefixed
  6830. return Mamba2Model.find_hparam(self, keys, *args, **kwargs)
  6831. def modify_tensors(
  6832. self, data_torch: Tensor, name: str, bid: int | None
  6833. ) -> Iterable[tuple[str, Tensor]]:
  6834. if (
  6835. name.endswith("block_sparse_moe.input_linear.weight")
  6836. or "shared_mlp" in name
  6837. ):
  6838. return GraniteMoeModel.modify_tensors(self, data_torch, name, bid)
  6839. # Determine whether this is a mamba layer or an attention layer
  6840. if bid in self._ssm_layers:
  6841. return Mamba2Model.modify_tensors(self, data_torch, name, bid)
  6842. elif bid in self._attn_layers:
  6843. return GraniteMoeModel.modify_tensors(self, data_torch, name, bid)
  6844. return [(self.map_tensor_name(name), data_torch)]
  6845. def set_gguf_parameters(self):
  6846. """This method merges params from both parents and some that are
  6847. specific to this model. The result is some duplication of how the params
  6848. get set. The following warnings are expected during conversion:
  6849. WARNING:Duplicated key name 'granitehybrid.attention.head_count_kv'
  6850. WARNING:Duplicated key name 'granitehybrid.context_length'
  6851. """
  6852. GraniteMoeModel.set_gguf_parameters(self)
  6853. ## Mamba mixer params ##
  6854. self.gguf_writer.add_ssm_conv_kernel(self.find_hparam(["conv_kernel", "d_conv"]))
  6855. self.gguf_writer.add_ssm_state_size(self.find_hparam(["state_size", "d_state", "state_dim", "ssm_state_size"]))
  6856. self.gguf_writer.add_ssm_group_count(self.n_group)
  6857. self.gguf_writer.add_ssm_inner_size(self.d_inner)
  6858. # NOTE: The mamba_dt_rank is _not_ the right field for how this is used
  6859. # in llama.cpp
  6860. self.gguf_writer.add_ssm_time_step_rank(self.find_hparam(["n_heads", "num_heads"]))
  6861. ## Attention params ##
  6862. head_count_kv = self.find_hparam(["num_key_value_heads", "n_head_kv"])
  6863. head_count_kv_vec = [
  6864. head_count_kv if i in self._attn_layers else 0 for i in range(self.block_count)
  6865. ]
  6866. if rope_dim := self.hparams.get("attn_rotary_emb"):
  6867. self.gguf_writer.add_rope_dimension_count(rope_dim)
  6868. self.gguf_writer.add_head_count_kv(head_count_kv_vec)
  6869. ## If Bamba or non-hybrid, use rope, otherwise don't
  6870. use_rope = (
  6871. "BambaForCausalLM" in self.hparams["architectures"]
  6872. or not self._ssm_layers
  6873. )
  6874. self.gguf_writer.add_rope_scaling_finetuned(use_rope)
  6875. if not use_rope:
  6876. self.gguf_writer.add_context_length(2**20)
  6877. ## Validation ##
  6878. d_head = self.find_hparam(["d_head"], optional=True) or 64
  6879. assert self.hparams.get("hidden_act") in [None, "silu"], "Only SILU activation supported"
  6880. assert self.d_inner % d_head == 0, f"SSM inner size {self.d_inner} not a multiple of head dim {d_head}"
  6881. def set_vocab(self):
  6882. self.hparams["pad_vocab_size_multiple"] = 8
  6883. Mamba2Model.set_vocab(self)
  6884. @ModelBase.register("NemotronHForCausalLM")
  6885. class NemotronHModel(GraniteHybridModel):
  6886. """Hybrid mamba2/attention model from NVIDIA"""
  6887. model_arch = gguf.MODEL_ARCH.NEMOTRON_H
  6888. def __init__(self, *args, **kwargs):
  6889. super().__init__(*args, **kwargs)
  6890. # Save the top-level head_dim for later
  6891. self.head_dim = self.hparams.get("head_dim", self.hparams.get("attention_head_dim"))
  6892. assert self.head_dim is not None, "Could not find the attention head dim in config"
  6893. # Don't use expand to calculate d_inner
  6894. self.d_inner = self.find_hparam(["num_heads"]) * self.d_model
  6895. # Update the ssm / attn / mlp layers
  6896. # M: Mamba2, *: Attention, -: MLP
  6897. hybrid_override_pattern = self.hparams["hybrid_override_pattern"]
  6898. self._ssm_layers = [i for i, val in enumerate(hybrid_override_pattern) if val == "M"]
  6899. self._mlp_layers = [i for i, val in enumerate(hybrid_override_pattern) if val == "-"]
  6900. def get_attn_layers(self):
  6901. hybrid_override_pattern = self.hparams["hybrid_override_pattern"]
  6902. assert len(hybrid_override_pattern) == self.block_count, "Mismatch between hybrid override and num_hidden_layers!"
  6903. return [i for i, val in enumerate(hybrid_override_pattern) if val == "*"]
  6904. def set_gguf_parameters(self):
  6905. super().set_gguf_parameters()
  6906. self.gguf_writer.add_key_length(self.head_dim)
  6907. self.gguf_writer.add_value_length(self.head_dim)
  6908. # Set feed_forward_length
  6909. # NOTE: This will trigger an override warning. This is preferrable to
  6910. # duplicating all the parent logic
  6911. n_ff = self.find_hparam(["intermediate_size", "n_inner", "hidden_dim"])
  6912. self.gguf_writer.add_feed_forward_length([
  6913. n_ff if i in self._mlp_layers else 0 for i in range(self.block_count)
  6914. ])
  6915. def set_vocab(self):
  6916. super().set_vocab()
  6917. # The tokenizer _does_ add a BOS token (via post_processor type
  6918. # TemplateProcessing) but does not set add_bos_token to true in the
  6919. # config, so we need to explicitly override it here.
  6920. self.gguf_writer.add_add_bos_token(True)
  6921. @ModelBase.register("BailingMoeForCausalLM")
  6922. class BailingMoeModel(TextModel):
  6923. model_arch = gguf.MODEL_ARCH.BAILINGMOE
  6924. def set_vocab(self):
  6925. self._set_vocab_gpt2()
  6926. def set_gguf_parameters(self):
  6927. super().set_gguf_parameters()
  6928. hparams = self.hparams
  6929. if (rope_dim := hparams.get("head_dim")) is None:
  6930. rope_dim = hparams["hidden_size"] // hparams["num_attention_heads"]
  6931. self.gguf_writer.add_rope_dimension_count(rope_dim)
  6932. self.gguf_writer.add_leading_dense_block_count(hparams["first_k_dense_replace"])
  6933. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  6934. self.gguf_writer.add_expert_feed_forward_length(hparams["moe_intermediate_size"])
  6935. self.gguf_writer.add_expert_weights_scale(1.0)
  6936. self.gguf_writer.add_expert_count(hparams["num_experts"])
  6937. self.gguf_writer.add_expert_shared_count(hparams["num_shared_experts"])
  6938. self.gguf_writer.add_expert_weights_norm(hparams["norm_topk_prob"])
  6939. _experts: list[dict[str, Tensor]] | None = None
  6940. @staticmethod
  6941. def permute(weights: Tensor, n_head: int, n_head_kv: int | None):
  6942. if n_head_kv is not None and n_head != n_head_kv:
  6943. n_head = n_head_kv
  6944. return (weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  6945. .swapaxes(1, 2)
  6946. .reshape(weights.shape))
  6947. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  6948. n_head = self.hparams["num_attention_heads"]
  6949. n_kv_head = self.hparams.get("num_key_value_heads")
  6950. n_embd = self.hparams["hidden_size"]
  6951. if (head_dim := self.hparams.get("head_dim")) is None:
  6952. head_dim = n_embd // n_head
  6953. output_name = self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT)
  6954. if name.endswith("attention.dense.weight"):
  6955. return [(self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_OUT, bid), data_torch)]
  6956. elif name.endswith("query_key_value.weight"):
  6957. q, k, v = data_torch.split([n_head * head_dim, n_kv_head * head_dim, n_kv_head * head_dim], dim=-2)
  6958. return [
  6959. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_Q, bid), BailingMoeModel.permute(q, n_head, n_head)),
  6960. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_K, bid), BailingMoeModel.permute(k, n_head, n_kv_head)),
  6961. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_V, bid), v)
  6962. ]
  6963. elif name.find("mlp.experts") != -1:
  6964. n_experts = self.hparams["num_experts"]
  6965. assert bid is not None
  6966. tensors: list[tuple[str, Tensor]] = []
  6967. if self._experts is None:
  6968. self._experts = [{} for _ in range(self.block_count)]
  6969. self._experts[bid][name] = data_torch
  6970. if len(self._experts[bid]) >= n_experts * 3:
  6971. # merge the experts into a single 3d tensor
  6972. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  6973. datas: list[Tensor] = []
  6974. for xid in range(n_experts):
  6975. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  6976. datas.append(self._experts[bid][ename])
  6977. del self._experts[bid][ename]
  6978. data_torch = torch.stack(datas, dim=0)
  6979. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  6980. new_name = self.map_tensor_name(merged_name)
  6981. tensors.append((new_name, data_torch))
  6982. return tensors
  6983. new_name = self.map_tensor_name(name)
  6984. if new_name == output_name and self.hparams.get("norm_head"):
  6985. data_torch = data_torch.float()
  6986. data_torch /= torch.norm(data_torch, p=2, dim=0, keepdim=True) + 1e-7
  6987. return [(new_name, data_torch)]
  6988. def prepare_tensors(self):
  6989. super().prepare_tensors()
  6990. if self._experts is not None:
  6991. # flatten `list[dict[str, Tensor]]` into `list[str]`
  6992. experts = [k for d in self._experts for k in d.keys()]
  6993. if len(experts) > 0:
  6994. raise ValueError(f"Unprocessed experts: {experts}")
  6995. @ModelBase.register("BailingMoeV2ForCausalLM")
  6996. class BailingMoeV2Model(TextModel):
  6997. model_arch = gguf.MODEL_ARCH.BAILINGMOE2
  6998. def __init__(self, *args, **kwargs):
  6999. super().__init__(*args, **kwargs)
  7000. if nextn_layers := self.hparams.get("num_nextn_predict_layers", 0):
  7001. self.block_count = self.hparams["num_hidden_layers"] + nextn_layers
  7002. self.tensor_map = gguf.get_tensor_name_map(self.model_arch, self.block_count)
  7003. def set_vocab(self):
  7004. self._set_vocab_gpt2()
  7005. def set_gguf_parameters(self):
  7006. super().set_gguf_parameters()
  7007. hparams = self.hparams
  7008. if (rope_dim := hparams.get("head_dim")) is None:
  7009. rope_dim = hparams["hidden_size"] // hparams["num_attention_heads"]
  7010. self.gguf_writer.add_rope_dimension_count(int(rope_dim * self.hparams.get("partial_rotary_factor", 0.5)))
  7011. self.gguf_writer.add_leading_dense_block_count(hparams["first_k_dense_replace"])
  7012. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  7013. self.gguf_writer.add_expert_feed_forward_length(hparams["moe_intermediate_size"])
  7014. self.gguf_writer.add_expert_shared_feed_forward_length(hparams.get("moe_shared_expert_intermediate_size", hparams["moe_intermediate_size"] * hparams["num_shared_experts"]))
  7015. self.gguf_writer.add_expert_weights_scale(hparams["routed_scaling_factor"])
  7016. self.gguf_writer.add_expert_count(hparams["num_experts"])
  7017. self.gguf_writer.add_expert_shared_count(hparams["num_shared_experts"])
  7018. self.gguf_writer.add_expert_weights_norm(hparams["norm_topk_prob"])
  7019. if (nextn_layers := self.hparams.get("num_nextn_predict_layers")) is not None:
  7020. self.gguf_writer.add_nextn_predict_layers(nextn_layers)
  7021. _experts: list[dict[str, Tensor]] | None = None
  7022. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  7023. if "mlp.experts" in name:
  7024. n_experts = self.hparams["num_experts"]
  7025. assert bid is not None
  7026. tensors: list[tuple[str, Tensor]] = []
  7027. if self._experts is None:
  7028. self._experts = [{} for _ in range(self.block_count)]
  7029. self._experts[bid][name] = data_torch
  7030. if len(self._experts[bid]) >= n_experts * 3:
  7031. # merge the experts into a single 3d tensor
  7032. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  7033. datas: list[Tensor] = []
  7034. for xid in range(n_experts):
  7035. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  7036. datas.append(self._experts[bid][ename])
  7037. del self._experts[bid][ename]
  7038. data_torch = torch.stack(datas, dim=0)
  7039. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  7040. new_name = self.map_tensor_name(merged_name)
  7041. tensors.append((new_name, data_torch))
  7042. return tensors
  7043. if name.endswith(".expert_bias"):
  7044. name = name.replace(".expert_bias", ".expert_bias.bias")
  7045. return [(self.map_tensor_name(name), data_torch)]
  7046. def prepare_tensors(self):
  7047. super().prepare_tensors()
  7048. if self._experts is not None:
  7049. # flatten `list[dict[str, Tensor]]` into `list[str]`
  7050. experts = [k for d in self._experts for k in d.keys()]
  7051. if len(experts) > 0:
  7052. raise ValueError(f"Unprocessed experts: {experts}")
  7053. @ModelBase.register("GroveMoeForCausalLM", "modeling_grove_moe.GroveMoeForCausalLM")
  7054. class GroveMoeModel(TextModel):
  7055. model_arch = gguf.MODEL_ARCH.GROVEMOE
  7056. def set_gguf_parameters(self):
  7057. super().set_gguf_parameters()
  7058. if (n_experts := self.hparams.get("num_experts")) is not None:
  7059. self.gguf_writer.add_expert_count(n_experts)
  7060. if (moe_intermediate_size := self.hparams.get("moe_intermediate_size")) is not None:
  7061. self.gguf_writer.add_expert_feed_forward_length(moe_intermediate_size)
  7062. logger.info(f"gguf: expert feed forward length = {moe_intermediate_size}")
  7063. # FIXME?: Hardcoded https://huggingface.co/inclusionAI/GroveMoE-Inst/blob/c4c69e5970d18907b5e6ddccdfd55176fe292df1/modeling_grove_moe.py#L299
  7064. self.gguf_writer.add_expert_chunk_feed_forward_length(self.hparams.get("head_dim") or 128)
  7065. # FIXME?: Hardcoded https://huggingface.co/inclusionAI/GroveMoE-Inst/blob/c4c69e5970d18907b5e6ddccdfd55176fe292df1/modeling_grove_moe.py#L298
  7066. self.gguf_writer.add_experts_per_group(2)
  7067. # FIXME?: Hardcoded https://huggingface.co/inclusionAI/GroveMoE-Inst/blob/c4c69e5970d18907b5e6ddccdfd55176fe292df1/modeling_grove_moe.py#L376
  7068. self.gguf_writer.add_expert_group_scale(0.05)
  7069. _experts: list[dict[str, Tensor]] | None = None
  7070. _chunk_experts: list[dict[str, Tensor]] | None = None
  7071. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  7072. if name.endswith(".expert_bias"):
  7073. # FIXME?: Unused https://huggingface.co/inclusionAI/GroveMoE-Inst/blob/c4c69e5970d18907b5e6ddccdfd55176fe292df1/modeling_grove_moe.py#L303
  7074. return []
  7075. # process the experts separately
  7076. if name.find("chunk_experts") != -1:
  7077. n_experts = self.hparams["num_experts"] // 2 # see add_experts_per_group
  7078. assert bid is not None
  7079. if self._chunk_experts is None:
  7080. self._chunk_experts = [{} for _ in range(self.block_count)]
  7081. self._chunk_experts[bid][name] = data_torch
  7082. if len(self._chunk_experts[bid]) >= n_experts * 3:
  7083. tensors: list[tuple[str, Tensor]] = []
  7084. # merge the experts into a single 3d tensor
  7085. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  7086. datas: list[Tensor] = []
  7087. for xid in range(n_experts):
  7088. ename = f"model.layers.{bid}.mlp.chunk_experts.{xid}.{w_name}.weight"
  7089. datas.append(self._chunk_experts[bid][ename])
  7090. del self._chunk_experts[bid][ename]
  7091. data_torch = torch.stack(datas, dim=0)
  7092. merged_name = f"model.layers.{bid}.mlp.chunk_experts.{w_name}.weight"
  7093. new_name = self.map_tensor_name(merged_name)
  7094. tensors.append((new_name, data_torch))
  7095. return tensors
  7096. else:
  7097. return []
  7098. elif name.find("experts") != -1:
  7099. n_experts = self.hparams["num_experts"]
  7100. assert bid is not None
  7101. if self._experts is None:
  7102. self._experts = [{} for _ in range(self.block_count)]
  7103. self._experts[bid][name] = data_torch
  7104. if len(self._experts[bid]) >= n_experts * 3:
  7105. tensors: list[tuple[str, Tensor]] = []
  7106. # merge the experts into a single 3d tensor
  7107. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  7108. datas: list[Tensor] = []
  7109. for xid in range(n_experts):
  7110. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  7111. datas.append(self._experts[bid][ename])
  7112. del self._experts[bid][ename]
  7113. data_torch = torch.stack(datas, dim=0)
  7114. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  7115. new_name = self.map_tensor_name(merged_name)
  7116. tensors.append((new_name, data_torch))
  7117. return tensors
  7118. else:
  7119. return []
  7120. return [(self.map_tensor_name(name), data_torch)]
  7121. def prepare_tensors(self):
  7122. super().prepare_tensors()
  7123. if self._chunk_experts is not None:
  7124. # flatten `list[dict[str, Tensor]]` into `list[str]`
  7125. chunk_experts = [k for d in self._chunk_experts for k in d.keys()]
  7126. if len(chunk_experts) > 0:
  7127. raise ValueError(f"Unprocessed adjugate experts: {chunk_experts}")
  7128. if self._experts is not None:
  7129. # flatten `list[dict[str, Tensor]]` into `list[str]`
  7130. experts = [k for d in self._experts for k in d.keys()]
  7131. if len(experts) > 0:
  7132. raise ValueError(f"Unprocessed experts: {experts}")
  7133. @ModelBase.register("ChameleonForConditionalGeneration")
  7134. @ModelBase.register("ChameleonForCausalLM") # obsolete
  7135. class ChameleonModel(TextModel):
  7136. model_arch = gguf.MODEL_ARCH.CHAMELEON
  7137. def set_gguf_parameters(self):
  7138. super().set_gguf_parameters()
  7139. self.gguf_writer.add_swin_norm(self.hparams.get("swin_norm", False))
  7140. def set_vocab(self):
  7141. self._set_vocab_gpt2()
  7142. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  7143. # ignore image tokenizer for now
  7144. # TODO: remove this once image support is implemented for Chameleon
  7145. if name.startswith("model.vqmodel"):
  7146. return []
  7147. n_head = self.hparams["num_attention_heads"]
  7148. n_kv_head = self.hparams.get("num_key_value_heads")
  7149. hidden_dim = self.hparams.get("hidden_size")
  7150. if name.endswith(("q_proj.weight", "q_proj.bias")):
  7151. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  7152. if name.endswith(("k_proj.weight", "k_proj.bias")):
  7153. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  7154. if name.endswith(("q_norm.weight", "q_norm.bias")):
  7155. data_torch = ChameleonModel._reverse_hf_permute(data_torch, n_head, hidden_dim)
  7156. if name.endswith(("k_norm.weight", "k_norm.bias")):
  7157. data_torch = ChameleonModel._reverse_hf_permute(data_torch, n_kv_head, hidden_dim)
  7158. return [(self.map_tensor_name(name), data_torch)]
  7159. # see: https://github.com/huggingface/transformers/blob/72fb02c47dbbe1999ae105319f24631cad6e2e00/src/transformers/models/chameleon/convert_chameleon_weights_to_hf.py#L176-L203
  7160. @staticmethod
  7161. def _reverse_hf_permute(data_torch, n_heads, hidden_dim):
  7162. head_dim = hidden_dim // n_heads
  7163. data_torch = data_torch[0].view(2, head_dim // 2).t().reshape(1, -1)
  7164. data_torch = data_torch.repeat_interleave(n_heads, 0)
  7165. return data_torch
  7166. @ModelBase.register("UltravoxModel")
  7167. class UltravoxModel(TextModel):
  7168. model_arch = gguf.MODEL_ARCH.LLAMA # dummy
  7169. def __init__(self, *args, **kwargs):
  7170. super().__init__(*args, **kwargs)
  7171. raise NotImplementedError("Ultravox does not have text decoder. Instead, it uses Llama or other models for text. If you want to get the audio encoder, please use --mmproj argument")
  7172. @ModelBase.register("Qwen2AudioForConditionalGeneration")
  7173. class WhisperEncoderModel(MmprojModel):
  7174. has_vision_encoder = False # no vision encoder
  7175. has_audio_encoder = True
  7176. def __init__(self, *args, **kwargs):
  7177. super().__init__(*args, **kwargs)
  7178. if "hidden_size" not in self.hparams and "intermediate_size" not in self.hparams:
  7179. self.hparams["hidden_size"] = self.hparams["d_model"]
  7180. self.hparams["intermediate_size"] = self.hparams["encoder_ffn_dim"]
  7181. self.hparams["num_attention_heads"] = self.hparams["encoder_attention_heads"]
  7182. def set_gguf_parameters(self):
  7183. super().set_gguf_parameters()
  7184. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.QWEN2A)
  7185. self.gguf_writer.add_audio_num_mel_bins(self.hparams["num_mel_bins"])
  7186. self.gguf_writer.add_audio_attention_layernorm_eps(self.hparams.get("layer_norm_eps", 1e-5))
  7187. def tensor_force_quant(self, name, new_name, bid, n_dims):
  7188. if ".conv" in name and ".weight" in name:
  7189. return gguf.GGMLQuantizationType.F16
  7190. return super().tensor_force_quant(name, new_name, bid, n_dims)
  7191. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  7192. del bid # unused
  7193. if name.startswith("language_model."):
  7194. # skip language model tensors
  7195. return []
  7196. # prevent clash naming with vision tensors
  7197. if name.startswith("multi_modal_projector"):
  7198. name = "audio." + name
  7199. if "conv1.bias" in name or "conv2.bias" in name:
  7200. # transpose conv1 and conv2 bias
  7201. data_torch = data_torch.unsqueeze(-1)
  7202. return [(self.map_tensor_name(name), data_torch)]
  7203. @ModelBase.register("UltravoxModel")
  7204. class UltravoxWhisperEncoderModel(WhisperEncoderModel):
  7205. has_vision_encoder = False # no vision encoder
  7206. has_audio_encoder = True
  7207. def set_gguf_parameters(self):
  7208. super().set_gguf_parameters()
  7209. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.ULTRAVOX)
  7210. self.gguf_writer.add_audio_stack_factor(self.global_config["stack_factor"])
  7211. @ModelBase.register("VoxtralForConditionalGeneration")
  7212. class VoxtralWhisperEncoderModel(WhisperEncoderModel):
  7213. has_vision_encoder = False # no vision encoder
  7214. has_audio_encoder = True
  7215. def set_gguf_parameters(self):
  7216. super().set_gguf_parameters()
  7217. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.VOXTRAL)
  7218. self.gguf_writer.add_audio_stack_factor(4) # == intermediate_size // hidden_size
  7219. @ModelBase.register("FalconH1ForCausalLM")
  7220. class FalconH1Model(Mamba2Model):
  7221. model_arch = gguf.MODEL_ARCH.FALCON_H1
  7222. def __init__(self, *args, **kwargs):
  7223. # Set the hparam prefixes for Falcon Mamba2
  7224. self.hparam_prefixes = ["mamba"]
  7225. # Initialize the base Mamba2Model
  7226. super().__init__(*args, **kwargs)
  7227. # Use Llama conversion for attention
  7228. self._transformer_model_class = LlamaModel
  7229. # n_group and d_inner are used during reshape_tensors for mamba2
  7230. self.n_group = self.find_hparam(["n_groups"])
  7231. self.d_inner = self.find_hparam(["mamba_d_ssm"])
  7232. self.d_head = self.find_hparam(["d_head"])
  7233. # Initialize any Falcon Mamba2 specific attributes
  7234. self.has_attention = True # Falcon Mamba2 has attention components
  7235. # Load Falcon-H1 multipliers from hyperparameters
  7236. self.attention_in_multiplier = self.find_hparam(["attention_in_multiplier"], optional=True)
  7237. self.attention_out_multiplier = self.find_hparam(["attention_out_multiplier"], optional=True)
  7238. self.ssm_in_multiplier = self.find_hparam(["ssm_in_multiplier"], optional=True)
  7239. self.ssm_out_multiplier = self.find_hparam(["ssm_out_multiplier"], optional=True)
  7240. self.mlp_multipliers = self.find_hparam(["mlp_multipliers"], optional=True)
  7241. self.ssm_multipliers = self.find_hparam(["ssm_multipliers"], optional=True)
  7242. self.intermediate_size = self.find_hparam(["intermediate_size"])
  7243. self.key_multiplier = self.find_hparam(["key_multiplier"], optional=True)
  7244. def find_hparam(self, keys: Iterable[str], *args, **kwargs) -> Any:
  7245. prefixed = []
  7246. for pfx in self.hparam_prefixes:
  7247. prefixed.extend(
  7248. "_".join([pfx, k])
  7249. for k in keys
  7250. )
  7251. keys = list(keys) + prefixed
  7252. return super().find_hparam(keys, *args, **kwargs)
  7253. def set_vocab(self):
  7254. self._set_vocab_gpt2()
  7255. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  7256. tensors = list(super().modify_tensors(data_torch, name, bid))
  7257. tensor = tensors[0][1]
  7258. if "down_proj" in name:
  7259. tensor = tensor * self.mlp_multipliers[1]
  7260. elif "gate_proj" in name:
  7261. tensor = tensor * self.mlp_multipliers[0]
  7262. elif "k_proj" in name:
  7263. tensor = tensor * self.key_multiplier * self.attention_in_multiplier
  7264. elif "q_proj" in name:
  7265. tensor = tensor * self.attention_in_multiplier
  7266. elif "v_proj" in name:
  7267. tensor = tensor * self.attention_in_multiplier
  7268. elif "o_proj" in name:
  7269. tensor = tensor * self.attention_out_multiplier
  7270. elif "out_proj" in name:
  7271. tensor = tensor * self.ssm_out_multiplier
  7272. elif "in_proj" in name:
  7273. tensor = tensor * self.ssm_in_multiplier
  7274. zxbcdt_multipliers = self.hparams["ssm_multipliers"]
  7275. intermediate_size = self.hparams["mamba_d_ssm"]
  7276. groups_time_state_size = self.hparams["mamba_n_groups"] * self.hparams["mamba_d_state"]
  7277. tensor[:intermediate_size, :] *= zxbcdt_multipliers[0]
  7278. tensor[intermediate_size:2 * intermediate_size, :] *= zxbcdt_multipliers[1]
  7279. tensor[2 * intermediate_size:2 * intermediate_size + groups_time_state_size, :] *= zxbcdt_multipliers[2]
  7280. tensor[2 * intermediate_size + groups_time_state_size:2 * intermediate_size + 2 * groups_time_state_size, :] *= zxbcdt_multipliers[3]
  7281. tensor[2 * intermediate_size + 2 * groups_time_state_size:, :] *= zxbcdt_multipliers[4]
  7282. elif "lm_head" in name:
  7283. tensor = tensor * self.hparams["lm_head_multiplier"]
  7284. elif "embed_tokens" in name:
  7285. tensor = tensor * self.hparams["embedding_multiplier"]
  7286. elif "mamba.norm" in name:
  7287. tensor = tensor.reshape(self.n_group, self.d_inner // self.n_group)
  7288. tensors = [(tensors[0][0], tensor)]
  7289. return tensors
  7290. def set_gguf_parameters(self):
  7291. super().set_gguf_parameters()
  7292. ## General Params ##
  7293. self.gguf_writer.add_vocab_size(self.hparams["vocab_size"])
  7294. # Override some Mamba2 defaults
  7295. self.gguf_writer.add_block_count(self.block_count)
  7296. self.gguf_writer.add_context_length(self.hparams.get("max_position_embeddings", 0))
  7297. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  7298. ## Attention params ##
  7299. self.gguf_writer.add_head_count(self.hparams["num_attention_heads"]) # Override value 0 from Mamba2
  7300. self.gguf_writer.add_head_count_kv(self.hparams["num_key_value_heads"])
  7301. self.gguf_writer.add_key_length(self.hparams["head_dim"])
  7302. self.gguf_writer.add_value_length(self.hparams["head_dim"])
  7303. ## Validation ##
  7304. assert self.hparams.get("hidden_act") in [None, "silu"], "Only SILU activation supported"
  7305. assert self.d_inner % self.d_head == 0, f"SSM inner size {self.d_inner} not a multiple of head dim {self.d_head}"
  7306. # Add any other Falcon Mamba2 specific configuration
  7307. self.gguf_writer.add_rope_freq_base(self.rope_parameters["rope_theta"])
  7308. @ModelBase.register("HunYuanMoEV1ForCausalLM")
  7309. class HunYuanMoEModel(TextModel):
  7310. model_arch = gguf.MODEL_ARCH.HUNYUAN_MOE
  7311. def set_vocab(self):
  7312. from transformers import AutoTokenizer
  7313. tokenizer = AutoTokenizer.from_pretrained(self.dir_model, trust_remote_code=True)
  7314. # 1. Get the pre-tokenizer identifier hash
  7315. tokpre = self.get_vocab_base_pre(tokenizer)
  7316. # 2. Reverse-engineer the merges list from mergeable_ranks
  7317. merges = []
  7318. vocab = {}
  7319. mergeable_ranks = tokenizer.mergeable_ranks
  7320. for token, rank in mergeable_ranks.items():
  7321. vocab[QwenModel.token_bytes_to_string(token)] = rank
  7322. if len(token) == 1:
  7323. continue
  7324. merged = QwenModel.bpe(mergeable_ranks, token, max_rank=rank)
  7325. if len(merged) == 2: # todo this is an assert in Qwen, why?
  7326. merges.append(' '.join(map(QwenModel.token_bytes_to_string, merged)))
  7327. # 3. Generate the tokens and toktypes lists
  7328. vocab_size = self.hparams["vocab_size"]
  7329. assert tokenizer.vocab_size == vocab_size
  7330. special_tokens = tokenizer.special_tokens
  7331. reverse_vocab = {id_ : encoded_tok for encoded_tok, id_ in {**vocab, **special_tokens}.items()}
  7332. tokens: list[str] = []
  7333. toktypes: list[int] = []
  7334. for i in range(vocab_size):
  7335. if i not in reverse_vocab:
  7336. tokens.append(f"[PAD{i}]")
  7337. toktypes.append(gguf.TokenType.UNUSED)
  7338. else:
  7339. token = reverse_vocab[i]
  7340. tokens.append(token)
  7341. if i in special_tokens.values():
  7342. toktypes.append(gguf.TokenType.CONTROL)
  7343. else:
  7344. toktypes.append(gguf.TokenType.NORMAL)
  7345. # 4. Write all vocab-related fields to the GGUF writer
  7346. self.gguf_writer.add_tokenizer_model("gpt2")
  7347. self.gguf_writer.add_tokenizer_pre(tokpre)
  7348. self.gguf_writer.add_token_list(tokens)
  7349. self.gguf_writer.add_token_types(toktypes)
  7350. self.gguf_writer.add_token_merges(merges)
  7351. # 5. Add special tokens and chat templates
  7352. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=False)
  7353. special_vocab.add_to_gguf(self.gguf_writer)
  7354. # FIX for BOS token: Overwrite incorrect id read from config.json
  7355. self.gguf_writer.add_bos_token_id(127959) # <|bos|>
  7356. def set_gguf_parameters(self):
  7357. super().set_gguf_parameters()
  7358. hparams = self.hparams
  7359. self.gguf_writer.add_expert_count(hparams["num_experts"])
  7360. self.gguf_writer.add_expert_shared_feed_forward_length(hparams["intermediate_size"])
  7361. moe_intermediate_size = hparams["moe_intermediate_size"]
  7362. assert all(n == moe_intermediate_size[0] for n in moe_intermediate_size)
  7363. self.gguf_writer.add_expert_feed_forward_length(moe_intermediate_size[0])
  7364. moe_topk = hparams["moe_topk"]
  7365. assert all(topk == moe_topk[0] for topk in moe_topk)
  7366. self.gguf_writer.add_expert_used_count(moe_topk[0])
  7367. moe_shared_expert = hparams["num_shared_expert"]
  7368. assert all(n == moe_shared_expert[0] for n in moe_shared_expert)
  7369. self.gguf_writer.add_expert_shared_count(moe_shared_expert[0])
  7370. # Rope
  7371. if self.rope_parameters.get("rope_type") == "dynamic":
  7372. # HunYuan uses NTK Aware Alpha based scaling. Original implementation: https://www.reddit.com/r/LocalLLaMA/comments/14lz7j5/ntkaware_scaled_rope_allows_llama_models_to_have/
  7373. # 1000 corresponds to a usable context length of 256k (https://github.com/Tencent-Hunyuan/Hunyuan-A13B/blob/main/report/Hunyuan_A13B_Technical_Report.pdf)
  7374. alpha = self.rope_parameters.get("alpha", 1000)
  7375. base = self.rope_parameters.get("rope_theta", 10000.0)
  7376. dim = (hparams["hidden_size"] // hparams["num_attention_heads"]) # 128
  7377. scaled_base = base * (alpha ** (dim / (dim - 2))) # 10000 * (1000 ** (128 / 126)) = 11158839.9251
  7378. self.gguf_writer.add_rope_freq_base(scaled_base)
  7379. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
  7380. self.gguf_writer.add_rope_scaling_factor(1)
  7381. # There is no consistent way to calculate ctx from alpha, and the config is incorrectly set to 32k
  7382. self.gguf_writer.add_rope_scaling_orig_ctx_len(256 * 1024) # 256k context length
  7383. self.gguf_writer.add_context_length(256 * 1024) # 256k context length
  7384. # if any of our assumptions about the values are wrong, something has changed and this may need to be updated
  7385. assert alpha == 1000 and base == 10000.0 and dim == 128 and self.hparams["max_position_embeddings"] in [32 * 1024, 256 * 1024] , \
  7386. "HunYuan dynamic RoPE scaling assumptions changed, please update the logic or context length manually"
  7387. _experts: list[dict[str, Tensor]] | None = None
  7388. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  7389. if name == "lm_head.weight":
  7390. if self.hparams.get("tie_word_embeddings", False):
  7391. logger.info("Skipping tied output layer 'lm_head.weight'")
  7392. return []
  7393. if name.find("mlp.experts") != -1:
  7394. n_experts = self.hparams["num_experts"]
  7395. assert bid is not None
  7396. if self._experts is None:
  7397. self._experts = [{} for _ in range(self.block_count)]
  7398. self._experts[bid][name] = data_torch
  7399. if len(self._experts[bid]) >= n_experts * 3:
  7400. # merge the experts into a single 3d tensor
  7401. tensors: list[tuple[str, Tensor]] = []
  7402. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  7403. datas: list[Tensor] = []
  7404. for xid in range(n_experts):
  7405. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  7406. datas.append(self._experts[bid][ename])
  7407. del self._experts[bid][ename]
  7408. data_torch = torch.stack(datas, dim=0)
  7409. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  7410. new_name = self.map_tensor_name(merged_name)
  7411. tensors.append((new_name, data_torch))
  7412. return tensors
  7413. else:
  7414. return []
  7415. return [(self.map_tensor_name(name), data_torch)]
  7416. def prepare_tensors(self):
  7417. super().prepare_tensors()
  7418. if self._experts is not None:
  7419. experts = [k for d in self._experts for k in d.keys()]
  7420. if len(experts) > 0:
  7421. raise ValueError(f"Unprocessed experts: {experts}")
  7422. @ModelBase.register("LLaDAMoEModel", "LLaDAMoEModelLM")
  7423. class LLaDAMoEModel(TextModel):
  7424. model_arch = gguf.MODEL_ARCH.LLADA_MOE
  7425. def set_gguf_parameters(self):
  7426. super().set_gguf_parameters()
  7427. if (n_experts := self.hparams.get("num_experts")) is not None:
  7428. self.gguf_writer.add_expert_count(n_experts)
  7429. if (expert_intermediate_size := self.hparams.get("expert_intermediate_size")) is not None:
  7430. self.gguf_writer.add_expert_feed_forward_length(expert_intermediate_size)
  7431. # number of experts used per token (top-k)
  7432. if (n_experts_used := self.hparams.get("num_experts_per_tok")) is not None:
  7433. self.gguf_writer.add_expert_used_count(n_experts_used)
  7434. self.gguf_writer.add_mask_token_id(156895)
  7435. self.gguf_writer.add_causal_attention(False)
  7436. self.gguf_writer.add_diffusion_shift_logits(False)
  7437. _experts: list[dict[str, Tensor]] | None = None
  7438. # Copied from: Qwen2MoeModel
  7439. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  7440. # process the experts separately
  7441. if name.find("experts") != -1:
  7442. n_experts = self.hparams["num_experts"]
  7443. assert bid is not None
  7444. if self._experts is None:
  7445. self._experts = [{} for _ in range(self.block_count)]
  7446. self._experts[bid][name] = data_torch
  7447. if len(self._experts[bid]) >= n_experts * 3:
  7448. tensors: list[tuple[str, Tensor]] = []
  7449. # merge the experts into a single 3d tensor
  7450. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  7451. datas: list[Tensor] = []
  7452. for xid in range(n_experts):
  7453. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  7454. datas.append(self._experts[bid][ename])
  7455. del self._experts[bid][ename]
  7456. data_torch = torch.stack(datas, dim=0)
  7457. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  7458. new_name = self.map_tensor_name(merged_name)
  7459. tensors.append((new_name, data_torch))
  7460. return tensors
  7461. else:
  7462. return []
  7463. return [(self.map_tensor_name(name), data_torch)]
  7464. # Copied from: Qwen2MoeModel
  7465. def prepare_tensors(self):
  7466. super().prepare_tensors()
  7467. if self._experts is not None:
  7468. # flatten `list[dict[str, Tensor]]` into `list[str]`
  7469. experts = [k for d in self._experts for k in d.keys()]
  7470. if len(experts) > 0:
  7471. raise ValueError(f"Unprocessed experts: {experts}")
  7472. @ModelBase.register("HunYuanDenseV1ForCausalLM")
  7473. class HunYuanModel(TextModel):
  7474. model_arch = gguf.MODEL_ARCH.HUNYUAN_DENSE
  7475. def set_vocab(self):
  7476. if (self.dir_model / "tokenizer.json").is_file():
  7477. self._set_vocab_gpt2()
  7478. else:
  7479. from transformers import AutoTokenizer
  7480. tokenizer = AutoTokenizer.from_pretrained(self.dir_model, trust_remote_code=True)
  7481. # 1. Get the pre-tokenizer identifier hash
  7482. tokpre = self.get_vocab_base_pre(tokenizer)
  7483. # 2. Reverse-engineer the merges list from mergeable_ranks
  7484. merges = []
  7485. vocab = {}
  7486. mergeable_ranks = tokenizer.mergeable_ranks
  7487. for token, rank in mergeable_ranks.items():
  7488. vocab[QwenModel.token_bytes_to_string(token)] = rank
  7489. if len(token) == 1:
  7490. continue
  7491. merged = QwenModel.bpe(mergeable_ranks, token, max_rank=rank)
  7492. if len(merged) == 2:
  7493. merges.append(' '.join(map(QwenModel.token_bytes_to_string, merged)))
  7494. # 3. Generate the tokens and toktypes lists
  7495. vocab_size = self.hparams["vocab_size"]
  7496. assert tokenizer.vocab_size == vocab_size
  7497. special_tokens = tokenizer.special_tokens
  7498. reverse_vocab = {id_ : encoded_tok for encoded_tok, id_ in {**vocab, **special_tokens}.items()}
  7499. tokens: list[str] = []
  7500. toktypes: list[int] = []
  7501. for i in range(vocab_size):
  7502. if i not in reverse_vocab:
  7503. tokens.append(f"[PAD{i}]")
  7504. toktypes.append(gguf.TokenType.UNUSED)
  7505. else:
  7506. token = reverse_vocab[i]
  7507. tokens.append(token)
  7508. if i in special_tokens.values():
  7509. toktypes.append(gguf.TokenType.CONTROL)
  7510. else:
  7511. toktypes.append(gguf.TokenType.NORMAL)
  7512. # 4. Write all vocab-related fields to the GGUF writer
  7513. self.gguf_writer.add_tokenizer_model("gpt2")
  7514. self.gguf_writer.add_tokenizer_pre(tokpre)
  7515. self.gguf_writer.add_token_list(tokens)
  7516. self.gguf_writer.add_token_types(toktypes)
  7517. self.gguf_writer.add_token_merges(merges)
  7518. # 5. Add special tokens and chat templates
  7519. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=False)
  7520. special_vocab.add_to_gguf(self.gguf_writer)
  7521. # FIX for BOS token: Overwrite incorrect id read from config.json
  7522. if self.hparams['hidden_size'] == 4096:
  7523. self.gguf_writer.add_bos_token_id(127958) # only for 7b dense, fix <|bos|> token
  7524. def set_gguf_parameters(self):
  7525. super().set_gguf_parameters()
  7526. hparams = self.hparams
  7527. # Rope
  7528. if self.rope_parameters.get("rope_type") == "dynamic":
  7529. # HunYuan uses NTK Aware Alpha based scaling. Original implementation: https://www.reddit.com/r/LocalLLaMA/comments/14lz7j5/ntkaware_scaled_rope_allows_llama_models_to_have/
  7530. # 1000 corresponds to a usable context length of 256k (https://github.com/Tencent-Hunyuan/Hunyuan-A13B/blob/main/report/Hunyuan_A13B_Technical_Report.pdf)
  7531. alpha = self.rope_parameters.get("alpha", 50)
  7532. base = self.rope_parameters.get("rope_theta", 10000.0)
  7533. dim = hparams["head_dim"]
  7534. scaled_base = base * (alpha ** (dim / (dim - 2)))
  7535. self.gguf_writer.add_rope_freq_base(scaled_base)
  7536. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
  7537. self.gguf_writer.add_rope_scaling_factor(1)
  7538. # There is no consistent way to calculate ctx from alpha, and the config is incorrectly set to 32k
  7539. self.gguf_writer.add_rope_scaling_orig_ctx_len(256 * 1024) # 256k context length
  7540. self.gguf_writer.add_context_length(256 * 1024) # 256k context length
  7541. # if any of our assumptions about the values are wrong, something has changed and this may need to be updated
  7542. assert base == 10000.0 and self.hparams["max_position_embeddings"] in [32 * 1024, 256 * 1024] , \
  7543. "HunYuan dynamic RoPE scaling assumptions changed, please update the logic or context length manually"
  7544. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  7545. if name == "lm_head.weight":
  7546. if self.hparams.get("tie_word_embeddings", False):
  7547. logger.info("Skipping tied output layer 'lm_head.weight'")
  7548. return []
  7549. return [(self.map_tensor_name(name), data_torch)]
  7550. @ModelBase.register("SmolLM3ForCausalLM")
  7551. class SmolLM3Model(LlamaModel):
  7552. model_arch = gguf.MODEL_ARCH.SMOLLM3
  7553. @ModelBase.register("GptOssForCausalLM")
  7554. class GptOssModel(TextModel):
  7555. model_arch = gguf.MODEL_ARCH.GPT_OSS
  7556. # TODO: remove once MXFP4 is supported more generally
  7557. def dequant_model(self):
  7558. quant_config = self.hparams.get("quantization_config")
  7559. if quant_config is not None and quant_config.get("quant_method") == "mxfp4":
  7560. return
  7561. return super().dequant_model()
  7562. def transform_nibble_layout(self, tensor):
  7563. assert tensor.dtype == torch.uint8
  7564. assert tensor.shape[-1] == 16
  7565. # swap nibbles
  7566. t_lo = tensor & 0x0F
  7567. t_hi = tensor & 0xF0
  7568. t_swapped = (t_lo << 4) | (t_hi >> 4)
  7569. tensor = t_swapped
  7570. # transform aaaa...bbbb... to abababab...
  7571. blk_a, blk_b = tensor.chunk(2, dim=-1)
  7572. # get a_
  7573. blk_a0 = (blk_a & 0xF0).view(-1, 1)
  7574. blk_a1 = (blk_a << 4).view(-1, 1)
  7575. blk_a = torch.stack((blk_a0, blk_a1), dim=2).view(tensor.shape)
  7576. # get _b
  7577. blk_b0 = (blk_b >> 4).view(-1, 1)
  7578. blk_b1 = (blk_b & 0x0F).view(-1, 1)
  7579. blk_b = torch.stack((blk_b0, blk_b1), dim=2).view(tensor.shape)
  7580. # swap once more
  7581. out = blk_a | blk_b
  7582. out_h = out & 0xF0
  7583. out_l = out & 0x0F
  7584. out = (out_h >> 4) | (out_l << 4)
  7585. return out
  7586. def repack_mxfp4(self, new_name: str, blocks: Tensor, scales: Tensor):
  7587. assert blocks.dtype == torch.uint8
  7588. assert scales.dtype == torch.uint8
  7589. scales = scales.unsqueeze(-1)
  7590. assert len(blocks.shape) == 4
  7591. assert len(scales.shape) == 4
  7592. blocks = self.transform_nibble_layout(blocks)
  7593. new_data = torch.concat((scales, blocks), dim=-1)
  7594. new_shape = [new_data.shape[0], new_data.shape[1], new_data.shape[2] * 32]
  7595. logger.info(f"Repacked {new_name} with shape {new_shape} and quantization MXFP4")
  7596. # flatten last dim
  7597. new_data = new_data.view(new_data.shape[0], new_data.shape[1], new_data.shape[2] * new_data.shape[3])
  7598. new_data = new_data.numpy()
  7599. self.gguf_writer.add_tensor(new_name, new_data, raw_dtype=gguf.GGMLQuantizationType.MXFP4)
  7600. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  7601. blocks0: Tensor = torch.zeros(1)
  7602. blocks1: Tensor = torch.zeros(1)
  7603. # we assume that tensors are loaded in the correct order
  7604. for name, data_torch in self.get_tensors():
  7605. if "mlp.experts.down_proj_blocks" in name:
  7606. blocks0 = data_torch
  7607. elif "mlp.experts.down_proj_scales" in name:
  7608. new_name = self.map_tensor_name(name.replace("_scales", ".weight"))
  7609. self.repack_mxfp4(new_name, blocks0, data_torch)
  7610. elif "mlp.experts.gate_up_proj_blocks" in name:
  7611. blocks0, blocks1 = data_torch[:, ::2, :, :], data_torch[:, 1::2, :, :]
  7612. elif "mlp.experts.gate_up_proj_scales" in name:
  7613. scales0, scales1 = data_torch[:, ::2, :], data_torch[:, 1::2, :]
  7614. new_name_gate = self.map_tensor_name(name.replace("gate_up_proj_scales", "gate_proj.weight"))
  7615. new_name_up = self.map_tensor_name(name.replace("gate_up_proj_scales", "up_proj.weight"))
  7616. self.repack_mxfp4(new_name_gate, blocks0, scales0)
  7617. self.repack_mxfp4(new_name_up, blocks1, scales1)
  7618. return []
  7619. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  7620. del bid # unused
  7621. if "sinks" in name:
  7622. name += ".weight"
  7623. # correct naming for down_proj
  7624. if "down_proj" in name:
  7625. if name.endswith("_bias"):
  7626. name = name.replace("down_proj_bias", "down_proj.bias")
  7627. elif "_blocks" not in name and "_scales" not in name:
  7628. logger.warning(f"{name} is not in MXFP4, performance may be degraded")
  7629. name = name.replace("down_proj", "down_proj.weight")
  7630. data_torch = data_torch.transpose(-1, -2)
  7631. else:
  7632. # otherwise, it should already be repacked to ggml MXFP4 format
  7633. return []
  7634. # split the gate_up into gate and up
  7635. if "gate_up_proj" in name:
  7636. if name.endswith("_bias"):
  7637. name_up = name.replace("gate_up_proj_bias", "up_proj.bias")
  7638. name_gate = name.replace("gate_up_proj_bias", "gate_proj.bias")
  7639. gate_proj_bias, up_proj_bias = data_torch[..., ::2], data_torch[..., 1::2]
  7640. return [
  7641. (self.map_tensor_name(name_gate), gate_proj_bias),
  7642. (self.map_tensor_name(name_up), up_proj_bias)
  7643. ]
  7644. elif "_blocks" not in name and "_scales" not in name:
  7645. logger.warning(f"{name} is not in MXFP4, performance may be degraded")
  7646. name_up = name.replace("gate_up_proj", "up_proj.weight")
  7647. name_gate = name.replace("gate_up_proj", "gate_proj.weight")
  7648. data_torch = data_torch.transpose(-1, -2)
  7649. gate_proj_weight, up_proj_weight = data_torch[:, ::2, :], data_torch[:, 1::2, :]
  7650. return [
  7651. (self.map_tensor_name(name_gate), gate_proj_weight),
  7652. (self.map_tensor_name(name_up), up_proj_weight)
  7653. ]
  7654. else:
  7655. # otherwise, it should already be repacked to ggml MXFP4 format
  7656. return []
  7657. return [(self.map_tensor_name(name), data_torch)]
  7658. def set_vocab(self):
  7659. self._set_vocab_gpt2()
  7660. def set_gguf_parameters(self):
  7661. super().set_gguf_parameters()
  7662. self.gguf_writer.add_sliding_window(self.hparams["sliding_window"])
  7663. self.gguf_writer.add_expert_feed_forward_length(self.hparams["intermediate_size"])
  7664. @ModelBase.register("Lfm2ForCausalLM", "LFM2ForCausalLM")
  7665. class LFM2Model(TextModel):
  7666. model_arch = gguf.MODEL_ARCH.LFM2
  7667. def _add_feed_forward_length(self):
  7668. ff_dim = self.hparams["block_ff_dim"]
  7669. auto_adjust_ff_dim = self.hparams["block_auto_adjust_ff_dim"]
  7670. ff_dim = self.hparams["block_ff_dim"]
  7671. ffn_dim_multiplier = self.hparams["block_ffn_dim_multiplier"]
  7672. multiple_of = self.hparams["block_multiple_of"]
  7673. if auto_adjust_ff_dim:
  7674. ff_dim = int(2 * ff_dim / 3)
  7675. # custom dim factor multiplier
  7676. if ffn_dim_multiplier is not None:
  7677. ff_dim = int(ffn_dim_multiplier * ff_dim)
  7678. ff_dim = multiple_of * ((ff_dim + multiple_of - 1) // multiple_of)
  7679. self.gguf_writer.add_feed_forward_length(ff_dim)
  7680. def set_gguf_parameters(self):
  7681. # set num_key_value_heads only for attention layers
  7682. self.hparams["num_key_value_heads"] = [
  7683. self.hparams["num_key_value_heads"] if layer_type == "full_attention" else 0
  7684. for layer_type in self.hparams["layer_types"]
  7685. ]
  7686. super().set_gguf_parameters()
  7687. self.gguf_writer.add_vocab_size(self.hparams["vocab_size"])
  7688. self.gguf_writer.add_shortconv_l_cache(self.hparams["conv_L_cache"])
  7689. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["norm_eps"])
  7690. self._add_feed_forward_length()
  7691. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  7692. is_vision_tensor = "vision_tower" in name or "multi_modal_projector" in name
  7693. if is_vision_tensor:
  7694. # skip vision tensors
  7695. return []
  7696. name = name.replace("language_model.", "")
  7697. # conv op requires 2d tensor
  7698. if 'conv.conv' in name:
  7699. data_torch = data_torch.squeeze(1)
  7700. return [(self.map_tensor_name(name), data_torch)]
  7701. @ModelBase.register("Lfm2MoeForCausalLM")
  7702. class LFM2MoeModel(TextModel):
  7703. model_arch = gguf.MODEL_ARCH.LFM2MOE
  7704. def set_gguf_parameters(self):
  7705. # set num_key_value_heads only for attention layers
  7706. self.hparams["num_key_value_heads"] = [
  7707. self.hparams["num_key_value_heads"] if layer_type == "full_attention" else 0
  7708. for layer_type in self.hparams["layer_types"]
  7709. ]
  7710. super().set_gguf_parameters()
  7711. self.gguf_writer.add_expert_count(self.hparams["num_experts"])
  7712. self.gguf_writer.add_expert_feed_forward_length(self.hparams["moe_intermediate_size"])
  7713. self.gguf_writer.add_leading_dense_block_count(self.hparams["num_dense_layers"])
  7714. self.gguf_writer.add_expert_gating_func(gguf.ExpertGatingFuncType.SIGMOID)
  7715. self.gguf_writer.add_vocab_size(self.hparams["vocab_size"])
  7716. self.gguf_writer.add_shortconv_l_cache(self.hparams["conv_L_cache"])
  7717. # cache for experts weights for merging
  7718. _experts_cache: dict[int, dict[str, Tensor]] = {}
  7719. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  7720. # conv op requires 2d tensor
  7721. if 'conv.conv' in name:
  7722. data_torch = data_torch.squeeze(1)
  7723. if name.endswith(".expert_bias"):
  7724. name = name.replace(".expert_bias", ".expert_bias.bias")
  7725. # merge expert weights
  7726. if 'experts' in name:
  7727. n_experts = self.hparams["num_experts"]
  7728. assert bid is not None
  7729. expert_cache = self._experts_cache.setdefault(bid, {})
  7730. expert_cache[name] = data_torch
  7731. expert_weights = ["w1", "w2", "w3"]
  7732. # not enough expert weights to merge
  7733. if len(expert_cache) < n_experts * len(expert_weights):
  7734. return []
  7735. tensors: list[tuple[str, Tensor]] = []
  7736. for w_name in expert_weights:
  7737. datas: list[Tensor] = []
  7738. for xid in range(n_experts):
  7739. ename = f"model.layers.{bid}.feed_forward.experts.{xid}.{w_name}.weight"
  7740. datas.append(expert_cache[ename])
  7741. del expert_cache[ename]
  7742. data_torch = torch.stack(datas, dim=0)
  7743. merged_name = f"layers.{bid}.feed_forward.experts.{w_name}.weight"
  7744. new_name = self.map_tensor_name(merged_name)
  7745. tensors.append((new_name, data_torch))
  7746. del self._experts_cache[bid]
  7747. return tensors
  7748. return [(self.map_tensor_name(name), data_torch)]
  7749. def prepare_tensors(self):
  7750. super().prepare_tensors()
  7751. assert not self._experts_cache
  7752. @ModelBase.register("Lfm2VlForConditionalGeneration")
  7753. class LFM2VLModel(MmprojModel):
  7754. def __init__(self, *args, **kwargs):
  7755. super().__init__(*args, **kwargs)
  7756. assert self.hparams_vision is not None
  7757. # TODO(tarek): for dynamic resolution image_size is not specified, setting here for compatibility
  7758. self.hparams_vision["image_size"] = 256
  7759. def set_gguf_parameters(self):
  7760. super().set_gguf_parameters()
  7761. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.LFM2)
  7762. self.gguf_writer.add_vision_attention_layernorm_eps(self.find_vparam(["layer_norm_eps"]))
  7763. self.gguf_writer.add_vision_projector_scale_factor(self.global_config.get("downsample_factor", 2))
  7764. self.gguf_writer.add_vision_use_gelu(True)
  7765. # python notation, e.g. for vision_feature_layer == -1, we pick last layer -> vision_feature_layers_to_drop = 0
  7766. vision_feature_layers_to_drop = -(self.global_config.get("vision_feature_layer", -1) + 1)
  7767. self.gguf_writer.add_vision_block_count(self.find_vparam(self.n_block_keys) - vision_feature_layers_to_drop)
  7768. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  7769. del bid # unused
  7770. is_vision_tensor = "vision_tower" in name or "multi_modal_projector" in name
  7771. if is_vision_tensor:
  7772. # remove "model." prefix
  7773. name = name.replace("model.vision_tower.", "vision_tower.")
  7774. name = name.replace("model.multi_modal_projector.", "multi_modal_projector.")
  7775. if "patch_embedding.weight" in name:
  7776. data_torch = data_torch.view(data_torch.shape[0], 16, 16, 3).permute(0, 3, 1, 2)
  7777. return [(self.map_tensor_name(name), data_torch)]
  7778. return [] # skip other tensors
  7779. @ModelBase.register("SmallThinkerForCausalLM")
  7780. class SmallThinkerModel(TextModel):
  7781. model_arch = gguf.MODEL_ARCH.SMALLTHINKER
  7782. def set_gguf_parameters(self):
  7783. super().set_gguf_parameters()
  7784. if (n_experts := self.hparams.get("num_experts", self.hparams.get("moe_num_primary_experts"))) is not None:
  7785. self.gguf_writer.add_expert_count(n_experts)
  7786. if (n_experts_used := self.hparams.get("num_experts_per_tok", self.hparams.get("moe_num_active_primary_experts"))) is not None:
  7787. self.gguf_writer.add_expert_used_count(n_experts_used)
  7788. if (moe_intermediate_size := self.hparams.get("moe_ffn_hidden_size")) is not None:
  7789. self.gguf_writer.add_expert_feed_forward_length(moe_intermediate_size)
  7790. self.gguf_writer.add_feed_forward_length(moe_intermediate_size)
  7791. logger.info(f"gguf: expert feed forward length = {moe_intermediate_size}")
  7792. if (self.hparams.get('moe_primary_router_apply_softmax')):
  7793. self.gguf_writer.add_expert_gating_func(gguf.ExpertGatingFuncType.SOFTMAX)
  7794. else:
  7795. self.gguf_writer.add_expert_gating_func(gguf.ExpertGatingFuncType.SIGMOID)
  7796. sliding_window_layout = self.hparams.get("sliding_window_layout")
  7797. if sliding_window_layout:
  7798. for i in sliding_window_layout:
  7799. if i != 0:
  7800. sliding_window = self.hparams.get("sliding_window_size")
  7801. if sliding_window:
  7802. self.gguf_writer.add_sliding_window(sliding_window)
  7803. break
  7804. _experts: list[dict[str, Tensor]] | None = None
  7805. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  7806. # process the experts separately
  7807. if name.find("experts") != -1:
  7808. n_experts = self.hparams.get("num_experts", self.hparams.get("moe_num_primary_experts"))
  7809. assert bid is not None
  7810. if self._experts is None:
  7811. self._experts = [{} for _ in range(self.block_count)]
  7812. self._experts[bid][name] = data_torch
  7813. if len(self._experts[bid]) >= n_experts * 3:
  7814. tensors: list[tuple[str, Tensor]] = []
  7815. # merge the experts into a single 3d tensor
  7816. for w_name in ["down", "gate", "up"]:
  7817. datas: list[Tensor] = []
  7818. for xid in range(n_experts):
  7819. ename = f"model.layers.{bid}.block_sparse_moe.experts.{xid}.{w_name}.weight"
  7820. datas.append(self._experts[bid][ename])
  7821. del self._experts[bid][ename]
  7822. data_torch = torch.stack(datas, dim=0)
  7823. merged_name = f"model.layers.{bid}.block_sparse_moe.experts.{w_name}.weight"
  7824. new_name = self.map_tensor_name(merged_name)
  7825. tensors.append((new_name, data_torch))
  7826. return tensors
  7827. else:
  7828. return []
  7829. return [(self.map_tensor_name(name), data_torch)]
  7830. def prepare_tensors(self):
  7831. super().prepare_tensors()
  7832. if self._experts is not None:
  7833. # flatten `list[dict[str, Tensor]]` into `list[str]`
  7834. experts = [k for d in self._experts for k in d.keys()]
  7835. if len(experts) > 0:
  7836. raise ValueError(f"Unprocessed experts: {experts}")
  7837. @ModelBase.register("ApertusForCausalLM")
  7838. class ApertusModel(LlamaModel):
  7839. model_arch = gguf.MODEL_ARCH.APERTUS
  7840. undo_permute = False
  7841. _alpha_n = {}
  7842. _alpha_p = {}
  7843. _beta = {}
  7844. _eps = {}
  7845. def modify_tensors(self, data_torch, name, bid):
  7846. # Handle xIELU activation parameters
  7847. n_layers = self.hparams["num_hidden_layers"]
  7848. if name.endswith(".act_fn.alpha_n"):
  7849. self._alpha_n[bid] = data_torch.to("cpu").float().item()
  7850. if (len(self._alpha_n) == n_layers):
  7851. self.gguf_writer.add_xielu_alpha_n([self._alpha_n[k] for k in sorted(self._alpha_n)])
  7852. return []
  7853. if name.endswith(".act_fn.alpha_p"):
  7854. self._alpha_p[bid] = data_torch.to("cpu").float().item()
  7855. if (len(self._alpha_p) == n_layers):
  7856. self.gguf_writer.add_xielu_alpha_p([self._alpha_p[k] for k in sorted(self._alpha_p)])
  7857. return []
  7858. if name.endswith(".act_fn.beta"):
  7859. self._beta[bid] = data_torch.to("cpu").float().item()
  7860. if (len(self._beta) == n_layers):
  7861. self.gguf_writer.add_xielu_beta([self._beta[k] for k in sorted(self._beta)])
  7862. return []
  7863. if name.endswith(".act_fn.eps"):
  7864. self._eps[bid] = data_torch.to("cpu").float().item()
  7865. if (len(self._eps) == n_layers):
  7866. self.gguf_writer.add_xielu_eps([self._eps[k] for k in sorted(self._eps)])
  7867. return []
  7868. return super().modify_tensors(data_torch, name, bid)
  7869. class MistralModel(LlamaModel):
  7870. model_arch = gguf.MODEL_ARCH.MISTRAL3
  7871. model_name = "Mistral"
  7872. hf_arch = ""
  7873. is_mistral_format = True
  7874. undo_permute = False
  7875. def __init__(self, *args, **kwargs):
  7876. super().__init__(*args, **kwargs)
  7877. # for compatibility, we use LLAMA arch for older models
  7878. # TODO: remove this once everyone migrates to newer version of llama.cpp
  7879. if "llama_4_scaling" not in self.hparams:
  7880. self.model_arch = gguf.MODEL_ARCH.LLAMA
  7881. self.gguf_writer.arch = gguf.MODEL_ARCH_NAMES[self.model_arch]
  7882. self.gguf_writer.add_architecture()
  7883. self.tensor_map = gguf.get_tensor_name_map(self.model_arch, self.block_count)
  7884. def dequant_model(self):
  7885. # transform quantization config into HF format
  7886. quant_config = self.hparams.get("quantization")
  7887. if quant_config is not None:
  7888. assert quant_config["qformat_weight"] == "fp8_e4m3"
  7889. self.hparams["quantization_config"] = {
  7890. "activation_scheme": "static",
  7891. "quant_method": "fp8",
  7892. "weight_block_size": None,
  7893. }
  7894. return super().dequant_model()
  7895. @staticmethod
  7896. def get_community_chat_template(vocab: MistralVocab, templates_dir: Path, is_mistral_format: bool):
  7897. assert TokenizerVersion is not None and Tekkenizer is not None and SentencePieceTokenizer is not None, _mistral_import_error_msg
  7898. assert isinstance(vocab.tokenizer, (Tekkenizer, SentencePieceTokenizer)), (
  7899. f"Expected Tekkenizer or SentencePieceTokenizer, got {type(vocab.tokenizer)}"
  7900. )
  7901. if vocab.tokenizer.version == TokenizerVersion.v1:
  7902. return "mistral-v1"
  7903. elif vocab.tokenizer.version == TokenizerVersion.v3 and vocab.tokenizer_type == MistralTokenizerType.spm:
  7904. return "mistral-v3"
  7905. elif vocab.tokenizer.version == TokenizerVersion.v3 and vocab.tokenizer_type == MistralTokenizerType.tekken:
  7906. return "mistral-v3-tekken"
  7907. elif vocab.tokenizer.version == TokenizerVersion.v7 and vocab.tokenizer_type == MistralTokenizerType.spm:
  7908. return "mistral-v7"
  7909. elif vocab.tokenizer.version == TokenizerVersion.v7 and vocab.tokenizer_type == MistralTokenizerType.tekken:
  7910. return "mistral-v7-tekken"
  7911. elif vocab.tokenizer.version == TokenizerVersion.v11:
  7912. template_file = "Mistral-Small-3.2-24B-Instruct-2506.jinja"
  7913. elif vocab.tokenizer.version == TokenizerVersion.v13:
  7914. template_file = "unsloth-mistral-Devstral-Small-2507.jinja"
  7915. else:
  7916. err_message = f"Unknown tokenizer type: {vocab.tokenizer_type} and version {vocab.tokenizer.version}"
  7917. if is_mistral_format:
  7918. err_message += (
  7919. " . Please pass --disable-mistral-community-chat-template argument to the CLI "
  7920. "if you want to skip this error and use the Mistral official `mistral-common` pre-processing library."
  7921. )
  7922. raise ValueError(err_message)
  7923. template_path = templates_dir / template_file
  7924. if not template_path.exists():
  7925. raise FileNotFoundError(f"Template file not found: {template_path}")
  7926. with open(template_path, "r", encoding="utf-8") as f:
  7927. template = f.read()
  7928. return template
  7929. def set_gguf_parameters(self):
  7930. super().set_gguf_parameters()
  7931. MistralModel.set_mistral_config(self.gguf_writer, self.hparams)
  7932. @staticmethod
  7933. def set_mistral_config(gguf_writer: gguf.GGUFWriter, hparams: dict):
  7934. if "yarn" in hparams:
  7935. yarn_params = hparams["yarn"]
  7936. gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.YARN)
  7937. gguf_writer.add_rope_scaling_factor(yarn_params["factor"])
  7938. gguf_writer.add_rope_scaling_yarn_beta_fast(yarn_params["beta"])
  7939. gguf_writer.add_rope_scaling_yarn_beta_slow(yarn_params["alpha"])
  7940. gguf_writer.add_rope_scaling_yarn_log_mul(1.0) # mscale_all_dim
  7941. gguf_writer.add_rope_scaling_orig_ctx_len(yarn_params["original_max_position_embeddings"])
  7942. if "llama_4_scaling" in hparams:
  7943. gguf_writer.add_attn_temperature_scale(hparams["llama_4_scaling"]["beta"])
  7944. class MistralMoeModel(DeepseekV2Model):
  7945. model_arch = gguf.MODEL_ARCH.DEEPSEEK2
  7946. model_name = "Mistral"
  7947. hf_arch = ""
  7948. is_mistral_format = True
  7949. def __init__(self, *args, **kwargs):
  7950. super().__init__(*args, **kwargs)
  7951. logger.info("Using MistralMoeModel")
  7952. # remap hparams from Mistral MoE format to DeepseekV2 format
  7953. # we do this way to be able to reuse DeepseekV2Model set_gguf_parameters logic
  7954. # ref: https://github.com/vllm-project/vllm/blob/b294e28db2c5dee61bc25157664edcada8b90b31/vllm/transformers_utils/configs/mistral.py
  7955. config = self.hparams
  7956. # Mistral key -> HF key
  7957. config_mapping = {
  7958. "dim": "hidden_size",
  7959. "norm_eps": "rms_norm_eps",
  7960. "n_kv_heads": "num_key_value_heads",
  7961. "n_layers": "num_hidden_layers",
  7962. "n_heads": "num_attention_heads",
  7963. "hidden_dim": "intermediate_size",
  7964. }
  7965. # HF key -> (Mistral key, default value)
  7966. top_level_mapping_with_default = {
  7967. "model_type": ("model_type", "transformer"),
  7968. "hidden_act": ("activation", "silu"),
  7969. "tie_word_embeddings": ("tied_embeddings", False),
  7970. "max_seq_len": ("max_seq_len", config.get("max_position_embeddings", 128_000)),
  7971. "max_position_embeddings": ("max_position_embeddings", 128_000),
  7972. }
  7973. # mapping top-level keys
  7974. for key, new_key in config_mapping.items():
  7975. if key in config:
  7976. config[new_key] = config[key]
  7977. for new_key, (key, default_value) in top_level_mapping_with_default.items():
  7978. config[new_key] = config.get(key, default_value)
  7979. # mapping MoE-specific keys
  7980. moe_config_map = {
  7981. "route_every_n": "moe_layer_freq",
  7982. "first_k_dense_replace": "first_k_dense_replace",
  7983. "num_experts_per_tok": "num_experts_per_tok",
  7984. "num_experts": "n_routed_experts",
  7985. "expert_hidden_dim": "moe_intermediate_size",
  7986. "routed_scale": "routed_scaling_factor",
  7987. "num_shared_experts": "n_shared_experts",
  7988. "num_expert_groups": "n_group",
  7989. "num_expert_groups_per_tok": "topk_group",
  7990. }
  7991. moe = config["moe"]
  7992. for key, new_key in moe_config_map.items():
  7993. if key in moe:
  7994. config[new_key] = moe[key]
  7995. # provide missing values
  7996. config["topk_method"] = None
  7997. config["norm_topk_prob"] = True
  7998. config["scoring_func"] = "softmax"
  7999. def set_vocab(self):
  8000. self._set_vocab_mistral()
  8001. def set_gguf_parameters(self):
  8002. super().set_gguf_parameters()
  8003. MistralModel.set_mistral_config(self.gguf_writer, self.hparams)
  8004. yarn_params = self.hparams["yarn"]
  8005. self.gguf_writer.add_attn_temperature_length(yarn_params["original_max_position_embeddings"])
  8006. # [TAG_DEEPSEEK2_YARN_LOG_MUL_FIX]
  8007. # note: for legacy reasons, this is not consistent with the other usages of self.gguf_writer.add_rope_scaling_yarn_log_mul
  8008. # ref https://github.com/ggml-org/llama.cpp/pull/17945
  8009. self.gguf_writer.add_rope_scaling_yarn_log_mul(0.1) # mscale_all_dim * 0.1
  8010. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None):
  8011. if name.startswith("vision_") or name.startswith("patch_merger.") or "mm_projector" in name:
  8012. return []
  8013. # rename certain tensors so that we can reuse DeepseekV2Model modify_tensors logic
  8014. if name.endswith(".qscale_act"):
  8015. name = name.replace(".qscale_act", ".input_scale")
  8016. if name.endswith(".qscale_weight"):
  8017. name = name.replace(".qscale_weight", ".weight_scale")
  8018. if ".wkv_b." in name:
  8019. name = name.replace(".wkv_b.", ".kv_b_proj.")
  8020. if ".experts." in name:
  8021. name = name.replace(".experts.", ".mlp.experts.")
  8022. name = name.replace(".w1.", ".gate_proj.")
  8023. name = name.replace(".w2.", ".down_proj.")
  8024. name = name.replace(".w3.", ".up_proj.")
  8025. name = "model." + name
  8026. return super().modify_tensors(data_torch, name, bid)
  8027. class PixtralModel(LlavaVisionModel):
  8028. model_name = "Pixtral"
  8029. hf_arch = ""
  8030. is_mistral_format = True
  8031. def set_gguf_parameters(self):
  8032. super().set_gguf_parameters()
  8033. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.PIXTRAL)
  8034. self.gguf_writer.add_vision_attention_layernorm_eps(
  8035. self.find_hparam(["norm_eps"])
  8036. )
  8037. self.gguf_writer.add_rope_freq_base(self.find_vparam(["rope_theta"]))
  8038. self.gguf_writer.add_vision_use_silu(True)
  8039. # spatial_merge_size
  8040. if self.find_vparam(["mm_projector_id"]) == "patch_merge":
  8041. self.gguf_writer.add_vision_spatial_merge_size(
  8042. self.find_vparam(["spatial_merge_size"])
  8043. )
  8044. def map_tensor_name(self, name: str, try_suffixes: Sequence[str] = (".weight", ".bias")) -> str:
  8045. if name == "vision_language_adapter.w_in.weight":
  8046. return "mm.1.weight"
  8047. elif name == "vision_language_adapter.w_out.weight":
  8048. return "mm.2.weight"
  8049. return super().map_tensor_name(name, try_suffixes)
  8050. @ModelBase.register("LightOnOCRForConditionalGeneration")
  8051. class LightOnOCRVisionModel(LlavaVisionModel):
  8052. is_mistral_format = False
  8053. use_break_tok = False
  8054. def set_gguf_parameters(self):
  8055. super().set_gguf_parameters()
  8056. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.LIGHTONOCR)
  8057. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None):
  8058. name = name.replace("model.vision_encoder.", "vision_tower.")
  8059. name = name.replace("model.vision_projection.", "multi_modal_projector.")
  8060. return super().modify_tensors(data_torch, name, bid)
  8061. @ModelBase.register("KimiVLForConditionalGeneration")
  8062. class KimiVLModel(MmprojModel):
  8063. def __init__(self, *args, **kwargs):
  8064. super().__init__(*args, **kwargs)
  8065. assert self.hparams_vision is not None
  8066. self.hparams_vision["image_size"] = 64 * 14 # for compatibility
  8067. def set_gguf_parameters(self):
  8068. super().set_gguf_parameters()
  8069. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.KIMIVL)
  8070. self.gguf_writer.add_vision_use_gelu(True)
  8071. self.gguf_writer.add_vision_projector_scale_factor(2)
  8072. # eps is the same as pytorch's default value
  8073. assert self.hparams_vision is not None
  8074. self.gguf_writer.add_vision_attention_layernorm_eps(self.hparams_vision.get("layer_norm_eps", 1e-5))
  8075. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  8076. del bid # unused
  8077. is_vision_tensor = "vision_tower" in name or "multi_modal_projector" in name
  8078. if is_vision_tensor:
  8079. if "pos_emb.weight" in name:
  8080. data_torch = data_torch.view(data_torch.shape[0] * data_torch.shape[1], data_torch.shape[2])
  8081. elif "wqkv" in name:
  8082. split_dim = 0 if "weight" in name else -1
  8083. wq, wk, wv = data_torch.chunk(3, dim=split_dim)
  8084. return [
  8085. (self.map_tensor_name(name.replace("wqkv", "wq")), wq),
  8086. (self.map_tensor_name(name.replace("wqkv", "wk")), wk),
  8087. (self.map_tensor_name(name.replace("wqkv", "wv")), wv)
  8088. ]
  8089. return [(self.map_tensor_name(name), data_torch)]
  8090. return [] # skip other tensors
  8091. @ModelBase.register("CogVLMForCausalLM")
  8092. class CogVLMVisionModel(MmprojModel):
  8093. def set_gguf_parameters(self):
  8094. super().set_gguf_parameters()
  8095. self.gguf_writer.add_vision_attention_layernorm_eps(self.hparams.get("layer_norm_eps", 1e-6))
  8096. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.COGVLM)
  8097. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  8098. del bid # unused
  8099. if not name.startswith("model.vision."):
  8100. return []
  8101. return [(self.map_tensor_name(name), data_torch)]
  8102. @ModelBase.register("CogVLMForCausalLM")
  8103. class CogVLMModel(LlamaModel):
  8104. model_arch = gguf.MODEL_ARCH.COGVLM
  8105. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  8106. del bid # unused
  8107. # block vision tensors
  8108. if name.startswith("model.vision."):
  8109. return []
  8110. return [(self.map_tensor_name(name), data_torch)]
  8111. @ModelBase.register("JanusForConditionalGeneration")
  8112. class JanusProModel(LlamaModel):
  8113. model_arch = gguf.MODEL_ARCH.LLAMA # reuse Llama arch
  8114. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  8115. # Skip vision, aligner, and generation tensors
  8116. skip_prefixes = (
  8117. 'model.vision_model.',
  8118. 'model.aligner.',
  8119. 'model.vqmodel.',
  8120. 'model.generation_embeddings.',
  8121. 'model.generation_aligner.',
  8122. 'model.generation_head.',
  8123. )
  8124. if name.startswith(skip_prefixes):
  8125. return []
  8126. if name.startswith('model.language_model.'):
  8127. name = name.replace('model.language_model.', 'model.')
  8128. elif name.startswith('language_model.'):
  8129. name = name.replace('language_model.', '')
  8130. return super().modify_tensors(data_torch, name, bid)
  8131. @ModelBase.register("JanusForConditionalGeneration")
  8132. class JanusProVisionModel(MmprojModel):
  8133. def __init__(self, *args, **kwargs):
  8134. super().__init__(*args, **kwargs)
  8135. assert self.hparams_vision is not None
  8136. if "intermediate_size" not in self.hparams_vision:
  8137. mlp_ratio = self.hparams_vision.get("mlp_ratio")
  8138. hidden_size = self.hparams_vision.get("hidden_size")
  8139. if mlp_ratio is not None and hidden_size is not None:
  8140. self.hparams_vision["intermediate_size"] = int(round(hidden_size * mlp_ratio))
  8141. def set_gguf_parameters(self):
  8142. super().set_gguf_parameters()
  8143. assert self.hparams_vision is not None
  8144. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.JANUS_PRO)
  8145. self.gguf_writer.add_vision_attention_layernorm_eps(self.hparams_vision.get("layer_norm_eps", 1e-6))
  8146. hidden_act = str(self.hparams_vision.get("hidden_act", "")).lower()
  8147. if hidden_act == "gelu":
  8148. self.gguf_writer.add_vision_use_gelu(True)
  8149. elif hidden_act == "silu":
  8150. self.gguf_writer.add_vision_use_silu(True)
  8151. def _map_aligner_tensor(self, data_torch: Tensor, name: str) -> Iterable[tuple[str, Tensor]]:
  8152. """Map aligner tensors to projector format"""
  8153. suffix = ".bias" if name.endswith(".bias") else ".weight"
  8154. if name.startswith("model.aligner."):
  8155. local_name = name[len("model.aligner."):]
  8156. elif name.startswith("aligner."):
  8157. local_name = name[len("aligner."):]
  8158. else:
  8159. raise ValueError(f"Unsupported Janus aligner prefix: {name}")
  8160. if local_name.startswith("fc1."):
  8161. mm_index = 0
  8162. elif local_name.startswith("hidden_layers."):
  8163. parts = local_name.split(".", 2)
  8164. if len(parts) < 3:
  8165. raise ValueError(f"Unexpected Janus aligner tensor name: {name}")
  8166. mm_index = int(parts[1]) + 1
  8167. else:
  8168. raise ValueError(f"Unsupported Janus aligner tensor: {name}")
  8169. tensor_name = self.format_tensor_name(gguf.MODEL_TENSOR.V_MMPROJ, mm_index, suffix=suffix)
  8170. return [(tensor_name, data_torch)]
  8171. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  8172. del bid # unused
  8173. # Skip language model tensors as they will be handled by `JanusProModel`
  8174. if name.startswith(('model.language_model.', 'language_model.')):
  8175. return []
  8176. # Skip generation-related components
  8177. skip_generation_prefixes = (
  8178. 'model.vqmodel.',
  8179. 'vqmodel.',
  8180. 'model.generation_embeddings.',
  8181. 'generation_embeddings.',
  8182. 'model.generation_aligner.',
  8183. 'generation_aligner.',
  8184. 'model.generation_head.',
  8185. 'generation_head.',
  8186. )
  8187. if name.startswith(skip_generation_prefixes):
  8188. return []
  8189. # Handle aligner tensors
  8190. if name.startswith(('model.aligner.', 'aligner.')):
  8191. return list(self._map_aligner_tensor(data_torch, name))
  8192. # Handle vision tensors
  8193. if name.startswith(('model.vision_model.', 'vision_model.')):
  8194. return [(self.map_tensor_name(name), data_torch)]
  8195. return []
  8196. ###### CONVERSION LOGIC ######
  8197. # tree of lazy tensors
  8198. class LazyTorchTensor(gguf.LazyBase):
  8199. _tensor_type = torch.Tensor
  8200. # to keep the type-checker happy
  8201. dtype: torch.dtype
  8202. shape: torch.Size
  8203. # only used when converting a torch.Tensor to a np.ndarray
  8204. _dtype_map: dict[torch.dtype, type] = {
  8205. torch.float16: np.float16,
  8206. torch.float32: np.float32,
  8207. torch.uint8: np.uint8,
  8208. }
  8209. # only used when byteswapping data. Only correct size is needed
  8210. _dtype_byteswap_map: dict[torch.dtype, type] = {
  8211. torch.float64: np.float64,
  8212. torch.float32: np.float32,
  8213. torch.bfloat16: np.float16,
  8214. torch.float16: np.float16,
  8215. torch.int64: np.int64,
  8216. torch.uint64: np.uint64,
  8217. torch.int32: np.int32,
  8218. torch.uint32: np.uint32,
  8219. torch.int16: np.int16,
  8220. torch.uint16: np.uint16,
  8221. torch.int8: np.int8,
  8222. torch.uint8: np.uint8,
  8223. torch.bool: np.uint8,
  8224. torch.float8_e4m3fn: np.uint8,
  8225. torch.float8_e5m2: np.uint8,
  8226. }
  8227. # used for safetensors slices
  8228. # ref: https://github.com/huggingface/safetensors/blob/079781fd0dc455ba0fe851e2b4507c33d0c0d407/bindings/python/src/lib.rs#L1046
  8229. # TODO: uncomment U64, U32, and U16, ref: https://github.com/pytorch/pytorch/issues/58734
  8230. _dtype_str_map: dict[str, torch.dtype] = {
  8231. "F64": torch.float64,
  8232. "F32": torch.float32,
  8233. "BF16": torch.bfloat16,
  8234. "F16": torch.float16,
  8235. # "U64": torch.uint64,
  8236. "I64": torch.int64,
  8237. # "U32": torch.uint32,
  8238. "I32": torch.int32,
  8239. # "U16": torch.uint16,
  8240. "I16": torch.int16,
  8241. "U8": torch.uint8,
  8242. "I8": torch.int8,
  8243. "BOOL": torch.bool,
  8244. "F8_E4M3": torch.float8_e4m3fn,
  8245. "F8_E5M2": torch.float8_e5m2,
  8246. }
  8247. def numpy(self) -> gguf.LazyNumpyTensor:
  8248. dtype = self._dtype_map[self.dtype]
  8249. return gguf.LazyNumpyTensor(
  8250. meta=gguf.LazyNumpyTensor.meta_with_dtype_and_shape(dtype, self.shape),
  8251. args=(self,),
  8252. func=(lambda s: s.numpy())
  8253. )
  8254. @classmethod
  8255. def meta_with_dtype_and_shape(cls, dtype: torch.dtype, shape: tuple[int, ...]) -> Tensor:
  8256. return torch.empty(size=shape, dtype=dtype, device="meta")
  8257. @classmethod
  8258. def from_safetensors_slice(cls, st_slice: Any) -> Tensor:
  8259. dtype = cls._dtype_str_map[st_slice.get_dtype()]
  8260. shape: tuple[int, ...] = tuple(st_slice.get_shape())
  8261. lazy = cls(meta=cls.meta_with_dtype_and_shape(dtype, shape), args=(st_slice,), func=lambda s: s[...] if len(s.get_shape()) == 0 else s[:])
  8262. return cast(torch.Tensor, lazy)
  8263. @classmethod
  8264. def from_local_tensor(cls, t: gguf.utility.LocalTensor) -> Tensor:
  8265. def load_tensor(tensor: gguf.utility.LocalTensor) -> Tensor:
  8266. def byteswap_tensor(tensor: np.ndarray, dtype: type) -> np.ndarray:
  8267. if sys.byteorder == 'big':
  8268. # switch data back to big endian
  8269. tensor = tensor.view(dtype).byteswap(inplace=False)
  8270. return tensor
  8271. dtype = cls._dtype_str_map[tensor.dtype]
  8272. numpy_dtype = cls._dtype_byteswap_map[dtype]
  8273. return torch.from_numpy(byteswap_tensor(tensor.mmap_bytes(), numpy_dtype)).view(dtype).reshape(tensor.shape)
  8274. dtype = cls._dtype_str_map[t.dtype]
  8275. shape = t.shape
  8276. lazy = cls(meta=cls.meta_with_dtype_and_shape(dtype, shape), args=(t,), func=lambda r: load_tensor(r))
  8277. return cast(torch.Tensor, lazy)
  8278. @classmethod
  8279. def from_remote_tensor(cls, remote_tensor: gguf.utility.RemoteTensor):
  8280. def byteswap_tensor(tensor: np.ndarray, dtype: type) -> np.ndarray:
  8281. if sys.byteorder == 'big':
  8282. # switch data back to big endian
  8283. tensor = tensor.view(dtype).byteswap(inplace=False)
  8284. return tensor
  8285. dtype = cls._dtype_str_map[remote_tensor.dtype]
  8286. numpy_dtype = cls._dtype_byteswap_map[dtype]
  8287. shape = remote_tensor.shape
  8288. meta = cls.meta_with_dtype_and_shape(dtype, shape)
  8289. lazy = cls(meta=meta, args=(remote_tensor,), func=lambda r: torch.from_numpy(byteswap_tensor(np.frombuffer(r.data(), dtype=numpy_dtype), numpy_dtype)).view(dtype).reshape(shape))
  8290. return cast(torch.Tensor, lazy)
  8291. @classmethod
  8292. def __torch_function__(cls, func, types, args=(), kwargs=None):
  8293. del types # unused
  8294. if kwargs is None:
  8295. kwargs = {}
  8296. if func is torch.Tensor.numpy:
  8297. return args[0].numpy()
  8298. return cls._wrap_fn(func)(*args, **kwargs)
  8299. def parse_args() -> argparse.Namespace:
  8300. parser = argparse.ArgumentParser(
  8301. description="Convert a huggingface model to a GGML compatible file")
  8302. parser.add_argument(
  8303. "--vocab-only", action="store_true",
  8304. help="extract only the vocab",
  8305. )
  8306. parser.add_argument(
  8307. "--outfile", type=Path,
  8308. help="path to write to; default: based on input. {ftype} will be replaced by the outtype.",
  8309. )
  8310. parser.add_argument(
  8311. "--outtype", type=str, choices=["f32", "f16", "bf16", "q8_0", "tq1_0", "tq2_0", "auto"], default="f16",
  8312. help="output format - use f32 for float32, f16 for float16, bf16 for bfloat16, q8_0 for Q8_0, tq1_0 or tq2_0 for ternary, and auto for the highest-fidelity 16-bit float type depending on the first loaded tensor type",
  8313. )
  8314. parser.add_argument(
  8315. "--bigendian", action="store_true",
  8316. help="model is executed on big endian machine",
  8317. )
  8318. parser.add_argument(
  8319. "model", type=str,
  8320. help="directory containing model file or huggingface repository ID (if --remote)",
  8321. nargs="?",
  8322. )
  8323. parser.add_argument(
  8324. "--use-temp-file", action="store_true",
  8325. help="use the tempfile library while processing (helpful when running out of memory, process killed)",
  8326. )
  8327. parser.add_argument(
  8328. "--no-lazy", action="store_true",
  8329. help="use more RAM by computing all outputs before writing (use in case lazy evaluation is broken)",
  8330. )
  8331. parser.add_argument(
  8332. "--model-name", type=str, default=None,
  8333. help="name of the model",
  8334. )
  8335. parser.add_argument(
  8336. "--verbose", action="store_true",
  8337. help="increase output verbosity",
  8338. )
  8339. parser.add_argument(
  8340. "--split-max-tensors", type=int, default=0,
  8341. help="max tensors in each split",
  8342. )
  8343. parser.add_argument(
  8344. "--split-max-size", type=str, default="0",
  8345. help="max size per split N(M|G)",
  8346. )
  8347. parser.add_argument(
  8348. "--dry-run", action="store_true",
  8349. help="only print out a split plan and exit, without writing any new files",
  8350. )
  8351. parser.add_argument(
  8352. "--no-tensor-first-split", action="store_true",
  8353. help="do not add tensors to the first split (disabled by default)"
  8354. )
  8355. parser.add_argument(
  8356. "--metadata", type=Path,
  8357. help="Specify the path for an authorship metadata override file"
  8358. )
  8359. parser.add_argument(
  8360. "--print-supported-models", action="store_true",
  8361. help="Print the supported models"
  8362. )
  8363. parser.add_argument(
  8364. "--remote", action="store_true",
  8365. help="(Experimental) Read safetensors file remotely without downloading to disk. Config and tokenizer files will still be downloaded. To use this feature, you need to specify Hugging Face model repo name instead of a local directory. For example: 'HuggingFaceTB/SmolLM2-1.7B-Instruct'. Note: To access gated repo, set HF_TOKEN environment variable to your Hugging Face token.",
  8366. )
  8367. parser.add_argument(
  8368. "--mmproj", action="store_true",
  8369. help="(Experimental) Export multimodal projector (mmproj) for vision models. This will only work on some vision models. A prefix 'mmproj-' will be added to the output file name.",
  8370. )
  8371. parser.add_argument(
  8372. "--mistral-format", action="store_true",
  8373. help="Whether the model is stored following the Mistral format.",
  8374. )
  8375. parser.add_argument(
  8376. "--disable-mistral-community-chat-template", action="store_true",
  8377. help=(
  8378. "Whether to disable usage of Mistral community chat templates. If set, use the Mistral official `mistral-common` library for tokenization and detokenization of Mistral models. "
  8379. "Using `mistral-common` ensure correctness and zero-day support of tokenization for models converted from the Mistral format but requires to manually setup the tokenization server."
  8380. )
  8381. )
  8382. parser.add_argument(
  8383. "--sentence-transformers-dense-modules", action="store_true",
  8384. help=("Whether to include sentence-transformers dense modules."
  8385. "It can be used for sentence-transformers models, like google/embeddinggemma-300m"
  8386. "Default these modules are not included.")
  8387. )
  8388. args = parser.parse_args()
  8389. if not args.print_supported_models and args.model is None:
  8390. parser.error("the following arguments are required: model")
  8391. return args
  8392. def split_str_to_n_bytes(split_str: str) -> int:
  8393. if split_str.endswith("K"):
  8394. n = int(split_str[:-1]) * 1000
  8395. elif split_str.endswith("M"):
  8396. n = int(split_str[:-1]) * 1000 * 1000
  8397. elif split_str.endswith("G"):
  8398. n = int(split_str[:-1]) * 1000 * 1000 * 1000
  8399. elif split_str.isnumeric():
  8400. n = int(split_str)
  8401. else:
  8402. raise ValueError(f"Invalid split size: {split_str}, must be a number, optionally followed by K, M, or G")
  8403. if n < 0:
  8404. raise ValueError(f"Invalid split size: {split_str}, must be positive")
  8405. return n
  8406. def get_model_architecture(hparams: dict[str, Any], model_type: ModelType) -> str:
  8407. # TODO @ngxson : this won't work correctly if the model has both audio & vision encoders
  8408. # maybe we should fallback to text model's arch in that case, since not many models have both
  8409. text_config = hparams.get("text_config", {})
  8410. vision_config = hparams.get("vision_config", {})
  8411. arch = None
  8412. if (arches := hparams.get("architectures")) is not None and len(arches) > 0:
  8413. arch = arches[0]
  8414. elif "ssm_cfg" in hparams:
  8415. # For non-hf Mamba and Mamba2 models
  8416. arch = hparams["ssm_cfg"].get("layer", "Mamba") + "ForCausalLM"
  8417. # if "architectures" is found in the sub-config, use that instead
  8418. if model_type == ModelType.TEXT and text_config.get("architectures") is not None:
  8419. arch = text_config["architectures"][0]
  8420. elif model_type == ModelType.MMPROJ and vision_config.get("architectures") is not None:
  8421. arch = vision_config["architectures"][0]
  8422. if arch is None:
  8423. raise ValueError("Failed to detect model architecture")
  8424. return arch
  8425. def main() -> None:
  8426. args = parse_args()
  8427. if args.print_supported_models:
  8428. logger.error("Supported models:")
  8429. ModelBase.print_registered_models()
  8430. sys.exit(0)
  8431. if args.verbose:
  8432. logging.basicConfig(level=logging.DEBUG)
  8433. else:
  8434. logging.basicConfig(level=logging.INFO)
  8435. if args.remote:
  8436. hf_repo_id = args.model
  8437. from huggingface_hub import snapshot_download
  8438. allowed_patterns = ["LICENSE", "*.json", "*.md", "*.txt", "tokenizer.model"]
  8439. if args.sentence_transformers_dense_modules:
  8440. # include sentence-transformers dense modules safetensors files
  8441. allowed_patterns.append("*.safetensors")
  8442. local_dir = snapshot_download(
  8443. repo_id=hf_repo_id,
  8444. allow_patterns=allowed_patterns)
  8445. dir_model = Path(local_dir)
  8446. logger.info(f"Downloaded config and tokenizer to {local_dir}")
  8447. else:
  8448. hf_repo_id = None
  8449. dir_model = Path(args.model)
  8450. if not dir_model.is_dir():
  8451. logger.error(f'Error: {dir_model} is not a directory')
  8452. sys.exit(1)
  8453. ftype_map: dict[str, gguf.LlamaFileType] = {
  8454. "f32": gguf.LlamaFileType.ALL_F32,
  8455. "f16": gguf.LlamaFileType.MOSTLY_F16,
  8456. "bf16": gguf.LlamaFileType.MOSTLY_BF16,
  8457. "q8_0": gguf.LlamaFileType.MOSTLY_Q8_0,
  8458. "tq1_0": gguf.LlamaFileType.MOSTLY_TQ1_0,
  8459. "tq2_0": gguf.LlamaFileType.MOSTLY_TQ2_0,
  8460. "auto": gguf.LlamaFileType.GUESSED,
  8461. }
  8462. is_split = args.split_max_tensors > 0 or args.split_max_size != "0"
  8463. if args.use_temp_file and is_split:
  8464. logger.error("Error: Cannot use temp file when splitting")
  8465. sys.exit(1)
  8466. if args.outfile is not None:
  8467. fname_out = args.outfile
  8468. elif hf_repo_id:
  8469. # if remote, use the model ID as the output file name
  8470. fname_out = Path("./" + hf_repo_id.replace("/", "-") + "-{ftype}.gguf")
  8471. else:
  8472. fname_out = dir_model
  8473. logger.info(f"Loading model: {dir_model.name}")
  8474. is_mistral_format = args.mistral_format
  8475. if is_mistral_format and not _mistral_common_installed:
  8476. raise ImportError(_mistral_import_error_msg)
  8477. disable_mistral_community_chat_template = args.disable_mistral_community_chat_template
  8478. with torch.inference_mode():
  8479. output_type = ftype_map[args.outtype]
  8480. model_type = ModelType.MMPROJ if args.mmproj else ModelType.TEXT
  8481. hparams = ModelBase.load_hparams(dir_model, is_mistral_format)
  8482. if not is_mistral_format:
  8483. model_architecture = get_model_architecture(hparams, model_type)
  8484. logger.info(f"Model architecture: {model_architecture}")
  8485. try:
  8486. model_class = ModelBase.from_model_architecture(model_architecture, model_type=model_type)
  8487. except NotImplementedError:
  8488. logger.error(f"Model {model_architecture} is not supported")
  8489. sys.exit(1)
  8490. elif args.mmproj:
  8491. assert hparams.get("vision_encoder") is not None, "This model does not support multimodal"
  8492. model_class = PixtralModel
  8493. elif "moe" in hparams:
  8494. model_class = MistralMoeModel
  8495. else:
  8496. model_class = MistralModel
  8497. model_instance = model_class(dir_model, output_type, fname_out,
  8498. is_big_endian=args.bigendian, use_temp_file=args.use_temp_file,
  8499. eager=args.no_lazy,
  8500. metadata_override=args.metadata, model_name=args.model_name,
  8501. split_max_tensors=args.split_max_tensors,
  8502. split_max_size=split_str_to_n_bytes(args.split_max_size), dry_run=args.dry_run,
  8503. small_first_shard=args.no_tensor_first_split,
  8504. remote_hf_model_id=hf_repo_id, disable_mistral_community_chat_template=disable_mistral_community_chat_template,
  8505. sentence_transformers_dense_modules=args.sentence_transformers_dense_modules
  8506. )
  8507. if args.vocab_only:
  8508. logger.info("Exporting model vocab...")
  8509. model_instance.write_vocab()
  8510. logger.info(f"Model vocab successfully exported to {model_instance.fname_out}")
  8511. else:
  8512. logger.info("Exporting model...")
  8513. model_instance.write()
  8514. out_path = f"{model_instance.fname_out.parent}{os.sep}" if is_split else model_instance.fname_out
  8515. logger.info(f"Model successfully exported to {out_path}")
  8516. if __name__ == '__main__':
  8517. main()