| 1234567891011121314151617181920212223242526272829303132333435363738394041424344454647 |
- #if !defined(GGML_USE_HIPBLAS) && !defined(GGML_USE_MUSA) && CUDART_VERSION >= 11700
- #define USE_CUB
- #endif // !defined(GGML_USE_HIPBLAS) && !defined(GGML_USE_MUSA) && CUDART_VERSION >= 11700
- #ifdef USE_CUB
- // On Windows CUB uses libraries with variables called CC_PASCAL which conflict with the define in common.cuh.
- // For this reason CUB must be included BEFORE anything else.
- #include <cub/cub.cuh>
- using namespace cub;
- #endif // USE_CUB
- #include "sumrows.cuh"
- #include "sum.cuh"
- #include <cstdint>
- void sum_f32_cuda(ggml_cuda_pool & pool, const float * x, float * dst, const int64_t ne, cudaStream_t stream) {
- #ifdef USE_CUB
- size_t tmp_size = 0;
- DeviceReduce::Sum(nullptr, tmp_size, x, dst, ne, stream);
- ggml_cuda_pool_alloc<uint8_t> tmp_alloc(pool, tmp_size);
- DeviceReduce::Sum(tmp_alloc.ptr, tmp_size, x, dst, ne, stream);
- #else
- // Use (inefficient) sum_rows implementation as a fallback.
- // For AMD there is rocPRIM which could be used as a drop-in replacement via hipcub but this would require C++11 -> C++14.
- sum_rows_f32_cuda(x, dst, ne, 1, stream);
- GGML_UNUSED(pool);
- #endif // USE_CUB
- }
- void ggml_cuda_op_sum(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
- const ggml_tensor * src0 = dst->src[0];
- GGML_ASSERT(src0->type == GGML_TYPE_F32);
- GGML_ASSERT( dst->type == GGML_TYPE_F32);
- GGML_ASSERT(ggml_is_contiguous(src0));
- const float * src0_d = (const float *) src0->data;
- float * dst_d = (float *) dst->data;
- const int64_t ne = ggml_nelements(src0);
- ggml_cuda_pool & pool = ctx.pool();
- cudaStream_t stream = ctx.stream();
- sum_f32_cuda(pool, src0_d, dst_d, ne, stream);
- }
|