llama-model.cpp 895 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124512551265127512851295130513151325133513451355136513751385139514051415142514351445145514651475148514951505151515251535154515551565157515851595160516151625163516451655166516751685169517051715172517351745175517651775178517951805181518251835184518551865187518851895190519151925193519451955196519751985199520052015202520352045205520652075208520952105211521252135214521552165217521852195220522152225223522452255226522752285229523052315232523352345235523652375238523952405241524252435244524552465247524852495250525152525253525452555256525752585259526052615262526352645265526652675268526952705271527252735274527552765277527852795280528152825283528452855286528752885289529052915292529352945295529652975298529953005301530253035304530553065307530853095310531153125313531453155316531753185319532053215322532353245325532653275328532953305331533253335334533553365337533853395340534153425343534453455346534753485349535053515352535353545355535653575358535953605361536253635364536553665367536853695370537153725373537453755376537753785379538053815382538353845385538653875388538953905391539253935394539553965397539853995400540154025403540454055406540754085409541054115412541354145415541654175418541954205421542254235424542554265427542854295430543154325433543454355436543754385439544054415442544354445445544654475448544954505451545254535454545554565457545854595460546154625463546454655466546754685469547054715472547354745475547654775478547954805481548254835484548554865487548854895490549154925493549454955496549754985499550055015502550355045505550655075508550955105511551255135514551555165517551855195520552155225523552455255526552755285529553055315532553355345535553655375538553955405541554255435544554555465547554855495550555155525553555455555556555755585559556055615562556355645565556655675568556955705571557255735574557555765577557855795580558155825583558455855586558755885589559055915592559355945595559655975598559956005601560256035604560556065607560856095610561156125613561456155616561756185619562056215622562356245625562656275628562956305631563256335634563556365637563856395640564156425643564456455646564756485649565056515652565356545655565656575658565956605661566256635664566556665667566856695670567156725673567456755676567756785679568056815682568356845685568656875688568956905691569256935694569556965697569856995700570157025703570457055706570757085709571057115712571357145715571657175718571957205721572257235724572557265727572857295730573157325733573457355736573757385739574057415742574357445745574657475748574957505751575257535754575557565757575857595760576157625763576457655766576757685769577057715772577357745775577657775778577957805781578257835784578557865787578857895790579157925793579457955796579757985799580058015802580358045805580658075808580958105811581258135814581558165817581858195820582158225823582458255826582758285829583058315832583358345835583658375838583958405841584258435844584558465847584858495850585158525853585458555856585758585859586058615862586358645865586658675868586958705871587258735874587558765877587858795880588158825883588458855886588758885889589058915892589358945895589658975898589959005901590259035904590559065907590859095910591159125913591459155916591759185919592059215922592359245925592659275928592959305931593259335934593559365937593859395940594159425943594459455946594759485949595059515952595359545955595659575958595959605961596259635964596559665967596859695970597159725973597459755976597759785979598059815982598359845985598659875988598959905991599259935994599559965997599859996000600160026003600460056006600760086009601060116012601360146015601660176018601960206021602260236024602560266027602860296030603160326033603460356036603760386039604060416042604360446045604660476048604960506051605260536054605560566057605860596060606160626063606460656066606760686069607060716072607360746075607660776078607960806081608260836084608560866087608860896090609160926093609460956096609760986099610061016102610361046105610661076108610961106111611261136114611561166117611861196120612161226123612461256126612761286129613061316132613361346135613661376138613961406141614261436144614561466147614861496150615161526153615461556156615761586159616061616162616361646165616661676168616961706171617261736174617561766177617861796180618161826183618461856186618761886189619061916192619361946195619661976198619962006201620262036204620562066207620862096210621162126213621462156216621762186219622062216222622362246225622662276228622962306231623262336234623562366237623862396240624162426243624462456246624762486249625062516252625362546255625662576258625962606261626262636264626562666267626862696270627162726273627462756276627762786279628062816282628362846285628662876288628962906291629262936294629562966297629862996300630163026303630463056306630763086309631063116312631363146315631663176318631963206321632263236324632563266327632863296330633163326333633463356336633763386339634063416342634363446345634663476348634963506351635263536354635563566357635863596360636163626363636463656366636763686369637063716372637363746375637663776378637963806381638263836384638563866387638863896390639163926393639463956396639763986399640064016402640364046405640664076408640964106411641264136414641564166417641864196420642164226423642464256426642764286429643064316432643364346435643664376438643964406441644264436444644564466447644864496450645164526453645464556456645764586459646064616462646364646465646664676468646964706471647264736474647564766477647864796480648164826483648464856486648764886489649064916492649364946495649664976498649965006501650265036504650565066507650865096510651165126513651465156516651765186519652065216522652365246525652665276528652965306531653265336534653565366537653865396540654165426543654465456546654765486549655065516552655365546555655665576558655965606561656265636564656565666567656865696570657165726573657465756576657765786579658065816582658365846585658665876588658965906591659265936594659565966597659865996600660166026603660466056606660766086609661066116612661366146615661666176618661966206621662266236624662566266627662866296630663166326633663466356636663766386639664066416642664366446645664666476648664966506651665266536654665566566657665866596660666166626663666466656666666766686669667066716672667366746675667666776678667966806681668266836684668566866687668866896690669166926693669466956696669766986699670067016702670367046705670667076708670967106711671267136714671567166717671867196720672167226723672467256726672767286729673067316732673367346735673667376738673967406741674267436744674567466747674867496750675167526753675467556756675767586759676067616762676367646765676667676768676967706771677267736774677567766777677867796780678167826783678467856786678767886789679067916792679367946795679667976798679968006801680268036804680568066807680868096810681168126813681468156816681768186819682068216822682368246825682668276828682968306831683268336834683568366837683868396840684168426843684468456846684768486849685068516852685368546855685668576858685968606861686268636864686568666867686868696870687168726873687468756876687768786879688068816882688368846885688668876888688968906891689268936894689568966897689868996900690169026903690469056906690769086909691069116912691369146915691669176918691969206921692269236924692569266927692869296930693169326933693469356936693769386939694069416942694369446945694669476948694969506951695269536954695569566957695869596960696169626963696469656966696769686969697069716972697369746975697669776978697969806981698269836984698569866987698869896990699169926993699469956996699769986999700070017002700370047005700670077008700970107011701270137014701570167017701870197020702170227023702470257026702770287029703070317032703370347035703670377038703970407041704270437044704570467047704870497050705170527053705470557056705770587059706070617062706370647065706670677068706970707071707270737074707570767077707870797080708170827083708470857086708770887089709070917092709370947095709670977098709971007101710271037104710571067107710871097110711171127113711471157116711771187119712071217122712371247125712671277128712971307131713271337134713571367137713871397140714171427143714471457146714771487149715071517152715371547155715671577158715971607161716271637164716571667167716871697170717171727173717471757176717771787179718071817182718371847185718671877188718971907191719271937194719571967197719871997200720172027203720472057206720772087209721072117212721372147215721672177218721972207221722272237224722572267227722872297230723172327233723472357236723772387239724072417242724372447245724672477248724972507251725272537254725572567257725872597260726172627263726472657266726772687269727072717272727372747275727672777278727972807281728272837284728572867287728872897290729172927293729472957296729772987299730073017302730373047305730673077308730973107311731273137314731573167317731873197320732173227323732473257326732773287329733073317332733373347335733673377338733973407341734273437344734573467347734873497350735173527353735473557356735773587359736073617362736373647365736673677368736973707371737273737374737573767377737873797380738173827383738473857386738773887389739073917392739373947395739673977398739974007401740274037404740574067407740874097410741174127413741474157416741774187419742074217422742374247425742674277428742974307431743274337434743574367437743874397440744174427443744474457446744774487449745074517452745374547455745674577458745974607461746274637464746574667467746874697470747174727473747474757476747774787479748074817482748374847485748674877488748974907491749274937494749574967497749874997500750175027503750475057506750775087509751075117512751375147515751675177518751975207521752275237524752575267527752875297530753175327533753475357536753775387539754075417542754375447545754675477548754975507551755275537554755575567557755875597560756175627563756475657566756775687569757075717572757375747575757675777578757975807581758275837584758575867587758875897590759175927593759475957596759775987599760076017602760376047605760676077608760976107611761276137614761576167617761876197620762176227623762476257626762776287629763076317632763376347635763676377638763976407641764276437644764576467647764876497650765176527653765476557656765776587659766076617662766376647665766676677668766976707671767276737674767576767677767876797680768176827683768476857686768776887689769076917692769376947695769676977698769977007701770277037704770577067707770877097710771177127713771477157716771777187719772077217722772377247725772677277728772977307731773277337734773577367737773877397740774177427743774477457746774777487749775077517752775377547755775677577758775977607761776277637764776577667767776877697770777177727773777477757776777777787779778077817782778377847785778677877788778977907791779277937794779577967797779877997800780178027803780478057806780778087809781078117812781378147815781678177818781978207821782278237824782578267827782878297830783178327833783478357836783778387839784078417842784378447845784678477848784978507851785278537854785578567857785878597860786178627863786478657866786778687869787078717872787378747875787678777878787978807881788278837884788578867887788878897890789178927893789478957896789778987899790079017902790379047905790679077908790979107911791279137914791579167917791879197920792179227923792479257926792779287929793079317932793379347935793679377938793979407941794279437944794579467947794879497950795179527953795479557956795779587959796079617962796379647965796679677968796979707971797279737974797579767977797879797980798179827983798479857986798779887989799079917992799379947995799679977998799980008001800280038004800580068007800880098010801180128013801480158016801780188019802080218022802380248025802680278028802980308031803280338034803580368037803880398040804180428043804480458046804780488049805080518052805380548055805680578058805980608061806280638064806580668067806880698070807180728073807480758076807780788079808080818082808380848085808680878088808980908091809280938094809580968097809880998100810181028103810481058106810781088109811081118112811381148115811681178118811981208121812281238124812581268127812881298130813181328133813481358136813781388139814081418142814381448145814681478148814981508151815281538154815581568157815881598160816181628163816481658166816781688169817081718172817381748175817681778178817981808181818281838184818581868187818881898190819181928193819481958196819781988199820082018202820382048205820682078208820982108211821282138214821582168217821882198220822182228223822482258226822782288229823082318232823382348235823682378238823982408241824282438244824582468247824882498250825182528253825482558256825782588259826082618262826382648265826682678268826982708271827282738274827582768277827882798280828182828283828482858286828782888289829082918292829382948295829682978298829983008301830283038304830583068307830883098310831183128313831483158316831783188319832083218322832383248325832683278328832983308331833283338334833583368337833883398340834183428343834483458346834783488349835083518352835383548355835683578358835983608361836283638364836583668367836883698370837183728373837483758376837783788379838083818382838383848385838683878388838983908391839283938394839583968397839883998400840184028403840484058406840784088409841084118412841384148415841684178418841984208421842284238424842584268427842884298430843184328433843484358436843784388439844084418442844384448445844684478448844984508451845284538454845584568457845884598460846184628463846484658466846784688469847084718472847384748475847684778478847984808481848284838484848584868487848884898490849184928493849484958496849784988499850085018502850385048505850685078508850985108511851285138514851585168517851885198520852185228523852485258526852785288529853085318532853385348535853685378538853985408541854285438544854585468547854885498550855185528553855485558556855785588559856085618562856385648565856685678568856985708571857285738574857585768577857885798580858185828583858485858586858785888589859085918592859385948595859685978598859986008601860286038604860586068607860886098610861186128613861486158616861786188619862086218622862386248625862686278628862986308631863286338634863586368637863886398640864186428643864486458646864786488649865086518652865386548655865686578658865986608661866286638664866586668667866886698670867186728673867486758676867786788679868086818682868386848685868686878688868986908691869286938694869586968697869886998700870187028703870487058706870787088709871087118712871387148715871687178718871987208721872287238724872587268727872887298730873187328733873487358736873787388739874087418742874387448745874687478748874987508751875287538754875587568757875887598760876187628763876487658766876787688769877087718772877387748775877687778778877987808781878287838784878587868787878887898790879187928793879487958796879787988799880088018802880388048805880688078808880988108811881288138814881588168817881888198820882188228823882488258826882788288829883088318832883388348835883688378838883988408841884288438844884588468847884888498850885188528853885488558856885788588859886088618862886388648865886688678868886988708871887288738874887588768877887888798880888188828883888488858886888788888889889088918892889388948895889688978898889989008901890289038904890589068907890889098910891189128913891489158916891789188919892089218922892389248925892689278928892989308931893289338934893589368937893889398940894189428943894489458946894789488949895089518952895389548955895689578958895989608961896289638964896589668967896889698970897189728973897489758976897789788979898089818982898389848985898689878988898989908991899289938994899589968997899889999000900190029003900490059006900790089009901090119012901390149015901690179018901990209021902290239024902590269027902890299030903190329033903490359036903790389039904090419042904390449045904690479048904990509051905290539054905590569057905890599060906190629063906490659066906790689069907090719072907390749075907690779078907990809081908290839084908590869087908890899090909190929093909490959096909790989099910091019102910391049105910691079108910991109111911291139114911591169117911891199120912191229123912491259126912791289129913091319132913391349135913691379138913991409141914291439144914591469147914891499150915191529153915491559156915791589159916091619162916391649165916691679168916991709171917291739174917591769177917891799180918191829183918491859186918791889189919091919192919391949195919691979198919992009201920292039204920592069207920892099210921192129213921492159216921792189219922092219222922392249225922692279228922992309231923292339234923592369237923892399240924192429243924492459246924792489249925092519252925392549255925692579258925992609261926292639264926592669267926892699270927192729273927492759276927792789279928092819282928392849285928692879288928992909291929292939294929592969297929892999300930193029303930493059306930793089309931093119312931393149315931693179318931993209321932293239324932593269327932893299330933193329333933493359336933793389339934093419342934393449345934693479348934993509351935293539354935593569357935893599360936193629363936493659366936793689369937093719372937393749375937693779378937993809381938293839384938593869387938893899390939193929393939493959396939793989399940094019402940394049405940694079408940994109411941294139414941594169417941894199420942194229423942494259426942794289429943094319432943394349435943694379438943994409441944294439444944594469447944894499450945194529453945494559456945794589459946094619462946394649465946694679468946994709471947294739474947594769477947894799480948194829483948494859486948794889489949094919492949394949495949694979498949995009501950295039504950595069507950895099510951195129513951495159516951795189519952095219522952395249525952695279528952995309531953295339534953595369537953895399540954195429543954495459546954795489549955095519552955395549555955695579558955995609561956295639564956595669567956895699570957195729573957495759576957795789579958095819582958395849585958695879588958995909591959295939594959595969597959895999600960196029603960496059606960796089609961096119612961396149615961696179618961996209621962296239624962596269627962896299630963196329633963496359636963796389639964096419642964396449645964696479648964996509651965296539654965596569657965896599660966196629663966496659666966796689669967096719672967396749675967696779678967996809681968296839684968596869687968896899690969196929693969496959696969796989699970097019702970397049705970697079708970997109711971297139714971597169717971897199720972197229723972497259726972797289729973097319732973397349735973697379738973997409741974297439744974597469747974897499750975197529753975497559756975797589759976097619762976397649765976697679768976997709771977297739774977597769777977897799780978197829783978497859786978797889789979097919792979397949795979697979798979998009801980298039804980598069807980898099810981198129813981498159816981798189819982098219822982398249825982698279828982998309831983298339834983598369837983898399840984198429843984498459846984798489849985098519852985398549855985698579858985998609861986298639864986598669867986898699870987198729873987498759876987798789879988098819882988398849885988698879888988998909891989298939894989598969897989898999900990199029903990499059906990799089909991099119912991399149915991699179918991999209921992299239924992599269927992899299930993199329933993499359936993799389939994099419942994399449945994699479948994999509951995299539954995599569957995899599960996199629963996499659966996799689969997099719972997399749975997699779978997999809981998299839984998599869987998899899990999199929993999499959996999799989999100001000110002100031000410005100061000710008100091001010011100121001310014100151001610017100181001910020100211002210023100241002510026100271002810029100301003110032100331003410035100361003710038100391004010041100421004310044100451004610047100481004910050100511005210053100541005510056100571005810059100601006110062100631006410065100661006710068100691007010071100721007310074100751007610077100781007910080100811008210083100841008510086100871008810089100901009110092100931009410095100961009710098100991010010101101021010310104101051010610107101081010910110101111011210113101141011510116101171011810119101201012110122101231012410125101261012710128101291013010131101321013310134101351013610137101381013910140101411014210143101441014510146101471014810149101501015110152101531015410155101561015710158101591016010161101621016310164101651016610167101681016910170101711017210173101741017510176101771017810179101801018110182101831018410185101861018710188101891019010191101921019310194101951019610197101981019910200102011020210203102041020510206102071020810209102101021110212102131021410215102161021710218102191022010221102221022310224102251022610227102281022910230102311023210233102341023510236102371023810239102401024110242102431024410245102461024710248102491025010251102521025310254102551025610257102581025910260102611026210263102641026510266102671026810269102701027110272102731027410275102761027710278102791028010281102821028310284102851028610287102881028910290102911029210293102941029510296102971029810299103001030110302103031030410305103061030710308103091031010311103121031310314103151031610317103181031910320103211032210323103241032510326103271032810329103301033110332103331033410335103361033710338103391034010341103421034310344103451034610347103481034910350103511035210353103541035510356103571035810359103601036110362103631036410365103661036710368103691037010371103721037310374103751037610377103781037910380103811038210383103841038510386103871038810389103901039110392103931039410395103961039710398103991040010401104021040310404104051040610407104081040910410104111041210413104141041510416104171041810419104201042110422104231042410425104261042710428104291043010431104321043310434104351043610437104381043910440104411044210443104441044510446104471044810449104501045110452104531045410455104561045710458104591046010461104621046310464104651046610467104681046910470104711047210473104741047510476104771047810479104801048110482104831048410485104861048710488104891049010491104921049310494104951049610497104981049910500105011050210503105041050510506105071050810509105101051110512105131051410515105161051710518105191052010521105221052310524105251052610527105281052910530105311053210533105341053510536105371053810539105401054110542105431054410545105461054710548105491055010551105521055310554105551055610557105581055910560105611056210563105641056510566105671056810569105701057110572105731057410575105761057710578105791058010581105821058310584105851058610587105881058910590105911059210593105941059510596105971059810599106001060110602106031060410605106061060710608106091061010611106121061310614106151061610617106181061910620106211062210623106241062510626106271062810629106301063110632106331063410635106361063710638106391064010641106421064310644106451064610647106481064910650106511065210653106541065510656106571065810659106601066110662106631066410665106661066710668106691067010671106721067310674106751067610677106781067910680106811068210683106841068510686106871068810689106901069110692106931069410695106961069710698106991070010701107021070310704107051070610707107081070910710107111071210713107141071510716107171071810719107201072110722107231072410725107261072710728107291073010731107321073310734107351073610737107381073910740107411074210743107441074510746107471074810749107501075110752107531075410755107561075710758107591076010761107621076310764107651076610767107681076910770107711077210773107741077510776107771077810779107801078110782107831078410785107861078710788107891079010791107921079310794107951079610797107981079910800108011080210803108041080510806108071080810809108101081110812108131081410815108161081710818108191082010821108221082310824108251082610827108281082910830108311083210833108341083510836108371083810839108401084110842108431084410845108461084710848108491085010851108521085310854108551085610857108581085910860108611086210863108641086510866108671086810869108701087110872108731087410875108761087710878108791088010881108821088310884108851088610887108881088910890108911089210893108941089510896108971089810899109001090110902109031090410905109061090710908109091091010911109121091310914109151091610917109181091910920109211092210923109241092510926109271092810929109301093110932109331093410935109361093710938109391094010941109421094310944109451094610947109481094910950109511095210953109541095510956109571095810959109601096110962109631096410965109661096710968109691097010971109721097310974109751097610977109781097910980109811098210983109841098510986109871098810989109901099110992109931099410995109961099710998109991100011001110021100311004110051100611007110081100911010110111101211013110141101511016110171101811019110201102111022110231102411025110261102711028110291103011031110321103311034110351103611037110381103911040110411104211043110441104511046110471104811049110501105111052110531105411055110561105711058110591106011061110621106311064110651106611067110681106911070110711107211073110741107511076110771107811079110801108111082110831108411085110861108711088110891109011091110921109311094110951109611097110981109911100111011110211103111041110511106111071110811109111101111111112111131111411115111161111711118111191112011121111221112311124111251112611127111281112911130111311113211133111341113511136111371113811139111401114111142111431114411145111461114711148111491115011151111521115311154111551115611157111581115911160111611116211163111641116511166111671116811169111701117111172111731117411175111761117711178111791118011181111821118311184111851118611187111881118911190111911119211193111941119511196111971119811199112001120111202112031120411205112061120711208112091121011211112121121311214112151121611217112181121911220112211122211223112241122511226112271122811229112301123111232112331123411235112361123711238112391124011241112421124311244112451124611247112481124911250112511125211253112541125511256112571125811259112601126111262112631126411265112661126711268112691127011271112721127311274112751127611277112781127911280112811128211283112841128511286112871128811289112901129111292112931129411295112961129711298112991130011301113021130311304113051130611307113081130911310113111131211313113141131511316113171131811319113201132111322113231132411325113261132711328113291133011331113321133311334113351133611337113381133911340113411134211343113441134511346113471134811349113501135111352113531135411355113561135711358113591136011361113621136311364113651136611367113681136911370113711137211373113741137511376113771137811379113801138111382113831138411385113861138711388113891139011391113921139311394113951139611397113981139911400114011140211403114041140511406114071140811409114101141111412114131141411415114161141711418114191142011421114221142311424114251142611427114281142911430114311143211433114341143511436114371143811439114401144111442114431144411445114461144711448114491145011451114521145311454114551145611457114581145911460114611146211463114641146511466114671146811469114701147111472114731147411475114761147711478114791148011481114821148311484114851148611487114881148911490114911149211493114941149511496114971149811499115001150111502115031150411505115061150711508115091151011511115121151311514115151151611517115181151911520115211152211523115241152511526115271152811529115301153111532115331153411535115361153711538115391154011541115421154311544115451154611547115481154911550115511155211553115541155511556115571155811559115601156111562115631156411565115661156711568115691157011571115721157311574115751157611577115781157911580115811158211583115841158511586115871158811589115901159111592115931159411595115961159711598115991160011601116021160311604116051160611607116081160911610116111161211613116141161511616116171161811619116201162111622116231162411625116261162711628116291163011631116321163311634116351163611637116381163911640116411164211643116441164511646116471164811649116501165111652116531165411655116561165711658116591166011661116621166311664116651166611667116681166911670116711167211673116741167511676116771167811679116801168111682116831168411685116861168711688116891169011691116921169311694116951169611697116981169911700117011170211703117041170511706117071170811709117101171111712117131171411715117161171711718117191172011721117221172311724117251172611727117281172911730117311173211733117341173511736117371173811739117401174111742117431174411745117461174711748117491175011751117521175311754117551175611757117581175911760117611176211763117641176511766117671176811769117701177111772117731177411775117761177711778117791178011781117821178311784117851178611787117881178911790117911179211793117941179511796117971179811799118001180111802118031180411805118061180711808118091181011811118121181311814118151181611817118181181911820118211182211823118241182511826118271182811829118301183111832118331183411835118361183711838118391184011841118421184311844118451184611847118481184911850118511185211853118541185511856118571185811859118601186111862118631186411865118661186711868118691187011871118721187311874118751187611877118781187911880118811188211883118841188511886118871188811889118901189111892118931189411895118961189711898118991190011901119021190311904119051190611907119081190911910119111191211913119141191511916119171191811919119201192111922119231192411925119261192711928119291193011931119321193311934119351193611937119381193911940119411194211943119441194511946119471194811949119501195111952119531195411955119561195711958119591196011961119621196311964119651196611967119681196911970119711197211973119741197511976119771197811979119801198111982119831198411985119861198711988119891199011991119921199311994119951199611997119981199912000120011200212003120041200512006120071200812009120101201112012120131201412015120161201712018120191202012021120221202312024120251202612027120281202912030120311203212033120341203512036120371203812039120401204112042120431204412045120461204712048120491205012051120521205312054120551205612057120581205912060120611206212063120641206512066120671206812069120701207112072120731207412075120761207712078120791208012081120821208312084120851208612087120881208912090120911209212093120941209512096120971209812099121001210112102121031210412105121061210712108121091211012111121121211312114121151211612117121181211912120121211212212123121241212512126121271212812129121301213112132121331213412135121361213712138121391214012141121421214312144121451214612147121481214912150121511215212153121541215512156121571215812159121601216112162121631216412165121661216712168121691217012171121721217312174121751217612177121781217912180121811218212183121841218512186121871218812189121901219112192121931219412195121961219712198121991220012201122021220312204122051220612207122081220912210122111221212213122141221512216122171221812219122201222112222122231222412225122261222712228122291223012231122321223312234122351223612237122381223912240122411224212243122441224512246122471224812249122501225112252122531225412255122561225712258122591226012261122621226312264122651226612267122681226912270122711227212273122741227512276122771227812279122801228112282122831228412285122861228712288122891229012291122921229312294122951229612297122981229912300123011230212303123041230512306123071230812309123101231112312123131231412315123161231712318123191232012321123221232312324123251232612327123281232912330123311233212333123341233512336123371233812339123401234112342123431234412345123461234712348123491235012351123521235312354123551235612357123581235912360123611236212363123641236512366123671236812369123701237112372123731237412375123761237712378123791238012381123821238312384123851238612387123881238912390123911239212393123941239512396123971239812399124001240112402124031240412405124061240712408124091241012411124121241312414124151241612417124181241912420124211242212423124241242512426124271242812429124301243112432124331243412435124361243712438124391244012441124421244312444124451244612447124481244912450124511245212453124541245512456124571245812459124601246112462124631246412465124661246712468124691247012471124721247312474124751247612477124781247912480124811248212483124841248512486124871248812489124901249112492124931249412495124961249712498124991250012501125021250312504125051250612507125081250912510125111251212513125141251512516125171251812519125201252112522125231252412525125261252712528125291253012531125321253312534125351253612537125381253912540125411254212543125441254512546125471254812549125501255112552125531255412555125561255712558125591256012561125621256312564125651256612567125681256912570125711257212573125741257512576125771257812579125801258112582125831258412585125861258712588125891259012591125921259312594125951259612597125981259912600126011260212603126041260512606126071260812609126101261112612126131261412615126161261712618126191262012621126221262312624126251262612627126281262912630126311263212633126341263512636126371263812639126401264112642126431264412645126461264712648126491265012651126521265312654126551265612657126581265912660126611266212663126641266512666126671266812669126701267112672126731267412675126761267712678126791268012681126821268312684126851268612687126881268912690126911269212693126941269512696126971269812699127001270112702127031270412705127061270712708127091271012711127121271312714127151271612717127181271912720127211272212723127241272512726127271272812729127301273112732127331273412735127361273712738127391274012741127421274312744127451274612747127481274912750127511275212753127541275512756127571275812759127601276112762127631276412765127661276712768127691277012771127721277312774127751277612777127781277912780127811278212783127841278512786127871278812789127901279112792127931279412795127961279712798127991280012801128021280312804128051280612807128081280912810128111281212813128141281512816128171281812819128201282112822128231282412825128261282712828128291283012831128321283312834128351283612837128381283912840128411284212843128441284512846128471284812849128501285112852128531285412855128561285712858128591286012861128621286312864128651286612867128681286912870128711287212873128741287512876128771287812879128801288112882128831288412885128861288712888128891289012891128921289312894128951289612897128981289912900129011290212903129041290512906129071290812909129101291112912129131291412915129161291712918129191292012921129221292312924129251292612927129281292912930129311293212933129341293512936129371293812939129401294112942129431294412945129461294712948129491295012951129521295312954129551295612957129581295912960129611296212963129641296512966129671296812969129701297112972129731297412975129761297712978129791298012981129821298312984129851298612987129881298912990129911299212993129941299512996129971299812999130001300113002130031300413005130061300713008130091301013011130121301313014130151301613017130181301913020130211302213023130241302513026130271302813029130301303113032130331303413035130361303713038130391304013041130421304313044130451304613047130481304913050130511305213053130541305513056130571305813059130601306113062130631306413065130661306713068130691307013071130721307313074130751307613077130781307913080130811308213083130841308513086130871308813089130901309113092130931309413095130961309713098130991310013101131021310313104131051310613107131081310913110131111311213113131141311513116131171311813119131201312113122131231312413125131261312713128131291313013131131321313313134131351313613137131381313913140131411314213143131441314513146131471314813149131501315113152131531315413155131561315713158131591316013161131621316313164131651316613167131681316913170131711317213173131741317513176131771317813179131801318113182131831318413185131861318713188131891319013191131921319313194131951319613197131981319913200132011320213203132041320513206132071320813209132101321113212132131321413215132161321713218132191322013221132221322313224132251322613227132281322913230132311323213233132341323513236132371323813239132401324113242132431324413245132461324713248132491325013251132521325313254132551325613257132581325913260132611326213263132641326513266132671326813269132701327113272132731327413275132761327713278132791328013281132821328313284132851328613287132881328913290132911329213293132941329513296132971329813299133001330113302133031330413305133061330713308133091331013311133121331313314133151331613317133181331913320133211332213323133241332513326133271332813329133301333113332133331333413335133361333713338133391334013341133421334313344133451334613347133481334913350133511335213353133541335513356133571335813359133601336113362133631336413365133661336713368133691337013371133721337313374133751337613377133781337913380133811338213383133841338513386133871338813389133901339113392133931339413395133961339713398133991340013401134021340313404134051340613407134081340913410134111341213413134141341513416134171341813419134201342113422134231342413425134261342713428134291343013431134321343313434134351343613437134381343913440134411344213443134441344513446134471344813449134501345113452134531345413455134561345713458134591346013461134621346313464134651346613467134681346913470134711347213473134741347513476134771347813479134801348113482134831348413485134861348713488134891349013491134921349313494134951349613497134981349913500135011350213503135041350513506135071350813509135101351113512135131351413515135161351713518135191352013521135221352313524135251352613527135281352913530135311353213533135341353513536135371353813539135401354113542135431354413545135461354713548135491355013551135521355313554135551355613557135581355913560135611356213563135641356513566135671356813569135701357113572135731357413575135761357713578135791358013581135821358313584135851358613587135881358913590135911359213593135941359513596135971359813599136001360113602136031360413605136061360713608136091361013611136121361313614136151361613617136181361913620136211362213623136241362513626136271362813629136301363113632136331363413635136361363713638136391364013641136421364313644136451364613647136481364913650136511365213653136541365513656136571365813659136601366113662136631366413665136661366713668136691367013671136721367313674136751367613677136781367913680136811368213683136841368513686136871368813689136901369113692136931369413695136961369713698136991370013701137021370313704137051370613707137081370913710137111371213713137141371513716137171371813719137201372113722137231372413725137261372713728137291373013731137321373313734137351373613737137381373913740137411374213743137441374513746137471374813749137501375113752137531375413755137561375713758137591376013761137621376313764137651376613767137681376913770137711377213773137741377513776137771377813779137801378113782137831378413785137861378713788137891379013791137921379313794137951379613797137981379913800138011380213803138041380513806138071380813809138101381113812138131381413815138161381713818138191382013821138221382313824138251382613827138281382913830138311383213833138341383513836138371383813839138401384113842138431384413845138461384713848138491385013851138521385313854138551385613857138581385913860138611386213863138641386513866138671386813869138701387113872138731387413875138761387713878138791388013881138821388313884138851388613887138881388913890138911389213893138941389513896138971389813899139001390113902139031390413905139061390713908139091391013911139121391313914139151391613917139181391913920139211392213923139241392513926139271392813929139301393113932139331393413935139361393713938139391394013941139421394313944139451394613947139481394913950139511395213953139541395513956139571395813959139601396113962139631396413965139661396713968139691397013971139721397313974139751397613977139781397913980139811398213983139841398513986139871398813989139901399113992139931399413995139961399713998139991400014001140021400314004140051400614007140081400914010140111401214013140141401514016140171401814019140201402114022140231402414025140261402714028140291403014031140321403314034140351403614037140381403914040140411404214043140441404514046140471404814049140501405114052140531405414055140561405714058140591406014061140621406314064140651406614067140681406914070140711407214073140741407514076140771407814079140801408114082140831408414085140861408714088140891409014091140921409314094140951409614097140981409914100141011410214103141041410514106141071410814109141101411114112141131411414115141161411714118141191412014121141221412314124141251412614127141281412914130141311413214133141341413514136141371413814139141401414114142141431414414145141461414714148141491415014151141521415314154141551415614157141581415914160141611416214163141641416514166141671416814169141701417114172141731417414175141761417714178141791418014181141821418314184141851418614187141881418914190141911419214193141941419514196141971419814199142001420114202142031420414205142061420714208142091421014211142121421314214142151421614217142181421914220142211422214223142241422514226142271422814229142301423114232142331423414235142361423714238142391424014241142421424314244142451424614247142481424914250142511425214253142541425514256142571425814259142601426114262142631426414265142661426714268142691427014271142721427314274142751427614277142781427914280142811428214283142841428514286142871428814289142901429114292142931429414295142961429714298142991430014301143021430314304143051430614307143081430914310143111431214313143141431514316143171431814319143201432114322143231432414325143261432714328143291433014331143321433314334143351433614337143381433914340143411434214343143441434514346143471434814349143501435114352143531435414355143561435714358143591436014361143621436314364143651436614367143681436914370143711437214373143741437514376143771437814379143801438114382143831438414385143861438714388143891439014391143921439314394143951439614397143981439914400144011440214403144041440514406144071440814409144101441114412144131441414415144161441714418144191442014421144221442314424144251442614427144281442914430144311443214433144341443514436144371443814439144401444114442144431444414445144461444714448144491445014451144521445314454144551445614457144581445914460144611446214463144641446514466144671446814469144701447114472144731447414475144761447714478144791448014481144821448314484144851448614487144881448914490144911449214493144941449514496144971449814499145001450114502145031450414505145061450714508145091451014511145121451314514145151451614517145181451914520145211452214523145241452514526145271452814529145301453114532145331453414535145361453714538145391454014541145421454314544145451454614547145481454914550145511455214553145541455514556145571455814559145601456114562145631456414565145661456714568145691457014571145721457314574145751457614577145781457914580145811458214583145841458514586145871458814589145901459114592145931459414595145961459714598145991460014601146021460314604146051460614607146081460914610146111461214613146141461514616146171461814619146201462114622146231462414625146261462714628146291463014631146321463314634146351463614637146381463914640146411464214643146441464514646146471464814649146501465114652146531465414655146561465714658146591466014661146621466314664146651466614667146681466914670146711467214673146741467514676146771467814679146801468114682146831468414685146861468714688146891469014691146921469314694146951469614697146981469914700147011470214703147041470514706147071470814709147101471114712147131471414715147161471714718147191472014721147221472314724147251472614727147281472914730147311473214733147341473514736147371473814739147401474114742147431474414745147461474714748147491475014751147521475314754147551475614757147581475914760147611476214763147641476514766147671476814769147701477114772147731477414775147761477714778147791478014781147821478314784147851478614787147881478914790147911479214793147941479514796147971479814799148001480114802148031480414805148061480714808148091481014811148121481314814148151481614817148181481914820148211482214823148241482514826148271482814829148301483114832148331483414835148361483714838148391484014841148421484314844148451484614847148481484914850148511485214853148541485514856148571485814859148601486114862148631486414865148661486714868148691487014871148721487314874148751487614877148781487914880148811488214883148841488514886148871488814889148901489114892148931489414895148961489714898148991490014901149021490314904149051490614907149081490914910149111491214913149141491514916149171491814919149201492114922149231492414925149261492714928149291493014931149321493314934149351493614937149381493914940149411494214943149441494514946149471494814949149501495114952149531495414955149561495714958149591496014961149621496314964149651496614967149681496914970149711497214973149741497514976149771497814979149801498114982149831498414985149861498714988149891499014991149921499314994149951499614997149981499915000150011500215003150041500515006150071500815009150101501115012150131501415015150161501715018150191502015021150221502315024150251502615027150281502915030150311503215033150341503515036150371503815039150401504115042150431504415045150461504715048150491505015051150521505315054150551505615057150581505915060150611506215063150641506515066150671506815069150701507115072150731507415075150761507715078150791508015081150821508315084150851508615087150881508915090150911509215093150941509515096150971509815099151001510115102151031510415105151061510715108151091511015111151121511315114151151511615117151181511915120151211512215123151241512515126151271512815129151301513115132151331513415135151361513715138151391514015141151421514315144151451514615147151481514915150151511515215153151541515515156151571515815159151601516115162151631516415165151661516715168151691517015171151721517315174151751517615177151781517915180151811518215183151841518515186151871518815189151901519115192151931519415195151961519715198151991520015201152021520315204152051520615207152081520915210152111521215213152141521515216152171521815219152201522115222152231522415225152261522715228152291523015231152321523315234152351523615237152381523915240152411524215243152441524515246152471524815249152501525115252152531525415255152561525715258152591526015261152621526315264152651526615267152681526915270152711527215273152741527515276152771527815279152801528115282152831528415285152861528715288152891529015291152921529315294152951529615297152981529915300153011530215303153041530515306153071530815309153101531115312153131531415315153161531715318153191532015321153221532315324153251532615327153281532915330153311533215333153341533515336153371533815339153401534115342153431534415345153461534715348153491535015351153521535315354153551535615357153581535915360153611536215363153641536515366153671536815369153701537115372153731537415375153761537715378153791538015381153821538315384153851538615387153881538915390153911539215393153941539515396153971539815399154001540115402154031540415405154061540715408154091541015411154121541315414154151541615417154181541915420154211542215423154241542515426154271542815429154301543115432154331543415435154361543715438154391544015441154421544315444154451544615447154481544915450154511545215453154541545515456154571545815459154601546115462154631546415465154661546715468154691547015471154721547315474154751547615477154781547915480154811548215483154841548515486154871548815489154901549115492154931549415495154961549715498154991550015501155021550315504155051550615507155081550915510155111551215513155141551515516155171551815519155201552115522155231552415525155261552715528155291553015531155321553315534155351553615537155381553915540155411554215543155441554515546155471554815549155501555115552155531555415555155561555715558155591556015561155621556315564155651556615567155681556915570155711557215573155741557515576155771557815579155801558115582155831558415585155861558715588155891559015591155921559315594155951559615597155981559915600156011560215603156041560515606156071560815609156101561115612156131561415615156161561715618156191562015621156221562315624156251562615627156281562915630156311563215633156341563515636156371563815639156401564115642156431564415645156461564715648156491565015651156521565315654156551565615657156581565915660156611566215663156641566515666156671566815669156701567115672156731567415675156761567715678156791568015681156821568315684156851568615687156881568915690156911569215693156941569515696156971569815699157001570115702157031570415705157061570715708157091571015711157121571315714157151571615717157181571915720157211572215723157241572515726157271572815729157301573115732157331573415735157361573715738157391574015741157421574315744157451574615747157481574915750157511575215753157541575515756157571575815759157601576115762157631576415765157661576715768157691577015771157721577315774157751577615777157781577915780157811578215783157841578515786157871578815789157901579115792157931579415795157961579715798157991580015801158021580315804158051580615807158081580915810158111581215813158141581515816158171581815819158201582115822158231582415825158261582715828158291583015831158321583315834158351583615837158381583915840158411584215843158441584515846158471584815849158501585115852158531585415855158561585715858158591586015861158621586315864158651586615867158681586915870158711587215873158741587515876158771587815879158801588115882158831588415885158861588715888158891589015891158921589315894158951589615897158981589915900159011590215903159041590515906159071590815909159101591115912159131591415915159161591715918159191592015921159221592315924159251592615927159281592915930159311593215933159341593515936159371593815939159401594115942159431594415945159461594715948159491595015951159521595315954159551595615957159581595915960159611596215963159641596515966159671596815969159701597115972159731597415975159761597715978159791598015981159821598315984159851598615987159881598915990159911599215993159941599515996159971599815999160001600116002160031600416005160061600716008160091601016011160121601316014160151601616017160181601916020160211602216023160241602516026160271602816029160301603116032160331603416035160361603716038160391604016041160421604316044160451604616047160481604916050160511605216053160541605516056160571605816059160601606116062160631606416065160661606716068160691607016071160721607316074160751607616077160781607916080160811608216083160841608516086160871608816089160901609116092160931609416095160961609716098160991610016101161021610316104161051610616107161081610916110161111611216113161141611516116161171611816119161201612116122161231612416125161261612716128161291613016131161321613316134161351613616137161381613916140161411614216143161441614516146161471614816149161501615116152161531615416155161561615716158161591616016161161621616316164161651616616167161681616916170161711617216173161741617516176161771617816179161801618116182161831618416185161861618716188161891619016191161921619316194161951619616197161981619916200162011620216203162041620516206162071620816209162101621116212162131621416215162161621716218162191622016221162221622316224162251622616227162281622916230162311623216233162341623516236162371623816239162401624116242162431624416245162461624716248162491625016251162521625316254162551625616257162581625916260162611626216263162641626516266162671626816269162701627116272162731627416275162761627716278162791628016281162821628316284162851628616287162881628916290162911629216293162941629516296162971629816299163001630116302163031630416305163061630716308163091631016311163121631316314163151631616317163181631916320163211632216323163241632516326163271632816329163301633116332163331633416335163361633716338163391634016341163421634316344163451634616347163481634916350163511635216353163541635516356163571635816359163601636116362163631636416365163661636716368163691637016371163721637316374163751637616377163781637916380163811638216383163841638516386163871638816389163901639116392163931639416395163961639716398163991640016401164021640316404164051640616407164081640916410164111641216413164141641516416164171641816419164201642116422164231642416425164261642716428164291643016431164321643316434164351643616437164381643916440164411644216443164441644516446164471644816449164501645116452164531645416455164561645716458164591646016461164621646316464164651646616467164681646916470164711647216473164741647516476164771647816479164801648116482164831648416485164861648716488164891649016491164921649316494164951649616497164981649916500165011650216503165041650516506165071650816509165101651116512165131651416515165161651716518165191652016521165221652316524165251652616527165281652916530165311653216533165341653516536165371653816539165401654116542165431654416545165461654716548165491655016551165521655316554165551655616557165581655916560165611656216563165641656516566165671656816569165701657116572165731657416575165761657716578165791658016581165821658316584165851658616587165881658916590165911659216593165941659516596165971659816599166001660116602166031660416605166061660716608166091661016611166121661316614166151661616617166181661916620166211662216623166241662516626166271662816629166301663116632166331663416635166361663716638166391664016641166421664316644166451664616647166481664916650166511665216653166541665516656166571665816659166601666116662166631666416665166661666716668166691667016671166721667316674166751667616677166781667916680166811668216683166841668516686166871668816689166901669116692166931669416695166961669716698166991670016701167021670316704167051670616707167081670916710167111671216713167141671516716167171671816719167201672116722167231672416725167261672716728167291673016731167321673316734167351673616737167381673916740167411674216743167441674516746167471674816749167501675116752167531675416755167561675716758167591676016761167621676316764167651676616767167681676916770167711677216773167741677516776167771677816779167801678116782167831678416785167861678716788167891679016791167921679316794167951679616797167981679916800168011680216803168041680516806168071680816809168101681116812168131681416815168161681716818168191682016821168221682316824168251682616827168281682916830168311683216833168341683516836168371683816839168401684116842168431684416845168461684716848168491685016851168521685316854168551685616857168581685916860168611686216863168641686516866168671686816869168701687116872168731687416875168761687716878168791688016881168821688316884168851688616887168881688916890168911689216893168941689516896168971689816899169001690116902169031690416905169061690716908169091691016911169121691316914169151691616917169181691916920169211692216923169241692516926169271692816929169301693116932169331693416935169361693716938169391694016941169421694316944169451694616947169481694916950169511695216953169541695516956169571695816959169601696116962169631696416965169661696716968169691697016971169721697316974169751697616977169781697916980169811698216983169841698516986169871698816989169901699116992169931699416995169961699716998169991700017001170021700317004170051700617007170081700917010170111701217013170141701517016170171701817019170201702117022170231702417025170261702717028170291703017031170321703317034170351703617037170381703917040170411704217043170441704517046170471704817049170501705117052170531705417055170561705717058170591706017061170621706317064170651706617067170681706917070170711707217073170741707517076170771707817079170801708117082170831708417085170861708717088170891709017091170921709317094170951709617097170981709917100171011710217103171041710517106171071710817109171101711117112171131711417115171161711717118171191712017121171221712317124171251712617127171281712917130171311713217133171341713517136171371713817139171401714117142171431714417145171461714717148171491715017151171521715317154171551715617157171581715917160171611716217163171641716517166171671716817169171701717117172171731717417175171761717717178171791718017181171821718317184171851718617187171881718917190171911719217193171941719517196171971719817199172001720117202172031720417205172061720717208172091721017211172121721317214172151721617217172181721917220172211722217223172241722517226172271722817229172301723117232172331723417235172361723717238172391724017241172421724317244172451724617247172481724917250172511725217253172541725517256172571725817259172601726117262172631726417265172661726717268172691727017271172721727317274172751727617277172781727917280172811728217283172841728517286172871728817289172901729117292172931729417295172961729717298172991730017301173021730317304173051730617307173081730917310173111731217313173141731517316173171731817319173201732117322173231732417325173261732717328173291733017331173321733317334173351733617337173381733917340173411734217343173441734517346173471734817349173501735117352173531735417355173561735717358173591736017361173621736317364173651736617367173681736917370173711737217373173741737517376173771737817379173801738117382173831738417385173861738717388173891739017391173921739317394173951739617397173981739917400174011740217403174041740517406174071740817409174101741117412174131741417415174161741717418174191742017421174221742317424174251742617427174281742917430174311743217433174341743517436174371743817439174401744117442174431744417445174461744717448174491745017451174521745317454174551745617457174581745917460174611746217463174641746517466174671746817469174701747117472174731747417475174761747717478174791748017481174821748317484174851748617487174881748917490174911749217493174941749517496174971749817499175001750117502175031750417505175061750717508175091751017511175121751317514175151751617517175181751917520175211752217523175241752517526175271752817529175301753117532175331753417535175361753717538175391754017541175421754317544175451754617547175481754917550175511755217553175541755517556175571755817559175601756117562175631756417565175661756717568175691757017571175721757317574175751757617577175781757917580175811758217583175841758517586175871758817589175901759117592175931759417595175961759717598175991760017601176021760317604176051760617607176081760917610176111761217613176141761517616176171761817619176201762117622176231762417625176261762717628176291763017631176321763317634176351763617637176381763917640176411764217643176441764517646176471764817649176501765117652176531765417655176561765717658176591766017661176621766317664176651766617667176681766917670176711767217673176741767517676176771767817679176801768117682176831768417685176861768717688176891769017691176921769317694176951769617697176981769917700177011770217703177041770517706177071770817709177101771117712177131771417715177161771717718177191772017721177221772317724177251772617727177281772917730177311773217733177341773517736177371773817739177401774117742177431774417745177461774717748177491775017751177521775317754177551775617757177581775917760177611776217763177641776517766177671776817769177701777117772177731777417775177761777717778177791778017781177821778317784177851778617787177881778917790177911779217793177941779517796177971779817799178001780117802178031780417805178061780717808178091781017811178121781317814178151781617817178181781917820178211782217823178241782517826178271782817829178301783117832178331783417835178361783717838178391784017841178421784317844178451784617847178481784917850178511785217853178541785517856178571785817859178601786117862178631786417865178661786717868178691787017871178721787317874178751787617877178781787917880178811788217883178841788517886178871788817889178901789117892178931789417895178961789717898178991790017901179021790317904179051790617907179081790917910179111791217913179141791517916179171791817919179201792117922179231792417925179261792717928179291793017931179321793317934179351793617937179381793917940179411794217943179441794517946179471794817949179501795117952179531795417955179561795717958179591796017961179621796317964179651796617967179681796917970179711797217973179741797517976179771797817979179801798117982179831798417985179861798717988179891799017991179921799317994179951799617997179981799918000180011800218003180041800518006180071800818009180101801118012180131801418015180161801718018180191802018021180221802318024180251802618027180281802918030180311803218033180341803518036180371803818039180401804118042180431804418045180461804718048180491805018051180521805318054180551805618057180581805918060180611806218063180641806518066180671806818069180701807118072180731807418075180761807718078180791808018081180821808318084180851808618087180881808918090180911809218093180941809518096180971809818099181001810118102181031810418105181061810718108181091811018111181121811318114181151811618117181181811918120181211812218123181241812518126181271812818129181301813118132181331813418135181361813718138181391814018141181421814318144181451814618147181481814918150181511815218153181541815518156181571815818159181601816118162181631816418165181661816718168181691817018171181721817318174181751817618177181781817918180181811818218183181841818518186181871818818189181901819118192181931819418195181961819718198181991820018201182021820318204182051820618207182081820918210182111821218213182141821518216182171821818219182201822118222182231822418225182261822718228182291823018231182321823318234182351823618237182381823918240182411824218243182441824518246182471824818249182501825118252182531825418255182561825718258182591826018261182621826318264182651826618267182681826918270182711827218273182741827518276182771827818279182801828118282182831828418285182861828718288182891829018291182921829318294182951829618297182981829918300183011830218303183041830518306183071830818309183101831118312183131831418315183161831718318183191832018321183221832318324183251832618327183281832918330183311833218333183341833518336183371833818339183401834118342183431834418345183461834718348183491835018351183521835318354183551835618357183581835918360183611836218363183641836518366183671836818369183701837118372183731837418375183761837718378183791838018381183821838318384183851838618387183881838918390183911839218393183941839518396183971839818399184001840118402184031840418405184061840718408184091841018411184121841318414184151841618417184181841918420184211842218423184241842518426184271842818429184301843118432184331843418435184361843718438184391844018441184421844318444184451844618447184481844918450184511845218453184541845518456184571845818459184601846118462184631846418465184661846718468184691847018471184721847318474184751847618477184781847918480184811848218483184841848518486184871848818489184901849118492184931849418495184961849718498184991850018501185021850318504185051850618507185081850918510185111851218513185141851518516185171851818519185201852118522185231852418525185261852718528185291853018531185321853318534185351853618537185381853918540185411854218543185441854518546185471854818549185501855118552185531855418555185561855718558185591856018561185621856318564185651856618567185681856918570185711857218573185741857518576185771857818579185801858118582185831858418585185861858718588185891859018591185921859318594185951859618597185981859918600186011860218603186041860518606186071860818609186101861118612186131861418615186161861718618186191862018621186221862318624186251862618627186281862918630186311863218633186341863518636186371863818639186401864118642186431864418645186461864718648186491865018651186521865318654186551865618657186581865918660186611866218663186641866518666186671866818669186701867118672186731867418675186761867718678186791868018681186821868318684186851868618687186881868918690186911869218693186941869518696186971869818699187001870118702187031870418705187061870718708187091871018711187121871318714187151871618717187181871918720187211872218723187241872518726187271872818729187301873118732187331873418735187361873718738187391874018741187421874318744187451874618747187481874918750187511875218753187541875518756187571875818759187601876118762187631876418765187661876718768187691877018771187721877318774187751877618777187781877918780187811878218783187841878518786187871878818789187901879118792187931879418795187961879718798187991880018801188021880318804188051880618807188081880918810188111881218813188141881518816188171881818819188201882118822188231882418825188261882718828188291883018831188321883318834188351883618837188381883918840188411884218843188441884518846188471884818849188501885118852188531885418855188561885718858188591886018861188621886318864188651886618867188681886918870188711887218873188741887518876188771887818879188801888118882188831888418885188861888718888188891889018891188921889318894188951889618897188981889918900189011890218903189041890518906189071890818909189101891118912189131891418915189161891718918189191892018921189221892318924189251892618927189281892918930189311893218933189341893518936189371893818939189401894118942189431894418945189461894718948189491895018951189521895318954189551895618957189581895918960189611896218963189641896518966189671896818969189701897118972189731897418975189761897718978189791898018981189821898318984189851898618987189881898918990189911899218993189941899518996189971899818999190001900119002190031900419005190061900719008190091901019011190121901319014190151901619017190181901919020190211902219023190241902519026190271902819029190301903119032190331903419035190361903719038190391904019041190421904319044190451904619047190481904919050190511905219053190541905519056190571905819059190601906119062190631906419065190661906719068190691907019071190721907319074190751907619077190781907919080190811908219083190841908519086190871908819089190901909119092190931909419095190961909719098190991910019101191021910319104191051910619107191081910919110191111911219113191141911519116191171911819119191201912119122191231912419125191261912719128191291913019131191321913319134191351913619137191381913919140191411914219143191441914519146191471914819149191501915119152191531915419155191561915719158191591916019161191621916319164191651916619167191681916919170191711917219173191741917519176191771917819179191801918119182191831918419185191861918719188191891919019191191921919319194191951919619197191981919919200192011920219203192041920519206192071920819209192101921119212192131921419215192161921719218192191922019221192221922319224192251922619227192281922919230192311923219233192341923519236192371923819239192401924119242192431924419245192461924719248192491925019251192521925319254192551925619257192581925919260192611926219263192641926519266192671926819269192701927119272192731927419275192761927719278192791928019281192821928319284192851928619287192881928919290192911929219293192941929519296192971929819299193001930119302193031930419305193061930719308193091931019311193121931319314193151931619317193181931919320193211932219323193241932519326193271932819329193301933119332193331933419335193361933719338193391934019341193421934319344193451934619347193481934919350193511935219353193541935519356193571935819359193601936119362193631936419365193661936719368193691937019371193721937319374193751937619377193781937919380193811938219383193841938519386193871938819389193901939119392193931939419395193961939719398193991940019401194021940319404194051940619407194081940919410194111941219413194141941519416194171941819419194201942119422194231942419425194261942719428194291943019431194321943319434194351943619437194381943919440194411944219443194441944519446194471944819449194501945119452194531945419455194561945719458194591946019461194621946319464194651946619467194681946919470194711947219473194741947519476194771947819479194801948119482194831948419485194861948719488194891949019491194921949319494194951949619497194981949919500195011950219503195041950519506195071950819509195101951119512195131951419515195161951719518195191952019521195221952319524195251952619527195281952919530195311953219533195341953519536195371953819539195401954119542195431954419545195461954719548195491955019551195521955319554195551955619557195581955919560195611956219563195641956519566195671956819569195701957119572195731957419575195761957719578195791958019581195821958319584195851958619587195881958919590195911959219593195941959519596195971959819599196001960119602196031960419605196061960719608196091961019611196121961319614196151961619617196181961919620196211962219623196241962519626196271962819629196301963119632196331963419635196361963719638196391964019641196421964319644196451964619647196481964919650196511965219653196541965519656196571965819659196601966119662196631966419665196661966719668196691967019671196721967319674196751967619677196781967919680196811968219683196841968519686196871968819689196901969119692196931969419695196961969719698196991970019701197021970319704197051970619707197081970919710197111971219713197141971519716197171971819719197201972119722197231972419725197261972719728197291973019731197321973319734197351973619737197381973919740197411974219743197441974519746197471974819749197501975119752197531975419755197561975719758197591976019761197621976319764197651976619767197681976919770197711977219773197741977519776197771977819779197801978119782197831978419785197861978719788197891979019791197921979319794197951979619797197981979919800198011980219803198041980519806198071980819809198101981119812198131981419815198161981719818198191982019821198221982319824198251982619827198281982919830198311983219833198341983519836198371983819839198401984119842198431984419845198461984719848198491985019851198521985319854198551985619857198581985919860198611986219863198641986519866198671986819869198701987119872198731987419875198761987719878198791988019881198821988319884198851988619887198881988919890198911989219893198941989519896198971989819899199001990119902199031990419905199061990719908199091991019911199121991319914199151991619917199181991919920199211992219923199241992519926199271992819929199301993119932199331993419935199361993719938199391994019941199421994319944199451994619947199481994919950199511995219953199541995519956199571995819959199601996119962199631996419965199661996719968199691997019971199721997319974199751997619977199781997919980199811998219983199841998519986199871998819989199901999119992199931999419995199961999719998199992000020001200022000320004200052000620007200082000920010200112001220013200142001520016200172001820019200202002120022200232002420025200262002720028200292003020031200322003320034200352003620037200382003920040200412004220043200442004520046200472004820049200502005120052200532005420055200562005720058200592006020061200622006320064200652006620067200682006920070200712007220073200742007520076200772007820079200802008120082200832008420085200862008720088200892009020091200922009320094200952009620097200982009920100201012010220103201042010520106201072010820109201102011120112201132011420115201162011720118201192012020121201222012320124201252012620127201282012920130201312013220133201342013520136201372013820139201402014120142201432014420145201462014720148201492015020151201522015320154201552015620157201582015920160201612016220163201642016520166201672016820169201702017120172201732017420175201762017720178201792018020181201822018320184201852018620187201882018920190201912019220193201942019520196201972019820199202002020120202202032020420205202062020720208202092021020211202122021320214202152021620217202182021920220202212022220223202242022520226202272022820229202302023120232202332023420235202362023720238202392024020241202422024320244202452024620247202482024920250202512025220253202542025520256202572025820259202602026120262202632026420265202662026720268202692027020271202722027320274202752027620277202782027920280202812028220283202842028520286202872028820289202902029120292202932029420295202962029720298202992030020301203022030320304203052030620307203082030920310203112031220313203142031520316203172031820319203202032120322203232032420325203262032720328203292033020331203322033320334203352033620337203382033920340203412034220343203442034520346203472034820349203502035120352203532035420355203562035720358203592036020361203622036320364203652036620367203682036920370203712037220373203742037520376203772037820379203802038120382203832038420385203862038720388203892039020391203922039320394203952039620397203982039920400204012040220403204042040520406204072040820409204102041120412204132041420415204162041720418204192042020421204222042320424204252042620427204282042920430204312043220433204342043520436204372043820439204402044120442204432044420445204462044720448204492045020451204522045320454204552045620457204582045920460204612046220463204642046520466204672046820469204702047120472204732047420475204762047720478204792048020481204822048320484204852048620487204882048920490204912049220493204942049520496204972049820499205002050120502205032050420505205062050720508205092051020511
  1. #include "llama-model.h"
  2. #include "llama-impl.h"
  3. #include "llama-mmap.h"
  4. #include "llama-batch.h"
  5. #include "llama-cparams.h"
  6. #include "llama-model-loader.h"
  7. #include "llama-kv-cache.h"
  8. #include "llama-kv-cache-iswa.h"
  9. #include "llama-memory-hybrid.h"
  10. #include "llama-memory-recurrent.h"
  11. #include "ggml-cpp.h"
  12. #include <algorithm>
  13. #include <cassert>
  14. #include <cmath>
  15. #include <cfloat>
  16. #include <cstring>
  17. #include <cmath>
  18. #include <functional>
  19. #include <map>
  20. #include <regex>
  21. #include <sstream>
  22. #include <stdexcept>
  23. const char * llm_type_name(llm_type type) {
  24. switch (type) {
  25. case LLM_TYPE_14M: return "14M";
  26. case LLM_TYPE_17M: return "17M";
  27. case LLM_TYPE_22M: return "22M";
  28. case LLM_TYPE_33M: return "33M";
  29. case LLM_TYPE_60M: return "60M";
  30. case LLM_TYPE_70M: return "70M";
  31. case LLM_TYPE_80M: return "80M";
  32. case LLM_TYPE_109M: return "109M";
  33. case LLM_TYPE_137M: return "137M";
  34. case LLM_TYPE_140M: return "140M";
  35. case LLM_TYPE_160M: return "160M";
  36. case LLM_TYPE_190M: return "190M";
  37. case LLM_TYPE_220M: return "220M";
  38. case LLM_TYPE_250M: return "250M";
  39. case LLM_TYPE_256M: return "256M";
  40. case LLM_TYPE_270M: return "270M";
  41. case LLM_TYPE_335M: return "335M";
  42. case LLM_TYPE_350M: return "350M";
  43. case LLM_TYPE_360M: return "360M";
  44. case LLM_TYPE_410M: return "410M";
  45. case LLM_TYPE_450M: return "450M";
  46. case LLM_TYPE_475M: return "475M";
  47. case LLM_TYPE_558M: return "558M";
  48. case LLM_TYPE_700M: return "700M";
  49. case LLM_TYPE_770M: return "770M";
  50. case LLM_TYPE_780M: return "780M";
  51. case LLM_TYPE_950M: return "950M";
  52. case LLM_TYPE_0_3B: return "0.3B";
  53. case LLM_TYPE_0_5B: return "0.5B";
  54. case LLM_TYPE_0_6B: return "0.6B";
  55. case LLM_TYPE_1B: return "1B";
  56. case LLM_TYPE_1_2B: return "1.2B";
  57. case LLM_TYPE_1_3B: return "1.3B";
  58. case LLM_TYPE_1_4B: return "1.4B";
  59. case LLM_TYPE_1_5B: return "1.5B";
  60. case LLM_TYPE_1_6B: return "1.6B";
  61. case LLM_TYPE_1_7B: return "1.7B";
  62. case LLM_TYPE_1_8B: return "1.8B";
  63. case LLM_TYPE_2B: return "2B";
  64. case LLM_TYPE_2_6B: return "2.6B";
  65. case LLM_TYPE_2_8B: return "2.8B";
  66. case LLM_TYPE_2_9B: return "2.9B";
  67. case LLM_TYPE_3B: return "3B";
  68. case LLM_TYPE_4B: return "4B";
  69. case LLM_TYPE_6B: return "6B";
  70. case LLM_TYPE_6_9B: return "6.9B";
  71. case LLM_TYPE_7B: return "7B";
  72. case LLM_TYPE_8B: return "8B";
  73. case LLM_TYPE_9B: return "9B";
  74. case LLM_TYPE_11B: return "11B";
  75. case LLM_TYPE_12B: return "12B";
  76. case LLM_TYPE_13B: return "13B";
  77. case LLM_TYPE_14B: return "14B";
  78. case LLM_TYPE_15B: return "15B";
  79. case LLM_TYPE_16B: return "16B";
  80. case LLM_TYPE_20B: return "20B";
  81. case LLM_TYPE_27B: return "27B";
  82. case LLM_TYPE_30B: return "30B";
  83. case LLM_TYPE_32B: return "32B";
  84. case LLM_TYPE_34B: return "34B";
  85. case LLM_TYPE_35B: return "35B";
  86. case LLM_TYPE_36B: return "36B";
  87. case LLM_TYPE_40B: return "40B";
  88. case LLM_TYPE_65B: return "65B";
  89. case LLM_TYPE_70B: return "70B";
  90. case LLM_TYPE_120B: return "120B";
  91. case LLM_TYPE_142B: return "142B";
  92. case LLM_TYPE_236B: return "236B";
  93. case LLM_TYPE_290B: return "290B";
  94. case LLM_TYPE_314B: return "314B";
  95. case LLM_TYPE_405B: return "405B";
  96. case LLM_TYPE_671B: return "671B";
  97. case LLM_TYPE_SMALL: return "0.1B";
  98. case LLM_TYPE_MEDIUM: return "0.4B";
  99. case LLM_TYPE_LARGE: return "0.8B";
  100. case LLM_TYPE_XL: return "1.5B";
  101. case LLM_TYPE_A1_7B: return "A1.7B";
  102. case LLM_TYPE_A2_7B: return "A2.7B";
  103. case LLM_TYPE_8x7B: return "8x7B";
  104. case LLM_TYPE_8x22B: return "8x22B";
  105. case LLM_TYPE_16x12B: return "16x12B";
  106. case LLM_TYPE_16x3_8B: return "16x3.8B";
  107. case LLM_TYPE_10B_128x3_66B: return "10B+128x3.66B";
  108. case LLM_TYPE_57B_A14B: return "57B.A14B";
  109. case LLM_TYPE_17B_16E: return "17Bx16E (Scout)";
  110. case LLM_TYPE_17B_128E: return "17Bx128E (Maverick)";
  111. case LLM_TYPE_A13B: return "A13B";
  112. case LLM_TYPE_7B_A1B: return "7B.A1B";
  113. case LLM_TYPE_8B_A1B: return "8B.A1B";
  114. case LLM_TYPE_16B_A1B: return "16B.A1B";
  115. case LLM_TYPE_21B_A3B: return "21B.A3B";
  116. case LLM_TYPE_30B_A3B: return "30B.A3B";
  117. case LLM_TYPE_100B_A6B: return "100B.A6B";
  118. case LLM_TYPE_106B_A12B: return "106B.A12B";
  119. case LLM_TYPE_235B_A22B: return "235B.A22B";
  120. case LLM_TYPE_300B_A47B: return "300B.A47B";
  121. case LLM_TYPE_355B_A32B: return "355B.A32B";
  122. case LLM_TYPE_E2B: return "E2B";
  123. case LLM_TYPE_E4B: return "E4B";
  124. default: return "?B";
  125. }
  126. }
  127. static const char * llama_expert_gating_func_name(llama_expert_gating_func_type type) {
  128. switch (type) {
  129. case LLAMA_EXPERT_GATING_FUNC_TYPE_SOFTMAX: return "softmax";
  130. case LLAMA_EXPERT_GATING_FUNC_TYPE_SIGMOID: return "sigmoid";
  131. default: return "unknown";
  132. }
  133. }
  134. static const std::map<llama_rope_scaling_type, const char *> LLAMA_ROPE_SCALING_TYPES = {
  135. { LLAMA_ROPE_SCALING_TYPE_NONE, "none" },
  136. { LLAMA_ROPE_SCALING_TYPE_LINEAR, "linear" },
  137. { LLAMA_ROPE_SCALING_TYPE_YARN, "yarn" },
  138. { LLAMA_ROPE_SCALING_TYPE_LONGROPE, "longrope" },
  139. };
  140. std::string llama_rope_scaling_type_name(llama_rope_scaling_type rope_scaling_type) {
  141. return LLAMA_ROPE_SCALING_TYPES.at(rope_scaling_type);
  142. }
  143. static llama_rope_scaling_type llama_rope_scaling_type_from_string(const std::string & name) {
  144. for (const auto & kv : LLAMA_ROPE_SCALING_TYPES) {
  145. if (kv.second == name) {
  146. return (llama_rope_scaling_type) kv.first;
  147. }
  148. }
  149. return LLAMA_ROPE_SCALING_TYPE_UNSPECIFIED;
  150. }
  151. // checks if the weight tensor can be used with the specified buffer type and device
  152. static bool weight_buft_supported(const llama_hparams & hparams, ggml_tensor * w, ggml_op op, ggml_backend_buffer_type_t buft, ggml_backend_dev_t dev) {
  153. GGML_ASSERT(w != nullptr);
  154. if (op == GGML_OP_NONE) {
  155. return true;
  156. }
  157. ggml_init_params params = {
  158. /*.mem_size =*/ ggml_tensor_overhead()*8,
  159. /*.mem_buffer =*/ NULL,
  160. /*.no_alloc =*/ true,
  161. };
  162. ggml_context_ptr ctx_ptr { ggml_init(params) };
  163. if (!ctx_ptr) {
  164. throw std::runtime_error(format("failed to create ggml context"));
  165. }
  166. ggml_context * ctx = ctx_ptr.get();
  167. ggml_tensor * op_tensor = nullptr;
  168. switch (op) {
  169. case GGML_OP_GET_ROWS:
  170. {
  171. ggml_tensor * b = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 512);
  172. op_tensor = ggml_get_rows(ctx, w, b);
  173. } break;
  174. case GGML_OP_MUL_MAT:
  175. {
  176. ggml_tensor * b = ggml_new_tensor_4d(ctx, GGML_TYPE_F32, w->ne[0], 512, w->ne[2], w->ne[3]);
  177. op_tensor = ggml_mul_mat(ctx, w, b);
  178. } break;
  179. case GGML_OP_MUL_MAT_ID:
  180. {
  181. int n_expert_used = hparams.n_expert_used;
  182. ggml_tensor * b = ggml_new_tensor_3d(ctx, GGML_TYPE_F32, w->ne[0], n_expert_used, 512);
  183. ggml_tensor * ids = ggml_new_tensor_2d(ctx, GGML_TYPE_I32, n_expert_used, 512);
  184. op_tensor = ggml_mul_mat_id(ctx, w, b, ids);
  185. } break;
  186. case GGML_OP_ADD:
  187. {
  188. ggml_tensor * a = ggml_new_tensor_4d(ctx, GGML_TYPE_F32, w->ne[0], w->ne[1], w->ne[2], w->ne[3]);
  189. op_tensor = ggml_add(ctx, a, w);
  190. } break;
  191. case GGML_OP_ADD_ID:
  192. {
  193. int n_expert_used = hparams.n_expert_used;
  194. ggml_tensor * a = ggml_new_tensor_3d(ctx, GGML_TYPE_F32, w->ne[0], n_expert_used, 512);
  195. ggml_tensor * c = ggml_new_tensor_2d(ctx, GGML_TYPE_I32, n_expert_used, 512);
  196. op_tensor = ggml_add_id(ctx, a, w, c);
  197. } break;
  198. case GGML_OP_MUL:
  199. {
  200. ggml_tensor * a = ggml_new_tensor_4d(ctx, GGML_TYPE_F32, w->ne[0], w->ne[1], w->ne[2], w->ne[3]);
  201. op_tensor = ggml_mul(ctx, a, w);
  202. } break;
  203. case GGML_OP_DIV:
  204. {
  205. ggml_tensor * a = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, w->ne[0]);
  206. op_tensor = ggml_div(ctx, a, w);
  207. } break;
  208. case GGML_OP_ROPE:
  209. {
  210. int n_embd_head = hparams.n_embd_head_v;
  211. int n_head = hparams.n_head();
  212. ggml_tensor * a = ggml_new_tensor_3d(ctx, GGML_TYPE_F32, n_embd_head, n_head, 512);
  213. ggml_tensor * b = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 512);
  214. op_tensor = ggml_rope_ext(
  215. ctx, a, b, w,
  216. 0, 0, 0, 0, 0,
  217. 0, 0, 0, 0
  218. );
  219. } break;
  220. case GGML_OP_SSM_CONV:
  221. {
  222. const int64_t n_seq_tokens = 512;
  223. const int64_t n_seqs = 3;
  224. ggml_tensor * conv_x = ggml_new_tensor_3d(ctx, GGML_TYPE_F32, w->ne[0] - 1 + n_seq_tokens, w->ne[1], n_seqs);
  225. op_tensor = ggml_ssm_conv(ctx, conv_x, w);
  226. } break;
  227. case GGML_OP_SSM_SCAN:
  228. {
  229. // w is ssm_a, which is used to distinguish Mamba-1 and Mamba-2
  230. const int64_t d_state = w->ne[0] == 1 ? hparams.ssm_d_state : w->ne[0];
  231. const int64_t n_head = w->ne[1];
  232. const int64_t head_dim = hparams.ssm_d_inner / n_head;
  233. const int64_t n_group = hparams.ssm_n_group ? hparams.ssm_n_group : 1;
  234. const int64_t n_seq_tokens = 512;
  235. const int64_t n_seqs = 3;
  236. ggml_tensor * s = ggml_new_tensor_4d(ctx, GGML_TYPE_F32, d_state, head_dim, n_head, n_seqs);
  237. ggml_tensor * x = ggml_new_tensor_4d(ctx, GGML_TYPE_F32, head_dim, n_head, n_seq_tokens, n_seqs);
  238. ggml_tensor * dt = ggml_new_tensor_3d(ctx, GGML_TYPE_F32, n_head, n_seq_tokens, n_seqs);
  239. ggml_tensor * B = ggml_new_tensor_4d(ctx, GGML_TYPE_F32, d_state, n_group, n_seq_tokens, n_seqs);
  240. ggml_tensor * C = ggml_new_tensor_4d(ctx, GGML_TYPE_F32, d_state, n_group, n_seq_tokens, n_seqs);
  241. ggml_tensor * ids = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, n_seqs);
  242. op_tensor = ggml_ssm_scan(ctx, s, x, dt, w, B, C, ids);
  243. } break;
  244. case GGML_OP_RWKV_WKV6:
  245. {
  246. // FIXME
  247. const int64_t S = 123;
  248. const int64_t H = 123;
  249. const int64_t n_tokens = 123;
  250. const int64_t n_seqs = 123;
  251. ggml_tensor * k = ggml_new_tensor_3d(ctx, GGML_TYPE_F32, S, H, n_tokens);
  252. ggml_tensor * v = ggml_new_tensor_3d(ctx, GGML_TYPE_F32, S, H, n_tokens);
  253. ggml_tensor * r = ggml_new_tensor_3d(ctx, GGML_TYPE_F32, S, H, n_tokens);
  254. ggml_tensor * tf = w;
  255. ggml_tensor * td = ggml_new_tensor_3d(ctx, GGML_TYPE_F32, S, H, n_tokens);
  256. ggml_tensor * state = ggml_new_tensor_4d(ctx, GGML_TYPE_F32, S, n_seqs, S, H);
  257. op_tensor = ggml_rwkv_wkv6(ctx, k, v, r, tf, td, state);
  258. } break;
  259. case GGML_OP_IM2COL:
  260. {
  261. const int n_embd = hparams.n_embd;
  262. ggml_tensor * b = ggml_new_tensor_4d(ctx, GGML_TYPE_F32, n_embd, w->ne[1], 1, 1);
  263. op_tensor = ggml_im2col(ctx, w, b, 1, 0, 0, 0, 1, 0, false, GGML_TYPE_F16);
  264. } break;
  265. case GGML_OP_SCALE:
  266. {
  267. op_tensor = ggml_scale(ctx, w, 1.0f);
  268. } break;
  269. default:
  270. GGML_ABORT("%s: missing test for op %s for tensor %s", __func__, ggml_op_name(op), w->name);
  271. }
  272. // create a temporary dummy buffer for the weight so that supports_op can check the buffer type
  273. GGML_ASSERT(w->buffer == nullptr);
  274. w->buffer = ggml_backend_buft_alloc_buffer(buft, 0);
  275. bool op_supported = ggml_backend_dev_supports_op(dev, op_tensor);
  276. ggml_backend_buffer_free(w->buffer);
  277. w->buffer = nullptr;
  278. return op_supported;
  279. }
  280. // lists of buffer types used for each layer
  281. using buft_list_t = std::vector<std::pair<ggml_backend_dev_t, ggml_backend_buffer_type_t>>;
  282. // find the first buffer type in the list that can use the tensor
  283. static ggml_backend_buffer_type_t select_weight_buft(const llama_hparams & hparams, ggml_tensor * tensor, ggml_op op, const buft_list_t & buft_list) {
  284. GGML_ASSERT(!buft_list.empty());
  285. for (const auto & cur : buft_list) {
  286. ggml_backend_dev_t cur_dev = cur.first;
  287. ggml_backend_buffer_type_t cur_buft = cur.second;
  288. if (weight_buft_supported(hparams, tensor, op, cur_buft, cur_dev)) {
  289. return cur_buft;
  290. }
  291. }
  292. return nullptr;
  293. }
  294. // CPU: ACCEL -> GPU host -> CPU extra -> CPU
  295. static buft_list_t make_cpu_buft_list(const std::vector<ggml_backend_dev_t> & devices, bool use_extra_bufts, bool no_host) {
  296. buft_list_t buft_list;
  297. // add ACCEL buffer types
  298. for (size_t i = 0; i < ggml_backend_dev_count(); ++i) {
  299. ggml_backend_dev_t dev = ggml_backend_dev_get(i);
  300. if (ggml_backend_dev_type(dev) == GGML_BACKEND_DEVICE_TYPE_ACCEL) {
  301. auto * buft = ggml_backend_dev_buffer_type(dev);
  302. // skip
  303. if (buft != ggml_backend_cpu_buffer_type()) {
  304. buft_list.emplace_back(dev, buft);
  305. }
  306. }
  307. }
  308. // add a host buffer type
  309. // storing the tensors in a host buffer is useful when the processing of large batches
  310. // is offloaded to a GPU device, since it reduces the time spent on data transfers
  311. // generally, this will be done using the first device in the list
  312. // a better approach would be to handle this on a weight-by-weight basis using the offload_op
  313. // function of the device to determine if it would benefit from being stored in a host buffer
  314. if (!no_host) {
  315. for (auto * dev : devices) {
  316. ggml_backend_buffer_type_t buft = ggml_backend_dev_host_buffer_type(dev);
  317. if (buft) {
  318. buft_list.emplace_back(dev, buft);
  319. break;
  320. }
  321. }
  322. }
  323. // add extra buffer types
  324. if (use_extra_bufts) {
  325. auto * cpu_dev = ggml_backend_dev_by_type(GGML_BACKEND_DEVICE_TYPE_CPU);
  326. if (cpu_dev == nullptr) {
  327. throw std::runtime_error(format("%s: no CPU backend found", __func__));
  328. }
  329. auto * cpu_reg = ggml_backend_dev_backend_reg(cpu_dev);
  330. auto ggml_backend_dev_get_extra_bufts_fn = (ggml_backend_dev_get_extra_bufts_t)
  331. ggml_backend_reg_get_proc_address(cpu_reg, "ggml_backend_dev_get_extra_bufts");
  332. if (ggml_backend_dev_get_extra_bufts_fn) {
  333. ggml_backend_buffer_type_t * extra_bufts = ggml_backend_dev_get_extra_bufts_fn(cpu_dev);
  334. while (extra_bufts && *extra_bufts) {
  335. buft_list.emplace_back(cpu_dev, *extra_bufts);
  336. ++extra_bufts;
  337. }
  338. }
  339. }
  340. // add the CPU buffer type
  341. for (size_t i = 0; i < ggml_backend_dev_count(); ++i) {
  342. ggml_backend_dev_t dev = ggml_backend_dev_get(i);
  343. if (ggml_backend_dev_type(dev) == GGML_BACKEND_DEVICE_TYPE_CPU) {
  344. buft_list.emplace_back(dev, ggml_backend_dev_buffer_type(dev));
  345. }
  346. }
  347. return buft_list;
  348. }
  349. // GPU: split if LLAMA_SPLIT_MODE_ROW -> GPU
  350. static buft_list_t make_gpu_buft_list(ggml_backend_dev_t dev, llama_split_mode split_mode, const float * tensor_split) {
  351. buft_list_t buft_list;
  352. // add the device split buffer type if requested and available
  353. if (split_mode == LLAMA_SPLIT_MODE_ROW) {
  354. ggml_backend_reg_t reg = ggml_backend_dev_backend_reg(dev);
  355. auto ggml_backend_split_buffer_type_fn = (ggml_backend_split_buffer_type_t)
  356. ggml_backend_reg_get_proc_address(reg, "ggml_backend_split_buffer_type");
  357. if (ggml_backend_split_buffer_type_fn) {
  358. size_t dev_index = [&]() {
  359. auto * reg = ggml_backend_dev_backend_reg(dev);
  360. for (size_t i = 0; i < ggml_backend_reg_dev_count(reg); ++i) {
  361. if (ggml_backend_reg_dev_get(reg, i) == dev) {
  362. return i;
  363. }
  364. }
  365. throw std::runtime_error(format("device %s not found in its backend reg", ggml_backend_dev_name(dev)));
  366. }();
  367. auto * buft = ggml_backend_split_buffer_type_fn(dev_index, tensor_split);
  368. if (buft != nullptr) {
  369. buft_list.emplace_back(dev, buft);
  370. }
  371. }
  372. }
  373. // add the device default buffer type
  374. buft_list.emplace_back(dev, ggml_backend_dev_buffer_type(dev));
  375. // add the device extra buffer type (if any)
  376. ggml_backend_reg_t reg = ggml_backend_dev_backend_reg(dev);
  377. auto ggml_backend_dev_get_extra_bufts_fn = (ggml_backend_dev_get_extra_bufts_t)
  378. ggml_backend_reg_get_proc_address(reg, "ggml_backend_dev_get_extra_bufts");
  379. if (ggml_backend_dev_get_extra_bufts_fn) {
  380. ggml_backend_buffer_type_t * extra_bufts = ggml_backend_dev_get_extra_bufts_fn(dev);
  381. while (extra_bufts && *extra_bufts) {
  382. buft_list.emplace_back(dev, *extra_bufts);
  383. ++extra_bufts;
  384. }
  385. }
  386. return buft_list;
  387. }
  388. struct llama_model::impl {
  389. impl() {}
  390. ~impl() {}
  391. uint64_t n_elements = 0;
  392. size_t n_bytes = 0;
  393. std::string desc_str;
  394. // model memory mapped files
  395. llama_mmaps mappings;
  396. // objects representing data potentially being locked in memory
  397. llama_mlocks mlock_bufs;
  398. llama_mlocks mlock_mmaps;
  399. // contexts where the model tensors metadata is stored as well ass the corresponding buffers:
  400. std::vector<std::pair<ggml_context_ptr, ggml_backend_buffer_ptr>> ctxs_bufs;
  401. buft_list_t cpu_buft_list;
  402. std::map<ggml_backend_dev_t, buft_list_t> gpu_buft_list;
  403. struct layer_dev {
  404. ggml_backend_dev_t dev;
  405. buft_list_t * buft_list;
  406. };
  407. layer_dev dev_input = {};
  408. layer_dev dev_output = {};
  409. std::vector<layer_dev> dev_layer;
  410. bool has_tensor_overrides;
  411. };
  412. llama_model::llama_model(const llama_model_params & params) : params(params), pimpl(std::make_unique<impl>()) {
  413. pimpl->has_tensor_overrides = params.tensor_buft_overrides && params.tensor_buft_overrides[0].pattern;
  414. }
  415. llama_model::~llama_model() {}
  416. void llama_model::load_stats(llama_model_loader & ml) {
  417. pimpl->n_elements = ml.n_elements;
  418. pimpl->n_bytes = ml.n_bytes;
  419. }
  420. void llama_model::load_arch(llama_model_loader & ml) {
  421. arch = ml.get_arch();
  422. if (arch == LLM_ARCH_UNKNOWN) {
  423. throw std::runtime_error("unknown model architecture: '" + ml.get_arch_name() + "'");
  424. }
  425. }
  426. void llama_model::load_hparams(llama_model_loader & ml) {
  427. const gguf_context * ctx = ml.meta.get();
  428. // get metadata as string
  429. for (int i = 0; i < gguf_get_n_kv(ctx); i++) {
  430. gguf_type type = gguf_get_kv_type(ctx, i);
  431. if (type == GGUF_TYPE_ARRAY) {
  432. continue;
  433. }
  434. const char * name = gguf_get_key(ctx, i);
  435. const std::string value = gguf_kv_to_str(ctx, i);
  436. gguf_kv.emplace(name, value);
  437. }
  438. // get general kv
  439. ml.get_key(LLM_KV_GENERAL_NAME, name, false);
  440. // everything past this point is not vocab-related
  441. // for CLIP models, we only need to load tensors, no hparams
  442. if (hparams.vocab_only || ml.get_arch() == LLM_ARCH_CLIP) {
  443. return;
  444. }
  445. ml.get_key(LLM_KV_CONTEXT_LENGTH, hparams.n_ctx_train);
  446. ml.get_key(LLM_KV_EMBEDDING_LENGTH, hparams.n_embd);
  447. ml.get_key(LLM_KV_BLOCK_COUNT, hparams.n_layer);
  448. ml.get_key(LLM_KV_EXPERT_COUNT, hparams.n_expert, false);
  449. ml.get_key(LLM_KV_EXPERT_USED_COUNT, hparams.n_expert_used, false);
  450. ml.get_key(LLM_KV_EXPERT_GROUP_COUNT, hparams.n_expert_groups, false);
  451. ml.get_key(LLM_KV_EXPERT_GROUP_USED_COUNT, hparams.n_group_used, false);
  452. if (arch == LLM_ARCH_WAVTOKENIZER_DEC) {
  453. ml.get_key(LLM_KV_FEATURES_LENGTH, hparams.n_embd_features);
  454. ml.get_key(LLM_KV_POSNET_EMBEDDING_LENGTH, hparams.posnet.n_embd);
  455. ml.get_key(LLM_KV_POSNET_BLOCK_COUNT, hparams.posnet.n_layer);
  456. ml.get_key(LLM_KV_CONVNEXT_EMBEDDING_LENGTH, hparams.convnext.n_embd);
  457. ml.get_key(LLM_KV_CONVNEXT_BLOCK_COUNT, hparams.convnext.n_layer);
  458. }
  459. GGML_ASSERT(hparams.n_expert <= LLAMA_MAX_EXPERTS);
  460. GGML_ASSERT(hparams.n_expert_used <= hparams.n_expert);
  461. if (hparams.n_expert > 0) {
  462. GGML_ASSERT(hparams.n_expert_used > 0);
  463. GGML_ASSERT(hparams.n_expert_groups < hparams.n_expert);
  464. if (hparams.n_expert_groups > 1) {
  465. GGML_ASSERT(hparams.n_expert % hparams.n_expert_groups == 0);
  466. GGML_ASSERT(hparams.n_group_used > 0);
  467. GGML_ASSERT(hparams.n_group_used < hparams.n_expert_groups);
  468. }
  469. } else {
  470. GGML_ASSERT(hparams.n_expert_used == 0);
  471. GGML_ASSERT(hparams.n_expert_groups == 0);
  472. }
  473. std::fill(hparams.n_head_arr.begin(), hparams.n_head_arr.end(), 0);
  474. std::fill(hparams.n_head_kv_arr.begin(), hparams.n_head_kv_arr.end(), 0);
  475. std::fill(hparams.n_ff_arr.begin(), hparams.n_ff_arr.end(), 0);
  476. std::fill(
  477. hparams.recurrent_layer_arr.begin(),
  478. hparams.recurrent_layer_arr.end(),
  479. llm_arch_is_recurrent(ml.get_arch()));
  480. std::fill(hparams.rope_sections.begin(), hparams.rope_sections.end(), 0);
  481. std::fill(hparams.swa_layers.begin(), hparams.swa_layers.end(), 0);
  482. std::fill(hparams.xielu_alpha_n.begin(), hparams.xielu_alpha_n.end(), 0.0f);
  483. std::fill(hparams.xielu_alpha_p.begin(), hparams.xielu_alpha_p.end(), 0.0f);
  484. std::fill(hparams.xielu_beta.begin(), hparams.xielu_beta.end(), 0.0f);
  485. std::fill(hparams.xielu_eps.begin(), hparams.xielu_eps.end(), 0.0f);
  486. ml.get_key_or_arr(LLM_KV_FEED_FORWARD_LENGTH, hparams.n_ff_arr, hparams.n_layer, false);
  487. ml.get_key_or_arr(LLM_KV_ATTENTION_HEAD_COUNT, hparams.n_head_arr, hparams.n_layer, false);
  488. // n_head_kv is optional, default to n_head
  489. hparams.n_head_kv_arr = hparams.n_head_arr;
  490. ml.get_key_or_arr(LLM_KV_ATTENTION_HEAD_COUNT_KV, hparams.n_head_kv_arr, hparams.n_layer, false);
  491. bool rope_finetuned = false;
  492. ml.get_key(LLM_KV_ROPE_SCALING_FINETUNED, rope_finetuned, false);
  493. hparams.rope_finetuned = rope_finetuned;
  494. hparams.n_ctx_orig_yarn = hparams.n_ctx_train;
  495. ml.get_key(LLM_KV_ROPE_SCALING_ORIG_CTX_LEN, hparams.n_ctx_orig_yarn, false);
  496. // rope_freq_base (optional)
  497. hparams.rope_freq_base_train = 10000.0f;
  498. ml.get_key(LLM_KV_ROPE_FREQ_BASE, hparams.rope_freq_base_train, false);
  499. std::string rope_scaling("linear");
  500. ml.get_key(LLM_KV_ROPE_SCALING_TYPE, rope_scaling, false);
  501. hparams.rope_scaling_type_train = llama_rope_scaling_type_from_string(rope_scaling);
  502. GGML_ASSERT(hparams.rope_scaling_type_train != LLAMA_ROPE_SCALING_TYPE_UNSPECIFIED);
  503. // rope_freq_scale (inverse of the kv) is optional
  504. float ropescale = 0.0f;
  505. if (!ml.get_key(LLM_KV_ROPE_SCALING_FACTOR, ropescale, false)) {
  506. // try the old key name
  507. ml.get_key(LLM_KV_ROPE_SCALE_LINEAR, ropescale, false);
  508. }
  509. hparams.rope_freq_scale_train = ropescale == 0.0f ? 1.0f : 1.0f/ropescale;
  510. // by default assume that the sliding-window layers use the same scaling type as the non-sliding-window layers
  511. hparams.rope_freq_base_train_swa = hparams.rope_freq_base_train;
  512. hparams.rope_freq_scale_train_swa = hparams.rope_freq_scale_train;
  513. ml.get_key(LLM_KV_ROPE_SCALING_ATTN_FACTOR, hparams.rope_attn_factor, false);
  514. // non-transformer models do not have attention heads
  515. if (hparams.n_head() > 0) {
  516. // gpt-neox n_rot = rotary_pct * (n_embd / n_head)
  517. // gpt-j n_rot = rotary_dim
  518. hparams.n_embd_head_k = hparams.n_embd / hparams.n_head();
  519. ml.get_key(LLM_KV_ATTENTION_KEY_LENGTH, hparams.n_embd_head_k, false);
  520. hparams.n_embd_head_v = hparams.n_embd / hparams.n_head();
  521. ml.get_key(LLM_KV_ATTENTION_VALUE_LENGTH, hparams.n_embd_head_v, false);
  522. // sanity check for n_rot (optional)
  523. hparams.n_rot = hparams.n_embd_head_k;
  524. ml.get_key(LLM_KV_ROPE_DIMENSION_COUNT, hparams.n_rot, false);
  525. if (arch == LLM_ARCH_LLAMA || arch == LLM_ARCH_DECI || arch == LLM_ARCH_FALCON) {
  526. if (hparams.n_rot != hparams.n_embd_head_k) {
  527. throw std::runtime_error(format("invalid n_rot: %u, expected %u", hparams.n_rot, hparams.n_embd_head_k));
  528. }
  529. }
  530. } else {
  531. hparams.n_rot = 0;
  532. hparams.n_embd_head_k = 0;
  533. hparams.n_embd_head_v = 0;
  534. }
  535. // for differentiating model types
  536. uint32_t n_vocab = 0;
  537. ml.get_key(LLM_KV_VOCAB_SIZE, n_vocab, false) || ml.get_arr_n(LLM_KV_TOKENIZER_LIST, n_vocab, false);
  538. // for classifier models
  539. ml.get_arr(LLM_KV_CLASSIFIER_OUTPUT_LABELS, classifier_labels, false);
  540. if (!classifier_labels.empty()) {
  541. hparams.n_cls_out = classifier_labels.size();
  542. }
  543. // arch-specific KVs
  544. switch (arch) {
  545. case LLM_ARCH_LLAMA:
  546. {
  547. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  548. if (hparams.n_expert == 8) {
  549. switch (hparams.n_layer) {
  550. case 32: type = LLM_TYPE_8x7B; break;
  551. case 56: type = LLM_TYPE_8x22B; break;
  552. default: type = LLM_TYPE_UNKNOWN;
  553. }
  554. } else {
  555. switch (hparams.n_layer) {
  556. case 16: type = LLM_TYPE_1B; break; // Llama 3.2 1B
  557. case 22: type = LLM_TYPE_1B; break;
  558. case 26: type = LLM_TYPE_3B; break;
  559. case 28: type = LLM_TYPE_3B; break; // Llama 3.2 3B
  560. case 30: type = LLM_TYPE_256M; break; // smoldocling 256M
  561. // granite uses a vocab with len 49152
  562. case 32: type = n_vocab == 49152 ? LLM_TYPE_3B : (n_vocab < 40000 ? LLM_TYPE_7B : LLM_TYPE_8B); break;
  563. case 36: type = LLM_TYPE_8B; break; // granite
  564. case 40: type = LLM_TYPE_13B; break;
  565. case 48: type = LLM_TYPE_34B; break;
  566. case 60: type = LLM_TYPE_30B; break;
  567. case 80: type = hparams.n_head() == hparams.n_head_kv() ? LLM_TYPE_65B : LLM_TYPE_70B; break;
  568. default: type = LLM_TYPE_UNKNOWN;
  569. }
  570. }
  571. } break;
  572. case LLM_ARCH_LLAMA4:
  573. {
  574. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  575. ml.get_key(LLM_KV_EXPERT_FEED_FORWARD_LENGTH, hparams.n_ff_exp);
  576. ml.get_key(LLM_KV_INTERLEAVE_MOE_LAYER_STEP, hparams.n_moe_layer_step);
  577. const bool found_swa = ml.get_key(LLM_KV_ATTENTION_SLIDING_WINDOW, hparams.n_swa, false);
  578. if (found_swa && hparams.n_swa == 0) {
  579. hparams.swa_type = LLAMA_SWA_TYPE_NONE;
  580. hparams.n_no_rope_layer_step = hparams.n_layer; // always use rope
  581. } else {
  582. hparams.swa_type = LLAMA_SWA_TYPE_CHUNKED;
  583. hparams.n_swa = 8192;
  584. hparams.set_swa_pattern(4); // pattern: 3 chunked - 1 full
  585. }
  586. switch (hparams.n_expert) {
  587. case 0: {
  588. // MobileLLM (no MoE)
  589. switch (hparams.n_embd) {
  590. case 2048: type = LLM_TYPE_140M; break;
  591. case 4096: type = LLM_TYPE_360M; break;
  592. case 6144: type = LLM_TYPE_950M; break;
  593. default: type = LLM_TYPE_UNKNOWN;
  594. }
  595. } break;
  596. case 16: type = LLM_TYPE_17B_16E; break;
  597. case 128: type = LLM_TYPE_17B_128E; break;
  598. default: type = LLM_TYPE_UNKNOWN;
  599. }
  600. hparams.use_kq_norm = type != LLM_TYPE_17B_128E;
  601. } break;
  602. case LLM_ARCH_ARCEE:
  603. {
  604. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  605. // Arcee uses the same structure as Llama
  606. switch (hparams.n_layer) {
  607. case 36: type = LLM_TYPE_4B; break;
  608. default: type = LLM_TYPE_UNKNOWN;
  609. }
  610. } break;
  611. case LLM_ARCH_DECI:
  612. {
  613. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  614. switch (hparams.n_layer) {
  615. case 32: type = LLM_TYPE_7B; break;
  616. case 80: type = LLM_TYPE_70B; break;
  617. case 162: type = LLM_TYPE_405B; break;
  618. default: type = LLM_TYPE_UNKNOWN;
  619. }
  620. } break;
  621. case LLM_ARCH_MINICPM:
  622. {
  623. // Backward-compatible defaults for older MiniCPM GGUFs
  624. hparams.f_embedding_scale = 12.0f;
  625. hparams.f_residual_scale = 1.4f / sqrtf(float(hparams.n_layer));
  626. hparams.f_logit_scale = hparams.n_embd ? (256.0f / float(hparams.n_embd)) : 1.0f;
  627. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  628. // Optional KV reads, override defaults if present in newer GGUF exports
  629. ml.get_key(LLM_KV_EMBEDDING_SCALE, hparams.f_embedding_scale, /*required=*/false);
  630. ml.get_key(LLM_KV_RESIDUAL_SCALE, hparams.f_residual_scale, /*required=*/false);
  631. ml.get_key(LLM_KV_LOGIT_SCALE, hparams.f_logit_scale, /*required=*/false);
  632. // MiniCPM uses rope by default, unlike Granite which uses it as a switch
  633. hparams.rope_finetuned = true;
  634. switch (hparams.n_layer) {
  635. case 52: type = LLM_TYPE_1B; break;
  636. case 40: type = LLM_TYPE_2B; break;
  637. default: type = LLM_TYPE_UNKNOWN;
  638. }
  639. } break;
  640. case LLM_ARCH_MINICPM3:
  641. {
  642. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  643. ml.get_key(LLM_KV_ATTENTION_Q_LORA_RANK, hparams.n_lora_q);
  644. ml.get_key(LLM_KV_ATTENTION_KV_LORA_RANK, hparams.n_lora_kv);
  645. switch (hparams.n_layer) {
  646. case 62: type = LLM_TYPE_4B; break;
  647. default: type = LLM_TYPE_UNKNOWN;
  648. }
  649. } break;
  650. case LLM_ARCH_GROK:
  651. {
  652. // defaults for old GGUFs
  653. hparams.yarn_beta_fast = 8.0f;
  654. hparams.f_logit_scale = 0.5773502691896257f;
  655. hparams.f_embedding_scale = 78.38367176906169f;
  656. hparams.f_attn_out_scale = 0.08838834764831845f;
  657. hparams.f_attn_logit_softcapping = 30.0f;
  658. hparams.f_router_logit_softcapping = 30.0f;
  659. // no final_logit_softcapping in grok-1
  660. hparams.f_final_logit_softcapping = 0.0f;
  661. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  662. ml.get_key(LLM_KV_EXPERT_FEED_FORWARD_LENGTH, hparams.n_ff_exp, false);
  663. ml.get_key(LLM_KV_LOGIT_SCALE, hparams.f_logit_scale, false);
  664. ml.get_key(LLM_KV_EMBEDDING_SCALE, hparams.f_embedding_scale, false);
  665. ml.get_key(LLM_KV_ATTENTION_OUTPUT_SCALE, hparams.f_attn_out_scale, false);
  666. ml.get_key(LLM_KV_ATTN_LOGIT_SOFTCAPPING, hparams.f_attn_logit_softcapping, false);
  667. ml.get_key(LLM_KV_ROUTER_LOGIT_SOFTCAPPING, hparams.f_router_logit_softcapping, false);
  668. ml.get_key(LLM_KV_FINAL_LOGIT_SOFTCAPPING, hparams.f_final_logit_softcapping, false);
  669. ml.get_key(LLM_KV_ATTENTION_TEMPERATURE_LENGTH, hparams.attn_temp_length, false);
  670. ml.get_key(LLM_KV_ROPE_SCALING_YARN_EXT_FACTOR, hparams.yarn_ext_factor, false);
  671. ml.get_key(LLM_KV_ROPE_SCALING_YARN_ATTN_FACTOR, hparams.yarn_attn_factor, false);
  672. ml.get_key(LLM_KV_ROPE_SCALING_YARN_BETA_FAST, hparams.yarn_beta_fast, false);
  673. ml.get_key(LLM_KV_ROPE_SCALING_YARN_BETA_SLOW, hparams.yarn_beta_slow, false);
  674. switch (hparams.n_layer) {
  675. case 64: type = LLM_TYPE_314B; break;
  676. default: type = LLM_TYPE_UNKNOWN;
  677. }
  678. } break;
  679. case LLM_ARCH_FALCON:
  680. {
  681. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  682. switch (hparams.n_layer) {
  683. case 32: type = LLM_TYPE_7B; break;
  684. case 60: type = LLM_TYPE_40B; break;
  685. default: type = LLM_TYPE_UNKNOWN;
  686. }
  687. } break;
  688. case LLM_ARCH_BAICHUAN:
  689. {
  690. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  691. switch (hparams.n_layer) {
  692. case 32: type = LLM_TYPE_7B; break;
  693. case 40: type = LLM_TYPE_13B; break;
  694. default: type = LLM_TYPE_UNKNOWN;
  695. }
  696. if (type == LLM_TYPE_13B) {
  697. // TODO: become GGUF KV parameter
  698. hparams.f_max_alibi_bias = 8.0f;
  699. }
  700. } break;
  701. case LLM_ARCH_STARCODER:
  702. {
  703. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  704. switch (hparams.n_layer) {
  705. case 24: type = LLM_TYPE_1B; break;
  706. case 36: type = LLM_TYPE_3B; break;
  707. case 42: type = LLM_TYPE_7B; break;
  708. case 40: type = LLM_TYPE_15B; break;
  709. default: type = LLM_TYPE_UNKNOWN;
  710. }
  711. } break;
  712. case LLM_ARCH_REFACT:
  713. {
  714. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  715. switch (hparams.n_layer) {
  716. case 32: type = LLM_TYPE_1B; break;
  717. default: type = LLM_TYPE_UNKNOWN;
  718. }
  719. // TODO: become GGUF KV parameter
  720. hparams.f_max_alibi_bias = 8.0f;
  721. } break;
  722. case LLM_ARCH_BERT:
  723. {
  724. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  725. ml.get_key(LLM_KV_ATTENTION_CAUSAL, hparams.causal_attn);
  726. ml.get_key(LLM_KV_POOLING_TYPE, hparams.pooling_type, false);
  727. switch (hparams.n_layer) {
  728. case 3:
  729. type = LLM_TYPE_17M; break; // bge-micro
  730. case 6:
  731. type = LLM_TYPE_22M; break; // MiniLM-L6
  732. case 12:
  733. switch (hparams.n_embd) {
  734. case 384: type = LLM_TYPE_33M; break; // MiniLM-L12, bge-small
  735. case 768: type = LLM_TYPE_109M; break; // bge-base
  736. default: type = LLM_TYPE_UNKNOWN;
  737. } break;
  738. case 24:
  739. type = LLM_TYPE_335M; break; // bge-large
  740. default: type = LLM_TYPE_UNKNOWN;
  741. }
  742. } break;
  743. case LLM_ARCH_JINA_BERT_V2:
  744. {
  745. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  746. ml.get_key(LLM_KV_ATTENTION_CAUSAL, hparams.causal_attn);
  747. ml.get_key(LLM_KV_POOLING_TYPE, hparams.pooling_type, false);
  748. hparams.f_max_alibi_bias = 8.0f;
  749. switch (hparams.n_layer) {
  750. case 4: type = LLM_TYPE_33M; break; // jina-embeddings-small
  751. case 12: type = LLM_TYPE_137M; break; // jina-embeddings-base
  752. default: type = LLM_TYPE_UNKNOWN;
  753. }
  754. } break;
  755. case LLM_ARCH_JINA_BERT_V3:
  756. {
  757. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  758. ml.get_key(LLM_KV_ATTENTION_CAUSAL, hparams.causal_attn);
  759. ml.get_key(LLM_KV_POOLING_TYPE, hparams.pooling_type, false);
  760. switch (hparams.n_layer) {
  761. case 24:
  762. type = LLM_TYPE_558M; break;
  763. default: type = LLM_TYPE_UNKNOWN;
  764. }
  765. } break;
  766. case LLM_ARCH_NOMIC_BERT:
  767. case LLM_ARCH_NOMIC_BERT_MOE:
  768. {
  769. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  770. ml.get_key(LLM_KV_ATTENTION_CAUSAL, hparams.causal_attn);
  771. ml.get_key(LLM_KV_POOLING_TYPE, hparams.pooling_type);
  772. ml.get_key(LLM_KV_MOE_EVERY_N_LAYERS, hparams.moe_every_n_layers, 0);
  773. if (hparams.n_layer == 12 && hparams.n_embd == 768) {
  774. if (arch == LLM_ARCH_NOMIC_BERT) {
  775. type = LLM_TYPE_137M;
  776. } else if (arch == LLM_ARCH_NOMIC_BERT_MOE && hparams.moe_every_n_layers == 2) {
  777. type = LLM_TYPE_475M;
  778. }
  779. }
  780. } break;
  781. case LLM_ARCH_NEO_BERT:
  782. {
  783. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  784. ml.get_key(LLM_KV_ATTENTION_CAUSAL, hparams.causal_attn);
  785. ml.get_key(LLM_KV_POOLING_TYPE, hparams.pooling_type);
  786. if (hparams.n_layer == 28) {
  787. type = LLM_TYPE_250M;
  788. }
  789. } break;
  790. case LLM_ARCH_BLOOM:
  791. {
  792. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  793. switch (hparams.n_layer) {
  794. case 24: type = LLM_TYPE_1B; break;
  795. case 30:
  796. switch (hparams.n_embd) {
  797. case 2560: type = LLM_TYPE_3B; break;
  798. case 4096: type = LLM_TYPE_7B; break;
  799. default: type = LLM_TYPE_UNKNOWN;
  800. } break;
  801. default: type = LLM_TYPE_UNKNOWN;
  802. }
  803. // TODO: become GGUF KV parameter
  804. hparams.f_max_alibi_bias = 8.0f;
  805. } break;
  806. case LLM_ARCH_MPT:
  807. {
  808. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  809. ml.get_key(LLM_KV_ATTENTION_CLAMP_KQV, hparams.f_clamp_kqv, false);
  810. ml.get_key(LLM_KV_ATTENTION_MAX_ALIBI_BIAS, hparams.f_max_alibi_bias);
  811. switch (hparams.n_layer) {
  812. case 32: type = LLM_TYPE_7B; break;
  813. case 48: type = LLM_TYPE_30B; break;
  814. default: type = LLM_TYPE_UNKNOWN;
  815. }
  816. } break;
  817. case LLM_ARCH_STABLELM:
  818. {
  819. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  820. switch (hparams.n_layer) {
  821. case 24: type = LLM_TYPE_1B; break;
  822. case 32: type = LLM_TYPE_3B; break;
  823. case 40: type = LLM_TYPE_12B; break;
  824. default: type = LLM_TYPE_UNKNOWN;
  825. }
  826. } break;
  827. case LLM_ARCH_QWEN:
  828. {
  829. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  830. switch (hparams.n_layer) {
  831. case 32: type = LLM_TYPE_7B; break;
  832. case 40: type = LLM_TYPE_13B; break;
  833. default: type = LLM_TYPE_UNKNOWN;
  834. }
  835. } break;
  836. case LLM_ARCH_QWEN2VL:
  837. {
  838. ml.get_key_or_arr(LLM_KV_ROPE_DIMENSION_SECTIONS, hparams.rope_sections, 4, true);
  839. }
  840. // fall through
  841. case LLM_ARCH_QWEN2:
  842. {
  843. ml.get_key(LLM_KV_POOLING_TYPE, hparams.pooling_type, false);
  844. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  845. switch (hparams.n_layer) {
  846. case 24: type = hparams.n_embd == 1024 ? LLM_TYPE_0_5B : LLM_TYPE_1B; break;
  847. case 28: type = hparams.n_embd == 1536 ? LLM_TYPE_1_5B : LLM_TYPE_7B; break;
  848. case 32: type = LLM_TYPE_7B; break;
  849. case 36: type = LLM_TYPE_3B; break;
  850. case 40: type = hparams.n_head() == 20 ? LLM_TYPE_4B : LLM_TYPE_13B; break;
  851. case 48: type = LLM_TYPE_14B; break;
  852. case 64: type = LLM_TYPE_32B; break;
  853. case 80: type = LLM_TYPE_70B; break;
  854. default: type = LLM_TYPE_UNKNOWN;
  855. }
  856. } break;
  857. case LLM_ARCH_DREAM:
  858. {
  859. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  860. // Dream models are primarily 7B with 28 layers
  861. switch (hparams.n_layer) {
  862. case 28:
  863. type = LLM_TYPE_7B;
  864. break;
  865. default:
  866. type = LLM_TYPE_UNKNOWN;
  867. }
  868. // Set non-causal attention for diffusion models
  869. hparams.causal_attn = false;
  870. }
  871. break;
  872. case LLM_ARCH_LLADA:
  873. {
  874. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  875. // LLaDA-8B has 32 layers, similar to LLaMA but for diffusion
  876. switch (hparams.n_layer) {
  877. case 32:
  878. type = LLM_TYPE_8B;
  879. break;
  880. default:
  881. type = LLM_TYPE_UNKNOWN;
  882. }
  883. // Set non-causal attention for diffusion models
  884. hparams.causal_attn = false;
  885. }
  886. break;
  887. case LLM_ARCH_LLADA_MOE:
  888. {
  889. ml.get_key(LLM_KV_EXPERT_FEED_FORWARD_LENGTH, hparams.n_ff_exp, false);
  890. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  891. // diffusion language model uses non-causal attention
  892. hparams.causal_attn = false;
  893. switch (hparams.n_layer) {
  894. case 16: type = LLM_TYPE_A1_7B; break;
  895. default: type = LLM_TYPE_UNKNOWN;
  896. }
  897. } break;
  898. case LLM_ARCH_QWEN2MOE:
  899. {
  900. ml.get_key(LLM_KV_EXPERT_FEED_FORWARD_LENGTH, hparams.n_ff_exp, false);
  901. ml.get_key(LLM_KV_EXPERT_SHARED_FEED_FORWARD_LENGTH, hparams.n_ff_shexp, false);
  902. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  903. switch (hparams.n_layer) {
  904. case 24: type = LLM_TYPE_A2_7B; break;
  905. case 28: type = LLM_TYPE_57B_A14B; break;
  906. default: type = LLM_TYPE_UNKNOWN;
  907. }
  908. } break;
  909. case LLM_ARCH_QWEN3:
  910. {
  911. ml.get_key(LLM_KV_POOLING_TYPE, hparams.pooling_type, false);
  912. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  913. switch (hparams.n_layer) {
  914. case 28: type = hparams.n_embd == 1024 ? LLM_TYPE_0_6B : LLM_TYPE_1_7B; break;
  915. case 36: type = hparams.n_embd == 2560 ? LLM_TYPE_4B : LLM_TYPE_8B; break;
  916. case 40: type = LLM_TYPE_14B; break;
  917. case 64: type = LLM_TYPE_32B; break;
  918. default: type = LLM_TYPE_UNKNOWN;
  919. }
  920. } break;
  921. case LLM_ARCH_QWEN3MOE:
  922. {
  923. ml.get_key(LLM_KV_EXPERT_FEED_FORWARD_LENGTH, hparams.n_ff_exp, false);
  924. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  925. switch (hparams.n_layer) {
  926. case 48: type = LLM_TYPE_30B_A3B; break;
  927. case 94: type = LLM_TYPE_235B_A22B; break;
  928. default: type = LLM_TYPE_UNKNOWN;
  929. }
  930. } break;
  931. case LLM_ARCH_PHI2:
  932. {
  933. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  934. switch (hparams.n_layer) {
  935. case 24: type = LLM_TYPE_1B; break;
  936. case 32: type = LLM_TYPE_3B; break;
  937. default: type = LLM_TYPE_UNKNOWN;
  938. }
  939. } break;
  940. case LLM_ARCH_PHI3:
  941. {
  942. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  943. switch (hparams.n_layer) {
  944. case 24: type = LLM_TYPE_1B; break;
  945. case 32: type = LLM_TYPE_3B; break;
  946. case 40: type = LLM_TYPE_14B; break;
  947. default: type = LLM_TYPE_UNKNOWN;
  948. }
  949. const bool found_swa = ml.get_key(LLM_KV_ATTENTION_SLIDING_WINDOW, hparams.n_swa, false);
  950. if (found_swa && hparams.n_swa > 0) {
  951. LLAMA_LOG_WARN("%s: Phi SWA is currently disabled - results might be suboptimal for some models (see %s)\n",
  952. __func__, "https://github.com/ggml-org/llama.cpp/pull/13676");
  953. // TODO: fix conversion scripts to correctly populate `n_swa` and `n_swa_pattern`
  954. hparams.swa_type = LLAMA_SWA_TYPE_NONE;
  955. hparams.n_swa = 0;
  956. hparams.set_swa_pattern(1);
  957. }
  958. } break;
  959. case LLM_ARCH_PHIMOE:
  960. {
  961. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  962. switch (hparams.n_layer) {
  963. case 32: type = LLM_TYPE_16x3_8B; break;
  964. default: type = LLM_TYPE_UNKNOWN;
  965. }
  966. } break;
  967. case LLM_ARCH_PLAMO:
  968. {
  969. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  970. switch (hparams.n_layer) {
  971. case 40: type = LLM_TYPE_13B; break;
  972. default: type = LLM_TYPE_UNKNOWN;
  973. }
  974. } break;
  975. case LLM_ARCH_PLAMO2:
  976. {
  977. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  978. // Load Mamba SSM parameters
  979. ml.get_key(LLM_KV_SSM_CONV_KERNEL, hparams.ssm_d_conv);
  980. ml.get_key(LLM_KV_SSM_INNER_SIZE, hparams.ssm_d_inner);
  981. ml.get_key(LLM_KV_SSM_STATE_SIZE, hparams.ssm_d_state);
  982. ml.get_key(LLM_KV_SSM_TIME_STEP_RANK, hparams.ssm_dt_rank);
  983. ml.get_key(LLM_KV_SSM_GROUP_COUNT, hparams.ssm_n_group);
  984. for (uint32_t i = 0; i < hparams.n_layer; ++i) {
  985. hparams.recurrent_layer_arr[i] = hparams.n_head_kv(i) == 0;
  986. }
  987. switch (hparams.n_layer) {
  988. case 16: type = LLM_TYPE_1B; break;
  989. case 32:
  990. if (hparams.n_embd == 2048) {
  991. type = LLM_TYPE_2B;
  992. } else if (hparams.n_embd == 4096) {
  993. type = LLM_TYPE_8B;
  994. }
  995. break;
  996. default: type = LLM_TYPE_UNKNOWN;
  997. }
  998. // Load attention parameters
  999. ml.get_key(LLM_KV_ATTENTION_KEY_LENGTH, hparams.n_embd_head_k, false);
  1000. ml.get_key(LLM_KV_ATTENTION_VALUE_LENGTH, hparams.n_embd_head_v, false);
  1001. } break;
  1002. case LLM_ARCH_GPT2:
  1003. {
  1004. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  1005. switch (hparams.n_layer) {
  1006. case 12: type = LLM_TYPE_SMALL; break;
  1007. case 24: type = LLM_TYPE_MEDIUM; break;
  1008. case 36: type = LLM_TYPE_LARGE; break;
  1009. case 48: type = LLM_TYPE_XL; break;
  1010. default: type = LLM_TYPE_UNKNOWN;
  1011. }
  1012. } break;
  1013. case LLM_ARCH_CODESHELL:
  1014. {
  1015. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  1016. switch (hparams.n_layer) {
  1017. case 42: type = LLM_TYPE_7B; break;
  1018. default: type = LLM_TYPE_UNKNOWN;
  1019. }
  1020. } break;
  1021. case LLM_ARCH_ORION:
  1022. {
  1023. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  1024. switch (hparams.n_layer) {
  1025. case 40: type = LLM_TYPE_14B; break;
  1026. default: type = LLM_TYPE_UNKNOWN;
  1027. }
  1028. } break;
  1029. case LLM_ARCH_INTERNLM2:
  1030. {
  1031. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  1032. switch (hparams.n_layer) {
  1033. case 32: type = LLM_TYPE_7B; break;
  1034. case 48: type = LLM_TYPE_20B; break;
  1035. default: type = LLM_TYPE_UNKNOWN;
  1036. }
  1037. } break;
  1038. case LLM_ARCH_GEMMA:
  1039. {
  1040. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  1041. switch (hparams.n_layer) {
  1042. case 18: type = LLM_TYPE_2B; break;
  1043. case 28: type = LLM_TYPE_7B; break;
  1044. default: type = LLM_TYPE_UNKNOWN;
  1045. }
  1046. } break;
  1047. case LLM_ARCH_GEMMA2:
  1048. {
  1049. hparams.swa_type = LLAMA_SWA_TYPE_STANDARD;
  1050. hparams.n_swa = 4096; // default value of gemma 2
  1051. hparams.set_swa_pattern(2);
  1052. hparams.attn_soft_cap = true;
  1053. ml.get_key(LLM_KV_ATTENTION_SLIDING_WINDOW, hparams.n_swa, false);
  1054. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  1055. ml.get_key(LLM_KV_ATTN_LOGIT_SOFTCAPPING, hparams.f_attn_logit_softcapping, false);
  1056. ml.get_key(LLM_KV_FINAL_LOGIT_SOFTCAPPING, hparams.f_final_logit_softcapping, false);
  1057. switch (hparams.n_layer) {
  1058. case 26: type = LLM_TYPE_2B; break;
  1059. case 42: type = LLM_TYPE_9B; break;
  1060. case 46: type = LLM_TYPE_27B; break;
  1061. default: type = LLM_TYPE_UNKNOWN;
  1062. }
  1063. // ref: https://github.com/google/gemma_pytorch/blob/014acb7ac4563a5f77c76d7ff98f31b568c16508/gemma/config.py#L173
  1064. hparams.f_attention_scale = type == LLM_TYPE_27B
  1065. ? 1.0f / std::sqrt(float(hparams.n_embd / hparams.n_head(0)))
  1066. : 1.0f / std::sqrt(float(hparams.n_embd_head_k));
  1067. } break;
  1068. case LLM_ARCH_GEMMA3:
  1069. {
  1070. hparams.swa_type = LLAMA_SWA_TYPE_STANDARD;
  1071. hparams.set_swa_pattern(6);
  1072. hparams.rope_freq_base_train_swa = 10000.0f;
  1073. hparams.rope_freq_scale_train_swa = 1.0f;
  1074. ml.get_key(LLM_KV_ATTENTION_SLIDING_WINDOW, hparams.n_swa);
  1075. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  1076. switch (hparams.n_layer) {
  1077. case 18: type = LLM_TYPE_270M; break;
  1078. case 26: type = LLM_TYPE_1B; break;
  1079. case 34: type = LLM_TYPE_4B; break;
  1080. case 48: type = LLM_TYPE_12B; break;
  1081. case 62: type = LLM_TYPE_27B; break;
  1082. default: type = LLM_TYPE_UNKNOWN;
  1083. }
  1084. // ref: https://github.com/google/gemma_pytorch/blob/014acb7ac4563a5f77c76d7ff98f31b568c16508/gemma/config.py#L289
  1085. hparams.f_attention_scale = type == LLM_TYPE_27B
  1086. ? 1.0f / std::sqrt(float(hparams.n_embd / hparams.n_head(0)))
  1087. : 1.0f / std::sqrt(float(hparams.n_embd_head_k));
  1088. } break;
  1089. case LLM_ARCH_GEMMA3N:
  1090. {
  1091. hparams.swa_type = LLAMA_SWA_TYPE_STANDARD;
  1092. hparams.set_swa_pattern(5);
  1093. hparams.n_layer_kv_from_start = 20;
  1094. hparams.rope_freq_base_train_swa = 10000.0f;
  1095. hparams.rope_freq_scale_train_swa = 1.0f;
  1096. hparams.f_attention_scale = 1.0f;
  1097. ml.get_key(LLM_KV_ATTENTION_SLIDING_WINDOW, hparams.n_swa);
  1098. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  1099. switch (hparams.n_layer) {
  1100. case 30: type = LLM_TYPE_E2B; break;
  1101. case 35: type = LLM_TYPE_E4B; break;
  1102. default: type = LLM_TYPE_UNKNOWN;
  1103. }
  1104. } break;
  1105. case LLM_ARCH_GEMMA_EMBEDDING:
  1106. {
  1107. hparams.swa_type = LLAMA_SWA_TYPE_SYMMETRIC;
  1108. hparams.set_swa_pattern(6);
  1109. hparams.causal_attn = false; // embeddings do not use causal attention
  1110. hparams.rope_freq_base_train_swa = 10000.0f;
  1111. hparams.rope_freq_scale_train_swa = 1.0f;
  1112. ml.get_key(LLM_KV_ATTENTION_SLIDING_WINDOW, hparams.n_swa);
  1113. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  1114. ml.get_key(LLM_KV_POOLING_TYPE, hparams.pooling_type);
  1115. //applied only if model converted with --sentence-transformers-dense-modules
  1116. ml.get_key(LLM_KV_DENSE_2_FEAT_IN, hparams.dense_2_feat_in, false);
  1117. ml.get_key(LLM_KV_DENSE_2_FEAT_OUT, hparams.dense_2_feat_out, false);
  1118. ml.get_key(LLM_KV_DENSE_3_FEAT_IN, hparams.dense_3_feat_in, false);
  1119. ml.get_key(LLM_KV_DENSE_3_FEAT_OUT, hparams.dense_3_feat_out, false);
  1120. GGML_ASSERT((hparams.dense_2_feat_in == 0 || hparams.dense_2_feat_in == hparams.n_embd) && "dense_2_feat_in must be equal to n_embd");
  1121. GGML_ASSERT((hparams.dense_3_feat_out == 0 || hparams.dense_3_feat_out == hparams.n_embd) && "dense_3_feat_out must be equal to n_embd");
  1122. switch (hparams.n_layer) {
  1123. case 24: type = LLM_TYPE_0_3B; break;
  1124. default: type = LLM_TYPE_UNKNOWN;
  1125. }
  1126. hparams.f_attention_scale = 1.0f / std::sqrt(float(hparams.n_embd_head_k));
  1127. } break;
  1128. case LLM_ARCH_STARCODER2:
  1129. {
  1130. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  1131. switch (hparams.n_layer) {
  1132. case 30: type = LLM_TYPE_3B; break;
  1133. case 32: type = LLM_TYPE_7B; break;
  1134. case 40: type = LLM_TYPE_15B; break;
  1135. case 52: type = LLM_TYPE_20B; break; // granite
  1136. case 88: type = LLM_TYPE_34B; break; // granite
  1137. default: type = LLM_TYPE_UNKNOWN;
  1138. }
  1139. } break;
  1140. case LLM_ARCH_MAMBA:
  1141. {
  1142. ml.get_key(LLM_KV_SSM_CONV_KERNEL, hparams.ssm_d_conv);
  1143. ml.get_key(LLM_KV_SSM_INNER_SIZE, hparams.ssm_d_inner);
  1144. ml.get_key(LLM_KV_SSM_STATE_SIZE, hparams.ssm_d_state);
  1145. ml.get_key(LLM_KV_SSM_TIME_STEP_RANK, hparams.ssm_dt_rank);
  1146. ml.get_key(LLM_KV_SSM_DT_B_C_RMS, hparams.ssm_dt_b_c_rms, false);
  1147. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  1148. switch (hparams.n_layer) {
  1149. case 24:
  1150. switch (hparams.n_embd) {
  1151. case 768: type = LLM_TYPE_SMALL; break;
  1152. default: type = LLM_TYPE_UNKNOWN;
  1153. } break;
  1154. case 48:
  1155. switch (hparams.n_embd) {
  1156. case 1024: type = LLM_TYPE_MEDIUM; break;
  1157. case 1536: type = LLM_TYPE_LARGE; break;
  1158. case 2048: type = LLM_TYPE_XL; break;
  1159. default: type = LLM_TYPE_UNKNOWN;
  1160. } break;
  1161. case 64:
  1162. switch (hparams.n_embd) {
  1163. case 2560: type = LLM_TYPE_3B; break;
  1164. default: type = LLM_TYPE_UNKNOWN;
  1165. } break;
  1166. default: type = LLM_TYPE_UNKNOWN;
  1167. }
  1168. } break;
  1169. case LLM_ARCH_MAMBA2:
  1170. {
  1171. ml.get_key(LLM_KV_SSM_CONV_KERNEL, hparams.ssm_d_conv);
  1172. ml.get_key(LLM_KV_SSM_INNER_SIZE, hparams.ssm_d_inner);
  1173. ml.get_key(LLM_KV_SSM_STATE_SIZE, hparams.ssm_d_state);
  1174. ml.get_key(LLM_KV_SSM_TIME_STEP_RANK, hparams.ssm_dt_rank);
  1175. ml.get_key(LLM_KV_SSM_GROUP_COUNT, hparams.ssm_n_group);
  1176. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  1177. switch (hparams.n_layer) {
  1178. case 24:
  1179. switch (hparams.n_embd) {
  1180. case 768: type = LLM_TYPE_SMALL; break;
  1181. default: type = LLM_TYPE_UNKNOWN;
  1182. } break;
  1183. case 48:
  1184. switch (hparams.n_embd) {
  1185. case 1024: type = LLM_TYPE_MEDIUM; break;
  1186. case 1536: type = LLM_TYPE_LARGE; break;
  1187. case 2048: type = LLM_TYPE_XL; break;
  1188. default: type = LLM_TYPE_UNKNOWN;
  1189. } break;
  1190. case 64:
  1191. switch (hparams.n_embd) {
  1192. case 2560: type = LLM_TYPE_3B; break;
  1193. case 4096: type = LLM_TYPE_7B; break;
  1194. default: type = LLM_TYPE_UNKNOWN;
  1195. } break;
  1196. default: type = LLM_TYPE_UNKNOWN;
  1197. }
  1198. } break;
  1199. case LLM_ARCH_JAMBA:
  1200. {
  1201. ml.get_key(LLM_KV_SSM_CONV_KERNEL, hparams.ssm_d_conv);
  1202. ml.get_key(LLM_KV_SSM_INNER_SIZE, hparams.ssm_d_inner);
  1203. ml.get_key(LLM_KV_SSM_STATE_SIZE, hparams.ssm_d_state);
  1204. ml.get_key(LLM_KV_SSM_TIME_STEP_RANK, hparams.ssm_dt_rank);
  1205. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  1206. for (uint32_t i = 0; i < hparams.n_layer; ++i) {
  1207. hparams.recurrent_layer_arr[i] = hparams.n_head_kv(i) == 0;
  1208. }
  1209. switch (hparams.n_layer) {
  1210. // TODO: Jamba layers are a bit heterogenous, so naming this is hard.
  1211. case 12: // 900M 8x???M
  1212. case 32: // 51B 16x?B
  1213. default: type = LLM_TYPE_UNKNOWN;
  1214. }
  1215. } break;
  1216. case LLM_ARCH_XVERSE:
  1217. {
  1218. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  1219. switch (hparams.n_layer) {
  1220. case 32: type = LLM_TYPE_7B; break;
  1221. case 40: type = LLM_TYPE_13B; break;
  1222. case 80: type = LLM_TYPE_65B; break;
  1223. default: type = LLM_TYPE_UNKNOWN;
  1224. }
  1225. } break;
  1226. case LLM_ARCH_COMMAND_R:
  1227. {
  1228. ml.get_key(LLM_KV_LOGIT_SCALE, hparams.f_logit_scale);
  1229. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  1230. switch (hparams.n_layer) {
  1231. case 40: type = LLM_TYPE_35B; break;
  1232. default: type = LLM_TYPE_UNKNOWN;
  1233. }
  1234. } break;
  1235. case LLM_ARCH_COHERE2:
  1236. {
  1237. hparams.swa_type = LLAMA_SWA_TYPE_STANDARD;
  1238. hparams.set_swa_pattern(4);
  1239. ml.get_key(LLM_KV_ATTENTION_SLIDING_WINDOW, hparams.n_swa);
  1240. ml.get_key(LLM_KV_LOGIT_SCALE, hparams.f_logit_scale);
  1241. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  1242. switch (hparams.n_layer) {
  1243. case 32: type = LLM_TYPE_8B; break;
  1244. default: type = LLM_TYPE_UNKNOWN;
  1245. }
  1246. } break;
  1247. case LLM_ARCH_DBRX:
  1248. {
  1249. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  1250. ml.get_key(LLM_KV_ATTENTION_CLAMP_KQV, hparams.f_clamp_kqv);
  1251. switch (hparams.n_layer) {
  1252. case 40: type = LLM_TYPE_16x12B; break;
  1253. default: type = LLM_TYPE_UNKNOWN;
  1254. }
  1255. } break;
  1256. case LLM_ARCH_OLMO:
  1257. {
  1258. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  1259. ml.get_key(LLM_KV_ATTENTION_CLAMP_KQV, hparams.f_clamp_kqv, false);
  1260. switch (hparams.n_layer) {
  1261. case 22: type = LLM_TYPE_1B; break;
  1262. case 32: type = LLM_TYPE_7B; break;
  1263. case 80: type = LLM_TYPE_70B; break;
  1264. default: type = LLM_TYPE_UNKNOWN;
  1265. }
  1266. } break;
  1267. case LLM_ARCH_OLMO2:
  1268. {
  1269. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  1270. const bool found_swa = ml.get_key(LLM_KV_ATTENTION_SLIDING_WINDOW, hparams.n_swa, false);
  1271. if (found_swa && hparams.n_swa > 0) {
  1272. hparams.swa_type = LLAMA_SWA_TYPE_STANDARD;
  1273. hparams.set_swa_pattern(4);
  1274. } else {
  1275. hparams.swa_type = LLAMA_SWA_TYPE_NONE;
  1276. }
  1277. switch (hparams.n_layer) {
  1278. case 16: type = LLM_TYPE_1B; break;
  1279. case 32: type = LLM_TYPE_7B; break;
  1280. case 40: type = LLM_TYPE_13B; break;
  1281. case 64: type = LLM_TYPE_32B; break;
  1282. default: type = LLM_TYPE_UNKNOWN;
  1283. }
  1284. } break;
  1285. case LLM_ARCH_SEED_OSS:
  1286. {
  1287. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  1288. switch (hparams.n_layer) {
  1289. case 64: type = LLM_TYPE_36B; break;
  1290. default: type = LLM_TYPE_UNKNOWN;
  1291. }
  1292. } break;
  1293. case LLM_ARCH_OLMOE:
  1294. {
  1295. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  1296. switch (hparams.n_layer) {
  1297. case 16: type = LLM_TYPE_A1_7B; break;
  1298. default: type = LLM_TYPE_UNKNOWN;
  1299. }
  1300. } break;
  1301. case LLM_ARCH_OPENELM:
  1302. {
  1303. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  1304. switch (hparams.n_layer) {
  1305. case 16: type = LLM_TYPE_270M; break;
  1306. case 20: type = LLM_TYPE_450M; break;
  1307. case 28: type = LLM_TYPE_1B; break;
  1308. case 36: type = LLM_TYPE_3B; break;
  1309. default: type = LLM_TYPE_UNKNOWN;
  1310. }
  1311. } break;
  1312. case LLM_ARCH_GPTNEOX:
  1313. {
  1314. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  1315. ml.get_key(LLM_KV_USE_PARALLEL_RESIDUAL, hparams.use_par_res);
  1316. switch (hparams.n_layer) {
  1317. case 6:
  1318. switch (hparams.n_ff()) {
  1319. case 512: type = LLM_TYPE_14M; break;
  1320. case 2048: type = LLM_TYPE_70M; break;
  1321. default: type = LLM_TYPE_UNKNOWN;
  1322. } break;
  1323. case 12:
  1324. switch (hparams.n_ff()) {
  1325. case 3072: type = LLM_TYPE_160M; break;
  1326. default: type = LLM_TYPE_UNKNOWN;
  1327. } break;
  1328. case 16:
  1329. switch (hparams.n_ff()) {
  1330. case 8192: type = LLM_TYPE_1B; break;
  1331. default: type = LLM_TYPE_UNKNOWN;
  1332. } break;
  1333. case 24:
  1334. switch (hparams.n_ff()) {
  1335. case 4096: type = LLM_TYPE_410M; break;
  1336. case 8192: type = LLM_TYPE_1_4B; break;
  1337. default: type = LLM_TYPE_UNKNOWN;
  1338. } break;
  1339. case 32:
  1340. switch (hparams.n_ff()) {
  1341. case 10240: type = LLM_TYPE_2_8B; break;
  1342. case 16384: type = LLM_TYPE_6_9B; break;
  1343. default: type = LLM_TYPE_UNKNOWN;
  1344. } break;
  1345. case 36:
  1346. switch (hparams.n_ff()) {
  1347. case 20480: type = LLM_TYPE_12B; break;
  1348. default: type = LLM_TYPE_UNKNOWN;
  1349. } break;
  1350. case 44:
  1351. switch (hparams.n_ff()) {
  1352. case 24576: type = LLM_TYPE_20B; break;
  1353. default: type = LLM_TYPE_UNKNOWN;
  1354. } break;
  1355. default: type = LLM_TYPE_UNKNOWN;
  1356. }
  1357. } break;
  1358. case LLM_ARCH_ARCTIC:
  1359. {
  1360. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  1361. if (hparams.n_expert == 128) {
  1362. switch (hparams.n_layer) {
  1363. case 35: type = LLM_TYPE_10B_128x3_66B; break;
  1364. default: type = LLM_TYPE_UNKNOWN;
  1365. }
  1366. } else {
  1367. type = LLM_TYPE_UNKNOWN;
  1368. }
  1369. } break;
  1370. case LLM_ARCH_DEEPSEEK:
  1371. {
  1372. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  1373. ml.get_key(LLM_KV_LEADING_DENSE_BLOCK_COUNT, hparams.n_layer_dense_lead);
  1374. ml.get_key(LLM_KV_EXPERT_FEED_FORWARD_LENGTH, hparams.n_ff_exp);
  1375. ml.get_key(LLM_KV_EXPERT_SHARED_COUNT, hparams.n_expert_shared);
  1376. ml.get_key(LLM_KV_EXPERT_WEIGHTS_SCALE, hparams.expert_weights_scale);
  1377. switch (hparams.n_layer) {
  1378. case 28: type = LLM_TYPE_20B; break;
  1379. default: type = LLM_TYPE_UNKNOWN;
  1380. }
  1381. } break;
  1382. case LLM_ARCH_DEEPSEEK2:
  1383. {
  1384. bool is_lite = (hparams.n_layer == 27);
  1385. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  1386. ml.get_key(LLM_KV_LEADING_DENSE_BLOCK_COUNT, hparams.n_layer_dense_lead);
  1387. if (!is_lite) {
  1388. ml.get_key(LLM_KV_ATTENTION_Q_LORA_RANK, hparams.n_lora_q);
  1389. }
  1390. ml.get_key(LLM_KV_ATTENTION_KV_LORA_RANK, hparams.n_lora_kv);
  1391. ml.get_key(LLM_KV_ATTENTION_KEY_LENGTH_MLA, hparams.n_embd_head_k_mla, false);
  1392. ml.get_key(LLM_KV_ATTENTION_VALUE_LENGTH_MLA, hparams.n_embd_head_v_mla, false);
  1393. ml.get_key(LLM_KV_EXPERT_FEED_FORWARD_LENGTH, hparams.n_ff_exp);
  1394. ml.get_key(LLM_KV_EXPERT_SHARED_COUNT, hparams.n_expert_shared);
  1395. ml.get_key(LLM_KV_EXPERT_WEIGHTS_SCALE, hparams.expert_weights_scale);
  1396. ml.get_key(LLM_KV_EXPERT_WEIGHTS_NORM, hparams.expert_weights_norm, false);
  1397. ml.get_key(LLM_KV_EXPERT_GATING_FUNC, hparams.expert_gating_func, false);
  1398. if (hparams.expert_gating_func == LLAMA_EXPERT_GATING_FUNC_TYPE_NONE) {
  1399. // for compatibility with existing DeepSeek V2 and V2.5 GGUFs
  1400. // that have no expert_gating_func model parameter set
  1401. hparams.expert_gating_func = LLAMA_EXPERT_GATING_FUNC_TYPE_SOFTMAX;
  1402. }
  1403. ml.get_key(LLM_KV_ROPE_SCALING_YARN_LOG_MUL, hparams.rope_yarn_log_mul, false);
  1404. switch (hparams.n_layer) {
  1405. case 27: type = LLM_TYPE_16B; break;
  1406. case 60: type = LLM_TYPE_236B; break;
  1407. case 61: type = LLM_TYPE_671B; break;
  1408. default: type = LLM_TYPE_UNKNOWN;
  1409. }
  1410. } break;
  1411. case LLM_ARCH_PLM:
  1412. {
  1413. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  1414. ml.get_key(LLM_KV_ATTENTION_KV_LORA_RANK, hparams.n_lora_kv);
  1415. switch (hparams.n_layer) {
  1416. case 32: type = LLM_TYPE_1_8B; break;
  1417. default: type = LLM_TYPE_UNKNOWN;
  1418. }
  1419. } break;
  1420. case LLM_ARCH_CHATGLM:
  1421. {
  1422. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  1423. switch (hparams.n_layer) {
  1424. case 28: {
  1425. if (hparams.n_head(0) == 16) {
  1426. type = LLM_TYPE_1_5B;
  1427. } else {
  1428. type = LLM_TYPE_6B;
  1429. }
  1430. } break;
  1431. case 40: {
  1432. if (hparams.n_head(0) == 24) {
  1433. type = LLM_TYPE_4B;
  1434. } else {
  1435. type = LLM_TYPE_9B;
  1436. }
  1437. } break;
  1438. default: type = LLM_TYPE_UNKNOWN;
  1439. }
  1440. } break;
  1441. case LLM_ARCH_GLM4:
  1442. {
  1443. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  1444. switch (hparams.n_layer) {
  1445. case 40: type = LLM_TYPE_9B; break;
  1446. case 61: type = LLM_TYPE_32B; break;
  1447. default: type = LLM_TYPE_UNKNOWN;
  1448. }
  1449. } break;
  1450. case LLM_ARCH_GLM4_MOE:
  1451. {
  1452. ml.get_key(LLM_KV_EXPERT_FEED_FORWARD_LENGTH, hparams.n_ff_exp);
  1453. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  1454. // MoE parameters
  1455. ml.get_key(LLM_KV_EXPERT_COUNT, hparams.n_expert);
  1456. ml.get_key(LLM_KV_EXPERT_USED_COUNT, hparams.n_expert_used);
  1457. ml.get_key(LLM_KV_EXPERT_SHARED_COUNT, hparams.n_expert_shared);
  1458. ml.get_key(LLM_KV_LEADING_DENSE_BLOCK_COUNT, hparams.n_layer_dense_lead, false);
  1459. ml.get_key(LLM_KV_EXPERT_WEIGHTS_SCALE, hparams.expert_weights_scale);
  1460. ml.get_key(LLM_KV_EXPERT_WEIGHTS_NORM, hparams.expert_weights_norm, false);
  1461. // Expert gating function (GLM-4.5 uses sigmoid)
  1462. ml.get_key(LLM_KV_EXPERT_GATING_FUNC, hparams.expert_gating_func, false);
  1463. if (hparams.expert_gating_func == LLAMA_EXPERT_GATING_FUNC_TYPE_NONE) {
  1464. hparams.expert_gating_func = LLAMA_EXPERT_GATING_FUNC_TYPE_SIGMOID;
  1465. }
  1466. // NextN/MTP parameters
  1467. ml.get_key(LLM_KV_NEXTN_PREDICT_LAYERS, hparams.nextn_predict_layers, false);
  1468. // TODO: when MTP is implemented, this should probably be updated if needed
  1469. hparams.n_layer_kv_from_start = hparams.n_layer - hparams.nextn_predict_layers;
  1470. switch (hparams.n_layer) {
  1471. case 47: type = LLM_TYPE_106B_A12B; break; // GLM-4.5-Air (46 layers + 1 NextN layer)
  1472. case 93: type = LLM_TYPE_355B_A32B; break; // GLM-4.5 (92 layers + 1 NextN layer)
  1473. default: type = LLM_TYPE_UNKNOWN;
  1474. }
  1475. } break;
  1476. case LLM_ARCH_BITNET:
  1477. {
  1478. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  1479. switch (hparams.n_layer) {
  1480. case 26: type = LLM_TYPE_3B; break;
  1481. default: type = LLM_TYPE_UNKNOWN;
  1482. }
  1483. } break;
  1484. case LLM_ARCH_T5:
  1485. {
  1486. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  1487. ml.get_key(LLM_KV_ATTENTION_RELATIVE_BUCKETS_COUNT, hparams.n_rel_attn_bkts);
  1488. uint32_t dec_start_token_id;
  1489. if (ml.get_key(LLM_KV_DECODER_START_TOKEN_ID, dec_start_token_id, false)) {
  1490. hparams.dec_start_token_id = dec_start_token_id;
  1491. }
  1492. hparams.dec_n_layer = hparams.n_layer;
  1493. ml.get_key(LLM_KV_DECODER_BLOCK_COUNT, hparams.dec_n_layer, false);
  1494. switch (hparams.n_layer) {
  1495. case 6: type = LLM_TYPE_60M; break; // t5-small
  1496. case 8: type = LLM_TYPE_80M; break; // flan-t5-small
  1497. case 12:
  1498. switch (hparams.n_ff()) {
  1499. case 3072: type = LLM_TYPE_220M; break; // t5-base
  1500. case 2048: type = LLM_TYPE_250M; break; // flan-t5-base
  1501. default: type = LLM_TYPE_UNKNOWN;
  1502. } break;
  1503. case 24:
  1504. switch (hparams.n_ff()) {
  1505. case 4096: type = LLM_TYPE_770M; break; // t5-large
  1506. case 2816: type = LLM_TYPE_780M; break; // flan-t5-large
  1507. case 16384: type = LLM_TYPE_3B; break; // t5-3b
  1508. case 5120: type = LLM_TYPE_3B; break; // flan-t5-xl
  1509. case 65536: type = LLM_TYPE_11B; break; // t5-11b
  1510. case 10240: type = LLM_TYPE_11B; break; // flan-t5-xxl
  1511. default: type = LLM_TYPE_UNKNOWN;
  1512. } break;
  1513. default: type = LLM_TYPE_UNKNOWN;
  1514. }
  1515. } break;
  1516. case LLM_ARCH_T5ENCODER:
  1517. {
  1518. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  1519. ml.get_key(LLM_KV_ATTENTION_RELATIVE_BUCKETS_COUNT, hparams.n_rel_attn_bkts);
  1520. type = LLM_TYPE_UNKNOWN;
  1521. } break;
  1522. case LLM_ARCH_JAIS:
  1523. {
  1524. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  1525. ml.get_key(LLM_KV_ATTENTION_MAX_ALIBI_BIAS, hparams.f_max_alibi_bias);
  1526. switch (hparams.n_layer) {
  1527. case 24: type = LLM_TYPE_1_3B; break;
  1528. case 40: type = LLM_TYPE_13B; break;
  1529. /* TODO: add variants */
  1530. default: type = LLM_TYPE_UNKNOWN;
  1531. }
  1532. } break;
  1533. case LLM_ARCH_NEMOTRON:
  1534. {
  1535. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  1536. switch (hparams.n_layer) {
  1537. case 32: type = LLM_TYPE_4B; break;
  1538. default: type = LLM_TYPE_UNKNOWN;
  1539. }
  1540. } break;
  1541. case LLM_ARCH_NEMOTRON_H:
  1542. {
  1543. ml.get_key(LLM_KV_SSM_CONV_KERNEL, hparams.ssm_d_conv);
  1544. ml.get_key(LLM_KV_SSM_INNER_SIZE, hparams.ssm_d_inner);
  1545. ml.get_key(LLM_KV_SSM_STATE_SIZE, hparams.ssm_d_state);
  1546. ml.get_key(LLM_KV_SSM_TIME_STEP_RANK, hparams.ssm_dt_rank);
  1547. ml.get_key(LLM_KV_SSM_GROUP_COUNT, hparams.ssm_n_group);
  1548. // A layer is recurrent IFF the n_head_kv value is set to 0 and
  1549. // the n_ff value is set to 0
  1550. for (uint32_t i = 0; i < hparams.n_layer; ++i) {
  1551. hparams.recurrent_layer_arr[i] = (hparams.n_head_kv(i) == 0 && hparams.n_ff(i) == 0);
  1552. }
  1553. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  1554. switch (hparams.n_layer) {
  1555. case 56: type = LLM_TYPE_9B; break;
  1556. default: type = LLM_TYPE_UNKNOWN;
  1557. }
  1558. } break;
  1559. case LLM_ARCH_EXAONE:
  1560. {
  1561. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  1562. switch (hparams.n_layer) {
  1563. case 32: type = LLM_TYPE_8B; break;
  1564. default: type = LLM_TYPE_UNKNOWN;
  1565. }
  1566. } break;
  1567. case LLM_ARCH_EXAONE4:
  1568. {
  1569. if (hparams.n_layer == 64) { // 32B
  1570. hparams.swa_type = LLAMA_SWA_TYPE_STANDARD;
  1571. hparams.n_swa = 4096;
  1572. hparams.set_swa_pattern(4);
  1573. }
  1574. ml.get_key(LLM_KV_ATTENTION_SLIDING_WINDOW, hparams.n_swa, false);
  1575. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  1576. switch (hparams.n_layer) {
  1577. case 30: type = LLM_TYPE_1_2B; break;
  1578. case 64: type = LLM_TYPE_32B; break;
  1579. default: type = LLM_TYPE_UNKNOWN;
  1580. }
  1581. } break;
  1582. case LLM_ARCH_RWKV6:
  1583. case LLM_ARCH_RWKV6QWEN2:
  1584. {
  1585. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps, false);
  1586. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps, false);
  1587. ml.get_key(LLM_KV_WKV_HEAD_SIZE, hparams.wkv_head_size);
  1588. ml.get_key(LLM_KV_TIME_MIX_EXTRA_DIM, hparams.time_mix_extra_dim);
  1589. ml.get_key(LLM_KV_TIME_DECAY_EXTRA_DIM, hparams.time_decay_extra_dim);
  1590. ml.get_key(LLM_KV_RESCALE_EVERY_N_LAYERS, hparams.rescale_every_n_layers, false);
  1591. ml.get_key(LLM_KV_TOKEN_SHIFT_COUNT, hparams.token_shift_count, false);
  1592. switch (hparams.n_layer) {
  1593. case 24: type = LLM_TYPE_1_6B; break;
  1594. case 32:
  1595. switch (hparams.n_embd) {
  1596. case 2560: type = LLM_TYPE_3B; break;
  1597. case 4096: type = LLM_TYPE_7B; break;
  1598. default: type = LLM_TYPE_UNKNOWN;
  1599. } break;
  1600. case 61: type = LLM_TYPE_14B; break;
  1601. case 64: type = LLM_TYPE_32B; break;
  1602. default: type = LLM_TYPE_UNKNOWN;
  1603. }
  1604. } break;
  1605. case LLM_ARCH_RWKV7:
  1606. case LLM_ARCH_ARWKV7:
  1607. {
  1608. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps, false);
  1609. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps, false);
  1610. ml.get_key(LLM_KV_WKV_HEAD_SIZE, hparams.wkv_head_size);
  1611. ml.get_key(LLM_KV_ATTENTION_DECAY_LORA_RANK, hparams.n_lora_decay);
  1612. ml.get_key(LLM_KV_ATTENTION_ICLR_LORA_RANK, hparams.n_lora_iclr);
  1613. ml.get_key(LLM_KV_ATTENTION_VALUE_RESIDUAL_MIX_LORA_RANK, hparams.n_lora_value_res_mix);
  1614. ml.get_key(LLM_KV_ATTENTION_GATE_LORA_RANK, hparams.n_lora_gate, false);
  1615. ml.get_key(LLM_KV_TOKEN_SHIFT_COUNT, hparams.token_shift_count, false);
  1616. switch (hparams.n_layer) {
  1617. case 12:
  1618. switch (hparams.n_embd) {
  1619. case 768: type = LLM_TYPE_190M; break;
  1620. default: type = LLM_TYPE_UNKNOWN;
  1621. } break;
  1622. case 24:
  1623. switch (hparams.n_embd) {
  1624. case 1024: type = LLM_TYPE_450M; break;
  1625. case 2048: type = LLM_TYPE_1_5B; break;
  1626. default: type = LLM_TYPE_UNKNOWN;
  1627. } break;
  1628. case 28:
  1629. switch (hparams.n_embd) {
  1630. case 1536: type = LLM_TYPE_1_5B; break;
  1631. case 3584: type = LLM_TYPE_7B; break;
  1632. default: type = LLM_TYPE_UNKNOWN;
  1633. } break;
  1634. case 32:
  1635. switch (hparams.n_embd) {
  1636. case 2560: type = LLM_TYPE_2_9B; break;
  1637. case 4096: type = LLM_TYPE_7B; break;
  1638. default: type = LLM_TYPE_UNKNOWN;
  1639. } break;
  1640. case 61:
  1641. switch (hparams.n_embd) {
  1642. case 4096: type = LLM_TYPE_14B; break;
  1643. default: type = LLM_TYPE_UNKNOWN;
  1644. } break;
  1645. default: type = LLM_TYPE_UNKNOWN;
  1646. }
  1647. } break;
  1648. case LLM_ARCH_GRANITE:
  1649. case LLM_ARCH_GRANITE_MOE:
  1650. {
  1651. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  1652. ml.get_key(LLM_KV_LOGIT_SCALE, hparams.f_logit_scale);
  1653. ml.get_key(LLM_KV_RESIDUAL_SCALE, hparams.f_residual_scale);
  1654. ml.get_key(LLM_KV_EMBEDDING_SCALE, hparams.f_embedding_scale);
  1655. ml.get_key(LLM_KV_ATTENTION_SCALE, hparams.f_attention_scale);
  1656. // Granite uses rope_finetuned as a switch for rope, so default to true
  1657. bool rope_finetuned = true;
  1658. ml.get_key(LLM_KV_ROPE_SCALING_FINETUNED, rope_finetuned, false);
  1659. hparams.rope_finetuned = rope_finetuned;
  1660. switch (hparams.n_layer) {
  1661. case 32: type = LLM_TYPE_3B; break;
  1662. case 40: type = LLM_TYPE_3B; break;
  1663. // Add additional layer/vocab/etc checks here for other model sizes
  1664. default: type = LLM_TYPE_UNKNOWN;
  1665. }
  1666. // For Granite MoE Shared
  1667. ml.get_key(LLM_KV_EXPERT_SHARED_FEED_FORWARD_LENGTH, hparams.n_ff_shexp, /* required */ false);
  1668. } break;
  1669. case LLM_ARCH_GRANITE_HYBRID:
  1670. {
  1671. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  1672. ml.get_key(LLM_KV_LOGIT_SCALE, hparams.f_logit_scale, /* required */ false);
  1673. ml.get_key(LLM_KV_RESIDUAL_SCALE, hparams.f_residual_scale, /* required */ false);
  1674. ml.get_key(LLM_KV_EMBEDDING_SCALE, hparams.f_embedding_scale, /* required */ false);
  1675. ml.get_key(LLM_KV_ATTENTION_SCALE, hparams.f_attention_scale, /* required */ false);
  1676. ml.get_key(LLM_KV_SSM_CONV_KERNEL, hparams.ssm_d_conv);
  1677. ml.get_key(LLM_KV_SSM_INNER_SIZE, hparams.ssm_d_inner);
  1678. ml.get_key(LLM_KV_SSM_STATE_SIZE, hparams.ssm_d_state);
  1679. ml.get_key(LLM_KV_SSM_TIME_STEP_RANK, hparams.ssm_dt_rank);
  1680. ml.get_key(LLM_KV_SSM_GROUP_COUNT, hparams.ssm_n_group);
  1681. // Granite uses rope_finetuned as a switch for rope, so default to true
  1682. bool rope_finetuned = true;
  1683. ml.get_key(LLM_KV_ROPE_SCALING_FINETUNED, rope_finetuned, false);
  1684. hparams.rope_finetuned = rope_finetuned;
  1685. // A layer is recurrent IFF the n_head_kv value is set to 0
  1686. for (uint32_t i = 0; i < hparams.n_layer; ++i) {
  1687. hparams.recurrent_layer_arr[i] = hparams.n_head_kv(i) == 0;
  1688. }
  1689. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  1690. switch (hparams.n_embd) {
  1691. case 1536: type = LLM_TYPE_7B_A1B; break;
  1692. case 2048: case 2560: type = LLM_TYPE_3B; break;
  1693. case 4096: type = LLM_TYPE_32B; break;
  1694. default: type = LLM_TYPE_UNKNOWN;
  1695. }
  1696. // For Granite MoE Shared
  1697. ml.get_key(LLM_KV_EXPERT_SHARED_FEED_FORWARD_LENGTH, hparams.n_ff_shexp, /* required */ false);
  1698. } break;
  1699. case LLM_ARCH_CHAMELEON:
  1700. {
  1701. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  1702. hparams.f_norm_eps = 1e-5; // eps for qk-norm, torch default
  1703. ml.get_key(LLM_KV_SWIN_NORM, hparams.swin_norm);
  1704. switch (hparams.n_layer) {
  1705. case 32: type = LLM_TYPE_7B; break;
  1706. case 48: type = LLM_TYPE_34B; break;
  1707. default: type = LLM_TYPE_UNKNOWN;
  1708. }
  1709. } break;
  1710. case LLM_ARCH_WAVTOKENIZER_DEC:
  1711. {
  1712. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  1713. ml.get_key(LLM_KV_ATTENTION_GROUPNORM_EPS, hparams.f_norm_group_eps);
  1714. ml.get_key(LLM_KV_ATTENTION_GROUPNORM_GROUPS, hparams.n_norm_groups);
  1715. ml.get_key(LLM_KV_ATTENTION_CAUSAL, hparams.causal_attn);
  1716. } break;
  1717. case LLM_ARCH_BAILINGMOE:
  1718. {
  1719. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  1720. ml.get_key(LLM_KV_LEADING_DENSE_BLOCK_COUNT, hparams.n_layer_dense_lead);
  1721. ml.get_key(LLM_KV_EXPERT_FEED_FORWARD_LENGTH, hparams.n_ff_exp);
  1722. ml.get_key(LLM_KV_EXPERT_SHARED_COUNT, hparams.n_expert_shared);
  1723. ml.get_key(LLM_KV_EXPERT_WEIGHTS_SCALE, hparams.expert_weights_scale);
  1724. ml.get_key(LLM_KV_EXPERT_WEIGHTS_NORM, hparams.expert_weights_norm, false);
  1725. switch (hparams.n_layer) {
  1726. case 28: type = LLM_TYPE_16B; break;
  1727. case 88: type = LLM_TYPE_290B; break;
  1728. default: type = LLM_TYPE_UNKNOWN;
  1729. }
  1730. } break;
  1731. case LLM_ARCH_BAILINGMOE2:
  1732. {
  1733. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  1734. ml.get_key(LLM_KV_LEADING_DENSE_BLOCK_COUNT, hparams.n_layer_dense_lead);
  1735. ml.get_key(LLM_KV_EXPERT_FEED_FORWARD_LENGTH, hparams.n_ff_exp);
  1736. ml.get_key(LLM_KV_EXPERT_SHARED_FEED_FORWARD_LENGTH, hparams.n_ff_shexp);
  1737. ml.get_key(LLM_KV_EXPERT_SHARED_COUNT, hparams.n_expert_shared);
  1738. ml.get_key(LLM_KV_EXPERT_WEIGHTS_SCALE, hparams.expert_weights_scale);
  1739. ml.get_key(LLM_KV_EXPERT_WEIGHTS_NORM, hparams.expert_weights_norm, false);
  1740. ml.get_key(LLM_KV_EXPERT_GATING_FUNC, hparams.expert_gating_func);
  1741. ml.get_key(LLM_KV_NEXTN_PREDICT_LAYERS, hparams.nextn_predict_layers, false);
  1742. // TODO: when MTP is implemented, this should probably be updated if needed
  1743. hparams.n_layer_kv_from_start = hparams.n_layer - hparams.nextn_predict_layers;
  1744. switch (hparams.n_layer) {
  1745. case 20: type = LLM_TYPE_16B_A1B; break;
  1746. case 21: type = LLM_TYPE_16B_A1B; break;
  1747. case 32: type = LLM_TYPE_100B_A6B; break;
  1748. case 33: type = LLM_TYPE_100B_A6B; break;
  1749. default: type = LLM_TYPE_UNKNOWN;
  1750. }
  1751. } break;
  1752. case LLM_ARCH_DOTS1:
  1753. {
  1754. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  1755. ml.get_key(LLM_KV_LEADING_DENSE_BLOCK_COUNT, hparams.n_layer_dense_lead);
  1756. ml.get_key(LLM_KV_EXPERT_FEED_FORWARD_LENGTH, hparams.n_ff_exp);
  1757. ml.get_key(LLM_KV_EXPERT_SHARED_COUNT, hparams.n_expert_shared);
  1758. ml.get_key(LLM_KV_EXPERT_WEIGHTS_SCALE, hparams.expert_weights_scale);
  1759. ml.get_key(LLM_KV_EXPERT_WEIGHTS_NORM, hparams.expert_weights_norm, false);
  1760. ml.get_key(LLM_KV_EXPERT_GATING_FUNC, hparams.expert_gating_func, false);
  1761. switch (hparams.n_layer) {
  1762. case 62: type = LLM_TYPE_142B; break;
  1763. default: type = LLM_TYPE_UNKNOWN;
  1764. }
  1765. } break;
  1766. case LLM_ARCH_ERNIE4_5:
  1767. case LLM_ARCH_ERNIE4_5_MOE:
  1768. {
  1769. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  1770. if (arch == LLM_ARCH_ERNIE4_5_MOE) {
  1771. ml.get_key(LLM_KV_EXPERT_FEED_FORWARD_LENGTH, hparams.n_ff_exp);
  1772. ml.get_key(LLM_KV_EXPERT_SHARED_FEED_FORWARD_LENGTH, hparams.n_ff_shexp, false);
  1773. ml.get_key(LLM_KV_INTERLEAVE_MOE_LAYER_STEP, hparams.n_moe_layer_step);
  1774. ml.get_key(LLM_KV_LEADING_DENSE_BLOCK_COUNT, hparams.n_layer_dense_lead);
  1775. }
  1776. switch (hparams.n_layer) {
  1777. case 18: type = LLM_TYPE_0_3B; break;
  1778. case 28: type = LLM_TYPE_21B_A3B; break;
  1779. case 54: type = LLM_TYPE_300B_A47B; break;
  1780. default: type = LLM_TYPE_UNKNOWN;
  1781. }
  1782. } break;
  1783. case LLM_ARCH_FALCON_H1:
  1784. {
  1785. // Common parameters
  1786. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  1787. // SSM parameters
  1788. ml.get_key(LLM_KV_SSM_CONV_KERNEL, hparams.ssm_d_conv);
  1789. ml.get_key(LLM_KV_SSM_INNER_SIZE, hparams.ssm_d_inner);
  1790. ml.get_key(LLM_KV_SSM_STATE_SIZE, hparams.ssm_d_state);
  1791. ml.get_key(LLM_KV_SSM_TIME_STEP_RANK, hparams.ssm_dt_rank);
  1792. ml.get_key(LLM_KV_SSM_GROUP_COUNT, hparams.ssm_n_group);
  1793. std::fill(hparams.recurrent_layer_arr.begin(), hparams.recurrent_layer_arr.end(), true);
  1794. switch (hparams.n_layer) {
  1795. case 36:
  1796. type = LLM_TYPE_0_5B; break;
  1797. case 24:
  1798. type = LLM_TYPE_1_5B; break;
  1799. case 66:
  1800. type = LLM_TYPE_1B; break;
  1801. case 32:
  1802. type = LLM_TYPE_3B; break;
  1803. case 44:
  1804. type = LLM_TYPE_7B; break;
  1805. case 72:
  1806. type = LLM_TYPE_34B; break;
  1807. default:
  1808. type = LLM_TYPE_UNKNOWN;
  1809. }
  1810. } break;
  1811. case LLM_ARCH_HUNYUAN_MOE:
  1812. {
  1813. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  1814. ml.get_key(LLM_KV_EXPERT_FEED_FORWARD_LENGTH, hparams.n_ff_exp);
  1815. ml.get_key(LLM_KV_EXPERT_SHARED_FEED_FORWARD_LENGTH, hparams.n_ff_shexp);
  1816. switch (hparams.n_layer) {
  1817. case 32: type = LLM_TYPE_A13B; break;
  1818. default: type = LLM_TYPE_UNKNOWN;
  1819. }
  1820. } break;
  1821. case LLM_ARCH_HUNYUAN_DENSE:
  1822. {
  1823. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  1824. switch (hparams.n_embd) {
  1825. case 1024: type = LLM_TYPE_0_5B; break;
  1826. case 2048: type = LLM_TYPE_1_8B; break;
  1827. case 3072: type = LLM_TYPE_4B; break;
  1828. case 4096: type = LLM_TYPE_7B; break;
  1829. default: type = LLM_TYPE_UNKNOWN;
  1830. }
  1831. } break;
  1832. case LLM_ARCH_SMOLLM3:
  1833. {
  1834. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  1835. hparams.n_no_rope_layer_step = 4;
  1836. switch (hparams.n_layer) {
  1837. case 36: type = LLM_TYPE_3B; break;
  1838. default: type = LLM_TYPE_UNKNOWN;
  1839. }
  1840. } break;
  1841. case LLM_ARCH_OPENAI_MOE:
  1842. {
  1843. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  1844. ml.get_key(LLM_KV_EXPERT_FEED_FORWARD_LENGTH, hparams.n_ff_exp);
  1845. ml.get_key(LLM_KV_ATTENTION_SLIDING_WINDOW, hparams.n_swa);
  1846. hparams.swa_type = LLAMA_SWA_TYPE_STANDARD;
  1847. hparams.set_swa_pattern(2);
  1848. switch (hparams.n_layer) {
  1849. case 24: type = LLM_TYPE_20B; break;
  1850. case 36: type = LLM_TYPE_120B; break;
  1851. default: type = LLM_TYPE_UNKNOWN;
  1852. }
  1853. } break;
  1854. case LLM_ARCH_LFM2:
  1855. {
  1856. ml.get_key(LLM_KV_SHORTCONV_L_CACHE, hparams.n_shortconv_l_cache);
  1857. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  1858. for (uint32_t il = 0; il < hparams.n_layer; ++il) {
  1859. hparams.recurrent_layer_arr[il] = hparams.n_head_kv(il) == 0;
  1860. }
  1861. hparams.n_layer_dense_lead = hparams.n_layer;
  1862. switch (hparams.n_ff()) {
  1863. case 4608: type = LLM_TYPE_350M; break;
  1864. case 6912: type = LLM_TYPE_700M; break;
  1865. case 8192: type = LLM_TYPE_1_2B; break;
  1866. case 10752: type = LLM_TYPE_2_6B; break;
  1867. default: type = LLM_TYPE_UNKNOWN;
  1868. }
  1869. } break;
  1870. case LLM_ARCH_LFM2MOE:
  1871. {
  1872. ml.get_key(LLM_KV_SHORTCONV_L_CACHE, hparams.n_shortconv_l_cache);
  1873. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  1874. ml.get_key(LLM_KV_LEADING_DENSE_BLOCK_COUNT, hparams.n_layer_dense_lead);
  1875. ml.get_key(LLM_KV_EXPERT_FEED_FORWARD_LENGTH, hparams.n_ff_exp);
  1876. ml.get_key(LLM_KV_EXPERT_GATING_FUNC, hparams.expert_gating_func);
  1877. for (uint32_t il = 0; il < hparams.n_layer; ++il) {
  1878. hparams.recurrent_layer_arr[il] = hparams.n_head_kv(il) == 0;
  1879. }
  1880. type = LLM_TYPE_8B_A1B;
  1881. } break;
  1882. case LLM_ARCH_SMALLTHINKER:
  1883. {
  1884. const bool found_swa = ml.get_key(LLM_KV_ATTENTION_SLIDING_WINDOW, hparams.n_swa, false);
  1885. if (found_swa && hparams.n_swa > 0) {
  1886. hparams.swa_type = LLAMA_SWA_TYPE_STANDARD;
  1887. hparams.n_swa = 4096;
  1888. hparams.set_swa_pattern(4, true);
  1889. } else {
  1890. hparams.swa_type = LLAMA_SWA_TYPE_NONE;
  1891. hparams.n_no_rope_layer_step = hparams.n_layer;
  1892. }
  1893. ml.get_key(LLM_KV_EXPERT_FEED_FORWARD_LENGTH, hparams.n_ff_exp, false);
  1894. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  1895. ml.get_key(LLM_KV_EXPERT_GATING_FUNC, hparams.expert_gating_func, false);
  1896. switch (hparams.n_layer) {
  1897. case 32: type = LLM_TYPE_4B; break;
  1898. case 52: type = LLM_TYPE_20B; break;
  1899. default: type = LLM_TYPE_UNKNOWN;
  1900. }
  1901. } break;
  1902. case LLM_ARCH_GROVEMOE:
  1903. {
  1904. ml.get_key(LLM_KV_EXPERT_FEED_FORWARD_LENGTH, hparams.n_ff_exp);
  1905. ml.get_key(LLM_KV_EXPERT_CHUNK_FEED_FORWARD_LENGTH, hparams.n_ff_chexp);
  1906. ml.get_key(LLM_KV_EXPERT_GROUP_SCALE, hparams.expert_group_scale);
  1907. ml.get_key(LLM_KV_EXPERTS_PER_GROUP, hparams.n_group_experts);
  1908. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  1909. switch (hparams.n_layer) {
  1910. case 48: type = LLM_TYPE_30B_A3B; break;
  1911. default: type = LLM_TYPE_UNKNOWN;
  1912. }
  1913. } break;
  1914. case LLM_ARCH_APERTUS:
  1915. {
  1916. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  1917. ml.get_key_or_arr(LLM_KV_XIELU_ALPHA_N, hparams.xielu_alpha_n, hparams.n_layer);
  1918. ml.get_key_or_arr(LLM_KV_XIELU_ALPHA_P, hparams.xielu_alpha_p, hparams.n_layer);
  1919. ml.get_key_or_arr(LLM_KV_XIELU_BETA, hparams.xielu_beta, hparams.n_layer);
  1920. ml.get_key_or_arr(LLM_KV_XIELU_EPS, hparams.xielu_eps, hparams.n_layer);
  1921. switch (hparams.n_layer) {
  1922. case 32: type = LLM_TYPE_8B; break;
  1923. default: type = LLM_TYPE_UNKNOWN;
  1924. }
  1925. } break;
  1926. default: throw std::runtime_error("unsupported model architecture");
  1927. }
  1928. pimpl->n_bytes = ml.n_bytes;
  1929. pimpl->desc_str = arch_name() + " " + type_name() + " " + ml.ftype_name();
  1930. if (hparams.f_max_alibi_bias > 0.0f) {
  1931. hparams.use_alibi = true;
  1932. }
  1933. hparams.rope_type = llama_model_rope_type(this);
  1934. }
  1935. void llama_model::load_vocab(llama_model_loader & ml) {
  1936. const auto kv = LLM_KV(arch);
  1937. vocab.load(ml, kv);
  1938. }
  1939. bool llama_model::load_tensors(llama_model_loader & ml) {
  1940. const auto & split_mode = params.split_mode;
  1941. const auto & n_gpu_layers = params.n_gpu_layers;
  1942. const auto & use_mlock = params.use_mlock;
  1943. const auto & tensor_split = params.tensor_split;
  1944. const int n_layer = hparams.n_layer;
  1945. const bool use_mmap_buffer = true;
  1946. LLAMA_LOG_INFO("%s: loading model tensors, this can take a while... (mmap = %s)\n", __func__, ml.use_mmap ? "true" : "false");
  1947. // build a list of buffer types for the CPU and GPU devices
  1948. pimpl->cpu_buft_list = make_cpu_buft_list(devices, params.use_extra_bufts, params.no_host);
  1949. for (auto * dev : devices) {
  1950. buft_list_t buft_list = make_gpu_buft_list(dev, split_mode, tensor_split);
  1951. // add CPU buffer types as a fallback
  1952. buft_list.insert(buft_list.end(), pimpl->cpu_buft_list.begin(), pimpl->cpu_buft_list.end());
  1953. pimpl->gpu_buft_list.emplace(dev, std::move(buft_list));
  1954. }
  1955. // calculate the split points
  1956. bool all_zero = tensor_split == nullptr || std::all_of(tensor_split, tensor_split + n_devices(), [](float x) { return x == 0.0f; });
  1957. std::vector<float> splits(n_devices());
  1958. if (all_zero) {
  1959. // default split, by free memory
  1960. for (size_t i = 0; i < n_devices(); ++i) {
  1961. ggml_backend_dev_t dev = devices[i];
  1962. size_t total;
  1963. size_t free;
  1964. ggml_backend_dev_memory(dev, &free, &total);
  1965. splits[i] = free;
  1966. }
  1967. } else {
  1968. std::copy(tensor_split, tensor_split + n_devices(), splits.begin());
  1969. }
  1970. // sum and normalize the splits to get the split points
  1971. float split_sum = 0.0f;
  1972. for (size_t i = 0; i < n_devices(); ++i) {
  1973. split_sum += splits[i];
  1974. splits[i] = split_sum;
  1975. }
  1976. for (size_t i = 0; i < n_devices(); ++i) {
  1977. splits[i] /= split_sum;
  1978. }
  1979. ggml_backend_dev_t cpu_dev = ggml_backend_dev_by_type(GGML_BACKEND_DEVICE_TYPE_CPU);
  1980. if (cpu_dev == nullptr) {
  1981. throw std::runtime_error(format("%s: no CPU backend found", __func__));
  1982. }
  1983. const int i_gpu_start = std::max((int) hparams.n_layer - n_gpu_layers, (int) 0);
  1984. const int act_gpu_layers = devices.empty() ? 0 : std::min(n_gpu_layers, (int)n_layer + 1);
  1985. auto get_layer_buft_list = [&](int il) -> llama_model::impl::layer_dev {
  1986. const bool is_swa = il < (int) hparams.n_layer && hparams.is_swa(il);
  1987. if (il < i_gpu_start || (il - i_gpu_start) >= act_gpu_layers) {
  1988. LLAMA_LOG_DEBUG("load_tensors: layer %3d assigned to device %s, is_swa = %d\n", il, ggml_backend_dev_name(cpu_dev), is_swa);
  1989. return {cpu_dev, &pimpl->cpu_buft_list};
  1990. }
  1991. const int layer_gpu = std::upper_bound(splits.begin(), splits.begin() + n_devices(), float(il - i_gpu_start)/act_gpu_layers) - splits.begin();
  1992. auto * dev = devices.at(layer_gpu);
  1993. LLAMA_LOG_DEBUG("load_tensors: layer %3d assigned to device %s, is_swa = %d\n", il, ggml_backend_dev_name(dev), is_swa);
  1994. return {dev, &pimpl->gpu_buft_list.at(dev)};
  1995. };
  1996. // assign the input layer
  1997. // there is very little benefit to offloading the input layer, so always keep it on the CPU
  1998. pimpl->dev_input = { cpu_dev, &pimpl->cpu_buft_list };
  1999. // assign the repeating layers to the devices according to the splits
  2000. pimpl->dev_layer.resize(n_layer);
  2001. for (int il = 0; il < n_layer; ++il) {
  2002. pimpl->dev_layer[il] = get_layer_buft_list(il);
  2003. }
  2004. // assign the output layer
  2005. pimpl->dev_output = get_layer_buft_list(n_layer);
  2006. // one ggml context per buffer type
  2007. int max_n_tensors = ml.n_tensors;
  2008. max_n_tensors += 1; // duplicated output tensor
  2009. max_n_tensors += n_layer*2; // duplicated rope freq tensors
  2010. const size_t ctx_size = ggml_tensor_overhead()*max_n_tensors;
  2011. // define a comparator for the buft -> ctx map to ensure that the order is well-defined:
  2012. struct ggml_backend_buft_comparator {
  2013. bool operator()(const ggml_backend_buffer_type_t & lhs, const ggml_backend_buffer_type_t & rhs) const {
  2014. return ggml_backend_buft_name(lhs) < ggml_backend_buft_name(rhs);
  2015. }
  2016. };
  2017. std::map<ggml_backend_buffer_type_t, ggml_context_ptr, ggml_backend_buft_comparator> ctx_map;
  2018. auto ctx_for_buft = [&](ggml_backend_buffer_type_t buft) -> ggml_context * {
  2019. auto it = ctx_map.find(buft);
  2020. if (it == ctx_map.end()) {
  2021. ggml_init_params params = {
  2022. /*.mem_size =*/ ctx_size,
  2023. /*.mem_buffer =*/ NULL,
  2024. /*.no_alloc =*/ true,
  2025. };
  2026. ggml_context * ctx = ggml_init(params);
  2027. if (!ctx) {
  2028. throw std::runtime_error(format("failed to create ggml context"));
  2029. }
  2030. ctx_map.emplace(buft, ctx);
  2031. return ctx;
  2032. }
  2033. return it->second.get();
  2034. };
  2035. const auto TENSOR_DUPLICATED = llama_model_loader::TENSOR_DUPLICATED;
  2036. const auto TENSOR_NOT_REQUIRED = llama_model_loader::TENSOR_NOT_REQUIRED;
  2037. const auto TENSOR_SKIP = llama_model_loader::TENSOR_SKIP;
  2038. // create tensors for the weights
  2039. {
  2040. // note: cast to int64_t since we will use these for the tensor dimensions
  2041. const int64_t n_head = hparams.n_head();
  2042. const int64_t n_head_kv = hparams.n_head_kv();
  2043. const int64_t n_embd = hparams.n_embd;
  2044. const int64_t n_embd_k_gqa = hparams.n_embd_k_gqa();
  2045. const int64_t n_embd_v_gqa = hparams.n_embd_v_gqa();
  2046. const int64_t n_embd_head_k = hparams.n_embd_head_k;
  2047. const int64_t n_embd_head_v = hparams.n_embd_head_v;
  2048. const int64_t n_ff = hparams.n_ff();
  2049. const int64_t n_embd_gqa = n_embd_v_gqa;
  2050. const int64_t n_vocab = vocab.n_tokens();
  2051. const int64_t n_token_types = vocab.n_token_types();
  2052. const int64_t n_rot = hparams.n_rot;
  2053. const int64_t n_expert = hparams.n_expert;
  2054. const int64_t n_expert_used = hparams.n_expert_used;
  2055. const int64_t n_ctx_train = hparams.n_ctx_train;
  2056. if (n_expert > 0 && hparams.n_expert_used == 0) {
  2057. throw std::runtime_error("model has expert layers but no expert layers are used");
  2058. }
  2059. int n_moved_tensors = 0;
  2060. ggml_tensor * first_moved_tensor = nullptr;
  2061. ggml_backend_buffer_type_t first_moved_from_buft = nullptr;
  2062. ggml_backend_buffer_type_t first_moved_to_buft = nullptr;
  2063. auto create_tensor = [&](const LLM_TN_IMPL & tn, const std::initializer_list<int64_t> & ne, int flags) -> ggml_tensor * {
  2064. ggml_tensor * t_meta = ml.get_tensor_meta(tn.str().c_str());
  2065. if (!t_meta) {
  2066. if (flags & TENSOR_NOT_REQUIRED) {
  2067. return nullptr;
  2068. }
  2069. throw std::runtime_error(format("missing tensor '%s'", tn.str().c_str()));
  2070. }
  2071. // some models use the token embedding tensor as the output, but since these are used in different layers and with different ops
  2072. // the tensor is duplicated
  2073. // to handle this, we check if the tensor is duplicated, and if so, we assume that it is being loaded as the output tensor
  2074. llm_tensor tn_tensor = tn.tensor;
  2075. if (tn.tensor == LLM_TENSOR_TOKEN_EMBD && flags & TENSOR_DUPLICATED) {
  2076. tn_tensor = LLM_TENSOR_OUTPUT;
  2077. }
  2078. llm_tensor_info info;
  2079. try {
  2080. info = llm_tensor_info_for(tn_tensor);
  2081. } catch (const std::out_of_range & e) {
  2082. throw std::runtime_error(format("missing tensor info mapping for %s", tn.str().c_str()));
  2083. }
  2084. // skip unused tensors
  2085. if (info.op == GGML_OP_NONE || flags & TENSOR_SKIP) {
  2086. const size_t nbytes = ggml_nbytes(t_meta);
  2087. LLAMA_LOG_WARN("model has unused tensor %s (size = %zu bytes) -- ignoring\n", tn.str().c_str(), nbytes);
  2088. ml.size_data -= nbytes;
  2089. ml.n_created++;
  2090. return nullptr;
  2091. }
  2092. // tensors with "bias" suffix are always used with GGML_OP_ADD or GGML_OP_ADD_ID
  2093. ggml_op op;
  2094. bool bias = tn.suffix != nullptr && strcmp(tn.suffix, "bias") == 0;
  2095. if (bias) {
  2096. if (info.op == GGML_OP_MUL_MAT_ID) {
  2097. op = GGML_OP_ADD_ID;
  2098. } else {
  2099. op = GGML_OP_ADD;
  2100. }
  2101. } else {
  2102. op = info.op;
  2103. }
  2104. // sanity checks
  2105. if (info.layer == LLM_TENSOR_LAYER_INPUT || info.layer == LLM_TENSOR_LAYER_OUTPUT) {
  2106. if (tn.bid != -1) {
  2107. GGML_ABORT("input/output layer tensor %s used with a layer number", tn.str().c_str());
  2108. }
  2109. } else {
  2110. if (tn.bid == -1) {
  2111. GGML_ABORT("repeating layer tensor %s used without a layer number", tn.str().c_str());
  2112. }
  2113. }
  2114. // select the buffer type for this tensor
  2115. buft_list_t * buft_list;
  2116. switch (info.layer) {
  2117. case LLM_TENSOR_LAYER_INPUT:
  2118. buft_list = pimpl->dev_input.buft_list;
  2119. break;
  2120. case LLM_TENSOR_LAYER_OUTPUT:
  2121. buft_list = pimpl->dev_output.buft_list;
  2122. break;
  2123. case LLM_TENSOR_LAYER_REPEATING:
  2124. buft_list = pimpl->dev_layer.at(tn.bid).buft_list;
  2125. break;
  2126. default:
  2127. GGML_ABORT("invalid layer %d for tensor %s", info.layer, tn.str().c_str());
  2128. }
  2129. ggml_backend_buffer_type_t buft = nullptr;
  2130. // check overrides
  2131. if (ml.tensor_buft_overrides) {
  2132. std::string tensor_name = tn.str();
  2133. for (const auto * overrides = ml.tensor_buft_overrides; overrides->pattern != nullptr; ++overrides) {
  2134. std::regex pattern(overrides->pattern);
  2135. if (std::regex_search(tensor_name, pattern)) {
  2136. if (overrides->buft == ggml_backend_cpu_buffer_type()) {
  2137. // when overriding to a CPU buffer, consider the extra buffer types
  2138. buft = select_weight_buft(hparams, t_meta, op, pimpl->cpu_buft_list);
  2139. } else {
  2140. buft = overrides->buft;
  2141. }
  2142. LLAMA_LOG_DEBUG("tensor %s (%zu MiB %s) buffer type overridden to %s\n",
  2143. tensor_name.c_str(),
  2144. ggml_nbytes(t_meta) / 1024 / 1024, ggml_type_name(t_meta->type),
  2145. ggml_backend_buft_name(buft));
  2146. break;
  2147. }
  2148. }
  2149. }
  2150. if (!buft) {
  2151. buft = select_weight_buft(hparams, t_meta, op, *buft_list);
  2152. if (!buft) {
  2153. throw std::runtime_error(format("failed to find a compatible buffer type for tensor %s", tn.str().c_str()));
  2154. }
  2155. }
  2156. // avoid using a host buffer when using mmap
  2157. auto * buft_dev = ggml_backend_buft_get_device(buft);
  2158. if (ml.use_mmap && buft_dev && buft == ggml_backend_dev_host_buffer_type(buft_dev)) {
  2159. auto * cpu_dev = ggml_backend_dev_by_type(GGML_BACKEND_DEVICE_TYPE_CPU);
  2160. if (!cpu_dev) {
  2161. throw std::runtime_error("no CPU backend found");
  2162. }
  2163. buft = ggml_backend_dev_buffer_type(cpu_dev);
  2164. }
  2165. if (buft != buft_list->front().second) {
  2166. n_moved_tensors++;
  2167. if (!first_moved_tensor) {
  2168. first_moved_tensor = t_meta;
  2169. first_moved_from_buft = buft_list->front().second;
  2170. first_moved_to_buft = buft;
  2171. }
  2172. }
  2173. ggml_context * ctx = ctx_for_buft(buft);
  2174. // if duplicated, check if the original tensor was allocated in the same buffer type context and avoid creating a new one
  2175. if (flags & TENSOR_DUPLICATED) {
  2176. ggml_tensor * t = ggml_get_tensor(ctx, tn.str().c_str());
  2177. if (t) {
  2178. return t;
  2179. }
  2180. }
  2181. return ml.create_tensor(ctx, tn, ne, flags);
  2182. };
  2183. layers.resize(n_layer);
  2184. // TODO: move to a separate function
  2185. const auto tn = LLM_TN(arch);
  2186. switch (arch) {
  2187. case LLM_ARCH_LLAMA:
  2188. case LLM_ARCH_REFACT:
  2189. case LLM_ARCH_MINICPM:
  2190. case LLM_ARCH_GRANITE:
  2191. case LLM_ARCH_GRANITE_MOE:
  2192. {
  2193. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  2194. // output
  2195. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  2196. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
  2197. // if output is NULL, init from the input tok embed
  2198. if (output == NULL) {
  2199. output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
  2200. }
  2201. for (int i = 0; i < n_layer; ++i) {
  2202. auto & layer = layers[i];
  2203. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  2204. layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd_head_k * n_head}, 0);
  2205. layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_k_gqa}, 0);
  2206. layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_v_gqa}, 0);
  2207. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd_head_k * n_head, n_embd}, 0);
  2208. // optional bias tensors
  2209. layer.bq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd}, TENSOR_NOT_REQUIRED);
  2210. layer.bk = create_tensor(tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa}, TENSOR_NOT_REQUIRED);
  2211. layer.bv = create_tensor(tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa}, TENSOR_NOT_REQUIRED);
  2212. layer.bo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd}, TENSOR_NOT_REQUIRED);
  2213. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
  2214. if (hparams.rope_scaling_type_train == LLAMA_ROPE_SCALING_TYPE_LONGROPE) {
  2215. layer.rope_long = create_tensor(tn(LLM_TENSOR_ROPE_FACTORS_LONG, "weight", i), {n_rot/2}, TENSOR_NOT_REQUIRED | (i != 0 ? TENSOR_DUPLICATED : 0));
  2216. layer.rope_short = create_tensor(tn(LLM_TENSOR_ROPE_FACTORS_SHORT, "weight", i), {n_rot/2}, TENSOR_NOT_REQUIRED | (i != 0 ? TENSOR_DUPLICATED : 0));
  2217. }
  2218. else {
  2219. layer.rope_freqs = create_tensor(tn(LLM_TENSOR_ROPE_FREQS, "weight", i), {n_rot/2}, TENSOR_NOT_REQUIRED | (i != 0 ? TENSOR_DUPLICATED : 0));
  2220. }
  2221. if (n_expert == 0) {
  2222. layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
  2223. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
  2224. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  2225. // optional MLP bias
  2226. layer.ffn_gate_b = create_tensor(tn(LLM_TENSOR_FFN_GATE, "bias", i), {n_ff}, TENSOR_NOT_REQUIRED);
  2227. layer.ffn_down_b = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd}, TENSOR_NOT_REQUIRED);
  2228. layer.ffn_up_b = create_tensor(tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff}, TENSOR_NOT_REQUIRED);
  2229. } else {
  2230. layer.ffn_gate_inp = create_tensor(tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert}, 0);
  2231. layer.ffn_gate_exps = create_tensor(tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), {n_embd, n_ff, n_expert}, TENSOR_NOT_REQUIRED);
  2232. layer.ffn_down_exps = create_tensor(tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), { n_ff, n_embd, n_expert}, 0);
  2233. layer.ffn_up_exps = create_tensor(tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), {n_embd, n_ff, n_expert}, 0);
  2234. // For Granite MoE Shared
  2235. if (hparams.n_ff_shexp > 0) {
  2236. layer.ffn_gate_shexp = create_tensor(tn(LLM_TENSOR_FFN_GATE_SHEXP, "weight", i), {n_embd, hparams.n_ff_shexp}, 0);
  2237. layer.ffn_up_shexp = create_tensor(tn(LLM_TENSOR_FFN_UP_SHEXP, "weight", i), {n_embd, hparams.n_ff_shexp}, 0);
  2238. layer.ffn_down_shexp = create_tensor(tn(LLM_TENSOR_FFN_DOWN_SHEXP, "weight", i), {hparams.n_ff_shexp, n_embd}, 0);
  2239. }
  2240. }
  2241. }
  2242. } break;
  2243. case LLM_ARCH_LLADA:
  2244. {
  2245. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), { n_embd, n_vocab }, 0);
  2246. // output
  2247. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), { n_embd }, 0);
  2248. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), { n_embd, n_vocab }, TENSOR_NOT_REQUIRED);
  2249. // if output is NULL, init from the input tok embed
  2250. if (output == NULL) {
  2251. output =
  2252. create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), { n_embd, n_vocab }, TENSOR_DUPLICATED);
  2253. }
  2254. for (int i = 0; i < n_layer; ++i) {
  2255. auto & layer = layers[i];
  2256. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), { n_embd }, 0);
  2257. // Use separate Q, K, V projections without bias, matching LLaDALlamaBlock
  2258. layer.wq =
  2259. create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), { n_embd, n_embd_head_k * n_head }, 0);
  2260. layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), { n_embd, n_embd_k_gqa }, 0);
  2261. layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), { n_embd, n_embd_v_gqa }, 0);
  2262. // No bias for QKV projections as per config: include_bias=false, include_qkv_bias=false
  2263. layer.wo =
  2264. create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), { n_embd_head_k * n_head, n_embd }, 0);
  2265. layer.bo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "bias", i), { n_embd }, TENSOR_NOT_REQUIRED);
  2266. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), { n_embd }, 0);
  2267. layer.rope_freqs = create_tensor(tn(LLM_TENSOR_ROPE_FREQS, "weight", i), { n_rot / 2 },
  2268. TENSOR_NOT_REQUIRED | (i != 0 ? TENSOR_DUPLICATED : 0));
  2269. layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), { n_embd, n_ff }, 0);
  2270. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd }, 0);
  2271. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), { n_embd, n_ff }, 0);
  2272. // optional MLP bias
  2273. layer.ffn_gate_b =
  2274. create_tensor(tn(LLM_TENSOR_FFN_GATE, "bias", i), { n_ff }, TENSOR_NOT_REQUIRED);
  2275. layer.ffn_down_b =
  2276. create_tensor(tn(LLM_TENSOR_FFN_DOWN, "bias", i), { n_embd }, TENSOR_NOT_REQUIRED);
  2277. layer.ffn_up_b = create_tensor(tn(LLM_TENSOR_FFN_UP, "bias", i), { n_ff }, TENSOR_NOT_REQUIRED);
  2278. }
  2279. }
  2280. break;
  2281. case LLM_ARCH_LLADA_MOE:
  2282. {
  2283. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  2284. // output
  2285. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  2286. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, 0);
  2287. GGML_ASSERT(n_expert > 0 && "n_expert must be > 0 for llada-moe");
  2288. GGML_ASSERT(n_expert_used > 0 && "n_expert_used must be > 0 for llada-moe");
  2289. for (int i = 0; i < n_layer; ++i) {
  2290. auto & layer = layers[i];
  2291. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  2292. layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}, 0);
  2293. layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}, 0);
  2294. layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}, 0);
  2295. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
  2296. layer.attn_q_norm = create_tensor(tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), {n_embd_head_k}, 0);
  2297. layer.attn_k_norm = create_tensor(tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), {n_embd_head_k}, 0);
  2298. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
  2299. layer.ffn_gate_inp = create_tensor(tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert}, 0);
  2300. const int64_t n_ff_exp = hparams.n_ff_exp ? hparams.n_ff_exp : n_ff / n_expert_used;
  2301. layer.ffn_gate_exps = create_tensor(tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), { n_embd, n_ff_exp, n_expert}, 0);
  2302. layer.ffn_down_exps = create_tensor(tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), {n_ff_exp, n_embd, n_expert}, 0);
  2303. layer.ffn_up_exps = create_tensor(tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), { n_embd, n_ff_exp, n_expert}, 0);
  2304. }
  2305. } break;
  2306. case LLM_ARCH_LLAMA4:
  2307. {
  2308. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  2309. // output
  2310. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  2311. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
  2312. // if output is NULL, init from the input tok embed
  2313. if (output == NULL) {
  2314. output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
  2315. }
  2316. for (int i = 0; i < n_layer; ++i) {
  2317. bool is_moe_layer = hparams.n_moe_layer_step > 0 && (i + 1) % hparams.n_moe_layer_step == 0;
  2318. auto & layer = layers[i];
  2319. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  2320. layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd_head_k * n_head}, 0);
  2321. layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_k_gqa}, 0);
  2322. layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_v_gqa}, 0);
  2323. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd_head_k * n_head, n_embd}, 0);
  2324. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
  2325. layer.rope_freqs = create_tensor(tn(LLM_TENSOR_ROPE_FREQS, "weight", i), {n_rot/2}, TENSOR_NOT_REQUIRED | (i != 0 ? TENSOR_DUPLICATED : 0));
  2326. if (is_moe_layer) {
  2327. int n_ff_exp = hparams.n_ff_exp;
  2328. layer.ffn_gate_inp = create_tensor(tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert}, 0);
  2329. layer.ffn_gate_exps = create_tensor(tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), {n_embd, n_ff_exp, n_expert}, 0);
  2330. layer.ffn_down_exps = create_tensor(tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), { n_ff_exp, n_embd, n_expert}, 0);
  2331. layer.ffn_up_exps = create_tensor(tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), {n_embd, n_ff_exp, n_expert}, 0);
  2332. // Shared expert
  2333. const int64_t n_ff_shexp = n_ff_exp;
  2334. layer.ffn_gate_shexp = create_tensor(tn(LLM_TENSOR_FFN_GATE_SHEXP, "weight", i), { n_embd, n_ff_shexp}, 0);
  2335. layer.ffn_down_shexp = create_tensor(tn(LLM_TENSOR_FFN_DOWN_SHEXP, "weight", i), {n_ff_shexp, n_embd }, 0);
  2336. layer.ffn_up_shexp = create_tensor(tn(LLM_TENSOR_FFN_UP_SHEXP, "weight", i), { n_embd, n_ff_shexp}, 0);
  2337. } else {
  2338. layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
  2339. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
  2340. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  2341. }
  2342. }
  2343. } break;
  2344. case LLM_ARCH_DECI:
  2345. {
  2346. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  2347. // output
  2348. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  2349. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
  2350. // if output is NULL, init from the input tok embed
  2351. if (output == NULL) {
  2352. output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
  2353. }
  2354. for (int i = 0; i < n_layer; ++i) {
  2355. auto & layer = layers[i];
  2356. const int64_t n_embd_k_gqa = hparams.n_embd_k_gqa(i);
  2357. const int64_t n_embd_v_gqa = hparams.n_embd_v_gqa(i);
  2358. const int64_t n_embd_gqa = hparams.n_embd_v_gqa(i);
  2359. const int64_t n_ff = hparams.n_ff(i);
  2360. const int64_t n_head = hparams.n_head(i);
  2361. const int64_t n_head_kv = hparams.n_head_kv(i);
  2362. if (n_head_kv == 0 && n_head > 0) {
  2363. // linear attention for DeciLMCausalModel
  2364. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  2365. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
  2366. }
  2367. else if (n_head_kv > 0) {
  2368. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  2369. layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd_head_k * n_head}, 0);
  2370. layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_k_gqa}, 0);
  2371. layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_v_gqa}, 0);
  2372. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd_head_k * n_head, n_embd}, 0);
  2373. }
  2374. // optional bias tensors
  2375. layer.bq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd}, TENSOR_NOT_REQUIRED);
  2376. layer.bk = create_tensor(tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa}, TENSOR_NOT_REQUIRED);
  2377. layer.bv = create_tensor(tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa}, TENSOR_NOT_REQUIRED);
  2378. layer.bo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd}, TENSOR_NOT_REQUIRED);
  2379. if (n_ff > 0) {
  2380. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
  2381. }
  2382. if (hparams.rope_scaling_type_train == LLAMA_ROPE_SCALING_TYPE_LONGROPE) {
  2383. layer.rope_long = create_tensor(tn(LLM_TENSOR_ROPE_FACTORS_LONG, "weight", i), {n_rot/2}, TENSOR_NOT_REQUIRED | (i != 0 ? TENSOR_DUPLICATED : 0));
  2384. layer.rope_short = create_tensor(tn(LLM_TENSOR_ROPE_FACTORS_SHORT, "weight", i), {n_rot/2}, TENSOR_NOT_REQUIRED | (i != 0 ? TENSOR_DUPLICATED : 0));
  2385. }
  2386. else {
  2387. layer.rope_freqs = create_tensor(tn(LLM_TENSOR_ROPE_FREQS, "weight", i), {n_rot/2}, TENSOR_NOT_REQUIRED | (i != 0 ? TENSOR_DUPLICATED : 0));
  2388. }
  2389. if (n_ff > 0) {
  2390. layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
  2391. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
  2392. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  2393. }
  2394. // optional MLP bias
  2395. layer.ffn_gate_b = create_tensor(tn(LLM_TENSOR_FFN_GATE, "bias", i), {n_ff}, TENSOR_NOT_REQUIRED);
  2396. layer.ffn_down_b = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd}, TENSOR_NOT_REQUIRED);
  2397. layer.ffn_up_b = create_tensor(tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff}, TENSOR_NOT_REQUIRED);
  2398. }
  2399. } break;
  2400. case LLM_ARCH_MINICPM3:
  2401. {
  2402. const int64_t n_embd_head_qk_rope = hparams.n_rot;
  2403. const int64_t n_embd_head_qk_nope = hparams.n_embd_head_k - hparams.n_rot;
  2404. const int64_t q_lora_rank = hparams.n_lora_q;
  2405. const int64_t kv_lora_rank = hparams.n_lora_kv;
  2406. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  2407. // output
  2408. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  2409. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
  2410. // if output is NULL, init from the input tok embed
  2411. if (output == NULL) {
  2412. output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
  2413. }
  2414. for (int i = 0; i < n_layer; ++i) {
  2415. auto & layer = layers[i];
  2416. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  2417. layer.attn_q_a_norm = create_tensor(tn(LLM_TENSOR_ATTN_Q_A_NORM, "weight", i), {q_lora_rank}, 0);
  2418. layer.attn_kv_a_norm = create_tensor(tn(LLM_TENSOR_ATTN_KV_A_NORM, "weight", i), {kv_lora_rank}, 0);
  2419. layer.wq_a = create_tensor(tn(LLM_TENSOR_ATTN_Q_A, "weight", i), {n_embd, q_lora_rank}, 0);
  2420. layer.wq_b = create_tensor(tn(LLM_TENSOR_ATTN_Q_B, "weight", i), {q_lora_rank, n_head * n_embd_head_k}, 0);
  2421. layer.wkv_a_mqa = create_tensor(tn(LLM_TENSOR_ATTN_KV_A_MQA, "weight", i), {n_embd, kv_lora_rank + (n_embd_head_qk_rope)}, 0);
  2422. layer.wkv_b = create_tensor(tn(LLM_TENSOR_ATTN_KV_B, "weight", i), {kv_lora_rank, n_head * (n_embd_head_qk_nope + n_embd_head_v)}, 0);
  2423. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), { n_head * ( n_embd_head_v), n_embd}, 0);
  2424. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
  2425. layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
  2426. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
  2427. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  2428. layer.rope_long = create_tensor(tn(LLM_TENSOR_ROPE_FACTORS_LONG, "weight", i), { n_embd_head_qk_rope/2 }, TENSOR_NOT_REQUIRED | (i != 0 ? TENSOR_DUPLICATED : 0));
  2429. layer.rope_short = create_tensor(tn(LLM_TENSOR_ROPE_FACTORS_SHORT, "weight", i), { n_embd_head_qk_rope/2 }, TENSOR_NOT_REQUIRED | (i != 0 ? TENSOR_DUPLICATED : 0));
  2430. }
  2431. } break;
  2432. case LLM_ARCH_GROK:
  2433. {
  2434. if (n_expert == 0) {
  2435. throw std::runtime_error("Grok model cannot have zero experts");
  2436. }
  2437. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  2438. // output
  2439. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  2440. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
  2441. // if output is NULL, init from the input tok embed
  2442. if (output == NULL) {
  2443. output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
  2444. }
  2445. const int64_t n_ff_exp = hparams.n_ff_exp ? hparams.n_ff_exp : n_ff/* / n_expert_used*/; // grok-1 n_ff_exp == n_ff
  2446. for (int i = 0; i < n_layer; ++i) {
  2447. auto & layer = layers[i];
  2448. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  2449. layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}, 0);
  2450. layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}, 0);
  2451. layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}, 0);
  2452. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
  2453. layer.attn_out_norm = create_tensor(tn(LLM_TENSOR_ATTN_OUT_NORM, "weight", i), {n_embd}, 0);
  2454. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
  2455. layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, TENSOR_NOT_REQUIRED);
  2456. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd}, TENSOR_NOT_REQUIRED);
  2457. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, TENSOR_NOT_REQUIRED);
  2458. layer.ffn_gate_inp = create_tensor(tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert}, 0);
  2459. layer.ffn_gate_exps = create_tensor(tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), {n_embd, n_ff_exp, n_expert}, TENSOR_NOT_REQUIRED);
  2460. layer.ffn_down_exps = create_tensor(tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), {n_ff_exp, n_embd, n_expert}, 0);
  2461. layer.ffn_up_exps = create_tensor(tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), {n_embd, n_ff_exp, n_expert}, 0);
  2462. layer.ffn_post_norm = create_tensor(tn(LLM_TENSOR_LAYER_OUT_NORM, "weight", i), {n_embd}, TENSOR_NOT_REQUIRED);
  2463. if (!layer.ffn_post_norm) {
  2464. layer.ffn_post_norm = create_tensor(tn(LLM_TENSOR_FFN_POST_NORM, "weight", i), {n_embd}, 0);
  2465. }
  2466. }
  2467. } break;
  2468. case LLM_ARCH_DBRX:
  2469. {
  2470. if (n_expert == 0) {
  2471. throw std::runtime_error("DBRX model cannot have zero experts");
  2472. }
  2473. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  2474. // output
  2475. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  2476. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, 0);
  2477. for (int i = 0; i < n_layer; ++i) {
  2478. auto & layer = layers[i];
  2479. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  2480. layer.wqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa}, 0);
  2481. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
  2482. layer.attn_out_norm = create_tensor(tn(LLM_TENSOR_ATTN_OUT_NORM, "weight", i), {n_embd}, 0);
  2483. layer.ffn_gate_inp = create_tensor(tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert}, 0);
  2484. layer.ffn_gate_exps = create_tensor(tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), {n_embd, n_ff, n_expert}, 0);
  2485. layer.ffn_down_exps = create_tensor(tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), {n_ff, n_embd, n_expert}, 0);
  2486. layer.ffn_up_exps = create_tensor(tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), {n_embd, n_ff, n_expert}, 0);
  2487. }
  2488. } break;
  2489. case LLM_ARCH_BAICHUAN:
  2490. {
  2491. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  2492. {
  2493. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  2494. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, 0);
  2495. }
  2496. for (int i = 0; i < n_layer; ++i) {
  2497. auto & layer = layers[i];
  2498. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  2499. layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}, 0);
  2500. layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}, 0);
  2501. layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}, 0);
  2502. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
  2503. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
  2504. layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
  2505. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
  2506. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  2507. }
  2508. } break;
  2509. case LLM_ARCH_FALCON:
  2510. {
  2511. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  2512. // output
  2513. {
  2514. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  2515. output_norm_b = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd}, 0);
  2516. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
  2517. if (!output) {
  2518. output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED); // needs to be on GPU
  2519. }
  2520. }
  2521. for (int i = 0; i < n_layer; ++i) {
  2522. auto & layer = layers[i];
  2523. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  2524. layer.attn_norm_b = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd}, 0);
  2525. layer.attn_norm_2 = create_tensor(tn(LLM_TENSOR_ATTN_NORM_2, "weight", i), {n_embd}, TENSOR_NOT_REQUIRED);
  2526. layer.attn_norm_2_b = create_tensor(tn(LLM_TENSOR_ATTN_NORM_2, "bias", i), {n_embd}, TENSOR_NOT_REQUIRED);
  2527. layer.wqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa}, 0);
  2528. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
  2529. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
  2530. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  2531. }
  2532. } break;
  2533. case LLM_ARCH_STARCODER:
  2534. {
  2535. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  2536. pos_embd = create_tensor(tn(LLM_TENSOR_POS_EMBD, "weight"), {n_embd, n_ctx_train}, 0);
  2537. // output
  2538. {
  2539. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  2540. output_norm_b = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd}, 0);
  2541. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
  2542. if (!output) {
  2543. // needs to be on GPU
  2544. output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
  2545. }
  2546. }
  2547. for (int i = 0; i < n_layer; ++i) {
  2548. auto & layer = layers[i];
  2549. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  2550. layer.attn_norm_b = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd}, 0);
  2551. layer.wqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa}, 0);
  2552. layer.bqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd + 2*n_embd_gqa}, 0);
  2553. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
  2554. layer.bo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd}, 0);
  2555. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
  2556. layer.ffn_norm_b = create_tensor(tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd}, 0);
  2557. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd}, 0);
  2558. layer.ffn_down_b = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd}, 0);
  2559. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  2560. layer.ffn_up_b = create_tensor(tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff}, 0);
  2561. }
  2562. } break;
  2563. case LLM_ARCH_BERT:
  2564. case LLM_ARCH_NOMIC_BERT:
  2565. case LLM_ARCH_NOMIC_BERT_MOE:
  2566. case LLM_ARCH_JINA_BERT_V3:
  2567. {
  2568. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  2569. type_embd = create_tensor(tn(LLM_TENSOR_TOKEN_TYPES, "weight"), {n_embd, n_token_types}, TENSOR_NOT_REQUIRED);
  2570. if (arch == LLM_ARCH_BERT) {
  2571. pos_embd = create_tensor(tn(LLM_TENSOR_POS_EMBD, "weight"), {n_embd, n_ctx_train}, 0);
  2572. cls = create_tensor(tn(LLM_TENSOR_CLS, "weight"), {n_embd, n_embd}, TENSOR_NOT_REQUIRED);
  2573. cls_b = create_tensor(tn(LLM_TENSOR_CLS, "bias"), {n_embd}, TENSOR_NOT_REQUIRED);
  2574. cls_out = create_tensor(tn(LLM_TENSOR_CLS_OUT, "weight"), {n_embd, hparams.n_cls_out}, TENSOR_NOT_REQUIRED);
  2575. cls_out_b = create_tensor(tn(LLM_TENSOR_CLS_OUT, "bias"), {hparams.n_cls_out}, TENSOR_NOT_REQUIRED);
  2576. }
  2577. tok_norm = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD_NORM, "weight"), {n_embd}, 0);
  2578. tok_norm_b = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD_NORM, "bias"), {n_embd}, 0);
  2579. for (int i = 0; i < n_layer; ++i) {
  2580. auto & layer = layers[i];
  2581. layer.wqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa}, TENSOR_NOT_REQUIRED);
  2582. layer.bqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd + 2*n_embd_gqa}, TENSOR_NOT_REQUIRED);
  2583. if (!layer.wqkv) {
  2584. layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}, 0);
  2585. layer.bq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd}, 0);
  2586. layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}, 0);
  2587. layer.bk = create_tensor(tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa}, 0);
  2588. layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}, 0);
  2589. layer.bv = create_tensor(tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa}, 0);
  2590. }
  2591. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
  2592. layer.bo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd}, TENSOR_NOT_REQUIRED);
  2593. layer.attn_out_norm = create_tensor(tn(LLM_TENSOR_ATTN_OUT_NORM, "weight", i), {n_embd}, 0);
  2594. layer.attn_out_norm_b = create_tensor(tn(LLM_TENSOR_ATTN_OUT_NORM, "bias", i), {n_embd}, 0);
  2595. if (hparams.moe_every_n_layers > 0 && i % hparams.moe_every_n_layers == 1) {
  2596. layer.ffn_up_exps = create_tensor(tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), { n_embd, n_ff, n_expert}, 0);
  2597. layer.ffn_down_exps = create_tensor(tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), { n_ff, n_embd, n_expert}, 0);
  2598. layer.ffn_gate_inp = create_tensor(tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert}, 0);
  2599. } else {
  2600. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  2601. layer.ffn_up_b = create_tensor(tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff}, TENSOR_NOT_REQUIRED);
  2602. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd}, 0);
  2603. layer.ffn_down_b = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd}, TENSOR_NOT_REQUIRED);
  2604. if (arch == LLM_ARCH_NOMIC_BERT) {
  2605. layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
  2606. }
  2607. }
  2608. layer.layer_out_norm = create_tensor(tn(LLM_TENSOR_LAYER_OUT_NORM, "weight", i), {n_embd}, 0);
  2609. layer.layer_out_norm_b = create_tensor(tn(LLM_TENSOR_LAYER_OUT_NORM, "bias", i), {n_embd}, 0);
  2610. }
  2611. } break;
  2612. case LLM_ARCH_NEO_BERT:
  2613. {
  2614. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  2615. cls = create_tensor(tn(LLM_TENSOR_CLS, "weight"), {n_embd, n_embd}, TENSOR_NOT_REQUIRED);
  2616. cls_b = create_tensor(tn(LLM_TENSOR_CLS, "bias"), {n_embd}, TENSOR_NOT_REQUIRED);
  2617. cls_out = create_tensor(tn(LLM_TENSOR_CLS_OUT, "weight"), {n_embd, hparams.n_cls_out}, TENSOR_NOT_REQUIRED);
  2618. cls_out_b = create_tensor(tn(LLM_TENSOR_CLS_OUT, "bias"), {hparams.n_cls_out}, TENSOR_NOT_REQUIRED);
  2619. output_norm_enc = create_tensor(tn(LLM_TENSOR_ENC_OUTPUT_NORM, "weight"), {n_embd}, 0);
  2620. for (int i = 0; i < n_layer; ++i) {
  2621. auto & layer = layers[i];
  2622. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  2623. layer.wqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa}, 0);
  2624. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
  2625. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
  2626. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff*2}, 0);
  2627. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd}, 0);
  2628. }
  2629. } break;
  2630. case LLM_ARCH_JINA_BERT_V2:
  2631. {
  2632. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0); // word_embeddings
  2633. type_embd = create_tensor(tn(LLM_TENSOR_TOKEN_TYPES, "weight"), {n_embd, n_token_types}, 0); // token_type_embeddings
  2634. tok_norm = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD_NORM, "weight"), {n_embd}, 0); // LayerNorm
  2635. tok_norm_b = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD_NORM, "bias"), {n_embd}, 0); //LayerNorm bias
  2636. cls = create_tensor(tn(LLM_TENSOR_CLS, "weight"), {n_embd, 1}, TENSOR_NOT_REQUIRED);
  2637. cls_b = create_tensor(tn(LLM_TENSOR_CLS, "bias"), {1}, TENSOR_NOT_REQUIRED);
  2638. for (int i = 0; i < n_layer; ++i) {
  2639. auto & layer = layers[i]; // JinaBertLayer
  2640. layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}, 0);
  2641. layer.bq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd}, 0);
  2642. layer.attn_q_norm = create_tensor(tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), {n_embd}, TENSOR_NOT_REQUIRED);
  2643. layer.attn_q_norm_b = create_tensor(tn(LLM_TENSOR_ATTN_Q_NORM, "bias", i), {n_embd}, TENSOR_NOT_REQUIRED);
  2644. layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}, 0);
  2645. layer.bk = create_tensor(tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa}, 0);
  2646. layer.attn_k_norm = create_tensor(tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), {n_embd}, TENSOR_NOT_REQUIRED);
  2647. layer.attn_k_norm_b = create_tensor(tn(LLM_TENSOR_ATTN_K_NORM, "bias", i), {n_embd}, TENSOR_NOT_REQUIRED);
  2648. layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}, 0);
  2649. layer.bv = create_tensor(tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa}, 0);
  2650. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0); //output_dens
  2651. layer.bo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd}, 0); //output_dens
  2652. layer.attn_out_norm = create_tensor(tn(LLM_TENSOR_ATTN_OUT_NORM, "weight", i), {n_embd}, 0); //output_norm
  2653. layer.attn_out_norm_b = create_tensor(tn(LLM_TENSOR_ATTN_OUT_NORM, "bias", i), {n_embd}, 0);
  2654. layer.attn_norm_2 = create_tensor(tn(LLM_TENSOR_ATTN_NORM_2, "weight", i), {n_embd}, TENSOR_NOT_REQUIRED);
  2655. layer.attn_norm_2_b = create_tensor(tn(LLM_TENSOR_ATTN_NORM_2, "bias", i), {n_embd}, TENSOR_NOT_REQUIRED);
  2656. layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, TENSOR_NOT_REQUIRED);
  2657. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, layer.ffn_gate ? n_ff : n_ff * 2}, 0);
  2658. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd}, 0);
  2659. layer.ffn_down_b = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd}, 0);
  2660. layer.layer_out_norm = create_tensor(tn(LLM_TENSOR_LAYER_OUT_NORM, "weight", i), {n_embd}, 0);
  2661. layer.layer_out_norm_b = create_tensor(tn(LLM_TENSOR_LAYER_OUT_NORM, "bias", i), {n_embd}, 0);
  2662. }
  2663. } break;
  2664. case LLM_ARCH_BLOOM:
  2665. {
  2666. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  2667. tok_norm = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD_NORM, "weight"), {n_embd}, 0);
  2668. tok_norm_b = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD_NORM, "bias"), {n_embd}, 0);
  2669. // output
  2670. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  2671. output_norm_b = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd}, 0);
  2672. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
  2673. // if output is NULL, init from the input tok embed
  2674. if (output == NULL) {
  2675. output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
  2676. }
  2677. for (int i = 0; i < n_layer; ++i) {
  2678. auto & layer = layers[i];
  2679. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  2680. layer.attn_norm_b = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd}, 0);
  2681. layer.wqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa}, 0);
  2682. layer.bqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd + 2*n_embd_gqa}, 0);
  2683. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
  2684. layer.bo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd}, 0);
  2685. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
  2686. layer.ffn_norm_b = create_tensor(tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd}, 0);
  2687. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd}, 0);
  2688. layer.ffn_down_b = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd}, 0);
  2689. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  2690. layer.ffn_up_b = create_tensor(tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff}, 0);
  2691. }
  2692. } break;
  2693. case LLM_ARCH_MPT:
  2694. {
  2695. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  2696. pos_embd = create_tensor(tn(LLM_TENSOR_POS_EMBD, "weight"), {n_embd, n_ctx_train}, TENSOR_NOT_REQUIRED);
  2697. // output
  2698. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  2699. output_norm_b = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd}, TENSOR_NOT_REQUIRED);
  2700. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
  2701. if (!output) {
  2702. output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED); // needs to be on GPU
  2703. }
  2704. for (int i = 0; i < n_layer; ++i) {
  2705. auto & layer = layers[i];
  2706. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  2707. layer.attn_norm_b = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd}, TENSOR_NOT_REQUIRED);
  2708. layer.wqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa}, 0);
  2709. layer.bqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd + 2*n_embd_gqa}, TENSOR_NOT_REQUIRED);
  2710. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
  2711. layer.bo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd}, TENSOR_NOT_REQUIRED);
  2712. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
  2713. layer.ffn_norm_b = create_tensor(tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd}, TENSOR_NOT_REQUIRED);
  2714. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd}, 0);
  2715. layer.ffn_down_b = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd}, TENSOR_NOT_REQUIRED);
  2716. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  2717. layer.ffn_up_b = create_tensor(tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff}, TENSOR_NOT_REQUIRED);
  2718. layer.attn_q_norm = create_tensor(tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), {n_embd}, TENSOR_NOT_REQUIRED);
  2719. layer.attn_q_norm_b = create_tensor(tn(LLM_TENSOR_ATTN_Q_NORM, "bias", i), {n_embd}, TENSOR_NOT_REQUIRED);
  2720. layer.attn_k_norm = create_tensor(tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), {n_embd}, TENSOR_NOT_REQUIRED);
  2721. layer.attn_k_norm_b = create_tensor(tn(LLM_TENSOR_ATTN_K_NORM, "bias", i), {n_embd}, TENSOR_NOT_REQUIRED);
  2722. // AWQ ScaleActivation layer
  2723. layer.ffn_act = create_tensor(tn(LLM_TENSOR_FFN_ACT, "scales", i), {n_ff}, TENSOR_NOT_REQUIRED);
  2724. }
  2725. } break;
  2726. case LLM_ARCH_STABLELM:
  2727. {
  2728. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  2729. // output
  2730. output_norm_b = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd}, 0);
  2731. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  2732. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, 0);
  2733. for (int i = 0; i < n_layer; ++i) {
  2734. auto & layer = layers[i];
  2735. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  2736. layer.attn_norm_b = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd}, 0);
  2737. layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}, 0);
  2738. layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}, 0);
  2739. layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}, 0);
  2740. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
  2741. // optional bias tensors, present in Stable LM 2 1.6B
  2742. layer.bq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd}, TENSOR_NOT_REQUIRED);
  2743. layer.bk = create_tensor(tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa}, TENSOR_NOT_REQUIRED);
  2744. layer.bv = create_tensor(tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa}, TENSOR_NOT_REQUIRED);
  2745. // optional q and k layernorms, present in StableLM 2 12B
  2746. layer.attn_q_norm = create_tensor(tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), {n_embd_head_k, n_head}, TENSOR_NOT_REQUIRED);
  2747. layer.attn_k_norm = create_tensor(tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), {n_embd_head_k, n_head_kv}, TENSOR_NOT_REQUIRED);
  2748. // optional FFN norm, not present in StableLM 2 12B which uses parallel residual
  2749. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, TENSOR_NOT_REQUIRED);
  2750. layer.ffn_norm_b = create_tensor(tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd}, TENSOR_NOT_REQUIRED);
  2751. layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
  2752. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
  2753. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  2754. }
  2755. } break;
  2756. case LLM_ARCH_QWEN:
  2757. {
  2758. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  2759. // output
  2760. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  2761. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, 0);
  2762. for (int i = 0; i < n_layer; ++i) {
  2763. auto & layer = layers[i];
  2764. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  2765. layer.wqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd*3}, 0);
  2766. layer.bqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd*3}, 0);
  2767. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
  2768. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
  2769. layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff/2}, 0);
  2770. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff/2, n_embd}, 0);
  2771. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff/2}, 0);
  2772. }
  2773. } break;
  2774. case LLM_ARCH_QWEN2:
  2775. case LLM_ARCH_QWEN2VL:
  2776. case LLM_ARCH_DREAM:
  2777. {
  2778. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  2779. // output
  2780. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  2781. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
  2782. output_b = create_tensor(tn(LLM_TENSOR_OUTPUT, "bias"), {n_vocab}, TENSOR_NOT_REQUIRED);
  2783. // if output is NULL, init from the input tok embed
  2784. if (output == NULL) {
  2785. output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
  2786. }
  2787. for (int i = 0; i < n_layer; ++i) {
  2788. auto & layer = layers[i];
  2789. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  2790. layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}, 0);
  2791. layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}, 0);
  2792. layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}, 0);
  2793. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
  2794. // optional bias tensors
  2795. layer.bq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd}, 0);
  2796. layer.bk = create_tensor(tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa}, 0);
  2797. layer.bv = create_tensor(tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa}, 0);
  2798. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
  2799. layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
  2800. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
  2801. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  2802. }
  2803. } break;
  2804. case LLM_ARCH_QWEN2MOE:
  2805. {
  2806. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  2807. // output
  2808. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  2809. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, 0);
  2810. for (int i = 0; i < n_layer; ++i) {
  2811. auto & layer = layers[i];
  2812. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  2813. layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}, 0);
  2814. layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}, 0);
  2815. layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}, 0);
  2816. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
  2817. // optional bias tensors
  2818. layer.bq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd}, TENSOR_NOT_REQUIRED);
  2819. layer.bk = create_tensor(tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa}, TENSOR_NOT_REQUIRED);
  2820. layer.bv = create_tensor(tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa}, TENSOR_NOT_REQUIRED);
  2821. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
  2822. layer.ffn_gate_inp = create_tensor(tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert}, 0);
  2823. if (n_expert == 0) {
  2824. throw std::runtime_error("n_expert must be > 0 for QWEN2MOE");
  2825. }
  2826. if (n_expert_used == 0) {
  2827. throw std::runtime_error("n_expert_used must be > 0 for QWEN2MOE");
  2828. }
  2829. // MoE branch
  2830. const int64_t n_ff_exp = hparams.n_ff_exp ? hparams.n_ff_exp : n_ff / n_expert_used;
  2831. layer.ffn_gate_exps = create_tensor(tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), { n_embd, n_ff_exp, n_expert}, 0);
  2832. layer.ffn_down_exps = create_tensor(tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), {n_ff_exp, n_embd, n_expert}, 0);
  2833. layer.ffn_up_exps = create_tensor(tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), { n_embd, n_ff_exp, n_expert}, 0);
  2834. // Shared expert branch
  2835. const int64_t n_ff_shexp = hparams.n_ff_shexp ? hparams.n_ff_shexp : n_ff;
  2836. layer.ffn_gate_inp_shexp = create_tensor(tn(LLM_TENSOR_FFN_GATE_INP_SHEXP, "weight", i), {n_embd}, 0);
  2837. layer.ffn_gate_shexp = create_tensor(tn(LLM_TENSOR_FFN_GATE_SHEXP, "weight", i), { n_embd, n_ff_shexp}, 0);
  2838. layer.ffn_down_shexp = create_tensor(tn(LLM_TENSOR_FFN_DOWN_SHEXP, "weight", i), {n_ff_shexp, n_embd}, 0);
  2839. layer.ffn_up_shexp = create_tensor(tn(LLM_TENSOR_FFN_UP_SHEXP, "weight", i), { n_embd, n_ff_shexp}, 0);
  2840. }
  2841. } break;
  2842. case LLM_ARCH_QWEN3:
  2843. {
  2844. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  2845. // output
  2846. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  2847. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
  2848. // if output is NULL, init from the input tok embed
  2849. if (output == NULL) {
  2850. output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
  2851. }
  2852. // output rerank head
  2853. cls_out = create_tensor(tn(LLM_TENSOR_CLS_OUT, "weight"), {n_embd, hparams.n_cls_out}, TENSOR_NOT_REQUIRED);
  2854. for (int i = 0; i < n_layer; ++i) {
  2855. auto & layer = layers[i];
  2856. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  2857. layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd_head_k * n_head}, 0);
  2858. layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}, 0);
  2859. layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}, 0);
  2860. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd_head_k * n_head, n_embd}, 0);
  2861. layer.attn_k_norm = create_tensor(tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), {n_embd_head_k}, 0);
  2862. layer.attn_q_norm = create_tensor(tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), {n_embd_head_k}, 0);
  2863. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
  2864. layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
  2865. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
  2866. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  2867. }
  2868. } break;
  2869. case LLM_ARCH_QWEN3MOE:
  2870. {
  2871. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  2872. // output
  2873. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  2874. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
  2875. // if output is NULL, init from the input tok embed
  2876. if (output == NULL) {
  2877. output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
  2878. }
  2879. for (int i = 0; i < n_layer; ++i) {
  2880. auto & layer = layers[i];
  2881. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  2882. layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd_head_k * n_head}, 0);
  2883. layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}, 0);
  2884. layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}, 0);
  2885. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd_head_k * n_head, n_embd}, 0);
  2886. layer.attn_k_norm = create_tensor(tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), {n_embd_head_k}, 0);
  2887. layer.attn_q_norm = create_tensor(tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), {n_embd_head_k}, 0);
  2888. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
  2889. layer.ffn_gate_inp = create_tensor(tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert}, 0);
  2890. if (n_expert == 0) {
  2891. throw std::runtime_error("n_expert must be > 0 for QWEN3MOE");
  2892. }
  2893. if (n_expert_used == 0) {
  2894. throw std::runtime_error("n_expert_used must be > 0 for QWEN3MOE");
  2895. }
  2896. // MoE branch
  2897. const int64_t n_ff_exp = hparams.n_ff_exp ? hparams.n_ff_exp : n_ff / n_expert_used;
  2898. layer.ffn_gate_exps = create_tensor(tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), { n_embd, n_ff_exp, n_expert}, 0);
  2899. layer.ffn_down_exps = create_tensor(tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), {n_ff_exp, n_embd, n_expert}, 0);
  2900. layer.ffn_up_exps = create_tensor(tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), { n_embd, n_ff_exp, n_expert}, 0);
  2901. }
  2902. } break;
  2903. case LLM_ARCH_PHI2:
  2904. {
  2905. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  2906. // output
  2907. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  2908. output_norm_b = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd}, 0);
  2909. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, 0);
  2910. output_b = create_tensor(tn(LLM_TENSOR_OUTPUT, "bias"), {n_vocab}, 0);
  2911. for (int i = 0; i < n_layer; ++i) {
  2912. auto & layer = layers[i];
  2913. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  2914. layer.attn_norm_b = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd}, 0);
  2915. layer.wqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa}, TENSOR_NOT_REQUIRED);
  2916. layer.bqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd + 2*n_embd_gqa}, TENSOR_NOT_REQUIRED);
  2917. if (layer.wqkv == nullptr) {
  2918. layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}, 0);
  2919. layer.bq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd}, 0);
  2920. layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}, 0);
  2921. layer.bk = create_tensor(tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa}, 0);
  2922. layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}, 0);
  2923. layer.bv = create_tensor(tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa}, 0);
  2924. }
  2925. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
  2926. layer.bo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd}, 0);
  2927. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd}, 0);
  2928. layer.ffn_down_b = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd}, 0);
  2929. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  2930. layer.ffn_up_b = create_tensor(tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff}, 0);
  2931. }
  2932. } break;
  2933. case LLM_ARCH_PHI3:
  2934. {
  2935. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), { n_embd, n_vocab }, 0);
  2936. // output
  2937. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), { n_embd }, 0);
  2938. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
  2939. // if output is NULL, init from the input tok embed
  2940. if (output == NULL) {
  2941. output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
  2942. }
  2943. for (int i = 0; i < n_layer; ++i) {
  2944. auto & layer = layers[i];
  2945. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), { n_embd }, 0);
  2946. layer.wqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "weight", i), { n_embd, n_embd + 2 * n_embd_gqa }, TENSOR_NOT_REQUIRED);
  2947. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), { n_embd, n_embd }, 0);
  2948. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), { n_embd }, 0);
  2949. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd }, 0);
  2950. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), { n_embd, 2 * n_ff }, 0);
  2951. layer.rope_long = create_tensor(tn(LLM_TENSOR_ROPE_FACTORS_LONG, "weight", i), { n_rot/2 }, TENSOR_NOT_REQUIRED | (i != 0 ? TENSOR_DUPLICATED : 0));
  2952. layer.rope_short = create_tensor(tn(LLM_TENSOR_ROPE_FACTORS_SHORT, "weight", i), { n_rot/2 }, TENSOR_NOT_REQUIRED | (i != 0 ? TENSOR_DUPLICATED : 0));
  2953. }
  2954. } break;
  2955. case LLM_ARCH_PHIMOE:
  2956. {
  2957. const int64_t n_embd_head = n_embd / n_head;
  2958. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), { n_embd, n_vocab }, 0);
  2959. // output
  2960. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), { n_embd }, 0);
  2961. output_norm_b = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd}, 0);
  2962. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), { n_embd, n_vocab }, 0);
  2963. output_b = create_tensor(tn(LLM_TENSOR_OUTPUT, "bias"), { n_vocab }, 0);
  2964. for (int i = 0; i < n_layer; ++i) {
  2965. auto & layer = layers[i];
  2966. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), { n_embd }, 0);
  2967. layer.attn_norm_b = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "bias", i), { n_embd }, 0);
  2968. layer.wqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "weight", i), { n_embd, n_embd + 2 * n_embd_gqa }, TENSOR_NOT_REQUIRED);
  2969. if (layer.wqkv == nullptr) {
  2970. layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}, 0);
  2971. layer.bq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd}, 0);
  2972. layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}, 0);
  2973. layer.bk = create_tensor(tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa}, 0);
  2974. layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}, 0);
  2975. layer.bv = create_tensor(tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa}, 0);
  2976. }
  2977. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), { n_embd, n_embd }, 0);
  2978. layer.bo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "bias", i), { n_embd }, 0);
  2979. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), { n_embd }, 0);
  2980. layer.ffn_norm_b = create_tensor(tn(LLM_TENSOR_FFN_NORM, "bias", i), { n_embd }, 0);
  2981. layer.ffn_gate_inp = create_tensor(tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert}, 0);
  2982. layer.ffn_gate_exps = create_tensor(tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), {n_embd, n_ff, n_expert}, 0);
  2983. layer.ffn_down_exps = create_tensor(tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), {n_ff, n_embd, n_expert}, 0);
  2984. layer.ffn_up_exps = create_tensor(tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), {n_embd, n_ff, n_expert}, 0);
  2985. layer.rope_long = create_tensor(tn(LLM_TENSOR_ROPE_FACTORS_LONG, "weight", i), { n_embd_head/2 }, TENSOR_NOT_REQUIRED | (i != 0 ? TENSOR_DUPLICATED : 0));
  2986. layer.rope_short = create_tensor(tn(LLM_TENSOR_ROPE_FACTORS_SHORT, "weight", i), { n_embd_head/2 }, TENSOR_NOT_REQUIRED | (i != 0 ? TENSOR_DUPLICATED : 0));
  2987. }
  2988. } break;
  2989. case LLM_ARCH_PLAMO:
  2990. {
  2991. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  2992. // output
  2993. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  2994. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, 0);
  2995. for (int i = 0; i < n_layer; ++i) {
  2996. auto & layer = layers[i];
  2997. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  2998. layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}, 0);
  2999. layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}, 0);
  3000. layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}, 0);
  3001. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
  3002. layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
  3003. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
  3004. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  3005. }
  3006. } break;
  3007. case LLM_ARCH_PLAMO2:
  3008. {
  3009. // mamba parameters
  3010. const uint32_t d_conv = hparams.ssm_d_conv;
  3011. const uint32_t d_state = hparams.ssm_d_state;
  3012. const uint32_t num_heads = hparams.ssm_dt_rank;
  3013. const uint32_t intermediate_size = hparams.ssm_d_inner;
  3014. const int64_t dt_dim = std::max(64, int(hparams.n_embd / 16));
  3015. // attention parameters
  3016. const uint32_t qk_dim = hparams.n_embd_head_k;
  3017. const uint32_t v_dim = hparams.n_embd_head_v;
  3018. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  3019. // output
  3020. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  3021. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
  3022. // if output is NULL, init from the input tok embed
  3023. if (output == NULL) {
  3024. output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
  3025. }
  3026. for (int i = 0; i < n_layer; ++i) {
  3027. auto & layer = layers[i];
  3028. bool is_mamba_layer = hparams.is_recurrent(i);
  3029. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  3030. if (is_mamba_layer) {
  3031. layer.ssm_in = create_tensor(tn(LLM_TENSOR_SSM_IN, "weight", i), {n_embd, 2 * intermediate_size}, 0);
  3032. layer.ssm_conv1d = create_tensor(tn(LLM_TENSOR_SSM_CONV1D, "weight", i), {d_conv, intermediate_size}, 0);
  3033. layer.ssm_x = create_tensor(tn(LLM_TENSOR_SSM_X, "weight", i), {intermediate_size, dt_dim + 2*d_state}, 0);
  3034. layer.ssm_dt = create_tensor(tn(LLM_TENSOR_SSM_DT, "weight", i), {dt_dim, num_heads}, 0);
  3035. layer.ssm_dt_b = create_tensor(tn(LLM_TENSOR_SSM_DT, "bias", i), {num_heads}, 0);
  3036. layer.ssm_a = create_tensor(tn(LLM_TENSOR_SSM_A, i), {num_heads}, 0);
  3037. layer.ssm_d = create_tensor(tn(LLM_TENSOR_SSM_D, i), {num_heads}, 0);
  3038. layer.ssm_out = create_tensor(tn(LLM_TENSOR_SSM_OUT, "weight", i), {intermediate_size, n_embd}, 0);
  3039. layer.ssm_dt_norm = create_tensor(tn(LLM_TENSOR_SSM_DT_NORM, i), {dt_dim}, 0);
  3040. layer.ssm_b_norm = create_tensor(tn(LLM_TENSOR_SSM_B_NORM, i), {d_state}, 0);
  3041. layer.ssm_c_norm = create_tensor(tn(LLM_TENSOR_SSM_C_NORM, i), {d_state}, 0);
  3042. } else {
  3043. const int64_t num_attention_heads = hparams.n_head(i);
  3044. const int64_t q_num_heads = num_attention_heads;
  3045. const int64_t num_key_value_heads = hparams.n_head_kv(i);
  3046. const int64_t k_num_heads = num_key_value_heads;
  3047. const int64_t v_num_heads = num_key_value_heads;
  3048. const int64_t q_proj_dim = q_num_heads * qk_dim;
  3049. const int64_t k_proj_dim = k_num_heads * qk_dim;
  3050. const int64_t v_proj_dim = v_num_heads * v_dim;
  3051. layer.wqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, q_proj_dim + k_proj_dim + v_proj_dim}, 0);
  3052. layer.attn_q_norm = create_tensor(tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), {qk_dim, num_attention_heads}, 0);
  3053. layer.attn_k_norm = create_tensor(tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), {qk_dim, k_num_heads}, 0);
  3054. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {q_num_heads * v_dim, n_embd}, 0);
  3055. }
  3056. // All layers have post-attention norm, FFN norm, and FFN tensors
  3057. layer.attn_post_norm = create_tensor(tn(LLM_TENSOR_ATTN_POST_NORM, i), {n_embd}, 0);
  3058. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
  3059. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd}, 0);
  3060. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff * 2}, 0);
  3061. layer.ffn_post_norm = create_tensor(tn(LLM_TENSOR_FFN_POST_NORM, i), {n_embd}, 0);
  3062. }
  3063. } break;
  3064. case LLM_ARCH_GPT2:
  3065. {
  3066. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  3067. pos_embd = create_tensor(tn(LLM_TENSOR_POS_EMBD, "weight"), {n_embd, n_ctx_train}, 0);
  3068. // output
  3069. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  3070. output_norm_b = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd}, 0);
  3071. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
  3072. // if output is NULL, init from the input tok embed
  3073. if (output == NULL) {
  3074. output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
  3075. }
  3076. for (int i = 0; i < n_layer; ++i) {
  3077. auto & layer = layers[i];
  3078. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  3079. layer.attn_norm_b = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd}, 0);
  3080. layer.wqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa}, 0);
  3081. layer.bqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd + 2*n_embd_gqa}, 0);
  3082. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
  3083. layer.bo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd}, 0);
  3084. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
  3085. layer.ffn_norm_b = create_tensor(tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd}, 0);
  3086. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd}, 0);
  3087. layer.ffn_down_b = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd}, 0);
  3088. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  3089. layer.ffn_up_b = create_tensor(tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff}, 0);
  3090. }
  3091. } break;
  3092. case LLM_ARCH_CODESHELL:
  3093. {
  3094. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
  3095. // if tok embd is NULL, init from output
  3096. if (tok_embd == NULL) {
  3097. tok_embd = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
  3098. }
  3099. // output
  3100. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  3101. output_norm_b = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd}, 0);
  3102. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, 0);
  3103. for (int i = 0; i < n_layer; ++i) {
  3104. auto & layer = layers[i];
  3105. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  3106. layer.attn_norm_b = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd}, 0);
  3107. layer.wqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa}, 0);
  3108. layer.bqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd + 2*n_embd_gqa}, 0);
  3109. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
  3110. layer.bo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd}, 0);
  3111. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
  3112. layer.ffn_norm_b = create_tensor(tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd}, 0);
  3113. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd}, 0);
  3114. layer.ffn_down_b = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd}, 0);
  3115. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  3116. layer.ffn_up_b = create_tensor(tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff}, 0);
  3117. }
  3118. } break;
  3119. case LLM_ARCH_ORION:
  3120. {
  3121. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  3122. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  3123. output_norm_b = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd}, 0);
  3124. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, 0);
  3125. for (int i = 0; i < n_layer; ++i) {
  3126. auto & layer = layers[i];
  3127. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  3128. layer.attn_norm_b = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd}, 0);
  3129. layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}, 0);
  3130. layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}, 0);
  3131. layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}, 0);
  3132. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
  3133. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
  3134. layer.ffn_norm_b = create_tensor(tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd}, 0);
  3135. layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
  3136. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
  3137. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  3138. }
  3139. } break;
  3140. case LLM_ARCH_INTERNLM2:
  3141. {
  3142. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  3143. // output
  3144. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  3145. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, 0);
  3146. for (int i = 0; i < n_layer; ++i) {
  3147. auto & layer = layers[i];
  3148. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  3149. // layer.wqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa}, 0);
  3150. layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}, 0);
  3151. layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}, 0);
  3152. layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}, 0);
  3153. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
  3154. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
  3155. layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
  3156. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
  3157. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  3158. }
  3159. } break;
  3160. case LLM_ARCH_GEMMA:
  3161. {
  3162. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  3163. // output
  3164. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  3165. output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED); // same as tok_embd, duplicated to allow offloading
  3166. for (int i = 0; i < n_layer; ++i) {
  3167. auto & layer = layers[i];
  3168. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  3169. layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd_head_k * n_head}, 0);
  3170. layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_k_gqa}, 0);
  3171. layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_v_gqa}, 0);
  3172. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd_head_k * n_head, n_embd}, 0);
  3173. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
  3174. layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
  3175. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  3176. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
  3177. }
  3178. } break;
  3179. case LLM_ARCH_GEMMA2:
  3180. {
  3181. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  3182. // output
  3183. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  3184. output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED); // same as tok_embd, duplicated to allow offloading
  3185. for (int i = 0; i < n_layer; ++i) {
  3186. auto & layer = layers[i];
  3187. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  3188. layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd_head_k * n_head}, 0);
  3189. layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_k_gqa}, 0);
  3190. layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_v_gqa}, 0);
  3191. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd_head_k * n_head, n_embd}, 0);
  3192. layer.attn_post_norm = create_tensor(tn(LLM_TENSOR_ATTN_POST_NORM, "weight", i), {n_embd}, 0);
  3193. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
  3194. layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
  3195. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  3196. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
  3197. layer.ffn_post_norm = create_tensor(tn(LLM_TENSOR_FFN_POST_NORM, "weight", i), {n_embd}, 0);
  3198. }
  3199. } break;
  3200. case LLM_ARCH_GEMMA3:
  3201. case LLM_ARCH_GEMMA_EMBEDDING:
  3202. {
  3203. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  3204. // output
  3205. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  3206. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
  3207. // if output is NULL, init from the input tok embed
  3208. if (output == NULL) {
  3209. output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
  3210. }
  3211. // Dense linear weights
  3212. dense_2_out_layers = create_tensor(tn(LLM_TENSOR_DENSE_2_OUT, "weight"), {n_embd, hparams.dense_2_feat_out}, TENSOR_NOT_REQUIRED);
  3213. dense_3_out_layers = create_tensor(tn(LLM_TENSOR_DENSE_3_OUT, "weight"), {hparams.dense_3_feat_in, n_embd}, TENSOR_NOT_REQUIRED);
  3214. for (int i = 0; i < n_layer; ++i) {
  3215. auto & layer = layers[i];
  3216. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  3217. layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd_head_k * n_head}, 0);
  3218. layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_k_gqa}, 0);
  3219. layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_v_gqa}, 0);
  3220. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd_head_k * n_head, n_embd}, 0);
  3221. layer.attn_post_norm = create_tensor(tn(LLM_TENSOR_ATTN_POST_NORM, "weight", i), {n_embd}, 0);
  3222. layer.attn_k_norm = create_tensor(tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), {n_embd_head_k}, 0);
  3223. layer.attn_q_norm = create_tensor(tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), {n_embd_head_k}, 0);
  3224. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
  3225. layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
  3226. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  3227. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
  3228. layer.ffn_post_norm = create_tensor(tn(LLM_TENSOR_FFN_POST_NORM, "weight", i), {n_embd}, 0);
  3229. }
  3230. } break;
  3231. case LLM_ARCH_GEMMA3N:
  3232. {
  3233. const int64_t n_altup = hparams.n_altup;
  3234. const int64_t laurel_rank = hparams.laurel_rank;
  3235. const int64_t n_embd_altup = hparams.n_embd_altup;
  3236. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
  3237. // if output is NULL, init from the input tok embed
  3238. if (output == NULL) {
  3239. output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
  3240. }
  3241. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  3242. tok_embd_per_layer = create_tensor(tn(LLM_TENSOR_PER_LAYER_TOKEN_EMBD, "weight"), {n_embd_altup * n_layer, n_vocab}, 0);
  3243. altup_proj = create_tensor(tn(LLM_TENSOR_ALTUP_PROJ, "weight"), {n_embd, n_embd, n_altup - 1}, 0);
  3244. altup_unembd_proj = create_tensor(tn(LLM_TENSOR_ALTUP_UNEMBD_PROJ, "weight"), {n_embd, n_embd, n_altup - 1}, 0);
  3245. per_layer_model_proj = create_tensor(tn(LLM_TENSOR_PER_LAYER_MODEL_PROJ, "weight"), {n_embd, n_embd_altup * n_layer}, 0);
  3246. per_layer_proj_norm = create_tensor(tn(LLM_TENSOR_PER_LAYER_PROJ_NORM, "weight"), {n_embd_altup}, 0);
  3247. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  3248. for (int i = 0; i < n_layer; ++i) {
  3249. auto & layer = layers[i];
  3250. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  3251. layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd_head_k * n_head}, 0);
  3252. layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_k_gqa}, 0);
  3253. layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_v_gqa}, 0);
  3254. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd_head_k * n_head, n_embd}, 0);
  3255. layer.attn_q_norm = create_tensor(tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), {n_embd_head_k}, 0);
  3256. layer.attn_k_norm = create_tensor(tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), {n_embd_head_k}, 0);
  3257. layer.attn_post_norm = create_tensor(tn(LLM_TENSOR_ATTN_POST_NORM, "weight", i), {n_embd}, 0);
  3258. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
  3259. layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
  3260. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  3261. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
  3262. layer.ffn_post_norm = create_tensor(tn(LLM_TENSOR_FFN_POST_NORM, "weight", i), {n_embd}, 0);
  3263. // altup & laurel
  3264. layer.per_layer_inp_gate = create_tensor(tn(LLM_TENSOR_PER_LAYER_INP_GATE, "weight", i), {n_embd, n_embd_altup}, 0);
  3265. layer.per_layer_proj = create_tensor(tn(LLM_TENSOR_PER_LAYER_PROJ, "weight", i), {n_embd_altup, n_embd}, 0);
  3266. layer.per_layer_post_norm = create_tensor(tn(LLM_TENSOR_PER_LAYER_POST_NORM, "weight", i), {n_embd}, 0);
  3267. layer.altup_correct_coef = create_tensor(tn(LLM_TENSOR_ALTUP_CORRECT_COEF, "weight", i), {n_altup, n_altup}, 0);
  3268. layer.altup_correct_scale = create_tensor(tn(LLM_TENSOR_ALTUP_CORRECT_SCALE, "weight", i), {n_embd}, 0);
  3269. layer.altup_predict_coef = create_tensor(tn(LLM_TENSOR_ALTUP_PREDICT_COEF, "weight", i), {n_altup, n_altup * n_altup}, 0);
  3270. layer.altup_router = create_tensor(tn(LLM_TENSOR_ALTUP_ROUTER, "weight", i), {n_embd, n_altup}, 0);
  3271. layer.altup_router_norm = create_tensor(tn(LLM_TENSOR_ALTUP_ROUTER_NORM, "weight", i), {n_embd}, 0);
  3272. layer.laurel_l = create_tensor(tn(LLM_TENSOR_LAUREL_L, "weight", i), {n_embd, laurel_rank}, 0);
  3273. layer.laurel_r = create_tensor(tn(LLM_TENSOR_LAUREL_R, "weight", i), {laurel_rank, n_embd}, 0);
  3274. layer.laurel_post_norm = create_tensor(tn(LLM_TENSOR_LAUREL_POST_NORM, "weight", i), {n_embd}, 0);
  3275. }
  3276. } break;
  3277. case LLM_ARCH_STARCODER2:
  3278. {
  3279. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  3280. // output
  3281. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  3282. output_norm_b = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd}, 0);
  3283. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
  3284. // if output is NULL, init from the input tok embed
  3285. if (output == NULL) {
  3286. output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
  3287. }
  3288. for (int i = 0; i < n_layer; ++i) {
  3289. auto & layer = layers[i];
  3290. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  3291. layer.attn_norm_b = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd}, 0);
  3292. layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}, 0);
  3293. layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}, 0);
  3294. layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}, 0);
  3295. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
  3296. // optional bias tensors
  3297. layer.bq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd}, 0);
  3298. layer.bk = create_tensor(tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa}, 0);
  3299. layer.bv = create_tensor(tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa}, 0);
  3300. layer.bo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd}, 0);
  3301. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
  3302. layer.ffn_norm_b = create_tensor(tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd}, 0);
  3303. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
  3304. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  3305. // optional bias tensors
  3306. layer.ffn_down_b = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd}, 0);
  3307. layer.ffn_up_b = create_tensor(tn(LLM_TENSOR_FFN_UP , "bias", i), { n_ff}, 0);
  3308. }
  3309. } break;
  3310. case LLM_ARCH_MAMBA:
  3311. {
  3312. const int64_t d_conv = hparams.ssm_d_conv;
  3313. const int64_t d_inner = hparams.ssm_d_inner;
  3314. const int64_t d_state = hparams.ssm_d_state;
  3315. const int64_t dt_rank = hparams.ssm_dt_rank;
  3316. // only an expansion factor of 2 is supported for now
  3317. if (2 * n_embd != d_inner) {
  3318. throw std::runtime_error("only an expansion factor of 2 is supported for now");
  3319. }
  3320. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  3321. // output
  3322. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  3323. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
  3324. // if output is NULL, init from the input tok embed, duplicated to allow offloading
  3325. if (output == NULL) {
  3326. output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
  3327. }
  3328. for (int i = 0; i < n_layer; ++i) {
  3329. auto & layer = layers[i];
  3330. // norm
  3331. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  3332. layer.ssm_in = create_tensor(tn(LLM_TENSOR_SSM_IN, "weight", i), {n_embd, 2*d_inner}, 0);
  3333. layer.ssm_conv1d = create_tensor(tn(LLM_TENSOR_SSM_CONV1D, "weight", i), {d_conv, d_inner}, 0);
  3334. layer.ssm_conv1d_b = create_tensor(tn(LLM_TENSOR_SSM_CONV1D, "bias", i), {d_inner}, 0);
  3335. layer.ssm_x = create_tensor(tn(LLM_TENSOR_SSM_X, "weight", i), {d_inner, dt_rank + 2*d_state}, 0);
  3336. layer.ssm_dt = create_tensor(tn(LLM_TENSOR_SSM_DT, "weight", i), {dt_rank, d_inner}, 0);
  3337. layer.ssm_dt_b = create_tensor(tn(LLM_TENSOR_SSM_DT, "bias", i), {d_inner}, 0);
  3338. // no "weight" suffix for these
  3339. layer.ssm_a = create_tensor(tn(LLM_TENSOR_SSM_A, i), {d_state, d_inner}, 0);
  3340. layer.ssm_d = create_tensor(tn(LLM_TENSOR_SSM_D, i), {d_inner}, 0);
  3341. // out_proj
  3342. layer.ssm_out = create_tensor(tn(LLM_TENSOR_SSM_OUT, "weight", i), {d_inner, n_embd}, 0);
  3343. }
  3344. } break;
  3345. case LLM_ARCH_MAMBA2:
  3346. {
  3347. const int64_t d_conv = hparams.ssm_d_conv;
  3348. const int64_t d_inner = hparams.ssm_d_inner;
  3349. const int64_t d_state = hparams.ssm_d_state;
  3350. const int64_t n_head = hparams.ssm_dt_rank;
  3351. const int64_t n_group = hparams.ssm_n_group;
  3352. const int64_t d_in_proj = 2*d_inner + 2*n_group*d_state + n_head;
  3353. // only an expansion factor of 2 is supported for now
  3354. GGML_ASSERT(2 * n_embd == d_inner);
  3355. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  3356. // output
  3357. {
  3358. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  3359. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
  3360. // if output is NULL, init from the input tok embed, duplicated to allow offloading
  3361. if (output == NULL) {
  3362. output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
  3363. }
  3364. }
  3365. for (int i = 0; i < n_layer; ++i) {
  3366. auto & layer = layers[i];
  3367. // norm
  3368. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  3369. layer.ssm_in = create_tensor(tn(LLM_TENSOR_SSM_IN, "weight", i), {n_embd, d_in_proj}, 0);
  3370. layer.ssm_conv1d = create_tensor(tn(LLM_TENSOR_SSM_CONV1D, "weight", i), {d_conv, d_inner + 2*n_group*d_state}, 0);
  3371. layer.ssm_conv1d_b = create_tensor(tn(LLM_TENSOR_SSM_CONV1D, "bias", i), {d_inner + 2*n_group*d_state}, 0);
  3372. layer.ssm_dt_b = create_tensor(tn(LLM_TENSOR_SSM_DT, "bias", i), {n_head}, 0);
  3373. // no "weight" suffix for these
  3374. layer.ssm_a = create_tensor(tn(LLM_TENSOR_SSM_A, i), {1, n_head}, 0);
  3375. layer.ssm_d = create_tensor(tn(LLM_TENSOR_SSM_D, i), {1, n_head}, 0);
  3376. layer.ssm_norm = create_tensor(tn(LLM_TENSOR_SSM_NORM, "weight", i), {d_inner / n_group, n_group}, 0);
  3377. // out_proj
  3378. layer.ssm_out = create_tensor(tn(LLM_TENSOR_SSM_OUT, "weight", i), {d_inner, n_embd}, 0);
  3379. }
  3380. } break;
  3381. case LLM_ARCH_JAMBA:
  3382. {
  3383. const int64_t d_conv = hparams.ssm_d_conv;
  3384. const int64_t d_inner = hparams.ssm_d_inner;
  3385. const int64_t d_state = hparams.ssm_d_state;
  3386. const int64_t dt_rank = hparams.ssm_dt_rank;
  3387. // only an expansion factor of 2 is supported for now
  3388. GGML_ASSERT(2 * n_embd == d_inner);
  3389. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  3390. // output
  3391. {
  3392. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  3393. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
  3394. // if output is NULL, init from the input tok embed, duplicated to allow offloading
  3395. if (output == NULL) {
  3396. output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
  3397. }
  3398. }
  3399. for (int i = 0; i < n_layer; ++i) {
  3400. const int64_t n_head_kv = hparams.n_head_kv(i);
  3401. const int64_t n_embd_gqa = hparams.n_embd_v_gqa(i);
  3402. auto & layer = layers[i];
  3403. // norm
  3404. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  3405. if (n_head_kv == 0) {
  3406. // Mamba layer
  3407. layer.ssm_in = create_tensor(tn(LLM_TENSOR_SSM_IN, "weight", i), {n_embd, 2*d_inner}, 0);
  3408. layer.ssm_conv1d = create_tensor(tn(LLM_TENSOR_SSM_CONV1D, "weight", i), {d_conv, d_inner}, 0);
  3409. layer.ssm_conv1d_b = create_tensor(tn(LLM_TENSOR_SSM_CONV1D, "bias", i), {d_inner}, 0);
  3410. layer.ssm_x = create_tensor(tn(LLM_TENSOR_SSM_X, "weight", i), {d_inner, dt_rank + 2*d_state}, 0);
  3411. layer.ssm_dt_norm = create_tensor(tn(LLM_TENSOR_SSM_DT_NORM, "weight", i), {dt_rank}, 0);
  3412. layer.ssm_dt = create_tensor(tn(LLM_TENSOR_SSM_DT, "weight", i), {dt_rank, d_inner}, 0);
  3413. layer.ssm_dt_b = create_tensor(tn(LLM_TENSOR_SSM_DT, "bias", i), {d_inner}, 0);
  3414. layer.ssm_b_norm = create_tensor(tn(LLM_TENSOR_SSM_B_NORM, "weight", i), {d_state}, 0);
  3415. layer.ssm_c_norm = create_tensor(tn(LLM_TENSOR_SSM_C_NORM, "weight", i), {d_state}, 0);
  3416. // no "weight" suffix for these
  3417. layer.ssm_a = create_tensor(tn(LLM_TENSOR_SSM_A, i), {d_state, d_inner}, 0);
  3418. layer.ssm_d = create_tensor(tn(LLM_TENSOR_SSM_D, i), {d_inner}, 0);
  3419. // out_proj
  3420. layer.ssm_out = create_tensor(tn(LLM_TENSOR_SSM_OUT, "weight", i), {d_inner, n_embd}, 0);
  3421. } else {
  3422. // Attention layers
  3423. layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}, 0);
  3424. layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}, 0);
  3425. layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}, 0);
  3426. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
  3427. }
  3428. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
  3429. layer.ffn_gate_inp = create_tensor(tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert}, TENSOR_NOT_REQUIRED);
  3430. if (layer.ffn_gate_inp) {
  3431. // MoE
  3432. layer.ffn_gate_exps = create_tensor(tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), {n_embd, n_ff, n_expert}, 0);
  3433. layer.ffn_down_exps = create_tensor(tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), {n_ff, n_embd, n_expert}, 0);
  3434. layer.ffn_up_exps = create_tensor(tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), {n_embd, n_ff, n_expert}, 0);
  3435. } else {
  3436. // FFN (no MoE)
  3437. layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
  3438. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd}, 0);
  3439. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  3440. }
  3441. }
  3442. } break;
  3443. case LLM_ARCH_GRANITE_HYBRID:
  3444. {
  3445. // mamba2 Mixer SSM params
  3446. // NOTE: int64_t for tensor dimensions
  3447. const int64_t d_conv = hparams.ssm_d_conv;
  3448. const int64_t d_inner = hparams.ssm_d_inner;
  3449. const int64_t d_state = hparams.ssm_d_state;
  3450. const int64_t n_ssm_head = hparams.ssm_dt_rank;
  3451. const int64_t n_group = hparams.ssm_n_group;
  3452. const int64_t d_in_proj = 2*d_inner + 2*n_group*d_state + n_ssm_head;
  3453. // only an expansion factor of 2 is supported for now
  3454. GGML_ASSERT(2 * n_embd == d_inner);
  3455. // embeddings
  3456. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  3457. // output
  3458. {
  3459. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  3460. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
  3461. // if output is NULL, init from the input tok embed, duplicated to allow offloading
  3462. if (output == NULL) {
  3463. output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
  3464. }
  3465. }
  3466. for (int i = 0; i < n_layer; ++i) {
  3467. auto & layer = layers[i];
  3468. // norm
  3469. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  3470. if (hparams.is_recurrent(i)) {
  3471. // ssm layers
  3472. layer.ssm_in = create_tensor(tn(LLM_TENSOR_SSM_IN, "weight", i), {n_embd, d_in_proj}, 0);
  3473. layer.ssm_conv1d = create_tensor(tn(LLM_TENSOR_SSM_CONV1D, "weight", i), {d_conv, d_inner + 2*n_group*d_state}, 0);
  3474. layer.ssm_conv1d_b = create_tensor(tn(LLM_TENSOR_SSM_CONV1D, "bias", i), {d_inner + 2*n_group*d_state}, TENSOR_NOT_REQUIRED);
  3475. layer.ssm_dt_b = create_tensor(tn(LLM_TENSOR_SSM_DT, "bias", i), {n_ssm_head}, 0);
  3476. // no "weight" suffix for these
  3477. layer.ssm_a = create_tensor(tn(LLM_TENSOR_SSM_A, i), {1, n_ssm_head}, 0);
  3478. layer.ssm_d = create_tensor(tn(LLM_TENSOR_SSM_D, i), {1, n_ssm_head}, 0);
  3479. layer.ssm_norm = create_tensor(tn(LLM_TENSOR_SSM_NORM, "weight", i), {d_inner / n_group, n_group}, 0);
  3480. // out_proj
  3481. layer.ssm_out = create_tensor(tn(LLM_TENSOR_SSM_OUT, "weight", i), {d_inner, n_embd}, 0);
  3482. } else {
  3483. // attention layers (with optional bias)
  3484. const int64_t n_head_i = hparams.n_head(i);
  3485. const int64_t n_embd_k_gqa_i = hparams.n_embd_k_gqa(i);
  3486. const int64_t n_embd_v_gqa_i = hparams.n_embd_v_gqa(i);
  3487. layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd_head_k * n_head_i}, 0);
  3488. layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_k_gqa_i}, 0);
  3489. layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_v_gqa_i}, 0);
  3490. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd_head_k * n_head_i, n_embd}, 0);
  3491. layer.bq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd}, TENSOR_NOT_REQUIRED);
  3492. layer.bk = create_tensor(tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_k_gqa_i}, TENSOR_NOT_REQUIRED);
  3493. layer.bv = create_tensor(tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_v_gqa_i}, TENSOR_NOT_REQUIRED);
  3494. layer.bo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd}, TENSOR_NOT_REQUIRED);
  3495. }
  3496. // feed forward (w/ optional biases)
  3497. if (n_expert > 0) {
  3498. // MoE FFN
  3499. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
  3500. layer.rope_freqs = create_tensor(tn(LLM_TENSOR_ROPE_FREQS, "weight", i), {n_rot/2}, TENSOR_NOT_REQUIRED | (i != 0 ? TENSOR_DUPLICATED : 0));
  3501. layer.ffn_gate_inp = create_tensor(tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert}, 0);
  3502. layer.ffn_gate_exps = create_tensor(tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), {n_embd, n_ff, n_expert}, TENSOR_NOT_REQUIRED);
  3503. layer.ffn_down_exps = create_tensor(tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), { n_ff, n_embd, n_expert}, 0);
  3504. layer.ffn_up_exps = create_tensor(tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), {n_embd, n_ff, n_expert}, 0);
  3505. // For Granite MoE Shared
  3506. if (hparams.n_ff_shexp > 0) {
  3507. layer.ffn_gate_shexp = create_tensor(tn(LLM_TENSOR_FFN_GATE_SHEXP, "weight", i), {n_embd, hparams.n_ff_shexp}, 0);
  3508. layer.ffn_up_shexp = create_tensor(tn(LLM_TENSOR_FFN_UP_SHEXP, "weight", i), {n_embd, hparams.n_ff_shexp}, 0);
  3509. layer.ffn_down_shexp = create_tensor(tn(LLM_TENSOR_FFN_DOWN_SHEXP, "weight", i), {hparams.n_ff_shexp, n_embd}, 0);
  3510. }
  3511. } else {
  3512. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
  3513. layer.rope_freqs = create_tensor(tn(LLM_TENSOR_ROPE_FREQS, "weight", i), {n_rot/2}, TENSOR_NOT_REQUIRED | (i != 0 ? TENSOR_DUPLICATED : 0));
  3514. layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
  3515. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
  3516. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  3517. layer.ffn_gate_b = create_tensor(tn(LLM_TENSOR_FFN_GATE, "bias", i), {n_ff}, TENSOR_NOT_REQUIRED);
  3518. layer.ffn_down_b = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd}, TENSOR_NOT_REQUIRED);
  3519. layer.ffn_up_b = create_tensor(tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff}, TENSOR_NOT_REQUIRED);
  3520. }
  3521. }
  3522. } break;
  3523. case LLM_ARCH_XVERSE:
  3524. {
  3525. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  3526. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  3527. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, 0);
  3528. for (int i = 0; i < n_layer; ++i) {
  3529. auto & layer = layers[i];
  3530. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  3531. layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}, 0);
  3532. layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}, 0);
  3533. layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}, 0);
  3534. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
  3535. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
  3536. layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
  3537. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
  3538. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  3539. }
  3540. } break;
  3541. case LLM_ARCH_COMMAND_R:
  3542. {
  3543. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  3544. // output
  3545. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  3546. // init output from the input tok embed
  3547. output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
  3548. for (int i = 0; i < n_layer; ++i) {
  3549. auto & layer = layers[i];
  3550. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  3551. if (n_layer >= 64){
  3552. layer.attn_q_norm = create_tensor(tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), {n_embd_head_k, n_head}, 0);
  3553. layer.attn_k_norm = create_tensor(tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), {n_embd_head_k, n_head_kv}, 0);
  3554. }
  3555. layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}, 0);
  3556. layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}, 0);
  3557. layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}, 0);
  3558. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
  3559. layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
  3560. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
  3561. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  3562. }
  3563. } break;
  3564. case LLM_ARCH_COHERE2:
  3565. {
  3566. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), { n_embd, n_vocab }, 0);
  3567. // output
  3568. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), { n_embd }, 0);
  3569. // init output from the input tok embed
  3570. output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), { n_embd, n_vocab },
  3571. TENSOR_DUPLICATED);
  3572. for (int i = 0; i < n_layer; ++i) {
  3573. auto & layer = layers[i];
  3574. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), { n_embd }, 0);
  3575. layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), { n_embd, n_embd }, 0);
  3576. layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), { n_embd, n_embd_gqa }, 0);
  3577. layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), { n_embd, n_embd_gqa }, 0);
  3578. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), { n_embd, n_embd }, 0);
  3579. layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), { n_embd, n_ff }, 0);
  3580. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd }, 0);
  3581. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), { n_embd, n_ff }, 0);
  3582. }
  3583. }
  3584. break;
  3585. case LLM_ARCH_OLMO: // adapted from LLM_ARCH_LLAMA with norm params removed
  3586. {
  3587. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  3588. // output
  3589. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
  3590. // if output is NULL, init from the input tok embed
  3591. if (output == NULL) {
  3592. output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
  3593. }
  3594. for (int i = 0; i < n_layer; ++i) {
  3595. auto & layer = layers[i];
  3596. layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}, 0);
  3597. layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}, 0);
  3598. layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}, 0);
  3599. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
  3600. layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
  3601. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
  3602. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  3603. }
  3604. } break;
  3605. case LLM_ARCH_OLMO2:
  3606. {
  3607. const int64_t n_embd_head = n_embd / n_head;
  3608. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  3609. // output
  3610. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  3611. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, 0);
  3612. for (int i = 0; i < n_layer; ++i) {
  3613. auto & layer = layers[i];
  3614. layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}, 0);
  3615. layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}, 0);
  3616. layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}, 0);
  3617. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
  3618. layer.attn_q_norm = create_tensor(tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), {n_embd}, 0);
  3619. layer.attn_k_norm = create_tensor(tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), {n_head_kv * n_embd_head}, 0);
  3620. layer.attn_post_norm = create_tensor(tn(LLM_TENSOR_ATTN_POST_NORM, "weight", i), {n_embd}, 0);
  3621. layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
  3622. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  3623. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
  3624. layer.ffn_post_norm = create_tensor(tn(LLM_TENSOR_FFN_POST_NORM, "weight", i), {n_embd}, 0);
  3625. }
  3626. } break;
  3627. case LLM_ARCH_SEED_OSS:
  3628. {
  3629. const uint32_t head_dim = hparams.n_embd_head_k;
  3630. const int64_t n_qo_dim = n_head * head_dim;
  3631. const int64_t n_kv_dim = n_head_kv * head_dim;
  3632. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  3633. // output
  3634. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  3635. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
  3636. // if output is NULL, init from the input tok embed
  3637. if (output == NULL) {
  3638. output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
  3639. }
  3640. for (int i = 0; i < n_layer; ++i) {
  3641. auto & layer = layers[i];
  3642. layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_qo_dim}, 0);
  3643. layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_kv_dim}, 0);
  3644. layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_kv_dim}, 0);
  3645. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_qo_dim, n_embd}, 0);
  3646. layer.bq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_qo_dim}, TENSOR_NOT_REQUIRED);
  3647. layer.bk = create_tensor(tn(LLM_TENSOR_ATTN_K, "bias", i), {n_kv_dim}, TENSOR_NOT_REQUIRED);
  3648. layer.bv = create_tensor(tn(LLM_TENSOR_ATTN_V, "bias", i), {n_kv_dim}, TENSOR_NOT_REQUIRED);
  3649. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  3650. layer.attn_post_norm = create_tensor(tn(LLM_TENSOR_ATTN_POST_NORM, "weight", i), {n_embd}, 0);
  3651. layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
  3652. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  3653. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
  3654. }
  3655. } break;
  3656. case LLM_ARCH_OLMOE:
  3657. {
  3658. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  3659. // output
  3660. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  3661. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, 0);
  3662. for (int i = 0; i < n_layer; ++i) {
  3663. auto & layer = layers[i];
  3664. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  3665. layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}, 0);
  3666. layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}, 0);
  3667. layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}, 0);
  3668. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
  3669. layer.attn_q_norm = create_tensor(tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), {n_embd}, 0);
  3670. layer.attn_k_norm = create_tensor(tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), {n_embd}, 0);
  3671. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
  3672. layer.ffn_gate_inp = create_tensor(tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert}, 0);
  3673. if (n_expert == 0) {
  3674. throw std::runtime_error("n_expert must be > 0");
  3675. }
  3676. if (n_expert_used == 0) {
  3677. throw std::runtime_error("n_expert_used must be > 0");
  3678. }
  3679. // MoE branch
  3680. layer.ffn_gate_exps = create_tensor(tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), {n_embd, n_ff, n_expert}, 0);
  3681. layer.ffn_down_exps = create_tensor(tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), {n_ff, n_embd, n_expert}, 0);
  3682. layer.ffn_up_exps = create_tensor(tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), {n_embd, n_ff, n_expert}, 0);
  3683. }
  3684. } break;
  3685. case LLM_ARCH_OPENELM:
  3686. {
  3687. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  3688. // output
  3689. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  3690. // init output from the input tok embed
  3691. output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
  3692. for (int i = 0; i < n_layer; ++i) {
  3693. const int64_t n_head = hparams.n_head(i);
  3694. const int64_t n_head_qkv = 2*hparams.n_head_kv(i) + n_head;
  3695. const int64_t n_ff = hparams.n_ff(i);
  3696. auto & layer = layers[i];
  3697. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  3698. layer.wqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_head_qkv*n_embd_head_k}, 0);
  3699. layer.attn_q_norm = create_tensor(tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), {n_embd_head_k}, 0);
  3700. layer.attn_k_norm = create_tensor(tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), {n_embd_head_k}, 0);
  3701. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_head*n_embd_head_k, n_embd}, 0);
  3702. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
  3703. layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
  3704. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd}, 0);
  3705. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  3706. }
  3707. } break;
  3708. case LLM_ARCH_GPTNEOX:
  3709. {
  3710. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  3711. // output
  3712. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  3713. output_norm_b = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd}, 0);
  3714. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, 0);
  3715. for (int i = 0; i < n_layer; ++i) {
  3716. auto & layer = layers[i];
  3717. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  3718. layer.attn_norm_b = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd}, 0);
  3719. layer.wqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa}, 0);
  3720. layer.bqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd + 2*n_embd_gqa}, 0);
  3721. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
  3722. layer.bo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd}, 0);
  3723. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
  3724. layer.ffn_norm_b = create_tensor(tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd}, 0);
  3725. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd}, 0);
  3726. layer.ffn_down_b = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd}, 0);
  3727. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  3728. layer.ffn_up_b = create_tensor(tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff}, 0);
  3729. }
  3730. } break;
  3731. case LLM_ARCH_ARCTIC:
  3732. {
  3733. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  3734. // output
  3735. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  3736. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
  3737. // if output is NULL, init from the input tok embed
  3738. if (output == NULL) {
  3739. output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
  3740. }
  3741. for (int i = 0; i < n_layer; ++i) {
  3742. auto & layer = layers[i];
  3743. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  3744. layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}, 0);
  3745. layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}, 0);
  3746. layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}, 0);
  3747. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
  3748. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
  3749. layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_embd}, 0);
  3750. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_embd, n_embd}, 0);
  3751. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_embd}, 0);
  3752. layer.ffn_gate_inp = create_tensor(tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert}, 0);
  3753. layer.ffn_norm_exps = create_tensor(tn(LLM_TENSOR_FFN_NORM_EXPS, "weight", i), {n_embd}, 0);
  3754. layer.ffn_gate_exps = create_tensor(tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), {n_embd, n_ff, n_expert}, false);
  3755. layer.ffn_down_exps = create_tensor(tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), { n_ff, n_embd, n_expert}, 0);
  3756. layer.ffn_up_exps = create_tensor(tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), {n_embd, n_ff, n_expert}, 0);
  3757. }
  3758. } break;
  3759. case LLM_ARCH_DEEPSEEK:
  3760. {
  3761. const int64_t n_ff_exp = hparams.n_ff_exp;
  3762. const int64_t n_expert_shared = hparams.n_expert_shared;
  3763. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  3764. // output
  3765. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  3766. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, 0);
  3767. for (int i = 0; i < n_layer; ++i) {
  3768. auto & layer = layers[i];
  3769. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  3770. layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}, 0);
  3771. layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}, 0);
  3772. layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}, 0);
  3773. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
  3774. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
  3775. if (i < (int) hparams.n_layer_dense_lead) {
  3776. layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
  3777. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
  3778. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  3779. } else {
  3780. layer.ffn_gate_inp = create_tensor(tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert}, 0);
  3781. if (n_expert == 0) {
  3782. throw std::runtime_error("n_expert must be > 0");
  3783. }
  3784. if (n_expert_used == 0) {
  3785. throw std::runtime_error("n_expert_used must be > 0");
  3786. }
  3787. // MoE branch
  3788. layer.ffn_gate_exps = create_tensor(tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), { n_embd, n_ff_exp, n_expert}, 0);
  3789. layer.ffn_down_exps = create_tensor(tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), {n_ff_exp, n_embd, n_expert}, 0);
  3790. layer.ffn_up_exps = create_tensor(tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), { n_embd, n_ff_exp, n_expert}, 0);
  3791. // Shared expert branch
  3792. layer.ffn_gate_shexp = create_tensor(tn(LLM_TENSOR_FFN_GATE_SHEXP, "weight", i), {n_embd, n_ff_exp * n_expert_shared}, 0);
  3793. layer.ffn_down_shexp = create_tensor(tn(LLM_TENSOR_FFN_DOWN_SHEXP, "weight", i), { n_ff_exp * n_expert_shared, n_embd}, 0);
  3794. layer.ffn_up_shexp = create_tensor(tn(LLM_TENSOR_FFN_UP_SHEXP, "weight", i), {n_embd, n_ff_exp * n_expert_shared}, 0);
  3795. }
  3796. }
  3797. } break;
  3798. case LLM_ARCH_DEEPSEEK2:
  3799. {
  3800. const bool is_lite = (hparams.n_layer == 27);
  3801. const bool is_mla = (hparams.n_embd_head_k_mla != 0 && hparams.n_embd_head_v_mla != 0);
  3802. // note: these are the actual head sizes you get when treating as MHA or after "decompression" using wv_b for MLA
  3803. const int64_t n_embd_head_k_mla = is_mla ? hparams.n_embd_head_k_mla : hparams.n_embd_head_k;
  3804. const int64_t n_embd_head_v_mla = is_mla ? hparams.n_embd_head_v_mla : hparams.n_embd_head_v;
  3805. const int64_t n_embd_head_qk_rope = hparams.n_rot;
  3806. const int64_t n_embd_head_qk_nope = n_embd_head_k_mla - n_embd_head_qk_rope;
  3807. const int64_t q_lora_rank = hparams.n_lora_q;
  3808. const int64_t kv_lora_rank = hparams.n_lora_kv;
  3809. const int64_t n_ff_exp = hparams.n_ff_exp;
  3810. const int64_t n_expert_shared = hparams.n_expert_shared;
  3811. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  3812. // output
  3813. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  3814. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, 0);
  3815. for (int i = 0; i < n_layer; ++i) {
  3816. auto & layer = layers[i];
  3817. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  3818. if (!is_lite) {
  3819. layer.attn_q_a_norm = create_tensor(tn(LLM_TENSOR_ATTN_Q_A_NORM, "weight", i), {q_lora_rank}, 0);
  3820. }
  3821. layer.attn_kv_a_norm = create_tensor(tn(LLM_TENSOR_ATTN_KV_A_NORM, "weight", i), {kv_lora_rank}, 0);
  3822. if (!is_lite) {
  3823. layer.wq_a = create_tensor(tn(LLM_TENSOR_ATTN_Q_A, "weight", i), {n_embd, q_lora_rank}, 0);
  3824. layer.wq_b = create_tensor(tn(LLM_TENSOR_ATTN_Q_B, "weight", i), {q_lora_rank, n_head * n_embd_head_k_mla}, 0);
  3825. } else {
  3826. layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_head * n_embd_head_k_mla}, 0);
  3827. }
  3828. layer.wkv_a_mqa = create_tensor(tn(LLM_TENSOR_ATTN_KV_A_MQA, "weight", i), {n_embd, kv_lora_rank + n_embd_head_qk_rope}, 0);
  3829. // note: only old legacy GGUF files will have the unsplit wkv_b tensor in
  3830. if (is_mla) {
  3831. layer.wk_b = create_tensor(tn(LLM_TENSOR_ATTN_K_B, "weight", i), {n_embd_head_qk_nope, kv_lora_rank, n_head}, 0);
  3832. layer.wv_b = create_tensor(tn(LLM_TENSOR_ATTN_V_B, "weight", i), {kv_lora_rank, n_embd_head_v_mla, n_head}, 0);
  3833. } else {
  3834. layer.wkv_b = create_tensor(tn(LLM_TENSOR_ATTN_KV_B, "weight", i), {kv_lora_rank, n_head * (n_embd_head_qk_nope + n_embd_head_v_mla)}, 0);
  3835. }
  3836. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_head * n_embd_head_v_mla, n_embd}, 0);
  3837. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
  3838. if (i < (int) hparams.n_layer_dense_lead) {
  3839. layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
  3840. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
  3841. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  3842. } else {
  3843. layer.ffn_gate_inp = create_tensor(tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert}, 0);
  3844. layer.ffn_exp_probs_b = create_tensor(tn(LLM_TENSOR_FFN_EXP_PROBS_B, "bias", i), {n_expert}, TENSOR_NOT_REQUIRED);
  3845. if (n_expert == 0) {
  3846. throw std::runtime_error("n_expert must be > 0");
  3847. }
  3848. if (n_expert_used == 0) {
  3849. throw std::runtime_error("n_expert_used must be > 0");
  3850. }
  3851. // MoE branch
  3852. layer.ffn_gate_exps = create_tensor(tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), { n_embd, n_ff_exp, n_expert}, 0);
  3853. layer.ffn_down_exps = create_tensor(tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), {n_ff_exp, n_embd, n_expert}, 0);
  3854. layer.ffn_up_exps = create_tensor(tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), { n_embd, n_ff_exp, n_expert}, 0);
  3855. // Shared expert branch
  3856. layer.ffn_gate_shexp = create_tensor(tn(LLM_TENSOR_FFN_GATE_SHEXP, "weight", i), {n_embd, n_ff_exp * n_expert_shared}, 0);
  3857. layer.ffn_down_shexp = create_tensor(tn(LLM_TENSOR_FFN_DOWN_SHEXP, "weight", i), { n_ff_exp * n_expert_shared, n_embd}, 0);
  3858. layer.ffn_up_shexp = create_tensor(tn(LLM_TENSOR_FFN_UP_SHEXP, "weight", i), {n_embd, n_ff_exp * n_expert_shared}, 0);
  3859. }
  3860. }
  3861. } break;
  3862. case LLM_ARCH_PLM:
  3863. {
  3864. const int64_t n_embd_head_qk_rope = hparams.n_rot;
  3865. const int64_t n_embd_head_qk_nope = hparams.n_embd_head_k - hparams.n_rot;
  3866. const int64_t kv_lora_rank = hparams.n_lora_kv;
  3867. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  3868. // output
  3869. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  3870. // output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, 0);
  3871. output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
  3872. for (int i = 0; i < n_layer; ++i) {
  3873. auto & layer = layers[i];
  3874. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  3875. layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd_head_k * n_head}, 0);
  3876. layer.wkv_a_mqa = create_tensor(tn(LLM_TENSOR_ATTN_KV_A_MQA, "weight", i), {n_embd, kv_lora_rank + (n_embd_head_qk_rope)}, 0);
  3877. layer.attn_kv_a_norm = create_tensor(tn(LLM_TENSOR_ATTN_KV_A_NORM, "weight", i), {kv_lora_rank}, 0);
  3878. layer.wkv_b = create_tensor(tn(LLM_TENSOR_ATTN_KV_B, "weight", i), {kv_lora_rank, n_head * (n_embd_head_qk_nope + n_embd_head_v)}, 0);
  3879. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), { n_head * ( n_embd_head_v), n_embd}, 0);
  3880. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
  3881. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
  3882. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  3883. }
  3884. } break;
  3885. case LLM_ARCH_BITNET:
  3886. {
  3887. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  3888. // output
  3889. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  3890. for (int i = 0; i < n_layer; ++i) {
  3891. auto & layer = layers[i];
  3892. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  3893. layer.attn_sub_norm = create_tensor(tn(LLM_TENSOR_ATTN_SUB_NORM, "weight", i), {n_embd}, 0);
  3894. layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}, 0);
  3895. layer.wq_scale = create_tensor(tn(LLM_TENSOR_ATTN_Q, "scale", i), {1}, TENSOR_NOT_REQUIRED);
  3896. layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}, 0);
  3897. layer.wk_scale = create_tensor(tn(LLM_TENSOR_ATTN_K, "scale", i), {1}, TENSOR_NOT_REQUIRED);
  3898. layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}, 0);
  3899. layer.wv_scale = create_tensor(tn(LLM_TENSOR_ATTN_V, "scale", i), {1}, TENSOR_NOT_REQUIRED);
  3900. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
  3901. layer.wo_scale = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "scale", i), {1}, TENSOR_NOT_REQUIRED);
  3902. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
  3903. layer.ffn_sub_norm = create_tensor(tn(LLM_TENSOR_FFN_SUB_NORM, "weight", i), {n_ff}, 0);
  3904. layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
  3905. layer.ffn_gate_scale = create_tensor(tn(LLM_TENSOR_FFN_GATE, "scale", i), {1}, TENSOR_NOT_REQUIRED);
  3906. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd}, 0);
  3907. layer.ffn_down_scale = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "scale", i), {1}, TENSOR_NOT_REQUIRED);
  3908. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  3909. layer.ffn_up_scale = create_tensor(tn(LLM_TENSOR_FFN_UP, "scale", i), {1}, TENSOR_NOT_REQUIRED);
  3910. }
  3911. } break;
  3912. case LLM_ARCH_T5:
  3913. {
  3914. const auto n_rel_attn_bkts = hparams.n_rel_attn_bkts;
  3915. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  3916. // output
  3917. output_norm_enc = create_tensor(tn(LLM_TENSOR_ENC_OUTPUT_NORM, "weight"), {n_embd}, 0);
  3918. output_norm = create_tensor(tn(LLM_TENSOR_DEC_OUTPUT_NORM, "weight"), {n_embd}, 0);
  3919. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
  3920. // if output is NULL, init from the input tok embed
  3921. if (output == NULL) {
  3922. output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
  3923. }
  3924. // n_layer: number of encoder_layers
  3925. // dec_n_layer: number of decoder_layers
  3926. const int dec_n_layer = hparams.dec_n_layer;
  3927. if (dec_n_layer > n_layer) {
  3928. layers.resize(dec_n_layer);
  3929. }
  3930. // load encoder layers
  3931. for (int i = 0; i < n_layer; ++i) {
  3932. auto & layer = layers[i];
  3933. layer.attn_norm_enc = create_tensor(tn(LLM_TENSOR_ENC_ATTN_NORM, "weight", i), {n_embd}, 0);
  3934. layer.attn_rel_b_enc = create_tensor(tn(LLM_TENSOR_ENC_ATTN_REL_B, "weight", i), {n_head, n_rel_attn_bkts}, TENSOR_NOT_REQUIRED);
  3935. layer.wq_enc = create_tensor(tn(LLM_TENSOR_ENC_ATTN_Q, "weight", i), {n_embd, n_embd_k_gqa}, 0);
  3936. layer.wk_enc = create_tensor(tn(LLM_TENSOR_ENC_ATTN_K, "weight", i), {n_embd, n_embd_k_gqa}, 0);
  3937. layer.wv_enc = create_tensor(tn(LLM_TENSOR_ENC_ATTN_V, "weight", i), {n_embd, n_embd_v_gqa}, 0);
  3938. layer.wo_enc = create_tensor(tn(LLM_TENSOR_ENC_ATTN_OUT, "weight", i), {n_embd_v_gqa, n_embd}, 0);
  3939. layer.ffn_norm_enc = create_tensor(tn(LLM_TENSOR_ENC_FFN_NORM, "weight", i), {n_embd}, 0);
  3940. layer.ffn_gate_enc = create_tensor(tn(LLM_TENSOR_ENC_FFN_GATE, "weight", i), {n_embd, n_ff}, TENSOR_NOT_REQUIRED);
  3941. layer.ffn_down_enc = create_tensor(tn(LLM_TENSOR_ENC_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
  3942. layer.ffn_up_enc = create_tensor(tn(LLM_TENSOR_ENC_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  3943. }
  3944. // load decoder layers
  3945. for (int i = 0; i < dec_n_layer; ++i) {
  3946. auto & layer = layers[i];
  3947. layer.attn_norm = create_tensor(tn(LLM_TENSOR_DEC_ATTN_NORM, "weight", i), {n_embd}, 0);
  3948. layer.attn_rel_b = create_tensor(tn(LLM_TENSOR_DEC_ATTN_REL_B, "weight", i), {n_head, n_rel_attn_bkts}, TENSOR_NOT_REQUIRED);
  3949. layer.wq = create_tensor(tn(LLM_TENSOR_DEC_ATTN_Q, "weight", i), {n_embd, n_embd_k_gqa}, 0);
  3950. layer.wk = create_tensor(tn(LLM_TENSOR_DEC_ATTN_K, "weight", i), {n_embd, n_embd_k_gqa}, 0);
  3951. layer.wv = create_tensor(tn(LLM_TENSOR_DEC_ATTN_V, "weight", i), {n_embd, n_embd_v_gqa}, 0);
  3952. layer.wo = create_tensor(tn(LLM_TENSOR_DEC_ATTN_OUT, "weight", i), {n_embd_v_gqa, n_embd}, 0);
  3953. layer.attn_norm_cross = create_tensor(tn(LLM_TENSOR_DEC_CROSS_ATTN_NORM, "weight", i), {n_embd}, 0);
  3954. // this tensor seems to be unused in HF transformers implementation
  3955. layer.attn_rel_b_cross = create_tensor(tn(LLM_TENSOR_DEC_CROSS_ATTN_REL_B, "weight", i), {n_head, n_rel_attn_bkts}, TENSOR_NOT_REQUIRED);
  3956. layer.wq_cross = create_tensor(tn(LLM_TENSOR_DEC_CROSS_ATTN_Q, "weight", i), {n_embd, n_embd_k_gqa}, 0);
  3957. layer.wk_cross = create_tensor(tn(LLM_TENSOR_DEC_CROSS_ATTN_K, "weight", i), {n_embd, n_embd_k_gqa}, 0);
  3958. layer.wv_cross = create_tensor(tn(LLM_TENSOR_DEC_CROSS_ATTN_V, "weight", i), {n_embd, n_embd_v_gqa}, 0);
  3959. layer.wo_cross = create_tensor(tn(LLM_TENSOR_DEC_CROSS_ATTN_OUT, "weight", i), {n_embd_v_gqa, n_embd}, 0);
  3960. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_DEC_FFN_NORM, "weight", i), {n_embd}, 0);
  3961. layer.ffn_gate = create_tensor(tn(LLM_TENSOR_DEC_FFN_GATE, "weight", i), {n_embd, n_ff}, TENSOR_NOT_REQUIRED);
  3962. layer.ffn_down = create_tensor(tn(LLM_TENSOR_DEC_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
  3963. layer.ffn_up = create_tensor(tn(LLM_TENSOR_DEC_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  3964. }
  3965. } break;
  3966. case LLM_ARCH_T5ENCODER:
  3967. {
  3968. const auto n_rel_attn_bkts = hparams.n_rel_attn_bkts;
  3969. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  3970. // output
  3971. output_norm_enc = create_tensor(tn(LLM_TENSOR_ENC_OUTPUT_NORM, "weight"), {n_embd}, 0);
  3972. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
  3973. // if output is NULL, init from the input tok embed
  3974. if (output == NULL) {
  3975. output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
  3976. }
  3977. for (int i = 0; i < n_layer; ++i) {
  3978. auto & layer = layers[i];
  3979. layer.attn_norm_enc = create_tensor(tn(LLM_TENSOR_ENC_ATTN_NORM, "weight", i), {n_embd}, 0);
  3980. layer.attn_rel_b_enc = create_tensor(tn(LLM_TENSOR_ENC_ATTN_REL_B, "weight", i), {n_head, n_rel_attn_bkts}, TENSOR_NOT_REQUIRED);
  3981. layer.wq_enc = create_tensor(tn(LLM_TENSOR_ENC_ATTN_Q, "weight", i), {n_embd, n_embd_k_gqa}, 0);
  3982. layer.wk_enc = create_tensor(tn(LLM_TENSOR_ENC_ATTN_K, "weight", i), {n_embd, n_embd_k_gqa}, 0);
  3983. layer.wv_enc = create_tensor(tn(LLM_TENSOR_ENC_ATTN_V, "weight", i), {n_embd, n_embd_v_gqa}, 0);
  3984. layer.wo_enc = create_tensor(tn(LLM_TENSOR_ENC_ATTN_OUT, "weight", i), {n_embd_v_gqa, n_embd}, 0);
  3985. layer.ffn_norm_enc = create_tensor(tn(LLM_TENSOR_ENC_FFN_NORM, "weight", i), {n_embd}, 0);
  3986. layer.ffn_gate_enc = create_tensor(tn(LLM_TENSOR_ENC_FFN_GATE, "weight", i), {n_embd, n_ff}, TENSOR_NOT_REQUIRED);
  3987. layer.ffn_down_enc = create_tensor(tn(LLM_TENSOR_ENC_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
  3988. layer.ffn_up_enc = create_tensor(tn(LLM_TENSOR_ENC_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  3989. }
  3990. } break;
  3991. case LLM_ARCH_JAIS:
  3992. {
  3993. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  3994. // output
  3995. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  3996. output_norm_b = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd}, 0);
  3997. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, 0);
  3998. for (int i = 0; i < n_layer; ++i) {
  3999. auto & layer = layers[i];
  4000. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  4001. layer.attn_norm_b = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd}, 0);
  4002. layer.wqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa}, 0);
  4003. layer.bqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd + 2*n_embd_gqa}, 0);
  4004. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
  4005. layer.bo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd}, 0);
  4006. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
  4007. layer.ffn_norm_b = create_tensor(tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd}, 0);
  4008. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd}, 0);
  4009. layer.ffn_down_b = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd}, 0);
  4010. layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
  4011. layer.ffn_gate_b = create_tensor(tn(LLM_TENSOR_FFN_GATE, "bias", i), {n_ff}, 0);
  4012. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  4013. layer.ffn_up_b = create_tensor(tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff}, 0);
  4014. }
  4015. } break;
  4016. case LLM_ARCH_CHATGLM:
  4017. {
  4018. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  4019. // output
  4020. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  4021. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
  4022. // if output is NULL, init from the input tok embed
  4023. if (output == NULL) {
  4024. output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
  4025. }
  4026. for (int i = 0; i < n_layer; ++i) {
  4027. auto & layer = layers[i];
  4028. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  4029. layer.wqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa}, TENSOR_NOT_REQUIRED);
  4030. layer.bqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd + 2*n_embd_gqa}, TENSOR_NOT_REQUIRED);
  4031. if (layer.wqkv == nullptr) {
  4032. layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd_head_k * n_head}, 0);
  4033. layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_k_gqa}, 0);
  4034. layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_v_gqa}, 0);
  4035. layer.bq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd}, TENSOR_NOT_REQUIRED);
  4036. layer.bk = create_tensor(tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa}, TENSOR_NOT_REQUIRED);
  4037. layer.bv = create_tensor(tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa}, TENSOR_NOT_REQUIRED);
  4038. }
  4039. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
  4040. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
  4041. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff * 2}, 0);
  4042. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd}, 0);
  4043. }
  4044. } break;
  4045. case LLM_ARCH_GLM4:
  4046. {
  4047. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  4048. // output
  4049. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  4050. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
  4051. // if output is NULL, init from the input tok embed
  4052. if (output == NULL) {
  4053. output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
  4054. }
  4055. for (int i = 0; i < n_layer; ++i) {
  4056. auto & layer = layers[i];
  4057. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  4058. layer.wqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa}, TENSOR_NOT_REQUIRED);
  4059. layer.bqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd + 2*n_embd_gqa}, TENSOR_NOT_REQUIRED);
  4060. if (layer.wqkv == nullptr) {
  4061. layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd_head_k * n_head}, 0);
  4062. layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_k_gqa}, 0);
  4063. layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_v_gqa}, 0);
  4064. layer.bq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd}, TENSOR_NOT_REQUIRED);
  4065. layer.bk = create_tensor(tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa}, TENSOR_NOT_REQUIRED);
  4066. layer.bv = create_tensor(tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa}, TENSOR_NOT_REQUIRED);
  4067. }
  4068. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
  4069. layer.attn_post_norm = create_tensor(tn(LLM_TENSOR_ATTN_POST_NORM, "weight", i), {n_embd}, 0);
  4070. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
  4071. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
  4072. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff * 2}, 0);
  4073. layer.ffn_post_norm = create_tensor(tn(LLM_TENSOR_FFN_POST_NORM, "weight", i), {n_embd}, 0);
  4074. }
  4075. } break;
  4076. case LLM_ARCH_GLM4_MOE:
  4077. {
  4078. const int64_t n_expert = hparams.n_expert;
  4079. const int64_t n_expert_used = hparams.n_expert_used;
  4080. const int64_t n_expert_shared = hparams.n_expert_shared;
  4081. GGML_ASSERT(hparams.n_expert > 0 && "n_expert must be > 0 for GLM4_MOE MoE layers");
  4082. GGML_ASSERT(hparams.n_expert_used > 0 && "n_expert_used must be > 0 for GLM4_MOE MoE layers");
  4083. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), { n_embd, n_vocab }, 0);
  4084. // output
  4085. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), { n_embd }, 0);
  4086. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), { n_embd, n_vocab }, TENSOR_NOT_REQUIRED);
  4087. // if output is NULL, init from the input tok embed
  4088. if (output == NULL) {
  4089. output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), { n_embd, n_vocab }, TENSOR_DUPLICATED);
  4090. }
  4091. // Load ALL tensors including NextN layer to satisfy total tensor count
  4092. // but only PROCESS up to last layer (skipping final NextN layer) in forward pass
  4093. for (int i = 0; i < n_layer; ++i) {
  4094. int flags = 0;
  4095. if (hparams.nextn_predict_layers > 0 && static_cast<uint32_t>(i) >= n_layer - hparams.nextn_predict_layers) {
  4096. // skip all tensors in the NextN layers
  4097. flags |= TENSOR_SKIP;
  4098. }
  4099. auto & layer = layers[i];
  4100. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), { n_embd }, flags);
  4101. // GLM-style attention with bias terms
  4102. layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), { n_embd, n_embd_head_k * n_head }, flags);
  4103. layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), { n_embd, n_embd_k_gqa }, flags);
  4104. layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), { n_embd, n_embd_v_gqa }, flags);
  4105. layer.bq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "bias", i), { n_embd_head_k * n_head }, flags);
  4106. layer.bk = create_tensor(tn(LLM_TENSOR_ATTN_K, "bias", i), { n_embd_k_gqa }, flags);
  4107. layer.bv = create_tensor(tn(LLM_TENSOR_ATTN_V, "bias", i), { n_embd_v_gqa }, flags);
  4108. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), { n_embd_head_k * n_head, n_embd }, flags);
  4109. // K/Q norm tensors (optional for GLM-4.5 355B variant)
  4110. layer.attn_q_norm = create_tensor(
  4111. tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), { n_embd_head_k }, TENSOR_NOT_REQUIRED | flags);
  4112. layer.attn_k_norm = create_tensor(
  4113. tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), { n_embd_head_k }, TENSOR_NOT_REQUIRED | flags);
  4114. layer.attn_post_norm = create_tensor(tn(LLM_TENSOR_ATTN_POST_NORM, "weight", i), { n_embd }, flags);
  4115. // Check if this layer uses MoE or dense FFN based on n_layer_dense_lead
  4116. // GLM 4.5 uses hybrid architecture: layer 0 is dense, layers 1+ are MoE
  4117. const bool use_moe = (static_cast<uint32_t>(i) >= hparams.n_layer_dense_lead);
  4118. if (use_moe) {
  4119. // MoE layers
  4120. layer.ffn_gate_inp =
  4121. create_tensor(tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), { n_embd, n_expert }, flags);
  4122. layer.ffn_exp_probs_b = create_tensor(tn(LLM_TENSOR_FFN_EXP_PROBS_B, "bias", i), { n_expert }, flags);
  4123. // MoE branch
  4124. const int64_t n_ff_exp = hparams.n_ff_exp ? hparams.n_ff_exp : n_ff / n_expert_used;
  4125. layer.ffn_gate_exps = create_tensor(
  4126. tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), { n_embd, n_ff_exp, n_expert }, flags);
  4127. layer.ffn_down_exps = create_tensor(
  4128. tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), { n_ff_exp, n_embd, n_expert }, flags);
  4129. layer.ffn_up_exps = create_tensor(
  4130. tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), { n_embd, n_ff_exp, n_expert }, flags);
  4131. // Shared expert
  4132. if (n_expert_shared > 0) {
  4133. const int64_t n_ff_shexp = n_ff_exp * n_expert_shared;
  4134. layer.ffn_gate_shexp = create_tensor(
  4135. tn(LLM_TENSOR_FFN_GATE_SHEXP, "weight", i), { n_embd, n_ff_shexp }, flags);
  4136. layer.ffn_down_shexp = create_tensor(
  4137. tn(LLM_TENSOR_FFN_DOWN_SHEXP, "weight", i), { n_ff_shexp, n_embd }, flags);
  4138. layer.ffn_up_shexp = create_tensor(
  4139. tn(LLM_TENSOR_FFN_UP_SHEXP, "weight", i), { n_embd, n_ff_shexp }, flags);
  4140. }
  4141. } else {
  4142. // Dense layers (first k layers) - GLM uses separate gate/up projections
  4143. layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), { n_embd, n_ff }, flags);
  4144. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd }, flags);
  4145. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), { n_embd, n_ff }, flags);
  4146. }
  4147. // NextN/MTP tensors (preserved but unused) - conditionally load for last nextn_predict_layers
  4148. if (hparams.nextn_predict_layers > 0 && static_cast<uint32_t>(i) >= n_layer - hparams.nextn_predict_layers) {
  4149. layer.nextn.eh_proj = create_tensor(tn(LLM_TENSOR_NEXTN_EH_PROJ, "weight", i), { 2 * n_embd, n_embd }, flags);
  4150. layer.nextn.enorm = create_tensor(tn(LLM_TENSOR_NEXTN_ENORM, "weight", i), { n_embd }, flags);
  4151. layer.nextn.hnorm = create_tensor(tn(LLM_TENSOR_NEXTN_HNORM, "weight", i), { n_embd }, flags);
  4152. // Optional tensors
  4153. layer.nextn.embed_tokens = create_tensor(tn(LLM_TENSOR_NEXTN_EMBED_TOKENS, "weight", i), { n_embd, n_vocab }, flags | TENSOR_NOT_REQUIRED);
  4154. layer.nextn.shared_head_head = create_tensor(tn(LLM_TENSOR_NEXTN_SHARED_HEAD_HEAD, "weight", i), { n_embd, n_vocab }, flags | TENSOR_NOT_REQUIRED);
  4155. layer.nextn.shared_head_norm = create_tensor(tn(LLM_TENSOR_NEXTN_SHARED_HEAD_NORM, "weight", i), { n_embd }, flags | TENSOR_NOT_REQUIRED);
  4156. }
  4157. }
  4158. }
  4159. break;
  4160. case LLM_ARCH_NEMOTRON:
  4161. {
  4162. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  4163. // output
  4164. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  4165. output_norm_b = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd}, 0);
  4166. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, 0);
  4167. for (int i = 0; i < n_layer; ++i) {
  4168. auto & layer = layers[i];
  4169. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  4170. layer.attn_norm_b = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd}, 0);
  4171. layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}, 0);
  4172. layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}, 0);
  4173. layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}, 0);
  4174. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
  4175. // optional bias tensors
  4176. layer.bq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd}, TENSOR_NOT_REQUIRED);
  4177. layer.bk = create_tensor(tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa}, TENSOR_NOT_REQUIRED);
  4178. layer.bv = create_tensor(tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa}, TENSOR_NOT_REQUIRED);
  4179. layer.bo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd}, TENSOR_NOT_REQUIRED);
  4180. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
  4181. layer.ffn_norm_b = create_tensor(tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd}, 0);
  4182. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
  4183. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  4184. // optional MLP bias
  4185. layer.ffn_down_b = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd}, TENSOR_NOT_REQUIRED);
  4186. layer.ffn_up_b = create_tensor(tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff}, TENSOR_NOT_REQUIRED);
  4187. }
  4188. } break;
  4189. case LLM_ARCH_NEMOTRON_H:
  4190. {
  4191. // mamba2 Mixer SSM params
  4192. // NOTE: int64_t for tensor dimensions
  4193. const int64_t d_conv = hparams.ssm_d_conv;
  4194. const int64_t d_inner = hparams.ssm_d_inner;
  4195. const int64_t d_state = hparams.ssm_d_state;
  4196. const int64_t n_ssm_head = hparams.ssm_dt_rank;
  4197. const int64_t n_group = hparams.ssm_n_group;
  4198. const int64_t d_in_proj = 2*d_inner + 2*n_group*d_state + n_ssm_head;
  4199. // embeddings
  4200. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  4201. // output
  4202. {
  4203. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  4204. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
  4205. // if output is NULL, init from the input tok embed, duplicated to allow offloading
  4206. if (output == NULL) {
  4207. output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
  4208. }
  4209. }
  4210. for (int i = 0; i < n_layer; ++i) {
  4211. auto & layer = layers[i];
  4212. // all blocks use the attn norm
  4213. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  4214. if (hparams.is_recurrent(i)) {
  4215. // ssm layers
  4216. layer.ssm_in = create_tensor(tn(LLM_TENSOR_SSM_IN, "weight", i), {n_embd, d_in_proj}, 0);
  4217. layer.ssm_conv1d = create_tensor(tn(LLM_TENSOR_SSM_CONV1D, "weight", i), {d_conv, d_inner + 2*n_group*d_state}, 0);
  4218. layer.ssm_conv1d_b = create_tensor(tn(LLM_TENSOR_SSM_CONV1D, "bias", i), {d_inner + 2*n_group*d_state}, TENSOR_NOT_REQUIRED);
  4219. layer.ssm_dt_b = create_tensor(tn(LLM_TENSOR_SSM_DT, "bias", i), {n_ssm_head}, 0);
  4220. // no "weight" suffix for these
  4221. layer.ssm_a = create_tensor(tn(LLM_TENSOR_SSM_A, i), {1, n_ssm_head}, 0);
  4222. layer.ssm_d = create_tensor(tn(LLM_TENSOR_SSM_D, i), {1, n_ssm_head}, 0);
  4223. layer.ssm_norm = create_tensor(tn(LLM_TENSOR_SSM_NORM, "weight", i), {d_inner / n_group, n_group}, 0);
  4224. // out_proj
  4225. layer.ssm_out = create_tensor(tn(LLM_TENSOR_SSM_OUT, "weight", i), {d_inner, n_embd}, 0);
  4226. } else if (hparams.n_ff(i) == 0) {
  4227. // attention layers (with optional bias)
  4228. const int64_t n_head_i = hparams.n_head(i);
  4229. const int64_t n_embd_k_gqa_i = hparams.n_embd_k_gqa(i);
  4230. const int64_t n_embd_v_gqa_i = hparams.n_embd_v_gqa(i);
  4231. layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd_head_k * n_head_i}, 0);
  4232. layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_k_gqa_i}, 0);
  4233. layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_v_gqa_i}, 0);
  4234. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd_head_k * n_head_i, n_embd}, 0);
  4235. layer.bq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd}, TENSOR_NOT_REQUIRED);
  4236. layer.bk = create_tensor(tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_k_gqa_i}, TENSOR_NOT_REQUIRED);
  4237. layer.bv = create_tensor(tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_v_gqa_i}, TENSOR_NOT_REQUIRED);
  4238. layer.bo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd}, TENSOR_NOT_REQUIRED);
  4239. } else {
  4240. // mlp layers
  4241. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { hparams.n_ff(i), n_embd}, 0);
  4242. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, hparams.n_ff(i)}, 0);
  4243. layer.ffn_down_b = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd}, TENSOR_NOT_REQUIRED);
  4244. layer.ffn_up_b = create_tensor(tn(LLM_TENSOR_FFN_UP, "bias", i), {hparams.n_ff(i)}, TENSOR_NOT_REQUIRED);
  4245. }
  4246. }
  4247. } break;
  4248. case LLM_ARCH_EXAONE:
  4249. {
  4250. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  4251. // output
  4252. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  4253. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
  4254. // if output is NULL, init from the input tok embed
  4255. if (output == NULL) {
  4256. output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
  4257. }
  4258. for (int i = 0; i < n_layer; ++i) {
  4259. auto & layer = layers[i];
  4260. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  4261. layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd_head_k * n_head}, 0);
  4262. layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_k_gqa}, 0);
  4263. layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_v_gqa}, 0);
  4264. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd_head_k * n_head, n_embd}, 0);
  4265. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
  4266. layer.rope_freqs = create_tensor(tn(LLM_TENSOR_ROPE_FREQS, "weight", i), {n_rot/2}, TENSOR_NOT_REQUIRED | (i != 0 ? TENSOR_DUPLICATED : 0));
  4267. layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
  4268. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
  4269. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  4270. }
  4271. } break;
  4272. case LLM_ARCH_EXAONE4:
  4273. {
  4274. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  4275. // output
  4276. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  4277. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
  4278. // if output is NULL, init from the input tok embed
  4279. if (output == NULL) {
  4280. output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
  4281. }
  4282. for (int i = 0; i < n_layer; ++i) {
  4283. auto & layer = layers[i];
  4284. layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd_head_k * n_head}, 0);
  4285. layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_k_gqa}, 0);
  4286. layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_v_gqa}, 0);
  4287. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
  4288. layer.rope_freqs = create_tensor(tn(LLM_TENSOR_ROPE_FREQS, "weight", i), {n_rot/2}, TENSOR_NOT_REQUIRED | (i != 0 ? TENSOR_DUPLICATED : 0));
  4289. layer.attn_post_norm = create_tensor(tn(LLM_TENSOR_ATTN_POST_NORM, "weight", i), {n_embd}, 0);
  4290. layer.attn_q_norm = create_tensor(tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), {n_embd_head_k}, 0);
  4291. layer.attn_k_norm = create_tensor(tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), {n_embd_head_k}, 0);
  4292. layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
  4293. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
  4294. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  4295. layer.ffn_post_norm = create_tensor(tn(LLM_TENSOR_FFN_POST_NORM, "weight", i), {n_embd}, 0);
  4296. }
  4297. } break;
  4298. case LLM_ARCH_RWKV6:
  4299. {
  4300. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  4301. // Block 0, LN0
  4302. tok_norm = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD_NORM, "weight"), {n_embd}, 0);
  4303. tok_norm_b = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD_NORM, "bias"), {n_embd}, 0);
  4304. // output
  4305. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  4306. output_norm_b = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd}, 0);
  4307. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, 0);
  4308. const int time_mix_extra_dim = hparams.time_mix_extra_dim;
  4309. const int time_decay_extra_dim = hparams.time_decay_extra_dim;
  4310. const int head_size = hparams.wkv_head_size;
  4311. const int attn_hidden_size = n_embd;
  4312. const int ffn_size = hparams.n_ff_arr[0];
  4313. for (int i = 0; i < n_layer; ++i) {
  4314. auto & layer = layers[i];
  4315. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  4316. layer.attn_norm_b = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd}, 0);
  4317. layer.attn_norm_2 = create_tensor(tn(LLM_TENSOR_ATTN_NORM_2, "weight", i), {n_embd}, 0);
  4318. layer.attn_norm_2_b = create_tensor(tn(LLM_TENSOR_ATTN_NORM_2, "bias", i), {n_embd}, 0);
  4319. layer.time_mix_w1 = create_tensor(tn(LLM_TENSOR_TIME_MIX_W1, "weight", i), {n_embd, time_mix_extra_dim * 5}, 0);
  4320. layer.time_mix_w2 = create_tensor(tn(LLM_TENSOR_TIME_MIX_W2, "weight", i), {time_mix_extra_dim, n_embd, 5}, 0);
  4321. layer.time_mix_lerp_x = create_tensor(tn(LLM_TENSOR_TIME_MIX_LERP_X, "weight", i), {n_embd, 1, 1}, 0);
  4322. layer.time_mix_lerp_w = create_tensor(tn(LLM_TENSOR_TIME_MIX_LERP_W, "weight", i), {n_embd, 1, 1}, TENSOR_NOT_REQUIRED);
  4323. layer.time_mix_lerp_k = create_tensor(tn(LLM_TENSOR_TIME_MIX_LERP_K, "weight", i), {n_embd, 1, 1}, TENSOR_NOT_REQUIRED);
  4324. layer.time_mix_lerp_v = create_tensor(tn(LLM_TENSOR_TIME_MIX_LERP_V, "weight", i), {n_embd, 1, 1}, TENSOR_NOT_REQUIRED);
  4325. layer.time_mix_lerp_r = create_tensor(tn(LLM_TENSOR_TIME_MIX_LERP_R, "weight", i), {n_embd, 1, 1}, TENSOR_NOT_REQUIRED);
  4326. layer.time_mix_lerp_g = create_tensor(tn(LLM_TENSOR_TIME_MIX_LERP_G, "weight", i), {n_embd, 1, 1}, TENSOR_NOT_REQUIRED);
  4327. layer.time_mix_lerp_fused = create_tensor(tn(LLM_TENSOR_TIME_MIX_LERP_FUSED, "weight", i), {n_embd, 1, 1, 5}, TENSOR_NOT_REQUIRED);
  4328. GGML_ASSERT(!(layer.time_mix_lerp_fused == NULL && layer.time_mix_lerp_w == NULL));
  4329. layer.time_mix_first = create_tensor(tn(LLM_TENSOR_TIME_MIX_FIRST, "weight", i), {head_size, n_embd / head_size}, 0);
  4330. layer.time_mix_decay = create_tensor(tn(LLM_TENSOR_TIME_MIX_DECAY, "weight", i), {n_embd}, 0);
  4331. layer.time_mix_decay_w1 = create_tensor(tn(LLM_TENSOR_TIME_MIX_DECAY_W1, "weight", i), {n_embd, time_decay_extra_dim}, 0);
  4332. layer.time_mix_decay_w2 = create_tensor(tn(LLM_TENSOR_TIME_MIX_DECAY_W2, "weight", i), {time_decay_extra_dim, attn_hidden_size}, 0);
  4333. layer.time_mix_key = create_tensor(tn(LLM_TENSOR_TIME_MIX_KEY, "weight", i), {attn_hidden_size, n_embd}, 0);
  4334. layer.time_mix_value = create_tensor(tn(LLM_TENSOR_TIME_MIX_VALUE, "weight", i), {attn_hidden_size, n_embd}, 0);
  4335. layer.time_mix_receptance = create_tensor(tn(LLM_TENSOR_TIME_MIX_RECEPTANCE, "weight", i), {attn_hidden_size, n_embd}, 0);
  4336. layer.time_mix_gate = create_tensor(tn(LLM_TENSOR_TIME_MIX_GATE, "weight", i), {attn_hidden_size, n_embd}, 0);
  4337. layer.time_mix_ln = create_tensor(tn(LLM_TENSOR_TIME_MIX_LN, "weight", i), {n_embd}, 0);
  4338. layer.time_mix_ln_b = create_tensor(tn(LLM_TENSOR_TIME_MIX_LN, "bias", i), {n_embd}, 0);
  4339. layer.time_mix_output = create_tensor(tn(LLM_TENSOR_TIME_MIX_OUTPUT, "weight", i), {n_embd, attn_hidden_size}, 0);
  4340. layer.channel_mix_lerp_k = create_tensor(tn(LLM_TENSOR_CHANNEL_MIX_LERP_K, "weight", i), {n_embd, 1, 1}, 0);
  4341. layer.channel_mix_lerp_r = create_tensor(tn(LLM_TENSOR_CHANNEL_MIX_LERP_R, "weight", i), {n_embd, 1, 1}, 0);
  4342. layer.channel_mix_key = create_tensor(tn(LLM_TENSOR_CHANNEL_MIX_KEY, "weight", i), {n_embd, ffn_size}, 0);
  4343. layer.channel_mix_value = create_tensor(tn(LLM_TENSOR_CHANNEL_MIX_VALUE, "weight", i), {ffn_size, n_embd}, 0);
  4344. layer.channel_mix_receptance = create_tensor(tn(LLM_TENSOR_CHANNEL_MIX_RECEPTANCE, "weight", i), {n_embd, n_embd}, 0);
  4345. }
  4346. } break;
  4347. case LLM_ARCH_RWKV6QWEN2:
  4348. {
  4349. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  4350. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  4351. output_norm_b = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd}, TENSOR_NOT_REQUIRED);
  4352. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, 0);
  4353. const int time_mix_extra_dim = hparams.time_mix_extra_dim;
  4354. const int time_decay_extra_dim = hparams.time_decay_extra_dim;
  4355. const int head_size = hparams.wkv_head_size;
  4356. const int attn_hidden_size = n_embd;
  4357. const int n_head_kv = hparams.n_head_kv();
  4358. int attn_key_value_size;
  4359. if (n_head_kv == 0 || attn_hidden_size / head_size == n_head_kv) {
  4360. attn_key_value_size = attn_hidden_size;
  4361. } else {
  4362. attn_key_value_size = n_head_kv * head_size;
  4363. }
  4364. for (int i = 0; i < n_layer; ++i) {
  4365. auto & layer = layers[i];
  4366. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  4367. layer.time_mix_w1 = create_tensor(tn(LLM_TENSOR_TIME_MIX_W1, "weight", i), {n_embd, time_mix_extra_dim * 5}, 0);
  4368. layer.time_mix_w2 = create_tensor(tn(LLM_TENSOR_TIME_MIX_W2, "weight", i), {time_mix_extra_dim, n_embd, 5}, 0);
  4369. layer.time_mix_lerp_x = create_tensor(tn(LLM_TENSOR_TIME_MIX_LERP_X, "weight", i), {n_embd, 1, 1}, 0);
  4370. layer.time_mix_lerp_fused = create_tensor(tn(LLM_TENSOR_TIME_MIX_LERP_FUSED, "weight", i), {n_embd, 1, 1, 5}, 0);
  4371. layer.time_mix_first = create_tensor(tn(LLM_TENSOR_TIME_MIX_FIRST, "weight", i), {head_size, n_embd / head_size}, TENSOR_NOT_REQUIRED);
  4372. layer.time_mix_decay = create_tensor(tn(LLM_TENSOR_TIME_MIX_DECAY, "weight", i), {n_embd}, 0);
  4373. layer.time_mix_decay_w1 = create_tensor(tn(LLM_TENSOR_TIME_MIX_DECAY_W1, "weight", i), {n_embd, time_decay_extra_dim}, 0);
  4374. layer.time_mix_decay_w2 = create_tensor(tn(LLM_TENSOR_TIME_MIX_DECAY_W2, "weight", i), {time_decay_extra_dim, attn_hidden_size}, 0);
  4375. layer.time_mix_key = create_tensor(tn(LLM_TENSOR_TIME_MIX_KEY, "weight", i), {n_embd, attn_key_value_size}, 0);
  4376. layer.time_mix_value = create_tensor(tn(LLM_TENSOR_TIME_MIX_VALUE, "weight", i), {n_embd, attn_key_value_size}, 0);
  4377. layer.time_mix_receptance = create_tensor(tn(LLM_TENSOR_TIME_MIX_RECEPTANCE, "weight", i), {attn_hidden_size, n_embd}, 0);
  4378. layer.time_mix_gate = create_tensor(tn(LLM_TENSOR_TIME_MIX_GATE, "weight", i), {attn_hidden_size, n_embd}, 0);
  4379. // optional bias tensors
  4380. layer.time_mix_key_b = create_tensor(tn(LLM_TENSOR_TIME_MIX_KEY, "bias", i), {attn_key_value_size}, TENSOR_NOT_REQUIRED);
  4381. layer.time_mix_value_b = create_tensor(tn(LLM_TENSOR_TIME_MIX_VALUE, "bias", i), {attn_key_value_size}, TENSOR_NOT_REQUIRED);
  4382. layer.time_mix_receptance_b = create_tensor(tn(LLM_TENSOR_TIME_MIX_RECEPTANCE, "bias", i), {attn_hidden_size}, TENSOR_NOT_REQUIRED);
  4383. layer.time_mix_output = create_tensor(tn(LLM_TENSOR_TIME_MIX_OUTPUT, "weight", i), {n_embd, attn_hidden_size}, 0);
  4384. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
  4385. layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
  4386. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
  4387. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  4388. }
  4389. } break;
  4390. case LLM_ARCH_RWKV7:
  4391. {
  4392. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  4393. // Block 0, LN0
  4394. tok_norm = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD_NORM, "weight"), {n_embd}, 0);
  4395. tok_norm_b = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD_NORM, "bias"), {n_embd}, 0);
  4396. // output
  4397. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  4398. output_norm_b = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd}, 0);
  4399. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, 0);
  4400. const int n_lora_decay = hparams.n_lora_decay;
  4401. const int n_lora_iclr = hparams.n_lora_iclr;
  4402. const int n_lora_value_res_mix = hparams.n_lora_value_res_mix;
  4403. const int n_lora_gate = hparams.n_lora_gate;
  4404. const int attn_hidden_size = n_embd;
  4405. const int ffn_size = hparams.n_ff_arr[0];
  4406. for (int i = 0; i < n_layer; ++i) {
  4407. auto & layer = layers[i];
  4408. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  4409. layer.attn_norm_b = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd}, 0);
  4410. layer.attn_norm_2 = create_tensor(tn(LLM_TENSOR_ATTN_NORM_2, "weight", i), {n_embd}, 0);
  4411. layer.attn_norm_2_b = create_tensor(tn(LLM_TENSOR_ATTN_NORM_2, "bias", i), {n_embd}, 0);
  4412. layer.time_mix_w0 = create_tensor(tn(LLM_TENSOR_TIME_MIX_W0, "weight", i), {n_embd}, 0);
  4413. layer.time_mix_w1 = create_tensor(tn(LLM_TENSOR_TIME_MIX_W1, "weight", i), {n_embd, n_lora_decay}, 0);
  4414. layer.time_mix_w2 = create_tensor(tn(LLM_TENSOR_TIME_MIX_W2, "weight", i), {n_lora_decay, n_embd}, 0);
  4415. layer.time_mix_a0 = create_tensor(tn(LLM_TENSOR_TIME_MIX_A0, "weight", i), {n_embd}, 0);
  4416. layer.time_mix_a1 = create_tensor(tn(LLM_TENSOR_TIME_MIX_A1, "weight", i), {n_embd, n_lora_iclr}, 0);
  4417. layer.time_mix_a2 = create_tensor(tn(LLM_TENSOR_TIME_MIX_A2, "weight", i), {n_lora_iclr, n_embd}, 0);
  4418. if (i == 0) {
  4419. // actually not used
  4420. layer.time_mix_v0 = create_tensor(tn(LLM_TENSOR_TIME_MIX_V0, "weight", i), {n_embd}, 0);
  4421. layer.time_mix_v1 = create_tensor(tn(LLM_TENSOR_TIME_MIX_V1, "weight", i), {n_embd, n_lora_iclr}, 0);
  4422. layer.time_mix_v2 = create_tensor(tn(LLM_TENSOR_TIME_MIX_V2, "weight", i), {n_lora_iclr, n_embd}, 0);
  4423. } else {
  4424. layer.time_mix_v0 = create_tensor(tn(LLM_TENSOR_TIME_MIX_V0, "weight", i), {n_embd}, 0);
  4425. layer.time_mix_v1 = create_tensor(tn(LLM_TENSOR_TIME_MIX_V1, "weight", i), {n_embd, n_lora_value_res_mix}, 0);
  4426. layer.time_mix_v2 = create_tensor(tn(LLM_TENSOR_TIME_MIX_V2, "weight", i), {n_lora_value_res_mix, n_embd}, 0);
  4427. }
  4428. layer.time_mix_g1 = create_tensor(tn(LLM_TENSOR_TIME_MIX_G1, "weight", i), {n_embd, n_lora_gate}, 0);
  4429. layer.time_mix_g2 = create_tensor(tn(LLM_TENSOR_TIME_MIX_G2, "weight", i), {n_lora_gate, n_embd}, 0);
  4430. layer.time_mix_lerp_fused = create_tensor(tn(LLM_TENSOR_TIME_MIX_LERP_FUSED, "weight", i), {n_embd, 1, 1, 6}, 0);
  4431. layer.time_mix_k_k = create_tensor(tn(LLM_TENSOR_TIME_MIX_K_K, "weight", i), {attn_hidden_size}, 0);
  4432. layer.time_mix_k_a = create_tensor(tn(LLM_TENSOR_TIME_MIX_K_A, "weight", i), {attn_hidden_size}, 0);
  4433. layer.time_mix_r_k = create_tensor(tn(LLM_TENSOR_TIME_MIX_R_K, "weight", i), {attn_hidden_size}, 0);
  4434. layer.time_mix_key = create_tensor(tn(LLM_TENSOR_TIME_MIX_KEY, "weight", i), {attn_hidden_size, n_embd}, 0);
  4435. layer.time_mix_value = create_tensor(tn(LLM_TENSOR_TIME_MIX_VALUE, "weight", i), {attn_hidden_size, n_embd}, 0);
  4436. layer.time_mix_receptance = create_tensor(tn(LLM_TENSOR_TIME_MIX_RECEPTANCE, "weight", i), {attn_hidden_size, n_embd}, 0);
  4437. layer.time_mix_ln = create_tensor(tn(LLM_TENSOR_TIME_MIX_LN, "weight", i), {n_embd}, 0);
  4438. layer.time_mix_ln_b = create_tensor(tn(LLM_TENSOR_TIME_MIX_LN, "bias", i), {n_embd}, 0);
  4439. layer.time_mix_output = create_tensor(tn(LLM_TENSOR_TIME_MIX_OUTPUT, "weight", i), {n_embd, attn_hidden_size}, 0);
  4440. layer.channel_mix_lerp_k = create_tensor(tn(LLM_TENSOR_CHANNEL_MIX_LERP_K, "weight", i), {n_embd, 1, 1}, 0);
  4441. layer.channel_mix_key = create_tensor(tn(LLM_TENSOR_CHANNEL_MIX_KEY, "weight", i), {n_embd, ffn_size}, 0);
  4442. layer.channel_mix_value = create_tensor(tn(LLM_TENSOR_CHANNEL_MIX_VALUE, "weight", i), {ffn_size, n_embd}, 0);
  4443. }
  4444. } break;
  4445. case LLM_ARCH_ARWKV7:
  4446. {
  4447. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  4448. // output
  4449. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  4450. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, 0);
  4451. const int n_lora_decay = hparams.n_lora_decay;
  4452. const int n_lora_iclr = hparams.n_lora_iclr;
  4453. const int n_lora_value_res_mix = hparams.n_lora_value_res_mix;
  4454. const int n_lora_gate = hparams.n_lora_gate;
  4455. const int attn_hidden_size = n_embd;
  4456. for (int i = 0; i < n_layer; ++i) {
  4457. auto & layer = layers[i];
  4458. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  4459. layer.time_mix_w0 = create_tensor(tn(LLM_TENSOR_TIME_MIX_W0, "weight", i), {n_embd}, 0);
  4460. layer.time_mix_w1 = create_tensor(tn(LLM_TENSOR_TIME_MIX_W1, "weight", i), {n_embd, n_lora_decay}, 0);
  4461. layer.time_mix_w2 = create_tensor(tn(LLM_TENSOR_TIME_MIX_W2, "weight", i), {n_lora_decay, n_embd}, 0);
  4462. layer.time_mix_a0 = create_tensor(tn(LLM_TENSOR_TIME_MIX_A0, "weight", i), {n_embd}, 0);
  4463. layer.time_mix_a1 = create_tensor(tn(LLM_TENSOR_TIME_MIX_A1, "weight", i), {n_embd, n_lora_iclr}, 0);
  4464. layer.time_mix_a2 = create_tensor(tn(LLM_TENSOR_TIME_MIX_A2, "weight", i), {n_lora_iclr, n_embd}, 0);
  4465. if (i == 0) {
  4466. // actually not used
  4467. layer.time_mix_v0 = create_tensor(tn(LLM_TENSOR_TIME_MIX_V0, "weight", i), {n_embd}, 0);
  4468. layer.time_mix_v1 = create_tensor(tn(LLM_TENSOR_TIME_MIX_V1, "weight", i), {n_embd, n_lora_iclr}, 0);
  4469. layer.time_mix_v2 = create_tensor(tn(LLM_TENSOR_TIME_MIX_V2, "weight", i), {n_lora_iclr, n_embd}, 0);
  4470. } else {
  4471. layer.time_mix_v0 = create_tensor(tn(LLM_TENSOR_TIME_MIX_V0, "weight", i), {n_embd}, 0);
  4472. layer.time_mix_v1 = create_tensor(tn(LLM_TENSOR_TIME_MIX_V1, "weight", i), {n_embd, n_lora_value_res_mix}, 0);
  4473. layer.time_mix_v2 = create_tensor(tn(LLM_TENSOR_TIME_MIX_V2, "weight", i), {n_lora_value_res_mix, n_embd}, 0);
  4474. }
  4475. layer.time_mix_g1 = create_tensor(tn(LLM_TENSOR_TIME_MIX_G1, "weight", i), {n_embd, n_lora_gate}, TENSOR_NOT_REQUIRED);
  4476. layer.time_mix_g2 = create_tensor(tn(LLM_TENSOR_TIME_MIX_G2, "weight", i), {n_lora_gate, n_embd}, TENSOR_NOT_REQUIRED);
  4477. try {
  4478. layer.time_mix_lerp_fused = create_tensor(tn(LLM_TENSOR_TIME_MIX_LERP_FUSED, "weight", i), {n_embd, 1, 1, 6}, 0);
  4479. } catch(std::runtime_error & e) {
  4480. // ARWKV models may not have gate tensors
  4481. layer.time_mix_lerp_fused = create_tensor(tn(LLM_TENSOR_TIME_MIX_LERP_FUSED, "weight", i), {n_embd, 1, 1, 5}, 0);
  4482. }
  4483. layer.time_mix_k_k = create_tensor(tn(LLM_TENSOR_TIME_MIX_K_K, "weight", i), {attn_hidden_size}, 0);
  4484. layer.time_mix_k_a = create_tensor(tn(LLM_TENSOR_TIME_MIX_K_A, "weight", i), {attn_hidden_size}, 0);
  4485. layer.time_mix_r_k = create_tensor(tn(LLM_TENSOR_TIME_MIX_R_K, "weight", i), {attn_hidden_size}, 0);
  4486. layer.time_mix_key = create_tensor(tn(LLM_TENSOR_TIME_MIX_KEY, "weight", i), {attn_hidden_size, n_embd}, 0);
  4487. layer.time_mix_value = create_tensor(tn(LLM_TENSOR_TIME_MIX_VALUE, "weight", i), {attn_hidden_size, n_embd}, 0);
  4488. layer.time_mix_receptance = create_tensor(tn(LLM_TENSOR_TIME_MIX_RECEPTANCE, "weight", i), {attn_hidden_size, n_embd}, 0);
  4489. layer.time_mix_ln = create_tensor(tn(LLM_TENSOR_TIME_MIX_LN, "weight", i), {n_embd}, TENSOR_NOT_REQUIRED);
  4490. layer.time_mix_ln_b = create_tensor(tn(LLM_TENSOR_TIME_MIX_LN, "bias", i), {n_embd}, TENSOR_NOT_REQUIRED);
  4491. layer.time_mix_output = create_tensor(tn(LLM_TENSOR_TIME_MIX_OUTPUT, "weight", i), {n_embd, attn_hidden_size}, 0);
  4492. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
  4493. layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
  4494. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
  4495. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  4496. }
  4497. } break;
  4498. case LLM_ARCH_CHAMELEON:
  4499. {
  4500. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  4501. // output
  4502. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  4503. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
  4504. // if output is NULL, init from the input tok embed
  4505. if (output == NULL) {
  4506. output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
  4507. }
  4508. for (int i = 0; i < n_layer; ++i) {
  4509. auto & layer = layers[i];
  4510. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  4511. layer.attn_q_norm = create_tensor(tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), {n_embd_head_k, n_head}, 0);
  4512. layer.attn_k_norm = create_tensor(tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), {n_embd_head_k, n_head_kv}, 0);
  4513. layer.attn_q_norm_b = create_tensor(tn(LLM_TENSOR_ATTN_Q_NORM, "bias", i), {n_embd_head_k, n_head}, TENSOR_NOT_REQUIRED);
  4514. layer.attn_k_norm_b = create_tensor(tn(LLM_TENSOR_ATTN_K_NORM, "bias", i), {n_embd_head_k, n_head_kv}, TENSOR_NOT_REQUIRED);
  4515. layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}, 0);
  4516. layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}, 0);
  4517. layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}, 0);
  4518. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
  4519. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
  4520. layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
  4521. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
  4522. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  4523. }
  4524. } break;
  4525. case LLM_ARCH_WAVTOKENIZER_DEC:
  4526. {
  4527. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {hparams.n_embd_features, n_vocab}, 0);
  4528. conv1d = create_tensor(tn(LLM_TENSOR_CONV1D, "weight"), {7, hparams.n_embd_features, hparams.posnet.n_embd}, 0);
  4529. conv1d_b = create_tensor(tn(LLM_TENSOR_CONV1D, "bias"), {1, hparams.posnet.n_embd}, 0);
  4530. // posnet
  4531. {
  4532. const int64_t n_embd = hparams.posnet.n_embd;
  4533. for (uint32_t i = 0; i < hparams.posnet.n_layer; ++i) {
  4534. auto & layer = layers[i].posnet;
  4535. // posnet:
  4536. //
  4537. // - resnet
  4538. // - resnet
  4539. // - attn
  4540. // - resnet
  4541. // - resnet
  4542. // - norm
  4543. //
  4544. switch (i) {
  4545. case 0:
  4546. case 1:
  4547. case 3:
  4548. case 4:
  4549. {
  4550. layer.norm1 = create_tensor(tn(LLM_TENSOR_POS_NET_NORM1, "weight", i), {1, n_embd}, 0);
  4551. layer.norm1_b = create_tensor(tn(LLM_TENSOR_POS_NET_NORM1, "bias", i), {1, n_embd}, 0);
  4552. layer.conv1 = create_tensor(tn(LLM_TENSOR_POS_NET_CONV1, "weight", i), {3, n_embd, n_embd}, 0);
  4553. layer.conv1_b = create_tensor(tn(LLM_TENSOR_POS_NET_CONV1, "bias", i), {1, n_embd}, 0);
  4554. layer.norm2 = create_tensor(tn(LLM_TENSOR_POS_NET_NORM2, "weight", i), {1, n_embd}, 0);
  4555. layer.norm2_b = create_tensor(tn(LLM_TENSOR_POS_NET_NORM2, "bias", i), {1, n_embd}, 0);
  4556. layer.conv2 = create_tensor(tn(LLM_TENSOR_POS_NET_CONV2, "weight", i), {3, n_embd, n_embd}, 0);
  4557. layer.conv2_b = create_tensor(tn(LLM_TENSOR_POS_NET_CONV2, "bias", i), {1, n_embd}, 0);
  4558. } break;
  4559. case 2:
  4560. {
  4561. layer.attn_norm = create_tensor(tn(LLM_TENSOR_POS_NET_ATTN_NORM, "weight", i), {1, n_embd}, 0);
  4562. layer.attn_norm_b = create_tensor(tn(LLM_TENSOR_POS_NET_ATTN_NORM, "bias", i), {1, n_embd}, 0);
  4563. layer.attn_q = create_tensor(tn(LLM_TENSOR_POS_NET_ATTN_Q, "weight", i), {1, n_embd, n_embd}, 0);
  4564. layer.attn_q_b = create_tensor(tn(LLM_TENSOR_POS_NET_ATTN_Q, "bias", i), {1, n_embd}, 0);
  4565. layer.attn_k = create_tensor(tn(LLM_TENSOR_POS_NET_ATTN_K, "weight", i), {1, n_embd, n_embd}, 0);
  4566. layer.attn_k_b = create_tensor(tn(LLM_TENSOR_POS_NET_ATTN_K, "bias", i), {1, n_embd}, 0);
  4567. layer.attn_v = create_tensor(tn(LLM_TENSOR_POS_NET_ATTN_V, "weight", i), {1, n_embd, n_embd}, 0);
  4568. layer.attn_v_b = create_tensor(tn(LLM_TENSOR_POS_NET_ATTN_V, "bias", i), {1, n_embd}, 0);
  4569. layer.attn_o = create_tensor(tn(LLM_TENSOR_POS_NET_ATTN_OUT, "weight", i), {1, n_embd, n_embd}, 0);
  4570. layer.attn_o_b = create_tensor(tn(LLM_TENSOR_POS_NET_ATTN_OUT, "bias", i), {1, n_embd}, 0);
  4571. } break;
  4572. case 5:
  4573. {
  4574. layer.norm = create_tensor(tn(LLM_TENSOR_POS_NET_ATTN_NORM, "weight", i), {1, n_embd}, 0);
  4575. layer.norm_b = create_tensor(tn(LLM_TENSOR_POS_NET_ATTN_NORM, "bias", i), {1, n_embd}, 0);
  4576. } break;
  4577. default: GGML_ABORT("unknown posnet layer");
  4578. };
  4579. }
  4580. }
  4581. GGML_ASSERT(hparams.posnet.n_embd == hparams.convnext.n_embd);
  4582. tok_norm = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD_NORM, "weight"), {hparams.posnet.n_embd}, 0);
  4583. tok_norm_b = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD_NORM, "bias"), {hparams.posnet.n_embd}, 0);
  4584. // convnext
  4585. {
  4586. const int64_t n_embd = hparams.convnext.n_embd;
  4587. for (uint32_t i = 0; i < hparams.convnext.n_layer; ++i) {
  4588. auto & layer = layers[i].convnext;
  4589. layer.dw = create_tensor(tn(LLM_TENSOR_CONVNEXT_DW, "weight", i), {7, 1, n_embd}, 0);
  4590. layer.dw_b = create_tensor(tn(LLM_TENSOR_CONVNEXT_DW, "bias", i), {1, n_embd}, 0);
  4591. layer.norm = create_tensor(tn(LLM_TENSOR_CONVNEXT_NORM, "weight", i), {n_embd}, 0);
  4592. layer.norm_b = create_tensor(tn(LLM_TENSOR_CONVNEXT_NORM, "bias", i), {n_embd}, 0);
  4593. layer.pw1 = create_tensor(tn(LLM_TENSOR_CONVNEXT_PW1, "weight", i), {n_embd, n_ff}, 0);
  4594. layer.pw1_b = create_tensor(tn(LLM_TENSOR_CONVNEXT_PW1, "bias", i), {n_ff}, 0);
  4595. layer.pw2 = create_tensor(tn(LLM_TENSOR_CONVNEXT_PW2, "weight", i), {n_ff, n_embd}, 0);
  4596. layer.pw2_b = create_tensor(tn(LLM_TENSOR_CONVNEXT_PW2, "bias", i), {n_embd}, 0);
  4597. layer.gamma = create_tensor(tn(LLM_TENSOR_CONVNEXT_GAMMA, "weight", i), {n_embd}, 0);
  4598. }
  4599. // output
  4600. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  4601. output_norm_b = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd}, 0);
  4602. }
  4603. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {hparams.convnext.n_embd, n_embd}, 0);
  4604. output_b = create_tensor(tn(LLM_TENSOR_OUTPUT, "bias"), {n_embd}, 0);
  4605. } break;
  4606. case LLM_ARCH_BAILINGMOE:
  4607. {
  4608. const int64_t n_ff_exp = hparams.n_ff_exp;
  4609. const int64_t n_expert_shared = hparams.n_expert_shared;
  4610. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  4611. // output
  4612. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  4613. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, 0);
  4614. for (int i = 0; i < n_layer; ++i) {
  4615. auto & layer = layers[i];
  4616. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  4617. layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_head * n_rot}, 0);
  4618. layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_head_kv * n_rot}, 0);
  4619. layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_head_kv * n_rot}, 0);
  4620. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_head * n_rot, n_embd}, 0);
  4621. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
  4622. layer.ffn_gate_inp = create_tensor(tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert}, 0);
  4623. if (n_expert == 0) {
  4624. throw std::runtime_error("n_expert must be > 0");
  4625. }
  4626. if (n_expert_used == 0) {
  4627. throw std::runtime_error("n_expert_used must be > 0");
  4628. }
  4629. layer.ffn_gate_exps = create_tensor(tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), { n_embd, n_ff_exp, n_expert}, 0);
  4630. layer.ffn_down_exps = create_tensor(tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), {n_ff_exp, n_embd, n_expert}, 0);
  4631. layer.ffn_up_exps = create_tensor(tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), { n_embd, n_ff_exp, n_expert}, 0);
  4632. layer.ffn_gate_shexp = create_tensor(tn(LLM_TENSOR_FFN_GATE_SHEXP, "weight", i), {n_embd, n_ff_exp * n_expert_shared}, 0);
  4633. layer.ffn_down_shexp = create_tensor(tn(LLM_TENSOR_FFN_DOWN_SHEXP, "weight", i), { n_ff_exp * n_expert_shared, n_embd}, 0);
  4634. layer.ffn_up_shexp = create_tensor(tn(LLM_TENSOR_FFN_UP_SHEXP, "weight", i), {n_embd, n_ff_exp * n_expert_shared}, 0);
  4635. }
  4636. } break;
  4637. case LLM_ARCH_BAILINGMOE2:
  4638. {
  4639. const int64_t n_ff_exp = hparams.n_ff_exp;
  4640. const int64_t n_expert_shared = hparams.n_expert_shared;
  4641. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  4642. // output
  4643. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  4644. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, 0);
  4645. GGML_ASSERT(n_expert > 0 && "n_expert must be > 0 for bailingmoe2");
  4646. GGML_ASSERT(n_expert_used > 0 && "n_expert_used must be > 0 for bailingmoe2");
  4647. for (int i = 0; i < n_layer; ++i) {
  4648. int flags = 0;
  4649. if (hparams.nextn_predict_layers > 0 && static_cast<uint32_t>(i) >= n_layer - hparams.nextn_predict_layers) {
  4650. // skip all tensors in the NextN layers
  4651. flags |= TENSOR_SKIP;
  4652. }
  4653. auto & layer = layers[i];
  4654. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, flags);
  4655. layer.wqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa}, flags);
  4656. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd_head_k * n_head, n_embd}, flags);
  4657. layer.attn_q_norm = create_tensor(tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), {n_embd_head_k}, flags);
  4658. layer.attn_k_norm = create_tensor(tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), {n_embd_head_k}, flags);
  4659. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, flags);
  4660. if (static_cast<uint32_t>(i) >= hparams.n_layer_dense_lead) { // MoE layers
  4661. const int64_t n_ff_shexp = (hparams.n_ff_shexp ? hparams.n_ff_shexp : n_ff_exp) * n_expert_shared;
  4662. layer.ffn_gate_inp = create_tensor(tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert}, flags);
  4663. layer.ffn_exp_probs_b = create_tensor(tn(LLM_TENSOR_FFN_EXP_PROBS_B, "bias", i), {n_expert}, TENSOR_NOT_REQUIRED | flags);
  4664. layer.ffn_gate_exps = create_tensor(tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), { n_embd, n_ff_exp, n_expert}, flags);
  4665. layer.ffn_down_exps = create_tensor(tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), {n_ff_exp, n_embd, n_expert}, flags);
  4666. layer.ffn_up_exps = create_tensor(tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), { n_embd, n_ff_exp, n_expert}, flags);
  4667. layer.ffn_gate_shexp = create_tensor(tn(LLM_TENSOR_FFN_GATE_SHEXP, "weight", i), {n_embd, n_ff_shexp}, flags);
  4668. layer.ffn_down_shexp = create_tensor(tn(LLM_TENSOR_FFN_DOWN_SHEXP, "weight", i), {n_ff_shexp, n_embd}, flags);
  4669. layer.ffn_up_shexp = create_tensor(tn(LLM_TENSOR_FFN_UP_SHEXP, "weight", i), {n_embd, n_ff_shexp}, flags);
  4670. } else { // Dense layers
  4671. layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, flags);
  4672. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, flags);
  4673. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, flags);
  4674. }
  4675. // NextN/MTP tensors (preserved but unused) - conditionally load for last nextn_predict_layers
  4676. if (hparams.nextn_predict_layers > 0 && static_cast<uint32_t>(i) >= n_layer - hparams.nextn_predict_layers) {
  4677. layer.nextn.eh_proj = create_tensor(tn(LLM_TENSOR_NEXTN_EH_PROJ, "weight", i), { 2 * n_embd, n_embd }, flags);
  4678. layer.nextn.embed_tokens = create_tensor(tn(LLM_TENSOR_NEXTN_EMBED_TOKENS, "weight", i), { n_embd, n_vocab }, TENSOR_NOT_REQUIRED | flags);
  4679. layer.nextn.enorm = create_tensor(tn(LLM_TENSOR_NEXTN_ENORM, "weight", i), { n_embd }, flags);
  4680. layer.nextn.hnorm = create_tensor(tn(LLM_TENSOR_NEXTN_HNORM, "weight", i), { n_embd }, flags);
  4681. layer.nextn.shared_head_head = create_tensor(tn(LLM_TENSOR_NEXTN_SHARED_HEAD_HEAD, "weight", i), { n_embd, n_vocab }, TENSOR_NOT_REQUIRED | flags);
  4682. layer.nextn.shared_head_norm = create_tensor(tn(LLM_TENSOR_NEXTN_SHARED_HEAD_NORM, "weight", i), { n_embd }, TENSOR_NOT_REQUIRED | flags);
  4683. layer.layer_out_norm = create_tensor(tn(LLM_TENSOR_LAYER_OUT_NORM, "weight", i), {n_embd}, flags);
  4684. }
  4685. }
  4686. } break;
  4687. case LLM_ARCH_DOTS1:
  4688. {
  4689. const int64_t n_ff_exp = hparams.n_ff_exp;
  4690. const int64_t n_expert_shared = hparams.n_expert_shared;
  4691. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  4692. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  4693. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, 0);
  4694. for (int i = 0; i < n_layer; ++i) {
  4695. auto & layer = layers[i];
  4696. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  4697. layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd_head_k * n_head}, 0);
  4698. layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_head_k * n_head}, 0);
  4699. layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_head_k * n_head}, 0);
  4700. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd_head_k * n_head, n_embd}, 0);
  4701. layer.attn_k_norm = create_tensor(tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), {n_embd_head_k}, 0);
  4702. layer.attn_q_norm = create_tensor(tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), {n_embd_head_k}, 0);
  4703. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
  4704. if (i < (int) hparams.n_layer_dense_lead) {
  4705. layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
  4706. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
  4707. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  4708. } else {
  4709. layer.ffn_gate_inp = create_tensor(tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert}, 0);
  4710. layer.ffn_exp_probs_b = create_tensor(tn(LLM_TENSOR_FFN_EXP_PROBS_B, "bias", i), {n_expert}, TENSOR_NOT_REQUIRED);
  4711. if (n_expert == 0) {
  4712. throw std::runtime_error("n_expert must be > 0");
  4713. }
  4714. if (n_expert_used == 0) {
  4715. throw std::runtime_error("n_expert_used must be > 0");
  4716. }
  4717. // MoE branch
  4718. layer.ffn_gate_exps = create_tensor(tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), { n_embd, n_ff_exp, n_expert}, 0);
  4719. layer.ffn_down_exps = create_tensor(tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), {n_ff_exp, n_embd, n_expert}, 0);
  4720. layer.ffn_up_exps = create_tensor(tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), { n_embd, n_ff_exp, n_expert}, 0);
  4721. // Shared expert branch
  4722. layer.ffn_gate_shexp = create_tensor(tn(LLM_TENSOR_FFN_GATE_SHEXP, "weight", i), {n_embd, n_ff_exp * n_expert_shared}, 0);
  4723. layer.ffn_down_shexp = create_tensor(tn(LLM_TENSOR_FFN_DOWN_SHEXP, "weight", i), { n_ff_exp * n_expert_shared, n_embd}, 0);
  4724. layer.ffn_up_shexp = create_tensor(tn(LLM_TENSOR_FFN_UP_SHEXP, "weight", i), {n_embd, n_ff_exp * n_expert_shared}, 0);
  4725. }
  4726. }
  4727. } break;
  4728. case LLM_ARCH_ARCEE:
  4729. {
  4730. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  4731. // output
  4732. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  4733. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
  4734. // if output is NULL, init from the input tok embed
  4735. if (output == NULL) {
  4736. output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
  4737. }
  4738. for (int i = 0; i < n_layer; ++i) {
  4739. auto & layer = layers[i];
  4740. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  4741. layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd_head_k * n_head}, 0);
  4742. layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_k_gqa}, 0);
  4743. layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_v_gqa}, 0);
  4744. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd_head_k * n_head, n_embd}, 0);
  4745. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
  4746. layer.rope_freqs = create_tensor(tn(LLM_TENSOR_ROPE_FREQS, "weight", i), {n_rot/2}, TENSOR_NOT_REQUIRED | (i != 0 ? TENSOR_DUPLICATED : 0));
  4747. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
  4748. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  4749. }
  4750. } break;
  4751. case LLM_ARCH_ERNIE4_5:
  4752. case LLM_ARCH_ERNIE4_5_MOE:
  4753. {
  4754. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  4755. // output
  4756. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  4757. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
  4758. // if output is NULL, init from the input tok embed
  4759. if (output == NULL) {
  4760. output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
  4761. }
  4762. for (int i = 0; i < n_layer; ++i) {
  4763. auto & layer = layers[i];
  4764. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  4765. layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd_head_k * n_head}, 0);
  4766. layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}, 0);
  4767. layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}, 0);
  4768. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd_head_k * n_head, n_embd}, 0);
  4769. // optional bias tensors
  4770. layer.bq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd}, TENSOR_NOT_REQUIRED);
  4771. layer.bk = create_tensor(tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa}, TENSOR_NOT_REQUIRED);
  4772. layer.bv = create_tensor(tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa}, TENSOR_NOT_REQUIRED);
  4773. layer.bo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd}, TENSOR_NOT_REQUIRED);
  4774. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
  4775. if (arch == LLM_ARCH_ERNIE4_5_MOE && static_cast<uint32_t>(i) >= hparams.n_layer_dense_lead) { // MoE layers
  4776. int n_ff_exp = hparams.n_ff_exp;
  4777. layer.ffn_gate_inp = create_tensor(tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert}, 0);
  4778. layer.ffn_exp_probs_b = create_tensor(tn(LLM_TENSOR_FFN_EXP_PROBS_B, "bias", i), {n_expert}, TENSOR_NOT_REQUIRED);
  4779. layer.ffn_gate_exps = create_tensor(tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), {n_embd, n_ff_exp, n_expert}, TENSOR_NOT_REQUIRED);
  4780. layer.ffn_down_exps = create_tensor(tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), { n_ff_exp, n_embd, n_expert}, 0);
  4781. layer.ffn_up_exps = create_tensor(tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), {n_embd, n_ff_exp, n_expert}, 0);
  4782. // Shared expert (if present)
  4783. if (hparams.n_ff_shexp > 0) {
  4784. layer.ffn_gate_shexp = create_tensor(tn(LLM_TENSOR_FFN_GATE_SHEXP, "weight", i), { n_embd, hparams.n_ff_shexp}, 0);
  4785. layer.ffn_down_shexp = create_tensor(tn(LLM_TENSOR_FFN_DOWN_SHEXP, "weight", i), {hparams.n_ff_shexp, n_embd }, 0);
  4786. layer.ffn_up_shexp = create_tensor(tn(LLM_TENSOR_FFN_UP_SHEXP, "weight", i), { n_embd, hparams.n_ff_shexp}, 0);
  4787. }
  4788. } else { // Dense layers
  4789. layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
  4790. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
  4791. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  4792. }
  4793. }
  4794. } break;
  4795. case LLM_ARCH_FALCON_H1:
  4796. {
  4797. // Common
  4798. const int64_t hidden_size = hparams.n_embd; // hidden_size
  4799. // mamba2 Mixer SSM params
  4800. const int64_t ssm_conv_kernel_size = hparams.ssm_d_conv; // ssm_conv_kernel_size
  4801. const int64_t ssm_n_groups = hparams.ssm_n_group; // ssm_n_groups
  4802. const int64_t ssm_state_size = hparams.ssm_d_state; // ssm_state_size
  4803. const int64_t ssm_intermediate_size = hparams.ssm_d_inner; // TODO expand
  4804. const int64_t ssm_num_heads = hparams.ssm_dt_rank; // ssm_num_heads
  4805. const int64_t ssm_conv_dim = ssm_intermediate_size + 2 * ssm_n_groups * ssm_state_size;
  4806. const int64_t ssm_projection_size = ssm_intermediate_size + ssm_conv_dim + ssm_num_heads;
  4807. // attn params
  4808. const int64_t attn_num_attention_head = hparams.n_head(0); // rename to: attn_num_attention_head
  4809. const int64_t attn_num_key_value_head = hparams.n_head_kv(0);
  4810. // ffn params
  4811. const int64_t ffn_intermediate_size = hparams.n_ff(0);
  4812. // embeddings
  4813. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {hidden_size, n_vocab}, 0);
  4814. // output
  4815. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {hidden_size, n_vocab}, TENSOR_NOT_REQUIRED);
  4816. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {hidden_size}, 0);
  4817. // if output is NULL, init from the input tok embed
  4818. if (output == NULL) {
  4819. output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {hidden_size, n_vocab}, TENSOR_DUPLICATED);
  4820. }
  4821. for (int i = 0; i < n_layer; ++i) {
  4822. auto & layer = layers[i];
  4823. /*SSM LAYERS*/
  4824. // ssm in
  4825. layer.ssm_in = create_tensor(tn(LLM_TENSOR_SSM_IN, "weight", i), {hidden_size, ssm_projection_size}, 0);
  4826. // ssm 1d conv
  4827. layer.ssm_conv1d = create_tensor(tn(LLM_TENSOR_SSM_CONV1D, "weight", i), {ssm_conv_kernel_size, ssm_conv_dim}, 0);
  4828. layer.ssm_conv1d_b = create_tensor(tn(LLM_TENSOR_SSM_CONV1D, "bias", i), {ssm_conv_dim}, TENSOR_NOT_REQUIRED);
  4829. // ssm_dt
  4830. layer.ssm_dt_b = create_tensor(tn(LLM_TENSOR_SSM_DT, "bias", i), {ssm_num_heads}, 0);
  4831. // no "weight" suffix for these
  4832. layer.ssm_a = create_tensor(tn(LLM_TENSOR_SSM_A, i), {1, ssm_num_heads}, 0);
  4833. layer.ssm_d = create_tensor(tn(LLM_TENSOR_SSM_D, i), {1, ssm_num_heads}, 0);
  4834. // ssm_norm
  4835. layer.ssm_norm = create_tensor(tn(LLM_TENSOR_SSM_NORM, "weight", i), {ssm_intermediate_size / ssm_n_groups, ssm_n_groups}, TENSOR_NOT_REQUIRED);
  4836. // out_proj
  4837. layer.ssm_out = create_tensor(tn(LLM_TENSOR_SSM_OUT, "weight", i), {ssm_intermediate_size, hidden_size}, 0);
  4838. /*ATTENTION LAYERS*/
  4839. // attention layers (with optional bias)
  4840. layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {hidden_size, n_embd_head_k * attn_num_attention_head}, 0);
  4841. layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {hidden_size, attn_num_key_value_head * n_embd_head_k}, 0);
  4842. layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {hidden_size, attn_num_key_value_head * n_embd_head_v}, 0);
  4843. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd_head_k * attn_num_attention_head, hidden_size}, 0);
  4844. layer.bq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "bias", i), {hidden_size}, TENSOR_NOT_REQUIRED);
  4845. layer.bk = create_tensor(tn(LLM_TENSOR_ATTN_K, "bias", i), {attn_num_key_value_head * n_embd_head_k}, TENSOR_NOT_REQUIRED);
  4846. layer.bv = create_tensor(tn(LLM_TENSOR_ATTN_V, "bias", i), {attn_num_key_value_head * n_embd_head_v}, TENSOR_NOT_REQUIRED);
  4847. layer.bo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "bias", i), {hidden_size}, TENSOR_NOT_REQUIRED);
  4848. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {hidden_size}, 0);
  4849. // feed forward (w/ optional biases)
  4850. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, i), {hidden_size}, 0);
  4851. layer.rope_freqs = create_tensor(tn(LLM_TENSOR_ROPE_FREQS, "weight", i), {n_rot/2}, TENSOR_NOT_REQUIRED | (i != 0 ? TENSOR_DUPLICATED : 0));
  4852. layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {hidden_size, ffn_intermediate_size}, 0);
  4853. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { ffn_intermediate_size, hidden_size}, 0);
  4854. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {hidden_size, ffn_intermediate_size}, 0);
  4855. layer.ffn_gate_b = create_tensor(tn(LLM_TENSOR_FFN_GATE, "bias", i), {ffn_intermediate_size}, TENSOR_NOT_REQUIRED);
  4856. layer.ffn_down_b = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "bias", i), {hidden_size}, TENSOR_NOT_REQUIRED);
  4857. layer.ffn_up_b = create_tensor(tn(LLM_TENSOR_FFN_UP, "bias", i), {ffn_intermediate_size}, TENSOR_NOT_REQUIRED);
  4858. }
  4859. } break;
  4860. case LLM_ARCH_HUNYUAN_MOE:
  4861. {
  4862. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  4863. // output
  4864. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  4865. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
  4866. // if output is NULL, init from the input tok embed
  4867. if (output == NULL) {
  4868. output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
  4869. }
  4870. for (int i = 0; i < n_layer; ++i) {
  4871. auto & layer = layers[i];
  4872. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  4873. layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd_head_k * n_head}, 0);
  4874. layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_k_gqa}, 0);
  4875. layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_v_gqa}, 0);
  4876. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd_head_k * n_head, n_embd}, 0);
  4877. layer.attn_k_norm = create_tensor(tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), {n_embd_head_k}, 0);
  4878. layer.attn_q_norm = create_tensor(tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), {n_embd_head_k}, 0);
  4879. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
  4880. layer.ffn_gate_inp = create_tensor(tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert}, 0);
  4881. layer.ffn_gate_exps = create_tensor(tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), {n_embd, n_ff, n_expert}, 0);
  4882. layer.ffn_down_exps = create_tensor(tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), { n_ff, n_embd, n_expert}, 0);
  4883. layer.ffn_up_exps = create_tensor(tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), {n_embd, n_ff, n_expert}, 0);
  4884. layer.ffn_gate_shexp = create_tensor(tn(LLM_TENSOR_FFN_GATE_SHEXP, "weight", i), {n_embd, hparams.n_ff_shexp}, 0);
  4885. layer.ffn_up_shexp = create_tensor(tn(LLM_TENSOR_FFN_UP_SHEXP, "weight", i), {n_embd, hparams.n_ff_shexp}, 0);
  4886. layer.ffn_down_shexp = create_tensor(tn(LLM_TENSOR_FFN_DOWN_SHEXP, "weight", i), {hparams.n_ff_shexp, n_embd}, 0);
  4887. }
  4888. } break;
  4889. case LLM_ARCH_HUNYUAN_DENSE:
  4890. {
  4891. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  4892. // output
  4893. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  4894. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
  4895. // if output is NULL, init from the input tok embed
  4896. if (output == NULL) {
  4897. output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
  4898. }
  4899. for (int i = 0; i < n_layer; ++i) {
  4900. auto & layer = layers[i];
  4901. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  4902. layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd_head_k * n_head}, 0);
  4903. layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_k_gqa}, 0);
  4904. layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_v_gqa}, 0);
  4905. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd_head_k * n_head, n_embd}, 0);
  4906. layer.attn_k_norm = create_tensor(tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), {n_embd_head_k}, 0);
  4907. layer.attn_q_norm = create_tensor(tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), {n_embd_head_k}, 0);
  4908. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
  4909. layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
  4910. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
  4911. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  4912. }
  4913. } break;
  4914. case LLM_ARCH_SMOLLM3:
  4915. {
  4916. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  4917. // output
  4918. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  4919. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
  4920. // if output is NULL, init from the input tok embed
  4921. if (output == NULL) {
  4922. output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
  4923. }
  4924. for (int i = 0; i < n_layer; ++i) {
  4925. auto & layer = layers[i];
  4926. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  4927. layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd_head_k * n_head}, 0);
  4928. layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_k_gqa}, 0);
  4929. layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_v_gqa}, 0);
  4930. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd_head_k * n_head, n_embd}, 0);
  4931. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
  4932. layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
  4933. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
  4934. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  4935. }
  4936. } break;
  4937. case LLM_ARCH_OPENAI_MOE:
  4938. {
  4939. const int64_t n_ff_exp = hparams.n_ff_exp;
  4940. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  4941. // output
  4942. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  4943. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, 0);
  4944. for (int i = 0; i < n_layer; ++i) {
  4945. auto & layer = layers[i];
  4946. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  4947. layer.attn_post_norm = create_tensor(tn(LLM_TENSOR_ATTN_POST_NORM, "weight", i), {n_embd}, 0);
  4948. layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_head * n_rot}, 0);
  4949. layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_head_kv * n_rot}, 0);
  4950. layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_head_kv * n_rot}, 0);
  4951. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_head * n_rot, n_embd}, 0);
  4952. layer.attn_sinks = create_tensor(tn(LLM_TENSOR_ATTN_SINKS, "weight", i), {n_head}, 0);
  4953. layer.ffn_gate_inp = create_tensor(tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), { n_embd, n_expert}, 0);
  4954. layer.ffn_gate_exps = create_tensor(tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), { n_embd, n_ff_exp, n_expert}, 0);
  4955. layer.ffn_down_exps = create_tensor(tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), {n_ff_exp, n_embd, n_expert}, 0);
  4956. layer.ffn_up_exps = create_tensor(tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), { n_embd, n_ff_exp, n_expert}, 0);
  4957. // bias
  4958. layer.bq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_head * n_rot}, 0);
  4959. layer.bk = create_tensor(tn(LLM_TENSOR_ATTN_K, "bias", i), {n_head_kv * n_rot}, 0);
  4960. layer.bv = create_tensor(tn(LLM_TENSOR_ATTN_V, "bias", i), {n_head_kv * n_rot}, 0);
  4961. layer.bo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd}, 0);
  4962. layer.ffn_gate_inp_b = create_tensor(tn(LLM_TENSOR_FFN_GATE_INP, "bias", i), {n_expert}, 0);
  4963. layer.ffn_gate_exps_b = create_tensor(tn(LLM_TENSOR_FFN_GATE_EXPS, "bias", i), {n_ff_exp, n_expert}, 0);
  4964. layer.ffn_down_exps_b = create_tensor(tn(LLM_TENSOR_FFN_DOWN_EXPS, "bias", i), { n_embd, n_expert}, 0);
  4965. layer.ffn_up_exps_b = create_tensor(tn(LLM_TENSOR_FFN_UP_EXPS, "bias", i), {n_ff_exp, n_expert}, 0);
  4966. }
  4967. } break;
  4968. case LLM_ARCH_LFM2:
  4969. case LLM_ARCH_LFM2MOE:
  4970. {
  4971. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  4972. tok_norm = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD_NORM, "weight"), {n_embd}, 0);
  4973. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
  4974. if (output == NULL) {
  4975. output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
  4976. }
  4977. for (int i = 0; i < n_layer; ++i) {
  4978. auto & layer = layers[i];
  4979. const bool is_moe_layer = i >= static_cast<int>(hparams.n_layer_dense_lead);
  4980. // ffn/moe is same for transformer and conv layers
  4981. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
  4982. if (is_moe_layer) {
  4983. GGML_ASSERT(n_expert && n_expert_used);
  4984. layer.ffn_gate_inp = create_tensor(tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert}, 0);
  4985. layer.ffn_gate_exps = create_tensor(tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), {n_embd, hparams.n_ff_exp, n_expert}, 0);
  4986. layer.ffn_down_exps = create_tensor(tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), {hparams.n_ff_exp, n_embd, n_expert}, 0);
  4987. layer.ffn_up_exps = create_tensor(tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), {n_embd, hparams.n_ff_exp, n_expert}, 0);
  4988. layer.ffn_exp_probs_b = create_tensor(tn(LLM_TENSOR_FFN_EXP_PROBS_B, "bias", i), {n_expert}, 0);
  4989. } else { // dense
  4990. layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
  4991. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
  4992. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  4993. }
  4994. // for operator_norm
  4995. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  4996. if (!hparams.is_recurrent(i)) {
  4997. layer.attn_q_norm = create_tensor(tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), {n_embd_head_k}, 0);
  4998. layer.attn_k_norm = create_tensor(tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), {n_embd_head_k}, 0);
  4999. GGML_ASSERT(n_embd_v_gqa == n_embd_k_gqa);
  5000. layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}, 0);
  5001. layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, hparams.n_embd_k_gqa(i)}, 0);
  5002. layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, hparams.n_embd_v_gqa(i)}, 0);
  5003. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
  5004. } else {
  5005. layer.shortconv.conv = create_tensor(tn(LLM_TENSOR_SHORTCONV_CONV, "weight", i), {hparams.n_shortconv_l_cache, n_embd}, 0);
  5006. layer.shortconv.in_proj = create_tensor(tn(LLM_TENSOR_SHORTCONV_INPROJ, "weight", i), {n_embd, 3 * n_embd}, 0);
  5007. layer.shortconv.out_proj = create_tensor(tn(LLM_TENSOR_SHORTCONV_OUTPROJ, "weight", i), {n_embd, n_embd}, 0);
  5008. }
  5009. }
  5010. } break;
  5011. case LLM_ARCH_SMALLTHINKER:
  5012. {
  5013. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), { n_embd, n_vocab }, 0);
  5014. // output
  5015. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), { n_embd }, 0);
  5016. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
  5017. // if output is NULL, init from the input tok embed
  5018. if (output == NULL) {
  5019. output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
  5020. }
  5021. for (int i = 0; i < n_layer; ++i) {
  5022. auto & layer = layers[i];
  5023. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), { n_embd }, 0);
  5024. layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), { n_embd, n_embd_head_k * n_head }, 0);
  5025. layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), { n_embd, n_embd_gqa }, 0);
  5026. layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), { n_embd, n_embd_gqa }, 0);
  5027. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), { n_embd_head_k * n_head, n_embd }, 0);
  5028. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), { n_embd }, 0);
  5029. GGML_ASSERT(n_expert > 0 && "n_expert must be > 0 for SMALLTHINKER");
  5030. GGML_ASSERT(n_expert_used > 0 && "n_expert_used must be > 0 for SMALLTHINKER");
  5031. // MoE branch
  5032. const int64_t n_ff_exp = hparams.n_ff_exp;
  5033. layer.ffn_gate_inp = create_tensor(tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), { n_embd, n_expert }, 0);
  5034. layer.ffn_gate_exps = create_tensor(tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), { n_embd, n_ff_exp, n_expert }, 0);
  5035. layer.ffn_down_exps = create_tensor(tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), { n_ff_exp, n_embd, n_expert }, 0);
  5036. layer.ffn_up_exps = create_tensor(tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), { n_embd, n_ff_exp, n_expert }, 0);
  5037. }
  5038. } break;
  5039. case LLM_ARCH_GROVEMOE:
  5040. {
  5041. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  5042. // output
  5043. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  5044. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
  5045. // if output is NULL, init from the input tok embed
  5046. if (output == NULL) {
  5047. output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
  5048. }
  5049. GGML_ASSERT(n_expert > 0 && "n_expert must be > 0 for GROVEMOE");
  5050. GGML_ASSERT(n_expert_used > 0 && "n_expert_used must be > 0 for GROVEMOE");
  5051. GGML_ASSERT(hparams.n_group_experts > 0 && "n_group_experts must be > 0 for GROVEMOE");
  5052. for (int i = 0; i < n_layer; ++i) {
  5053. auto & layer = layers[i];
  5054. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  5055. layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd_head_k * n_head}, 0);
  5056. layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}, 0);
  5057. layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}, 0);
  5058. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd_head_k * n_head, n_embd}, 0);
  5059. layer.attn_k_norm = create_tensor(tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), {n_embd_head_k}, 0);
  5060. layer.attn_q_norm = create_tensor(tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), {n_embd_head_k}, 0);
  5061. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
  5062. layer.ffn_gate_inp = create_tensor(tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert}, 0);
  5063. // MoE branch
  5064. const int64_t n_ff_exp = hparams.n_ff_exp ? hparams.n_ff_exp : n_ff / n_expert_used;
  5065. const int64_t n_ff_chexp = hparams.n_ff_chexp ? hparams.n_ff_chexp : n_embd_head_k;
  5066. const int64_t n_chunk_expert = n_expert / hparams.n_group_experts;
  5067. layer.ffn_gate_exps = create_tensor(tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), { n_embd, n_ff_exp, n_expert}, 0);
  5068. layer.ffn_down_exps = create_tensor(tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), {n_ff_exp, n_embd, n_expert}, 0);
  5069. layer.ffn_up_exps = create_tensor(tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), { n_embd, n_ff_exp, n_expert}, 0);
  5070. layer.ffn_gate_chexps = create_tensor(tn(LLM_TENSOR_FFN_GATE_CHEXPS, "weight", i), { n_embd, n_ff_chexp, n_chunk_expert}, 0);
  5071. layer.ffn_down_chexps = create_tensor(tn(LLM_TENSOR_FFN_DOWN_CHEXPS, "weight", i), {n_ff_chexp, n_embd, n_chunk_expert}, 0);
  5072. layer.ffn_up_chexps = create_tensor(tn(LLM_TENSOR_FFN_UP_CHEXPS, "weight", i), { n_embd, n_ff_chexp, n_chunk_expert}, 0);
  5073. }
  5074. } break;
  5075. case LLM_ARCH_APERTUS:
  5076. {
  5077. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), { n_embd, n_vocab }, 0);
  5078. // output
  5079. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), { n_embd }, 0);
  5080. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), { n_embd, n_vocab }, 0);
  5081. for (int i = 0; i < n_layer; ++i) {
  5082. auto & layer = layers[i];
  5083. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), { n_embd }, 0);
  5084. if (hparams.rope_scaling_type_train == LLAMA_ROPE_SCALING_TYPE_LONGROPE) {
  5085. layer.rope_long = create_tensor(tn(LLM_TENSOR_ROPE_FACTORS_LONG, "weight", i), { n_rot/2 }, TENSOR_NOT_REQUIRED | (i != 0 ? TENSOR_DUPLICATED : 0));
  5086. layer.rope_short = create_tensor(tn(LLM_TENSOR_ROPE_FACTORS_SHORT, "weight", i), { n_rot/2 }, TENSOR_NOT_REQUIRED | (i != 0 ? TENSOR_DUPLICATED : 0));
  5087. } else {
  5088. layer.rope_freqs = create_tensor(tn(LLM_TENSOR_ROPE_FREQS, "weight", i), { n_rot/2 }, TENSOR_NOT_REQUIRED | (i != 0 ? TENSOR_DUPLICATED : 0));
  5089. }
  5090. layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), { n_embd, n_embd_head_k * n_head }, 0);
  5091. layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), { n_embd, n_embd_gqa }, 0);
  5092. layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), { n_embd, n_embd_gqa }, 0);
  5093. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), { n_embd_head_k * n_head, n_embd }, 0);
  5094. // optional bias tensors
  5095. layer.bq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "bias", i), { n_embd }, TENSOR_NOT_REQUIRED);
  5096. layer.bk = create_tensor(tn(LLM_TENSOR_ATTN_K, "bias", i), { n_embd_gqa }, TENSOR_NOT_REQUIRED);
  5097. layer.bv = create_tensor(tn(LLM_TENSOR_ATTN_V, "bias", i), { n_embd_gqa }, TENSOR_NOT_REQUIRED);
  5098. layer.bo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "bias", i), { n_embd }, TENSOR_NOT_REQUIRED);
  5099. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), { n_embd }, 0);
  5100. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd }, 0);
  5101. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), { n_embd, n_ff }, 0);
  5102. // Q and K layernorms for Apertus
  5103. layer.attn_q_norm = create_tensor(tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), { n_embd_head_k }, 0);
  5104. layer.attn_q_norm_b = create_tensor(tn(LLM_TENSOR_ATTN_Q_NORM, "bias", i), { n_embd_head_k }, TENSOR_NOT_REQUIRED);
  5105. layer.attn_k_norm = create_tensor(tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), { n_embd_head_k }, 0);
  5106. layer.attn_k_norm_b = create_tensor(tn(LLM_TENSOR_ATTN_K_NORM, "bias", i), { n_embd_head_k }, TENSOR_NOT_REQUIRED);
  5107. }
  5108. } break;
  5109. default:
  5110. throw std::runtime_error("unknown architecture");
  5111. }
  5112. if (n_moved_tensors > 0) {
  5113. LLAMA_LOG_DEBUG("%s: tensor '%s' (%s) (and %d others) cannot be used with preferred buffer type %s, using %s instead\n",
  5114. __func__, first_moved_tensor->name, ggml_type_name(first_moved_tensor->type), n_moved_tensors - 1,
  5115. ggml_backend_buft_name(first_moved_from_buft), ggml_backend_buft_name(first_moved_to_buft));
  5116. }
  5117. }
  5118. ml.done_getting_tensors();
  5119. ml.init_mappings(true, use_mlock ? &pimpl->mlock_mmaps : nullptr);
  5120. pimpl->mappings.reserve(ml.mappings.size());
  5121. // create the backend buffers
  5122. std::vector<std::pair<ggml_context *, llama_buf_map>> ctx_buf_maps;
  5123. ctx_buf_maps.reserve(ctx_map.size());
  5124. // Ensure we have enough capacity for the maximum backend buffer we will potentially create
  5125. const size_t n_max_backend_buffer = ctx_map.size() * ml.files.size();
  5126. pimpl->ctxs_bufs.reserve(n_max_backend_buffer);
  5127. for (auto & [buft, ctx_ptr] : ctx_map) {
  5128. ggml_context * ctx = ctx_ptr.get();
  5129. // skip contexts without tensors
  5130. if (ggml_get_first_tensor(ctx) == nullptr) {
  5131. continue;
  5132. }
  5133. llama_buf_map buf_map;
  5134. buf_map.reserve(n_max_backend_buffer);
  5135. // check if it is possible to use buffer_from_host_ptr with this buffer type
  5136. ggml_backend_dev_t dev = ggml_backend_buft_get_device(buft);
  5137. if (!dev) {
  5138. // FIXME: workaround for CPU backend buft having a NULL device
  5139. dev = ggml_backend_dev_by_type(GGML_BACKEND_DEVICE_TYPE_CPU);
  5140. if (!dev) {
  5141. throw std::runtime_error(format("%s: no CPU backend found", __func__));
  5142. }
  5143. }
  5144. ggml_backend_dev_props props;
  5145. ggml_backend_dev_get_props(dev, &props);
  5146. bool buffer_from_host_ptr_supported = props.caps.buffer_from_host_ptr;
  5147. bool is_default_buft = buft == ggml_backend_dev_buffer_type(dev);
  5148. ggml_backend_buffer_t buf = nullptr;
  5149. if (ml.use_mmap && use_mmap_buffer && buffer_from_host_ptr_supported && is_default_buft) {
  5150. for (uint32_t idx = 0; idx < ml.files.size(); idx++) {
  5151. // only the mmap region containing the tensors in the model is mapped to the backend buffer
  5152. // this is important for metal with apple silicon: if the entire model could be mapped to a metal buffer, then we could just use metal for all layers
  5153. // this allows using partial offloading when the model size exceeds the metal buffer size, but not the RAM size
  5154. void * addr = nullptr;
  5155. size_t first, last; // NOLINT
  5156. ml.get_mapping_range(&first, &last, &addr, idx, ctx);
  5157. if (first >= last) {
  5158. continue;
  5159. }
  5160. const size_t max_size = ggml_get_max_tensor_size(ctx);
  5161. buf = ggml_backend_dev_buffer_from_host_ptr(dev, (char *) addr + first, last - first, max_size);
  5162. if (buf == nullptr) {
  5163. throw std::runtime_error(format("unable to allocate %s buffer", ggml_backend_buft_name(buft)));
  5164. }
  5165. buf_map.emplace(idx, buf);
  5166. }
  5167. }
  5168. else {
  5169. buf = ggml_backend_alloc_ctx_tensors_from_buft(ctx, buft);
  5170. if (buf == nullptr) {
  5171. throw std::runtime_error(format("unable to allocate %s buffer", ggml_backend_buft_name(buft)));
  5172. }
  5173. if (use_mlock && ggml_backend_buffer_is_host(buf)) {
  5174. pimpl->mlock_bufs.emplace_back(new llama_mlock);
  5175. auto & mlock_buf = pimpl->mlock_bufs.back();
  5176. mlock_buf->init (ggml_backend_buffer_get_base(buf));
  5177. mlock_buf->grow_to(ggml_backend_buffer_get_size(buf));
  5178. }
  5179. for (uint32_t idx = 0; idx < ml.files.size(); idx++) {
  5180. buf_map.emplace(idx, buf);
  5181. }
  5182. }
  5183. pimpl->ctxs_bufs.emplace_back(std::move(ctx_ptr), buf);
  5184. for (auto & buf : buf_map) {
  5185. // indicate that this buffer contains weights
  5186. // this is used by ggml_backend_sched to improve op scheduling: ops that use a weight are preferably scheduled to the backend that contains the weight
  5187. ggml_backend_buffer_set_usage(buf.second, GGML_BACKEND_BUFFER_USAGE_WEIGHTS);
  5188. }
  5189. ctx_buf_maps.emplace_back(ctx, buf_map);
  5190. }
  5191. if (llama_supports_gpu_offload()) {
  5192. const int n_gpu = std::min(n_gpu_layers, int(hparams.n_layer));
  5193. LLAMA_LOG_INFO("%s: offloading %d repeating layers to GPU\n", __func__, n_gpu);
  5194. if (n_gpu_layers > (int) hparams.n_layer) {
  5195. LLAMA_LOG_INFO("%s: offloading output layer to GPU\n", __func__);
  5196. }
  5197. const int max_backend_supported_layers = hparams.n_layer + 1;
  5198. const int max_offloadable_layers = hparams.n_layer + 1;
  5199. LLAMA_LOG_INFO("%s: offloaded %d/%d layers to GPU\n", __func__, std::min(n_gpu_layers, max_offloadable_layers), max_backend_supported_layers);
  5200. }
  5201. // print memory requirements per buffer type
  5202. for (auto & [_, buf] : pimpl->ctxs_bufs) {
  5203. LLAMA_LOG_INFO("%s: %12s model buffer size = %8.2f MiB\n", __func__, ggml_backend_buffer_name(buf.get()), ggml_backend_buffer_get_size(buf.get()) / 1024.0 / 1024.0);
  5204. }
  5205. // populate tensors_by_name
  5206. for (auto & [ctx, _] : pimpl->ctxs_bufs) {
  5207. for (auto * cur = ggml_get_first_tensor(ctx.get()); cur != NULL; cur = ggml_get_next_tensor(ctx.get(), cur)) {
  5208. tensors_by_name.emplace_back(ggml_get_name(cur), cur);
  5209. }
  5210. }
  5211. // load tensor data
  5212. for (auto & [ctx, buf_map] : ctx_buf_maps) {
  5213. if (!ml.load_all_data(ctx, buf_map, use_mlock ? &pimpl->mlock_mmaps : NULL, params.progress_callback, params.progress_callback_user_data)) {
  5214. return false;
  5215. }
  5216. }
  5217. if (use_mmap_buffer) {
  5218. for (auto & mapping : ml.mappings) {
  5219. pimpl->mappings.emplace_back(std::move(mapping));
  5220. }
  5221. }
  5222. return true;
  5223. }
  5224. std::string llama_model::arch_name() const {
  5225. return llm_arch_name(arch);
  5226. }
  5227. std::string llama_model::type_name() const {
  5228. return llm_type_name(type);
  5229. }
  5230. std::string llama_model::desc() const {
  5231. return pimpl->desc_str;
  5232. }
  5233. size_t llama_model::size() const {
  5234. return pimpl->n_bytes;
  5235. }
  5236. size_t llama_model::n_tensors() const {
  5237. return tensors_by_name.size();
  5238. }
  5239. size_t llama_model::n_devices() const {
  5240. return devices.size();
  5241. }
  5242. std::map<ggml_backend_buffer_type_t, size_t> llama_model::memory_breakdown() const {
  5243. std::map<ggml_backend_buffer_type_t, size_t> ret;
  5244. for (const auto & [_, buf] : pimpl->ctxs_bufs) {
  5245. ret[ggml_backend_buffer_get_type(buf.get())] += ggml_backend_buffer_get_size(buf.get());
  5246. }
  5247. return ret;
  5248. }
  5249. uint64_t llama_model::n_elements() const {
  5250. return pimpl->n_elements;
  5251. }
  5252. void llama_model::print_info() const {
  5253. const std::string rope_scaling_type = llama_rope_scaling_type_name(hparams.rope_scaling_type_train);
  5254. auto print_f = [](const std::function<uint32_t(uint32_t)> & f, uint32_t n) {
  5255. bool is_var = false;
  5256. std::vector<uint32_t> v;
  5257. for (uint32_t i = 0; i < n; ++i) {
  5258. v.push_back(f(i));
  5259. if (v[i] != v[0]) {
  5260. is_var = true;
  5261. }
  5262. }
  5263. std::stringstream ss;
  5264. if (is_var) {
  5265. ss << "[";
  5266. for (uint32_t i = 0; i < n; ++i) {
  5267. ss << v[i];
  5268. if (i < n - 1) {
  5269. ss << ", ";
  5270. }
  5271. }
  5272. ss << "]";
  5273. } else {
  5274. ss << v[0];
  5275. }
  5276. return ss.str();
  5277. };
  5278. // hparams
  5279. LLAMA_LOG_INFO("%s: arch = %s\n", __func__, arch_name().c_str());
  5280. LLAMA_LOG_INFO("%s: vocab_only = %d\n", __func__, hparams.vocab_only);
  5281. if (!hparams.vocab_only) {
  5282. LLAMA_LOG_INFO("%s: n_ctx_train = %u\n", __func__, hparams.n_ctx_train);
  5283. LLAMA_LOG_INFO("%s: n_embd = %u\n", __func__, hparams.n_embd);
  5284. LLAMA_LOG_INFO("%s: n_layer = %u\n", __func__, hparams.n_layer);
  5285. LLAMA_LOG_INFO("%s: n_head = %s\n", __func__, print_f([&](uint32_t il) { return hparams.n_head(il); }, hparams.n_layer).c_str());
  5286. LLAMA_LOG_INFO("%s: n_head_kv = %s\n", __func__, print_f([&](uint32_t il) { return hparams.n_head_kv(il); }, hparams.n_layer).c_str());
  5287. LLAMA_LOG_INFO("%s: n_rot = %u\n", __func__, hparams.n_rot);
  5288. LLAMA_LOG_INFO("%s: n_swa = %u\n", __func__, hparams.n_swa);
  5289. LLAMA_LOG_INFO("%s: is_swa_any = %u\n", __func__, hparams.is_swa_any());
  5290. LLAMA_LOG_INFO("%s: n_embd_head_k = %u\n", __func__, hparams.n_embd_head_k);
  5291. LLAMA_LOG_INFO("%s: n_embd_head_v = %u\n", __func__, hparams.n_embd_head_v);
  5292. LLAMA_LOG_INFO("%s: n_gqa = %s\n", __func__, print_f([&](uint32_t il) { return hparams.n_gqa(il); }, hparams.n_layer).c_str());
  5293. LLAMA_LOG_INFO("%s: n_embd_k_gqa = %s\n", __func__, print_f([&](uint32_t il) { return hparams.n_embd_k_gqa(il); }, hparams.n_layer).c_str());
  5294. LLAMA_LOG_INFO("%s: n_embd_v_gqa = %s\n", __func__, print_f([&](uint32_t il) { return hparams.n_embd_v_gqa(il); }, hparams.n_layer).c_str());
  5295. LLAMA_LOG_INFO("%s: f_norm_eps = %.1e\n", __func__, hparams.f_norm_eps);
  5296. LLAMA_LOG_INFO("%s: f_norm_rms_eps = %.1e\n", __func__, hparams.f_norm_rms_eps);
  5297. LLAMA_LOG_INFO("%s: f_clamp_kqv = %.1e\n", __func__, hparams.f_clamp_kqv);
  5298. LLAMA_LOG_INFO("%s: f_max_alibi_bias = %.1e\n", __func__, hparams.f_max_alibi_bias);
  5299. LLAMA_LOG_INFO("%s: f_logit_scale = %.1e\n", __func__, hparams.f_logit_scale);
  5300. LLAMA_LOG_INFO("%s: f_attn_scale = %.1e\n", __func__, hparams.f_attention_scale);
  5301. LLAMA_LOG_INFO("%s: n_ff = %s\n", __func__, print_f([&](uint32_t il) { return hparams.n_ff(il); }, hparams.n_layer).c_str());
  5302. LLAMA_LOG_INFO("%s: n_expert = %u\n", __func__, hparams.n_expert);
  5303. LLAMA_LOG_INFO("%s: n_expert_used = %u\n", __func__, hparams.n_expert_used);
  5304. LLAMA_LOG_INFO("%s: causal attn = %d\n", __func__, hparams.causal_attn);
  5305. LLAMA_LOG_INFO("%s: pooling type = %d\n", __func__, hparams.pooling_type);
  5306. LLAMA_LOG_INFO("%s: rope type = %d\n", __func__, hparams.rope_type);
  5307. LLAMA_LOG_INFO("%s: rope scaling = %s\n", __func__, rope_scaling_type.c_str());
  5308. LLAMA_LOG_INFO("%s: freq_base_train = %.1f\n", __func__, hparams.rope_freq_base_train);
  5309. LLAMA_LOG_INFO("%s: freq_scale_train = %g\n", __func__, hparams.rope_freq_scale_train);
  5310. LLAMA_LOG_INFO("%s: n_ctx_orig_yarn = %u\n", __func__, hparams.n_ctx_orig_yarn);
  5311. LLAMA_LOG_INFO("%s: rope_finetuned = %s\n", __func__, hparams.rope_finetuned ? "yes" : "unknown");
  5312. if (!classifier_labels.empty()) {
  5313. LLAMA_LOG_INFO("%s: n_cls_out = %u\n", __func__, hparams.n_cls_out);
  5314. size_t i = 0;
  5315. for (auto label : classifier_labels) {
  5316. LLAMA_LOG_INFO("%s: cls_label[%2zu] = %s\n", __func__, i++, label.c_str());
  5317. }
  5318. }
  5319. }
  5320. if (arch == LLM_ARCH_MAMBA ||
  5321. arch == LLM_ARCH_MAMBA2 ||
  5322. arch == LLM_ARCH_JAMBA ||
  5323. arch == LLM_ARCH_FALCON_H1 ||
  5324. arch == LLM_ARCH_PLAMO2 ||
  5325. arch == LLM_ARCH_GRANITE_HYBRID ||
  5326. arch == LLM_ARCH_NEMOTRON_H) {
  5327. LLAMA_LOG_INFO("%s: ssm_d_conv = %u\n", __func__, hparams.ssm_d_conv);
  5328. LLAMA_LOG_INFO("%s: ssm_d_inner = %u\n", __func__, hparams.ssm_d_inner);
  5329. LLAMA_LOG_INFO("%s: ssm_d_state = %u\n", __func__, hparams.ssm_d_state);
  5330. LLAMA_LOG_INFO("%s: ssm_dt_rank = %u\n", __func__, hparams.ssm_dt_rank);
  5331. LLAMA_LOG_INFO("%s: ssm_n_group = %u\n", __func__, hparams.ssm_n_group);
  5332. LLAMA_LOG_INFO("%s: ssm_dt_b_c_rms = %d\n", __func__, hparams.ssm_dt_b_c_rms);
  5333. }
  5334. LLAMA_LOG_INFO("%s: model type = %s\n", __func__, type_name().c_str());
  5335. if (pimpl->n_elements >= 1e12) {
  5336. LLAMA_LOG_INFO("%s: model params = %.2f T\n", __func__, pimpl->n_elements*1e-12);
  5337. } else if (pimpl->n_elements >= 1e9) {
  5338. LLAMA_LOG_INFO("%s: model params = %.2f B\n", __func__, pimpl->n_elements*1e-9);
  5339. } else if (pimpl->n_elements >= 1e6) {
  5340. LLAMA_LOG_INFO("%s: model params = %.2f M\n", __func__, pimpl->n_elements*1e-6);
  5341. } else {
  5342. LLAMA_LOG_INFO("%s: model params = %.2f K\n", __func__, pimpl->n_elements*1e-3);
  5343. }
  5344. // general kv
  5345. LLAMA_LOG_INFO("%s: general.name = %s\n", __func__, name.c_str());
  5346. if (arch == LLM_ARCH_DEEPSEEK) {
  5347. LLAMA_LOG_INFO("%s: n_layer_dense_lead = %d\n", __func__, hparams.n_layer_dense_lead);
  5348. LLAMA_LOG_INFO("%s: n_ff_exp = %d\n", __func__, hparams.n_ff_exp);
  5349. LLAMA_LOG_INFO("%s: n_expert_shared = %d\n", __func__, hparams.n_expert_shared);
  5350. LLAMA_LOG_INFO("%s: expert_weights_scale = %.1f\n", __func__, hparams.expert_weights_scale);
  5351. }
  5352. if (arch == LLM_ARCH_DEEPSEEK2) {
  5353. LLAMA_LOG_INFO("%s: n_layer_dense_lead = %d\n", __func__, hparams.n_layer_dense_lead);
  5354. LLAMA_LOG_INFO("%s: n_lora_q = %d\n", __func__, hparams.n_lora_q);
  5355. LLAMA_LOG_INFO("%s: n_lora_kv = %d\n", __func__, hparams.n_lora_kv);
  5356. LLAMA_LOG_INFO("%s: n_embd_head_k_mla = %d\n", __func__, hparams.n_embd_head_k_mla);
  5357. LLAMA_LOG_INFO("%s: n_embd_head_v_mla = %d\n", __func__, hparams.n_embd_head_v_mla);
  5358. LLAMA_LOG_INFO("%s: n_ff_exp = %d\n", __func__, hparams.n_ff_exp);
  5359. LLAMA_LOG_INFO("%s: n_expert_shared = %d\n", __func__, hparams.n_expert_shared);
  5360. LLAMA_LOG_INFO("%s: expert_weights_scale = %.1f\n", __func__, hparams.expert_weights_scale);
  5361. LLAMA_LOG_INFO("%s: expert_weights_norm = %d\n", __func__, hparams.expert_weights_norm);
  5362. LLAMA_LOG_INFO("%s: expert_gating_func = %s\n", __func__, llama_expert_gating_func_name((llama_expert_gating_func_type) hparams.expert_gating_func));
  5363. LLAMA_LOG_INFO("%s: rope_yarn_log_mul = %.4f\n", __func__, hparams.rope_yarn_log_mul);
  5364. }
  5365. if (arch == LLM_ARCH_QWEN2MOE) {
  5366. LLAMA_LOG_INFO("%s: n_ff_exp = %d\n", __func__, hparams.n_ff_exp);
  5367. LLAMA_LOG_INFO("%s: n_ff_shexp = %d\n", __func__, hparams.n_ff_shexp);
  5368. }
  5369. if (arch == LLM_ARCH_QWEN3MOE || arch == LLM_ARCH_OPENAI_MOE) {
  5370. LLAMA_LOG_INFO("%s: n_ff_exp = %d\n", __func__, hparams.n_ff_exp);
  5371. }
  5372. if (arch == LLM_ARCH_MINICPM ||
  5373. arch == LLM_ARCH_GRANITE ||
  5374. arch == LLM_ARCH_GRANITE_MOE ||
  5375. arch == LLM_ARCH_GRANITE_HYBRID) {
  5376. LLAMA_LOG_INFO("%s: f_embedding_scale = %f\n", __func__, hparams.f_embedding_scale);
  5377. LLAMA_LOG_INFO("%s: f_residual_scale = %f\n", __func__, hparams.f_residual_scale);
  5378. LLAMA_LOG_INFO("%s: f_attention_scale = %f\n", __func__, hparams.f_attention_scale);
  5379. LLAMA_LOG_INFO("%s: n_ff_shexp = %d\n", __func__, hparams.n_ff_shexp);
  5380. }
  5381. if (arch == LLM_ARCH_BAILINGMOE) {
  5382. LLAMA_LOG_INFO("%s: n_layer_dense_lead = %d\n", __func__, hparams.n_layer_dense_lead);
  5383. LLAMA_LOG_INFO("%s: n_ff_exp = %d\n", __func__, hparams.n_ff_exp);
  5384. LLAMA_LOG_INFO("%s: n_expert_shared = %d\n", __func__, hparams.n_expert_shared);
  5385. LLAMA_LOG_INFO("%s: expert_weights_scale = %.1f\n", __func__, hparams.expert_weights_scale);
  5386. LLAMA_LOG_INFO("%s: expert_weights_norm = %d\n", __func__, hparams.expert_weights_norm);
  5387. }
  5388. if (arch == LLM_ARCH_BAILINGMOE2) {
  5389. LLAMA_LOG_INFO("%s: n_layer_dense_lead = %d\n", __func__, hparams.n_layer_dense_lead);
  5390. LLAMA_LOG_INFO("%s: n_ff_exp = %d\n", __func__, hparams.n_ff_exp);
  5391. LLAMA_LOG_INFO("%s: n_ff_shexp = %d\n", __func__, hparams.n_ff_shexp);
  5392. LLAMA_LOG_INFO("%s: n_expert_shared = %d\n", __func__, hparams.n_expert_shared);
  5393. LLAMA_LOG_INFO("%s: n_expert_groups = %d\n", __func__, hparams.n_expert_groups);
  5394. LLAMA_LOG_INFO("%s: n_group_used = %d\n", __func__, hparams.n_group_used);
  5395. LLAMA_LOG_INFO("%s: expert_weights_scale = %.1f\n", __func__, hparams.expert_weights_scale);
  5396. LLAMA_LOG_INFO("%s: expert_weights_norm = %d\n", __func__, hparams.expert_weights_norm);
  5397. LLAMA_LOG_INFO("%s: expert_gating_func = %s\n", __func__, llama_expert_gating_func_name((llama_expert_gating_func_type) hparams.expert_gating_func));
  5398. LLAMA_LOG_INFO("%s: nextn_predict_layers = %d\n", __func__, hparams.nextn_predict_layers);
  5399. }
  5400. if (arch == LLM_ARCH_SMALLTHINKER || arch == LLM_ARCH_LFM2MOE) {
  5401. LLAMA_LOG_INFO("%s: n_ff_exp = %d\n", __func__, hparams.n_ff_exp);
  5402. LLAMA_LOG_INFO("%s: expert_gating_func = %s\n", __func__, llama_expert_gating_func_name((llama_expert_gating_func_type) hparams.expert_gating_func));
  5403. }
  5404. if (arch == LLM_ARCH_GROVEMOE) {
  5405. LLAMA_LOG_INFO("%s: n_ff_exp = %d\n", __func__, hparams.n_ff_exp);
  5406. LLAMA_LOG_INFO("%s: n_ff_chexp = %d\n", __func__, hparams.n_ff_chexp);
  5407. LLAMA_LOG_INFO("%s: n_group_experts = %d\n", __func__, hparams.n_group_experts);
  5408. LLAMA_LOG_INFO("%s: expert_group_scale = %.2f\n", __func__, hparams.expert_group_scale);
  5409. }
  5410. vocab.print_info();
  5411. }
  5412. ggml_backend_dev_t llama_model::dev_layer(int il) const {
  5413. return pimpl->dev_layer.at(il).dev;
  5414. }
  5415. ggml_backend_dev_t llama_model::dev_output() const {
  5416. return pimpl->dev_output.dev;
  5417. }
  5418. template<typename F>
  5419. static bool buft_supported(ggml_backend_buffer_type_t buft, ggml_backend_dev_t dev, F & fn) {
  5420. ggml_init_params params = {
  5421. /*.mem_size =*/ ggml_tensor_overhead()*8,
  5422. /*.mem_buffer =*/ NULL,
  5423. /*.no_alloc =*/ true,
  5424. };
  5425. ggml_context_ptr ctx { ggml_init(params) };
  5426. if (!ctx) {
  5427. throw std::runtime_error(format("failed to create ggml context"));
  5428. }
  5429. ggml_backend_buffer_ptr buf { ggml_backend_buft_alloc_buffer(buft, 0) };
  5430. ggml_tensor * op_tensor = fn(ctx.get());
  5431. for (int i = 0; i < GGML_MAX_SRC; i++) {
  5432. if (op_tensor->src[i] != nullptr) {
  5433. assert(op_tensor->src[i]->buffer == nullptr);
  5434. op_tensor->src[i]->buffer = buf.get();
  5435. }
  5436. }
  5437. bool op_supported = ggml_backend_dev_supports_op(dev, op_tensor);
  5438. return op_supported;
  5439. }
  5440. template<typename F>
  5441. static ggml_backend_buffer_type_t select_buft(const buft_list_t & buft_list, const F & fn) {
  5442. for (const auto & cur : buft_list) {
  5443. ggml_backend_dev_t cur_dev = cur.first;
  5444. ggml_backend_buffer_type_t cur_buft = cur.second;
  5445. if (buft_supported(cur_buft, cur_dev, fn)) {
  5446. return cur_buft;
  5447. }
  5448. }
  5449. throw std::runtime_error(format("no suitable buffer type found"));
  5450. }
  5451. ggml_backend_buffer_type_t llama_model::select_buft(int il) const {
  5452. return ::select_buft(
  5453. *pimpl->dev_layer.at(il).buft_list,
  5454. [&](ggml_context * ctx) {
  5455. ggml_tensor * cur = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, hparams.n_embd);
  5456. ggml_tensor * layer_dir = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, hparams.n_embd);
  5457. return ggml_add(ctx, cur, layer_dir);
  5458. });
  5459. }
  5460. bool llama_model::has_tensor_overrides() const {
  5461. return pimpl->has_tensor_overrides;
  5462. }
  5463. const ggml_tensor * llama_model::get_tensor(const char * name) const {
  5464. auto it = std::find_if(tensors_by_name.begin(), tensors_by_name.end(),
  5465. [name](const std::pair<std::string, ggml_tensor *> & it) {
  5466. return it.first == name;
  5467. });
  5468. if (it == tensors_by_name.end()) {
  5469. return nullptr;
  5470. }
  5471. return it->second;
  5472. }
  5473. float llama_model::get_rope_freq_base (const llama_cparams & cparams, int il) const {
  5474. return hparams.is_swa(il) ? hparams.rope_freq_base_train_swa : cparams.rope_freq_base;
  5475. }
  5476. float llama_model::get_rope_freq_scale(const llama_cparams & cparams, int il) const {
  5477. return hparams.is_swa(il) ? hparams.rope_freq_scale_train_swa : cparams.rope_freq_scale;
  5478. }
  5479. ggml_tensor * llama_model::get_rope_factors(const llama_cparams & cparams, int il) const {
  5480. const uint32_t n_ctx_per_seq = cparams.n_ctx / cparams.n_seq_max;
  5481. // choose long/short freq factors based on the context size
  5482. if (layers[il].rope_freqs != nullptr) {
  5483. return layers[il].rope_freqs;
  5484. }
  5485. if (n_ctx_per_seq > hparams.n_ctx_orig_yarn) {
  5486. return layers[il].rope_long;
  5487. }
  5488. return layers[il].rope_short;
  5489. }
  5490. struct llm_build_llama : public llm_graph_context {
  5491. llm_build_llama(const llama_model & model, const llm_graph_params & params) : llm_graph_context(params) {
  5492. const int64_t n_embd_head = hparams.n_embd_head_v;
  5493. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  5494. GGML_ASSERT(n_embd_head == hparams.n_rot);
  5495. ggml_tensor * cur;
  5496. ggml_tensor * inpL;
  5497. inpL = build_inp_embd(model.tok_embd);
  5498. // inp_pos - contains the positions
  5499. ggml_tensor * inp_pos = build_inp_pos();
  5500. auto * inp_attn = build_attn_inp_kv();
  5501. const float kq_scale = hparams.f_attention_scale == 0.0f ? 1.0f/sqrtf(float(n_embd_head)) : hparams.f_attention_scale;
  5502. ggml_tensor * inp_out_ids = build_inp_out_ids();
  5503. for (int il = 0; il < n_layer; ++il) {
  5504. ggml_tensor * inpSA = inpL;
  5505. // norm
  5506. cur = build_norm(inpL,
  5507. model.layers[il].attn_norm, NULL,
  5508. LLM_NORM_RMS, il);
  5509. cb(cur, "attn_norm", il);
  5510. // self-attention
  5511. {
  5512. // rope freq factors for llama3; may return nullptr for llama2 and other models
  5513. ggml_tensor * rope_factors = model.get_rope_factors(cparams, il);
  5514. // compute Q and K and RoPE them
  5515. ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
  5516. cb(Qcur, "Qcur", il);
  5517. if (model.layers[il].bq) {
  5518. Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
  5519. cb(Qcur, "Qcur", il);
  5520. }
  5521. ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
  5522. cb(Kcur, "Kcur", il);
  5523. if (model.layers[il].bk) {
  5524. Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
  5525. cb(Kcur, "Kcur", il);
  5526. }
  5527. ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
  5528. cb(Vcur, "Vcur", il);
  5529. if (model.layers[il].bv) {
  5530. Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
  5531. cb(Vcur, "Vcur", il);
  5532. }
  5533. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  5534. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  5535. Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
  5536. Qcur = ggml_rope_ext(
  5537. ctx0, Qcur, inp_pos, rope_factors,
  5538. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  5539. ext_factor, attn_factor, beta_fast, beta_slow
  5540. );
  5541. Kcur = ggml_rope_ext(
  5542. ctx0, Kcur, inp_pos, rope_factors,
  5543. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  5544. ext_factor, attn_factor, beta_fast, beta_slow
  5545. );
  5546. cb(Qcur, "Qcur", il);
  5547. cb(Kcur, "Kcur", il);
  5548. cb(Vcur, "Vcur", il);
  5549. if (hparams.use_kq_norm) {
  5550. // Llama4TextL2Norm
  5551. Qcur = ggml_rms_norm(ctx0, Qcur, hparams.f_norm_rms_eps);
  5552. Kcur = ggml_rms_norm(ctx0, Kcur, hparams.f_norm_rms_eps);
  5553. cb(Qcur, "Qcur_normed", il);
  5554. cb(Kcur, "Kcur_normed", il);
  5555. }
  5556. cur = build_attn(inp_attn,
  5557. model.layers[il].wo, model.layers[il].bo,
  5558. Qcur, Kcur, Vcur, nullptr, nullptr, nullptr, kq_scale, il);
  5559. cb(cur, "attn_out", il);
  5560. }
  5561. if (il == n_layer - 1 && inp_out_ids) {
  5562. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  5563. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  5564. }
  5565. ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  5566. cb(ffn_inp, "ffn_inp", il);
  5567. // feed-forward network (non-MoE)
  5568. if (model.layers[il].ffn_gate_inp == nullptr) {
  5569. cur = build_norm(ffn_inp,
  5570. model.layers[il].ffn_norm, NULL,
  5571. LLM_NORM_RMS, il);
  5572. cb(cur, "ffn_norm", il);
  5573. cur = build_ffn(cur,
  5574. model.layers[il].ffn_up, model.layers[il].ffn_up_b, NULL,
  5575. model.layers[il].ffn_gate, model.layers[il].ffn_gate_b, NULL,
  5576. model.layers[il].ffn_down, model.layers[il].ffn_down_b, NULL,
  5577. NULL,
  5578. LLM_FFN_SILU, LLM_FFN_PAR, il);
  5579. cb(cur, "ffn_out", il);
  5580. } else {
  5581. // MoE branch
  5582. cur = build_norm(ffn_inp,
  5583. model.layers[il].ffn_norm, NULL,
  5584. LLM_NORM_RMS, il);
  5585. cb(cur, "ffn_norm", il);
  5586. cur = build_moe_ffn(cur,
  5587. model.layers[il].ffn_gate_inp,
  5588. model.layers[il].ffn_up_exps,
  5589. model.layers[il].ffn_gate_exps,
  5590. model.layers[il].ffn_down_exps,
  5591. nullptr,
  5592. n_expert, n_expert_used,
  5593. LLM_FFN_SILU, true,
  5594. false, 0.0,
  5595. LLAMA_EXPERT_GATING_FUNC_TYPE_SOFTMAX,
  5596. il);
  5597. cb(cur, "ffn_moe_out", il);
  5598. }
  5599. cur = ggml_add(ctx0, cur, ffn_inp);
  5600. cb(cur, "ffn_out", il);
  5601. cur = build_cvec(cur, il);
  5602. cb(cur, "l_out", il);
  5603. // input for next layer
  5604. inpL = cur;
  5605. }
  5606. cur = inpL;
  5607. cur = build_norm(cur,
  5608. model.output_norm, NULL,
  5609. LLM_NORM_RMS, -1);
  5610. cb(cur, "result_norm", -1);
  5611. res->t_embd = cur;
  5612. // lm_head
  5613. cur = build_lora_mm(model.output, cur);
  5614. cb(cur, "result_output", -1);
  5615. res->t_logits = cur;
  5616. ggml_build_forward_expand(gf, cur);
  5617. }
  5618. };
  5619. struct llm_build_llama_iswa : public llm_graph_context {
  5620. llm_build_llama_iswa(const llama_model & model, const llm_graph_params & params) : llm_graph_context(params) {
  5621. const int64_t n_embd_head = hparams.n_embd_head_v;
  5622. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  5623. GGML_ASSERT(n_embd_head == hparams.n_rot);
  5624. ggml_tensor * cur;
  5625. ggml_tensor * inpL;
  5626. inpL = build_inp_embd(model.tok_embd);
  5627. // inp_pos - contains the positions
  5628. ggml_tensor * inp_pos = build_inp_pos();
  5629. // temperature tuning
  5630. ggml_tensor * inp_attn_scale = nullptr;
  5631. inp_attn_scale = build_inp_attn_scale();
  5632. auto * inp_attn = build_attn_inp_kv_iswa();
  5633. const float kq_scale = hparams.f_attention_scale == 0.0f ? 1.0f/sqrtf(float(n_embd_head)) : hparams.f_attention_scale;
  5634. ggml_tensor * inp_out_ids = build_inp_out_ids();
  5635. for (int il = 0; il < n_layer; ++il) {
  5636. ggml_tensor * inpSA = inpL;
  5637. const bool use_rope = hparams.n_no_rope_layer_step > 0 &&
  5638. (il + 1) % hparams.n_no_rope_layer_step != 0;
  5639. // norm
  5640. cur = build_norm(inpL,
  5641. model.layers[il].attn_norm, NULL,
  5642. LLM_NORM_RMS, il);
  5643. cb(cur, "attn_norm", il);
  5644. // self-attention
  5645. {
  5646. // rope freq factors for llama3; may return nullptr for llama2 and other models
  5647. ggml_tensor * rope_factors = model.get_rope_factors(cparams, il);
  5648. // compute Q and K and RoPE them
  5649. ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
  5650. cb(Qcur, "Qcur", il);
  5651. if (model.layers[il].bq) {
  5652. Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
  5653. cb(Qcur, "Qcur", il);
  5654. }
  5655. ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
  5656. cb(Kcur, "Kcur", il);
  5657. if (model.layers[il].bk) {
  5658. Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
  5659. cb(Kcur, "Kcur", il);
  5660. }
  5661. ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
  5662. cb(Vcur, "Vcur", il);
  5663. if (model.layers[il].bv) {
  5664. Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
  5665. cb(Vcur, "Vcur", il);
  5666. }
  5667. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  5668. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  5669. Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
  5670. if (use_rope) {
  5671. Qcur = ggml_rope_ext(
  5672. ctx0, Qcur, inp_pos, rope_factors,
  5673. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  5674. ext_factor, attn_factor, beta_fast, beta_slow
  5675. );
  5676. Kcur = ggml_rope_ext(
  5677. ctx0, Kcur, inp_pos, rope_factors,
  5678. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  5679. ext_factor, attn_factor, beta_fast, beta_slow
  5680. );
  5681. } else if (inp_attn_scale) {
  5682. Qcur = ggml_mul(ctx0, Qcur, inp_attn_scale);
  5683. }
  5684. cb(Qcur, "Qcur", il);
  5685. cb(Kcur, "Kcur", il);
  5686. cb(Vcur, "Vcur", il);
  5687. if (use_rope && hparams.use_kq_norm) {
  5688. // Llama4TextL2Norm
  5689. Qcur = ggml_rms_norm(ctx0, Qcur, hparams.f_norm_rms_eps);
  5690. Kcur = ggml_rms_norm(ctx0, Kcur, hparams.f_norm_rms_eps);
  5691. cb(Qcur, "Qcur_normed", il);
  5692. cb(Kcur, "Kcur_normed", il);
  5693. }
  5694. cur = build_attn(inp_attn,
  5695. model.layers[il].wo, model.layers[il].bo,
  5696. Qcur, Kcur, Vcur, nullptr, nullptr, nullptr, kq_scale, il);
  5697. cb(cur, "attn_out", il);
  5698. }
  5699. if (il == n_layer - 1 && inp_out_ids) {
  5700. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  5701. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  5702. }
  5703. ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  5704. cb(ffn_inp, "ffn_inp", il);
  5705. // feed-forward network (non-MoE)
  5706. if (model.layers[il].ffn_gate_inp == nullptr) {
  5707. cur = build_norm(ffn_inp,
  5708. model.layers[il].ffn_norm, NULL,
  5709. LLM_NORM_RMS, il);
  5710. cb(cur, "ffn_norm", il);
  5711. cur = build_ffn(cur,
  5712. model.layers[il].ffn_up, model.layers[il].ffn_up_b, NULL,
  5713. model.layers[il].ffn_gate, model.layers[il].ffn_gate_b, NULL,
  5714. model.layers[il].ffn_down, model.layers[il].ffn_down_b, NULL,
  5715. NULL,
  5716. LLM_FFN_SILU, LLM_FFN_PAR, il);
  5717. cb(cur, "ffn_out", il);
  5718. } else {
  5719. ggml_tensor * ffn_inp_normed = build_norm(ffn_inp,
  5720. model.layers[il].ffn_norm, NULL,
  5721. LLM_NORM_RMS, il);
  5722. cb(cur, "ffn_norm", il);
  5723. ggml_tensor * moe_out = build_moe_ffn(ffn_inp_normed,
  5724. model.layers[il].ffn_gate_inp,
  5725. model.layers[il].ffn_up_exps,
  5726. model.layers[il].ffn_gate_exps,
  5727. model.layers[il].ffn_down_exps,
  5728. nullptr,
  5729. n_expert, n_expert_used,
  5730. LLM_FFN_SILU, false,
  5731. false, 0.0,
  5732. LLAMA_EXPERT_GATING_FUNC_TYPE_SIGMOID,
  5733. il);
  5734. // Shared experts
  5735. ggml_tensor * shexp_out = build_ffn(ffn_inp_normed,
  5736. model.layers[il].ffn_up_shexp, NULL, NULL,
  5737. model.layers[il].ffn_gate_shexp, NULL, NULL,
  5738. model.layers[il].ffn_down_shexp, NULL, NULL,
  5739. NULL,
  5740. LLM_FFN_SILU, LLM_FFN_PAR, il);
  5741. cb(shexp_out, "ffn_moe_shexp", il);
  5742. cur = ggml_add(ctx0, moe_out, shexp_out);
  5743. cb(cur, "ffn_moe_out_merged", il);
  5744. }
  5745. cur = ggml_add(ctx0, cur, ffn_inp);
  5746. cb(cur, "ffn_out", il);
  5747. cur = build_cvec(cur, il);
  5748. cb(cur, "l_out", il);
  5749. // input for next layer
  5750. inpL = cur;
  5751. }
  5752. cur = inpL;
  5753. cur = build_norm(cur,
  5754. model.output_norm, NULL,
  5755. LLM_NORM_RMS, -1);
  5756. cb(cur, "result_norm", -1);
  5757. res->t_embd = cur;
  5758. // lm_head
  5759. cur = build_lora_mm(model.output, cur);
  5760. cb(cur, "result_output", -1);
  5761. res->t_logits = cur;
  5762. ggml_build_forward_expand(gf, cur);
  5763. }
  5764. };
  5765. struct llm_build_deci : public llm_graph_context {
  5766. llm_build_deci(const llama_model & model, const llm_graph_params & params) : llm_graph_context(params) {
  5767. const int64_t n_embd_head = hparams.n_embd_head_v;
  5768. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  5769. GGML_ASSERT(n_embd_head == hparams.n_rot);
  5770. ggml_tensor * cur;
  5771. ggml_tensor * inpL;
  5772. inpL = build_inp_embd(model.tok_embd);
  5773. // inp_pos - contains the positions
  5774. ggml_tensor * inp_pos = build_inp_pos();
  5775. auto * inp_attn = build_attn_inp_kv();
  5776. const float kq_scale = hparams.f_attention_scale == 0.0f ? 1.0f/sqrtf(float(n_embd_head)) : hparams.f_attention_scale;
  5777. ggml_tensor * inp_out_ids = build_inp_out_ids();
  5778. for (int il = 0; il < n_layer; ++il) {
  5779. ggml_tensor * inpSA = inpL;
  5780. const int64_t n_head_kv = hparams.n_head_kv(il);
  5781. const int64_t n_head = hparams.n_head(il);
  5782. const int64_t n_ff = hparams.n_ff(il);
  5783. if (n_head == 0) {
  5784. // attention-free layer of Llama-3_1-Nemotron-51B
  5785. cur = inpL;
  5786. } else {
  5787. // norm
  5788. cur = build_norm(inpL,
  5789. model.layers[il].attn_norm, NULL,
  5790. LLM_NORM_RMS, il);
  5791. cb(cur, "attn_norm", il);
  5792. }
  5793. if (n_head > 0 && n_head_kv == 0) {
  5794. // "linear attention" of Llama-3_1-Nemotron-51B
  5795. cur = build_lora_mm(model.layers[il].wo, cur);
  5796. cb(cur, "wo", il);
  5797. } else if (n_head > 0) {
  5798. // self-attention
  5799. // rope freq factors for llama3; may return nullptr for llama2 and other models
  5800. ggml_tensor * rope_factors = model.get_rope_factors(cparams, il);
  5801. // compute Q and K and RoPE them
  5802. ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
  5803. cb(Qcur, "Qcur", il);
  5804. if (model.layers[il].bq) {
  5805. Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
  5806. cb(Qcur, "Qcur", il);
  5807. }
  5808. ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
  5809. cb(Kcur, "Kcur", il);
  5810. if (model.layers[il].bk) {
  5811. Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
  5812. cb(Kcur, "Kcur", il);
  5813. }
  5814. ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
  5815. cb(Vcur, "Vcur", il);
  5816. if (model.layers[il].bv) {
  5817. Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
  5818. cb(Vcur, "Vcur", il);
  5819. }
  5820. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  5821. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  5822. Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
  5823. Qcur = ggml_rope_ext(
  5824. ctx0, Qcur, inp_pos, rope_factors,
  5825. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  5826. ext_factor, attn_factor, beta_fast, beta_slow
  5827. );
  5828. Kcur = ggml_rope_ext(
  5829. ctx0, Kcur, inp_pos, rope_factors,
  5830. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  5831. ext_factor, attn_factor, beta_fast, beta_slow
  5832. );
  5833. cb(Qcur, "Qcur", il);
  5834. cb(Kcur, "Kcur", il);
  5835. cb(Vcur, "Vcur", il);
  5836. cur = build_attn(inp_attn,
  5837. model.layers[il].wo, model.layers[il].bo,
  5838. Qcur, Kcur, Vcur, nullptr, nullptr, nullptr, kq_scale, il);
  5839. }
  5840. if (il == n_layer - 1 && inp_out_ids) {
  5841. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  5842. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  5843. }
  5844. // FFN-free layer of Llama-3_1-Nemotron-Ultra-253B
  5845. if (n_ff == 0) {
  5846. continue;
  5847. }
  5848. // modified to support attention-free layer of Llama-3_1-Nemotron-51B
  5849. ggml_tensor * ffn_inp = cur;
  5850. if (n_head > 0) {
  5851. ffn_inp = ggml_add(ctx0, cur, inpSA);
  5852. cb(ffn_inp, "ffn_inp", il);
  5853. }
  5854. // feed-forward network
  5855. if (model.layers[il].ffn_gate_inp == nullptr) {
  5856. cur = build_norm(ffn_inp,
  5857. model.layers[il].ffn_norm, NULL,
  5858. LLM_NORM_RMS, il);
  5859. cb(cur, "ffn_norm", il);
  5860. cur = build_ffn(cur,
  5861. model.layers[il].ffn_up, model.layers[il].ffn_up_b, NULL,
  5862. model.layers[il].ffn_gate, model.layers[il].ffn_gate_b, NULL,
  5863. model.layers[il].ffn_down, model.layers[il].ffn_down_b, NULL,
  5864. NULL,
  5865. LLM_FFN_SILU, LLM_FFN_PAR, il);
  5866. cb(cur, "ffn_out", il);
  5867. }
  5868. cur = ggml_add(ctx0, cur, ffn_inp);
  5869. cb(cur, "ffn_out", il);
  5870. cur = build_cvec(cur, il);
  5871. cb(cur, "l_out", il);
  5872. // input for next layer
  5873. inpL = cur;
  5874. }
  5875. cur = inpL;
  5876. cur = build_norm(cur,
  5877. model.output_norm, NULL,
  5878. LLM_NORM_RMS, -1);
  5879. cb(cur, "result_norm", -1);
  5880. res->t_embd = cur;
  5881. // lm_head
  5882. cur = build_lora_mm(model.output, cur);
  5883. cb(cur, "result_output", -1);
  5884. res->t_logits = cur;
  5885. ggml_build_forward_expand(gf, cur);
  5886. }
  5887. };
  5888. struct llm_build_baichuan : public llm_graph_context {
  5889. llm_build_baichuan(const llama_model & model, const llm_graph_params & params) : llm_graph_context(params) {
  5890. const int64_t n_embd_head = hparams.n_embd_head_v;
  5891. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  5892. GGML_ASSERT(n_embd_head == hparams.n_rot);
  5893. ggml_tensor * cur;
  5894. ggml_tensor * inpL;
  5895. inpL = build_inp_embd(model.tok_embd);
  5896. // inp_pos - contains the positions
  5897. ggml_tensor * inp_pos = model.type == LLM_TYPE_7B ? build_inp_pos() : nullptr;
  5898. auto * inp_attn = build_attn_inp_kv();
  5899. ggml_tensor * inp_out_ids = build_inp_out_ids();
  5900. for (int il = 0; il < n_layer; ++il) {
  5901. ggml_tensor * inpSA = inpL;
  5902. cur = build_norm(inpL,
  5903. model.layers[il].attn_norm, NULL,
  5904. LLM_NORM_RMS, il);
  5905. cb(cur, "attn_norm", il);
  5906. // self-attention
  5907. {
  5908. ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
  5909. cb(Qcur, "Qcur", il);
  5910. ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
  5911. cb(Kcur, "Kcur", il);
  5912. ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
  5913. cb(Vcur, "Vcur", il);
  5914. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  5915. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  5916. Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
  5917. switch (model.type) {
  5918. case LLM_TYPE_7B:
  5919. Qcur = ggml_rope_ext(
  5920. ctx0, Qcur, inp_pos, nullptr,
  5921. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  5922. ext_factor, attn_factor, beta_fast, beta_slow
  5923. );
  5924. Kcur = ggml_rope_ext(
  5925. ctx0, Kcur, inp_pos, nullptr,
  5926. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  5927. ext_factor, attn_factor, beta_fast, beta_slow
  5928. );
  5929. break;
  5930. case LLM_TYPE_13B:
  5931. break;
  5932. default:
  5933. GGML_ABORT("fatal error");
  5934. }
  5935. cb(Qcur, "Qcur", il);
  5936. cb(Kcur, "Kcur", il);
  5937. cb(Vcur, "Vcur", il);
  5938. cur = build_attn(inp_attn,
  5939. model.layers[il].wo, NULL,
  5940. Qcur, Kcur, Vcur, nullptr, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
  5941. }
  5942. if (il == n_layer - 1 && inp_out_ids) {
  5943. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  5944. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  5945. }
  5946. ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  5947. cb(ffn_inp, "ffn_inp", il);
  5948. // feed-forward network
  5949. {
  5950. cur = build_norm(ffn_inp,
  5951. model.layers[il].ffn_norm, NULL,
  5952. LLM_NORM_RMS, il);
  5953. cb(cur, "ffn_norm", il);
  5954. cur = build_ffn(cur,
  5955. model.layers[il].ffn_up, NULL, NULL,
  5956. model.layers[il].ffn_gate, NULL, NULL,
  5957. model.layers[il].ffn_down, NULL, NULL,
  5958. NULL,
  5959. LLM_FFN_SILU, LLM_FFN_PAR, il);
  5960. cb(cur, "ffn_out", il);
  5961. }
  5962. cur = ggml_add(ctx0, cur, ffn_inp);
  5963. cur = build_cvec(cur, il);
  5964. cb(cur, "l_out", il);
  5965. // input for next layer
  5966. inpL = cur;
  5967. }
  5968. cur = inpL;
  5969. cur = build_norm(cur,
  5970. model.output_norm, NULL,
  5971. LLM_NORM_RMS, -1);
  5972. cb(cur, "result_norm", -1);
  5973. res->t_embd = cur;
  5974. // lm_head
  5975. cur = build_lora_mm(model.output, cur);
  5976. cb(cur, "result_output", -1);
  5977. res->t_logits = cur;
  5978. ggml_build_forward_expand(gf, cur);
  5979. }
  5980. };
  5981. struct llm_build_xverse : public llm_graph_context {
  5982. llm_build_xverse(const llama_model & model, const llm_graph_params & params) : llm_graph_context(params) {
  5983. const int64_t n_embd_head = hparams.n_embd_head_v;
  5984. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  5985. GGML_ASSERT(n_embd_head == hparams.n_rot);
  5986. ggml_tensor * cur;
  5987. ggml_tensor * inpL;
  5988. inpL = build_inp_embd(model.tok_embd);
  5989. // inp_pos - contains the positions
  5990. ggml_tensor * inp_pos = build_inp_pos();
  5991. auto * inp_attn = build_attn_inp_kv();
  5992. ggml_tensor * inp_out_ids = build_inp_out_ids();
  5993. for (int il = 0; il < n_layer; ++il) {
  5994. ggml_tensor * inpSA = inpL;
  5995. cur = build_norm(inpL,
  5996. model.layers[il].attn_norm, NULL,
  5997. LLM_NORM_RMS, il);
  5998. cb(cur, "attn_norm", il);
  5999. // self-attention
  6000. {
  6001. ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
  6002. cb(Qcur, "Qcur", il);
  6003. ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
  6004. cb(Kcur, "Kcur", il);
  6005. ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
  6006. cb(Vcur, "Vcur", il);
  6007. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  6008. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  6009. Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
  6010. Qcur = ggml_rope_ext(
  6011. ctx0, Qcur, inp_pos, nullptr,
  6012. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  6013. ext_factor, attn_factor, beta_fast, beta_slow
  6014. );
  6015. Kcur = ggml_rope_ext(
  6016. ctx0, Kcur, inp_pos, nullptr,
  6017. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  6018. ext_factor, attn_factor, beta_fast, beta_slow
  6019. );
  6020. cb(Qcur, "Qcur", il);
  6021. cb(Kcur, "Kcur", il);
  6022. cb(Vcur, "Vcur", il);
  6023. cur = build_attn(inp_attn,
  6024. model.layers[il].wo, NULL,
  6025. Qcur, Kcur, Vcur, nullptr, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
  6026. }
  6027. if (il == n_layer - 1 && inp_out_ids) {
  6028. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  6029. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  6030. }
  6031. ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  6032. cb(ffn_inp, "ffn_inp", il);
  6033. // feed-forward network
  6034. {
  6035. cur = build_norm(ffn_inp,
  6036. model.layers[il].ffn_norm, NULL,
  6037. LLM_NORM_RMS, il);
  6038. cb(cur, "ffn_norm", il);
  6039. cur = build_ffn(cur,
  6040. model.layers[il].ffn_up, NULL, NULL,
  6041. model.layers[il].ffn_gate, NULL, NULL,
  6042. model.layers[il].ffn_down, NULL, NULL,
  6043. NULL,
  6044. LLM_FFN_SILU, LLM_FFN_PAR, il);
  6045. cb(cur, "ffn_out", il);
  6046. }
  6047. cur = ggml_add(ctx0, cur, ffn_inp);
  6048. cur = build_cvec(cur, il);
  6049. cb(cur, "l_out", il);
  6050. // input for next layer
  6051. inpL = cur;
  6052. }
  6053. cur = inpL;
  6054. cur = build_norm(cur, model.output_norm, NULL, LLM_NORM_RMS, -1);
  6055. cb(cur, "result_norm", -1);
  6056. res->t_embd = cur;
  6057. // lm_head
  6058. cur = build_lora_mm(model.output, cur);
  6059. cb(cur, "result_output", -1);
  6060. res->t_logits = cur;
  6061. ggml_build_forward_expand(gf, cur);
  6062. }
  6063. };
  6064. struct llm_build_falcon : public llm_graph_context {
  6065. llm_build_falcon(const llama_model & model, const llm_graph_params & params) : llm_graph_context(params) {
  6066. const int64_t n_embd_head = hparams.n_embd_head_v;
  6067. const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
  6068. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  6069. GGML_ASSERT(n_embd_head == hparams.n_rot);
  6070. ggml_tensor * cur;
  6071. ggml_tensor * inpL;
  6072. inpL = build_inp_embd(model.tok_embd);
  6073. // inp_pos - contains the positions
  6074. ggml_tensor * inp_pos = build_inp_pos();
  6075. auto * inp_attn = build_attn_inp_kv();
  6076. ggml_tensor * inp_out_ids = build_inp_out_ids();
  6077. for (int il = 0; il < n_layer; ++il) {
  6078. ggml_tensor * attn_norm;
  6079. attn_norm = build_norm(inpL,
  6080. model.layers[il].attn_norm,
  6081. model.layers[il].attn_norm_b,
  6082. LLM_NORM, il);
  6083. cb(attn_norm, "attn_norm", il);
  6084. // self-attention
  6085. {
  6086. if (model.layers[il].attn_norm_2) {
  6087. // Falcon-40B
  6088. cur = build_norm(inpL,
  6089. model.layers[il].attn_norm_2,
  6090. model.layers[il].attn_norm_2_b,
  6091. LLM_NORM, il);
  6092. cb(cur, "attn_norm_2", il);
  6093. } else {
  6094. cur = attn_norm;
  6095. }
  6096. cur = build_lora_mm(model.layers[il].wqkv, cur);
  6097. cb(cur, "wqkv", il);
  6098. ggml_tensor * Qcur = ggml_view_3d(ctx0, cur, n_embd_head, n_head, n_tokens, n_embd_head*sizeof(float), cur->nb[1], 0*sizeof(float)*(n_embd));
  6099. ggml_tensor * Kcur = ggml_view_3d(ctx0, cur, n_embd_head, n_head_kv, n_tokens, n_embd_head*sizeof(float), cur->nb[1], 1*sizeof(float)*(n_embd));
  6100. ggml_tensor * Vcur = ggml_view_3d(ctx0, cur, n_embd_head, n_head_kv, n_tokens, n_embd_head*sizeof(float), cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa));
  6101. // using mode = 2 for neox mode
  6102. Qcur = ggml_rope_ext(
  6103. ctx0, Qcur, inp_pos, nullptr,
  6104. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  6105. ext_factor, attn_factor, beta_fast, beta_slow
  6106. );
  6107. Kcur = ggml_rope_ext(
  6108. ctx0, Kcur, inp_pos, nullptr,
  6109. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  6110. ext_factor, attn_factor, beta_fast, beta_slow
  6111. );
  6112. cb(Qcur, "Qcur", il);
  6113. cb(Kcur, "Kcur", il);
  6114. cb(Vcur, "Vcur", il);
  6115. cur = build_attn(inp_attn,
  6116. model.layers[il].wo, NULL,
  6117. Qcur, Kcur, Vcur, nullptr, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
  6118. }
  6119. if (il == n_layer - 1 && inp_out_ids) {
  6120. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  6121. inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
  6122. attn_norm = ggml_get_rows(ctx0, attn_norm, inp_out_ids);
  6123. }
  6124. ggml_tensor * ffn_inp = cur;
  6125. // feed forward
  6126. {
  6127. cur = build_ffn(attn_norm, // !! use the attn norm, not the result
  6128. model.layers[il].ffn_up, NULL, NULL,
  6129. NULL, NULL, NULL,
  6130. model.layers[il].ffn_down, NULL, NULL,
  6131. NULL,
  6132. LLM_FFN_GELU, LLM_FFN_SEQ, il);
  6133. cb(cur, "ffn_out", il);
  6134. }
  6135. cur = ggml_add(ctx0, cur, ffn_inp);
  6136. cur = ggml_add(ctx0, cur, inpL);
  6137. cur = build_cvec(cur, il);
  6138. cb(cur, "l_out", il);
  6139. // input for next layer
  6140. inpL = cur;
  6141. }
  6142. cur = inpL;
  6143. // norm
  6144. cur = build_norm(cur,
  6145. model.output_norm,
  6146. model.output_norm_b,
  6147. LLM_NORM, -1);
  6148. cb(cur, "result_norm", -1);
  6149. res->t_embd = cur;
  6150. cur = build_lora_mm(model.output, cur);
  6151. cb(cur, "result_output", -1);
  6152. res->t_logits = cur;
  6153. ggml_build_forward_expand(gf, cur);
  6154. }
  6155. };
  6156. struct llm_build_grok : public llm_graph_context {
  6157. llm_build_grok(const llama_model & model, const llm_graph_params & params) : llm_graph_context(params) {
  6158. const int64_t n_embd_head = hparams.n_embd_head_v;
  6159. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  6160. GGML_ASSERT(n_embd_head == hparams.n_rot);
  6161. ggml_tensor * cur;
  6162. ggml_tensor * inpL;
  6163. inpL = build_inp_embd(model.tok_embd);
  6164. // inp_pos - contains the positions
  6165. ggml_tensor * inp_pos = build_inp_pos();
  6166. auto * inp_attn = build_attn_inp_kv();
  6167. ggml_tensor * inp_out_ids = build_inp_out_ids();
  6168. for (int il = 0; il < n_layer; ++il) {
  6169. ggml_tensor * inpSA = inpL;
  6170. // norm
  6171. cur = build_norm(inpL,
  6172. model.layers[il].attn_norm, NULL,
  6173. LLM_NORM_RMS, il);
  6174. cb(cur, "attn_norm", il);
  6175. // self-attention
  6176. {
  6177. // compute Q and K and RoPE them
  6178. ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
  6179. cb(Qcur, "Qcur", il);
  6180. if (model.layers[il].bq) {
  6181. Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
  6182. cb(Qcur, "Qcur", il);
  6183. }
  6184. ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
  6185. cb(Kcur, "Kcur", il);
  6186. if (model.layers[il].bk) {
  6187. Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
  6188. cb(Kcur, "Kcur", il);
  6189. }
  6190. ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
  6191. cb(Vcur, "Vcur", il);
  6192. if (model.layers[il].bv) {
  6193. Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
  6194. cb(Vcur, "Vcur", il);
  6195. }
  6196. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  6197. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  6198. Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
  6199. Qcur = ggml_rope_ext(
  6200. ctx0, Qcur, inp_pos, nullptr,
  6201. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  6202. ext_factor, attn_factor, beta_fast, beta_slow
  6203. );
  6204. Kcur = ggml_rope_ext(
  6205. ctx0, Kcur, inp_pos, nullptr,
  6206. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  6207. ext_factor, attn_factor, beta_fast, beta_slow
  6208. );
  6209. cb(Qcur, "Qcur", il);
  6210. cb(Kcur, "Kcur", il);
  6211. cb(Vcur, "Vcur", il);
  6212. cur = build_attn(inp_attn,
  6213. model.layers[il].wo, model.layers[il].bo,
  6214. Qcur, Kcur, Vcur, nullptr, nullptr, nullptr, 1.0f, il);
  6215. }
  6216. if (il == n_layer - 1 && inp_out_ids) {
  6217. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  6218. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  6219. }
  6220. cur = build_norm(cur,
  6221. model.layers[il].attn_out_norm, NULL,
  6222. LLM_NORM_RMS, il);
  6223. cb(cur, "attn_out_norm", il);
  6224. ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  6225. cb(ffn_inp, "ffn_inp", il);
  6226. // feed-forward network
  6227. cur = build_norm(ffn_inp,
  6228. model.layers[il].ffn_norm, NULL,
  6229. LLM_NORM_RMS, il);
  6230. cb(cur, "ffn_norm", il);
  6231. // MoE branch
  6232. ggml_tensor * moe_out = build_moe_ffn(cur,
  6233. model.layers[il].ffn_gate_inp,
  6234. model.layers[il].ffn_up_exps,
  6235. model.layers[il].ffn_gate_exps,
  6236. model.layers[il].ffn_down_exps,
  6237. nullptr,
  6238. n_expert, n_expert_used,
  6239. LLM_FFN_GELU, true,
  6240. false, 0.0,
  6241. LLAMA_EXPERT_GATING_FUNC_TYPE_SOFTMAX,
  6242. il);
  6243. cb(moe_out, "ffn_moe_out", il);
  6244. if (model.layers[il].ffn_up) {
  6245. ggml_tensor * ffn_out = build_ffn(cur,
  6246. model.layers[il].ffn_up, NULL, NULL,
  6247. model.layers[il].ffn_gate, NULL, NULL,
  6248. model.layers[il].ffn_down, NULL, NULL,
  6249. NULL,
  6250. LLM_FFN_GELU, LLM_FFN_PAR, il);
  6251. cb(ffn_out, "ffn_out", il);
  6252. cur = ggml_scale(ctx0, ggml_add(ctx0, ffn_out, moe_out), std::sqrt(2) / 2);
  6253. cb(cur, "ffn_out", il);
  6254. } else {
  6255. cur = moe_out;
  6256. }
  6257. cur = build_norm(cur,
  6258. model.layers[il].ffn_post_norm, NULL,
  6259. LLM_NORM_RMS, il);
  6260. cb(cur, "ffn_post_norm", il);
  6261. cur = ggml_add(ctx0, cur, ffn_inp);
  6262. cb(cur, "ffn_out", il);
  6263. cur = build_cvec(cur, il);
  6264. cb(cur, "l_out", il);
  6265. // input for next layer
  6266. inpL = cur;
  6267. }
  6268. cur = inpL;
  6269. cur = build_norm(cur,
  6270. model.output_norm, NULL,
  6271. LLM_NORM_RMS, -1);
  6272. cb(cur, "result_norm", -1);
  6273. res->t_embd = cur;
  6274. // lm_head
  6275. cur = build_lora_mm(model.output, cur);
  6276. cur = ggml_scale(ctx0, cur, hparams.f_logit_scale);
  6277. // final logit soft-capping
  6278. if (hparams.f_final_logit_softcapping) {
  6279. cur = ggml_scale(ctx0, cur, 1.0f / hparams.f_final_logit_softcapping);
  6280. cur = ggml_tanh(ctx0, cur);
  6281. cur = ggml_scale(ctx0, cur, hparams.f_final_logit_softcapping);
  6282. }
  6283. cb(cur, "result_output", -1);
  6284. res->t_logits = cur;
  6285. ggml_build_forward_expand(gf, cur);
  6286. }
  6287. };
  6288. struct llm_build_dbrx : public llm_graph_context {
  6289. llm_build_dbrx(const llama_model & model, const llm_graph_params & params) : llm_graph_context(params) {
  6290. const int64_t n_embd_head = hparams.n_embd_head_v;
  6291. const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
  6292. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  6293. GGML_ASSERT(n_embd_head == hparams.n_rot);
  6294. ggml_tensor * cur;
  6295. ggml_tensor * inpL;
  6296. inpL = build_inp_embd(model.tok_embd);
  6297. // inp_pos - contains the positions
  6298. ggml_tensor * inp_pos = build_inp_pos();
  6299. auto * inp_attn = build_attn_inp_kv();
  6300. ggml_tensor * inp_out_ids = build_inp_out_ids();
  6301. for (int il = 0; il < n_layer; ++il) {
  6302. ggml_tensor * inpSA = inpL;
  6303. // norm
  6304. cur = build_norm(inpL,
  6305. model.layers[il].attn_norm, NULL,
  6306. LLM_NORM, il);
  6307. cb(cur, "attn_norm", il);
  6308. // self-attention
  6309. {
  6310. ggml_tensor * Qcur = nullptr;
  6311. ggml_tensor * Kcur = nullptr;
  6312. ggml_tensor * Vcur = nullptr;
  6313. cur = build_lora_mm(model.layers[il].wqkv, cur);
  6314. cb(cur, "wqkv", il);
  6315. cur = ggml_clamp(ctx0, cur, -hparams.f_clamp_kqv, hparams.f_clamp_kqv);
  6316. cb(cur, "wqkv_clamped", il);
  6317. Qcur = ggml_view_3d(ctx0, cur, n_embd_head, n_head, n_tokens, n_embd_head*sizeof(float), cur->nb[1], 0*sizeof(float)*(n_embd));
  6318. Kcur = ggml_view_3d(ctx0, cur, n_embd_head, n_head_kv, n_tokens, n_embd_head*sizeof(float), cur->nb[1], 1*sizeof(float)*(n_embd));
  6319. Vcur = ggml_view_3d(ctx0, cur, n_embd_head, n_head_kv, n_tokens, n_embd_head*sizeof(float), cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa));
  6320. Qcur = ggml_rope_ext(
  6321. ctx0, Qcur, inp_pos, nullptr,
  6322. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  6323. ext_factor, attn_factor, beta_fast, beta_slow
  6324. );
  6325. Kcur = ggml_rope_ext(
  6326. ctx0, Kcur, inp_pos, nullptr,
  6327. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  6328. ext_factor, attn_factor, beta_fast, beta_slow
  6329. );
  6330. cb(Qcur, "Qcur", il);
  6331. cb(Kcur, "Kcur", il);
  6332. cb(Vcur, "Vcur", il);
  6333. cur = build_attn(inp_attn,
  6334. model.layers[il].wo, NULL,
  6335. Qcur, Kcur, Vcur, nullptr, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
  6336. }
  6337. if (il == n_layer - 1 && inp_out_ids) {
  6338. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  6339. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  6340. }
  6341. ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  6342. cb(ffn_inp, "ffn_inp", il);
  6343. // feed-forward network
  6344. // MoE branch
  6345. cur = build_norm(ffn_inp,
  6346. model.layers[il].attn_out_norm, NULL,
  6347. LLM_NORM, il);
  6348. cb(cur, "attn_out_norm", il);
  6349. cur = build_moe_ffn(cur,
  6350. model.layers[il].ffn_gate_inp,
  6351. model.layers[il].ffn_up_exps,
  6352. model.layers[il].ffn_gate_exps,
  6353. model.layers[il].ffn_down_exps,
  6354. nullptr,
  6355. n_expert, n_expert_used,
  6356. LLM_FFN_SILU, true,
  6357. false, 0.0,
  6358. LLAMA_EXPERT_GATING_FUNC_TYPE_SOFTMAX,
  6359. il);
  6360. cb(cur, "ffn_moe_out", il);
  6361. cur = ggml_add(ctx0, cur, ffn_inp);
  6362. cb(cur, "ffn_out", il);
  6363. cur = build_cvec(cur, il);
  6364. cb(cur, "l_out", il);
  6365. // input for next layer
  6366. inpL = cur;
  6367. }
  6368. cur = inpL;
  6369. cur = build_norm(cur,
  6370. model.output_norm, NULL,
  6371. LLM_NORM, -1);
  6372. cb(cur, "result_norm", -1);
  6373. res->t_embd = cur;
  6374. // lm_head
  6375. cur = build_lora_mm(model.output, cur);
  6376. cb(cur, "result_output", -1);
  6377. res->t_logits = cur;
  6378. ggml_build_forward_expand(gf, cur);
  6379. }
  6380. };
  6381. struct llm_build_starcoder : public llm_graph_context {
  6382. llm_build_starcoder(const llama_model & model, const llm_graph_params & params) : llm_graph_context(params) {
  6383. const int64_t n_embd_head = hparams.n_embd_head_v;
  6384. const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
  6385. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  6386. ggml_tensor * cur;
  6387. ggml_tensor * inpL;
  6388. inpL = build_inp_embd(model.tok_embd);
  6389. // inp_pos - contains the positions
  6390. ggml_tensor * inp_pos = build_inp_pos();
  6391. auto * inp_attn = build_attn_inp_kv();
  6392. ggml_tensor * pos = ggml_get_rows(ctx0, model.pos_embd, inp_pos);
  6393. cb(pos, "pos_embd", -1);
  6394. inpL = ggml_add(ctx0, inpL, pos);
  6395. cb(inpL, "inpL", -1);
  6396. ggml_tensor * inp_out_ids = build_inp_out_ids();
  6397. for (int il = 0; il < n_layer; ++il) {
  6398. cur = build_norm(inpL,
  6399. model.layers[il].attn_norm,
  6400. model.layers[il].attn_norm_b,
  6401. LLM_NORM, il);
  6402. cb(cur, "attn_norm", il);
  6403. // self-attention
  6404. {
  6405. cur = build_lora_mm(model.layers[il].wqkv, cur);
  6406. cb(cur, "wqkv", il);
  6407. cur = ggml_add(ctx0, cur, model.layers[il].bqkv);
  6408. cb(cur, "bqkv", il);
  6409. ggml_tensor * Qcur = ggml_view_3d(ctx0, cur, n_embd_head, n_head, n_tokens, n_embd_head*sizeof(float), cur->nb[1], 0*sizeof(float)*(n_embd));
  6410. ggml_tensor * Kcur = ggml_view_3d(ctx0, cur, n_embd_head, n_head_kv, n_tokens, n_embd_head*sizeof(float), cur->nb[1], 1*sizeof(float)*(n_embd));
  6411. ggml_tensor * Vcur = ggml_view_3d(ctx0, cur, n_embd_head, n_head_kv, n_tokens, n_embd_head*sizeof(float), cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa));
  6412. cb(Qcur, "Qcur", il);
  6413. cb(Kcur, "Kcur", il);
  6414. cb(Vcur, "Vcur", il);
  6415. cur = build_attn(inp_attn,
  6416. model.layers[il].wo, model.layers[il].bo,
  6417. Qcur, Kcur, Vcur, nullptr, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
  6418. }
  6419. if (il == n_layer - 1 && inp_out_ids) {
  6420. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  6421. inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
  6422. }
  6423. // add the input
  6424. ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpL);
  6425. cb(ffn_inp, "ffn_inp", il);
  6426. // FF
  6427. {
  6428. cur = build_norm(ffn_inp,
  6429. model.layers[il].ffn_norm,
  6430. model.layers[il].ffn_norm_b,
  6431. LLM_NORM, il);
  6432. cb(cur, "ffn_norm", il);
  6433. cur = build_ffn(cur,
  6434. model.layers[il].ffn_up, model.layers[il].ffn_up_b, NULL,
  6435. NULL, NULL, NULL,
  6436. model.layers[il].ffn_down, model.layers[il].ffn_down_b, NULL,
  6437. NULL,
  6438. LLM_FFN_GELU, LLM_FFN_SEQ, il);
  6439. cb(cur, "ffn_out", il);
  6440. }
  6441. cur = ggml_add(ctx0, cur, ffn_inp);
  6442. cur = build_cvec(cur, il);
  6443. cb(cur, "l_out", il);
  6444. // input for next layer
  6445. inpL = cur;
  6446. }
  6447. cur = build_norm(inpL,
  6448. model.output_norm,
  6449. model.output_norm_b,
  6450. LLM_NORM, -1);
  6451. cb(cur, "result_norm", -1);
  6452. res->t_embd = cur;
  6453. cur = build_lora_mm(model.output, cur);
  6454. cb(cur, "result_output", -1);
  6455. res->t_logits = cur;
  6456. ggml_build_forward_expand(gf, cur);
  6457. }
  6458. };
  6459. struct llm_build_refact : public llm_graph_context {
  6460. llm_build_refact(const llama_model & model, const llm_graph_params & params) : llm_graph_context(params) {
  6461. const int64_t n_embd_head = hparams.n_embd_head_v;
  6462. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  6463. ggml_tensor * cur;
  6464. ggml_tensor * inpL;
  6465. inpL = build_inp_embd(model.tok_embd);
  6466. auto * inp_attn = build_attn_inp_kv();
  6467. ggml_tensor * inp_out_ids = build_inp_out_ids();
  6468. for (int il = 0; il < n_layer; ++il) {
  6469. ggml_tensor * inpSA = inpL;
  6470. cur = build_norm(inpL,
  6471. model.layers[il].attn_norm, NULL,
  6472. LLM_NORM_RMS, il);
  6473. cb(cur, "attn_norm", il);
  6474. // self-attention
  6475. {
  6476. ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
  6477. cb(Qcur, "Qcur", il);
  6478. ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
  6479. cb(Kcur, "Kcur", il);
  6480. ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
  6481. cb(Vcur, "Vcur", il);
  6482. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  6483. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  6484. Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
  6485. cb(Qcur, "Qcur", il);
  6486. cb(Kcur, "Kcur", il);
  6487. cb(Vcur, "Vcur", il);
  6488. cur = build_attn(inp_attn,
  6489. model.layers[il].wo, NULL,
  6490. Qcur, Kcur, Vcur, nullptr, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
  6491. }
  6492. if (il == n_layer - 1 && inp_out_ids) {
  6493. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  6494. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  6495. }
  6496. ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  6497. cb(ffn_inp, "ffn_inp", il);
  6498. // feed-forward network
  6499. {
  6500. cur = build_norm(ffn_inp,
  6501. model.layers[il].ffn_norm, NULL,
  6502. LLM_NORM_RMS, il);
  6503. cb(cur, "ffn_norm", il);
  6504. cur = build_ffn(cur,
  6505. model.layers[il].ffn_up, NULL, NULL,
  6506. model.layers[il].ffn_gate, NULL, NULL,
  6507. model.layers[il].ffn_down, NULL, NULL,
  6508. NULL,
  6509. LLM_FFN_SILU, LLM_FFN_PAR, il);
  6510. cb(cur, "ffn_out", il);
  6511. }
  6512. cur = ggml_add(ctx0, cur, ffn_inp);
  6513. cur = build_cvec(cur, il);
  6514. cb(cur, "l_out", il);
  6515. // input for next layer
  6516. inpL = cur;
  6517. }
  6518. cur = inpL;
  6519. cur = build_norm(cur,
  6520. model.output_norm, NULL,
  6521. LLM_NORM_RMS, -1);
  6522. cb(cur, "result_norm", -1);
  6523. res->t_embd = cur;
  6524. // lm_head
  6525. cur = build_lora_mm(model.output, cur);
  6526. cb(cur, "result_output", -1);
  6527. res->t_logits = cur;
  6528. ggml_build_forward_expand(gf, cur);
  6529. }
  6530. };
  6531. struct llm_build_bert : public llm_graph_context {
  6532. llm_build_bert(const llama_model & model, const llm_graph_params & params) : llm_graph_context(params) {
  6533. const int64_t n_embd_head = hparams.n_embd_head_v;
  6534. const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
  6535. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  6536. ggml_tensor * cur;
  6537. ggml_tensor * inpL;
  6538. ggml_tensor * inp_pos = nullptr;
  6539. if (model.arch != LLM_ARCH_JINA_BERT_V2) {
  6540. inp_pos = build_inp_pos();
  6541. }
  6542. // construct input embeddings (token, type, position)
  6543. inpL = build_inp_embd(model.tok_embd);
  6544. // token types are hardcoded to zero ("Sentence A")
  6545. if (model.type_embd) {
  6546. ggml_tensor * type_row0 = ggml_view_1d(ctx0, model.type_embd, n_embd, 0);
  6547. inpL = ggml_add(ctx0, inpL, type_row0);
  6548. }
  6549. if (model.arch == LLM_ARCH_BERT) {
  6550. inpL = ggml_add(ctx0, ggml_get_rows(ctx0, model.pos_embd, inp_pos), inpL);
  6551. }
  6552. cb(inpL, "inp_embd", -1);
  6553. // embed layer norm
  6554. inpL = build_norm(inpL, model.tok_norm, model.tok_norm_b, LLM_NORM, -1);
  6555. cb(inpL, "inp_norm", -1);
  6556. auto * inp_attn = build_attn_inp_no_cache();
  6557. ggml_tensor * inp_out_ids = build_inp_out_ids();
  6558. for (int il = 0; il < n_layer; ++il) {
  6559. ggml_tensor * cur = inpL;
  6560. {
  6561. ggml_tensor * Qcur;
  6562. ggml_tensor * Kcur;
  6563. ggml_tensor * Vcur;
  6564. // self-attention
  6565. if (model.layers[il].wqkv) {
  6566. cur = build_lora_mm(model.layers[il].wqkv, cur);
  6567. cb(cur, "wqkv", il);
  6568. if (model.layers[il].bqkv) {
  6569. cur = ggml_add(ctx0, cur, model.layers[il].bqkv);
  6570. cb(cur, "bqkv", il);
  6571. }
  6572. Qcur = ggml_view_3d(ctx0, cur, n_embd_head, n_head, n_tokens, n_embd_head*sizeof(float), cur->nb[1], 0*sizeof(float)*(n_embd));
  6573. Kcur = ggml_view_3d(ctx0, cur, n_embd_head, n_head_kv, n_tokens, n_embd_head*sizeof(float), cur->nb[1], 1*sizeof(float)*(n_embd));
  6574. Vcur = ggml_view_3d(ctx0, cur, n_embd_head, n_head_kv, n_tokens, n_embd_head*sizeof(float), cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa));
  6575. } else {
  6576. Qcur = ggml_add(ctx0, build_lora_mm(model.layers[il].wq, cur), model.layers[il].bq);
  6577. Kcur = ggml_add(ctx0, build_lora_mm(model.layers[il].wk, cur), model.layers[il].bk);
  6578. Vcur = ggml_add(ctx0, build_lora_mm(model.layers[il].wv, cur), model.layers[il].bv);
  6579. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  6580. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  6581. Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
  6582. }
  6583. if (model.layers[il].attn_q_norm) {
  6584. Qcur = ggml_reshape_2d(ctx0, Qcur, n_embd_head*n_head, n_tokens);
  6585. Qcur = build_norm(Qcur,
  6586. model.layers[il].attn_q_norm,
  6587. model.layers[il].attn_q_norm_b,
  6588. LLM_NORM, il);
  6589. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  6590. }
  6591. if (model.layers[il].attn_k_norm) {
  6592. Kcur = ggml_reshape_2d(ctx0, Kcur, n_embd_head*n_head_kv, n_tokens);
  6593. Kcur = build_norm(Kcur,
  6594. model.layers[il].attn_k_norm,
  6595. model.layers[il].attn_k_norm_b,
  6596. LLM_NORM, il);
  6597. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  6598. }
  6599. // RoPE
  6600. if (model.arch == LLM_ARCH_NOMIC_BERT || model.arch == LLM_ARCH_NOMIC_BERT_MOE || model.arch == LLM_ARCH_JINA_BERT_V3) {
  6601. Qcur = ggml_rope_ext(
  6602. ctx0, Qcur, inp_pos, nullptr,
  6603. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  6604. ext_factor, attn_factor, beta_fast, beta_slow
  6605. );
  6606. Kcur = ggml_rope_ext(
  6607. ctx0, Kcur, inp_pos, nullptr,
  6608. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  6609. ext_factor, attn_factor, beta_fast, beta_slow
  6610. );
  6611. }
  6612. cb(Qcur, "Qcur", il);
  6613. cb(Kcur, "Kcur", il);
  6614. cb(Vcur, "Vcur", il);
  6615. cur = build_attn(inp_attn,
  6616. model.layers[il].wo, model.layers[il].bo,
  6617. Qcur, Kcur, Vcur, nullptr, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
  6618. cb(cur, "kqv_out", il);
  6619. }
  6620. if (il == n_layer - 1 && inp_out_ids) {
  6621. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  6622. inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
  6623. }
  6624. // re-add the layer input
  6625. cur = ggml_add(ctx0, cur, inpL);
  6626. // attention layer norm
  6627. cur = build_norm(cur, model.layers[il].attn_out_norm, model.layers[il].attn_out_norm_b, LLM_NORM, il);
  6628. if (model.layers[il].attn_norm_2 != nullptr) {
  6629. cur = ggml_add(ctx0, cur, inpL); // re-add the layer input
  6630. cur = build_norm(cur, model.layers[il].attn_norm_2, model.layers[il].attn_norm_2_b, LLM_NORM, il);
  6631. }
  6632. ggml_tensor * ffn_inp = cur;
  6633. cb(ffn_inp, "ffn_inp", il);
  6634. // feed-forward network
  6635. if (hparams.moe_every_n_layers > 0 && il % hparams.moe_every_n_layers == 1) {
  6636. // MoE branch
  6637. cur = build_moe_ffn(cur,
  6638. model.layers[il].ffn_gate_inp,
  6639. model.layers[il].ffn_up_exps,
  6640. nullptr,
  6641. model.layers[il].ffn_down_exps,
  6642. nullptr,
  6643. hparams.n_expert,
  6644. hparams.n_expert_used,
  6645. LLM_FFN_GELU,
  6646. false, false,
  6647. 0.0f,
  6648. LLAMA_EXPERT_GATING_FUNC_TYPE_SOFTMAX, il);
  6649. cb(cur, "ffn_moe_out", il);
  6650. } else if (model.arch == LLM_ARCH_BERT || model.arch == LLM_ARCH_NOMIC_BERT_MOE || model.arch == LLM_ARCH_JINA_BERT_V3) {
  6651. cur = build_ffn(cur,
  6652. model.layers[il].ffn_up, model.layers[il].ffn_up_b, NULL,
  6653. NULL, NULL, NULL,
  6654. model.layers[il].ffn_down, model.layers[il].ffn_down_b, NULL,
  6655. NULL,
  6656. LLM_FFN_GELU, LLM_FFN_SEQ, il);
  6657. cb(cur, "ffn_out", il);
  6658. } else if (model.arch == LLM_ARCH_JINA_BERT_V2) {
  6659. cur = build_ffn(cur,
  6660. model.layers[il].ffn_up, NULL, NULL,
  6661. model.layers[il].ffn_gate, NULL, NULL,
  6662. model.layers[il].ffn_down, model.layers[il].ffn_down_b, NULL,
  6663. NULL,
  6664. model.layers[il].ffn_gate ? LLM_FFN_GELU : LLM_FFN_GEGLU, LLM_FFN_PAR, il);
  6665. cb(cur, "ffn_out", il);
  6666. } else {
  6667. cur = build_ffn(cur,
  6668. model.layers[il].ffn_up, NULL, NULL,
  6669. model.layers[il].ffn_gate, NULL, NULL,
  6670. model.layers[il].ffn_down, NULL, NULL,
  6671. NULL,
  6672. LLM_FFN_SILU, LLM_FFN_PAR, il);
  6673. cb(cur, "ffn_out", il);
  6674. }
  6675. // attentions bypass the intermediate layer
  6676. cur = ggml_add(ctx0, cur, ffn_inp);
  6677. // output layer norm
  6678. cur = build_norm(cur, model.layers[il].layer_out_norm, model.layers[il].layer_out_norm_b, LLM_NORM, il);
  6679. // input for next layer
  6680. inpL = cur;
  6681. }
  6682. cur = inpL;
  6683. cb(cur, "result_embd", -1);
  6684. res->t_embd = cur;
  6685. ggml_build_forward_expand(gf, cur);
  6686. }
  6687. };
  6688. struct llm_build_neo_bert : public llm_graph_context {
  6689. llm_build_neo_bert(const llama_model & model, const llm_graph_params & params) : llm_graph_context(params) {
  6690. const int64_t n_embd_head = hparams.n_embd_head_v;
  6691. const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
  6692. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  6693. ggml_tensor * cur;
  6694. ggml_tensor * inpL;
  6695. ggml_tensor * inp_pos = build_inp_pos();
  6696. // construct input embeddings (token, type, position)
  6697. inpL = build_inp_embd(model.tok_embd);
  6698. cb(inpL, "inp_embd", -1);
  6699. auto * inp_attn = build_attn_inp_no_cache();
  6700. ggml_tensor * inp_out_ids = build_inp_out_ids();
  6701. for (int il = 0; il < n_layer; ++il) {
  6702. ggml_tensor * cur = inpL;
  6703. // pre-norm
  6704. cur = build_norm(inpL,
  6705. model.layers[il].attn_norm, NULL,
  6706. LLM_NORM_RMS, il);
  6707. {
  6708. ggml_tensor * Qcur;
  6709. ggml_tensor * Kcur;
  6710. ggml_tensor * Vcur;
  6711. // self-attention
  6712. cur = build_lora_mm(model.layers[il].wqkv, cur);
  6713. cb(cur, "wqkv", il);
  6714. Qcur = ggml_view_3d(ctx0, cur, n_embd_head, n_head, n_tokens, n_embd_head*sizeof(float), cur->nb[1], 0*sizeof(float)*(n_embd));
  6715. Kcur = ggml_view_3d(ctx0, cur, n_embd_head, n_head_kv, n_tokens, n_embd_head*sizeof(float), cur->nb[1], 1*sizeof(float)*(n_embd));
  6716. Vcur = ggml_view_3d(ctx0, cur, n_embd_head, n_head_kv, n_tokens, n_embd_head*sizeof(float), cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa));
  6717. // RoPE
  6718. Qcur = ggml_rope_ext(
  6719. ctx0, Qcur, inp_pos, nullptr,
  6720. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  6721. ext_factor, attn_factor, beta_fast, beta_slow
  6722. );
  6723. Kcur = ggml_rope_ext(
  6724. ctx0, Kcur, inp_pos, nullptr,
  6725. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  6726. ext_factor, attn_factor, beta_fast, beta_slow
  6727. );
  6728. cb(Qcur, "Qcur", il);
  6729. cb(Kcur, "Kcur", il);
  6730. cb(Vcur, "Vcur", il);
  6731. cur = build_attn(inp_attn,
  6732. model.layers[il].wo, nullptr,
  6733. Qcur, Kcur, Vcur, nullptr, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
  6734. cb(cur, "kqv_out", il);
  6735. }
  6736. if (il == n_layer - 1 && inp_out_ids) {
  6737. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  6738. inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
  6739. }
  6740. // re-add the layer input
  6741. cur = ggml_add(ctx0, cur, inpL);
  6742. ggml_tensor * ffn_inp = cur;
  6743. cb(ffn_inp, "ffn_inp", il);
  6744. // pre-norm
  6745. cur = build_norm(ffn_inp,
  6746. model.layers[il].ffn_norm, NULL,
  6747. LLM_NORM_RMS, il);
  6748. cb(cur, "ffn_norm", il);
  6749. // feed-forward network
  6750. cur = build_ffn(cur,
  6751. model.layers[il].ffn_up,
  6752. NULL, NULL, NULL, NULL, NULL,
  6753. model.layers[il].ffn_down,
  6754. NULL, NULL, NULL,
  6755. LLM_FFN_SWIGLU, LLM_FFN_SEQ, il);
  6756. // attentions bypass the intermediate layer
  6757. cur = ggml_add(ctx0, cur, ffn_inp);
  6758. // input for next layer
  6759. inpL = cur;
  6760. }
  6761. cur = inpL;
  6762. cur = build_norm(cur,
  6763. model.output_norm_enc, NULL,
  6764. LLM_NORM_RMS, -1);
  6765. cb(cur, "result_embd", -1);
  6766. res->t_embd = cur;
  6767. ggml_build_forward_expand(gf, cur);
  6768. }
  6769. };
  6770. struct llm_build_bloom : public llm_graph_context {
  6771. llm_build_bloom(const llama_model & model, const llm_graph_params & params) : llm_graph_context(params) {
  6772. const int64_t n_embd_head = hparams.n_embd_head_v;
  6773. const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
  6774. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  6775. ggml_tensor * cur;
  6776. ggml_tensor * inpL;
  6777. inpL = build_inp_embd(model.tok_embd);
  6778. auto * inp_attn = build_attn_inp_kv();
  6779. inpL = build_norm(inpL,
  6780. model.tok_norm,
  6781. model.tok_norm_b,
  6782. LLM_NORM, -1);
  6783. cb(inpL, "inp_norm", -1);
  6784. ggml_tensor * inp_out_ids = build_inp_out_ids();
  6785. for (int il = 0; il < n_layer; ++il) {
  6786. cur = build_norm(inpL,
  6787. model.layers[il].attn_norm,
  6788. model.layers[il].attn_norm_b,
  6789. LLM_NORM, il);
  6790. cb(cur, "attn_norm", il);
  6791. // self-attention
  6792. {
  6793. cur = build_lora_mm(model.layers[il].wqkv, cur);
  6794. cb(cur, "wqkv", il);
  6795. cur = ggml_add(ctx0, cur, model.layers[il].bqkv);
  6796. cb(cur, "bqkv", il);
  6797. ggml_tensor * Qcur = ggml_view_3d(ctx0, cur, n_embd_head, n_head, n_tokens, n_embd_head*sizeof(float), cur->nb[1], 0*sizeof(float)*(n_embd));
  6798. ggml_tensor * Kcur = ggml_view_3d(ctx0, cur, n_embd_head, n_head_kv, n_tokens, n_embd_head*sizeof(float), cur->nb[1], 1*sizeof(float)*(n_embd));
  6799. ggml_tensor * Vcur = ggml_view_3d(ctx0, cur, n_embd_head, n_head_kv, n_tokens, n_embd_head*sizeof(float), cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa));
  6800. cb(Qcur, "Qcur", il);
  6801. cb(Kcur, "Kcur", il);
  6802. cb(Vcur, "Vcur", il);
  6803. cur = build_attn(inp_attn,
  6804. model.layers[il].wo, model.layers[il].bo,
  6805. Qcur, Kcur, Vcur, nullptr, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
  6806. }
  6807. if (il == n_layer - 1 && inp_out_ids) {
  6808. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  6809. inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
  6810. }
  6811. // Add the input
  6812. ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpL);
  6813. cb(ffn_inp, "ffn_inp", il);
  6814. // FF
  6815. {
  6816. cur = build_norm(ffn_inp,
  6817. model.layers[il].ffn_norm,
  6818. model.layers[il].ffn_norm_b,
  6819. LLM_NORM, il);
  6820. cb(cur, "ffn_norm", il);
  6821. cur = build_ffn(cur,
  6822. model.layers[il].ffn_up, model.layers[il].ffn_up_b, NULL,
  6823. NULL, NULL, NULL,
  6824. model.layers[il].ffn_down, model.layers[il].ffn_down_b, NULL,
  6825. NULL,
  6826. LLM_FFN_GELU, LLM_FFN_SEQ, il);
  6827. cb(cur, "ffn_out", il);
  6828. }
  6829. cur = ggml_add(ctx0, cur, ffn_inp);
  6830. cur = build_cvec(cur, il);
  6831. cb(cur, "l_out", il);
  6832. // input for next layer
  6833. inpL = cur;
  6834. }
  6835. cur = build_norm(inpL,
  6836. model.output_norm,
  6837. model.output_norm_b,
  6838. LLM_NORM, -1);
  6839. cb(cur, "result_norm", -1);
  6840. res->t_embd = cur;
  6841. cur = build_lora_mm(model.output, cur);
  6842. cb(cur, "result_output", -1);
  6843. res->t_logits = cur;
  6844. ggml_build_forward_expand(gf, cur);
  6845. }
  6846. };
  6847. struct llm_build_mpt : public llm_graph_context {
  6848. llm_build_mpt(const llama_model & model, const llm_graph_params & params) : llm_graph_context(params) {
  6849. const int64_t n_embd_head = hparams.n_embd_head_v;
  6850. const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
  6851. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  6852. ggml_tensor * cur;
  6853. ggml_tensor * pos;
  6854. ggml_tensor * inpL;
  6855. inpL = build_inp_embd(model.tok_embd);
  6856. auto * inp_attn = build_attn_inp_kv();
  6857. if (model.pos_embd) {
  6858. // inp_pos - contains the positions
  6859. ggml_tensor * inp_pos = build_inp_pos();
  6860. pos = ggml_get_rows(ctx0, model.pos_embd, inp_pos);
  6861. cb(pos, "pos_embd", -1);
  6862. inpL = ggml_add(ctx0, inpL, pos);
  6863. cb(inpL, "inpL", -1);
  6864. }
  6865. ggml_tensor * inp_out_ids = build_inp_out_ids();
  6866. for (int il = 0; il < n_layer; ++il) {
  6867. ggml_tensor * attn_norm;
  6868. attn_norm = build_norm(inpL,
  6869. model.layers[il].attn_norm,
  6870. model.layers[il].attn_norm_b,
  6871. LLM_NORM, il);
  6872. cb(attn_norm, "attn_norm", il);
  6873. // self-attention
  6874. {
  6875. cur = attn_norm;
  6876. cur = build_lora_mm(model.layers[il].wqkv, cur);
  6877. cb(cur, "wqkv", il);
  6878. if (model.layers[il].bqkv){
  6879. cur = ggml_add(ctx0, cur, model.layers[il].bqkv);
  6880. cb(cur, "bqkv", il);
  6881. }
  6882. if (hparams.f_clamp_kqv > 0.0f) {
  6883. cur = ggml_clamp(ctx0, cur, -hparams.f_clamp_kqv, hparams.f_clamp_kqv);
  6884. cb(cur, "wqkv_clamped", il);
  6885. }
  6886. ggml_tensor * Qcur = ggml_view_3d(ctx0, cur, n_embd_head, n_head, n_tokens, n_embd_head*sizeof(float), cur->nb[1], 0*sizeof(float)*(n_embd));
  6887. ggml_tensor * Kcur = ggml_view_3d(ctx0, cur, n_embd_head, n_head_kv, n_tokens, n_embd_head*sizeof(float), cur->nb[1], 1*sizeof(float)*(n_embd));
  6888. ggml_tensor * Vcur = ggml_view_3d(ctx0, cur, n_embd_head, n_head_kv, n_tokens, n_embd_head*sizeof(float), cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa));
  6889. // Q/K Layernorm
  6890. if (model.layers[il].attn_q_norm) {
  6891. Qcur = ggml_reshape_2d(ctx0, Qcur, n_embd_head*n_head, n_tokens);
  6892. Kcur = ggml_reshape_2d(ctx0, Kcur, n_embd_head*n_head_kv, n_tokens);
  6893. Qcur = build_norm(Qcur,
  6894. model.layers[il].attn_q_norm,
  6895. model.layers[il].attn_q_norm_b,
  6896. LLM_NORM, il);
  6897. Kcur = build_norm(Kcur,
  6898. model.layers[il].attn_k_norm,
  6899. model.layers[il].attn_k_norm_b,
  6900. LLM_NORM, il);
  6901. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  6902. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  6903. }
  6904. cb(Qcur, "Qcur", il);
  6905. cb(Kcur, "Kcur", il);
  6906. cb(Vcur, "Vcur", il);
  6907. cur = build_attn(inp_attn,
  6908. model.layers[il].wo, model.layers[il].bo,
  6909. Qcur, Kcur, Vcur, nullptr, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
  6910. }
  6911. if (il == n_layer - 1 && inp_out_ids) {
  6912. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  6913. inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
  6914. }
  6915. // Add the input
  6916. ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpL);
  6917. cb(ffn_inp, "ffn_inp", il);
  6918. // feed forward
  6919. {
  6920. cur = build_norm(ffn_inp,
  6921. model.layers[il].ffn_norm,
  6922. model.layers[il].ffn_norm_b,
  6923. LLM_NORM, il);
  6924. cb(cur, "ffn_norm", il);
  6925. cur = build_ffn(cur,
  6926. model.layers[il].ffn_up, model.layers[il].ffn_up_b, NULL,
  6927. NULL, NULL, NULL,
  6928. model.layers[il].ffn_down, model.layers[il].ffn_down_b, NULL,
  6929. model.layers[il].ffn_act,
  6930. LLM_FFN_GELU, LLM_FFN_SEQ, il);
  6931. cb(cur, "ffn_out", il);
  6932. }
  6933. cur = ggml_add(ctx0, cur, ffn_inp);
  6934. cur = build_cvec(cur, il);
  6935. cb(cur, "l_out", il);
  6936. // input for next layer
  6937. inpL = cur;
  6938. }
  6939. cur = inpL;
  6940. cur = build_norm(cur,
  6941. model.output_norm,
  6942. model.output_norm_b,
  6943. LLM_NORM, -1);
  6944. cb(cur, "result_norm", -1);
  6945. res->t_embd = cur;
  6946. cur = build_lora_mm(model.output, cur);
  6947. cb(cur, "result_output", -1);
  6948. res->t_logits = cur;
  6949. ggml_build_forward_expand(gf, cur);
  6950. }
  6951. };
  6952. struct llm_build_stablelm : public llm_graph_context {
  6953. llm_build_stablelm(const llama_model & model, const llm_graph_params & params) : llm_graph_context(params) {
  6954. const int64_t n_embd_head = hparams.n_embd_head_v;
  6955. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  6956. ggml_tensor * cur;
  6957. ggml_tensor * inpL;
  6958. inpL = build_inp_embd(model.tok_embd);
  6959. // inp_pos - contains the positions
  6960. ggml_tensor * inp_pos = build_inp_pos();
  6961. auto * inp_attn = build_attn_inp_kv();
  6962. ggml_tensor * inp_out_ids = build_inp_out_ids();
  6963. for (int il = 0; il < n_layer; ++il) {
  6964. // norm
  6965. cur = build_norm(inpL,
  6966. model.layers[il].attn_norm,
  6967. model.layers[il].attn_norm_b,
  6968. LLM_NORM, il);
  6969. cb(cur, "attn_norm", il);
  6970. ggml_tensor * inpSA = cur;
  6971. // self-attention
  6972. {
  6973. // compute Q and K and RoPE them
  6974. ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
  6975. cb(Qcur, "Qcur", il);
  6976. if (model.layers[il].bq) {
  6977. Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
  6978. cb(Qcur, "Qcur", il);
  6979. }
  6980. ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
  6981. cb(Kcur, "Kcur", il);
  6982. if (model.layers[il].bk) {
  6983. Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
  6984. cb(Kcur, "Kcur", il);
  6985. }
  6986. ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
  6987. cb(Vcur, "Vcur", il);
  6988. if (model.layers[il].bv) {
  6989. Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
  6990. cb(Vcur, "Vcur", il);
  6991. }
  6992. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  6993. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  6994. Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
  6995. if (model.layers[il].attn_q_norm) {
  6996. Qcur = build_norm(Qcur,
  6997. model.layers[il].attn_q_norm,
  6998. NULL,
  6999. LLM_NORM, il);
  7000. cb(Qcur, "Qcur", il);
  7001. }
  7002. if (model.layers[il].attn_k_norm) {
  7003. Kcur = build_norm(Kcur,
  7004. model.layers[il].attn_k_norm,
  7005. NULL,
  7006. LLM_NORM, il);
  7007. cb(Kcur, "Kcur", il);
  7008. }
  7009. Qcur = ggml_rope_ext(
  7010. ctx0, Qcur, inp_pos, nullptr,
  7011. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  7012. ext_factor, attn_factor, beta_fast, beta_slow
  7013. );
  7014. Kcur = ggml_rope_ext(
  7015. ctx0, Kcur, inp_pos, nullptr,
  7016. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  7017. ext_factor, attn_factor, beta_fast, beta_slow
  7018. );
  7019. cb(Qcur, "Qcur", il);
  7020. cb(Kcur, "Kcur", il);
  7021. cb(Vcur, "Vcur", il);
  7022. cur = build_attn(inp_attn,
  7023. model.layers[il].wo, NULL,
  7024. Qcur, Kcur, Vcur, nullptr, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
  7025. }
  7026. if (il == n_layer - 1 && inp_out_ids) {
  7027. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  7028. inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
  7029. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  7030. }
  7031. ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpL);
  7032. cb(ffn_inp, "ffn_inp", il);
  7033. // feed-forward network
  7034. {
  7035. if (model.layers[il].ffn_norm) {
  7036. cur = build_norm(ffn_inp,
  7037. model.layers[il].ffn_norm,
  7038. model.layers[il].ffn_norm_b,
  7039. LLM_NORM, il);
  7040. cb(cur, "ffn_norm", il);
  7041. } else {
  7042. // parallel residual
  7043. cur = inpSA;
  7044. }
  7045. cur = build_ffn(cur,
  7046. model.layers[il].ffn_up, NULL, NULL,
  7047. model.layers[il].ffn_gate, NULL, NULL,
  7048. model.layers[il].ffn_down, NULL, NULL,
  7049. NULL,
  7050. LLM_FFN_SILU, LLM_FFN_PAR, il);
  7051. cb(cur, "ffn_out", il);
  7052. }
  7053. cur = ggml_add(ctx0, cur, ffn_inp);
  7054. cur = build_cvec(cur, il);
  7055. cb(cur, "l_out", il);
  7056. // input for next layer
  7057. inpL = cur;
  7058. }
  7059. cur = inpL;
  7060. cur = build_norm(cur,
  7061. model.output_norm,
  7062. model.output_norm_b,
  7063. LLM_NORM, -1);
  7064. cb(cur, "result_norm", -1);
  7065. res->t_embd = cur;
  7066. // lm_head
  7067. cur = build_lora_mm(model.output, cur);
  7068. cb(cur, "result_output", -1);
  7069. res->t_logits = cur;
  7070. ggml_build_forward_expand(gf, cur);
  7071. }
  7072. };
  7073. struct llm_build_qwen : public llm_graph_context {
  7074. llm_build_qwen(const llama_model & model, const llm_graph_params & params) : llm_graph_context(params) {
  7075. const int64_t n_embd_head = hparams.n_embd_head_v;
  7076. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  7077. ggml_tensor * cur;
  7078. ggml_tensor * inpL;
  7079. inpL = build_inp_embd(model.tok_embd);
  7080. // inp_pos - contains the positions
  7081. ggml_tensor * inp_pos = build_inp_pos();
  7082. auto * inp_attn = build_attn_inp_kv();
  7083. ggml_tensor * inp_out_ids = build_inp_out_ids();
  7084. for (int il = 0; il < n_layer; ++il) {
  7085. ggml_tensor * inpSA = inpL;
  7086. cur = build_norm(inpL,
  7087. model.layers[il].attn_norm, NULL,
  7088. LLM_NORM_RMS, il);
  7089. cb(cur, "attn_norm", il);
  7090. // self-attention
  7091. {
  7092. cur = build_lora_mm(model.layers[il].wqkv, cur);
  7093. cb(cur, "wqkv", il);
  7094. cur = ggml_add(ctx0, cur, model.layers[il].bqkv);
  7095. cb(cur, "bqkv", il);
  7096. ggml_tensor * Qcur = ggml_view_3d(ctx0, cur, n_embd_head, n_head, n_tokens, n_embd_head*sizeof(float), cur->nb[1], 0*sizeof(float)*(n_embd));
  7097. ggml_tensor * Kcur = ggml_view_3d(ctx0, cur, n_embd_head, n_head_kv, n_tokens, n_embd_head*sizeof(float), cur->nb[1], 1*sizeof(float)*(n_embd));
  7098. ggml_tensor * Vcur = ggml_view_3d(ctx0, cur, n_embd_head, n_head_kv, n_tokens, n_embd_head*sizeof(float), cur->nb[1], 2*sizeof(float)*(n_embd));
  7099. // using mode = 2 for neox mode
  7100. Qcur = ggml_rope_ext(
  7101. ctx0, Qcur, inp_pos, nullptr,
  7102. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  7103. ext_factor, attn_factor, beta_fast, beta_slow
  7104. );
  7105. Kcur = ggml_rope_ext(
  7106. ctx0, Kcur, inp_pos, nullptr,
  7107. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  7108. ext_factor, attn_factor, beta_fast, beta_slow
  7109. );
  7110. cb(Qcur, "Qcur", il);
  7111. cb(Kcur, "Kcur", il);
  7112. cb(Vcur, "Vcur", il);
  7113. cur = build_attn(inp_attn,
  7114. model.layers[il].wo, NULL,
  7115. Qcur, Kcur, Vcur, nullptr, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
  7116. }
  7117. if (il == n_layer - 1 && inp_out_ids) {
  7118. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  7119. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  7120. }
  7121. ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  7122. cb(ffn_inp, "ffn_inp", il);
  7123. // feed-forward forward
  7124. {
  7125. cur = build_norm(ffn_inp,
  7126. model.layers[il].ffn_norm, NULL,
  7127. LLM_NORM_RMS, il);
  7128. cb(cur, "ffn_norm", il);
  7129. cur = build_ffn(cur,
  7130. model.layers[il].ffn_up, NULL, NULL,
  7131. model.layers[il].ffn_gate, NULL, NULL,
  7132. model.layers[il].ffn_down, NULL, NULL,
  7133. NULL,
  7134. LLM_FFN_SILU, LLM_FFN_PAR, il);
  7135. cb(cur, "ffn_out", il);
  7136. }
  7137. cur = ggml_add(ctx0, cur, ffn_inp);
  7138. cur = build_cvec(cur, il);
  7139. cb(cur, "l_out", il);
  7140. // input for next layer
  7141. inpL = cur;
  7142. }
  7143. cur = inpL;
  7144. cur = build_norm(cur,
  7145. model.output_norm, NULL,
  7146. LLM_NORM_RMS, -1);
  7147. cb(cur, "result_norm", -1);
  7148. res->t_embd = cur;
  7149. // lm_head
  7150. cur = build_lora_mm(model.output, cur);
  7151. cb(cur, "result_output", -1);
  7152. res->t_logits = cur;
  7153. ggml_build_forward_expand(gf, cur);
  7154. }
  7155. };
  7156. struct llm_build_qwen2 : public llm_graph_context {
  7157. llm_build_qwen2(const llama_model & model, const llm_graph_params & params) : llm_graph_context(params) {
  7158. const int64_t n_embd_head = hparams.n_embd_head_v;
  7159. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  7160. GGML_ASSERT(n_embd_head == hparams.n_rot);
  7161. ggml_tensor * cur;
  7162. ggml_tensor * inpL;
  7163. inpL = build_inp_embd(model.tok_embd);
  7164. // inp_pos - contains the positions
  7165. ggml_tensor * inp_pos = build_inp_pos();
  7166. auto * inp_attn = build_attn_inp_kv();
  7167. ggml_tensor * inp_out_ids = build_inp_out_ids();
  7168. for (int il = 0; il < n_layer; ++il) {
  7169. ggml_tensor * inpSA = inpL;
  7170. // norm
  7171. cur = build_norm(inpL,
  7172. model.layers[il].attn_norm, NULL,
  7173. LLM_NORM_RMS, il);
  7174. cb(cur, "attn_norm", il);
  7175. // self-attention
  7176. {
  7177. // compute Q and K and RoPE them
  7178. ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
  7179. Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
  7180. cb(Qcur, "Qcur", il);
  7181. ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
  7182. Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
  7183. cb(Kcur, "Kcur", il);
  7184. ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
  7185. Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
  7186. cb(Vcur, "Vcur", il);
  7187. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  7188. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  7189. Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
  7190. Qcur = ggml_rope_ext(
  7191. ctx0, Qcur, inp_pos, nullptr,
  7192. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  7193. ext_factor, attn_factor, beta_fast, beta_slow
  7194. );
  7195. Kcur = ggml_rope_ext(
  7196. ctx0, Kcur, inp_pos, nullptr,
  7197. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  7198. ext_factor, attn_factor, beta_fast, beta_slow
  7199. );
  7200. cb(Qcur, "Qcur", il);
  7201. cb(Kcur, "Kcur", il);
  7202. cb(Vcur, "Vcur", il);
  7203. cur = build_attn(inp_attn,
  7204. model.layers[il].wo, model.layers[il].bo,
  7205. Qcur, Kcur, Vcur, nullptr, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
  7206. }
  7207. if (il == n_layer - 1 && inp_out_ids) {
  7208. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  7209. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  7210. }
  7211. ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  7212. cb(ffn_inp, "ffn_inp", il);
  7213. // feed-forward network
  7214. cur = build_norm(ffn_inp,
  7215. model.layers[il].ffn_norm, NULL,
  7216. LLM_NORM_RMS, il);
  7217. cb(cur, "ffn_norm", il);
  7218. cur = build_ffn(cur,
  7219. model.layers[il].ffn_up, NULL, NULL,
  7220. model.layers[il].ffn_gate, NULL, NULL,
  7221. model.layers[il].ffn_down, NULL, NULL,
  7222. NULL,
  7223. LLM_FFN_SILU, LLM_FFN_PAR, il);
  7224. cb(cur, "ffn_out", il);
  7225. cur = ggml_add(ctx0, cur, ffn_inp);
  7226. cur = build_cvec(cur, il);
  7227. cb(cur, "l_out", il);
  7228. // input for next layer
  7229. inpL = cur;
  7230. }
  7231. cur = inpL;
  7232. cur = build_norm(cur,
  7233. model.output_norm, NULL,
  7234. LLM_NORM_RMS, -1);
  7235. cb(cur, "result_norm", -1);
  7236. res->t_embd = cur;
  7237. // lm_head
  7238. cur = build_lora_mm(model.output, cur);
  7239. if (model.output_b != nullptr) {
  7240. cur = ggml_add(ctx0, cur, model.output_b);
  7241. }
  7242. cb(cur, "result_output", -1);
  7243. res->t_logits = cur;
  7244. ggml_build_forward_expand(gf, cur);
  7245. }
  7246. };
  7247. struct llm_build_dream : public llm_graph_context {
  7248. llm_build_dream(const llama_model & model, const llm_graph_params & params) :
  7249. llm_graph_context(params) {
  7250. //copied from qwen2
  7251. const int64_t n_embd_head = hparams.n_embd_head_v;
  7252. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  7253. GGML_ASSERT(n_embd_head == hparams.n_rot);
  7254. ggml_tensor * cur;
  7255. ggml_tensor * inpL;
  7256. inpL = build_inp_embd(model.tok_embd);
  7257. // inp_pos - contains the positions
  7258. ggml_tensor * inp_pos = build_inp_pos();
  7259. auto * inp_attn = build_attn_inp_no_cache();
  7260. ggml_tensor * inp_out_ids = build_inp_out_ids();
  7261. for (int il = 0; il < n_layer; ++il) {
  7262. ggml_tensor * inpSA = inpL;
  7263. // norm
  7264. cur = build_norm(inpL, model.layers[il].attn_norm, NULL, LLM_NORM_RMS, il);
  7265. cb(cur, "attn_norm", il);
  7266. // self-attention
  7267. {
  7268. // compute Q and K and RoPE them
  7269. ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
  7270. Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
  7271. cb(Qcur, "Qcur", il);
  7272. ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
  7273. Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
  7274. cb(Kcur, "Kcur", il);
  7275. ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
  7276. Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
  7277. cb(Vcur, "Vcur", il);
  7278. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  7279. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  7280. Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
  7281. Qcur = ggml_rope_ext(ctx0, Qcur, inp_pos, nullptr, n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  7282. ext_factor, attn_factor, beta_fast, beta_slow);
  7283. Kcur = ggml_rope_ext(ctx0, Kcur, inp_pos, nullptr, n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  7284. ext_factor, attn_factor, beta_fast, beta_slow);
  7285. cb(Qcur, "Qcur", il);
  7286. cb(Kcur, "Kcur", il);
  7287. cb(Vcur, "Vcur", il);
  7288. cur = build_attn(inp_attn,
  7289. model.layers[il].wo, model.layers[il].bo,
  7290. Qcur, Kcur, Vcur, nullptr, nullptr, nullptr, 1.0f / sqrtf(float(n_embd_head)), il);
  7291. }
  7292. if (il == n_layer - 1 && inp_out_ids) {
  7293. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  7294. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  7295. }
  7296. ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  7297. cb(ffn_inp, "ffn_inp", il);
  7298. // feed-forward network
  7299. cur = build_norm(ffn_inp, model.layers[il].ffn_norm, NULL, LLM_NORM_RMS, il);
  7300. cb(cur, "ffn_norm", il);
  7301. cur = build_ffn(cur, model.layers[il].ffn_up, NULL, NULL, model.layers[il].ffn_gate, NULL, NULL,
  7302. model.layers[il].ffn_down, NULL, NULL, NULL, LLM_FFN_SILU, LLM_FFN_PAR, il);
  7303. cb(cur, "ffn_out", il);
  7304. cur = ggml_add(ctx0, cur, ffn_inp);
  7305. cur = build_cvec(cur, il);
  7306. cb(cur, "l_out", il);
  7307. // input for next layer
  7308. inpL = cur;
  7309. }
  7310. cur = inpL;
  7311. cur = build_norm(cur, model.output_norm, NULL, LLM_NORM_RMS, -1);
  7312. cb(cur, "result_norm", -1);
  7313. res->t_embd = cur;
  7314. // lm_head
  7315. cur = build_lora_mm(model.output, cur);
  7316. cb(cur, "result_output", -1);
  7317. res->t_logits = cur;
  7318. ggml_build_forward_expand(gf, cur);
  7319. }
  7320. };
  7321. struct llm_build_llada : public llm_graph_context {
  7322. llm_build_llada(const llama_model & model, const llm_graph_params & params) :
  7323. llm_graph_context(params) {
  7324. // LLaDA is similar to LLaMA but uses non-causal attention for diffusion
  7325. const int64_t n_embd_head = hparams.n_embd_head_v;
  7326. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  7327. GGML_ASSERT(n_embd_head == hparams.n_rot);
  7328. ggml_tensor * cur;
  7329. ggml_tensor * inpL;
  7330. inpL = build_inp_embd(model.tok_embd);
  7331. // inp_pos - contains the positions
  7332. ggml_tensor * inp_pos = build_inp_pos();
  7333. // Non-causal attention for diffusion
  7334. auto * inp_attn = build_attn_inp_no_cache();
  7335. ggml_tensor * inp_out_ids = build_inp_out_ids();
  7336. for (int il = 0; il < n_layer; ++il) {
  7337. ggml_tensor * inpSA = inpL;
  7338. // norm
  7339. cur = build_norm(inpL, model.layers[il].attn_norm, NULL, LLM_NORM_RMS, il);
  7340. cb(cur, "attn_norm", il);
  7341. // self-attention
  7342. {
  7343. // compute separate Q, K, V projections without bias, matching LLaDALlamaBlock
  7344. ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
  7345. ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
  7346. ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
  7347. cb(Qcur, "Qcur", il);
  7348. cb(Kcur, "Kcur", il);
  7349. cb(Vcur, "Vcur", il);
  7350. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  7351. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  7352. Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
  7353. Qcur = ggml_rope_ext(ctx0, Qcur, inp_pos, nullptr, n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  7354. ext_factor, attn_factor, beta_fast, beta_slow);
  7355. Kcur = ggml_rope_ext(ctx0, Kcur, inp_pos, nullptr, n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  7356. ext_factor, attn_factor, beta_fast, beta_slow);
  7357. cb(Qcur, "Qcur", il);
  7358. cb(Kcur, "Kcur", il);
  7359. cb(Vcur, "Vcur", il);
  7360. cur = build_attn(inp_attn,
  7361. model.layers[il].wo, NULL,
  7362. Qcur, Kcur, Vcur, nullptr, nullptr, nullptr, 1.0f / sqrtf(float(n_embd_head)), il);
  7363. }
  7364. if (il == n_layer - 1 && inp_out_ids) {
  7365. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  7366. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  7367. }
  7368. ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  7369. cb(ffn_inp, "ffn_inp", il);
  7370. // feed-forward network
  7371. cur = build_norm(ffn_inp, model.layers[il].ffn_norm, NULL, LLM_NORM_RMS, il);
  7372. cb(cur, "ffn_norm", il);
  7373. cur = build_ffn(cur, model.layers[il].ffn_up, NULL, NULL, model.layers[il].ffn_gate, NULL, NULL,
  7374. model.layers[il].ffn_down, NULL, NULL, NULL, LLM_FFN_SILU, LLM_FFN_PAR, il);
  7375. cb(cur, "ffn_out", il);
  7376. cur = ggml_add(ctx0, cur, ffn_inp);
  7377. cur = build_cvec(cur, il);
  7378. cb(cur, "l_out", il);
  7379. // input for next layer
  7380. inpL = cur;
  7381. }
  7382. cur = inpL;
  7383. cur = build_norm(cur, model.output_norm, NULL, LLM_NORM_RMS, -1);
  7384. cb(cur, "result_norm", -1);
  7385. res->t_embd = cur;
  7386. // lm_head
  7387. cur = build_lora_mm(model.output, cur);
  7388. cb(cur, "result_output", -1);
  7389. res->t_logits = cur;
  7390. ggml_build_forward_expand(gf, cur);
  7391. }
  7392. };
  7393. struct llm_build_qwen2vl : public llm_graph_context {
  7394. llm_build_qwen2vl(const llama_model & model, const llm_graph_params & params) : llm_graph_context(params) {
  7395. const int64_t n_embd_head = hparams.n_embd_head_v;
  7396. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  7397. GGML_ASSERT(n_embd_head == hparams.n_rot);
  7398. ggml_tensor * cur;
  7399. ggml_tensor * inpL;
  7400. inpL = build_inp_embd(model.tok_embd);
  7401. // inp_pos - contains the positions
  7402. ggml_tensor * inp_pos = build_inp_pos();
  7403. auto * inp_attn = build_attn_inp_kv();
  7404. int sections[4];
  7405. std::copy(std::begin(hparams.rope_sections), std::begin(hparams.rope_sections) + 4, sections);
  7406. ggml_tensor * inp_out_ids = build_inp_out_ids();
  7407. for (int il = 0; il < n_layer; ++il) {
  7408. ggml_tensor * inpSA = inpL;
  7409. // norm
  7410. cur = build_norm(inpL,
  7411. model.layers[il].attn_norm, NULL,
  7412. LLM_NORM_RMS, il);
  7413. cb(cur, "attn_norm", il);
  7414. // self-attention
  7415. {
  7416. // compute Q and K and RoPE them
  7417. ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
  7418. Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
  7419. cb(Qcur, "Qcur", il);
  7420. ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
  7421. Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
  7422. cb(Kcur, "Kcur", il);
  7423. ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
  7424. Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
  7425. cb(Vcur, "Vcur", il);
  7426. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  7427. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  7428. Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
  7429. Qcur = ggml_rope_multi(
  7430. ctx0, Qcur, inp_pos, nullptr,
  7431. n_rot, sections, rope_type, n_ctx_orig, freq_base, freq_scale,
  7432. ext_factor, attn_factor, beta_fast, beta_slow
  7433. );
  7434. Kcur = ggml_rope_multi(
  7435. ctx0, Kcur, inp_pos, nullptr,
  7436. n_rot, sections, rope_type, n_ctx_orig, freq_base, freq_scale,
  7437. ext_factor, attn_factor, beta_fast, beta_slow
  7438. );
  7439. cb(Qcur, "Qcur", il);
  7440. cb(Kcur, "Kcur", il);
  7441. cb(Vcur, "Vcur", il);
  7442. cur = build_attn(inp_attn,
  7443. model.layers[il].wo, model.layers[il].bo,
  7444. Qcur, Kcur, Vcur, nullptr, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
  7445. }
  7446. if (il == n_layer - 1 && inp_out_ids) {
  7447. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  7448. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  7449. }
  7450. ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  7451. cb(ffn_inp, "ffn_inp", il);
  7452. // feed-forward network
  7453. cur = build_norm(ffn_inp,
  7454. model.layers[il].ffn_norm, NULL,
  7455. LLM_NORM_RMS, il);
  7456. cb(cur, "ffn_norm", il);
  7457. cur = build_ffn(cur,
  7458. model.layers[il].ffn_up, NULL, NULL,
  7459. model.layers[il].ffn_gate, NULL, NULL,
  7460. model.layers[il].ffn_down, NULL, NULL,
  7461. NULL,
  7462. LLM_FFN_SILU, LLM_FFN_PAR, il);
  7463. cb(cur, "ffn_out", il);
  7464. cur = ggml_add(ctx0, cur, ffn_inp);
  7465. cur = build_cvec(cur, il);
  7466. cb(cur, "l_out", il);
  7467. // input for next layer
  7468. inpL = cur;
  7469. }
  7470. cur = inpL;
  7471. cur = build_norm(cur,
  7472. model.output_norm, NULL,
  7473. LLM_NORM_RMS, -1);
  7474. cb(cur, "result_norm", -1);
  7475. res->t_embd = cur;
  7476. // lm_head
  7477. cur = build_lora_mm(model.output, cur);
  7478. cb(cur, "result_output", -1);
  7479. res->t_logits = cur;
  7480. ggml_build_forward_expand(gf, cur);
  7481. }
  7482. };
  7483. struct llm_build_qwen2moe : public llm_graph_context {
  7484. llm_build_qwen2moe(const llama_model & model, const llm_graph_params & params) : llm_graph_context(params) {
  7485. const int64_t n_embd_head = hparams.n_embd_head_v;
  7486. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  7487. GGML_ASSERT(n_embd_head == hparams.n_rot);
  7488. ggml_tensor * cur;
  7489. ggml_tensor * inpL;
  7490. inpL = build_inp_embd(model.tok_embd);
  7491. // inp_pos - contains the positions
  7492. ggml_tensor * inp_pos = build_inp_pos();
  7493. auto * inp_attn = build_attn_inp_kv();
  7494. ggml_tensor * inp_out_ids = build_inp_out_ids();
  7495. for (int il = 0; il < n_layer; ++il) {
  7496. ggml_tensor * inpSA = inpL;
  7497. // norm
  7498. cur = build_norm(inpL,
  7499. model.layers[il].attn_norm, NULL,
  7500. LLM_NORM_RMS, il);
  7501. cb(cur, "attn_norm", il);
  7502. // self_attention
  7503. {
  7504. // compute Q and K and RoPE them
  7505. ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
  7506. cb(Qcur, "Qcur", il);
  7507. if (model.layers[il].bq) {
  7508. Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
  7509. cb(Qcur, "Qcur", il);
  7510. }
  7511. ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
  7512. cb(Kcur, "Kcur", il);
  7513. if (model.layers[il].bk) {
  7514. Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
  7515. cb(Kcur, "Kcur", il);
  7516. }
  7517. ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
  7518. cb(Vcur, "Vcur", il);
  7519. if (model.layers[il].bv) {
  7520. Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
  7521. cb(Vcur, "Vcur", il);
  7522. }
  7523. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  7524. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  7525. Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
  7526. Qcur = ggml_rope_ext(
  7527. ctx0, Qcur, inp_pos, nullptr,
  7528. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  7529. ext_factor, attn_factor, beta_fast, beta_slow
  7530. );
  7531. Kcur = ggml_rope_ext(
  7532. ctx0, Kcur, inp_pos, nullptr,
  7533. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  7534. ext_factor, attn_factor, beta_fast, beta_slow
  7535. );
  7536. cb(Qcur, "Qcur", il);
  7537. cb(Kcur, "Kcur", il);
  7538. cb(Vcur, "Vcur", il);
  7539. cur = build_attn(inp_attn,
  7540. model.layers[il].wo, model.layers[il].bo,
  7541. Qcur, Kcur, Vcur, nullptr, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
  7542. }
  7543. if (il == n_layer - 1 && inp_out_ids) {
  7544. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  7545. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  7546. }
  7547. ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  7548. cb(ffn_inp, "ffn_inp", il);
  7549. // MoE branch
  7550. cur = build_norm(ffn_inp,
  7551. model.layers[il].ffn_norm, NULL,
  7552. LLM_NORM_RMS, il);
  7553. cb(cur, "ffn_norm", il);
  7554. ggml_tensor * moe_out =
  7555. build_moe_ffn(cur,
  7556. model.layers[il].ffn_gate_inp,
  7557. model.layers[il].ffn_up_exps,
  7558. model.layers[il].ffn_gate_exps,
  7559. model.layers[il].ffn_down_exps,
  7560. nullptr,
  7561. n_expert, n_expert_used,
  7562. LLM_FFN_SILU, false,
  7563. false, 0.0,
  7564. LLAMA_EXPERT_GATING_FUNC_TYPE_SOFTMAX,
  7565. il);
  7566. cb(moe_out, "ffn_moe_out", il);
  7567. // FFN shared expert
  7568. {
  7569. ggml_tensor * cur_gate_inp = build_lora_mm(model.layers[il].ffn_gate_inp_shexp, cur);
  7570. cb(cur_gate_inp, "ffn_shexp_gate_inp", il);
  7571. // sigmoid
  7572. ggml_tensor * cur_gate = ggml_div(ctx0, ggml_silu(ctx0, cur_gate_inp), cur_gate_inp);
  7573. cb(cur_gate, "ffn_shexp_gate", il);
  7574. ggml_tensor * cur_ffn = build_ffn(cur,
  7575. model.layers[il].ffn_up_shexp, NULL, NULL,
  7576. model.layers[il].ffn_gate_shexp, NULL, NULL,
  7577. model.layers[il].ffn_down_shexp, NULL, NULL,
  7578. NULL,
  7579. LLM_FFN_SILU, LLM_FFN_PAR, il);
  7580. cb(cur_ffn, "ffn_shexp", il);
  7581. ggml_tensor * ffn_shexp_out = ggml_mul(ctx0, cur_ffn, cur_gate);
  7582. cb(ffn_shexp_out, "ffn_shexp_out", il);
  7583. moe_out = ggml_add(ctx0, moe_out, ffn_shexp_out);
  7584. cb(moe_out, "ffn_out", il);
  7585. cur = moe_out;
  7586. }
  7587. cur = ggml_add(ctx0, cur, ffn_inp);
  7588. cur = build_cvec(cur, il);
  7589. cb(cur, "l_out", il);
  7590. // input for next layer
  7591. inpL = cur;
  7592. }
  7593. cur = inpL;
  7594. cur = build_norm(cur,
  7595. model.output_norm, NULL,
  7596. LLM_NORM_RMS, -1);
  7597. cb(cur, "result_norm", -1);
  7598. res->t_embd = cur;
  7599. // lm_head
  7600. cur = build_lora_mm(model.output, cur);
  7601. cb(cur, "result_output", -1);
  7602. res->t_logits = cur;
  7603. ggml_build_forward_expand(gf, cur);
  7604. }
  7605. };
  7606. struct llm_build_qwen3 : public llm_graph_context {
  7607. llm_build_qwen3(const llama_model & model, const llm_graph_params & params) : llm_graph_context(params) {
  7608. const int64_t n_embd_head = hparams.n_embd_head_v;
  7609. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  7610. GGML_ASSERT(n_embd_head == hparams.n_rot);
  7611. ggml_tensor * cur;
  7612. ggml_tensor * inpL;
  7613. inpL = build_inp_embd(model.tok_embd);
  7614. // inp_pos - contains the positions
  7615. ggml_tensor * inp_pos = build_inp_pos();
  7616. auto * inp_attn = build_attn_inp_kv();
  7617. ggml_tensor * inp_out_ids = build_inp_out_ids();
  7618. for (int il = 0; il < n_layer; ++il) {
  7619. ggml_tensor * inpSA = inpL;
  7620. // norm
  7621. cur = build_norm(inpL,
  7622. model.layers[il].attn_norm, NULL,
  7623. LLM_NORM_RMS, il);
  7624. cb(cur, "attn_norm", il);
  7625. // self-attention
  7626. {
  7627. // compute Q and K and RoPE them
  7628. ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
  7629. cb(Qcur, "Qcur", il);
  7630. ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
  7631. cb(Kcur, "Kcur", il);
  7632. ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
  7633. cb(Vcur, "Vcur", il);
  7634. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  7635. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  7636. Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
  7637. Qcur = build_norm(Qcur, model.layers[il].attn_q_norm, NULL, LLM_NORM_RMS, il);
  7638. cb(Qcur, "Qcur_normed", il);
  7639. Qcur = ggml_rope_ext(
  7640. ctx0, Qcur, inp_pos, nullptr,
  7641. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  7642. ext_factor, attn_factor, beta_fast, beta_slow
  7643. );
  7644. Kcur = build_norm(Kcur, model.layers[il].attn_k_norm, NULL, LLM_NORM_RMS, il);
  7645. cb(Kcur, "Kcur_normed", il);
  7646. Kcur = ggml_rope_ext(
  7647. ctx0, Kcur, inp_pos, nullptr,
  7648. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  7649. ext_factor, attn_factor, beta_fast, beta_slow
  7650. );
  7651. cb(Qcur, "Qcur", il);
  7652. cb(Kcur, "Kcur", il);
  7653. cb(Vcur, "Vcur", il);
  7654. cur = build_attn(inp_attn,
  7655. model.layers[il].wo, model.layers[il].bo,
  7656. Qcur, Kcur, Vcur, nullptr, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
  7657. }
  7658. if (il == n_layer - 1 && inp_out_ids) {
  7659. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  7660. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  7661. }
  7662. ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  7663. cb(ffn_inp, "ffn_inp", il);
  7664. // feed-forward network
  7665. cur = build_norm(ffn_inp,
  7666. model.layers[il].ffn_norm, NULL,
  7667. LLM_NORM_RMS, il);
  7668. cb(cur, "ffn_norm", il);
  7669. cur = build_ffn(cur,
  7670. model.layers[il].ffn_up, NULL, NULL,
  7671. model.layers[il].ffn_gate, NULL, NULL,
  7672. model.layers[il].ffn_down, NULL, NULL,
  7673. NULL,
  7674. LLM_FFN_SILU, LLM_FFN_PAR, il);
  7675. cb(cur, "ffn_out", il);
  7676. cur = ggml_add(ctx0, cur, ffn_inp);
  7677. cur = build_cvec(cur, il);
  7678. cb(cur, "l_out", il);
  7679. // input for next layer
  7680. inpL = cur;
  7681. }
  7682. cur = inpL;
  7683. cur = build_norm(cur,
  7684. model.output_norm, NULL,
  7685. LLM_NORM_RMS, -1);
  7686. cb(cur, "result_norm", -1);
  7687. res->t_embd = cur;
  7688. // lm_head
  7689. cur = build_lora_mm(model.output, cur);
  7690. cb(cur, "result_output", -1);
  7691. res->t_logits = cur;
  7692. ggml_build_forward_expand(gf, cur);
  7693. }
  7694. };
  7695. struct llm_build_qwen3moe : public llm_graph_context {
  7696. llm_build_qwen3moe(const llama_model & model, const llm_graph_params & params) : llm_graph_context(params) {
  7697. const int64_t n_embd_head = hparams.n_embd_head_v;
  7698. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  7699. GGML_ASSERT(n_embd_head == hparams.n_rot);
  7700. ggml_tensor * cur;
  7701. ggml_tensor * inpL;
  7702. inpL = build_inp_embd(model.tok_embd);
  7703. // inp_pos - contains the positions
  7704. ggml_tensor * inp_pos = build_inp_pos();
  7705. auto * inp_attn = build_attn_inp_kv();
  7706. ggml_tensor * inp_out_ids = build_inp_out_ids();
  7707. for (int il = 0; il < n_layer; ++il) {
  7708. ggml_tensor * inpSA = inpL;
  7709. // norm
  7710. cur = build_norm(inpL,
  7711. model.layers[il].attn_norm, NULL,
  7712. LLM_NORM_RMS, il);
  7713. cb(cur, "attn_norm", il);
  7714. // self_attention
  7715. {
  7716. // compute Q and K and RoPE them
  7717. ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
  7718. cb(Qcur, "Qcur", il);
  7719. ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
  7720. cb(Kcur, "Kcur", il);
  7721. ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
  7722. cb(Vcur, "Vcur", il);
  7723. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  7724. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  7725. Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
  7726. Qcur = build_norm(Qcur, model.layers[il].attn_q_norm, NULL, LLM_NORM_RMS, il);
  7727. cb(Qcur, "Qcur_normed", il);
  7728. Qcur = ggml_rope_ext(
  7729. ctx0, Qcur, inp_pos, nullptr,
  7730. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  7731. ext_factor, attn_factor, beta_fast, beta_slow
  7732. );
  7733. Kcur = build_norm(Kcur, model.layers[il].attn_k_norm, NULL, LLM_NORM_RMS, il);
  7734. cb(Kcur, "Kcur_normed", il);
  7735. Kcur = ggml_rope_ext(
  7736. ctx0, Kcur, inp_pos, nullptr,
  7737. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  7738. ext_factor, attn_factor, beta_fast, beta_slow
  7739. );
  7740. cb(Qcur, "Qcur", il);
  7741. cb(Kcur, "Kcur", il);
  7742. cb(Vcur, "Vcur", il);
  7743. cur = build_attn(inp_attn,
  7744. model.layers[il].wo, model.layers[il].bo,
  7745. Qcur, Kcur, Vcur, nullptr, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
  7746. }
  7747. if (il == n_layer - 1 && inp_out_ids) {
  7748. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  7749. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  7750. }
  7751. ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  7752. cb(ffn_inp, "ffn_inp", il);
  7753. // MoE branch
  7754. cur = build_norm(ffn_inp,
  7755. model.layers[il].ffn_norm, NULL,
  7756. LLM_NORM_RMS, il);
  7757. cb(cur, "ffn_norm", il);
  7758. ggml_tensor * moe_out =
  7759. build_moe_ffn(cur,
  7760. model.layers[il].ffn_gate_inp,
  7761. model.layers[il].ffn_up_exps,
  7762. model.layers[il].ffn_gate_exps,
  7763. model.layers[il].ffn_down_exps,
  7764. nullptr,
  7765. n_expert, n_expert_used,
  7766. LLM_FFN_SILU, true,
  7767. false, 0.0,
  7768. LLAMA_EXPERT_GATING_FUNC_TYPE_SOFTMAX,
  7769. il);
  7770. cb(moe_out, "ffn_moe_out", il);
  7771. cur = moe_out;
  7772. cur = ggml_add(ctx0, cur, ffn_inp);
  7773. cur = build_cvec(cur, il);
  7774. cb(cur, "l_out", il);
  7775. // input for next layer
  7776. inpL = cur;
  7777. }
  7778. cur = inpL;
  7779. cur = build_norm(cur,
  7780. model.output_norm, NULL,
  7781. LLM_NORM_RMS, -1);
  7782. cb(cur, "result_norm", -1);
  7783. res->t_embd = cur;
  7784. // lm_head
  7785. cur = build_lora_mm(model.output, cur);
  7786. cb(cur, "result_output", -1);
  7787. res->t_logits = cur;
  7788. ggml_build_forward_expand(gf, cur);
  7789. }
  7790. };
  7791. struct llm_build_phi2 : public llm_graph_context {
  7792. llm_build_phi2(const llama_model & model, const llm_graph_params & params) : llm_graph_context(params) {
  7793. const int64_t n_embd_head = hparams.n_embd_head_v;
  7794. const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
  7795. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  7796. ggml_tensor * cur;
  7797. ggml_tensor * attn_norm_output;
  7798. ggml_tensor * ffn_output;
  7799. ggml_tensor * inpL;
  7800. inpL = build_inp_embd(model.tok_embd);
  7801. // inp_pos - contains the positions
  7802. ggml_tensor * inp_pos = build_inp_pos();
  7803. auto * inp_attn = build_attn_inp_kv();
  7804. ggml_tensor * inp_out_ids = build_inp_out_ids();
  7805. for (int il = 0; il < n_layer; ++il) {
  7806. attn_norm_output = build_norm(inpL,
  7807. model.layers[il].attn_norm,
  7808. model.layers[il].attn_norm_b,
  7809. LLM_NORM, il);
  7810. cb(attn_norm_output, "attn_norm", il);
  7811. // self-attention
  7812. {
  7813. ggml_tensor * Qcur = nullptr;
  7814. ggml_tensor * Kcur = nullptr;
  7815. ggml_tensor * Vcur = nullptr;
  7816. if (model.layers[il].wqkv) {
  7817. cur = build_lora_mm(model.layers[il].wqkv, attn_norm_output);
  7818. cb(cur, "wqkv", il);
  7819. cur = ggml_add(ctx0, cur, model.layers[il].bqkv);
  7820. cb(cur, "bqkv", il);
  7821. Qcur = ggml_view_3d(ctx0, cur, n_embd_head, n_head, n_tokens, n_embd_head*sizeof(float), cur->nb[1], 0*sizeof(float)*(n_embd));
  7822. Kcur = ggml_view_3d(ctx0, cur, n_embd_head, n_head_kv, n_tokens, n_embd_head*sizeof(float), cur->nb[1], 1*sizeof(float)*(n_embd));
  7823. Vcur = ggml_view_3d(ctx0, cur, n_embd_head, n_head_kv, n_tokens, n_embd_head*sizeof(float), cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa));
  7824. } else {
  7825. Qcur = ggml_add(ctx0, build_lora_mm(model.layers[il].wq, attn_norm_output), model.layers[il].bq);
  7826. Kcur = ggml_add(ctx0, build_lora_mm(model.layers[il].wk, attn_norm_output), model.layers[il].bk);
  7827. Vcur = ggml_add(ctx0, build_lora_mm(model.layers[il].wv, attn_norm_output), model.layers[il].bv);
  7828. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  7829. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  7830. Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
  7831. }
  7832. Qcur = ggml_rope_ext(
  7833. ctx0, Qcur, inp_pos, nullptr,
  7834. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  7835. ext_factor, attn_factor, beta_fast, beta_slow
  7836. );
  7837. Kcur = ggml_rope_ext(
  7838. ctx0, Kcur, inp_pos, nullptr,
  7839. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  7840. ext_factor, attn_factor, beta_fast, beta_slow
  7841. );
  7842. cb(Qcur, "Qcur", il);
  7843. cb(Kcur, "Kcur", il);
  7844. cb(Vcur, "Vcur", il);
  7845. // with phi2, we scale the Q to avoid precision issues
  7846. // ref: https://github.com/ml-explore/mlx-examples/blob/08e862336ade809bc37d1035f94b359e7d1a5152/phi2/phi2.py#L64-L66
  7847. Qcur = ggml_scale(ctx0, Qcur, 1.0f/sqrtf(float(n_embd_head)));
  7848. cur = build_attn(inp_attn,
  7849. model.layers[il].wo, model.layers[il].bo,
  7850. Qcur, Kcur, Vcur, nullptr, nullptr, nullptr, 1.0f, il);
  7851. }
  7852. if (il == n_layer - 1 && inp_out_ids) {
  7853. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  7854. inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
  7855. attn_norm_output = ggml_get_rows(ctx0, attn_norm_output, inp_out_ids);
  7856. }
  7857. // FF
  7858. {
  7859. ffn_output = build_ffn(attn_norm_output,
  7860. model.layers[il].ffn_up, model.layers[il].ffn_up_b, NULL,
  7861. NULL, NULL, NULL,
  7862. model.layers[il].ffn_down, model.layers[il].ffn_down_b, NULL,
  7863. NULL,
  7864. LLM_FFN_GELU, LLM_FFN_SEQ, il);
  7865. cb(ffn_output, "ffn_out", il);
  7866. }
  7867. cur = ggml_add(ctx0, cur, ffn_output);
  7868. cur = ggml_add(ctx0, cur, inpL);
  7869. cur = build_cvec(cur, il);
  7870. cb(cur, "l_out", il);
  7871. // input for next layer
  7872. inpL = cur;
  7873. }
  7874. cur = build_norm(inpL,
  7875. model.output_norm,
  7876. model.output_norm_b,
  7877. LLM_NORM, -1);
  7878. cb(cur, "result_norm", -1);
  7879. res->t_embd = cur;
  7880. cur = build_lora_mm(model.output, cur);
  7881. cb(cur, "result_output_no_bias", -1);
  7882. cur = ggml_add(ctx0, cur, model.output_b);
  7883. cb(cur, "result_output", -1);
  7884. res->t_logits = cur;
  7885. ggml_build_forward_expand(gf, cur);
  7886. }
  7887. };
  7888. template<bool iswa>
  7889. struct llm_build_phi3 : public llm_graph_context {
  7890. llm_build_phi3(const llama_model & model, const llm_graph_params & params) : llm_graph_context(params) {
  7891. const int64_t n_embd_head = hparams.n_embd_head_v;
  7892. const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
  7893. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  7894. ggml_tensor * cur;
  7895. ggml_tensor * inpL;
  7896. inpL = build_inp_embd(model.tok_embd);
  7897. // inp_pos - contains the positions
  7898. ggml_tensor * inp_pos = build_inp_pos();
  7899. using inp_attn_type = std::conditional_t<iswa, llm_graph_input_attn_kv_iswa, llm_graph_input_attn_kv>;
  7900. inp_attn_type * inp_attn = nullptr;
  7901. if constexpr (iswa) {
  7902. inp_attn = build_attn_inp_kv_iswa();
  7903. } else {
  7904. inp_attn = build_attn_inp_kv();
  7905. }
  7906. ggml_tensor * inp_out_ids = build_inp_out_ids();
  7907. for (int il = 0; il < n_layer; ++il) {
  7908. auto * residual = inpL;
  7909. // self-attention
  7910. {
  7911. // rope freq factors for 128k context
  7912. ggml_tensor * rope_factors = model.get_rope_factors(cparams, il);
  7913. ggml_tensor* attn_norm_output = build_norm(inpL,
  7914. model.layers[il].attn_norm,
  7915. model.layers[il].attn_norm_b,
  7916. LLM_NORM_RMS, il);
  7917. cb(attn_norm_output, "attn_norm", il);
  7918. ggml_tensor * Qcur = nullptr;
  7919. ggml_tensor * Kcur = nullptr;
  7920. ggml_tensor * Vcur = nullptr;
  7921. if (model.layers[il].wqkv) {
  7922. cur = build_lora_mm(model.layers[il].wqkv, attn_norm_output);
  7923. cb(cur, "wqkv", il);
  7924. Qcur = ggml_view_3d(ctx0, cur, n_embd_head, n_head, n_tokens, n_embd_head * sizeof(float), cur->nb[1], 0 * sizeof(float) * (n_embd));
  7925. Kcur = ggml_view_3d(ctx0, cur, n_embd_head, n_head_kv, n_tokens, n_embd_head * sizeof(float), cur->nb[1], 1 * sizeof(float) * (n_embd));
  7926. Vcur = ggml_view_3d(ctx0, cur, n_embd_head, n_head_kv, n_tokens, n_embd_head * sizeof(float), cur->nb[1], 1 * sizeof(float) * (n_embd + n_embd_gqa));
  7927. } else {
  7928. Qcur = ggml_add(ctx0, build_lora_mm(model.layers[il].wq, attn_norm_output), model.layers[il].bq);
  7929. Kcur = ggml_add(ctx0, build_lora_mm(model.layers[il].wk, attn_norm_output), model.layers[il].bk);
  7930. Vcur = ggml_add(ctx0, build_lora_mm(model.layers[il].wv, attn_norm_output), model.layers[il].bv);
  7931. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  7932. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  7933. Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
  7934. }
  7935. Qcur = ggml_rope_ext(
  7936. ctx0, Qcur, inp_pos, rope_factors,
  7937. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  7938. ext_factor, attn_factor, beta_fast, beta_slow
  7939. );
  7940. Kcur = ggml_rope_ext(
  7941. ctx0, Kcur, inp_pos, rope_factors,
  7942. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  7943. ext_factor, attn_factor, beta_fast, beta_slow
  7944. );
  7945. cb(Qcur, "Qcur", il);
  7946. cb(Kcur, "Kcur", il);
  7947. cb(Vcur, "Vcur", il);
  7948. Qcur = ggml_scale(ctx0, Qcur, 1.0f / sqrtf(float(n_embd_head)));
  7949. cb(Qcur, "Qcur", il);
  7950. cur = build_attn(inp_attn,
  7951. model.layers[il].wo, model.layers[il].bo,
  7952. Qcur, Kcur, Vcur, nullptr, nullptr, nullptr, 1.0f, il);
  7953. }
  7954. if (il == n_layer - 1 && inp_out_ids) {
  7955. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  7956. residual = ggml_get_rows(ctx0, residual, inp_out_ids);
  7957. }
  7958. cur = ggml_add(ctx0, cur, residual);
  7959. residual = cur;
  7960. cur = build_norm(cur,
  7961. model.layers[il].ffn_norm, model.layers[il].ffn_norm_b,
  7962. LLM_NORM_RMS, il);
  7963. cb(cur, "ffn_norm", il);
  7964. // feed-forward network
  7965. if (model.layers[il].ffn_gate_inp == nullptr) {
  7966. cur = build_ffn(cur,
  7967. model.layers[il].ffn_up, NULL, NULL,
  7968. NULL, NULL, NULL,
  7969. model.layers[il].ffn_down, NULL, NULL,
  7970. NULL,
  7971. LLM_FFN_SWIGLU, LLM_FFN_SEQ, il);
  7972. cb(cur, "ffn_out", il);
  7973. } else {
  7974. // MoE branch
  7975. cur = build_moe_ffn(cur,
  7976. model.layers[il].ffn_gate_inp,
  7977. model.layers[il].ffn_up_exps,
  7978. model.layers[il].ffn_gate_exps,
  7979. model.layers[il].ffn_down_exps,
  7980. nullptr,
  7981. n_expert, n_expert_used,
  7982. LLM_FFN_SILU, true,
  7983. false, 0.0,
  7984. LLAMA_EXPERT_GATING_FUNC_TYPE_SOFTMAX,
  7985. il);
  7986. cb(cur, "ffn_moe_out", il);
  7987. }
  7988. cur = ggml_add(ctx0, residual, cur);
  7989. cur = build_cvec(cur, il);
  7990. cb(cur, "l_out", il);
  7991. // input for next layer
  7992. inpL = cur;
  7993. }
  7994. cur = build_norm(inpL,
  7995. model.output_norm,
  7996. model.output_norm_b,
  7997. LLM_NORM_RMS, -1);
  7998. cb(cur, "result_norm", -1);
  7999. res->t_embd = cur;
  8000. cur = build_lora_mm(model.output, cur);
  8001. if (model.output_b != nullptr) {
  8002. cb(cur, "result_output_no_bias", -1);
  8003. cur = ggml_add(ctx0, cur, model.output_b);
  8004. }
  8005. cb(cur, "result_output", -1);
  8006. res->t_logits = cur;
  8007. ggml_build_forward_expand(gf, cur);
  8008. }
  8009. };
  8010. struct llm_build_plamo : public llm_graph_context {
  8011. llm_build_plamo(const llama_model & model, const llm_graph_params & params) : llm_graph_context(params) {
  8012. const int64_t n_embd_head = hparams.n_embd_head_v;
  8013. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  8014. GGML_ASSERT(n_embd_head == hparams.n_rot);
  8015. ggml_tensor * cur;
  8016. ggml_tensor * inpL;
  8017. inpL = build_inp_embd(model.tok_embd);
  8018. // inp_pos - contains the positions
  8019. ggml_tensor * inp_pos = build_inp_pos();
  8020. auto * inp_attn = build_attn_inp_kv();
  8021. ggml_tensor * inp_out_ids = build_inp_out_ids();
  8022. for (int il = 0; il < n_layer; ++il) {
  8023. // norm
  8024. cur = build_norm(inpL,
  8025. model.layers[il].attn_norm, NULL,
  8026. LLM_NORM_RMS, il);
  8027. cb(cur, "attn_norm", il);
  8028. ggml_tensor * sa_inp = cur;
  8029. // self-attention
  8030. {
  8031. // compute Q and K and RoPE them
  8032. ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
  8033. cb(Qcur, "Qcur", il);
  8034. ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
  8035. cb(Kcur, "Kcur", il);
  8036. ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
  8037. cb(Vcur, "Vcur", il);
  8038. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  8039. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  8040. Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
  8041. Qcur = ggml_rope_ext(
  8042. ctx0, Qcur, inp_pos, nullptr,
  8043. n_embd_head, rope_type, n_ctx_orig, freq_base, freq_scale,
  8044. ext_factor, attn_factor, beta_fast, beta_slow
  8045. );
  8046. Kcur = ggml_rope_ext(
  8047. ctx0, Kcur, inp_pos, nullptr,
  8048. n_embd_head, rope_type, n_ctx_orig, freq_base, freq_scale,
  8049. ext_factor, attn_factor, beta_fast, beta_slow
  8050. );
  8051. cb(Qcur, "Qcur", il);
  8052. cb(Kcur, "Kcur", il);
  8053. cb(Vcur, "Vcur", il);
  8054. cur = build_attn(inp_attn,
  8055. model.layers[il].wo, NULL,
  8056. Qcur, Kcur, Vcur, nullptr, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
  8057. }
  8058. if (il == n_layer - 1 && inp_out_ids) {
  8059. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  8060. sa_inp = ggml_get_rows(ctx0, sa_inp, inp_out_ids);
  8061. inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
  8062. }
  8063. ggml_tensor * sa_out = cur;
  8064. cur = sa_inp;
  8065. // feed-forward network
  8066. {
  8067. cur = build_ffn(cur,
  8068. model.layers[il].ffn_up, NULL, NULL,
  8069. model.layers[il].ffn_gate, NULL, NULL,
  8070. model.layers[il].ffn_down, NULL, NULL,
  8071. NULL,
  8072. LLM_FFN_SILU, LLM_FFN_PAR, il);
  8073. cb(cur, "ffn_out", il);
  8074. }
  8075. cur = ggml_add(ctx0, cur, sa_out);
  8076. cur = ggml_add(ctx0, cur, inpL);
  8077. cur = build_cvec(cur, il);
  8078. cb(cur, "l_out", il);
  8079. // input for next layer
  8080. inpL = cur;
  8081. }
  8082. cur = inpL;
  8083. cur = build_norm(cur,
  8084. model.output_norm, NULL,
  8085. LLM_NORM_RMS, -1);
  8086. cb(cur, "result_norm", -1);
  8087. res->t_embd = cur;
  8088. // lm_head
  8089. cur = build_lora_mm(model.output, cur);
  8090. cb(cur, "result_output", -1);
  8091. res->t_logits = cur;
  8092. ggml_build_forward_expand(gf, cur);
  8093. }
  8094. };
  8095. struct llm_build_gpt2 : public llm_graph_context {
  8096. llm_build_gpt2(const llama_model & model, const llm_graph_params & params) : llm_graph_context(params) {
  8097. const int64_t n_embd_head = hparams.n_embd_head_v;
  8098. const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
  8099. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  8100. ggml_tensor * cur;
  8101. ggml_tensor * pos;
  8102. ggml_tensor * inpL;
  8103. inpL = build_inp_embd(model.tok_embd);
  8104. // inp_pos - contains the positions
  8105. ggml_tensor * inp_pos = build_inp_pos();
  8106. auto * inp_attn = build_attn_inp_kv();
  8107. pos = ggml_get_rows(ctx0, model.pos_embd, inp_pos);
  8108. cb(pos, "pos_embd", -1);
  8109. inpL = ggml_add(ctx0, inpL, pos);
  8110. cb(inpL, "inpL", -1);
  8111. ggml_tensor * inp_out_ids = build_inp_out_ids();
  8112. for (int il = 0; il < n_layer; ++il) {
  8113. cur = build_norm(inpL,
  8114. model.layers[il].attn_norm,
  8115. model.layers[il].attn_norm_b,
  8116. LLM_NORM, il);
  8117. cb(cur, "attn_norm", il);
  8118. // self-attention
  8119. {
  8120. cur = build_lora_mm(model.layers[il].wqkv, cur);
  8121. cb(cur, "wqkv", il);
  8122. cur = ggml_add(ctx0, cur, model.layers[il].bqkv);
  8123. cb(cur, "bqkv", il);
  8124. ggml_tensor * Qcur = ggml_view_3d(ctx0, cur, n_embd_head, n_head, n_tokens, n_embd_head*sizeof(float), cur->nb[1], 0*sizeof(float)*(n_embd));
  8125. ggml_tensor * Kcur = ggml_view_3d(ctx0, cur, n_embd_head, n_head_kv, n_tokens, n_embd_head*sizeof(float), cur->nb[1], 1*sizeof(float)*(n_embd));
  8126. ggml_tensor * Vcur = ggml_view_3d(ctx0, cur, n_embd_head, n_head_kv, n_tokens, n_embd_head*sizeof(float), cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa));
  8127. cb(Qcur, "Qcur", il);
  8128. cb(Kcur, "Kcur", il);
  8129. cb(Vcur, "Vcur", il);
  8130. cur = build_attn(inp_attn,
  8131. model.layers[il].wo, model.layers[il].bo,
  8132. Qcur, Kcur, Vcur, nullptr, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
  8133. }
  8134. if (il == n_layer - 1 && inp_out_ids) {
  8135. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  8136. inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
  8137. }
  8138. // add the input
  8139. ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpL);
  8140. cb(ffn_inp, "ffn_inp", il);
  8141. // FF
  8142. {
  8143. cur = build_norm(ffn_inp,
  8144. model.layers[il].ffn_norm,
  8145. model.layers[il].ffn_norm_b,
  8146. LLM_NORM, il);
  8147. cb(cur, "ffn_norm", il);
  8148. cur = build_ffn(cur,
  8149. model.layers[il].ffn_up, model.layers[il].ffn_up_b, NULL,
  8150. NULL, NULL, NULL,
  8151. model.layers[il].ffn_down, model.layers[il].ffn_down_b, NULL,
  8152. NULL,
  8153. LLM_FFN_GELU, LLM_FFN_SEQ, il);
  8154. cb(cur, "ffn_out", il);
  8155. }
  8156. cur = ggml_add(ctx0, cur, ffn_inp);
  8157. cur = build_cvec(cur, il);
  8158. cb(cur, "l_out", il);
  8159. // input for next layer
  8160. inpL = cur;
  8161. }
  8162. cur = build_norm(inpL,
  8163. model.output_norm,
  8164. model.output_norm_b,
  8165. LLM_NORM, -1);
  8166. cb(cur, "result_norm", -1);
  8167. res->t_embd = cur;
  8168. cur = build_lora_mm(model.output, cur);
  8169. cb(cur, "result_output", -1);
  8170. res->t_logits = cur;
  8171. ggml_build_forward_expand(gf, cur);
  8172. }
  8173. };
  8174. struct llm_build_codeshell : public llm_graph_context {
  8175. llm_build_codeshell(const llama_model & model, const llm_graph_params & params) : llm_graph_context(params) {
  8176. const int64_t n_embd_head = hparams.n_embd_head_v;
  8177. const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
  8178. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  8179. GGML_ASSERT(n_embd_head == hparams.n_rot);
  8180. ggml_tensor * cur;
  8181. ggml_tensor * inpL;
  8182. inpL = build_inp_embd(model.tok_embd);
  8183. // inp_pos - contains the positions
  8184. ggml_tensor * inp_pos = build_inp_pos();
  8185. auto * inp_attn = build_attn_inp_kv();
  8186. ggml_tensor * inp_out_ids = build_inp_out_ids();
  8187. for (int il = 0; il < n_layer; ++il) {
  8188. cur = build_norm(inpL,
  8189. model.layers[il].attn_norm,
  8190. model.layers[il].attn_norm_b,
  8191. LLM_NORM, il);
  8192. cb(cur, "attn_norm", il);
  8193. // self-attention
  8194. {
  8195. cur = build_lora_mm(model.layers[il].wqkv, cur);
  8196. cb(cur, "wqkv", il);
  8197. cur = ggml_add(ctx0, cur, model.layers[il].bqkv);
  8198. cb(cur, "bqkv", il);
  8199. ggml_tensor * Qcur = ggml_view_3d(ctx0, cur, n_embd_head, n_head, n_tokens, n_embd_head*sizeof(float), cur->nb[1], 0*sizeof(float)*(n_embd));
  8200. ggml_tensor * Kcur = ggml_view_3d(ctx0, cur, n_embd_head, n_head_kv, n_tokens, n_embd_head*sizeof(float), cur->nb[1], 1*sizeof(float)*(n_embd));
  8201. ggml_tensor * Vcur = ggml_view_3d(ctx0, cur, n_embd_head, n_head_kv, n_tokens, n_embd_head*sizeof(float), cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa));
  8202. Qcur = ggml_rope_ext(
  8203. ctx0, Qcur, inp_pos, nullptr,
  8204. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  8205. ext_factor, attn_factor, beta_fast, beta_slow
  8206. );
  8207. Kcur = ggml_rope_ext(
  8208. ctx0, Kcur, inp_pos, nullptr,
  8209. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  8210. ext_factor, attn_factor, beta_fast, beta_slow
  8211. );
  8212. cb(Qcur, "Qcur", il);
  8213. cb(Kcur, "Kcur", il);
  8214. cb(Vcur, "Vcur", il);
  8215. cur = build_attn(inp_attn,
  8216. model.layers[il].wo, model.layers[il].bo,
  8217. Qcur, Kcur, Vcur, nullptr, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
  8218. }
  8219. if (il == n_layer - 1 && inp_out_ids) {
  8220. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  8221. inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
  8222. }
  8223. // add the input
  8224. ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpL);
  8225. cb(ffn_inp, "ffn_inp", il);
  8226. // FF
  8227. {
  8228. cur = build_norm(ffn_inp,
  8229. model.layers[il].ffn_norm,
  8230. model.layers[il].ffn_norm_b,
  8231. LLM_NORM, il);
  8232. cb(cur, "ffn_norm", il);
  8233. cur = build_ffn(cur,
  8234. model.layers[il].ffn_up, model.layers[il].ffn_up_b, NULL,
  8235. NULL, NULL, NULL,
  8236. model.layers[il].ffn_down, model.layers[il].ffn_down_b, NULL,
  8237. NULL,
  8238. LLM_FFN_GELU, LLM_FFN_SEQ, il);
  8239. cb(cur, "ffn_out", il);
  8240. }
  8241. cur = ggml_add(ctx0, cur, ffn_inp);
  8242. cur = build_cvec(cur, il);
  8243. cb(cur, "l_out", il);
  8244. // input for next layer
  8245. inpL = cur;
  8246. }
  8247. cur = build_norm(inpL,
  8248. model.output_norm,
  8249. model.output_norm_b,
  8250. LLM_NORM, -1);
  8251. cb(cur, "result_norm", -1);
  8252. res->t_embd = cur;
  8253. cur = build_lora_mm(model.output, cur);
  8254. cb(cur, "result_output", -1);
  8255. res->t_logits = cur;
  8256. ggml_build_forward_expand(gf, cur);
  8257. }
  8258. };
  8259. struct llm_build_orion : public llm_graph_context {
  8260. llm_build_orion(const llama_model & model, const llm_graph_params & params) : llm_graph_context(params) {
  8261. const int64_t n_embd_head = hparams.n_embd_head_v;
  8262. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  8263. GGML_ASSERT(n_embd_head == hparams.n_rot);
  8264. ggml_tensor * cur;
  8265. ggml_tensor * inpL;
  8266. inpL = build_inp_embd(model.tok_embd);
  8267. // inp_pos - contains the positions
  8268. ggml_tensor * inp_pos = build_inp_pos();
  8269. auto * inp_attn = build_attn_inp_kv();
  8270. ggml_tensor * inp_out_ids = build_inp_out_ids();
  8271. for (int il = 0; il < n_layer; ++il) {
  8272. ggml_tensor * inpSA = inpL;
  8273. // norm
  8274. cur = build_norm(inpL,
  8275. model.layers[il].attn_norm, model.layers[il].attn_norm_b,
  8276. LLM_NORM, il);
  8277. cb(cur, "attn_norm", il);
  8278. // self-attention
  8279. {
  8280. // compute Q and K and RoPE them
  8281. ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
  8282. cb(Qcur, "Qcur", il);
  8283. // if (model.layers[il].bq) {
  8284. // Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
  8285. // cb(Qcur, "Qcur", il);
  8286. // }
  8287. ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
  8288. cb(Kcur, "Kcur", il);
  8289. // if (model.layers[il].bk) {
  8290. // Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
  8291. // cb(Kcur, "Kcur", il);
  8292. // }
  8293. ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
  8294. cb(Vcur, "Vcur", il);
  8295. // if (model.layers[il].bv) {
  8296. // Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
  8297. // cb(Vcur, "Vcur", il);
  8298. // }
  8299. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  8300. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  8301. Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
  8302. Qcur = ggml_rope_ext(
  8303. ctx0, Qcur, inp_pos, nullptr,
  8304. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  8305. ext_factor, attn_factor, beta_fast, beta_slow
  8306. );
  8307. Kcur = ggml_rope_ext(
  8308. ctx0, Kcur, inp_pos, nullptr,
  8309. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  8310. ext_factor, attn_factor, beta_fast, beta_slow
  8311. );
  8312. cb(Qcur, "Qcur", il);
  8313. cb(Kcur, "Kcur", il);
  8314. cb(Vcur, "Vcur", il);
  8315. cur = build_attn(inp_attn,
  8316. model.layers[il].wo, NULL,
  8317. Qcur, Kcur, Vcur, nullptr, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
  8318. }
  8319. if (il == n_layer - 1 && inp_out_ids) {
  8320. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  8321. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  8322. }
  8323. ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  8324. cb(ffn_inp, "ffn_inp", il);
  8325. // feed-forward network
  8326. cur = build_norm(ffn_inp,
  8327. model.layers[il].ffn_norm, model.layers[il].ffn_norm_b,
  8328. LLM_NORM, il);
  8329. cb(cur, "ffn_norm", il);
  8330. cur = build_ffn(cur,
  8331. model.layers[il].ffn_up, NULL, NULL,
  8332. model.layers[il].ffn_gate, NULL, NULL,
  8333. model.layers[il].ffn_down, NULL, NULL,
  8334. NULL,
  8335. LLM_FFN_SILU, LLM_FFN_PAR, il);
  8336. cb(cur, "ffn_out", il);
  8337. cur = ggml_add(ctx0, cur, ffn_inp);
  8338. cur = build_cvec(cur, il);
  8339. cb(cur, "l_out", il);
  8340. // input for next layer
  8341. inpL = cur;
  8342. }
  8343. cur = inpL;
  8344. cur = build_norm(cur,
  8345. model.output_norm, model.output_norm_b,
  8346. LLM_NORM, -1);
  8347. cb(cur, "result_norm", -1);
  8348. res->t_embd = cur;
  8349. // lm_head
  8350. cur = build_lora_mm(model.output, cur);
  8351. cb(cur, "result_output", -1);
  8352. res->t_logits = cur;
  8353. ggml_build_forward_expand(gf, cur);
  8354. }
  8355. };
  8356. struct llm_build_internlm2 : public llm_graph_context {
  8357. llm_build_internlm2(const llama_model & model, const llm_graph_params & params) : llm_graph_context(params) {
  8358. const int64_t n_embd_head = hparams.n_embd_head_v;
  8359. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  8360. GGML_ASSERT(n_embd_head == hparams.n_rot);
  8361. ggml_tensor * cur;
  8362. ggml_tensor * inpL;
  8363. inpL = build_inp_embd(model.tok_embd);
  8364. // inp_pos - contains the positions
  8365. ggml_tensor * inp_pos = build_inp_pos();
  8366. auto * inp_attn = build_attn_inp_kv();
  8367. ggml_tensor * inp_out_ids = build_inp_out_ids();
  8368. for (int il = 0; il < n_layer; ++il) {
  8369. ggml_tensor * inpSA = inpL;
  8370. // norm
  8371. cur = build_norm(inpL,
  8372. model.layers[il].attn_norm, NULL,
  8373. LLM_NORM_RMS, il);
  8374. cb(cur, "attn_norm", il);
  8375. // self-attention
  8376. {
  8377. // compute Q and K and RoPE them
  8378. ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
  8379. cb(Qcur, "Qcur", il);
  8380. if (model.layers[il].bq) {
  8381. Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
  8382. cb(Qcur, "Qcur", il);
  8383. }
  8384. ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
  8385. cb(Kcur, "Kcur", il);
  8386. if (model.layers[il].bk) {
  8387. Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
  8388. cb(Kcur, "Kcur", il);
  8389. }
  8390. ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
  8391. cb(Vcur, "Vcur", il);
  8392. if (model.layers[il].bv) {
  8393. Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
  8394. cb(Vcur, "Vcur", il);
  8395. }
  8396. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  8397. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  8398. Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
  8399. Qcur = ggml_rope_ext(
  8400. ctx0, Qcur, inp_pos, nullptr,
  8401. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  8402. ext_factor, attn_factor, beta_fast, beta_slow
  8403. );
  8404. Kcur = ggml_rope_ext(
  8405. ctx0, Kcur, inp_pos, nullptr,
  8406. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  8407. ext_factor, attn_factor, beta_fast, beta_slow
  8408. );
  8409. cb(Qcur, "Qcur", il);
  8410. cb(Kcur, "Kcur", il);
  8411. cb(Vcur, "Vcur", il);
  8412. cur = build_attn(inp_attn,
  8413. model.layers[il].wo, model.layers[il].bo,
  8414. Qcur, Kcur, Vcur, nullptr, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
  8415. }
  8416. if (il == n_layer - 1 && inp_out_ids) {
  8417. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  8418. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  8419. }
  8420. ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  8421. cb(ffn_inp, "ffn_inp", il);
  8422. // feed-forward network
  8423. cur = build_norm(ffn_inp,
  8424. model.layers[il].ffn_norm, NULL,
  8425. LLM_NORM_RMS, il);
  8426. cb(cur, "ffn_norm", il);
  8427. cur = build_ffn(cur,
  8428. model.layers[il].ffn_up, NULL, NULL,
  8429. model.layers[il].ffn_gate, NULL, NULL,
  8430. model.layers[il].ffn_down, NULL, NULL,
  8431. NULL,
  8432. LLM_FFN_SILU, LLM_FFN_PAR, il);
  8433. cb(cur, "ffn_out", il);
  8434. cur = ggml_add(ctx0, cur, ffn_inp);
  8435. cur = build_cvec(cur, il);
  8436. cb(cur, "l_out", il);
  8437. // input for next layer
  8438. inpL = cur;
  8439. }
  8440. cur = inpL;
  8441. cur = build_norm(cur,
  8442. model.output_norm, NULL,
  8443. LLM_NORM_RMS, -1);
  8444. cb(cur, "result_norm", -1);
  8445. res->t_embd = cur;
  8446. // lm_head
  8447. cur = build_lora_mm(model.output, cur);
  8448. cb(cur, "result_output", -1);
  8449. res->t_logits = cur;
  8450. ggml_build_forward_expand(gf, cur);
  8451. }
  8452. };
  8453. struct llm_build_minicpm3 : public llm_graph_context {
  8454. llm_build_minicpm3(const llama_model & model, const llm_graph_params & params) : llm_graph_context(params) {
  8455. //TODO: if the model varies, these parameters need to be read from the model
  8456. const int64_t n_embd_base = 256;
  8457. const float scale_embd = 12.0f;
  8458. const float scale_depth = 1.4f;
  8459. const float kq_scale = 1.0f / sqrtf(float(hparams.n_embd_head_k));
  8460. const uint32_t n_embd_head_qk_rope = hparams.n_rot;
  8461. const uint32_t n_embd_head_qk_nope = hparams.n_embd_head_k - hparams.n_rot;
  8462. const uint32_t kv_lora_rank = hparams.n_lora_kv;
  8463. ggml_tensor * cur;
  8464. ggml_tensor * inpL;
  8465. inpL = build_inp_embd(model.tok_embd);
  8466. // scale the input embeddings
  8467. inpL = ggml_scale(ctx0, inpL, scale_embd);
  8468. cb(inpL, "inp_scaled", -1);
  8469. // inp_pos - contains the positions
  8470. ggml_tensor * inp_pos = build_inp_pos();
  8471. auto * inp_attn = build_attn_inp_kv();
  8472. ggml_tensor * inp_out_ids = build_inp_out_ids();
  8473. for (int il = 0; il < n_layer; ++il) {
  8474. ggml_tensor * inpSA = inpL;
  8475. ggml_tensor * rope_factors = model.get_rope_factors(cparams, il);
  8476. // norm
  8477. cur = build_norm(inpL,
  8478. model.layers[il].attn_norm, NULL,
  8479. LLM_NORM_RMS, il);
  8480. cb(cur, "attn_norm", il);
  8481. // self_attention
  8482. {
  8483. ggml_tensor * q = NULL;
  8484. // {n_embd, q_lora_rank} * {n_embd, n_tokens} -> {q_lora_rank, n_tokens}
  8485. q = ggml_mul_mat(ctx0, model.layers[il].wq_a, cur);
  8486. cb(q, "q", il);
  8487. q = build_norm(q,
  8488. model.layers[il].attn_q_a_norm, NULL,
  8489. LLM_NORM_RMS, il);
  8490. cb(q, "q", il);
  8491. // {q_lora_rank, n_head * hparams.n_embd_head_k} * {q_lora_rank, n_tokens} -> {n_head * hparams.n_embd_head_k, n_tokens}
  8492. q = ggml_mul_mat(ctx0, model.layers[il].wq_b, q);
  8493. cb(q, "q", il);
  8494. // split into {n_head * n_embd_head_qk_nope, n_tokens}
  8495. ggml_tensor * q_nope = ggml_view_3d(ctx0, q, n_embd_head_qk_nope, n_head, n_tokens,
  8496. ggml_row_size(q->type, hparams.n_embd_head_k),
  8497. ggml_row_size(q->type, hparams.n_embd_head_k * n_head),
  8498. 0);
  8499. cb(q_nope, "q_nope", il);
  8500. // and {n_head * n_embd_head_qk_rope, n_tokens}
  8501. ggml_tensor * q_pe = ggml_view_3d(ctx0, q, n_embd_head_qk_rope, n_head, n_tokens,
  8502. ggml_row_size(q->type, hparams.n_embd_head_k),
  8503. ggml_row_size(q->type, hparams.n_embd_head_k * n_head),
  8504. ggml_row_size(q->type, n_embd_head_qk_nope));
  8505. cb(q_pe, "q_pe", il);
  8506. // {n_embd, kv_lora_rank + n_embd_head_qk_rope} * {n_embd, n_tokens} -> {kv_lora_rank + n_embd_head_qk_rope, n_tokens}
  8507. ggml_tensor * kv_pe_compresseed = ggml_mul_mat(ctx0, model.layers[il].wkv_a_mqa, cur);
  8508. cb(kv_pe_compresseed, "kv_pe_compresseed", il);
  8509. // split into {kv_lora_rank, n_tokens}
  8510. ggml_tensor * kv_compressed = ggml_view_2d(ctx0, kv_pe_compresseed, kv_lora_rank, n_tokens,
  8511. kv_pe_compresseed->nb[1],
  8512. 0);
  8513. cb(kv_compressed, "kv_compressed", il);
  8514. // and {n_embd_head_qk_rope, n_tokens}
  8515. ggml_tensor * k_pe = ggml_view_3d(ctx0, kv_pe_compresseed, n_embd_head_qk_rope, 1, n_tokens,
  8516. kv_pe_compresseed->nb[1],
  8517. kv_pe_compresseed->nb[1],
  8518. ggml_row_size(kv_pe_compresseed->type, kv_lora_rank));
  8519. cb(k_pe, "k_pe", il);
  8520. kv_compressed = build_norm(kv_compressed,
  8521. model.layers[il].attn_kv_a_norm, NULL,
  8522. LLM_NORM_RMS, il);
  8523. cb(kv_compressed, "kv_compressed", il);
  8524. // {kv_lora_rank, n_head * (n_embd_head_qk_nope + n_embd_head_v)} * {kv_lora_rank, n_tokens} -> {n_head * (n_embd_head_qk_nope + n_embd_head_v), n_tokens}
  8525. ggml_tensor * kv = ggml_mul_mat(ctx0, model.layers[il].wkv_b, kv_compressed);
  8526. cb(kv, "kv", il);
  8527. // split into {n_head * n_embd_head_qk_nope, n_tokens}
  8528. ggml_tensor * k_nope = ggml_view_3d(ctx0, kv, n_embd_head_qk_nope, n_head, n_tokens,
  8529. ggml_row_size(kv->type, n_embd_head_qk_nope + hparams.n_embd_head_v),
  8530. ggml_row_size(kv->type, n_head * (n_embd_head_qk_nope + hparams.n_embd_head_v)),
  8531. 0);
  8532. cb(k_nope, "k_nope", il);
  8533. // and {n_head * n_embd_head_v, n_tokens}
  8534. ggml_tensor * v_states = ggml_view_3d(ctx0, kv, hparams.n_embd_head_v, n_head, n_tokens,
  8535. ggml_row_size(kv->type, (n_embd_head_qk_nope + hparams.n_embd_head_v)),
  8536. ggml_row_size(kv->type, (n_embd_head_qk_nope + hparams.n_embd_head_v)*n_head),
  8537. ggml_row_size(kv->type, (n_embd_head_qk_nope)));
  8538. cb(v_states, "v_states", il);
  8539. v_states = ggml_cont(ctx0, v_states);
  8540. cb(v_states, "v_states", il);
  8541. q_pe = ggml_rope_ext(
  8542. ctx0, q_pe, inp_pos, rope_factors,
  8543. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  8544. ext_factor, attn_factor, beta_fast, beta_slow
  8545. );
  8546. cb(q_pe, "q_pe", il);
  8547. // shared RoPE key
  8548. k_pe = ggml_rope_ext(
  8549. ctx0, k_pe, inp_pos, rope_factors,
  8550. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  8551. ext_factor, attn_factor, beta_fast, beta_slow
  8552. );
  8553. cb(k_pe, "k_pe", il);
  8554. ggml_tensor * q_states = ggml_concat(ctx0, q_nope, q_pe, 0);
  8555. cb(q_states, "q_states", il);
  8556. ggml_tensor * k_states = ggml_concat(ctx0, k_nope, ggml_repeat(ctx0, k_pe, q_pe), 0);
  8557. cb(k_states, "k_states", il);
  8558. cur = build_attn(inp_attn,
  8559. model.layers[il].wo, NULL,
  8560. q_states, k_states, v_states, nullptr, nullptr, nullptr, kq_scale, il);
  8561. }
  8562. if (il == n_layer - 1 && inp_out_ids) {
  8563. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  8564. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  8565. }
  8566. // scale_res - scale the hidden states for residual connection
  8567. const float scale_res = scale_depth/sqrtf(float(n_layer)); // TODO: is this correct?
  8568. cur = ggml_scale(ctx0, cur, scale_res);
  8569. cb(cur, "hidden_scaled", il);
  8570. ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  8571. cb(ffn_inp, "ffn_inp", il);
  8572. // feed-forward network
  8573. {
  8574. cur = build_norm(ffn_inp,
  8575. model.layers[il].ffn_norm, NULL,
  8576. LLM_NORM_RMS, il);
  8577. cb(cur, "ffn_norm", il);
  8578. cur = build_ffn(cur,
  8579. model.layers[il].ffn_up, NULL, NULL,
  8580. model.layers[il].ffn_gate, NULL, NULL,
  8581. model.layers[il].ffn_down, NULL, NULL,
  8582. NULL,
  8583. LLM_FFN_SILU, LLM_FFN_PAR, il);
  8584. cb(cur, "ffn_out", il);
  8585. }
  8586. // scale the hidden states for residual connection
  8587. cur = ggml_scale(ctx0, cur, scale_res);
  8588. cb(cur, "hidden_scaled_ffn", il);
  8589. cur = ggml_add(ctx0, cur, ffn_inp);
  8590. cur = build_cvec(cur, il);
  8591. cb(cur, "l_out", il);
  8592. // input for next layer
  8593. inpL = cur;
  8594. }
  8595. cur = inpL;
  8596. cur = build_norm(cur,
  8597. model.output_norm, NULL,
  8598. LLM_NORM_RMS, -1);
  8599. cb(cur, "result_norm", -1);
  8600. res->t_embd = cur;
  8601. // lm_head scaling
  8602. const float scale_lmhead = float(n_embd_base)/float(n_embd);
  8603. cur = ggml_scale(ctx0, cur, scale_lmhead);
  8604. cb(cur, "lmhead_scaling", -1);
  8605. // lm_head
  8606. cur = build_lora_mm(model.output, cur);
  8607. cb(cur, "result_output", -1);
  8608. res->t_logits = cur;
  8609. ggml_build_forward_expand(gf, cur);
  8610. }
  8611. };
  8612. struct llm_build_gemma : public llm_graph_context {
  8613. llm_build_gemma(const llama_model & model, const llm_graph_params & params) : llm_graph_context(params) {
  8614. const int64_t n_embd_head = hparams.n_embd_head_v;
  8615. ggml_tensor * cur;
  8616. ggml_tensor * inpL;
  8617. inpL = build_inp_embd(model.tok_embd);
  8618. inpL = ggml_scale(ctx0, inpL, sqrtf(n_embd));
  8619. cb(inpL, "inp_scaled", -1);
  8620. // inp_pos - contains the positions
  8621. ggml_tensor * inp_pos = build_inp_pos();
  8622. auto * inp_attn = build_attn_inp_kv();
  8623. ggml_tensor * inp_out_ids = build_inp_out_ids();
  8624. for (int il = 0; il < n_layer; ++il) {
  8625. // norm
  8626. cur = build_norm(inpL,
  8627. model.layers[il].attn_norm, NULL,
  8628. LLM_NORM_RMS, il);
  8629. cb(cur, "attn_norm", il);
  8630. // self-attention
  8631. {
  8632. // compute Q and K and RoPE them
  8633. ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
  8634. cb(Qcur, "Qcur", il);
  8635. ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
  8636. cb(Kcur, "Kcur", il);
  8637. ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
  8638. cb(Vcur, "Vcur", il);
  8639. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  8640. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  8641. Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
  8642. Qcur = ggml_rope_ext(
  8643. ctx0, Qcur, inp_pos, nullptr,
  8644. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  8645. ext_factor, attn_factor, beta_fast, beta_slow);
  8646. Kcur = ggml_rope_ext(
  8647. ctx0, Kcur, inp_pos, nullptr,
  8648. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  8649. ext_factor, attn_factor, beta_fast, beta_slow);
  8650. cb(Qcur, "Qcur", il);
  8651. cb(Kcur, "Kcur", il);
  8652. cb(Vcur, "Vcur", il);
  8653. Qcur = ggml_scale(ctx0, Qcur, 1.0f / sqrtf(float(n_embd_head)));
  8654. cb(Qcur, "Qcur_scaled", il);
  8655. cur = build_attn(inp_attn,
  8656. model.layers[il].wo, NULL,
  8657. Qcur, Kcur, Vcur, nullptr, nullptr, nullptr, 1.0f, il);
  8658. }
  8659. if (il == n_layer - 1 && inp_out_ids) {
  8660. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  8661. inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
  8662. }
  8663. ggml_tensor * sa_out = ggml_add(ctx0, cur, inpL);
  8664. cb(sa_out, "sa_out", il);
  8665. cur = build_norm(sa_out,
  8666. model.layers[il].ffn_norm, NULL,
  8667. LLM_NORM_RMS, il);
  8668. cb(cur, "ffn_norm", il);
  8669. // feed-forward network
  8670. {
  8671. cur = build_ffn(cur,
  8672. model.layers[il].ffn_up, NULL, NULL,
  8673. model.layers[il].ffn_gate, NULL, NULL,
  8674. model.layers[il].ffn_down, NULL, NULL,
  8675. NULL,
  8676. LLM_FFN_GELU, LLM_FFN_PAR, il);
  8677. cb(cur, "ffn_out", il);
  8678. }
  8679. cur = ggml_add(ctx0, cur, sa_out);
  8680. cur = build_cvec(cur, il);
  8681. cb(cur, "l_out", il);
  8682. // input for next layer
  8683. inpL = cur;
  8684. }
  8685. cur = inpL;
  8686. cur = build_norm(cur,
  8687. model.output_norm, NULL,
  8688. LLM_NORM_RMS, -1);
  8689. cb(cur, "result_norm", -1);
  8690. res->t_embd = cur;
  8691. // lm_head
  8692. cur = build_lora_mm(model.output, cur);
  8693. cb(cur, "result_output", -1);
  8694. res->t_logits = cur;
  8695. ggml_build_forward_expand(gf, cur);
  8696. }
  8697. };
  8698. struct llm_build_gemma2_iswa : public llm_graph_context {
  8699. llm_build_gemma2_iswa(const llama_model & model, const llm_graph_params & params) : llm_graph_context(params) {
  8700. const int64_t n_embd_head = hparams.n_embd_head_k;
  8701. ggml_tensor * cur;
  8702. ggml_tensor * inpL;
  8703. inpL = build_inp_embd(model.tok_embd);
  8704. inpL = ggml_scale(ctx0, inpL, sqrtf(n_embd));
  8705. cb(inpL, "inp_scaled", -1);
  8706. // inp_pos - contains the positions
  8707. ggml_tensor * inp_pos = build_inp_pos();
  8708. auto * inp_attn = build_attn_inp_kv_iswa();
  8709. ggml_tensor * inp_out_ids = build_inp_out_ids();
  8710. for (int il = 0; il < n_layer; ++il) {
  8711. // norm
  8712. cur = build_norm(inpL,
  8713. model.layers[il].attn_norm, NULL,
  8714. LLM_NORM_RMS, il);
  8715. cb(cur, "attn_norm", il);
  8716. // self-attention
  8717. {
  8718. // compute Q and K and RoPE them
  8719. ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
  8720. cb(Qcur, "Qcur", il);
  8721. ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
  8722. cb(Kcur, "Kcur", il);
  8723. ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
  8724. cb(Vcur, "Vcur", il);
  8725. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  8726. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  8727. Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
  8728. Qcur = ggml_rope_ext(
  8729. ctx0, Qcur, inp_pos, nullptr,
  8730. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  8731. ext_factor, attn_factor, beta_fast, beta_slow);
  8732. Kcur = ggml_rope_ext(
  8733. ctx0, Kcur, inp_pos, nullptr,
  8734. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  8735. ext_factor, attn_factor, beta_fast, beta_slow);
  8736. cb(Qcur, "Qcur", il);
  8737. cb(Kcur, "Kcur", il);
  8738. cb(Vcur, "Vcur", il);
  8739. Qcur = ggml_scale(ctx0, Qcur, hparams.f_attention_scale);
  8740. cur = build_attn(inp_attn,
  8741. model.layers[il].wo, NULL,
  8742. Qcur, Kcur, Vcur, nullptr, nullptr, nullptr, 1.0f, il);
  8743. }
  8744. if (il == n_layer - 1 && inp_out_ids) {
  8745. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  8746. inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
  8747. }
  8748. cur = build_norm(cur,
  8749. model.layers[il].attn_post_norm, NULL,
  8750. LLM_NORM_RMS, il);
  8751. cb(cur, "attn_post_norm", il);
  8752. ggml_tensor * sa_out = ggml_add(ctx0, cur, inpL);
  8753. cb(sa_out, "sa_out", il);
  8754. cur = build_norm(sa_out,
  8755. model.layers[il].ffn_norm, NULL,
  8756. LLM_NORM_RMS, il);
  8757. cb(cur, "ffn_norm", il);
  8758. // feed-forward network
  8759. {
  8760. cur = build_ffn(cur,
  8761. model.layers[il].ffn_up, NULL, NULL,
  8762. model.layers[il].ffn_gate, NULL, NULL,
  8763. model.layers[il].ffn_down, NULL, NULL,
  8764. NULL,
  8765. LLM_FFN_GELU, LLM_FFN_PAR, il);
  8766. cb(cur, "ffn_out", il);
  8767. }
  8768. cur = build_norm(cur,
  8769. model.layers[il].ffn_post_norm, NULL,
  8770. LLM_NORM_RMS, -1);
  8771. cb(cur, "ffn_post_norm", -1);
  8772. cur = ggml_add(ctx0, cur, sa_out);
  8773. cur = build_cvec(cur, il);
  8774. cb(cur, "l_out", il);
  8775. // input for next layer
  8776. inpL = cur;
  8777. }
  8778. cur = inpL;
  8779. cur = build_norm(cur,
  8780. model.output_norm, NULL,
  8781. LLM_NORM_RMS, -1);
  8782. cb(cur, "result_norm", -1);
  8783. res->t_embd = cur;
  8784. // lm_head
  8785. cur = build_lora_mm(model.output, cur);
  8786. // final logit soft-capping
  8787. cur = ggml_scale(ctx0, cur, 1.0f / hparams.f_final_logit_softcapping);
  8788. cur = ggml_tanh(ctx0, cur);
  8789. cur = ggml_scale(ctx0, cur, hparams.f_final_logit_softcapping);
  8790. cb(cur, "result_output", -1);
  8791. res->t_logits = cur;
  8792. ggml_build_forward_expand(gf, cur);
  8793. }
  8794. };
  8795. struct llm_build_gemma3_iswa : public llm_graph_context {
  8796. llm_build_gemma3_iswa(const llama_model & model, const llm_graph_params & params) : llm_graph_context(params) {
  8797. const int64_t n_embd_head = hparams.n_embd_head_k;
  8798. ggml_tensor * cur;
  8799. ggml_tensor * inpL;
  8800. inpL = build_inp_embd(model.tok_embd);
  8801. // important: do not normalize weights for raw embeddings input (i.e. encoded image emdeddings)
  8802. if (ubatch.token) {
  8803. inpL = ggml_scale(ctx0, inpL, sqrtf(n_embd));
  8804. cb(inpL, "inp_scaled", -1);
  8805. }
  8806. // inp_pos - contains the positions
  8807. ggml_tensor * inp_pos = build_inp_pos();
  8808. // TODO: is causal == true correct? might need some changes
  8809. auto * inp_attn = build_attn_inp_kv_iswa();
  8810. ggml_tensor * inp_out_ids = build_inp_out_ids();
  8811. for (int il = 0; il < n_layer; ++il) {
  8812. const float freq_base_l = model.get_rope_freq_base (cparams, il);
  8813. const float freq_scale_l = model.get_rope_freq_scale(cparams, il);
  8814. // norm
  8815. cur = build_norm(inpL, model.layers[il].attn_norm, NULL, LLM_NORM_RMS, il);
  8816. cb(cur, "attn_norm", il);
  8817. // self-attention
  8818. {
  8819. // compute Q and K and RoPE them
  8820. ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
  8821. cb(Qcur, "Qcur", il);
  8822. ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
  8823. cb(Kcur, "Kcur", il);
  8824. ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
  8825. cb(Vcur, "Vcur", il);
  8826. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  8827. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  8828. Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
  8829. Qcur = build_norm(Qcur, model.layers[il].attn_q_norm, NULL, LLM_NORM_RMS, il);
  8830. cb(Qcur, "Qcur_normed", il);
  8831. Qcur = ggml_rope_ext(
  8832. ctx0, Qcur, inp_pos, nullptr,
  8833. n_rot, rope_type, n_ctx_orig, freq_base_l, freq_scale_l,
  8834. ext_factor, attn_factor, beta_fast, beta_slow);
  8835. Kcur = build_norm(Kcur, model.layers[il].attn_k_norm, NULL, LLM_NORM_RMS, il);
  8836. cb(Kcur, "Kcur_normed", il);
  8837. Kcur = ggml_rope_ext(
  8838. ctx0, Kcur, inp_pos, nullptr,
  8839. n_rot, rope_type, n_ctx_orig, freq_base_l, freq_scale_l,
  8840. ext_factor, attn_factor, beta_fast, beta_slow);
  8841. cb(Qcur, "Qcur", il);
  8842. cb(Kcur, "Kcur", il);
  8843. cb(Vcur, "Vcur", il);
  8844. // ref: https://github.com/google/gemma_pytorch/blob/014acb7ac4563a5f77c76d7ff98f31b568c16508/gemma/model.py#L315
  8845. Qcur = ggml_scale(ctx0, Qcur, hparams.f_attention_scale);
  8846. cur = build_attn(inp_attn,
  8847. model.layers[il].wo, NULL,
  8848. Qcur, Kcur, Vcur, nullptr, nullptr, nullptr, 1.0f, il);
  8849. }
  8850. if (il == n_layer - 1 && inp_out_ids) {
  8851. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  8852. inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
  8853. }
  8854. cur = build_norm(cur,
  8855. model.layers[il].attn_post_norm, NULL,
  8856. LLM_NORM_RMS, il);
  8857. cb(cur, "attn_post_norm", il);
  8858. ggml_tensor * sa_out = ggml_add(ctx0, cur, inpL);
  8859. cb(sa_out, "sa_out", il);
  8860. cur = build_norm(sa_out,
  8861. model.layers[il].ffn_norm, NULL,
  8862. LLM_NORM_RMS, il);
  8863. cb(cur, "ffn_norm", il);
  8864. // feed-forward network
  8865. {
  8866. cur = build_ffn(cur,
  8867. model.layers[il].ffn_up, NULL, NULL,
  8868. model.layers[il].ffn_gate, NULL, NULL,
  8869. model.layers[il].ffn_down, NULL, NULL,
  8870. NULL,
  8871. LLM_FFN_GELU, LLM_FFN_PAR, il);
  8872. cb(cur, "ffn_out", il);
  8873. }
  8874. cur = build_norm(cur,
  8875. model.layers[il].ffn_post_norm, NULL,
  8876. LLM_NORM_RMS, -1);
  8877. cb(cur, "ffn_post_norm", -1);
  8878. cur = ggml_add(ctx0, cur, sa_out);
  8879. cur = build_cvec(cur, il);
  8880. cb(cur, "l_out", il);
  8881. // input for next layer
  8882. inpL = cur;
  8883. }
  8884. cur = inpL;
  8885. cur = build_norm(cur,
  8886. model.output_norm, NULL,
  8887. LLM_NORM_RMS, -1);
  8888. cb(cur, "result_norm", -1);
  8889. res->t_embd = cur;
  8890. // lm_head
  8891. cur = build_lora_mm(model.output, cur);
  8892. cb(cur, "result_output", -1);
  8893. res->t_logits = cur;
  8894. ggml_build_forward_expand(gf, cur);
  8895. }
  8896. };
  8897. struct llm_build_gemma3n_iswa : public llm_graph_context {
  8898. const llama_model & model;
  8899. const int64_t n_embd_head;
  8900. const int64_t n_embd_altup;
  8901. const int64_t n_altup;
  8902. const int i_altup_act;
  8903. const int n_layer_sparsity = 10; // number of layers using activation sparsity
  8904. const float f_sparsity_std_mul = 1.6448533535003662f; // std_multiplier = normal_dist.icdf(0.95)
  8905. llm_build_gemma3n_iswa(const llama_model & model, const llm_graph_params & params)
  8906. : llm_graph_context(params),
  8907. model(model),
  8908. n_embd_head(model.hparams.n_embd_head_k),
  8909. n_embd_altup(model.hparams.n_embd_altup),
  8910. n_altup(model.hparams.n_altup),
  8911. i_altup_act(model.hparams.i_altup_act) {
  8912. ggml_tensor * cur;
  8913. ggml_tensor * inpL;
  8914. inpL = build_inp_embd(model.tok_embd);
  8915. // important: do not normalize weights for raw embeddings input (i.e. encoded image emdeddings)
  8916. if (ubatch.token) {
  8917. inpL = ggml_scale(ctx0, inpL, sqrtf(n_embd));
  8918. cb(inpL, "inp_scaled", -1);
  8919. }
  8920. // inp_pos - contains the positions
  8921. ggml_tensor * inp_pos = build_inp_pos();
  8922. // TODO: is causal == true correct? might need some changes
  8923. auto * inp_attn = build_attn_inp_kv_iswa();
  8924. // inp_per_layer shape: [n_embd_altup, n_tokens, n_layer]
  8925. ggml_tensor * inp_per_layer = project_per_layer_inputs(inpL, get_per_layer_inputs());
  8926. // inpL now has only 1 altup, project it to the rest of the altups
  8927. // these "added" altups will be concat to the last dim of inpL
  8928. {
  8929. ggml_tensor * target_magnitude = calc_magnitude(inpL);
  8930. ggml_tensor * inp_repeated = ggml_repeat_4d(ctx0, inpL, n_embd, n_tokens, n_altup - 1, 1);
  8931. ggml_tensor * altup_added = ggml_mul_mat(ctx0, model.altup_proj, inp_repeated); // shape: [n_embd, n_tokens, n_altup - 1]
  8932. ggml_tensor * new_magnitude = calc_magnitude(altup_added);
  8933. altup_added = ggml_div(ctx0,
  8934. ggml_mul(ctx0, altup_added, target_magnitude),
  8935. new_magnitude);
  8936. inpL = ggml_concat(ctx0, inpL, altup_added, 2); // shape: [n_embd, n_tokens, n_altup]
  8937. cb(inpL, "inp_stacked", -1);
  8938. }
  8939. // inpL now has shape: [n_embd, n_tokens, n_altup]
  8940. // inp_per_layer now has shape: [n_embd_altup, n_tokens, n_layer]
  8941. for (int il = 0; il < n_layer; ++il) {
  8942. // this block is made to be closely resemble Gemma3p5DecoderLayer on python code
  8943. const float freq_base_l = model.get_rope_freq_base (cparams, il);
  8944. const float freq_scale_l = model.get_rope_freq_scale(cparams, il);
  8945. ggml_tensor * cur = inpL; // [n_embd, n_tokens, n_altup]
  8946. ggml_tensor * predictions = altup_predict(cur, il); // [n_embd, n_tokens, n_altup]
  8947. // predicted value will go through self-attention and laurel
  8948. ggml_tensor * active_prediction = view_2d_slice(predictions, i_altup_act); // [n_embd, n_tokens]
  8949. cur = active_prediction;
  8950. cb(cur, "active_prediction", il);
  8951. // norm
  8952. cur = build_norm(cur, model.layers[il].attn_norm, NULL, LLM_NORM_RMS, il);
  8953. cb(cur, "attn_norm", il);
  8954. // laurel
  8955. ggml_tensor * laurel_out = laurel(cur, il); // [n_embd, n_tokens]
  8956. // self-attention
  8957. if (hparams.has_kv(il)) {
  8958. // compute Q and K and RoPE them
  8959. ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
  8960. cb(Qcur, "Qcur", il);
  8961. ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
  8962. cb(Kcur, "Kcur", il);
  8963. ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
  8964. cb(Vcur, "Vcur", il);
  8965. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  8966. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  8967. Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
  8968. Qcur = build_norm(Qcur, model.layers[il].attn_q_norm, NULL, LLM_NORM_RMS, il);
  8969. Kcur = build_norm(Kcur, model.layers[il].attn_k_norm, NULL, LLM_NORM_RMS, il);
  8970. Vcur = ggml_rms_norm(ctx0, Vcur, hparams.f_norm_rms_eps);
  8971. cb(Qcur, "Qcur_normed", il);
  8972. cb(Kcur, "Kcur_normed", il);
  8973. cb(Vcur, "Vcur_normed", il);
  8974. Qcur = ggml_rope_ext(
  8975. ctx0, Qcur, inp_pos, nullptr,
  8976. n_rot, rope_type, n_ctx_orig, freq_base_l, freq_scale_l,
  8977. ext_factor, attn_factor, beta_fast, beta_slow);
  8978. Kcur = ggml_rope_ext(
  8979. ctx0, Kcur, inp_pos, nullptr,
  8980. n_rot, rope_type, n_ctx_orig, freq_base_l, freq_scale_l,
  8981. ext_factor, attn_factor, beta_fast, beta_slow);
  8982. cb(Qcur, "Qcur_pos", il);
  8983. cb(Kcur, "Kcur_pos", il);
  8984. cur = build_attn(inp_attn,
  8985. model.layers[il].wo, NULL,
  8986. Qcur, Kcur, Vcur, nullptr, nullptr, nullptr, hparams.f_attention_scale, il);
  8987. } else {
  8988. // reuse KV cache of earlier layers
  8989. ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
  8990. cb(Qcur, "Qcur", il);
  8991. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  8992. Qcur = build_norm(Qcur, model.layers[il].attn_q_norm, NULL, LLM_NORM_RMS, il);
  8993. cb(Qcur, "Qcur_normed", il);
  8994. Qcur = ggml_rope_ext(
  8995. ctx0, Qcur, inp_pos, nullptr,
  8996. n_rot, rope_type, n_ctx_orig, freq_base_l, freq_scale_l,
  8997. ext_factor, attn_factor, beta_fast, beta_slow);
  8998. cb(Qcur, "Qcur_pos", il);
  8999. cur = build_attn(inp_attn,
  9000. model.layers[il].wo, NULL,
  9001. Qcur, nullptr, nullptr, nullptr, nullptr, nullptr, hparams.f_attention_scale, il);
  9002. }
  9003. cur = build_norm(cur,
  9004. model.layers[il].attn_post_norm, NULL,
  9005. LLM_NORM_RMS, il);
  9006. cb(cur, "attn_post_norm", il);
  9007. cur = ggml_add(ctx0, cur, active_prediction); // [n_embd, n_tokens]
  9008. cb(cur, "attn_gated", il);
  9009. ggml_tensor * attn_laurel = ggml_scale(ctx0,
  9010. ggml_add(ctx0, cur, laurel_out),
  9011. 1.0f / sqrtf(2.0f)); // [n_embd, n_tokens]
  9012. cb(attn_laurel, "attn_laurel", il);
  9013. cur = build_norm(attn_laurel,
  9014. model.layers[il].ffn_norm, NULL,
  9015. LLM_NORM_RMS, il);
  9016. cb(cur, "ffn_norm", il);
  9017. // feed-forward network
  9018. {
  9019. ggml_tensor * up_proj = build_lora_mm(model.layers[il].ffn_up, cur);
  9020. ggml_tensor * gate_proj = build_lora_mm(model.layers[il].ffn_gate, cur);
  9021. if (il < n_layer_sparsity) {
  9022. // apply activation sparsity
  9023. gate_proj = gaussian_topk(gate_proj);
  9024. }
  9025. gate_proj = ggml_gelu(ctx0, gate_proj);
  9026. cur = ggml_mul(ctx0, up_proj, gate_proj);
  9027. cur = build_lora_mm(model.layers[il].ffn_down, cur);
  9028. cb(cur, "ffn_out", il);
  9029. }
  9030. cur = build_norm(cur,
  9031. model.layers[il].ffn_post_norm, NULL,
  9032. LLM_NORM_RMS, -1);
  9033. cb(cur, "ffn_post_norm", il);
  9034. ggml_tensor * attn_ffw_laurel_gated = ggml_add(ctx0, cur, attn_laurel); // [n_embd, n_tokens]
  9035. cb(attn_ffw_laurel_gated, "attn_ffw_laurel_gated", il);
  9036. ggml_tensor * corrected = altup_correct(predictions, attn_ffw_laurel_gated, il); // [n_embd, n_tokens, n_altup]
  9037. ggml_tensor * first_prediction; // [n_embd, n_tokens]
  9038. {
  9039. first_prediction = view_2d_slice(corrected, i_altup_act); // [n_embd, n_tokens]
  9040. first_prediction = ggml_mul(ctx0, first_prediction, model.layers[il].altup_correct_scale);
  9041. first_prediction = build_lora_mm(model.layers[il].per_layer_inp_gate, first_prediction);
  9042. first_prediction = ggml_gelu(ctx0, first_prediction); // [n_embd_altup, n_tokens]
  9043. cb(first_prediction, "first_prediction_gated", il);
  9044. ggml_tensor * inp_this_layer = view_2d_slice(inp_per_layer, il); // [n_embd_altup, n_tokens]
  9045. first_prediction = ggml_mul(ctx0, first_prediction, inp_this_layer); // [n_embd_altup, n_tokens]
  9046. cb(first_prediction, "first_prediction_scaled", il);
  9047. first_prediction = build_lora_mm(model.layers[il].per_layer_proj, first_prediction); // [n_embd, n_tokens]
  9048. first_prediction = build_norm(first_prediction,
  9049. model.layers[il].per_layer_post_norm, NULL,
  9050. LLM_NORM_RMS, il);
  9051. cb(first_prediction, "first_prediction_out", il);
  9052. }
  9053. // equivalent to python code: corrected_predictions[1:] += first_prediction
  9054. {
  9055. ggml_tensor * slice_first = view_2d_slice(corrected, 0);
  9056. ggml_tensor * slice_rest = ggml_view_3d(ctx0, corrected, n_embd, n_tokens, n_altup - 1,
  9057. ggml_row_size(corrected->type, n_embd),
  9058. ggml_row_size(corrected->type, n_embd*n_tokens),
  9059. n_embd*n_tokens*ggml_element_size(corrected));
  9060. ggml_tensor * tmp = ggml_add(ctx0, slice_rest, first_prediction); // [n_embd, n_tokens, n_altup - 1]
  9061. corrected = ggml_concat(ctx0, slice_first, tmp, 2); // [n_embd, n_tokens, n_altup]
  9062. }
  9063. cur = corrected; // [n_embd, n_tokens, n_altup]
  9064. cur = build_cvec(cur, il);
  9065. cb(cur, "l_out", il);
  9066. // input for next layer
  9067. inpL = cur;
  9068. }
  9069. cur = inpL; // [n_embd, n_tokens, n_altup]
  9070. // cur now has multiple altup(s), we want to merge them back to 1 altup
  9071. {
  9072. ggml_tensor * target_magnitude = calc_magnitude(view_2d_slice(cur, i_altup_act)); // [n_embd, n_tokens]
  9073. // do a view to skip the first slice (active altup)
  9074. ggml_tensor * alt_slice = ggml_view_3d(ctx0, cur, n_embd, n_tokens, n_altup - 1,
  9075. ggml_row_size(cur->type, n_embd),
  9076. ggml_row_size(cur->type, n_embd*n_tokens),
  9077. n_embd*n_tokens*ggml_element_size(cur));
  9078. ggml_tensor * altup_unembd = ggml_mul_mat(ctx0, model.altup_unembd_proj, alt_slice); // shape: [n_embd, n_tokens, n_altup - 1]
  9079. ggml_tensor * new_magnitude = calc_magnitude(altup_unembd);
  9080. altup_unembd = ggml_div(ctx0,
  9081. ggml_mul(ctx0, altup_unembd, target_magnitude),
  9082. new_magnitude);
  9083. cb(altup_unembd, "altup_unembd", -1);
  9084. // equivalent to torch.mean(hidden_states, dim=0)
  9085. cur = view_2d_slice(cur, 0); // [n_embd, n_tokens]
  9086. for (int i = 0; i < n_altup - 1; ++i) {
  9087. cur = ggml_add(ctx0, cur, view_2d_slice(altup_unembd, i));
  9088. }
  9089. cur = ggml_scale(ctx0, cur, 1.0f / float(n_altup)); // [n_embd, n_tokens]
  9090. cb(cur, "unembd_merged", -1);
  9091. }
  9092. // cur now has shape: [n_embd, n_tokens]
  9093. // TODO: move this to right after the last KV layer
  9094. {
  9095. // skip computing output for unused tokens
  9096. ggml_tensor * inp_out_ids = build_inp_out_ids();
  9097. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  9098. }
  9099. cur = build_norm(cur,
  9100. model.output_norm, NULL,
  9101. LLM_NORM_RMS, -1);
  9102. cb(cur, "result_norm", -1);
  9103. res->t_embd = cur;
  9104. cur = build_lora_mm(model.output, cur);
  9105. {
  9106. // final logit soft-capping
  9107. cur = ggml_scale(ctx0, cur, 1.0f / hparams.f_final_logit_softcapping);
  9108. cur = ggml_tanh(ctx0, cur);
  9109. cur = ggml_scale(ctx0, cur, hparams.f_final_logit_softcapping);
  9110. }
  9111. cb(cur, "result_output", -1);
  9112. res->t_logits = cur;
  9113. ggml_build_forward_expand(gf, cur);
  9114. }
  9115. ggml_tensor * calc_magnitude(ggml_tensor * x) {
  9116. return ggml_sqrt(ctx0, ggml_sum_rows(ctx0, ggml_sqr(ctx0, x)));
  9117. }
  9118. // get 2D slice view from a 3D tensor, the idx corresponds to the 3rd dim
  9119. ggml_tensor * view_2d_slice(ggml_tensor * x, int idx) {
  9120. GGML_ASSERT(idx < (int)x->ne[2]);
  9121. return ggml_view_2d(ctx0, x, x->ne[0], x->ne[1],
  9122. ggml_row_size(x->type, x->ne[0]),
  9123. idx * x->ne[0] * x->ne[1] * ggml_element_size(x));
  9124. }
  9125. // equivalent to get_per_layer_inputs() in python code
  9126. // output shape: [n_embd_altup, n_layer, n_tokens]
  9127. ggml_tensor * get_per_layer_inputs() {
  9128. auto inp = std::make_unique<llm_graph_input_embd>();
  9129. ggml_tensor * inp_per_layer;
  9130. if (ubatch.token) {
  9131. inp->tokens = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, ubatch.n_tokens);
  9132. ggml_set_input(inp->tokens);
  9133. res->t_tokens = inp->tokens;
  9134. inp_per_layer = ggml_get_rows(ctx0, model.tok_embd_per_layer, inp->tokens);
  9135. inp_per_layer = ggml_reshape_3d(ctx0, inp_per_layer, n_embd_altup, n_layer, n_tokens);
  9136. inp_per_layer = ggml_scale(ctx0, inp_per_layer, sqrtf((float)n_embd_altup));
  9137. cb(inp_per_layer, "inp_per_layer_selected", -1);
  9138. } else {
  9139. GGML_ABORT("TODO: support embd input");
  9140. }
  9141. res->add_input(std::move(inp));
  9142. return inp_per_layer;
  9143. }
  9144. // equivalent to project_per_layer_inputs() in python code
  9145. // this calculates the per-layer inputs, so the final tensor shape will have n_layer as the last dim
  9146. // output shape: [n_embd_altup, n_tokens, n_layer]
  9147. ggml_tensor * project_per_layer_inputs(ggml_tensor * inputs_embeds, ggml_tensor * inp_per_layer) {
  9148. const float per_layer_projection_scale = 1.0f / sqrtf((float)n_embd);
  9149. const float per_layer_input_scale = 1.0f / sqrtf(2.0f);
  9150. ggml_tensor * per_layer_proj = ggml_mul_mat(ctx0, model.per_layer_model_proj, inputs_embeds);
  9151. per_layer_proj = ggml_scale(ctx0, per_layer_proj, per_layer_projection_scale);
  9152. per_layer_proj = ggml_reshape_3d(ctx0, per_layer_proj, n_embd_altup, n_layer, n_tokens);
  9153. per_layer_proj = build_norm(per_layer_proj,
  9154. model.per_layer_proj_norm, NULL,
  9155. LLM_NORM_RMS, -1); // [n_embd_altup, n_layer, n_tokens]
  9156. cb(per_layer_proj, "per_layer_proj", -1);
  9157. inp_per_layer = ggml_add(ctx0, inp_per_layer, per_layer_proj);
  9158. inp_per_layer = ggml_scale(ctx0, inp_per_layer, per_layer_input_scale);
  9159. cb(inp_per_layer, "inp_per_layer", -1);
  9160. // permute to shape: [n_embd_altup, n_tokens, n_layer]
  9161. inp_per_layer = ggml_cont(ctx0, ggml_permute(ctx0, inp_per_layer, 0, 2, 1, 3));
  9162. return inp_per_layer;
  9163. }
  9164. // input cur shape: [n_altup, n_tokens]
  9165. // output shape: [n_altup, n_tokens]
  9166. ggml_tensor * laurel(ggml_tensor * cur, int il) {
  9167. ggml_tensor * tmp = cur;
  9168. tmp = build_lora_mm(model.layers[il].laurel_l, tmp);
  9169. tmp = build_lora_mm(model.layers[il].laurel_r, tmp);
  9170. tmp = build_norm(tmp, model.layers[il].laurel_post_norm, NULL, LLM_NORM_RMS, il);
  9171. tmp = ggml_add(ctx0, tmp, cur);
  9172. cb(tmp, "laurel_out", il);
  9173. return tmp;
  9174. }
  9175. // input x shape: [n_embd, n_tokens]
  9176. // output shape: [n_embd, n_tokens]
  9177. ggml_tensor * gaussian_topk(ggml_tensor * x) {
  9178. ggml_tensor * mean = ggml_mean(ctx0, x);
  9179. ggml_tensor * std = ggml_sqrt(ctx0, ggml_scale(ctx0,
  9180. ggml_sum_rows(ctx0, ggml_sqr(ctx0, ggml_sub(ctx0, x, mean))),
  9181. 1.0f / (float)(x->ne[0] - 1)
  9182. ));
  9183. ggml_tensor * cutoff_x = ggml_add(ctx0, mean, ggml_scale(ctx0, std, f_sparsity_std_mul));
  9184. return ggml_relu(ctx0, ggml_sub(ctx0, x, cutoff_x));
  9185. }
  9186. //
  9187. // altup functions
  9188. //
  9189. // equivalent to compute_router_modalities() in python code
  9190. // input x shape: [n_embd, n_tokens]
  9191. // output shape: [n_altup, n_tokens]
  9192. ggml_tensor * altup_compute_router_modalities(ggml_tensor * x, int il) {
  9193. ggml_tensor * router_inputs = build_norm(x,
  9194. model.layers[il].altup_router_norm, NULL,
  9195. LLM_NORM_RMS, il);
  9196. // router_input_scale
  9197. router_inputs = ggml_scale(ctx0, router_inputs, 1.0f / (float)n_embd);
  9198. ggml_tensor * output = ggml_mul_mat(ctx0, model.layers[il].altup_router, router_inputs);
  9199. return ggml_tanh(ctx0, output); // [n_altup, n_tokens]
  9200. }
  9201. // input cur shape: [n_embd, n_tokens, n_altup]
  9202. // output shape: [n_embd, n_tokens, n_altup]
  9203. ggml_tensor * altup_predict(ggml_tensor * cur, int il) {
  9204. ggml_tensor * activated = view_2d_slice(cur, i_altup_act); // [n_embd, n_tokens]
  9205. ggml_tensor * modalities = altup_compute_router_modalities(activated, il); // [n_altup, n_tokens]
  9206. cb(modalities, "modalities", il);
  9207. ggml_tensor * all_coefs = build_lora_mm(model.layers[il].altup_predict_coef, modalities);
  9208. cb(all_coefs, "all_coefs", il);
  9209. // first dim now having n_altup^2 elements, we reshape it to 2D (so we end up with 3D tensor)
  9210. all_coefs = ggml_reshape_3d(ctx0, all_coefs, n_altup, n_altup, n_tokens);
  9211. // permute to [n_altup, n_embd, n_tokens]
  9212. ggml_tensor * cur_permuted = ggml_cont(ctx0, ggml_permute(ctx0, cur, 1, 2, 0, 3));
  9213. ggml_tensor * predictions = ggml_mul_mat(ctx0, cur_permuted, all_coefs); // [n_altup, n_embd, n_tokens]
  9214. // final shape must be the same as cur: [n_embd, n_tokens, n_altup]
  9215. predictions = ggml_cont(ctx0, ggml_permute(ctx0, predictions, 0, 2, 1, 3));
  9216. predictions = ggml_add(ctx0, predictions, cur);
  9217. cb(predictions, "predictions", il);
  9218. return predictions;
  9219. }
  9220. // input predictions shape: [n_embd, n_tokens, n_altup]
  9221. // input activated shape: [n_embd, n_tokens]
  9222. // output shape: [n_embd, n_tokens, n_altup]
  9223. ggml_tensor * altup_correct(ggml_tensor * predictions, ggml_tensor * activated, int il) {
  9224. ggml_tensor * modalities = altup_compute_router_modalities(activated, il); // [n_altup, n_tokens]
  9225. cb(modalities, "modalities", il);
  9226. ggml_tensor * active_prediction = view_2d_slice(predictions, i_altup_act);
  9227. ggml_tensor * innovation = ggml_sub(ctx0, activated, active_prediction); // [n_embd, n_tokens]
  9228. cb(innovation, "innovation", il);
  9229. ggml_tensor * all_coefs = build_lora_mm(model.layers[il].altup_correct_coef, modalities); // [n_altup, n_tokens]
  9230. all_coefs = ggml_scale_bias(ctx0, all_coefs, 1.0f, 1.0f); // + 1.0
  9231. cb(all_coefs, "all_coefs", il);
  9232. all_coefs = ggml_transpose(ctx0, all_coefs); // [n_tokens, n_altup]
  9233. all_coefs = ggml_cont_3d(ctx0, all_coefs, 1, n_tokens, n_altup); // [1, n_tokens, n_altup]
  9234. innovation = ggml_repeat_4d(ctx0, innovation, n_embd, n_tokens, n_altup, 1);
  9235. ggml_tensor * corrected = ggml_mul(ctx0, innovation, all_coefs); // [n_embd, n_tokens, n_altup]
  9236. corrected = ggml_add(ctx0, corrected, predictions); // [n_embd, n_tokens, n_altup]
  9237. cb(corrected, "corrected", il);
  9238. return corrected;
  9239. }
  9240. };
  9241. struct llm_build_gemma_embedding : public llm_graph_context {
  9242. llm_build_gemma_embedding(const llama_model & model, const llm_graph_params & params) : llm_graph_context(params) {
  9243. const int64_t n_embd_head = hparams.n_embd_head_k;
  9244. ggml_tensor * cur;
  9245. ggml_tensor * inpL;
  9246. inpL = build_inp_embd(model.tok_embd);
  9247. // important: do not normalize weights for raw embeddings input (i.e. encoded image emdeddings)
  9248. if (ubatch.token) {
  9249. inpL = ggml_scale(ctx0, inpL, sqrtf(n_embd));
  9250. cb(inpL, "inp_scaled", -1);
  9251. }
  9252. // inp_pos - contains the positions
  9253. ggml_tensor * inp_pos = build_inp_pos();
  9254. auto * inp_attn = build_attn_inp_no_cache();
  9255. ggml_tensor * inp_out_ids = build_inp_out_ids();
  9256. for (int il = 0; il < n_layer; ++il) {
  9257. const float freq_base_l = model.get_rope_freq_base (cparams, il);
  9258. const float freq_scale_l = model.get_rope_freq_scale(cparams, il);
  9259. // norm
  9260. cur = build_norm(inpL, model.layers[il].attn_norm, NULL, LLM_NORM_RMS, il);
  9261. cb(cur, "attn_norm", il);
  9262. // self-attention
  9263. {
  9264. // compute Q and K and RoPE them
  9265. ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
  9266. cb(Qcur, "Qcur", il);
  9267. ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
  9268. cb(Kcur, "Kcur", il);
  9269. ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
  9270. cb(Vcur, "Vcur", il);
  9271. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  9272. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  9273. Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
  9274. Qcur = build_norm(Qcur, model.layers[il].attn_q_norm, NULL, LLM_NORM_RMS, il);
  9275. cb(Qcur, "Qcur_normed", il);
  9276. Qcur = ggml_rope_ext(
  9277. ctx0, Qcur, inp_pos, nullptr,
  9278. n_rot, rope_type, n_ctx_orig, freq_base_l, freq_scale_l,
  9279. ext_factor, attn_factor, beta_fast, beta_slow);
  9280. Kcur = build_norm(Kcur, model.layers[il].attn_k_norm, NULL, LLM_NORM_RMS, il);
  9281. cb(Kcur, "Kcur_normed", il);
  9282. Kcur = ggml_rope_ext(
  9283. ctx0, Kcur, inp_pos, nullptr,
  9284. n_rot, rope_type, n_ctx_orig, freq_base_l, freq_scale_l,
  9285. ext_factor, attn_factor, beta_fast, beta_slow);
  9286. cb(Qcur, "Qcur", il);
  9287. cb(Kcur, "Kcur", il);
  9288. cb(Vcur, "Vcur", il);
  9289. // ref: https://github.com/google/gemma_pytorch/blob/014acb7ac4563a5f77c76d7ff98f31b568c16508/gemma/model.py#L315
  9290. Qcur = ggml_scale(ctx0, Qcur, hparams.f_attention_scale);
  9291. cur = build_attn(inp_attn,
  9292. model.layers[il].wo, NULL,
  9293. Qcur, Kcur, Vcur, nullptr, nullptr, nullptr, 1.0f, il);
  9294. }
  9295. if (il == n_layer - 1 && inp_out_ids) {
  9296. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  9297. inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
  9298. }
  9299. cur = build_norm(cur,
  9300. model.layers[il].attn_post_norm, NULL,
  9301. LLM_NORM_RMS, il);
  9302. cb(cur, "attn_post_norm", il);
  9303. ggml_tensor * sa_out = ggml_add(ctx0, cur, inpL);
  9304. cb(sa_out, "sa_out", il);
  9305. cur = build_norm(sa_out,
  9306. model.layers[il].ffn_norm, NULL,
  9307. LLM_NORM_RMS, il);
  9308. cb(cur, "ffn_norm", il);
  9309. // feed-forward network
  9310. {
  9311. cur = build_ffn(cur,
  9312. model.layers[il].ffn_up, NULL, NULL,
  9313. model.layers[il].ffn_gate, NULL, NULL,
  9314. model.layers[il].ffn_down, NULL, NULL,
  9315. NULL,
  9316. LLM_FFN_GELU, LLM_FFN_PAR, il);
  9317. cb(cur, "ffn_out", il);
  9318. }
  9319. cur = build_norm(cur,
  9320. model.layers[il].ffn_post_norm, NULL,
  9321. LLM_NORM_RMS, -1);
  9322. cb(cur, "ffn_post_norm", -1);
  9323. cur = ggml_add(ctx0, cur, sa_out);
  9324. cur = build_cvec(cur, il);
  9325. cb(cur, "l_out", il);
  9326. // input for next layer
  9327. inpL = cur;
  9328. }
  9329. cur = inpL;
  9330. cur = build_norm(cur,
  9331. model.output_norm, NULL,
  9332. LLM_NORM_RMS, -1);
  9333. cb(cur, "result_norm", -1);
  9334. res->t_embd = cur;
  9335. ggml_build_forward_expand(gf, cur);
  9336. }
  9337. };
  9338. // TODO: move up next to build_starcoder
  9339. struct llm_build_starcoder2 : public llm_graph_context {
  9340. llm_build_starcoder2(const llama_model & model, const llm_graph_params & params) : llm_graph_context(params) {
  9341. const int64_t n_embd_head = hparams.n_embd_head_v;
  9342. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  9343. GGML_ASSERT(n_embd_head == hparams.n_rot);
  9344. ggml_tensor * cur;
  9345. ggml_tensor * inpL;
  9346. inpL = build_inp_embd(model.tok_embd);
  9347. // inp_pos - contains the positions
  9348. ggml_tensor * inp_pos = build_inp_pos();
  9349. auto * inp_attn = build_attn_inp_kv();
  9350. ggml_tensor * inp_out_ids = build_inp_out_ids();
  9351. for (int il = 0; il < n_layer; ++il) {
  9352. ggml_tensor * inpSA = inpL;
  9353. // norm
  9354. cur = build_norm(inpL,
  9355. model.layers[il].attn_norm, model.layers[il].attn_norm_b,
  9356. LLM_NORM, il);
  9357. cb(cur, "attn_norm", il);
  9358. // self-attention
  9359. {
  9360. // compute Q and K and RoPE them
  9361. ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
  9362. cb(Qcur, "Qcur", il);
  9363. if (model.layers[il].bq) {
  9364. Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
  9365. cb(Qcur, "Qcur", il);
  9366. }
  9367. ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
  9368. cb(Kcur, "Kcur", il);
  9369. if (model.layers[il].bk) {
  9370. Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
  9371. cb(Kcur, "Kcur", il);
  9372. }
  9373. ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
  9374. cb(Vcur, "Vcur", il);
  9375. if (model.layers[il].bv) {
  9376. Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
  9377. cb(Vcur, "Vcur", il);
  9378. }
  9379. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  9380. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  9381. Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
  9382. Qcur = ggml_rope_ext(
  9383. ctx0, Qcur, inp_pos, nullptr,
  9384. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  9385. ext_factor, attn_factor, beta_fast, beta_slow
  9386. );
  9387. Kcur = ggml_rope_ext(
  9388. ctx0, Kcur, inp_pos, nullptr,
  9389. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  9390. ext_factor, attn_factor, beta_fast, beta_slow
  9391. );
  9392. cb(Qcur, "Qcur", il);
  9393. cb(Kcur, "Kcur", il);
  9394. cb(Vcur, "Vcur", il);
  9395. cur = build_attn(inp_attn,
  9396. model.layers[il].wo, model.layers[il].bo,
  9397. Qcur, Kcur, Vcur, nullptr, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
  9398. }
  9399. if (il == n_layer - 1 && inp_out_ids) {
  9400. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  9401. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  9402. }
  9403. ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  9404. cb(ffn_inp, "ffn_inp", il);
  9405. // feed-forward network
  9406. cur = build_norm(ffn_inp,
  9407. model.layers[il].ffn_norm, model.layers[il].ffn_norm_b,
  9408. LLM_NORM, il);
  9409. cb(cur, "ffn_norm", il);
  9410. cur = build_ffn(cur,
  9411. model.layers[il].ffn_up, model.layers[il].ffn_up_b, NULL,
  9412. NULL, NULL, NULL,
  9413. model.layers[il].ffn_down, model.layers[il].ffn_down_b, NULL,
  9414. NULL,
  9415. LLM_FFN_GELU, LLM_FFN_SEQ, il);
  9416. cb(cur, "ffn_out", il);
  9417. cur = ggml_add(ctx0, cur, ffn_inp);
  9418. cur = build_cvec(cur, il);
  9419. cb(cur, "l_out", il);
  9420. // input for next layer
  9421. inpL = cur;
  9422. }
  9423. cur = inpL;
  9424. cur = build_norm(cur,
  9425. model.output_norm, model.output_norm_b,
  9426. LLM_NORM, -1);
  9427. cb(cur, "result_norm", -1);
  9428. res->t_embd = cur;
  9429. // lm_head
  9430. cur = build_lora_mm(model.output, cur);
  9431. cb(cur, "result_output", -1);
  9432. res->t_logits = cur;
  9433. ggml_build_forward_expand(gf, cur);
  9434. }
  9435. };
  9436. struct llm_graph_context_mamba : public llm_graph_context {
  9437. llm_graph_context_mamba(const llm_graph_params & params) : llm_graph_context(params) {}
  9438. ggml_tensor * build_mamba_layer(
  9439. llm_graph_input_rs * inp,
  9440. ggml_tensor * cur,
  9441. const llama_model & model,
  9442. const llama_ubatch & ubatch,
  9443. int il) {
  9444. const auto * mctx_cur = inp->mctx;
  9445. const auto kv_head = mctx_cur->get_head();
  9446. const auto & layer = model.layers[il];
  9447. const int64_t d_conv = hparams.ssm_d_conv;
  9448. const int64_t d_inner = hparams.ssm_d_inner;
  9449. const int64_t d_state = hparams.ssm_d_state;
  9450. const int64_t dt_rank = hparams.ssm_dt_rank;
  9451. const int64_t n_head = d_inner;
  9452. const int64_t head_dim = 1;
  9453. const int64_t n_seqs = ubatch.n_seqs;
  9454. // Some variants of Mamba arch (e.g. FalconMamba do apply layer norm on B and Dt layers)
  9455. const bool ssm_dt_b_c_rms = hparams.ssm_dt_b_c_rms;
  9456. const int64_t n_seq_tokens = ubatch.n_seq_tokens;
  9457. GGML_ASSERT(n_seqs != 0);
  9458. GGML_ASSERT(ubatch.equal_seqs());
  9459. GGML_ASSERT(ubatch.n_tokens == n_seq_tokens * n_seqs);
  9460. ggml_tensor * conv_states_all = mctx_cur->get_r_l(il);
  9461. ggml_tensor * ssm_states_all = mctx_cur->get_s_l(il);
  9462. ggml_tensor * conv = build_rs(inp, conv_states_all, hparams.n_embd_r(), n_seqs);
  9463. conv = ggml_reshape_3d(ctx0, conv, d_conv - 1, d_inner, n_seqs);
  9464. // {n_embd, n_tokens} => {n_embd, n_seq_tokens, n_seqs}
  9465. cur = ggml_reshape_3d(ctx0, cur, cur->ne[0], n_seq_tokens, n_seqs);
  9466. // {n_embd, 2*d_inner} @ {n_embd, n_seq_tokens, n_seqs} => {2*d_inner, n_seq_tokens, n_seqs}
  9467. ggml_tensor * xz = build_lora_mm(layer.ssm_in, cur);
  9468. // split the above in two
  9469. // => {d_inner, n_seq_tokens, n_seqs}
  9470. ggml_tensor * x = ggml_view_3d(ctx0, xz, d_inner, xz->ne[1], xz->ne[2], xz->nb[1], xz->nb[2], 0);
  9471. ggml_tensor * z = ggml_view_3d(ctx0, xz, d_inner, xz->ne[1], xz->ne[2], xz->nb[1], xz->nb[2], d_inner*ggml_element_size(xz));
  9472. // conv
  9473. {
  9474. // => {d_conv - 1 + n_seq_tokens, d_inner, n_seqs}
  9475. ggml_tensor * conv_x = ggml_concat(ctx0, conv, ggml_transpose(ctx0, x), 0);
  9476. // copy last (d_conv - 1) columns back into the state cache
  9477. ggml_tensor * last_conv = ggml_view_3d(ctx0, conv_x, d_conv - 1, d_inner, n_seqs, conv_x->nb[1], conv_x->nb[2], n_seq_tokens*(conv_x->nb[0]));
  9478. ggml_build_forward_expand(gf,
  9479. ggml_cpy(ctx0, last_conv,
  9480. ggml_view_1d(ctx0, conv_states_all,
  9481. (d_conv - 1)*(d_inner)*(n_seqs),
  9482. kv_head*(d_conv - 1)*(d_inner)*ggml_element_size(conv_states_all))));
  9483. // 1D convolution
  9484. // The equivalent is to make a self-overlapping view of conv_x
  9485. // over d_conv columns at each stride in the 3rd dimension,
  9486. // then element-wise multiply that with the conv1d weight,
  9487. // then sum the elements of each row,
  9488. // (the last two steps are a dot product over rows (also doable with mul_mat))
  9489. // then permute away the ne[0] dimension,
  9490. // and then you're left with the resulting x tensor.
  9491. // For simultaneous sequences, all sequences need to have the same length.
  9492. x = ggml_ssm_conv(ctx0, conv_x, layer.ssm_conv1d);
  9493. // bias
  9494. x = ggml_add(ctx0, x, layer.ssm_conv1d_b);
  9495. x = ggml_silu(ctx0, x);
  9496. }
  9497. // ssm
  9498. {
  9499. // {d_inner, dt_rank + 2*d_state} @ {d_inner, n_seq_tokens, n_seqs} => {dt_rank + 2*d_state, n_seq_tokens, n_seqs}
  9500. ggml_tensor * x_db = build_lora_mm(layer.ssm_x, x);
  9501. // split
  9502. ggml_tensor * dt = ggml_view_3d(ctx0, x_db, dt_rank, n_seq_tokens, n_seqs, x_db->nb[1], x_db->nb[2], 0);
  9503. ggml_tensor * B = ggml_view_4d(ctx0, x_db, d_state, /* n_group */ 1, n_seq_tokens, n_seqs, d_state*x_db->nb[0], x_db->nb[1], x_db->nb[2], ggml_element_size(x_db)*dt_rank);
  9504. ggml_tensor * C = ggml_view_4d(ctx0, x_db, d_state, /* n_group */ 1, n_seq_tokens, n_seqs, d_state*x_db->nb[0], x_db->nb[1], x_db->nb[2], ggml_element_size(x_db)*(dt_rank+d_state));
  9505. // Some Mamba variants (e.g. FalconMamba, Jamba) apply RMS norm in B, C & Dt layers
  9506. if (ssm_dt_b_c_rms || (layer.ssm_dt_norm && layer.ssm_b_norm && layer.ssm_c_norm)) {
  9507. dt = build_norm(dt, layer.ssm_dt_norm, NULL, LLM_NORM_RMS, il);
  9508. B = build_norm(B, layer.ssm_b_norm, NULL, LLM_NORM_RMS, il);
  9509. C = build_norm(C, layer.ssm_c_norm, NULL, LLM_NORM_RMS, il);
  9510. }
  9511. // {dt_rank, d_inner} @ {dt_rank, n_seq_tokens, n_seqs} => {d_inner, n_seq_tokens, n_seqs}
  9512. dt = build_lora_mm(layer.ssm_dt, dt);
  9513. dt = ggml_add(ctx0, dt, layer.ssm_dt_b);
  9514. cur = x;
  9515. x = ggml_reshape_4d(ctx0, x, head_dim, n_head, n_seq_tokens, n_seqs);
  9516. ggml_tensor * A = layer.ssm_a;
  9517. // use the states and the indices provided by build_recurrent_state
  9518. // (this is necessary in order to properly use the states before they are overwritten,
  9519. // while avoiding to make unnecessary copies of the states)
  9520. auto get_ssm_rows = [&](ggml_context * ctx, ggml_tensor * states, ggml_tensor * ids) {
  9521. ggml_tensor * ssm = ggml_reshape_4d(ctx, states, d_state, head_dim, n_head, mctx_cur->get_size());
  9522. // Custom operator to optimize the parallel associative scan
  9523. // as described in the Annex D of the Mamba paper.
  9524. // => {d_inner, n_seq_tokens, n_seqs} and {d_state, d_inner, n_seqs}
  9525. return ggml_ssm_scan(ctx, ssm, x, dt, A, B, C, ids);
  9526. };
  9527. ggml_tensor * y_ssm = build_rs(inp, ssm_states_all, hparams.n_embd_s(), ubatch.n_seqs, get_ssm_rows);
  9528. // store last states
  9529. ggml_build_forward_expand(gf,
  9530. ggml_cpy(ctx0,
  9531. ggml_view_1d(ctx0, y_ssm, d_state*d_inner*n_seqs, x->nb[3]*x->ne[3]),
  9532. ggml_view_1d(ctx0, ssm_states_all, d_state*d_inner*n_seqs, kv_head*d_state*d_inner*ggml_element_size(ssm_states_all))));
  9533. ggml_tensor * y = ggml_view_3d(ctx0, y_ssm, d_inner, n_seq_tokens, n_seqs, x->nb[2], x->nb[3], 0);
  9534. // TODO: skip computing output earlier for unused tokens
  9535. y = ggml_add(ctx0, y, ggml_mul(ctx0, cur, layer.ssm_d));
  9536. y = ggml_swiglu_split(ctx0, ggml_cont(ctx0, z), y);
  9537. // {d_inner, n_embd} @ {d_inner, n_seq_tokens, n_seqs} => {n_embd, n_seq_tokens, n_seqs}
  9538. cur = build_lora_mm(layer.ssm_out, y);
  9539. }
  9540. // {n_embd, n_seq_tokens, n_seqs} => {n_embd, n_tokens}
  9541. cur = ggml_reshape_2d(ctx0, cur, cur->ne[0], n_seq_tokens * n_seqs);
  9542. return cur;
  9543. }
  9544. ggml_tensor * build_mamba2_layer(
  9545. llm_graph_input_rs * inp,
  9546. ggml_tensor * cur,
  9547. const llama_model & model,
  9548. const llama_ubatch & ubatch,
  9549. int il) const {
  9550. const auto * mctx_cur = inp->mctx;
  9551. const auto kv_head = mctx_cur->get_head();
  9552. const int64_t d_conv = hparams.ssm_d_conv;
  9553. const int64_t d_inner = hparams.ssm_d_inner;
  9554. const int64_t d_state = hparams.ssm_d_state;
  9555. const int64_t n_head = hparams.ssm_dt_rank;
  9556. const int64_t head_dim = d_inner / n_head;
  9557. const int64_t n_group = hparams.ssm_n_group;
  9558. const int64_t n_seqs = ubatch.n_seqs;
  9559. const int64_t n_seq_tokens = ubatch.n_seq_tokens;
  9560. GGML_ASSERT(n_seqs != 0);
  9561. GGML_ASSERT(ubatch.equal_seqs());
  9562. GGML_ASSERT(ubatch.n_tokens == n_seq_tokens * n_seqs);
  9563. ggml_tensor * conv_states_all = mctx_cur->get_r_l(il);
  9564. ggml_tensor * ssm_states_all = mctx_cur->get_s_l(il);
  9565. ggml_tensor * conv = build_rs(inp, conv_states_all, hparams.n_embd_r(), n_seqs);
  9566. conv = ggml_reshape_3d(ctx0, conv, d_conv - 1, d_inner + 2*n_group*d_state, n_seqs);
  9567. // {n_embd, n_tokens} => {n_embd, n_seq_tokens, n_seqs}
  9568. cur = ggml_reshape_3d(ctx0, cur, cur->ne[0], n_seq_tokens, n_seqs);
  9569. // d_in_proj = 2 * self.d_inner + 2 * self.ngroups * self.d_state + self.nheads
  9570. // {n_embd, d_in_proj} @ {n_embd, n_seq_tokens, n_seqs} => {d_in_proj, n_seq_tokens, n_seqs}
  9571. ggml_tensor * zxBCdt = build_lora_mm(model.layers[il].ssm_in, cur);
  9572. // split the above in three
  9573. ggml_tensor * z = ggml_view_4d(ctx0, zxBCdt, head_dim, n_head, n_seq_tokens, n_seqs, head_dim*zxBCdt->nb[0], zxBCdt->nb[1], zxBCdt->nb[2], 0);
  9574. ggml_tensor * xBC = ggml_view_3d(ctx0, zxBCdt, d_inner + 2*n_group*d_state, n_seq_tokens, n_seqs, zxBCdt->nb[1], zxBCdt->nb[2], d_inner*ggml_element_size(zxBCdt));
  9575. ggml_tensor * dt = ggml_view_3d(ctx0, zxBCdt, n_head, n_seq_tokens, n_seqs, zxBCdt->nb[1], zxBCdt->nb[2], (2*d_inner + 2*n_group*d_state)*ggml_element_size(zxBCdt));
  9576. // conv
  9577. {
  9578. // => {d_conv - 1 + n_seq_tokens, d_inner + 2*n_group*d_state, n_seqs}
  9579. ggml_tensor * conv_x = ggml_concat(ctx0, conv, ggml_transpose(ctx0, xBC), 0);
  9580. // copy last (d_conv - 1) columns back into the state cache
  9581. ggml_tensor * last_conv = ggml_view_3d(ctx0, conv_x, d_conv - 1, d_inner + 2*n_group*d_state, n_seqs, conv_x->nb[1], conv_x->nb[2], n_seq_tokens*(conv_x->nb[0]));
  9582. ggml_build_forward_expand(gf,
  9583. ggml_cpy(ctx0, last_conv,
  9584. ggml_view_1d(ctx0, conv_states_all,
  9585. (d_conv - 1)*(d_inner + 2*n_group*d_state)*(n_seqs),
  9586. kv_head*(d_conv - 1)*(d_inner + 2*n_group*d_state)*ggml_element_size(conv_states_all))));
  9587. // 1D convolution
  9588. // The equivalent is to make a self-overlapping view of conv_x
  9589. // over d_conv columns at each stride in the 3rd dimension,
  9590. // then element-wise multiply that with the conv1d weight,
  9591. // then sum the elements of each row,
  9592. // (the last two steps are a dot product over rows (also doable with mul_mat))
  9593. // then permute away the ne[0] dimension,
  9594. // and then you're left with the resulting x tensor.
  9595. // For simultaneous sequences, all sequences need to have the same length.
  9596. xBC = ggml_ssm_conv(ctx0, conv_x, model.layers[il].ssm_conv1d);
  9597. // bias
  9598. xBC = ggml_add(ctx0, xBC, model.layers[il].ssm_conv1d_b);
  9599. xBC = ggml_silu(ctx0, xBC);
  9600. }
  9601. // ssm
  9602. {
  9603. // These correspond to V K Q in SSM/attention duality
  9604. ggml_tensor * x = ggml_view_4d(ctx0, xBC, head_dim, n_head, n_seq_tokens, n_seqs, head_dim*xBC->nb[0], xBC->nb[1], xBC->nb[2], 0);
  9605. ggml_tensor * B = ggml_view_4d(ctx0, xBC, d_state, n_group, n_seq_tokens, n_seqs, d_state*xBC->nb[0], xBC->nb[1], xBC->nb[2], d_inner*ggml_element_size(xBC));
  9606. ggml_tensor * C = ggml_view_4d(ctx0, xBC, d_state, n_group, n_seq_tokens, n_seqs, d_state*xBC->nb[0], xBC->nb[1], xBC->nb[2], (d_inner + n_group*d_state)*ggml_element_size(xBC));
  9607. // {n_head, n_seq_tokens, n_seqs}
  9608. dt = ggml_add(ctx0, ggml_cont(ctx0, dt), model.layers[il].ssm_dt_b);
  9609. ggml_tensor * A = model.layers[il].ssm_a;
  9610. // use the states and the indices provided by build_recurrent_state
  9611. // (this is necessary in order to properly use the states before they are overwritten,
  9612. // while avoiding to make unnecessary copies of the states)
  9613. auto get_ssm_rows = [&](ggml_context * ctx, ggml_tensor * states, ggml_tensor * ids) {
  9614. ggml_tensor * ssm = ggml_reshape_4d(ctx, states, d_state, head_dim, n_head, mctx_cur->get_size());
  9615. // TODO: use semistructured matrices to implement state-space duality
  9616. // => {d_inner, n_seq_tokens, n_seqs} and {d_state, d_inner, n_seqs}
  9617. return ggml_ssm_scan(ctx, ssm, x, dt, A, B, C, ids);
  9618. };
  9619. ggml_tensor * y_ssm = build_rs(inp, ssm_states_all, hparams.n_embd_s(), ubatch.n_seqs, get_ssm_rows);
  9620. // store last states
  9621. ggml_build_forward_expand(gf,
  9622. ggml_cpy(ctx0,
  9623. ggml_view_1d(ctx0, y_ssm, d_state*d_inner*n_seqs, ggml_nelements(x)*x->nb[0]),
  9624. ggml_view_1d(ctx0, ssm_states_all, d_state*d_inner*n_seqs, kv_head*d_state*d_inner*ggml_element_size(ssm_states_all))));
  9625. ggml_tensor * y = ggml_view_4d(ctx0, y_ssm, head_dim, n_head, n_seq_tokens, n_seqs, x->nb[1], n_head*x->nb[1], n_seq_tokens*n_head*x->nb[1], 0);
  9626. // TODO: skip computing output earlier for unused tokens
  9627. y = ggml_add(ctx0, y, ggml_mul(ctx0, x, model.layers[il].ssm_d));
  9628. cb(y, "mamba2_y_add_d", il);
  9629. y = ggml_swiglu_split(ctx0, ggml_cont(ctx0, z), y);
  9630. // grouped RMS norm
  9631. if (model.layers[il].ssm_norm) {
  9632. y = ggml_reshape_4d(ctx0, y, d_inner / n_group, n_group, n_seq_tokens, n_seqs);
  9633. y = build_norm(y, model.layers[il].ssm_norm, NULL, LLM_NORM_RMS, il);
  9634. }
  9635. y = ggml_reshape_3d(ctx0, y, d_inner, n_seq_tokens, n_seqs);
  9636. // {d_inner, n_embd} @ {d_inner, n_seq_tokens, n_seqs} => {n_embd, n_seq_tokens, n_seqs}
  9637. cur = build_lora_mm(model.layers[il].ssm_out, y);
  9638. }
  9639. // {n_embd, n_seq_tokens, n_seqs} => {n_embd, n_tokens}
  9640. cur = ggml_reshape_2d(ctx0, cur, cur->ne[0], n_seq_tokens * n_seqs);
  9641. cb(cur, "mamba_out", il);
  9642. return cur;
  9643. }
  9644. };
  9645. struct llm_build_mamba : public llm_graph_context_mamba {
  9646. llm_build_mamba(const llama_model & model, const llm_graph_params & params) : llm_graph_context_mamba(params) {
  9647. ggml_tensor * cur;
  9648. ggml_tensor * inpL;
  9649. // {n_embd, n_tokens}
  9650. inpL = build_inp_embd(model.tok_embd);
  9651. auto * rs_inp = build_rs_inp();
  9652. ggml_tensor * inp_out_ids = build_inp_out_ids();
  9653. for (int il = 0; il < n_layer; ++il) {
  9654. // norm
  9655. cur = build_norm(inpL,
  9656. model.layers[il].attn_norm, NULL,
  9657. LLM_NORM_RMS, il);
  9658. cb(cur, "attn_norm", il);
  9659. if (model.arch == LLM_ARCH_MAMBA2) {
  9660. cur = build_mamba2_layer(rs_inp, cur, model, ubatch, il);
  9661. } else {
  9662. cur = build_mamba_layer(rs_inp, cur, model, ubatch, il);
  9663. }
  9664. if (il == n_layer - 1 && inp_out_ids) {
  9665. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  9666. inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
  9667. }
  9668. // residual
  9669. cur = ggml_add(ctx0, cur, inpL);
  9670. cur = build_cvec(cur, il);
  9671. cb(cur, "l_out", il);
  9672. // input for next layer
  9673. inpL = cur;
  9674. }
  9675. // final rmsnorm
  9676. cur = build_norm(inpL, model.output_norm, NULL, LLM_NORM_RMS, -1);
  9677. cb(cur, "result_norm", -1);
  9678. res->t_embd = cur;
  9679. // lm_head
  9680. cur = build_lora_mm(model.output, cur);
  9681. cb(cur, "result_output", -1);
  9682. res->t_logits = cur;
  9683. ggml_build_forward_expand(gf, cur);
  9684. }
  9685. };
  9686. struct llm_build_jamba : public llm_graph_context_mamba {
  9687. llm_build_jamba(const llama_model & model, const llm_graph_params & params) : llm_graph_context_mamba(params) {
  9688. const int64_t n_embd_head = hparams.n_embd_head_v;
  9689. ggml_tensor * cur;
  9690. ggml_tensor * inpL;
  9691. // {n_embd, n_tokens}
  9692. inpL = build_inp_embd(model.tok_embd);
  9693. auto * inp_hybrid = build_inp_mem_hybrid();
  9694. ggml_tensor * inp_out_ids = build_inp_out_ids();
  9695. for (int il = 0; il < n_layer; ++il) {
  9696. const int64_t n_head_kv = hparams.n_head_kv(il);
  9697. cur = build_norm(inpL, model.layers[il].attn_norm, NULL, LLM_NORM_RMS, il);
  9698. cb(cur, "attn_norm", il);
  9699. if (n_head_kv == 0) {
  9700. cur = build_mamba_layer(inp_hybrid->get_recr(), cur, model, ubatch, il);
  9701. } else {
  9702. // Attention
  9703. struct ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
  9704. struct ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
  9705. struct ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
  9706. cb(Qcur, "Qcur", il);
  9707. cb(Kcur, "Kcur", il);
  9708. cb(Vcur, "Vcur", il);
  9709. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  9710. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  9711. Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
  9712. cb(Qcur, "Qcur", il);
  9713. cb(Kcur, "Kcur", il);
  9714. cb(Vcur, "Vcur", il);
  9715. // No RoPE :)
  9716. cur = build_attn(inp_hybrid->get_attn(),
  9717. model.layers[il].wo, NULL,
  9718. Qcur, Kcur, Vcur, NULL, NULL, NULL, 1.0f/sqrtf(float(n_embd_head)), il);
  9719. }
  9720. if (il == n_layer - 1 && inp_out_ids) {
  9721. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  9722. inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
  9723. }
  9724. // residual
  9725. struct ggml_tensor * ffn_inp = ggml_add(ctx0, inpL, cur);
  9726. cb(cur, "ffn_inp", il);
  9727. cur = build_norm(ffn_inp, model.layers[il].ffn_norm, NULL, LLM_NORM_RMS, il);
  9728. cb(cur, "ffn_norm", il);
  9729. // feed-forward network
  9730. if (model.layers[il].ffn_gate_inp == nullptr) {
  9731. // FFN
  9732. cur = build_ffn(cur,
  9733. model.layers[il].ffn_up, NULL, NULL,
  9734. model.layers[il].ffn_gate, NULL, NULL,
  9735. model.layers[il].ffn_down, NULL, NULL,
  9736. NULL,
  9737. LLM_FFN_SILU, LLM_FFN_PAR, il);
  9738. cb(cur, "ffn_out", il);
  9739. } else {
  9740. // MoE branch
  9741. cur = build_moe_ffn(cur,
  9742. model.layers[il].ffn_gate_inp,
  9743. model.layers[il].ffn_up_exps,
  9744. model.layers[il].ffn_gate_exps,
  9745. model.layers[il].ffn_down_exps,
  9746. nullptr,
  9747. n_expert, n_expert_used,
  9748. LLM_FFN_SILU, false,
  9749. false, 0.0,
  9750. LLAMA_EXPERT_GATING_FUNC_TYPE_SOFTMAX,
  9751. il);
  9752. cb(cur, "ffn_moe_out", il);
  9753. }
  9754. // residual
  9755. cur = ggml_add(ctx0, ffn_inp, cur);
  9756. cur = build_cvec(cur, il);
  9757. cb(cur, "l_out", il);
  9758. // input for next layer
  9759. inpL = cur;
  9760. }
  9761. // final rmsnorm
  9762. cur = build_norm(inpL, model.output_norm, NULL, LLM_NORM_RMS, -1);
  9763. cb(cur, "result_norm", -1);
  9764. res->t_embd = cur;
  9765. // lm_head
  9766. cur = build_lora_mm(model.output, cur);
  9767. cb(cur, "result_output", -1);
  9768. res->t_logits = cur;
  9769. ggml_build_forward_expand(gf, cur);
  9770. }
  9771. };
  9772. struct llm_build_command_r : public llm_graph_context {
  9773. llm_build_command_r(const llama_model & model, const llm_graph_params & params) : llm_graph_context(params) {
  9774. const int64_t n_embd_head = hparams.n_embd_head_v;
  9775. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  9776. const float f_logit_scale = hparams.f_logit_scale;
  9777. ggml_tensor * cur;
  9778. ggml_tensor * inpL;
  9779. inpL = build_inp_embd(model.tok_embd);
  9780. // inp_pos - contains the positions
  9781. ggml_tensor * inp_pos = build_inp_pos();
  9782. auto * inp_attn = build_attn_inp_kv();
  9783. ggml_tensor * inp_out_ids = build_inp_out_ids();
  9784. for (int il = 0; il < n_layer; ++il) {
  9785. // norm
  9786. cur = build_norm(inpL,
  9787. model.layers[il].attn_norm, NULL,
  9788. LLM_NORM, il);
  9789. cb(cur, "attn_norm", il);
  9790. ggml_tensor * ffn_inp = cur;
  9791. // self-attention
  9792. {
  9793. // compute Q and K and RoPE them
  9794. ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
  9795. cb(Qcur, "Qcur", il);
  9796. if (model.layers[il].bq) {
  9797. Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
  9798. cb(Qcur, "Qcur", il);
  9799. }
  9800. ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
  9801. cb(Kcur, "Kcur", il);
  9802. if (model.layers[il].bk) {
  9803. Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
  9804. cb(Kcur, "Kcur", il);
  9805. }
  9806. ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
  9807. cb(Vcur, "Vcur", il);
  9808. if (model.layers[il].bv) {
  9809. Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
  9810. cb(Vcur, "Vcur", il);
  9811. }
  9812. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  9813. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  9814. Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
  9815. if (model.layers[il].attn_q_norm) {
  9816. Qcur = build_norm(Qcur,
  9817. model.layers[il].attn_q_norm,
  9818. NULL,
  9819. LLM_NORM, il);
  9820. cb(Qcur, "Qcur", il);
  9821. }
  9822. Qcur = ggml_rope_ext(
  9823. ctx0, Qcur, inp_pos, nullptr,
  9824. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  9825. ext_factor, attn_factor, beta_fast, beta_slow
  9826. );
  9827. if (model.layers[il].attn_k_norm) {
  9828. Kcur = build_norm(Kcur,
  9829. model.layers[il].attn_k_norm,
  9830. NULL,
  9831. LLM_NORM, il);
  9832. cb(Kcur, "Kcur", il);
  9833. }
  9834. Kcur = ggml_rope_ext(
  9835. ctx0, Kcur, inp_pos, nullptr,
  9836. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  9837. ext_factor, attn_factor, beta_fast, beta_slow
  9838. );
  9839. cb(Qcur, "Qcur", il);
  9840. cb(Kcur, "Kcur", il);
  9841. cb(Vcur, "Vcur", il);
  9842. cur = build_attn(inp_attn,
  9843. model.layers[il].wo, model.layers[il].bo,
  9844. Qcur, Kcur, Vcur, nullptr, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
  9845. }
  9846. if (il == n_layer - 1 && inp_out_ids) {
  9847. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  9848. inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
  9849. ffn_inp = ggml_get_rows(ctx0, ffn_inp, inp_out_ids);
  9850. }
  9851. ggml_tensor * attn_out = cur;
  9852. // feed-forward network
  9853. {
  9854. cur = build_ffn(ffn_inp,
  9855. model.layers[il].ffn_up, NULL, NULL,
  9856. model.layers[il].ffn_gate, NULL, NULL,
  9857. model.layers[il].ffn_down, NULL, NULL,
  9858. NULL,
  9859. LLM_FFN_SILU, LLM_FFN_PAR, il);
  9860. cb(cur, "ffn_out", il);
  9861. }
  9862. // add together residual + FFN + self-attention
  9863. cur = ggml_add(ctx0, cur, inpL);
  9864. cur = ggml_add(ctx0, cur, attn_out);
  9865. cur = build_cvec(cur, il);
  9866. cb(cur, "l_out", il);
  9867. // input for next layer
  9868. inpL = cur;
  9869. }
  9870. cur = inpL;
  9871. cur = build_norm(cur,
  9872. model.output_norm, NULL,
  9873. LLM_NORM, -1);
  9874. cb(cur, "result_norm", -1);
  9875. res->t_embd = cur;
  9876. // lm_head
  9877. cur = build_lora_mm(model.output, cur);
  9878. if (f_logit_scale) {
  9879. cur = ggml_scale(ctx0, cur, f_logit_scale);
  9880. }
  9881. cb(cur, "result_output", -1);
  9882. res->t_logits = cur;
  9883. ggml_build_forward_expand(gf, cur);
  9884. }
  9885. };
  9886. struct llm_build_cohere2_iswa : public llm_graph_context {
  9887. llm_build_cohere2_iswa(const llama_model & model, const llm_graph_params & params) : llm_graph_context(params) {
  9888. const int64_t n_embd_head = hparams.n_embd_head_v;
  9889. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  9890. const float f_logit_scale = hparams.f_logit_scale;
  9891. ggml_tensor * cur;
  9892. ggml_tensor * inpL;
  9893. inpL = build_inp_embd(model.tok_embd);
  9894. // inp_pos - contains the positions
  9895. ggml_tensor * inp_pos = build_inp_pos();
  9896. auto * inp_attn = build_attn_inp_kv_iswa();
  9897. ggml_tensor * inp_out_ids = build_inp_out_ids();
  9898. for (int il = 0; il < n_layer; ++il) {
  9899. const bool is_swa = hparams.is_swa(il);
  9900. // norm
  9901. cur = build_norm(inpL, model.layers[il].attn_norm, NULL, LLM_NORM, il);
  9902. cb(cur, "attn_norm", il);
  9903. ggml_tensor * ffn_inp = cur;
  9904. // self-attention
  9905. {
  9906. // rope freq factors for 128k context
  9907. ggml_tensor * rope_factors = model.get_rope_factors(cparams, il);
  9908. // compute Q and K and RoPE them
  9909. ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
  9910. cb(Qcur, "Qcur", il);
  9911. if (model.layers[il].bq) {
  9912. Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
  9913. cb(Qcur, "Qcur", il);
  9914. }
  9915. ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
  9916. cb(Kcur, "Kcur", il);
  9917. if (model.layers[il].bk) {
  9918. Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
  9919. cb(Kcur, "Kcur", il);
  9920. }
  9921. ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
  9922. cb(Vcur, "Vcur", il);
  9923. if (model.layers[il].bv) {
  9924. Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
  9925. cb(Vcur, "Vcur", il);
  9926. }
  9927. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  9928. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  9929. Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
  9930. if (is_swa) {
  9931. Qcur = ggml_rope_ext(
  9932. ctx0, Qcur, inp_pos, rope_factors,
  9933. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  9934. ext_factor, attn_factor, beta_fast, beta_slow
  9935. );
  9936. Kcur = ggml_rope_ext(
  9937. ctx0, Kcur, inp_pos, rope_factors,
  9938. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  9939. ext_factor, attn_factor, beta_fast, beta_slow
  9940. );
  9941. }
  9942. cb(Qcur, "Qcur", il);
  9943. cb(Kcur, "Kcur", il);
  9944. cb(Vcur, "Vcur", il);
  9945. cur = build_attn(inp_attn,
  9946. model.layers[il].wo, model.layers[il].bo,
  9947. Qcur, Kcur, Vcur, nullptr, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
  9948. }
  9949. if (il == n_layer - 1 && inp_out_ids) {
  9950. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  9951. inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
  9952. ffn_inp = ggml_get_rows(ctx0, ffn_inp, inp_out_ids);
  9953. }
  9954. ggml_tensor * attn_out = cur;
  9955. // feed-forward network
  9956. {
  9957. cur = build_ffn(ffn_inp, model.layers[il].ffn_up, NULL, NULL, model.layers[il].ffn_gate,
  9958. NULL, NULL, model.layers[il].ffn_down, NULL, NULL, NULL, LLM_FFN_SILU, LLM_FFN_PAR,
  9959. il);
  9960. cb(cur, "ffn_out", il);
  9961. }
  9962. // add together residual + FFN + self-attention
  9963. cur = ggml_add(ctx0, cur, inpL);
  9964. cur = ggml_add(ctx0, cur, attn_out);
  9965. cur = build_cvec(cur, il);
  9966. cb(cur, "l_out", il);
  9967. // input for next layer
  9968. inpL = cur;
  9969. }
  9970. cur = inpL;
  9971. cur = build_norm(cur, model.output_norm, NULL, LLM_NORM, -1);
  9972. cb(cur, "result_norm", -1);
  9973. res->t_embd = cur;
  9974. // lm_head
  9975. cur = build_lora_mm(model.output, cur);
  9976. if (f_logit_scale) {
  9977. cur = ggml_scale(ctx0, cur, f_logit_scale);
  9978. }
  9979. cb(cur, "result_output", -1);
  9980. res->t_logits = cur;
  9981. ggml_build_forward_expand(gf, cur);
  9982. }
  9983. };
  9984. // ref: https://allenai.org/olmo
  9985. // based on the original build_llama() function, changes:
  9986. // * non-parametric layer norm
  9987. // * clamp qkv
  9988. // * removed bias
  9989. // * removed MoE
  9990. struct llm_build_olmo : public llm_graph_context {
  9991. llm_build_olmo(const llama_model & model, const llm_graph_params & params) : llm_graph_context(params) {
  9992. const int64_t n_embd_head = hparams.n_embd_head_v;
  9993. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  9994. GGML_ASSERT(n_embd_head == hparams.n_rot);
  9995. ggml_tensor * cur;
  9996. ggml_tensor * inpL;
  9997. inpL = build_inp_embd(model.tok_embd);
  9998. // inp_pos - contains the positions
  9999. ggml_tensor * inp_pos = build_inp_pos();
  10000. auto * inp_attn = build_attn_inp_kv();
  10001. ggml_tensor * inp_out_ids = build_inp_out_ids();
  10002. for (int il = 0; il < n_layer; ++il) {
  10003. ggml_tensor * inpSA = inpL;
  10004. // norm
  10005. cur = build_norm(inpL,
  10006. NULL, NULL,
  10007. LLM_NORM, il);
  10008. cb(cur, "attn_norm", il);
  10009. // self-attention
  10010. {
  10011. // compute Q and K and RoPE them
  10012. ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
  10013. cb(Qcur, "Qcur", il);
  10014. if (hparams.f_clamp_kqv > 0.0f) {
  10015. Qcur = ggml_clamp(ctx0, Qcur, -hparams.f_clamp_kqv, hparams.f_clamp_kqv);
  10016. cb(Qcur, "Qcur", il);
  10017. }
  10018. ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
  10019. cb(Kcur, "Kcur", il);
  10020. if (hparams.f_clamp_kqv > 0.0f) {
  10021. Kcur = ggml_clamp(ctx0, Kcur, -hparams.f_clamp_kqv, hparams.f_clamp_kqv);
  10022. cb(Kcur, "Kcur", il);
  10023. }
  10024. ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
  10025. cb(Vcur, "Vcur", il);
  10026. if (hparams.f_clamp_kqv > 0.0f) {
  10027. Vcur = ggml_clamp(ctx0, Vcur, -hparams.f_clamp_kqv, hparams.f_clamp_kqv);
  10028. cb(Vcur, "Vcur", il);
  10029. }
  10030. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  10031. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  10032. Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
  10033. Qcur = ggml_rope_ext(
  10034. ctx0, Qcur, inp_pos, nullptr,
  10035. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  10036. ext_factor, attn_factor, beta_fast, beta_slow
  10037. );
  10038. Kcur = ggml_rope_ext(
  10039. ctx0, Kcur, inp_pos, nullptr,
  10040. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  10041. ext_factor, attn_factor, beta_fast, beta_slow
  10042. );
  10043. cb(Qcur, "Qcur", il);
  10044. cb(Kcur, "Kcur", il);
  10045. cb(Vcur, "Vcur", il);
  10046. cur = build_attn(inp_attn,
  10047. model.layers[il].wo, nullptr,
  10048. Qcur, Kcur, Vcur, nullptr, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
  10049. }
  10050. if (il == n_layer - 1 && inp_out_ids) {
  10051. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  10052. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  10053. }
  10054. ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  10055. cb(ffn_inp, "ffn_inp", il);
  10056. // feed-forward network
  10057. cur = build_norm(ffn_inp,
  10058. NULL, NULL,
  10059. LLM_NORM, il);
  10060. cb(cur, "ffn_norm", il);
  10061. cur = build_ffn(cur,
  10062. model.layers[il].ffn_up, NULL, NULL,
  10063. model.layers[il].ffn_gate, NULL, NULL,
  10064. model.layers[il].ffn_down, NULL, NULL,
  10065. NULL,
  10066. LLM_FFN_SILU, LLM_FFN_PAR, il);
  10067. cb(cur, "ffn_out", il);
  10068. cur = ggml_add(ctx0, cur, ffn_inp);
  10069. cb(cur, "ffn_out", il);
  10070. cur = build_cvec(cur, il);
  10071. cb(cur, "l_out", il);
  10072. // input for next layer
  10073. inpL = cur;
  10074. }
  10075. cur = inpL;
  10076. cur = build_norm(cur,
  10077. NULL, NULL,
  10078. LLM_NORM, -1);
  10079. cb(cur, "result_norm", -1);
  10080. res->t_embd = cur;
  10081. // lm_head
  10082. cur = build_lora_mm(model.output, cur);
  10083. cb(cur, "result_output", -1);
  10084. res->t_logits = cur;
  10085. ggml_build_forward_expand(gf, cur);
  10086. }
  10087. };
  10088. template <bool iswa>
  10089. struct llm_build_olmo2 : public llm_graph_context {
  10090. llm_build_olmo2(const llama_model & model, const llm_graph_params & params) : llm_graph_context(params) {
  10091. const int64_t n_embd_head = hparams.n_embd_head_v;
  10092. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  10093. GGML_ASSERT(n_embd_head == hparams.n_rot);
  10094. ggml_tensor * cur;
  10095. ggml_tensor * inpL;
  10096. inpL = build_inp_embd(model.tok_embd);
  10097. // inp_pos - contains the positions
  10098. ggml_tensor * inp_pos = build_inp_pos();
  10099. using inp_attn_type = std::conditional_t<iswa, llm_graph_input_attn_kv_iswa, llm_graph_input_attn_kv>;
  10100. inp_attn_type * inp_attn = nullptr;
  10101. if constexpr (iswa) {
  10102. inp_attn = build_attn_inp_kv_iswa();
  10103. } else {
  10104. inp_attn = build_attn_inp_kv();
  10105. }
  10106. ggml_tensor * inp_out_ids = build_inp_out_ids();
  10107. for (int il = 0; il < n_layer; ++il) {
  10108. ggml_tensor * inpSA = inpL;
  10109. cur = inpL;
  10110. // self_attention
  10111. {
  10112. // compute Q and K and RoPE them
  10113. ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
  10114. cb(Qcur, "Qcur", il);
  10115. ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
  10116. cb(Kcur, "Kcur", il);
  10117. ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
  10118. cb(Vcur, "Vcur", il);
  10119. Qcur = build_norm(Qcur, model.layers[il].attn_q_norm, NULL,
  10120. LLM_NORM_RMS, il);
  10121. cb(Qcur, "Qcur_normed", il);
  10122. Kcur = build_norm(Kcur, model.layers[il].attn_k_norm, NULL,
  10123. LLM_NORM_RMS, il);
  10124. cb(Kcur, "Kcur_normed", il);
  10125. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  10126. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  10127. Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
  10128. const bool is_swa = hparams.is_swa(il);
  10129. if (is_swa) {
  10130. // For sliding window layers, Olmo3 use regular rope with no yarn rope scaling.
  10131. // This is achieved here by setting freq_scale and attn_factor to 1.
  10132. // We also set ext_factor to 0 to avoid a few unnecessary computations.
  10133. Qcur = ggml_rope_ext(
  10134. ctx0, Qcur, inp_pos, nullptr,
  10135. n_rot, rope_type, n_ctx_orig, freq_base, 1.0,
  10136. 0.0, 1.0, beta_fast, beta_slow
  10137. );
  10138. Kcur = ggml_rope_ext(
  10139. ctx0, Kcur, inp_pos, nullptr,
  10140. n_rot, rope_type, n_ctx_orig, freq_base, 1.0,
  10141. 0.0, 1.0, beta_fast, beta_slow
  10142. );
  10143. } else {
  10144. Qcur = ggml_rope_ext(
  10145. ctx0, Qcur, inp_pos, nullptr,
  10146. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  10147. ext_factor, attn_factor, beta_fast, beta_slow
  10148. );
  10149. Kcur = ggml_rope_ext(
  10150. ctx0, Kcur, inp_pos, nullptr,
  10151. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  10152. ext_factor, attn_factor, beta_fast, beta_slow
  10153. );
  10154. }
  10155. cb(Qcur, "Qcur", il);
  10156. cb(Kcur, "Kcur", il);
  10157. cb(Vcur, "Vcur", il);
  10158. cur = build_attn(inp_attn,
  10159. model.layers[il].wo, NULL,
  10160. Qcur, Kcur, Vcur, nullptr, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
  10161. }
  10162. if (il == n_layer - 1 && inp_out_ids) {
  10163. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  10164. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  10165. }
  10166. cur = build_norm(cur,
  10167. model.layers[il].attn_post_norm, NULL,
  10168. LLM_NORM_RMS, il);
  10169. cb(cur, "attn_post_norm", il);
  10170. ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  10171. cb(ffn_inp, "ffn_inp", il);
  10172. // feed-forward network
  10173. cur = build_ffn(ffn_inp,
  10174. model.layers[il].ffn_up, NULL, NULL,
  10175. model.layers[il].ffn_gate, NULL, NULL,
  10176. model.layers[il].ffn_down, NULL, NULL,
  10177. NULL,
  10178. LLM_FFN_SILU, LLM_FFN_PAR, il);
  10179. cb(cur, "ffn_out", il);
  10180. cur = build_norm(cur,
  10181. model.layers[il].ffn_post_norm, NULL,
  10182. LLM_NORM_RMS, -1);
  10183. cb(cur, "ffn_post_norm", -1);
  10184. cur = ggml_add(ctx0, cur, ffn_inp);
  10185. cb(cur, "ffn_out", il);
  10186. cur = build_cvec(cur, il);
  10187. cb(cur, "l_out", il);
  10188. // input for next layer
  10189. inpL = cur;
  10190. }
  10191. cur = inpL;
  10192. cur = build_norm(cur,
  10193. model.output_norm, NULL,
  10194. LLM_NORM_RMS, -1);
  10195. cb(cur, "result_norm", -1);
  10196. res->t_embd = cur;
  10197. // lm_head
  10198. cur = build_lora_mm(model.output, cur);
  10199. cb(cur, "result_output", -1);
  10200. res->t_logits = cur;
  10201. ggml_build_forward_expand(gf, cur);
  10202. }
  10203. };
  10204. // based on the build_qwen2moe() function, changes:
  10205. // * removed shared experts
  10206. // * removed bias
  10207. // * added q, k norm
  10208. struct llm_build_olmoe : public llm_graph_context {
  10209. llm_build_olmoe(const llama_model & model, const llm_graph_params & params) : llm_graph_context(params) {
  10210. const int64_t n_embd_head = hparams.n_embd_head_v;
  10211. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  10212. GGML_ASSERT(n_embd_head == hparams.n_rot);
  10213. ggml_tensor * cur;
  10214. ggml_tensor * inpL;
  10215. inpL = build_inp_embd(model.tok_embd);
  10216. // inp_pos - contains the positions
  10217. ggml_tensor * inp_pos = build_inp_pos();
  10218. auto * inp_attn = build_attn_inp_kv();
  10219. ggml_tensor * inp_out_ids = build_inp_out_ids();
  10220. for (int il = 0; il < n_layer; ++il) {
  10221. ggml_tensor * inpSA = inpL;
  10222. // norm
  10223. cur = build_norm(inpL,
  10224. model.layers[il].attn_norm, NULL,
  10225. LLM_NORM_RMS, il);
  10226. cb(cur, "attn_norm", il);
  10227. // self_attention
  10228. {
  10229. // compute Q and K and RoPE them
  10230. ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
  10231. cb(Qcur, "Qcur", il);
  10232. ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
  10233. cb(Kcur, "Kcur", il);
  10234. ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
  10235. cb(Vcur, "Vcur", il);
  10236. Qcur = build_norm(Qcur, model.layers[il].attn_q_norm, NULL,
  10237. LLM_NORM_RMS, il);
  10238. cb(Qcur, "Qcur_normed", il);
  10239. Kcur = build_norm(Kcur, model.layers[il].attn_k_norm, NULL,
  10240. LLM_NORM_RMS, il);
  10241. cb(Kcur, "Kcur_normed", il);
  10242. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  10243. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  10244. Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
  10245. Qcur = ggml_rope_ext(
  10246. ctx0, Qcur, inp_pos, nullptr,
  10247. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  10248. ext_factor, attn_factor, beta_fast, beta_slow
  10249. );
  10250. Kcur = ggml_rope_ext(
  10251. ctx0, Kcur, inp_pos, nullptr,
  10252. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  10253. ext_factor, attn_factor, beta_fast, beta_slow
  10254. );
  10255. cb(Qcur, "Qcur", il);
  10256. cb(Kcur, "Kcur", il);
  10257. cb(Vcur, "Vcur", il);
  10258. cur = build_attn(inp_attn,
  10259. model.layers[il].wo, NULL,
  10260. Qcur, Kcur, Vcur, nullptr, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
  10261. }
  10262. if (il == n_layer - 1 && inp_out_ids) {
  10263. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  10264. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  10265. }
  10266. ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  10267. cb(ffn_inp, "ffn_inp", il);
  10268. // MoE branch
  10269. cur = build_norm(ffn_inp,
  10270. model.layers[il].ffn_norm, NULL,
  10271. LLM_NORM_RMS, il);
  10272. cb(cur, "ffn_norm", il);
  10273. cur = build_moe_ffn(cur,
  10274. model.layers[il].ffn_gate_inp,
  10275. model.layers[il].ffn_up_exps,
  10276. model.layers[il].ffn_gate_exps,
  10277. model.layers[il].ffn_down_exps,
  10278. nullptr,
  10279. n_expert, n_expert_used,
  10280. LLM_FFN_SILU, false,
  10281. false, 0.0,
  10282. LLAMA_EXPERT_GATING_FUNC_TYPE_SOFTMAX,
  10283. il);
  10284. cb(cur, "ffn_moe_out", il);
  10285. cur = ggml_add(ctx0, cur, ffn_inp);
  10286. cur = build_cvec(cur, il);
  10287. cb(cur, "l_out", il);
  10288. // input for next layer
  10289. inpL = cur;
  10290. }
  10291. cur = inpL;
  10292. cur = build_norm(cur,
  10293. model.output_norm, NULL,
  10294. LLM_NORM_RMS, -1);
  10295. cb(cur, "result_norm", -1);
  10296. res->t_embd = cur;
  10297. // lm_head
  10298. cur = build_lora_mm(model.output, cur);
  10299. cb(cur, "result_output", -1);
  10300. res->t_logits = cur;
  10301. ggml_build_forward_expand(gf, cur);
  10302. }
  10303. };
  10304. struct llm_build_llada_moe : public llm_graph_context {
  10305. llm_build_llada_moe(const llama_model & model, const llm_graph_params & params) : llm_graph_context(params) {
  10306. const int64_t n_embd_head = hparams.n_embd_head_v;
  10307. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  10308. GGML_ASSERT(n_embd_head == hparams.n_rot);
  10309. ggml_tensor * cur;
  10310. ggml_tensor * inpL;
  10311. inpL = build_inp_embd(model.tok_embd);
  10312. // inp_pos - contains the positions
  10313. ggml_tensor * inp_pos = build_inp_pos();
  10314. auto * inp_attn = build_attn_inp_no_cache();
  10315. ggml_tensor * inp_out_ids = build_inp_out_ids();
  10316. for (int il = 0; il < n_layer; ++il) {
  10317. ggml_tensor * inpSA = inpL;
  10318. // norm
  10319. cur = build_norm(inpL,
  10320. model.layers[il].attn_norm, NULL,
  10321. LLM_NORM_RMS, il);
  10322. cb(cur, "attn_norm", il);
  10323. // self_attention
  10324. {
  10325. // compute Q and K and RoPE them
  10326. ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
  10327. cb(Qcur, "Qcur", il);
  10328. ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
  10329. cb(Kcur, "Kcur", il);
  10330. ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
  10331. cb(Vcur, "Vcur", il);
  10332. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  10333. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  10334. Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
  10335. Qcur = build_norm(Qcur, model.layers[il].attn_q_norm, NULL, LLM_NORM_RMS, il);
  10336. cb(Qcur, "Qcur_normed", il);
  10337. Kcur = build_norm(Kcur, model.layers[il].attn_k_norm, NULL, LLM_NORM_RMS, il);
  10338. cb(Kcur, "Kcur_normed", il);
  10339. Qcur = ggml_rope_ext(
  10340. ctx0, Qcur, inp_pos, nullptr,
  10341. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  10342. ext_factor, attn_factor, beta_fast, beta_slow
  10343. );
  10344. Kcur = ggml_rope_ext(
  10345. ctx0, Kcur, inp_pos, nullptr,
  10346. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  10347. ext_factor, attn_factor, beta_fast, beta_slow
  10348. );
  10349. cb(Qcur, "Qcur", il);
  10350. cb(Kcur, "Kcur", il);
  10351. cb(Vcur, "Vcur", il);
  10352. cur = build_attn(inp_attn,
  10353. model.layers[il].wo, NULL,
  10354. Qcur, Kcur, Vcur, nullptr, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
  10355. }
  10356. if (il == n_layer - 1 && inp_out_ids) {
  10357. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  10358. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  10359. }
  10360. ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  10361. cb(ffn_inp, "ffn_inp", il);
  10362. // MoE branch
  10363. cur = build_norm(ffn_inp,
  10364. model.layers[il].ffn_norm, NULL,
  10365. LLM_NORM_RMS, il);
  10366. cb(cur, "ffn_norm", il);
  10367. cur = build_moe_ffn(cur,
  10368. model.layers[il].ffn_gate_inp,
  10369. model.layers[il].ffn_up_exps,
  10370. model.layers[il].ffn_gate_exps,
  10371. model.layers[il].ffn_down_exps,
  10372. nullptr,
  10373. n_expert, n_expert_used,
  10374. LLM_FFN_SILU, false,
  10375. false, 0.0,
  10376. LLAMA_EXPERT_GATING_FUNC_TYPE_SOFTMAX,
  10377. il);
  10378. cb(cur, "ffn_moe_out", il);
  10379. cur = ggml_add(ctx0, cur, ffn_inp);
  10380. cur = build_cvec(cur, il);
  10381. cb(cur, "l_out", il);
  10382. // input for next layer
  10383. inpL = cur;
  10384. }
  10385. cur = inpL;
  10386. cur = build_norm(cur,
  10387. model.output_norm, NULL,
  10388. LLM_NORM_RMS, -1);
  10389. cb(cur, "result_norm", -1);
  10390. res->t_embd = cur;
  10391. // lm_head
  10392. cur = build_lora_mm(model.output, cur);
  10393. cb(cur, "result_output", -1);
  10394. res->t_logits = cur;
  10395. ggml_build_forward_expand(gf, cur);
  10396. }
  10397. };
  10398. struct llm_build_openelm : public llm_graph_context {
  10399. llm_build_openelm(const llama_model & model, const llm_graph_params & params) : llm_graph_context(params) {
  10400. const int64_t n_embd_head = hparams.n_embd_head_v;
  10401. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  10402. ggml_tensor * cur;
  10403. ggml_tensor * inpL;
  10404. inpL = build_inp_embd(model.tok_embd);
  10405. // inp_pos - contains the positions
  10406. ggml_tensor * inp_pos = build_inp_pos();
  10407. auto * inp_attn = build_attn_inp_kv();
  10408. ggml_tensor * inp_out_ids = build_inp_out_ids();
  10409. for (int il = 0; il < n_layer; ++il) {
  10410. const int64_t n_head = hparams.n_head(il);
  10411. const int64_t n_head_kv = hparams.n_head_kv(il);
  10412. const int64_t n_head_qkv = 2*n_head_kv + n_head;
  10413. cur = inpL;
  10414. ggml_tensor * residual = cur;
  10415. // norm
  10416. cur = build_norm(inpL,
  10417. model.layers[il].attn_norm, NULL,
  10418. LLM_NORM_RMS, il);
  10419. cb(cur, "attn_norm", il);
  10420. // self-attention
  10421. {
  10422. cur = build_lora_mm(model.layers[il].wqkv, cur);
  10423. cb(cur, "wqkv", il);
  10424. cur = ggml_reshape_3d(ctx0, cur, n_embd_head_k, n_head_qkv, n_tokens);
  10425. ggml_tensor * Qcur = ggml_view_3d(ctx0, cur, n_embd_head, n_head, n_tokens, cur->nb[1], cur->nb[2], 0);
  10426. cb(Qcur, "Qcur", il);
  10427. ggml_tensor * Kcur = ggml_view_3d(ctx0, cur, n_embd_head, n_head_kv, n_tokens, cur->nb[1], cur->nb[2], cur->nb[1]*n_head);
  10428. cb(Kcur, "Kcur", il);
  10429. ggml_tensor * Vcur = ggml_cont(ctx0, ggml_view_3d(ctx0, cur, n_embd_head, n_head_kv, n_tokens, cur->nb[1], cur->nb[2], cur->nb[1]*(n_head+n_head_kv)));
  10430. cb(Vcur, "Vcur", il);
  10431. Qcur = build_norm(Qcur,
  10432. model.layers[il].attn_q_norm, NULL,
  10433. LLM_NORM_RMS, il);
  10434. cb(Qcur, "Qcur", il);
  10435. Kcur = build_norm(Kcur,
  10436. model.layers[il].attn_k_norm, NULL,
  10437. LLM_NORM_RMS, il);
  10438. cb(Kcur, "Kcur", il);
  10439. Qcur = ggml_rope_ext(
  10440. ctx0, Qcur, inp_pos, NULL,
  10441. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  10442. ext_factor, attn_factor, beta_fast, beta_slow
  10443. );
  10444. Kcur = ggml_rope_ext(
  10445. ctx0, Kcur, inp_pos, NULL,
  10446. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  10447. ext_factor, attn_factor, beta_fast, beta_slow
  10448. );
  10449. cb(Qcur, "Qcur", il);
  10450. cb(Kcur, "Kcur", il);
  10451. cb(Qcur, "Vcur", il);
  10452. cur = build_attn(inp_attn,
  10453. model.layers[il].wo, NULL,
  10454. Qcur, Kcur, Vcur, nullptr, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
  10455. }
  10456. if (il == n_layer - 1 && inp_out_ids) {
  10457. residual = ggml_get_rows(ctx0, residual, inp_out_ids);
  10458. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  10459. }
  10460. ggml_tensor * ffn_inp = ggml_add(ctx0, residual, cur);
  10461. cb(ffn_inp, "ffn_inp", il);
  10462. // feed-forward network
  10463. {
  10464. cur = build_norm(ffn_inp,
  10465. model.layers[il].ffn_norm, NULL,
  10466. LLM_NORM_RMS, il);
  10467. cb(cur, "ffn_norm", il);
  10468. cur = build_ffn(cur,
  10469. model.layers[il].ffn_up, NULL, NULL,
  10470. model.layers[il].ffn_gate, NULL, NULL,
  10471. model.layers[il].ffn_down, NULL, NULL,
  10472. NULL,
  10473. LLM_FFN_SILU, LLM_FFN_PAR, il);
  10474. cb(cur, "ffn_out", il);
  10475. }
  10476. cur = ggml_add(ctx0, cur, ffn_inp);
  10477. cur = build_cvec(cur, il);
  10478. cb(cur, "l_out", il);
  10479. inpL = cur;
  10480. }
  10481. cur = inpL;
  10482. // norm
  10483. cur = build_norm(cur,
  10484. model.output_norm, NULL,
  10485. LLM_NORM_RMS, -1);
  10486. cb(cur, "result_norm", -1);
  10487. res->t_embd = cur;
  10488. cur = build_lora_mm(model.output, cur);
  10489. cb(cur, "result_output", -1);
  10490. res->t_logits = cur;
  10491. ggml_build_forward_expand(gf, cur);
  10492. }
  10493. };
  10494. struct llm_build_gptneox : public llm_graph_context {
  10495. llm_build_gptneox(const llama_model & model, const llm_graph_params & params) : llm_graph_context(params) {
  10496. const int64_t n_embd_head = hparams.n_embd_head_v;
  10497. const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
  10498. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  10499. ggml_tensor * cur;
  10500. ggml_tensor * inpL;
  10501. inpL = build_inp_embd(model.tok_embd);
  10502. // inp_pos - contains the positions
  10503. ggml_tensor * inp_pos = build_inp_pos();
  10504. auto * inp_attn = build_attn_inp_kv();
  10505. ggml_tensor * inp_out_ids = build_inp_out_ids();
  10506. for (int il = 0; il < n_layer; ++il) {
  10507. cur = build_norm(inpL,
  10508. model.layers[il].attn_norm,
  10509. model.layers[il].attn_norm_b,
  10510. LLM_NORM, il);
  10511. cb(cur, "attn_norm", il);
  10512. // self-attention
  10513. {
  10514. cur = build_lora_mm(model.layers[il].wqkv, cur);
  10515. cb(cur, "wqkv", il);
  10516. cur = ggml_add(ctx0, cur, model.layers[il].bqkv);
  10517. cb(cur, "bqkv", il);
  10518. ggml_tensor * Qcur = ggml_view_3d(ctx0, cur, n_embd_head, n_head, n_tokens, n_embd_head*sizeof(float), cur->nb[1], 0*sizeof(float)*(n_embd));
  10519. ggml_tensor * Kcur = ggml_view_3d(ctx0, cur, n_embd_head, n_head_kv, n_tokens, n_embd_head*sizeof(float), cur->nb[1], 1*sizeof(float)*(n_embd));
  10520. ggml_tensor * Vcur = ggml_view_3d(ctx0, cur, n_embd_head, n_head_kv, n_tokens, n_embd_head*sizeof(float), cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa));
  10521. Qcur = ggml_rope_ext(
  10522. ctx0, Qcur, inp_pos, nullptr,
  10523. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  10524. ext_factor, attn_factor, beta_fast, beta_slow
  10525. );
  10526. Kcur = ggml_rope_ext(
  10527. ctx0, Kcur, inp_pos, nullptr,
  10528. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  10529. ext_factor, attn_factor, beta_fast, beta_slow
  10530. );
  10531. cb(Qcur, "Qcur", il);
  10532. cb(Kcur, "Kcur", il);
  10533. cb(Vcur, "Vcur", il);
  10534. cur = build_attn(inp_attn,
  10535. model.layers[il].wo, model.layers[il].bo,
  10536. Qcur, Kcur, Vcur, nullptr, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
  10537. }
  10538. if (il == n_layer - 1 && inp_out_ids) {
  10539. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  10540. inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
  10541. }
  10542. // ffn
  10543. if (hparams.use_par_res) {
  10544. // attention and ffn are computed in parallel
  10545. // x = x + attn(ln1(x)) + ffn(ln2(x))
  10546. ggml_tensor * attn_out = cur;
  10547. cur = build_norm(inpL,
  10548. model.layers[il].ffn_norm,
  10549. model.layers[il].ffn_norm_b,
  10550. LLM_NORM, il);
  10551. cb(cur, "ffn_norm", il);
  10552. cur = build_ffn(cur,
  10553. model.layers[il].ffn_up, model.layers[il].ffn_up_b, NULL,
  10554. NULL, NULL, NULL,
  10555. model.layers[il].ffn_down, model.layers[il].ffn_down_b, NULL,
  10556. NULL,
  10557. LLM_FFN_GELU, LLM_FFN_SEQ, il);
  10558. cb(cur, "ffn_out", il);
  10559. cur = ggml_add(ctx0, cur, inpL);
  10560. cb(cur, "ffn_out", il);
  10561. cur = ggml_add(ctx0, cur, attn_out);
  10562. cur = build_cvec(cur, il);
  10563. cb(cur, "l_out", il);
  10564. // input for next layer
  10565. inpL = cur;
  10566. } else {
  10567. // attention and ffn are computed sequentially
  10568. // x = x + attn(ln1(x))
  10569. // x = x + ffn(ln2(x))
  10570. ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpL);
  10571. cb(ffn_inp, "ffn_inp", il);
  10572. cur = build_norm(ffn_inp,
  10573. model.layers[il].ffn_norm,
  10574. model.layers[il].ffn_norm_b,
  10575. LLM_NORM, il);
  10576. cb(cur, "ffn_norm", il);
  10577. cur = build_ffn(cur,
  10578. model.layers[il].ffn_up, model.layers[il].ffn_up_b, NULL,
  10579. NULL, NULL, NULL,
  10580. model.layers[il].ffn_down, model.layers[il].ffn_down_b, NULL,
  10581. NULL,
  10582. LLM_FFN_GELU, LLM_FFN_SEQ, il);
  10583. cb(cur, "ffn_out", il);
  10584. cur = ggml_add(ctx0, cur, ffn_inp);
  10585. cur = build_cvec(cur, il);
  10586. cb(cur, "l_out", il);
  10587. // input for next layer
  10588. inpL = cur;
  10589. }
  10590. }
  10591. cur = build_norm(inpL,
  10592. model.output_norm,
  10593. model.output_norm_b,
  10594. LLM_NORM, -1);
  10595. cb(cur, "result_norm", -1);
  10596. res->t_embd = cur;
  10597. cur = build_lora_mm(model.output, cur);
  10598. cb(cur, "result_output", -1);
  10599. res->t_logits = cur;
  10600. ggml_build_forward_expand(gf, cur);
  10601. }
  10602. };
  10603. struct llm_build_arctic : public llm_graph_context {
  10604. llm_build_arctic(const llama_model & model, const llm_graph_params & params) : llm_graph_context(params) {
  10605. const int64_t n_embd_head = hparams.n_embd_head_v;
  10606. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  10607. GGML_ASSERT(n_embd_head == hparams.n_rot);
  10608. ggml_tensor * cur;
  10609. ggml_tensor * inpL;
  10610. inpL = build_inp_embd(model.tok_embd);
  10611. // inp_pos - contains the positions
  10612. ggml_tensor * inp_pos = build_inp_pos();
  10613. auto * inp_attn = build_attn_inp_kv();
  10614. ggml_tensor * inp_out_ids = build_inp_out_ids();
  10615. for (int il = 0; il < n_layer; ++il) {
  10616. ggml_tensor * inpSA = inpL;
  10617. // norm
  10618. cur = build_norm(inpL,
  10619. model.layers[il].attn_norm, NULL,
  10620. LLM_NORM_RMS, il);
  10621. cb(cur, "attn_norm", il);
  10622. // self-attention
  10623. {
  10624. // compute Q and K and RoPE them
  10625. ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
  10626. cb(Qcur, "Qcur", il);
  10627. ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
  10628. cb(Kcur, "Kcur", il);
  10629. ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
  10630. cb(Vcur, "Vcur", il);
  10631. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  10632. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  10633. Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
  10634. Qcur = ggml_rope_ext(
  10635. ctx0, Qcur, inp_pos, nullptr,
  10636. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  10637. ext_factor, attn_factor, beta_fast, beta_slow
  10638. );
  10639. Kcur = ggml_rope_ext(
  10640. ctx0, Kcur, inp_pos, nullptr,
  10641. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  10642. ext_factor, attn_factor, beta_fast, beta_slow
  10643. );
  10644. cb(Qcur, "Qcur", il);
  10645. cb(Kcur, "Kcur", il);
  10646. cb(Vcur, "Vcur", il);
  10647. cur = build_attn(inp_attn,
  10648. model.layers[il].wo, NULL,
  10649. Qcur, Kcur, Vcur, nullptr, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
  10650. }
  10651. if (il == n_layer - 1 && inp_out_ids) {
  10652. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  10653. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  10654. }
  10655. ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  10656. cb(ffn_inp, "ffn_inp", il);
  10657. // feed-forward network
  10658. cur = build_norm(ffn_inp,
  10659. model.layers[il].ffn_norm, NULL,
  10660. LLM_NORM_RMS, il);
  10661. cb(cur, "ffn_norm", il);
  10662. cur = build_ffn(cur,
  10663. model.layers[il].ffn_up, NULL, NULL,
  10664. model.layers[il].ffn_gate, NULL, NULL,
  10665. model.layers[il].ffn_down, NULL, NULL,
  10666. NULL,
  10667. LLM_FFN_SILU, LLM_FFN_PAR, il);
  10668. cb(cur, "ffn_out", il);
  10669. ggml_tensor * ffn_out = ggml_add(ctx0, cur, ffn_inp);
  10670. cb(ffn_out, "ffn_out", il);
  10671. // MoE
  10672. cur = build_norm(inpSA,
  10673. model.layers[il].ffn_norm_exps, NULL,
  10674. LLM_NORM_RMS, il);
  10675. cb(cur, "ffn_norm_exps", il);
  10676. cur = build_moe_ffn(cur,
  10677. model.layers[il].ffn_gate_inp,
  10678. model.layers[il].ffn_up_exps,
  10679. model.layers[il].ffn_gate_exps,
  10680. model.layers[il].ffn_down_exps,
  10681. nullptr,
  10682. n_expert, n_expert_used,
  10683. LLM_FFN_SILU, true,
  10684. false, 0.0,
  10685. LLAMA_EXPERT_GATING_FUNC_TYPE_SOFTMAX,
  10686. il);
  10687. cb(cur, "ffn_moe_out", il);
  10688. cur = ggml_add(ctx0, cur, ffn_out);
  10689. cb(cur, "ffn_out", il);
  10690. cur = build_cvec(cur, il);
  10691. cb(cur, "l_out", il);
  10692. // input for next layer
  10693. inpL = cur;
  10694. }
  10695. cur = inpL;
  10696. cur = build_norm(cur,
  10697. model.output_norm, NULL,
  10698. LLM_NORM_RMS, -1);
  10699. cb(cur, "result_norm", -1);
  10700. res->t_embd = cur;
  10701. // lm_head
  10702. cur = build_lora_mm(model.output, cur);
  10703. cb(cur, "result_output", -1);
  10704. res->t_logits = cur;
  10705. ggml_build_forward_expand(gf, cur);
  10706. }
  10707. };
  10708. struct llm_build_deepseek : public llm_graph_context {
  10709. llm_build_deepseek(const llama_model & model, const llm_graph_params & params) : llm_graph_context(params) {
  10710. const int64_t n_embd_head = hparams.n_embd_head_v;
  10711. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  10712. GGML_ASSERT(n_embd_head == hparams.n_rot);
  10713. ggml_tensor * cur;
  10714. ggml_tensor * inpL;
  10715. inpL = build_inp_embd(model.tok_embd);
  10716. // inp_pos - contains the positions
  10717. ggml_tensor * inp_pos = build_inp_pos();
  10718. auto * inp_attn = build_attn_inp_kv();
  10719. const float kq_scale = hparams.f_attention_scale == 0.0f ? 1.0f/sqrtf(float(n_embd_head)) : hparams.f_attention_scale;
  10720. ggml_tensor * inp_out_ids = build_inp_out_ids();
  10721. for (int il = 0; il < n_layer; ++il) {
  10722. ggml_tensor * inpSA = inpL;
  10723. // norm
  10724. cur = build_norm(inpL,
  10725. model.layers[il].attn_norm, NULL,
  10726. LLM_NORM_RMS, il);
  10727. cb(cur, "attn_norm", il);
  10728. // self-attention
  10729. {
  10730. // rope freq factors for llama3; may return nullptr for llama2 and other models
  10731. ggml_tensor * rope_factors = model.get_rope_factors(cparams, il);
  10732. // compute Q and K and RoPE them
  10733. ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
  10734. cb(Qcur, "Qcur", il);
  10735. if (model.layers[il].bq) {
  10736. Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
  10737. cb(Qcur, "Qcur", il);
  10738. }
  10739. ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
  10740. cb(Kcur, "Kcur", il);
  10741. if (model.layers[il].bk) {
  10742. Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
  10743. cb(Kcur, "Kcur", il);
  10744. }
  10745. ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
  10746. cb(Vcur, "Vcur", il);
  10747. if (model.layers[il].bv) {
  10748. Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
  10749. cb(Vcur, "Vcur", il);
  10750. }
  10751. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  10752. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  10753. Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
  10754. Qcur = ggml_rope_ext(
  10755. ctx0, Qcur, inp_pos, rope_factors,
  10756. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  10757. ext_factor, attn_factor, beta_fast, beta_slow
  10758. );
  10759. Kcur = ggml_rope_ext(
  10760. ctx0, Kcur, inp_pos, rope_factors,
  10761. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  10762. ext_factor, attn_factor, beta_fast, beta_slow
  10763. );
  10764. cb(Qcur, "Qcur", il);
  10765. cb(Kcur, "Kcur", il);
  10766. cb(Vcur, "Vcur", il);
  10767. cur = build_attn(inp_attn,
  10768. model.layers[il].wo, model.layers[il].bo,
  10769. Qcur, Kcur, Vcur, nullptr, nullptr, nullptr, kq_scale, il);
  10770. }
  10771. if (il == n_layer - 1 && inp_out_ids) {
  10772. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  10773. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  10774. }
  10775. ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  10776. cb(ffn_inp, "ffn_inp", il);
  10777. cur = build_norm(ffn_inp,
  10778. model.layers[il].ffn_norm, NULL,
  10779. LLM_NORM_RMS, il);
  10780. cb(cur, "ffn_norm", il);
  10781. if ((uint32_t) il < hparams.n_layer_dense_lead) {
  10782. cur = build_ffn(cur,
  10783. model.layers[il].ffn_up, NULL, NULL,
  10784. model.layers[il].ffn_gate, NULL, NULL,
  10785. model.layers[il].ffn_down, NULL, NULL,
  10786. NULL,
  10787. LLM_FFN_SILU, LLM_FFN_PAR, il);
  10788. cb(cur, "ffn_out", il);
  10789. } else {
  10790. // MoE branch
  10791. ggml_tensor * moe_out =
  10792. build_moe_ffn(cur,
  10793. model.layers[il].ffn_gate_inp,
  10794. model.layers[il].ffn_up_exps,
  10795. model.layers[il].ffn_gate_exps,
  10796. model.layers[il].ffn_down_exps,
  10797. nullptr,
  10798. n_expert, n_expert_used,
  10799. LLM_FFN_SILU, false,
  10800. false, hparams.expert_weights_scale,
  10801. LLAMA_EXPERT_GATING_FUNC_TYPE_SOFTMAX,
  10802. il);
  10803. cb(moe_out, "ffn_moe_out", il);
  10804. // FFN shared expert
  10805. {
  10806. ggml_tensor * ffn_shexp = build_ffn(cur,
  10807. model.layers[il].ffn_up_shexp, NULL, NULL,
  10808. model.layers[il].ffn_gate_shexp, NULL, NULL,
  10809. model.layers[il].ffn_down_shexp, NULL, NULL,
  10810. NULL,
  10811. LLM_FFN_SILU, LLM_FFN_PAR, il);
  10812. cb(ffn_shexp, "ffn_shexp", il);
  10813. cur = ggml_add(ctx0, moe_out, ffn_shexp);
  10814. cb(cur, "ffn_out", il);
  10815. }
  10816. }
  10817. cur = ggml_add(ctx0, cur, ffn_inp);
  10818. cur = build_cvec(cur, il);
  10819. cb(cur, "l_out", il);
  10820. // input for next layer
  10821. inpL = cur;
  10822. }
  10823. cur = inpL;
  10824. cur = build_norm(cur,
  10825. model.output_norm, NULL,
  10826. LLM_NORM_RMS, -1);
  10827. cb(cur, "result_norm", -1);
  10828. res->t_embd = cur;
  10829. // lm_head
  10830. cur = build_lora_mm(model.output, cur);
  10831. cb(cur, "result_output", -1);
  10832. res->t_logits = cur;
  10833. ggml_build_forward_expand(gf, cur);
  10834. }
  10835. };
  10836. struct llm_build_deepseek2 : public llm_graph_context {
  10837. llm_build_deepseek2(const llama_model & model, const llm_graph_params & params) : llm_graph_context(params) {
  10838. bool is_lite = (hparams.n_layer == 27);
  10839. const bool is_mla = (hparams.n_embd_head_k_mla != 0 && hparams.n_embd_head_v_mla != 0);
  10840. // note: these are the actual head sizes you get when treating as MHA or after "decompression" using wv_b for MLA
  10841. const int64_t n_embd_head_k = is_mla ? hparams.n_embd_head_k_mla : hparams.n_embd_head_k;
  10842. const int64_t n_embd_head_v = is_mla ? hparams.n_embd_head_v_mla : hparams.n_embd_head_v;
  10843. const int64_t n_embd_head_qk_rope = hparams.n_rot;
  10844. const int64_t n_embd_head_qk_nope = n_embd_head_k - n_embd_head_qk_rope;
  10845. const uint32_t kv_lora_rank = hparams.n_lora_kv;
  10846. // We have to pre-scale kq_scale and attn_factor to make the YaRN RoPE work correctly.
  10847. // See https://github.com/ggerganov/llama.cpp/discussions/7416 for detailed explanation.
  10848. const float mscale = attn_factor * (1.0f + hparams.rope_yarn_log_mul * logf(1.0f / freq_scale));
  10849. const float kq_scale = 1.0f*mscale*mscale/sqrtf(float(n_embd_head_k));
  10850. const float attn_factor = 1.0f / (1.0f + 0.1f * logf(1.0f / freq_scale));
  10851. ggml_tensor * cur;
  10852. ggml_tensor * inpL;
  10853. // {n_embd, n_tokens}
  10854. inpL = build_inp_embd(model.tok_embd);
  10855. // inp_pos - contains the positions
  10856. ggml_tensor * inp_pos = build_inp_pos();
  10857. auto * inp_attn = build_attn_inp_kv();
  10858. ggml_tensor * inp_out_ids = build_inp_out_ids();
  10859. for (int il = 0; il < n_layer; ++il) {
  10860. ggml_tensor * inpSA = inpL;
  10861. // norm
  10862. cur = build_norm(inpL,
  10863. model.layers[il].attn_norm, NULL,
  10864. LLM_NORM_RMS, il);
  10865. cb(cur, "attn_norm", il);
  10866. // self_attention
  10867. {
  10868. ggml_tensor * q = NULL;
  10869. if (!is_lite) {
  10870. q = ggml_mul_mat(ctx0, model.layers[il].wq_a, cur);
  10871. cb(q, "q", il);
  10872. q = build_norm(q,
  10873. model.layers[il].attn_q_a_norm, nullptr,
  10874. LLM_NORM_RMS, il);
  10875. cb(q, "q", il);
  10876. q = ggml_mul_mat(ctx0, model.layers[il].wq_b, q);
  10877. cb(q, "q", il);
  10878. } else {
  10879. q = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
  10880. cb(q, "q", il);
  10881. }
  10882. // split into {n_embd_head_qk_nope, n_head, n_tokens}
  10883. ggml_tensor * q_nope = ggml_view_3d(ctx0, q,
  10884. n_embd_head_qk_nope, n_head, n_tokens,
  10885. ggml_row_size(q->type, n_embd_head_k),
  10886. ggml_row_size(q->type, n_embd_head_k) * n_head,
  10887. 0);
  10888. cb(q_nope, "q_nope", il);
  10889. // and {n_embd_head_qk_rope, n_head, n_tokens}
  10890. ggml_tensor * q_pe = ggml_view_3d(ctx0, q,
  10891. n_embd_head_qk_rope, n_head, n_tokens,
  10892. ggml_row_size(q->type, n_embd_head_k),
  10893. ggml_row_size(q->type, n_embd_head_k) * n_head,
  10894. ggml_row_size(q->type, n_embd_head_qk_nope));
  10895. cb(q_pe, "q_pe", il);
  10896. ggml_tensor * kv_cmpr_pe = ggml_mul_mat(ctx0, model.layers[il].wkv_a_mqa, cur);
  10897. cb(kv_cmpr_pe, "kv_cmpr_pe", il);
  10898. // split into {kv_lora_rank, n_tokens}
  10899. ggml_tensor * kv_cmpr = ggml_view_2d(ctx0, kv_cmpr_pe,
  10900. kv_lora_rank, n_tokens,
  10901. ggml_row_size(kv_cmpr_pe->type, kv_lora_rank + n_embd_head_qk_rope),
  10902. 0);
  10903. cb(kv_cmpr, "kv_cmpr", il);
  10904. // and {n_embd_head_qk_rope, 1, n_tokens}
  10905. ggml_tensor * k_pe = ggml_view_3d(ctx0, kv_cmpr_pe,
  10906. n_embd_head_qk_rope, 1, n_tokens,
  10907. ggml_row_size(kv_cmpr_pe->type, kv_lora_rank + n_embd_head_qk_rope),
  10908. ggml_row_size(kv_cmpr_pe->type, kv_lora_rank + n_embd_head_qk_rope),
  10909. ggml_row_size(kv_cmpr_pe->type, kv_lora_rank));
  10910. cb(k_pe, "k_pe", il);
  10911. q_pe = ggml_rope_ext(ctx0, q_pe, inp_pos, nullptr,
  10912. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  10913. ext_factor, attn_factor, beta_fast, beta_slow
  10914. );
  10915. cb(q_pe, "q_pe", il);
  10916. k_pe = ggml_rope_ext(ctx0, k_pe, inp_pos, nullptr,
  10917. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  10918. ext_factor, attn_factor, beta_fast, beta_slow
  10919. );
  10920. cb(k_pe, "k_pe", il);
  10921. kv_cmpr = build_norm(kv_cmpr,
  10922. model.layers[il].attn_kv_a_norm, nullptr,
  10923. LLM_NORM_RMS, il);
  10924. cb(kv_cmpr, "kv_cmpr", il);
  10925. if (is_mla) {
  10926. // {n_embd_head_qk_nope, n_tokens, n_head}
  10927. q_nope = ggml_permute(ctx0, q_nope, 0, 2, 1, 3);
  10928. cb(q_nope, "q_nope_perm", il);
  10929. // {n_embd_head_qk_nope, kv_lora_rank, n_head} x {n_embd_head_qk_nope, n_tokens, n_head}
  10930. ggml_tensor * q_nope_absorbed = ggml_mul_mat(ctx0, model.layers[il].wk_b, q_nope);
  10931. cb(q_nope_absorbed, "q_nope_absorbed", il);
  10932. // {kv_lora_rank, n_head, n_tokens}
  10933. q_nope_absorbed = ggml_permute(ctx0, q_nope_absorbed, 0, 2, 1, 3);
  10934. cb(q_nope_absorbed, "q_nope_absorbed_perm", il);
  10935. // {n_embd_head_qk_rope + kv_lora_rank, n_head, n_tokens}
  10936. // note: rope must go first for in-place context shifting in build_rope_shift()
  10937. ggml_tensor * Qcur = ggml_concat(ctx0, q_pe, q_nope_absorbed, 0);
  10938. cb(Qcur, "Qcur", il);
  10939. kv_cmpr = ggml_reshape_3d(ctx0, kv_cmpr, kv_lora_rank, 1, n_tokens);
  10940. cb(kv_cmpr, "kv_cmpr_reshape", il);
  10941. // {n_embd_head_qk_rope + kv_lora_rank, 1, n_tokens}
  10942. ggml_tensor * Kcur = ggml_concat(ctx0, k_pe, kv_cmpr, 0);
  10943. cb(Kcur, "Kcur", il);
  10944. // {kv_lora_rank, 1, n_tokens}
  10945. ggml_tensor * Vcur = kv_cmpr;
  10946. cb(Vcur, "Vcur", il);
  10947. // note: MLA with the absorption optimzation converts into MQA (ie: GQA with 1 group)
  10948. cur = build_attn(inp_attn,
  10949. model.layers[il].wo, NULL,
  10950. Qcur, Kcur, Vcur, nullptr, nullptr, model.layers[il].wv_b, kq_scale, il);
  10951. } else {
  10952. ggml_tensor * kv = ggml_mul_mat(ctx0, model.layers[il].wkv_b, kv_cmpr);
  10953. cb(kv, "kv", il);
  10954. // split into {n_embd_head_qk_nope, n_head, n_tokens}
  10955. ggml_tensor * k_nope = ggml_view_3d(ctx0, kv,
  10956. n_embd_head_qk_nope, n_head, n_tokens,
  10957. ggml_row_size(kv->type, n_embd_head_qk_nope + n_embd_head_v),
  10958. ggml_row_size(kv->type, n_embd_head_qk_nope + n_embd_head_v) * n_head,
  10959. 0);
  10960. cb(k_nope, "k_nope_view", il);
  10961. // and {n_embd_head_v, n_head, n_tokens}
  10962. ggml_tensor * Vcur = ggml_view_3d(ctx0, kv,
  10963. n_embd_head_v, n_head, n_tokens,
  10964. ggml_row_size(kv->type, n_embd_head_qk_nope + n_embd_head_v),
  10965. ggml_row_size(kv->type, n_embd_head_qk_nope + n_embd_head_v) * n_head,
  10966. ggml_row_size(kv->type, n_embd_head_qk_nope));
  10967. cb(Vcur, "Vcur_view", il);
  10968. Vcur = ggml_cont(ctx0, Vcur);
  10969. cb(Vcur, "Vcur_cont", il);
  10970. // note: rope must go first for in-place context shifting in build_rope_shift()
  10971. ggml_tensor * Qcur = ggml_concat(ctx0, q_pe, q_nope, 0);
  10972. cb(Qcur, "Qcur", il);
  10973. ggml_tensor * Kcur = ggml_concat(ctx0, ggml_repeat(ctx0, k_pe, q_pe), k_nope, 0);
  10974. cb(Kcur, "Kcur", il);
  10975. // note: MLA without the absorption optimization converts into MHA (ie: GQA with full n_head groups)
  10976. cur = build_attn(inp_attn,
  10977. model.layers[il].wo, NULL,
  10978. Qcur, Kcur, Vcur, nullptr, nullptr, nullptr, kq_scale, il);
  10979. }
  10980. }
  10981. if (il == n_layer - 1 && inp_out_ids) {
  10982. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  10983. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  10984. }
  10985. ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  10986. cb(ffn_inp, "ffn_inp", il);
  10987. cur = build_norm(ffn_inp,
  10988. model.layers[il].ffn_norm, NULL,
  10989. LLM_NORM_RMS, il);
  10990. cb(cur, "ffn_norm", il);
  10991. if ((uint32_t) il < hparams.n_layer_dense_lead) {
  10992. cur = build_ffn(cur,
  10993. model.layers[il].ffn_up, NULL, NULL,
  10994. model.layers[il].ffn_gate, NULL, NULL,
  10995. model.layers[il].ffn_down, NULL, NULL,
  10996. NULL,
  10997. LLM_FFN_SILU, LLM_FFN_PAR, il);
  10998. cb(cur, "ffn_out", il);
  10999. } else {
  11000. // MoE branch
  11001. ggml_tensor * moe_out =
  11002. build_moe_ffn(cur,
  11003. model.layers[il].ffn_gate_inp,
  11004. model.layers[il].ffn_up_exps,
  11005. model.layers[il].ffn_gate_exps,
  11006. model.layers[il].ffn_down_exps,
  11007. model.layers[il].ffn_exp_probs_b,
  11008. n_expert, n_expert_used,
  11009. LLM_FFN_SILU, hparams.expert_weights_norm,
  11010. true, hparams.expert_weights_scale,
  11011. (llama_expert_gating_func_type) hparams.expert_gating_func,
  11012. il);
  11013. cb(moe_out, "ffn_moe_out", il);
  11014. // FFN shared expert
  11015. {
  11016. ggml_tensor * ffn_shexp = build_ffn(cur,
  11017. model.layers[il].ffn_up_shexp, NULL, NULL,
  11018. model.layers[il].ffn_gate_shexp, NULL, NULL,
  11019. model.layers[il].ffn_down_shexp, NULL, NULL,
  11020. NULL,
  11021. LLM_FFN_SILU, LLM_FFN_PAR, il);
  11022. cb(ffn_shexp, "ffn_shexp", il);
  11023. cur = ggml_add(ctx0, moe_out, ffn_shexp);
  11024. cb(cur, "ffn_out", il);
  11025. }
  11026. }
  11027. cur = ggml_add(ctx0, cur, ffn_inp);
  11028. cur = build_cvec(cur, il);
  11029. cb(cur, "l_out", il);
  11030. // input for next layer
  11031. inpL = cur;
  11032. }
  11033. cur = inpL;
  11034. cur = build_norm(cur,
  11035. model.output_norm, NULL,
  11036. LLM_NORM_RMS, -1);
  11037. cb(cur, "result_norm", -1);
  11038. res->t_embd = cur;
  11039. // lm_head
  11040. cur = ggml_mul_mat(ctx0, model.output, cur);
  11041. cb(cur, "result_output", -1);
  11042. res->t_logits = cur;
  11043. ggml_build_forward_expand(gf, cur);
  11044. }
  11045. };
  11046. struct llm_build_bitnet : public llm_graph_context {
  11047. llm_build_bitnet(const llama_model & model, const llm_graph_params & params) : llm_graph_context(params) {
  11048. const int64_t n_embd_head = hparams.n_embd_head_v;
  11049. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  11050. ggml_tensor * cur;
  11051. ggml_tensor * inpL;
  11052. inpL = build_inp_embd(model.tok_embd);
  11053. // inp_pos - contains the positions
  11054. ggml_tensor * inp_pos = build_inp_pos();
  11055. auto * inp_attn = build_attn_inp_kv();
  11056. ggml_tensor * inp_out_ids = build_inp_out_ids();
  11057. for (int il = 0; il < n_layer; ++il) {
  11058. ggml_tensor * inpSA = inpL;
  11059. cur = build_norm(inpL,
  11060. model.layers[il].attn_norm, NULL,
  11061. LLM_NORM_RMS, il);
  11062. cb(cur, "attn_norm", il);
  11063. // self-attention
  11064. {
  11065. // compute Q and K and RoPE them
  11066. ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
  11067. if (model.layers[il].wq_scale) {
  11068. Qcur = ggml_mul(ctx0, Qcur, model.layers[il].wq_scale);
  11069. }
  11070. cb(Qcur, "Qcur", il);
  11071. if (model.layers[il].bq) {
  11072. Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
  11073. cb(Qcur, "Qcur", il);
  11074. }
  11075. // B1.K
  11076. ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
  11077. if (model.layers[il].wk_scale) {
  11078. Kcur = ggml_mul(ctx0, Kcur, model.layers[il].wk_scale);
  11079. }
  11080. cb(Kcur, "Kcur", il);
  11081. if (model.layers[il].bk) {
  11082. Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
  11083. cb(Kcur, "Kcur", il);
  11084. }
  11085. // B1.V
  11086. ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
  11087. if (model.layers[il].wv_scale) {
  11088. Vcur = ggml_mul(ctx0, Vcur, model.layers[il].wv_scale);
  11089. }
  11090. cb(Vcur, "Vcur", il);
  11091. if (model.layers[il].bv) {
  11092. Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
  11093. cb(Vcur, "Vcur", il);
  11094. }
  11095. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  11096. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  11097. Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
  11098. Qcur = ggml_rope_ext(
  11099. ctx0, Qcur, inp_pos, nullptr,
  11100. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  11101. ext_factor, attn_factor, beta_fast, beta_slow
  11102. );
  11103. Kcur = ggml_rope_ext(
  11104. ctx0, Kcur, inp_pos, nullptr,
  11105. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  11106. ext_factor, attn_factor, beta_fast, beta_slow
  11107. );
  11108. cb(Qcur, "Qcur", il);
  11109. cb(Kcur, "Kcur", il);
  11110. cb(Vcur, "Vcur", il);
  11111. cur = build_attn(inp_attn,
  11112. NULL, NULL,
  11113. Qcur, Kcur, Vcur, nullptr, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
  11114. cur = build_norm(cur,
  11115. model.layers[il].attn_sub_norm, NULL,
  11116. LLM_NORM_RMS, il);
  11117. cb(cur, "attn_sub_norm", il);
  11118. cur = build_lora_mm(model.layers[il].wo, cur);
  11119. if (model.layers[il].wo_scale) {
  11120. cur = ggml_mul(ctx0, cur, model.layers[il].wo_scale);
  11121. }
  11122. if (model.layers[il].bo) {
  11123. cur = ggml_add(ctx0, cur, model.layers[il].bo);
  11124. }
  11125. cb(cur, "attn_o_out", il);
  11126. }
  11127. if (il == n_layer - 1 && inp_out_ids) {
  11128. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  11129. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  11130. }
  11131. ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  11132. cb(ffn_inp, "ffn_inp", il);
  11133. // feed-forward forward
  11134. cur = build_norm(ffn_inp,
  11135. model.layers[il].ffn_norm, NULL,
  11136. LLM_NORM_RMS, il);
  11137. cb(cur, "ffn_norm", il);
  11138. cur = build_ffn(cur,
  11139. model.layers[il].ffn_up, NULL, model.layers[il].ffn_up_scale,
  11140. model.layers[il].ffn_gate, NULL, model.layers[il].ffn_gate_scale,
  11141. NULL, NULL, NULL,
  11142. NULL,
  11143. LLM_FFN_SILU, LLM_FFN_PAR, il);
  11144. cb(cur, "ffn_sub_out", il);
  11145. cur = build_norm(cur,
  11146. model.layers[il].ffn_sub_norm, NULL,
  11147. LLM_NORM_RMS, il);
  11148. cb(cur, "ffn_sub_norm", il);
  11149. cur = build_lora_mm(model.layers[il].ffn_down, cur);
  11150. if (model.layers[il].ffn_down_scale) {
  11151. cur = ggml_mul(ctx0, cur, model.layers[il].ffn_down_scale);
  11152. }
  11153. cb(cur, "ffn_down", il);
  11154. cur = ggml_add(ctx0, cur, ffn_inp);
  11155. cb(cur, "l_out", il);
  11156. // input for next layer
  11157. inpL = cur;
  11158. }
  11159. cur = inpL;
  11160. cur = build_norm(cur,
  11161. model.output_norm, NULL,
  11162. LLM_NORM_RMS, -1);
  11163. cb(cur, "result_norm", -1);
  11164. res->t_embd = cur;
  11165. // lm_head
  11166. // FIXME: do not use model.tok_embd directly, duplicate as model.output
  11167. cur = build_lora_mm(model.tok_embd, cur);
  11168. cb(cur, "result_output", -1);
  11169. res->t_logits = cur;
  11170. ggml_build_forward_expand(gf, cur);
  11171. }
  11172. };
  11173. struct llm_build_t5_enc : public llm_graph_context {
  11174. llm_build_t5_enc(const llama_model & model, const llm_graph_params & params) : llm_graph_context(params) {
  11175. const int64_t n_embd_head = hparams.n_embd_head_v;
  11176. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  11177. ggml_tensor * cur;
  11178. ggml_tensor * inpL;
  11179. inpL = build_inp_embd(model.tok_embd);
  11180. ggml_tensor * pos_bucket_enc = build_inp_pos_bucket_enc();
  11181. auto * inp_attn = build_attn_inp_no_cache();
  11182. ggml_tensor * inp_out_ids = build_inp_out_ids();
  11183. for (int il = 0; il < n_layer; ++il) {
  11184. ggml_tensor * inpSA = inpL;
  11185. // norm
  11186. cur = build_norm(inpL,
  11187. model.layers[il].attn_norm_enc, NULL,
  11188. LLM_NORM_RMS, il);
  11189. cb(cur, "attn_norm", il);
  11190. // self-attention
  11191. {
  11192. ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq_enc, cur);
  11193. cb(Qcur, "Qcur", il);
  11194. ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk_enc, cur);
  11195. cb(Kcur, "Kcur", il);
  11196. ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv_enc, cur);
  11197. cb(Vcur, "Vcur", il);
  11198. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  11199. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  11200. Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
  11201. ggml_tensor * attn_rel_b = model.layers[il].attn_rel_b_enc ? model.layers[il].attn_rel_b_enc : model.layers[0].attn_rel_b_enc;
  11202. ggml_tensor * kq_b = build_pos_bias(pos_bucket_enc, attn_rel_b);
  11203. cur = build_attn(inp_attn,
  11204. model.layers[il].wo_enc, nullptr,
  11205. Qcur, Kcur, Vcur, kq_b, nullptr, nullptr, 1.0f, il);
  11206. cb(cur, "kqv_out", il);
  11207. }
  11208. if (il == n_layer - 1 && inp_out_ids) {
  11209. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  11210. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  11211. }
  11212. ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  11213. cb(ffn_inp, "ffn_inp", il);
  11214. // feed-forward network
  11215. {
  11216. cur = build_norm(ffn_inp,
  11217. model.layers[il].ffn_norm_enc, NULL,
  11218. LLM_NORM_RMS, il);
  11219. cb(cur, "ffn_norm", il);
  11220. // T5 uses relu, flan-T5 uses gelu-gated
  11221. cur = build_ffn(cur,
  11222. model.layers[il].ffn_up_enc, NULL, NULL,
  11223. model.layers[il].ffn_gate_enc, NULL, NULL,
  11224. model.layers[il].ffn_down_enc, NULL, NULL,
  11225. NULL,
  11226. model.layers[il].ffn_gate_enc ? LLM_FFN_GELU : LLM_FFN_RELU,
  11227. model.layers[il].ffn_gate_enc ? LLM_FFN_PAR : LLM_FFN_SEQ,
  11228. il);
  11229. cb(cur, "ffn_out", il);
  11230. }
  11231. cur = ggml_add(ctx0, cur, ffn_inp);
  11232. cb(cur, "ffn_out", il);
  11233. cur = build_cvec(cur, il);
  11234. cb(cur, "l_out", il);
  11235. // input for next layer
  11236. inpL = cur;
  11237. }
  11238. cur = inpL;
  11239. cb(cur, "result_embd", -1);
  11240. cur = build_norm(cur,
  11241. model.output_norm_enc, NULL,
  11242. LLM_NORM_RMS, -1);
  11243. cb(cur, "result_norm", -1);
  11244. res->t_embd = cur;
  11245. ggml_build_forward_expand(gf, cur);
  11246. }
  11247. };
  11248. struct llm_build_t5_dec : public llm_graph_context {
  11249. llm_build_t5_dec(const llama_model & model, const llm_graph_params & params) : llm_graph_context(params) {
  11250. const int64_t n_embd_head = hparams.n_embd_head_v;
  11251. //const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
  11252. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  11253. ggml_tensor * cur;
  11254. ggml_tensor * inpL;
  11255. inpL = build_inp_embd(model.tok_embd);
  11256. ggml_tensor * embd_enc = build_inp_cross_embd();
  11257. ggml_tensor * pos_bucket_dec = build_inp_pos_bucket_dec();
  11258. const int64_t n_outputs_enc = embd_enc->ne[1];
  11259. auto * inp_attn_self = build_attn_inp_kv();
  11260. auto * inp_attn_cross = build_attn_inp_cross();
  11261. ggml_tensor * inp_out_ids = build_inp_out_ids();
  11262. const int64_t dec_n_layer = hparams.dec_n_layer;
  11263. for (int il = 0; il < dec_n_layer; ++il) {
  11264. ggml_tensor * inpSA = inpL;
  11265. // norm
  11266. cur = build_norm(inpL,
  11267. model.layers[il].attn_norm, NULL,
  11268. LLM_NORM_RMS, il);
  11269. cb(cur, "attn_norm", il);
  11270. // self-attention
  11271. {
  11272. ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
  11273. cb(Qcur, "Qcur", il);
  11274. ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
  11275. cb(Kcur, "Kcur", il);
  11276. ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
  11277. cb(Vcur, "Vcur", il);
  11278. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  11279. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  11280. Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
  11281. ggml_tensor * attn_rel_b = model.layers[il].attn_rel_b ? model.layers[il].attn_rel_b : model.layers[0].attn_rel_b;
  11282. ggml_tensor * kq_b = build_pos_bias(pos_bucket_dec, attn_rel_b);
  11283. cur = build_attn(inp_attn_self,
  11284. model.layers[il].wo, model.layers[il].bo,
  11285. Qcur, Kcur, Vcur, kq_b, nullptr, nullptr, 1.0f, il);
  11286. cb(cur, "kqv_out", il);
  11287. }
  11288. cur = ggml_add(ctx0, cur, inpSA);
  11289. cb(cur, "cross_inp", il);
  11290. ggml_tensor * inpCA = cur;
  11291. // norm
  11292. cur = build_norm(cur,
  11293. model.layers[il].attn_norm_cross, NULL,
  11294. LLM_NORM_RMS, il);
  11295. cb(cur, "attn_norm_cross", il);
  11296. // cross-attention
  11297. {
  11298. ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq_cross, cur);
  11299. cb(Qcur, "Qcur", il);
  11300. ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk_cross, embd_enc);
  11301. cb(Kcur, "Kcur", il);
  11302. ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv_cross, embd_enc);
  11303. cb(Vcur, "Vcur", il);
  11304. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  11305. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_outputs_enc);
  11306. Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_outputs_enc);
  11307. cur = build_attn(inp_attn_cross,
  11308. model.layers[il].wo_cross, nullptr,
  11309. Qcur, Kcur, Vcur, nullptr, nullptr, nullptr, 1.0f, il);
  11310. cb(cur, "kqv_out", il);
  11311. //ggml_tensor * q = ggml_permute(ctx0, Qcur, 0, 2, 1, 3);
  11312. //ggml_tensor * k = ggml_cont(ctx0, ggml_permute(ctx0, Kcur, 0, 2, 1, 3));
  11313. //ggml_tensor * kq = ggml_mul_mat(ctx0, k, q);
  11314. //cb(kq, "kq", il);
  11315. //kq = ggml_soft_max_ext(ctx0, kq, KQ_mask_cross, 1.0f, hparams.f_max_alibi_bias);
  11316. //cb(kq, "kq_soft_max_ext", il);
  11317. //ggml_tensor * v = ggml_cont(ctx0, ggml_transpose(ctx0, ggml_reshape_2d(ctx0, Vcur, n_embd_gqa, n_outputs_enc)));
  11318. //cb(v, "v", il);
  11319. //ggml_tensor * kqv = ggml_mul_mat(ctx0, ggml_reshape_3d(ctx0, v, n_outputs_enc, n_embd_head, n_head_kv), kq);
  11320. //cb(kqv, "kqv", il);
  11321. //ggml_tensor * kqv_merged = ggml_permute(ctx0, kqv, 0, 2, 1, 3);
  11322. //cb(kqv_merged, "kqv_merged", il);
  11323. //cur = ggml_cont_2d(ctx0, kqv_merged, n_embd_gqa, n_tokens);
  11324. //cb(cur, "kqv_merged_cont", il);
  11325. //ggml_build_forward_expand(gf, cur);
  11326. //cur = build_lora_mm(model.layers[il].wo_cross, cur);
  11327. //cb(cur, "kqv_out", il);
  11328. }
  11329. if (il == dec_n_layer - 1 && inp_out_ids) {
  11330. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  11331. inpCA = ggml_get_rows(ctx0, inpCA, inp_out_ids);
  11332. }
  11333. ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpCA);
  11334. cb(ffn_inp, "ffn_inp", il);
  11335. // feed-forward network
  11336. {
  11337. cur = build_norm(ffn_inp,
  11338. model.layers[il].ffn_norm, NULL,
  11339. LLM_NORM_RMS, il);
  11340. cb(cur, "ffn_norm", il);
  11341. // T5 uses relu, flan-T5 uses gelu-gated
  11342. cur = build_ffn(cur,
  11343. model.layers[il].ffn_up, NULL, NULL,
  11344. model.layers[il].ffn_gate, NULL, NULL,
  11345. model.layers[il].ffn_down, NULL, NULL,
  11346. NULL,
  11347. model.layers[il].ffn_gate ? LLM_FFN_GELU : LLM_FFN_RELU,
  11348. model.layers[il].ffn_gate ? LLM_FFN_PAR : LLM_FFN_SEQ,
  11349. il);
  11350. cb(cur, "ffn_out", il);
  11351. }
  11352. cur = ggml_add(ctx0, cur, ffn_inp);
  11353. cb(cur, "ffn_out", il);
  11354. cur = build_cvec(cur, il);
  11355. cb(cur, "l_out", il);
  11356. // input for next layer
  11357. inpL = cur;
  11358. }
  11359. cur = inpL;
  11360. cb(cur, "result_embd", -1);
  11361. cur = build_norm(cur,
  11362. model.output_norm, NULL,
  11363. LLM_NORM_RMS, -1);
  11364. cb(cur, "result_norm", -1);
  11365. res->t_embd = cur;
  11366. // lm_head
  11367. cur = build_lora_mm(model.output, cur);
  11368. cb(cur, "result_output", -1);
  11369. res->t_logits = cur;
  11370. ggml_build_forward_expand(gf, cur);
  11371. }
  11372. };
  11373. struct llm_build_jais : public llm_graph_context {
  11374. llm_build_jais(const llama_model & model, const llm_graph_params & params) : llm_graph_context(params) {
  11375. const int64_t n_embd_head = hparams.n_embd_head_v;
  11376. const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
  11377. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  11378. ggml_tensor * cur;
  11379. ggml_tensor * inpL;
  11380. inpL = build_inp_embd(model.tok_embd);
  11381. auto * inp_attn = build_attn_inp_kv();
  11382. ggml_tensor * inp_out_ids = build_inp_out_ids();
  11383. for (int il = 0; il < n_layer; ++il) {
  11384. cur = build_norm(inpL,
  11385. model.layers[il].attn_norm,
  11386. model.layers[il].attn_norm_b,
  11387. LLM_NORM, il);
  11388. cb(cur, "attn_norm", il);
  11389. // self-attention
  11390. {
  11391. cur = build_lora_mm(model.layers[il].wqkv, cur);
  11392. cb(cur, "wqkv", il);
  11393. cur = ggml_add(ctx0, cur, model.layers[il].bqkv);
  11394. cb(cur, "bqkv", il);
  11395. ggml_tensor * Qcur = ggml_view_3d(ctx0, cur, n_embd_head, n_head, n_tokens, n_embd_head*sizeof(float), cur->nb[1], 0*cur->nb[0]*(n_embd));
  11396. ggml_tensor * Kcur = ggml_view_3d(ctx0, cur, n_embd_head, n_head_kv, n_tokens, n_embd_head*sizeof(float), cur->nb[1], 1*cur->nb[0]*(n_embd));
  11397. ggml_tensor * Vcur = ggml_view_3d(ctx0, cur, n_embd_head, n_head_kv, n_tokens, n_embd_head*sizeof(float), cur->nb[1], 1*cur->nb[0]*(n_embd + n_embd_gqa));
  11398. cb(Qcur, "Qcur", il);
  11399. cb(Kcur, "Kcur", il);
  11400. cb(Vcur, "Vcur", il);
  11401. cur = build_attn(inp_attn,
  11402. model.layers[il].wo, model.layers[il].bo,
  11403. Qcur, Kcur, Vcur, nullptr, nullptr, nullptr, 1.0f/float(n_embd_head), il);
  11404. }
  11405. if (il == n_layer - 1 && inp_out_ids) {
  11406. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  11407. inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
  11408. }
  11409. // add the input
  11410. ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpL);
  11411. cb(ffn_inp, "ffn_inp", il);
  11412. // FF
  11413. {
  11414. cur = build_norm(ffn_inp,
  11415. model.layers[il].ffn_norm,
  11416. model.layers[il].ffn_norm_b,
  11417. LLM_NORM, il);
  11418. cb(cur, "ffn_norm", il);
  11419. cur = build_ffn(cur,
  11420. model.layers[il].ffn_up, model.layers[il].ffn_up_b, NULL,
  11421. model.layers[il].ffn_gate, model.layers[il].ffn_gate_b, NULL,
  11422. model.layers[il].ffn_down, model.layers[il].ffn_down_b, NULL,
  11423. NULL,
  11424. LLM_FFN_SILU, LLM_FFN_PAR, il);
  11425. cb(cur, "ffn_out", il);
  11426. }
  11427. inpL = ggml_add(ctx0, cur, ffn_inp);
  11428. cb(inpL, "l_out", il);
  11429. }
  11430. cur = build_norm(inpL,
  11431. model.output_norm,
  11432. model.output_norm_b,
  11433. LLM_NORM, -1);
  11434. cb(cur, "result_norm", -1);
  11435. res->t_embd = cur;
  11436. cur = build_lora_mm(model.output, cur);
  11437. cb(cur, "result_output", -1);
  11438. res->t_logits = cur;
  11439. ggml_build_forward_expand(gf, cur);
  11440. }
  11441. };
  11442. struct llm_build_chatglm : public llm_graph_context {
  11443. llm_build_chatglm(const llama_model & model, const llm_graph_params & params) : llm_graph_context(params) {
  11444. const int64_t n_embd_head = hparams.n_embd_head_v;
  11445. const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
  11446. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  11447. ggml_tensor * cur;
  11448. ggml_tensor * inpL;
  11449. inpL = build_inp_embd(model.tok_embd);
  11450. // inp_pos - contains the positions
  11451. ggml_tensor * inp_pos = build_inp_pos();
  11452. auto * inp_attn = build_attn_inp_kv();
  11453. ggml_tensor * inp_out_ids = build_inp_out_ids();
  11454. for (int il = 0; il < n_layer; ++il) {
  11455. ggml_tensor * inpSA = inpL;
  11456. cur = build_norm(inpL,
  11457. model.layers[il].attn_norm,
  11458. NULL,
  11459. LLM_NORM_RMS, il);
  11460. cb(cur, "attn_norm", il);
  11461. // self-attention
  11462. {
  11463. ggml_tensor * Qcur = nullptr;
  11464. ggml_tensor * Kcur = nullptr;
  11465. ggml_tensor * Vcur = nullptr;
  11466. if (model.layers[il].wqkv == nullptr) {
  11467. Qcur = build_lora_mm(model.layers[il].wq, cur);
  11468. if (model.layers[il].bq) {
  11469. Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
  11470. }
  11471. Kcur = build_lora_mm(model.layers[il].wk, cur);
  11472. if (model.layers[il].bk) {
  11473. Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
  11474. }
  11475. Vcur = build_lora_mm(model.layers[il].wv, cur);
  11476. if (model.layers[il].bv) {
  11477. Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
  11478. }
  11479. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  11480. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  11481. Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
  11482. } else {
  11483. cur = build_lora_mm(model.layers[il].wqkv, cur);
  11484. cb(cur, "wqkv", il);
  11485. if (model.layers[il].bqkv) {
  11486. cur = ggml_add(ctx0, cur, model.layers[il].bqkv);
  11487. cb(cur, "bqkv", il);
  11488. }
  11489. Qcur = ggml_view_3d(ctx0, cur, n_embd_head, n_head, n_tokens, n_embd_head*sizeof(float), cur->nb[1], 0*sizeof(float)*(n_embd));
  11490. Kcur = ggml_view_3d(ctx0, cur, n_embd_head, n_head_kv, n_tokens, n_embd_head*sizeof(float), cur->nb[1], 1*sizeof(float)*(n_embd));
  11491. Vcur = ggml_view_3d(ctx0, cur, n_embd_head, n_head_kv, n_tokens, n_embd_head*sizeof(float), cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa));
  11492. }
  11493. //printf("freq_base: %f freq_scale: %f ext_factor: %f attn_factor: %f\n", freq_base, freq_scale, ext_factor, attn_factor);
  11494. Qcur = ggml_rope_ext(
  11495. ctx0, Qcur, inp_pos, nullptr,
  11496. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  11497. ext_factor, attn_factor, beta_fast, beta_slow
  11498. );
  11499. Kcur = ggml_rope_ext(
  11500. ctx0, Kcur, inp_pos, nullptr,
  11501. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  11502. ext_factor, attn_factor, beta_fast, beta_slow
  11503. );
  11504. cb(Qcur, "Qcur", il);
  11505. cb(Kcur, "Kcur", il);
  11506. cb(Vcur, "Vcur", il);
  11507. cur = build_attn(inp_attn,
  11508. model.layers[il].wo, NULL,
  11509. Qcur, Kcur, Vcur, nullptr, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
  11510. }
  11511. if (il == n_layer - 1 && inp_out_ids) {
  11512. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  11513. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  11514. }
  11515. // Add the input
  11516. ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  11517. cb(ffn_inp, "ffn_inp", il);
  11518. // FF
  11519. {
  11520. cur = build_norm(ffn_inp,
  11521. model.layers[il].ffn_norm,
  11522. NULL,
  11523. LLM_NORM_RMS, il);
  11524. cb(cur, "ffn_norm", il);
  11525. cur = build_ffn(cur,
  11526. model.layers[il].ffn_up, NULL, NULL,
  11527. NULL, NULL, NULL,
  11528. model.layers[il].ffn_down, NULL, NULL,
  11529. NULL,
  11530. LLM_FFN_SWIGLU, LLM_FFN_SEQ, il);
  11531. cb(cur, "ffn_out", il);
  11532. }
  11533. inpL = ggml_add(ctx0, cur, ffn_inp);
  11534. cb(inpL, "l_out", il);
  11535. }
  11536. cur = build_norm(inpL,
  11537. model.output_norm,
  11538. NULL,
  11539. LLM_NORM_RMS, -1);
  11540. cb(cur, "result_norm", -1);
  11541. res->t_embd = cur;
  11542. cur = build_lora_mm(model.output, cur);
  11543. cb(cur, "result_output", -1);
  11544. res->t_logits = cur;
  11545. ggml_build_forward_expand(gf, cur);
  11546. }
  11547. };
  11548. struct llm_build_glm4 : public llm_graph_context {
  11549. llm_build_glm4(const llama_model & model, const llm_graph_params & params) : llm_graph_context(params) {
  11550. const int64_t n_embd_head = hparams.n_embd_head_v;
  11551. const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
  11552. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  11553. ggml_tensor * cur;
  11554. ggml_tensor * inpL;
  11555. inpL = build_inp_embd(model.tok_embd);
  11556. // inp_pos - contains the positions
  11557. ggml_tensor * inp_pos = build_inp_pos();
  11558. auto * inp_attn = build_attn_inp_kv();
  11559. ggml_tensor * inp_out_ids = build_inp_out_ids();
  11560. for (int il = 0; il < n_layer; ++il) {
  11561. ggml_tensor * inpSA = inpL;
  11562. // Pre-attention norm
  11563. cur = build_norm(inpL,
  11564. model.layers[il].attn_norm,
  11565. NULL,
  11566. LLM_NORM_RMS, il);
  11567. cb(cur, "attn_norm", il);
  11568. // self-attention
  11569. {
  11570. ggml_tensor * Qcur = nullptr;
  11571. ggml_tensor * Kcur = nullptr;
  11572. ggml_tensor * Vcur = nullptr;
  11573. if (model.layers[il].wqkv == nullptr) {
  11574. Qcur = build_lora_mm(model.layers[il].wq, cur);
  11575. if (model.layers[il].bq) {
  11576. Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
  11577. }
  11578. Kcur = build_lora_mm(model.layers[il].wk, cur);
  11579. if (model.layers[il].bk) {
  11580. Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
  11581. }
  11582. Vcur = build_lora_mm(model.layers[il].wv, cur);
  11583. if (model.layers[il].bv) {
  11584. Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
  11585. }
  11586. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  11587. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  11588. Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
  11589. } else {
  11590. cur = build_lora_mm(model.layers[il].wqkv, cur);
  11591. cb(cur, "wqkv", il);
  11592. if (model.layers[il].bqkv) {
  11593. cur = ggml_add(ctx0, cur, model.layers[il].bqkv);
  11594. cb(cur, "bqkv", il);
  11595. }
  11596. Qcur = ggml_view_3d(ctx0, cur, n_embd_head, n_head, n_tokens, n_embd_head*sizeof(float), cur->nb[1], 0*sizeof(float)*(n_embd));
  11597. Kcur = ggml_view_3d(ctx0, cur, n_embd_head, n_head_kv, n_tokens, n_embd_head*sizeof(float), cur->nb[1], 1*sizeof(float)*(n_embd));
  11598. Vcur = ggml_view_3d(ctx0, cur, n_embd_head, n_head_kv, n_tokens, n_embd_head*sizeof(float), cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa));
  11599. }
  11600. Qcur = ggml_rope_ext(
  11601. ctx0, Qcur, inp_pos, nullptr,
  11602. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  11603. ext_factor, attn_factor, beta_fast, beta_slow
  11604. );
  11605. Kcur = ggml_rope_ext(
  11606. ctx0, Kcur, inp_pos, nullptr,
  11607. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  11608. ext_factor, attn_factor, beta_fast, beta_slow
  11609. );
  11610. cb(Qcur, "Qcur", il);
  11611. cb(Kcur, "Kcur", il);
  11612. cb(Vcur, "Vcur", il);
  11613. cur = build_attn(inp_attn,
  11614. model.layers[il].wo, NULL,
  11615. Qcur, Kcur, Vcur, nullptr, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
  11616. }
  11617. if (il == n_layer - 1 && inp_out_ids) {
  11618. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  11619. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  11620. }
  11621. // Post-attention norm (new!)
  11622. cur = build_norm(cur,
  11623. model.layers[il].attn_post_norm,
  11624. NULL,
  11625. LLM_NORM_RMS, il);
  11626. cb(cur, "post_attn_norm", il);
  11627. // Add the input (residual connection after post-attention norm)
  11628. ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  11629. cb(ffn_inp, "ffn_inp", il);
  11630. // FF
  11631. {
  11632. // Pre-MLP norm
  11633. cur = build_norm(ffn_inp,
  11634. model.layers[il].ffn_norm,
  11635. NULL,
  11636. LLM_NORM_RMS, il);
  11637. cb(cur, "ffn_norm", il);
  11638. // MLP
  11639. cur = build_ffn(cur,
  11640. model.layers[il].ffn_up, NULL, NULL,
  11641. NULL, NULL, NULL,
  11642. model.layers[il].ffn_down, NULL, NULL,
  11643. NULL,
  11644. LLM_FFN_SWIGLU, LLM_FFN_SEQ, il);
  11645. cb(cur, "ffn_out", il);
  11646. // Post-MLP norm
  11647. cur = build_norm(cur,
  11648. model.layers[il].ffn_post_norm,
  11649. NULL,
  11650. LLM_NORM_RMS, il);
  11651. cb(cur, "post_mlp_norm", il);
  11652. }
  11653. // Add residual connection after post-MLP norm
  11654. inpL = ggml_add(ctx0, cur, ffn_inp);
  11655. cb(inpL, "l_out", il);
  11656. }
  11657. // Final norm
  11658. cur = build_norm(inpL,
  11659. model.output_norm,
  11660. NULL,
  11661. LLM_NORM_RMS, -1);
  11662. cb(cur, "result_norm", -1);
  11663. res->t_embd = cur;
  11664. // Output projection
  11665. cur = build_lora_mm(model.output, cur);
  11666. cb(cur, "result_output", -1);
  11667. res->t_logits = cur;
  11668. ggml_build_forward_expand(gf, cur);
  11669. }
  11670. };
  11671. struct llm_build_glm4_moe : public llm_graph_context {
  11672. llm_build_glm4_moe(const llama_model & model, const llm_graph_params & params) : llm_graph_context(params) {
  11673. const int64_t n_embd_head = hparams.n_embd_head_v;
  11674. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  11675. ggml_tensor * cur;
  11676. ggml_tensor * inpL;
  11677. inpL = build_inp_embd(model.tok_embd);
  11678. // inp_pos - contains the positions
  11679. ggml_tensor * inp_pos = build_inp_pos();
  11680. auto * inp_attn = build_attn_inp_kv();
  11681. ggml_tensor * inp_out_ids = build_inp_out_ids();
  11682. // Only process up to last layer (skip final NextN layer)
  11683. // Final layer tensors are loaded but not processed in forward pass
  11684. const int n_transformer_layers = n_layer - hparams.nextn_predict_layers;
  11685. for (int il = 0; il < n_transformer_layers; ++il) {
  11686. ggml_tensor * inpSA = inpL;
  11687. // Pre-attention norm
  11688. cur = build_norm(inpL, model.layers[il].attn_norm, NULL, LLM_NORM_RMS, il);
  11689. cb(cur, "attn_norm", il);
  11690. // self-attention
  11691. {
  11692. ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
  11693. if (model.layers[il].bq) {
  11694. Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
  11695. }
  11696. cb(Qcur, "Qcur", il);
  11697. ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
  11698. if (model.layers[il].bk) {
  11699. Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
  11700. }
  11701. cb(Kcur, "Kcur", il);
  11702. ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
  11703. if (model.layers[il].bv) {
  11704. Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
  11705. }
  11706. cb(Vcur, "Vcur", il);
  11707. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  11708. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  11709. Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
  11710. // Apply Q/K norm if available (GLM-4.5 355B variant)
  11711. if (model.layers[il].attn_q_norm) {
  11712. Qcur = build_norm(Qcur, model.layers[il].attn_q_norm, NULL, LLM_NORM_RMS, il);
  11713. cb(Qcur, "Qcur_normed", il);
  11714. }
  11715. if (model.layers[il].attn_k_norm) {
  11716. Kcur = build_norm(Kcur, model.layers[il].attn_k_norm, NULL, LLM_NORM_RMS, il);
  11717. cb(Kcur, "Kcur_normed", il);
  11718. }
  11719. Qcur = ggml_rope_ext(
  11720. ctx0, Qcur, inp_pos, nullptr,
  11721. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  11722. ext_factor, attn_factor, beta_fast, beta_slow
  11723. );
  11724. Kcur = ggml_rope_ext(
  11725. ctx0, Kcur, inp_pos, nullptr,
  11726. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  11727. ext_factor, attn_factor, beta_fast, beta_slow
  11728. );
  11729. cb(Qcur, "Qcur", il);
  11730. cb(Kcur, "Kcur", il);
  11731. cb(Vcur, "Vcur", il);
  11732. cur = build_attn(inp_attn,
  11733. model.layers[il].wo, NULL,
  11734. Qcur, Kcur, Vcur, nullptr, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
  11735. }
  11736. if (il == n_transformer_layers - 1 && inp_out_ids) {
  11737. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  11738. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  11739. }
  11740. ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  11741. cb(ffn_inp, "ffn_inp", il);
  11742. // Post-attention norm
  11743. cur = build_norm(ffn_inp, model.layers[il].attn_post_norm, NULL, LLM_NORM_RMS, il);
  11744. cb(cur, "post_attn_norm", il);
  11745. // Check if this is a dense layer (n_layer_dense_lead=1, so layer 0 is dense)
  11746. if (static_cast<uint32_t>(il) < hparams.n_layer_dense_lead) {
  11747. // Dense FFN layer
  11748. cur = build_ffn(cur,
  11749. model.layers[il].ffn_up, NULL, NULL,
  11750. model.layers[il].ffn_gate, NULL, NULL,
  11751. model.layers[il].ffn_down, NULL, NULL,
  11752. NULL,
  11753. LLM_FFN_SILU, LLM_FFN_PAR, il);
  11754. cb(cur, "ffn_out", il);
  11755. } else {
  11756. // Process routed experts using existing MoE infrastructure
  11757. ggml_tensor * routed_out = build_moe_ffn(cur,
  11758. model.layers[il].ffn_gate_inp,
  11759. model.layers[il].ffn_up_exps,
  11760. model.layers[il].ffn_gate_exps,
  11761. model.layers[il].ffn_down_exps,
  11762. model.layers[il].ffn_exp_probs_b,
  11763. n_expert, n_expert_used,
  11764. LLM_FFN_SILU, hparams.expert_weights_norm,
  11765. true, hparams.expert_weights_scale,
  11766. (llama_expert_gating_func_type) hparams.expert_gating_func,
  11767. il);
  11768. cb(routed_out, "ffn_moe_out", il);
  11769. // Process shared expert on original input
  11770. ggml_tensor * shared_out = build_ffn(cur,
  11771. model.layers[il].ffn_up_shexp, NULL, NULL,
  11772. model.layers[il].ffn_gate_shexp, NULL, NULL,
  11773. model.layers[il].ffn_down_shexp, NULL, NULL,
  11774. NULL,
  11775. LLM_FFN_SILU, LLM_FFN_PAR, il);
  11776. cb(shared_out, "ffn_shexp_out", il);
  11777. // Final output: routed_output + shared_output
  11778. cur = ggml_add(ctx0, routed_out, shared_out);
  11779. cb(cur, "ffn_out", il);
  11780. }
  11781. cur = ggml_add(ctx0, cur, ffn_inp);
  11782. cur = build_cvec(cur, il);
  11783. cb(cur, "l_out", il);
  11784. // input for next layer
  11785. inpL = cur;
  11786. }
  11787. cur = inpL;
  11788. cur = build_norm(cur, model.output_norm, NULL, LLM_NORM_RMS, -1);
  11789. cb(cur, "result_norm", -1);
  11790. res->t_embd = cur;
  11791. // lm_head
  11792. cur = build_lora_mm(model.output, cur);
  11793. cb(cur, "result_output", -1);
  11794. res->t_logits = cur;
  11795. ggml_build_forward_expand(gf, cur);
  11796. }
  11797. };
  11798. struct llm_build_nemotron : public llm_graph_context {
  11799. llm_build_nemotron(const llama_model & model, const llm_graph_params & params) : llm_graph_context(params) {
  11800. const int64_t n_embd_head = hparams.n_embd_head_v;
  11801. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  11802. //GGML_ASSERT(n_embd_head == hparams.n_rot);
  11803. ggml_tensor * cur;
  11804. ggml_tensor * inpL;
  11805. inpL = build_inp_embd(model.tok_embd);
  11806. // inp_pos - contains the positions
  11807. ggml_tensor * inp_pos = build_inp_pos();
  11808. auto * inp_attn = build_attn_inp_kv();
  11809. ggml_tensor * inp_out_ids = build_inp_out_ids();
  11810. for (int il = 0; il < n_layer; ++il) {
  11811. ggml_tensor * inpSA = inpL;
  11812. // norm
  11813. cur = build_norm(inpL,
  11814. model.layers[il].attn_norm,
  11815. model.layers[il].attn_norm_b,
  11816. LLM_NORM, il);
  11817. cb(cur, "attn_norm", il);
  11818. // self-attention
  11819. {
  11820. // compute Q and K and RoPE them
  11821. ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
  11822. cb(Qcur, "Qcur", il);
  11823. if (model.layers[il].bq) {
  11824. Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
  11825. cb(Qcur, "Qcur", il);
  11826. }
  11827. ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
  11828. cb(Kcur, "Kcur", il);
  11829. if (model.layers[il].bk) {
  11830. Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
  11831. cb(Kcur, "Kcur", il);
  11832. }
  11833. ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
  11834. cb(Vcur, "Vcur", il);
  11835. if (model.layers[il].bv) {
  11836. Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
  11837. cb(Vcur, "Vcur", il);
  11838. }
  11839. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  11840. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  11841. Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
  11842. Qcur = ggml_rope_ext(
  11843. ctx0, Qcur, inp_pos, nullptr,
  11844. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  11845. ext_factor, attn_factor, beta_fast, beta_slow
  11846. );
  11847. Kcur = ggml_rope_ext(
  11848. ctx0, Kcur, inp_pos, nullptr,
  11849. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  11850. ext_factor, attn_factor, beta_fast, beta_slow
  11851. );
  11852. cb(Qcur, "Qcur", il);
  11853. cb(Kcur, "Kcur", il);
  11854. cb(Vcur, "Vcur", il);
  11855. cur = build_attn(inp_attn,
  11856. model.layers[il].wo, model.layers[il].bo,
  11857. Qcur, Kcur, Vcur, nullptr, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
  11858. }
  11859. if (il == n_layer - 1 && inp_out_ids) {
  11860. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  11861. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  11862. }
  11863. ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  11864. cb(ffn_inp, "ffn_inp", il);
  11865. // feed-forward network
  11866. cur = build_norm(ffn_inp,
  11867. model.layers[il].ffn_norm,
  11868. model.layers[il].ffn_norm_b,
  11869. LLM_NORM, il);
  11870. cb(cur, "ffn_norm", il);
  11871. cur = build_ffn(cur,
  11872. model.layers[il].ffn_up, model.layers[il].ffn_up_b, NULL,
  11873. NULL, NULL, NULL,
  11874. model.layers[il].ffn_down, model.layers[il].ffn_down_b, NULL,
  11875. NULL,
  11876. LLM_FFN_RELU_SQR, LLM_FFN_SEQ, il);
  11877. cur = ggml_add(ctx0, cur, ffn_inp);
  11878. cb(cur, "ffn_out", il);
  11879. cur = build_cvec(cur, il);
  11880. cb(cur, "l_out", il);
  11881. // input for next layer
  11882. inpL = cur;
  11883. }
  11884. cur = inpL;
  11885. cur = build_norm(cur,
  11886. model.output_norm, model.output_norm_b,
  11887. LLM_NORM, -1);
  11888. cb(cur, "result_norm", -1);
  11889. res->t_embd = cur;
  11890. // lm_head
  11891. cur = build_lora_mm(model.output, cur);
  11892. cb(cur, "result_output", -1);
  11893. res->t_logits = cur;
  11894. ggml_build_forward_expand(gf, cur);
  11895. }
  11896. };
  11897. struct llm_build_nemotron_h : public llm_graph_context_mamba {
  11898. llm_build_nemotron_h(
  11899. const llama_model & model,
  11900. const llm_graph_params & params) :
  11901. llm_graph_context_mamba(params) {
  11902. const int64_t n_embd_head = hparams.n_embd_head_v;
  11903. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  11904. ggml_tensor * cur;
  11905. ggml_tensor * inpL;
  11906. inpL = build_inp_embd(model.tok_embd);
  11907. ggml_build_forward_expand(gf, inpL);
  11908. auto * inp = build_inp_mem_hybrid();
  11909. ggml_tensor * inp_out_ids = build_inp_out_ids();
  11910. for (int il = 0; il < n_layer; ++il) {
  11911. struct ggml_tensor * inpSA = inpL;
  11912. // norm
  11913. cur = build_norm(inpL,
  11914. model.layers[il].attn_norm, NULL,
  11915. LLM_NORM_RMS, il);
  11916. cb(cur, "attn_norm", il);
  11917. if (hparams.is_recurrent(il)) {
  11918. // ssm layer //
  11919. cur = build_mamba2_layer(inp->get_recr(), cur, model, ubatch, il);
  11920. } else if (hparams.n_ff(il) == 0) {
  11921. // attention layer //
  11922. cur = build_attention_layer(cur, inp->get_attn(), model, n_embd_head, il);
  11923. } else {
  11924. cur = build_ffn_layer(cur, model, il);
  11925. }
  11926. if (il == n_layer - 1 && inp_out_ids) {
  11927. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  11928. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  11929. }
  11930. // add residual
  11931. cur = ggml_add(ctx0, cur, inpSA);
  11932. cb(cur, "nemotron_h_block_out", il);
  11933. // input for next layer
  11934. inpL = cur;
  11935. }
  11936. cur = inpL;
  11937. cur = build_norm(cur,
  11938. model.output_norm, NULL,
  11939. LLM_NORM_RMS, -1);
  11940. cb(cur, "result_norm", -1);
  11941. res->t_embd = cur;
  11942. // lm_head
  11943. cur = build_lora_mm(model.output, cur);
  11944. cb(cur, "result_output", -1);
  11945. res->t_logits = cur;
  11946. ggml_build_forward_expand(gf, cur);
  11947. }
  11948. ggml_tensor * build_attention_layer(
  11949. ggml_tensor * cur,
  11950. llm_graph_input_attn_kv * inp_attn,
  11951. const llama_model & model,
  11952. const int64_t n_embd_head,
  11953. const int il) {
  11954. // compute Q and K and (optionally) RoPE them
  11955. ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
  11956. cb(Qcur, "Qcur", il);
  11957. if (model.layers[il].bq) {
  11958. Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
  11959. cb(Qcur, "Qcur", il);
  11960. }
  11961. ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
  11962. cb(Kcur, "Kcur", il);
  11963. if (model.layers[il].bk) {
  11964. Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
  11965. cb(Kcur, "Kcur", il);
  11966. }
  11967. ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
  11968. cb(Vcur, "Vcur", il);
  11969. if (model.layers[il].bv) {
  11970. Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
  11971. cb(Vcur, "Vcur", il);
  11972. }
  11973. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, hparams.n_head(il), n_tokens);
  11974. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, hparams.n_head_kv(il), n_tokens);
  11975. Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, hparams.n_head_kv(il), n_tokens);
  11976. cb(Qcur, "Qcur", il);
  11977. cb(Kcur, "Kcur", il);
  11978. cb(Vcur, "Vcur", il);
  11979. const float kq_scale = hparams.f_attention_scale == 0.0f ? 1.0f/sqrtf(float(n_embd_head)) : hparams.f_attention_scale;
  11980. cur = build_attn(inp_attn,
  11981. model.layers[il].wo, model.layers[il].bo,
  11982. Qcur, Kcur, Vcur, nullptr, nullptr, nullptr, kq_scale, il);
  11983. cb(cur, "attn_out", il);
  11984. return cur;
  11985. }
  11986. ggml_tensor * build_ffn_layer(
  11987. ggml_tensor * cur,
  11988. const llama_model & model,
  11989. const int il) {
  11990. cur = build_ffn(cur,
  11991. model.layers[il].ffn_up, model.layers[il].ffn_up_b, NULL,
  11992. NULL, NULL, NULL,
  11993. model.layers[il].ffn_down, model.layers[il].ffn_down_b, NULL,
  11994. NULL,
  11995. LLM_FFN_RELU_SQR, LLM_FFN_PAR, il);
  11996. cb(cur, "ffn_out", il);
  11997. cur = build_cvec(cur, il);
  11998. cb(cur, "l_out", il);
  11999. return cur;
  12000. }
  12001. };
  12002. struct llm_build_exaone : public llm_graph_context {
  12003. llm_build_exaone(const llama_model & model, const llm_graph_params & params) : llm_graph_context(params) {
  12004. const int64_t n_embd_head = hparams.n_embd_head_v;
  12005. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  12006. GGML_ASSERT(n_embd_head == hparams.n_rot);
  12007. ggml_tensor * cur;
  12008. ggml_tensor * inpL;
  12009. inpL = build_inp_embd(model.tok_embd);
  12010. // inp_pos - contains the positions
  12011. ggml_tensor * inp_pos = build_inp_pos();
  12012. auto * inp_attn = build_attn_inp_kv();
  12013. ggml_tensor * inp_out_ids = build_inp_out_ids();
  12014. for (int il = 0; il < n_layer; ++il) {
  12015. ggml_tensor * inpSA = inpL;
  12016. // norm
  12017. cur = build_norm(inpL,
  12018. model.layers[il].attn_norm, NULL,
  12019. LLM_NORM_RMS, il);
  12020. cb(cur, "attn_norm", il);
  12021. // self-attention
  12022. {
  12023. // rope freq factors for llama3; may return nullptr for llama2 and other models
  12024. ggml_tensor * rope_factors = model.get_rope_factors(cparams, il);
  12025. // compute Q and K and RoPE them
  12026. ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
  12027. cb(Qcur, "Qcur", il);
  12028. if (model.layers[il].bq) {
  12029. Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
  12030. cb(Qcur, "Qcur", il);
  12031. }
  12032. ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
  12033. cb(Kcur, "Kcur", il);
  12034. if (model.layers[il].bk) {
  12035. Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
  12036. cb(Kcur, "Kcur", il);
  12037. }
  12038. ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
  12039. cb(Vcur, "Vcur", il);
  12040. if (model.layers[il].bv) {
  12041. Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
  12042. cb(Vcur, "Vcur", il);
  12043. }
  12044. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  12045. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  12046. Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
  12047. Qcur = ggml_rope_ext(
  12048. ctx0, Qcur, inp_pos, rope_factors,
  12049. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  12050. ext_factor, attn_factor, beta_fast, beta_slow
  12051. );
  12052. Kcur = ggml_rope_ext(
  12053. ctx0, Kcur, inp_pos, rope_factors,
  12054. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  12055. ext_factor, attn_factor, beta_fast, beta_slow
  12056. );
  12057. cb(Qcur, "Qcur", il);
  12058. cb(Kcur, "Kcur", il);
  12059. cb(Vcur, "Vcur", il);
  12060. cur = build_attn(inp_attn,
  12061. model.layers[il].wo, model.layers[il].bo,
  12062. Qcur, Kcur, Vcur, nullptr, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
  12063. }
  12064. if (il == n_layer - 1 && inp_out_ids) {
  12065. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  12066. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  12067. }
  12068. ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  12069. cb(ffn_inp, "ffn_inp", il);
  12070. // feed-forward network
  12071. cur = build_norm(ffn_inp,
  12072. model.layers[il].ffn_norm, NULL,
  12073. LLM_NORM_RMS, il);
  12074. cb(cur, "ffn_norm", il);
  12075. cur = build_ffn(cur,
  12076. model.layers[il].ffn_up, NULL, NULL,
  12077. model.layers[il].ffn_gate, NULL, NULL,
  12078. model.layers[il].ffn_down, NULL, NULL,
  12079. NULL,
  12080. LLM_FFN_SILU, LLM_FFN_PAR, il);
  12081. cb(cur, "ffn_out", il);
  12082. cur = ggml_add(ctx0, cur, ffn_inp);
  12083. cb(cur, "ffn_out", il);
  12084. cur = build_cvec(cur, il);
  12085. cb(cur, "l_out", il);
  12086. // input for next layer
  12087. inpL = cur;
  12088. }
  12089. cur = inpL;
  12090. cur = build_norm(cur,
  12091. model.output_norm, NULL,
  12092. LLM_NORM_RMS, -1);
  12093. cb(cur, "result_norm", -1);
  12094. res->t_embd = cur;
  12095. // lm_head
  12096. cur = build_lora_mm(model.output, cur);
  12097. cb(cur, "result_output", -1);
  12098. res->t_logits = cur;
  12099. ggml_build_forward_expand(gf, cur);
  12100. }
  12101. };
  12102. template <bool iswa>
  12103. struct llm_build_exaone4 : public llm_graph_context {
  12104. llm_build_exaone4(const llama_model & model, const llm_graph_params & params) : llm_graph_context(params) {
  12105. const int64_t n_embd_head = hparams.n_embd_head_k;
  12106. GGML_ASSERT(n_embd_head == hparams.n_embd_head_v);
  12107. GGML_ASSERT(n_embd_head == hparams.n_rot);
  12108. ggml_tensor * cur;
  12109. ggml_tensor * inpL;
  12110. inpL = build_inp_embd(model.tok_embd);
  12111. // inp_pos - contains the positions
  12112. ggml_tensor * inp_pos = build_inp_pos();
  12113. using inp_attn_type = std::conditional_t<iswa, llm_graph_input_attn_kv_iswa, llm_graph_input_attn_kv>;
  12114. inp_attn_type * inp_attn = nullptr;
  12115. if constexpr (iswa) {
  12116. inp_attn = build_attn_inp_kv_iswa();
  12117. } else {
  12118. inp_attn = build_attn_inp_kv();
  12119. }
  12120. ggml_tensor * inp_out_ids = build_inp_out_ids();
  12121. for (int il = 0; il < n_layer; ++il) {
  12122. ggml_tensor * inpSA = inpL;
  12123. // use RoPE for SWA layers or non-SWA models
  12124. const bool use_rope = hparams.is_swa(il) || hparams.swa_type == LLAMA_SWA_TYPE_NONE;
  12125. cur = inpL;
  12126. // self-attention
  12127. {
  12128. ggml_tensor * rope_factors = model.get_rope_factors(cparams, il);
  12129. ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
  12130. cb(Qcur, "Qcur", il);
  12131. ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
  12132. cb(Kcur, "Kcur", il);
  12133. ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
  12134. cb(Vcur, "Vcur", il);
  12135. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  12136. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  12137. Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
  12138. Qcur = build_norm(Qcur, model.layers[il].attn_q_norm, NULL, LLM_NORM_RMS, il);
  12139. Kcur = build_norm(Kcur, model.layers[il].attn_k_norm, NULL, LLM_NORM_RMS, il);
  12140. cb(Qcur, "Qcur_normed", il);
  12141. cb(Kcur, "Kcur_normed", il);
  12142. if (use_rope) {
  12143. Qcur = ggml_rope_ext(
  12144. ctx0, Qcur, inp_pos, rope_factors,
  12145. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  12146. ext_factor, attn_factor, beta_fast, beta_slow
  12147. );
  12148. Kcur = ggml_rope_ext(
  12149. ctx0, Kcur, inp_pos, rope_factors,
  12150. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  12151. ext_factor, attn_factor, beta_fast, beta_slow
  12152. );
  12153. }
  12154. cb(Qcur, "Qcur", il);
  12155. cb(Kcur, "Kcur", il);
  12156. cb(Vcur, "Vcur", il);
  12157. cur = build_attn(inp_attn,
  12158. model.layers[il].wo, NULL,
  12159. Qcur, Kcur, Vcur, nullptr, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
  12160. cb(cur, "attn_out", il);
  12161. }
  12162. if (il == n_layer - 1 && inp_out_ids) {
  12163. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  12164. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  12165. }
  12166. cur = build_norm(cur,
  12167. model.layers[il].attn_post_norm, NULL,
  12168. LLM_NORM_RMS, il);
  12169. cb(cur, "attn_post_norm", il);
  12170. ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  12171. cb(ffn_inp, "ffn_inp", il);
  12172. // feed-forward network
  12173. cur = build_ffn(ffn_inp,
  12174. model.layers[il].ffn_up, NULL, NULL,
  12175. model.layers[il].ffn_gate, NULL, NULL,
  12176. model.layers[il].ffn_down, NULL, NULL,
  12177. NULL,
  12178. LLM_FFN_SILU, LLM_FFN_PAR, il);
  12179. cb(cur, "ffn_out", il);
  12180. cur = build_norm(cur,
  12181. model.layers[il].ffn_post_norm, NULL,
  12182. LLM_NORM_RMS, -1);
  12183. cb(cur, "ffn_post_norm", -1);
  12184. cur = ggml_add(ctx0, cur, ffn_inp);
  12185. cur = build_cvec(cur, il);
  12186. cb(cur, "l_out", il);
  12187. // input for next layer
  12188. inpL = cur;
  12189. }
  12190. cur = inpL;
  12191. cur = build_norm(cur,
  12192. model.output_norm, NULL,
  12193. LLM_NORM_RMS, -1);
  12194. cb(cur, "result_norm", -1);
  12195. res->t_embd = cur;
  12196. // lm_head
  12197. cur = build_lora_mm(model.output, cur);
  12198. cb(cur, "result_output", -1);
  12199. res->t_logits = cur;
  12200. ggml_build_forward_expand(gf, cur);
  12201. }
  12202. };
  12203. struct llm_build_rwkv6_base : public llm_graph_context {
  12204. const llama_model & model;
  12205. llm_build_rwkv6_base(const llama_model & model, const llm_graph_params & params) : llm_graph_context(params), model(model) {
  12206. }
  12207. ggml_tensor * build_rwkv6_channel_mix(
  12208. const llama_layer * layer,
  12209. ggml_tensor * cur,
  12210. ggml_tensor * x_prev,
  12211. llm_arch arch) const {
  12212. ggml_tensor * sx = ggml_sub(ctx0, x_prev, cur);
  12213. switch (arch) {
  12214. case LLM_ARCH_RWKV6:
  12215. {
  12216. ggml_tensor * xk = ggml_add(ctx0, ggml_mul(ctx0, sx, layer->channel_mix_lerp_k), cur);
  12217. ggml_tensor * xr = ggml_add(ctx0, ggml_mul(ctx0, sx, layer->channel_mix_lerp_r), cur);
  12218. ggml_tensor * r = ggml_sigmoid(ctx0, build_lora_mm(layer->channel_mix_receptance, xr));
  12219. ggml_tensor * k = ggml_sqr(
  12220. ctx0,
  12221. ggml_relu(
  12222. ctx0,
  12223. build_lora_mm(layer->channel_mix_key, xk)
  12224. )
  12225. );
  12226. cur = ggml_mul(ctx0, r, build_lora_mm(layer->channel_mix_value, k));
  12227. } break;
  12228. default:
  12229. GGML_ABORT("fatal error");
  12230. }
  12231. return cur;
  12232. }
  12233. ggml_tensor * build_rwkv6_time_mix(
  12234. llm_graph_input_rs * inp,
  12235. ggml_tensor * cur,
  12236. ggml_tensor * x_prev,
  12237. const llama_ubatch & ubatch,
  12238. int il) const {
  12239. const auto * mctx_cur = static_cast<const llama_memory_recurrent_context *>(mctx);
  12240. const auto n_tokens = ubatch.n_tokens;
  12241. const auto n_seqs = ubatch.n_seqs;
  12242. const auto n_seq_tokens = ubatch.n_seq_tokens;
  12243. const auto n_embd = hparams.n_embd;
  12244. const auto head_size = hparams.wkv_head_size;
  12245. const auto n_head = n_embd / head_size;
  12246. const auto n_head_kv = hparams.n_head_kv(il);
  12247. const auto kv_head = mctx_cur->get_head();
  12248. const auto & layer = model.layers[il];
  12249. bool is_qrwkv = layer.time_mix_first == nullptr;
  12250. ggml_tensor * sx = ggml_sub(ctx0, x_prev, cur);
  12251. sx = ggml_reshape_2d(ctx0, sx, n_embd, n_tokens);
  12252. cur = ggml_reshape_2d(ctx0, cur, n_embd, n_tokens);
  12253. ggml_tensor * xxx = ggml_add(ctx0, ggml_mul(ctx0, sx, layer.time_mix_lerp_x), cur);
  12254. xxx = ggml_reshape_4d(
  12255. ctx0,
  12256. ggml_tanh(
  12257. ctx0,
  12258. ggml_mul_mat(ctx0, layer.time_mix_w1, xxx)
  12259. ),
  12260. layer.time_mix_w1->ne[1] / 5, 1, 5, n_tokens
  12261. );
  12262. xxx = ggml_cont(ctx0, ggml_permute(ctx0, xxx, 0, 1, 3, 2));
  12263. xxx = ggml_mul_mat(
  12264. ctx0,
  12265. ggml_reshape_4d(
  12266. ctx0,
  12267. layer.time_mix_w2,
  12268. layer.time_mix_w2->ne[0], layer.time_mix_w2->ne[1], 1, 5
  12269. ),
  12270. xxx
  12271. );
  12272. ggml_tensor *xw, *xk, *xv, *xr, *xg;
  12273. if (layer.time_mix_lerp_fused) {
  12274. // fusing these weights makes some performance improvement
  12275. sx = ggml_reshape_3d(ctx0, sx, n_embd, 1, n_tokens);
  12276. cur = ggml_reshape_3d(ctx0, cur, n_embd, 1, n_tokens);
  12277. xxx = ggml_add(ctx0, ggml_mul(ctx0, ggml_add(ctx0, xxx, layer.time_mix_lerp_fused), sx), cur);
  12278. xw = ggml_view_2d(ctx0, xxx, n_embd, n_tokens, xxx->nb[1], 0);
  12279. xk = ggml_view_2d(ctx0, xxx, n_embd, n_tokens, xxx->nb[1], n_embd * n_tokens * sizeof(float));
  12280. xv = ggml_view_2d(ctx0, xxx, n_embd, n_tokens, xxx->nb[1], n_embd * n_tokens * 2 * sizeof(float));
  12281. xr = ggml_view_2d(ctx0, xxx, n_embd, n_tokens, xxx->nb[1], n_embd * n_tokens * 3 * sizeof(float));
  12282. xg = ggml_view_2d(ctx0, xxx, n_embd, n_tokens, xxx->nb[1], n_embd * n_tokens * 4 * sizeof(float));
  12283. } else {
  12284. // for backward compatibility
  12285. xw = ggml_view_2d(ctx0, xxx, n_embd, n_tokens, xxx->nb[1], 0);
  12286. xk = ggml_view_2d(ctx0, xxx, n_embd, n_tokens, xxx->nb[1], n_embd * n_tokens * sizeof(float));
  12287. xv = ggml_view_2d(ctx0, xxx, n_embd, n_tokens, xxx->nb[1], n_embd * n_tokens * 2 * sizeof(float));
  12288. xr = ggml_view_2d(ctx0, xxx, n_embd, n_tokens, xxx->nb[1], n_embd * n_tokens * 3 * sizeof(float));
  12289. xg = ggml_view_2d(ctx0, xxx, n_embd, n_tokens, xxx->nb[1], n_embd * n_tokens * 4 * sizeof(float));
  12290. xw = ggml_add(ctx0, ggml_mul(ctx0, ggml_add(ctx0, xw, layer.time_mix_lerp_w), sx), cur);
  12291. xk = ggml_add(ctx0, ggml_mul(ctx0, ggml_add(ctx0, xk, layer.time_mix_lerp_k), sx), cur);
  12292. xv = ggml_add(ctx0, ggml_mul(ctx0, ggml_add(ctx0, xv, layer.time_mix_lerp_v), sx), cur);
  12293. xr = ggml_add(ctx0, ggml_mul(ctx0, ggml_add(ctx0, xr, layer.time_mix_lerp_r), sx), cur);
  12294. xg = ggml_add(ctx0, ggml_mul(ctx0, ggml_add(ctx0, xg, layer.time_mix_lerp_g), sx), cur);
  12295. }
  12296. ggml_tensor * r = build_lora_mm(layer.time_mix_receptance, xr);
  12297. ggml_tensor * k = build_lora_mm(layer.time_mix_key, xk);
  12298. ggml_tensor * v = build_lora_mm(layer.time_mix_value, xv);
  12299. if (layer.time_mix_receptance_b) {
  12300. r = ggml_add(ctx0, r, layer.time_mix_receptance_b);
  12301. }
  12302. if (layer.time_mix_key_b) {
  12303. k = ggml_add(ctx0, k, layer.time_mix_key_b);
  12304. }
  12305. if (layer.time_mix_value_b) {
  12306. v = ggml_add(ctx0, v, layer.time_mix_value_b);
  12307. }
  12308. ggml_tensor * g = build_lora_mm(layer.time_mix_gate, xg);
  12309. if (is_qrwkv) {
  12310. g = ggml_sigmoid(ctx0, g);
  12311. } else {
  12312. g = ggml_silu(ctx0, g);
  12313. }
  12314. if (n_head_kv != 0 && n_head_kv != n_head) {
  12315. GGML_ASSERT(n_head % n_head_kv == 0);
  12316. k = ggml_reshape_4d(ctx0, k, head_size, 1, n_head_kv, n_tokens);
  12317. v = ggml_reshape_4d(ctx0, v, head_size, 1, n_head_kv, n_tokens);
  12318. ggml_tensor * tmp = ggml_new_tensor_4d(ctx0, GGML_TYPE_F32, head_size, n_head / n_head_kv, n_head_kv, n_tokens);
  12319. k = ggml_repeat(ctx0, k, tmp);
  12320. v = ggml_repeat(ctx0, v, tmp);
  12321. }
  12322. k = ggml_reshape_3d(ctx0, k, head_size, n_head, n_tokens);
  12323. v = ggml_reshape_3d(ctx0, v, head_size, n_head, n_tokens);
  12324. r = ggml_reshape_3d(ctx0, r, head_size, n_head, n_tokens);
  12325. ggml_tensor * w = ggml_mul_mat(
  12326. ctx0,
  12327. layer.time_mix_decay_w2,
  12328. ggml_tanh(
  12329. ctx0,
  12330. ggml_mul_mat(ctx0, layer.time_mix_decay_w1, xw)
  12331. )
  12332. );
  12333. w = ggml_add(ctx0, w, layer.time_mix_decay);
  12334. w = ggml_exp(ctx0, ggml_neg(ctx0, ggml_exp(ctx0, w)));
  12335. w = ggml_reshape_3d(ctx0, w, head_size, n_head, n_tokens);
  12336. if (is_qrwkv) {
  12337. // k = k * (1 - w)
  12338. k = ggml_sub(ctx0, k, ggml_mul(ctx0, k, w));
  12339. }
  12340. ggml_tensor * wkv_state = build_rs(
  12341. inp, mctx_cur->get_s_l(il),
  12342. hparams.n_embd_s(), n_seqs);
  12343. ggml_tensor * wkv_output;
  12344. if (is_qrwkv) {
  12345. wkv_output = ggml_gated_linear_attn(ctx0, k, v, r, w, wkv_state, pow(head_size, -0.5f));
  12346. } else {
  12347. wkv_output = ggml_rwkv_wkv6(ctx0, k, v, r, layer.time_mix_first, w, wkv_state);
  12348. }
  12349. cur = ggml_view_1d(ctx0, wkv_output, n_embd * n_tokens, 0);
  12350. wkv_state = ggml_view_1d(ctx0, wkv_output, n_embd * head_size * n_seqs, n_embd * n_tokens * sizeof(float));
  12351. ggml_build_forward_expand(
  12352. gf,
  12353. ggml_cpy(
  12354. ctx0,
  12355. wkv_state,
  12356. ggml_view_1d(
  12357. ctx0,
  12358. mctx_cur->get_s_l(il),
  12359. hparams.n_embd_s() * n_seqs,
  12360. hparams.n_embd_s() * kv_head * ggml_element_size(mctx_cur->get_s_l(il))
  12361. )
  12362. )
  12363. );
  12364. if (!is_qrwkv) {
  12365. // group norm with head_count groups
  12366. cur = ggml_reshape_3d(ctx0, cur, n_embd / n_head, n_head, n_tokens);
  12367. cur = ggml_norm(ctx0, cur, 64e-5f);
  12368. // Convert back to regular vectors.
  12369. cur = ggml_reshape_2d(ctx0, cur, n_embd, n_tokens);
  12370. cur = ggml_add(ctx0, ggml_mul(ctx0, cur, layer.time_mix_ln), layer.time_mix_ln_b);
  12371. } else {
  12372. cur = ggml_reshape_2d(ctx0, cur, n_embd, n_tokens);
  12373. }
  12374. cur = ggml_mul(ctx0, cur, g);
  12375. cur = build_lora_mm(layer.time_mix_output, cur);
  12376. return ggml_reshape_3d(ctx0, cur, n_embd, n_seq_tokens, n_seqs);
  12377. }
  12378. };
  12379. struct llm_build_rwkv6 : public llm_build_rwkv6_base {
  12380. llm_build_rwkv6(const llama_model & model, const llm_graph_params & params) : llm_build_rwkv6_base(model, params) {
  12381. GGML_ASSERT(hparams.token_shift_count == 2);
  12382. ggml_tensor * cur;
  12383. ggml_tensor * inpL;
  12384. inpL = build_inp_embd(model.tok_embd);
  12385. inpL = build_norm(inpL, model.tok_norm, model.tok_norm_b, LLM_NORM, -1);
  12386. auto * rs_inp = build_rs_inp();
  12387. const auto n_embd = hparams.n_embd;
  12388. const auto n_seq_tokens = ubatch.n_seq_tokens;
  12389. const auto n_seqs = ubatch.n_seqs;
  12390. ggml_tensor * inp_out_ids = build_inp_out_ids();
  12391. for (int il = 0; il < n_layer; ++il) {
  12392. const llama_layer * layer = &model.layers[il];
  12393. inpL = ggml_reshape_3d(ctx0, inpL, n_embd, n_seq_tokens, n_seqs);
  12394. ggml_tensor * token_shift = build_rwkv_token_shift_load(rs_inp, ubatch, il);
  12395. ggml_tensor * att_shift = ggml_view_3d(ctx0, token_shift, n_embd, 1, n_seqs, token_shift->nb[1], token_shift->nb[2], 0);
  12396. ggml_tensor * ffn_shift = ggml_view_3d(ctx0, token_shift, n_embd, 1, n_seqs, token_shift->nb[1], token_shift->nb[2], n_embd * ggml_element_size(token_shift));
  12397. ggml_tensor * att_norm = build_norm(inpL, layer->attn_norm, layer->attn_norm_b, LLM_NORM, il);
  12398. cb(att_norm, "attn_norm", il);
  12399. ggml_tensor * x_prev = ggml_concat(
  12400. ctx0,
  12401. att_shift,
  12402. ggml_view_3d(ctx0, att_norm, n_embd, n_seq_tokens - 1, n_seqs, att_norm->nb[1], att_norm->nb[2], 0),
  12403. 1
  12404. );
  12405. cur = build_rwkv6_time_mix(rs_inp, att_norm, x_prev, ubatch, il);
  12406. ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpL);
  12407. cb(ffn_inp, "ffn_inp", il);
  12408. ggml_tensor * ffn_norm = build_norm(ffn_inp, layer->attn_norm_2, layer->attn_norm_2_b, LLM_NORM, il);
  12409. cb(ffn_norm, "ffn_norm", il);
  12410. x_prev = ggml_concat(
  12411. ctx0,
  12412. ffn_shift,
  12413. ggml_view_3d(ctx0, ffn_norm, n_embd, n_seq_tokens - 1, n_seqs, ffn_norm->nb[1], ffn_norm->nb[2], 0),
  12414. 1
  12415. );
  12416. token_shift = ggml_concat(ctx0,
  12417. ggml_view_3d(ctx0, att_norm, n_embd, 1, n_seqs, att_norm->nb[1], att_norm->nb[2], (n_seq_tokens-1)*n_embd*ggml_element_size(att_norm)),
  12418. ggml_view_3d(ctx0, ffn_norm, n_embd, 1, n_seqs, ffn_norm->nb[1], ffn_norm->nb[2], (n_seq_tokens-1)*n_embd*ggml_element_size(ffn_norm)),
  12419. 1
  12420. );
  12421. ggml_build_forward_expand(gf, build_rwkv_token_shift_store(token_shift, ubatch, il));
  12422. ffn_inp = ggml_reshape_2d(ctx0, ffn_inp, n_embd, n_tokens);
  12423. ffn_norm = ggml_reshape_2d(ctx0, ffn_norm, n_embd, n_tokens);
  12424. x_prev = ggml_reshape_2d(ctx0, x_prev, n_embd, n_tokens);
  12425. cur = ggml_reshape_2d(ctx0, cur, n_embd, n_tokens);
  12426. if (il == n_layer - 1 && inp_out_ids) {
  12427. ffn_inp = ggml_get_rows(ctx0, ffn_inp, inp_out_ids);
  12428. ffn_norm = ggml_get_rows(ctx0, ffn_norm, inp_out_ids);
  12429. x_prev = ggml_get_rows(ctx0, x_prev, inp_out_ids);
  12430. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  12431. }
  12432. cur = build_rwkv6_channel_mix(layer, ffn_norm, x_prev, LLM_ARCH_RWKV6);
  12433. cur = ggml_add(ctx0, cur, ffn_inp);
  12434. if (hparams.rescale_every_n_layers != 0 && (il + 1) % hparams.rescale_every_n_layers == 0) {
  12435. cur = ggml_scale(ctx0, cur, 0.5F);
  12436. }
  12437. cur = build_cvec(cur, il);
  12438. cb(cur, "l_out", il);
  12439. // input for next layer
  12440. inpL = cur;
  12441. }
  12442. cur = inpL;
  12443. cur = build_norm(cur, model.output_norm, model.output_norm_b, LLM_NORM, -1);
  12444. cb(cur, "result_norm", -1);
  12445. res->t_embd = cur;
  12446. cur = build_lora_mm(model.output, cur);
  12447. cb(cur, "result_output", -1);
  12448. res->t_logits = cur;
  12449. ggml_build_forward_expand(gf, cur);
  12450. }
  12451. };
  12452. // ref: https://huggingface.co/recursal/QRWKV6-32B-Instruct-Preview-v0.1/blob/main/modeling_rwkv6qwen2.py
  12453. struct llm_build_rwkv6qwen2 : public llm_build_rwkv6_base {
  12454. llm_build_rwkv6qwen2(const llama_model & model, const llm_graph_params & params) : llm_build_rwkv6_base(model, params) {
  12455. GGML_ASSERT(n_embd == hparams.n_embd_r());
  12456. ggml_tensor * cur;
  12457. ggml_tensor * inpL;
  12458. inpL = build_inp_embd(model.tok_embd);
  12459. auto * rs_inp = build_rs_inp();
  12460. const auto n_embd = hparams.n_embd;
  12461. const auto n_seq_tokens = ubatch.n_seq_tokens;
  12462. const auto n_seqs = ubatch.n_seqs;
  12463. ggml_tensor * inp_out_ids = build_inp_out_ids();
  12464. for (int il = 0; il < n_layer; ++il) {
  12465. const llama_layer * layer = &model.layers[il];
  12466. inpL = ggml_reshape_3d(ctx0, inpL, n_embd, n_seq_tokens, n_seqs);
  12467. ggml_tensor * token_shift = build_rwkv_token_shift_load(rs_inp, ubatch, il);
  12468. ggml_tensor * att_norm = build_norm(inpL, layer->attn_norm, layer->attn_norm_b, LLM_NORM_RMS, il);
  12469. cb(att_norm, "attn_norm", il);
  12470. ggml_tensor * x_prev = ggml_concat(
  12471. ctx0,
  12472. token_shift,
  12473. ggml_view_3d(ctx0, att_norm, n_embd, n_seq_tokens - 1, n_seqs, att_norm->nb[1], att_norm->nb[2], 0),
  12474. 1
  12475. );
  12476. cur = build_rwkv6_time_mix(rs_inp, att_norm, x_prev, ubatch, il);
  12477. token_shift = ggml_view_3d(ctx0, att_norm, n_embd, 1, n_seqs, att_norm->nb[1], att_norm->nb[2], (n_seq_tokens-1)*n_embd*ggml_element_size(att_norm));
  12478. ggml_build_forward_expand(gf, build_rwkv_token_shift_store(token_shift, ubatch, il));
  12479. ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpL);
  12480. cb(ffn_inp, "ffn_inp", il);
  12481. cur = ggml_reshape_2d(ctx0, cur, n_embd, n_tokens);
  12482. ffn_inp = ggml_reshape_2d(ctx0, ffn_inp, n_embd, n_tokens);
  12483. if (il == n_layer - 1 && inp_out_ids) {
  12484. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  12485. ffn_inp = ggml_get_rows(ctx0, ffn_inp, inp_out_ids);
  12486. }
  12487. // feed-forward network
  12488. cur = build_norm(ffn_inp,
  12489. model.layers[il].ffn_norm, NULL,
  12490. LLM_NORM_RMS, il);
  12491. cb(cur, "ffn_norm", il);
  12492. cur = build_ffn(cur,
  12493. model.layers[il].ffn_up, NULL, NULL,
  12494. model.layers[il].ffn_gate, NULL, NULL,
  12495. model.layers[il].ffn_down, NULL, NULL,
  12496. NULL,
  12497. LLM_FFN_SILU, LLM_FFN_PAR, il);
  12498. cb(cur, "ffn_out", il);
  12499. cur = ggml_add(ctx0, cur, ffn_inp);
  12500. cur = build_cvec(cur, il);
  12501. cb(cur, "l_out", il);
  12502. // input for next layer
  12503. inpL = cur;
  12504. }
  12505. cur = inpL;
  12506. cur = build_norm(cur, model.output_norm, model.output_norm_b, LLM_NORM_RMS, -1);
  12507. cb(cur, "result_norm", -1);
  12508. res->t_embd = cur;
  12509. cur = build_lora_mm(model.output, cur);
  12510. cb(cur, "result_output", -1);
  12511. res->t_logits = cur;
  12512. ggml_build_forward_expand(gf, cur);
  12513. }
  12514. };
  12515. struct llm_build_rwkv7_base : public llm_graph_context {
  12516. const llama_model & model;
  12517. llm_build_rwkv7_base(const llama_model & model, const llm_graph_params & params) : llm_graph_context(params), model(model) {
  12518. }
  12519. ggml_tensor * build_rwkv7_channel_mix(
  12520. const llama_layer * layer,
  12521. ggml_tensor * cur,
  12522. ggml_tensor * x_prev,
  12523. llm_arch arch) const {
  12524. ggml_tensor * sx = ggml_sub(ctx0, x_prev, cur);
  12525. switch (arch) {
  12526. case LLM_ARCH_RWKV7:
  12527. {
  12528. ggml_tensor * xk = ggml_add(ctx0, ggml_mul(ctx0, sx, layer->channel_mix_lerp_k), cur);
  12529. ggml_tensor * k = ggml_sqr(
  12530. ctx0,
  12531. ggml_relu(
  12532. ctx0,
  12533. build_lora_mm(layer->channel_mix_key, xk)
  12534. )
  12535. );
  12536. cur = build_lora_mm(layer->channel_mix_value, k);
  12537. } break;
  12538. default:
  12539. GGML_ABORT("fatal error");
  12540. }
  12541. return cur;
  12542. }
  12543. ggml_tensor * build_rwkv7_time_mix(
  12544. llm_graph_input_rs * inp,
  12545. ggml_tensor * cur,
  12546. ggml_tensor * x_prev,
  12547. ggml_tensor *& first_layer_value,
  12548. const llama_ubatch & ubatch,
  12549. int il) const {
  12550. const auto * mctx_cur = static_cast<const llama_memory_recurrent_context *>(mctx);
  12551. const auto n_tokens = ubatch.n_tokens;
  12552. const auto n_seqs = ubatch.n_seqs;
  12553. const auto n_embd = hparams.n_embd;
  12554. const auto head_size = hparams.wkv_head_size;
  12555. const auto head_count = n_embd / head_size;
  12556. const auto n_seq_tokens = ubatch.n_seq_tokens;
  12557. const auto kv_head = mctx_cur->get_head();
  12558. const auto & layer = model.layers[il];
  12559. bool has_gating = layer.time_mix_g1 && layer.time_mix_g2;
  12560. ggml_tensor * sx = ggml_sub(ctx0, x_prev, cur);
  12561. ggml_tensor * dummy = ggml_new_tensor_4d(ctx0, GGML_TYPE_F32, n_embd, n_seq_tokens, n_seqs, has_gating ? 6 : 5);
  12562. sx = ggml_repeat(ctx0, sx, dummy);
  12563. ggml_tensor * xxx = ggml_add(ctx0, ggml_mul(ctx0, sx, layer.time_mix_lerp_fused), cur);
  12564. ggml_tensor * xr = ggml_view_2d(ctx0, xxx, n_embd, n_tokens, xxx->nb[1], 0);
  12565. ggml_tensor * xw = ggml_view_2d(ctx0, xxx, n_embd, n_tokens, xxx->nb[1], n_embd * n_tokens * sizeof(float));
  12566. ggml_tensor * xk = ggml_view_2d(ctx0, xxx, n_embd, n_tokens, xxx->nb[1], n_embd * n_tokens * 2 * sizeof(float));
  12567. ggml_tensor * xv = ggml_view_2d(ctx0, xxx, n_embd, n_tokens, xxx->nb[1], n_embd * n_tokens * 3 * sizeof(float));
  12568. ggml_tensor * xa = ggml_view_2d(ctx0, xxx, n_embd, n_tokens, xxx->nb[1], n_embd * n_tokens * 4 * sizeof(float));
  12569. ggml_tensor * xg = has_gating ? ggml_view_2d(ctx0, xxx, n_embd, n_tokens, xxx->nb[1], n_embd * n_tokens * 5 * sizeof(float)) : nullptr;
  12570. ggml_tensor * r = build_lora_mm(layer.time_mix_receptance, xr);
  12571. ggml_tensor * w = ggml_add(
  12572. ctx0,
  12573. ggml_mul_mat(ctx0, layer.time_mix_w2, ggml_tanh(ctx0, ggml_mul_mat(ctx0, layer.time_mix_w1, xw))),
  12574. layer.time_mix_w0
  12575. );
  12576. w = ggml_exp(ctx0, ggml_scale(ctx0, ggml_sigmoid(ctx0, w), -0.606531));
  12577. ggml_tensor * k = build_lora_mm(layer.time_mix_key, xk);
  12578. ggml_tensor * v = build_lora_mm(layer.time_mix_value, xv);
  12579. if (first_layer_value == nullptr) {
  12580. first_layer_value = v;
  12581. } else {
  12582. // Add the first layer value as a residual connection.
  12583. v = ggml_add(ctx0, v,
  12584. ggml_mul(ctx0,
  12585. ggml_sub(ctx0, first_layer_value, v),
  12586. ggml_sigmoid(ctx0, ggml_add(ctx0,
  12587. ggml_mul_mat(ctx0, layer.time_mix_v2, ggml_mul_mat(ctx0, layer.time_mix_v1, xv)),
  12588. layer.time_mix_v0
  12589. )
  12590. )
  12591. )
  12592. );
  12593. }
  12594. ggml_tensor * g = nullptr;
  12595. if (layer.time_mix_g1 && layer.time_mix_g2) {
  12596. g = ggml_mul_mat(ctx0, layer.time_mix_g2, ggml_sigmoid(ctx0, ggml_mul_mat(ctx0, layer.time_mix_g1, xg)));
  12597. }
  12598. ggml_tensor * a = ggml_sigmoid(ctx0,
  12599. ggml_add(
  12600. ctx0,
  12601. ggml_mul_mat(ctx0, layer.time_mix_a2, ggml_mul_mat(ctx0, layer.time_mix_a1, xa)),
  12602. layer.time_mix_a0
  12603. )
  12604. );
  12605. ggml_tensor * kk = ggml_reshape_3d(ctx0, ggml_mul(ctx0, k, layer.time_mix_k_k), head_size, head_count, n_tokens);
  12606. kk = ggml_l2_norm(ctx0, kk, 1e-12);
  12607. ggml_tensor * ka = ggml_mul(ctx0, k, layer.time_mix_k_a);
  12608. k = ggml_add(ctx0, k, ggml_sub(ctx0, ggml_mul(ctx0, a, ka), ka));
  12609. r = ggml_reshape_3d(ctx0, r, head_size, head_count, n_tokens);
  12610. w = ggml_reshape_3d(ctx0, w, head_size, head_count, n_tokens);
  12611. k = ggml_reshape_3d(ctx0, k, head_size, head_count, n_tokens);
  12612. v = ggml_reshape_3d(ctx0, v, head_size, head_count, n_tokens);
  12613. a = ggml_reshape_3d(ctx0, a, head_size, head_count, n_tokens);
  12614. ggml_tensor * wkv_state = build_rs(
  12615. inp, mctx_cur->get_s_l(il),
  12616. hparams.n_embd_s(), n_seqs);
  12617. ggml_tensor * wkv_output = ggml_rwkv_wkv7(ctx0, r, w, k, v, ggml_neg(ctx0, kk), ggml_mul(ctx0, kk, a), wkv_state);
  12618. cur = ggml_view_1d(ctx0, wkv_output, n_embd * n_tokens, 0);
  12619. wkv_state = ggml_view_1d(ctx0, wkv_output, n_embd * head_size * n_seqs, n_embd * n_tokens * sizeof(float));
  12620. ggml_build_forward_expand(
  12621. gf,
  12622. ggml_cpy(
  12623. ctx0,
  12624. wkv_state,
  12625. ggml_view_1d(
  12626. ctx0,
  12627. mctx_cur->get_s_l(il),
  12628. hparams.n_embd_s() * n_seqs,
  12629. hparams.n_embd_s() * kv_head * ggml_element_size(mctx_cur->get_s_l(il))
  12630. )
  12631. )
  12632. );
  12633. if (layer.time_mix_ln && layer.time_mix_ln_b) {
  12634. // group norm with head_count groups
  12635. cur = ggml_reshape_3d(ctx0, cur, n_embd / head_count, head_count, n_tokens);
  12636. cur = ggml_norm(ctx0, cur, 64e-5f);
  12637. // Convert back to regular vectors.
  12638. cur = ggml_reshape_2d(ctx0, cur, n_embd, n_tokens);
  12639. cur = ggml_add(ctx0, ggml_mul(ctx0, cur, layer.time_mix_ln), layer.time_mix_ln_b);
  12640. } else {
  12641. cur = ggml_reshape_2d(ctx0, cur, n_embd, n_tokens);
  12642. }
  12643. ggml_tensor * rk = ggml_sum_rows(ctx0,
  12644. ggml_mul(ctx0, ggml_mul(ctx0, k, r), ggml_reshape_2d(ctx0, layer.time_mix_r_k, head_size, head_count)));
  12645. cur = ggml_add(ctx0, cur, ggml_reshape_2d(ctx0, ggml_mul(ctx0, v, rk), n_embd, n_tokens));
  12646. if (has_gating) {
  12647. cur = ggml_mul(ctx0, cur, g);
  12648. }
  12649. cur = build_lora_mm(layer.time_mix_output, cur);
  12650. return ggml_reshape_3d(ctx0, cur, n_embd, n_seq_tokens, n_seqs);
  12651. }
  12652. };
  12653. struct llm_build_rwkv7 : public llm_build_rwkv7_base {
  12654. llm_build_rwkv7(const llama_model & model, const llm_graph_params & params) : llm_build_rwkv7_base(model, params) {
  12655. GGML_ASSERT(hparams.token_shift_count == 2);
  12656. ggml_tensor * cur;
  12657. ggml_tensor * inpL;
  12658. ggml_tensor * v_first = nullptr;
  12659. inpL = build_inp_embd(model.tok_embd);
  12660. inpL = build_norm(inpL, model.tok_norm, model.tok_norm_b, LLM_NORM, -1);
  12661. auto * rs_inp = build_rs_inp();
  12662. const auto n_embd = hparams.n_embd;
  12663. const auto n_seq_tokens = ubatch.n_seq_tokens;
  12664. const auto n_seqs = ubatch.n_seqs;
  12665. ggml_tensor * inp_out_ids = build_inp_out_ids();
  12666. for (int il = 0; il < n_layer; ++il) {
  12667. const llama_layer * layer = &model.layers[il];
  12668. inpL = ggml_reshape_3d(ctx0, inpL, n_embd, n_seq_tokens, n_seqs);
  12669. ggml_tensor * token_shift = build_rwkv_token_shift_load(rs_inp, ubatch, il);
  12670. ggml_tensor * att_shift = ggml_view_3d(ctx0, token_shift, n_embd, 1, n_seqs, token_shift->nb[1], token_shift->nb[2], 0);
  12671. ggml_tensor * ffn_shift = ggml_view_3d(ctx0, token_shift, n_embd, 1, n_seqs, token_shift->nb[1], token_shift->nb[2], n_embd * ggml_element_size(token_shift));
  12672. ggml_tensor * att_norm = build_norm(inpL, layer->attn_norm, layer->attn_norm_b, LLM_NORM, il);
  12673. cb(att_norm, "attn_norm", il);
  12674. ggml_tensor * x_prev = ggml_concat(
  12675. ctx0,
  12676. att_shift,
  12677. ggml_view_3d(ctx0, att_norm, n_embd, n_seq_tokens - 1, n_seqs, att_norm->nb[1], att_norm->nb[2], 0),
  12678. 1
  12679. );
  12680. cur = build_rwkv7_time_mix(rs_inp, att_norm, x_prev, v_first, ubatch, il);
  12681. ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpL);
  12682. cb(ffn_inp, "ffn_inp", il);
  12683. ggml_tensor * ffn_norm = build_norm(ffn_inp, layer->attn_norm_2, layer->attn_norm_2_b, LLM_NORM, il);
  12684. cb(ffn_norm, "ffn_norm", il);
  12685. x_prev = ggml_concat(
  12686. ctx0,
  12687. ffn_shift,
  12688. ggml_view_3d(ctx0, ffn_norm, n_embd, n_seq_tokens - 1, n_seqs, ffn_norm->nb[1], ffn_norm->nb[2], 0),
  12689. 1
  12690. );
  12691. token_shift = ggml_concat(ctx0,
  12692. ggml_view_3d(ctx0, att_norm, n_embd, 1, n_seqs, att_norm->nb[1], att_norm->nb[2], (n_seq_tokens-1)*n_embd*ggml_element_size(att_norm)),
  12693. ggml_view_3d(ctx0, ffn_norm, n_embd, 1, n_seqs, ffn_norm->nb[1], ffn_norm->nb[2], (n_seq_tokens-1)*n_embd*ggml_element_size(ffn_norm)),
  12694. 1
  12695. );
  12696. ggml_build_forward_expand(gf, build_rwkv_token_shift_store(token_shift, ubatch, il));
  12697. ffn_inp = ggml_reshape_2d(ctx0, ffn_inp, n_embd, n_tokens);
  12698. ffn_norm = ggml_reshape_2d(ctx0, ffn_norm, n_embd, n_tokens);
  12699. x_prev = ggml_reshape_2d(ctx0, x_prev, n_embd, n_tokens);
  12700. if (il == n_layer - 1 && inp_out_ids) {
  12701. ffn_inp = ggml_get_rows(ctx0, ffn_inp, inp_out_ids);
  12702. ffn_norm = ggml_get_rows(ctx0, ffn_norm, inp_out_ids);
  12703. x_prev = ggml_get_rows(ctx0, x_prev, inp_out_ids);
  12704. }
  12705. cur = build_rwkv7_channel_mix(layer, ffn_norm, x_prev, LLM_ARCH_RWKV7);
  12706. cur = ggml_add(ctx0, cur, ffn_inp);
  12707. cur = build_cvec(cur, il);
  12708. cb(cur, "l_out", il);
  12709. // input for next layer
  12710. inpL = cur;
  12711. }
  12712. cur = inpL;
  12713. cur = build_norm(cur, model.output_norm, model.output_norm_b, LLM_NORM, -1);
  12714. cb(cur, "result_norm", -1);
  12715. res->t_embd = cur;
  12716. cur = build_lora_mm(model.output, cur);
  12717. cb(cur, "result_output", -1);
  12718. res->t_logits = cur;
  12719. ggml_build_forward_expand(gf, cur);
  12720. }
  12721. };
  12722. struct llm_build_arwkv7 : public llm_build_rwkv7_base {
  12723. llm_build_arwkv7(const llama_model & model, const llm_graph_params & params) : llm_build_rwkv7_base(model, params) {
  12724. GGML_ASSERT(n_embd == hparams.n_embd_r());
  12725. ggml_tensor * cur;
  12726. ggml_tensor * inpL;
  12727. ggml_tensor * v_first = nullptr;
  12728. inpL = build_inp_embd(model.tok_embd);
  12729. auto * rs_inp = build_rs_inp();
  12730. const auto n_embd = hparams.n_embd;
  12731. const auto n_seq_tokens = ubatch.n_seq_tokens;
  12732. const auto n_seqs = ubatch.n_seqs;
  12733. ggml_tensor * inp_out_ids = build_inp_out_ids();
  12734. for (int il = 0; il < n_layer; ++il) {
  12735. const llama_layer * layer = &model.layers[il];
  12736. inpL = ggml_reshape_3d(ctx0, inpL, n_embd, n_seq_tokens, n_seqs);
  12737. ggml_tensor * token_shift = build_rwkv_token_shift_load(rs_inp, ubatch, il);
  12738. ggml_tensor * att_norm = build_norm(inpL, layer->attn_norm, layer->attn_norm_b, LLM_NORM_RMS, il);
  12739. cb(att_norm, "attn_norm", il);
  12740. ggml_tensor * x_prev = ggml_concat(
  12741. ctx0,
  12742. token_shift,
  12743. ggml_view_3d(ctx0, att_norm, n_embd, n_seq_tokens - 1, n_seqs, att_norm->nb[1], att_norm->nb[2], 0),
  12744. 1
  12745. );
  12746. cur = build_rwkv7_time_mix(rs_inp, att_norm, x_prev, v_first, ubatch, il);
  12747. token_shift = ggml_view_3d(ctx0, att_norm, n_embd, 1, n_seqs, att_norm->nb[1], att_norm->nb[2], (n_seq_tokens-1)*n_embd*ggml_element_size(att_norm));
  12748. ggml_build_forward_expand(gf, build_rwkv_token_shift_store(token_shift, ubatch, il));
  12749. ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpL);
  12750. cb(ffn_inp, "ffn_inp", il);
  12751. cur = ggml_reshape_2d(ctx0, cur, n_embd, n_tokens);
  12752. ffn_inp = ggml_reshape_2d(ctx0, ffn_inp, n_embd, n_tokens);
  12753. if (il == n_layer - 1 && inp_out_ids) {
  12754. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  12755. ffn_inp = ggml_get_rows(ctx0, ffn_inp, inp_out_ids);
  12756. }
  12757. // feed-forward network
  12758. cur = build_norm(ffn_inp,
  12759. model.layers[il].ffn_norm, NULL,
  12760. LLM_NORM_RMS, il);
  12761. cb(cur, "ffn_norm", il);
  12762. cur = build_ffn(cur,
  12763. model.layers[il].ffn_up, NULL, NULL,
  12764. model.layers[il].ffn_gate, NULL, NULL,
  12765. model.layers[il].ffn_down, NULL, NULL,
  12766. NULL,
  12767. LLM_FFN_SILU, LLM_FFN_PAR, il);
  12768. cb(cur, "ffn_out", il);
  12769. cur = ggml_add(ctx0, cur, ffn_inp);
  12770. cur = build_cvec(cur, il);
  12771. cb(cur, "l_out", il);
  12772. // input for next layer
  12773. inpL = cur;
  12774. }
  12775. cur = inpL;
  12776. cur = build_norm(cur, model.output_norm, model.output_norm_b, LLM_NORM_RMS, -1);
  12777. cb(cur, "result_norm", -1);
  12778. res->t_embd = cur;
  12779. cur = build_lora_mm(model.output, cur);
  12780. cb(cur, "result_output", -1);
  12781. res->t_logits = cur;
  12782. ggml_build_forward_expand(gf, cur);
  12783. }
  12784. };
  12785. struct llm_build_granite : public llm_graph_context {
  12786. llm_build_granite(
  12787. const llama_model & model,
  12788. const llm_graph_params & params)
  12789. : llm_graph_context(params) {
  12790. const int64_t n_embd_head = hparams.n_embd_head_v;
  12791. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  12792. GGML_ASSERT(n_embd_head == hparams.n_rot);
  12793. ggml_tensor * cur;
  12794. ggml_tensor * inpL;
  12795. inpL = build_inp_embd(model.tok_embd);
  12796. // inp_pos - built only if rope enabled
  12797. ggml_tensor * inp_pos = nullptr;
  12798. if (hparams.rope_finetuned) {
  12799. inp_pos = build_inp_pos();
  12800. }
  12801. auto * inp_attn = build_attn_inp_kv();
  12802. ggml_tensor * inp_out_ids = build_inp_out_ids();
  12803. for (int il = 0; il < n_layer; ++il) {
  12804. ggml_tensor * inpSA = inpL;
  12805. // norm
  12806. cur = build_norm(inpL,
  12807. model.layers[il].attn_norm, NULL,
  12808. LLM_NORM_RMS, il);
  12809. cb(cur, "attn_norm", il);
  12810. // self-attention
  12811. cur = build_attention_layer(
  12812. cur, inp_pos, inp_attn,
  12813. model, n_embd_head, il);
  12814. if (il == n_layer - 1 && inp_out_ids) {
  12815. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  12816. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  12817. }
  12818. // ffn
  12819. cur = build_layer_ffn(cur, inpSA, model, il);
  12820. // input for next layer
  12821. inpL = cur;
  12822. }
  12823. cur = inpL;
  12824. cur = build_norm(cur,
  12825. model.output_norm, NULL,
  12826. LLM_NORM_RMS, -1);
  12827. cb(cur, "result_norm", -1);
  12828. res->t_embd = cur;
  12829. // lm_head
  12830. cur = build_lora_mm(model.output, cur);
  12831. // For Granite architectures - scale logits
  12832. cur = ggml_scale(ctx0, cur, 1.0f / hparams.f_logit_scale);
  12833. cb(cur, "result_output", -1);
  12834. res->t_logits = cur;
  12835. ggml_build_forward_expand(gf, cur);
  12836. }
  12837. ggml_tensor * build_attention_layer(
  12838. ggml_tensor * cur,
  12839. ggml_tensor * inp_pos,
  12840. llm_graph_input_attn_kv * inp_attn,
  12841. const llama_model & model,
  12842. const int64_t n_embd_head,
  12843. const int il) {
  12844. // compute Q and K and (optionally) RoPE them
  12845. ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
  12846. cb(Qcur, "Qcur", il);
  12847. if (model.layers[il].bq) {
  12848. Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
  12849. cb(Qcur, "Qcur", il);
  12850. }
  12851. ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
  12852. cb(Kcur, "Kcur", il);
  12853. if (model.layers[il].bk) {
  12854. Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
  12855. cb(Kcur, "Kcur", il);
  12856. }
  12857. ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
  12858. cb(Vcur, "Vcur", il);
  12859. if (model.layers[il].bv) {
  12860. Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
  12861. cb(Vcur, "Vcur", il);
  12862. }
  12863. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, hparams.n_head(il), n_tokens);
  12864. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, hparams.n_head_kv(il), n_tokens);
  12865. Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, hparams.n_head_kv(il), n_tokens);
  12866. const bool use_rope = hparams.rope_finetuned;
  12867. if (use_rope) {
  12868. ggml_tensor * rope_factors = model.get_rope_factors(cparams, il);
  12869. Qcur = ggml_rope_ext(
  12870. ctx0, Qcur, inp_pos, rope_factors,
  12871. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  12872. ext_factor, attn_factor, beta_fast, beta_slow
  12873. );
  12874. Kcur = ggml_rope_ext(
  12875. ctx0, Kcur, inp_pos, rope_factors,
  12876. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  12877. ext_factor, attn_factor, beta_fast, beta_slow
  12878. );
  12879. }
  12880. cb(Qcur, "Qcur", il);
  12881. cb(Kcur, "Kcur", il);
  12882. cb(Vcur, "Vcur", il);
  12883. const float kq_scale = hparams.f_attention_scale == 0.0f ? 1.0f/sqrtf(float(n_embd_head)) : hparams.f_attention_scale;
  12884. cur = build_attn(inp_attn,
  12885. model.layers[il].wo, model.layers[il].bo,
  12886. Qcur, Kcur, Vcur, nullptr, nullptr, nullptr, kq_scale, il);
  12887. cb(cur, "attn_out", il);
  12888. return cur;
  12889. }
  12890. ggml_tensor * build_layer_ffn(
  12891. ggml_tensor * cur,
  12892. ggml_tensor * inpSA,
  12893. const llama_model & model,
  12894. const int il) {
  12895. // For Granite architectures - scale residual
  12896. if (hparams.f_residual_scale) {
  12897. cur = ggml_scale(ctx0, cur, hparams.f_residual_scale);
  12898. }
  12899. ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  12900. cb(ffn_inp, "ffn_inp", il);
  12901. // feed-forward network (non-MoE)
  12902. if (model.layers[il].ffn_gate_inp == nullptr) {
  12903. cur = build_norm(ffn_inp,
  12904. model.layers[il].ffn_norm, NULL,
  12905. LLM_NORM_RMS, il);
  12906. cb(cur, "ffn_norm", il);
  12907. cur = build_ffn(cur,
  12908. model.layers[il].ffn_up, model.layers[il].ffn_up_b, NULL,
  12909. model.layers[il].ffn_gate, model.layers[il].ffn_gate_b, NULL,
  12910. model.layers[il].ffn_down, model.layers[il].ffn_down_b, NULL,
  12911. NULL,
  12912. LLM_FFN_SILU, LLM_FFN_PAR, il);
  12913. cb(cur, "ffn_out", il);
  12914. } else {
  12915. // MoE branch
  12916. cur = build_norm(ffn_inp,
  12917. model.layers[il].ffn_norm, NULL,
  12918. LLM_NORM_RMS, il);
  12919. cb(cur, "ffn_norm", il);
  12920. ggml_tensor * moe_out = build_moe_ffn(cur,
  12921. model.layers[il].ffn_gate_inp,
  12922. model.layers[il].ffn_up_exps,
  12923. model.layers[il].ffn_gate_exps,
  12924. model.layers[il].ffn_down_exps,
  12925. nullptr,
  12926. n_expert, n_expert_used,
  12927. LLM_FFN_SILU, true,
  12928. false, 0.0,
  12929. LLAMA_EXPERT_GATING_FUNC_TYPE_SOFTMAX,
  12930. il);
  12931. cb(moe_out, "ffn_moe_out", il);
  12932. // For Granite MoE Shared
  12933. if (hparams.n_ff_shexp > 0) {
  12934. ggml_tensor * ffn_shexp = build_ffn(cur,
  12935. model.layers[il].ffn_up_shexp, NULL, NULL,
  12936. model.layers[il].ffn_gate_shexp, NULL, NULL,
  12937. model.layers[il].ffn_down_shexp, NULL, NULL,
  12938. NULL,
  12939. LLM_FFN_SILU, LLM_FFN_PAR, il);
  12940. cb(ffn_shexp, "ffn_shexp", il);
  12941. cur = ggml_add(ctx0, moe_out, ffn_shexp);
  12942. cb(cur, "ffn_out", il);
  12943. } else {
  12944. cur = moe_out;
  12945. }
  12946. }
  12947. // For Granite architectures - scale residual
  12948. if (hparams.f_residual_scale) {
  12949. cur = ggml_scale(ctx0, cur, hparams.f_residual_scale);
  12950. }
  12951. cur = ggml_add(ctx0, cur, ffn_inp);
  12952. cb(cur, "ffn_out", il);
  12953. cur = build_cvec(cur, il);
  12954. cb(cur, "l_out", il);
  12955. return cur;
  12956. }
  12957. };
  12958. struct llm_build_granite_hybrid : public llm_graph_context_mamba {
  12959. llm_build_granite_hybrid(
  12960. const llama_model & model,
  12961. const llm_graph_params & params) :
  12962. llm_graph_context_mamba(params) {
  12963. const int64_t n_embd_head = hparams.n_embd_head_v;
  12964. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  12965. ggml_tensor * cur;
  12966. ggml_tensor * inpL;
  12967. inpL = build_inp_embd(model.tok_embd);
  12968. auto * inp = build_inp_mem_hybrid();
  12969. ggml_tensor * inp_out_ids = build_inp_out_ids();
  12970. // Positional embeddings populated if rope enabled
  12971. ggml_tensor * inp_pos = nullptr;
  12972. if (hparams.rope_finetuned) {
  12973. inp_pos = build_inp_pos();
  12974. }
  12975. for (int il = 0; il < n_layer; ++il) {
  12976. struct ggml_tensor * inpSA = inpL;
  12977. // norm
  12978. cur = build_norm(inpL,
  12979. model.layers[il].attn_norm, NULL,
  12980. LLM_NORM_RMS, il);
  12981. cb(cur, "attn_norm", il);
  12982. if (hparams.is_recurrent(il)) {
  12983. // ssm layer //
  12984. cur = build_mamba2_layer(inp->get_recr(), cur, model, ubatch, il);
  12985. } else {
  12986. // attention layer //
  12987. cur = build_attention_layer(
  12988. cur, inp_pos, inp->get_attn(), model,
  12989. n_embd_head, il);
  12990. }
  12991. if (il == n_layer - 1 && inp_out_ids) {
  12992. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  12993. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  12994. }
  12995. // ffn
  12996. cur = build_layer_ffn(cur, inpSA, model, il);
  12997. // input for next layer
  12998. inpL = cur;
  12999. }
  13000. cur = inpL;
  13001. cur = build_norm(cur,
  13002. model.output_norm, NULL,
  13003. LLM_NORM_RMS, -1);
  13004. cb(cur, "result_norm", -1);
  13005. res->t_embd = cur;
  13006. // lm_head
  13007. cur = build_lora_mm(model.output, cur);
  13008. // For Granite architectures - scale logits
  13009. if (hparams.f_logit_scale) {
  13010. cur = ggml_scale(ctx0, cur, 1.0f / hparams.f_logit_scale);
  13011. }
  13012. cb(cur, "result_output", -1);
  13013. res->t_logits = cur;
  13014. ggml_build_forward_expand(gf, cur);
  13015. }
  13016. ggml_tensor * build_attention_layer(
  13017. ggml_tensor * cur,
  13018. ggml_tensor * inp_pos,
  13019. llm_graph_input_attn_kv * inp_attn,
  13020. const llama_model & model,
  13021. const int64_t n_embd_head,
  13022. const int il) {
  13023. // compute Q and K and (optionally) RoPE them
  13024. ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
  13025. cb(Qcur, "Qcur", il);
  13026. if (model.layers[il].bq) {
  13027. Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
  13028. cb(Qcur, "Qcur", il);
  13029. }
  13030. ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
  13031. cb(Kcur, "Kcur", il);
  13032. if (model.layers[il].bk) {
  13033. Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
  13034. cb(Kcur, "Kcur", il);
  13035. }
  13036. ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
  13037. cb(Vcur, "Vcur", il);
  13038. if (model.layers[il].bv) {
  13039. Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
  13040. cb(Vcur, "Vcur", il);
  13041. }
  13042. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, hparams.n_head(il), n_tokens);
  13043. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, hparams.n_head_kv(il), n_tokens);
  13044. Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, hparams.n_head_kv(il), n_tokens);
  13045. const bool use_rope = hparams.rope_finetuned;
  13046. if (use_rope) {
  13047. ggml_tensor * rope_factors = model.get_rope_factors(cparams, il);
  13048. Qcur = ggml_rope_ext(
  13049. ctx0, Qcur, inp_pos, rope_factors,
  13050. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  13051. ext_factor, attn_factor, beta_fast, beta_slow
  13052. );
  13053. Kcur = ggml_rope_ext(
  13054. ctx0, Kcur, inp_pos, rope_factors,
  13055. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  13056. ext_factor, attn_factor, beta_fast, beta_slow
  13057. );
  13058. }
  13059. cb(Qcur, "Qcur", il);
  13060. cb(Kcur, "Kcur", il);
  13061. cb(Vcur, "Vcur", il);
  13062. const float kq_scale = hparams.f_attention_scale == 0.0f ? 1.0f/sqrtf(float(n_embd_head)) : hparams.f_attention_scale;
  13063. cur = build_attn(inp_attn,
  13064. model.layers[il].wo, model.layers[il].bo,
  13065. Qcur, Kcur, Vcur, nullptr, nullptr, nullptr, kq_scale, il);
  13066. cb(cur, "attn_out", il);
  13067. return cur;
  13068. }
  13069. ggml_tensor * build_layer_ffn(
  13070. ggml_tensor * cur,
  13071. ggml_tensor * inpSA,
  13072. const llama_model & model,
  13073. const int il) {
  13074. // For Granite architectures - scale residual
  13075. if (hparams.f_residual_scale) {
  13076. cur = ggml_scale(ctx0, cur, hparams.f_residual_scale);
  13077. }
  13078. ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  13079. cb(ffn_inp, "ffn_inp", il);
  13080. // feed-forward network (non-MoE)
  13081. if (model.layers[il].ffn_gate_inp == nullptr) {
  13082. cur = build_norm(ffn_inp,
  13083. model.layers[il].ffn_norm, NULL,
  13084. LLM_NORM_RMS, il);
  13085. cb(cur, "ffn_norm", il);
  13086. cur = build_ffn(cur,
  13087. model.layers[il].ffn_up, model.layers[il].ffn_up_b, NULL,
  13088. model.layers[il].ffn_gate, model.layers[il].ffn_gate_b, NULL,
  13089. model.layers[il].ffn_down, model.layers[il].ffn_down_b, NULL,
  13090. NULL,
  13091. LLM_FFN_SILU, LLM_FFN_PAR, il);
  13092. cb(cur, "ffn_out", il);
  13093. } else {
  13094. // MoE branch
  13095. cur = build_norm(ffn_inp,
  13096. model.layers[il].ffn_norm, NULL,
  13097. LLM_NORM_RMS, il);
  13098. cb(cur, "ffn_norm", il);
  13099. ggml_tensor * moe_out = build_moe_ffn(cur,
  13100. model.layers[il].ffn_gate_inp,
  13101. model.layers[il].ffn_up_exps,
  13102. model.layers[il].ffn_gate_exps,
  13103. model.layers[il].ffn_down_exps,
  13104. nullptr,
  13105. n_expert, n_expert_used,
  13106. LLM_FFN_SILU, true,
  13107. false, 0.0,
  13108. LLAMA_EXPERT_GATING_FUNC_TYPE_SOFTMAX,
  13109. il);
  13110. cb(moe_out, "ffn_moe_out", il);
  13111. // For Granite MoE Shared
  13112. if (hparams.n_ff_shexp > 0) {
  13113. ggml_tensor * ffn_shexp = build_ffn(cur,
  13114. model.layers[il].ffn_up_shexp, NULL, NULL,
  13115. model.layers[il].ffn_gate_shexp, NULL, NULL,
  13116. model.layers[il].ffn_down_shexp, NULL, NULL,
  13117. NULL,
  13118. LLM_FFN_SILU, LLM_FFN_PAR, il);
  13119. cb(ffn_shexp, "ffn_shexp", il);
  13120. cur = ggml_add(ctx0, moe_out, ffn_shexp);
  13121. cb(cur, "ffn_out", il);
  13122. } else {
  13123. cur = moe_out;
  13124. }
  13125. }
  13126. // For Granite architectures - scale residual
  13127. if (hparams.f_residual_scale) {
  13128. cur = ggml_scale(ctx0, cur, hparams.f_residual_scale);
  13129. }
  13130. cur = ggml_add(ctx0, cur, ffn_inp);
  13131. cb(cur, "ffn_out", il);
  13132. cur = build_cvec(cur, il);
  13133. cb(cur, "l_out", il);
  13134. return cur;
  13135. }
  13136. };
  13137. // ref: https://github.com/facebookresearch/chameleon
  13138. // based on the original build_llama() function, changes:
  13139. // * qk-norm
  13140. // * swin-norm
  13141. // * removed bias
  13142. // * removed MoE
  13143. struct llm_build_chameleon : public llm_graph_context {
  13144. llm_build_chameleon(const llama_model & model, const llm_graph_params & params) : llm_graph_context(params) {
  13145. const int64_t n_embd_head = hparams.n_embd_head_v;
  13146. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  13147. GGML_ASSERT(n_embd_head == hparams.n_rot);
  13148. ggml_tensor * cur;
  13149. ggml_tensor * inpL;
  13150. inpL = build_inp_embd(model.tok_embd);
  13151. // inp_pos - contains the positions
  13152. ggml_tensor * inp_pos = build_inp_pos();
  13153. auto * inp_attn = build_attn_inp_kv();
  13154. ggml_tensor * inp_out_ids = build_inp_out_ids();
  13155. for (int il = 0; il < n_layer; ++il) {
  13156. ggml_tensor * inpSA = inpL;
  13157. // norm
  13158. if (hparams.swin_norm) {
  13159. cur = inpL;
  13160. } else {
  13161. cur = build_norm(inpL,
  13162. model.layers[il].attn_norm, NULL,
  13163. LLM_NORM_RMS, il);
  13164. cb(cur, "attn_norm", il);
  13165. }
  13166. // self-attention
  13167. {
  13168. // compute Q and K and RoPE them
  13169. ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
  13170. cb(Qcur, "Qcur", il);
  13171. ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
  13172. cb(Kcur, "Kcur", il);
  13173. ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
  13174. cb(Vcur, "Vcur", il);
  13175. if (model.layers[il].attn_q_norm) {
  13176. Qcur = ggml_view_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens,
  13177. ggml_element_size(Qcur) * n_embd_head,
  13178. ggml_element_size(Qcur) * n_embd_head * n_head,
  13179. 0);
  13180. cb(Qcur, "Qcur", il);
  13181. Qcur = build_norm(Qcur,
  13182. model.layers[il].attn_q_norm,
  13183. model.layers[il].attn_q_norm_b,
  13184. LLM_NORM, il);
  13185. cb(Qcur, "Qcur", il);
  13186. }
  13187. if (model.layers[il].attn_k_norm) {
  13188. Kcur = ggml_view_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens,
  13189. ggml_element_size(Kcur) * n_embd_head,
  13190. ggml_element_size(Kcur) * n_embd_head * n_head_kv,
  13191. 0);
  13192. cb(Kcur, "Kcur", il);
  13193. Kcur = build_norm(Kcur,
  13194. model.layers[il].attn_k_norm,
  13195. model.layers[il].attn_k_norm_b,
  13196. LLM_NORM, il);
  13197. cb(Kcur, "Kcur", il);
  13198. }
  13199. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  13200. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  13201. Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
  13202. Qcur = ggml_rope_ext(
  13203. ctx0, Qcur, inp_pos, nullptr,
  13204. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  13205. ext_factor, attn_factor, beta_fast, beta_slow
  13206. );
  13207. Kcur = ggml_rope_ext(
  13208. ctx0, Kcur, inp_pos, nullptr,
  13209. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  13210. ext_factor, attn_factor, beta_fast, beta_slow
  13211. );
  13212. cb(Qcur, "Qcur", il);
  13213. cb(Kcur, "Kcur", il);
  13214. cb(Vcur, "Vcur", il);
  13215. cur = build_attn(inp_attn,
  13216. model.layers[il].wo, nullptr,
  13217. Qcur, Kcur, Vcur, nullptr, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
  13218. }
  13219. if (il == n_layer - 1 && inp_out_ids) {
  13220. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  13221. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  13222. }
  13223. if (hparams.swin_norm) {
  13224. cur = build_norm(cur,
  13225. model.layers[il].attn_norm, NULL,
  13226. LLM_NORM_RMS, il);
  13227. }
  13228. ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  13229. cb(ffn_inp, "ffn_inp", il);
  13230. // feed-forward network
  13231. if (!hparams.swin_norm) {
  13232. cur = build_norm(ffn_inp,
  13233. model.layers[il].ffn_norm, NULL,
  13234. LLM_NORM_RMS, il);
  13235. cb(cur, "ffn_norm", il);
  13236. }
  13237. cur = build_ffn(cur,
  13238. model.layers[il].ffn_up, NULL, NULL,
  13239. model.layers[il].ffn_gate, NULL, NULL,
  13240. model.layers[il].ffn_down, NULL, NULL,
  13241. NULL,
  13242. LLM_FFN_SILU, LLM_FFN_PAR, il);
  13243. cb(cur, "ffn_out", il);
  13244. if (hparams.swin_norm) {
  13245. cur = build_norm(cur,
  13246. model.layers[il].ffn_norm, NULL,
  13247. LLM_NORM_RMS, il);
  13248. cb(cur, "ffn_norm", il);
  13249. }
  13250. cur = ggml_add(ctx0, cur, ffn_inp);
  13251. cb(cur, "ffn_out", il);
  13252. cur = build_cvec(cur, il);
  13253. cb(cur, "l_out", il);
  13254. // input for next layer
  13255. inpL = cur;
  13256. }
  13257. cur = inpL;
  13258. cur = build_norm(cur,
  13259. model.output_norm, NULL,
  13260. LLM_NORM_RMS, -1);
  13261. cb(cur, "result_norm", -1);
  13262. res->t_embd = cur;
  13263. // lm_head
  13264. cur = build_lora_mm(model.output, cur);
  13265. cb(cur, "result_output_with_img_logits", -1);
  13266. // TODO: this suppresses the output of image tokens, which is required to enable text-only outputs.
  13267. // Needs to be removed once image outputs are supported.
  13268. int img_token_end_idx = 8196;
  13269. int img_token_start_idx = 4;
  13270. int num_img_tokens = img_token_end_idx - img_token_start_idx;
  13271. // creates 1d tensor of size num_img_tokens and values -FLT_MAX,
  13272. // which ensures that text token values are always at least larger than image token values
  13273. ggml_tensor * img_logits = ggml_new_tensor_1d(ctx0, GGML_TYPE_F32, num_img_tokens);
  13274. img_logits = ggml_clamp(ctx0, img_logits, -FLT_MAX, -FLT_MAX);
  13275. cb(img_logits, "img_logits", -1);
  13276. cur = ggml_set_1d(ctx0, cur, img_logits, ggml_element_size(cur) * img_token_start_idx);
  13277. cb(cur, "result_output", -1);
  13278. res->t_logits = cur;
  13279. ggml_build_forward_expand(gf, cur);
  13280. }
  13281. };
  13282. struct llm_build_wavtokenizer_dec : public llm_graph_context {
  13283. llm_build_wavtokenizer_dec(const llama_model & model, const llm_graph_params & params) : llm_graph_context(params) {
  13284. ggml_tensor * cur;
  13285. ggml_tensor * inpL;
  13286. inpL = build_inp_embd(model.tok_embd);
  13287. cur = ggml_cont(ctx0, ggml_transpose(ctx0, inpL));
  13288. cur = ggml_conv_1d_ph(ctx0, model.conv1d, cur, 1, 1);
  13289. cur = ggml_add(ctx0, cur, model.conv1d_b);
  13290. // posnet
  13291. for (uint32_t il = 0; il < hparams.posnet.n_layer; ++il) {
  13292. const auto & layer = model.layers[il].posnet;
  13293. inpL = cur;
  13294. switch (il) {
  13295. case 0:
  13296. case 1:
  13297. case 3:
  13298. case 4:
  13299. {
  13300. cur = build_norm(cur,
  13301. layer.norm1,
  13302. layer.norm1_b,
  13303. LLM_NORM_GROUP, 0);
  13304. cur = ggml_mul(ctx0, ggml_sigmoid(ctx0, cur), cur);
  13305. cur = ggml_conv_1d_ph(ctx0, layer.conv1, cur, 1, 1);
  13306. cur = ggml_add(ctx0, cur, layer.conv1_b);
  13307. cur = build_norm(cur,
  13308. layer.norm2,
  13309. layer.norm2_b,
  13310. LLM_NORM_GROUP, 0);
  13311. cur = ggml_mul(ctx0, ggml_sigmoid(ctx0, cur), cur);
  13312. cur = ggml_conv_1d_ph(ctx0, layer.conv2, cur, 1, 1);
  13313. cur = ggml_add(ctx0, cur, layer.conv2_b);
  13314. cur = ggml_add(ctx0, cur, inpL);
  13315. } break;
  13316. case 2:
  13317. {
  13318. cur = build_norm(cur,
  13319. layer.attn_norm,
  13320. layer.attn_norm_b,
  13321. LLM_NORM_GROUP, 0);
  13322. ggml_tensor * q;
  13323. ggml_tensor * k;
  13324. ggml_tensor * v;
  13325. q = ggml_conv_1d_ph(ctx0, layer.attn_q, cur, 1, 1);
  13326. k = ggml_conv_1d_ph(ctx0, layer.attn_k, cur, 1, 1);
  13327. v = ggml_conv_1d_ph(ctx0, layer.attn_v, cur, 1, 1);
  13328. q = ggml_add(ctx0, q, layer.attn_q_b);
  13329. k = ggml_add(ctx0, k, layer.attn_k_b);
  13330. v = ggml_add(ctx0, v, layer.attn_v_b);
  13331. q = ggml_cont(ctx0, ggml_transpose(ctx0, q));
  13332. k = ggml_cont(ctx0, ggml_transpose(ctx0, k));
  13333. ggml_tensor * kq = ggml_mul_mat(ctx0, k, q);
  13334. kq = ggml_soft_max_ext(ctx0, kq, nullptr, 1.0f/sqrtf(float(hparams.posnet.n_embd)), 0.0f);
  13335. cur = ggml_mul_mat(ctx0, kq, v);
  13336. cur = ggml_conv_1d_ph(ctx0, layer.attn_o, cur, 1, 1);
  13337. cur = ggml_add(ctx0, cur, layer.attn_o_b);
  13338. cur = ggml_add(ctx0, cur, inpL);
  13339. } break;
  13340. case 5:
  13341. {
  13342. cur = build_norm(cur,
  13343. layer.norm,
  13344. layer.norm_b,
  13345. LLM_NORM_GROUP, 0);
  13346. } break;
  13347. default: GGML_ABORT("unknown posnet layer");
  13348. };
  13349. }
  13350. cur = ggml_cont(ctx0, ggml_transpose(ctx0, cur));
  13351. cur = build_norm(cur,
  13352. model.tok_norm,
  13353. model.tok_norm_b,
  13354. LLM_NORM, -1);
  13355. cur = ggml_cont(ctx0, ggml_transpose(ctx0, cur));
  13356. inpL = cur;
  13357. // convnext
  13358. for (uint32_t il = 0; il < hparams.convnext.n_layer; ++il) {
  13359. const auto & layer = model.layers[il].convnext;
  13360. cur = inpL;
  13361. cur = ggml_conv_1d_dw_ph(ctx0, layer.dw, cur, 1, 1);
  13362. cur = ggml_add(ctx0, cur, layer.dw_b);
  13363. cur = ggml_cont(ctx0, ggml_transpose(ctx0, cur));
  13364. cur = build_norm(cur,
  13365. layer.norm,
  13366. layer.norm_b,
  13367. LLM_NORM, -1);
  13368. cur = build_ffn(cur,
  13369. layer.pw1, layer.pw1_b, NULL,
  13370. NULL, NULL, NULL,
  13371. layer.pw2, layer.pw2_b, NULL,
  13372. NULL,
  13373. LLM_FFN_GELU, LLM_FFN_SEQ, il);
  13374. cur = ggml_mul(ctx0, cur, layer.gamma);
  13375. cur = ggml_cont(ctx0, ggml_transpose(ctx0, cur));
  13376. inpL = ggml_add(ctx0, cur, inpL);
  13377. }
  13378. cur = inpL;
  13379. cur = ggml_cont(ctx0, ggml_transpose(ctx0, cur));
  13380. cur = build_norm(cur,
  13381. model.output_norm,
  13382. model.output_norm_b,
  13383. LLM_NORM, -1);
  13384. // lm_head
  13385. cur = build_lora_mm(model.output, cur);
  13386. cur = ggml_add(ctx0, cur, model.output_b);
  13387. cb(cur, "result_embd", -1);
  13388. res->t_embd = cur;
  13389. ggml_build_forward_expand(gf, cur);
  13390. }
  13391. };
  13392. struct llm_build_plm : public llm_graph_context {
  13393. llm_build_plm(const llama_model & model, const llm_graph_params & params) : llm_graph_context(params) {
  13394. const float kq_scale = 1.0f/sqrtf(float(hparams.n_embd_head_k));
  13395. const uint32_t n_embd_head_qk_rope = hparams.n_rot;
  13396. const uint32_t n_embd_head_qk_nope = hparams.n_embd_head_k - hparams.n_rot;
  13397. const uint32_t kv_lora_rank = hparams.n_lora_kv;
  13398. ggml_tensor * cur;
  13399. ggml_tensor * inpL;
  13400. // {n_embd, n_tokens}
  13401. inpL = build_inp_embd(model.tok_embd);
  13402. // inp_pos - contains the positions
  13403. ggml_tensor * inp_pos = build_inp_pos();
  13404. auto * inp_attn = build_attn_inp_kv();
  13405. ggml_tensor * inp_out_ids = build_inp_out_ids();
  13406. for (int il = 0; il < n_layer; ++il) {
  13407. ggml_tensor * inpSA = inpL;
  13408. // norm
  13409. cur = build_norm(inpL,
  13410. model.layers[il].attn_norm, NULL,
  13411. LLM_NORM_RMS, il);
  13412. cb(cur, "attn_norm", il);
  13413. // self_attention
  13414. {
  13415. ggml_tensor * q = NULL;
  13416. q = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
  13417. cb(q, "q", il);
  13418. // split into {n_head * n_embd_head_qk_nope, n_tokens}
  13419. ggml_tensor * q_nope = ggml_view_3d(ctx0, q, n_embd_head_qk_nope, n_head, n_tokens,
  13420. ggml_row_size(q->type, hparams.n_embd_head_k),
  13421. ggml_row_size(q->type, hparams.n_embd_head_k * n_head),
  13422. 0);
  13423. cb(q_nope, "q_nope", il);
  13424. // and {n_head * n_embd_head_qk_rope, n_tokens}
  13425. ggml_tensor * q_pe = ggml_view_3d(ctx0, q, n_embd_head_qk_rope, n_head, n_tokens,
  13426. ggml_row_size(q->type, hparams.n_embd_head_k),
  13427. ggml_row_size(q->type, hparams.n_embd_head_k * n_head),
  13428. ggml_row_size(q->type, n_embd_head_qk_nope));
  13429. cb(q_pe, "q_pe", il);
  13430. // {n_embd, kv_lora_rank + n_embd_head_qk_rope} * {n_embd, n_tokens} -> {kv_lora_rank + n_embd_head_qk_rope, n_tokens}
  13431. ggml_tensor * kv_pe_compresseed = ggml_mul_mat(ctx0, model.layers[il].wkv_a_mqa, cur);
  13432. cb(kv_pe_compresseed, "kv_pe_compresseed", il);
  13433. // split into {kv_lora_rank, n_tokens}
  13434. ggml_tensor * kv_compressed = ggml_view_2d(ctx0, kv_pe_compresseed, kv_lora_rank, n_tokens,
  13435. kv_pe_compresseed->nb[1],
  13436. 0);
  13437. cb(kv_compressed, "kv_compressed", il);
  13438. // and {n_embd_head_qk_rope, n_tokens}
  13439. ggml_tensor * k_pe = ggml_view_3d(ctx0, kv_pe_compresseed, n_embd_head_qk_rope, 1, n_tokens,
  13440. kv_pe_compresseed->nb[1],
  13441. kv_pe_compresseed->nb[1],
  13442. ggml_row_size(kv_pe_compresseed->type, kv_lora_rank));
  13443. cb(k_pe, "k_pe", il);
  13444. kv_compressed = build_norm(kv_compressed,
  13445. model.layers[il].attn_kv_a_norm, NULL,
  13446. LLM_NORM_RMS, il);
  13447. cb(kv_compressed, "kv_compressed", il);
  13448. // {kv_lora_rank, n_head * (n_embd_head_qk_nope + n_embd_head_v)} * {kv_lora_rank, n_tokens} -> {n_head * (n_embd_head_qk_nope + n_embd_head_v), n_tokens}
  13449. ggml_tensor * kv = ggml_mul_mat(ctx0, model.layers[il].wkv_b, kv_compressed);
  13450. cb(kv, "kv", il);
  13451. // split into {n_head * n_embd_head_qk_nope, n_tokens}
  13452. ggml_tensor * k_nope = ggml_view_3d(ctx0, kv, n_embd_head_qk_nope, n_head, n_tokens,
  13453. ggml_row_size(kv->type, n_embd_head_qk_nope + hparams.n_embd_head_v),
  13454. ggml_row_size(kv->type, n_head * (n_embd_head_qk_nope + hparams.n_embd_head_v)),
  13455. 0);
  13456. cb(k_nope, "k_nope", il);
  13457. // and {n_head * n_embd_head_v, n_tokens}
  13458. ggml_tensor * v_states = ggml_view_3d(ctx0, kv, hparams.n_embd_head_v, n_head, n_tokens,
  13459. ggml_row_size(kv->type, (n_embd_head_qk_nope + hparams.n_embd_head_v)),
  13460. ggml_row_size(kv->type, (n_embd_head_qk_nope + hparams.n_embd_head_v)*n_head),
  13461. ggml_row_size(kv->type, (n_embd_head_qk_nope)));
  13462. cb(v_states, "v_states", il);
  13463. v_states = ggml_cont(ctx0, v_states);
  13464. cb(v_states, "v_states", il);
  13465. v_states = ggml_view_2d(ctx0, v_states, hparams.n_embd_head_v * n_head, n_tokens,
  13466. ggml_row_size(kv->type, hparams.n_embd_head_v * n_head),
  13467. 0);
  13468. cb(v_states, "v_states", il);
  13469. q_pe = ggml_rope_ext(
  13470. ctx0, q_pe, inp_pos, nullptr,
  13471. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  13472. ext_factor, attn_factor, beta_fast, beta_slow
  13473. );
  13474. cb(q_pe, "q_pe", il);
  13475. // shared RoPE key
  13476. k_pe = ggml_rope_ext(
  13477. ctx0, k_pe, inp_pos, nullptr,
  13478. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  13479. ext_factor, attn_factor, beta_fast, beta_slow
  13480. );
  13481. cb(k_pe, "k_pe", il);
  13482. ggml_tensor * q_states = ggml_concat(ctx0, q_nope, q_pe, 0);
  13483. cb(q_states, "q_states", il);
  13484. ggml_tensor * k_states = ggml_concat(ctx0, k_nope, ggml_repeat(ctx0, k_pe, q_pe), 0);
  13485. cb(k_states, "k_states", il);
  13486. cur = build_attn(inp_attn,
  13487. model.layers[il].wo, NULL,
  13488. q_states, k_states, v_states, nullptr, nullptr, nullptr, kq_scale, il);
  13489. }
  13490. if (il == n_layer - 1 && inp_out_ids) {
  13491. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  13492. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  13493. }
  13494. ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  13495. cb(ffn_inp, "ffn_inp", il);
  13496. cur = build_norm(ffn_inp,
  13497. model.layers[il].ffn_norm, NULL,
  13498. LLM_NORM_RMS, il);
  13499. cb(cur, "ffn_norm", il);
  13500. cur = build_ffn(cur,
  13501. model.layers[il].ffn_up, NULL, NULL,
  13502. NULL, NULL, NULL,
  13503. model.layers[il].ffn_down, NULL, NULL,
  13504. NULL,
  13505. LLM_FFN_RELU_SQR, LLM_FFN_SEQ, il);
  13506. cb(cur, "ffn_out", il);
  13507. cur = ggml_add(ctx0, cur, ffn_inp);
  13508. cur = build_cvec(cur, il);
  13509. cb(cur, "l_out", il);
  13510. // input for next layer
  13511. inpL = cur;
  13512. }
  13513. cur = inpL;
  13514. cur = build_norm(cur,
  13515. model.output_norm, NULL,
  13516. LLM_NORM_RMS, -1);
  13517. cb(cur, "result_norm", -1);
  13518. res->t_embd = cur;
  13519. cur = build_lora_mm(model.output, cur);
  13520. cb(cur, "result_output", -1);
  13521. res->t_logits = cur;
  13522. ggml_build_forward_expand(gf, cur);
  13523. }
  13524. };
  13525. struct llm_build_bailingmoe : public llm_graph_context {
  13526. llm_build_bailingmoe(const llama_model & model, const llm_graph_params & params) : llm_graph_context(params) {
  13527. ggml_tensor * cur;
  13528. ggml_tensor * inpL;
  13529. inpL = build_inp_embd(model.tok_embd);
  13530. // inp_pos - contains the positions
  13531. ggml_tensor * inp_pos = build_inp_pos();
  13532. auto * inp_attn = build_attn_inp_kv();
  13533. ggml_tensor * inp_out_ids = build_inp_out_ids();
  13534. for (int il = 0; il < n_layer; ++il) {
  13535. ggml_tensor * inpSA = inpL;
  13536. // norm
  13537. cur = build_norm(inpL,
  13538. model.layers[il].attn_norm, NULL,
  13539. LLM_NORM_RMS, il);
  13540. cb(cur, "attn_norm", il);
  13541. // self-attention
  13542. {
  13543. // rope freq factors for llama3; may return nullptr for llama2 and other models
  13544. ggml_tensor * rope_factors = model.get_rope_factors(cparams, il);
  13545. // compute Q and K and RoPE them
  13546. ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
  13547. cb(Qcur, "Qcur", il);
  13548. if (model.layers[il].bq) {
  13549. Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
  13550. cb(Qcur, "Qcur", il);
  13551. }
  13552. ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
  13553. cb(Kcur, "Kcur", il);
  13554. if (model.layers[il].bk) {
  13555. Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
  13556. cb(Kcur, "Kcur", il);
  13557. }
  13558. ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
  13559. cb(Vcur, "Vcur", il);
  13560. if (model.layers[il].bv) {
  13561. Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
  13562. cb(Vcur, "Vcur", il);
  13563. }
  13564. Qcur = ggml_reshape_3d(ctx0, Qcur, n_rot, n_head, n_tokens);
  13565. Kcur = ggml_reshape_3d(ctx0, Kcur, n_rot, n_head_kv, n_tokens);
  13566. Vcur = ggml_reshape_3d(ctx0, Vcur, n_rot, n_head_kv, n_tokens);
  13567. Qcur = ggml_rope_ext(
  13568. ctx0, Qcur, inp_pos, rope_factors,
  13569. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  13570. ext_factor, attn_factor, beta_fast, beta_slow
  13571. );
  13572. Kcur = ggml_rope_ext(
  13573. ctx0, Kcur, inp_pos, rope_factors,
  13574. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  13575. ext_factor, attn_factor, beta_fast, beta_slow
  13576. );
  13577. cb(Qcur, "Qcur", il);
  13578. cb(Kcur, "Kcur", il);
  13579. cb(Vcur, "Vcur", il);
  13580. cur = build_attn(inp_attn,
  13581. model.layers[il].wo, model.layers[il].bo,
  13582. Qcur, Kcur, Vcur, nullptr, nullptr, nullptr, 1.0f/sqrtf(float(n_rot)), il);
  13583. }
  13584. if (il == n_layer - 1 && inp_out_ids) {
  13585. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  13586. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  13587. }
  13588. ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  13589. cb(ffn_inp, "ffn_inp", il);
  13590. cur = build_norm(ffn_inp,
  13591. model.layers[il].ffn_norm, NULL,
  13592. LLM_NORM_RMS, il);
  13593. cb(cur, "ffn_norm", il);
  13594. ggml_tensor * moe_out =
  13595. build_moe_ffn(cur,
  13596. model.layers[il].ffn_gate_inp,
  13597. model.layers[il].ffn_up_exps,
  13598. model.layers[il].ffn_gate_exps,
  13599. model.layers[il].ffn_down_exps,
  13600. nullptr,
  13601. n_expert, n_expert_used,
  13602. LLM_FFN_SILU, hparams.expert_weights_norm,
  13603. false, hparams.expert_weights_scale,
  13604. LLAMA_EXPERT_GATING_FUNC_TYPE_SOFTMAX,
  13605. il);
  13606. cb(moe_out, "ffn_moe_out", il);
  13607. // FFN shared expert
  13608. {
  13609. ggml_tensor * ffn_shexp = build_ffn(cur,
  13610. model.layers[il].ffn_up_shexp, NULL, NULL,
  13611. model.layers[il].ffn_gate_shexp, NULL, NULL,
  13612. model.layers[il].ffn_down_shexp, NULL, NULL,
  13613. NULL,
  13614. LLM_FFN_SILU, LLM_FFN_PAR, il);
  13615. cb(ffn_shexp, "ffn_shexp", il);
  13616. cur = ggml_add(ctx0, moe_out, ffn_shexp);
  13617. cb(cur, "ffn_out", il);
  13618. }
  13619. cur = ggml_add(ctx0, cur, ffn_inp);
  13620. cur = build_cvec(cur, il);
  13621. cb(cur, "l_out", il);
  13622. // input for next layer
  13623. inpL = cur;
  13624. }
  13625. cur = inpL;
  13626. cur = build_norm(cur,
  13627. model.output_norm, NULL,
  13628. LLM_NORM_RMS, -1);
  13629. cb(cur, "result_norm", -1);
  13630. res->t_embd = cur;
  13631. // lm_head
  13632. cur = build_lora_mm(model.output, cur);
  13633. cb(cur, "result_output", -1);
  13634. res->t_logits = cur;
  13635. ggml_build_forward_expand(gf, cur);
  13636. }
  13637. };
  13638. struct llm_build_bailingmoe2 : public llm_graph_context {
  13639. llm_build_bailingmoe2(const llama_model & model, const llm_graph_params & params) : llm_graph_context(params) {
  13640. const int64_t n_embd_head = hparams.n_embd_head_v;
  13641. const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
  13642. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  13643. ggml_tensor * cur;
  13644. ggml_tensor * inpL;
  13645. inpL = build_inp_embd(model.tok_embd);
  13646. // inp_pos - contains the positions
  13647. ggml_tensor * inp_pos = build_inp_pos();
  13648. auto * inp_attn = build_attn_inp_kv();
  13649. ggml_tensor * inp_out_ids = build_inp_out_ids();
  13650. const int n_transformer_layers = n_layer - hparams.nextn_predict_layers;
  13651. for (int il = 0; il < n_transformer_layers; ++il) {
  13652. ggml_tensor * inpSA = inpL;
  13653. // norm
  13654. cur = build_norm(inpL,
  13655. model.layers[il].attn_norm, NULL,
  13656. LLM_NORM_RMS, il);
  13657. cb(cur, "attn_norm", il);
  13658. // self_attention
  13659. {
  13660. cur = build_lora_mm(model.layers[il].wqkv, cur);
  13661. cb(cur, "wqkv", il);
  13662. ggml_tensor * Qcur = ggml_view_3d(ctx0, cur, n_embd_head, n_head, n_tokens, n_embd_head*sizeof(float), cur->nb[1], 0*sizeof(float)*(n_embd));
  13663. ggml_tensor * Kcur = ggml_view_3d(ctx0, cur, n_embd_head, n_head_kv, n_tokens, n_embd_head*sizeof(float), cur->nb[1], 1*sizeof(float)*(n_embd));
  13664. ggml_tensor * Vcur = ggml_view_3d(ctx0, cur, n_embd_head, n_head_kv, n_tokens, n_embd_head*sizeof(float), cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa));
  13665. Qcur = build_norm(Qcur, model.layers[il].attn_q_norm, NULL, LLM_NORM_RMS, il);
  13666. cb(Qcur, "Qcur_normed", il);
  13667. Qcur = ggml_rope_ext(
  13668. ctx0, Qcur, inp_pos, nullptr,
  13669. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  13670. ext_factor, attn_factor, beta_fast, beta_slow
  13671. );
  13672. Kcur = build_norm(Kcur, model.layers[il].attn_k_norm, NULL, LLM_NORM_RMS, il);
  13673. cb(Kcur, "Kcur_normed", il);
  13674. Kcur = ggml_rope_ext(
  13675. ctx0, Kcur, inp_pos, nullptr,
  13676. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  13677. ext_factor, attn_factor, beta_fast, beta_slow
  13678. );
  13679. cb(Qcur, "Qcur", il);
  13680. cb(Kcur, "Kcur", il);
  13681. cb(Vcur, "Vcur", il);
  13682. cur = build_attn(inp_attn,
  13683. model.layers[il].wo, model.layers[il].bo,
  13684. Qcur, Kcur, Vcur, nullptr, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
  13685. }
  13686. if (il == n_transformer_layers - 1 && inp_out_ids) {
  13687. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  13688. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  13689. }
  13690. ggml_tensor * sa_out = ggml_add(ctx0, cur, inpSA);
  13691. cb(sa_out, "sa_out", il);
  13692. // MoE branch
  13693. cur = build_norm(sa_out,
  13694. model.layers[il].ffn_norm, NULL,
  13695. LLM_NORM_RMS, il);
  13696. cb(cur, "ffn_norm", il);
  13697. if (static_cast<uint32_t>(il) < hparams.n_layer_dense_lead) {
  13698. cur = build_ffn(cur,
  13699. model.layers[il].ffn_up, NULL, NULL,
  13700. model.layers[il].ffn_gate, NULL, NULL,
  13701. model.layers[il].ffn_down, NULL, NULL,
  13702. NULL,
  13703. LLM_FFN_SILU, LLM_FFN_PAR, il);
  13704. cb(cur, "ffn_out", il);
  13705. } else {
  13706. ggml_tensor * moe_out =
  13707. build_moe_ffn(cur,
  13708. model.layers[il].ffn_gate_inp,
  13709. model.layers[il].ffn_up_exps,
  13710. model.layers[il].ffn_gate_exps,
  13711. model.layers[il].ffn_down_exps,
  13712. model.layers[il].ffn_exp_probs_b,
  13713. n_expert, n_expert_used,
  13714. LLM_FFN_SILU, hparams.expert_weights_norm,
  13715. true, hparams.expert_weights_scale,
  13716. (llama_expert_gating_func_type) hparams.expert_gating_func,
  13717. il);
  13718. cb(moe_out, "ffn_moe_out", il);
  13719. {
  13720. ggml_tensor * ffn_shexp = build_ffn(cur,
  13721. model.layers[il].ffn_up_shexp, NULL, NULL,
  13722. model.layers[il].ffn_gate_shexp, NULL, NULL,
  13723. model.layers[il].ffn_down_shexp, NULL, NULL,
  13724. NULL,
  13725. LLM_FFN_SILU, LLM_FFN_PAR, il);
  13726. cb(ffn_shexp, "ffn_shexp", il);
  13727. cur = ggml_add(ctx0, moe_out, ffn_shexp);
  13728. cb(cur, "ffn_out", il);
  13729. }
  13730. }
  13731. cur = ggml_add(ctx0, cur, sa_out);
  13732. cur = build_cvec(cur, il);
  13733. cb(cur, "l_out", il);
  13734. // input for next layer
  13735. inpL = cur;
  13736. }
  13737. cur = inpL;
  13738. cur = build_norm(cur,
  13739. model.output_norm, NULL,
  13740. LLM_NORM_RMS, -1);
  13741. cb(cur, "result_norm", -1);
  13742. res->t_embd = cur;
  13743. // lm_head
  13744. cur = build_lora_mm(model.output, cur);
  13745. cb(cur, "result_output", -1);
  13746. res->t_logits = cur;
  13747. ggml_build_forward_expand(gf, cur);
  13748. }
  13749. };
  13750. struct llm_build_dots1 : public llm_graph_context {
  13751. llm_build_dots1(const llama_model & model, const llm_graph_params & params) : llm_graph_context(params) {
  13752. const int64_t n_embd_head = hparams.n_embd_head_v;
  13753. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  13754. GGML_ASSERT(n_embd_head == hparams.n_rot);
  13755. ggml_tensor * cur;
  13756. ggml_tensor * inpL;
  13757. inpL = build_inp_embd(model.tok_embd);
  13758. // inp_pos - contains the positions
  13759. ggml_tensor * inp_pos = build_inp_pos();
  13760. auto * inp_attn = build_attn_inp_kv();
  13761. ggml_tensor * inp_out_ids = build_inp_out_ids();
  13762. for (int il = 0; il < n_layer; ++il) {
  13763. ggml_tensor * inpSA = inpL;
  13764. // norm
  13765. cur = build_norm(inpL,
  13766. model.layers[il].attn_norm, NULL,
  13767. LLM_NORM_RMS, il);
  13768. cb(cur, "attn_norm", il);
  13769. // self_attention
  13770. {
  13771. // compute Q and K and RoPE them
  13772. ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
  13773. cb(Qcur, "Qcur", il);
  13774. ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
  13775. cb(Kcur, "Kcur", il);
  13776. ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
  13777. cb(Vcur, "Vcur", il);
  13778. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  13779. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  13780. Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
  13781. Qcur = build_norm(Qcur, model.layers[il].attn_q_norm, NULL, LLM_NORM_RMS, il);
  13782. cb(Qcur, "Qcur_normed", il);
  13783. Qcur = ggml_rope_ext(
  13784. ctx0, Qcur, inp_pos, nullptr,
  13785. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  13786. ext_factor, attn_factor, beta_fast, beta_slow
  13787. );
  13788. Kcur = build_norm(Kcur, model.layers[il].attn_k_norm, NULL, LLM_NORM_RMS, il);
  13789. cb(Kcur, "Kcur_normed", il);
  13790. Kcur = ggml_rope_ext(
  13791. ctx0, Kcur, inp_pos, nullptr,
  13792. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  13793. ext_factor, attn_factor, beta_fast, beta_slow
  13794. );
  13795. cb(Qcur, "Qcur", il);
  13796. cb(Kcur, "Kcur", il);
  13797. cb(Vcur, "Vcur", il);
  13798. cur = build_attn(inp_attn,
  13799. model.layers[il].wo, model.layers[il].bo,
  13800. Qcur, Kcur, Vcur, nullptr, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
  13801. }
  13802. if (il == n_layer - 1 && inp_out_ids) {
  13803. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  13804. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  13805. }
  13806. ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  13807. cb(ffn_inp, "ffn_inp", il);
  13808. // MoE branch
  13809. cur = build_norm(ffn_inp,
  13810. model.layers[il].ffn_norm, NULL,
  13811. LLM_NORM_RMS, il);
  13812. cb(cur, "ffn_norm", il);
  13813. if ((uint32_t) il < hparams.n_layer_dense_lead) {
  13814. cur = build_ffn(cur,
  13815. model.layers[il].ffn_up, NULL, NULL,
  13816. model.layers[il].ffn_gate, NULL, NULL,
  13817. model.layers[il].ffn_down, NULL, NULL,
  13818. NULL,
  13819. LLM_FFN_SILU, LLM_FFN_PAR, il);
  13820. cb(cur, "ffn_out", il);
  13821. } else {
  13822. ggml_tensor * moe_out =
  13823. build_moe_ffn(cur,
  13824. model.layers[il].ffn_gate_inp,
  13825. model.layers[il].ffn_up_exps,
  13826. model.layers[il].ffn_gate_exps,
  13827. model.layers[il].ffn_down_exps,
  13828. model.layers[il].ffn_exp_probs_b,
  13829. n_expert, n_expert_used,
  13830. LLM_FFN_SILU, hparams.expert_weights_norm,
  13831. true, hparams.expert_weights_scale,
  13832. (llama_expert_gating_func_type) hparams.expert_gating_func,
  13833. il);
  13834. cb(moe_out, "ffn_moe_out", il);
  13835. {
  13836. ggml_tensor * ffn_shexp = build_ffn(cur,
  13837. model.layers[il].ffn_up_shexp, NULL, NULL,
  13838. model.layers[il].ffn_gate_shexp, NULL, NULL,
  13839. model.layers[il].ffn_down_shexp, NULL, NULL,
  13840. NULL,
  13841. LLM_FFN_SILU, LLM_FFN_PAR, il);
  13842. cb(ffn_shexp, "ffn_shexp", il);
  13843. cur = ggml_add(ctx0, moe_out, ffn_shexp);
  13844. cb(cur, "ffn_out", il);
  13845. }
  13846. }
  13847. cur = ggml_add(ctx0, cur, ffn_inp);
  13848. cur = build_cvec(cur, il);
  13849. cb(cur, "l_out", il);
  13850. // input for next layer
  13851. inpL = cur;
  13852. }
  13853. cur = inpL;
  13854. cur = build_norm(cur,
  13855. model.output_norm, NULL,
  13856. LLM_NORM_RMS, -1);
  13857. cb(cur, "result_norm", -1);
  13858. res->t_embd = cur;
  13859. // lm_head
  13860. cur = build_lora_mm(model.output, cur);
  13861. cb(cur, "result_output", -1);
  13862. res->t_logits = cur;
  13863. ggml_build_forward_expand(gf, cur);
  13864. }
  13865. };
  13866. struct llm_build_ernie4_5 : public llm_graph_context {
  13867. llm_build_ernie4_5(const llama_model & model, const llm_graph_params & params) : llm_graph_context(params) {
  13868. const int64_t n_embd_head = hparams.n_embd_head_v;
  13869. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  13870. GGML_ASSERT(n_embd_head == hparams.n_rot);
  13871. ggml_tensor * cur;
  13872. ggml_tensor * inpL;
  13873. inpL = build_inp_embd(model.tok_embd);
  13874. // inp_pos - contains the positions
  13875. ggml_tensor * inp_pos = build_inp_pos();
  13876. auto * inp_attn = build_attn_inp_kv();
  13877. for (int il = 0; il < n_layer; ++il) {
  13878. ggml_tensor * inpSA = inpL;
  13879. // norm
  13880. {
  13881. cur = build_norm(inpL,
  13882. model.layers[il].attn_norm, NULL,
  13883. LLM_NORM_RMS, il);
  13884. cb(cur, "attn_norm", il);
  13885. }
  13886. // self-attention
  13887. {
  13888. ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
  13889. cb(Qcur, "Qcur", il);
  13890. if (model.layers[il].bq) {
  13891. Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
  13892. cb(Qcur, "Qcur", il);
  13893. }
  13894. ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
  13895. cb(Kcur, "Kcur", il);
  13896. if (model.layers[il].bk) {
  13897. Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
  13898. cb(Kcur, "Kcur", il);
  13899. }
  13900. ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
  13901. cb(Vcur, "Vcur", il);
  13902. if (model.layers[il].bv) {
  13903. Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
  13904. cb(Vcur, "Vcur", il);
  13905. }
  13906. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  13907. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  13908. Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
  13909. Qcur = ggml_rope_ext(
  13910. ctx0, Qcur, inp_pos, nullptr,
  13911. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  13912. ext_factor, attn_factor, beta_fast, beta_slow
  13913. );
  13914. Kcur = ggml_rope_ext(
  13915. ctx0, Kcur, inp_pos, nullptr,
  13916. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  13917. ext_factor, attn_factor, beta_fast, beta_slow
  13918. );
  13919. cb(Qcur, "Qcur", il);
  13920. cb(Kcur, "Kcur", il);
  13921. cb(Vcur, "Vcur", il);
  13922. cur = build_attn(inp_attn,
  13923. model.layers[il].wo, NULL,
  13924. Qcur, Kcur, Vcur, nullptr, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
  13925. }
  13926. if (il == n_layer - 1) {
  13927. // skip computing output for unused tokens
  13928. ggml_tensor * inp_out_ids = build_inp_out_ids();
  13929. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  13930. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  13931. }
  13932. ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  13933. cb(ffn_inp, "ffn_inp", il);
  13934. // feed-forward network
  13935. {
  13936. cur = build_norm(ffn_inp,
  13937. model.layers[il].ffn_norm, NULL,
  13938. LLM_NORM_RMS, il);
  13939. cb(cur, "ffn_norm", il);
  13940. cur = build_ffn(cur,
  13941. model.layers[il].ffn_up, NULL, NULL,
  13942. model.layers[il].ffn_gate, NULL, NULL,
  13943. model.layers[il].ffn_down, NULL, NULL,
  13944. NULL,
  13945. LLM_FFN_SILU, LLM_FFN_PAR, il);
  13946. cb(cur, "ffn_out", il);
  13947. }
  13948. cur = ggml_add(ctx0, cur, ffn_inp);
  13949. cur = build_cvec(cur, il);
  13950. cb(cur, "l_out", il);
  13951. // input for next layer
  13952. inpL = cur;
  13953. }
  13954. cur = inpL;
  13955. cur = build_norm(cur,
  13956. model.output_norm, NULL,
  13957. LLM_NORM_RMS, -1);
  13958. cb(cur, "result_norm", -1);
  13959. res->t_embd = cur;
  13960. // lm_head
  13961. cur = build_lora_mm(model.output, cur);
  13962. cb(cur, "result_output", -1);
  13963. res->t_logits = cur;
  13964. ggml_build_forward_expand(gf, cur);
  13965. }
  13966. };
  13967. struct llm_build_ernie4_5_moe : public llm_graph_context {
  13968. llm_build_ernie4_5_moe(const llama_model & model, const llm_graph_params & params) : llm_graph_context(params) {
  13969. const int64_t n_embd_head = hparams.n_embd_head_v;
  13970. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  13971. GGML_ASSERT(n_embd_head == hparams.n_rot);
  13972. ggml_tensor * cur;
  13973. ggml_tensor * inpL;
  13974. inpL = build_inp_embd(model.tok_embd);
  13975. // inp_pos - contains the positions
  13976. ggml_tensor * inp_pos = build_inp_pos();
  13977. auto * inp_attn = build_attn_inp_kv();
  13978. ggml_tensor * inp_out_ids = build_inp_out_ids();
  13979. GGML_ASSERT(hparams.n_moe_layer_step > 0 && "Ernie 4.5 MoE requires n_moe_layer_step > 0");
  13980. for (int il = 0; il < n_layer; ++il) {
  13981. ggml_tensor * inpSA = inpL;
  13982. // norm
  13983. {
  13984. cur = build_norm(inpL,
  13985. model.layers[il].attn_norm, NULL,
  13986. LLM_NORM_RMS, il);
  13987. cb(cur, "attn_norm", il);
  13988. }
  13989. // self-attention
  13990. {
  13991. // compute Q and K and RoPE them
  13992. ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
  13993. cb(Qcur, "Qcur", il);
  13994. if (model.layers[il].bq) {
  13995. Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
  13996. cb(Qcur, "Qcur", il);
  13997. }
  13998. ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
  13999. cb(Kcur, "Kcur", il);
  14000. if (model.layers[il].bk) {
  14001. Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
  14002. cb(Kcur, "Kcur", il);
  14003. }
  14004. ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
  14005. cb(Vcur, "Vcur", il);
  14006. if (model.layers[il].bv) {
  14007. Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
  14008. cb(Vcur, "Vcur", il);
  14009. }
  14010. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  14011. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  14012. Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
  14013. Qcur = ggml_rope_ext(
  14014. ctx0, Qcur, inp_pos, nullptr,
  14015. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  14016. ext_factor, attn_factor, beta_fast, beta_slow
  14017. );
  14018. Kcur = ggml_rope_ext(
  14019. ctx0, Kcur, inp_pos, nullptr,
  14020. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  14021. ext_factor, attn_factor, beta_fast, beta_slow
  14022. );
  14023. cb(Qcur, "Qcur", il);
  14024. cb(Kcur, "Kcur", il);
  14025. cb(Vcur, "Vcur", il);
  14026. cur = build_attn(inp_attn,
  14027. model.layers[il].wo, NULL,
  14028. Qcur, Kcur, Vcur, nullptr, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
  14029. cb(cur, "attn_out", il);
  14030. }
  14031. if (il == n_layer - 1 && inp_out_ids) {
  14032. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  14033. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  14034. }
  14035. ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  14036. cb(ffn_inp, "ffn_inp", il);
  14037. // feed-forward network
  14038. bool is_moe_layer = static_cast<uint32_t>(il) >= hparams.n_layer_dense_lead && (il + 1) % hparams.n_moe_layer_step == 0;
  14039. if (!is_moe_layer) {
  14040. cur = build_norm(ffn_inp,
  14041. model.layers[il].ffn_norm, NULL,
  14042. LLM_NORM_RMS, il);
  14043. cb(cur, "ffn_norm", il);
  14044. cur = build_ffn(cur,
  14045. model.layers[il].ffn_up, NULL, NULL,
  14046. model.layers[il].ffn_gate, NULL, NULL,
  14047. model.layers[il].ffn_down, NULL, NULL,
  14048. NULL,
  14049. LLM_FFN_SILU, LLM_FFN_PAR, il);
  14050. cb(cur, "ffn_out", il);
  14051. } else {
  14052. // MoE branch
  14053. cur = build_norm(ffn_inp,
  14054. model.layers[il].ffn_norm, NULL,
  14055. LLM_NORM_RMS, il);
  14056. cb(cur, "ffn_norm", il);
  14057. ggml_tensor * moe_out = build_moe_ffn(cur,
  14058. model.layers[il].ffn_gate_inp,
  14059. model.layers[il].ffn_up_exps,
  14060. model.layers[il].ffn_gate_exps,
  14061. model.layers[il].ffn_down_exps,
  14062. model.layers[il].ffn_exp_probs_b,
  14063. n_expert, n_expert_used,
  14064. LLM_FFN_SILU, true,
  14065. false, 0.0,
  14066. LLAMA_EXPERT_GATING_FUNC_TYPE_SOFTMAX,
  14067. il);
  14068. cb(moe_out, "ffn_moe_out", il);
  14069. // Shared expert (if present)
  14070. if (hparams.n_ff_shexp > 0) {
  14071. ggml_tensor * ffn_shexp = build_ffn(cur,
  14072. model.layers[il].ffn_up_shexp, NULL, NULL,
  14073. model.layers[il].ffn_gate_shexp, NULL, NULL,
  14074. model.layers[il].ffn_down_shexp, NULL, NULL,
  14075. NULL,
  14076. LLM_FFN_SILU, LLM_FFN_PAR, il);
  14077. cb(ffn_shexp, "ffn_shexp", il);
  14078. cur = ggml_add(ctx0, moe_out, ffn_shexp);
  14079. } else {
  14080. cur = moe_out;
  14081. }
  14082. cb(cur, "ffn_out", il);
  14083. }
  14084. cur = ggml_add(ctx0, cur, ffn_inp);
  14085. cb(cur, "ffn_out", il);
  14086. cur = build_cvec(cur, il);
  14087. cb(cur, "l_out", il);
  14088. // input for next layer
  14089. inpL = cur;
  14090. }
  14091. cur = inpL;
  14092. cur = build_norm(cur,
  14093. model.output_norm, NULL,
  14094. LLM_NORM_RMS, -1);
  14095. cb(cur, "result_norm", -1);
  14096. res->t_embd = cur;
  14097. // lm_head
  14098. cur = build_lora_mm(model.output, cur);
  14099. cb(cur, "result_output", -1);
  14100. res->t_logits = cur;
  14101. ggml_build_forward_expand(gf, cur);
  14102. }
  14103. };
  14104. struct llm_build_falcon_h1 : public llm_graph_context_mamba {
  14105. llm_build_falcon_h1(const llama_model & model, const llm_graph_params & params) : llm_graph_context_mamba(params) {
  14106. const int64_t n_embd_head = hparams.n_embd_head_v;
  14107. ggml_tensor * cur;
  14108. ggml_tensor * inpL;
  14109. inpL = build_inp_embd(model.tok_embd);
  14110. // inp_pos - contains the positions
  14111. ggml_tensor * inp_pos = build_inp_pos();
  14112. // Build the inputs in the recurrent & kv cache
  14113. auto * inp = build_inp_mem_hybrid();
  14114. const float kq_scale = hparams.f_attention_scale == 0.0f ? 1.0f/sqrtf(float(n_embd_head)) : hparams.f_attention_scale;
  14115. ggml_tensor * inp_out_ids = build_inp_out_ids();
  14116. for (int il = 0; il < n_layer; ++il) {
  14117. ggml_tensor * inpSA = inpL;
  14118. cur = build_norm(inpL,
  14119. model.layers[il].attn_norm, NULL,
  14120. LLM_NORM_RMS, il);
  14121. cb(cur, "attn_norm", il);
  14122. // self-attention
  14123. ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
  14124. cb(Qcur, "Qcur", il);
  14125. ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
  14126. cb(Kcur, "Kcur", il);
  14127. ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
  14128. cb(Vcur, "Vcur", il);
  14129. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  14130. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  14131. Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
  14132. Qcur = ggml_rope_ext(
  14133. ctx0, Qcur, inp_pos, nullptr,
  14134. n_rot, hparams.rope_type, n_ctx_orig, freq_base, freq_scale,
  14135. ext_factor, attn_factor, beta_fast, beta_slow);
  14136. Kcur = ggml_rope_ext(
  14137. ctx0, Kcur, inp_pos, nullptr,
  14138. n_rot, hparams.rope_type, n_ctx_orig, freq_base, freq_scale,
  14139. ext_factor, attn_factor, beta_fast, beta_slow
  14140. );
  14141. cb(Qcur, "Qcur-post-rope", il);
  14142. cb(Kcur, "Kcur-post-rope", il);
  14143. cb(Vcur, "Vcur-post-rope", il);
  14144. ggml_tensor * attn_out = build_attn(inp->get_attn(),
  14145. model.layers[il].wo, NULL,
  14146. Qcur, Kcur, Vcur, nullptr, nullptr, nullptr, kq_scale, il);
  14147. cb(attn_out, "attn_out", il);
  14148. cur = build_norm(inpL,
  14149. model.layers[il].attn_norm, NULL,
  14150. LLM_NORM_RMS, il);
  14151. // Mamba2 layer
  14152. cb(cur, "ssm_in", il);
  14153. ggml_tensor * ssm_out = build_mamba2_layer(inp->get_recr(), cur, model, ubatch, il);
  14154. cb(ssm_out, "ssm_out", il);
  14155. // // Aggregation
  14156. cur = ggml_add(ctx0, attn_out, ssm_out);
  14157. inpSA = ggml_add(ctx0, cur, inpSA);
  14158. cb(cur, "layer_out", il);
  14159. if (il == n_layer - 1 && inp_out_ids) {
  14160. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  14161. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  14162. }
  14163. ggml_tensor * ffn_inp = inpSA;
  14164. cb(ffn_inp, "ffn_inp", il);
  14165. // feed-forward network
  14166. cur = build_norm(ffn_inp,
  14167. model.layers[il].ffn_norm, NULL,
  14168. LLM_NORM_RMS, il);
  14169. cb(cur, "ffn_norm", il);
  14170. cur = build_ffn(cur,
  14171. model.layers[il].ffn_up, model.layers[il].ffn_up_b, NULL,
  14172. model.layers[il].ffn_gate, model.layers[il].ffn_gate_b, NULL,
  14173. model.layers[il].ffn_down, model.layers[il].ffn_down_b, NULL,
  14174. NULL,
  14175. LLM_FFN_SILU, LLM_FFN_PAR, il);
  14176. cb(cur, "ffn_out", il);
  14177. cur = ggml_add(ctx0, cur, inpSA);
  14178. cur = build_cvec(cur, il);
  14179. cb(cur, "l_out", il);
  14180. // input for next layer
  14181. inpL = cur;
  14182. }
  14183. cur = inpL;
  14184. cur = build_norm(cur,
  14185. model.output_norm, NULL,
  14186. LLM_NORM_RMS, -1);
  14187. cb(cur, "result_norm", -1);
  14188. res->t_embd = cur;
  14189. // lm_head
  14190. cur = build_lora_mm(model.output, cur);
  14191. cb(cur, "result_output", -1);
  14192. res->t_logits = cur;
  14193. ggml_build_forward_expand(gf, cur);
  14194. }
  14195. };
  14196. struct llm_build_plamo2 : public llm_graph_context_mamba {
  14197. llm_build_plamo2(const llama_model & model, const llm_graph_params & params) : llm_graph_context_mamba(params) {
  14198. ggml_tensor * cur;
  14199. ggml_tensor * inpL;
  14200. // {n_embd, n_tokens}
  14201. inpL = build_inp_embd(model.tok_embd);
  14202. cb(inpL, "embedding_output", -1);
  14203. ggml_tensor * inp_pos = build_inp_pos();
  14204. auto * inp_hybrid = build_inp_mem_hybrid();
  14205. ggml_tensor * inp_out_ids = build_inp_out_ids();
  14206. for (int il = 0; il < n_layer; ++il) {
  14207. ggml_tensor * residual = inpL;
  14208. // ggml_graph_add_node(gf, model.layers[il].attn_norm);
  14209. // cb(model.layers[il].attn_norm, "attn_norm", il);
  14210. // pre_mixer_norm
  14211. cur = build_norm(inpL, model.layers[il].attn_norm, NULL, LLM_NORM_RMS, il);
  14212. // check if this layer is Mamba or Attention
  14213. bool is_mamba_layer = hparams.is_recurrent(il);
  14214. if (is_mamba_layer) {
  14215. // PLaMo-2 Mamba layer
  14216. cur = build_plamo2_mamba_layer(inp_hybrid->get_recr(), cur, model, ubatch, il);
  14217. } else {
  14218. // PLaMo-2 Attention layer
  14219. cur = build_plamo2_attn_layer(inp_hybrid->get_attn(), inp_pos, cur, model, il);
  14220. }
  14221. // post_mixer_norm
  14222. cur = build_norm(cur, model.layers[il].attn_post_norm, NULL, LLM_NORM_RMS, il);
  14223. cb(cur, "attn_post_norm", il);
  14224. // residual connection
  14225. cur = ggml_add(ctx0, cur, residual);
  14226. cb(cur, "attn_residual", il);
  14227. residual = cur;
  14228. // pre-ffn norm
  14229. cur = build_norm(cur, model.layers[il].ffn_norm, NULL, LLM_NORM_RMS, il);
  14230. cb(cur, "ffn_pre_norm", il);
  14231. // feed-forward network
  14232. cur = build_ffn(cur,
  14233. model.layers[il].ffn_up, NULL, NULL,
  14234. NULL, NULL, NULL,
  14235. model.layers[il].ffn_down, NULL, NULL,
  14236. NULL,
  14237. LLM_FFN_SWIGLU, LLM_FFN_SEQ, il);
  14238. cb(cur, "ffn_out", il);
  14239. // post ffn norm
  14240. cur = build_norm(cur, model.layers[il].ffn_post_norm, NULL, LLM_NORM_RMS, il);
  14241. cb(cur, "ffn_post_norm", il);
  14242. if (il == n_layer - 1 && inp_out_ids) {
  14243. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  14244. residual = ggml_get_rows(ctx0, residual, inp_out_ids);
  14245. }
  14246. // residual connection
  14247. cur = ggml_add(ctx0, cur, residual);
  14248. cb(cur, "ffn_residual", il);
  14249. inpL = cur;
  14250. }
  14251. cur = inpL;
  14252. // final norm
  14253. cur = build_norm(cur, model.output_norm, NULL, LLM_NORM_RMS, -1);
  14254. cb(cur, "result_norm", -1);
  14255. // lm_head
  14256. cur = build_lora_mm(model.output, cur);
  14257. cb(cur, "result_output", -1);
  14258. // Explicitly mark as output tensor to ensure proper backend assignment
  14259. ggml_set_output(cur);
  14260. res->t_logits = cur;
  14261. ggml_build_forward_expand(gf, cur);
  14262. }
  14263. private:
  14264. ggml_tensor * build_plamo2_attn_layer(
  14265. llm_graph_input_attn_kv * inp,
  14266. ggml_tensor * inp_pos,
  14267. ggml_tensor * cur,
  14268. const llama_model & model,
  14269. int il) {
  14270. // self-attention
  14271. {
  14272. // PLaMo-2 uses combined QKV tensor
  14273. ggml_tensor * qkv = build_lora_mm(model.layers[il].wqkv, cur);
  14274. cb(qkv, "wqkv", il);
  14275. // split QKV tensor into Q, K, V
  14276. const int64_t n_embd_head_q = hparams.n_embd_head_k;
  14277. const int64_t n_embd_head_k = hparams.n_embd_head_k;
  14278. const int64_t n_embd_head_v = hparams.n_embd_head_v;
  14279. int32_t n_head = hparams.n_head(il);
  14280. int32_t n_head_kv = hparams.n_head_kv(il);
  14281. const int64_t q_offset = 0;
  14282. const int64_t k_offset = n_embd_head_q * n_head;
  14283. const int64_t v_offset = k_offset + n_embd_head_k * n_head_kv;
  14284. ggml_tensor * Qcur = ggml_view_3d(ctx0, qkv, n_embd_head_q, n_head, n_tokens, n_embd_head_q * sizeof(float), qkv->nb[1], q_offset * ggml_element_size(qkv));
  14285. ggml_tensor * Kcur = ggml_view_3d(ctx0, qkv, n_embd_head_k, n_head_kv, n_tokens, n_embd_head_k * sizeof(float), qkv->nb[1], k_offset * ggml_element_size(qkv));
  14286. ggml_tensor * Vcur = ggml_view_3d(ctx0, qkv, n_embd_head_v, n_head_kv, n_tokens, n_embd_head_v * sizeof(float), qkv->nb[1], v_offset * ggml_element_size(qkv));
  14287. cb(Qcur, "Qcur", il);
  14288. cb(Kcur, "Kcur", il);
  14289. cb(Vcur, "Vcur", il);
  14290. Qcur = build_norm(Qcur, model.layers[il].attn_q_norm, NULL, LLM_NORM_RMS, il);
  14291. cb(Qcur, "Qcur_normed", il);
  14292. Qcur = ggml_rope_ext(
  14293. ctx0, Qcur, inp_pos, nullptr,
  14294. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  14295. ext_factor, attn_factor, beta_fast, beta_slow
  14296. );
  14297. Kcur = build_norm(Kcur, model.layers[il].attn_k_norm, NULL, LLM_NORM_RMS, il);
  14298. cb(Kcur, "Kcur_normed", il);
  14299. Kcur = ggml_rope_ext(
  14300. ctx0, Kcur, inp_pos, nullptr,
  14301. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  14302. ext_factor, attn_factor, beta_fast, beta_slow
  14303. );
  14304. cur = build_attn(inp,
  14305. model.layers[il].wo, NULL,
  14306. Qcur, Kcur, Vcur, NULL, NULL, NULL, 1.0f/sqrtf(float(n_embd_head_v)), il);
  14307. }
  14308. cb(cur, "attn_out", il);
  14309. return cur;
  14310. }
  14311. ggml_tensor * build_plamo2_mamba_layer(
  14312. llm_graph_input_rs * inp,
  14313. ggml_tensor * cur,
  14314. const llama_model & model,
  14315. const llama_ubatch & ubatch,
  14316. int il) {
  14317. const auto * mctx_cur = inp->mctx;
  14318. const auto kv_head = mctx_cur->get_head();
  14319. const int64_t d_conv = hparams.ssm_d_conv;
  14320. const int64_t d_inner = hparams.ssm_d_inner;
  14321. const int64_t d_state = hparams.ssm_d_state;
  14322. const int64_t n_heads = hparams.ssm_dt_rank;
  14323. const int64_t head_dim = d_inner / n_heads;
  14324. const int64_t n_group = hparams.ssm_n_group;
  14325. const int64_t n_seqs = ubatch.n_seqs;
  14326. const int64_t n_seq_tokens = ubatch.n_seq_tokens;
  14327. GGML_ASSERT(n_seqs != 0);
  14328. GGML_ASSERT(ubatch.equal_seqs());
  14329. GGML_ASSERT(ubatch.n_tokens == n_seq_tokens * n_seqs);
  14330. ggml_tensor * conv_states_all = mctx_cur->get_r_l(il);
  14331. ggml_tensor * ssm_states_all = mctx_cur->get_s_l(il);
  14332. ggml_tensor * conv = build_rs(inp, conv_states_all, hparams.n_embd_r(), n_seqs);
  14333. conv = ggml_reshape_3d(ctx0, conv, d_conv - 1, d_inner + 2*n_group*d_state, n_seqs);
  14334. // {n_embd, n_tokens} => {n_embd, n_seq_tokens, n_seqs}
  14335. cur = ggml_reshape_3d(ctx0, cur, cur->ne[0], n_seq_tokens, n_seqs);
  14336. // in_proj: {n_embd, 2*d_inner} @ {n_embd, n_seq_tokens, n_seqs} => {2*d_inner, n_seq_tokens, n_seqs}
  14337. ggml_tensor * zx = build_lora_mm(model.layers[il].ssm_in, cur);
  14338. cb(zx, "mamba_in_proj", il);
  14339. // {8192, 5, 1, 1} -> {8192, 1, 5, 1}
  14340. zx = ggml_permute(ctx0, zx, 0, 2, 1, 3);
  14341. zx = ggml_cont_4d(ctx0, zx, head_dim * 2, n_heads, n_seq_tokens, n_seqs);
  14342. cb(zx, "mamba_in_proj_out", il);
  14343. // split into z and x
  14344. // => {head_dim * n_heads, n_seq_tokens, n_seqs}
  14345. ggml_tensor * x = ggml_view_4d(ctx0, zx, head_dim, n_heads, n_seq_tokens, n_seqs, zx->nb[1], zx->nb[2], zx->nb[3], head_dim*ggml_element_size(zx));
  14346. x = ggml_cont_3d(ctx0, x, head_dim * n_heads, n_seq_tokens, n_seqs);
  14347. // x = ggml_permute(ctx0, x, 0, 2, 1, 3);
  14348. cb(x, "mamba_x_split", il);
  14349. ggml_tensor * z = ggml_view_4d(ctx0, zx, head_dim, n_heads, n_seq_tokens, n_seqs, zx->nb[1], zx->nb[2], zx->nb[3], 0);
  14350. cb(z, "mamba_z_split", il);
  14351. // conv1d
  14352. {
  14353. // => {d_conv - 1 + n_seq_tokens, d_inner, n_seqs}
  14354. ggml_tensor * conv_x = ggml_concat(ctx0, conv, ggml_transpose(ctx0, x), 0);
  14355. cb(conv_x, "mamba_conv1d_input", il);
  14356. // copy last (d_conv - 1) columns back into the state cache
  14357. ggml_tensor * last_conv = ggml_view_3d(ctx0, conv_x, d_conv - 1, d_inner, n_seqs,
  14358. conv_x->nb[1], conv_x->nb[2], n_seq_tokens*(conv_x->nb[0]));
  14359. ggml_build_forward_expand(gf,
  14360. ggml_cpy(ctx0, last_conv,
  14361. ggml_view_1d(ctx0, conv_states_all,
  14362. (d_conv - 1)*(d_inner + 2*n_group*d_state)*(n_seqs),
  14363. kv_head*(d_conv - 1)*(d_inner + 2*n_group*d_state)*ggml_element_size(conv_states_all))));
  14364. cb(conv_states_all, "mamba_conv1d_state", il);
  14365. // 1D convolution
  14366. x = ggml_ssm_conv(ctx0, conv_x, model.layers[il].ssm_conv1d);
  14367. cb(x, "mamba_conv1d", il);
  14368. x = ggml_silu(ctx0, x);
  14369. cb(x, "mamba_conv1d_silu", il);
  14370. }
  14371. // SSM
  14372. {
  14373. // bcdt_proj: {d_inner, dt_rank + 2*d_state} @ {d_inner, n_seq_tokens, n_seqs} => {dt_rank + 2*d_state, n_seq_tokens, n_seqs}
  14374. ggml_tensor * x_bcdt = build_lora_mm(model.layers[il].ssm_x, x);
  14375. cb(x_bcdt, "mamba_bcdt_proj", il);
  14376. // split into dt, B, C
  14377. const int64_t dt_dim = std::max(64, int(hparams.n_embd / 16));
  14378. ggml_tensor * B = ggml_view_3d(ctx0, x_bcdt, d_state, n_seq_tokens, n_seqs, x_bcdt->nb[1], x_bcdt->nb[2], 0);
  14379. ggml_tensor * C = ggml_view_3d(ctx0, x_bcdt, d_state, n_seq_tokens, n_seqs, x_bcdt->nb[1], x_bcdt->nb[2], ggml_element_size(x_bcdt)*d_state);
  14380. ggml_tensor * dt = ggml_view_3d(ctx0, x_bcdt, dt_dim, n_seq_tokens, n_seqs, x_bcdt->nb[1], x_bcdt->nb[2], ggml_element_size(x_bcdt)*(2*d_state));
  14381. cb(B, "mamba_B_raw", il);
  14382. cb(C, "mamba_C_raw", il);
  14383. cb(dt, "mamba_dt_raw", il);
  14384. // Apply RMS norm to dt, B, C (PLaMo-2 specific)
  14385. B = build_norm(B, model.layers[il].ssm_b_norm, NULL, LLM_NORM_RMS, il);
  14386. C = build_norm(C, model.layers[il].ssm_c_norm, NULL, LLM_NORM_RMS, il);
  14387. dt = build_norm(dt, model.layers[il].ssm_dt_norm, NULL, LLM_NORM_RMS, il);
  14388. cb(B, "mamba_B_normed", il);
  14389. cb(C, "mamba_C_normed", il);
  14390. cb(dt, "mamba_dt_normed", il);
  14391. // dt_proj: {dt_rank, d_inner} @ {dt_rank, n_seq_tokens, n_seqs} => {d_inner, n_seq_tokens, n_seqs}
  14392. dt = build_lora_mm(model.layers[il].ssm_dt, dt);
  14393. dt = ggml_add(ctx0, dt, model.layers[il].ssm_dt_b);
  14394. cb(dt, "mamba_dt_proj", il);
  14395. ggml_tensor * A = ggml_reshape_2d(ctx0, model.layers[il].ssm_a, 1, n_heads);
  14396. cb(A, "mamba_A", il);
  14397. x = ggml_view_4d(ctx0, x, head_dim, n_heads, n_seq_tokens, n_seqs, head_dim * ggml_element_size(x), head_dim * n_heads * ggml_element_size(x), head_dim * n_heads * n_seq_tokens * ggml_element_size(x), 0);
  14398. B = ggml_view_4d(ctx0, B, d_state, 1, n_seq_tokens, n_seqs, d_state * B->nb[0], B->nb[1], B->nb[2], 0);
  14399. C = ggml_view_4d(ctx0, C, d_state, 1, n_seq_tokens, n_seqs, d_state * C->nb[0], C->nb[1], C->nb[2], 0);
  14400. // use the states and the indices provided by build_recurrent_state
  14401. // (this is necessary in order to properly use the states before they are overwritten,
  14402. // while avoiding to make unnecessary copies of the states)
  14403. auto get_ssm_rows = [&](ggml_context * ctx, ggml_tensor * states, ggml_tensor * ids) {
  14404. ggml_tensor * ssm = ggml_reshape_4d(ctx, states, d_state, head_dim, n_heads, mctx_cur->get_size());
  14405. // Custom operator to optimize the parallel associative scan
  14406. // as described in the Annex D of the Mamba paper.
  14407. // => {d_inner, n_seq_tokens, n_seqs} and {d_state, d_inner, n_seqs}
  14408. return ggml_ssm_scan(ctx, ssm, x, dt, A, B, C, ids);
  14409. };
  14410. ggml_tensor * y_ssm = build_rs(inp, ssm_states_all, hparams.n_embd_s(), ubatch.n_seqs, get_ssm_rows);
  14411. cb(y_ssm, "mamba_ssm_scan", il);
  14412. // store last states
  14413. ggml_build_forward_expand(gf,
  14414. ggml_cpy(ctx0,
  14415. ggml_view_1d(ctx0, y_ssm, n_heads*head_dim*d_state*n_seqs, n_heads*head_dim*n_seq_tokens*n_seqs*ggml_element_size(y_ssm)),
  14416. ggml_view_1d(ctx0, ssm_states_all, n_heads*head_dim*d_state*n_seqs, kv_head*n_seqs*n_heads*head_dim*d_state*ggml_element_size(ssm_states_all))));
  14417. cb(ssm_states_all, "mamba_ssm_states", il);
  14418. ggml_tensor * y = ggml_view_4d(ctx0, y_ssm, head_dim, n_heads, n_seq_tokens, n_seqs, head_dim * ggml_element_size(x), head_dim * n_heads * ggml_element_size(x), head_dim * n_heads * n_seq_tokens * ggml_element_size(x), 0);
  14419. cb(y, "mamba_y_view", il);
  14420. // Add D parameter and apply gating with z
  14421. // {d_inner, n_seq_tokens, n_seqs} * {d_inner} => {d_inner, n_seq_tokens, n_seqs}
  14422. ggml_tensor * D = ggml_reshape_2d(ctx0, model.layers[il].ssm_d, 1, n_heads);
  14423. y = ggml_add(ctx0, y, ggml_mul(ctx0, x, D));
  14424. cb(y, "mamba_y_add_d", il);
  14425. y = ggml_swiglu_split(ctx0, ggml_cont(ctx0, z), y);
  14426. cb(y, "mamba_y_swiglu_z", il);
  14427. // out_proj: {d_inner, n_embd} @ {d_inner, n_seq_tokens, n_seqs} => {n_embd, n_seq_tokens, n_seqs}
  14428. y = ggml_view_3d(ctx0, y, head_dim * n_heads, n_seq_tokens, n_seqs, y->nb[2], y->nb[3], 0);
  14429. cur = build_lora_mm(model.layers[il].ssm_out, y);
  14430. cb(cur, "mamba_out_proj", il);
  14431. }
  14432. // {n_embd, n_seq_tokens, n_seqs} => {n_embd, n_tokens}
  14433. cur = ggml_reshape_2d(ctx0, cur, cur->ne[0], n_seq_tokens * n_seqs);
  14434. cb(cur, "mamba_out", il);
  14435. return cur;
  14436. }
  14437. };
  14438. struct llm_build_arcee : public llm_graph_context {
  14439. llm_build_arcee(const llama_model & model, const llm_graph_params & params) : llm_graph_context(params) {
  14440. const int64_t n_embd_head = hparams.n_embd_head_v;
  14441. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  14442. GGML_ASSERT(n_embd_head == hparams.n_rot);
  14443. ggml_tensor * cur;
  14444. ggml_tensor * inpL;
  14445. inpL = build_inp_embd(model.tok_embd);
  14446. // inp_pos - contains the positions
  14447. ggml_tensor * inp_pos = build_inp_pos();
  14448. auto * inp_attn = build_attn_inp_kv();
  14449. const float kq_scale = hparams.f_attention_scale == 0.0f ? 1.0f/sqrtf(float(n_embd_head)) : hparams.f_attention_scale;
  14450. ggml_tensor * inp_out_ids = build_inp_out_ids();
  14451. for (int il = 0; il < n_layer; ++il) {
  14452. ggml_tensor * inpSA = inpL;
  14453. // norm
  14454. cur = build_norm(inpL,
  14455. model.layers[il].attn_norm, NULL,
  14456. LLM_NORM_RMS, il);
  14457. cb(cur, "attn_norm", il);
  14458. // self-attention
  14459. {
  14460. // rope freq factors for llama3; may return nullptr for llama2 and other models
  14461. ggml_tensor * rope_factors = model.get_rope_factors(cparams, il);
  14462. // compute Q and K and RoPE them
  14463. ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
  14464. cb(Qcur, "Qcur", il);
  14465. if (model.layers[il].bq) {
  14466. Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
  14467. cb(Qcur, "Qcur", il);
  14468. }
  14469. ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
  14470. cb(Kcur, "Kcur", il);
  14471. if (model.layers[il].bk) {
  14472. Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
  14473. cb(Kcur, "Kcur", il);
  14474. }
  14475. ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
  14476. cb(Vcur, "Vcur", il);
  14477. if (model.layers[il].bv) {
  14478. Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
  14479. cb(Vcur, "Vcur", il);
  14480. }
  14481. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  14482. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  14483. Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
  14484. Qcur = ggml_rope_ext(
  14485. ctx0, Qcur, inp_pos, rope_factors,
  14486. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  14487. ext_factor, attn_factor, beta_fast, beta_slow
  14488. );
  14489. Kcur = ggml_rope_ext(
  14490. ctx0, Kcur, inp_pos, rope_factors,
  14491. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  14492. ext_factor, attn_factor, beta_fast, beta_slow
  14493. );
  14494. cb(Qcur, "Qcur", il);
  14495. cb(Kcur, "Kcur", il);
  14496. cb(Vcur, "Vcur", il);
  14497. cur = build_attn(inp_attn,
  14498. model.layers[il].wo, model.layers[il].bo,
  14499. Qcur, Kcur, Vcur, nullptr, nullptr, nullptr, kq_scale, il);
  14500. cb(cur, "attn_out", il);
  14501. }
  14502. if (il == n_layer - 1 && inp_out_ids) {
  14503. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  14504. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  14505. }
  14506. ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  14507. cb(ffn_inp, "ffn_inp", il);
  14508. // feed-forward network
  14509. // ARCEE uses relu^2 instead of silu
  14510. cur = build_norm(ffn_inp,
  14511. model.layers[il].ffn_norm, NULL,
  14512. LLM_NORM_RMS, il);
  14513. cb(cur, "ffn_norm", il);
  14514. cur = build_ffn(cur,
  14515. model.layers[il].ffn_up, NULL, NULL,
  14516. NULL, NULL, NULL,
  14517. model.layers[il].ffn_down, NULL, NULL,
  14518. NULL,
  14519. LLM_FFN_RELU_SQR, LLM_FFN_SEQ, il);
  14520. cb(cur, "ffn_out", il);
  14521. cur = ggml_add(ctx0, cur, ffn_inp);
  14522. cb(cur, "ffn_out", il);
  14523. cur = build_cvec(cur, il);
  14524. cb(cur, "l_out", il);
  14525. // input for next layer
  14526. inpL = cur;
  14527. }
  14528. cur = inpL;
  14529. cur = build_norm(cur,
  14530. model.output_norm, NULL,
  14531. LLM_NORM_RMS, -1);
  14532. cb(cur, "result_norm", -1);
  14533. res->t_embd = cur;
  14534. // lm_head
  14535. cur = build_lora_mm(model.output, cur);
  14536. cb(cur, "result_output", -1);
  14537. res->t_logits = cur;
  14538. ggml_build_forward_expand(gf, cur);
  14539. }
  14540. };
  14541. struct llm_build_hunyuan_moe : public llm_graph_context {
  14542. llm_build_hunyuan_moe(const llama_model & model, const llm_graph_params & params) : llm_graph_context(params) {
  14543. const int64_t n_embd_head = hparams.n_embd_head_v;
  14544. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  14545. GGML_ASSERT(n_embd_head == hparams.n_rot);
  14546. ggml_tensor * cur;
  14547. ggml_tensor * inpL;
  14548. inpL = build_inp_embd(model.tok_embd);
  14549. // inp_pos - contains the positions
  14550. ggml_tensor * inp_pos = build_inp_pos();
  14551. auto * inp_attn = build_attn_inp_kv();
  14552. const float kq_scale = 1.0f / sqrtf(float(n_embd_head));
  14553. ggml_tensor * inp_out_ids = build_inp_out_ids();
  14554. for (int il = 0; il < n_layer; ++il) {
  14555. ggml_tensor * inpSA = inpL;
  14556. // norm
  14557. cur = build_norm(inpL,
  14558. model.layers[il].attn_norm, NULL,
  14559. LLM_NORM_RMS, il);
  14560. cb(cur, "attn_norm", il);
  14561. // self-attention
  14562. {
  14563. // rope freq factors for llama3; may return nullptr for llama2 and other models
  14564. ggml_tensor * rope_factors = model.get_rope_factors(cparams, il);
  14565. // compute Q and K and RoPE them
  14566. ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
  14567. cb(Qcur, "Qcur", il);
  14568. if (model.layers[il].bq) {
  14569. Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
  14570. cb(Qcur, "Qcur", il);
  14571. }
  14572. ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
  14573. cb(Kcur, "Kcur", il);
  14574. if (model.layers[il].bk) {
  14575. Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
  14576. cb(Kcur, "Kcur", il);
  14577. }
  14578. ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
  14579. cb(Vcur, "Vcur", il);
  14580. if (model.layers[il].bv) {
  14581. Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
  14582. cb(Vcur, "Vcur", il);
  14583. }
  14584. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  14585. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  14586. Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
  14587. Qcur = ggml_rope_ext(
  14588. ctx0, Qcur, inp_pos, rope_factors,
  14589. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  14590. ext_factor, attn_factor, beta_fast, beta_slow
  14591. );
  14592. cb(Qcur, "Qcur", il);
  14593. cb(Kcur, "Kcur", il);
  14594. cb(Vcur, "Vcur", il);
  14595. Kcur = ggml_rope_ext(
  14596. ctx0, Kcur, inp_pos, rope_factors,
  14597. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  14598. ext_factor, attn_factor, beta_fast, beta_slow
  14599. );
  14600. Kcur = build_norm(Kcur,
  14601. model.layers[il].attn_k_norm, nullptr,
  14602. LLM_NORM_RMS, il);
  14603. cb(Kcur, "Kcur_norm", il);
  14604. Qcur = build_norm(Qcur,
  14605. model.layers[il].attn_q_norm, nullptr,
  14606. LLM_NORM_RMS, il);
  14607. cb(Qcur, "Qcur_norm", il);
  14608. cur = build_attn(inp_attn,
  14609. model.layers[il].wo, model.layers[il].bo,
  14610. Qcur, Kcur, Vcur, nullptr, nullptr, nullptr, kq_scale, il);
  14611. cb(cur, "attn_out", il);
  14612. }
  14613. if (il == n_layer - 1 && inp_out_ids) {
  14614. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  14615. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  14616. }
  14617. ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  14618. cb(ffn_inp, "ffn_inp", il);
  14619. cur = build_norm(ffn_inp,
  14620. model.layers[il].ffn_norm, NULL,
  14621. LLM_NORM_RMS, il);
  14622. cb(cur, "ffn_norm", il);
  14623. // feed-forward network (non-MoE)
  14624. ggml_tensor * cur_mlp = build_ffn(cur,
  14625. model.layers[il].ffn_up_shexp, NULL, NULL,
  14626. model.layers[il].ffn_gate_shexp, NULL, NULL,
  14627. model.layers[il].ffn_down_shexp, NULL, NULL,
  14628. NULL,
  14629. LLM_FFN_SILU, LLM_FFN_PAR, il);
  14630. cb(cur_mlp, "ffn_mlp", il);
  14631. // MoE branch
  14632. ggml_tensor * cur_moe = build_moe_ffn(cur,
  14633. model.layers[il].ffn_gate_inp,
  14634. model.layers[il].ffn_up_exps,
  14635. model.layers[il].ffn_gate_exps,
  14636. model.layers[il].ffn_down_exps,
  14637. nullptr,
  14638. n_expert, n_expert_used,
  14639. LLM_FFN_SILU,
  14640. true, // norm_topk_prob
  14641. false,
  14642. 0.0,
  14643. LLAMA_EXPERT_GATING_FUNC_TYPE_SOFTMAX,
  14644. il);
  14645. cb(cur_moe, "ffn_moe_out", il);
  14646. ggml_tensor * ffn_out = ggml_add(ctx0, cur_moe, cur_mlp);
  14647. cb(ffn_out, "ffn_out", il);
  14648. cur = ggml_add(ctx0, ffn_out, ffn_inp);
  14649. cur = build_cvec(cur, il);
  14650. cb(cur, "l_out", il);
  14651. // input for next layer
  14652. inpL = cur;
  14653. }
  14654. cur = inpL;
  14655. cur = build_norm(cur,
  14656. model.output_norm, NULL,
  14657. LLM_NORM_RMS, -1);
  14658. cb(cur, "result_norm", -1);
  14659. res->t_embd = cur;
  14660. // lm_head
  14661. cur = build_lora_mm(model.output, cur);
  14662. cb(cur, "result_output", -1);
  14663. res->t_logits = cur;
  14664. ggml_build_forward_expand(gf, cur);
  14665. }
  14666. };
  14667. struct llm_build_hunyuan_dense : public llm_graph_context {
  14668. llm_build_hunyuan_dense(const llama_model & model, const llm_graph_params & params) : llm_graph_context(params) {
  14669. const int64_t n_embd_head = hparams.n_embd_head_v;
  14670. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  14671. GGML_ASSERT(n_embd_head == hparams.n_rot);
  14672. ggml_tensor * cur;
  14673. ggml_tensor * inpL;
  14674. inpL = build_inp_embd(model.tok_embd);
  14675. // inp_pos - contains the positions
  14676. ggml_tensor * inp_pos = build_inp_pos();
  14677. auto * inp_attn = build_attn_inp_kv();
  14678. const float kq_scale = 1.0f / sqrtf(float(n_embd_head));
  14679. ggml_tensor * inp_out_ids = build_inp_out_ids();
  14680. for (int il = 0; il < n_layer; ++il) {
  14681. ggml_tensor * inpSA = inpL;
  14682. // norm
  14683. cur = build_norm(inpL,
  14684. model.layers[il].attn_norm, NULL,
  14685. LLM_NORM_RMS, il);
  14686. cb(cur, "attn_norm", il);
  14687. // self-attention
  14688. {
  14689. // rope freq factors for llama3; may return nullptr for llama2 and other models
  14690. ggml_tensor * rope_factors = model.get_rope_factors(cparams, il);
  14691. // compute Q and K and RoPE them
  14692. ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
  14693. cb(Qcur, "Qcur", il);
  14694. if (model.layers[il].bq) {
  14695. Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
  14696. cb(Qcur, "Qcur", il);
  14697. }
  14698. ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
  14699. cb(Kcur, "Kcur", il);
  14700. if (model.layers[il].bk) {
  14701. Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
  14702. cb(Kcur, "Kcur", il);
  14703. }
  14704. ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
  14705. cb(Vcur, "Vcur", il);
  14706. if (model.layers[il].bv) {
  14707. Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
  14708. cb(Vcur, "Vcur", il);
  14709. }
  14710. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  14711. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  14712. Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
  14713. Qcur = ggml_rope_ext(
  14714. ctx0, Qcur, inp_pos, rope_factors,
  14715. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  14716. ext_factor, attn_factor, beta_fast, beta_slow
  14717. );
  14718. cb(Qcur, "Qcur", il);
  14719. cb(Kcur, "Kcur", il);
  14720. cb(Vcur, "Vcur", il);
  14721. Kcur = ggml_rope_ext(
  14722. ctx0, Kcur, inp_pos, rope_factors,
  14723. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  14724. ext_factor, attn_factor, beta_fast, beta_slow
  14725. );
  14726. Kcur = build_norm(Kcur,
  14727. model.layers[il].attn_k_norm, nullptr,
  14728. LLM_NORM_RMS, il);
  14729. cb(Kcur, "Kcur_norm", il);
  14730. Qcur = build_norm(Qcur,
  14731. model.layers[il].attn_q_norm, nullptr,
  14732. LLM_NORM_RMS, il);
  14733. cb(Qcur, "Qcur_norm", il);
  14734. cur = build_attn(inp_attn,
  14735. model.layers[il].wo, model.layers[il].bo,
  14736. Qcur, Kcur, Vcur, nullptr, nullptr, nullptr, kq_scale, il);
  14737. cb(cur, "attn_out", il);
  14738. }
  14739. if (il == n_layer - 1 && inp_out_ids) {
  14740. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  14741. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  14742. }
  14743. ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  14744. cb(ffn_inp, "ffn_inp", il);
  14745. cur = build_norm(ffn_inp,
  14746. model.layers[il].ffn_norm, NULL,
  14747. LLM_NORM_RMS, il);
  14748. cb(cur, "ffn_norm", il);
  14749. // feed-forward network (non-MoE)
  14750. ggml_tensor * cur_mlp = build_ffn(cur,
  14751. model.layers[il].ffn_up, NULL, NULL,
  14752. model.layers[il].ffn_gate, NULL, NULL,
  14753. model.layers[il].ffn_down, NULL, NULL,
  14754. NULL,
  14755. LLM_FFN_SILU, LLM_FFN_PAR, il);
  14756. cb(cur_mlp, "ffn_out", il);
  14757. cur = ggml_add(ctx0, cur_mlp, ffn_inp);
  14758. cur = build_cvec(cur, il);
  14759. cb(cur, "l_out", il);
  14760. // input for next layer
  14761. inpL = cur;
  14762. }
  14763. cur = inpL;
  14764. cur = build_norm(cur,
  14765. model.output_norm, NULL,
  14766. LLM_NORM_RMS, -1);
  14767. cb(cur, "result_norm", -1);
  14768. res->t_embd = cur;
  14769. // lm_head
  14770. cur = build_lora_mm(model.output, cur);
  14771. cb(cur, "result_output", -1);
  14772. res->t_logits = cur;
  14773. ggml_build_forward_expand(gf, cur);
  14774. }
  14775. };
  14776. struct llm_build_smollm3 : public llm_graph_context {
  14777. llm_build_smollm3(const llama_model & model, const llm_graph_params & params) : llm_graph_context(params) {
  14778. const int64_t n_embd_head = hparams.n_embd_head_v;
  14779. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  14780. GGML_ASSERT(n_embd_head == hparams.n_rot);
  14781. ggml_tensor * cur;
  14782. ggml_tensor * inpL;
  14783. inpL = build_inp_embd(model.tok_embd);
  14784. // inp_pos - contains the positions
  14785. ggml_tensor * inp_pos = build_inp_pos();
  14786. auto * inp_attn = build_attn_inp_kv();
  14787. const float kq_scale = hparams.f_attention_scale == 0.0f ? 1.0f/sqrtf(float(n_embd_head)) : hparams.f_attention_scale;
  14788. ggml_tensor * inp_out_ids = build_inp_out_ids();
  14789. for (int il = 0; il < n_layer; ++il) {
  14790. ggml_tensor * inpSA = inpL;
  14791. const bool use_rope = (il + 1) % hparams.n_no_rope_layer_step != 0;
  14792. // norm
  14793. cur = build_norm(inpL,
  14794. model.layers[il].attn_norm, NULL,
  14795. LLM_NORM_RMS, il);
  14796. cb(cur, "attn_norm", il);
  14797. // self-attention
  14798. {
  14799. // compute Q and K and RoPE them
  14800. ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
  14801. cb(Qcur, "Qcur", il);
  14802. if (model.layers[il].bq) {
  14803. Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
  14804. cb(Qcur, "Qcur", il);
  14805. }
  14806. ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
  14807. cb(Kcur, "Kcur", il);
  14808. if (model.layers[il].bk) {
  14809. Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
  14810. cb(Kcur, "Kcur", il);
  14811. }
  14812. ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
  14813. cb(Vcur, "Vcur", il);
  14814. if (model.layers[il].bv) {
  14815. Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
  14816. cb(Vcur, "Vcur", il);
  14817. }
  14818. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  14819. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  14820. Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
  14821. if (use_rope) {
  14822. Qcur = ggml_rope_ext(
  14823. ctx0, Qcur, inp_pos, nullptr,
  14824. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  14825. ext_factor, attn_factor, beta_fast, beta_slow
  14826. );
  14827. Kcur = ggml_rope_ext(
  14828. ctx0, Kcur, inp_pos, nullptr,
  14829. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  14830. ext_factor, attn_factor, beta_fast, beta_slow
  14831. );
  14832. }
  14833. cb(Qcur, "Qcur", il);
  14834. cb(Kcur, "Kcur", il);
  14835. cb(Vcur, "Vcur", il);
  14836. cur = build_attn(inp_attn,
  14837. model.layers[il].wo, model.layers[il].bo,
  14838. Qcur, Kcur, Vcur, nullptr, nullptr, nullptr, kq_scale, il);
  14839. cb(cur, "attn_out", il);
  14840. }
  14841. if (il == n_layer - 1 && inp_out_ids) {
  14842. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  14843. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  14844. }
  14845. ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  14846. cb(ffn_inp, "ffn_inp", il);
  14847. // feed-forward network
  14848. {
  14849. cur = build_norm(ffn_inp,
  14850. model.layers[il].ffn_norm, NULL,
  14851. LLM_NORM_RMS, il);
  14852. cb(cur, "ffn_norm", il);
  14853. cur = build_ffn(cur,
  14854. model.layers[il].ffn_up, model.layers[il].ffn_up_b, NULL,
  14855. model.layers[il].ffn_gate, model.layers[il].ffn_gate_b, NULL,
  14856. model.layers[il].ffn_down, model.layers[il].ffn_down_b, NULL,
  14857. NULL,
  14858. LLM_FFN_SILU, LLM_FFN_PAR, il);
  14859. cb(cur, "ffn_out", il);
  14860. }
  14861. cur = ggml_add(ctx0, cur, ffn_inp);
  14862. cb(cur, "ffn_out", il);
  14863. cur = build_cvec(cur, il);
  14864. cb(cur, "l_out", il);
  14865. // input for next layer
  14866. inpL = cur;
  14867. }
  14868. cur = inpL;
  14869. cur = build_norm(cur,
  14870. model.output_norm, NULL,
  14871. LLM_NORM_RMS, -1);
  14872. cb(cur, "result_norm", -1);
  14873. res->t_embd = cur;
  14874. // lm_head
  14875. cur = build_lora_mm(model.output, cur);
  14876. cb(cur, "result_output", -1);
  14877. res->t_logits = cur;
  14878. ggml_build_forward_expand(gf, cur);
  14879. }
  14880. };
  14881. struct llm_build_openai_moe_iswa : public llm_graph_context {
  14882. llm_build_openai_moe_iswa(const llama_model & model, const llm_graph_params & params) : llm_graph_context(params) {
  14883. ggml_tensor * cur;
  14884. ggml_tensor * inpL;
  14885. inpL = build_inp_embd(model.tok_embd);
  14886. // inp_pos - contains the positions
  14887. ggml_tensor * inp_pos = build_inp_pos();
  14888. auto * inp_attn = build_attn_inp_kv_iswa();
  14889. for (int il = 0; il < n_layer; ++il) {
  14890. ggml_tensor * inpSA = inpL;
  14891. // norm
  14892. cur = build_norm(inpL,
  14893. model.layers[il].attn_norm, nullptr,
  14894. LLM_NORM_RMS, il);
  14895. cb(cur, "attn_norm", il);
  14896. // self-attention
  14897. {
  14898. // compute Q and K and RoPE them
  14899. ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
  14900. cb(Qcur, "Qcur", il);
  14901. if (model.layers[il].bq) {
  14902. Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
  14903. cb(Qcur, "Qcur", il);
  14904. }
  14905. ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
  14906. cb(Kcur, "Kcur", il);
  14907. if (model.layers[il].bk) {
  14908. Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
  14909. cb(Kcur, "Kcur", il);
  14910. }
  14911. ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
  14912. cb(Vcur, "Vcur", il);
  14913. if (model.layers[il].bv) {
  14914. Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
  14915. cb(Vcur, "Vcur", il);
  14916. }
  14917. Qcur = ggml_reshape_3d(ctx0, Qcur, n_rot, n_head, n_tokens);
  14918. Kcur = ggml_reshape_3d(ctx0, Kcur, n_rot, n_head_kv, n_tokens);
  14919. Vcur = ggml_reshape_3d(ctx0, Vcur, n_rot, n_head_kv, n_tokens);
  14920. Qcur = ggml_rope_ext(
  14921. ctx0, Qcur, inp_pos, nullptr,
  14922. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  14923. ext_factor, attn_factor, beta_fast, beta_slow
  14924. );
  14925. Kcur = ggml_rope_ext(
  14926. ctx0, Kcur, inp_pos, nullptr,
  14927. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  14928. ext_factor, attn_factor, beta_fast, beta_slow
  14929. );
  14930. cb(Qcur, "Qcur", il);
  14931. cb(Kcur, "Kcur", il);
  14932. cb(Vcur, "Vcur", il);
  14933. cur = build_attn(inp_attn,
  14934. model.layers[il].wo, model.layers[il].bo,
  14935. Qcur, Kcur, Vcur, nullptr, model.layers[il].attn_sinks, nullptr, 1.0f/sqrtf(float(n_rot)), il);
  14936. cb(cur, "attn_out", il);
  14937. }
  14938. if (il == n_layer - 1) {
  14939. // skip computing output for unused tokens
  14940. ggml_tensor * inp_out_ids = build_inp_out_ids();
  14941. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  14942. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  14943. }
  14944. ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  14945. cb(ffn_inp, "ffn_inp", il);
  14946. cur = ffn_inp;
  14947. cur = build_norm(cur,
  14948. model.layers[il].attn_post_norm, nullptr,
  14949. LLM_NORM_RMS, il);
  14950. cb(cur, "attn_post_norm", il);
  14951. // MoE branch
  14952. cur = build_moe_ffn(cur,
  14953. model.layers[il].ffn_gate_inp, model.layers[il].ffn_gate_inp_b,
  14954. model.layers[il].ffn_up_exps, model.layers[il].ffn_up_exps_b,
  14955. model.layers[il].ffn_gate_exps, model.layers[il].ffn_gate_exps_b,
  14956. model.layers[il].ffn_down_exps, model.layers[il].ffn_down_exps_b,
  14957. nullptr,
  14958. n_expert, n_expert_used,
  14959. LLM_FFN_SWIGLU_OAI_MOE, false,
  14960. false, 0.0,
  14961. LLAMA_EXPERT_GATING_FUNC_TYPE_SOFTMAX_WEIGHT,
  14962. il);
  14963. cb(cur, "ffn_moe_out", il);
  14964. cur = ggml_add(ctx0, cur, ffn_inp);
  14965. cur = build_cvec(cur, il);
  14966. cb(cur, "l_out", il);
  14967. // input for next layer
  14968. inpL = cur;
  14969. }
  14970. cur = inpL;
  14971. cur = build_norm(cur,
  14972. model.output_norm, NULL,
  14973. LLM_NORM_RMS, -1);
  14974. cb(cur, "result_norm", -1);
  14975. res->t_embd = cur;
  14976. // lm_head
  14977. cur = build_lora_mm(model.output, cur);
  14978. cb(cur, "result_output", -1);
  14979. res->t_logits = cur;
  14980. ggml_build_forward_expand(gf, cur);
  14981. }
  14982. };
  14983. struct llm_build_lfm2 : public llm_graph_context {
  14984. const llama_model & model;
  14985. llm_build_lfm2(const llama_model & model, const llm_graph_params & params) : llm_graph_context(params), model(model) {
  14986. ggml_tensor * cur = build_inp_embd(model.tok_embd);
  14987. cb(cur, "model.embed_tokens", -1);
  14988. ggml_tensor * inp_pos = build_inp_pos();
  14989. auto * inp_hybrid = build_inp_mem_hybrid();
  14990. ggml_tensor * inp_out_ids = build_inp_out_ids();
  14991. for (int il = 0; il < n_layer; ++il) {
  14992. const bool is_moe_layer = il >= static_cast<int>(hparams.n_layer_dense_lead);
  14993. auto * prev_cur = cur;
  14994. cur = build_norm(cur, model.layers[il].attn_norm, NULL, LLM_NORM_RMS, il);
  14995. cb(cur, "model.layers.{}.operator_norm", il);
  14996. cur = hparams.is_recurrent(il) ?
  14997. build_shortconv_block(cur, inp_hybrid->get_recr(), il) :
  14998. build_attn_block(cur, inp_pos, inp_hybrid->get_attn(), il) ;
  14999. if (il == n_layer - 1 && inp_out_ids) {
  15000. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  15001. prev_cur = ggml_get_rows(ctx0, prev_cur, inp_out_ids);
  15002. }
  15003. cur = ggml_add(ctx0, prev_cur, cur);
  15004. auto * ffn_norm_out = build_norm(cur, model.layers[il].ffn_norm, NULL, LLM_NORM_RMS, il);
  15005. cb(ffn_norm_out, "model.layers.{}.ffn_norm", il);
  15006. ggml_tensor * ffn_out = is_moe_layer ?
  15007. build_moe_feed_forward(ffn_norm_out, il) :
  15008. build_dense_feed_forward(ffn_norm_out, il);
  15009. cb(ffn_norm_out, "model.layers.{}.ffn_out", il);
  15010. cur = ggml_add(ctx0, cur, ffn_out);
  15011. }
  15012. cur = build_norm(cur, model.tok_norm, NULL, LLM_NORM_RMS, -1);
  15013. cb(cur, "model.embedding_norm", -1);
  15014. res->t_embd = cur;
  15015. cur = build_lora_mm(model.output, cur);
  15016. cb(cur, "lm_head", -1);
  15017. res->t_logits = cur;
  15018. ggml_build_forward_expand(gf, cur);
  15019. }
  15020. ggml_tensor * build_moe_feed_forward(ggml_tensor * cur,
  15021. int il) const {
  15022. return build_moe_ffn(cur,
  15023. model.layers[il].ffn_gate_inp,
  15024. model.layers[il].ffn_up_exps,
  15025. model.layers[il].ffn_gate_exps,
  15026. model.layers[il].ffn_down_exps,
  15027. model.layers[il].ffn_exp_probs_b,
  15028. n_expert, n_expert_used,
  15029. LLM_FFN_SILU, true,
  15030. false, 0.0,
  15031. static_cast<llama_expert_gating_func_type>(hparams.expert_gating_func),
  15032. il);
  15033. }
  15034. ggml_tensor * build_dense_feed_forward(ggml_tensor * cur,
  15035. int il) const {
  15036. GGML_ASSERT(!model.layers[il].ffn_up_b);
  15037. GGML_ASSERT(!model.layers[il].ffn_gate_b);
  15038. GGML_ASSERT(!model.layers[il].ffn_down_b);
  15039. return build_ffn(cur,
  15040. model.layers[il].ffn_up, NULL, NULL,
  15041. model.layers[il].ffn_gate, NULL, NULL,
  15042. model.layers[il].ffn_down, NULL, NULL,
  15043. NULL,
  15044. LLM_FFN_SILU, LLM_FFN_PAR, il);
  15045. }
  15046. ggml_tensor * build_attn_block(ggml_tensor * cur,
  15047. ggml_tensor * inp_pos,
  15048. llm_graph_input_attn_kv * inp_attn,
  15049. int il) const {
  15050. GGML_ASSERT(hparams.n_embd_v_gqa(il) == hparams.n_embd_k_gqa(il));
  15051. auto const n_embd_head = hparams.n_embd_head_v;
  15052. auto const n_head_kv = hparams.n_head_kv(il);
  15053. auto * q = build_lora_mm(model.layers[il].wq, cur);
  15054. cb(q, "model.layers.{}.self_attn.q_proj", il);
  15055. auto * k = build_lora_mm(model.layers[il].wk, cur);
  15056. cb(k, "model.layers.{}.self_attn.k_proj", il);
  15057. auto * v = build_lora_mm(model.layers[il].wv, cur);
  15058. cb(v, "model.layers.{}.self_attn.v_proj", il);
  15059. q = ggml_reshape_3d(ctx0, q, n_embd_head, n_head, n_tokens);
  15060. k = ggml_reshape_3d(ctx0, k, n_embd_head, n_head_kv, n_tokens);
  15061. v = ggml_reshape_3d(ctx0, v, n_embd_head, n_head_kv, n_tokens);
  15062. // qk norm
  15063. q = build_norm(q, model.layers[il].attn_q_norm, NULL, LLM_NORM_RMS, il);
  15064. cb(q, "model.layers.{}.self_attn.q_layernorm", il);
  15065. k = build_norm(k, model.layers[il].attn_k_norm, NULL, LLM_NORM_RMS, il);
  15066. cb(k, "model.layers.{}.self_attn.k_layernorm", il);
  15067. // RoPE
  15068. q = ggml_rope_ext(
  15069. ctx0, q, inp_pos, nullptr,
  15070. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  15071. ext_factor, attn_factor, beta_fast, beta_slow
  15072. );
  15073. k = ggml_rope_ext(
  15074. ctx0, k, inp_pos, nullptr,
  15075. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  15076. ext_factor, attn_factor, beta_fast, beta_slow
  15077. );
  15078. cur = build_attn(inp_attn, model.layers[il].wo, NULL,
  15079. q, k, v, nullptr, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
  15080. cb(cur, "model.layers.{}.self_attn.out_proj", il);
  15081. return cur;
  15082. }
  15083. ggml_tensor * build_shortconv_block(ggml_tensor * cur,
  15084. llm_graph_input_rs * inp_recr,
  15085. int il) {
  15086. const auto * mctx_cur = static_cast<const llama_memory_hybrid_context *>(mctx)->get_recr();
  15087. const uint32_t kv_head = mctx_cur->get_head();
  15088. const int64_t n_seq_tokens = ubatch.n_seq_tokens;
  15089. const int64_t n_seqs = ubatch.n_seqs;
  15090. GGML_ASSERT(n_seqs != 0);
  15091. GGML_ASSERT(ubatch.equal_seqs());
  15092. GGML_ASSERT(ubatch.n_tokens == n_seq_tokens * n_seqs);
  15093. GGML_ASSERT(hparams.n_shortconv_l_cache > 1);
  15094. const uint32_t d_conv = hparams.n_shortconv_l_cache - 1;
  15095. // {n_embd, n_tokens} => {n_embd, n_seq_tokens, n_seqs}
  15096. cur = ggml_reshape_3d(ctx0, cur, cur->ne[0], n_seq_tokens, n_seqs);
  15097. auto * bcx = build_lora_mm(model.layers[il].shortconv.in_proj, cur);
  15098. cb(bcx, "model.layers.{}.conv.in_proj", il);
  15099. constexpr auto n_chunks = 3;
  15100. GGML_ASSERT(bcx->ne[0] % n_chunks == 0);
  15101. auto const chunk_size = bcx->ne[0] / n_chunks;
  15102. auto * b = ggml_view_3d(ctx0, bcx, chunk_size, bcx->ne[1], bcx->ne[2], bcx->nb[1], bcx->nb[2], 0*chunk_size*ggml_element_size(bcx));
  15103. auto * c = ggml_view_3d(ctx0, bcx, chunk_size, bcx->ne[1], bcx->ne[2], bcx->nb[1], bcx->nb[2], 1*chunk_size*ggml_element_size(bcx));
  15104. auto * x = ggml_view_3d(ctx0, bcx, chunk_size, bcx->ne[1], bcx->ne[2], bcx->nb[1], bcx->nb[2], 2*chunk_size*ggml_element_size(bcx));
  15105. auto * bx = ggml_transpose(ctx0, ggml_mul(ctx0, b, x));
  15106. // read conv state
  15107. auto * conv_state = mctx_cur->get_r_l(il);
  15108. auto * conv_rs = build_rs(inp_recr, conv_state, hparams.n_embd_r(), n_seqs);
  15109. auto * conv = ggml_reshape_3d(ctx0, conv_rs, d_conv, hparams.n_embd, n_seqs);
  15110. bx = ggml_concat(ctx0, conv, bx, 0);
  15111. GGML_ASSERT(bx->ne[0] > conv->ne[0]);
  15112. // last d_conv columns is a new conv state
  15113. auto * new_conv = ggml_view_3d(ctx0, bx, conv->ne[0], bx->ne[1], bx->ne[2], bx->nb[1], bx->nb[2], (bx->ne[0] - conv->ne[0])*ggml_element_size(bx));
  15114. GGML_ASSERT(ggml_are_same_shape(conv, new_conv));
  15115. // write new conv conv state
  15116. ggml_build_forward_expand(
  15117. gf,
  15118. ggml_cpy(
  15119. ctx0,
  15120. new_conv,
  15121. ggml_view_1d(
  15122. ctx0,
  15123. conv_state,
  15124. ggml_nelements(new_conv),
  15125. kv_head*d_conv*n_embd*ggml_element_size(new_conv)
  15126. )
  15127. )
  15128. );
  15129. auto * conv_kernel = model.layers[il].shortconv.conv;
  15130. auto * conv_out = ggml_ssm_conv(ctx0, bx, conv_kernel);
  15131. cb(conv_out, "model.layers.{}.conv.conv", il);
  15132. auto * y = ggml_mul(ctx0, c, conv_out);
  15133. y = build_lora_mm(model.layers[il].shortconv.out_proj, y);
  15134. cb(y, "model.layers.{}.conv.out_proj", il);
  15135. // {n_embd, n_seq_tokens, n_seqs} => {n_embd, n_tokens}
  15136. y = ggml_reshape_2d(ctx0, y, y->ne[0], n_seq_tokens * n_seqs);
  15137. return y;
  15138. }
  15139. };
  15140. struct llm_build_seed_oss : public llm_graph_context {
  15141. llm_build_seed_oss(const llama_model & model, const llm_graph_params & params) : llm_graph_context(params) {
  15142. const int64_t n_embd_head = hparams.n_embd_head_v;
  15143. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  15144. GGML_ASSERT(n_embd_head == hparams.n_rot);
  15145. ggml_tensor * cur;
  15146. ggml_tensor * inpL;
  15147. inpL = build_inp_embd(model.tok_embd);
  15148. // inp_pos - contains the positions
  15149. ggml_tensor * inp_pos = build_inp_pos();
  15150. auto * inp_attn = build_attn_inp_kv();
  15151. const float kq_scale = hparams.f_attention_scale == 0.0f ? 1.0f/sqrtf(float(n_embd_head)) : hparams.f_attention_scale;
  15152. ggml_tensor * inp_out_ids = build_inp_out_ids();
  15153. for (int il = 0; il < n_layer; ++il) {
  15154. ggml_tensor * inpSA = inpL;
  15155. // norm
  15156. cur = build_norm(inpL,
  15157. model.layers[il].attn_norm, NULL,
  15158. LLM_NORM_RMS, il);
  15159. cb(cur, "attn_norm", il);
  15160. // self-attention
  15161. {
  15162. // compute Q and K and RoPE them
  15163. ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
  15164. cb(Qcur, "Qcur", il);
  15165. if (model.layers[il].bq) {
  15166. Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
  15167. cb(Qcur, "Qcur", il);
  15168. }
  15169. ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
  15170. cb(Kcur, "Kcur", il);
  15171. if (model.layers[il].bk) {
  15172. Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
  15173. cb(Kcur, "Kcur", il);
  15174. }
  15175. ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
  15176. cb(Vcur, "Vcur", il);
  15177. if (model.layers[il].bv) {
  15178. Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
  15179. cb(Vcur, "Vcur", il);
  15180. }
  15181. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  15182. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  15183. Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
  15184. Qcur = ggml_rope_ext(
  15185. ctx0, Qcur, inp_pos, nullptr,
  15186. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  15187. ext_factor, attn_factor, beta_fast, beta_slow
  15188. );
  15189. Kcur = ggml_rope_ext(
  15190. ctx0, Kcur, inp_pos, nullptr,
  15191. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  15192. ext_factor, attn_factor, beta_fast, beta_slow
  15193. );
  15194. cb(Qcur, "Qcur", il);
  15195. cb(Kcur, "Kcur", il);
  15196. cb(Vcur, "Vcur", il);
  15197. cur = build_attn(inp_attn,
  15198. model.layers[il].wo, model.layers[il].bo,
  15199. Qcur, Kcur, Vcur, nullptr, nullptr, nullptr, kq_scale, il);
  15200. cb(cur, "attn_out", il);
  15201. }
  15202. if (il == n_layer - 1 && inp_out_ids) {
  15203. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  15204. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  15205. }
  15206. ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  15207. cb(ffn_inp, "ffn_inp", il);
  15208. // feed-forward network
  15209. cur = build_norm(ffn_inp,
  15210. model.layers[il].attn_post_norm, NULL,
  15211. LLM_NORM_RMS, il);
  15212. cb(cur, "attn_post_norm", il);
  15213. cur = build_ffn(cur,
  15214. model.layers[il].ffn_up, NULL, NULL,
  15215. model.layers[il].ffn_gate, NULL, NULL,
  15216. model.layers[il].ffn_down, NULL, NULL,
  15217. NULL,
  15218. LLM_FFN_SILU, LLM_FFN_PAR, il);
  15219. cb(cur, "ffn_out", il);
  15220. cur = ggml_add(ctx0, cur, ffn_inp);
  15221. cb(cur, "ffn_out", il);
  15222. cur = build_cvec(cur, il);
  15223. cb(cur, "l_out", il);
  15224. // input for next layer
  15225. inpL = cur;
  15226. }
  15227. cur = inpL;
  15228. cur = build_norm(cur,
  15229. model.output_norm, NULL,
  15230. LLM_NORM_RMS, -1);
  15231. cb(cur, "result_norm", -1);
  15232. res->t_embd = cur;
  15233. // lm_head
  15234. cur = build_lora_mm(model.output, cur);
  15235. cb(cur, "result_output", -1);
  15236. res->t_logits = cur;
  15237. ggml_build_forward_expand(gf, cur);
  15238. }
  15239. };
  15240. template <bool iswa>
  15241. struct llm_build_smallthinker : public llm_graph_context{
  15242. llm_build_smallthinker(const llama_model & model, const llm_graph_params & params) : llm_graph_context(params){
  15243. const int64_t n_embd_head = hparams.n_embd_head_v;
  15244. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  15245. GGML_ASSERT(n_embd_head == hparams.n_rot);
  15246. ggml_tensor * cur;
  15247. ggml_tensor * inpL;
  15248. inpL = build_inp_embd(model.tok_embd);
  15249. // inp_pos - contains the positions
  15250. ggml_tensor * inp_pos = build_inp_pos();
  15251. using inp_attn_type = std::conditional_t<iswa, llm_graph_input_attn_kv_iswa, llm_graph_input_attn_kv>;
  15252. inp_attn_type * inp_attn = nullptr;
  15253. if constexpr (iswa) {
  15254. inp_attn = build_attn_inp_kv_iswa();
  15255. } else {
  15256. inp_attn = build_attn_inp_kv();
  15257. }
  15258. ggml_tensor * inp_out_ids = build_inp_out_ids();
  15259. for (int il = 0; il < n_layer; ++il) {
  15260. ggml_tensor * inpSA = inpL;
  15261. ggml_tensor * probs = nullptr;
  15262. probs = build_lora_mm(model.layers[il].ffn_gate_inp, inpL); // [n_expert, n_tokens]
  15263. cb(probs, "ffn_moe_logits", il);
  15264. // norm
  15265. cur = build_norm(inpL,model.layers[il].attn_norm, NULL, LLM_NORM_RMS, il);
  15266. cb(cur, "attn_norm", il);
  15267. // self_attention
  15268. {
  15269. // compute Q and K and RoPE them
  15270. struct ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
  15271. cb(Qcur, "Qcur", il);
  15272. struct ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
  15273. cb(Kcur, "Kcur", il);
  15274. struct ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
  15275. cb(Vcur, "Vcur", il);
  15276. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  15277. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  15278. Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
  15279. if (hparams.n_no_rope_layer_step == n_layer || il % hparams.n_no_rope_layer_step != 0) {
  15280. Qcur = ggml_rope_ext(ctx0, Qcur, inp_pos, nullptr, n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  15281. ext_factor, attn_factor, beta_fast, beta_slow);
  15282. Kcur = ggml_rope_ext(ctx0, Kcur, inp_pos, nullptr, n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  15283. ext_factor, attn_factor, beta_fast, beta_slow);
  15284. }
  15285. cb(Qcur, "Qcur", il);
  15286. cb(Kcur, "Kcur", il);
  15287. cur = build_attn(inp_attn,
  15288. model.layers[il].wo, model.layers[il].bo,
  15289. Qcur, Kcur, Vcur, nullptr, nullptr, nullptr, 1.0f / sqrtf(float(n_embd_head)), il);
  15290. }
  15291. if (il == n_layer - 1 && inp_out_ids) {
  15292. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  15293. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  15294. probs = ggml_get_rows(ctx0, probs, inp_out_ids);
  15295. }
  15296. ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  15297. cb(ffn_inp, "ffn_inp", il);
  15298. // MoE branch
  15299. cur = build_norm(ffn_inp, model.layers[il].ffn_norm, NULL, LLM_NORM_RMS, il);
  15300. cb(cur, "ffn_norm", il);
  15301. ggml_tensor * ffn_out =
  15302. build_moe_ffn(cur,
  15303. nullptr,
  15304. model.layers[il].ffn_up_exps,
  15305. model.layers[il].ffn_gate_exps,
  15306. model.layers[il].ffn_down_exps,
  15307. nullptr,
  15308. n_expert, n_expert_used,
  15309. LLM_FFN_RELU, true,
  15310. false, 0.0,
  15311. static_cast<llama_expert_gating_func_type>(hparams.expert_gating_func),
  15312. il, probs);
  15313. cb(ffn_out, "ffn_out", il);
  15314. cur = ffn_out;
  15315. cur = ggml_add(ctx0, cur, ffn_inp);
  15316. cur = build_cvec(cur, il);
  15317. cb(cur, "l_out", il);
  15318. // input for next layer
  15319. inpL = cur;
  15320. }
  15321. cur = inpL;
  15322. cur = build_norm(cur, model.output_norm, NULL, LLM_NORM_RMS, -1);
  15323. cb(cur, "result_norm", -1);
  15324. // lm_head
  15325. cur = build_lora_mm(model.output, cur);
  15326. cb(cur, "result_output", -1);
  15327. res->t_logits = cur;
  15328. ggml_build_forward_expand(gf, cur);
  15329. }
  15330. };
  15331. struct llm_build_grovemoe : public llm_graph_context {
  15332. llm_build_grovemoe(const llama_model & model, const llm_graph_params & params) : llm_graph_context(params) {
  15333. const int64_t n_embd_head = hparams.n_embd_head_v;
  15334. const int64_t n_chunk_expert = n_expert / hparams.n_group_experts;
  15335. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  15336. GGML_ASSERT(n_embd_head == hparams.n_rot);
  15337. ggml_tensor * cur;
  15338. ggml_tensor * inpL;
  15339. inpL = build_inp_embd(model.tok_embd);
  15340. // inp_pos - contains the positions
  15341. ggml_tensor * inp_pos = build_inp_pos();
  15342. auto * inp_attn = build_attn_inp_kv();
  15343. ggml_tensor * inp_out_ids = build_inp_out_ids();
  15344. for (int il = 0; il < n_layer; ++il) {
  15345. ggml_tensor * inpSA = inpL;
  15346. // norm
  15347. cur = build_norm(inpL,
  15348. model.layers[il].attn_norm, NULL,
  15349. LLM_NORM_RMS, il);
  15350. cb(cur, "attn_norm", il);
  15351. // self_attention
  15352. {
  15353. // compute Q and K and RoPE them
  15354. ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
  15355. cb(Qcur, "Qcur", il);
  15356. ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
  15357. cb(Kcur, "Kcur", il);
  15358. ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
  15359. cb(Vcur, "Vcur", il);
  15360. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  15361. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  15362. Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
  15363. Qcur = build_norm(Qcur, model.layers[il].attn_q_norm, NULL, LLM_NORM_RMS, il);
  15364. cb(Qcur, "Qcur_normed", il);
  15365. Qcur = ggml_rope_ext(
  15366. ctx0, Qcur, inp_pos, nullptr,
  15367. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  15368. ext_factor, attn_factor, beta_fast, beta_slow
  15369. );
  15370. Kcur = build_norm(Kcur, model.layers[il].attn_k_norm, NULL, LLM_NORM_RMS, il);
  15371. cb(Kcur, "Kcur_normed", il);
  15372. Kcur = ggml_rope_ext(
  15373. ctx0, Kcur, inp_pos, nullptr,
  15374. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  15375. ext_factor, attn_factor, beta_fast, beta_slow
  15376. );
  15377. cb(Qcur, "Qcur", il);
  15378. cb(Kcur, "Kcur", il);
  15379. cb(Vcur, "Vcur", il);
  15380. cur = build_attn(inp_attn,
  15381. model.layers[il].wo, model.layers[il].bo,
  15382. Qcur, Kcur, Vcur, nullptr, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
  15383. }
  15384. if (il == n_layer - 1 && inp_out_ids) {
  15385. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  15386. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  15387. }
  15388. ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  15389. cb(ffn_inp, "ffn_inp", il);
  15390. // MoE branch
  15391. cur = build_norm(ffn_inp,
  15392. model.layers[il].ffn_norm, NULL,
  15393. LLM_NORM_RMS, il);
  15394. cb(cur, "ffn_norm", il);
  15395. ggml_tensor * probs = build_lora_mm(model.layers[il].ffn_gate_inp, cur); // [n_expert, n_tokens]
  15396. cb(probs, "ffn_moe_logits", il);
  15397. ggml_tensor * moe_out =
  15398. build_moe_ffn(cur,
  15399. nullptr,
  15400. model.layers[il].ffn_up_exps,
  15401. model.layers[il].ffn_gate_exps,
  15402. model.layers[il].ffn_down_exps,
  15403. nullptr,
  15404. n_expert, n_expert_used,
  15405. LLM_FFN_SILU, true,
  15406. false, 0.0,
  15407. LLAMA_EXPERT_GATING_FUNC_TYPE_SOFTMAX,
  15408. il, probs);
  15409. cb(moe_out, "ffn_moe_out", il);
  15410. cur = moe_out;
  15411. // TODO: Only do the expert selection and weights once
  15412. moe_out =
  15413. build_moe_ffn(cur,
  15414. nullptr,
  15415. model.layers[il].ffn_up_chexps,
  15416. model.layers[il].ffn_gate_chexps,
  15417. model.layers[il].ffn_down_chexps,
  15418. nullptr,
  15419. n_chunk_expert, n_expert_used > n_chunk_expert ? n_chunk_expert : n_expert_used,
  15420. LLM_FFN_SILU, true,
  15421. false, 0.0,
  15422. LLAMA_EXPERT_GATING_FUNC_TYPE_SOFTMAX,
  15423. il, probs);
  15424. cb(moe_out, "ffn_adj_moe_out", il);
  15425. cur = ggml_add(ctx0, cur, ggml_scale(ctx0, moe_out, hparams.expert_group_scale));
  15426. cb(cur, "ffn_final_moe_out", il);
  15427. cur = ggml_add(ctx0, cur, ffn_inp);
  15428. cur = build_cvec(cur, il);
  15429. cb(cur, "l_out", il);
  15430. // input for next layer
  15431. inpL = cur;
  15432. }
  15433. cur = inpL;
  15434. cur = build_norm(cur,
  15435. model.output_norm, NULL,
  15436. LLM_NORM_RMS, -1);
  15437. cb(cur, "result_norm", -1);
  15438. res->t_embd = cur;
  15439. // lm_head
  15440. cur = build_lora_mm(model.output, cur);
  15441. cb(cur, "result_output", -1);
  15442. res->t_logits = cur;
  15443. ggml_build_forward_expand(gf, cur);
  15444. }
  15445. };
  15446. struct llm_build_apertus : public llm_graph_context {
  15447. llm_build_apertus(const llama_model & model, const llm_graph_params & params) : llm_graph_context(params) {
  15448. const int64_t n_embd_head = hparams.n_embd_head_v;
  15449. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  15450. GGML_ASSERT(n_embd_head == hparams.n_rot);
  15451. ggml_tensor * cur;
  15452. ggml_tensor * inpL;
  15453. inpL = build_inp_embd(model.tok_embd);
  15454. ggml_tensor * inp_pos = build_inp_pos();
  15455. auto * inp_attn = build_attn_inp_kv();
  15456. const float kq_scale = hparams.f_attention_scale == 0.0f ? 1.0f / sqrtf(float(n_embd_head)) : hparams.f_attention_scale;
  15457. ggml_tensor * inp_out_ids = build_inp_out_ids();
  15458. for (int il = 0; il < n_layer; ++il) {
  15459. ggml_tensor * inpSA = inpL;
  15460. cur = build_norm(inpL,
  15461. model.layers[il].attn_norm, nullptr,
  15462. LLM_NORM_RMS, il);
  15463. cb(cur, "attn_norm", il);
  15464. // self-attention
  15465. {
  15466. ggml_tensor * rope_factors = model.get_rope_factors(cparams, il);
  15467. // compute Q and K and RoPE them
  15468. ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
  15469. cb(Qcur, "Qcur", il);
  15470. ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
  15471. cb(Kcur, "Kcur", il);
  15472. ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
  15473. cb(Vcur, "Vcur", il);
  15474. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  15475. Qcur = build_norm(Qcur, model.layers[il].attn_q_norm, NULL, LLM_NORM_RMS, il);
  15476. cb(Qcur, "Qcur_normed", il);
  15477. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  15478. Kcur = build_norm(Kcur, model.layers[il].attn_k_norm, NULL, LLM_NORM_RMS, il);
  15479. cb(Kcur, "Kcur_normed", il);
  15480. Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
  15481. Qcur = ggml_rope_ext(
  15482. ctx0, Qcur, inp_pos, rope_factors,
  15483. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  15484. ext_factor, attn_factor, beta_fast, beta_slow
  15485. );
  15486. Kcur = ggml_rope_ext(
  15487. ctx0, Kcur, inp_pos, rope_factors,
  15488. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  15489. ext_factor, attn_factor, beta_fast, beta_slow
  15490. );
  15491. cb(Qcur, "Qcur_pos", il);
  15492. cb(Kcur, "Kcur_pos", il);
  15493. cb(Vcur, "Vcur_pos", il);
  15494. cur = build_attn(inp_attn,
  15495. model.layers[il].wo, model.layers[il].bo,
  15496. Qcur, Kcur, Vcur, nullptr, nullptr, nullptr, kq_scale, il);
  15497. cb(cur, "attn_out", il);
  15498. }
  15499. if (il == n_layer - 1 && inp_out_ids) {
  15500. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  15501. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  15502. }
  15503. ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  15504. cb(ffn_inp, "ffn_inp", il);
  15505. // feed-forward network with xIELU activation
  15506. {
  15507. cur = build_norm(ffn_inp,
  15508. model.layers[il].ffn_norm, nullptr,
  15509. LLM_NORM_RMS, il);
  15510. cb(cur, "ffn_norm", il);
  15511. // Up projection
  15512. ggml_tensor * up = build_lora_mm(model.layers[il].ffn_up, cur);
  15513. cb(up, "ffn_up", il);
  15514. float alpha_n_val = hparams.xielu_alpha_n[il];
  15515. float alpha_p_val = hparams.xielu_alpha_p[il];
  15516. float beta_val = hparams.xielu_beta[il];
  15517. float eps_val = hparams.xielu_eps[il];
  15518. // Apply xIELU activation
  15519. ggml_tensor * activated = ggml_xielu(ctx0, up, alpha_n_val, alpha_p_val, beta_val, eps_val);
  15520. cb(activated, "ffn_xielu", il);
  15521. // Down projection
  15522. cur = build_lora_mm(model.layers[il].ffn_down, activated);
  15523. cb(cur, "ffn_down", il);
  15524. }
  15525. cur = ggml_add(ctx0, cur, ffn_inp);
  15526. cb(cur, "ffn_out", il);
  15527. cur = build_cvec(cur, il);
  15528. cb(cur, "l_out", il);
  15529. // input for next layer
  15530. inpL = cur;
  15531. }
  15532. cur = inpL;
  15533. cur = build_norm(cur,
  15534. model.output_norm, nullptr,
  15535. LLM_NORM_RMS, -1);
  15536. cb(cur, "result_norm", -1);
  15537. res->t_embd = cur;
  15538. // lm_head
  15539. cur = build_lora_mm(model.output, cur);
  15540. cb(cur, "result_output", -1);
  15541. res->t_logits = cur;
  15542. ggml_build_forward_expand(gf, cur);
  15543. }
  15544. };
  15545. llama_memory_i * llama_model::create_memory(const llama_memory_params & params, llama_cparams & cparams) const {
  15546. llama_memory_i * res;
  15547. switch (arch) {
  15548. // Models that need specific instantiation should be handled in the
  15549. // switch statement
  15550. case LLM_ARCH_BERT:
  15551. case LLM_ARCH_JINA_BERT_V2:
  15552. case LLM_ARCH_JINA_BERT_V3:
  15553. case LLM_ARCH_NOMIC_BERT:
  15554. case LLM_ARCH_NOMIC_BERT_MOE:
  15555. case LLM_ARCH_NEO_BERT:
  15556. case LLM_ARCH_WAVTOKENIZER_DEC:
  15557. case LLM_ARCH_GEMMA_EMBEDDING:
  15558. case LLM_ARCH_DREAM:
  15559. case LLM_ARCH_LLADA:
  15560. case LLM_ARCH_LLADA_MOE:
  15561. {
  15562. res = nullptr;
  15563. } break;
  15564. // Models that need standard caching should rely on recurrent/hybrid
  15565. // checks
  15566. default:
  15567. {
  15568. if (llm_arch_is_recurrent(arch)) {
  15569. res = new llama_memory_recurrent(
  15570. *this,
  15571. GGML_TYPE_F32,
  15572. GGML_TYPE_F32,
  15573. cparams.offload_kqv,
  15574. std::max((uint32_t) 1, cparams.n_seq_max),
  15575. cparams.n_seq_max,
  15576. nullptr);
  15577. } else if (llm_arch_is_hybrid(arch)) {
  15578. // The main difference between hybrid architectures is the
  15579. // layer filters, so pick the right one here
  15580. llama_memory_hybrid::layer_filter_cb filter_attn = nullptr;
  15581. llama_memory_hybrid::layer_filter_cb filter_recr = nullptr;
  15582. if (arch == LLM_ARCH_FALCON_H1) {
  15583. filter_attn = [&](int32_t) { return true; };
  15584. filter_recr = [&](int32_t) { return true; };
  15585. } else if (arch == LLM_ARCH_NEMOTRON_H) {
  15586. filter_attn = [&](int32_t il) {
  15587. return !hparams.is_recurrent(il) && hparams.n_ff(il) == 0;
  15588. };
  15589. filter_recr = [&](int32_t il) {
  15590. return hparams.is_recurrent(il) && hparams.n_ff(il) == 0;
  15591. };
  15592. }
  15593. const auto padding = llama_kv_cache::get_padding(cparams);
  15594. cparams.n_ctx = GGML_PAD(cparams.n_ctx, padding);
  15595. res = new llama_memory_hybrid(
  15596. /* model */ *this,
  15597. /* attn_type_k */ params.type_k,
  15598. /* attn_type_v */ params.type_v,
  15599. /* attn_v_trans */ !cparams.flash_attn,
  15600. /* attn_kv_size */ cparams.n_ctx,
  15601. /* attn_n_pad */ padding,
  15602. /* attn_n_swa */ hparams.n_swa,
  15603. /* attn_swa_type */ hparams.swa_type,
  15604. /* recurrent_type_k */ GGML_TYPE_F32,
  15605. /* recurrent_type_v */ GGML_TYPE_F32,
  15606. /* recurrent_kv_size */ std::max((uint32_t) 1, cparams.n_seq_max),
  15607. /* n_seq_max */ cparams.n_seq_max,
  15608. /* offload */ cparams.offload_kqv,
  15609. /* unified */ cparams.kv_unified,
  15610. /* filter_attn */ std::move(filter_attn),
  15611. /* filter_recr */ std::move(filter_recr));
  15612. } else {
  15613. const auto padding = llama_kv_cache::get_padding(cparams);
  15614. uint32_t n_ctx_per_stream = cparams.n_ctx;
  15615. if (!cparams.kv_unified) {
  15616. n_ctx_per_stream = (cparams.n_ctx + cparams.n_seq_max - 1)/cparams.n_seq_max;
  15617. n_ctx_per_stream = GGML_PAD(n_ctx_per_stream, padding);
  15618. cparams.n_ctx = n_ctx_per_stream*cparams.n_seq_max;
  15619. } else {
  15620. n_ctx_per_stream = GGML_PAD(n_ctx_per_stream, padding);
  15621. cparams.n_ctx = n_ctx_per_stream;
  15622. }
  15623. LLAMA_LOG_DEBUG("%s: n_ctx = %u (padded)\n", __func__, cparams.n_ctx);
  15624. llama_memory_i::layer_reuse_cb reuse = nullptr;
  15625. if (arch == LLM_ARCH_GEMMA3N) {
  15626. reuse = [&](int32_t il) {
  15627. if (il >= (int32_t) hparams.n_layer_kv_from_start) {
  15628. return (int32_t) hparams.n_layer_kv_from_start - (hparams.is_swa(il) ? 2 : 1);
  15629. }
  15630. return -1;
  15631. };
  15632. }
  15633. if (hparams.swa_type != LLAMA_SWA_TYPE_NONE) {
  15634. GGML_ASSERT(hparams.is_swa_any());
  15635. res = new llama_kv_cache_iswa(
  15636. *this,
  15637. params.type_k,
  15638. params.type_v,
  15639. !cparams.flash_attn,
  15640. cparams.offload_kqv,
  15641. params.swa_full,
  15642. cparams.kv_unified,
  15643. n_ctx_per_stream,
  15644. cparams.n_seq_max,
  15645. cparams.n_ubatch,
  15646. padding,
  15647. nullptr,
  15648. reuse);
  15649. } else {
  15650. GGML_ASSERT(!hparams.is_swa_any());
  15651. res = new llama_kv_cache(
  15652. *this,
  15653. params.type_k,
  15654. params.type_v,
  15655. !cparams.flash_attn,
  15656. cparams.offload_kqv,
  15657. cparams.kv_unified,
  15658. n_ctx_per_stream,
  15659. cparams.n_seq_max,
  15660. padding,
  15661. hparams.n_swa,
  15662. hparams.swa_type,
  15663. nullptr,
  15664. nullptr);
  15665. }
  15666. }
  15667. }
  15668. }
  15669. return res;
  15670. }
  15671. ggml_cgraph * llama_model::build_graph(const llm_graph_params & params) const {
  15672. std::unique_ptr<llm_graph_context> llm;
  15673. switch (arch) {
  15674. case LLM_ARCH_LLAMA:
  15675. {
  15676. llm = std::make_unique<llm_build_llama>(*this, params);
  15677. } break;
  15678. case LLM_ARCH_LLAMA4:
  15679. {
  15680. if (hparams.swa_type == LLAMA_SWA_TYPE_NONE) {
  15681. llm = std::make_unique<llm_build_llama>(*this, params);
  15682. } else {
  15683. llm = std::make_unique<llm_build_llama_iswa>(*this, params);
  15684. }
  15685. } break;
  15686. case LLM_ARCH_DECI:
  15687. {
  15688. llm = std::make_unique<llm_build_deci>(*this, params);
  15689. } break;
  15690. case LLM_ARCH_BAICHUAN:
  15691. {
  15692. llm = std::make_unique<llm_build_baichuan>(*this, params);
  15693. } break;
  15694. case LLM_ARCH_FALCON:
  15695. {
  15696. llm = std::make_unique<llm_build_falcon>(*this, params);
  15697. } break;
  15698. case LLM_ARCH_GROK:
  15699. {
  15700. llm = std::make_unique<llm_build_grok>(*this, params);
  15701. } break;
  15702. case LLM_ARCH_STARCODER:
  15703. {
  15704. llm = std::make_unique<llm_build_starcoder>(*this, params);
  15705. } break;
  15706. case LLM_ARCH_REFACT:
  15707. {
  15708. llm = std::make_unique<llm_build_refact>(*this, params);
  15709. } break;
  15710. case LLM_ARCH_BERT:
  15711. case LLM_ARCH_JINA_BERT_V2:
  15712. case LLM_ARCH_JINA_BERT_V3:
  15713. case LLM_ARCH_NOMIC_BERT:
  15714. case LLM_ARCH_NOMIC_BERT_MOE:
  15715. {
  15716. llm = std::make_unique<llm_build_bert>(*this, params);
  15717. } break;
  15718. case LLM_ARCH_NEO_BERT:
  15719. {
  15720. llm = std::make_unique<llm_build_neo_bert>(*this, params);
  15721. } break;
  15722. case LLM_ARCH_BLOOM:
  15723. {
  15724. llm = std::make_unique<llm_build_bloom>(*this, params);
  15725. } break;
  15726. case LLM_ARCH_MPT:
  15727. {
  15728. llm = std::make_unique<llm_build_mpt>(*this, params);
  15729. } break;
  15730. case LLM_ARCH_STABLELM:
  15731. {
  15732. llm = std::make_unique<llm_build_stablelm>(*this, params);
  15733. } break;
  15734. case LLM_ARCH_QWEN:
  15735. {
  15736. llm = std::make_unique<llm_build_qwen>(*this, params);
  15737. } break;
  15738. case LLM_ARCH_QWEN2:
  15739. {
  15740. llm = std::make_unique<llm_build_qwen2>(*this, params);
  15741. } break;
  15742. case LLM_ARCH_DREAM:
  15743. {
  15744. llm = std::make_unique<llm_build_dream>(*this, params);
  15745. }
  15746. break;
  15747. case LLM_ARCH_LLADA:
  15748. {
  15749. llm = std::make_unique<llm_build_llada>(*this, params);
  15750. }
  15751. break;
  15752. case LLM_ARCH_LLADA_MOE:
  15753. {
  15754. llm = std::make_unique<llm_build_llada_moe>(*this, params);
  15755. }
  15756. break;
  15757. case LLM_ARCH_QWEN2VL:
  15758. {
  15759. llm = std::make_unique<llm_build_qwen2vl>(*this, params);
  15760. } break;
  15761. case LLM_ARCH_QWEN2MOE:
  15762. {
  15763. llm = std::make_unique<llm_build_qwen2moe>(*this, params);
  15764. } break;
  15765. case LLM_ARCH_QWEN3:
  15766. {
  15767. llm = std::make_unique<llm_build_qwen3>(*this, params);
  15768. } break;
  15769. case LLM_ARCH_QWEN3MOE:
  15770. {
  15771. llm = std::make_unique<llm_build_qwen3moe>(*this, params);
  15772. } break;
  15773. case LLM_ARCH_PHI2:
  15774. {
  15775. llm = std::make_unique<llm_build_phi2>(*this, params);
  15776. } break;
  15777. case LLM_ARCH_PHI3:
  15778. case LLM_ARCH_PHIMOE:
  15779. {
  15780. if (hparams.swa_type != LLAMA_SWA_TYPE_NONE) {
  15781. llm = std::make_unique<llm_build_phi3<true>> (*this, params);
  15782. } else {
  15783. llm = std::make_unique<llm_build_phi3<false>>(*this, params);
  15784. }
  15785. } break;
  15786. case LLM_ARCH_PLAMO:
  15787. {
  15788. llm = std::make_unique<llm_build_plamo>(*this, params);
  15789. } break;
  15790. case LLM_ARCH_PLAMO2:
  15791. {
  15792. llm = std::make_unique<llm_build_plamo2>(*this, params);
  15793. } break;
  15794. case LLM_ARCH_GPT2:
  15795. {
  15796. llm = std::make_unique<llm_build_gpt2>(*this, params);
  15797. } break;
  15798. case LLM_ARCH_CODESHELL:
  15799. {
  15800. llm = std::make_unique<llm_build_codeshell>(*this, params);
  15801. } break;
  15802. case LLM_ARCH_ORION:
  15803. {
  15804. llm = std::make_unique<llm_build_orion>(*this, params);
  15805. } break;
  15806. case LLM_ARCH_INTERNLM2:
  15807. {
  15808. llm = std::make_unique<llm_build_internlm2>(*this, params);
  15809. } break;
  15810. case LLM_ARCH_MINICPM3:
  15811. {
  15812. llm = std::make_unique<llm_build_minicpm3>(*this, params);
  15813. } break;
  15814. case LLM_ARCH_GEMMA:
  15815. {
  15816. llm = std::make_unique<llm_build_gemma>(*this, params);
  15817. } break;
  15818. case LLM_ARCH_GEMMA2:
  15819. {
  15820. llm = std::make_unique<llm_build_gemma2_iswa>(*this, params);
  15821. } break;
  15822. case LLM_ARCH_GEMMA3:
  15823. {
  15824. llm = std::make_unique<llm_build_gemma3_iswa>(*this, params);
  15825. } break;
  15826. case LLM_ARCH_GEMMA3N:
  15827. {
  15828. llm = std::make_unique<llm_build_gemma3n_iswa>(*this, params);
  15829. } break;
  15830. case LLM_ARCH_GEMMA_EMBEDDING:
  15831. {
  15832. llm = std::make_unique<llm_build_gemma_embedding>(*this, params);
  15833. } break;
  15834. case LLM_ARCH_STARCODER2:
  15835. {
  15836. llm = std::make_unique<llm_build_starcoder2>(*this, params);
  15837. } break;
  15838. case LLM_ARCH_MAMBA:
  15839. case LLM_ARCH_MAMBA2:
  15840. {
  15841. llm = std::make_unique<llm_build_mamba>(*this, params);
  15842. } break;
  15843. case LLM_ARCH_JAMBA:
  15844. {
  15845. llm = std::make_unique<llm_build_jamba>(*this, params);
  15846. } break;
  15847. case LLM_ARCH_XVERSE:
  15848. {
  15849. llm = std::make_unique<llm_build_xverse>(*this, params);
  15850. } break;
  15851. case LLM_ARCH_COMMAND_R:
  15852. {
  15853. llm = std::make_unique<llm_build_command_r>(*this, params);
  15854. } break;
  15855. case LLM_ARCH_COHERE2:
  15856. {
  15857. llm = std::make_unique<llm_build_cohere2_iswa>(*this, params);
  15858. } break;
  15859. case LLM_ARCH_DBRX:
  15860. {
  15861. llm = std::make_unique<llm_build_dbrx>(*this, params);
  15862. } break;
  15863. case LLM_ARCH_OLMO:
  15864. {
  15865. llm = std::make_unique<llm_build_olmo>(*this, params);
  15866. } break;
  15867. case LLM_ARCH_OLMO2:
  15868. {
  15869. if (hparams.swa_type == LLAMA_SWA_TYPE_STANDARD) {
  15870. llm = std::make_unique<llm_build_olmo2<true>>(*this, params);
  15871. } else {
  15872. llm = std::make_unique<llm_build_olmo2<false>>(*this, params);
  15873. }
  15874. } break;
  15875. case LLM_ARCH_OLMOE:
  15876. {
  15877. llm = std::make_unique<llm_build_olmoe>(*this, params);
  15878. } break;
  15879. case LLM_ARCH_OPENELM:
  15880. {
  15881. llm = std::make_unique<llm_build_openelm>(*this, params);
  15882. } break;
  15883. case LLM_ARCH_GPTNEOX:
  15884. {
  15885. llm = std::make_unique<llm_build_gptneox>(*this, params);
  15886. } break;
  15887. case LLM_ARCH_ARCTIC:
  15888. {
  15889. llm = std::make_unique<llm_build_arctic>(*this, params);
  15890. } break;
  15891. case LLM_ARCH_DEEPSEEK:
  15892. {
  15893. llm = std::make_unique<llm_build_deepseek>(*this, params);
  15894. } break;
  15895. case LLM_ARCH_DEEPSEEK2:
  15896. {
  15897. llm = std::make_unique<llm_build_deepseek2>(*this, params);
  15898. } break;
  15899. case LLM_ARCH_CHATGLM:
  15900. {
  15901. llm = std::make_unique<llm_build_chatglm>(*this, params);
  15902. } break;
  15903. case LLM_ARCH_GLM4:
  15904. {
  15905. llm = std::make_unique<llm_build_glm4>(*this, params);
  15906. } break;
  15907. case LLM_ARCH_GLM4_MOE:
  15908. {
  15909. llm = std::make_unique<llm_build_glm4_moe>(*this, params);
  15910. } break;
  15911. case LLM_ARCH_BITNET:
  15912. {
  15913. llm = std::make_unique<llm_build_bitnet>(*this, params);
  15914. } break;
  15915. case LLM_ARCH_T5:
  15916. {
  15917. switch (params.gtype) {
  15918. case LLM_GRAPH_TYPE_ENCODER:
  15919. llm = std::make_unique<llm_build_t5_enc>(*this, params);
  15920. break;
  15921. case LLM_GRAPH_TYPE_DEFAULT:
  15922. case LLM_GRAPH_TYPE_DECODER:
  15923. llm = std::make_unique<llm_build_t5_dec>(*this, params);
  15924. break;
  15925. default:
  15926. GGML_ABORT("invalid graph type");
  15927. };
  15928. } break;
  15929. case LLM_ARCH_T5ENCODER:
  15930. {
  15931. llm = std::make_unique<llm_build_t5_enc>(*this, params);
  15932. }
  15933. break;
  15934. case LLM_ARCH_JAIS:
  15935. {
  15936. llm = std::make_unique<llm_build_jais>(*this, params);
  15937. } break;
  15938. case LLM_ARCH_NEMOTRON:
  15939. {
  15940. llm = std::make_unique<llm_build_nemotron>(*this, params);
  15941. } break;
  15942. case LLM_ARCH_NEMOTRON_H:
  15943. {
  15944. llm = std::make_unique<llm_build_nemotron_h>(*this, params);
  15945. } break;
  15946. case LLM_ARCH_EXAONE:
  15947. {
  15948. llm = std::make_unique<llm_build_exaone>(*this, params);
  15949. } break;
  15950. case LLM_ARCH_EXAONE4:
  15951. {
  15952. if (hparams.swa_type == LLAMA_SWA_TYPE_STANDARD) {
  15953. llm = std::make_unique<llm_build_exaone4<true>>(*this, params);
  15954. } else {
  15955. llm = std::make_unique<llm_build_exaone4<false>>(*this, params);
  15956. }
  15957. } break;
  15958. case LLM_ARCH_RWKV6:
  15959. {
  15960. llm = std::make_unique<llm_build_rwkv6>(*this, params);
  15961. } break;
  15962. case LLM_ARCH_RWKV6QWEN2:
  15963. {
  15964. llm = std::make_unique<llm_build_rwkv6qwen2>(*this, params);
  15965. } break;
  15966. case LLM_ARCH_RWKV7:
  15967. {
  15968. llm = std::make_unique<llm_build_rwkv7>(*this, params);
  15969. } break;
  15970. case LLM_ARCH_ARWKV7:
  15971. {
  15972. llm = std::make_unique<llm_build_arwkv7>(*this, params);
  15973. } break;
  15974. case LLM_ARCH_GRANITE:
  15975. case LLM_ARCH_GRANITE_MOE:
  15976. case LLM_ARCH_MINICPM:
  15977. {
  15978. llm = std::make_unique<llm_build_granite>(*this, params);
  15979. } break;
  15980. case LLM_ARCH_GRANITE_HYBRID:
  15981. {
  15982. llm = std::make_unique<llm_build_granite_hybrid>(*this, params);
  15983. } break;
  15984. case LLM_ARCH_CHAMELEON:
  15985. {
  15986. llm = std::make_unique<llm_build_chameleon>(*this, params);
  15987. } break;
  15988. case LLM_ARCH_WAVTOKENIZER_DEC:
  15989. {
  15990. llm = std::make_unique<llm_build_wavtokenizer_dec>(*this, params);
  15991. } break;
  15992. case LLM_ARCH_PLM:
  15993. {
  15994. llm = std::make_unique<llm_build_plm>(*this, params);
  15995. } break;
  15996. case LLM_ARCH_BAILINGMOE:
  15997. {
  15998. llm = std::make_unique<llm_build_bailingmoe>(*this, params);
  15999. } break;
  16000. case LLM_ARCH_BAILINGMOE2:
  16001. {
  16002. llm = std::make_unique<llm_build_bailingmoe2>(*this, params);
  16003. } break;
  16004. case LLM_ARCH_SEED_OSS:
  16005. {
  16006. llm = std::make_unique<llm_build_seed_oss>(*this, params);
  16007. } break;
  16008. case LLM_ARCH_DOTS1:
  16009. {
  16010. llm = std::make_unique<llm_build_dots1>(*this, params);
  16011. } break;
  16012. case LLM_ARCH_ARCEE:
  16013. {
  16014. llm = std::make_unique<llm_build_arcee>(*this, params);
  16015. } break;
  16016. case LLM_ARCH_ERNIE4_5:
  16017. {
  16018. llm = std::make_unique<llm_build_ernie4_5>(*this, params);
  16019. } break;
  16020. case LLM_ARCH_ERNIE4_5_MOE:
  16021. {
  16022. llm = std::make_unique<llm_build_ernie4_5_moe>(*this, params);
  16023. } break;
  16024. case LLM_ARCH_HUNYUAN_MOE:
  16025. {
  16026. llm = std::make_unique<llm_build_hunyuan_moe>(*this, params);
  16027. } break;
  16028. case LLM_ARCH_HUNYUAN_DENSE:
  16029. {
  16030. llm = std::make_unique<llm_build_hunyuan_dense>(*this, params);
  16031. } break;
  16032. case LLM_ARCH_SMOLLM3:
  16033. {
  16034. llm = std::make_unique<llm_build_smollm3>(*this, params);
  16035. } break;
  16036. case LLM_ARCH_OPENAI_MOE:
  16037. {
  16038. llm = std::make_unique<llm_build_openai_moe_iswa>(*this, params);
  16039. } break;
  16040. case LLM_ARCH_FALCON_H1:
  16041. {
  16042. llm = std::make_unique<llm_build_falcon_h1>(*this, params);
  16043. } break;
  16044. case LLM_ARCH_LFM2:
  16045. case LLM_ARCH_LFM2MOE:
  16046. {
  16047. llm = std::make_unique<llm_build_lfm2>(*this, params);
  16048. } break;
  16049. case LLM_ARCH_SMALLTHINKER:
  16050. {
  16051. if (hparams.swa_type == LLAMA_SWA_TYPE_STANDARD) {
  16052. llm = std::make_unique<llm_build_smallthinker<true>> (*this, params);
  16053. } else {
  16054. llm = std::make_unique<llm_build_smallthinker<false>>(*this, params);
  16055. }
  16056. } break;
  16057. case LLM_ARCH_GROVEMOE:
  16058. {
  16059. llm = std::make_unique<llm_build_grovemoe>(*this, params);
  16060. } break;
  16061. case LLM_ARCH_APERTUS:
  16062. {
  16063. llm = std::make_unique<llm_build_apertus>(*this, params);
  16064. } break;
  16065. default:
  16066. GGML_ABORT("fatal error");
  16067. }
  16068. // add on pooling layer
  16069. llm->build_pooling(cls, cls_b, cls_out, cls_out_b);
  16070. // if the gguf model was converted with --sentence-transformers-dense-modules
  16071. // there will be two additional dense projection layers
  16072. // dense linear projections are applied after pooling
  16073. // TODO: move reranking logic here and generalize
  16074. llm->build_dense_out(dense_2_out_layers, dense_3_out_layers);
  16075. return llm->res->get_gf();
  16076. }
  16077. //
  16078. // interface implementation
  16079. //
  16080. llama_model_params llama_model_default_params() {
  16081. llama_model_params result = {
  16082. /*.devices =*/ nullptr,
  16083. /*.tensor_buft_overrides =*/ nullptr,
  16084. /*.n_gpu_layers =*/ 999,
  16085. /*.split_mode =*/ LLAMA_SPLIT_MODE_LAYER,
  16086. /*.main_gpu =*/ 0,
  16087. /*.tensor_split =*/ nullptr,
  16088. /*.progress_callback =*/ nullptr,
  16089. /*.progress_callback_user_data =*/ nullptr,
  16090. /*.kv_overrides =*/ nullptr,
  16091. /*.vocab_only =*/ false,
  16092. /*.use_mmap =*/ true,
  16093. /*.use_mlock =*/ false,
  16094. /*.check_tensors =*/ false,
  16095. /*.use_extra_bufts =*/ true,
  16096. /*.no_host =*/ false,
  16097. };
  16098. return result;
  16099. }
  16100. const llama_vocab * llama_model_get_vocab(const llama_model * model) {
  16101. return &model->vocab;
  16102. }
  16103. void llama_free_model(llama_model * model) {
  16104. llama_model_free(model);
  16105. }
  16106. void llama_model_free(llama_model * model) {
  16107. delete model;
  16108. }
  16109. int32_t llama_model_n_ctx_train(const llama_model * model) {
  16110. return model->hparams.n_ctx_train;
  16111. }
  16112. int32_t llama_model_n_embd(const llama_model * model) {
  16113. return model->hparams.n_embd;
  16114. }
  16115. int32_t llama_model_n_layer(const llama_model * model) {
  16116. return model->hparams.n_layer;
  16117. }
  16118. int32_t llama_model_n_head(const llama_model * model) {
  16119. return model->hparams.n_head();
  16120. }
  16121. int32_t llama_model_n_head_kv(const llama_model * model) {
  16122. return model->hparams.n_head_kv();
  16123. }
  16124. int32_t llama_model_n_swa(const llama_model * model) {
  16125. return model->hparams.n_swa;
  16126. }
  16127. uint32_t llama_model_n_cls_out(const struct llama_model * model) {
  16128. return model->hparams.n_cls_out;
  16129. }
  16130. const char * llama_model_cls_label(const struct llama_model * model, uint32_t i) {
  16131. if (i < model->classifier_labels.size()) {
  16132. return model->classifier_labels[i].c_str();
  16133. }
  16134. return nullptr;
  16135. }
  16136. // deprecated
  16137. int32_t llama_n_ctx_train(const llama_model * model) {
  16138. return llama_model_n_ctx_train(model);
  16139. }
  16140. // deprecated
  16141. int32_t llama_n_embd(const llama_model * model) {
  16142. return llama_model_n_embd(model);
  16143. }
  16144. // deprecated
  16145. int32_t llama_n_layer(const llama_model * model) {
  16146. return llama_model_n_layer(model);
  16147. }
  16148. // deprecated
  16149. int32_t llama_n_head(const llama_model * model) {
  16150. return llama_model_n_head(model);
  16151. }
  16152. llama_rope_type llama_model_rope_type(const llama_model * model) {
  16153. switch (model->arch) {
  16154. // these models do not use RoPE
  16155. case LLM_ARCH_CLIP:
  16156. case LLM_ARCH_GPT2:
  16157. case LLM_ARCH_GPTJ:
  16158. case LLM_ARCH_MPT:
  16159. case LLM_ARCH_REFACT:
  16160. case LLM_ARCH_BLOOM:
  16161. case LLM_ARCH_MAMBA:
  16162. case LLM_ARCH_MAMBA2:
  16163. case LLM_ARCH_JAMBA:
  16164. case LLM_ARCH_JINA_BERT_V2:
  16165. case LLM_ARCH_T5:
  16166. case LLM_ARCH_T5ENCODER:
  16167. case LLM_ARCH_JAIS:
  16168. case LLM_ARCH_RWKV6:
  16169. case LLM_ARCH_RWKV6QWEN2:
  16170. case LLM_ARCH_RWKV7:
  16171. case LLM_ARCH_ARWKV7:
  16172. case LLM_ARCH_WAVTOKENIZER_DEC:
  16173. case LLM_ARCH_NEMOTRON_H:
  16174. return LLAMA_ROPE_TYPE_NONE;
  16175. // use what we call a normal RoPE, operating on pairs of consecutive head values
  16176. case LLM_ARCH_LLAMA:
  16177. case LLM_ARCH_LLADA:
  16178. case LLM_ARCH_LLAMA4:
  16179. case LLM_ARCH_DECI:
  16180. case LLM_ARCH_BAICHUAN:
  16181. case LLM_ARCH_STARCODER:
  16182. case LLM_ARCH_INTERNLM2:
  16183. case LLM_ARCH_MINICPM:
  16184. case LLM_ARCH_XVERSE:
  16185. case LLM_ARCH_COMMAND_R:
  16186. case LLM_ARCH_COHERE2:
  16187. case LLM_ARCH_OLMO:
  16188. case LLM_ARCH_ARCTIC:
  16189. case LLM_ARCH_DEEPSEEK:
  16190. case LLM_ARCH_DEEPSEEK2:
  16191. case LLM_ARCH_PLM:
  16192. case LLM_ARCH_CHATGLM:
  16193. case LLM_ARCH_GLM4:
  16194. case LLM_ARCH_GRANITE:
  16195. case LLM_ARCH_GRANITE_MOE:
  16196. case LLM_ARCH_GRANITE_HYBRID:
  16197. case LLM_ARCH_CHAMELEON:
  16198. case LLM_ARCH_BAILINGMOE:
  16199. case LLM_ARCH_NEO_BERT:
  16200. case LLM_ARCH_SMOLLM3:
  16201. case LLM_ARCH_ARCEE:
  16202. case LLM_ARCH_ERNIE4_5:
  16203. case LLM_ARCH_ERNIE4_5_MOE:
  16204. return LLAMA_ROPE_TYPE_NORM;
  16205. // the pairs of head values are offset by n_rot/2
  16206. case LLM_ARCH_FALCON:
  16207. case LLM_ARCH_FALCON_H1:
  16208. case LLM_ARCH_GROK:
  16209. case LLM_ARCH_DBRX:
  16210. case LLM_ARCH_BERT:
  16211. case LLM_ARCH_JINA_BERT_V3:
  16212. case LLM_ARCH_NOMIC_BERT:
  16213. case LLM_ARCH_NOMIC_BERT_MOE:
  16214. case LLM_ARCH_STABLELM:
  16215. case LLM_ARCH_BITNET:
  16216. case LLM_ARCH_QWEN:
  16217. case LLM_ARCH_QWEN2:
  16218. case LLM_ARCH_DREAM:
  16219. case LLM_ARCH_QWEN2MOE:
  16220. case LLM_ARCH_QWEN3:
  16221. case LLM_ARCH_QWEN3MOE:
  16222. case LLM_ARCH_LLADA_MOE:
  16223. case LLM_ARCH_OLMO2:
  16224. case LLM_ARCH_OLMOE:
  16225. case LLM_ARCH_PHI2:
  16226. case LLM_ARCH_PHI3:
  16227. case LLM_ARCH_PHIMOE:
  16228. case LLM_ARCH_PLAMO:
  16229. case LLM_ARCH_PLAMO2:
  16230. case LLM_ARCH_GEMMA:
  16231. case LLM_ARCH_GEMMA2:
  16232. case LLM_ARCH_GEMMA3:
  16233. case LLM_ARCH_GEMMA3N:
  16234. case LLM_ARCH_GEMMA_EMBEDDING:
  16235. case LLM_ARCH_STARCODER2:
  16236. case LLM_ARCH_OPENELM:
  16237. case LLM_ARCH_GPTNEOX:
  16238. case LLM_ARCH_CODESHELL:
  16239. case LLM_ARCH_ORION:
  16240. case LLM_ARCH_NEMOTRON:
  16241. case LLM_ARCH_EXAONE:
  16242. case LLM_ARCH_EXAONE4:
  16243. case LLM_ARCH_MINICPM3:
  16244. case LLM_ARCH_BAILINGMOE2:
  16245. case LLM_ARCH_DOTS1:
  16246. case LLM_ARCH_HUNYUAN_MOE:
  16247. case LLM_ARCH_OPENAI_MOE:
  16248. case LLM_ARCH_HUNYUAN_DENSE:
  16249. case LLM_ARCH_LFM2:
  16250. case LLM_ARCH_LFM2MOE:
  16251. case LLM_ARCH_SMALLTHINKER:
  16252. case LLM_ARCH_GLM4_MOE:
  16253. case LLM_ARCH_SEED_OSS:
  16254. case LLM_ARCH_GROVEMOE:
  16255. case LLM_ARCH_APERTUS:
  16256. return LLAMA_ROPE_TYPE_NEOX;
  16257. case LLM_ARCH_QWEN2VL:
  16258. return LLAMA_ROPE_TYPE_MROPE;
  16259. // all model arches should be listed explicitly here
  16260. case LLM_ARCH_UNKNOWN:
  16261. GGML_ABORT("unknown architecture");
  16262. }
  16263. return LLAMA_ROPE_TYPE_NONE;
  16264. }
  16265. float llama_model_rope_freq_scale_train(const llama_model * model) {
  16266. return model->hparams.rope_freq_scale_train;
  16267. }
  16268. int32_t llama_model_meta_val_str(const llama_model * model, const char * key, char * buf, size_t buf_size) {
  16269. const auto & it = model->gguf_kv.find(key);
  16270. if (it == model->gguf_kv.end()) {
  16271. if (buf_size > 0) {
  16272. buf[0] = '\0';
  16273. }
  16274. return -1;
  16275. }
  16276. return snprintf(buf, buf_size, "%s", it->second.c_str());
  16277. }
  16278. int32_t llama_model_meta_count(const llama_model * model) {
  16279. return (int)model->gguf_kv.size();
  16280. }
  16281. int32_t llama_model_meta_key_by_index(const llama_model * model, int i, char * buf, size_t buf_size) {
  16282. if (i < 0 || i >= (int)model->gguf_kv.size()) {
  16283. if (buf_size > 0) {
  16284. buf[0] = '\0';
  16285. }
  16286. return -1;
  16287. }
  16288. auto it = model->gguf_kv.begin();
  16289. std::advance(it, i);
  16290. return snprintf(buf, buf_size, "%s", it->first.c_str());
  16291. }
  16292. int32_t llama_model_meta_val_str_by_index(const llama_model * model, int32_t i, char * buf, size_t buf_size) {
  16293. if (i < 0 || i >= (int)model->gguf_kv.size()) {
  16294. if (buf_size > 0) {
  16295. buf[0] = '\0';
  16296. }
  16297. return -1;
  16298. }
  16299. auto it = model->gguf_kv.begin();
  16300. std::advance(it, i);
  16301. return snprintf(buf, buf_size, "%s", it->second.c_str());
  16302. }
  16303. int32_t llama_model_desc(const llama_model * model, char * buf, size_t buf_size) {
  16304. return snprintf(buf, buf_size, "%s", model->desc().c_str());
  16305. }
  16306. uint64_t llama_model_size(const llama_model * model) {
  16307. return model->size();
  16308. }
  16309. const char * llama_model_chat_template(const llama_model * model, const char * name) {
  16310. const auto key = name ? LLM_KV(model->arch, name)(LLM_KV_TOKENIZER_CHAT_TEMPLATE)
  16311. : LLM_KV(model->arch)(LLM_KV_TOKENIZER_CHAT_TEMPLATE);
  16312. const auto & it = model->gguf_kv.find(key);
  16313. if (it == model->gguf_kv.end()) {
  16314. // one-off fix for very popular models (so we are not flooded with issues)
  16315. // do not extend this list unless absolutely necessary
  16316. // Mistral-Small-2503 does not have built-in chat template
  16317. llama_vocab_pre_type pre_type = model->vocab.get_pre_type();
  16318. if (!name && pre_type == LLAMA_VOCAB_PRE_TYPE_TEKKEN && model->layers.size() == 40) {
  16319. return "mistral-v7-tekken";
  16320. }
  16321. return nullptr;
  16322. }
  16323. return it->second.c_str();
  16324. }
  16325. uint64_t llama_model_n_params(const llama_model * model) {
  16326. return model->n_elements();
  16327. }
  16328. bool llama_model_has_encoder(const llama_model * model) {
  16329. switch (model->arch) {
  16330. case LLM_ARCH_T5: return true;
  16331. case LLM_ARCH_T5ENCODER: return true;
  16332. default: return false;
  16333. }
  16334. }
  16335. bool llama_model_has_decoder(const llama_model * model) {
  16336. switch (model->arch) {
  16337. case LLM_ARCH_T5ENCODER: return false;
  16338. default: return true;
  16339. }
  16340. }
  16341. llama_token llama_model_decoder_start_token(const llama_model * model) {
  16342. return model->hparams.dec_start_token_id;
  16343. }
  16344. bool llama_model_is_recurrent(const llama_model * model) {
  16345. return llm_arch_is_recurrent(model->arch);
  16346. }
  16347. bool llama_model_is_hybrid(const llama_model * model) {
  16348. return llm_arch_is_hybrid(model->arch);
  16349. }
  16350. bool llama_model_is_diffusion(const llama_model * model) {
  16351. return llm_arch_is_diffusion(model->arch);
  16352. }
  16353. const std::vector<std::pair<std::string, ggml_tensor *>> & llama_internal_get_tensor_map(const llama_model * model) {
  16354. return model->tensors_by_name;
  16355. }