test-backend-ops.cpp 240 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284528552865287528852895290529152925293529452955296529752985299530053015302530353045305530653075308530953105311531253135314531553165317531853195320532153225323532453255326532753285329533053315332533353345335533653375338533953405341534253435344534553465347534853495350535153525353535453555356535753585359536053615362536353645365536653675368536953705371537253735374537553765377537853795380538153825383538453855386538753885389539053915392539353945395539653975398539954005401540254035404540554065407540854095410541154125413541454155416541754185419542054215422542354245425542654275428542954305431543254335434543554365437543854395440544154425443544454455446544754485449545054515452545354545455545654575458545954605461546254635464546554665467546854695470547154725473547454755476547754785479548054815482548354845485548654875488548954905491549254935494549554965497549854995500550155025503550455055506550755085509551055115512551355145515551655175518551955205521552255235524552555265527552855295530553155325533553455355536553755385539554055415542554355445545554655475548554955505551555255535554555555565557555855595560556155625563556455655566556755685569557055715572557355745575557655775578557955805581558255835584558555865587558855895590559155925593559455955596559755985599560056015602560356045605560656075608560956105611561256135614561556165617561856195620562156225623562456255626562756285629563056315632563356345635563656375638563956405641564256435644564556465647564856495650565156525653565456555656565756585659566056615662566356645665566656675668566956705671567256735674567556765677567856795680568156825683568456855686568756885689569056915692569356945695569656975698569957005701570257035704570557065707570857095710571157125713571457155716571757185719572057215722572357245725572657275728572957305731573257335734573557365737573857395740574157425743574457455746574757485749575057515752575357545755575657575758575957605761576257635764576557665767576857695770577157725773577457755776577757785779578057815782578357845785578657875788578957905791579257935794579557965797579857995800580158025803580458055806580758085809581058115812581358145815581658175818581958205821582258235824582558265827582858295830583158325833583458355836583758385839584058415842584358445845584658475848584958505851585258535854585558565857585858595860586158625863586458655866586758685869587058715872587358745875587658775878587958805881588258835884588558865887588858895890589158925893589458955896589758985899590059015902590359045905590659075908590959105911591259135914591559165917591859195920592159225923592459255926592759285929593059315932593359345935593659375938593959405941594259435944594559465947594859495950595159525953595459555956595759585959596059615962596359645965596659675968596959705971597259735974597559765977597859795980598159825983598459855986598759885989599059915992599359945995599659975998599960006001600260036004600560066007600860096010601160126013601460156016601760186019602060216022602360246025602660276028602960306031603260336034603560366037603860396040604160426043604460456046604760486049605060516052605360546055605660576058605960606061606260636064606560666067606860696070607160726073607460756076607760786079608060816082608360846085608660876088608960906091609260936094609560966097609860996100610161026103610461056106610761086109611061116112611361146115611661176118611961206121612261236124612561266127612861296130613161326133613461356136613761386139614061416142614361446145614661476148614961506151615261536154615561566157615861596160616161626163616461656166616761686169617061716172617361746175617661776178617961806181618261836184618561866187618861896190619161926193619461956196619761986199620062016202620362046205620662076208620962106211621262136214621562166217621862196220622162226223622462256226622762286229623062316232623362346235623662376238623962406241624262436244624562466247624862496250625162526253625462556256625762586259626062616262626362646265626662676268626962706271627262736274627562766277627862796280628162826283628462856286628762886289629062916292629362946295629662976298629963006301630263036304630563066307630863096310631163126313631463156316631763186319632063216322632363246325632663276328632963306331633263336334633563366337633863396340634163426343634463456346634763486349635063516352635363546355635663576358635963606361636263636364636563666367636863696370637163726373637463756376637763786379638063816382638363846385638663876388638963906391639263936394639563966397639863996400640164026403640464056406640764086409641064116412641364146415641664176418641964206421642264236424642564266427642864296430643164326433643464356436643764386439644064416442644364446445644664476448644964506451645264536454645564566457645864596460
  1. // This file defines tests for various GGML ops and backends.
  2. // For the forward pass it asserts that the results of multiple backends computing the same GGML ops are consistent.
  3. // For the backward pass it asserts that the gradients from backpropagation are consistent
  4. // with the gradients obtained via the method of finite differences ("grad" mode, this is optional).
  5. // It is also possible to check the performance ("perf" mode).
  6. //
  7. // this file has three sections: Section 1 does general setup, section 2 defines the GGML ops to be tested,
  8. // and section 3 defines which tests to run.
  9. // Quick start for adding a new GGML op: Go to section 2 and create a struct that inherits from test_case,
  10. // then go to section 3 and add an instantiation of your struct.
  11. // ##############################
  12. // ## Section 1: General Setup ##
  13. // ##############################
  14. #include <ggml.h>
  15. #include <ggml-alloc.h>
  16. #include <ggml-backend.h>
  17. #include <ggml-cpp.h>
  18. #include <algorithm>
  19. #include <array>
  20. #include <cfloat>
  21. #include <cinttypes>
  22. #include <cstdarg>
  23. #include <cstdint>
  24. #include <cstdio>
  25. #include <cstdlib>
  26. #include <cstring>
  27. #include <ctime>
  28. #include <future>
  29. #include <memory>
  30. #include <random>
  31. #include <regex>
  32. #include <string>
  33. #include <string_view>
  34. #include <thread>
  35. #include <vector>
  36. static void init_tensor_uniform(ggml_tensor * tensor, float min = -1.0f, float max = 1.0f) {
  37. size_t nels = ggml_nelements(tensor);
  38. std::vector<float> data(nels);
  39. {
  40. // parallel initialization
  41. static const size_t n_threads = std::thread::hardware_concurrency();
  42. // static RNG initialization (revisit if n_threads stops being constant)
  43. static std::vector<std::default_random_engine> generators = []() {
  44. std::random_device rd;
  45. std::vector<std::default_random_engine> vec;
  46. vec.reserve(n_threads);
  47. //for (size_t i = 0; i < n_threads; i++) { vec.emplace_back(1234 + i); } // fixed seed
  48. for (size_t i = 0; i < n_threads; i++) { vec.emplace_back(rd()); }
  49. return vec;
  50. }();
  51. auto init_thread = [&](size_t ith, size_t start, size_t end) {
  52. std::uniform_real_distribution<float> distribution(min, max);
  53. auto & gen = generators[ith];
  54. for (size_t i = start; i < end; i++) {
  55. data[i] = distribution(gen);
  56. }
  57. };
  58. std::vector<std::future<void>> tasks;
  59. tasks.reserve(n_threads);
  60. for (size_t i = 0; i < n_threads; i++) {
  61. size_t start = i*nels/n_threads;
  62. size_t end = (i+1)*nels/n_threads;
  63. tasks.push_back(std::async(std::launch::async, init_thread, i, start, end));
  64. }
  65. for (auto & t : tasks) {
  66. t.get();
  67. }
  68. }
  69. if (tensor->type == GGML_TYPE_F32 || tensor->type == GGML_TYPE_I32) {
  70. ggml_backend_tensor_set(tensor, data.data(), 0, nels * sizeof(float));
  71. } else if (ggml_is_quantized(tensor->type) || tensor->type == GGML_TYPE_F16 || tensor->type == GGML_TYPE_BF16) {
  72. GGML_ASSERT(nels % ggml_blck_size(tensor->type) == 0);
  73. // dummy importance matrix
  74. std::vector<float> imatrix(tensor->ne[0], 1.0f);
  75. const float * im = imatrix.data();
  76. if (!ggml_quantize_requires_imatrix(tensor->type)) {
  77. // when the imatrix is optional, we want to test both quantization with and without imatrix
  78. // use one of the random numbers to decide
  79. if (data[0] > 0.5f*(min + max)) {
  80. im = nullptr;
  81. }
  82. }
  83. std::vector<uint8_t> dataq(ggml_row_size(tensor->type, nels));
  84. {
  85. // parallel quantization by block
  86. size_t blck_size = ggml_blck_size(tensor->type);
  87. size_t n_blocks = nels / blck_size;
  88. auto quantize_thread = [&](size_t start, size_t end) {
  89. ggml_quantize_chunk(tensor->type, data.data(), dataq.data(),
  90. start * blck_size, end - start, blck_size, im);
  91. };
  92. const size_t min_blocks_per_thread = 1;
  93. const size_t n_threads = std::min<size_t>(std::thread::hardware_concurrency()/2,
  94. std::max<size_t>(1, n_blocks / min_blocks_per_thread));
  95. std::vector<std::future<void>> tasks;
  96. tasks.reserve(n_threads);
  97. for (size_t i = 0; i < n_threads; i++) {
  98. size_t start = i*n_blocks/n_threads;
  99. size_t end = (i+1)*n_blocks/n_threads;
  100. tasks.push_back(std::async(std::launch::async, quantize_thread, start, end));
  101. }
  102. for (auto & t : tasks) {
  103. t.get();
  104. }
  105. }
  106. ggml_backend_tensor_set(tensor, dataq.data(), 0, dataq.size());
  107. } else if (tensor->type == GGML_TYPE_I8 || tensor->type == GGML_TYPE_I16 || tensor->type == GGML_TYPE_I32) {
  108. // This is going to create some weird integers though.
  109. ggml_backend_tensor_set(tensor, data.data(), 0, ggml_nbytes(tensor));
  110. } else if (tensor->type == GGML_TYPE_I64) {
  111. // Integers with a size of 8 bytes can be set by mirroring the float data, the specific values are again not really meaningful.
  112. const size_t nbytes_half = ggml_nbytes(tensor)/2;
  113. ggml_backend_tensor_set(tensor, data.data(), 0*nbytes_half, nbytes_half);
  114. ggml_backend_tensor_set(tensor, data.data(), 1*nbytes_half, nbytes_half);
  115. } else {
  116. GGML_ABORT("fatal error");
  117. }
  118. }
  119. static std::vector<float> tensor_to_float(const ggml_tensor * t) {
  120. std::vector<float> tv;
  121. tv.reserve(ggml_nelements(t));
  122. std::vector<uint8_t> buf(ggml_nbytes(t));
  123. ggml_backend_tensor_get(t, buf.data(), 0, ggml_nbytes(t));
  124. const auto * tt = ggml_get_type_traits(t->type);
  125. size_t bs = ggml_blck_size(t->type);
  126. std::vector<float> vq(ggml_blck_size(t->type));
  127. bool quantized = ggml_is_quantized(t->type);
  128. // access elements by index to avoid gaps in views
  129. for (int64_t i3 = 0; i3 < t->ne[3]; i3++) {
  130. for (int64_t i2 = 0; i2 < t->ne[2]; i2++) {
  131. for (int64_t i1 = 0; i1 < t->ne[1]; i1++) {
  132. for (int64_t i0 = 0; i0 < t->ne[0]; i0 += bs) {
  133. size_t i = i3*t->nb[3] + i2*t->nb[2] + i1*t->nb[1] + i0/bs*t->nb[0];
  134. if (t->type == GGML_TYPE_F16) {
  135. tv.push_back(ggml_fp16_to_fp32(*(ggml_fp16_t*)&buf[i]));
  136. } else if (t->type == GGML_TYPE_BF16) {
  137. tv.push_back(ggml_bf16_to_fp32(*(ggml_bf16_t*)&buf[i]));
  138. } else if (t->type == GGML_TYPE_F32) {
  139. tv.push_back(*(float *) &buf[i]);
  140. } else if (t->type == GGML_TYPE_I64) {
  141. tv.push_back((float)*(int64_t *) &buf[i]);
  142. } else if (t->type == GGML_TYPE_I32) {
  143. tv.push_back((float)*(int32_t *) &buf[i]);
  144. } else if (t->type == GGML_TYPE_I16) {
  145. tv.push_back((float)*(int16_t *) &buf[i]);
  146. } else if (t->type == GGML_TYPE_I8) {
  147. tv.push_back((float)*(int8_t *) &buf[i]);
  148. } else if (quantized) {
  149. tt->to_float(&buf[i], vq.data(), bs);
  150. tv.insert(tv.end(), vq.begin(), vq.end());
  151. } else {
  152. GGML_ABORT("fatal error");
  153. }
  154. }
  155. }
  156. }
  157. }
  158. return tv;
  159. }
  160. // normalized mean squared error = mse(a, b) / mse(a, 0)
  161. static double nmse(const float * a, const float * b, size_t n) {
  162. double mse_a_b = 0.0;
  163. double mse_a_0 = 0.0;
  164. for (size_t i = 0; i < n; i++) {
  165. float a_i = a[i];
  166. float b_i = b[i];
  167. mse_a_b += (a_i - b_i) * (a_i - b_i);
  168. mse_a_0 += a_i * a_i;
  169. }
  170. return mse_a_b / mse_a_0;
  171. }
  172. // maximum absolute asymmetry between a and b
  173. // asymmetry: (a - b) / (a + b)
  174. // This is more stable than relative error if one of the values fluctuates towards zero.
  175. // n: number of values to compare.
  176. // expected_vals: optional vector of expected values for a. If expected_vals is not empty, filter out all comparisons where
  177. // a does not match any of the expected values. Needed for noncontinuous gradients where the numerical calculation can fail.
  178. static double mean_abs_asymm(const float * a, const float * b, const size_t n, const std::vector<float> & expected_vals) {
  179. double sum = 0.0f;
  180. size_t nvalid = 0;
  181. for (size_t i = 0; i < n; i++) {
  182. if (!expected_vals.empty()) {
  183. bool matches_any = false;
  184. for (const float & ev : expected_vals) {
  185. if (fabsf(a[i] - ev) < 1e-3f) {
  186. matches_any = true;
  187. break;
  188. }
  189. }
  190. if (!matches_any) {
  191. continue;
  192. }
  193. }
  194. const float asymm = (a[i] - b[i]) / (a[i] + b[i]);
  195. sum += fabsf(asymm);
  196. nvalid++;
  197. }
  198. return sum/nvalid;
  199. }
  200. // utils for printing the variables of the test cases
  201. template<typename T>
  202. static std::string var_to_str(const T & x) {
  203. return std::to_string(x);
  204. }
  205. template<typename T, size_t N>
  206. static std::string var_to_str(const T (&x)[N]) {
  207. std::string s = "[";
  208. for (size_t i = 0; i < N; i++) {
  209. if (i > 0) {
  210. s += ",";
  211. }
  212. s += var_to_str(x[i]);
  213. }
  214. s += "]";
  215. return s;
  216. }
  217. template<typename T, size_t N>
  218. static std::string var_to_str(const std::array<T, N> & x) {
  219. std::string s = "[";
  220. for (size_t i = 0; i < N; i++) {
  221. if (i > 0) {
  222. s += ",";
  223. }
  224. s += var_to_str(x[i]);
  225. }
  226. s += "]";
  227. return s;
  228. }
  229. static std::string var_to_str(ggml_type type) {
  230. return ggml_type_name(type);
  231. }
  232. static std::string var_to_str(ggml_prec prec) {
  233. return prec == GGML_PREC_F32 ? "f32" : "def";
  234. }
  235. static std::string var_to_str(ggml_op_pool pool) {
  236. switch (pool) {
  237. case GGML_OP_POOL_AVG: return "avg";
  238. case GGML_OP_POOL_MAX: return "max";
  239. default: return std::to_string(pool);
  240. }
  241. }
  242. static std::string var_to_str(ggml_scale_mode mode) {
  243. switch (mode) {
  244. case GGML_SCALE_MODE_NEAREST: return "nearest";
  245. case GGML_SCALE_MODE_BILINEAR: return "bilinear";
  246. default: return std::to_string(mode);
  247. }
  248. }
  249. #define VAR_TO_STR(x) (#x "=" + var_to_str(x))
  250. #define VARS_TO_STR1(a) VAR_TO_STR(a)
  251. #define VARS_TO_STR2(a, b) VAR_TO_STR(a) + "," + VAR_TO_STR(b)
  252. #define VARS_TO_STR3(a, b, c) VAR_TO_STR(a) + "," + VARS_TO_STR2(b, c)
  253. #define VARS_TO_STR4(a, b, c, d) VAR_TO_STR(a) + "," + VARS_TO_STR3(b, c, d)
  254. #define VARS_TO_STR5(a, b, c, d, e) VAR_TO_STR(a) + "," + VARS_TO_STR4(b, c, d, e)
  255. #define VARS_TO_STR6(a, b, c, d, e, f) VAR_TO_STR(a) + "," + VARS_TO_STR5(b, c, d, e, f)
  256. #define VARS_TO_STR7(a, b, c, d, e, f, g) VAR_TO_STR(a) + "," + VARS_TO_STR6(b, c, d, e, f, g)
  257. #define VARS_TO_STR8(a, b, c, d, e, f, g, h) VAR_TO_STR(a) + "," + VARS_TO_STR7(b, c, d, e, f, g, h)
  258. #define VARS_TO_STR9(a, b, c, d, e, f, g, h, i) VAR_TO_STR(a) + "," + VARS_TO_STR8(b, c, d, e, f, g, h, i)
  259. #define VARS_TO_STR10(a, b, c, d, e, f, g, h, i, j) VAR_TO_STR(a) + "," + VARS_TO_STR9(b, c, d, e, f, g, h, i, j)
  260. #define VARS_TO_STR11(a, b, c, d, e, f, g, h, i, j, k) VAR_TO_STR(a) + "," + VARS_TO_STR10(b, c, d, e, f, g, h, i, j, k)
  261. #define VARS_TO_STR12(a, b, c, d, e, f, g, h, i, j, k, l) VAR_TO_STR(a) + "," + VARS_TO_STR11(b, c, d, e, f, g, h, i, j, k, l)
  262. #define VARS_TO_STR13(a, b, c, d, e, f, g, h, i, j, k, l, m) VAR_TO_STR(a) + "," + VARS_TO_STR12(b, c, d, e, f, g, h, i, j, k, l, m)
  263. #ifdef GGML_USE_SYCL
  264. static bool inline _isinf(float f) {
  265. return (*(uint32_t *)&f & 0x7fffffff) == 0x7f800000;
  266. }
  267. #else
  268. static bool inline _isinf(float f) { return std::isinf(f); }
  269. #endif
  270. // accept FLT_MAX as infinity
  271. static bool isinf_or_max(float f) {
  272. return _isinf(f) || f == FLT_MAX || f == -FLT_MAX;
  273. }
  274. static bool ggml_is_view_op(enum ggml_op op) {
  275. return op == GGML_OP_VIEW || op == GGML_OP_RESHAPE || op == GGML_OP_PERMUTE || op == GGML_OP_TRANSPOSE;
  276. }
  277. enum test_mode {
  278. MODE_TEST,
  279. MODE_PERF,
  280. MODE_GRAD,
  281. MODE_SUPPORT,
  282. };
  283. // Output format support similar to llama-bench
  284. enum output_formats { CONSOLE, SQL, CSV };
  285. static const char * output_format_str(output_formats format) {
  286. switch (format) {
  287. case CONSOLE:
  288. return "console";
  289. case SQL:
  290. return "sql";
  291. case CSV:
  292. return "csv";
  293. default:
  294. GGML_ABORT("invalid output format");
  295. }
  296. }
  297. static bool output_format_from_str(const std::string & s, output_formats & format) {
  298. if (s == "console") {
  299. format = CONSOLE;
  300. } else if (s == "sql") {
  301. format = SQL;
  302. } else if (s == "csv") {
  303. format = CSV;
  304. } else {
  305. return false;
  306. }
  307. return true;
  308. }
  309. // Test result structure for SQL output
  310. struct test_result {
  311. std::string test_time;
  312. std::string build_commit;
  313. std::string backend_name;
  314. std::string op_name;
  315. std::string op_params;
  316. std::string test_mode;
  317. bool supported;
  318. bool passed;
  319. std::string error_message;
  320. double time_us;
  321. double flops;
  322. double bandwidth_gb_s;
  323. size_t memory_kb;
  324. int n_runs;
  325. std::string device_description;
  326. std::string backend_reg_name;
  327. test_result() {
  328. // Initialize with default values
  329. time_us = 0.0;
  330. flops = 0.0;
  331. bandwidth_gb_s = 0.0;
  332. memory_kb = 0;
  333. n_runs = 0;
  334. supported = false;
  335. passed = false;
  336. // Set test time
  337. time_t t = time(NULL);
  338. char buf[32];
  339. std::strftime(buf, sizeof(buf), "%FT%TZ", gmtime(&t));
  340. test_time = buf;
  341. // Set build info
  342. build_commit = ggml_commit();
  343. }
  344. test_result(const std::string & backend_name, const std::string & op_name, const std::string & op_params,
  345. const std::string & test_mode, bool supported, bool passed, const std::string & error_message = "",
  346. double time_us = 0.0, double flops = 0.0, double bandwidth_gb_s = 0.0, size_t memory_kb = 0,
  347. int n_runs = 0, const std::string & device_description = "", const std::string & backend_reg_name = "") :
  348. backend_name(backend_name),
  349. op_name(op_name),
  350. op_params(op_params),
  351. test_mode(test_mode),
  352. supported(supported),
  353. passed(passed),
  354. error_message(error_message),
  355. time_us(time_us),
  356. flops(flops),
  357. bandwidth_gb_s(bandwidth_gb_s),
  358. memory_kb(memory_kb),
  359. n_runs(n_runs),
  360. device_description(device_description),
  361. backend_reg_name(backend_reg_name) {
  362. // Set test time
  363. time_t t = time(NULL);
  364. char buf[32];
  365. std::strftime(buf, sizeof(buf), "%FT%TZ", gmtime(&t));
  366. test_time = buf;
  367. // Set build info
  368. build_commit = ggml_commit();
  369. }
  370. static const std::vector<std::string> & get_fields() {
  371. static const std::vector<std::string> fields = {
  372. "test_time", "build_commit", "backend_name", "op_name", "op_params", "test_mode", "supported",
  373. "passed", "error_message", "time_us", "flops", "bandwidth_gb_s", "memory_kb", "n_runs",
  374. "device_description", "backend_reg_name"
  375. };
  376. return fields;
  377. }
  378. enum field_type { STRING, BOOL, INT, FLOAT };
  379. static field_type get_field_type(const std::string & field) {
  380. if (field == "supported" || field == "passed") {
  381. return BOOL;
  382. }
  383. if (field == "memory_kb" || field == "n_runs") {
  384. return INT;
  385. }
  386. if (field == "time_us" || field == "flops" || field == "bandwidth_gb_s") {
  387. return FLOAT;
  388. }
  389. return STRING;
  390. }
  391. std::vector<std::string> get_values() const {
  392. return { test_time,
  393. build_commit,
  394. backend_name,
  395. op_name,
  396. op_params,
  397. test_mode,
  398. std::to_string(supported),
  399. std::to_string(passed),
  400. error_message,
  401. std::to_string(time_us),
  402. std::to_string(flops),
  403. std::to_string(bandwidth_gb_s),
  404. std::to_string(memory_kb),
  405. std::to_string(n_runs),
  406. device_description,
  407. backend_reg_name };
  408. }
  409. };
  410. // Printer classes for different output formats
  411. enum class test_status_t { NOT_SUPPORTED, OK, FAIL };
  412. struct test_operation_info {
  413. std::string op_name;
  414. std::string op_params;
  415. std::string backend_name;
  416. test_status_t status = test_status_t::OK;
  417. std::string failure_reason;
  418. // Additional information fields that were previously in separate structs
  419. std::string error_component;
  420. std::string error_details;
  421. // Gradient info
  422. int64_t gradient_index = -1;
  423. std::string gradient_param_name;
  424. float gradient_value = 0.0f;
  425. // MAA error info
  426. double maa_error = 0.0;
  427. double maa_threshold = 0.0;
  428. // Flags for different types of information
  429. bool has_error = false;
  430. bool has_gradient_info = false;
  431. bool has_maa_error = false;
  432. bool is_compare_failure = false;
  433. bool is_large_tensor_skip = false;
  434. test_operation_info() = default;
  435. test_operation_info(const std::string & op_name, const std::string & op_params, const std::string & backend_name,
  436. test_status_t status = test_status_t::OK, const std::string & failure_reason = "") :
  437. op_name(op_name),
  438. op_params(op_params),
  439. backend_name(backend_name),
  440. status(status),
  441. failure_reason(failure_reason) {}
  442. // Set error information
  443. void set_error(const std::string & component, const std::string & details) {
  444. has_error = true;
  445. error_component = component;
  446. error_details = details;
  447. if (status == test_status_t::OK) {
  448. status = test_status_t::FAIL;
  449. }
  450. }
  451. // Set gradient information
  452. void set_gradient_info(int64_t index, const std::string & param_name, float value) {
  453. has_gradient_info = true;
  454. gradient_index = index;
  455. gradient_param_name = param_name;
  456. gradient_value = value;
  457. if (status == test_status_t::OK) {
  458. status = test_status_t::FAIL;
  459. }
  460. }
  461. // Set MAA error information
  462. void set_maa_error(double error, double threshold) {
  463. has_maa_error = true;
  464. maa_error = error;
  465. maa_threshold = threshold;
  466. if (status == test_status_t::OK) {
  467. status = test_status_t::FAIL;
  468. }
  469. }
  470. // Set compare failure
  471. void set_compare_failure() {
  472. is_compare_failure = true;
  473. if (status == test_status_t::OK) {
  474. status = test_status_t::FAIL;
  475. }
  476. }
  477. // Set large tensor skip
  478. void set_large_tensor_skip() { is_large_tensor_skip = true; }
  479. };
  480. struct test_summary_info {
  481. size_t tests_passed;
  482. size_t tests_total;
  483. bool is_backend_summary = false; // true for backend summary, false for test summary
  484. test_summary_info() = default;
  485. test_summary_info(size_t tests_passed, size_t tests_total, bool is_backend_summary = false) :
  486. tests_passed(tests_passed),
  487. tests_total(tests_total),
  488. is_backend_summary(is_backend_summary) {}
  489. };
  490. struct testing_start_info {
  491. size_t device_count;
  492. testing_start_info() = default;
  493. testing_start_info(size_t device_count) : device_count(device_count) {}
  494. };
  495. struct backend_init_info {
  496. size_t device_index;
  497. size_t total_devices;
  498. std::string device_name;
  499. bool skipped = false;
  500. std::string skip_reason;
  501. std::string description;
  502. size_t memory_total_mb = 0;
  503. size_t memory_free_mb = 0;
  504. bool has_memory_info = false;
  505. backend_init_info() = default;
  506. backend_init_info(size_t device_index, size_t total_devices, const std::string & device_name, bool skipped = false,
  507. const std::string & skip_reason = "", const std::string & description = "",
  508. size_t memory_total_mb = 0, size_t memory_free_mb = 0, bool has_memory_info = false) :
  509. device_index(device_index),
  510. total_devices(total_devices),
  511. device_name(device_name),
  512. skipped(skipped),
  513. skip_reason(skip_reason),
  514. description(description),
  515. memory_total_mb(memory_total_mb),
  516. memory_free_mb(memory_free_mb),
  517. has_memory_info(has_memory_info) {}
  518. };
  519. struct backend_status_info {
  520. std::string backend_name;
  521. test_status_t status;
  522. backend_status_info() = default;
  523. backend_status_info(const std::string & backend_name, test_status_t status) :
  524. backend_name(backend_name),
  525. status(status) {}
  526. };
  527. struct overall_summary_info {
  528. size_t backends_passed;
  529. size_t backends_total;
  530. bool all_passed;
  531. overall_summary_info() = default;
  532. overall_summary_info(size_t backends_passed, size_t backends_total, bool all_passed) :
  533. backends_passed(backends_passed),
  534. backends_total(backends_total),
  535. all_passed(all_passed) {}
  536. };
  537. struct printer {
  538. virtual ~printer() {}
  539. FILE * fout = stdout;
  540. virtual void print_header() {}
  541. virtual void print_test_result(const test_result & result) = 0;
  542. virtual void print_footer() {}
  543. virtual void print_operation(const test_operation_info & info) { (void) info; }
  544. virtual void print_summary(const test_summary_info & info) { (void) info; }
  545. virtual void print_testing_start(const testing_start_info & info) { (void) info; }
  546. virtual void print_backend_init(const backend_init_info & info) { (void) info; }
  547. virtual void print_backend_status(const backend_status_info & info) { (void) info; }
  548. virtual void print_overall_summary(const overall_summary_info & info) { (void) info; }
  549. };
  550. struct console_printer : public printer {
  551. void print_test_result(const test_result & result) override {
  552. if (result.test_mode == "test") {
  553. print_test_console(result);
  554. } else if (result.test_mode == "perf") {
  555. print_perf_console(result);
  556. } else if (result.test_mode == "support") {
  557. print_support_console(result);
  558. }
  559. }
  560. void print_operation(const test_operation_info & info) override {
  561. printf(" %s(%s): ", info.op_name.c_str(), info.op_params.c_str());
  562. fflush(stdout);
  563. // Handle large tensor skip first
  564. if (info.is_large_tensor_skip) {
  565. printf("skipping large tensors for speed \n");
  566. return;
  567. }
  568. // Handle not supported status
  569. if (info.status == test_status_t::NOT_SUPPORTED) {
  570. if (!info.failure_reason.empty()) {
  571. printf("not supported [%s]\n", info.failure_reason.c_str());
  572. } else {
  573. printf("not supported [%s]\n", info.backend_name.c_str());
  574. }
  575. return;
  576. }
  577. // Handle errors and additional information
  578. if (info.has_error) {
  579. if (info.error_component == "allocation") {
  580. fprintf(stderr, "failed to allocate tensors [%s] ", info.backend_name.c_str());
  581. } else if (info.error_component == "backend") {
  582. fprintf(stderr, " Failed to initialize %s backend\n", info.backend_name.c_str());
  583. } else {
  584. fprintf(stderr, "Error in %s: %s\n", info.error_component.c_str(), info.error_details.c_str());
  585. }
  586. }
  587. // Handle gradient info
  588. if (info.has_gradient_info) {
  589. printf("[%s] nonfinite gradient at index %" PRId64 " (%s=%f) ", info.op_name.c_str(), info.gradient_index,
  590. info.gradient_param_name.c_str(), info.gradient_value);
  591. }
  592. // Handle MAA error
  593. if (info.has_maa_error) {
  594. printf("[%s] MAA = %.9f > %.9f ", info.op_name.c_str(), info.maa_error, info.maa_threshold);
  595. }
  596. // Handle compare failure
  597. if (info.is_compare_failure) {
  598. printf("compare failed ");
  599. }
  600. // Print final status
  601. if (info.status == test_status_t::OK) {
  602. printf("\033[1;32mOK\033[0m\n");
  603. } else {
  604. printf("\033[1;31mFAIL\033[0m\n");
  605. }
  606. }
  607. void print_summary(const test_summary_info & info) override {
  608. if (info.is_backend_summary) {
  609. printf("%zu/%zu backends passed\n", info.tests_passed, info.tests_total);
  610. } else {
  611. printf(" %zu/%zu tests passed\n", info.tests_passed, info.tests_total);
  612. }
  613. }
  614. void print_backend_status(const backend_status_info & info) override {
  615. printf(" Backend %s: ", info.backend_name.c_str());
  616. if (info.status == test_status_t::OK) {
  617. printf("\033[1;32mOK\033[0m\n");
  618. } else {
  619. printf("\033[1;31mFAIL\033[0m\n");
  620. }
  621. }
  622. void print_testing_start(const testing_start_info & info) override {
  623. printf("Testing %zu devices\n\n", info.device_count);
  624. }
  625. void print_backend_init(const backend_init_info & info) override {
  626. printf("Backend %zu/%zu: %s\n", info.device_index + 1, info.total_devices, info.device_name.c_str());
  627. if (info.skipped) {
  628. printf(" %s\n", info.skip_reason.c_str());
  629. return;
  630. }
  631. if (!info.description.empty()) {
  632. printf(" Device description: %s\n", info.description.c_str());
  633. }
  634. if (info.has_memory_info) {
  635. printf(" Device memory: %zu MB (%zu MB free)\n", info.memory_total_mb, info.memory_free_mb);
  636. }
  637. printf("\n");
  638. }
  639. void print_overall_summary(const overall_summary_info & info) override {
  640. printf("%zu/%zu backends passed\n", info.backends_passed, info.backends_total);
  641. if (info.all_passed) {
  642. printf("\033[1;32mOK\033[0m\n");
  643. } else {
  644. printf("\033[1;31mFAIL\033[0m\n");
  645. }
  646. }
  647. private:
  648. void print_test_console(const test_result & result) {
  649. printf(" %s(%s): ", result.op_name.c_str(), result.op_params.c_str());
  650. fflush(stdout);
  651. if (!result.supported) {
  652. printf("not supported [%s] ", result.backend_name.c_str());
  653. printf("\n");
  654. return;
  655. }
  656. if (result.passed) {
  657. printf("\033[1;32mOK\033[0m\n");
  658. } else {
  659. printf("\033[1;31mFAIL\033[0m\n");
  660. }
  661. }
  662. void print_perf_console(const test_result & result) {
  663. int len = printf(" %s(%s): ", result.op_name.c_str(), result.op_params.c_str());
  664. fflush(stdout);
  665. if (!result.supported) {
  666. printf("not supported\n");
  667. return;
  668. }
  669. // align while also leaving some margin for variations in parameters
  670. int align = 8;
  671. int last = (len + align - 1) / align * align;
  672. if (last - len < 5) {
  673. last += align;
  674. }
  675. printf("%*s", last - len, "");
  676. printf(" %8d runs - %8.2f us/run - ", result.n_runs, result.time_us);
  677. if (result.flops > 0) {
  678. auto format_flops = [](double flops) -> std::string {
  679. char buf[256];
  680. if (flops >= 1e12) {
  681. snprintf(buf, sizeof(buf), "%6.2f TFLOP", flops / 1e12);
  682. } else if (flops >= 1e9) {
  683. snprintf(buf, sizeof(buf), "%6.2f GFLOP", flops / 1e9);
  684. } else if (flops >= 1e6) {
  685. snprintf(buf, sizeof(buf), "%6.2f MFLOP", flops / 1e6);
  686. } else {
  687. snprintf(buf, sizeof(buf), "%6.2f kFLOP", flops / 1e3);
  688. }
  689. return buf;
  690. };
  691. uint64_t op_flops_per_run = result.flops * result.time_us / 1e6;
  692. printf("%s/run - \033[1;34m%sS\033[0m", format_flops(op_flops_per_run).c_str(),
  693. format_flops(result.flops).c_str());
  694. } else {
  695. printf("%8zu kB/run - \033[1;34m%7.2f GB/s\033[0m", result.memory_kb, result.bandwidth_gb_s);
  696. }
  697. printf("\n");
  698. }
  699. void print_support_console(const test_result & result) {
  700. printf(" %s(%s): ", result.op_name.c_str(), result.op_params.c_str());
  701. fflush(stdout);
  702. if (result.supported) {
  703. printf("\033[1;32mSUPPORTED\033[0m\n");
  704. } else {
  705. printf("\033[1;31mNOT SUPPORTED\033[0m\n");
  706. }
  707. }
  708. };
  709. struct sql_printer : public printer {
  710. static std::string get_sql_field_type(const std::string & field) {
  711. switch (test_result::get_field_type(field)) {
  712. case test_result::STRING:
  713. return "TEXT";
  714. case test_result::BOOL:
  715. case test_result::INT:
  716. return "INTEGER";
  717. case test_result::FLOAT:
  718. return "REAL";
  719. default:
  720. GGML_ABORT("invalid field type");
  721. }
  722. }
  723. void print_header() override {
  724. std::vector<std::string> fields = test_result::get_fields();
  725. fprintf(fout, "CREATE TABLE IF NOT EXISTS test_backend_ops (\n");
  726. for (size_t i = 0; i < fields.size(); i++) {
  727. fprintf(fout, " %s %s%s\n", fields[i].c_str(), get_sql_field_type(fields[i]).c_str(),
  728. i < fields.size() - 1 ? "," : "");
  729. }
  730. fprintf(fout, ");\n\n");
  731. }
  732. void print_test_result(const test_result & result) override {
  733. fprintf(fout, "INSERT INTO test_backend_ops (");
  734. std::vector<std::string> fields = test_result::get_fields();
  735. for (size_t i = 0; i < fields.size(); i++) {
  736. fprintf(fout, "%s%s", fields[i].c_str(), i < fields.size() - 1 ? ", " : "");
  737. }
  738. fprintf(fout, ") VALUES (");
  739. std::vector<std::string> values = result.get_values();
  740. for (size_t i = 0; i < values.size(); i++) {
  741. fprintf(fout, "'%s'%s", values[i].c_str(), i < values.size() - 1 ? ", " : "");
  742. }
  743. fprintf(fout, ");\n");
  744. }
  745. };
  746. struct csv_printer : public printer {
  747. void print_header() override {
  748. std::vector<std::string> fields = test_result::get_fields();
  749. std::vector<std::string> fields_csv = get_fields_csv();
  750. for (size_t i = 0; i < fields.size(); i++) {
  751. if (std::find(std::begin(fields_csv), std::end(fields_csv), fields[i]) == std::end(fields_csv)) {
  752. continue;
  753. }
  754. printf("\"%s\"%s", fields[i].c_str(), i < fields.size() - 1 ? "," : "");
  755. }
  756. printf("\n");
  757. }
  758. void print_test_result(const test_result & result) override {
  759. std::vector<std::string> values = result.get_values();
  760. std::vector<std::string> fields = test_result::get_fields();
  761. std::vector<std::string> fields_csv = get_fields_csv();
  762. for (size_t i = 0; i < values.size(); i++) {
  763. if (std::find(std::begin(fields_csv), std::end(fields_csv), fields[i]) == std::end(fields_csv)) {
  764. continue;
  765. }
  766. // Escape quotes and wrap in quotes for CSV
  767. std::string escaped_value = values[i];
  768. size_t pos = 0;
  769. while ((pos = escaped_value.find("\"", pos)) != std::string::npos) {
  770. escaped_value.replace(pos, 1, "\"\"");
  771. pos += 2;
  772. }
  773. printf("\"%s\"%s", escaped_value.c_str(), i < values.size() - 1 ? "," : "");
  774. }
  775. printf("\n");
  776. }
  777. static std::vector<std::string> get_fields_csv() {
  778. return {
  779. "op_name",
  780. "op_params",
  781. "supported",
  782. "error_message",
  783. "test_mode",
  784. "backend_reg_name",
  785. "backend_name",
  786. };
  787. }
  788. };
  789. static std::unique_ptr<printer> create_printer(output_formats format) {
  790. switch (format) {
  791. case CONSOLE:
  792. return std::make_unique<console_printer>();
  793. case SQL:
  794. return std::make_unique<sql_printer>();
  795. case CSV:
  796. return std::make_unique<csv_printer>();
  797. }
  798. GGML_ABORT("invalid output format");
  799. }
  800. struct test_case {
  801. virtual ~test_case() {}
  802. virtual std::string op_desc(ggml_tensor * t) {
  803. return ggml_op_desc(t);
  804. }
  805. virtual std::string vars() {
  806. return "";
  807. }
  808. virtual ggml_tensor * build_graph(ggml_context * ctx) = 0;
  809. virtual double max_nmse_err() {
  810. return 1e-7;
  811. }
  812. virtual double max_maa_err() {
  813. return 1e-4;
  814. }
  815. virtual float grad_eps() {
  816. return 1e-1f;
  817. }
  818. // If false, estimate gradient with 2 points, neglects 3rd order derivative and higher.
  819. // If true, estimate gradient with 4 points, neglects 5th order derivative and higher.
  820. virtual bool grad_precise() {
  821. return false;
  822. }
  823. // Skip gradient checks if total number of gradients to be checked is larger than this (to speed up the tests).
  824. virtual int64_t grad_nmax() {
  825. return 10000;
  826. }
  827. // No effect if empty.
  828. // If not empty, skip all gradient checks where the numerical result does not match any of the values.
  829. // Needed for dealing with noncontinuous gradients (e.g. ReLU) where estimation using finite differences is unreliable.
  830. virtual std::vector<float> grad_expect() {
  831. return {};
  832. }
  833. virtual void initialize_tensors(ggml_context * ctx) {
  834. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != nullptr; t = ggml_get_next_tensor(ctx, t)) {
  835. init_tensor_uniform(t);
  836. }
  837. }
  838. virtual size_t op_size(ggml_tensor * t) {
  839. size_t size = ggml_nbytes(t);
  840. // add source tensors
  841. for (int i = 0; i < GGML_MAX_SRC; i++) {
  842. if (t->src[i] != NULL) {
  843. size += ggml_nbytes(t->src[i]);
  844. }
  845. }
  846. return size;
  847. }
  848. virtual uint64_t op_flops(ggml_tensor * t) {
  849. GGML_UNUSED(t);
  850. return 0;
  851. }
  852. virtual bool run_whole_graph() { return false; }
  853. ggml_cgraph * gf = nullptr;
  854. ggml_cgraph * gb = nullptr;
  855. static const int sentinel_size = 1024;
  856. test_mode mode;
  857. std::vector<ggml_tensor *> sentinels;
  858. void add_sentinel(ggml_context * ctx) {
  859. if (mode == MODE_PERF || mode == MODE_GRAD || mode == MODE_SUPPORT) {
  860. return;
  861. }
  862. ggml_tensor * sentinel = ::ggml_new_tensor_1d(ctx, GGML_TYPE_F32, sentinel_size);
  863. ggml_format_name(sentinel, "sent_%zu", sentinels.size());
  864. sentinels.push_back(sentinel);
  865. }
  866. // hijack ggml_new_tensor to add sentinels after each tensor to check for overflows in the backend
  867. ggml_tensor * ggml_new_tensor(ggml_context * ctx, ggml_type type, int n_dims, const int64_t * ne) {
  868. ggml_tensor * t = ::ggml_new_tensor(ctx, type, n_dims, ne);
  869. add_sentinel(ctx);
  870. return t;
  871. }
  872. ggml_tensor * ggml_new_tensor_1d(ggml_context * ctx, ggml_type type, int64_t ne0) {
  873. ggml_tensor * t = ::ggml_new_tensor_1d(ctx, type, ne0);
  874. add_sentinel(ctx);
  875. return t;
  876. }
  877. ggml_tensor * ggml_new_tensor_2d(ggml_context * ctx, ggml_type type, int64_t ne0, int64_t ne1) {
  878. ggml_tensor * t = ::ggml_new_tensor_2d(ctx, type, ne0, ne1);
  879. add_sentinel(ctx);
  880. return t;
  881. }
  882. ggml_tensor * ggml_new_tensor_3d(ggml_context * ctx, ggml_type type, int64_t ne0, int64_t ne1, int64_t ne2) {
  883. ggml_tensor * t = ::ggml_new_tensor_3d(ctx, type, ne0, ne1, ne2);
  884. add_sentinel(ctx);
  885. return t;
  886. }
  887. ggml_tensor * ggml_new_tensor_4d(ggml_context * ctx, ggml_type type, int64_t ne0, int64_t ne1, int64_t ne2, int64_t ne3) {
  888. ggml_tensor * t = ::ggml_new_tensor_4d(ctx, type, ne0, ne1, ne2, ne3);
  889. add_sentinel(ctx);
  890. return t;
  891. }
  892. // Checks an op against the test filter, which is a comma separated list of OP names or specific variations
  893. bool matches_filter(ggml_tensor * op, const char * op_names_filter) {
  894. if (op_names_filter) {
  895. const auto op_name = op_desc(op);
  896. const auto op_full_name = op_name + "(" + vars() + ")";
  897. std::string_view filter(op_names_filter);
  898. while (!filter.empty()) {
  899. auto comma_pos = filter.find_first_of(',');
  900. const auto lparen_pos = filter.find_first_of('(');
  901. if (lparen_pos < comma_pos) {
  902. auto rparen_pos = filter.find_first_of(')');
  903. comma_pos = filter.find_first_of(',', rparen_pos);
  904. const auto op_filter = filter.substr(0, comma_pos);
  905. if (op_filter == op_full_name) {
  906. return true;
  907. }
  908. } else {
  909. const auto op_filter = filter.substr(0, comma_pos);
  910. if (op_filter == op_name) {
  911. return true;
  912. }
  913. }
  914. filter = comma_pos != std::string_view::npos ? filter.substr(comma_pos + 1) : "";
  915. }
  916. return false;
  917. } else {
  918. return true;
  919. }
  920. }
  921. bool eval(ggml_backend_t backend1, ggml_backend_t backend2, const char * op_names_filter, printer * output_printer) {
  922. mode = MODE_TEST;
  923. ggml_init_params params = {
  924. /* .mem_size = */ ggml_tensor_overhead()*128 + ggml_graph_overhead(),
  925. /* .mem_base = */ NULL,
  926. /* .no_alloc = */ true,
  927. };
  928. ggml_context * ctx = ggml_init(params);
  929. GGML_ASSERT(ctx);
  930. gf = ggml_new_graph(ctx);
  931. // pre-graph sentinel
  932. add_sentinel(ctx);
  933. ggml_tensor * out = build_graph(ctx);
  934. std::string current_op_name = op_desc(out);
  935. if (!matches_filter(out, op_names_filter)) {
  936. //printf(" %s: skipping\n", op_desc(out).c_str());
  937. ggml_free(ctx);
  938. return true;
  939. }
  940. // check if the backends support the ops
  941. bool supported = true;
  942. for (ggml_backend_t backend : {backend1, backend2}) {
  943. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  944. if (!ggml_backend_supports_op(backend, t)) {
  945. supported = false;
  946. break;
  947. }
  948. }
  949. }
  950. if (!supported) {
  951. // Create test result for unsupported operation
  952. test_result result(ggml_backend_name(backend1), current_op_name, vars(), "test",
  953. false, false, "not supported");
  954. if (output_printer) {
  955. output_printer->print_test_result(result);
  956. }
  957. ggml_free(ctx);
  958. return true;
  959. }
  960. // post-graph sentinel
  961. add_sentinel(ctx);
  962. // allocate
  963. ggml_backend_buffer_t buf = ggml_backend_alloc_ctx_tensors(ctx, backend1);
  964. if (buf == NULL) {
  965. printf("failed to allocate tensors [%s] ", ggml_backend_name(backend1));
  966. ggml_free(ctx);
  967. return false;
  968. }
  969. // build graph
  970. ggml_build_forward_expand(gf, out);
  971. // add sentinels as graph nodes so that they are checked in the callback
  972. for (ggml_tensor * sentinel : sentinels) {
  973. ggml_graph_add_node(gf, sentinel);
  974. }
  975. // randomize tensors
  976. initialize_tensors(ctx);
  977. // compare
  978. struct callback_userdata {
  979. bool ok;
  980. double max_err;
  981. ggml_backend_t backend1;
  982. ggml_backend_t backend2;
  983. };
  984. callback_userdata ud {
  985. true,
  986. max_nmse_err(),
  987. backend1,
  988. backend2
  989. };
  990. auto callback = [](int index, ggml_tensor * t1, ggml_tensor * t2, void * user_data) -> bool {
  991. callback_userdata * ud = (callback_userdata *) user_data;
  992. const char * bn1 = ggml_backend_name(ud->backend1);
  993. const char * bn2 = ggml_backend_name(ud->backend2);
  994. if (t1->op == GGML_OP_NONE) {
  995. // sentinels must be unchanged
  996. std::vector<uint8_t> t1_data(ggml_nbytes(t1));
  997. std::vector<uint8_t> t2_data(ggml_nbytes(t2));
  998. ggml_backend_tensor_get(t1, t1_data.data(), 0, ggml_nbytes(t1));
  999. ggml_backend_tensor_get(t2, t2_data.data(), 0, ggml_nbytes(t2));
  1000. if (memcmp(t1_data.data(), t2_data.data(), ggml_nbytes(t1)) != 0) {
  1001. printf("sentinel mismatch: %s ", t1->name);
  1002. ud->ok = false;
  1003. return true;
  1004. }
  1005. }
  1006. std::vector<float> f1 = tensor_to_float(t1);
  1007. std::vector<float> f2 = tensor_to_float(t2);
  1008. for (size_t i = 0; i < f1.size(); i++) {
  1009. // check for nans
  1010. if (std::isnan(f1[i]) || std::isnan(f2[i])) {
  1011. printf("[%s] NaN at index %zu (%s=%f %s=%f) ", ggml_op_desc(t1), i, bn1, f1[i], bn2, f2[i]);
  1012. ud->ok = false;
  1013. return true;
  1014. }
  1015. // check for infs: both must be inf of the same sign, or both must be finite
  1016. if (isinf_or_max(f1[i]) || isinf_or_max(f2[i])) {
  1017. if (isinf_or_max(f1[i]) && isinf_or_max(f2[i])) {
  1018. if (std::signbit(f1[i]) != std::signbit(f2[i])) {
  1019. printf("[%s] inf sign mismatch: %s=%f %s=%f ", ggml_op_desc(t1), bn1, f1[i], bn2, f2[i]);
  1020. ud->ok = false;
  1021. return true;
  1022. }
  1023. } else {
  1024. printf("[%s] inf mismatch: %s=%f %s=%f ", ggml_op_desc(t1), bn1, f1[i], bn2, f2[i]);
  1025. ud->ok = false;
  1026. return true;
  1027. }
  1028. }
  1029. }
  1030. double err = nmse(f1.data(), f2.data(), f1.size());
  1031. if (err > ud->max_err) {
  1032. printf("[%s] NMSE = %.9f > %.9f ", ggml_op_desc(t1), err, ud->max_err);
  1033. //for (int i = 0; i < (int) f1.size(); i++) {
  1034. // printf("%5d %9.6f %9.6f, diff = %9.6f\n", i, f1[i], f2[i], f1[i] - f2[i]);
  1035. //}
  1036. //printf("\n");
  1037. //exit(1);
  1038. ud->ok = false;
  1039. }
  1040. return true;
  1041. GGML_UNUSED(index);
  1042. };
  1043. const bool cmp_ok = ggml_backend_compare_graph_backend(backend1, backend2, gf, callback, &ud, run_whole_graph() ? out : nullptr);
  1044. ggml_backend_buffer_free(buf);
  1045. ggml_free(ctx);
  1046. // Create test result
  1047. bool test_passed = ud.ok && cmp_ok;
  1048. std::string error_msg = test_passed ? "" : (!cmp_ok ? "compare failed" : "test failed");
  1049. test_result result(ggml_backend_name(backend1), current_op_name, vars(), "test", supported, test_passed,
  1050. error_msg);
  1051. if (output_printer) {
  1052. output_printer->print_test_result(result);
  1053. }
  1054. return test_passed;
  1055. }
  1056. bool eval_perf(ggml_backend_t backend, const char * op_names_filter, printer * output_printer) {
  1057. mode = MODE_PERF;
  1058. static const size_t graph_nodes = 8192;
  1059. ggml_init_params params = {
  1060. /* .mem_size = */ ggml_tensor_overhead()*128 + ggml_graph_overhead_custom(graph_nodes, false),
  1061. /* .mem_base = */ NULL,
  1062. /* .no_alloc = */ true,
  1063. };
  1064. ggml_context_ptr ctx(ggml_init(params)); // smart ptr
  1065. GGML_ASSERT(ctx);
  1066. ggml_tensor * out = build_graph(ctx.get());
  1067. std::string current_op_name = op_desc(out);
  1068. if (!matches_filter(out, op_names_filter)) {
  1069. //printf(" %s: skipping\n", op_desc(out).c_str());
  1070. return true;
  1071. }
  1072. if (!ggml_backend_supports_op(backend, out)) {
  1073. // Create test result for unsupported performance test
  1074. test_result result(ggml_backend_name(backend), current_op_name, vars(), "perf", false, false,
  1075. "not supported");
  1076. output_printer->print_test_result(result);
  1077. return true;
  1078. }
  1079. // allocate
  1080. ggml_backend_buffer_ptr buf(ggml_backend_alloc_ctx_tensors(ctx.get(), backend)); // smart ptr
  1081. if (buf == NULL) {
  1082. printf("failed to allocate tensors\n");
  1083. return false;
  1084. }
  1085. // randomize tensors
  1086. initialize_tensors(ctx.get());
  1087. // build graph
  1088. ggml_cgraph * gf = ggml_new_graph_custom(ctx.get(), graph_nodes, false);
  1089. ggml_build_forward_expand(gf, out);
  1090. // warmup run
  1091. ggml_status status = ggml_backend_graph_compute(backend, gf);
  1092. if (status != GGML_STATUS_SUCCESS) {
  1093. fprintf(stderr, "%s: ggml_backend_graph_compute failed. status=%s \n", __func__, ggml_status_to_string(status));
  1094. return false;
  1095. }
  1096. // determine number of runs
  1097. int n_runs;
  1098. bool is_cpu = ggml_backend_dev_type(ggml_backend_get_device(backend)) == GGML_BACKEND_DEVICE_TYPE_CPU;
  1099. if (op_flops(out) > 0) {
  1100. // based on flops
  1101. const uint64_t GFLOP = 1000 * 1000 * 1000;
  1102. const uint64_t target_flops_cpu = 8ULL * GFLOP;
  1103. const uint64_t target_flops_gpu = 100ULL * GFLOP;
  1104. uint64_t target_flops = is_cpu ? target_flops_cpu : target_flops_gpu;
  1105. n_runs = std::min<int>(ggml_graph_size(gf) - ggml_graph_n_nodes(gf), target_flops / op_flops(out)) + 1;
  1106. } else {
  1107. // based on memory size
  1108. const size_t GB = 1ULL << 30;
  1109. const size_t target_size_cpu = 8 * GB;
  1110. const size_t target_size_gpu = 32 * GB;
  1111. size_t target_size = is_cpu ? target_size_cpu : target_size_gpu;
  1112. n_runs = std::min<int>(ggml_graph_size(gf) - ggml_graph_n_nodes(gf), target_size / op_size(out)) + 1;
  1113. }
  1114. // duplicate the op
  1115. for (int i = 1; i < n_runs; i++) {
  1116. ggml_graph_add_node(gf, out);
  1117. }
  1118. // calculate memory
  1119. size_t mem = n_runs * op_size(out);
  1120. auto tensor_op_size = [](ggml_tensor * t) {
  1121. size_t size = ggml_nbytes(t);
  1122. // add source tensors
  1123. for (int i = 0; i < GGML_MAX_SRC; i++) {
  1124. if (t->src[i] != NULL) {
  1125. size += ggml_nbytes(t->src[i]);
  1126. }
  1127. }
  1128. return size;
  1129. };
  1130. for (int i = 0; i < ggml_graph_n_nodes(gf); ++i) {
  1131. if (ggml_is_view_op(ggml_graph_node(gf, i)->op) || ggml_graph_node(gf, i) == out) {
  1132. continue;
  1133. }
  1134. mem += tensor_op_size(ggml_graph_node(gf, i));
  1135. }
  1136. // run
  1137. int64_t total_time_us = 0;
  1138. int64_t total_mem = 0;
  1139. int total_runs = 0;
  1140. do {
  1141. int64_t start_time = ggml_time_us();
  1142. ggml_status status = ggml_backend_graph_compute(backend, gf);
  1143. if (status != GGML_STATUS_SUCCESS) {
  1144. fprintf(stderr, "%s: ggml_backend_graph_compute failed. status=%s \n", __func__, ggml_status_to_string(status));
  1145. return false;
  1146. }
  1147. int64_t end_time = ggml_time_us();
  1148. total_time_us += end_time - start_time;
  1149. total_mem += mem;
  1150. total_runs += n_runs;
  1151. } while (total_time_us < 1000*1000); // run for at least 1 second
  1152. // Create test result
  1153. double avg_time_us = (double) total_time_us / total_runs;
  1154. double calculated_flops = (op_flops(out) > 0) ? (op_flops(out) * total_runs) / (total_time_us / 1e6) : 0.0;
  1155. double calculated_bandwidth =
  1156. (op_flops(out) == 0) ? total_mem / (total_time_us / 1e6) / 1024.0 / 1024.0 / 1024.0 : 0.0;
  1157. size_t calculated_memory_kb = op_size(out) / 1024;
  1158. test_result result(ggml_backend_name(backend), current_op_name, vars(), "perf", true, true, "", avg_time_us,
  1159. calculated_flops, calculated_bandwidth, calculated_memory_kb, total_runs);
  1160. if (output_printer) {
  1161. output_printer->print_test_result(result);
  1162. }
  1163. return true;
  1164. }
  1165. bool eval_support(ggml_backend_t backend, const char * op_names_filter, printer * output_printer) {
  1166. mode = MODE_SUPPORT;
  1167. static const size_t graph_nodes = 8192;
  1168. ggml_init_params params = {
  1169. /* .mem_size = */ ggml_tensor_overhead()*128 + ggml_graph_overhead_custom(graph_nodes, false),
  1170. /* .mem_base = */ NULL,
  1171. /* .no_alloc = */ true,
  1172. };
  1173. ggml_context_ptr ctx(ggml_init(params)); // smart ptr
  1174. GGML_ASSERT(ctx);
  1175. ggml_tensor * out = build_graph(ctx.get());
  1176. std::string current_op_name = op_desc(out);
  1177. if (!matches_filter(out, op_names_filter)) {
  1178. return true;
  1179. }
  1180. bool supported = ggml_backend_supports_op(backend, out);
  1181. std::string device_desc = ggml_backend_dev_description(ggml_backend_get_device(backend));
  1182. std::string backend_reg_name = ggml_backend_reg_name(ggml_backend_dev_backend_reg(ggml_backend_get_device(backend)));
  1183. test_result result(ggml_backend_name(backend), current_op_name, vars(), "support", supported, supported,
  1184. supported ? "yes" : "no", 0.0, 0.0, 0.0, 0, 0, device_desc, backend_reg_name);
  1185. output_printer->print_test_result(result);
  1186. return true;
  1187. }
  1188. bool eval_grad(ggml_backend_t backend, const char * op_names_filter, printer * output_printer) {
  1189. mode = MODE_GRAD;
  1190. const std::vector<float> expect = grad_expect();
  1191. ggml_init_params params = {
  1192. /* .mem_size = */ ggml_tensor_overhead()*128 + 2*ggml_graph_overhead_custom(GGML_DEFAULT_GRAPH_SIZE, true),
  1193. /* .mem_base = */ NULL,
  1194. /* .no_alloc = */ true,
  1195. };
  1196. ggml_context_ptr ctx(ggml_init(params)); // smart ptr
  1197. GGML_ASSERT(ctx);
  1198. gf = ggml_new_graph_custom(ctx.get(), GGML_DEFAULT_GRAPH_SIZE, true);
  1199. gb = ggml_new_graph_custom(ctx.get(), GGML_DEFAULT_GRAPH_SIZE, true);
  1200. ggml_tensor * out = build_graph(ctx.get());
  1201. if (!matches_filter(out, op_names_filter) || out->op == GGML_OP_OPT_STEP_ADAMW) {
  1202. return true;
  1203. }
  1204. if (out->type != GGML_TYPE_F32) {
  1205. output_printer->print_operation(test_operation_info(op_desc(out), vars(), ggml_backend_name(backend),
  1206. test_status_t::NOT_SUPPORTED,
  1207. out->name + std::string("->type != FP32")));
  1208. return true;
  1209. }
  1210. // Print operation info first
  1211. output_printer->print_operation(test_operation_info(op_desc(out), vars(), ggml_backend_name(backend)));
  1212. // check if the backend supports the ops
  1213. bool supported = true;
  1214. bool any_params = false;
  1215. std::string failure_reason;
  1216. for (ggml_tensor * t = ggml_get_first_tensor(ctx.get()); t != NULL; t = ggml_get_next_tensor(ctx.get(), t)) {
  1217. if (!ggml_backend_supports_op(backend, t)) {
  1218. supported = false;
  1219. failure_reason = ggml_backend_name(backend);
  1220. break;
  1221. }
  1222. if ((t->flags & GGML_TENSOR_FLAG_PARAM)) {
  1223. any_params = true;
  1224. if (t->type != GGML_TYPE_F32) {
  1225. supported = false;
  1226. failure_reason = std::string(t->name) + "->type != FP32";
  1227. break;
  1228. }
  1229. }
  1230. }
  1231. if (!any_params) {
  1232. supported = false;
  1233. failure_reason = op_desc(out);
  1234. }
  1235. if (!supported) {
  1236. output_printer->print_operation(test_operation_info(op_desc(out), vars(), ggml_backend_name(backend),
  1237. test_status_t::NOT_SUPPORTED, failure_reason));
  1238. return true;
  1239. }
  1240. int64_t ngrads = 0;
  1241. for (ggml_tensor * t = ggml_get_first_tensor(ctx.get()); t != NULL; t = ggml_get_next_tensor(ctx.get(), t)) {
  1242. if (t->flags & GGML_TENSOR_FLAG_PARAM) {
  1243. ngrads += ggml_nelements(t);
  1244. }
  1245. }
  1246. if (ngrads > grad_nmax()) {
  1247. test_operation_info info(op_desc(out), vars(), ggml_backend_name(backend));
  1248. info.set_large_tensor_skip();
  1249. output_printer->print_operation(info);
  1250. return true;
  1251. }
  1252. if (!ggml_is_scalar(out)) {
  1253. out = ggml_sum(ctx.get(), out);
  1254. ggml_set_name(out, "sum_of_out");
  1255. }
  1256. ggml_set_loss(out);
  1257. ggml_build_forward_expand(gf, out);
  1258. ggml_graph_cpy(gf, gb);
  1259. ggml_build_backward_expand(ctx.get(), gb, nullptr);
  1260. if (expect.size() != 1 || expect[0] != 0.0f) {
  1261. GGML_ASSERT(ggml_graph_n_nodes(gb) > ggml_graph_n_nodes(gf));
  1262. for (ggml_tensor * t = ggml_get_first_tensor(ctx.get()); t != NULL; t = ggml_get_next_tensor(ctx.get(), t)) {
  1263. GGML_ASSERT(!(t->flags & GGML_TENSOR_FLAG_PARAM) || ggml_graph_get_grad(gb, t)->op != GGML_OP_NONE);
  1264. }
  1265. }
  1266. for (ggml_tensor * t = ggml_get_first_tensor(ctx.get()); t != NULL; t = ggml_get_next_tensor(ctx.get(), t)) {
  1267. if (!ggml_backend_supports_op(backend, t)) {
  1268. output_printer->print_operation(test_operation_info(op_desc(out), vars(), ggml_backend_name(backend),
  1269. test_status_t::NOT_SUPPORTED,
  1270. ggml_backend_name(backend)));
  1271. supported = false;
  1272. break;
  1273. }
  1274. if ((t->flags & GGML_TENSOR_FLAG_PARAM) && t->type != GGML_TYPE_F32) {
  1275. output_printer->print_operation(test_operation_info(op_desc(out), vars(), ggml_backend_name(backend),
  1276. test_status_t::NOT_SUPPORTED,
  1277. std::string(t->name) + "->type != FP32"));
  1278. supported = false;
  1279. break;
  1280. }
  1281. }
  1282. if (!supported) {
  1283. return true;
  1284. }
  1285. // allocate
  1286. ggml_backend_buffer_ptr buf(ggml_backend_alloc_ctx_tensors(ctx.get(), backend)); // smart ptr
  1287. if (buf == NULL) {
  1288. test_operation_info info(op_desc(out), vars(), ggml_backend_name(backend));
  1289. info.set_error("allocation", "");
  1290. output_printer->print_operation(info);
  1291. return false;
  1292. }
  1293. initialize_tensors(ctx.get()); // Randomizes all tensors (including gradients).
  1294. ggml_graph_reset(gb); // Sets gradients to 1 if loss, 0 otherwise.
  1295. ggml_status status = ggml_backend_graph_compute(backend, gf);
  1296. if (status != GGML_STATUS_SUCCESS) {
  1297. fprintf(stderr, "%s: ggml_backend_graph_compute failed. status=%s \n", __func__, ggml_status_to_string(status));
  1298. return false;
  1299. }
  1300. status = ggml_backend_graph_compute(backend, gb);
  1301. if (status != GGML_STATUS_SUCCESS) {
  1302. fprintf(stderr, "%s: ggml_backend_graph_compute failed. status=%s \n", __func__, ggml_status_to_string(status));
  1303. return false;
  1304. }
  1305. bool ok = true;
  1306. for (struct ggml_tensor * t = ggml_get_first_tensor(ctx.get()); t != nullptr; t = ggml_get_next_tensor(ctx.get(), t)) {
  1307. if (!(t->flags & GGML_TENSOR_FLAG_PARAM)) {
  1308. continue;
  1309. }
  1310. const char * bn = ggml_backend_name(backend);
  1311. const int64_t ne = ggml_nelements(t);
  1312. std::vector<float> ga;
  1313. struct ggml_tensor * grad = ggml_graph_get_grad(gb, t);
  1314. if (grad) {
  1315. ga = tensor_to_float(grad);
  1316. } else {
  1317. ga.resize(ne); // default value is 0.0f
  1318. }
  1319. for (int64_t i = 0; i < ne; ++i) { // gradient algebraic
  1320. // check for nans
  1321. if (!std::isfinite(ga[i])) {
  1322. test_operation_info info(op_desc(out), vars(), ggml_backend_name(backend));
  1323. info.set_gradient_info(i, bn, ga[i]);
  1324. output_printer->print_operation(info);
  1325. ok = false;
  1326. break;
  1327. }
  1328. }
  1329. if (!ok) {
  1330. break;
  1331. }
  1332. std::vector<float> gn(ne); // gradient numeric
  1333. GGML_ASSERT(ga.size() == gn.size());
  1334. std::vector<float> x0 = tensor_to_float(t); // original t data
  1335. GGML_ASSERT(ggml_is_scalar(out));
  1336. GGML_ASSERT(out->type == GGML_TYPE_F32);
  1337. const float eps = grad_eps();
  1338. for (int64_t i = 0; i < ne; ++i) {
  1339. const float xiu = x0[i] + 1.0f*eps; // x, index i, up
  1340. const float xiuh = x0[i] + 0.5f*eps; // x, index i, up half
  1341. const float xidh = x0[i] - 0.5f*eps; // x, index i, down half
  1342. const float xid = x0[i] - 1.0f*eps; // x, index i, down
  1343. float fu, fuh, fdh, fd; // output values for xiu, xiuh, xid, xidh
  1344. ggml_backend_tensor_set(t, &xiu, i*sizeof(float), sizeof(float));
  1345. status = ggml_backend_graph_compute(backend, gf);
  1346. if (status != GGML_STATUS_SUCCESS) {
  1347. fprintf(stderr, "%s: ggml_backend_graph_compute failed. status=%s \n", __func__, ggml_status_to_string(status));
  1348. return false;
  1349. }
  1350. ggml_backend_tensor_get(out, &fu, 0, ggml_nbytes(out));
  1351. ggml_backend_tensor_set(t, &xid, i*sizeof(float), sizeof(float));
  1352. status = ggml_backend_graph_compute(backend, gf);
  1353. if (status != GGML_STATUS_SUCCESS) {
  1354. fprintf(stderr, "%s: ggml_backend_graph_compute failed. status=%s \n", __func__, ggml_status_to_string(status));
  1355. return false;
  1356. }
  1357. ggml_backend_tensor_get(out, &fd, 0, ggml_nbytes(out));
  1358. if (grad_precise()) {
  1359. ggml_backend_tensor_set(t, &xiuh, i*sizeof(float), sizeof(float));
  1360. status = ggml_backend_graph_compute(backend, gf);
  1361. if (status != GGML_STATUS_SUCCESS) {
  1362. fprintf(stderr, "%s: ggml_backend_graph_compute failed. status=%s \n", __func__, ggml_status_to_string(status));
  1363. return false;
  1364. }
  1365. ggml_backend_tensor_get(out, &fuh, 0, ggml_nbytes(out));
  1366. ggml_backend_tensor_set(t, &xidh, i*sizeof(float), sizeof(float));
  1367. status = ggml_backend_graph_compute(backend, gf);
  1368. if (status != GGML_STATUS_SUCCESS) {
  1369. fprintf(stderr, "%s: ggml_backend_graph_compute failed. status=%s \n", __func__, ggml_status_to_string(status));
  1370. return false;
  1371. }
  1372. ggml_backend_tensor_get(out, &fdh, 0, ggml_nbytes(out));
  1373. gn[i] = (8.0*(double)fuh + (double)fd - (8.0*(double)fdh + (double)fu)) / (6.0*(double)eps);
  1374. } else {
  1375. gn[i] = (fu - fd) / (2.0f*eps);
  1376. }
  1377. ggml_backend_tensor_set(t, x0.data(), 0, ggml_nbytes(t));
  1378. }
  1379. const double err = mean_abs_asymm(gn.data(), ga.data(), gn.size(), expect);
  1380. if (err > max_maa_err()) {
  1381. test_operation_info info(op_desc(out), vars(), ggml_backend_name(backend));
  1382. info.set_maa_error(err, max_maa_err());
  1383. output_printer->print_operation(info);
  1384. ok = false;
  1385. break;
  1386. }
  1387. if (!ok) {
  1388. break;
  1389. }
  1390. }
  1391. // Create final test result
  1392. test_operation_info final_info(op_desc(out), vars(), ggml_backend_name(backend));
  1393. if (!ok) {
  1394. final_info.set_compare_failure();
  1395. }
  1396. final_info.status = ok ? test_status_t::OK : test_status_t::FAIL;
  1397. output_printer->print_operation(final_info);
  1398. if (ok) {
  1399. return true;
  1400. }
  1401. return false;
  1402. }
  1403. };
  1404. // ###################################
  1405. // ## Section 2: GGML Op Defintions ##
  1406. // ###################################
  1407. // The following is an example showing the bare minimum for creating a test for a GGML op.
  1408. // GGML_OP_EXAMPLE
  1409. struct test_example : public test_case {
  1410. // Always define these 2 or variants thereof:
  1411. const ggml_type type; // The type of the input tensors.
  1412. const std::array<int64_t, 4> ne; // The shape of the input tensors.
  1413. // For some ops it's necessary to define multiple types or shapes for the inputs.
  1414. // Or they may need additional parameters.
  1415. // Put all parameters needed to fully define the test into one of the VARS_TO_STR macros.
  1416. // In most cases these are just the properties of the struct that you defined above.
  1417. // This is needed for info prints.
  1418. std::string vars() override {
  1419. return VARS_TO_STR2(type, ne);
  1420. }
  1421. // Define a constructor for the struct.
  1422. // In most cases it will be sufficient to have the same arguments as the struct has properties
  1423. // and just use initializer lists.
  1424. test_example(ggml_type type = GGML_TYPE_F32,
  1425. std::array<int64_t, 4> ne = {10, 5, 4, 3})
  1426. : type(type), ne(ne) {}
  1427. // Define how a simple GGML compute graph can be constructed for the new GGML op.
  1428. ggml_tensor * build_graph(ggml_context * ctx) override {
  1429. // Step 1: create input tensors that don't depend on any other tensors:
  1430. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  1431. ggml_set_name(a, "a"); // Setting names is optional but it's useful for debugging.
  1432. ggml_tensor * b = ggml_new_tensor(ctx, type, 4, ne.data());
  1433. ggml_set_name(b, "b");
  1434. // Step 2: use the op that you want to test in the GGML compute graph.
  1435. ggml_tensor * out = ggml_add(ctx, a, b); // For this example we're just doing a simple addition.
  1436. ggml_set_name(out, "out");
  1437. // Step 3: return the output tensor.
  1438. return out;
  1439. }
  1440. // In order to also check the gradients for your op, add calls like ggml_set_param(a)
  1441. // immediately after you create the tensors.
  1442. // This is optional and only makes sense if a backward pass has actually been implemented for the new op.
  1443. };
  1444. // GGML_OP_UNARY
  1445. struct test_unary : public test_case {
  1446. const ggml_unary_op op;
  1447. const ggml_type type;
  1448. const std::array<int64_t, 4> ne_a;
  1449. int v; // view (1 : non-contiguous a)
  1450. std::string vars() override {
  1451. return VARS_TO_STR3(type, ne_a, v);
  1452. }
  1453. test_unary(ggml_unary_op op,
  1454. ggml_type type = GGML_TYPE_F32,
  1455. std::array<int64_t, 4> ne_a = {128, 2, 2, 2},
  1456. int v = 0)
  1457. : op(op), type(type), ne_a(ne_a), v(v) {}
  1458. ggml_tensor * build_graph(ggml_context * ctx) override {
  1459. const bool grad_supported = op == GGML_UNARY_OP_ABS || op == GGML_UNARY_OP_SGN || op == GGML_UNARY_OP_NEG ||
  1460. op == GGML_UNARY_OP_STEP || op == GGML_UNARY_OP_RELU || op == GGML_UNARY_OP_SILU;
  1461. ggml_tensor * a;
  1462. if (v & 1) {
  1463. auto ne = ne_a; ne[0] *= 3;
  1464. a = ggml_new_tensor(ctx, type, 4, ne.data());
  1465. if (grad_supported) {
  1466. ggml_set_param(a);
  1467. }
  1468. ggml_set_name(a, "a");
  1469. a = ggml_view_4d(ctx, a, ne_a[0], ne_a[1], ne_a[2], ne_a[3], a->nb[1], a->nb[2], a->nb[3], 0);
  1470. ggml_set_name(a, "view_of_a");
  1471. } else {
  1472. a = ggml_new_tensor(ctx, type, 4, ne_a.data());
  1473. if (grad_supported) {
  1474. ggml_set_param(a);
  1475. }
  1476. ggml_set_name(a, "a");
  1477. }
  1478. ggml_tensor * out = ggml_unary(ctx, a, op);
  1479. ggml_set_name(out, "out");
  1480. return out;
  1481. }
  1482. void initialize_tensors(ggml_context * ctx) override {
  1483. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  1484. // test extended range of values to check for NaNs in GELU
  1485. init_tensor_uniform(t, -150.f, 150.f);
  1486. }
  1487. }
  1488. float grad_eps() override {
  1489. return 15.0f;
  1490. }
  1491. std::vector<float> grad_expect() override {
  1492. if (op == GGML_UNARY_OP_ABS) {
  1493. return {-1.0f, 1.0f};
  1494. }
  1495. if (op == GGML_UNARY_OP_SGN || op == GGML_UNARY_OP_STEP) {
  1496. return {0.0f};
  1497. }
  1498. if (op == GGML_UNARY_OP_RELU) {
  1499. return {0.0f, 1.0f};
  1500. }
  1501. return {};
  1502. }
  1503. };
  1504. // GGML_OP_GLU
  1505. struct test_glu : public test_case {
  1506. const ggml_glu_op op;
  1507. const ggml_type type;
  1508. const std::array<int64_t, 4> ne_a;
  1509. int v; // view (1 : non-contiguous a)
  1510. bool swapped;
  1511. std::string vars() override {
  1512. return VARS_TO_STR4(type, ne_a, v, swapped);
  1513. }
  1514. test_glu(ggml_glu_op op,
  1515. ggml_type type = GGML_TYPE_F32,
  1516. std::array<int64_t, 4> ne_a = {128, 2, 2, 2},
  1517. int v = 0,
  1518. bool swapped = false)
  1519. : op(op), type(type), ne_a(ne_a), v(v), swapped(swapped) {}
  1520. ggml_tensor * build_graph(ggml_context * ctx) override {
  1521. ggml_tensor * a;
  1522. if (v & 1) {
  1523. auto ne = ne_a; ne[0] *= 3;
  1524. a = ggml_new_tensor(ctx, type, 4, ne.data());
  1525. ggml_set_name(a, "a");
  1526. a = ggml_view_4d(ctx, a, ne_a[0], ne_a[1], ne_a[2], ne_a[3], a->nb[1], a->nb[2], a->nb[3], 0);
  1527. ggml_set_name(a, "view_of_a");
  1528. } else {
  1529. a = ggml_new_tensor(ctx, type, 4, ne_a.data());
  1530. ggml_set_name(a, "a");
  1531. }
  1532. ggml_tensor * out = ggml_glu(ctx, a, op, swapped);
  1533. ggml_set_name(out, "out");
  1534. return out;
  1535. }
  1536. void initialize_tensors(ggml_context * ctx) override {
  1537. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  1538. // test extended range of values to check for NaNs in GELU
  1539. init_tensor_uniform(t, -150.f, 150.f);
  1540. }
  1541. }
  1542. };
  1543. struct test_glu_split : public test_case {
  1544. const ggml_glu_op op;
  1545. const ggml_type type;
  1546. const std::array<int64_t, 4> ne_a;
  1547. int v; // view (1 : non-contiguous a)
  1548. std::string vars() override {
  1549. return VARS_TO_STR3(type, ne_a, v) + ",split";
  1550. }
  1551. test_glu_split(ggml_glu_op op,
  1552. ggml_type type = GGML_TYPE_F32,
  1553. std::array<int64_t, 4> ne_a = {128, 2, 2, 2},
  1554. int v = 0)
  1555. : op(op), type(type), ne_a(ne_a), v(v) {}
  1556. ggml_tensor * build_graph(ggml_context * ctx) override {
  1557. ggml_tensor * a;
  1558. ggml_tensor * b;
  1559. if (v & 1) {
  1560. auto ne = ne_a; ne[0] *= 3;
  1561. a = ggml_new_tensor(ctx, type, 4, ne.data());
  1562. ggml_set_param(a);
  1563. ggml_set_name(a, "a");
  1564. a = ggml_view_4d(ctx, a, ne_a[0], ne_a[1], ne_a[2], ne_a[3], a->nb[1], a->nb[2], a->nb[3], 0);
  1565. ggml_set_name(a, "view_of_a");
  1566. b = ggml_new_tensor(ctx, type, 4, ne.data());
  1567. ggml_set_param(b);
  1568. ggml_set_name(b, "b");
  1569. b = ggml_view_4d(ctx, b, ne_a[0], ne_a[1], ne_a[2], ne_a[3], b->nb[1], b->nb[2], b->nb[3], 0);
  1570. ggml_set_name(a, "view_of_b");
  1571. } else {
  1572. a = ggml_new_tensor(ctx, type, 4, ne_a.data());
  1573. ggml_set_param(a);
  1574. ggml_set_name(a, "a");
  1575. b = ggml_new_tensor(ctx, type, 4, ne_a.data());
  1576. ggml_set_param(b);
  1577. ggml_set_name(b, "b");
  1578. }
  1579. ggml_tensor * out = ggml_glu_split(ctx, a, b, op);
  1580. ggml_set_name(out, "out");
  1581. return out;
  1582. }
  1583. void initialize_tensors(ggml_context * ctx) override {
  1584. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  1585. // test extended range of values to check for NaNs in GELU
  1586. init_tensor_uniform(t, -150.f, 150.f);
  1587. }
  1588. }
  1589. };
  1590. struct test_swiglu_oai : public test_case {
  1591. const ggml_type type;
  1592. const std::array<int64_t, 4> ne_a;
  1593. int v; // view (1 : non-contiguous a)
  1594. float alpha;
  1595. float limit;
  1596. std::string vars() override {
  1597. return VARS_TO_STR5(type, ne_a, v, alpha, limit);
  1598. }
  1599. test_swiglu_oai(ggml_type type = GGML_TYPE_F32,
  1600. std::array<int64_t, 4> ne_a = {128, 2, 2, 2},
  1601. int v = 0,
  1602. float alpha = 1.702f,
  1603. float limit = 7.0f)
  1604. : type(type), ne_a(ne_a), v(v), alpha(alpha), limit(limit) {}
  1605. ggml_tensor * build_graph(ggml_context * ctx) override {
  1606. ggml_tensor * a;
  1607. ggml_tensor * b;
  1608. if (v & 1) {
  1609. auto ne = ne_a; ne[0] *= 3;
  1610. a = ggml_new_tensor(ctx, type, 4, ne.data());
  1611. ggml_set_param(a);
  1612. ggml_set_name(a, "a");
  1613. a = ggml_view_4d(ctx, a, ne_a[0], ne_a[1], ne_a[2], ne_a[3], a->nb[1], a->nb[2], a->nb[3], 0);
  1614. ggml_set_name(a, "view_of_a");
  1615. b = ggml_new_tensor(ctx, type, 4, ne.data());
  1616. ggml_set_param(b);
  1617. ggml_set_name(b, "b");
  1618. b = ggml_view_4d(ctx, b, ne_a[0], ne_a[1], ne_a[2], ne_a[3], b->nb[1], b->nb[2], b->nb[3], 0);
  1619. ggml_set_name(a, "view_of_b");
  1620. } else {
  1621. a = ggml_new_tensor(ctx, type, 4, ne_a.data());
  1622. ggml_set_param(a);
  1623. ggml_set_name(a, "a");
  1624. b = ggml_new_tensor(ctx, type, 4, ne_a.data());
  1625. ggml_set_param(b);
  1626. ggml_set_name(b, "b");
  1627. }
  1628. ggml_tensor * out = ggml_swiglu_oai(ctx, a, b, alpha, limit);
  1629. ggml_set_name(out, "out");
  1630. return out;
  1631. }
  1632. void initialize_tensors(ggml_context * ctx) override {
  1633. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  1634. // test extended range of values to check for NaNs in GELU
  1635. init_tensor_uniform(t, -150.f, 150.f);
  1636. }
  1637. }
  1638. };
  1639. // GGML_OP_GET_ROWS
  1640. struct test_get_rows : public test_case {
  1641. const ggml_type type;
  1642. const int n; // cols
  1643. const int m; // rows
  1644. const int r; // rows to get
  1645. const int b; // batch size
  1646. const bool v; // view (non-contiguous src1)
  1647. std::string vars() override {
  1648. return VARS_TO_STR6(type, n, m, r, b, v);
  1649. }
  1650. test_get_rows(ggml_type type = GGML_TYPE_F32, int n = 10, int m = 5, int r = 3, int b = 1, bool v = false)
  1651. : type(type), n(n), m(m), r(r), b(b), v(v) {}
  1652. ggml_tensor * build_graph(ggml_context * ctx) override {
  1653. ggml_tensor * in = ggml_new_tensor_3d(ctx, type, n, m, b);
  1654. ggml_set_name(in, "in");
  1655. ggml_tensor * rows = ggml_new_tensor_2d(ctx, GGML_TYPE_I32, r, b);
  1656. ggml_set_name(rows, "rows");
  1657. if (v) {
  1658. rows = ggml_view_2d(ctx, rows, r/2, b, rows->nb[1], 0);
  1659. ggml_set_name(rows, "view_of_rows");
  1660. }
  1661. const bool grad_supported = ggml_is_matrix(in) && ggml_is_vector(rows);
  1662. if (grad_supported) {
  1663. ggml_set_param(in);
  1664. // rows is a constant input -> no gradients
  1665. }
  1666. ggml_tensor * out = ggml_get_rows(ctx, in, rows);
  1667. ggml_set_name(out, "out");
  1668. return out;
  1669. }
  1670. void initialize_tensors(ggml_context * ctx) override {
  1671. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  1672. if (t->type == GGML_TYPE_I32) {
  1673. if (ggml_is_view_op(t->op)) { continue; }
  1674. // rows
  1675. std::vector<int> data(r*b);
  1676. for (int i = 0; i < r*b; i++) {
  1677. data[i] = rand() % m;
  1678. }
  1679. ggml_backend_tensor_set(t, data.data(), 0, r * b * sizeof(int));
  1680. } else {
  1681. init_tensor_uniform(t);
  1682. }
  1683. }
  1684. }
  1685. };
  1686. // GGML_OP_GET_ROWS_BACK
  1687. struct test_get_rows_back : public test_case {
  1688. const ggml_type type;
  1689. const int n; // cols
  1690. const int m; // rows
  1691. const int r; // rows to get
  1692. const int b; // batch size
  1693. const bool v; // view (non-contiguous src1)
  1694. std::string vars() override {
  1695. return VARS_TO_STR6(type, n, m, r, b, v);
  1696. }
  1697. test_get_rows_back(ggml_type type = GGML_TYPE_F32, int n = 10, int m = 5, int r = 3, int b = 1, bool v = false)
  1698. : type(type), n(n), m(m), r(r), b(b), v(v) {}
  1699. ggml_tensor * build_graph(ggml_context * ctx) override {
  1700. ggml_tensor * in_forward = ggml_new_tensor_3d(ctx, type, n, m, b);
  1701. ggml_set_name(in_forward, "in_forward");
  1702. ggml_tensor * rows = ggml_new_tensor_2d(ctx, GGML_TYPE_I32, r, b);
  1703. ggml_set_name(rows, "rows");
  1704. if (v) {
  1705. rows = ggml_view_2d(ctx, rows, r/2, b, rows->nb[1], 0);
  1706. ggml_set_name(rows, "view_of_rows");
  1707. }
  1708. ggml_tensor * grad = ggml_new_tensor_3d(ctx, type, n, r, b);
  1709. ggml_set_name(grad, "grad");
  1710. ggml_tensor * out = ggml_get_rows_back(ctx, grad, rows, in_forward);
  1711. ggml_set_name(out, "out");
  1712. return out;
  1713. }
  1714. void initialize_tensors(ggml_context * ctx) override {
  1715. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  1716. if (t->type == GGML_TYPE_I32) {
  1717. if (ggml_is_view_op(t->op)) { continue; }
  1718. // rows
  1719. std::vector<int> data(r*b);
  1720. for (int i = 0; i < r*b; i++) {
  1721. data[i] = rand() % m;
  1722. }
  1723. ggml_backend_tensor_set(t, data.data(), 0, r * b * sizeof(int));
  1724. } else {
  1725. init_tensor_uniform(t);
  1726. }
  1727. }
  1728. }
  1729. };
  1730. // GGML_OP_SET_ROWS
  1731. struct test_set_rows : public test_case {
  1732. const ggml_type type;
  1733. const std::array<int64_t, 4> ne;
  1734. const std::array<int, 2> nr23; // broadcast only dims 2 and 3
  1735. const int r; // rows to set
  1736. const bool v; // view (non-contiguous src1)
  1737. std::string vars() override {
  1738. return VARS_TO_STR5(type, ne, nr23, r, v);
  1739. }
  1740. test_set_rows(ggml_type type,
  1741. std::array<int64_t, 4> ne,
  1742. std::array<int, 2> nr23,
  1743. int r, bool v = false)
  1744. : type(type), ne(ne), nr23(nr23), r(r), v(v) {}
  1745. ggml_tensor * build_graph(ggml_context * ctx) override {
  1746. ggml_tensor * dst = ggml_new_tensor_4d(ctx, type, ne[0], ne[1], ne[2]*nr23[0], ne[3]*nr23[1]);
  1747. ggml_set_name(dst, "dst");
  1748. ggml_tensor * src = ggml_new_tensor_4d(ctx, GGML_TYPE_F32, ne[0], r, ne[2]*nr23[0], ne[3]*nr23[1]);
  1749. ggml_set_name(src, "src");
  1750. ggml_tensor * row_idxs = ggml_new_tensor_3d(ctx, GGML_TYPE_I64, r, ne[2], ne[3]);
  1751. ggml_set_name(row_idxs, "row_idxs");
  1752. if (v) {
  1753. src = ggml_view_4d(ctx, src, ne[0], r/2, ne[2]*nr23[0], ne[3]*nr23[1], src->nb[1], src->nb[2], src->nb[3], 0);
  1754. row_idxs = ggml_view_3d(ctx, row_idxs, r/2, ne[2], ne[3], row_idxs->nb[1], row_idxs->nb[2], 0);
  1755. ggml_set_name(row_idxs, "view_of_rows");
  1756. }
  1757. ggml_tensor * out = ggml_set_rows(ctx, dst, src, row_idxs);
  1758. ggml_set_name(out, "out");
  1759. return out;
  1760. }
  1761. void initialize_tensors(ggml_context * ctx) override {
  1762. std::random_device rd;
  1763. std::default_random_engine rng(rd());
  1764. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  1765. if (t->type == GGML_TYPE_I64) {
  1766. if (ggml_is_view_op(t->op)) {
  1767. continue;
  1768. }
  1769. for (int i2 = 0; i2 < t->ne[2]; i2++) {
  1770. for (int i1 = 0; i1 < t->ne[1]; i1++) {
  1771. // generate a shuffled subset of row indices
  1772. std::vector<int64_t> data(ne[1]);
  1773. for (int i = 0; i < ne[1]; i++) {
  1774. data[i] = i;
  1775. }
  1776. std::shuffle(data.begin(), data.end(), rng);
  1777. data.resize(t->ne[0]);
  1778. const size_t offs = i1*t->nb[1] + i2*t->nb[2];
  1779. ggml_backend_tensor_set(t, data.data(), offs, t->ne[0]*sizeof(int64_t));
  1780. }
  1781. }
  1782. } else {
  1783. init_tensor_uniform(t);
  1784. }
  1785. }
  1786. }
  1787. };
  1788. // GGML_OP_ARGMAX
  1789. struct test_argmax : public test_case {
  1790. const ggml_type type;
  1791. const std::array<int64_t, 4> ne;
  1792. std::string vars() override {
  1793. return VARS_TO_STR2(type, ne);
  1794. }
  1795. test_argmax(ggml_type type = GGML_TYPE_F32,
  1796. std::array<int64_t, 4> ne = {10, 100, 1, 1})
  1797. : type(type), ne(ne) {}
  1798. ggml_tensor * build_graph(ggml_context * ctx) override {
  1799. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  1800. ggml_set_name(a, "a");
  1801. ggml_tensor * out = ggml_argmax(ctx, a);
  1802. ggml_set_name(out, "out");
  1803. return out;
  1804. }
  1805. void initialize_tensors(ggml_context * ctx) override {
  1806. std::random_device rd;
  1807. std::default_random_engine rng(rd());
  1808. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  1809. if (t->type == GGML_TYPE_F32) {
  1810. // initialize with unique values to avoid ties
  1811. for (int64_t r = 0; r < ggml_nrows(t); r++) {
  1812. std::vector<float> data(t->ne[0]);
  1813. for (int i = 0; i < t->ne[0]; i++) {
  1814. data[i] = i;
  1815. }
  1816. std::shuffle(data.begin(), data.end(), rng);
  1817. ggml_backend_tensor_set(t, data.data(), r * t->nb[1], t->ne[0] * sizeof(float));
  1818. }
  1819. } else {
  1820. init_tensor_uniform(t);
  1821. }
  1822. }
  1823. }
  1824. double max_nmse_err() override {
  1825. return 0.0;
  1826. }
  1827. };
  1828. // GGML_OP_COUNT_EQUAL
  1829. struct test_count_equal : public test_case {
  1830. const ggml_type type;
  1831. const std::array<int64_t, 4> ne;
  1832. std::string vars() override {
  1833. return VARS_TO_STR2(type, ne);
  1834. }
  1835. test_count_equal(ggml_type type = GGML_TYPE_F32,
  1836. std::array<int64_t, 4> ne = {4, 500, 1, 1})
  1837. : type(type), ne(ne) {}
  1838. ggml_tensor * build_graph(ggml_context * ctx) override {
  1839. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  1840. ggml_set_name(a, "a");
  1841. ggml_tensor * a_argmax = ggml_argmax(ctx, a);
  1842. ggml_set_name(a_argmax, "a_argmax");
  1843. ggml_tensor * b = ggml_new_tensor(ctx, type, 4, ne.data());
  1844. ggml_set_name(b, "b");
  1845. ggml_tensor * b_argmax = ggml_argmax(ctx, b);
  1846. ggml_set_name(b_argmax, "b_argmax");
  1847. ggml_tensor * out = ggml_count_equal(ctx, a_argmax, b_argmax);
  1848. ggml_set_name(out, "out");
  1849. return out;
  1850. }
  1851. double max_nmse_err() override {
  1852. return 0.0;
  1853. }
  1854. };
  1855. // GGML_OP_REPEAT
  1856. struct test_repeat : public test_case {
  1857. const ggml_type type;
  1858. const std::array<int64_t, 4> ne;
  1859. const std::array<int, 4> nr;
  1860. std::string vars() override {
  1861. return VARS_TO_STR3(type, ne, nr);
  1862. }
  1863. size_t op_size(ggml_tensor * t) override {
  1864. return ggml_nbytes(t) * 2;
  1865. }
  1866. test_repeat(ggml_type type = GGML_TYPE_F32,
  1867. std::array<int64_t, 4> ne = {10, 5, 4, 3},
  1868. std::array<int, 4> nr = {2, 2, 2, 2})
  1869. : type(type), ne(ne), nr(nr) {}
  1870. ggml_tensor * build_graph(ggml_context * ctx) override {
  1871. ggml_tensor * target = ggml_new_tensor_4d(ctx, type, ne[0]*nr[0], ne[1]*nr[1], ne[2]*nr[2], ne[3]*nr[3]);
  1872. ggml_set_name(target, "target");
  1873. ggml_tensor * src = ggml_new_tensor(ctx, type, 4, ne.data());
  1874. ggml_set_param(src);
  1875. ggml_set_name(src, "src");
  1876. ggml_tensor * out = ggml_repeat(ctx, src, target);
  1877. ggml_set_name(out, "out");
  1878. return out;
  1879. }
  1880. };
  1881. // GGML_OP_REPEAT_BACK
  1882. struct test_repeat_back : public test_case {
  1883. const ggml_type type;
  1884. const std::array<int64_t, 4> ne;
  1885. const std::array<int, 4> nr;
  1886. const bool v; // whether src is a noncontiguous view
  1887. std::string vars() override {
  1888. return VARS_TO_STR4(type, ne, nr, v);
  1889. }
  1890. size_t op_size(ggml_tensor * t) override {
  1891. return ggml_nbytes(t) * 2;
  1892. }
  1893. test_repeat_back(ggml_type type = GGML_TYPE_F32,
  1894. std::array<int64_t, 4> ne = {8, 6, 4, 2},
  1895. std::array<int, 4> nr = {2, 2, 2, 2},
  1896. bool v = false)
  1897. : type(type), ne(ne), nr(nr), v(v) {}
  1898. ggml_tensor * build_graph(ggml_context * ctx) override {
  1899. ggml_tensor * src = ggml_new_tensor_4d(ctx, type, ne[0]*nr[0], ne[1]*nr[1], ne[2]*nr[2], ne[3]*nr[3]);
  1900. ggml_set_name(src, "src");
  1901. if (v) {
  1902. GGML_ASSERT(ne[0] % 2 == 0);
  1903. GGML_ASSERT(ne[1] % 2 == 0);
  1904. GGML_ASSERT(ne[2] % 2 == 0);
  1905. GGML_ASSERT(ne[3] % 2 == 0);
  1906. GGML_ASSERT(nr[0] % 2 == 0 || nr[0] == 1);
  1907. GGML_ASSERT(nr[1] % 2 == 0 || nr[1] == 1);
  1908. GGML_ASSERT(nr[2] % 2 == 0 || nr[2] == 1);
  1909. GGML_ASSERT(nr[3] % 2 == 0 || nr[3] == 1);
  1910. const int64_t ne00 = nr[0] == 1 ? src->ne[0] : src->ne[0] / 2;
  1911. const int64_t ne01 = nr[1] == 1 ? src->ne[1] : src->ne[1] / 2;
  1912. const int64_t ne02 = nr[2] == 1 ? src->ne[2] : src->ne[2] / 2;
  1913. const int64_t ne03 = nr[3] == 1 ? src->ne[3] : src->ne[3] / 2;
  1914. src = ggml_view_4d(ctx, src, ne00, ne01, ne02, ne03, src->nb[1], src->nb[2], src->nb[3], 0);
  1915. }
  1916. ggml_tensor * target = ggml_new_tensor(ctx, type, 4, ne.data());
  1917. ggml_set_name(target, "target");
  1918. ggml_tensor * out = ggml_repeat_back(ctx, src, target);
  1919. ggml_set_name(out, "out");
  1920. return out;
  1921. }
  1922. };
  1923. // GGML_OP_DUP
  1924. struct test_dup : public test_case {
  1925. const ggml_type type;
  1926. const std::array<int64_t, 4> ne;
  1927. const std::array<int64_t, 4> permute;
  1928. bool _use_permute;
  1929. std::string vars() override {
  1930. std::string v = VARS_TO_STR2(type, ne);
  1931. if (_use_permute) v += "," + VAR_TO_STR(permute);
  1932. return v;
  1933. }
  1934. test_dup(ggml_type type = GGML_TYPE_F32,
  1935. std::array<int64_t, 4> ne = {10, 10, 20, 1},
  1936. std::array<int64_t, 4> permute = {0, 0, 0, 0})
  1937. : type(type), ne(ne), permute(permute),
  1938. _use_permute(permute[0] + permute[1] + permute[2] + permute[3] > 0) {}
  1939. ggml_tensor * build_graph(ggml_context * ctx) override {
  1940. ggml_tensor * src = ggml_new_tensor(ctx, type, 4, ne.data());
  1941. ggml_set_param(src);
  1942. ggml_set_name(src, "src");
  1943. if (_use_permute) {
  1944. src = ggml_permute(ctx, src, permute[0], permute[1], permute[2], permute[3]);
  1945. ggml_set_name(src, "src_permuted");
  1946. }
  1947. ggml_tensor * out = ggml_dup(ctx, src);
  1948. ggml_set_name(out, "out");
  1949. return out;
  1950. }
  1951. };
  1952. // GGML_OP_SET
  1953. struct test_set : public test_case {
  1954. const ggml_type type_src;
  1955. const ggml_type type_dst;
  1956. const std::array<int64_t, 4> ne;
  1957. const int dim;
  1958. std::string vars() override {
  1959. return VARS_TO_STR4(type_src, type_dst, ne, dim);
  1960. }
  1961. size_t op_size(ggml_tensor * t) override {
  1962. return ggml_nbytes(t) + ggml_nbytes(t->src[0]);
  1963. }
  1964. test_set(ggml_type type_src = GGML_TYPE_F32, ggml_type type_dst = GGML_TYPE_F32,
  1965. std::array<int64_t, 4> ne = {6, 5, 4, 3}, int dim = 1)
  1966. : type_src(type_src), type_dst(type_dst), ne(ne), dim(dim) {}
  1967. ggml_tensor * build_graph(ggml_context * ctx) override {
  1968. ggml_tensor * src = ggml_new_tensor(ctx, type_src, 4, ne.data());
  1969. ggml_set_param(src);
  1970. ggml_set_name(src, "src");
  1971. auto ne_dst = ne;
  1972. for (int i = 0; i < dim; ++i) {
  1973. ne_dst[i] *= 2;
  1974. }
  1975. ggml_tensor* dst = ggml_new_tensor(ctx, type_dst, 4, ne_dst.data());
  1976. ggml_set_param(dst);
  1977. ggml_set_name(dst, "dst");
  1978. size_t offset = 0;
  1979. for (int i = 0; i < dim; ++i) {
  1980. offset += ((ne_dst[i] - ne[i])/2)*dst->nb[i];
  1981. }
  1982. ggml_tensor * out = ggml_set(ctx, dst, src,
  1983. // The backward pass requires setting a contiguous region:
  1984. src->nb[1], src->nb[2], src->nb[3], offset);
  1985. ggml_set_name(out, "out");
  1986. return out;
  1987. }
  1988. };
  1989. // GGML_OP_CPY
  1990. struct test_cpy : public test_case {
  1991. const ggml_type type_src;
  1992. const ggml_type type_dst;
  1993. const std::array<int64_t, 4> ne;
  1994. const std::array<int64_t, 4> permute_src;
  1995. const std::array<int64_t, 4> permute_dst;
  1996. bool _src_use_permute;
  1997. bool _dst_use_permute;
  1998. std::string vars() override {
  1999. return VARS_TO_STR5(type_src, type_dst, ne, permute_src, permute_dst);
  2000. }
  2001. double max_nmse_err() override {
  2002. return 1e-6;
  2003. }
  2004. size_t op_size(ggml_tensor * t) override {
  2005. return ggml_nbytes(t) + ggml_nbytes(t->src[0]);
  2006. }
  2007. test_cpy(ggml_type type_src = GGML_TYPE_F32, ggml_type type_dst = GGML_TYPE_F32,
  2008. std::array<int64_t, 4> ne = {10, 10, 10, 1},
  2009. std::array<int64_t, 4> permute_src = {0, 0, 0, 0},
  2010. std::array<int64_t, 4> permute_dst = {0, 0, 0, 0})
  2011. : type_src(type_src), type_dst(type_dst), ne(ne), permute_src(permute_src), permute_dst(permute_dst),
  2012. _src_use_permute(permute_src[0] + permute_src[1] + permute_src[2] + permute_src[3] > 0),
  2013. _dst_use_permute(permute_dst[0] + permute_dst[1] + permute_dst[2] + permute_dst[3] > 0) {}
  2014. ggml_tensor * build_graph(ggml_context * ctx) override {
  2015. ggml_tensor * src = ggml_new_tensor(ctx, type_src, 4, ne.data());
  2016. ggml_set_param(src);
  2017. ggml_set_name(src, "src");
  2018. if (_src_use_permute) {
  2019. src = ggml_permute(ctx, src, permute_src[0], permute_src[1], permute_src[2], permute_src[3]);
  2020. ggml_set_name(src, "src_permuted");
  2021. }
  2022. ggml_tensor * dst = ggml_new_tensor(ctx, type_dst, 4, src->ne);
  2023. ggml_set_name(dst, "dst");
  2024. if (_dst_use_permute) {
  2025. dst = ggml_permute(ctx, dst, permute_dst[0], permute_dst[1], permute_dst[2], permute_dst[3]);
  2026. ggml_set_name(dst, "dst_permuted");
  2027. }
  2028. ggml_tensor * out = ggml_cpy(ctx, src, dst);
  2029. ggml_set_name(out, "out");
  2030. return out;
  2031. }
  2032. };
  2033. // GGML_OP_CONT
  2034. struct test_cont : public test_case {
  2035. const ggml_type type;
  2036. const std::array<int64_t, 4> ne;
  2037. std::string vars() override {
  2038. return VARS_TO_STR2(type, ne);
  2039. }
  2040. test_cont(ggml_type type = GGML_TYPE_F32,
  2041. std::array<int64_t, 4> ne = {10, 10, 10, 1})
  2042. : type(type), ne(ne) {}
  2043. ggml_tensor * build_graph(ggml_context * ctx) override {
  2044. ggml_tensor * src = ggml_new_tensor(ctx, type, 4, ne.data());
  2045. ggml_set_param(src);
  2046. ggml_set_name(src, "src");
  2047. src = ggml_transpose(ctx, src);
  2048. ggml_set_name(src, "src_transposed");
  2049. ggml_tensor * out = ggml_cont(ctx, src);
  2050. ggml_set_name(out, "out");
  2051. return out;
  2052. }
  2053. };
  2054. // GGML_OP_ADD
  2055. // GGML_OP_SUB
  2056. // GGML_OP_MUL
  2057. // GGML_OP_DIV
  2058. struct test_bin_bcast : public test_case {
  2059. using op_t = ggml_tensor * (*) (ggml_context *, ggml_tensor *, ggml_tensor *);
  2060. op_t op;
  2061. const ggml_type type;
  2062. const std::array<int64_t, 4> ne;
  2063. const std::array<int, 4> nr;
  2064. int nf; // number of fused ops, nf == 1 -> single op (no fusion)
  2065. bool run_whole_graph() override { return true; }
  2066. std::string vars() override {
  2067. return VARS_TO_STR4(type, ne, nr, nf);
  2068. }
  2069. size_t op_size(ggml_tensor * t) override {
  2070. return ggml_nbytes(t) * 3;
  2071. }
  2072. test_bin_bcast(op_t op, ggml_type type = GGML_TYPE_F32,
  2073. std::array<int64_t, 4> ne = {10, 10, 1, 1},
  2074. std::array<int, 4> nr = {1, 2, 1, 1},
  2075. int nf = 1)
  2076. : op(op), type(type), ne(ne), nr(nr), nf(nf) {}
  2077. ggml_tensor * build_graph(ggml_context * ctx) override {
  2078. GGML_ASSERT(nf <= 8);
  2079. ggml_tensor * a = ggml_new_tensor_4d(ctx, type, ne[0]*nr[0], ne[1]*nr[1], ne[2]*nr[2], ne[3]*nr[3]);
  2080. ggml_set_name(a, "a");
  2081. ggml_tensor * b[8];
  2082. for (int i = 0; i < nf; ++i) {
  2083. b[i] = ggml_new_tensor(ctx, type, 4, ne.data());
  2084. ggml_set_name(b[i], (std::string("b") + std::to_string(i)).c_str());
  2085. }
  2086. // The backward pass supports broadcasting only for GGML_ADD:
  2087. const bool grad_supported = op == ggml_add && ggml_are_same_shape(a, b[0]) && nf == 1;
  2088. if (grad_supported) {
  2089. ggml_set_param(a);
  2090. ggml_set_param(b[0]);
  2091. }
  2092. ggml_tensor * out = a;
  2093. for (int i = 0; i < nf; ++i) {
  2094. out = op(ctx, out, b[i]);
  2095. }
  2096. ggml_set_name(out, "out");
  2097. return out;
  2098. }
  2099. void initialize_tensors(ggml_context * ctx) override {
  2100. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  2101. if (op == ggml_mul || op == ggml_div) {
  2102. // MUL and DIV have numerical issues around zero:
  2103. init_tensor_uniform(t, 0.9f, 1.1f);
  2104. } else {
  2105. init_tensor_uniform(t);
  2106. }
  2107. }
  2108. }
  2109. float grad_eps() override {
  2110. return 0.1f * (op == ggml_mul ? ne[0]*ne[1]*ne[2]*ne[3] : 1);
  2111. }
  2112. bool grad_precise() override {
  2113. return op == ggml_div;
  2114. }
  2115. double max_maa_err() override {
  2116. return op == ggml_add ? 1e-4 : 1e-3;
  2117. }
  2118. };
  2119. // GGML_OP_ADD_ID
  2120. struct test_add_id : public test_case {
  2121. const ggml_type type_a;
  2122. const ggml_type type_b;
  2123. const int64_t n_embd;
  2124. const int64_t n_experts;
  2125. const int64_t n_experts_used;
  2126. const int64_t n_token;
  2127. std::string vars() override {
  2128. return VARS_TO_STR6(type_a, type_b, n_embd, n_experts, n_experts_used, n_token);
  2129. }
  2130. size_t op_size(ggml_tensor * t) override {
  2131. return ggml_nbytes(t) + ggml_nbytes(t->src[0]) + ggml_nbytes(t->src[2]);
  2132. }
  2133. test_add_id(ggml_type type_a = GGML_TYPE_F32,
  2134. ggml_type type_b = GGML_TYPE_F32,
  2135. int64_t n_embd = 128,
  2136. int64_t n_experts = 16,
  2137. int64_t n_experts_used = 8,
  2138. int64_t n_token = 10)
  2139. : type_a(type_a), type_b(type_b), n_embd(n_embd),
  2140. n_experts(n_experts), n_experts_used(n_experts_used), n_token(n_token) {}
  2141. ggml_tensor * build_graph(ggml_context * ctx) override {
  2142. ggml_tensor * a = ggml_new_tensor_3d(ctx, type_a, n_embd, n_experts_used, n_token);
  2143. ggml_tensor * b = ggml_new_tensor_2d(ctx, type_b, n_embd, n_experts);
  2144. ggml_tensor * ids = ggml_new_tensor_2d(ctx, GGML_TYPE_I32, n_experts, n_token);
  2145. if (n_experts_used != n_experts) {
  2146. ids = ggml_view_2d(ctx, ids, n_experts_used, n_token, ids->nb[1], 0);
  2147. ggml_set_name(ids, "view_of_ids");
  2148. }
  2149. ggml_tensor * out = ggml_add_id(ctx, a, b, ids);
  2150. ggml_set_name(out, "out");
  2151. return out;
  2152. }
  2153. void initialize_tensors(ggml_context * ctx) override {
  2154. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  2155. if (t->type == GGML_TYPE_I32) {
  2156. if (ggml_is_view_op(t->op)) { continue; }
  2157. std::random_device rd;
  2158. std::default_random_engine rng(rd());
  2159. // ids
  2160. for (int64_t r = 0; r < ggml_nrows(t); r++) {
  2161. std::vector<int32_t> data(t->ne[0]);
  2162. for (int i = 0; i < t->ne[0]; i++) {
  2163. data[i] = i % n_experts;
  2164. }
  2165. std::shuffle(data.begin(), data.end(), rng);
  2166. ggml_backend_tensor_set(t, data.data(), r * t->nb[1], t->ne[0] * sizeof(int32_t));
  2167. }
  2168. } else {
  2169. init_tensor_uniform(t);
  2170. }
  2171. }
  2172. }
  2173. };
  2174. // GGML_OP_ADD1
  2175. struct test_add1 : public test_case {
  2176. const ggml_type type;
  2177. const std::array<int64_t, 4> ne;
  2178. std::string vars() override {
  2179. return VARS_TO_STR2(type, ne);
  2180. }
  2181. test_add1(ggml_type type = GGML_TYPE_F32,
  2182. std::array<int64_t, 4> ne = {10, 5, 4, 3})
  2183. : type(type), ne(ne) {}
  2184. ggml_tensor * build_graph(ggml_context * ctx) override {
  2185. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  2186. ggml_set_param(a);
  2187. ggml_set_name(a, "a");
  2188. ggml_tensor * b = ggml_new_tensor_1d(ctx, type, 1);
  2189. // ggml_set_param(b); // TODO: implement
  2190. ggml_set_name(b, "b");
  2191. ggml_tensor * out = ggml_add1(ctx, a, b);
  2192. ggml_set_name(out, "out");
  2193. return out;
  2194. }
  2195. float grad_eps() override {
  2196. return 0.1f * ne[0]*ne[1]*ne[2]*ne[3];
  2197. }
  2198. };
  2199. // GGML_OP_SCALE
  2200. struct test_scale : public test_case {
  2201. const ggml_type type;
  2202. const std::array<int64_t, 4> ne;
  2203. float scale;
  2204. float bias;
  2205. std::string vars() override {
  2206. return VARS_TO_STR4(type, ne, scale, bias);
  2207. }
  2208. test_scale(ggml_type type = GGML_TYPE_F32,
  2209. std::array<int64_t, 4> ne = {10, 10, 10, 10},
  2210. float scale = 2.0f,
  2211. float bias = 0.0f)
  2212. : type(type), ne(ne), scale(scale), bias(bias) {}
  2213. ggml_tensor * build_graph(ggml_context * ctx) override {
  2214. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  2215. ggml_set_param(a);
  2216. ggml_set_name(a, "a");
  2217. ggml_tensor * out = ggml_scale_bias(ctx, a, scale, bias);
  2218. ggml_set_name(out, "out");
  2219. return out;
  2220. }
  2221. };
  2222. // GGML_OP_SCALE + GGML_UNARY_OP_TANH + GGML_OP_SCALE
  2223. struct test_softcap : public test_case {
  2224. const ggml_type type;
  2225. const std::array<int64_t, 4> ne;
  2226. float softcap;
  2227. std::string op_desc(ggml_tensor * t) override {
  2228. GGML_UNUSED(t);
  2229. return "SOFTCAP";
  2230. }
  2231. bool run_whole_graph() override { return true; }
  2232. std::string vars() override {
  2233. return VARS_TO_STR3(type, ne, softcap);
  2234. }
  2235. test_softcap(ggml_type type = GGML_TYPE_F32,
  2236. std::array<int64_t, 4> ne = {10, 10, 10, 10},
  2237. float softcap = 30.0f)
  2238. : type(type), ne(ne), softcap(softcap) {}
  2239. ggml_tensor * build_graph(ggml_context * ctx) override {
  2240. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  2241. ggml_set_param(a);
  2242. ggml_set_name(a, "a");
  2243. ggml_tensor * out = ggml_scale(ctx, ggml_tanh(ctx, ggml_scale(ctx, a, 1.0f / softcap)), softcap);
  2244. ggml_set_name(out, "out");
  2245. return out;
  2246. }
  2247. };
  2248. // GGML_OP_SILU_BACK
  2249. struct test_silu_back : public test_case {
  2250. const ggml_type type;
  2251. const std::array<int64_t, 4> ne;
  2252. float eps;
  2253. std::string vars() override {
  2254. return VARS_TO_STR3(type, ne, eps);
  2255. }
  2256. test_silu_back(ggml_type type = GGML_TYPE_F32,
  2257. std::array<int64_t, 4> ne = {64, 5, 4, 3},
  2258. float eps = 1e-6f)
  2259. : type(type), ne(ne), eps(eps) {}
  2260. ggml_tensor * build_graph(ggml_context * ctx) override {
  2261. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  2262. ggml_set_name(a, "a");
  2263. ggml_tensor * grad = ggml_new_tensor(ctx, type, 4, ne.data());
  2264. ggml_set_name(grad, "grad");
  2265. ggml_tensor * out = ggml_silu_back(ctx, a, grad);
  2266. ggml_set_name(out, "out");
  2267. return out;
  2268. }
  2269. bool grad_precise() override {
  2270. return true;
  2271. }
  2272. };
  2273. // GGML_OP_NORM
  2274. struct test_norm : public test_case {
  2275. const ggml_type type;
  2276. const std::array<int64_t, 4> ne;
  2277. const bool v; // whether a is a non-contiguous view
  2278. const float eps;
  2279. std::string vars() override {
  2280. return VARS_TO_STR4(type, ne, v, eps);
  2281. }
  2282. test_norm(ggml_type type = GGML_TYPE_F32,
  2283. std::array<int64_t, 4> ne = {64, 5, 4, 3},
  2284. bool v = false,
  2285. float eps = 1e-6f)
  2286. : type(type), ne(ne), v(v), eps(eps) {}
  2287. ggml_tensor * build_graph(ggml_context * ctx) override {
  2288. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  2289. ggml_set_name(a, "a");
  2290. if (v) {
  2291. a = ggml_view_4d(ctx, a, a->ne[0]/2, a->ne[1]/2, a->ne[2]/2, a->ne[3]/2, a->nb[1], a->nb[2], a->nb[3], 0);
  2292. ggml_set_name(a, "view of a");
  2293. }
  2294. ggml_tensor * out = ggml_norm(ctx, a, eps);
  2295. ggml_set_name(out, "out");
  2296. return out;
  2297. }
  2298. };
  2299. // GGML_OP_RMS_NORM
  2300. struct test_rms_norm : public test_case {
  2301. const ggml_type type;
  2302. const std::array<int64_t, 4> ne;
  2303. const bool v; // whether a is a non-contiguous view
  2304. const float eps;
  2305. std::string vars() override {
  2306. return VARS_TO_STR4(type, ne, v, eps);
  2307. }
  2308. test_rms_norm(ggml_type type = GGML_TYPE_F32,
  2309. std::array<int64_t, 4> ne = {64, 5, 4, 3},
  2310. bool v = false,
  2311. float eps = 1e-6f)
  2312. : type(type), ne(ne), v(v), eps(eps) {}
  2313. ggml_tensor * build_graph(ggml_context * ctx) override {
  2314. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  2315. ggml_set_param(a);
  2316. ggml_set_name(a, "a");
  2317. if (v) {
  2318. a = ggml_view_4d(ctx, a, a->ne[0]/2, a->ne[1]/2, a->ne[2]/2, a->ne[3]/2, a->nb[1], a->nb[2], a->nb[3], 0);
  2319. ggml_set_name(a, "view of a");
  2320. }
  2321. ggml_tensor * out = ggml_rms_norm(ctx, a, eps);
  2322. ggml_set_name(out, "out");
  2323. return out;
  2324. }
  2325. void initialize_tensors(ggml_context * ctx) override {
  2326. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  2327. init_tensor_uniform(t, -10.f, 10.f);
  2328. }
  2329. }
  2330. float grad_eps() override {
  2331. return 1.0f;
  2332. }
  2333. bool grad_precise() override {
  2334. return true;
  2335. }
  2336. };
  2337. // GGML_OP_RMS_NORM_BACK
  2338. struct test_rms_norm_back : public test_case {
  2339. const ggml_type type;
  2340. const std::array<int64_t, 4> ne;
  2341. const float eps;
  2342. std::string vars() override {
  2343. return VARS_TO_STR3(type, ne, eps);
  2344. }
  2345. test_rms_norm_back(ggml_type type = GGML_TYPE_F32,
  2346. std::array<int64_t, 4> ne = {64, 5, 4, 3},
  2347. float eps = 1e-6f)
  2348. : type(type), ne(ne), eps(eps) {}
  2349. ggml_tensor * build_graph(ggml_context * ctx) override {
  2350. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  2351. ggml_set_name(a, "a");
  2352. ggml_tensor * b = ggml_new_tensor(ctx, type, 4, ne.data());
  2353. ggml_set_name(b, "b");
  2354. ggml_tensor * out = ggml_rms_norm_back(ctx, a, b, eps);
  2355. ggml_set_name(out, "out");
  2356. return out;
  2357. }
  2358. void initialize_tensors(ggml_context * ctx) override {
  2359. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  2360. init_tensor_uniform(t, -10.f, 10.f);
  2361. }
  2362. }
  2363. };
  2364. // GGML_OP_RMS_NORM + GGML_OP_MUL + GGML_OP_ADD
  2365. struct test_rms_norm_mul_add : public test_case {
  2366. const ggml_type type;
  2367. const std::array<int64_t, 4> ne;
  2368. const float eps;
  2369. const bool broadcast;
  2370. std::string op_desc(ggml_tensor * t) override {
  2371. GGML_UNUSED(t);
  2372. return "RMS_NORM_MUL_ADD";
  2373. }
  2374. bool run_whole_graph() override { return true; }
  2375. std::string vars() override {
  2376. return VARS_TO_STR4(type, ne, eps, broadcast);
  2377. }
  2378. test_rms_norm_mul_add(ggml_type type = GGML_TYPE_F32,
  2379. std::array<int64_t, 4> ne = {64, 5, 4, 3},
  2380. float eps = 1e-6f, bool broadcast = false)
  2381. : type(type), ne(ne), eps(eps), broadcast(broadcast) {}
  2382. ggml_tensor * build_graph(ggml_context * ctx) override {
  2383. std::array<int64_t, 4> broadcast_dims = {ne[0]*2, ne[1]*3, ne[2]*3, ne[3]*4};
  2384. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, broadcast ? broadcast_dims.data() : ne.data());
  2385. ggml_tensor * b = ggml_new_tensor(ctx, type, 4, ne.data());
  2386. ggml_tensor * c = ggml_new_tensor(ctx, type, 4, ne.data());
  2387. ggml_set_param(a);
  2388. ggml_set_name(a, "a");
  2389. ggml_set_param(b);
  2390. ggml_set_name(b, "b");
  2391. ggml_set_param(c);
  2392. ggml_set_name(c, "c");
  2393. // Use a, b and c early, so we don't end up with an OP_NONE between rms_norm and mul
  2394. a = ggml_add(ctx, ggml_add(ctx, a, b), c);
  2395. ggml_tensor * out = ggml_add(ctx, ggml_mul(ctx, ggml_rms_norm(ctx, a, eps), b), c);
  2396. ggml_set_name(out, "out");
  2397. return out;
  2398. }
  2399. void initialize_tensors(ggml_context * ctx) override {
  2400. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  2401. init_tensor_uniform(t, -10.f, 10.f);
  2402. }
  2403. }
  2404. float grad_eps() override {
  2405. return 1.0f;
  2406. }
  2407. bool grad_precise() override {
  2408. return true;
  2409. }
  2410. };
  2411. // GGML_OP_SSM_CONV
  2412. struct test_ssm_conv : public test_case {
  2413. const ggml_type type;
  2414. const std::array<int64_t, 4> ne_a;
  2415. const std::array<int64_t, 4> ne_b;
  2416. std::string vars() override {
  2417. return VARS_TO_STR3(type, ne_a, ne_b);
  2418. }
  2419. test_ssm_conv(ggml_type type = GGML_TYPE_F32,
  2420. std::array<int64_t, 4> ne_a = {10, 10, 10, 1},
  2421. std::array<int64_t, 4> ne_b = {3, 3, 1, 1})
  2422. : type(type), ne_a(ne_a), ne_b(ne_b) {}
  2423. ggml_tensor * build_graph(ggml_context * ctx) override {
  2424. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne_a.data());
  2425. ggml_tensor * b = ggml_new_tensor(ctx, type, 4, ne_b.data());
  2426. ggml_tensor * out = ggml_ssm_conv(ctx, a, b);
  2427. return out;
  2428. }
  2429. };
  2430. // GGML_OP_SSM_SCAN
  2431. struct test_ssm_scan : public test_case {
  2432. const ggml_type type;
  2433. const int64_t d_state;
  2434. const int64_t head_dim;
  2435. const int64_t n_head;
  2436. const int64_t n_group;
  2437. const int64_t n_seq_tokens;
  2438. const int64_t n_seqs;
  2439. std::string vars() override {
  2440. return VARS_TO_STR7(type, d_state, head_dim, n_head, n_group, n_seq_tokens, n_seqs);
  2441. }
  2442. test_ssm_scan(ggml_type type = GGML_TYPE_F32,
  2443. int64_t d_state = 32,
  2444. int64_t head_dim = 1, // non-zero for Mamba-2
  2445. int64_t n_head = 32,
  2446. int64_t n_group = 1,
  2447. int64_t n_seq_tokens = 32,
  2448. int64_t n_seqs = 32)
  2449. : type(type), d_state(d_state), head_dim(head_dim), n_head(n_head), n_group(n_group), n_seq_tokens(n_seq_tokens), n_seqs(n_seqs) {}
  2450. ggml_tensor * build_graph(ggml_context * ctx) override {
  2451. ggml_tensor * s = ggml_new_tensor_4d(ctx, type, d_state, head_dim, n_head, n_seqs);
  2452. ggml_tensor * x = ggml_new_tensor_4d(ctx, type, head_dim, n_head, n_seq_tokens, n_seqs);
  2453. ggml_tensor * dt = ggml_new_tensor_3d(ctx, type, n_head, n_seq_tokens, n_seqs);
  2454. ggml_tensor * A = ggml_new_tensor_2d(ctx, type, (head_dim > 1) ? 1 : d_state, n_head);
  2455. ggml_tensor * B = ggml_new_tensor_4d(ctx, type, d_state, n_group, n_seq_tokens, n_seqs);
  2456. ggml_tensor * C = ggml_new_tensor_4d(ctx, type, d_state, n_group, n_seq_tokens, n_seqs);
  2457. ggml_tensor * ids = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, n_seqs);
  2458. ggml_tensor * out = ggml_ssm_scan(ctx, s, x, dt, A, B, C, ids);
  2459. return out;
  2460. }
  2461. // similar to test_mul_mat_id
  2462. void initialize_tensors(ggml_context * ctx) override {
  2463. std::random_device rd;
  2464. std::default_random_engine rng(rd());
  2465. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  2466. if (t->type == GGML_TYPE_I32) {
  2467. if (ggml_is_view_op(t->op)) { continue; }
  2468. // ids
  2469. for (int64_t r = 0; r < ggml_nrows(t); r++) {
  2470. std::vector<int32_t> data(t->ne[0]);
  2471. for (int i = 0; i < t->ne[0]; i++) {
  2472. data[i] = i;
  2473. }
  2474. std::shuffle(data.begin(), data.end(), rng);
  2475. ggml_backend_tensor_set(t, data.data(), r * t->nb[1], t->ne[0] * sizeof(int32_t));
  2476. }
  2477. } else {
  2478. init_tensor_uniform(t);
  2479. }
  2480. }
  2481. }
  2482. };
  2483. // GGML_OP_RWKV_WKV6
  2484. struct test_rwkv_wkv6 : public test_case {
  2485. const ggml_type type;
  2486. const int64_t head_count;
  2487. const int64_t head_size;
  2488. const int64_t n_seq_tokens;
  2489. const int64_t n_seqs;
  2490. std::string vars() override {
  2491. return VARS_TO_STR5(type, head_count, head_size, n_seq_tokens, n_seqs);
  2492. }
  2493. test_rwkv_wkv6(ggml_type type = GGML_TYPE_F32,
  2494. int64_t head_count = 32, int64_t head_size = 64, int64_t n_seq_tokens = 32, int64_t n_seqs = 32)
  2495. : type(type), head_count(head_count), head_size(head_size), n_seq_tokens(n_seq_tokens), n_seqs(n_seqs) {}
  2496. ggml_tensor * build_graph(ggml_context * ctx) override {
  2497. const int64_t n_tokens = n_seq_tokens * n_seqs;
  2498. ggml_tensor * r = ggml_new_tensor(ctx, type, 3, std::vector<int64_t>{ head_size, head_count, n_tokens }.data());
  2499. ggml_tensor * k = ggml_new_tensor(ctx, type, 3, std::vector<int64_t>{ head_size, head_count, n_tokens }.data());
  2500. ggml_tensor * v = ggml_new_tensor(ctx, type, 3, std::vector<int64_t>{ head_size, head_count, n_tokens }.data());
  2501. ggml_tensor * tf = ggml_new_tensor(ctx, type, 2, std::vector<int64_t>{ head_size, head_count }.data());
  2502. ggml_tensor * td = ggml_new_tensor(ctx, type, 3, std::vector<int64_t>{ head_size, head_count, n_tokens }.data());
  2503. ggml_tensor * s = ggml_new_tensor(ctx, type, 2, std::vector<int64_t>{ head_size * head_size * head_count, n_seqs }.data());
  2504. ggml_tensor * out = ggml_rwkv_wkv6(ctx, k, v, r, tf, td, s);
  2505. return out;
  2506. }
  2507. };
  2508. // GGML_OP_GATED_LINEAR_ATTN
  2509. struct test_gla : public test_case {
  2510. const ggml_type type;
  2511. const int64_t head_count;
  2512. const int64_t head_size;
  2513. const int64_t n_seq_tokens;
  2514. const int64_t n_seqs;
  2515. std::string vars() override {
  2516. return VARS_TO_STR5(type, head_count, head_size, n_seq_tokens, n_seqs);
  2517. }
  2518. test_gla(ggml_type type = GGML_TYPE_F32,
  2519. int64_t head_count = 32, int64_t head_size = 64, int64_t n_seq_tokens = 32, int64_t n_seqs = 32)
  2520. : type(type), head_count(head_count), head_size(head_size), n_seq_tokens(n_seq_tokens), n_seqs(n_seqs) {}
  2521. ggml_tensor * build_graph(ggml_context * ctx) override {
  2522. const int64_t n_tokens = n_seq_tokens * n_seqs;
  2523. ggml_tensor * q = ggml_new_tensor(ctx, type, 3, std::vector<int64_t>{ head_size, head_count, n_tokens }.data());
  2524. ggml_tensor * k = ggml_new_tensor(ctx, type, 3, std::vector<int64_t>{ head_size, head_count, n_tokens }.data());
  2525. ggml_tensor * v = ggml_new_tensor(ctx, type, 3, std::vector<int64_t>{ head_size, head_count, n_tokens }.data());
  2526. ggml_tensor * g = ggml_new_tensor(ctx, type, 3, std::vector<int64_t>{ head_size, head_count, n_tokens }.data());
  2527. ggml_tensor * s = ggml_new_tensor(ctx, type, 2, std::vector<int64_t>{ head_size * head_size * head_count, n_seqs }.data());
  2528. ggml_tensor * out = ggml_gated_linear_attn(ctx, k, v, q, g, s, pow(head_size, -0.5));
  2529. return out;
  2530. }
  2531. };
  2532. // GGML_OP_RWKV_WKV7
  2533. struct test_rwkv_wkv7 : public test_case {
  2534. const ggml_type type;
  2535. const int64_t head_count;
  2536. const int64_t head_size;
  2537. const int64_t n_seq_tokens;
  2538. const int64_t n_seqs;
  2539. std::string vars() override {
  2540. return VARS_TO_STR5(type, head_count, head_size, n_seq_tokens, n_seqs);
  2541. }
  2542. test_rwkv_wkv7(ggml_type type = GGML_TYPE_F32,
  2543. int64_t head_count = 32, int64_t head_size = 64, int64_t n_seq_tokens = 32, int64_t n_seqs = 32)
  2544. : type(type), head_count(head_count), head_size(head_size), n_seq_tokens(n_seq_tokens), n_seqs(n_seqs) {}
  2545. ggml_tensor * build_graph(ggml_context * ctx) override {
  2546. const int64_t n_tokens = n_seq_tokens * n_seqs;
  2547. ggml_tensor * r = ggml_new_tensor(ctx, type, 3, std::vector<int64_t>{ head_size, head_count, n_tokens }.data());
  2548. ggml_tensor * w = ggml_new_tensor(ctx, type, 3, std::vector<int64_t>{ head_size, head_count, n_tokens }.data());
  2549. ggml_tensor * k = ggml_new_tensor(ctx, type, 3, std::vector<int64_t>{ head_size, head_count, n_tokens }.data());
  2550. ggml_tensor * v = ggml_new_tensor(ctx, type, 3, std::vector<int64_t>{ head_size, head_count, n_tokens }.data());
  2551. ggml_tensor * a = ggml_new_tensor(ctx, type, 3, std::vector<int64_t>{ head_size, head_count, n_tokens }.data());
  2552. ggml_tensor * b = ggml_new_tensor(ctx, type, 3, std::vector<int64_t>{ head_size, head_count, n_tokens }.data());
  2553. // Outputs may become NaN with long seqlen without these normalization
  2554. a = ggml_l2_norm(ctx, a, 1e-7F);
  2555. b = ggml_l2_norm(ctx, b, 1e-7F);
  2556. ggml_tensor * s = ggml_new_tensor(ctx, type, 2, std::vector<int64_t>{ head_size * head_size * head_count, n_seqs }.data());
  2557. ggml_tensor * out = ggml_rwkv_wkv7(ctx, r, w, k, v, a, b, s);
  2558. return out;
  2559. }
  2560. };
  2561. // GGML_OP_MUL_MAT
  2562. struct test_mul_mat : public test_case {
  2563. const ggml_type type_a;
  2564. const ggml_type type_b;
  2565. const int64_t m;
  2566. const int64_t n;
  2567. const int64_t k;
  2568. const std::array<int64_t, 2> bs; // dims 3 and 4
  2569. const std::array<int64_t, 2> nr; // repeat in dims 3 and 4
  2570. const std::array<int64_t, 4> per; // permutation of dimensions
  2571. const bool v; // whether a and b are non-contiguous views
  2572. std::string vars() override {
  2573. return VARS_TO_STR9(type_a, type_b, m, n, k, bs, nr, per, v);
  2574. }
  2575. double max_nmse_err() override {
  2576. return 5e-4;
  2577. }
  2578. int64_t grad_nmax() override {
  2579. return 20000;
  2580. }
  2581. uint64_t op_flops(ggml_tensor * t) override {
  2582. GGML_UNUSED(t);
  2583. return 2 * m * n * k * bs[0] * nr[0] * bs[1] * nr[1];
  2584. }
  2585. test_mul_mat(ggml_type type_a = GGML_TYPE_F32, ggml_type type_b = GGML_TYPE_F32,
  2586. int64_t m = 32, int64_t n = 32, int64_t k = 32,
  2587. std::array<int64_t, 2> bs = {10, 10},
  2588. std::array<int64_t, 2> nr = {2, 2},
  2589. std::array<int64_t, 4> per = {0, 1, 2, 3},
  2590. bool v = false)
  2591. : type_a(type_a), type_b(type_b), m(m), n(n), k(k), bs(bs), nr(nr), per(per), v(v) {}
  2592. ggml_tensor * build_graph(ggml_context * ctx) override {
  2593. // C^T = A * B^T: (k, m) * (k, n) => (m, n)
  2594. ggml_tensor * a;
  2595. ggml_tensor * b;
  2596. const int npermuted = (per[0] != 0) + (per[1] != 1) + (per[2] != 2) + (per[3] != 3);
  2597. if (npermuted > 0) {
  2598. GGML_ASSERT(npermuted == 2);
  2599. GGML_ASSERT(!v); // not handled
  2600. GGML_ASSERT(!ggml_is_quantized(type_a) || per[0] == 0);
  2601. GGML_ASSERT(!ggml_is_quantized(type_b) || per[0] == 0);
  2602. // Create tensors with the permuted dimensions, then permute them back to the dimensions given by m,n,k.
  2603. const int64_t ne_a[4] = {k, m, bs[0], bs[1]};
  2604. const int64_t ne_b[4] = {k, n, bs[0]*nr[0], bs[1]*nr[1]};
  2605. a = ggml_new_tensor_4d(ctx, type_a, ne_a[per[0]], ne_a[per[1]], ne_a[per[2]], ne_a[per[3]]);
  2606. b = ggml_new_tensor_4d(ctx, type_b, ne_b[per[0]], ne_b[per[1]], ne_b[per[2]], ne_b[per[3]]);
  2607. if (!ggml_is_quantized(type_a)) {
  2608. if (bs[1] == 1 && nr[1] == 1) {
  2609. ggml_set_param(a);
  2610. }
  2611. ggml_set_param(b);
  2612. }
  2613. ggml_set_name(a, "a");
  2614. ggml_set_name(b, "b");
  2615. a = ggml_permute(ctx, a, per[0], per[1], per[2], per[3]);
  2616. b = ggml_permute(ctx, b, per[0], per[1], per[2], per[3]);
  2617. ggml_set_name(a, "a_permuted");
  2618. ggml_set_name(b, "b_permuted");
  2619. } else {
  2620. if (v) {
  2621. a = ggml_new_tensor_4d(ctx, type_a, k*2, m, bs[0], bs[1]);
  2622. b = ggml_new_tensor_4d(ctx, type_b, k*2, n, bs[0]*nr[0], bs[1]*nr[1]);
  2623. if (!ggml_is_quantized(type_a)) {
  2624. if (bs[1] == 1 && nr[1] == 1) {
  2625. ggml_set_param(a);
  2626. }
  2627. ggml_set_param(b);
  2628. }
  2629. a = ggml_view_4d(ctx, a, k, m, bs[0], bs[1], a->nb[1], a->nb[2], a->nb[3], 0);
  2630. b = ggml_view_4d(ctx, b, k, n, bs[0]*nr[0], bs[1]*nr[1], b->nb[1], b->nb[2], b->nb[3], 0);
  2631. } else {
  2632. a = ggml_new_tensor_4d(ctx, type_a, k, m, bs[0], bs[1]);
  2633. b = ggml_new_tensor_4d(ctx, type_b, k, n, bs[0]*nr[0], bs[1]*nr[1]);
  2634. if (!ggml_is_quantized(type_a)) {
  2635. if (bs[1] == 1 && nr[1] == 1) {
  2636. ggml_set_param(a);
  2637. }
  2638. ggml_set_param(b);
  2639. }
  2640. }
  2641. ggml_set_name(a, "a");
  2642. ggml_set_name(b, "b");
  2643. }
  2644. ggml_tensor * out = ggml_mul_mat(ctx, a, b);
  2645. ggml_set_name(out, "out");
  2646. return out;
  2647. }
  2648. };
  2649. // GGML_OP_MUL_MAT_ID
  2650. struct test_mul_mat_id : public test_case {
  2651. const ggml_type type_a;
  2652. const ggml_type type_b;
  2653. const int n_mats;
  2654. const int n_used;
  2655. const bool b; // broadcast b matrix
  2656. const int64_t m;
  2657. const int64_t n;
  2658. const int64_t k;
  2659. std::string vars() override {
  2660. return VARS_TO_STR8(type_a, type_b, n_mats, n_used, b, m, n, k);
  2661. }
  2662. double max_nmse_err() override {
  2663. return 5e-4;
  2664. }
  2665. uint64_t op_flops(ggml_tensor * t) override {
  2666. GGML_UNUSED(t);
  2667. return 2 * m * k * n * n_used;
  2668. }
  2669. test_mul_mat_id(ggml_type type_a = GGML_TYPE_F32, ggml_type type_b = GGML_TYPE_F32,
  2670. int n_mats = 8, int n_used = 2, bool b = false,
  2671. int64_t m = 32, int64_t n = 32, int64_t k = 32)
  2672. : type_a(type_a), type_b(type_b), n_mats(n_mats), n_used(n_used), b(b),
  2673. m(m), n(n), k(k) {
  2674. GGML_ASSERT(n_used <= n_mats);
  2675. }
  2676. ggml_tensor * build_graph(ggml_context * ctx) override {
  2677. // C^T = A * B^T: (k, m) * (k, n) => (m, n)
  2678. ggml_tensor * as = ggml_new_tensor_3d(ctx, type_a, k, m, n_mats);
  2679. ggml_set_name(as, "as");
  2680. ggml_tensor * ids = ggml_new_tensor_2d(ctx, GGML_TYPE_I32, n_mats, n);
  2681. ggml_set_name(ids, "ids");
  2682. if (n_used != n_mats) {
  2683. ids = ggml_view_2d(ctx, ids, n_used, n, ids->nb[1], 0);
  2684. ggml_set_name(ids, "view_of_ids");
  2685. }
  2686. ggml_tensor * b = ggml_new_tensor_3d(ctx, type_b, k, this->b ? 1 : n_used, n);
  2687. ggml_set_name(b, "b");
  2688. ggml_tensor * out = ggml_mul_mat_id(ctx, as, b, ids);
  2689. ggml_set_name(out, "out");
  2690. return out;
  2691. }
  2692. void initialize_tensors(ggml_context * ctx) override {
  2693. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  2694. if (t->type == GGML_TYPE_I32) {
  2695. if (ggml_is_view_op(t->op)) { continue; }
  2696. std::random_device rd;
  2697. std::default_random_engine rng(rd());
  2698. // ids
  2699. for (int64_t r = 0; r < ggml_nrows(t); r++) {
  2700. std::vector<int32_t> data(t->ne[0]);
  2701. for (int i = 0; i < t->ne[0]; i++) {
  2702. data[i] = i % n_mats;
  2703. }
  2704. std::shuffle(data.begin(), data.end(), rng);
  2705. ggml_backend_tensor_set(t, data.data(), r * t->nb[1], t->ne[0] * sizeof(int32_t));
  2706. }
  2707. } else {
  2708. init_tensor_uniform(t);
  2709. }
  2710. }
  2711. }
  2712. };
  2713. // GGML_OP_OUT_PROD
  2714. struct test_out_prod : public test_case {
  2715. const ggml_type type_a;
  2716. const ggml_type type_b;
  2717. const int64_t m;
  2718. const int64_t n;
  2719. const int64_t k;
  2720. const std::array<int64_t, 2> bs; // dims 3 and 4
  2721. const std::array<int64_t, 2> nr; // repeat in dims 3 and 4
  2722. const bool trans_b;
  2723. std::string vars() override {
  2724. return VARS_TO_STR8(type_a, type_b, m, n, k, bs, nr, trans_b);
  2725. }
  2726. double max_nmse_err() override {
  2727. return 5e-4;
  2728. }
  2729. test_out_prod(ggml_type type_a = GGML_TYPE_F32, ggml_type type_b = GGML_TYPE_F32,
  2730. int64_t m = 32, int64_t n = 32, int64_t k = 32,
  2731. std::array<int64_t, 2> bs = {10, 10},
  2732. std::array<int64_t, 2> nr = {2, 2},
  2733. bool trans_b = false)
  2734. : type_a(type_a), type_b(type_b), m(m), n(n), k(k), bs(bs), nr(nr), trans_b(trans_b) {}
  2735. ggml_tensor * build_graph(ggml_context * ctx) override {
  2736. ggml_tensor * a = ggml_new_tensor_4d(ctx, type_a, m, k, bs[0], bs[1]);
  2737. ggml_set_name(a, "a");
  2738. ggml_tensor * b;
  2739. if (trans_b) {
  2740. b = ggml_new_tensor_4d(ctx, type_b, k, n, bs[0]*nr[0], bs[1]*nr[1]);
  2741. b = ggml_transpose(ctx, b);
  2742. } else {
  2743. b = ggml_new_tensor_4d(ctx, type_b, n, k, bs[0]*nr[0], bs[1]*nr[1]);
  2744. }
  2745. ggml_set_name(b, "b");
  2746. ggml_tensor * out = ggml_out_prod(ctx, a, b);
  2747. ggml_set_name(out, "out");
  2748. return out;
  2749. }
  2750. };
  2751. // GGML_OP_SQR
  2752. struct test_sqr : public test_case {
  2753. const ggml_type type;
  2754. const std::array<int64_t, 4> ne;
  2755. std::string vars() override {
  2756. return VARS_TO_STR2(type, ne);
  2757. }
  2758. test_sqr(ggml_type type = GGML_TYPE_F32,
  2759. std::array<int64_t, 4> ne = {10, 5, 4, 3})
  2760. : type(type), ne(ne) {}
  2761. ggml_tensor * build_graph(ggml_context * ctx) override {
  2762. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  2763. ggml_set_param(a);
  2764. ggml_set_name(a, "a");
  2765. ggml_tensor * out = ggml_sqr(ctx, a);
  2766. ggml_set_name(out, "out");
  2767. return out;
  2768. }
  2769. float grad_eps() override {
  2770. return 0.1f * 0.25f*ne[0]*ne[1]*ne[2]*ne[3]; // 10% of expected value of sum.
  2771. }
  2772. };
  2773. // GGML_OP_SQRT
  2774. struct test_sqrt : public test_case {
  2775. const ggml_type type;
  2776. const std::array<int64_t, 4> ne;
  2777. std::string vars() override {
  2778. return VARS_TO_STR2(type, ne);
  2779. }
  2780. test_sqrt(ggml_type type = GGML_TYPE_F32,
  2781. std::array<int64_t, 4> ne = {10, 3, 3, 2})
  2782. : type(type), ne(ne) {}
  2783. ggml_tensor * build_graph(ggml_context * ctx) override {
  2784. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  2785. ggml_set_param(a);
  2786. ggml_set_name(a, "a");
  2787. ggml_tensor * out = ggml_sqrt(ctx, a);
  2788. ggml_set_name(out, "out");
  2789. return out;
  2790. }
  2791. void initialize_tensors(ggml_context * ctx) override {
  2792. // fill with positive values
  2793. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  2794. init_tensor_uniform(t, 50.0f, 100.0f);
  2795. }
  2796. }
  2797. float grad_eps() override {
  2798. return 20.0f;
  2799. }
  2800. bool grad_precise() override {
  2801. return true;
  2802. }
  2803. };
  2804. // GGML_OP_LOG
  2805. struct test_log : public test_case {
  2806. const ggml_type type;
  2807. const std::array<int64_t, 4> ne;
  2808. std::string vars() override {
  2809. return VARS_TO_STR2(type, ne);
  2810. }
  2811. test_log(ggml_type type = GGML_TYPE_F32,
  2812. std::array<int64_t, 4> ne = {10, 5, 4, 3})
  2813. : type(type), ne(ne) {}
  2814. ggml_tensor * build_graph(ggml_context * ctx) override {
  2815. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  2816. ggml_set_param(a);
  2817. ggml_set_name(a, "a");
  2818. ggml_tensor * out = ggml_log(ctx, a);
  2819. ggml_set_name(out, "out");
  2820. return out;
  2821. }
  2822. void initialize_tensors(ggml_context * ctx) override {
  2823. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  2824. // log(1) == 0, cluster values there to keep the sum low for better precision in the backward pass:
  2825. init_tensor_uniform(t, 0.9f, 1.1f);
  2826. }
  2827. }
  2828. bool grad_precise() override {
  2829. return true;
  2830. }
  2831. };
  2832. // GGML_OP_SIN
  2833. struct test_sin : public test_case {
  2834. const ggml_type type;
  2835. const std::array<int64_t, 4> ne;
  2836. std::string vars() override {
  2837. return VARS_TO_STR2(type, ne);
  2838. }
  2839. test_sin(ggml_type type = GGML_TYPE_F32,
  2840. std::array<int64_t, 4> ne = {10, 2, 2, 2})
  2841. : type(type), ne(ne) {}
  2842. ggml_tensor * build_graph(ggml_context * ctx) override {
  2843. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  2844. ggml_set_param(a);
  2845. ggml_set_name(a, "a");
  2846. ggml_tensor * out = ggml_sin(ctx, a);
  2847. ggml_set_name(out, "out");
  2848. return out;
  2849. }
  2850. void initialize_tensors(ggml_context * ctx) override {
  2851. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  2852. init_tensor_uniform(t, -6.5f, 6.5f); // Covers interval [-2*pi, 2*pi].
  2853. }
  2854. }
  2855. double max_maa_err() override {
  2856. return 1e-3;
  2857. }
  2858. float grad_eps() override {
  2859. return 0.2f;
  2860. }
  2861. bool grad_precise() override {
  2862. return true;
  2863. }
  2864. };
  2865. // GGML_OP_COS
  2866. struct test_cos : public test_case {
  2867. const ggml_type type;
  2868. const std::array<int64_t, 4> ne;
  2869. std::string vars() override {
  2870. return VARS_TO_STR2(type, ne);
  2871. }
  2872. test_cos(ggml_type type = GGML_TYPE_F32,
  2873. std::array<int64_t, 4> ne = {10, 2, 2, 2})
  2874. : type(type), ne(ne) {}
  2875. ggml_tensor * build_graph(ggml_context * ctx) override {
  2876. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  2877. ggml_set_param(a);
  2878. ggml_set_name(a, "a");
  2879. ggml_tensor * out = ggml_cos(ctx, a);
  2880. ggml_set_name(out, "out");
  2881. return out;
  2882. }
  2883. void initialize_tensors(ggml_context * ctx) override {
  2884. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  2885. init_tensor_uniform(t, -6.5f, 6.5f); // Covers interval [-2*pi, 2*pi].
  2886. }
  2887. }
  2888. double max_maa_err() override {
  2889. return 1e-3;
  2890. }
  2891. float grad_eps() override {
  2892. return 0.2f;
  2893. }
  2894. bool grad_precise() override {
  2895. return true;
  2896. }
  2897. };
  2898. // GGML_OP_CLAMP
  2899. struct test_clamp : public test_case {
  2900. const ggml_type type;
  2901. const std::array<int64_t, 4> ne;
  2902. float min;
  2903. float max;
  2904. std::string vars() override {
  2905. return VARS_TO_STR4(type, ne, min, max);
  2906. }
  2907. test_clamp(ggml_type type = GGML_TYPE_F32,
  2908. std::array<int64_t, 4> ne = {10, 5, 4, 3},
  2909. float min = -0.5f, float max = 0.5f)
  2910. : type(type), ne(ne), min(min), max(max) {}
  2911. ggml_tensor * build_graph(ggml_context * ctx) override {
  2912. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  2913. ggml_set_name(a, "a");
  2914. ggml_tensor * out = ggml_clamp(ctx, a, min, max);
  2915. ggml_set_name(out, "out");
  2916. return out;
  2917. }
  2918. float grad_eps() override {
  2919. return 1e-2f;
  2920. }
  2921. std::vector<float> grad_expect() override {
  2922. return {0.0f, 1.0f};
  2923. }
  2924. };
  2925. // GGML_OP_DIAG_MASK_INF
  2926. struct test_diag_mask_inf : public test_case {
  2927. const ggml_type type;
  2928. const std::array<int64_t, 4> ne;
  2929. const int n_past;
  2930. std::string vars() override {
  2931. return VARS_TO_STR3(type, ne, n_past);
  2932. }
  2933. test_diag_mask_inf(ggml_type type = GGML_TYPE_F32,
  2934. std::array<int64_t, 4> ne = {10, 10, 3, 2},
  2935. int n_past = 5)
  2936. : type(type), ne(ne), n_past(n_past) {}
  2937. ggml_tensor * build_graph(ggml_context * ctx) override {
  2938. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  2939. ggml_set_param(a);
  2940. ggml_set_name(a, "a");
  2941. ggml_tensor * out = ggml_diag_mask_inf(ctx, a, n_past);
  2942. ggml_set_name(out, "out");
  2943. return out;
  2944. }
  2945. };
  2946. // GGML_OP_SOFT_MAX
  2947. struct test_soft_max : public test_case {
  2948. const ggml_type type;
  2949. const std::array<int64_t, 4> ne;
  2950. const bool mask;
  2951. const bool sinks;
  2952. const ggml_type m_prec;
  2953. const std::array<int64_t, 2> nr23; // broadcast only dims 2 and 3
  2954. const float scale;
  2955. const float max_bias;
  2956. std::string vars() override {
  2957. return VARS_TO_STR8(type, ne, mask, sinks, m_prec, nr23, scale, max_bias);
  2958. }
  2959. // the 1024 test with bias occasionally fails:
  2960. // SOFT_MAX(type=f32,ne=[1024,16,1,1],mask=1,scale=1.000000,max_bias=8.000000): [SOFT_MAX] NMSE = 0.000000103 > 0.000000100 FAIL
  2961. virtual double max_nmse_err() override {
  2962. return 1e-6;
  2963. }
  2964. test_soft_max(ggml_type type = GGML_TYPE_F32,
  2965. std::array<int64_t, 4> ne = {10, 5, 4, 3},
  2966. bool mask = false,
  2967. bool sinks = false,
  2968. ggml_type m_prec = GGML_TYPE_F32,
  2969. std::array<int64_t, 2> nr23 = {1, 1},
  2970. float scale = 1.0f,
  2971. float max_bias = 0.0f)
  2972. : type(type), ne(ne), mask(mask), sinks(sinks), m_prec(m_prec), nr23(nr23), scale(scale), max_bias(max_bias) {}
  2973. ggml_tensor * build_graph(ggml_context * ctx) override {
  2974. ggml_tensor * a = ggml_new_tensor_4d(ctx, type, ne[0], ne[1], ne[2]*nr23[0], ne[3]*nr23[1]);
  2975. ggml_set_param(a);
  2976. ggml_set_name(a, "a");
  2977. ggml_tensor * mask = nullptr;
  2978. if (this->mask) {
  2979. mask = ggml_new_tensor_4d(ctx, m_prec, ne[0], ne[1], ne[2], ne[3]);
  2980. ggml_set_name(mask, "mask");
  2981. }
  2982. ggml_tensor * sinks = nullptr;
  2983. if (this->sinks) {
  2984. sinks = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, ne[2]*nr23[0]);
  2985. ggml_set_name(sinks, "sinks");
  2986. }
  2987. ggml_tensor * out = ggml_soft_max_ext(ctx, a, mask, scale, max_bias);
  2988. ggml_soft_max_add_sinks(out, sinks);
  2989. ggml_set_name(out, "out");
  2990. return out;
  2991. }
  2992. bool grad_precise() override {
  2993. return true;
  2994. }
  2995. };
  2996. // GGML_OP_SOFT_MAX_BACK
  2997. struct test_soft_max_back : public test_case {
  2998. const ggml_type type;
  2999. const std::array<int64_t, 4> ne;
  3000. const float scale;
  3001. const float max_bias;
  3002. std::string vars() override {
  3003. return VARS_TO_STR4(type, ne, scale, max_bias);
  3004. }
  3005. test_soft_max_back(ggml_type type = GGML_TYPE_F32,
  3006. std::array<int64_t, 4> ne = {10, 5, 4, 3},
  3007. float scale = 1.0f,
  3008. float max_bias = 0.0f)
  3009. : type(type), ne(ne), scale(scale), max_bias(max_bias) {}
  3010. ggml_tensor * build_graph(ggml_context * ctx) override {
  3011. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  3012. ggml_set_name(a, "a");
  3013. ggml_tensor * b = ggml_new_tensor(ctx, type, 4, ne.data());
  3014. ggml_set_name(a, "a");
  3015. ggml_tensor * out = ggml_soft_max_ext_back(ctx, a, b, scale, max_bias);
  3016. ggml_set_name(out, "out");
  3017. return out;
  3018. }
  3019. };
  3020. // GGML_OP_ROPE + GGML_OP_ROPE_BACK
  3021. struct test_rope : public test_case {
  3022. const ggml_type type;
  3023. const std::array<int64_t, 4> ne_a;
  3024. int n_dims;
  3025. int mode;
  3026. int n_ctx; // used to generate positions
  3027. float fs; // freq_scale
  3028. float ef; // ext_factor
  3029. float af; // attn_factor
  3030. bool ff;
  3031. int v; // view (1 : non-contiguous a)
  3032. bool forward;
  3033. std::string vars() override {
  3034. // forward can be inferred from the op, does not need to be printed
  3035. return VARS_TO_STR10(type, ne_a, n_dims, mode, n_ctx, fs, ef, af, ff, v);
  3036. }
  3037. test_rope(ggml_type type = GGML_TYPE_F32,
  3038. std::array<int64_t, 4> ne_a = {10, 5, 3, 1},
  3039. int n_dims = 10, int mode = 0, int n_ctx = 512, float fs = 1.0f,
  3040. float ef = 0.0f, float af = 0.0f, bool ff = false, int v = 0, bool forward = true)
  3041. : type(type), ne_a(ne_a), n_dims(n_dims), mode(mode), n_ctx(n_ctx), fs(fs), ef(ef), af(af), ff(ff), v(v), forward(forward) {}
  3042. ggml_tensor * build_graph(ggml_context * ctx) override {
  3043. ggml_tensor * a;
  3044. if (v & 1) {
  3045. auto ne = ne_a; ne[0] *= 2; ne[1] *= 4; ne[2] *= 3;
  3046. a = ggml_new_tensor(ctx, type, 4, ne.data());
  3047. if (forward) {
  3048. ggml_set_param(a);
  3049. }
  3050. ggml_set_name(a, "a");
  3051. a = ggml_view_4d(ctx, a, ne_a[0], ne_a[1], ne_a[2], ne_a[3], a->nb[1], a->nb[2], a->nb[3], 0);
  3052. ggml_set_name(a, "view_of_a");
  3053. } else {
  3054. a = ggml_new_tensor(ctx, type, 4, ne_a.data());
  3055. if (forward) {
  3056. ggml_set_param(a);
  3057. }
  3058. ggml_set_name(a, "a");
  3059. }
  3060. const bool is_mrope = mode & GGML_ROPE_TYPE_MROPE;
  3061. const bool is_vision = mode == GGML_ROPE_TYPE_VISION;
  3062. ggml_tensor * pos;
  3063. if (is_mrope || is_vision) {
  3064. pos = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, ne_a[2] * 4);
  3065. } else {
  3066. pos = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, ne_a[2]);
  3067. }
  3068. ggml_set_name(pos, "pos");
  3069. ggml_tensor * freq = nullptr;
  3070. if (ff) {
  3071. freq = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_dims/2);
  3072. ggml_set_name(freq, "freq");
  3073. }
  3074. ggml_tensor * out;
  3075. if (is_mrope) {
  3076. if (is_vision) {
  3077. GGML_ASSERT(n_dims/4 > 0);
  3078. int rope_sections[4] = {n_dims/4, n_dims/4, 0, 0}; // Vision-RoPE only use first two dimension for image (x, y) coordinate
  3079. if (forward) {
  3080. out = ggml_rope_multi (ctx, a, pos, freq, n_dims/2, rope_sections, mode, 0, 10000.0f, fs, ef, af, 1.0f, 1.0f);
  3081. } else {
  3082. out = ggml_rope_multi_back(ctx, a, pos, freq, n_dims/2, rope_sections, mode, 0, 10000.0f, fs, ef, af, 1.0f, 1.0f);
  3083. }
  3084. } else {
  3085. GGML_ASSERT(n_dims/3 > 0);
  3086. int rope_sections[4] = {n_dims/3, n_dims/3, n_dims/3, 0};
  3087. if (forward) {
  3088. out = ggml_rope_multi (ctx, a, pos, freq, n_dims, rope_sections, mode, 0, 10000.0f, fs, ef, af, 1.0f, 1.0f);
  3089. } else {
  3090. out = ggml_rope_multi_back(ctx, a, pos, freq, n_dims, rope_sections, mode, 0, 10000.0f, fs, ef, af, 1.0f, 1.0f);
  3091. }
  3092. }
  3093. } else {
  3094. if (forward) {
  3095. out = ggml_rope_ext (ctx, a, pos, freq, n_dims, mode, 0, 10000.0f, fs, ef, af, 1.0f, 1.0f);
  3096. } else {
  3097. out = ggml_rope_ext_back(ctx, a, pos, freq, n_dims, mode, 0, 10000.0f, fs, ef, af, 1.0f, 1.0f);
  3098. }
  3099. // TODO: add test with a non-contiguous view as input ; this case is needed for build_rope_2d in clip.cpp
  3100. }
  3101. ggml_set_name(out, "out");
  3102. return out;
  3103. }
  3104. void initialize_tensors(ggml_context * ctx) override {
  3105. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  3106. if (t->type == GGML_TYPE_I32) {
  3107. // pos
  3108. const int num_pos_ids = (mode & GGML_ROPE_TYPE_MROPE) ? ne_a[2] * 4 : ne_a[2];
  3109. std::vector<int> data(num_pos_ids);
  3110. for (int i = 0; i < num_pos_ids; i++) {
  3111. data[i] = rand() % n_ctx;
  3112. }
  3113. ggml_backend_tensor_set(t, data.data(), 0, num_pos_ids * sizeof(int));
  3114. } else {
  3115. if (t->ne[0] == n_dims/2) {
  3116. // frequency factors in the range [0.9f, 1.1f]
  3117. init_tensor_uniform(t, 0.9f, 1.1f);
  3118. } else {
  3119. init_tensor_uniform(t);
  3120. }
  3121. }
  3122. }
  3123. }
  3124. double max_maa_err() override {
  3125. return 1e-3;
  3126. }
  3127. bool grad_precise() override {
  3128. return true;
  3129. }
  3130. };
  3131. // GGML_OP_POOL2D
  3132. struct test_pool2d : public test_case {
  3133. enum ggml_op_pool pool_type;
  3134. const ggml_type type_input;
  3135. const std::array<int64_t, 4> ne_input;
  3136. // kernel size
  3137. const int k0;
  3138. const int k1;
  3139. // stride
  3140. const int s0;
  3141. const int s1;
  3142. // padding
  3143. const int p0;
  3144. const int p1;
  3145. std::string vars() override {
  3146. return VARS_TO_STR9(pool_type, type_input, ne_input, k0, k1, s0, s1, p0, p1);
  3147. }
  3148. test_pool2d(ggml_op_pool pool_type = GGML_OP_POOL_AVG,
  3149. ggml_type type_input = GGML_TYPE_F32,
  3150. std::array<int64_t, 4> ne_input = {10, 10, 3, 1}, // [input_width, input_height, input_channels, 1]
  3151. int k0 = 3, int k1 = 3,
  3152. int s0 = 1, int s1 = 1,
  3153. int p0 = 1, int p1 = 1)
  3154. : pool_type(pool_type), type_input(type_input), ne_input(ne_input), k0(k0), k1(k1), s0(s0), s1(s1), p0(p0), p1(p1) {}
  3155. ggml_tensor * build_graph(ggml_context * ctx) override {
  3156. ggml_tensor * input = ggml_new_tensor(ctx, type_input, 4, ne_input.data());
  3157. ggml_set_param(input);
  3158. ggml_set_name(input, "input");
  3159. ggml_tensor * out = ggml_pool_2d(ctx, input, pool_type, k0, k1, s0, s1, p0, p1);
  3160. ggml_set_name(out, "out");
  3161. return out;
  3162. }
  3163. };
  3164. // GGML_OP_CONV_TRANSPOSE_1D
  3165. struct test_conv_transpose_1d : public test_case {
  3166. const std::array<int64_t, 4> ne_input;
  3167. const std::array<int64_t, 4> ne_kernel;
  3168. const int s0; // stride
  3169. const int p0; // padding
  3170. const int d0; // dilation
  3171. std::string vars() override {
  3172. return VARS_TO_STR5(ne_input, ne_kernel, s0, p0, d0);
  3173. }
  3174. test_conv_transpose_1d(std::array<int64_t, 4> ne_input = {197, 32, 1, 1}, // [input_width, input_channels, 1 /* assert in cpu kernel*/, 1 (should be batch)]
  3175. std::array<int64_t, 4> ne_kernel = {16, 32, 32, 1}, // [kernel_width, output_channels, input_channels, 1 (should be batch)]
  3176. int s0 = 1, int p0 = 0, int d0 = 1)
  3177. : ne_input(ne_input), ne_kernel(ne_kernel), s0(s0), p0(p0), d0(d0) {}
  3178. ggml_tensor * build_graph(ggml_context * ctx) override {
  3179. ggml_tensor * input = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne_input.data());
  3180. ggml_set_name(input, "input");
  3181. ggml_tensor * kernel = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne_kernel.data());
  3182. ggml_set_name(kernel, "kernel");
  3183. ggml_tensor * out = ggml_conv_transpose_1d(ctx, kernel, input, s0, p0, d0);
  3184. ggml_set_name(out, "out");
  3185. return out;
  3186. }
  3187. };
  3188. // GGML_OP_CONV_TRANSPOSE_2D
  3189. struct test_conv_transpose_2d : public test_case {
  3190. const std::array<int64_t, 4> ne_input;
  3191. const std::array<int64_t, 4> ne_kernel;
  3192. const int stride;
  3193. std::string vars() override {
  3194. return VARS_TO_STR3(ne_input, ne_kernel, stride);
  3195. }
  3196. test_conv_transpose_2d(std::array<int64_t, 4> ne_input = {10, 10, 3, 1}, // [input_width, input_height, input_channels, 1]
  3197. std::array<int64_t, 4> ne_kernel = {3, 3, 3, 1}, // [kernel_width, kernel_height, input_channels, 1]
  3198. int stride = 1)
  3199. : ne_input(ne_input), ne_kernel(ne_kernel), stride(stride){}
  3200. ggml_tensor * build_graph(ggml_context * ctx) override {
  3201. ggml_tensor * input = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne_input.data());
  3202. ggml_set_name(input, "input");
  3203. ggml_tensor * kernel = ggml_new_tensor(ctx, GGML_TYPE_F16, 4, ne_kernel.data());
  3204. ggml_set_name(kernel, "kernel");
  3205. ggml_tensor * out = ggml_conv_transpose_2d_p0(ctx, kernel, input, stride);
  3206. ggml_set_name(out, "out");
  3207. return out;
  3208. }
  3209. };
  3210. // GGML_OP_IM2COL
  3211. struct test_im2col : public test_case {
  3212. const ggml_type type_input;
  3213. const ggml_type type_kernel;
  3214. const ggml_type dst_type;
  3215. const std::array<int64_t, 4> ne_input;
  3216. const std::array<int64_t, 4> ne_kernel;
  3217. // stride
  3218. const int s0;
  3219. const int s1;
  3220. // padding
  3221. const int p0;
  3222. const int p1;
  3223. // dilation
  3224. const int d0;
  3225. const int d1;
  3226. // mode
  3227. const bool is_2D;
  3228. std::string vars() override {
  3229. return VARS_TO_STR12(type_input, type_kernel, dst_type, ne_input, ne_kernel, s0, s1, p0, p1, d0, d1, is_2D);
  3230. }
  3231. test_im2col(ggml_type type_input = GGML_TYPE_F32, ggml_type type_kernel = GGML_TYPE_F16, ggml_type dst_type = GGML_TYPE_F32,
  3232. std::array<int64_t, 4> ne_input = {10, 10, 3, 1}, // [input_width, input_height, input_channels, 1]
  3233. std::array<int64_t, 4> ne_kernel = {3, 3, 3, 1}, // [kernel_width, kernel_height, input_channels, 1]
  3234. int s0 = 1, int s1 = 1,
  3235. int p0 = 1, int p1 = 1,
  3236. int d0 = 1, int d1 = 1,
  3237. bool is_2D = true)
  3238. : type_input(type_input), type_kernel(type_kernel), dst_type(dst_type), ne_input(ne_input), ne_kernel(ne_kernel), s0(s0), s1(s1), p0(p0), p1(p1), d0(d0), d1(d1), is_2D(is_2D) {}
  3239. ggml_tensor * build_graph(ggml_context * ctx) override {
  3240. ggml_tensor * input = ggml_new_tensor(ctx, type_input, 4, ne_input.data());
  3241. ggml_set_param(input);
  3242. ggml_set_name(input, "input");
  3243. ggml_tensor * kernel = ggml_new_tensor(ctx, type_kernel, 4, ne_kernel.data());
  3244. ggml_set_name(kernel, "kernel");
  3245. ggml_tensor * out = ggml_im2col(ctx, kernel, input, s0, s1, p0, p1, d0, d1, is_2D, dst_type);
  3246. ggml_set_name(out, "out");
  3247. return out;
  3248. }
  3249. };
  3250. // CONV_2D
  3251. struct test_conv_2d : public test_case {
  3252. const std::array<int64_t, 4> ne_input;
  3253. const std::array<int64_t, 4> ne_kernel;
  3254. const ggml_type type_kernel;
  3255. const int stride0;
  3256. const int stride1;
  3257. const int padding0;
  3258. const int padding1;
  3259. const int dilation0;
  3260. const int dilation1;
  3261. // Whether the inputs are contiguous in the channel dim or the width dim
  3262. const bool cwhn;
  3263. // If true, the direct CONV_2D will be used in the graph, otherwise it
  3264. // uses ggml_conv_2d:
  3265. // * if the program is called with -o CONV_2D_DIRECT_IMPL, the
  3266. // CONV_2D graph will be built, while
  3267. // * if the program is called with -o CONV_2D_INDIRECT_IMPL, the
  3268. // IM2COL -> MUL_MM graph will be built.
  3269. std::string vars() override {
  3270. return VARS_TO_STR10(ne_input, ne_kernel, type_kernel, stride0, stride1, padding0, padding1, dilation0, dilation1, cwhn);
  3271. }
  3272. double max_nmse_err() override {
  3273. return 5e-4;
  3274. }
  3275. uint64_t op_flops(ggml_tensor * t) override {
  3276. GGML_UNUSED(t);
  3277. // Just counting matmul costs:
  3278. // KxCRS @ CRSxNPQ = KxNPQ --> KxNPQx(CRS+CRS-1) flops
  3279. // Copied from ggml.c: int64_t ggml_calc_conv_output_size(int64_t ins, int64_t ks, int s, int p, int d)
  3280. auto calc_conv_output_size = [](int64_t ins, int64_t ks, int s, int p, int d) -> int64_t {
  3281. return (ins + 2 * p - d * (ks - 1) - 1) / s + 1;
  3282. };
  3283. int64_t W = ne_input[0];
  3284. int64_t H = ne_input[1];
  3285. int64_t KW = ne_kernel[0];
  3286. int64_t KH = ne_kernel[1];
  3287. int64_t Cin = ne_kernel[2];
  3288. int64_t Cout = ne_kernel[3];
  3289. int64_t N = ne_input[3];
  3290. int64_t OH = calc_conv_output_size(H, KH, stride0, padding0, dilation0);
  3291. int64_t OW = calc_conv_output_size(W, KW, stride0, padding0, dilation0);
  3292. int64_t K = Cout;
  3293. int64_t CRS = Cin * KH * KW;
  3294. int64_t NPQ = N * OH * OW;
  3295. return K * NPQ * (2 * CRS - 1);
  3296. }
  3297. test_conv_2d(std::array<int64_t, 4> ne_input = { 64, 64, 16, 1 },
  3298. std::array<int64_t, 4> ne_kernel = { 3, 3, 1, 16 }, ggml_type type_kernel = GGML_TYPE_F32, int stride0 = 1,
  3299. int stride1 = 1, int padding0 = 0, int padding1 = 0, int dilation0 = 1, int dilation1 = 1, bool cwhn = false) :
  3300. ne_input(ne_input),
  3301. ne_kernel(ne_kernel),
  3302. type_kernel(type_kernel),
  3303. stride0(stride0),
  3304. stride1(stride1),
  3305. padding0(padding0),
  3306. padding1(padding1),
  3307. dilation0(dilation0),
  3308. dilation1(dilation1),
  3309. cwhn(cwhn) {}
  3310. ggml_tensor * build_graph(ggml_context * ctx) override {
  3311. ggml_tensor * input = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne_input.data());
  3312. ggml_set_name(input, "input");
  3313. ggml_tensor * kernel = ggml_new_tensor(ctx, type_kernel, 4, ne_kernel.data());
  3314. ggml_set_name(kernel, "kernel");
  3315. if (cwhn) {
  3316. // change memory layout to channel-most-contiguous (CWHN),
  3317. // then permute it back so NE matches the original input
  3318. input = ggml_cont(ctx, ggml_permute(ctx, input, 1, 2, 0, 3));
  3319. input = ggml_permute(ctx, input, 2, 0, 1, 3);
  3320. kernel = ggml_cont(ctx, ggml_permute(ctx, kernel, 2, 3, 1, 0));
  3321. kernel = ggml_permute(ctx, kernel, 3, 2, 0, 1);
  3322. }
  3323. ggml_tensor * out =
  3324. ggml_conv_2d_direct(ctx, kernel, input, stride0, stride1, padding0, padding1, dilation0, dilation1);
  3325. ggml_set_name(out, "out");
  3326. return out;
  3327. }
  3328. };
  3329. // GGML_OP_CONV_2D_DW
  3330. struct test_conv_2d_dw : public test_case {
  3331. const std::array<int64_t, 4> ne_input;
  3332. const std::array<int64_t, 4> ne_kernel;
  3333. const int stride;
  3334. const int padding;
  3335. const int dilation;
  3336. const bool cwhn;
  3337. std::string vars() override {
  3338. return VARS_TO_STR6(ne_input, ne_kernel, stride, padding, dilation, cwhn);
  3339. }
  3340. test_conv_2d_dw(std::array<int64_t, 4> ne_input = {64, 64, 16, 1},
  3341. std::array<int64_t, 4> ne_kernel = {3, 3, 1, 16},
  3342. int stride = 1, int padding = 0, int dilation = 1, bool cwhn = false)
  3343. : ne_input(ne_input), ne_kernel(ne_kernel), stride(stride), padding(padding), dilation(dilation), cwhn(cwhn) {}
  3344. ggml_tensor * build_graph(ggml_context * ctx) override {
  3345. ggml_tensor * input = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne_input.data());
  3346. ggml_set_name(input, "input");
  3347. ggml_tensor * kernel = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne_kernel.data());
  3348. ggml_set_name(kernel, "kernel");
  3349. if (cwhn) {
  3350. // change memory layout to channel-most-contiguous (CWHN),
  3351. // then permute it back so NE matches the original input
  3352. input = ggml_cont(ctx, ggml_permute(ctx, input, 1, 2, 0, 3));
  3353. input = ggml_permute(ctx, input, 2, 0, 1, 3);
  3354. kernel = ggml_cont(ctx, ggml_permute(ctx, kernel, 2, 3, 1, 0));
  3355. kernel = ggml_permute(ctx, kernel, 3, 2, 0, 1);
  3356. }
  3357. ggml_tensor * out = ggml_conv_2d_dw_direct(
  3358. ctx, kernel, input,
  3359. stride, stride, padding, padding, dilation, dilation);
  3360. ggml_set_name(out, "out");
  3361. return out;
  3362. }
  3363. };
  3364. // GGML_OP_CONCAT
  3365. struct test_concat : public test_case {
  3366. const ggml_type type;
  3367. const std::array<int64_t, 4> ne_a;
  3368. const int64_t ne_b_d;
  3369. const int dim;
  3370. const int v; // view (1 << 0: non-cont a, 1 << 1: non-cont b)
  3371. std::string vars() override {
  3372. return VARS_TO_STR5(type, ne_a, ne_b_d, dim, v);
  3373. }
  3374. test_concat(ggml_type type = GGML_TYPE_F32,
  3375. std::array<int64_t, 4> ne_a = {10, 5, 5, 5},
  3376. int64_t ne_b_d = 5,
  3377. int dim = 2, int v = 0)
  3378. : type(type), ne_a(ne_a), ne_b_d(ne_b_d), dim(dim), v(v) {}
  3379. ggml_tensor * build_graph(ggml_context * ctx) override {
  3380. auto ne_b = ne_a;
  3381. ne_b[dim] = ne_b_d;
  3382. ggml_tensor * a;
  3383. if (v & 1) {
  3384. auto ne = ne_a; ne[0] *= 2; ne[1] *= 4; ne[2] *= 3;
  3385. a = ggml_new_tensor(ctx, type, 4, ne.data());
  3386. ggml_set_name(a, "a");
  3387. a = ggml_view_4d(ctx, a, ne_a[0], ne_a[1], ne_a[2], ne_a[3], a->nb[1], a->nb[2], a->nb[3], 0);
  3388. ggml_set_name(a, "view_of_a");
  3389. } else {
  3390. a = ggml_new_tensor(ctx, type, 4, ne_a.data());
  3391. ggml_set_name(a, "a");
  3392. }
  3393. ggml_tensor * b;
  3394. if (v & 2) {
  3395. auto ne = ne_b; ne[0] *= 3; ne[1] *= 2; ne[2] *= 4;
  3396. b = ggml_new_tensor(ctx, type, 4, ne.data());
  3397. ggml_set_name(b, "b");
  3398. b = ggml_view_4d(ctx, b, ne_b[0], ne_b[1], ne_b[2], ne_b[3], b->nb[1], b->nb[2], b->nb[3], 0);
  3399. ggml_set_name(b, "view_of_b");
  3400. } else {
  3401. b = ggml_new_tensor(ctx, type, 4, ne_b.data());
  3402. ggml_set_name(b, "b");
  3403. }
  3404. ggml_tensor * out = ggml_concat(ctx, a, b, dim);
  3405. ggml_set_name(out, "out");
  3406. return out;
  3407. }
  3408. };
  3409. // GGML_OP_ARGSORT
  3410. struct test_argsort : public test_case {
  3411. const ggml_type type;
  3412. const std::array<int64_t, 4> ne;
  3413. ggml_sort_order order;
  3414. std::string vars() override {
  3415. return VARS_TO_STR3(type, ne, order);
  3416. }
  3417. test_argsort(ggml_type type = GGML_TYPE_F32,
  3418. std::array<int64_t, 4> ne = {16, 10, 10, 10},
  3419. ggml_sort_order order = GGML_SORT_ORDER_ASC)
  3420. : type(type), ne(ne), order(order) {}
  3421. ggml_tensor * build_graph(ggml_context * ctx) override {
  3422. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  3423. ggml_set_name(a, "a");
  3424. ggml_tensor * out = ggml_argsort(ctx, a, order);
  3425. ggml_set_name(out, "out");
  3426. return out;
  3427. }
  3428. void initialize_tensors(ggml_context * ctx) override {
  3429. std::random_device rd;
  3430. std::default_random_engine rng(rd());
  3431. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  3432. if (t->type == GGML_TYPE_I32) {
  3433. // indices
  3434. std::vector<int> data(ggml_nelements(t));
  3435. for (int i = 0; i < ggml_nelements(t); i++) {
  3436. data[i] = rand();
  3437. }
  3438. std::shuffle(data.begin(), data.end(), rng);
  3439. ggml_backend_tensor_set(t, data.data(), 0, ne[0]*ne[1]*ne[2]*ne[3] * sizeof(int));
  3440. } else if (t->type == GGML_TYPE_F32) {
  3441. // initialize with unique values to avoid ties
  3442. for (int64_t r = 0; r < ggml_nrows(t); r++) {
  3443. std::vector<float> data(t->ne[0]);
  3444. for (int i = 0; i < t->ne[0]; i++) {
  3445. data[i] = i;
  3446. }
  3447. std::shuffle(data.begin(), data.end(), rng);
  3448. ggml_backend_tensor_set(t, data.data(), r * t->nb[1], t->ne[0] * sizeof(float));
  3449. }
  3450. } else {
  3451. GGML_ABORT("fatal error");
  3452. }
  3453. }
  3454. }
  3455. };
  3456. // GGML_OP_SUM
  3457. struct test_sum : public test_case {
  3458. const ggml_type type;
  3459. const std::array<int64_t, 4> ne;
  3460. std::string vars() override {
  3461. return VARS_TO_STR2(type, ne);
  3462. }
  3463. test_sum(ggml_type type = GGML_TYPE_F32,
  3464. std::array<int64_t, 4> ne = {10, 5, 4, 3})
  3465. : type(type), ne(ne) {}
  3466. ggml_tensor * build_graph(ggml_context * ctx) override {
  3467. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  3468. ggml_set_param(a);
  3469. ggml_set_name(a, "a");
  3470. ggml_tensor * out = ggml_sum(ctx, a);
  3471. ggml_set_name(out, "out");
  3472. return out;
  3473. }
  3474. float grad_eps() override {
  3475. return 0.1f * sqrtf(ne[0]*ne[1]*ne[2]*ne[3]);
  3476. }
  3477. };
  3478. // GGML_OP_SUM_ROWS
  3479. struct test_sum_rows : public test_case {
  3480. const ggml_type type;
  3481. const std::array<int64_t, 4> ne;
  3482. std::string vars() override {
  3483. return VARS_TO_STR2(type, ne);
  3484. }
  3485. test_sum_rows(ggml_type type = GGML_TYPE_F32,
  3486. std::array<int64_t, 4> ne = {10, 5, 4, 3})
  3487. : type(type), ne(ne) {}
  3488. ggml_tensor * build_graph(ggml_context * ctx) override {
  3489. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  3490. ggml_set_param(a);
  3491. ggml_set_name(a, "a");
  3492. ggml_tensor * out = ggml_sum_rows(ctx, a);
  3493. ggml_set_name(out, "out");
  3494. return out;
  3495. }
  3496. };
  3497. // GGML_OP_MEAN
  3498. struct test_mean : public test_case {
  3499. const ggml_type type;
  3500. const std::array<int64_t, 4> ne;
  3501. std::string vars() override {
  3502. return VARS_TO_STR2(type, ne);
  3503. }
  3504. test_mean(ggml_type type = GGML_TYPE_F32,
  3505. std::array<int64_t, 4> ne = {10, 5, 4, 3})
  3506. : type(type), ne(ne) {}
  3507. ggml_tensor * build_graph(ggml_context * ctx) override {
  3508. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  3509. ggml_set_param(a);
  3510. ggml_set_name(a, "a");
  3511. ggml_tensor * out = ggml_mean(ctx, a);
  3512. ggml_set_name(out, "out");
  3513. return out;
  3514. }
  3515. float grad_eps() override {
  3516. return 0.1f * ne[0]*ne[1]*ne[2]*ne[3];
  3517. }
  3518. };
  3519. // GGML_OP_UPSCALE
  3520. struct test_upscale : public test_case {
  3521. const ggml_type type;
  3522. const std::array<int64_t, 4> ne;
  3523. const int32_t scale_factor;
  3524. const bool transpose;
  3525. const ggml_scale_mode mode;
  3526. std::string vars() override {
  3527. return VARS_TO_STR5(type, ne, scale_factor, mode, transpose);
  3528. }
  3529. test_upscale(ggml_type type = GGML_TYPE_F32,
  3530. std::array<int64_t, 4> ne = {512, 512, 3, 1},
  3531. int32_t scale_factor = 2, ggml_scale_mode mode = GGML_SCALE_MODE_NEAREST, bool transpose = false)
  3532. : type(type), ne(ne), scale_factor(scale_factor), transpose(transpose), mode(mode) {}
  3533. ggml_tensor * build_graph(ggml_context * ctx) override {
  3534. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  3535. ggml_set_name(a, "a");
  3536. if (transpose) {
  3537. a = ggml_transpose(ctx, a);
  3538. ggml_set_name(a, "a_transposed");
  3539. }
  3540. ggml_tensor * out = ggml_upscale(ctx, a, scale_factor, mode);
  3541. ggml_set_name(out, "out");
  3542. return out;
  3543. }
  3544. };
  3545. // GGML_OP_UPSCALE (via ggml_interpolate)
  3546. struct test_interpolate : public test_case {
  3547. const ggml_type type;
  3548. const std::array<int64_t, 4> ne;
  3549. const std::array<int64_t, 4> ne_tgt;
  3550. const uint32_t mode = GGML_SCALE_MODE_NEAREST;
  3551. std::string vars() override {
  3552. return VARS_TO_STR4(type, ne, ne_tgt, mode);
  3553. }
  3554. test_interpolate(ggml_type type = GGML_TYPE_F32,
  3555. std::array<int64_t, 4> ne = {2, 5, 7, 11},
  3556. std::array<int64_t, 4> ne_tgt = {5, 7, 11, 13},
  3557. uint32_t mode = GGML_SCALE_MODE_NEAREST)
  3558. : type(type), ne(ne), ne_tgt(ne_tgt), mode(mode) {}
  3559. ggml_tensor * build_graph(ggml_context * ctx) override {
  3560. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  3561. ggml_set_name(a, "a");
  3562. ggml_tensor * out = ggml_interpolate(ctx, a, ne_tgt[0], ne_tgt[1],ne_tgt[2], ne_tgt[3], mode);
  3563. ggml_set_name(out, "out");
  3564. return out;
  3565. }
  3566. };
  3567. // GGML_OP_GROUP_NORM
  3568. struct test_group_norm : public test_case {
  3569. const ggml_type type;
  3570. const std::array<int64_t, 4> ne;
  3571. const int32_t num_groups;
  3572. const float eps;
  3573. std::string vars() override {
  3574. return VARS_TO_STR4(type, ne, num_groups, eps);
  3575. }
  3576. test_group_norm(ggml_type type = GGML_TYPE_F32,
  3577. std::array<int64_t, 4> ne = {64, 64, 320, 1},
  3578. int32_t num_groups = 32,
  3579. float eps = 1e-6f)
  3580. : type(type), ne(ne), num_groups(num_groups), eps(eps) {}
  3581. ggml_tensor * build_graph(ggml_context * ctx) override {
  3582. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  3583. ggml_set_name(a, "a");
  3584. ggml_tensor * out = ggml_group_norm(ctx, a, num_groups, eps);
  3585. ggml_set_name(out, "out");
  3586. return out;
  3587. }
  3588. };
  3589. // GGML_OP_L2_NORM
  3590. struct test_l2_norm : public test_case {
  3591. const ggml_type type;
  3592. const std::array<int64_t, 4> ne;
  3593. const float eps;
  3594. std::string vars() override {
  3595. return VARS_TO_STR2(type, ne);
  3596. }
  3597. test_l2_norm(ggml_type type = GGML_TYPE_F32,
  3598. std::array<int64_t, 4> ne = {64, 64, 320, 1},
  3599. float eps = 1e-12f)
  3600. : type(type), ne(ne), eps(eps) {}
  3601. ggml_tensor * build_graph(ggml_context * ctx) override {
  3602. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  3603. ggml_set_name(a, "a");
  3604. ggml_tensor * out = ggml_l2_norm(ctx, a, eps);
  3605. ggml_set_name(out, "out");
  3606. return out;
  3607. }
  3608. };
  3609. // GGML_OP_ACC
  3610. struct test_acc : public test_case {
  3611. const ggml_type type;
  3612. const std::array<int64_t, 4> ne_a;
  3613. const std::array<int64_t, 4> ne_b;
  3614. std::string vars() override {
  3615. return VARS_TO_STR3(type, ne_a, ne_b);
  3616. }
  3617. test_acc(ggml_type type = GGML_TYPE_F32,
  3618. std::array<int64_t, 4> ne_a = {256, 17, 1, 1},
  3619. std::array<int64_t, 4> ne_b = {256, 16, 1, 1})
  3620. : type(type), ne_a(ne_a), ne_b(ne_b) {}
  3621. ggml_tensor * build_graph(ggml_context * ctx) override {
  3622. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne_a.data());
  3623. ggml_set_param(a);
  3624. ggml_set_name(a, "a");
  3625. ggml_tensor * b = ggml_new_tensor(ctx, type, 4, ne_b.data());
  3626. ggml_set_param(b);
  3627. ggml_set_name(b, "b");
  3628. ggml_tensor * out = ggml_acc(ctx, a, b, a->nb[1], a->nb[2], a->nb[3], b->nb[1]);
  3629. ggml_set_name(out, "out");
  3630. return out;
  3631. }
  3632. };
  3633. // GGML_OP_PAD
  3634. struct test_pad : public test_case {
  3635. const ggml_type type;
  3636. const std::array<int64_t, 4> ne_a;
  3637. const int pad_0;
  3638. const int pad_1;
  3639. std::string vars() override {
  3640. return VARS_TO_STR4(type, ne_a, pad_0, pad_1);
  3641. }
  3642. test_pad(ggml_type type = GGML_TYPE_F32,
  3643. std::array<int64_t, 4> ne_a = {512, 512, 1, 1},
  3644. int pad_0 = 1, int pad_1 = 1)
  3645. : type(type), ne_a(ne_a), pad_0(pad_0), pad_1(pad_1) {}
  3646. ggml_tensor * build_graph(ggml_context * ctx) override {
  3647. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne_a.data());
  3648. ggml_set_name(a, "a");
  3649. ggml_tensor * out = ggml_pad(ctx, a, pad_0, pad_1, 0, 0);
  3650. ggml_set_name(out, "out");
  3651. return out;
  3652. }
  3653. };
  3654. // GGML_OP_PAD_REFLECT_1D
  3655. struct test_pad_reflect_1d : public test_case {
  3656. const ggml_type type;
  3657. const std::array<int64_t, 4> ne_a;
  3658. const int pad_0;
  3659. const int pad_1;
  3660. std::string vars() override {
  3661. return VARS_TO_STR4(type, ne_a, pad_0, pad_1);
  3662. }
  3663. test_pad_reflect_1d(ggml_type type = GGML_TYPE_F32,
  3664. std::array<int64_t, 4> ne_a = {512, 34, 2, 1},
  3665. int pad_0 = 10, int pad_1 = 9)
  3666. : type(type), ne_a(ne_a), pad_0(pad_0), pad_1(pad_1) {}
  3667. ggml_tensor * build_graph(ggml_context * ctx) override {
  3668. ggml_tensor * a = ggml_new_tensor(ctx, type, 2, ne_a.data());
  3669. ggml_set_name(a, "a");
  3670. ggml_tensor * out = ggml_pad_reflect_1d(ctx, a, pad_0, pad_1);
  3671. ggml_set_name(out, "out");
  3672. return out;
  3673. }
  3674. };
  3675. // GGML_OP_ROLL
  3676. struct test_roll : public test_case {
  3677. const int shift0;
  3678. const int shift1;
  3679. const int shift3;
  3680. const int shift4;
  3681. std::string vars() override {
  3682. return VARS_TO_STR4(shift0, shift1, shift3, shift4);
  3683. }
  3684. test_roll(int shift0 = 3, int shift1 = -2, int shift3 = 1, int shift4 = -1)
  3685. : shift0(shift0), shift1(shift1), shift3(shift3), shift4(shift4) {}
  3686. ggml_tensor * build_graph(ggml_context * ctx) override {
  3687. int64_t ne[4] = {10, 5, 4, 3};
  3688. ggml_tensor * a = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  3689. ggml_set_name(a, "a");
  3690. ggml_tensor * out = ggml_roll(ctx, a, shift0, shift1, shift3, shift4);
  3691. ggml_set_name(out, "out");
  3692. return out;
  3693. }
  3694. };
  3695. // GGML_OP_ARANGE
  3696. struct test_arange : public test_case {
  3697. const ggml_type type;
  3698. const float start;
  3699. const float stop;
  3700. const float step;
  3701. std::string vars() override {
  3702. return VARS_TO_STR4(type, start, stop, step);
  3703. }
  3704. test_arange(ggml_type type = GGML_TYPE_F32,
  3705. float start = 0.f, float stop = 10.f, float step = 1.f)
  3706. : type(type), start(start), stop(stop), step(step) {}
  3707. ggml_tensor * build_graph(ggml_context * ctx) override {
  3708. ggml_tensor * out = ggml_arange(ctx, start, stop, step);
  3709. ggml_set_name(out, "out");
  3710. return out;
  3711. }
  3712. };
  3713. // GGML_OP_TIMESTEP_EMBEDDING
  3714. struct test_timestep_embedding : public test_case {
  3715. const ggml_type type;
  3716. const std::array<int64_t, 4> ne_a;
  3717. const int dim;
  3718. const int max_period;
  3719. std::string vars() override {
  3720. return VARS_TO_STR4(type, ne_a, dim, max_period);
  3721. }
  3722. test_timestep_embedding(ggml_type type = GGML_TYPE_F32,
  3723. std::array<int64_t, 4> ne_a = {2, 1, 1, 1},
  3724. int dim = 320, int max_period=10000)
  3725. : type(type), ne_a(ne_a), dim(dim), max_period(max_period) {}
  3726. ggml_tensor * build_graph(ggml_context * ctx) override {
  3727. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne_a.data());
  3728. ggml_set_name(a, "a");
  3729. ggml_tensor * out = ggml_timestep_embedding(ctx, a, dim, max_period);
  3730. ggml_set_name(out, "out");
  3731. return out;
  3732. }
  3733. };
  3734. // GGML_OP_LEAKY_RELU
  3735. struct test_leaky_relu : public test_case {
  3736. const ggml_type type;
  3737. const std::array<int64_t, 4> ne_a;
  3738. const float negative_slope;
  3739. std::string vars() override {
  3740. return VARS_TO_STR3(type, ne_a, negative_slope);
  3741. }
  3742. test_leaky_relu(ggml_type type = GGML_TYPE_F32,
  3743. std::array<int64_t, 4> ne_a = {10, 5, 4, 3},
  3744. float negative_slope = 0.1f)
  3745. : type(type), ne_a(ne_a), negative_slope(negative_slope) {}
  3746. ggml_tensor * build_graph(ggml_context * ctx) override {
  3747. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne_a.data());
  3748. ggml_set_name(a, "a");
  3749. ggml_tensor * out = ggml_leaky_relu(ctx, a, negative_slope, true);
  3750. ggml_set_name(out, "out");
  3751. return out;
  3752. }
  3753. };
  3754. // GGML_OP_FLASH_ATTN_EXT
  3755. struct test_flash_attn_ext : public test_case {
  3756. const int64_t hsk; // K head size
  3757. const int64_t hsv; // V head size
  3758. const int64_t nh; // num heads
  3759. const std::array<int64_t, 2> nr23; // repeat in dim 2 and 3, tests for grouped-query attention
  3760. const int64_t kv; // kv size
  3761. const int64_t nb; // batch size
  3762. const bool mask; // use mask
  3763. const bool sinks; // use sinks
  3764. const float max_bias; // ALiBi
  3765. const float logit_softcap; // Gemma 2
  3766. const ggml_prec prec;
  3767. const ggml_type type_KV;
  3768. std::array<int32_t, 4> permute;
  3769. std::string vars() override {
  3770. return VARS_TO_STR13(hsk, hsv, nh, nr23, kv, nb, mask, sinks, max_bias, logit_softcap, prec, type_KV, permute);
  3771. }
  3772. double max_nmse_err() override {
  3773. return 5e-4;
  3774. }
  3775. uint64_t op_flops(ggml_tensor * t) override {
  3776. GGML_UNUSED(t);
  3777. // Just counting matmul costs:
  3778. // Q*K^T is nb x hsk x kv, P*V is nb x kv x hsv, per head
  3779. return (2 * nh*nr23[0] * nb * (hsk + hsv) * kv)*nr23[1];
  3780. }
  3781. test_flash_attn_ext(int64_t hsk = 128, int64_t hsv = 128, int64_t nh = 32, std::array<int64_t, 2> nr23 = {1, 1}, int64_t kv = 96, int64_t nb = 8,
  3782. bool mask = true, bool sinks = false, float max_bias = 0.0f, float logit_softcap = 0.0f, ggml_prec prec = GGML_PREC_F32,
  3783. ggml_type type_KV = GGML_TYPE_F16, std::array<int32_t, 4> permute = {0, 1, 2, 3})
  3784. : hsk(hsk), hsv(hsv), nh(nh), nr23(nr23), kv(kv), nb(nb), mask(mask), sinks(sinks), max_bias(max_bias), logit_softcap(logit_softcap), prec(prec), type_KV(type_KV), permute(permute) {}
  3785. ggml_tensor * build_graph(ggml_context * ctx) override {
  3786. const int64_t hsk_padded = GGML_PAD(hsk, ggml_blck_size(type_KV));
  3787. const int64_t hsv_padded = GGML_PAD(hsv, ggml_blck_size(type_KV));
  3788. auto const &create_permuted = [&](ggml_type type, int64_t ne0, int64_t ne1, int64_t ne2, int64_t ne3, bool is_view) -> ggml_tensor * {
  3789. int64_t ne[4] = {ne0, ne1, ne2, ne3};
  3790. int64_t ne_perm[4];
  3791. for (int i = 0; i < 4; ++i) {
  3792. ne_perm[permute[i]] = ne[i];
  3793. }
  3794. ggml_tensor * t;
  3795. if (is_view) {
  3796. ggml_tensor * t0 = ggml_new_tensor_4d(ctx, type, ne_perm[0], 2*ne_perm[1], ne_perm[2], ne_perm[3]);
  3797. t = ggml_view_4d(ctx, t0, ne_perm[0], ne_perm[1], ne_perm[2], ne_perm[3], t0->nb[1], t0->nb[2], t0->nb[3], 0);
  3798. } else {
  3799. t = ggml_new_tensor_4d(ctx, type, ne_perm[0], ne_perm[1], ne_perm[2], ne_perm[3]);
  3800. }
  3801. if (permute != std::array<int32_t, 4>{0, 1, 2, 3}) {
  3802. t = ggml_permute(ctx, t, permute[0], permute[1], permute[2], permute[3]);
  3803. }
  3804. return t;
  3805. };
  3806. ggml_tensor * q = create_permuted(GGML_TYPE_F32, hsk_padded, nb, nh*nr23[0], nr23[1], false);
  3807. ggml_set_name(q, "q");
  3808. ggml_tensor * k = create_permuted(type_KV, hsk_padded, kv, nh, nr23[1], true); // the K tensor is usually a view of the K cache
  3809. ggml_set_name(k, "k");
  3810. ggml_tensor * v = create_permuted(type_KV, hsv_padded, kv, nh, nr23[1], true); // the V tensor is usually a view of the V cache
  3811. ggml_set_name(v, "v");
  3812. ggml_tensor * m = nullptr;
  3813. if (mask) {
  3814. m = ggml_new_tensor_4d(ctx, GGML_TYPE_F16, kv, GGML_PAD(nb, GGML_KQ_MASK_PAD), 1, nr23[1]);
  3815. ggml_set_name(m, "m");
  3816. }
  3817. ggml_tensor * s = nullptr;
  3818. if (sinks) {
  3819. s = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, q->ne[2]);
  3820. ggml_set_name(s, "s");
  3821. }
  3822. ggml_tensor * out = ggml_flash_attn_ext(ctx, q, k, v, m, 1.0f/sqrtf(hsk), max_bias, logit_softcap);
  3823. ggml_flash_attn_ext_add_sinks(out, s);
  3824. ggml_flash_attn_ext_set_prec (out, prec);
  3825. ggml_set_name(out, "out");
  3826. return out;
  3827. }
  3828. void initialize_tensors(ggml_context * ctx) override {
  3829. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  3830. if (strcmp(t->name, "s") == 0) {
  3831. // make the sink values more noticable in order to trigger a test failure when the implementation is wrong
  3832. init_tensor_uniform(t, -10.0f, 10.0f);
  3833. } else {
  3834. init_tensor_uniform(t);
  3835. }
  3836. }
  3837. }
  3838. bool grad_precise() override {
  3839. return true;
  3840. }
  3841. };
  3842. // GGML_OP_CROSS_ENTROPY_LOSS
  3843. struct test_cross_entropy_loss : public test_case {
  3844. const ggml_type type;
  3845. const std::array<int64_t, 4> ne;
  3846. std::string vars() override {
  3847. return VARS_TO_STR2(type, ne);
  3848. }
  3849. test_cross_entropy_loss(ggml_type type = GGML_TYPE_F32,
  3850. std::array<int64_t, 4> ne = {10, 5, 4, 3})
  3851. : type(type), ne(ne) {}
  3852. ggml_tensor * build_graph(ggml_context * ctx) override {
  3853. ggml_tensor * logits = ggml_new_tensor(ctx, type, 4, ne.data());
  3854. ggml_set_param(logits);
  3855. ggml_set_name(logits, "logits");
  3856. ggml_tensor * labels = ggml_new_tensor(ctx, type, 4, ne.data());
  3857. // The labels are assumed to be constant -> no gradients.
  3858. ggml_set_name(labels, "labels");
  3859. // Ensure labels add up to 1:
  3860. labels = ggml_soft_max(ctx, labels);
  3861. ggml_set_name(labels, "labels_normalized");
  3862. ggml_tensor * out = ggml_cross_entropy_loss(ctx, logits, labels);
  3863. ggml_set_name(out, "out");
  3864. return out;
  3865. }
  3866. void initialize_tensors(ggml_context * ctx) override {
  3867. // For larger abs. diffs between logits softmax is more linear, therefore more precise num. gradients.
  3868. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  3869. init_tensor_uniform(t, -100.0f, 100.0f);
  3870. }
  3871. }
  3872. float grad_eps() override {
  3873. return 1.0f;
  3874. }
  3875. bool grad_precise() override {
  3876. return true;
  3877. }
  3878. };
  3879. // GGML_OP_CROSS_ENTROPY_LOSS_BACK
  3880. struct test_cross_entropy_loss_back : public test_case {
  3881. const ggml_type type;
  3882. const std::array<int64_t, 4> ne;
  3883. std::string vars() override {
  3884. return VARS_TO_STR2(type, ne);
  3885. }
  3886. test_cross_entropy_loss_back(ggml_type type = GGML_TYPE_F32,
  3887. std::array<int64_t, 4> ne = {10, 5, 4, 3})
  3888. : type(type), ne(ne) {}
  3889. ggml_tensor * build_graph(ggml_context * ctx) override {
  3890. ggml_tensor * grad = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 1);
  3891. ggml_set_name(grad, "grad");
  3892. ggml_tensor * logits = ggml_new_tensor(ctx, type, 4, ne.data());
  3893. ggml_set_name(logits, "logits");
  3894. ggml_tensor * labels = ggml_new_tensor(ctx, type, 4, ne.data());
  3895. ggml_set_name(labels, "labels");
  3896. // Ensure labels add up to 1:
  3897. labels = ggml_soft_max(ctx, labels);
  3898. ggml_set_name(labels, "labels_normalized");
  3899. ggml_tensor * out = ggml_cross_entropy_loss_back(ctx, grad, logits, labels);
  3900. ggml_set_name(out, "out");
  3901. return out;
  3902. }
  3903. };
  3904. // GGML_OP_OPT_STEP_ADAMW
  3905. struct test_opt_step_adamw : public test_case {
  3906. const ggml_type type;
  3907. const std::array<int64_t, 4> ne;
  3908. std::string vars() override {
  3909. return VARS_TO_STR2(type, ne);
  3910. }
  3911. test_opt_step_adamw(ggml_type type = GGML_TYPE_F32,
  3912. std::array<int64_t, 4> ne = {10, 5, 4, 3})
  3913. : type(type), ne(ne) {}
  3914. ggml_tensor * build_graph(ggml_context * ctx) override {
  3915. ggml_tensor * a = ggml_new_tensor_4d(ctx, type, ne[0], ne[1], ne[2], ne[3]);
  3916. ggml_set_param(a); // Despite tensor a having gradients the output tensor will not.
  3917. ggml_set_name(a, "a");
  3918. ggml_tensor * grad = ggml_new_tensor_4d(ctx, type, ne[0], ne[1], ne[2], ne[3]);
  3919. ggml_set_name(grad, "grad");
  3920. ggml_tensor * grad_m = ggml_new_tensor_4d(ctx, type, ne[0], ne[1], ne[2], ne[3]);
  3921. ggml_set_name(grad_m, "grad_m");
  3922. ggml_tensor * grad_v = ggml_new_tensor_4d(ctx, type, ne[0], ne[1], ne[2], ne[3]);
  3923. ggml_set_name(grad_v, "grad_v");
  3924. ggml_tensor * adamw_params = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 7);
  3925. ggml_set_name(adamw_params, "adamw_params");
  3926. ggml_tensor * out = ggml_opt_step_adamw(ctx, a, grad, grad_m, grad_v, adamw_params);
  3927. ggml_set_name(out, "out");
  3928. return out;
  3929. }
  3930. void initialize_tensors(ggml_context * ctx) override {
  3931. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  3932. init_tensor_uniform(t, 0.0f, 1.0f); // grad_v and adamw_params need non-negative values.
  3933. }
  3934. }
  3935. bool grad_precise() override {
  3936. return true;
  3937. }
  3938. };
  3939. struct test_opt_step_sgd : public test_case {
  3940. const ggml_type type;
  3941. const std::array<int64_t, 4> ne;
  3942. std::string vars() override { return VARS_TO_STR2(type, ne); }
  3943. test_opt_step_sgd(ggml_type type = GGML_TYPE_F32,
  3944. std::array<int64_t, 4> ne = { 10, 5, 4, 3 })
  3945. : type(type), ne(ne) {}
  3946. ggml_tensor * build_graph(ggml_context * ctx) override {
  3947. ggml_tensor * a = ggml_new_tensor_4d(ctx, type, ne[0], ne[1], ne[2], ne[3]);
  3948. ggml_set_param(a); // Despite tensor a having gradients the output tensor will not.
  3949. ggml_set_name(a, "a");
  3950. ggml_tensor * grad = ggml_new_tensor_4d(ctx, type, ne[0], ne[1], ne[2], ne[3]);
  3951. ggml_set_name(grad, "grad");
  3952. ggml_tensor * sgd_params = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 2);
  3953. ggml_set_name(sgd_params, "sgd_params");
  3954. ggml_tensor * out = ggml_opt_step_sgd(ctx, a, grad, sgd_params);
  3955. ggml_set_name(out, "out");
  3956. return out;
  3957. }
  3958. void initialize_tensors(ggml_context * ctx) override {
  3959. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  3960. init_tensor_uniform(t, 0.0f, 1.0f); // sgd_params need non-negative values.
  3961. }
  3962. }
  3963. bool grad_precise() override {
  3964. return true;
  3965. }
  3966. };
  3967. enum llm_norm_type {
  3968. LLM_NORM,
  3969. LLM_NORM_RMS,
  3970. };
  3971. struct llama_hparams {
  3972. uint32_t n_vocab;
  3973. uint32_t n_embd;
  3974. uint32_t n_head;
  3975. uint32_t n_head_kv;
  3976. static constexpr uint32_t n_layer = 1;
  3977. uint32_t n_rot;
  3978. uint32_t n_embd_head; // dimension of values (d_v)
  3979. uint32_t n_ff;
  3980. float f_norm_eps;
  3981. float f_norm_rms_eps;
  3982. // cparams
  3983. static constexpr uint32_t n_ctx = 512; // user-specified context size
  3984. static constexpr uint32_t n_ctx_orig = n_ctx;
  3985. // batch
  3986. int32_t n_tokens;
  3987. // llm_build_context
  3988. static constexpr int32_t n_kv = 32; // size of KV cache to consider (n_kv <= n_ctx
  3989. static constexpr int32_t kv_head = 1; // index of where we store new KV data in the cache
  3990. uint32_t n_embd_gqa() const { // dimension of key embeddings across all k-v heads
  3991. return n_embd_head * n_head_kv;
  3992. }
  3993. };
  3994. // LLM base class
  3995. struct test_llm : public test_case {
  3996. llama_hparams hp;
  3997. protected:
  3998. test_llm(llama_hparams hp)
  3999. : hp(std::move(hp)) {
  4000. }
  4001. public:
  4002. struct ggml_tensor * llm_build_norm(
  4003. struct ggml_context * ctx,
  4004. struct ggml_tensor * cur,
  4005. struct ggml_tensor * mw,
  4006. struct ggml_tensor * mb,
  4007. llm_norm_type type) {
  4008. switch (type) {
  4009. case LLM_NORM: cur = ggml_norm (ctx, cur, hp.f_norm_eps); break;
  4010. case LLM_NORM_RMS: cur = ggml_rms_norm(ctx, cur, hp.f_norm_rms_eps); break;
  4011. }
  4012. cur = ggml_mul(ctx, cur, mw);
  4013. if (mb) {
  4014. cur = ggml_add(ctx, cur, mb);
  4015. }
  4016. return cur;
  4017. }
  4018. void llm_build_kv_store(
  4019. struct ggml_context * ctx,
  4020. struct ggml_tensor * k_l,
  4021. struct ggml_tensor * v_l,
  4022. struct ggml_tensor * k_cur,
  4023. struct ggml_tensor * v_cur) {
  4024. // compute the transposed [n_tokens, n_embd] V matrix
  4025. struct ggml_tensor * v_cur_t = ggml_transpose(ctx, ggml_reshape_2d(ctx, v_cur, hp.n_embd_gqa(), hp.n_tokens));
  4026. struct ggml_tensor * k_cache_view = ggml_view_1d(ctx, k_l, hp.n_tokens*hp.n_embd_gqa(),
  4027. (ggml_row_size(k_l->type, hp.n_embd_gqa()))*hp.kv_head);
  4028. struct ggml_tensor * v_cache_view = ggml_view_2d(ctx, v_l, hp.n_tokens, hp.n_embd_gqa(),
  4029. ( hp.n_ctx)*ggml_element_size(v_l),
  4030. (hp.kv_head)*ggml_element_size(v_l));
  4031. // important: storing RoPE-ed version of K in the KV cache!
  4032. ggml_cpy(ctx, k_cur, k_cache_view);
  4033. ggml_cpy(ctx, v_cur_t, v_cache_view);
  4034. }
  4035. struct ggml_tensor * llm_build_kqv(
  4036. struct ggml_context * ctx,
  4037. struct ggml_tensor * k_l,
  4038. struct ggml_tensor * v_l,
  4039. struct ggml_tensor * q_cur,
  4040. struct ggml_tensor * kq_mask,
  4041. float kq_scale) {
  4042. struct ggml_tensor * q = ggml_permute(ctx, q_cur, 0, 2, 1, 3);
  4043. struct ggml_tensor * k =
  4044. ggml_view_3d(ctx, k_l,
  4045. hp.n_embd_head, hp.n_kv, hp.n_head_kv,
  4046. ggml_row_size(k_l->type, hp.n_embd_gqa()),
  4047. ggml_row_size(k_l->type, hp.n_embd_head),
  4048. 0);
  4049. struct ggml_tensor * kq = ggml_mul_mat(ctx, k, q);
  4050. kq = ggml_soft_max_ext(ctx, kq, kq_mask, kq_scale, 0.0f);
  4051. // split cached v into n_head heads
  4052. struct ggml_tensor * v =
  4053. ggml_view_3d(ctx, v_l,
  4054. hp.n_kv, hp.n_embd_head, hp.n_head_kv,
  4055. ggml_element_size(v_l)*hp.n_ctx,
  4056. ggml_element_size(v_l)*hp.n_ctx*hp.n_embd_head,
  4057. 0);
  4058. struct ggml_tensor * kqv = ggml_mul_mat(ctx, v, kq);
  4059. struct ggml_tensor * kqv_merged = ggml_permute(ctx, kqv, 0, 2, 1, 3);
  4060. struct ggml_tensor * cur = ggml_cont_2d(ctx, kqv_merged, hp.n_embd_head*hp.n_head, hp.n_tokens);
  4061. struct ggml_tensor * wo = ggml_new_tensor_2d(ctx, GGML_TYPE_Q4_0, hp.n_embd, hp.n_embd);
  4062. cur = ggml_mul_mat(ctx, wo, cur);
  4063. return cur;
  4064. }
  4065. void initialize_tensors(ggml_context * ctx) override {
  4066. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  4067. if (t->type == GGML_TYPE_I32) {
  4068. // pos
  4069. std::vector<int> data(hp.n_tokens);
  4070. for (int i = 0; i < hp.n_tokens; i++) {
  4071. data[i] = rand() % hp.n_ctx;
  4072. }
  4073. ggml_backend_tensor_set(t, data.data(), 0, hp.n_tokens * sizeof(int));
  4074. } else {
  4075. init_tensor_uniform(t);
  4076. }
  4077. }
  4078. }
  4079. };
  4080. // Llama
  4081. struct test_llama : public test_llm {
  4082. static constexpr float freq_base = 10000.0f;
  4083. static constexpr float freq_scale = 1.0f;
  4084. static constexpr float ext_factor = 0.0f;
  4085. static constexpr float attn_factor = 1.0f;
  4086. static constexpr float beta_fast = 32.0f;
  4087. static constexpr float beta_slow = 1.0f;
  4088. bool fused;
  4089. std::string op_desc(ggml_tensor * t) override {
  4090. GGML_UNUSED(t);
  4091. return "LLAMA";
  4092. }
  4093. std::string vars() override {
  4094. auto n_tokens = hp.n_tokens;
  4095. return VARS_TO_STR1(n_tokens);
  4096. }
  4097. double max_nmse_err() override {
  4098. return 2e-3;
  4099. }
  4100. bool run_whole_graph() override { return fused; }
  4101. test_llama(int n_tokens = 1, bool fused = false)
  4102. : test_llm({
  4103. /*n_vocab =*/ 32000,
  4104. /*n_embd =*/ 3200,
  4105. /*n_head =*/ 32,
  4106. /*n_head_kv =*/ 32,
  4107. /*n_rot =*/ 100,
  4108. /*n_embd_head =*/ 100,
  4109. /*n_ff =*/ 8640,
  4110. /*f_norm_eps =*/ 0.f,
  4111. /*f_norm_rms_eps =*/ 1e-5f,
  4112. /*n_tokens =*/ n_tokens,
  4113. })
  4114. , fused(fused)
  4115. {
  4116. }
  4117. ggml_tensor * build_graph(ggml_context * ctx) override {
  4118. struct ggml_tensor * cur;
  4119. struct ggml_tensor * inpL;
  4120. inpL = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, hp.n_embd, hp.n_tokens);
  4121. // inp_pos - contains the positions
  4122. struct ggml_tensor * inp_pos = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, hp.n_tokens);
  4123. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  4124. struct ggml_tensor * KQ_mask = ggml_new_tensor_3d(ctx, GGML_TYPE_F16, hp.n_kv, hp.n_tokens, 1);
  4125. ggml_tensor * k_l = ggml_new_tensor_1d(ctx, GGML_TYPE_F16, 1638400);
  4126. ggml_tensor * v_l = ggml_new_tensor_1d(ctx, GGML_TYPE_F16, 1638400);
  4127. for (uint32_t il = 0; il < hp.n_layer; ++il) {
  4128. struct ggml_tensor * inpSA = inpL;
  4129. // norm
  4130. ggml_tensor * attn_norm = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, hp.n_embd);
  4131. cur = llm_build_norm(ctx, inpL, attn_norm, nullptr, LLM_NORM_RMS);
  4132. // self-attention
  4133. {
  4134. ggml_tensor * wq = ggml_new_tensor_2d(ctx, GGML_TYPE_Q4_0, hp.n_embd, hp.n_embd);
  4135. ggml_tensor * wk = ggml_new_tensor_2d(ctx, GGML_TYPE_Q4_0, hp.n_embd, hp.n_embd_gqa());
  4136. ggml_tensor * wv = ggml_new_tensor_2d(ctx, GGML_TYPE_Q4_0, hp.n_embd, hp.n_embd_gqa());
  4137. // compute Q and K and RoPE them
  4138. struct ggml_tensor * Qcur = ggml_mul_mat(ctx, wq, cur);
  4139. struct ggml_tensor * Kcur = ggml_mul_mat(ctx, wk, cur);
  4140. struct ggml_tensor * Vcur = ggml_mul_mat(ctx, wv, cur);
  4141. Qcur = ggml_rope_ext(
  4142. ctx, ggml_reshape_3d(ctx, Qcur, hp.n_embd_head, hp.n_head, hp.n_tokens), inp_pos, nullptr,
  4143. hp.n_rot, 0, hp.n_ctx_orig, freq_base, freq_scale,
  4144. ext_factor, attn_factor, beta_fast, beta_slow
  4145. );
  4146. Kcur = ggml_rope_ext(
  4147. ctx, ggml_reshape_3d(ctx, Kcur, hp.n_embd_head, hp.n_head_kv, hp.n_tokens), inp_pos, nullptr,
  4148. hp.n_rot, 0, hp.n_ctx_orig, freq_base, freq_scale,
  4149. ext_factor, attn_factor, beta_fast, beta_slow
  4150. );
  4151. llm_build_kv_store(ctx, k_l, v_l, Kcur, Vcur);
  4152. cur = llm_build_kqv(ctx, k_l, v_l, Qcur, KQ_mask, 1.0f/sqrtf(float(hp.n_embd_head)));
  4153. }
  4154. struct ggml_tensor * ffn_inp = ggml_add(ctx, cur, inpSA);
  4155. // feed-forward network
  4156. ggml_tensor * ffn_norm = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, hp.n_embd);
  4157. cur = llm_build_norm(ctx, ffn_inp, ffn_norm, nullptr, LLM_NORM_RMS);
  4158. ggml_tensor * ffn_gate = ggml_new_tensor_2d(ctx, GGML_TYPE_Q4_0, hp.n_embd, hp.n_ff);
  4159. ggml_tensor * ffn_down = ggml_new_tensor_2d(ctx, GGML_TYPE_Q4_0, hp.n_ff, hp.n_embd);
  4160. ggml_tensor * ffn_up = ggml_new_tensor_2d(ctx, GGML_TYPE_Q4_0, hp.n_embd, hp.n_ff);
  4161. struct ggml_tensor * tmp = ggml_mul_mat(ctx, ffn_up, cur);
  4162. cur = ggml_mul_mat(ctx, ffn_gate, cur);
  4163. cur = ggml_silu(ctx, cur);
  4164. cur = ggml_mul(ctx, cur, tmp);
  4165. cur = ggml_mul_mat(ctx, ffn_down, cur);
  4166. cur = ggml_add(ctx, cur, ffn_inp);
  4167. // input for next layer
  4168. inpL = cur;
  4169. }
  4170. cur = inpL;
  4171. ggml_tensor * output_norm = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, hp.n_embd);
  4172. cur = llm_build_norm(ctx, cur, output_norm, nullptr, LLM_NORM_RMS);
  4173. // lm_head
  4174. ggml_tensor * output = ggml_new_tensor_2d(ctx, GGML_TYPE_Q4_0, hp.n_embd, hp.n_vocab);
  4175. cur = ggml_mul_mat(ctx, output, cur);
  4176. return cur;
  4177. }
  4178. };
  4179. // Falcon
  4180. struct test_falcon : public test_llm {
  4181. static constexpr float freq_base = 10000.0f;
  4182. static constexpr float freq_scale = 1.0f;
  4183. static constexpr float ext_factor = 0.0f;
  4184. static constexpr float attn_factor = 1.0f;
  4185. static constexpr float beta_fast = 32.0f;
  4186. static constexpr float beta_slow = 1.0f;
  4187. std::string op_desc(ggml_tensor * t) override {
  4188. GGML_UNUSED(t);
  4189. return "FALCON";
  4190. }
  4191. std::string vars() override {
  4192. auto n_tokens = hp.n_tokens;
  4193. return VARS_TO_STR1(n_tokens);
  4194. }
  4195. double max_nmse_err() override {
  4196. return 2e-3;
  4197. }
  4198. test_falcon(int n_tokens = 1)
  4199. : test_llm({
  4200. /*n_vocab =*/ 32000,
  4201. /*n_embd =*/ 3200,
  4202. /*n_head =*/ 50,
  4203. /*n_head_kv =*/ 1,
  4204. /*n_rot =*/ 64,
  4205. /*n_embd_head =*/ 64,
  4206. /*n_ff =*/ 8640,
  4207. /*f_norm_eps =*/ 1e-5f,
  4208. /*f_norm_rms_eps =*/ 0.f,
  4209. /*n_tokens =*/ n_tokens,
  4210. }) {
  4211. }
  4212. ggml_tensor * build_graph(ggml_context * ctx) override {
  4213. struct ggml_tensor * cur;
  4214. struct ggml_tensor * inpL;
  4215. inpL = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, hp.n_embd, hp.n_tokens);
  4216. // inp_pos - contains the positions
  4217. struct ggml_tensor * inp_pos = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, hp.n_tokens);
  4218. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  4219. struct ggml_tensor * KQ_mask = ggml_new_tensor_3d(ctx, GGML_TYPE_F16, hp.n_kv, hp.n_tokens, 1);
  4220. ggml_tensor * k_l = ggml_new_tensor_1d(ctx, GGML_TYPE_F16, 1638400);
  4221. ggml_tensor * v_l = ggml_new_tensor_1d(ctx, GGML_TYPE_F16, 1638400);
  4222. for (uint32_t il = 0; il < hp.n_layer; ++il) {
  4223. // norm
  4224. ggml_tensor * attn_norm_w = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, hp.n_embd);
  4225. ggml_tensor * attn_norm_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, hp.n_embd);
  4226. ggml_tensor * attn_norm = llm_build_norm(ctx, inpL, attn_norm_w, attn_norm_b, LLM_NORM);
  4227. // self-attention
  4228. {
  4229. cur = attn_norm;
  4230. ggml_tensor * wqkv = ggml_new_tensor_2d(ctx, GGML_TYPE_Q4_0, hp.n_embd, hp.n_embd + 2*hp.n_embd_gqa());
  4231. cur = ggml_mul_mat(ctx, wqkv, cur);
  4232. struct ggml_tensor * Qcur = ggml_cont(ctx, ggml_view_2d(ctx, cur, hp.n_embd, hp.n_tokens, cur->nb[1], 0*sizeof(float)*(hp.n_embd)));
  4233. struct ggml_tensor * Kcur = ggml_cont(ctx, ggml_view_2d(ctx, cur, hp.n_embd_gqa(), hp.n_tokens, cur->nb[1], 1*sizeof(float)*(hp.n_embd)));
  4234. struct ggml_tensor * Vcur = ggml_cont(ctx, ggml_view_2d(ctx, cur, hp.n_embd_gqa(), hp.n_tokens, cur->nb[1], 1*sizeof(float)*(hp.n_embd + hp.n_embd_gqa())));
  4235. Qcur = ggml_reshape_3d(ctx, Qcur, hp.n_embd_head, hp.n_head, hp.n_tokens);
  4236. Kcur = ggml_reshape_3d(ctx, Kcur, hp.n_embd_head, hp.n_head_kv, hp.n_tokens);
  4237. // using mode = 2 for neox mode
  4238. Qcur = ggml_rope_ext(
  4239. ctx, Qcur, inp_pos, nullptr, hp.n_rot, 2, hp.n_ctx_orig,
  4240. freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow
  4241. );
  4242. Kcur = ggml_rope_ext(
  4243. ctx, Kcur, inp_pos, nullptr, hp.n_rot, 2, hp.n_ctx_orig,
  4244. freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow
  4245. );
  4246. llm_build_kv_store(ctx, k_l, v_l, Kcur, Vcur);
  4247. cur = llm_build_kqv(ctx, k_l, v_l, Qcur, KQ_mask, 1.0f/sqrtf(float(hp.n_embd_head)));
  4248. }
  4249. struct ggml_tensor * ffn_inp = cur;
  4250. // feed forward
  4251. {
  4252. ggml_tensor * ffn_up = ggml_new_tensor_2d(ctx, GGML_TYPE_Q4_0, hp.n_embd, hp.n_ff);
  4253. ggml_tensor * ffn_down = ggml_new_tensor_2d(ctx, GGML_TYPE_Q4_0, hp.n_ff, hp.n_embd);
  4254. cur = attn_norm;
  4255. cur = ggml_mul_mat(ctx, ffn_up, cur);
  4256. cur = ggml_gelu(ctx, cur);
  4257. cur = ggml_mul_mat(ctx, ffn_down, cur);
  4258. }
  4259. cur = ggml_add(ctx, cur, ffn_inp);
  4260. cur = ggml_add(ctx, cur, inpL);
  4261. // input for next layer
  4262. inpL = cur;
  4263. }
  4264. cur = inpL;
  4265. ggml_tensor * output_norm = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, hp.n_embd);
  4266. ggml_tensor * output_norm_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, hp.n_embd);
  4267. cur = llm_build_norm(ctx, cur, output_norm, output_norm_b, LLM_NORM);
  4268. // lm_head
  4269. ggml_tensor * output = ggml_new_tensor_2d(ctx, GGML_TYPE_Q8_0, hp.n_embd, hp.n_vocab);
  4270. cur = ggml_mul_mat(ctx, output, cur);
  4271. return cur;
  4272. }
  4273. };
  4274. // ###########################################
  4275. // ## Section 3: GGML Op Test Instantiation ##
  4276. // ###########################################
  4277. static const ggml_type all_types[] = {
  4278. GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_BF16,
  4279. GGML_TYPE_Q4_0, GGML_TYPE_Q4_1,
  4280. GGML_TYPE_Q5_0, GGML_TYPE_Q5_1,
  4281. GGML_TYPE_Q8_0,
  4282. GGML_TYPE_MXFP4,
  4283. GGML_TYPE_Q2_K, GGML_TYPE_Q3_K,
  4284. GGML_TYPE_Q4_K, GGML_TYPE_Q5_K,
  4285. GGML_TYPE_Q6_K,
  4286. // GGML_TYPE_TQ1_0, GGML_TYPE_TQ2_0, // TODO: implement for all backends
  4287. GGML_TYPE_IQ2_XXS, GGML_TYPE_IQ2_XS, GGML_TYPE_IQ2_S,
  4288. GGML_TYPE_IQ3_XXS, GGML_TYPE_IQ1_S, GGML_TYPE_IQ1_M,
  4289. GGML_TYPE_IQ4_NL, GGML_TYPE_IQ3_S, GGML_TYPE_IQ4_XS,
  4290. };
  4291. static const ggml_type base_types[] = {
  4292. GGML_TYPE_F32, GGML_TYPE_F16,
  4293. GGML_TYPE_Q8_0, // for I8MM tests
  4294. GGML_TYPE_Q4_0,
  4295. GGML_TYPE_Q4_1, // for I8MM tests
  4296. GGML_TYPE_Q4_K,
  4297. GGML_TYPE_MXFP4, // TODO: or "other"
  4298. GGML_TYPE_IQ2_XXS
  4299. };
  4300. static const ggml_type other_types[] = {
  4301. GGML_TYPE_Q4_1,
  4302. GGML_TYPE_Q5_0, GGML_TYPE_Q5_1,
  4303. GGML_TYPE_Q8_0,
  4304. GGML_TYPE_Q2_K, GGML_TYPE_Q3_K,
  4305. GGML_TYPE_Q5_K,
  4306. GGML_TYPE_Q6_K,
  4307. // GGML_TYPE_TQ1_0, GGML_TYPE_TQ2_0, // TODO: implement for all backends
  4308. GGML_TYPE_IQ2_XS, GGML_TYPE_IQ2_S,
  4309. GGML_TYPE_IQ3_XXS, GGML_TYPE_IQ1_S, GGML_TYPE_IQ1_M,
  4310. GGML_TYPE_IQ4_NL, GGML_TYPE_IQ3_S, GGML_TYPE_IQ4_XS,
  4311. GGML_TYPE_BF16,
  4312. };
  4313. // Test cases for evaluation: should try to cover edge cases while using small input sizes to keep the runtime low
  4314. static std::vector<std::unique_ptr<test_case>> make_test_cases_eval() {
  4315. std::vector<std::unique_ptr<test_case>> test_cases;
  4316. std::default_random_engine rng(0);
  4317. // unary ops
  4318. for (ggml_type type : {GGML_TYPE_F16, GGML_TYPE_F32}) {
  4319. for (int v : {0, 1}) {
  4320. for (int op = 0; op < GGML_UNARY_OP_COUNT; op++) {
  4321. test_cases.emplace_back(new test_unary((ggml_unary_op) op, type, { 128, 2, 2, 2 }, v));
  4322. test_cases.emplace_back(new test_unary((ggml_unary_op) op, type, { 5, 7, 11, 13 }, v));
  4323. }
  4324. }
  4325. }
  4326. // glu ops
  4327. for (ggml_type type : {GGML_TYPE_F16, GGML_TYPE_F32}) {
  4328. for (int v : {0, 1}) {
  4329. for (int op = 0; op < GGML_GLU_OP_COUNT; op++) {
  4330. if (op == GGML_GLU_OP_SWIGLU_OAI) {
  4331. // SWIGLU_OAI is handled separately
  4332. continue;
  4333. }
  4334. for (bool swapped : {false, true}) {
  4335. test_cases.emplace_back(new test_glu((ggml_glu_op) op, type, { 128, 2, 2, 2 }, v, swapped));
  4336. test_cases.emplace_back(new test_glu((ggml_glu_op) op, type, { 5, 7, 11, 13 }, v, swapped));
  4337. }
  4338. test_cases.emplace_back(new test_glu_split((ggml_glu_op) op, type, { 128, 2, 2, 2 }, v));
  4339. test_cases.emplace_back(new test_glu_split((ggml_glu_op) op, type, { 5, 7, 11, 13 }, v));
  4340. }
  4341. }
  4342. }
  4343. for (int v : {0, 1}) {
  4344. for (float alpha : {.5f, 1.702f}) {
  4345. for (float limit : {2.0f, 7.0f}) {
  4346. test_cases.emplace_back(new test_swiglu_oai(GGML_TYPE_F32, { 128, 2, 2, 2 }, v, alpha, limit));
  4347. }
  4348. }
  4349. }
  4350. test_cases.emplace_back(new test_get_rows(GGML_TYPE_F32, 1, 8, 2, 1, false));
  4351. for (ggml_type type : all_types) {
  4352. for (int b : {1, 7}) {
  4353. for (bool v : {false, true}) {
  4354. test_cases.emplace_back(new test_get_rows(type, 256, 5, 4, b, v));
  4355. }
  4356. }
  4357. }
  4358. for (int b : {1, 7}) {
  4359. for (bool v : {false, true}) {
  4360. test_cases.emplace_back(new test_get_rows(GGML_TYPE_I32, 256, 5, 4, b, v));
  4361. }
  4362. }
  4363. test_cases.emplace_back(new test_get_rows_back(GGML_TYPE_F32, 1, 8, 2, 1, false));
  4364. for (ggml_type type : all_types) {
  4365. for (bool v : {false, true}) {
  4366. test_cases.emplace_back(new test_get_rows_back(type, 256, 5, 4, 1, v));
  4367. }
  4368. }
  4369. for (bool v : {false, true}) {
  4370. test_cases.emplace_back(new test_get_rows_back(GGML_TYPE_I32, 256, 5, 4, 1, v));
  4371. }
  4372. test_cases.emplace_back(new test_set_rows(GGML_TYPE_F32, { 1, 8, 1, 3 }, { 1, 1 }, 2, false));
  4373. for (ggml_type type : all_types) {
  4374. for (int b : {1, 7}) {
  4375. for (bool v : {false, true}) {
  4376. test_cases.emplace_back(new test_set_rows(type, { 256, 5, b, 3 }, { 1, 1, }, 1, v));
  4377. test_cases.emplace_back(new test_set_rows(type, { 256, 11, 1, b }, { 2, 3, }, 7, v));
  4378. test_cases.emplace_back(new test_set_rows(type, { 3*ggml_blck_size(type), 3, b, 1 }, { 2, 3, }, 2, v));
  4379. if (ggml_blck_size(type) == 1) {
  4380. test_cases.emplace_back(new test_set_rows(type, { 31, 3, b, 1 }, { 2, 3, }, 2, v));
  4381. test_cases.emplace_back(new test_set_rows(type, { 33, 5, 1, b }, { 2, 3, }, 1, v));
  4382. }
  4383. }
  4384. }
  4385. }
  4386. for (ggml_type type_input : {GGML_TYPE_F32}) {
  4387. for (ggml_op_pool pool_type : {GGML_OP_POOL_AVG, GGML_OP_POOL_MAX}) {
  4388. for (int k0 : {1, 3}) {
  4389. for (int k1 : {1, 3}) {
  4390. for (int s0 : {1, 2}) {
  4391. for (int s1 : {1, 2}) {
  4392. for (int p0 : {0, 1}) {
  4393. for (int p1 : {0, 1}) {
  4394. test_cases.emplace_back(new test_pool2d(pool_type, type_input, {10, 10, 3, 1}, k0, k1, s0, s1, p0, p1));
  4395. }
  4396. }
  4397. }
  4398. }
  4399. }
  4400. }
  4401. }
  4402. }
  4403. // im2col 1D
  4404. test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F32, GGML_TYPE_F32, {3000, 128, 1, 1}, {3, 128, 1280, 1}, 1, 0, 1, 0, 1, 0, false));
  4405. test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F32, {3000, 128, 1, 1}, {3, 128, 1280, 1}, 1, 0, 1, 0, 1, 0, false));
  4406. test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F16, {3000, 128, 1, 1}, {3, 128, 1280, 1}, 1, 0, 1, 0, 1, 0, false));
  4407. for (int s0 : {1, 3}) {
  4408. for (int p0 : {0, 3}) {
  4409. for (int d0 : {1, 3}) {
  4410. test_cases.emplace_back(new test_im2col(
  4411. GGML_TYPE_F32, GGML_TYPE_F32, GGML_TYPE_F32, {20, 2, 2, 1}, {3, 2, 2, 1},
  4412. s0, 0, p0, 0, d0, 0, false));
  4413. }
  4414. }
  4415. }
  4416. // im2col 2D
  4417. test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F32, GGML_TYPE_F32));
  4418. test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F32));
  4419. test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F16));
  4420. for (int s0 : {1, 3}) {
  4421. for (int s1 : {1, 3}) {
  4422. for (int p0 : {0, 3}) {
  4423. for (int p1 : {0, 3}) {
  4424. for (int d0 : {1, 3}) {
  4425. for (int d1 : {1, 3}) {
  4426. test_cases.emplace_back(new test_im2col(
  4427. GGML_TYPE_F32, GGML_TYPE_F32, GGML_TYPE_F32, {20, 20, 2, 2}, {3, 3, 2, 2},
  4428. s0, s1, p0, p1, d0, d1, true));
  4429. }
  4430. }
  4431. }
  4432. }
  4433. }
  4434. }
  4435. // extra tests for im2col 2D
  4436. test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F16, {12, 12, 1, 32}, {3, 3, 1, 32}, 1, 1, 1, 1, 1, 1, true));
  4437. test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F16, {12, 12, 2, 32}, {3, 3, 2, 32}, 1, 1, 1, 1, 1, 1, true));
  4438. test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F16, {12, 12, 1, 1024}, {3, 3, 1, 1024}, 1, 1, 1, 1, 1, 1, true));
  4439. test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F16, {12, 12, 2, 1024}, {3, 3, 2, 1024}, 1, 1, 1, 1, 1, 1, true));
  4440. test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F16, {12, 12, 1, 2048}, {3, 3, 1, 2048}, 1, 1, 1, 1, 1, 1, true));
  4441. test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F16, {12, 12, 2, 2048}, {3, 3, 2, 2048}, 1, 1, 1, 1, 1, 1, true));
  4442. test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F16, {12, 12, 1, 2560}, {3, 3, 1, 2560}, 1, 1, 1, 1, 1, 1, true));
  4443. test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F16, {12, 12, 2, 2560}, {3, 3, 2, 2560}, 1, 1, 1, 1, 1, 1, true));
  4444. test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F16, {5, 5, 1, 32}, {3, 4, 1, 32}, 1, 1, 0, 0, 1, 1, true));
  4445. // Conv_2D test cases
  4446. #ifdef DETAILED_TESTS
  4447. // Probably we do not have enough time to execute these in the pipeline.
  4448. uint32_t iwh_idx = 0;
  4449. uint32_t kwh_idx = 1;
  4450. uint32_t Cout_idx = 2;
  4451. uint32_t Cin_idx = 3;
  4452. uint32_t B_idx = 4;
  4453. std::vector<std::array<int, 5>> cases = {
  4454. //{IWH, KWH, Cout, Cin, B}
  4455. // K=CRS=NPQ=4096 conv_2d matmul performance
  4456. {19, 4, 4096, 256, 16},
  4457. // K=128, CRS=128, NPQ=4096
  4458. { 19, 4, 128, 8, 16},
  4459. // K=130, CRS=128, NPQ=4096
  4460. { 19, 4, 130, 8, 16},
  4461. // Edge case: K x CRS is small
  4462. { 19, 2, 4, 4, 16},
  4463. // A ConvNet's first layer
  4464. { 224, 3, 8, 3, 1 },
  4465. // A ConvNet's first layer with 2x2 convolution, and 1 channel
  4466. { 224, 2, 8, 1, 1 },
  4467. // A ConvNet's first layer with 2x2 convolution, and 1 channel, several images in the batch
  4468. { 224, 2, 8, 1, 8 },
  4469. // A middle layer of a ConvNet
  4470. { 58, 3, 64, 32, 1 },
  4471. // A middle layer of a ConvNet, several images in the batch
  4472. { 58, 3, 64, 32, 8 },
  4473. // A deep layer of a ConvNet, several images in the batch
  4474. { 16, 3, 256, 128, 8 }
  4475. };
  4476. for (auto kernel_type : {GGML_TYPE_F32, GGML_TYPE_F16}) {
  4477. for (auto act_case : cases) {
  4478. test_cases.emplace_back(new test_conv_2d(
  4479. { act_case[iwh_idx], act_case[iwh_idx], act_case[Cin_idx], act_case[B_idx] },
  4480. { act_case[kwh_idx], act_case[kwh_idx], act_case[Cin_idx], act_case[Cout_idx] },
  4481. kernel_type, 1, 1, 0, 0, 1, 1, false));
  4482. }
  4483. }
  4484. #endif
  4485. // CONV_2D:
  4486. auto calc_conv_output_size = [](int64_t ins, int64_t ks, int s, int p, int d) -> int64_t {
  4487. return (ins + 2 * p - d * (ks - 1) - 1) / s + 1;
  4488. };
  4489. //uint32_t s0 = 3;
  4490. uint32_t s1 = 5;
  4491. uint32_t p0 = 5;
  4492. //uint32_t p1 = 2;
  4493. uint32_t d0 = 2;
  4494. uint32_t d1 = 4;
  4495. for (uint32_t s0 : { 1, 3 }) {
  4496. for (uint32_t p1 : { 2, 5 }) {
  4497. for (uint32_t Cin : { 1, 25 }) {
  4498. for (uint32_t Cout : { 1, 12 }) {
  4499. for (uint32_t KH : { 1, 2, 3, 11 }) {
  4500. for (uint32_t KW : { 1, 2, 3, 11 }) {
  4501. for (uint32_t H : { 1, 133 }) {
  4502. for (uint32_t W : { 1, 141 }) {
  4503. if (calc_conv_output_size(W, KW, s0, p0, d0) > 0 &&
  4504. calc_conv_output_size(H, KH, s1, p1, d1) > 0) {
  4505. for (auto kernel_type : {GGML_TYPE_F32, GGML_TYPE_F16}) {
  4506. test_cases.emplace_back(new test_conv_2d(
  4507. { W, H, Cin, 2 }, { KW, KH, Cin, Cout }, kernel_type, s0, s1, p0, p1, d0, d1, false));
  4508. }
  4509. }
  4510. }
  4511. }
  4512. }
  4513. }
  4514. }
  4515. }
  4516. }
  4517. }
  4518. // sycl backend will limit task global_range < MAX_INT
  4519. // test cases for 2D im2col with large input W and H (occurs in stable-diffusion)
  4520. // however these cases need to alloc more memory which may fail in some devices (Intel Arc770, etc.)
  4521. // these cases are verified (pass) in Intel(R) Data Center GPU Max 1100 (sycl backend) and NV A30 (cuda backend)
  4522. // test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F16, {1024, 1024, 256, 1}, {3, 3, 256, 1}, 1, 1, 1, 1, 1, 1, true));
  4523. // test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F32, {1024, 1024, 256, 1}, {3, 3, 256, 1}, 1, 1, 1, 1, 1, 1, true));
  4524. test_cases.emplace_back(new test_conv_2d_dw({17, 34, 9, 1}, {3, 3, 1, 9}, 1, 0, 1, false));
  4525. test_cases.emplace_back(new test_conv_2d_dw({17, 34, 9, 1}, {3, 3, 1, 9}, 1, 0, 1, true));
  4526. test_cases.emplace_back(new test_conv_2d_dw({32, 8, 64, 1}, {3, 3, 1, 64}, 2, 1, 1, false));
  4527. test_cases.emplace_back(new test_conv_2d_dw({32, 8, 64, 1}, {3, 3, 1, 64}, 2, 1, 1, true));
  4528. for(uint32_t Cout : {1, 9}){
  4529. for(uint32_t Cin : {1, 7}){
  4530. for(uint32_t K : {1, 3, 1337}){
  4531. for(uint32_t L : {1, 2, 13}){
  4532. for(uint32_t s0: {1, 2, 3}){
  4533. test_cases.emplace_back(new test_conv_transpose_1d({L,Cin,1,1}, {K,Cout,Cin,1}, s0, 0, 1));
  4534. }
  4535. }
  4536. }
  4537. }
  4538. }
  4539. test_cases.emplace_back(new test_conv_transpose_1d());
  4540. test_cases.emplace_back(new test_conv_transpose_1d({3,2,1,1}, {2,3,2,1}, 3, 0, 1));
  4541. test_cases.emplace_back(new test_conv_transpose_1d({3,2,1,1}, {2,3,2,1}, 2, 0, 1));
  4542. test_cases.emplace_back(new test_conv_transpose_1d({3,2,1,1}, {2,3,2,1}, 1, 0, 1));
  4543. test_cases.emplace_back(new test_conv_transpose_1d({3,2,1,1}, {3,2,2,1}, 2, 0, 1));
  4544. test_cases.emplace_back(new test_conv_transpose_1d({3,2,1,1}, {3,2,2,1}, 1, 0, 1));
  4545. test_cases.emplace_back(new test_conv_transpose_1d({3,2,1,1}, {3,1,2,1}, 1, 0, 1));
  4546. test_cases.emplace_back(new test_conv_transpose_1d({2,1,1,1}, {3,1,1,1}, 1, 0, 1));
  4547. test_cases.emplace_back(new test_conv_transpose_2d({3, 2, 3, 1}, {2, 2, 1, 3}, 1));
  4548. test_cases.emplace_back(new test_conv_transpose_2d({10, 10, 9, 1}, {3, 3, 1, 9}, 2));
  4549. test_cases.emplace_back(new test_count_equal(GGML_TYPE_F32, {4, 500, 1, 1}));
  4550. test_cases.emplace_back(new test_count_equal(GGML_TYPE_F32, {4, 5000, 1, 1}));
  4551. test_cases.emplace_back(new test_argmax(GGML_TYPE_F32, {32, 1, 1, 1}));
  4552. test_cases.emplace_back(new test_argmax(GGML_TYPE_F32, {100, 10, 1, 1}));
  4553. test_cases.emplace_back(new test_argmax(GGML_TYPE_F32, {1024, 10, 1, 1}));
  4554. test_cases.emplace_back(new test_argmax(GGML_TYPE_F32, {1024, 12, 1, 1}));
  4555. test_cases.emplace_back(new test_argmax(GGML_TYPE_F32, {2000, 10, 1, 1}));
  4556. test_cases.emplace_back(new test_argmax(GGML_TYPE_F32, {5438, 3, 1, 1}));
  4557. for (int ne3 : {1, 3}) { // CUDA backward pass only supports ne3 == 1
  4558. test_cases.emplace_back(new test_repeat(GGML_TYPE_F32, {10, 5, 4, ne3}, {1, 1, 1, 1}));
  4559. test_cases.emplace_back(new test_repeat(GGML_TYPE_F32, {10, 5, 4, ne3}, {2, 1, 1, 1}));
  4560. test_cases.emplace_back(new test_repeat(GGML_TYPE_F32, {10, 5, 4, ne3}, {1, 2, 1, 1}));
  4561. test_cases.emplace_back(new test_repeat(GGML_TYPE_F32, {10, 5, 4, ne3}, {1, 1, 2, 1}));
  4562. test_cases.emplace_back(new test_repeat(GGML_TYPE_F32, {10, 5, 4, ne3}, {1, 1, 1, 2}));
  4563. test_cases.emplace_back(new test_repeat(GGML_TYPE_I32, {10, 5, 4, ne3}, {2, 1, 1, 1}));
  4564. test_cases.emplace_back(new test_repeat(GGML_TYPE_I16, {10, 5, 4, ne3}, {1, 1, 1, 2}));
  4565. }
  4566. for (bool view : {false, true}) {
  4567. test_cases.emplace_back(new test_repeat_back(GGML_TYPE_F32, {8, 6, 4, 2}, {1, 1, 1, 1}, view));
  4568. test_cases.emplace_back(new test_repeat_back(GGML_TYPE_F32, {8, 6, 4, 2}, {2, 1, 1, 1}, view));
  4569. test_cases.emplace_back(new test_repeat_back(GGML_TYPE_F32, {8, 6, 4, 2}, {1, 2, 1, 1}, view));
  4570. test_cases.emplace_back(new test_repeat_back(GGML_TYPE_F32, {8, 6, 4, 2}, {1, 1, 2, 1}, view));
  4571. test_cases.emplace_back(new test_repeat_back(GGML_TYPE_F32, {8, 6, 4, 2}, {1, 1, 1, 2}, view));
  4572. }
  4573. test_cases.emplace_back(new test_dup(GGML_TYPE_F32));
  4574. test_cases.emplace_back(new test_dup(GGML_TYPE_F16));
  4575. test_cases.emplace_back(new test_dup(GGML_TYPE_I32));
  4576. test_cases.emplace_back(new test_dup(GGML_TYPE_I16));
  4577. test_cases.emplace_back(new test_dup(GGML_TYPE_F32, {10, 10, 5, 1}, {0, 2, 1, 3}));
  4578. test_cases.emplace_back(new test_dup(GGML_TYPE_F16, {10, 10, 5, 1}, {0, 2, 1, 3})); // dup by rows
  4579. test_cases.emplace_back(new test_dup(GGML_TYPE_F32, {10, 10, 5, 1}, {1, 0, 2, 3}));
  4580. test_cases.emplace_back(new test_dup(GGML_TYPE_F16, {10, 10, 5, 1}, {1, 0, 2, 3})); // dup dst not-contiguous
  4581. test_cases.emplace_back(new test_dup(GGML_TYPE_I16, {10, 8, 3, 1}, {0, 2, 1, 3}));
  4582. test_cases.emplace_back(new test_dup(GGML_TYPE_I16, {10, 8, 3, 1}, {1, 2, 0, 3}));
  4583. for (int dim = 1; dim < GGML_MAX_DIMS; ++dim) {
  4584. test_cases.emplace_back(new test_set(GGML_TYPE_F32, GGML_TYPE_F32, {6, 5, 4, 3}, dim));
  4585. }
  4586. for (int dim = 1; dim < GGML_MAX_DIMS; ++dim) {
  4587. test_cases.emplace_back(new test_set(GGML_TYPE_I32, GGML_TYPE_I32, {6, 5, 4, 3}, dim));
  4588. }
  4589. // same-type copy
  4590. for (ggml_type type : all_types) {
  4591. const auto nk = ggml_blck_size(type);
  4592. for (int k = 1; k < 4; ++k) {
  4593. test_cases.emplace_back(new test_cpy(type, type, {k*nk, 2, 3, 4}));
  4594. test_cases.emplace_back(new test_cpy(type, type, {k*nk, 2, 3, 4}, {0, 2, 1, 3}));
  4595. test_cases.emplace_back(new test_cpy(type, type, {k*nk, 2, 3, 4}, {0, 3, 1, 2}, {0, 2, 1, 3}));
  4596. }
  4597. }
  4598. for (ggml_type type_src : {GGML_TYPE_F16, GGML_TYPE_BF16, GGML_TYPE_F32}) {
  4599. for (ggml_type type_dst : all_types) {
  4600. test_cases.emplace_back(new test_cpy(type_src, type_dst, {256, 4, 4, 4}));
  4601. test_cases.emplace_back(new test_cpy(type_src, type_dst, {256, 2, 3, 4}, {0, 2, 1, 3})); // cpy by rows
  4602. }
  4603. }
  4604. for (ggml_type type_src : all_types) {
  4605. for (ggml_type type_dst : {GGML_TYPE_F32}) {
  4606. test_cases.emplace_back(new test_cpy(type_src, type_dst, {256, 4, 4, 4}));
  4607. test_cases.emplace_back(new test_cpy(type_src, type_dst, {256, 2, 3, 4}, {0, 2, 1, 3})); // cpy by rows
  4608. }
  4609. }
  4610. for (ggml_type type_src : {GGML_TYPE_F16, GGML_TYPE_F32}) {
  4611. for (ggml_type type_dst : {GGML_TYPE_F16, GGML_TYPE_F32}) {
  4612. test_cases.emplace_back(new test_cpy(type_src, type_dst, {256, 2, 3, 4}, {1, 0, 2, 3})); // cpy not-contiguous
  4613. }
  4614. }
  4615. test_cases.emplace_back(new test_cont());
  4616. test_cases.emplace_back(new test_cont(GGML_TYPE_F32, {2, 1, 1 ,1}));
  4617. test_cases.emplace_back(new test_cont(GGML_TYPE_F32, {2, 1, 3 ,5}));
  4618. test_cases.emplace_back(new test_cont(GGML_TYPE_F32, {2, 3, 5 ,7}));
  4619. test_cases.emplace_back(new test_cont(GGML_TYPE_F16, {2, 1, 1 ,1}));
  4620. test_cases.emplace_back(new test_cont(GGML_TYPE_F16, {2, 1, 3 ,5}));
  4621. test_cases.emplace_back(new test_cont(GGML_TYPE_F16, {2, 3, 5 ,7}));
  4622. test_cases.emplace_back(new test_cont(GGML_TYPE_BF16, {2, 1, 1 ,1}));
  4623. test_cases.emplace_back(new test_cont(GGML_TYPE_BF16, {2, 1, 3 ,5}));
  4624. test_cases.emplace_back(new test_cont(GGML_TYPE_BF16, {2, 3, 5 ,7}));
  4625. auto add_test_bin_bcast = [&](ggml_type type, std::array<int64_t, 4> ne, std::array<int, 4> nr) {
  4626. for (auto op : {ggml_add, ggml_sub, ggml_mul, ggml_div}) {
  4627. test_cases.emplace_back(new test_bin_bcast(op, type, ne, nr));
  4628. }
  4629. };
  4630. for (ggml_type type : {GGML_TYPE_F16, GGML_TYPE_F32}) {
  4631. add_test_bin_bcast(type, {1, 1, 8, 1}, {1, 1, 1, 1});
  4632. add_test_bin_bcast(type, {1, 1, 1, 1}, {32, 1, 1, 1});
  4633. add_test_bin_bcast(type, {1, 1, 320, 320}, {1, 1, 1, 1});
  4634. add_test_bin_bcast(type, {10, 5, 1, 1}, {1, 1, 1, 1});
  4635. add_test_bin_bcast(type, {10, 5, 4, 1}, {1, 1, 1, 1});
  4636. add_test_bin_bcast(type, {10, 5, 4, 3}, {1, 1, 1, 1});
  4637. add_test_bin_bcast(type, {10, 5, 4, 3}, {2, 1, 1, 1});
  4638. add_test_bin_bcast(type, {10, 5, 4, 3}, {1, 2, 1, 1});
  4639. add_test_bin_bcast(type, {10, 5, 4, 3}, {1, 1, 2, 1});
  4640. add_test_bin_bcast(type, {10, 5, 4, 3}, {1, 1, 1, 2});
  4641. add_test_bin_bcast(type, {10, 5, 4, 3}, {1, 1, 2, 2});
  4642. add_test_bin_bcast(type, {10, 5, 4, 3}, {1, 2, 2, 2});
  4643. add_test_bin_bcast(type, {10, 5, 4, 3}, {2, 2, 2, 2});
  4644. // stable diffusion
  4645. add_test_bin_bcast(type, {1280, 1, 1, 1}, {1, 1, 1, 1});
  4646. add_test_bin_bcast(type, {1280, 1, 1, 1}, {1, 16, 16, 1});
  4647. add_test_bin_bcast(type, {1280, 16, 16, 1}, {1, 1, 1, 1});
  4648. add_test_bin_bcast(type, {1280, 1, 1, 1}, {1, 256, 1, 1});
  4649. add_test_bin_bcast(type, {1, 1, 1280, 1}, {16, 16, 1, 1});
  4650. add_test_bin_bcast(type, {16, 16, 1280, 1}, {1, 1, 1, 1});
  4651. add_test_bin_bcast(type, {1, 1, 1920, 1}, {16, 16, 1, 1});
  4652. add_test_bin_bcast(type, {1, 1, 2560, 1}, {16, 16, 1, 1});
  4653. add_test_bin_bcast(type, {1, 1, 1280, 1}, {32, 32, 1, 1});
  4654. add_test_bin_bcast(type, {1, 1, 1920, 1}, {32, 32, 1, 1});
  4655. add_test_bin_bcast(type, {1, 1, 640, 1}, {32, 32, 1, 1});
  4656. add_test_bin_bcast(type, {5120, 1, 1, 1}, {1, 256, 1, 1});
  4657. add_test_bin_bcast(type, {640, 1, 1, 1}, {1, 1, 1, 1});
  4658. //add_test_bin_bcast(type, {3, 3, 2560, 1280}, {1, 1, 1, 1});
  4659. //add_test_bin_bcast(type, {3, 3, 2560, 1280}, {2, 1, 1, 1});
  4660. }
  4661. // fusion
  4662. test_cases.emplace_back(new test_bin_bcast(ggml_add, GGML_TYPE_F32, {10, 5, 4, 3}, {2, 1, 1, 1}, 2));
  4663. test_cases.emplace_back(new test_bin_bcast(ggml_add, GGML_TYPE_F32, {16, 5, 4, 3}, {1, 2, 1, 1}, 3));
  4664. test_cases.emplace_back(new test_bin_bcast(ggml_add, GGML_TYPE_F32, {10, 5, 4, 3}, {1, 1, 2, 1}, 4));
  4665. test_cases.emplace_back(new test_bin_bcast(ggml_add, GGML_TYPE_F32, {16, 5, 4, 3}, {1, 1, 1, 2}, 5));
  4666. test_cases.emplace_back(new test_bin_bcast(ggml_add, GGML_TYPE_F32, {10, 5, 4, 3}, {1, 1, 2, 2}, 6));
  4667. test_cases.emplace_back(new test_bin_bcast(ggml_add, GGML_TYPE_F32, {10, 5, 4, 3}, {1, 2, 2, 2}, 7));
  4668. test_cases.emplace_back(new test_bin_bcast(ggml_add, GGML_TYPE_F32, {16, 5, 4, 3}, {2, 2, 2, 2}, 8));
  4669. test_cases.emplace_back(new test_add1());
  4670. test_cases.emplace_back(new test_scale());
  4671. test_cases.emplace_back(new test_scale(GGML_TYPE_F32, {10, 10, 10, 10}, 2.0f, 1.0f));
  4672. test_cases.emplace_back(new test_softcap(GGML_TYPE_F32, {10, 10, 10, 10}, 50.0f));
  4673. test_cases.emplace_back(new test_silu_back());
  4674. for (float eps : {0.0f, 1e-6f, 1e-4f, 1e-1f}) {
  4675. for (bool v : {false, true}) {
  4676. test_cases.emplace_back(new test_norm (GGML_TYPE_F32, {64, 5, 4, 3}, v, eps));
  4677. test_cases.emplace_back(new test_rms_norm(GGML_TYPE_F32, {64, 5, 4, 3}, v, eps));
  4678. }
  4679. test_cases.emplace_back(new test_rms_norm_back(GGML_TYPE_F32, {64, 5, 4, 3}, eps));
  4680. test_cases.emplace_back(new test_l2_norm (GGML_TYPE_F32, {64, 5, 4, 3}, eps));
  4681. }
  4682. for (float eps : {0.0f, 1e-6f, 1e-4f, 1e-1f, 1.0f}) {
  4683. test_cases.emplace_back(new test_rms_norm_mul_add(GGML_TYPE_F32, {64, 5, 4, 3}, eps));
  4684. test_cases.emplace_back(new test_rms_norm_mul_add(GGML_TYPE_F32, {64, 5, 4, 3}, eps, true));
  4685. }
  4686. test_cases.emplace_back(new test_l2_norm(GGML_TYPE_F32, {64, 5, 4, 3}, 1e-12f));
  4687. for (int64_t d_conv : {3, 4}) {
  4688. for (int64_t d_inner: {1024, 1536, 2048}) {
  4689. test_cases.emplace_back(new test_ssm_conv(GGML_TYPE_F32, {4, d_inner, 1, 1}, {d_conv, d_inner, 1, 1}));
  4690. test_cases.emplace_back(new test_ssm_conv(GGML_TYPE_F32, {8, d_inner, 1, 1}, {d_conv, d_inner, 1, 1}));
  4691. test_cases.emplace_back(new test_ssm_conv(GGML_TYPE_F32, {4, d_inner, 4, 1}, {d_conv, d_inner, 1, 1}));
  4692. }
  4693. }
  4694. test_cases.emplace_back(new test_ssm_scan(GGML_TYPE_F32, 16, 1, 1024, 1, 32, 4)); // Mamba-1
  4695. test_cases.emplace_back(new test_ssm_scan(GGML_TYPE_F32, 128, 64, 16, 2, 32, 4)); // Mamba-2
  4696. test_cases.emplace_back(new test_ssm_scan(GGML_TYPE_F32, 256, 64, 8, 2, 32, 4)); // Falcon-H1
  4697. test_cases.emplace_back(new test_rwkv_wkv6(GGML_TYPE_F32, 32, 64, 1, 1));
  4698. test_cases.emplace_back(new test_rwkv_wkv6(GGML_TYPE_F32, 32, 64, 32, 1));
  4699. test_cases.emplace_back(new test_rwkv_wkv6(GGML_TYPE_F32, 32, 64, 32, 4));
  4700. test_cases.emplace_back(new test_rwkv_wkv6(GGML_TYPE_F32, 32, 64, 128, 4));
  4701. test_cases.emplace_back(new test_rwkv_wkv7(GGML_TYPE_F32, 32, 64, 1, 1));
  4702. test_cases.emplace_back(new test_rwkv_wkv7(GGML_TYPE_F32, 32, 64, 32, 1));
  4703. test_cases.emplace_back(new test_rwkv_wkv7(GGML_TYPE_F32, 32, 64, 32, 4));
  4704. test_cases.emplace_back(new test_rwkv_wkv7(GGML_TYPE_F32, 32, 64, 128, 4));
  4705. test_cases.emplace_back(new test_gla(GGML_TYPE_F32, 32, 64, 1, 1));
  4706. test_cases.emplace_back(new test_gla(GGML_TYPE_F32, 32, 64, 32, 1));
  4707. test_cases.emplace_back(new test_gla(GGML_TYPE_F32, 32, 64, 32, 4));
  4708. test_cases.emplace_back(new test_gla(GGML_TYPE_F32, 32, 64, 128, 4));
  4709. for (ggml_type type_a : all_types) {
  4710. for (int i = 1; i < 10; ++i) {
  4711. test_cases.emplace_back(new test_mul_mat(type_a, GGML_TYPE_F32, 16, i, 256, { 1, 1}, {1, 1}));
  4712. }
  4713. }
  4714. #if 1
  4715. for (ggml_type type_a : base_types) {
  4716. for (ggml_type type_b : {GGML_TYPE_F32, GGML_TYPE_F16}) {
  4717. std::vector<int> ks = { 256 };
  4718. if (ggml_blck_size(type_a) == 1) {
  4719. ks.push_back(4);
  4720. }
  4721. for (auto k : ks) {
  4722. // test cases without permutation
  4723. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, k, {1, 1}, {1, 1}));
  4724. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, k, {1, 1}, {2, 1}));
  4725. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, k, {1, 1}, {1, 2}));
  4726. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, k, {3, 1}, {1, 1}));
  4727. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, k, {3, 1}, {2, 1}));
  4728. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, k, {3, 2}, {1, 1}));
  4729. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, k, {3, 2}, {2, 1}));
  4730. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, k, {3, 2}, {1, 2}));
  4731. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, k, {3, 2}, {2, 2}));
  4732. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 16, k, {1, 1}, {1, 1}));
  4733. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 16, k, {1, 1}, {2, 1}));
  4734. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 16, k, {1, 1}, {1, 2}));
  4735. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 16, k, {3, 1}, {1, 1}));
  4736. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 16, k, {3, 1}, {2, 1}));
  4737. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 16, k, {3, 2}, {1, 1}));
  4738. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 16, k, {3, 2}, {2, 1}));
  4739. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 16, k, {3, 2}, {1, 2}));
  4740. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 16, k, {3, 2}, {2, 2}));
  4741. // test cases with permutation
  4742. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, k, {2, 3}, {1, 1}, {0, 2, 1, 3}));
  4743. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, k, {2, 3}, {1, 1}, {0, 1, 3, 2}));
  4744. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, k, {2, 3}, {1, 1}, {0, 3, 2, 1}));
  4745. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 8, k, {2, 3}, {1, 1}, {0, 2, 1, 3}));
  4746. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 8, k, {2, 3}, {1, 1}, {0, 1, 3, 2}));
  4747. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 8, k, {2, 3}, {1, 1}, {0, 3, 2, 1}));
  4748. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 16, k, {2, 3}, {1, 1}, {0, 2, 1, 3}));
  4749. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 16, k, {2, 3}, {1, 1}, {0, 1, 3, 2}));
  4750. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 16, k, {2, 3}, {1, 1}, {0, 3, 2, 1}));
  4751. }
  4752. // test cases with large ne00/ne10 to cover stream-k fixup
  4753. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, 1024, {3, 2}, {1, 1}));
  4754. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 8, 1024, {3, 2}, {1, 1}));
  4755. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 16, 1024, {3, 2}, {1, 1}));
  4756. }
  4757. }
  4758. for (ggml_type type_a : other_types) {
  4759. for (ggml_type type_b : {GGML_TYPE_F32}) {
  4760. if (ggml_blck_size(type_a) != 256) {
  4761. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, ggml_blck_size(type_a), {1, 1}, {1, 1}));
  4762. }
  4763. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, 256, {1, 1}, {1, 1}));
  4764. }
  4765. }
  4766. #else
  4767. // m = a rows
  4768. // n = b rows
  4769. // k = cols
  4770. std::uniform_int_distribution<> dist_m(1, 128);
  4771. std::uniform_int_distribution<> dist_n(16, 128);
  4772. std::uniform_int_distribution<> dist_k(1, 16);
  4773. for (int i = 0; i < 1000; i++) {
  4774. for (ggml_type type_a : all_types) {
  4775. for (ggml_type type_b : {GGML_TYPE_F32}) {
  4776. int m = dist_m(rng);
  4777. int n = dist_n(rng);
  4778. int k = dist_k(rng) * ggml_blck_size(type_a);
  4779. test_cases.emplace_back(new test_mul_mat(type_a, type_b, m, n, k, { 1, 1}, {1, 1}));
  4780. }
  4781. }
  4782. }
  4783. #endif
  4784. test_cases.emplace_back(new test_mul_mat(GGML_TYPE_F16, GGML_TYPE_F32, 64, 2, 128, { 8, 1}, {1, 1}));
  4785. test_cases.emplace_back(new test_mul_mat(GGML_TYPE_F16, GGML_TYPE_F32, 83, 2, 128, { 8, 1}, {4, 1}));
  4786. test_cases.emplace_back(new test_mul_mat(GGML_TYPE_F16, GGML_TYPE_F32, 64, 2, 64, { 8, 1}, {4, 1}));
  4787. test_cases.emplace_back(new test_mul_mat(GGML_TYPE_F16, GGML_TYPE_F32, 83, 2, 64, { 8, 1}, {4, 1}));
  4788. test_cases.emplace_back(new test_mul_mat(GGML_TYPE_F16, GGML_TYPE_F32, 64, 45, 128, { 8, 1}, {4, 1}));
  4789. test_cases.emplace_back(new test_mul_mat(GGML_TYPE_F16, GGML_TYPE_F32, 128, 45, 64, { 8, 1}, {4, 1}));
  4790. test_cases.emplace_back(new test_mul_mat(GGML_TYPE_F16, GGML_TYPE_F32, 1056, 1, 193, {1, 1}, {4, 1}, {0, 2, 1, 3}));
  4791. test_cases.emplace_back(new test_mul_mat(GGML_TYPE_F16, GGML_TYPE_F32, 1056, 1, 67, {1, 1}, {4, 1}, {0, 2, 1, 3}));
  4792. for (auto bs2 : {1,3}) {
  4793. for (auto bs : {1,2,4,8}) {
  4794. for (auto nr : {1,4}) {
  4795. for (uint32_t m = 0; m < 2; ++m) {
  4796. for (uint32_t k = 0; k < 2; ++k) {
  4797. for (ggml_type type: {GGML_TYPE_F16, GGML_TYPE_BF16, GGML_TYPE_F32}) {
  4798. test_cases.emplace_back(new test_mul_mat(type, GGML_TYPE_F32, 1056 + m, 1, 128 + k, {bs, bs2}, {nr, 1}, {0, 2, 1, 3}));
  4799. test_cases.emplace_back(new test_mul_mat(type, GGML_TYPE_F32, 128 + m, 1, 1056 + k, {bs, bs2}, {nr, 1}, {0, 1, 2, 3}, true));
  4800. }
  4801. }
  4802. }
  4803. }
  4804. }
  4805. }
  4806. // sycl backend will limit task global_range < MAX_INT
  4807. // test case for f16-type-convert-to-fp32 kernel with large k under fp32 compute dtype (occurs in stable-diffusion)
  4808. // however this case needs to alloc more memory which may fail in some devices (Intel Arc770, etc.)
  4809. // this case is verified (pass) in Intel(R) Data Center GPU Max 1100 (sycl backend) and NV A30 (cuda backend)
  4810. // test_cases.emplace_back(new test_mul_mat(GGML_TYPE_F16, GGML_TYPE_F16, 512, 262144, 9216, {1, 1}, {1, 1}));
  4811. // test large experts*tokens
  4812. for (bool b : {false, true}) {
  4813. test_cases.emplace_back(new test_mul_mat_id(GGML_TYPE_F16, GGML_TYPE_F32, 16, 16, b, 32, 1024, 16));
  4814. }
  4815. for (ggml_type type_a : base_types) {
  4816. for (ggml_type type_b : {GGML_TYPE_F32 /*, GGML_TYPE_F16 */}) {
  4817. for (int n_mats : {4, 8}) {
  4818. for (int n_used : {1, 2, 4}) {
  4819. for (bool b : {false, true}) {
  4820. for (int n : {1, 32, 129}) {
  4821. int m = 512;
  4822. int k = 256;
  4823. test_cases.emplace_back(new test_mul_mat_id(type_a, type_b, n_mats, n_used, b, m, n, k));
  4824. }
  4825. }
  4826. }
  4827. }
  4828. }
  4829. }
  4830. for (ggml_type type_a : other_types) {
  4831. for (ggml_type type_b : {GGML_TYPE_F32 /*, GGML_TYPE_F16 */}) {
  4832. for (int n_mats : {4}) {
  4833. for (int n_used : {2}) {
  4834. for (bool b : {false}) {
  4835. for (int n : {1, 32}) {
  4836. int m = 512;
  4837. int k = 256;
  4838. test_cases.emplace_back(new test_mul_mat_id(type_a, type_b, n_mats, n_used, b, m, n, k));
  4839. }
  4840. }
  4841. }
  4842. }
  4843. }
  4844. }
  4845. for (ggml_type type_a : base_types) {
  4846. for (ggml_type type_b : {GGML_TYPE_F32, GGML_TYPE_F16}) {
  4847. for (int n : {1, 16}) {
  4848. for (int k : {1, 16}) {
  4849. for (int bs2 : {1, 3}) {
  4850. for (int bs3 : {1, 3}) {
  4851. for (int nr2 : {1, 2}) {
  4852. for (int nr3 : {1, 2}) {
  4853. test_cases.emplace_back(new test_out_prod(type_a, type_b, 256, n, k, {bs2, bs3}, {nr2, nr3}));
  4854. }
  4855. }
  4856. }
  4857. }
  4858. }
  4859. }
  4860. }
  4861. }
  4862. // add_id
  4863. for (ggml_type type_a : {GGML_TYPE_F32}) {
  4864. for (ggml_type type_b : {GGML_TYPE_F32}) {
  4865. for (int n_mats : {4, 8}) {
  4866. for (int n_used : {1, 2, 4}) {
  4867. for (int n_embd : {32, 129}) {
  4868. for (int n_token : {1, 32, 129}) {
  4869. test_cases.emplace_back(new test_add_id(type_a, type_b, n_embd, n_mats, n_used, n_token));
  4870. }
  4871. }
  4872. }
  4873. }
  4874. }
  4875. }
  4876. for (ggml_type type : {GGML_TYPE_F16, GGML_TYPE_F32}) {
  4877. test_cases.emplace_back(new test_sqr(type));
  4878. test_cases.emplace_back(new test_sqrt(type));
  4879. test_cases.emplace_back(new test_log(type));
  4880. test_cases.emplace_back(new test_sin(type));
  4881. test_cases.emplace_back(new test_cos(type));
  4882. test_cases.emplace_back(new test_clamp(type));
  4883. }
  4884. test_cases.emplace_back(new test_diag_mask_inf(GGML_TYPE_F32, {10, 10, 1, 1}, 5));
  4885. test_cases.emplace_back(new test_diag_mask_inf(GGML_TYPE_F32, {10, 10, 3, 1}, 5));
  4886. test_cases.emplace_back(new test_diag_mask_inf(GGML_TYPE_F32, {10, 10, 3, 2}, 5));
  4887. #if 0
  4888. std::uniform_int_distribution<> dist_ne1(1, 50);
  4889. int exponent = 1;
  4890. while (exponent < (1 << 17)) {
  4891. std::uniform_int_distribution<> dist_ne0(exponent, 2*exponent);
  4892. for (int n = 0; n < 10; ++n) {
  4893. int64_t ne0 = dist_ne0(rng);
  4894. int64_t ne1 = dist_ne1(rng);
  4895. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, GGML_TYPE_F32, {ne0, ne1, 1, 1}, n/2 == 0, 0.1f, ne0 < 1000 ? 4.0f : 0.0f));
  4896. }
  4897. exponent <<= 1;
  4898. }
  4899. #endif
  4900. for (bool mask : {false, true}) {
  4901. for (bool sinks : {false, true}) {
  4902. for (float max_bias : {0.0f, 8.0f}) {
  4903. if (!mask && max_bias > 0.0f) continue;
  4904. for (float scale : {1.0f, 0.1f}) {
  4905. for (int64_t ne0 : {16, 1024}) {
  4906. for (int64_t ne1 : {16, 1024}) {
  4907. if (mask) {
  4908. for (ggml_type m_prec : {GGML_TYPE_F32, GGML_TYPE_F16}) {
  4909. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {ne0, ne1, 1, 1}, mask, sinks, m_prec, {1, 1}, scale, max_bias));
  4910. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {ne0-1, ne1-1, 1, 1}, mask, sinks, m_prec, {1, 1}, scale, max_bias));
  4911. if (ne0 <= 32 && ne1 <= 32) {
  4912. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {ne0, ne1, 1, 3}, mask, sinks, m_prec, {3, 1}, scale, max_bias));
  4913. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {ne0-1, ne1-1, 1, 1}, mask, sinks, m_prec, {2, 3}, scale, max_bias));
  4914. }
  4915. }
  4916. } else {
  4917. /* The precision of mask here doesn't matter as boolean mask is false */
  4918. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {ne0, ne1, 1, 1}, mask, sinks, GGML_TYPE_F32, {1, 1}, scale, max_bias));
  4919. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {ne0-1, ne1-1, 1, 1}, mask, sinks, GGML_TYPE_F32, {1, 1}, scale, max_bias));
  4920. }
  4921. }
  4922. }
  4923. }
  4924. }
  4925. }
  4926. }
  4927. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {16, 2, 32, 1}, true, true, GGML_TYPE_F32, {1, 1}, 0.1f, 0.0f));
  4928. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {16, 2, 32, 1}, true, false, GGML_TYPE_F16, {1, 1}, 0.1f, 0.0f));
  4929. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {16, 2, 32, 1}, false, true, GGML_TYPE_F32, {1, 1}, 0.1f, 0.0f));
  4930. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {32, 2, 32, 1}, true, true, GGML_TYPE_F32, {1, 1}, 0.1f, 0.0f));
  4931. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {32, 2, 32, 1}, true, false, GGML_TYPE_F16, {1, 1}, 0.1f, 0.0f));
  4932. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {32, 2, 32, 1}, true, true, GGML_TYPE_F32, {1, 1}, 0.1f, 8.0f));
  4933. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {32, 2, 32, 1}, true, true, GGML_TYPE_F16, {1, 1}, 0.1f, 8.0f));
  4934. for (float max_bias : {0.0f, 8.0f}) {
  4935. for (float scale : {1.0f, 0.1f}) {
  4936. for (int64_t ne0 : {16, 1024}) {
  4937. for (int64_t ne1 : {16, 1024}) {
  4938. test_cases.emplace_back(new test_soft_max_back(GGML_TYPE_F32, {ne0, ne1, 1, 1}, scale, max_bias));
  4939. test_cases.emplace_back(new test_soft_max_back(GGML_TYPE_F32, {ne0-1, ne1-1, 1, 1}, scale, max_bias));
  4940. }
  4941. }
  4942. }
  4943. }
  4944. for (bool fw : {true, false}) { // fw == forward
  4945. bool all = true;
  4946. for (float fs : { 1.0f, 1.4245f }) {
  4947. for (float ef : { 0.0f, 0.7465f }) {
  4948. for (float af : { 1.0f, 1.4245f }) {
  4949. for (ggml_type type : {GGML_TYPE_F32, GGML_TYPE_F16}) {
  4950. for (bool ff : {false, true}) { // freq_factors
  4951. for (float v : { 0, 1 }) {
  4952. test_cases.emplace_back(new test_rope(type, {128, 32, 2, 1}, 128, 0, 512, fs, ef, af, ff, v, fw)); // llama 7B
  4953. if (all) {
  4954. test_cases.emplace_back(new test_rope(type, {128, 40, 2, 1}, 128, 0, 512, fs, ef, af, ff, v, fw)); // llama 13B
  4955. test_cases.emplace_back(new test_rope(type, {128, 52, 2, 1}, 128, 0, 512, fs, ef, af, ff, v, fw)); // llama 30B
  4956. test_cases.emplace_back(new test_rope(type, {128, 64, 2, 1}, 128, 0, 512, fs, ef, af, ff, v, fw)); // llama 65B
  4957. }
  4958. if (all) {
  4959. test_cases.emplace_back(new test_rope(type, { 64, 1, 2, 1}, 64, 2, 512, fs, ef, af, ff, v, fw)); // neox (falcon 7B)
  4960. test_cases.emplace_back(new test_rope(type, { 64, 71, 2, 1}, 64, 2, 512, fs, ef, af, ff, v, fw)); // neox (falcon 7B)
  4961. test_cases.emplace_back(new test_rope(type, { 64, 8, 2, 1}, 64, 2, 512, fs, ef, af, ff, v, fw)); // neox (falcon 40B)
  4962. test_cases.emplace_back(new test_rope(type, { 80, 32, 2, 1}, 20, 0, 512, fs, ef, af, ff, v, fw));
  4963. test_cases.emplace_back(new test_rope(type, { 80, 32, 2, 1}, 32, 0, 512, fs, ef, af, ff, v, fw));
  4964. test_cases.emplace_back(new test_rope(type, { 80, 32, 4, 1}, 32, 0, 512, fs, ef, af, ff, v, fw));
  4965. test_cases.emplace_back(new test_rope(type, { 80, 32, 2, 1}, 20, 2, 512, fs, ef, af, ff, v, fw)); // neox (stablelm)
  4966. test_cases.emplace_back(new test_rope(type, { 80, 32, 2, 1}, 32, 2, 512, fs, ef, af, ff, v, fw)); // neox (phi-2)
  4967. test_cases.emplace_back(new test_rope(type, { 80, 32, 4, 1}, 32, 2, 512, fs, ef, af, ff, v, fw)); // neox (phi-2)
  4968. }
  4969. if (all) {
  4970. test_cases.emplace_back(new test_rope(type, {128, 12, 2, 1}, 128, GGML_ROPE_TYPE_MROPE, 512, fs, ef, af, ff, v, fw)); // rope_multi,m-rope (qwen2vl 2B)
  4971. test_cases.emplace_back(new test_rope(type, {128, 28, 2, 1}, 128, GGML_ROPE_TYPE_MROPE, 512, fs, ef, af, ff, v, fw)); // rope_multi,m-rope (qwen2vl 7B)
  4972. test_cases.emplace_back(new test_rope(type, {128, 12, 2, 1}, 20, GGML_ROPE_TYPE_MROPE, 512, fs, ef, af, ff, v, fw));
  4973. test_cases.emplace_back(new test_rope(type, {128, 28, 2, 1}, 32, GGML_ROPE_TYPE_MROPE, 512, fs, ef, af, ff, v, fw));
  4974. test_cases.emplace_back(new test_rope(type, { 80, 16, 2, 1}, 80, GGML_ROPE_TYPE_VISION, 512, fs, ef, af, ff, v, fw)); // rope_multi,m-rope (qwen2vl ViT)
  4975. }
  4976. test_cases.emplace_back(new test_rope(type, { 64, 128, 2, 1}, 64, 2, 512, fs, ef, af, ff, v, fw)); // neox (falcon 40B)
  4977. }
  4978. }
  4979. all = false;
  4980. }
  4981. }
  4982. }
  4983. }
  4984. }
  4985. for (int v : { 0, 1, 2, 3 }) {
  4986. for (int dim : { 0, 1, 2, 3, }) {
  4987. test_cases.emplace_back(new test_concat(GGML_TYPE_F32, {11, 12, 13, 14}, 7, dim, v));
  4988. test_cases.emplace_back(new test_concat(GGML_TYPE_I32, {11, 12, 13, 14}, 7, dim, v));
  4989. }
  4990. }
  4991. for (ggml_sort_order order : {GGML_SORT_ORDER_ASC, GGML_SORT_ORDER_DESC}) {
  4992. test_cases.emplace_back(new test_argsort(GGML_TYPE_F32, {8, 1, 1, 1}, order));
  4993. test_cases.emplace_back(new test_argsort(GGML_TYPE_F32, {16, 10, 10, 10}, order));
  4994. test_cases.emplace_back(new test_argsort(GGML_TYPE_F32, {60, 10, 10, 10}, order)); // qwen
  4995. }
  4996. for (ggml_scale_mode mode : {GGML_SCALE_MODE_NEAREST, GGML_SCALE_MODE_BILINEAR}) {
  4997. test_cases.emplace_back(new test_upscale(GGML_TYPE_F32, {512, 512, 3, 2}, 2, mode));
  4998. test_cases.emplace_back(new test_upscale(GGML_TYPE_F32, {512, 512, 3, 2}, 2, mode, true));
  4999. test_cases.emplace_back(new test_interpolate(GGML_TYPE_F32, {2, 5, 7, 11}, {5, 7, 11, 13}, mode));
  5000. test_cases.emplace_back(new test_interpolate(GGML_TYPE_F32, {5, 7, 11, 13}, {2, 5, 7, 11}, mode));
  5001. }
  5002. test_cases.emplace_back(new test_interpolate(GGML_TYPE_F32, {2, 5, 7, 11}, {5, 7, 11, 13}, GGML_SCALE_MODE_BILINEAR | GGML_SCALE_FLAG_ALIGN_CORNERS));
  5003. test_cases.emplace_back(new test_sum());
  5004. test_cases.emplace_back(new test_sum_rows());
  5005. test_cases.emplace_back(new test_mean());
  5006. test_cases.emplace_back(new test_sum(GGML_TYPE_F32, { 33, 1, 1, 1 }));
  5007. test_cases.emplace_back(new test_sum_rows(GGML_TYPE_F32, { 33, 1, 1, 1 }));
  5008. test_cases.emplace_back(new test_mean(GGML_TYPE_F32, { 33, 1, 1, 1 }));
  5009. test_cases.emplace_back(new test_sum(GGML_TYPE_F32, { 33, 1024, 1, 1 }));
  5010. test_cases.emplace_back(new test_sum_rows(GGML_TYPE_F32, { 33, 1024, 1, 1 }));
  5011. test_cases.emplace_back(new test_sum(GGML_TYPE_F32, { 33, 256, 1, 1 }));
  5012. test_cases.emplace_back(new test_sum_rows(GGML_TYPE_F32, { 33, 256, 1, 1 }));
  5013. test_cases.emplace_back(new test_mean(GGML_TYPE_F32, { 33, 256, 1, 1 }));
  5014. test_cases.emplace_back(new test_mean(GGML_TYPE_F32, { 32769, 1, 1, 1 }));
  5015. test_cases.emplace_back(new test_group_norm(GGML_TYPE_F32, {64, 64, 320, 1}));
  5016. test_cases.emplace_back(new test_group_norm(GGML_TYPE_F32, {9, 9, 1280, 1}));
  5017. test_cases.emplace_back(new test_acc());
  5018. test_cases.emplace_back(new test_pad());
  5019. test_cases.emplace_back(new test_pad_reflect_1d());
  5020. test_cases.emplace_back(new test_roll());
  5021. test_cases.emplace_back(new test_arange());
  5022. test_cases.emplace_back(new test_timestep_embedding());
  5023. test_cases.emplace_back(new test_leaky_relu());
  5024. for (int hsk : { 64, 80, 128, 192, 256, 576 }) {
  5025. for (int hsv : { 64, 80, 128, 192, 256, 512 }) {
  5026. if (hsk != 192 && hsk != 576 && hsk != hsv) continue;
  5027. if (hsk == 192 && (hsv != 128 && hsv != 192)) continue;
  5028. if (hsk == 576 && hsv != 512) continue; // DeepSeek MLA
  5029. for (bool mask : { true, false } ) {
  5030. for (bool sinks : { true, false } ) {
  5031. for (float max_bias : { 0.0f, 8.0f }) {
  5032. if (!mask && max_bias > 0.0f) continue;
  5033. for (float logit_softcap : {0.0f, 10.0f}) {
  5034. if (hsk != 128 && logit_softcap != 0.0f) continue;
  5035. for (int nh : { 4, }) {
  5036. for (int nr3 : { 1, 3, }) {
  5037. if (hsk > 64 && nr3 > 1) continue; // skip broadcast for large head sizes
  5038. for (int nr2 : { 1, 4, 16 }) {
  5039. if (nr2 == 16 && hsk != 128) continue;
  5040. for (int kv : { 512, 1024, }) {
  5041. if (nr2 != 1 && kv != 512) continue;
  5042. for (int nb : { 1, 3, 32, 35, }) {
  5043. for (ggml_prec prec : {GGML_PREC_F32, GGML_PREC_DEFAULT}) {
  5044. if (hsk != 128 && prec == GGML_PREC_DEFAULT) continue;
  5045. for (ggml_type type_KV : {GGML_TYPE_F16, GGML_TYPE_BF16, GGML_TYPE_Q8_0, GGML_TYPE_Q4_0}) {
  5046. test_cases.emplace_back(new test_flash_attn_ext(
  5047. hsk, hsv, nh, {nr2, nr3}, kv, nb, mask, sinks, max_bias, logit_softcap, prec, type_KV));
  5048. // run fewer test cases permuted
  5049. if (mask == true && max_bias == 0.0f && logit_softcap == 0 && kv == 512) {
  5050. test_cases.emplace_back(new test_flash_attn_ext(
  5051. hsk, hsv, nh, {nr2, nr3}, kv, nb, mask, sinks, max_bias, logit_softcap, prec, type_KV, {0, 2, 1, 3}));
  5052. }
  5053. }
  5054. }
  5055. }
  5056. }
  5057. }
  5058. }
  5059. }
  5060. }
  5061. }
  5062. }
  5063. }
  5064. }
  5065. }
  5066. test_cases.emplace_back(new test_cross_entropy_loss (GGML_TYPE_F32, { 10, 5, 4, 3}));
  5067. test_cases.emplace_back(new test_cross_entropy_loss (GGML_TYPE_F32, {30000, 1, 1, 1}));
  5068. test_cases.emplace_back(new test_cross_entropy_loss_back(GGML_TYPE_F32, { 10, 5, 4, 3}));
  5069. test_cases.emplace_back(new test_cross_entropy_loss_back(GGML_TYPE_F32, {30000, 1, 1, 1}));
  5070. test_cases.emplace_back(new test_opt_step_adamw(GGML_TYPE_F32, {10, 5, 4, 3}));
  5071. test_cases.emplace_back(new test_opt_step_sgd(GGML_TYPE_F32, {10, 5, 4, 3}));
  5072. #if 0
  5073. // these tests are disabled to save execution time, sbut they can be handy for debugging
  5074. test_cases.emplace_back(new test_llama(2, true));
  5075. test_cases.emplace_back(new test_llama(1));
  5076. test_cases.emplace_back(new test_llama(2));
  5077. test_cases.emplace_back(new test_falcon(1));
  5078. test_cases.emplace_back(new test_falcon(2));
  5079. #endif
  5080. return test_cases;
  5081. }
  5082. // Test cases for performance evaluation: should be representative of real-world use cases
  5083. static std::vector<std::unique_ptr<test_case>> make_test_cases_perf() {
  5084. std::vector<std::unique_ptr<test_case>> test_cases;
  5085. // Conv2d: K=CRS=NPQ=4096 matmul performance
  5086. uint32_t iwh_idx = 0;
  5087. uint32_t kwh_idx = 1;
  5088. uint32_t Cout_idx = 2;
  5089. uint32_t Cin_idx = 3;
  5090. uint32_t B_idx = 4;
  5091. std::vector<std::array<int, 5>> cases = {
  5092. //{IWH, KWH, Cout, Cin, B}
  5093. // K=CRS=NPQ=4096 conv2d matmul performance
  5094. {19, 4, 4096, 256, 16},
  5095. // K=128, CRS=128, NPQ=4096
  5096. { 19, 4, 128, 8, 16},
  5097. // K=130, CRS=128, NPQ=4096
  5098. { 19, 4, 130, 8, 16},
  5099. // Edge case: K x CRS is small
  5100. { 19, 2, 4, 4, 16},
  5101. // A ConvNet's first layer
  5102. { 224, 3, 8, 3, 1 },
  5103. // A ConvNet's first layer with 2x2 convolution, and 1 channel
  5104. { 224, 2, 8, 1, 1 },
  5105. // A ConvNet's first layer with 2x2 convolution, and 1 channel, several images in the batch
  5106. { 224, 2, 8, 1, 8 },
  5107. // A middle layer of a ConvNet
  5108. { 58, 3, 64, 32, 1 },
  5109. // A middle layer of a ConvNet, several images in the batch
  5110. { 58, 3, 64, 32, 8 },
  5111. // A deep layer of a ConvNet, several images in the batch
  5112. { 16, 3, 512, 128, 8 },
  5113. };
  5114. for (auto kernel_type : {GGML_TYPE_F32, GGML_TYPE_F16}) {
  5115. for (auto act_case : cases) {
  5116. // Direct CONV_2D
  5117. test_cases.emplace_back(new test_conv_2d(
  5118. { act_case[iwh_idx], act_case[iwh_idx], act_case[Cin_idx], act_case[B_idx] },
  5119. { act_case[kwh_idx], act_case[kwh_idx], act_case[Cin_idx], act_case[Cout_idx] },
  5120. kernel_type, 1, 1, 0, 0, 1, 1, false));
  5121. }
  5122. }
  5123. test_cases.emplace_back(new test_bin_bcast(ggml_add, GGML_TYPE_F32, {4096, 1, 1, 1}, {1, 1, 1, 1}));
  5124. test_cases.emplace_back(new test_bin_bcast(ggml_add, GGML_TYPE_F32, {4096, 1, 1, 1}, {1, 512, 1, 1}));
  5125. test_cases.emplace_back(new test_cpy(GGML_TYPE_F32, GGML_TYPE_F16, {512, 3072, 1, 1}));
  5126. test_cases.emplace_back(new test_cpy(GGML_TYPE_F32, GGML_TYPE_F32, {8192, 512, 2, 1}, {0, 2, 1, 3}));
  5127. test_cases.emplace_back(new test_cpy(GGML_TYPE_F32, GGML_TYPE_F32, {3072, 512, 2, 1}, {0, 2, 1, 3}));
  5128. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {4096, 4096, 5, 1}, false, false, GGML_TYPE_F32, {1, 1}, 1.0f, 0.0f));
  5129. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {12888, 256, 5, 1}, false, false, GGML_TYPE_F32, {1, 1}, 1.0f, 0.0f));
  5130. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {77, 4096, 5, 1}, false, false, GGML_TYPE_F32, {1, 1}, 1.0f, 0.0f));
  5131. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {1024, 1024, 10, 1}, false, false, GGML_TYPE_F32, {1, 1}, 1.0f, 0.0f));
  5132. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {77, 1024, 10, 1}, false, false, GGML_TYPE_F32, {1, 1}, 1.0f, 0.0f));
  5133. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {256, 256, 20, 1}, false, false, GGML_TYPE_F32, {1, 1}, 1.0f, 0.0f));
  5134. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {64, 64, 20, 1}, false, false, GGML_TYPE_F32, {1, 1}, 1.0f, 0.0f));
  5135. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {77, 64, 20, 1}, false, false, GGML_TYPE_F32, {1, 1}, 1.0f, 0.0f));
  5136. test_cases.emplace_back(new test_argmax(GGML_TYPE_F32, {32, 10, 1, 1}));
  5137. test_cases.emplace_back(new test_argmax(GGML_TYPE_F32, {1024, 10, 1, 1}));
  5138. test_cases.emplace_back(new test_argmax(GGML_TYPE_F32, {32000, 512, 1, 1}));
  5139. test_cases.emplace_back(new test_mul_mat(GGML_TYPE_F16, GGML_TYPE_F32, 16416, 1, 128, {8, 1}, {4, 1}, {0, 2, 1, 3}));
  5140. test_cases.emplace_back(new test_mul_mat(GGML_TYPE_F16, GGML_TYPE_F32, 128, 1, 16416, {8, 1}, {4, 1}, {0, 1, 2, 3}, true));
  5141. for (int bs : {1, 2, 3, 4, 5, 8, 512}) {
  5142. for (ggml_type type_a : all_types) {
  5143. for (ggml_type type_b : {GGML_TYPE_F32}) {
  5144. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 4096, bs, 14336, {1, 1}, {1, 1}));
  5145. }
  5146. }
  5147. }
  5148. for (int K : {3, 5}) {
  5149. for (int IC : {256, 2560}) {
  5150. for (int IW_IH : {32, 64, 256}) {
  5151. if (IC == 2560 && IW_IH == 256) {
  5152. // too big
  5153. continue;
  5154. }
  5155. test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F32, {IW_IH, IW_IH, IC, 1}, {K, K, IC, 1}, 1, 1, 1, 1, 1, 1, true));
  5156. }
  5157. }
  5158. }
  5159. for (int kv : { 4096, 8192, 16384, }) {
  5160. for (int hs : { 64, 128, }) {
  5161. for (int nr : { 1, 4, }) {
  5162. test_cases.emplace_back(new test_flash_attn_ext(hs, hs, 8, {nr, 1}, kv, 1, true, false, 0, 0, GGML_PREC_F32, GGML_TYPE_F16));
  5163. }
  5164. }
  5165. }
  5166. test_cases.emplace_back(new test_conv_2d_dw({512, 512, 256, 1}, {3, 3, 1, 256}, 1, 1, 1, false));
  5167. test_cases.emplace_back(new test_conv_2d_dw({512, 512, 256, 1}, {3, 3, 1, 256}, 1, 1, 1, true));
  5168. test_cases.emplace_back(new test_conv_transpose_2d({256, 256, 256, 1}, {3, 3, 16, 256}, 1));
  5169. test_cases.emplace_back(new test_mean(GGML_TYPE_F32, {256, 256, 3, 1}));
  5170. for (int n_token : {1, 512}) {
  5171. test_cases.emplace_back(new test_add_id(GGML_TYPE_F32, GGML_TYPE_F32, 2880, 128, 4, n_token));
  5172. test_cases.emplace_back(new test_add_id(GGML_TYPE_F32, GGML_TYPE_F32, 2880, 32, 4, n_token));
  5173. }
  5174. std::vector<std::array<int64_t, 4>> reduce_rows_cases = {
  5175. { 8192, 1, 1, 1 },
  5176. { 8192, 8192, 1, 1 },
  5177. { 128, 8192, 1, 1 },
  5178. };
  5179. for (auto it: reduce_rows_cases){
  5180. test_cases.emplace_back(new test_mean(GGML_TYPE_F32, it));
  5181. test_cases.emplace_back(new test_sum_rows(GGML_TYPE_F32, it));
  5182. test_cases.emplace_back(new test_sum(GGML_TYPE_F32, it));
  5183. }
  5184. return test_cases;
  5185. }
  5186. static bool test_backend(ggml_backend_t backend, test_mode mode, const char * op_names_filter, const char * params_filter,
  5187. printer * output_printer) {
  5188. auto filter_test_cases = [](std::vector<std::unique_ptr<test_case>> & test_cases, const char * params_filter) {
  5189. if (params_filter == nullptr) {
  5190. return;
  5191. }
  5192. std::regex params_filter_regex(params_filter);
  5193. for (auto it = test_cases.begin(); it != test_cases.end();) {
  5194. if (!std::regex_search((*it)->vars(), params_filter_regex)) {
  5195. it = test_cases.erase(it);
  5196. continue;
  5197. }
  5198. it++;
  5199. }
  5200. };
  5201. if (mode == MODE_TEST) {
  5202. auto test_cases = make_test_cases_eval();
  5203. filter_test_cases(test_cases, params_filter);
  5204. ggml_backend_t backend_cpu = ggml_backend_init_by_type(GGML_BACKEND_DEVICE_TYPE_CPU, NULL);
  5205. if (backend_cpu == NULL) {
  5206. test_operation_info info("", "", "CPU");
  5207. info.set_error("backend", "Failed to initialize CPU backend");
  5208. output_printer->print_operation(info);
  5209. return false;
  5210. }
  5211. size_t n_ok = 0;
  5212. for (auto & test : test_cases) {
  5213. if (test->eval(backend, backend_cpu, op_names_filter, output_printer)) {
  5214. n_ok++;
  5215. }
  5216. }
  5217. output_printer->print_summary(test_summary_info(n_ok, test_cases.size(), false));
  5218. ggml_backend_free(backend_cpu);
  5219. return n_ok == test_cases.size();
  5220. }
  5221. if (mode == MODE_GRAD) {
  5222. auto test_cases = make_test_cases_eval();
  5223. filter_test_cases(test_cases, params_filter);
  5224. size_t n_ok = 0;
  5225. for (auto & test : test_cases) {
  5226. if (test->eval_grad(backend, op_names_filter, output_printer)) {
  5227. n_ok++;
  5228. }
  5229. }
  5230. output_printer->print_summary(test_summary_info(n_ok, test_cases.size(), false));
  5231. return n_ok == test_cases.size();
  5232. }
  5233. if (mode == MODE_PERF) {
  5234. auto test_cases = make_test_cases_perf();
  5235. filter_test_cases(test_cases, params_filter);
  5236. for (auto & test : test_cases) {
  5237. test->eval_perf(backend, op_names_filter, output_printer);
  5238. }
  5239. return true;
  5240. }
  5241. if (mode == MODE_SUPPORT) {
  5242. auto test_cases = make_test_cases_eval();
  5243. filter_test_cases(test_cases, params_filter);
  5244. for (auto & test : test_cases) {
  5245. test->eval_support(backend, op_names_filter, output_printer);
  5246. }
  5247. return true;
  5248. }
  5249. GGML_ABORT("fatal error");
  5250. }
  5251. static void usage(char ** argv) {
  5252. printf("Usage: %s [mode] [-o <op,..>] [-b <backend>] [-p <params regex>] [--output <console|sql|csv>]\n", argv[0]);
  5253. printf(" valid modes:\n");
  5254. printf(" - test (default, compare with CPU backend for correctness)\n");
  5255. printf(" - grad (compare gradients from backpropagation with method of finite differences)\n");
  5256. printf(" - perf (performance evaluation)\n");
  5257. printf(" - support (probe backend operation support)\n");
  5258. printf(" op names for -o are as given by ggml_op_desc() (e.g. ADD, MUL_MAT, etc),\n");
  5259. printf(" optionally including the full test case string (e.g. \"ADD(type=f16,ne=[1,1,8,1],nr=[1,1,1,1],nf=1)\")\n");
  5260. printf(" --output specifies output format (default: console, options: console, sql, csv)\n");
  5261. }
  5262. int main(int argc, char ** argv) {
  5263. test_mode mode = MODE_TEST;
  5264. output_formats output_format = CONSOLE;
  5265. const char * op_names_filter = nullptr;
  5266. const char * backend_filter = nullptr;
  5267. const char * params_filter = nullptr;
  5268. for (int i = 1; i < argc; i++) {
  5269. if (strcmp(argv[i], "test") == 0) {
  5270. mode = MODE_TEST;
  5271. } else if (strcmp(argv[i], "perf") == 0) {
  5272. mode = MODE_PERF;
  5273. } else if (strcmp(argv[i], "grad") == 0) {
  5274. mode = MODE_GRAD;
  5275. } else if (strcmp(argv[i], "support") == 0) {
  5276. mode = MODE_SUPPORT;
  5277. } else if (strcmp(argv[i], "-o") == 0) {
  5278. if (i + 1 < argc) {
  5279. op_names_filter = argv[++i];
  5280. } else {
  5281. usage(argv);
  5282. return 1;
  5283. }
  5284. } else if (strcmp(argv[i], "-b") == 0) {
  5285. if (i + 1 < argc) {
  5286. backend_filter = argv[++i];
  5287. } else {
  5288. usage(argv);
  5289. return 1;
  5290. }
  5291. } else if (strcmp(argv[i], "-p") == 0) {
  5292. if (i + 1 < argc) {
  5293. params_filter = argv[++i];
  5294. } else {
  5295. usage(argv);
  5296. return 1;
  5297. }
  5298. } else if (strcmp(argv[i], "--output") == 0) {
  5299. if (i + 1 < argc) {
  5300. if (!output_format_from_str(argv[++i], output_format)) {
  5301. usage(argv);
  5302. return 1;
  5303. }
  5304. } else {
  5305. usage(argv);
  5306. return 1;
  5307. }
  5308. } else {
  5309. usage(argv);
  5310. return 1;
  5311. }
  5312. }
  5313. // load and enumerate backends
  5314. ggml_backend_load_all();
  5315. // Create printer for output format
  5316. std::unique_ptr<printer> output_printer = create_printer(output_format);
  5317. if (output_printer) {
  5318. output_printer->print_header();
  5319. }
  5320. output_printer->print_testing_start(testing_start_info(ggml_backend_dev_count()));
  5321. size_t n_ok = 0;
  5322. for (size_t i = 0; i < ggml_backend_dev_count(); i++) {
  5323. ggml_backend_dev_t dev = ggml_backend_dev_get(i);
  5324. if (backend_filter != NULL && strcmp(backend_filter, ggml_backend_dev_name(dev)) != 0) {
  5325. output_printer->print_backend_init(
  5326. backend_init_info(i, ggml_backend_dev_count(), ggml_backend_dev_name(dev), true, "Skipping"));
  5327. n_ok++;
  5328. continue;
  5329. }
  5330. if (backend_filter == NULL && ggml_backend_dev_type(dev) == GGML_BACKEND_DEVICE_TYPE_CPU && mode != MODE_GRAD) {
  5331. output_printer->print_backend_init(backend_init_info(
  5332. i, ggml_backend_dev_count(), ggml_backend_dev_name(dev), true, "Skipping CPU backend"));
  5333. n_ok++;
  5334. continue;
  5335. }
  5336. ggml_backend_t backend = ggml_backend_dev_init(dev, NULL);
  5337. GGML_ASSERT(backend != NULL);
  5338. ggml_backend_reg_t reg = ggml_backend_dev_backend_reg(dev);
  5339. auto ggml_backend_set_n_threads_fn = (ggml_backend_set_n_threads_t) ggml_backend_reg_get_proc_address(reg, "ggml_backend_set_n_threads");
  5340. if (ggml_backend_set_n_threads_fn) {
  5341. // TODO: better value for n_threads
  5342. ggml_backend_set_n_threads_fn(backend, std::thread::hardware_concurrency());
  5343. }
  5344. size_t free, total; // NOLINT
  5345. ggml_backend_dev_memory(dev, &free, &total);
  5346. output_printer->print_backend_init(backend_init_info(i, ggml_backend_dev_count(), ggml_backend_dev_name(dev),
  5347. false, "", ggml_backend_dev_description(dev),
  5348. total / 1024 / 1024, free / 1024 / 1024, true));
  5349. bool ok = test_backend(backend, mode, op_names_filter, params_filter, output_printer.get());
  5350. if (ok) {
  5351. n_ok++;
  5352. }
  5353. output_printer->print_backend_status(
  5354. backend_status_info(ggml_backend_name(backend), ok ? test_status_t::OK : test_status_t::FAIL));
  5355. ggml_backend_free(backend);
  5356. }
  5357. ggml_quantize_free();
  5358. if (output_printer) {
  5359. output_printer->print_footer();
  5360. }
  5361. output_printer->print_overall_summary(
  5362. overall_summary_info(n_ok, ggml_backend_dev_count(), n_ok == ggml_backend_dev_count()));
  5363. if (n_ok != ggml_backend_dev_count()) {
  5364. return 1;
  5365. }
  5366. return 0;
  5367. }