| 12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807 |
- #!/usr/bin/env python3
- from __future__ import annotations
- import argparse
- import contextlib
- import json
- import os
- import re
- import sys
- from abc import ABC, abstractmethod
- from enum import IntEnum
- from pathlib import Path
- from typing import TYPE_CHECKING, Any, Callable, ContextManager, Iterator, Sequence, TypeVar, cast
- import numpy as np
- import torch
- if TYPE_CHECKING:
- from torch import Tensor
- if 'NO_LOCAL_GGUF' not in os.environ:
- sys.path.insert(1, str(Path(__file__).parent / 'gguf-py'))
- import gguf
- from convert import LlamaHfVocab, permute
- ###### MODEL DEFINITIONS ######
- class SentencePieceTokenTypes(IntEnum):
- NORMAL = 1
- UNKNOWN = 2
- CONTROL = 3
- USER_DEFINED = 4
- UNUSED = 5
- BYTE = 6
- AnyModel = TypeVar("AnyModel", bound="type[Model]")
- class Model(ABC):
- _model_classes: dict[str, type[Model]] = {}
- def __init__(self, dir_model: Path, ftype: int, fname_out: Path, is_big_endian: bool, use_temp_file: bool):
- self.dir_model = dir_model
- self.ftype = ftype
- self.fname_out = fname_out
- self.is_big_endian = is_big_endian
- self.endianess = gguf.GGUFEndian.BIG if is_big_endian else gguf.GGUFEndian.LITTLE
- self.use_temp_file = use_temp_file
- self.is_safetensors = self._is_model_safetensors()
- self.num_parts = Model.count_model_parts(self.dir_model, ".safetensors" if self.is_safetensors else ".bin")
- self.part_names = self._get_part_names()
- self.hparams = Model.load_hparams(self.dir_model)
- self.gguf_writer = gguf.GGUFWriter(fname_out, gguf.MODEL_ARCH_NAMES[self.model_arch], endianess=self.endianess, use_temp_file=self.use_temp_file)
- self.block_count = self.find_hparam(["n_layers", "num_hidden_layers", "n_layer"])
- @property
- @abstractmethod
- def model_arch(self) -> gguf.MODEL_ARCH:
- pass
- def find_hparam(self, keys: Sequence[str], optional: bool = False) -> Any:
- key = next((k for k in keys if k in self.hparams), None)
- if key is not None:
- return self.hparams[key]
- if optional:
- return None
- raise KeyError(f"could not find any of: {keys}")
- def set_vocab(self):
- self._set_vocab_gpt2()
- def get_tensors(self) -> Iterator[tuple[str, Tensor]]:
- for part_name in self.part_names:
- print(f"gguf: loading model part '{part_name}'")
- ctx: ContextManager[Any]
- if self.is_safetensors:
- from safetensors import safe_open
- ctx = cast(ContextManager[Any], safe_open(self.dir_model / part_name, framework="pt", device="cpu"))
- else:
- ctx = contextlib.nullcontext(torch.load(str(self.dir_model / part_name), map_location="cpu", mmap=True, weights_only=True))
- with ctx as model_part:
- for name in model_part.keys():
- data = model_part.get_tensor(name) if self.is_safetensors else model_part[name]
- yield name, data
- def set_gguf_parameters(self):
- self.gguf_writer.add_name(self.dir_model.name)
- self.gguf_writer.add_block_count(self.block_count)
- if (n_ctx := self.find_hparam(["max_position_embeddings", "n_ctx"], optional=True)) is not None:
- self.gguf_writer.add_context_length(n_ctx)
- print(f"gguf: context length = {n_ctx}")
- n_embd = self.find_hparam(["hidden_size", "n_embd"])
- self.gguf_writer.add_embedding_length(n_embd)
- print(f"gguf: embedding length = {n_embd}")
- if (n_ff := self.find_hparam(["intermediate_size", "n_inner"], optional=True)) is not None:
- self.gguf_writer.add_feed_forward_length(n_ff)
- print(f"gguf: feed forward length = {n_ff}")
- n_head = self.find_hparam(["num_attention_heads", "n_head"])
- self.gguf_writer.add_head_count(n_head)
- print(f"gguf: head count = {n_head}")
- if (n_head_kv := self.hparams.get("num_key_value_heads")) is not None:
- self.gguf_writer.add_head_count_kv(n_head_kv)
- print(f"gguf: key-value head count = {n_head_kv}")
- if (rope_theta := self.hparams.get("rope_theta")) is not None:
- self.gguf_writer.add_rope_freq_base(rope_theta)
- print(f"gguf: rope theta = {rope_theta}")
- if (f_rms_eps := self.hparams.get("rms_norm_eps")) is not None:
- self.gguf_writer.add_layer_norm_rms_eps(f_rms_eps)
- print(f"gguf: rms norm epsilon = {f_rms_eps}")
- if (f_norm_eps := self.find_hparam(["layer_norm_eps", "layer_norm_epsilon", "norm_epsilon"], optional=True)) is not None:
- self.gguf_writer.add_layer_norm_eps(f_norm_eps)
- print(f"gguf: layer norm epsilon = {f_norm_eps}")
- if (n_experts := self.hparams.get("num_local_experts")) is not None:
- self.gguf_writer.add_expert_count(n_experts)
- print(f"gguf: expert count = {n_experts}")
- if (n_experts_used := self.hparams.get("num_experts_per_tok")) is not None:
- self.gguf_writer.add_expert_used_count(n_experts_used)
- print(f"gguf: experts used count = {n_experts_used}")
- self.gguf_writer.add_file_type(self.ftype)
- print(f"gguf: file type = {self.ftype}")
- def write_tensors(self):
- block_count = self.hparams.get("n_layers", self.hparams.get("num_hidden_layers", self.hparams.get("n_layer")))
- tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count)
- for name, data_torch in self.get_tensors():
- # we don't need these
- if name.endswith((".attention.masked_bias", ".attention.bias", ".attention.rotary_emb.inv_freq")):
- continue
- old_dtype = data_torch.dtype
- # convert any unsupported data types to float32
- if data_torch.dtype not in (torch.float16, torch.float32):
- data_torch = data_torch.to(torch.float32)
- data = data_torch.squeeze().numpy()
- # map tensor names
- new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias"))
- if new_name is None:
- print(f"Can not map tensor {name!r}")
- sys.exit()
- n_dims = len(data.shape)
- data_dtype = data.dtype
- # if f32 desired, convert any float16 to float32
- if self.ftype == 0 and data_dtype == np.float16:
- data = data.astype(np.float32)
- # TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32
- if self.ftype == 1 and data_dtype == np.float16 and (n_dims == 1 or new_name.endswith("_norm.weight")):
- data = data.astype(np.float32)
- # if f16 desired, convert any float32 2-dim weight tensors to float16
- if self.ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
- data = data.astype(np.float16)
- print(f"{new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}")
- self.gguf_writer.add_tensor(new_name, data)
- def write(self):
- self.write_tensors()
- self.gguf_writer.write_header_to_file()
- self.gguf_writer.write_kv_data_to_file()
- self.gguf_writer.write_tensors_to_file()
- self.gguf_writer.close()
- def write_vocab(self):
- self.gguf_writer.write_header_to_file()
- self.gguf_writer.write_kv_data_to_file()
- self.gguf_writer.close()
- @staticmethod
- def count_model_parts(dir_model: Path, prefix: str) -> int:
- num_parts = 0
- for filename in os.listdir(dir_model):
- if filename.endswith(prefix):
- num_parts += 1
- return num_parts
- @staticmethod
- def load_hparams(dir_model):
- with open(dir_model / "config.json", "r", encoding="utf-8") as f:
- return json.load(f)
- @classmethod
- def register(cls, *names: str) -> Callable[[AnyModel], AnyModel]:
- assert names
- def func(modelcls: type[Model]):
- for name in names:
- cls._model_classes[name] = modelcls
- return modelcls
- return func
- @classmethod
- def from_model_architecture(cls, arch):
- try:
- return cls._model_classes[arch]
- except KeyError:
- raise NotImplementedError(f'Architecture {arch!r} not supported!') from None
- def _is_model_safetensors(self) -> bool:
- return Model.count_model_parts(self.dir_model, ".safetensors") > 0
- def _get_part_names(self):
- if self.is_safetensors:
- if self.num_parts == 1: # there's only one .safetensors file
- return ("model.safetensors",)
- return (f"model-{n:05}-of-{self.num_parts:05}.safetensors" for n in range(1, self.num_parts + 1))
- if self.num_parts == 1: # there's only one .bin file
- return ("pytorch_model.bin",)
- return (f"pytorch_model-{n:05}-of-{self.num_parts:05}.bin" for n in range(1, self.num_parts + 1))
- # used for GPT-2 BPE and WordPiece vocabs
- def get_basic_vocab(self) -> tuple[list[str], list[int]]:
- tokens: list[str] = []
- toktypes: list[int] = []
- from transformers import AutoTokenizer
- tokenizer = AutoTokenizer.from_pretrained(self.dir_model)
- vocab_size = self.hparams.get("vocab_size", len(tokenizer.vocab))
- assert max(tokenizer.vocab.values()) < vocab_size
- reverse_vocab = {id_: encoded_tok for encoded_tok, id_ in tokenizer.vocab.items()}
- added_vocab = tokenizer.get_added_vocab()
- for i in range(vocab_size):
- if i not in reverse_vocab:
- tokens.append(f"[PAD{i}]")
- toktypes.append(gguf.TokenType.USER_DEFINED)
- elif reverse_vocab[i] in added_vocab:
- tokens.append(reverse_vocab[i])
- if tokenizer.added_tokens_decoder[i].special:
- toktypes.append(gguf.TokenType.CONTROL)
- else:
- toktypes.append(gguf.TokenType.USER_DEFINED)
- else:
- tokens.append(reverse_vocab[i])
- toktypes.append(gguf.TokenType.NORMAL)
- return tokens, toktypes
- def _set_vocab_gpt2(self) -> None:
- tokens, toktypes = self.get_basic_vocab()
- self.gguf_writer.add_tokenizer_model("gpt2")
- self.gguf_writer.add_token_list(tokens)
- self.gguf_writer.add_token_types(toktypes)
- special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=True)
- special_vocab.add_to_gguf(self.gguf_writer)
- def _set_vocab_qwen(self):
- dir_model = self.dir_model
- hparams = self.hparams
- tokens: list[str] = []
- toktypes: list[int] = []
- from transformers import AutoTokenizer
- tokenizer = AutoTokenizer.from_pretrained(dir_model, trust_remote_code=True)
- vocab_size = hparams["vocab_size"]
- assert max(tokenizer.get_vocab().values()) < vocab_size
- merges = []
- vocab = {}
- mergeable_ranks = tokenizer.mergeable_ranks
- for token, rank in mergeable_ranks.items():
- vocab[QwenModel.token_bytes_to_string(token)] = rank
- if len(token) == 1:
- continue
- merged = QwenModel.bpe(mergeable_ranks, token, max_rank=rank)
- assert len(merged) == 2
- merges.append(' '.join(map(QwenModel.token_bytes_to_string, merged)))
- # for this kind of tokenizer, added_vocab is not a subset of vocab, so they need to be combined
- added_vocab = tokenizer.special_tokens
- reverse_vocab = {id_ : encoded_tok for encoded_tok, id_ in (vocab | added_vocab).items()}
- for i in range(vocab_size):
- if i not in reverse_vocab:
- tokens.append(f"[PAD{i}]")
- toktypes.append(gguf.TokenType.USER_DEFINED)
- elif reverse_vocab[i] in added_vocab:
- tokens.append(reverse_vocab[i])
- toktypes.append(gguf.TokenType.CONTROL)
- else:
- tokens.append(reverse_vocab[i])
- toktypes.append(gguf.TokenType.NORMAL)
- self.gguf_writer.add_tokenizer_model("gpt2")
- self.gguf_writer.add_token_list(tokens)
- self.gguf_writer.add_token_types(toktypes)
- special_vocab = gguf.SpecialVocab(dir_model, load_merges=False)
- special_vocab.merges = merges
- # only add special tokens when they were not already loaded from config.json
- if len(special_vocab.special_token_ids) == 0:
- special_vocab._set_special_token("bos", tokenizer.special_tokens["<|endoftext|>"])
- special_vocab._set_special_token("eos", tokenizer.special_tokens["<|endoftext|>"])
- # this one is usually not in config.json anyway
- special_vocab._set_special_token("unk", tokenizer.special_tokens["<|endoftext|>"])
- special_vocab.add_to_gguf(self.gguf_writer)
- def _set_vocab_sentencepiece(self):
- from sentencepiece import SentencePieceProcessor
- tokenizer_path = self.dir_model / 'tokenizer.model'
- tokens: list[bytes] = []
- scores: list[float] = []
- toktypes: list[int] = []
- if not tokenizer_path.is_file():
- raise FileNotFoundError(f"File not found: {tokenizer_path}")
- tokenizer = SentencePieceProcessor(str(tokenizer_path))
- vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
- for token_id in range(tokenizer.vocab_size()):
- piece = tokenizer.id_to_piece(token_id)
- text = piece.encode("utf-8")
- score = tokenizer.get_score(token_id)
- toktype = SentencePieceTokenTypes.NORMAL
- if tokenizer.is_unknown(token_id):
- toktype = SentencePieceTokenTypes.UNKNOWN
- elif tokenizer.is_control(token_id):
- toktype = SentencePieceTokenTypes.CONTROL
- elif tokenizer.is_unused(token_id):
- toktype = SentencePieceTokenTypes.UNUSED
- elif tokenizer.is_byte(token_id):
- toktype = SentencePieceTokenTypes.BYTE
- tokens.append(text)
- scores.append(score)
- toktypes.append(toktype)
- added_tokens_file = self.dir_model / 'added_tokens.json'
- if added_tokens_file.is_file():
- with open(added_tokens_file, "r", encoding="utf-8") as f:
- added_tokens_json = json.load(f)
- for key in added_tokens_json:
- key = key.encode("utf-8")
- if key not in tokens:
- tokens.append(key)
- scores.append(-1000.0)
- toktypes.append(SentencePieceTokenTypes.USER_DEFINED)
- assert len(tokens) == vocab_size
- self.gguf_writer.add_tokenizer_model("llama")
- self.gguf_writer.add_token_list(tokens)
- self.gguf_writer.add_token_scores(scores)
- self.gguf_writer.add_token_types(toktypes)
- special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
- special_vocab.add_to_gguf(self.gguf_writer)
- def _set_vocab_llama_hf(self):
- vocab = LlamaHfVocab(self.dir_model)
- tokens = []
- scores = []
- toktypes = []
- for text, score, toktype in vocab.all_tokens():
- tokens.append(text)
- scores.append(score)
- toktypes.append(toktype)
- assert len(tokens) == vocab.vocab_size
- self.gguf_writer.add_tokenizer_model("llama")
- self.gguf_writer.add_token_list(tokens)
- self.gguf_writer.add_token_scores(scores)
- self.gguf_writer.add_token_types(toktypes)
- special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
- special_vocab.add_to_gguf(self.gguf_writer)
- @Model.register("GPTNeoXForCausalLM")
- class GPTNeoXModel(Model):
- model_arch = gguf.MODEL_ARCH.GPTNEOX
- def set_gguf_parameters(self):
- block_count = self.hparams["num_hidden_layers"]
- self.gguf_writer.add_name(self.dir_model.name)
- self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"])
- self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
- self.gguf_writer.add_block_count(block_count)
- self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
- self.gguf_writer.add_rope_dimension_count(
- int(self.hparams["rotary_pct"] * (self.hparams["hidden_size"] // self.hparams["num_attention_heads"])),
- )
- self.gguf_writer.add_head_count(self.hparams["num_attention_heads"])
- self.gguf_writer.add_parallel_residual(self.hparams.get("use_parallel_residual", True))
- self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_eps"])
- @Model.register("BloomForCausalLM")
- class BloomModel(Model):
- model_arch = gguf.MODEL_ARCH.BLOOM
- def set_gguf_parameters(self):
- self.gguf_writer.add_name("Bloom")
- n_embed = self.hparams.get("hidden_size", self.hparams.get("n_embed"))
- n_head = self.hparams.get("n_head", self.hparams.get("num_attention_heads"))
- self.gguf_writer.add_context_length(self.hparams.get("seq_length", n_embed))
- self.gguf_writer.add_embedding_length(n_embed)
- self.gguf_writer.add_feed_forward_length(4 * n_embed)
- self.gguf_writer.add_block_count(self.hparams["n_layer"])
- self.gguf_writer.add_head_count(n_head)
- self.gguf_writer.add_head_count_kv(n_head)
- self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
- self.gguf_writer.add_file_type(self.ftype)
- def write_tensors(self):
- block_count = self.hparams["n_layer"]
- tensors = dict(self.get_tensors())
- tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count)
- has_lm_head = True
- n_head = self.hparams.get("n_head", self.hparams.get("num_attention_heads"))
- n_embed = self.hparams.get("hidden_size", self.hparams.get("n_embed"))
- for name, data_torch in tensors.items():
- if "lm_head.weight" not in tensors.keys() and "output.weight" not in tensors.keys():
- has_lm_head = False
- name = re.sub(r'transformer\.', '', name)
- old_dtype = data_torch.dtype
- # convert any unsupported data types to float32
- if data_torch.dtype not in (torch.float16, torch.float32):
- data_torch = data_torch.to(torch.float32)
- data = data_torch.squeeze().numpy()
- if re.match(r"h\.\d+\.self_attention\.query_key_value\.weight", name):
- # Map bloom-style qkv_linear to gpt-style qkv_linear
- # bloom: https://github.com/huggingface/transformers/blob/main/src/transformers/models/bloom/modeling_bloom.py#L238-L252 # noqa
- # gpt-2: https://github.com/huggingface/transformers/blob/main/src/transformers/models/gpt2/modeling_gpt2.py#L312 # noqa
- qkv_weights = data.reshape((n_head, 3, n_embed // n_head, n_embed))
- data = np.concatenate(
- (
- qkv_weights[:, 0, :, :].reshape((-1, n_embed)),
- qkv_weights[:, 1, :, :].reshape((-1, n_embed)),
- qkv_weights[:, 2, :, :].reshape((-1, n_embed)),
- ),
- axis=0,
- )
- print("re-format attention.linear_qkv.weight")
- elif re.match(r"h\.\d+\.self_attention\.query_key_value\.bias", name):
- qkv_bias = data.reshape((n_head, 3, n_embed // n_head))
- data = np.concatenate(
- (
- qkv_bias[:, 0, :].reshape((n_embed,)),
- qkv_bias[:, 1, :].reshape((n_embed,)),
- qkv_bias[:, 2, :].reshape((n_embed,)),
- ),
- axis=0,
- )
- print("re-format attention.linear_qkv.bias")
- # map tensor names
- new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias"))
- if new_name is None:
- print(f"Can not map tensor {name!r}")
- sys.exit()
- n_dims = len(data.shape)
- data_dtype = data.dtype
- # if f32 desired, convert any float16 to float32
- if self.ftype == 0 and data_dtype == np.float16:
- data = data.astype(np.float32)
- # TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32
- if self.ftype == 1 and data_dtype == np.float16 and n_dims == 1:
- data = data.astype(np.float32)
- # if f16 desired, convert any float32 2-dim weight tensors to float16
- if self.ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
- data = data.astype(np.float16)
- print(f"=> {new_name}, shape = {data.shape}, {old_dtype} --> {data.dtype}")
- self.gguf_writer.add_tensor(new_name, data)
- if not has_lm_head and name == "word_embeddings.weight":
- self.gguf_writer.add_tensor("output.weight", data)
- print(name, f"=> output.weight, shape = {data.shape}, {old_dtype} --> {data.dtype}")
- @Model.register("MPTForCausalLM")
- class MPTModel(Model):
- model_arch = gguf.MODEL_ARCH.MPT
- def set_vocab(self):
- try:
- self._set_vocab_gpt2()
- except Exception:
- # Fallback for SEA-LION model
- self._set_vocab_sentencepiece()
- self.gguf_writer.add_add_bos_token(False)
- self.gguf_writer.add_pad_token_id(3)
- self.gguf_writer.add_eos_token_id(1)
- self.gguf_writer.add_unk_token_id(0)
- def set_gguf_parameters(self):
- block_count = self.hparams["n_layers"]
- self.gguf_writer.add_name(self.dir_model.name)
- self.gguf_writer.add_context_length(self.hparams["max_seq_len"])
- self.gguf_writer.add_embedding_length(self.hparams["d_model"])
- self.gguf_writer.add_block_count(block_count)
- self.gguf_writer.add_feed_forward_length(4 * self.hparams["d_model"])
- self.gguf_writer.add_head_count(self.hparams["n_heads"])
- if kv_n_heads := self.hparams["attn_config"].get("kv_n_heads"):
- self.gguf_writer.add_head_count_kv(kv_n_heads)
- self.gguf_writer.add_layer_norm_eps(1e-5)
- if self.hparams["attn_config"]["clip_qkv"] is not None:
- self.gguf_writer.add_clamp_kqv(self.hparams["attn_config"]["clip_qkv"])
- if self.hparams["attn_config"]["alibi"]:
- self.gguf_writer.add_max_alibi_bias(self.hparams["attn_config"]["alibi_bias_max"])
- else:
- self.gguf_writer.add_max_alibi_bias(0.0)
- def write_tensors(self):
- block_count = self.hparams.get("n_layers", self.hparams.get("num_hidden_layers"))
- tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count)
- for name, data_torch in self.get_tensors():
- # we don't need these
- if name.endswith((".attention.masked_bias", ".attention.bias", ".attention.rotary_emb.inv_freq")):
- continue
- old_dtype = data_torch.dtype
- # convert any unsupported data types to float32
- if data_torch.dtype not in (torch.float16, torch.float32):
- data_torch = data_torch.to(torch.float32)
- data = data_torch.squeeze().numpy()
- # map tensor names
- if "scales" in name:
- new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias", ".scales"))
- if new_name is not None:
- new_name = new_name.replace("scales", "act.scales")
- else:
- new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias"))
- if new_name is None:
- print(f"Can not map tensor {name!r}")
- sys.exit()
- n_dims = len(data.shape)
- data_dtype = data.dtype
- # if f32 desired, convert any float16 to float32
- if self.ftype == 0 and data_dtype == np.float16:
- data = data.astype(np.float32)
- # TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32
- if self.ftype == 1 and data_dtype == np.float16 and n_dims == 1:
- data = data.astype(np.float32)
- # if f16 desired, convert any float32 2-dim weight tensors to float16
- if self.ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
- data = data.astype(np.float16)
- print(f"{new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}")
- self.gguf_writer.add_tensor(new_name, data)
- @Model.register("OrionForCausalLM")
- class OrionModel(Model):
- model_arch = gguf.MODEL_ARCH.ORION
- def set_vocab(self):
- self._set_vocab_sentencepiece()
- def set_gguf_parameters(self):
- block_count = self.hparams["num_hidden_layers"]
- head_count = self.hparams["num_attention_heads"]
- head_count_kv = self.hparams.get("num_key_value_heads", head_count)
- hf_repo = self.hparams.get("_name_or_path", "")
- ctx_length = 0
- if "max_sequence_length" in self.hparams:
- ctx_length = self.hparams["max_sequence_length"]
- elif "max_position_embeddings" in self.hparams:
- ctx_length = self.hparams["max_position_embeddings"]
- elif "model_max_length" in self.hparams:
- ctx_length = self.hparams["model_max_length"]
- else:
- print("gguf: can not find ctx length parameter.")
- sys.exit()
- self.gguf_writer.add_file_type(self.ftype)
- self.gguf_writer.add_name(self.dir_model.name)
- self.gguf_writer.add_source_hf_repo(hf_repo)
- self.gguf_writer.add_tensor_data_layout("Meta AI original pth")
- self.gguf_writer.add_context_length(ctx_length)
- self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
- self.gguf_writer.add_block_count(block_count)
- self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
- self.gguf_writer.add_head_count(head_count)
- self.gguf_writer.add_head_count_kv(head_count_kv)
- # note: config provides rms norm but it is actually layer norm
- # ref: https://huggingface.co/OrionStarAI/Orion-14B-Chat/blob/276a17221ce42beb45f66fac657a41540e71f4f5/modeling_orion.py#L570-L571
- self.gguf_writer.add_layer_norm_eps(self.hparams["rms_norm_eps"])
- def write_tensors(self):
- # Collect tensors from generator object
- model_kv = dict(self.get_tensors())
- block_count = self.hparams["num_hidden_layers"]
- tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count)
- for name, data_torch in model_kv.items():
- # we don't need these
- if name.endswith(".rotary_emb.inv_freq"):
- continue
- old_dtype = data_torch.dtype
- # convert any unsupported data types to float32
- if data_torch.dtype not in (torch.float16, torch.float32):
- data_torch = data_torch.to(torch.float32)
- data = data_torch.squeeze().numpy()
- # map tensor names
- new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias"))
- if new_name is None:
- print(f"Can not map tensor {name!r}")
- sys.exit()
- n_dims = len(data.shape)
- data_dtype = data.dtype
- # if f32 desired, convert any float16 to float32
- if self.ftype == 0 and data_dtype == np.float16:
- data = data.astype(np.float32)
- # TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32
- if self.ftype == 1 and data_dtype == np.float16 and n_dims == 1:
- data = data.astype(np.float32)
- # if f16 desired, convert any float32 2-dim weight tensors to float16
- if self.ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
- data = data.astype(np.float16)
- print(f"{name} -> {new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}")
- self.gguf_writer.add_tensor(new_name, data)
- @Model.register("BaichuanForCausalLM", "BaiChuanForCausalLM")
- class BaichuanModel(Model):
- model_arch = gguf.MODEL_ARCH.BAICHUAN
- def set_vocab(self):
- self._set_vocab_sentencepiece()
- def set_gguf_parameters(self):
- block_count = self.hparams["num_hidden_layers"]
- head_count = self.hparams["num_attention_heads"]
- head_count_kv = self.hparams.get("num_key_value_heads", head_count)
- hf_repo = self.hparams.get("_name_or_path", "")
- ctx_length = 0
- if "max_sequence_length" in self.hparams:
- ctx_length = self.hparams["max_sequence_length"]
- elif "max_position_embeddings" in self.hparams:
- ctx_length = self.hparams["max_position_embeddings"]
- elif "model_max_length" in self.hparams:
- ctx_length = self.hparams["model_max_length"]
- else:
- print("gguf: can not find ctx length parameter.")
- sys.exit()
- self.gguf_writer.add_name(self.dir_model.name)
- self.gguf_writer.add_source_hf_repo(hf_repo)
- self.gguf_writer.add_tensor_data_layout("Meta AI original pth")
- self.gguf_writer.add_context_length(ctx_length)
- self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
- self.gguf_writer.add_block_count(block_count)
- self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
- self.gguf_writer.add_rope_dimension_count(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
- self.gguf_writer.add_head_count(head_count)
- self.gguf_writer.add_head_count_kv(head_count_kv)
- self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
- if self.hparams.get("rope_scaling") is not None and "factor" in self.hparams["rope_scaling"]:
- if self.hparams["rope_scaling"].get("type") == "linear":
- self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
- self.gguf_writer.add_rope_scaling_factor(self.hparams["rope_scaling"]["factor"])
- def write_tensors(self):
- # Collect tensors from generator object
- model_kv = dict(self.get_tensors())
- block_count = self.hparams["num_hidden_layers"]
- head_count = self.hparams["num_attention_heads"]
- tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count)
- head_count_kv = self.hparams.get("num_key_value_heads", head_count)
- for i in range(block_count):
- if (w := model_kv.get(f"model.layers.{i}.self_attn.W_pack.weight")) is not None:
- print(f"Unpacking and permuting layer {i}")
- model_kv[f"model.layers.{i}.self_attn.q_proj.weight"] = \
- self._reverse_hf_permute_part(w, 0, head_count, head_count)
- model_kv[f"model.layers.{i}.self_attn.k_proj.weight"] = \
- self._reverse_hf_permute_part(w, 1, head_count, head_count_kv)
- model_kv[f"model.layers.{i}.self_attn.v_proj.weight"] = \
- self._reverse_hf_part(w, 2)
- del model_kv[f"model.layers.{i}.self_attn.W_pack.weight"]
- for name, data_torch in model_kv.items():
- # we don't need these
- if name.endswith(".rotary_emb.inv_freq"):
- continue
- old_dtype = data_torch.dtype
- # convert any unsupported data types to float32
- if data_torch.dtype not in (torch.float16, torch.float32):
- data_torch = data_torch.to(torch.float32)
- data = data_torch.squeeze().numpy()
- # map tensor names
- new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias"))
- if new_name is None:
- print(f"Can not map tensor {name!r}")
- sys.exit()
- n_dims = len(data.shape)
- data_dtype = data.dtype
- # if f32 desired, convert any float16 to float32
- if self.ftype == 0 and data_dtype == np.float16:
- data = data.astype(np.float32)
- # TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32
- if self.ftype == 1 and data_dtype == np.float16 and n_dims == 1:
- data = data.astype(np.float32)
- # if f16 desired, convert any float32 2-dim weight tensors to float16
- if self.ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
- data = data.astype(np.float16)
- print(f"{name} -> {new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}")
- self.gguf_writer.add_tensor(new_name, data)
- def _reverse_hf_permute(self, weights: Tensor, n_head: int, n_kv_head: int | None = None) -> Tensor:
- if n_kv_head is not None and n_head != n_kv_head:
- n_head //= n_kv_head
- return (
- weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
- .swapaxes(1, 2)
- .reshape(weights.shape)
- )
- def _reverse_hf_permute_part(
- self, weights: Tensor, n_part: int, n_head: int, n_head_kv: int | None = None,
- ) -> Tensor:
- r = weights.shape[0] // 3
- return self._reverse_hf_permute(weights[r * n_part:r * n_part + r, ...], n_head, n_head_kv)
- def _reverse_hf_part(self, weights: Tensor, n_part: int) -> Tensor:
- r = weights.shape[0] // 3
- return weights[r * n_part:r * n_part + r, ...]
- @Model.register("XverseForCausalLM")
- class XverseModel(Model):
- model_arch = gguf.MODEL_ARCH.XVERSE
- def set_vocab(self):
- assert (self.dir_model / "tokenizer.json").is_file()
- dir_model = self.dir_model
- hparams = self.hparams
- tokens: list[bytearray] = []
- toktypes: list[int] = []
- from transformers import AutoTokenizer
- tokenizer = AutoTokenizer.from_pretrained(dir_model)
- vocab_size = hparams.get("vocab_size", len(tokenizer.vocab))
- assert max(tokenizer.vocab.values()) < vocab_size
- reverse_vocab = {id_: encoded_tok for encoded_tok, id_ in tokenizer.vocab.items()}
- added_vocab = tokenizer.get_added_vocab()
- for token_id in range(vocab_size):
- token_text = reverse_vocab[token_id].encode('utf-8')
- # replace "\x00" to string with length > 0
- if token_text == b"\x00":
- toktype = gguf.TokenType.BYTE # special
- token_text = f"<{token_text}>".encode('utf-8')
- elif re.fullmatch(br"<0x[0-9A-Fa-f]{2}>", token_text):
- toktype = gguf.TokenType.BYTE # special
- elif reverse_vocab[token_id] in added_vocab:
- if tokenizer.added_tokens_decoder[token_id].special:
- toktype = gguf.TokenType.CONTROL
- else:
- toktype = gguf.TokenType.USER_DEFINED
- else:
- toktype = gguf.TokenType.NORMAL
- tokens.append(token_text)
- toktypes.append(toktype)
- self.gguf_writer.add_tokenizer_model("llama")
- self.gguf_writer.add_token_list(tokens)
- self.gguf_writer.add_token_types(toktypes)
- special_vocab = gguf.SpecialVocab(dir_model, n_vocab=len(tokens))
- special_vocab.add_to_gguf(self.gguf_writer)
- def set_gguf_parameters(self):
- block_count = self.hparams["num_hidden_layers"]
- head_count = self.hparams["num_attention_heads"]
- head_count_kv = self.hparams.get("num_key_value_heads", head_count)
- hf_repo = self.hparams.get("_name_or_path", "")
- ctx_length = 0
- if "max_sequence_length" in self.hparams:
- ctx_length = self.hparams["max_sequence_length"]
- elif "max_position_embeddings" in self.hparams:
- ctx_length = self.hparams["max_position_embeddings"]
- elif "model_max_length" in self.hparams:
- ctx_length = self.hparams["model_max_length"]
- else:
- print("gguf: can not find ctx length parameter.")
- sys.exit()
- self.gguf_writer.add_name(self.dir_model.name)
- self.gguf_writer.add_source_hf_repo(hf_repo)
- self.gguf_writer.add_tensor_data_layout("Meta AI original pth")
- self.gguf_writer.add_context_length(ctx_length)
- self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
- self.gguf_writer.add_block_count(block_count)
- self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
- self.gguf_writer.add_rope_dimension_count(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
- self.gguf_writer.add_head_count(head_count)
- self.gguf_writer.add_head_count_kv(head_count_kv)
- self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
- if self.hparams.get("rope_scaling") is not None and "factor" in self.hparams["rope_scaling"]:
- if self.hparams["rope_scaling"].get("type") == "linear":
- self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
- self.gguf_writer.add_rope_scaling_factor(self.hparams["rope_scaling"]["factor"])
- def write_tensors(self):
- # Collect tensors from generator object
- model_kv = dict(self.get_tensors())
- block_count = self.hparams["num_hidden_layers"]
- head_count = self.hparams["num_attention_heads"]
- tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count)
- head_count_kv = self.hparams.get("num_key_value_heads", head_count)
- for name, data_torch in model_kv.items():
- # we don't need these
- if name.endswith(".rotary_emb.inv_freq"):
- continue
- old_dtype = data_torch.dtype
- # convert any unsupported data types to float32
- if data_torch.dtype not in (torch.float16, torch.float32):
- data_torch = data_torch.to(torch.float32)
- # HF models permute some of the tensors, so we need to undo that
- if name.endswith(("q_proj.weight")):
- data_torch = self._reverse_hf_permute(data_torch, head_count, head_count)
- if name.endswith(("k_proj.weight")):
- data_torch = self._reverse_hf_permute(data_torch, head_count, head_count_kv)
- data = data_torch.squeeze().numpy()
- # map tensor names
- new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias"))
- if new_name is None:
- print(f"Can not map tensor {name!r}")
- sys.exit()
- n_dims = len(data.shape)
- data_dtype = data.dtype
- # if f32 desired, convert any float16 to float32
- if self.ftype == 0 and data_dtype == np.float16:
- data = data.astype(np.float32)
- # TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32
- if self.ftype == 1 and data_dtype == np.float16 and n_dims == 1:
- data = data.astype(np.float32)
- # if f16 desired, convert any float32 2-dim weight tensors to float16
- if self.ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
- data = data.astype(np.float16)
- print(f"{name} -> {new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}")
- self.gguf_writer.add_tensor(new_name, data)
- def _reverse_hf_permute(self, weights: Tensor, n_head: int, n_kv_head: int | None = None) -> Tensor:
- if n_kv_head is not None and n_head != n_kv_head:
- n_head //= n_kv_head
- return (
- weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
- .swapaxes(1, 2)
- .reshape(weights.shape)
- )
- @Model.register("FalconForCausalLM", "RWForCausalLM")
- class FalconModel(Model):
- model_arch = gguf.MODEL_ARCH.FALCON
- def set_gguf_parameters(self):
- block_count = self.hparams.get("num_hidden_layers")
- if block_count is None:
- block_count = self.hparams["n_layer"] # old name
- n_head = self.hparams.get("num_attention_heads")
- if n_head is None:
- n_head = self.hparams["n_head"] # old name
- n_head_kv = self.hparams.get("num_kv_heads")
- if n_head_kv is None:
- n_head_kv = self.hparams.get("n_head_kv", 1) # old name
- self.gguf_writer.add_name("Falcon")
- self.gguf_writer.add_context_length(2048) # not in config.json
- self.gguf_writer.add_tensor_data_layout("jploski") # qkv tensor transform
- self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
- self.gguf_writer.add_feed_forward_length(4 * self.hparams["hidden_size"])
- self.gguf_writer.add_block_count(block_count)
- self.gguf_writer.add_head_count(n_head)
- self.gguf_writer.add_head_count_kv(n_head_kv)
- self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
- self.gguf_writer.add_file_type(self.ftype)
- def write_tensors(self):
- block_count = self.hparams.get("num_hidden_layers")
- if block_count is None:
- block_count = self.hparams["n_layer"] # old name
- n_head = self.hparams.get("num_attention_heads")
- if n_head is None:
- n_head = self.hparams["n_head"] # old name
- n_head_kv = self.hparams.get("num_kv_heads")
- if n_head_kv is None:
- n_head_kv = self.hparams.get("n_head_kv", 1) # old name
- head_dim = self.hparams["hidden_size"] // n_head
- tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count)
- for name, data_torch in self.get_tensors():
- old_dtype = data_torch.dtype
- # convert any unsupported data types to float32
- if data_torch.dtype not in (torch.float16, torch.float32):
- data_torch = data_torch.to(torch.float32)
- # QKV tensor transform
- # The original query_key_value tensor contains n_head_kv "kv groups",
- # each consisting of n_head/n_head_kv query weights followed by one key
- # and one value weight (shared by all query heads in the kv group).
- # This layout makes it a big pain to work with in GGML.
- # So we rearrange them here,, so that we have n_head query weights
- # followed by n_head_kv key weights followed by n_head_kv value weights,
- # in contiguous fashion.
- # ref: https://github.com/jploski/ggml/blob/falcon40b/examples/falcon/convert-hf-to-ggml.py
- if "query_key_value" in name:
- qkv = data_torch.view(n_head_kv, n_head // n_head_kv + 2, head_dim, head_dim * n_head)
- q = qkv[:, :-2].reshape(n_head * head_dim, head_dim * n_head)
- k = qkv[:, [-2]].reshape(n_head_kv * head_dim, head_dim * n_head)
- v = qkv[:, [-1]].reshape(n_head_kv * head_dim, head_dim * n_head)
- data_torch = torch.cat((q, k, v)).reshape_as(data_torch)
- data = data_torch.squeeze().numpy()
- # map tensor names
- new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias"))
- if new_name is None:
- print(f"Can not map tensor {name!r}")
- sys.exit()
- n_dims = len(data.shape)
- data_dtype = data.dtype
- # if f32 desired, convert any float16 to float32
- if self.ftype == 0 and data_dtype == np.float16:
- data = data.astype(np.float32)
- # TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32
- if self.ftype == 1 and data_dtype == np.float16 and n_dims == 1:
- data = data.astype(np.float32)
- # if f16 desired, convert any float32 2-dim weight tensors to float16
- if self.ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
- data = data.astype(np.float16)
- print(f"{new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}")
- self.gguf_writer.add_tensor(new_name, data)
- @Model.register("GPTBigCodeForCausalLM")
- class StarCoderModel(Model):
- model_arch = gguf.MODEL_ARCH.STARCODER
- def set_gguf_parameters(self):
- block_count = self.hparams["n_layer"]
- self.gguf_writer.add_name("StarCoder")
- self.gguf_writer.add_context_length(self.hparams["n_positions"])
- self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
- self.gguf_writer.add_feed_forward_length(4 * self.hparams["n_embd"])
- self.gguf_writer.add_block_count(block_count)
- self.gguf_writer.add_head_count(self.hparams["n_head"])
- self.gguf_writer.add_head_count_kv(1)
- self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
- self.gguf_writer.add_file_type(self.ftype)
- @Model.register("GPTRefactForCausalLM")
- class RefactModel(Model):
- model_arch = gguf.MODEL_ARCH.REFACT
- def set_gguf_parameters(self):
- hidden_dim = self.hparams["n_embd"]
- inner_dim = 4 * hidden_dim
- hidden_dim = int(2 * inner_dim / 3)
- multiple_of = 256
- ff_dim = multiple_of * ((hidden_dim + multiple_of - 1) // multiple_of)
- block_count = self.hparams["n_layer"]
- self.gguf_writer.add_name("Refact")
- # refact uses Alibi. So this is from config.json which might be used by training.
- self.gguf_writer.add_context_length(self.hparams["n_positions"])
- self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
- self.gguf_writer.add_feed_forward_length(ff_dim)
- self.gguf_writer.add_block_count(block_count)
- self.gguf_writer.add_head_count(self.hparams["n_head"])
- self.gguf_writer.add_head_count_kv(1)
- self.gguf_writer.add_layer_norm_rms_eps(self.hparams["layer_norm_epsilon"])
- self.gguf_writer.add_file_type(self.ftype)
- def write_tensors(self):
- hidden_dim = self.hparams["n_embd"]
- inner_dim = 4 * hidden_dim
- hidden_dim = int(2 * inner_dim / 3)
- multiple_of = 256
- ff_dim = multiple_of * ((hidden_dim + multiple_of - 1) // multiple_of)
- n_head = self.hparams["n_head"]
- n_head_kv = 1
- head_dim = self.hparams["n_embd"] // n_head
- block_count = self.hparams["n_layer"]
- tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count)
- tensors = dict(self.get_tensors())
- for i in range(block_count):
- if (w := tensors.get(f"transformer.h.{i}.attn.kv.weight")) is not None:
- tensors[f"model.layers.{i}.self_attn.k_proj.weight"] = w[:n_head_kv * head_dim]
- tensors[f"model.layers.{i}.self_attn.v_proj.weight"] = w[n_head_kv * head_dim:]
- del tensors[f"transformer.h.{i}.attn.kv.weight"]
- if (w := tensors.get(f"transformer.h.{i}.attn.q.weight")) is not None:
- tensors[f"model.layers.{i}.self_attn.q_proj.weight"] = w
- del tensors[f"transformer.h.{i}.attn.q.weight"]
- if (w := tensors.get(f"transformer.h.{i}.mlp.gate_up_proj.weight")) is not None:
- tensors[f"model.layers.{i}.mlp.gate_proj.weight"] = w[:ff_dim]
- tensors[f"model.layers.{i}.mlp.up_proj.weight"] = w[ff_dim:]
- del tensors[f"transformer.h.{i}.mlp.gate_up_proj.weight"]
- for name, data_torch in tensors.items():
- old_dtype = data_torch.dtype
- # convert any unsupported data types to float32
- if data_torch.dtype not in (torch.float16, torch.float32):
- data_torch = data_torch.to(torch.float32)
- data = data_torch.squeeze().numpy()
- # map tensor names
- new_name = tensor_map.get_name(name, try_suffixes=(".weight",))
- if new_name is None:
- print(f"Can not map tensor {name!r}")
- sys.exit()
- n_dims = len(data.shape)
- data_dtype = data.dtype
- # if f32 desired, convert any float16 to float32
- if self.ftype == 0 and data_dtype == np.float16:
- data = data.astype(np.float32)
- # TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32
- if self.ftype == 1 and data_dtype == np.float16 and n_dims == 1:
- data = data.astype(np.float32)
- # if f16 desired, convert any float32 2-dim weight tensors to float16
- if self.ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
- data = data.astype(np.float16)
- print(f"{new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}")
- self.gguf_writer.add_tensor(new_name, data)
- @Model.register("PersimmonForCausalLM")
- class PersimmonModel(Model):
- model_arch = gguf.MODEL_ARCH.PERSIMMON
- def set_gguf_parameters(self):
- block_count = self.hparams.get("num_layers", self.hparams.get("num_hidden_layers"))
- head_count = self.hparams["num_attention_heads"]
- head_count_kv = head_count
- hidden_size = self.hparams["hidden_size"]
- self.gguf_writer.add_name('persimmon-8b-chat')
- self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"])
- self.gguf_writer.add_embedding_length(hidden_size)
- self.gguf_writer.add_block_count(block_count)
- self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
- # NOTE: not sure about this change - why does the model not have a rope dimension count when it is smaller
- # than the head size?
- # ref: https://github.com/ggerganov/llama.cpp/pull/4889
- # self.gguf_writer.add_rope_dimension_count(hidden_size // head_count)
- self.gguf_writer.add_rope_dimension_count(hidden_size // head_count // 2)
- self.gguf_writer.add_head_count(head_count)
- self.gguf_writer.add_head_count_kv(head_count_kv)
- self.gguf_writer.add_rope_freq_base(self.hparams["rope_theta"])
- self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_eps"])
- def set_vocab(self):
- self._set_vocab_sentencepiece()
- # self.gguf_writer.add_bos_token_id(71013)
- # self.gguf_writer.add_eos_token_id(71013)
- def write_tensors(self):
- block_count = self.hparams.get("num_layers", self.hparams.get("num_hidden_layers"))
- tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count)
- for name, data_torch in self.get_tensors():
- if name.endswith(".self_attention.rotary_emb.inv_freq"):
- continue
- old_dtype = data_torch.dtype
- # TODO: FP16 conversion produces garbage outputs. (Q8_0 does not, so..?)
- data = data_torch.to(torch.float32).squeeze().numpy()
- new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias"))
- if new_name is None:
- print(f"Can not map tensor {name!r}")
- sys.exit()
- n_dims = len(data.shape)
- print(f"{new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}")
- self.gguf_writer.add_tensor(new_name, data)
- @Model.register("StableLmForCausalLM", "StableLMEpochForCausalLM", "LlavaStableLMEpochForCausalLM")
- class StableLMModel(Model):
- model_arch = gguf.MODEL_ARCH.STABLELM
- def set_vocab(self):
- if (self.dir_model / "tokenizer.json").is_file():
- self._set_vocab_gpt2()
- else:
- # StableLM 2 1.6B uses a vocab in a similar format to Qwen's vocab
- self._set_vocab_qwen()
- def set_gguf_parameters(self):
- hparams = self.hparams
- block_count = hparams["num_hidden_layers"]
- self.gguf_writer.add_name(self.dir_model.name)
- self.gguf_writer.add_context_length(hparams["max_position_embeddings"])
- self.gguf_writer.add_embedding_length(hparams["hidden_size"])
- self.gguf_writer.add_block_count(block_count)
- self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
- rotary_factor = self.find_hparam(["partial_rotary_factor", "rope_pct"])
- self.gguf_writer.add_rope_dimension_count(int(rotary_factor * (hparams["hidden_size"] // hparams["num_attention_heads"])))
- self.gguf_writer.add_head_count(hparams["num_attention_heads"])
- self.gguf_writer.add_head_count_kv(hparams["num_key_value_heads"])
- self.gguf_writer.add_parallel_residual(hparams["use_parallel_residual"] if "use_parallel_residual" in hparams else True)
- self.gguf_writer.add_layer_norm_eps(self.find_hparam(["layer_norm_eps", "norm_eps"]))
- def write_tensors(self):
- block_count = self.hparams.get("n_layers", self.hparams.get("num_hidden_layers", self.hparams.get("n_layer")))
- tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count)
- n_head = self.hparams.get("num_attention_heads")
- n_kv_head = self.hparams.get("num_key_value_heads")
- q_norms = dict()
- k_norms = dict()
- for name, data_torch in self.get_tensors():
- # we don't need these
- if name.endswith((".attention.masked_bias", ".attention.bias", ".attention.rotary_emb.inv_freq")):
- continue
- old_dtype = data_torch.dtype
- # convert any unsupported data types to float32
- if data_torch.dtype not in (torch.float16, torch.float32):
- data_torch = data_torch.to(torch.float32)
- data = data_torch.squeeze().numpy()
- n_dims = len(data.shape)
- if name.find("q_layernorm.norms") != -1:
- q_norms[name] = data
- if len(q_norms) >= (block_count * n_head):
- self._stack_qk_norm(block_count, name, tensor_map, n_head, q_norms, n_dims, layer_name="q_layernorm")
- continue
- if name.find("k_layernorm.norms") != -1:
- k_norms[name] = data
- if len(k_norms) >= (block_count * n_kv_head):
- self._stack_qk_norm(block_count, name, tensor_map, n_kv_head, k_norms, n_dims, layer_name="k_layernorm")
- continue
- # map tensor names
- new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias"))
- if new_name is None:
- print(f"Can not map tensor {name!r}")
- sys.exit()
- n_dims = len(data.shape)
- data_dtype = data.dtype
- # if f32 desired, convert any float16 to float32
- if self.ftype == 0 and data_dtype == np.float16:
- data = data.astype(np.float32)
- # TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32
- if self.ftype == 1 and data_dtype == np.float16 and (n_dims == 1 or new_name.endswith("_norm.weight")):
- data = data.astype(np.float32)
- # if f16 desired, convert any float32 2-dim weight tensors to float16
- if self.ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and not new_name.endswith("_norm.weight") and n_dims == 2:
- data = data.astype(np.float16)
- print(f"{new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}")
- self.gguf_writer.add_tensor(new_name, data)
- def _stack_qk_norm(self, block_count, name, tensor_map, n_head, norms, n_dims, layer_name="q_layernorm"):
- for bid in range(block_count):
- datas = []
- for xid in range(n_head):
- ename = f"model.layers.{bid}.self_attn.{layer_name}.norms.{xid}.weight"
- datas.append(norms[ename])
- del norms[ename]
- data = np.stack(datas, axis=0)
- data_dtype = data.dtype
- merged_name = f"model.layers.{bid}.self_attn.{layer_name}.weight"
- new_name = tensor_map.get_name(merged_name, try_suffixes=(".weight", ".bias"))
- if new_name is None:
- print(f"Can not map tensor {name!r}")
- sys.exit()
- if self.ftype == 1 and data_dtype == np.float16 and (n_dims == 1 or new_name.endswith("_norm.weight")):
- data = data.astype(np.float32)
- # if f16 desired, convert any float32 2-dim weight tensors to float16
- if self.ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and not new_name.endswith("_norm.weight") and n_dims == 2:
- data = data.astype(np.float16)
- print(f"{new_name}, n_dims = {len(data.shape)}, shape = {data.shape} --> {data.dtype}")
- self.gguf_writer.add_tensor(new_name, data)
- @Model.register("LlamaForCausalLM", "MistralForCausalLM", "MixtralForCausalLM")
- class LlamaModel(Model):
- model_arch = gguf.MODEL_ARCH.LLAMA
- def set_vocab(self):
- try:
- self. _set_vocab_sentencepiece()
- except FileNotFoundError:
- try:
- self._set_vocab_llama_hf()
- except (FileNotFoundError, TypeError):
- # Llama 3
- self._set_vocab_gpt2()
- # Apply to CodeLlama only (and ignore for Llama 3 with a vocab size of 128256)
- if self.hparams.get("vocab_size", 32000) == 32016:
- special_vocab = gguf.SpecialVocab(
- self.dir_model, load_merges=False,
- special_token_types = ['prefix', 'suffix', 'middle', 'eot']
- )
- special_vocab._set_special_token("prefix", 32007)
- special_vocab._set_special_token("suffix", 32008)
- special_vocab._set_special_token("middle", 32009)
- special_vocab._set_special_token("eot", 32010)
- special_vocab.add_to_gguf(self.gguf_writer)
- def set_gguf_parameters(self):
- super().set_gguf_parameters()
- hparams = self.hparams
- self.gguf_writer.add_vocab_size(hparams["vocab_size"])
- self.gguf_writer.add_rope_dimension_count(hparams["hidden_size"] // hparams["num_attention_heads"])
- # Same as super class, but permuting q_proj, k_proj
- def write_tensors(self):
- block_count = self.hparams.get("n_layers", self.hparams.get("num_hidden_layers", self.hparams.get("n_layer")))
- tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count)
- n_head = self.hparams.get("num_attention_heads")
- n_kv_head = self.hparams.get("num_key_value_heads")
- n_experts = self.hparams.get("num_local_experts")
- experts = dict()
- for name, data_torch in self.get_tensors():
- # we don't need these
- if name.endswith((".attention.masked_bias", ".attention.bias", ".attention.rotary_emb.inv_freq")):
- continue
- old_dtype = data_torch.dtype
- # convert any unsupported data types to float32
- if data_torch.dtype not in (torch.float16, torch.float32):
- data_torch = data_torch.to(torch.float32)
- data = data_torch.numpy()
- if name.endswith("q_proj.weight"):
- data = permute(data, n_head, n_head)
- if name.endswith("k_proj.weight"):
- data = permute(data, n_head, n_kv_head)
- data = data.squeeze()
- # process the experts separately
- if name.find("block_sparse_moe.experts") != -1:
- experts[name] = data
- if len(experts) >= n_experts:
- # merge the experts into a single 3d tensor
- for bid in range(block_count):
- for wid in range(1, 4):
- full = True
- for xid in range(n_experts):
- ename = f"model.layers.{bid}.block_sparse_moe.experts.{xid}.w{wid}.weight"
- if ename not in experts:
- full = False
- break
- if not full:
- continue
- datas = []
- for xid in range(n_experts):
- ename = f"model.layers.{bid}.block_sparse_moe.experts.{xid}.w{wid}.weight"
- datas.append(experts[ename])
- del experts[ename]
- data = np.stack(datas, axis=0)
- data_dtype = data.dtype
- if self.ftype == 0 and data_dtype == np.float16:
- data = data.astype(np.float32)
- if self.ftype == 1 and data_dtype == np.float32:
- data = data.astype(np.float16)
- merged_name = f"layers.{bid}.feed_forward.experts.w{wid}.weight"
- new_name = tensor_map.get_name(merged_name, try_suffixes=(".weight", ".bias"))
- if new_name is None:
- print(f"Can not map tensor {name!r}")
- sys.exit()
- print(f"{new_name}, n_dims = {len(data.shape)}, shape = {data.shape} --> {data.dtype}")
- self.gguf_writer.add_tensor(new_name, data)
- continue
- # map tensor names
- new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias"))
- if new_name is None:
- print(f"Can not map tensor {name!r}")
- sys.exit()
- n_dims = len(data.shape)
- data_dtype = data.dtype
- # if f32 desired, convert any float16 to float32
- if self.ftype == 0 and data_dtype == np.float16:
- data = data.astype(np.float32)
- # 1d tensors need to be converted to float32
- if self.ftype == 1 and data_dtype == np.float16 and n_dims == 1:
- data = data.astype(np.float32)
- # if f16 desired, convert any float32 2-dim weight tensors to float16
- if self.ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
- data = data.astype(np.float16)
- print(f"{new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}")
- self.gguf_writer.add_tensor(new_name, data)
- if len(experts) > 0:
- raise ValueError(f"Unprocessed experts: {experts.keys()}")
- @Model.register("GrokForCausalLM")
- class GrokModel(Model):
- model_arch = gguf.MODEL_ARCH.GROK
- def set_vocab(self):
- self._set_vocab_sentencepiece()
- def __init__(self, *args, **kwargs):
- super().__init__(*args, **kwargs)
- def set_gguf_parameters(self):
- super().set_gguf_parameters()
- self.gguf_writer.add_name("Grok")
- def write_tensors(self):
- block_count = self.hparams.get("n_layers", self.hparams.get("num_hidden_layers", self.hparams.get("n_layer")))
- tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count)
- n_experts = self.hparams.get("num_local_experts")
- experts = dict()
- for name, data_torch in self.get_tensors():
- # we don't need these
- if name.endswith((".attention.masked_bias", ".attention.bias", ".attention.rotary_emb.inv_freq")):
- continue
- old_dtype = data_torch.dtype
- # convert any unsupported data types to float32
- if data_torch.dtype not in (torch.float16, torch.float32):
- data_torch = data_torch.to(torch.float32)
- data = data_torch.squeeze().numpy()
- # process the experts separately
- if name.find(".moe.") != -1:
- experts[name] = data
- if len(experts) >= n_experts:
- # merge the experts into a single 3d tensor
- for bid in range(block_count):
- for wid in ["linear", "linear_1", "linear_v"]:
- full = True
- for xid in range(n_experts):
- ename = f"transformer.decoder_layer.{bid}.moe.{xid}.{wid}.weight"
- if ename not in experts:
- full = False
- break
- if not full:
- continue
- datas = []
- for xid in range(n_experts):
- ename = f"transformer.decoder_layer.{bid}.moe.{xid}.{wid}.weight"
- datas.append(experts[ename])
- del experts[ename]
- data = np.stack(datas, axis=0)
- data_dtype = data.dtype
- if self.ftype == 0 and data_dtype == np.float16:
- data = data.astype(np.float32)
- if self.ftype == 1 and data_dtype == np.float32:
- data = data.astype(np.float16)
- merged_name = f"transformer.decoder_layer.{bid}.moe.{wid}.weight"
- new_name = tensor_map.get_name(merged_name, try_suffixes=(".weight", ".bias"))
- if new_name is None:
- print(f"Can not map tensor {name!r}")
- sys.exit()
- print(f"{new_name}, n_dims = {len(data.shape)}, shape = {data.shape} --> {data.dtype}")
- self.gguf_writer.add_tensor(new_name, data)
- continue
- # map tensor names
- new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias"))
- if new_name is None:
- print(f"Can not map tensor {name!r}")
- sys.exit()
- n_dims = len(data.shape)
- data_dtype = data.dtype
- # if f32 desired, convert any float16 to float32
- if self.ftype == 0 and data_dtype == np.float16:
- data = data.astype(np.float32)
- # TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32
- if self.ftype == 1 and data_dtype == np.float16 and n_dims == 1:
- data = data.astype(np.float32)
- # if f16 desired, convert any float32 2-dim weight tensors to float16
- if self.ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
- data = data.astype(np.float16)
- print(f"{new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}")
- self.gguf_writer.add_tensor(new_name, data)
- @Model.register("DbrxForCausalLM")
- class DbrxModel(Model):
- model_arch = gguf.MODEL_ARCH.DBRX
- def set_gguf_parameters(self):
- ffn_config = self.hparams["ffn_config"]
- attn_config = self.hparams["attn_config"]
- self.gguf_writer.add_name(self.hparams["model_type"])
- self.gguf_writer.add_block_count(self.hparams["n_layers"])
- self.gguf_writer.add_context_length(self.hparams["max_seq_len"])
- self.gguf_writer.add_embedding_length(self.hparams["d_model"])
- self.gguf_writer.add_feed_forward_length(ffn_config["ffn_hidden_size"])
- self.gguf_writer.add_head_count(self.hparams["n_heads"])
- self.gguf_writer.add_head_count_kv(attn_config["kv_n_heads"])
- self.gguf_writer.add_rope_freq_base(attn_config["rope_theta"])
- self.gguf_writer.add_clamp_kqv(attn_config["clip_qkv"])
- self.gguf_writer.add_file_type(self.ftype)
- self.gguf_writer.add_expert_count(ffn_config["moe_num_experts"])
- self.gguf_writer.add_expert_used_count(ffn_config["moe_top_k"])
- self.gguf_writer.add_layer_norm_eps(1e-5)
- self.gguf_writer.add_file_type(self.ftype)
- print(f"gguf: file type = {self.ftype}")
- def write_tensors(self):
- block_count = self.hparams.get("n_layers")
- tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count)
- for name, data_torch in self.get_tensors():
- n_expert = self.hparams["ffn_config"]["moe_num_experts"]
- n_ff = self.hparams["ffn_config"]["ffn_hidden_size"]
- n_embd = self.hparams["d_model"]
- # Specific behavior for experts tensors: suffix .weight, view as 3D and transpose
- # original implementation expects (n_expert, n_ff, n_embd) for all experts weights
- # But llama.cpp moe graph works differently
- # AND the dimensions in ggml are typically in the reverse order of the pytorch dimensions
- # so (n_expert, n_ff, n_embd) in pytorch is {n_embd, n_ff, n_expert} in ggml_tensor
- exp_tensor_names = {"ffn.experts.mlp.w1": None, # LLM_TENSOR_FFN_GATE_EXPS ggml_tensor->ne{n_embd, n_ff, n_expert}
- "ffn.experts.mlp.w2": (0, 2, 1), # LLM_TENSOR_FFN_DOWN_EXPS ggml_tensor->ne{n_ff, n_embd, n_expert}
- "ffn.experts.mlp.v1": None} # LLM_TENSOR_FFN_UP_EXPS ggml_tensor->ne{n_embd, n_ff, n_expert}
- experts = False
- for exp_tensor_name in exp_tensor_names.keys():
- if name.find(exp_tensor_name) != -1 and name.find(".weight") == -1:
- experts = True
- data_torch = data_torch.view(n_expert, n_ff, n_embd)
- if (permute_tensor := exp_tensor_names[exp_tensor_name]) is not None:
- data_torch = data_torch.permute(*permute_tensor)
- break
- old_dtype = data_torch.dtype
- # convert any unsupported data types to float32
- if data_torch.dtype not in (torch.float16, torch.float32):
- data_torch = data_torch.to(torch.float32)
- data = data_torch.squeeze().numpy()
- # map tensor names
- # In MoE models the ffn tensors are typically most of the model weights,
- # and need to be quantizable. Quantize expects tensor names to be suffixed by .weight.
- # Every other model has the weight names ending in .weight,
- # let's assume that is the convention which is not the case for dbrx:
- # https://huggingface.co/databricks/dbrx-instruct/blob/main/model.safetensors.index.json#L15
- new_name = tensor_map.get_name(name if not experts else name + ".weight", try_suffixes=(".weight",))
- if new_name is None:
- print(f"Can not map tensor {name!r}")
- sys.exit()
- n_dims = len(data.shape)
- data_dtype = data.dtype
- # Most of the codebase that takes in 1D tensors only handles F32 tensors
- # and most of the outputs tensors are F32.
- if data_dtype != np.float32 and n_dims == 1:
- print(f"Can not map tensor {name!r}: all 1D tensors must be F32")
- sys.exit()
- # if f32 desired, convert any float16 to float32
- if self.ftype == 0 and data_dtype == np.float16:
- data = data.astype(np.float32)
- # if f16 desired, convert any float32 2-dim weight tensors to float16
- if self.ftype == 1 and data_dtype == np.float32 and n_dims > 1:
- data = data.astype(np.float16)
- print(f"{new_name}, n_dims = {n_dims}, shape = {data.shape}, {old_dtype} --> {data.dtype}")
- self.gguf_writer.add_tensor(new_name, data)
- @Model.register("MiniCPMForCausalLM")
- class MiniCPMModel(Model):
- model_arch = gguf.MODEL_ARCH.MINICPM
- def set_gguf_parameters(self):
- block_count = self.hparams["num_hidden_layers"]
- self.gguf_writer.add_name("MiniCPM")
- self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"])
- self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
- self.gguf_writer.add_block_count(block_count)
- self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
- self.gguf_writer.add_rope_dimension_count(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
- self.gguf_writer.add_head_count(self.hparams["num_attention_heads"])
- self.gguf_writer.add_head_count_kv(self.hparams["num_key_value_heads"])
- self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
- self.gguf_writer.add_file_type(self.ftype)
- def set_vocab(self):
- self._set_vocab_llama_hf()
- def _reverse_hf_permute(self, weights: Tensor, n_head: int, n_kv_head: int | None = None) -> Tensor:
- if n_kv_head is not None and n_head != n_kv_head:
- n_head //= n_kv_head
- return (
- weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
- .swapaxes(1, 2)
- .reshape(weights.shape)
- )
- def write_tensors(self):
- block_count = self.hparams.get("n_layers", self.hparams.get("num_hidden_layers", self.hparams.get("n_layer")))
- tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count)
- n_head = self.hparams.get("num_attention_heads")
- n_kv_head = self.hparams.get("num_key_value_heads")
- for name, data_torch in self.get_tensors():
- # we don't need these
- if name.endswith((".attention.masked_bias", ".attention.bias", ".attention.rotary_emb.inv_freq")):
- continue
- old_dtype = data_torch.dtype
- # convert any unsupported data types to float32
- if data_torch.dtype not in (torch.float16, torch.float32):
- data_torch = data_torch.to(torch.float32)
- # HF models permute some of the tensors, so we need to undo that
- if name.endswith(("q_proj.weight")):
- data_torch = self._reverse_hf_permute(data_torch, n_head, n_head)
- if name.endswith(("k_proj.weight")):
- data_torch = self._reverse_hf_permute(data_torch, n_head, n_kv_head)
- data = data_torch.squeeze().numpy()
- # map tensor names
- new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias"))
- if new_name is None:
- print(f"Can not map tensor {name!r}")
- sys.exit()
- n_dims = len(data.shape)
- data_dtype = data.dtype
- # if f32 desired, convert any float16 to float32
- if self.ftype == 0 and data_dtype == np.float16:
- data = data.astype(np.float32)
- # TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32
- if self.ftype == 1 and data_dtype == np.float16 and n_dims == 1:
- data = data.astype(np.float32)
- # if f16 desired, convert any float32 2-dim weight tensors to float16
- if self.ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
- data = data.astype(np.float16)
- print(f"{new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}")
- self.gguf_writer.add_tensor(new_name, data)
- @Model.register("QWenLMHeadModel")
- class QwenModel(Model):
- model_arch = gguf.MODEL_ARCH.QWEN
- @staticmethod
- def token_bytes_to_string(b):
- from transformers.models.gpt2.tokenization_gpt2 import bytes_to_unicode
- byte_encoder = bytes_to_unicode()
- return ''.join([byte_encoder[ord(char)] for char in b.decode('latin-1')])
- @staticmethod
- def bpe(mergeable_ranks: dict[bytes, int], token: bytes, max_rank: int | None = None) -> list[bytes]:
- parts = [bytes([b]) for b in token]
- while True:
- min_idx = None
- min_rank = None
- for i, pair in enumerate(zip(parts[:-1], parts[1:])):
- rank = mergeable_ranks.get(pair[0] + pair[1])
- if rank is not None and (min_rank is None or rank < min_rank):
- min_idx = i
- min_rank = rank
- if min_rank is None or (max_rank is not None and min_rank >= max_rank):
- break
- assert min_idx is not None
- parts = parts[:min_idx] + [parts[min_idx] + parts[min_idx + 1]] + parts[min_idx + 2:]
- return parts
- def set_vocab(self):
- self._set_vocab_qwen()
- def set_gguf_parameters(self):
- self.gguf_writer.add_name("Qwen")
- self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"])
- self.gguf_writer.add_block_count(self.hparams["num_hidden_layers"])
- self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
- self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
- self.gguf_writer.add_rope_freq_base(self.hparams["rotary_emb_base"])
- self.gguf_writer.add_rope_dimension_count(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
- self.gguf_writer.add_head_count(self.hparams["num_attention_heads"])
- self.gguf_writer.add_layer_norm_rms_eps(self.hparams["layer_norm_epsilon"])
- def write_tensors(self):
- block_count = self.hparams["num_hidden_layers"]
- model_kv = dict(self.get_tensors())
- tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count)
- for name, data_torch in model_kv.items():
- # we don't need these
- if name.endswith(".rotary_emb.inv_freq"):
- continue
- old_dtype = data_torch.dtype
- # convert any unsupported data types to float32
- if data_torch.dtype not in (torch.float16, torch.float32):
- data_torch = data_torch.to(torch.float32)
- data = data_torch.squeeze().numpy()
- # map tensor names
- new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias"))
- if new_name is None:
- print(f"Can not map tensor {name!r}")
- sys.exit()
- n_dims = len(data.shape)
- data_dtype = data.dtype
- # if f32 desired, convert any float16 to float32
- if self.ftype == 0 and data_dtype == np.float16:
- data = data.astype(np.float32)
- # TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32
- if self.ftype == 1 and data_dtype == np.float16 and n_dims == 1:
- data = data.astype(np.float32)
- # if f16 desired, convert any float32 2-dim weight tensors to float16
- if self.ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
- data = data.astype(np.float16)
- print(f"{new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}")
- self.gguf_writer.add_tensor(new_name, data)
- @Model.register("Qwen2ForCausalLM")
- class Qwen2Model(Model):
- model_arch = gguf.MODEL_ARCH.QWEN2
- @Model.register("Qwen2MoeForCausalLM")
- class Qwen2MoeModel(Model):
- model_arch = gguf.MODEL_ARCH.QWEN2MOE
- def set_gguf_parameters(self):
- super().set_gguf_parameters()
- if (n_experts := self.hparams.get("num_experts")) is not None:
- self.gguf_writer.add_expert_count(n_experts)
- def write_tensors(self):
- block_count = self.hparams.get("n_layers", self.hparams.get("num_hidden_layers", self.hparams.get("n_layer")))
- tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count)
- n_experts = self.hparams.get("num_experts")
- experts = dict()
- for name, data_torch in self.get_tensors():
- # we don't need these
- if name.endswith((".attention.masked_bias", ".attention.bias", ".attention.rotary_emb.inv_freq")):
- continue
- old_dtype = data_torch.dtype
- # convert any unsupported data types to float32
- if data_torch.dtype not in (torch.float16, torch.float32):
- data_torch = data_torch.to(torch.float32)
- data = data_torch.squeeze().numpy()
- # process the experts separately
- if name.find("experts") != -1:
- experts[name] = data
- if len(experts) >= n_experts * 3:
- # merge the experts into a single 3d tensor
- for bid in range(block_count):
- for w_name in ["down_proj", "gate_proj", "up_proj"]:
- full = True
- for xid in range(n_experts):
- ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
- if ename not in experts:
- full = False
- break
- if not full:
- continue
- datas = []
- for xid in range(n_experts):
- ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
- datas.append(experts[ename])
- del experts[ename]
- data = np.stack(datas, axis=0)
- data_dtype = data.dtype
- if self.ftype == 0 and data_dtype == np.float16:
- data = data.astype(np.float32)
- if self.ftype == 1 and data_dtype == np.float32:
- data = data.astype(np.float16)
- merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
- new_name = tensor_map.get_name(merged_name, try_suffixes=(".weight", ".bias"))
- if new_name is None:
- print(f"Can not map tensor {name!r}")
- sys.exit()
- print(f"{new_name}, n_dims = {len(data.shape)}, shape = {data.shape} --> {data.dtype}")
- self.gguf_writer.add_tensor(new_name, data)
- continue
- # map tensor names
- new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias"))
- if new_name is None:
- print(f"Can not map tensor {name!r}")
- sys.exit()
- n_dims = len(data.shape)
- data_dtype = data.dtype
- # if f32 desired, convert any float16 to float32
- if self.ftype == 0 and data_dtype == np.float16:
- data = data.astype(np.float32)
- # TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32
- if self.ftype == 1 and data_dtype == np.float16 and (n_dims == 1 or new_name.endswith("_norm.weight")):
- data = data.astype(np.float32)
- # if f16 desired, convert any float32 2-dim weight tensors to float16
- if self.ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
- data = data.astype(np.float16)
- print(f"{new_name}, n_dims = {n_dims}, shape = {data.shape}, {old_dtype} --> {data.dtype}")
- self.gguf_writer.add_tensor(new_name, data)
- if len(experts) > 0:
- raise ValueError(f"Unprocessed experts: {experts.keys()}")
- @Model.register("GPT2LMHeadModel")
- class GPT2Model(Model):
- model_arch = gguf.MODEL_ARCH.GPT2
- def set_gguf_parameters(self):
- self.gguf_writer.add_name(self.dir_model.name)
- self.gguf_writer.add_block_count(self.hparams["n_layer"])
- self.gguf_writer.add_context_length(self.hparams["n_ctx"])
- self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
- self.gguf_writer.add_feed_forward_length(4 * self.hparams["n_embd"])
- self.gguf_writer.add_head_count(self.hparams["n_head"])
- self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
- self.gguf_writer.add_file_type(self.ftype)
- def write_tensors(self):
- block_count = self.hparams.get("n_layers", self.hparams.get("num_hidden_layers", self.hparams.get("n_layer")))
- tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count)
- for name, data_torch in self.get_tensors():
- # we don't need these
- if name.endswith((".attention.masked_bias", ".attention.bias", ".attention.rotary_emb.inv_freq", ".attn.bias", ".attn.masked_bias")):
- continue
- if name.endswith((".c_attn.weight", ".c_proj.weight", ".c_fc.weight", ".c_proj.weight")):
- data_torch = data_torch.transpose(1, 0)
- old_dtype = data_torch.dtype
- # convert any unsupported data types to float32
- if data_torch.dtype not in (torch.float16, torch.float32):
- data_torch = data_torch.to(torch.float32)
- data = data_torch.squeeze().numpy()
- # map tensor names
- new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias"))
- if new_name is None:
- print(f"Can not map tensor {name!r}")
- sys.exit()
- n_dims = len(data.shape)
- data_dtype = data.dtype
- # if f32 desired, convert any float16 to float32
- if self.ftype == 0 and data_dtype == np.float16:
- data = data.astype(np.float32)
- # TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32
- if self.ftype == 1 and data_dtype == np.float16 and n_dims == 1:
- data = data.astype(np.float32)
- # if f16 desired, convert any float32 2-dim weight tensors to float16
- if self.ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
- data = data.astype(np.float16)
- print(f"{new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}")
- self.gguf_writer.add_tensor(new_name, data)
- # note: GPT2 output is tied to (same as) wte in original model
- if new_name == "token_embd.weight":
- print(f"output.weight, n_dims = {n_dims}, {old_dtype} --> {data.dtype}")
- self.gguf_writer.add_tensor("output.weight", data)
- @Model.register("PhiForCausalLM")
- class Phi2Model(Model):
- model_arch = gguf.MODEL_ARCH.PHI2
- def set_gguf_parameters(self):
- block_count = self.find_hparam(["num_hidden_layers", "n_layer"])
- rot_pct = self.find_hparam(["partial_rotary_factor"])
- n_embd = self.find_hparam(["hidden_size", "n_embd"])
- n_head = self.find_hparam(["num_attention_heads", "n_head"])
- self.gguf_writer.add_name("Phi2")
- self.gguf_writer.add_context_length(self.find_hparam(["n_positions", "max_position_embeddings"]))
- self.gguf_writer.add_embedding_length(n_embd)
- self.gguf_writer.add_feed_forward_length(4 * n_embd)
- self.gguf_writer.add_block_count(block_count)
- self.gguf_writer.add_head_count(n_head)
- self.gguf_writer.add_head_count_kv(n_head)
- self.gguf_writer.add_layer_norm_eps(self.find_hparam(["layer_norm_epsilon", "layer_norm_eps"]))
- self.gguf_writer.add_rope_dimension_count(int(rot_pct * n_embd) // n_head)
- self.gguf_writer.add_file_type(self.ftype)
- self.gguf_writer.add_add_bos_token(False)
- @Model.register("PlamoForCausalLM")
- class PlamoModel(Model):
- model_arch = gguf.MODEL_ARCH.PLAMO
- def set_vocab(self):
- self._set_vocab_sentencepiece()
- def set_gguf_parameters(self):
- hparams = self.hparams
- block_count = hparams["num_hidden_layers"]
- self.gguf_writer.add_name("PLaMo")
- self.gguf_writer.add_context_length(4096) # not in config.json
- self.gguf_writer.add_embedding_length(hparams["hidden_size"])
- self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
- self.gguf_writer.add_block_count(block_count)
- self.gguf_writer.add_head_count(hparams["num_attention_heads"])
- self.gguf_writer.add_head_count_kv(5) # hparams["num_key_value_heads"]) is wrong
- self.gguf_writer.add_layer_norm_rms_eps(hparams["rms_norm_eps"])
- def shuffle_attn_q_weight(self, data_torch):
- assert data_torch.size() == (5120, 5120)
- data_torch = data_torch.reshape(8, 5, 128, 5120)
- data_torch = torch.permute(data_torch, (1, 0, 2, 3))
- data_torch = torch.reshape(data_torch, (5120, 5120))
- return data_torch
- def shuffle_attn_output_weight(self, data_torch):
- assert data_torch.size() == (5120, 5120)
- data_torch = data_torch.reshape(5120, 8, 5, 128)
- data_torch = torch.permute(data_torch, (0, 2, 1, 3))
- data_torch = torch.reshape(data_torch, (5120, 5120))
- return data_torch
- def write_tensors(self):
- block_count = self.hparams.get("num_layers", self.hparams.get("num_hidden_layers"))
- tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count)
- for name, data_torch in self.get_tensors():
- if "self_attn.rotary_emb.inv_freq" in name:
- continue
- # map tensor names
- new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias"))
- if new_name is None:
- print(f"Can not map tensor {name!r}")
- sys.exit()
- # shuffle for broadcasting of gqa in ggml_mul_mat
- if new_name.endswith("attn_q.weight"):
- data_torch = self.shuffle_attn_q_weight(data_torch)
- elif new_name.endswith("attn_output.weight"):
- data_torch = self.shuffle_attn_output_weight(data_torch)
- old_dtype = data_torch.dtype
- # convert any unsupported data types to float32
- if data_torch.dtype not in (torch.float16, torch.float32):
- data_torch = data_torch.to(torch.float32)
- data = data_torch.squeeze().numpy()
- n_dims = len(data.shape)
- data_dtype = data.dtype
- # if f32 desired, convert any float16 to float32
- if self.ftype == 0 and data_dtype == np.float16:
- data = data.astype(np.float32)
- # TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32
- if self.ftype == 1 and data_dtype == np.float16 and n_dims == 1:
- data = data.astype(np.float32)
- # if f16 desired, convert any float32 2-dim weight tensors to float16
- if self.ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
- data = data.astype(np.float16)
- print(f"{new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}")
- self.gguf_writer.add_tensor(new_name, data)
- @Model.register("CodeShellForCausalLM")
- class CodeShellModel(Model):
- model_arch = gguf.MODEL_ARCH.CODESHELL
- def set_gguf_parameters(self):
- block_count = self.hparams["n_layer"]
- self.gguf_writer.add_name("CodeShell")
- self.gguf_writer.add_context_length(self.hparams["n_positions"])
- self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
- self.gguf_writer.add_feed_forward_length(4 * self.hparams["n_embd"])
- self.gguf_writer.add_block_count(block_count)
- self.gguf_writer.add_head_count(self.hparams["n_head"])
- self.gguf_writer.add_head_count_kv(self.hparams["num_query_groups"])
- self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
- self.gguf_writer.add_file_type(self.ftype)
- self.gguf_writer.add_rope_freq_base(10000.0)
- self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
- self.gguf_writer.add_rope_scaling_factor(1.0)
- def write_tensors(self):
- block_count = self.hparams.get("n_layers", self.hparams.get("num_hidden_layers", self.hparams.get("n_layer")))
- tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count)
- tensors = dict(self.get_tensors())
- has_lm_head = "lm_head.weight" in tensors.keys() or "output.weight" in tensors.keys()
- for name, data_torch in tensors.items():
- # we don't need these
- if name.endswith((".attn.rotary_emb.inv_freq")):
- continue
- old_dtype = data_torch.dtype
- # convert any unsupported data types to float32
- if data_torch.dtype not in (torch.float16, torch.float32):
- data_torch = data_torch.to(torch.float32)
- data = data_torch.squeeze().numpy()
- # map tensor names
- new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias"))
- if new_name is None:
- print(f"Can not map tensor {name!r}")
- sys.exit()
- n_dims = len(data.shape)
- data_dtype = data.dtype
- # if f32 desired, convert any float16 to float32
- if self.ftype == 0 and data_dtype == np.float16:
- data = data.astype(np.float32)
- # TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32
- if self.ftype == 1 and data_dtype == np.float16 and n_dims == 1:
- data = data.astype(np.float32)
- # if f16 desired, convert any float32 2-dim weight tensors to float16
- if self.ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
- data = data.astype(np.float16)
- print(f"{new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}")
- self.gguf_writer.add_tensor(new_name, data)
- if not has_lm_head and name == "transformer.wte.weight":
- self.gguf_writer.add_tensor("output.weight", data)
- print(name, f"=> output.weight, shape = {data.shape}, {old_dtype} --> {data.dtype}")
- @Model.register("InternLM2ForCausalLM")
- class InternLM2Model(Model):
- model_arch = gguf.MODEL_ARCH.INTERNLM2
- def set_vocab(self):
- # (TODO): Is there a better way?
- # Copy from _set_vocab_sentencepiece, The only difference is that we will treat the character
- # \x00 specially and convert it into an emoji character to prevent it from being mistakenly
- # recognized as an empty string in C++.
- from sentencepiece import SentencePieceProcessor
- from sentencepiece import sentencepiece_model_pb2 as model
- tokenizer_path = self.dir_model / 'tokenizer.model'
- tokens: list[bytes] = []
- scores: list[float] = []
- toktypes: list[int] = []
- if not tokenizer_path.is_file():
- print(f'Error: Missing {tokenizer_path}', file=sys.stderr)
- sys.exit(1)
- sentencepiece_model = model.ModelProto()
- sentencepiece_model.ParseFromString(open(tokenizer_path, "rb").read())
- add_prefix = sentencepiece_model.normalizer_spec.add_dummy_prefix
- tokenizer = SentencePieceProcessor(str(tokenizer_path))
- vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
- for token_id in range(vocab_size):
- piece = tokenizer.id_to_piece(token_id)
- text = piece.encode("utf-8")
- score = tokenizer.get_score(token_id)
- if text == b"\x00":
- # (TODO): fixme
- # Hack here and replace the \x00 characters.
- print(f"InternLM2 convert token '{text}' to '🐉'!")
- text = "🐉"
- toktype = SentencePieceTokenTypes.NORMAL
- if tokenizer.is_unknown(token_id):
- toktype = SentencePieceTokenTypes.UNKNOWN
- elif tokenizer.is_control(token_id):
- toktype = SentencePieceTokenTypes.CONTROL
- elif tokenizer.is_unused(token_id):
- toktype = SentencePieceTokenTypes.UNUSED
- elif tokenizer.is_byte(token_id):
- toktype = SentencePieceTokenTypes.BYTE
- tokens.append(text)
- scores.append(score)
- toktypes.append(toktype)
- added_tokens_file = self.dir_model / 'added_tokens.json'
- if added_tokens_file.is_file():
- with open(added_tokens_file, "r", encoding="utf-8") as f:
- added_tokens_json = json.load(f)
- for key in added_tokens_json:
- tokens.append(key.encode("utf-8"))
- scores.append(-1000.0)
- toktypes.append(SentencePieceTokenTypes.USER_DEFINED)
- self.gguf_writer.add_tokenizer_model("llama")
- self.gguf_writer.add_token_list(tokens)
- self.gguf_writer.add_token_scores(scores)
- self.gguf_writer.add_token_types(toktypes)
- self.gguf_writer.add_add_space_prefix(add_prefix)
- special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
- old_eos = special_vocab.special_token_ids["eos"]
- if "chat" in os.path.basename(self.dir_model.absolute()):
- # For the chat model, we replace the eos with '<|im_end|>'.
- # TODO: this is a hack, should be fixed
- # https://github.com/ggerganov/llama.cpp/pull/6745#issuecomment-2067687048
- special_vocab.special_token_ids["eos"] = self._try_get_sft_eos(tokenizer)
- print(f"Replace eos:{old_eos} with a special token:{special_vocab.special_token_ids['eos']} \
- in chat mode so that the conversation can end normally.")
- special_vocab.add_to_gguf(self.gguf_writer)
- def _try_get_sft_eos(self, tokenizer):
- unused_145_list = tokenizer.encode('[UNUSED_TOKEN_145]')
- im_end_list = tokenizer.encode('<|im_end|>')
- assert (len(unused_145_list) == 1) ^ (len(im_end_list) == 1)
- if len(unused_145_list) == 1:
- eos_token = unused_145_list[0]
- if len(im_end_list) == 1:
- eos_token = im_end_list[0]
- return eos_token
- def _hf_permute_qk(self, weights, n_head: int, n_head_kv: int):
- if n_head_kv is not None and n_head != n_head_kv:
- n_head = n_head_kv
- return (weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
- .swapaxes(1, 2)
- .reshape(weights.shape))
- def set_gguf_parameters(self):
- self.gguf_writer.add_name("InternLM2")
- self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"])
- self.gguf_writer.add_block_count(self.hparams["num_hidden_layers"])
- self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
- self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
- self.gguf_writer.add_rope_freq_base(self.hparams["rope_theta"])
- self.gguf_writer.add_head_count(self.hparams["num_attention_heads"])
- self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
- self.gguf_writer.add_head_count_kv(self.hparams["num_key_value_heads"])
- def post_write_tensors(self, tensor_map, name, data_torch):
- old_dtype = data_torch.dtype
- # convert any unsupported data types to float32
- if data_torch.dtype not in (torch.float16, torch.float32):
- data_torch = data_torch.to(torch.float32)
- data = data_torch.squeeze().numpy()
- # map tensor names
- new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias"))
- if new_name is None:
- print(f"Can not map tensor {name!r}")
- sys.exit()
- n_dims = len(data.shape)
- data_dtype = data.dtype
- # if f32 desired, convert any float16 to float32
- if self.ftype == 0 and data_dtype == np.float16:
- data = data.astype(np.float32)
- # TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32
- if self.ftype == 1 and data_dtype == np.float16 and n_dims == 1:
- data = data.astype(np.float32)
- # if f16 desired, convert any float32 2-dim weight tensors to float16
- if self.ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
- data = data.astype(np.float16)
- print(f"{new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}")
- self.gguf_writer.add_tensor(new_name, data)
- def write_tensors(self):
- from einops import rearrange
- num_heads = self.hparams.get("num_attention_heads")
- num_kv_heads = self.hparams.get("num_key_value_heads")
- hidden_size = self.hparams.get("hidden_size")
- q_per_kv = num_heads // num_kv_heads
- head_dim = hidden_size // num_heads
- num_groups = num_heads // q_per_kv
- block_count = self.hparams["num_hidden_layers"]
- model_kv = dict(self.get_tensors())
- tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count)
- qkv_pattern = r"model\.layers\.(\d+)\.attention\.wqkv"
- for name, data_torch in model_kv.items():
- # we don't need these
- if name.endswith(".rotary_emb.inv_freq"):
- continue
- if re.match(qkv_pattern, name):
- bid = re.findall(qkv_pattern, name)[0]
- qkv = data_torch
- qkv = rearrange(qkv.T, " o (g n i) ->o g n i", g=num_groups, n=q_per_kv + 2, i=head_dim)
- q, k, v = qkv[..., : q_per_kv, :], qkv[..., q_per_kv: q_per_kv + 1, :], qkv[..., q_per_kv + 1: q_per_kv + 2, :]
- # The model weights of q and k equire additional reshape.
- q = self._hf_permute_qk(rearrange(q, " o g n i -> o (g n i)").T, num_heads, num_heads)
- k = self._hf_permute_qk(rearrange(k, " o g n i -> o (g n i)").T, num_heads, num_kv_heads)
- v = rearrange(v, " o g n i -> o (g n i)").T
- self.post_write_tensors(tensor_map, f"model.layers.{bid}.attention.wq.weight", q)
- self.post_write_tensors(tensor_map, f"model.layers.{bid}.attention.wk.weight", k)
- self.post_write_tensors(tensor_map, f"model.layers.{bid}.attention.wv.weight", v)
- else:
- self.post_write_tensors(tensor_map, name, data_torch)
- @Model.register("BertModel", "CamembertModel")
- class BertModel(Model):
- model_arch = gguf.MODEL_ARCH.BERT
- def __init__(self, *args, **kwargs):
- super().__init__(*args, **kwargs)
- self.vocab_size = None
- def set_gguf_parameters(self):
- super().set_gguf_parameters()
- self.gguf_writer.add_causal_attention(False)
- # get pooling path
- pooling_path = None
- module_path = self.dir_model / "modules.json"
- if module_path.is_file():
- with open(module_path, encoding="utf-8") as f:
- modules = json.load(f)
- for mod in modules:
- if mod["type"] == "sentence_transformers.models.Pooling":
- pooling_path = mod["path"]
- break
- # get pooling type
- if pooling_path is not None:
- with open(self.dir_model / pooling_path / "config.json", encoding="utf-8") as f:
- pooling = json.load(f)
- if pooling["pooling_mode_mean_tokens"]:
- pooling_type = gguf.PoolingType.MEAN
- elif pooling["pooling_mode_cls_token"]:
- pooling_type = gguf.PoolingType.CLS
- else:
- raise NotImplementedError("Only MEAN and CLS pooling types supported")
- self.gguf_writer.add_pooling_type(pooling_type)
- def set_vocab(self):
- tokens, toktypes = self.get_basic_vocab()
- self.vocab_size = len(tokens)
- # we need this to validate the size of the token_type embeddings
- # though currently we are passing all zeros to the token_type embeddings
- self.gguf_writer.add_token_type_count(2) # "Sequence A" or "Sequence B"
- # convert to phantom space vocab
- def phantom(tok):
- if tok.startswith("[") and tok.endswith("]"):
- return tok
- if tok.startswith("##"):
- return tok[2:]
- return "\u2581" + tok
- tokens = list(map(phantom, tokens))
- # add vocab to gguf
- self.gguf_writer.add_tokenizer_model("bert")
- self.gguf_writer.add_token_list(tokens)
- self.gguf_writer.add_token_types(toktypes)
- # handle special tokens
- special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
- special_vocab.add_to_gguf(self.gguf_writer)
- def write_tensors(self):
- tensor_map = gguf.get_tensor_name_map(self.model_arch, self.block_count)
- tensors = dict(self.get_tensors())
- for name, data_torch in tensors.items():
- # we are only using BERT for embeddings so we don't need the pooling layer
- if name in ("embeddings.position_ids", "pooler.dense.weight", "pooler.dense.bias"):
- continue # we don't need these
- # map tensor names
- new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias"))
- if new_name is None:
- print(f"Can not map tensor {name!r}")
- sys.exit()
- data = data_torch.squeeze().numpy()
- n_dims = len(data.shape)
- new_dtype: type[np.floating[Any]]
- if (
- self.ftype == 1 and name.endswith(".weight") and n_dims == 2
- and name != "embeddings.token_type_embeddings.weight" # not used with get_rows, must be F32
- ):
- # if f16 desired, convert any float32 2-dim weight tensors to float16
- new_dtype = np.float16
- else:
- # if f32 desired, convert any float16 to float32
- new_dtype = np.float32
- print(f"{new_name}, n_dims = {n_dims}, {data_torch.dtype} --> {new_dtype}")
- if data.dtype != new_dtype:
- data = data.astype(new_dtype)
- self.gguf_writer.add_tensor(new_name, data)
- @Model.register("NomicBertModel")
- class NomicBertModel(BertModel):
- model_arch = gguf.MODEL_ARCH.NOMIC_BERT
- def __init__(self, *args, **kwargs):
- super().__init__(*args, **kwargs)
- # the HF config claims n_ctx=8192, but it uses RoPE scaling
- self.hparams["n_ctx"] = 2048
- # SwigLU activation
- assert self.hparams["activation_function"] == "swiglu"
- # this doesn't do anything in the HF version
- assert self.hparams["causal"] is False
- # no bias tensors
- assert self.hparams["qkv_proj_bias"] is False
- assert self.hparams["mlp_fc1_bias"] is False
- assert self.hparams["mlp_fc2_bias"] is False
- # norm at end of layer
- assert self.hparams["prenorm"] is False
- # standard RoPE
- assert self.hparams["rotary_emb_fraction"] == 1.0
- assert self.hparams["rotary_emb_interleaved"] is False
- assert self.hparams["rotary_emb_scale_base"] is None
- def set_gguf_parameters(self):
- super().set_gguf_parameters()
- self.gguf_writer.add_rope_freq_base(self.hparams["rotary_emb_base"])
- @Model.register("GemmaForCausalLM")
- class GemmaModel(Model):
- model_arch = gguf.MODEL_ARCH.GEMMA
- def set_vocab(self):
- self._set_vocab_sentencepiece()
- # TODO: these special tokens should be exported only for the CodeGemma family
- special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=False,
- special_token_types = ['prefix', 'suffix', 'middle', 'fsep', 'eot'])
- special_vocab._set_special_token("prefix", 67)
- special_vocab._set_special_token("suffix", 69)
- special_vocab._set_special_token("middle", 68)
- special_vocab._set_special_token("fsep", 70)
- special_vocab._set_special_token("eot", 107)
- special_vocab.add_to_gguf(self.gguf_writer)
- def set_gguf_parameters(self):
- hparams = self.hparams
- block_count = hparams["num_hidden_layers"]
- self.gguf_writer.add_name(self.dir_model.name)
- self.gguf_writer.add_context_length(hparams["max_position_embeddings"])
- self.gguf_writer.add_embedding_length(hparams["hidden_size"])
- self.gguf_writer.add_block_count(block_count)
- self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
- self.gguf_writer.add_head_count(hparams["num_attention_heads"])
- self.gguf_writer.add_head_count_kv(self.hparams["num_key_value_heads"] if "num_key_value_heads" in hparams else hparams["num_attention_heads"])
- self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
- self.gguf_writer.add_key_length(hparams["head_dim"])
- self.gguf_writer.add_value_length(hparams["head_dim"])
- self.gguf_writer.add_file_type(self.ftype)
- def write_tensors(self):
- block_count = self.hparams.get("n_layers", self.hparams.get("num_hidden_layers", self.hparams.get("n_layer")))
- tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count)
- for name, data_torch in self.get_tensors():
- # lm_head is not used in llama.cpp, while autoawq will include this tensor in model
- # To prevent errors, skip loading lm_head.weight.
- if name == "lm_head.weight":
- print(f"Skipping get tensor {name!r} in safetensors so that convert can end normally.")
- continue
- old_dtype = data_torch.dtype
- # convert any unsupported data types to float32
- if data_torch.dtype not in (torch.float16, torch.float32):
- data_torch = data_torch.to(torch.float32)
- # ref: https://github.com/huggingface/transformers/blob/fc37f38915372c15992b540dfcbbe00a916d4fc6/src/transformers/models/gemma/modeling_gemma.py#L89
- if name.endswith("norm.weight"):
- data_torch = data_torch + 1
- data = data_torch.squeeze().numpy()
- # map tensor names
- new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias"))
- if new_name is None:
- print(f"Can not map tensor {name!r}")
- sys.exit()
- n_dims = len(data.shape)
- data_dtype = data.dtype
- data = data.astype(np.float32)
- # if f16 desired, convert any float32 2-dim weight tensors to float16
- if self.ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
- data = data.astype(np.float16)
- print(f"{new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}")
- self.gguf_writer.add_tensor(new_name, data)
- @Model.register("Starcoder2ForCausalLM")
- class StarCoder2Model(Model):
- model_arch = gguf.MODEL_ARCH.STARCODER2
- @Model.register("MambaForCausalLM", "MambaLMHeadModel")
- class MambaModel(Model):
- model_arch = gguf.MODEL_ARCH.MAMBA
- def set_vocab(self):
- vocab_size = self.hparams["vocab_size"]
- # Round vocab size to next multiple of 8
- pad_vocab = self.hparams.get("pad_vocab_size_multiple", 8)
- # pad using ceiling division
- # ref: https://stackoverflow.com/a/17511341/22827863
- vocab_size = -(vocab_size // -pad_vocab) * pad_vocab
- self.hparams["vocab_size"] = vocab_size
- if (self.dir_model / "tokenizer.json").is_file():
- self._set_vocab_gpt2()
- else:
- # Use the GPT-NeoX tokenizer when no tokenizer files are present
- tokenizer_path = Path(sys.path[0]) / "models" / "ggml-vocab-gpt-neox.gguf"
- print(f"Using tokenizer from '{os.path.relpath(tokenizer_path, os.getcwd())}'")
- neox_reader = gguf.GGUFReader(tokenizer_path, "r")
- field = neox_reader.get_field(gguf.Keys.Tokenizer.MODEL)
- self.gguf_writer.add_tokenizer_model(bytes(field.parts[-1]))
- field = neox_reader.get_field(gguf.Keys.Tokenizer.LIST)
- self.gguf_writer.add_token_list([bytes(field.parts[i]) for i in field.data][:vocab_size])
- field = neox_reader.get_field(gguf.Keys.Tokenizer.TOKEN_TYPE)
- self.gguf_writer.add_token_types([field.parts[i].tolist()[0] for i in field.data][:vocab_size])
- field = neox_reader.get_field(gguf.Keys.Tokenizer.MERGES)
- self.gguf_writer.add_token_merges([bytes(field.parts[i]) for i in field.data])
- field = neox_reader.get_field(gguf.Keys.Tokenizer.BOS_ID)
- self.gguf_writer.add_bos_token_id(field.parts[-1].tolist()[0])
- field = neox_reader.get_field(gguf.Keys.Tokenizer.EOS_ID)
- self.gguf_writer.add_eos_token_id(field.parts[-1].tolist()[0])
- field = neox_reader.get_field(gguf.Keys.Tokenizer.UNK_ID)
- self.gguf_writer.add_unk_token_id(field.parts[-1].tolist()[0])
- def set_gguf_parameters(self):
- d_model = self.find_hparam(["hidden_size", "d_model"])
- d_conv = self.find_hparam(["conv_kernel", "d_conv"], optional=True) or 4
- d_inner = self.find_hparam(["intermediate_size", "d_inner"], optional=True) or 2 * d_model
- d_state = self.find_hparam(["state_size", "d_state"], optional=True) or 16
- # ceiling division
- # ref: https://stackoverflow.com/a/17511341/22827863
- # ref: https://github.com/state-spaces/mamba/blob/ce59daea3a090d011d6476c6e5b97f6d58ddad8b/mamba_ssm/modules/mamba_simple.py#L58
- dt_rank = self.find_hparam(["time_step_rank", "dt_rank"], optional=True) or -(d_model // -16)
- rms_norm_eps = self.find_hparam(["layer_norm_epsilon", "rms_norm_eps"], optional=True) or 1e-5
- # Fail early for models which don't have a block expansion factor of 2
- assert d_inner == 2 * d_model
- self.gguf_writer.add_name(self.dir_model.name)
- self.gguf_writer.add_context_length(2**20) # arbitrary value; for those who use the default
- self.gguf_writer.add_embedding_length(d_model)
- self.gguf_writer.add_feed_forward_length(0) # unused, but seemingly required when loading
- self.gguf_writer.add_head_count(0) # unused, but seemingly required when loading
- self.gguf_writer.add_block_count(self.hparams["n_layer"])
- self.gguf_writer.add_ssm_conv_kernel(d_conv)
- self.gguf_writer.add_ssm_inner_size(d_inner)
- self.gguf_writer.add_ssm_state_size(d_state)
- self.gguf_writer.add_ssm_time_step_rank(dt_rank)
- self.gguf_writer.add_layer_norm_rms_eps(rms_norm_eps)
- self.gguf_writer.add_file_type(self.ftype)
- def write_tensors(self):
- block_count = self.hparams["n_layer"]
- tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count)
- tok_embd = None
- tok_embd_name = gguf.TENSOR_NAMES[gguf.MODEL_TENSOR.TOKEN_EMBD] + ".weight"
- output_name = gguf.TENSOR_NAMES[gguf.MODEL_TENSOR.OUTPUT] + ".weight"
- for name, data_torch in self.get_tensors():
- old_dtype = data_torch.dtype
- # convert any unsupported data types to float32
- if data_torch.dtype not in (torch.float16, torch.float32):
- data_torch = data_torch.to(torch.float32)
- # map tensor names
- new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias"))
- if new_name is None:
- print(f"Can not map tensor {name!r}")
- sys.exit()
- if name.endswith(".A_log"):
- print("A_log --> A ==> " + new_name)
- data_torch = -torch.exp(data_torch)
- # assuming token_embd.weight is seen before output.weight
- if tok_embd is not None and new_name == output_name:
- if torch.equal(tok_embd, data_torch):
- print(f"{output_name} is equivalent to {tok_embd_name}, omitting")
- continue
- if new_name == tok_embd_name:
- tok_embd = data_torch
- data = data_torch.squeeze().numpy()
- n_dims = len(data.shape)
- data_dtype = data.dtype
- # if f32 desired, convert any float16 to float32
- if self.ftype == 0 and data_dtype == np.float16:
- data = data.astype(np.float32)
- # TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32
- if self.ftype == 1 and data_dtype == np.float16 and n_dims == 1:
- data = data.astype(np.float32)
- # if f16 desired, convert big float32 2-dim weight tensors to float16
- new_weight_name = new_name[:-len(".weight")] if new_name.endswith(".weight") else ""
- if self.ftype == 1 and data_dtype == np.float32 and new_weight_name.endswith((".ssm_in", ".ssm_out", "token_embd", "output")) and n_dims == 2:
- data = data.astype(np.float16)
- print(f"{new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}")
- self.gguf_writer.add_tensor(new_name, data)
- @Model.register("CohereForCausalLM")
- class CommandR2Model(Model):
- model_arch = gguf.MODEL_ARCH.COMMAND_R
- def __init__(self, *args, **kwargs):
- super().__init__(*args, **kwargs)
- # max_position_embeddings = 8192 in config.json but model was actually
- # trained on 128k context length
- self.hparams["max_position_embeddings"] = self.hparams["model_max_length"]
- def set_gguf_parameters(self):
- super().set_gguf_parameters()
- self.gguf_writer.add_logit_scale(self.hparams["logit_scale"])
- self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
- @Model.register("OlmoForCausalLM")
- @Model.register("OLMoForCausalLM")
- class OlmoModel(Model):
- model_arch = gguf.MODEL_ARCH.OLMO
- def set_gguf_parameters(self):
- super().set_gguf_parameters()
- self.gguf_writer.add_layer_norm_eps(1e-5)
- if "clip_qkv" in self.hparams is not None:
- self.gguf_writer.add_clamp_kqv(self.hparams["clip_qkv"])
- # Same as super class, but permuting q_proj, k_proj
- # Copied from: LlamaModel
- def write_tensors(self):
- block_count = self.hparams.get("n_layers", self.hparams.get("num_hidden_layers", self.hparams.get("n_layer")))
- tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count)
- n_head = self.hparams.get("num_attention_heads")
- n_kv_head = self.hparams.get("num_key_value_heads")
- for name, data_torch in self.get_tensors():
- old_dtype = data_torch.dtype
- # convert any unsupported data types to float32
- if data_torch.dtype not in (torch.float16, torch.float32):
- data_torch = data_torch.to(torch.float32)
- data = data_torch.numpy()
- if name.endswith("q_proj.weight"):
- data = permute(data, n_head, n_head)
- if name.endswith("k_proj.weight"):
- data = permute(data, n_head, n_kv_head)
- data = data.squeeze()
- # map tensor names
- new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias"))
- if new_name is None:
- print(f"Can not map tensor {name!r}")
- sys.exit()
- n_dims = len(data.shape)
- data_dtype = data.dtype
- # if f32 desired, convert any float16 to float32
- if self.ftype == 0 and data_dtype == np.float16:
- data = data.astype(np.float32)
- # 1d tensors need to be converted to float32
- if self.ftype == 1 and data_dtype == np.float16 and n_dims == 1:
- data = data.astype(np.float32)
- # if f16 desired, convert any float32 2-dim weight tensors to float16
- if self.ftype == 1 and data_dtype == np.float32 and n_dims == 2:
- data = data.astype(np.float16)
- print(f"{new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}")
- self.gguf_writer.add_tensor(new_name, data)
- ###### CONVERSION LOGIC ######
- def parse_args() -> argparse.Namespace:
- parser = argparse.ArgumentParser(
- description="Convert a huggingface model to a GGML compatible file")
- parser.add_argument(
- "--vocab-only", action="store_true",
- help="extract only the vocab",
- )
- parser.add_argument(
- "--awq-path", type=Path, default=None,
- help="Path to scale awq cache file")
- parser.add_argument(
- "--outfile", type=Path,
- help="path to write to; default: based on input",
- )
- parser.add_argument(
- "--outtype", type=str, choices=["f32", "f16"], default="f16",
- help="output format - use f32 for float32, f16 for float16",
- )
- parser.add_argument("--bigendian", action="store_true", help="model is executed on big endian machine")
- parser.add_argument(
- "model", type=Path,
- help="directory containing model file",
- )
- parser.add_argument("--use-temp-file", action="store_true", help="use the tempfile library while processing (helpful when running out of memory, process killed)")
- return parser.parse_args()
- def main() -> None:
- args = parse_args()
- dir_model = args.model
- if args.awq_path:
- sys.path.insert(1, str(Path(__file__).parent / 'awq-py'))
- from awq.apply_awq import add_scale_weights # type: ignore[import-not-found]
- tmp_model_path = args.model / "weighted_model"
- dir_model = tmp_model_path
- if tmp_model_path.is_dir():
- print(f"{tmp_model_path} exists as a weighted model.")
- else:
- tmp_model_path.mkdir(parents=True, exist_ok=True)
- print("Saving new weighted model ...")
- add_scale_weights(str(args.model), str(args.awq_path), str(tmp_model_path))
- print(f"Saved weighted model at {tmp_model_path}.")
- if not dir_model.is_dir():
- print(f'Error: {args.model} is not a directory', file=sys.stderr)
- sys.exit(1)
- ftype_map = {
- "f32": gguf.GGMLQuantizationType.F32,
- "f16": gguf.GGMLQuantizationType.F16,
- }
- if args.outfile is not None:
- fname_out = args.outfile
- else:
- # output in the same directory as the model by default
- fname_out = dir_model / f'ggml-model-{args.outtype}.gguf'
- print(f"Loading model: {dir_model.name}")
- hparams = Model.load_hparams(dir_model)
- with torch.inference_mode():
- model_class = Model.from_model_architecture(hparams["architectures"][0])
- model_instance = model_class(dir_model, ftype_map[args.outtype], fname_out, args.bigendian, args.use_temp_file)
- print("Set model parameters")
- model_instance.set_gguf_parameters()
- print("Set model tokenizer")
- model_instance.set_vocab()
- if args.vocab_only:
- print(f"Exporting model vocab to '{fname_out}'")
- model_instance.write_vocab()
- else:
- print(f"Exporting model to '{fname_out}'")
- model_instance.write()
- print(f"Model successfully exported to '{fname_out}'")
- if __name__ == '__main__':
- main()
|