convert-hf-to-gguf.py 121 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807
  1. #!/usr/bin/env python3
  2. from __future__ import annotations
  3. import argparse
  4. import contextlib
  5. import json
  6. import os
  7. import re
  8. import sys
  9. from abc import ABC, abstractmethod
  10. from enum import IntEnum
  11. from pathlib import Path
  12. from typing import TYPE_CHECKING, Any, Callable, ContextManager, Iterator, Sequence, TypeVar, cast
  13. import numpy as np
  14. import torch
  15. if TYPE_CHECKING:
  16. from torch import Tensor
  17. if 'NO_LOCAL_GGUF' not in os.environ:
  18. sys.path.insert(1, str(Path(__file__).parent / 'gguf-py'))
  19. import gguf
  20. from convert import LlamaHfVocab, permute
  21. ###### MODEL DEFINITIONS ######
  22. class SentencePieceTokenTypes(IntEnum):
  23. NORMAL = 1
  24. UNKNOWN = 2
  25. CONTROL = 3
  26. USER_DEFINED = 4
  27. UNUSED = 5
  28. BYTE = 6
  29. AnyModel = TypeVar("AnyModel", bound="type[Model]")
  30. class Model(ABC):
  31. _model_classes: dict[str, type[Model]] = {}
  32. def __init__(self, dir_model: Path, ftype: int, fname_out: Path, is_big_endian: bool, use_temp_file: bool):
  33. self.dir_model = dir_model
  34. self.ftype = ftype
  35. self.fname_out = fname_out
  36. self.is_big_endian = is_big_endian
  37. self.endianess = gguf.GGUFEndian.BIG if is_big_endian else gguf.GGUFEndian.LITTLE
  38. self.use_temp_file = use_temp_file
  39. self.is_safetensors = self._is_model_safetensors()
  40. self.num_parts = Model.count_model_parts(self.dir_model, ".safetensors" if self.is_safetensors else ".bin")
  41. self.part_names = self._get_part_names()
  42. self.hparams = Model.load_hparams(self.dir_model)
  43. self.gguf_writer = gguf.GGUFWriter(fname_out, gguf.MODEL_ARCH_NAMES[self.model_arch], endianess=self.endianess, use_temp_file=self.use_temp_file)
  44. self.block_count = self.find_hparam(["n_layers", "num_hidden_layers", "n_layer"])
  45. @property
  46. @abstractmethod
  47. def model_arch(self) -> gguf.MODEL_ARCH:
  48. pass
  49. def find_hparam(self, keys: Sequence[str], optional: bool = False) -> Any:
  50. key = next((k for k in keys if k in self.hparams), None)
  51. if key is not None:
  52. return self.hparams[key]
  53. if optional:
  54. return None
  55. raise KeyError(f"could not find any of: {keys}")
  56. def set_vocab(self):
  57. self._set_vocab_gpt2()
  58. def get_tensors(self) -> Iterator[tuple[str, Tensor]]:
  59. for part_name in self.part_names:
  60. print(f"gguf: loading model part '{part_name}'")
  61. ctx: ContextManager[Any]
  62. if self.is_safetensors:
  63. from safetensors import safe_open
  64. ctx = cast(ContextManager[Any], safe_open(self.dir_model / part_name, framework="pt", device="cpu"))
  65. else:
  66. ctx = contextlib.nullcontext(torch.load(str(self.dir_model / part_name), map_location="cpu", mmap=True, weights_only=True))
  67. with ctx as model_part:
  68. for name in model_part.keys():
  69. data = model_part.get_tensor(name) if self.is_safetensors else model_part[name]
  70. yield name, data
  71. def set_gguf_parameters(self):
  72. self.gguf_writer.add_name(self.dir_model.name)
  73. self.gguf_writer.add_block_count(self.block_count)
  74. if (n_ctx := self.find_hparam(["max_position_embeddings", "n_ctx"], optional=True)) is not None:
  75. self.gguf_writer.add_context_length(n_ctx)
  76. print(f"gguf: context length = {n_ctx}")
  77. n_embd = self.find_hparam(["hidden_size", "n_embd"])
  78. self.gguf_writer.add_embedding_length(n_embd)
  79. print(f"gguf: embedding length = {n_embd}")
  80. if (n_ff := self.find_hparam(["intermediate_size", "n_inner"], optional=True)) is not None:
  81. self.gguf_writer.add_feed_forward_length(n_ff)
  82. print(f"gguf: feed forward length = {n_ff}")
  83. n_head = self.find_hparam(["num_attention_heads", "n_head"])
  84. self.gguf_writer.add_head_count(n_head)
  85. print(f"gguf: head count = {n_head}")
  86. if (n_head_kv := self.hparams.get("num_key_value_heads")) is not None:
  87. self.gguf_writer.add_head_count_kv(n_head_kv)
  88. print(f"gguf: key-value head count = {n_head_kv}")
  89. if (rope_theta := self.hparams.get("rope_theta")) is not None:
  90. self.gguf_writer.add_rope_freq_base(rope_theta)
  91. print(f"gguf: rope theta = {rope_theta}")
  92. if (f_rms_eps := self.hparams.get("rms_norm_eps")) is not None:
  93. self.gguf_writer.add_layer_norm_rms_eps(f_rms_eps)
  94. print(f"gguf: rms norm epsilon = {f_rms_eps}")
  95. if (f_norm_eps := self.find_hparam(["layer_norm_eps", "layer_norm_epsilon", "norm_epsilon"], optional=True)) is not None:
  96. self.gguf_writer.add_layer_norm_eps(f_norm_eps)
  97. print(f"gguf: layer norm epsilon = {f_norm_eps}")
  98. if (n_experts := self.hparams.get("num_local_experts")) is not None:
  99. self.gguf_writer.add_expert_count(n_experts)
  100. print(f"gguf: expert count = {n_experts}")
  101. if (n_experts_used := self.hparams.get("num_experts_per_tok")) is not None:
  102. self.gguf_writer.add_expert_used_count(n_experts_used)
  103. print(f"gguf: experts used count = {n_experts_used}")
  104. self.gguf_writer.add_file_type(self.ftype)
  105. print(f"gguf: file type = {self.ftype}")
  106. def write_tensors(self):
  107. block_count = self.hparams.get("n_layers", self.hparams.get("num_hidden_layers", self.hparams.get("n_layer")))
  108. tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count)
  109. for name, data_torch in self.get_tensors():
  110. # we don't need these
  111. if name.endswith((".attention.masked_bias", ".attention.bias", ".attention.rotary_emb.inv_freq")):
  112. continue
  113. old_dtype = data_torch.dtype
  114. # convert any unsupported data types to float32
  115. if data_torch.dtype not in (torch.float16, torch.float32):
  116. data_torch = data_torch.to(torch.float32)
  117. data = data_torch.squeeze().numpy()
  118. # map tensor names
  119. new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias"))
  120. if new_name is None:
  121. print(f"Can not map tensor {name!r}")
  122. sys.exit()
  123. n_dims = len(data.shape)
  124. data_dtype = data.dtype
  125. # if f32 desired, convert any float16 to float32
  126. if self.ftype == 0 and data_dtype == np.float16:
  127. data = data.astype(np.float32)
  128. # TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32
  129. if self.ftype == 1 and data_dtype == np.float16 and (n_dims == 1 or new_name.endswith("_norm.weight")):
  130. data = data.astype(np.float32)
  131. # if f16 desired, convert any float32 2-dim weight tensors to float16
  132. if self.ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
  133. data = data.astype(np.float16)
  134. print(f"{new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}")
  135. self.gguf_writer.add_tensor(new_name, data)
  136. def write(self):
  137. self.write_tensors()
  138. self.gguf_writer.write_header_to_file()
  139. self.gguf_writer.write_kv_data_to_file()
  140. self.gguf_writer.write_tensors_to_file()
  141. self.gguf_writer.close()
  142. def write_vocab(self):
  143. self.gguf_writer.write_header_to_file()
  144. self.gguf_writer.write_kv_data_to_file()
  145. self.gguf_writer.close()
  146. @staticmethod
  147. def count_model_parts(dir_model: Path, prefix: str) -> int:
  148. num_parts = 0
  149. for filename in os.listdir(dir_model):
  150. if filename.endswith(prefix):
  151. num_parts += 1
  152. return num_parts
  153. @staticmethod
  154. def load_hparams(dir_model):
  155. with open(dir_model / "config.json", "r", encoding="utf-8") as f:
  156. return json.load(f)
  157. @classmethod
  158. def register(cls, *names: str) -> Callable[[AnyModel], AnyModel]:
  159. assert names
  160. def func(modelcls: type[Model]):
  161. for name in names:
  162. cls._model_classes[name] = modelcls
  163. return modelcls
  164. return func
  165. @classmethod
  166. def from_model_architecture(cls, arch):
  167. try:
  168. return cls._model_classes[arch]
  169. except KeyError:
  170. raise NotImplementedError(f'Architecture {arch!r} not supported!') from None
  171. def _is_model_safetensors(self) -> bool:
  172. return Model.count_model_parts(self.dir_model, ".safetensors") > 0
  173. def _get_part_names(self):
  174. if self.is_safetensors:
  175. if self.num_parts == 1: # there's only one .safetensors file
  176. return ("model.safetensors",)
  177. return (f"model-{n:05}-of-{self.num_parts:05}.safetensors" for n in range(1, self.num_parts + 1))
  178. if self.num_parts == 1: # there's only one .bin file
  179. return ("pytorch_model.bin",)
  180. return (f"pytorch_model-{n:05}-of-{self.num_parts:05}.bin" for n in range(1, self.num_parts + 1))
  181. # used for GPT-2 BPE and WordPiece vocabs
  182. def get_basic_vocab(self) -> tuple[list[str], list[int]]:
  183. tokens: list[str] = []
  184. toktypes: list[int] = []
  185. from transformers import AutoTokenizer
  186. tokenizer = AutoTokenizer.from_pretrained(self.dir_model)
  187. vocab_size = self.hparams.get("vocab_size", len(tokenizer.vocab))
  188. assert max(tokenizer.vocab.values()) < vocab_size
  189. reverse_vocab = {id_: encoded_tok for encoded_tok, id_ in tokenizer.vocab.items()}
  190. added_vocab = tokenizer.get_added_vocab()
  191. for i in range(vocab_size):
  192. if i not in reverse_vocab:
  193. tokens.append(f"[PAD{i}]")
  194. toktypes.append(gguf.TokenType.USER_DEFINED)
  195. elif reverse_vocab[i] in added_vocab:
  196. tokens.append(reverse_vocab[i])
  197. if tokenizer.added_tokens_decoder[i].special:
  198. toktypes.append(gguf.TokenType.CONTROL)
  199. else:
  200. toktypes.append(gguf.TokenType.USER_DEFINED)
  201. else:
  202. tokens.append(reverse_vocab[i])
  203. toktypes.append(gguf.TokenType.NORMAL)
  204. return tokens, toktypes
  205. def _set_vocab_gpt2(self) -> None:
  206. tokens, toktypes = self.get_basic_vocab()
  207. self.gguf_writer.add_tokenizer_model("gpt2")
  208. self.gguf_writer.add_token_list(tokens)
  209. self.gguf_writer.add_token_types(toktypes)
  210. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=True)
  211. special_vocab.add_to_gguf(self.gguf_writer)
  212. def _set_vocab_qwen(self):
  213. dir_model = self.dir_model
  214. hparams = self.hparams
  215. tokens: list[str] = []
  216. toktypes: list[int] = []
  217. from transformers import AutoTokenizer
  218. tokenizer = AutoTokenizer.from_pretrained(dir_model, trust_remote_code=True)
  219. vocab_size = hparams["vocab_size"]
  220. assert max(tokenizer.get_vocab().values()) < vocab_size
  221. merges = []
  222. vocab = {}
  223. mergeable_ranks = tokenizer.mergeable_ranks
  224. for token, rank in mergeable_ranks.items():
  225. vocab[QwenModel.token_bytes_to_string(token)] = rank
  226. if len(token) == 1:
  227. continue
  228. merged = QwenModel.bpe(mergeable_ranks, token, max_rank=rank)
  229. assert len(merged) == 2
  230. merges.append(' '.join(map(QwenModel.token_bytes_to_string, merged)))
  231. # for this kind of tokenizer, added_vocab is not a subset of vocab, so they need to be combined
  232. added_vocab = tokenizer.special_tokens
  233. reverse_vocab = {id_ : encoded_tok for encoded_tok, id_ in (vocab | added_vocab).items()}
  234. for i in range(vocab_size):
  235. if i not in reverse_vocab:
  236. tokens.append(f"[PAD{i}]")
  237. toktypes.append(gguf.TokenType.USER_DEFINED)
  238. elif reverse_vocab[i] in added_vocab:
  239. tokens.append(reverse_vocab[i])
  240. toktypes.append(gguf.TokenType.CONTROL)
  241. else:
  242. tokens.append(reverse_vocab[i])
  243. toktypes.append(gguf.TokenType.NORMAL)
  244. self.gguf_writer.add_tokenizer_model("gpt2")
  245. self.gguf_writer.add_token_list(tokens)
  246. self.gguf_writer.add_token_types(toktypes)
  247. special_vocab = gguf.SpecialVocab(dir_model, load_merges=False)
  248. special_vocab.merges = merges
  249. # only add special tokens when they were not already loaded from config.json
  250. if len(special_vocab.special_token_ids) == 0:
  251. special_vocab._set_special_token("bos", tokenizer.special_tokens["<|endoftext|>"])
  252. special_vocab._set_special_token("eos", tokenizer.special_tokens["<|endoftext|>"])
  253. # this one is usually not in config.json anyway
  254. special_vocab._set_special_token("unk", tokenizer.special_tokens["<|endoftext|>"])
  255. special_vocab.add_to_gguf(self.gguf_writer)
  256. def _set_vocab_sentencepiece(self):
  257. from sentencepiece import SentencePieceProcessor
  258. tokenizer_path = self.dir_model / 'tokenizer.model'
  259. tokens: list[bytes] = []
  260. scores: list[float] = []
  261. toktypes: list[int] = []
  262. if not tokenizer_path.is_file():
  263. raise FileNotFoundError(f"File not found: {tokenizer_path}")
  264. tokenizer = SentencePieceProcessor(str(tokenizer_path))
  265. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  266. for token_id in range(tokenizer.vocab_size()):
  267. piece = tokenizer.id_to_piece(token_id)
  268. text = piece.encode("utf-8")
  269. score = tokenizer.get_score(token_id)
  270. toktype = SentencePieceTokenTypes.NORMAL
  271. if tokenizer.is_unknown(token_id):
  272. toktype = SentencePieceTokenTypes.UNKNOWN
  273. elif tokenizer.is_control(token_id):
  274. toktype = SentencePieceTokenTypes.CONTROL
  275. elif tokenizer.is_unused(token_id):
  276. toktype = SentencePieceTokenTypes.UNUSED
  277. elif tokenizer.is_byte(token_id):
  278. toktype = SentencePieceTokenTypes.BYTE
  279. tokens.append(text)
  280. scores.append(score)
  281. toktypes.append(toktype)
  282. added_tokens_file = self.dir_model / 'added_tokens.json'
  283. if added_tokens_file.is_file():
  284. with open(added_tokens_file, "r", encoding="utf-8") as f:
  285. added_tokens_json = json.load(f)
  286. for key in added_tokens_json:
  287. key = key.encode("utf-8")
  288. if key not in tokens:
  289. tokens.append(key)
  290. scores.append(-1000.0)
  291. toktypes.append(SentencePieceTokenTypes.USER_DEFINED)
  292. assert len(tokens) == vocab_size
  293. self.gguf_writer.add_tokenizer_model("llama")
  294. self.gguf_writer.add_token_list(tokens)
  295. self.gguf_writer.add_token_scores(scores)
  296. self.gguf_writer.add_token_types(toktypes)
  297. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  298. special_vocab.add_to_gguf(self.gguf_writer)
  299. def _set_vocab_llama_hf(self):
  300. vocab = LlamaHfVocab(self.dir_model)
  301. tokens = []
  302. scores = []
  303. toktypes = []
  304. for text, score, toktype in vocab.all_tokens():
  305. tokens.append(text)
  306. scores.append(score)
  307. toktypes.append(toktype)
  308. assert len(tokens) == vocab.vocab_size
  309. self.gguf_writer.add_tokenizer_model("llama")
  310. self.gguf_writer.add_token_list(tokens)
  311. self.gguf_writer.add_token_scores(scores)
  312. self.gguf_writer.add_token_types(toktypes)
  313. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  314. special_vocab.add_to_gguf(self.gguf_writer)
  315. @Model.register("GPTNeoXForCausalLM")
  316. class GPTNeoXModel(Model):
  317. model_arch = gguf.MODEL_ARCH.GPTNEOX
  318. def set_gguf_parameters(self):
  319. block_count = self.hparams["num_hidden_layers"]
  320. self.gguf_writer.add_name(self.dir_model.name)
  321. self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"])
  322. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  323. self.gguf_writer.add_block_count(block_count)
  324. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  325. self.gguf_writer.add_rope_dimension_count(
  326. int(self.hparams["rotary_pct"] * (self.hparams["hidden_size"] // self.hparams["num_attention_heads"])),
  327. )
  328. self.gguf_writer.add_head_count(self.hparams["num_attention_heads"])
  329. self.gguf_writer.add_parallel_residual(self.hparams.get("use_parallel_residual", True))
  330. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_eps"])
  331. @Model.register("BloomForCausalLM")
  332. class BloomModel(Model):
  333. model_arch = gguf.MODEL_ARCH.BLOOM
  334. def set_gguf_parameters(self):
  335. self.gguf_writer.add_name("Bloom")
  336. n_embed = self.hparams.get("hidden_size", self.hparams.get("n_embed"))
  337. n_head = self.hparams.get("n_head", self.hparams.get("num_attention_heads"))
  338. self.gguf_writer.add_context_length(self.hparams.get("seq_length", n_embed))
  339. self.gguf_writer.add_embedding_length(n_embed)
  340. self.gguf_writer.add_feed_forward_length(4 * n_embed)
  341. self.gguf_writer.add_block_count(self.hparams["n_layer"])
  342. self.gguf_writer.add_head_count(n_head)
  343. self.gguf_writer.add_head_count_kv(n_head)
  344. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  345. self.gguf_writer.add_file_type(self.ftype)
  346. def write_tensors(self):
  347. block_count = self.hparams["n_layer"]
  348. tensors = dict(self.get_tensors())
  349. tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count)
  350. has_lm_head = True
  351. n_head = self.hparams.get("n_head", self.hparams.get("num_attention_heads"))
  352. n_embed = self.hparams.get("hidden_size", self.hparams.get("n_embed"))
  353. for name, data_torch in tensors.items():
  354. if "lm_head.weight" not in tensors.keys() and "output.weight" not in tensors.keys():
  355. has_lm_head = False
  356. name = re.sub(r'transformer\.', '', name)
  357. old_dtype = data_torch.dtype
  358. # convert any unsupported data types to float32
  359. if data_torch.dtype not in (torch.float16, torch.float32):
  360. data_torch = data_torch.to(torch.float32)
  361. data = data_torch.squeeze().numpy()
  362. if re.match(r"h\.\d+\.self_attention\.query_key_value\.weight", name):
  363. # Map bloom-style qkv_linear to gpt-style qkv_linear
  364. # bloom: https://github.com/huggingface/transformers/blob/main/src/transformers/models/bloom/modeling_bloom.py#L238-L252 # noqa
  365. # gpt-2: https://github.com/huggingface/transformers/blob/main/src/transformers/models/gpt2/modeling_gpt2.py#L312 # noqa
  366. qkv_weights = data.reshape((n_head, 3, n_embed // n_head, n_embed))
  367. data = np.concatenate(
  368. (
  369. qkv_weights[:, 0, :, :].reshape((-1, n_embed)),
  370. qkv_weights[:, 1, :, :].reshape((-1, n_embed)),
  371. qkv_weights[:, 2, :, :].reshape((-1, n_embed)),
  372. ),
  373. axis=0,
  374. )
  375. print("re-format attention.linear_qkv.weight")
  376. elif re.match(r"h\.\d+\.self_attention\.query_key_value\.bias", name):
  377. qkv_bias = data.reshape((n_head, 3, n_embed // n_head))
  378. data = np.concatenate(
  379. (
  380. qkv_bias[:, 0, :].reshape((n_embed,)),
  381. qkv_bias[:, 1, :].reshape((n_embed,)),
  382. qkv_bias[:, 2, :].reshape((n_embed,)),
  383. ),
  384. axis=0,
  385. )
  386. print("re-format attention.linear_qkv.bias")
  387. # map tensor names
  388. new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias"))
  389. if new_name is None:
  390. print(f"Can not map tensor {name!r}")
  391. sys.exit()
  392. n_dims = len(data.shape)
  393. data_dtype = data.dtype
  394. # if f32 desired, convert any float16 to float32
  395. if self.ftype == 0 and data_dtype == np.float16:
  396. data = data.astype(np.float32)
  397. # TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32
  398. if self.ftype == 1 and data_dtype == np.float16 and n_dims == 1:
  399. data = data.astype(np.float32)
  400. # if f16 desired, convert any float32 2-dim weight tensors to float16
  401. if self.ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
  402. data = data.astype(np.float16)
  403. print(f"=> {new_name}, shape = {data.shape}, {old_dtype} --> {data.dtype}")
  404. self.gguf_writer.add_tensor(new_name, data)
  405. if not has_lm_head and name == "word_embeddings.weight":
  406. self.gguf_writer.add_tensor("output.weight", data)
  407. print(name, f"=> output.weight, shape = {data.shape}, {old_dtype} --> {data.dtype}")
  408. @Model.register("MPTForCausalLM")
  409. class MPTModel(Model):
  410. model_arch = gguf.MODEL_ARCH.MPT
  411. def set_vocab(self):
  412. try:
  413. self._set_vocab_gpt2()
  414. except Exception:
  415. # Fallback for SEA-LION model
  416. self._set_vocab_sentencepiece()
  417. self.gguf_writer.add_add_bos_token(False)
  418. self.gguf_writer.add_pad_token_id(3)
  419. self.gguf_writer.add_eos_token_id(1)
  420. self.gguf_writer.add_unk_token_id(0)
  421. def set_gguf_parameters(self):
  422. block_count = self.hparams["n_layers"]
  423. self.gguf_writer.add_name(self.dir_model.name)
  424. self.gguf_writer.add_context_length(self.hparams["max_seq_len"])
  425. self.gguf_writer.add_embedding_length(self.hparams["d_model"])
  426. self.gguf_writer.add_block_count(block_count)
  427. self.gguf_writer.add_feed_forward_length(4 * self.hparams["d_model"])
  428. self.gguf_writer.add_head_count(self.hparams["n_heads"])
  429. if kv_n_heads := self.hparams["attn_config"].get("kv_n_heads"):
  430. self.gguf_writer.add_head_count_kv(kv_n_heads)
  431. self.gguf_writer.add_layer_norm_eps(1e-5)
  432. if self.hparams["attn_config"]["clip_qkv"] is not None:
  433. self.gguf_writer.add_clamp_kqv(self.hparams["attn_config"]["clip_qkv"])
  434. if self.hparams["attn_config"]["alibi"]:
  435. self.gguf_writer.add_max_alibi_bias(self.hparams["attn_config"]["alibi_bias_max"])
  436. else:
  437. self.gguf_writer.add_max_alibi_bias(0.0)
  438. def write_tensors(self):
  439. block_count = self.hparams.get("n_layers", self.hparams.get("num_hidden_layers"))
  440. tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count)
  441. for name, data_torch in self.get_tensors():
  442. # we don't need these
  443. if name.endswith((".attention.masked_bias", ".attention.bias", ".attention.rotary_emb.inv_freq")):
  444. continue
  445. old_dtype = data_torch.dtype
  446. # convert any unsupported data types to float32
  447. if data_torch.dtype not in (torch.float16, torch.float32):
  448. data_torch = data_torch.to(torch.float32)
  449. data = data_torch.squeeze().numpy()
  450. # map tensor names
  451. if "scales" in name:
  452. new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias", ".scales"))
  453. if new_name is not None:
  454. new_name = new_name.replace("scales", "act.scales")
  455. else:
  456. new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias"))
  457. if new_name is None:
  458. print(f"Can not map tensor {name!r}")
  459. sys.exit()
  460. n_dims = len(data.shape)
  461. data_dtype = data.dtype
  462. # if f32 desired, convert any float16 to float32
  463. if self.ftype == 0 and data_dtype == np.float16:
  464. data = data.astype(np.float32)
  465. # TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32
  466. if self.ftype == 1 and data_dtype == np.float16 and n_dims == 1:
  467. data = data.astype(np.float32)
  468. # if f16 desired, convert any float32 2-dim weight tensors to float16
  469. if self.ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
  470. data = data.astype(np.float16)
  471. print(f"{new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}")
  472. self.gguf_writer.add_tensor(new_name, data)
  473. @Model.register("OrionForCausalLM")
  474. class OrionModel(Model):
  475. model_arch = gguf.MODEL_ARCH.ORION
  476. def set_vocab(self):
  477. self._set_vocab_sentencepiece()
  478. def set_gguf_parameters(self):
  479. block_count = self.hparams["num_hidden_layers"]
  480. head_count = self.hparams["num_attention_heads"]
  481. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  482. hf_repo = self.hparams.get("_name_or_path", "")
  483. ctx_length = 0
  484. if "max_sequence_length" in self.hparams:
  485. ctx_length = self.hparams["max_sequence_length"]
  486. elif "max_position_embeddings" in self.hparams:
  487. ctx_length = self.hparams["max_position_embeddings"]
  488. elif "model_max_length" in self.hparams:
  489. ctx_length = self.hparams["model_max_length"]
  490. else:
  491. print("gguf: can not find ctx length parameter.")
  492. sys.exit()
  493. self.gguf_writer.add_file_type(self.ftype)
  494. self.gguf_writer.add_name(self.dir_model.name)
  495. self.gguf_writer.add_source_hf_repo(hf_repo)
  496. self.gguf_writer.add_tensor_data_layout("Meta AI original pth")
  497. self.gguf_writer.add_context_length(ctx_length)
  498. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  499. self.gguf_writer.add_block_count(block_count)
  500. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  501. self.gguf_writer.add_head_count(head_count)
  502. self.gguf_writer.add_head_count_kv(head_count_kv)
  503. # note: config provides rms norm but it is actually layer norm
  504. # ref: https://huggingface.co/OrionStarAI/Orion-14B-Chat/blob/276a17221ce42beb45f66fac657a41540e71f4f5/modeling_orion.py#L570-L571
  505. self.gguf_writer.add_layer_norm_eps(self.hparams["rms_norm_eps"])
  506. def write_tensors(self):
  507. # Collect tensors from generator object
  508. model_kv = dict(self.get_tensors())
  509. block_count = self.hparams["num_hidden_layers"]
  510. tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count)
  511. for name, data_torch in model_kv.items():
  512. # we don't need these
  513. if name.endswith(".rotary_emb.inv_freq"):
  514. continue
  515. old_dtype = data_torch.dtype
  516. # convert any unsupported data types to float32
  517. if data_torch.dtype not in (torch.float16, torch.float32):
  518. data_torch = data_torch.to(torch.float32)
  519. data = data_torch.squeeze().numpy()
  520. # map tensor names
  521. new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias"))
  522. if new_name is None:
  523. print(f"Can not map tensor {name!r}")
  524. sys.exit()
  525. n_dims = len(data.shape)
  526. data_dtype = data.dtype
  527. # if f32 desired, convert any float16 to float32
  528. if self.ftype == 0 and data_dtype == np.float16:
  529. data = data.astype(np.float32)
  530. # TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32
  531. if self.ftype == 1 and data_dtype == np.float16 and n_dims == 1:
  532. data = data.astype(np.float32)
  533. # if f16 desired, convert any float32 2-dim weight tensors to float16
  534. if self.ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
  535. data = data.astype(np.float16)
  536. print(f"{name} -> {new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}")
  537. self.gguf_writer.add_tensor(new_name, data)
  538. @Model.register("BaichuanForCausalLM", "BaiChuanForCausalLM")
  539. class BaichuanModel(Model):
  540. model_arch = gguf.MODEL_ARCH.BAICHUAN
  541. def set_vocab(self):
  542. self._set_vocab_sentencepiece()
  543. def set_gguf_parameters(self):
  544. block_count = self.hparams["num_hidden_layers"]
  545. head_count = self.hparams["num_attention_heads"]
  546. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  547. hf_repo = self.hparams.get("_name_or_path", "")
  548. ctx_length = 0
  549. if "max_sequence_length" in self.hparams:
  550. ctx_length = self.hparams["max_sequence_length"]
  551. elif "max_position_embeddings" in self.hparams:
  552. ctx_length = self.hparams["max_position_embeddings"]
  553. elif "model_max_length" in self.hparams:
  554. ctx_length = self.hparams["model_max_length"]
  555. else:
  556. print("gguf: can not find ctx length parameter.")
  557. sys.exit()
  558. self.gguf_writer.add_name(self.dir_model.name)
  559. self.gguf_writer.add_source_hf_repo(hf_repo)
  560. self.gguf_writer.add_tensor_data_layout("Meta AI original pth")
  561. self.gguf_writer.add_context_length(ctx_length)
  562. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  563. self.gguf_writer.add_block_count(block_count)
  564. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  565. self.gguf_writer.add_rope_dimension_count(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  566. self.gguf_writer.add_head_count(head_count)
  567. self.gguf_writer.add_head_count_kv(head_count_kv)
  568. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  569. if self.hparams.get("rope_scaling") is not None and "factor" in self.hparams["rope_scaling"]:
  570. if self.hparams["rope_scaling"].get("type") == "linear":
  571. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  572. self.gguf_writer.add_rope_scaling_factor(self.hparams["rope_scaling"]["factor"])
  573. def write_tensors(self):
  574. # Collect tensors from generator object
  575. model_kv = dict(self.get_tensors())
  576. block_count = self.hparams["num_hidden_layers"]
  577. head_count = self.hparams["num_attention_heads"]
  578. tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count)
  579. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  580. for i in range(block_count):
  581. if (w := model_kv.get(f"model.layers.{i}.self_attn.W_pack.weight")) is not None:
  582. print(f"Unpacking and permuting layer {i}")
  583. model_kv[f"model.layers.{i}.self_attn.q_proj.weight"] = \
  584. self._reverse_hf_permute_part(w, 0, head_count, head_count)
  585. model_kv[f"model.layers.{i}.self_attn.k_proj.weight"] = \
  586. self._reverse_hf_permute_part(w, 1, head_count, head_count_kv)
  587. model_kv[f"model.layers.{i}.self_attn.v_proj.weight"] = \
  588. self._reverse_hf_part(w, 2)
  589. del model_kv[f"model.layers.{i}.self_attn.W_pack.weight"]
  590. for name, data_torch in model_kv.items():
  591. # we don't need these
  592. if name.endswith(".rotary_emb.inv_freq"):
  593. continue
  594. old_dtype = data_torch.dtype
  595. # convert any unsupported data types to float32
  596. if data_torch.dtype not in (torch.float16, torch.float32):
  597. data_torch = data_torch.to(torch.float32)
  598. data = data_torch.squeeze().numpy()
  599. # map tensor names
  600. new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias"))
  601. if new_name is None:
  602. print(f"Can not map tensor {name!r}")
  603. sys.exit()
  604. n_dims = len(data.shape)
  605. data_dtype = data.dtype
  606. # if f32 desired, convert any float16 to float32
  607. if self.ftype == 0 and data_dtype == np.float16:
  608. data = data.astype(np.float32)
  609. # TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32
  610. if self.ftype == 1 and data_dtype == np.float16 and n_dims == 1:
  611. data = data.astype(np.float32)
  612. # if f16 desired, convert any float32 2-dim weight tensors to float16
  613. if self.ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
  614. data = data.astype(np.float16)
  615. print(f"{name} -> {new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}")
  616. self.gguf_writer.add_tensor(new_name, data)
  617. def _reverse_hf_permute(self, weights: Tensor, n_head: int, n_kv_head: int | None = None) -> Tensor:
  618. if n_kv_head is not None and n_head != n_kv_head:
  619. n_head //= n_kv_head
  620. return (
  621. weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  622. .swapaxes(1, 2)
  623. .reshape(weights.shape)
  624. )
  625. def _reverse_hf_permute_part(
  626. self, weights: Tensor, n_part: int, n_head: int, n_head_kv: int | None = None,
  627. ) -> Tensor:
  628. r = weights.shape[0] // 3
  629. return self._reverse_hf_permute(weights[r * n_part:r * n_part + r, ...], n_head, n_head_kv)
  630. def _reverse_hf_part(self, weights: Tensor, n_part: int) -> Tensor:
  631. r = weights.shape[0] // 3
  632. return weights[r * n_part:r * n_part + r, ...]
  633. @Model.register("XverseForCausalLM")
  634. class XverseModel(Model):
  635. model_arch = gguf.MODEL_ARCH.XVERSE
  636. def set_vocab(self):
  637. assert (self.dir_model / "tokenizer.json").is_file()
  638. dir_model = self.dir_model
  639. hparams = self.hparams
  640. tokens: list[bytearray] = []
  641. toktypes: list[int] = []
  642. from transformers import AutoTokenizer
  643. tokenizer = AutoTokenizer.from_pretrained(dir_model)
  644. vocab_size = hparams.get("vocab_size", len(tokenizer.vocab))
  645. assert max(tokenizer.vocab.values()) < vocab_size
  646. reverse_vocab = {id_: encoded_tok for encoded_tok, id_ in tokenizer.vocab.items()}
  647. added_vocab = tokenizer.get_added_vocab()
  648. for token_id in range(vocab_size):
  649. token_text = reverse_vocab[token_id].encode('utf-8')
  650. # replace "\x00" to string with length > 0
  651. if token_text == b"\x00":
  652. toktype = gguf.TokenType.BYTE # special
  653. token_text = f"<{token_text}>".encode('utf-8')
  654. elif re.fullmatch(br"<0x[0-9A-Fa-f]{2}>", token_text):
  655. toktype = gguf.TokenType.BYTE # special
  656. elif reverse_vocab[token_id] in added_vocab:
  657. if tokenizer.added_tokens_decoder[token_id].special:
  658. toktype = gguf.TokenType.CONTROL
  659. else:
  660. toktype = gguf.TokenType.USER_DEFINED
  661. else:
  662. toktype = gguf.TokenType.NORMAL
  663. tokens.append(token_text)
  664. toktypes.append(toktype)
  665. self.gguf_writer.add_tokenizer_model("llama")
  666. self.gguf_writer.add_token_list(tokens)
  667. self.gguf_writer.add_token_types(toktypes)
  668. special_vocab = gguf.SpecialVocab(dir_model, n_vocab=len(tokens))
  669. special_vocab.add_to_gguf(self.gguf_writer)
  670. def set_gguf_parameters(self):
  671. block_count = self.hparams["num_hidden_layers"]
  672. head_count = self.hparams["num_attention_heads"]
  673. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  674. hf_repo = self.hparams.get("_name_or_path", "")
  675. ctx_length = 0
  676. if "max_sequence_length" in self.hparams:
  677. ctx_length = self.hparams["max_sequence_length"]
  678. elif "max_position_embeddings" in self.hparams:
  679. ctx_length = self.hparams["max_position_embeddings"]
  680. elif "model_max_length" in self.hparams:
  681. ctx_length = self.hparams["model_max_length"]
  682. else:
  683. print("gguf: can not find ctx length parameter.")
  684. sys.exit()
  685. self.gguf_writer.add_name(self.dir_model.name)
  686. self.gguf_writer.add_source_hf_repo(hf_repo)
  687. self.gguf_writer.add_tensor_data_layout("Meta AI original pth")
  688. self.gguf_writer.add_context_length(ctx_length)
  689. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  690. self.gguf_writer.add_block_count(block_count)
  691. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  692. self.gguf_writer.add_rope_dimension_count(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  693. self.gguf_writer.add_head_count(head_count)
  694. self.gguf_writer.add_head_count_kv(head_count_kv)
  695. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  696. if self.hparams.get("rope_scaling") is not None and "factor" in self.hparams["rope_scaling"]:
  697. if self.hparams["rope_scaling"].get("type") == "linear":
  698. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  699. self.gguf_writer.add_rope_scaling_factor(self.hparams["rope_scaling"]["factor"])
  700. def write_tensors(self):
  701. # Collect tensors from generator object
  702. model_kv = dict(self.get_tensors())
  703. block_count = self.hparams["num_hidden_layers"]
  704. head_count = self.hparams["num_attention_heads"]
  705. tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count)
  706. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  707. for name, data_torch in model_kv.items():
  708. # we don't need these
  709. if name.endswith(".rotary_emb.inv_freq"):
  710. continue
  711. old_dtype = data_torch.dtype
  712. # convert any unsupported data types to float32
  713. if data_torch.dtype not in (torch.float16, torch.float32):
  714. data_torch = data_torch.to(torch.float32)
  715. # HF models permute some of the tensors, so we need to undo that
  716. if name.endswith(("q_proj.weight")):
  717. data_torch = self._reverse_hf_permute(data_torch, head_count, head_count)
  718. if name.endswith(("k_proj.weight")):
  719. data_torch = self._reverse_hf_permute(data_torch, head_count, head_count_kv)
  720. data = data_torch.squeeze().numpy()
  721. # map tensor names
  722. new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias"))
  723. if new_name is None:
  724. print(f"Can not map tensor {name!r}")
  725. sys.exit()
  726. n_dims = len(data.shape)
  727. data_dtype = data.dtype
  728. # if f32 desired, convert any float16 to float32
  729. if self.ftype == 0 and data_dtype == np.float16:
  730. data = data.astype(np.float32)
  731. # TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32
  732. if self.ftype == 1 and data_dtype == np.float16 and n_dims == 1:
  733. data = data.astype(np.float32)
  734. # if f16 desired, convert any float32 2-dim weight tensors to float16
  735. if self.ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
  736. data = data.astype(np.float16)
  737. print(f"{name} -> {new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}")
  738. self.gguf_writer.add_tensor(new_name, data)
  739. def _reverse_hf_permute(self, weights: Tensor, n_head: int, n_kv_head: int | None = None) -> Tensor:
  740. if n_kv_head is not None and n_head != n_kv_head:
  741. n_head //= n_kv_head
  742. return (
  743. weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  744. .swapaxes(1, 2)
  745. .reshape(weights.shape)
  746. )
  747. @Model.register("FalconForCausalLM", "RWForCausalLM")
  748. class FalconModel(Model):
  749. model_arch = gguf.MODEL_ARCH.FALCON
  750. def set_gguf_parameters(self):
  751. block_count = self.hparams.get("num_hidden_layers")
  752. if block_count is None:
  753. block_count = self.hparams["n_layer"] # old name
  754. n_head = self.hparams.get("num_attention_heads")
  755. if n_head is None:
  756. n_head = self.hparams["n_head"] # old name
  757. n_head_kv = self.hparams.get("num_kv_heads")
  758. if n_head_kv is None:
  759. n_head_kv = self.hparams.get("n_head_kv", 1) # old name
  760. self.gguf_writer.add_name("Falcon")
  761. self.gguf_writer.add_context_length(2048) # not in config.json
  762. self.gguf_writer.add_tensor_data_layout("jploski") # qkv tensor transform
  763. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  764. self.gguf_writer.add_feed_forward_length(4 * self.hparams["hidden_size"])
  765. self.gguf_writer.add_block_count(block_count)
  766. self.gguf_writer.add_head_count(n_head)
  767. self.gguf_writer.add_head_count_kv(n_head_kv)
  768. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  769. self.gguf_writer.add_file_type(self.ftype)
  770. def write_tensors(self):
  771. block_count = self.hparams.get("num_hidden_layers")
  772. if block_count is None:
  773. block_count = self.hparams["n_layer"] # old name
  774. n_head = self.hparams.get("num_attention_heads")
  775. if n_head is None:
  776. n_head = self.hparams["n_head"] # old name
  777. n_head_kv = self.hparams.get("num_kv_heads")
  778. if n_head_kv is None:
  779. n_head_kv = self.hparams.get("n_head_kv", 1) # old name
  780. head_dim = self.hparams["hidden_size"] // n_head
  781. tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count)
  782. for name, data_torch in self.get_tensors():
  783. old_dtype = data_torch.dtype
  784. # convert any unsupported data types to float32
  785. if data_torch.dtype not in (torch.float16, torch.float32):
  786. data_torch = data_torch.to(torch.float32)
  787. # QKV tensor transform
  788. # The original query_key_value tensor contains n_head_kv "kv groups",
  789. # each consisting of n_head/n_head_kv query weights followed by one key
  790. # and one value weight (shared by all query heads in the kv group).
  791. # This layout makes it a big pain to work with in GGML.
  792. # So we rearrange them here,, so that we have n_head query weights
  793. # followed by n_head_kv key weights followed by n_head_kv value weights,
  794. # in contiguous fashion.
  795. # ref: https://github.com/jploski/ggml/blob/falcon40b/examples/falcon/convert-hf-to-ggml.py
  796. if "query_key_value" in name:
  797. qkv = data_torch.view(n_head_kv, n_head // n_head_kv + 2, head_dim, head_dim * n_head)
  798. q = qkv[:, :-2].reshape(n_head * head_dim, head_dim * n_head)
  799. k = qkv[:, [-2]].reshape(n_head_kv * head_dim, head_dim * n_head)
  800. v = qkv[:, [-1]].reshape(n_head_kv * head_dim, head_dim * n_head)
  801. data_torch = torch.cat((q, k, v)).reshape_as(data_torch)
  802. data = data_torch.squeeze().numpy()
  803. # map tensor names
  804. new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias"))
  805. if new_name is None:
  806. print(f"Can not map tensor {name!r}")
  807. sys.exit()
  808. n_dims = len(data.shape)
  809. data_dtype = data.dtype
  810. # if f32 desired, convert any float16 to float32
  811. if self.ftype == 0 and data_dtype == np.float16:
  812. data = data.astype(np.float32)
  813. # TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32
  814. if self.ftype == 1 and data_dtype == np.float16 and n_dims == 1:
  815. data = data.astype(np.float32)
  816. # if f16 desired, convert any float32 2-dim weight tensors to float16
  817. if self.ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
  818. data = data.astype(np.float16)
  819. print(f"{new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}")
  820. self.gguf_writer.add_tensor(new_name, data)
  821. @Model.register("GPTBigCodeForCausalLM")
  822. class StarCoderModel(Model):
  823. model_arch = gguf.MODEL_ARCH.STARCODER
  824. def set_gguf_parameters(self):
  825. block_count = self.hparams["n_layer"]
  826. self.gguf_writer.add_name("StarCoder")
  827. self.gguf_writer.add_context_length(self.hparams["n_positions"])
  828. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  829. self.gguf_writer.add_feed_forward_length(4 * self.hparams["n_embd"])
  830. self.gguf_writer.add_block_count(block_count)
  831. self.gguf_writer.add_head_count(self.hparams["n_head"])
  832. self.gguf_writer.add_head_count_kv(1)
  833. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  834. self.gguf_writer.add_file_type(self.ftype)
  835. @Model.register("GPTRefactForCausalLM")
  836. class RefactModel(Model):
  837. model_arch = gguf.MODEL_ARCH.REFACT
  838. def set_gguf_parameters(self):
  839. hidden_dim = self.hparams["n_embd"]
  840. inner_dim = 4 * hidden_dim
  841. hidden_dim = int(2 * inner_dim / 3)
  842. multiple_of = 256
  843. ff_dim = multiple_of * ((hidden_dim + multiple_of - 1) // multiple_of)
  844. block_count = self.hparams["n_layer"]
  845. self.gguf_writer.add_name("Refact")
  846. # refact uses Alibi. So this is from config.json which might be used by training.
  847. self.gguf_writer.add_context_length(self.hparams["n_positions"])
  848. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  849. self.gguf_writer.add_feed_forward_length(ff_dim)
  850. self.gguf_writer.add_block_count(block_count)
  851. self.gguf_writer.add_head_count(self.hparams["n_head"])
  852. self.gguf_writer.add_head_count_kv(1)
  853. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["layer_norm_epsilon"])
  854. self.gguf_writer.add_file_type(self.ftype)
  855. def write_tensors(self):
  856. hidden_dim = self.hparams["n_embd"]
  857. inner_dim = 4 * hidden_dim
  858. hidden_dim = int(2 * inner_dim / 3)
  859. multiple_of = 256
  860. ff_dim = multiple_of * ((hidden_dim + multiple_of - 1) // multiple_of)
  861. n_head = self.hparams["n_head"]
  862. n_head_kv = 1
  863. head_dim = self.hparams["n_embd"] // n_head
  864. block_count = self.hparams["n_layer"]
  865. tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count)
  866. tensors = dict(self.get_tensors())
  867. for i in range(block_count):
  868. if (w := tensors.get(f"transformer.h.{i}.attn.kv.weight")) is not None:
  869. tensors[f"model.layers.{i}.self_attn.k_proj.weight"] = w[:n_head_kv * head_dim]
  870. tensors[f"model.layers.{i}.self_attn.v_proj.weight"] = w[n_head_kv * head_dim:]
  871. del tensors[f"transformer.h.{i}.attn.kv.weight"]
  872. if (w := tensors.get(f"transformer.h.{i}.attn.q.weight")) is not None:
  873. tensors[f"model.layers.{i}.self_attn.q_proj.weight"] = w
  874. del tensors[f"transformer.h.{i}.attn.q.weight"]
  875. if (w := tensors.get(f"transformer.h.{i}.mlp.gate_up_proj.weight")) is not None:
  876. tensors[f"model.layers.{i}.mlp.gate_proj.weight"] = w[:ff_dim]
  877. tensors[f"model.layers.{i}.mlp.up_proj.weight"] = w[ff_dim:]
  878. del tensors[f"transformer.h.{i}.mlp.gate_up_proj.weight"]
  879. for name, data_torch in tensors.items():
  880. old_dtype = data_torch.dtype
  881. # convert any unsupported data types to float32
  882. if data_torch.dtype not in (torch.float16, torch.float32):
  883. data_torch = data_torch.to(torch.float32)
  884. data = data_torch.squeeze().numpy()
  885. # map tensor names
  886. new_name = tensor_map.get_name(name, try_suffixes=(".weight",))
  887. if new_name is None:
  888. print(f"Can not map tensor {name!r}")
  889. sys.exit()
  890. n_dims = len(data.shape)
  891. data_dtype = data.dtype
  892. # if f32 desired, convert any float16 to float32
  893. if self.ftype == 0 and data_dtype == np.float16:
  894. data = data.astype(np.float32)
  895. # TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32
  896. if self.ftype == 1 and data_dtype == np.float16 and n_dims == 1:
  897. data = data.astype(np.float32)
  898. # if f16 desired, convert any float32 2-dim weight tensors to float16
  899. if self.ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
  900. data = data.astype(np.float16)
  901. print(f"{new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}")
  902. self.gguf_writer.add_tensor(new_name, data)
  903. @Model.register("PersimmonForCausalLM")
  904. class PersimmonModel(Model):
  905. model_arch = gguf.MODEL_ARCH.PERSIMMON
  906. def set_gguf_parameters(self):
  907. block_count = self.hparams.get("num_layers", self.hparams.get("num_hidden_layers"))
  908. head_count = self.hparams["num_attention_heads"]
  909. head_count_kv = head_count
  910. hidden_size = self.hparams["hidden_size"]
  911. self.gguf_writer.add_name('persimmon-8b-chat')
  912. self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"])
  913. self.gguf_writer.add_embedding_length(hidden_size)
  914. self.gguf_writer.add_block_count(block_count)
  915. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  916. # NOTE: not sure about this change - why does the model not have a rope dimension count when it is smaller
  917. # than the head size?
  918. # ref: https://github.com/ggerganov/llama.cpp/pull/4889
  919. # self.gguf_writer.add_rope_dimension_count(hidden_size // head_count)
  920. self.gguf_writer.add_rope_dimension_count(hidden_size // head_count // 2)
  921. self.gguf_writer.add_head_count(head_count)
  922. self.gguf_writer.add_head_count_kv(head_count_kv)
  923. self.gguf_writer.add_rope_freq_base(self.hparams["rope_theta"])
  924. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_eps"])
  925. def set_vocab(self):
  926. self._set_vocab_sentencepiece()
  927. # self.gguf_writer.add_bos_token_id(71013)
  928. # self.gguf_writer.add_eos_token_id(71013)
  929. def write_tensors(self):
  930. block_count = self.hparams.get("num_layers", self.hparams.get("num_hidden_layers"))
  931. tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count)
  932. for name, data_torch in self.get_tensors():
  933. if name.endswith(".self_attention.rotary_emb.inv_freq"):
  934. continue
  935. old_dtype = data_torch.dtype
  936. # TODO: FP16 conversion produces garbage outputs. (Q8_0 does not, so..?)
  937. data = data_torch.to(torch.float32).squeeze().numpy()
  938. new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias"))
  939. if new_name is None:
  940. print(f"Can not map tensor {name!r}")
  941. sys.exit()
  942. n_dims = len(data.shape)
  943. print(f"{new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}")
  944. self.gguf_writer.add_tensor(new_name, data)
  945. @Model.register("StableLmForCausalLM", "StableLMEpochForCausalLM", "LlavaStableLMEpochForCausalLM")
  946. class StableLMModel(Model):
  947. model_arch = gguf.MODEL_ARCH.STABLELM
  948. def set_vocab(self):
  949. if (self.dir_model / "tokenizer.json").is_file():
  950. self._set_vocab_gpt2()
  951. else:
  952. # StableLM 2 1.6B uses a vocab in a similar format to Qwen's vocab
  953. self._set_vocab_qwen()
  954. def set_gguf_parameters(self):
  955. hparams = self.hparams
  956. block_count = hparams["num_hidden_layers"]
  957. self.gguf_writer.add_name(self.dir_model.name)
  958. self.gguf_writer.add_context_length(hparams["max_position_embeddings"])
  959. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  960. self.gguf_writer.add_block_count(block_count)
  961. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  962. rotary_factor = self.find_hparam(["partial_rotary_factor", "rope_pct"])
  963. self.gguf_writer.add_rope_dimension_count(int(rotary_factor * (hparams["hidden_size"] // hparams["num_attention_heads"])))
  964. self.gguf_writer.add_head_count(hparams["num_attention_heads"])
  965. self.gguf_writer.add_head_count_kv(hparams["num_key_value_heads"])
  966. self.gguf_writer.add_parallel_residual(hparams["use_parallel_residual"] if "use_parallel_residual" in hparams else True)
  967. self.gguf_writer.add_layer_norm_eps(self.find_hparam(["layer_norm_eps", "norm_eps"]))
  968. def write_tensors(self):
  969. block_count = self.hparams.get("n_layers", self.hparams.get("num_hidden_layers", self.hparams.get("n_layer")))
  970. tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count)
  971. n_head = self.hparams.get("num_attention_heads")
  972. n_kv_head = self.hparams.get("num_key_value_heads")
  973. q_norms = dict()
  974. k_norms = dict()
  975. for name, data_torch in self.get_tensors():
  976. # we don't need these
  977. if name.endswith((".attention.masked_bias", ".attention.bias", ".attention.rotary_emb.inv_freq")):
  978. continue
  979. old_dtype = data_torch.dtype
  980. # convert any unsupported data types to float32
  981. if data_torch.dtype not in (torch.float16, torch.float32):
  982. data_torch = data_torch.to(torch.float32)
  983. data = data_torch.squeeze().numpy()
  984. n_dims = len(data.shape)
  985. if name.find("q_layernorm.norms") != -1:
  986. q_norms[name] = data
  987. if len(q_norms) >= (block_count * n_head):
  988. self._stack_qk_norm(block_count, name, tensor_map, n_head, q_norms, n_dims, layer_name="q_layernorm")
  989. continue
  990. if name.find("k_layernorm.norms") != -1:
  991. k_norms[name] = data
  992. if len(k_norms) >= (block_count * n_kv_head):
  993. self._stack_qk_norm(block_count, name, tensor_map, n_kv_head, k_norms, n_dims, layer_name="k_layernorm")
  994. continue
  995. # map tensor names
  996. new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias"))
  997. if new_name is None:
  998. print(f"Can not map tensor {name!r}")
  999. sys.exit()
  1000. n_dims = len(data.shape)
  1001. data_dtype = data.dtype
  1002. # if f32 desired, convert any float16 to float32
  1003. if self.ftype == 0 and data_dtype == np.float16:
  1004. data = data.astype(np.float32)
  1005. # TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32
  1006. if self.ftype == 1 and data_dtype == np.float16 and (n_dims == 1 or new_name.endswith("_norm.weight")):
  1007. data = data.astype(np.float32)
  1008. # if f16 desired, convert any float32 2-dim weight tensors to float16
  1009. if self.ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and not new_name.endswith("_norm.weight") and n_dims == 2:
  1010. data = data.astype(np.float16)
  1011. print(f"{new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}")
  1012. self.gguf_writer.add_tensor(new_name, data)
  1013. def _stack_qk_norm(self, block_count, name, tensor_map, n_head, norms, n_dims, layer_name="q_layernorm"):
  1014. for bid in range(block_count):
  1015. datas = []
  1016. for xid in range(n_head):
  1017. ename = f"model.layers.{bid}.self_attn.{layer_name}.norms.{xid}.weight"
  1018. datas.append(norms[ename])
  1019. del norms[ename]
  1020. data = np.stack(datas, axis=0)
  1021. data_dtype = data.dtype
  1022. merged_name = f"model.layers.{bid}.self_attn.{layer_name}.weight"
  1023. new_name = tensor_map.get_name(merged_name, try_suffixes=(".weight", ".bias"))
  1024. if new_name is None:
  1025. print(f"Can not map tensor {name!r}")
  1026. sys.exit()
  1027. if self.ftype == 1 and data_dtype == np.float16 and (n_dims == 1 or new_name.endswith("_norm.weight")):
  1028. data = data.astype(np.float32)
  1029. # if f16 desired, convert any float32 2-dim weight tensors to float16
  1030. if self.ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and not new_name.endswith("_norm.weight") and n_dims == 2:
  1031. data = data.astype(np.float16)
  1032. print(f"{new_name}, n_dims = {len(data.shape)}, shape = {data.shape} --> {data.dtype}")
  1033. self.gguf_writer.add_tensor(new_name, data)
  1034. @Model.register("LlamaForCausalLM", "MistralForCausalLM", "MixtralForCausalLM")
  1035. class LlamaModel(Model):
  1036. model_arch = gguf.MODEL_ARCH.LLAMA
  1037. def set_vocab(self):
  1038. try:
  1039. self. _set_vocab_sentencepiece()
  1040. except FileNotFoundError:
  1041. try:
  1042. self._set_vocab_llama_hf()
  1043. except (FileNotFoundError, TypeError):
  1044. # Llama 3
  1045. self._set_vocab_gpt2()
  1046. # Apply to CodeLlama only (and ignore for Llama 3 with a vocab size of 128256)
  1047. if self.hparams.get("vocab_size", 32000) == 32016:
  1048. special_vocab = gguf.SpecialVocab(
  1049. self.dir_model, load_merges=False,
  1050. special_token_types = ['prefix', 'suffix', 'middle', 'eot']
  1051. )
  1052. special_vocab._set_special_token("prefix", 32007)
  1053. special_vocab._set_special_token("suffix", 32008)
  1054. special_vocab._set_special_token("middle", 32009)
  1055. special_vocab._set_special_token("eot", 32010)
  1056. special_vocab.add_to_gguf(self.gguf_writer)
  1057. def set_gguf_parameters(self):
  1058. super().set_gguf_parameters()
  1059. hparams = self.hparams
  1060. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  1061. self.gguf_writer.add_rope_dimension_count(hparams["hidden_size"] // hparams["num_attention_heads"])
  1062. # Same as super class, but permuting q_proj, k_proj
  1063. def write_tensors(self):
  1064. block_count = self.hparams.get("n_layers", self.hparams.get("num_hidden_layers", self.hparams.get("n_layer")))
  1065. tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count)
  1066. n_head = self.hparams.get("num_attention_heads")
  1067. n_kv_head = self.hparams.get("num_key_value_heads")
  1068. n_experts = self.hparams.get("num_local_experts")
  1069. experts = dict()
  1070. for name, data_torch in self.get_tensors():
  1071. # we don't need these
  1072. if name.endswith((".attention.masked_bias", ".attention.bias", ".attention.rotary_emb.inv_freq")):
  1073. continue
  1074. old_dtype = data_torch.dtype
  1075. # convert any unsupported data types to float32
  1076. if data_torch.dtype not in (torch.float16, torch.float32):
  1077. data_torch = data_torch.to(torch.float32)
  1078. data = data_torch.numpy()
  1079. if name.endswith("q_proj.weight"):
  1080. data = permute(data, n_head, n_head)
  1081. if name.endswith("k_proj.weight"):
  1082. data = permute(data, n_head, n_kv_head)
  1083. data = data.squeeze()
  1084. # process the experts separately
  1085. if name.find("block_sparse_moe.experts") != -1:
  1086. experts[name] = data
  1087. if len(experts) >= n_experts:
  1088. # merge the experts into a single 3d tensor
  1089. for bid in range(block_count):
  1090. for wid in range(1, 4):
  1091. full = True
  1092. for xid in range(n_experts):
  1093. ename = f"model.layers.{bid}.block_sparse_moe.experts.{xid}.w{wid}.weight"
  1094. if ename not in experts:
  1095. full = False
  1096. break
  1097. if not full:
  1098. continue
  1099. datas = []
  1100. for xid in range(n_experts):
  1101. ename = f"model.layers.{bid}.block_sparse_moe.experts.{xid}.w{wid}.weight"
  1102. datas.append(experts[ename])
  1103. del experts[ename]
  1104. data = np.stack(datas, axis=0)
  1105. data_dtype = data.dtype
  1106. if self.ftype == 0 and data_dtype == np.float16:
  1107. data = data.astype(np.float32)
  1108. if self.ftype == 1 and data_dtype == np.float32:
  1109. data = data.astype(np.float16)
  1110. merged_name = f"layers.{bid}.feed_forward.experts.w{wid}.weight"
  1111. new_name = tensor_map.get_name(merged_name, try_suffixes=(".weight", ".bias"))
  1112. if new_name is None:
  1113. print(f"Can not map tensor {name!r}")
  1114. sys.exit()
  1115. print(f"{new_name}, n_dims = {len(data.shape)}, shape = {data.shape} --> {data.dtype}")
  1116. self.gguf_writer.add_tensor(new_name, data)
  1117. continue
  1118. # map tensor names
  1119. new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias"))
  1120. if new_name is None:
  1121. print(f"Can not map tensor {name!r}")
  1122. sys.exit()
  1123. n_dims = len(data.shape)
  1124. data_dtype = data.dtype
  1125. # if f32 desired, convert any float16 to float32
  1126. if self.ftype == 0 and data_dtype == np.float16:
  1127. data = data.astype(np.float32)
  1128. # 1d tensors need to be converted to float32
  1129. if self.ftype == 1 and data_dtype == np.float16 and n_dims == 1:
  1130. data = data.astype(np.float32)
  1131. # if f16 desired, convert any float32 2-dim weight tensors to float16
  1132. if self.ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
  1133. data = data.astype(np.float16)
  1134. print(f"{new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}")
  1135. self.gguf_writer.add_tensor(new_name, data)
  1136. if len(experts) > 0:
  1137. raise ValueError(f"Unprocessed experts: {experts.keys()}")
  1138. @Model.register("GrokForCausalLM")
  1139. class GrokModel(Model):
  1140. model_arch = gguf.MODEL_ARCH.GROK
  1141. def set_vocab(self):
  1142. self._set_vocab_sentencepiece()
  1143. def __init__(self, *args, **kwargs):
  1144. super().__init__(*args, **kwargs)
  1145. def set_gguf_parameters(self):
  1146. super().set_gguf_parameters()
  1147. self.gguf_writer.add_name("Grok")
  1148. def write_tensors(self):
  1149. block_count = self.hparams.get("n_layers", self.hparams.get("num_hidden_layers", self.hparams.get("n_layer")))
  1150. tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count)
  1151. n_experts = self.hparams.get("num_local_experts")
  1152. experts = dict()
  1153. for name, data_torch in self.get_tensors():
  1154. # we don't need these
  1155. if name.endswith((".attention.masked_bias", ".attention.bias", ".attention.rotary_emb.inv_freq")):
  1156. continue
  1157. old_dtype = data_torch.dtype
  1158. # convert any unsupported data types to float32
  1159. if data_torch.dtype not in (torch.float16, torch.float32):
  1160. data_torch = data_torch.to(torch.float32)
  1161. data = data_torch.squeeze().numpy()
  1162. # process the experts separately
  1163. if name.find(".moe.") != -1:
  1164. experts[name] = data
  1165. if len(experts) >= n_experts:
  1166. # merge the experts into a single 3d tensor
  1167. for bid in range(block_count):
  1168. for wid in ["linear", "linear_1", "linear_v"]:
  1169. full = True
  1170. for xid in range(n_experts):
  1171. ename = f"transformer.decoder_layer.{bid}.moe.{xid}.{wid}.weight"
  1172. if ename not in experts:
  1173. full = False
  1174. break
  1175. if not full:
  1176. continue
  1177. datas = []
  1178. for xid in range(n_experts):
  1179. ename = f"transformer.decoder_layer.{bid}.moe.{xid}.{wid}.weight"
  1180. datas.append(experts[ename])
  1181. del experts[ename]
  1182. data = np.stack(datas, axis=0)
  1183. data_dtype = data.dtype
  1184. if self.ftype == 0 and data_dtype == np.float16:
  1185. data = data.astype(np.float32)
  1186. if self.ftype == 1 and data_dtype == np.float32:
  1187. data = data.astype(np.float16)
  1188. merged_name = f"transformer.decoder_layer.{bid}.moe.{wid}.weight"
  1189. new_name = tensor_map.get_name(merged_name, try_suffixes=(".weight", ".bias"))
  1190. if new_name is None:
  1191. print(f"Can not map tensor {name!r}")
  1192. sys.exit()
  1193. print(f"{new_name}, n_dims = {len(data.shape)}, shape = {data.shape} --> {data.dtype}")
  1194. self.gguf_writer.add_tensor(new_name, data)
  1195. continue
  1196. # map tensor names
  1197. new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias"))
  1198. if new_name is None:
  1199. print(f"Can not map tensor {name!r}")
  1200. sys.exit()
  1201. n_dims = len(data.shape)
  1202. data_dtype = data.dtype
  1203. # if f32 desired, convert any float16 to float32
  1204. if self.ftype == 0 and data_dtype == np.float16:
  1205. data = data.astype(np.float32)
  1206. # TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32
  1207. if self.ftype == 1 and data_dtype == np.float16 and n_dims == 1:
  1208. data = data.astype(np.float32)
  1209. # if f16 desired, convert any float32 2-dim weight tensors to float16
  1210. if self.ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
  1211. data = data.astype(np.float16)
  1212. print(f"{new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}")
  1213. self.gguf_writer.add_tensor(new_name, data)
  1214. @Model.register("DbrxForCausalLM")
  1215. class DbrxModel(Model):
  1216. model_arch = gguf.MODEL_ARCH.DBRX
  1217. def set_gguf_parameters(self):
  1218. ffn_config = self.hparams["ffn_config"]
  1219. attn_config = self.hparams["attn_config"]
  1220. self.gguf_writer.add_name(self.hparams["model_type"])
  1221. self.gguf_writer.add_block_count(self.hparams["n_layers"])
  1222. self.gguf_writer.add_context_length(self.hparams["max_seq_len"])
  1223. self.gguf_writer.add_embedding_length(self.hparams["d_model"])
  1224. self.gguf_writer.add_feed_forward_length(ffn_config["ffn_hidden_size"])
  1225. self.gguf_writer.add_head_count(self.hparams["n_heads"])
  1226. self.gguf_writer.add_head_count_kv(attn_config["kv_n_heads"])
  1227. self.gguf_writer.add_rope_freq_base(attn_config["rope_theta"])
  1228. self.gguf_writer.add_clamp_kqv(attn_config["clip_qkv"])
  1229. self.gguf_writer.add_file_type(self.ftype)
  1230. self.gguf_writer.add_expert_count(ffn_config["moe_num_experts"])
  1231. self.gguf_writer.add_expert_used_count(ffn_config["moe_top_k"])
  1232. self.gguf_writer.add_layer_norm_eps(1e-5)
  1233. self.gguf_writer.add_file_type(self.ftype)
  1234. print(f"gguf: file type = {self.ftype}")
  1235. def write_tensors(self):
  1236. block_count = self.hparams.get("n_layers")
  1237. tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count)
  1238. for name, data_torch in self.get_tensors():
  1239. n_expert = self.hparams["ffn_config"]["moe_num_experts"]
  1240. n_ff = self.hparams["ffn_config"]["ffn_hidden_size"]
  1241. n_embd = self.hparams["d_model"]
  1242. # Specific behavior for experts tensors: suffix .weight, view as 3D and transpose
  1243. # original implementation expects (n_expert, n_ff, n_embd) for all experts weights
  1244. # But llama.cpp moe graph works differently
  1245. # AND the dimensions in ggml are typically in the reverse order of the pytorch dimensions
  1246. # so (n_expert, n_ff, n_embd) in pytorch is {n_embd, n_ff, n_expert} in ggml_tensor
  1247. exp_tensor_names = {"ffn.experts.mlp.w1": None, # LLM_TENSOR_FFN_GATE_EXPS ggml_tensor->ne{n_embd, n_ff, n_expert}
  1248. "ffn.experts.mlp.w2": (0, 2, 1), # LLM_TENSOR_FFN_DOWN_EXPS ggml_tensor->ne{n_ff, n_embd, n_expert}
  1249. "ffn.experts.mlp.v1": None} # LLM_TENSOR_FFN_UP_EXPS ggml_tensor->ne{n_embd, n_ff, n_expert}
  1250. experts = False
  1251. for exp_tensor_name in exp_tensor_names.keys():
  1252. if name.find(exp_tensor_name) != -1 and name.find(".weight") == -1:
  1253. experts = True
  1254. data_torch = data_torch.view(n_expert, n_ff, n_embd)
  1255. if (permute_tensor := exp_tensor_names[exp_tensor_name]) is not None:
  1256. data_torch = data_torch.permute(*permute_tensor)
  1257. break
  1258. old_dtype = data_torch.dtype
  1259. # convert any unsupported data types to float32
  1260. if data_torch.dtype not in (torch.float16, torch.float32):
  1261. data_torch = data_torch.to(torch.float32)
  1262. data = data_torch.squeeze().numpy()
  1263. # map tensor names
  1264. # In MoE models the ffn tensors are typically most of the model weights,
  1265. # and need to be quantizable. Quantize expects tensor names to be suffixed by .weight.
  1266. # Every other model has the weight names ending in .weight,
  1267. # let's assume that is the convention which is not the case for dbrx:
  1268. # https://huggingface.co/databricks/dbrx-instruct/blob/main/model.safetensors.index.json#L15
  1269. new_name = tensor_map.get_name(name if not experts else name + ".weight", try_suffixes=(".weight",))
  1270. if new_name is None:
  1271. print(f"Can not map tensor {name!r}")
  1272. sys.exit()
  1273. n_dims = len(data.shape)
  1274. data_dtype = data.dtype
  1275. # Most of the codebase that takes in 1D tensors only handles F32 tensors
  1276. # and most of the outputs tensors are F32.
  1277. if data_dtype != np.float32 and n_dims == 1:
  1278. print(f"Can not map tensor {name!r}: all 1D tensors must be F32")
  1279. sys.exit()
  1280. # if f32 desired, convert any float16 to float32
  1281. if self.ftype == 0 and data_dtype == np.float16:
  1282. data = data.astype(np.float32)
  1283. # if f16 desired, convert any float32 2-dim weight tensors to float16
  1284. if self.ftype == 1 and data_dtype == np.float32 and n_dims > 1:
  1285. data = data.astype(np.float16)
  1286. print(f"{new_name}, n_dims = {n_dims}, shape = {data.shape}, {old_dtype} --> {data.dtype}")
  1287. self.gguf_writer.add_tensor(new_name, data)
  1288. @Model.register("MiniCPMForCausalLM")
  1289. class MiniCPMModel(Model):
  1290. model_arch = gguf.MODEL_ARCH.MINICPM
  1291. def set_gguf_parameters(self):
  1292. block_count = self.hparams["num_hidden_layers"]
  1293. self.gguf_writer.add_name("MiniCPM")
  1294. self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"])
  1295. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  1296. self.gguf_writer.add_block_count(block_count)
  1297. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  1298. self.gguf_writer.add_rope_dimension_count(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  1299. self.gguf_writer.add_head_count(self.hparams["num_attention_heads"])
  1300. self.gguf_writer.add_head_count_kv(self.hparams["num_key_value_heads"])
  1301. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  1302. self.gguf_writer.add_file_type(self.ftype)
  1303. def set_vocab(self):
  1304. self._set_vocab_llama_hf()
  1305. def _reverse_hf_permute(self, weights: Tensor, n_head: int, n_kv_head: int | None = None) -> Tensor:
  1306. if n_kv_head is not None and n_head != n_kv_head:
  1307. n_head //= n_kv_head
  1308. return (
  1309. weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  1310. .swapaxes(1, 2)
  1311. .reshape(weights.shape)
  1312. )
  1313. def write_tensors(self):
  1314. block_count = self.hparams.get("n_layers", self.hparams.get("num_hidden_layers", self.hparams.get("n_layer")))
  1315. tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count)
  1316. n_head = self.hparams.get("num_attention_heads")
  1317. n_kv_head = self.hparams.get("num_key_value_heads")
  1318. for name, data_torch in self.get_tensors():
  1319. # we don't need these
  1320. if name.endswith((".attention.masked_bias", ".attention.bias", ".attention.rotary_emb.inv_freq")):
  1321. continue
  1322. old_dtype = data_torch.dtype
  1323. # convert any unsupported data types to float32
  1324. if data_torch.dtype not in (torch.float16, torch.float32):
  1325. data_torch = data_torch.to(torch.float32)
  1326. # HF models permute some of the tensors, so we need to undo that
  1327. if name.endswith(("q_proj.weight")):
  1328. data_torch = self._reverse_hf_permute(data_torch, n_head, n_head)
  1329. if name.endswith(("k_proj.weight")):
  1330. data_torch = self._reverse_hf_permute(data_torch, n_head, n_kv_head)
  1331. data = data_torch.squeeze().numpy()
  1332. # map tensor names
  1333. new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias"))
  1334. if new_name is None:
  1335. print(f"Can not map tensor {name!r}")
  1336. sys.exit()
  1337. n_dims = len(data.shape)
  1338. data_dtype = data.dtype
  1339. # if f32 desired, convert any float16 to float32
  1340. if self.ftype == 0 and data_dtype == np.float16:
  1341. data = data.astype(np.float32)
  1342. # TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32
  1343. if self.ftype == 1 and data_dtype == np.float16 and n_dims == 1:
  1344. data = data.astype(np.float32)
  1345. # if f16 desired, convert any float32 2-dim weight tensors to float16
  1346. if self.ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
  1347. data = data.astype(np.float16)
  1348. print(f"{new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}")
  1349. self.gguf_writer.add_tensor(new_name, data)
  1350. @Model.register("QWenLMHeadModel")
  1351. class QwenModel(Model):
  1352. model_arch = gguf.MODEL_ARCH.QWEN
  1353. @staticmethod
  1354. def token_bytes_to_string(b):
  1355. from transformers.models.gpt2.tokenization_gpt2 import bytes_to_unicode
  1356. byte_encoder = bytes_to_unicode()
  1357. return ''.join([byte_encoder[ord(char)] for char in b.decode('latin-1')])
  1358. @staticmethod
  1359. def bpe(mergeable_ranks: dict[bytes, int], token: bytes, max_rank: int | None = None) -> list[bytes]:
  1360. parts = [bytes([b]) for b in token]
  1361. while True:
  1362. min_idx = None
  1363. min_rank = None
  1364. for i, pair in enumerate(zip(parts[:-1], parts[1:])):
  1365. rank = mergeable_ranks.get(pair[0] + pair[1])
  1366. if rank is not None and (min_rank is None or rank < min_rank):
  1367. min_idx = i
  1368. min_rank = rank
  1369. if min_rank is None or (max_rank is not None and min_rank >= max_rank):
  1370. break
  1371. assert min_idx is not None
  1372. parts = parts[:min_idx] + [parts[min_idx] + parts[min_idx + 1]] + parts[min_idx + 2:]
  1373. return parts
  1374. def set_vocab(self):
  1375. self._set_vocab_qwen()
  1376. def set_gguf_parameters(self):
  1377. self.gguf_writer.add_name("Qwen")
  1378. self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"])
  1379. self.gguf_writer.add_block_count(self.hparams["num_hidden_layers"])
  1380. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  1381. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  1382. self.gguf_writer.add_rope_freq_base(self.hparams["rotary_emb_base"])
  1383. self.gguf_writer.add_rope_dimension_count(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  1384. self.gguf_writer.add_head_count(self.hparams["num_attention_heads"])
  1385. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["layer_norm_epsilon"])
  1386. def write_tensors(self):
  1387. block_count = self.hparams["num_hidden_layers"]
  1388. model_kv = dict(self.get_tensors())
  1389. tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count)
  1390. for name, data_torch in model_kv.items():
  1391. # we don't need these
  1392. if name.endswith(".rotary_emb.inv_freq"):
  1393. continue
  1394. old_dtype = data_torch.dtype
  1395. # convert any unsupported data types to float32
  1396. if data_torch.dtype not in (torch.float16, torch.float32):
  1397. data_torch = data_torch.to(torch.float32)
  1398. data = data_torch.squeeze().numpy()
  1399. # map tensor names
  1400. new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias"))
  1401. if new_name is None:
  1402. print(f"Can not map tensor {name!r}")
  1403. sys.exit()
  1404. n_dims = len(data.shape)
  1405. data_dtype = data.dtype
  1406. # if f32 desired, convert any float16 to float32
  1407. if self.ftype == 0 and data_dtype == np.float16:
  1408. data = data.astype(np.float32)
  1409. # TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32
  1410. if self.ftype == 1 and data_dtype == np.float16 and n_dims == 1:
  1411. data = data.astype(np.float32)
  1412. # if f16 desired, convert any float32 2-dim weight tensors to float16
  1413. if self.ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
  1414. data = data.astype(np.float16)
  1415. print(f"{new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}")
  1416. self.gguf_writer.add_tensor(new_name, data)
  1417. @Model.register("Qwen2ForCausalLM")
  1418. class Qwen2Model(Model):
  1419. model_arch = gguf.MODEL_ARCH.QWEN2
  1420. @Model.register("Qwen2MoeForCausalLM")
  1421. class Qwen2MoeModel(Model):
  1422. model_arch = gguf.MODEL_ARCH.QWEN2MOE
  1423. def set_gguf_parameters(self):
  1424. super().set_gguf_parameters()
  1425. if (n_experts := self.hparams.get("num_experts")) is not None:
  1426. self.gguf_writer.add_expert_count(n_experts)
  1427. def write_tensors(self):
  1428. block_count = self.hparams.get("n_layers", self.hparams.get("num_hidden_layers", self.hparams.get("n_layer")))
  1429. tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count)
  1430. n_experts = self.hparams.get("num_experts")
  1431. experts = dict()
  1432. for name, data_torch in self.get_tensors():
  1433. # we don't need these
  1434. if name.endswith((".attention.masked_bias", ".attention.bias", ".attention.rotary_emb.inv_freq")):
  1435. continue
  1436. old_dtype = data_torch.dtype
  1437. # convert any unsupported data types to float32
  1438. if data_torch.dtype not in (torch.float16, torch.float32):
  1439. data_torch = data_torch.to(torch.float32)
  1440. data = data_torch.squeeze().numpy()
  1441. # process the experts separately
  1442. if name.find("experts") != -1:
  1443. experts[name] = data
  1444. if len(experts) >= n_experts * 3:
  1445. # merge the experts into a single 3d tensor
  1446. for bid in range(block_count):
  1447. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  1448. full = True
  1449. for xid in range(n_experts):
  1450. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  1451. if ename not in experts:
  1452. full = False
  1453. break
  1454. if not full:
  1455. continue
  1456. datas = []
  1457. for xid in range(n_experts):
  1458. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  1459. datas.append(experts[ename])
  1460. del experts[ename]
  1461. data = np.stack(datas, axis=0)
  1462. data_dtype = data.dtype
  1463. if self.ftype == 0 and data_dtype == np.float16:
  1464. data = data.astype(np.float32)
  1465. if self.ftype == 1 and data_dtype == np.float32:
  1466. data = data.astype(np.float16)
  1467. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  1468. new_name = tensor_map.get_name(merged_name, try_suffixes=(".weight", ".bias"))
  1469. if new_name is None:
  1470. print(f"Can not map tensor {name!r}")
  1471. sys.exit()
  1472. print(f"{new_name}, n_dims = {len(data.shape)}, shape = {data.shape} --> {data.dtype}")
  1473. self.gguf_writer.add_tensor(new_name, data)
  1474. continue
  1475. # map tensor names
  1476. new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias"))
  1477. if new_name is None:
  1478. print(f"Can not map tensor {name!r}")
  1479. sys.exit()
  1480. n_dims = len(data.shape)
  1481. data_dtype = data.dtype
  1482. # if f32 desired, convert any float16 to float32
  1483. if self.ftype == 0 and data_dtype == np.float16:
  1484. data = data.astype(np.float32)
  1485. # TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32
  1486. if self.ftype == 1 and data_dtype == np.float16 and (n_dims == 1 or new_name.endswith("_norm.weight")):
  1487. data = data.astype(np.float32)
  1488. # if f16 desired, convert any float32 2-dim weight tensors to float16
  1489. if self.ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
  1490. data = data.astype(np.float16)
  1491. print(f"{new_name}, n_dims = {n_dims}, shape = {data.shape}, {old_dtype} --> {data.dtype}")
  1492. self.gguf_writer.add_tensor(new_name, data)
  1493. if len(experts) > 0:
  1494. raise ValueError(f"Unprocessed experts: {experts.keys()}")
  1495. @Model.register("GPT2LMHeadModel")
  1496. class GPT2Model(Model):
  1497. model_arch = gguf.MODEL_ARCH.GPT2
  1498. def set_gguf_parameters(self):
  1499. self.gguf_writer.add_name(self.dir_model.name)
  1500. self.gguf_writer.add_block_count(self.hparams["n_layer"])
  1501. self.gguf_writer.add_context_length(self.hparams["n_ctx"])
  1502. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  1503. self.gguf_writer.add_feed_forward_length(4 * self.hparams["n_embd"])
  1504. self.gguf_writer.add_head_count(self.hparams["n_head"])
  1505. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  1506. self.gguf_writer.add_file_type(self.ftype)
  1507. def write_tensors(self):
  1508. block_count = self.hparams.get("n_layers", self.hparams.get("num_hidden_layers", self.hparams.get("n_layer")))
  1509. tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count)
  1510. for name, data_torch in self.get_tensors():
  1511. # we don't need these
  1512. if name.endswith((".attention.masked_bias", ".attention.bias", ".attention.rotary_emb.inv_freq", ".attn.bias", ".attn.masked_bias")):
  1513. continue
  1514. if name.endswith((".c_attn.weight", ".c_proj.weight", ".c_fc.weight", ".c_proj.weight")):
  1515. data_torch = data_torch.transpose(1, 0)
  1516. old_dtype = data_torch.dtype
  1517. # convert any unsupported data types to float32
  1518. if data_torch.dtype not in (torch.float16, torch.float32):
  1519. data_torch = data_torch.to(torch.float32)
  1520. data = data_torch.squeeze().numpy()
  1521. # map tensor names
  1522. new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias"))
  1523. if new_name is None:
  1524. print(f"Can not map tensor {name!r}")
  1525. sys.exit()
  1526. n_dims = len(data.shape)
  1527. data_dtype = data.dtype
  1528. # if f32 desired, convert any float16 to float32
  1529. if self.ftype == 0 and data_dtype == np.float16:
  1530. data = data.astype(np.float32)
  1531. # TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32
  1532. if self.ftype == 1 and data_dtype == np.float16 and n_dims == 1:
  1533. data = data.astype(np.float32)
  1534. # if f16 desired, convert any float32 2-dim weight tensors to float16
  1535. if self.ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
  1536. data = data.astype(np.float16)
  1537. print(f"{new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}")
  1538. self.gguf_writer.add_tensor(new_name, data)
  1539. # note: GPT2 output is tied to (same as) wte in original model
  1540. if new_name == "token_embd.weight":
  1541. print(f"output.weight, n_dims = {n_dims}, {old_dtype} --> {data.dtype}")
  1542. self.gguf_writer.add_tensor("output.weight", data)
  1543. @Model.register("PhiForCausalLM")
  1544. class Phi2Model(Model):
  1545. model_arch = gguf.MODEL_ARCH.PHI2
  1546. def set_gguf_parameters(self):
  1547. block_count = self.find_hparam(["num_hidden_layers", "n_layer"])
  1548. rot_pct = self.find_hparam(["partial_rotary_factor"])
  1549. n_embd = self.find_hparam(["hidden_size", "n_embd"])
  1550. n_head = self.find_hparam(["num_attention_heads", "n_head"])
  1551. self.gguf_writer.add_name("Phi2")
  1552. self.gguf_writer.add_context_length(self.find_hparam(["n_positions", "max_position_embeddings"]))
  1553. self.gguf_writer.add_embedding_length(n_embd)
  1554. self.gguf_writer.add_feed_forward_length(4 * n_embd)
  1555. self.gguf_writer.add_block_count(block_count)
  1556. self.gguf_writer.add_head_count(n_head)
  1557. self.gguf_writer.add_head_count_kv(n_head)
  1558. self.gguf_writer.add_layer_norm_eps(self.find_hparam(["layer_norm_epsilon", "layer_norm_eps"]))
  1559. self.gguf_writer.add_rope_dimension_count(int(rot_pct * n_embd) // n_head)
  1560. self.gguf_writer.add_file_type(self.ftype)
  1561. self.gguf_writer.add_add_bos_token(False)
  1562. @Model.register("PlamoForCausalLM")
  1563. class PlamoModel(Model):
  1564. model_arch = gguf.MODEL_ARCH.PLAMO
  1565. def set_vocab(self):
  1566. self._set_vocab_sentencepiece()
  1567. def set_gguf_parameters(self):
  1568. hparams = self.hparams
  1569. block_count = hparams["num_hidden_layers"]
  1570. self.gguf_writer.add_name("PLaMo")
  1571. self.gguf_writer.add_context_length(4096) # not in config.json
  1572. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  1573. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  1574. self.gguf_writer.add_block_count(block_count)
  1575. self.gguf_writer.add_head_count(hparams["num_attention_heads"])
  1576. self.gguf_writer.add_head_count_kv(5) # hparams["num_key_value_heads"]) is wrong
  1577. self.gguf_writer.add_layer_norm_rms_eps(hparams["rms_norm_eps"])
  1578. def shuffle_attn_q_weight(self, data_torch):
  1579. assert data_torch.size() == (5120, 5120)
  1580. data_torch = data_torch.reshape(8, 5, 128, 5120)
  1581. data_torch = torch.permute(data_torch, (1, 0, 2, 3))
  1582. data_torch = torch.reshape(data_torch, (5120, 5120))
  1583. return data_torch
  1584. def shuffle_attn_output_weight(self, data_torch):
  1585. assert data_torch.size() == (5120, 5120)
  1586. data_torch = data_torch.reshape(5120, 8, 5, 128)
  1587. data_torch = torch.permute(data_torch, (0, 2, 1, 3))
  1588. data_torch = torch.reshape(data_torch, (5120, 5120))
  1589. return data_torch
  1590. def write_tensors(self):
  1591. block_count = self.hparams.get("num_layers", self.hparams.get("num_hidden_layers"))
  1592. tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count)
  1593. for name, data_torch in self.get_tensors():
  1594. if "self_attn.rotary_emb.inv_freq" in name:
  1595. continue
  1596. # map tensor names
  1597. new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias"))
  1598. if new_name is None:
  1599. print(f"Can not map tensor {name!r}")
  1600. sys.exit()
  1601. # shuffle for broadcasting of gqa in ggml_mul_mat
  1602. if new_name.endswith("attn_q.weight"):
  1603. data_torch = self.shuffle_attn_q_weight(data_torch)
  1604. elif new_name.endswith("attn_output.weight"):
  1605. data_torch = self.shuffle_attn_output_weight(data_torch)
  1606. old_dtype = data_torch.dtype
  1607. # convert any unsupported data types to float32
  1608. if data_torch.dtype not in (torch.float16, torch.float32):
  1609. data_torch = data_torch.to(torch.float32)
  1610. data = data_torch.squeeze().numpy()
  1611. n_dims = len(data.shape)
  1612. data_dtype = data.dtype
  1613. # if f32 desired, convert any float16 to float32
  1614. if self.ftype == 0 and data_dtype == np.float16:
  1615. data = data.astype(np.float32)
  1616. # TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32
  1617. if self.ftype == 1 and data_dtype == np.float16 and n_dims == 1:
  1618. data = data.astype(np.float32)
  1619. # if f16 desired, convert any float32 2-dim weight tensors to float16
  1620. if self.ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
  1621. data = data.astype(np.float16)
  1622. print(f"{new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}")
  1623. self.gguf_writer.add_tensor(new_name, data)
  1624. @Model.register("CodeShellForCausalLM")
  1625. class CodeShellModel(Model):
  1626. model_arch = gguf.MODEL_ARCH.CODESHELL
  1627. def set_gguf_parameters(self):
  1628. block_count = self.hparams["n_layer"]
  1629. self.gguf_writer.add_name("CodeShell")
  1630. self.gguf_writer.add_context_length(self.hparams["n_positions"])
  1631. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  1632. self.gguf_writer.add_feed_forward_length(4 * self.hparams["n_embd"])
  1633. self.gguf_writer.add_block_count(block_count)
  1634. self.gguf_writer.add_head_count(self.hparams["n_head"])
  1635. self.gguf_writer.add_head_count_kv(self.hparams["num_query_groups"])
  1636. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  1637. self.gguf_writer.add_file_type(self.ftype)
  1638. self.gguf_writer.add_rope_freq_base(10000.0)
  1639. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  1640. self.gguf_writer.add_rope_scaling_factor(1.0)
  1641. def write_tensors(self):
  1642. block_count = self.hparams.get("n_layers", self.hparams.get("num_hidden_layers", self.hparams.get("n_layer")))
  1643. tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count)
  1644. tensors = dict(self.get_tensors())
  1645. has_lm_head = "lm_head.weight" in tensors.keys() or "output.weight" in tensors.keys()
  1646. for name, data_torch in tensors.items():
  1647. # we don't need these
  1648. if name.endswith((".attn.rotary_emb.inv_freq")):
  1649. continue
  1650. old_dtype = data_torch.dtype
  1651. # convert any unsupported data types to float32
  1652. if data_torch.dtype not in (torch.float16, torch.float32):
  1653. data_torch = data_torch.to(torch.float32)
  1654. data = data_torch.squeeze().numpy()
  1655. # map tensor names
  1656. new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias"))
  1657. if new_name is None:
  1658. print(f"Can not map tensor {name!r}")
  1659. sys.exit()
  1660. n_dims = len(data.shape)
  1661. data_dtype = data.dtype
  1662. # if f32 desired, convert any float16 to float32
  1663. if self.ftype == 0 and data_dtype == np.float16:
  1664. data = data.astype(np.float32)
  1665. # TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32
  1666. if self.ftype == 1 and data_dtype == np.float16 and n_dims == 1:
  1667. data = data.astype(np.float32)
  1668. # if f16 desired, convert any float32 2-dim weight tensors to float16
  1669. if self.ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
  1670. data = data.astype(np.float16)
  1671. print(f"{new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}")
  1672. self.gguf_writer.add_tensor(new_name, data)
  1673. if not has_lm_head and name == "transformer.wte.weight":
  1674. self.gguf_writer.add_tensor("output.weight", data)
  1675. print(name, f"=> output.weight, shape = {data.shape}, {old_dtype} --> {data.dtype}")
  1676. @Model.register("InternLM2ForCausalLM")
  1677. class InternLM2Model(Model):
  1678. model_arch = gguf.MODEL_ARCH.INTERNLM2
  1679. def set_vocab(self):
  1680. # (TODO): Is there a better way?
  1681. # Copy from _set_vocab_sentencepiece, The only difference is that we will treat the character
  1682. # \x00 specially and convert it into an emoji character to prevent it from being mistakenly
  1683. # recognized as an empty string in C++.
  1684. from sentencepiece import SentencePieceProcessor
  1685. from sentencepiece import sentencepiece_model_pb2 as model
  1686. tokenizer_path = self.dir_model / 'tokenizer.model'
  1687. tokens: list[bytes] = []
  1688. scores: list[float] = []
  1689. toktypes: list[int] = []
  1690. if not tokenizer_path.is_file():
  1691. print(f'Error: Missing {tokenizer_path}', file=sys.stderr)
  1692. sys.exit(1)
  1693. sentencepiece_model = model.ModelProto()
  1694. sentencepiece_model.ParseFromString(open(tokenizer_path, "rb").read())
  1695. add_prefix = sentencepiece_model.normalizer_spec.add_dummy_prefix
  1696. tokenizer = SentencePieceProcessor(str(tokenizer_path))
  1697. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  1698. for token_id in range(vocab_size):
  1699. piece = tokenizer.id_to_piece(token_id)
  1700. text = piece.encode("utf-8")
  1701. score = tokenizer.get_score(token_id)
  1702. if text == b"\x00":
  1703. # (TODO): fixme
  1704. # Hack here and replace the \x00 characters.
  1705. print(f"InternLM2 convert token '{text}' to '🐉'!")
  1706. text = "🐉"
  1707. toktype = SentencePieceTokenTypes.NORMAL
  1708. if tokenizer.is_unknown(token_id):
  1709. toktype = SentencePieceTokenTypes.UNKNOWN
  1710. elif tokenizer.is_control(token_id):
  1711. toktype = SentencePieceTokenTypes.CONTROL
  1712. elif tokenizer.is_unused(token_id):
  1713. toktype = SentencePieceTokenTypes.UNUSED
  1714. elif tokenizer.is_byte(token_id):
  1715. toktype = SentencePieceTokenTypes.BYTE
  1716. tokens.append(text)
  1717. scores.append(score)
  1718. toktypes.append(toktype)
  1719. added_tokens_file = self.dir_model / 'added_tokens.json'
  1720. if added_tokens_file.is_file():
  1721. with open(added_tokens_file, "r", encoding="utf-8") as f:
  1722. added_tokens_json = json.load(f)
  1723. for key in added_tokens_json:
  1724. tokens.append(key.encode("utf-8"))
  1725. scores.append(-1000.0)
  1726. toktypes.append(SentencePieceTokenTypes.USER_DEFINED)
  1727. self.gguf_writer.add_tokenizer_model("llama")
  1728. self.gguf_writer.add_token_list(tokens)
  1729. self.gguf_writer.add_token_scores(scores)
  1730. self.gguf_writer.add_token_types(toktypes)
  1731. self.gguf_writer.add_add_space_prefix(add_prefix)
  1732. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  1733. old_eos = special_vocab.special_token_ids["eos"]
  1734. if "chat" in os.path.basename(self.dir_model.absolute()):
  1735. # For the chat model, we replace the eos with '<|im_end|>'.
  1736. # TODO: this is a hack, should be fixed
  1737. # https://github.com/ggerganov/llama.cpp/pull/6745#issuecomment-2067687048
  1738. special_vocab.special_token_ids["eos"] = self._try_get_sft_eos(tokenizer)
  1739. print(f"Replace eos:{old_eos} with a special token:{special_vocab.special_token_ids['eos']} \
  1740. in chat mode so that the conversation can end normally.")
  1741. special_vocab.add_to_gguf(self.gguf_writer)
  1742. def _try_get_sft_eos(self, tokenizer):
  1743. unused_145_list = tokenizer.encode('[UNUSED_TOKEN_145]')
  1744. im_end_list = tokenizer.encode('<|im_end|>')
  1745. assert (len(unused_145_list) == 1) ^ (len(im_end_list) == 1)
  1746. if len(unused_145_list) == 1:
  1747. eos_token = unused_145_list[0]
  1748. if len(im_end_list) == 1:
  1749. eos_token = im_end_list[0]
  1750. return eos_token
  1751. def _hf_permute_qk(self, weights, n_head: int, n_head_kv: int):
  1752. if n_head_kv is not None and n_head != n_head_kv:
  1753. n_head = n_head_kv
  1754. return (weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  1755. .swapaxes(1, 2)
  1756. .reshape(weights.shape))
  1757. def set_gguf_parameters(self):
  1758. self.gguf_writer.add_name("InternLM2")
  1759. self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"])
  1760. self.gguf_writer.add_block_count(self.hparams["num_hidden_layers"])
  1761. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  1762. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  1763. self.gguf_writer.add_rope_freq_base(self.hparams["rope_theta"])
  1764. self.gguf_writer.add_head_count(self.hparams["num_attention_heads"])
  1765. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  1766. self.gguf_writer.add_head_count_kv(self.hparams["num_key_value_heads"])
  1767. def post_write_tensors(self, tensor_map, name, data_torch):
  1768. old_dtype = data_torch.dtype
  1769. # convert any unsupported data types to float32
  1770. if data_torch.dtype not in (torch.float16, torch.float32):
  1771. data_torch = data_torch.to(torch.float32)
  1772. data = data_torch.squeeze().numpy()
  1773. # map tensor names
  1774. new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias"))
  1775. if new_name is None:
  1776. print(f"Can not map tensor {name!r}")
  1777. sys.exit()
  1778. n_dims = len(data.shape)
  1779. data_dtype = data.dtype
  1780. # if f32 desired, convert any float16 to float32
  1781. if self.ftype == 0 and data_dtype == np.float16:
  1782. data = data.astype(np.float32)
  1783. # TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32
  1784. if self.ftype == 1 and data_dtype == np.float16 and n_dims == 1:
  1785. data = data.astype(np.float32)
  1786. # if f16 desired, convert any float32 2-dim weight tensors to float16
  1787. if self.ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
  1788. data = data.astype(np.float16)
  1789. print(f"{new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}")
  1790. self.gguf_writer.add_tensor(new_name, data)
  1791. def write_tensors(self):
  1792. from einops import rearrange
  1793. num_heads = self.hparams.get("num_attention_heads")
  1794. num_kv_heads = self.hparams.get("num_key_value_heads")
  1795. hidden_size = self.hparams.get("hidden_size")
  1796. q_per_kv = num_heads // num_kv_heads
  1797. head_dim = hidden_size // num_heads
  1798. num_groups = num_heads // q_per_kv
  1799. block_count = self.hparams["num_hidden_layers"]
  1800. model_kv = dict(self.get_tensors())
  1801. tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count)
  1802. qkv_pattern = r"model\.layers\.(\d+)\.attention\.wqkv"
  1803. for name, data_torch in model_kv.items():
  1804. # we don't need these
  1805. if name.endswith(".rotary_emb.inv_freq"):
  1806. continue
  1807. if re.match(qkv_pattern, name):
  1808. bid = re.findall(qkv_pattern, name)[0]
  1809. qkv = data_torch
  1810. qkv = rearrange(qkv.T, " o (g n i) ->o g n i", g=num_groups, n=q_per_kv + 2, i=head_dim)
  1811. q, k, v = qkv[..., : q_per_kv, :], qkv[..., q_per_kv: q_per_kv + 1, :], qkv[..., q_per_kv + 1: q_per_kv + 2, :]
  1812. # The model weights of q and k equire additional reshape.
  1813. q = self._hf_permute_qk(rearrange(q, " o g n i -> o (g n i)").T, num_heads, num_heads)
  1814. k = self._hf_permute_qk(rearrange(k, " o g n i -> o (g n i)").T, num_heads, num_kv_heads)
  1815. v = rearrange(v, " o g n i -> o (g n i)").T
  1816. self.post_write_tensors(tensor_map, f"model.layers.{bid}.attention.wq.weight", q)
  1817. self.post_write_tensors(tensor_map, f"model.layers.{bid}.attention.wk.weight", k)
  1818. self.post_write_tensors(tensor_map, f"model.layers.{bid}.attention.wv.weight", v)
  1819. else:
  1820. self.post_write_tensors(tensor_map, name, data_torch)
  1821. @Model.register("BertModel", "CamembertModel")
  1822. class BertModel(Model):
  1823. model_arch = gguf.MODEL_ARCH.BERT
  1824. def __init__(self, *args, **kwargs):
  1825. super().__init__(*args, **kwargs)
  1826. self.vocab_size = None
  1827. def set_gguf_parameters(self):
  1828. super().set_gguf_parameters()
  1829. self.gguf_writer.add_causal_attention(False)
  1830. # get pooling path
  1831. pooling_path = None
  1832. module_path = self.dir_model / "modules.json"
  1833. if module_path.is_file():
  1834. with open(module_path, encoding="utf-8") as f:
  1835. modules = json.load(f)
  1836. for mod in modules:
  1837. if mod["type"] == "sentence_transformers.models.Pooling":
  1838. pooling_path = mod["path"]
  1839. break
  1840. # get pooling type
  1841. if pooling_path is not None:
  1842. with open(self.dir_model / pooling_path / "config.json", encoding="utf-8") as f:
  1843. pooling = json.load(f)
  1844. if pooling["pooling_mode_mean_tokens"]:
  1845. pooling_type = gguf.PoolingType.MEAN
  1846. elif pooling["pooling_mode_cls_token"]:
  1847. pooling_type = gguf.PoolingType.CLS
  1848. else:
  1849. raise NotImplementedError("Only MEAN and CLS pooling types supported")
  1850. self.gguf_writer.add_pooling_type(pooling_type)
  1851. def set_vocab(self):
  1852. tokens, toktypes = self.get_basic_vocab()
  1853. self.vocab_size = len(tokens)
  1854. # we need this to validate the size of the token_type embeddings
  1855. # though currently we are passing all zeros to the token_type embeddings
  1856. self.gguf_writer.add_token_type_count(2) # "Sequence A" or "Sequence B"
  1857. # convert to phantom space vocab
  1858. def phantom(tok):
  1859. if tok.startswith("[") and tok.endswith("]"):
  1860. return tok
  1861. if tok.startswith("##"):
  1862. return tok[2:]
  1863. return "\u2581" + tok
  1864. tokens = list(map(phantom, tokens))
  1865. # add vocab to gguf
  1866. self.gguf_writer.add_tokenizer_model("bert")
  1867. self.gguf_writer.add_token_list(tokens)
  1868. self.gguf_writer.add_token_types(toktypes)
  1869. # handle special tokens
  1870. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  1871. special_vocab.add_to_gguf(self.gguf_writer)
  1872. def write_tensors(self):
  1873. tensor_map = gguf.get_tensor_name_map(self.model_arch, self.block_count)
  1874. tensors = dict(self.get_tensors())
  1875. for name, data_torch in tensors.items():
  1876. # we are only using BERT for embeddings so we don't need the pooling layer
  1877. if name in ("embeddings.position_ids", "pooler.dense.weight", "pooler.dense.bias"):
  1878. continue # we don't need these
  1879. # map tensor names
  1880. new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias"))
  1881. if new_name is None:
  1882. print(f"Can not map tensor {name!r}")
  1883. sys.exit()
  1884. data = data_torch.squeeze().numpy()
  1885. n_dims = len(data.shape)
  1886. new_dtype: type[np.floating[Any]]
  1887. if (
  1888. self.ftype == 1 and name.endswith(".weight") and n_dims == 2
  1889. and name != "embeddings.token_type_embeddings.weight" # not used with get_rows, must be F32
  1890. ):
  1891. # if f16 desired, convert any float32 2-dim weight tensors to float16
  1892. new_dtype = np.float16
  1893. else:
  1894. # if f32 desired, convert any float16 to float32
  1895. new_dtype = np.float32
  1896. print(f"{new_name}, n_dims = {n_dims}, {data_torch.dtype} --> {new_dtype}")
  1897. if data.dtype != new_dtype:
  1898. data = data.astype(new_dtype)
  1899. self.gguf_writer.add_tensor(new_name, data)
  1900. @Model.register("NomicBertModel")
  1901. class NomicBertModel(BertModel):
  1902. model_arch = gguf.MODEL_ARCH.NOMIC_BERT
  1903. def __init__(self, *args, **kwargs):
  1904. super().__init__(*args, **kwargs)
  1905. # the HF config claims n_ctx=8192, but it uses RoPE scaling
  1906. self.hparams["n_ctx"] = 2048
  1907. # SwigLU activation
  1908. assert self.hparams["activation_function"] == "swiglu"
  1909. # this doesn't do anything in the HF version
  1910. assert self.hparams["causal"] is False
  1911. # no bias tensors
  1912. assert self.hparams["qkv_proj_bias"] is False
  1913. assert self.hparams["mlp_fc1_bias"] is False
  1914. assert self.hparams["mlp_fc2_bias"] is False
  1915. # norm at end of layer
  1916. assert self.hparams["prenorm"] is False
  1917. # standard RoPE
  1918. assert self.hparams["rotary_emb_fraction"] == 1.0
  1919. assert self.hparams["rotary_emb_interleaved"] is False
  1920. assert self.hparams["rotary_emb_scale_base"] is None
  1921. def set_gguf_parameters(self):
  1922. super().set_gguf_parameters()
  1923. self.gguf_writer.add_rope_freq_base(self.hparams["rotary_emb_base"])
  1924. @Model.register("GemmaForCausalLM")
  1925. class GemmaModel(Model):
  1926. model_arch = gguf.MODEL_ARCH.GEMMA
  1927. def set_vocab(self):
  1928. self._set_vocab_sentencepiece()
  1929. # TODO: these special tokens should be exported only for the CodeGemma family
  1930. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=False,
  1931. special_token_types = ['prefix', 'suffix', 'middle', 'fsep', 'eot'])
  1932. special_vocab._set_special_token("prefix", 67)
  1933. special_vocab._set_special_token("suffix", 69)
  1934. special_vocab._set_special_token("middle", 68)
  1935. special_vocab._set_special_token("fsep", 70)
  1936. special_vocab._set_special_token("eot", 107)
  1937. special_vocab.add_to_gguf(self.gguf_writer)
  1938. def set_gguf_parameters(self):
  1939. hparams = self.hparams
  1940. block_count = hparams["num_hidden_layers"]
  1941. self.gguf_writer.add_name(self.dir_model.name)
  1942. self.gguf_writer.add_context_length(hparams["max_position_embeddings"])
  1943. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  1944. self.gguf_writer.add_block_count(block_count)
  1945. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  1946. self.gguf_writer.add_head_count(hparams["num_attention_heads"])
  1947. self.gguf_writer.add_head_count_kv(self.hparams["num_key_value_heads"] if "num_key_value_heads" in hparams else hparams["num_attention_heads"])
  1948. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  1949. self.gguf_writer.add_key_length(hparams["head_dim"])
  1950. self.gguf_writer.add_value_length(hparams["head_dim"])
  1951. self.gguf_writer.add_file_type(self.ftype)
  1952. def write_tensors(self):
  1953. block_count = self.hparams.get("n_layers", self.hparams.get("num_hidden_layers", self.hparams.get("n_layer")))
  1954. tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count)
  1955. for name, data_torch in self.get_tensors():
  1956. # lm_head is not used in llama.cpp, while autoawq will include this tensor in model
  1957. # To prevent errors, skip loading lm_head.weight.
  1958. if name == "lm_head.weight":
  1959. print(f"Skipping get tensor {name!r} in safetensors so that convert can end normally.")
  1960. continue
  1961. old_dtype = data_torch.dtype
  1962. # convert any unsupported data types to float32
  1963. if data_torch.dtype not in (torch.float16, torch.float32):
  1964. data_torch = data_torch.to(torch.float32)
  1965. # ref: https://github.com/huggingface/transformers/blob/fc37f38915372c15992b540dfcbbe00a916d4fc6/src/transformers/models/gemma/modeling_gemma.py#L89
  1966. if name.endswith("norm.weight"):
  1967. data_torch = data_torch + 1
  1968. data = data_torch.squeeze().numpy()
  1969. # map tensor names
  1970. new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias"))
  1971. if new_name is None:
  1972. print(f"Can not map tensor {name!r}")
  1973. sys.exit()
  1974. n_dims = len(data.shape)
  1975. data_dtype = data.dtype
  1976. data = data.astype(np.float32)
  1977. # if f16 desired, convert any float32 2-dim weight tensors to float16
  1978. if self.ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
  1979. data = data.astype(np.float16)
  1980. print(f"{new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}")
  1981. self.gguf_writer.add_tensor(new_name, data)
  1982. @Model.register("Starcoder2ForCausalLM")
  1983. class StarCoder2Model(Model):
  1984. model_arch = gguf.MODEL_ARCH.STARCODER2
  1985. @Model.register("MambaForCausalLM", "MambaLMHeadModel")
  1986. class MambaModel(Model):
  1987. model_arch = gguf.MODEL_ARCH.MAMBA
  1988. def set_vocab(self):
  1989. vocab_size = self.hparams["vocab_size"]
  1990. # Round vocab size to next multiple of 8
  1991. pad_vocab = self.hparams.get("pad_vocab_size_multiple", 8)
  1992. # pad using ceiling division
  1993. # ref: https://stackoverflow.com/a/17511341/22827863
  1994. vocab_size = -(vocab_size // -pad_vocab) * pad_vocab
  1995. self.hparams["vocab_size"] = vocab_size
  1996. if (self.dir_model / "tokenizer.json").is_file():
  1997. self._set_vocab_gpt2()
  1998. else:
  1999. # Use the GPT-NeoX tokenizer when no tokenizer files are present
  2000. tokenizer_path = Path(sys.path[0]) / "models" / "ggml-vocab-gpt-neox.gguf"
  2001. print(f"Using tokenizer from '{os.path.relpath(tokenizer_path, os.getcwd())}'")
  2002. neox_reader = gguf.GGUFReader(tokenizer_path, "r")
  2003. field = neox_reader.get_field(gguf.Keys.Tokenizer.MODEL)
  2004. self.gguf_writer.add_tokenizer_model(bytes(field.parts[-1]))
  2005. field = neox_reader.get_field(gguf.Keys.Tokenizer.LIST)
  2006. self.gguf_writer.add_token_list([bytes(field.parts[i]) for i in field.data][:vocab_size])
  2007. field = neox_reader.get_field(gguf.Keys.Tokenizer.TOKEN_TYPE)
  2008. self.gguf_writer.add_token_types([field.parts[i].tolist()[0] for i in field.data][:vocab_size])
  2009. field = neox_reader.get_field(gguf.Keys.Tokenizer.MERGES)
  2010. self.gguf_writer.add_token_merges([bytes(field.parts[i]) for i in field.data])
  2011. field = neox_reader.get_field(gguf.Keys.Tokenizer.BOS_ID)
  2012. self.gguf_writer.add_bos_token_id(field.parts[-1].tolist()[0])
  2013. field = neox_reader.get_field(gguf.Keys.Tokenizer.EOS_ID)
  2014. self.gguf_writer.add_eos_token_id(field.parts[-1].tolist()[0])
  2015. field = neox_reader.get_field(gguf.Keys.Tokenizer.UNK_ID)
  2016. self.gguf_writer.add_unk_token_id(field.parts[-1].tolist()[0])
  2017. def set_gguf_parameters(self):
  2018. d_model = self.find_hparam(["hidden_size", "d_model"])
  2019. d_conv = self.find_hparam(["conv_kernel", "d_conv"], optional=True) or 4
  2020. d_inner = self.find_hparam(["intermediate_size", "d_inner"], optional=True) or 2 * d_model
  2021. d_state = self.find_hparam(["state_size", "d_state"], optional=True) or 16
  2022. # ceiling division
  2023. # ref: https://stackoverflow.com/a/17511341/22827863
  2024. # ref: https://github.com/state-spaces/mamba/blob/ce59daea3a090d011d6476c6e5b97f6d58ddad8b/mamba_ssm/modules/mamba_simple.py#L58
  2025. dt_rank = self.find_hparam(["time_step_rank", "dt_rank"], optional=True) or -(d_model // -16)
  2026. rms_norm_eps = self.find_hparam(["layer_norm_epsilon", "rms_norm_eps"], optional=True) or 1e-5
  2027. # Fail early for models which don't have a block expansion factor of 2
  2028. assert d_inner == 2 * d_model
  2029. self.gguf_writer.add_name(self.dir_model.name)
  2030. self.gguf_writer.add_context_length(2**20) # arbitrary value; for those who use the default
  2031. self.gguf_writer.add_embedding_length(d_model)
  2032. self.gguf_writer.add_feed_forward_length(0) # unused, but seemingly required when loading
  2033. self.gguf_writer.add_head_count(0) # unused, but seemingly required when loading
  2034. self.gguf_writer.add_block_count(self.hparams["n_layer"])
  2035. self.gguf_writer.add_ssm_conv_kernel(d_conv)
  2036. self.gguf_writer.add_ssm_inner_size(d_inner)
  2037. self.gguf_writer.add_ssm_state_size(d_state)
  2038. self.gguf_writer.add_ssm_time_step_rank(dt_rank)
  2039. self.gguf_writer.add_layer_norm_rms_eps(rms_norm_eps)
  2040. self.gguf_writer.add_file_type(self.ftype)
  2041. def write_tensors(self):
  2042. block_count = self.hparams["n_layer"]
  2043. tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count)
  2044. tok_embd = None
  2045. tok_embd_name = gguf.TENSOR_NAMES[gguf.MODEL_TENSOR.TOKEN_EMBD] + ".weight"
  2046. output_name = gguf.TENSOR_NAMES[gguf.MODEL_TENSOR.OUTPUT] + ".weight"
  2047. for name, data_torch in self.get_tensors():
  2048. old_dtype = data_torch.dtype
  2049. # convert any unsupported data types to float32
  2050. if data_torch.dtype not in (torch.float16, torch.float32):
  2051. data_torch = data_torch.to(torch.float32)
  2052. # map tensor names
  2053. new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias"))
  2054. if new_name is None:
  2055. print(f"Can not map tensor {name!r}")
  2056. sys.exit()
  2057. if name.endswith(".A_log"):
  2058. print("A_log --> A ==> " + new_name)
  2059. data_torch = -torch.exp(data_torch)
  2060. # assuming token_embd.weight is seen before output.weight
  2061. if tok_embd is not None and new_name == output_name:
  2062. if torch.equal(tok_embd, data_torch):
  2063. print(f"{output_name} is equivalent to {tok_embd_name}, omitting")
  2064. continue
  2065. if new_name == tok_embd_name:
  2066. tok_embd = data_torch
  2067. data = data_torch.squeeze().numpy()
  2068. n_dims = len(data.shape)
  2069. data_dtype = data.dtype
  2070. # if f32 desired, convert any float16 to float32
  2071. if self.ftype == 0 and data_dtype == np.float16:
  2072. data = data.astype(np.float32)
  2073. # TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32
  2074. if self.ftype == 1 and data_dtype == np.float16 and n_dims == 1:
  2075. data = data.astype(np.float32)
  2076. # if f16 desired, convert big float32 2-dim weight tensors to float16
  2077. new_weight_name = new_name[:-len(".weight")] if new_name.endswith(".weight") else ""
  2078. if self.ftype == 1 and data_dtype == np.float32 and new_weight_name.endswith((".ssm_in", ".ssm_out", "token_embd", "output")) and n_dims == 2:
  2079. data = data.astype(np.float16)
  2080. print(f"{new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}")
  2081. self.gguf_writer.add_tensor(new_name, data)
  2082. @Model.register("CohereForCausalLM")
  2083. class CommandR2Model(Model):
  2084. model_arch = gguf.MODEL_ARCH.COMMAND_R
  2085. def __init__(self, *args, **kwargs):
  2086. super().__init__(*args, **kwargs)
  2087. # max_position_embeddings = 8192 in config.json but model was actually
  2088. # trained on 128k context length
  2089. self.hparams["max_position_embeddings"] = self.hparams["model_max_length"]
  2090. def set_gguf_parameters(self):
  2091. super().set_gguf_parameters()
  2092. self.gguf_writer.add_logit_scale(self.hparams["logit_scale"])
  2093. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
  2094. @Model.register("OlmoForCausalLM")
  2095. @Model.register("OLMoForCausalLM")
  2096. class OlmoModel(Model):
  2097. model_arch = gguf.MODEL_ARCH.OLMO
  2098. def set_gguf_parameters(self):
  2099. super().set_gguf_parameters()
  2100. self.gguf_writer.add_layer_norm_eps(1e-5)
  2101. if "clip_qkv" in self.hparams is not None:
  2102. self.gguf_writer.add_clamp_kqv(self.hparams["clip_qkv"])
  2103. # Same as super class, but permuting q_proj, k_proj
  2104. # Copied from: LlamaModel
  2105. def write_tensors(self):
  2106. block_count = self.hparams.get("n_layers", self.hparams.get("num_hidden_layers", self.hparams.get("n_layer")))
  2107. tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count)
  2108. n_head = self.hparams.get("num_attention_heads")
  2109. n_kv_head = self.hparams.get("num_key_value_heads")
  2110. for name, data_torch in self.get_tensors():
  2111. old_dtype = data_torch.dtype
  2112. # convert any unsupported data types to float32
  2113. if data_torch.dtype not in (torch.float16, torch.float32):
  2114. data_torch = data_torch.to(torch.float32)
  2115. data = data_torch.numpy()
  2116. if name.endswith("q_proj.weight"):
  2117. data = permute(data, n_head, n_head)
  2118. if name.endswith("k_proj.weight"):
  2119. data = permute(data, n_head, n_kv_head)
  2120. data = data.squeeze()
  2121. # map tensor names
  2122. new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias"))
  2123. if new_name is None:
  2124. print(f"Can not map tensor {name!r}")
  2125. sys.exit()
  2126. n_dims = len(data.shape)
  2127. data_dtype = data.dtype
  2128. # if f32 desired, convert any float16 to float32
  2129. if self.ftype == 0 and data_dtype == np.float16:
  2130. data = data.astype(np.float32)
  2131. # 1d tensors need to be converted to float32
  2132. if self.ftype == 1 and data_dtype == np.float16 and n_dims == 1:
  2133. data = data.astype(np.float32)
  2134. # if f16 desired, convert any float32 2-dim weight tensors to float16
  2135. if self.ftype == 1 and data_dtype == np.float32 and n_dims == 2:
  2136. data = data.astype(np.float16)
  2137. print(f"{new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}")
  2138. self.gguf_writer.add_tensor(new_name, data)
  2139. ###### CONVERSION LOGIC ######
  2140. def parse_args() -> argparse.Namespace:
  2141. parser = argparse.ArgumentParser(
  2142. description="Convert a huggingface model to a GGML compatible file")
  2143. parser.add_argument(
  2144. "--vocab-only", action="store_true",
  2145. help="extract only the vocab",
  2146. )
  2147. parser.add_argument(
  2148. "--awq-path", type=Path, default=None,
  2149. help="Path to scale awq cache file")
  2150. parser.add_argument(
  2151. "--outfile", type=Path,
  2152. help="path to write to; default: based on input",
  2153. )
  2154. parser.add_argument(
  2155. "--outtype", type=str, choices=["f32", "f16"], default="f16",
  2156. help="output format - use f32 for float32, f16 for float16",
  2157. )
  2158. parser.add_argument("--bigendian", action="store_true", help="model is executed on big endian machine")
  2159. parser.add_argument(
  2160. "model", type=Path,
  2161. help="directory containing model file",
  2162. )
  2163. parser.add_argument("--use-temp-file", action="store_true", help="use the tempfile library while processing (helpful when running out of memory, process killed)")
  2164. return parser.parse_args()
  2165. def main() -> None:
  2166. args = parse_args()
  2167. dir_model = args.model
  2168. if args.awq_path:
  2169. sys.path.insert(1, str(Path(__file__).parent / 'awq-py'))
  2170. from awq.apply_awq import add_scale_weights # type: ignore[import-not-found]
  2171. tmp_model_path = args.model / "weighted_model"
  2172. dir_model = tmp_model_path
  2173. if tmp_model_path.is_dir():
  2174. print(f"{tmp_model_path} exists as a weighted model.")
  2175. else:
  2176. tmp_model_path.mkdir(parents=True, exist_ok=True)
  2177. print("Saving new weighted model ...")
  2178. add_scale_weights(str(args.model), str(args.awq_path), str(tmp_model_path))
  2179. print(f"Saved weighted model at {tmp_model_path}.")
  2180. if not dir_model.is_dir():
  2181. print(f'Error: {args.model} is not a directory', file=sys.stderr)
  2182. sys.exit(1)
  2183. ftype_map = {
  2184. "f32": gguf.GGMLQuantizationType.F32,
  2185. "f16": gguf.GGMLQuantizationType.F16,
  2186. }
  2187. if args.outfile is not None:
  2188. fname_out = args.outfile
  2189. else:
  2190. # output in the same directory as the model by default
  2191. fname_out = dir_model / f'ggml-model-{args.outtype}.gguf'
  2192. print(f"Loading model: {dir_model.name}")
  2193. hparams = Model.load_hparams(dir_model)
  2194. with torch.inference_mode():
  2195. model_class = Model.from_model_architecture(hparams["architectures"][0])
  2196. model_instance = model_class(dir_model, ftype_map[args.outtype], fname_out, args.bigendian, args.use_temp_file)
  2197. print("Set model parameters")
  2198. model_instance.set_gguf_parameters()
  2199. print("Set model tokenizer")
  2200. model_instance.set_vocab()
  2201. if args.vocab_only:
  2202. print(f"Exporting model vocab to '{fname_out}'")
  2203. model_instance.write_vocab()
  2204. else:
  2205. print(f"Exporting model to '{fname_out}'")
  2206. model_instance.write()
  2207. print(f"Model successfully exported to '{fname_out}'")
  2208. if __name__ == '__main__':
  2209. main()