ggml.c 697 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284528552865287528852895290529152925293529452955296529752985299530053015302530353045305530653075308530953105311531253135314531553165317531853195320532153225323532453255326532753285329533053315332533353345335533653375338533953405341534253435344534553465347534853495350535153525353535453555356535753585359536053615362536353645365536653675368536953705371537253735374537553765377537853795380538153825383538453855386538753885389539053915392539353945395539653975398539954005401540254035404540554065407540854095410541154125413541454155416541754185419542054215422542354245425542654275428542954305431543254335434543554365437543854395440544154425443544454455446544754485449545054515452545354545455545654575458545954605461546254635464546554665467546854695470547154725473547454755476547754785479548054815482548354845485548654875488548954905491549254935494549554965497549854995500550155025503550455055506550755085509551055115512551355145515551655175518551955205521552255235524552555265527552855295530553155325533553455355536553755385539554055415542554355445545554655475548554955505551555255535554555555565557555855595560556155625563556455655566556755685569557055715572557355745575557655775578557955805581558255835584558555865587558855895590559155925593559455955596559755985599560056015602560356045605560656075608560956105611561256135614561556165617561856195620562156225623562456255626562756285629563056315632563356345635563656375638563956405641564256435644564556465647564856495650565156525653565456555656565756585659566056615662566356645665566656675668566956705671567256735674567556765677567856795680568156825683568456855686568756885689569056915692569356945695569656975698569957005701570257035704570557065707570857095710571157125713571457155716571757185719572057215722572357245725572657275728572957305731573257335734573557365737573857395740574157425743574457455746574757485749575057515752575357545755575657575758575957605761576257635764576557665767576857695770577157725773577457755776577757785779578057815782578357845785578657875788578957905791579257935794579557965797579857995800580158025803580458055806580758085809581058115812581358145815581658175818581958205821582258235824582558265827582858295830583158325833583458355836583758385839584058415842584358445845584658475848584958505851585258535854585558565857585858595860586158625863586458655866586758685869587058715872587358745875587658775878587958805881588258835884588558865887588858895890589158925893589458955896589758985899590059015902590359045905590659075908590959105911591259135914591559165917591859195920592159225923592459255926592759285929593059315932593359345935593659375938593959405941594259435944594559465947594859495950595159525953595459555956595759585959596059615962596359645965596659675968596959705971597259735974597559765977597859795980598159825983598459855986598759885989599059915992599359945995599659975998599960006001600260036004600560066007600860096010601160126013601460156016601760186019602060216022602360246025602660276028602960306031603260336034603560366037603860396040604160426043604460456046604760486049605060516052605360546055605660576058605960606061606260636064606560666067606860696070607160726073607460756076607760786079608060816082608360846085608660876088608960906091609260936094609560966097609860996100610161026103610461056106610761086109611061116112611361146115611661176118611961206121612261236124612561266127612861296130613161326133613461356136613761386139614061416142614361446145614661476148614961506151615261536154615561566157615861596160616161626163616461656166616761686169617061716172617361746175617661776178617961806181618261836184618561866187618861896190619161926193619461956196619761986199620062016202620362046205620662076208620962106211621262136214621562166217621862196220622162226223622462256226622762286229623062316232623362346235623662376238623962406241624262436244624562466247624862496250625162526253625462556256625762586259626062616262626362646265626662676268626962706271627262736274627562766277627862796280628162826283628462856286628762886289629062916292629362946295629662976298629963006301630263036304630563066307630863096310631163126313631463156316631763186319632063216322632363246325632663276328632963306331633263336334633563366337633863396340634163426343634463456346634763486349635063516352635363546355635663576358635963606361636263636364636563666367636863696370637163726373637463756376637763786379638063816382638363846385638663876388638963906391639263936394639563966397639863996400640164026403640464056406640764086409641064116412641364146415641664176418641964206421642264236424642564266427642864296430643164326433643464356436643764386439644064416442644364446445644664476448644964506451645264536454645564566457645864596460646164626463646464656466646764686469647064716472647364746475647664776478647964806481648264836484648564866487648864896490649164926493649464956496649764986499650065016502650365046505650665076508650965106511651265136514651565166517651865196520652165226523652465256526652765286529653065316532653365346535653665376538653965406541654265436544654565466547654865496550655165526553655465556556655765586559656065616562656365646565656665676568656965706571657265736574657565766577657865796580658165826583658465856586658765886589659065916592659365946595659665976598659966006601660266036604660566066607660866096610661166126613661466156616661766186619662066216622662366246625662666276628662966306631663266336634663566366637663866396640664166426643664466456646664766486649665066516652665366546655665666576658665966606661666266636664666566666667666866696670667166726673667466756676667766786679668066816682668366846685668666876688668966906691669266936694669566966697669866996700670167026703670467056706670767086709671067116712671367146715671667176718671967206721672267236724672567266727672867296730673167326733673467356736673767386739674067416742674367446745674667476748674967506751675267536754675567566757675867596760676167626763676467656766676767686769677067716772677367746775677667776778677967806781678267836784678567866787678867896790679167926793679467956796679767986799680068016802680368046805680668076808680968106811681268136814681568166817681868196820682168226823682468256826682768286829683068316832683368346835683668376838683968406841684268436844684568466847684868496850685168526853685468556856685768586859686068616862686368646865686668676868686968706871687268736874687568766877687868796880688168826883688468856886688768886889689068916892689368946895689668976898689969006901690269036904690569066907690869096910691169126913691469156916691769186919692069216922692369246925692669276928692969306931693269336934693569366937693869396940694169426943694469456946694769486949695069516952695369546955695669576958695969606961696269636964696569666967696869696970697169726973697469756976697769786979698069816982698369846985698669876988698969906991699269936994699569966997699869997000700170027003700470057006700770087009701070117012701370147015701670177018701970207021702270237024702570267027702870297030703170327033703470357036703770387039704070417042704370447045704670477048704970507051705270537054705570567057705870597060706170627063706470657066706770687069707070717072707370747075707670777078707970807081708270837084708570867087708870897090709170927093709470957096709770987099710071017102710371047105710671077108710971107111711271137114711571167117711871197120712171227123712471257126712771287129713071317132713371347135713671377138713971407141714271437144714571467147714871497150715171527153715471557156715771587159716071617162716371647165716671677168716971707171717271737174717571767177717871797180718171827183718471857186718771887189719071917192719371947195719671977198719972007201720272037204720572067207720872097210721172127213721472157216721772187219722072217222722372247225722672277228722972307231723272337234723572367237723872397240724172427243724472457246724772487249725072517252725372547255725672577258725972607261726272637264726572667267726872697270727172727273727472757276727772787279728072817282728372847285728672877288728972907291729272937294729572967297729872997300730173027303730473057306730773087309731073117312731373147315731673177318731973207321732273237324732573267327732873297330733173327333733473357336733773387339734073417342734373447345734673477348734973507351735273537354735573567357735873597360736173627363736473657366736773687369737073717372737373747375737673777378737973807381738273837384738573867387738873897390739173927393739473957396739773987399740074017402740374047405740674077408740974107411741274137414741574167417741874197420742174227423742474257426742774287429743074317432743374347435743674377438743974407441744274437444744574467447744874497450745174527453745474557456745774587459746074617462746374647465746674677468746974707471747274737474747574767477747874797480748174827483748474857486748774887489749074917492749374947495749674977498749975007501750275037504750575067507750875097510751175127513751475157516751775187519752075217522752375247525752675277528752975307531753275337534753575367537753875397540754175427543754475457546754775487549755075517552755375547555755675577558755975607561756275637564756575667567756875697570757175727573757475757576757775787579758075817582758375847585758675877588758975907591759275937594759575967597759875997600760176027603760476057606760776087609761076117612761376147615761676177618761976207621762276237624762576267627762876297630763176327633763476357636763776387639764076417642764376447645764676477648764976507651765276537654765576567657765876597660766176627663766476657666766776687669767076717672767376747675767676777678767976807681768276837684768576867687768876897690769176927693769476957696769776987699770077017702770377047705770677077708770977107711771277137714771577167717771877197720772177227723772477257726772777287729773077317732773377347735773677377738773977407741774277437744774577467747774877497750775177527753775477557756775777587759776077617762776377647765776677677768776977707771777277737774777577767777777877797780778177827783778477857786778777887789779077917792779377947795779677977798779978007801780278037804780578067807780878097810781178127813781478157816781778187819782078217822782378247825782678277828782978307831783278337834783578367837783878397840784178427843784478457846784778487849785078517852785378547855785678577858785978607861786278637864786578667867786878697870787178727873787478757876787778787879788078817882788378847885788678877888788978907891789278937894789578967897789878997900790179027903790479057906790779087909791079117912791379147915791679177918791979207921792279237924792579267927792879297930793179327933793479357936793779387939794079417942794379447945794679477948794979507951795279537954795579567957795879597960796179627963796479657966796779687969797079717972797379747975797679777978797979807981798279837984798579867987798879897990799179927993799479957996799779987999800080018002800380048005800680078008800980108011801280138014801580168017801880198020802180228023802480258026802780288029803080318032803380348035803680378038803980408041804280438044804580468047804880498050805180528053805480558056805780588059806080618062806380648065806680678068806980708071807280738074807580768077807880798080808180828083808480858086808780888089809080918092809380948095809680978098809981008101810281038104810581068107810881098110811181128113811481158116811781188119812081218122812381248125812681278128812981308131813281338134813581368137813881398140814181428143814481458146814781488149815081518152815381548155815681578158815981608161816281638164816581668167816881698170817181728173817481758176817781788179818081818182818381848185818681878188818981908191819281938194819581968197819881998200820182028203820482058206820782088209821082118212821382148215821682178218821982208221822282238224822582268227822882298230823182328233823482358236823782388239824082418242824382448245824682478248824982508251825282538254825582568257825882598260826182628263826482658266826782688269827082718272827382748275827682778278827982808281828282838284828582868287828882898290829182928293829482958296829782988299830083018302830383048305830683078308830983108311831283138314831583168317831883198320832183228323832483258326832783288329833083318332833383348335833683378338833983408341834283438344834583468347834883498350835183528353835483558356835783588359836083618362836383648365836683678368836983708371837283738374837583768377837883798380838183828383838483858386838783888389839083918392839383948395839683978398839984008401840284038404840584068407840884098410841184128413841484158416841784188419842084218422842384248425842684278428842984308431843284338434843584368437843884398440844184428443844484458446844784488449845084518452845384548455845684578458845984608461846284638464846584668467846884698470847184728473847484758476847784788479848084818482848384848485848684878488848984908491849284938494849584968497849884998500850185028503850485058506850785088509851085118512851385148515851685178518851985208521852285238524852585268527852885298530853185328533853485358536853785388539854085418542854385448545854685478548854985508551855285538554855585568557855885598560856185628563856485658566856785688569857085718572857385748575857685778578857985808581858285838584858585868587858885898590859185928593859485958596859785988599860086018602860386048605860686078608860986108611861286138614861586168617861886198620862186228623862486258626862786288629863086318632863386348635863686378638863986408641864286438644864586468647864886498650865186528653865486558656865786588659866086618662866386648665866686678668866986708671867286738674867586768677867886798680868186828683868486858686868786888689869086918692869386948695869686978698869987008701870287038704870587068707870887098710871187128713871487158716871787188719872087218722872387248725872687278728872987308731873287338734873587368737873887398740874187428743874487458746874787488749875087518752875387548755875687578758875987608761876287638764876587668767876887698770877187728773877487758776877787788779878087818782878387848785878687878788878987908791879287938794879587968797879887998800880188028803880488058806880788088809881088118812881388148815881688178818881988208821882288238824882588268827882888298830883188328833883488358836883788388839884088418842884388448845884688478848884988508851885288538854885588568857885888598860886188628863886488658866886788688869887088718872887388748875887688778878887988808881888288838884888588868887888888898890889188928893889488958896889788988899890089018902890389048905890689078908890989108911891289138914891589168917891889198920892189228923892489258926892789288929893089318932893389348935893689378938893989408941894289438944894589468947894889498950895189528953895489558956895789588959896089618962896389648965896689678968896989708971897289738974897589768977897889798980898189828983898489858986898789888989899089918992899389948995899689978998899990009001900290039004900590069007900890099010901190129013901490159016901790189019902090219022902390249025902690279028902990309031903290339034903590369037903890399040904190429043904490459046904790489049905090519052905390549055905690579058905990609061906290639064906590669067906890699070907190729073907490759076907790789079908090819082908390849085908690879088908990909091909290939094909590969097909890999100910191029103910491059106910791089109911091119112911391149115911691179118911991209121912291239124912591269127912891299130913191329133913491359136913791389139914091419142914391449145914691479148914991509151915291539154915591569157915891599160916191629163916491659166916791689169917091719172917391749175917691779178917991809181918291839184918591869187918891899190919191929193919491959196919791989199920092019202920392049205920692079208920992109211921292139214921592169217921892199220922192229223922492259226922792289229923092319232923392349235923692379238923992409241924292439244924592469247924892499250925192529253925492559256925792589259926092619262926392649265926692679268926992709271927292739274927592769277927892799280928192829283928492859286928792889289929092919292929392949295929692979298929993009301930293039304930593069307930893099310931193129313931493159316931793189319932093219322932393249325932693279328932993309331933293339334933593369337933893399340934193429343934493459346934793489349935093519352935393549355935693579358935993609361936293639364936593669367936893699370937193729373937493759376937793789379938093819382938393849385938693879388938993909391939293939394939593969397939893999400940194029403940494059406940794089409941094119412941394149415941694179418941994209421942294239424942594269427942894299430943194329433943494359436943794389439944094419442944394449445944694479448944994509451945294539454945594569457945894599460946194629463946494659466946794689469947094719472947394749475947694779478947994809481948294839484948594869487948894899490949194929493949494959496949794989499950095019502950395049505950695079508950995109511951295139514951595169517951895199520952195229523952495259526952795289529953095319532953395349535953695379538953995409541954295439544954595469547954895499550955195529553955495559556955795589559956095619562956395649565956695679568956995709571957295739574957595769577957895799580958195829583958495859586958795889589959095919592959395949595959695979598959996009601960296039604960596069607960896099610961196129613961496159616961796189619962096219622962396249625962696279628962996309631963296339634963596369637963896399640964196429643964496459646964796489649965096519652965396549655965696579658965996609661966296639664966596669667966896699670967196729673967496759676967796789679968096819682968396849685968696879688968996909691969296939694969596969697969896999700970197029703970497059706970797089709971097119712971397149715971697179718971997209721972297239724972597269727972897299730973197329733973497359736973797389739974097419742974397449745974697479748974997509751975297539754975597569757975897599760976197629763976497659766976797689769977097719772977397749775977697779778977997809781978297839784978597869787978897899790979197929793979497959796979797989799980098019802980398049805980698079808980998109811981298139814981598169817981898199820982198229823982498259826982798289829983098319832983398349835983698379838983998409841984298439844984598469847984898499850985198529853985498559856985798589859986098619862986398649865986698679868986998709871987298739874987598769877987898799880988198829883988498859886988798889889989098919892989398949895989698979898989999009901990299039904990599069907990899099910991199129913991499159916991799189919992099219922992399249925992699279928992999309931993299339934993599369937993899399940994199429943994499459946994799489949995099519952995399549955995699579958995999609961996299639964996599669967996899699970997199729973997499759976997799789979998099819982998399849985998699879988998999909991999299939994999599969997999899991000010001100021000310004100051000610007100081000910010100111001210013100141001510016100171001810019100201002110022100231002410025100261002710028100291003010031100321003310034100351003610037100381003910040100411004210043100441004510046100471004810049100501005110052100531005410055100561005710058100591006010061100621006310064100651006610067100681006910070100711007210073100741007510076100771007810079100801008110082100831008410085100861008710088100891009010091100921009310094100951009610097100981009910100101011010210103101041010510106101071010810109101101011110112101131011410115101161011710118101191012010121101221012310124101251012610127101281012910130101311013210133101341013510136101371013810139101401014110142101431014410145101461014710148101491015010151101521015310154101551015610157101581015910160101611016210163101641016510166101671016810169101701017110172101731017410175101761017710178101791018010181101821018310184101851018610187101881018910190101911019210193101941019510196101971019810199102001020110202102031020410205102061020710208102091021010211102121021310214102151021610217102181021910220102211022210223102241022510226102271022810229102301023110232102331023410235102361023710238102391024010241102421024310244102451024610247102481024910250102511025210253102541025510256102571025810259102601026110262102631026410265102661026710268102691027010271102721027310274102751027610277102781027910280102811028210283102841028510286102871028810289102901029110292102931029410295102961029710298102991030010301103021030310304103051030610307103081030910310103111031210313103141031510316103171031810319103201032110322103231032410325103261032710328103291033010331103321033310334103351033610337103381033910340103411034210343103441034510346103471034810349103501035110352103531035410355103561035710358103591036010361103621036310364103651036610367103681036910370103711037210373103741037510376103771037810379103801038110382103831038410385103861038710388103891039010391103921039310394103951039610397103981039910400104011040210403104041040510406104071040810409104101041110412104131041410415104161041710418104191042010421104221042310424104251042610427104281042910430104311043210433104341043510436104371043810439104401044110442104431044410445104461044710448104491045010451104521045310454104551045610457104581045910460104611046210463104641046510466104671046810469104701047110472104731047410475104761047710478104791048010481104821048310484104851048610487104881048910490104911049210493104941049510496104971049810499105001050110502105031050410505105061050710508105091051010511105121051310514105151051610517105181051910520105211052210523105241052510526105271052810529105301053110532105331053410535105361053710538105391054010541105421054310544105451054610547105481054910550105511055210553105541055510556105571055810559105601056110562105631056410565105661056710568105691057010571105721057310574105751057610577105781057910580105811058210583105841058510586105871058810589105901059110592105931059410595105961059710598105991060010601106021060310604106051060610607106081060910610106111061210613106141061510616106171061810619106201062110622106231062410625106261062710628106291063010631106321063310634106351063610637106381063910640106411064210643106441064510646106471064810649106501065110652106531065410655106561065710658106591066010661106621066310664106651066610667106681066910670106711067210673106741067510676106771067810679106801068110682106831068410685106861068710688106891069010691106921069310694106951069610697106981069910700107011070210703107041070510706107071070810709107101071110712107131071410715107161071710718107191072010721107221072310724107251072610727107281072910730107311073210733107341073510736107371073810739107401074110742107431074410745107461074710748107491075010751107521075310754107551075610757107581075910760107611076210763107641076510766107671076810769107701077110772107731077410775107761077710778107791078010781107821078310784107851078610787107881078910790107911079210793107941079510796107971079810799108001080110802108031080410805108061080710808108091081010811108121081310814108151081610817108181081910820108211082210823108241082510826108271082810829108301083110832108331083410835108361083710838108391084010841108421084310844108451084610847108481084910850108511085210853108541085510856108571085810859108601086110862108631086410865108661086710868108691087010871108721087310874108751087610877108781087910880108811088210883108841088510886108871088810889108901089110892108931089410895108961089710898108991090010901109021090310904109051090610907109081090910910109111091210913109141091510916109171091810919109201092110922109231092410925109261092710928109291093010931109321093310934109351093610937109381093910940109411094210943109441094510946109471094810949109501095110952109531095410955109561095710958109591096010961109621096310964109651096610967109681096910970109711097210973109741097510976109771097810979109801098110982109831098410985109861098710988109891099010991109921099310994109951099610997109981099911000110011100211003110041100511006110071100811009110101101111012110131101411015110161101711018110191102011021110221102311024110251102611027110281102911030110311103211033110341103511036110371103811039110401104111042110431104411045110461104711048110491105011051110521105311054110551105611057110581105911060110611106211063110641106511066110671106811069110701107111072110731107411075110761107711078110791108011081110821108311084110851108611087110881108911090110911109211093110941109511096110971109811099111001110111102111031110411105111061110711108111091111011111111121111311114111151111611117111181111911120111211112211123111241112511126111271112811129111301113111132111331113411135111361113711138111391114011141111421114311144111451114611147111481114911150111511115211153111541115511156111571115811159111601116111162111631116411165111661116711168111691117011171111721117311174111751117611177111781117911180111811118211183111841118511186111871118811189111901119111192111931119411195111961119711198111991120011201112021120311204112051120611207112081120911210112111121211213112141121511216112171121811219112201122111222112231122411225112261122711228112291123011231112321123311234112351123611237112381123911240112411124211243112441124511246112471124811249112501125111252112531125411255112561125711258112591126011261112621126311264112651126611267112681126911270112711127211273112741127511276112771127811279112801128111282112831128411285112861128711288112891129011291112921129311294112951129611297112981129911300113011130211303113041130511306113071130811309113101131111312113131131411315113161131711318113191132011321113221132311324113251132611327113281132911330113311133211333113341133511336113371133811339113401134111342113431134411345113461134711348113491135011351113521135311354113551135611357113581135911360113611136211363113641136511366113671136811369113701137111372113731137411375113761137711378113791138011381113821138311384113851138611387113881138911390113911139211393113941139511396113971139811399114001140111402114031140411405114061140711408114091141011411114121141311414114151141611417114181141911420114211142211423114241142511426114271142811429114301143111432114331143411435114361143711438114391144011441114421144311444114451144611447114481144911450114511145211453114541145511456114571145811459114601146111462114631146411465114661146711468114691147011471114721147311474114751147611477114781147911480114811148211483114841148511486114871148811489114901149111492114931149411495114961149711498114991150011501115021150311504115051150611507115081150911510115111151211513115141151511516115171151811519115201152111522115231152411525115261152711528115291153011531115321153311534115351153611537115381153911540115411154211543115441154511546115471154811549115501155111552115531155411555115561155711558115591156011561115621156311564115651156611567115681156911570115711157211573115741157511576115771157811579115801158111582115831158411585115861158711588115891159011591115921159311594115951159611597115981159911600116011160211603116041160511606116071160811609116101161111612116131161411615116161161711618116191162011621116221162311624116251162611627116281162911630116311163211633116341163511636116371163811639116401164111642116431164411645116461164711648116491165011651116521165311654116551165611657116581165911660116611166211663116641166511666116671166811669116701167111672116731167411675116761167711678116791168011681116821168311684116851168611687116881168911690116911169211693116941169511696116971169811699117001170111702117031170411705117061170711708117091171011711117121171311714117151171611717117181171911720117211172211723117241172511726117271172811729117301173111732117331173411735117361173711738117391174011741117421174311744117451174611747117481174911750117511175211753117541175511756117571175811759117601176111762117631176411765117661176711768117691177011771117721177311774117751177611777117781177911780117811178211783117841178511786117871178811789117901179111792117931179411795117961179711798117991180011801118021180311804118051180611807118081180911810118111181211813118141181511816118171181811819118201182111822118231182411825118261182711828118291183011831118321183311834118351183611837118381183911840118411184211843118441184511846118471184811849118501185111852118531185411855118561185711858118591186011861118621186311864118651186611867118681186911870118711187211873118741187511876118771187811879118801188111882118831188411885118861188711888118891189011891118921189311894118951189611897118981189911900119011190211903119041190511906119071190811909119101191111912119131191411915119161191711918119191192011921119221192311924119251192611927119281192911930119311193211933119341193511936119371193811939119401194111942119431194411945119461194711948119491195011951119521195311954119551195611957119581195911960119611196211963119641196511966119671196811969119701197111972119731197411975119761197711978119791198011981119821198311984119851198611987119881198911990119911199211993119941199511996119971199811999120001200112002120031200412005120061200712008120091201012011120121201312014120151201612017120181201912020120211202212023120241202512026120271202812029120301203112032120331203412035120361203712038120391204012041120421204312044120451204612047120481204912050120511205212053120541205512056120571205812059120601206112062120631206412065120661206712068120691207012071120721207312074120751207612077120781207912080120811208212083120841208512086120871208812089120901209112092120931209412095120961209712098120991210012101121021210312104121051210612107121081210912110121111211212113121141211512116121171211812119121201212112122121231212412125121261212712128121291213012131121321213312134121351213612137121381213912140121411214212143121441214512146121471214812149121501215112152121531215412155121561215712158121591216012161121621216312164121651216612167121681216912170121711217212173121741217512176121771217812179121801218112182121831218412185121861218712188121891219012191121921219312194121951219612197121981219912200122011220212203122041220512206122071220812209122101221112212122131221412215122161221712218122191222012221122221222312224122251222612227122281222912230122311223212233122341223512236122371223812239122401224112242122431224412245122461224712248122491225012251122521225312254122551225612257122581225912260122611226212263122641226512266122671226812269122701227112272122731227412275122761227712278122791228012281122821228312284122851228612287122881228912290122911229212293122941229512296122971229812299123001230112302123031230412305123061230712308123091231012311123121231312314123151231612317123181231912320123211232212323123241232512326123271232812329123301233112332123331233412335123361233712338123391234012341123421234312344123451234612347123481234912350123511235212353123541235512356123571235812359123601236112362123631236412365123661236712368123691237012371123721237312374123751237612377123781237912380123811238212383123841238512386123871238812389123901239112392123931239412395123961239712398123991240012401124021240312404124051240612407124081240912410124111241212413124141241512416124171241812419124201242112422124231242412425124261242712428124291243012431124321243312434124351243612437124381243912440124411244212443124441244512446124471244812449124501245112452124531245412455124561245712458124591246012461124621246312464124651246612467124681246912470124711247212473124741247512476124771247812479124801248112482124831248412485124861248712488124891249012491124921249312494124951249612497124981249912500125011250212503125041250512506125071250812509125101251112512125131251412515125161251712518125191252012521125221252312524125251252612527125281252912530125311253212533125341253512536125371253812539125401254112542125431254412545125461254712548125491255012551125521255312554125551255612557125581255912560125611256212563125641256512566125671256812569125701257112572125731257412575125761257712578125791258012581125821258312584125851258612587125881258912590125911259212593125941259512596125971259812599126001260112602126031260412605126061260712608126091261012611126121261312614126151261612617126181261912620126211262212623126241262512626126271262812629126301263112632126331263412635126361263712638126391264012641126421264312644126451264612647126481264912650126511265212653126541265512656126571265812659126601266112662126631266412665126661266712668126691267012671126721267312674126751267612677126781267912680126811268212683126841268512686126871268812689126901269112692126931269412695126961269712698126991270012701127021270312704127051270612707127081270912710127111271212713127141271512716127171271812719127201272112722127231272412725127261272712728127291273012731127321273312734127351273612737127381273912740127411274212743127441274512746127471274812749127501275112752127531275412755127561275712758127591276012761127621276312764127651276612767127681276912770127711277212773127741277512776127771277812779127801278112782127831278412785127861278712788127891279012791127921279312794127951279612797127981279912800128011280212803128041280512806128071280812809128101281112812128131281412815128161281712818128191282012821128221282312824128251282612827128281282912830128311283212833128341283512836128371283812839128401284112842128431284412845128461284712848128491285012851128521285312854128551285612857128581285912860128611286212863128641286512866128671286812869128701287112872128731287412875128761287712878128791288012881128821288312884128851288612887128881288912890128911289212893128941289512896128971289812899129001290112902129031290412905129061290712908129091291012911129121291312914129151291612917129181291912920129211292212923129241292512926129271292812929129301293112932129331293412935129361293712938129391294012941129421294312944129451294612947129481294912950129511295212953129541295512956129571295812959129601296112962129631296412965129661296712968129691297012971129721297312974129751297612977129781297912980129811298212983129841298512986129871298812989129901299112992129931299412995129961299712998129991300013001130021300313004130051300613007130081300913010130111301213013130141301513016130171301813019130201302113022130231302413025130261302713028130291303013031130321303313034130351303613037130381303913040130411304213043130441304513046130471304813049130501305113052130531305413055130561305713058130591306013061130621306313064130651306613067130681306913070130711307213073130741307513076130771307813079130801308113082130831308413085130861308713088130891309013091130921309313094130951309613097130981309913100131011310213103131041310513106131071310813109131101311113112131131311413115131161311713118131191312013121131221312313124131251312613127131281312913130131311313213133131341313513136131371313813139131401314113142131431314413145131461314713148131491315013151131521315313154131551315613157131581315913160131611316213163131641316513166131671316813169131701317113172131731317413175131761317713178131791318013181131821318313184131851318613187131881318913190131911319213193131941319513196131971319813199132001320113202132031320413205132061320713208132091321013211132121321313214132151321613217132181321913220132211322213223132241322513226132271322813229132301323113232132331323413235132361323713238132391324013241132421324313244132451324613247132481324913250132511325213253132541325513256132571325813259132601326113262132631326413265132661326713268132691327013271132721327313274132751327613277132781327913280132811328213283132841328513286132871328813289132901329113292132931329413295132961329713298132991330013301133021330313304133051330613307133081330913310133111331213313133141331513316133171331813319133201332113322133231332413325133261332713328133291333013331133321333313334133351333613337133381333913340133411334213343133441334513346133471334813349133501335113352133531335413355133561335713358133591336013361133621336313364133651336613367133681336913370133711337213373133741337513376133771337813379133801338113382133831338413385133861338713388133891339013391133921339313394133951339613397133981339913400134011340213403134041340513406134071340813409134101341113412134131341413415134161341713418134191342013421134221342313424134251342613427134281342913430134311343213433134341343513436134371343813439134401344113442134431344413445134461344713448134491345013451134521345313454134551345613457134581345913460134611346213463134641346513466134671346813469134701347113472134731347413475134761347713478134791348013481134821348313484134851348613487134881348913490134911349213493134941349513496134971349813499135001350113502135031350413505135061350713508135091351013511135121351313514135151351613517135181351913520135211352213523135241352513526135271352813529135301353113532135331353413535135361353713538135391354013541135421354313544135451354613547135481354913550135511355213553135541355513556135571355813559135601356113562135631356413565135661356713568135691357013571135721357313574135751357613577135781357913580135811358213583135841358513586135871358813589135901359113592135931359413595135961359713598135991360013601136021360313604136051360613607136081360913610136111361213613136141361513616136171361813619136201362113622136231362413625136261362713628136291363013631136321363313634136351363613637136381363913640136411364213643136441364513646136471364813649136501365113652136531365413655136561365713658136591366013661136621366313664136651366613667136681366913670136711367213673136741367513676136771367813679136801368113682136831368413685136861368713688136891369013691136921369313694136951369613697136981369913700137011370213703137041370513706137071370813709137101371113712137131371413715137161371713718137191372013721137221372313724137251372613727137281372913730137311373213733137341373513736137371373813739137401374113742137431374413745137461374713748137491375013751137521375313754137551375613757137581375913760137611376213763137641376513766137671376813769137701377113772137731377413775137761377713778137791378013781137821378313784137851378613787137881378913790137911379213793137941379513796137971379813799138001380113802138031380413805138061380713808138091381013811138121381313814138151381613817138181381913820138211382213823138241382513826138271382813829138301383113832138331383413835138361383713838138391384013841138421384313844138451384613847138481384913850138511385213853138541385513856138571385813859138601386113862138631386413865138661386713868138691387013871138721387313874138751387613877138781387913880138811388213883138841388513886138871388813889138901389113892138931389413895138961389713898138991390013901139021390313904139051390613907139081390913910139111391213913139141391513916139171391813919139201392113922139231392413925139261392713928139291393013931139321393313934139351393613937139381393913940139411394213943139441394513946139471394813949139501395113952139531395413955139561395713958139591396013961139621396313964139651396613967139681396913970139711397213973139741397513976139771397813979139801398113982139831398413985139861398713988139891399013991139921399313994139951399613997139981399914000140011400214003140041400514006140071400814009140101401114012140131401414015140161401714018140191402014021140221402314024140251402614027140281402914030140311403214033140341403514036140371403814039140401404114042140431404414045140461404714048140491405014051140521405314054140551405614057140581405914060140611406214063140641406514066140671406814069140701407114072140731407414075140761407714078140791408014081140821408314084140851408614087140881408914090140911409214093140941409514096140971409814099141001410114102141031410414105141061410714108141091411014111141121411314114141151411614117141181411914120141211412214123141241412514126141271412814129141301413114132141331413414135141361413714138141391414014141141421414314144141451414614147141481414914150141511415214153141541415514156141571415814159141601416114162141631416414165141661416714168141691417014171141721417314174141751417614177141781417914180141811418214183141841418514186141871418814189141901419114192141931419414195141961419714198141991420014201142021420314204142051420614207142081420914210142111421214213142141421514216142171421814219142201422114222142231422414225142261422714228142291423014231142321423314234142351423614237142381423914240142411424214243142441424514246142471424814249142501425114252142531425414255142561425714258142591426014261142621426314264142651426614267142681426914270142711427214273142741427514276142771427814279142801428114282142831428414285142861428714288142891429014291142921429314294142951429614297142981429914300143011430214303143041430514306143071430814309143101431114312143131431414315143161431714318143191432014321143221432314324143251432614327143281432914330143311433214333143341433514336143371433814339143401434114342143431434414345143461434714348143491435014351143521435314354143551435614357143581435914360143611436214363143641436514366143671436814369143701437114372143731437414375143761437714378143791438014381143821438314384143851438614387143881438914390143911439214393143941439514396143971439814399144001440114402144031440414405144061440714408144091441014411144121441314414144151441614417144181441914420144211442214423144241442514426144271442814429144301443114432144331443414435144361443714438144391444014441144421444314444144451444614447144481444914450144511445214453144541445514456144571445814459144601446114462144631446414465144661446714468144691447014471144721447314474144751447614477144781447914480144811448214483144841448514486144871448814489144901449114492144931449414495144961449714498144991450014501145021450314504145051450614507145081450914510145111451214513145141451514516145171451814519145201452114522145231452414525145261452714528145291453014531145321453314534145351453614537145381453914540145411454214543145441454514546145471454814549145501455114552145531455414555145561455714558145591456014561145621456314564145651456614567145681456914570145711457214573145741457514576145771457814579145801458114582145831458414585145861458714588145891459014591145921459314594145951459614597145981459914600146011460214603146041460514606146071460814609146101461114612146131461414615146161461714618146191462014621146221462314624146251462614627146281462914630146311463214633146341463514636146371463814639146401464114642146431464414645146461464714648146491465014651146521465314654146551465614657146581465914660146611466214663146641466514666146671466814669146701467114672146731467414675146761467714678146791468014681146821468314684146851468614687146881468914690146911469214693146941469514696146971469814699147001470114702147031470414705147061470714708147091471014711147121471314714147151471614717147181471914720147211472214723147241472514726147271472814729147301473114732147331473414735147361473714738147391474014741147421474314744147451474614747147481474914750147511475214753147541475514756147571475814759147601476114762147631476414765147661476714768147691477014771147721477314774147751477614777147781477914780147811478214783147841478514786147871478814789147901479114792147931479414795147961479714798147991480014801148021480314804148051480614807148081480914810148111481214813148141481514816148171481814819148201482114822148231482414825148261482714828148291483014831148321483314834148351483614837148381483914840148411484214843148441484514846148471484814849148501485114852148531485414855148561485714858148591486014861148621486314864148651486614867148681486914870148711487214873148741487514876148771487814879148801488114882148831488414885148861488714888148891489014891148921489314894148951489614897148981489914900149011490214903149041490514906149071490814909149101491114912149131491414915149161491714918149191492014921149221492314924149251492614927149281492914930149311493214933149341493514936149371493814939149401494114942149431494414945149461494714948149491495014951149521495314954149551495614957149581495914960149611496214963149641496514966149671496814969149701497114972149731497414975149761497714978149791498014981149821498314984149851498614987149881498914990149911499214993149941499514996149971499814999150001500115002150031500415005150061500715008150091501015011150121501315014150151501615017150181501915020150211502215023150241502515026150271502815029150301503115032150331503415035150361503715038150391504015041150421504315044150451504615047150481504915050150511505215053150541505515056150571505815059150601506115062150631506415065150661506715068150691507015071150721507315074150751507615077150781507915080150811508215083150841508515086150871508815089150901509115092150931509415095150961509715098150991510015101151021510315104151051510615107151081510915110151111511215113151141511515116151171511815119151201512115122151231512415125151261512715128151291513015131151321513315134151351513615137151381513915140151411514215143151441514515146151471514815149151501515115152151531515415155151561515715158151591516015161151621516315164151651516615167151681516915170151711517215173151741517515176151771517815179151801518115182151831518415185151861518715188151891519015191151921519315194151951519615197151981519915200152011520215203152041520515206152071520815209152101521115212152131521415215152161521715218152191522015221152221522315224152251522615227152281522915230152311523215233152341523515236152371523815239152401524115242152431524415245152461524715248152491525015251152521525315254152551525615257152581525915260152611526215263152641526515266152671526815269152701527115272152731527415275152761527715278152791528015281152821528315284152851528615287152881528915290152911529215293152941529515296152971529815299153001530115302153031530415305153061530715308153091531015311153121531315314153151531615317153181531915320153211532215323153241532515326153271532815329153301533115332153331533415335153361533715338153391534015341153421534315344153451534615347153481534915350153511535215353153541535515356153571535815359153601536115362153631536415365153661536715368153691537015371153721537315374153751537615377153781537915380153811538215383153841538515386153871538815389153901539115392153931539415395153961539715398153991540015401154021540315404154051540615407154081540915410154111541215413154141541515416154171541815419154201542115422154231542415425154261542715428154291543015431154321543315434154351543615437154381543915440154411544215443154441544515446154471544815449154501545115452154531545415455154561545715458154591546015461154621546315464154651546615467154681546915470154711547215473154741547515476154771547815479154801548115482154831548415485154861548715488154891549015491154921549315494154951549615497154981549915500155011550215503155041550515506155071550815509155101551115512155131551415515155161551715518155191552015521155221552315524155251552615527155281552915530155311553215533155341553515536155371553815539155401554115542155431554415545155461554715548155491555015551155521555315554155551555615557155581555915560155611556215563155641556515566155671556815569155701557115572155731557415575155761557715578155791558015581155821558315584155851558615587155881558915590155911559215593155941559515596155971559815599156001560115602156031560415605156061560715608156091561015611156121561315614156151561615617156181561915620156211562215623156241562515626156271562815629156301563115632156331563415635156361563715638156391564015641156421564315644156451564615647156481564915650156511565215653156541565515656156571565815659156601566115662156631566415665156661566715668156691567015671156721567315674156751567615677156781567915680156811568215683156841568515686156871568815689156901569115692156931569415695156961569715698156991570015701157021570315704157051570615707157081570915710157111571215713157141571515716157171571815719157201572115722157231572415725157261572715728157291573015731157321573315734157351573615737157381573915740157411574215743157441574515746157471574815749157501575115752157531575415755157561575715758157591576015761157621576315764157651576615767157681576915770157711577215773157741577515776157771577815779157801578115782157831578415785157861578715788157891579015791157921579315794157951579615797157981579915800158011580215803158041580515806158071580815809158101581115812158131581415815158161581715818158191582015821158221582315824158251582615827158281582915830158311583215833158341583515836158371583815839158401584115842158431584415845158461584715848158491585015851158521585315854158551585615857158581585915860158611586215863158641586515866158671586815869158701587115872158731587415875158761587715878158791588015881158821588315884158851588615887158881588915890158911589215893158941589515896158971589815899159001590115902159031590415905159061590715908159091591015911159121591315914159151591615917159181591915920159211592215923159241592515926159271592815929159301593115932159331593415935159361593715938159391594015941159421594315944159451594615947159481594915950159511595215953159541595515956159571595815959159601596115962159631596415965159661596715968159691597015971159721597315974159751597615977159781597915980159811598215983159841598515986159871598815989159901599115992159931599415995159961599715998159991600016001160021600316004160051600616007160081600916010160111601216013160141601516016160171601816019160201602116022160231602416025160261602716028160291603016031160321603316034160351603616037160381603916040160411604216043160441604516046160471604816049160501605116052160531605416055160561605716058160591606016061160621606316064160651606616067160681606916070160711607216073160741607516076160771607816079160801608116082160831608416085160861608716088160891609016091160921609316094160951609616097160981609916100161011610216103161041610516106161071610816109161101611116112161131611416115161161611716118161191612016121161221612316124161251612616127161281612916130161311613216133161341613516136161371613816139161401614116142161431614416145161461614716148161491615016151161521615316154161551615616157161581615916160161611616216163161641616516166161671616816169161701617116172161731617416175161761617716178161791618016181161821618316184161851618616187161881618916190161911619216193161941619516196161971619816199162001620116202162031620416205162061620716208162091621016211162121621316214162151621616217162181621916220162211622216223162241622516226162271622816229162301623116232162331623416235162361623716238162391624016241162421624316244162451624616247162481624916250162511625216253162541625516256162571625816259162601626116262162631626416265162661626716268162691627016271162721627316274162751627616277162781627916280162811628216283162841628516286162871628816289162901629116292162931629416295162961629716298162991630016301163021630316304163051630616307163081630916310163111631216313163141631516316163171631816319163201632116322163231632416325163261632716328163291633016331163321633316334163351633616337163381633916340163411634216343163441634516346163471634816349163501635116352163531635416355163561635716358163591636016361163621636316364163651636616367163681636916370163711637216373163741637516376163771637816379163801638116382163831638416385163861638716388163891639016391163921639316394163951639616397163981639916400164011640216403164041640516406164071640816409164101641116412164131641416415164161641716418164191642016421164221642316424164251642616427164281642916430164311643216433164341643516436164371643816439164401644116442164431644416445164461644716448164491645016451164521645316454164551645616457164581645916460164611646216463164641646516466164671646816469164701647116472164731647416475164761647716478164791648016481164821648316484164851648616487164881648916490164911649216493164941649516496164971649816499165001650116502165031650416505165061650716508165091651016511165121651316514165151651616517165181651916520165211652216523165241652516526165271652816529165301653116532165331653416535165361653716538165391654016541165421654316544165451654616547165481654916550165511655216553165541655516556165571655816559165601656116562165631656416565165661656716568165691657016571165721657316574165751657616577165781657916580165811658216583165841658516586165871658816589165901659116592165931659416595165961659716598165991660016601166021660316604166051660616607166081660916610166111661216613166141661516616166171661816619166201662116622166231662416625166261662716628166291663016631166321663316634166351663616637166381663916640166411664216643166441664516646166471664816649166501665116652166531665416655166561665716658166591666016661166621666316664166651666616667166681666916670166711667216673166741667516676166771667816679166801668116682166831668416685166861668716688166891669016691166921669316694166951669616697166981669916700167011670216703167041670516706167071670816709167101671116712167131671416715167161671716718167191672016721167221672316724167251672616727167281672916730167311673216733167341673516736167371673816739167401674116742167431674416745167461674716748167491675016751167521675316754167551675616757167581675916760167611676216763167641676516766167671676816769167701677116772167731677416775167761677716778167791678016781167821678316784167851678616787167881678916790167911679216793167941679516796167971679816799168001680116802168031680416805168061680716808168091681016811168121681316814168151681616817168181681916820168211682216823168241682516826168271682816829168301683116832168331683416835168361683716838168391684016841168421684316844168451684616847168481684916850168511685216853168541685516856168571685816859168601686116862168631686416865168661686716868168691687016871168721687316874168751687616877168781687916880168811688216883168841688516886168871688816889168901689116892168931689416895168961689716898168991690016901169021690316904169051690616907169081690916910169111691216913169141691516916169171691816919169201692116922169231692416925169261692716928169291693016931169321693316934169351693616937169381693916940169411694216943169441694516946169471694816949169501695116952169531695416955169561695716958169591696016961169621696316964169651696616967169681696916970169711697216973169741697516976169771697816979169801698116982169831698416985169861698716988169891699016991169921699316994169951699616997169981699917000170011700217003170041700517006170071700817009170101701117012170131701417015170161701717018170191702017021170221702317024170251702617027170281702917030170311703217033170341703517036170371703817039170401704117042170431704417045170461704717048170491705017051170521705317054170551705617057170581705917060170611706217063170641706517066170671706817069170701707117072170731707417075170761707717078170791708017081170821708317084170851708617087170881708917090170911709217093170941709517096170971709817099171001710117102171031710417105171061710717108171091711017111171121711317114171151711617117171181711917120171211712217123171241712517126171271712817129171301713117132171331713417135171361713717138171391714017141171421714317144171451714617147171481714917150171511715217153171541715517156171571715817159171601716117162171631716417165171661716717168171691717017171171721717317174171751717617177171781717917180171811718217183171841718517186171871718817189171901719117192171931719417195171961719717198171991720017201172021720317204172051720617207172081720917210172111721217213172141721517216172171721817219172201722117222172231722417225172261722717228172291723017231172321723317234172351723617237172381723917240172411724217243172441724517246172471724817249172501725117252172531725417255172561725717258172591726017261172621726317264172651726617267172681726917270172711727217273172741727517276172771727817279172801728117282172831728417285172861728717288172891729017291172921729317294172951729617297172981729917300173011730217303173041730517306173071730817309173101731117312173131731417315173161731717318173191732017321173221732317324173251732617327173281732917330173311733217333173341733517336173371733817339173401734117342173431734417345173461734717348173491735017351173521735317354173551735617357173581735917360173611736217363173641736517366173671736817369173701737117372173731737417375173761737717378173791738017381173821738317384173851738617387173881738917390173911739217393173941739517396173971739817399174001740117402174031740417405174061740717408174091741017411174121741317414174151741617417174181741917420174211742217423174241742517426174271742817429174301743117432174331743417435174361743717438174391744017441174421744317444174451744617447174481744917450174511745217453174541745517456174571745817459174601746117462174631746417465174661746717468174691747017471174721747317474174751747617477174781747917480174811748217483174841748517486174871748817489174901749117492174931749417495174961749717498174991750017501175021750317504175051750617507175081750917510175111751217513175141751517516175171751817519175201752117522175231752417525175261752717528175291753017531175321753317534175351753617537175381753917540175411754217543175441754517546175471754817549175501755117552175531755417555175561755717558175591756017561175621756317564175651756617567175681756917570175711757217573175741757517576175771757817579175801758117582175831758417585175861758717588175891759017591175921759317594175951759617597175981759917600176011760217603176041760517606176071760817609176101761117612176131761417615176161761717618176191762017621176221762317624176251762617627176281762917630176311763217633176341763517636176371763817639176401764117642176431764417645176461764717648176491765017651176521765317654176551765617657176581765917660176611766217663176641766517666176671766817669176701767117672176731767417675176761767717678176791768017681176821768317684176851768617687176881768917690176911769217693176941769517696176971769817699177001770117702177031770417705177061770717708177091771017711177121771317714177151771617717177181771917720177211772217723177241772517726177271772817729177301773117732177331773417735177361773717738177391774017741177421774317744177451774617747177481774917750177511775217753177541775517756177571775817759177601776117762177631776417765177661776717768177691777017771177721777317774177751777617777177781777917780177811778217783177841778517786177871778817789177901779117792177931779417795177961779717798177991780017801178021780317804178051780617807178081780917810178111781217813178141781517816178171781817819178201782117822178231782417825178261782717828178291783017831178321783317834178351783617837178381783917840178411784217843178441784517846178471784817849178501785117852178531785417855178561785717858178591786017861178621786317864178651786617867178681786917870178711787217873178741787517876178771787817879178801788117882178831788417885178861788717888178891789017891178921789317894178951789617897178981789917900179011790217903179041790517906179071790817909179101791117912179131791417915179161791717918179191792017921179221792317924179251792617927179281792917930179311793217933179341793517936179371793817939179401794117942179431794417945179461794717948179491795017951179521795317954179551795617957179581795917960179611796217963179641796517966179671796817969179701797117972179731797417975179761797717978179791798017981179821798317984179851798617987179881798917990179911799217993179941799517996179971799817999180001800118002180031800418005180061800718008180091801018011180121801318014180151801618017180181801918020180211802218023180241802518026180271802818029180301803118032180331803418035180361803718038180391804018041180421804318044180451804618047180481804918050180511805218053180541805518056180571805818059180601806118062180631806418065180661806718068180691807018071180721807318074180751807618077180781807918080180811808218083180841808518086180871808818089180901809118092180931809418095180961809718098180991810018101181021810318104181051810618107181081810918110181111811218113181141811518116181171811818119181201812118122181231812418125181261812718128181291813018131181321813318134181351813618137181381813918140181411814218143181441814518146181471814818149181501815118152181531815418155181561815718158181591816018161181621816318164181651816618167181681816918170181711817218173181741817518176181771817818179181801818118182181831818418185181861818718188181891819018191181921819318194181951819618197181981819918200182011820218203182041820518206182071820818209182101821118212182131821418215182161821718218182191822018221182221822318224182251822618227182281822918230182311823218233182341823518236182371823818239182401824118242182431824418245182461824718248182491825018251182521825318254182551825618257182581825918260182611826218263182641826518266182671826818269182701827118272182731827418275182761827718278182791828018281182821828318284182851828618287182881828918290182911829218293182941829518296182971829818299183001830118302183031830418305183061830718308183091831018311183121831318314183151831618317183181831918320183211832218323183241832518326183271832818329183301833118332183331833418335183361833718338183391834018341183421834318344183451834618347183481834918350183511835218353183541835518356183571835818359183601836118362183631836418365183661836718368183691837018371183721837318374183751837618377183781837918380183811838218383183841838518386183871838818389183901839118392183931839418395183961839718398183991840018401184021840318404184051840618407184081840918410184111841218413184141841518416184171841818419184201842118422184231842418425184261842718428184291843018431184321843318434184351843618437184381843918440184411844218443184441844518446184471844818449184501845118452184531845418455184561845718458184591846018461184621846318464184651846618467184681846918470184711847218473184741847518476184771847818479184801848118482184831848418485184861848718488184891849018491184921849318494184951849618497184981849918500185011850218503185041850518506185071850818509185101851118512185131851418515185161851718518185191852018521185221852318524185251852618527185281852918530185311853218533185341853518536185371853818539185401854118542185431854418545185461854718548185491855018551185521855318554185551855618557185581855918560185611856218563185641856518566185671856818569185701857118572185731857418575185761857718578185791858018581185821858318584185851858618587185881858918590185911859218593185941859518596185971859818599186001860118602186031860418605186061860718608186091861018611186121861318614186151861618617186181861918620186211862218623186241862518626186271862818629186301863118632186331863418635186361863718638186391864018641186421864318644186451864618647186481864918650186511865218653186541865518656186571865818659186601866118662186631866418665186661866718668186691867018671186721867318674186751867618677186781867918680186811868218683186841868518686186871868818689186901869118692186931869418695186961869718698186991870018701187021870318704187051870618707187081870918710187111871218713187141871518716187171871818719187201872118722187231872418725187261872718728187291873018731187321873318734187351873618737187381873918740187411874218743187441874518746187471874818749187501875118752187531875418755187561875718758187591876018761187621876318764187651876618767187681876918770187711877218773187741877518776187771877818779187801878118782187831878418785187861878718788187891879018791187921879318794187951879618797187981879918800188011880218803188041880518806188071880818809188101881118812188131881418815188161881718818188191882018821188221882318824188251882618827188281882918830188311883218833188341883518836188371883818839188401884118842188431884418845188461884718848188491885018851188521885318854188551885618857188581885918860188611886218863188641886518866188671886818869188701887118872188731887418875188761887718878188791888018881188821888318884188851888618887188881888918890188911889218893188941889518896188971889818899189001890118902189031890418905189061890718908189091891018911189121891318914189151891618917189181891918920189211892218923189241892518926189271892818929189301893118932189331893418935189361893718938189391894018941189421894318944189451894618947189481894918950189511895218953189541895518956189571895818959189601896118962189631896418965189661896718968189691897018971189721897318974189751897618977189781897918980189811898218983189841898518986189871898818989189901899118992189931899418995189961899718998189991900019001190021900319004190051900619007190081900919010190111901219013190141901519016190171901819019190201902119022190231902419025190261902719028190291903019031190321903319034190351903619037190381903919040190411904219043190441904519046190471904819049190501905119052190531905419055190561905719058190591906019061190621906319064190651906619067190681906919070190711907219073190741907519076190771907819079190801908119082190831908419085190861908719088190891909019091190921909319094190951909619097190981909919100191011910219103191041910519106191071910819109191101911119112191131911419115191161911719118191191912019121191221912319124191251912619127191281912919130191311913219133191341913519136191371913819139191401914119142191431914419145191461914719148191491915019151191521915319154191551915619157191581915919160191611916219163191641916519166191671916819169191701917119172191731917419175191761917719178191791918019181191821918319184191851918619187191881918919190191911919219193191941919519196191971919819199192001920119202192031920419205192061920719208192091921019211192121921319214192151921619217192181921919220192211922219223192241922519226192271922819229192301923119232192331923419235192361923719238192391924019241192421924319244192451924619247192481924919250192511925219253192541925519256192571925819259192601926119262192631926419265192661926719268192691927019271192721927319274192751927619277192781927919280192811928219283192841928519286192871928819289192901929119292192931929419295192961929719298192991930019301193021930319304193051930619307193081930919310193111931219313193141931519316193171931819319193201932119322193231932419325193261932719328193291933019331193321933319334193351933619337193381933919340193411934219343193441934519346193471934819349193501935119352193531935419355193561935719358193591936019361193621936319364193651936619367193681936919370193711937219373193741937519376193771937819379193801938119382193831938419385193861938719388193891939019391193921939319394193951939619397193981939919400194011940219403194041940519406194071940819409194101941119412194131941419415194161941719418194191942019421194221942319424194251942619427194281942919430194311943219433194341943519436194371943819439194401944119442194431944419445194461944719448194491945019451194521945319454194551945619457194581945919460194611946219463194641946519466194671946819469194701947119472194731947419475194761947719478194791948019481194821948319484194851948619487194881948919490194911949219493194941949519496194971949819499195001950119502195031950419505195061950719508195091951019511195121951319514195151951619517195181951919520195211952219523195241952519526195271952819529195301953119532195331953419535195361953719538195391954019541195421954319544195451954619547195481954919550195511955219553195541955519556195571955819559195601956119562195631956419565195661956719568195691957019571195721957319574195751957619577195781957919580195811958219583195841958519586195871958819589195901959119592195931959419595195961959719598195991960019601196021960319604196051960619607196081960919610196111961219613196141961519616196171961819619196201962119622196231962419625196261962719628196291963019631196321963319634196351963619637196381963919640196411964219643196441964519646196471964819649196501965119652196531965419655196561965719658196591966019661196621966319664196651966619667196681966919670196711967219673196741967519676196771967819679196801968119682196831968419685196861968719688196891969019691196921969319694196951969619697196981969919700197011970219703197041970519706197071970819709197101971119712197131971419715197161971719718197191972019721197221972319724197251972619727197281972919730197311973219733197341973519736197371973819739197401974119742197431974419745197461974719748197491975019751197521975319754197551975619757197581975919760197611976219763197641976519766197671976819769197701977119772197731977419775197761977719778197791978019781197821978319784197851978619787197881978919790197911979219793197941979519796197971979819799198001980119802198031980419805198061980719808198091981019811198121981319814198151981619817198181981919820198211982219823198241982519826198271982819829198301983119832198331983419835198361983719838198391984019841198421984319844198451984619847198481984919850198511985219853198541985519856198571985819859198601986119862198631986419865198661986719868198691987019871198721987319874198751987619877198781987919880198811988219883198841988519886198871988819889198901989119892198931989419895198961989719898198991990019901199021990319904199051990619907199081990919910199111991219913199141991519916199171991819919199201992119922199231992419925199261992719928199291993019931199321993319934199351993619937199381993919940199411994219943199441994519946199471994819949199501995119952199531995419955199561995719958199591996019961199621996319964199651996619967199681996919970199711997219973199741997519976199771997819979199801998119982199831998419985199861998719988199891999019991199921999319994199951999619997199981999920000200012000220003200042000520006200072000820009200102001120012200132001420015200162001720018200192002020021200222002320024200252002620027200282002920030200312003220033200342003520036200372003820039200402004120042200432004420045200462004720048200492005020051200522005320054200552005620057200582005920060200612006220063200642006520066200672006820069200702007120072200732007420075200762007720078200792008020081200822008320084200852008620087200882008920090200912009220093200942009520096200972009820099201002010120102201032010420105201062010720108201092011020111201122011320114201152011620117201182011920120201212012220123201242012520126201272012820129201302013120132201332013420135201362013720138201392014020141201422014320144201452014620147201482014920150201512015220153201542015520156201572015820159201602016120162201632016420165201662016720168201692017020171201722017320174201752017620177201782017920180201812018220183201842018520186201872018820189201902019120192201932019420195201962019720198201992020020201202022020320204202052020620207202082020920210202112021220213202142021520216202172021820219202202022120222202232022420225202262022720228202292023020231202322023320234202352023620237202382023920240202412024220243202442024520246202472024820249202502025120252202532025420255202562025720258202592026020261202622026320264202652026620267202682026920270202712027220273202742027520276202772027820279202802028120282202832028420285202862028720288202892029020291202922029320294202952029620297202982029920300203012030220303203042030520306203072030820309203102031120312203132031420315203162031720318203192032020321203222032320324203252032620327203282032920330203312033220333203342033520336203372033820339203402034120342203432034420345203462034720348203492035020351203522035320354203552035620357203582035920360203612036220363203642036520366203672036820369203702037120372203732037420375203762037720378203792038020381203822038320384203852038620387203882038920390203912039220393203942039520396203972039820399204002040120402204032040420405204062040720408204092041020411204122041320414204152041620417204182041920420204212042220423204242042520426204272042820429204302043120432204332043420435204362043720438204392044020441204422044320444204452044620447204482044920450204512045220453204542045520456204572045820459204602046120462204632046420465204662046720468204692047020471204722047320474204752047620477204782047920480204812048220483204842048520486204872048820489204902049120492204932049420495204962049720498204992050020501205022050320504205052050620507205082050920510205112051220513205142051520516205172051820519205202052120522205232052420525205262052720528205292053020531205322053320534205352053620537205382053920540205412054220543205442054520546205472054820549205502055120552205532055420555205562055720558205592056020561205622056320564205652056620567205682056920570205712057220573205742057520576205772057820579205802058120582205832058420585205862058720588205892059020591205922059320594205952059620597205982059920600206012060220603206042060520606206072060820609206102061120612206132061420615206162061720618206192062020621206222062320624206252062620627206282062920630206312063220633206342063520636206372063820639206402064120642206432064420645206462064720648206492065020651206522065320654206552065620657206582065920660206612066220663206642066520666206672066820669206702067120672206732067420675206762067720678206792068020681206822068320684206852068620687206882068920690206912069220693206942069520696206972069820699207002070120702207032070420705207062070720708207092071020711207122071320714207152071620717207182071920720207212072220723207242072520726207272072820729207302073120732207332073420735207362073720738207392074020741207422074320744207452074620747207482074920750207512075220753207542075520756207572075820759207602076120762207632076420765207662076720768207692077020771207722077320774207752077620777207782077920780207812078220783207842078520786207872078820789207902079120792207932079420795207962079720798207992080020801208022080320804208052080620807208082080920810208112081220813208142081520816208172081820819208202082120822208232082420825208262082720828208292083020831208322083320834208352083620837208382083920840208412084220843208442084520846208472084820849208502085120852208532085420855208562085720858208592086020861208622086320864208652086620867208682086920870208712087220873208742087520876208772087820879208802088120882208832088420885208862088720888208892089020891208922089320894208952089620897208982089920900209012090220903209042090520906209072090820909209102091120912209132091420915209162091720918209192092020921209222092320924209252092620927209282092920930209312093220933209342093520936209372093820939209402094120942209432094420945209462094720948209492095020951209522095320954209552095620957209582095920960209612096220963209642096520966209672096820969209702097120972209732097420975209762097720978209792098020981209822098320984209852098620987209882098920990209912099220993209942099520996209972099820999210002100121002210032100421005210062100721008210092101021011210122101321014210152101621017210182101921020210212102221023210242102521026210272102821029210302103121032210332103421035210362103721038210392104021041210422104321044210452104621047210482104921050210512105221053210542105521056210572105821059210602106121062210632106421065210662106721068210692107021071210722107321074210752107621077210782107921080210812108221083210842108521086210872108821089210902109121092210932109421095210962109721098210992110021101211022110321104211052110621107211082110921110211112111221113211142111521116211172111821119211202112121122211232112421125211262112721128211292113021131211322113321134211352113621137211382113921140211412114221143211442114521146211472114821149211502115121152211532115421155211562115721158211592116021161211622116321164211652116621167211682116921170211712117221173211742117521176211772117821179211802118121182211832118421185211862118721188211892119021191211922119321194211952119621197211982119921200212012120221203212042120521206212072120821209212102121121212212132121421215212162121721218212192122021221212222122321224212252122621227212282122921230212312123221233212342123521236212372123821239212402124121242212432124421245212462124721248212492125021251212522125321254212552125621257212582125921260212612126221263212642126521266212672126821269212702127121272212732127421275212762127721278212792128021281212822128321284212852128621287212882128921290212912129221293212942129521296212972129821299213002130121302213032130421305213062130721308213092131021311213122131321314213152131621317213182131921320213212132221323213242132521326213272132821329213302133121332213332133421335213362133721338213392134021341213422134321344213452134621347213482134921350213512135221353213542135521356213572135821359213602136121362213632136421365213662136721368213692137021371213722137321374213752137621377213782137921380213812138221383213842138521386213872138821389213902139121392213932139421395213962139721398213992140021401214022140321404214052140621407214082140921410214112141221413214142141521416214172141821419214202142121422214232142421425214262142721428214292143021431214322143321434214352143621437214382143921440214412144221443214442144521446214472144821449214502145121452214532145421455214562145721458214592146021461214622146321464214652146621467214682146921470214712147221473214742147521476214772147821479214802148121482214832148421485214862148721488214892149021491214922149321494214952149621497214982149921500215012150221503215042150521506215072150821509215102151121512215132151421515215162151721518215192152021521215222152321524215252152621527215282152921530215312153221533215342153521536215372153821539215402154121542215432154421545215462154721548215492155021551215522155321554215552155621557215582155921560215612156221563215642156521566215672156821569215702157121572215732157421575215762157721578215792158021581215822158321584215852158621587215882158921590215912159221593215942159521596215972159821599216002160121602216032160421605216062160721608216092161021611216122161321614216152161621617216182161921620216212162221623216242162521626216272162821629216302163121632216332163421635216362163721638216392164021641216422164321644216452164621647216482164921650216512165221653216542165521656216572165821659216602166121662216632166421665216662166721668216692167021671216722167321674216752167621677216782167921680216812168221683216842168521686216872168821689216902169121692216932169421695216962169721698216992170021701217022170321704217052170621707217082170921710217112171221713217142171521716217172171821719217202172121722217232172421725217262172721728217292173021731217322173321734217352173621737217382173921740217412174221743217442174521746217472174821749217502175121752217532175421755217562175721758217592176021761217622176321764217652176621767217682176921770217712177221773217742177521776217772177821779217802178121782217832178421785217862178721788217892179021791217922179321794217952179621797217982179921800218012180221803218042180521806218072180821809218102181121812218132181421815218162181721818218192182021821
  1. #define _CRT_SECURE_NO_DEPRECATE // Disables ridiculous "unsafe" warnings on Windows
  2. #define _USE_MATH_DEFINES // For M_PI on MSVC
  3. #include "ggml-impl.h"
  4. #include "ggml-quants.h"
  5. #include "ggml.h"
  6. #include "sgemm.h"
  7. #if defined(_MSC_VER) || defined(__MINGW32__)
  8. #include <malloc.h> // using malloc.h with MSC/MINGW
  9. #elif !defined(__FreeBSD__) && !defined(__NetBSD__) && !defined(__OpenBSD__)
  10. #include <alloca.h>
  11. #endif
  12. #include <assert.h>
  13. #include <errno.h>
  14. #include <time.h>
  15. #include <math.h>
  16. #include <stdlib.h>
  17. #include <string.h>
  18. #include <stdint.h>
  19. #include <inttypes.h>
  20. #include <stdio.h>
  21. #include <float.h>
  22. #include <limits.h>
  23. #include <stdarg.h>
  24. #include <signal.h>
  25. #if defined(__gnu_linux__)
  26. #include <syscall.h>
  27. #endif
  28. #ifdef GGML_USE_METAL
  29. #include <unistd.h>
  30. #endif
  31. #ifdef __ARM_FEATURE_MATMUL_INT8
  32. #undef GGML_USE_LLAMAFILE
  33. #endif
  34. #if defined(_MSC_VER)
  35. // disable "possible loss of data" to avoid hundreds of casts
  36. // we should just be careful :)
  37. #pragma warning(disable: 4244 4267)
  38. // disable POSIX deprecation warnings
  39. // these functions are never going away, anyway
  40. #pragma warning(disable: 4996)
  41. #endif
  42. #if defined(_WIN32)
  43. #define WIN32_LEAN_AND_MEAN
  44. #ifndef NOMINMAX
  45. #define NOMINMAX
  46. #endif
  47. #include <windows.h>
  48. typedef volatile LONG atomic_int;
  49. typedef atomic_int atomic_bool;
  50. static void atomic_store(atomic_int * ptr, LONG val) {
  51. InterlockedExchange(ptr, val);
  52. }
  53. static LONG atomic_load(atomic_int * ptr) {
  54. return InterlockedCompareExchange(ptr, 0, 0);
  55. }
  56. static LONG atomic_fetch_add(atomic_int * ptr, LONG inc) {
  57. return InterlockedExchangeAdd(ptr, inc);
  58. }
  59. static LONG atomic_fetch_sub(atomic_int * ptr, LONG dec) {
  60. return atomic_fetch_add(ptr, -(dec));
  61. }
  62. typedef HANDLE pthread_t;
  63. typedef DWORD thread_ret_t;
  64. static int pthread_create(pthread_t * out, void * unused, thread_ret_t(*func)(void *), void * arg) {
  65. (void) unused;
  66. HANDLE handle = CreateThread(NULL, 0, (LPTHREAD_START_ROUTINE) func, arg, 0, NULL);
  67. if (handle == NULL)
  68. {
  69. return EAGAIN;
  70. }
  71. *out = handle;
  72. return 0;
  73. }
  74. static int pthread_join(pthread_t thread, void * unused) {
  75. (void) unused;
  76. int ret = (int) WaitForSingleObject(thread, INFINITE);
  77. CloseHandle(thread);
  78. return ret;
  79. }
  80. static int sched_yield (void) {
  81. Sleep (0);
  82. return 0;
  83. }
  84. #else
  85. #include <pthread.h>
  86. #include <stdatomic.h>
  87. typedef void * thread_ret_t;
  88. #include <sys/types.h>
  89. #include <sys/stat.h>
  90. #include <unistd.h>
  91. #endif
  92. #ifdef GGML_USE_CPU_HBM
  93. #include <hbwmalloc.h>
  94. #endif
  95. #if defined(__APPLE__)
  96. #include <TargetConditionals.h>
  97. #endif
  98. #if (defined(__linux__) || defined(__APPLE__) || defined(__FreeBSD__) || defined(__NetBSD__) || defined(__OpenBSD__)) && \
  99. (!defined(TARGET_OS_TV) && !defined(TARGET_OS_WATCH))
  100. #include <sys/wait.h>
  101. void ggml_print_backtrace(void) {
  102. /*
  103. #include <execinfo.h>
  104. #include <dlfcn.h>
  105. void * trace[100];
  106. int nptrs = backtrace(trace, sizeof(trace)/sizeof(trace[0]));
  107. backtrace_symbols_fd(trace, nptrs, STDERR_FILENO);
  108. */
  109. // backtrack_symbols does not show line numbers, use gdb instead
  110. char attach[32];
  111. snprintf(attach, sizeof(attach), "attach %d", getpid());
  112. int pid = fork();
  113. if (pid == 0) {
  114. execlp("gdb", "gdb", "--batch",
  115. "-ex", "set style enabled on",
  116. "-ex", attach,
  117. "-ex", "bt -frame-info source-and-location",
  118. "-ex", "detach",
  119. "-ex", "quit",
  120. (char *) NULL);
  121. } else {
  122. waitpid(pid, NULL, 0);
  123. }
  124. }
  125. #else
  126. void ggml_print_backtrace(void) {
  127. // platform not supported
  128. }
  129. #endif
  130. /*#define GGML_PERF*/
  131. #define GGML_DEBUG 0
  132. #define GGML_GELU_FP16
  133. #define GGML_GELU_QUICK_FP16
  134. #define GGML_SILU_FP16
  135. // #define GGML_CROSS_ENTROPY_EXP_FP16
  136. // #define GGML_FLASH_ATTN_EXP_FP16
  137. #define GGML_SOFT_MAX_UNROLL 4
  138. #define GGML_VEC_DOT_UNROLL 2
  139. #define GGML_VEC_MAD_UNROLL 32
  140. //
  141. // logging
  142. //
  143. #if (GGML_DEBUG >= 1)
  144. #define GGML_PRINT_DEBUG(...) printf(__VA_ARGS__)
  145. #else
  146. #define GGML_PRINT_DEBUG(...)
  147. #endif
  148. #if (GGML_DEBUG >= 5)
  149. #define GGML_PRINT_DEBUG_5(...) printf(__VA_ARGS__)
  150. #else
  151. #define GGML_PRINT_DEBUG_5(...)
  152. #endif
  153. #if (GGML_DEBUG >= 10)
  154. #define GGML_PRINT_DEBUG_10(...) printf(__VA_ARGS__)
  155. #else
  156. #define GGML_PRINT_DEBUG_10(...)
  157. #endif
  158. #define GGML_PRINT(...) printf(__VA_ARGS__)
  159. //
  160. // end of logging block
  161. //
  162. #ifdef GGML_USE_ACCELERATE
  163. // uncomment to use vDSP for soft max computation
  164. // note: not sure if it is actually faster
  165. //#define GGML_SOFT_MAX_ACCELERATE
  166. #endif
  167. #if defined(_MSC_VER) || defined(__MINGW32__)
  168. #define GGML_ALIGNED_MALLOC(size) _aligned_malloc(size, GGML_MEM_ALIGN)
  169. #define GGML_ALIGNED_FREE(ptr) _aligned_free(ptr)
  170. #else
  171. inline static void * ggml_aligned_malloc(size_t size) {
  172. if (size == 0) {
  173. GGML_PRINT("WARNING: Behavior may be unexpected when allocating 0 bytes for ggml_aligned_malloc!\n");
  174. return NULL;
  175. }
  176. void * aligned_memory = NULL;
  177. #ifdef GGML_USE_CPU_HBM
  178. int result = hbw_posix_memalign(&aligned_memory, 16, size);
  179. #elif GGML_USE_METAL
  180. int result = posix_memalign(&aligned_memory, sysconf(_SC_PAGESIZE), size);
  181. #else
  182. int result = posix_memalign(&aligned_memory, GGML_MEM_ALIGN, size);
  183. #endif
  184. if (result != 0) {
  185. // Handle allocation failure
  186. const char *error_desc = "unknown allocation error";
  187. switch (result) {
  188. case EINVAL:
  189. error_desc = "invalid alignment value";
  190. break;
  191. case ENOMEM:
  192. error_desc = "insufficient memory";
  193. break;
  194. }
  195. GGML_PRINT("%s: %s (attempted to allocate %6.2f MB)\n", __func__, error_desc, size/(1024.0*1024.0));
  196. GGML_ASSERT(false);
  197. return NULL;
  198. }
  199. return aligned_memory;
  200. }
  201. #define GGML_ALIGNED_MALLOC(size) ggml_aligned_malloc(size)
  202. #ifdef GGML_USE_CPU_HBM
  203. #define GGML_ALIGNED_FREE(ptr) if(NULL != ptr) hbw_free(ptr)
  204. #else
  205. #define GGML_ALIGNED_FREE(ptr) free(ptr)
  206. #endif
  207. #endif
  208. inline static void * ggml_malloc(size_t size) {
  209. if (size == 0) {
  210. GGML_PRINT("WARNING: Behavior may be unexpected when allocating 0 bytes for ggml_malloc!\n");
  211. return NULL;
  212. }
  213. void * result = malloc(size);
  214. if (result == NULL) {
  215. GGML_PRINT("%s: failed to allocate %6.2f MB\n", __func__, size/(1024.0*1024.0));
  216. GGML_ASSERT(false);
  217. }
  218. return result;
  219. }
  220. // calloc
  221. inline static void * ggml_calloc(size_t num, size_t size) {
  222. if (num == 0 || size == 0) {
  223. GGML_PRINT("WARNING: Behavior may be unexpected when allocating 0 bytes for ggml_calloc!\n");
  224. return NULL;
  225. }
  226. void * result = calloc(num, size);
  227. if (result == NULL) {
  228. GGML_PRINT("%s: failed to allocate %6.2f MB\n", __func__, size/(1024.0*1024.0));
  229. GGML_ASSERT(false);
  230. }
  231. return result;
  232. }
  233. #define GGML_MALLOC(size) ggml_malloc(size)
  234. #define GGML_CALLOC(num, size) ggml_calloc(num, size)
  235. #define GGML_FREE(ptr) free(ptr)
  236. #define UNUSED GGML_UNUSED
  237. #define SWAP(x, y, T) do { T SWAP = x; x = y; y = SWAP; } while (0)
  238. #if defined(GGML_USE_ACCELERATE)
  239. #include <Accelerate/Accelerate.h>
  240. #if defined(GGML_USE_CLBLAST) // allow usage of CLBlast alongside Accelerate functions
  241. #include "ggml-opencl.h"
  242. #endif
  243. #elif defined(GGML_USE_OPENBLAS)
  244. #if defined(GGML_BLAS_USE_MKL)
  245. #include <mkl.h>
  246. #else
  247. #include <cblas.h>
  248. #endif
  249. #elif defined(GGML_USE_CLBLAST)
  250. #include "ggml-opencl.h"
  251. #endif
  252. // floating point type used to accumulate sums
  253. typedef double ggml_float;
  254. #undef MIN
  255. #undef MAX
  256. #define MIN(a, b) ((a) < (b) ? (a) : (b))
  257. #define MAX(a, b) ((a) > (b) ? (a) : (b))
  258. //
  259. // global data
  260. //
  261. // precomputed gelu table for f16 (128 KB)
  262. static ggml_fp16_t ggml_table_gelu_f16[1 << 16];
  263. // precomputed quick gelu table for f16 (128 KB)
  264. static ggml_fp16_t ggml_table_gelu_quick_f16[1 << 16];
  265. // precomputed silu table for f16 (128 KB)
  266. static ggml_fp16_t ggml_table_silu_f16[1 << 16];
  267. // precomputed exp table for f16 (128 KB)
  268. static ggml_fp16_t ggml_table_exp_f16[1 << 16];
  269. // precomputed f32 table for f16 (256 KB) (ggml-impl.h)
  270. float ggml_table_f32_f16[1 << 16];
  271. const char * ggml_status_to_string(enum ggml_status status) {
  272. switch (status) {
  273. case GGML_STATUS_ALLOC_FAILED: return "GGML status: error (failed to allocate memory)";
  274. case GGML_STATUS_FAILED: return "GGML status: error (operation failed)";
  275. case GGML_STATUS_SUCCESS: return "GGML status: success";
  276. case GGML_STATUS_ABORTED: return "GGML status: warning (operation aborted)";
  277. }
  278. return "GGML status: unknown";
  279. }
  280. // note: do not use these inside ggml.c
  281. // these are meant to be used via the ggml.h API
  282. float ggml_fp16_to_fp32(ggml_fp16_t x) {
  283. return GGML_FP16_TO_FP32(x);
  284. }
  285. ggml_fp16_t ggml_fp32_to_fp16(float x) {
  286. return GGML_FP32_TO_FP16(x);
  287. }
  288. void ggml_fp16_to_fp32_row(const ggml_fp16_t * x, float * y, int64_t n) {
  289. for (int64_t i = 0; i < n; i++) {
  290. y[i] = GGML_FP16_TO_FP32(x[i]);
  291. }
  292. }
  293. void ggml_fp32_to_fp16_row(const float * x, ggml_fp16_t * y, int64_t n) {
  294. int64_t i = 0;
  295. #if defined(__F16C__)
  296. for (; i + 7 < n; i += 8) {
  297. __m256 x_vec = _mm256_loadu_ps(x + i);
  298. __m128i y_vec = _mm256_cvtps_ph(x_vec, _MM_FROUND_TO_NEAREST_INT);
  299. _mm_storeu_si128((__m128i *)(y + i), y_vec);
  300. }
  301. for(; i + 3 < n; i += 4) {
  302. __m128 x_vec = _mm_loadu_ps(x + i);
  303. __m128i y_vec = _mm_cvtps_ph(x_vec, _MM_FROUND_TO_NEAREST_INT);
  304. _mm_storel_epi64((__m128i *)(y + i), y_vec);
  305. }
  306. #endif
  307. for (; i < n; i++) {
  308. y[i] = GGML_FP32_TO_FP16(x[i]);
  309. }
  310. }
  311. bool ggml_guid_matches(ggml_guid_t guid_a, ggml_guid_t guid_b) {
  312. return memcmp(guid_a, guid_b, sizeof(ggml_guid)) == 0;
  313. }
  314. //
  315. // timing
  316. //
  317. #if defined(_MSC_VER) || defined(__MINGW32__)
  318. static int64_t timer_freq, timer_start;
  319. void ggml_time_init(void) {
  320. LARGE_INTEGER t;
  321. QueryPerformanceFrequency(&t);
  322. timer_freq = t.QuadPart;
  323. // The multiplication by 1000 or 1000000 below can cause an overflow if timer_freq
  324. // and the uptime is high enough.
  325. // We subtract the program start time to reduce the likelihood of that happening.
  326. QueryPerformanceCounter(&t);
  327. timer_start = t.QuadPart;
  328. }
  329. int64_t ggml_time_ms(void) {
  330. LARGE_INTEGER t;
  331. QueryPerformanceCounter(&t);
  332. return ((t.QuadPart-timer_start) * 1000) / timer_freq;
  333. }
  334. int64_t ggml_time_us(void) {
  335. LARGE_INTEGER t;
  336. QueryPerformanceCounter(&t);
  337. return ((t.QuadPart-timer_start) * 1000000) / timer_freq;
  338. }
  339. #else
  340. void ggml_time_init(void) {}
  341. int64_t ggml_time_ms(void) {
  342. struct timespec ts;
  343. clock_gettime(CLOCK_MONOTONIC, &ts);
  344. return (int64_t)ts.tv_sec*1000 + (int64_t)ts.tv_nsec/1000000;
  345. }
  346. int64_t ggml_time_us(void) {
  347. struct timespec ts;
  348. clock_gettime(CLOCK_MONOTONIC, &ts);
  349. return (int64_t)ts.tv_sec*1000000 + (int64_t)ts.tv_nsec/1000;
  350. }
  351. #endif
  352. int64_t ggml_cycles(void) {
  353. return clock();
  354. }
  355. int64_t ggml_cycles_per_ms(void) {
  356. return CLOCKS_PER_SEC/1000;
  357. }
  358. #ifdef GGML_PERF
  359. #define ggml_perf_time_ms() ggml_time_ms()
  360. #define ggml_perf_time_us() ggml_time_us()
  361. #define ggml_perf_cycles() ggml_cycles()
  362. #define ggml_perf_cycles_per_ms() ggml_cycles_per_ms()
  363. #else
  364. #define ggml_perf_time_ms() 0
  365. #define ggml_perf_time_us() 0
  366. #define ggml_perf_cycles() 0
  367. #define ggml_perf_cycles_per_ms() 0
  368. #endif
  369. //
  370. // cross-platform UTF-8 file paths
  371. //
  372. #ifdef _WIN32
  373. static wchar_t * ggml_mbstowcs(const char * mbs) {
  374. int wlen = MultiByteToWideChar(CP_UTF8, 0, mbs, -1, NULL, 0);
  375. if (!wlen) {
  376. errno = EINVAL;
  377. return NULL;
  378. }
  379. wchar_t * wbuf = GGML_MALLOC(wlen * sizeof(wchar_t));
  380. wlen = MultiByteToWideChar(CP_UTF8, 0, mbs, -1, wbuf, wlen);
  381. if (!wlen) {
  382. GGML_FREE(wbuf);
  383. errno = EINVAL;
  384. return NULL;
  385. }
  386. return wbuf;
  387. }
  388. #endif
  389. FILE * ggml_fopen(const char * fname, const char * mode) {
  390. #ifdef _WIN32
  391. FILE * file = NULL;
  392. // convert fname (UTF-8)
  393. wchar_t * wfname = ggml_mbstowcs(fname);
  394. if (wfname) {
  395. // convert mode (ANSI)
  396. wchar_t * wmode = GGML_MALLOC((strlen(mode) + 1) * sizeof(wchar_t));
  397. wchar_t * wmode_p = wmode;
  398. do {
  399. *wmode_p++ = (wchar_t)*mode;
  400. } while (*mode++);
  401. // open file
  402. file = _wfopen(wfname, wmode);
  403. GGML_FREE(wfname);
  404. GGML_FREE(wmode);
  405. }
  406. return file;
  407. #else
  408. return fopen(fname, mode);
  409. #endif
  410. }
  411. //
  412. // cache line
  413. //
  414. #if defined(__cpp_lib_hardware_interference_size)
  415. #define CACHE_LINE_SIZE hardware_destructive_interference_size
  416. #else
  417. #if defined(__POWER9_VECTOR__)
  418. #define CACHE_LINE_SIZE 128
  419. #else
  420. #define CACHE_LINE_SIZE 64
  421. #endif
  422. #endif
  423. static const size_t CACHE_LINE_SIZE_F32 = CACHE_LINE_SIZE/sizeof(float);
  424. static void ggml_vec_dot_f32(int n, float * restrict s, size_t bs, const float * restrict x, size_t bx, const float * restrict y, size_t by, int nrc);
  425. static void ggml_vec_dot_f16(int n, float * restrict s, size_t bs, ggml_fp16_t * restrict x, size_t bx, ggml_fp16_t * restrict y, size_t by, int nrc);
  426. static const ggml_type_traits_t type_traits[GGML_TYPE_COUNT] = {
  427. [GGML_TYPE_I8] = {
  428. .type_name = "i8",
  429. .blck_size = 1,
  430. .type_size = sizeof(int8_t),
  431. .is_quantized = false,
  432. },
  433. [GGML_TYPE_I16] = {
  434. .type_name = "i16",
  435. .blck_size = 1,
  436. .type_size = sizeof(int16_t),
  437. .is_quantized = false,
  438. },
  439. [GGML_TYPE_I32] = {
  440. .type_name = "i32",
  441. .blck_size = 1,
  442. .type_size = sizeof(int32_t),
  443. .is_quantized = false,
  444. },
  445. [GGML_TYPE_I64] = {
  446. .type_name = "i64",
  447. .blck_size = 1,
  448. .type_size = sizeof(int64_t),
  449. .is_quantized = false,
  450. },
  451. [GGML_TYPE_F64] = {
  452. .type_name = "f64",
  453. .blck_size = 1,
  454. .type_size = sizeof(double),
  455. .is_quantized = false,
  456. .nrows = 1,
  457. },
  458. [GGML_TYPE_F32] = {
  459. .type_name = "f32",
  460. .blck_size = 1,
  461. .type_size = sizeof(float),
  462. .is_quantized = false,
  463. .vec_dot = (ggml_vec_dot_t) ggml_vec_dot_f32,
  464. .vec_dot_type = GGML_TYPE_F32,
  465. .nrows = 1,
  466. },
  467. [GGML_TYPE_F16] = {
  468. .type_name = "f16",
  469. .blck_size = 1,
  470. .type_size = sizeof(ggml_fp16_t),
  471. .is_quantized = false,
  472. .to_float = (ggml_to_float_t) ggml_fp16_to_fp32_row,
  473. .from_float = (ggml_from_float_t) ggml_fp32_to_fp16_row,
  474. .from_float_reference = (ggml_from_float_t) ggml_fp32_to_fp16_row,
  475. .vec_dot = (ggml_vec_dot_t) ggml_vec_dot_f16,
  476. .vec_dot_type = GGML_TYPE_F16,
  477. .nrows = 1,
  478. },
  479. [GGML_TYPE_Q4_0] = {
  480. .type_name = "q4_0",
  481. .blck_size = QK4_0,
  482. .type_size = sizeof(block_q4_0),
  483. .is_quantized = true,
  484. .to_float = (ggml_to_float_t) dequantize_row_q4_0,
  485. .from_float = quantize_row_q4_0,
  486. .from_float_reference = (ggml_from_float_t) quantize_row_q4_0_reference,
  487. .vec_dot = ggml_vec_dot_q4_0_q8_0,
  488. .vec_dot_type = GGML_TYPE_Q8_0,
  489. #if defined (__ARM_FEATURE_MATMUL_INT8)
  490. .nrows = 2,
  491. #else
  492. .nrows = 1,
  493. #endif
  494. },
  495. [GGML_TYPE_Q4_1] = {
  496. .type_name = "q4_1",
  497. .blck_size = QK4_1,
  498. .type_size = sizeof(block_q4_1),
  499. .is_quantized = true,
  500. .to_float = (ggml_to_float_t) dequantize_row_q4_1,
  501. .from_float = quantize_row_q4_1,
  502. .from_float_reference = (ggml_from_float_t) quantize_row_q4_1_reference,
  503. .vec_dot = ggml_vec_dot_q4_1_q8_1,
  504. .vec_dot_type = GGML_TYPE_Q8_1,
  505. #if defined (__ARM_FEATURE_MATMUL_INT8)
  506. .nrows = 2,
  507. #else
  508. .nrows = 1,
  509. #endif
  510. },
  511. [4] = { // GGML_TYPE_Q4_2
  512. .type_name = "DEPRECATED",
  513. .blck_size = 0,
  514. .type_size = 0,
  515. .is_quantized = false,
  516. .to_float = NULL,
  517. .from_float = NULL,
  518. .from_float_reference = NULL,
  519. .vec_dot = NULL,
  520. .vec_dot_type = GGML_TYPE_COUNT,
  521. .nrows = 1,
  522. },
  523. [5] = { // GGML_TYPE_Q4_3
  524. .type_name = "DEPRECATED",
  525. .blck_size = 0,
  526. .type_size = 0,
  527. .is_quantized = false,
  528. .to_float = NULL,
  529. .from_float = NULL,
  530. .from_float_reference = NULL,
  531. .vec_dot = NULL,
  532. .vec_dot_type = GGML_TYPE_COUNT,
  533. .nrows = 1,
  534. },
  535. [GGML_TYPE_Q5_0] = {
  536. .type_name = "q5_0",
  537. .blck_size = QK5_0,
  538. .type_size = sizeof(block_q5_0),
  539. .is_quantized = true,
  540. .to_float = (ggml_to_float_t) dequantize_row_q5_0,
  541. .from_float = quantize_row_q5_0,
  542. .from_float_reference = (ggml_from_float_t) quantize_row_q5_0_reference,
  543. .vec_dot = ggml_vec_dot_q5_0_q8_0,
  544. .vec_dot_type = GGML_TYPE_Q8_0,
  545. .nrows = 1,
  546. },
  547. [GGML_TYPE_Q5_1] = {
  548. .type_name = "q5_1",
  549. .blck_size = QK5_1,
  550. .type_size = sizeof(block_q5_1),
  551. .is_quantized = true,
  552. .to_float = (ggml_to_float_t) dequantize_row_q5_1,
  553. .from_float = quantize_row_q5_1,
  554. .from_float_reference = (ggml_from_float_t) quantize_row_q5_1_reference,
  555. .vec_dot = ggml_vec_dot_q5_1_q8_1,
  556. .vec_dot_type = GGML_TYPE_Q8_1,
  557. .nrows = 1,
  558. },
  559. [GGML_TYPE_Q8_0] = {
  560. .type_name = "q8_0",
  561. .blck_size = QK8_0,
  562. .type_size = sizeof(block_q8_0),
  563. .is_quantized = true,
  564. .to_float = (ggml_to_float_t) dequantize_row_q8_0,
  565. .from_float = quantize_row_q8_0,
  566. .from_float_reference = (ggml_from_float_t) quantize_row_q8_0_reference,
  567. .vec_dot = ggml_vec_dot_q8_0_q8_0,
  568. .vec_dot_type = GGML_TYPE_Q8_0,
  569. #if defined (__ARM_FEATURE_MATMUL_INT8)
  570. .nrows = 2,
  571. #else
  572. .nrows = 1,
  573. #endif
  574. },
  575. [GGML_TYPE_Q8_1] = {
  576. .type_name = "q8_1",
  577. .blck_size = QK8_1,
  578. .type_size = sizeof(block_q8_1),
  579. .is_quantized = true,
  580. .from_float = quantize_row_q8_1,
  581. .from_float_reference = (ggml_from_float_t) quantize_row_q8_1_reference,
  582. .vec_dot_type = GGML_TYPE_Q8_1,
  583. .nrows = 1,
  584. },
  585. [GGML_TYPE_Q2_K] = {
  586. .type_name = "q2_K",
  587. .blck_size = QK_K,
  588. .type_size = sizeof(block_q2_K),
  589. .is_quantized = true,
  590. .to_float = (ggml_to_float_t) dequantize_row_q2_K,
  591. .from_float = quantize_row_q2_K,
  592. .from_float_reference = (ggml_from_float_t) quantize_row_q2_K_reference,
  593. .vec_dot = ggml_vec_dot_q2_K_q8_K,
  594. .vec_dot_type = GGML_TYPE_Q8_K,
  595. .nrows = 1,
  596. },
  597. [GGML_TYPE_Q3_K] = {
  598. .type_name = "q3_K",
  599. .blck_size = QK_K,
  600. .type_size = sizeof(block_q3_K),
  601. .is_quantized = true,
  602. .to_float = (ggml_to_float_t) dequantize_row_q3_K,
  603. .from_float = quantize_row_q3_K,
  604. .from_float_reference = (ggml_from_float_t) quantize_row_q3_K_reference,
  605. .vec_dot = ggml_vec_dot_q3_K_q8_K,
  606. .vec_dot_type = GGML_TYPE_Q8_K,
  607. .nrows = 1,
  608. },
  609. [GGML_TYPE_Q4_K] = {
  610. .type_name = "q4_K",
  611. .blck_size = QK_K,
  612. .type_size = sizeof(block_q4_K),
  613. .is_quantized = true,
  614. .to_float = (ggml_to_float_t) dequantize_row_q4_K,
  615. .from_float = quantize_row_q4_K,
  616. .from_float_reference = (ggml_from_float_t) quantize_row_q4_K_reference,
  617. .vec_dot = ggml_vec_dot_q4_K_q8_K,
  618. .vec_dot_type = GGML_TYPE_Q8_K,
  619. .nrows = 1,
  620. },
  621. [GGML_TYPE_Q5_K] = {
  622. .type_name = "q5_K",
  623. .blck_size = QK_K,
  624. .type_size = sizeof(block_q5_K),
  625. .is_quantized = true,
  626. .to_float = (ggml_to_float_t) dequantize_row_q5_K,
  627. .from_float = quantize_row_q5_K,
  628. .from_float_reference = (ggml_from_float_t) quantize_row_q5_K_reference,
  629. .vec_dot = ggml_vec_dot_q5_K_q8_K,
  630. .vec_dot_type = GGML_TYPE_Q8_K,
  631. .nrows = 1,
  632. },
  633. [GGML_TYPE_Q6_K] = {
  634. .type_name = "q6_K",
  635. .blck_size = QK_K,
  636. .type_size = sizeof(block_q6_K),
  637. .is_quantized = true,
  638. .to_float = (ggml_to_float_t) dequantize_row_q6_K,
  639. .from_float = quantize_row_q6_K,
  640. .from_float_reference = (ggml_from_float_t) quantize_row_q6_K_reference,
  641. .vec_dot = ggml_vec_dot_q6_K_q8_K,
  642. .vec_dot_type = GGML_TYPE_Q8_K,
  643. .nrows = 1,
  644. },
  645. [GGML_TYPE_IQ2_XXS] = {
  646. .type_name = "iq2_xxs",
  647. .blck_size = QK_K,
  648. .type_size = sizeof(block_iq2_xxs),
  649. .is_quantized = true,
  650. .to_float = (ggml_to_float_t) dequantize_row_iq2_xxs,
  651. .from_float = NULL,
  652. .from_float_reference = NULL,
  653. .vec_dot = ggml_vec_dot_iq2_xxs_q8_K,
  654. .vec_dot_type = GGML_TYPE_Q8_K,
  655. .nrows = 1,
  656. },
  657. [GGML_TYPE_IQ2_XS] = {
  658. .type_name = "iq2_xs",
  659. .blck_size = QK_K,
  660. .type_size = sizeof(block_iq2_xs),
  661. .is_quantized = true,
  662. .to_float = (ggml_to_float_t) dequantize_row_iq2_xs,
  663. .from_float = NULL,
  664. .from_float_reference = NULL,
  665. .vec_dot = ggml_vec_dot_iq2_xs_q8_K,
  666. .vec_dot_type = GGML_TYPE_Q8_K,
  667. .nrows = 1,
  668. },
  669. [GGML_TYPE_IQ3_XXS] = {
  670. .type_name = "iq3_xxs",
  671. .blck_size = QK_K,
  672. .type_size = sizeof(block_iq3_xxs),
  673. .is_quantized = true,
  674. .to_float = (ggml_to_float_t) dequantize_row_iq3_xxs,
  675. .from_float = quantize_row_iq3_xxs,
  676. .from_float_reference = (ggml_from_float_t)quantize_row_iq3_xxs_reference,
  677. .vec_dot = ggml_vec_dot_iq3_xxs_q8_K,
  678. .vec_dot_type = GGML_TYPE_Q8_K,
  679. .nrows = 1,
  680. },
  681. [GGML_TYPE_IQ3_S] = {
  682. .type_name = "iq3_s",
  683. .blck_size = QK_K,
  684. .type_size = sizeof(block_iq3_s),
  685. .is_quantized = true,
  686. .to_float = (ggml_to_float_t) dequantize_row_iq3_s,
  687. .from_float = quantize_row_iq3_s,
  688. .from_float_reference = (ggml_from_float_t)quantize_row_iq3_s_reference,
  689. .vec_dot = ggml_vec_dot_iq3_s_q8_K,
  690. .vec_dot_type = GGML_TYPE_Q8_K,
  691. .nrows = 1,
  692. },
  693. [GGML_TYPE_IQ2_S] = {
  694. .type_name = "iq2_s",
  695. .blck_size = QK_K,
  696. .type_size = sizeof(block_iq2_s),
  697. .is_quantized = true,
  698. .to_float = (ggml_to_float_t) dequantize_row_iq2_s,
  699. .from_float = quantize_row_iq2_s,
  700. .from_float_reference = (ggml_from_float_t)quantize_row_iq2_s_reference,
  701. .vec_dot = ggml_vec_dot_iq2_s_q8_K,
  702. .vec_dot_type = GGML_TYPE_Q8_K,
  703. .nrows = 1,
  704. },
  705. [GGML_TYPE_IQ1_S] = {
  706. .type_name = "iq1_s",
  707. .blck_size = QK_K,
  708. .type_size = sizeof(block_iq1_s),
  709. .is_quantized = true,
  710. .to_float = (ggml_to_float_t) dequantize_row_iq1_s,
  711. .from_float = NULL,
  712. .from_float_reference = NULL,
  713. .vec_dot = ggml_vec_dot_iq1_s_q8_K,
  714. .vec_dot_type = GGML_TYPE_Q8_K,
  715. .nrows = 1,
  716. },
  717. [GGML_TYPE_IQ1_M] = {
  718. .type_name = "iq1_m",
  719. .blck_size = QK_K,
  720. .type_size = sizeof(block_iq1_m),
  721. .is_quantized = true,
  722. .to_float = (ggml_to_float_t) dequantize_row_iq1_m,
  723. .from_float = NULL,
  724. .from_float_reference = NULL,
  725. .vec_dot = ggml_vec_dot_iq1_m_q8_K,
  726. .vec_dot_type = GGML_TYPE_Q8_K,
  727. .nrows = 1,
  728. },
  729. [GGML_TYPE_IQ4_NL] = {
  730. .type_name = "iq4_nl",
  731. .blck_size = QK4_NL,
  732. .type_size = sizeof(block_iq4_nl),
  733. .is_quantized = true,
  734. .to_float = (ggml_to_float_t) dequantize_row_iq4_nl,
  735. .from_float = quantize_row_iq4_nl,
  736. .from_float_reference = (ggml_from_float_t)quantize_row_iq4_nl_reference,
  737. .vec_dot = ggml_vec_dot_iq4_nl_q8_0,
  738. .vec_dot_type = GGML_TYPE_Q8_0,
  739. .nrows = 1,
  740. },
  741. [GGML_TYPE_IQ4_XS] = {
  742. .type_name = "iq4_xs",
  743. #if QK_K == 64
  744. .blck_size = QK4_NL,
  745. #else
  746. .blck_size = QK_K,
  747. #endif
  748. .type_size = sizeof(block_iq4_xs),
  749. .is_quantized = true,
  750. .to_float = (ggml_to_float_t) dequantize_row_iq4_xs,
  751. .from_float = quantize_row_iq4_xs,
  752. .from_float_reference = (ggml_from_float_t)quantize_row_iq4_xs_reference,
  753. .vec_dot = ggml_vec_dot_iq4_xs_q8_K,
  754. #if QK_K == 64
  755. .vec_dot_type = GGML_TYPE_Q8_0,
  756. #else
  757. .vec_dot_type = GGML_TYPE_Q8_K,
  758. #endif
  759. .nrows = 1,
  760. },
  761. [GGML_TYPE_Q8_K] = {
  762. .type_name = "q8_K",
  763. .blck_size = QK_K,
  764. .type_size = sizeof(block_q8_K),
  765. .is_quantized = true,
  766. .from_float = quantize_row_q8_K,
  767. }
  768. };
  769. // For internal test use
  770. ggml_type_traits_t ggml_internal_get_type_traits(enum ggml_type type) {
  771. GGML_ASSERT(type < GGML_TYPE_COUNT);
  772. return type_traits[type];
  773. }
  774. //
  775. // simd mappings
  776. //
  777. #if defined(__ARM_NEON)
  778. #if !defined(__aarch64__)
  779. // 64-bit compatibility
  780. inline static float vaddvq_f32(float32x4_t v) {
  781. return vgetq_lane_f32(v, 0) + vgetq_lane_f32(v, 1) + vgetq_lane_f32(v, 2) + vgetq_lane_f32(v, 3);
  782. }
  783. #endif
  784. #endif
  785. // we define a common set of C macros which map to specific intrinsics based on the current architecture
  786. // we then implement the fundamental computation operations below using only these macros
  787. // adding support for new architectures requires to define the corresponding SIMD macros
  788. //
  789. // GGML_F32_STEP / GGML_F16_STEP
  790. // number of elements to process in a single step
  791. //
  792. // GGML_F32_EPR / GGML_F16_EPR
  793. // number of elements to fit in a single register
  794. //
  795. #if defined(__ARM_NEON) && defined(__ARM_FEATURE_FMA)
  796. #define GGML_SIMD
  797. // F32 NEON
  798. #define GGML_F32_STEP 16
  799. #define GGML_F32_EPR 4
  800. #define GGML_F32x4 float32x4_t
  801. #define GGML_F32x4_ZERO vdupq_n_f32(0.0f)
  802. #define GGML_F32x4_SET1(x) vdupq_n_f32(x)
  803. #define GGML_F32x4_LOAD vld1q_f32
  804. #define GGML_F32x4_STORE vst1q_f32
  805. #define GGML_F32x4_FMA(a, b, c) vfmaq_f32(a, b, c)
  806. #define GGML_F32x4_ADD vaddq_f32
  807. #define GGML_F32x4_MUL vmulq_f32
  808. #define GGML_F32x4_REDUCE_ONE(x) vaddvq_f32(x)
  809. #define GGML_F32x4_REDUCE(res, x) \
  810. { \
  811. int offset = GGML_F32_ARR >> 1; \
  812. for (int i = 0; i < offset; ++i) { \
  813. x[i] = vaddq_f32(x[i], x[offset+i]); \
  814. } \
  815. offset >>= 1; \
  816. for (int i = 0; i < offset; ++i) { \
  817. x[i] = vaddq_f32(x[i], x[offset+i]); \
  818. } \
  819. offset >>= 1; \
  820. for (int i = 0; i < offset; ++i) { \
  821. x[i] = vaddq_f32(x[i], x[offset+i]); \
  822. } \
  823. res = GGML_F32x4_REDUCE_ONE(x[0]); \
  824. }
  825. #define GGML_F32_VEC GGML_F32x4
  826. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  827. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  828. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  829. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  830. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  831. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  832. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  833. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  834. // F16 NEON
  835. #if defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC)
  836. #define GGML_F16_STEP 32
  837. #define GGML_F16_EPR 8
  838. #define GGML_F16x8 float16x8_t
  839. #define GGML_F16x8_ZERO vdupq_n_f16(0.0f)
  840. #define GGML_F16x8_SET1(x) vdupq_n_f16(x)
  841. #define GGML_F16x8_LOAD(x) vld1q_f16((const ggml_fp16_internal_t *)(x))
  842. #define GGML_F16x8_STORE vst1q_f16
  843. #define GGML_F16x8_FMA(a, b, c) vfmaq_f16(a, b, c)
  844. #define GGML_F16x8_ADD vaddq_f16
  845. #define GGML_F16x8_MUL vmulq_f16
  846. #define GGML_F16x8_REDUCE(res, x) \
  847. do { \
  848. int offset = GGML_F16_ARR >> 1; \
  849. for (int i = 0; i < offset; ++i) { \
  850. x[i] = vaddq_f16(x[i], x[offset+i]); \
  851. } \
  852. offset >>= 1; \
  853. for (int i = 0; i < offset; ++i) { \
  854. x[i] = vaddq_f16(x[i], x[offset+i]); \
  855. } \
  856. offset >>= 1; \
  857. for (int i = 0; i < offset; ++i) { \
  858. x[i] = vaddq_f16(x[i], x[offset+i]); \
  859. } \
  860. const float32x4_t t0 = vcvt_f32_f16(vget_low_f16 (x[0])); \
  861. const float32x4_t t1 = vcvt_f32_f16(vget_high_f16(x[0])); \
  862. res = (ggml_float) vaddvq_f32(vaddq_f32(t0, t1)); \
  863. } while (0)
  864. #define GGML_F16_VEC GGML_F16x8
  865. #define GGML_F16_VEC_ZERO GGML_F16x8_ZERO
  866. #define GGML_F16_VEC_SET1 GGML_F16x8_SET1
  867. #define GGML_F16_VEC_LOAD(p, i) GGML_F16x8_LOAD(p)
  868. #define GGML_F16_VEC_STORE(p, r, i) GGML_F16x8_STORE(p, r[i])
  869. #define GGML_F16_VEC_FMA GGML_F16x8_FMA
  870. #define GGML_F16_VEC_ADD GGML_F16x8_ADD
  871. #define GGML_F16_VEC_MUL GGML_F16x8_MUL
  872. #define GGML_F16_VEC_REDUCE GGML_F16x8_REDUCE
  873. #else
  874. // if FP16 vector arithmetic is not supported, we use FP32 instead
  875. // and take advantage of the vcvt_ functions to convert to/from FP16
  876. #define GGML_F16_STEP 16
  877. #define GGML_F16_EPR 4
  878. #define GGML_F32Cx4 float32x4_t
  879. #define GGML_F32Cx4_ZERO vdupq_n_f32(0.0f)
  880. #define GGML_F32Cx4_SET1(x) vdupq_n_f32(x)
  881. #define GGML_F32Cx4_LOAD(x) vcvt_f32_f16(vld1_f16((const ggml_fp16_internal_t *)(x)))
  882. #define GGML_F32Cx4_STORE(x, y) vst1_f16(x, vcvt_f16_f32(y))
  883. #define GGML_F32Cx4_FMA(a, b, c) vfmaq_f32(a, b, c)
  884. #define GGML_F32Cx4_ADD vaddq_f32
  885. #define GGML_F32Cx4_MUL vmulq_f32
  886. #define GGML_F32Cx4_REDUCE GGML_F32x4_REDUCE
  887. #define GGML_F16_VEC GGML_F32Cx4
  888. #define GGML_F16_VEC_ZERO GGML_F32Cx4_ZERO
  889. #define GGML_F16_VEC_SET1 GGML_F32Cx4_SET1
  890. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx4_LOAD(p)
  891. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx4_STORE(p, r[i])
  892. #define GGML_F16_VEC_FMA GGML_F32Cx4_FMA
  893. #define GGML_F16_VEC_ADD GGML_F32Cx4_ADD
  894. #define GGML_F16_VEC_MUL GGML_F32Cx4_MUL
  895. #define GGML_F16_VEC_REDUCE GGML_F32Cx4_REDUCE
  896. #endif
  897. #elif defined(__AVX512F__)
  898. #define GGML_SIMD
  899. // F32 AVX512
  900. #define GGML_F32_STEP 64
  901. #define GGML_F32_EPR 16
  902. #define GGML_F32x16 __m512
  903. #define GGML_F32x16_ZERO _mm512_setzero_ps()
  904. #define GGML_F32x16_SET1(x) _mm512_set1_ps(x)
  905. #define GGML_F32x16_LOAD _mm512_loadu_ps
  906. #define GGML_F32x16_STORE _mm512_storeu_ps
  907. // _mm512_fmadd_ps is defined in AVX512F so no guard is required
  908. #define GGML_F32x16_FMA(a, b, c) _mm512_fmadd_ps(b, c, a)
  909. #define GGML_F32x16_ADD _mm512_add_ps
  910. #define GGML_F32x16_MUL _mm512_mul_ps
  911. #define GGML_F32x16_REDUCE(res, x) \
  912. do { \
  913. int offset = GGML_F32_ARR >> 1; \
  914. for (int i = 0; i < offset; ++i) { \
  915. x[i] = _mm512_add_ps(x[i], x[offset+i]); \
  916. } \
  917. offset >>= 1; \
  918. for (int i = 0; i < offset; ++i) { \
  919. x[i] = _mm512_add_ps(x[i], x[offset+i]); \
  920. } \
  921. offset >>= 1; \
  922. for (int i = 0; i < offset; ++i) { \
  923. x[i] = _mm512_add_ps(x[i], x[offset+i]); \
  924. } \
  925. res = _mm512_reduce_add_ps(x[0]); \
  926. } while (0)
  927. // TODO: is this optimal ?
  928. #define GGML_F32_VEC GGML_F32x16
  929. #define GGML_F32_VEC_ZERO GGML_F32x16_ZERO
  930. #define GGML_F32_VEC_SET1 GGML_F32x16_SET1
  931. #define GGML_F32_VEC_LOAD GGML_F32x16_LOAD
  932. #define GGML_F32_VEC_STORE GGML_F32x16_STORE
  933. #define GGML_F32_VEC_FMA GGML_F32x16_FMA
  934. #define GGML_F32_VEC_ADD GGML_F32x16_ADD
  935. #define GGML_F32_VEC_MUL GGML_F32x16_MUL
  936. #define GGML_F32_VEC_REDUCE GGML_F32x16_REDUCE
  937. // F16 AVX512
  938. // F16 AVX
  939. #define GGML_F16_STEP 64
  940. #define GGML_F16_EPR 16
  941. // AVX512 has FP16 extension (AVX512_FP16) but I don't have it on my machine so I use FP32 instead
  942. #define GGML_F32Cx16 __m512
  943. #define GGML_F32Cx16_ZERO _mm512_setzero_ps()
  944. #define GGML_F32Cx16_SET1(x) _mm512_set1_ps(x)
  945. // unlike _mm256_cvt intrinsics that require F16C, _mm512_cvt is defined in AVX512F
  946. // so F16C guard isn't required
  947. #define GGML_F32Cx16_LOAD(x) _mm512_cvtph_ps(_mm256_loadu_si256((__m256i *)(x)))
  948. #define GGML_F32Cx16_STORE(x, y) _mm256_storeu_si256((__m256i *)(x), _mm512_cvtps_ph(y, 0))
  949. #define GGML_F32Cx16_FMA(a, b, c) _mm512_fmadd_ps(b, c, a)
  950. #define GGML_F32Cx16_ADD _mm512_add_ps
  951. #define GGML_F32Cx16_MUL _mm512_mul_ps
  952. #define GGML_F32Cx16_REDUCE(res, x) \
  953. do { \
  954. int offset = GGML_F32_ARR >> 1; \
  955. for (int i = 0; i < offset; ++i) { \
  956. x[i] = _mm512_add_ps(x[i], x[offset+i]); \
  957. } \
  958. offset >>= 1; \
  959. for (int i = 0; i < offset; ++i) { \
  960. x[i] = _mm512_add_ps(x[i], x[offset+i]); \
  961. } \
  962. offset >>= 1; \
  963. for (int i = 0; i < offset; ++i) { \
  964. x[i] = _mm512_add_ps(x[i], x[offset+i]); \
  965. } \
  966. res = _mm512_reduce_add_ps(x[0]); \
  967. } while (0)
  968. #define GGML_F16_VEC GGML_F32Cx16
  969. #define GGML_F16_VEC_ZERO GGML_F32Cx16_ZERO
  970. #define GGML_F16_VEC_SET1 GGML_F32Cx16_SET1
  971. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx16_LOAD(p)
  972. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx16_STORE(p, r[i])
  973. #define GGML_F16_VEC_FMA GGML_F32Cx16_FMA
  974. #define GGML_F16_VEC_ADD GGML_F32Cx16_ADD
  975. #define GGML_F16_VEC_MUL GGML_F32Cx16_MUL
  976. #define GGML_F16_VEC_REDUCE GGML_F32Cx16_REDUCE
  977. #elif defined(__AVX__)
  978. #define GGML_SIMD
  979. // F32 AVX
  980. #define GGML_F32_STEP 32
  981. #define GGML_F32_EPR 8
  982. #define GGML_F32x8 __m256
  983. #define GGML_F32x8_ZERO _mm256_setzero_ps()
  984. #define GGML_F32x8_SET1(x) _mm256_set1_ps(x)
  985. #define GGML_F32x8_LOAD _mm256_loadu_ps
  986. #define GGML_F32x8_STORE _mm256_storeu_ps
  987. #if defined(__FMA__)
  988. #define GGML_F32x8_FMA(a, b, c) _mm256_fmadd_ps(b, c, a)
  989. #else
  990. #define GGML_F32x8_FMA(a, b, c) _mm256_add_ps(_mm256_mul_ps(b, c), a)
  991. #endif
  992. #define GGML_F32x8_ADD _mm256_add_ps
  993. #define GGML_F32x8_MUL _mm256_mul_ps
  994. #define GGML_F32x8_REDUCE(res, x) \
  995. do { \
  996. int offset = GGML_F32_ARR >> 1; \
  997. for (int i = 0; i < offset; ++i) { \
  998. x[i] = _mm256_add_ps(x[i], x[offset+i]); \
  999. } \
  1000. offset >>= 1; \
  1001. for (int i = 0; i < offset; ++i) { \
  1002. x[i] = _mm256_add_ps(x[i], x[offset+i]); \
  1003. } \
  1004. offset >>= 1; \
  1005. for (int i = 0; i < offset; ++i) { \
  1006. x[i] = _mm256_add_ps(x[i], x[offset+i]); \
  1007. } \
  1008. const __m128 t0 = _mm_add_ps(_mm256_castps256_ps128(x[0]), \
  1009. _mm256_extractf128_ps(x[0], 1)); \
  1010. const __m128 t1 = _mm_hadd_ps(t0, t0); \
  1011. res = (ggml_float) _mm_cvtss_f32(_mm_hadd_ps(t1, t1)); \
  1012. } while (0)
  1013. // TODO: is this optimal ?
  1014. #define GGML_F32_VEC GGML_F32x8
  1015. #define GGML_F32_VEC_ZERO GGML_F32x8_ZERO
  1016. #define GGML_F32_VEC_SET1 GGML_F32x8_SET1
  1017. #define GGML_F32_VEC_LOAD GGML_F32x8_LOAD
  1018. #define GGML_F32_VEC_STORE GGML_F32x8_STORE
  1019. #define GGML_F32_VEC_FMA GGML_F32x8_FMA
  1020. #define GGML_F32_VEC_ADD GGML_F32x8_ADD
  1021. #define GGML_F32_VEC_MUL GGML_F32x8_MUL
  1022. #define GGML_F32_VEC_REDUCE GGML_F32x8_REDUCE
  1023. // F16 AVX
  1024. #define GGML_F16_STEP 32
  1025. #define GGML_F16_EPR 8
  1026. // F16 arithmetic is not supported by AVX, so we use F32 instead
  1027. #define GGML_F32Cx8 __m256
  1028. #define GGML_F32Cx8_ZERO _mm256_setzero_ps()
  1029. #define GGML_F32Cx8_SET1(x) _mm256_set1_ps(x)
  1030. #if defined(__F16C__)
  1031. // the _mm256_cvt intrinsics require F16C
  1032. #define GGML_F32Cx8_LOAD(x) _mm256_cvtph_ps(_mm_loadu_si128((__m128i *)(x)))
  1033. #define GGML_F32Cx8_STORE(x, y) _mm_storeu_si128((__m128i *)(x), _mm256_cvtps_ph(y, 0))
  1034. #else
  1035. static inline __m256 __avx_f32cx8_load(ggml_fp16_t *x) {
  1036. float tmp[8];
  1037. for (int i = 0; i < 8; i++) {
  1038. tmp[i] = GGML_FP16_TO_FP32(x[i]);
  1039. }
  1040. return _mm256_loadu_ps(tmp);
  1041. }
  1042. static inline void __avx_f32cx8_store(ggml_fp16_t *x, __m256 y) {
  1043. float arr[8];
  1044. _mm256_storeu_ps(arr, y);
  1045. for (int i = 0; i < 8; i++)
  1046. x[i] = GGML_FP32_TO_FP16(arr[i]);
  1047. }
  1048. #define GGML_F32Cx8_LOAD(x) __avx_f32cx8_load(x)
  1049. #define GGML_F32Cx8_STORE(x, y) __avx_f32cx8_store(x, y)
  1050. #endif
  1051. #define GGML_F32Cx8_FMA GGML_F32x8_FMA
  1052. #define GGML_F32Cx8_ADD _mm256_add_ps
  1053. #define GGML_F32Cx8_MUL _mm256_mul_ps
  1054. #define GGML_F32Cx8_REDUCE GGML_F32x8_REDUCE
  1055. #define GGML_F16_VEC GGML_F32Cx8
  1056. #define GGML_F16_VEC_ZERO GGML_F32Cx8_ZERO
  1057. #define GGML_F16_VEC_SET1 GGML_F32Cx8_SET1
  1058. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx8_LOAD(p)
  1059. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx8_STORE(p, r[i])
  1060. #define GGML_F16_VEC_FMA GGML_F32Cx8_FMA
  1061. #define GGML_F16_VEC_ADD GGML_F32Cx8_ADD
  1062. #define GGML_F16_VEC_MUL GGML_F32Cx8_MUL
  1063. #define GGML_F16_VEC_REDUCE GGML_F32Cx8_REDUCE
  1064. #elif defined(__POWER9_VECTOR__)
  1065. #define GGML_SIMD
  1066. // F32 POWER9
  1067. #define GGML_F32_STEP 32
  1068. #define GGML_F32_EPR 4
  1069. #define GGML_F32x4 vector float
  1070. #define GGML_F32x4_ZERO 0.0f
  1071. #define GGML_F32x4_SET1 vec_splats
  1072. #define GGML_F32x4_LOAD(p) vec_xl(0, p)
  1073. #define GGML_F32x4_STORE(p, r) vec_xst(r, 0, p)
  1074. #define GGML_F32x4_FMA(a, b, c) vec_madd(b, c, a)
  1075. #define GGML_F32x4_ADD vec_add
  1076. #define GGML_F32x4_MUL vec_mul
  1077. #define GGML_F32x4_REDUCE(res, x) \
  1078. { \
  1079. int offset = GGML_F32_ARR >> 1; \
  1080. for (int i = 0; i < offset; ++i) { \
  1081. x[i] = vec_add(x[i], x[offset+i]); \
  1082. } \
  1083. offset >>= 1; \
  1084. for (int i = 0; i < offset; ++i) { \
  1085. x[i] = vec_add(x[i], x[offset+i]); \
  1086. } \
  1087. offset >>= 1; \
  1088. for (int i = 0; i < offset; ++i) { \
  1089. x[i] = vec_add(x[i], x[offset+i]); \
  1090. } \
  1091. res = vec_extract(x[0], 0) + \
  1092. vec_extract(x[0], 1) + \
  1093. vec_extract(x[0], 2) + \
  1094. vec_extract(x[0], 3); \
  1095. }
  1096. #define GGML_F32_VEC GGML_F32x4
  1097. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1098. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1099. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1100. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1101. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1102. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1103. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1104. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1105. // F16 POWER9
  1106. #define GGML_F16_STEP GGML_F32_STEP
  1107. #define GGML_F16_EPR GGML_F32_EPR
  1108. #define GGML_F16_VEC GGML_F32x4
  1109. #define GGML_F16_VEC_ZERO GGML_F32x4_ZERO
  1110. #define GGML_F16_VEC_SET1 GGML_F32x4_SET1
  1111. #define GGML_F16_VEC_FMA GGML_F32x4_FMA
  1112. #define GGML_F16_VEC_REDUCE GGML_F32x4_REDUCE
  1113. // Use vec_xl, not vec_ld, in case the load address is not aligned.
  1114. #define GGML_F16_VEC_LOAD(p, i) (i & 0x1) ? \
  1115. vec_extract_fp32_from_shorth(vec_xl(0, p - GGML_F16_EPR)) : \
  1116. vec_extract_fp32_from_shortl(vec_xl(0, p))
  1117. #define GGML_ENDIAN_BYTE(i) ((unsigned char *)&(uint16_t){1})[i]
  1118. #define GGML_F16_VEC_STORE(p, r, i) \
  1119. if (i & 0x1) \
  1120. vec_xst(vec_pack_to_short_fp32(r[i - GGML_ENDIAN_BYTE(1)], \
  1121. r[i - GGML_ENDIAN_BYTE(0)]), \
  1122. 0, p - GGML_F16_EPR)
  1123. #elif defined(__wasm_simd128__)
  1124. #define GGML_SIMD
  1125. // F32 WASM
  1126. #define GGML_F32_STEP 16
  1127. #define GGML_F32_EPR 4
  1128. #define GGML_F32x4 v128_t
  1129. #define GGML_F32x4_ZERO wasm_f32x4_splat(0.0f)
  1130. #define GGML_F32x4_SET1(x) wasm_f32x4_splat(x)
  1131. #define GGML_F32x4_LOAD wasm_v128_load
  1132. #define GGML_F32x4_STORE wasm_v128_store
  1133. #define GGML_F32x4_FMA(a, b, c) wasm_f32x4_add(wasm_f32x4_mul(b, c), a)
  1134. #define GGML_F32x4_ADD wasm_f32x4_add
  1135. #define GGML_F32x4_MUL wasm_f32x4_mul
  1136. #define GGML_F32x4_REDUCE(res, x) \
  1137. { \
  1138. int offset = GGML_F32_ARR >> 1; \
  1139. for (int i = 0; i < offset; ++i) { \
  1140. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  1141. } \
  1142. offset >>= 1; \
  1143. for (int i = 0; i < offset; ++i) { \
  1144. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  1145. } \
  1146. offset >>= 1; \
  1147. for (int i = 0; i < offset; ++i) { \
  1148. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  1149. } \
  1150. res = wasm_f32x4_extract_lane(x[0], 0) + \
  1151. wasm_f32x4_extract_lane(x[0], 1) + \
  1152. wasm_f32x4_extract_lane(x[0], 2) + \
  1153. wasm_f32x4_extract_lane(x[0], 3); \
  1154. }
  1155. #define GGML_F32_VEC GGML_F32x4
  1156. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1157. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1158. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1159. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1160. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1161. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1162. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1163. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1164. // F16 WASM
  1165. #define GGML_F16_STEP 16
  1166. #define GGML_F16_EPR 4
  1167. inline static v128_t __wasm_f16x4_load(const ggml_fp16_t * p) {
  1168. float tmp[4];
  1169. tmp[0] = GGML_FP16_TO_FP32(p[0]);
  1170. tmp[1] = GGML_FP16_TO_FP32(p[1]);
  1171. tmp[2] = GGML_FP16_TO_FP32(p[2]);
  1172. tmp[3] = GGML_FP16_TO_FP32(p[3]);
  1173. return wasm_v128_load(tmp);
  1174. }
  1175. inline static void __wasm_f16x4_store(ggml_fp16_t * p, v128_t x) {
  1176. float tmp[4];
  1177. wasm_v128_store(tmp, x);
  1178. p[0] = GGML_FP32_TO_FP16(tmp[0]);
  1179. p[1] = GGML_FP32_TO_FP16(tmp[1]);
  1180. p[2] = GGML_FP32_TO_FP16(tmp[2]);
  1181. p[3] = GGML_FP32_TO_FP16(tmp[3]);
  1182. }
  1183. #define GGML_F16x4 v128_t
  1184. #define GGML_F16x4_ZERO wasm_f32x4_splat(0.0f)
  1185. #define GGML_F16x4_SET1(x) wasm_f32x4_splat(x)
  1186. #define GGML_F16x4_LOAD(x) __wasm_f16x4_load(x)
  1187. #define GGML_F16x4_STORE(x, y) __wasm_f16x4_store(x, y)
  1188. #define GGML_F16x4_FMA GGML_F32x4_FMA
  1189. #define GGML_F16x4_ADD wasm_f32x4_add
  1190. #define GGML_F16x4_MUL wasm_f32x4_mul
  1191. #define GGML_F16x4_REDUCE(res, x) \
  1192. { \
  1193. int offset = GGML_F16_ARR >> 1; \
  1194. for (int i = 0; i < offset; ++i) { \
  1195. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  1196. } \
  1197. offset >>= 1; \
  1198. for (int i = 0; i < offset; ++i) { \
  1199. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  1200. } \
  1201. offset >>= 1; \
  1202. for (int i = 0; i < offset; ++i) { \
  1203. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  1204. } \
  1205. res = wasm_f32x4_extract_lane(x[0], 0) + \
  1206. wasm_f32x4_extract_lane(x[0], 1) + \
  1207. wasm_f32x4_extract_lane(x[0], 2) + \
  1208. wasm_f32x4_extract_lane(x[0], 3); \
  1209. }
  1210. #define GGML_F16_VEC GGML_F16x4
  1211. #define GGML_F16_VEC_ZERO GGML_F16x4_ZERO
  1212. #define GGML_F16_VEC_SET1 GGML_F16x4_SET1
  1213. #define GGML_F16_VEC_LOAD(p, i) GGML_F16x4_LOAD(p)
  1214. #define GGML_F16_VEC_STORE(p, r, i) GGML_F16x4_STORE(p, r[i])
  1215. #define GGML_F16_VEC_FMA GGML_F16x4_FMA
  1216. #define GGML_F16_VEC_ADD GGML_F16x4_ADD
  1217. #define GGML_F16_VEC_MUL GGML_F16x4_MUL
  1218. #define GGML_F16_VEC_REDUCE GGML_F16x4_REDUCE
  1219. #elif defined(__SSE3__)
  1220. #define GGML_SIMD
  1221. // F32 SSE
  1222. #define GGML_F32_STEP 32
  1223. #define GGML_F32_EPR 4
  1224. #define GGML_F32x4 __m128
  1225. #define GGML_F32x4_ZERO _mm_setzero_ps()
  1226. #define GGML_F32x4_SET1(x) _mm_set1_ps(x)
  1227. #define GGML_F32x4_LOAD _mm_loadu_ps
  1228. #define GGML_F32x4_STORE _mm_storeu_ps
  1229. #if defined(__FMA__)
  1230. // TODO: Does this work?
  1231. #define GGML_F32x4_FMA(a, b, c) _mm_fmadd_ps(b, c, a)
  1232. #else
  1233. #define GGML_F32x4_FMA(a, b, c) _mm_add_ps(_mm_mul_ps(b, c), a)
  1234. #endif
  1235. #define GGML_F32x4_ADD _mm_add_ps
  1236. #define GGML_F32x4_MUL _mm_mul_ps
  1237. #define GGML_F32x4_REDUCE(res, x) \
  1238. { \
  1239. int offset = GGML_F32_ARR >> 1; \
  1240. for (int i = 0; i < offset; ++i) { \
  1241. x[i] = _mm_add_ps(x[i], x[offset+i]); \
  1242. } \
  1243. offset >>= 1; \
  1244. for (int i = 0; i < offset; ++i) { \
  1245. x[i] = _mm_add_ps(x[i], x[offset+i]); \
  1246. } \
  1247. offset >>= 1; \
  1248. for (int i = 0; i < offset; ++i) { \
  1249. x[i] = _mm_add_ps(x[i], x[offset+i]); \
  1250. } \
  1251. const __m128 t0 = _mm_hadd_ps(x[0], x[0]); \
  1252. res = (ggml_float) _mm_cvtss_f32(_mm_hadd_ps(t0, t0)); \
  1253. }
  1254. // TODO: is this optimal ?
  1255. #define GGML_F32_VEC GGML_F32x4
  1256. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1257. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1258. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1259. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1260. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1261. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1262. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1263. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1264. // F16 SSE
  1265. #define GGML_F16_STEP 32
  1266. #define GGML_F16_EPR 4
  1267. static inline __m128 __sse_f16x4_load(ggml_fp16_t *x) {
  1268. float tmp[4];
  1269. tmp[0] = GGML_FP16_TO_FP32(x[0]);
  1270. tmp[1] = GGML_FP16_TO_FP32(x[1]);
  1271. tmp[2] = GGML_FP16_TO_FP32(x[2]);
  1272. tmp[3] = GGML_FP16_TO_FP32(x[3]);
  1273. return _mm_loadu_ps(tmp);
  1274. }
  1275. static inline void __sse_f16x4_store(ggml_fp16_t *x, __m128 y) {
  1276. float arr[4];
  1277. _mm_storeu_ps(arr, y);
  1278. x[0] = GGML_FP32_TO_FP16(arr[0]);
  1279. x[1] = GGML_FP32_TO_FP16(arr[1]);
  1280. x[2] = GGML_FP32_TO_FP16(arr[2]);
  1281. x[3] = GGML_FP32_TO_FP16(arr[3]);
  1282. }
  1283. #define GGML_F32Cx4 __m128
  1284. #define GGML_F32Cx4_ZERO _mm_setzero_ps()
  1285. #define GGML_F32Cx4_SET1(x) _mm_set1_ps(x)
  1286. #define GGML_F32Cx4_LOAD(x) __sse_f16x4_load(x)
  1287. #define GGML_F32Cx4_STORE(x, y) __sse_f16x4_store(x, y)
  1288. #define GGML_F32Cx4_FMA GGML_F32x4_FMA
  1289. #define GGML_F32Cx4_ADD _mm_add_ps
  1290. #define GGML_F32Cx4_MUL _mm_mul_ps
  1291. #define GGML_F32Cx4_REDUCE GGML_F32x4_REDUCE
  1292. #define GGML_F16_VEC GGML_F32Cx4
  1293. #define GGML_F16_VEC_ZERO GGML_F32Cx4_ZERO
  1294. #define GGML_F16_VEC_SET1 GGML_F32Cx4_SET1
  1295. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx4_LOAD(p)
  1296. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx4_STORE(p, r[i])
  1297. #define GGML_F16_VEC_FMA GGML_F32Cx4_FMA
  1298. #define GGML_F16_VEC_ADD GGML_F32Cx4_ADD
  1299. #define GGML_F16_VEC_MUL GGML_F32Cx4_MUL
  1300. #define GGML_F16_VEC_REDUCE GGML_F32Cx4_REDUCE
  1301. #endif
  1302. // GGML_F32_ARR / GGML_F16_ARR
  1303. // number of registers to use per step
  1304. #ifdef GGML_SIMD
  1305. #define GGML_F32_ARR (GGML_F32_STEP/GGML_F32_EPR)
  1306. #define GGML_F16_ARR (GGML_F16_STEP/GGML_F16_EPR)
  1307. #endif
  1308. //
  1309. // fundamental operations
  1310. //
  1311. inline static void ggml_vec_set_i8(const int n, int8_t * x, const int8_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1312. inline static void ggml_vec_set_i16(const int n, int16_t * x, const int16_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1313. inline static void ggml_vec_set_i32(const int n, int32_t * x, const int32_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1314. inline static void ggml_vec_set_f16(const int n, ggml_fp16_t * x, const int32_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1315. inline static void ggml_vec_add_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i] + y[i]; }
  1316. inline static void ggml_vec_add1_f32(const int n, float * z, const float * x, const float v) { for (int i = 0; i < n; ++i) z[i] = x[i] + v; }
  1317. inline static void ggml_vec_acc_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] += x[i]; }
  1318. inline static void ggml_vec_acc1_f32(const int n, float * y, const float v) { for (int i = 0; i < n; ++i) y[i] += v; }
  1319. inline static void ggml_vec_sub_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i] - y[i]; }
  1320. inline static void ggml_vec_set_f32 (const int n, float * x, const float v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1321. inline static void ggml_vec_cpy_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i]; }
  1322. inline static void ggml_vec_neg_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = -x[i]; }
  1323. inline static void ggml_vec_mul_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i]*y[i]; }
  1324. inline static void ggml_vec_div_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i]/y[i]; }
  1325. static void ggml_vec_dot_f32(int n, float * restrict s, size_t bs, const float * restrict x, size_t bx, const float * restrict y, size_t by, int nrc) {
  1326. assert(nrc == 1);
  1327. UNUSED(nrc);
  1328. UNUSED(bx);
  1329. UNUSED(by);
  1330. UNUSED(bs);
  1331. #ifdef GGML_SIMD
  1332. float sumf = 0.0f;
  1333. const int np = (n & ~(GGML_F32_STEP - 1));
  1334. GGML_F32_VEC sum[GGML_F32_ARR] = { GGML_F32_VEC_ZERO };
  1335. GGML_F32_VEC ax[GGML_F32_ARR];
  1336. GGML_F32_VEC ay[GGML_F32_ARR];
  1337. for (int i = 0; i < np; i += GGML_F32_STEP) {
  1338. for (int j = 0; j < GGML_F32_ARR; j++) {
  1339. ax[j] = GGML_F32_VEC_LOAD(x + i + j*GGML_F32_EPR);
  1340. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  1341. sum[j] = GGML_F32_VEC_FMA(sum[j], ax[j], ay[j]);
  1342. }
  1343. }
  1344. // reduce sum0..sum3 to sum0
  1345. GGML_F32_VEC_REDUCE(sumf, sum);
  1346. // leftovers
  1347. for (int i = np; i < n; ++i) {
  1348. sumf += x[i]*y[i];
  1349. }
  1350. #else
  1351. // scalar
  1352. ggml_float sumf = 0.0;
  1353. for (int i = 0; i < n; ++i) {
  1354. sumf += (ggml_float)(x[i]*y[i]);
  1355. }
  1356. #endif
  1357. *s = sumf;
  1358. }
  1359. static void ggml_vec_dot_f16(int n, float * restrict s, size_t bs, ggml_fp16_t * restrict x, size_t bx, ggml_fp16_t * restrict y, size_t by, int nrc) {
  1360. assert(nrc == 1);
  1361. UNUSED(nrc);
  1362. UNUSED(bx);
  1363. UNUSED(by);
  1364. UNUSED(bs);
  1365. ggml_float sumf = 0.0;
  1366. #if defined(GGML_SIMD)
  1367. const int np = (n & ~(GGML_F16_STEP - 1));
  1368. GGML_F16_VEC sum[GGML_F16_ARR] = { GGML_F16_VEC_ZERO };
  1369. GGML_F16_VEC ax[GGML_F16_ARR];
  1370. GGML_F16_VEC ay[GGML_F16_ARR];
  1371. for (int i = 0; i < np; i += GGML_F16_STEP) {
  1372. for (int j = 0; j < GGML_F16_ARR; j++) {
  1373. ax[j] = GGML_F16_VEC_LOAD(x + i + j*GGML_F16_EPR, j);
  1374. ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
  1375. sum[j] = GGML_F16_VEC_FMA(sum[j], ax[j], ay[j]);
  1376. }
  1377. }
  1378. // reduce sum0..sum3 to sum0
  1379. GGML_F16_VEC_REDUCE(sumf, sum);
  1380. // leftovers
  1381. for (int i = np; i < n; ++i) {
  1382. sumf += (ggml_float)(GGML_FP16_TO_FP32(x[i])*GGML_FP16_TO_FP32(y[i]));
  1383. }
  1384. #else
  1385. for (int i = 0; i < n; ++i) {
  1386. sumf += (ggml_float)(GGML_FP16_TO_FP32(x[i])*GGML_FP16_TO_FP32(y[i]));
  1387. }
  1388. #endif
  1389. *s = sumf;
  1390. }
  1391. // compute GGML_VEC_DOT_UNROLL dot products at once
  1392. // xs - x row stride in bytes
  1393. inline static void ggml_vec_dot_f16_unroll(const int n, const int xs, float * restrict s, void * restrict xv, ggml_fp16_t * restrict y) {
  1394. ggml_float sumf[GGML_VEC_DOT_UNROLL] = { 0.0 };
  1395. ggml_fp16_t * restrict x[GGML_VEC_DOT_UNROLL];
  1396. for (int i = 0; i < GGML_VEC_DOT_UNROLL; ++i) {
  1397. x[i] = (ggml_fp16_t *) ((char *) xv + i*xs);
  1398. }
  1399. #if defined(GGML_SIMD)
  1400. const int np = (n & ~(GGML_F16_STEP - 1));
  1401. GGML_F16_VEC sum[GGML_VEC_DOT_UNROLL][GGML_F16_ARR] = { { GGML_F16_VEC_ZERO } };
  1402. GGML_F16_VEC ax[GGML_F16_ARR];
  1403. GGML_F16_VEC ay[GGML_F16_ARR];
  1404. for (int i = 0; i < np; i += GGML_F16_STEP) {
  1405. for (int j = 0; j < GGML_F16_ARR; j++) {
  1406. ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
  1407. for (int k = 0; k < GGML_VEC_DOT_UNROLL; ++k) {
  1408. ax[j] = GGML_F16_VEC_LOAD(x[k] + i + j*GGML_F16_EPR, j);
  1409. sum[k][j] = GGML_F16_VEC_FMA(sum[k][j], ax[j], ay[j]);
  1410. }
  1411. }
  1412. }
  1413. // reduce sum0..sum3 to sum0
  1414. for (int k = 0; k < GGML_VEC_DOT_UNROLL; ++k) {
  1415. GGML_F16_VEC_REDUCE(sumf[k], sum[k]);
  1416. }
  1417. // leftovers
  1418. for (int i = np; i < n; ++i) {
  1419. for (int j = 0; j < GGML_VEC_DOT_UNROLL; ++j) {
  1420. sumf[j] += (ggml_float)(GGML_FP16_TO_FP32(x[j][i])*GGML_FP16_TO_FP32(y[i]));
  1421. }
  1422. }
  1423. #else
  1424. for (int i = 0; i < n; ++i) {
  1425. for (int j = 0; j < GGML_VEC_DOT_UNROLL; ++j) {
  1426. sumf[j] += (ggml_float)(GGML_FP16_TO_FP32(x[j][i])*GGML_FP16_TO_FP32(y[i]));
  1427. }
  1428. }
  1429. #endif
  1430. for (int i = 0; i < GGML_VEC_DOT_UNROLL; ++i) {
  1431. s[i] = sumf[i];
  1432. }
  1433. }
  1434. inline static void ggml_vec_mad_f32(const int n, float * restrict y, const float * restrict x, const float v) {
  1435. #if defined(GGML_SIMD)
  1436. const int np = (n & ~(GGML_F32_STEP - 1));
  1437. GGML_F32_VEC vx = GGML_F32_VEC_SET1(v);
  1438. GGML_F32_VEC ax[GGML_F32_ARR];
  1439. GGML_F32_VEC ay[GGML_F32_ARR];
  1440. for (int i = 0; i < np; i += GGML_F32_STEP) {
  1441. for (int j = 0; j < GGML_F32_ARR; j++) {
  1442. ax[j] = GGML_F32_VEC_LOAD(x + i + j*GGML_F32_EPR);
  1443. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  1444. ay[j] = GGML_F32_VEC_FMA(ay[j], ax[j], vx);
  1445. GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
  1446. }
  1447. }
  1448. // leftovers
  1449. for (int i = np; i < n; ++i) {
  1450. y[i] += x[i]*v;
  1451. }
  1452. #else
  1453. // scalar
  1454. for (int i = 0; i < n; ++i) {
  1455. y[i] += x[i]*v;
  1456. }
  1457. #endif
  1458. }
  1459. // xs and vs are byte strides of x and v
  1460. inline static void ggml_vec_mad_f32_unroll(const int n, const int xs, const int vs, float * restrict y, const float * restrict xv, const float * restrict vv) {
  1461. const float * restrict x[GGML_VEC_MAD_UNROLL];
  1462. const float * restrict v[GGML_VEC_MAD_UNROLL];
  1463. for (int i = 0; i < GGML_VEC_MAD_UNROLL; ++i) {
  1464. x[i] = (const float *) ((const char *) xv + i*xs);
  1465. v[i] = (const float *) ((const char *) vv + i*vs);
  1466. }
  1467. #if defined(GGML_SIMD)
  1468. const int np = (n & ~(GGML_F32_STEP - 1));
  1469. GGML_F32_VEC vx[GGML_VEC_MAD_UNROLL];
  1470. for (int k = 0; k < GGML_VEC_MAD_UNROLL; ++k) {
  1471. vx[k] = GGML_F32_VEC_SET1(v[k][0]);
  1472. }
  1473. GGML_F32_VEC ax[GGML_VEC_MAD_UNROLL][GGML_F32_ARR];
  1474. GGML_F32_VEC ay[GGML_F32_ARR];
  1475. for (int i = 0; i < np; i += GGML_F32_STEP) {
  1476. for (int j = 0; j < GGML_F32_ARR; j++) {
  1477. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  1478. for (int k = 0; k < GGML_VEC_MAD_UNROLL; ++k) {
  1479. ax[k][j] = GGML_F32_VEC_LOAD(x[k] + i + j*GGML_F32_EPR);
  1480. ay[j] = GGML_F32_VEC_FMA(ay[j], ax[k][j], vx[k]);
  1481. }
  1482. GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
  1483. }
  1484. }
  1485. // leftovers
  1486. for (int k = 0; k < GGML_VEC_MAD_UNROLL; ++k) {
  1487. for (int i = np; i < n; ++i) {
  1488. y[i] += x[k][i]*v[k][0];
  1489. }
  1490. }
  1491. #else
  1492. // scalar
  1493. for (int k = 0; k < GGML_VEC_MAD_UNROLL; ++k) {
  1494. for (int i = 0; i < n; ++i) {
  1495. y[i] += x[k][i]*v[k][0];
  1496. }
  1497. }
  1498. #endif
  1499. }
  1500. //inline static void ggml_vec_scale_f32(const int n, float * y, const float v) { for (int i = 0; i < n; ++i) y[i] *= v; }
  1501. inline static void ggml_vec_scale_f32(const int n, float * y, const float v) {
  1502. #if defined(GGML_USE_ACCELERATE)
  1503. vDSP_vsmul(y, 1, &v, y, 1, n);
  1504. #elif defined(GGML_SIMD)
  1505. const int np = (n & ~(GGML_F32_STEP - 1));
  1506. GGML_F32_VEC vx = GGML_F32_VEC_SET1(v);
  1507. GGML_F32_VEC ay[GGML_F32_ARR];
  1508. for (int i = 0; i < np; i += GGML_F32_STEP) {
  1509. for (int j = 0; j < GGML_F32_ARR; j++) {
  1510. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  1511. ay[j] = GGML_F32_VEC_MUL(ay[j], vx);
  1512. GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
  1513. }
  1514. }
  1515. // leftovers
  1516. for (int i = np; i < n; ++i) {
  1517. y[i] *= v;
  1518. }
  1519. #else
  1520. // scalar
  1521. for (int i = 0; i < n; ++i) {
  1522. y[i] *= v;
  1523. }
  1524. #endif
  1525. }
  1526. inline static void ggml_vec_norm_f32 (const int n, float * s, const float * x) { ggml_vec_dot_f32(n, s, 0, x, 0, x, 0, 1); *s = sqrtf(*s); }
  1527. inline static void ggml_vec_sqr_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i]*x[i]; }
  1528. inline static void ggml_vec_sqrt_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = sqrtf(x[i]); }
  1529. inline static void ggml_vec_log_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = logf(x[i]); }
  1530. inline static void ggml_vec_abs_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = fabsf(x[i]); }
  1531. inline static void ggml_vec_sgn_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? 1.f : ((x[i] < 0.f) ? -1.f : 0.f); }
  1532. inline static void ggml_vec_step_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? 1.f : 0.f; }
  1533. inline static void ggml_vec_tanh_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = tanhf(x[i]); }
  1534. inline static void ggml_vec_elu_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? x[i] : expf(x[i])-1; }
  1535. inline static void ggml_vec_relu_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? x[i] : 0.f; }
  1536. inline static void ggml_vec_leaky_relu_f32 (const int n, float * y, const float * x, const float ns) { for (int i = 0; i < n; ++i) y[i] = ((x[i] > 0.f) ? x[i] : 0.f) + ns * ((x[i] < 0.0f) ? x[i] : 0.f); }
  1537. // TODO: optimize performance
  1538. inline static void ggml_vec_hardswish_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i] * fminf(1.0f, fmaxf(0.0f, (x[i] + 3.0f) / 6.0f)); }
  1539. inline static void ggml_vec_hardsigmoid_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = fminf(1.0f, fmaxf(0.0f, (x[i] + 3.0f) / 6.0f)); }
  1540. static const float GELU_COEF_A = 0.044715f;
  1541. static const float GELU_QUICK_COEF = -1.702f;
  1542. static const float SQRT_2_OVER_PI = 0.79788456080286535587989211986876f;
  1543. inline static float ggml_gelu_f32(float x) {
  1544. return 0.5f*x*(1.0f + tanhf(SQRT_2_OVER_PI*x*(1.0f + GELU_COEF_A*x*x)));
  1545. }
  1546. inline static void ggml_vec_gelu_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
  1547. const uint16_t * i16 = (const uint16_t *) x;
  1548. for (int i = 0; i < n; ++i) {
  1549. y[i] = ggml_table_gelu_f16[i16[i]];
  1550. }
  1551. }
  1552. #ifdef GGML_GELU_FP16
  1553. inline static void ggml_vec_gelu_f32(const int n, float * y, const float * x) {
  1554. uint16_t t;
  1555. for (int i = 0; i < n; ++i) {
  1556. if (x[i] <= -10.0f) {
  1557. y[i] = 0.0f;
  1558. } else if (x[i] >= 10.0f) {
  1559. y[i] = x[i];
  1560. } else {
  1561. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  1562. memcpy(&t, &fp16, sizeof(uint16_t));
  1563. y[i] = GGML_FP16_TO_FP32(ggml_table_gelu_f16[t]);
  1564. }
  1565. }
  1566. }
  1567. #else
  1568. inline static void ggml_vec_gelu_f32(const int n, float * y, const float * x) {
  1569. for (int i = 0; i < n; ++i) {
  1570. y[i] = ggml_gelu_f32(x[i]);
  1571. }
  1572. }
  1573. #endif
  1574. inline static float ggml_gelu_quick_f32(float x) {
  1575. return x*(1.0f/(1.0f+expf(GELU_QUICK_COEF*x)));
  1576. }
  1577. //inline static void ggml_vec_gelu_quick_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
  1578. // const uint16_t * i16 = (const uint16_t *) x;
  1579. // for (int i = 0; i < n; ++i) {
  1580. // y[i] = ggml_table_gelu_quick_f16[i16[i]];
  1581. // }
  1582. //}
  1583. #ifdef GGML_GELU_QUICK_FP16
  1584. inline static void ggml_vec_gelu_quick_f32(const int n, float * y, const float * x) {
  1585. uint16_t t;
  1586. for (int i = 0; i < n; ++i) {
  1587. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  1588. memcpy(&t, &fp16, sizeof(uint16_t));
  1589. y[i] = GGML_FP16_TO_FP32(ggml_table_gelu_quick_f16[t]);
  1590. }
  1591. }
  1592. #else
  1593. inline static void ggml_vec_gelu_quick_f32(const int n, float * y, const float * x) {
  1594. for (int i = 0; i < n; ++i) {
  1595. y[i] = ggml_gelu_quick_f32(x[i]);
  1596. }
  1597. }
  1598. #endif
  1599. // Sigmoid Linear Unit (SiLU) function
  1600. inline static float ggml_silu_f32(float x) {
  1601. return x/(1.0f + expf(-x));
  1602. }
  1603. //inline static void ggml_vec_silu_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
  1604. // const uint16_t * i16 = (const uint16_t *) x;
  1605. // for (int i = 0; i < n; ++i) {
  1606. // y[i] = ggml_table_silu_f16[i16[i]];
  1607. // }
  1608. //}
  1609. #ifdef GGML_SILU_FP16
  1610. inline static void ggml_vec_silu_f32(const int n, float * y, const float * x) {
  1611. uint16_t t;
  1612. for (int i = 0; i < n; ++i) {
  1613. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  1614. memcpy(&t, &fp16, sizeof(uint16_t));
  1615. y[i] = GGML_FP16_TO_FP32(ggml_table_silu_f16[t]);
  1616. }
  1617. }
  1618. #else
  1619. inline static void ggml_vec_silu_f32(const int n, float * y, const float * x) {
  1620. for (int i = 0; i < n; ++i) {
  1621. y[i] = ggml_silu_f32(x[i]);
  1622. }
  1623. }
  1624. #endif
  1625. inline static float ggml_silu_backward_f32(float x, float dy) {
  1626. const float s = 1.0f/(1.0f + expf(-x));
  1627. return dy*s*(1.0f + x*(1.0f - s));
  1628. }
  1629. #ifdef GGML_SILU_FP16
  1630. inline static void ggml_vec_silu_backward_f32(const int n, float * dx, const float * x, const float * dy) {
  1631. for (int i = 0; i < n; ++i) {
  1632. // we did not use x[i] to compute forward silu but its f16 equivalent
  1633. // take derivative at f16 of x[i]:
  1634. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  1635. float usedx = GGML_FP16_TO_FP32(fp16);
  1636. dx[i] = ggml_silu_backward_f32(usedx, dy[i]);
  1637. }
  1638. }
  1639. #else
  1640. inline static void ggml_vec_silu_backward_f32(const int n, float * dx, const float * x, const float * dy) {
  1641. for (int i = 0; i < n; ++i) {
  1642. dx[i] = ggml_silu_backward_f32(x[i], dy[i]);
  1643. }
  1644. }
  1645. #endif
  1646. inline static void ggml_vec_sum_f32(const int n, float * s, const float * x) {
  1647. #ifndef GGML_USE_ACCELERATE
  1648. ggml_float sum = 0.0;
  1649. for (int i = 0; i < n; ++i) {
  1650. sum += (ggml_float)x[i];
  1651. }
  1652. *s = sum;
  1653. #else
  1654. vDSP_sve(x, 1, s, n);
  1655. #endif
  1656. }
  1657. inline static void ggml_vec_sum_f32_ggf(const int n, ggml_float * s, const float * x) {
  1658. ggml_float sum = 0.0;
  1659. for (int i = 0; i < n; ++i) {
  1660. sum += (ggml_float)x[i];
  1661. }
  1662. *s = sum;
  1663. }
  1664. inline static void ggml_vec_sum_f16_ggf(const int n, float * s, const ggml_fp16_t * x) {
  1665. float sum = 0.0f;
  1666. for (int i = 0; i < n; ++i) {
  1667. sum += GGML_FP16_TO_FP32(x[i]);
  1668. }
  1669. *s = sum;
  1670. }
  1671. inline static void ggml_vec_max_f32(const int n, float * s, const float * x) {
  1672. #ifndef GGML_USE_ACCELERATE
  1673. float max = -INFINITY;
  1674. for (int i = 0; i < n; ++i) {
  1675. max = MAX(max, x[i]);
  1676. }
  1677. *s = max;
  1678. #else
  1679. vDSP_maxv(x, 1, s, n);
  1680. #endif
  1681. }
  1682. inline static void ggml_vec_norm_inv_f32(const int n, float * s, const float * x) {
  1683. ggml_vec_norm_f32(n, s, x);
  1684. *s = 1.f/(*s);
  1685. }
  1686. inline static void ggml_vec_argmax_f32(const int n, int * s, const float * x) {
  1687. float max = -INFINITY;
  1688. int idx = 0;
  1689. for (int i = 0; i < n; ++i) {
  1690. max = MAX(max, x[i]);
  1691. if (max == x[i]) { idx = i; }
  1692. }
  1693. *s = idx;
  1694. }
  1695. //
  1696. // data types
  1697. //
  1698. static const char * GGML_OP_NAME[GGML_OP_COUNT] = {
  1699. "NONE",
  1700. "DUP",
  1701. "ADD",
  1702. "ADD1",
  1703. "ACC",
  1704. "SUB",
  1705. "MUL",
  1706. "DIV",
  1707. "SQR",
  1708. "SQRT",
  1709. "LOG",
  1710. "SUM",
  1711. "SUM_ROWS",
  1712. "MEAN",
  1713. "ARGMAX",
  1714. "REPEAT",
  1715. "REPEAT_BACK",
  1716. "CONCAT",
  1717. "SILU_BACK",
  1718. "NORM",
  1719. "RMS_NORM",
  1720. "RMS_NORM_BACK",
  1721. "GROUP_NORM",
  1722. "MUL_MAT",
  1723. "MUL_MAT_ID",
  1724. "OUT_PROD",
  1725. "SCALE",
  1726. "SET",
  1727. "CPY",
  1728. "CONT",
  1729. "RESHAPE",
  1730. "VIEW",
  1731. "PERMUTE",
  1732. "TRANSPOSE",
  1733. "GET_ROWS",
  1734. "GET_ROWS_BACK",
  1735. "DIAG",
  1736. "DIAG_MASK_INF",
  1737. "DIAG_MASK_ZERO",
  1738. "SOFT_MAX",
  1739. "SOFT_MAX_BACK",
  1740. "ROPE",
  1741. "ROPE_BACK",
  1742. "ALIBI",
  1743. "CLAMP",
  1744. "CONV_TRANSPOSE_1D",
  1745. "IM2COL",
  1746. "CONV_TRANSPOSE_2D",
  1747. "POOL_1D",
  1748. "POOL_2D",
  1749. "UPSCALE",
  1750. "PAD",
  1751. "ARANGE",
  1752. "TIMESTEP_EMBEDDING",
  1753. "ARGSORT",
  1754. "LEAKY_RELU",
  1755. "FLASH_ATTN",
  1756. "FLASH_FF",
  1757. "FLASH_ATTN_BACK",
  1758. "SSM_CONV",
  1759. "SSM_SCAN",
  1760. "WIN_PART",
  1761. "WIN_UNPART",
  1762. "GET_REL_POS",
  1763. "ADD_REL_POS",
  1764. "UNARY",
  1765. "MAP_UNARY",
  1766. "MAP_BINARY",
  1767. "MAP_CUSTOM1_F32",
  1768. "MAP_CUSTOM2_F32",
  1769. "MAP_CUSTOM3_F32",
  1770. "MAP_CUSTOM1",
  1771. "MAP_CUSTOM2",
  1772. "MAP_CUSTOM3",
  1773. "CROSS_ENTROPY_LOSS",
  1774. "CROSS_ENTROPY_LOSS_BACK",
  1775. };
  1776. static_assert(GGML_OP_COUNT == 76, "GGML_OP_COUNT != 76");
  1777. static const char * GGML_OP_SYMBOL[GGML_OP_COUNT] = {
  1778. "none",
  1779. "x",
  1780. "x+y",
  1781. "x+y",
  1782. "view(x,nb,offset)+=y->x",
  1783. "x-y",
  1784. "x*y",
  1785. "x/y",
  1786. "x^2",
  1787. "√x",
  1788. "log(x)",
  1789. "Σx",
  1790. "Σx_k",
  1791. "Σx/n",
  1792. "argmax(x)",
  1793. "repeat(x)",
  1794. "repeat_back(x)",
  1795. "concat(x, y)",
  1796. "silu_back(x)",
  1797. "norm(x)",
  1798. "rms_norm(x)",
  1799. "rms_norm_back(x)",
  1800. "group_norm(x)",
  1801. "X*Y",
  1802. "X[i]*Y",
  1803. "X*Y",
  1804. "x*v",
  1805. "y-\\>view(x)",
  1806. "x-\\>y",
  1807. "cont(x)",
  1808. "reshape(x)",
  1809. "view(x)",
  1810. "permute(x)",
  1811. "transpose(x)",
  1812. "get_rows(x)",
  1813. "get_rows_back(x)",
  1814. "diag(x)",
  1815. "diag_mask_inf(x)",
  1816. "diag_mask_zero(x)",
  1817. "soft_max(x)",
  1818. "soft_max_back(x)",
  1819. "rope(x)",
  1820. "rope_back(x)",
  1821. "alibi(x)",
  1822. "clamp(x)",
  1823. "conv_transpose_1d(x)",
  1824. "im2col(x)",
  1825. "conv_transpose_2d(x)",
  1826. "pool_1d(x)",
  1827. "pool_2d(x)",
  1828. "upscale(x)",
  1829. "pad(x)",
  1830. "arange(start, stop, step)",
  1831. "timestep_embedding(timesteps, dim, max_period)",
  1832. "argsort(x)",
  1833. "leaky_relu(x)",
  1834. "flash_attn(x)",
  1835. "flash_ff(x)",
  1836. "flash_attn_back(x)",
  1837. "ssm_conv(x)",
  1838. "ssm_scan(x)",
  1839. "win_part(x)",
  1840. "win_unpart(x)",
  1841. "get_rel_pos(x)",
  1842. "add_rel_pos(x)",
  1843. "unary(x)",
  1844. "f(x)",
  1845. "f(x,y)",
  1846. "custom_f32(x)",
  1847. "custom_f32(x,y)",
  1848. "custom_f32(x,y,z)",
  1849. "custom(x)",
  1850. "custom(x,y)",
  1851. "custom(x,y,z)",
  1852. "cross_entropy_loss(x,y)",
  1853. "cross_entropy_loss_back(x,y)",
  1854. };
  1855. static_assert(GGML_OP_COUNT == 76, "GGML_OP_COUNT != 76");
  1856. static_assert(GGML_OP_POOL_COUNT == 2, "GGML_OP_POOL_COUNT != 2");
  1857. static const char * GGML_UNARY_OP_NAME[GGML_UNARY_OP_COUNT] = {
  1858. "ABS",
  1859. "SGN",
  1860. "NEG",
  1861. "STEP",
  1862. "TANH",
  1863. "ELU",
  1864. "RELU",
  1865. "GELU",
  1866. "GELU_QUICK",
  1867. "SILU",
  1868. "HARDSWISH",
  1869. "HARDSIGMOID",
  1870. };
  1871. static_assert(GGML_UNARY_OP_COUNT == 12, "GGML_UNARY_OP_COUNT != 12");
  1872. static_assert(sizeof(struct ggml_object)%GGML_MEM_ALIGN == 0, "ggml_object size must be a multiple of GGML_MEM_ALIGN");
  1873. static_assert(sizeof(struct ggml_tensor)%GGML_MEM_ALIGN == 0, "ggml_tensor size must be a multiple of GGML_MEM_ALIGN");
  1874. // WARN:
  1875. // Mis-configuration can lead to problem that's hard to reason about:
  1876. // * At best it crash or talks nosense.
  1877. // * At worst it talks slightly difference but hard to perceive.
  1878. //
  1879. // An op has to enable INIT or FINALIZE when any of it's branch needs that pass.
  1880. // Take care about compile options (e.g., GGML_USE_xxx).
  1881. static bool GGML_OP_HAS_INIT [GGML_OP_COUNT] = { 0 };
  1882. static bool GGML_OP_HAS_FINALIZE[GGML_OP_COUNT] = { 0 };
  1883. static void ggml_setup_op_has_task_pass(void) {
  1884. { // INIT
  1885. bool * p = GGML_OP_HAS_INIT;
  1886. p[GGML_OP_ACC ] = true;
  1887. p[GGML_OP_MUL_MAT ] = true;
  1888. p[GGML_OP_MUL_MAT_ID ] = true;
  1889. p[GGML_OP_OUT_PROD ] = true;
  1890. p[GGML_OP_SET ] = true;
  1891. p[GGML_OP_GET_ROWS_BACK ] = true;
  1892. p[GGML_OP_DIAG_MASK_INF ] = true;
  1893. p[GGML_OP_DIAG_MASK_ZERO ] = true;
  1894. p[GGML_OP_CONV_TRANSPOSE_1D ] = true;
  1895. p[GGML_OP_CONV_TRANSPOSE_2D ] = true;
  1896. p[GGML_OP_FLASH_ATTN_BACK ] = true;
  1897. p[GGML_OP_CROSS_ENTROPY_LOSS ] = true;
  1898. p[GGML_OP_ADD_REL_POS ] = true;
  1899. }
  1900. { // FINALIZE
  1901. bool * p = GGML_OP_HAS_FINALIZE;
  1902. p[GGML_OP_CROSS_ENTROPY_LOSS ] = true;
  1903. }
  1904. }
  1905. //
  1906. // ggml context
  1907. //
  1908. struct ggml_context {
  1909. size_t mem_size;
  1910. void * mem_buffer;
  1911. bool mem_buffer_owned;
  1912. bool no_alloc;
  1913. bool no_alloc_save; // this is used to save the no_alloc state when using scratch buffers
  1914. int n_objects;
  1915. struct ggml_object * objects_begin;
  1916. struct ggml_object * objects_end;
  1917. struct ggml_scratch scratch;
  1918. struct ggml_scratch scratch_save;
  1919. };
  1920. struct ggml_context_container {
  1921. bool used;
  1922. struct ggml_context context;
  1923. };
  1924. //
  1925. // NUMA support
  1926. //
  1927. #define GGML_NUMA_MAX_NODES 8
  1928. #define GGML_NUMA_MAX_CPUS 512
  1929. struct ggml_numa_node {
  1930. uint32_t cpus[GGML_NUMA_MAX_CPUS]; // hardware threads on this node
  1931. uint32_t n_cpus;
  1932. };
  1933. struct ggml_numa_nodes {
  1934. enum ggml_numa_strategy numa_strategy;
  1935. struct ggml_numa_node nodes[GGML_NUMA_MAX_NODES];
  1936. uint32_t n_nodes;
  1937. uint32_t total_cpus; // hardware threads on system
  1938. uint32_t current_node; // node on which main process is execting
  1939. #if defined(__gnu_linux__)
  1940. cpu_set_t cpuset; // cpuset from numactl
  1941. #else
  1942. uint32_t cpuset; // no NUMA support outside of Linux at this time. Use a portable datatype
  1943. #endif
  1944. };
  1945. //
  1946. // ggml state
  1947. //
  1948. struct ggml_state {
  1949. struct ggml_context_container contexts[GGML_MAX_CONTEXTS];
  1950. struct ggml_numa_nodes numa;
  1951. };
  1952. // global state
  1953. static struct ggml_state g_state;
  1954. static atomic_int g_state_barrier = 0;
  1955. // barrier via spin lock
  1956. inline static void ggml_critical_section_start(void) {
  1957. int processing = atomic_fetch_add(&g_state_barrier, 1);
  1958. while (processing > 0) {
  1959. // wait for other threads to finish
  1960. atomic_fetch_sub(&g_state_barrier, 1);
  1961. sched_yield(); // TODO: reconsider this
  1962. processing = atomic_fetch_add(&g_state_barrier, 1);
  1963. }
  1964. }
  1965. // TODO: make this somehow automatically executed
  1966. // some sort of "sentry" mechanism
  1967. inline static void ggml_critical_section_end(void) {
  1968. atomic_fetch_sub(&g_state_barrier, 1);
  1969. }
  1970. #if defined(__gnu_linux__)
  1971. static cpu_set_t ggml_get_numa_affinity(void) {
  1972. cpu_set_t cpuset;
  1973. pthread_t thread;
  1974. thread = pthread_self();
  1975. CPU_ZERO(&cpuset);
  1976. pthread_getaffinity_np(thread, sizeof(cpu_set_t), &cpuset);
  1977. return cpuset;
  1978. }
  1979. #else
  1980. static uint32_t ggml_get_numa_affinity(void) {
  1981. return 0; // no NUMA support
  1982. }
  1983. #endif
  1984. void ggml_numa_init(enum ggml_numa_strategy numa_flag) {
  1985. if (g_state.numa.n_nodes > 0) {
  1986. fprintf(stderr, "ggml_numa_init: NUMA already initialized\n");
  1987. return;
  1988. }
  1989. #if defined(__gnu_linux__)
  1990. struct stat st;
  1991. char path[256];
  1992. int rv;
  1993. // set numa scheme
  1994. g_state.numa.numa_strategy = numa_flag;
  1995. GGML_PRINT_DEBUG("numa strategy %u\n",g_state.numa.numa_strategy);
  1996. g_state.numa.cpuset = ggml_get_numa_affinity();
  1997. // enumerate nodes
  1998. while (g_state.numa.n_nodes < GGML_NUMA_MAX_NODES) {
  1999. rv = snprintf(path, sizeof(path), "/sys/devices/system/node/node%u", g_state.numa.n_nodes);
  2000. GGML_ASSERT(rv > 0 && (unsigned)rv < sizeof(path));
  2001. if (stat(path, &st) != 0) { break; }
  2002. ++g_state.numa.n_nodes;
  2003. }
  2004. // enumerate CPUs
  2005. while (g_state.numa.total_cpus < GGML_NUMA_MAX_CPUS) {
  2006. rv = snprintf(path, sizeof(path), "/sys/devices/system/cpu/cpu%u", g_state.numa.total_cpus);
  2007. GGML_ASSERT(rv > 0 && (unsigned)rv < sizeof(path));
  2008. if (stat(path, &st) != 0) { break; }
  2009. ++g_state.numa.total_cpus;
  2010. }
  2011. GGML_PRINT_DEBUG("found %u numa nodes, %u CPUs\n", g_state.numa.n_nodes, g_state.numa.total_cpus);
  2012. // figure out which node we're on
  2013. uint current_cpu;
  2014. int getcpu_ret = 0;
  2015. #if __GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ > 28)
  2016. getcpu_ret = getcpu(&current_cpu, &g_state.numa.current_node);
  2017. #else
  2018. // old glibc doesn't have a wrapper for this call. Fall back on direct syscall
  2019. # if !defined(SYS_getcpu) && defined(SYS_get_cpu)
  2020. # define SYS_getcpu SYS_get_cpu // some older glibc versions use this name
  2021. # endif
  2022. getcpu_ret = syscall(SYS_getcpu, &current_cpu, &g_state.numa.current_node);
  2023. #endif
  2024. if (g_state.numa.n_nodes < 1 || g_state.numa.total_cpus < 1 || getcpu_ret != 0) {
  2025. g_state.numa.n_nodes = 0;
  2026. return;
  2027. }
  2028. GGML_PRINT_DEBUG("found our process on numa node %u, CPU %u\n", g_state.numa.current_node, current_cpu);
  2029. for (uint32_t n = 0; n < g_state.numa.n_nodes; ++n) {
  2030. struct ggml_numa_node * node = &g_state.numa.nodes[n];
  2031. GGML_PRINT_DEBUG("CPUs on node %u:", n);
  2032. node->n_cpus = 0;
  2033. for (uint32_t c = 0; c < g_state.numa.total_cpus; ++c) {
  2034. rv = snprintf(path, sizeof(path), "/sys/devices/system/node/node%u/cpu%u", n, c);
  2035. GGML_ASSERT(rv > 0 && (unsigned)rv < sizeof(path));
  2036. if (stat(path, &st) == 0) {
  2037. node->cpus[node->n_cpus++] = c;
  2038. GGML_PRINT_DEBUG(" %u", c);
  2039. }
  2040. }
  2041. GGML_PRINT_DEBUG("\n");
  2042. }
  2043. if (ggml_is_numa()) {
  2044. FILE *fptr = fopen("/proc/sys/kernel/numa_balancing", "r");
  2045. if (fptr != NULL) {
  2046. char buf[42];
  2047. if (fgets(buf, sizeof(buf), fptr) && strncmp(buf, "0\n", sizeof(buf)) != 0) {
  2048. GGML_PRINT("WARNING: /proc/sys/kernel/numa_balancing is enabled, this has been observed to impair performance\n");
  2049. }
  2050. fclose(fptr);
  2051. }
  2052. }
  2053. #else
  2054. GGML_UNUSED(numa_flag);
  2055. // TODO
  2056. #endif
  2057. }
  2058. bool ggml_is_numa(void) {
  2059. return g_state.numa.n_nodes > 1;
  2060. }
  2061. ////////////////////////////////////////////////////////////////////////////////
  2062. void ggml_print_object(const struct ggml_object * obj) {
  2063. GGML_PRINT(" - ggml_object: type = %d, offset = %zu, size = %zu, next = %p\n",
  2064. obj->type, obj->offs, obj->size, (const void *) obj->next);
  2065. }
  2066. void ggml_print_objects(const struct ggml_context * ctx) {
  2067. struct ggml_object * obj = ctx->objects_begin;
  2068. GGML_PRINT("%s: objects in context %p:\n", __func__, (const void *) ctx);
  2069. while (obj != NULL) {
  2070. ggml_print_object(obj);
  2071. obj = obj->next;
  2072. }
  2073. GGML_PRINT("%s: --- end ---\n", __func__);
  2074. }
  2075. GGML_CALL int64_t ggml_nelements(const struct ggml_tensor * tensor) {
  2076. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2077. return tensor->ne[0]*tensor->ne[1]*tensor->ne[2]*tensor->ne[3];
  2078. }
  2079. GGML_CALL int64_t ggml_nrows(const struct ggml_tensor * tensor) {
  2080. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2081. return tensor->ne[1]*tensor->ne[2]*tensor->ne[3];
  2082. }
  2083. GGML_CALL size_t ggml_nbytes(const struct ggml_tensor * tensor) {
  2084. size_t nbytes;
  2085. size_t blck_size = ggml_blck_size(tensor->type);
  2086. if (blck_size == 1) {
  2087. nbytes = ggml_type_size(tensor->type);
  2088. for (int i = 0; i < GGML_MAX_DIMS; ++i) {
  2089. nbytes += (tensor->ne[i] - 1)*tensor->nb[i];
  2090. }
  2091. }
  2092. else {
  2093. nbytes = tensor->ne[0]*tensor->nb[0]/blck_size;
  2094. for (int i = 1; i < GGML_MAX_DIMS; ++i) {
  2095. nbytes += (tensor->ne[i] - 1)*tensor->nb[i];
  2096. }
  2097. }
  2098. return nbytes;
  2099. }
  2100. size_t ggml_nbytes_pad(const struct ggml_tensor * tensor) {
  2101. return GGML_PAD(ggml_nbytes(tensor), GGML_MEM_ALIGN);
  2102. }
  2103. GGML_CALL int ggml_blck_size(enum ggml_type type) {
  2104. return type_traits[type].blck_size;
  2105. }
  2106. GGML_CALL size_t ggml_type_size(enum ggml_type type) {
  2107. return type_traits[type].type_size;
  2108. }
  2109. GGML_CALL size_t ggml_row_size(enum ggml_type type, int64_t ne) {
  2110. assert(ne % ggml_blck_size(type) == 0);
  2111. return ggml_type_size(type)*ne/ggml_blck_size(type);
  2112. }
  2113. double ggml_type_sizef(enum ggml_type type) {
  2114. return ((double)(type_traits[type].type_size))/type_traits[type].blck_size;
  2115. }
  2116. GGML_CALL const char * ggml_type_name(enum ggml_type type) {
  2117. return type_traits[type].type_name;
  2118. }
  2119. GGML_CALL bool ggml_is_quantized(enum ggml_type type) {
  2120. return type_traits[type].is_quantized;
  2121. }
  2122. GGML_CALL const char * ggml_op_name(enum ggml_op op) {
  2123. return GGML_OP_NAME[op];
  2124. }
  2125. const char * ggml_op_symbol(enum ggml_op op) {
  2126. return GGML_OP_SYMBOL[op];
  2127. }
  2128. const char * ggml_unary_op_name(enum ggml_unary_op op) {
  2129. return GGML_UNARY_OP_NAME[op];
  2130. }
  2131. GGML_CALL const char * ggml_op_desc(const struct ggml_tensor * t) {
  2132. if (t->op == GGML_OP_UNARY) {
  2133. enum ggml_unary_op uop = ggml_get_unary_op(t);
  2134. return ggml_unary_op_name(uop);
  2135. }
  2136. else {
  2137. return ggml_op_name(t->op);
  2138. }
  2139. }
  2140. GGML_CALL size_t ggml_element_size(const struct ggml_tensor * tensor) {
  2141. return ggml_type_size(tensor->type);
  2142. }
  2143. bool ggml_is_scalar(const struct ggml_tensor * tensor) {
  2144. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2145. return tensor->ne[0] == 1 && tensor->ne[1] == 1 && tensor->ne[2] == 1 && tensor->ne[3] == 1;
  2146. }
  2147. bool ggml_is_vector(const struct ggml_tensor * tensor) {
  2148. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2149. return tensor->ne[1] == 1 && tensor->ne[2] == 1 && tensor->ne[3] == 1;
  2150. }
  2151. bool ggml_is_matrix(const struct ggml_tensor * tensor) {
  2152. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2153. return tensor->ne[2] == 1 && tensor->ne[3] == 1;
  2154. }
  2155. bool ggml_is_3d(const struct ggml_tensor * tensor) {
  2156. return tensor->ne[3] == 1;
  2157. }
  2158. int ggml_n_dims(const struct ggml_tensor * tensor) {
  2159. for (int i = GGML_MAX_DIMS - 1; i >= 1; --i) {
  2160. if (tensor->ne[i] > 1) {
  2161. return i + 1;
  2162. }
  2163. }
  2164. return 1;
  2165. }
  2166. static inline bool ggml_can_mul_mat(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  2167. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2168. return (t0->ne[0] == t1->ne[0]) &&
  2169. (t1->ne[2]%t0->ne[2] == 0) && // verify t0 is broadcastable
  2170. (t1->ne[3]%t0->ne[3] == 0);
  2171. }
  2172. static inline bool ggml_can_out_prod(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  2173. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2174. return (t0->ne[1] == t1->ne[1]) &&
  2175. (t1->ne[2]%t0->ne[2] == 0) && // verify t0 is broadcastable
  2176. (t1->ne[3]%t0->ne[3] == 0);
  2177. }
  2178. enum ggml_type ggml_ftype_to_ggml_type(enum ggml_ftype ftype) {
  2179. enum ggml_type wtype = GGML_TYPE_COUNT;
  2180. switch (ftype) {
  2181. case GGML_FTYPE_ALL_F32: wtype = GGML_TYPE_F32; break;
  2182. case GGML_FTYPE_MOSTLY_F16: wtype = GGML_TYPE_F16; break;
  2183. case GGML_FTYPE_MOSTLY_Q4_0: wtype = GGML_TYPE_Q4_0; break;
  2184. case GGML_FTYPE_MOSTLY_Q4_1: wtype = GGML_TYPE_Q4_1; break;
  2185. case GGML_FTYPE_MOSTLY_Q5_0: wtype = GGML_TYPE_Q5_0; break;
  2186. case GGML_FTYPE_MOSTLY_Q5_1: wtype = GGML_TYPE_Q5_1; break;
  2187. case GGML_FTYPE_MOSTLY_Q8_0: wtype = GGML_TYPE_Q8_0; break;
  2188. case GGML_FTYPE_MOSTLY_Q2_K: wtype = GGML_TYPE_Q2_K; break;
  2189. case GGML_FTYPE_MOSTLY_Q3_K: wtype = GGML_TYPE_Q3_K; break;
  2190. case GGML_FTYPE_MOSTLY_Q4_K: wtype = GGML_TYPE_Q4_K; break;
  2191. case GGML_FTYPE_MOSTLY_Q5_K: wtype = GGML_TYPE_Q5_K; break;
  2192. case GGML_FTYPE_MOSTLY_Q6_K: wtype = GGML_TYPE_Q6_K; break;
  2193. case GGML_FTYPE_MOSTLY_IQ2_XXS: wtype = GGML_TYPE_IQ2_XXS; break;
  2194. case GGML_FTYPE_MOSTLY_IQ2_XS: wtype = GGML_TYPE_IQ2_XS; break;
  2195. case GGML_FTYPE_MOSTLY_IQ3_XXS: wtype = GGML_TYPE_IQ3_XXS; break;
  2196. case GGML_FTYPE_MOSTLY_IQ1_S: wtype = GGML_TYPE_IQ1_S; break;
  2197. case GGML_FTYPE_MOSTLY_IQ1_M: wtype = GGML_TYPE_IQ1_M; break;
  2198. case GGML_FTYPE_MOSTLY_IQ4_NL: wtype = GGML_TYPE_IQ4_NL; break;
  2199. case GGML_FTYPE_MOSTLY_IQ4_XS: wtype = GGML_TYPE_IQ4_XS; break;
  2200. case GGML_FTYPE_MOSTLY_IQ3_S: wtype = GGML_TYPE_IQ3_S; break;
  2201. case GGML_FTYPE_MOSTLY_IQ2_S: wtype = GGML_TYPE_IQ2_S; break;
  2202. case GGML_FTYPE_UNKNOWN: wtype = GGML_TYPE_COUNT; break;
  2203. case GGML_FTYPE_MOSTLY_Q4_1_SOME_F16: wtype = GGML_TYPE_COUNT; break;
  2204. }
  2205. GGML_ASSERT(wtype != GGML_TYPE_COUNT);
  2206. return wtype;
  2207. }
  2208. size_t ggml_tensor_overhead(void) {
  2209. return GGML_OBJECT_SIZE + GGML_TENSOR_SIZE;
  2210. }
  2211. GGML_CALL bool ggml_is_transposed(const struct ggml_tensor * tensor) {
  2212. return tensor->nb[0] > tensor->nb[1];
  2213. }
  2214. GGML_CALL bool ggml_is_contiguous(const struct ggml_tensor * tensor) {
  2215. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2216. return
  2217. tensor->nb[0] == ggml_type_size(tensor->type) &&
  2218. tensor->nb[1] == (tensor->nb[0]*tensor->ne[0])/ggml_blck_size(tensor->type) &&
  2219. tensor->nb[2] == tensor->nb[1]*tensor->ne[1] &&
  2220. tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
  2221. }
  2222. static inline bool ggml_is_contiguous_except_dim_1(const struct ggml_tensor * tensor) {
  2223. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2224. return
  2225. tensor->nb[0] == ggml_type_size(tensor->type) &&
  2226. tensor->nb[2] == tensor->nb[1]*tensor->ne[1] &&
  2227. tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
  2228. }
  2229. GGML_CALL bool ggml_is_permuted(const struct ggml_tensor * tensor) {
  2230. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2231. return tensor->nb[0] > tensor->nb[1] || tensor->nb[1] > tensor->nb[2] || tensor->nb[2] > tensor->nb[3];
  2232. }
  2233. static inline bool ggml_is_padded_1d(const struct ggml_tensor * tensor) {
  2234. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2235. return
  2236. tensor->nb[0] == ggml_type_size(tensor->type) &&
  2237. tensor->nb[2] == tensor->nb[1]*tensor->ne[1] &&
  2238. tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
  2239. }
  2240. GGML_CALL bool ggml_is_empty(const struct ggml_tensor * tensor) {
  2241. for (int i = 0; i < GGML_MAX_DIMS; ++i) {
  2242. if (tensor->ne[i] == 0) {
  2243. // empty if any dimension has no elements
  2244. return true;
  2245. }
  2246. }
  2247. return false;
  2248. }
  2249. bool ggml_are_same_shape(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  2250. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2251. return
  2252. (t0->ne[0] == t1->ne[0] ) &&
  2253. (t0->ne[1] == t1->ne[1] ) &&
  2254. (t0->ne[2] == t1->ne[2] ) &&
  2255. (t0->ne[3] == t1->ne[3] );
  2256. }
  2257. // check if t1 can be represented as a repeatition of t0
  2258. static inline bool ggml_can_repeat(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  2259. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2260. return ggml_is_empty(t0) ? ggml_is_empty(t1) :
  2261. (t1->ne[0]%t0->ne[0] == 0) &&
  2262. (t1->ne[1]%t0->ne[1] == 0) &&
  2263. (t1->ne[2]%t0->ne[2] == 0) &&
  2264. (t1->ne[3]%t0->ne[3] == 0);
  2265. }
  2266. static inline bool ggml_can_repeat_rows(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  2267. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2268. return (t0->ne[0] == t1->ne[0]) && ggml_can_repeat(t0, t1);
  2269. }
  2270. static inline int ggml_up32(int n) {
  2271. return (n + 31) & ~31;
  2272. }
  2273. //static inline int ggml_up64(int n) {
  2274. // return (n + 63) & ~63;
  2275. //}
  2276. static inline int ggml_up(int n, int m) {
  2277. // assert m is a power of 2
  2278. GGML_ASSERT((m & (m - 1)) == 0);
  2279. return (n + m - 1) & ~(m - 1);
  2280. }
  2281. // assert that pointer is aligned to GGML_MEM_ALIGN
  2282. #define ggml_assert_aligned(ptr) \
  2283. GGML_ASSERT(((uintptr_t) (ptr))%GGML_MEM_ALIGN == 0)
  2284. ////////////////////////////////////////////////////////////////////////////////
  2285. struct ggml_context * ggml_init(struct ggml_init_params params) {
  2286. // make this function thread safe
  2287. ggml_critical_section_start();
  2288. static bool is_first_call = true;
  2289. if (is_first_call) {
  2290. // initialize time system (required on Windows)
  2291. ggml_time_init();
  2292. // initialize GELU, Quick GELU, SILU and EXP F32 tables
  2293. {
  2294. const uint64_t t_start = ggml_time_us(); UNUSED(t_start);
  2295. ggml_fp16_t ii;
  2296. for (int i = 0; i < (1 << 16); ++i) {
  2297. uint16_t ui = i;
  2298. memcpy(&ii, &ui, sizeof(ii));
  2299. const float f = ggml_table_f32_f16[i] = GGML_COMPUTE_FP16_TO_FP32(ii);
  2300. ggml_table_gelu_f16[i] = GGML_FP32_TO_FP16(ggml_gelu_f32(f));
  2301. ggml_table_gelu_quick_f16[i] = GGML_FP32_TO_FP16(ggml_gelu_quick_f32(f));
  2302. ggml_table_silu_f16[i] = GGML_FP32_TO_FP16(ggml_silu_f32(f));
  2303. ggml_table_exp_f16[i] = GGML_FP32_TO_FP16(expf(f));
  2304. }
  2305. const uint64_t t_end = ggml_time_us(); UNUSED(t_end);
  2306. GGML_PRINT_DEBUG("%s: GELU, Quick GELU, SILU and EXP tables initialized in %f ms\n", __func__, (t_end - t_start)/1000.0f);
  2307. }
  2308. // initialize g_state
  2309. {
  2310. const uint64_t t_start = ggml_time_us(); UNUSED(t_start);
  2311. g_state = (struct ggml_state) {
  2312. /*.contexts =*/ { { 0 } },
  2313. /*.numa =*/ {
  2314. .n_nodes = 0,
  2315. .total_cpus = 0,
  2316. },
  2317. };
  2318. for (int i = 0; i < GGML_MAX_CONTEXTS; ++i) {
  2319. g_state.contexts[i].used = false;
  2320. }
  2321. const uint64_t t_end = ggml_time_us(); UNUSED(t_end);
  2322. GGML_PRINT_DEBUG("%s: g_state initialized in %f ms\n", __func__, (t_end - t_start)/1000.0f);
  2323. }
  2324. #if defined(GGML_USE_CLBLAST)
  2325. ggml_cl_init();
  2326. #endif
  2327. ggml_setup_op_has_task_pass();
  2328. is_first_call = false;
  2329. }
  2330. // find non-used context in g_state
  2331. struct ggml_context * ctx = NULL;
  2332. for (int i = 0; i < GGML_MAX_CONTEXTS; i++) {
  2333. if (!g_state.contexts[i].used) {
  2334. g_state.contexts[i].used = true;
  2335. ctx = &g_state.contexts[i].context;
  2336. GGML_PRINT_DEBUG("%s: found unused context %d\n", __func__, i);
  2337. break;
  2338. }
  2339. }
  2340. if (ctx == NULL) {
  2341. GGML_PRINT_DEBUG("%s: no unused context found\n", __func__);
  2342. ggml_critical_section_end();
  2343. return NULL;
  2344. }
  2345. // allow to call ggml_init with 0 size
  2346. if (params.mem_size == 0) {
  2347. params.mem_size = GGML_MEM_ALIGN;
  2348. }
  2349. const size_t mem_size = params.mem_buffer ? params.mem_size : GGML_PAD(params.mem_size, GGML_MEM_ALIGN);
  2350. *ctx = (struct ggml_context) {
  2351. /*.mem_size =*/ mem_size,
  2352. /*.mem_buffer =*/ params.mem_buffer ? params.mem_buffer : GGML_ALIGNED_MALLOC(mem_size),
  2353. /*.mem_buffer_owned =*/ params.mem_buffer ? false : true,
  2354. /*.no_alloc =*/ params.no_alloc,
  2355. /*.no_alloc_save =*/ params.no_alloc,
  2356. /*.n_objects =*/ 0,
  2357. /*.objects_begin =*/ NULL,
  2358. /*.objects_end =*/ NULL,
  2359. /*.scratch =*/ { 0, 0, NULL, },
  2360. /*.scratch_save =*/ { 0, 0, NULL, },
  2361. };
  2362. GGML_ASSERT(ctx->mem_buffer != NULL);
  2363. ggml_assert_aligned(ctx->mem_buffer);
  2364. GGML_PRINT_DEBUG("%s: context initialized\n", __func__);
  2365. ggml_critical_section_end();
  2366. return ctx;
  2367. }
  2368. void ggml_free(struct ggml_context * ctx) {
  2369. if (ctx == NULL) {
  2370. return;
  2371. }
  2372. // make this function thread safe
  2373. ggml_critical_section_start();
  2374. bool found = false;
  2375. for (int i = 0; i < GGML_MAX_CONTEXTS; i++) {
  2376. if (&g_state.contexts[i].context == ctx) {
  2377. g_state.contexts[i].used = false;
  2378. GGML_PRINT_DEBUG("%s: context %d has been freed. memory used = %zu\n",
  2379. __func__, i, ggml_used_mem(ctx));
  2380. if (ctx->mem_buffer_owned) {
  2381. GGML_ALIGNED_FREE(ctx->mem_buffer);
  2382. }
  2383. found = true;
  2384. break;
  2385. }
  2386. }
  2387. if (!found) {
  2388. GGML_PRINT_DEBUG("%s: context not found\n", __func__);
  2389. }
  2390. ggml_critical_section_end();
  2391. }
  2392. size_t ggml_used_mem(const struct ggml_context * ctx) {
  2393. return ctx->objects_end == NULL ? 0 : ctx->objects_end->offs + ctx->objects_end->size;
  2394. }
  2395. size_t ggml_set_scratch(struct ggml_context * ctx, struct ggml_scratch scratch) {
  2396. const size_t result = ctx->scratch.data ? ctx->scratch.offs : 0;
  2397. ctx->scratch = scratch;
  2398. return result;
  2399. }
  2400. bool ggml_get_no_alloc(struct ggml_context * ctx) {
  2401. return ctx->no_alloc;
  2402. }
  2403. void ggml_set_no_alloc(struct ggml_context * ctx, bool no_alloc) {
  2404. ctx->no_alloc = no_alloc;
  2405. }
  2406. void * ggml_get_mem_buffer(const struct ggml_context * ctx) {
  2407. return ctx->mem_buffer;
  2408. }
  2409. size_t ggml_get_mem_size(const struct ggml_context * ctx) {
  2410. return ctx->mem_size;
  2411. }
  2412. size_t ggml_get_max_tensor_size(const struct ggml_context * ctx) {
  2413. size_t max_size = 0;
  2414. for (struct ggml_tensor * tensor = ggml_get_first_tensor(ctx); tensor != NULL; tensor = ggml_get_next_tensor(ctx, tensor)) {
  2415. size_t bytes = ggml_nbytes(tensor);
  2416. max_size = MAX(max_size, bytes);
  2417. }
  2418. return max_size;
  2419. }
  2420. // IMPORTANT:
  2421. // when creating "opt" tensors, always save and load the scratch buffer
  2422. // this is an error prone process, but it is necessary to support inplace
  2423. // operators when using scratch buffers
  2424. // TODO: implement a better way
  2425. static void ggml_scratch_save(struct ggml_context * ctx) {
  2426. // this is needed to allow opt tensors to store their data
  2427. // TODO: again, need to find a better way
  2428. ctx->no_alloc_save = ctx->no_alloc;
  2429. ctx->no_alloc = false;
  2430. ctx->scratch_save = ctx->scratch;
  2431. ctx->scratch.data = NULL;
  2432. }
  2433. static void ggml_scratch_load(struct ggml_context * ctx) {
  2434. ctx->no_alloc = ctx->no_alloc_save;
  2435. ctx->scratch = ctx->scratch_save;
  2436. }
  2437. ////////////////////////////////////////////////////////////////////////////////
  2438. static struct ggml_object * ggml_new_object(struct ggml_context * ctx, enum ggml_object_type type, size_t size) {
  2439. // always insert objects at the end of the context's memory pool
  2440. struct ggml_object * obj_cur = ctx->objects_end;
  2441. const size_t cur_offs = obj_cur == NULL ? 0 : obj_cur->offs;
  2442. const size_t cur_size = obj_cur == NULL ? 0 : obj_cur->size;
  2443. const size_t cur_end = cur_offs + cur_size;
  2444. // align to GGML_MEM_ALIGN
  2445. size_t size_needed = GGML_PAD(size, GGML_MEM_ALIGN);
  2446. char * const mem_buffer = ctx->mem_buffer;
  2447. struct ggml_object * const obj_new = (struct ggml_object *)(mem_buffer + cur_end);
  2448. if (cur_end + size_needed + GGML_OBJECT_SIZE > ctx->mem_size) {
  2449. GGML_PRINT("%s: not enough space in the context's memory pool (needed %zu, available %zu)\n",
  2450. __func__, cur_end + size_needed, ctx->mem_size);
  2451. assert(false);
  2452. return NULL;
  2453. }
  2454. *obj_new = (struct ggml_object) {
  2455. .offs = cur_end + GGML_OBJECT_SIZE,
  2456. .size = size_needed,
  2457. .next = NULL,
  2458. .type = type,
  2459. };
  2460. ggml_assert_aligned(mem_buffer + obj_new->offs);
  2461. if (obj_cur != NULL) {
  2462. obj_cur->next = obj_new;
  2463. } else {
  2464. // this is the first object in this context
  2465. ctx->objects_begin = obj_new;
  2466. }
  2467. ctx->objects_end = obj_new;
  2468. //printf("%s: inserted new object at %zu, size = %zu\n", __func__, cur_end, obj_new->size);
  2469. return obj_new;
  2470. }
  2471. static struct ggml_tensor * ggml_new_tensor_impl(
  2472. struct ggml_context * ctx,
  2473. enum ggml_type type,
  2474. int n_dims,
  2475. const int64_t * ne,
  2476. struct ggml_tensor * view_src,
  2477. size_t view_offs) {
  2478. assert(n_dims >= 1 && n_dims <= GGML_MAX_DIMS);
  2479. // find the base tensor and absolute offset
  2480. if (view_src != NULL && view_src->view_src != NULL) {
  2481. view_offs += view_src->view_offs;
  2482. view_src = view_src->view_src;
  2483. }
  2484. size_t data_size = ggml_row_size(type, ne[0]);
  2485. for (int i = 1; i < n_dims; i++) {
  2486. data_size *= ne[i];
  2487. }
  2488. GGML_ASSERT(view_src == NULL || data_size == 0 || data_size + view_offs <= ggml_nbytes(view_src));
  2489. void * data = view_src != NULL ? view_src->data : NULL;
  2490. if (data != NULL) {
  2491. data = (char *) data + view_offs;
  2492. }
  2493. size_t obj_alloc_size = 0;
  2494. if (view_src == NULL && !ctx->no_alloc) {
  2495. if (ctx->scratch.data != NULL) {
  2496. // allocate tensor data in the scratch buffer
  2497. if (ctx->scratch.offs + data_size > ctx->scratch.size) {
  2498. GGML_PRINT("%s: not enough space in the scratch memory pool (needed %zu, available %zu)\n",
  2499. __func__, ctx->scratch.offs + data_size, ctx->scratch.size);
  2500. assert(false);
  2501. return NULL;
  2502. }
  2503. data = (char * const) ctx->scratch.data + ctx->scratch.offs;
  2504. ctx->scratch.offs += data_size;
  2505. } else {
  2506. // allocate tensor data in the context's memory pool
  2507. obj_alloc_size = data_size;
  2508. }
  2509. }
  2510. struct ggml_object * const obj_new = ggml_new_object(ctx, GGML_OBJECT_TYPE_TENSOR, GGML_TENSOR_SIZE + obj_alloc_size);
  2511. // TODO: for recoverable errors, we would need to free the data allocated from the scratch buffer here
  2512. struct ggml_tensor * const result = (struct ggml_tensor *)((char *)ctx->mem_buffer + obj_new->offs);
  2513. *result = (struct ggml_tensor) {
  2514. /*.type =*/ type,
  2515. /*.backend =*/ GGML_BACKEND_TYPE_CPU,
  2516. /*.buffer =*/ NULL,
  2517. /*.ne =*/ { 1, 1, 1, 1 },
  2518. /*.nb =*/ { 0, 0, 0, 0 },
  2519. /*.op =*/ GGML_OP_NONE,
  2520. /*.op_params =*/ { 0 },
  2521. /*.flags =*/ 0,
  2522. /*.grad =*/ NULL,
  2523. /*.src =*/ { NULL },
  2524. /*.perf_runs =*/ 0,
  2525. /*.perf_cycles =*/ 0,
  2526. /*.perf_time_us =*/ 0,
  2527. /*.view_src =*/ view_src,
  2528. /*.view_offs =*/ view_offs,
  2529. /*.data =*/ obj_alloc_size > 0 ? (void *)(result + 1) : data,
  2530. /*.name =*/ { 0 },
  2531. /*.extra =*/ NULL,
  2532. /*.padding =*/ { 0 },
  2533. };
  2534. // TODO: this should not be needed as long as we don't rely on aligned SIMD loads
  2535. //ggml_assert_aligned(result->data);
  2536. for (int i = 0; i < n_dims; i++) {
  2537. result->ne[i] = ne[i];
  2538. }
  2539. result->nb[0] = ggml_type_size(type);
  2540. result->nb[1] = result->nb[0]*(result->ne[0]/ggml_blck_size(type));
  2541. for (int i = 2; i < GGML_MAX_DIMS; i++) {
  2542. result->nb[i] = result->nb[i - 1]*result->ne[i - 1];
  2543. }
  2544. ctx->n_objects++;
  2545. return result;
  2546. }
  2547. struct ggml_tensor * ggml_new_tensor(
  2548. struct ggml_context * ctx,
  2549. enum ggml_type type,
  2550. int n_dims,
  2551. const int64_t * ne) {
  2552. return ggml_new_tensor_impl(ctx, type, n_dims, ne, NULL, 0);
  2553. }
  2554. struct ggml_tensor * ggml_new_tensor_1d(
  2555. struct ggml_context * ctx,
  2556. enum ggml_type type,
  2557. int64_t ne0) {
  2558. return ggml_new_tensor(ctx, type, 1, &ne0);
  2559. }
  2560. struct ggml_tensor * ggml_new_tensor_2d(
  2561. struct ggml_context * ctx,
  2562. enum ggml_type type,
  2563. int64_t ne0,
  2564. int64_t ne1) {
  2565. const int64_t ne[2] = { ne0, ne1 };
  2566. return ggml_new_tensor(ctx, type, 2, ne);
  2567. }
  2568. struct ggml_tensor * ggml_new_tensor_3d(
  2569. struct ggml_context * ctx,
  2570. enum ggml_type type,
  2571. int64_t ne0,
  2572. int64_t ne1,
  2573. int64_t ne2) {
  2574. const int64_t ne[3] = { ne0, ne1, ne2 };
  2575. return ggml_new_tensor(ctx, type, 3, ne);
  2576. }
  2577. struct ggml_tensor * ggml_new_tensor_4d(
  2578. struct ggml_context * ctx,
  2579. enum ggml_type type,
  2580. int64_t ne0,
  2581. int64_t ne1,
  2582. int64_t ne2,
  2583. int64_t ne3) {
  2584. const int64_t ne[4] = { ne0, ne1, ne2, ne3 };
  2585. return ggml_new_tensor(ctx, type, 4, ne);
  2586. }
  2587. struct ggml_tensor * ggml_new_i32(struct ggml_context * ctx, int32_t value) {
  2588. ggml_scratch_save(ctx);
  2589. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 1);
  2590. ggml_scratch_load(ctx);
  2591. ggml_set_i32(result, value);
  2592. return result;
  2593. }
  2594. struct ggml_tensor * ggml_new_f32(struct ggml_context * ctx, float value) {
  2595. ggml_scratch_save(ctx);
  2596. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 1);
  2597. ggml_scratch_load(ctx);
  2598. ggml_set_f32(result, value);
  2599. return result;
  2600. }
  2601. struct ggml_tensor * ggml_dup_tensor(struct ggml_context * ctx, const struct ggml_tensor * src) {
  2602. return ggml_new_tensor(ctx, src->type, GGML_MAX_DIMS, src->ne);
  2603. }
  2604. static void ggml_set_op_params(struct ggml_tensor * tensor, const void * params, size_t params_size) {
  2605. GGML_ASSERT(tensor != NULL); // silence -Warray-bounds warnings
  2606. assert(params_size <= GGML_MAX_OP_PARAMS);
  2607. memcpy(tensor->op_params, params, params_size);
  2608. }
  2609. static int32_t ggml_get_op_params_i32(const struct ggml_tensor * tensor, uint32_t i) {
  2610. assert(i < GGML_MAX_OP_PARAMS / sizeof(int32_t));
  2611. return ((const int32_t *)(tensor->op_params))[i];
  2612. }
  2613. static float ggml_get_op_params_f32(const struct ggml_tensor * tensor, uint32_t i) {
  2614. assert(i < GGML_MAX_OP_PARAMS / sizeof(float));
  2615. return ((const float *)(tensor->op_params))[i];
  2616. }
  2617. static void ggml_set_op_params_i32(struct ggml_tensor * tensor, uint32_t i, int32_t value) {
  2618. assert(i < GGML_MAX_OP_PARAMS / sizeof(int32_t));
  2619. ((int32_t *)(tensor->op_params))[i] = value;
  2620. }
  2621. static void ggml_set_op_params_f32(struct ggml_tensor * tensor, uint32_t i, float value) {
  2622. assert(i < GGML_MAX_OP_PARAMS / sizeof(float));
  2623. ((float *)(tensor->op_params))[i] = value;
  2624. }
  2625. struct ggml_tensor * ggml_set_zero(struct ggml_tensor * tensor) {
  2626. memset(tensor->data, 0, ggml_nbytes(tensor));
  2627. return tensor;
  2628. }
  2629. struct ggml_tensor * ggml_set_i32 (struct ggml_tensor * tensor, int32_t value) {
  2630. const int n = ggml_nrows(tensor);
  2631. const int nc = tensor->ne[0];
  2632. const size_t n1 = tensor->nb[1];
  2633. char * const data = tensor->data;
  2634. switch (tensor->type) {
  2635. case GGML_TYPE_I8:
  2636. {
  2637. assert(tensor->nb[0] == sizeof(int8_t));
  2638. for (int i = 0; i < n; i++) {
  2639. ggml_vec_set_i8(nc, (int8_t *)(data + i*n1), value);
  2640. }
  2641. } break;
  2642. case GGML_TYPE_I16:
  2643. {
  2644. assert(tensor->nb[0] == sizeof(int16_t));
  2645. for (int i = 0; i < n; i++) {
  2646. ggml_vec_set_i16(nc, (int16_t *)(data + i*n1), value);
  2647. }
  2648. } break;
  2649. case GGML_TYPE_I32:
  2650. {
  2651. assert(tensor->nb[0] == sizeof(int32_t));
  2652. for (int i = 0; i < n; i++) {
  2653. ggml_vec_set_i32(nc, (int32_t *)(data + i*n1), value);
  2654. }
  2655. } break;
  2656. case GGML_TYPE_F16:
  2657. {
  2658. assert(tensor->nb[0] == sizeof(ggml_fp16_t));
  2659. for (int i = 0; i < n; i++) {
  2660. ggml_vec_set_f16(nc, (ggml_fp16_t *)(data + i*n1), GGML_FP32_TO_FP16(value));
  2661. }
  2662. } break;
  2663. case GGML_TYPE_F32:
  2664. {
  2665. assert(tensor->nb[0] == sizeof(float));
  2666. for (int i = 0; i < n; i++) {
  2667. ggml_vec_set_f32(nc, (float *)(data + i*n1), value);
  2668. }
  2669. } break;
  2670. default:
  2671. {
  2672. GGML_ASSERT(false);
  2673. } break;
  2674. }
  2675. return tensor;
  2676. }
  2677. struct ggml_tensor * ggml_set_f32(struct ggml_tensor * tensor, float value) {
  2678. const int n = ggml_nrows(tensor);
  2679. const int nc = tensor->ne[0];
  2680. const size_t n1 = tensor->nb[1];
  2681. char * const data = tensor->data;
  2682. switch (tensor->type) {
  2683. case GGML_TYPE_I8:
  2684. {
  2685. assert(tensor->nb[0] == sizeof(int8_t));
  2686. for (int i = 0; i < n; i++) {
  2687. ggml_vec_set_i8(nc, (int8_t *)(data + i*n1), value);
  2688. }
  2689. } break;
  2690. case GGML_TYPE_I16:
  2691. {
  2692. assert(tensor->nb[0] == sizeof(int16_t));
  2693. for (int i = 0; i < n; i++) {
  2694. ggml_vec_set_i16(nc, (int16_t *)(data + i*n1), value);
  2695. }
  2696. } break;
  2697. case GGML_TYPE_I32:
  2698. {
  2699. assert(tensor->nb[0] == sizeof(int32_t));
  2700. for (int i = 0; i < n; i++) {
  2701. ggml_vec_set_i32(nc, (int32_t *)(data + i*n1), value);
  2702. }
  2703. } break;
  2704. case GGML_TYPE_F16:
  2705. {
  2706. assert(tensor->nb[0] == sizeof(ggml_fp16_t));
  2707. for (int i = 0; i < n; i++) {
  2708. ggml_vec_set_f16(nc, (ggml_fp16_t *)(data + i*n1), GGML_FP32_TO_FP16(value));
  2709. }
  2710. } break;
  2711. case GGML_TYPE_F32:
  2712. {
  2713. assert(tensor->nb[0] == sizeof(float));
  2714. for (int i = 0; i < n; i++) {
  2715. ggml_vec_set_f32(nc, (float *)(data + i*n1), value);
  2716. }
  2717. } break;
  2718. default:
  2719. {
  2720. GGML_ASSERT(false);
  2721. } break;
  2722. }
  2723. return tensor;
  2724. }
  2725. void ggml_unravel_index(const struct ggml_tensor * tensor, int64_t i, int64_t * i0, int64_t * i1, int64_t * i2, int64_t * i3) {
  2726. const int64_t ne2 = tensor->ne[2];
  2727. const int64_t ne1 = tensor->ne[1];
  2728. const int64_t ne0 = tensor->ne[0];
  2729. const int64_t i3_ = (i/(ne2*ne1*ne0));
  2730. const int64_t i2_ = (i - i3_*ne2*ne1*ne0)/(ne1*ne0);
  2731. const int64_t i1_ = (i - i3_*ne2*ne1*ne0 - i2_*ne1*ne0)/ne0;
  2732. const int64_t i0_ = (i - i3_*ne2*ne1*ne0 - i2_*ne1*ne0 - i1_*ne0);
  2733. if (i0) {
  2734. * i0 = i0_;
  2735. }
  2736. if (i1) {
  2737. * i1 = i1_;
  2738. }
  2739. if (i2) {
  2740. * i2 = i2_;
  2741. }
  2742. if (i3) {
  2743. * i3 = i3_;
  2744. }
  2745. }
  2746. int32_t ggml_get_i32_1d(const struct ggml_tensor * tensor, int i) {
  2747. if (!ggml_is_contiguous(tensor)) {
  2748. int64_t id[4] = { 0, 0, 0, 0 };
  2749. ggml_unravel_index(tensor, i, &id[0], &id[1], &id[2], &id[3]);
  2750. return ggml_get_i32_nd(tensor, id[0], id[1], id[2], id[3]);
  2751. }
  2752. switch (tensor->type) {
  2753. case GGML_TYPE_I8:
  2754. {
  2755. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  2756. return ((int8_t *)(tensor->data))[i];
  2757. }
  2758. case GGML_TYPE_I16:
  2759. {
  2760. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  2761. return ((int16_t *)(tensor->data))[i];
  2762. }
  2763. case GGML_TYPE_I32:
  2764. {
  2765. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  2766. return ((int32_t *)(tensor->data))[i];
  2767. }
  2768. case GGML_TYPE_F16:
  2769. {
  2770. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  2771. return GGML_FP16_TO_FP32(((ggml_fp16_t *)(tensor->data))[i]);
  2772. }
  2773. case GGML_TYPE_F32:
  2774. {
  2775. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  2776. return ((float *)(tensor->data))[i];
  2777. }
  2778. default:
  2779. {
  2780. GGML_ASSERT(false);
  2781. }
  2782. }
  2783. return 0.0f;
  2784. }
  2785. void ggml_set_i32_1d(const struct ggml_tensor * tensor, int i, int32_t value) {
  2786. if (!ggml_is_contiguous(tensor)) {
  2787. int64_t id[4] = { 0, 0, 0, 0 };
  2788. ggml_unravel_index(tensor, i, &id[0], &id[1], &id[2], &id[3]);
  2789. ggml_set_i32_nd(tensor, id[0], id[1], id[2], id[3], value);
  2790. return;
  2791. }
  2792. switch (tensor->type) {
  2793. case GGML_TYPE_I8:
  2794. {
  2795. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  2796. ((int8_t *)(tensor->data))[i] = value;
  2797. } break;
  2798. case GGML_TYPE_I16:
  2799. {
  2800. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  2801. ((int16_t *)(tensor->data))[i] = value;
  2802. } break;
  2803. case GGML_TYPE_I32:
  2804. {
  2805. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  2806. ((int32_t *)(tensor->data))[i] = value;
  2807. } break;
  2808. case GGML_TYPE_F16:
  2809. {
  2810. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  2811. ((ggml_fp16_t *)(tensor->data))[i] = GGML_FP32_TO_FP16(value);
  2812. } break;
  2813. case GGML_TYPE_F32:
  2814. {
  2815. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  2816. ((float *)(tensor->data))[i] = value;
  2817. } break;
  2818. default:
  2819. {
  2820. GGML_ASSERT(false);
  2821. } break;
  2822. }
  2823. }
  2824. int32_t ggml_get_i32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3) {
  2825. void * data = (char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1] + i2*tensor->nb[2] + i3*tensor->nb[3];
  2826. switch (tensor->type) {
  2827. case GGML_TYPE_I8:
  2828. return ((int8_t *) data)[0];
  2829. case GGML_TYPE_I16:
  2830. return ((int16_t *) data)[0];
  2831. case GGML_TYPE_I32:
  2832. return ((int32_t *) data)[0];
  2833. case GGML_TYPE_F16:
  2834. return GGML_FP16_TO_FP32(((ggml_fp16_t *) data)[0]);
  2835. case GGML_TYPE_F32:
  2836. return ((float *) data)[0];
  2837. default:
  2838. GGML_ASSERT(false);
  2839. }
  2840. return 0.0f;
  2841. }
  2842. void ggml_set_i32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3, int32_t value) {
  2843. void * data = (char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1] + i2*tensor->nb[2] + i3*tensor->nb[3];
  2844. switch (tensor->type) {
  2845. case GGML_TYPE_I8:
  2846. {
  2847. ((int8_t *)(data))[0] = value;
  2848. } break;
  2849. case GGML_TYPE_I16:
  2850. {
  2851. ((int16_t *)(data))[0] = value;
  2852. } break;
  2853. case GGML_TYPE_I32:
  2854. {
  2855. ((int32_t *)(data))[0] = value;
  2856. } break;
  2857. case GGML_TYPE_F16:
  2858. {
  2859. ((ggml_fp16_t *)(data))[0] = GGML_FP32_TO_FP16(value);
  2860. } break;
  2861. case GGML_TYPE_F32:
  2862. {
  2863. ((float *)(data))[0] = value;
  2864. } break;
  2865. default:
  2866. {
  2867. GGML_ASSERT(false);
  2868. } break;
  2869. }
  2870. }
  2871. float ggml_get_f32_1d(const struct ggml_tensor * tensor, int i) {
  2872. if (!ggml_is_contiguous(tensor)) {
  2873. int64_t id[4] = { 0, 0, 0, 0 };
  2874. ggml_unravel_index(tensor, i, &id[0], &id[1], &id[2], &id[3]);
  2875. return ggml_get_f32_nd(tensor, id[0], id[1], id[2], id[3]);
  2876. }
  2877. switch (tensor->type) {
  2878. case GGML_TYPE_I8:
  2879. {
  2880. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  2881. return ((int8_t *)(tensor->data))[i];
  2882. }
  2883. case GGML_TYPE_I16:
  2884. {
  2885. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  2886. return ((int16_t *)(tensor->data))[i];
  2887. }
  2888. case GGML_TYPE_I32:
  2889. {
  2890. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  2891. return ((int32_t *)(tensor->data))[i];
  2892. }
  2893. case GGML_TYPE_F16:
  2894. {
  2895. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  2896. return GGML_FP16_TO_FP32(((ggml_fp16_t *)(tensor->data))[i]);
  2897. }
  2898. case GGML_TYPE_F32:
  2899. {
  2900. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  2901. return ((float *)(tensor->data))[i];
  2902. }
  2903. default:
  2904. {
  2905. GGML_ASSERT(false);
  2906. }
  2907. }
  2908. return 0.0f;
  2909. }
  2910. void ggml_set_f32_1d(const struct ggml_tensor * tensor, int i, float value) {
  2911. if (!ggml_is_contiguous(tensor)) {
  2912. int64_t id[4] = { 0, 0, 0, 0 };
  2913. ggml_unravel_index(tensor, i, &id[0], &id[1], &id[2], &id[3]);
  2914. ggml_set_f32_nd(tensor, id[0], id[1], id[2], id[3], value);
  2915. return;
  2916. }
  2917. switch (tensor->type) {
  2918. case GGML_TYPE_I8:
  2919. {
  2920. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  2921. ((int8_t *)(tensor->data))[i] = value;
  2922. } break;
  2923. case GGML_TYPE_I16:
  2924. {
  2925. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  2926. ((int16_t *)(tensor->data))[i] = value;
  2927. } break;
  2928. case GGML_TYPE_I32:
  2929. {
  2930. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  2931. ((int32_t *)(tensor->data))[i] = value;
  2932. } break;
  2933. case GGML_TYPE_F16:
  2934. {
  2935. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  2936. ((ggml_fp16_t *)(tensor->data))[i] = GGML_FP32_TO_FP16(value);
  2937. } break;
  2938. case GGML_TYPE_F32:
  2939. {
  2940. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  2941. ((float *)(tensor->data))[i] = value;
  2942. } break;
  2943. default:
  2944. {
  2945. GGML_ASSERT(false);
  2946. } break;
  2947. }
  2948. }
  2949. float ggml_get_f32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3) {
  2950. void * data = (char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1] + i2*tensor->nb[2] + i3*tensor->nb[3];
  2951. switch (tensor->type) {
  2952. case GGML_TYPE_I8:
  2953. return ((int8_t *) data)[0];
  2954. case GGML_TYPE_I16:
  2955. return ((int16_t *) data)[0];
  2956. case GGML_TYPE_I32:
  2957. return ((int32_t *) data)[0];
  2958. case GGML_TYPE_F16:
  2959. return GGML_FP16_TO_FP32(((ggml_fp16_t *) data)[0]);
  2960. case GGML_TYPE_F32:
  2961. return ((float *) data)[0];
  2962. default:
  2963. GGML_ASSERT(false);
  2964. }
  2965. return 0.0f;
  2966. }
  2967. void ggml_set_f32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3, float value) {
  2968. void * data = (char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1] + i2*tensor->nb[2] + i3*tensor->nb[3];
  2969. switch (tensor->type) {
  2970. case GGML_TYPE_I8:
  2971. {
  2972. ((int8_t *)(data))[0] = value;
  2973. } break;
  2974. case GGML_TYPE_I16:
  2975. {
  2976. ((int16_t *)(data))[0] = value;
  2977. } break;
  2978. case GGML_TYPE_I32:
  2979. {
  2980. ((int32_t *)(data))[0] = value;
  2981. } break;
  2982. case GGML_TYPE_F16:
  2983. {
  2984. ((ggml_fp16_t *)(data))[0] = GGML_FP32_TO_FP16(value);
  2985. } break;
  2986. case GGML_TYPE_F32:
  2987. {
  2988. ((float *)(data))[0] = value;
  2989. } break;
  2990. default:
  2991. {
  2992. GGML_ASSERT(false);
  2993. } break;
  2994. }
  2995. }
  2996. void * ggml_get_data(const struct ggml_tensor * tensor) {
  2997. return tensor->data;
  2998. }
  2999. float * ggml_get_data_f32(const struct ggml_tensor * tensor) {
  3000. assert(tensor->type == GGML_TYPE_F32);
  3001. return (float *)(tensor->data);
  3002. }
  3003. GGML_CALL enum ggml_unary_op ggml_get_unary_op(const struct ggml_tensor * tensor) {
  3004. GGML_ASSERT(tensor->op == GGML_OP_UNARY);
  3005. return (enum ggml_unary_op) ggml_get_op_params_i32(tensor, 0);
  3006. }
  3007. const char * ggml_get_name(const struct ggml_tensor * tensor) {
  3008. return tensor->name;
  3009. }
  3010. struct ggml_tensor * ggml_set_name(struct ggml_tensor * tensor, const char * name) {
  3011. strncpy(tensor->name, name, sizeof(tensor->name) - 1);
  3012. tensor->name[sizeof(tensor->name) - 1] = '\0';
  3013. return tensor;
  3014. }
  3015. struct ggml_tensor * ggml_format_name(struct ggml_tensor * tensor, const char * fmt, ...) {
  3016. va_list args;
  3017. va_start(args, fmt);
  3018. vsnprintf(tensor->name, sizeof(tensor->name), fmt, args);
  3019. va_end(args);
  3020. return tensor;
  3021. }
  3022. struct ggml_tensor * ggml_view_tensor(
  3023. struct ggml_context * ctx,
  3024. struct ggml_tensor * src) {
  3025. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, src->type, GGML_MAX_DIMS, src->ne, src, 0);
  3026. ggml_format_name(result, "%s (view)", src->name);
  3027. for (int i = 0; i < GGML_MAX_DIMS; i++) {
  3028. result->nb[i] = src->nb[i];
  3029. }
  3030. return result;
  3031. }
  3032. struct ggml_tensor * ggml_get_first_tensor(const struct ggml_context * ctx) {
  3033. struct ggml_object * obj = ctx->objects_begin;
  3034. char * const mem_buffer = ctx->mem_buffer;
  3035. while (obj != NULL) {
  3036. if (obj->type == GGML_OBJECT_TYPE_TENSOR) {
  3037. return (struct ggml_tensor *)(mem_buffer + obj->offs);
  3038. }
  3039. obj = obj->next;
  3040. }
  3041. return NULL;
  3042. }
  3043. struct ggml_tensor * ggml_get_next_tensor(const struct ggml_context * ctx, struct ggml_tensor * tensor) {
  3044. struct ggml_object * obj = (struct ggml_object *) ((char *)tensor - GGML_OBJECT_SIZE);
  3045. obj = obj->next;
  3046. char * const mem_buffer = ctx->mem_buffer;
  3047. while (obj != NULL) {
  3048. if (obj->type == GGML_OBJECT_TYPE_TENSOR) {
  3049. return (struct ggml_tensor *)(mem_buffer + obj->offs);
  3050. }
  3051. obj = obj->next;
  3052. }
  3053. return NULL;
  3054. }
  3055. struct ggml_tensor * ggml_get_tensor(struct ggml_context * ctx, const char * name) {
  3056. struct ggml_object * obj = ctx->objects_begin;
  3057. char * const mem_buffer = ctx->mem_buffer;
  3058. while (obj != NULL) {
  3059. if (obj->type == GGML_OBJECT_TYPE_TENSOR) {
  3060. struct ggml_tensor * cur = (struct ggml_tensor *)(mem_buffer + obj->offs);
  3061. if (strcmp(cur->name, name) == 0) {
  3062. return cur;
  3063. }
  3064. }
  3065. obj = obj->next;
  3066. }
  3067. return NULL;
  3068. }
  3069. ////////////////////////////////////////////////////////////////////////////////
  3070. // ggml_dup
  3071. static struct ggml_tensor * ggml_dup_impl(
  3072. struct ggml_context * ctx,
  3073. struct ggml_tensor * a,
  3074. bool inplace) {
  3075. bool is_node = false;
  3076. if (!inplace && (a->grad)) {
  3077. is_node = true;
  3078. }
  3079. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3080. result->op = GGML_OP_DUP;
  3081. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3082. result->src[0] = a;
  3083. return result;
  3084. }
  3085. struct ggml_tensor * ggml_dup(
  3086. struct ggml_context * ctx,
  3087. struct ggml_tensor * a) {
  3088. return ggml_dup_impl(ctx, a, false);
  3089. }
  3090. struct ggml_tensor * ggml_dup_inplace(
  3091. struct ggml_context * ctx,
  3092. struct ggml_tensor * a) {
  3093. return ggml_dup_impl(ctx, a, true);
  3094. }
  3095. // ggml_add
  3096. static struct ggml_tensor * ggml_add_impl(
  3097. struct ggml_context * ctx,
  3098. struct ggml_tensor * a,
  3099. struct ggml_tensor * b,
  3100. bool inplace) {
  3101. GGML_ASSERT(ggml_can_repeat(b, a));
  3102. bool is_node = false;
  3103. if (!inplace && (a->grad || b->grad)) {
  3104. // TODO: support backward pass for broadcasting
  3105. GGML_ASSERT(ggml_are_same_shape(a, b));
  3106. is_node = true;
  3107. }
  3108. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3109. result->op = GGML_OP_ADD;
  3110. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3111. result->src[0] = a;
  3112. result->src[1] = b;
  3113. return result;
  3114. }
  3115. struct ggml_tensor * ggml_add(
  3116. struct ggml_context * ctx,
  3117. struct ggml_tensor * a,
  3118. struct ggml_tensor * b) {
  3119. return ggml_add_impl(ctx, a, b, false);
  3120. }
  3121. struct ggml_tensor * ggml_add_inplace(
  3122. struct ggml_context * ctx,
  3123. struct ggml_tensor * a,
  3124. struct ggml_tensor * b) {
  3125. return ggml_add_impl(ctx, a, b, true);
  3126. }
  3127. // ggml_add_cast
  3128. static struct ggml_tensor * ggml_add_cast_impl(
  3129. struct ggml_context * ctx,
  3130. struct ggml_tensor * a,
  3131. struct ggml_tensor * b,
  3132. enum ggml_type type) {
  3133. // TODO: support less-strict constraint
  3134. // GGML_ASSERT(ggml_can_repeat(b, a));
  3135. GGML_ASSERT(ggml_can_repeat_rows(b, a));
  3136. GGML_ASSERT(ggml_is_quantized(a->type) || a->type == GGML_TYPE_F16); // currently only supported for quantized input and f16
  3137. bool is_node = false;
  3138. if (a->grad || b->grad) {
  3139. // TODO: support backward pass for broadcasting
  3140. GGML_ASSERT(ggml_are_same_shape(a, b));
  3141. is_node = true;
  3142. }
  3143. struct ggml_tensor * result = ggml_new_tensor(ctx, type, GGML_MAX_DIMS, a->ne);
  3144. result->op = GGML_OP_ADD;
  3145. result->grad = is_node ? ggml_new_tensor(ctx, GGML_TYPE_F32, GGML_MAX_DIMS, a->ne) : NULL;
  3146. result->src[0] = a;
  3147. result->src[1] = b;
  3148. return result;
  3149. }
  3150. struct ggml_tensor * ggml_add_cast(
  3151. struct ggml_context * ctx,
  3152. struct ggml_tensor * a,
  3153. struct ggml_tensor * b,
  3154. enum ggml_type type) {
  3155. return ggml_add_cast_impl(ctx, a, b, type);
  3156. }
  3157. // ggml_add1
  3158. static struct ggml_tensor * ggml_add1_impl(
  3159. struct ggml_context * ctx,
  3160. struct ggml_tensor * a,
  3161. struct ggml_tensor * b,
  3162. bool inplace) {
  3163. GGML_ASSERT(ggml_is_scalar(b));
  3164. GGML_ASSERT(ggml_is_padded_1d(a));
  3165. bool is_node = false;
  3166. if (a->grad || b->grad) {
  3167. is_node = true;
  3168. }
  3169. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3170. result->op = GGML_OP_ADD1;
  3171. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3172. result->src[0] = a;
  3173. result->src[1] = b;
  3174. return result;
  3175. }
  3176. struct ggml_tensor * ggml_add1(
  3177. struct ggml_context * ctx,
  3178. struct ggml_tensor * a,
  3179. struct ggml_tensor * b) {
  3180. return ggml_add1_impl(ctx, a, b, false);
  3181. }
  3182. struct ggml_tensor * ggml_add1_inplace(
  3183. struct ggml_context * ctx,
  3184. struct ggml_tensor * a,
  3185. struct ggml_tensor * b) {
  3186. return ggml_add1_impl(ctx, a, b, true);
  3187. }
  3188. // ggml_acc
  3189. static struct ggml_tensor * ggml_acc_impl(
  3190. struct ggml_context * ctx,
  3191. struct ggml_tensor * a,
  3192. struct ggml_tensor * b,
  3193. size_t nb1,
  3194. size_t nb2,
  3195. size_t nb3,
  3196. size_t offset,
  3197. bool inplace) {
  3198. GGML_ASSERT(ggml_nelements(b) <= ggml_nelements(a));
  3199. GGML_ASSERT(ggml_is_contiguous(a));
  3200. GGML_ASSERT(a->type == GGML_TYPE_F32);
  3201. GGML_ASSERT(b->type == GGML_TYPE_F32);
  3202. bool is_node = false;
  3203. if (!inplace && (a->grad || b->grad)) {
  3204. is_node = true;
  3205. }
  3206. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3207. int32_t params[] = { nb1, nb2, nb3, offset, inplace ? 1 : 0 };
  3208. ggml_set_op_params(result, params, sizeof(params));
  3209. result->op = GGML_OP_ACC;
  3210. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3211. result->src[0] = a;
  3212. result->src[1] = b;
  3213. return result;
  3214. }
  3215. struct ggml_tensor * ggml_acc(
  3216. struct ggml_context * ctx,
  3217. struct ggml_tensor * a,
  3218. struct ggml_tensor * b,
  3219. size_t nb1,
  3220. size_t nb2,
  3221. size_t nb3,
  3222. size_t offset) {
  3223. return ggml_acc_impl(ctx, a, b, nb1, nb2, nb3, offset, false);
  3224. }
  3225. struct ggml_tensor * ggml_acc_inplace(
  3226. struct ggml_context * ctx,
  3227. struct ggml_tensor * a,
  3228. struct ggml_tensor * b,
  3229. size_t nb1,
  3230. size_t nb2,
  3231. size_t nb3,
  3232. size_t offset) {
  3233. return ggml_acc_impl(ctx, a, b, nb1, nb2, nb3, offset, true);
  3234. }
  3235. // ggml_sub
  3236. static struct ggml_tensor * ggml_sub_impl(
  3237. struct ggml_context * ctx,
  3238. struct ggml_tensor * a,
  3239. struct ggml_tensor * b,
  3240. bool inplace) {
  3241. GGML_ASSERT(ggml_are_same_shape(a, b));
  3242. bool is_node = false;
  3243. if (!inplace && (a->grad || b->grad)) {
  3244. is_node = true;
  3245. }
  3246. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3247. result->op = GGML_OP_SUB;
  3248. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3249. result->src[0] = a;
  3250. result->src[1] = b;
  3251. return result;
  3252. }
  3253. struct ggml_tensor * ggml_sub(
  3254. struct ggml_context * ctx,
  3255. struct ggml_tensor * a,
  3256. struct ggml_tensor * b) {
  3257. return ggml_sub_impl(ctx, a, b, false);
  3258. }
  3259. struct ggml_tensor * ggml_sub_inplace(
  3260. struct ggml_context * ctx,
  3261. struct ggml_tensor * a,
  3262. struct ggml_tensor * b) {
  3263. return ggml_sub_impl(ctx, a, b, true);
  3264. }
  3265. // ggml_mul
  3266. static struct ggml_tensor * ggml_mul_impl(
  3267. struct ggml_context * ctx,
  3268. struct ggml_tensor * a,
  3269. struct ggml_tensor * b,
  3270. bool inplace) {
  3271. GGML_ASSERT(ggml_can_repeat(b, a));
  3272. bool is_node = false;
  3273. if (!inplace && (a->grad || b->grad)) {
  3274. // TODO: support backward pass for broadcasting
  3275. GGML_ASSERT(ggml_are_same_shape(a, b));
  3276. is_node = true;
  3277. }
  3278. if (inplace) {
  3279. GGML_ASSERT(!is_node);
  3280. }
  3281. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3282. result->op = GGML_OP_MUL;
  3283. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3284. result->src[0] = a;
  3285. result->src[1] = b;
  3286. return result;
  3287. }
  3288. struct ggml_tensor * ggml_mul(
  3289. struct ggml_context * ctx,
  3290. struct ggml_tensor * a,
  3291. struct ggml_tensor * b) {
  3292. return ggml_mul_impl(ctx, a, b, false);
  3293. }
  3294. struct ggml_tensor * ggml_mul_inplace(
  3295. struct ggml_context * ctx,
  3296. struct ggml_tensor * a,
  3297. struct ggml_tensor * b) {
  3298. return ggml_mul_impl(ctx, a, b, true);
  3299. }
  3300. // ggml_div
  3301. static struct ggml_tensor * ggml_div_impl(
  3302. struct ggml_context * ctx,
  3303. struct ggml_tensor * a,
  3304. struct ggml_tensor * b,
  3305. bool inplace) {
  3306. GGML_ASSERT(ggml_can_repeat(b, a));
  3307. bool is_node = false;
  3308. if (!inplace && (a->grad || b->grad)) {
  3309. is_node = true;
  3310. }
  3311. if (inplace) {
  3312. GGML_ASSERT(!is_node);
  3313. }
  3314. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3315. result->op = GGML_OP_DIV;
  3316. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3317. result->src[0] = a;
  3318. result->src[1] = b;
  3319. return result;
  3320. }
  3321. struct ggml_tensor * ggml_div(
  3322. struct ggml_context * ctx,
  3323. struct ggml_tensor * a,
  3324. struct ggml_tensor * b) {
  3325. return ggml_div_impl(ctx, a, b, false);
  3326. }
  3327. struct ggml_tensor * ggml_div_inplace(
  3328. struct ggml_context * ctx,
  3329. struct ggml_tensor * a,
  3330. struct ggml_tensor * b) {
  3331. return ggml_div_impl(ctx, a, b, true);
  3332. }
  3333. // ggml_sqr
  3334. static struct ggml_tensor * ggml_sqr_impl(
  3335. struct ggml_context * ctx,
  3336. struct ggml_tensor * a,
  3337. bool inplace) {
  3338. bool is_node = false;
  3339. if (!inplace && (a->grad)) {
  3340. is_node = true;
  3341. }
  3342. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3343. result->op = GGML_OP_SQR;
  3344. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3345. result->src[0] = a;
  3346. return result;
  3347. }
  3348. struct ggml_tensor * ggml_sqr(
  3349. struct ggml_context * ctx,
  3350. struct ggml_tensor * a) {
  3351. return ggml_sqr_impl(ctx, a, false);
  3352. }
  3353. struct ggml_tensor * ggml_sqr_inplace(
  3354. struct ggml_context * ctx,
  3355. struct ggml_tensor * a) {
  3356. return ggml_sqr_impl(ctx, a, true);
  3357. }
  3358. // ggml_sqrt
  3359. static struct ggml_tensor * ggml_sqrt_impl(
  3360. struct ggml_context * ctx,
  3361. struct ggml_tensor * a,
  3362. bool inplace) {
  3363. bool is_node = false;
  3364. if (!inplace && (a->grad)) {
  3365. is_node = true;
  3366. }
  3367. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3368. result->op = GGML_OP_SQRT;
  3369. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3370. result->src[0] = a;
  3371. return result;
  3372. }
  3373. struct ggml_tensor * ggml_sqrt(
  3374. struct ggml_context * ctx,
  3375. struct ggml_tensor * a) {
  3376. return ggml_sqrt_impl(ctx, a, false);
  3377. }
  3378. struct ggml_tensor * ggml_sqrt_inplace(
  3379. struct ggml_context * ctx,
  3380. struct ggml_tensor * a) {
  3381. return ggml_sqrt_impl(ctx, a, true);
  3382. }
  3383. // ggml_log
  3384. static struct ggml_tensor * ggml_log_impl(
  3385. struct ggml_context * ctx,
  3386. struct ggml_tensor * a,
  3387. bool inplace) {
  3388. bool is_node = false;
  3389. if (!inplace && (a->grad)) {
  3390. is_node = true;
  3391. }
  3392. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3393. result->op = GGML_OP_LOG;
  3394. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3395. result->src[0] = a;
  3396. return result;
  3397. }
  3398. struct ggml_tensor * ggml_log(
  3399. struct ggml_context * ctx,
  3400. struct ggml_tensor * a) {
  3401. return ggml_log_impl(ctx, a, false);
  3402. }
  3403. struct ggml_tensor * ggml_log_inplace(
  3404. struct ggml_context * ctx,
  3405. struct ggml_tensor * a) {
  3406. return ggml_log_impl(ctx, a, true);
  3407. }
  3408. // ggml_sum
  3409. struct ggml_tensor * ggml_sum(
  3410. struct ggml_context * ctx,
  3411. struct ggml_tensor * a) {
  3412. bool is_node = false;
  3413. if (a->grad) {
  3414. is_node = true;
  3415. }
  3416. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, a->type, 1);
  3417. result->op = GGML_OP_SUM;
  3418. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3419. result->src[0] = a;
  3420. return result;
  3421. }
  3422. // ggml_sum_rows
  3423. struct ggml_tensor * ggml_sum_rows(
  3424. struct ggml_context * ctx,
  3425. struct ggml_tensor * a) {
  3426. bool is_node = false;
  3427. if (a->grad) {
  3428. is_node = true;
  3429. }
  3430. int64_t ne[GGML_MAX_DIMS] = { 1 };
  3431. for (int i = 1; i < GGML_MAX_DIMS; ++i) {
  3432. ne[i] = a->ne[i];
  3433. }
  3434. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, GGML_MAX_DIMS, ne);
  3435. result->op = GGML_OP_SUM_ROWS;
  3436. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3437. result->src[0] = a;
  3438. return result;
  3439. }
  3440. // ggml_mean
  3441. struct ggml_tensor * ggml_mean(
  3442. struct ggml_context * ctx,
  3443. struct ggml_tensor * a) {
  3444. bool is_node = false;
  3445. if (a->grad) {
  3446. GGML_ASSERT(false); // TODO: implement
  3447. is_node = true;
  3448. }
  3449. int64_t ne[4] = { 1, a->ne[1], a->ne[2], a->ne[3] };
  3450. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  3451. result->op = GGML_OP_MEAN;
  3452. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3453. result->src[0] = a;
  3454. return result;
  3455. }
  3456. // ggml_argmax
  3457. struct ggml_tensor * ggml_argmax(
  3458. struct ggml_context * ctx,
  3459. struct ggml_tensor * a) {
  3460. GGML_ASSERT(ggml_is_matrix(a));
  3461. bool is_node = false;
  3462. if (a->grad) {
  3463. GGML_ASSERT(false);
  3464. is_node = true;
  3465. }
  3466. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, a->ne[1]);
  3467. result->op = GGML_OP_ARGMAX;
  3468. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3469. result->src[0] = a;
  3470. return result;
  3471. }
  3472. // ggml_repeat
  3473. struct ggml_tensor * ggml_repeat(
  3474. struct ggml_context * ctx,
  3475. struct ggml_tensor * a,
  3476. struct ggml_tensor * b) {
  3477. GGML_ASSERT(ggml_can_repeat(a, b));
  3478. bool is_node = false;
  3479. if (a->grad) {
  3480. is_node = true;
  3481. }
  3482. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, GGML_MAX_DIMS, b->ne);
  3483. result->op = GGML_OP_REPEAT;
  3484. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3485. result->src[0] = a;
  3486. return result;
  3487. }
  3488. // ggml_repeat_back
  3489. struct ggml_tensor * ggml_repeat_back(
  3490. struct ggml_context * ctx,
  3491. struct ggml_tensor * a,
  3492. struct ggml_tensor * b) {
  3493. GGML_ASSERT(ggml_can_repeat(b, a));
  3494. bool is_node = false;
  3495. if (a->grad) {
  3496. is_node = true;
  3497. }
  3498. if (ggml_are_same_shape(a, b) && !is_node) {
  3499. return a;
  3500. }
  3501. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, GGML_MAX_DIMS, b->ne);
  3502. result->op = GGML_OP_REPEAT_BACK;
  3503. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3504. result->src[0] = a;
  3505. return result;
  3506. }
  3507. // ggml_concat
  3508. struct ggml_tensor * ggml_concat(
  3509. struct ggml_context* ctx,
  3510. struct ggml_tensor* a,
  3511. struct ggml_tensor* b) {
  3512. GGML_ASSERT(a->ne[0] == b->ne[0] && a->ne[1] == b->ne[1] && a->ne[3] == b->ne[3]);
  3513. bool is_node = false;
  3514. if (a->grad || b->grad) {
  3515. is_node = true;
  3516. }
  3517. struct ggml_tensor * result = ggml_new_tensor_4d(ctx, a->type, a->ne[0], a->ne[1], a->ne[2] + b->ne[2], a->ne[3]);
  3518. result->op = GGML_OP_CONCAT;
  3519. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3520. result->src[0] = a;
  3521. result->src[1] = b;
  3522. return result;
  3523. }
  3524. // ggml_abs
  3525. struct ggml_tensor * ggml_abs(
  3526. struct ggml_context * ctx,
  3527. struct ggml_tensor * a) {
  3528. return ggml_unary(ctx, a, GGML_UNARY_OP_ABS);
  3529. }
  3530. struct ggml_tensor * ggml_abs_inplace(
  3531. struct ggml_context * ctx,
  3532. struct ggml_tensor * a) {
  3533. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_ABS);
  3534. }
  3535. // ggml_sgn
  3536. struct ggml_tensor * ggml_sgn(
  3537. struct ggml_context * ctx,
  3538. struct ggml_tensor * a) {
  3539. return ggml_unary(ctx, a, GGML_UNARY_OP_SGN);
  3540. }
  3541. struct ggml_tensor * ggml_sgn_inplace(
  3542. struct ggml_context * ctx,
  3543. struct ggml_tensor * a) {
  3544. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_SGN);
  3545. }
  3546. // ggml_neg
  3547. struct ggml_tensor * ggml_neg(
  3548. struct ggml_context * ctx,
  3549. struct ggml_tensor * a) {
  3550. return ggml_unary(ctx, a, GGML_UNARY_OP_NEG);
  3551. }
  3552. struct ggml_tensor * ggml_neg_inplace(
  3553. struct ggml_context * ctx,
  3554. struct ggml_tensor * a) {
  3555. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_NEG);
  3556. }
  3557. // ggml_step
  3558. struct ggml_tensor * ggml_step(
  3559. struct ggml_context * ctx,
  3560. struct ggml_tensor * a) {
  3561. return ggml_unary(ctx, a, GGML_UNARY_OP_STEP);
  3562. }
  3563. struct ggml_tensor * ggml_step_inplace(
  3564. struct ggml_context * ctx,
  3565. struct ggml_tensor * a) {
  3566. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_STEP);
  3567. }
  3568. // ggml_tanh
  3569. struct ggml_tensor * ggml_tanh(
  3570. struct ggml_context * ctx,
  3571. struct ggml_tensor * a) {
  3572. return ggml_unary(ctx, a, GGML_UNARY_OP_TANH);
  3573. }
  3574. struct ggml_tensor * ggml_tanh_inplace(
  3575. struct ggml_context * ctx,
  3576. struct ggml_tensor * a) {
  3577. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_TANH);
  3578. }
  3579. // ggml_elu
  3580. struct ggml_tensor * ggml_elu(
  3581. struct ggml_context * ctx,
  3582. struct ggml_tensor * a) {
  3583. return ggml_unary(ctx, a, GGML_UNARY_OP_ELU);
  3584. }
  3585. struct ggml_tensor * ggml_elu_inplace(
  3586. struct ggml_context * ctx,
  3587. struct ggml_tensor * a) {
  3588. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_ELU);
  3589. }
  3590. // ggml_relu
  3591. struct ggml_tensor * ggml_relu(
  3592. struct ggml_context * ctx,
  3593. struct ggml_tensor * a) {
  3594. return ggml_unary(ctx, a, GGML_UNARY_OP_RELU);
  3595. }
  3596. struct ggml_tensor * ggml_relu_inplace(
  3597. struct ggml_context * ctx,
  3598. struct ggml_tensor * a) {
  3599. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_RELU);
  3600. }
  3601. // ggml_leaky_relu
  3602. struct ggml_tensor * ggml_leaky_relu(
  3603. struct ggml_context * ctx,
  3604. struct ggml_tensor * a, float negative_slope, bool inplace) {
  3605. bool is_node = false;
  3606. if (!inplace && (a->grad)) {
  3607. is_node = true;
  3608. }
  3609. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3610. ggml_set_op_params(result, &negative_slope, sizeof(negative_slope));
  3611. result->op = GGML_OP_LEAKY_RELU;
  3612. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3613. result->src[0] = a;
  3614. return result;
  3615. }
  3616. // ggml_gelu
  3617. struct ggml_tensor * ggml_gelu(
  3618. struct ggml_context * ctx,
  3619. struct ggml_tensor * a) {
  3620. return ggml_unary(ctx, a, GGML_UNARY_OP_GELU);
  3621. }
  3622. struct ggml_tensor * ggml_gelu_inplace(
  3623. struct ggml_context * ctx,
  3624. struct ggml_tensor * a) {
  3625. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_GELU);
  3626. }
  3627. // ggml_gelu_quick
  3628. struct ggml_tensor * ggml_gelu_quick(
  3629. struct ggml_context * ctx,
  3630. struct ggml_tensor * a) {
  3631. return ggml_unary(ctx, a, GGML_UNARY_OP_GELU_QUICK);
  3632. }
  3633. struct ggml_tensor * ggml_gelu_quick_inplace(
  3634. struct ggml_context * ctx,
  3635. struct ggml_tensor * a) {
  3636. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_GELU_QUICK);
  3637. }
  3638. // ggml_silu
  3639. struct ggml_tensor * ggml_silu(
  3640. struct ggml_context * ctx,
  3641. struct ggml_tensor * a) {
  3642. return ggml_unary(ctx, a, GGML_UNARY_OP_SILU);
  3643. }
  3644. struct ggml_tensor * ggml_silu_inplace(
  3645. struct ggml_context * ctx,
  3646. struct ggml_tensor * a) {
  3647. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_SILU);
  3648. }
  3649. // ggml_silu_back
  3650. struct ggml_tensor * ggml_silu_back(
  3651. struct ggml_context * ctx,
  3652. struct ggml_tensor * a,
  3653. struct ggml_tensor * b) {
  3654. bool is_node = false;
  3655. if (a->grad || b->grad) {
  3656. // TODO: implement backward
  3657. is_node = true;
  3658. }
  3659. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  3660. result->op = GGML_OP_SILU_BACK;
  3661. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3662. result->src[0] = a;
  3663. result->src[1] = b;
  3664. return result;
  3665. }
  3666. // ggml hardswish
  3667. struct ggml_tensor * ggml_hardswish(
  3668. struct ggml_context * ctx,
  3669. struct ggml_tensor * a) {
  3670. return ggml_unary(ctx, a, GGML_UNARY_OP_HARDSWISH);
  3671. }
  3672. // ggml hardsigmoid
  3673. struct ggml_tensor * ggml_hardsigmoid(
  3674. struct ggml_context * ctx,
  3675. struct ggml_tensor * a) {
  3676. return ggml_unary(ctx, a, GGML_UNARY_OP_HARDSIGMOID);
  3677. }
  3678. // ggml_norm
  3679. static struct ggml_tensor * ggml_norm_impl(
  3680. struct ggml_context * ctx,
  3681. struct ggml_tensor * a,
  3682. float eps,
  3683. bool inplace) {
  3684. bool is_node = false;
  3685. if (!inplace && (a->grad)) {
  3686. GGML_ASSERT(false); // TODO: implement backward
  3687. is_node = true;
  3688. }
  3689. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3690. ggml_set_op_params(result, &eps, sizeof(eps));
  3691. result->op = GGML_OP_NORM;
  3692. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3693. result->src[0] = a;
  3694. return result;
  3695. }
  3696. struct ggml_tensor * ggml_norm(
  3697. struct ggml_context * ctx,
  3698. struct ggml_tensor * a,
  3699. float eps) {
  3700. return ggml_norm_impl(ctx, a, eps, false);
  3701. }
  3702. struct ggml_tensor * ggml_norm_inplace(
  3703. struct ggml_context * ctx,
  3704. struct ggml_tensor * a,
  3705. float eps) {
  3706. return ggml_norm_impl(ctx, a, eps, true);
  3707. }
  3708. // ggml_rms_norm
  3709. static struct ggml_tensor * ggml_rms_norm_impl(
  3710. struct ggml_context * ctx,
  3711. struct ggml_tensor * a,
  3712. float eps,
  3713. bool inplace) {
  3714. bool is_node = false;
  3715. if (!inplace && (a->grad)) {
  3716. is_node = true;
  3717. }
  3718. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3719. ggml_set_op_params(result, &eps, sizeof(eps));
  3720. result->op = GGML_OP_RMS_NORM;
  3721. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3722. result->src[0] = a;
  3723. return result;
  3724. }
  3725. struct ggml_tensor * ggml_rms_norm(
  3726. struct ggml_context * ctx,
  3727. struct ggml_tensor * a,
  3728. float eps) {
  3729. return ggml_rms_norm_impl(ctx, a, eps, false);
  3730. }
  3731. struct ggml_tensor * ggml_rms_norm_inplace(
  3732. struct ggml_context * ctx,
  3733. struct ggml_tensor * a,
  3734. float eps) {
  3735. return ggml_rms_norm_impl(ctx, a, eps, true);
  3736. }
  3737. // ggml_rms_norm_back
  3738. struct ggml_tensor * ggml_rms_norm_back(
  3739. struct ggml_context * ctx,
  3740. struct ggml_tensor * a,
  3741. struct ggml_tensor * b,
  3742. float eps) {
  3743. bool is_node = false;
  3744. if (a->grad) {
  3745. // TODO: implement backward
  3746. is_node = true;
  3747. }
  3748. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  3749. ggml_set_op_params(result, &eps, sizeof(eps));
  3750. result->op = GGML_OP_RMS_NORM_BACK;
  3751. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3752. result->src[0] = a;
  3753. result->src[1] = b;
  3754. return result;
  3755. }
  3756. // ggml_group_norm
  3757. static struct ggml_tensor * ggml_group_norm_impl(
  3758. struct ggml_context * ctx,
  3759. struct ggml_tensor * a,
  3760. int n_groups,
  3761. bool inplace) {
  3762. bool is_node = false;
  3763. if (!inplace && (a->grad)) {
  3764. GGML_ASSERT(false); // TODO: implement backward
  3765. is_node = true;
  3766. }
  3767. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3768. result->op_params[0] = n_groups;
  3769. result->op = GGML_OP_GROUP_NORM;
  3770. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3771. result->src[0] = a;
  3772. return result;
  3773. }
  3774. struct ggml_tensor * ggml_group_norm(
  3775. struct ggml_context * ctx,
  3776. struct ggml_tensor * a,
  3777. int n_groups) {
  3778. return ggml_group_norm_impl(ctx, a, n_groups, false);
  3779. }
  3780. struct ggml_tensor * ggml_group_norm_inplace(
  3781. struct ggml_context * ctx,
  3782. struct ggml_tensor * a,
  3783. int n_groups) {
  3784. return ggml_group_norm_impl(ctx, a, n_groups, true);
  3785. }
  3786. // ggml_mul_mat
  3787. struct ggml_tensor * ggml_mul_mat(
  3788. struct ggml_context * ctx,
  3789. struct ggml_tensor * a,
  3790. struct ggml_tensor * b) {
  3791. GGML_ASSERT(ggml_can_mul_mat(a, b));
  3792. GGML_ASSERT(!ggml_is_transposed(a));
  3793. bool is_node = false;
  3794. if (a->grad || b->grad) {
  3795. is_node = true;
  3796. }
  3797. const int64_t ne[4] = { a->ne[1], b->ne[1], b->ne[2], b->ne[3] };
  3798. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  3799. result->op = GGML_OP_MUL_MAT;
  3800. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3801. result->src[0] = a;
  3802. result->src[1] = b;
  3803. return result;
  3804. }
  3805. void ggml_mul_mat_set_prec(
  3806. struct ggml_tensor * a,
  3807. enum ggml_prec prec) {
  3808. const int32_t prec_i32 = (int32_t) prec;
  3809. ggml_set_op_params_i32(a, 0, prec_i32);
  3810. }
  3811. // ggml_mul_mat_id
  3812. /*
  3813. c = ggml_mul_mat_id(ctx, as, b, ids);
  3814. as -> [cols, rows, n_expert]
  3815. ids -> [n_experts_used, n_tokens] (i32)
  3816. b -> [cols, n_expert_used, n_tokens]
  3817. c -> [cols, n_expert_used, n_tokens]
  3818. in b, n_experts_used can be broadcasted to match the n_expert_used of ids
  3819. c ~= as[:,:,i] @ b[:,i%r,t], i = ids[e,t] for all e,t in ids
  3820. */
  3821. struct ggml_tensor * ggml_mul_mat_id(
  3822. struct ggml_context * ctx,
  3823. struct ggml_tensor * as,
  3824. struct ggml_tensor * b,
  3825. struct ggml_tensor * ids) {
  3826. GGML_ASSERT(!ggml_is_transposed(as));
  3827. GGML_ASSERT(ids->type == GGML_TYPE_I32);
  3828. GGML_ASSERT(as->ne[3] == 1); // as is 3d (one matrix per expert)
  3829. GGML_ASSERT(b->ne[3] == 1); // b is 3d
  3830. GGML_ASSERT(ids->ne[2] == 1 && ids->ne[3] == 1); // ids is 2d
  3831. GGML_ASSERT(ids->ne[1] == b->ne[2]); // must have an expert list per b row
  3832. GGML_ASSERT(as->ne[0] == b->ne[0]); // can_mul_mat
  3833. GGML_ASSERT(ids->ne[0] % b->ne[1] == 0); // can broadcast
  3834. bool is_node = false;
  3835. if (as->grad || b->grad) {
  3836. is_node = true;
  3837. }
  3838. const int64_t ne[4] = { as->ne[1], ids->ne[0], b->ne[2], 1 };
  3839. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  3840. result->op = GGML_OP_MUL_MAT_ID;
  3841. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3842. result->src[0] = as;
  3843. result->src[1] = b;
  3844. result->src[2] = ids;
  3845. return result;
  3846. }
  3847. // ggml_out_prod
  3848. struct ggml_tensor * ggml_out_prod(
  3849. struct ggml_context * ctx,
  3850. struct ggml_tensor * a,
  3851. struct ggml_tensor * b) {
  3852. GGML_ASSERT(ggml_can_out_prod(a, b));
  3853. GGML_ASSERT(!ggml_is_transposed(a));
  3854. bool is_node = false;
  3855. if (a->grad || b->grad) {
  3856. is_node = true;
  3857. }
  3858. // a is broadcastable to b for ne[2] and ne[3] -> use b->ne[2] and b->ne[3]
  3859. const int64_t ne[4] = { a->ne[0], b->ne[0], b->ne[2], b->ne[3] };
  3860. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  3861. result->op = GGML_OP_OUT_PROD;
  3862. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3863. result->src[0] = a;
  3864. result->src[1] = b;
  3865. return result;
  3866. }
  3867. // ggml_scale
  3868. static struct ggml_tensor * ggml_scale_impl(
  3869. struct ggml_context * ctx,
  3870. struct ggml_tensor * a,
  3871. float s,
  3872. bool inplace) {
  3873. GGML_ASSERT(ggml_is_padded_1d(a));
  3874. bool is_node = false;
  3875. if (a->grad) {
  3876. is_node = true;
  3877. }
  3878. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3879. ggml_set_op_params(result, &s, sizeof(s));
  3880. result->op = GGML_OP_SCALE;
  3881. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3882. result->src[0] = a;
  3883. return result;
  3884. }
  3885. struct ggml_tensor * ggml_scale(
  3886. struct ggml_context * ctx,
  3887. struct ggml_tensor * a,
  3888. float s) {
  3889. return ggml_scale_impl(ctx, a, s, false);
  3890. }
  3891. struct ggml_tensor * ggml_scale_inplace(
  3892. struct ggml_context * ctx,
  3893. struct ggml_tensor * a,
  3894. float s) {
  3895. return ggml_scale_impl(ctx, a, s, true);
  3896. }
  3897. // ggml_set
  3898. static struct ggml_tensor * ggml_set_impl(
  3899. struct ggml_context * ctx,
  3900. struct ggml_tensor * a,
  3901. struct ggml_tensor * b,
  3902. size_t nb1,
  3903. size_t nb2,
  3904. size_t nb3,
  3905. size_t offset,
  3906. bool inplace) {
  3907. GGML_ASSERT(ggml_nelements(a) >= ggml_nelements(b));
  3908. bool is_node = false;
  3909. if (a->grad || b->grad) {
  3910. is_node = true;
  3911. }
  3912. // make a view of the destination
  3913. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3914. int32_t params[] = { nb1, nb2, nb3, offset, inplace ? 1 : 0 };
  3915. ggml_set_op_params(result, params, sizeof(params));
  3916. result->op = GGML_OP_SET;
  3917. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3918. result->src[0] = a;
  3919. result->src[1] = b;
  3920. return result;
  3921. }
  3922. struct ggml_tensor * ggml_set(
  3923. struct ggml_context * ctx,
  3924. struct ggml_tensor * a,
  3925. struct ggml_tensor * b,
  3926. size_t nb1,
  3927. size_t nb2,
  3928. size_t nb3,
  3929. size_t offset) {
  3930. return ggml_set_impl(ctx, a, b, nb1, nb2, nb3, offset, false);
  3931. }
  3932. struct ggml_tensor * ggml_set_inplace(
  3933. struct ggml_context * ctx,
  3934. struct ggml_tensor * a,
  3935. struct ggml_tensor * b,
  3936. size_t nb1,
  3937. size_t nb2,
  3938. size_t nb3,
  3939. size_t offset) {
  3940. return ggml_set_impl(ctx, a, b, nb1, nb2, nb3, offset, true);
  3941. }
  3942. struct ggml_tensor * ggml_set_1d(
  3943. struct ggml_context * ctx,
  3944. struct ggml_tensor * a,
  3945. struct ggml_tensor * b,
  3946. size_t offset) {
  3947. return ggml_set_impl(ctx, a, b, a->nb[1], a->nb[2], a->nb[3], offset, false);
  3948. }
  3949. struct ggml_tensor * ggml_set_1d_inplace(
  3950. struct ggml_context * ctx,
  3951. struct ggml_tensor * a,
  3952. struct ggml_tensor * b,
  3953. size_t offset) {
  3954. return ggml_set_impl(ctx, a, b, a->nb[1], a->nb[2], a->nb[3], offset, true);
  3955. }
  3956. struct ggml_tensor * ggml_set_2d(
  3957. struct ggml_context * ctx,
  3958. struct ggml_tensor * a,
  3959. struct ggml_tensor * b,
  3960. size_t nb1,
  3961. size_t offset) {
  3962. return ggml_set_impl(ctx, a, b, nb1, a->nb[2], a->nb[3], offset, false);
  3963. }
  3964. struct ggml_tensor * ggml_set_2d_inplace(
  3965. struct ggml_context * ctx,
  3966. struct ggml_tensor * a,
  3967. struct ggml_tensor * b,
  3968. size_t nb1,
  3969. size_t offset) {
  3970. return ggml_set_impl(ctx, a, b, nb1, a->nb[2], a->nb[3], offset, true);
  3971. }
  3972. // ggml_cpy
  3973. static struct ggml_tensor * ggml_cpy_impl(
  3974. struct ggml_context * ctx,
  3975. struct ggml_tensor * a,
  3976. struct ggml_tensor * b) {
  3977. GGML_ASSERT(ggml_nelements(a) == ggml_nelements(b));
  3978. bool is_node = false;
  3979. if (a->grad || b->grad) {
  3980. // inplace is false and either one have a grad
  3981. is_node = true;
  3982. }
  3983. // make a view of the destination
  3984. struct ggml_tensor * result = ggml_view_tensor(ctx, b);
  3985. if (strlen(b->name) > 0) {
  3986. ggml_format_name(result, "%s (copy of %s)", b->name, a->name);
  3987. } else {
  3988. ggml_format_name(result, "%s (copy)", a->name);
  3989. }
  3990. result->op = GGML_OP_CPY;
  3991. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3992. result->src[0] = a;
  3993. result->src[1] = b;
  3994. return result;
  3995. }
  3996. struct ggml_tensor * ggml_cpy(
  3997. struct ggml_context * ctx,
  3998. struct ggml_tensor * a,
  3999. struct ggml_tensor * b) {
  4000. return ggml_cpy_impl(ctx, a, b);
  4001. }
  4002. struct ggml_tensor * ggml_cast(
  4003. struct ggml_context * ctx,
  4004. struct ggml_tensor * a,
  4005. enum ggml_type type) {
  4006. bool is_node = false;
  4007. struct ggml_tensor * result = ggml_new_tensor(ctx, type, GGML_MAX_DIMS, a->ne);
  4008. ggml_format_name(result, "%s (copy)", a->name);
  4009. result->op = GGML_OP_CPY;
  4010. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4011. result->src[0] = a;
  4012. result->src[1] = result;
  4013. return result;
  4014. }
  4015. // ggml_cont
  4016. static struct ggml_tensor * ggml_cont_impl(
  4017. struct ggml_context * ctx,
  4018. struct ggml_tensor * a) {
  4019. bool is_node = false;
  4020. if (a->grad) {
  4021. is_node = true;
  4022. }
  4023. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  4024. ggml_format_name(result, "%s (cont)", a->name);
  4025. result->op = GGML_OP_CONT;
  4026. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4027. result->src[0] = a;
  4028. return result;
  4029. }
  4030. struct ggml_tensor * ggml_cont(
  4031. struct ggml_context * ctx,
  4032. struct ggml_tensor * a) {
  4033. return ggml_cont_impl(ctx, a);
  4034. }
  4035. // make contiguous, with new shape
  4036. GGML_API struct ggml_tensor * ggml_cont_1d(
  4037. struct ggml_context * ctx,
  4038. struct ggml_tensor * a,
  4039. int64_t ne0) {
  4040. return ggml_cont_4d(ctx, a, ne0, 1, 1, 1);
  4041. }
  4042. GGML_API struct ggml_tensor * ggml_cont_2d(
  4043. struct ggml_context * ctx,
  4044. struct ggml_tensor * a,
  4045. int64_t ne0,
  4046. int64_t ne1) {
  4047. return ggml_cont_4d(ctx, a, ne0, ne1, 1, 1);
  4048. }
  4049. GGML_API struct ggml_tensor * ggml_cont_3d(
  4050. struct ggml_context * ctx,
  4051. struct ggml_tensor * a,
  4052. int64_t ne0,
  4053. int64_t ne1,
  4054. int64_t ne2) {
  4055. return ggml_cont_4d(ctx, a, ne0, ne1, ne2, 1);
  4056. }
  4057. struct ggml_tensor * ggml_cont_4d(
  4058. struct ggml_context * ctx,
  4059. struct ggml_tensor * a,
  4060. int64_t ne0,
  4061. int64_t ne1,
  4062. int64_t ne2,
  4063. int64_t ne3) {
  4064. GGML_ASSERT(ggml_nelements(a) == (ne0*ne1*ne2*ne3));
  4065. bool is_node = false;
  4066. struct ggml_tensor * result = ggml_new_tensor_4d(ctx, a->type, ne0, ne1, ne2, ne3);
  4067. ggml_format_name(result, "%s (cont)", a->name);
  4068. result->op = GGML_OP_CONT;
  4069. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4070. result->src[0] = a;
  4071. return result;
  4072. }
  4073. // ggml_reshape
  4074. struct ggml_tensor * ggml_reshape(
  4075. struct ggml_context * ctx,
  4076. struct ggml_tensor * a,
  4077. struct ggml_tensor * b) {
  4078. GGML_ASSERT(ggml_is_contiguous(a));
  4079. // as only the shape of b is relevant, and not its memory layout, b is allowed to be non contiguous.
  4080. GGML_ASSERT(ggml_nelements(a) == ggml_nelements(b));
  4081. bool is_node = false;
  4082. if (a->grad) {
  4083. is_node = true;
  4084. }
  4085. if (b->grad) {
  4086. // gradient propagation is not supported
  4087. //GGML_ASSERT(false);
  4088. }
  4089. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, GGML_MAX_DIMS, b->ne, a, 0);
  4090. ggml_format_name(result, "%s (reshaped)", a->name);
  4091. result->op = GGML_OP_RESHAPE;
  4092. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4093. result->src[0] = a;
  4094. return result;
  4095. }
  4096. struct ggml_tensor * ggml_reshape_1d(
  4097. struct ggml_context * ctx,
  4098. struct ggml_tensor * a,
  4099. int64_t ne0) {
  4100. GGML_ASSERT(ggml_is_contiguous(a));
  4101. GGML_ASSERT(ggml_nelements(a) == ne0);
  4102. bool is_node = false;
  4103. if (a->grad) {
  4104. is_node = true;
  4105. }
  4106. const int64_t ne[1] = { ne0 };
  4107. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 1, ne, a, 0);
  4108. ggml_format_name(result, "%s (reshaped)", a->name);
  4109. result->op = GGML_OP_RESHAPE;
  4110. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4111. result->src[0] = a;
  4112. return result;
  4113. }
  4114. struct ggml_tensor * ggml_reshape_2d(
  4115. struct ggml_context * ctx,
  4116. struct ggml_tensor * a,
  4117. int64_t ne0,
  4118. int64_t ne1) {
  4119. GGML_ASSERT(ggml_is_contiguous(a));
  4120. GGML_ASSERT(ggml_nelements(a) == ne0*ne1);
  4121. bool is_node = false;
  4122. if (a->grad) {
  4123. is_node = true;
  4124. }
  4125. const int64_t ne[2] = { ne0, ne1 };
  4126. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 2, ne, a, 0);
  4127. ggml_format_name(result, "%s (reshaped)", a->name);
  4128. result->op = GGML_OP_RESHAPE;
  4129. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4130. result->src[0] = a;
  4131. return result;
  4132. }
  4133. struct ggml_tensor * ggml_reshape_3d(
  4134. struct ggml_context * ctx,
  4135. struct ggml_tensor * a,
  4136. int64_t ne0,
  4137. int64_t ne1,
  4138. int64_t ne2) {
  4139. GGML_ASSERT(ggml_is_contiguous(a));
  4140. GGML_ASSERT(ggml_nelements(a) == ne0*ne1*ne2);
  4141. bool is_node = false;
  4142. if (a->grad) {
  4143. is_node = true;
  4144. }
  4145. const int64_t ne[3] = { ne0, ne1, ne2 };
  4146. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 3, ne, a, 0);
  4147. ggml_format_name(result, "%s (reshaped)", a->name);
  4148. result->op = GGML_OP_RESHAPE;
  4149. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4150. result->src[0] = a;
  4151. return result;
  4152. }
  4153. struct ggml_tensor * ggml_reshape_4d(
  4154. struct ggml_context * ctx,
  4155. struct ggml_tensor * a,
  4156. int64_t ne0,
  4157. int64_t ne1,
  4158. int64_t ne2,
  4159. int64_t ne3) {
  4160. GGML_ASSERT(ggml_is_contiguous(a));
  4161. GGML_ASSERT(ggml_nelements(a) == ne0*ne1*ne2*ne3);
  4162. bool is_node = false;
  4163. if (a->grad) {
  4164. is_node = true;
  4165. }
  4166. const int64_t ne[4] = { ne0, ne1, ne2, ne3 };
  4167. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 4, ne, a, 0);
  4168. ggml_format_name(result, "%s (reshaped)", a->name);
  4169. result->op = GGML_OP_RESHAPE;
  4170. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4171. result->src[0] = a;
  4172. return result;
  4173. }
  4174. static struct ggml_tensor * ggml_view_impl(
  4175. struct ggml_context * ctx,
  4176. struct ggml_tensor * a,
  4177. int n_dims,
  4178. const int64_t * ne,
  4179. size_t offset) {
  4180. bool is_node = false;
  4181. if (a->grad) {
  4182. is_node = true;
  4183. }
  4184. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, n_dims, ne, a, offset);
  4185. ggml_format_name(result, "%s (view)", a->name);
  4186. ggml_set_op_params(result, &offset, sizeof(offset));
  4187. result->op = GGML_OP_VIEW;
  4188. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4189. result->src[0] = a;
  4190. return result;
  4191. }
  4192. // ggml_view_1d
  4193. struct ggml_tensor * ggml_view_1d(
  4194. struct ggml_context * ctx,
  4195. struct ggml_tensor * a,
  4196. int64_t ne0,
  4197. size_t offset) {
  4198. struct ggml_tensor * result = ggml_view_impl(ctx, a, 1, &ne0, offset);
  4199. return result;
  4200. }
  4201. // ggml_view_2d
  4202. struct ggml_tensor * ggml_view_2d(
  4203. struct ggml_context * ctx,
  4204. struct ggml_tensor * a,
  4205. int64_t ne0,
  4206. int64_t ne1,
  4207. size_t nb1,
  4208. size_t offset) {
  4209. const int64_t ne[2] = { ne0, ne1 };
  4210. struct ggml_tensor * result = ggml_view_impl(ctx, a, 2, ne, offset);
  4211. result->nb[1] = nb1;
  4212. result->nb[2] = result->nb[1]*ne1;
  4213. result->nb[3] = result->nb[2];
  4214. return result;
  4215. }
  4216. // ggml_view_3d
  4217. struct ggml_tensor * ggml_view_3d(
  4218. struct ggml_context * ctx,
  4219. struct ggml_tensor * a,
  4220. int64_t ne0,
  4221. int64_t ne1,
  4222. int64_t ne2,
  4223. size_t nb1,
  4224. size_t nb2,
  4225. size_t offset) {
  4226. const int64_t ne[3] = { ne0, ne1, ne2 };
  4227. struct ggml_tensor * result = ggml_view_impl(ctx, a, 3, ne, offset);
  4228. result->nb[1] = nb1;
  4229. result->nb[2] = nb2;
  4230. result->nb[3] = result->nb[2]*ne2;
  4231. return result;
  4232. }
  4233. // ggml_view_4d
  4234. struct ggml_tensor * ggml_view_4d(
  4235. struct ggml_context * ctx,
  4236. struct ggml_tensor * a,
  4237. int64_t ne0,
  4238. int64_t ne1,
  4239. int64_t ne2,
  4240. int64_t ne3,
  4241. size_t nb1,
  4242. size_t nb2,
  4243. size_t nb3,
  4244. size_t offset) {
  4245. const int64_t ne[4] = { ne0, ne1, ne2, ne3 };
  4246. struct ggml_tensor * result = ggml_view_impl(ctx, a, 4, ne, offset);
  4247. result->nb[1] = nb1;
  4248. result->nb[2] = nb2;
  4249. result->nb[3] = nb3;
  4250. return result;
  4251. }
  4252. // ggml_permute
  4253. struct ggml_tensor * ggml_permute(
  4254. struct ggml_context * ctx,
  4255. struct ggml_tensor * a,
  4256. int axis0,
  4257. int axis1,
  4258. int axis2,
  4259. int axis3) {
  4260. GGML_ASSERT(axis0 >= 0 && axis0 < GGML_MAX_DIMS);
  4261. GGML_ASSERT(axis1 >= 0 && axis1 < GGML_MAX_DIMS);
  4262. GGML_ASSERT(axis2 >= 0 && axis2 < GGML_MAX_DIMS);
  4263. GGML_ASSERT(axis3 >= 0 && axis3 < GGML_MAX_DIMS);
  4264. GGML_ASSERT(axis0 != axis1);
  4265. GGML_ASSERT(axis0 != axis2);
  4266. GGML_ASSERT(axis0 != axis3);
  4267. GGML_ASSERT(axis1 != axis2);
  4268. GGML_ASSERT(axis1 != axis3);
  4269. GGML_ASSERT(axis2 != axis3);
  4270. bool is_node = false;
  4271. if (a->grad) {
  4272. is_node = true;
  4273. }
  4274. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  4275. ggml_format_name(result, "%s (permuted)", a->name);
  4276. int ne[GGML_MAX_DIMS];
  4277. int nb[GGML_MAX_DIMS];
  4278. ne[axis0] = a->ne[0];
  4279. ne[axis1] = a->ne[1];
  4280. ne[axis2] = a->ne[2];
  4281. ne[axis3] = a->ne[3];
  4282. nb[axis0] = a->nb[0];
  4283. nb[axis1] = a->nb[1];
  4284. nb[axis2] = a->nb[2];
  4285. nb[axis3] = a->nb[3];
  4286. result->ne[0] = ne[0];
  4287. result->ne[1] = ne[1];
  4288. result->ne[2] = ne[2];
  4289. result->ne[3] = ne[3];
  4290. result->nb[0] = nb[0];
  4291. result->nb[1] = nb[1];
  4292. result->nb[2] = nb[2];
  4293. result->nb[3] = nb[3];
  4294. result->op = GGML_OP_PERMUTE;
  4295. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4296. result->src[0] = a;
  4297. int32_t params[] = { axis0, axis1, axis2, axis3 };
  4298. ggml_set_op_params(result, params, sizeof(params));
  4299. return result;
  4300. }
  4301. // ggml_transpose
  4302. struct ggml_tensor * ggml_transpose(
  4303. struct ggml_context * ctx,
  4304. struct ggml_tensor * a) {
  4305. bool is_node = false;
  4306. if (a->grad) {
  4307. is_node = true;
  4308. }
  4309. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  4310. ggml_format_name(result, "%s (transposed)", a->name);
  4311. result->ne[0] = a->ne[1];
  4312. result->ne[1] = a->ne[0];
  4313. result->nb[0] = a->nb[1];
  4314. result->nb[1] = a->nb[0];
  4315. result->op = GGML_OP_TRANSPOSE;
  4316. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4317. result->src[0] = a;
  4318. return result;
  4319. }
  4320. // ggml_get_rows
  4321. struct ggml_tensor * ggml_get_rows(
  4322. struct ggml_context * ctx,
  4323. struct ggml_tensor * a,
  4324. struct ggml_tensor * b) {
  4325. GGML_ASSERT(a->ne[2] == b->ne[1]);
  4326. GGML_ASSERT(b->ne[3] == 1);
  4327. GGML_ASSERT(b->type == GGML_TYPE_I32);
  4328. bool is_node = false;
  4329. if (a->grad || b->grad) {
  4330. is_node = true;
  4331. }
  4332. // TODO: implement non F32 return
  4333. enum ggml_type type = GGML_TYPE_F32;
  4334. if (a->type == GGML_TYPE_I32) {
  4335. type = a->type;
  4336. }
  4337. struct ggml_tensor * result = ggml_new_tensor_4d(ctx, type, a->ne[0], b->ne[0], b->ne[1], b->ne[2]);
  4338. result->op = GGML_OP_GET_ROWS;
  4339. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4340. result->src[0] = a;
  4341. result->src[1] = b;
  4342. return result;
  4343. }
  4344. // ggml_get_rows_back
  4345. struct ggml_tensor * ggml_get_rows_back(
  4346. struct ggml_context * ctx,
  4347. struct ggml_tensor * a,
  4348. struct ggml_tensor * b,
  4349. struct ggml_tensor * c) {
  4350. GGML_ASSERT(ggml_is_matrix(a) && ggml_is_vector(b) && b->type == GGML_TYPE_I32);
  4351. GGML_ASSERT(ggml_is_matrix(c) && (a->ne[0] == c->ne[0]));
  4352. bool is_node = false;
  4353. if (a->grad || b->grad) {
  4354. is_node = true;
  4355. }
  4356. // TODO: implement non F32 return
  4357. //struct ggml_tensor * result = ggml_new_tensor_2d(ctx, a->type, a->ne[0], b->ne[0]);
  4358. struct ggml_tensor * result = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, c->ne[0], c->ne[1]);
  4359. result->op = GGML_OP_GET_ROWS_BACK;
  4360. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4361. result->src[0] = a;
  4362. result->src[1] = b;
  4363. return result;
  4364. }
  4365. // ggml_diag
  4366. struct ggml_tensor * ggml_diag(
  4367. struct ggml_context * ctx,
  4368. struct ggml_tensor * a) {
  4369. GGML_ASSERT(a->ne[1] == 1);
  4370. bool is_node = false;
  4371. if (a->grad) {
  4372. is_node = true;
  4373. }
  4374. const int64_t ne[4] = { a->ne[0], a->ne[0], a->ne[2], a->ne[3] };
  4375. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, 4, ne);
  4376. result->op = GGML_OP_DIAG;
  4377. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4378. result->src[0] = a;
  4379. return result;
  4380. }
  4381. // ggml_diag_mask_inf
  4382. static struct ggml_tensor * ggml_diag_mask_inf_impl(
  4383. struct ggml_context * ctx,
  4384. struct ggml_tensor * a,
  4385. int n_past,
  4386. bool inplace) {
  4387. bool is_node = false;
  4388. if (a->grad) {
  4389. is_node = true;
  4390. }
  4391. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4392. int32_t params[] = { n_past };
  4393. ggml_set_op_params(result, params, sizeof(params));
  4394. result->op = GGML_OP_DIAG_MASK_INF;
  4395. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4396. result->src[0] = a;
  4397. return result;
  4398. }
  4399. struct ggml_tensor * ggml_diag_mask_inf(
  4400. struct ggml_context * ctx,
  4401. struct ggml_tensor * a,
  4402. int n_past) {
  4403. return ggml_diag_mask_inf_impl(ctx, a, n_past, false);
  4404. }
  4405. struct ggml_tensor * ggml_diag_mask_inf_inplace(
  4406. struct ggml_context * ctx,
  4407. struct ggml_tensor * a,
  4408. int n_past) {
  4409. return ggml_diag_mask_inf_impl(ctx, a, n_past, true);
  4410. }
  4411. // ggml_diag_mask_zero
  4412. static struct ggml_tensor * ggml_diag_mask_zero_impl(
  4413. struct ggml_context * ctx,
  4414. struct ggml_tensor * a,
  4415. int n_past,
  4416. bool inplace) {
  4417. bool is_node = false;
  4418. if (a->grad) {
  4419. is_node = true;
  4420. }
  4421. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4422. int32_t params[] = { n_past };
  4423. ggml_set_op_params(result, params, sizeof(params));
  4424. result->op = GGML_OP_DIAG_MASK_ZERO;
  4425. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4426. result->src[0] = a;
  4427. return result;
  4428. }
  4429. struct ggml_tensor * ggml_diag_mask_zero(
  4430. struct ggml_context * ctx,
  4431. struct ggml_tensor * a,
  4432. int n_past) {
  4433. return ggml_diag_mask_zero_impl(ctx, a, n_past, false);
  4434. }
  4435. struct ggml_tensor * ggml_diag_mask_zero_inplace(
  4436. struct ggml_context * ctx,
  4437. struct ggml_tensor * a,
  4438. int n_past) {
  4439. return ggml_diag_mask_zero_impl(ctx, a, n_past, true);
  4440. }
  4441. // ggml_soft_max
  4442. static struct ggml_tensor * ggml_soft_max_impl(
  4443. struct ggml_context * ctx,
  4444. struct ggml_tensor * a,
  4445. struct ggml_tensor * mask,
  4446. struct ggml_tensor * pos,
  4447. float scale,
  4448. float max_bias,
  4449. bool inplace) {
  4450. GGML_ASSERT(ggml_is_contiguous(a));
  4451. if (mask) {
  4452. GGML_ASSERT(ggml_is_contiguous(mask));
  4453. GGML_ASSERT(ggml_is_matrix(mask));
  4454. GGML_ASSERT(ggml_can_repeat_rows(mask, a));
  4455. }
  4456. if (pos) {
  4457. GGML_ASSERT(ggml_is_vector(pos));
  4458. GGML_ASSERT(pos->type == GGML_TYPE_F32);
  4459. GGML_ASSERT(pos->ne[0] == a->ne[0]);
  4460. }
  4461. if (max_bias > 0.0f) {
  4462. GGML_ASSERT(pos);
  4463. }
  4464. bool is_node = false;
  4465. if (a->grad) {
  4466. is_node = true;
  4467. }
  4468. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4469. float params[] = { scale, max_bias };
  4470. ggml_set_op_params(result, params, sizeof(params));
  4471. result->op = GGML_OP_SOFT_MAX;
  4472. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4473. result->src[0] = a;
  4474. result->src[1] = mask;
  4475. result->src[2] = pos;
  4476. return result;
  4477. }
  4478. struct ggml_tensor * ggml_soft_max(
  4479. struct ggml_context * ctx,
  4480. struct ggml_tensor * a) {
  4481. return ggml_soft_max_impl(ctx, a, NULL, NULL, 1.0f, 0.0f, false);
  4482. }
  4483. struct ggml_tensor * ggml_soft_max_inplace(
  4484. struct ggml_context * ctx,
  4485. struct ggml_tensor * a) {
  4486. return ggml_soft_max_impl(ctx, a, NULL, NULL, 1.0f, 0.0f, true);
  4487. }
  4488. struct ggml_tensor * ggml_soft_max_ext(
  4489. struct ggml_context * ctx,
  4490. struct ggml_tensor * a,
  4491. struct ggml_tensor * mask,
  4492. struct ggml_tensor * pos,
  4493. float scale,
  4494. float max_bias) {
  4495. return ggml_soft_max_impl(ctx, a, mask, pos, scale, max_bias, false);
  4496. }
  4497. // ggml_soft_max_back
  4498. static struct ggml_tensor * ggml_soft_max_back_impl(
  4499. struct ggml_context * ctx,
  4500. struct ggml_tensor * a,
  4501. struct ggml_tensor * b,
  4502. bool inplace) {
  4503. bool is_node = false;
  4504. if (a->grad || b->grad) {
  4505. is_node = true; // TODO : implement backward pass
  4506. }
  4507. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4508. result->op = GGML_OP_SOFT_MAX_BACK;
  4509. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4510. result->src[0] = a;
  4511. result->src[1] = b;
  4512. return result;
  4513. }
  4514. struct ggml_tensor * ggml_soft_max_back(
  4515. struct ggml_context * ctx,
  4516. struct ggml_tensor * a,
  4517. struct ggml_tensor * b) {
  4518. return ggml_soft_max_back_impl(ctx, a, b, false);
  4519. }
  4520. struct ggml_tensor * ggml_soft_max_back_inplace(
  4521. struct ggml_context * ctx,
  4522. struct ggml_tensor * a,
  4523. struct ggml_tensor * b) {
  4524. return ggml_soft_max_back_impl(ctx, a, b, true);
  4525. }
  4526. // ggml_rope
  4527. static struct ggml_tensor * ggml_rope_impl(
  4528. struct ggml_context * ctx,
  4529. struct ggml_tensor * a,
  4530. struct ggml_tensor * b,
  4531. int n_dims,
  4532. int mode,
  4533. int n_ctx,
  4534. int n_orig_ctx,
  4535. float freq_base,
  4536. float freq_scale,
  4537. float ext_factor,
  4538. float attn_factor,
  4539. float beta_fast,
  4540. float beta_slow,
  4541. float xpos_base,
  4542. bool xpos_down,
  4543. bool inplace) {
  4544. GGML_ASSERT(ggml_is_vector(b));
  4545. GGML_ASSERT(b->type == GGML_TYPE_I32);
  4546. GGML_ASSERT(a->ne[2] == b->ne[0]);
  4547. bool is_node = false;
  4548. if (a->grad) {
  4549. is_node = true;
  4550. }
  4551. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4552. int32_t params[13] = { /*n_past*/ 0, n_dims, mode, n_ctx, n_orig_ctx };
  4553. memcpy(params + 5, &freq_base, sizeof(float));
  4554. memcpy(params + 6, &freq_scale, sizeof(float));
  4555. memcpy(params + 7, &ext_factor, sizeof(float));
  4556. memcpy(params + 8, &attn_factor, sizeof(float));
  4557. memcpy(params + 9, &beta_fast, sizeof(float));
  4558. memcpy(params + 10, &beta_slow, sizeof(float));
  4559. memcpy(params + 11, &xpos_base, sizeof(float));
  4560. memcpy(params + 12, &xpos_down, sizeof(bool));
  4561. ggml_set_op_params(result, params, sizeof(params));
  4562. result->op = GGML_OP_ROPE;
  4563. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4564. result->src[0] = a;
  4565. result->src[1] = b;
  4566. return result;
  4567. }
  4568. struct ggml_tensor * ggml_rope(
  4569. struct ggml_context * ctx,
  4570. struct ggml_tensor * a,
  4571. struct ggml_tensor * b,
  4572. int n_dims,
  4573. int mode,
  4574. int n_ctx) {
  4575. return ggml_rope_impl(
  4576. ctx, a, b, n_dims, mode, n_ctx, 0, 10000.0f, 1.0f, 0.0f, 1.0f, 0.0f, 0.0f, 0.0f, false, false
  4577. );
  4578. }
  4579. struct ggml_tensor * ggml_rope_inplace(
  4580. struct ggml_context * ctx,
  4581. struct ggml_tensor * a,
  4582. struct ggml_tensor * b,
  4583. int n_dims,
  4584. int mode,
  4585. int n_ctx) {
  4586. return ggml_rope_impl(
  4587. ctx, a, b, n_dims, mode, n_ctx, 0, 10000.0f, 1.0f, 0.0f, 1.0f, 0.0f, 0.0f, 0.0f, false, true
  4588. );
  4589. }
  4590. struct ggml_tensor * ggml_rope_custom(
  4591. struct ggml_context * ctx,
  4592. struct ggml_tensor * a,
  4593. struct ggml_tensor * b,
  4594. int n_dims,
  4595. int mode,
  4596. int n_ctx,
  4597. int n_orig_ctx,
  4598. float freq_base,
  4599. float freq_scale,
  4600. float ext_factor,
  4601. float attn_factor,
  4602. float beta_fast,
  4603. float beta_slow) {
  4604. return ggml_rope_impl(
  4605. ctx, a, b, n_dims, mode, n_ctx, n_orig_ctx, freq_base, freq_scale,
  4606. ext_factor, attn_factor, beta_fast, beta_slow, 0.0f, false, false
  4607. );
  4608. }
  4609. struct ggml_tensor * ggml_rope_custom_inplace(
  4610. struct ggml_context * ctx,
  4611. struct ggml_tensor * a,
  4612. struct ggml_tensor * b,
  4613. int n_dims,
  4614. int mode,
  4615. int n_ctx,
  4616. int n_orig_ctx,
  4617. float freq_base,
  4618. float freq_scale,
  4619. float ext_factor,
  4620. float attn_factor,
  4621. float beta_fast,
  4622. float beta_slow) {
  4623. return ggml_rope_impl(
  4624. ctx, a, b, n_dims, mode, n_ctx, n_orig_ctx, freq_base, freq_scale,
  4625. ext_factor, attn_factor, beta_fast, beta_slow, 0.0f, false, true
  4626. );
  4627. }
  4628. struct ggml_tensor * ggml_rope_xpos_inplace(
  4629. struct ggml_context * ctx,
  4630. struct ggml_tensor * a,
  4631. struct ggml_tensor * b,
  4632. int n_dims,
  4633. float base,
  4634. bool down) {
  4635. return ggml_rope_impl(ctx, a, b, n_dims, 0, 0, 0, 10000.0f, 1.0f, 0.0f, 1.0f, 0.0f, 0.0f, base, down, true);
  4636. }
  4637. // ggml_rope_back
  4638. struct ggml_tensor * ggml_rope_back(
  4639. struct ggml_context * ctx,
  4640. struct ggml_tensor * a,
  4641. struct ggml_tensor * b,
  4642. int n_dims,
  4643. int mode,
  4644. int n_ctx,
  4645. int n_orig_ctx,
  4646. float freq_base,
  4647. float freq_scale,
  4648. float ext_factor,
  4649. float attn_factor,
  4650. float beta_fast,
  4651. float beta_slow,
  4652. float xpos_base,
  4653. bool xpos_down) {
  4654. GGML_ASSERT(ggml_is_vector(b));
  4655. GGML_ASSERT(b->type == GGML_TYPE_I32);
  4656. GGML_ASSERT(a->ne[2] == b->ne[0]);
  4657. GGML_ASSERT((mode & 4) == 0 && "ggml_rope_back() for ChatGLM not implemented yet");
  4658. bool is_node = false;
  4659. if (a->grad) {
  4660. is_node = false; // TODO: implement backward
  4661. }
  4662. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  4663. int32_t params[13] = { /*n_past*/ 0, n_dims, mode, n_ctx, n_orig_ctx };
  4664. memcpy(params + 5, &freq_base, sizeof(float));
  4665. memcpy(params + 6, &freq_scale, sizeof(float));
  4666. memcpy(params + 7, &ext_factor, sizeof(float));
  4667. memcpy(params + 8, &attn_factor, sizeof(float));
  4668. memcpy(params + 9, &beta_fast, sizeof(float));
  4669. memcpy(params + 10, &beta_slow, sizeof(float));
  4670. memcpy(params + 11, &xpos_base, sizeof(float));
  4671. memcpy(params + 12, &xpos_down, sizeof(bool));
  4672. ggml_set_op_params(result, params, sizeof(params));
  4673. result->op = GGML_OP_ROPE_BACK;
  4674. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4675. result->src[0] = a;
  4676. result->src[1] = b;
  4677. return result;
  4678. }
  4679. // ggml_alibi
  4680. struct ggml_tensor * ggml_alibi(
  4681. struct ggml_context * ctx,
  4682. struct ggml_tensor * a,
  4683. int n_past,
  4684. int n_head,
  4685. float bias_max) {
  4686. GGML_ASSERT(n_past >= 0);
  4687. bool is_node = false;
  4688. if (a->grad) {
  4689. GGML_ASSERT(false); // TODO: implement backward
  4690. is_node = true;
  4691. }
  4692. // TODO: when implement backward, fix this:
  4693. //struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4694. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  4695. int32_t op_params[3] = { n_past, n_head };
  4696. memcpy(op_params + 2, &bias_max, sizeof(float));
  4697. ggml_set_op_params(result, op_params, sizeof(op_params));
  4698. result->op = GGML_OP_ALIBI;
  4699. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4700. result->src[0] = a;
  4701. return result;
  4702. }
  4703. // ggml_clamp
  4704. struct ggml_tensor * ggml_clamp(
  4705. struct ggml_context * ctx,
  4706. struct ggml_tensor * a,
  4707. float min,
  4708. float max) {
  4709. bool is_node = false;
  4710. if (a->grad) {
  4711. GGML_ASSERT(false); // TODO: implement backward
  4712. is_node = true;
  4713. }
  4714. // TODO: when implement backward, fix this:
  4715. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  4716. float params[] = { min, max };
  4717. ggml_set_op_params(result, params, sizeof(params));
  4718. result->op = GGML_OP_CLAMP;
  4719. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4720. result->src[0] = a;
  4721. return result;
  4722. }
  4723. // ggml_conv_1d
  4724. static int64_t ggml_calc_conv_output_size(int64_t ins, int64_t ks, int s, int p, int d) {
  4725. return (ins + 2 * p - d * (ks - 1) - 1) / s + 1;
  4726. }
  4727. GGML_API struct ggml_tensor * ggml_conv_1d(
  4728. struct ggml_context * ctx,
  4729. struct ggml_tensor * a,
  4730. struct ggml_tensor * b,
  4731. int s0,
  4732. int p0,
  4733. int d0) {
  4734. struct ggml_tensor * im2col = ggml_im2col(ctx, a, b, s0, 0, p0, 0, d0, 0, false, GGML_TYPE_F16); // [N, OL, IC * K]
  4735. struct ggml_tensor * result =
  4736. ggml_mul_mat(ctx,
  4737. ggml_reshape_2d(ctx, im2col, im2col->ne[0], (im2col->ne[2] * im2col->ne[1])), // [N, OL, IC * K] => [N*OL, IC * K]
  4738. ggml_reshape_2d(ctx, a, (a->ne[0] * a->ne[1]), a->ne[2])); // [OC,IC, K] => [OC, IC * K]
  4739. result = ggml_reshape_3d(ctx, result, im2col->ne[1], a->ne[2], im2col->ne[2]); // [N, OC, OL]
  4740. return result;
  4741. }
  4742. // ggml_conv_1d_ph
  4743. struct ggml_tensor* ggml_conv_1d_ph(
  4744. struct ggml_context * ctx,
  4745. struct ggml_tensor * a,
  4746. struct ggml_tensor * b,
  4747. int s,
  4748. int d) {
  4749. return ggml_conv_1d(ctx, a, b, s, a->ne[0] / 2, d);
  4750. }
  4751. // ggml_conv_transpose_1d
  4752. static int64_t ggml_calc_conv_transpose_1d_output_size(int64_t ins, int64_t ks, int s, int p, int d) {
  4753. return (ins - 1) * s - 2 * p + d * (ks - 1) + 1;
  4754. }
  4755. GGML_API struct ggml_tensor * ggml_conv_transpose_1d(
  4756. struct ggml_context * ctx,
  4757. struct ggml_tensor * a,
  4758. struct ggml_tensor * b,
  4759. int s0,
  4760. int p0,
  4761. int d0) {
  4762. GGML_ASSERT(ggml_is_matrix(b));
  4763. GGML_ASSERT(a->ne[2] == b->ne[1]);
  4764. GGML_ASSERT(a->ne[3] == 1);
  4765. GGML_ASSERT(p0 == 0);
  4766. GGML_ASSERT(d0 == 1);
  4767. bool is_node = false;
  4768. if (a->grad || b->grad) {
  4769. GGML_ASSERT(false); // TODO: implement backward
  4770. is_node = true;
  4771. }
  4772. const int64_t ne[4] = {
  4773. ggml_calc_conv_transpose_1d_output_size(b->ne[0], a->ne[0], s0, 0 /*p0*/, 1 /*d0*/),
  4774. a->ne[1], b->ne[2], 1,
  4775. };
  4776. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  4777. int32_t params[] = { s0, p0, d0 };
  4778. ggml_set_op_params(result, params, sizeof(params));
  4779. result->op = GGML_OP_CONV_TRANSPOSE_1D;
  4780. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4781. result->src[0] = a;
  4782. result->src[1] = b;
  4783. return result;
  4784. }
  4785. // ggml_conv_depthwise
  4786. struct ggml_tensor * ggml_conv_depthwise_2d(
  4787. struct ggml_context * ctx,
  4788. struct ggml_tensor * a,
  4789. struct ggml_tensor * b,
  4790. int s0,
  4791. int s1,
  4792. int p0,
  4793. int p1,
  4794. int d0,
  4795. int d1) {
  4796. struct ggml_tensor * new_a = ggml_reshape_4d(ctx, a, a->ne[0], a->ne[1], 1, a->ne[2] * a->ne[3]);
  4797. struct ggml_tensor * im2col = ggml_im2col(ctx, new_a,
  4798. ggml_reshape_4d(ctx, b, b->ne[0], b->ne[1], 1, b->ne[2] * b->ne[3]),
  4799. s0, s1, p0, p1, d0, d1, true, GGML_TYPE_F16); // [N * IC, OH, OW, KH * KW]
  4800. struct ggml_tensor * new_b = ggml_reshape_4d(ctx, im2col, im2col->ne[0], im2col->ne[2] * im2col->ne[1], b->ne[2], b->ne[3]); // [N * IC, OH, OW, KH * KW] => [N, IC, OH * OW, KH * KW]
  4801. new_a = ggml_reshape_4d(ctx, new_a, (new_a->ne[0] * new_a->ne[1]), new_a->ne[2], new_a->ne[3], 1); // [OC,1, KH, KW] => [1, OC, 1, KH * KW]
  4802. struct ggml_tensor * result = ggml_mul_mat(ctx, new_a, new_b);
  4803. result = ggml_reshape_4d(ctx, result, im2col->ne[1], im2col->ne[2], b->ne[2], b->ne[3]); // [N, OC, OH, OW]
  4804. return result;
  4805. }
  4806. // ggml_conv_2d
  4807. // im2col: [N, IC, IH, IW] => [N, OH, OW, IC*KH*KW]
  4808. // a: [OC,IC, KH, KW]
  4809. // b: [N, IC, IH, IW]
  4810. // result: [N, OH, OW, IC*KH*KW]
  4811. struct ggml_tensor * ggml_im2col(
  4812. struct ggml_context * ctx,
  4813. struct ggml_tensor * a,
  4814. struct ggml_tensor * b,
  4815. int s0,
  4816. int s1,
  4817. int p0,
  4818. int p1,
  4819. int d0,
  4820. int d1,
  4821. bool is_2D,
  4822. enum ggml_type dst_type) {
  4823. if(is_2D) {
  4824. GGML_ASSERT(a->ne[2] == b->ne[2]);
  4825. } else {
  4826. GGML_ASSERT(a->ne[1] == b->ne[1]);
  4827. }
  4828. bool is_node = false;
  4829. if (a->grad || b->grad) {
  4830. GGML_ASSERT(false); // TODO: implement backward
  4831. is_node = true;
  4832. }
  4833. const int64_t OH = is_2D ? ggml_calc_conv_output_size(b->ne[1], a->ne[1], s1, p1, d1) : 0;
  4834. const int64_t OW = ggml_calc_conv_output_size(b->ne[0], a->ne[0], s0, p0, d0);
  4835. const int64_t ne[4] = {
  4836. is_2D ? (a->ne[2] * a->ne[1] * a->ne[0]) : a->ne[1] * a->ne[0],
  4837. OW,
  4838. is_2D ? OH : b->ne[2],
  4839. is_2D ? b->ne[3] : 1,
  4840. };
  4841. struct ggml_tensor * result = ggml_new_tensor(ctx, dst_type, 4, ne);
  4842. int32_t params[] = { s0, s1, p0, p1, d0, d1, (is_2D ? 1 : 0) };
  4843. ggml_set_op_params(result, params, sizeof(params));
  4844. result->op = GGML_OP_IM2COL;
  4845. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4846. result->src[0] = a;
  4847. result->src[1] = b;
  4848. return result;
  4849. }
  4850. // a: [OC,IC, KH, KW]
  4851. // b: [N, IC, IH, IW]
  4852. // result: [N, OC, OH, OW]
  4853. struct ggml_tensor * ggml_conv_2d(
  4854. struct ggml_context * ctx,
  4855. struct ggml_tensor * a,
  4856. struct ggml_tensor * b,
  4857. int s0,
  4858. int s1,
  4859. int p0,
  4860. int p1,
  4861. int d0,
  4862. int d1) {
  4863. struct ggml_tensor * im2col = ggml_im2col(ctx, a, b, s0, s1, p0, p1, d0, d1, true, GGML_TYPE_F16); // [N, OH, OW, IC * KH * KW]
  4864. struct ggml_tensor * result =
  4865. ggml_mul_mat(ctx,
  4866. ggml_reshape_2d(ctx, im2col, im2col->ne[0], im2col->ne[3] * im2col->ne[2] * im2col->ne[1]), // [N, OH, OW, IC * KH * KW] => [N*OH*OW, IC * KH * KW]
  4867. ggml_reshape_2d(ctx, a, (a->ne[0] * a->ne[1] * a->ne[2]), a->ne[3])); // [OC,IC, KH, KW] => [OC, IC * KH * KW]
  4868. result = ggml_reshape_4d(ctx, result, im2col->ne[1], im2col->ne[2], im2col->ne[3], a->ne[3]); // [OC, N, OH, OW]
  4869. result = ggml_cont(ctx, ggml_permute(ctx, result, 0, 1, 3, 2)); // [N, OC, OH, OW]
  4870. return result;
  4871. }
  4872. // ggml_conv_2d_sk_p0
  4873. struct ggml_tensor * ggml_conv_2d_sk_p0(
  4874. struct ggml_context * ctx,
  4875. struct ggml_tensor * a,
  4876. struct ggml_tensor * b) {
  4877. return ggml_conv_2d(ctx, a, b, a->ne[0], a->ne[1], 0, 0, 1, 1);
  4878. }
  4879. // ggml_conv_2d_s1_ph
  4880. struct ggml_tensor * ggml_conv_2d_s1_ph(
  4881. struct ggml_context * ctx,
  4882. struct ggml_tensor * a,
  4883. struct ggml_tensor * b) {
  4884. return ggml_conv_2d(ctx, a, b, 1, 1, a->ne[0] / 2, a->ne[1] / 2, 1, 1);
  4885. }
  4886. // ggml_conv_transpose_2d_p0
  4887. static int64_t ggml_calc_conv_transpose_output_size(int64_t ins, int64_t ks, int s, int p) {
  4888. return (ins - 1) * s - 2 * p + ks;
  4889. }
  4890. struct ggml_tensor * ggml_conv_transpose_2d_p0(
  4891. struct ggml_context * ctx,
  4892. struct ggml_tensor * a,
  4893. struct ggml_tensor * b,
  4894. int stride) {
  4895. GGML_ASSERT(a->ne[3] == b->ne[2]);
  4896. bool is_node = false;
  4897. if (a->grad || b->grad) {
  4898. GGML_ASSERT(false); // TODO: implement backward
  4899. is_node = true;
  4900. }
  4901. const int64_t ne[4] = {
  4902. ggml_calc_conv_transpose_output_size(b->ne[0], a->ne[0], stride, 0 /*p0*/),
  4903. ggml_calc_conv_transpose_output_size(b->ne[1], a->ne[1], stride, 0 /*p1*/),
  4904. a->ne[2], b->ne[3],
  4905. };
  4906. struct ggml_tensor* result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  4907. ggml_set_op_params_i32(result, 0, stride);
  4908. result->op = GGML_OP_CONV_TRANSPOSE_2D;
  4909. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4910. result->src[0] = a;
  4911. result->src[1] = b;
  4912. return result;
  4913. }
  4914. // ggml_pool_*
  4915. static int64_t ggml_calc_pool_output_size(int64_t ins, int ks, int s, float p) {
  4916. return (ins + 2 * p - ks) / s + 1;
  4917. }
  4918. // ggml_pool_1d
  4919. struct ggml_tensor * ggml_pool_1d(
  4920. struct ggml_context * ctx,
  4921. struct ggml_tensor * a,
  4922. enum ggml_op_pool op,
  4923. int k0,
  4924. int s0,
  4925. int p0) {
  4926. bool is_node = false;
  4927. if (a->grad) {
  4928. GGML_ASSERT(false); // TODO: implement backward
  4929. is_node = true;
  4930. }
  4931. const int64_t ne[4] = {
  4932. ggml_calc_pool_output_size(a->ne[0], k0, s0, p0),
  4933. a->ne[1],
  4934. a->ne[2],
  4935. a->ne[3],
  4936. };
  4937. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  4938. int32_t params[] = { op, k0, s0, p0 };
  4939. ggml_set_op_params(result, params, sizeof(params));
  4940. result->op = GGML_OP_POOL_1D;
  4941. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4942. result->src[0] = a;
  4943. return result;
  4944. }
  4945. // ggml_pool_2d
  4946. struct ggml_tensor * ggml_pool_2d(
  4947. struct ggml_context * ctx,
  4948. struct ggml_tensor * a,
  4949. enum ggml_op_pool op,
  4950. int k0,
  4951. int k1,
  4952. int s0,
  4953. int s1,
  4954. float p0,
  4955. float p1) {
  4956. bool is_node = false;
  4957. if (a->grad) {
  4958. GGML_ASSERT(false); // TODO: implement backward
  4959. is_node = true;
  4960. }
  4961. struct ggml_tensor * result;
  4962. const int64_t ne[3] = {
  4963. ggml_calc_pool_output_size(a->ne[0], k0, s0, p0),
  4964. ggml_calc_pool_output_size(a->ne[1], k1, s1, p1),
  4965. a->ne[2],
  4966. };
  4967. result = ggml_new_tensor(ctx, GGML_TYPE_F32, 3, ne);
  4968. int32_t params[] = { op, k0, k1, s0, s1, p0, p1 };
  4969. ggml_set_op_params(result, params, sizeof(params));
  4970. result->op = GGML_OP_POOL_2D;
  4971. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4972. result->src[0] = a;
  4973. return result;
  4974. }
  4975. // ggml_upscale
  4976. static struct ggml_tensor * ggml_upscale_impl(
  4977. struct ggml_context * ctx,
  4978. struct ggml_tensor * a,
  4979. int scale_factor) {
  4980. bool is_node = false;
  4981. if (a->grad) {
  4982. GGML_ASSERT(false); // TODO: implement backward
  4983. is_node = true;
  4984. }
  4985. struct ggml_tensor * result = ggml_new_tensor_4d(ctx, a->type,
  4986. a->ne[0] * scale_factor,
  4987. a->ne[1] * scale_factor,
  4988. a->ne[2], a->ne[3]);
  4989. result->op = GGML_OP_UPSCALE;
  4990. result->op_params[0] = scale_factor;
  4991. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4992. result->src[0] = a;
  4993. return result;
  4994. }
  4995. struct ggml_tensor * ggml_pad(
  4996. struct ggml_context * ctx,
  4997. struct ggml_tensor * a,
  4998. int p0, int p1, int p2, int p3) {
  4999. bool is_node = false;
  5000. if (a->grad) {
  5001. GGML_ASSERT(false); // TODO: implement backward
  5002. is_node = true;
  5003. }
  5004. struct ggml_tensor * result = ggml_new_tensor_4d(ctx, a->type,
  5005. a->ne[0] + p0,
  5006. a->ne[1] + p1,
  5007. a->ne[2] + p2,
  5008. a->ne[3] + p3);
  5009. result->op = GGML_OP_PAD;
  5010. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5011. result->src[0] = a;
  5012. return result;
  5013. }
  5014. struct ggml_tensor * ggml_upscale(
  5015. struct ggml_context * ctx,
  5016. struct ggml_tensor * a,
  5017. int scale_factor) {
  5018. return ggml_upscale_impl(ctx, a, scale_factor);
  5019. }
  5020. struct ggml_tensor * ggml_arange(
  5021. struct ggml_context * ctx,
  5022. float start,
  5023. float stop,
  5024. float step) {
  5025. GGML_ASSERT(stop > start);
  5026. const int64_t steps = (int64_t) ceilf((stop - start) / step);
  5027. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, steps);
  5028. result->op = GGML_OP_ARANGE;
  5029. ggml_set_op_params_f32(result, 0, start);
  5030. ggml_set_op_params_f32(result, 1, stop);
  5031. ggml_set_op_params_f32(result, 2, step);
  5032. return result;
  5033. }
  5034. struct ggml_tensor * ggml_timestep_embedding(
  5035. struct ggml_context * ctx,
  5036. struct ggml_tensor * timesteps,
  5037. int dim,
  5038. int max_period) {
  5039. bool is_node = false;
  5040. if (timesteps->grad) {
  5041. GGML_ASSERT(false); // TODO: implement backward
  5042. is_node = true;
  5043. }
  5044. int actual_dim = dim;
  5045. if (dim % 2 != 0) {
  5046. actual_dim = dim + 1;
  5047. }
  5048. struct ggml_tensor * result = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, actual_dim, timesteps->ne[0]);
  5049. result->op = GGML_OP_TIMESTEP_EMBEDDING;
  5050. ggml_set_op_params_i32(result, 0, dim);
  5051. ggml_set_op_params_i32(result, 1, max_period);
  5052. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5053. result->src[0] = timesteps;
  5054. return result;
  5055. }
  5056. // ggml_argsort
  5057. struct ggml_tensor * ggml_argsort(
  5058. struct ggml_context * ctx,
  5059. struct ggml_tensor * a,
  5060. enum ggml_sort_order order) {
  5061. bool is_node = false;
  5062. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_I32, GGML_MAX_DIMS, a->ne);
  5063. ggml_set_op_params_i32(result, 0, (int32_t) order);
  5064. result->op = GGML_OP_ARGSORT;
  5065. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5066. result->src[0] = a;
  5067. return result;
  5068. }
  5069. // ggml_top_k
  5070. struct ggml_tensor * ggml_top_k(
  5071. struct ggml_context * ctx,
  5072. struct ggml_tensor * a,
  5073. int k) {
  5074. GGML_ASSERT(a->ne[0] >= k);
  5075. struct ggml_tensor * result = ggml_argsort(ctx, a, GGML_SORT_ORDER_DESC);
  5076. result = ggml_view_4d(ctx, result,
  5077. k, result->ne[1], result->ne[2], result->ne[3],
  5078. result->nb[1], result->nb[2], result->nb[3],
  5079. 0);
  5080. return result;
  5081. }
  5082. // ggml_flash_attn
  5083. struct ggml_tensor * ggml_flash_attn(
  5084. struct ggml_context * ctx,
  5085. struct ggml_tensor * q,
  5086. struct ggml_tensor * k,
  5087. struct ggml_tensor * v,
  5088. bool masked) {
  5089. GGML_ASSERT(ggml_can_mul_mat(k, q));
  5090. // TODO: check if vT can be multiplied by (k*qT)
  5091. bool is_node = false;
  5092. if (q->grad || k->grad || v->grad) {
  5093. is_node = true;
  5094. }
  5095. //struct ggml_tensor * result = ggml_dup_tensor(ctx, q);
  5096. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, GGML_MAX_DIMS, q->ne);
  5097. int32_t t = masked ? 1 : 0;
  5098. ggml_set_op_params(result, &t, sizeof(t));
  5099. result->op = GGML_OP_FLASH_ATTN;
  5100. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5101. result->src[0] = q;
  5102. result->src[1] = k;
  5103. result->src[2] = v;
  5104. return result;
  5105. }
  5106. // ggml_flash_ff
  5107. struct ggml_tensor * ggml_flash_ff(
  5108. struct ggml_context * ctx,
  5109. struct ggml_tensor * a,
  5110. struct ggml_tensor * b0,
  5111. struct ggml_tensor * b1,
  5112. struct ggml_tensor * c0,
  5113. struct ggml_tensor * c1) {
  5114. GGML_ASSERT(ggml_can_mul_mat(b0, a));
  5115. // TODO: more checks
  5116. bool is_node = false;
  5117. if (a->grad || b0->grad || b1->grad || c0->grad || c1->grad) {
  5118. is_node = true;
  5119. }
  5120. //struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  5121. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, GGML_MAX_DIMS, a->ne);
  5122. result->op = GGML_OP_FLASH_FF;
  5123. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5124. result->src[0] = a;
  5125. result->src[1] = b0;
  5126. result->src[2] = b1;
  5127. result->src[3] = c0;
  5128. result->src[4] = c1;
  5129. return result;
  5130. }
  5131. // ggml_flash_attn_back
  5132. struct ggml_tensor * ggml_flash_attn_back(
  5133. struct ggml_context * ctx,
  5134. struct ggml_tensor * q,
  5135. struct ggml_tensor * k,
  5136. struct ggml_tensor * v,
  5137. struct ggml_tensor * d,
  5138. bool masked) {
  5139. GGML_ASSERT(ggml_can_mul_mat(k, q));
  5140. // TODO: check if vT can be multiplied by (k*qT)
  5141. // d shape [D,N,ne2,ne3]
  5142. // q shape [D,N,ne2,ne3]
  5143. // k shape [D,M,kvne2,ne3]
  5144. // v shape [M,D,kvne2,ne3]
  5145. const int64_t D = q->ne[0];
  5146. const int64_t N = q->ne[1];
  5147. const int64_t M = k->ne[1];
  5148. const int64_t ne2 = q->ne[2];
  5149. const int64_t ne3 = q->ne[3];
  5150. const int64_t kvne2 = k->ne[2];
  5151. GGML_ASSERT(k->ne[0] == D);
  5152. GGML_ASSERT(v->ne[0] == M);
  5153. GGML_ASSERT(v->ne[1] == D);
  5154. GGML_ASSERT(d->ne[0] == D);
  5155. GGML_ASSERT(d->ne[1] == N);
  5156. GGML_ASSERT(k->ne[2] == kvne2);
  5157. GGML_ASSERT(k->ne[3] == ne3);
  5158. GGML_ASSERT(v->ne[2] == kvne2);
  5159. GGML_ASSERT(v->ne[3] == ne3);
  5160. GGML_ASSERT(d->ne[2] == ne2);
  5161. GGML_ASSERT(d->ne[3] == ne3);
  5162. GGML_ASSERT(ne2 % kvne2 == 0);
  5163. bool is_node = false;
  5164. if (q->grad || k->grad || v->grad) {
  5165. // when using this operation (in backwards pass) these grads are set.
  5166. // we don't want to create (big) grad of our result, so is_node is false.
  5167. is_node = false;
  5168. }
  5169. // store gradients of q, k and v as continuous tensors concatenated in result.
  5170. // note: v and gradv are actually transposed, i.e. v->ne[0] != D.
  5171. const int64_t elem_q = ggml_nelements(q);
  5172. const int64_t elem_k = ggml_nelements(k);
  5173. const int64_t elem_v = ggml_nelements(v);
  5174. enum ggml_type result_type = GGML_TYPE_F32;
  5175. GGML_ASSERT(ggml_blck_size(result_type) == 1);
  5176. const size_t tsize = ggml_type_size(result_type);
  5177. const size_t offs_q = 0;
  5178. const size_t offs_k = offs_q + GGML_PAD(elem_q * tsize, GGML_MEM_ALIGN);
  5179. const size_t offs_v = offs_k + GGML_PAD(elem_k * tsize, GGML_MEM_ALIGN);
  5180. const size_t end = offs_v + GGML_PAD(elem_v * tsize, GGML_MEM_ALIGN);
  5181. const size_t nelements = (end + tsize - 1)/tsize;
  5182. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nelements);
  5183. int32_t masked_i = masked ? 1 : 0;
  5184. ggml_set_op_params(result, &masked_i, sizeof(masked_i));
  5185. result->op = GGML_OP_FLASH_ATTN_BACK;
  5186. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5187. result->src[0] = q;
  5188. result->src[1] = k;
  5189. result->src[2] = v;
  5190. result->src[3] = d;
  5191. return result;
  5192. }
  5193. // ggml_ssm_conv
  5194. struct ggml_tensor * ggml_ssm_conv(
  5195. struct ggml_context * ctx,
  5196. struct ggml_tensor * s,
  5197. struct ggml_tensor * x,
  5198. struct ggml_tensor * c,
  5199. struct ggml_tensor * sq) {
  5200. GGML_ASSERT(ggml_is_3d(s));
  5201. GGML_ASSERT(ggml_is_matrix(x));
  5202. GGML_ASSERT(ggml_is_matrix(c));
  5203. GGML_ASSERT(ggml_is_matrix(sq));
  5204. GGML_ASSERT(sq->type == GGML_TYPE_I32);
  5205. const int64_t d_conv = c->ne[0];
  5206. const int64_t d_inner = c->ne[1];
  5207. const int64_t n_tokens = x->ne[1];
  5208. const int64_t n_kv = s->ne[2];
  5209. GGML_ASSERT( s->ne[0] == d_conv - 1);
  5210. GGML_ASSERT( s->ne[1] == d_inner);
  5211. GGML_ASSERT( x->ne[0] == d_inner);
  5212. GGML_ASSERT(sq->ne[0] == n_kv);
  5213. GGML_ASSERT(sq->ne[1] == n_tokens);
  5214. bool is_node = false;
  5215. if (s->grad || x->grad || c->grad || sq->grad) {
  5216. GGML_ASSERT(false); // TODO: implement
  5217. is_node = true;
  5218. }
  5219. // 2-in-1 concatenated x and conv_states, {d_inner, n_tokens} with {d_conv, d_inner, n_kv}
  5220. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, (d_inner*n_tokens) + (d_conv*d_inner*n_kv));
  5221. result->op = GGML_OP_SSM_CONV;
  5222. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5223. result->src[0] = s;
  5224. result->src[1] = x;
  5225. result->src[2] = c;
  5226. result->src[3] = sq;
  5227. return result;
  5228. }
  5229. // ggml_ssm_scan
  5230. struct ggml_tensor * ggml_ssm_scan(
  5231. struct ggml_context * ctx,
  5232. struct ggml_tensor * s,
  5233. struct ggml_tensor * x,
  5234. struct ggml_tensor * dt,
  5235. struct ggml_tensor * A,
  5236. struct ggml_tensor * B,
  5237. struct ggml_tensor * C,
  5238. struct ggml_tensor * sq) {
  5239. GGML_ASSERT(ggml_is_contiguous(s));
  5240. GGML_ASSERT(ggml_is_contiguous(x));
  5241. GGML_ASSERT(ggml_is_contiguous(dt));
  5242. GGML_ASSERT(ggml_is_contiguous(A));
  5243. GGML_ASSERT(sq->type == GGML_TYPE_I32);
  5244. GGML_ASSERT(B->nb[0] == ggml_type_size(B->type));
  5245. GGML_ASSERT(C->nb[0] == ggml_type_size(C->type));
  5246. GGML_ASSERT(ggml_are_same_shape(x, dt));
  5247. {
  5248. const int64_t d_state = s->ne[0];
  5249. const int64_t d_inner = s->ne[1];
  5250. const int64_t n_tokens = x->ne[1];
  5251. GGML_ASSERT(x->ne[0] == d_inner);
  5252. GGML_ASSERT(A->ne[0] == d_state);
  5253. GGML_ASSERT(A->ne[1] == d_inner);
  5254. GGML_ASSERT(B->ne[0] == d_state);
  5255. GGML_ASSERT(B->ne[1] == n_tokens);
  5256. GGML_ASSERT(C->ne[0] == d_state);
  5257. GGML_ASSERT(C->ne[1] == n_tokens);
  5258. }
  5259. bool is_node = false;
  5260. if (s->grad || x->grad || dt->grad || A->grad || B->grad || C->grad || sq->grad) {
  5261. GGML_ASSERT(false); // TODO: implement
  5262. is_node = true;
  5263. }
  5264. // 2-in-1 concatenated y and ssm_states, {d_inner, n_tokens} with {d_state, d_inner, n_kv}
  5265. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, ggml_nelements(x) + ggml_nelements(s));
  5266. result->op = GGML_OP_SSM_SCAN;
  5267. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5268. result->src[0] = s;
  5269. result->src[1] = x;
  5270. result->src[2] = dt;
  5271. result->src[3] = A;
  5272. result->src[4] = B;
  5273. result->src[5] = C;
  5274. result->src[6] = sq;
  5275. return result;
  5276. }
  5277. // ggml_win_part
  5278. struct ggml_tensor * ggml_win_part(
  5279. struct ggml_context * ctx,
  5280. struct ggml_tensor * a,
  5281. int w) {
  5282. GGML_ASSERT(a->ne[3] == 1);
  5283. GGML_ASSERT(a->type == GGML_TYPE_F32);
  5284. bool is_node = false;
  5285. if (a->grad) {
  5286. GGML_ASSERT(false); // TODO: implement backward
  5287. is_node = true;
  5288. }
  5289. // padding
  5290. const int px = (w - a->ne[1]%w)%w;
  5291. const int py = (w - a->ne[2]%w)%w;
  5292. const int npx = (px + a->ne[1])/w;
  5293. const int npy = (py + a->ne[2])/w;
  5294. const int np = npx*npy;
  5295. const int64_t ne[4] = { a->ne[0], w, w, np, };
  5296. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  5297. int32_t params[] = { npx, npy, w };
  5298. ggml_set_op_params(result, params, sizeof(params));
  5299. result->op = GGML_OP_WIN_PART;
  5300. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5301. result->src[0] = a;
  5302. return result;
  5303. }
  5304. // ggml_win_unpart
  5305. struct ggml_tensor * ggml_win_unpart(
  5306. struct ggml_context * ctx,
  5307. struct ggml_tensor * a,
  5308. int w0,
  5309. int h0,
  5310. int w) {
  5311. GGML_ASSERT(a->type == GGML_TYPE_F32);
  5312. bool is_node = false;
  5313. if (a->grad) {
  5314. GGML_ASSERT(false); // TODO: implement backward
  5315. is_node = true;
  5316. }
  5317. const int64_t ne[4] = { a->ne[0], w0, h0, 1, };
  5318. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 3, ne);
  5319. int32_t params[] = { w };
  5320. ggml_set_op_params(result, params, sizeof(params));
  5321. result->op = GGML_OP_WIN_UNPART;
  5322. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5323. result->src[0] = a;
  5324. return result;
  5325. }
  5326. // ggml_get_rel_pos
  5327. struct ggml_tensor * ggml_get_rel_pos(
  5328. struct ggml_context * ctx,
  5329. struct ggml_tensor * a,
  5330. int qh,
  5331. int kh) {
  5332. GGML_ASSERT(qh == kh);
  5333. GGML_ASSERT(2*MAX(qh, kh) - 1 == a->ne[1]);
  5334. bool is_node = false;
  5335. if (a->grad) {
  5336. GGML_ASSERT(false); // TODO: implement backward
  5337. is_node = true;
  5338. }
  5339. const int64_t ne[4] = { a->ne[0], kh, qh, 1, };
  5340. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F16, 3, ne);
  5341. result->op = GGML_OP_GET_REL_POS;
  5342. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5343. result->src[0] = a;
  5344. return result;
  5345. }
  5346. // ggml_add_rel_pos
  5347. static struct ggml_tensor * ggml_add_rel_pos_impl(
  5348. struct ggml_context * ctx,
  5349. struct ggml_tensor * a,
  5350. struct ggml_tensor * pw,
  5351. struct ggml_tensor * ph,
  5352. bool inplace) {
  5353. GGML_ASSERT(ggml_are_same_shape(pw, ph));
  5354. GGML_ASSERT(ggml_is_contiguous(a));
  5355. GGML_ASSERT(ggml_is_contiguous(pw));
  5356. GGML_ASSERT(ggml_is_contiguous(ph));
  5357. GGML_ASSERT(ph->type == GGML_TYPE_F32);
  5358. GGML_ASSERT(pw->type == GGML_TYPE_F32);
  5359. GGML_ASSERT(pw->ne[3] == a->ne[2]);
  5360. GGML_ASSERT(pw->ne[0]*pw->ne[0] == a->ne[0]);
  5361. GGML_ASSERT(pw->ne[1]*pw->ne[2] == a->ne[1]);
  5362. bool is_node = false;
  5363. if (!inplace && (a->grad || pw->grad || ph->grad)) {
  5364. is_node = true;
  5365. }
  5366. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5367. ggml_set_op_params_i32(result, 0, inplace ? 1 : 0);
  5368. result->op = GGML_OP_ADD_REL_POS;
  5369. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5370. result->src[0] = a;
  5371. result->src[1] = pw;
  5372. result->src[2] = ph;
  5373. return result;
  5374. }
  5375. struct ggml_tensor * ggml_add_rel_pos(
  5376. struct ggml_context * ctx,
  5377. struct ggml_tensor * a,
  5378. struct ggml_tensor * pw,
  5379. struct ggml_tensor * ph) {
  5380. return ggml_add_rel_pos_impl(ctx, a, pw, ph, false);
  5381. }
  5382. struct ggml_tensor * ggml_add_rel_pos_inplace(
  5383. struct ggml_context * ctx,
  5384. struct ggml_tensor * a,
  5385. struct ggml_tensor * pw,
  5386. struct ggml_tensor * ph) {
  5387. return ggml_add_rel_pos_impl(ctx, a, pw, ph, true);
  5388. }
  5389. // gmml_unary
  5390. static struct ggml_tensor * ggml_unary_impl(
  5391. struct ggml_context * ctx,
  5392. struct ggml_tensor * a,
  5393. enum ggml_unary_op op,
  5394. bool inplace) {
  5395. bool is_node = false;
  5396. if (!inplace && (a->grad)) {
  5397. is_node = true;
  5398. }
  5399. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5400. ggml_set_op_params_i32(result, 0, (int32_t) op);
  5401. result->op = GGML_OP_UNARY;
  5402. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5403. result->src[0] = a;
  5404. return result;
  5405. }
  5406. struct ggml_tensor * ggml_unary(
  5407. struct ggml_context * ctx,
  5408. struct ggml_tensor * a,
  5409. enum ggml_unary_op op) {
  5410. return ggml_unary_impl(ctx, a, op, false);
  5411. }
  5412. struct ggml_tensor * ggml_unary_inplace(
  5413. struct ggml_context * ctx,
  5414. struct ggml_tensor * a,
  5415. enum ggml_unary_op op) {
  5416. return ggml_unary_impl(ctx, a, op, true);
  5417. }
  5418. // ggml_map_unary
  5419. static struct ggml_tensor * ggml_map_unary_impl_f32(
  5420. struct ggml_context * ctx,
  5421. struct ggml_tensor * a,
  5422. const ggml_unary_op_f32_t fun,
  5423. bool inplace) {
  5424. bool is_node = false;
  5425. if (!inplace && a->grad) {
  5426. is_node = true;
  5427. }
  5428. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5429. ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
  5430. result->op = GGML_OP_MAP_UNARY;
  5431. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5432. result->src[0] = a;
  5433. return result;
  5434. }
  5435. struct ggml_tensor * ggml_map_unary_f32(
  5436. struct ggml_context * ctx,
  5437. struct ggml_tensor * a,
  5438. const ggml_unary_op_f32_t fun) {
  5439. return ggml_map_unary_impl_f32(ctx, a, fun, false);
  5440. }
  5441. struct ggml_tensor * ggml_map_unary_inplace_f32(
  5442. struct ggml_context * ctx,
  5443. struct ggml_tensor * a,
  5444. const ggml_unary_op_f32_t fun) {
  5445. return ggml_map_unary_impl_f32(ctx, a, fun, true);
  5446. }
  5447. // ggml_map_binary
  5448. static struct ggml_tensor * ggml_map_binary_impl_f32(
  5449. struct ggml_context * ctx,
  5450. struct ggml_tensor * a,
  5451. struct ggml_tensor * b,
  5452. const ggml_binary_op_f32_t fun,
  5453. bool inplace) {
  5454. GGML_ASSERT(ggml_are_same_shape(a, b));
  5455. bool is_node = false;
  5456. if (!inplace && (a->grad || b->grad)) {
  5457. is_node = true;
  5458. }
  5459. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5460. ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
  5461. result->op = GGML_OP_MAP_BINARY;
  5462. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5463. result->src[0] = a;
  5464. result->src[1] = b;
  5465. return result;
  5466. }
  5467. struct ggml_tensor * ggml_map_binary_f32(
  5468. struct ggml_context * ctx,
  5469. struct ggml_tensor * a,
  5470. struct ggml_tensor * b,
  5471. const ggml_binary_op_f32_t fun) {
  5472. return ggml_map_binary_impl_f32(ctx, a, b, fun, false);
  5473. }
  5474. struct ggml_tensor * ggml_map_binary_inplace_f32(
  5475. struct ggml_context * ctx,
  5476. struct ggml_tensor * a,
  5477. struct ggml_tensor * b,
  5478. const ggml_binary_op_f32_t fun) {
  5479. return ggml_map_binary_impl_f32(ctx, a, b, fun, true);
  5480. }
  5481. // ggml_map_custom1_f32
  5482. static struct ggml_tensor * ggml_map_custom1_impl_f32(
  5483. struct ggml_context * ctx,
  5484. struct ggml_tensor * a,
  5485. const ggml_custom1_op_f32_t fun,
  5486. bool inplace) {
  5487. bool is_node = false;
  5488. if (!inplace && a->grad) {
  5489. is_node = true;
  5490. }
  5491. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5492. ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
  5493. result->op = GGML_OP_MAP_CUSTOM1_F32;
  5494. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5495. result->src[0] = a;
  5496. return result;
  5497. }
  5498. struct ggml_tensor * ggml_map_custom1_f32(
  5499. struct ggml_context * ctx,
  5500. struct ggml_tensor * a,
  5501. const ggml_custom1_op_f32_t fun) {
  5502. return ggml_map_custom1_impl_f32(ctx, a, fun, false);
  5503. }
  5504. struct ggml_tensor * ggml_map_custom1_inplace_f32(
  5505. struct ggml_context * ctx,
  5506. struct ggml_tensor * a,
  5507. const ggml_custom1_op_f32_t fun) {
  5508. return ggml_map_custom1_impl_f32(ctx, a, fun, true);
  5509. }
  5510. // ggml_map_custom2_f32
  5511. static struct ggml_tensor * ggml_map_custom2_impl_f32(
  5512. struct ggml_context * ctx,
  5513. struct ggml_tensor * a,
  5514. struct ggml_tensor * b,
  5515. const ggml_custom2_op_f32_t fun,
  5516. bool inplace) {
  5517. bool is_node = false;
  5518. if (!inplace && (a->grad || b->grad)) {
  5519. is_node = true;
  5520. }
  5521. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5522. ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
  5523. result->op = GGML_OP_MAP_CUSTOM2_F32;
  5524. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5525. result->src[0] = a;
  5526. result->src[1] = b;
  5527. return result;
  5528. }
  5529. struct ggml_tensor * ggml_map_custom2_f32(
  5530. struct ggml_context * ctx,
  5531. struct ggml_tensor * a,
  5532. struct ggml_tensor * b,
  5533. const ggml_custom2_op_f32_t fun) {
  5534. return ggml_map_custom2_impl_f32(ctx, a, b, fun, false);
  5535. }
  5536. struct ggml_tensor * ggml_map_custom2_inplace_f32(
  5537. struct ggml_context * ctx,
  5538. struct ggml_tensor * a,
  5539. struct ggml_tensor * b,
  5540. const ggml_custom2_op_f32_t fun) {
  5541. return ggml_map_custom2_impl_f32(ctx, a, b, fun, true);
  5542. }
  5543. // ggml_map_custom3_f32
  5544. static struct ggml_tensor * ggml_map_custom3_impl_f32(
  5545. struct ggml_context * ctx,
  5546. struct ggml_tensor * a,
  5547. struct ggml_tensor * b,
  5548. struct ggml_tensor * c,
  5549. const ggml_custom3_op_f32_t fun,
  5550. bool inplace) {
  5551. bool is_node = false;
  5552. if (!inplace && (a->grad || b->grad || c->grad)) {
  5553. is_node = true;
  5554. }
  5555. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5556. ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
  5557. result->op = GGML_OP_MAP_CUSTOM3_F32;
  5558. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5559. result->src[0] = a;
  5560. result->src[1] = b;
  5561. result->src[2] = c;
  5562. return result;
  5563. }
  5564. struct ggml_tensor * ggml_map_custom3_f32(
  5565. struct ggml_context * ctx,
  5566. struct ggml_tensor * a,
  5567. struct ggml_tensor * b,
  5568. struct ggml_tensor * c,
  5569. const ggml_custom3_op_f32_t fun) {
  5570. return ggml_map_custom3_impl_f32(ctx, a, b, c, fun, false);
  5571. }
  5572. struct ggml_tensor * ggml_map_custom3_inplace_f32(
  5573. struct ggml_context * ctx,
  5574. struct ggml_tensor * a,
  5575. struct ggml_tensor * b,
  5576. struct ggml_tensor * c,
  5577. const ggml_custom3_op_f32_t fun) {
  5578. return ggml_map_custom3_impl_f32(ctx, a, b, c, fun, true);
  5579. }
  5580. // ggml_map_custom1
  5581. struct ggml_map_custom1_op_params {
  5582. ggml_custom1_op_t fun;
  5583. int n_tasks;
  5584. void * userdata;
  5585. };
  5586. static struct ggml_tensor * ggml_map_custom1_impl(
  5587. struct ggml_context * ctx,
  5588. struct ggml_tensor * a,
  5589. const ggml_custom1_op_t fun,
  5590. int n_tasks,
  5591. void * userdata,
  5592. bool inplace) {
  5593. GGML_ASSERT(n_tasks == GGML_N_TASKS_MAX || n_tasks > 0);
  5594. bool is_node = false;
  5595. if (!inplace && a->grad) {
  5596. is_node = true;
  5597. }
  5598. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5599. struct ggml_map_custom1_op_params params = {
  5600. /*.fun =*/ fun,
  5601. /*.n_tasks =*/ n_tasks,
  5602. /*.userdata =*/ userdata
  5603. };
  5604. ggml_set_op_params(result, (const void *) &params, sizeof(params));
  5605. result->op = GGML_OP_MAP_CUSTOM1;
  5606. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5607. result->src[0] = a;
  5608. return result;
  5609. }
  5610. struct ggml_tensor * ggml_map_custom1(
  5611. struct ggml_context * ctx,
  5612. struct ggml_tensor * a,
  5613. const ggml_custom1_op_t fun,
  5614. int n_tasks,
  5615. void * userdata) {
  5616. return ggml_map_custom1_impl(ctx, a, fun, n_tasks, userdata, false);
  5617. }
  5618. struct ggml_tensor * ggml_map_custom1_inplace(
  5619. struct ggml_context * ctx,
  5620. struct ggml_tensor * a,
  5621. const ggml_custom1_op_t fun,
  5622. int n_tasks,
  5623. void * userdata) {
  5624. return ggml_map_custom1_impl(ctx, a, fun, n_tasks, userdata, true);
  5625. }
  5626. // ggml_map_custom2
  5627. struct ggml_map_custom2_op_params {
  5628. ggml_custom2_op_t fun;
  5629. int n_tasks;
  5630. void * userdata;
  5631. };
  5632. static struct ggml_tensor * ggml_map_custom2_impl(
  5633. struct ggml_context * ctx,
  5634. struct ggml_tensor * a,
  5635. struct ggml_tensor * b,
  5636. const ggml_custom2_op_t fun,
  5637. int n_tasks,
  5638. void * userdata,
  5639. bool inplace) {
  5640. GGML_ASSERT(n_tasks == GGML_N_TASKS_MAX || n_tasks > 0);
  5641. bool is_node = false;
  5642. if (!inplace && (a->grad || b->grad)) {
  5643. is_node = true;
  5644. }
  5645. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5646. struct ggml_map_custom2_op_params params = {
  5647. /*.fun =*/ fun,
  5648. /*.n_tasks =*/ n_tasks,
  5649. /*.userdata =*/ userdata
  5650. };
  5651. ggml_set_op_params(result, (const void *) &params, sizeof(params));
  5652. result->op = GGML_OP_MAP_CUSTOM2;
  5653. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5654. result->src[0] = a;
  5655. result->src[1] = b;
  5656. return result;
  5657. }
  5658. struct ggml_tensor * ggml_map_custom2(
  5659. struct ggml_context * ctx,
  5660. struct ggml_tensor * a,
  5661. struct ggml_tensor * b,
  5662. const ggml_custom2_op_t fun,
  5663. int n_tasks,
  5664. void * userdata) {
  5665. return ggml_map_custom2_impl(ctx, a, b, fun, n_tasks, userdata, false);
  5666. }
  5667. struct ggml_tensor * ggml_map_custom2_inplace(
  5668. struct ggml_context * ctx,
  5669. struct ggml_tensor * a,
  5670. struct ggml_tensor * b,
  5671. const ggml_custom2_op_t fun,
  5672. int n_tasks,
  5673. void * userdata) {
  5674. return ggml_map_custom2_impl(ctx, a, b, fun, n_tasks, userdata, true);
  5675. }
  5676. // ggml_map_custom3
  5677. struct ggml_map_custom3_op_params {
  5678. ggml_custom3_op_t fun;
  5679. int n_tasks;
  5680. void * userdata;
  5681. };
  5682. static struct ggml_tensor * ggml_map_custom3_impl(
  5683. struct ggml_context * ctx,
  5684. struct ggml_tensor * a,
  5685. struct ggml_tensor * b,
  5686. struct ggml_tensor * c,
  5687. const ggml_custom3_op_t fun,
  5688. int n_tasks,
  5689. void * userdata,
  5690. bool inplace) {
  5691. GGML_ASSERT(n_tasks == GGML_N_TASKS_MAX || n_tasks > 0);
  5692. bool is_node = false;
  5693. if (!inplace && (a->grad || b->grad || c->grad)) {
  5694. is_node = true;
  5695. }
  5696. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5697. struct ggml_map_custom3_op_params params = {
  5698. /*.fun =*/ fun,
  5699. /*.n_tasks =*/ n_tasks,
  5700. /*.userdata =*/ userdata
  5701. };
  5702. ggml_set_op_params(result, (const void *) &params, sizeof(params));
  5703. result->op = GGML_OP_MAP_CUSTOM3;
  5704. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5705. result->src[0] = a;
  5706. result->src[1] = b;
  5707. result->src[2] = c;
  5708. return result;
  5709. }
  5710. struct ggml_tensor * ggml_map_custom3(
  5711. struct ggml_context * ctx,
  5712. struct ggml_tensor * a,
  5713. struct ggml_tensor * b,
  5714. struct ggml_tensor * c,
  5715. const ggml_custom3_op_t fun,
  5716. int n_tasks,
  5717. void * userdata) {
  5718. return ggml_map_custom3_impl(ctx, a, b, c, fun, n_tasks, userdata, false);
  5719. }
  5720. struct ggml_tensor * ggml_map_custom3_inplace(
  5721. struct ggml_context * ctx,
  5722. struct ggml_tensor * a,
  5723. struct ggml_tensor * b,
  5724. struct ggml_tensor * c,
  5725. const ggml_custom3_op_t fun,
  5726. int n_tasks,
  5727. void * userdata) {
  5728. return ggml_map_custom3_impl(ctx, a, b, c, fun, n_tasks, userdata, true);
  5729. }
  5730. // ggml_cross_entropy_loss
  5731. struct ggml_tensor * ggml_cross_entropy_loss(
  5732. struct ggml_context * ctx,
  5733. struct ggml_tensor * a,
  5734. struct ggml_tensor * b) {
  5735. GGML_ASSERT(ggml_are_same_shape(a, b));
  5736. bool is_node = false;
  5737. if (a->grad || b->grad) {
  5738. is_node = true;
  5739. }
  5740. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, a->type, 1);
  5741. result->op = GGML_OP_CROSS_ENTROPY_LOSS;
  5742. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5743. result->src[0] = a;
  5744. result->src[1] = b;
  5745. return result;
  5746. }
  5747. // ggml_cross_entropy_loss_back
  5748. struct ggml_tensor * ggml_cross_entropy_loss_back(
  5749. struct ggml_context * ctx,
  5750. struct ggml_tensor * a,
  5751. struct ggml_tensor * b,
  5752. struct ggml_tensor * c) {
  5753. GGML_ASSERT(ggml_are_same_shape(a, b));
  5754. GGML_ASSERT(ggml_is_scalar(c));
  5755. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  5756. result->op = GGML_OP_CROSS_ENTROPY_LOSS_BACK;
  5757. result->grad = NULL;
  5758. result->src[0] = a;
  5759. result->src[1] = b;
  5760. result->src[2] = c;
  5761. return result;
  5762. }
  5763. ////////////////////////////////////////////////////////////////////////////////
  5764. void ggml_set_param(
  5765. struct ggml_context * ctx,
  5766. struct ggml_tensor * tensor) {
  5767. tensor->flags |= GGML_TENSOR_FLAG_PARAM;
  5768. GGML_ASSERT(tensor->grad == NULL);
  5769. tensor->grad = ggml_dup_tensor(ctx, tensor);
  5770. ggml_format_name(tensor->grad, "%s (grad)", tensor->name);
  5771. }
  5772. // ggml_compute_forward_dup
  5773. static void ggml_compute_forward_dup_same_cont(
  5774. const struct ggml_compute_params * params,
  5775. struct ggml_tensor * dst) {
  5776. const struct ggml_tensor * src0 = dst->src[0];
  5777. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  5778. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  5779. GGML_ASSERT(src0->type == dst->type);
  5780. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  5781. return;
  5782. }
  5783. const size_t nb00 = src0->nb[0];
  5784. const size_t nb0 = dst->nb[0];
  5785. const int ith = params->ith; // thread index
  5786. const int nth = params->nth; // number of threads
  5787. // parallelize by elements
  5788. const int ne = ggml_nelements(dst);
  5789. const int dr = (ne + nth - 1) / nth;
  5790. const int ie0 = dr * ith;
  5791. const int ie1 = MIN(ie0 + dr, ne);
  5792. if (ie0 < ie1) {
  5793. memcpy(
  5794. ((char *) dst->data + ie0*nb0),
  5795. ((char *) src0->data + ie0*nb00),
  5796. (ie1 - ie0) * ggml_type_size(src0->type));
  5797. }
  5798. }
  5799. static void ggml_compute_forward_dup_f16(
  5800. const struct ggml_compute_params * params,
  5801. struct ggml_tensor * dst) {
  5802. const struct ggml_tensor * src0 = dst->src[0];
  5803. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  5804. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  5805. return;
  5806. }
  5807. GGML_TENSOR_UNARY_OP_LOCALS
  5808. const int ith = params->ith; // thread index
  5809. const int nth = params->nth; // number of threads
  5810. if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst) && src0->type == dst->type) {
  5811. ggml_compute_forward_dup_same_cont(params, dst);
  5812. return;
  5813. }
  5814. // parallelize by rows
  5815. const int nr = ne01;
  5816. // number of rows per thread
  5817. const int dr = (nr + nth - 1) / nth;
  5818. // row range for this thread
  5819. const int ir0 = dr * ith;
  5820. const int ir1 = MIN(ir0 + dr, nr);
  5821. if (src0->type == dst->type &&
  5822. ne00 == ne0 &&
  5823. nb00 == ggml_type_size(src0->type) && nb0 == ggml_type_size(dst->type)) {
  5824. // copy by rows
  5825. const size_t rs = ne00*nb00;
  5826. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5827. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5828. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5829. memcpy(
  5830. ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  5831. ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
  5832. rs);
  5833. }
  5834. }
  5835. }
  5836. return;
  5837. }
  5838. // TODO: add more special-case implementations for tensor shapes/strides that can benefit from memcpy
  5839. if (ggml_is_contiguous(dst)) {
  5840. if (nb00 == sizeof(ggml_fp16_t)) {
  5841. if (dst->type == GGML_TYPE_F16) {
  5842. size_t id = 0;
  5843. const size_t rs = ne00 * nb00;
  5844. char * dst_ptr = (char *) dst->data;
  5845. for (int i03 = 0; i03 < ne03; i03++) {
  5846. for (int i02 = 0; i02 < ne02; i02++) {
  5847. id += rs * ir0;
  5848. for (int i01 = ir0; i01 < ir1; i01++) {
  5849. const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
  5850. memcpy(dst_ptr + id, src0_ptr, rs);
  5851. id += rs;
  5852. }
  5853. id += rs * (ne01 - ir1);
  5854. }
  5855. }
  5856. } else if (dst->type == GGML_TYPE_F32) {
  5857. size_t id = 0;
  5858. float * dst_ptr = (float *) dst->data;
  5859. for (int i03 = 0; i03 < ne03; i03++) {
  5860. for (int i02 = 0; i02 < ne02; i02++) {
  5861. id += ne00 * ir0;
  5862. for (int i01 = ir0; i01 < ir1; i01++) {
  5863. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  5864. for (int i00 = 0; i00 < ne00; i00++) {
  5865. dst_ptr[id] = GGML_FP16_TO_FP32(src0_ptr[i00]);
  5866. id++;
  5867. }
  5868. }
  5869. id += ne00 * (ne01 - ir1);
  5870. }
  5871. }
  5872. } else if (type_traits[dst->type].from_float) {
  5873. ggml_from_float_t const quantize_row_q = type_traits[dst->type].from_float;
  5874. float * src0_f32 = (float *) params->wdata + (ne00 + CACHE_LINE_SIZE_F32) * ith;
  5875. size_t id = 0;
  5876. size_t rs = nb0 * (ne00 / ggml_blck_size(dst->type));
  5877. char * dst_ptr = (char *) dst->data;
  5878. for (int i03 = 0; i03 < ne03; i03++) {
  5879. for (int i02 = 0; i02 < ne02; i02++) {
  5880. id += rs * ir0;
  5881. for (int i01 = ir0; i01 < ir1; i01++) {
  5882. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  5883. for (int i00 = 0; i00 < ne00; i00++) {
  5884. src0_f32[i00] = GGML_FP16_TO_FP32(src0_ptr[i00]);
  5885. }
  5886. quantize_row_q(src0_f32, dst_ptr + id, ne00);
  5887. id += rs;
  5888. }
  5889. id += rs * (ne01 - ir1);
  5890. }
  5891. }
  5892. } else {
  5893. GGML_ASSERT(false); // TODO: implement
  5894. }
  5895. } else {
  5896. //printf("%s: this is not optimal - fix me\n", __func__);
  5897. if (dst->type == GGML_TYPE_F32) {
  5898. size_t id = 0;
  5899. float * dst_ptr = (float *) dst->data;
  5900. for (int i03 = 0; i03 < ne03; i03++) {
  5901. for (int i02 = 0; i02 < ne02; i02++) {
  5902. id += ne00 * ir0;
  5903. for (int i01 = ir0; i01 < ir1; i01++) {
  5904. for (int i00 = 0; i00 < ne00; i00++) {
  5905. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5906. dst_ptr[id] = GGML_FP16_TO_FP32(*src0_ptr);
  5907. id++;
  5908. }
  5909. }
  5910. id += ne00 * (ne01 - ir1);
  5911. }
  5912. }
  5913. } else if (dst->type == GGML_TYPE_F16) {
  5914. size_t id = 0;
  5915. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  5916. for (int i03 = 0; i03 < ne03; i03++) {
  5917. for (int i02 = 0; i02 < ne02; i02++) {
  5918. id += ne00 * ir0;
  5919. for (int i01 = ir0; i01 < ir1; i01++) {
  5920. for (int i00 = 0; i00 < ne00; i00++) {
  5921. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5922. dst_ptr[id] = *src0_ptr;
  5923. id++;
  5924. }
  5925. }
  5926. id += ne00 * (ne01 - ir1);
  5927. }
  5928. }
  5929. } else {
  5930. GGML_ASSERT(false); // TODO: implement
  5931. }
  5932. }
  5933. return;
  5934. }
  5935. // dst counters
  5936. int64_t i10 = 0;
  5937. int64_t i11 = 0;
  5938. int64_t i12 = 0;
  5939. int64_t i13 = 0;
  5940. if (dst->type == GGML_TYPE_F16) {
  5941. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5942. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5943. i10 += ne00 * ir0;
  5944. while (i10 >= ne0) {
  5945. i10 -= ne0;
  5946. if (++i11 == ne1) {
  5947. i11 = 0;
  5948. if (++i12 == ne2) {
  5949. i12 = 0;
  5950. if (++i13 == ne3) {
  5951. i13 = 0;
  5952. }
  5953. }
  5954. }
  5955. }
  5956. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5957. for (int64_t i00 = 0; i00 < ne00; i00++) {
  5958. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5959. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  5960. memcpy(dst_ptr, src0_ptr, sizeof(ggml_fp16_t));
  5961. if (++i10 == ne00) {
  5962. i10 = 0;
  5963. if (++i11 == ne01) {
  5964. i11 = 0;
  5965. if (++i12 == ne02) {
  5966. i12 = 0;
  5967. if (++i13 == ne03) {
  5968. i13 = 0;
  5969. }
  5970. }
  5971. }
  5972. }
  5973. }
  5974. }
  5975. i10 += ne00 * (ne01 - ir1);
  5976. while (i10 >= ne0) {
  5977. i10 -= ne0;
  5978. if (++i11 == ne1) {
  5979. i11 = 0;
  5980. if (++i12 == ne2) {
  5981. i12 = 0;
  5982. if (++i13 == ne3) {
  5983. i13 = 0;
  5984. }
  5985. }
  5986. }
  5987. }
  5988. }
  5989. }
  5990. } else if (dst->type == GGML_TYPE_F32) {
  5991. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5992. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5993. i10 += ne00 * ir0;
  5994. while (i10 >= ne0) {
  5995. i10 -= ne0;
  5996. if (++i11 == ne1) {
  5997. i11 = 0;
  5998. if (++i12 == ne2) {
  5999. i12 = 0;
  6000. if (++i13 == ne3) {
  6001. i13 = 0;
  6002. }
  6003. }
  6004. }
  6005. }
  6006. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  6007. for (int64_t i00 = 0; i00 < ne00; i00++) {
  6008. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6009. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  6010. *(float *) dst_ptr = GGML_FP16_TO_FP32(*(const ggml_fp16_t *) src0_ptr);
  6011. if (++i10 == ne0) {
  6012. i10 = 0;
  6013. if (++i11 == ne1) {
  6014. i11 = 0;
  6015. if (++i12 == ne2) {
  6016. i12 = 0;
  6017. if (++i13 == ne3) {
  6018. i13 = 0;
  6019. }
  6020. }
  6021. }
  6022. }
  6023. }
  6024. }
  6025. i10 += ne00 * (ne01 - ir1);
  6026. while (i10 >= ne0) {
  6027. i10 -= ne0;
  6028. if (++i11 == ne1) {
  6029. i11 = 0;
  6030. if (++i12 == ne2) {
  6031. i12 = 0;
  6032. if (++i13 == ne3) {
  6033. i13 = 0;
  6034. }
  6035. }
  6036. }
  6037. }
  6038. }
  6039. }
  6040. } else {
  6041. GGML_ASSERT(false); // TODO: implement
  6042. }
  6043. }
  6044. static void ggml_compute_forward_dup_f32(
  6045. const struct ggml_compute_params * params,
  6046. struct ggml_tensor * dst) {
  6047. const struct ggml_tensor * src0 = dst->src[0];
  6048. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  6049. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  6050. return;
  6051. }
  6052. GGML_TENSOR_UNARY_OP_LOCALS
  6053. const int ith = params->ith; // thread index
  6054. const int nth = params->nth; // number of threads
  6055. if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst) && src0->type == dst->type) {
  6056. ggml_compute_forward_dup_same_cont(params, dst);
  6057. return;
  6058. }
  6059. // parallelize by rows
  6060. const int nr = ne01;
  6061. // number of rows per thread
  6062. const int dr = (nr + nth - 1) / nth;
  6063. // row range for this thread
  6064. const int ir0 = dr * ith;
  6065. const int ir1 = MIN(ir0 + dr, nr);
  6066. if (src0->type == dst->type &&
  6067. ne00 == ne0 &&
  6068. nb00 == ggml_type_size(src0->type) && nb0 == ggml_type_size(dst->type)) {
  6069. // copy by rows
  6070. const size_t rs = ne00*nb00;
  6071. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6072. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6073. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  6074. memcpy(
  6075. ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  6076. ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
  6077. rs);
  6078. }
  6079. }
  6080. }
  6081. return;
  6082. }
  6083. if (ggml_is_contiguous(dst)) {
  6084. // TODO: simplify
  6085. if (nb00 == sizeof(float)) {
  6086. if (dst->type == GGML_TYPE_F32) {
  6087. size_t id = 0;
  6088. const size_t rs = ne00 * nb00;
  6089. char * dst_ptr = (char *) dst->data;
  6090. for (int i03 = 0; i03 < ne03; i03++) {
  6091. for (int i02 = 0; i02 < ne02; i02++) {
  6092. id += rs * ir0;
  6093. for (int i01 = ir0; i01 < ir1; i01++) {
  6094. const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
  6095. memcpy(dst_ptr + id, src0_ptr, rs);
  6096. id += rs;
  6097. }
  6098. id += rs * (ne01 - ir1);
  6099. }
  6100. }
  6101. } else if (type_traits[dst->type].from_float) {
  6102. ggml_from_float_t const quantize_row_q = type_traits[dst->type].from_float;
  6103. size_t id = 0;
  6104. size_t rs = nb0 * (ne00 / ggml_blck_size(dst->type));
  6105. char * dst_ptr = (char *) dst->data;
  6106. for (int i03 = 0; i03 < ne03; i03++) {
  6107. for (int i02 = 0; i02 < ne02; i02++) {
  6108. id += rs * ir0;
  6109. for (int i01 = ir0; i01 < ir1; i01++) {
  6110. const float * src0_ptr = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  6111. quantize_row_q(src0_ptr, dst_ptr + id, ne00);
  6112. id += rs;
  6113. }
  6114. id += rs * (ne01 - ir1);
  6115. }
  6116. }
  6117. } else {
  6118. GGML_ASSERT(false); // TODO: implement
  6119. }
  6120. } else {
  6121. //printf("%s: this is not optimal - fix me\n", __func__);
  6122. if (dst->type == GGML_TYPE_F32) {
  6123. size_t id = 0;
  6124. float * dst_ptr = (float *) dst->data;
  6125. for (int i03 = 0; i03 < ne03; i03++) {
  6126. for (int i02 = 0; i02 < ne02; i02++) {
  6127. id += ne00 * ir0;
  6128. for (int i01 = ir0; i01 < ir1; i01++) {
  6129. for (int i00 = 0; i00 < ne00; i00++) {
  6130. const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6131. dst_ptr[id] = *src0_ptr;
  6132. id++;
  6133. }
  6134. }
  6135. id += ne00 * (ne01 - ir1);
  6136. }
  6137. }
  6138. } else if (dst->type == GGML_TYPE_F16) {
  6139. size_t id = 0;
  6140. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  6141. for (int i03 = 0; i03 < ne03; i03++) {
  6142. for (int i02 = 0; i02 < ne02; i02++) {
  6143. id += ne00 * ir0;
  6144. for (int i01 = ir0; i01 < ir1; i01++) {
  6145. for (int i00 = 0; i00 < ne00; i00++) {
  6146. const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6147. dst_ptr[id] = GGML_FP32_TO_FP16(*src0_ptr);
  6148. id++;
  6149. }
  6150. }
  6151. id += ne00 * (ne01 - ir1);
  6152. }
  6153. }
  6154. } else {
  6155. GGML_ASSERT(false); // TODO: implement
  6156. }
  6157. }
  6158. return;
  6159. }
  6160. // dst counters
  6161. int64_t i10 = 0;
  6162. int64_t i11 = 0;
  6163. int64_t i12 = 0;
  6164. int64_t i13 = 0;
  6165. if (dst->type == GGML_TYPE_F32) {
  6166. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6167. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6168. i10 += ne00 * ir0;
  6169. while (i10 >= ne0) {
  6170. i10 -= ne0;
  6171. if (++i11 == ne1) {
  6172. i11 = 0;
  6173. if (++i12 == ne2) {
  6174. i12 = 0;
  6175. if (++i13 == ne3) {
  6176. i13 = 0;
  6177. }
  6178. }
  6179. }
  6180. }
  6181. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  6182. for (int64_t i00 = 0; i00 < ne00; i00++) {
  6183. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6184. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  6185. memcpy(dst_ptr, src0_ptr, sizeof(float));
  6186. if (++i10 == ne0) {
  6187. i10 = 0;
  6188. if (++i11 == ne1) {
  6189. i11 = 0;
  6190. if (++i12 == ne2) {
  6191. i12 = 0;
  6192. if (++i13 == ne3) {
  6193. i13 = 0;
  6194. }
  6195. }
  6196. }
  6197. }
  6198. }
  6199. }
  6200. i10 += ne00 * (ne01 - ir1);
  6201. while (i10 >= ne0) {
  6202. i10 -= ne0;
  6203. if (++i11 == ne1) {
  6204. i11 = 0;
  6205. if (++i12 == ne2) {
  6206. i12 = 0;
  6207. if (++i13 == ne3) {
  6208. i13 = 0;
  6209. }
  6210. }
  6211. }
  6212. }
  6213. }
  6214. }
  6215. } else if (dst->type == GGML_TYPE_F16) {
  6216. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6217. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6218. i10 += ne00 * ir0;
  6219. while (i10 >= ne0) {
  6220. i10 -= ne0;
  6221. if (++i11 == ne1) {
  6222. i11 = 0;
  6223. if (++i12 == ne2) {
  6224. i12 = 0;
  6225. if (++i13 == ne3) {
  6226. i13 = 0;
  6227. }
  6228. }
  6229. }
  6230. }
  6231. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  6232. for (int64_t i00 = 0; i00 < ne00; i00++) {
  6233. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6234. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  6235. *(ggml_fp16_t *) dst_ptr = GGML_FP32_TO_FP16(*(const float *) src0_ptr);
  6236. if (++i10 == ne0) {
  6237. i10 = 0;
  6238. if (++i11 == ne1) {
  6239. i11 = 0;
  6240. if (++i12 == ne2) {
  6241. i12 = 0;
  6242. if (++i13 == ne3) {
  6243. i13 = 0;
  6244. }
  6245. }
  6246. }
  6247. }
  6248. }
  6249. }
  6250. i10 += ne00 * (ne01 - ir1);
  6251. while (i10 >= ne0) {
  6252. i10 -= ne0;
  6253. if (++i11 == ne1) {
  6254. i11 = 0;
  6255. if (++i12 == ne2) {
  6256. i12 = 0;
  6257. if (++i13 == ne3) {
  6258. i13 = 0;
  6259. }
  6260. }
  6261. }
  6262. }
  6263. }
  6264. }
  6265. } else {
  6266. GGML_ASSERT(false); // TODO: implement
  6267. }
  6268. }
  6269. // A simplified version of ggml_compute_forward_dup that doesn't do float upcasting, and just plain old memcpy.
  6270. static void ggml_compute_forward_dup_bytes(
  6271. const struct ggml_compute_params * params,
  6272. struct ggml_tensor * dst) {
  6273. const struct ggml_tensor * src0 = dst->src[0];
  6274. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  6275. GGML_ASSERT(src0->type == dst->type);
  6276. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  6277. return;
  6278. }
  6279. if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst)) {
  6280. ggml_compute_forward_dup_same_cont(params, dst);
  6281. return;
  6282. }
  6283. GGML_TENSOR_UNARY_OP_LOCALS;
  6284. const size_t type_size = ggml_type_size(src0->type);
  6285. const int ith = params->ith; // thread index
  6286. const int nth = params->nth; // number of threads
  6287. // parallelize by rows
  6288. const int nr = ne01;
  6289. // number of rows per thread
  6290. const int dr = (nr + nth - 1) / nth;
  6291. // row range for this thread
  6292. const int ir0 = dr * ith;
  6293. const int ir1 = MIN(ir0 + dr, nr);
  6294. if (src0->type == dst->type &&
  6295. ne00 == ne0 &&
  6296. nb00 == type_size && nb0 == type_size) {
  6297. // copy by rows
  6298. const size_t rs = ne00 * type_size;
  6299. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6300. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6301. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  6302. memcpy(
  6303. ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  6304. ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
  6305. rs);
  6306. }
  6307. }
  6308. }
  6309. return;
  6310. }
  6311. if (ggml_is_contiguous(dst)) {
  6312. size_t id = 0;
  6313. char * dst_ptr = (char *) dst->data;
  6314. const size_t rs = ne00 * type_size;
  6315. if (nb00 == type_size) {
  6316. // src0 is contigous on first dimension, copy by rows
  6317. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6318. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6319. id += rs * ir0;
  6320. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  6321. const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
  6322. memcpy(dst_ptr + id, src0_ptr, rs);
  6323. id += rs;
  6324. }
  6325. id += rs * (ne01 - ir1);
  6326. }
  6327. }
  6328. } else {
  6329. //printf("%s: this is not optimal - fix me\n", __func__);
  6330. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6331. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6332. id += rs * ir0;
  6333. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  6334. for (int64_t i00 = 0; i00 < ne00; i00++) {
  6335. const char * src0_ptr = (char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03;
  6336. memcpy(dst_ptr + id, src0_ptr, type_size);
  6337. id += type_size;
  6338. }
  6339. }
  6340. id += rs * (ne01 - ir1);
  6341. }
  6342. }
  6343. }
  6344. return;
  6345. }
  6346. // dst counters
  6347. int64_t i10 = 0;
  6348. int64_t i11 = 0;
  6349. int64_t i12 = 0;
  6350. int64_t i13 = 0;
  6351. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6352. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6353. i10 += ne00 * ir0;
  6354. while (i10 >= ne0) {
  6355. i10 -= ne0;
  6356. if (++i11 == ne1) {
  6357. i11 = 0;
  6358. if (++i12 == ne2) {
  6359. i12 = 0;
  6360. if (++i13 == ne3) {
  6361. i13 = 0;
  6362. }
  6363. }
  6364. }
  6365. }
  6366. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  6367. for (int64_t i00 = 0; i00 < ne00; i00++) {
  6368. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6369. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  6370. memcpy(dst_ptr, src0_ptr, type_size);
  6371. if (++i10 == ne0) {
  6372. i10 = 0;
  6373. if (++i11 == ne1) {
  6374. i11 = 0;
  6375. if (++i12 == ne2) {
  6376. i12 = 0;
  6377. if (++i13 == ne3) {
  6378. i13 = 0;
  6379. }
  6380. }
  6381. }
  6382. }
  6383. }
  6384. }
  6385. i10 += ne00 * (ne01 - ir1);
  6386. while (i10 >= ne0) {
  6387. i10 -= ne0;
  6388. if (++i11 == ne1) {
  6389. i11 = 0;
  6390. if (++i12 == ne2) {
  6391. i12 = 0;
  6392. if (++i13 == ne3) {
  6393. i13 = 0;
  6394. }
  6395. }
  6396. }
  6397. }
  6398. }
  6399. }
  6400. }
  6401. static void ggml_compute_forward_dup(
  6402. const struct ggml_compute_params * params,
  6403. struct ggml_tensor * dst) {
  6404. const struct ggml_tensor * src0 = dst->src[0];
  6405. if (src0->type == dst->type) {
  6406. ggml_compute_forward_dup_bytes(params, dst);
  6407. return;
  6408. }
  6409. switch (src0->type) {
  6410. case GGML_TYPE_F16:
  6411. {
  6412. ggml_compute_forward_dup_f16(params, dst);
  6413. } break;
  6414. case GGML_TYPE_F32:
  6415. {
  6416. ggml_compute_forward_dup_f32(params, dst);
  6417. } break;
  6418. default:
  6419. {
  6420. GGML_ASSERT(false);
  6421. } break;
  6422. }
  6423. }
  6424. // ggml_compute_forward_add
  6425. static void ggml_compute_forward_add_f32(
  6426. const struct ggml_compute_params * params,
  6427. struct ggml_tensor * dst) {
  6428. const struct ggml_tensor * src0 = dst->src[0];
  6429. const struct ggml_tensor * src1 = dst->src[1];
  6430. GGML_ASSERT(ggml_can_repeat(src1, src0) && ggml_are_same_shape(src0, dst));
  6431. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  6432. return;
  6433. }
  6434. const int ith = params->ith;
  6435. const int nth = params->nth;
  6436. #ifdef GGML_USE_CLBLAST
  6437. if (src1->backend == GGML_BACKEND_TYPE_GPU) {
  6438. // TODO: OpenCL kernel support full broadcast
  6439. GGML_ASSERT(ggml_can_repeat_rows(src1, src0));
  6440. if (ith == 0) {
  6441. ggml_cl_add(src0, src1, dst);
  6442. }
  6443. return;
  6444. }
  6445. #endif
  6446. const int nr = ggml_nrows(src0);
  6447. GGML_TENSOR_BINARY_OP_LOCALS
  6448. GGML_ASSERT( nb0 == sizeof(float));
  6449. GGML_ASSERT(nb00 == sizeof(float));
  6450. // rows per thread
  6451. const int dr = (nr + nth - 1)/nth;
  6452. // row range for this thread
  6453. const int ir0 = dr*ith;
  6454. const int ir1 = MIN(ir0 + dr, nr);
  6455. if (nb10 == sizeof(float)) {
  6456. for (int ir = ir0; ir < ir1; ++ir) {
  6457. // src1 is broadcastable across src0 and dst in i1, i2, i3
  6458. const int64_t i03 = ir/(ne02*ne01);
  6459. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  6460. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  6461. const int64_t i13 = i03 % ne13;
  6462. const int64_t i12 = i02 % ne12;
  6463. const int64_t i11 = i01 % ne11;
  6464. const int64_t nr0 = ne00 / ne10;
  6465. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  6466. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  6467. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11);
  6468. for (int64_t r = 0; r < nr0; ++r) {
  6469. #ifdef GGML_USE_ACCELERATE
  6470. vDSP_vadd(src0_ptr + r*ne10, 1, src1_ptr, 1, dst_ptr + r*ne10, 1, ne10);
  6471. #else
  6472. ggml_vec_add_f32(ne10, dst_ptr + r*ne10, src0_ptr + r*ne10, src1_ptr);
  6473. #endif
  6474. }
  6475. }
  6476. } else {
  6477. // src1 is not contiguous
  6478. for (int ir = ir0; ir < ir1; ++ir) {
  6479. // src1 is broadcastable across src0 and dst in i1, i2, i3
  6480. const int64_t i03 = ir/(ne02*ne01);
  6481. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  6482. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  6483. const int64_t i13 = i03 % ne13;
  6484. const int64_t i12 = i02 % ne12;
  6485. const int64_t i11 = i01 % ne11;
  6486. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  6487. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  6488. for (int64_t i0 = 0; i0 < ne0; ++i0) {
  6489. const int64_t i10 = i0 % ne10;
  6490. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11 + i10*nb10);
  6491. dst_ptr[i0] = src0_ptr[i0] + *src1_ptr;
  6492. }
  6493. }
  6494. }
  6495. }
  6496. static void ggml_compute_forward_add_f16_f32(
  6497. const struct ggml_compute_params * params,
  6498. struct ggml_tensor * dst) {
  6499. const struct ggml_tensor * src0 = dst->src[0];
  6500. const struct ggml_tensor * src1 = dst->src[1];
  6501. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  6502. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  6503. return;
  6504. }
  6505. const int ith = params->ith;
  6506. const int nth = params->nth;
  6507. const int nr = ggml_nrows(src0);
  6508. GGML_TENSOR_BINARY_OP_LOCALS
  6509. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  6510. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  6511. if (dst->type == GGML_TYPE_F32) {
  6512. GGML_ASSERT( nb0 == sizeof(float));
  6513. }
  6514. else {
  6515. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  6516. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  6517. }
  6518. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  6519. // rows per thread
  6520. const int dr = (nr + nth - 1)/nth;
  6521. // row range for this thread
  6522. const int ir0 = dr*ith;
  6523. const int ir1 = MIN(ir0 + dr, nr);
  6524. if (nb10 == sizeof(float)) {
  6525. if (dst->type == GGML_TYPE_F16) {
  6526. for (int ir = ir0; ir < ir1; ++ir) {
  6527. // src0, src1 and dst are same shape => same indices
  6528. const int i3 = ir/(ne2*ne1);
  6529. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6530. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6531. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  6532. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  6533. float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11);
  6534. for (int i = 0; i < ne0; i++) {
  6535. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + src1_ptr[i]);
  6536. }
  6537. }
  6538. } else {
  6539. for (int ir = ir0; ir < ir1; ++ir) {
  6540. // src0, src1 and dst are same shape => same indices
  6541. const int i3 = ir/(ne2*ne1);
  6542. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6543. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6544. float * dst_ptr = (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  6545. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  6546. float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11);
  6547. for (int i = 0; i < ne0; i++) {
  6548. dst_ptr[i] = GGML_FP16_TO_FP32(src0_ptr[i]) + src1_ptr[i];
  6549. }
  6550. }
  6551. }
  6552. }
  6553. else {
  6554. // src1 is not contiguous
  6555. GGML_ASSERT(false);
  6556. }
  6557. }
  6558. static void ggml_compute_forward_add_f16_f16(
  6559. const struct ggml_compute_params * params,
  6560. struct ggml_tensor * dst) {
  6561. const struct ggml_tensor * src0 = dst->src[0];
  6562. const struct ggml_tensor * src1 = dst->src[1];
  6563. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  6564. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  6565. return;
  6566. }
  6567. const int ith = params->ith;
  6568. const int nth = params->nth;
  6569. const int nr = ggml_nrows(src0);
  6570. GGML_TENSOR_BINARY_OP_LOCALS
  6571. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  6572. GGML_ASSERT(src1->type == GGML_TYPE_F16);
  6573. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  6574. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  6575. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  6576. // rows per thread
  6577. const int dr = (nr + nth - 1)/nth;
  6578. // row range for this thread
  6579. const int ir0 = dr*ith;
  6580. const int ir1 = MIN(ir0 + dr, nr);
  6581. if (nb10 == sizeof(ggml_fp16_t)) {
  6582. for (int ir = ir0; ir < ir1; ++ir) {
  6583. // src0, src1 and dst are same shape => same indices
  6584. const int i3 = ir/(ne2*ne1);
  6585. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6586. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6587. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  6588. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  6589. ggml_fp16_t * src1_ptr = (ggml_fp16_t *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11);
  6590. for (int i = 0; i < ne0; i++) {
  6591. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + GGML_FP16_TO_FP32(src1_ptr[i]));
  6592. }
  6593. }
  6594. }
  6595. else {
  6596. // src1 is not contiguous
  6597. GGML_ASSERT(false);
  6598. }
  6599. }
  6600. static void ggml_compute_forward_add_q_f32(
  6601. const struct ggml_compute_params * params,
  6602. struct ggml_tensor * dst) {
  6603. const struct ggml_tensor * src0 = dst->src[0];
  6604. const struct ggml_tensor * src1 = dst->src[1];
  6605. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  6606. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  6607. return;
  6608. }
  6609. const int nr = ggml_nrows(src0);
  6610. GGML_TENSOR_BINARY_OP_LOCALS
  6611. const int ith = params->ith;
  6612. const int nth = params->nth;
  6613. const enum ggml_type type = src0->type;
  6614. const enum ggml_type dtype = dst->type;
  6615. ggml_to_float_t const dequantize_row_q = type_traits[type].to_float;
  6616. ggml_from_float_t const quantize_row_q = type_traits[dtype].from_float;
  6617. // we don't support permuted src0 or src1
  6618. GGML_ASSERT(nb00 == ggml_type_size(type));
  6619. GGML_ASSERT(nb10 == sizeof(float));
  6620. // dst cannot be transposed or permuted
  6621. GGML_ASSERT(nb0 <= nb1);
  6622. GGML_ASSERT(nb1 <= nb2);
  6623. GGML_ASSERT(nb2 <= nb3);
  6624. GGML_ASSERT(ggml_is_quantized(src0->type));
  6625. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  6626. // rows per thread
  6627. const int dr = (nr + nth - 1)/nth;
  6628. // row range for this thread
  6629. const int ir0 = dr*ith;
  6630. const int ir1 = MIN(ir0 + dr, nr);
  6631. float * wdata = (float *) params->wdata + (ne00 + CACHE_LINE_SIZE_F32) * ith;
  6632. for (int ir = ir0; ir < ir1; ++ir) {
  6633. // src0 indices
  6634. const int i03 = ir/(ne02*ne01);
  6635. const int i02 = (ir - i03*ne02*ne01)/ne01;
  6636. const int i01 = (ir - i03*ne02*ne01 - i02*ne01);
  6637. // src1 and dst are same shape as src0 => same indices
  6638. const int i13 = i03;
  6639. const int i12 = i02;
  6640. const int i11 = i01;
  6641. const int i3 = i03;
  6642. const int i2 = i02;
  6643. const int i1 = i01;
  6644. void * src0_row = (void *) ((char *) src0->data + (i01*nb01 + i02*nb02 + i03*nb03));
  6645. float * src1_row = (float *)((char *) src1->data + (i11*nb11 + i12*nb12 + i13*nb13));
  6646. void * dst_row = (void *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
  6647. assert(ne00 % 32 == 0);
  6648. // unquantize row from src0 to temp buffer
  6649. dequantize_row_q(src0_row, wdata, ne00);
  6650. // add src1
  6651. ggml_vec_acc_f32(ne00, wdata, src1_row);
  6652. // quantize row to dst
  6653. if (quantize_row_q != NULL) {
  6654. quantize_row_q(wdata, dst_row, ne00);
  6655. } else {
  6656. memcpy(dst_row, wdata, ne0*nb0);
  6657. }
  6658. }
  6659. }
  6660. static void ggml_compute_forward_add(
  6661. const struct ggml_compute_params * params,
  6662. struct ggml_tensor * dst) {
  6663. const struct ggml_tensor * src0 = dst->src[0];
  6664. const struct ggml_tensor * src1 = dst->src[1];
  6665. switch (src0->type) {
  6666. case GGML_TYPE_F32:
  6667. {
  6668. if (src1->type == GGML_TYPE_F32) {
  6669. ggml_compute_forward_add_f32(params, dst);
  6670. }
  6671. else {
  6672. GGML_ASSERT(false);
  6673. }
  6674. } break;
  6675. case GGML_TYPE_F16:
  6676. {
  6677. if (src1->type == GGML_TYPE_F16) {
  6678. ggml_compute_forward_add_f16_f16(params, dst);
  6679. }
  6680. else if (src1->type == GGML_TYPE_F32) {
  6681. ggml_compute_forward_add_f16_f32(params, dst);
  6682. }
  6683. else {
  6684. GGML_ASSERT(false);
  6685. }
  6686. } break;
  6687. case GGML_TYPE_Q4_0:
  6688. case GGML_TYPE_Q4_1:
  6689. case GGML_TYPE_Q5_0:
  6690. case GGML_TYPE_Q5_1:
  6691. case GGML_TYPE_Q8_0:
  6692. case GGML_TYPE_Q2_K:
  6693. case GGML_TYPE_Q3_K:
  6694. case GGML_TYPE_Q4_K:
  6695. case GGML_TYPE_Q5_K:
  6696. case GGML_TYPE_Q6_K:
  6697. case GGML_TYPE_IQ2_XXS:
  6698. case GGML_TYPE_IQ2_XS:
  6699. case GGML_TYPE_IQ3_XXS:
  6700. case GGML_TYPE_IQ1_S:
  6701. case GGML_TYPE_IQ1_M:
  6702. case GGML_TYPE_IQ4_NL:
  6703. case GGML_TYPE_IQ4_XS:
  6704. case GGML_TYPE_IQ3_S:
  6705. case GGML_TYPE_IQ2_S:
  6706. {
  6707. ggml_compute_forward_add_q_f32(params, dst);
  6708. } break;
  6709. default:
  6710. {
  6711. GGML_ASSERT(false);
  6712. } break;
  6713. }
  6714. }
  6715. // ggml_compute_forward_add1
  6716. static void ggml_compute_forward_add1_f32(
  6717. const struct ggml_compute_params * params,
  6718. struct ggml_tensor * dst) {
  6719. const struct ggml_tensor * src0 = dst->src[0];
  6720. const struct ggml_tensor * src1 = dst->src[1];
  6721. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6722. GGML_ASSERT(ggml_is_scalar(src1));
  6723. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  6724. return;
  6725. }
  6726. const int ith = params->ith;
  6727. const int nth = params->nth;
  6728. const int nr = ggml_nrows(src0);
  6729. GGML_TENSOR_UNARY_OP_LOCALS
  6730. GGML_ASSERT( nb0 == sizeof(float));
  6731. GGML_ASSERT(nb00 == sizeof(float));
  6732. // rows per thread
  6733. const int dr = (nr + nth - 1)/nth;
  6734. // row range for this thread
  6735. const int ir0 = dr*ith;
  6736. const int ir1 = MIN(ir0 + dr, nr);
  6737. for (int ir = ir0; ir < ir1; ++ir) {
  6738. // src0 and dst are same shape => same indices
  6739. const int i3 = ir/(ne2*ne1);
  6740. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6741. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6742. #ifdef GGML_USE_ACCELERATE
  6743. UNUSED(ggml_vec_add1_f32);
  6744. vDSP_vadd(
  6745. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01), 1,
  6746. (float *) ((char *) src1->data), 0,
  6747. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ), 1,
  6748. ne0);
  6749. #else
  6750. ggml_vec_add1_f32(ne0,
  6751. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ),
  6752. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01),
  6753. *(float *) src1->data);
  6754. #endif
  6755. }
  6756. }
  6757. static void ggml_compute_forward_add1_f16_f32(
  6758. const struct ggml_compute_params * params,
  6759. struct ggml_tensor * dst) {
  6760. const struct ggml_tensor * src0 = dst->src[0];
  6761. const struct ggml_tensor * src1 = dst->src[1];
  6762. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6763. GGML_ASSERT(ggml_is_scalar(src1));
  6764. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  6765. return;
  6766. }
  6767. // scalar to add
  6768. const float v = *(float *) src1->data;
  6769. const int ith = params->ith;
  6770. const int nth = params->nth;
  6771. const int nr = ggml_nrows(src0);
  6772. GGML_TENSOR_UNARY_OP_LOCALS
  6773. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  6774. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  6775. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  6776. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  6777. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  6778. // rows per thread
  6779. const int dr = (nr + nth - 1)/nth;
  6780. // row range for this thread
  6781. const int ir0 = dr*ith;
  6782. const int ir1 = MIN(ir0 + dr, nr);
  6783. for (int ir = ir0; ir < ir1; ++ir) {
  6784. // src0 and dst are same shape => same indices
  6785. const int i3 = ir/(ne2*ne1);
  6786. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6787. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6788. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  6789. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  6790. for (int i = 0; i < ne0; i++) {
  6791. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + v);
  6792. }
  6793. }
  6794. }
  6795. static void ggml_compute_forward_add1_f16_f16(
  6796. const struct ggml_compute_params * params,
  6797. struct ggml_tensor * dst) {
  6798. const struct ggml_tensor * src0 = dst->src[0];
  6799. const struct ggml_tensor * src1 = dst->src[1];
  6800. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6801. GGML_ASSERT(ggml_is_scalar(src1));
  6802. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  6803. return;
  6804. }
  6805. // scalar to add
  6806. const float v = GGML_FP16_TO_FP32(*(ggml_fp16_t *) src1->data);
  6807. const int ith = params->ith;
  6808. const int nth = params->nth;
  6809. const int nr = ggml_nrows(src0);
  6810. GGML_TENSOR_UNARY_OP_LOCALS
  6811. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  6812. GGML_ASSERT(src1->type == GGML_TYPE_F16);
  6813. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  6814. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  6815. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  6816. // rows per thread
  6817. const int dr = (nr + nth - 1)/nth;
  6818. // row range for this thread
  6819. const int ir0 = dr*ith;
  6820. const int ir1 = MIN(ir0 + dr, nr);
  6821. for (int ir = ir0; ir < ir1; ++ir) {
  6822. // src0 and dst are same shape => same indices
  6823. const int i3 = ir/(ne2*ne1);
  6824. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6825. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6826. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  6827. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  6828. for (int i = 0; i < ne0; i++) {
  6829. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + v);
  6830. }
  6831. }
  6832. }
  6833. static void ggml_compute_forward_add1_q_f32(
  6834. const struct ggml_compute_params * params,
  6835. struct ggml_tensor * dst) {
  6836. const struct ggml_tensor * src0 = dst->src[0];
  6837. const struct ggml_tensor * src1 = dst->src[1];
  6838. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6839. GGML_ASSERT(ggml_is_scalar(src1));
  6840. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  6841. return;
  6842. }
  6843. // scalar to add
  6844. const float v = *(float *) src1->data;
  6845. const int ith = params->ith;
  6846. const int nth = params->nth;
  6847. const int nr = ggml_nrows(src0);
  6848. GGML_TENSOR_UNARY_OP_LOCALS
  6849. const enum ggml_type type = src0->type;
  6850. ggml_to_float_t const dequantize_row_q = type_traits[type].to_float;
  6851. ggml_from_float_t const quantize_row_q = type_traits[type].from_float;
  6852. // we don't support permuted src0
  6853. GGML_ASSERT(nb00 == ggml_type_size(type));
  6854. // dst cannot be transposed or permuted
  6855. GGML_ASSERT(nb0 <= nb1);
  6856. GGML_ASSERT(nb1 <= nb2);
  6857. GGML_ASSERT(nb2 <= nb3);
  6858. GGML_ASSERT(ggml_is_quantized(src0->type));
  6859. GGML_ASSERT(dst->type == src0->type);
  6860. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  6861. // rows per thread
  6862. const int dr = (nr + nth - 1)/nth;
  6863. // row range for this thread
  6864. const int ir0 = dr*ith;
  6865. const int ir1 = MIN(ir0 + dr, nr);
  6866. float * wdata = (float *) params->wdata + (ne0 + CACHE_LINE_SIZE_F32) * ith;
  6867. for (int ir = ir0; ir < ir1; ++ir) {
  6868. // src0 and dst are same shape => same indices
  6869. const int i3 = ir/(ne2*ne1);
  6870. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6871. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6872. void * src0_row = (void *) ((char *) src0->data + (i1*nb01 + i2*nb02 + i3*nb03));
  6873. void * dst_row = (void *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb0 ));
  6874. assert(ne0 % 32 == 0);
  6875. // unquantize row from src0 to temp buffer
  6876. dequantize_row_q(src0_row, wdata, ne0);
  6877. // add src1
  6878. ggml_vec_acc1_f32(ne0, wdata, v);
  6879. // quantize row to dst
  6880. quantize_row_q(wdata, dst_row, ne0);
  6881. }
  6882. }
  6883. static void ggml_compute_forward_add1(
  6884. const struct ggml_compute_params * params,
  6885. struct ggml_tensor * dst) {
  6886. const struct ggml_tensor * src0 = dst->src[0];
  6887. const struct ggml_tensor * src1 = dst->src[1];
  6888. switch (src0->type) {
  6889. case GGML_TYPE_F32:
  6890. {
  6891. ggml_compute_forward_add1_f32(params, dst);
  6892. } break;
  6893. case GGML_TYPE_F16:
  6894. {
  6895. if (src1->type == GGML_TYPE_F16) {
  6896. ggml_compute_forward_add1_f16_f16(params, dst);
  6897. }
  6898. else if (src1->type == GGML_TYPE_F32) {
  6899. ggml_compute_forward_add1_f16_f32(params, dst);
  6900. }
  6901. else {
  6902. GGML_ASSERT(false);
  6903. }
  6904. } break;
  6905. case GGML_TYPE_Q4_0:
  6906. case GGML_TYPE_Q4_1:
  6907. case GGML_TYPE_Q5_0:
  6908. case GGML_TYPE_Q5_1:
  6909. case GGML_TYPE_Q8_0:
  6910. case GGML_TYPE_Q8_1:
  6911. case GGML_TYPE_Q2_K:
  6912. case GGML_TYPE_Q3_K:
  6913. case GGML_TYPE_Q4_K:
  6914. case GGML_TYPE_Q5_K:
  6915. case GGML_TYPE_Q6_K:
  6916. case GGML_TYPE_IQ2_XXS:
  6917. case GGML_TYPE_IQ2_XS:
  6918. case GGML_TYPE_IQ3_XXS:
  6919. case GGML_TYPE_IQ1_S:
  6920. case GGML_TYPE_IQ1_M:
  6921. case GGML_TYPE_IQ4_NL:
  6922. case GGML_TYPE_IQ4_XS:
  6923. case GGML_TYPE_IQ3_S:
  6924. case GGML_TYPE_IQ2_S:
  6925. {
  6926. ggml_compute_forward_add1_q_f32(params, dst);
  6927. } break;
  6928. default:
  6929. {
  6930. GGML_ASSERT(false);
  6931. } break;
  6932. }
  6933. }
  6934. // ggml_compute_forward_acc
  6935. static void ggml_compute_forward_acc_f32(
  6936. const struct ggml_compute_params * params,
  6937. struct ggml_tensor * dst) {
  6938. const struct ggml_tensor * src0 = dst->src[0];
  6939. const struct ggml_tensor * src1 = dst->src[1];
  6940. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6941. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  6942. // view src0 and dst with these strides and data offset inbytes during acc
  6943. // nb0 is implicitly element_size because src0 and dst are contiguous
  6944. size_t nb1 = ((int32_t *) dst->op_params)[0];
  6945. size_t nb2 = ((int32_t *) dst->op_params)[1];
  6946. size_t nb3 = ((int32_t *) dst->op_params)[2];
  6947. size_t offset = ((int32_t *) dst->op_params)[3];
  6948. bool inplace = (bool) ((int32_t *) dst->op_params)[4];
  6949. if (!inplace && (params->type == GGML_TASK_TYPE_INIT)) {
  6950. if (params->ith != 0) {
  6951. return;
  6952. }
  6953. // memcpy needs to be synchronized across threads to avoid race conditions.
  6954. // => do it in INIT phase
  6955. memcpy(
  6956. ((char *) dst->data),
  6957. ((char *) src0->data),
  6958. ggml_nbytes(dst));
  6959. }
  6960. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  6961. return;
  6962. }
  6963. const int ith = params->ith;
  6964. const int nth = params->nth;
  6965. const int nr = ggml_nrows(src1);
  6966. const int nc = src1->ne[0];
  6967. GGML_TENSOR_LOCALS(int64_t, ne1, src1, ne)
  6968. GGML_TENSOR_LOCALS(size_t, nb1, src1, nb)
  6969. // src0 and dst as viewed during acc
  6970. const size_t nb0 = ggml_element_size(src0);
  6971. const size_t nb00 = nb0;
  6972. const size_t nb01 = nb1;
  6973. const size_t nb02 = nb2;
  6974. const size_t nb03 = nb3;
  6975. GGML_ASSERT(offset + (ne10 == 0 ? 0 : ne10-1)*nb0 + (ne11 == 0 ? 0 : ne11-1)*nb1 + (ne12 == 0 ? 0 : ne12-1)*nb2 + (ne13 == 0 ? 0 : ne13-1)*nb3 < ggml_nbytes(dst));
  6976. GGML_ASSERT(offset + (ne10 == 0 ? 0 : ne10-1)*nb00 + (ne11 == 0 ? 0 : ne11-1)*nb01 + (ne12 == 0 ? 0 : ne12-1)*nb02 + (ne13 == 0 ? 0 : ne13-1)*nb03 < ggml_nbytes(src0));
  6977. GGML_ASSERT(nb10 == sizeof(float));
  6978. // rows per thread
  6979. const int dr = (nr + nth - 1)/nth;
  6980. // row range for this thread
  6981. const int ir0 = dr*ith;
  6982. const int ir1 = MIN(ir0 + dr, nr);
  6983. for (int ir = ir0; ir < ir1; ++ir) {
  6984. // src0 and dst are viewed with shape of src1 and offset
  6985. // => same indices
  6986. const int i3 = ir/(ne12*ne11);
  6987. const int i2 = (ir - i3*ne12*ne11)/ne11;
  6988. const int i1 = (ir - i3*ne12*ne11 - i2*ne11);
  6989. #ifdef GGML_USE_ACCELERATE
  6990. vDSP_vadd(
  6991. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + offset), 1,
  6992. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11), 1,
  6993. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + offset), 1, nc);
  6994. #else
  6995. ggml_vec_add_f32(nc,
  6996. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + offset),
  6997. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + offset),
  6998. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
  6999. #endif
  7000. }
  7001. }
  7002. static void ggml_compute_forward_acc(
  7003. const struct ggml_compute_params * params,
  7004. struct ggml_tensor * dst) {
  7005. const struct ggml_tensor * src0 = dst->src[0];
  7006. switch (src0->type) {
  7007. case GGML_TYPE_F32:
  7008. {
  7009. ggml_compute_forward_acc_f32(params, dst);
  7010. } break;
  7011. case GGML_TYPE_F16:
  7012. case GGML_TYPE_Q4_0:
  7013. case GGML_TYPE_Q4_1:
  7014. case GGML_TYPE_Q5_0:
  7015. case GGML_TYPE_Q5_1:
  7016. case GGML_TYPE_Q8_0:
  7017. case GGML_TYPE_Q8_1:
  7018. case GGML_TYPE_Q2_K:
  7019. case GGML_TYPE_Q3_K:
  7020. case GGML_TYPE_Q4_K:
  7021. case GGML_TYPE_Q5_K:
  7022. case GGML_TYPE_Q6_K:
  7023. case GGML_TYPE_IQ2_XXS:
  7024. case GGML_TYPE_IQ2_XS:
  7025. case GGML_TYPE_IQ3_XXS:
  7026. case GGML_TYPE_IQ1_S:
  7027. case GGML_TYPE_IQ1_M:
  7028. case GGML_TYPE_IQ4_NL:
  7029. case GGML_TYPE_IQ4_XS:
  7030. case GGML_TYPE_IQ3_S:
  7031. case GGML_TYPE_IQ2_S:
  7032. default:
  7033. {
  7034. GGML_ASSERT(false);
  7035. } break;
  7036. }
  7037. }
  7038. // ggml_compute_forward_sub
  7039. static void ggml_compute_forward_sub_f32(
  7040. const struct ggml_compute_params * params,
  7041. struct ggml_tensor * dst) {
  7042. const struct ggml_tensor * src0 = dst->src[0];
  7043. const struct ggml_tensor * src1 = dst->src[1];
  7044. assert(params->ith == 0);
  7045. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  7046. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7047. return;
  7048. }
  7049. const int nr = ggml_nrows(src0);
  7050. GGML_TENSOR_BINARY_OP_LOCALS
  7051. GGML_ASSERT( nb0 == sizeof(float));
  7052. GGML_ASSERT(nb00 == sizeof(float));
  7053. if (nb10 == sizeof(float)) {
  7054. for (int ir = 0; ir < nr; ++ir) {
  7055. // src0, src1 and dst are same shape => same indices
  7056. const int i3 = ir/(ne2*ne1);
  7057. const int i2 = (ir - i3*ne2*ne1)/ne1;
  7058. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  7059. #ifdef GGML_USE_ACCELERATE
  7060. vDSP_vsub(
  7061. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11), 1,
  7062. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01), 1,
  7063. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ), 1,
  7064. ne0);
  7065. #else
  7066. ggml_vec_sub_f32(ne0,
  7067. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ),
  7068. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01),
  7069. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
  7070. #endif
  7071. // }
  7072. // }
  7073. }
  7074. } else {
  7075. // src1 is not contiguous
  7076. for (int ir = 0; ir < nr; ++ir) {
  7077. // src0, src1 and dst are same shape => same indices
  7078. const int i3 = ir/(ne2*ne1);
  7079. const int i2 = (ir - i3*ne2*ne1)/ne1;
  7080. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  7081. float * dst_ptr = (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  7082. float * src0_ptr = (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  7083. for (int i0 = 0; i0 < ne0; i0++) {
  7084. float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11 + i0*nb10);
  7085. dst_ptr[i0] = src0_ptr[i0] - *src1_ptr;
  7086. }
  7087. }
  7088. }
  7089. }
  7090. static void ggml_compute_forward_sub(
  7091. const struct ggml_compute_params * params,
  7092. struct ggml_tensor * dst) {
  7093. const struct ggml_tensor * src0 = dst->src[0];
  7094. switch (src0->type) {
  7095. case GGML_TYPE_F32:
  7096. {
  7097. ggml_compute_forward_sub_f32(params, dst);
  7098. } break;
  7099. default:
  7100. {
  7101. GGML_ASSERT(false);
  7102. } break;
  7103. }
  7104. }
  7105. // ggml_compute_forward_mul
  7106. static void ggml_compute_forward_mul_f32(
  7107. const struct ggml_compute_params * params,
  7108. struct ggml_tensor * dst) {
  7109. const struct ggml_tensor * src0 = dst->src[0];
  7110. const struct ggml_tensor * src1 = dst->src[1];
  7111. GGML_ASSERT(ggml_can_repeat(src1, src0) && ggml_are_same_shape(src0, dst));
  7112. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7113. return;
  7114. }
  7115. const int ith = params->ith;
  7116. const int nth = params->nth;
  7117. #if defined(GGML_USE_CLBLAST)
  7118. if (src1->backend == GGML_BACKEND_TYPE_GPU) {
  7119. // TODO: OpenCL kernel support full broadcast
  7120. GGML_ASSERT(ggml_can_repeat_rows(src1, src0));
  7121. if (ith == 0) {
  7122. ggml_cl_mul(src0, src1, dst);
  7123. }
  7124. return;
  7125. }
  7126. #endif
  7127. const int64_t nr = ggml_nrows(src0);
  7128. GGML_TENSOR_BINARY_OP_LOCALS
  7129. GGML_ASSERT( nb0 == sizeof(float));
  7130. GGML_ASSERT(nb00 == sizeof(float));
  7131. if (nb10 == sizeof(float)) {
  7132. for (int64_t ir = ith; ir < nr; ir += nth) {
  7133. // src0 and dst are same shape => same indices
  7134. const int64_t i03 = ir/(ne02*ne01);
  7135. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  7136. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  7137. const int64_t i13 = i03 % ne13;
  7138. const int64_t i12 = i02 % ne12;
  7139. const int64_t i11 = i01 % ne11;
  7140. const int64_t nr0 = ne00 / ne10;
  7141. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  7142. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  7143. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11);
  7144. for (int64_t r = 0 ; r < nr0; ++r) {
  7145. #ifdef GGML_USE_ACCELERATE
  7146. UNUSED(ggml_vec_mul_f32);
  7147. vDSP_vmul(src0_ptr + r*ne10, 1, src1_ptr, 1, dst_ptr + r*ne10, 1, ne10);
  7148. #else
  7149. ggml_vec_mul_f32(ne10, dst_ptr + r*ne10, src0_ptr + r*ne10, src1_ptr);
  7150. #endif
  7151. }
  7152. }
  7153. } else {
  7154. // src1 is not contiguous
  7155. for (int64_t ir = ith; ir < nr; ir += nth) {
  7156. // src0 and dst are same shape => same indices
  7157. // src1 is broadcastable across src0 and dst in i1, i2, i3
  7158. const int64_t i03 = ir/(ne02*ne01);
  7159. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  7160. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  7161. const int64_t i13 = i03 % ne13;
  7162. const int64_t i12 = i02 % ne12;
  7163. const int64_t i11 = i01 % ne11;
  7164. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  7165. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  7166. for (int64_t i0 = 0; i0 < ne00; ++i0) {
  7167. const int64_t i10 = i0 % ne10;
  7168. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11 + i10*nb10);
  7169. dst_ptr[i0] = src0_ptr[i0] * (*src1_ptr);
  7170. }
  7171. }
  7172. }
  7173. }
  7174. static void ggml_compute_forward_mul(
  7175. const struct ggml_compute_params * params,
  7176. struct ggml_tensor * dst) {
  7177. const struct ggml_tensor * src0 = dst->src[0];
  7178. const struct ggml_tensor * src1 = dst->src[1];
  7179. GGML_ASSERT(src1->type == GGML_TYPE_F32 && "only f32 src1 supported for now");
  7180. switch (src0->type) {
  7181. case GGML_TYPE_F32:
  7182. {
  7183. ggml_compute_forward_mul_f32(params, dst);
  7184. } break;
  7185. default:
  7186. {
  7187. GGML_ASSERT(false);
  7188. } break;
  7189. }
  7190. }
  7191. // ggml_compute_forward_div
  7192. static void ggml_compute_forward_div_f32(
  7193. const struct ggml_compute_params * params,
  7194. struct ggml_tensor * dst) {
  7195. const struct ggml_tensor * src0 = dst->src[0];
  7196. const struct ggml_tensor * src1 = dst->src[1];
  7197. GGML_ASSERT(ggml_can_repeat(src1, src0) && ggml_are_same_shape(src0, dst));
  7198. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7199. return;
  7200. }
  7201. const int ith = params->ith;
  7202. const int nth = params->nth;
  7203. const int64_t nr = ggml_nrows(src0);
  7204. GGML_TENSOR_BINARY_OP_LOCALS
  7205. GGML_ASSERT( nb0 == sizeof(float));
  7206. GGML_ASSERT(nb00 == sizeof(float));
  7207. if (nb10 == sizeof(float)) {
  7208. for (int64_t ir = ith; ir < nr; ir += nth) {
  7209. // src0 and dst are same shape => same indices
  7210. const int64_t i03 = ir/(ne02*ne01);
  7211. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  7212. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  7213. const int64_t i13 = i03 % ne13;
  7214. const int64_t i12 = i02 % ne12;
  7215. const int64_t i11 = i01 % ne11;
  7216. const int64_t nr0 = ne00 / ne10;
  7217. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  7218. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  7219. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11);
  7220. for (int64_t r = 0; r < nr0; ++r) {
  7221. #ifdef GGML_USE_ACCELERATE
  7222. UNUSED(ggml_vec_div_f32);
  7223. vDSP_vdiv(src1_ptr, 1, src0_ptr + r*ne10, 1, dst_ptr + r*ne10, 1, ne10);
  7224. #else
  7225. ggml_vec_div_f32(ne10, dst_ptr + r*ne10, src0_ptr + r*ne10, src1_ptr);
  7226. #endif
  7227. }
  7228. }
  7229. } else {
  7230. // src1 is not contiguous
  7231. for (int64_t ir = ith; ir < nr; ir += nth) {
  7232. // src0 and dst are same shape => same indices
  7233. // src1 is broadcastable across src0 and dst in i1, i2, i3
  7234. const int64_t i03 = ir/(ne02*ne01);
  7235. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  7236. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  7237. const int64_t i13 = i03 % ne13;
  7238. const int64_t i12 = i02 % ne12;
  7239. const int64_t i11 = i01 % ne11;
  7240. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  7241. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  7242. for (int64_t i0 = 0; i0 < ne00; ++i0) {
  7243. const int64_t i10 = i0 % ne10;
  7244. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11 + i10*nb10);
  7245. dst_ptr[i0] = src0_ptr[i0] / (*src1_ptr);
  7246. }
  7247. }
  7248. }
  7249. }
  7250. static void ggml_compute_forward_div(
  7251. const struct ggml_compute_params * params,
  7252. struct ggml_tensor * dst) {
  7253. const struct ggml_tensor * src0 = dst->src[0];
  7254. switch (src0->type) {
  7255. case GGML_TYPE_F32:
  7256. {
  7257. ggml_compute_forward_div_f32(params, dst);
  7258. } break;
  7259. default:
  7260. {
  7261. GGML_ASSERT(false);
  7262. } break;
  7263. }
  7264. }
  7265. // ggml_compute_forward_sqr
  7266. static void ggml_compute_forward_sqr_f32(
  7267. const struct ggml_compute_params * params,
  7268. struct ggml_tensor * dst) {
  7269. const struct ggml_tensor * src0 = dst->src[0];
  7270. assert(params->ith == 0);
  7271. assert(ggml_are_same_shape(src0, dst));
  7272. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7273. return;
  7274. }
  7275. const int n = ggml_nrows(src0);
  7276. const int nc = src0->ne[0];
  7277. assert( dst->nb[0] == sizeof(float));
  7278. assert(src0->nb[0] == sizeof(float));
  7279. for (int i = 0; i < n; i++) {
  7280. ggml_vec_sqr_f32(nc,
  7281. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7282. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7283. }
  7284. }
  7285. static void ggml_compute_forward_sqr(
  7286. const struct ggml_compute_params * params,
  7287. struct ggml_tensor * dst) {
  7288. const struct ggml_tensor * src0 = dst->src[0];
  7289. switch (src0->type) {
  7290. case GGML_TYPE_F32:
  7291. {
  7292. ggml_compute_forward_sqr_f32(params, dst);
  7293. } break;
  7294. default:
  7295. {
  7296. GGML_ASSERT(false);
  7297. } break;
  7298. }
  7299. }
  7300. // ggml_compute_forward_sqrt
  7301. static void ggml_compute_forward_sqrt_f32(
  7302. const struct ggml_compute_params * params,
  7303. struct ggml_tensor * dst) {
  7304. const struct ggml_tensor * src0 = dst->src[0];
  7305. assert(params->ith == 0);
  7306. assert(ggml_are_same_shape(src0, dst));
  7307. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7308. return;
  7309. }
  7310. const int n = ggml_nrows(src0);
  7311. const int nc = src0->ne[0];
  7312. assert( dst->nb[0] == sizeof(float));
  7313. assert(src0->nb[0] == sizeof(float));
  7314. for (int i = 0; i < n; i++) {
  7315. ggml_vec_sqrt_f32(nc,
  7316. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7317. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7318. }
  7319. }
  7320. static void ggml_compute_forward_sqrt(
  7321. const struct ggml_compute_params * params,
  7322. struct ggml_tensor * dst) {
  7323. const struct ggml_tensor * src0 = dst->src[0];
  7324. switch (src0->type) {
  7325. case GGML_TYPE_F32:
  7326. {
  7327. ggml_compute_forward_sqrt_f32(params, dst);
  7328. } break;
  7329. default:
  7330. {
  7331. GGML_ASSERT(false);
  7332. } break;
  7333. }
  7334. }
  7335. // ggml_compute_forward_log
  7336. static void ggml_compute_forward_log_f32(
  7337. const struct ggml_compute_params * params,
  7338. struct ggml_tensor * dst) {
  7339. const struct ggml_tensor * src0 = dst->src[0];
  7340. GGML_ASSERT(params->ith == 0);
  7341. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7342. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7343. return;
  7344. }
  7345. const int n = ggml_nrows(src0);
  7346. const int nc = src0->ne[0];
  7347. GGML_ASSERT( dst->nb[0] == sizeof(float));
  7348. GGML_ASSERT(src0->nb[0] == sizeof(float));
  7349. for (int i = 0; i < n; i++) {
  7350. ggml_vec_log_f32(nc,
  7351. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7352. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7353. }
  7354. }
  7355. static void ggml_compute_forward_log(
  7356. const struct ggml_compute_params * params,
  7357. struct ggml_tensor * dst) {
  7358. const struct ggml_tensor * src0 = dst->src[0];
  7359. switch (src0->type) {
  7360. case GGML_TYPE_F32:
  7361. {
  7362. ggml_compute_forward_log_f32(params, dst);
  7363. } break;
  7364. default:
  7365. {
  7366. GGML_ASSERT(false);
  7367. } break;
  7368. }
  7369. }
  7370. // ggml_compute_forward_sum
  7371. static void ggml_compute_forward_sum_f32(
  7372. const struct ggml_compute_params * params,
  7373. struct ggml_tensor * dst) {
  7374. const struct ggml_tensor * src0 = dst->src[0];
  7375. assert(params->ith == 0);
  7376. assert(ggml_is_scalar(dst));
  7377. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7378. return;
  7379. }
  7380. assert(ggml_is_scalar(dst));
  7381. assert(src0->nb[0] == sizeof(float));
  7382. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne)
  7383. GGML_TENSOR_LOCALS(size_t, nb0, src0, nb)
  7384. ggml_float sum = 0;
  7385. ggml_float row_sum = 0;
  7386. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7387. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7388. for (int64_t i01 = 0; i01 < ne01; i01++) {
  7389. ggml_vec_sum_f32_ggf(ne00,
  7390. &row_sum,
  7391. (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03));
  7392. sum += row_sum;
  7393. }
  7394. }
  7395. }
  7396. ((float *) dst->data)[0] = sum;
  7397. }
  7398. static void ggml_compute_forward_sum_f16(
  7399. const struct ggml_compute_params * params,
  7400. struct ggml_tensor * dst) {
  7401. const struct ggml_tensor * src0 = dst->src[0];
  7402. assert(params->ith == 0);
  7403. assert(ggml_is_scalar(dst));
  7404. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7405. return;
  7406. }
  7407. assert(src0->nb[0] == sizeof(ggml_fp16_t));
  7408. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne)
  7409. GGML_TENSOR_LOCALS(size_t, nb0, src0, nb)
  7410. float sum = 0;
  7411. float row_sum = 0;
  7412. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7413. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7414. for (int64_t i01 = 0; i01 < ne01; i01++) {
  7415. ggml_vec_sum_f16_ggf(ne00,
  7416. &row_sum,
  7417. (ggml_fp16_t *) ((char *) src0->data + i01 * nb01 + i02 * nb02 + i03 * nb03));
  7418. sum += row_sum;
  7419. }
  7420. }
  7421. }
  7422. ((ggml_fp16_t *) dst->data)[0] = GGML_FP32_TO_FP16(sum);
  7423. }
  7424. static void ggml_compute_forward_sum(
  7425. const struct ggml_compute_params * params,
  7426. struct ggml_tensor * dst) {
  7427. const struct ggml_tensor * src0 = dst->src[0];
  7428. switch (src0->type) {
  7429. case GGML_TYPE_F32:
  7430. {
  7431. ggml_compute_forward_sum_f32(params, dst);
  7432. } break;
  7433. case GGML_TYPE_F16:
  7434. {
  7435. ggml_compute_forward_sum_f16(params, dst);
  7436. } break;
  7437. default:
  7438. {
  7439. GGML_ASSERT(false);
  7440. } break;
  7441. }
  7442. }
  7443. // ggml_compute_forward_sum_rows
  7444. static void ggml_compute_forward_sum_rows_f32(
  7445. const struct ggml_compute_params * params,
  7446. struct ggml_tensor * dst) {
  7447. const struct ggml_tensor * src0 = dst->src[0];
  7448. GGML_ASSERT(params->ith == 0);
  7449. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7450. return;
  7451. }
  7452. GGML_ASSERT(src0->nb[0] == sizeof(float));
  7453. GGML_ASSERT(dst->nb[0] == sizeof(float));
  7454. GGML_TENSOR_UNARY_OP_LOCALS
  7455. GGML_ASSERT(ne0 == 1);
  7456. GGML_ASSERT(ne1 == ne01);
  7457. GGML_ASSERT(ne2 == ne02);
  7458. GGML_ASSERT(ne3 == ne03);
  7459. for (int64_t i3 = 0; i3 < ne03; i3++) {
  7460. for (int64_t i2 = 0; i2 < ne02; i2++) {
  7461. for (int64_t i1 = 0; i1 < ne01; i1++) {
  7462. float * src_row = (float *) ((char *) src0->data + i1*nb01 + i2*nb02 + i3*nb03);
  7463. float * dst_row = (float *) ((char *) dst->data + i1*nb1 + i2*nb2 + i3*nb3);
  7464. float row_sum = 0;
  7465. ggml_vec_sum_f32(ne00, &row_sum, src_row);
  7466. dst_row[0] = row_sum;
  7467. }
  7468. }
  7469. }
  7470. }
  7471. static void ggml_compute_forward_sum_rows(
  7472. const struct ggml_compute_params * params,
  7473. struct ggml_tensor * dst) {
  7474. const struct ggml_tensor * src0 = dst->src[0];
  7475. switch (src0->type) {
  7476. case GGML_TYPE_F32:
  7477. {
  7478. ggml_compute_forward_sum_rows_f32(params, dst);
  7479. } break;
  7480. default:
  7481. {
  7482. GGML_ASSERT(false);
  7483. } break;
  7484. }
  7485. }
  7486. // ggml_compute_forward_mean
  7487. static void ggml_compute_forward_mean_f32(
  7488. const struct ggml_compute_params * params,
  7489. struct ggml_tensor * dst) {
  7490. const struct ggml_tensor * src0 = dst->src[0];
  7491. assert(params->ith == 0);
  7492. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7493. return;
  7494. }
  7495. assert(src0->nb[0] == sizeof(float));
  7496. GGML_TENSOR_UNARY_OP_LOCALS
  7497. assert(ne0 == 1);
  7498. assert(ne1 == ne01);
  7499. assert(ne2 == ne02);
  7500. assert(ne3 == ne03);
  7501. UNUSED(ne0);
  7502. UNUSED(ne1);
  7503. UNUSED(ne2);
  7504. UNUSED(ne3);
  7505. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7506. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7507. for (int64_t i01 = 0; i01 < ne01; i01++) {
  7508. ggml_vec_sum_f32(ne00,
  7509. (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  7510. (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03));
  7511. *(float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3) /= (float) ne00;
  7512. }
  7513. }
  7514. }
  7515. }
  7516. static void ggml_compute_forward_mean(
  7517. const struct ggml_compute_params * params,
  7518. struct ggml_tensor * dst) {
  7519. const struct ggml_tensor * src0 = dst->src[0];
  7520. switch (src0->type) {
  7521. case GGML_TYPE_F32:
  7522. {
  7523. ggml_compute_forward_mean_f32(params, dst);
  7524. } break;
  7525. default:
  7526. {
  7527. GGML_ASSERT(false);
  7528. } break;
  7529. }
  7530. }
  7531. // ggml_compute_forward_argmax
  7532. static void ggml_compute_forward_argmax_f32(
  7533. const struct ggml_compute_params * params,
  7534. struct ggml_tensor * dst) {
  7535. const struct ggml_tensor * src0 = dst->src[0];
  7536. assert(params->ith == 0);
  7537. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7538. return;
  7539. }
  7540. assert(src0->nb[0] == sizeof(float));
  7541. assert(dst->nb[0] == sizeof(float));
  7542. const int64_t ne00 = src0->ne[0];
  7543. const int64_t ne01 = src0->ne[1];
  7544. const size_t nb01 = src0->nb[1];
  7545. const size_t nb0 = dst->nb[0];
  7546. for (int64_t i1 = 0; i1 < ne01; i1++) {
  7547. float * src = (float *) ((char *) src0->data + i1*nb01);
  7548. int32_t * dst_ = (int32_t *) ((char *) dst->data + i1*nb0);
  7549. int v = 0;
  7550. ggml_vec_argmax_f32(ne00, &v, src);
  7551. dst_[0] = v;
  7552. }
  7553. }
  7554. static void ggml_compute_forward_argmax(
  7555. const struct ggml_compute_params * params,
  7556. struct ggml_tensor * dst) {
  7557. const struct ggml_tensor * src0 = dst->src[0];
  7558. switch (src0->type) {
  7559. case GGML_TYPE_F32:
  7560. {
  7561. ggml_compute_forward_argmax_f32(params, dst);
  7562. } break;
  7563. default:
  7564. {
  7565. GGML_ASSERT(false);
  7566. } break;
  7567. }
  7568. }
  7569. // ggml_compute_forward_repeat
  7570. static void ggml_compute_forward_repeat_f32(
  7571. const struct ggml_compute_params * params,
  7572. struct ggml_tensor * dst) {
  7573. const struct ggml_tensor * src0 = dst->src[0];
  7574. GGML_ASSERT(params->ith == 0);
  7575. GGML_ASSERT(ggml_can_repeat(src0, dst));
  7576. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7577. return;
  7578. }
  7579. GGML_TENSOR_UNARY_OP_LOCALS
  7580. // guaranteed to be an integer due to the check in ggml_can_repeat
  7581. const int nr0 = (int)(ne0/ne00);
  7582. const int nr1 = (int)(ne1/ne01);
  7583. const int nr2 = (int)(ne2/ne02);
  7584. const int nr3 = (int)(ne3/ne03);
  7585. // TODO: support for transposed / permuted tensors
  7586. GGML_ASSERT(nb0 == sizeof(float));
  7587. GGML_ASSERT(nb00 == sizeof(float));
  7588. // TODO: maybe this is not optimal?
  7589. for (int i3 = 0; i3 < nr3; i3++) {
  7590. for (int k3 = 0; k3 < ne03; k3++) {
  7591. for (int i2 = 0; i2 < nr2; i2++) {
  7592. for (int k2 = 0; k2 < ne02; k2++) {
  7593. for (int i1 = 0; i1 < nr1; i1++) {
  7594. for (int k1 = 0; k1 < ne01; k1++) {
  7595. for (int i0 = 0; i0 < nr0; i0++) {
  7596. ggml_vec_cpy_f32(ne00,
  7597. (float *) ((char *) dst->data + (i3*ne03 + k3)*nb3 + (i2*ne02 + k2)*nb2 + (i1*ne01 + k1)*nb1 + (i0*ne00)*nb0),
  7598. (float *) ((char *) src0->data + ( k3)*nb03 + ( k2)*nb02 + ( k1)*nb01));
  7599. }
  7600. }
  7601. }
  7602. }
  7603. }
  7604. }
  7605. }
  7606. }
  7607. static void ggml_compute_forward_repeat_f16(
  7608. const struct ggml_compute_params * params,
  7609. struct ggml_tensor * dst) {
  7610. const struct ggml_tensor * src0 = dst->src[0];
  7611. GGML_ASSERT(params->ith == 0);
  7612. GGML_ASSERT(ggml_can_repeat(src0, dst));
  7613. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7614. return;
  7615. }
  7616. GGML_TENSOR_UNARY_OP_LOCALS
  7617. // guaranteed to be an integer due to the check in ggml_can_repeat
  7618. const int nr0 = (int)(ne0/ne00);
  7619. const int nr1 = (int)(ne1/ne01);
  7620. const int nr2 = (int)(ne2/ne02);
  7621. const int nr3 = (int)(ne3/ne03);
  7622. // TODO: support for transposed / permuted tensors
  7623. GGML_ASSERT(nb0 == sizeof(ggml_fp16_t));
  7624. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  7625. // TODO: maybe this is not optimal?
  7626. for (int i3 = 0; i3 < nr3; i3++) {
  7627. for (int k3 = 0; k3 < ne03; k3++) {
  7628. for (int i2 = 0; i2 < nr2; i2++) {
  7629. for (int k2 = 0; k2 < ne02; k2++) {
  7630. for (int i1 = 0; i1 < nr1; i1++) {
  7631. for (int k1 = 0; k1 < ne01; k1++) {
  7632. for (int i0 = 0; i0 < nr0; i0++) {
  7633. ggml_fp16_t * y = (ggml_fp16_t *) ((char *) dst->data + (i3*ne03 + k3)*nb3 + (i2*ne02 + k2)*nb2 + (i1*ne01 + k1)*nb1 + (i0*ne00)*nb0);
  7634. ggml_fp16_t * x = (ggml_fp16_t *) ((char *) src0->data + ( k3)*nb03 + ( k2)*nb02 + ( k1)*nb01);
  7635. // ggml_vec_cpy_f16(ne00, y, x)
  7636. for (int i = 0; i < ne00; ++i) {
  7637. y[i] = x[i];
  7638. }
  7639. }
  7640. }
  7641. }
  7642. }
  7643. }
  7644. }
  7645. }
  7646. }
  7647. static void ggml_compute_forward_repeat(
  7648. const struct ggml_compute_params * params,
  7649. struct ggml_tensor * dst) {
  7650. const struct ggml_tensor * src0 = dst->src[0];
  7651. switch (src0->type) {
  7652. case GGML_TYPE_F16:
  7653. case GGML_TYPE_I16:
  7654. {
  7655. ggml_compute_forward_repeat_f16(params, dst);
  7656. } break;
  7657. case GGML_TYPE_F32:
  7658. case GGML_TYPE_I32:
  7659. {
  7660. ggml_compute_forward_repeat_f32(params, dst);
  7661. } break;
  7662. default:
  7663. {
  7664. GGML_ASSERT(false);
  7665. } break;
  7666. }
  7667. }
  7668. // ggml_compute_forward_repeat_back
  7669. static void ggml_compute_forward_repeat_back_f32(
  7670. const struct ggml_compute_params * params,
  7671. struct ggml_tensor * dst) {
  7672. const struct ggml_tensor * src0 = dst->src[0];
  7673. GGML_ASSERT(params->ith == 0);
  7674. GGML_ASSERT(ggml_can_repeat(dst, src0));
  7675. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7676. return;
  7677. }
  7678. GGML_TENSOR_UNARY_OP_LOCALS
  7679. // guaranteed to be an integer due to the check in ggml_can_repeat
  7680. const int nr0 = (int)(ne00/ne0);
  7681. const int nr1 = (int)(ne01/ne1);
  7682. const int nr2 = (int)(ne02/ne2);
  7683. const int nr3 = (int)(ne03/ne3);
  7684. // TODO: support for transposed / permuted tensors
  7685. GGML_ASSERT(nb0 == sizeof(float));
  7686. GGML_ASSERT(nb00 == sizeof(float));
  7687. if (ggml_is_contiguous(dst)) {
  7688. ggml_vec_set_f32(ne0*ne1*ne2*ne3, dst->data, 0);
  7689. } else {
  7690. for (int k3 = 0; k3 < ne3; k3++) {
  7691. for (int k2 = 0; k2 < ne2; k2++) {
  7692. for (int k1 = 0; k1 < ne1; k1++) {
  7693. ggml_vec_set_f32(ne0,
  7694. (float *) ((char *) dst->data + k1*nb1 + k2*nb2 + k3*nb3),
  7695. 0);
  7696. }
  7697. }
  7698. }
  7699. }
  7700. // TODO: maybe this is not optimal?
  7701. for (int i3 = 0; i3 < nr3; i3++) {
  7702. for (int k3 = 0; k3 < ne3; k3++) {
  7703. for (int i2 = 0; i2 < nr2; i2++) {
  7704. for (int k2 = 0; k2 < ne2; k2++) {
  7705. for (int i1 = 0; i1 < nr1; i1++) {
  7706. for (int k1 = 0; k1 < ne1; k1++) {
  7707. for (int i0 = 0; i0 < nr0; i0++) {
  7708. ggml_vec_acc_f32(ne0,
  7709. (float *) ((char *) dst->data + ( k3)*nb3 + ( k2)*nb2 + ( k1)*nb1),
  7710. (float *) ((char *) src0->data + (i3*ne3 + k3)*nb03 + (i2*ne2 + k2)*nb02 + (i1*ne1 + k1)*nb01 + (i0*ne0)*nb00));
  7711. }
  7712. }
  7713. }
  7714. }
  7715. }
  7716. }
  7717. }
  7718. }
  7719. static void ggml_compute_forward_repeat_back(
  7720. const struct ggml_compute_params * params,
  7721. struct ggml_tensor * dst) {
  7722. const struct ggml_tensor * src0 = dst->src[0];
  7723. switch (src0->type) {
  7724. case GGML_TYPE_F32:
  7725. {
  7726. ggml_compute_forward_repeat_back_f32(params, dst);
  7727. } break;
  7728. default:
  7729. {
  7730. GGML_ASSERT(false);
  7731. } break;
  7732. }
  7733. }
  7734. // ggml_compute_forward_concat
  7735. static void ggml_compute_forward_concat_f32(
  7736. const struct ggml_compute_params * params,
  7737. struct ggml_tensor * dst) {
  7738. const struct ggml_tensor * src0 = dst->src[0];
  7739. const struct ggml_tensor * src1 = dst->src[1];
  7740. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7741. return;
  7742. }
  7743. GGML_ASSERT(src0->nb[0] == sizeof(float));
  7744. const int ith = params->ith;
  7745. const int nth = params->nth;
  7746. GGML_TENSOR_BINARY_OP_LOCALS
  7747. // TODO: support for transposed / permuted tensors
  7748. GGML_ASSERT(nb0 == sizeof(float));
  7749. GGML_ASSERT(nb00 == sizeof(float));
  7750. GGML_ASSERT(nb10 == sizeof(float));
  7751. for (int i3 = 0; i3 < ne3; i3++) {
  7752. for (int i2 = ith; i2 < ne2; i2 += nth) {
  7753. if (i2 < ne02) { // src0
  7754. for (int i1 = 0; i1 < ne1; i1++) {
  7755. for (int i0 = 0; i0 < ne0; i0++) {
  7756. const float * x = (float *)((char *) src0->data + i0 * nb00 + i1 * nb01 + i2 * nb02 + i3 * nb03);
  7757. float * y = (float *)((char *)dst->data + i0 * nb0 + i1 * nb1 + i2 * nb2 + i3 * nb3);
  7758. *y = *x;
  7759. }
  7760. }
  7761. } // src1
  7762. else {
  7763. for (int i1 = 0; i1 < ne1; i1++) {
  7764. for (int i0 = 0; i0 < ne0; i0++) {
  7765. const float * x = (float *)((char *) src1->data + i0 * nb10 + i1 * nb11 + (i2 - ne02) * nb12 + i3 * nb13);
  7766. float * y = (float *)((char *)dst->data + i0 * nb0 + i1 * nb1 + i2 * nb2 + i3 * nb3);
  7767. *y = *x;
  7768. }
  7769. }
  7770. }
  7771. }
  7772. }
  7773. }
  7774. static void ggml_compute_forward_concat(
  7775. const struct ggml_compute_params* params,
  7776. struct ggml_tensor* dst) {
  7777. const struct ggml_tensor * src0 = dst->src[0];
  7778. switch (src0->type) {
  7779. case GGML_TYPE_F32:
  7780. case GGML_TYPE_I32:
  7781. {
  7782. ggml_compute_forward_concat_f32(params, dst);
  7783. } break;
  7784. default:
  7785. {
  7786. GGML_ASSERT(false);
  7787. } break;
  7788. }
  7789. }
  7790. // ggml_compute_forward_abs
  7791. static void ggml_compute_forward_abs_f32(
  7792. const struct ggml_compute_params * params,
  7793. struct ggml_tensor * dst) {
  7794. const struct ggml_tensor * src0 = dst->src[0];
  7795. assert(params->ith == 0);
  7796. assert(ggml_are_same_shape(src0, dst));
  7797. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7798. return;
  7799. }
  7800. const int n = ggml_nrows(src0);
  7801. const int nc = src0->ne[0];
  7802. assert(dst->nb[0] == sizeof(float));
  7803. assert(src0->nb[0] == sizeof(float));
  7804. for (int i = 0; i < n; i++) {
  7805. ggml_vec_abs_f32(nc,
  7806. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7807. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7808. }
  7809. }
  7810. static void ggml_compute_forward_abs(
  7811. const struct ggml_compute_params * params,
  7812. struct ggml_tensor * dst) {
  7813. const struct ggml_tensor * src0 = dst->src[0];
  7814. switch (src0->type) {
  7815. case GGML_TYPE_F32:
  7816. {
  7817. ggml_compute_forward_abs_f32(params, dst);
  7818. } break;
  7819. default:
  7820. {
  7821. GGML_ASSERT(false);
  7822. } break;
  7823. }
  7824. }
  7825. // ggml_compute_forward_sgn
  7826. static void ggml_compute_forward_sgn_f32(
  7827. const struct ggml_compute_params * params,
  7828. struct ggml_tensor * dst) {
  7829. const struct ggml_tensor * src0 = dst->src[0];
  7830. assert(params->ith == 0);
  7831. assert(ggml_are_same_shape(src0, dst));
  7832. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7833. return;
  7834. }
  7835. const int n = ggml_nrows(src0);
  7836. const int nc = src0->ne[0];
  7837. assert(dst->nb[0] == sizeof(float));
  7838. assert(src0->nb[0] == sizeof(float));
  7839. for (int i = 0; i < n; i++) {
  7840. ggml_vec_sgn_f32(nc,
  7841. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7842. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7843. }
  7844. }
  7845. static void ggml_compute_forward_sgn(
  7846. const struct ggml_compute_params * params,
  7847. struct ggml_tensor * dst) {
  7848. const struct ggml_tensor * src0 = dst->src[0];
  7849. switch (src0->type) {
  7850. case GGML_TYPE_F32:
  7851. {
  7852. ggml_compute_forward_sgn_f32(params, dst);
  7853. } break;
  7854. default:
  7855. {
  7856. GGML_ASSERT(false);
  7857. } break;
  7858. }
  7859. }
  7860. // ggml_compute_forward_neg
  7861. static void ggml_compute_forward_neg_f32(
  7862. const struct ggml_compute_params * params,
  7863. struct ggml_tensor * dst) {
  7864. const struct ggml_tensor * src0 = dst->src[0];
  7865. assert(params->ith == 0);
  7866. assert(ggml_are_same_shape(src0, dst));
  7867. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7868. return;
  7869. }
  7870. const int n = ggml_nrows(src0);
  7871. const int nc = src0->ne[0];
  7872. assert(dst->nb[0] == sizeof(float));
  7873. assert(src0->nb[0] == sizeof(float));
  7874. for (int i = 0; i < n; i++) {
  7875. ggml_vec_neg_f32(nc,
  7876. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7877. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7878. }
  7879. }
  7880. static void ggml_compute_forward_neg(
  7881. const struct ggml_compute_params * params,
  7882. struct ggml_tensor * dst) {
  7883. const struct ggml_tensor * src0 = dst->src[0];
  7884. switch (src0->type) {
  7885. case GGML_TYPE_F32:
  7886. {
  7887. ggml_compute_forward_neg_f32(params, dst);
  7888. } break;
  7889. default:
  7890. {
  7891. GGML_ASSERT(false);
  7892. } break;
  7893. }
  7894. }
  7895. // ggml_compute_forward_step
  7896. static void ggml_compute_forward_step_f32(
  7897. const struct ggml_compute_params * params,
  7898. struct ggml_tensor * dst) {
  7899. const struct ggml_tensor * src0 = dst->src[0];
  7900. assert(params->ith == 0);
  7901. assert(ggml_are_same_shape(src0, dst));
  7902. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7903. return;
  7904. }
  7905. const int n = ggml_nrows(src0);
  7906. const int nc = src0->ne[0];
  7907. assert(dst->nb[0] == sizeof(float));
  7908. assert(src0->nb[0] == sizeof(float));
  7909. for (int i = 0; i < n; i++) {
  7910. ggml_vec_step_f32(nc,
  7911. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7912. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7913. }
  7914. }
  7915. static void ggml_compute_forward_step(
  7916. const struct ggml_compute_params * params,
  7917. struct ggml_tensor * dst) {
  7918. const struct ggml_tensor * src0 = dst->src[0];
  7919. switch (src0->type) {
  7920. case GGML_TYPE_F32:
  7921. {
  7922. ggml_compute_forward_step_f32(params, dst);
  7923. } break;
  7924. default:
  7925. {
  7926. GGML_ASSERT(false);
  7927. } break;
  7928. }
  7929. }
  7930. // ggml_compute_forward_tanh
  7931. static void ggml_compute_forward_tanh_f32(
  7932. const struct ggml_compute_params * params,
  7933. struct ggml_tensor * dst) {
  7934. const struct ggml_tensor * src0 = dst->src[0];
  7935. assert(params->ith == 0);
  7936. assert(ggml_are_same_shape(src0, dst));
  7937. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7938. return;
  7939. }
  7940. const int n = ggml_nrows(src0);
  7941. const int nc = src0->ne[0];
  7942. assert(dst->nb[0] == sizeof(float));
  7943. assert(src0->nb[0] == sizeof(float));
  7944. for (int i = 0; i < n; i++) {
  7945. ggml_vec_tanh_f32(nc,
  7946. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7947. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7948. }
  7949. }
  7950. static void ggml_compute_forward_tanh(
  7951. const struct ggml_compute_params * params,
  7952. struct ggml_tensor * dst) {
  7953. const struct ggml_tensor * src0 = dst->src[0];
  7954. switch (src0->type) {
  7955. case GGML_TYPE_F32:
  7956. {
  7957. ggml_compute_forward_tanh_f32(params, dst);
  7958. } break;
  7959. default:
  7960. {
  7961. GGML_ASSERT(false);
  7962. } break;
  7963. }
  7964. }
  7965. // ggml_compute_forward_elu
  7966. static void ggml_compute_forward_elu_f32(
  7967. const struct ggml_compute_params * params,
  7968. struct ggml_tensor * dst) {
  7969. const struct ggml_tensor * src0 = dst->src[0];
  7970. assert(params->ith == 0);
  7971. assert(ggml_are_same_shape(src0, dst));
  7972. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7973. return;
  7974. }
  7975. const int n = ggml_nrows(src0);
  7976. const int nc = src0->ne[0];
  7977. assert(dst->nb[0] == sizeof(float));
  7978. assert(src0->nb[0] == sizeof(float));
  7979. for (int i = 0; i < n; i++) {
  7980. ggml_vec_elu_f32(nc,
  7981. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7982. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7983. }
  7984. }
  7985. static void ggml_compute_forward_elu(
  7986. const struct ggml_compute_params * params,
  7987. struct ggml_tensor * dst) {
  7988. const struct ggml_tensor * src0 = dst->src[0];
  7989. switch (src0->type) {
  7990. case GGML_TYPE_F32:
  7991. {
  7992. ggml_compute_forward_elu_f32(params, dst);
  7993. } break;
  7994. default:
  7995. {
  7996. GGML_ASSERT(false);
  7997. } break;
  7998. }
  7999. }
  8000. // ggml_compute_forward_relu
  8001. static void ggml_compute_forward_relu_f32(
  8002. const struct ggml_compute_params * params,
  8003. struct ggml_tensor * dst) {
  8004. const struct ggml_tensor * src0 = dst->src[0];
  8005. assert(params->ith == 0);
  8006. assert(ggml_are_same_shape(src0, dst));
  8007. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8008. return;
  8009. }
  8010. const int n = ggml_nrows(src0);
  8011. const int nc = src0->ne[0];
  8012. assert(dst->nb[0] == sizeof(float));
  8013. assert(src0->nb[0] == sizeof(float));
  8014. for (int i = 0; i < n; i++) {
  8015. ggml_vec_relu_f32(nc,
  8016. (float *) ((char *) dst->data + i*( dst->nb[1])),
  8017. (float *) ((char *) src0->data + i*(src0->nb[1])));
  8018. }
  8019. }
  8020. static void ggml_compute_forward_relu(
  8021. const struct ggml_compute_params * params,
  8022. struct ggml_tensor * dst) {
  8023. const struct ggml_tensor * src0 = dst->src[0];
  8024. switch (src0->type) {
  8025. case GGML_TYPE_F32:
  8026. {
  8027. ggml_compute_forward_relu_f32(params, dst);
  8028. } break;
  8029. default:
  8030. {
  8031. GGML_ASSERT(false);
  8032. } break;
  8033. }
  8034. }
  8035. // ggml_compute_forward_gelu
  8036. static void ggml_compute_forward_gelu_f32(
  8037. const struct ggml_compute_params * params,
  8038. struct ggml_tensor * dst) {
  8039. const struct ggml_tensor * src0 = dst->src[0];
  8040. GGML_ASSERT(ggml_is_contiguous_except_dim_1(src0));
  8041. GGML_ASSERT(ggml_is_contiguous_except_dim_1(dst));
  8042. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8043. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8044. return;
  8045. }
  8046. const int ith = params->ith;
  8047. const int nth = params->nth;
  8048. const int nc = src0->ne[0];
  8049. const int nr = ggml_nrows(src0);
  8050. // rows per thread
  8051. const int dr = (nr + nth - 1)/nth;
  8052. // row range for this thread
  8053. const int ir0 = dr*ith;
  8054. const int ir1 = MIN(ir0 + dr, nr);
  8055. for (int i1 = ir0; i1 < ir1; i1++) {
  8056. ggml_vec_gelu_f32(nc,
  8057. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  8058. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  8059. #ifndef NDEBUG
  8060. for (int k = 0; k < nc; k++) {
  8061. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  8062. UNUSED(x);
  8063. assert(!isnan(x));
  8064. assert(!isinf(x));
  8065. }
  8066. #endif
  8067. }
  8068. }
  8069. static void ggml_compute_forward_gelu(
  8070. const struct ggml_compute_params * params,
  8071. struct ggml_tensor * dst) {
  8072. const struct ggml_tensor * src0 = dst->src[0];
  8073. switch (src0->type) {
  8074. case GGML_TYPE_F32:
  8075. {
  8076. ggml_compute_forward_gelu_f32(params, dst);
  8077. } break;
  8078. default:
  8079. {
  8080. GGML_ASSERT(false);
  8081. } break;
  8082. }
  8083. }
  8084. // ggml_compute_forward_gelu_quick
  8085. static void ggml_compute_forward_gelu_quick_f32(
  8086. const struct ggml_compute_params * params,
  8087. struct ggml_tensor * dst) {
  8088. const struct ggml_tensor * src0 = dst->src[0];
  8089. GGML_ASSERT(ggml_is_contiguous_except_dim_1(src0));
  8090. GGML_ASSERT(ggml_is_contiguous_except_dim_1(dst));
  8091. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8092. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8093. return;
  8094. }
  8095. const int ith = params->ith;
  8096. const int nth = params->nth;
  8097. const int nc = src0->ne[0];
  8098. const int nr = ggml_nrows(src0);
  8099. // rows per thread
  8100. const int dr = (nr + nth - 1)/nth;
  8101. // row range for this thread
  8102. const int ir0 = dr*ith;
  8103. const int ir1 = MIN(ir0 + dr, nr);
  8104. for (int i1 = ir0; i1 < ir1; i1++) {
  8105. ggml_vec_gelu_quick_f32(nc,
  8106. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  8107. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  8108. #ifndef NDEBUG
  8109. for (int k = 0; k < nc; k++) {
  8110. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  8111. UNUSED(x);
  8112. assert(!isnan(x));
  8113. assert(!isinf(x));
  8114. }
  8115. #endif
  8116. }
  8117. }
  8118. static void ggml_compute_forward_gelu_quick(
  8119. const struct ggml_compute_params * params,
  8120. struct ggml_tensor * dst) {
  8121. const struct ggml_tensor * src0 = dst->src[0];
  8122. switch (src0->type) {
  8123. case GGML_TYPE_F32:
  8124. {
  8125. ggml_compute_forward_gelu_quick_f32(params, dst);
  8126. } break;
  8127. default:
  8128. {
  8129. GGML_ASSERT(false);
  8130. } break;
  8131. }
  8132. }
  8133. // ggml_compute_forward_silu
  8134. static void ggml_compute_forward_silu_f32(
  8135. const struct ggml_compute_params * params,
  8136. struct ggml_tensor * dst) {
  8137. const struct ggml_tensor * src0 = dst->src[0];
  8138. GGML_ASSERT(ggml_is_contiguous_except_dim_1(src0));
  8139. GGML_ASSERT(ggml_is_contiguous_except_dim_1(dst));
  8140. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8141. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8142. return;
  8143. }
  8144. const int ith = params->ith;
  8145. const int nth = params->nth;
  8146. const int nc = src0->ne[0];
  8147. const int nr = ggml_nrows(src0);
  8148. // rows per thread
  8149. const int dr = (nr + nth - 1)/nth;
  8150. // row range for this thread
  8151. const int ir0 = dr*ith;
  8152. const int ir1 = MIN(ir0 + dr, nr);
  8153. for (int i1 = ir0; i1 < ir1; i1++) {
  8154. ggml_vec_silu_f32(nc,
  8155. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  8156. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  8157. #ifndef NDEBUG
  8158. for (int k = 0; k < nc; k++) {
  8159. const float x = ((float *) ((char *) dst->data + i1*(dst->nb[1])))[k];
  8160. UNUSED(x);
  8161. assert(!isnan(x));
  8162. assert(!isinf(x));
  8163. }
  8164. #endif
  8165. }
  8166. }
  8167. static void ggml_compute_forward_silu(
  8168. const struct ggml_compute_params * params,
  8169. struct ggml_tensor * dst) {
  8170. const struct ggml_tensor * src0 = dst->src[0];
  8171. switch (src0->type) {
  8172. case GGML_TYPE_F32:
  8173. {
  8174. ggml_compute_forward_silu_f32(params, dst);
  8175. } break;
  8176. default:
  8177. {
  8178. GGML_ASSERT(false);
  8179. } break;
  8180. }
  8181. }
  8182. // ggml_compute_forward_leaky_relu
  8183. static void ggml_compute_forward_leaky_relu_f32(
  8184. const struct ggml_compute_params * params,
  8185. struct ggml_tensor * dst) {
  8186. const struct ggml_tensor * src0 = dst->src[0];
  8187. assert(params->ith == 0);
  8188. assert(ggml_are_same_shape(src0, dst));
  8189. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8190. return;
  8191. }
  8192. const int n = ggml_nrows(src0);
  8193. const int nc = src0->ne[0];
  8194. float negative_slope;
  8195. memcpy(&negative_slope, dst->op_params, sizeof(float));
  8196. assert(dst->nb[0] == sizeof(float));
  8197. assert(src0->nb[0] == sizeof(float));
  8198. for (int i = 0; i < n; i++) {
  8199. ggml_vec_leaky_relu_f32(nc,
  8200. (float *) ((char *) dst->data + i*( dst->nb[1])),
  8201. (float *) ((char *) src0->data + i*(src0->nb[1])), negative_slope);
  8202. }
  8203. }
  8204. static void ggml_compute_forward_leaky_relu(
  8205. const struct ggml_compute_params * params,
  8206. struct ggml_tensor * dst) {
  8207. const struct ggml_tensor * src0 = dst->src[0];
  8208. switch (src0->type) {
  8209. case GGML_TYPE_F32:
  8210. {
  8211. ggml_compute_forward_leaky_relu_f32(params, dst);
  8212. } break;
  8213. default:
  8214. {
  8215. GGML_ASSERT(false);
  8216. } break;
  8217. }
  8218. }
  8219. // ggml_compute_forward_silu_back
  8220. static void ggml_compute_forward_silu_back_f32(
  8221. const struct ggml_compute_params * params,
  8222. struct ggml_tensor * dst) {
  8223. const struct ggml_tensor * src0 = dst->src[0];
  8224. const struct ggml_tensor * grad = dst->src[1];
  8225. GGML_ASSERT(ggml_is_contiguous_except_dim_1(grad));
  8226. GGML_ASSERT(ggml_is_contiguous_except_dim_1(src0));
  8227. GGML_ASSERT(ggml_is_contiguous_except_dim_1(dst));
  8228. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8229. GGML_ASSERT(ggml_are_same_shape(src0, grad));
  8230. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8231. return;
  8232. }
  8233. const int ith = params->ith;
  8234. const int nth = params->nth;
  8235. const int nc = src0->ne[0];
  8236. const int nr = ggml_nrows(src0);
  8237. // rows per thread
  8238. const int dr = (nr + nth - 1)/nth;
  8239. // row range for this thread
  8240. const int ir0 = dr*ith;
  8241. const int ir1 = MIN(ir0 + dr, nr);
  8242. for (int i1 = ir0; i1 < ir1; i1++) {
  8243. ggml_vec_silu_backward_f32(nc,
  8244. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  8245. (float *) ((char *) src0->data + i1*(src0->nb[1])),
  8246. (float *) ((char *) grad->data + i1*(grad->nb[1])));
  8247. #ifndef NDEBUG
  8248. for (int k = 0; k < nc; k++) {
  8249. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  8250. UNUSED(x);
  8251. assert(!isnan(x));
  8252. assert(!isinf(x));
  8253. }
  8254. #endif
  8255. }
  8256. }
  8257. static void ggml_compute_forward_silu_back(
  8258. const struct ggml_compute_params * params,
  8259. struct ggml_tensor * dst) {
  8260. const struct ggml_tensor * src0 = dst->src[0];
  8261. switch (src0->type) {
  8262. case GGML_TYPE_F32:
  8263. {
  8264. ggml_compute_forward_silu_back_f32(params, dst);
  8265. } break;
  8266. default:
  8267. {
  8268. GGML_ASSERT(false);
  8269. } break;
  8270. }
  8271. }
  8272. static void ggml_compute_forward_hardswish_f32(
  8273. const struct ggml_compute_params * params,
  8274. struct ggml_tensor * dst) {
  8275. const struct ggml_tensor * src0 = dst->src[0];
  8276. assert(params->ith == 0);
  8277. assert(ggml_are_same_shape(src0, dst));
  8278. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8279. return;
  8280. }
  8281. const int n = ggml_nrows(src0);
  8282. const int nc = src0->ne[0];
  8283. assert(dst->nb[0] == sizeof(float));
  8284. assert(src0->nb[0] == sizeof(float));
  8285. for (int i = 0; i < n; i++) {
  8286. ggml_vec_hardswish_f32(nc,
  8287. (float *) ((char *) dst->data + i*( dst->nb[1])),
  8288. (float *) ((char *) src0->data + i*(src0->nb[1])));
  8289. }
  8290. }
  8291. static void ggml_compute_forward_hardswish(
  8292. const struct ggml_compute_params * params,
  8293. struct ggml_tensor * dst) {
  8294. const struct ggml_tensor * src0 = dst->src[0];
  8295. switch (src0->type) {
  8296. case GGML_TYPE_F32:
  8297. {
  8298. ggml_compute_forward_hardswish_f32(params, dst);
  8299. } break;
  8300. default:
  8301. {
  8302. GGML_ASSERT(false);
  8303. } break;
  8304. }
  8305. }
  8306. static void ggml_compute_forward_hardsigmoid_f32(
  8307. const struct ggml_compute_params * params,
  8308. struct ggml_tensor * dst) {
  8309. const struct ggml_tensor * src0 = dst->src[0];
  8310. assert(params->ith == 0);
  8311. assert(ggml_are_same_shape(src0, dst));
  8312. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8313. return;
  8314. }
  8315. const int n = ggml_nrows(src0);
  8316. const int nc = src0->ne[0];
  8317. assert(dst->nb[0] == sizeof(float));
  8318. assert(src0->nb[0] == sizeof(float));
  8319. for (int i = 0; i < n; i++) {
  8320. ggml_vec_hardsigmoid_f32(nc,
  8321. (float *) ((char *) dst->data + i*( dst->nb[1])),
  8322. (float *) ((char *) src0->data + i*(src0->nb[1])));
  8323. }
  8324. }
  8325. static void ggml_compute_forward_hardsigmoid(
  8326. const struct ggml_compute_params * params,
  8327. struct ggml_tensor * dst) {
  8328. const struct ggml_tensor * src0 = dst->src[0];
  8329. switch (src0->type) {
  8330. case GGML_TYPE_F32:
  8331. {
  8332. ggml_compute_forward_hardsigmoid_f32(params, dst);
  8333. } break;
  8334. default:
  8335. {
  8336. GGML_ASSERT(false);
  8337. } break;
  8338. }
  8339. }
  8340. // ggml_compute_forward_norm
  8341. static void ggml_compute_forward_norm_f32(
  8342. const struct ggml_compute_params * params,
  8343. struct ggml_tensor * dst) {
  8344. const struct ggml_tensor * src0 = dst->src[0];
  8345. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8346. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8347. return;
  8348. }
  8349. GGML_ASSERT(src0->nb[0] == sizeof(float));
  8350. const int ith = params->ith;
  8351. const int nth = params->nth;
  8352. GGML_TENSOR_UNARY_OP_LOCALS
  8353. float eps;
  8354. memcpy(&eps, dst->op_params, sizeof(float));
  8355. GGML_ASSERT(eps > 0.0f);
  8356. // TODO: optimize
  8357. for (int64_t i03 = 0; i03 < ne03; i03++) {
  8358. for (int64_t i02 = 0; i02 < ne02; i02++) {
  8359. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  8360. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  8361. ggml_float sum = 0.0;
  8362. for (int64_t i00 = 0; i00 < ne00; i00++) {
  8363. sum += (ggml_float)x[i00];
  8364. }
  8365. float mean = sum/ne00;
  8366. float * y = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  8367. ggml_float sum2 = 0.0;
  8368. for (int64_t i00 = 0; i00 < ne00; i00++) {
  8369. float v = x[i00] - mean;
  8370. y[i00] = v;
  8371. sum2 += (ggml_float)(v*v);
  8372. }
  8373. float variance = sum2/ne00;
  8374. const float scale = 1.0f/sqrtf(variance + eps);
  8375. ggml_vec_scale_f32(ne00, y, scale);
  8376. }
  8377. }
  8378. }
  8379. }
  8380. static void ggml_compute_forward_norm(
  8381. const struct ggml_compute_params * params,
  8382. struct ggml_tensor * dst) {
  8383. const struct ggml_tensor * src0 = dst->src[0];
  8384. switch (src0->type) {
  8385. case GGML_TYPE_F32:
  8386. {
  8387. ggml_compute_forward_norm_f32(params, dst);
  8388. } break;
  8389. default:
  8390. {
  8391. GGML_ASSERT(false);
  8392. } break;
  8393. }
  8394. }
  8395. // ggml_compute_forward_group_rms_norm
  8396. static void ggml_compute_forward_rms_norm_f32(
  8397. const struct ggml_compute_params * params,
  8398. struct ggml_tensor * dst) {
  8399. const struct ggml_tensor * src0 = dst->src[0];
  8400. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8401. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8402. return;
  8403. }
  8404. GGML_ASSERT(src0->nb[0] == sizeof(float));
  8405. const int ith = params->ith;
  8406. const int nth = params->nth;
  8407. GGML_TENSOR_UNARY_OP_LOCALS
  8408. float eps;
  8409. memcpy(&eps, dst->op_params, sizeof(float));
  8410. GGML_ASSERT(eps > 0.0f);
  8411. // TODO: optimize
  8412. for (int64_t i03 = 0; i03 < ne03; i03++) {
  8413. for (int64_t i02 = 0; i02 < ne02; i02++) {
  8414. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  8415. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  8416. ggml_float sum = 0.0;
  8417. for (int64_t i00 = 0; i00 < ne00; i00++) {
  8418. sum += (ggml_float)(x[i00] * x[i00]);
  8419. }
  8420. const float mean = sum/ne00;
  8421. float * y = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  8422. memcpy(y, x, ne00 * sizeof(float));
  8423. // for (int i00 = 0; i00 < ne00; i00++) {
  8424. // y[i00] = x[i00];
  8425. // }
  8426. const float scale = 1.0f/sqrtf(mean + eps);
  8427. ggml_vec_scale_f32(ne00, y, scale);
  8428. }
  8429. }
  8430. }
  8431. }
  8432. static void ggml_compute_forward_rms_norm(
  8433. const struct ggml_compute_params * params,
  8434. struct ggml_tensor * dst) {
  8435. const struct ggml_tensor * src0 = dst->src[0];
  8436. switch (src0->type) {
  8437. case GGML_TYPE_F32:
  8438. {
  8439. ggml_compute_forward_rms_norm_f32(params, dst);
  8440. } break;
  8441. default:
  8442. {
  8443. GGML_ASSERT(false);
  8444. } break;
  8445. }
  8446. }
  8447. static void ggml_compute_forward_rms_norm_back_f32(
  8448. const struct ggml_compute_params * params,
  8449. struct ggml_tensor * dst) {
  8450. const struct ggml_tensor * src0 = dst->src[0];
  8451. const struct ggml_tensor * src1 = dst->src[1];
  8452. GGML_ASSERT(ggml_are_same_shape(src0, dst) && ggml_are_same_shape(src0, src1));
  8453. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8454. return;
  8455. }
  8456. GGML_ASSERT(src0->nb[0] == sizeof(float));
  8457. const int ith = params->ith;
  8458. const int nth = params->nth;
  8459. GGML_TENSOR_BINARY_OP_LOCALS
  8460. float eps;
  8461. memcpy(&eps, dst->op_params, sizeof(float));
  8462. // TODO: optimize
  8463. for (int64_t i03 = 0; i03 < ne03; i03++) {
  8464. for (int64_t i02 = 0; i02 < ne02; i02++) {
  8465. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  8466. // src1 is same shape as src0 => same indices
  8467. const int64_t i11 = i01;
  8468. const int64_t i12 = i02;
  8469. const int64_t i13 = i03;
  8470. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  8471. const float * dz = (float *) ((char *) src1->data + i11*nb11 + i12*nb12 + i13*nb13);
  8472. ggml_float sum_xx = 0.0;
  8473. ggml_float sum_xdz = 0.0;
  8474. for (int64_t i00 = 0; i00 < ne00; i00++) {
  8475. sum_xx += (ggml_float)(x[i00] * x[i00]);
  8476. sum_xdz += (ggml_float)(x[i00] * dz[i00]);
  8477. }
  8478. //const float mean = (float)(sum_xx)/ne00;
  8479. const float mean_eps = (float)(sum_xx)/ne00 + eps;
  8480. const float sum_eps = (float)(sum_xx) + eps*ne00;
  8481. //const float mean_xdz = (float)(sum_xdz)/ne00;
  8482. // we could cache rms from forward pass to improve performance.
  8483. // to do this implement ggml_rms and compose ggml_rms_norm using ggml_rms.
  8484. //const float rms = sqrtf(mean_eps);
  8485. const float rrms = 1.0f / sqrtf(mean_eps);
  8486. //const float scale = -rrms/(ne00 * mean_eps); // -1/(n*rms**3)
  8487. {
  8488. // z = rms_norm(x)
  8489. //
  8490. // rms_norm(src0) =
  8491. // scale(
  8492. // src0,
  8493. // div(
  8494. // 1,
  8495. // sqrt(
  8496. // add(
  8497. // scale(
  8498. // sum(
  8499. // sqr(
  8500. // src0)),
  8501. // (1.0/N)),
  8502. // eps))));
  8503. // postorder:
  8504. // ## op args grad
  8505. // 00 param src0 grad[#00]
  8506. // 01 const 1
  8507. // 02 sqr (#00) grad[#02]
  8508. // 03 sum (#02) grad[#03]
  8509. // 04 const 1/N
  8510. // 05 scale (#03, #04) grad[#05]
  8511. // 06 const eps
  8512. // 07 add (#05, #06) grad[#07]
  8513. // 08 sqrt (#07) grad[#08]
  8514. // 09 div (#01,#08) grad[#09]
  8515. // 10 scale (#00,#09) grad[#10]
  8516. //
  8517. // backward pass, given grad[#10]
  8518. // #10: scale
  8519. // grad[#00] += scale(grad[#10],#09)
  8520. // grad[#09] += sum(mul(grad[#10],#00))
  8521. // #09: div
  8522. // grad[#08] += neg(mul(grad[#09], div(#09,#08)))
  8523. // #08: sqrt
  8524. // grad[#07] += mul(grad[#08], div(0.5, #08))
  8525. // #07: add
  8526. // grad[#05] += grad[#07]
  8527. // #05: scale
  8528. // grad[#03] += scale(grad[#05],#04)
  8529. // #03: sum
  8530. // grad[#02] += repeat(grad[#03], #02)
  8531. // #02:
  8532. // grad[#00] += scale(mul(#00, grad[#02]), 2.0)
  8533. //
  8534. // substitute and simplify:
  8535. // grad[#00] = scale(grad(#10), #09) + scale(mul(#00, grad[#02]), 2.0)
  8536. // grad[#02] = repeat(grad[#03], #02)
  8537. // grad[#02] = repeat(scale(grad[#05],#04), #02)
  8538. // grad[#02] = repeat(scale(grad[#07],#04), #02)
  8539. // grad[#02] = repeat(scale(mul(grad[#08], div(0.5, #08)),#04), #02)
  8540. // grad[#02] = repeat(scale(mul(neg(mul(grad[#09], div(#09,#08))), div(0.5, #08)),#04), #02)
  8541. // grad[#02] = repeat(scale(mul(neg(mul(sum(mul(grad[#10],#00)), div(#09,#08))), div(0.5, #08)),#04), #02)
  8542. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(#09,#08) * div(0.5, #08) * (1/N)), #02)
  8543. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(div(#01,#08),#08) * div(0.5, #08) * (1/N)), #02)
  8544. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(1,#08*#08) * div(0.5, #08) * (1/N)), #02)
  8545. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(1,#07) * div(0.5, #08) * (1/N)), #02)
  8546. // grad[#00] = scale(grad(#10), #09) + scale(mul(#00, grad[#02]), 2.0)
  8547. // grad[#00] = scale(grad(#10), #09) + scale(mul(#00, repeat(-(sum(mul(grad[#10],#00)) * div(1,#07) * div(0.5, #08) * (1/N)), #02)), 2.0)
  8548. // grad[#00] = scale(grad(#10), #09) + scale(scale(#00, -(sum(mul(grad[#10],#00)) * div(1,#07) * div(0.5, #08) * (1/N))), 2.0)
  8549. // grad[#00] = scale(grad(#10), #09) + scale(#00, -(sum(mul(grad[#10],#00)) * div(1,#07) * div(1,#08) * (1/N)))
  8550. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(1,#07*#08) * (-1/N))
  8551. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(1,#07*#08) * (-1/N))
  8552. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(1,mean_eps*rms) * (-1/N))
  8553. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(-1,rms*N*mean_eps))
  8554. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(-1,rms*N*(sum_xx/N+eps)))
  8555. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(-1,rms*N*sum_xx+rms*N*eps))
  8556. // grad[#00] = scale(dz, rrms) + scale(x, sum(mul(dz,x)) * div(-1,rms*N*mean_eps))
  8557. // grad[#00] = scale(dz, rrms) + scale(x, sum_xdz * div(-1,rms*N*mean_eps))
  8558. // a = b*c + d*e
  8559. // a = b*c*f/f + d*e*f/f
  8560. // a = (b*c*f + d*e*f)*(1/f)
  8561. // a = (b*c*(1/c) + d*e*(1/c))*(1/(1/c))
  8562. // a = (b + d*e/c)*c
  8563. // b = dz, c = rrms, d = x, e = sum_xdz * div(-1,rms*N*mean_eps)
  8564. // a = (dz + x*sum_xdz * div(-1,rms*N*mean_eps)/rrms)*rrms
  8565. // a = (dz + x*sum_xdz * div(-1,rms*N*mean_eps)*rms)*rrms
  8566. // a = (dz + x*sum_xdz * div(-rms,rms*N*mean_eps))*rrms
  8567. // a = (dz + x*sum_xdz * div(-1,N*mean_eps))*rrms
  8568. // a = (dz + x*div(-sum_xdz,N*mean_eps))*rrms
  8569. // a = (dz + x*div(-mean_xdz,mean_eps))*rrms
  8570. // grad[#00] = scale(dz + scale(x, div(-mean_xdz,mean_eps)),rrms)
  8571. // grad[#00] = scale(dz + scale(x, -mean_xdz/mean_eps),rrms)
  8572. // dx = scale(dz + scale(x, -mean_xdz/mean_eps),rrms)
  8573. }
  8574. // dx = scale(dz + scale(x, -mean_xdz/mean_eps),rrms)
  8575. // post-order:
  8576. // dx := x
  8577. // dx := scale(dx,-mean_xdz/mean_eps)
  8578. // dx := add(dx, dz)
  8579. // dx := scale(dx, rrms)
  8580. float * dx = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  8581. ggml_vec_cpy_f32 (ne00, dx, x);
  8582. // ggml_vec_scale_f32(ne00, dx, -mean_xdz/mean_eps);
  8583. ggml_vec_scale_f32(ne00, dx, (float)(-sum_xdz)/sum_eps);
  8584. ggml_vec_acc_f32 (ne00, dx, dz);
  8585. ggml_vec_scale_f32(ne00, dx, rrms);
  8586. }
  8587. }
  8588. }
  8589. }
  8590. static void ggml_compute_forward_rms_norm_back(
  8591. const struct ggml_compute_params * params,
  8592. struct ggml_tensor * dst) {
  8593. const struct ggml_tensor * src0 = dst->src[0];
  8594. switch (src0->type) {
  8595. case GGML_TYPE_F32:
  8596. {
  8597. ggml_compute_forward_rms_norm_back_f32(params, dst);
  8598. } break;
  8599. default:
  8600. {
  8601. GGML_ASSERT(false);
  8602. } break;
  8603. }
  8604. }
  8605. // ggml_compute_forward_group_norm
  8606. static void ggml_compute_forward_group_norm_f32(
  8607. const struct ggml_compute_params * params,
  8608. struct ggml_tensor * dst) {
  8609. const struct ggml_tensor * src0 = dst->src[0];
  8610. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8611. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8612. return;
  8613. }
  8614. GGML_ASSERT(src0->nb[0] == sizeof(float));
  8615. const int ith = params->ith;
  8616. const int nth = params->nth;
  8617. GGML_TENSOR_UNARY_OP_LOCALS
  8618. const float eps = 1e-6f; // TODO: make this a parameter
  8619. // TODO: optimize
  8620. int n_channels = src0->ne[2];
  8621. int n_groups = dst->op_params[0];
  8622. int n_channels_per_group = (n_channels + n_groups - 1) / n_groups;
  8623. for (int i = ith; i < n_groups; i += nth) {
  8624. int start = i * n_channels_per_group;
  8625. int end = start + n_channels_per_group;
  8626. if (end > n_channels) {
  8627. end = n_channels;
  8628. }
  8629. int step = end - start;
  8630. for (int64_t i03 = 0; i03 < ne03; i03++) {
  8631. ggml_float sum = 0.0;
  8632. for (int64_t i02 = start; i02 < end; i02++) {
  8633. for (int64_t i01 = 0; i01 < ne01; i01++) {
  8634. const float * x = (float *)((char *) src0->data + i01 * nb01 + i02 * nb02 + i03 * nb03);
  8635. ggml_float sumr = 0.0;
  8636. for (int64_t i00 = 0; i00 < ne00; i00++) {
  8637. sumr += (ggml_float)x[i00];
  8638. }
  8639. sum += sumr;
  8640. }
  8641. }
  8642. const float mean = sum / (ne00 * ne01 * step);
  8643. ggml_float sum2 = 0.0;
  8644. for (int64_t i02 = start; i02 < end; i02++) {
  8645. for (int64_t i01 = 0; i01 < ne01; i01++) {
  8646. const float * x = (float *)((char *) src0->data + i01 * nb01 + i02 * nb02 + i03 * nb03);
  8647. float * y = (float *)((char *) dst->data + i01 * nb1 + i02 * nb2 + i03 * nb3);
  8648. ggml_float sumr = 0.0;
  8649. for (int64_t i00 = 0; i00 < ne00; i00++) {
  8650. float v = x[i00] - mean;
  8651. y[i00] = v;
  8652. sumr += (ggml_float)(v * v);
  8653. }
  8654. sum2 += sumr;
  8655. }
  8656. }
  8657. const float variance = sum2 / (ne00 * ne01 * step);
  8658. const float scale = 1.0f / sqrtf(variance + eps);
  8659. for (int64_t i02 = start; i02 < end; i02++) {
  8660. for (int64_t i01 = 0; i01 < ne01; i01++) {
  8661. float * y = (float *)((char *) dst->data + i01 * nb1 + i02 * nb2 + i03 * nb3);
  8662. ggml_vec_scale_f32(ne00, y, scale);
  8663. }
  8664. }
  8665. }
  8666. }
  8667. }
  8668. static void ggml_compute_forward_group_norm(
  8669. const struct ggml_compute_params * params,
  8670. struct ggml_tensor * dst) {
  8671. const struct ggml_tensor * src0 = dst->src[0];
  8672. switch (src0->type) {
  8673. case GGML_TYPE_F32:
  8674. {
  8675. ggml_compute_forward_group_norm_f32(params, dst);
  8676. } break;
  8677. default:
  8678. {
  8679. GGML_ASSERT(false);
  8680. } break;
  8681. }
  8682. }
  8683. // ggml_compute_forward_mul_mat
  8684. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  8685. // helper function to determine if it is better to use BLAS or not
  8686. // for large matrices, BLAS is faster
  8687. static bool ggml_compute_forward_mul_mat_use_blas(struct ggml_tensor * dst) {
  8688. const struct ggml_tensor * src0 = dst->src[0];
  8689. const struct ggml_tensor * src1 = dst->src[1];
  8690. //const int64_t ne00 = src0->ne[0];
  8691. //const int64_t ne01 = src0->ne[1];
  8692. const int64_t ne10 = src1->ne[0];
  8693. const int64_t ne0 = dst->ne[0];
  8694. const int64_t ne1 = dst->ne[1];
  8695. // NOTE: with GGML_OP_MUL_MAT_ID we don't want to go through the BLAS branch because it will dequantize (to_float)
  8696. // all the experts for each batch element and the processing would become incredibly slow
  8697. // TODO: find the optimal values for these
  8698. if (dst->op != GGML_OP_MUL_MAT_ID &&
  8699. ggml_is_contiguous(src0) &&
  8700. ggml_is_contiguous(src1) &&
  8701. //src0->type == GGML_TYPE_F32 &&
  8702. src1->type == GGML_TYPE_F32 &&
  8703. (ne0 >= 32 && ne1 >= 32 && ne10 >= 32)) {
  8704. /*printf("BLAS: %d %d %d %d %d\n", ne0, ne1, ne10, ne00, ne01);*/
  8705. return true;
  8706. }
  8707. return false;
  8708. }
  8709. #endif
  8710. static void ggml_compute_forward_mul_mat(
  8711. const struct ggml_compute_params * params,
  8712. struct ggml_tensor * dst) {
  8713. const struct ggml_tensor * src0 = dst->src[0];
  8714. const struct ggml_tensor * src1 = dst->src[1];
  8715. int64_t t0 = ggml_perf_time_us();
  8716. UNUSED(t0);
  8717. GGML_TENSOR_BINARY_OP_LOCALS
  8718. const int ith = params->ith;
  8719. const int nth = params->nth;
  8720. const enum ggml_type type = src0->type;
  8721. const bool src1_cont = ggml_is_contiguous(src1);
  8722. ggml_vec_dot_t const vec_dot = type_traits[type].vec_dot;
  8723. enum ggml_type const vec_dot_type = type_traits[type].vec_dot_type;
  8724. ggml_from_float_t const from_float_to_vec_dot = type_traits[vec_dot_type].from_float;
  8725. int64_t const vec_dot_num_rows = type_traits[type].nrows;
  8726. GGML_ASSERT(ne0 == ne01);
  8727. GGML_ASSERT(ne1 == ne11);
  8728. GGML_ASSERT(ne2 == ne12);
  8729. GGML_ASSERT(ne3 == ne13);
  8730. // we don't support permuted src0 or src1
  8731. GGML_ASSERT(nb00 == ggml_type_size(type));
  8732. GGML_ASSERT(nb10 == ggml_type_size(src1->type));
  8733. // dst cannot be transposed or permuted
  8734. GGML_ASSERT(nb0 == sizeof(float));
  8735. GGML_ASSERT(nb0 <= nb1);
  8736. GGML_ASSERT(nb1 <= nb2);
  8737. GGML_ASSERT(nb2 <= nb3);
  8738. // broadcast factors
  8739. const int64_t r2 = ne12/ne02;
  8740. const int64_t r3 = ne13/ne03;
  8741. // nb01 >= nb00 - src0 is not transposed
  8742. // compute by src0 rows
  8743. #if defined(GGML_USE_CLBLAST)
  8744. if (ggml_cl_can_mul_mat(src0, src1, dst)) {
  8745. if (params->ith == 0 && params->type == GGML_TASK_TYPE_COMPUTE) {
  8746. ggml_cl_mul_mat(src0, src1, dst, params->wdata, params->wsize);
  8747. }
  8748. return;
  8749. }
  8750. #endif
  8751. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  8752. if (ggml_compute_forward_mul_mat_use_blas(dst)) {
  8753. const int64_t ne_plane = ne01*ne00;
  8754. const size_t desired_wsize = ne13*ne12*ne_plane*sizeof(float);
  8755. UNUSED(desired_wsize);
  8756. if (params->type == GGML_TASK_TYPE_INIT) {
  8757. if (type != GGML_TYPE_F32) {
  8758. assert(params->wsize >= desired_wsize);
  8759. // parallelize by src0 rows
  8760. for (int64_t i13 = 0; i13 < ne13; i13++) {
  8761. for (int64_t i12 = 0; i12 < ne12; i12++) {
  8762. // broadcast src0 into src1 across 2nd,3rd dimension
  8763. const int64_t i03 = i13/r3;
  8764. const int64_t i02 = i12/r2;
  8765. const void * x = (char *) src0->data + i02*nb02 + i03*nb03;
  8766. float * const wdata = (float *) params->wdata + i13*ne12*ne_plane + i12*ne_plane;
  8767. ggml_to_float_t const to_float = type_traits[type].to_float;
  8768. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  8769. to_float((const char *) x + i01*nb01, wdata + i01*ne00, ne00);
  8770. }
  8771. }
  8772. }
  8773. }
  8774. return;
  8775. }
  8776. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  8777. return;
  8778. }
  8779. // perform sgemm, parallelization controlled by blas lib
  8780. if (ith != 0) {
  8781. return;
  8782. }
  8783. //const int64_t tgemm0 = ggml_perf_time_us();
  8784. for (int64_t i13 = 0; i13 < ne13; i13++) {
  8785. for (int64_t i12 = 0; i12 < ne12; i12++) {
  8786. const int64_t i03 = i13/r3;
  8787. const int64_t i02 = i12/r2;
  8788. const void * x = (char *) src0->data + i02*nb02 + i03*nb03;
  8789. const float * y = (float *) ((char *) src1->data + i12*nb12 + i13*nb13);
  8790. float * d = (float *) ((char *) dst->data + i12*nb2 + i13*nb3);
  8791. if (type != GGML_TYPE_F32) {
  8792. x = (float *) params->wdata + i13*ne12*ne_plane + i12*ne_plane;
  8793. }
  8794. cblas_sgemm(CblasRowMajor, CblasNoTrans, CblasTrans,
  8795. ne1, ne01, ne10,
  8796. 1.0f, y, ne10,
  8797. x, ne00,
  8798. 0.0f, d, ne01);
  8799. }
  8800. }
  8801. //printf("cblas_sgemm = %.3f ms, %lld flops\n", (ggml_perf_time_us() - tgemm0)/1000.0, ne13*ne12*ne1*ne01*ne10*2);
  8802. //printf("CBLAS = %f ms, %d x %d x %d x %d\n", (ggml_perf_time_us() - t0)/1000.0, ne0, ne1, ne2, ne3);
  8803. return;
  8804. }
  8805. #endif
  8806. #if GGML_USE_LLAMAFILE
  8807. if (nb10 == ggml_type_size(src1->type)) {
  8808. for (int64_t i13 = 0; i13 < ne13; i13++)
  8809. for (int64_t i12 = 0; i12 < ne12; i12++)
  8810. if (!llamafile_sgemm(ne01, ne11, ne00/ggml_blck_size(src0->type),
  8811. (const char *)src0->data + i12/r2*nb02 + i13/r3*nb03,
  8812. nb01/ggml_type_size(src0->type),
  8813. (const char *)src1->data + i12*nb12 + i13*nb13,
  8814. nb11/ggml_type_size(src1->type),
  8815. (char *)dst->data + i12*nb2 + i13*nb3,
  8816. nb1/ggml_type_size(dst->type),
  8817. ith, nth,
  8818. params->type,
  8819. src0->type,
  8820. src1->type,
  8821. dst->type))
  8822. goto UseGgmlGemm1;
  8823. return;
  8824. }
  8825. UseGgmlGemm1:;
  8826. #endif
  8827. if (params->type == GGML_TASK_TYPE_INIT) {
  8828. if (ith != 0) {
  8829. return;
  8830. }
  8831. if (src1->type != vec_dot_type) {
  8832. char * wdata = params->wdata;
  8833. const size_t row_size = ggml_row_size(vec_dot_type, ne10);
  8834. assert(params->wsize >= ne11*ne12*ne13*row_size);
  8835. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  8836. for (int64_t i13 = 0; i13 < ne13; ++i13) {
  8837. for (int64_t i12 = 0; i12 < ne12; ++i12) {
  8838. for (int64_t i11 = 0; i11 < ne11; ++i11) {
  8839. from_float_to_vec_dot((float *)((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11), (void *) wdata, ne10);
  8840. wdata += row_size;
  8841. }
  8842. }
  8843. }
  8844. }
  8845. return;
  8846. }
  8847. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  8848. return;
  8849. }
  8850. const void * wdata = (src1->type == vec_dot_type) ? src1->data : params->wdata;
  8851. const size_t row_size = ggml_row_size(vec_dot_type, ne10);
  8852. #if GGML_USE_LLAMAFILE
  8853. if (nb10 == ggml_type_size(src1->type) || src1->type != vec_dot_type) {
  8854. for (int64_t i13 = 0; i13 < ne13; i13++)
  8855. for (int64_t i12 = 0; i12 < ne12; i12++)
  8856. if (!llamafile_sgemm(ne01, ne11, ne00/ggml_blck_size(src0->type),
  8857. (const char *)src0->data + i12/r2*nb02 + i13/r3*nb03,
  8858. nb01/ggml_type_size(src0->type),
  8859. (const char *)wdata + ggml_row_size(vec_dot_type,
  8860. nb12/ggml_type_size(src1->type)*i12 +
  8861. nb13/ggml_type_size(src1->type)*i13),
  8862. row_size/ggml_type_size(vec_dot_type),
  8863. (char *)dst->data + i12*nb2 + i13*nb3,
  8864. nb1/ggml_type_size(dst->type),
  8865. ith, nth,
  8866. params->type,
  8867. src0->type,
  8868. vec_dot_type,
  8869. dst->type))
  8870. goto UseGgmlGemm2;
  8871. return;
  8872. }
  8873. UseGgmlGemm2:;
  8874. #endif
  8875. const int64_t nr0 = ne01; // src0 rows
  8876. const int64_t nr1 = ne1*ne12*ne13; // src1 rows
  8877. //printf("nr0 = %lld, nr1 = %lld\n", nr0, nr1);
  8878. // distribute the thread work across the inner or outer loop based on which one is larger
  8879. const int64_t nth0 = nr0 > nr1 ? nth : 1; // parallelize by src0 rows
  8880. const int64_t nth1 = nr0 > nr1 ? 1 : nth; // parallelize by src1 rows
  8881. const int64_t ith0 = ith % nth0;
  8882. const int64_t ith1 = ith / nth0;
  8883. const int64_t dr0 = (nr0 + nth0 - 1)/nth0;
  8884. const int64_t dr1 = (nr1 + nth1 - 1)/nth1;
  8885. const int64_t ir010 = dr0*ith0;
  8886. const int64_t ir011 = MIN(ir010 + dr0, nr0);
  8887. const int64_t ir110 = dr1*ith1;
  8888. const int64_t ir111 = MIN(ir110 + dr1, nr1);
  8889. //printf("ir010 = %6lld, ir011 = %6lld, ir110 = %6lld, ir111 = %6lld\n", ir010, ir011, ir110, ir111);
  8890. // threads with no work simply yield (not sure if it helps)
  8891. if (ir010 >= ir011 || ir110 >= ir111) {
  8892. sched_yield();
  8893. return;
  8894. }
  8895. assert(ne12 % ne02 == 0);
  8896. assert(ne13 % ne03 == 0);
  8897. // block-tiling attempt
  8898. const int64_t blck_0 = 16;
  8899. const int64_t blck_1 = 16;
  8900. // dot kernels can handle 1 row and col at a time, but mmla kernels can process 2 rows and cols
  8901. int64_t nrc = vec_dot_num_rows;
  8902. // TODO: currently the mmla kernels support only even numbered rows/cols.
  8903. // this check can be removed once they are extended to support odd numbered rows/cols too
  8904. if ((nr0 % 2 != 0) || (ne11 % 2 != 0)) {
  8905. nrc = 1;
  8906. }
  8907. const size_t src1_col_stride = src1_cont || src1->type != vec_dot_type ? row_size : nb11;
  8908. // attempt to reduce false-sharing (does not seem to make a difference)
  8909. // 16 * 2, accounting for mmla kernels
  8910. float tmp[32];
  8911. for (int64_t iir1 = ir110; iir1 < ir111; iir1 += blck_1) {
  8912. for (int64_t iir0 = ir010; iir0 < ir011; iir0 += blck_0) {
  8913. for (int64_t ir1 = iir1; ir1 < iir1 + blck_1 && ir1 < ir111; ir1 += nrc) {
  8914. const int64_t i13 = (ir1/(ne12*ne1));
  8915. const int64_t i12 = (ir1 - i13*ne12*ne1)/ne1;
  8916. const int64_t i11 = (ir1 - i13*ne12*ne1 - i12*ne1);
  8917. // broadcast src0 into src1
  8918. const int64_t i03 = i13/r3;
  8919. const int64_t i02 = i12/r2;
  8920. const int64_t i1 = i11;
  8921. const int64_t i2 = i12;
  8922. const int64_t i3 = i13;
  8923. const char * src0_row = (const char *) src0->data + (0 + i02*nb02 + i03*nb03);
  8924. // desc: when src1 is not a contiguous memory block we have to calculate the offset using the strides
  8925. // if it is, then we have either copied the data to params->wdata and made it contiguous or we are using
  8926. // the original src1 data pointer, so we should index using the indices directly
  8927. // TODO: this is a bit of a hack, we should probably have a better way to handle this
  8928. const char * src1_col = (const char *) wdata +
  8929. (src1_cont || src1->type != vec_dot_type
  8930. ? (i11 + i12*ne11 + i13*ne12*ne11)*row_size
  8931. : (i11*nb11 + i12*nb12 + i13*nb13));
  8932. float * dst_col = (float *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3));
  8933. //for (int64_t ir0 = iir0; ir0 < iir0 + blck_0 && ir0 < ir011; ++ir0) {
  8934. // vec_dot(ne00, &dst_col[ir0], src0_row + ir0*nb01, src1_col);
  8935. //}
  8936. for (int64_t ir0 = iir0; ir0 < iir0 + blck_0 && ir0 < ir011; ir0 += nrc) {
  8937. vec_dot(ne00, &tmp[ir0 - iir0], (nrc>1 ? 16 : 0), src0_row + ir0*nb01, (nrc>1 ? nb01 : 0), src1_col, (nrc>1 ? src1_col_stride : 0), nrc);
  8938. }
  8939. for (int cn = 0; cn < nrc; ++cn) {
  8940. memcpy(&dst_col[iir0 + cn*nb1/nb0], tmp + (cn*16), (MIN(iir0 + blck_0, ir011) - iir0)*sizeof(float));
  8941. }
  8942. }
  8943. }
  8944. }
  8945. }
  8946. // ggml_compute_forward_mul_mat_id
  8947. static void ggml_compute_forward_mul_mat_id(
  8948. const struct ggml_compute_params * params,
  8949. struct ggml_tensor * dst) {
  8950. const struct ggml_tensor * src0 = dst->src[0];
  8951. const struct ggml_tensor * src1 = dst->src[1];
  8952. const struct ggml_tensor * ids = dst->src[2];
  8953. GGML_TENSOR_BINARY_OP_LOCALS
  8954. const int ith = params->ith;
  8955. const int nth = params->nth;
  8956. const enum ggml_type type = src0->type;
  8957. const bool src1_cont = ggml_is_contiguous(src1);
  8958. ggml_vec_dot_t const vec_dot = type_traits[type].vec_dot;
  8959. enum ggml_type const vec_dot_type = type_traits[type].vec_dot_type;
  8960. ggml_from_float_t const from_float_to_vec_dot = type_traits[vec_dot_type].from_float;
  8961. // we don't support permuted src0 or src1
  8962. GGML_ASSERT(nb00 == ggml_type_size(type));
  8963. GGML_ASSERT(nb10 == ggml_type_size(src1->type));
  8964. // dst cannot be transposed or permuted
  8965. GGML_ASSERT(nb0 == sizeof(float));
  8966. GGML_ASSERT(nb0 <= nb1);
  8967. GGML_ASSERT(nb1 <= nb2);
  8968. GGML_ASSERT(nb2 <= nb3);
  8969. // row groups
  8970. const int n_ids = ids->ne[0]; // n_expert_used
  8971. const int n_as = ne02; // n_expert
  8972. char * wdata_src1_end = (src1->type == vec_dot_type) ?
  8973. (char *) params->wdata :
  8974. (char *) params->wdata + GGML_PAD(ggml_row_size(vec_dot_type, ggml_nelements(src1)), sizeof(int64_t));
  8975. struct mmid_row_mapping {
  8976. int32_t i1;
  8977. int32_t i2;
  8978. };
  8979. int64_t * matrix_row_counts = (int64_t *) (wdata_src1_end); // [n_as]
  8980. struct mmid_row_mapping * matrix_rows = (struct mmid_row_mapping *)(matrix_row_counts + n_as); // [n_as][ne11]
  8981. if (params->type == GGML_TASK_TYPE_INIT) {
  8982. if (ith != 0) {
  8983. return;
  8984. }
  8985. char * wdata = params->wdata;
  8986. if (src1->type != vec_dot_type) {
  8987. const size_t row_size = ggml_row_size(vec_dot_type, ne10);
  8988. assert(params->wsize >= ne11*ne12*ne13*row_size);
  8989. assert(src1->type == GGML_TYPE_F32);
  8990. for (int64_t i13 = 0; i13 < ne13; ++i13) {
  8991. for (int64_t i12 = 0; i12 < ne12; ++i12) {
  8992. for (int64_t i11 = 0; i11 < ne11; ++i11) {
  8993. from_float_to_vec_dot((float *)((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11), (void *) wdata, ne10);
  8994. wdata += row_size;
  8995. }
  8996. }
  8997. }
  8998. }
  8999. // initialize matrix_row_counts
  9000. memset(matrix_row_counts, 0, n_as*sizeof(int64_t));
  9001. #define MMID_MATRIX_ROW(row_id, i1) matrix_rows[(row_id)*ne12 + (i1)]
  9002. // group rows by src0 matrix
  9003. for (int64_t iid1 = 0; iid1 < ids->ne[1]; ++iid1) {
  9004. for (int id = 0; id < n_ids; ++id) {
  9005. const int32_t i02 = *(const int32_t *) ((const char *) ids->data + iid1*ids->nb[1] + id*ids->nb[0]);
  9006. assert(i02 >= 0 && i02 < n_as);
  9007. MMID_MATRIX_ROW(i02, matrix_row_counts[i02]) = (struct mmid_row_mapping) {id, iid1};
  9008. matrix_row_counts[i02] += 1;
  9009. }
  9010. }
  9011. return;
  9012. }
  9013. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  9014. return;
  9015. }
  9016. // compute each matrix multiplication in sequence
  9017. for (int cur_a = 0; cur_a < n_as; ++cur_a) {
  9018. const int64_t cne1 = matrix_row_counts[cur_a];
  9019. if (cne1 == 0) {
  9020. continue;
  9021. }
  9022. const char * src0_cur = (const char *) src0->data + cur_a*nb02;
  9023. const void * wdata = (src1->type == vec_dot_type) ? src1->data : params->wdata;
  9024. const size_t row_size = ggml_row_size(vec_dot_type, ne10);
  9025. const int64_t nr0 = ne01; // src0 rows
  9026. const int64_t nr1 = cne1; // src1 rows
  9027. // distribute the thread work across the inner or outer loop based on which one is larger
  9028. const int64_t nth0 = nr0 > nr1 ? nth : 1; // parallelize by src0 rows
  9029. const int64_t nth1 = nr0 > nr1 ? 1 : nth; // parallelize by src1 rows
  9030. const int64_t ith0 = ith % nth0;
  9031. const int64_t ith1 = ith / nth0;
  9032. const int64_t dr0 = (nr0 + nth0 - 1)/nth0;
  9033. const int64_t dr1 = (nr1 + nth1 - 1)/nth1;
  9034. const int64_t ir010 = dr0*ith0;
  9035. const int64_t ir011 = MIN(ir010 + dr0, nr0);
  9036. const int64_t ir110 = dr1*ith1;
  9037. const int64_t ir111 = MIN(ir110 + dr1, nr1);
  9038. // threads with no work simply yield (not sure if it helps)
  9039. //if (ir010 >= ir011 || ir110 >= ir111) {
  9040. // sched_yield();
  9041. // continue;
  9042. //}
  9043. // block-tiling attempt
  9044. const int64_t blck_0 = 16;
  9045. const int64_t blck_1 = 16;
  9046. // attempt to reduce false-sharing (does not seem to make a difference)
  9047. float tmp[16];
  9048. for (int64_t iir1 = ir110; iir1 < ir111; iir1 += blck_1) {
  9049. for (int64_t iir0 = ir010; iir0 < ir011; iir0 += blck_0) {
  9050. for (int64_t ir1 = iir1; ir1 < iir1 + blck_1 && ir1 < ir111; ++ir1) {
  9051. const int64_t _i12 = ir1; // logical row index for this expert
  9052. struct mmid_row_mapping row_mapping = MMID_MATRIX_ROW(cur_a, _i12);
  9053. const int id = row_mapping.i1; // selected expert index
  9054. const int64_t i11 = id % ne11;
  9055. const int64_t i12 = row_mapping.i2; // row index in src1
  9056. const int64_t i1 = id; // selected expert index
  9057. const int64_t i2 = i12; // row
  9058. // desc: when src1 is not a contiguous memory block we have to calculate the offset using the strides
  9059. // if it is, then we have either copied the data to params->wdata and made it contiguous or we are using
  9060. // the original src1 data pointer, so we should index using the indices directly
  9061. // TODO: this is a bit of a hack, we should probably have a better way to handle this
  9062. const char * src1_col = (const char *) wdata +
  9063. (src1_cont || src1->type != vec_dot_type
  9064. ? (i11 + i12*ne11)*row_size
  9065. : (i11*nb11 + i12*nb12));
  9066. float * dst_col = (float *) ((char *) dst->data + (i1*nb1 + i2*nb2));
  9067. //for (int64_t ir0 = iir0; ir0 < iir0 + blck_0 && ir0 < ir011; ++ir0) {
  9068. // vec_dot(ne00, &dst_col[ir0], src0_row + ir0*nb01, src1_col);
  9069. //}
  9070. for (int64_t ir0 = iir0; ir0 < iir0 + blck_0 && ir0 < ir011; ++ir0) {
  9071. vec_dot(ne00, &tmp[ir0 - iir0], 0, src0_cur + ir0*nb01, 0, src1_col, 0, 1);
  9072. }
  9073. memcpy(&dst_col[iir0], tmp, (MIN(iir0 + blck_0, ir011) - iir0)*sizeof(float));
  9074. }
  9075. }
  9076. }
  9077. }
  9078. #undef MMID_MATRIX_ROW
  9079. }
  9080. // ggml_compute_forward_out_prod
  9081. static void ggml_compute_forward_out_prod_f32(
  9082. const struct ggml_compute_params * params,
  9083. struct ggml_tensor * dst) {
  9084. const struct ggml_tensor * src0 = dst->src[0];
  9085. const struct ggml_tensor * src1 = dst->src[1];
  9086. // int64_t t0 = ggml_perf_time_us();
  9087. // UNUSED(t0);
  9088. GGML_TENSOR_BINARY_OP_LOCALS
  9089. const int ith = params->ith;
  9090. const int nth = params->nth;
  9091. GGML_ASSERT(ne0 == ne00);
  9092. GGML_ASSERT(ne1 == ne10);
  9093. GGML_ASSERT(ne2 == ne02);
  9094. GGML_ASSERT(ne02 == ne12);
  9095. GGML_ASSERT(ne3 == ne13);
  9096. GGML_ASSERT(ne03 == ne13);
  9097. // we don't support permuted src0 or src1
  9098. GGML_ASSERT(nb00 == sizeof(float));
  9099. // dst cannot be transposed or permuted
  9100. GGML_ASSERT(nb0 == sizeof(float));
  9101. // GGML_ASSERT(nb0 <= nb1);
  9102. // GGML_ASSERT(nb1 <= nb2);
  9103. // GGML_ASSERT(nb2 <= nb3);
  9104. // nb01 >= nb00 - src0 is not transposed
  9105. // compute by src0 rows
  9106. // TODO: #if defined(GGML_USE_CLBLAST)
  9107. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  9108. bool use_blas = ggml_is_matrix(src0) &&
  9109. ggml_is_matrix(src1) &&
  9110. ggml_is_contiguous(src0) &&
  9111. (ggml_is_contiguous(src1) || ggml_is_transposed(src1));
  9112. #endif
  9113. if (params->type == GGML_TASK_TYPE_INIT) {
  9114. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) // gemm beta will zero dst
  9115. if (use_blas) {
  9116. return;
  9117. }
  9118. #endif
  9119. if (ith != 0) {
  9120. return;
  9121. }
  9122. ggml_vec_set_f32(ne0*ne1*ne2*ne3, dst->data, 0);
  9123. return;
  9124. }
  9125. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  9126. return;
  9127. }
  9128. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  9129. if (use_blas) {
  9130. if (params->ith != 0) { // All threads other than the first do no work.
  9131. return;
  9132. }
  9133. // Arguments to ggml_compute_forward_out_prod (expressed as major,minor)
  9134. // src0: (k,n)
  9135. // src1: (k,m)
  9136. // dst: (m,n)
  9137. //
  9138. // Arguments to sgemm (see https://github.com/Reference-LAPACK/lapack/blob/master/BLAS/SRC/sgemm.f)
  9139. // Also expressed as (major,minor)
  9140. // a: (m,k): so src1 transposed
  9141. // b: (k,n): so src0
  9142. // c: (m,n)
  9143. //
  9144. // However, if ggml_is_transposed(src1) is true, then
  9145. // src1->data already contains a transposed version, so sgemm mustn't
  9146. // transpose it further.
  9147. int n = src0->ne[0];
  9148. int k = src0->ne[1];
  9149. int m = src1->ne[0];
  9150. int transposeA, lda;
  9151. if (!ggml_is_transposed(src1)) {
  9152. transposeA = CblasTrans;
  9153. lda = m;
  9154. } else {
  9155. transposeA = CblasNoTrans;
  9156. lda = k;
  9157. }
  9158. float * a = (float *) ((char *) src1->data);
  9159. float * b = (float *) ((char *) src0->data);
  9160. float * c = (float *) ((char *) dst->data);
  9161. cblas_sgemm(CblasRowMajor, transposeA, CblasNoTrans, m, n, k, 1.0, a, lda, b, n, 0.0, c, n);
  9162. return;
  9163. }
  9164. #endif
  9165. // dst[:,:,:,:] = 0
  9166. // for i2,i3:
  9167. // for i1:
  9168. // for i01:
  9169. // for i0:
  9170. // dst[i0,i1,i2,i3] += src0[i0,i01,i2,i3] * src1[i1,i01,i2,i3]
  9171. // parallelize by last three dimensions
  9172. // total rows in dst
  9173. const int64_t nr = ne1*ne2*ne3;
  9174. // rows per thread
  9175. const int64_t dr = (nr + nth - 1)/nth;
  9176. // row range for this thread
  9177. const int64_t ir0 = dr*ith;
  9178. const int64_t ir1 = MIN(ir0 + dr, nr);
  9179. // block-tiling attempt
  9180. const int64_t blck_0 = MAX(GGML_VEC_MAD_UNROLL, 32);
  9181. const int64_t blck_1 = 16;
  9182. for (int64_t bir = ir0; bir < ir1; bir += blck_1) {
  9183. const int64_t bir1 = MIN(bir + blck_1, ir1);
  9184. for (int64_t bi01 = 0; bi01 < ne01; bi01 += blck_0) {
  9185. const int64_t bne01 = MIN(bi01 + blck_0, ne01);
  9186. for (int64_t ir = bir; ir < bir1; ++ir) {
  9187. // dst indices
  9188. const int64_t i3 = ir/(ne2*ne1);
  9189. const int64_t i2 = (ir - i3*ne2*ne1)/ne1;
  9190. const int64_t i1 = (ir - i3*ne2*ne1 - i2*ne1);
  9191. const int64_t i02 = i2;
  9192. const int64_t i03 = i3;
  9193. //const int64_t i10 = i1;
  9194. const int64_t i12 = i2;
  9195. const int64_t i13 = i3;
  9196. #if GGML_VEC_MAD_UNROLL > 2
  9197. const int64_t bne01_unroll = bne01 - (bne01 % GGML_VEC_MAD_UNROLL);
  9198. for (int64_t i01 = bi01; i01 < bne01_unroll; i01 += GGML_VEC_MAD_UNROLL) {
  9199. const int64_t i11 = i01;
  9200. float * s0 = (float *) ((char *) src0->data + ( i01*nb01 + i02*nb02 + i03*nb03));
  9201. float * s1 = (float *) ((char *) src1->data + (i1*nb10 + i11*nb11 + i12*nb12 + i13*nb13));
  9202. float * d = (float *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
  9203. ggml_vec_mad_f32_unroll(ne0, nb01, nb11, d, s0, s1);
  9204. }
  9205. for (int64_t i01 = bne01_unroll; i01 < bne01; ++i01) {
  9206. const int64_t i11 = i01;
  9207. float * s0 = (float *) ((char *) src0->data + ( i01*nb01 + i02*nb02 + i03*nb03));
  9208. float * s1 = (float *) ((char *) src1->data + (i1*nb10 + i11*nb11 + i12*nb12 + i13*nb13));
  9209. float * d = (float *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
  9210. ggml_vec_mad_f32(ne0, d, s0, *s1);
  9211. }
  9212. #else
  9213. for (int64_t i01 = bi01; i01 < bne01; ++i01) {
  9214. const int64_t i11 = i01;
  9215. float * s0 = (float *) ((char *) src0->data + ( i01*nb01 + i02*nb02 + i03*nb03));
  9216. float * s1 = (float *) ((char *) src1->data + (i1*nb10 + i11*nb11 + i12*nb12 + i13*nb13));
  9217. float * d = (float *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
  9218. ggml_vec_mad_f32(ne0, d, s0, *s1);
  9219. }
  9220. #endif
  9221. }
  9222. }
  9223. }
  9224. //int64_t t1 = ggml_perf_time_us();
  9225. //static int64_t acc = 0;
  9226. //acc += t1 - t0;
  9227. //if (t1 - t0 > 10) {
  9228. // printf("\n");
  9229. // printf("ne00 = %5d, ne01 = %5d, ne02 = %5d, ne03 = %5d\n", ne00, ne01, ne02, ne03);
  9230. // printf("nb00 = %5d, nb01 = %5d, nb02 = %5d, nb03 = %5d\n", nb00, nb01, nb02, nb03);
  9231. // printf("ne10 = %5d, ne11 = %5d, ne12 = %5d, ne13 = %5d\n", ne10, ne11, ne12, ne13);
  9232. // printf("nb10 = %5d, nb11 = %5d, nb12 = %5d, nb13 = %5d\n", nb10, nb11, nb12, nb13);
  9233. // printf("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX task %d/%d: %d us, acc = %d\n", ith, nth, (int) (t1 - t0), (int) acc);
  9234. //}
  9235. }
  9236. static void ggml_compute_forward_out_prod_q_f32(
  9237. const struct ggml_compute_params * params,
  9238. struct ggml_tensor * dst) {
  9239. const struct ggml_tensor * src0 = dst->src[0];
  9240. const struct ggml_tensor * src1 = dst->src[1];
  9241. // int64_t t0 = ggml_perf_time_us();
  9242. // UNUSED(t0);
  9243. GGML_TENSOR_BINARY_OP_LOCALS;
  9244. const int ith = params->ith;
  9245. const int nth = params->nth;
  9246. const enum ggml_type type = src0->type;
  9247. ggml_to_float_t const dequantize_row_q = type_traits[type].to_float;
  9248. GGML_ASSERT(ne02 == ne12);
  9249. GGML_ASSERT(ne03 == ne13);
  9250. GGML_ASSERT(ne2 == ne12);
  9251. GGML_ASSERT(ne3 == ne13);
  9252. // we don't support permuted src0 dim0
  9253. GGML_ASSERT(nb00 == ggml_type_size(type));
  9254. // dst dim0 cannot be transposed or permuted
  9255. GGML_ASSERT(nb0 == sizeof(float));
  9256. // GGML_ASSERT(nb0 <= nb1);
  9257. // GGML_ASSERT(nb1 <= nb2);
  9258. // GGML_ASSERT(nb2 <= nb3);
  9259. GGML_ASSERT(ne0 == ne00);
  9260. GGML_ASSERT(ne1 == ne10);
  9261. GGML_ASSERT(ne2 == ne02);
  9262. GGML_ASSERT(ne3 == ne03);
  9263. // nb01 >= nb00 - src0 is not transposed
  9264. // compute by src0 rows
  9265. // TODO: #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CLBLAST)
  9266. if (params->type == GGML_TASK_TYPE_INIT) {
  9267. if (ith != 0) {
  9268. return;
  9269. }
  9270. ggml_vec_set_f32(ne0*ne1*ne2*ne3, dst->data, 0);
  9271. return;
  9272. }
  9273. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  9274. return;
  9275. }
  9276. // parallelize by last three dimensions
  9277. // total rows in dst
  9278. const int64_t nr = ne1*ne2*ne3;
  9279. // rows per thread
  9280. const int64_t dr = (nr + nth - 1)/nth;
  9281. // row range for this thread
  9282. const int64_t ir0 = dr*ith;
  9283. const int64_t ir1 = MIN(ir0 + dr, nr);
  9284. // dst[:,:,:,:] = 0
  9285. // for i2,i3:
  9286. // for i1:
  9287. // for i01:
  9288. // for i0:
  9289. // dst[i0,i1,i2,i3] += src0[i0,i01,i2,i3] * src1[i1,i01,i2,i3]
  9290. float * wdata = (float *) params->wdata + (ne0 + CACHE_LINE_SIZE_F32) * ith;
  9291. for (int64_t ir = ir0; ir < ir1; ++ir) {
  9292. // dst indices
  9293. const int64_t i3 = ir/(ne2*ne1);
  9294. const int64_t i2 = (ir - i3*ne2*ne1)/ne1;
  9295. const int64_t i1 = (ir - i3*ne2*ne1 - i2*ne1);
  9296. const int64_t i02 = i2;
  9297. const int64_t i03 = i3;
  9298. //const int64_t i10 = i1;
  9299. const int64_t i12 = i2;
  9300. const int64_t i13 = i3;
  9301. for (int64_t i01 = 0; i01 < ne01; ++i01) {
  9302. const int64_t i11 = i01;
  9303. float * s0 = (float *) ((char *) src0->data + ( i01*nb01 + i02*nb02 + i03*nb03));
  9304. float * s1 = (float *) ((char *) src1->data + (i1*nb10 + i11*nb11 + i12*nb12 + i13*nb13));
  9305. float * d = (float *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
  9306. dequantize_row_q(s0, wdata, ne0);
  9307. ggml_vec_mad_f32(ne0, d, wdata, *s1);
  9308. }
  9309. }
  9310. //int64_t t1 = ggml_perf_time_us();
  9311. //static int64_t acc = 0;
  9312. //acc += t1 - t0;
  9313. //if (t1 - t0 > 10) {
  9314. // printf("\n");
  9315. // printf("ne00 = %5d, ne01 = %5d, ne02 = %5d, ne03 = %5d\n", ne00, ne01, ne02, ne03);
  9316. // printf("nb00 = %5d, nb01 = %5d, nb02 = %5d, nb03 = %5d\n", nb00, nb01, nb02, nb03);
  9317. // printf("ne10 = %5d, ne11 = %5d, ne12 = %5d, ne13 = %5d\n", ne10, ne11, ne12, ne13);
  9318. // printf("nb10 = %5d, nb11 = %5d, nb12 = %5d, nb13 = %5d\n", nb10, nb11, nb12, nb13);
  9319. // printf("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX task %d/%d: %d us, acc = %d\n", ith, nth, (int) (t1 - t0), (int) acc);
  9320. //}
  9321. }
  9322. static void ggml_compute_forward_out_prod(
  9323. const struct ggml_compute_params * params,
  9324. struct ggml_tensor * dst) {
  9325. const struct ggml_tensor * src0 = dst->src[0];
  9326. switch (src0->type) {
  9327. case GGML_TYPE_Q4_0:
  9328. case GGML_TYPE_Q4_1:
  9329. case GGML_TYPE_Q5_0:
  9330. case GGML_TYPE_Q5_1:
  9331. case GGML_TYPE_Q8_0:
  9332. case GGML_TYPE_Q2_K:
  9333. case GGML_TYPE_Q3_K:
  9334. case GGML_TYPE_Q4_K:
  9335. case GGML_TYPE_Q5_K:
  9336. case GGML_TYPE_Q6_K:
  9337. case GGML_TYPE_IQ2_XXS:
  9338. case GGML_TYPE_IQ2_XS:
  9339. case GGML_TYPE_IQ3_XXS:
  9340. case GGML_TYPE_IQ1_S:
  9341. case GGML_TYPE_IQ1_M:
  9342. case GGML_TYPE_IQ4_NL:
  9343. case GGML_TYPE_IQ4_XS:
  9344. case GGML_TYPE_IQ3_S:
  9345. case GGML_TYPE_IQ2_S:
  9346. {
  9347. ggml_compute_forward_out_prod_q_f32(params, dst);
  9348. } break;
  9349. case GGML_TYPE_F16:
  9350. {
  9351. GGML_ASSERT(false); // todo
  9352. // ggml_compute_forward_out_prod_f16_f32(params, dst);
  9353. } break;
  9354. case GGML_TYPE_F32:
  9355. {
  9356. ggml_compute_forward_out_prod_f32(params, dst);
  9357. } break;
  9358. default:
  9359. {
  9360. GGML_ASSERT(false);
  9361. } break;
  9362. }
  9363. }
  9364. // ggml_compute_forward_scale
  9365. static void ggml_compute_forward_scale_f32(
  9366. const struct ggml_compute_params * params,
  9367. struct ggml_tensor * dst) {
  9368. const struct ggml_tensor * src0 = dst->src[0];
  9369. GGML_ASSERT(ggml_is_contiguous(src0));
  9370. GGML_ASSERT(ggml_is_contiguous(dst));
  9371. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  9372. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9373. return;
  9374. }
  9375. // scale factor
  9376. float v;
  9377. memcpy(&v, dst->op_params, sizeof(float));
  9378. const int ith = params->ith;
  9379. const int nth = params->nth;
  9380. const int nc = src0->ne[0];
  9381. const int nr = ggml_nrows(src0);
  9382. // rows per thread
  9383. const int dr = (nr + nth - 1)/nth;
  9384. // row range for this thread
  9385. const int ir0 = dr*ith;
  9386. const int ir1 = MIN(ir0 + dr, nr);
  9387. const size_t nb01 = src0->nb[1];
  9388. const size_t nb1 = dst->nb[1];
  9389. for (int i1 = ir0; i1 < ir1; i1++) {
  9390. if (dst->data != src0->data) {
  9391. // src0 is same shape as dst => same indices
  9392. memcpy((char *)dst->data + i1*nb1, (char *)src0->data + i1*nb01, nc * sizeof(float));
  9393. }
  9394. ggml_vec_scale_f32(nc, (float *) ((char *) dst->data + i1*nb1), v);
  9395. }
  9396. }
  9397. static void ggml_compute_forward_scale(
  9398. const struct ggml_compute_params * params,
  9399. struct ggml_tensor * dst) {
  9400. const struct ggml_tensor * src0 = dst->src[0];
  9401. switch (src0->type) {
  9402. case GGML_TYPE_F32:
  9403. {
  9404. ggml_compute_forward_scale_f32(params, dst);
  9405. } break;
  9406. default:
  9407. {
  9408. GGML_ASSERT(false);
  9409. } break;
  9410. }
  9411. }
  9412. // ggml_compute_forward_set
  9413. static void ggml_compute_forward_set_f32(
  9414. const struct ggml_compute_params * params,
  9415. struct ggml_tensor * dst) {
  9416. const struct ggml_tensor * src0 = dst->src[0];
  9417. const struct ggml_tensor * src1 = dst->src[1];
  9418. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  9419. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  9420. // view src0 and dst with these strides and data offset inbytes during set
  9421. // nb0 is implicitly element_size because src0 and dst are contiguous
  9422. size_t nb1 = ((int32_t *) dst->op_params)[0];
  9423. size_t nb2 = ((int32_t *) dst->op_params)[1];
  9424. size_t nb3 = ((int32_t *) dst->op_params)[2];
  9425. size_t offset = ((int32_t *) dst->op_params)[3];
  9426. bool inplace = (bool) ((int32_t *) dst->op_params)[4];
  9427. if (!inplace && (params->type == GGML_TASK_TYPE_INIT)) {
  9428. if (params->ith != 0) {
  9429. return;
  9430. }
  9431. // memcpy needs to be synchronized across threads to avoid race conditions.
  9432. // => do it in INIT phase
  9433. memcpy(
  9434. ((char *) dst->data),
  9435. ((char *) src0->data),
  9436. ggml_nbytes(dst));
  9437. }
  9438. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9439. return;
  9440. }
  9441. const int ith = params->ith;
  9442. const int nth = params->nth;
  9443. const int nr = ggml_nrows(src1);
  9444. const int nc = src1->ne[0];
  9445. GGML_TENSOR_LOCALS(int64_t, ne1, src1, ne)
  9446. GGML_TENSOR_LOCALS(size_t, nb1, src1, nb)
  9447. // src0 and dst as viewed during set
  9448. const size_t nb0 = ggml_element_size(src0);
  9449. const int im0 = (ne10 == 0 ? 0 : ne10-1);
  9450. const int im1 = (ne11 == 0 ? 0 : ne11-1);
  9451. const int im2 = (ne12 == 0 ? 0 : ne12-1);
  9452. const int im3 = (ne13 == 0 ? 0 : ne13-1);
  9453. GGML_ASSERT(offset + im0*nb0 + im1*nb1 + im2*nb2 + im3*nb3 <= ggml_nbytes(dst));
  9454. GGML_ASSERT(nb10 == sizeof(float));
  9455. // rows per thread
  9456. const int dr = (nr + nth - 1)/nth;
  9457. // row range for this thread
  9458. const int ir0 = dr*ith;
  9459. const int ir1 = MIN(ir0 + dr, nr);
  9460. for (int ir = ir0; ir < ir1; ++ir) {
  9461. // src0 and dst are viewed with shape of src1 and offset
  9462. // => same indices
  9463. const int i3 = ir/(ne12*ne11);
  9464. const int i2 = (ir - i3*ne12*ne11)/ne11;
  9465. const int i1 = (ir - i3*ne12*ne11 - i2*ne11);
  9466. ggml_vec_cpy_f32(nc,
  9467. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + offset),
  9468. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
  9469. }
  9470. }
  9471. static void ggml_compute_forward_set(
  9472. const struct ggml_compute_params * params,
  9473. struct ggml_tensor * dst) {
  9474. const struct ggml_tensor * src0 = dst->src[0];
  9475. switch (src0->type) {
  9476. case GGML_TYPE_F32:
  9477. {
  9478. ggml_compute_forward_set_f32(params, dst);
  9479. } break;
  9480. case GGML_TYPE_F16:
  9481. case GGML_TYPE_Q4_0:
  9482. case GGML_TYPE_Q4_1:
  9483. case GGML_TYPE_Q5_0:
  9484. case GGML_TYPE_Q5_1:
  9485. case GGML_TYPE_Q8_0:
  9486. case GGML_TYPE_Q8_1:
  9487. case GGML_TYPE_Q2_K:
  9488. case GGML_TYPE_Q3_K:
  9489. case GGML_TYPE_Q4_K:
  9490. case GGML_TYPE_Q5_K:
  9491. case GGML_TYPE_Q6_K:
  9492. case GGML_TYPE_IQ2_XXS:
  9493. case GGML_TYPE_IQ2_XS:
  9494. case GGML_TYPE_IQ3_XXS:
  9495. case GGML_TYPE_IQ1_S:
  9496. case GGML_TYPE_IQ1_M:
  9497. case GGML_TYPE_IQ4_NL:
  9498. case GGML_TYPE_IQ4_XS:
  9499. case GGML_TYPE_IQ3_S:
  9500. case GGML_TYPE_IQ2_S:
  9501. default:
  9502. {
  9503. GGML_ASSERT(false);
  9504. } break;
  9505. }
  9506. }
  9507. // ggml_compute_forward_cpy
  9508. static void ggml_compute_forward_cpy(
  9509. const struct ggml_compute_params * params,
  9510. struct ggml_tensor * dst) {
  9511. ggml_compute_forward_dup(params, dst);
  9512. }
  9513. // ggml_compute_forward_cont
  9514. static void ggml_compute_forward_cont(
  9515. const struct ggml_compute_params * params,
  9516. struct ggml_tensor * dst) {
  9517. ggml_compute_forward_dup(params, dst);
  9518. }
  9519. // ggml_compute_forward_reshape
  9520. static void ggml_compute_forward_reshape(
  9521. const struct ggml_compute_params * params,
  9522. struct ggml_tensor * dst) {
  9523. // NOP
  9524. UNUSED(params);
  9525. UNUSED(dst);
  9526. }
  9527. // ggml_compute_forward_view
  9528. static void ggml_compute_forward_view(
  9529. const struct ggml_compute_params * params,
  9530. const struct ggml_tensor * dst) {
  9531. // NOP
  9532. UNUSED(params);
  9533. UNUSED(dst);
  9534. }
  9535. // ggml_compute_forward_permute
  9536. static void ggml_compute_forward_permute(
  9537. const struct ggml_compute_params * params,
  9538. const struct ggml_tensor * dst) {
  9539. // NOP
  9540. UNUSED(params);
  9541. UNUSED(dst);
  9542. }
  9543. // ggml_compute_forward_transpose
  9544. static void ggml_compute_forward_transpose(
  9545. const struct ggml_compute_params * params,
  9546. const struct ggml_tensor * dst) {
  9547. // NOP
  9548. UNUSED(params);
  9549. UNUSED(dst);
  9550. }
  9551. // ggml_compute_forward_get_rows
  9552. static void ggml_compute_forward_get_rows_q(
  9553. const struct ggml_compute_params * params,
  9554. struct ggml_tensor * dst) {
  9555. const struct ggml_tensor * src0 = dst->src[0];
  9556. const struct ggml_tensor * src1 = dst->src[1];
  9557. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9558. return;
  9559. }
  9560. GGML_TENSOR_BINARY_OP_LOCALS
  9561. const int64_t nc = ne00;
  9562. const int64_t nr = ggml_nelements(src1);
  9563. const enum ggml_type type = src0->type;
  9564. ggml_to_float_t const dequantize_row_q = type_traits[type].to_float;
  9565. assert(ne0 == nc);
  9566. assert(ne02 == ne11);
  9567. assert(nb00 == ggml_type_size(type));
  9568. assert(ggml_nrows(dst) == nr);
  9569. const int ith = params->ith;
  9570. const int nth = params->nth;
  9571. // rows per thread
  9572. const int dr = (nr + nth - 1)/nth;
  9573. // row range for this thread
  9574. const int ir0 = dr*ith;
  9575. const int ir1 = MIN(ir0 + dr, nr);
  9576. for (int64_t i = ir0; i < ir1; ++i) {
  9577. const int64_t i12 = i/(ne11*ne10);
  9578. const int64_t i11 = (i - i12*ne11*ne10)/ne10;
  9579. const int64_t i10 = (i - i12*ne11*ne10 - i11*ne10);
  9580. const int64_t i01 = *(int32_t *) ((char *) src1->data + i10*nb10 + i11*nb11 + i12*nb12);
  9581. dequantize_row_q(
  9582. (const void *) ((char *) src0->data + i01*nb01 + i11*nb02 + i12*nb03),
  9583. (float *) ((char *) dst->data + i10*nb1 + i11*nb2 + i12*nb3), nc);
  9584. }
  9585. }
  9586. static void ggml_compute_forward_get_rows_f16(
  9587. const struct ggml_compute_params * params,
  9588. struct ggml_tensor * dst) {
  9589. const struct ggml_tensor * src0 = dst->src[0];
  9590. const struct ggml_tensor * src1 = dst->src[1];
  9591. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9592. return;
  9593. }
  9594. GGML_TENSOR_BINARY_OP_LOCALS
  9595. const int64_t nc = ne00;
  9596. const int64_t nr = ggml_nelements(src1);
  9597. assert(ne0 == nc);
  9598. assert(ne02 == ne11);
  9599. assert(nb00 == sizeof(ggml_fp16_t));
  9600. assert(ggml_nrows(dst) == nr);
  9601. const int ith = params->ith;
  9602. const int nth = params->nth;
  9603. // rows per thread
  9604. const int dr = (nr + nth - 1)/nth;
  9605. // row range for this thread
  9606. const int ir0 = dr*ith;
  9607. const int ir1 = MIN(ir0 + dr, nr);
  9608. for (int64_t i = ir0; i < ir1; ++i) {
  9609. const int64_t i12 = i/(ne11*ne10);
  9610. const int64_t i11 = (i - i12*ne11*ne10)/ne10;
  9611. const int64_t i10 = (i - i12*ne11*ne10 - i11*ne10);
  9612. const int64_t i01 = *(int32_t *) ((char *) src1->data + i10*nb10 + i11*nb11 + i12*nb12);
  9613. ggml_fp16_to_fp32_row(
  9614. (const void *) ((char *) src0->data + i01*nb01 + i11*nb02 + i12*nb03),
  9615. (float *) ((char *) dst->data + i10*nb1 + i11*nb2 + i12*nb3), nc);
  9616. }
  9617. }
  9618. static void ggml_compute_forward_get_rows_f32(
  9619. const struct ggml_compute_params * params,
  9620. struct ggml_tensor * dst) {
  9621. const struct ggml_tensor * src0 = dst->src[0];
  9622. const struct ggml_tensor * src1 = dst->src[1];
  9623. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9624. return;
  9625. }
  9626. GGML_TENSOR_BINARY_OP_LOCALS
  9627. const int64_t nc = ne00;
  9628. const int64_t nr = ggml_nelements(src1);
  9629. assert(ne0 == nc);
  9630. assert(ne02 == ne11);
  9631. assert(nb00 == sizeof(float));
  9632. assert(ggml_nrows(dst) == nr);
  9633. const int ith = params->ith;
  9634. const int nth = params->nth;
  9635. // rows per thread
  9636. const int dr = (nr + nth - 1)/nth;
  9637. // row range for this thread
  9638. const int ir0 = dr*ith;
  9639. const int ir1 = MIN(ir0 + dr, nr);
  9640. for (int64_t i = ir0; i < ir1; ++i) {
  9641. const int64_t i12 = i/(ne11*ne10);
  9642. const int64_t i11 = (i - i12*ne11*ne10)/ne10;
  9643. const int64_t i10 = (i - i12*ne11*ne10 - i11*ne10);
  9644. const int64_t i01 = *(int32_t *) ((char *) src1->data + i10*nb10 + i11*nb11 + i12*nb12);
  9645. ggml_vec_cpy_f32(nc,
  9646. (float *) ((char *) dst->data + i10*nb1 + i11*nb2 + i12*nb3),
  9647. (float *) ((char *) src0->data + i01*nb01 + i11*nb02 + i12*nb03));
  9648. }
  9649. }
  9650. static void ggml_compute_forward_get_rows(
  9651. const struct ggml_compute_params * params,
  9652. struct ggml_tensor * dst) {
  9653. const struct ggml_tensor * src0 = dst->src[0];
  9654. switch (src0->type) {
  9655. case GGML_TYPE_Q4_0:
  9656. case GGML_TYPE_Q4_1:
  9657. case GGML_TYPE_Q5_0:
  9658. case GGML_TYPE_Q5_1:
  9659. case GGML_TYPE_Q8_0:
  9660. case GGML_TYPE_Q8_1:
  9661. case GGML_TYPE_Q2_K:
  9662. case GGML_TYPE_Q3_K:
  9663. case GGML_TYPE_Q4_K:
  9664. case GGML_TYPE_Q5_K:
  9665. case GGML_TYPE_Q6_K:
  9666. case GGML_TYPE_IQ2_XXS:
  9667. case GGML_TYPE_IQ2_XS:
  9668. case GGML_TYPE_IQ3_XXS:
  9669. case GGML_TYPE_IQ1_S:
  9670. case GGML_TYPE_IQ1_M:
  9671. case GGML_TYPE_IQ4_NL:
  9672. case GGML_TYPE_IQ4_XS:
  9673. case GGML_TYPE_IQ3_S:
  9674. case GGML_TYPE_IQ2_S:
  9675. {
  9676. ggml_compute_forward_get_rows_q(params, dst);
  9677. } break;
  9678. case GGML_TYPE_F16:
  9679. {
  9680. ggml_compute_forward_get_rows_f16(params, dst);
  9681. } break;
  9682. case GGML_TYPE_F32:
  9683. case GGML_TYPE_I32:
  9684. {
  9685. ggml_compute_forward_get_rows_f32(params, dst);
  9686. } break;
  9687. default:
  9688. {
  9689. GGML_ASSERT(false);
  9690. } break;
  9691. }
  9692. //static bool first = true;
  9693. //printf("ne0 = %d, ne1 = %d, ne2 = %d\n", dst->ne[0], dst->ne[1], dst->ne[2]);
  9694. //if (first) {
  9695. // first = false;
  9696. //} else {
  9697. // for (int k = 0; k < dst->ne[1]; ++k) {
  9698. // for (int j = 0; j < dst->ne[0]/16; ++j) {
  9699. // for (int i = 0; i < 16; ++i) {
  9700. // printf("%8.4f ", ((float *) dst->data)[k*dst->ne[0] + j*16 + i]);
  9701. // }
  9702. // printf("\n");
  9703. // }
  9704. // printf("\n");
  9705. // }
  9706. // printf("\n");
  9707. // exit(0);
  9708. //}
  9709. }
  9710. // ggml_compute_forward_get_rows_back
  9711. static void ggml_compute_forward_get_rows_back_f32_f16(
  9712. const struct ggml_compute_params * params,
  9713. struct ggml_tensor * dst) {
  9714. const struct ggml_tensor * src0 = dst->src[0];
  9715. const struct ggml_tensor * src1 = dst->src[1];
  9716. GGML_ASSERT(params->ith == 0);
  9717. GGML_ASSERT(ggml_is_contiguous(dst));
  9718. // ggml_compute_forward_dup_same_cont(params, opt0, dst);
  9719. if (params->type == GGML_TASK_TYPE_INIT) {
  9720. if (params->ith != 0) {
  9721. return;
  9722. }
  9723. memset(dst->data, 0, ggml_nbytes(dst));
  9724. }
  9725. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9726. return;
  9727. }
  9728. const int nc = src0->ne[0];
  9729. const int nr = ggml_nelements(src1);
  9730. GGML_ASSERT( dst->ne[0] == nc);
  9731. GGML_ASSERT(src0->nb[0] == sizeof(ggml_fp16_t));
  9732. for (int i = 0; i < nr; ++i) {
  9733. const int r = ((int32_t *) src1->data)[i];
  9734. for (int j = 0; j < nc; ++j) {
  9735. ggml_fp16_t v = ((ggml_fp16_t *) ((char *) src0->data + i*src0->nb[1]))[j];
  9736. ((float *) ((char *) dst->data + r*dst->nb[1]))[j] += GGML_FP16_TO_FP32(v);
  9737. }
  9738. }
  9739. }
  9740. static void ggml_compute_forward_get_rows_back_f32(
  9741. const struct ggml_compute_params * params,
  9742. struct ggml_tensor * dst) {
  9743. const struct ggml_tensor * src0 = dst->src[0];
  9744. const struct ggml_tensor * src1 = dst->src[1];
  9745. GGML_ASSERT(params->ith == 0);
  9746. GGML_ASSERT(ggml_is_contiguous(dst));
  9747. // ggml_compute_forward_dup_same_cont(params, opt0, dst);
  9748. if (params->type == GGML_TASK_TYPE_INIT) {
  9749. if (params->ith != 0) {
  9750. return;
  9751. }
  9752. memset(dst->data, 0, ggml_nbytes(dst));
  9753. }
  9754. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9755. return;
  9756. }
  9757. const int nc = src0->ne[0];
  9758. const int nr = ggml_nelements(src1);
  9759. GGML_ASSERT( dst->ne[0] == nc);
  9760. GGML_ASSERT(src0->nb[0] == sizeof(float));
  9761. for (int i = 0; i < nr; ++i) {
  9762. const int r = ((int32_t *) src1->data)[i];
  9763. ggml_vec_add_f32(nc,
  9764. (float *) ((char *) dst->data + r*dst->nb[1]),
  9765. (float *) ((char *) dst->data + r*dst->nb[1]),
  9766. (float *) ((char *) src0->data + i*src0->nb[1]));
  9767. }
  9768. }
  9769. static void ggml_compute_forward_get_rows_back(
  9770. const struct ggml_compute_params * params,
  9771. struct ggml_tensor * dst) {
  9772. const struct ggml_tensor * src0 = dst->src[0];
  9773. switch (src0->type) {
  9774. case GGML_TYPE_F16:
  9775. {
  9776. ggml_compute_forward_get_rows_back_f32_f16(params, dst);
  9777. } break;
  9778. case GGML_TYPE_F32:
  9779. {
  9780. ggml_compute_forward_get_rows_back_f32(params, dst);
  9781. } break;
  9782. default:
  9783. {
  9784. GGML_ASSERT(false);
  9785. } break;
  9786. }
  9787. //static bool first = true;
  9788. //printf("ne0 = %d, ne1 = %d, ne2 = %d\n", dst->ne[0], dst->ne[1], dst->ne[2]);
  9789. //if (first) {
  9790. // first = false;
  9791. //} else {
  9792. // for (int k = 0; k < dst->ne[1]; ++k) {
  9793. // for (int j = 0; j < dst->ne[0]/16; ++j) {
  9794. // for (int i = 0; i < 16; ++i) {
  9795. // printf("%8.4f ", ((float *) dst->data)[k*dst->ne[0] + j*16 + i]);
  9796. // }
  9797. // printf("\n");
  9798. // }
  9799. // printf("\n");
  9800. // }
  9801. // printf("\n");
  9802. // exit(0);
  9803. //}
  9804. }
  9805. // ggml_compute_forward_diag
  9806. static void ggml_compute_forward_diag_f32(
  9807. const struct ggml_compute_params * params,
  9808. struct ggml_tensor * dst) {
  9809. const struct ggml_tensor * src0 = dst->src[0];
  9810. GGML_ASSERT(params->ith == 0);
  9811. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9812. return;
  9813. }
  9814. // TODO: handle transposed/permuted matrices
  9815. GGML_TENSOR_UNARY_OP_LOCALS
  9816. GGML_ASSERT(ne00 == ne0);
  9817. GGML_ASSERT(ne00 == ne1);
  9818. GGML_ASSERT(ne01 == 1);
  9819. GGML_ASSERT(ne02 == ne2);
  9820. GGML_ASSERT(ne03 == ne3);
  9821. GGML_ASSERT(nb00 == sizeof(float));
  9822. GGML_ASSERT(nb0 == sizeof(float));
  9823. for (int i3 = 0; i3 < ne3; i3++) {
  9824. for (int i2 = 0; i2 < ne2; i2++) {
  9825. for (int i1 = 0; i1 < ne1; i1++) {
  9826. float * d = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  9827. float * s = (float *)((char *) src0->data + i3*nb03 + i2*nb02);
  9828. for (int i0 = 0; i0 < i1; i0++) {
  9829. d[i0] = 0;
  9830. }
  9831. d[i1] = s[i1];
  9832. for (int i0 = i1+1; i0 < ne0; i0++) {
  9833. d[i0] = 0;
  9834. }
  9835. }
  9836. }
  9837. }
  9838. }
  9839. static void ggml_compute_forward_diag(
  9840. const struct ggml_compute_params * params,
  9841. struct ggml_tensor * dst) {
  9842. const struct ggml_tensor * src0 = dst->src[0];
  9843. switch (src0->type) {
  9844. case GGML_TYPE_F32:
  9845. {
  9846. ggml_compute_forward_diag_f32(params, dst);
  9847. } break;
  9848. default:
  9849. {
  9850. GGML_ASSERT(false);
  9851. } break;
  9852. }
  9853. }
  9854. // ggml_compute_forward_diag_mask_inf
  9855. static void ggml_compute_forward_diag_mask_f32(
  9856. const struct ggml_compute_params * params,
  9857. struct ggml_tensor * dst,
  9858. const float value) {
  9859. const struct ggml_tensor * src0 = dst->src[0];
  9860. const int ith = params->ith;
  9861. const int nth = params->nth;
  9862. const int n_past = ((int32_t *) dst->op_params)[0];
  9863. const bool inplace = src0->data == dst->data;
  9864. GGML_ASSERT(n_past >= 0);
  9865. if (!inplace && (params->type == GGML_TASK_TYPE_INIT)) {
  9866. if (ith != 0) {
  9867. return;
  9868. }
  9869. // memcpy needs to be synchronized across threads to avoid race conditions.
  9870. // => do it in INIT phase
  9871. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  9872. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  9873. memcpy(
  9874. ((char *) dst->data),
  9875. ((char *) src0->data),
  9876. ggml_nbytes(dst));
  9877. }
  9878. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9879. return;
  9880. }
  9881. // TODO: handle transposed/permuted matrices
  9882. const int n = ggml_nrows(src0);
  9883. const int nc = src0->ne[0];
  9884. const int nr = src0->ne[1];
  9885. const int nz = n/nr;
  9886. GGML_ASSERT( dst->nb[0] == sizeof(float));
  9887. GGML_ASSERT(src0->nb[0] == sizeof(float));
  9888. for (int k = 0; k < nz; k++) {
  9889. for (int j = ith; j < nr; j += nth) {
  9890. for (int i = n_past; i < nc; i++) {
  9891. if (i > n_past + j) {
  9892. *(float *)((char *) dst->data + k*dst->nb[2] + j*dst->nb[1] + i*dst->nb[0]) = value;
  9893. }
  9894. }
  9895. }
  9896. }
  9897. }
  9898. static void ggml_compute_forward_diag_mask_inf(
  9899. const struct ggml_compute_params * params,
  9900. struct ggml_tensor * dst) {
  9901. const struct ggml_tensor * src0 = dst->src[0];
  9902. switch (src0->type) {
  9903. case GGML_TYPE_F32:
  9904. {
  9905. ggml_compute_forward_diag_mask_f32(params, dst, -INFINITY);
  9906. } break;
  9907. default:
  9908. {
  9909. GGML_ASSERT(false);
  9910. } break;
  9911. }
  9912. }
  9913. static void ggml_compute_forward_diag_mask_zero(
  9914. const struct ggml_compute_params * params,
  9915. struct ggml_tensor * dst) {
  9916. const struct ggml_tensor * src0 = dst->src[0];
  9917. switch (src0->type) {
  9918. case GGML_TYPE_F32:
  9919. {
  9920. ggml_compute_forward_diag_mask_f32(params, dst, 0);
  9921. } break;
  9922. default:
  9923. {
  9924. GGML_ASSERT(false);
  9925. } break;
  9926. }
  9927. }
  9928. // ggml_compute_forward_soft_max
  9929. static void ggml_compute_forward_soft_max_f32(
  9930. const struct ggml_compute_params * params,
  9931. struct ggml_tensor * dst) {
  9932. const struct ggml_tensor * src0 = dst->src[0];
  9933. const struct ggml_tensor * src1 = dst->src[1];
  9934. const struct ggml_tensor * src2 = dst->src[2];
  9935. assert(ggml_is_contiguous(dst));
  9936. assert(ggml_are_same_shape(src0, dst));
  9937. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9938. return;
  9939. }
  9940. float scale = 1.0f;
  9941. float max_bias = 0.0f;
  9942. memcpy(&scale, (float *) dst->op_params + 0, sizeof(float));
  9943. memcpy(&max_bias, (float *) dst->op_params + 1, sizeof(float));
  9944. // TODO: handle transposed/permuted matrices
  9945. const int ith = params->ith;
  9946. const int nth = params->nth;
  9947. GGML_TENSOR_UNARY_OP_LOCALS
  9948. const int64_t ne11 = src1 ? src1->ne[1] : 1;
  9949. // TODO: is this supposed to be ceil instead of floor?
  9950. // https://huggingface.co/mosaicml/mpt-7b/blob/main/attention.py#L370
  9951. const uint32_t n_head_kv = ne02;
  9952. const uint32_t n_head_log2 = 1u << (uint32_t) floor(log2(n_head_kv));
  9953. const float m0 = powf(2.0f, -(max_bias ) / n_head_log2);
  9954. const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_head_log2);
  9955. const int nc = src0->ne[0];
  9956. const int nr = ggml_nrows(src0);
  9957. // rows per thread
  9958. const int dr = (nr + nth - 1)/nth;
  9959. // row range for this thread
  9960. const int ir0 = dr*ith;
  9961. const int ir1 = MIN(ir0 + dr, nr);
  9962. float * wp = (float *) params->wdata + (nc + CACHE_LINE_SIZE_F32) * ith;
  9963. // when max_bias <= 0.0f, src2 is not used and we default it to src0 to avoid branching
  9964. float * pos = src2 ? (float *) src2->data : src0->data;
  9965. for (int i1 = ir0; i1 < ir1; i1++) {
  9966. float * sp = (float *)((char *) src0->data + i1*src0->nb[1]);
  9967. float * dp = (float *)((char *) dst->data + i1*dst->nb[1]);
  9968. // broadcast the mask across rows
  9969. float * mp = src1 ? (float *)((char *) src1->data + (i1%ne11)*src1->nb[1]) : NULL;
  9970. ggml_vec_cpy_f32 (nc, wp, sp);
  9971. ggml_vec_scale_f32(nc, wp, scale);
  9972. if (mp) {
  9973. ggml_vec_acc_f32(nc, wp, mp);
  9974. }
  9975. // ALiBi bias
  9976. if (max_bias > 0.0f) {
  9977. const uint32_t h = (i1/ne01)%ne02; // head
  9978. const float slope = h < n_head_log2 ? powf(m0, h + 1) : powf(m1, 2*(h - n_head_log2) + 1);
  9979. for (int i = 0; i < nc; i++) {
  9980. wp[i] = wp[i] + slope*pos[i];
  9981. }
  9982. }
  9983. #ifndef NDEBUG
  9984. for (int i = 0; i < nc; ++i) {
  9985. //printf("p[%d] = %f\n", i, p[i]);
  9986. assert(!isnan(wp[i]));
  9987. }
  9988. #endif
  9989. float max = -INFINITY;
  9990. ggml_vec_max_f32(nc, &max, wp);
  9991. ggml_float sum = 0.0;
  9992. uint16_t scvt;
  9993. for (int i = 0; i < nc; i++) {
  9994. if (wp[i] == -INFINITY) {
  9995. dp[i] = 0.0f;
  9996. } else {
  9997. // const float val = (wp[i] == -INFINITY) ? 0.0 : exp(wp[i] - max);
  9998. ggml_fp16_t s = GGML_FP32_TO_FP16(wp[i] - max);
  9999. memcpy(&scvt, &s, sizeof(scvt));
  10000. const float val = GGML_FP16_TO_FP32(ggml_table_exp_f16[scvt]);
  10001. sum += (ggml_float)val;
  10002. dp[i] = val;
  10003. }
  10004. }
  10005. assert(sum > 0.0);
  10006. sum = 1.0/sum;
  10007. ggml_vec_scale_f32(nc, dp, sum);
  10008. #ifndef NDEBUG
  10009. for (int i = 0; i < nc; ++i) {
  10010. assert(!isnan(dp[i]));
  10011. assert(!isinf(dp[i]));
  10012. }
  10013. #endif
  10014. }
  10015. }
  10016. static void ggml_compute_forward_soft_max(
  10017. const struct ggml_compute_params * params,
  10018. struct ggml_tensor * dst) {
  10019. const struct ggml_tensor * src0 = dst->src[0];
  10020. switch (src0->type) {
  10021. case GGML_TYPE_F32:
  10022. {
  10023. ggml_compute_forward_soft_max_f32(params, dst);
  10024. } break;
  10025. default:
  10026. {
  10027. GGML_ASSERT(false);
  10028. } break;
  10029. }
  10030. }
  10031. // ggml_compute_forward_soft_max_back
  10032. static void ggml_compute_forward_soft_max_back_f32(
  10033. const struct ggml_compute_params * params,
  10034. struct ggml_tensor * dst) {
  10035. const struct ggml_tensor * src0 = dst->src[0];
  10036. const struct ggml_tensor * src1 = dst->src[1];
  10037. GGML_ASSERT(ggml_is_contiguous(src0));
  10038. GGML_ASSERT(ggml_is_contiguous(src1));
  10039. GGML_ASSERT(ggml_is_contiguous(dst));
  10040. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  10041. GGML_ASSERT(ggml_are_same_shape(src1, dst));
  10042. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  10043. return;
  10044. }
  10045. // TODO: handle transposed/permuted matrices
  10046. const int ith = params->ith;
  10047. const int nth = params->nth;
  10048. const int nc = src0->ne[0];
  10049. const int nr = ggml_nrows(src0);
  10050. // rows per thread
  10051. const int dr = (nr + nth - 1)/nth;
  10052. // row range for this thread
  10053. const int ir0 = dr*ith;
  10054. const int ir1 = MIN(ir0 + dr, nr);
  10055. for (int i1 = ir0; i1 < ir1; i1++) {
  10056. float *dy = (float *)((char *) src0->data + i1*src0->nb[1]);
  10057. float *y = (float *)((char *) src1->data + i1*src1->nb[1]);
  10058. float *dx = (float *)((char *) dst->data + i1*dst->nb[1]);
  10059. #ifndef NDEBUG
  10060. for (int i = 0; i < nc; ++i) {
  10061. //printf("p[%d] = %f\n", i, p[i]);
  10062. assert(!isnan(dy[i]));
  10063. assert(!isnan(y[i]));
  10064. }
  10065. #endif
  10066. // Jii = yi - yi*yi
  10067. // Jij = -yi*yj
  10068. // J = diag(y)-y.T*y
  10069. // dx = J * dy
  10070. // dxk = sum_i(Jki * dyi)
  10071. // dxk = sum_i(-yk*yi * dyi) - (-yk*yk)*dyk + (yk - yk*yk)*dyk
  10072. // dxk = sum_i(-yk*yi * dyi) + yk*yk*dyk + yk*dyk - yk*yk*dyk
  10073. // dxk = sum_i(-yk*yi * dyi) + yk*dyk
  10074. // dxk = -yk * sum_i(yi * dyi) + yk*dyk
  10075. // dxk = -yk * dot(y, dy) + yk*dyk
  10076. // dxk = yk * (- dot(y, dy) + dyk)
  10077. // dxk = yk * (dyk - dot(y, dy))
  10078. //
  10079. // post-order:
  10080. // dot_y_dy := dot(y, dy)
  10081. // dx := dy
  10082. // dx := dx - dot_y_dy
  10083. // dx := dx * y
  10084. // linear runtime, no additional memory
  10085. float dot_y_dy = 0;
  10086. ggml_vec_dot_f32 (nc, &dot_y_dy, 0, y, 0, dy, 0, 1);
  10087. ggml_vec_cpy_f32 (nc, dx, dy);
  10088. ggml_vec_acc1_f32(nc, dx, -dot_y_dy);
  10089. ggml_vec_mul_f32 (nc, dx, dx, y);
  10090. #ifndef NDEBUG
  10091. for (int i = 0; i < nc; ++i) {
  10092. assert(!isnan(dx[i]));
  10093. assert(!isinf(dx[i]));
  10094. }
  10095. #endif
  10096. }
  10097. }
  10098. static void ggml_compute_forward_soft_max_back(
  10099. const struct ggml_compute_params * params,
  10100. struct ggml_tensor * dst) {
  10101. const struct ggml_tensor * src0 = dst->src[0];
  10102. switch (src0->type) {
  10103. case GGML_TYPE_F32:
  10104. {
  10105. ggml_compute_forward_soft_max_back_f32(params, dst);
  10106. } break;
  10107. default:
  10108. {
  10109. GGML_ASSERT(false);
  10110. } break;
  10111. }
  10112. }
  10113. // ggml_compute_forward_alibi
  10114. static void ggml_compute_forward_alibi_f32(
  10115. const struct ggml_compute_params * params,
  10116. struct ggml_tensor * dst) {
  10117. const struct ggml_tensor * src0 = dst->src[0];
  10118. assert(params->ith == 0);
  10119. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  10120. return;
  10121. }
  10122. //const int n_past = ((int32_t *) dst->op_params)[0];
  10123. const int n_head = ((int32_t *) dst->op_params)[1];
  10124. float max_bias;
  10125. memcpy(&max_bias, (int32_t *) dst->op_params + 2, sizeof(float));
  10126. const int64_t ne0 = src0->ne[0]; // all_seq_len = n_past + ne1
  10127. const int64_t ne1 = src0->ne[1]; // seq_len_without_past
  10128. const int64_t ne2 = src0->ne[2]; // n_head -> this is k
  10129. //const int64_t ne3 = src0->ne[3]; // 1 -> bsz
  10130. const int64_t n = ggml_nrows(src0);
  10131. const int64_t ne2_ne3 = n/ne1; // ne2*ne3
  10132. const size_t nb0 = src0->nb[0];
  10133. const size_t nb1 = src0->nb[1];
  10134. const size_t nb2 = src0->nb[2];
  10135. //const int nb3 = src0->nb[3];
  10136. GGML_ASSERT(nb0 == sizeof(float));
  10137. GGML_ASSERT(n_head == ne2);
  10138. // add alibi to src0 (KQ_scaled)
  10139. const int n_heads_log2_floor = 1 << (int) floor(log2(n_head));
  10140. const float m0 = powf(2.0f, -(max_bias) / n_heads_log2_floor);
  10141. const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_heads_log2_floor);
  10142. for (int64_t k = 0; k < ne2_ne3; k++) {
  10143. // TODO: k*nb2 or k*nb3
  10144. float m_k;
  10145. if (k < n_heads_log2_floor) {
  10146. m_k = powf(m0, k + 1);
  10147. } else {
  10148. m_k = powf(m1, 2 * (k - n_heads_log2_floor) + 1);
  10149. }
  10150. for (int64_t i = 0; i < ne0; i++) {
  10151. for (int64_t j = 0; j < ne1; j++) {
  10152. float * const src = (float *)((char *) src0->data + i*nb0 + j*nb1 + k*nb2);
  10153. float * pdst = (float *)((char *) dst->data + i*nb0 + j*nb1 + k*nb2);
  10154. pdst[0] = i * m_k + src[0];
  10155. }
  10156. }
  10157. }
  10158. }
  10159. static void ggml_compute_forward_alibi_f16(
  10160. const struct ggml_compute_params * params,
  10161. struct ggml_tensor * dst) {
  10162. const struct ggml_tensor * src0 = dst->src[0];
  10163. assert(params->ith == 0);
  10164. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  10165. return;
  10166. }
  10167. //const int n_past = ((int32_t *) dst->op_params)[0];
  10168. const int n_head = ((int32_t *) dst->op_params)[1];
  10169. float max_bias;
  10170. memcpy(&max_bias, (int32_t *) dst->op_params + 2, sizeof(float));
  10171. const int ne0 = src0->ne[0]; // all_seq_len = n_past + ne1
  10172. const int ne1 = src0->ne[1]; // seq_len_without_past
  10173. const int ne2 = src0->ne[2]; // n_head -> this is k
  10174. //const int ne3 = src0->ne[3]; // 1 -> bsz
  10175. const int n = ggml_nrows(src0);
  10176. const int ne2_ne3 = n/ne1; // ne2*ne3
  10177. const int nb0 = src0->nb[0];
  10178. const int nb1 = src0->nb[1];
  10179. const int nb2 = src0->nb[2];
  10180. //const int nb3 = src0->nb[3];
  10181. GGML_ASSERT(nb0 == sizeof(ggml_fp16_t));
  10182. //GGML_ASSERT(ne1 + n_past == ne0); (void) n_past;
  10183. GGML_ASSERT(n_head == ne2);
  10184. // add alibi to src0 (KQ_scaled)
  10185. const int n_heads_log2_floor = 1 << (int) floor(log2(n_head));
  10186. const float m0 = powf(2.0f, -(max_bias) / n_heads_log2_floor);
  10187. const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_heads_log2_floor);
  10188. for (int k = 0; k < ne2_ne3; k++) {
  10189. // TODO: k*nb2 or k*nb3
  10190. float m_k;
  10191. if (k < n_heads_log2_floor) {
  10192. m_k = powf(m0, k + 1);
  10193. } else {
  10194. m_k = powf(m1, 2 * (k - n_heads_log2_floor) + 1);
  10195. }
  10196. for (int i = 0; i < ne0; i++) {
  10197. for (int j = 0; j < ne1; j++) {
  10198. ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i*nb0 + j*nb1 + k*nb2);
  10199. float * pdst = (float *)((char *) dst->data + i*nb0 + j*nb1 + k*nb2);
  10200. // we return F32
  10201. pdst[0] = i * m_k + GGML_FP16_TO_FP32(src[0]);
  10202. }
  10203. }
  10204. }
  10205. }
  10206. static void ggml_compute_forward_alibi(
  10207. const struct ggml_compute_params * params,
  10208. struct ggml_tensor * dst) {
  10209. const struct ggml_tensor * src0 = dst->src[0];
  10210. switch (src0->type) {
  10211. case GGML_TYPE_F16:
  10212. {
  10213. ggml_compute_forward_alibi_f16(params, dst);
  10214. } break;
  10215. case GGML_TYPE_F32:
  10216. {
  10217. ggml_compute_forward_alibi_f32(params, dst);
  10218. } break;
  10219. case GGML_TYPE_Q4_0:
  10220. case GGML_TYPE_Q4_1:
  10221. case GGML_TYPE_Q5_0:
  10222. case GGML_TYPE_Q5_1:
  10223. case GGML_TYPE_Q8_0:
  10224. case GGML_TYPE_Q8_1:
  10225. case GGML_TYPE_Q2_K:
  10226. case GGML_TYPE_Q3_K:
  10227. case GGML_TYPE_Q4_K:
  10228. case GGML_TYPE_Q5_K:
  10229. case GGML_TYPE_Q6_K:
  10230. case GGML_TYPE_IQ2_XXS:
  10231. case GGML_TYPE_IQ2_XS:
  10232. case GGML_TYPE_IQ3_XXS:
  10233. case GGML_TYPE_IQ1_S:
  10234. case GGML_TYPE_IQ1_M:
  10235. case GGML_TYPE_IQ4_NL:
  10236. case GGML_TYPE_IQ4_XS:
  10237. case GGML_TYPE_IQ3_S:
  10238. case GGML_TYPE_IQ2_S:
  10239. case GGML_TYPE_Q8_K:
  10240. case GGML_TYPE_I8:
  10241. case GGML_TYPE_I16:
  10242. case GGML_TYPE_I32:
  10243. case GGML_TYPE_I64:
  10244. case GGML_TYPE_F64:
  10245. case GGML_TYPE_COUNT:
  10246. {
  10247. GGML_ASSERT(false);
  10248. } break;
  10249. }
  10250. }
  10251. // ggml_compute_forward_clamp
  10252. static void ggml_compute_forward_clamp_f32(
  10253. const struct ggml_compute_params * params,
  10254. struct ggml_tensor * dst) {
  10255. const struct ggml_tensor * src0 = dst->src[0];
  10256. assert(params->ith == 0);
  10257. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  10258. return;
  10259. }
  10260. float min;
  10261. float max;
  10262. memcpy(&min, (float *) dst->op_params + 0, sizeof(float));
  10263. memcpy(&max, (float *) dst->op_params + 1, sizeof(float));
  10264. const int ith = params->ith;
  10265. const int nth = params->nth;
  10266. const int n = ggml_nrows(src0);
  10267. const int nc = src0->ne[0];
  10268. const size_t nb00 = src0->nb[0];
  10269. const size_t nb01 = src0->nb[1];
  10270. const size_t nb0 = dst->nb[0];
  10271. const size_t nb1 = dst->nb[1];
  10272. GGML_ASSERT( nb0 == sizeof(float));
  10273. GGML_ASSERT(nb00 == sizeof(float));
  10274. for (int j = ith; j < n; j += nth) {
  10275. float * dst_ptr = (float *) ((char *) dst->data + j*nb1);
  10276. float * src0_ptr = (float *) ((char *) src0->data + j*nb01);
  10277. for (int i = 0; i < nc; i++) {
  10278. dst_ptr[i] = MAX(MIN(src0_ptr[i], max), min);
  10279. }
  10280. }
  10281. }
  10282. static void ggml_compute_forward_clamp(
  10283. const struct ggml_compute_params * params,
  10284. struct ggml_tensor * dst) {
  10285. const struct ggml_tensor * src0 = dst->src[0];
  10286. switch (src0->type) {
  10287. case GGML_TYPE_F32:
  10288. {
  10289. ggml_compute_forward_clamp_f32(params, dst);
  10290. } break;
  10291. case GGML_TYPE_F16:
  10292. case GGML_TYPE_Q4_0:
  10293. case GGML_TYPE_Q4_1:
  10294. case GGML_TYPE_Q5_0:
  10295. case GGML_TYPE_Q5_1:
  10296. case GGML_TYPE_Q8_0:
  10297. case GGML_TYPE_Q8_1:
  10298. case GGML_TYPE_Q2_K:
  10299. case GGML_TYPE_Q3_K:
  10300. case GGML_TYPE_Q4_K:
  10301. case GGML_TYPE_Q5_K:
  10302. case GGML_TYPE_Q6_K:
  10303. case GGML_TYPE_IQ2_XXS:
  10304. case GGML_TYPE_IQ2_XS:
  10305. case GGML_TYPE_IQ3_XXS:
  10306. case GGML_TYPE_IQ1_S:
  10307. case GGML_TYPE_IQ1_M:
  10308. case GGML_TYPE_IQ4_NL:
  10309. case GGML_TYPE_IQ4_XS:
  10310. case GGML_TYPE_IQ3_S:
  10311. case GGML_TYPE_IQ2_S:
  10312. case GGML_TYPE_Q8_K:
  10313. case GGML_TYPE_I8:
  10314. case GGML_TYPE_I16:
  10315. case GGML_TYPE_I32:
  10316. case GGML_TYPE_I64:
  10317. case GGML_TYPE_F64:
  10318. case GGML_TYPE_COUNT:
  10319. {
  10320. GGML_ASSERT(false);
  10321. } break;
  10322. }
  10323. }
  10324. // ggml_compute_forward_rope
  10325. static float rope_yarn_ramp(const float low, const float high, const int i0) {
  10326. const float y = (i0 / 2 - low) / MAX(0.001f, high - low);
  10327. return 1 - MIN(1, MAX(0, y));
  10328. }
  10329. // YaRN algorithm based on LlamaYaRNScaledRotaryEmbedding.py from https://github.com/jquesnelle/yarn
  10330. // MIT licensed. Copyright (c) 2023 Jeffrey Quesnelle and Bowen Peng.
  10331. static void rope_yarn(
  10332. float theta_extrap, float freq_scale, float corr_dims[2], int64_t i0, float ext_factor, float mscale,
  10333. float * cos_theta, float * sin_theta
  10334. ) {
  10335. // Get n-d rotational scaling corrected for extrapolation
  10336. float theta_interp = freq_scale * theta_extrap;
  10337. float theta = theta_interp;
  10338. if (ext_factor != 0.0f) {
  10339. float ramp_mix = rope_yarn_ramp(corr_dims[0], corr_dims[1], i0) * ext_factor;
  10340. theta = theta_interp * (1 - ramp_mix) + theta_extrap * ramp_mix;
  10341. // Get n-d magnitude scaling corrected for interpolation
  10342. mscale *= 1.0f + 0.1f * logf(1.0f / freq_scale);
  10343. }
  10344. *cos_theta = cosf(theta) * mscale;
  10345. *sin_theta = sinf(theta) * mscale;
  10346. }
  10347. // Apparently solving `n_rot = 2pi * x * base^((2 * max_pos_emb) / n_dims)` for x, we get
  10348. // `corr_dim(n_rot) = n_dims * log(max_pos_emb / (n_rot * 2pi)) / (2 * log(base))`
  10349. static float ggml_rope_yarn_corr_dim(int n_dims, int n_orig_ctx, float n_rot, float base) {
  10350. return n_dims * logf(n_orig_ctx / (n_rot * 2 * (float)M_PI)) / (2 * logf(base));
  10351. }
  10352. static void ggml_rope_cache_init(
  10353. float theta_base, float freq_scale, float corr_dims[2], int64_t ne0, float ext_factor, float mscale,
  10354. float * cache, float sin_sign, float theta_scale
  10355. ) {
  10356. float theta = theta_base;
  10357. for (int64_t i0 = 0; i0 < ne0; i0 += 2) {
  10358. rope_yarn(
  10359. theta, freq_scale, corr_dims, i0, ext_factor, mscale, &cache[i0 + 0], &cache[i0 + 1]
  10360. );
  10361. cache[i0 + 1] *= sin_sign;
  10362. theta *= theta_scale;
  10363. }
  10364. }
  10365. GGML_CALL void ggml_rope_yarn_corr_dims(
  10366. int n_dims, int n_orig_ctx, float freq_base, float beta_fast, float beta_slow, float dims[2]
  10367. ) {
  10368. // start and end correction dims
  10369. float start = floorf(ggml_rope_yarn_corr_dim(n_dims, n_orig_ctx, beta_fast, freq_base));
  10370. float end = ceilf(ggml_rope_yarn_corr_dim(n_dims, n_orig_ctx, beta_slow, freq_base));
  10371. dims[0] = MAX(0, start);
  10372. dims[1] = MIN(n_dims - 1, end);
  10373. }
  10374. static void ggml_compute_forward_rope_f32(
  10375. const struct ggml_compute_params * params,
  10376. struct ggml_tensor * dst,
  10377. const bool forward) {
  10378. const struct ggml_tensor * src0 = dst->src[0];
  10379. const struct ggml_tensor * src1 = dst->src[1];
  10380. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  10381. return;
  10382. }
  10383. float freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow;
  10384. // these two only relevant for xPos RoPE:
  10385. float xpos_base;
  10386. bool xpos_down;
  10387. //const int n_past = ((int32_t *) dst->op_params)[0];
  10388. const int n_dims = ((int32_t *) dst->op_params)[1];
  10389. const int mode = ((int32_t *) dst->op_params)[2];
  10390. const int n_ctx = ((int32_t *) dst->op_params)[3];
  10391. const int n_orig_ctx = ((int32_t *) dst->op_params)[4];
  10392. memcpy(&freq_base, (int32_t *) dst->op_params + 5, sizeof(float));
  10393. memcpy(&freq_scale, (int32_t *) dst->op_params + 6, sizeof(float));
  10394. memcpy(&ext_factor, (int32_t *) dst->op_params + 7, sizeof(float));
  10395. memcpy(&attn_factor, (int32_t *) dst->op_params + 8, sizeof(float));
  10396. memcpy(&beta_fast, (int32_t *) dst->op_params + 9, sizeof(float));
  10397. memcpy(&beta_slow, (int32_t *) dst->op_params + 10, sizeof(float));
  10398. memcpy(&xpos_base, (int32_t *) dst->op_params + 11, sizeof(float));
  10399. memcpy(&xpos_down, (int32_t *) dst->op_params + 12, sizeof(bool));
  10400. GGML_TENSOR_UNARY_OP_LOCALS
  10401. //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
  10402. //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
  10403. GGML_ASSERT(nb00 == sizeof(float));
  10404. const int ith = params->ith;
  10405. const int nth = params->nth;
  10406. const int nr = ggml_nrows(dst);
  10407. GGML_ASSERT(n_dims <= ne0);
  10408. GGML_ASSERT(n_dims % 2 == 0);
  10409. // rows per thread
  10410. const int dr = (nr + nth - 1)/nth;
  10411. // row range for this thread
  10412. const int ir0 = dr*ith;
  10413. const int ir1 = MIN(ir0 + dr, nr);
  10414. // row index used to determine which thread to use
  10415. int ir = 0;
  10416. const float theta_scale = powf(freq_base, -2.0f/n_dims);
  10417. const float inv_ndims = -1.f/n_dims;
  10418. float corr_dims[2];
  10419. ggml_rope_yarn_corr_dims(n_dims, n_orig_ctx, freq_base, beta_fast, beta_slow, corr_dims);
  10420. const bool is_neox = mode & 2;
  10421. const bool is_glm = mode & 4;
  10422. // backward process uses inverse rotation by cos and sin.
  10423. // cos and sin build a rotation matrix, where the inverse is the transpose.
  10424. // this essentially just switches the sign of sin.
  10425. const float sin_sign = forward ? 1.0f : -1.0f;
  10426. const int32_t * pos = (const int32_t *) src1->data;
  10427. for (int64_t i3 = 0; i3 < ne3; i3++) {
  10428. for (int64_t i2 = 0; i2 < ne2; i2++) {
  10429. const int64_t p = pos[i2];
  10430. float * cache = (float *) params->wdata + (ne0 + CACHE_LINE_SIZE_F32)*ith;
  10431. if (!is_glm && !is_neox) { // TODO: cache sin/cos for glm, neox
  10432. ggml_rope_cache_init(p, freq_scale, corr_dims, ne0, ext_factor, attn_factor, cache, sin_sign, theta_scale);
  10433. }
  10434. for (int64_t i1 = 0; i1 < ne1; i1++) {
  10435. if (ir++ < ir0) continue;
  10436. if (ir > ir1) break;
  10437. float theta_base = (float)p;
  10438. if (is_glm) {
  10439. theta_base = MIN(p, n_ctx - 2);
  10440. float block_theta = MAX(p - (n_ctx - 2), 0);
  10441. for (int64_t i0 = 0; i0 < ne0 / 4; i0++) {
  10442. const float cos_theta = cosf(theta_base);
  10443. const float sin_theta = sinf(theta_base) * sin_sign;
  10444. const float cos_block_theta = cosf(block_theta);
  10445. const float sin_block_theta = sinf(block_theta) * sin_sign;
  10446. theta_base *= theta_scale;
  10447. block_theta *= theta_scale;
  10448. const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  10449. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  10450. const float x0 = src[0];
  10451. const float x1 = src[n_dims/2];
  10452. const float x2 = src[n_dims];
  10453. const float x3 = src[n_dims/2*3];
  10454. dst_data[0] = x0*cos_theta - x1*sin_theta;
  10455. dst_data[n_dims/2] = x0*sin_theta + x1*cos_theta;
  10456. dst_data[n_dims] = x2*cos_block_theta - x3*sin_block_theta;
  10457. dst_data[n_dims/2*3] = x2*sin_block_theta + x3*cos_block_theta;
  10458. }
  10459. } else if (!is_neox) {
  10460. for (int64_t i0 = 0; i0 < ne0; i0 += 2) {
  10461. const float cos_theta = cache[i0 + 0];
  10462. const float sin_theta = cache[i0 + 1];
  10463. // zeta scaling for xPos only:
  10464. float zeta = xpos_base != 0.0f ? powf((i0 + 0.4f * ne0) / (1.4f * ne0), p / xpos_base) : 1.0f;
  10465. if (xpos_down) zeta = 1.0f / zeta;
  10466. const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  10467. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  10468. const float x0 = src[0];
  10469. const float x1 = src[1];
  10470. dst_data[0] = x0*cos_theta*zeta - x1*sin_theta*zeta;
  10471. dst_data[1] = x0*sin_theta*zeta + x1*cos_theta*zeta;
  10472. }
  10473. } else {
  10474. // TODO: this might be wrong for ne0 != n_dims - need double check
  10475. // it seems we have to rope just the first n_dims elements and do nothing with the rest
  10476. // ref: https://github.com/ml-explore/mlx/blob/dc2edc762c797e3b8de50b1dad4dc0a131691033/benchmarks/python/llama_jax_bench.py#L11-L26
  10477. theta_base *= freq_scale;
  10478. for (int64_t ic = 0; ic < ne0; ic += 2) {
  10479. if (ic < n_dims) {
  10480. const int64_t ib = 0;
  10481. // simplified from `(ib * n_dims + ic) * inv_ndims`
  10482. float cur_rot = inv_ndims * ic - ib;
  10483. float cos_theta, sin_theta;
  10484. rope_yarn(
  10485. theta_base, freq_scale, corr_dims, cur_rot, ext_factor, attn_factor,
  10486. &cos_theta, &sin_theta
  10487. );
  10488. sin_theta *= sin_sign;
  10489. theta_base *= theta_scale;
  10490. const int64_t i0 = ib*n_dims + ic/2;
  10491. const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  10492. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  10493. const float x0 = src[0];
  10494. const float x1 = src[n_dims/2];
  10495. dst_data[0] = x0*cos_theta - x1*sin_theta;
  10496. dst_data[n_dims/2] = x0*sin_theta + x1*cos_theta;
  10497. } else {
  10498. const int64_t i0 = ic;
  10499. const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  10500. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  10501. dst_data[0] = src[0];
  10502. dst_data[1] = src[1];
  10503. }
  10504. }
  10505. }
  10506. }
  10507. }
  10508. }
  10509. }
  10510. static void ggml_compute_forward_rope_f16(
  10511. const struct ggml_compute_params * params,
  10512. struct ggml_tensor * dst,
  10513. const bool forward) {
  10514. const struct ggml_tensor * src0 = dst->src[0];
  10515. const struct ggml_tensor * src1 = dst->src[1];
  10516. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  10517. return;
  10518. }
  10519. float freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow;
  10520. //const int n_past = ((int32_t *) dst->op_params)[0];
  10521. const int n_dims = ((int32_t *) dst->op_params)[1];
  10522. const int mode = ((int32_t *) dst->op_params)[2];
  10523. const int n_ctx = ((int32_t *) dst->op_params)[3];
  10524. const int n_orig_ctx = ((int32_t *) dst->op_params)[4];
  10525. memcpy(&freq_base, (int32_t *) dst->op_params + 5, sizeof(float));
  10526. memcpy(&freq_scale, (int32_t *) dst->op_params + 6, sizeof(float));
  10527. memcpy(&ext_factor, (int32_t *) dst->op_params + 7, sizeof(float));
  10528. memcpy(&attn_factor, (int32_t *) dst->op_params + 8, sizeof(float));
  10529. memcpy(&beta_fast, (int32_t *) dst->op_params + 9, sizeof(float));
  10530. memcpy(&beta_slow, (int32_t *) dst->op_params + 10, sizeof(float));
  10531. GGML_TENSOR_UNARY_OP_LOCALS
  10532. //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
  10533. //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
  10534. GGML_ASSERT(nb0 == sizeof(ggml_fp16_t));
  10535. const int ith = params->ith;
  10536. const int nth = params->nth;
  10537. const int nr = ggml_nrows(dst);
  10538. GGML_ASSERT(n_dims <= ne0);
  10539. GGML_ASSERT(n_dims % 2 == 0);
  10540. // rows per thread
  10541. const int dr = (nr + nth - 1)/nth;
  10542. // row range for this thread
  10543. const int ir0 = dr*ith;
  10544. const int ir1 = MIN(ir0 + dr, nr);
  10545. // row index used to determine which thread to use
  10546. int ir = 0;
  10547. const float theta_scale = powf(freq_base, -2.0f/n_dims);
  10548. const float inv_ndims = -1.f/n_dims;
  10549. float corr_dims[2];
  10550. ggml_rope_yarn_corr_dims(n_dims, n_orig_ctx, freq_base, beta_fast, beta_slow, corr_dims);
  10551. const bool is_neox = mode & 2;
  10552. const bool is_glm = mode & 4;
  10553. // backward process uses inverse rotation by cos and sin.
  10554. // cos and sin build a rotation matrix, where the inverse is the transpose.
  10555. // this essentially just switches the sign of sin.
  10556. const float sin_sign = forward ? 1.0f : -1.0f;
  10557. const int32_t * pos = (const int32_t *) src1->data;
  10558. for (int64_t i3 = 0; i3 < ne3; i3++) {
  10559. for (int64_t i2 = 0; i2 < ne2; i2++) {
  10560. const int64_t p = pos[i2];
  10561. float * cache = (float *) params->wdata + (ne0 + CACHE_LINE_SIZE_F32)*ith;
  10562. if (!is_glm && !is_neox) { // TODO: cache sin/cos for glm, neox
  10563. ggml_rope_cache_init(p, freq_scale, corr_dims, ne0, ext_factor, attn_factor, cache, sin_sign, theta_scale);
  10564. }
  10565. for (int64_t i1 = 0; i1 < ne1; i1++) {
  10566. if (ir++ < ir0) continue;
  10567. if (ir > ir1) break;
  10568. float theta_base = (float)p;
  10569. if (is_glm) {
  10570. theta_base = MIN(p, n_ctx - 2);
  10571. float block_theta = MAX(p - (n_ctx - 2), 0);
  10572. for (int64_t i0 = 0; i0 < ne0 / 4; i0++) {
  10573. const float cos_theta = cosf(theta_base);
  10574. const float sin_theta = sinf(theta_base) * sin_sign;
  10575. const float cos_block_theta = cosf(block_theta);
  10576. const float sin_block_theta = sinf(block_theta) * sin_sign;
  10577. theta_base *= theta_scale;
  10578. block_theta *= theta_scale;
  10579. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  10580. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  10581. const float x0 = GGML_FP16_TO_FP32(src[0]);
  10582. const float x1 = GGML_FP16_TO_FP32(src[n_dims/2]);
  10583. const float x2 = GGML_FP16_TO_FP32(src[n_dims]);
  10584. const float x3 = GGML_FP16_TO_FP32(src[n_dims/2*3]);
  10585. dst_data[0] = GGML_FP32_TO_FP16(x0*cos_theta - x1*sin_theta);
  10586. dst_data[n_dims/2] = GGML_FP32_TO_FP16(x0*sin_theta + x1*cos_theta);
  10587. dst_data[n_dims] = GGML_FP32_TO_FP16(x2*cos_block_theta - x3*sin_block_theta);
  10588. dst_data[n_dims/2*3] = GGML_FP32_TO_FP16(x2*sin_block_theta + x3*cos_block_theta);
  10589. }
  10590. } else if (!is_neox) {
  10591. for (int64_t i0 = 0; i0 < ne0; i0 += 2) {
  10592. const float cos_theta = cache[i0 + 0];
  10593. const float sin_theta = cache[i0 + 1];
  10594. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  10595. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  10596. const float x0 = GGML_FP16_TO_FP32(src[0]);
  10597. const float x1 = GGML_FP16_TO_FP32(src[1]);
  10598. dst_data[0] = GGML_FP32_TO_FP16(x0*cos_theta - x1*sin_theta);
  10599. dst_data[1] = GGML_FP32_TO_FP16(x0*sin_theta + x1*cos_theta);
  10600. }
  10601. } else {
  10602. // TODO: this might be wrong for ne0 != n_dims - need double check
  10603. // it seems we have to rope just the first n_dims elements and do nothing with the rest
  10604. // ref: https://github.com/ml-explore/mlx/blob/dc2edc762c797e3b8de50b1dad4dc0a131691033/benchmarks/python/llama_jax_bench.py#L11-L26
  10605. theta_base *= freq_scale;
  10606. for (int64_t ic = 0; ic < ne0; ic += 2) {
  10607. if (ic < n_dims) {
  10608. const int64_t ib = 0;
  10609. // simplified from `(ib * n_dims + ic) * inv_ndims`
  10610. float cur_rot = inv_ndims * ic - ib;
  10611. float cos_theta, sin_theta;
  10612. rope_yarn(
  10613. theta_base, freq_scale, corr_dims, cur_rot, ext_factor, attn_factor,
  10614. &cos_theta, &sin_theta
  10615. );
  10616. sin_theta *= sin_sign;
  10617. theta_base *= theta_scale;
  10618. const int64_t i0 = ib*n_dims + ic/2;
  10619. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  10620. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  10621. const float x0 = GGML_FP16_TO_FP32(src[0]);
  10622. const float x1 = GGML_FP16_TO_FP32(src[n_dims/2]);
  10623. dst_data[0] = GGML_FP32_TO_FP16(x0*cos_theta - x1*sin_theta);
  10624. dst_data[n_dims/2] = GGML_FP32_TO_FP16(x0*sin_theta + x1*cos_theta);
  10625. } else {
  10626. const int64_t i0 = ic;
  10627. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  10628. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  10629. dst_data[0] = src[0];
  10630. dst_data[1] = src[1];
  10631. }
  10632. }
  10633. }
  10634. }
  10635. }
  10636. }
  10637. }
  10638. static void ggml_compute_forward_rope(
  10639. const struct ggml_compute_params * params,
  10640. struct ggml_tensor * dst) {
  10641. const struct ggml_tensor * src0 = dst->src[0];
  10642. switch (src0->type) {
  10643. case GGML_TYPE_F16:
  10644. {
  10645. ggml_compute_forward_rope_f16(params, dst, true);
  10646. } break;
  10647. case GGML_TYPE_F32:
  10648. {
  10649. ggml_compute_forward_rope_f32(params, dst, true);
  10650. } break;
  10651. default:
  10652. {
  10653. GGML_ASSERT(false);
  10654. } break;
  10655. }
  10656. }
  10657. // ggml_compute_forward_rope_back
  10658. static void ggml_compute_forward_rope_back(
  10659. const struct ggml_compute_params * params,
  10660. struct ggml_tensor * dst) {
  10661. const struct ggml_tensor * src0 = dst->src[0];
  10662. switch (src0->type) {
  10663. case GGML_TYPE_F16:
  10664. {
  10665. ggml_compute_forward_rope_f16(params, dst, false);
  10666. } break;
  10667. case GGML_TYPE_F32:
  10668. {
  10669. ggml_compute_forward_rope_f32(params, dst, false);
  10670. } break;
  10671. default:
  10672. {
  10673. GGML_ASSERT(false);
  10674. } break;
  10675. }
  10676. }
  10677. // ggml_compute_forward_conv_transpose_1d
  10678. static void ggml_compute_forward_conv_transpose_1d_f16_f32(
  10679. const struct ggml_compute_params * params,
  10680. struct ggml_tensor * dst) {
  10681. const struct ggml_tensor * src0 = dst->src[0];
  10682. const struct ggml_tensor * src1 = dst->src[1];
  10683. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  10684. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  10685. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  10686. int64_t t0 = ggml_perf_time_us();
  10687. UNUSED(t0);
  10688. GGML_TENSOR_BINARY_OP_LOCALS
  10689. const int ith = params->ith;
  10690. const int nth = params->nth;
  10691. const int nk = ne00*ne01*ne02;
  10692. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  10693. GGML_ASSERT(nb10 == sizeof(float));
  10694. if (params->type == GGML_TASK_TYPE_INIT) {
  10695. if (ith != 0) {
  10696. return;
  10697. }
  10698. memset(params->wdata, 0, params->wsize);
  10699. // permute kernel data (src0) from (K x Cout x Cin) to (Cin x K x Cout)
  10700. {
  10701. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  10702. for (int64_t i02 = 0; i02 < ne02; i02++) {
  10703. for (int64_t i01 = 0; i01 < ne01; i01++) {
  10704. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i02*nb02 + i01*nb01);
  10705. ggml_fp16_t * dst_data = wdata + i01*ne00*ne02;
  10706. for (int64_t i00 = 0; i00 < ne00; i00++) {
  10707. dst_data[i00*ne02 + i02] = src[i00];
  10708. }
  10709. }
  10710. }
  10711. }
  10712. // permute source data (src1) from (L x Cin) to (Cin x L)
  10713. {
  10714. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + nk;
  10715. ggml_fp16_t * dst_data = wdata;
  10716. for (int64_t i11 = 0; i11 < ne11; i11++) {
  10717. const float * const src = (float *)((char *) src1->data + i11*nb11);
  10718. for (int64_t i10 = 0; i10 < ne10; i10++) {
  10719. dst_data[i10*ne11 + i11] = GGML_FP32_TO_FP16(src[i10]);
  10720. }
  10721. }
  10722. }
  10723. // need to zero dst since we are accumulating into it
  10724. memset(dst->data, 0, ggml_nbytes(dst));
  10725. return;
  10726. }
  10727. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  10728. return;
  10729. }
  10730. const int32_t s0 = ((const int32_t*)(dst->op_params))[0];
  10731. // total rows in dst
  10732. const int nr = ne1;
  10733. // rows per thread
  10734. const int dr = (nr + nth - 1)/nth;
  10735. // row range for this thread
  10736. const int ir0 = dr*ith;
  10737. const int ir1 = MIN(ir0 + dr, nr);
  10738. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  10739. ggml_fp16_t * const wdata_src = wdata + nk;
  10740. for (int i1 = ir0; i1 < ir1; i1++) {
  10741. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  10742. ggml_fp16_t * wdata_kernel = wdata + i1*ne02*ne00;
  10743. for (int i10 = 0; i10 < ne10; i10++) {
  10744. const int i1n = i10*ne11;
  10745. for (int i00 = 0; i00 < ne00; i00++) {
  10746. float v = 0;
  10747. ggml_vec_dot_f16(ne02, &v, 0,
  10748. (ggml_fp16_t *) wdata_src + i1n, 0,
  10749. (ggml_fp16_t *) wdata_kernel + i00*ne02, 0, 1);
  10750. dst_data[i10*s0 + i00] += v;
  10751. }
  10752. }
  10753. }
  10754. }
  10755. static void ggml_compute_forward_conv_transpose_1d_f32(
  10756. const struct ggml_compute_params * params,
  10757. struct ggml_tensor * dst) {
  10758. const struct ggml_tensor * src0 = dst->src[0];
  10759. const struct ggml_tensor * src1 = dst->src[1];
  10760. GGML_ASSERT(src0->type == GGML_TYPE_F32);
  10761. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  10762. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  10763. int64_t t0 = ggml_perf_time_us();
  10764. UNUSED(t0);
  10765. GGML_TENSOR_BINARY_OP_LOCALS
  10766. const int ith = params->ith;
  10767. const int nth = params->nth;
  10768. const int nk = ne00*ne01*ne02;
  10769. GGML_ASSERT(nb00 == sizeof(float));
  10770. GGML_ASSERT(nb10 == sizeof(float));
  10771. if (params->type == GGML_TASK_TYPE_INIT) {
  10772. if (ith != 0) {
  10773. return;
  10774. }
  10775. memset(params->wdata, 0, params->wsize);
  10776. // prepare kernel data (src0) from (K x Cout x Cin) to (Cin x K x Cout)
  10777. {
  10778. float * const wdata = (float *) params->wdata + 0;
  10779. for (int64_t i02 = 0; i02 < ne02; i02++) {
  10780. for (int64_t i01 = 0; i01 < ne01; i01++) {
  10781. const float * const src = (float *)((char *) src0->data + i02*nb02 + i01*nb01);
  10782. float * dst_data = wdata + i01*ne00*ne02;
  10783. for (int64_t i00 = 0; i00 < ne00; i00++) {
  10784. dst_data[i00*ne02 + i02] = src[i00];
  10785. }
  10786. }
  10787. }
  10788. }
  10789. // prepare source data (src1)
  10790. {
  10791. float * const wdata = (float *) params->wdata + nk;
  10792. float * dst_data = wdata;
  10793. for (int64_t i11 = 0; i11 < ne11; i11++) {
  10794. const float * const src = (float *)((char *) src1->data + i11*nb11);
  10795. for (int64_t i10 = 0; i10 < ne10; i10++) {
  10796. dst_data[i10*ne11 + i11] = src[i10];
  10797. }
  10798. }
  10799. }
  10800. // need to zero dst since we are accumulating into it
  10801. memset(dst->data, 0, ggml_nbytes(dst));
  10802. return;
  10803. }
  10804. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  10805. return;
  10806. }
  10807. const int32_t s0 = ((const int32_t*)(dst->op_params))[0];
  10808. // total rows in dst
  10809. const int nr = ne1;
  10810. // rows per thread
  10811. const int dr = (nr + nth - 1)/nth;
  10812. // row range for this thread
  10813. const int ir0 = dr*ith;
  10814. const int ir1 = MIN(ir0 + dr, nr);
  10815. float * const wdata = (float *) params->wdata + 0;
  10816. float * const wdata_src = wdata + nk;
  10817. for (int i1 = ir0; i1 < ir1; i1++) {
  10818. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  10819. float * wdata_kernel = wdata + i1*ne02*ne00;
  10820. for (int i10 = 0; i10 < ne10; i10++) {
  10821. const int i1n = i10*ne11;
  10822. for (int i00 = 0; i00 < ne00; i00++) {
  10823. float v = 0;
  10824. ggml_vec_dot_f32(ne02, &v, 0,
  10825. wdata_src + i1n, 0,
  10826. wdata_kernel + i00*ne02, 0, 1);
  10827. dst_data[i10*s0 + i00] += v;
  10828. }
  10829. }
  10830. }
  10831. }
  10832. static void ggml_compute_forward_conv_transpose_1d(
  10833. const struct ggml_compute_params * params,
  10834. struct ggml_tensor * dst) {
  10835. const struct ggml_tensor * src0 = dst->src[0];
  10836. switch (src0->type) {
  10837. case GGML_TYPE_F16:
  10838. {
  10839. ggml_compute_forward_conv_transpose_1d_f16_f32(params, dst);
  10840. } break;
  10841. case GGML_TYPE_F32:
  10842. {
  10843. ggml_compute_forward_conv_transpose_1d_f32(params, dst);
  10844. } break;
  10845. default:
  10846. {
  10847. GGML_ASSERT(false);
  10848. } break;
  10849. }
  10850. }
  10851. // src0: kernel [OC, IC, KH, KW]
  10852. // src1: image [N, IC, IH, IW]
  10853. // dst: result [N, OH, OW, IC*KH*KW]
  10854. static void ggml_compute_forward_im2col_f32(
  10855. const struct ggml_compute_params * params,
  10856. struct ggml_tensor * dst) {
  10857. const struct ggml_tensor * src0 = dst->src[0];
  10858. const struct ggml_tensor * src1 = dst->src[1];
  10859. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  10860. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  10861. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  10862. int64_t t0 = ggml_perf_time_us();
  10863. UNUSED(t0);
  10864. GGML_TENSOR_BINARY_OP_LOCALS;
  10865. const int32_t s0 = ((const int32_t *)(dst->op_params))[0];
  10866. const int32_t s1 = ((const int32_t *)(dst->op_params))[1];
  10867. const int32_t p0 = ((const int32_t *)(dst->op_params))[2];
  10868. const int32_t p1 = ((const int32_t *)(dst->op_params))[3];
  10869. const int32_t d0 = ((const int32_t *)(dst->op_params))[4];
  10870. const int32_t d1 = ((const int32_t *)(dst->op_params))[5];
  10871. const bool is_2D = ((const int32_t *)(dst->op_params))[6] == 1;
  10872. const int ith = params->ith;
  10873. const int nth = params->nth;
  10874. const int64_t N = is_2D ? ne13 : ne12;
  10875. const int64_t IC = is_2D ? ne12 : ne11;
  10876. const int64_t IH = is_2D ? ne11 : 1;
  10877. const int64_t IW = ne10;
  10878. const int64_t KH = is_2D ? ne01 : 1;
  10879. const int64_t KW = ne00;
  10880. const int64_t OH = is_2D ? ne2 : 1;
  10881. const int64_t OW = ne1;
  10882. int ofs0 = is_2D ? nb13 : nb12;
  10883. int ofs1 = is_2D ? nb12 : nb11;
  10884. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  10885. GGML_ASSERT(nb10 == sizeof(float));
  10886. if (params->type == GGML_TASK_TYPE_INIT) {
  10887. return;
  10888. }
  10889. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  10890. return;
  10891. }
  10892. // im2col: [N, IC, IH, IW] => [N, OH, OW, IC*KH*KW]
  10893. {
  10894. float * const wdata = (float *) dst->data;
  10895. for (int64_t in = 0; in < N; in++) {
  10896. for (int64_t ioh = 0; ioh < OH; ioh++) { // 1
  10897. for (int64_t iow = 0; iow < OW; iow++) {
  10898. for (int64_t iic = ith; iic < IC; iic += nth) {
  10899. // micro kernel
  10900. float * dst_data = wdata + (in*OH*OW + ioh*OW + iow)*(IC*KH*KW); // [IC, KH, KW]
  10901. const float * const src_data = (float *)((char *) src1->data + in*ofs0 + iic*ofs1); // [IH, IW]
  10902. for (int64_t ikh = 0; ikh < KH; ikh++) { // 1
  10903. for (int64_t ikw = 0; ikw < KW; ikw++) {
  10904. const int64_t iiw = iow*s0 + ikw*d0 - p0;
  10905. const int64_t iih = ioh*s1 + ikh*d1 - p1;
  10906. if (iih < 0 || iih >= IH || iiw < 0 || iiw >= IW) {
  10907. dst_data[iic*(KH*KW) + ikh*KW + ikw] = 0;
  10908. } else {
  10909. dst_data[iic*(KH*KW) + ikh*KW + ikw] = (src_data[iih*IW + iiw]);
  10910. }
  10911. }
  10912. }
  10913. }
  10914. }
  10915. }
  10916. }
  10917. }
  10918. }
  10919. // src0: kernel [OC, IC, KH, KW]
  10920. // src1: image [N, IC, IH, IW]
  10921. // dst: result [N, OH, OW, IC*KH*KW]
  10922. static void ggml_compute_forward_im2col_f16(
  10923. const struct ggml_compute_params * params,
  10924. struct ggml_tensor * dst) {
  10925. const struct ggml_tensor * src0 = dst->src[0];
  10926. const struct ggml_tensor * src1 = dst->src[1];
  10927. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  10928. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  10929. GGML_ASSERT( dst->type == GGML_TYPE_F16);
  10930. int64_t t0 = ggml_perf_time_us();
  10931. UNUSED(t0);
  10932. GGML_TENSOR_BINARY_OP_LOCALS;
  10933. const int32_t s0 = ((const int32_t *)(dst->op_params))[0];
  10934. const int32_t s1 = ((const int32_t *)(dst->op_params))[1];
  10935. const int32_t p0 = ((const int32_t *)(dst->op_params))[2];
  10936. const int32_t p1 = ((const int32_t *)(dst->op_params))[3];
  10937. const int32_t d0 = ((const int32_t *)(dst->op_params))[4];
  10938. const int32_t d1 = ((const int32_t *)(dst->op_params))[5];
  10939. const bool is_2D = ((const int32_t *)(dst->op_params))[6] == 1;
  10940. const int ith = params->ith;
  10941. const int nth = params->nth;
  10942. const int64_t N = is_2D ? ne13 : ne12;
  10943. const int64_t IC = is_2D ? ne12 : ne11;
  10944. const int64_t IH = is_2D ? ne11 : 1;
  10945. const int64_t IW = ne10;
  10946. const int64_t KH = is_2D ? ne01 : 1;
  10947. const int64_t KW = ne00;
  10948. const int64_t OH = is_2D ? ne2 : 1;
  10949. const int64_t OW = ne1;
  10950. int ofs0 = is_2D ? nb13 : nb12;
  10951. int ofs1 = is_2D ? nb12 : nb11;
  10952. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  10953. GGML_ASSERT(nb10 == sizeof(float));
  10954. if (params->type == GGML_TASK_TYPE_INIT) {
  10955. return;
  10956. }
  10957. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  10958. return;
  10959. }
  10960. // im2col: [N, IC, IH, IW] => [N, OH, OW, IC*KH*KW]
  10961. {
  10962. ggml_fp16_t * const wdata = (ggml_fp16_t *) dst->data;
  10963. for (int64_t in = 0; in < N; in++) {
  10964. for (int64_t ioh = 0; ioh < OH; ioh++) { // 1
  10965. for (int64_t iow = 0; iow < OW; iow++) {
  10966. for (int64_t iic = ith; iic < IC; iic += nth) {
  10967. // micro kernel
  10968. ggml_fp16_t * dst_data = wdata + (in*OH*OW + ioh*OW + iow)*(IC*KH*KW); // [IC, KH, KW]
  10969. const float * const src_data = (float *)((char *) src1->data + in*ofs0 + iic*ofs1); // [IH, IW]
  10970. for (int64_t ikh = 0; ikh < KH; ikh++) { // 1
  10971. for (int64_t ikw = 0; ikw < KW; ikw++) {
  10972. const int64_t iiw = iow*s0 + ikw*d0 - p0;
  10973. const int64_t iih = ioh*s1 + ikh*d1 - p1;
  10974. if (iih < 0 || iih >= IH || iiw < 0 || iiw >= IW) {
  10975. dst_data[iic*(KH*KW) + ikh*KW + ikw] = 0;
  10976. } else {
  10977. dst_data[iic*(KH*KW) + ikh*KW + ikw] = GGML_FP32_TO_FP16(src_data[iih*IW + iiw]);
  10978. }
  10979. }
  10980. }
  10981. }
  10982. }
  10983. }
  10984. }
  10985. }
  10986. }
  10987. static void ggml_compute_forward_im2col(
  10988. const struct ggml_compute_params * params,
  10989. struct ggml_tensor * dst) {
  10990. switch (dst->type) {
  10991. case GGML_TYPE_F16:
  10992. {
  10993. ggml_compute_forward_im2col_f16(params, dst);
  10994. } break;
  10995. case GGML_TYPE_F32:
  10996. {
  10997. ggml_compute_forward_im2col_f32(params, dst);
  10998. } break;
  10999. default:
  11000. {
  11001. GGML_ASSERT(false);
  11002. } break;
  11003. }
  11004. }
  11005. // ggml_compute_forward_conv_transpose_2d
  11006. static void ggml_compute_forward_conv_transpose_2d(
  11007. const struct ggml_compute_params * params,
  11008. struct ggml_tensor * dst) {
  11009. const struct ggml_tensor * src0 = dst->src[0];
  11010. const struct ggml_tensor * src1 = dst->src[1];
  11011. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  11012. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  11013. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  11014. int64_t t0 = ggml_perf_time_us();
  11015. UNUSED(t0);
  11016. GGML_TENSOR_BINARY_OP_LOCALS
  11017. const int ith = params->ith;
  11018. const int nth = params->nth;
  11019. const int nk = ne00*ne01*ne02*ne03;
  11020. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  11021. GGML_ASSERT(nb10 == sizeof(float));
  11022. if (params->type == GGML_TASK_TYPE_INIT) {
  11023. if (ith != 0) {
  11024. return;
  11025. }
  11026. memset(params->wdata, 0, params->wsize);
  11027. // permute kernel data (src0) from (Kw x Kh x Cout x Cin) to (Cin x Kw x Kh x Cout)
  11028. {
  11029. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  11030. for (int64_t i03 = 0; i03 < ne03; i03++) {
  11031. for (int64_t i02 = 0; i02 < ne02; i02++) {
  11032. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i03*nb03 + i02*nb02);
  11033. ggml_fp16_t * dst_data = wdata + i02*ne01*ne00*ne03;
  11034. for (int64_t i01 = 0; i01 < ne01; i01++) {
  11035. for (int64_t i00 = 0; i00 < ne00; i00++) {
  11036. dst_data[i01*ne00*ne03 + i00*ne03 + i03] = src[i01 * ne00 + i00];
  11037. }
  11038. }
  11039. }
  11040. }
  11041. }
  11042. // permute source data (src1) from (Sw x Sh x Cin) to (Cin x Sw x Sh)
  11043. {
  11044. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + nk;
  11045. for (int i12 = 0; i12 < ne12; i12++) {
  11046. for (int i11 = 0; i11 < ne11; i11++) {
  11047. const float * const src = (float *)((char *) src1->data + i12*nb12 + i11*nb11);
  11048. ggml_fp16_t * dst_data = wdata + i11*ne10*ne12;
  11049. for (int i10 = 0; i10 < ne10; i10++) {
  11050. dst_data[i10*ne12 + i12] = GGML_FP32_TO_FP16(src[i10]);
  11051. }
  11052. }
  11053. }
  11054. }
  11055. memset(dst->data, 0, ggml_nbytes(dst));
  11056. return;
  11057. }
  11058. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  11059. return;
  11060. }
  11061. const int32_t stride = ggml_get_op_params_i32(dst, 0);
  11062. // total patches in dst
  11063. const int np = ne2;
  11064. // patches per thread
  11065. const int dp = (np + nth - 1)/nth;
  11066. // patch range for this thread
  11067. const int ip0 = dp*ith;
  11068. const int ip1 = MIN(ip0 + dp, np);
  11069. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  11070. ggml_fp16_t * const wdata_src = wdata + nk;
  11071. for (int i2 = ip0; i2 < ip1; i2++) { // Cout
  11072. float * dst_data = (float *)((char *) dst->data + i2*nb2);
  11073. ggml_fp16_t * wdata_kernel = wdata + i2*ne01*ne00*ne03;
  11074. for (int i11 = 0; i11 < ne11; i11++) {
  11075. for (int i10 = 0; i10 < ne10; i10++) {
  11076. const int i1n = i11*ne10*ne12 + i10*ne12;
  11077. for (int i01 = 0; i01 < ne01; i01++) {
  11078. for (int i00 = 0; i00 < ne00; i00++) {
  11079. float v = 0;
  11080. ggml_vec_dot_f16(ne03, &v, 0,
  11081. wdata_src + i1n, 0,
  11082. wdata_kernel + i01*ne00*ne03 + i00*ne03, 0, 1);
  11083. dst_data[(i11*stride + i01)*ne0 + i10*stride + i00] += v;
  11084. }
  11085. }
  11086. }
  11087. }
  11088. }
  11089. }
  11090. // ggml_compute_forward_pool_1d_sk_p0
  11091. static void ggml_compute_forward_pool_1d_sk_p0(
  11092. const struct ggml_compute_params * params,
  11093. const enum ggml_op_pool op,
  11094. const int k,
  11095. struct ggml_tensor * dst) {
  11096. const struct ggml_tensor * src = dst->src[0];
  11097. assert(src->type == GGML_TYPE_F32);
  11098. assert(params->ith == 0);
  11099. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  11100. return;
  11101. }
  11102. const char * cdata = (const char *)src->data;
  11103. const char * const data_end = cdata + ggml_nbytes(src);
  11104. float * drow = (float *)dst->data;
  11105. const int64_t rs = dst->ne[0];
  11106. while (cdata < data_end) {
  11107. const float * const srow = (const float *)cdata;
  11108. int j = 0;
  11109. for (int64_t i = 0; i < rs; ++i) {
  11110. switch (op) {
  11111. case GGML_OP_POOL_AVG: drow[i] = 0; break;
  11112. case GGML_OP_POOL_MAX: drow[i] = -FLT_MAX; break;
  11113. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  11114. }
  11115. for (int ki = 0; ki < k; ++ki) {
  11116. switch (op) {
  11117. case GGML_OP_POOL_AVG: drow[i] += srow[j]; break;
  11118. case GGML_OP_POOL_MAX: if (srow[j] > drow[i]) drow[i] = srow[j]; break;
  11119. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  11120. }
  11121. ++j;
  11122. }
  11123. switch (op) {
  11124. case GGML_OP_POOL_AVG: drow[i] /= k; break;
  11125. case GGML_OP_POOL_MAX: break;
  11126. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  11127. }
  11128. }
  11129. cdata += src->nb[1];
  11130. drow += rs;
  11131. }
  11132. }
  11133. // ggml_compute_forward_pool_1d
  11134. static void ggml_compute_forward_pool_1d(
  11135. const struct ggml_compute_params * params,
  11136. struct ggml_tensor * dst) {
  11137. const int32_t * opts = (const int32_t *)dst->op_params;
  11138. enum ggml_op_pool op = opts[0];
  11139. const int k0 = opts[1];
  11140. const int s0 = opts[2];
  11141. const int p0 = opts[3];
  11142. GGML_ASSERT(p0 == 0); // padding not supported
  11143. GGML_ASSERT(k0 == s0); // only s = k supported
  11144. ggml_compute_forward_pool_1d_sk_p0(params, op, k0, dst);
  11145. }
  11146. // ggml_compute_forward_pool_2d
  11147. static void ggml_compute_forward_pool_2d(
  11148. const struct ggml_compute_params * params,
  11149. struct ggml_tensor * dst) {
  11150. const struct ggml_tensor * src = dst->src[0];
  11151. GGML_ASSERT(src->type == GGML_TYPE_F32);
  11152. GGML_ASSERT(params->ith == 0);
  11153. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  11154. return;
  11155. }
  11156. const int32_t * opts = (const int32_t *)dst->op_params;
  11157. enum ggml_op_pool op = opts[0];
  11158. const int k0 = opts[1];
  11159. const int k1 = opts[2];
  11160. const int s0 = opts[3];
  11161. const int s1 = opts[4];
  11162. const int p0 = opts[5];
  11163. const int p1 = opts[6];
  11164. const char * cdata = (const char*)src->data;
  11165. const char * const data_end = cdata + ggml_nbytes(src);
  11166. const int64_t px = dst->ne[0];
  11167. const int64_t py = dst->ne[1];
  11168. const int64_t pa = px * py;
  11169. float * dplane = (float *)dst->data;
  11170. const int ka = k0 * k1;
  11171. const int offset0 = -p0;
  11172. const int offset1 = -p1;
  11173. while (cdata < data_end) {
  11174. for (int oy = 0; oy < py; ++oy) {
  11175. float * const drow = dplane + oy * px;
  11176. for (int ox = 0; ox < px; ++ox) {
  11177. float * const out = drow + ox;
  11178. switch (op) {
  11179. case GGML_OP_POOL_AVG: *out = 0; break;
  11180. case GGML_OP_POOL_MAX: *out = -FLT_MAX; break;
  11181. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  11182. }
  11183. const int ix = offset0 + ox * s0;
  11184. const int iy = offset1 + oy * s1;
  11185. for (int ky = 0; ky < k1; ++ky) {
  11186. if (iy + ky < 0 || iy + ky >= src->ne[1]) continue;
  11187. const float * const srow = (const float *)(cdata + src->nb[1] * (iy + ky));
  11188. for (int kx = 0; kx < k0; ++kx) {
  11189. int j = ix + kx;
  11190. if (j < 0 || j >= src->ne[0]) continue;
  11191. switch (op) {
  11192. case GGML_OP_POOL_AVG: *out += srow[j]; break;
  11193. case GGML_OP_POOL_MAX: if (srow[j] > *out) *out = srow[j]; break;
  11194. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  11195. }
  11196. }
  11197. }
  11198. switch (op) {
  11199. case GGML_OP_POOL_AVG: *out /= ka; break;
  11200. case GGML_OP_POOL_MAX: break;
  11201. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  11202. }
  11203. }
  11204. }
  11205. cdata += src->nb[2];
  11206. dplane += pa;
  11207. }
  11208. }
  11209. // ggml_compute_forward_upscale
  11210. static void ggml_compute_forward_upscale_f32(
  11211. const struct ggml_compute_params * params,
  11212. struct ggml_tensor * dst) {
  11213. const struct ggml_tensor * src0 = dst->src[0];
  11214. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  11215. return;
  11216. }
  11217. GGML_ASSERT(src0->nb[0] == sizeof(float));
  11218. const int ith = params->ith;
  11219. const int nth = params->nth;
  11220. GGML_TENSOR_UNARY_OP_LOCALS
  11221. const int scale_factor = dst->op_params[0];
  11222. // TODO: optimize
  11223. for (int64_t i3 = 0; i3 < ne3; i3++) {
  11224. const int64_t i03 = i3;
  11225. for (int64_t i2 = ith; i2 < ne2; i2 += nth) {
  11226. const int64_t i02 = i2;
  11227. for (int64_t i1 = 0; i1 < ne1; i1++) {
  11228. const int64_t i01 = i1 / scale_factor;
  11229. for (int64_t i0 = 0; i0 < ne0; i0++) {
  11230. const int64_t i00 = i0 / scale_factor;
  11231. const float * x = (float *)((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  11232. float * y = (float *)((char *) dst->data + i0*nb0 + i1*nb1 + i2*nb2 + i3*nb3);
  11233. *y = *x;
  11234. }
  11235. }
  11236. }
  11237. }
  11238. }
  11239. static void ggml_compute_forward_upscale(
  11240. const struct ggml_compute_params * params,
  11241. struct ggml_tensor * dst) {
  11242. const struct ggml_tensor * src0 = dst->src[0];
  11243. switch (src0->type) {
  11244. case GGML_TYPE_F32:
  11245. {
  11246. ggml_compute_forward_upscale_f32(params, dst);
  11247. } break;
  11248. default:
  11249. {
  11250. GGML_ASSERT(false);
  11251. } break;
  11252. }
  11253. }
  11254. // ggml_compute_forward_pad
  11255. static void ggml_compute_forward_pad_f32(
  11256. const struct ggml_compute_params * params,
  11257. struct ggml_tensor * dst) {
  11258. const struct ggml_tensor * src0 = dst->src[0];
  11259. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  11260. return;
  11261. }
  11262. GGML_ASSERT(src0->nb[0] == sizeof(float));
  11263. GGML_ASSERT( dst->nb[0] == sizeof(float));
  11264. const int ith = params->ith;
  11265. const int nth = params->nth;
  11266. GGML_TENSOR_UNARY_OP_LOCALS
  11267. float * dst_ptr = (float *) dst->data;
  11268. // TODO: optimize
  11269. for (int64_t i2 = 0; i2 < ne2; ++i2) {
  11270. for (int64_t i1 = ith; i1 < ne1; i1 += nth) {
  11271. for (int64_t i0 = 0; i0 < ne0; ++i0) {
  11272. for (int64_t i3 = 0; i3 < ne3; ++i3) {
  11273. const int64_t dst_idx = i3*(ne0*ne1*ne2) + i2*(ne0*ne1) + i1*ne0 + i0;
  11274. const float * src_ptr = (const float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  11275. if (i0 < ne00 && i1 < ne01 && i2 < ne02 && i3 < ne03) {
  11276. dst_ptr[dst_idx] = *src_ptr;
  11277. } else {
  11278. dst_ptr[dst_idx] = 0;
  11279. }
  11280. }
  11281. }
  11282. }
  11283. }
  11284. }
  11285. static void ggml_compute_forward_pad(
  11286. const struct ggml_compute_params * params,
  11287. struct ggml_tensor * dst) {
  11288. const struct ggml_tensor * src0 = dst->src[0];
  11289. switch (src0->type) {
  11290. case GGML_TYPE_F32:
  11291. {
  11292. ggml_compute_forward_pad_f32(params, dst);
  11293. } break;
  11294. default:
  11295. {
  11296. GGML_ASSERT(false);
  11297. } break;
  11298. }
  11299. }
  11300. // ggml_compute_forward_arange
  11301. static void ggml_compute_forward_arange_f32(
  11302. const struct ggml_compute_params * params,
  11303. struct ggml_tensor * dst) {
  11304. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  11305. return;
  11306. }
  11307. GGML_ASSERT(dst->nb[0] == sizeof(float));
  11308. const int ith = params->ith;
  11309. const int nth = params->nth;
  11310. const float start = ggml_get_op_params_f32(dst, 0);
  11311. const float stop = ggml_get_op_params_f32(dst, 1);
  11312. const float step = ggml_get_op_params_f32(dst, 2);
  11313. const int64_t steps = (int64_t) ceilf((stop - start) / step);
  11314. GGML_ASSERT(ggml_nelements(dst) == steps);
  11315. for (int64_t i = ith; i < steps; i+= nth) {
  11316. float value = start + step * i;
  11317. ((float *)dst->data)[i] = value;
  11318. }
  11319. }
  11320. static void ggml_compute_forward_arange(
  11321. const struct ggml_compute_params * params,
  11322. struct ggml_tensor * dst) {
  11323. switch (dst->type) {
  11324. case GGML_TYPE_F32:
  11325. {
  11326. ggml_compute_forward_arange_f32(params, dst);
  11327. } break;
  11328. default:
  11329. {
  11330. GGML_ASSERT(false);
  11331. } break;
  11332. }
  11333. }
  11334. static void ggml_compute_forward_timestep_embedding_f32(
  11335. const struct ggml_compute_params * params,
  11336. struct ggml_tensor * dst) {
  11337. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  11338. return;
  11339. }
  11340. const struct ggml_tensor * src0 = dst->src[0];
  11341. GGML_ASSERT(src0->nb[0] == sizeof(float));
  11342. const int ith = params->ith;
  11343. const int nth = params->nth;
  11344. GGML_TENSOR_UNARY_OP_LOCALS
  11345. const int dim = ggml_get_op_params_i32(dst, 0);
  11346. const int max_period = ggml_get_op_params_i32(dst, 1);
  11347. int half = dim / 2;
  11348. for (int64_t i = 0; i < ne00; i++) {
  11349. float * embed_data = (float *)((char *) dst->data + i*nb1);
  11350. for (int64_t j = ith; j < half; j += nth) {
  11351. float timestep = ((float *)src0->data)[i];
  11352. float freq = (float)expf(-logf(max_period) * j / half);
  11353. float arg = timestep * freq;
  11354. embed_data[j] = cosf(arg);
  11355. embed_data[j + half] = sinf(arg);
  11356. }
  11357. if (dim % 2 != 0 && ith == 0) {
  11358. embed_data[dim] = 0.f;
  11359. }
  11360. }
  11361. }
  11362. static void ggml_compute_forward_timestep_embedding(
  11363. const struct ggml_compute_params * params,
  11364. struct ggml_tensor * dst) {
  11365. const struct ggml_tensor * src0 = dst->src[0];
  11366. switch (src0->type) {
  11367. case GGML_TYPE_F32:
  11368. {
  11369. ggml_compute_forward_timestep_embedding_f32(params, dst);
  11370. } break;
  11371. default:
  11372. {
  11373. GGML_ASSERT(false);
  11374. } break;
  11375. }
  11376. }
  11377. // ggml_compute_forward_argsort
  11378. static void ggml_compute_forward_argsort_f32(
  11379. const struct ggml_compute_params * params,
  11380. struct ggml_tensor * dst) {
  11381. const struct ggml_tensor * src0 = dst->src[0];
  11382. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  11383. return;
  11384. }
  11385. GGML_TENSOR_UNARY_OP_LOCALS
  11386. GGML_ASSERT(nb0 == sizeof(float));
  11387. const int ith = params->ith;
  11388. const int nth = params->nth;
  11389. const int64_t nr = ggml_nrows(src0);
  11390. enum ggml_sort_order order = (enum ggml_sort_order) ggml_get_op_params_i32(dst, 0);
  11391. for (int64_t i = ith; i < nr; i += nth) {
  11392. int32_t * dst_data = (int32_t *)((char *) dst->data + i*nb1);
  11393. const float * src_data = (float *)((char *) src0->data + i*nb01);
  11394. for (int64_t j = 0; j < ne0; j++) {
  11395. dst_data[j] = j;
  11396. }
  11397. // C doesn't have a functional sort, so we do a bubble sort instead
  11398. for (int64_t j = 0; j < ne0; j++) {
  11399. for (int64_t k = j + 1; k < ne0; k++) {
  11400. if ((order == GGML_SORT_ORDER_ASC && src_data[dst_data[j]] > src_data[dst_data[k]]) ||
  11401. (order == GGML_SORT_ORDER_DESC && src_data[dst_data[j]] < src_data[dst_data[k]])) {
  11402. int32_t tmp = dst_data[j];
  11403. dst_data[j] = dst_data[k];
  11404. dst_data[k] = tmp;
  11405. }
  11406. }
  11407. }
  11408. }
  11409. }
  11410. static void ggml_compute_forward_argsort(
  11411. const struct ggml_compute_params * params,
  11412. struct ggml_tensor * dst) {
  11413. const struct ggml_tensor * src0 = dst->src[0];
  11414. switch (src0->type) {
  11415. case GGML_TYPE_F32:
  11416. {
  11417. ggml_compute_forward_argsort_f32(params, dst);
  11418. } break;
  11419. default:
  11420. {
  11421. GGML_ASSERT(false);
  11422. } break;
  11423. }
  11424. }
  11425. // ggml_compute_forward_flash_attn
  11426. static void ggml_compute_forward_flash_attn_f32(
  11427. const struct ggml_compute_params * params,
  11428. const bool masked,
  11429. struct ggml_tensor * dst) {
  11430. const struct ggml_tensor * q = dst->src[0];
  11431. const struct ggml_tensor * k = dst->src[1];
  11432. const struct ggml_tensor * v = dst->src[2];
  11433. int64_t t0 = ggml_perf_time_us();
  11434. UNUSED(t0);
  11435. GGML_TENSOR_LOCALS(int64_t, neq, q, ne)
  11436. GGML_TENSOR_LOCALS(size_t, nbq, q, nb)
  11437. GGML_TENSOR_LOCALS(int64_t, nek, k, ne)
  11438. GGML_TENSOR_LOCALS(size_t, nbk, k, nb)
  11439. GGML_TENSOR_LOCALS(int64_t, nev, v, ne)
  11440. GGML_TENSOR_LOCALS(size_t, nbv, v, nb)
  11441. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
  11442. GGML_TENSOR_LOCALS(size_t, nb, dst, nb)
  11443. const int ith = params->ith;
  11444. const int nth = params->nth;
  11445. const int64_t D = neq0;
  11446. const int64_t N = neq1;
  11447. const int64_t P = nek1 - N;
  11448. const int64_t M = P + N;
  11449. const int Mup = ggml_up(M, GGML_SOFT_MAX_UNROLL);
  11450. GGML_ASSERT(ne0 == D);
  11451. GGML_ASSERT(ne1 == N);
  11452. GGML_ASSERT(P >= 0);
  11453. GGML_ASSERT(nbq0 == sizeof(float));
  11454. GGML_ASSERT(nbk0 == sizeof(float));
  11455. GGML_ASSERT(nbv0 == sizeof(float));
  11456. GGML_ASSERT(neq0 == D);
  11457. GGML_ASSERT(nek0 == D);
  11458. GGML_ASSERT(nev1 == D);
  11459. GGML_ASSERT(neq1 == N);
  11460. GGML_ASSERT(nek1 == N + P);
  11461. GGML_ASSERT(nev1 == D);
  11462. // dst cannot be transposed or permuted
  11463. GGML_ASSERT(nb0 == sizeof(float));
  11464. GGML_ASSERT(nb0 <= nb1);
  11465. GGML_ASSERT(nb1 <= nb2);
  11466. GGML_ASSERT(nb2 <= nb3);
  11467. if (params->type == GGML_TASK_TYPE_INIT) {
  11468. return;
  11469. }
  11470. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  11471. return;
  11472. }
  11473. // parallelize by q rows using ggml_vec_dot_f32
  11474. // total rows in q
  11475. const int nr = neq1*neq2*neq3;
  11476. // rows per thread
  11477. const int dr = (nr + nth - 1)/nth;
  11478. // row range for this thread
  11479. const int ir0 = dr*ith;
  11480. const int ir1 = MIN(ir0 + dr, nr);
  11481. const float scale = 1.0f/sqrtf(D);
  11482. //printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale);
  11483. for (int ir = ir0; ir < ir1; ++ir) {
  11484. // q indices
  11485. const int iq3 = ir/(neq2*neq1);
  11486. const int iq2 = (ir - iq3*neq2*neq1)/neq1;
  11487. const int iq1 = (ir - iq3*neq2*neq1 - iq2*neq1);
  11488. float * S = (float *) params->wdata + ith*(Mup + CACHE_LINE_SIZE_F32);
  11489. for (int i = M; i < Mup; ++i) {
  11490. S[i] = -INFINITY;
  11491. }
  11492. const int64_t masked_begin = masked ? (P + iq1 + 1) : M;
  11493. for (int64_t ic = 0; ic < masked_begin; ++ic) {
  11494. // k indices
  11495. const int ik3 = iq3;
  11496. const int ik2 = iq2 % nek2;
  11497. const int ik1 = ic;
  11498. // S indices
  11499. const int i1 = ik1;
  11500. ggml_vec_dot_f32(neq0,
  11501. S + i1, 0,
  11502. (float *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)), 0,
  11503. (float *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)), 0, 1);
  11504. }
  11505. // scale
  11506. ggml_vec_scale_f32(masked_begin, S, scale);
  11507. for (int64_t i = masked_begin; i < M; i++) {
  11508. S[i] = -INFINITY;
  11509. }
  11510. // softmax
  11511. // exclude known -INF S[..] values from max and loop
  11512. // dont forget to set their SW values to zero
  11513. {
  11514. float max = -INFINITY;
  11515. ggml_vec_max_f32(masked_begin, &max, S);
  11516. ggml_float sum = 0.0;
  11517. {
  11518. #ifdef GGML_SOFT_MAX_ACCELERATE
  11519. max = -max;
  11520. vDSP_vsadd(S, 1, &max, S, 1, Mup);
  11521. vvexpf(S, S, &Mup);
  11522. ggml_vec_sum_f32(Mup, &sum, S);
  11523. #else
  11524. uint16_t scvt[GGML_SOFT_MAX_UNROLL]; UNUSED(scvt);
  11525. ggml_float sump[GGML_SOFT_MAX_UNROLL] = { 0.0 };
  11526. for (int i = 0; i < Mup; i += GGML_SOFT_MAX_UNROLL) {
  11527. if (i >= masked_begin) {
  11528. break;
  11529. }
  11530. float * SS = S + i;
  11531. for (int j = 0; j < GGML_SOFT_MAX_UNROLL; ++j) {
  11532. if (i + j >= masked_begin) {
  11533. break;
  11534. } else if (SS[j] == -INFINITY) {
  11535. SS[j] = 0.0f;
  11536. } else {
  11537. #ifndef GGML_FLASH_ATTN_EXP_FP16
  11538. const float val = expf(SS[j] - max);
  11539. #else
  11540. ggml_fp16_t s = GGML_FP32_TO_FP16(SS[j] - max);
  11541. memcpy(&scvt[j], &s, sizeof(uint16_t));
  11542. const float val = GGML_FP16_TO_FP32(ggml_table_exp_f16[scvt[j]]);
  11543. #endif
  11544. sump[j] += (ggml_float)val;
  11545. SS[j] = val;
  11546. }
  11547. }
  11548. }
  11549. for (int i = 0; i < GGML_SOFT_MAX_UNROLL; i++) {
  11550. sum += sump[i];
  11551. }
  11552. #endif
  11553. }
  11554. assert(sum > 0.0);
  11555. sum = 1.0/sum;
  11556. ggml_vec_scale_f32(masked_begin, S, sum);
  11557. #ifndef NDEBUG
  11558. for (int i = 0; i < masked_begin; ++i) {
  11559. assert(!isnan(S[i]));
  11560. assert(!isinf(S[i]));
  11561. }
  11562. #endif
  11563. }
  11564. for (int64_t ic = 0; ic < nev1; ++ic) {
  11565. // dst indices
  11566. const int i1 = iq1;
  11567. const int i2 = iq2;
  11568. const int i3 = iq3;
  11569. // v indices
  11570. const int iv2 = iq2 % nev2;
  11571. const int iv3 = iq3;
  11572. ggml_vec_dot_f32(masked_begin,
  11573. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)), 0,
  11574. (float *) ((char *) v->data + ( ic*nbv1 + iv2*nbv2 + iv3*nbv3)), 0,
  11575. S, 0, 1);
  11576. }
  11577. }
  11578. }
  11579. static void ggml_compute_forward_flash_attn_f16(
  11580. const struct ggml_compute_params * params,
  11581. const bool masked,
  11582. struct ggml_tensor * dst) {
  11583. const struct ggml_tensor * q = dst->src[0];
  11584. const struct ggml_tensor * k = dst->src[1];
  11585. const struct ggml_tensor * v = dst->src[2];
  11586. int64_t t0 = ggml_perf_time_us();
  11587. UNUSED(t0);
  11588. GGML_TENSOR_LOCALS(int64_t, neq, q, ne)
  11589. GGML_TENSOR_LOCALS(size_t, nbq, q, nb)
  11590. GGML_TENSOR_LOCALS(int64_t, nek, k, ne)
  11591. GGML_TENSOR_LOCALS(size_t, nbk, k, nb)
  11592. GGML_TENSOR_LOCALS(int64_t, nev, v, ne)
  11593. GGML_TENSOR_LOCALS(size_t, nbv, v, nb)
  11594. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
  11595. GGML_TENSOR_LOCALS(size_t, nb, dst, nb)
  11596. const int ith = params->ith;
  11597. const int nth = params->nth;
  11598. const int64_t D = neq0;
  11599. const int64_t N = neq1;
  11600. const int64_t P = nek1 - N;
  11601. const int64_t M = P + N;
  11602. const int Mup = ggml_up(M, GGML_SOFT_MAX_UNROLL);
  11603. GGML_ASSERT(ne0 == D);
  11604. GGML_ASSERT(ne1 == N);
  11605. GGML_ASSERT(P >= 0);
  11606. GGML_ASSERT(nbq0 == sizeof(ggml_fp16_t));
  11607. GGML_ASSERT(nbk0 == sizeof(ggml_fp16_t));
  11608. GGML_ASSERT(nbv0 == sizeof(ggml_fp16_t));
  11609. GGML_ASSERT(neq0 == D);
  11610. GGML_ASSERT(nek0 == D);
  11611. GGML_ASSERT(nev1 == D);
  11612. GGML_ASSERT(neq1 == N);
  11613. GGML_ASSERT(nek1 == N + P);
  11614. GGML_ASSERT(nev1 == D);
  11615. // dst cannot be transposed or permuted
  11616. GGML_ASSERT(nb0 == sizeof(float));
  11617. GGML_ASSERT(nb0 <= nb1);
  11618. GGML_ASSERT(nb1 <= nb2);
  11619. GGML_ASSERT(nb2 <= nb3);
  11620. if (params->type == GGML_TASK_TYPE_INIT) {
  11621. return;
  11622. }
  11623. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  11624. return;
  11625. }
  11626. // parallelize by q rows using ggml_vec_dot_f32
  11627. // total rows in q
  11628. const int nr = neq1*neq2*neq3;
  11629. // rows per thread
  11630. const int dr = (nr + nth - 1)/nth;
  11631. // row range for this thread
  11632. const int ir0 = dr*ith;
  11633. const int ir1 = MIN(ir0 + dr, nr);
  11634. const float scale = 1.0f/sqrtf(D);
  11635. //printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale);
  11636. for (int ir = ir0; ir < ir1; ++ir) {
  11637. // q indices
  11638. const int iq3 = ir/(neq2*neq1);
  11639. const int iq2 = (ir - iq3*neq2*neq1)/neq1;
  11640. const int iq1 = (ir - iq3*neq2*neq1 - iq2*neq1);
  11641. float * S = (float *) params->wdata + ith*(2*Mup + CACHE_LINE_SIZE_F32);
  11642. for (int i = M; i < Mup; ++i) {
  11643. S[i] = -INFINITY;
  11644. }
  11645. if (GGML_VEC_DOT_UNROLL > 2 || nek1 % GGML_VEC_DOT_UNROLL != 0) {
  11646. for (int64_t ic = 0; ic < nek1; ++ic) {
  11647. // k indices
  11648. const int ik3 = iq3;
  11649. const int ik2 = iq2 % nek2;
  11650. const int ik1 = ic;
  11651. // S indices
  11652. const int i1 = ik1;
  11653. ggml_vec_dot_f16(neq0,
  11654. S + i1, 0,
  11655. (ggml_fp16_t *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)), 0,
  11656. (ggml_fp16_t *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)), 0, 1);
  11657. }
  11658. } else {
  11659. for (int64_t ic = 0; ic < nek1; ic += GGML_VEC_DOT_UNROLL) {
  11660. // k indices
  11661. const int ik3 = iq3;
  11662. const int ik2 = iq2 % nek2;
  11663. const int ik1 = ic;
  11664. // S indices
  11665. const int i1 = ik1;
  11666. ggml_vec_dot_f16_unroll(neq0, nbk1,
  11667. S + i1,
  11668. ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
  11669. (ggml_fp16_t *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
  11670. }
  11671. }
  11672. // scale
  11673. ggml_vec_scale_f32(nek1, S, scale);
  11674. if (masked) {
  11675. for (int64_t i = P; i < M; i++) {
  11676. if (i > P + iq1) {
  11677. S[i] = -INFINITY;
  11678. }
  11679. }
  11680. }
  11681. // softmax
  11682. // todo: exclude known -INF S[..] values from max and loop, assuming their results to be zero.
  11683. // dont forget to set their S values to zero
  11684. {
  11685. float max = -INFINITY;
  11686. ggml_vec_max_f32(M, &max, S);
  11687. ggml_float sum = 0.0;
  11688. {
  11689. #ifdef GGML_SOFT_MAX_ACCELERATE
  11690. max = -max;
  11691. vDSP_vsadd(S, 1, &max, S, 1, Mup);
  11692. vvexpf(S, S, &Mup);
  11693. ggml_vec_sum_f32(Mup, &sum, S);
  11694. #else
  11695. uint16_t scvt[GGML_SOFT_MAX_UNROLL];
  11696. ggml_float sump[GGML_SOFT_MAX_UNROLL] = { 0.0 };
  11697. for (int i = 0; i < Mup; i += GGML_SOFT_MAX_UNROLL) {
  11698. float * SS = S + i;
  11699. for (int j = 0; j < GGML_SOFT_MAX_UNROLL; ++j) {
  11700. if (SS[j] == -INFINITY) {
  11701. SS[j] = 0.0f;
  11702. } else {
  11703. ggml_fp16_t s = GGML_FP32_TO_FP16(SS[j] - max);
  11704. memcpy(&scvt[j], &s, sizeof(uint16_t));
  11705. const float val = GGML_FP16_TO_FP32(ggml_table_exp_f16[scvt[j]]);
  11706. sump[j] += (ggml_float)val;
  11707. SS[j] = val;
  11708. }
  11709. }
  11710. }
  11711. for (int i = 0; i < GGML_SOFT_MAX_UNROLL; i++) {
  11712. sum += sump[i];
  11713. }
  11714. #endif
  11715. }
  11716. assert(sum > 0.0);
  11717. sum = 1.0/sum;
  11718. ggml_vec_scale_f32(M, S, sum);
  11719. #ifndef NDEBUG
  11720. for (int i = 0; i < M; ++i) {
  11721. assert(!isnan(S[i]));
  11722. assert(!isinf(S[i]));
  11723. }
  11724. #endif
  11725. }
  11726. ggml_fp16_t * S16 = (ggml_fp16_t *) ((float *) params->wdata + ith*(2*Mup + CACHE_LINE_SIZE_F32) + Mup);
  11727. for (int64_t i = 0; i < M; i++) {
  11728. S16[i] = GGML_FP32_TO_FP16(S[i]);
  11729. }
  11730. // todo: exclude known zero S[..] values from dot (reducing nev0 and increasing begin of v and S16).
  11731. if (GGML_VEC_DOT_UNROLL == 1 || (nev1 % GGML_VEC_DOT_UNROLL != 0)) {
  11732. for (int64_t ic = 0; ic < nev1; ++ic) {
  11733. // dst indices
  11734. const int i1 = iq1;
  11735. const int i2 = iq2;
  11736. const int i3 = iq3;
  11737. // v indices
  11738. const int iv2 = iq2 % nev2;
  11739. const int iv3 = iq3;
  11740. ggml_vec_dot_f16(nev0,
  11741. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)), 0,
  11742. (ggml_fp16_t *) ((char *) v->data + ( ic*nbv1 + iv2*nbv2 + iv3*nbv3)), 0,
  11743. S16, 0, 1);
  11744. }
  11745. } else {
  11746. for (int64_t ic = 0; ic < nev1; ic += GGML_VEC_DOT_UNROLL) {
  11747. // dst indices
  11748. const int i1 = iq1;
  11749. const int i2 = iq2;
  11750. const int i3 = iq3;
  11751. // v indices
  11752. const int iv2 = iq2 % nev2;
  11753. const int iv3 = iq3;
  11754. ggml_vec_dot_f16_unroll(nev0, nbv1,
  11755. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  11756. ((char *) v->data + ( ic*nbv1 + iv2*nbv2 + iv3*nbv3)),
  11757. S16);
  11758. }
  11759. }
  11760. }
  11761. }
  11762. static void ggml_compute_forward_flash_attn(
  11763. const struct ggml_compute_params * params,
  11764. const bool masked,
  11765. struct ggml_tensor * dst) {
  11766. const struct ggml_tensor * q = dst->src[0];
  11767. switch (q->type) {
  11768. case GGML_TYPE_F16:
  11769. {
  11770. ggml_compute_forward_flash_attn_f16(params, masked, dst);
  11771. } break;
  11772. case GGML_TYPE_F32:
  11773. {
  11774. ggml_compute_forward_flash_attn_f32(params, masked, dst);
  11775. } break;
  11776. default:
  11777. {
  11778. GGML_ASSERT(false);
  11779. } break;
  11780. }
  11781. }
  11782. // ggml_compute_forward_flash_ff
  11783. static void ggml_compute_forward_flash_ff_f16(
  11784. const struct ggml_compute_params * params,
  11785. struct ggml_tensor * dst) {
  11786. const struct ggml_tensor * a = dst->src[0]; // F16
  11787. const struct ggml_tensor * b0 = dst->src[1]; // F16 fc_w
  11788. const struct ggml_tensor * b1 = dst->src[2]; // F32 fc_b
  11789. const struct ggml_tensor * c0 = dst->src[3]; // F16 proj_w
  11790. const struct ggml_tensor * c1 = dst->src[4]; // F32 proj_b
  11791. int64_t t0 = ggml_perf_time_us();
  11792. UNUSED(t0);
  11793. GGML_TENSOR_LOCALS(int64_t, nea, a, ne)
  11794. GGML_TENSOR_LOCALS(size_t, nba, a, nb)
  11795. GGML_TENSOR_LOCALS(int64_t, neb0, b0, ne)
  11796. GGML_TENSOR_LOCALS(size_t, nbb0, b0, nb)
  11797. GGML_TENSOR_LOCALS(int64_t, neb1, b1, ne)
  11798. GGML_TENSOR_LOCALS(size_t, nbb1, b1, nb)
  11799. GGML_TENSOR_LOCALS(int64_t, nec0, c0, ne)
  11800. GGML_TENSOR_LOCALS(size_t, nbc0, c0, nb)
  11801. GGML_TENSOR_LOCALS(int64_t, nec1, c1, ne)
  11802. GGML_TENSOR_LOCALS(size_t, nbc1, c1, nb)
  11803. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
  11804. GGML_TENSOR_LOCALS(size_t, nb, dst, nb)
  11805. const int ith = params->ith;
  11806. const int nth = params->nth;
  11807. const int64_t D = nea0;
  11808. //const int64_t N = nea1;
  11809. const int64_t M = neb01;
  11810. GGML_ASSERT(ne0 == nea0);
  11811. GGML_ASSERT(ne1 == nea1);
  11812. GGML_ASSERT(ne2 == nea2);
  11813. GGML_ASSERT(nba0 == sizeof(ggml_fp16_t));
  11814. GGML_ASSERT(nbb00 == sizeof(ggml_fp16_t));
  11815. GGML_ASSERT(nbb10 == sizeof(float));
  11816. GGML_ASSERT(nbc00 == sizeof(ggml_fp16_t));
  11817. GGML_ASSERT(nbc10 == sizeof(float));
  11818. GGML_ASSERT(neb00 == D);
  11819. GGML_ASSERT(neb01 == M);
  11820. GGML_ASSERT(neb10 == M);
  11821. GGML_ASSERT(neb11 == 1);
  11822. GGML_ASSERT(nec00 == M);
  11823. GGML_ASSERT(nec01 == D);
  11824. GGML_ASSERT(nec10 == D);
  11825. GGML_ASSERT(nec11 == 1);
  11826. // dst cannot be transposed or permuted
  11827. GGML_ASSERT(nb0 == sizeof(float));
  11828. GGML_ASSERT(nb0 <= nb1);
  11829. GGML_ASSERT(nb1 <= nb2);
  11830. GGML_ASSERT(nb2 <= nb3);
  11831. if (params->type == GGML_TASK_TYPE_INIT) {
  11832. return;
  11833. }
  11834. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  11835. return;
  11836. }
  11837. // parallelize by a rows using ggml_vec_dot_f32
  11838. // total rows in a
  11839. const int nr = nea1*nea2*nea3;
  11840. // rows per thread
  11841. const int dr = (nr + nth - 1)/nth;
  11842. // row range for this thread
  11843. const int ir0 = dr*ith;
  11844. const int ir1 = MIN(ir0 + dr, nr);
  11845. for (int ir = ir0; ir < ir1; ++ir) {
  11846. // a indices
  11847. const int ia3 = ir/(nea2*nea1);
  11848. const int ia2 = (ir - ia3*nea2*nea1)/nea1;
  11849. const int ia1 = (ir - ia3*nea2*nea1 - ia2*nea1);
  11850. float * S = (float *) params->wdata + ith*(2*M + CACHE_LINE_SIZE_F32);
  11851. for (int64_t ic = 0; ic < neb01; ++ic) {
  11852. // b0 indices
  11853. const int ib03 = ia3;
  11854. const int ib02 = ia2;
  11855. const int ib01 = ic;
  11856. // S indices
  11857. const int i1 = ib01;
  11858. ggml_vec_dot_f16(nea0,
  11859. S + i1, 0,
  11860. (ggml_fp16_t *) ((char *) b0->data + (ib01*nbb01 + ib02*nbb02 + ib03*nbb03)), 0,
  11861. (ggml_fp16_t *) ((char *) a->data + ( ia1*nba1 + ia2*nba2 + ia3*nba3)), 0, 1);
  11862. }
  11863. ggml_vec_add_f32(neb01, S, S, (float *) b1->data);
  11864. //ggml_vec_gelu_f32(neb01, S, S);
  11865. ggml_fp16_t * S16 = (ggml_fp16_t *) ((float *) params->wdata + ith*(2*M + CACHE_LINE_SIZE_F32) + M);
  11866. for (int64_t i = 0; i < M; i++) {
  11867. S16[i] = GGML_FP32_TO_FP16(S[i]);
  11868. }
  11869. ggml_vec_gelu_f16(neb01, S16, S16);
  11870. {
  11871. // dst indices
  11872. const int i1 = ia1;
  11873. const int i2 = ia2;
  11874. const int i3 = ia3;
  11875. for (int64_t ic = 0; ic < nec01; ++ic) {
  11876. ggml_vec_dot_f16(neb01,
  11877. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)), 0,
  11878. (ggml_fp16_t *) ((char *) c0->data + ( ic*nbc01 + i2*nbc02 + i3*nbc03)), 0,
  11879. S16, 0, 1);
  11880. }
  11881. ggml_vec_add_f32(nec01,
  11882. (float *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3)),
  11883. (float *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3)),
  11884. (float *) c1->data);
  11885. }
  11886. }
  11887. }
  11888. static void ggml_compute_forward_flash_ff(
  11889. const struct ggml_compute_params * params,
  11890. struct ggml_tensor * dst) {
  11891. const struct ggml_tensor * b0 = dst->src[1];
  11892. switch (b0->type) {
  11893. case GGML_TYPE_F16:
  11894. {
  11895. ggml_compute_forward_flash_ff_f16(params, dst);
  11896. } break;
  11897. case GGML_TYPE_F32:
  11898. {
  11899. GGML_ASSERT(false); // TODO
  11900. } break;
  11901. default:
  11902. {
  11903. GGML_ASSERT(false);
  11904. } break;
  11905. }
  11906. }
  11907. // ggml_compute_forward_flash_attn_back
  11908. static void ggml_compute_forward_flash_attn_back_f32(
  11909. const struct ggml_compute_params * params,
  11910. const bool masked,
  11911. struct ggml_tensor * dst) {
  11912. const struct ggml_tensor * q = dst->src[0];
  11913. const struct ggml_tensor * k = dst->src[1];
  11914. const struct ggml_tensor * v = dst->src[2];
  11915. const struct ggml_tensor * d = dst->src[3];
  11916. int64_t t0 = ggml_perf_time_us();
  11917. UNUSED(t0);
  11918. GGML_TENSOR_LOCALS(int64_t, neq, q, ne)
  11919. GGML_TENSOR_LOCALS(size_t, nbq, q, nb)
  11920. GGML_TENSOR_LOCALS(int64_t, nek, k, ne)
  11921. GGML_TENSOR_LOCALS(size_t, nbk, k, nb)
  11922. GGML_TENSOR_LOCALS(int64_t, nev, v, ne)
  11923. GGML_TENSOR_LOCALS(size_t, nbv, v, nb)
  11924. GGML_TENSOR_LOCALS(int64_t, ned, d, ne)
  11925. GGML_TENSOR_LOCALS(size_t, nbd, d, nb)
  11926. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
  11927. GGML_TENSOR_LOCALS(size_t, nb, dst, nb)
  11928. const int ith = params->ith;
  11929. const int nth = params->nth;
  11930. const int64_t D = neq0;
  11931. const int64_t N = neq1;
  11932. const int64_t P = nek1 - N;
  11933. const int64_t M = P + N;
  11934. const int Mup = ggml_up(M, GGML_SOFT_MAX_UNROLL);
  11935. const int mxDM = MAX(D, Mup);
  11936. // GGML_ASSERT(ne0 == D);
  11937. // GGML_ASSERT(ne1 == N);
  11938. GGML_ASSERT(P >= 0);
  11939. GGML_ASSERT(nbq0 == sizeof(float));
  11940. GGML_ASSERT(nbk0 == sizeof(float));
  11941. GGML_ASSERT(nbv0 == sizeof(float));
  11942. GGML_ASSERT(neq0 == D);
  11943. GGML_ASSERT(nek0 == D);
  11944. GGML_ASSERT(nev1 == D);
  11945. GGML_ASSERT(ned0 == D);
  11946. GGML_ASSERT(neq1 == N);
  11947. GGML_ASSERT(nek1 == N + P);
  11948. GGML_ASSERT(nev1 == D);
  11949. GGML_ASSERT(ned1 == N);
  11950. // dst cannot be transposed or permuted
  11951. GGML_ASSERT(nb0 == sizeof(float));
  11952. GGML_ASSERT(nb0 <= nb1);
  11953. GGML_ASSERT(nb1 <= nb2);
  11954. GGML_ASSERT(nb2 <= nb3);
  11955. if (params->type == GGML_TASK_TYPE_INIT) {
  11956. if (ith == 0) {
  11957. memset(dst->data, 0, nb0*ne0*ne1*ne2*ne3);
  11958. }
  11959. return;
  11960. }
  11961. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  11962. return;
  11963. }
  11964. const int64_t elem_q = ggml_nelements(q);
  11965. const int64_t elem_k = ggml_nelements(k);
  11966. enum ggml_type result_type = dst->type;
  11967. GGML_ASSERT(ggml_blck_size(result_type) == 1);
  11968. const size_t tsize = ggml_type_size(result_type);
  11969. const size_t offs_q = 0;
  11970. const size_t offs_k = offs_q + GGML_PAD(elem_q * tsize, GGML_MEM_ALIGN);
  11971. const size_t offs_v = offs_k + GGML_PAD(elem_k * tsize, GGML_MEM_ALIGN);
  11972. void * grad_q = (char *) dst->data;
  11973. void * grad_k = (char *) dst->data + offs_k;
  11974. void * grad_v = (char *) dst->data + offs_v;
  11975. const size_t nbgq1 = nb0*neq0;
  11976. const size_t nbgq2 = nb0*neq0*neq1;
  11977. const size_t nbgq3 = nb0*neq0*neq1*neq2;
  11978. const size_t nbgk1 = nb0*nek0;
  11979. const size_t nbgk2 = nb0*nek0*nek1;
  11980. const size_t nbgk3 = nb0*nek0*nek1*neq2;
  11981. const size_t nbgv1 = nb0*nev0;
  11982. const size_t nbgv2 = nb0*nev0*nev1;
  11983. const size_t nbgv3 = nb0*nev0*nev1*neq2;
  11984. // parallelize by k rows using ggml_vec_dot_f32
  11985. // total rows in k
  11986. const int nr = nek2*nek3;
  11987. // rows per thread
  11988. const int dr = (nr + nth - 1)/nth;
  11989. // row range for this thread
  11990. const int ir0 = dr*ith;
  11991. const int ir1 = MIN(ir0 + dr, nr);
  11992. const float scale = 1.0f/sqrtf(D);
  11993. //printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale);
  11994. // how often k2 (and v2) is repeated in q2
  11995. int nrep = neq2/nek2;
  11996. for (int ir = ir0; ir < ir1; ++ir) {
  11997. // q indices
  11998. const int ik3 = ir/(nek2);
  11999. const int ik2 = ir - ik3*nek2;
  12000. const int iq3 = ik3;
  12001. const int id3 = ik3;
  12002. const int iv3 = ik3;
  12003. const int iv2 = ik2;
  12004. for (int irep = 0; irep < nrep; ++irep) {
  12005. const int iq2 = ik2 + irep*nek2;
  12006. const int id2 = iq2;
  12007. // (ik2 + irep*nek2) % nek2 == ik2
  12008. for (int iq1 = 0; iq1 < neq1; ++iq1) {
  12009. const int id1 = iq1;
  12010. // not sure about CACHE_LINE_SIZE_F32..
  12011. // - maybe it must not be multiplied by 2 and excluded from .. in SM 1*(..) offset?
  12012. float * S = (float *) params->wdata + ith*2*(mxDM + CACHE_LINE_SIZE_F32) + 0*(mxDM+CACHE_LINE_SIZE_F32);
  12013. float * SM = (float *) params->wdata + ith*2*(mxDM + CACHE_LINE_SIZE_F32) + 1*(mxDM+CACHE_LINE_SIZE_F32);
  12014. for (int i = M; i < Mup; ++i) {
  12015. S[i] = -INFINITY;
  12016. }
  12017. const int64_t masked_begin = masked ? (P + iq1 + 1) : M;
  12018. for (int64_t ic = 0; ic < masked_begin; ++ic) {
  12019. // k indices
  12020. const int ik1 = ic;
  12021. // S indices
  12022. const int i1 = ik1;
  12023. ggml_vec_dot_f32(neq0,
  12024. S + i1, 0,
  12025. (float *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)), 0,
  12026. (float *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)), 0, 1);
  12027. }
  12028. // scale
  12029. ggml_vec_scale_f32(masked_begin, S, scale);
  12030. for (int64_t i = masked_begin; i < M; i++) {
  12031. S[i] = -INFINITY;
  12032. }
  12033. // softmax
  12034. // exclude known -INF S[..] values from max and loop
  12035. // dont forget to set their SM values to zero
  12036. {
  12037. float max = -INFINITY;
  12038. ggml_vec_max_f32(masked_begin, &max, S);
  12039. ggml_float sum = 0.0;
  12040. {
  12041. #ifdef GGML_SOFT_MAX_ACCELERATE
  12042. max = -max;
  12043. vDSP_vsadd(SM, 1, &max, SM, 1, Mup);
  12044. vvexpf(SM, SM, &Mup);
  12045. ggml_vec_sum_f32(Mup, &sum, SM);
  12046. #else
  12047. uint16_t scvt[GGML_SOFT_MAX_UNROLL]; UNUSED(scvt);
  12048. ggml_float sump[GGML_SOFT_MAX_UNROLL] = { 0.0 };
  12049. for (int i = 0; i < Mup; i += GGML_SOFT_MAX_UNROLL) {
  12050. if (i >= masked_begin) {
  12051. break;
  12052. }
  12053. float * SR = S + i;
  12054. float * SW = SM + i;
  12055. for (int j = 0; j < GGML_SOFT_MAX_UNROLL; ++j) {
  12056. if (i + j >= masked_begin) {
  12057. break;
  12058. } else if (SR[j] == -INFINITY) {
  12059. SW[j] = 0.0f;
  12060. } else {
  12061. #ifndef GGML_FLASH_ATTN_EXP_FP16
  12062. const float val = expf(SR[j] - max);
  12063. #else
  12064. ggml_fp16_t s = GGML_FP32_TO_FP16(SR[j] - max);
  12065. memcpy(&scvt[j], &s, sizeof(uint16_t));
  12066. const float val = GGML_FP16_TO_FP32(ggml_table_exp_f16[scvt[j]]);
  12067. #endif
  12068. sump[j] += (ggml_float)val;
  12069. SW[j] = val;
  12070. }
  12071. }
  12072. }
  12073. for (int i = 0; i < GGML_SOFT_MAX_UNROLL; i++) {
  12074. sum += sump[i];
  12075. }
  12076. #endif
  12077. }
  12078. assert(sum > 0.0);
  12079. sum = 1.0/sum;
  12080. ggml_vec_scale_f32(masked_begin, SM, sum);
  12081. }
  12082. // step-by-step explanation
  12083. {
  12084. // forward-process shape grads from backward process
  12085. // parallel_for ik2,ik3:
  12086. // for irep:
  12087. // iq2 = ik2 + irep*nek2
  12088. // k[:D,:M,:,:] [D,M,:,:] grad[k][:D,:M,ik2,ik3] += grad[kcur]
  12089. // q[:D,:N,:,:] [D,N,:,:] grad[q][:D,iq1,iq2,iq3] += grad[qcur]
  12090. // v[:M,:D,:,:] [M,D,:,:] grad[v][:M,:D,iv2,iv3] += grad[vcur]
  12091. // for iq1:
  12092. // kcur = k[:D,:M,ik2,ik3] [D,M,1,1] grad[kcur] = grad[S1].T @ qcur
  12093. // qcur = q[:D,iq1,iq2,iq3] [D,1,1,1] grad[qcur] = grad[S1] @ kcur
  12094. // vcur = v[:M,:D,iv2,iv3] [M,D,1,1] grad[vcur] = grad[S5].T @ S4
  12095. // S0 = -Inf [D,1,1,1]
  12096. // ~S1[i] = dot(kcur[:D,i], qcur)
  12097. // S1 = qcur @ kcur.T [M,1,1,1] grad[S1] = grad[S2] * scale
  12098. // S2 = S1 * scale [M,1,1,1] grad[S2] = diag_mask_zero(grad[S3], P)
  12099. // S3 = diag_mask_inf(S2, P) [M,1,1,1] grad[S3] = S4 * (grad[S4] - dot(S4, grad[S4]))
  12100. // S4 = softmax(S3) [M,1,1,1] grad[S4] = grad[S5] @ vcur
  12101. // ~S5[i] = dot(vcur[:,i], S4)
  12102. // S5 = S4 @ vcur.T [D,1,1,1] grad[S5] = d[:D,id1,id2,id3]
  12103. // ~dst[i,iq1,iq2,iq3] = S5[i] ^
  12104. // dst[:D,iq1,iq2,iq3] = S5 | grad[dst[:D,iq1,iq2,iq3]] = d[:D,id1,id2,id3]
  12105. // dst backward-/ grad[dst] = d
  12106. //
  12107. // output gradients with their dependencies:
  12108. //
  12109. // grad[kcur] = grad[S1].T @ qcur
  12110. // grad[S1] = diag_mask_zero(grad[S3], P) * scale
  12111. // grad[S3] = S4 * (grad[S4] - dot(S4, grad[S4]))
  12112. // grad[S4] = grad[S5] @ vcur
  12113. // grad[S4] = d[:D,id1,id2,id3] @ vcur
  12114. // grad[qcur] = grad[S1] @ kcur
  12115. // grad[vcur] = grad[S5].T @ S4
  12116. // grad[vcur] = d[:D,id1,id2,id3].T @ S4
  12117. //
  12118. // in post-order:
  12119. //
  12120. // S1 = qcur @ kcur.T
  12121. // S2 = S1 * scale
  12122. // S3 = diag_mask_inf(S2, P)
  12123. // S4 = softmax(S3)
  12124. // grad[S4] = d[:D,id1,id2,id3] @ vcur
  12125. // grad[S3] = S4 * (grad[S4] - dot(S4, grad[S4]))
  12126. // grad[S1] = diag_mask_zero(grad[S3], P) * scale
  12127. // grad[qcur] = grad[S1] @ kcur
  12128. // grad[kcur] = grad[S1].T @ qcur
  12129. // grad[vcur] = d[:D,id1,id2,id3].T @ S4
  12130. //
  12131. // using less variables (SM=S4):
  12132. //
  12133. // S = diag_mask_inf(qcur @ kcur.T * scale, P)
  12134. // SM = softmax(S)
  12135. // S = d[:D,iq1,iq2,iq3] @ vcur
  12136. // dot_SM_gradSM = dot(SM, S)
  12137. // S = SM * (S - dot(SM, S))
  12138. // S = diag_mask_zero(S, P) * scale
  12139. //
  12140. // grad[q][:D,iq1,iq2,iq3] += S @ kcur
  12141. // grad[k][:D,:M,ik2,ik3] += S.T @ qcur
  12142. // grad[v][:M,:D,iv2,iv3] += d[:D,id1,id2,id3].T @ SM
  12143. }
  12144. // S = gradSM = d[:D,id1,id2,id3] @ vcur[:,:,iv2,iv3]
  12145. // S = d[:D,id1,id2,id3] @ vcur[:,:,iv2,iv3]
  12146. // for ic:
  12147. // S[:M] += vcur[:M,ic,iv2,iv3] * d[ic,id1,id2,id3]
  12148. // exclude known future zero S[..] values from operation
  12149. ggml_vec_set_f32(masked_begin, S, 0);
  12150. for (int64_t ic = 0; ic < D; ++ic) {
  12151. ggml_vec_mad_f32(masked_begin,
  12152. S,
  12153. (float *) ((char *) v->data + ( ic*nbv1 + iv2*nbv2 + iv3*nbv3)),
  12154. *(float *) ((char *) d->data + (ic*nbd0 + id1*nbd1 + id2*nbd2 + id3*nbd3)));
  12155. }
  12156. // S = SM * (S - dot(SM, S))
  12157. float dot_SM_gradSM = 0;
  12158. ggml_vec_dot_f32 (masked_begin, &dot_SM_gradSM, 0, SM, 0, S, 0, 1);
  12159. ggml_vec_acc1_f32(M, S, -dot_SM_gradSM);
  12160. ggml_vec_mul_f32 (masked_begin, S, S, SM);
  12161. // S = diag_mask_zero(S, P) * scale
  12162. // already done by above ggml_vec_set_f32
  12163. // exclude known zero S[..] values from operation
  12164. ggml_vec_scale_f32(masked_begin, S, scale);
  12165. // S shape [M,1]
  12166. // SM shape [M,1]
  12167. // kcur shape [D,M]
  12168. // qcur shape [D,1]
  12169. // vcur shape [M,D]
  12170. // grad[q][:D,iq1,iq2,iq3] += S @ kcur
  12171. // grad[q][:D,iq1,iq2,iq3] += shape[M,1] @ shape[D,M]
  12172. // for ic:
  12173. // grad[q][:D,iq1,iq2,iq3] += S[ic] * kcur[:D,ic,ik2,ik3]
  12174. // exclude known zero S[..] values from loop
  12175. for (int64_t ic = 0; ic < masked_begin; ++ic) {
  12176. ggml_vec_mad_f32(D,
  12177. (float *) ((char *) grad_q + (iq1*nbgq1 + iq2*nbgq2 + iq3*nbgq3)),
  12178. (float *) ((char *) k->data + (ic*nbk1 + ik2*nbk2 + ik3*nbk3)),
  12179. S[ic]);
  12180. }
  12181. // grad[k][:D,:M,iq2,iq3] += S.T @ qcur
  12182. // for ic:
  12183. // grad[k][:D,ic,iq2,iq3] += S.T[0,ic] * qcur[:D,0]
  12184. // grad[k][:D,ic,iq2,iq3] += S[ic] * qcur[:D,0]
  12185. // exclude known zero S[..] values from loop
  12186. for (int64_t ic = 0; ic < masked_begin; ++ic) {
  12187. ggml_vec_mad_f32(D,
  12188. (float *) ((char *) grad_k + (ic*nbgk1 + ik2*nbgk2 + ik3*nbgk3)),
  12189. (float *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)),
  12190. S[ic]);
  12191. }
  12192. // grad[v][:M,:D,iv2,iv3] += d[:D,id1,id2,id3].T @ SM
  12193. // for ic:
  12194. // grad[v][:M,ic,iv2,iv3] += d[:D,id1,id2,id3].T[0,ic] * SM[:M]
  12195. // grad[v][:M,ic,iv2,iv3] += d[ic,id1,id2,id3] * SM[:M]
  12196. // exclude known zero SM[..] values from mad
  12197. for (int64_t ic = 0; ic < D; ++ic) {
  12198. ggml_vec_mad_f32(masked_begin,
  12199. (float *) ((char *) grad_v + ( ic*nbgv1 + iv2*nbgv2 + iv3*nbgv3)),
  12200. SM,
  12201. *(float *) ((char *) d->data + (ic*nbd0 + id1*nbd1 + id2*nbd2 + id3*nbd3)));
  12202. }
  12203. }
  12204. }
  12205. }
  12206. }
  12207. static void ggml_compute_forward_flash_attn_back(
  12208. const struct ggml_compute_params * params,
  12209. const bool masked,
  12210. struct ggml_tensor * dst) {
  12211. const struct ggml_tensor * q = dst->src[0];
  12212. switch (q->type) {
  12213. case GGML_TYPE_F32:
  12214. {
  12215. ggml_compute_forward_flash_attn_back_f32(params, masked, dst);
  12216. } break;
  12217. default:
  12218. {
  12219. GGML_ASSERT(false);
  12220. } break;
  12221. }
  12222. }
  12223. // ggml_compute_forward_ssm_conv
  12224. static void ggml_compute_forward_ssm_conv_f32(
  12225. const struct ggml_compute_params * params,
  12226. struct ggml_tensor * dst) {
  12227. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  12228. return;
  12229. }
  12230. const struct ggml_tensor * src0 = dst->src[0]; // conv_state
  12231. const struct ggml_tensor * src1 = dst->src[1]; // x
  12232. const struct ggml_tensor * src2 = dst->src[2]; // conv1d.weight
  12233. const struct ggml_tensor * src3 = dst->src[3]; // state_seq
  12234. const int ith = params->ith;
  12235. const int nth = params->nth;
  12236. const int nc = src2->ne[0]; // d_conv
  12237. const int nr = src0->ne[1]; // d_inner
  12238. const int n_t = src1->ne[1]; // n_tokens
  12239. const int n_kv = src0->ne[2]; // max number of sequences in the batch
  12240. GGML_ASSERT((nr*n_t) + (nc*nr*n_kv) == ggml_nelements(dst));
  12241. GGML_ASSERT(src0->nb[0] == sizeof(float));
  12242. GGML_ASSERT(src1->nb[0] == sizeof(float));
  12243. GGML_ASSERT(src2->nb[0] == sizeof(float));
  12244. GGML_ASSERT(src3->nb[0] == sizeof(int32_t));
  12245. GGML_ASSERT(src0->nb[1] == src0->ne[0]*sizeof(float));
  12246. // for use with the destination state offset between sequences
  12247. GGML_ASSERT(src2->nb[2] == src2->ne[1]*src2->ne[0]*sizeof(float));
  12248. // rows per thread
  12249. const int dr = (nr + nth - 1)/nth;
  12250. // row range for this thread
  12251. const int ir0 = dr*ith;
  12252. const int ir1 = MIN(ir0 + dr, nr);
  12253. const int ir = ir1 - ir0;
  12254. if (n_kv > 1) {
  12255. // multiple sequences means it's hard to know when it's the first time a state is read,
  12256. // so copy them all over to the destination, just to be sure.
  12257. for (int i3 = 0; i3 < n_kv; ++i3) {
  12258. float * s0 = (float *) ((char *) src0->data + ir0*(src0->nb[1]) + i3*(src0->nb[2]));
  12259. float * s = (float *) ((char *) dst->data + ir0*(src2->nb[1]) + i3*(src2->nb[2]) + nr*n_t*sizeof(float));
  12260. // can't use memcpy because of d_conv vs d_conv - 1
  12261. for (int i1 = 0; i1 < ir; ++i1) {
  12262. for (int i0 = 0; i0 < nc - 1; ++i0) {
  12263. // copy s0 to last (d_conv - 1) columns of s
  12264. s[1 + i0 + i1*nc] = s0[i0 + i1*(nc - 1)];
  12265. }
  12266. }
  12267. }
  12268. }
  12269. for (int i2 = 0; i2 < n_t; ++i2) {
  12270. int32_t * sq = (int32_t *) ((char *) src3->data + i2*(src3->nb[1])); // {n_kv, n_tokens}
  12271. float * x = (float *) ((char *) dst->data + ir0*sizeof(float) + i2*(nr*sizeof(float))); // {d_inner, n_tokens}
  12272. float * s = (float *) ((char *) dst->data + ir0*(src2->nb[1]) + sq[0]*(src2->nb[2]) + nr*n_t*sizeof(float)); // {d_conv, d_inner, n_kv}
  12273. float * s0; // {d_conv - 1, d_inner, n_kv}
  12274. float * x0 = (float *) ((char *) src1->data + ir0*(src1->nb[0]) + i2*(src1->nb[1])); // {d_inner, n_tokens}
  12275. float * c = (float *) ((char *) src2->data + ir0*(src2->nb[1])); // {d_conv, d_inner}
  12276. int ne0s0;
  12277. GGML_ASSERT(0 <= sq[0] && sq[0] < n_kv);
  12278. // avoid needing to copy the state for the first token
  12279. if (i2 == 0) {
  12280. s0 = (float *) ((char *) src0->data + ir0*(src0->nb[1]) + sq[0]*(src0->nb[2])); // {d_conv - 1, d_inner, n_kv}
  12281. ne0s0 = src0->ne[0];
  12282. } else {
  12283. // the source is the last (d_conv - 1) columns of the destination
  12284. s0 = s + 1;
  12285. ne0s0 = nc;
  12286. }
  12287. // d_inner
  12288. for (int i1 = 0; i1 < ir; ++i1) {
  12289. // shift state left
  12290. for (int i0 = 0; i0 < nc - 1; ++i0) {
  12291. s[i0 + i1*nc] = s0[i0 + i1*ne0s0];
  12292. }
  12293. // insert x on the last column
  12294. s[(nc - 1) + i1*nc] = x0[i1];
  12295. }
  12296. // handle copies when there are multiple output states
  12297. for (int i3 = 1; i3 < n_kv; ++i3) {
  12298. int32_t seq = sq[i3];
  12299. if (0 <= seq && seq < n_kv) {
  12300. float * s1 = s + (seq - sq[0])*nc*nr;
  12301. memcpy(s1, s, nc*ir*sizeof(float));
  12302. } else {
  12303. // stop at negative or too big seq_ids
  12304. break;
  12305. }
  12306. }
  12307. // it seems a little faster when this is separate from the state shift
  12308. for (int i1 = 0; i1 < ir; ++i1) {
  12309. // rowwise dot product
  12310. float sumf = 0.0f;
  12311. for (int i0 = 0; i0 < nc; ++i0) {
  12312. int i = i0 + i1*nc;
  12313. sumf += s[i] * c[i];
  12314. }
  12315. x[i1] = sumf;
  12316. }
  12317. }
  12318. }
  12319. static void ggml_compute_forward_ssm_conv(
  12320. const struct ggml_compute_params * params,
  12321. struct ggml_tensor * dst) {
  12322. switch (dst->src[0]->type) {
  12323. case GGML_TYPE_F32:
  12324. {
  12325. ggml_compute_forward_ssm_conv_f32(params, dst);
  12326. } break;
  12327. default:
  12328. {
  12329. GGML_ASSERT(false);
  12330. } break;
  12331. }
  12332. }
  12333. // ggml_compute_forward_ssm_scan
  12334. static void ggml_compute_forward_ssm_scan_f32(
  12335. const struct ggml_compute_params * params,
  12336. struct ggml_tensor * dst) {
  12337. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  12338. return;
  12339. }
  12340. const struct ggml_tensor * src0 = dst->src[0]; // s
  12341. const struct ggml_tensor * src1 = dst->src[1]; // x
  12342. const struct ggml_tensor * src2 = dst->src[2]; // dt
  12343. const struct ggml_tensor * src3 = dst->src[3]; // A
  12344. const struct ggml_tensor * src4 = dst->src[4]; // B
  12345. const struct ggml_tensor * src5 = dst->src[5]; // C
  12346. const struct ggml_tensor * src6 = dst->src[6]; // sq
  12347. const int ith = params->ith;
  12348. const int nth = params->nth;
  12349. const int64_t nc = src0->ne[0]; // d_state
  12350. const int64_t nr = src0->ne[1]; // d_inner
  12351. const int64_t n_t = src1->ne[1]; // number of tokens in the batch
  12352. const int64_t n_kv = src0->ne[2]; // max number of sequences in the batch
  12353. GGML_ASSERT(ggml_nelements(src1) + ggml_nelements(src0) == ggml_nelements(dst));
  12354. GGML_ASSERT(src0->nb[0] == sizeof(float));
  12355. GGML_ASSERT(src1->nb[0] == sizeof(float));
  12356. GGML_ASSERT(src2->nb[0] == sizeof(float));
  12357. GGML_ASSERT(src3->nb[0] == sizeof(float));
  12358. GGML_ASSERT(src4->nb[0] == sizeof(float));
  12359. GGML_ASSERT(src5->nb[0] == sizeof(float));
  12360. // required for the dot product between s and C, and when copying the states
  12361. GGML_ASSERT(src0->nb[1] == src0->ne[0]*sizeof(float));
  12362. // required for per-sequence offsets for states
  12363. GGML_ASSERT(src0->nb[2] == src0->ne[0]*src0->ne[1]*sizeof(float));
  12364. // required to get correct offset for state destination (i.e. src1->nb[2])
  12365. GGML_ASSERT(src1->nb[2] == src1->ne[0]*src1->ne[1]*sizeof(float));
  12366. // rows per thread
  12367. const int dr = (nr + nth - 1)/nth;
  12368. // row range for this thread
  12369. const int ir0 = dr*ith;
  12370. const int ir1 = MIN(ir0 + dr, nr);
  12371. const int ir = ir1 - ir0;
  12372. if (n_kv > 1) {
  12373. // it's hard to know if the source states have already been copied
  12374. // when there are multiple, so copy them already.
  12375. for (int i3 = 0; i3 < n_kv; ++i3) {
  12376. float * s0 = (float *) ((char *) src0->data + ir0*(src0->nb[1]) + i3*(src0->nb[2]));
  12377. float * s = (float *) ((char *) dst->data + ir0*(src0->nb[1]) + i3*(src0->nb[2]) + src1->nb[2]);
  12378. memcpy(s, s0, nc*ir*sizeof(float));
  12379. }
  12380. }
  12381. for (int i2 = 0; i2 < n_t; ++i2) {
  12382. int32_t * sq = (int32_t *) ((char *) src6->data + i2*(src6->nb[1])); // {n_kv, n_tokens}
  12383. float * y = (float *) ((char *) dst->data + ir0*(src1->nb[0]) + i2*(src1->nb[1])); // {d_inner, n_tokens}
  12384. float * s = (float *) ((char *) dst->data + ir0*(src0->nb[1]) + sq[0]*(src0->nb[2]) + src1->nb[2]); // {d_state, d_inner, n_kv}
  12385. float * s0;
  12386. float * x = (float *) ((char *) src1->data + ir0*(src1->nb[0]) + i2*(src1->nb[1])); // {d_inner, n_tokens}
  12387. float * dt = (float *) ((char *) src2->data + ir0*(src2->nb[0]) + i2*(src2->nb[1])); // {d_inner, n_tokens}
  12388. float * A = (float *) ((char *) src3->data + ir0*(src3->nb[1])); // {d_state, d_inner}
  12389. float * B = (float *) ((char *) src4->data + i2*(src4->nb[1])); // {d_state, n_tokens}
  12390. float * C = (float *) ((char *) src5->data + i2*(src5->nb[1])); // {d_state, n_tokens}
  12391. GGML_ASSERT(0 <= sq[0] && sq[0] < n_kv);
  12392. // avoid needing to copy the state for the first token
  12393. if (i2 == 0) {
  12394. s0 = (float *) ((char *) src0->data + ir0*(src0->nb[1]) + sq[0]*(src0->nb[2])); // {d_state, d_inner, n_kv}
  12395. } else {
  12396. // otherwise the source is the same as the destination
  12397. s0 = s;
  12398. }
  12399. // d_inner
  12400. for (int i1 = 0; i1 < ir; ++i1) {
  12401. // ref: https://github.com/state-spaces/mamba/blob/34076d664838588a3c97727b263478ab9f621a07/mamba_ssm/ops/triton/selective_state_update.py#L78
  12402. float dt_soft_plus = dt[i1] <= 20.0f ? log1pf(expf(dt[i1])) : dt[i1];
  12403. float x_dt = x[i1] * dt_soft_plus;
  12404. float sumf = 0.0f;
  12405. // d_state
  12406. for (int i0 = 0; i0 < nc; ++i0) {
  12407. int i = i0 + i1*nc;
  12408. // state = prev_state * dA + dB * x
  12409. float state = (s0[i] * expf(dt_soft_plus * A[i])) + (B[i0] * x_dt);
  12410. // y = rowwise_dotprod(state, C)
  12411. sumf += state * C[i0];
  12412. s[i] = state;
  12413. }
  12414. y[i1] = sumf;
  12415. }
  12416. // handle copies when there are multiple output states
  12417. for (int i3 = 1; i3 < n_kv; ++i3) {
  12418. int32_t seq = sq[i3];
  12419. if (0 <= seq && seq < n_kv) {
  12420. float * s1 = s + (seq - sq[0])*nc*nr;
  12421. memcpy(s1, s, nc*ir*sizeof(float));
  12422. } else {
  12423. // stop at negative or too big seq_ids
  12424. break;
  12425. }
  12426. }
  12427. }
  12428. }
  12429. static void ggml_compute_forward_ssm_scan(
  12430. const struct ggml_compute_params * params,
  12431. struct ggml_tensor * dst) {
  12432. switch (dst->src[0]->type) {
  12433. case GGML_TYPE_F32:
  12434. {
  12435. ggml_compute_forward_ssm_scan_f32(params, dst);
  12436. } break;
  12437. default:
  12438. {
  12439. GGML_ASSERT(false);
  12440. } break;
  12441. }
  12442. }
  12443. // ggml_compute_forward_win_part
  12444. static void ggml_compute_forward_win_part_f32(
  12445. const struct ggml_compute_params * params,
  12446. struct ggml_tensor * dst) {
  12447. const struct ggml_tensor * src0 = dst->src[0];
  12448. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  12449. return;
  12450. }
  12451. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne)
  12452. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
  12453. const int32_t nep0 = ((const int32_t *)(dst->op_params))[0];
  12454. const int32_t nep1 = ((const int32_t *)(dst->op_params))[1];
  12455. const int32_t w = ((const int32_t *)(dst->op_params))[2];
  12456. assert(ne00 == ne0);
  12457. assert(ne3 == nep0*nep1);
  12458. // TODO: optimize / multi-thread
  12459. for (int py = 0; py < nep1; ++py) {
  12460. for (int px = 0; px < nep0; ++px) {
  12461. const int64_t i3 = py*nep0 + px;
  12462. for (int64_t i2 = 0; i2 < ne2; ++i2) {
  12463. for (int64_t i1 = 0; i1 < ne1; ++i1) {
  12464. for (int64_t i0 = 0; i0 < ne0; ++i0) {
  12465. const int64_t i02 = py*w + i2;
  12466. const int64_t i01 = px*w + i1;
  12467. const int64_t i00 = i0;
  12468. const int64_t i = i3*ne2*ne1*ne0 + i2*ne1*ne0 + i1*ne0 + i0;
  12469. const int64_t j = i02*ne01*ne00 + i01*ne00 + i00;
  12470. if (py*w + i2 >= ne02 || px*w + i1 >= ne01) {
  12471. ((float *) dst->data)[i] = 0.0f;
  12472. } else {
  12473. ((float *) dst->data)[i] = ((float *) src0->data)[j];
  12474. }
  12475. }
  12476. }
  12477. }
  12478. }
  12479. }
  12480. }
  12481. static void ggml_compute_forward_win_part(
  12482. const struct ggml_compute_params * params,
  12483. struct ggml_tensor * dst) {
  12484. const struct ggml_tensor * src0 = dst->src[0];
  12485. switch (src0->type) {
  12486. case GGML_TYPE_F32:
  12487. {
  12488. ggml_compute_forward_win_part_f32(params, dst);
  12489. } break;
  12490. default:
  12491. {
  12492. GGML_ASSERT(false);
  12493. } break;
  12494. }
  12495. }
  12496. // ggml_compute_forward_win_unpart
  12497. static void ggml_compute_forward_win_unpart_f32(
  12498. const struct ggml_compute_params * params,
  12499. struct ggml_tensor * dst) {
  12500. const struct ggml_tensor * src0 = dst->src[0];
  12501. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  12502. return;
  12503. }
  12504. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne)
  12505. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
  12506. const int32_t w = ((const int32_t *)(dst->op_params))[0];
  12507. // padding
  12508. const int px = (w - ne1%w)%w;
  12509. //const int py = (w - ne2%w)%w;
  12510. const int npx = (px + ne1)/w;
  12511. //const int npy = (py + ne2)/w;
  12512. assert(ne0 == ne00);
  12513. // TODO: optimize / multi-thread
  12514. for (int64_t i2 = 0; i2 < ne2; ++i2) {
  12515. for (int64_t i1 = 0; i1 < ne1; ++i1) {
  12516. for (int64_t i0 = 0; i0 < ne0; ++i0) {
  12517. const int ip2 = i2/w;
  12518. const int ip1 = i1/w;
  12519. const int64_t i02 = i2%w;
  12520. const int64_t i01 = i1%w;
  12521. const int64_t i00 = i0;
  12522. const int64_t i = (ip2*npx + ip1)*ne02*ne01*ne00 + i02*ne01*ne00 + i01*ne00 + i00;
  12523. const int64_t j = i2*ne1*ne0 + i1*ne0 + i0;
  12524. ((float *) dst->data)[j] = ((float *) src0->data)[i];
  12525. }
  12526. }
  12527. }
  12528. }
  12529. static void ggml_compute_forward_win_unpart(
  12530. const struct ggml_compute_params * params,
  12531. struct ggml_tensor * dst) {
  12532. const struct ggml_tensor * src0 = dst->src[0];
  12533. switch (src0->type) {
  12534. case GGML_TYPE_F32:
  12535. {
  12536. ggml_compute_forward_win_unpart_f32(params, dst);
  12537. } break;
  12538. default:
  12539. {
  12540. GGML_ASSERT(false);
  12541. } break;
  12542. }
  12543. }
  12544. //gmml_compute_forward_unary
  12545. static void ggml_compute_forward_unary(
  12546. const struct ggml_compute_params * params,
  12547. struct ggml_tensor * dst) {
  12548. const enum ggml_unary_op op = ggml_get_unary_op(dst);
  12549. switch (op) {
  12550. case GGML_UNARY_OP_ABS:
  12551. {
  12552. ggml_compute_forward_abs(params, dst);
  12553. } break;
  12554. case GGML_UNARY_OP_SGN:
  12555. {
  12556. ggml_compute_forward_sgn(params, dst);
  12557. } break;
  12558. case GGML_UNARY_OP_NEG:
  12559. {
  12560. ggml_compute_forward_neg(params, dst);
  12561. } break;
  12562. case GGML_UNARY_OP_STEP:
  12563. {
  12564. ggml_compute_forward_step(params, dst);
  12565. } break;
  12566. case GGML_UNARY_OP_TANH:
  12567. {
  12568. ggml_compute_forward_tanh(params, dst);
  12569. } break;
  12570. case GGML_UNARY_OP_ELU:
  12571. {
  12572. ggml_compute_forward_elu(params, dst);
  12573. } break;
  12574. case GGML_UNARY_OP_RELU:
  12575. {
  12576. ggml_compute_forward_relu(params, dst);
  12577. } break;
  12578. case GGML_UNARY_OP_GELU:
  12579. {
  12580. ggml_compute_forward_gelu(params, dst);
  12581. } break;
  12582. case GGML_UNARY_OP_GELU_QUICK:
  12583. {
  12584. ggml_compute_forward_gelu_quick(params, dst);
  12585. } break;
  12586. case GGML_UNARY_OP_SILU:
  12587. {
  12588. ggml_compute_forward_silu(params, dst);
  12589. } break;
  12590. case GGML_UNARY_OP_HARDSWISH:
  12591. {
  12592. ggml_compute_forward_hardswish(params, dst);
  12593. } break;
  12594. case GGML_UNARY_OP_HARDSIGMOID:
  12595. {
  12596. ggml_compute_forward_hardsigmoid(params, dst);
  12597. } break;
  12598. default:
  12599. {
  12600. GGML_ASSERT(false);
  12601. } break;
  12602. }
  12603. }
  12604. // ggml_compute_forward_get_rel_pos
  12605. static void ggml_compute_forward_get_rel_pos_f16(
  12606. const struct ggml_compute_params * params,
  12607. struct ggml_tensor * dst) {
  12608. const struct ggml_tensor * src0 = dst->src[0];
  12609. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  12610. return;
  12611. }
  12612. // ref: https://github.com/facebookresearch/segment-anything/blob/main/segment_anything/modeling/image_encoder.py#L292-L322
  12613. GGML_TENSOR_UNARY_OP_LOCALS
  12614. const int64_t w = ne1;
  12615. ggml_fp16_t * src0_data = (ggml_fp16_t *) src0->data;
  12616. ggml_fp16_t * dst_data = (ggml_fp16_t *) dst->data;
  12617. for (int64_t i2 = 0; i2 < ne2; ++i2) {
  12618. for (int64_t i1 = 0; i1 < ne1; ++i1) {
  12619. const int64_t pos = (w - i1 - 1) + i2;
  12620. for (int64_t i0 = 0; i0 < ne0; ++i0) {
  12621. dst_data[i2*ne1*ne0 + i1*ne0 + i0] = src0_data[pos*ne00 + i0];
  12622. }
  12623. }
  12624. }
  12625. }
  12626. static void ggml_compute_forward_get_rel_pos(
  12627. const struct ggml_compute_params * params,
  12628. struct ggml_tensor * dst) {
  12629. const struct ggml_tensor * src0 = dst->src[0];
  12630. switch (src0->type) {
  12631. case GGML_TYPE_F16:
  12632. {
  12633. ggml_compute_forward_get_rel_pos_f16(params, dst);
  12634. } break;
  12635. default:
  12636. {
  12637. GGML_ASSERT(false);
  12638. } break;
  12639. }
  12640. }
  12641. // ggml_compute_forward_add_rel_pos
  12642. static void ggml_compute_forward_add_rel_pos_f32(
  12643. const struct ggml_compute_params * params,
  12644. struct ggml_tensor * dst) {
  12645. const struct ggml_tensor * src0 = dst->src[0];
  12646. const struct ggml_tensor * src1 = dst->src[1];
  12647. const struct ggml_tensor * src2 = dst->src[2];
  12648. const bool inplace = (bool) ((int32_t *) dst->op_params)[0];
  12649. if (!inplace && params->type == GGML_TASK_TYPE_INIT) {
  12650. if (params->ith != 0) {
  12651. return;
  12652. }
  12653. memcpy((char *) dst->data, (char *) src0->data, ggml_nbytes(dst));
  12654. return;
  12655. }
  12656. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  12657. return;
  12658. }
  12659. int64_t t0 = ggml_perf_time_us();
  12660. UNUSED(t0);
  12661. // ref: https://github.com/facebookresearch/segment-anything/blob/main/segment_anything/modeling/image_encoder.py#L357-L359
  12662. float * src1_data = (float *) src1->data;
  12663. float * src2_data = (float *) src2->data;
  12664. float * dst_data = (float *) dst->data;
  12665. const int64_t ne10 = src1->ne[0];
  12666. const int64_t ne11 = src1->ne[1];
  12667. const int64_t ne12 = src1->ne[2];
  12668. const int64_t ne13 = src1->ne[3];
  12669. const int ith = params->ith;
  12670. const int nth = params->nth;
  12671. // total patches in dst
  12672. const int np = ne13;
  12673. // patches per thread
  12674. const int dp = (np + nth - 1)/nth;
  12675. // patch range for this thread
  12676. const int ip0 = dp*ith;
  12677. const int ip1 = MIN(ip0 + dp, np);
  12678. for (int64_t i13 = ip0; i13 < ip1; ++i13) {
  12679. for (int64_t i12 = 0; i12 < ne12; ++i12) {
  12680. for (int64_t i11 = 0; i11 < ne11; ++i11) {
  12681. const int64_t jp1 = i13*ne12*ne11*ne10 + i12*ne11*ne10 + i11*ne10;
  12682. for (int64_t i10 = 0; i10 < ne10; ++i10) {
  12683. const int64_t jp0 = jp1 + i10;
  12684. const float src1_e = src1_data[jp0];
  12685. const float src2_e = src2_data[jp0];
  12686. const int64_t jdh = jp0 * ne10;
  12687. const int64_t jdw = jdh - (ne10 - 1) * i10;
  12688. for (int64_t j = 0; j < ne10; ++j) {
  12689. dst_data[jdh + j ] += src2_e;
  12690. dst_data[jdw + j*ne10] += src1_e;
  12691. }
  12692. }
  12693. }
  12694. }
  12695. }
  12696. }
  12697. static void ggml_compute_forward_add_rel_pos(
  12698. const struct ggml_compute_params * params,
  12699. struct ggml_tensor * dst) {
  12700. const struct ggml_tensor * src0 = dst->src[0];
  12701. switch (src0->type) {
  12702. case GGML_TYPE_F32:
  12703. {
  12704. ggml_compute_forward_add_rel_pos_f32(params, dst);
  12705. } break;
  12706. default:
  12707. {
  12708. GGML_ASSERT(false);
  12709. } break;
  12710. }
  12711. }
  12712. // ggml_compute_forward_map_unary
  12713. static void ggml_compute_forward_map_unary_f32(
  12714. const struct ggml_compute_params * params,
  12715. struct ggml_tensor * dst,
  12716. const ggml_unary_op_f32_t fun) {
  12717. const struct ggml_tensor * src0 = dst->src[0];
  12718. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  12719. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  12720. return;
  12721. }
  12722. const int n = ggml_nrows(src0);
  12723. const int nc = src0->ne[0];
  12724. assert( dst->nb[0] == sizeof(float));
  12725. assert(src0->nb[0] == sizeof(float));
  12726. for (int i = 0; i < n; i++) {
  12727. fun(nc,
  12728. (float *) ((char *) dst->data + i*( dst->nb[1])),
  12729. (float *) ((char *) src0->data + i*(src0->nb[1])));
  12730. }
  12731. }
  12732. static void ggml_compute_forward_map_unary(
  12733. const struct ggml_compute_params * params,
  12734. struct ggml_tensor * dst,
  12735. const ggml_unary_op_f32_t fun) {
  12736. const struct ggml_tensor * src0 = dst->src[0];
  12737. switch (src0->type) {
  12738. case GGML_TYPE_F32:
  12739. {
  12740. ggml_compute_forward_map_unary_f32(params, dst, fun);
  12741. } break;
  12742. default:
  12743. {
  12744. GGML_ASSERT(false);
  12745. } break;
  12746. }
  12747. }
  12748. // ggml_compute_forward_map_binary
  12749. static void ggml_compute_forward_map_binary_f32(
  12750. const struct ggml_compute_params * params,
  12751. struct ggml_tensor * dst,
  12752. const ggml_binary_op_f32_t fun) {
  12753. const struct ggml_tensor * src0 = dst->src[0];
  12754. const struct ggml_tensor * src1 = dst->src[1];
  12755. assert(params->ith == 0);
  12756. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  12757. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  12758. return;
  12759. }
  12760. const int n = ggml_nrows(src0);
  12761. const int nc = src0->ne[0];
  12762. assert( dst->nb[0] == sizeof(float));
  12763. assert(src0->nb[0] == sizeof(float));
  12764. assert(src1->nb[0] == sizeof(float));
  12765. for (int i = 0; i < n; i++) {
  12766. fun(nc,
  12767. (float *) ((char *) dst->data + i*( dst->nb[1])),
  12768. (float *) ((char *) src0->data + i*(src0->nb[1])),
  12769. (float *) ((char *) src1->data + i*(src1->nb[1])));
  12770. }
  12771. }
  12772. static void ggml_compute_forward_map_binary(
  12773. const struct ggml_compute_params * params,
  12774. struct ggml_tensor * dst,
  12775. const ggml_binary_op_f32_t fun) {
  12776. const struct ggml_tensor * src0 = dst->src[0];
  12777. switch (src0->type) {
  12778. case GGML_TYPE_F32:
  12779. {
  12780. ggml_compute_forward_map_binary_f32(params, dst, fun);
  12781. } break;
  12782. default:
  12783. {
  12784. GGML_ASSERT(false);
  12785. } break;
  12786. }
  12787. }
  12788. // ggml_compute_forward_map_custom1
  12789. static void ggml_compute_forward_map_custom1_f32(
  12790. const struct ggml_compute_params * params,
  12791. struct ggml_tensor * dst,
  12792. const ggml_custom1_op_f32_t fun) {
  12793. const struct ggml_tensor * a = dst->src[0];
  12794. assert(params->ith == 0);
  12795. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  12796. return;
  12797. }
  12798. fun(dst, a);
  12799. }
  12800. // ggml_compute_forward_map_custom2
  12801. static void ggml_compute_forward_map_custom2_f32(
  12802. const struct ggml_compute_params * params,
  12803. struct ggml_tensor * dst,
  12804. const ggml_custom2_op_f32_t fun) {
  12805. const struct ggml_tensor * a = dst->src[0];
  12806. const struct ggml_tensor * b = dst->src[1];
  12807. assert(params->ith == 0);
  12808. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  12809. return;
  12810. }
  12811. fun(dst, a, b);
  12812. }
  12813. // ggml_compute_forward_map_custom3
  12814. static void ggml_compute_forward_map_custom3_f32(
  12815. const struct ggml_compute_params * params,
  12816. struct ggml_tensor * dst,
  12817. const ggml_custom3_op_f32_t fun) {
  12818. const struct ggml_tensor * a = dst->src[0];
  12819. const struct ggml_tensor * b = dst->src[1];
  12820. const struct ggml_tensor * c = dst->src[1];
  12821. assert(params->ith == 0);
  12822. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  12823. return;
  12824. }
  12825. fun(dst, a, b, c);
  12826. }
  12827. // ggml_compute_forward_map_custom1
  12828. static void ggml_compute_forward_map_custom1(
  12829. const struct ggml_compute_params * params,
  12830. struct ggml_tensor * dst) {
  12831. const struct ggml_tensor * a = dst->src[0];
  12832. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  12833. return;
  12834. }
  12835. struct ggml_map_custom1_op_params p;
  12836. memcpy(&p, dst->op_params, sizeof(p));
  12837. p.fun(dst, a, params->ith, params->nth, p.userdata);
  12838. }
  12839. // ggml_compute_forward_map_custom2
  12840. static void ggml_compute_forward_map_custom2(
  12841. const struct ggml_compute_params * params,
  12842. struct ggml_tensor * dst) {
  12843. const struct ggml_tensor * a = dst->src[0];
  12844. const struct ggml_tensor * b = dst->src[1];
  12845. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  12846. return;
  12847. }
  12848. struct ggml_map_custom2_op_params p;
  12849. memcpy(&p, dst->op_params, sizeof(p));
  12850. p.fun(dst, a, b, params->ith, params->nth, p.userdata);
  12851. }
  12852. // ggml_compute_forward_map_custom3
  12853. static void ggml_compute_forward_map_custom3(
  12854. const struct ggml_compute_params * params,
  12855. struct ggml_tensor * dst) {
  12856. const struct ggml_tensor * a = dst->src[0];
  12857. const struct ggml_tensor * b = dst->src[1];
  12858. const struct ggml_tensor * c = dst->src[2];
  12859. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  12860. return;
  12861. }
  12862. struct ggml_map_custom3_op_params p;
  12863. memcpy(&p, dst->op_params, sizeof(p));
  12864. p.fun(dst, a, b, c, params->ith, params->nth, p.userdata);
  12865. }
  12866. // ggml_compute_forward_cross_entropy_loss
  12867. static void ggml_compute_forward_cross_entropy_loss_f32(
  12868. const struct ggml_compute_params * params,
  12869. struct ggml_tensor * dst) {
  12870. const struct ggml_tensor * src0 = dst->src[0];
  12871. const struct ggml_tensor * src1 = dst->src[1];
  12872. GGML_ASSERT(ggml_is_contiguous(src0));
  12873. GGML_ASSERT(ggml_is_contiguous(src1));
  12874. GGML_ASSERT(ggml_is_scalar(dst));
  12875. GGML_ASSERT(ggml_are_same_shape(src0, src1));
  12876. const int ith = params->ith;
  12877. const int nth = params->nth;
  12878. float * sums = (float *) params->wdata;
  12879. // TODO: handle transposed/permuted matrices
  12880. const int nc = src0->ne[0];
  12881. const int nr = ggml_nrows(src0);
  12882. GGML_ASSERT(params->wsize >= sizeof(float) * (nth + nth * nc));
  12883. if (params->type == GGML_TASK_TYPE_INIT) {
  12884. if (ith == 0) {
  12885. memset(sums, 0, sizeof(float) * (nth + nth * nc));
  12886. }
  12887. return;
  12888. }
  12889. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  12890. if (ith == 0) {
  12891. float * dp = (float *) dst->data;
  12892. ggml_vec_sum_f32(nth, dp, sums);
  12893. dp[0] *= -1.0f / (float) nr;
  12894. }
  12895. return;
  12896. }
  12897. const double eps = 1e-9;
  12898. // rows per thread
  12899. const int dr = (nr + nth - 1)/nth;
  12900. // row range for this thread
  12901. const int ir0 = dr*ith;
  12902. const int ir1 = MIN(ir0 + dr, nr);
  12903. for (int i1 = ir0; i1 < ir1; i1++) {
  12904. float * s0 = (float *)((char *) src0->data + i1*src0->nb[1]);
  12905. float * s1 = (float *)((char *) src1->data + i1*src1->nb[1]);
  12906. float * st = ((float *) params->wdata) + nth + ith*nc;
  12907. #ifndef NDEBUG
  12908. for (int i = 0; i < nc; ++i) {
  12909. //printf("p[%d] = %f\n", i, p[i]);
  12910. assert(!isnan(s0[i]));
  12911. assert(!isnan(s1[i]));
  12912. }
  12913. #endif
  12914. // soft_max
  12915. ggml_float sum = 0.0;
  12916. {
  12917. float max = -INFINITY;
  12918. ggml_vec_max_f32(nc, &max, s0);
  12919. uint16_t scvt; UNUSED(scvt);
  12920. for (int i = 0; i < nc; i++) {
  12921. if (s0[i] == -INFINITY) {
  12922. st[i] = 0.0f;
  12923. } else {
  12924. #ifndef GGML_CROSS_ENTROPY_EXP_FP16
  12925. const float s = s0[i] - max;
  12926. const float val = expf(s);
  12927. #else
  12928. ggml_fp16_t s = GGML_FP32_TO_FP16(s0[i] - max);
  12929. memcpy(&scvt, &s, sizeof(scvt));
  12930. const float val = GGML_FP16_TO_FP32(ggml_table_exp_f16[scvt]);
  12931. #endif
  12932. sum += (ggml_float)val;
  12933. st[i] = val;
  12934. }
  12935. }
  12936. assert(sum > 0.0);
  12937. // sum = 1.0/sum;
  12938. }
  12939. // avoid log(0) by rescaling from [0..1] to [eps..1]
  12940. sum = (1.0 - eps) / sum;
  12941. ggml_vec_scale_f32(nc, st, sum);
  12942. ggml_vec_add1_f32(nc, st, st, eps);
  12943. ggml_vec_log_f32(nc, st, st);
  12944. ggml_vec_mul_f32(nc, st, st, s1);
  12945. float st_sum = 0;
  12946. ggml_vec_sum_f32(nc, &st_sum, st);
  12947. sums[ith] += st_sum;
  12948. #ifndef NDEBUG
  12949. for (int i = 0; i < nc; ++i) {
  12950. assert(!isnan(st[i]));
  12951. assert(!isinf(st[i]));
  12952. }
  12953. #endif
  12954. }
  12955. }
  12956. static void ggml_compute_forward_cross_entropy_loss(
  12957. const struct ggml_compute_params * params,
  12958. struct ggml_tensor * dst) {
  12959. const struct ggml_tensor * src0 = dst->src[0];
  12960. switch (src0->type) {
  12961. case GGML_TYPE_F32:
  12962. {
  12963. ggml_compute_forward_cross_entropy_loss_f32(params, dst);
  12964. } break;
  12965. default:
  12966. {
  12967. GGML_ASSERT(false);
  12968. } break;
  12969. }
  12970. }
  12971. // ggml_compute_forward_cross_entropy_loss_back
  12972. static void ggml_compute_forward_cross_entropy_loss_back_f32(
  12973. const struct ggml_compute_params * params,
  12974. struct ggml_tensor * dst) {
  12975. const struct ggml_tensor * src0 = dst->src[0];
  12976. const struct ggml_tensor * src1 = dst->src[1];
  12977. const struct ggml_tensor * opt0 = dst->src[2];
  12978. GGML_ASSERT(ggml_is_contiguous(dst));
  12979. GGML_ASSERT(ggml_is_contiguous(src0));
  12980. GGML_ASSERT(ggml_is_contiguous(src1));
  12981. GGML_ASSERT(ggml_is_contiguous(opt0));
  12982. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  12983. const int64_t ith = params->ith;
  12984. const int64_t nth = params->nth;
  12985. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  12986. return;
  12987. }
  12988. const double eps = 1e-9;
  12989. // TODO: handle transposed/permuted matrices
  12990. const int64_t nc = src0->ne[0];
  12991. const int64_t nr = ggml_nrows(src0);
  12992. // rows per thread
  12993. const int64_t dr = (nr + nth - 1)/nth;
  12994. // row range for this thread
  12995. const int64_t ir0 = dr*ith;
  12996. const int64_t ir1 = MIN(ir0 + dr, nr);
  12997. float * d = (float *) opt0->data;
  12998. for (int64_t i1 = ir0; i1 < ir1; i1++) {
  12999. float * ds0 = (float *)((char *) dst->data + i1*dst->nb[1]);
  13000. float * s0 = (float *)((char *) src0->data + i1*src0->nb[1]);
  13001. float * s1 = (float *)((char *) src1->data + i1*src1->nb[1]);
  13002. #ifndef NDEBUG
  13003. for (int i = 0; i < nc; ++i) {
  13004. //printf("p[%d] = %f\n", i, p[i]);
  13005. assert(!isnan(s0[i]));
  13006. assert(!isnan(s1[i]));
  13007. }
  13008. #endif
  13009. // soft_max
  13010. ggml_float sum = 0.0;
  13011. {
  13012. float max = -INFINITY;
  13013. ggml_vec_max_f32(nc, &max, s0);
  13014. uint16_t scvt; UNUSED(scvt);
  13015. for (int i = 0; i < nc; i++) {
  13016. if (s0[i] == -INFINITY) {
  13017. ds0[i] = 0.0f;
  13018. } else {
  13019. #ifndef GGML_CROSS_ENTROPY_EXP_FP16
  13020. const float s = s0[i] - max;
  13021. const float val = expf(s);
  13022. #else
  13023. ggml_fp16_t s = GGML_FP32_TO_FP16(s0[i] - max);
  13024. memcpy(&scvt, &s, sizeof(scvt));
  13025. const float val = GGML_FP16_TO_FP32(ggml_table_exp_f16[scvt]);
  13026. #endif
  13027. sum += (ggml_float)val;
  13028. ds0[i] = val;
  13029. }
  13030. }
  13031. assert(sum > 0.0);
  13032. sum = (1.0 - eps)/sum;
  13033. }
  13034. // grad(src0) = (softmax(src0) - src1) * grad(cross_entropy_loss(src0, src1)) / nr
  13035. ggml_vec_scale_f32(nc, ds0, sum);
  13036. ggml_vec_add1_f32(nc, ds0, ds0, eps);
  13037. ggml_vec_sub_f32(nc, ds0, ds0, s1);
  13038. ggml_vec_scale_f32(nc, ds0, d[0] / (float) nr);
  13039. #ifndef NDEBUG
  13040. for (int i = 0; i < nc; ++i) {
  13041. assert(!isnan(ds0[i]));
  13042. assert(!isinf(ds0[i]));
  13043. }
  13044. #endif
  13045. }
  13046. }
  13047. static void ggml_compute_forward_cross_entropy_loss_back(
  13048. const struct ggml_compute_params * params,
  13049. struct ggml_tensor * dst) {
  13050. const struct ggml_tensor * src0 = dst->src[0];
  13051. switch (src0->type) {
  13052. case GGML_TYPE_F32:
  13053. {
  13054. ggml_compute_forward_cross_entropy_loss_back_f32(params, dst);
  13055. } break;
  13056. default:
  13057. {
  13058. GGML_ASSERT(false);
  13059. } break;
  13060. }
  13061. }
  13062. /////////////////////////////////
  13063. static void ggml_compute_forward(struct ggml_compute_params * params, struct ggml_tensor * tensor) {
  13064. GGML_ASSERT(params);
  13065. if (tensor->op == GGML_OP_NONE || ggml_is_empty(tensor)) {
  13066. return;
  13067. }
  13068. switch (tensor->op) {
  13069. case GGML_OP_DUP:
  13070. {
  13071. ggml_compute_forward_dup(params, tensor);
  13072. } break;
  13073. case GGML_OP_ADD:
  13074. {
  13075. ggml_compute_forward_add(params, tensor);
  13076. } break;
  13077. case GGML_OP_ADD1:
  13078. {
  13079. ggml_compute_forward_add1(params, tensor);
  13080. } break;
  13081. case GGML_OP_ACC:
  13082. {
  13083. ggml_compute_forward_acc(params, tensor);
  13084. } break;
  13085. case GGML_OP_SUB:
  13086. {
  13087. ggml_compute_forward_sub(params, tensor);
  13088. } break;
  13089. case GGML_OP_MUL:
  13090. {
  13091. ggml_compute_forward_mul(params, tensor);
  13092. } break;
  13093. case GGML_OP_DIV:
  13094. {
  13095. ggml_compute_forward_div(params, tensor);
  13096. } break;
  13097. case GGML_OP_SQR:
  13098. {
  13099. ggml_compute_forward_sqr(params, tensor);
  13100. } break;
  13101. case GGML_OP_SQRT:
  13102. {
  13103. ggml_compute_forward_sqrt(params, tensor);
  13104. } break;
  13105. case GGML_OP_LOG:
  13106. {
  13107. ggml_compute_forward_log(params, tensor);
  13108. } break;
  13109. case GGML_OP_SUM:
  13110. {
  13111. ggml_compute_forward_sum(params, tensor);
  13112. } break;
  13113. case GGML_OP_SUM_ROWS:
  13114. {
  13115. ggml_compute_forward_sum_rows(params, tensor);
  13116. } break;
  13117. case GGML_OP_MEAN:
  13118. {
  13119. ggml_compute_forward_mean(params, tensor);
  13120. } break;
  13121. case GGML_OP_ARGMAX:
  13122. {
  13123. ggml_compute_forward_argmax(params, tensor);
  13124. } break;
  13125. case GGML_OP_REPEAT:
  13126. {
  13127. ggml_compute_forward_repeat(params, tensor);
  13128. } break;
  13129. case GGML_OP_REPEAT_BACK:
  13130. {
  13131. ggml_compute_forward_repeat_back(params, tensor);
  13132. } break;
  13133. case GGML_OP_CONCAT:
  13134. {
  13135. ggml_compute_forward_concat(params, tensor);
  13136. } break;
  13137. case GGML_OP_SILU_BACK:
  13138. {
  13139. ggml_compute_forward_silu_back(params, tensor);
  13140. } break;
  13141. case GGML_OP_NORM:
  13142. {
  13143. ggml_compute_forward_norm(params, tensor);
  13144. } break;
  13145. case GGML_OP_RMS_NORM:
  13146. {
  13147. ggml_compute_forward_rms_norm(params, tensor);
  13148. } break;
  13149. case GGML_OP_RMS_NORM_BACK:
  13150. {
  13151. ggml_compute_forward_rms_norm_back(params, tensor);
  13152. } break;
  13153. case GGML_OP_GROUP_NORM:
  13154. {
  13155. ggml_compute_forward_group_norm(params, tensor);
  13156. } break;
  13157. case GGML_OP_MUL_MAT:
  13158. {
  13159. ggml_compute_forward_mul_mat(params, tensor);
  13160. } break;
  13161. case GGML_OP_MUL_MAT_ID:
  13162. {
  13163. ggml_compute_forward_mul_mat_id(params, tensor);
  13164. } break;
  13165. case GGML_OP_OUT_PROD:
  13166. {
  13167. ggml_compute_forward_out_prod(params, tensor);
  13168. } break;
  13169. case GGML_OP_SCALE:
  13170. {
  13171. ggml_compute_forward_scale(params, tensor);
  13172. } break;
  13173. case GGML_OP_SET:
  13174. {
  13175. ggml_compute_forward_set(params, tensor);
  13176. } break;
  13177. case GGML_OP_CPY:
  13178. {
  13179. ggml_compute_forward_cpy(params, tensor);
  13180. } break;
  13181. case GGML_OP_CONT:
  13182. {
  13183. ggml_compute_forward_cont(params, tensor);
  13184. } break;
  13185. case GGML_OP_RESHAPE:
  13186. {
  13187. ggml_compute_forward_reshape(params, tensor);
  13188. } break;
  13189. case GGML_OP_VIEW:
  13190. {
  13191. ggml_compute_forward_view(params, tensor);
  13192. } break;
  13193. case GGML_OP_PERMUTE:
  13194. {
  13195. ggml_compute_forward_permute(params, tensor);
  13196. } break;
  13197. case GGML_OP_TRANSPOSE:
  13198. {
  13199. ggml_compute_forward_transpose(params, tensor);
  13200. } break;
  13201. case GGML_OP_GET_ROWS:
  13202. {
  13203. ggml_compute_forward_get_rows(params, tensor);
  13204. } break;
  13205. case GGML_OP_GET_ROWS_BACK:
  13206. {
  13207. ggml_compute_forward_get_rows_back(params, tensor);
  13208. } break;
  13209. case GGML_OP_DIAG:
  13210. {
  13211. ggml_compute_forward_diag(params, tensor);
  13212. } break;
  13213. case GGML_OP_DIAG_MASK_INF:
  13214. {
  13215. ggml_compute_forward_diag_mask_inf(params, tensor);
  13216. } break;
  13217. case GGML_OP_DIAG_MASK_ZERO:
  13218. {
  13219. ggml_compute_forward_diag_mask_zero(params, tensor);
  13220. } break;
  13221. case GGML_OP_SOFT_MAX:
  13222. {
  13223. ggml_compute_forward_soft_max(params, tensor);
  13224. } break;
  13225. case GGML_OP_SOFT_MAX_BACK:
  13226. {
  13227. ggml_compute_forward_soft_max_back(params, tensor);
  13228. } break;
  13229. case GGML_OP_ROPE:
  13230. {
  13231. ggml_compute_forward_rope(params, tensor);
  13232. } break;
  13233. case GGML_OP_ROPE_BACK:
  13234. {
  13235. ggml_compute_forward_rope_back(params, tensor);
  13236. } break;
  13237. case GGML_OP_ALIBI:
  13238. {
  13239. ggml_compute_forward_alibi(params, tensor);
  13240. } break;
  13241. case GGML_OP_CLAMP:
  13242. {
  13243. ggml_compute_forward_clamp(params, tensor);
  13244. } break;
  13245. case GGML_OP_CONV_TRANSPOSE_1D:
  13246. {
  13247. ggml_compute_forward_conv_transpose_1d(params, tensor);
  13248. } break;
  13249. case GGML_OP_IM2COL:
  13250. {
  13251. ggml_compute_forward_im2col(params, tensor);
  13252. } break;
  13253. case GGML_OP_CONV_TRANSPOSE_2D:
  13254. {
  13255. ggml_compute_forward_conv_transpose_2d(params, tensor);
  13256. } break;
  13257. case GGML_OP_POOL_1D:
  13258. {
  13259. ggml_compute_forward_pool_1d(params, tensor);
  13260. } break;
  13261. case GGML_OP_POOL_2D:
  13262. {
  13263. ggml_compute_forward_pool_2d(params, tensor);
  13264. } break;
  13265. case GGML_OP_UPSCALE:
  13266. {
  13267. ggml_compute_forward_upscale(params, tensor);
  13268. } break;
  13269. case GGML_OP_PAD:
  13270. {
  13271. ggml_compute_forward_pad(params, tensor);
  13272. } break;
  13273. case GGML_OP_ARANGE:
  13274. {
  13275. ggml_compute_forward_arange(params, tensor);
  13276. } break;
  13277. case GGML_OP_TIMESTEP_EMBEDDING:
  13278. {
  13279. ggml_compute_forward_timestep_embedding(params, tensor);
  13280. } break;
  13281. case GGML_OP_ARGSORT:
  13282. {
  13283. ggml_compute_forward_argsort(params, tensor);
  13284. } break;
  13285. case GGML_OP_LEAKY_RELU:
  13286. {
  13287. ggml_compute_forward_leaky_relu(params, tensor);
  13288. } break;
  13289. case GGML_OP_FLASH_ATTN:
  13290. {
  13291. const int32_t t = ggml_get_op_params_i32(tensor, 0);
  13292. GGML_ASSERT(t == 0 || t == 1);
  13293. const bool masked = t != 0;
  13294. ggml_compute_forward_flash_attn(params, masked, tensor);
  13295. } break;
  13296. case GGML_OP_FLASH_FF:
  13297. {
  13298. ggml_compute_forward_flash_ff(params, tensor);
  13299. } break;
  13300. case GGML_OP_FLASH_ATTN_BACK:
  13301. {
  13302. int32_t t = ggml_get_op_params_i32(tensor, 0);
  13303. GGML_ASSERT(t == 0 || t == 1);
  13304. bool masked = t != 0;
  13305. ggml_compute_forward_flash_attn_back(params, masked, tensor);
  13306. } break;
  13307. case GGML_OP_SSM_CONV:
  13308. {
  13309. ggml_compute_forward_ssm_conv(params, tensor);
  13310. } break;
  13311. case GGML_OP_SSM_SCAN:
  13312. {
  13313. ggml_compute_forward_ssm_scan(params, tensor);
  13314. } break;
  13315. case GGML_OP_WIN_PART:
  13316. {
  13317. ggml_compute_forward_win_part(params, tensor);
  13318. } break;
  13319. case GGML_OP_WIN_UNPART:
  13320. {
  13321. ggml_compute_forward_win_unpart(params, tensor);
  13322. } break;
  13323. case GGML_OP_UNARY:
  13324. {
  13325. ggml_compute_forward_unary(params, tensor);
  13326. } break;
  13327. case GGML_OP_GET_REL_POS:
  13328. {
  13329. ggml_compute_forward_get_rel_pos(params, tensor);
  13330. } break;
  13331. case GGML_OP_ADD_REL_POS:
  13332. {
  13333. ggml_compute_forward_add_rel_pos(params, tensor);
  13334. } break;
  13335. case GGML_OP_MAP_UNARY:
  13336. {
  13337. ggml_unary_op_f32_t fun;
  13338. memcpy(&fun, tensor->op_params, sizeof(fun));
  13339. ggml_compute_forward_map_unary(params, tensor, fun);
  13340. }
  13341. break;
  13342. case GGML_OP_MAP_BINARY:
  13343. {
  13344. ggml_binary_op_f32_t fun;
  13345. memcpy(&fun, tensor->op_params, sizeof(fun));
  13346. ggml_compute_forward_map_binary(params, tensor, fun);
  13347. }
  13348. break;
  13349. case GGML_OP_MAP_CUSTOM1_F32:
  13350. {
  13351. ggml_custom1_op_f32_t fun;
  13352. memcpy(&fun, tensor->op_params, sizeof(fun));
  13353. ggml_compute_forward_map_custom1_f32(params, tensor, fun);
  13354. }
  13355. break;
  13356. case GGML_OP_MAP_CUSTOM2_F32:
  13357. {
  13358. ggml_custom2_op_f32_t fun;
  13359. memcpy(&fun, tensor->op_params, sizeof(fun));
  13360. ggml_compute_forward_map_custom2_f32(params, tensor, fun);
  13361. }
  13362. break;
  13363. case GGML_OP_MAP_CUSTOM3_F32:
  13364. {
  13365. ggml_custom3_op_f32_t fun;
  13366. memcpy(&fun, tensor->op_params, sizeof(fun));
  13367. ggml_compute_forward_map_custom3_f32(params, tensor, fun);
  13368. }
  13369. break;
  13370. case GGML_OP_MAP_CUSTOM1:
  13371. {
  13372. ggml_compute_forward_map_custom1(params, tensor);
  13373. }
  13374. break;
  13375. case GGML_OP_MAP_CUSTOM2:
  13376. {
  13377. ggml_compute_forward_map_custom2(params, tensor);
  13378. }
  13379. break;
  13380. case GGML_OP_MAP_CUSTOM3:
  13381. {
  13382. ggml_compute_forward_map_custom3(params, tensor);
  13383. }
  13384. break;
  13385. case GGML_OP_CROSS_ENTROPY_LOSS:
  13386. {
  13387. ggml_compute_forward_cross_entropy_loss(params, tensor);
  13388. }
  13389. break;
  13390. case GGML_OP_CROSS_ENTROPY_LOSS_BACK:
  13391. {
  13392. ggml_compute_forward_cross_entropy_loss_back(params, tensor);
  13393. }
  13394. break;
  13395. case GGML_OP_NONE:
  13396. {
  13397. // nop
  13398. } break;
  13399. case GGML_OP_COUNT:
  13400. {
  13401. GGML_ASSERT(false);
  13402. } break;
  13403. }
  13404. }
  13405. ////////////////////////////////////////////////////////////////////////////////
  13406. static size_t ggml_hash_size(size_t min_sz) {
  13407. // next primes after powers of two
  13408. static const size_t primes[] = {
  13409. 2, 3, 5, 11, 17, 37, 67, 131, 257, 521, 1031,
  13410. 2053, 4099, 8209, 16411, 32771, 65537, 131101,
  13411. 262147, 524309, 1048583, 2097169, 4194319, 8388617,
  13412. 16777259, 33554467, 67108879, 134217757, 268435459,
  13413. 536870923, 1073741827, 2147483659
  13414. };
  13415. static const size_t n_primes = sizeof(primes)/sizeof(primes[0]);
  13416. // find the smallest prime that is larger or equal to min_sz
  13417. size_t l = 0;
  13418. size_t r = n_primes;
  13419. while (l < r) {
  13420. size_t m = (l + r)/2;
  13421. if (primes[m] < min_sz) {
  13422. l = m + 1;
  13423. } else {
  13424. r = m;
  13425. }
  13426. }
  13427. size_t sz = l < n_primes ? primes[l] : min_sz | 1;
  13428. return sz;
  13429. }
  13430. static size_t ggml_hash(const void * p) {
  13431. return (size_t)p;
  13432. }
  13433. size_t ggml_hash_find(const struct ggml_hash_set hash_set, struct ggml_tensor * key) {
  13434. size_t h = ggml_hash(key) % hash_set.size;
  13435. // linear probing
  13436. size_t i = h;
  13437. while (hash_set.keys[i] != NULL && hash_set.keys[i] != key) {
  13438. i = (i + 1) % hash_set.size;
  13439. if (i == h) {
  13440. // visited all hash table entries -> not found
  13441. return GGML_HASHTABLE_FULL;
  13442. }
  13443. }
  13444. return i;
  13445. }
  13446. bool ggml_hash_contains(struct ggml_hash_set hash_set, struct ggml_tensor * key) {
  13447. size_t i = ggml_hash_find(hash_set, key);
  13448. return i != GGML_HASHTABLE_FULL && hash_set.keys[i] == key;
  13449. }
  13450. size_t ggml_hash_insert(struct ggml_hash_set hash_set, struct ggml_tensor * key) {
  13451. size_t i = ggml_hash_find(hash_set, key);
  13452. GGML_ASSERT(i != GGML_HASHTABLE_FULL);
  13453. if (hash_set.keys[i] == key) {
  13454. return GGML_HASHTABLE_ALREADY_EXISTS;
  13455. }
  13456. // insert
  13457. GGML_ASSERT(hash_set.keys[i] == NULL);
  13458. hash_set.keys[i] = key;
  13459. return i;
  13460. }
  13461. size_t ggml_hash_find_or_insert(struct ggml_hash_set hash_set, struct ggml_tensor * key) {
  13462. size_t i = ggml_hash_find(hash_set, key);
  13463. GGML_ASSERT(i != GGML_HASHTABLE_FULL);
  13464. hash_set.keys[i] = key;
  13465. return i;
  13466. }
  13467. struct ggml_hash_set ggml_hash_set_new(size_t size) {
  13468. size = ggml_hash_size(size);
  13469. struct ggml_hash_set result;
  13470. result.size = size;
  13471. result.keys = GGML_MALLOC(sizeof(struct ggml_tensor *) * size);
  13472. memset(result.keys, 0, sizeof(struct ggml_tensor *) * size);
  13473. return result;
  13474. }
  13475. static void ggml_hash_set_free(struct ggml_hash_set hash_set) {
  13476. GGML_FREE(hash_set.keys);
  13477. }
  13478. struct hash_map {
  13479. struct ggml_hash_set set;
  13480. struct ggml_tensor ** vals;
  13481. };
  13482. static struct hash_map * ggml_new_hash_map(size_t size) {
  13483. struct hash_map * result = GGML_MALLOC(sizeof(struct hash_map));
  13484. result->set = ggml_hash_set_new(size);
  13485. result->vals = GGML_MALLOC(sizeof(struct ggml_tensor *) * result->set.size);
  13486. memset(result->vals, 0, sizeof(struct ggml_tensor *) * result->set.size);
  13487. return result;
  13488. }
  13489. static void ggml_hash_map_free(struct hash_map * map) {
  13490. ggml_hash_set_free(map->set);
  13491. GGML_FREE(map->vals);
  13492. GGML_FREE(map);
  13493. }
  13494. // gradient checkpointing
  13495. static struct ggml_tensor * ggml_recompute_graph_node(
  13496. struct ggml_context * ctx,
  13497. struct ggml_cgraph * graph,
  13498. struct hash_map * replacements,
  13499. struct ggml_tensor * node) {
  13500. if (node == NULL) {
  13501. return NULL;
  13502. }
  13503. if (node->flags & GGML_TENSOR_FLAG_PARAM) {
  13504. return node;
  13505. }
  13506. if (!ggml_hash_contains(graph->visited_hash_table, node)) {
  13507. return node;
  13508. }
  13509. int count_children = 0;
  13510. for (int k = 0; k < GGML_MAX_SRC; ++k) {
  13511. if (node->src[k]) {
  13512. ++count_children;
  13513. }
  13514. }
  13515. if (count_children == 0) {
  13516. return node;
  13517. }
  13518. size_t i = ggml_hash_find(replacements->set, node);
  13519. GGML_ASSERT(i != GGML_HASHTABLE_FULL); // assert that not full
  13520. if (replacements->set.keys[i] == node) {
  13521. return replacements->vals[i];
  13522. }
  13523. struct ggml_tensor * clone = ggml_new_tensor(ctx, node->type, GGML_MAX_DIMS, node->ne);
  13524. // insert clone into replacements
  13525. GGML_ASSERT(replacements->set.keys[i] == NULL); // assert that we don't overwrite
  13526. replacements->set.keys[i] = node;
  13527. replacements->vals[i] = clone;
  13528. clone->op = node->op;
  13529. clone->grad = node->grad;
  13530. clone->flags = node->flags;
  13531. clone->extra = node->extra;
  13532. for (int k = 0; k < GGML_MAX_DIMS; ++k) {
  13533. clone->nb[k] = node->nb[k];
  13534. }
  13535. for (int k = 0; k < GGML_MAX_SRC; ++k) {
  13536. clone->src[k] = ggml_recompute_graph_node(ctx, graph, replacements, node->src[k]);
  13537. }
  13538. if (node->view_src != NULL) {
  13539. clone->data = (node->view_src->data == NULL)
  13540. ? NULL // view_src not yet allocated
  13541. : (char *) node->view_src->data // view_src already allocated
  13542. + node->view_offs;
  13543. clone->view_src = node->view_src;
  13544. clone->view_offs = node->view_offs;
  13545. }
  13546. GGML_ASSERT(sizeof(node->op_params) == sizeof(int32_t) * (GGML_MAX_OP_PARAMS / sizeof(int32_t)));
  13547. GGML_ASSERT(sizeof(node->name) == GGML_MAX_NAME);
  13548. memcpy(clone->op_params, node->op_params, sizeof(node->op_params));
  13549. ggml_format_name(clone, "%s (clone)", ggml_get_name(node));
  13550. return clone;
  13551. }
  13552. void ggml_build_backward_gradient_checkpointing(
  13553. struct ggml_context * ctx,
  13554. struct ggml_cgraph * gf,
  13555. struct ggml_cgraph * gb,
  13556. struct ggml_cgraph * gb_tmp,
  13557. struct ggml_tensor * * checkpoints,
  13558. int n_checkpoints) {
  13559. ggml_graph_cpy(gf, gb_tmp);
  13560. ggml_build_backward_expand(ctx, gf, gb_tmp, true);
  13561. if (n_checkpoints <= 0) {
  13562. ggml_graph_cpy(gb_tmp, gb);
  13563. return;
  13564. }
  13565. struct hash_map * replacements = ggml_new_hash_map(gf->n_nodes + gf->n_leafs + n_checkpoints);
  13566. // insert checkpoints in replacements
  13567. for (int i = 0; i < n_checkpoints; ++i) {
  13568. size_t k = ggml_hash_find(replacements->set, checkpoints[i]);
  13569. GGML_ASSERT(k != GGML_HASHTABLE_FULL); // assert that not full
  13570. GGML_ASSERT(replacements->set.keys[k] == NULL); // assert that we don't overwrite
  13571. replacements->set.keys[k] = checkpoints[i];
  13572. replacements->vals[k] = checkpoints[i];
  13573. }
  13574. ggml_graph_cpy(gf, gb);
  13575. // rewrite gb_tmp->nodes[gf->n_nodes:gb_tmp->n_nodes],
  13576. // replacing references to gb_tmp->nodes[0:gf->n_nodes] ( == gf->nodes[0:gf->n_nodes]),
  13577. // by recomputing them from checkpoints
  13578. for (int i = gf->n_nodes; i<gb_tmp->n_nodes; ++i) {
  13579. struct ggml_tensor * node = gb_tmp->nodes[i];
  13580. for (int k = 0; k < GGML_MAX_SRC; ++k) {
  13581. // insert new tensors recomputing src, reusing already made replacements,
  13582. // remember replacements: remember new tensors with mapping from corresponding gf nodes
  13583. // recurse for input tensors,
  13584. // unless (i.e. terminating when) input tensors are replacements (like checkpoints)
  13585. node->src[k] = ggml_recompute_graph_node(ctx, gf, replacements, node->src[k]);
  13586. }
  13587. // insert rewritten backward node with replacements made into resulting backward graph gb
  13588. ggml_build_forward_expand(gb, node);
  13589. }
  13590. ggml_hash_map_free(replacements);
  13591. }
  13592. // functions to change gradients considering the case that input a might be initial gradient with zero value
  13593. static struct ggml_tensor * ggml_add_or_set(struct ggml_context * ctx, struct ggml_tensor * a, struct ggml_tensor * b, struct ggml_hash_set zero_table) {
  13594. if (ggml_hash_contains(zero_table, a)) {
  13595. return b;
  13596. } else {
  13597. return ggml_add_impl(ctx, a, b, false);
  13598. }
  13599. }
  13600. static struct ggml_tensor * ggml_acc_or_set(struct ggml_context * ctx, struct ggml_tensor * a, struct ggml_tensor * b, size_t nb1, size_t nb2, size_t nb3, size_t offset, struct ggml_hash_set zero_table) {
  13601. if (ggml_hash_contains(zero_table, a)) {
  13602. struct ggml_tensor * a_zero = ggml_scale(ctx, a, 0.0f);
  13603. return ggml_acc_impl(ctx, a_zero, b, nb1, nb2, nb3, offset, false);
  13604. } else {
  13605. return ggml_acc_impl(ctx, a, b, nb1, nb2, nb3, offset, false);
  13606. }
  13607. }
  13608. static struct ggml_tensor * ggml_add1_or_set(struct ggml_context * ctx, struct ggml_tensor * a, struct ggml_tensor * b, struct ggml_hash_set zero_table) {
  13609. if (ggml_hash_contains(zero_table, a)) {
  13610. return ggml_repeat(ctx, b, a);
  13611. } else {
  13612. return ggml_add1_impl(ctx, a, b, false);
  13613. }
  13614. }
  13615. static struct ggml_tensor * ggml_sub_or_set(struct ggml_context * ctx, struct ggml_tensor * a, struct ggml_tensor * b, struct ggml_hash_set zero_table) {
  13616. if (ggml_hash_contains(zero_table, a)) {
  13617. return ggml_neg(ctx, b);
  13618. } else {
  13619. return ggml_sub_impl(ctx, a, b, false);
  13620. }
  13621. }
  13622. static void ggml_compute_backward(struct ggml_context * ctx, struct ggml_tensor * tensor, struct ggml_hash_set zero_table) {
  13623. struct ggml_tensor * src0 = tensor->src[0];
  13624. struct ggml_tensor * src1 = tensor->src[1];
  13625. switch (tensor->op) {
  13626. case GGML_OP_DUP:
  13627. {
  13628. if (src0->grad) {
  13629. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  13630. }
  13631. } break;
  13632. case GGML_OP_ADD:
  13633. {
  13634. if (src0->grad) {
  13635. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  13636. }
  13637. if (src1->grad) {
  13638. src1->grad = ggml_add_or_set(ctx, src1->grad, tensor->grad, zero_table);
  13639. }
  13640. } break;
  13641. case GGML_OP_ADD1:
  13642. {
  13643. if (src0->grad) {
  13644. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  13645. }
  13646. if (src1->grad) {
  13647. src1->grad = ggml_add_or_set(ctx,
  13648. src1->grad,
  13649. ggml_mean(ctx, tensor->grad), // TODO: should probably be sum instead of mean
  13650. zero_table);
  13651. }
  13652. } break;
  13653. case GGML_OP_ACC:
  13654. {
  13655. if (src0->grad) {
  13656. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  13657. }
  13658. if (src1->grad) {
  13659. const size_t nb1 = ((int32_t *) tensor->op_params)[0];
  13660. const size_t nb2 = ((int32_t *) tensor->op_params)[1];
  13661. const size_t nb3 = ((int32_t *) tensor->op_params)[2];
  13662. const size_t offset = ((int32_t *) tensor->op_params)[3];
  13663. struct ggml_tensor * tensor_grad_view = ggml_view_4d(ctx,
  13664. tensor->grad,
  13665. src1->grad->ne[0],
  13666. src1->grad->ne[1],
  13667. src1->grad->ne[2],
  13668. src1->grad->ne[3],
  13669. nb1, nb2, nb3, offset);
  13670. src1->grad =
  13671. ggml_add_or_set(ctx,
  13672. src1->grad,
  13673. ggml_reshape(ctx,
  13674. ggml_cont(ctx, tensor_grad_view),
  13675. src1->grad),
  13676. zero_table);
  13677. }
  13678. } break;
  13679. case GGML_OP_SUB:
  13680. {
  13681. if (src0->grad) {
  13682. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  13683. }
  13684. if (src1->grad) {
  13685. src1->grad = ggml_sub_or_set(ctx, src1->grad, tensor->grad, zero_table);
  13686. }
  13687. } break;
  13688. case GGML_OP_MUL:
  13689. {
  13690. if (src0->grad) {
  13691. src0->grad =
  13692. ggml_add_or_set(ctx,
  13693. src0->grad,
  13694. ggml_mul(ctx, src1, tensor->grad),
  13695. zero_table);
  13696. }
  13697. if (src1->grad) {
  13698. src1->grad =
  13699. ggml_add_or_set(ctx,
  13700. src1->grad,
  13701. ggml_mul(ctx, src0, tensor->grad),
  13702. zero_table);
  13703. }
  13704. } break;
  13705. case GGML_OP_DIV:
  13706. {
  13707. if (src0->grad) {
  13708. src0->grad =
  13709. ggml_add_or_set(ctx,
  13710. src0->grad,
  13711. ggml_div(ctx, tensor->grad, src1),
  13712. zero_table);
  13713. }
  13714. if (src1->grad) {
  13715. src1->grad =
  13716. ggml_sub_or_set(ctx,
  13717. src1->grad,
  13718. ggml_mul(ctx,
  13719. tensor->grad,
  13720. ggml_div(ctx, tensor, src1)),
  13721. zero_table);
  13722. }
  13723. } break;
  13724. case GGML_OP_SQR:
  13725. {
  13726. if (src0->grad) {
  13727. src0->grad =
  13728. ggml_add_or_set(ctx,
  13729. src0->grad,
  13730. ggml_scale(ctx,
  13731. ggml_mul(ctx, src0, tensor->grad),
  13732. 2.0f),
  13733. zero_table);
  13734. }
  13735. } break;
  13736. case GGML_OP_SQRT:
  13737. {
  13738. if (src0->grad) {
  13739. src0->grad =
  13740. ggml_add_or_set(ctx,
  13741. src0->grad,
  13742. ggml_scale(ctx,
  13743. ggml_div(ctx,
  13744. tensor->grad,
  13745. tensor),
  13746. 0.5f),
  13747. zero_table);
  13748. }
  13749. } break;
  13750. case GGML_OP_LOG:
  13751. {
  13752. if (src0->grad) {
  13753. src0->grad =
  13754. ggml_add_or_set(ctx,
  13755. src0->grad,
  13756. ggml_div(ctx,
  13757. tensor->grad,
  13758. src0),
  13759. zero_table);
  13760. }
  13761. } break;
  13762. case GGML_OP_SUM:
  13763. {
  13764. if (src0->grad) {
  13765. src0->grad =
  13766. ggml_add1_or_set(ctx,
  13767. src0->grad,
  13768. tensor->grad,
  13769. zero_table);
  13770. }
  13771. } break;
  13772. case GGML_OP_SUM_ROWS:
  13773. {
  13774. if (src0->grad) {
  13775. src0->grad =
  13776. ggml_add_or_set(ctx,
  13777. src0->grad,
  13778. ggml_repeat(ctx,
  13779. tensor->grad,
  13780. src0->grad),
  13781. zero_table);
  13782. }
  13783. } break;
  13784. case GGML_OP_MEAN:
  13785. case GGML_OP_ARGMAX:
  13786. {
  13787. GGML_ASSERT(false); // TODO: implement
  13788. } break;
  13789. case GGML_OP_REPEAT:
  13790. {
  13791. // necessary for llama
  13792. if (src0->grad) {
  13793. src0->grad = ggml_add_or_set(ctx,
  13794. src0->grad,
  13795. ggml_repeat_back(ctx, tensor->grad, src0->grad),
  13796. zero_table);
  13797. }
  13798. } break;
  13799. case GGML_OP_REPEAT_BACK:
  13800. {
  13801. if (src0->grad) {
  13802. // TODO: test this
  13803. src0->grad = ggml_add_or_set(ctx,
  13804. src0->grad,
  13805. ggml_repeat(ctx, tensor->grad, src0->grad),
  13806. zero_table);
  13807. }
  13808. } break;
  13809. case GGML_OP_CONCAT:
  13810. {
  13811. GGML_ASSERT(false); // TODO: implement
  13812. } break;
  13813. case GGML_OP_SILU_BACK:
  13814. {
  13815. GGML_ASSERT(false); // TODO: not implemented
  13816. } break;
  13817. case GGML_OP_NORM:
  13818. {
  13819. GGML_ASSERT(false); // TODO: not implemented
  13820. } break;
  13821. case GGML_OP_RMS_NORM:
  13822. {
  13823. // necessary for llama
  13824. if (src0->grad) {
  13825. float eps;
  13826. memcpy(&eps, tensor->op_params, sizeof(float));
  13827. src0->grad = ggml_add_or_set(ctx,
  13828. src0->grad,
  13829. ggml_rms_norm_back(ctx, src0, tensor->grad, eps),
  13830. zero_table);
  13831. }
  13832. } break;
  13833. case GGML_OP_RMS_NORM_BACK:
  13834. {
  13835. GGML_ASSERT(false); // TODO: not implemented
  13836. } break;
  13837. case GGML_OP_GROUP_NORM:
  13838. {
  13839. GGML_ASSERT(false); // TODO: not implemented
  13840. } break;
  13841. case GGML_OP_MUL_MAT:
  13842. {
  13843. // https://cs231n.github.io/optimization-2/#staged
  13844. // # forward pass
  13845. // s0 = np.random.randn(5, 10)
  13846. // s1 = np.random.randn(10, 3)
  13847. // t = s0.dot(s1)
  13848. // # now suppose we had the gradient on t from above in the circuit
  13849. // dt = np.random.randn(*t.shape) # same shape as t
  13850. // ds0 = dt.dot(s1.T) #.T gives the transpose of the matrix
  13851. // ds1 = t.T.dot(dt)
  13852. // tensor.shape [m,p,qq,rr]
  13853. // src0.shape [n,m,q1,r1]
  13854. // src1.shape [n,p,qq,rr]
  13855. // necessary for llama
  13856. if (src0->grad) {
  13857. struct ggml_tensor * s1_tg =
  13858. ggml_out_prod(ctx, // [n,m,qq,rr]
  13859. src1, // [n,p,qq,rr]
  13860. tensor->grad); // [m,p,qq,rr]
  13861. const int64_t qq = s1_tg->ne[2];
  13862. const int64_t rr = s1_tg->ne[3];
  13863. const int64_t q1 = src0->ne[2];
  13864. const int64_t r1 = src0->ne[3];
  13865. const bool ne2_broadcasted = qq > q1;
  13866. const bool ne3_broadcasted = rr > r1;
  13867. if (ne2_broadcasted || ne3_broadcasted) {
  13868. // sum broadcast repetitions of s1_tg into shape of src0
  13869. s1_tg = ggml_repeat_back(ctx, s1_tg, src0);
  13870. }
  13871. src0->grad =
  13872. ggml_add_or_set(ctx,
  13873. src0->grad, // [n,m,q1,r1]
  13874. s1_tg, // [n,m,q1,r1]
  13875. zero_table);
  13876. }
  13877. if (src1->grad) {
  13878. src1->grad =
  13879. ggml_add_or_set(ctx,
  13880. src1->grad, // [n,p,qq,rr]
  13881. // ggml_mul_mat(ctx, // [n,p,qq,rr]
  13882. // ggml_cont(ctx, // [m,n,q1,r1]
  13883. // ggml_transpose(ctx, src0)), // [m,n,q1,r1]
  13884. // tensor->grad), // [m,p,qq,rr]
  13885. // // when src0 is bigger than tensor->grad (this is mostly the case in llama),
  13886. // // avoid transpose of src0, rather transpose smaller tensor->grad
  13887. // // and then use ggml_out_prod
  13888. ggml_out_prod(ctx, // [n,p,qq,rr]
  13889. src0, // [n,m,q1,r1]
  13890. ggml_transpose(ctx, // [p,m,qq,rr]
  13891. tensor->grad)), // [m,p,qq,rr]
  13892. zero_table);
  13893. }
  13894. } break;
  13895. case GGML_OP_MUL_MAT_ID:
  13896. {
  13897. GGML_ASSERT(false); // TODO: not implemented
  13898. } break;
  13899. case GGML_OP_OUT_PROD:
  13900. {
  13901. GGML_ASSERT(false); // TODO: not implemented
  13902. } break;
  13903. case GGML_OP_SCALE:
  13904. {
  13905. // necessary for llama
  13906. if (src0->grad) {
  13907. float s;
  13908. memcpy(&s, tensor->op_params, sizeof(float));
  13909. src0->grad =
  13910. ggml_add_or_set(ctx,
  13911. src0->grad,
  13912. ggml_scale_impl(ctx, tensor->grad, s, false),
  13913. zero_table);
  13914. }
  13915. } break;
  13916. case GGML_OP_SET:
  13917. {
  13918. const size_t nb1 = ((int32_t *) tensor->op_params)[0];
  13919. const size_t nb2 = ((int32_t *) tensor->op_params)[1];
  13920. const size_t nb3 = ((int32_t *) tensor->op_params)[2];
  13921. const size_t offset = ((int32_t *) tensor->op_params)[3];
  13922. struct ggml_tensor * tensor_grad_view = NULL;
  13923. if (src0->grad || src1->grad) {
  13924. GGML_ASSERT(src0->type == tensor->type);
  13925. GGML_ASSERT(tensor->grad->type == tensor->type);
  13926. GGML_ASSERT(tensor->grad->type == src1->grad->type);
  13927. tensor_grad_view = ggml_view_4d(ctx,
  13928. tensor->grad,
  13929. src1->grad->ne[0],
  13930. src1->grad->ne[1],
  13931. src1->grad->ne[2],
  13932. src1->grad->ne[3],
  13933. nb1, nb2, nb3, offset);
  13934. }
  13935. if (src0->grad) {
  13936. src0->grad = ggml_add_or_set(ctx,
  13937. src0->grad,
  13938. ggml_acc_impl(ctx,
  13939. tensor->grad,
  13940. ggml_neg(ctx, tensor_grad_view),
  13941. nb1, nb2, nb3, offset, false),
  13942. zero_table);
  13943. }
  13944. if (src1->grad) {
  13945. src1->grad =
  13946. ggml_add_or_set(ctx,
  13947. src1->grad,
  13948. ggml_reshape(ctx,
  13949. ggml_cont(ctx, tensor_grad_view),
  13950. src1->grad),
  13951. zero_table);
  13952. }
  13953. } break;
  13954. case GGML_OP_CPY:
  13955. {
  13956. // necessary for llama
  13957. // cpy overwrites value of src1 by src0 and returns view(src1)
  13958. // the overwriting is mathematically equivalent to:
  13959. // tensor = src0 * 1 + src1 * 0
  13960. if (src0->grad) {
  13961. // dsrc0 = dtensor * 1
  13962. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  13963. }
  13964. if (src1->grad) {
  13965. // dsrc1 = dtensor * 0 -> noop
  13966. }
  13967. } break;
  13968. case GGML_OP_CONT:
  13969. {
  13970. // same as cpy
  13971. if (src0->grad) {
  13972. GGML_ASSERT(ggml_is_contiguous(src0->grad));
  13973. GGML_ASSERT(ggml_is_contiguous(tensor->grad));
  13974. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  13975. }
  13976. } break;
  13977. case GGML_OP_RESHAPE:
  13978. {
  13979. // necessary for llama
  13980. if (src0->grad) {
  13981. src0->grad =
  13982. ggml_add_or_set(ctx, src0->grad,
  13983. ggml_reshape(ctx,
  13984. ggml_is_contiguous(tensor->grad)
  13985. ? tensor->grad
  13986. : ggml_cont(ctx, tensor->grad),
  13987. src0->grad),
  13988. zero_table);
  13989. }
  13990. } break;
  13991. case GGML_OP_VIEW:
  13992. {
  13993. // necessary for llama
  13994. if (src0->grad) {
  13995. size_t offset;
  13996. memcpy(&offset, tensor->op_params, sizeof(offset));
  13997. size_t nb1 = tensor->nb[1];
  13998. size_t nb2 = tensor->nb[2];
  13999. size_t nb3 = tensor->nb[3];
  14000. if (src0->type != src0->grad->type) {
  14001. // gradient is typically F32, but src0 could be other type
  14002. size_t ng = ggml_element_size(src0->grad);
  14003. size_t n0 = ggml_element_size(src0);
  14004. GGML_ASSERT(offset % n0 == 0);
  14005. GGML_ASSERT(nb1 % n0 == 0);
  14006. GGML_ASSERT(nb2 % n0 == 0);
  14007. GGML_ASSERT(nb3 % n0 == 0);
  14008. offset = (offset / n0) * ng;
  14009. nb1 = (nb1 / n0) * ng;
  14010. nb2 = (nb2 / n0) * ng;
  14011. nb3 = (nb3 / n0) * ng;
  14012. }
  14013. src0->grad = ggml_acc_or_set(ctx, src0->grad, tensor->grad, nb1, nb2, nb3, offset, zero_table);
  14014. }
  14015. } break;
  14016. case GGML_OP_PERMUTE:
  14017. {
  14018. // necessary for llama
  14019. if (src0->grad) {
  14020. int32_t * axes = (int32_t *) tensor->op_params;
  14021. int axis0 = axes[0] & 0x3;
  14022. int axis1 = axes[1] & 0x3;
  14023. int axis2 = axes[2] & 0x3;
  14024. int axis3 = axes[3] & 0x3;
  14025. int axes_backward[4] = {0,0,0,0};
  14026. axes_backward[axis0] = 0;
  14027. axes_backward[axis1] = 1;
  14028. axes_backward[axis2] = 2;
  14029. axes_backward[axis3] = 3;
  14030. src0->grad =
  14031. ggml_add_or_set(ctx, src0->grad,
  14032. ggml_permute(ctx,
  14033. tensor->grad,
  14034. axes_backward[0],
  14035. axes_backward[1],
  14036. axes_backward[2],
  14037. axes_backward[3]),
  14038. zero_table);
  14039. }
  14040. } break;
  14041. case GGML_OP_TRANSPOSE:
  14042. {
  14043. // necessary for llama
  14044. if (src0->grad) {
  14045. src0->grad =
  14046. ggml_add_or_set(ctx, src0->grad,
  14047. ggml_transpose(ctx, tensor->grad),
  14048. zero_table);
  14049. }
  14050. } break;
  14051. case GGML_OP_GET_ROWS:
  14052. {
  14053. // necessary for llama (only for tokenizer)
  14054. if (src0->grad) {
  14055. src0->grad =
  14056. ggml_add_or_set(ctx, src0->grad,
  14057. // last ggml_get_rows_back argument src0->grad is only
  14058. // necessary to setup correct output shape
  14059. ggml_get_rows_back(ctx, tensor->grad, src1, src0->grad),
  14060. zero_table);
  14061. }
  14062. if (src1->grad) {
  14063. // noop
  14064. }
  14065. } break;
  14066. case GGML_OP_GET_ROWS_BACK:
  14067. {
  14068. GGML_ASSERT(false); // TODO: not implemented
  14069. } break;
  14070. case GGML_OP_DIAG:
  14071. {
  14072. GGML_ASSERT(false); // TODO: not implemented
  14073. } break;
  14074. case GGML_OP_DIAG_MASK_INF:
  14075. {
  14076. // necessary for llama
  14077. if (src0->grad) {
  14078. const int n_past = ((int32_t *) tensor->op_params)[0];
  14079. src0->grad =
  14080. ggml_add_or_set(ctx, src0->grad,
  14081. /* ggml_diag_mask_inf_impl() shouldn't be here */
  14082. /* ref: https://github.com/ggerganov/llama.cpp/pull/4203#discussion_r1412377992 */
  14083. ggml_diag_mask_zero_impl(ctx, tensor->grad, n_past, false),
  14084. zero_table);
  14085. }
  14086. } break;
  14087. case GGML_OP_DIAG_MASK_ZERO:
  14088. {
  14089. // necessary for llama
  14090. if (src0->grad) {
  14091. const int n_past = ((int32_t *) tensor->op_params)[0];
  14092. src0->grad =
  14093. ggml_add_or_set(ctx, src0->grad,
  14094. ggml_diag_mask_zero_impl(ctx, tensor->grad, n_past, false),
  14095. zero_table);
  14096. }
  14097. } break;
  14098. case GGML_OP_SOFT_MAX:
  14099. {
  14100. // necessary for llama
  14101. if (src0->grad) {
  14102. src0->grad =
  14103. ggml_add_or_set(ctx, src0->grad,
  14104. ggml_soft_max_back(ctx, tensor->grad, tensor),
  14105. zero_table);
  14106. }
  14107. } break;
  14108. case GGML_OP_SOFT_MAX_BACK:
  14109. {
  14110. GGML_ASSERT(false); // TODO: not implemented
  14111. } break;
  14112. case GGML_OP_ROPE:
  14113. {
  14114. // necessary for llama
  14115. if (src0->grad) {
  14116. //const int n_past = ((int32_t *) tensor->op_params)[0];
  14117. const int n_dims = ((int32_t *) tensor->op_params)[1];
  14118. const int mode = ((int32_t *) tensor->op_params)[2];
  14119. const int n_ctx = ((int32_t *) tensor->op_params)[3];
  14120. const int n_orig_ctx = ((int32_t *) tensor->op_params)[4];
  14121. float freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow, xpos_base, xpos_down;
  14122. memcpy(&freq_base, (int32_t *) tensor->op_params + 5, sizeof(float));
  14123. memcpy(&freq_scale, (int32_t *) tensor->op_params + 6, sizeof(float));
  14124. memcpy(&ext_factor, (int32_t *) tensor->op_params + 7, sizeof(float));
  14125. memcpy(&attn_factor, (int32_t *) tensor->op_params + 8, sizeof(float));
  14126. memcpy(&beta_fast, (int32_t *) tensor->op_params + 9, sizeof(float));
  14127. memcpy(&beta_slow, (int32_t *) tensor->op_params + 10, sizeof(float));
  14128. memcpy(&xpos_base, (int32_t *) tensor->op_params + 11, sizeof(float));
  14129. memcpy(&xpos_down, (int32_t *) tensor->op_params + 12, sizeof(bool));
  14130. src0->grad = ggml_add_or_set(ctx,
  14131. src0->grad,
  14132. ggml_rope_back(ctx,
  14133. tensor->grad,
  14134. src1,
  14135. n_dims,
  14136. mode,
  14137. n_ctx,
  14138. n_orig_ctx,
  14139. freq_base,
  14140. freq_scale,
  14141. ext_factor,
  14142. attn_factor,
  14143. beta_fast,
  14144. beta_slow,
  14145. xpos_base,
  14146. xpos_down),
  14147. zero_table);
  14148. }
  14149. } break;
  14150. case GGML_OP_ROPE_BACK:
  14151. {
  14152. if (src0->grad) {
  14153. //const int n_past = ((int32_t *) tensor->op_params)[0];
  14154. const int n_dims = ((int32_t *) tensor->op_params)[1];
  14155. const int mode = ((int32_t *) tensor->op_params)[2];
  14156. const int n_ctx = ((int32_t *) tensor->op_params)[3];
  14157. const int n_orig_ctx = ((int32_t *) tensor->op_params)[4];
  14158. float freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow, xpos_base, xpos_down;
  14159. memcpy(&freq_base, (int32_t *) tensor->op_params + 5, sizeof(float));
  14160. memcpy(&freq_scale, (int32_t *) tensor->op_params + 6, sizeof(float));
  14161. memcpy(&ext_factor, (int32_t *) tensor->op_params + 7, sizeof(float));
  14162. memcpy(&attn_factor, (int32_t *) tensor->op_params + 8, sizeof(float));
  14163. memcpy(&beta_fast, (int32_t *) tensor->op_params + 9, sizeof(float));
  14164. memcpy(&beta_slow, (int32_t *) tensor->op_params + 10, sizeof(float));
  14165. memcpy(&xpos_base, (int32_t *) tensor->op_params + 11, sizeof(float));
  14166. memcpy(&xpos_down, (int32_t *) tensor->op_params + 12, sizeof(bool));
  14167. src0->grad = ggml_add_or_set(ctx,
  14168. src0->grad,
  14169. ggml_rope_impl(ctx,
  14170. tensor->grad,
  14171. src1,
  14172. n_dims,
  14173. mode,
  14174. n_ctx,
  14175. n_orig_ctx,
  14176. freq_base,
  14177. freq_scale,
  14178. ext_factor,
  14179. attn_factor,
  14180. beta_fast,
  14181. beta_slow,
  14182. xpos_base,
  14183. xpos_down,
  14184. false),
  14185. zero_table);
  14186. }
  14187. } break;
  14188. case GGML_OP_ALIBI:
  14189. {
  14190. GGML_ASSERT(false); // TODO: not implemented
  14191. } break;
  14192. case GGML_OP_CLAMP:
  14193. {
  14194. GGML_ASSERT(false); // TODO: not implemented
  14195. } break;
  14196. case GGML_OP_CONV_TRANSPOSE_1D:
  14197. {
  14198. GGML_ASSERT(false); // TODO: not implemented
  14199. } break;
  14200. case GGML_OP_IM2COL:
  14201. {
  14202. GGML_ASSERT(false); // TODO: not implemented
  14203. } break;
  14204. case GGML_OP_CONV_TRANSPOSE_2D:
  14205. {
  14206. GGML_ASSERT(false); // TODO: not implemented
  14207. } break;
  14208. case GGML_OP_POOL_1D:
  14209. {
  14210. GGML_ASSERT(false); // TODO: not implemented
  14211. } break;
  14212. case GGML_OP_POOL_2D:
  14213. {
  14214. GGML_ASSERT(false); // TODO: not implemented
  14215. } break;
  14216. case GGML_OP_UPSCALE:
  14217. {
  14218. GGML_ASSERT(false); // TODO: not implemented
  14219. } break;
  14220. case GGML_OP_PAD:
  14221. {
  14222. GGML_ASSERT(false); // TODO: not implemented
  14223. } break;
  14224. case GGML_OP_ARANGE:
  14225. {
  14226. GGML_ASSERT(false); // TODO: not implemented
  14227. } break;
  14228. case GGML_OP_TIMESTEP_EMBEDDING:
  14229. {
  14230. GGML_ASSERT(false); // TODO: not implemented
  14231. } break;
  14232. case GGML_OP_ARGSORT:
  14233. {
  14234. GGML_ASSERT(false); // TODO: not implemented
  14235. } break;
  14236. case GGML_OP_LEAKY_RELU:
  14237. {
  14238. GGML_ASSERT(false); // TODO: not implemented
  14239. } break;
  14240. case GGML_OP_FLASH_ATTN:
  14241. {
  14242. struct ggml_tensor * flash_grad = NULL;
  14243. if (src0->grad || src1->grad || tensor->src[2]->grad) {
  14244. int32_t t = ggml_get_op_params_i32(tensor, 0);
  14245. GGML_ASSERT(t == 0 || t == 1);
  14246. bool masked = t != 0;
  14247. flash_grad =
  14248. ggml_flash_attn_back(ctx,
  14249. src0,
  14250. src1,
  14251. tensor->src[2],
  14252. tensor->grad,
  14253. masked);
  14254. }
  14255. struct ggml_tensor * src2 = tensor->src[2];
  14256. const int64_t elem_q = ggml_nelements(src0);
  14257. const int64_t elem_k = ggml_nelements(src1);
  14258. const int64_t elem_v = ggml_nelements(src2);
  14259. enum ggml_type result_type = flash_grad->type;
  14260. GGML_ASSERT(ggml_blck_size(result_type) == 1);
  14261. const size_t tsize = ggml_type_size(result_type);
  14262. const size_t offs_q = 0;
  14263. const size_t offs_k = offs_q + GGML_PAD(elem_q * tsize, GGML_MEM_ALIGN);
  14264. const size_t offs_v = offs_k + GGML_PAD(elem_k * tsize, GGML_MEM_ALIGN);
  14265. if (src0->grad) {
  14266. struct ggml_tensor * view_q = ggml_view_1d(ctx, flash_grad, elem_q, offs_q);
  14267. struct ggml_tensor * grad_q = ggml_reshape(ctx, view_q, src0);
  14268. src0->grad = ggml_add_or_set(ctx,
  14269. src0->grad,
  14270. grad_q,
  14271. zero_table);
  14272. }
  14273. if (src1->grad) {
  14274. struct ggml_tensor * view_k = ggml_view_1d(ctx, flash_grad, elem_k, offs_k);
  14275. struct ggml_tensor * grad_k = ggml_reshape(ctx, view_k, src1);
  14276. src1->grad = ggml_add_or_set(ctx,
  14277. src1->grad,
  14278. grad_k,
  14279. zero_table);
  14280. }
  14281. if (src2->grad) {
  14282. struct ggml_tensor * view_v = ggml_view_1d(ctx, flash_grad, elem_v, offs_v);
  14283. struct ggml_tensor * grad_v = ggml_reshape(ctx, view_v, src2);
  14284. src2->grad = ggml_add_or_set(ctx,
  14285. src2->grad,
  14286. grad_v,
  14287. zero_table);
  14288. }
  14289. } break;
  14290. case GGML_OP_FLASH_FF:
  14291. {
  14292. GGML_ASSERT(false); // not supported
  14293. } break;
  14294. case GGML_OP_FLASH_ATTN_BACK:
  14295. {
  14296. GGML_ASSERT(false); // not supported
  14297. } break;
  14298. case GGML_OP_SSM_CONV:
  14299. case GGML_OP_SSM_SCAN:
  14300. {
  14301. GGML_ASSERT(false); // TODO: not implemented
  14302. } break;
  14303. case GGML_OP_WIN_PART:
  14304. case GGML_OP_WIN_UNPART:
  14305. case GGML_OP_UNARY:
  14306. {
  14307. switch (ggml_get_unary_op(tensor)) {
  14308. case GGML_UNARY_OP_ABS:
  14309. {
  14310. if (src0->grad) {
  14311. src0->grad =
  14312. ggml_add_or_set(ctx,
  14313. src0->grad,
  14314. ggml_mul(ctx,
  14315. ggml_sgn(ctx, src0),
  14316. tensor->grad),
  14317. zero_table);
  14318. }
  14319. } break;
  14320. case GGML_UNARY_OP_SGN:
  14321. {
  14322. if (src0->grad) {
  14323. // noop
  14324. }
  14325. } break;
  14326. case GGML_UNARY_OP_NEG:
  14327. {
  14328. if (src0->grad) {
  14329. src0->grad = ggml_sub_or_set(ctx, src0->grad, tensor->grad, zero_table);
  14330. }
  14331. } break;
  14332. case GGML_UNARY_OP_STEP:
  14333. {
  14334. if (src0->grad) {
  14335. // noop
  14336. }
  14337. } break;
  14338. case GGML_UNARY_OP_TANH:
  14339. {
  14340. GGML_ASSERT(false); // TODO: not implemented
  14341. } break;
  14342. case GGML_UNARY_OP_ELU:
  14343. {
  14344. GGML_ASSERT(false); // TODO: not implemented
  14345. } break;
  14346. case GGML_UNARY_OP_RELU:
  14347. {
  14348. if (src0->grad) {
  14349. src0->grad = ggml_add_or_set(ctx,
  14350. src0->grad,
  14351. ggml_mul(ctx,
  14352. ggml_step(ctx, src0),
  14353. tensor->grad),
  14354. zero_table);
  14355. }
  14356. } break;
  14357. case GGML_UNARY_OP_GELU:
  14358. {
  14359. GGML_ASSERT(false); // TODO: not implemented
  14360. } break;
  14361. case GGML_UNARY_OP_GELU_QUICK:
  14362. {
  14363. GGML_ASSERT(false); // TODO: not implemented
  14364. } break;
  14365. case GGML_UNARY_OP_SILU:
  14366. {
  14367. // necessary for llama
  14368. if (src0->grad) {
  14369. src0->grad = ggml_add_or_set(ctx,
  14370. src0->grad,
  14371. ggml_silu_back(ctx, src0, tensor->grad),
  14372. zero_table);
  14373. }
  14374. } break;
  14375. default:
  14376. GGML_ASSERT(false);
  14377. }
  14378. } break;
  14379. case GGML_OP_GET_REL_POS:
  14380. case GGML_OP_ADD_REL_POS:
  14381. case GGML_OP_MAP_UNARY:
  14382. case GGML_OP_MAP_BINARY:
  14383. case GGML_OP_MAP_CUSTOM1_F32:
  14384. case GGML_OP_MAP_CUSTOM2_F32:
  14385. case GGML_OP_MAP_CUSTOM3_F32:
  14386. case GGML_OP_MAP_CUSTOM1:
  14387. case GGML_OP_MAP_CUSTOM2:
  14388. case GGML_OP_MAP_CUSTOM3:
  14389. {
  14390. GGML_ASSERT(false); // not supported
  14391. } break;
  14392. case GGML_OP_CROSS_ENTROPY_LOSS:
  14393. {
  14394. if (src0->grad) {
  14395. src0->grad = ggml_add_or_set(ctx,
  14396. src0->grad,
  14397. ggml_cross_entropy_loss_back(ctx,
  14398. src0,
  14399. src1,
  14400. tensor->grad),
  14401. zero_table);
  14402. }
  14403. } break;
  14404. case GGML_OP_CROSS_ENTROPY_LOSS_BACK:
  14405. {
  14406. GGML_ASSERT(false); // not supported
  14407. } break;
  14408. case GGML_OP_NONE:
  14409. {
  14410. // nop
  14411. } break;
  14412. case GGML_OP_COUNT:
  14413. {
  14414. GGML_ASSERT(false);
  14415. } break;
  14416. }
  14417. for (int i = 0; i < GGML_MAX_SRC; ++i) {
  14418. if (tensor->src[i] && tensor->src[i]->grad) {
  14419. GGML_ASSERT(ggml_are_same_shape(tensor->src[i], tensor->src[i]->grad));
  14420. }
  14421. }
  14422. }
  14423. static void ggml_visit_parents(struct ggml_cgraph * cgraph, struct ggml_tensor * node) {
  14424. if (node->grad == NULL) {
  14425. // this usually happens when we generate intermediate nodes from constants in the backward pass
  14426. // it can also happen during forward pass, if the user performs computations with constants
  14427. if (node->op != GGML_OP_NONE) {
  14428. //GGML_PRINT_DEBUG("%s: warning: node %p has no grad, but op %d\n", __func__, (void *) node, node->op);
  14429. }
  14430. }
  14431. // check if already visited
  14432. if (ggml_hash_insert(cgraph->visited_hash_table, node) == GGML_HASHTABLE_ALREADY_EXISTS) {
  14433. return;
  14434. }
  14435. for (int i = 0; i < GGML_MAX_SRC; ++i) {
  14436. const int k =
  14437. (cgraph->order == GGML_CGRAPH_EVAL_ORDER_LEFT_TO_RIGHT) ? i :
  14438. (cgraph->order == GGML_CGRAPH_EVAL_ORDER_RIGHT_TO_LEFT) ? (GGML_MAX_SRC-1-i) :
  14439. /* unknown order, just fall back to using i*/ i;
  14440. if (node->src[k]) {
  14441. ggml_visit_parents(cgraph, node->src[k]);
  14442. }
  14443. }
  14444. if (node->op == GGML_OP_NONE && node->grad == NULL) {
  14445. // reached a leaf node, not part of the gradient graph (e.g. a constant)
  14446. GGML_ASSERT(cgraph->n_leafs < cgraph->size);
  14447. if (strlen(node->name) == 0) {
  14448. ggml_format_name(node, "leaf_%d", cgraph->n_leafs);
  14449. }
  14450. cgraph->leafs[cgraph->n_leafs] = node;
  14451. cgraph->n_leafs++;
  14452. } else {
  14453. GGML_ASSERT(cgraph->n_nodes < cgraph->size);
  14454. if (strlen(node->name) == 0) {
  14455. ggml_format_name(node, "node_%d", cgraph->n_nodes);
  14456. }
  14457. cgraph->nodes[cgraph->n_nodes] = node;
  14458. if (cgraph->grads) {
  14459. cgraph->grads[cgraph->n_nodes] = node->grad;
  14460. }
  14461. cgraph->n_nodes++;
  14462. }
  14463. }
  14464. static void ggml_build_forward_impl(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor, bool expand) {
  14465. if (!expand) {
  14466. // TODO: this branch isn't accessible anymore, maybe move this to ggml_build_forward_expand
  14467. ggml_graph_clear(cgraph);
  14468. }
  14469. const int n0 = cgraph->n_nodes;
  14470. UNUSED(n0);
  14471. ggml_visit_parents(cgraph, tensor);
  14472. const int n_new = cgraph->n_nodes - n0;
  14473. GGML_PRINT_DEBUG("%s: visited %d new nodes\n", __func__, n_new);
  14474. if (n_new > 0) {
  14475. // the last added node should always be starting point
  14476. GGML_ASSERT(cgraph->nodes[cgraph->n_nodes - 1] == tensor);
  14477. }
  14478. }
  14479. void ggml_build_forward_expand(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor) {
  14480. ggml_build_forward_impl(cgraph, tensor, true);
  14481. }
  14482. void ggml_build_backward_expand(struct ggml_context * ctx, struct ggml_cgraph * gf, struct ggml_cgraph * gb, bool keep) {
  14483. GGML_ASSERT(gf->n_nodes > 0);
  14484. // if we are keeping the gradient graph, we have to detach the gradient nodes from the original graph
  14485. if (keep) {
  14486. for (int i = 0; i < gf->n_nodes; i++) {
  14487. struct ggml_tensor * node = gf->nodes[i];
  14488. if (node->grad) {
  14489. node->grad = ggml_dup_tensor(ctx, node);
  14490. gf->grads[i] = node->grad;
  14491. }
  14492. }
  14493. }
  14494. // remember original gradients which start with zero values
  14495. struct ggml_hash_set zero_table = ggml_hash_set_new(gf->size);
  14496. for (int i = 0; i < gf->n_nodes; i++) {
  14497. if (gf->grads[i]) {
  14498. ggml_hash_insert(zero_table, gf->grads[i]);
  14499. }
  14500. }
  14501. for (int i = gf->n_nodes - 1; i >= 0; i--) {
  14502. struct ggml_tensor * node = gf->nodes[i];
  14503. // inplace operations to add gradients are not created by ggml_compute_backward
  14504. // use allocator to automatically make inplace operations
  14505. if (node->grad) {
  14506. ggml_compute_backward(ctx, node, zero_table);
  14507. }
  14508. }
  14509. for (int i = 0; i < gf->n_nodes; i++) {
  14510. struct ggml_tensor * node = gf->nodes[i];
  14511. if (node->flags & GGML_TENSOR_FLAG_PARAM) {
  14512. GGML_PRINT_DEBUG("%s: found root node %p\n", __func__, (void *) node);
  14513. ggml_build_forward_expand(gb, node->grad);
  14514. }
  14515. }
  14516. ggml_hash_set_free(zero_table);
  14517. }
  14518. static size_t ggml_graph_nbytes(size_t size, bool grads) {
  14519. size_t nbytes = sizeof(struct ggml_cgraph);
  14520. nbytes += size * sizeof(struct ggml_tensor *) * 2; // leafs + nodes
  14521. if (grads) {
  14522. nbytes += size * sizeof(struct ggml_tensor *); // grads
  14523. }
  14524. nbytes += ggml_hash_size(size * 2) * sizeof(struct ggml_tensor *); // hash set
  14525. return nbytes;
  14526. }
  14527. size_t ggml_graph_overhead_custom(size_t size, bool grads) {
  14528. return GGML_OBJECT_SIZE + GGML_PAD(ggml_graph_nbytes(size, grads), GGML_MEM_ALIGN);
  14529. }
  14530. size_t ggml_graph_overhead(void) {
  14531. return ggml_graph_overhead_custom(GGML_DEFAULT_GRAPH_SIZE, false);
  14532. }
  14533. struct ggml_cgraph * ggml_new_graph_custom(struct ggml_context * ctx, size_t size, bool grads) {
  14534. const size_t obj_size = ggml_graph_nbytes(size, grads);
  14535. struct ggml_object * obj = ggml_new_object(ctx, GGML_OBJECT_TYPE_GRAPH, obj_size);
  14536. struct ggml_cgraph * cgraph = (struct ggml_cgraph *) ((char *) ctx->mem_buffer + obj->offs);
  14537. struct ggml_tensor ** data_start = (struct ggml_tensor **) (cgraph + 1);
  14538. size_t hash_size = ggml_hash_size(size * 2);
  14539. struct ggml_tensor ** nodes_ptr = data_start;
  14540. struct ggml_tensor ** leafs_ptr = nodes_ptr + size;
  14541. struct ggml_tensor ** hash_keys_ptr = leafs_ptr + size;
  14542. struct ggml_tensor ** grads_ptr = grads ? hash_keys_ptr + hash_size : NULL;
  14543. // check that we allocated the correct amount of memory
  14544. assert(obj_size == (size_t) (
  14545. (grads ? (char *)(grads_ptr + size) : (char *)(hash_keys_ptr + hash_size)) - (char *)cgraph));
  14546. memset(hash_keys_ptr, 0, hash_size * sizeof(struct ggml_tensor *));
  14547. *cgraph = (struct ggml_cgraph) {
  14548. /*.size =*/ size,
  14549. /*.n_nodes =*/ 0,
  14550. /*.n_leafs =*/ 0,
  14551. /*.nodes =*/ nodes_ptr,
  14552. /*.grads =*/ grads_ptr,
  14553. /*.leafs =*/ leafs_ptr,
  14554. /*.hash_table =*/ { hash_size, hash_keys_ptr },
  14555. /*.order =*/ GGML_CGRAPH_EVAL_ORDER_LEFT_TO_RIGHT,
  14556. /*.perf_runs =*/ 0,
  14557. /*.perf_cycles =*/ 0,
  14558. /*.perf_time_us =*/ 0,
  14559. };
  14560. return cgraph;
  14561. }
  14562. struct ggml_cgraph * ggml_new_graph(struct ggml_context * ctx) {
  14563. return ggml_new_graph_custom(ctx, GGML_DEFAULT_GRAPH_SIZE, false);
  14564. }
  14565. struct ggml_cgraph ggml_graph_view(struct ggml_cgraph * cgraph0, int i0, int i1) {
  14566. struct ggml_cgraph cgraph = {
  14567. /*.size =*/ 0,
  14568. /*.n_nodes =*/ i1 - i0,
  14569. /*.n_leafs =*/ 0,
  14570. /*.nodes =*/ cgraph0->nodes + i0,
  14571. /*.grads =*/ cgraph0->grads ? cgraph0->grads + i0 : NULL,
  14572. /*.leafs =*/ NULL,
  14573. /*.hash_table =*/ { 0, NULL },
  14574. /*.order =*/ cgraph0->order,
  14575. /*.perf_runs =*/ 0,
  14576. /*.perf_cycles =*/ 0,
  14577. /*.perf_time_us =*/ 0,
  14578. };
  14579. return cgraph;
  14580. }
  14581. void ggml_graph_cpy(struct ggml_cgraph * src, struct ggml_cgraph * dst) {
  14582. GGML_ASSERT(dst->size >= src->n_leafs);
  14583. GGML_ASSERT(dst->size >= src->n_nodes);
  14584. GGML_ASSERT(dst->visited_hash_table.size >= src->visited_hash_table.size);
  14585. dst->n_leafs = src->n_leafs;
  14586. dst->n_nodes = src->n_nodes;
  14587. dst->order = src->order;
  14588. for (int i = 0; i < src->n_leafs; ++i) {
  14589. dst->leafs[i] = src->leafs[i];
  14590. }
  14591. for (int i = 0; i < src->n_nodes; ++i) {
  14592. dst->nodes[i] = src->nodes[i];
  14593. }
  14594. if (src->grads) {
  14595. GGML_ASSERT(dst->grads != NULL);
  14596. for (int i = 0; i < src->n_nodes; ++i) {
  14597. dst->grads[i] = src->grads[i];
  14598. }
  14599. }
  14600. for (size_t i = 0; i < src->visited_hash_table.size; ++i) {
  14601. if (src->visited_hash_table.keys[i]) {
  14602. ggml_hash_insert(dst->visited_hash_table, src->visited_hash_table.keys[i]);
  14603. }
  14604. }
  14605. }
  14606. struct ggml_cgraph * ggml_graph_dup(struct ggml_context * ctx, struct ggml_cgraph * cgraph) {
  14607. struct ggml_cgraph * result = ggml_new_graph_custom(ctx, cgraph->size, cgraph->grads != NULL);
  14608. ggml_graph_cpy(cgraph, result);
  14609. return result;
  14610. }
  14611. void ggml_graph_reset(struct ggml_cgraph * cgraph) {
  14612. GGML_ASSERT(cgraph->grads != NULL);
  14613. for (int i = 0; i < cgraph->n_nodes; i++) {
  14614. struct ggml_tensor * grad = cgraph->grads[i];
  14615. if (grad) {
  14616. ggml_set_zero(grad);
  14617. }
  14618. }
  14619. }
  14620. void ggml_graph_clear(struct ggml_cgraph * cgraph) {
  14621. cgraph->n_leafs = 0;
  14622. cgraph->n_nodes = 0;
  14623. memset(cgraph->visited_hash_table.keys, 0, cgraph->visited_hash_table.size * sizeof(struct ggml_tensor *));
  14624. }
  14625. //
  14626. // thread data
  14627. //
  14628. // synchronization is done via busy loops
  14629. // I tried using spin locks, but not sure how to use them correctly - the things I tried were slower than busy loops
  14630. //
  14631. #ifdef __APPLE__
  14632. //#include <os/lock.h>
  14633. //
  14634. //typedef os_unfair_lock ggml_lock_t;
  14635. //
  14636. //#define ggml_lock_init(x) UNUSED(x)
  14637. //#define ggml_lock_destroy(x) UNUSED(x)
  14638. //#define ggml_lock_lock os_unfair_lock_lock
  14639. //#define ggml_lock_unlock os_unfair_lock_unlock
  14640. //
  14641. //#define GGML_LOCK_INITIALIZER OS_UNFAIR_LOCK_INIT
  14642. typedef int ggml_lock_t;
  14643. #define ggml_lock_init(x) UNUSED(x)
  14644. #define ggml_lock_destroy(x) UNUSED(x)
  14645. #define ggml_lock_lock(x) UNUSED(x)
  14646. #define ggml_lock_unlock(x) UNUSED(x)
  14647. #define GGML_LOCK_INITIALIZER 0
  14648. typedef pthread_t ggml_thread_t;
  14649. #define ggml_thread_create pthread_create
  14650. #define ggml_thread_join pthread_join
  14651. #else
  14652. //typedef pthread_spinlock_t ggml_lock_t;
  14653. //#define ggml_lock_init(x) pthread_spin_init(x, PTHREAD_PROCESS_PRIVATE)
  14654. //#define ggml_lock_destroy pthread_spin_destroy
  14655. //#define ggml_lock_lock pthread_spin_lock
  14656. //#define ggml_lock_unlock pthread_spin_unlock
  14657. typedef int ggml_lock_t;
  14658. #define ggml_lock_init(x) UNUSED(x)
  14659. #define ggml_lock_destroy(x) UNUSED(x)
  14660. #if defined(__x86_64__) || (defined(_MSC_VER) && defined(_M_AMD64))
  14661. #define ggml_lock_lock(x) _mm_pause()
  14662. #else
  14663. #define ggml_lock_lock(x) UNUSED(x)
  14664. #endif
  14665. #define ggml_lock_unlock(x) UNUSED(x)
  14666. #define GGML_LOCK_INITIALIZER 0
  14667. typedef pthread_t ggml_thread_t;
  14668. #define ggml_thread_create pthread_create
  14669. #define ggml_thread_join pthread_join
  14670. #endif
  14671. // Android's libc implementation "bionic" does not support setting affinity
  14672. #if defined(__gnu_linux__)
  14673. static void set_numa_thread_affinity(int thread_n) {
  14674. if (!ggml_is_numa()) {
  14675. return;
  14676. }
  14677. int node_num;
  14678. int rv;
  14679. size_t setsize = CPU_ALLOC_SIZE(g_state.numa.total_cpus);
  14680. switch(g_state.numa.numa_strategy) {
  14681. case GGML_NUMA_STRATEGY_DISTRIBUTE:
  14682. // run thread on node_num thread_n / (threads per node)
  14683. node_num = thread_n % g_state.numa.n_nodes;
  14684. break;
  14685. case GGML_NUMA_STRATEGY_ISOLATE:
  14686. // run thread on current_node
  14687. node_num = g_state.numa.current_node;
  14688. break;
  14689. case GGML_NUMA_STRATEGY_NUMACTL:
  14690. // use the cpuset that numactl gave us
  14691. rv = pthread_setaffinity_np(pthread_self(), setsize, &g_state.numa.cpuset);
  14692. if (rv) {
  14693. fprintf(stderr, "warning: pthread_setaffinity_np() failed: %s\n",strerror(rv));
  14694. }
  14695. return;
  14696. default:
  14697. return;
  14698. }
  14699. struct ggml_numa_node * node = &g_state.numa.nodes[node_num];
  14700. cpu_set_t * cpus = CPU_ALLOC(g_state.numa.total_cpus);
  14701. CPU_ZERO_S(setsize, cpus);
  14702. for (size_t i = 0; i < node->n_cpus; ++i) {
  14703. CPU_SET_S(node->cpus[i], setsize, cpus);
  14704. }
  14705. rv = pthread_setaffinity_np(pthread_self(), setsize, cpus);
  14706. if (rv) {
  14707. fprintf(stderr, "warning: pthread_setaffinity_np() failed: %s\n", strerror(rv));
  14708. }
  14709. CPU_FREE(cpus);
  14710. }
  14711. static void clear_numa_thread_affinity(void) {
  14712. if (!ggml_is_numa()) {
  14713. return;
  14714. }
  14715. size_t setsize = CPU_ALLOC_SIZE(g_state.numa.total_cpus);
  14716. cpu_set_t * cpus = CPU_ALLOC(g_state.numa.total_cpus);
  14717. CPU_ZERO_S(setsize, cpus);
  14718. for (unsigned i = 0; i < g_state.numa.total_cpus; ++i) {
  14719. CPU_SET_S(i, setsize, cpus);
  14720. }
  14721. int rv = pthread_setaffinity_np(pthread_self(), setsize, cpus);
  14722. if (rv) {
  14723. fprintf(stderr, "warning: pthread_setaffinity_np() failed: %s\n", strerror(rv));
  14724. }
  14725. CPU_FREE(cpus);
  14726. }
  14727. #else
  14728. // TODO: Windows etc.
  14729. // (the linux implementation may also work on BSD, someone should test)
  14730. static void set_numa_thread_affinity(int thread_n) { UNUSED(thread_n); }
  14731. static void clear_numa_thread_affinity(void) {}
  14732. #endif
  14733. struct ggml_compute_state_shared {
  14734. const struct ggml_cgraph * cgraph;
  14735. const struct ggml_cplan * cplan;
  14736. int64_t perf_node_start_cycles;
  14737. int64_t perf_node_start_time_us;
  14738. const int n_threads;
  14739. // synchronization primitives
  14740. atomic_int n_active; // num active threads
  14741. atomic_int node_n; // active graph node
  14742. atomic_int node_task; // active graph node task phase
  14743. ggml_abort_callback abort_callback; // abort ggml_graph_compute when true
  14744. void * abort_callback_data;
  14745. };
  14746. struct ggml_compute_state {
  14747. ggml_thread_t thrd;
  14748. int ith;
  14749. struct ggml_compute_state_shared * shared;
  14750. enum ggml_status ec;
  14751. };
  14752. static void ggml_graph_compute_perf_stats_node(struct ggml_tensor * node, const struct ggml_compute_state_shared * st) {
  14753. int64_t cycles_cur = ggml_perf_cycles() - st->perf_node_start_cycles;
  14754. int64_t time_us_cur = ggml_perf_time_us() - st->perf_node_start_time_us;
  14755. node->perf_runs++;
  14756. node->perf_cycles += cycles_cur;
  14757. node->perf_time_us += time_us_cur;
  14758. }
  14759. static int ggml_get_n_tasks(struct ggml_tensor * node, int n_threads, int n_cur_threads) {
  14760. int n_tasks = 0;
  14761. if (ggml_is_empty(node)) {
  14762. // no need to multi-thread a no-op
  14763. n_tasks = 1;
  14764. return n_tasks;
  14765. }
  14766. switch (node->op) {
  14767. case GGML_OP_CPY:
  14768. case GGML_OP_DUP:
  14769. case GGML_OP_ADD:
  14770. case GGML_OP_ADD1:
  14771. case GGML_OP_ACC:
  14772. {
  14773. n_tasks = n_threads;
  14774. } break;
  14775. case GGML_OP_SUB:
  14776. case GGML_OP_SQR:
  14777. case GGML_OP_SQRT:
  14778. case GGML_OP_LOG:
  14779. case GGML_OP_SUM:
  14780. case GGML_OP_SUM_ROWS:
  14781. case GGML_OP_MEAN:
  14782. case GGML_OP_ARGMAX:
  14783. case GGML_OP_REPEAT:
  14784. case GGML_OP_REPEAT_BACK:
  14785. case GGML_OP_LEAKY_RELU:
  14786. {
  14787. n_tasks = 1;
  14788. } break;
  14789. case GGML_OP_UNARY:
  14790. switch (ggml_get_unary_op(node)) {
  14791. case GGML_UNARY_OP_ABS:
  14792. case GGML_UNARY_OP_SGN:
  14793. case GGML_UNARY_OP_NEG:
  14794. case GGML_UNARY_OP_STEP:
  14795. case GGML_UNARY_OP_TANH:
  14796. case GGML_UNARY_OP_ELU:
  14797. case GGML_UNARY_OP_RELU:
  14798. case GGML_UNARY_OP_HARDSWISH: // to opt for multiple threads
  14799. case GGML_UNARY_OP_HARDSIGMOID: // to opt for multiple threads
  14800. {
  14801. n_tasks = 1;
  14802. } break;
  14803. case GGML_UNARY_OP_GELU:
  14804. case GGML_UNARY_OP_GELU_QUICK:
  14805. case GGML_UNARY_OP_SILU:
  14806. {
  14807. n_tasks = n_threads;
  14808. } break;
  14809. default:
  14810. GGML_ASSERT(false);
  14811. }
  14812. break;
  14813. case GGML_OP_SILU_BACK:
  14814. case GGML_OP_MUL:
  14815. case GGML_OP_DIV:
  14816. case GGML_OP_NORM:
  14817. case GGML_OP_RMS_NORM:
  14818. case GGML_OP_RMS_NORM_BACK:
  14819. case GGML_OP_GROUP_NORM:
  14820. case GGML_OP_CONCAT:
  14821. {
  14822. n_tasks = n_threads;
  14823. } break;
  14824. case GGML_OP_MUL_MAT:
  14825. {
  14826. n_tasks = n_threads;
  14827. // TODO: use different scheduling for different matrix sizes
  14828. //const int nr0 = ggml_nrows(node->src[0]);
  14829. //const int nr1 = ggml_nrows(node->src[1]);
  14830. //n_tasks = MIN(n_threads, MAX(1, nr0/128));
  14831. //printf("nr0 = %8d, nr1 = %8d, nr0*nr1 = %8d, n_tasks%d\n", nr0, nr1, nr0*nr1, n_tasks);
  14832. } break;
  14833. case GGML_OP_MUL_MAT_ID:
  14834. {
  14835. n_tasks = n_threads;
  14836. } break;
  14837. case GGML_OP_OUT_PROD:
  14838. {
  14839. n_tasks = n_threads;
  14840. } break;
  14841. case GGML_OP_GET_ROWS:
  14842. {
  14843. // FIXME: the cost of launching additional threads decreases performance with GPU offloading
  14844. //n_tasks = MIN(n_threads, ggml_nelements(node->src[1]));
  14845. n_tasks = MIN(n_cur_threads, ggml_nelements(node->src[1]));
  14846. } break;
  14847. case GGML_OP_SCALE:
  14848. case GGML_OP_SET:
  14849. case GGML_OP_CONT:
  14850. case GGML_OP_RESHAPE:
  14851. case GGML_OP_VIEW:
  14852. case GGML_OP_PERMUTE:
  14853. case GGML_OP_TRANSPOSE:
  14854. case GGML_OP_GET_ROWS_BACK:
  14855. case GGML_OP_DIAG:
  14856. {
  14857. n_tasks = 1;
  14858. } break;
  14859. case GGML_OP_DIAG_MASK_ZERO:
  14860. case GGML_OP_DIAG_MASK_INF:
  14861. case GGML_OP_SOFT_MAX_BACK:
  14862. case GGML_OP_ROPE:
  14863. case GGML_OP_ROPE_BACK:
  14864. case GGML_OP_ADD_REL_POS:
  14865. {
  14866. n_tasks = n_threads;
  14867. } break;
  14868. case GGML_OP_ALIBI:
  14869. {
  14870. n_tasks = 1; //TODO
  14871. } break;
  14872. case GGML_OP_CLAMP:
  14873. {
  14874. n_tasks = 1; //TODO
  14875. } break;
  14876. case GGML_OP_SOFT_MAX:
  14877. {
  14878. n_tasks = MIN(n_threads, ggml_nrows(node->src[0]));
  14879. } break;
  14880. case GGML_OP_CONV_TRANSPOSE_1D:
  14881. {
  14882. n_tasks = n_threads;
  14883. } break;
  14884. case GGML_OP_IM2COL:
  14885. {
  14886. n_tasks = n_threads;
  14887. } break;
  14888. case GGML_OP_CONV_TRANSPOSE_2D:
  14889. {
  14890. n_tasks = n_threads;
  14891. } break;
  14892. case GGML_OP_POOL_1D:
  14893. case GGML_OP_POOL_2D:
  14894. {
  14895. n_tasks = 1;
  14896. } break;
  14897. case GGML_OP_UPSCALE:
  14898. {
  14899. n_tasks = n_threads;
  14900. } break;
  14901. case GGML_OP_PAD:
  14902. {
  14903. n_tasks = n_threads;
  14904. } break;
  14905. case GGML_OP_ARANGE:
  14906. {
  14907. n_tasks = n_threads;
  14908. } break;
  14909. case GGML_OP_TIMESTEP_EMBEDDING:
  14910. {
  14911. n_tasks = n_threads;
  14912. } break;
  14913. case GGML_OP_ARGSORT:
  14914. {
  14915. n_tasks = n_threads;
  14916. } break;
  14917. case GGML_OP_FLASH_ATTN:
  14918. {
  14919. n_tasks = n_threads;
  14920. } break;
  14921. case GGML_OP_FLASH_FF:
  14922. {
  14923. n_tasks = n_threads;
  14924. } break;
  14925. case GGML_OP_FLASH_ATTN_BACK:
  14926. {
  14927. n_tasks = n_threads;
  14928. } break;
  14929. case GGML_OP_SSM_CONV:
  14930. case GGML_OP_SSM_SCAN:
  14931. {
  14932. n_tasks = n_threads;
  14933. } break;
  14934. case GGML_OP_WIN_PART:
  14935. case GGML_OP_WIN_UNPART:
  14936. case GGML_OP_GET_REL_POS:
  14937. case GGML_OP_MAP_UNARY:
  14938. case GGML_OP_MAP_BINARY:
  14939. case GGML_OP_MAP_CUSTOM1_F32:
  14940. case GGML_OP_MAP_CUSTOM2_F32:
  14941. case GGML_OP_MAP_CUSTOM3_F32:
  14942. {
  14943. n_tasks = 1;
  14944. } break;
  14945. case GGML_OP_MAP_CUSTOM1:
  14946. {
  14947. struct ggml_map_custom1_op_params p;
  14948. memcpy(&p, node->op_params, sizeof(p));
  14949. if (p.n_tasks == GGML_N_TASKS_MAX) {
  14950. n_tasks = n_threads;
  14951. } else {
  14952. n_tasks = MIN(p.n_tasks, n_threads);
  14953. }
  14954. } break;
  14955. case GGML_OP_MAP_CUSTOM2:
  14956. {
  14957. struct ggml_map_custom2_op_params p;
  14958. memcpy(&p, node->op_params, sizeof(p));
  14959. if (p.n_tasks == GGML_N_TASKS_MAX) {
  14960. n_tasks = n_threads;
  14961. } else {
  14962. n_tasks = MIN(p.n_tasks, n_threads);
  14963. }
  14964. } break;
  14965. case GGML_OP_MAP_CUSTOM3:
  14966. {
  14967. struct ggml_map_custom3_op_params p;
  14968. memcpy(&p, node->op_params, sizeof(p));
  14969. if (p.n_tasks == GGML_N_TASKS_MAX) {
  14970. n_tasks = n_threads;
  14971. } else {
  14972. n_tasks = MIN(p.n_tasks, n_threads);
  14973. }
  14974. } break;
  14975. case GGML_OP_CROSS_ENTROPY_LOSS:
  14976. {
  14977. n_tasks = n_threads;
  14978. } break;
  14979. case GGML_OP_CROSS_ENTROPY_LOSS_BACK:
  14980. {
  14981. n_tasks = n_threads;
  14982. } break;
  14983. case GGML_OP_NONE:
  14984. {
  14985. n_tasks = 1;
  14986. } break;
  14987. case GGML_OP_COUNT:
  14988. {
  14989. GGML_ASSERT(false);
  14990. } break;
  14991. default:
  14992. {
  14993. fprintf(stderr, "%s: op not implemented: ", __func__);
  14994. if (node->op < GGML_OP_COUNT) {
  14995. fprintf(stderr, "%s\n", ggml_op_name(node->op));
  14996. } else {
  14997. fprintf(stderr, "%d\n", node->op);
  14998. }
  14999. GGML_ASSERT(false);
  15000. } break;
  15001. }
  15002. assert(n_tasks > 0);
  15003. return n_tasks;
  15004. }
  15005. static void ggml_graph_compute_thread_sync_node(int * node_n, struct ggml_compute_state * state, const bool do_yield) {
  15006. // wait for other threads to finish
  15007. const int last_node_n = * node_n;
  15008. while (true) {
  15009. if (do_yield) {
  15010. sched_yield();
  15011. }
  15012. * node_n = atomic_load(&state->shared->node_n);
  15013. if (* node_n != last_node_n) break;
  15014. }
  15015. }
  15016. static void ggml_graph_compute_thread_sync_task(int * task_phase, struct ggml_compute_state * state, const bool do_yield) {
  15017. // wait for other threads to finish
  15018. const int last_task_phase = * task_phase;
  15019. while (true) {
  15020. if (do_yield) {
  15021. sched_yield();
  15022. }
  15023. * task_phase = atomic_load(&state->shared->node_task);
  15024. if (* task_phase != last_task_phase) break;
  15025. }
  15026. }
  15027. static thread_ret_t ggml_graph_compute_thread(void * data) {
  15028. struct ggml_compute_state * state = (struct ggml_compute_state *) data;
  15029. const struct ggml_cgraph * cgraph = state->shared->cgraph;
  15030. const struct ggml_cplan * cplan = state->shared->cplan;
  15031. const int n_threads = state->shared->n_threads;
  15032. set_numa_thread_affinity(state->ith);
  15033. int node_n = -1;
  15034. int task_phase = GGML_TASK_TYPE_FINALIZE;
  15035. while (true) {
  15036. if (cplan->abort_callback && cplan->abort_callback(cplan->abort_callback_data)) {
  15037. state->shared->node_n += 1;
  15038. state->ec = GGML_STATUS_ABORTED;
  15039. return 0;
  15040. }
  15041. if (atomic_fetch_sub(&state->shared->n_active, 1) == 1) {
  15042. // all other threads are finished and spinning
  15043. // do finalize and init here so we don't have synchronize again
  15044. struct ggml_compute_params params = {
  15045. /*.type =*/ GGML_TASK_TYPE_FINALIZE,
  15046. /*.ith =*/ 0,
  15047. /*.nth =*/ 0,
  15048. /*.wsize =*/ cplan->work_size,
  15049. /*.wdata =*/ cplan->work_data,
  15050. };
  15051. if (node_n != -1) {
  15052. /* FINALIZE */
  15053. struct ggml_tensor * node = cgraph->nodes[node_n];
  15054. if (GGML_OP_HAS_FINALIZE[node->op]) {
  15055. params.nth = ggml_get_n_tasks(node, n_threads, state->shared->n_threads);
  15056. ggml_compute_forward(&params, node);
  15057. }
  15058. ggml_graph_compute_perf_stats_node(node, state->shared);
  15059. }
  15060. // distribute new work or execute it direct if 1T
  15061. while (++node_n < cgraph->n_nodes) {
  15062. GGML_PRINT_DEBUG_5("%s: %d/%d\n", __func__, node_n, cgraph->n_nodes);
  15063. struct ggml_tensor * node = cgraph->nodes[node_n];
  15064. const int n_tasks = ggml_get_n_tasks(node, n_threads, state->shared->n_threads);
  15065. state->shared->perf_node_start_cycles = ggml_perf_cycles();
  15066. state->shared->perf_node_start_time_us = ggml_perf_time_us();
  15067. params.nth = n_tasks;
  15068. if (n_tasks == 1) {
  15069. /* INIT */
  15070. if (GGML_OP_HAS_INIT[node->op]) {
  15071. params.type = GGML_TASK_TYPE_INIT;
  15072. ggml_compute_forward(&params, node);
  15073. }
  15074. // TODO: maybe push node_n to the atomic but if other threads see n_tasks is 1,
  15075. // they do something more efficient than spinning (?)
  15076. params.type = GGML_TASK_TYPE_COMPUTE;
  15077. ggml_compute_forward(&params, node);
  15078. if (GGML_OP_HAS_FINALIZE[node->op]) {
  15079. params.type = GGML_TASK_TYPE_FINALIZE;
  15080. ggml_compute_forward(&params, node);
  15081. }
  15082. ggml_graph_compute_perf_stats_node(node, state->shared);
  15083. } else {
  15084. break;
  15085. }
  15086. if (cplan->abort_callback && cplan->abort_callback(cplan->abort_callback_data)) {
  15087. break;
  15088. }
  15089. }
  15090. task_phase = GGML_TASK_TYPE_INIT;
  15091. atomic_store(&state->shared->n_active, n_threads);
  15092. atomic_store(&state->shared->node_n, node_n);
  15093. atomic_store(&state->shared->node_task, task_phase);
  15094. } else {
  15095. ggml_graph_compute_thread_sync_node(&node_n, state, false);
  15096. ggml_graph_compute_thread_sync_task(&task_phase, state, false);
  15097. }
  15098. // check if we should stop
  15099. if (node_n >= cgraph->n_nodes) break;
  15100. /* INIT & COMPUTE */
  15101. struct ggml_tensor * node = cgraph->nodes[node_n];
  15102. const int n_tasks = ggml_get_n_tasks(node, n_threads, state->shared->n_threads);
  15103. struct ggml_compute_params params = {
  15104. /*.type =*/ GGML_TASK_TYPE_INIT,
  15105. /*.ith =*/ state->ith,
  15106. /*.nth =*/ n_tasks,
  15107. /*.wsize =*/ cplan->work_size,
  15108. /*.wdata =*/ cplan->work_data,
  15109. };
  15110. if (state->ith < n_tasks) {
  15111. if (GGML_OP_HAS_INIT[node->op]) {
  15112. ggml_compute_forward(&params, node);
  15113. }
  15114. }
  15115. if (atomic_fetch_sub(&state->shared->n_active, 1) == 1) {
  15116. task_phase = GGML_TASK_TYPE_COMPUTE;
  15117. atomic_store(&state->shared->n_active, n_threads);
  15118. atomic_store(&state->shared->node_task, task_phase);
  15119. }
  15120. else {
  15121. // TODO: this sched_yield can have significant impact on the performance - either positive or negative
  15122. // depending on the workload and the operating system.
  15123. // since it is not clear what is the best approach, it should potentially become user-configurable
  15124. // ref: https://github.com/ggerganov/ggml/issues/291
  15125. // UPD: adding the do_yield flag seems to resolve the issue universally
  15126. const bool do_yield = node_n < 0 || cgraph->nodes[node_n]->op == GGML_OP_MUL_MAT;
  15127. ggml_graph_compute_thread_sync_task(&task_phase, state, do_yield);
  15128. }
  15129. if (state->ith < n_tasks) {
  15130. params.type = GGML_TASK_TYPE_COMPUTE;
  15131. ggml_compute_forward(&params, node);
  15132. }
  15133. if (atomic_fetch_sub(&state->shared->n_active, 1) == 1) {
  15134. task_phase = GGML_TASK_TYPE_FINALIZE;
  15135. atomic_store(&state->shared->n_active, n_threads);
  15136. atomic_store(&state->shared->node_task, task_phase);
  15137. }
  15138. else {
  15139. ggml_graph_compute_thread_sync_task(&task_phase, state, false);
  15140. }
  15141. }
  15142. return 0;
  15143. }
  15144. struct ggml_cplan ggml_graph_plan(const struct ggml_cgraph * cgraph, int n_threads) {
  15145. if (n_threads <= 0) {
  15146. n_threads = GGML_DEFAULT_N_THREADS;
  15147. }
  15148. size_t work_size = 0;
  15149. struct ggml_cplan cplan;
  15150. memset(&cplan, 0, sizeof(struct ggml_cplan));
  15151. int max_tasks = 1;
  15152. // thread scheduling for the different operations + work buffer size estimation
  15153. for (int i = 0; i < cgraph->n_nodes; i++) {
  15154. struct ggml_tensor * node = cgraph->nodes[i];
  15155. const int n_tasks = ggml_get_n_tasks(node, n_threads, 1);
  15156. max_tasks = MAX(max_tasks, n_tasks);
  15157. size_t cur = 0;
  15158. switch (node->op) {
  15159. case GGML_OP_CPY:
  15160. case GGML_OP_DUP:
  15161. {
  15162. if (ggml_is_quantized(node->type)) {
  15163. cur = ggml_type_size(GGML_TYPE_F32) * node->ne[0] * n_tasks;
  15164. }
  15165. } break;
  15166. case GGML_OP_ADD:
  15167. case GGML_OP_ADD1:
  15168. {
  15169. if (ggml_is_quantized(node->src[0]->type)) {
  15170. cur = ggml_type_size(GGML_TYPE_F32) * node->src[0]->ne[0] * n_tasks;
  15171. }
  15172. } break;
  15173. case GGML_OP_ACC:
  15174. {
  15175. if (ggml_is_quantized(node->src[0]->type)) {
  15176. cur = ggml_type_size(GGML_TYPE_F32) * node->src[1]->ne[0] * n_tasks;
  15177. }
  15178. } break;
  15179. case GGML_OP_MUL_MAT:
  15180. {
  15181. const enum ggml_type vec_dot_type = type_traits[node->src[0]->type].vec_dot_type;
  15182. #if defined(GGML_USE_CLBLAST)
  15183. if (ggml_cl_can_mul_mat(node->src[0], node->src[1], node)) {
  15184. cur = ggml_cl_mul_mat_get_wsize(node->src[0], node->src[1], node);
  15185. } else
  15186. #endif
  15187. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  15188. if (ggml_compute_forward_mul_mat_use_blas(node)) {
  15189. if (node->src[0]->type != GGML_TYPE_F32) {
  15190. // here we need memory for fully dequantized matrix from src0
  15191. // take into account that src0 can be broadcasted into src1[2,3]
  15192. cur = ggml_type_size(GGML_TYPE_F32)
  15193. * node->src[0]->ne[0]*node->src[0]->ne[1]
  15194. * node->src[1]->ne[2]*node->src[1]->ne[3];
  15195. }
  15196. } else
  15197. #endif
  15198. if (node->src[1]->type != vec_dot_type) {
  15199. cur = ggml_row_size(vec_dot_type, ggml_nelements(node->src[1]));
  15200. }
  15201. } break;
  15202. case GGML_OP_MUL_MAT_ID:
  15203. {
  15204. cur = 0;
  15205. const struct ggml_tensor * src0 = node->src[0];
  15206. const struct ggml_tensor * src1 = node->src[1];
  15207. const enum ggml_type vec_dot_type = type_traits[src0->type].vec_dot_type;
  15208. if (src1->type != vec_dot_type) {
  15209. cur += ggml_row_size(vec_dot_type, ggml_nelements(src1));
  15210. }
  15211. const int n_as = src0->ne[2];
  15212. cur += GGML_PAD(cur, sizeof(int64_t)); // align
  15213. cur += n_as * sizeof(int64_t); // matrix_row_counts
  15214. cur += n_as * src1->ne[2] * sizeof(int64_t); // matrix_rows
  15215. } break;
  15216. case GGML_OP_OUT_PROD:
  15217. {
  15218. if (ggml_is_quantized(node->src[0]->type)) {
  15219. cur = ggml_type_size(GGML_TYPE_F32) * node->src[0]->ne[0] * n_tasks;
  15220. }
  15221. } break;
  15222. case GGML_OP_SOFT_MAX:
  15223. case GGML_OP_ROPE:
  15224. {
  15225. cur = ggml_type_size(GGML_TYPE_F32) * node->ne[0] * n_tasks;
  15226. } break;
  15227. case GGML_OP_CONV_TRANSPOSE_1D:
  15228. {
  15229. GGML_ASSERT(node->src[0]->ne[3] == 1);
  15230. GGML_ASSERT(node->src[1]->ne[2] == 1);
  15231. GGML_ASSERT(node->src[1]->ne[3] == 1);
  15232. const int64_t ne00 = node->src[0]->ne[0]; // K
  15233. const int64_t ne01 = node->src[0]->ne[1]; // Cout
  15234. const int64_t ne02 = node->src[0]->ne[2]; // Cin
  15235. const int64_t ne10 = node->src[1]->ne[0]; // L
  15236. const int64_t ne11 = node->src[1]->ne[1]; // Cin
  15237. if (node->src[0]->type == GGML_TYPE_F16 &&
  15238. node->src[1]->type == GGML_TYPE_F32) {
  15239. cur += sizeof(ggml_fp16_t)*ne00*ne01*ne02;
  15240. cur += sizeof(ggml_fp16_t)*ne10*ne11;
  15241. } else if (node->src[0]->type == GGML_TYPE_F32 &&
  15242. node->src[1]->type == GGML_TYPE_F32) {
  15243. cur += sizeof(float)*ne00*ne01*ne02;
  15244. cur += sizeof(float)*ne10*ne11;
  15245. } else {
  15246. GGML_ASSERT(false);
  15247. }
  15248. } break;
  15249. case GGML_OP_CONV_TRANSPOSE_2D:
  15250. {
  15251. const int64_t ne00 = node->src[0]->ne[0]; // W
  15252. const int64_t ne01 = node->src[0]->ne[1]; // H
  15253. const int64_t ne02 = node->src[0]->ne[2]; // Channels Out
  15254. const int64_t ne03 = node->src[0]->ne[3]; // Channels In
  15255. const int64_t ne10 = node->src[1]->ne[0]; // W
  15256. const int64_t ne11 = node->src[1]->ne[1]; // H
  15257. const int64_t ne12 = node->src[1]->ne[2]; // Channels In
  15258. cur += sizeof(ggml_fp16_t)*ne00*ne01*ne02*ne03;
  15259. cur += sizeof(ggml_fp16_t)*ne10*ne11*ne12;
  15260. } break;
  15261. case GGML_OP_FLASH_ATTN:
  15262. {
  15263. const int64_t ne11 = ggml_up(node->src[1]->ne[1], GGML_SOFT_MAX_UNROLL);
  15264. if (node->src[1]->type == GGML_TYPE_F32) {
  15265. cur = sizeof(float)*ne11*n_tasks; // TODO: this can become (n_tasks-1)
  15266. cur += sizeof(float)*ne11*n_tasks; // this is overestimated by x2
  15267. } else if (node->src[1]->type == GGML_TYPE_F16) {
  15268. cur = sizeof(float)*ne11*n_tasks; // TODO: this can become (n_tasks-1)
  15269. cur += sizeof(float)*ne11*n_tasks; // this is overestimated by x2
  15270. }
  15271. } break;
  15272. case GGML_OP_FLASH_FF:
  15273. {
  15274. if (node->src[1]->type == GGML_TYPE_F32) {
  15275. cur = sizeof(float)*node->src[1]->ne[1]*n_tasks; // TODO: this can become (n_tasks-1)
  15276. cur += sizeof(float)*node->src[1]->ne[1]*n_tasks; // this is overestimated by x2
  15277. } else if (node->src[1]->type == GGML_TYPE_F16) {
  15278. cur = sizeof(float)*node->src[1]->ne[1]*n_tasks; // TODO: this can become (n_tasks-1)
  15279. cur += sizeof(float)*node->src[1]->ne[1]*n_tasks; // this is overestimated by x2
  15280. }
  15281. } break;
  15282. case GGML_OP_FLASH_ATTN_BACK:
  15283. {
  15284. const int64_t D = node->src[0]->ne[0];
  15285. const int64_t ne11 = ggml_up(node->src[1]->ne[1], GGML_SOFT_MAX_UNROLL);
  15286. const int64_t mxDn = MAX(D, ne11) * 2; // *2 because of S and SM in ggml_compute_forward_flash_attn_back
  15287. if (node->src[1]->type == GGML_TYPE_F32) {
  15288. cur = sizeof(float)*mxDn*n_tasks; // TODO: this can become (n_tasks-1)
  15289. cur += sizeof(float)*mxDn*n_tasks; // this is overestimated by x2
  15290. } else if (node->src[1]->type == GGML_TYPE_F16) {
  15291. cur = sizeof(float)*mxDn*n_tasks; // TODO: this can become (n_tasks-1)
  15292. cur += sizeof(float)*mxDn*n_tasks; // this is overestimated by x2
  15293. }
  15294. } break;
  15295. case GGML_OP_CROSS_ENTROPY_LOSS:
  15296. {
  15297. cur = ggml_type_size(node->type)*(n_tasks + node->src[0]->ne[0]*n_tasks);
  15298. } break;
  15299. case GGML_OP_COUNT:
  15300. {
  15301. GGML_ASSERT(false);
  15302. } break;
  15303. default:
  15304. break;
  15305. }
  15306. work_size = MAX(work_size, cur);
  15307. }
  15308. if (work_size > 0) {
  15309. work_size += CACHE_LINE_SIZE*(n_threads - 1);
  15310. }
  15311. cplan.n_threads = MIN(max_tasks, n_threads);
  15312. cplan.work_size = work_size;
  15313. cplan.work_data = NULL;
  15314. return cplan;
  15315. }
  15316. enum ggml_status ggml_graph_compute(struct ggml_cgraph * cgraph, struct ggml_cplan * cplan) {
  15317. {
  15318. GGML_ASSERT(cplan);
  15319. GGML_ASSERT(cplan->n_threads > 0);
  15320. if (cplan->work_size > 0) {
  15321. GGML_ASSERT(cplan->work_data);
  15322. }
  15323. }
  15324. const int n_threads = cplan->n_threads;
  15325. struct ggml_compute_state_shared state_shared = {
  15326. /*.cgraph =*/ cgraph,
  15327. /*.cgraph_plan =*/ cplan,
  15328. /*.perf_node_start_cycles =*/ 0,
  15329. /*.perf_node_start_time_us =*/ 0,
  15330. /*.n_threads =*/ n_threads,
  15331. /*.n_active =*/ n_threads,
  15332. /*.node_n =*/ -1,
  15333. /*.node_task =*/ GGML_TASK_TYPE_FINALIZE,
  15334. /*.abort_callback =*/ NULL,
  15335. /*.abort_callback_data =*/ NULL,
  15336. };
  15337. struct ggml_compute_state * workers = alloca(sizeof(struct ggml_compute_state)*n_threads);
  15338. // create thread pool
  15339. if (n_threads > 1) {
  15340. for (int j = 1; j < n_threads; ++j) {
  15341. workers[j] = (struct ggml_compute_state) {
  15342. .thrd = 0,
  15343. .ith = j,
  15344. .shared = &state_shared,
  15345. .ec = GGML_STATUS_SUCCESS,
  15346. };
  15347. const int rc = ggml_thread_create(&workers[j].thrd, NULL, ggml_graph_compute_thread, &workers[j]);
  15348. GGML_ASSERT(rc == 0);
  15349. UNUSED(rc);
  15350. }
  15351. }
  15352. workers[0].ith = 0;
  15353. workers[0].shared = &state_shared;
  15354. workers[0].ec = GGML_STATUS_SUCCESS;
  15355. const int64_t perf_start_cycles = ggml_perf_cycles();
  15356. const int64_t perf_start_time_us = ggml_perf_time_us();
  15357. // this is a work thread too
  15358. ggml_graph_compute_thread(&workers[0]);
  15359. enum ggml_status compute_status = workers[0].ec;
  15360. // don't leave affinity set on the main thread
  15361. clear_numa_thread_affinity();
  15362. // join or kill thread pool
  15363. if (n_threads > 1) {
  15364. for (int j = 1; j < n_threads; j++) {
  15365. const int rc = ggml_thread_join(workers[j].thrd, NULL);
  15366. GGML_ASSERT(rc == 0);
  15367. if (workers[j].ec != GGML_STATUS_SUCCESS)
  15368. compute_status = workers[j].ec;
  15369. }
  15370. }
  15371. // performance stats (graph)
  15372. {
  15373. int64_t perf_cycles_cur = ggml_perf_cycles() - perf_start_cycles;
  15374. int64_t perf_time_us_cur = ggml_perf_time_us() - perf_start_time_us;
  15375. cgraph->perf_runs++;
  15376. cgraph->perf_cycles += perf_cycles_cur;
  15377. cgraph->perf_time_us += perf_time_us_cur;
  15378. GGML_PRINT_DEBUG("%s: perf (%d) - cpu = %.3f / %.3f ms, wall = %.3f / %.3f ms\n",
  15379. __func__, cgraph->perf_runs,
  15380. (double) perf_cycles_cur / (double) ggml_cycles_per_ms(),
  15381. (double) cgraph->perf_cycles / (double) ggml_cycles_per_ms() / (double) cgraph->perf_runs,
  15382. (double) perf_time_us_cur / 1000.0,
  15383. (double) cgraph->perf_time_us / 1000.0 / cgraph->perf_runs);
  15384. }
  15385. return compute_status;
  15386. }
  15387. enum ggml_status ggml_graph_compute_with_ctx(struct ggml_context * ctx, struct ggml_cgraph * cgraph, int n_threads) {
  15388. struct ggml_cplan cplan = ggml_graph_plan(cgraph, n_threads);
  15389. struct ggml_object * obj = ggml_new_object(ctx, GGML_OBJECT_TYPE_WORK_BUFFER, cplan.work_size);
  15390. cplan.work_data = (uint8_t *)ctx->mem_buffer + obj->offs;
  15391. return ggml_graph_compute(cgraph, &cplan);
  15392. }
  15393. struct ggml_tensor * ggml_graph_get_tensor(struct ggml_cgraph * cgraph, const char * name) {
  15394. for (int i = 0; i < cgraph->n_leafs; i++) {
  15395. struct ggml_tensor * leaf = cgraph->leafs[i];
  15396. if (strcmp(leaf->name, name) == 0) {
  15397. return leaf;
  15398. }
  15399. }
  15400. for (int i = 0; i < cgraph->n_nodes; i++) {
  15401. struct ggml_tensor * node = cgraph->nodes[i];
  15402. if (strcmp(node->name, name) == 0) {
  15403. return node;
  15404. }
  15405. }
  15406. return NULL;
  15407. }
  15408. static void ggml_graph_export_leaf(const struct ggml_tensor * tensor, FILE * fout) {
  15409. const int64_t * ne = tensor->ne;
  15410. const size_t * nb = tensor->nb;
  15411. fprintf(fout, "%-6s %-12s %8d %" PRId64 " %" PRId64 " %" PRId64 " %" PRId64 " %16zu %16zu %16zu %16zu %16p %32s\n",
  15412. ggml_type_name(tensor->type),
  15413. ggml_op_name (tensor->op),
  15414. ggml_n_dims(tensor),
  15415. ne[0], ne[1], ne[2], ne[3],
  15416. nb[0], nb[1], nb[2], nb[3],
  15417. tensor->data,
  15418. tensor->name);
  15419. }
  15420. static void ggml_graph_export_node(const struct ggml_tensor * tensor, const char * arg, FILE * fout) {
  15421. const int64_t * ne = tensor->ne;
  15422. const size_t * nb = tensor->nb;
  15423. fprintf(fout, "%-6s %-6s %-12s %8d %" PRId64 " %" PRId64 " %" PRId64 " %" PRId64 " %16zu %16zu %16zu %16zu %16p %32s\n",
  15424. arg,
  15425. ggml_type_name(tensor->type),
  15426. ggml_op_name (tensor->op),
  15427. ggml_n_dims(tensor),
  15428. ne[0], ne[1], ne[2], ne[3],
  15429. nb[0], nb[1], nb[2], nb[3],
  15430. tensor->data,
  15431. tensor->name);
  15432. }
  15433. void ggml_graph_export(const struct ggml_cgraph * cgraph, const char * fname) {
  15434. uint64_t size_eval = 0;
  15435. // compute size of intermediate results
  15436. // TODO: does not take into account scratch buffers !!!!
  15437. for (int i = 0; i < cgraph->n_nodes; ++i) {
  15438. size_eval += ggml_nbytes_pad(cgraph->nodes[i]);
  15439. }
  15440. // print
  15441. {
  15442. FILE * fout = stdout;
  15443. fprintf(fout, "\n");
  15444. fprintf(fout, "%-16s %8x\n", "magic", GGML_FILE_MAGIC);
  15445. fprintf(fout, "%-16s %8d\n", "version", GGML_FILE_VERSION);
  15446. fprintf(fout, "%-16s %8d\n", "leafs", cgraph->n_leafs);
  15447. fprintf(fout, "%-16s %8d\n", "nodes", cgraph->n_nodes);
  15448. fprintf(fout, "%-16s %" PRIu64 "\n", "eval", size_eval);
  15449. // header
  15450. fprintf(fout, "\n");
  15451. fprintf(fout, "%-6s %-12s %8s %8s %8s %8s %8s %16s %16s %16s %16s %16s %16s\n",
  15452. "TYPE", "OP", "NDIMS", "NE0", "NE1", "NE2", "NE3", "NB0", "NB1", "NB2", "NB3", "DATA", "NAME");
  15453. for (int i = 0; i < cgraph->n_leafs; ++i) {
  15454. ggml_graph_export_leaf(cgraph->leafs[i], fout);
  15455. GGML_ASSERT(cgraph->leafs[i]->op == GGML_OP_NONE);
  15456. GGML_ASSERT(cgraph->leafs[i]->src[0] == NULL);
  15457. GGML_ASSERT(cgraph->leafs[i]->src[1] == NULL);
  15458. }
  15459. // header
  15460. fprintf(fout, "\n");
  15461. fprintf(fout, "%-6s %-6s %-12s %8s %8s %8s %8s %8s %16s %16s %16s %16s %8s %16s %16s\n",
  15462. "ARG", "TYPE", "OP", "NDIMS", "NE0", "NE1", "NE2", "NE3", "NB0", "NB1", "NB2", "NB3", "NTASKS", "DATA", "NAME");
  15463. for (int i = 0; i < cgraph->n_nodes; ++i) {
  15464. ggml_graph_export_node(cgraph->nodes[i], "DST", fout);
  15465. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  15466. if (cgraph->nodes[i]->src[j]) {
  15467. ggml_graph_export_node(cgraph->nodes[i]->src[j], "SRC", fout);
  15468. }
  15469. }
  15470. fprintf(fout, "\n");
  15471. }
  15472. fprintf(fout, "\n");
  15473. }
  15474. // write binary data
  15475. {
  15476. FILE * fout = ggml_fopen(fname, "wb");
  15477. if (!fout) {
  15478. fprintf(stderr, "%s: failed to open %s\n", __func__, fname);
  15479. return;
  15480. }
  15481. // header
  15482. {
  15483. const uint32_t magic = GGML_FILE_MAGIC;
  15484. const uint32_t version = GGML_FILE_VERSION;
  15485. const uint32_t n_leafs = cgraph->n_leafs;
  15486. const uint32_t n_nodes = cgraph->n_nodes;
  15487. fwrite(&magic, sizeof(uint32_t), 1, fout);
  15488. fwrite(&version, sizeof(uint32_t), 1, fout);
  15489. fwrite(&n_leafs, sizeof(uint32_t), 1, fout);
  15490. fwrite(&n_nodes, sizeof(uint32_t), 1, fout);
  15491. fwrite(&size_eval, sizeof(uint64_t), 1, fout);
  15492. }
  15493. // leafs
  15494. {
  15495. for (int i = 0; i < cgraph->n_leafs; ++i) {
  15496. const struct ggml_tensor * tensor = cgraph->leafs[i];
  15497. const uint32_t type = tensor->type;
  15498. const uint32_t op = tensor->op;
  15499. fwrite(&type, sizeof(uint32_t), 1, fout);
  15500. fwrite(&op, sizeof(uint32_t), 1, fout);
  15501. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  15502. const uint64_t ne = tensor->ne[j];
  15503. const uint64_t nb = tensor->nb[j];
  15504. fwrite(&ne, sizeof(uint64_t), 1, fout);
  15505. fwrite(&nb, sizeof(uint64_t), 1, fout);
  15506. }
  15507. fwrite(tensor->name, sizeof(char), GGML_MAX_NAME, fout);
  15508. fwrite(tensor->op_params, sizeof(char), GGML_MAX_OP_PARAMS, fout);
  15509. // dump the data
  15510. // TODO: pad this to 32 byte boundary
  15511. {
  15512. const size_t size = ggml_nbytes(tensor);
  15513. fwrite(tensor->data, sizeof(char), size, fout);
  15514. }
  15515. }
  15516. }
  15517. // nodes
  15518. {
  15519. for (int i = 0; i < cgraph->n_nodes; ++i) {
  15520. const struct ggml_tensor * tensor = cgraph->nodes[i];
  15521. const uint32_t type = tensor->type;
  15522. const uint32_t op = tensor->op;
  15523. fwrite(&type, sizeof(uint32_t), 1, fout);
  15524. fwrite(&op, sizeof(uint32_t), 1, fout);
  15525. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  15526. const uint64_t ne = tensor->ne[j];
  15527. const uint64_t nb = tensor->nb[j];
  15528. fwrite(&ne, sizeof(uint64_t), 1, fout);
  15529. fwrite(&nb, sizeof(uint64_t), 1, fout);
  15530. }
  15531. fwrite(tensor->name, sizeof(char), GGML_MAX_NAME, fout);
  15532. fwrite(tensor->op_params, sizeof(char), GGML_MAX_OP_PARAMS, fout);
  15533. // output the op arguments
  15534. {
  15535. struct ggml_tensor * args[GGML_MAX_SRC] = { NULL };
  15536. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  15537. args[j] = tensor->src[j];
  15538. }
  15539. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  15540. if (args[j]) {
  15541. int32_t idx = -1;
  15542. // check if leaf
  15543. {
  15544. for (int k = 0; k < cgraph->n_leafs; ++k) {
  15545. if (args[j] == cgraph->leafs[k]) {
  15546. idx = k;
  15547. break;
  15548. }
  15549. }
  15550. }
  15551. // check if node
  15552. if (idx == -1) {
  15553. for (int k = 0; k < cgraph->n_nodes; ++k) {
  15554. if (args[j] == cgraph->nodes[k]) {
  15555. idx = cgraph->n_leafs + k;
  15556. break;
  15557. }
  15558. }
  15559. }
  15560. if (idx == -1) {
  15561. fprintf(stderr, "%s: failed to find tensor, arg = %d, node = %d\n", __func__, j, i);
  15562. fclose(fout);
  15563. return;
  15564. }
  15565. fwrite(&idx, sizeof(int32_t), 1, fout);
  15566. } else {
  15567. const int32_t nul = -1;
  15568. fwrite(&nul, sizeof(int32_t), 1, fout);
  15569. }
  15570. }
  15571. }
  15572. }
  15573. }
  15574. fclose(fout);
  15575. }
  15576. }
  15577. struct ggml_cgraph * ggml_graph_import(const char * fname, struct ggml_context ** ctx_data, struct ggml_context ** ctx_eval) {
  15578. assert(*ctx_data == NULL);
  15579. assert(*ctx_eval == NULL);
  15580. struct ggml_cgraph * result = NULL;
  15581. struct ggml_tensor * data = NULL;
  15582. // read file into data
  15583. {
  15584. FILE * fin = ggml_fopen(fname, "rb");
  15585. if (!fin) {
  15586. fprintf(stderr, "%s: failed to open %s\n", __func__, fname);
  15587. return result;
  15588. }
  15589. size_t fsize = 0;
  15590. fseek(fin, 0, SEEK_END);
  15591. fsize = ftell(fin);
  15592. fseek(fin, 0, SEEK_SET);
  15593. // create the data context
  15594. {
  15595. const size_t overhead = 1*ggml_tensor_overhead();
  15596. struct ggml_init_params params = {
  15597. .mem_size = fsize + overhead,
  15598. .mem_buffer = NULL,
  15599. .no_alloc = false,
  15600. };
  15601. *ctx_data = ggml_init(params);
  15602. if (!*ctx_data) {
  15603. fprintf(stderr, "%s: failed to create ggml context\n", __func__);
  15604. fclose(fin);
  15605. return result;
  15606. }
  15607. }
  15608. data = ggml_new_tensor_1d(*ctx_data, GGML_TYPE_I8, fsize);
  15609. {
  15610. const size_t ret = fread(data->data, sizeof(char), fsize, fin);
  15611. if (ret != fsize) {
  15612. fprintf(stderr, "%s: failed to read %s\n", __func__, fname);
  15613. fclose(fin);
  15614. return result;
  15615. }
  15616. }
  15617. fclose(fin);
  15618. }
  15619. // populate result
  15620. {
  15621. char * ptr = (char *) data->data;
  15622. const uint32_t magic = *(const uint32_t *) ptr; ptr += sizeof(magic);
  15623. if (magic != GGML_FILE_MAGIC) {
  15624. fprintf(stderr, "%s: invalid magic number, got %08x\n", __func__, magic);
  15625. return result;
  15626. }
  15627. const uint32_t version = *(const uint32_t *) ptr; ptr += sizeof(version);
  15628. if (version != GGML_FILE_VERSION) {
  15629. fprintf(stderr, "%s: invalid version number\n", __func__);
  15630. return result;
  15631. }
  15632. const uint32_t n_leafs = *(const uint32_t *) ptr; ptr += sizeof(n_leafs);
  15633. const uint32_t n_nodes = *(const uint32_t *) ptr; ptr += sizeof(n_nodes);
  15634. const uint64_t size_eval = *(const uint64_t *) ptr; ptr += sizeof(size_eval);
  15635. const int graph_size = MAX(n_leafs, n_nodes);
  15636. // create the data context
  15637. {
  15638. const size_t overhead = (n_leafs + n_nodes)*ggml_tensor_overhead() + ggml_graph_overhead_custom(graph_size, false);
  15639. struct ggml_init_params params = {
  15640. .mem_size = size_eval + overhead,
  15641. .mem_buffer = NULL,
  15642. .no_alloc = true,
  15643. };
  15644. *ctx_eval = ggml_init(params);
  15645. if (!*ctx_eval) {
  15646. fprintf(stderr, "%s: failed to create ggml context\n", __func__);
  15647. return result;
  15648. }
  15649. }
  15650. result = ggml_new_graph_custom(*ctx_eval, graph_size, false);
  15651. result->n_leafs = n_leafs;
  15652. result->n_nodes = n_nodes;
  15653. // leafs
  15654. {
  15655. uint32_t type;
  15656. uint32_t op;
  15657. for (uint32_t i = 0; i < n_leafs; ++i) {
  15658. type = *(const uint32_t *) ptr; ptr += sizeof(type);
  15659. op = *(const uint32_t *) ptr; ptr += sizeof(op);
  15660. int64_t ne[GGML_MAX_DIMS];
  15661. size_t nb[GGML_MAX_DIMS];
  15662. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  15663. uint64_t ne_cur;
  15664. uint64_t nb_cur;
  15665. ne_cur = *(const uint64_t *) ptr; ptr += sizeof(ne_cur);
  15666. nb_cur = *(const uint64_t *) ptr; ptr += sizeof(nb_cur);
  15667. ne[j] = ne_cur;
  15668. nb[j] = nb_cur;
  15669. }
  15670. struct ggml_tensor * tensor = ggml_new_tensor(*ctx_eval, (enum ggml_type) type, GGML_MAX_DIMS, ne);
  15671. tensor->op = (enum ggml_op) op;
  15672. memcpy(tensor->name, ptr, GGML_MAX_NAME); ptr += GGML_MAX_NAME;
  15673. memcpy(tensor->op_params, ptr, GGML_MAX_OP_PARAMS); ptr += GGML_MAX_OP_PARAMS;
  15674. tensor->data = (void *) ptr;
  15675. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  15676. tensor->nb[j] = nb[j];
  15677. }
  15678. result->leafs[i] = tensor;
  15679. ptr += ggml_nbytes(tensor);
  15680. fprintf(stderr, "%s: loaded leaf %u: '%16s', %9zu bytes\n", __func__, i, tensor->name, ggml_nbytes(tensor));
  15681. }
  15682. }
  15683. ggml_set_no_alloc(*ctx_eval, false);
  15684. // nodes
  15685. {
  15686. uint32_t type;
  15687. uint32_t op;
  15688. for (uint32_t i = 0; i < n_nodes; ++i) {
  15689. type = *(const uint32_t *) ptr; ptr += sizeof(type);
  15690. op = *(const uint32_t *) ptr; ptr += sizeof(op);
  15691. enum ggml_op eop = (enum ggml_op) op;
  15692. int64_t ne[GGML_MAX_DIMS];
  15693. size_t nb[GGML_MAX_DIMS];
  15694. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  15695. uint64_t ne_cur;
  15696. uint64_t nb_cur;
  15697. ne_cur = *(const uint64_t *) ptr; ptr += sizeof(ne_cur);
  15698. nb_cur = *(const uint64_t *) ptr; ptr += sizeof(nb_cur);
  15699. ne[j] = ne_cur;
  15700. nb[j] = nb_cur;
  15701. }
  15702. const char * ptr_name = ptr; ptr += GGML_MAX_NAME;
  15703. const char * ptr_op_params = ptr; ptr += GGML_MAX_OP_PARAMS;
  15704. const int32_t * ptr_arg_idx = (const int32_t *) ptr; ptr += GGML_MAX_SRC*sizeof(int32_t);
  15705. struct ggml_tensor * args[GGML_MAX_SRC] = { NULL };
  15706. // parse args
  15707. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  15708. const int32_t arg_idx = ptr_arg_idx[j];
  15709. if (arg_idx == -1) {
  15710. continue;
  15711. }
  15712. if (arg_idx < result->n_leafs) {
  15713. args[j] = result->leafs[arg_idx];
  15714. } else {
  15715. args[j] = result->nodes[arg_idx - result->n_leafs];
  15716. }
  15717. }
  15718. // create the tensor
  15719. // "view" operations are handled differently
  15720. // TODO: handle inplace ops - currently a copy is always made
  15721. struct ggml_tensor * tensor = NULL;
  15722. switch (eop) {
  15723. // TODO: implement other view ops
  15724. case GGML_OP_RESHAPE:
  15725. {
  15726. tensor = ggml_reshape_4d(*ctx_eval, args[0], ne[0], ne[1], ne[2], ne[3]);
  15727. } break;
  15728. case GGML_OP_VIEW:
  15729. {
  15730. tensor = ggml_view_4d(*ctx_eval, args[0], ne[0], ne[1], ne[2], ne[3], 0, 0, 0, 0);
  15731. size_t offs;
  15732. memcpy(&offs, ptr_op_params, sizeof(offs));
  15733. tensor->data = ((char *) tensor->data) + offs;
  15734. } break;
  15735. case GGML_OP_TRANSPOSE:
  15736. {
  15737. tensor = ggml_transpose(*ctx_eval, args[0]);
  15738. } break;
  15739. case GGML_OP_PERMUTE:
  15740. {
  15741. tensor = ggml_view_4d(*ctx_eval, args[0], ne[0], ne[1], ne[2], ne[3], 0, 0, 0, 0);
  15742. } break;
  15743. default:
  15744. {
  15745. tensor = ggml_new_tensor(*ctx_eval, (enum ggml_type) type, GGML_MAX_DIMS, ne);
  15746. tensor->op = eop;
  15747. } break;
  15748. }
  15749. memcpy(tensor->name, ptr_name, GGML_MAX_NAME);
  15750. memcpy(tensor->op_params, ptr_op_params, GGML_MAX_OP_PARAMS);
  15751. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  15752. tensor->nb[j] = nb[j];
  15753. }
  15754. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  15755. tensor->src[j] = args[j];
  15756. }
  15757. result->nodes[i] = tensor;
  15758. fprintf(stderr, "%s: loaded node %u: '%16s', %9zu bytes\n", __func__, i, tensor->name, ggml_nbytes(tensor));
  15759. }
  15760. }
  15761. }
  15762. return result;
  15763. }
  15764. void ggml_graph_print(const struct ggml_cgraph * cgraph) {
  15765. int64_t perf_total_per_op_us[GGML_OP_COUNT] = {0};
  15766. GGML_PRINT("=== GRAPH ===\n");
  15767. GGML_PRINT("n_nodes = %d\n", cgraph->n_nodes);
  15768. for (int i = 0; i < cgraph->n_nodes; i++) {
  15769. struct ggml_tensor * node = cgraph->nodes[i];
  15770. perf_total_per_op_us[node->op] += MAX(1, node->perf_time_us);
  15771. GGML_PRINT(" - %3d: [ %5" PRId64 ", %5" PRId64 ", %5" PRId64 "] %16s %s (%3d) cpu = %7.3f / %7.3f ms, wall = %7.3f / %7.3f ms\n",
  15772. i,
  15773. node->ne[0], node->ne[1], node->ne[2],
  15774. ggml_op_name(node->op), (node->flags & GGML_TENSOR_FLAG_PARAM) ? "x" : node->grad ? "g" : " ", node->perf_runs,
  15775. (double) node->perf_cycles / (double) ggml_cycles_per_ms(),
  15776. (double) node->perf_cycles / (double) ggml_cycles_per_ms() / (double) node->perf_runs,
  15777. (double) node->perf_time_us / 1000.0,
  15778. (double) node->perf_time_us / 1000.0 / node->perf_runs);
  15779. }
  15780. GGML_PRINT("n_leafs = %d\n", cgraph->n_leafs);
  15781. for (int i = 0; i < cgraph->n_leafs; i++) {
  15782. struct ggml_tensor * node = cgraph->leafs[i];
  15783. GGML_PRINT(" - %3d: [ %5" PRId64 ", %5" PRId64 "] %8s %16s\n",
  15784. i,
  15785. node->ne[0], node->ne[1],
  15786. ggml_op_name(node->op),
  15787. ggml_get_name(node));
  15788. }
  15789. for (int i = 0; i < GGML_OP_COUNT; i++) {
  15790. if (perf_total_per_op_us[i] == 0) {
  15791. continue;
  15792. }
  15793. GGML_PRINT("perf_total_per_op_us[%16s] = %7.3f ms\n", ggml_op_name(i), (double) perf_total_per_op_us[i] / 1000.0);
  15794. }
  15795. GGML_PRINT("========================================\n");
  15796. }
  15797. // check if node is part of the graph
  15798. static bool ggml_graph_find(const struct ggml_cgraph * cgraph, const struct ggml_tensor * node) {
  15799. if (cgraph == NULL) {
  15800. return true;
  15801. }
  15802. for (int i = 0; i < cgraph->n_nodes; i++) {
  15803. if (cgraph->nodes[i] == node) {
  15804. return true;
  15805. }
  15806. }
  15807. return false;
  15808. }
  15809. static struct ggml_tensor * ggml_graph_get_parent(const struct ggml_cgraph * cgraph, const struct ggml_tensor * node) {
  15810. for (int i = 0; i < cgraph->n_nodes; i++) {
  15811. struct ggml_tensor * parent = cgraph->nodes[i];
  15812. if (parent->grad == node) {
  15813. return parent;
  15814. }
  15815. }
  15816. return NULL;
  15817. }
  15818. static void ggml_graph_dump_dot_node_edge(FILE * fp, const struct ggml_cgraph * gb, struct ggml_tensor * node, struct ggml_tensor * parent, const char * label) {
  15819. struct ggml_tensor * gparent = ggml_graph_get_parent(gb, node);
  15820. struct ggml_tensor * gparent0 = ggml_graph_get_parent(gb, parent);
  15821. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ arrowhead = %s; style = %s; label = \"%s\"; ]\n",
  15822. gparent0 ? (void *) gparent0 : (void *) parent,
  15823. gparent0 ? "g" : "x",
  15824. gparent ? (void *) gparent : (void *) node,
  15825. gparent ? "g" : "x",
  15826. gparent ? "empty" : "vee",
  15827. gparent ? "dashed" : "solid",
  15828. label);
  15829. }
  15830. static void ggml_graph_dump_dot_leaf_edge(FILE * fp, struct ggml_tensor * node, struct ggml_tensor * parent, const char * label) {
  15831. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ label = \"%s\"; ]\n",
  15832. (void *) parent, "x",
  15833. (void *) node, "x",
  15834. label);
  15835. }
  15836. void ggml_graph_dump_dot(const struct ggml_cgraph * gb, const struct ggml_cgraph * gf, const char * filename) {
  15837. char color[16];
  15838. FILE * fp = ggml_fopen(filename, "w");
  15839. GGML_ASSERT(fp);
  15840. fprintf(fp, "digraph G {\n");
  15841. fprintf(fp, " newrank = true;\n");
  15842. fprintf(fp, " rankdir = LR;\n");
  15843. for (int i = 0; i < gb->n_nodes; i++) {
  15844. struct ggml_tensor * node = gb->nodes[i];
  15845. if (ggml_graph_get_parent(gb, node) != NULL) {
  15846. continue;
  15847. }
  15848. if (node->flags & GGML_TENSOR_FLAG_PARAM) {
  15849. snprintf(color, sizeof(color), "yellow");
  15850. } else if (node->grad) {
  15851. if (ggml_graph_find(gf, node)) {
  15852. snprintf(color, sizeof(color), "green");
  15853. } else {
  15854. snprintf(color, sizeof(color), "lightblue");
  15855. }
  15856. } else {
  15857. snprintf(color, sizeof(color), "white");
  15858. }
  15859. fprintf(fp, " \"%p\" [ "
  15860. "style = filled; fillcolor = %s; shape = record; "
  15861. "label=\"",
  15862. (void *) node, color);
  15863. if (strlen(node->name) > 0) {
  15864. fprintf(fp, "%s (%s)|", node->name, ggml_type_name(node->type));
  15865. } else {
  15866. fprintf(fp, "(%s)|", ggml_type_name(node->type));
  15867. }
  15868. if (ggml_is_matrix(node)) {
  15869. fprintf(fp, "%d [%" PRId64 ", %" PRId64 "] | <x>%s", i, node->ne[0], node->ne[1], ggml_op_symbol(node->op));
  15870. } else {
  15871. fprintf(fp, "%d [%" PRId64 ", %" PRId64 ", %" PRId64 "] | <x>%s", i, node->ne[0], node->ne[1], node->ne[2], ggml_op_symbol(node->op));
  15872. }
  15873. if (node->grad) {
  15874. fprintf(fp, " | <g>%s\"; ]\n", ggml_op_symbol(node->grad->op));
  15875. } else {
  15876. fprintf(fp, "\"; ]\n");
  15877. }
  15878. }
  15879. for (int i = 0; i < gb->n_leafs; i++) {
  15880. struct ggml_tensor * node = gb->leafs[i];
  15881. snprintf(color, sizeof(color), "pink");
  15882. fprintf(fp, " \"%p\" [ "
  15883. "style = filled; fillcolor = %s; shape = record; "
  15884. "label=\"<x>",
  15885. (void *) node, color);
  15886. if (strlen(node->name) > 0) {
  15887. fprintf(fp, "%s (%s)|", node->name, ggml_type_name(node->type));
  15888. } else {
  15889. fprintf(fp, "(%s)|", ggml_type_name(node->type));
  15890. }
  15891. fprintf(fp, "CONST %d [%" PRId64 ", %" PRId64 "]", i, node->ne[0], node->ne[1]);
  15892. if (ggml_nelements(node) < 5) {
  15893. fprintf(fp, " | (");
  15894. for (int j = 0; j < ggml_nelements(node); j++) {
  15895. if (node->type == GGML_TYPE_I8 || node->type == GGML_TYPE_I16 || node->type == GGML_TYPE_I32) {
  15896. fprintf(fp, "%d", ggml_get_i32_1d(node, j));
  15897. }
  15898. else if (node->type == GGML_TYPE_F32 || node->type == GGML_TYPE_F16) {
  15899. fprintf(fp, "%.1e", (double)ggml_get_f32_1d(node, j));
  15900. }
  15901. else {
  15902. fprintf(fp, "#");
  15903. }
  15904. if (j < ggml_nelements(node) - 1) {
  15905. fprintf(fp, ", ");
  15906. }
  15907. }
  15908. fprintf(fp, ")");
  15909. }
  15910. fprintf(fp, "\"; ]\n");
  15911. }
  15912. for (int i = 0; i < gb->n_nodes; i++) {
  15913. struct ggml_tensor * node = gb->nodes[i];
  15914. for (int j = 0; j < GGML_MAX_SRC; j++) {
  15915. if (node->src[j]) {
  15916. char label[16];
  15917. snprintf(label, sizeof(label), "src %d", j);
  15918. ggml_graph_dump_dot_node_edge(fp, gb, node, node->src[j], label);
  15919. }
  15920. }
  15921. }
  15922. for (int i = 0; i < gb->n_leafs; i++) {
  15923. struct ggml_tensor * node = gb->leafs[i];
  15924. for (int j = 0; j < GGML_MAX_SRC; j++) {
  15925. if (node->src[j]) {
  15926. char label[16];
  15927. snprintf(label, sizeof(label), "src %d", j);
  15928. ggml_graph_dump_dot_leaf_edge(fp, node, node->src[j], label);
  15929. }
  15930. }
  15931. }
  15932. fprintf(fp, "}\n");
  15933. fclose(fp);
  15934. GGML_PRINT("%s: dot -Tpng %s -o %s.png && open %s.png\n", __func__, filename, filename, filename);
  15935. }
  15936. ////////////////////////////////////////////////////////////////////////////////
  15937. static void ggml_opt_set_params(int np, struct ggml_tensor * const ps[], const float * x) {
  15938. int i = 0;
  15939. for (int p = 0; p < np; ++p) {
  15940. const int64_t ne = ggml_nelements(ps[p]) ;
  15941. // TODO: add function to set tensor from array
  15942. for (int64_t j = 0; j < ne; ++j) {
  15943. ggml_set_f32_1d(ps[p], j, x[i++]);
  15944. }
  15945. }
  15946. }
  15947. static void ggml_opt_get_params(int np, struct ggml_tensor * const ps[], float * x) {
  15948. int i = 0;
  15949. for (int p = 0; p < np; ++p) {
  15950. const int64_t ne = ggml_nelements(ps[p]) ;
  15951. // TODO: add function to get all elements at once
  15952. for (int64_t j = 0; j < ne; ++j) {
  15953. x[i++] = ggml_get_f32_1d(ps[p], j);
  15954. }
  15955. }
  15956. }
  15957. static void ggml_opt_get_grad(int np, struct ggml_tensor * const ps[], float * g) {
  15958. int64_t i = 0;
  15959. for (int p = 0; p < np; ++p) {
  15960. const int64_t ne = ggml_nelements(ps[p]) ;
  15961. // TODO: add function to get all elements at once
  15962. for (int64_t j = 0; j < ne; ++j) {
  15963. g[i++] = ggml_get_f32_1d(ps[p]->grad, j);
  15964. }
  15965. }
  15966. }
  15967. static void ggml_opt_acc_grad(int np, struct ggml_tensor * const ps[], float * g, float scale) {
  15968. int64_t i = 0;
  15969. for (int p = 0; p < np; ++p) {
  15970. const int64_t ne = ggml_nelements(ps[p]) ;
  15971. // TODO: add function to get all elements at once
  15972. for (int64_t j = 0; j < ne; ++j) {
  15973. g[i++] += ggml_get_f32_1d(ps[p]->grad, j) * scale;
  15974. }
  15975. }
  15976. }
  15977. //
  15978. // Using AdamW - ref: https://arxiv.org/pdf/1711.05101v3.pdf
  15979. //
  15980. // (Original Adam - ref: https://arxiv.org/pdf/1412.6980.pdf)
  15981. //
  15982. static enum ggml_opt_result ggml_opt_adam(
  15983. struct ggml_context * ctx,
  15984. struct ggml_opt_context * opt,
  15985. struct ggml_opt_params params,
  15986. struct ggml_tensor * f,
  15987. struct ggml_cgraph * gf,
  15988. struct ggml_cgraph * gb,
  15989. ggml_opt_callback callback,
  15990. void * callback_data) {
  15991. GGML_ASSERT(ggml_is_scalar(f));
  15992. // these will store the parameters we want to optimize
  15993. struct ggml_tensor * ps[GGML_MAX_PARAMS];
  15994. int np = 0;
  15995. int64_t nx = 0;
  15996. for (int i = 0; i < gf->n_nodes; ++i) {
  15997. if (gf->nodes[i]->flags & GGML_TENSOR_FLAG_PARAM) {
  15998. GGML_PRINT_DEBUG("found param %d: grad->op = %d\n", np, gf->nodes[i]->grad->op);
  15999. GGML_ASSERT(np < GGML_MAX_PARAMS);
  16000. ps[np++] = gf->nodes[i];
  16001. nx += ggml_nelements(gf->nodes[i]);
  16002. }
  16003. }
  16004. if ((opt->params.type != params.type) || (opt->nx != nx) || (opt->params.past != params.past)) {
  16005. int iter = opt->iter;
  16006. ggml_opt_init(opt->ctx, opt, params, nx);
  16007. opt->iter = iter;
  16008. }
  16009. // constants
  16010. float sched = params.adam.sched;
  16011. const float alpha = params.adam.alpha;
  16012. const float decay = params.adam.decay * alpha;
  16013. const float beta1 = params.adam.beta1;
  16014. const float beta2 = params.adam.beta2;
  16015. const float eps = params.adam.eps;
  16016. const float gclip = params.adam.gclip;
  16017. const int decay_min_ndim = params.adam.decay_min_ndim;
  16018. const int n_accum = MAX(1, params.n_gradient_accumulation);
  16019. const float accum_norm = 1.0f / (float) n_accum;
  16020. float * g = opt->adam.g->data; // gradients
  16021. float * m = opt->adam.m->data; // first moment
  16022. float * v = opt->adam.v->data; // second moment
  16023. float * pf = params.past > 0 ? opt->adam.pf->data : NULL; // past function values
  16024. struct ggml_cplan cplan = ggml_graph_plan(gb, params.n_threads);
  16025. struct ggml_object * obj = ggml_new_object(ctx, GGML_OBJECT_TYPE_WORK_BUFFER, cplan.work_size);
  16026. cplan.work_data = (uint8_t *)ctx->mem_buffer + obj->offs;
  16027. bool cancel = false;
  16028. // compute the function value
  16029. float fx = 0;
  16030. ggml_set_zero(opt->adam.g);
  16031. for (int accum_step = 0; accum_step < n_accum; ++accum_step) {
  16032. if (callback) {
  16033. callback(callback_data, accum_step, &sched, &cancel);
  16034. if (cancel) {
  16035. return GGML_OPT_RESULT_CANCEL;
  16036. }
  16037. }
  16038. // ggml_graph_reset (gf);
  16039. ggml_set_f32 (f->grad, 1.0f);
  16040. ggml_graph_compute(gb, &cplan);
  16041. ggml_opt_acc_grad(np, ps, g, accum_norm);
  16042. fx += ggml_get_f32_1d(f, 0);
  16043. }
  16044. fx *= accum_norm;
  16045. opt->adam.fx_prev = fx;
  16046. opt->adam.fx_best = opt->adam.fx_prev;
  16047. if (pf) {
  16048. pf[opt->iter % params.past] = opt->adam.fx_prev;
  16049. }
  16050. opt->loss_before = opt->adam.fx_prev;
  16051. opt->loss_after = opt->adam.fx_prev;
  16052. // initialize
  16053. if (opt->just_initialized) {
  16054. opt->adam.n_no_improvement = 0;
  16055. opt->just_initialized = false;
  16056. }
  16057. float * fx_best = &opt->adam.fx_best;
  16058. float * fx_prev = &opt->adam.fx_prev;
  16059. int * n_no_improvement = &opt->adam.n_no_improvement;
  16060. int iter0 = opt->iter;
  16061. // run the optimizer
  16062. for (int t = 0; t < params.adam.n_iter; ++t) {
  16063. opt->iter = iter0 + t + 1;
  16064. GGML_PRINT_DEBUG ("=== iter %d ===\n", t);
  16065. GGML_PRINT_DEBUG ("f = %10.6f\n", ggml_get_f32_1d(f, 0));
  16066. GGML_PRINT_DEBUG_5("df/dx0 = %10.6f\n", ggml_get_f32_1d(ps[0]->grad, 0));
  16067. GGML_PRINT_DEBUG_5("df/dx1 = %10.6f\n", ggml_get_f32_1d(ps[1]->grad, 0));
  16068. for (int i = 0; i < np; ++i) {
  16069. GGML_PRINT_DEBUG("param %d: %10.6f, g = %10.6f\n", i,
  16070. ggml_get_f32_1d(ps[i], 0), ggml_get_f32_1d(ps[i]->grad, 0));
  16071. }
  16072. const int64_t t_start_wall = ggml_time_us();
  16073. const int64_t t_start_cpu = ggml_cycles();
  16074. UNUSED(t_start_wall);
  16075. UNUSED(t_start_cpu);
  16076. {
  16077. float gnorm = 1.0f;
  16078. if (gclip > 0.0f) {
  16079. // gradient clipping
  16080. ggml_float sum = 0.0;
  16081. for (int64_t i = 0; i < nx; ++i) {
  16082. sum += (ggml_float)(g[i]*g[i]);
  16083. }
  16084. ggml_float norm = sqrt(sum);
  16085. if (norm > (ggml_float) gclip) {
  16086. gnorm = (float) ((ggml_float) gclip / norm);
  16087. }
  16088. }
  16089. const float beta1h = alpha*sched/(1.0f - powf(beta1, opt->iter));
  16090. const float beta2h = 1.0f/(1.0f - powf(beta2, opt->iter));
  16091. int64_t i = 0;
  16092. for (int p = 0; p < np; ++p) {
  16093. const int64_t ne = ggml_nelements(ps[p]);
  16094. const float p_decay = ((ggml_n_dims(ps[p]) >= decay_min_ndim) ? decay : 0.0f) * sched;
  16095. for (int64_t j = 0; j < ne; ++j) {
  16096. float x = ggml_get_f32_1d(ps[p], j);
  16097. float g_ = g[i]*gnorm;
  16098. m[i] = m[i]*beta1 + g_*(1.0f - beta1);
  16099. v[i] = v[i]*beta2 + g_*g_*(1.0f - beta2);
  16100. float mh = m[i]*beta1h;
  16101. float vh = v[i]*beta2h;
  16102. vh = sqrtf(vh) + eps;
  16103. x = x*(1.0f - p_decay) - mh/vh;
  16104. ggml_set_f32_1d(ps[p], j, x);
  16105. ++i;
  16106. }
  16107. }
  16108. }
  16109. fx = 0;
  16110. ggml_set_zero(opt->adam.g);
  16111. for (int accum_step = 0; accum_step < n_accum; ++accum_step) {
  16112. if (callback) {
  16113. callback(callback_data, accum_step, &sched, &cancel);
  16114. if (cancel) {
  16115. return GGML_OPT_RESULT_CANCEL;;
  16116. }
  16117. }
  16118. // ggml_graph_reset (gf);
  16119. ggml_set_f32 (f->grad, 1.0f);
  16120. ggml_graph_compute(gb, &cplan);
  16121. ggml_opt_acc_grad(np, ps, g, accum_norm);
  16122. fx += ggml_get_f32_1d(f, 0);
  16123. }
  16124. fx *= accum_norm;
  16125. opt->loss_after = fx;
  16126. // check convergence
  16127. if (fabsf(fx - fx_prev[0])/fx < params.adam.eps_f) {
  16128. GGML_PRINT_DEBUG("converged\n");
  16129. return GGML_OPT_RESULT_OK;
  16130. }
  16131. // delta-based convergence test
  16132. if (pf != NULL) {
  16133. // need at least params.past iterations to start checking for convergence
  16134. if (params.past <= iter0 + t) {
  16135. const float rate = (pf[(iter0 + t)%params.past] - fx)/fx;
  16136. if (fabsf(rate) < params.delta) {
  16137. return GGML_OPT_RESULT_OK;
  16138. }
  16139. }
  16140. pf[(iter0 + t)%params.past] = fx;
  16141. }
  16142. // check for improvement
  16143. if (params.max_no_improvement > 0) {
  16144. if (fx_best[0] > fx) {
  16145. fx_best[0] = fx;
  16146. n_no_improvement[0] = 0;
  16147. } else {
  16148. ++n_no_improvement[0];
  16149. if (n_no_improvement[0] >= params.max_no_improvement) {
  16150. return GGML_OPT_RESULT_OK;
  16151. }
  16152. }
  16153. }
  16154. fx_prev[0] = fx;
  16155. {
  16156. const int64_t t_end_cpu = ggml_cycles();
  16157. GGML_PRINT_DEBUG("time iter: %5.3f s\n", ((float)(t_end_cpu - t_start_cpu))/CLOCKS_PER_SEC);
  16158. UNUSED(t_end_cpu);
  16159. const int64_t t_end_wall = ggml_time_us();
  16160. GGML_PRINT_DEBUG("wall time iter: %5.3f s\n", (t_end_wall - t_start_wall)/1e6);
  16161. UNUSED(t_end_wall);
  16162. }
  16163. }
  16164. return GGML_OPT_RESULT_DID_NOT_CONVERGE;
  16165. }
  16166. //
  16167. // L-BFGS
  16168. //
  16169. // the L-BFGS implementation below is based on the following implementation:
  16170. //
  16171. // https://github.com/chokkan/liblbfgs
  16172. //
  16173. struct ggml_lbfgs_iteration_data {
  16174. float alpha;
  16175. float ys;
  16176. float * s;
  16177. float * y;
  16178. };
  16179. static enum ggml_opt_result linesearch_backtracking(
  16180. const struct ggml_opt_params * params,
  16181. int nx,
  16182. float * x,
  16183. float * fx,
  16184. float * g,
  16185. float * d,
  16186. float * step,
  16187. const float * xp,
  16188. struct ggml_tensor * f,
  16189. struct ggml_cgraph * gb,
  16190. struct ggml_cplan * cplan,
  16191. const int np,
  16192. struct ggml_tensor * ps[],
  16193. bool * cancel,
  16194. ggml_opt_callback callback,
  16195. void * callback_data) {
  16196. int count = 0;
  16197. float width = 0.0f;
  16198. float dg = 0.0f;
  16199. float finit = 0.0f;
  16200. float dginit = 0.0f;
  16201. float dgtest = 0.0f;
  16202. const float dec = 0.5f;
  16203. const float inc = 2.1f;
  16204. const int n_accum = MAX(1, params->n_gradient_accumulation);
  16205. const float accum_norm = 1.0f / (float) n_accum;
  16206. if (*step <= 0.f) {
  16207. return GGML_LINESEARCH_INVALID_PARAMETERS;
  16208. }
  16209. // compute the initial gradient in the search direction
  16210. ggml_vec_dot_f32(nx, &dginit, 0, g, 0, d, 0, 1);
  16211. // make sure that d points to a descent direction
  16212. if (0 < dginit) {
  16213. return GGML_LINESEARCH_FAIL;
  16214. }
  16215. // initialize local variables
  16216. finit = *fx;
  16217. dgtest = params->lbfgs.ftol*dginit;
  16218. while (true) {
  16219. ggml_vec_cpy_f32(nx, x, xp);
  16220. ggml_vec_mad_f32(nx, x, d, *step);
  16221. // evaluate the function and gradient values
  16222. {
  16223. ggml_opt_set_params(np, ps, x);
  16224. *fx = 0;
  16225. memset(g, 0, sizeof(float)*nx);
  16226. for (int accum_step = 0; accum_step < n_accum; ++accum_step) {
  16227. if (callback) {
  16228. // LBFG-S does not support learning rate -> ignore learning schedule
  16229. float sched = 0;
  16230. callback(callback_data, accum_step, &sched, cancel);
  16231. if (*cancel) {
  16232. return GGML_OPT_RESULT_CANCEL;
  16233. }
  16234. }
  16235. // ggml_graph_reset (gf);
  16236. ggml_set_f32 (f->grad, 1.0f);
  16237. ggml_graph_compute(gb, cplan);
  16238. ggml_opt_acc_grad(np, ps, g, accum_norm);
  16239. *fx += ggml_get_f32_1d(f, 0);
  16240. }
  16241. *fx *= accum_norm;
  16242. }
  16243. ++count;
  16244. if (*fx > finit + (*step)*dgtest) {
  16245. width = dec;
  16246. } else {
  16247. // Armijo condition is satisfied
  16248. if (params->lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_ARMIJO) {
  16249. return count;
  16250. }
  16251. ggml_vec_dot_f32(nx, &dg, 0, g, 0, d, 0, 1);
  16252. // check the Wolfe condition
  16253. if (dg < params->lbfgs.wolfe * dginit) {
  16254. width = inc;
  16255. } else {
  16256. if(params->lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_WOLFE) {
  16257. // regular Wolfe conditions
  16258. return count;
  16259. }
  16260. if(dg > -params->lbfgs.wolfe*dginit) {
  16261. width = dec;
  16262. } else {
  16263. // strong Wolfe condition (GGML_LINESEARCH_BACKTRACKING_STRONG_WOLFE)
  16264. return count;
  16265. }
  16266. }
  16267. }
  16268. if (*step < params->lbfgs.min_step) {
  16269. return GGML_LINESEARCH_MINIMUM_STEP;
  16270. }
  16271. if (*step > params->lbfgs.max_step) {
  16272. return GGML_LINESEARCH_MAXIMUM_STEP;
  16273. }
  16274. if (params->lbfgs.max_linesearch <= count) {
  16275. return GGML_LINESEARCH_MAXIMUM_ITERATIONS;
  16276. }
  16277. (*step) *= width;
  16278. }
  16279. GGML_ASSERT(false && "line search failed");
  16280. return GGML_LINESEARCH_FAIL;
  16281. }
  16282. static enum ggml_opt_result ggml_opt_lbfgs(
  16283. struct ggml_context * ctx,
  16284. struct ggml_opt_context * opt,
  16285. struct ggml_opt_params params,
  16286. struct ggml_tensor * f,
  16287. struct ggml_cgraph * gf,
  16288. struct ggml_cgraph * gb,
  16289. ggml_opt_callback callback,
  16290. void * callback_data) {
  16291. if (params.lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_WOLFE ||
  16292. params.lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_STRONG_WOLFE) {
  16293. if (params.lbfgs.wolfe <= params.lbfgs.ftol || 1.f <= params.lbfgs.wolfe) {
  16294. return GGML_OPT_RESULT_INVALID_WOLFE;
  16295. }
  16296. }
  16297. const int m = params.lbfgs.m;
  16298. // these will store the parameters we want to optimize
  16299. struct ggml_tensor * ps[GGML_MAX_PARAMS];
  16300. int np = 0;
  16301. int nx = 0;
  16302. for (int i = 0; i < gf->n_nodes; ++i) {
  16303. if (gf->nodes[i]->flags & GGML_TENSOR_FLAG_PARAM) {
  16304. GGML_PRINT_DEBUG("found param %d: grad->op = %d\n", np, gf->nodes[i]->grad->op);
  16305. GGML_ASSERT(np < GGML_MAX_PARAMS);
  16306. ps[np++] = gf->nodes[i];
  16307. nx += ggml_nelements(gf->nodes[i]);
  16308. }
  16309. }
  16310. if ((opt->params.type != params.type) || (opt->nx != nx) || (opt->params.past != params.past) || (opt->params.lbfgs.m != params.lbfgs.m)) {
  16311. int iter = opt->iter;
  16312. ggml_opt_init(ctx, opt, params, nx);
  16313. opt->iter = iter;
  16314. }
  16315. struct ggml_cplan cplan = ggml_graph_plan(gb, params.n_threads);
  16316. struct ggml_object * obj = ggml_new_object(ctx, GGML_OBJECT_TYPE_WORK_BUFFER, cplan.work_size);
  16317. cplan.work_data = (uint8_t *)ctx->mem_buffer + obj->offs;
  16318. float * x = opt->lbfgs.x->data; // current parameters
  16319. float * xp = opt->lbfgs.xp->data; // previous parameters
  16320. float * g = opt->lbfgs.g->data; // current gradient
  16321. float * gp = opt->lbfgs.gp->data; // previous gradient
  16322. float * d = opt->lbfgs.d->data; // search direction
  16323. float * pf = params.past > 0 ? opt->lbfgs.pf->data : NULL; // past function values
  16324. const int n_accum = MAX(1, params.n_gradient_accumulation);
  16325. const float accum_norm = 1.0f / (float) n_accum;
  16326. float fx = 0.0f; // cost function value
  16327. float xnorm = 0.0f; // ||x||
  16328. float gnorm = 0.0f; // ||g||
  16329. // initialize x from the graph nodes
  16330. ggml_opt_get_params(np, ps, x);
  16331. // the L-BFGS memory
  16332. float * lm_alpha = opt->lbfgs.lmal->data;
  16333. float * lm_ys = opt->lbfgs.lmys->data;
  16334. float * lm_s = opt->lbfgs.lms->data;
  16335. float * lm_y = opt->lbfgs.lmy->data;
  16336. bool cancel = false;
  16337. // evaluate the function value and its gradient
  16338. {
  16339. ggml_opt_set_params(np, ps, x);
  16340. fx = 0;
  16341. memset(g, 0, sizeof(float)*nx);
  16342. for (int accum_step = 0; accum_step < n_accum; ++accum_step) {
  16343. if (callback) {
  16344. // LBFG-S does not support learning rate -> ignore learning schedule
  16345. float sched = 0;
  16346. callback(callback_data, accum_step, &sched, &cancel);
  16347. if (cancel) {
  16348. return GGML_OPT_RESULT_CANCEL;
  16349. }
  16350. }
  16351. // ggml_graph_reset (gf);
  16352. ggml_set_f32 (f->grad, 1.0f);
  16353. ggml_graph_compute(gb, &cplan);
  16354. ggml_opt_acc_grad(np, ps, g, accum_norm);
  16355. fx += ggml_get_f32_1d(f, 0);
  16356. }
  16357. fx *= accum_norm;
  16358. opt->loss_before = fx;
  16359. opt->loss_after = fx;
  16360. }
  16361. // search direction = -gradient
  16362. ggml_vec_neg_f32(nx, d, g);
  16363. // ||x||, ||g||
  16364. ggml_vec_norm_f32(nx, &xnorm, x);
  16365. ggml_vec_norm_f32(nx, &gnorm, g);
  16366. if (xnorm < 1.0f) {
  16367. xnorm = 1.0f;
  16368. }
  16369. // already optimized
  16370. if (gnorm/xnorm <= params.lbfgs.eps) {
  16371. return GGML_OPT_RESULT_OK;
  16372. }
  16373. if (opt->just_initialized) {
  16374. if (pf) {
  16375. pf[0] = fx;
  16376. }
  16377. opt->lbfgs.fx_best = fx;
  16378. // initial step
  16379. ggml_vec_norm_inv_f32(nx, &opt->lbfgs.step, d);
  16380. opt->lbfgs.j = 0;
  16381. opt->lbfgs.k = 1;
  16382. opt->lbfgs.end = 0;
  16383. opt->lbfgs.n_no_improvement = 0;
  16384. opt->just_initialized = false;
  16385. }
  16386. float * fx_best = &opt->lbfgs.fx_best;
  16387. float * step = &opt->lbfgs.step;
  16388. int * j = &opt->lbfgs.j;
  16389. int * k = &opt->lbfgs.k;
  16390. int * end = &opt->lbfgs.end;
  16391. int * n_no_improvement = &opt->lbfgs.n_no_improvement;
  16392. int ls = 0;
  16393. int bound = 0;
  16394. float ys = 0.0f;
  16395. float yy = 0.0f;
  16396. float beta = 0.0f;
  16397. int it = 0;
  16398. while (true) {
  16399. // store the current position and gradient vectors
  16400. ggml_vec_cpy_f32(nx, xp, x);
  16401. ggml_vec_cpy_f32(nx, gp, g);
  16402. // TODO: instead of passing &cancel here, use the return code of the linesearch
  16403. // to determine if the optimization should be cancelled
  16404. // this is a simple change, but not doing this atm, since I don't have a nice
  16405. // way to test and don't want to break something with so many changes lined up
  16406. ls = linesearch_backtracking(&params, nx, x, &fx, g, d, step, xp, f, gb, &cplan, np, ps, &cancel, callback, callback_data);
  16407. if (cancel) {
  16408. return GGML_OPT_RESULT_CANCEL;
  16409. }
  16410. if (ls < 0) {
  16411. // linesearch failed - go back to the previous point and return
  16412. ggml_vec_cpy_f32(nx, x, xp);
  16413. ggml_vec_cpy_f32(nx, g, gp);
  16414. return ls;
  16415. }
  16416. opt->loss_after = fx;
  16417. ggml_vec_norm_f32(nx, &xnorm, x);
  16418. ggml_vec_norm_f32(nx, &gnorm, g);
  16419. GGML_PRINT_DEBUG("f = %10.6f\n", ggml_get_f32_1d(f, 0));
  16420. if (xnorm < 1.0f) {
  16421. xnorm = 1.0f;
  16422. }
  16423. if (gnorm/xnorm <= params.lbfgs.eps) {
  16424. // converged
  16425. return GGML_OPT_RESULT_OK;
  16426. }
  16427. // delta-based convergence test
  16428. if (pf != NULL) {
  16429. // need at least params.past iterations to start checking for convergence
  16430. if (params.past <= k[0]) {
  16431. const float rate = (pf[k[0]%params.past] - fx)/fx;
  16432. if (fabsf(rate) < params.delta) {
  16433. return GGML_OPT_RESULT_OK;
  16434. }
  16435. }
  16436. pf[k[0]%params.past] = fx;
  16437. }
  16438. // check for improvement
  16439. if (params.max_no_improvement > 0) {
  16440. if (fx < fx_best[0]) {
  16441. fx_best[0] = fx;
  16442. n_no_improvement[0] = 0;
  16443. } else {
  16444. n_no_improvement[0]++;
  16445. if (n_no_improvement[0] >= params.max_no_improvement) {
  16446. return GGML_OPT_RESULT_OK;
  16447. }
  16448. }
  16449. }
  16450. if (params.lbfgs.n_iter != 0 && params.lbfgs.n_iter < it + 1) {
  16451. // reached the maximum number of iterations
  16452. return GGML_OPT_RESULT_DID_NOT_CONVERGE;
  16453. }
  16454. // update vectors s and y:
  16455. // s_{k+1} = x_{k+1} - x_{k} = \step * d_{k}.
  16456. // y_{k+1} = g_{k+1} - g_{k}.
  16457. //
  16458. ggml_vec_sub_f32(nx, &lm_s[end[0]*nx], x, xp);
  16459. ggml_vec_sub_f32(nx, &lm_y[end[0]*nx], g, gp);
  16460. // compute scalars ys and yy:
  16461. // ys = y^t \cdot s -> 1 / \rho.
  16462. // yy = y^t \cdot y.
  16463. //
  16464. ggml_vec_dot_f32(nx, &ys, 0, &lm_y[end[0]*nx], 0, &lm_s[end[0]*nx], 0, 1);
  16465. ggml_vec_dot_f32(nx, &yy, 0, &lm_y[end[0]*nx], 0, &lm_y[end[0]*nx], 0, 1);
  16466. lm_ys[end[0]] = ys;
  16467. // find new search direction
  16468. // ref: https://en.wikipedia.org/wiki/Limited-memory_BFGS
  16469. bound = (m <= k[0]) ? m : k[0];
  16470. k[0]++;
  16471. it++;
  16472. end[0] = (end[0] + 1)%m;
  16473. // initialize search direction with -g
  16474. ggml_vec_neg_f32(nx, d, g);
  16475. j[0] = end[0];
  16476. for (int i = 0; i < bound; ++i) {
  16477. j[0] = (j[0] + m - 1) % m;
  16478. // \alpha_{j} = \rho_{j} s^{t}_{j} \cdot q_{k+1}
  16479. ggml_vec_dot_f32(nx, &lm_alpha[j[0]], 0, &lm_s[j[0]*nx], 0, d, 0, 1);
  16480. lm_alpha[j[0]] /= lm_ys[j[0]];
  16481. // q_{i} = q_{i+1} - \alpha_{i} y_{i}
  16482. ggml_vec_mad_f32(nx, d, &lm_y[j[0]*nx], -lm_alpha[j[0]]);
  16483. }
  16484. ggml_vec_scale_f32(nx, d, ys/yy);
  16485. for (int i = 0; i < bound; ++i) {
  16486. // \beta_{j} = \rho_{j} y^t_{j} \cdot \gamma_{i}
  16487. ggml_vec_dot_f32(nx, &beta, 0, &lm_y[j[0]*nx], 0, d, 0, 1);
  16488. beta /= lm_ys[j[0]];
  16489. // \gamma_{i+1} = \gamma_{i} + (\alpha_{j} - \beta_{j}) s_{j}
  16490. ggml_vec_mad_f32(nx, d, &lm_s[j[0]*nx], lm_alpha[j[0]] - beta);
  16491. j[0] = (j[0] + 1)%m;
  16492. }
  16493. step[0] = 1.0;
  16494. }
  16495. GGML_ASSERT(false && "lbfgs failed");
  16496. return GGML_OPT_RESULT_DID_NOT_CONVERGE;
  16497. }
  16498. struct ggml_opt_params ggml_opt_default_params(enum ggml_opt_type type) {
  16499. struct ggml_opt_params result;
  16500. switch (type) {
  16501. case GGML_OPT_TYPE_ADAM:
  16502. {
  16503. result = (struct ggml_opt_params) {
  16504. .type = GGML_OPT_TYPE_ADAM,
  16505. .graph_size = GGML_DEFAULT_GRAPH_SIZE,
  16506. .n_threads = 1, // FIXME: GGML_DEFAULT_N_THREADS ?
  16507. .past = 0,
  16508. .delta = 1e-5f,
  16509. .max_no_improvement = 100,
  16510. .print_forward_graph = true,
  16511. .print_backward_graph = true,
  16512. .n_gradient_accumulation = 1,
  16513. .adam = {
  16514. .n_iter = 10000,
  16515. .sched = 1.000f,
  16516. .decay = 0.0f,
  16517. .decay_min_ndim = 2,
  16518. .alpha = 0.001f,
  16519. .beta1 = 0.9f,
  16520. .beta2 = 0.999f,
  16521. .eps = 1e-8f,
  16522. .eps_f = 1e-5f,
  16523. .eps_g = 1e-3f,
  16524. .gclip = 0.0f,
  16525. },
  16526. };
  16527. } break;
  16528. case GGML_OPT_TYPE_LBFGS:
  16529. {
  16530. result = (struct ggml_opt_params) {
  16531. .type = GGML_OPT_TYPE_LBFGS,
  16532. .graph_size = GGML_DEFAULT_GRAPH_SIZE,
  16533. .n_threads = 1,
  16534. .past = 0,
  16535. .delta = 1e-5f,
  16536. .max_no_improvement = 0,
  16537. .print_forward_graph = true,
  16538. .print_backward_graph = true,
  16539. .n_gradient_accumulation = 1,
  16540. .lbfgs = {
  16541. .m = 6,
  16542. .n_iter = 100,
  16543. .max_linesearch = 20,
  16544. .eps = 1e-5f,
  16545. .ftol = 1e-4f,
  16546. .wolfe = 0.9f,
  16547. .min_step = 1e-20f,
  16548. .max_step = 1e+20f,
  16549. .linesearch = GGML_LINESEARCH_DEFAULT,
  16550. },
  16551. };
  16552. } break;
  16553. }
  16554. return result;
  16555. }
  16556. GGML_API void ggml_opt_init(
  16557. struct ggml_context * ctx,
  16558. struct ggml_opt_context * opt,
  16559. struct ggml_opt_params params,
  16560. int64_t nx) {
  16561. opt->ctx = ctx;
  16562. opt->params = params;
  16563. opt->iter = 0;
  16564. opt->nx = nx;
  16565. opt->just_initialized = true;
  16566. if (opt->ctx == NULL) {
  16567. struct ggml_init_params ctx_opt_params;
  16568. if (opt->params.type == GGML_OPT_TYPE_ADAM) {
  16569. ctx_opt_params.mem_size = GGML_MEM_ALIGN*3 + ggml_tensor_overhead()*3 + ggml_type_size(GGML_TYPE_F32)*nx*3;
  16570. if (opt->params.past > 0) {
  16571. ctx_opt_params.mem_size += GGML_MEM_ALIGN + ggml_tensor_overhead() + ggml_type_size(GGML_TYPE_F32)*opt->params.past;
  16572. }
  16573. } else if (opt->params.type == GGML_OPT_TYPE_LBFGS) {
  16574. ctx_opt_params.mem_size = GGML_MEM_ALIGN*9 + ggml_tensor_overhead()*9 + ggml_type_size(GGML_TYPE_F32)*(nx*5 + opt->params.lbfgs.m*2 + nx*opt->params.lbfgs.m*2);
  16575. if (opt->params.past > 0) {
  16576. ctx_opt_params.mem_size += GGML_MEM_ALIGN + ggml_tensor_overhead() + ggml_type_size(GGML_TYPE_F32)*opt->params.past;
  16577. }
  16578. }
  16579. ctx_opt_params.mem_buffer = NULL;
  16580. ctx_opt_params.no_alloc = false;
  16581. opt->ctx = ggml_init(ctx_opt_params);
  16582. }
  16583. switch (opt->params.type) {
  16584. case GGML_OPT_TYPE_ADAM:
  16585. {
  16586. opt->adam.g = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  16587. opt->adam.m = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  16588. opt->adam.v = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  16589. opt->adam.pf = params.past > 0
  16590. ? ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, params.past)
  16591. : NULL;
  16592. ggml_set_zero(opt->adam.m);
  16593. ggml_set_zero(opt->adam.v);
  16594. if (opt->adam.pf) {
  16595. ggml_set_zero(opt->adam.pf);
  16596. }
  16597. } break;
  16598. case GGML_OPT_TYPE_LBFGS:
  16599. {
  16600. opt->lbfgs.x = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  16601. opt->lbfgs.xp = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  16602. opt->lbfgs.g = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  16603. opt->lbfgs.gp = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  16604. opt->lbfgs.d = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  16605. opt->lbfgs.pf = params.past > 0
  16606. ? ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, params.past)
  16607. : NULL;
  16608. opt->lbfgs.lmal = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, params.lbfgs.m);
  16609. opt->lbfgs.lmys = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, params.lbfgs.m);
  16610. opt->lbfgs.lms = ggml_new_tensor_2d(opt->ctx, GGML_TYPE_F32, nx, params.lbfgs.m);
  16611. opt->lbfgs.lmy = ggml_new_tensor_2d(opt->ctx, GGML_TYPE_F32, nx, params.lbfgs.m);
  16612. ggml_set_zero(opt->lbfgs.x);
  16613. ggml_set_zero(opt->lbfgs.xp);
  16614. ggml_set_zero(opt->lbfgs.g);
  16615. ggml_set_zero(opt->lbfgs.gp);
  16616. ggml_set_zero(opt->lbfgs.d);
  16617. if (opt->lbfgs.pf) {
  16618. ggml_set_zero(opt->lbfgs.pf);
  16619. }
  16620. ggml_set_zero(opt->lbfgs.lmal);
  16621. ggml_set_zero(opt->lbfgs.lmys);
  16622. ggml_set_zero(opt->lbfgs.lms);
  16623. ggml_set_zero(opt->lbfgs.lmy);
  16624. } break;
  16625. }
  16626. }
  16627. enum ggml_opt_result ggml_opt(
  16628. struct ggml_context * ctx,
  16629. struct ggml_opt_params params,
  16630. struct ggml_tensor * f) {
  16631. bool free_ctx = false;
  16632. if (ctx == NULL) {
  16633. struct ggml_init_params params_ctx = {
  16634. .mem_size = 16*1024*1024,
  16635. .mem_buffer = NULL,
  16636. .no_alloc = false,
  16637. };
  16638. ctx = ggml_init(params_ctx);
  16639. if (ctx == NULL) {
  16640. return GGML_OPT_RESULT_NO_CONTEXT;
  16641. }
  16642. free_ctx = true;
  16643. }
  16644. enum ggml_opt_result result = GGML_OPT_RESULT_OK;
  16645. struct ggml_opt_context * opt = (struct ggml_opt_context *) alloca(sizeof(struct ggml_opt_context));
  16646. ggml_opt_init(ctx, opt, params, 0);
  16647. result = ggml_opt_resume(ctx, opt, f);
  16648. if (free_ctx) {
  16649. ggml_free(ctx);
  16650. }
  16651. return result;
  16652. }
  16653. enum ggml_opt_result ggml_opt_resume(
  16654. struct ggml_context * ctx,
  16655. struct ggml_opt_context * opt,
  16656. struct ggml_tensor * f) {
  16657. // build forward + backward compute graphs
  16658. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx, opt->params.graph_size, true);
  16659. ggml_build_forward_expand(gf, f);
  16660. struct ggml_cgraph * gb = ggml_graph_dup(ctx, gf);
  16661. ggml_build_backward_expand(ctx, gf, gb, true);
  16662. return ggml_opt_resume_g(ctx, opt, f, gf, gb, NULL, NULL);
  16663. }
  16664. enum ggml_opt_result ggml_opt_resume_g(
  16665. struct ggml_context * ctx,
  16666. struct ggml_opt_context * opt,
  16667. struct ggml_tensor * f,
  16668. struct ggml_cgraph * gf,
  16669. struct ggml_cgraph * gb,
  16670. ggml_opt_callback callback,
  16671. void * callback_data) {
  16672. // build forward + backward compute graphs
  16673. enum ggml_opt_result result = GGML_OPT_RESULT_OK;
  16674. switch (opt->params.type) {
  16675. case GGML_OPT_TYPE_ADAM:
  16676. {
  16677. result = ggml_opt_adam(ctx, opt, opt->params, f, gf, gb, callback, callback_data);
  16678. } break;
  16679. case GGML_OPT_TYPE_LBFGS:
  16680. {
  16681. result = ggml_opt_lbfgs(ctx, opt, opt->params, f, gf, gb, callback, callback_data);
  16682. } break;
  16683. }
  16684. if (opt->params.print_forward_graph) {
  16685. ggml_graph_print (gf);
  16686. ggml_graph_dump_dot(gf, NULL, "opt-forward.dot");
  16687. }
  16688. if (opt->params.print_backward_graph) {
  16689. ggml_graph_print (gb);
  16690. ggml_graph_dump_dot(gb, gf, "opt-backward.dot");
  16691. }
  16692. return result;
  16693. }
  16694. ////////////////////////////////////////////////////////////////////////////////
  16695. void ggml_set_input(struct ggml_tensor * tensor) {
  16696. tensor->flags |= GGML_TENSOR_FLAG_INPUT;
  16697. }
  16698. void ggml_set_output(struct ggml_tensor * tensor) {
  16699. tensor->flags |= GGML_TENSOR_FLAG_OUTPUT;
  16700. }
  16701. ////////////////////////////////////////////////////////////////////////////////
  16702. void ggml_quantize_init(enum ggml_type type) {
  16703. ggml_critical_section_start();
  16704. switch (type) {
  16705. case GGML_TYPE_IQ2_XXS:
  16706. case GGML_TYPE_IQ2_XS:
  16707. case GGML_TYPE_IQ2_S:
  16708. case GGML_TYPE_IQ1_S:
  16709. case GGML_TYPE_IQ1_M: iq2xs_init_impl(type); break;
  16710. case GGML_TYPE_IQ3_XXS: iq3xs_init_impl(256); break;
  16711. case GGML_TYPE_IQ3_S: iq3xs_init_impl(512); break;
  16712. default: // nothing
  16713. break;
  16714. }
  16715. ggml_critical_section_end();
  16716. }
  16717. void ggml_quantize_free(void) {
  16718. ggml_critical_section_start();
  16719. iq2xs_free_impl(GGML_TYPE_IQ2_XXS);
  16720. iq2xs_free_impl(GGML_TYPE_IQ2_XS);
  16721. iq2xs_free_impl(GGML_TYPE_IQ1_S);
  16722. iq3xs_free_impl(256);
  16723. ggml_critical_section_end();
  16724. }
  16725. bool ggml_quantize_requires_imatrix(enum ggml_type type) {
  16726. return
  16727. type == GGML_TYPE_IQ2_XXS ||
  16728. type == GGML_TYPE_IQ2_XS ||
  16729. type == GGML_TYPE_IQ1_S;// ||
  16730. //type == GGML_TYPE_IQ1_M;
  16731. }
  16732. size_t ggml_quantize_chunk(
  16733. enum ggml_type type,
  16734. const float * src,
  16735. void * dst,
  16736. int64_t start,
  16737. int64_t nrows,
  16738. int64_t n_per_row,
  16739. const float * imatrix) {
  16740. const int64_t n = (int64_t) nrows * n_per_row;
  16741. if (ggml_quantize_requires_imatrix(type)) {
  16742. GGML_ASSERT(imatrix != NULL);
  16743. }
  16744. GGML_ASSERT(start % type_traits[type].blck_size == 0);
  16745. GGML_ASSERT(start % n_per_row == 0);
  16746. ggml_quantize_init(type); // this is noop if already initialized
  16747. const size_t start_row = start / n_per_row;
  16748. const size_t row_size = ggml_row_size(type, n_per_row);
  16749. size_t result = 0;
  16750. switch (type) {
  16751. case GGML_TYPE_Q4_0: result = quantize_q4_0(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  16752. case GGML_TYPE_Q4_1: result = quantize_q4_1(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  16753. case GGML_TYPE_Q5_0: result = quantize_q5_0(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  16754. case GGML_TYPE_Q5_1: result = quantize_q5_1(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  16755. case GGML_TYPE_Q8_0: result = quantize_q8_0(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  16756. case GGML_TYPE_Q2_K: result = quantize_q2_K(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  16757. case GGML_TYPE_Q3_K: result = quantize_q3_K(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  16758. case GGML_TYPE_Q4_K: result = quantize_q4_K(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  16759. case GGML_TYPE_Q5_K: result = quantize_q5_K(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  16760. case GGML_TYPE_Q6_K: result = quantize_q6_K(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  16761. case GGML_TYPE_IQ2_XXS: result = quantize_iq2_xxs(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  16762. case GGML_TYPE_IQ2_XS: result = quantize_iq2_xs (src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  16763. case GGML_TYPE_IQ3_XXS: result = quantize_iq3_xxs(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  16764. case GGML_TYPE_IQ3_S: result = quantize_iq3_s (src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  16765. case GGML_TYPE_IQ2_S: result = quantize_iq2_s (src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  16766. case GGML_TYPE_IQ1_S: result = quantize_iq1_s (src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  16767. case GGML_TYPE_IQ1_M: result = quantize_iq1_m (src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  16768. case GGML_TYPE_IQ4_NL: result = quantize_iq4_nl (src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  16769. #if QK_K == 64
  16770. case GGML_TYPE_IQ4_XS: result = quantize_iq4_nl (src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  16771. #else
  16772. case GGML_TYPE_IQ4_XS: result = quantize_iq4_xs (src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  16773. #endif
  16774. case GGML_TYPE_F16:
  16775. {
  16776. size_t elemsize = sizeof(ggml_fp16_t);
  16777. ggml_fp32_to_fp16_row(src + start, (ggml_fp16_t *)dst + start, n);
  16778. result = n * elemsize;
  16779. } break;
  16780. case GGML_TYPE_F32:
  16781. {
  16782. size_t elemsize = sizeof(float);
  16783. result = n * elemsize;
  16784. memcpy((uint8_t *)dst + start * elemsize, src + start, result);
  16785. } break;
  16786. default:
  16787. assert(false);
  16788. }
  16789. GGML_ASSERT(result == nrows * row_size);
  16790. return result;
  16791. }
  16792. ////////////////////////////////////////////////////////////////////////////////
  16793. struct gguf_str {
  16794. uint64_t n; // GGUFv2
  16795. char * data;
  16796. };
  16797. static const size_t GGUF_TYPE_SIZE[GGUF_TYPE_COUNT] = {
  16798. [GGUF_TYPE_UINT8] = sizeof(uint8_t),
  16799. [GGUF_TYPE_INT8] = sizeof(int8_t),
  16800. [GGUF_TYPE_UINT16] = sizeof(uint16_t),
  16801. [GGUF_TYPE_INT16] = sizeof(int16_t),
  16802. [GGUF_TYPE_UINT32] = sizeof(uint32_t),
  16803. [GGUF_TYPE_INT32] = sizeof(int32_t),
  16804. [GGUF_TYPE_FLOAT32] = sizeof(float),
  16805. [GGUF_TYPE_BOOL] = sizeof(bool),
  16806. [GGUF_TYPE_STRING] = sizeof(struct gguf_str),
  16807. [GGUF_TYPE_UINT64] = sizeof(uint64_t),
  16808. [GGUF_TYPE_INT64] = sizeof(int64_t),
  16809. [GGUF_TYPE_FLOAT64] = sizeof(double),
  16810. [GGUF_TYPE_ARRAY] = 0, // undefined
  16811. };
  16812. static_assert(GGUF_TYPE_COUNT == 13, "GGUF_TYPE_COUNT != 13");
  16813. static const char * GGUF_TYPE_NAME[GGUF_TYPE_COUNT] = {
  16814. [GGUF_TYPE_UINT8] = "u8",
  16815. [GGUF_TYPE_INT8] = "i8",
  16816. [GGUF_TYPE_UINT16] = "u16",
  16817. [GGUF_TYPE_INT16] = "i16",
  16818. [GGUF_TYPE_UINT32] = "u32",
  16819. [GGUF_TYPE_INT32] = "i32",
  16820. [GGUF_TYPE_FLOAT32] = "f32",
  16821. [GGUF_TYPE_BOOL] = "bool",
  16822. [GGUF_TYPE_STRING] = "str",
  16823. [GGUF_TYPE_ARRAY] = "arr",
  16824. [GGUF_TYPE_UINT64] = "u64",
  16825. [GGUF_TYPE_INT64] = "i64",
  16826. [GGUF_TYPE_FLOAT64] = "f64",
  16827. };
  16828. static_assert(GGUF_TYPE_COUNT == 13, "GGUF_TYPE_COUNT != 13");
  16829. union gguf_value {
  16830. uint8_t uint8;
  16831. int8_t int8;
  16832. uint16_t uint16;
  16833. int16_t int16;
  16834. uint32_t uint32;
  16835. int32_t int32;
  16836. float float32;
  16837. uint64_t uint64;
  16838. int64_t int64;
  16839. double float64;
  16840. bool bool_;
  16841. struct gguf_str str;
  16842. struct {
  16843. enum gguf_type type;
  16844. uint64_t n; // GGUFv2
  16845. void * data;
  16846. } arr;
  16847. };
  16848. struct gguf_kv {
  16849. struct gguf_str key;
  16850. enum gguf_type type;
  16851. union gguf_value value;
  16852. };
  16853. struct gguf_header {
  16854. char magic[4];
  16855. uint32_t version;
  16856. uint64_t n_tensors; // GGUFv2
  16857. uint64_t n_kv; // GGUFv2
  16858. };
  16859. struct gguf_tensor_info {
  16860. struct gguf_str name;
  16861. uint32_t n_dims;
  16862. uint64_t ne[GGML_MAX_DIMS];
  16863. enum ggml_type type;
  16864. uint64_t offset; // offset from start of `data`, must be a multiple of `ALIGNMENT`
  16865. // for writing API
  16866. const void * data;
  16867. size_t size;
  16868. };
  16869. struct gguf_context {
  16870. struct gguf_header header;
  16871. struct gguf_kv * kv;
  16872. struct gguf_tensor_info * infos;
  16873. size_t alignment;
  16874. size_t offset; // offset of `data` from beginning of file
  16875. size_t size; // size of `data` in bytes
  16876. //uint8_t * padding;
  16877. void * data;
  16878. };
  16879. static size_t gguf_type_size(enum gguf_type type) {
  16880. GGML_ASSERT(0 <= type && type < GGUF_TYPE_COUNT);
  16881. return GGUF_TYPE_SIZE[type];
  16882. }
  16883. static void gguf_tensor_info_sanitize(struct gguf_tensor_info * info) {
  16884. GGML_ASSERT(info->n_dims <= GGML_MAX_DIMS);
  16885. GGML_ASSERT(0 <= info->type && info->type < GGML_TYPE_COUNT);
  16886. for (uint32_t i = 0; i < info->n_dims; ++i) {
  16887. GGML_ASSERT(info->ne[i] > 0);
  16888. }
  16889. // prevent overflow for total number of elements
  16890. GGML_ASSERT(INT64_MAX/info->ne[1] > info->ne[0]);
  16891. GGML_ASSERT(INT64_MAX/info->ne[2] > info->ne[0]*info->ne[1]);
  16892. GGML_ASSERT(INT64_MAX/info->ne[3] > info->ne[0]*info->ne[1]*info->ne[2]);
  16893. }
  16894. static bool gguf_fread_el(FILE * file, void * dst, size_t size, size_t * offset) {
  16895. const size_t n = fread(dst, 1, size, file);
  16896. *offset += n;
  16897. return n == size;
  16898. }
  16899. static bool gguf_fread_str(FILE * file, struct gguf_str * p, size_t * offset) {
  16900. p->n = 0;
  16901. p->data = NULL;
  16902. bool ok = true;
  16903. ok = ok && gguf_fread_el(file, &p->n, sizeof(p->n), offset);
  16904. // early exit if string length is invalid, prevents from integer overflow
  16905. if (p->n == SIZE_MAX) {
  16906. fprintf(stderr, "%s: invalid string length (%" PRIu64 ")\n", __func__, p->n);
  16907. return false;
  16908. }
  16909. p->data = GGML_CALLOC(p->n + 1, 1);
  16910. ok = ok && gguf_fread_el(file, p->data, p->n, offset);
  16911. return ok;
  16912. }
  16913. static void gguf_free_kv(struct gguf_kv * kv) {
  16914. if (kv->key.data) {
  16915. GGML_FREE(kv->key.data);
  16916. }
  16917. if (kv->type == GGUF_TYPE_STRING) {
  16918. if (kv->value.str.data) {
  16919. GGML_FREE(kv->value.str.data);
  16920. }
  16921. }
  16922. if (kv->type == GGUF_TYPE_ARRAY) {
  16923. if (kv->value.arr.data) {
  16924. if (kv->value.arr.type == GGUF_TYPE_STRING) {
  16925. for (uint64_t j = 0; j < kv->value.arr.n; ++j) {
  16926. struct gguf_str * str = &((struct gguf_str *) kv->value.arr.data)[j];
  16927. if (str->data) {
  16928. GGML_FREE(str->data);
  16929. }
  16930. }
  16931. }
  16932. GGML_FREE(kv->value.arr.data);
  16933. }
  16934. }
  16935. }
  16936. struct gguf_context * gguf_init_empty(void) {
  16937. struct gguf_context * ctx = GGML_ALIGNED_MALLOC(sizeof(struct gguf_context));
  16938. memcpy(ctx->header.magic, GGUF_MAGIC, sizeof(ctx->header.magic));
  16939. ctx->header.version = GGUF_VERSION;
  16940. ctx->header.n_tensors = 0;
  16941. ctx->header.n_kv = 0;
  16942. ctx->kv = NULL;
  16943. ctx->infos = NULL;
  16944. ctx->alignment = GGUF_DEFAULT_ALIGNMENT;
  16945. ctx->offset = 0;
  16946. ctx->size = 0;
  16947. ctx->data = NULL;
  16948. return ctx;
  16949. }
  16950. struct gguf_context * gguf_init_from_file(const char * fname, struct gguf_init_params params) {
  16951. FILE * file = ggml_fopen(fname, "rb");
  16952. if (!file) {
  16953. return NULL;
  16954. }
  16955. // offset from start of file
  16956. size_t offset = 0;
  16957. char magic[4];
  16958. // check the magic before making allocations
  16959. {
  16960. gguf_fread_el(file, &magic, sizeof(magic), &offset);
  16961. for (uint32_t i = 0; i < sizeof(magic); i++) {
  16962. if (magic[i] != GGUF_MAGIC[i]) {
  16963. fprintf(stderr, "%s: invalid magic characters '%c%c%c%c'\n", __func__, magic[0], magic[1], magic[2], magic[3]);
  16964. fclose(file);
  16965. return NULL;
  16966. }
  16967. }
  16968. }
  16969. bool ok = true;
  16970. struct gguf_context * ctx = GGML_ALIGNED_MALLOC(sizeof(struct gguf_context));
  16971. // read the header
  16972. {
  16973. strncpy(ctx->header.magic, magic, 4);
  16974. ctx->kv = NULL;
  16975. ctx->infos = NULL;
  16976. ctx->data = NULL;
  16977. ok = ok && gguf_fread_el(file, &ctx->header.version, sizeof(ctx->header.version), &offset);
  16978. ok = ok && gguf_fread_el(file, &ctx->header.n_tensors, sizeof(ctx->header.n_tensors), &offset);
  16979. ok = ok && gguf_fread_el(file, &ctx->header.n_kv, sizeof(ctx->header.n_kv), &offset);
  16980. if (ctx->header.version == 1) {
  16981. fprintf(stderr, "%s: GGUFv1 is no longer supported. please use a more up-to-date version\n", __func__);
  16982. fclose(file);
  16983. gguf_free(ctx);
  16984. return NULL;
  16985. }
  16986. // sanity-checks to prevent from integer/buffer overflows
  16987. ok = ok && (ctx->header.n_tensors < (SIZE_MAX/2)/sizeof(struct gguf_tensor_info));
  16988. ok = ok && (ctx->header.n_tensors < (SIZE_MAX/2)/ggml_tensor_overhead());
  16989. ok = ok && (ctx->header.n_kv < (SIZE_MAX/2)/sizeof(struct gguf_kv));
  16990. if (!ok) {
  16991. fprintf(stderr, "%s: failed to read header\n", __func__);
  16992. fclose(file);
  16993. gguf_free(ctx);
  16994. return NULL;
  16995. }
  16996. }
  16997. // read the kv pairs
  16998. {
  16999. ctx->kv = GGML_MALLOC(ctx->header.n_kv * sizeof(struct gguf_kv));
  17000. for (uint64_t i = 0; i < ctx->header.n_kv; ++i) {
  17001. struct gguf_kv * kv = &ctx->kv[i];
  17002. //fprintf(stderr, "%s: reading kv %d\n", __func__, i);
  17003. ok = ok && gguf_fread_str(file, &kv->key, &offset);
  17004. ok = ok && gguf_fread_el (file, &kv->type, sizeof(kv->type), &offset);
  17005. //fprintf(stderr, "%s: reading kv with key %s\n", __func__, kv->key.data);
  17006. switch (kv->type) {
  17007. case GGUF_TYPE_UINT8: ok = ok && gguf_fread_el (file, &kv->value.uint8, sizeof(kv->value.uint8), &offset); break;
  17008. case GGUF_TYPE_INT8: ok = ok && gguf_fread_el (file, &kv->value.int8, sizeof(kv->value.int8), &offset); break;
  17009. case GGUF_TYPE_UINT16: ok = ok && gguf_fread_el (file, &kv->value.uint16, sizeof(kv->value.uint16), &offset); break;
  17010. case GGUF_TYPE_INT16: ok = ok && gguf_fread_el (file, &kv->value.int16, sizeof(kv->value.int16), &offset); break;
  17011. case GGUF_TYPE_UINT32: ok = ok && gguf_fread_el (file, &kv->value.uint32, sizeof(kv->value.uint32), &offset); break;
  17012. case GGUF_TYPE_INT32: ok = ok && gguf_fread_el (file, &kv->value.int32, sizeof(kv->value.int32), &offset); break;
  17013. case GGUF_TYPE_FLOAT32: ok = ok && gguf_fread_el (file, &kv->value.float32, sizeof(kv->value.float32), &offset); break;
  17014. case GGUF_TYPE_UINT64: ok = ok && gguf_fread_el (file, &kv->value.uint64, sizeof(kv->value.uint64), &offset); break;
  17015. case GGUF_TYPE_INT64: ok = ok && gguf_fread_el (file, &kv->value.int64, sizeof(kv->value.int64), &offset); break;
  17016. case GGUF_TYPE_FLOAT64: ok = ok && gguf_fread_el (file, &kv->value.float64, sizeof(kv->value.float64), &offset); break;
  17017. case GGUF_TYPE_BOOL: ok = ok && gguf_fread_el (file, &kv->value.bool_, sizeof(kv->value.bool_), &offset); break;
  17018. case GGUF_TYPE_STRING: ok = ok && gguf_fread_str(file, &kv->value.str, &offset); break;
  17019. case GGUF_TYPE_ARRAY:
  17020. {
  17021. ok = ok && gguf_fread_el(file, &kv->value.arr.type, sizeof(kv->value.arr.type), &offset);
  17022. ok = ok && gguf_fread_el(file, &kv->value.arr.n, sizeof(kv->value.arr.n), &offset);
  17023. switch (kv->value.arr.type) {
  17024. case GGUF_TYPE_UINT8:
  17025. case GGUF_TYPE_INT8:
  17026. case GGUF_TYPE_UINT16:
  17027. case GGUF_TYPE_INT16:
  17028. case GGUF_TYPE_UINT32:
  17029. case GGUF_TYPE_INT32:
  17030. case GGUF_TYPE_FLOAT32:
  17031. case GGUF_TYPE_UINT64:
  17032. case GGUF_TYPE_INT64:
  17033. case GGUF_TYPE_FLOAT64:
  17034. case GGUF_TYPE_BOOL:
  17035. {
  17036. // prevent from integer overflow in the malloc below
  17037. if (kv->value.arr.n >= SIZE_MAX/gguf_type_size(kv->value.arr.type)) {
  17038. fprintf(stderr, "%s: array size is too large (%" PRIu64 ")\n", __func__, kv->value.arr.n);
  17039. fclose(file);
  17040. gguf_free(ctx);
  17041. return NULL;
  17042. }
  17043. kv->value.arr.data = GGML_MALLOC(kv->value.arr.n * gguf_type_size(kv->value.arr.type));
  17044. ok = ok && gguf_fread_el(file, kv->value.arr.data, kv->value.arr.n * gguf_type_size(kv->value.arr.type), &offset);
  17045. } break;
  17046. case GGUF_TYPE_STRING:
  17047. {
  17048. // prevent from integer overflow in the malloc below
  17049. if (kv->value.arr.n >= SIZE_MAX/sizeof(struct gguf_str)) {
  17050. fprintf(stderr, "%s: array size is too large (%" PRIu64 ")\n", __func__, kv->value.arr.n);
  17051. fclose(file);
  17052. gguf_free(ctx);
  17053. return NULL;
  17054. }
  17055. kv->value.arr.data = GGML_MALLOC(kv->value.arr.n * sizeof(struct gguf_str));
  17056. for (uint64_t j = 0; j < kv->value.arr.n; ++j) {
  17057. ok = ok && gguf_fread_str(file, &((struct gguf_str *) kv->value.arr.data)[j], &offset);
  17058. }
  17059. } break;
  17060. case GGUF_TYPE_ARRAY:
  17061. default: GGML_ASSERT(false && "invalid type"); break;
  17062. }
  17063. } break;
  17064. default: GGML_ASSERT(false && "invalid type");
  17065. }
  17066. if (!ok) {
  17067. break;
  17068. }
  17069. }
  17070. if (!ok) {
  17071. fprintf(stderr, "%s: failed to read key-value pairs\n", __func__);
  17072. fclose(file);
  17073. gguf_free(ctx);
  17074. return NULL;
  17075. }
  17076. }
  17077. // read the tensor infos
  17078. {
  17079. ctx->infos = GGML_MALLOC(ctx->header.n_tensors * sizeof(struct gguf_tensor_info));
  17080. for (uint64_t i = 0; i < ctx->header.n_tensors; ++i) {
  17081. struct gguf_tensor_info * info = &ctx->infos[i];
  17082. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  17083. info->ne[j] = 1;
  17084. }
  17085. ok = ok && gguf_fread_str(file, &info->name, &offset);
  17086. ok = ok && gguf_fread_el (file, &info->n_dims, sizeof(info->n_dims), &offset);
  17087. ok = ok && (info->n_dims <= GGML_MAX_DIMS);
  17088. for (uint32_t j = 0; j < info->n_dims; ++j) {
  17089. ok = ok && gguf_fread_el(file, &info->ne[j], sizeof(info->ne[j]), &offset);
  17090. }
  17091. ok = ok && gguf_fread_el (file, &info->type, sizeof(info->type), &offset);
  17092. ok = ok && gguf_fread_el (file, &info->offset, sizeof(info->offset), &offset);
  17093. gguf_tensor_info_sanitize(info);
  17094. if (!ok) {
  17095. fprintf(stderr, "%s: failed to read tensor info\n", __func__);
  17096. fclose(file);
  17097. gguf_free(ctx);
  17098. return NULL;
  17099. }
  17100. }
  17101. }
  17102. ctx->alignment = GGUF_DEFAULT_ALIGNMENT;
  17103. int alignment_idx = gguf_find_key(ctx, "general.alignment");
  17104. if (alignment_idx != -1) {
  17105. ctx->alignment = gguf_get_val_u32(ctx, alignment_idx);
  17106. }
  17107. // we require the data section to be aligned, so take into account any padding
  17108. {
  17109. const size_t offset_pad = offset % ctx->alignment;
  17110. if (offset_pad != 0) {
  17111. offset += ctx->alignment - offset_pad;
  17112. fseek(file, offset, SEEK_SET);
  17113. }
  17114. }
  17115. // store the current file offset - this is where the data section starts
  17116. ctx->offset = offset;
  17117. // compute the total size of the data section, taking into account the alignment
  17118. {
  17119. ctx->size = 0;
  17120. for (uint64_t i = 0; i < ctx->header.n_tensors; ++i) {
  17121. struct gguf_tensor_info * info = &ctx->infos[i];
  17122. const int64_t ne =
  17123. (int64_t) info->ne[0] *
  17124. (int64_t) info->ne[1] *
  17125. (int64_t) info->ne[2] *
  17126. (int64_t) info->ne[3];
  17127. if (ne % ggml_blck_size(info->type) != 0) {
  17128. fprintf(stderr, "%s: tensor '%s' of type %d (%s) number of elements (%" PRId64 ") is not a multiple of block size (%d)\n",
  17129. __func__, info->name.data, (int)info->type, ggml_type_name(info->type), ne, ggml_blck_size(info->type));
  17130. fclose(file);
  17131. gguf_free(ctx);
  17132. return NULL;
  17133. }
  17134. const size_t size_cur = ggml_row_size(info->type, ne);
  17135. ctx->size += GGML_PAD(size_cur, ctx->alignment);
  17136. }
  17137. }
  17138. // load the tensor data only if requested
  17139. if (params.ctx != NULL) {
  17140. // if the provided gguf_context is no_alloc, then we create "empty" tensors and do not read the binary blob
  17141. // otherwise, we load the binary blob into the created ggml_context as well, and point the "data" members of
  17142. // the ggml_tensor structs to the appropriate locations in the binary blob
  17143. // compute the exact size needed for the new ggml_context
  17144. const size_t mem_size =
  17145. params.no_alloc ?
  17146. (ctx->header.n_tensors )*ggml_tensor_overhead() :
  17147. (ctx->header.n_tensors + 1)*ggml_tensor_overhead() + ctx->size;
  17148. struct ggml_init_params pdata = {
  17149. .mem_size = mem_size,
  17150. .mem_buffer = NULL,
  17151. .no_alloc = params.no_alloc,
  17152. };
  17153. *params.ctx = ggml_init(pdata);
  17154. struct ggml_context * ctx_data = *params.ctx;
  17155. struct ggml_tensor * data = NULL;
  17156. if (!params.no_alloc) {
  17157. data = ggml_new_tensor_1d(ctx_data, GGML_TYPE_I8, ctx->size);
  17158. ok = ok && data != NULL;
  17159. // read the binary blob with the tensor data
  17160. ok = ok && gguf_fread_el(file, data->data, ctx->size, &offset);
  17161. if (!ok) {
  17162. fprintf(stderr, "%s: failed to read tensor data\n", __func__);
  17163. fclose(file);
  17164. ggml_free(ctx_data);
  17165. gguf_free(ctx);
  17166. return NULL;
  17167. }
  17168. ctx->data = data->data;
  17169. }
  17170. ggml_set_no_alloc(ctx_data, true);
  17171. // create the tensors
  17172. for (uint64_t i = 0; i < ctx->header.n_tensors; ++i) {
  17173. const int64_t ne[GGML_MAX_DIMS] = {
  17174. ctx->infos[i].ne[0],
  17175. ctx->infos[i].ne[1],
  17176. ctx->infos[i].ne[2],
  17177. ctx->infos[i].ne[3],
  17178. };
  17179. struct ggml_tensor * cur = ggml_new_tensor(ctx_data, ctx->infos[i].type, ctx->infos[i].n_dims, ne);
  17180. ok = ok && cur != NULL;
  17181. if (!ok) {
  17182. break;
  17183. }
  17184. ggml_set_name(cur, ctx->infos[i].name.data);
  17185. // point the data member to the appropriate location in the binary blob using the tensor infos
  17186. if (!params.no_alloc) {
  17187. //cur->data = (char *) data->data + ctx->infos[i].offset - ctx->offset; // offset from start of file
  17188. cur->data = (char *) data->data + ctx->infos[i].offset; // offset from data
  17189. }
  17190. }
  17191. if (!ok) {
  17192. fprintf(stderr, "%s: failed to read the tensor data\n", __func__);
  17193. fclose(file);
  17194. ggml_free(ctx_data);
  17195. gguf_free(ctx);
  17196. return NULL;
  17197. }
  17198. ggml_set_no_alloc(ctx_data, params.no_alloc);
  17199. }
  17200. fclose(file);
  17201. return ctx;
  17202. }
  17203. void gguf_free(struct gguf_context * ctx) {
  17204. if (ctx == NULL) {
  17205. return;
  17206. }
  17207. if (ctx->kv) {
  17208. // free string memory - not great..
  17209. for (uint64_t i = 0; i < ctx->header.n_kv; ++i) {
  17210. gguf_free_kv(&ctx->kv[i]);
  17211. }
  17212. GGML_FREE(ctx->kv);
  17213. }
  17214. if (ctx->infos) {
  17215. for (uint64_t i = 0; i < ctx->header.n_tensors; ++i) {
  17216. struct gguf_tensor_info * info = &ctx->infos[i];
  17217. if (info->name.data) {
  17218. GGML_FREE(info->name.data);
  17219. }
  17220. }
  17221. GGML_FREE(ctx->infos);
  17222. }
  17223. GGML_ALIGNED_FREE(ctx);
  17224. }
  17225. const char * gguf_type_name(enum gguf_type type) {
  17226. return GGUF_TYPE_NAME[type];
  17227. }
  17228. int gguf_get_version(const struct gguf_context * ctx) {
  17229. return ctx->header.version;
  17230. }
  17231. size_t gguf_get_alignment(const struct gguf_context * ctx) {
  17232. return ctx->alignment;
  17233. }
  17234. size_t gguf_get_data_offset(const struct gguf_context * ctx) {
  17235. return ctx->offset;
  17236. }
  17237. void * gguf_get_data(const struct gguf_context * ctx) {
  17238. return ctx->data;
  17239. }
  17240. int gguf_get_n_kv(const struct gguf_context * ctx) {
  17241. return ctx->header.n_kv;
  17242. }
  17243. int gguf_find_key(const struct gguf_context * ctx, const char * key) {
  17244. // return -1 if key not found
  17245. int keyfound = -1;
  17246. const int n_kv = gguf_get_n_kv(ctx);
  17247. for (int i = 0; i < n_kv; ++i) {
  17248. if (strcmp(key, gguf_get_key(ctx, i)) == 0) {
  17249. keyfound = i;
  17250. break;
  17251. }
  17252. }
  17253. return keyfound;
  17254. }
  17255. const char * gguf_get_key(const struct gguf_context * ctx, int key_id) {
  17256. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  17257. return ctx->kv[key_id].key.data;
  17258. }
  17259. enum gguf_type gguf_get_kv_type(const struct gguf_context * ctx, int key_id) {
  17260. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  17261. return ctx->kv[key_id].type;
  17262. }
  17263. enum gguf_type gguf_get_arr_type(const struct gguf_context * ctx, int key_id) {
  17264. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  17265. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_ARRAY);
  17266. return ctx->kv[key_id].value.arr.type;
  17267. }
  17268. const void * gguf_get_arr_data(const struct gguf_context * ctx, int key_id) {
  17269. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  17270. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_ARRAY);
  17271. return ctx->kv[key_id].value.arr.data;
  17272. }
  17273. const char * gguf_get_arr_str(const struct gguf_context * ctx, int key_id, int i) {
  17274. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  17275. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_ARRAY);
  17276. struct gguf_kv * kv = &ctx->kv[key_id];
  17277. struct gguf_str * str = &((struct gguf_str *) kv->value.arr.data)[i];
  17278. return str->data;
  17279. }
  17280. int gguf_get_arr_n(const struct gguf_context * ctx, int key_id) {
  17281. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  17282. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_ARRAY);
  17283. return ctx->kv[key_id].value.arr.n;
  17284. }
  17285. uint8_t gguf_get_val_u8(const struct gguf_context * ctx, int key_id) {
  17286. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  17287. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_UINT8);
  17288. return ctx->kv[key_id].value.uint8;
  17289. }
  17290. int8_t gguf_get_val_i8(const struct gguf_context * ctx, int key_id) {
  17291. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  17292. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_INT8);
  17293. return ctx->kv[key_id].value.int8;
  17294. }
  17295. uint16_t gguf_get_val_u16(const struct gguf_context * ctx, int key_id) {
  17296. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  17297. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_UINT16);
  17298. return ctx->kv[key_id].value.uint16;
  17299. }
  17300. int16_t gguf_get_val_i16(const struct gguf_context * ctx, int key_id) {
  17301. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  17302. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_INT16);
  17303. return ctx->kv[key_id].value.int16;
  17304. }
  17305. uint32_t gguf_get_val_u32(const struct gguf_context * ctx, int key_id) {
  17306. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  17307. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_UINT32);
  17308. return ctx->kv[key_id].value.uint32;
  17309. }
  17310. int32_t gguf_get_val_i32(const struct gguf_context * ctx, int key_id) {
  17311. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  17312. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_INT32);
  17313. return ctx->kv[key_id].value.int32;
  17314. }
  17315. float gguf_get_val_f32(const struct gguf_context * ctx, int key_id) {
  17316. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  17317. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_FLOAT32);
  17318. return ctx->kv[key_id].value.float32;
  17319. }
  17320. uint64_t gguf_get_val_u64(const struct gguf_context * ctx, int key_id) {
  17321. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  17322. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_UINT64);
  17323. return ctx->kv[key_id].value.uint64;
  17324. }
  17325. int64_t gguf_get_val_i64(const struct gguf_context * ctx, int key_id) {
  17326. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  17327. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_INT64);
  17328. return ctx->kv[key_id].value.int64;
  17329. }
  17330. double gguf_get_val_f64(const struct gguf_context * ctx, int key_id) {
  17331. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  17332. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_FLOAT64);
  17333. return ctx->kv[key_id].value.float64;
  17334. }
  17335. bool gguf_get_val_bool(const struct gguf_context * ctx, int key_id) {
  17336. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  17337. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_BOOL);
  17338. return ctx->kv[key_id].value.bool_;
  17339. }
  17340. const char * gguf_get_val_str(const struct gguf_context * ctx, int key_id) {
  17341. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  17342. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_STRING);
  17343. return ctx->kv[key_id].value.str.data;
  17344. }
  17345. const void * gguf_get_val_data(const struct gguf_context * ctx, int key_id) {
  17346. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  17347. GGML_ASSERT(ctx->kv[key_id].type != GGUF_TYPE_ARRAY);
  17348. GGML_ASSERT(ctx->kv[key_id].type != GGUF_TYPE_STRING);
  17349. return &ctx->kv[key_id].value;
  17350. }
  17351. int gguf_get_n_tensors(const struct gguf_context * ctx) {
  17352. return ctx->header.n_tensors;
  17353. }
  17354. int gguf_find_tensor(const struct gguf_context * ctx, const char * name) {
  17355. // return -1 if tensor not found
  17356. int tensorfound = -1;
  17357. const int n_tensors = gguf_get_n_tensors(ctx);
  17358. for (int i = 0; i < n_tensors; ++i) {
  17359. if (strcmp(name, gguf_get_tensor_name(ctx, i)) == 0) {
  17360. tensorfound = i;
  17361. break;
  17362. }
  17363. }
  17364. return tensorfound;
  17365. }
  17366. size_t gguf_get_tensor_offset(const struct gguf_context * ctx, int i) {
  17367. return ctx->infos[i].offset;
  17368. }
  17369. char * gguf_get_tensor_name(const struct gguf_context * ctx, int i) {
  17370. return ctx->infos[i].name.data;
  17371. }
  17372. enum ggml_type gguf_get_tensor_type(const struct gguf_context * ctx, int i) {
  17373. return ctx->infos[i].type;
  17374. }
  17375. // returns the index
  17376. static int gguf_get_or_add_key(struct gguf_context * ctx, const char * key) {
  17377. const int idx = gguf_find_key(ctx, key);
  17378. if (idx >= 0) {
  17379. return idx;
  17380. }
  17381. const int n_kv = gguf_get_n_kv(ctx);
  17382. ctx->kv = realloc(ctx->kv, (n_kv + 1) * sizeof(struct gguf_kv));
  17383. ctx->kv[n_kv].key.n = strlen(key);
  17384. ctx->kv[n_kv].key.data = strdup(key);
  17385. ctx->header.n_kv++;
  17386. return n_kv;
  17387. }
  17388. void gguf_remove_key(struct gguf_context * ctx, const char * key) {
  17389. const int idx = gguf_find_key(ctx, key);
  17390. if (idx >= 0) {
  17391. const int n_kv = gguf_get_n_kv(ctx);
  17392. gguf_free_kv(&ctx->kv[idx]);
  17393. for (int i = idx; i < n_kv-1; ++i) {
  17394. ctx->kv[i] = ctx->kv[i+1];
  17395. }
  17396. ctx->kv = realloc(ctx->kv, (n_kv - 1) * sizeof(struct gguf_kv));
  17397. ctx->header.n_kv--;
  17398. }
  17399. }
  17400. void gguf_set_val_u8(struct gguf_context * ctx, const char * key, uint8_t val) {
  17401. const int idx = gguf_get_or_add_key(ctx, key);
  17402. ctx->kv[idx].type = GGUF_TYPE_UINT8;
  17403. ctx->kv[idx].value.uint8 = val;
  17404. }
  17405. void gguf_set_val_i8(struct gguf_context * ctx, const char * key, int8_t val) {
  17406. const int idx = gguf_get_or_add_key(ctx, key);
  17407. ctx->kv[idx].type = GGUF_TYPE_INT8;
  17408. ctx->kv[idx].value.int8 = val;
  17409. }
  17410. void gguf_set_val_u16(struct gguf_context * ctx, const char * key, uint16_t val) {
  17411. const int idx = gguf_get_or_add_key(ctx, key);
  17412. ctx->kv[idx].type = GGUF_TYPE_UINT16;
  17413. ctx->kv[idx].value.uint16 = val;
  17414. }
  17415. void gguf_set_val_i16(struct gguf_context * ctx, const char * key, int16_t val) {
  17416. const int idx = gguf_get_or_add_key(ctx, key);
  17417. ctx->kv[idx].type = GGUF_TYPE_INT16;
  17418. ctx->kv[idx].value.int16 = val;
  17419. }
  17420. void gguf_set_val_u32(struct gguf_context * ctx, const char * key, uint32_t val) {
  17421. const int idx = gguf_get_or_add_key(ctx, key);
  17422. ctx->kv[idx].type = GGUF_TYPE_UINT32;
  17423. ctx->kv[idx].value.uint32 = val;
  17424. }
  17425. void gguf_set_val_i32(struct gguf_context * ctx, const char * key, int32_t val) {
  17426. const int idx = gguf_get_or_add_key(ctx, key);
  17427. ctx->kv[idx].type = GGUF_TYPE_INT32;
  17428. ctx->kv[idx].value.int32 = val;
  17429. }
  17430. void gguf_set_val_f32(struct gguf_context * ctx, const char * key, float val) {
  17431. const int idx = gguf_get_or_add_key(ctx, key);
  17432. ctx->kv[idx].type = GGUF_TYPE_FLOAT32;
  17433. ctx->kv[idx].value.float32 = val;
  17434. }
  17435. void gguf_set_val_u64(struct gguf_context * ctx, const char * key, uint64_t val) {
  17436. const int idx = gguf_get_or_add_key(ctx, key);
  17437. ctx->kv[idx].type = GGUF_TYPE_UINT64;
  17438. ctx->kv[idx].value.uint64 = val;
  17439. }
  17440. void gguf_set_val_i64(struct gguf_context * ctx, const char * key, int64_t val) {
  17441. const int idx = gguf_get_or_add_key(ctx, key);
  17442. ctx->kv[idx].type = GGUF_TYPE_INT64;
  17443. ctx->kv[idx].value.int64 = val;
  17444. }
  17445. void gguf_set_val_f64(struct gguf_context * ctx, const char * key, double val) {
  17446. const int idx = gguf_get_or_add_key(ctx, key);
  17447. ctx->kv[idx].type = GGUF_TYPE_FLOAT64;
  17448. ctx->kv[idx].value.float64 = val;
  17449. }
  17450. void gguf_set_val_bool(struct gguf_context * ctx, const char * key, bool val) {
  17451. const int idx = gguf_get_or_add_key(ctx, key);
  17452. ctx->kv[idx].type = GGUF_TYPE_BOOL;
  17453. ctx->kv[idx].value.bool_ = val;
  17454. }
  17455. void gguf_set_val_str(struct gguf_context * ctx, const char * key, const char * val) {
  17456. const int idx = gguf_get_or_add_key(ctx, key);
  17457. ctx->kv[idx].type = GGUF_TYPE_STRING;
  17458. ctx->kv[idx].value.str.n = strlen(val);
  17459. ctx->kv[idx].value.str.data = strdup(val);
  17460. }
  17461. void gguf_set_arr_data(struct gguf_context * ctx, const char * key, enum gguf_type type, const void * data, int n) {
  17462. const int idx = gguf_get_or_add_key(ctx, key);
  17463. ctx->kv[idx].type = GGUF_TYPE_ARRAY;
  17464. ctx->kv[idx].value.arr.type = type;
  17465. ctx->kv[idx].value.arr.n = n;
  17466. ctx->kv[idx].value.arr.data = GGML_MALLOC(n*gguf_type_size(type));
  17467. memcpy(ctx->kv[idx].value.arr.data, data, n*gguf_type_size(type));
  17468. }
  17469. void gguf_set_arr_str(struct gguf_context * ctx, const char * key, const char ** data, int n) {
  17470. const int idx = gguf_get_or_add_key(ctx, key);
  17471. ctx->kv[idx].type = GGUF_TYPE_ARRAY;
  17472. ctx->kv[idx].value.arr.type = GGUF_TYPE_STRING;
  17473. ctx->kv[idx].value.arr.n = n;
  17474. ctx->kv[idx].value.arr.data = GGML_MALLOC(n*sizeof(struct gguf_str));
  17475. for (int i = 0; i < n; i++) {
  17476. struct gguf_str * str = &((struct gguf_str *)ctx->kv[idx].value.arr.data)[i];
  17477. str->n = strlen(data[i]);
  17478. str->data = strdup(data[i]);
  17479. }
  17480. }
  17481. // set or add KV pairs from another context
  17482. void gguf_set_kv(struct gguf_context * ctx, struct gguf_context * src) {
  17483. for (uint32_t i = 0; i < src->header.n_kv; i++) {
  17484. switch (src->kv[i].type) {
  17485. case GGUF_TYPE_UINT8: gguf_set_val_u8 (ctx, src->kv[i].key.data, src->kv[i].value.uint8); break;
  17486. case GGUF_TYPE_INT8: gguf_set_val_i8 (ctx, src->kv[i].key.data, src->kv[i].value.int8); break;
  17487. case GGUF_TYPE_UINT16: gguf_set_val_u16 (ctx, src->kv[i].key.data, src->kv[i].value.uint16); break;
  17488. case GGUF_TYPE_INT16: gguf_set_val_i16 (ctx, src->kv[i].key.data, src->kv[i].value.int16); break;
  17489. case GGUF_TYPE_UINT32: gguf_set_val_u32 (ctx, src->kv[i].key.data, src->kv[i].value.uint32); break;
  17490. case GGUF_TYPE_INT32: gguf_set_val_i32 (ctx, src->kv[i].key.data, src->kv[i].value.int32); break;
  17491. case GGUF_TYPE_FLOAT32: gguf_set_val_f32 (ctx, src->kv[i].key.data, src->kv[i].value.float32); break;
  17492. case GGUF_TYPE_UINT64: gguf_set_val_u64 (ctx, src->kv[i].key.data, src->kv[i].value.uint64); break;
  17493. case GGUF_TYPE_INT64: gguf_set_val_i64 (ctx, src->kv[i].key.data, src->kv[i].value.int64); break;
  17494. case GGUF_TYPE_FLOAT64: gguf_set_val_f64 (ctx, src->kv[i].key.data, src->kv[i].value.float64); break;
  17495. case GGUF_TYPE_BOOL: gguf_set_val_bool(ctx, src->kv[i].key.data, src->kv[i].value.bool_); break;
  17496. case GGUF_TYPE_STRING: gguf_set_val_str (ctx, src->kv[i].key.data, src->kv[i].value.str.data); break;
  17497. case GGUF_TYPE_ARRAY:
  17498. {
  17499. if (src->kv[i].value.arr.type == GGUF_TYPE_STRING) {
  17500. const char ** data = GGML_MALLOC(src->kv[i].value.arr.n*sizeof(char *));
  17501. for (uint32_t j = 0; j < src->kv[i].value.arr.n; j++) {
  17502. data[j] = ((struct gguf_str *)src->kv[i].value.arr.data)[j].data;
  17503. }
  17504. gguf_set_arr_str(ctx, src->kv[i].key.data, data, src->kv[i].value.arr.n);
  17505. GGML_FREE((void *)data);
  17506. } else if (src->kv[i].value.arr.type == GGUF_TYPE_ARRAY) {
  17507. GGML_ASSERT(false && "nested arrays not supported");
  17508. } else {
  17509. gguf_set_arr_data(ctx, src->kv[i].key.data, src->kv[i].value.arr.type, src->kv[i].value.arr.data, src->kv[i].value.arr.n);
  17510. }
  17511. } break;
  17512. default: GGML_ASSERT(false && "invalid type"); break;
  17513. }
  17514. }
  17515. }
  17516. void gguf_add_tensor(
  17517. struct gguf_context * ctx,
  17518. const struct ggml_tensor * tensor) {
  17519. const int idx = ctx->header.n_tensors;
  17520. ctx->infos = realloc(ctx->infos, (idx + 1)*sizeof(struct gguf_tensor_info));
  17521. ctx->infos[idx].name.n = strlen(tensor->name);
  17522. ctx->infos[idx].name.data = strdup(tensor->name);
  17523. for (int i = 0; i < GGML_MAX_DIMS; ++i) {
  17524. ctx->infos[idx].ne[i] = 1;
  17525. }
  17526. ctx->infos[idx].n_dims = ggml_n_dims(tensor);
  17527. for (uint32_t i = 0; i < ctx->infos[idx].n_dims; i++) {
  17528. ctx->infos[idx].ne[i] = tensor->ne[i];
  17529. }
  17530. ctx->infos[idx].type = tensor->type;
  17531. ctx->infos[idx].offset = 0;
  17532. ctx->infos[idx].data = tensor->data;
  17533. ctx->infos[idx].size = ggml_nbytes(tensor);
  17534. if (ctx->header.n_tensors > 0) {
  17535. ctx->infos[idx].offset = ctx->infos[idx - 1].offset + GGML_PAD(ctx->infos[idx - 1].size, ctx->alignment);
  17536. }
  17537. ctx->header.n_tensors++;
  17538. }
  17539. void gguf_set_tensor_type(struct gguf_context * ctx, const char * name, enum ggml_type type) {
  17540. const int idx = gguf_find_tensor(ctx, name);
  17541. if (idx < 0) {
  17542. GGML_ASSERT(false && "tensor not found");
  17543. }
  17544. ctx->infos[idx].type = type;
  17545. }
  17546. void gguf_set_tensor_data(struct gguf_context * ctx, const char * name, const void * data, size_t size) {
  17547. const int idx = gguf_find_tensor(ctx, name);
  17548. if (idx < 0) {
  17549. GGML_ASSERT(false && "tensor not found");
  17550. }
  17551. ctx->infos[idx].data = data;
  17552. ctx->infos[idx].size = size;
  17553. // update offsets
  17554. for (uint32_t i = idx + 1; i < ctx->header.n_tensors; ++i) {
  17555. ctx->infos[i].offset = ctx->infos[i - 1].offset + GGML_PAD(ctx->infos[i - 1].size, ctx->alignment);
  17556. }
  17557. }
  17558. //static void gguf_fwrite_str(FILE * file, const struct gguf_str * val) {
  17559. // fwrite(&val->n, sizeof(val->n), 1, file);
  17560. // fwrite(val->data, sizeof(char), val->n, file);
  17561. //}
  17562. //
  17563. //static void gguf_fwrite_el(FILE * file, const void * val, size_t size) {
  17564. // fwrite(val, sizeof(char), size, file);
  17565. //}
  17566. struct gguf_buf {
  17567. void * data;
  17568. size_t size;
  17569. size_t offset;
  17570. };
  17571. static struct gguf_buf gguf_buf_init(size_t size) {
  17572. struct gguf_buf buf = {
  17573. /*buf.data =*/ size == 0 ? NULL : GGML_MALLOC(size),
  17574. /*buf.size =*/ size,
  17575. /*buf.offset =*/ 0,
  17576. };
  17577. return buf;
  17578. }
  17579. static void gguf_buf_free(struct gguf_buf buf) {
  17580. if (buf.data) {
  17581. GGML_FREE(buf.data);
  17582. }
  17583. }
  17584. static void gguf_buf_grow(struct gguf_buf * buf, size_t size) {
  17585. if (buf->offset + size > buf->size) {
  17586. buf->size = 1.5*(buf->offset + size);
  17587. if (buf->data) {
  17588. buf->data = realloc(buf->data, buf->size);
  17589. }
  17590. }
  17591. }
  17592. static void gguf_bwrite_str(struct gguf_buf * buf, const struct gguf_str * val) {
  17593. gguf_buf_grow(buf, sizeof(val->n) + val->n);
  17594. if (buf->data) {
  17595. memcpy((char *) buf->data + buf->offset, &val->n, sizeof(val->n));
  17596. }
  17597. buf->offset += sizeof(val->n);
  17598. if (buf->data) {
  17599. memcpy((char *) buf->data + buf->offset, val->data, val->n);
  17600. }
  17601. buf->offset += val->n;
  17602. }
  17603. static void gguf_bwrite_el(struct gguf_buf * buf, const void * val, size_t el_size) {
  17604. gguf_buf_grow(buf, el_size);
  17605. if (buf->data) {
  17606. memcpy((char *) buf->data + buf->offset, val, el_size);
  17607. }
  17608. buf->offset += el_size;
  17609. }
  17610. static void gguf_write_to_buf(const struct gguf_context * ctx, struct gguf_buf * buf, bool only_meta) {
  17611. // write header
  17612. gguf_bwrite_el(buf, &ctx->header.magic, sizeof(ctx->header.magic));
  17613. gguf_bwrite_el(buf, &ctx->header.version, sizeof(ctx->header.version));
  17614. gguf_bwrite_el(buf, &ctx->header.n_tensors, sizeof(ctx->header.n_tensors));
  17615. gguf_bwrite_el(buf, &ctx->header.n_kv, sizeof(ctx->header.n_kv));
  17616. // write key-value pairs
  17617. for (uint32_t i = 0; i < ctx->header.n_kv; ++i) {
  17618. struct gguf_kv * kv = &ctx->kv[i];
  17619. gguf_bwrite_str(buf, &kv->key);
  17620. gguf_bwrite_el (buf, &kv->type, sizeof(kv->type));
  17621. switch (kv->type) {
  17622. case GGUF_TYPE_UINT8: gguf_bwrite_el( buf, &kv->value.uint8, sizeof(kv->value.uint8) ); break;
  17623. case GGUF_TYPE_INT8: gguf_bwrite_el (buf, &kv->value.int8, sizeof(kv->value.int8) ); break;
  17624. case GGUF_TYPE_UINT16: gguf_bwrite_el (buf, &kv->value.uint16, sizeof(kv->value.uint16) ); break;
  17625. case GGUF_TYPE_INT16: gguf_bwrite_el (buf, &kv->value.int16, sizeof(kv->value.int16) ); break;
  17626. case GGUF_TYPE_UINT32: gguf_bwrite_el (buf, &kv->value.uint32, sizeof(kv->value.uint32) ); break;
  17627. case GGUF_TYPE_INT32: gguf_bwrite_el (buf, &kv->value.int32, sizeof(kv->value.int32) ); break;
  17628. case GGUF_TYPE_FLOAT32: gguf_bwrite_el (buf, &kv->value.float32, sizeof(kv->value.float32)); break;
  17629. case GGUF_TYPE_UINT64: gguf_bwrite_el (buf, &kv->value.uint64, sizeof(kv->value.uint64) ); break;
  17630. case GGUF_TYPE_INT64: gguf_bwrite_el (buf, &kv->value.int64, sizeof(kv->value.int64) ); break;
  17631. case GGUF_TYPE_FLOAT64: gguf_bwrite_el (buf, &kv->value.float64, sizeof(kv->value.float64)); break;
  17632. case GGUF_TYPE_BOOL: gguf_bwrite_el (buf, &kv->value.bool_, sizeof(kv->value.bool_) ); break;
  17633. case GGUF_TYPE_STRING: gguf_bwrite_str(buf, &kv->value.str ); break;
  17634. case GGUF_TYPE_ARRAY:
  17635. {
  17636. gguf_bwrite_el(buf, &kv->value.arr.type, sizeof(kv->value.arr.type));
  17637. gguf_bwrite_el(buf, &kv->value.arr.n, sizeof(kv->value.arr.n) );
  17638. switch (kv->value.arr.type) {
  17639. case GGUF_TYPE_UINT8:
  17640. case GGUF_TYPE_INT8:
  17641. case GGUF_TYPE_UINT16:
  17642. case GGUF_TYPE_INT16:
  17643. case GGUF_TYPE_UINT32:
  17644. case GGUF_TYPE_INT32:
  17645. case GGUF_TYPE_FLOAT32:
  17646. case GGUF_TYPE_UINT64:
  17647. case GGUF_TYPE_INT64:
  17648. case GGUF_TYPE_FLOAT64:
  17649. case GGUF_TYPE_BOOL:
  17650. {
  17651. gguf_bwrite_el(buf, kv->value.arr.data, kv->value.arr.n * gguf_type_size(kv->value.arr.type));
  17652. } break;
  17653. case GGUF_TYPE_STRING:
  17654. {
  17655. for (uint32_t j = 0; j < kv->value.arr.n; ++j) {
  17656. gguf_bwrite_str(buf, &((struct gguf_str *) kv->value.arr.data)[j]);
  17657. }
  17658. } break;
  17659. case GGUF_TYPE_ARRAY:
  17660. default: GGML_ASSERT(false && "invalid type"); break;
  17661. }
  17662. } break;
  17663. default: GGML_ASSERT(false && "invalid type");
  17664. }
  17665. }
  17666. // write tensor infos
  17667. for (uint32_t i = 0; i < ctx->header.n_tensors; ++i) {
  17668. struct gguf_tensor_info * info = &ctx->infos[i];
  17669. gguf_bwrite_str(buf, &info->name);
  17670. gguf_bwrite_el (buf, &info->n_dims, sizeof(info->n_dims));
  17671. for (uint32_t j = 0; j < info->n_dims; ++j) {
  17672. gguf_bwrite_el(buf, &info->ne[j], sizeof(info->ne[j]));
  17673. }
  17674. gguf_bwrite_el(buf, &info->type, sizeof(info->type));
  17675. gguf_bwrite_el(buf, &info->offset, sizeof(info->offset));
  17676. }
  17677. // we require the data section to be aligned, so take into account any padding
  17678. {
  17679. const size_t offset = buf->offset;
  17680. const size_t offset_pad = GGML_PAD(offset, ctx->alignment);
  17681. if (offset_pad != offset) {
  17682. uint8_t pad = 0;
  17683. for (size_t i = 0; i < offset_pad - offset; ++i) {
  17684. gguf_bwrite_el(buf, &pad, sizeof(pad));
  17685. }
  17686. }
  17687. }
  17688. if (only_meta) {
  17689. return;
  17690. }
  17691. size_t offset = 0;
  17692. // write tensor data
  17693. for (uint32_t i = 0; i < ctx->header.n_tensors; ++i) {
  17694. struct gguf_tensor_info * info = &ctx->infos[i];
  17695. const size_t size = info->size;
  17696. const size_t size_pad = GGML_PAD(size, ctx->alignment);
  17697. gguf_bwrite_el(buf, info->data, size);
  17698. if (size_pad != size) {
  17699. uint8_t pad = 0;
  17700. for (size_t j = 0; j < size_pad - size; ++j) {
  17701. gguf_bwrite_el(buf, &pad, sizeof(pad));
  17702. }
  17703. }
  17704. GGML_ASSERT(offset == info->offset);
  17705. offset += size_pad;
  17706. }
  17707. }
  17708. void gguf_write_to_file(const struct gguf_context * ctx, const char * fname, bool only_meta) {
  17709. FILE * file = ggml_fopen(fname, "wb");
  17710. if (!file) {
  17711. GGML_ASSERT(false && "failed to open file for writing");
  17712. }
  17713. struct gguf_buf buf = gguf_buf_init(16*1024);
  17714. gguf_write_to_buf(ctx, &buf, only_meta);
  17715. fwrite(buf.data, 1, buf.offset, file);
  17716. gguf_buf_free(buf);
  17717. fclose(file);
  17718. }
  17719. size_t gguf_get_meta_size(const struct gguf_context * ctx) {
  17720. // no allocs - only compute size
  17721. struct gguf_buf buf = gguf_buf_init(0);
  17722. gguf_write_to_buf(ctx, &buf, true);
  17723. return buf.offset;
  17724. }
  17725. void gguf_get_meta_data(const struct gguf_context * ctx, void * data) {
  17726. struct gguf_buf buf = gguf_buf_init(16*1024);
  17727. gguf_write_to_buf(ctx, &buf, true);
  17728. memcpy(data, buf.data, buf.offset);
  17729. gguf_buf_free(buf);
  17730. }
  17731. ////////////////////////////////////////////////////////////////////////////////
  17732. int ggml_cpu_has_avx(void) {
  17733. #if defined(__AVX__)
  17734. return 1;
  17735. #else
  17736. return 0;
  17737. #endif
  17738. }
  17739. int ggml_cpu_has_avx_vnni(void) {
  17740. #if defined(__AVXVNNI__)
  17741. return 1;
  17742. #else
  17743. return 0;
  17744. #endif
  17745. }
  17746. int ggml_cpu_has_avx2(void) {
  17747. #if defined(__AVX2__)
  17748. return 1;
  17749. #else
  17750. return 0;
  17751. #endif
  17752. }
  17753. int ggml_cpu_has_avx512(void) {
  17754. #if defined(__AVX512F__)
  17755. return 1;
  17756. #else
  17757. return 0;
  17758. #endif
  17759. }
  17760. int ggml_cpu_has_avx512_vbmi(void) {
  17761. #if defined(__AVX512VBMI__)
  17762. return 1;
  17763. #else
  17764. return 0;
  17765. #endif
  17766. }
  17767. int ggml_cpu_has_avx512_vnni(void) {
  17768. #if defined(__AVX512VNNI__)
  17769. return 1;
  17770. #else
  17771. return 0;
  17772. #endif
  17773. }
  17774. int ggml_cpu_has_fma(void) {
  17775. #if defined(__FMA__)
  17776. return 1;
  17777. #else
  17778. return 0;
  17779. #endif
  17780. }
  17781. int ggml_cpu_has_neon(void) {
  17782. #if defined(__ARM_NEON)
  17783. return 1;
  17784. #else
  17785. return 0;
  17786. #endif
  17787. }
  17788. int ggml_cpu_has_arm_fma(void) {
  17789. #if defined(__ARM_FEATURE_FMA)
  17790. return 1;
  17791. #else
  17792. return 0;
  17793. #endif
  17794. }
  17795. int ggml_cpu_has_metal(void) {
  17796. #if defined(GGML_USE_METAL)
  17797. return 1;
  17798. #else
  17799. return 0;
  17800. #endif
  17801. }
  17802. int ggml_cpu_has_f16c(void) {
  17803. #if defined(__F16C__)
  17804. return 1;
  17805. #else
  17806. return 0;
  17807. #endif
  17808. }
  17809. int ggml_cpu_has_fp16_va(void) {
  17810. #if defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC)
  17811. return 1;
  17812. #else
  17813. return 0;
  17814. #endif
  17815. }
  17816. int ggml_cpu_has_wasm_simd(void) {
  17817. #if defined(__wasm_simd128__)
  17818. return 1;
  17819. #else
  17820. return 0;
  17821. #endif
  17822. }
  17823. int ggml_cpu_has_blas(void) {
  17824. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CUDA) || defined(GGML_USE_VULKAN) || defined(GGML_USE_CLBLAST) || defined(GGML_USE_SYCL)
  17825. return 1;
  17826. #else
  17827. return 0;
  17828. #endif
  17829. }
  17830. int ggml_cpu_has_cuda(void) {
  17831. #if defined(GGML_USE_CUDA)
  17832. return 1;
  17833. #else
  17834. return 0;
  17835. #endif
  17836. }
  17837. int ggml_cpu_has_clblast(void) {
  17838. #if defined(GGML_USE_CLBLAST)
  17839. return 1;
  17840. #else
  17841. return 0;
  17842. #endif
  17843. }
  17844. int ggml_cpu_has_vulkan(void) {
  17845. #if defined(GGML_USE_VULKAN)
  17846. return 1;
  17847. #else
  17848. return 0;
  17849. #endif
  17850. }
  17851. int ggml_cpu_has_kompute(void) {
  17852. #if defined(GGML_USE_KOMPUTE)
  17853. return 1;
  17854. #else
  17855. return 0;
  17856. #endif
  17857. }
  17858. int ggml_cpu_has_sycl(void) {
  17859. #if defined(GGML_USE_SYCL)
  17860. return 1;
  17861. #else
  17862. return 0;
  17863. #endif
  17864. }
  17865. int ggml_cpu_has_gpublas(void) {
  17866. return ggml_cpu_has_cuda() || ggml_cpu_has_clblast() || ggml_cpu_has_vulkan() || ggml_cpu_has_kompute() ||
  17867. ggml_cpu_has_sycl();
  17868. }
  17869. int ggml_cpu_has_sse3(void) {
  17870. #if defined(__SSE3__)
  17871. return 1;
  17872. #else
  17873. return 0;
  17874. #endif
  17875. }
  17876. int ggml_cpu_has_ssse3(void) {
  17877. #if defined(__SSSE3__)
  17878. return 1;
  17879. #else
  17880. return 0;
  17881. #endif
  17882. }
  17883. int ggml_cpu_has_vsx(void) {
  17884. #if defined(__POWER9_VECTOR__)
  17885. return 1;
  17886. #else
  17887. return 0;
  17888. #endif
  17889. }
  17890. int ggml_cpu_has_matmul_int8(void) {
  17891. #if defined(__ARM_FEATURE_MATMUL_INT8)
  17892. return 1;
  17893. #else
  17894. return 0;
  17895. #endif
  17896. }
  17897. ////////////////////////////////////////////////////////////////////////////////