ggml.c 664 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687568856895690569156925693569456955696569756985699570057015702570357045705570657075708570957105711571257135714571557165717571857195720572157225723572457255726572757285729573057315732573357345735573657375738573957405741574257435744574557465747574857495750575157525753575457555756575757585759576057615762576357645765576657675768576957705771577257735774577557765777577857795780578157825783578457855786578757885789579057915792579357945795579657975798579958005801580258035804580558065807580858095810581158125813581458155816581758185819582058215822582358245825582658275828582958305831583258335834583558365837583858395840584158425843584458455846584758485849585058515852585358545855585658575858585958605861586258635864586558665867586858695870587158725873587458755876587758785879588058815882588358845885588658875888588958905891589258935894589558965897589858995900590159025903590459055906590759085909591059115912591359145915591659175918591959205921592259235924592559265927592859295930593159325933593459355936593759385939594059415942594359445945594659475948594959505951595259535954595559565957595859595960596159625963596459655966596759685969597059715972597359745975597659775978597959805981598259835984598559865987598859895990599159925993599459955996599759985999600060016002600360046005600660076008600960106011601260136014601560166017601860196020602160226023602460256026602760286029603060316032603360346035603660376038603960406041604260436044604560466047604860496050605160526053605460556056605760586059606060616062606360646065606660676068606960706071607260736074607560766077607860796080608160826083608460856086608760886089609060916092609360946095609660976098609961006101610261036104610561066107610861096110611161126113611461156116611761186119612061216122612361246125612661276128612961306131613261336134613561366137613861396140614161426143614461456146614761486149615061516152615361546155615661576158615961606161616261636164616561666167616861696170617161726173617461756176617761786179618061816182618361846185618661876188618961906191619261936194619561966197619861996200620162026203620462056206620762086209621062116212621362146215621662176218621962206221622262236224622562266227622862296230623162326233623462356236623762386239624062416242624362446245624662476248624962506251625262536254625562566257625862596260626162626263626462656266626762686269627062716272627362746275627662776278627962806281628262836284628562866287628862896290629162926293629462956296629762986299630063016302630363046305630663076308630963106311631263136314631563166317631863196320632163226323632463256326632763286329633063316332633363346335633663376338633963406341634263436344634563466347634863496350635163526353635463556356635763586359636063616362636363646365636663676368636963706371637263736374637563766377637863796380638163826383638463856386638763886389639063916392639363946395639663976398639964006401640264036404640564066407640864096410641164126413641464156416641764186419642064216422642364246425642664276428642964306431643264336434643564366437643864396440644164426443644464456446644764486449645064516452645364546455645664576458645964606461646264636464646564666467646864696470647164726473647464756476647764786479648064816482648364846485648664876488648964906491649264936494649564966497649864996500650165026503650465056506650765086509651065116512651365146515651665176518651965206521652265236524652565266527652865296530653165326533653465356536653765386539654065416542654365446545654665476548654965506551655265536554655565566557655865596560656165626563656465656566656765686569657065716572657365746575657665776578657965806581658265836584658565866587658865896590659165926593659465956596659765986599660066016602660366046605660666076608660966106611661266136614661566166617661866196620662166226623662466256626662766286629663066316632663366346635663666376638663966406641664266436644664566466647664866496650665166526653665466556656665766586659666066616662666366646665666666676668666966706671667266736674667566766677667866796680668166826683668466856686668766886689669066916692669366946695669666976698669967006701670267036704670567066707670867096710671167126713671467156716671767186719672067216722672367246725672667276728672967306731673267336734673567366737673867396740674167426743674467456746674767486749675067516752675367546755675667576758675967606761676267636764676567666767676867696770677167726773677467756776677767786779678067816782678367846785678667876788678967906791679267936794679567966797679867996800680168026803680468056806680768086809681068116812681368146815681668176818681968206821682268236824682568266827682868296830683168326833683468356836683768386839684068416842684368446845684668476848684968506851685268536854685568566857685868596860686168626863686468656866686768686869687068716872687368746875687668776878687968806881688268836884688568866887688868896890689168926893689468956896689768986899690069016902690369046905690669076908690969106911691269136914691569166917691869196920692169226923692469256926692769286929693069316932693369346935693669376938693969406941694269436944694569466947694869496950695169526953695469556956695769586959696069616962696369646965696669676968696969706971697269736974697569766977697869796980698169826983698469856986698769886989699069916992699369946995699669976998699970007001700270037004700570067007700870097010701170127013701470157016701770187019702070217022702370247025702670277028702970307031703270337034703570367037703870397040704170427043704470457046704770487049705070517052705370547055705670577058705970607061706270637064706570667067706870697070707170727073707470757076707770787079708070817082708370847085708670877088708970907091709270937094709570967097709870997100710171027103710471057106710771087109711071117112711371147115711671177118711971207121712271237124712571267127712871297130713171327133713471357136713771387139714071417142714371447145714671477148714971507151715271537154715571567157715871597160716171627163716471657166716771687169717071717172717371747175717671777178717971807181718271837184718571867187718871897190719171927193719471957196719771987199720072017202720372047205720672077208720972107211721272137214721572167217721872197220722172227223722472257226722772287229723072317232723372347235723672377238723972407241724272437244724572467247724872497250725172527253725472557256725772587259726072617262726372647265726672677268726972707271727272737274727572767277727872797280728172827283728472857286728772887289729072917292729372947295729672977298729973007301730273037304730573067307730873097310731173127313731473157316731773187319732073217322732373247325732673277328732973307331733273337334733573367337733873397340734173427343734473457346734773487349735073517352735373547355735673577358735973607361736273637364736573667367736873697370737173727373737473757376737773787379738073817382738373847385738673877388738973907391739273937394739573967397739873997400740174027403740474057406740774087409741074117412741374147415741674177418741974207421742274237424742574267427742874297430743174327433743474357436743774387439744074417442744374447445744674477448744974507451745274537454745574567457745874597460746174627463746474657466746774687469747074717472747374747475747674777478747974807481748274837484748574867487748874897490749174927493749474957496749774987499750075017502750375047505750675077508750975107511751275137514751575167517751875197520752175227523752475257526752775287529753075317532753375347535753675377538753975407541754275437544754575467547754875497550755175527553755475557556755775587559756075617562756375647565756675677568756975707571757275737574757575767577757875797580758175827583758475857586758775887589759075917592759375947595759675977598759976007601760276037604760576067607760876097610761176127613761476157616761776187619762076217622762376247625762676277628762976307631763276337634763576367637763876397640764176427643764476457646764776487649765076517652765376547655765676577658765976607661766276637664766576667667766876697670767176727673767476757676767776787679768076817682768376847685768676877688768976907691769276937694769576967697769876997700770177027703770477057706770777087709771077117712771377147715771677177718771977207721772277237724772577267727772877297730773177327733773477357736773777387739774077417742774377447745774677477748774977507751775277537754775577567757775877597760776177627763776477657766776777687769777077717772777377747775777677777778777977807781778277837784778577867787778877897790779177927793779477957796779777987799780078017802780378047805780678077808780978107811781278137814781578167817781878197820782178227823782478257826782778287829783078317832783378347835783678377838783978407841784278437844784578467847784878497850785178527853785478557856785778587859786078617862786378647865786678677868786978707871787278737874787578767877787878797880788178827883788478857886788778887889789078917892789378947895789678977898789979007901790279037904790579067907790879097910791179127913791479157916791779187919792079217922792379247925792679277928792979307931793279337934793579367937793879397940794179427943794479457946794779487949795079517952795379547955795679577958795979607961796279637964796579667967796879697970797179727973797479757976797779787979798079817982798379847985798679877988798979907991799279937994799579967997799879998000800180028003800480058006800780088009801080118012801380148015801680178018801980208021802280238024802580268027802880298030803180328033803480358036803780388039804080418042804380448045804680478048804980508051805280538054805580568057805880598060806180628063806480658066806780688069807080718072807380748075807680778078807980808081808280838084808580868087808880898090809180928093809480958096809780988099810081018102810381048105810681078108810981108111811281138114811581168117811881198120812181228123812481258126812781288129813081318132813381348135813681378138813981408141814281438144814581468147814881498150815181528153815481558156815781588159816081618162816381648165816681678168816981708171817281738174817581768177817881798180818181828183818481858186818781888189819081918192819381948195819681978198819982008201820282038204820582068207820882098210821182128213821482158216821782188219822082218222822382248225822682278228822982308231823282338234823582368237823882398240824182428243824482458246824782488249825082518252825382548255825682578258825982608261826282638264826582668267826882698270827182728273827482758276827782788279828082818282828382848285828682878288828982908291829282938294829582968297829882998300830183028303830483058306830783088309831083118312831383148315831683178318831983208321832283238324832583268327832883298330833183328333833483358336833783388339834083418342834383448345834683478348834983508351835283538354835583568357835883598360836183628363836483658366836783688369837083718372837383748375837683778378837983808381838283838384838583868387838883898390839183928393839483958396839783988399840084018402840384048405840684078408840984108411841284138414841584168417841884198420842184228423842484258426842784288429843084318432843384348435843684378438843984408441844284438444844584468447844884498450845184528453845484558456845784588459846084618462846384648465846684678468846984708471847284738474847584768477847884798480848184828483848484858486848784888489849084918492849384948495849684978498849985008501850285038504850585068507850885098510851185128513851485158516851785188519852085218522852385248525852685278528852985308531853285338534853585368537853885398540854185428543854485458546854785488549855085518552855385548555855685578558855985608561856285638564856585668567856885698570857185728573857485758576857785788579858085818582858385848585858685878588858985908591859285938594859585968597859885998600860186028603860486058606860786088609861086118612861386148615861686178618861986208621862286238624862586268627862886298630863186328633863486358636863786388639864086418642864386448645864686478648864986508651865286538654865586568657865886598660866186628663866486658666866786688669867086718672867386748675867686778678867986808681868286838684868586868687868886898690869186928693869486958696869786988699870087018702870387048705870687078708870987108711871287138714871587168717871887198720872187228723872487258726872787288729873087318732873387348735873687378738873987408741874287438744874587468747874887498750875187528753875487558756875787588759876087618762876387648765876687678768876987708771877287738774877587768777877887798780878187828783878487858786878787888789879087918792879387948795879687978798879988008801880288038804880588068807880888098810881188128813881488158816881788188819882088218822882388248825882688278828882988308831883288338834883588368837883888398840884188428843884488458846884788488849885088518852885388548855885688578858885988608861886288638864886588668867886888698870887188728873887488758876887788788879888088818882888388848885888688878888888988908891889288938894889588968897889888998900890189028903890489058906890789088909891089118912891389148915891689178918891989208921892289238924892589268927892889298930893189328933893489358936893789388939894089418942894389448945894689478948894989508951895289538954895589568957895889598960896189628963896489658966896789688969897089718972897389748975897689778978897989808981898289838984898589868987898889898990899189928993899489958996899789988999900090019002900390049005900690079008900990109011901290139014901590169017901890199020902190229023902490259026902790289029903090319032903390349035903690379038903990409041904290439044904590469047904890499050905190529053905490559056905790589059906090619062906390649065906690679068906990709071907290739074907590769077907890799080908190829083908490859086908790889089909090919092909390949095909690979098909991009101910291039104910591069107910891099110911191129113911491159116911791189119912091219122912391249125912691279128912991309131913291339134913591369137913891399140914191429143914491459146914791489149915091519152915391549155915691579158915991609161916291639164916591669167916891699170917191729173917491759176917791789179918091819182918391849185918691879188918991909191919291939194919591969197919891999200920192029203920492059206920792089209921092119212921392149215921692179218921992209221922292239224922592269227922892299230923192329233923492359236923792389239924092419242924392449245924692479248924992509251925292539254925592569257925892599260926192629263926492659266926792689269927092719272927392749275927692779278927992809281928292839284928592869287928892899290929192929293929492959296929792989299930093019302930393049305930693079308930993109311931293139314931593169317931893199320932193229323932493259326932793289329933093319332933393349335933693379338933993409341934293439344934593469347934893499350935193529353935493559356935793589359936093619362936393649365936693679368936993709371937293739374937593769377937893799380938193829383938493859386938793889389939093919392939393949395939693979398939994009401940294039404940594069407940894099410941194129413941494159416941794189419942094219422942394249425942694279428942994309431943294339434943594369437943894399440944194429443944494459446944794489449945094519452945394549455945694579458945994609461946294639464946594669467946894699470947194729473947494759476947794789479948094819482948394849485948694879488948994909491949294939494949594969497949894999500950195029503950495059506950795089509951095119512951395149515951695179518951995209521952295239524952595269527952895299530953195329533953495359536953795389539954095419542954395449545954695479548954995509551955295539554955595569557955895599560956195629563956495659566956795689569957095719572957395749575957695779578957995809581958295839584958595869587958895899590959195929593959495959596959795989599960096019602960396049605960696079608960996109611961296139614961596169617961896199620962196229623962496259626962796289629963096319632963396349635963696379638963996409641964296439644964596469647964896499650965196529653965496559656965796589659966096619662966396649665966696679668966996709671967296739674967596769677967896799680968196829683968496859686968796889689969096919692969396949695969696979698969997009701970297039704970597069707970897099710971197129713971497159716971797189719972097219722972397249725972697279728972997309731973297339734973597369737973897399740974197429743974497459746974797489749975097519752975397549755975697579758975997609761976297639764976597669767976897699770977197729773977497759776977797789779978097819782978397849785978697879788978997909791979297939794979597969797979897999800980198029803980498059806980798089809981098119812981398149815981698179818981998209821982298239824982598269827982898299830983198329833983498359836983798389839984098419842984398449845984698479848984998509851985298539854985598569857985898599860986198629863986498659866986798689869987098719872987398749875987698779878987998809881988298839884988598869887988898899890989198929893989498959896989798989899990099019902990399049905990699079908990999109911991299139914991599169917991899199920992199229923992499259926992799289929993099319932993399349935993699379938993999409941994299439944994599469947994899499950995199529953995499559956995799589959996099619962996399649965996699679968996999709971997299739974997599769977997899799980998199829983998499859986998799889989999099919992999399949995999699979998999910000100011000210003100041000510006100071000810009100101001110012100131001410015100161001710018100191002010021100221002310024100251002610027100281002910030100311003210033100341003510036100371003810039100401004110042100431004410045100461004710048100491005010051100521005310054100551005610057100581005910060100611006210063100641006510066100671006810069100701007110072100731007410075100761007710078100791008010081100821008310084100851008610087100881008910090100911009210093100941009510096100971009810099101001010110102101031010410105101061010710108101091011010111101121011310114101151011610117101181011910120101211012210123101241012510126101271012810129101301013110132101331013410135101361013710138101391014010141101421014310144101451014610147101481014910150101511015210153101541015510156101571015810159101601016110162101631016410165101661016710168101691017010171101721017310174101751017610177101781017910180101811018210183101841018510186101871018810189101901019110192101931019410195101961019710198101991020010201102021020310204102051020610207102081020910210102111021210213102141021510216102171021810219102201022110222102231022410225102261022710228102291023010231102321023310234102351023610237102381023910240102411024210243102441024510246102471024810249102501025110252102531025410255102561025710258102591026010261102621026310264102651026610267102681026910270102711027210273102741027510276102771027810279102801028110282102831028410285102861028710288102891029010291102921029310294102951029610297102981029910300103011030210303103041030510306103071030810309103101031110312103131031410315103161031710318103191032010321103221032310324103251032610327103281032910330103311033210333103341033510336103371033810339103401034110342103431034410345103461034710348103491035010351103521035310354103551035610357103581035910360103611036210363103641036510366103671036810369103701037110372103731037410375103761037710378103791038010381103821038310384103851038610387103881038910390103911039210393103941039510396103971039810399104001040110402104031040410405104061040710408104091041010411104121041310414104151041610417104181041910420104211042210423104241042510426104271042810429104301043110432104331043410435104361043710438104391044010441104421044310444104451044610447104481044910450104511045210453104541045510456104571045810459104601046110462104631046410465104661046710468104691047010471104721047310474104751047610477104781047910480104811048210483104841048510486104871048810489104901049110492104931049410495104961049710498104991050010501105021050310504105051050610507105081050910510105111051210513105141051510516105171051810519105201052110522105231052410525105261052710528105291053010531105321053310534105351053610537105381053910540105411054210543105441054510546105471054810549105501055110552105531055410555105561055710558105591056010561105621056310564105651056610567105681056910570105711057210573105741057510576105771057810579105801058110582105831058410585105861058710588105891059010591105921059310594105951059610597105981059910600106011060210603106041060510606106071060810609106101061110612106131061410615106161061710618106191062010621106221062310624106251062610627106281062910630106311063210633106341063510636106371063810639106401064110642106431064410645106461064710648106491065010651106521065310654106551065610657106581065910660106611066210663106641066510666106671066810669106701067110672106731067410675106761067710678106791068010681106821068310684106851068610687106881068910690106911069210693106941069510696106971069810699107001070110702107031070410705107061070710708107091071010711107121071310714107151071610717107181071910720107211072210723107241072510726107271072810729107301073110732107331073410735107361073710738107391074010741107421074310744107451074610747107481074910750107511075210753107541075510756107571075810759107601076110762107631076410765107661076710768107691077010771107721077310774107751077610777107781077910780107811078210783107841078510786107871078810789107901079110792107931079410795107961079710798107991080010801108021080310804108051080610807108081080910810108111081210813108141081510816108171081810819108201082110822108231082410825108261082710828108291083010831108321083310834108351083610837108381083910840108411084210843108441084510846108471084810849108501085110852108531085410855108561085710858108591086010861108621086310864108651086610867108681086910870108711087210873108741087510876108771087810879108801088110882108831088410885108861088710888108891089010891108921089310894108951089610897108981089910900109011090210903109041090510906109071090810909109101091110912109131091410915109161091710918109191092010921109221092310924109251092610927109281092910930109311093210933109341093510936109371093810939109401094110942109431094410945109461094710948109491095010951109521095310954109551095610957109581095910960109611096210963109641096510966109671096810969109701097110972109731097410975109761097710978109791098010981109821098310984109851098610987109881098910990109911099210993109941099510996109971099810999110001100111002110031100411005110061100711008110091101011011110121101311014110151101611017110181101911020110211102211023110241102511026110271102811029110301103111032110331103411035110361103711038110391104011041110421104311044110451104611047110481104911050110511105211053110541105511056110571105811059110601106111062110631106411065110661106711068110691107011071110721107311074110751107611077110781107911080110811108211083110841108511086110871108811089110901109111092110931109411095110961109711098110991110011101111021110311104111051110611107111081110911110111111111211113111141111511116111171111811119111201112111122111231112411125111261112711128111291113011131111321113311134111351113611137111381113911140111411114211143111441114511146111471114811149111501115111152111531115411155111561115711158111591116011161111621116311164111651116611167111681116911170111711117211173111741117511176111771117811179111801118111182111831118411185111861118711188111891119011191111921119311194111951119611197111981119911200112011120211203112041120511206112071120811209112101121111212112131121411215112161121711218112191122011221112221122311224112251122611227112281122911230112311123211233112341123511236112371123811239112401124111242112431124411245112461124711248112491125011251112521125311254112551125611257112581125911260112611126211263112641126511266112671126811269112701127111272112731127411275112761127711278112791128011281112821128311284112851128611287112881128911290112911129211293112941129511296112971129811299113001130111302113031130411305113061130711308113091131011311113121131311314113151131611317113181131911320113211132211323113241132511326113271132811329113301133111332113331133411335113361133711338113391134011341113421134311344113451134611347113481134911350113511135211353113541135511356113571135811359113601136111362113631136411365113661136711368113691137011371113721137311374113751137611377113781137911380113811138211383113841138511386113871138811389113901139111392113931139411395113961139711398113991140011401114021140311404114051140611407114081140911410114111141211413114141141511416114171141811419114201142111422114231142411425114261142711428114291143011431114321143311434114351143611437114381143911440114411144211443114441144511446114471144811449114501145111452114531145411455114561145711458114591146011461114621146311464114651146611467114681146911470114711147211473114741147511476114771147811479114801148111482114831148411485114861148711488114891149011491114921149311494114951149611497114981149911500115011150211503115041150511506115071150811509115101151111512115131151411515115161151711518115191152011521115221152311524115251152611527115281152911530115311153211533115341153511536115371153811539115401154111542115431154411545115461154711548115491155011551115521155311554115551155611557115581155911560115611156211563115641156511566115671156811569115701157111572115731157411575115761157711578115791158011581115821158311584115851158611587115881158911590115911159211593115941159511596115971159811599116001160111602116031160411605116061160711608116091161011611116121161311614116151161611617116181161911620116211162211623116241162511626116271162811629116301163111632116331163411635116361163711638116391164011641116421164311644116451164611647116481164911650116511165211653116541165511656116571165811659116601166111662116631166411665116661166711668116691167011671116721167311674116751167611677116781167911680116811168211683116841168511686116871168811689116901169111692116931169411695116961169711698116991170011701117021170311704117051170611707117081170911710117111171211713117141171511716117171171811719117201172111722117231172411725117261172711728117291173011731117321173311734117351173611737117381173911740117411174211743117441174511746117471174811749117501175111752117531175411755117561175711758117591176011761117621176311764117651176611767117681176911770117711177211773117741177511776117771177811779117801178111782117831178411785117861178711788117891179011791117921179311794117951179611797117981179911800118011180211803118041180511806118071180811809118101181111812118131181411815118161181711818118191182011821118221182311824118251182611827118281182911830118311183211833118341183511836118371183811839118401184111842118431184411845118461184711848118491185011851118521185311854118551185611857118581185911860118611186211863118641186511866118671186811869118701187111872118731187411875118761187711878118791188011881118821188311884118851188611887118881188911890118911189211893118941189511896118971189811899119001190111902119031190411905119061190711908119091191011911119121191311914119151191611917119181191911920119211192211923119241192511926119271192811929119301193111932119331193411935119361193711938119391194011941119421194311944119451194611947119481194911950119511195211953119541195511956119571195811959119601196111962119631196411965119661196711968119691197011971119721197311974119751197611977119781197911980119811198211983119841198511986119871198811989119901199111992119931199411995119961199711998119991200012001120021200312004120051200612007120081200912010120111201212013120141201512016120171201812019120201202112022120231202412025120261202712028120291203012031120321203312034120351203612037120381203912040120411204212043120441204512046120471204812049120501205112052120531205412055120561205712058120591206012061120621206312064120651206612067120681206912070120711207212073120741207512076120771207812079120801208112082120831208412085120861208712088120891209012091120921209312094120951209612097120981209912100121011210212103121041210512106121071210812109121101211112112121131211412115121161211712118121191212012121121221212312124121251212612127121281212912130121311213212133121341213512136121371213812139121401214112142121431214412145121461214712148121491215012151121521215312154121551215612157121581215912160121611216212163121641216512166121671216812169121701217112172121731217412175121761217712178121791218012181121821218312184121851218612187121881218912190121911219212193121941219512196121971219812199122001220112202122031220412205122061220712208122091221012211122121221312214122151221612217122181221912220122211222212223122241222512226122271222812229122301223112232122331223412235122361223712238122391224012241122421224312244122451224612247122481224912250122511225212253122541225512256122571225812259122601226112262122631226412265122661226712268122691227012271122721227312274122751227612277122781227912280122811228212283122841228512286122871228812289122901229112292122931229412295122961229712298122991230012301123021230312304123051230612307123081230912310123111231212313123141231512316123171231812319123201232112322123231232412325123261232712328123291233012331123321233312334123351233612337123381233912340123411234212343123441234512346123471234812349123501235112352123531235412355123561235712358123591236012361123621236312364123651236612367123681236912370123711237212373123741237512376123771237812379123801238112382123831238412385123861238712388123891239012391123921239312394123951239612397123981239912400124011240212403124041240512406124071240812409124101241112412124131241412415124161241712418124191242012421124221242312424124251242612427124281242912430124311243212433124341243512436124371243812439124401244112442124431244412445124461244712448124491245012451124521245312454124551245612457124581245912460124611246212463124641246512466124671246812469124701247112472124731247412475124761247712478124791248012481124821248312484124851248612487124881248912490124911249212493124941249512496124971249812499125001250112502125031250412505125061250712508125091251012511125121251312514125151251612517125181251912520125211252212523125241252512526125271252812529125301253112532125331253412535125361253712538125391254012541125421254312544125451254612547125481254912550125511255212553125541255512556125571255812559125601256112562125631256412565125661256712568125691257012571125721257312574125751257612577125781257912580125811258212583125841258512586125871258812589125901259112592125931259412595125961259712598125991260012601126021260312604126051260612607126081260912610126111261212613126141261512616126171261812619126201262112622126231262412625126261262712628126291263012631126321263312634126351263612637126381263912640126411264212643126441264512646126471264812649126501265112652126531265412655126561265712658126591266012661126621266312664126651266612667126681266912670126711267212673126741267512676126771267812679126801268112682126831268412685126861268712688126891269012691126921269312694126951269612697126981269912700127011270212703127041270512706127071270812709127101271112712127131271412715127161271712718127191272012721127221272312724127251272612727127281272912730127311273212733127341273512736127371273812739127401274112742127431274412745127461274712748127491275012751127521275312754127551275612757127581275912760127611276212763127641276512766127671276812769127701277112772127731277412775127761277712778127791278012781127821278312784127851278612787127881278912790127911279212793127941279512796127971279812799128001280112802128031280412805128061280712808128091281012811128121281312814128151281612817128181281912820128211282212823128241282512826128271282812829128301283112832128331283412835128361283712838128391284012841128421284312844128451284612847128481284912850128511285212853128541285512856128571285812859128601286112862128631286412865128661286712868128691287012871128721287312874128751287612877128781287912880128811288212883128841288512886128871288812889128901289112892128931289412895128961289712898128991290012901129021290312904129051290612907129081290912910129111291212913129141291512916129171291812919129201292112922129231292412925129261292712928129291293012931129321293312934129351293612937129381293912940129411294212943129441294512946129471294812949129501295112952129531295412955129561295712958129591296012961129621296312964129651296612967129681296912970129711297212973129741297512976129771297812979129801298112982129831298412985129861298712988129891299012991129921299312994129951299612997129981299913000130011300213003130041300513006130071300813009130101301113012130131301413015130161301713018130191302013021130221302313024130251302613027130281302913030130311303213033130341303513036130371303813039130401304113042130431304413045130461304713048130491305013051130521305313054130551305613057130581305913060130611306213063130641306513066130671306813069130701307113072130731307413075130761307713078130791308013081130821308313084130851308613087130881308913090130911309213093130941309513096130971309813099131001310113102131031310413105131061310713108131091311013111131121311313114131151311613117131181311913120131211312213123131241312513126131271312813129131301313113132131331313413135131361313713138131391314013141131421314313144131451314613147131481314913150131511315213153131541315513156131571315813159131601316113162131631316413165131661316713168131691317013171131721317313174131751317613177131781317913180131811318213183131841318513186131871318813189131901319113192131931319413195131961319713198131991320013201132021320313204132051320613207132081320913210132111321213213132141321513216132171321813219132201322113222132231322413225132261322713228132291323013231132321323313234132351323613237132381323913240132411324213243132441324513246132471324813249132501325113252132531325413255132561325713258132591326013261132621326313264132651326613267132681326913270132711327213273132741327513276132771327813279132801328113282132831328413285132861328713288132891329013291132921329313294132951329613297132981329913300133011330213303133041330513306133071330813309133101331113312133131331413315133161331713318133191332013321133221332313324133251332613327133281332913330133311333213333133341333513336133371333813339133401334113342133431334413345133461334713348133491335013351133521335313354133551335613357133581335913360133611336213363133641336513366133671336813369133701337113372133731337413375133761337713378133791338013381133821338313384133851338613387133881338913390133911339213393133941339513396133971339813399134001340113402134031340413405134061340713408134091341013411134121341313414134151341613417134181341913420134211342213423134241342513426134271342813429134301343113432134331343413435134361343713438134391344013441134421344313444134451344613447134481344913450134511345213453134541345513456134571345813459134601346113462134631346413465134661346713468134691347013471134721347313474134751347613477134781347913480134811348213483134841348513486134871348813489134901349113492134931349413495134961349713498134991350013501135021350313504135051350613507135081350913510135111351213513135141351513516135171351813519135201352113522135231352413525135261352713528135291353013531135321353313534135351353613537135381353913540135411354213543135441354513546135471354813549135501355113552135531355413555135561355713558135591356013561135621356313564135651356613567135681356913570135711357213573135741357513576135771357813579135801358113582135831358413585135861358713588135891359013591135921359313594135951359613597135981359913600136011360213603136041360513606136071360813609136101361113612136131361413615136161361713618136191362013621136221362313624136251362613627136281362913630136311363213633136341363513636136371363813639136401364113642136431364413645136461364713648136491365013651136521365313654136551365613657136581365913660136611366213663136641366513666136671366813669136701367113672136731367413675136761367713678136791368013681136821368313684136851368613687136881368913690136911369213693136941369513696136971369813699137001370113702137031370413705137061370713708137091371013711137121371313714137151371613717137181371913720137211372213723137241372513726137271372813729137301373113732137331373413735137361373713738137391374013741137421374313744137451374613747137481374913750137511375213753137541375513756137571375813759137601376113762137631376413765137661376713768137691377013771137721377313774137751377613777137781377913780137811378213783137841378513786137871378813789137901379113792137931379413795137961379713798137991380013801138021380313804138051380613807138081380913810138111381213813138141381513816138171381813819138201382113822138231382413825138261382713828138291383013831138321383313834138351383613837138381383913840138411384213843138441384513846138471384813849138501385113852138531385413855138561385713858138591386013861138621386313864138651386613867138681386913870138711387213873138741387513876138771387813879138801388113882138831388413885138861388713888138891389013891138921389313894138951389613897138981389913900139011390213903139041390513906139071390813909139101391113912139131391413915139161391713918139191392013921139221392313924139251392613927139281392913930139311393213933139341393513936139371393813939139401394113942139431394413945139461394713948139491395013951139521395313954139551395613957139581395913960139611396213963139641396513966139671396813969139701397113972139731397413975139761397713978139791398013981139821398313984139851398613987139881398913990139911399213993139941399513996139971399813999140001400114002140031400414005140061400714008140091401014011140121401314014140151401614017140181401914020140211402214023140241402514026140271402814029140301403114032140331403414035140361403714038140391404014041140421404314044140451404614047140481404914050140511405214053140541405514056140571405814059140601406114062140631406414065140661406714068140691407014071140721407314074140751407614077140781407914080140811408214083140841408514086140871408814089140901409114092140931409414095140961409714098140991410014101141021410314104141051410614107141081410914110141111411214113141141411514116141171411814119141201412114122141231412414125141261412714128141291413014131141321413314134141351413614137141381413914140141411414214143141441414514146141471414814149141501415114152141531415414155141561415714158141591416014161141621416314164141651416614167141681416914170141711417214173141741417514176141771417814179141801418114182141831418414185141861418714188141891419014191141921419314194141951419614197141981419914200142011420214203142041420514206142071420814209142101421114212142131421414215142161421714218142191422014221142221422314224142251422614227142281422914230142311423214233142341423514236142371423814239142401424114242142431424414245142461424714248142491425014251142521425314254142551425614257142581425914260142611426214263142641426514266142671426814269142701427114272142731427414275142761427714278142791428014281142821428314284142851428614287142881428914290142911429214293142941429514296142971429814299143001430114302143031430414305143061430714308143091431014311143121431314314143151431614317143181431914320143211432214323143241432514326143271432814329143301433114332143331433414335143361433714338143391434014341143421434314344143451434614347143481434914350143511435214353143541435514356143571435814359143601436114362143631436414365143661436714368143691437014371143721437314374143751437614377143781437914380143811438214383143841438514386143871438814389143901439114392143931439414395143961439714398143991440014401144021440314404144051440614407144081440914410144111441214413144141441514416144171441814419144201442114422144231442414425144261442714428144291443014431144321443314434144351443614437144381443914440144411444214443144441444514446144471444814449144501445114452144531445414455144561445714458144591446014461144621446314464144651446614467144681446914470144711447214473144741447514476144771447814479144801448114482144831448414485144861448714488144891449014491144921449314494144951449614497144981449914500145011450214503145041450514506145071450814509145101451114512145131451414515145161451714518145191452014521145221452314524145251452614527145281452914530145311453214533145341453514536145371453814539145401454114542145431454414545145461454714548145491455014551145521455314554145551455614557145581455914560145611456214563145641456514566145671456814569145701457114572145731457414575145761457714578145791458014581145821458314584145851458614587145881458914590145911459214593145941459514596145971459814599146001460114602146031460414605146061460714608146091461014611146121461314614146151461614617146181461914620146211462214623146241462514626146271462814629146301463114632146331463414635146361463714638146391464014641146421464314644146451464614647146481464914650146511465214653146541465514656146571465814659146601466114662146631466414665146661466714668146691467014671146721467314674146751467614677146781467914680146811468214683146841468514686146871468814689146901469114692146931469414695146961469714698146991470014701147021470314704147051470614707147081470914710147111471214713147141471514716147171471814719147201472114722147231472414725147261472714728147291473014731147321473314734147351473614737147381473914740147411474214743147441474514746147471474814749147501475114752147531475414755147561475714758147591476014761147621476314764147651476614767147681476914770147711477214773147741477514776147771477814779147801478114782147831478414785147861478714788147891479014791147921479314794147951479614797147981479914800148011480214803148041480514806148071480814809148101481114812148131481414815148161481714818148191482014821148221482314824148251482614827148281482914830148311483214833148341483514836148371483814839148401484114842148431484414845148461484714848148491485014851148521485314854148551485614857148581485914860148611486214863148641486514866148671486814869148701487114872148731487414875148761487714878148791488014881148821488314884148851488614887148881488914890148911489214893148941489514896148971489814899149001490114902149031490414905149061490714908149091491014911149121491314914149151491614917149181491914920149211492214923149241492514926149271492814929149301493114932149331493414935149361493714938149391494014941149421494314944149451494614947149481494914950149511495214953149541495514956149571495814959149601496114962149631496414965149661496714968149691497014971149721497314974149751497614977149781497914980149811498214983149841498514986149871498814989149901499114992149931499414995149961499714998149991500015001150021500315004150051500615007150081500915010150111501215013150141501515016150171501815019150201502115022150231502415025150261502715028150291503015031150321503315034150351503615037150381503915040150411504215043150441504515046150471504815049150501505115052150531505415055150561505715058150591506015061150621506315064150651506615067150681506915070150711507215073150741507515076150771507815079150801508115082150831508415085150861508715088150891509015091150921509315094150951509615097150981509915100151011510215103151041510515106151071510815109151101511115112151131511415115151161511715118151191512015121151221512315124151251512615127151281512915130151311513215133151341513515136151371513815139151401514115142151431514415145151461514715148151491515015151151521515315154151551515615157151581515915160151611516215163151641516515166151671516815169151701517115172151731517415175151761517715178151791518015181151821518315184151851518615187151881518915190151911519215193151941519515196151971519815199152001520115202152031520415205152061520715208152091521015211152121521315214152151521615217152181521915220152211522215223152241522515226152271522815229152301523115232152331523415235152361523715238152391524015241152421524315244152451524615247152481524915250152511525215253152541525515256152571525815259152601526115262152631526415265152661526715268152691527015271152721527315274152751527615277152781527915280152811528215283152841528515286152871528815289152901529115292152931529415295152961529715298152991530015301153021530315304153051530615307153081530915310153111531215313153141531515316153171531815319153201532115322153231532415325153261532715328153291533015331153321533315334153351533615337153381533915340153411534215343153441534515346153471534815349153501535115352153531535415355153561535715358153591536015361153621536315364153651536615367153681536915370153711537215373153741537515376153771537815379153801538115382153831538415385153861538715388153891539015391153921539315394153951539615397153981539915400154011540215403154041540515406154071540815409154101541115412154131541415415154161541715418154191542015421154221542315424154251542615427154281542915430154311543215433154341543515436154371543815439154401544115442154431544415445154461544715448154491545015451154521545315454154551545615457154581545915460154611546215463154641546515466154671546815469154701547115472154731547415475154761547715478154791548015481154821548315484154851548615487154881548915490154911549215493154941549515496154971549815499155001550115502155031550415505155061550715508155091551015511155121551315514155151551615517155181551915520155211552215523155241552515526155271552815529155301553115532155331553415535155361553715538155391554015541155421554315544155451554615547155481554915550155511555215553155541555515556155571555815559155601556115562155631556415565155661556715568155691557015571155721557315574155751557615577155781557915580155811558215583155841558515586155871558815589155901559115592155931559415595155961559715598155991560015601156021560315604156051560615607156081560915610156111561215613156141561515616156171561815619156201562115622156231562415625156261562715628156291563015631156321563315634156351563615637156381563915640156411564215643156441564515646156471564815649156501565115652156531565415655156561565715658156591566015661156621566315664156651566615667156681566915670156711567215673156741567515676156771567815679156801568115682156831568415685156861568715688156891569015691156921569315694156951569615697156981569915700157011570215703157041570515706157071570815709157101571115712157131571415715157161571715718157191572015721157221572315724157251572615727157281572915730157311573215733157341573515736157371573815739157401574115742157431574415745157461574715748157491575015751157521575315754157551575615757157581575915760157611576215763157641576515766157671576815769157701577115772157731577415775157761577715778157791578015781157821578315784157851578615787157881578915790157911579215793157941579515796157971579815799158001580115802158031580415805158061580715808158091581015811158121581315814158151581615817158181581915820158211582215823158241582515826158271582815829158301583115832158331583415835158361583715838158391584015841158421584315844158451584615847158481584915850158511585215853158541585515856158571585815859158601586115862158631586415865158661586715868158691587015871158721587315874158751587615877158781587915880158811588215883158841588515886158871588815889158901589115892158931589415895158961589715898158991590015901159021590315904159051590615907159081590915910159111591215913159141591515916159171591815919159201592115922159231592415925159261592715928159291593015931159321593315934159351593615937159381593915940159411594215943159441594515946159471594815949159501595115952159531595415955159561595715958159591596015961159621596315964159651596615967159681596915970159711597215973159741597515976159771597815979159801598115982159831598415985159861598715988159891599015991159921599315994159951599615997159981599916000160011600216003160041600516006160071600816009160101601116012160131601416015160161601716018160191602016021160221602316024160251602616027160281602916030160311603216033160341603516036160371603816039160401604116042160431604416045160461604716048160491605016051160521605316054160551605616057160581605916060160611606216063160641606516066160671606816069160701607116072160731607416075160761607716078160791608016081160821608316084160851608616087160881608916090160911609216093160941609516096160971609816099161001610116102161031610416105161061610716108161091611016111161121611316114161151611616117161181611916120161211612216123161241612516126161271612816129161301613116132161331613416135161361613716138161391614016141161421614316144161451614616147161481614916150161511615216153161541615516156161571615816159161601616116162161631616416165161661616716168161691617016171161721617316174161751617616177161781617916180161811618216183161841618516186161871618816189161901619116192161931619416195161961619716198161991620016201162021620316204162051620616207162081620916210162111621216213162141621516216162171621816219162201622116222162231622416225162261622716228162291623016231162321623316234162351623616237162381623916240162411624216243162441624516246162471624816249162501625116252162531625416255162561625716258162591626016261162621626316264162651626616267162681626916270162711627216273162741627516276162771627816279162801628116282162831628416285162861628716288162891629016291162921629316294162951629616297162981629916300163011630216303163041630516306163071630816309163101631116312163131631416315163161631716318163191632016321163221632316324163251632616327163281632916330163311633216333163341633516336163371633816339163401634116342163431634416345163461634716348163491635016351163521635316354163551635616357163581635916360163611636216363163641636516366163671636816369163701637116372163731637416375163761637716378163791638016381163821638316384163851638616387163881638916390163911639216393163941639516396163971639816399164001640116402164031640416405164061640716408164091641016411164121641316414164151641616417164181641916420164211642216423164241642516426164271642816429164301643116432164331643416435164361643716438164391644016441164421644316444164451644616447164481644916450164511645216453164541645516456164571645816459164601646116462164631646416465164661646716468164691647016471164721647316474164751647616477164781647916480164811648216483164841648516486164871648816489164901649116492164931649416495164961649716498164991650016501165021650316504165051650616507165081650916510165111651216513165141651516516165171651816519165201652116522165231652416525165261652716528165291653016531165321653316534165351653616537165381653916540165411654216543165441654516546165471654816549165501655116552165531655416555165561655716558165591656016561165621656316564165651656616567165681656916570165711657216573165741657516576165771657816579165801658116582165831658416585165861658716588165891659016591165921659316594165951659616597165981659916600166011660216603166041660516606166071660816609166101661116612166131661416615166161661716618166191662016621166221662316624166251662616627166281662916630166311663216633166341663516636166371663816639166401664116642166431664416645166461664716648166491665016651166521665316654166551665616657166581665916660166611666216663166641666516666166671666816669166701667116672166731667416675166761667716678166791668016681166821668316684166851668616687166881668916690166911669216693166941669516696166971669816699167001670116702167031670416705167061670716708167091671016711167121671316714167151671616717167181671916720167211672216723167241672516726167271672816729167301673116732167331673416735167361673716738167391674016741167421674316744167451674616747167481674916750167511675216753167541675516756167571675816759167601676116762167631676416765167661676716768167691677016771167721677316774167751677616777167781677916780167811678216783167841678516786167871678816789167901679116792167931679416795167961679716798167991680016801168021680316804168051680616807168081680916810168111681216813168141681516816168171681816819168201682116822168231682416825168261682716828168291683016831168321683316834168351683616837168381683916840168411684216843168441684516846168471684816849168501685116852168531685416855168561685716858168591686016861168621686316864168651686616867168681686916870168711687216873168741687516876168771687816879168801688116882168831688416885168861688716888168891689016891168921689316894168951689616897168981689916900169011690216903169041690516906169071690816909169101691116912169131691416915169161691716918169191692016921169221692316924169251692616927169281692916930169311693216933169341693516936169371693816939169401694116942169431694416945169461694716948169491695016951169521695316954169551695616957169581695916960169611696216963169641696516966169671696816969169701697116972169731697416975169761697716978169791698016981169821698316984169851698616987169881698916990169911699216993169941699516996169971699816999170001700117002170031700417005170061700717008170091701017011170121701317014170151701617017170181701917020170211702217023170241702517026170271702817029170301703117032170331703417035170361703717038170391704017041170421704317044170451704617047170481704917050170511705217053170541705517056170571705817059170601706117062170631706417065170661706717068170691707017071170721707317074170751707617077170781707917080170811708217083170841708517086170871708817089170901709117092170931709417095170961709717098170991710017101171021710317104171051710617107171081710917110171111711217113171141711517116171171711817119171201712117122171231712417125171261712717128171291713017131171321713317134171351713617137171381713917140171411714217143171441714517146171471714817149171501715117152171531715417155171561715717158171591716017161171621716317164171651716617167171681716917170171711717217173171741717517176171771717817179171801718117182171831718417185171861718717188171891719017191171921719317194171951719617197171981719917200172011720217203172041720517206172071720817209172101721117212172131721417215172161721717218172191722017221172221722317224172251722617227172281722917230172311723217233172341723517236172371723817239172401724117242172431724417245172461724717248172491725017251172521725317254172551725617257172581725917260172611726217263172641726517266172671726817269172701727117272172731727417275172761727717278172791728017281172821728317284172851728617287172881728917290172911729217293172941729517296172971729817299173001730117302173031730417305173061730717308173091731017311173121731317314173151731617317173181731917320173211732217323173241732517326173271732817329173301733117332173331733417335173361733717338173391734017341173421734317344173451734617347173481734917350173511735217353173541735517356173571735817359173601736117362173631736417365173661736717368173691737017371173721737317374173751737617377173781737917380173811738217383173841738517386173871738817389173901739117392173931739417395173961739717398173991740017401174021740317404174051740617407174081740917410174111741217413174141741517416174171741817419174201742117422174231742417425174261742717428174291743017431174321743317434174351743617437174381743917440174411744217443174441744517446174471744817449174501745117452174531745417455174561745717458174591746017461174621746317464174651746617467174681746917470174711747217473174741747517476174771747817479174801748117482174831748417485174861748717488174891749017491174921749317494174951749617497174981749917500175011750217503175041750517506175071750817509175101751117512175131751417515175161751717518175191752017521175221752317524175251752617527175281752917530175311753217533175341753517536175371753817539175401754117542175431754417545175461754717548175491755017551175521755317554175551755617557175581755917560175611756217563175641756517566175671756817569175701757117572175731757417575175761757717578175791758017581175821758317584175851758617587175881758917590175911759217593175941759517596175971759817599176001760117602176031760417605176061760717608176091761017611176121761317614176151761617617176181761917620176211762217623176241762517626176271762817629176301763117632176331763417635176361763717638176391764017641176421764317644176451764617647176481764917650176511765217653176541765517656176571765817659176601766117662176631766417665176661766717668176691767017671176721767317674176751767617677176781767917680176811768217683176841768517686176871768817689176901769117692176931769417695176961769717698176991770017701177021770317704177051770617707177081770917710177111771217713177141771517716177171771817719177201772117722177231772417725177261772717728177291773017731177321773317734177351773617737177381773917740177411774217743177441774517746177471774817749177501775117752177531775417755177561775717758177591776017761177621776317764177651776617767177681776917770177711777217773177741777517776177771777817779177801778117782177831778417785177861778717788177891779017791177921779317794177951779617797177981779917800178011780217803178041780517806178071780817809178101781117812178131781417815178161781717818178191782017821178221782317824178251782617827178281782917830178311783217833178341783517836178371783817839178401784117842178431784417845178461784717848178491785017851178521785317854178551785617857178581785917860178611786217863178641786517866178671786817869178701787117872178731787417875178761787717878178791788017881178821788317884178851788617887178881788917890178911789217893178941789517896178971789817899179001790117902179031790417905179061790717908179091791017911179121791317914179151791617917179181791917920179211792217923179241792517926179271792817929179301793117932179331793417935179361793717938179391794017941179421794317944179451794617947179481794917950179511795217953179541795517956179571795817959179601796117962179631796417965179661796717968179691797017971179721797317974179751797617977179781797917980179811798217983179841798517986179871798817989179901799117992179931799417995179961799717998179991800018001180021800318004180051800618007180081800918010180111801218013180141801518016180171801818019180201802118022180231802418025180261802718028180291803018031180321803318034180351803618037180381803918040180411804218043180441804518046180471804818049180501805118052180531805418055180561805718058180591806018061180621806318064180651806618067180681806918070180711807218073180741807518076180771807818079180801808118082180831808418085180861808718088180891809018091180921809318094180951809618097180981809918100181011810218103181041810518106181071810818109181101811118112181131811418115181161811718118181191812018121181221812318124181251812618127181281812918130181311813218133181341813518136181371813818139181401814118142181431814418145181461814718148181491815018151181521815318154181551815618157181581815918160181611816218163181641816518166181671816818169181701817118172181731817418175181761817718178181791818018181181821818318184181851818618187181881818918190181911819218193181941819518196181971819818199182001820118202182031820418205182061820718208182091821018211182121821318214182151821618217182181821918220182211822218223182241822518226182271822818229182301823118232182331823418235182361823718238182391824018241182421824318244182451824618247182481824918250182511825218253182541825518256182571825818259182601826118262182631826418265182661826718268182691827018271182721827318274182751827618277182781827918280182811828218283182841828518286182871828818289182901829118292182931829418295182961829718298182991830018301183021830318304183051830618307183081830918310183111831218313183141831518316183171831818319183201832118322183231832418325183261832718328183291833018331183321833318334183351833618337183381833918340183411834218343183441834518346183471834818349183501835118352183531835418355183561835718358183591836018361183621836318364183651836618367183681836918370183711837218373183741837518376183771837818379183801838118382183831838418385183861838718388183891839018391183921839318394183951839618397183981839918400184011840218403184041840518406184071840818409184101841118412184131841418415184161841718418184191842018421184221842318424184251842618427184281842918430184311843218433184341843518436184371843818439184401844118442184431844418445184461844718448184491845018451184521845318454184551845618457184581845918460184611846218463184641846518466184671846818469184701847118472184731847418475184761847718478184791848018481184821848318484184851848618487184881848918490184911849218493184941849518496184971849818499185001850118502185031850418505185061850718508185091851018511185121851318514185151851618517185181851918520185211852218523185241852518526185271852818529185301853118532185331853418535185361853718538185391854018541185421854318544185451854618547185481854918550185511855218553185541855518556185571855818559185601856118562185631856418565185661856718568185691857018571185721857318574185751857618577185781857918580185811858218583185841858518586185871858818589185901859118592185931859418595185961859718598185991860018601186021860318604186051860618607186081860918610186111861218613186141861518616186171861818619186201862118622186231862418625186261862718628186291863018631186321863318634186351863618637186381863918640186411864218643186441864518646186471864818649186501865118652186531865418655186561865718658186591866018661186621866318664186651866618667186681866918670186711867218673186741867518676186771867818679186801868118682186831868418685186861868718688186891869018691186921869318694186951869618697186981869918700187011870218703187041870518706187071870818709187101871118712187131871418715187161871718718187191872018721187221872318724187251872618727187281872918730187311873218733187341873518736187371873818739187401874118742187431874418745187461874718748187491875018751187521875318754187551875618757187581875918760187611876218763187641876518766187671876818769187701877118772187731877418775187761877718778187791878018781187821878318784187851878618787187881878918790187911879218793187941879518796187971879818799188001880118802188031880418805188061880718808188091881018811188121881318814188151881618817188181881918820188211882218823188241882518826188271882818829188301883118832188331883418835188361883718838188391884018841188421884318844188451884618847188481884918850188511885218853188541885518856188571885818859188601886118862188631886418865188661886718868188691887018871188721887318874188751887618877188781887918880188811888218883188841888518886188871888818889188901889118892188931889418895188961889718898188991890018901189021890318904189051890618907189081890918910189111891218913189141891518916189171891818919189201892118922189231892418925189261892718928189291893018931189321893318934189351893618937189381893918940189411894218943189441894518946189471894818949189501895118952189531895418955189561895718958189591896018961189621896318964189651896618967189681896918970189711897218973189741897518976189771897818979189801898118982189831898418985189861898718988189891899018991189921899318994189951899618997189981899919000190011900219003190041900519006190071900819009190101901119012190131901419015190161901719018190191902019021190221902319024190251902619027190281902919030190311903219033190341903519036190371903819039190401904119042190431904419045190461904719048190491905019051190521905319054190551905619057190581905919060190611906219063190641906519066190671906819069190701907119072190731907419075190761907719078190791908019081190821908319084190851908619087190881908919090190911909219093190941909519096190971909819099191001910119102191031910419105191061910719108191091911019111191121911319114191151911619117191181911919120191211912219123191241912519126191271912819129191301913119132191331913419135191361913719138191391914019141191421914319144191451914619147191481914919150191511915219153191541915519156191571915819159191601916119162191631916419165191661916719168191691917019171191721917319174191751917619177191781917919180191811918219183191841918519186191871918819189191901919119192191931919419195191961919719198191991920019201192021920319204192051920619207192081920919210192111921219213192141921519216192171921819219192201922119222192231922419225192261922719228192291923019231192321923319234192351923619237192381923919240192411924219243192441924519246192471924819249192501925119252192531925419255192561925719258192591926019261192621926319264192651926619267192681926919270192711927219273192741927519276192771927819279192801928119282192831928419285192861928719288192891929019291192921929319294192951929619297192981929919300193011930219303193041930519306193071930819309193101931119312193131931419315193161931719318193191932019321193221932319324193251932619327193281932919330193311933219333193341933519336193371933819339193401934119342193431934419345193461934719348193491935019351193521935319354193551935619357193581935919360193611936219363193641936519366193671936819369193701937119372193731937419375193761937719378193791938019381193821938319384193851938619387193881938919390193911939219393193941939519396193971939819399194001940119402194031940419405194061940719408194091941019411194121941319414194151941619417194181941919420194211942219423194241942519426194271942819429194301943119432194331943419435194361943719438194391944019441194421944319444194451944619447194481944919450194511945219453194541945519456194571945819459194601946119462194631946419465194661946719468194691947019471194721947319474194751947619477194781947919480194811948219483194841948519486194871948819489194901949119492194931949419495194961949719498194991950019501195021950319504195051950619507195081950919510195111951219513195141951519516195171951819519195201952119522195231952419525195261952719528195291953019531195321953319534195351953619537195381953919540195411954219543195441954519546195471954819549195501955119552195531955419555195561955719558195591956019561195621956319564195651956619567195681956919570195711957219573195741957519576195771957819579195801958119582195831958419585195861958719588195891959019591195921959319594195951959619597195981959919600196011960219603196041960519606196071960819609196101961119612196131961419615196161961719618196191962019621196221962319624196251962619627196281962919630196311963219633196341963519636196371963819639196401964119642196431964419645196461964719648196491965019651196521965319654196551965619657196581965919660196611966219663196641966519666196671966819669196701967119672196731967419675196761967719678196791968019681196821968319684196851968619687196881968919690196911969219693196941969519696196971969819699197001970119702197031970419705197061970719708197091971019711197121971319714197151971619717197181971919720197211972219723197241972519726197271972819729197301973119732197331973419735197361973719738197391974019741197421974319744197451974619747197481974919750197511975219753197541975519756197571975819759197601976119762197631976419765197661976719768197691977019771197721977319774197751977619777197781977919780197811978219783197841978519786197871978819789197901979119792197931979419795197961979719798197991980019801198021980319804198051980619807198081980919810198111981219813198141981519816198171981819819198201982119822198231982419825198261982719828198291983019831198321983319834198351983619837198381983919840198411984219843198441984519846198471984819849198501985119852198531985419855198561985719858198591986019861198621986319864198651986619867198681986919870198711987219873198741987519876198771987819879198801988119882198831988419885198861988719888198891989019891198921989319894198951989619897198981989919900199011990219903199041990519906199071990819909199101991119912199131991419915199161991719918199191992019921199221992319924199251992619927199281992919930199311993219933199341993519936199371993819939199401994119942199431994419945199461994719948199491995019951199521995319954199551995619957199581995919960199611996219963199641996519966199671996819969199701997119972199731997419975199761997719978199791998019981199821998319984199851998619987199881998919990199911999219993199941999519996199971999819999200002000120002200032000420005200062000720008200092001020011200122001320014200152001620017200182001920020200212002220023200242002520026200272002820029200302003120032200332003420035200362003720038200392004020041200422004320044200452004620047200482004920050200512005220053200542005520056200572005820059200602006120062200632006420065200662006720068200692007020071200722007320074200752007620077200782007920080200812008220083200842008520086200872008820089200902009120092200932009420095200962009720098200992010020101201022010320104201052010620107201082010920110201112011220113201142011520116201172011820119201202012120122201232012420125201262012720128201292013020131201322013320134201352013620137201382013920140201412014220143201442014520146201472014820149201502015120152201532015420155201562015720158201592016020161201622016320164201652016620167201682016920170201712017220173201742017520176201772017820179201802018120182201832018420185201862018720188201892019020191201922019320194201952019620197201982019920200202012020220203202042020520206202072020820209202102021120212202132021420215202162021720218202192022020221202222022320224202252022620227202282022920230202312023220233202342023520236202372023820239202402024120242202432024420245202462024720248202492025020251202522025320254202552025620257202582025920260202612026220263202642026520266202672026820269202702027120272202732027420275202762027720278202792028020281202822028320284202852028620287202882028920290202912029220293202942029520296202972029820299203002030120302203032030420305203062030720308203092031020311203122031320314203152031620317203182031920320203212032220323203242032520326203272032820329203302033120332203332033420335203362033720338203392034020341203422034320344203452034620347203482034920350203512035220353203542035520356203572035820359203602036120362203632036420365203662036720368203692037020371203722037320374203752037620377203782037920380203812038220383203842038520386203872038820389203902039120392203932039420395203962039720398203992040020401204022040320404204052040620407204082040920410204112041220413204142041520416204172041820419204202042120422204232042420425204262042720428204292043020431204322043320434204352043620437204382043920440204412044220443204442044520446204472044820449204502045120452204532045420455204562045720458204592046020461204622046320464204652046620467204682046920470204712047220473204742047520476204772047820479204802048120482204832048420485204862048720488204892049020491204922049320494204952049620497204982049920500205012050220503205042050520506205072050820509205102051120512205132051420515205162051720518205192052020521205222052320524205252052620527205282052920530205312053220533205342053520536205372053820539205402054120542205432054420545205462054720548205492055020551205522055320554205552055620557205582055920560205612056220563205642056520566205672056820569205702057120572205732057420575205762057720578205792058020581205822058320584205852058620587205882058920590205912059220593205942059520596205972059820599206002060120602206032060420605206062060720608206092061020611
  1. #define _CRT_SECURE_NO_DEPRECATE // Disables ridiculous "unsafe" warnings on Windows
  2. #define _USE_MATH_DEFINES // For M_PI on MSVC
  3. #include "ggml-impl.h"
  4. #include "ggml-quants.h"
  5. #if defined(_MSC_VER) || defined(__MINGW32__)
  6. #include <malloc.h> // using malloc.h with MSC/MINGW
  7. #elif !defined(__FreeBSD__) && !defined(__NetBSD__) && !defined(__OpenBSD__)
  8. #include <alloca.h>
  9. #endif
  10. #include <assert.h>
  11. #include <errno.h>
  12. #include <time.h>
  13. #include <math.h>
  14. #include <stdlib.h>
  15. #include <string.h>
  16. #include <stdint.h>
  17. #include <inttypes.h>
  18. #include <stdio.h>
  19. #include <float.h>
  20. #include <limits.h>
  21. #include <stdarg.h>
  22. #include <signal.h>
  23. #ifdef GGML_USE_METAL
  24. #include <unistd.h>
  25. #endif
  26. #if defined(_MSC_VER)
  27. // disable "possible loss of data" to avoid hundreds of casts
  28. // we should just be careful :)
  29. #pragma warning(disable: 4244 4267)
  30. // disable POSIX deprecation warnings
  31. // these functions are never going away, anyway
  32. #pragma warning(disable: 4996)
  33. #endif
  34. #if defined(_WIN32)
  35. #include <windows.h>
  36. typedef volatile LONG atomic_int;
  37. typedef atomic_int atomic_bool;
  38. static void atomic_store(atomic_int * ptr, LONG val) {
  39. InterlockedExchange(ptr, val);
  40. }
  41. static LONG atomic_load(atomic_int * ptr) {
  42. return InterlockedCompareExchange(ptr, 0, 0);
  43. }
  44. static LONG atomic_fetch_add(atomic_int * ptr, LONG inc) {
  45. return InterlockedExchangeAdd(ptr, inc);
  46. }
  47. static LONG atomic_fetch_sub(atomic_int * ptr, LONG dec) {
  48. return atomic_fetch_add(ptr, -(dec));
  49. }
  50. typedef HANDLE pthread_t;
  51. typedef DWORD thread_ret_t;
  52. static int pthread_create(pthread_t * out, void * unused, thread_ret_t(*func)(void *), void * arg) {
  53. (void) unused;
  54. HANDLE handle = CreateThread(NULL, 0, (LPTHREAD_START_ROUTINE) func, arg, 0, NULL);
  55. if (handle == NULL)
  56. {
  57. return EAGAIN;
  58. }
  59. *out = handle;
  60. return 0;
  61. }
  62. static int pthread_join(pthread_t thread, void * unused) {
  63. (void) unused;
  64. int ret = (int) WaitForSingleObject(thread, INFINITE);
  65. CloseHandle(thread);
  66. return ret;
  67. }
  68. static int sched_yield (void) {
  69. Sleep (0);
  70. return 0;
  71. }
  72. #else
  73. #include <pthread.h>
  74. #include <stdatomic.h>
  75. typedef void * thread_ret_t;
  76. #include <sys/types.h>
  77. #include <sys/stat.h>
  78. #include <unistd.h>
  79. #endif
  80. #ifdef GGML_USE_CPU_HBM
  81. #include <hbwmalloc.h>
  82. #endif
  83. #if defined(__APPLE__)
  84. #include <TargetConditionals.h>
  85. #endif
  86. #if (defined(__linux__) || defined(__APPLE__) || defined(__FreeBSD__) || defined(__NetBSD__) || defined(__OpenBSD__)) && \
  87. (!defined(TARGET_OS_TV) && !defined(TARGET_OS_WATCH))
  88. #include <sys/wait.h>
  89. void ggml_print_backtrace(void) {
  90. /*
  91. #include <execinfo.h>
  92. #include <dlfcn.h>
  93. void * trace[100];
  94. int nptrs = backtrace(trace, sizeof(trace)/sizeof(trace[0]));
  95. backtrace_symbols_fd(trace, nptrs, STDERR_FILENO);
  96. */
  97. // backtrack_symbols does not show line numbers, use gdb instead
  98. char attach[32];
  99. snprintf(attach, sizeof(attach), "attach %d", getpid());
  100. int pid = fork();
  101. if (pid == 0) {
  102. execlp("gdb", "gdb", "--batch",
  103. "-ex", "set style enabled on",
  104. "-ex", attach,
  105. "-ex", "bt -frame-info source-and-location",
  106. "-ex", "detach",
  107. "-ex", "quit",
  108. (char *) NULL);
  109. } else {
  110. waitpid(pid, NULL, 0);
  111. }
  112. }
  113. #else
  114. void ggml_print_backtrace(void) {
  115. // platform not supported
  116. }
  117. #endif
  118. /*#define GGML_PERF*/
  119. #define GGML_DEBUG 0
  120. #define GGML_GELU_FP16
  121. #define GGML_GELU_QUICK_FP16
  122. #define GGML_SILU_FP16
  123. // #define GGML_CROSS_ENTROPY_EXP_FP16
  124. // #define GGML_FLASH_ATTN_EXP_FP16
  125. #define GGML_SOFT_MAX_UNROLL 4
  126. #define GGML_VEC_DOT_UNROLL 2
  127. #define GGML_VEC_MAD_UNROLL 32
  128. //
  129. // logging
  130. //
  131. #if (GGML_DEBUG >= 1)
  132. #define GGML_PRINT_DEBUG(...) printf(__VA_ARGS__)
  133. #else
  134. #define GGML_PRINT_DEBUG(...)
  135. #endif
  136. #if (GGML_DEBUG >= 5)
  137. #define GGML_PRINT_DEBUG_5(...) printf(__VA_ARGS__)
  138. #else
  139. #define GGML_PRINT_DEBUG_5(...)
  140. #endif
  141. #if (GGML_DEBUG >= 10)
  142. #define GGML_PRINT_DEBUG_10(...) printf(__VA_ARGS__)
  143. #else
  144. #define GGML_PRINT_DEBUG_10(...)
  145. #endif
  146. #define GGML_PRINT(...) printf(__VA_ARGS__)
  147. //
  148. // end of logging block
  149. //
  150. #ifdef GGML_USE_ACCELERATE
  151. // uncomment to use vDSP for soft max computation
  152. // note: not sure if it is actually faster
  153. //#define GGML_SOFT_MAX_ACCELERATE
  154. #endif
  155. #if defined(_MSC_VER) || defined(__MINGW32__)
  156. #define GGML_ALIGNED_MALLOC(size) _aligned_malloc(size, GGML_MEM_ALIGN)
  157. #define GGML_ALIGNED_FREE(ptr) _aligned_free(ptr)
  158. #else
  159. inline static void * ggml_aligned_malloc(size_t size) {
  160. if (size == 0) {
  161. GGML_PRINT("WARNING: Behavior may be unexpected when allocating 0 bytes for ggml_aligned_malloc!\n");
  162. return NULL;
  163. }
  164. void * aligned_memory = NULL;
  165. #ifdef GGML_USE_CPU_HBM
  166. int result = hbw_posix_memalign(&aligned_memory, 16, size);
  167. #elif GGML_USE_METAL
  168. int result = posix_memalign(&aligned_memory, sysconf(_SC_PAGESIZE), size);
  169. #else
  170. int result = posix_memalign(&aligned_memory, GGML_MEM_ALIGN, size);
  171. #endif
  172. if (result != 0) {
  173. // Handle allocation failure
  174. const char *error_desc = "unknown allocation error";
  175. switch (result) {
  176. case EINVAL:
  177. error_desc = "invalid alignment value";
  178. break;
  179. case ENOMEM:
  180. error_desc = "insufficient memory";
  181. break;
  182. }
  183. GGML_PRINT("%s: %s (attempted to allocate %6.2f MB)\n", __func__, error_desc, size/(1024.0*1024.0));
  184. GGML_ASSERT(false);
  185. return NULL;
  186. }
  187. return aligned_memory;
  188. }
  189. #define GGML_ALIGNED_MALLOC(size) ggml_aligned_malloc(size)
  190. #ifdef GGML_USE_CPU_HBM
  191. #define GGML_ALIGNED_FREE(ptr) if(NULL != ptr) hbw_free(ptr)
  192. #else
  193. #define GGML_ALIGNED_FREE(ptr) free(ptr)
  194. #endif
  195. #endif
  196. inline static void * ggml_malloc(size_t size) {
  197. if (size == 0) {
  198. GGML_PRINT("WARNING: Behavior may be unexpected when allocating 0 bytes for ggml_malloc!\n");
  199. return NULL;
  200. }
  201. void * result = malloc(size);
  202. if (result == NULL) {
  203. GGML_PRINT("%s: failed to allocate %6.2f MB\n", __func__, size/(1024.0*1024.0));
  204. GGML_ASSERT(false);
  205. }
  206. return result;
  207. }
  208. // calloc
  209. inline static void * ggml_calloc(size_t num, size_t size) {
  210. if (num == 0 || size == 0) {
  211. GGML_PRINT("WARNING: Behavior may be unexpected when allocating 0 bytes for ggml_calloc!\n");
  212. return NULL;
  213. }
  214. void * result = calloc(num, size);
  215. if (result == NULL) {
  216. GGML_PRINT("%s: failed to allocate %6.2f MB\n", __func__, size/(1024.0*1024.0));
  217. GGML_ASSERT(false);
  218. }
  219. return result;
  220. }
  221. #define GGML_MALLOC(size) ggml_malloc(size)
  222. #define GGML_CALLOC(num, size) ggml_calloc(num, size)
  223. #define GGML_FREE(ptr) free(ptr)
  224. #define UNUSED GGML_UNUSED
  225. #define SWAP(x, y, T) do { T SWAP = x; x = y; y = SWAP; } while (0)
  226. #if defined(GGML_USE_ACCELERATE)
  227. #include <Accelerate/Accelerate.h>
  228. #if defined(GGML_USE_CLBLAST) // allow usage of CLBlast alongside Accelerate functions
  229. #include "ggml-opencl.h"
  230. #endif
  231. #elif defined(GGML_USE_OPENBLAS)
  232. #if defined(GGML_BLAS_USE_MKL)
  233. #include <mkl.h>
  234. #else
  235. #include <cblas.h>
  236. #endif
  237. #elif defined(GGML_USE_CUBLAS)
  238. #include "ggml-cuda.h"
  239. #elif defined(GGML_USE_CLBLAST)
  240. #include "ggml-opencl.h"
  241. #elif defined(GGML_USE_VULKAN)
  242. #include "ggml-vulkan.h"
  243. #elif defined(GGML_USE_SYCL)
  244. #include "ggml-sycl.h"
  245. #endif
  246. // floating point type used to accumulate sums
  247. typedef double ggml_float;
  248. #undef MIN
  249. #undef MAX
  250. #define MIN(a, b) ((a) < (b) ? (a) : (b))
  251. #define MAX(a, b) ((a) > (b) ? (a) : (b))
  252. //
  253. // global data
  254. //
  255. // precomputed gelu table for f16 (128 KB)
  256. static ggml_fp16_t ggml_table_gelu_f16[1 << 16];
  257. // precomputed quick gelu table for f16 (128 KB)
  258. static ggml_fp16_t ggml_table_gelu_quick_f16[1 << 16];
  259. // precomputed silu table for f16 (128 KB)
  260. static ggml_fp16_t ggml_table_silu_f16[1 << 16];
  261. // precomputed exp table for f16 (128 KB)
  262. static ggml_fp16_t ggml_table_exp_f16[1 << 16];
  263. // precomputed f32 table for f16 (256 KB) (ggml-impl.h)
  264. float ggml_table_f32_f16[1 << 16];
  265. // note: do not use these inside ggml.c
  266. // these are meant to be used via the ggml.h API
  267. float ggml_fp16_to_fp32(ggml_fp16_t x) {
  268. return (float) GGML_FP16_TO_FP32(x);
  269. }
  270. ggml_fp16_t ggml_fp32_to_fp16(float x) {
  271. return GGML_FP32_TO_FP16(x);
  272. }
  273. void ggml_fp16_to_fp32_row(const ggml_fp16_t * x, float * y, int n) {
  274. for (int i = 0; i < n; i++) {
  275. y[i] = GGML_FP16_TO_FP32(x[i]);
  276. }
  277. }
  278. void ggml_fp32_to_fp16_row(const float * x, ggml_fp16_t * y, int n) {
  279. int i = 0;
  280. #if defined(__F16C__)
  281. for (; i + 7 < n; i += 8) {
  282. __m256 x_vec = _mm256_loadu_ps(x + i);
  283. __m128i y_vec = _mm256_cvtps_ph(x_vec, _MM_FROUND_TO_NEAREST_INT);
  284. _mm_storeu_si128((__m128i *)(y + i), y_vec);
  285. }
  286. for(; i + 3 < n; i += 4) {
  287. __m128 x_vec = _mm_loadu_ps(x + i);
  288. __m128i y_vec = _mm_cvtps_ph(x_vec, _MM_FROUND_TO_NEAREST_INT);
  289. _mm_storel_epi64((__m128i *)(y + i), y_vec);
  290. }
  291. #endif
  292. for (; i < n; i++) {
  293. y[i] = GGML_FP32_TO_FP16(x[i]);
  294. }
  295. }
  296. //
  297. // timing
  298. //
  299. #if defined(_MSC_VER) || defined(__MINGW32__)
  300. static int64_t timer_freq, timer_start;
  301. void ggml_time_init(void) {
  302. LARGE_INTEGER t;
  303. QueryPerformanceFrequency(&t);
  304. timer_freq = t.QuadPart;
  305. // The multiplication by 1000 or 1000000 below can cause an overflow if timer_freq
  306. // and the uptime is high enough.
  307. // We subtract the program start time to reduce the likelihood of that happening.
  308. QueryPerformanceCounter(&t);
  309. timer_start = t.QuadPart;
  310. }
  311. int64_t ggml_time_ms(void) {
  312. LARGE_INTEGER t;
  313. QueryPerformanceCounter(&t);
  314. return ((t.QuadPart-timer_start) * 1000) / timer_freq;
  315. }
  316. int64_t ggml_time_us(void) {
  317. LARGE_INTEGER t;
  318. QueryPerformanceCounter(&t);
  319. return ((t.QuadPart-timer_start) * 1000000) / timer_freq;
  320. }
  321. #else
  322. void ggml_time_init(void) {}
  323. int64_t ggml_time_ms(void) {
  324. struct timespec ts;
  325. clock_gettime(CLOCK_MONOTONIC, &ts);
  326. return (int64_t)ts.tv_sec*1000 + (int64_t)ts.tv_nsec/1000000;
  327. }
  328. int64_t ggml_time_us(void) {
  329. struct timespec ts;
  330. clock_gettime(CLOCK_MONOTONIC, &ts);
  331. return (int64_t)ts.tv_sec*1000000 + (int64_t)ts.tv_nsec/1000;
  332. }
  333. #endif
  334. int64_t ggml_cycles(void) {
  335. return clock();
  336. }
  337. int64_t ggml_cycles_per_ms(void) {
  338. return CLOCKS_PER_SEC/1000;
  339. }
  340. #ifdef GGML_PERF
  341. #define ggml_perf_time_ms() ggml_time_ms()
  342. #define ggml_perf_time_us() ggml_time_us()
  343. #define ggml_perf_cycles() ggml_cycles()
  344. #define ggml_perf_cycles_per_ms() ggml_cycles_per_ms()
  345. #else
  346. #define ggml_perf_time_ms() 0
  347. #define ggml_perf_time_us() 0
  348. #define ggml_perf_cycles() 0
  349. #define ggml_perf_cycles_per_ms() 0
  350. #endif
  351. //
  352. // cache line
  353. //
  354. #if defined(__cpp_lib_hardware_interference_size)
  355. #define CACHE_LINE_SIZE hardware_destructive_interference_size
  356. #else
  357. #if defined(__POWER9_VECTOR__)
  358. #define CACHE_LINE_SIZE 128
  359. #else
  360. #define CACHE_LINE_SIZE 64
  361. #endif
  362. #endif
  363. static const size_t CACHE_LINE_SIZE_F32 = CACHE_LINE_SIZE/sizeof(float);
  364. static void ggml_vec_dot_f32(const int n, float * restrict s, const float * restrict x, const float * restrict y);
  365. static void ggml_vec_dot_f16(const int n, float * restrict s, ggml_fp16_t * restrict x, ggml_fp16_t * restrict y);
  366. static const ggml_type_traits_t type_traits[GGML_TYPE_COUNT] = {
  367. [GGML_TYPE_I8] = {
  368. .type_name = "i8",
  369. .blck_size = 1,
  370. .type_size = sizeof(int8_t),
  371. .is_quantized = false,
  372. },
  373. [GGML_TYPE_I16] = {
  374. .type_name = "i16",
  375. .blck_size = 1,
  376. .type_size = sizeof(int16_t),
  377. .is_quantized = false,
  378. },
  379. [GGML_TYPE_I32] = {
  380. .type_name = "i32",
  381. .blck_size = 1,
  382. .type_size = sizeof(int32_t),
  383. .is_quantized = false,
  384. },
  385. [GGML_TYPE_F32] = {
  386. .type_name = "f32",
  387. .blck_size = 1,
  388. .type_size = sizeof(float),
  389. .is_quantized = false,
  390. .vec_dot = (ggml_vec_dot_t) ggml_vec_dot_f32,
  391. .vec_dot_type = GGML_TYPE_F32,
  392. },
  393. [GGML_TYPE_F16] = {
  394. .type_name = "f16",
  395. .blck_size = 1,
  396. .type_size = sizeof(ggml_fp16_t),
  397. .is_quantized = false,
  398. .to_float = (ggml_to_float_t) ggml_fp16_to_fp32_row,
  399. .from_float = (ggml_from_float_t) ggml_fp32_to_fp16_row,
  400. .from_float_reference = (ggml_from_float_t) ggml_fp32_to_fp16_row,
  401. .vec_dot = (ggml_vec_dot_t) ggml_vec_dot_f16,
  402. .vec_dot_type = GGML_TYPE_F16,
  403. },
  404. [GGML_TYPE_Q4_0] = {
  405. .type_name = "q4_0",
  406. .blck_size = QK4_0,
  407. .type_size = sizeof(block_q4_0),
  408. .is_quantized = true,
  409. .to_float = (ggml_to_float_t) dequantize_row_q4_0,
  410. .from_float = quantize_row_q4_0,
  411. .from_float_reference = (ggml_from_float_t) quantize_row_q4_0_reference,
  412. .vec_dot = ggml_vec_dot_q4_0_q8_0,
  413. .vec_dot_type = GGML_TYPE_Q8_0,
  414. },
  415. [GGML_TYPE_Q4_1] = {
  416. .type_name = "q4_1",
  417. .blck_size = QK4_1,
  418. .type_size = sizeof(block_q4_1),
  419. .is_quantized = true,
  420. .to_float = (ggml_to_float_t) dequantize_row_q4_1,
  421. .from_float = quantize_row_q4_1,
  422. .from_float_reference = (ggml_from_float_t) quantize_row_q4_1_reference,
  423. .vec_dot = ggml_vec_dot_q4_1_q8_1,
  424. .vec_dot_type = GGML_TYPE_Q8_1,
  425. },
  426. [4] = { // GGML_TYPE_Q4_2
  427. .type_name = "DEPRECATED",
  428. .blck_size = 0,
  429. .type_size = 0,
  430. .is_quantized = false,
  431. .to_float = NULL,
  432. .from_float = NULL,
  433. .from_float_reference = NULL,
  434. .vec_dot = NULL,
  435. .vec_dot_type = GGML_TYPE_COUNT,
  436. },
  437. [5] = { // GGML_TYPE_Q4_3
  438. .type_name = "DEPRECATED",
  439. .blck_size = 0,
  440. .type_size = 0,
  441. .is_quantized = false,
  442. .to_float = NULL,
  443. .from_float = NULL,
  444. .from_float_reference = NULL,
  445. .vec_dot = NULL,
  446. .vec_dot_type = GGML_TYPE_COUNT,
  447. },
  448. [GGML_TYPE_Q5_0] = {
  449. .type_name = "q5_0",
  450. .blck_size = QK5_0,
  451. .type_size = sizeof(block_q5_0),
  452. .is_quantized = true,
  453. .to_float = (ggml_to_float_t) dequantize_row_q5_0,
  454. .from_float = quantize_row_q5_0,
  455. .from_float_reference = (ggml_from_float_t) quantize_row_q5_0_reference,
  456. .vec_dot = ggml_vec_dot_q5_0_q8_0,
  457. .vec_dot_type = GGML_TYPE_Q8_0,
  458. },
  459. [GGML_TYPE_Q5_1] = {
  460. .type_name = "q5_1",
  461. .blck_size = QK5_1,
  462. .type_size = sizeof(block_q5_1),
  463. .is_quantized = true,
  464. .to_float = (ggml_to_float_t) dequantize_row_q5_1,
  465. .from_float = quantize_row_q5_1,
  466. .from_float_reference = (ggml_from_float_t) quantize_row_q5_1_reference,
  467. .vec_dot = ggml_vec_dot_q5_1_q8_1,
  468. .vec_dot_type = GGML_TYPE_Q8_1,
  469. },
  470. [GGML_TYPE_Q8_0] = {
  471. .type_name = "q8_0",
  472. .blck_size = QK8_0,
  473. .type_size = sizeof(block_q8_0),
  474. .is_quantized = true,
  475. .to_float = (ggml_to_float_t) dequantize_row_q8_0,
  476. .from_float = quantize_row_q8_0,
  477. .from_float_reference = (ggml_from_float_t) quantize_row_q8_0_reference,
  478. .vec_dot = ggml_vec_dot_q8_0_q8_0,
  479. .vec_dot_type = GGML_TYPE_Q8_0,
  480. },
  481. [GGML_TYPE_Q8_1] = {
  482. .type_name = "q8_1",
  483. .blck_size = QK8_1,
  484. .type_size = sizeof(block_q8_1),
  485. .is_quantized = true,
  486. .from_float = quantize_row_q8_1,
  487. .from_float_reference = (ggml_from_float_t) quantize_row_q8_1_reference,
  488. .vec_dot_type = GGML_TYPE_Q8_1,
  489. },
  490. [GGML_TYPE_Q2_K] = {
  491. .type_name = "q2_K",
  492. .blck_size = QK_K,
  493. .type_size = sizeof(block_q2_K),
  494. .is_quantized = true,
  495. .to_float = (ggml_to_float_t) dequantize_row_q2_K,
  496. .from_float = quantize_row_q2_K,
  497. .from_float_reference = (ggml_from_float_t) quantize_row_q2_K_reference,
  498. .vec_dot = ggml_vec_dot_q2_K_q8_K,
  499. .vec_dot_type = GGML_TYPE_Q8_K,
  500. },
  501. [GGML_TYPE_Q3_K] = {
  502. .type_name = "q3_K",
  503. .blck_size = QK_K,
  504. .type_size = sizeof(block_q3_K),
  505. .is_quantized = true,
  506. .to_float = (ggml_to_float_t) dequantize_row_q3_K,
  507. .from_float = quantize_row_q3_K,
  508. .from_float_reference = (ggml_from_float_t) quantize_row_q3_K_reference,
  509. .vec_dot = ggml_vec_dot_q3_K_q8_K,
  510. .vec_dot_type = GGML_TYPE_Q8_K,
  511. },
  512. [GGML_TYPE_Q4_K] = {
  513. .type_name = "q4_K",
  514. .blck_size = QK_K,
  515. .type_size = sizeof(block_q4_K),
  516. .is_quantized = true,
  517. .to_float = (ggml_to_float_t) dequantize_row_q4_K,
  518. .from_float = quantize_row_q4_K,
  519. .from_float_reference = (ggml_from_float_t) quantize_row_q4_K_reference,
  520. .vec_dot = ggml_vec_dot_q4_K_q8_K,
  521. .vec_dot_type = GGML_TYPE_Q8_K,
  522. },
  523. [GGML_TYPE_Q5_K] = {
  524. .type_name = "q5_K",
  525. .blck_size = QK_K,
  526. .type_size = sizeof(block_q5_K),
  527. .is_quantized = true,
  528. .to_float = (ggml_to_float_t) dequantize_row_q5_K,
  529. .from_float = quantize_row_q5_K,
  530. .from_float_reference = (ggml_from_float_t) quantize_row_q5_K_reference,
  531. .vec_dot = ggml_vec_dot_q5_K_q8_K,
  532. .vec_dot_type = GGML_TYPE_Q8_K,
  533. },
  534. [GGML_TYPE_Q6_K] = {
  535. .type_name = "q6_K",
  536. .blck_size = QK_K,
  537. .type_size = sizeof(block_q6_K),
  538. .is_quantized = true,
  539. .to_float = (ggml_to_float_t) dequantize_row_q6_K,
  540. .from_float = quantize_row_q6_K,
  541. .from_float_reference = (ggml_from_float_t) quantize_row_q6_K_reference,
  542. .vec_dot = ggml_vec_dot_q6_K_q8_K,
  543. .vec_dot_type = GGML_TYPE_Q8_K,
  544. },
  545. [GGML_TYPE_IQ2_XXS] = {
  546. .type_name = "iq2_xxs",
  547. .blck_size = QK_K,
  548. .type_size = sizeof(block_iq2_xxs),
  549. .is_quantized = true,
  550. .to_float = (ggml_to_float_t) dequantize_row_iq2_xxs,
  551. .from_float = NULL,
  552. .from_float_reference = NULL,
  553. .vec_dot = ggml_vec_dot_iq2_xxs_q8_K,
  554. .vec_dot_type = GGML_TYPE_Q8_K,
  555. },
  556. [GGML_TYPE_IQ2_XS] = {
  557. .type_name = "iq2_xs",
  558. .blck_size = QK_K,
  559. .type_size = sizeof(block_iq2_xs),
  560. .is_quantized = true,
  561. .to_float = (ggml_to_float_t) dequantize_row_iq2_xs,
  562. .from_float = NULL,
  563. .from_float_reference = NULL,
  564. .vec_dot = ggml_vec_dot_iq2_xs_q8_K,
  565. .vec_dot_type = GGML_TYPE_Q8_K,
  566. },
  567. [GGML_TYPE_IQ3_XXS] = {
  568. .type_name = "iq3_xxs",
  569. .blck_size = QK_K,
  570. .type_size = sizeof(block_iq3_xxs),
  571. .is_quantized = true,
  572. .to_float = (ggml_to_float_t) dequantize_row_iq3_xxs,
  573. .from_float = quantize_row_iq3_xxs,
  574. .from_float_reference = (ggml_from_float_t)quantize_row_iq3_xxs_reference,
  575. .vec_dot = ggml_vec_dot_iq3_xxs_q8_K,
  576. .vec_dot_type = GGML_TYPE_Q8_K,
  577. },
  578. [GGML_TYPE_Q8_K] = {
  579. .type_name = "q8_K",
  580. .blck_size = QK_K,
  581. .type_size = sizeof(block_q8_K),
  582. .is_quantized = true,
  583. .from_float = quantize_row_q8_K,
  584. }
  585. };
  586. // For internal test use
  587. ggml_type_traits_t ggml_internal_get_type_traits(enum ggml_type type) {
  588. GGML_ASSERT(type < GGML_TYPE_COUNT);
  589. return type_traits[type];
  590. }
  591. //
  592. // simd mappings
  593. //
  594. #if defined(__ARM_NEON)
  595. #if !defined(__aarch64__)
  596. // 64-bit compatibility
  597. inline static float vaddvq_f32(float32x4_t v) {
  598. return vgetq_lane_f32(v, 0) + vgetq_lane_f32(v, 1) + vgetq_lane_f32(v, 2) + vgetq_lane_f32(v, 3);
  599. }
  600. #endif
  601. #endif
  602. // we define a common set of C macros which map to specific intrinsics based on the current architecture
  603. // we then implement the fundamental computation operations below using only these macros
  604. // adding support for new architectures requires to define the corresponding SIMD macros
  605. //
  606. // GGML_F32_STEP / GGML_F16_STEP
  607. // number of elements to process in a single step
  608. //
  609. // GGML_F32_EPR / GGML_F16_EPR
  610. // number of elements to fit in a single register
  611. //
  612. #if defined(__ARM_NEON) && defined(__ARM_FEATURE_FMA)
  613. #define GGML_SIMD
  614. // F32 NEON
  615. #define GGML_F32_STEP 16
  616. #define GGML_F32_EPR 4
  617. #define GGML_F32x4 float32x4_t
  618. #define GGML_F32x4_ZERO vdupq_n_f32(0.0f)
  619. #define GGML_F32x4_SET1(x) vdupq_n_f32(x)
  620. #define GGML_F32x4_LOAD vld1q_f32
  621. #define GGML_F32x4_STORE vst1q_f32
  622. #define GGML_F32x4_FMA(a, b, c) vfmaq_f32(a, b, c)
  623. #define GGML_F32x4_ADD vaddq_f32
  624. #define GGML_F32x4_MUL vmulq_f32
  625. #define GGML_F32x4_REDUCE_ONE(x) vaddvq_f32(x)
  626. #define GGML_F32x4_REDUCE(res, x) \
  627. { \
  628. int offset = GGML_F32_ARR >> 1; \
  629. for (int i = 0; i < offset; ++i) { \
  630. x[i] = vaddq_f32(x[i], x[offset+i]); \
  631. } \
  632. offset >>= 1; \
  633. for (int i = 0; i < offset; ++i) { \
  634. x[i] = vaddq_f32(x[i], x[offset+i]); \
  635. } \
  636. offset >>= 1; \
  637. for (int i = 0; i < offset; ++i) { \
  638. x[i] = vaddq_f32(x[i], x[offset+i]); \
  639. } \
  640. res = GGML_F32x4_REDUCE_ONE(x[0]); \
  641. }
  642. #define GGML_F32_VEC GGML_F32x4
  643. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  644. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  645. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  646. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  647. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  648. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  649. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  650. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  651. // F16 NEON
  652. #if defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC)
  653. #define GGML_F16_STEP 32
  654. #define GGML_F16_EPR 8
  655. #define GGML_F16x8 float16x8_t
  656. #define GGML_F16x8_ZERO vdupq_n_f16(0.0f)
  657. #define GGML_F16x8_SET1(x) vdupq_n_f16(x)
  658. #define GGML_F16x8_LOAD vld1q_f16
  659. #define GGML_F16x8_STORE vst1q_f16
  660. #define GGML_F16x8_FMA(a, b, c) vfmaq_f16(a, b, c)
  661. #define GGML_F16x8_ADD vaddq_f16
  662. #define GGML_F16x8_MUL vmulq_f16
  663. #define GGML_F16x8_REDUCE(res, x) \
  664. do { \
  665. int offset = GGML_F16_ARR >> 1; \
  666. for (int i = 0; i < offset; ++i) { \
  667. x[i] = vaddq_f16(x[i], x[offset+i]); \
  668. } \
  669. offset >>= 1; \
  670. for (int i = 0; i < offset; ++i) { \
  671. x[i] = vaddq_f16(x[i], x[offset+i]); \
  672. } \
  673. offset >>= 1; \
  674. for (int i = 0; i < offset; ++i) { \
  675. x[i] = vaddq_f16(x[i], x[offset+i]); \
  676. } \
  677. const float32x4_t t0 = vcvt_f32_f16(vget_low_f16 (x[0])); \
  678. const float32x4_t t1 = vcvt_f32_f16(vget_high_f16(x[0])); \
  679. res = (ggml_float) vaddvq_f32(vaddq_f32(t0, t1)); \
  680. } while (0)
  681. #define GGML_F16_VEC GGML_F16x8
  682. #define GGML_F16_VEC_ZERO GGML_F16x8_ZERO
  683. #define GGML_F16_VEC_SET1 GGML_F16x8_SET1
  684. #define GGML_F16_VEC_LOAD(p, i) GGML_F16x8_LOAD(p)
  685. #define GGML_F16_VEC_STORE(p, r, i) GGML_F16x8_STORE(p, r[i])
  686. #define GGML_F16_VEC_FMA GGML_F16x8_FMA
  687. #define GGML_F16_VEC_ADD GGML_F16x8_ADD
  688. #define GGML_F16_VEC_MUL GGML_F16x8_MUL
  689. #define GGML_F16_VEC_REDUCE GGML_F16x8_REDUCE
  690. #else
  691. // if FP16 vector arithmetic is not supported, we use FP32 instead
  692. // and take advantage of the vcvt_ functions to convert to/from FP16
  693. #define GGML_F16_STEP 16
  694. #define GGML_F16_EPR 4
  695. #define GGML_F32Cx4 float32x4_t
  696. #define GGML_F32Cx4_ZERO vdupq_n_f32(0.0f)
  697. #define GGML_F32Cx4_SET1(x) vdupq_n_f32(x)
  698. #define GGML_F32Cx4_LOAD(x) vcvt_f32_f16(vld1_f16(x))
  699. #define GGML_F32Cx4_STORE(x, y) vst1_f16(x, vcvt_f16_f32(y))
  700. #define GGML_F32Cx4_FMA(a, b, c) vfmaq_f32(a, b, c)
  701. #define GGML_F32Cx4_ADD vaddq_f32
  702. #define GGML_F32Cx4_MUL vmulq_f32
  703. #define GGML_F32Cx4_REDUCE GGML_F32x4_REDUCE
  704. #define GGML_F16_VEC GGML_F32Cx4
  705. #define GGML_F16_VEC_ZERO GGML_F32Cx4_ZERO
  706. #define GGML_F16_VEC_SET1 GGML_F32Cx4_SET1
  707. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx4_LOAD(p)
  708. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx4_STORE(p, r[i])
  709. #define GGML_F16_VEC_FMA GGML_F32Cx4_FMA
  710. #define GGML_F16_VEC_ADD GGML_F32Cx4_ADD
  711. #define GGML_F16_VEC_MUL GGML_F32Cx4_MUL
  712. #define GGML_F16_VEC_REDUCE GGML_F32Cx4_REDUCE
  713. #endif
  714. #elif defined(__AVX__)
  715. #define GGML_SIMD
  716. // F32 AVX
  717. #define GGML_F32_STEP 32
  718. #define GGML_F32_EPR 8
  719. #define GGML_F32x8 __m256
  720. #define GGML_F32x8_ZERO _mm256_setzero_ps()
  721. #define GGML_F32x8_SET1(x) _mm256_set1_ps(x)
  722. #define GGML_F32x8_LOAD _mm256_loadu_ps
  723. #define GGML_F32x8_STORE _mm256_storeu_ps
  724. #if defined(__FMA__)
  725. #define GGML_F32x8_FMA(a, b, c) _mm256_fmadd_ps(b, c, a)
  726. #else
  727. #define GGML_F32x8_FMA(a, b, c) _mm256_add_ps(_mm256_mul_ps(b, c), a)
  728. #endif
  729. #define GGML_F32x8_ADD _mm256_add_ps
  730. #define GGML_F32x8_MUL _mm256_mul_ps
  731. #define GGML_F32x8_REDUCE(res, x) \
  732. do { \
  733. int offset = GGML_F32_ARR >> 1; \
  734. for (int i = 0; i < offset; ++i) { \
  735. x[i] = _mm256_add_ps(x[i], x[offset+i]); \
  736. } \
  737. offset >>= 1; \
  738. for (int i = 0; i < offset; ++i) { \
  739. x[i] = _mm256_add_ps(x[i], x[offset+i]); \
  740. } \
  741. offset >>= 1; \
  742. for (int i = 0; i < offset; ++i) { \
  743. x[i] = _mm256_add_ps(x[i], x[offset+i]); \
  744. } \
  745. const __m128 t0 = _mm_add_ps(_mm256_castps256_ps128(x[0]), \
  746. _mm256_extractf128_ps(x[0], 1)); \
  747. const __m128 t1 = _mm_hadd_ps(t0, t0); \
  748. res = _mm_cvtss_f32(_mm_hadd_ps(t1, t1)); \
  749. } while (0)
  750. // TODO: is this optimal ?
  751. #define GGML_F32_VEC GGML_F32x8
  752. #define GGML_F32_VEC_ZERO GGML_F32x8_ZERO
  753. #define GGML_F32_VEC_SET1 GGML_F32x8_SET1
  754. #define GGML_F32_VEC_LOAD GGML_F32x8_LOAD
  755. #define GGML_F32_VEC_STORE GGML_F32x8_STORE
  756. #define GGML_F32_VEC_FMA GGML_F32x8_FMA
  757. #define GGML_F32_VEC_ADD GGML_F32x8_ADD
  758. #define GGML_F32_VEC_MUL GGML_F32x8_MUL
  759. #define GGML_F32_VEC_REDUCE GGML_F32x8_REDUCE
  760. // F16 AVX
  761. #define GGML_F16_STEP 32
  762. #define GGML_F16_EPR 8
  763. // F16 arithmetic is not supported by AVX, so we use F32 instead
  764. #define GGML_F32Cx8 __m256
  765. #define GGML_F32Cx8_ZERO _mm256_setzero_ps()
  766. #define GGML_F32Cx8_SET1(x) _mm256_set1_ps(x)
  767. #if defined(__F16C__)
  768. // the _mm256_cvt intrinsics require F16C
  769. #define GGML_F32Cx8_LOAD(x) _mm256_cvtph_ps(_mm_loadu_si128((__m128i *)(x)))
  770. #define GGML_F32Cx8_STORE(x, y) _mm_storeu_si128((__m128i *)(x), _mm256_cvtps_ph(y, 0))
  771. #else
  772. static inline __m256 __avx_f32cx8_load(ggml_fp16_t *x) {
  773. float tmp[8];
  774. for (int i = 0; i < 8; i++) {
  775. tmp[i] = GGML_FP16_TO_FP32(x[i]);
  776. }
  777. return _mm256_loadu_ps(tmp);
  778. }
  779. static inline void __avx_f32cx8_store(ggml_fp16_t *x, __m256 y) {
  780. float arr[8];
  781. _mm256_storeu_ps(arr, y);
  782. for (int i = 0; i < 8; i++)
  783. x[i] = GGML_FP32_TO_FP16(arr[i]);
  784. }
  785. #define GGML_F32Cx8_LOAD(x) __avx_f32cx8_load(x)
  786. #define GGML_F32Cx8_STORE(x, y) __avx_f32cx8_store(x, y)
  787. #endif
  788. #define GGML_F32Cx8_FMA GGML_F32x8_FMA
  789. #define GGML_F32Cx8_ADD _mm256_add_ps
  790. #define GGML_F32Cx8_MUL _mm256_mul_ps
  791. #define GGML_F32Cx8_REDUCE GGML_F32x8_REDUCE
  792. #define GGML_F16_VEC GGML_F32Cx8
  793. #define GGML_F16_VEC_ZERO GGML_F32Cx8_ZERO
  794. #define GGML_F16_VEC_SET1 GGML_F32Cx8_SET1
  795. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx8_LOAD(p)
  796. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx8_STORE(p, r[i])
  797. #define GGML_F16_VEC_FMA GGML_F32Cx8_FMA
  798. #define GGML_F16_VEC_ADD GGML_F32Cx8_ADD
  799. #define GGML_F16_VEC_MUL GGML_F32Cx8_MUL
  800. #define GGML_F16_VEC_REDUCE GGML_F32Cx8_REDUCE
  801. #elif defined(__POWER9_VECTOR__)
  802. #define GGML_SIMD
  803. // F32 POWER9
  804. #define GGML_F32_STEP 32
  805. #define GGML_F32_EPR 4
  806. #define GGML_F32x4 vector float
  807. #define GGML_F32x4_ZERO 0.0f
  808. #define GGML_F32x4_SET1 vec_splats
  809. #define GGML_F32x4_LOAD(p) vec_xl(0, p)
  810. #define GGML_F32x4_STORE(p, r) vec_xst(r, 0, p)
  811. #define GGML_F32x4_FMA(a, b, c) vec_madd(b, c, a)
  812. #define GGML_F32x4_ADD vec_add
  813. #define GGML_F32x4_MUL vec_mul
  814. #define GGML_F32x4_REDUCE(res, x) \
  815. { \
  816. int offset = GGML_F32_ARR >> 1; \
  817. for (int i = 0; i < offset; ++i) { \
  818. x[i] = vec_add(x[i], x[offset+i]); \
  819. } \
  820. offset >>= 1; \
  821. for (int i = 0; i < offset; ++i) { \
  822. x[i] = vec_add(x[i], x[offset+i]); \
  823. } \
  824. offset >>= 1; \
  825. for (int i = 0; i < offset; ++i) { \
  826. x[i] = vec_add(x[i], x[offset+i]); \
  827. } \
  828. res = vec_extract(x[0], 0) + \
  829. vec_extract(x[0], 1) + \
  830. vec_extract(x[0], 2) + \
  831. vec_extract(x[0], 3); \
  832. }
  833. #define GGML_F32_VEC GGML_F32x4
  834. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  835. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  836. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  837. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  838. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  839. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  840. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  841. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  842. // F16 POWER9
  843. #define GGML_F16_STEP GGML_F32_STEP
  844. #define GGML_F16_EPR GGML_F32_EPR
  845. #define GGML_F16_VEC GGML_F32x4
  846. #define GGML_F16_VEC_ZERO GGML_F32x4_ZERO
  847. #define GGML_F16_VEC_SET1 GGML_F32x4_SET1
  848. #define GGML_F16_VEC_FMA GGML_F32x4_FMA
  849. #define GGML_F16_VEC_REDUCE GGML_F32x4_REDUCE
  850. // Use vec_xl, not vec_ld, in case the load address is not aligned.
  851. #define GGML_F16_VEC_LOAD(p, i) (i & 0x1) ? \
  852. vec_extract_fp32_from_shorth(vec_xl(0, p - GGML_F16_EPR)) : \
  853. vec_extract_fp32_from_shortl(vec_xl(0, p))
  854. #define GGML_ENDIAN_BYTE(i) ((unsigned char *)&(uint16_t){1})[i]
  855. #define GGML_F16_VEC_STORE(p, r, i) \
  856. if (i & 0x1) \
  857. vec_xst(vec_pack_to_short_fp32(r[i - GGML_ENDIAN_BYTE(1)], \
  858. r[i - GGML_ENDIAN_BYTE(0)]), \
  859. 0, p - GGML_F16_EPR)
  860. #elif defined(__wasm_simd128__)
  861. #define GGML_SIMD
  862. // F32 WASM
  863. #define GGML_F32_STEP 16
  864. #define GGML_F32_EPR 4
  865. #define GGML_F32x4 v128_t
  866. #define GGML_F32x4_ZERO wasm_f32x4_splat(0.0f)
  867. #define GGML_F32x4_SET1(x) wasm_f32x4_splat(x)
  868. #define GGML_F32x4_LOAD wasm_v128_load
  869. #define GGML_F32x4_STORE wasm_v128_store
  870. #define GGML_F32x4_FMA(a, b, c) wasm_f32x4_add(wasm_f32x4_mul(b, c), a)
  871. #define GGML_F32x4_ADD wasm_f32x4_add
  872. #define GGML_F32x4_MUL wasm_f32x4_mul
  873. #define GGML_F32x4_REDUCE(res, x) \
  874. { \
  875. int offset = GGML_F32_ARR >> 1; \
  876. for (int i = 0; i < offset; ++i) { \
  877. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  878. } \
  879. offset >>= 1; \
  880. for (int i = 0; i < offset; ++i) { \
  881. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  882. } \
  883. offset >>= 1; \
  884. for (int i = 0; i < offset; ++i) { \
  885. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  886. } \
  887. res = wasm_f32x4_extract_lane(x[0], 0) + \
  888. wasm_f32x4_extract_lane(x[0], 1) + \
  889. wasm_f32x4_extract_lane(x[0], 2) + \
  890. wasm_f32x4_extract_lane(x[0], 3); \
  891. }
  892. #define GGML_F32_VEC GGML_F32x4
  893. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  894. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  895. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  896. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  897. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  898. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  899. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  900. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  901. // F16 WASM
  902. #define GGML_F16_STEP 16
  903. #define GGML_F16_EPR 4
  904. inline static v128_t __wasm_f16x4_load(const ggml_fp16_t * p) {
  905. float tmp[4];
  906. tmp[0] = GGML_FP16_TO_FP32(p[0]);
  907. tmp[1] = GGML_FP16_TO_FP32(p[1]);
  908. tmp[2] = GGML_FP16_TO_FP32(p[2]);
  909. tmp[3] = GGML_FP16_TO_FP32(p[3]);
  910. return wasm_v128_load(tmp);
  911. }
  912. inline static void __wasm_f16x4_store(ggml_fp16_t * p, v128_t x) {
  913. float tmp[4];
  914. wasm_v128_store(tmp, x);
  915. p[0] = GGML_FP32_TO_FP16(tmp[0]);
  916. p[1] = GGML_FP32_TO_FP16(tmp[1]);
  917. p[2] = GGML_FP32_TO_FP16(tmp[2]);
  918. p[3] = GGML_FP32_TO_FP16(tmp[3]);
  919. }
  920. #define GGML_F16x4 v128_t
  921. #define GGML_F16x4_ZERO wasm_f32x4_splat(0.0f)
  922. #define GGML_F16x4_SET1(x) wasm_f32x4_splat(x)
  923. #define GGML_F16x4_LOAD(x) __wasm_f16x4_load(x)
  924. #define GGML_F16x4_STORE(x, y) __wasm_f16x4_store(x, y)
  925. #define GGML_F16x4_FMA GGML_F32x4_FMA
  926. #define GGML_F16x4_ADD wasm_f32x4_add
  927. #define GGML_F16x4_MUL wasm_f32x4_mul
  928. #define GGML_F16x4_REDUCE(res, x) \
  929. { \
  930. int offset = GGML_F16_ARR >> 1; \
  931. for (int i = 0; i < offset; ++i) { \
  932. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  933. } \
  934. offset >>= 1; \
  935. for (int i = 0; i < offset; ++i) { \
  936. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  937. } \
  938. offset >>= 1; \
  939. for (int i = 0; i < offset; ++i) { \
  940. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  941. } \
  942. res = wasm_f32x4_extract_lane(x[0], 0) + \
  943. wasm_f32x4_extract_lane(x[0], 1) + \
  944. wasm_f32x4_extract_lane(x[0], 2) + \
  945. wasm_f32x4_extract_lane(x[0], 3); \
  946. }
  947. #define GGML_F16_VEC GGML_F16x4
  948. #define GGML_F16_VEC_ZERO GGML_F16x4_ZERO
  949. #define GGML_F16_VEC_SET1 GGML_F16x4_SET1
  950. #define GGML_F16_VEC_LOAD(p, i) GGML_F16x4_LOAD(p)
  951. #define GGML_F16_VEC_STORE(p, r, i) GGML_F16x4_STORE(p, r[i])
  952. #define GGML_F16_VEC_FMA GGML_F16x4_FMA
  953. #define GGML_F16_VEC_ADD GGML_F16x4_ADD
  954. #define GGML_F16_VEC_MUL GGML_F16x4_MUL
  955. #define GGML_F16_VEC_REDUCE GGML_F16x4_REDUCE
  956. #elif defined(__SSE3__)
  957. #define GGML_SIMD
  958. // F32 SSE
  959. #define GGML_F32_STEP 32
  960. #define GGML_F32_EPR 4
  961. #define GGML_F32x4 __m128
  962. #define GGML_F32x4_ZERO _mm_setzero_ps()
  963. #define GGML_F32x4_SET1(x) _mm_set1_ps(x)
  964. #define GGML_F32x4_LOAD _mm_loadu_ps
  965. #define GGML_F32x4_STORE _mm_storeu_ps
  966. #if defined(__FMA__)
  967. // TODO: Does this work?
  968. #define GGML_F32x4_FMA(a, b, c) _mm_fmadd_ps(b, c, a)
  969. #else
  970. #define GGML_F32x4_FMA(a, b, c) _mm_add_ps(_mm_mul_ps(b, c), a)
  971. #endif
  972. #define GGML_F32x4_ADD _mm_add_ps
  973. #define GGML_F32x4_MUL _mm_mul_ps
  974. #define GGML_F32x4_REDUCE(res, x) \
  975. { \
  976. int offset = GGML_F32_ARR >> 1; \
  977. for (int i = 0; i < offset; ++i) { \
  978. x[i] = _mm_add_ps(x[i], x[offset+i]); \
  979. } \
  980. offset >>= 1; \
  981. for (int i = 0; i < offset; ++i) { \
  982. x[i] = _mm_add_ps(x[i], x[offset+i]); \
  983. } \
  984. offset >>= 1; \
  985. for (int i = 0; i < offset; ++i) { \
  986. x[i] = _mm_add_ps(x[i], x[offset+i]); \
  987. } \
  988. const __m128 t0 = _mm_hadd_ps(x[0], x[0]); \
  989. res = _mm_cvtss_f32(_mm_hadd_ps(t0, t0)); \
  990. }
  991. // TODO: is this optimal ?
  992. #define GGML_F32_VEC GGML_F32x4
  993. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  994. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  995. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  996. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  997. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  998. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  999. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1000. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1001. // F16 SSE
  1002. #define GGML_F16_STEP 32
  1003. #define GGML_F16_EPR 4
  1004. static inline __m128 __sse_f16x4_load(ggml_fp16_t *x) {
  1005. float tmp[4];
  1006. tmp[0] = GGML_FP16_TO_FP32(x[0]);
  1007. tmp[1] = GGML_FP16_TO_FP32(x[1]);
  1008. tmp[2] = GGML_FP16_TO_FP32(x[2]);
  1009. tmp[3] = GGML_FP16_TO_FP32(x[3]);
  1010. return _mm_loadu_ps(tmp);
  1011. }
  1012. static inline void __sse_f16x4_store(ggml_fp16_t *x, __m128 y) {
  1013. float arr[4];
  1014. _mm_storeu_ps(arr, y);
  1015. x[0] = GGML_FP32_TO_FP16(arr[0]);
  1016. x[1] = GGML_FP32_TO_FP16(arr[1]);
  1017. x[2] = GGML_FP32_TO_FP16(arr[2]);
  1018. x[3] = GGML_FP32_TO_FP16(arr[3]);
  1019. }
  1020. #define GGML_F32Cx4 __m128
  1021. #define GGML_F32Cx4_ZERO _mm_setzero_ps()
  1022. #define GGML_F32Cx4_SET1(x) _mm_set1_ps(x)
  1023. #define GGML_F32Cx4_LOAD(x) __sse_f16x4_load(x)
  1024. #define GGML_F32Cx4_STORE(x, y) __sse_f16x4_store(x, y)
  1025. #define GGML_F32Cx4_FMA GGML_F32x4_FMA
  1026. #define GGML_F32Cx4_ADD _mm_add_ps
  1027. #define GGML_F32Cx4_MUL _mm_mul_ps
  1028. #define GGML_F32Cx4_REDUCE GGML_F32x4_REDUCE
  1029. #define GGML_F16_VEC GGML_F32Cx4
  1030. #define GGML_F16_VEC_ZERO GGML_F32Cx4_ZERO
  1031. #define GGML_F16_VEC_SET1 GGML_F32Cx4_SET1
  1032. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx4_LOAD(p)
  1033. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx4_STORE(p, r[i])
  1034. #define GGML_F16_VEC_FMA GGML_F32Cx4_FMA
  1035. #define GGML_F16_VEC_ADD GGML_F32Cx4_ADD
  1036. #define GGML_F16_VEC_MUL GGML_F32Cx4_MUL
  1037. #define GGML_F16_VEC_REDUCE GGML_F32Cx4_REDUCE
  1038. #endif
  1039. // GGML_F32_ARR / GGML_F16_ARR
  1040. // number of registers to use per step
  1041. #ifdef GGML_SIMD
  1042. #define GGML_F32_ARR (GGML_F32_STEP/GGML_F32_EPR)
  1043. #define GGML_F16_ARR (GGML_F16_STEP/GGML_F16_EPR)
  1044. #endif
  1045. //
  1046. // fundamental operations
  1047. //
  1048. inline static void ggml_vec_set_i8(const int n, int8_t * x, const int8_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1049. inline static void ggml_vec_set_i16(const int n, int16_t * x, const int16_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1050. inline static void ggml_vec_set_i32(const int n, int32_t * x, const int32_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1051. inline static void ggml_vec_set_f16(const int n, ggml_fp16_t * x, const int32_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1052. inline static void ggml_vec_add_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i] + y[i]; }
  1053. inline static void ggml_vec_add1_f32(const int n, float * z, const float * x, const float v) { for (int i = 0; i < n; ++i) z[i] = x[i] + v; }
  1054. inline static void ggml_vec_acc_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] += x[i]; }
  1055. inline static void ggml_vec_acc1_f32(const int n, float * y, const float v) { for (int i = 0; i < n; ++i) y[i] += v; }
  1056. inline static void ggml_vec_sub_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i] - y[i]; }
  1057. inline static void ggml_vec_set_f32 (const int n, float * x, const float v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1058. inline static void ggml_vec_cpy_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i]; }
  1059. inline static void ggml_vec_neg_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = -x[i]; }
  1060. inline static void ggml_vec_mul_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i]*y[i]; }
  1061. inline static void ggml_vec_div_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i]/y[i]; }
  1062. static void ggml_vec_dot_f32(const int n, float * restrict s, const float * restrict x, const float * restrict y) {
  1063. #ifdef GGML_SIMD
  1064. float sumf = 0.0f;
  1065. const int np = (n & ~(GGML_F32_STEP - 1));
  1066. GGML_F32_VEC sum[GGML_F32_ARR] = { GGML_F32_VEC_ZERO };
  1067. GGML_F32_VEC ax[GGML_F32_ARR];
  1068. GGML_F32_VEC ay[GGML_F32_ARR];
  1069. for (int i = 0; i < np; i += GGML_F32_STEP) {
  1070. for (int j = 0; j < GGML_F32_ARR; j++) {
  1071. ax[j] = GGML_F32_VEC_LOAD(x + i + j*GGML_F32_EPR);
  1072. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  1073. sum[j] = GGML_F32_VEC_FMA(sum[j], ax[j], ay[j]);
  1074. }
  1075. }
  1076. // reduce sum0..sum3 to sum0
  1077. GGML_F32_VEC_REDUCE(sumf, sum);
  1078. // leftovers
  1079. for (int i = np; i < n; ++i) {
  1080. sumf += x[i]*y[i];
  1081. }
  1082. #else
  1083. // scalar
  1084. ggml_float sumf = 0.0;
  1085. for (int i = 0; i < n; ++i) {
  1086. sumf += (ggml_float)(x[i]*y[i]);
  1087. }
  1088. #endif
  1089. *s = sumf;
  1090. }
  1091. static void ggml_vec_dot_f16(const int n, float * restrict s, ggml_fp16_t * restrict x, ggml_fp16_t * restrict y) {
  1092. ggml_float sumf = 0.0;
  1093. #if defined(GGML_SIMD)
  1094. const int np = (n & ~(GGML_F16_STEP - 1));
  1095. GGML_F16_VEC sum[GGML_F16_ARR] = { GGML_F16_VEC_ZERO };
  1096. GGML_F16_VEC ax[GGML_F16_ARR];
  1097. GGML_F16_VEC ay[GGML_F16_ARR];
  1098. for (int i = 0; i < np; i += GGML_F16_STEP) {
  1099. for (int j = 0; j < GGML_F16_ARR; j++) {
  1100. ax[j] = GGML_F16_VEC_LOAD(x + i + j*GGML_F16_EPR, j);
  1101. ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
  1102. sum[j] = GGML_F16_VEC_FMA(sum[j], ax[j], ay[j]);
  1103. }
  1104. }
  1105. // reduce sum0..sum3 to sum0
  1106. GGML_F16_VEC_REDUCE(sumf, sum);
  1107. // leftovers
  1108. for (int i = np; i < n; ++i) {
  1109. sumf += (ggml_float)(GGML_FP16_TO_FP32(x[i])*GGML_FP16_TO_FP32(y[i]));
  1110. }
  1111. #else
  1112. for (int i = 0; i < n; ++i) {
  1113. sumf += (ggml_float)(GGML_FP16_TO_FP32(x[i])*GGML_FP16_TO_FP32(y[i]));
  1114. }
  1115. #endif
  1116. *s = sumf;
  1117. }
  1118. // compute GGML_VEC_DOT_UNROLL dot products at once
  1119. // xs - x row stride in bytes
  1120. inline static void ggml_vec_dot_f16_unroll(const int n, const int xs, float * restrict s, void * restrict xv, ggml_fp16_t * restrict y) {
  1121. ggml_float sumf[GGML_VEC_DOT_UNROLL] = { 0.0 };
  1122. ggml_fp16_t * restrict x[GGML_VEC_DOT_UNROLL];
  1123. for (int i = 0; i < GGML_VEC_DOT_UNROLL; ++i) {
  1124. x[i] = (ggml_fp16_t *) ((char *) xv + i*xs);
  1125. }
  1126. #if defined(GGML_SIMD)
  1127. const int np = (n & ~(GGML_F16_STEP - 1));
  1128. GGML_F16_VEC sum[GGML_VEC_DOT_UNROLL][GGML_F16_ARR] = { { GGML_F16_VEC_ZERO } };
  1129. GGML_F16_VEC ax[GGML_F16_ARR];
  1130. GGML_F16_VEC ay[GGML_F16_ARR];
  1131. for (int i = 0; i < np; i += GGML_F16_STEP) {
  1132. for (int j = 0; j < GGML_F16_ARR; j++) {
  1133. ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
  1134. for (int k = 0; k < GGML_VEC_DOT_UNROLL; ++k) {
  1135. ax[j] = GGML_F16_VEC_LOAD(x[k] + i + j*GGML_F16_EPR, j);
  1136. sum[k][j] = GGML_F16_VEC_FMA(sum[k][j], ax[j], ay[j]);
  1137. }
  1138. }
  1139. }
  1140. // reduce sum0..sum3 to sum0
  1141. for (int k = 0; k < GGML_VEC_DOT_UNROLL; ++k) {
  1142. GGML_F16_VEC_REDUCE(sumf[k], sum[k]);
  1143. }
  1144. // leftovers
  1145. for (int i = np; i < n; ++i) {
  1146. for (int j = 0; j < GGML_VEC_DOT_UNROLL; ++j) {
  1147. sumf[j] += (ggml_float)(GGML_FP16_TO_FP32(x[j][i])*GGML_FP16_TO_FP32(y[i]));
  1148. }
  1149. }
  1150. #else
  1151. for (int i = 0; i < n; ++i) {
  1152. for (int j = 0; j < GGML_VEC_DOT_UNROLL; ++j) {
  1153. sumf[j] += (ggml_float)(GGML_FP16_TO_FP32(x[j][i])*GGML_FP16_TO_FP32(y[i]));
  1154. }
  1155. }
  1156. #endif
  1157. for (int i = 0; i < GGML_VEC_DOT_UNROLL; ++i) {
  1158. s[i] = sumf[i];
  1159. }
  1160. }
  1161. inline static void ggml_vec_mad_f32(const int n, float * restrict y, const float * restrict x, const float v) {
  1162. #if defined(GGML_SIMD)
  1163. const int np = (n & ~(GGML_F32_STEP - 1));
  1164. GGML_F32_VEC vx = GGML_F32_VEC_SET1(v);
  1165. GGML_F32_VEC ax[GGML_F32_ARR];
  1166. GGML_F32_VEC ay[GGML_F32_ARR];
  1167. for (int i = 0; i < np; i += GGML_F32_STEP) {
  1168. for (int j = 0; j < GGML_F32_ARR; j++) {
  1169. ax[j] = GGML_F32_VEC_LOAD(x + i + j*GGML_F32_EPR);
  1170. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  1171. ay[j] = GGML_F32_VEC_FMA(ay[j], ax[j], vx);
  1172. GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
  1173. }
  1174. }
  1175. // leftovers
  1176. for (int i = np; i < n; ++i) {
  1177. y[i] += x[i]*v;
  1178. }
  1179. #else
  1180. // scalar
  1181. for (int i = 0; i < n; ++i) {
  1182. y[i] += x[i]*v;
  1183. }
  1184. #endif
  1185. }
  1186. // xs and vs are byte strides of x and v
  1187. inline static void ggml_vec_mad_f32_unroll(const int n, const int xs, const int vs, float * restrict y, const float * restrict xv, const float * restrict vv) {
  1188. const float * restrict x[GGML_VEC_MAD_UNROLL];
  1189. const float * restrict v[GGML_VEC_MAD_UNROLL];
  1190. for (int i = 0; i < GGML_VEC_MAD_UNROLL; ++i) {
  1191. x[i] = (const float *) ((const char *) xv + i*xs);
  1192. v[i] = (const float *) ((const char *) vv + i*vs);
  1193. }
  1194. #if defined(GGML_SIMD)
  1195. const int np = (n & ~(GGML_F32_STEP - 1));
  1196. GGML_F32_VEC vx[GGML_VEC_MAD_UNROLL];
  1197. for (int k = 0; k < GGML_VEC_MAD_UNROLL; ++k) {
  1198. vx[k] = GGML_F32_VEC_SET1(v[k][0]);
  1199. }
  1200. GGML_F32_VEC ax[GGML_VEC_MAD_UNROLL][GGML_F32_ARR];
  1201. GGML_F32_VEC ay[GGML_F32_ARR];
  1202. for (int i = 0; i < np; i += GGML_F32_STEP) {
  1203. for (int j = 0; j < GGML_F32_ARR; j++) {
  1204. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  1205. for (int k = 0; k < GGML_VEC_MAD_UNROLL; ++k) {
  1206. ax[k][j] = GGML_F32_VEC_LOAD(x[k] + i + j*GGML_F32_EPR);
  1207. ay[j] = GGML_F32_VEC_FMA(ay[j], ax[k][j], vx[k]);
  1208. }
  1209. GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
  1210. }
  1211. }
  1212. // leftovers
  1213. for (int k = 0; k < GGML_VEC_MAD_UNROLL; ++k) {
  1214. for (int i = np; i < n; ++i) {
  1215. y[i] += x[k][i]*v[k][0];
  1216. }
  1217. }
  1218. #else
  1219. // scalar
  1220. for (int k = 0; k < GGML_VEC_MAD_UNROLL; ++k) {
  1221. for (int i = 0; i < n; ++i) {
  1222. y[i] += x[k][i]*v[k][0];
  1223. }
  1224. }
  1225. #endif
  1226. }
  1227. //inline static void ggml_vec_scale_f32(const int n, float * y, const float v) { for (int i = 0; i < n; ++i) y[i] *= v; }
  1228. inline static void ggml_vec_scale_f32(const int n, float * y, const float v) {
  1229. #if defined(GGML_USE_ACCELERATE)
  1230. vDSP_vsmul(y, 1, &v, y, 1, n);
  1231. #elif defined(GGML_SIMD)
  1232. const int np = (n & ~(GGML_F32_STEP - 1));
  1233. GGML_F32_VEC vx = GGML_F32_VEC_SET1(v);
  1234. GGML_F32_VEC ay[GGML_F32_ARR];
  1235. for (int i = 0; i < np; i += GGML_F32_STEP) {
  1236. for (int j = 0; j < GGML_F32_ARR; j++) {
  1237. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  1238. ay[j] = GGML_F32_VEC_MUL(ay[j], vx);
  1239. GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
  1240. }
  1241. }
  1242. // leftovers
  1243. for (int i = np; i < n; ++i) {
  1244. y[i] *= v;
  1245. }
  1246. #else
  1247. // scalar
  1248. for (int i = 0; i < n; ++i) {
  1249. y[i] *= v;
  1250. }
  1251. #endif
  1252. }
  1253. inline static void ggml_vec_norm_f32 (const int n, float * s, const float * x) { ggml_vec_dot_f32(n, s, x, x); *s = sqrtf(*s); }
  1254. inline static void ggml_vec_sqr_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i]*x[i]; }
  1255. inline static void ggml_vec_sqrt_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = sqrtf(x[i]); }
  1256. inline static void ggml_vec_log_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = logf(x[i]); }
  1257. inline static void ggml_vec_abs_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = fabsf(x[i]); }
  1258. inline static void ggml_vec_sgn_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? 1.f : ((x[i] < 0.f) ? -1.f : 0.f); }
  1259. inline static void ggml_vec_step_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? 1.f : 0.f; }
  1260. inline static void ggml_vec_tanh_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = tanhf(x[i]); }
  1261. inline static void ggml_vec_elu_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? x[i] : expf(x[i])-1; }
  1262. inline static void ggml_vec_relu_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? x[i] : 0.f; }
  1263. inline static void ggml_vec_leaky_relu_f32 (const int n, float * y, const float * x, const float ns) { for (int i = 0; i < n; ++i) y[i] = ((x[i] > 0.f) ? x[i] : 0.f) + ns * ((x[i] < 0.0f) ? x[i] : 0.f); }
  1264. // TODO: optimize performance
  1265. inline static void ggml_vec_hardswish_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i] * fminf(1.0f, fmaxf(0.0f, (x[i] + 3.0f) / 6.0f)); }
  1266. inline static void ggml_vec_hardsigmoid_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = fminf(1.0f, fmaxf(0.0f, (x[i] + 3.0f) / 6.0f)); }
  1267. static const float GELU_COEF_A = 0.044715f;
  1268. static const float GELU_QUICK_COEF = -1.702f;
  1269. static const float SQRT_2_OVER_PI = 0.79788456080286535587989211986876f;
  1270. inline static float ggml_gelu_f32(float x) {
  1271. return 0.5f*x*(1.0f + tanhf(SQRT_2_OVER_PI*x*(1.0f + GELU_COEF_A*x*x)));
  1272. }
  1273. inline static void ggml_vec_gelu_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
  1274. const uint16_t * i16 = (const uint16_t *) x;
  1275. for (int i = 0; i < n; ++i) {
  1276. y[i] = ggml_table_gelu_f16[i16[i]];
  1277. }
  1278. }
  1279. #ifdef GGML_GELU_FP16
  1280. inline static void ggml_vec_gelu_f32(const int n, float * y, const float * x) {
  1281. uint16_t t;
  1282. for (int i = 0; i < n; ++i) {
  1283. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  1284. memcpy(&t, &fp16, sizeof(uint16_t));
  1285. y[i] = GGML_FP16_TO_FP32(ggml_table_gelu_f16[t]);
  1286. }
  1287. }
  1288. #else
  1289. inline static void ggml_vec_gelu_f32(const int n, float * y, const float * x) {
  1290. for (int i = 0; i < n; ++i) {
  1291. y[i] = ggml_gelu_f32(x[i]);
  1292. }
  1293. }
  1294. #endif
  1295. inline static float ggml_gelu_quick_f32(float x) {
  1296. return x*(1.0f/(1.0f+expf(GELU_QUICK_COEF*x)));
  1297. }
  1298. //inline static void ggml_vec_gelu_quick_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
  1299. // const uint16_t * i16 = (const uint16_t *) x;
  1300. // for (int i = 0; i < n; ++i) {
  1301. // y[i] = ggml_table_gelu_quick_f16[i16[i]];
  1302. // }
  1303. //}
  1304. #ifdef GGML_GELU_QUICK_FP16
  1305. inline static void ggml_vec_gelu_quick_f32(const int n, float * y, const float * x) {
  1306. uint16_t t;
  1307. for (int i = 0; i < n; ++i) {
  1308. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  1309. memcpy(&t, &fp16, sizeof(uint16_t));
  1310. y[i] = GGML_FP16_TO_FP32(ggml_table_gelu_quick_f16[t]);
  1311. }
  1312. }
  1313. #else
  1314. inline static void ggml_vec_gelu_quick_f32(const int n, float * y, const float * x) {
  1315. for (int i = 0; i < n; ++i) {
  1316. y[i] = ggml_gelu_quick_f32(x[i]);
  1317. }
  1318. }
  1319. #endif
  1320. // Sigmoid Linear Unit (SiLU) function
  1321. inline static float ggml_silu_f32(float x) {
  1322. return x/(1.0f + expf(-x));
  1323. }
  1324. //inline static void ggml_vec_silu_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
  1325. // const uint16_t * i16 = (const uint16_t *) x;
  1326. // for (int i = 0; i < n; ++i) {
  1327. // y[i] = ggml_table_silu_f16[i16[i]];
  1328. // }
  1329. //}
  1330. #ifdef GGML_SILU_FP16
  1331. inline static void ggml_vec_silu_f32(const int n, float * y, const float * x) {
  1332. uint16_t t;
  1333. for (int i = 0; i < n; ++i) {
  1334. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  1335. memcpy(&t, &fp16, sizeof(uint16_t));
  1336. y[i] = GGML_FP16_TO_FP32(ggml_table_silu_f16[t]);
  1337. }
  1338. }
  1339. #else
  1340. inline static void ggml_vec_silu_f32(const int n, float * y, const float * x) {
  1341. for (int i = 0; i < n; ++i) {
  1342. y[i] = ggml_silu_f32(x[i]);
  1343. }
  1344. }
  1345. #endif
  1346. inline static float ggml_silu_backward_f32(float x, float dy) {
  1347. const float s = 1.0f/(1.0f + expf(-x));
  1348. return dy*s*(1.0f + x*(1.0f - s));
  1349. }
  1350. #ifdef GGML_SILU_FP16
  1351. inline static void ggml_vec_silu_backward_f32(const int n, float * dx, const float * x, const float * dy) {
  1352. for (int i = 0; i < n; ++i) {
  1353. // we did not use x[i] to compute forward silu but its f16 equivalent
  1354. // take derivative at f16 of x[i]:
  1355. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  1356. float usedx = GGML_FP16_TO_FP32(fp16);
  1357. dx[i] = ggml_silu_backward_f32(usedx, dy[i]);
  1358. }
  1359. }
  1360. #else
  1361. inline static void ggml_vec_silu_backward_f32(const int n, float * dx, const float * x, const float * dy) {
  1362. for (int i = 0; i < n; ++i) {
  1363. dx[i] = ggml_silu_backward_f32(x[i], dy[i]);
  1364. }
  1365. }
  1366. #endif
  1367. inline static void ggml_vec_sum_f32(const int n, float * s, const float * x) {
  1368. #ifndef GGML_USE_ACCELERATE
  1369. ggml_float sum = 0.0;
  1370. for (int i = 0; i < n; ++i) {
  1371. sum += (ggml_float)x[i];
  1372. }
  1373. *s = sum;
  1374. #else
  1375. vDSP_sve(x, 1, s, n);
  1376. #endif
  1377. }
  1378. inline static void ggml_vec_sum_f32_ggf(const int n, ggml_float * s, const float * x) {
  1379. ggml_float sum = 0.0;
  1380. for (int i = 0; i < n; ++i) {
  1381. sum += (ggml_float)x[i];
  1382. }
  1383. *s = sum;
  1384. }
  1385. inline static void ggml_vec_sum_f16_ggf(const int n, float * s, const ggml_fp16_t * x) {
  1386. float sum = 0.0f;
  1387. for (int i = 0; i < n; ++i) {
  1388. sum += GGML_FP16_TO_FP32(x[i]);
  1389. }
  1390. *s = sum;
  1391. }
  1392. inline static void ggml_vec_max_f32(const int n, float * s, const float * x) {
  1393. #ifndef GGML_USE_ACCELERATE
  1394. float max = -INFINITY;
  1395. for (int i = 0; i < n; ++i) {
  1396. max = MAX(max, x[i]);
  1397. }
  1398. *s = max;
  1399. #else
  1400. vDSP_maxv(x, 1, s, n);
  1401. #endif
  1402. }
  1403. inline static void ggml_vec_norm_inv_f32(const int n, float * s, const float * x) {
  1404. ggml_vec_norm_f32(n, s, x);
  1405. *s = 1.f/(*s);
  1406. }
  1407. inline static void ggml_vec_argmax_f32(const int n, int * s, const float * x) {
  1408. float max = -INFINITY;
  1409. int idx = 0;
  1410. for (int i = 0; i < n; ++i) {
  1411. max = MAX(max, x[i]);
  1412. if (max == x[i]) { idx = i; }
  1413. }
  1414. *s = idx;
  1415. }
  1416. //
  1417. // data types
  1418. //
  1419. static const char * GGML_OP_NAME[GGML_OP_COUNT] = {
  1420. "NONE",
  1421. "DUP",
  1422. "ADD",
  1423. "ADD1",
  1424. "ACC",
  1425. "SUB",
  1426. "MUL",
  1427. "DIV",
  1428. "SQR",
  1429. "SQRT",
  1430. "LOG",
  1431. "SUM",
  1432. "SUM_ROWS",
  1433. "MEAN",
  1434. "ARGMAX",
  1435. "REPEAT",
  1436. "REPEAT_BACK",
  1437. "CONCAT",
  1438. "SILU_BACK",
  1439. "NORM",
  1440. "RMS_NORM",
  1441. "RMS_NORM_BACK",
  1442. "GROUP_NORM",
  1443. "MUL_MAT",
  1444. "MUL_MAT_ID",
  1445. "OUT_PROD",
  1446. "SCALE",
  1447. "SET",
  1448. "CPY",
  1449. "CONT",
  1450. "RESHAPE",
  1451. "VIEW",
  1452. "PERMUTE",
  1453. "TRANSPOSE",
  1454. "GET_ROWS",
  1455. "GET_ROWS_BACK",
  1456. "DIAG",
  1457. "DIAG_MASK_INF",
  1458. "DIAG_MASK_ZERO",
  1459. "SOFT_MAX",
  1460. "SOFT_MAX_BACK",
  1461. "ROPE",
  1462. "ROPE_BACK",
  1463. "ALIBI",
  1464. "CLAMP",
  1465. "CONV_TRANSPOSE_1D",
  1466. "IM2COL",
  1467. "CONV_TRANSPOSE_2D",
  1468. "POOL_1D",
  1469. "POOL_2D",
  1470. "UPSCALE",
  1471. "PAD",
  1472. "ARGSORT",
  1473. "LEAKY_RELU",
  1474. "FLASH_ATTN",
  1475. "FLASH_FF",
  1476. "FLASH_ATTN_BACK",
  1477. "WIN_PART",
  1478. "WIN_UNPART",
  1479. "GET_REL_POS",
  1480. "ADD_REL_POS",
  1481. "UNARY",
  1482. "MAP_UNARY",
  1483. "MAP_BINARY",
  1484. "MAP_CUSTOM1_F32",
  1485. "MAP_CUSTOM2_F32",
  1486. "MAP_CUSTOM3_F32",
  1487. "MAP_CUSTOM1",
  1488. "MAP_CUSTOM2",
  1489. "MAP_CUSTOM3",
  1490. "CROSS_ENTROPY_LOSS",
  1491. "CROSS_ENTROPY_LOSS_BACK",
  1492. };
  1493. static_assert(GGML_OP_COUNT == 72, "GGML_OP_COUNT != 72");
  1494. static const char * GGML_OP_SYMBOL[GGML_OP_COUNT] = {
  1495. "none",
  1496. "x",
  1497. "x+y",
  1498. "x+y",
  1499. "view(x,nb,offset)+=y->x",
  1500. "x-y",
  1501. "x*y",
  1502. "x/y",
  1503. "x^2",
  1504. "√x",
  1505. "log(x)",
  1506. "Σx",
  1507. "Σx_k",
  1508. "Σx/n",
  1509. "argmax(x)",
  1510. "repeat(x)",
  1511. "repeat_back(x)",
  1512. "concat(x, y)",
  1513. "silu_back(x)",
  1514. "norm(x)",
  1515. "rms_norm(x)",
  1516. "rms_norm_back(x)",
  1517. "group_norm(x)",
  1518. "X*Y",
  1519. "X[i]*Y",
  1520. "X*Y",
  1521. "x*v",
  1522. "y-\\>view(x)",
  1523. "x-\\>y",
  1524. "cont(x)",
  1525. "reshape(x)",
  1526. "view(x)",
  1527. "permute(x)",
  1528. "transpose(x)",
  1529. "get_rows(x)",
  1530. "get_rows_back(x)",
  1531. "diag(x)",
  1532. "diag_mask_inf(x)",
  1533. "diag_mask_zero(x)",
  1534. "soft_max(x)",
  1535. "soft_max_back(x)",
  1536. "rope(x)",
  1537. "rope_back(x)",
  1538. "alibi(x)",
  1539. "clamp(x)",
  1540. "conv_transpose_1d(x)",
  1541. "im2col(x)",
  1542. "conv_transpose_2d(x)",
  1543. "pool_1d(x)",
  1544. "pool_2d(x)",
  1545. "upscale(x)",
  1546. "pad(x)",
  1547. "argsort(x)",
  1548. "leaky_relu(x)",
  1549. "flash_attn(x)",
  1550. "flash_ff(x)",
  1551. "flash_attn_back(x)",
  1552. "win_part(x)",
  1553. "win_unpart(x)",
  1554. "get_rel_pos(x)",
  1555. "add_rel_pos(x)",
  1556. "unary(x)",
  1557. "f(x)",
  1558. "f(x,y)",
  1559. "custom_f32(x)",
  1560. "custom_f32(x,y)",
  1561. "custom_f32(x,y,z)",
  1562. "custom(x)",
  1563. "custom(x,y)",
  1564. "custom(x,y,z)",
  1565. "cross_entropy_loss(x,y)",
  1566. "cross_entropy_loss_back(x,y)",
  1567. };
  1568. static_assert(GGML_OP_COUNT == 72, "GGML_OP_COUNT != 72");
  1569. static_assert(GGML_OP_POOL_COUNT == 2, "GGML_OP_POOL_COUNT != 2");
  1570. static const char * GGML_UNARY_OP_NAME[GGML_UNARY_OP_COUNT] = {
  1571. "ABS",
  1572. "SGN",
  1573. "NEG",
  1574. "STEP",
  1575. "TANH",
  1576. "ELU",
  1577. "RELU",
  1578. "GELU",
  1579. "GELU_QUICK",
  1580. "SILU",
  1581. "HARDSWISH",
  1582. "HARDSIGMOID",
  1583. };
  1584. static_assert(GGML_UNARY_OP_COUNT == 12, "GGML_UNARY_OP_COUNT != 12");
  1585. static_assert(sizeof(struct ggml_object)%GGML_MEM_ALIGN == 0, "ggml_object size must be a multiple of GGML_MEM_ALIGN");
  1586. static_assert(sizeof(struct ggml_tensor)%GGML_MEM_ALIGN == 0, "ggml_tensor size must be a multiple of GGML_MEM_ALIGN");
  1587. // WARN:
  1588. // Mis-configuration can lead to problem that's hard to reason about:
  1589. // * At best it crash or talks nosense.
  1590. // * At worst it talks slightly difference but hard to perceive.
  1591. //
  1592. // An op has to enable INIT or FINALIZE when any of it's branch needs that pass.
  1593. // Take care about compile options (e.g., GGML_USE_xxx).
  1594. static bool GGML_OP_HAS_INIT [GGML_OP_COUNT] = { 0 };
  1595. static bool GGML_OP_HAS_FINALIZE[GGML_OP_COUNT] = { 0 };
  1596. static void ggml_setup_op_has_task_pass(void) {
  1597. { // INIT
  1598. bool * p = GGML_OP_HAS_INIT;
  1599. p[GGML_OP_ACC ] = true;
  1600. p[GGML_OP_MUL_MAT ] = true;
  1601. p[GGML_OP_MUL_MAT_ID ] = true;
  1602. p[GGML_OP_OUT_PROD ] = true;
  1603. p[GGML_OP_SET ] = true;
  1604. p[GGML_OP_GET_ROWS_BACK ] = true;
  1605. p[GGML_OP_DIAG_MASK_INF ] = true;
  1606. p[GGML_OP_DIAG_MASK_ZERO ] = true;
  1607. p[GGML_OP_CONV_TRANSPOSE_1D ] = true;
  1608. p[GGML_OP_CONV_TRANSPOSE_2D ] = true;
  1609. p[GGML_OP_FLASH_ATTN_BACK ] = true;
  1610. p[GGML_OP_CROSS_ENTROPY_LOSS ] = true;
  1611. p[GGML_OP_ADD_REL_POS ] = true;
  1612. }
  1613. { // FINALIZE
  1614. bool * p = GGML_OP_HAS_FINALIZE;
  1615. p[GGML_OP_CROSS_ENTROPY_LOSS ] = true;
  1616. }
  1617. }
  1618. //
  1619. // ggml context
  1620. //
  1621. struct ggml_context {
  1622. size_t mem_size;
  1623. void * mem_buffer;
  1624. bool mem_buffer_owned;
  1625. bool no_alloc;
  1626. bool no_alloc_save; // this is used to save the no_alloc state when using scratch buffers
  1627. int n_objects;
  1628. struct ggml_object * objects_begin;
  1629. struct ggml_object * objects_end;
  1630. struct ggml_scratch scratch;
  1631. struct ggml_scratch scratch_save;
  1632. };
  1633. struct ggml_context_container {
  1634. bool used;
  1635. struct ggml_context context;
  1636. };
  1637. //
  1638. // NUMA support
  1639. //
  1640. #define GGML_NUMA_MAX_NODES 8
  1641. #define GGML_NUMA_MAX_CPUS 512
  1642. struct ggml_numa_node {
  1643. uint32_t cpus[GGML_NUMA_MAX_CPUS]; // hardware threads on this node
  1644. uint32_t n_cpus;
  1645. };
  1646. struct ggml_numa_nodes {
  1647. struct ggml_numa_node nodes[GGML_NUMA_MAX_NODES];
  1648. uint32_t n_nodes;
  1649. uint32_t total_cpus; // hardware threads on system
  1650. };
  1651. //
  1652. // ggml state
  1653. //
  1654. struct ggml_state {
  1655. struct ggml_context_container contexts[GGML_MAX_CONTEXTS];
  1656. struct ggml_numa_nodes numa;
  1657. };
  1658. // global state
  1659. static struct ggml_state g_state;
  1660. static atomic_int g_state_barrier = 0;
  1661. // barrier via spin lock
  1662. inline static void ggml_critical_section_start(void) {
  1663. int processing = atomic_fetch_add(&g_state_barrier, 1);
  1664. while (processing > 0) {
  1665. // wait for other threads to finish
  1666. atomic_fetch_sub(&g_state_barrier, 1);
  1667. sched_yield(); // TODO: reconsider this
  1668. processing = atomic_fetch_add(&g_state_barrier, 1);
  1669. }
  1670. }
  1671. // TODO: make this somehow automatically executed
  1672. // some sort of "sentry" mechanism
  1673. inline static void ggml_critical_section_end(void) {
  1674. atomic_fetch_sub(&g_state_barrier, 1);
  1675. }
  1676. void ggml_numa_init(void) {
  1677. if (g_state.numa.n_nodes > 0) {
  1678. fprintf(stderr, "ggml_numa_init: NUMA already initialized\n");
  1679. return;
  1680. }
  1681. #ifdef __linux__
  1682. struct stat st;
  1683. char path[256];
  1684. int rv;
  1685. // enumerate nodes
  1686. while (g_state.numa.n_nodes < GGML_NUMA_MAX_NODES) {
  1687. rv = snprintf(path, sizeof(path), "/sys/devices/system/node/node%u", g_state.numa.n_nodes);
  1688. GGML_ASSERT(rv > 0 && (unsigned)rv < sizeof(path));
  1689. if (stat(path, &st) != 0) { break; }
  1690. ++g_state.numa.n_nodes;
  1691. }
  1692. // enumerate CPUs
  1693. while (g_state.numa.total_cpus < GGML_NUMA_MAX_CPUS) {
  1694. rv = snprintf(path, sizeof(path), "/sys/devices/system/cpu/cpu%u", g_state.numa.total_cpus);
  1695. GGML_ASSERT(rv > 0 && (unsigned)rv < sizeof(path));
  1696. if (stat(path, &st) != 0) { break; }
  1697. ++g_state.numa.total_cpus;
  1698. }
  1699. GGML_PRINT_DEBUG("found %u numa nodes, %u CPUs\n", g_state.numa.n_nodes, g_state.numa.total_cpus);
  1700. if (g_state.numa.n_nodes < 1 || g_state.numa.total_cpus < 1) {
  1701. g_state.numa.n_nodes = 0;
  1702. return;
  1703. }
  1704. for (uint32_t n = 0; n < g_state.numa.n_nodes; ++n) {
  1705. struct ggml_numa_node * node = &g_state.numa.nodes[n];
  1706. GGML_PRINT_DEBUG("CPUs on node %u:", n);
  1707. node->n_cpus = 0;
  1708. for (uint32_t c = 0; c < g_state.numa.total_cpus; ++c) {
  1709. rv = snprintf(path, sizeof(path), "/sys/devices/system/node/node%u/cpu%u", n, c);
  1710. GGML_ASSERT(rv > 0 && (unsigned)rv < sizeof(path));
  1711. if (stat(path, &st) == 0) {
  1712. node->cpus[node->n_cpus++] = c;
  1713. GGML_PRINT_DEBUG(" %u", c);
  1714. }
  1715. }
  1716. GGML_PRINT_DEBUG("\n");
  1717. }
  1718. if (ggml_is_numa()) {
  1719. FILE *fptr = fopen("/proc/sys/kernel/numa_balancing", "r");
  1720. if (fptr != NULL) {
  1721. char buf[42];
  1722. if (fgets(buf, sizeof(buf), fptr) && strncmp(buf, "0\n", sizeof(buf)) != 0) {
  1723. GGML_PRINT("WARNING: /proc/sys/kernel/numa_balancing is enabled, this has been observed to impair performance\n");
  1724. }
  1725. fclose(fptr);
  1726. }
  1727. }
  1728. #else
  1729. // TODO
  1730. #endif
  1731. }
  1732. bool ggml_is_numa(void) {
  1733. return g_state.numa.n_nodes > 1;
  1734. }
  1735. ////////////////////////////////////////////////////////////////////////////////
  1736. void ggml_print_object(const struct ggml_object * obj) {
  1737. GGML_PRINT(" - ggml_object: type = %d, offset = %zu, size = %zu, next = %p\n",
  1738. obj->type, obj->offs, obj->size, (const void *) obj->next);
  1739. }
  1740. void ggml_print_objects(const struct ggml_context * ctx) {
  1741. struct ggml_object * obj = ctx->objects_begin;
  1742. GGML_PRINT("%s: objects in context %p:\n", __func__, (const void *) ctx);
  1743. while (obj != NULL) {
  1744. ggml_print_object(obj);
  1745. obj = obj->next;
  1746. }
  1747. GGML_PRINT("%s: --- end ---\n", __func__);
  1748. }
  1749. GGML_CALL int64_t ggml_nelements(const struct ggml_tensor * tensor) {
  1750. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1751. return tensor->ne[0]*tensor->ne[1]*tensor->ne[2]*tensor->ne[3];
  1752. }
  1753. GGML_CALL int64_t ggml_nrows(const struct ggml_tensor * tensor) {
  1754. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1755. return tensor->ne[1]*tensor->ne[2]*tensor->ne[3];
  1756. }
  1757. GGML_CALL size_t ggml_nbytes(const struct ggml_tensor * tensor) {
  1758. size_t nbytes;
  1759. size_t blck_size = ggml_blck_size(tensor->type);
  1760. if (blck_size == 1) {
  1761. nbytes = ggml_type_size(tensor->type);
  1762. for (int i = 0; i < GGML_MAX_DIMS; ++i) {
  1763. nbytes += (tensor->ne[i] - 1)*tensor->nb[i];
  1764. }
  1765. }
  1766. else {
  1767. nbytes = tensor->ne[0]*tensor->nb[0]/blck_size;
  1768. for (int i = 1; i < GGML_MAX_DIMS; ++i) {
  1769. nbytes += (tensor->ne[i] - 1)*tensor->nb[i];
  1770. }
  1771. }
  1772. return nbytes;
  1773. }
  1774. size_t ggml_nbytes_pad(const struct ggml_tensor * tensor) {
  1775. return GGML_PAD(ggml_nbytes(tensor), GGML_MEM_ALIGN);
  1776. }
  1777. GGML_CALL int ggml_blck_size(enum ggml_type type) {
  1778. return type_traits[type].blck_size;
  1779. }
  1780. GGML_CALL size_t ggml_type_size(enum ggml_type type) {
  1781. return type_traits[type].type_size;
  1782. }
  1783. GGML_CALL size_t ggml_row_size(enum ggml_type type, int64_t ne) {
  1784. assert(ne % ggml_blck_size(type) == 0);
  1785. return ggml_type_size(type)*ne/ggml_blck_size(type);
  1786. }
  1787. double ggml_type_sizef(enum ggml_type type) {
  1788. return ((double)(type_traits[type].type_size))/type_traits[type].blck_size;
  1789. }
  1790. GGML_CALL const char * ggml_type_name(enum ggml_type type) {
  1791. return type_traits[type].type_name;
  1792. }
  1793. GGML_CALL bool ggml_is_quantized(enum ggml_type type) {
  1794. return type_traits[type].is_quantized;
  1795. }
  1796. GGML_CALL const char * ggml_op_name(enum ggml_op op) {
  1797. return GGML_OP_NAME[op];
  1798. }
  1799. const char * ggml_op_symbol(enum ggml_op op) {
  1800. return GGML_OP_SYMBOL[op];
  1801. }
  1802. const char * ggml_unary_op_name(enum ggml_unary_op op) {
  1803. return GGML_UNARY_OP_NAME[op];
  1804. }
  1805. GGML_CALL const char * ggml_op_desc(const struct ggml_tensor * t) {
  1806. if (t->op == GGML_OP_UNARY) {
  1807. enum ggml_unary_op uop = ggml_get_unary_op(t);
  1808. return ggml_unary_op_name(uop);
  1809. }
  1810. else {
  1811. return ggml_op_name(t->op);
  1812. }
  1813. }
  1814. GGML_CALL size_t ggml_element_size(const struct ggml_tensor * tensor) {
  1815. return ggml_type_size(tensor->type);
  1816. }
  1817. bool ggml_is_scalar(const struct ggml_tensor * tensor) {
  1818. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1819. return tensor->ne[0] == 1 && tensor->ne[1] == 1 && tensor->ne[2] == 1 && tensor->ne[3] == 1;
  1820. }
  1821. bool ggml_is_vector(const struct ggml_tensor * tensor) {
  1822. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1823. return tensor->ne[1] == 1 && tensor->ne[2] == 1 && tensor->ne[3] == 1;
  1824. }
  1825. bool ggml_is_matrix(const struct ggml_tensor * tensor) {
  1826. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1827. return tensor->ne[2] == 1 && tensor->ne[3] == 1;
  1828. }
  1829. bool ggml_is_3d(const struct ggml_tensor * tensor) {
  1830. return tensor->ne[3] == 1;
  1831. }
  1832. int ggml_n_dims(const struct ggml_tensor * tensor) {
  1833. for (int i = GGML_MAX_DIMS - 1; i >= 1; --i) {
  1834. if (tensor->ne[i] > 1) {
  1835. return i + 1;
  1836. }
  1837. }
  1838. return 1;
  1839. }
  1840. static inline bool ggml_can_mul_mat(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  1841. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1842. return (t0->ne[0] == t1->ne[0]) &&
  1843. (t1->ne[2]%t0->ne[2] == 0) && // verify t0 is broadcastable
  1844. (t1->ne[3]%t0->ne[3] == 0);
  1845. }
  1846. static inline bool ggml_can_out_prod(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  1847. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1848. return (t0->ne[1] == t1->ne[1]) &&
  1849. (t1->ne[2]%t0->ne[2] == 0) && // verify t0 is broadcastable
  1850. (t1->ne[3]%t0->ne[3] == 0);
  1851. }
  1852. enum ggml_type ggml_ftype_to_ggml_type(enum ggml_ftype ftype) {
  1853. enum ggml_type wtype = GGML_TYPE_COUNT;
  1854. switch (ftype) {
  1855. case GGML_FTYPE_ALL_F32: wtype = GGML_TYPE_F32; break;
  1856. case GGML_FTYPE_MOSTLY_F16: wtype = GGML_TYPE_F16; break;
  1857. case GGML_FTYPE_MOSTLY_Q4_0: wtype = GGML_TYPE_Q4_0; break;
  1858. case GGML_FTYPE_MOSTLY_Q4_1: wtype = GGML_TYPE_Q4_1; break;
  1859. case GGML_FTYPE_MOSTLY_Q5_0: wtype = GGML_TYPE_Q5_0; break;
  1860. case GGML_FTYPE_MOSTLY_Q5_1: wtype = GGML_TYPE_Q5_1; break;
  1861. case GGML_FTYPE_MOSTLY_Q8_0: wtype = GGML_TYPE_Q8_0; break;
  1862. case GGML_FTYPE_MOSTLY_Q2_K: wtype = GGML_TYPE_Q2_K; break;
  1863. case GGML_FTYPE_MOSTLY_Q3_K: wtype = GGML_TYPE_Q3_K; break;
  1864. case GGML_FTYPE_MOSTLY_Q4_K: wtype = GGML_TYPE_Q4_K; break;
  1865. case GGML_FTYPE_MOSTLY_Q5_K: wtype = GGML_TYPE_Q5_K; break;
  1866. case GGML_FTYPE_MOSTLY_Q6_K: wtype = GGML_TYPE_Q6_K; break;
  1867. case GGML_FTYPE_MOSTLY_IQ2_XXS: wtype = GGML_TYPE_IQ2_XXS; break;
  1868. case GGML_FTYPE_MOSTLY_IQ2_XS: wtype = GGML_TYPE_IQ2_XS; break;
  1869. case GGML_FTYPE_MOSTLY_IQ3_XXS: wtype = GGML_TYPE_IQ3_XXS; break;
  1870. case GGML_FTYPE_UNKNOWN: wtype = GGML_TYPE_COUNT; break;
  1871. case GGML_FTYPE_MOSTLY_Q4_1_SOME_F16: wtype = GGML_TYPE_COUNT; break;
  1872. }
  1873. GGML_ASSERT(wtype != GGML_TYPE_COUNT);
  1874. return wtype;
  1875. }
  1876. size_t ggml_tensor_overhead(void) {
  1877. return GGML_OBJECT_SIZE + GGML_TENSOR_SIZE;
  1878. }
  1879. GGML_CALL bool ggml_is_transposed(const struct ggml_tensor * tensor) {
  1880. return tensor->nb[0] > tensor->nb[1];
  1881. }
  1882. GGML_CALL bool ggml_is_contiguous(const struct ggml_tensor * tensor) {
  1883. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1884. return
  1885. tensor->nb[0] == ggml_type_size(tensor->type) &&
  1886. tensor->nb[1] == (tensor->nb[0]*tensor->ne[0])/ggml_blck_size(tensor->type) &&
  1887. tensor->nb[2] == tensor->nb[1]*tensor->ne[1] &&
  1888. tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
  1889. }
  1890. static inline bool ggml_is_contiguous_except_dim_1(const struct ggml_tensor * tensor) {
  1891. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1892. return
  1893. tensor->nb[0] == ggml_type_size(tensor->type) &&
  1894. tensor->nb[2] == tensor->nb[1]*tensor->ne[1] &&
  1895. tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
  1896. }
  1897. GGML_CALL bool ggml_is_permuted(const struct ggml_tensor * tensor) {
  1898. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1899. return tensor->nb[0] > tensor->nb[1] || tensor->nb[1] > tensor->nb[2] || tensor->nb[2] > tensor->nb[3];
  1900. }
  1901. static inline bool ggml_is_padded_1d(const struct ggml_tensor * tensor) {
  1902. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1903. return
  1904. tensor->nb[0] == ggml_type_size(tensor->type) &&
  1905. tensor->nb[2] == tensor->nb[1]*tensor->ne[1] &&
  1906. tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
  1907. }
  1908. bool ggml_are_same_shape(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  1909. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1910. return
  1911. (t0->ne[0] == t1->ne[0] ) &&
  1912. (t0->ne[1] == t1->ne[1] ) &&
  1913. (t0->ne[2] == t1->ne[2] ) &&
  1914. (t0->ne[3] == t1->ne[3] );
  1915. }
  1916. // check if t1 can be represented as a repeatition of t0
  1917. static inline bool ggml_can_repeat(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  1918. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1919. return
  1920. (t1->ne[0]%t0->ne[0] == 0) &&
  1921. (t1->ne[1]%t0->ne[1] == 0) &&
  1922. (t1->ne[2]%t0->ne[2] == 0) &&
  1923. (t1->ne[3]%t0->ne[3] == 0);
  1924. }
  1925. static inline bool ggml_can_repeat_rows(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  1926. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1927. return (t0->ne[0] == t1->ne[0]) && ggml_can_repeat(t0, t1);
  1928. }
  1929. static inline int ggml_up32(int n) {
  1930. return (n + 31) & ~31;
  1931. }
  1932. //static inline int ggml_up64(int n) {
  1933. // return (n + 63) & ~63;
  1934. //}
  1935. static inline int ggml_up(int n, int m) {
  1936. // assert m is a power of 2
  1937. GGML_ASSERT((m & (m - 1)) == 0);
  1938. return (n + m - 1) & ~(m - 1);
  1939. }
  1940. // assert that pointer is aligned to GGML_MEM_ALIGN
  1941. #define ggml_assert_aligned(ptr) \
  1942. GGML_ASSERT(((uintptr_t) (ptr))%GGML_MEM_ALIGN == 0)
  1943. ////////////////////////////////////////////////////////////////////////////////
  1944. struct ggml_context * ggml_init(struct ggml_init_params params) {
  1945. // make this function thread safe
  1946. ggml_critical_section_start();
  1947. static bool is_first_call = true;
  1948. if (is_first_call) {
  1949. // initialize time system (required on Windows)
  1950. ggml_time_init();
  1951. // initialize GELU, Quick GELU, SILU and EXP F32 tables
  1952. {
  1953. const uint64_t t_start = ggml_time_us(); UNUSED(t_start);
  1954. ggml_fp16_t ii;
  1955. for (int i = 0; i < (1 << 16); ++i) {
  1956. uint16_t ui = i;
  1957. memcpy(&ii, &ui, sizeof(ii));
  1958. const float f = ggml_table_f32_f16[i] = GGML_COMPUTE_FP16_TO_FP32(ii);
  1959. ggml_table_gelu_f16[i] = GGML_FP32_TO_FP16(ggml_gelu_f32(f));
  1960. ggml_table_gelu_quick_f16[i] = GGML_FP32_TO_FP16(ggml_gelu_quick_f32(f));
  1961. ggml_table_silu_f16[i] = GGML_FP32_TO_FP16(ggml_silu_f32(f));
  1962. ggml_table_exp_f16[i] = GGML_FP32_TO_FP16(expf(f));
  1963. }
  1964. const uint64_t t_end = ggml_time_us(); UNUSED(t_end);
  1965. GGML_PRINT_DEBUG("%s: GELU, Quick GELU, SILU and EXP tables initialized in %f ms\n", __func__, (t_end - t_start)/1000.0f);
  1966. }
  1967. // initialize g_state
  1968. {
  1969. const uint64_t t_start = ggml_time_us(); UNUSED(t_start);
  1970. g_state = (struct ggml_state) {
  1971. /*.contexts =*/ { { 0 } },
  1972. /*.numa =*/ {
  1973. .n_nodes = 0,
  1974. .total_cpus = 0,
  1975. },
  1976. };
  1977. for (int i = 0; i < GGML_MAX_CONTEXTS; ++i) {
  1978. g_state.contexts[i].used = false;
  1979. }
  1980. const uint64_t t_end = ggml_time_us(); UNUSED(t_end);
  1981. GGML_PRINT_DEBUG("%s: g_state initialized in %f ms\n", __func__, (t_end - t_start)/1000.0f);
  1982. }
  1983. #if defined(GGML_USE_CUBLAS)
  1984. ggml_init_cublas();
  1985. #elif defined(GGML_USE_CLBLAST)
  1986. ggml_cl_init();
  1987. #elif defined(GGML_USE_VULKAN)
  1988. ggml_vk_init();
  1989. #elif defined(GGML_USE_SYCL)
  1990. ggml_init_sycl();
  1991. #endif
  1992. ggml_setup_op_has_task_pass();
  1993. is_first_call = false;
  1994. }
  1995. // find non-used context in g_state
  1996. struct ggml_context * ctx = NULL;
  1997. for (int i = 0; i < GGML_MAX_CONTEXTS; i++) {
  1998. if (!g_state.contexts[i].used) {
  1999. g_state.contexts[i].used = true;
  2000. ctx = &g_state.contexts[i].context;
  2001. GGML_PRINT_DEBUG("%s: found unused context %d\n", __func__, i);
  2002. break;
  2003. }
  2004. }
  2005. if (ctx == NULL) {
  2006. GGML_PRINT_DEBUG("%s: no unused context found\n", __func__);
  2007. ggml_critical_section_end();
  2008. return NULL;
  2009. }
  2010. // allow to call ggml_init with 0 size
  2011. if (params.mem_size == 0) {
  2012. params.mem_size = GGML_MEM_ALIGN;
  2013. }
  2014. const size_t mem_size = params.mem_buffer ? params.mem_size : GGML_PAD(params.mem_size, GGML_MEM_ALIGN);
  2015. *ctx = (struct ggml_context) {
  2016. /*.mem_size =*/ mem_size,
  2017. /*.mem_buffer =*/ params.mem_buffer ? params.mem_buffer : GGML_ALIGNED_MALLOC(mem_size),
  2018. /*.mem_buffer_owned =*/ params.mem_buffer ? false : true,
  2019. /*.no_alloc =*/ params.no_alloc,
  2020. /*.no_alloc_save =*/ params.no_alloc,
  2021. /*.n_objects =*/ 0,
  2022. /*.objects_begin =*/ NULL,
  2023. /*.objects_end =*/ NULL,
  2024. /*.scratch =*/ { 0, 0, NULL, },
  2025. /*.scratch_save =*/ { 0, 0, NULL, },
  2026. };
  2027. GGML_ASSERT(ctx->mem_buffer != NULL);
  2028. ggml_assert_aligned(ctx->mem_buffer);
  2029. GGML_PRINT_DEBUG("%s: context initialized\n", __func__);
  2030. ggml_critical_section_end();
  2031. return ctx;
  2032. }
  2033. void ggml_free(struct ggml_context * ctx) {
  2034. if (ctx == NULL) {
  2035. return;
  2036. }
  2037. // make this function thread safe
  2038. ggml_critical_section_start();
  2039. bool found = false;
  2040. for (int i = 0; i < GGML_MAX_CONTEXTS; i++) {
  2041. if (&g_state.contexts[i].context == ctx) {
  2042. g_state.contexts[i].used = false;
  2043. GGML_PRINT_DEBUG("%s: context %d has been freed. memory used = %zu\n",
  2044. __func__, i, ggml_used_mem(ctx));
  2045. if (ctx->mem_buffer_owned) {
  2046. GGML_ALIGNED_FREE(ctx->mem_buffer);
  2047. }
  2048. found = true;
  2049. break;
  2050. }
  2051. }
  2052. if (!found) {
  2053. GGML_PRINT_DEBUG("%s: context not found\n", __func__);
  2054. }
  2055. ggml_critical_section_end();
  2056. }
  2057. size_t ggml_used_mem(const struct ggml_context * ctx) {
  2058. return ctx->objects_end == NULL ? 0 : ctx->objects_end->offs + ctx->objects_end->size;
  2059. }
  2060. size_t ggml_set_scratch(struct ggml_context * ctx, struct ggml_scratch scratch) {
  2061. const size_t result = ctx->scratch.data ? ctx->scratch.offs : 0;
  2062. ctx->scratch = scratch;
  2063. return result;
  2064. }
  2065. bool ggml_get_no_alloc(struct ggml_context * ctx) {
  2066. return ctx->no_alloc;
  2067. }
  2068. void ggml_set_no_alloc(struct ggml_context * ctx, bool no_alloc) {
  2069. ctx->no_alloc = no_alloc;
  2070. }
  2071. void * ggml_get_mem_buffer(const struct ggml_context * ctx) {
  2072. return ctx->mem_buffer;
  2073. }
  2074. size_t ggml_get_mem_size(const struct ggml_context * ctx) {
  2075. return ctx->mem_size;
  2076. }
  2077. size_t ggml_get_max_tensor_size(const struct ggml_context * ctx) {
  2078. size_t max_size = 0;
  2079. for (struct ggml_tensor * tensor = ggml_get_first_tensor(ctx); tensor != NULL; tensor = ggml_get_next_tensor(ctx, tensor)) {
  2080. max_size = MAX(max_size, ggml_nbytes(tensor));
  2081. }
  2082. return max_size;
  2083. }
  2084. // IMPORTANT:
  2085. // when creating "opt" tensors, always save and load the scratch buffer
  2086. // this is an error prone process, but it is necessary to support inplace
  2087. // operators when using scratch buffers
  2088. // TODO: implement a better way
  2089. static void ggml_scratch_save(struct ggml_context * ctx) {
  2090. // this is needed to allow opt tensors to store their data
  2091. // TODO: again, need to find a better way
  2092. ctx->no_alloc_save = ctx->no_alloc;
  2093. ctx->no_alloc = false;
  2094. ctx->scratch_save = ctx->scratch;
  2095. ctx->scratch.data = NULL;
  2096. }
  2097. static void ggml_scratch_load(struct ggml_context * ctx) {
  2098. ctx->no_alloc = ctx->no_alloc_save;
  2099. ctx->scratch = ctx->scratch_save;
  2100. }
  2101. ////////////////////////////////////////////////////////////////////////////////
  2102. static struct ggml_object * ggml_new_object(struct ggml_context * ctx, enum ggml_object_type type, size_t size) {
  2103. // always insert objects at the end of the context's memory pool
  2104. struct ggml_object * obj_cur = ctx->objects_end;
  2105. const size_t cur_offs = obj_cur == NULL ? 0 : obj_cur->offs;
  2106. const size_t cur_size = obj_cur == NULL ? 0 : obj_cur->size;
  2107. const size_t cur_end = cur_offs + cur_size;
  2108. // align to GGML_MEM_ALIGN
  2109. size_t size_needed = GGML_PAD(size, GGML_MEM_ALIGN);
  2110. char * const mem_buffer = ctx->mem_buffer;
  2111. struct ggml_object * const obj_new = (struct ggml_object *)(mem_buffer + cur_end);
  2112. if (cur_end + size_needed + GGML_OBJECT_SIZE > ctx->mem_size) {
  2113. GGML_PRINT("%s: not enough space in the context's memory pool (needed %zu, available %zu)\n",
  2114. __func__, cur_end + size_needed, ctx->mem_size);
  2115. assert(false);
  2116. return NULL;
  2117. }
  2118. *obj_new = (struct ggml_object) {
  2119. .offs = cur_end + GGML_OBJECT_SIZE,
  2120. .size = size_needed,
  2121. .next = NULL,
  2122. .type = type,
  2123. };
  2124. ggml_assert_aligned(mem_buffer + obj_new->offs);
  2125. if (obj_cur != NULL) {
  2126. obj_cur->next = obj_new;
  2127. } else {
  2128. // this is the first object in this context
  2129. ctx->objects_begin = obj_new;
  2130. }
  2131. ctx->objects_end = obj_new;
  2132. //printf("%s: inserted new object at %zu, size = %zu\n", __func__, cur_end, obj_new->size);
  2133. return obj_new;
  2134. }
  2135. static struct ggml_tensor * ggml_new_tensor_impl(
  2136. struct ggml_context * ctx,
  2137. enum ggml_type type,
  2138. int n_dims,
  2139. const int64_t * ne,
  2140. struct ggml_tensor * view_src,
  2141. size_t view_offs) {
  2142. assert(n_dims >= 1 && n_dims <= GGML_MAX_DIMS);
  2143. // find the base tensor and absolute offset
  2144. if (view_src != NULL && view_src->view_src != NULL) {
  2145. view_offs += view_src->view_offs;
  2146. view_src = view_src->view_src;
  2147. }
  2148. size_t data_size = ggml_row_size(type, ne[0]);
  2149. for (int i = 1; i < n_dims; i++) {
  2150. data_size *= ne[i];
  2151. }
  2152. GGML_ASSERT(view_src == NULL || data_size + view_offs <= ggml_nbytes(view_src));
  2153. void * data = view_src != NULL ? view_src->data : NULL;
  2154. if (data != NULL) {
  2155. data = (char *) data + view_offs;
  2156. }
  2157. size_t obj_alloc_size = 0;
  2158. if (view_src == NULL && !ctx->no_alloc) {
  2159. if (ctx->scratch.data != NULL) {
  2160. // allocate tensor data in the scratch buffer
  2161. if (ctx->scratch.offs + data_size > ctx->scratch.size) {
  2162. GGML_PRINT("%s: not enough space in the scratch memory pool (needed %zu, available %zu)\n",
  2163. __func__, ctx->scratch.offs + data_size, ctx->scratch.size);
  2164. assert(false);
  2165. return NULL;
  2166. }
  2167. data = (char * const) ctx->scratch.data + ctx->scratch.offs;
  2168. ctx->scratch.offs += data_size;
  2169. } else {
  2170. // allocate tensor data in the context's memory pool
  2171. obj_alloc_size = data_size;
  2172. }
  2173. }
  2174. struct ggml_object * const obj_new = ggml_new_object(ctx, GGML_OBJECT_TENSOR, GGML_TENSOR_SIZE + obj_alloc_size);
  2175. // TODO: for recoverable errors, we would need to free the data allocated from the scratch buffer here
  2176. struct ggml_tensor * const result = (struct ggml_tensor *)((char *)ctx->mem_buffer + obj_new->offs);
  2177. *result = (struct ggml_tensor) {
  2178. /*.type =*/ type,
  2179. /*.backend =*/ GGML_BACKEND_CPU,
  2180. /*.buffer =*/ NULL,
  2181. /*.ne =*/ { 1, 1, 1, 1 },
  2182. /*.nb =*/ { 0, 0, 0, 0 },
  2183. /*.op =*/ GGML_OP_NONE,
  2184. /*.op_params =*/ { 0 },
  2185. /*.is_param =*/ false,
  2186. /*.grad =*/ NULL,
  2187. /*.src =*/ { NULL },
  2188. /*.perf_runs =*/ 0,
  2189. /*.perf_cycles =*/ 0,
  2190. /*.perf_time_us =*/ 0,
  2191. /*.view_src =*/ view_src,
  2192. /*.view_offs =*/ view_offs,
  2193. /*.data =*/ obj_alloc_size > 0 ? (void *)(result + 1) : data,
  2194. /*.name =*/ { 0 },
  2195. /*.extra =*/ NULL,
  2196. /*.padding =*/ { 0 },
  2197. };
  2198. // TODO: this should not be needed as long as we don't rely on aligned SIMD loads
  2199. //ggml_assert_aligned(result->data);
  2200. for (int i = 0; i < n_dims; i++) {
  2201. result->ne[i] = ne[i];
  2202. }
  2203. result->nb[0] = ggml_type_size(type);
  2204. result->nb[1] = result->nb[0]*(result->ne[0]/ggml_blck_size(type));
  2205. for (int i = 2; i < GGML_MAX_DIMS; i++) {
  2206. result->nb[i] = result->nb[i - 1]*result->ne[i - 1];
  2207. }
  2208. ctx->n_objects++;
  2209. return result;
  2210. }
  2211. struct ggml_tensor * ggml_new_tensor(
  2212. struct ggml_context * ctx,
  2213. enum ggml_type type,
  2214. int n_dims,
  2215. const int64_t * ne) {
  2216. return ggml_new_tensor_impl(ctx, type, n_dims, ne, NULL, 0);
  2217. }
  2218. struct ggml_tensor * ggml_new_tensor_1d(
  2219. struct ggml_context * ctx,
  2220. enum ggml_type type,
  2221. int64_t ne0) {
  2222. return ggml_new_tensor(ctx, type, 1, &ne0);
  2223. }
  2224. struct ggml_tensor * ggml_new_tensor_2d(
  2225. struct ggml_context * ctx,
  2226. enum ggml_type type,
  2227. int64_t ne0,
  2228. int64_t ne1) {
  2229. const int64_t ne[2] = { ne0, ne1 };
  2230. return ggml_new_tensor(ctx, type, 2, ne);
  2231. }
  2232. struct ggml_tensor * ggml_new_tensor_3d(
  2233. struct ggml_context * ctx,
  2234. enum ggml_type type,
  2235. int64_t ne0,
  2236. int64_t ne1,
  2237. int64_t ne2) {
  2238. const int64_t ne[3] = { ne0, ne1, ne2 };
  2239. return ggml_new_tensor(ctx, type, 3, ne);
  2240. }
  2241. struct ggml_tensor * ggml_new_tensor_4d(
  2242. struct ggml_context * ctx,
  2243. enum ggml_type type,
  2244. int64_t ne0,
  2245. int64_t ne1,
  2246. int64_t ne2,
  2247. int64_t ne3) {
  2248. const int64_t ne[4] = { ne0, ne1, ne2, ne3 };
  2249. return ggml_new_tensor(ctx, type, 4, ne);
  2250. }
  2251. struct ggml_tensor * ggml_new_i32(struct ggml_context * ctx, int32_t value) {
  2252. ggml_scratch_save(ctx);
  2253. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 1);
  2254. ggml_scratch_load(ctx);
  2255. ggml_set_i32(result, value);
  2256. return result;
  2257. }
  2258. struct ggml_tensor * ggml_new_f32(struct ggml_context * ctx, float value) {
  2259. ggml_scratch_save(ctx);
  2260. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 1);
  2261. ggml_scratch_load(ctx);
  2262. ggml_set_f32(result, value);
  2263. return result;
  2264. }
  2265. struct ggml_tensor * ggml_dup_tensor(struct ggml_context * ctx, const struct ggml_tensor * src) {
  2266. return ggml_new_tensor(ctx, src->type, GGML_MAX_DIMS, src->ne);
  2267. }
  2268. static void ggml_set_op_params(struct ggml_tensor * tensor, const void * params, size_t params_size) {
  2269. GGML_ASSERT(tensor != NULL); // silence -Warray-bounds warnings
  2270. assert(params_size <= GGML_MAX_OP_PARAMS);
  2271. memcpy(tensor->op_params, params, params_size);
  2272. }
  2273. static int32_t ggml_get_op_params_i32(const struct ggml_tensor * tensor, uint32_t i) {
  2274. assert(i < GGML_MAX_OP_PARAMS / sizeof(int32_t));
  2275. return ((const int32_t *)(tensor->op_params))[i];
  2276. }
  2277. static void ggml_set_op_params_i32(struct ggml_tensor * tensor, uint32_t i, int32_t value) {
  2278. assert(i < GGML_MAX_OP_PARAMS / sizeof(int32_t));
  2279. ((int32_t *)(tensor->op_params))[i] = value;
  2280. }
  2281. struct ggml_tensor * ggml_set_zero(struct ggml_tensor * tensor) {
  2282. memset(tensor->data, 0, ggml_nbytes(tensor));
  2283. return tensor;
  2284. }
  2285. struct ggml_tensor * ggml_set_i32 (struct ggml_tensor * tensor, int32_t value) {
  2286. const int n = ggml_nrows(tensor);
  2287. const int nc = tensor->ne[0];
  2288. const size_t n1 = tensor->nb[1];
  2289. char * const data = tensor->data;
  2290. switch (tensor->type) {
  2291. case GGML_TYPE_I8:
  2292. {
  2293. assert(tensor->nb[0] == sizeof(int8_t));
  2294. for (int i = 0; i < n; i++) {
  2295. ggml_vec_set_i8(nc, (int8_t *)(data + i*n1), value);
  2296. }
  2297. } break;
  2298. case GGML_TYPE_I16:
  2299. {
  2300. assert(tensor->nb[0] == sizeof(int16_t));
  2301. for (int i = 0; i < n; i++) {
  2302. ggml_vec_set_i16(nc, (int16_t *)(data + i*n1), value);
  2303. }
  2304. } break;
  2305. case GGML_TYPE_I32:
  2306. {
  2307. assert(tensor->nb[0] == sizeof(int32_t));
  2308. for (int i = 0; i < n; i++) {
  2309. ggml_vec_set_i32(nc, (int32_t *)(data + i*n1), value);
  2310. }
  2311. } break;
  2312. case GGML_TYPE_F16:
  2313. {
  2314. assert(tensor->nb[0] == sizeof(ggml_fp16_t));
  2315. for (int i = 0; i < n; i++) {
  2316. ggml_vec_set_f16(nc, (ggml_fp16_t *)(data + i*n1), GGML_FP32_TO_FP16(value));
  2317. }
  2318. } break;
  2319. case GGML_TYPE_F32:
  2320. {
  2321. assert(tensor->nb[0] == sizeof(float));
  2322. for (int i = 0; i < n; i++) {
  2323. ggml_vec_set_f32(nc, (float *)(data + i*n1), value);
  2324. }
  2325. } break;
  2326. default:
  2327. {
  2328. GGML_ASSERT(false);
  2329. } break;
  2330. }
  2331. return tensor;
  2332. }
  2333. struct ggml_tensor * ggml_set_f32(struct ggml_tensor * tensor, float value) {
  2334. const int n = ggml_nrows(tensor);
  2335. const int nc = tensor->ne[0];
  2336. const size_t n1 = tensor->nb[1];
  2337. char * const data = tensor->data;
  2338. switch (tensor->type) {
  2339. case GGML_TYPE_I8:
  2340. {
  2341. assert(tensor->nb[0] == sizeof(int8_t));
  2342. for (int i = 0; i < n; i++) {
  2343. ggml_vec_set_i8(nc, (int8_t *)(data + i*n1), value);
  2344. }
  2345. } break;
  2346. case GGML_TYPE_I16:
  2347. {
  2348. assert(tensor->nb[0] == sizeof(int16_t));
  2349. for (int i = 0; i < n; i++) {
  2350. ggml_vec_set_i16(nc, (int16_t *)(data + i*n1), value);
  2351. }
  2352. } break;
  2353. case GGML_TYPE_I32:
  2354. {
  2355. assert(tensor->nb[0] == sizeof(int32_t));
  2356. for (int i = 0; i < n; i++) {
  2357. ggml_vec_set_i32(nc, (int32_t *)(data + i*n1), value);
  2358. }
  2359. } break;
  2360. case GGML_TYPE_F16:
  2361. {
  2362. assert(tensor->nb[0] == sizeof(ggml_fp16_t));
  2363. for (int i = 0; i < n; i++) {
  2364. ggml_vec_set_f16(nc, (ggml_fp16_t *)(data + i*n1), GGML_FP32_TO_FP16(value));
  2365. }
  2366. } break;
  2367. case GGML_TYPE_F32:
  2368. {
  2369. assert(tensor->nb[0] == sizeof(float));
  2370. for (int i = 0; i < n; i++) {
  2371. ggml_vec_set_f32(nc, (float *)(data + i*n1), value);
  2372. }
  2373. } break;
  2374. default:
  2375. {
  2376. GGML_ASSERT(false);
  2377. } break;
  2378. }
  2379. return tensor;
  2380. }
  2381. void ggml_unravel_index(const struct ggml_tensor * tensor, int64_t i, int64_t * i0, int64_t * i1, int64_t * i2, int64_t * i3) {
  2382. const int64_t ne2 = tensor->ne[2];
  2383. const int64_t ne1 = tensor->ne[1];
  2384. const int64_t ne0 = tensor->ne[0];
  2385. const int64_t i3_ = (i/(ne2*ne1*ne0));
  2386. const int64_t i2_ = (i - i3_*ne2*ne1*ne0)/(ne1*ne0);
  2387. const int64_t i1_ = (i - i3_*ne2*ne1*ne0 - i2_*ne1*ne0)/ne0;
  2388. const int64_t i0_ = (i - i3_*ne2*ne1*ne0 - i2_*ne1*ne0 - i1_*ne0);
  2389. if (i0) {
  2390. * i0 = i0_;
  2391. }
  2392. if (i1) {
  2393. * i1 = i1_;
  2394. }
  2395. if (i2) {
  2396. * i2 = i2_;
  2397. }
  2398. if (i3) {
  2399. * i3 = i3_;
  2400. }
  2401. }
  2402. int32_t ggml_get_i32_1d(const struct ggml_tensor * tensor, int i) {
  2403. if (!ggml_is_contiguous(tensor)) {
  2404. int64_t id[4] = { 0, 0, 0, 0 };
  2405. ggml_unravel_index(tensor, i, &id[0], &id[1], &id[2], &id[3]);
  2406. return ggml_get_i32_nd(tensor, id[0], id[1], id[2], id[3]);
  2407. }
  2408. switch (tensor->type) {
  2409. case GGML_TYPE_I8:
  2410. {
  2411. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  2412. return ((int8_t *)(tensor->data))[i];
  2413. }
  2414. case GGML_TYPE_I16:
  2415. {
  2416. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  2417. return ((int16_t *)(tensor->data))[i];
  2418. }
  2419. case GGML_TYPE_I32:
  2420. {
  2421. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  2422. return ((int32_t *)(tensor->data))[i];
  2423. }
  2424. case GGML_TYPE_F16:
  2425. {
  2426. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  2427. return GGML_FP16_TO_FP32(((ggml_fp16_t *)(tensor->data))[i]);
  2428. }
  2429. case GGML_TYPE_F32:
  2430. {
  2431. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  2432. return ((float *)(tensor->data))[i];
  2433. }
  2434. default:
  2435. {
  2436. GGML_ASSERT(false);
  2437. }
  2438. }
  2439. return 0.0f;
  2440. }
  2441. void ggml_set_i32_1d(const struct ggml_tensor * tensor, int i, int32_t value) {
  2442. if (!ggml_is_contiguous(tensor)) {
  2443. int64_t id[4] = { 0, 0, 0, 0 };
  2444. ggml_unravel_index(tensor, i, &id[0], &id[1], &id[2], &id[3]);
  2445. ggml_set_i32_nd(tensor, id[0], id[1], id[2], id[3], value);
  2446. return;
  2447. }
  2448. switch (tensor->type) {
  2449. case GGML_TYPE_I8:
  2450. {
  2451. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  2452. ((int8_t *)(tensor->data))[i] = value;
  2453. } break;
  2454. case GGML_TYPE_I16:
  2455. {
  2456. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  2457. ((int16_t *)(tensor->data))[i] = value;
  2458. } break;
  2459. case GGML_TYPE_I32:
  2460. {
  2461. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  2462. ((int32_t *)(tensor->data))[i] = value;
  2463. } break;
  2464. case GGML_TYPE_F16:
  2465. {
  2466. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  2467. ((ggml_fp16_t *)(tensor->data))[i] = GGML_FP32_TO_FP16(value);
  2468. } break;
  2469. case GGML_TYPE_F32:
  2470. {
  2471. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  2472. ((float *)(tensor->data))[i] = value;
  2473. } break;
  2474. default:
  2475. {
  2476. GGML_ASSERT(false);
  2477. } break;
  2478. }
  2479. }
  2480. int32_t ggml_get_i32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3) {
  2481. void * data = (char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1] + i2*tensor->nb[2] + i3*tensor->nb[3];
  2482. switch (tensor->type) {
  2483. case GGML_TYPE_I8:
  2484. return ((int8_t *) data)[0];
  2485. case GGML_TYPE_I16:
  2486. return ((int16_t *) data)[0];
  2487. case GGML_TYPE_I32:
  2488. return ((int32_t *) data)[0];
  2489. case GGML_TYPE_F16:
  2490. return GGML_FP16_TO_FP32(((ggml_fp16_t *) data)[0]);
  2491. case GGML_TYPE_F32:
  2492. return ((float *) data)[0];
  2493. default:
  2494. GGML_ASSERT(false);
  2495. }
  2496. return 0.0f;
  2497. }
  2498. void ggml_set_i32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3, int32_t value) {
  2499. void * data = (char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1] + i2*tensor->nb[2] + i3*tensor->nb[3];
  2500. switch (tensor->type) {
  2501. case GGML_TYPE_I8:
  2502. {
  2503. ((int8_t *)(data))[0] = value;
  2504. } break;
  2505. case GGML_TYPE_I16:
  2506. {
  2507. ((int16_t *)(data))[0] = value;
  2508. } break;
  2509. case GGML_TYPE_I32:
  2510. {
  2511. ((int32_t *)(data))[0] = value;
  2512. } break;
  2513. case GGML_TYPE_F16:
  2514. {
  2515. ((ggml_fp16_t *)(data))[0] = GGML_FP32_TO_FP16(value);
  2516. } break;
  2517. case GGML_TYPE_F32:
  2518. {
  2519. ((float *)(data))[0] = value;
  2520. } break;
  2521. default:
  2522. {
  2523. GGML_ASSERT(false);
  2524. } break;
  2525. }
  2526. }
  2527. float ggml_get_f32_1d(const struct ggml_tensor * tensor, int i) {
  2528. if (!ggml_is_contiguous(tensor)) {
  2529. int64_t id[4] = { 0, 0, 0, 0 };
  2530. ggml_unravel_index(tensor, i, &id[0], &id[1], &id[2], &id[3]);
  2531. return ggml_get_f32_nd(tensor, id[0], id[1], id[2], id[3]);
  2532. }
  2533. switch (tensor->type) {
  2534. case GGML_TYPE_I8:
  2535. {
  2536. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  2537. return ((int8_t *)(tensor->data))[i];
  2538. }
  2539. case GGML_TYPE_I16:
  2540. {
  2541. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  2542. return ((int16_t *)(tensor->data))[i];
  2543. }
  2544. case GGML_TYPE_I32:
  2545. {
  2546. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  2547. return ((int32_t *)(tensor->data))[i];
  2548. }
  2549. case GGML_TYPE_F16:
  2550. {
  2551. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  2552. return GGML_FP16_TO_FP32(((ggml_fp16_t *)(tensor->data))[i]);
  2553. }
  2554. case GGML_TYPE_F32:
  2555. {
  2556. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  2557. return ((float *)(tensor->data))[i];
  2558. }
  2559. default:
  2560. {
  2561. GGML_ASSERT(false);
  2562. }
  2563. }
  2564. return 0.0f;
  2565. }
  2566. void ggml_set_f32_1d(const struct ggml_tensor * tensor, int i, float value) {
  2567. if (!ggml_is_contiguous(tensor)) {
  2568. int64_t id[4] = { 0, 0, 0, 0 };
  2569. ggml_unravel_index(tensor, i, &id[0], &id[1], &id[2], &id[3]);
  2570. ggml_set_f32_nd(tensor, id[0], id[1], id[2], id[3], value);
  2571. return;
  2572. }
  2573. switch (tensor->type) {
  2574. case GGML_TYPE_I8:
  2575. {
  2576. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  2577. ((int8_t *)(tensor->data))[i] = value;
  2578. } break;
  2579. case GGML_TYPE_I16:
  2580. {
  2581. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  2582. ((int16_t *)(tensor->data))[i] = value;
  2583. } break;
  2584. case GGML_TYPE_I32:
  2585. {
  2586. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  2587. ((int32_t *)(tensor->data))[i] = value;
  2588. } break;
  2589. case GGML_TYPE_F16:
  2590. {
  2591. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  2592. ((ggml_fp16_t *)(tensor->data))[i] = GGML_FP32_TO_FP16(value);
  2593. } break;
  2594. case GGML_TYPE_F32:
  2595. {
  2596. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  2597. ((float *)(tensor->data))[i] = value;
  2598. } break;
  2599. default:
  2600. {
  2601. GGML_ASSERT(false);
  2602. } break;
  2603. }
  2604. }
  2605. float ggml_get_f32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3) {
  2606. void * data = (char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1] + i2*tensor->nb[2] + i3*tensor->nb[3];
  2607. switch (tensor->type) {
  2608. case GGML_TYPE_I8:
  2609. return ((int8_t *) data)[0];
  2610. case GGML_TYPE_I16:
  2611. return ((int16_t *) data)[0];
  2612. case GGML_TYPE_I32:
  2613. return ((int32_t *) data)[0];
  2614. case GGML_TYPE_F16:
  2615. return GGML_FP16_TO_FP32(((ggml_fp16_t *) data)[0]);
  2616. case GGML_TYPE_F32:
  2617. return ((float *) data)[0];
  2618. default:
  2619. GGML_ASSERT(false);
  2620. }
  2621. return 0.0f;
  2622. }
  2623. void ggml_set_f32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3, float value) {
  2624. void * data = (char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1] + i2*tensor->nb[2] + i3*tensor->nb[3];
  2625. switch (tensor->type) {
  2626. case GGML_TYPE_I8:
  2627. {
  2628. ((int8_t *)(data))[0] = value;
  2629. } break;
  2630. case GGML_TYPE_I16:
  2631. {
  2632. ((int16_t *)(data))[0] = value;
  2633. } break;
  2634. case GGML_TYPE_I32:
  2635. {
  2636. ((int32_t *)(data))[0] = value;
  2637. } break;
  2638. case GGML_TYPE_F16:
  2639. {
  2640. ((ggml_fp16_t *)(data))[0] = GGML_FP32_TO_FP16(value);
  2641. } break;
  2642. case GGML_TYPE_F32:
  2643. {
  2644. ((float *)(data))[0] = value;
  2645. } break;
  2646. default:
  2647. {
  2648. GGML_ASSERT(false);
  2649. } break;
  2650. }
  2651. }
  2652. void * ggml_get_data(const struct ggml_tensor * tensor) {
  2653. return tensor->data;
  2654. }
  2655. float * ggml_get_data_f32(const struct ggml_tensor * tensor) {
  2656. assert(tensor->type == GGML_TYPE_F32);
  2657. return (float *)(tensor->data);
  2658. }
  2659. GGML_CALL enum ggml_unary_op ggml_get_unary_op(const struct ggml_tensor * tensor) {
  2660. GGML_ASSERT(tensor->op == GGML_OP_UNARY);
  2661. return (enum ggml_unary_op) ggml_get_op_params_i32(tensor, 0);
  2662. }
  2663. const char * ggml_get_name(const struct ggml_tensor * tensor) {
  2664. return tensor->name;
  2665. }
  2666. struct ggml_tensor * ggml_set_name(struct ggml_tensor * tensor, const char * name) {
  2667. strncpy(tensor->name, name, sizeof(tensor->name));
  2668. tensor->name[sizeof(tensor->name) - 1] = '\0';
  2669. return tensor;
  2670. }
  2671. struct ggml_tensor * ggml_format_name(struct ggml_tensor * tensor, const char * fmt, ...) {
  2672. va_list args;
  2673. va_start(args, fmt);
  2674. vsnprintf(tensor->name, sizeof(tensor->name), fmt, args);
  2675. va_end(args);
  2676. return tensor;
  2677. }
  2678. struct ggml_tensor * ggml_view_tensor(
  2679. struct ggml_context * ctx,
  2680. struct ggml_tensor * src) {
  2681. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, src->type, GGML_MAX_DIMS, src->ne, src, 0);
  2682. ggml_format_name(result, "%s (view)", src->name);
  2683. for (int i = 0; i < GGML_MAX_DIMS; i++) {
  2684. result->nb[i] = src->nb[i];
  2685. }
  2686. return result;
  2687. }
  2688. struct ggml_tensor * ggml_get_first_tensor(const struct ggml_context * ctx) {
  2689. struct ggml_object * obj = ctx->objects_begin;
  2690. char * const mem_buffer = ctx->mem_buffer;
  2691. while (obj != NULL) {
  2692. if (obj->type == GGML_OBJECT_TENSOR) {
  2693. return (struct ggml_tensor *)(mem_buffer + obj->offs);
  2694. }
  2695. obj = obj->next;
  2696. }
  2697. return NULL;
  2698. }
  2699. struct ggml_tensor * ggml_get_next_tensor(const struct ggml_context * ctx, struct ggml_tensor * tensor) {
  2700. struct ggml_object * obj = (struct ggml_object *) ((char *)tensor - GGML_OBJECT_SIZE);
  2701. obj = obj->next;
  2702. char * const mem_buffer = ctx->mem_buffer;
  2703. while (obj != NULL) {
  2704. if (obj->type == GGML_OBJECT_TENSOR) {
  2705. return (struct ggml_tensor *)(mem_buffer + obj->offs);
  2706. }
  2707. obj = obj->next;
  2708. }
  2709. return NULL;
  2710. }
  2711. struct ggml_tensor * ggml_get_tensor(struct ggml_context * ctx, const char * name) {
  2712. struct ggml_object * obj = ctx->objects_begin;
  2713. char * const mem_buffer = ctx->mem_buffer;
  2714. while (obj != NULL) {
  2715. if (obj->type == GGML_OBJECT_TENSOR) {
  2716. struct ggml_tensor * cur = (struct ggml_tensor *)(mem_buffer + obj->offs);
  2717. if (strcmp(cur->name, name) == 0) {
  2718. return cur;
  2719. }
  2720. }
  2721. obj = obj->next;
  2722. }
  2723. return NULL;
  2724. }
  2725. ////////////////////////////////////////////////////////////////////////////////
  2726. // ggml_dup
  2727. static struct ggml_tensor * ggml_dup_impl(
  2728. struct ggml_context * ctx,
  2729. struct ggml_tensor * a,
  2730. bool inplace) {
  2731. bool is_node = false;
  2732. if (!inplace && (a->grad)) {
  2733. is_node = true;
  2734. }
  2735. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  2736. result->op = GGML_OP_DUP;
  2737. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2738. result->src[0] = a;
  2739. return result;
  2740. }
  2741. struct ggml_tensor * ggml_dup(
  2742. struct ggml_context * ctx,
  2743. struct ggml_tensor * a) {
  2744. return ggml_dup_impl(ctx, a, false);
  2745. }
  2746. struct ggml_tensor * ggml_dup_inplace(
  2747. struct ggml_context * ctx,
  2748. struct ggml_tensor * a) {
  2749. return ggml_dup_impl(ctx, a, true);
  2750. }
  2751. // ggml_add
  2752. static struct ggml_tensor * ggml_add_impl(
  2753. struct ggml_context * ctx,
  2754. struct ggml_tensor * a,
  2755. struct ggml_tensor * b,
  2756. bool inplace) {
  2757. GGML_ASSERT(ggml_can_repeat(b, a));
  2758. bool is_node = false;
  2759. if (!inplace && (a->grad || b->grad)) {
  2760. // TODO: support backward pass for broadcasting
  2761. GGML_ASSERT(ggml_are_same_shape(a, b));
  2762. is_node = true;
  2763. }
  2764. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  2765. result->op = GGML_OP_ADD;
  2766. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2767. result->src[0] = a;
  2768. result->src[1] = b;
  2769. return result;
  2770. }
  2771. struct ggml_tensor * ggml_add(
  2772. struct ggml_context * ctx,
  2773. struct ggml_tensor * a,
  2774. struct ggml_tensor * b) {
  2775. return ggml_add_impl(ctx, a, b, false);
  2776. }
  2777. struct ggml_tensor * ggml_add_inplace(
  2778. struct ggml_context * ctx,
  2779. struct ggml_tensor * a,
  2780. struct ggml_tensor * b) {
  2781. return ggml_add_impl(ctx, a, b, true);
  2782. }
  2783. // ggml_add_cast
  2784. static struct ggml_tensor * ggml_add_cast_impl(
  2785. struct ggml_context * ctx,
  2786. struct ggml_tensor * a,
  2787. struct ggml_tensor * b,
  2788. enum ggml_type type) {
  2789. // TODO: support less-strict constraint
  2790. // GGML_ASSERT(ggml_can_repeat(b, a));
  2791. GGML_ASSERT(ggml_can_repeat_rows(b, a));
  2792. GGML_ASSERT(ggml_is_quantized(a->type) || a->type == GGML_TYPE_F16); // currently only supported for quantized input and f16
  2793. bool is_node = false;
  2794. if (a->grad || b->grad) {
  2795. // TODO: support backward pass for broadcasting
  2796. GGML_ASSERT(ggml_are_same_shape(a, b));
  2797. is_node = true;
  2798. }
  2799. struct ggml_tensor * result = ggml_new_tensor(ctx, type, GGML_MAX_DIMS, a->ne);
  2800. result->op = GGML_OP_ADD;
  2801. result->grad = is_node ? ggml_new_tensor(ctx, GGML_TYPE_F32, GGML_MAX_DIMS, a->ne) : NULL;
  2802. result->src[0] = a;
  2803. result->src[1] = b;
  2804. return result;
  2805. }
  2806. struct ggml_tensor * ggml_add_cast(
  2807. struct ggml_context * ctx,
  2808. struct ggml_tensor * a,
  2809. struct ggml_tensor * b,
  2810. enum ggml_type type) {
  2811. return ggml_add_cast_impl(ctx, a, b, type);
  2812. }
  2813. // ggml_add1
  2814. static struct ggml_tensor * ggml_add1_impl(
  2815. struct ggml_context * ctx,
  2816. struct ggml_tensor * a,
  2817. struct ggml_tensor * b,
  2818. bool inplace) {
  2819. GGML_ASSERT(ggml_is_scalar(b));
  2820. GGML_ASSERT(ggml_is_padded_1d(a));
  2821. bool is_node = false;
  2822. if (a->grad || b->grad) {
  2823. is_node = true;
  2824. }
  2825. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  2826. result->op = GGML_OP_ADD1;
  2827. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2828. result->src[0] = a;
  2829. result->src[1] = b;
  2830. return result;
  2831. }
  2832. struct ggml_tensor * ggml_add1(
  2833. struct ggml_context * ctx,
  2834. struct ggml_tensor * a,
  2835. struct ggml_tensor * b) {
  2836. return ggml_add1_impl(ctx, a, b, false);
  2837. }
  2838. struct ggml_tensor * ggml_add1_inplace(
  2839. struct ggml_context * ctx,
  2840. struct ggml_tensor * a,
  2841. struct ggml_tensor * b) {
  2842. return ggml_add1_impl(ctx, a, b, true);
  2843. }
  2844. // ggml_acc
  2845. static struct ggml_tensor * ggml_acc_impl(
  2846. struct ggml_context * ctx,
  2847. struct ggml_tensor * a,
  2848. struct ggml_tensor * b,
  2849. size_t nb1,
  2850. size_t nb2,
  2851. size_t nb3,
  2852. size_t offset,
  2853. bool inplace) {
  2854. GGML_ASSERT(ggml_nelements(b) <= ggml_nelements(a));
  2855. GGML_ASSERT(ggml_is_contiguous(a));
  2856. GGML_ASSERT(a->type == GGML_TYPE_F32);
  2857. GGML_ASSERT(b->type == GGML_TYPE_F32);
  2858. bool is_node = false;
  2859. if (!inplace && (a->grad || b->grad)) {
  2860. is_node = true;
  2861. }
  2862. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  2863. int32_t params[] = { nb1, nb2, nb3, offset, inplace ? 1 : 0 };
  2864. ggml_set_op_params(result, params, sizeof(params));
  2865. result->op = GGML_OP_ACC;
  2866. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2867. result->src[0] = a;
  2868. result->src[1] = b;
  2869. return result;
  2870. }
  2871. struct ggml_tensor * ggml_acc(
  2872. struct ggml_context * ctx,
  2873. struct ggml_tensor * a,
  2874. struct ggml_tensor * b,
  2875. size_t nb1,
  2876. size_t nb2,
  2877. size_t nb3,
  2878. size_t offset) {
  2879. return ggml_acc_impl(ctx, a, b, nb1, nb2, nb3, offset, false);
  2880. }
  2881. struct ggml_tensor * ggml_acc_inplace(
  2882. struct ggml_context * ctx,
  2883. struct ggml_tensor * a,
  2884. struct ggml_tensor * b,
  2885. size_t nb1,
  2886. size_t nb2,
  2887. size_t nb3,
  2888. size_t offset) {
  2889. return ggml_acc_impl(ctx, a, b, nb1, nb2, nb3, offset, true);
  2890. }
  2891. // ggml_sub
  2892. static struct ggml_tensor * ggml_sub_impl(
  2893. struct ggml_context * ctx,
  2894. struct ggml_tensor * a,
  2895. struct ggml_tensor * b,
  2896. bool inplace) {
  2897. GGML_ASSERT(ggml_are_same_shape(a, b));
  2898. bool is_node = false;
  2899. if (!inplace && (a->grad || b->grad)) {
  2900. is_node = true;
  2901. }
  2902. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  2903. result->op = GGML_OP_SUB;
  2904. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2905. result->src[0] = a;
  2906. result->src[1] = b;
  2907. return result;
  2908. }
  2909. struct ggml_tensor * ggml_sub(
  2910. struct ggml_context * ctx,
  2911. struct ggml_tensor * a,
  2912. struct ggml_tensor * b) {
  2913. return ggml_sub_impl(ctx, a, b, false);
  2914. }
  2915. struct ggml_tensor * ggml_sub_inplace(
  2916. struct ggml_context * ctx,
  2917. struct ggml_tensor * a,
  2918. struct ggml_tensor * b) {
  2919. return ggml_sub_impl(ctx, a, b, true);
  2920. }
  2921. // ggml_mul
  2922. static struct ggml_tensor * ggml_mul_impl(
  2923. struct ggml_context * ctx,
  2924. struct ggml_tensor * a,
  2925. struct ggml_tensor * b,
  2926. bool inplace) {
  2927. GGML_ASSERT(ggml_can_repeat(b, a));
  2928. bool is_node = false;
  2929. if (!inplace && (a->grad || b->grad)) {
  2930. // TODO: support backward pass for broadcasting
  2931. GGML_ASSERT(ggml_are_same_shape(a, b));
  2932. is_node = true;
  2933. }
  2934. if (inplace) {
  2935. GGML_ASSERT(!is_node);
  2936. }
  2937. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  2938. result->op = GGML_OP_MUL;
  2939. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2940. result->src[0] = a;
  2941. result->src[1] = b;
  2942. return result;
  2943. }
  2944. struct ggml_tensor * ggml_mul(
  2945. struct ggml_context * ctx,
  2946. struct ggml_tensor * a,
  2947. struct ggml_tensor * b) {
  2948. return ggml_mul_impl(ctx, a, b, false);
  2949. }
  2950. struct ggml_tensor * ggml_mul_inplace(
  2951. struct ggml_context * ctx,
  2952. struct ggml_tensor * a,
  2953. struct ggml_tensor * b) {
  2954. return ggml_mul_impl(ctx, a, b, true);
  2955. }
  2956. // ggml_div
  2957. static struct ggml_tensor * ggml_div_impl(
  2958. struct ggml_context * ctx,
  2959. struct ggml_tensor * a,
  2960. struct ggml_tensor * b,
  2961. bool inplace) {
  2962. GGML_ASSERT(ggml_can_repeat(b, a));
  2963. bool is_node = false;
  2964. if (!inplace && (a->grad || b->grad)) {
  2965. is_node = true;
  2966. }
  2967. if (inplace) {
  2968. GGML_ASSERT(!is_node);
  2969. }
  2970. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  2971. result->op = GGML_OP_DIV;
  2972. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2973. result->src[0] = a;
  2974. result->src[1] = b;
  2975. return result;
  2976. }
  2977. struct ggml_tensor * ggml_div(
  2978. struct ggml_context * ctx,
  2979. struct ggml_tensor * a,
  2980. struct ggml_tensor * b) {
  2981. return ggml_div_impl(ctx, a, b, false);
  2982. }
  2983. struct ggml_tensor * ggml_div_inplace(
  2984. struct ggml_context * ctx,
  2985. struct ggml_tensor * a,
  2986. struct ggml_tensor * b) {
  2987. return ggml_div_impl(ctx, a, b, true);
  2988. }
  2989. // ggml_sqr
  2990. static struct ggml_tensor * ggml_sqr_impl(
  2991. struct ggml_context * ctx,
  2992. struct ggml_tensor * a,
  2993. bool inplace) {
  2994. bool is_node = false;
  2995. if (!inplace && (a->grad)) {
  2996. is_node = true;
  2997. }
  2998. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  2999. result->op = GGML_OP_SQR;
  3000. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3001. result->src[0] = a;
  3002. return result;
  3003. }
  3004. struct ggml_tensor * ggml_sqr(
  3005. struct ggml_context * ctx,
  3006. struct ggml_tensor * a) {
  3007. return ggml_sqr_impl(ctx, a, false);
  3008. }
  3009. struct ggml_tensor * ggml_sqr_inplace(
  3010. struct ggml_context * ctx,
  3011. struct ggml_tensor * a) {
  3012. return ggml_sqr_impl(ctx, a, true);
  3013. }
  3014. // ggml_sqrt
  3015. static struct ggml_tensor * ggml_sqrt_impl(
  3016. struct ggml_context * ctx,
  3017. struct ggml_tensor * a,
  3018. bool inplace) {
  3019. bool is_node = false;
  3020. if (!inplace && (a->grad)) {
  3021. is_node = true;
  3022. }
  3023. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3024. result->op = GGML_OP_SQRT;
  3025. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3026. result->src[0] = a;
  3027. return result;
  3028. }
  3029. struct ggml_tensor * ggml_sqrt(
  3030. struct ggml_context * ctx,
  3031. struct ggml_tensor * a) {
  3032. return ggml_sqrt_impl(ctx, a, false);
  3033. }
  3034. struct ggml_tensor * ggml_sqrt_inplace(
  3035. struct ggml_context * ctx,
  3036. struct ggml_tensor * a) {
  3037. return ggml_sqrt_impl(ctx, a, true);
  3038. }
  3039. // ggml_log
  3040. static struct ggml_tensor * ggml_log_impl(
  3041. struct ggml_context * ctx,
  3042. struct ggml_tensor * a,
  3043. bool inplace) {
  3044. bool is_node = false;
  3045. if (!inplace && (a->grad)) {
  3046. is_node = true;
  3047. }
  3048. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3049. result->op = GGML_OP_LOG;
  3050. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3051. result->src[0] = a;
  3052. return result;
  3053. }
  3054. struct ggml_tensor * ggml_log(
  3055. struct ggml_context * ctx,
  3056. struct ggml_tensor * a) {
  3057. return ggml_log_impl(ctx, a, false);
  3058. }
  3059. struct ggml_tensor * ggml_log_inplace(
  3060. struct ggml_context * ctx,
  3061. struct ggml_tensor * a) {
  3062. return ggml_log_impl(ctx, a, true);
  3063. }
  3064. // ggml_sum
  3065. struct ggml_tensor * ggml_sum(
  3066. struct ggml_context * ctx,
  3067. struct ggml_tensor * a) {
  3068. bool is_node = false;
  3069. if (a->grad) {
  3070. is_node = true;
  3071. }
  3072. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, a->type, 1);
  3073. result->op = GGML_OP_SUM;
  3074. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3075. result->src[0] = a;
  3076. return result;
  3077. }
  3078. // ggml_sum_rows
  3079. struct ggml_tensor * ggml_sum_rows(
  3080. struct ggml_context * ctx,
  3081. struct ggml_tensor * a) {
  3082. bool is_node = false;
  3083. if (a->grad) {
  3084. is_node = true;
  3085. }
  3086. int64_t ne[GGML_MAX_DIMS] = { 1 };
  3087. for (int i = 1; i < GGML_MAX_DIMS; ++i) {
  3088. ne[i] = a->ne[i];
  3089. }
  3090. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, GGML_MAX_DIMS, ne);
  3091. result->op = GGML_OP_SUM_ROWS;
  3092. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3093. result->src[0] = a;
  3094. return result;
  3095. }
  3096. // ggml_mean
  3097. struct ggml_tensor * ggml_mean(
  3098. struct ggml_context * ctx,
  3099. struct ggml_tensor * a) {
  3100. bool is_node = false;
  3101. if (a->grad) {
  3102. GGML_ASSERT(false); // TODO: implement
  3103. is_node = true;
  3104. }
  3105. int64_t ne[4] = { 1, a->ne[1], a->ne[2], a->ne[3] };
  3106. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  3107. result->op = GGML_OP_MEAN;
  3108. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3109. result->src[0] = a;
  3110. return result;
  3111. }
  3112. // ggml_argmax
  3113. struct ggml_tensor * ggml_argmax(
  3114. struct ggml_context * ctx,
  3115. struct ggml_tensor * a) {
  3116. GGML_ASSERT(ggml_is_matrix(a));
  3117. bool is_node = false;
  3118. if (a->grad) {
  3119. GGML_ASSERT(false);
  3120. is_node = true;
  3121. }
  3122. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, a->ne[1]);
  3123. result->op = GGML_OP_ARGMAX;
  3124. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3125. result->src[0] = a;
  3126. return result;
  3127. }
  3128. // ggml_repeat
  3129. struct ggml_tensor * ggml_repeat(
  3130. struct ggml_context * ctx,
  3131. struct ggml_tensor * a,
  3132. struct ggml_tensor * b) {
  3133. GGML_ASSERT(ggml_can_repeat(a, b));
  3134. bool is_node = false;
  3135. if (a->grad) {
  3136. is_node = true;
  3137. }
  3138. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, GGML_MAX_DIMS, b->ne);
  3139. result->op = GGML_OP_REPEAT;
  3140. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3141. result->src[0] = a;
  3142. return result;
  3143. }
  3144. // ggml_repeat_back
  3145. struct ggml_tensor * ggml_repeat_back(
  3146. struct ggml_context * ctx,
  3147. struct ggml_tensor * a,
  3148. struct ggml_tensor * b) {
  3149. GGML_ASSERT(ggml_can_repeat(b, a));
  3150. bool is_node = false;
  3151. if (a->grad) {
  3152. is_node = true;
  3153. }
  3154. if (ggml_are_same_shape(a, b) && !is_node) {
  3155. return a;
  3156. }
  3157. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, GGML_MAX_DIMS, b->ne);
  3158. result->op = GGML_OP_REPEAT_BACK;
  3159. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3160. result->src[0] = a;
  3161. return result;
  3162. }
  3163. // ggml_concat
  3164. struct ggml_tensor * ggml_concat(
  3165. struct ggml_context* ctx,
  3166. struct ggml_tensor* a,
  3167. struct ggml_tensor* b) {
  3168. GGML_ASSERT(a->ne[0] == b->ne[0] && a->ne[1] == b->ne[1] && a->ne[3] == b->ne[3]);
  3169. bool is_node = false;
  3170. if (a->grad || b->grad) {
  3171. is_node = true;
  3172. }
  3173. struct ggml_tensor * result = ggml_new_tensor_4d(ctx, a->type, a->ne[0], a->ne[1], a->ne[2] + b->ne[2], a->ne[3]);
  3174. result->op = GGML_OP_CONCAT;
  3175. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3176. result->src[0] = a;
  3177. result->src[1] = b;
  3178. return result;
  3179. }
  3180. // ggml_abs
  3181. struct ggml_tensor * ggml_abs(
  3182. struct ggml_context * ctx,
  3183. struct ggml_tensor * a) {
  3184. return ggml_unary(ctx, a, GGML_UNARY_OP_ABS);
  3185. }
  3186. struct ggml_tensor * ggml_abs_inplace(
  3187. struct ggml_context * ctx,
  3188. struct ggml_tensor * a) {
  3189. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_ABS);
  3190. }
  3191. // ggml_sgn
  3192. struct ggml_tensor * ggml_sgn(
  3193. struct ggml_context * ctx,
  3194. struct ggml_tensor * a) {
  3195. return ggml_unary(ctx, a, GGML_UNARY_OP_SGN);
  3196. }
  3197. struct ggml_tensor * ggml_sgn_inplace(
  3198. struct ggml_context * ctx,
  3199. struct ggml_tensor * a) {
  3200. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_SGN);
  3201. }
  3202. // ggml_neg
  3203. struct ggml_tensor * ggml_neg(
  3204. struct ggml_context * ctx,
  3205. struct ggml_tensor * a) {
  3206. return ggml_unary(ctx, a, GGML_UNARY_OP_NEG);
  3207. }
  3208. struct ggml_tensor * ggml_neg_inplace(
  3209. struct ggml_context * ctx,
  3210. struct ggml_tensor * a) {
  3211. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_NEG);
  3212. }
  3213. // ggml_step
  3214. struct ggml_tensor * ggml_step(
  3215. struct ggml_context * ctx,
  3216. struct ggml_tensor * a) {
  3217. return ggml_unary(ctx, a, GGML_UNARY_OP_STEP);
  3218. }
  3219. struct ggml_tensor * ggml_step_inplace(
  3220. struct ggml_context * ctx,
  3221. struct ggml_tensor * a) {
  3222. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_STEP);
  3223. }
  3224. // ggml_tanh
  3225. struct ggml_tensor * ggml_tanh(
  3226. struct ggml_context * ctx,
  3227. struct ggml_tensor * a) {
  3228. return ggml_unary(ctx, a, GGML_UNARY_OP_TANH);
  3229. }
  3230. struct ggml_tensor * ggml_tanh_inplace(
  3231. struct ggml_context * ctx,
  3232. struct ggml_tensor * a) {
  3233. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_TANH);
  3234. }
  3235. // ggml_elu
  3236. struct ggml_tensor * ggml_elu(
  3237. struct ggml_context * ctx,
  3238. struct ggml_tensor * a) {
  3239. return ggml_unary(ctx, a, GGML_UNARY_OP_ELU);
  3240. }
  3241. struct ggml_tensor * ggml_elu_inplace(
  3242. struct ggml_context * ctx,
  3243. struct ggml_tensor * a) {
  3244. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_ELU);
  3245. }
  3246. // ggml_relu
  3247. struct ggml_tensor * ggml_relu(
  3248. struct ggml_context * ctx,
  3249. struct ggml_tensor * a) {
  3250. return ggml_unary(ctx, a, GGML_UNARY_OP_RELU);
  3251. }
  3252. struct ggml_tensor * ggml_relu_inplace(
  3253. struct ggml_context * ctx,
  3254. struct ggml_tensor * a) {
  3255. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_RELU);
  3256. }
  3257. // ggml_leaky_relu
  3258. struct ggml_tensor * ggml_leaky_relu(
  3259. struct ggml_context * ctx,
  3260. struct ggml_tensor * a, float negative_slope, bool inplace) {
  3261. bool is_node = false;
  3262. if (!inplace && (a->grad)) {
  3263. is_node = true;
  3264. }
  3265. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3266. ggml_set_op_params(result, &negative_slope, sizeof(negative_slope));
  3267. result->op = GGML_OP_LEAKY_RELU;
  3268. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3269. result->src[0] = a;
  3270. return result;
  3271. }
  3272. // ggml_gelu
  3273. struct ggml_tensor * ggml_gelu(
  3274. struct ggml_context * ctx,
  3275. struct ggml_tensor * a) {
  3276. return ggml_unary(ctx, a, GGML_UNARY_OP_GELU);
  3277. }
  3278. struct ggml_tensor * ggml_gelu_inplace(
  3279. struct ggml_context * ctx,
  3280. struct ggml_tensor * a) {
  3281. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_GELU);
  3282. }
  3283. // ggml_gelu_quick
  3284. struct ggml_tensor * ggml_gelu_quick(
  3285. struct ggml_context * ctx,
  3286. struct ggml_tensor * a) {
  3287. return ggml_unary(ctx, a, GGML_UNARY_OP_GELU_QUICK);
  3288. }
  3289. struct ggml_tensor * ggml_gelu_quick_inplace(
  3290. struct ggml_context * ctx,
  3291. struct ggml_tensor * a) {
  3292. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_GELU_QUICK);
  3293. }
  3294. // ggml_silu
  3295. struct ggml_tensor * ggml_silu(
  3296. struct ggml_context * ctx,
  3297. struct ggml_tensor * a) {
  3298. return ggml_unary(ctx, a, GGML_UNARY_OP_SILU);
  3299. }
  3300. struct ggml_tensor * ggml_silu_inplace(
  3301. struct ggml_context * ctx,
  3302. struct ggml_tensor * a) {
  3303. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_SILU);
  3304. }
  3305. // ggml_silu_back
  3306. struct ggml_tensor * ggml_silu_back(
  3307. struct ggml_context * ctx,
  3308. struct ggml_tensor * a,
  3309. struct ggml_tensor * b) {
  3310. bool is_node = false;
  3311. if (a->grad || b->grad) {
  3312. // TODO: implement backward
  3313. is_node = true;
  3314. }
  3315. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  3316. result->op = GGML_OP_SILU_BACK;
  3317. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3318. result->src[0] = a;
  3319. result->src[1] = b;
  3320. return result;
  3321. }
  3322. // ggml hardswish
  3323. struct ggml_tensor * ggml_hardswish(
  3324. struct ggml_context * ctx,
  3325. struct ggml_tensor * a) {
  3326. return ggml_unary(ctx, a, GGML_UNARY_OP_HARDSWISH);
  3327. }
  3328. // ggml hardsigmoid
  3329. struct ggml_tensor * ggml_hardsigmoid(
  3330. struct ggml_context * ctx,
  3331. struct ggml_tensor * a) {
  3332. return ggml_unary(ctx, a, GGML_UNARY_OP_HARDSIGMOID);
  3333. }
  3334. // ggml_norm
  3335. static struct ggml_tensor * ggml_norm_impl(
  3336. struct ggml_context * ctx,
  3337. struct ggml_tensor * a,
  3338. float eps,
  3339. bool inplace) {
  3340. bool is_node = false;
  3341. if (!inplace && (a->grad)) {
  3342. GGML_ASSERT(false); // TODO: implement backward
  3343. is_node = true;
  3344. }
  3345. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3346. ggml_set_op_params(result, &eps, sizeof(eps));
  3347. result->op = GGML_OP_NORM;
  3348. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3349. result->src[0] = a;
  3350. return result;
  3351. }
  3352. struct ggml_tensor * ggml_norm(
  3353. struct ggml_context * ctx,
  3354. struct ggml_tensor * a,
  3355. float eps) {
  3356. return ggml_norm_impl(ctx, a, eps, false);
  3357. }
  3358. struct ggml_tensor * ggml_norm_inplace(
  3359. struct ggml_context * ctx,
  3360. struct ggml_tensor * a,
  3361. float eps) {
  3362. return ggml_norm_impl(ctx, a, eps, true);
  3363. }
  3364. // ggml_rms_norm
  3365. static struct ggml_tensor * ggml_rms_norm_impl(
  3366. struct ggml_context * ctx,
  3367. struct ggml_tensor * a,
  3368. float eps,
  3369. bool inplace) {
  3370. bool is_node = false;
  3371. if (!inplace && (a->grad)) {
  3372. is_node = true;
  3373. }
  3374. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3375. ggml_set_op_params(result, &eps, sizeof(eps));
  3376. result->op = GGML_OP_RMS_NORM;
  3377. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3378. result->src[0] = a;
  3379. return result;
  3380. }
  3381. struct ggml_tensor * ggml_rms_norm(
  3382. struct ggml_context * ctx,
  3383. struct ggml_tensor * a,
  3384. float eps) {
  3385. return ggml_rms_norm_impl(ctx, a, eps, false);
  3386. }
  3387. struct ggml_tensor * ggml_rms_norm_inplace(
  3388. struct ggml_context * ctx,
  3389. struct ggml_tensor * a,
  3390. float eps) {
  3391. return ggml_rms_norm_impl(ctx, a, eps, true);
  3392. }
  3393. // ggml_rms_norm_back
  3394. struct ggml_tensor * ggml_rms_norm_back(
  3395. struct ggml_context * ctx,
  3396. struct ggml_tensor * a,
  3397. struct ggml_tensor * b,
  3398. float eps) {
  3399. bool is_node = false;
  3400. if (a->grad) {
  3401. // TODO: implement backward
  3402. is_node = true;
  3403. }
  3404. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  3405. ggml_set_op_params(result, &eps, sizeof(eps));
  3406. result->op = GGML_OP_RMS_NORM_BACK;
  3407. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3408. result->src[0] = a;
  3409. result->src[1] = b;
  3410. return result;
  3411. }
  3412. // ggml_group_norm
  3413. static struct ggml_tensor * ggml_group_norm_impl(
  3414. struct ggml_context * ctx,
  3415. struct ggml_tensor * a,
  3416. int n_groups,
  3417. bool inplace) {
  3418. bool is_node = false;
  3419. if (!inplace && (a->grad)) {
  3420. GGML_ASSERT(false); // TODO: implement backward
  3421. is_node = true;
  3422. }
  3423. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3424. result->op_params[0] = n_groups;
  3425. result->op = GGML_OP_GROUP_NORM;
  3426. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3427. result->src[0] = a;
  3428. return result;
  3429. }
  3430. struct ggml_tensor * ggml_group_norm(
  3431. struct ggml_context * ctx,
  3432. struct ggml_tensor * a,
  3433. int n_groups) {
  3434. return ggml_group_norm_impl(ctx, a, n_groups, false);
  3435. }
  3436. struct ggml_tensor * ggml_group_norm_inplace(
  3437. struct ggml_context * ctx,
  3438. struct ggml_tensor * a,
  3439. int n_groups) {
  3440. return ggml_group_norm_impl(ctx, a, n_groups, true);
  3441. }
  3442. // ggml_mul_mat
  3443. struct ggml_tensor * ggml_mul_mat(
  3444. struct ggml_context * ctx,
  3445. struct ggml_tensor * a,
  3446. struct ggml_tensor * b) {
  3447. GGML_ASSERT(ggml_can_mul_mat(a, b));
  3448. GGML_ASSERT(!ggml_is_transposed(a));
  3449. bool is_node = false;
  3450. if (a->grad || b->grad) {
  3451. is_node = true;
  3452. }
  3453. const int64_t ne[4] = { a->ne[1], b->ne[1], b->ne[2], b->ne[3] };
  3454. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  3455. result->op = GGML_OP_MUL_MAT;
  3456. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3457. result->src[0] = a;
  3458. result->src[1] = b;
  3459. return result;
  3460. }
  3461. void ggml_mul_mat_set_prec(
  3462. struct ggml_tensor * a,
  3463. enum ggml_prec prec) {
  3464. const int32_t prec_i32 = (int32_t) prec;
  3465. ggml_set_op_params_i32(a, 0, prec_i32);
  3466. }
  3467. // ggml_mul_mat_id
  3468. struct ggml_tensor * ggml_mul_mat_id(
  3469. struct ggml_context * ctx,
  3470. struct ggml_tensor * const as[],
  3471. int n_as,
  3472. struct ggml_tensor * ids,
  3473. int id,
  3474. struct ggml_tensor * b) {
  3475. GGML_ASSERT(ids->type == GGML_TYPE_I32);
  3476. GGML_ASSERT(ids->ne[2] == 1 && ids->ne[3] == 1);
  3477. GGML_ASSERT(ids->ne[1] == b->ne[1]);
  3478. GGML_ASSERT(ids->ne[2] == b->ne[2] && ids->ne[3] == b->ne[3]);
  3479. GGML_ASSERT(n_as > 0 && n_as <= GGML_MAX_SRC - 2);
  3480. GGML_ASSERT(id >= 0 && id < ids->ne[0]);
  3481. bool is_node = false;
  3482. if (as[0]->grad || b->grad) {
  3483. is_node = true;
  3484. }
  3485. const int64_t ne[4] = { as[0]->ne[1], b->ne[1], b->ne[2], b->ne[3] };
  3486. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  3487. ggml_set_op_params_i32(result, 0, id);
  3488. ggml_set_op_params_i32(result, 1, n_as);
  3489. result->op = GGML_OP_MUL_MAT_ID;
  3490. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3491. result->src[0] = ids;
  3492. result->src[1] = b;
  3493. for (int i = 0; i < n_as; i++) {
  3494. struct ggml_tensor * a = as[i];
  3495. GGML_ASSERT(ggml_are_same_shape(as[0], a));
  3496. GGML_ASSERT(ggml_can_mul_mat(a, b));
  3497. GGML_ASSERT(!ggml_is_transposed(a));
  3498. result->src[i + 2] = a;
  3499. }
  3500. return result;
  3501. }
  3502. // ggml_out_prod
  3503. struct ggml_tensor * ggml_out_prod(
  3504. struct ggml_context * ctx,
  3505. struct ggml_tensor * a,
  3506. struct ggml_tensor * b) {
  3507. GGML_ASSERT(ggml_can_out_prod(a, b));
  3508. GGML_ASSERT(!ggml_is_transposed(a));
  3509. bool is_node = false;
  3510. if (a->grad || b->grad) {
  3511. is_node = true;
  3512. }
  3513. // a is broadcastable to b for ne[2] and ne[3] -> use b->ne[2] and b->ne[3]
  3514. const int64_t ne[4] = { a->ne[0], b->ne[0], b->ne[2], b->ne[3] };
  3515. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  3516. result->op = GGML_OP_OUT_PROD;
  3517. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3518. result->src[0] = a;
  3519. result->src[1] = b;
  3520. return result;
  3521. }
  3522. // ggml_scale
  3523. static struct ggml_tensor * ggml_scale_impl(
  3524. struct ggml_context * ctx,
  3525. struct ggml_tensor * a,
  3526. float s,
  3527. bool inplace) {
  3528. GGML_ASSERT(ggml_is_padded_1d(a));
  3529. bool is_node = false;
  3530. if (a->grad) {
  3531. is_node = true;
  3532. }
  3533. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3534. ggml_set_op_params(result, &s, sizeof(s));
  3535. result->op = GGML_OP_SCALE;
  3536. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3537. result->src[0] = a;
  3538. return result;
  3539. }
  3540. struct ggml_tensor * ggml_scale(
  3541. struct ggml_context * ctx,
  3542. struct ggml_tensor * a,
  3543. float s) {
  3544. return ggml_scale_impl(ctx, a, s, false);
  3545. }
  3546. struct ggml_tensor * ggml_scale_inplace(
  3547. struct ggml_context * ctx,
  3548. struct ggml_tensor * a,
  3549. float s) {
  3550. return ggml_scale_impl(ctx, a, s, true);
  3551. }
  3552. // ggml_set
  3553. static struct ggml_tensor * ggml_set_impl(
  3554. struct ggml_context * ctx,
  3555. struct ggml_tensor * a,
  3556. struct ggml_tensor * b,
  3557. size_t nb1,
  3558. size_t nb2,
  3559. size_t nb3,
  3560. size_t offset,
  3561. bool inplace) {
  3562. GGML_ASSERT(ggml_nelements(a) >= ggml_nelements(b));
  3563. bool is_node = false;
  3564. if (a->grad || b->grad) {
  3565. is_node = true;
  3566. }
  3567. // make a view of the destination
  3568. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3569. int32_t params[] = { nb1, nb2, nb3, offset, inplace ? 1 : 0 };
  3570. ggml_set_op_params(result, params, sizeof(params));
  3571. result->op = GGML_OP_SET;
  3572. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3573. result->src[0] = a;
  3574. result->src[1] = b;
  3575. return result;
  3576. }
  3577. struct ggml_tensor * ggml_set(
  3578. struct ggml_context * ctx,
  3579. struct ggml_tensor * a,
  3580. struct ggml_tensor * b,
  3581. size_t nb1,
  3582. size_t nb2,
  3583. size_t nb3,
  3584. size_t offset) {
  3585. return ggml_set_impl(ctx, a, b, nb1, nb2, nb3, offset, false);
  3586. }
  3587. struct ggml_tensor * ggml_set_inplace(
  3588. struct ggml_context * ctx,
  3589. struct ggml_tensor * a,
  3590. struct ggml_tensor * b,
  3591. size_t nb1,
  3592. size_t nb2,
  3593. size_t nb3,
  3594. size_t offset) {
  3595. return ggml_set_impl(ctx, a, b, nb1, nb2, nb3, offset, true);
  3596. }
  3597. struct ggml_tensor * ggml_set_1d(
  3598. struct ggml_context * ctx,
  3599. struct ggml_tensor * a,
  3600. struct ggml_tensor * b,
  3601. size_t offset) {
  3602. return ggml_set_impl(ctx, a, b, a->nb[1], a->nb[2], a->nb[3], offset, false);
  3603. }
  3604. struct ggml_tensor * ggml_set_1d_inplace(
  3605. struct ggml_context * ctx,
  3606. struct ggml_tensor * a,
  3607. struct ggml_tensor * b,
  3608. size_t offset) {
  3609. return ggml_set_impl(ctx, a, b, a->nb[1], a->nb[2], a->nb[3], offset, true);
  3610. }
  3611. struct ggml_tensor * ggml_set_2d(
  3612. struct ggml_context * ctx,
  3613. struct ggml_tensor * a,
  3614. struct ggml_tensor * b,
  3615. size_t nb1,
  3616. size_t offset) {
  3617. return ggml_set_impl(ctx, a, b, nb1, a->nb[2], a->nb[3], offset, false);
  3618. }
  3619. struct ggml_tensor * ggml_set_2d_inplace(
  3620. struct ggml_context * ctx,
  3621. struct ggml_tensor * a,
  3622. struct ggml_tensor * b,
  3623. size_t nb1,
  3624. size_t offset) {
  3625. return ggml_set_impl(ctx, a, b, nb1, a->nb[2], a->nb[3], offset, true);
  3626. }
  3627. // ggml_cpy
  3628. static struct ggml_tensor * ggml_cpy_impl(
  3629. struct ggml_context * ctx,
  3630. struct ggml_tensor * a,
  3631. struct ggml_tensor * b) {
  3632. GGML_ASSERT(ggml_nelements(a) == ggml_nelements(b));
  3633. bool is_node = false;
  3634. if (a->grad || b->grad) {
  3635. // inplace is false and either one have a grad
  3636. is_node = true;
  3637. }
  3638. // make a view of the destination
  3639. struct ggml_tensor * result = ggml_view_tensor(ctx, b);
  3640. if (strlen(b->name) > 0) {
  3641. ggml_format_name(result, "%s (copy of %s)", b->name, a->name);
  3642. } else {
  3643. ggml_format_name(result, "%s (copy)", a->name);
  3644. }
  3645. result->op = GGML_OP_CPY;
  3646. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3647. result->src[0] = a;
  3648. result->src[1] = b;
  3649. return result;
  3650. }
  3651. struct ggml_tensor * ggml_cpy(
  3652. struct ggml_context * ctx,
  3653. struct ggml_tensor * a,
  3654. struct ggml_tensor * b) {
  3655. return ggml_cpy_impl(ctx, a, b);
  3656. }
  3657. struct ggml_tensor * ggml_cast(
  3658. struct ggml_context * ctx,
  3659. struct ggml_tensor * a,
  3660. enum ggml_type type) {
  3661. bool is_node = false;
  3662. struct ggml_tensor * result = ggml_new_tensor(ctx, type, GGML_MAX_DIMS, a->ne);
  3663. ggml_format_name(result, "%s (copy)", a->name);
  3664. result->op = GGML_OP_CPY;
  3665. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3666. result->src[0] = a;
  3667. result->src[1] = result;
  3668. return result;
  3669. }
  3670. // ggml_cont
  3671. static struct ggml_tensor * ggml_cont_impl(
  3672. struct ggml_context * ctx,
  3673. struct ggml_tensor * a) {
  3674. bool is_node = false;
  3675. if (a->grad) {
  3676. is_node = true;
  3677. }
  3678. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  3679. ggml_format_name(result, "%s (cont)", a->name);
  3680. result->op = GGML_OP_CONT;
  3681. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3682. result->src[0] = a;
  3683. return result;
  3684. }
  3685. struct ggml_tensor * ggml_cont(
  3686. struct ggml_context * ctx,
  3687. struct ggml_tensor * a) {
  3688. return ggml_cont_impl(ctx, a);
  3689. }
  3690. // make contiguous, with new shape
  3691. GGML_API struct ggml_tensor * ggml_cont_1d(
  3692. struct ggml_context * ctx,
  3693. struct ggml_tensor * a,
  3694. int64_t ne0) {
  3695. return ggml_cont_4d(ctx, a, ne0, 1, 1, 1);
  3696. }
  3697. GGML_API struct ggml_tensor * ggml_cont_2d(
  3698. struct ggml_context * ctx,
  3699. struct ggml_tensor * a,
  3700. int64_t ne0,
  3701. int64_t ne1) {
  3702. return ggml_cont_4d(ctx, a, ne0, ne1, 1, 1);
  3703. }
  3704. GGML_API struct ggml_tensor * ggml_cont_3d(
  3705. struct ggml_context * ctx,
  3706. struct ggml_tensor * a,
  3707. int64_t ne0,
  3708. int64_t ne1,
  3709. int64_t ne2) {
  3710. return ggml_cont_4d(ctx, a, ne0, ne1, ne2, 1);
  3711. }
  3712. struct ggml_tensor * ggml_cont_4d(
  3713. struct ggml_context * ctx,
  3714. struct ggml_tensor * a,
  3715. int64_t ne0,
  3716. int64_t ne1,
  3717. int64_t ne2,
  3718. int64_t ne3) {
  3719. GGML_ASSERT(ggml_nelements(a) == (ne0*ne1*ne2*ne3));
  3720. bool is_node = false;
  3721. struct ggml_tensor * result = ggml_new_tensor_4d(ctx, a->type, ne0, ne1, ne2, ne3);
  3722. ggml_format_name(result, "%s (cont)", a->name);
  3723. result->op = GGML_OP_CONT;
  3724. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3725. result->src[0] = a;
  3726. return result;
  3727. }
  3728. // ggml_reshape
  3729. struct ggml_tensor * ggml_reshape(
  3730. struct ggml_context * ctx,
  3731. struct ggml_tensor * a,
  3732. struct ggml_tensor * b) {
  3733. GGML_ASSERT(ggml_is_contiguous(a));
  3734. // as only the shape of b is relevant, and not its memory layout, b is allowed to be non contiguous.
  3735. GGML_ASSERT(ggml_nelements(a) == ggml_nelements(b));
  3736. bool is_node = false;
  3737. if (a->grad) {
  3738. is_node = true;
  3739. }
  3740. if (b->grad) {
  3741. // gradient propagation is not supported
  3742. //GGML_ASSERT(false);
  3743. }
  3744. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, GGML_MAX_DIMS, b->ne, a, 0);
  3745. ggml_format_name(result, "%s (reshaped)", a->name);
  3746. result->op = GGML_OP_RESHAPE;
  3747. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3748. result->src[0] = a;
  3749. return result;
  3750. }
  3751. struct ggml_tensor * ggml_reshape_1d(
  3752. struct ggml_context * ctx,
  3753. struct ggml_tensor * a,
  3754. int64_t ne0) {
  3755. GGML_ASSERT(ggml_is_contiguous(a));
  3756. GGML_ASSERT(ggml_nelements(a) == ne0);
  3757. bool is_node = false;
  3758. if (a->grad) {
  3759. is_node = true;
  3760. }
  3761. const int64_t ne[1] = { ne0 };
  3762. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 1, ne, a, 0);
  3763. ggml_format_name(result, "%s (reshaped)", a->name);
  3764. result->op = GGML_OP_RESHAPE;
  3765. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3766. result->src[0] = a;
  3767. return result;
  3768. }
  3769. struct ggml_tensor * ggml_reshape_2d(
  3770. struct ggml_context * ctx,
  3771. struct ggml_tensor * a,
  3772. int64_t ne0,
  3773. int64_t ne1) {
  3774. GGML_ASSERT(ggml_is_contiguous(a));
  3775. GGML_ASSERT(ggml_nelements(a) == ne0*ne1);
  3776. bool is_node = false;
  3777. if (a->grad) {
  3778. is_node = true;
  3779. }
  3780. const int64_t ne[2] = { ne0, ne1 };
  3781. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 2, ne, a, 0);
  3782. ggml_format_name(result, "%s (reshaped)", a->name);
  3783. result->op = GGML_OP_RESHAPE;
  3784. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3785. result->src[0] = a;
  3786. return result;
  3787. }
  3788. struct ggml_tensor * ggml_reshape_3d(
  3789. struct ggml_context * ctx,
  3790. struct ggml_tensor * a,
  3791. int64_t ne0,
  3792. int64_t ne1,
  3793. int64_t ne2) {
  3794. GGML_ASSERT(ggml_is_contiguous(a));
  3795. GGML_ASSERT(ggml_nelements(a) == ne0*ne1*ne2);
  3796. bool is_node = false;
  3797. if (a->grad) {
  3798. is_node = true;
  3799. }
  3800. const int64_t ne[3] = { ne0, ne1, ne2 };
  3801. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 3, ne, a, 0);
  3802. ggml_format_name(result, "%s (reshaped)", a->name);
  3803. result->op = GGML_OP_RESHAPE;
  3804. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3805. result->src[0] = a;
  3806. return result;
  3807. }
  3808. struct ggml_tensor * ggml_reshape_4d(
  3809. struct ggml_context * ctx,
  3810. struct ggml_tensor * a,
  3811. int64_t ne0,
  3812. int64_t ne1,
  3813. int64_t ne2,
  3814. int64_t ne3) {
  3815. GGML_ASSERT(ggml_is_contiguous(a));
  3816. GGML_ASSERT(ggml_nelements(a) == ne0*ne1*ne2*ne3);
  3817. bool is_node = false;
  3818. if (a->grad) {
  3819. is_node = true;
  3820. }
  3821. const int64_t ne[4] = { ne0, ne1, ne2, ne3 };
  3822. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 4, ne, a, 0);
  3823. ggml_format_name(result, "%s (reshaped)", a->name);
  3824. result->op = GGML_OP_RESHAPE;
  3825. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3826. result->src[0] = a;
  3827. return result;
  3828. }
  3829. static struct ggml_tensor * ggml_view_impl(
  3830. struct ggml_context * ctx,
  3831. struct ggml_tensor * a,
  3832. int n_dims,
  3833. const int64_t * ne,
  3834. size_t offset) {
  3835. bool is_node = false;
  3836. if (a->grad) {
  3837. is_node = true;
  3838. }
  3839. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, n_dims, ne, a, offset);
  3840. ggml_format_name(result, "%s (view)", a->name);
  3841. ggml_set_op_params(result, &offset, sizeof(offset));
  3842. result->op = GGML_OP_VIEW;
  3843. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3844. result->src[0] = a;
  3845. return result;
  3846. }
  3847. // ggml_view_1d
  3848. struct ggml_tensor * ggml_view_1d(
  3849. struct ggml_context * ctx,
  3850. struct ggml_tensor * a,
  3851. int64_t ne0,
  3852. size_t offset) {
  3853. struct ggml_tensor * result = ggml_view_impl(ctx, a, 1, &ne0, offset);
  3854. return result;
  3855. }
  3856. // ggml_view_2d
  3857. struct ggml_tensor * ggml_view_2d(
  3858. struct ggml_context * ctx,
  3859. struct ggml_tensor * a,
  3860. int64_t ne0,
  3861. int64_t ne1,
  3862. size_t nb1,
  3863. size_t offset) {
  3864. const int64_t ne[2] = { ne0, ne1 };
  3865. struct ggml_tensor * result = ggml_view_impl(ctx, a, 2, ne, offset);
  3866. result->nb[1] = nb1;
  3867. result->nb[2] = result->nb[1]*ne1;
  3868. result->nb[3] = result->nb[2];
  3869. return result;
  3870. }
  3871. // ggml_view_3d
  3872. struct ggml_tensor * ggml_view_3d(
  3873. struct ggml_context * ctx,
  3874. struct ggml_tensor * a,
  3875. int64_t ne0,
  3876. int64_t ne1,
  3877. int64_t ne2,
  3878. size_t nb1,
  3879. size_t nb2,
  3880. size_t offset) {
  3881. const int64_t ne[3] = { ne0, ne1, ne2 };
  3882. struct ggml_tensor * result = ggml_view_impl(ctx, a, 3, ne, offset);
  3883. result->nb[1] = nb1;
  3884. result->nb[2] = nb2;
  3885. result->nb[3] = result->nb[2]*ne2;
  3886. return result;
  3887. }
  3888. // ggml_view_4d
  3889. struct ggml_tensor * ggml_view_4d(
  3890. struct ggml_context * ctx,
  3891. struct ggml_tensor * a,
  3892. int64_t ne0,
  3893. int64_t ne1,
  3894. int64_t ne2,
  3895. int64_t ne3,
  3896. size_t nb1,
  3897. size_t nb2,
  3898. size_t nb3,
  3899. size_t offset) {
  3900. const int64_t ne[4] = { ne0, ne1, ne2, ne3 };
  3901. struct ggml_tensor * result = ggml_view_impl(ctx, a, 4, ne, offset);
  3902. result->nb[1] = nb1;
  3903. result->nb[2] = nb2;
  3904. result->nb[3] = nb3;
  3905. return result;
  3906. }
  3907. // ggml_permute
  3908. struct ggml_tensor * ggml_permute(
  3909. struct ggml_context * ctx,
  3910. struct ggml_tensor * a,
  3911. int axis0,
  3912. int axis1,
  3913. int axis2,
  3914. int axis3) {
  3915. GGML_ASSERT(axis0 >= 0 && axis0 < GGML_MAX_DIMS);
  3916. GGML_ASSERT(axis1 >= 0 && axis1 < GGML_MAX_DIMS);
  3917. GGML_ASSERT(axis2 >= 0 && axis2 < GGML_MAX_DIMS);
  3918. GGML_ASSERT(axis3 >= 0 && axis3 < GGML_MAX_DIMS);
  3919. GGML_ASSERT(axis0 != axis1);
  3920. GGML_ASSERT(axis0 != axis2);
  3921. GGML_ASSERT(axis0 != axis3);
  3922. GGML_ASSERT(axis1 != axis2);
  3923. GGML_ASSERT(axis1 != axis3);
  3924. GGML_ASSERT(axis2 != axis3);
  3925. bool is_node = false;
  3926. if (a->grad) {
  3927. is_node = true;
  3928. }
  3929. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  3930. ggml_format_name(result, "%s (permuted)", a->name);
  3931. int ne[GGML_MAX_DIMS];
  3932. int nb[GGML_MAX_DIMS];
  3933. ne[axis0] = a->ne[0];
  3934. ne[axis1] = a->ne[1];
  3935. ne[axis2] = a->ne[2];
  3936. ne[axis3] = a->ne[3];
  3937. nb[axis0] = a->nb[0];
  3938. nb[axis1] = a->nb[1];
  3939. nb[axis2] = a->nb[2];
  3940. nb[axis3] = a->nb[3];
  3941. result->ne[0] = ne[0];
  3942. result->ne[1] = ne[1];
  3943. result->ne[2] = ne[2];
  3944. result->ne[3] = ne[3];
  3945. result->nb[0] = nb[0];
  3946. result->nb[1] = nb[1];
  3947. result->nb[2] = nb[2];
  3948. result->nb[3] = nb[3];
  3949. result->op = GGML_OP_PERMUTE;
  3950. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3951. result->src[0] = a;
  3952. int32_t params[] = { axis0, axis1, axis2, axis3 };
  3953. ggml_set_op_params(result, params, sizeof(params));
  3954. return result;
  3955. }
  3956. // ggml_transpose
  3957. struct ggml_tensor * ggml_transpose(
  3958. struct ggml_context * ctx,
  3959. struct ggml_tensor * a) {
  3960. bool is_node = false;
  3961. if (a->grad) {
  3962. is_node = true;
  3963. }
  3964. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  3965. ggml_format_name(result, "%s (transposed)", a->name);
  3966. result->ne[0] = a->ne[1];
  3967. result->ne[1] = a->ne[0];
  3968. result->nb[0] = a->nb[1];
  3969. result->nb[1] = a->nb[0];
  3970. result->op = GGML_OP_TRANSPOSE;
  3971. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3972. result->src[0] = a;
  3973. return result;
  3974. }
  3975. // ggml_get_rows
  3976. struct ggml_tensor * ggml_get_rows(
  3977. struct ggml_context * ctx,
  3978. struct ggml_tensor * a,
  3979. struct ggml_tensor * b) {
  3980. GGML_ASSERT(a->ne[2] == b->ne[1]);
  3981. GGML_ASSERT(b->ne[3] == 1);
  3982. GGML_ASSERT(b->type == GGML_TYPE_I32);
  3983. bool is_node = false;
  3984. if (a->grad || b->grad) {
  3985. is_node = true;
  3986. }
  3987. // TODO: implement non F32 return
  3988. enum ggml_type type = GGML_TYPE_F32;
  3989. if (a->type == GGML_TYPE_I32) {
  3990. type = a->type;
  3991. }
  3992. struct ggml_tensor * result = ggml_new_tensor_4d(ctx, type, a->ne[0], b->ne[0], b->ne[1], b->ne[2]);
  3993. result->op = GGML_OP_GET_ROWS;
  3994. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3995. result->src[0] = a;
  3996. result->src[1] = b;
  3997. return result;
  3998. }
  3999. // ggml_get_rows_back
  4000. struct ggml_tensor * ggml_get_rows_back(
  4001. struct ggml_context * ctx,
  4002. struct ggml_tensor * a,
  4003. struct ggml_tensor * b,
  4004. struct ggml_tensor * c) {
  4005. GGML_ASSERT(ggml_is_matrix(a) && ggml_is_vector(b) && b->type == GGML_TYPE_I32);
  4006. GGML_ASSERT(ggml_is_matrix(c) && (a->ne[0] == c->ne[0]));
  4007. bool is_node = false;
  4008. if (a->grad || b->grad) {
  4009. is_node = true;
  4010. }
  4011. // TODO: implement non F32 return
  4012. //struct ggml_tensor * result = ggml_new_tensor_2d(ctx, a->type, a->ne[0], b->ne[0]);
  4013. struct ggml_tensor * result = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, c->ne[0], c->ne[1]);
  4014. result->op = GGML_OP_GET_ROWS_BACK;
  4015. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4016. result->src[0] = a;
  4017. result->src[1] = b;
  4018. return result;
  4019. }
  4020. // ggml_diag
  4021. struct ggml_tensor * ggml_diag(
  4022. struct ggml_context * ctx,
  4023. struct ggml_tensor * a) {
  4024. GGML_ASSERT(a->ne[1] == 1);
  4025. bool is_node = false;
  4026. if (a->grad) {
  4027. is_node = true;
  4028. }
  4029. const int64_t ne[4] = { a->ne[0], a->ne[0], a->ne[2], a->ne[3] };
  4030. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, 4, ne);
  4031. result->op = GGML_OP_DIAG;
  4032. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4033. result->src[0] = a;
  4034. return result;
  4035. }
  4036. // ggml_diag_mask_inf
  4037. static struct ggml_tensor * ggml_diag_mask_inf_impl(
  4038. struct ggml_context * ctx,
  4039. struct ggml_tensor * a,
  4040. int n_past,
  4041. bool inplace) {
  4042. bool is_node = false;
  4043. if (a->grad) {
  4044. is_node = true;
  4045. }
  4046. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4047. int32_t params[] = { n_past };
  4048. ggml_set_op_params(result, params, sizeof(params));
  4049. result->op = GGML_OP_DIAG_MASK_INF;
  4050. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4051. result->src[0] = a;
  4052. return result;
  4053. }
  4054. struct ggml_tensor * ggml_diag_mask_inf(
  4055. struct ggml_context * ctx,
  4056. struct ggml_tensor * a,
  4057. int n_past) {
  4058. return ggml_diag_mask_inf_impl(ctx, a, n_past, false);
  4059. }
  4060. struct ggml_tensor * ggml_diag_mask_inf_inplace(
  4061. struct ggml_context * ctx,
  4062. struct ggml_tensor * a,
  4063. int n_past) {
  4064. return ggml_diag_mask_inf_impl(ctx, a, n_past, true);
  4065. }
  4066. // ggml_diag_mask_zero
  4067. static struct ggml_tensor * ggml_diag_mask_zero_impl(
  4068. struct ggml_context * ctx,
  4069. struct ggml_tensor * a,
  4070. int n_past,
  4071. bool inplace) {
  4072. bool is_node = false;
  4073. if (a->grad) {
  4074. is_node = true;
  4075. }
  4076. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4077. int32_t params[] = { n_past };
  4078. ggml_set_op_params(result, params, sizeof(params));
  4079. result->op = GGML_OP_DIAG_MASK_ZERO;
  4080. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4081. result->src[0] = a;
  4082. return result;
  4083. }
  4084. struct ggml_tensor * ggml_diag_mask_zero(
  4085. struct ggml_context * ctx,
  4086. struct ggml_tensor * a,
  4087. int n_past) {
  4088. return ggml_diag_mask_zero_impl(ctx, a, n_past, false);
  4089. }
  4090. struct ggml_tensor * ggml_diag_mask_zero_inplace(
  4091. struct ggml_context * ctx,
  4092. struct ggml_tensor * a,
  4093. int n_past) {
  4094. return ggml_diag_mask_zero_impl(ctx, a, n_past, true);
  4095. }
  4096. // ggml_soft_max
  4097. static struct ggml_tensor * ggml_soft_max_impl(
  4098. struct ggml_context * ctx,
  4099. struct ggml_tensor * a,
  4100. struct ggml_tensor * mask,
  4101. float scale,
  4102. bool inplace) {
  4103. GGML_ASSERT(ggml_is_contiguous(a));
  4104. if (mask) {
  4105. GGML_ASSERT(ggml_is_contiguous(mask));
  4106. GGML_ASSERT(mask->ne[2] == 1);
  4107. GGML_ASSERT(mask->ne[3] == 1);
  4108. GGML_ASSERT(ggml_can_repeat_rows(mask, a));
  4109. }
  4110. bool is_node = false;
  4111. if (a->grad) {
  4112. is_node = true;
  4113. }
  4114. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4115. float params[] = { scale };
  4116. ggml_set_op_params(result, params, sizeof(params));
  4117. result->op = GGML_OP_SOFT_MAX;
  4118. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4119. result->src[0] = a;
  4120. result->src[1] = mask;
  4121. return result;
  4122. }
  4123. struct ggml_tensor * ggml_soft_max(
  4124. struct ggml_context * ctx,
  4125. struct ggml_tensor * a) {
  4126. return ggml_soft_max_impl(ctx, a, NULL, 1.0f, false);
  4127. }
  4128. struct ggml_tensor * ggml_soft_max_inplace(
  4129. struct ggml_context * ctx,
  4130. struct ggml_tensor * a) {
  4131. return ggml_soft_max_impl(ctx, a, NULL, 1.0f, true);
  4132. }
  4133. struct ggml_tensor * ggml_soft_max_ext(
  4134. struct ggml_context * ctx,
  4135. struct ggml_tensor * a,
  4136. struct ggml_tensor * mask,
  4137. float scale) {
  4138. return ggml_soft_max_impl(ctx, a, mask, scale, false);
  4139. }
  4140. // ggml_soft_max_back
  4141. static struct ggml_tensor * ggml_soft_max_back_impl(
  4142. struct ggml_context * ctx,
  4143. struct ggml_tensor * a,
  4144. struct ggml_tensor * b,
  4145. bool inplace) {
  4146. bool is_node = false;
  4147. if (a->grad || b->grad) {
  4148. is_node = true; // TODO : implement backward pass
  4149. }
  4150. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4151. result->op = GGML_OP_SOFT_MAX_BACK;
  4152. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4153. result->src[0] = a;
  4154. result->src[1] = b;
  4155. return result;
  4156. }
  4157. struct ggml_tensor * ggml_soft_max_back(
  4158. struct ggml_context * ctx,
  4159. struct ggml_tensor * a,
  4160. struct ggml_tensor * b) {
  4161. return ggml_soft_max_back_impl(ctx, a, b, false);
  4162. }
  4163. struct ggml_tensor * ggml_soft_max_back_inplace(
  4164. struct ggml_context * ctx,
  4165. struct ggml_tensor * a,
  4166. struct ggml_tensor * b) {
  4167. return ggml_soft_max_back_impl(ctx, a, b, true);
  4168. }
  4169. // ggml_rope
  4170. static struct ggml_tensor * ggml_rope_impl(
  4171. struct ggml_context * ctx,
  4172. struct ggml_tensor * a,
  4173. struct ggml_tensor * b,
  4174. int n_dims,
  4175. int mode,
  4176. int n_ctx,
  4177. int n_orig_ctx,
  4178. float freq_base,
  4179. float freq_scale,
  4180. float ext_factor,
  4181. float attn_factor,
  4182. float beta_fast,
  4183. float beta_slow,
  4184. float xpos_base,
  4185. bool xpos_down,
  4186. bool inplace) {
  4187. GGML_ASSERT(ggml_is_vector(b));
  4188. GGML_ASSERT(b->type == GGML_TYPE_I32);
  4189. GGML_ASSERT(a->ne[2] == b->ne[0]);
  4190. bool is_node = false;
  4191. if (a->grad) {
  4192. is_node = true;
  4193. }
  4194. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4195. int32_t params[13] = { /*n_past*/ 0, n_dims, mode, n_ctx, n_orig_ctx };
  4196. memcpy(params + 5, &freq_base, sizeof(float));
  4197. memcpy(params + 6, &freq_scale, sizeof(float));
  4198. memcpy(params + 7, &ext_factor, sizeof(float));
  4199. memcpy(params + 8, &attn_factor, sizeof(float));
  4200. memcpy(params + 9, &beta_fast, sizeof(float));
  4201. memcpy(params + 10, &beta_slow, sizeof(float));
  4202. memcpy(params + 11, &xpos_base, sizeof(float));
  4203. memcpy(params + 12, &xpos_down, sizeof(bool));
  4204. ggml_set_op_params(result, params, sizeof(params));
  4205. result->op = GGML_OP_ROPE;
  4206. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4207. result->src[0] = a;
  4208. result->src[1] = b;
  4209. return result;
  4210. }
  4211. struct ggml_tensor * ggml_rope(
  4212. struct ggml_context * ctx,
  4213. struct ggml_tensor * a,
  4214. struct ggml_tensor * b,
  4215. int n_dims,
  4216. int mode,
  4217. int n_ctx) {
  4218. return ggml_rope_impl(
  4219. ctx, a, b, n_dims, mode, n_ctx, 0, 10000.0f, 1.0f, 0.0f, 1.0f, 0.0f, 0.0f, 0.0f, false, false
  4220. );
  4221. }
  4222. struct ggml_tensor * ggml_rope_inplace(
  4223. struct ggml_context * ctx,
  4224. struct ggml_tensor * a,
  4225. struct ggml_tensor * b,
  4226. int n_dims,
  4227. int mode,
  4228. int n_ctx) {
  4229. return ggml_rope_impl(
  4230. ctx, a, b, n_dims, mode, n_ctx, 0, 10000.0f, 1.0f, 0.0f, 1.0f, 0.0f, 0.0f, 0.0f, false, true
  4231. );
  4232. }
  4233. struct ggml_tensor * ggml_rope_custom(
  4234. struct ggml_context * ctx,
  4235. struct ggml_tensor * a,
  4236. struct ggml_tensor * b,
  4237. int n_dims,
  4238. int mode,
  4239. int n_ctx,
  4240. int n_orig_ctx,
  4241. float freq_base,
  4242. float freq_scale,
  4243. float ext_factor,
  4244. float attn_factor,
  4245. float beta_fast,
  4246. float beta_slow) {
  4247. return ggml_rope_impl(
  4248. ctx, a, b, n_dims, mode, n_ctx, n_orig_ctx, freq_base, freq_scale,
  4249. ext_factor, attn_factor, beta_fast, beta_slow, 0.0f, false, false
  4250. );
  4251. }
  4252. struct ggml_tensor * ggml_rope_custom_inplace(
  4253. struct ggml_context * ctx,
  4254. struct ggml_tensor * a,
  4255. struct ggml_tensor * b,
  4256. int n_dims,
  4257. int mode,
  4258. int n_ctx,
  4259. int n_orig_ctx,
  4260. float freq_base,
  4261. float freq_scale,
  4262. float ext_factor,
  4263. float attn_factor,
  4264. float beta_fast,
  4265. float beta_slow) {
  4266. return ggml_rope_impl(
  4267. ctx, a, b, n_dims, mode, n_ctx, n_orig_ctx, freq_base, freq_scale,
  4268. ext_factor, attn_factor, beta_fast, beta_slow, 0.0f, false, true
  4269. );
  4270. }
  4271. struct ggml_tensor * ggml_rope_xpos_inplace(
  4272. struct ggml_context * ctx,
  4273. struct ggml_tensor * a,
  4274. struct ggml_tensor * b,
  4275. int n_dims,
  4276. float base,
  4277. bool down) {
  4278. return ggml_rope_impl(ctx, a, b, n_dims, 0, 0, 0, 10000.0f, 1.0f, 0.0f, 1.0f, 0.0f, 0.0f, base, down, true);
  4279. }
  4280. // ggml_rope_back
  4281. struct ggml_tensor * ggml_rope_back(
  4282. struct ggml_context * ctx,
  4283. struct ggml_tensor * a,
  4284. struct ggml_tensor * b,
  4285. int n_dims,
  4286. int mode,
  4287. int n_ctx,
  4288. int n_orig_ctx,
  4289. float freq_base,
  4290. float freq_scale,
  4291. float ext_factor,
  4292. float attn_factor,
  4293. float beta_fast,
  4294. float beta_slow,
  4295. float xpos_base,
  4296. bool xpos_down) {
  4297. GGML_ASSERT(ggml_is_vector(b));
  4298. GGML_ASSERT(b->type == GGML_TYPE_I32);
  4299. GGML_ASSERT(a->ne[2] == b->ne[0]);
  4300. GGML_ASSERT((mode & 4) == 0 && "ggml_rope_back() for ChatGLM not implemented yet");
  4301. bool is_node = false;
  4302. if (a->grad) {
  4303. is_node = false; // TODO: implement backward
  4304. }
  4305. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  4306. int32_t params[13] = { /*n_past*/ 0, n_dims, mode, n_ctx, n_orig_ctx };
  4307. memcpy(params + 5, &freq_base, sizeof(float));
  4308. memcpy(params + 6, &freq_scale, sizeof(float));
  4309. memcpy(params + 7, &ext_factor, sizeof(float));
  4310. memcpy(params + 8, &attn_factor, sizeof(float));
  4311. memcpy(params + 9, &beta_fast, sizeof(float));
  4312. memcpy(params + 10, &beta_slow, sizeof(float));
  4313. memcpy(params + 11, &xpos_base, sizeof(float));
  4314. memcpy(params + 12, &xpos_down, sizeof(bool));
  4315. ggml_set_op_params(result, params, sizeof(params));
  4316. result->op = GGML_OP_ROPE_BACK;
  4317. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4318. result->src[0] = a;
  4319. result->src[1] = b;
  4320. return result;
  4321. }
  4322. // ggml_alibi
  4323. struct ggml_tensor * ggml_alibi(
  4324. struct ggml_context * ctx,
  4325. struct ggml_tensor * a,
  4326. int n_past,
  4327. int n_head,
  4328. float bias_max) {
  4329. GGML_ASSERT(n_past >= 0);
  4330. bool is_node = false;
  4331. if (a->grad) {
  4332. GGML_ASSERT(false); // TODO: implement backward
  4333. is_node = true;
  4334. }
  4335. // TODO: when implement backward, fix this:
  4336. //struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4337. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  4338. int32_t op_params[3] = { n_past, n_head };
  4339. memcpy(op_params + 2, &bias_max, sizeof(float));
  4340. ggml_set_op_params(result, op_params, sizeof(op_params));
  4341. result->op = GGML_OP_ALIBI;
  4342. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4343. result->src[0] = a;
  4344. return result;
  4345. }
  4346. // ggml_clamp
  4347. struct ggml_tensor * ggml_clamp(
  4348. struct ggml_context * ctx,
  4349. struct ggml_tensor * a,
  4350. float min,
  4351. float max) {
  4352. bool is_node = false;
  4353. if (a->grad) {
  4354. GGML_ASSERT(false); // TODO: implement backward
  4355. is_node = true;
  4356. }
  4357. // TODO: when implement backward, fix this:
  4358. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  4359. float params[] = { min, max };
  4360. ggml_set_op_params(result, params, sizeof(params));
  4361. result->op = GGML_OP_CLAMP;
  4362. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4363. result->src[0] = a;
  4364. return result;
  4365. }
  4366. // ggml_conv_1d
  4367. static int64_t ggml_calc_conv_output_size(int64_t ins, int64_t ks, int s, int p, int d) {
  4368. return (ins + 2 * p - d * (ks - 1) - 1) / s + 1;
  4369. }
  4370. GGML_API struct ggml_tensor * ggml_conv_1d(
  4371. struct ggml_context * ctx,
  4372. struct ggml_tensor * a,
  4373. struct ggml_tensor * b,
  4374. int s0,
  4375. int p0,
  4376. int d0) {
  4377. struct ggml_tensor * im2col = ggml_im2col(ctx, a, b, s0, 0, p0, 0, d0, 0, false, GGML_TYPE_F16); // [N, OL, IC * K]
  4378. struct ggml_tensor * result =
  4379. ggml_mul_mat(ctx,
  4380. ggml_reshape_2d(ctx, im2col, im2col->ne[0], (im2col->ne[2] * im2col->ne[1])), // [N, OL, IC * K] => [N*OL, IC * K]
  4381. ggml_reshape_2d(ctx, a, (a->ne[0] * a->ne[1]), a->ne[2])); // [OC,IC, K] => [OC, IC * K]
  4382. result = ggml_reshape_3d(ctx, result, im2col->ne[1], a->ne[2], im2col->ne[2]); // [N, OC, OL]
  4383. return result;
  4384. }
  4385. // ggml_conv_1d_ph
  4386. struct ggml_tensor* ggml_conv_1d_ph(
  4387. struct ggml_context * ctx,
  4388. struct ggml_tensor * a,
  4389. struct ggml_tensor * b,
  4390. int s,
  4391. int d) {
  4392. return ggml_conv_1d(ctx, a, b, s, a->ne[0] / 2, d);
  4393. }
  4394. // ggml_conv_transpose_1d
  4395. static int64_t ggml_calc_conv_transpose_1d_output_size(int64_t ins, int64_t ks, int s, int p, int d) {
  4396. return (ins - 1) * s - 2 * p + d * (ks - 1) + 1;
  4397. }
  4398. GGML_API struct ggml_tensor * ggml_conv_transpose_1d(
  4399. struct ggml_context * ctx,
  4400. struct ggml_tensor * a,
  4401. struct ggml_tensor * b,
  4402. int s0,
  4403. int p0,
  4404. int d0) {
  4405. GGML_ASSERT(ggml_is_matrix(b));
  4406. GGML_ASSERT(a->ne[2] == b->ne[1]);
  4407. GGML_ASSERT(a->ne[3] == 1);
  4408. GGML_ASSERT(p0 == 0);
  4409. GGML_ASSERT(d0 == 1);
  4410. bool is_node = false;
  4411. if (a->grad || b->grad) {
  4412. GGML_ASSERT(false); // TODO: implement backward
  4413. is_node = true;
  4414. }
  4415. const int64_t ne[4] = {
  4416. ggml_calc_conv_transpose_1d_output_size(b->ne[0], a->ne[0], s0, 0 /*p0*/, 1 /*d0*/),
  4417. a->ne[1], b->ne[2], 1,
  4418. };
  4419. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  4420. int32_t params[] = { s0, p0, d0 };
  4421. ggml_set_op_params(result, params, sizeof(params));
  4422. result->op = GGML_OP_CONV_TRANSPOSE_1D;
  4423. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4424. result->src[0] = a;
  4425. result->src[1] = b;
  4426. return result;
  4427. }
  4428. // ggml_conv_depthwise
  4429. struct ggml_tensor * ggml_conv_depthwise_2d(
  4430. struct ggml_context * ctx,
  4431. struct ggml_tensor * a,
  4432. struct ggml_tensor * b,
  4433. int s0,
  4434. int s1,
  4435. int p0,
  4436. int p1,
  4437. int d0,
  4438. int d1) {
  4439. struct ggml_tensor * new_a = ggml_reshape_4d(ctx, a, a->ne[0], a->ne[1], 1, a->ne[2] * a->ne[3]);
  4440. struct ggml_tensor * im2col = ggml_im2col(ctx, new_a,
  4441. ggml_reshape_4d(ctx, b, b->ne[0], b->ne[1], 1, b->ne[2] * b->ne[3]),
  4442. s0, s1, p0, p1, d0, d1, true, GGML_TYPE_F16); // [N * IC, OH, OW, KH * KW]
  4443. struct ggml_tensor * new_b = ggml_reshape_4d(ctx, im2col, im2col->ne[0], im2col->ne[2] * im2col->ne[1], b->ne[2], b->ne[3]); // [N * IC, OH, OW, KH * KW] => [N, IC, OH * OW, KH * KW]
  4444. new_a = ggml_reshape_4d(ctx, new_a, (new_a->ne[0] * new_a->ne[1]), new_a->ne[2], new_a->ne[3], 1); // [OC,1, KH, KW] => [1, OC, 1, KH * KW]
  4445. struct ggml_tensor * result = ggml_mul_mat(ctx, new_a, new_b);
  4446. result = ggml_reshape_4d(ctx, result, im2col->ne[1], im2col->ne[2], b->ne[2], b->ne[3]); // [N, OC, OH, OW]
  4447. return result;
  4448. }
  4449. // ggml_conv_2d
  4450. // im2col: [N, IC, IH, IW] => [N, OH, OW, IC*KH*KW]
  4451. // a: [OC,IC, KH, KW]
  4452. // b: [N, IC, IH, IW]
  4453. // result: [N, OH, OW, IC*KH*KW]
  4454. struct ggml_tensor * ggml_im2col(
  4455. struct ggml_context * ctx,
  4456. struct ggml_tensor * a,
  4457. struct ggml_tensor * b,
  4458. int s0,
  4459. int s1,
  4460. int p0,
  4461. int p1,
  4462. int d0,
  4463. int d1,
  4464. bool is_2D,
  4465. enum ggml_type dst_type) {
  4466. if(is_2D) {
  4467. GGML_ASSERT(a->ne[2] == b->ne[2]);
  4468. } else {
  4469. GGML_ASSERT(a->ne[1] == b->ne[1]);
  4470. }
  4471. bool is_node = false;
  4472. if (a->grad || b->grad) {
  4473. GGML_ASSERT(false); // TODO: implement backward
  4474. is_node = true;
  4475. }
  4476. const int64_t OH = is_2D ? ggml_calc_conv_output_size(b->ne[1], a->ne[1], s1, p1, d1) : 0;
  4477. const int64_t OW = ggml_calc_conv_output_size(b->ne[0], a->ne[0], s0, p0, d0);
  4478. const int64_t ne[4] = {
  4479. is_2D ? (a->ne[2] * a->ne[1] * a->ne[0]) : a->ne[1] * a->ne[0],
  4480. OW,
  4481. is_2D ? OH : b->ne[2],
  4482. is_2D ? b->ne[3] : 1,
  4483. };
  4484. struct ggml_tensor * result = ggml_new_tensor(ctx, dst_type, 4, ne);
  4485. int32_t params[] = { s0, s1, p0, p1, d0, d1, (is_2D ? 1 : 0) };
  4486. ggml_set_op_params(result, params, sizeof(params));
  4487. result->op = GGML_OP_IM2COL;
  4488. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4489. result->src[0] = a;
  4490. result->src[1] = b;
  4491. return result;
  4492. }
  4493. // a: [OC,IC, KH, KW]
  4494. // b: [N, IC, IH, IW]
  4495. // result: [N, OC, OH, OW]
  4496. struct ggml_tensor * ggml_conv_2d(
  4497. struct ggml_context * ctx,
  4498. struct ggml_tensor * a,
  4499. struct ggml_tensor * b,
  4500. int s0,
  4501. int s1,
  4502. int p0,
  4503. int p1,
  4504. int d0,
  4505. int d1) {
  4506. struct ggml_tensor * im2col = ggml_im2col(ctx, a, b, s0, s1, p0, p1, d0, d1, true, GGML_TYPE_F16); // [N, OH, OW, IC * KH * KW]
  4507. struct ggml_tensor * result =
  4508. ggml_mul_mat(ctx,
  4509. ggml_reshape_2d(ctx, im2col, im2col->ne[0], im2col->ne[3] * im2col->ne[2] * im2col->ne[1]), // [N, OH, OW, IC * KH * KW] => [N*OH*OW, IC * KH * KW]
  4510. ggml_reshape_2d(ctx, a, (a->ne[0] * a->ne[1] * a->ne[2]), a->ne[3])); // [OC,IC, KH, KW] => [OC, IC * KH * KW]
  4511. result = ggml_reshape_4d(ctx, result, im2col->ne[1], im2col->ne[2], a->ne[3], im2col->ne[3]); // [N, OC, OH, OW]
  4512. return result;
  4513. }
  4514. // ggml_conv_2d_sk_p0
  4515. struct ggml_tensor * ggml_conv_2d_sk_p0(
  4516. struct ggml_context * ctx,
  4517. struct ggml_tensor * a,
  4518. struct ggml_tensor * b) {
  4519. return ggml_conv_2d(ctx, a, b, a->ne[0], a->ne[1], 0, 0, 1, 1);
  4520. }
  4521. // ggml_conv_2d_s1_ph
  4522. struct ggml_tensor * ggml_conv_2d_s1_ph(
  4523. struct ggml_context * ctx,
  4524. struct ggml_tensor * a,
  4525. struct ggml_tensor * b) {
  4526. return ggml_conv_2d(ctx, a, b, 1, 1, a->ne[0] / 2, a->ne[1] / 2, 1, 1);
  4527. }
  4528. // ggml_conv_transpose_2d_p0
  4529. static int64_t ggml_calc_conv_transpose_output_size(int64_t ins, int64_t ks, int s, int p) {
  4530. return (ins - 1) * s - 2 * p + ks;
  4531. }
  4532. struct ggml_tensor * ggml_conv_transpose_2d_p0(
  4533. struct ggml_context * ctx,
  4534. struct ggml_tensor * a,
  4535. struct ggml_tensor * b,
  4536. int stride) {
  4537. GGML_ASSERT(a->ne[3] == b->ne[2]);
  4538. bool is_node = false;
  4539. if (a->grad || b->grad) {
  4540. GGML_ASSERT(false); // TODO: implement backward
  4541. is_node = true;
  4542. }
  4543. const int64_t ne[4] = {
  4544. ggml_calc_conv_transpose_output_size(b->ne[0], a->ne[0], stride, 0 /*p0*/),
  4545. ggml_calc_conv_transpose_output_size(b->ne[1], a->ne[1], stride, 0 /*p1*/),
  4546. a->ne[2], b->ne[3],
  4547. };
  4548. struct ggml_tensor* result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  4549. ggml_set_op_params_i32(result, 0, stride);
  4550. result->op = GGML_OP_CONV_TRANSPOSE_2D;
  4551. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4552. result->src[0] = a;
  4553. result->src[1] = b;
  4554. return result;
  4555. }
  4556. // ggml_pool_*
  4557. static int64_t ggml_calc_pool_output_size(int64_t ins, int ks, int s, float p) {
  4558. return (ins + 2 * p - ks) / s + 1;
  4559. }
  4560. // ggml_pool_1d
  4561. struct ggml_tensor * ggml_pool_1d(
  4562. struct ggml_context * ctx,
  4563. struct ggml_tensor * a,
  4564. enum ggml_op_pool op,
  4565. int k0,
  4566. int s0,
  4567. int p0) {
  4568. bool is_node = false;
  4569. if (a->grad) {
  4570. GGML_ASSERT(false); // TODO: implement backward
  4571. is_node = true;
  4572. }
  4573. const int64_t ne[2] = {
  4574. ggml_calc_pool_output_size(a->ne[0], k0, s0, p0),
  4575. a->ne[1],
  4576. };
  4577. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 2, ne);
  4578. int32_t params[] = { op, k0, s0, p0 };
  4579. ggml_set_op_params(result, params, sizeof(params));
  4580. result->op = GGML_OP_POOL_1D;
  4581. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4582. result->src[0] = a;
  4583. return result;
  4584. }
  4585. // ggml_pool_2d
  4586. struct ggml_tensor * ggml_pool_2d(
  4587. struct ggml_context * ctx,
  4588. struct ggml_tensor * a,
  4589. enum ggml_op_pool op,
  4590. int k0,
  4591. int k1,
  4592. int s0,
  4593. int s1,
  4594. float p0,
  4595. float p1) {
  4596. bool is_node = false;
  4597. if (a->grad) {
  4598. GGML_ASSERT(false); // TODO: implement backward
  4599. is_node = true;
  4600. }
  4601. struct ggml_tensor * result;
  4602. const int64_t ne[3] = {
  4603. ggml_calc_pool_output_size(a->ne[0], k0, s0, p0),
  4604. ggml_calc_pool_output_size(a->ne[1], k1, s1, p1),
  4605. a->ne[2],
  4606. };
  4607. result = ggml_new_tensor(ctx, GGML_TYPE_F32, 3, ne);
  4608. int32_t params[] = { op, k0, k1, s0, s1, p0, p1 };
  4609. ggml_set_op_params(result, params, sizeof(params));
  4610. result->op = GGML_OP_POOL_2D;
  4611. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4612. result->src[0] = a;
  4613. return result;
  4614. }
  4615. // ggml_upscale
  4616. static struct ggml_tensor * ggml_upscale_impl(
  4617. struct ggml_context * ctx,
  4618. struct ggml_tensor * a,
  4619. int scale_factor) {
  4620. bool is_node = false;
  4621. if (a->grad) {
  4622. GGML_ASSERT(false); // TODO: implement backward
  4623. is_node = true;
  4624. }
  4625. struct ggml_tensor * result = ggml_new_tensor_4d(ctx, a->type,
  4626. a->ne[0] * scale_factor,
  4627. a->ne[1] * scale_factor,
  4628. a->ne[2], a->ne[3]);
  4629. result->op = GGML_OP_UPSCALE;
  4630. result->op_params[0] = scale_factor;
  4631. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4632. result->src[0] = a;
  4633. return result;
  4634. }
  4635. struct ggml_tensor * ggml_pad(
  4636. struct ggml_context * ctx,
  4637. struct ggml_tensor * a,
  4638. int p0, int p1, int p2, int p3) {
  4639. bool is_node = false;
  4640. if (a->grad) {
  4641. GGML_ASSERT(false); // TODO: implement backward
  4642. is_node = true;
  4643. }
  4644. struct ggml_tensor * result = ggml_new_tensor_4d(ctx, a->type,
  4645. a->ne[0] + p0,
  4646. a->ne[1] + p1,
  4647. a->ne[2] + p2,
  4648. a->ne[3] + p3);
  4649. result->op = GGML_OP_PAD;
  4650. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4651. result->src[0] = a;
  4652. return result;
  4653. }
  4654. struct ggml_tensor * ggml_upscale(
  4655. struct ggml_context * ctx,
  4656. struct ggml_tensor * a,
  4657. int scale_factor) {
  4658. return ggml_upscale_impl(ctx, a, scale_factor);
  4659. }
  4660. // ggml_argsort
  4661. struct ggml_tensor * ggml_argsort(
  4662. struct ggml_context * ctx,
  4663. struct ggml_tensor * a,
  4664. enum ggml_sort_order order) {
  4665. bool is_node = false;
  4666. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_I32, GGML_MAX_DIMS, a->ne);
  4667. ggml_set_op_params_i32(result, 0, (int32_t) order);
  4668. result->op = GGML_OP_ARGSORT;
  4669. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4670. result->src[0] = a;
  4671. return result;
  4672. }
  4673. // ggml_top_k
  4674. struct ggml_tensor * ggml_top_k(
  4675. struct ggml_context * ctx,
  4676. struct ggml_tensor * a,
  4677. int k) {
  4678. GGML_ASSERT(a->ne[0] >= k);
  4679. struct ggml_tensor * result = ggml_argsort(ctx, a, GGML_SORT_DESC);
  4680. result = ggml_view_4d(ctx, result,
  4681. k, result->ne[1], result->ne[2], result->ne[3],
  4682. result->nb[1], result->nb[2], result->nb[3],
  4683. 0);
  4684. return result;
  4685. }
  4686. // ggml_flash_attn
  4687. struct ggml_tensor * ggml_flash_attn(
  4688. struct ggml_context * ctx,
  4689. struct ggml_tensor * q,
  4690. struct ggml_tensor * k,
  4691. struct ggml_tensor * v,
  4692. bool masked) {
  4693. GGML_ASSERT(ggml_can_mul_mat(k, q));
  4694. // TODO: check if vT can be multiplied by (k*qT)
  4695. bool is_node = false;
  4696. if (q->grad || k->grad || v->grad) {
  4697. is_node = true;
  4698. }
  4699. //struct ggml_tensor * result = ggml_dup_tensor(ctx, q);
  4700. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, GGML_MAX_DIMS, q->ne);
  4701. int32_t t = masked ? 1 : 0;
  4702. ggml_set_op_params(result, &t, sizeof(t));
  4703. result->op = GGML_OP_FLASH_ATTN;
  4704. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4705. result->src[0] = q;
  4706. result->src[1] = k;
  4707. result->src[2] = v;
  4708. return result;
  4709. }
  4710. // ggml_flash_ff
  4711. struct ggml_tensor * ggml_flash_ff(
  4712. struct ggml_context * ctx,
  4713. struct ggml_tensor * a,
  4714. struct ggml_tensor * b0,
  4715. struct ggml_tensor * b1,
  4716. struct ggml_tensor * c0,
  4717. struct ggml_tensor * c1) {
  4718. GGML_ASSERT(ggml_can_mul_mat(b0, a));
  4719. // TODO: more checks
  4720. bool is_node = false;
  4721. if (a->grad || b0->grad || b1->grad || c0->grad || c1->grad) {
  4722. is_node = true;
  4723. }
  4724. //struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  4725. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, GGML_MAX_DIMS, a->ne);
  4726. result->op = GGML_OP_FLASH_FF;
  4727. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4728. result->src[0] = a;
  4729. result->src[1] = b0;
  4730. result->src[2] = b1;
  4731. result->src[3] = c0;
  4732. result->src[4] = c1;
  4733. return result;
  4734. }
  4735. // ggml_flash_attn_back
  4736. struct ggml_tensor * ggml_flash_attn_back(
  4737. struct ggml_context * ctx,
  4738. struct ggml_tensor * q,
  4739. struct ggml_tensor * k,
  4740. struct ggml_tensor * v,
  4741. struct ggml_tensor * d,
  4742. bool masked) {
  4743. GGML_ASSERT(ggml_can_mul_mat(k, q));
  4744. // TODO: check if vT can be multiplied by (k*qT)
  4745. // d shape [D,N,ne2,ne3]
  4746. // q shape [D,N,ne2,ne3]
  4747. // k shape [D,M,kvne2,ne3]
  4748. // v shape [M,D,kvne2,ne3]
  4749. const int64_t D = q->ne[0];
  4750. const int64_t N = q->ne[1];
  4751. const int64_t M = k->ne[1];
  4752. const int64_t ne2 = q->ne[2];
  4753. const int64_t ne3 = q->ne[3];
  4754. const int64_t kvne2 = k->ne[2];
  4755. GGML_ASSERT(k->ne[0] == D);
  4756. GGML_ASSERT(v->ne[0] == M);
  4757. GGML_ASSERT(v->ne[1] == D);
  4758. GGML_ASSERT(d->ne[0] == D);
  4759. GGML_ASSERT(d->ne[1] == N);
  4760. GGML_ASSERT(k->ne[2] == kvne2);
  4761. GGML_ASSERT(k->ne[3] == ne3);
  4762. GGML_ASSERT(v->ne[2] == kvne2);
  4763. GGML_ASSERT(v->ne[3] == ne3);
  4764. GGML_ASSERT(d->ne[2] == ne2);
  4765. GGML_ASSERT(d->ne[3] == ne3);
  4766. GGML_ASSERT(ne2 % kvne2 == 0);
  4767. bool is_node = false;
  4768. if (q->grad || k->grad || v->grad) {
  4769. // when using this operation (in backwards pass) these grads are set.
  4770. // we don't want to create (big) grad of our result, so is_node is false.
  4771. is_node = false;
  4772. }
  4773. // store gradients of q, k and v as continuous tensors concatenated in result.
  4774. // note: v and gradv are actually transposed, i.e. v->ne[0] != D.
  4775. const int64_t elem_q = ggml_nelements(q);
  4776. const int64_t elem_k = ggml_nelements(k);
  4777. const int64_t elem_v = ggml_nelements(v);
  4778. enum ggml_type result_type = GGML_TYPE_F32;
  4779. GGML_ASSERT(ggml_blck_size(result_type) == 1);
  4780. const size_t tsize = ggml_type_size(result_type);
  4781. const size_t offs_q = 0;
  4782. const size_t offs_k = offs_q + GGML_PAD(elem_q * tsize, GGML_MEM_ALIGN);
  4783. const size_t offs_v = offs_k + GGML_PAD(elem_k * tsize, GGML_MEM_ALIGN);
  4784. const size_t end = offs_v + GGML_PAD(elem_v * tsize, GGML_MEM_ALIGN);
  4785. const size_t nelements = (end + tsize - 1)/tsize;
  4786. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nelements);
  4787. int32_t masked_i = masked ? 1 : 0;
  4788. ggml_set_op_params(result, &masked_i, sizeof(masked_i));
  4789. result->op = GGML_OP_FLASH_ATTN_BACK;
  4790. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4791. result->src[0] = q;
  4792. result->src[1] = k;
  4793. result->src[2] = v;
  4794. result->src[3] = d;
  4795. return result;
  4796. }
  4797. // ggml_win_part
  4798. struct ggml_tensor * ggml_win_part(
  4799. struct ggml_context * ctx,
  4800. struct ggml_tensor * a,
  4801. int w) {
  4802. GGML_ASSERT(a->ne[3] == 1);
  4803. GGML_ASSERT(a->type == GGML_TYPE_F32);
  4804. bool is_node = false;
  4805. if (a->grad) {
  4806. GGML_ASSERT(false); // TODO: implement backward
  4807. is_node = true;
  4808. }
  4809. // padding
  4810. const int px = (w - a->ne[1]%w)%w;
  4811. const int py = (w - a->ne[2]%w)%w;
  4812. const int npx = (px + a->ne[1])/w;
  4813. const int npy = (py + a->ne[2])/w;
  4814. const int np = npx*npy;
  4815. const int64_t ne[4] = { a->ne[0], w, w, np, };
  4816. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  4817. int32_t params[] = { npx, npy, w };
  4818. ggml_set_op_params(result, params, sizeof(params));
  4819. result->op = GGML_OP_WIN_PART;
  4820. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4821. result->src[0] = a;
  4822. return result;
  4823. }
  4824. // ggml_win_unpart
  4825. struct ggml_tensor * ggml_win_unpart(
  4826. struct ggml_context * ctx,
  4827. struct ggml_tensor * a,
  4828. int w0,
  4829. int h0,
  4830. int w) {
  4831. GGML_ASSERT(a->type == GGML_TYPE_F32);
  4832. bool is_node = false;
  4833. if (a->grad) {
  4834. GGML_ASSERT(false); // TODO: implement backward
  4835. is_node = true;
  4836. }
  4837. const int64_t ne[4] = { a->ne[0], w0, h0, 1, };
  4838. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 3, ne);
  4839. int32_t params[] = { w };
  4840. ggml_set_op_params(result, params, sizeof(params));
  4841. result->op = GGML_OP_WIN_UNPART;
  4842. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4843. result->src[0] = a;
  4844. return result;
  4845. }
  4846. // ggml_get_rel_pos
  4847. struct ggml_tensor * ggml_get_rel_pos(
  4848. struct ggml_context * ctx,
  4849. struct ggml_tensor * a,
  4850. int qh,
  4851. int kh) {
  4852. GGML_ASSERT(qh == kh);
  4853. GGML_ASSERT(2*MAX(qh, kh) - 1 == a->ne[1]);
  4854. bool is_node = false;
  4855. if (a->grad) {
  4856. GGML_ASSERT(false); // TODO: implement backward
  4857. is_node = true;
  4858. }
  4859. const int64_t ne[4] = { a->ne[0], kh, qh, 1, };
  4860. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F16, 3, ne);
  4861. result->op = GGML_OP_GET_REL_POS;
  4862. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4863. result->src[0] = a;
  4864. return result;
  4865. }
  4866. // ggml_add_rel_pos
  4867. static struct ggml_tensor * ggml_add_rel_pos_impl(
  4868. struct ggml_context * ctx,
  4869. struct ggml_tensor * a,
  4870. struct ggml_tensor * pw,
  4871. struct ggml_tensor * ph,
  4872. bool inplace) {
  4873. GGML_ASSERT(ggml_are_same_shape(pw, ph));
  4874. GGML_ASSERT(ggml_is_contiguous(a));
  4875. GGML_ASSERT(ggml_is_contiguous(pw));
  4876. GGML_ASSERT(ggml_is_contiguous(ph));
  4877. GGML_ASSERT(ph->type == GGML_TYPE_F32);
  4878. GGML_ASSERT(pw->type == GGML_TYPE_F32);
  4879. GGML_ASSERT(pw->ne[3] == a->ne[2]);
  4880. GGML_ASSERT(pw->ne[0]*pw->ne[0] == a->ne[0]);
  4881. GGML_ASSERT(pw->ne[1]*pw->ne[2] == a->ne[1]);
  4882. bool is_node = false;
  4883. if (!inplace && (a->grad || pw->grad || ph->grad)) {
  4884. is_node = true;
  4885. }
  4886. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4887. ggml_set_op_params_i32(result, 0, inplace ? 1 : 0);
  4888. result->op = GGML_OP_ADD_REL_POS;
  4889. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4890. result->src[0] = a;
  4891. result->src[1] = pw;
  4892. result->src[2] = ph;
  4893. return result;
  4894. }
  4895. struct ggml_tensor * ggml_add_rel_pos(
  4896. struct ggml_context * ctx,
  4897. struct ggml_tensor * a,
  4898. struct ggml_tensor * pw,
  4899. struct ggml_tensor * ph) {
  4900. return ggml_add_rel_pos_impl(ctx, a, pw, ph, false);
  4901. }
  4902. struct ggml_tensor * ggml_add_rel_pos_inplace(
  4903. struct ggml_context * ctx,
  4904. struct ggml_tensor * a,
  4905. struct ggml_tensor * pw,
  4906. struct ggml_tensor * ph) {
  4907. return ggml_add_rel_pos_impl(ctx, a, pw, ph, true);
  4908. }
  4909. // gmml_unary
  4910. static struct ggml_tensor * ggml_unary_impl(
  4911. struct ggml_context * ctx,
  4912. struct ggml_tensor * a,
  4913. enum ggml_unary_op op,
  4914. bool inplace) {
  4915. bool is_node = false;
  4916. if (!inplace && (a->grad)) {
  4917. is_node = true;
  4918. }
  4919. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4920. ggml_set_op_params_i32(result, 0, (int32_t) op);
  4921. result->op = GGML_OP_UNARY;
  4922. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4923. result->src[0] = a;
  4924. return result;
  4925. }
  4926. struct ggml_tensor * ggml_unary(
  4927. struct ggml_context * ctx,
  4928. struct ggml_tensor * a,
  4929. enum ggml_unary_op op) {
  4930. return ggml_unary_impl(ctx, a, op, false);
  4931. }
  4932. struct ggml_tensor * ggml_unary_inplace(
  4933. struct ggml_context * ctx,
  4934. struct ggml_tensor * a,
  4935. enum ggml_unary_op op) {
  4936. return ggml_unary_impl(ctx, a, op, true);
  4937. }
  4938. // ggml_map_unary
  4939. static struct ggml_tensor * ggml_map_unary_impl_f32(
  4940. struct ggml_context * ctx,
  4941. struct ggml_tensor * a,
  4942. const ggml_unary_op_f32_t fun,
  4943. bool inplace) {
  4944. bool is_node = false;
  4945. if (!inplace && a->grad) {
  4946. is_node = true;
  4947. }
  4948. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4949. ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
  4950. result->op = GGML_OP_MAP_UNARY;
  4951. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4952. result->src[0] = a;
  4953. return result;
  4954. }
  4955. struct ggml_tensor * ggml_map_unary_f32(
  4956. struct ggml_context * ctx,
  4957. struct ggml_tensor * a,
  4958. const ggml_unary_op_f32_t fun) {
  4959. return ggml_map_unary_impl_f32(ctx, a, fun, false);
  4960. }
  4961. struct ggml_tensor * ggml_map_unary_inplace_f32(
  4962. struct ggml_context * ctx,
  4963. struct ggml_tensor * a,
  4964. const ggml_unary_op_f32_t fun) {
  4965. return ggml_map_unary_impl_f32(ctx, a, fun, true);
  4966. }
  4967. // ggml_map_binary
  4968. static struct ggml_tensor * ggml_map_binary_impl_f32(
  4969. struct ggml_context * ctx,
  4970. struct ggml_tensor * a,
  4971. struct ggml_tensor * b,
  4972. const ggml_binary_op_f32_t fun,
  4973. bool inplace) {
  4974. GGML_ASSERT(ggml_are_same_shape(a, b));
  4975. bool is_node = false;
  4976. if (!inplace && (a->grad || b->grad)) {
  4977. is_node = true;
  4978. }
  4979. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4980. ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
  4981. result->op = GGML_OP_MAP_BINARY;
  4982. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4983. result->src[0] = a;
  4984. result->src[1] = b;
  4985. return result;
  4986. }
  4987. struct ggml_tensor * ggml_map_binary_f32(
  4988. struct ggml_context * ctx,
  4989. struct ggml_tensor * a,
  4990. struct ggml_tensor * b,
  4991. const ggml_binary_op_f32_t fun) {
  4992. return ggml_map_binary_impl_f32(ctx, a, b, fun, false);
  4993. }
  4994. struct ggml_tensor * ggml_map_binary_inplace_f32(
  4995. struct ggml_context * ctx,
  4996. struct ggml_tensor * a,
  4997. struct ggml_tensor * b,
  4998. const ggml_binary_op_f32_t fun) {
  4999. return ggml_map_binary_impl_f32(ctx, a, b, fun, true);
  5000. }
  5001. // ggml_map_custom1_f32
  5002. static struct ggml_tensor * ggml_map_custom1_impl_f32(
  5003. struct ggml_context * ctx,
  5004. struct ggml_tensor * a,
  5005. const ggml_custom1_op_f32_t fun,
  5006. bool inplace) {
  5007. bool is_node = false;
  5008. if (!inplace && a->grad) {
  5009. is_node = true;
  5010. }
  5011. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5012. ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
  5013. result->op = GGML_OP_MAP_CUSTOM1_F32;
  5014. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5015. result->src[0] = a;
  5016. return result;
  5017. }
  5018. struct ggml_tensor * ggml_map_custom1_f32(
  5019. struct ggml_context * ctx,
  5020. struct ggml_tensor * a,
  5021. const ggml_custom1_op_f32_t fun) {
  5022. return ggml_map_custom1_impl_f32(ctx, a, fun, false);
  5023. }
  5024. struct ggml_tensor * ggml_map_custom1_inplace_f32(
  5025. struct ggml_context * ctx,
  5026. struct ggml_tensor * a,
  5027. const ggml_custom1_op_f32_t fun) {
  5028. return ggml_map_custom1_impl_f32(ctx, a, fun, true);
  5029. }
  5030. // ggml_map_custom2_f32
  5031. static struct ggml_tensor * ggml_map_custom2_impl_f32(
  5032. struct ggml_context * ctx,
  5033. struct ggml_tensor * a,
  5034. struct ggml_tensor * b,
  5035. const ggml_custom2_op_f32_t fun,
  5036. bool inplace) {
  5037. bool is_node = false;
  5038. if (!inplace && (a->grad || b->grad)) {
  5039. is_node = true;
  5040. }
  5041. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5042. ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
  5043. result->op = GGML_OP_MAP_CUSTOM2_F32;
  5044. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5045. result->src[0] = a;
  5046. result->src[1] = b;
  5047. return result;
  5048. }
  5049. struct ggml_tensor * ggml_map_custom2_f32(
  5050. struct ggml_context * ctx,
  5051. struct ggml_tensor * a,
  5052. struct ggml_tensor * b,
  5053. const ggml_custom2_op_f32_t fun) {
  5054. return ggml_map_custom2_impl_f32(ctx, a, b, fun, false);
  5055. }
  5056. struct ggml_tensor * ggml_map_custom2_inplace_f32(
  5057. struct ggml_context * ctx,
  5058. struct ggml_tensor * a,
  5059. struct ggml_tensor * b,
  5060. const ggml_custom2_op_f32_t fun) {
  5061. return ggml_map_custom2_impl_f32(ctx, a, b, fun, true);
  5062. }
  5063. // ggml_map_custom3_f32
  5064. static struct ggml_tensor * ggml_map_custom3_impl_f32(
  5065. struct ggml_context * ctx,
  5066. struct ggml_tensor * a,
  5067. struct ggml_tensor * b,
  5068. struct ggml_tensor * c,
  5069. const ggml_custom3_op_f32_t fun,
  5070. bool inplace) {
  5071. bool is_node = false;
  5072. if (!inplace && (a->grad || b->grad || c->grad)) {
  5073. is_node = true;
  5074. }
  5075. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5076. ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
  5077. result->op = GGML_OP_MAP_CUSTOM3_F32;
  5078. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5079. result->src[0] = a;
  5080. result->src[1] = b;
  5081. result->src[2] = c;
  5082. return result;
  5083. }
  5084. struct ggml_tensor * ggml_map_custom3_f32(
  5085. struct ggml_context * ctx,
  5086. struct ggml_tensor * a,
  5087. struct ggml_tensor * b,
  5088. struct ggml_tensor * c,
  5089. const ggml_custom3_op_f32_t fun) {
  5090. return ggml_map_custom3_impl_f32(ctx, a, b, c, fun, false);
  5091. }
  5092. struct ggml_tensor * ggml_map_custom3_inplace_f32(
  5093. struct ggml_context * ctx,
  5094. struct ggml_tensor * a,
  5095. struct ggml_tensor * b,
  5096. struct ggml_tensor * c,
  5097. const ggml_custom3_op_f32_t fun) {
  5098. return ggml_map_custom3_impl_f32(ctx, a, b, c, fun, true);
  5099. }
  5100. // ggml_map_custom1
  5101. struct ggml_map_custom1_op_params {
  5102. ggml_custom1_op_t fun;
  5103. int n_tasks;
  5104. void * userdata;
  5105. };
  5106. static struct ggml_tensor * ggml_map_custom1_impl(
  5107. struct ggml_context * ctx,
  5108. struct ggml_tensor * a,
  5109. const ggml_custom1_op_t fun,
  5110. int n_tasks,
  5111. void * userdata,
  5112. bool inplace) {
  5113. GGML_ASSERT(n_tasks == GGML_N_TASKS_MAX || n_tasks > 0);
  5114. bool is_node = false;
  5115. if (!inplace && a->grad) {
  5116. is_node = true;
  5117. }
  5118. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5119. struct ggml_map_custom1_op_params params = {
  5120. /*.fun =*/ fun,
  5121. /*.n_tasks =*/ n_tasks,
  5122. /*.userdata =*/ userdata
  5123. };
  5124. ggml_set_op_params(result, (const void *) &params, sizeof(params));
  5125. result->op = GGML_OP_MAP_CUSTOM1;
  5126. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5127. result->src[0] = a;
  5128. return result;
  5129. }
  5130. struct ggml_tensor * ggml_map_custom1(
  5131. struct ggml_context * ctx,
  5132. struct ggml_tensor * a,
  5133. const ggml_custom1_op_t fun,
  5134. int n_tasks,
  5135. void * userdata) {
  5136. return ggml_map_custom1_impl(ctx, a, fun, n_tasks, userdata, false);
  5137. }
  5138. struct ggml_tensor * ggml_map_custom1_inplace(
  5139. struct ggml_context * ctx,
  5140. struct ggml_tensor * a,
  5141. const ggml_custom1_op_t fun,
  5142. int n_tasks,
  5143. void * userdata) {
  5144. return ggml_map_custom1_impl(ctx, a, fun, n_tasks, userdata, true);
  5145. }
  5146. // ggml_map_custom2
  5147. struct ggml_map_custom2_op_params {
  5148. ggml_custom2_op_t fun;
  5149. int n_tasks;
  5150. void * userdata;
  5151. };
  5152. static struct ggml_tensor * ggml_map_custom2_impl(
  5153. struct ggml_context * ctx,
  5154. struct ggml_tensor * a,
  5155. struct ggml_tensor * b,
  5156. const ggml_custom2_op_t fun,
  5157. int n_tasks,
  5158. void * userdata,
  5159. bool inplace) {
  5160. GGML_ASSERT(n_tasks == GGML_N_TASKS_MAX || n_tasks > 0);
  5161. bool is_node = false;
  5162. if (!inplace && (a->grad || b->grad)) {
  5163. is_node = true;
  5164. }
  5165. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5166. struct ggml_map_custom2_op_params params = {
  5167. /*.fun =*/ fun,
  5168. /*.n_tasks =*/ n_tasks,
  5169. /*.userdata =*/ userdata
  5170. };
  5171. ggml_set_op_params(result, (const void *) &params, sizeof(params));
  5172. result->op = GGML_OP_MAP_CUSTOM2;
  5173. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5174. result->src[0] = a;
  5175. result->src[1] = b;
  5176. return result;
  5177. }
  5178. struct ggml_tensor * ggml_map_custom2(
  5179. struct ggml_context * ctx,
  5180. struct ggml_tensor * a,
  5181. struct ggml_tensor * b,
  5182. const ggml_custom2_op_t fun,
  5183. int n_tasks,
  5184. void * userdata) {
  5185. return ggml_map_custom2_impl(ctx, a, b, fun, n_tasks, userdata, false);
  5186. }
  5187. struct ggml_tensor * ggml_map_custom2_inplace(
  5188. struct ggml_context * ctx,
  5189. struct ggml_tensor * a,
  5190. struct ggml_tensor * b,
  5191. const ggml_custom2_op_t fun,
  5192. int n_tasks,
  5193. void * userdata) {
  5194. return ggml_map_custom2_impl(ctx, a, b, fun, n_tasks, userdata, true);
  5195. }
  5196. // ggml_map_custom3
  5197. struct ggml_map_custom3_op_params {
  5198. ggml_custom3_op_t fun;
  5199. int n_tasks;
  5200. void * userdata;
  5201. };
  5202. static struct ggml_tensor * ggml_map_custom3_impl(
  5203. struct ggml_context * ctx,
  5204. struct ggml_tensor * a,
  5205. struct ggml_tensor * b,
  5206. struct ggml_tensor * c,
  5207. const ggml_custom3_op_t fun,
  5208. int n_tasks,
  5209. void * userdata,
  5210. bool inplace) {
  5211. GGML_ASSERT(n_tasks == GGML_N_TASKS_MAX || n_tasks > 0);
  5212. bool is_node = false;
  5213. if (!inplace && (a->grad || b->grad || c->grad)) {
  5214. is_node = true;
  5215. }
  5216. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5217. struct ggml_map_custom3_op_params params = {
  5218. /*.fun =*/ fun,
  5219. /*.n_tasks =*/ n_tasks,
  5220. /*.userdata =*/ userdata
  5221. };
  5222. ggml_set_op_params(result, (const void *) &params, sizeof(params));
  5223. result->op = GGML_OP_MAP_CUSTOM3;
  5224. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5225. result->src[0] = a;
  5226. result->src[1] = b;
  5227. result->src[2] = c;
  5228. return result;
  5229. }
  5230. struct ggml_tensor * ggml_map_custom3(
  5231. struct ggml_context * ctx,
  5232. struct ggml_tensor * a,
  5233. struct ggml_tensor * b,
  5234. struct ggml_tensor * c,
  5235. const ggml_custom3_op_t fun,
  5236. int n_tasks,
  5237. void * userdata) {
  5238. return ggml_map_custom3_impl(ctx, a, b, c, fun, n_tasks, userdata, false);
  5239. }
  5240. struct ggml_tensor * ggml_map_custom3_inplace(
  5241. struct ggml_context * ctx,
  5242. struct ggml_tensor * a,
  5243. struct ggml_tensor * b,
  5244. struct ggml_tensor * c,
  5245. const ggml_custom3_op_t fun,
  5246. int n_tasks,
  5247. void * userdata) {
  5248. return ggml_map_custom3_impl(ctx, a, b, c, fun, n_tasks, userdata, true);
  5249. }
  5250. // ggml_cross_entropy_loss
  5251. struct ggml_tensor * ggml_cross_entropy_loss(
  5252. struct ggml_context * ctx,
  5253. struct ggml_tensor * a,
  5254. struct ggml_tensor * b) {
  5255. GGML_ASSERT(ggml_are_same_shape(a, b));
  5256. bool is_node = false;
  5257. if (a->grad || b->grad) {
  5258. is_node = true;
  5259. }
  5260. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, a->type, 1);
  5261. result->op = GGML_OP_CROSS_ENTROPY_LOSS;
  5262. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5263. result->src[0] = a;
  5264. result->src[1] = b;
  5265. return result;
  5266. }
  5267. // ggml_cross_entropy_loss_back
  5268. struct ggml_tensor * ggml_cross_entropy_loss_back(
  5269. struct ggml_context * ctx,
  5270. struct ggml_tensor * a,
  5271. struct ggml_tensor * b,
  5272. struct ggml_tensor * c) {
  5273. GGML_ASSERT(ggml_are_same_shape(a, b));
  5274. GGML_ASSERT(ggml_is_scalar(c));
  5275. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  5276. result->op = GGML_OP_CROSS_ENTROPY_LOSS_BACK;
  5277. result->grad = NULL;
  5278. result->src[0] = a;
  5279. result->src[1] = b;
  5280. result->src[2] = c;
  5281. return result;
  5282. }
  5283. ////////////////////////////////////////////////////////////////////////////////
  5284. void ggml_set_param(
  5285. struct ggml_context * ctx,
  5286. struct ggml_tensor * tensor) {
  5287. tensor->is_param = true;
  5288. GGML_ASSERT(tensor->grad == NULL);
  5289. tensor->grad = ggml_dup_tensor(ctx, tensor);
  5290. ggml_format_name(tensor->grad, "%s (grad)", tensor->name);
  5291. }
  5292. // ggml_compute_forward_dup
  5293. static void ggml_compute_forward_dup_same_cont(
  5294. const struct ggml_compute_params * params,
  5295. const struct ggml_tensor * src0,
  5296. struct ggml_tensor * dst) {
  5297. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  5298. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  5299. GGML_ASSERT(src0->type == dst->type);
  5300. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5301. return;
  5302. }
  5303. const size_t nb00 = src0->nb[0];
  5304. const size_t nb0 = dst->nb[0];
  5305. const int ith = params->ith; // thread index
  5306. const int nth = params->nth; // number of threads
  5307. // parallelize by elements
  5308. const int ne = ggml_nelements(dst);
  5309. const int dr = (ne + nth - 1) / nth;
  5310. const int ie0 = dr * ith;
  5311. const int ie1 = MIN(ie0 + dr, ne);
  5312. if (ie0 < ie1) {
  5313. memcpy(
  5314. ((char *) dst->data + ie0*nb0),
  5315. ((char *) src0->data + ie0*nb00),
  5316. (ie1 - ie0) * ggml_type_size(src0->type));
  5317. }
  5318. }
  5319. static void ggml_compute_forward_dup_f16(
  5320. const struct ggml_compute_params * params,
  5321. const struct ggml_tensor * src0,
  5322. struct ggml_tensor * dst) {
  5323. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  5324. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5325. return;
  5326. }
  5327. GGML_TENSOR_UNARY_OP_LOCALS
  5328. const int ith = params->ith; // thread index
  5329. const int nth = params->nth; // number of threads
  5330. if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst) && src0->type == dst->type) {
  5331. ggml_compute_forward_dup_same_cont(params, src0, dst);
  5332. return;
  5333. }
  5334. // parallelize by rows
  5335. const int nr = ne01;
  5336. // number of rows per thread
  5337. const int dr = (nr + nth - 1) / nth;
  5338. // row range for this thread
  5339. const int ir0 = dr * ith;
  5340. const int ir1 = MIN(ir0 + dr, nr);
  5341. if (src0->type == dst->type &&
  5342. ne00 == ne0 &&
  5343. nb00 == ggml_type_size(src0->type) && nb0 == ggml_type_size(dst->type)) {
  5344. // copy by rows
  5345. const size_t rs = ne00*nb00;
  5346. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5347. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5348. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5349. memcpy(
  5350. ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  5351. ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
  5352. rs);
  5353. }
  5354. }
  5355. }
  5356. return;
  5357. }
  5358. // TODO: add more special-case implementations for tensor shapes/strides that can benefit from memcpy
  5359. if (ggml_is_contiguous(dst)) {
  5360. if (nb00 == sizeof(ggml_fp16_t)) {
  5361. if (dst->type == GGML_TYPE_F16) {
  5362. size_t id = 0;
  5363. const size_t rs = ne00 * nb00;
  5364. char * dst_ptr = (char *) dst->data;
  5365. for (int i03 = 0; i03 < ne03; i03++) {
  5366. for (int i02 = 0; i02 < ne02; i02++) {
  5367. id += rs * ir0;
  5368. for (int i01 = ir0; i01 < ir1; i01++) {
  5369. const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
  5370. memcpy(dst_ptr + id, src0_ptr, rs);
  5371. id += rs;
  5372. }
  5373. id += rs * (ne01 - ir1);
  5374. }
  5375. }
  5376. } else if (dst->type == GGML_TYPE_F32) {
  5377. size_t id = 0;
  5378. float * dst_ptr = (float *) dst->data;
  5379. for (int i03 = 0; i03 < ne03; i03++) {
  5380. for (int i02 = 0; i02 < ne02; i02++) {
  5381. id += ne00 * ir0;
  5382. for (int i01 = ir0; i01 < ir1; i01++) {
  5383. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  5384. for (int i00 = 0; i00 < ne00; i00++) {
  5385. dst_ptr[id] = GGML_FP16_TO_FP32(src0_ptr[i00]);
  5386. id++;
  5387. }
  5388. }
  5389. id += ne00 * (ne01 - ir1);
  5390. }
  5391. }
  5392. } else if (type_traits[dst->type].from_float) {
  5393. ggml_from_float_t const quantize_row_q = type_traits[dst->type].from_float;
  5394. float * src0_f32 = (float *) params->wdata + (ne00 + CACHE_LINE_SIZE_F32) * ith;
  5395. size_t id = 0;
  5396. size_t rs = nb0 * (ne00 / ggml_blck_size(dst->type));
  5397. char * dst_ptr = (char *) dst->data;
  5398. for (int i03 = 0; i03 < ne03; i03++) {
  5399. for (int i02 = 0; i02 < ne02; i02++) {
  5400. id += rs * ir0;
  5401. for (int i01 = ir0; i01 < ir1; i01++) {
  5402. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  5403. for (int i00 = 0; i00 < ne00; i00++) {
  5404. src0_f32[i00] = GGML_FP16_TO_FP32(src0_ptr[i00]);
  5405. }
  5406. quantize_row_q(src0_f32, dst_ptr + id, ne00);
  5407. id += rs;
  5408. }
  5409. id += rs * (ne01 - ir1);
  5410. }
  5411. }
  5412. } else {
  5413. GGML_ASSERT(false); // TODO: implement
  5414. }
  5415. } else {
  5416. //printf("%s: this is not optimal - fix me\n", __func__);
  5417. if (dst->type == GGML_TYPE_F32) {
  5418. size_t id = 0;
  5419. float * dst_ptr = (float *) dst->data;
  5420. for (int i03 = 0; i03 < ne03; i03++) {
  5421. for (int i02 = 0; i02 < ne02; i02++) {
  5422. id += ne00 * ir0;
  5423. for (int i01 = ir0; i01 < ir1; i01++) {
  5424. for (int i00 = 0; i00 < ne00; i00++) {
  5425. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5426. dst_ptr[id] = GGML_FP16_TO_FP32(*src0_ptr);
  5427. id++;
  5428. }
  5429. }
  5430. id += ne00 * (ne01 - ir1);
  5431. }
  5432. }
  5433. } else if (dst->type == GGML_TYPE_F16) {
  5434. size_t id = 0;
  5435. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  5436. for (int i03 = 0; i03 < ne03; i03++) {
  5437. for (int i02 = 0; i02 < ne02; i02++) {
  5438. id += ne00 * ir0;
  5439. for (int i01 = ir0; i01 < ir1; i01++) {
  5440. for (int i00 = 0; i00 < ne00; i00++) {
  5441. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5442. dst_ptr[id] = *src0_ptr;
  5443. id++;
  5444. }
  5445. }
  5446. id += ne00 * (ne01 - ir1);
  5447. }
  5448. }
  5449. } else {
  5450. GGML_ASSERT(false); // TODO: implement
  5451. }
  5452. }
  5453. return;
  5454. }
  5455. // dst counters
  5456. int64_t i10 = 0;
  5457. int64_t i11 = 0;
  5458. int64_t i12 = 0;
  5459. int64_t i13 = 0;
  5460. if (dst->type == GGML_TYPE_F16) {
  5461. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5462. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5463. i10 += ne00 * ir0;
  5464. while (i10 >= ne0) {
  5465. i10 -= ne0;
  5466. if (++i11 == ne1) {
  5467. i11 = 0;
  5468. if (++i12 == ne2) {
  5469. i12 = 0;
  5470. if (++i13 == ne3) {
  5471. i13 = 0;
  5472. }
  5473. }
  5474. }
  5475. }
  5476. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5477. for (int64_t i00 = 0; i00 < ne00; i00++) {
  5478. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5479. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  5480. memcpy(dst_ptr, src0_ptr, sizeof(ggml_fp16_t));
  5481. if (++i10 == ne00) {
  5482. i10 = 0;
  5483. if (++i11 == ne01) {
  5484. i11 = 0;
  5485. if (++i12 == ne02) {
  5486. i12 = 0;
  5487. if (++i13 == ne03) {
  5488. i13 = 0;
  5489. }
  5490. }
  5491. }
  5492. }
  5493. }
  5494. }
  5495. i10 += ne00 * (ne01 - ir1);
  5496. while (i10 >= ne0) {
  5497. i10 -= ne0;
  5498. if (++i11 == ne1) {
  5499. i11 = 0;
  5500. if (++i12 == ne2) {
  5501. i12 = 0;
  5502. if (++i13 == ne3) {
  5503. i13 = 0;
  5504. }
  5505. }
  5506. }
  5507. }
  5508. }
  5509. }
  5510. } else if (dst->type == GGML_TYPE_F32) {
  5511. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5512. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5513. i10 += ne00 * ir0;
  5514. while (i10 >= ne0) {
  5515. i10 -= ne0;
  5516. if (++i11 == ne1) {
  5517. i11 = 0;
  5518. if (++i12 == ne2) {
  5519. i12 = 0;
  5520. if (++i13 == ne3) {
  5521. i13 = 0;
  5522. }
  5523. }
  5524. }
  5525. }
  5526. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5527. for (int64_t i00 = 0; i00 < ne00; i00++) {
  5528. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5529. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  5530. *(float *) dst_ptr = GGML_FP16_TO_FP32(*(const ggml_fp16_t *) src0_ptr);
  5531. if (++i10 == ne0) {
  5532. i10 = 0;
  5533. if (++i11 == ne1) {
  5534. i11 = 0;
  5535. if (++i12 == ne2) {
  5536. i12 = 0;
  5537. if (++i13 == ne3) {
  5538. i13 = 0;
  5539. }
  5540. }
  5541. }
  5542. }
  5543. }
  5544. }
  5545. i10 += ne00 * (ne01 - ir1);
  5546. while (i10 >= ne0) {
  5547. i10 -= ne0;
  5548. if (++i11 == ne1) {
  5549. i11 = 0;
  5550. if (++i12 == ne2) {
  5551. i12 = 0;
  5552. if (++i13 == ne3) {
  5553. i13 = 0;
  5554. }
  5555. }
  5556. }
  5557. }
  5558. }
  5559. }
  5560. } else {
  5561. GGML_ASSERT(false); // TODO: implement
  5562. }
  5563. }
  5564. static void ggml_compute_forward_dup_f32(
  5565. const struct ggml_compute_params * params,
  5566. const struct ggml_tensor * src0,
  5567. struct ggml_tensor * dst) {
  5568. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  5569. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5570. return;
  5571. }
  5572. GGML_TENSOR_UNARY_OP_LOCALS
  5573. const int ith = params->ith; // thread index
  5574. const int nth = params->nth; // number of threads
  5575. if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst) && src0->type == dst->type) {
  5576. ggml_compute_forward_dup_same_cont(params, src0, dst);
  5577. return;
  5578. }
  5579. // parallelize by rows
  5580. const int nr = ne01;
  5581. // number of rows per thread
  5582. const int dr = (nr + nth - 1) / nth;
  5583. // row range for this thread
  5584. const int ir0 = dr * ith;
  5585. const int ir1 = MIN(ir0 + dr, nr);
  5586. if (src0->type == dst->type &&
  5587. ne00 == ne0 &&
  5588. nb00 == ggml_type_size(src0->type) && nb0 == ggml_type_size(dst->type)) {
  5589. // copy by rows
  5590. const size_t rs = ne00*nb00;
  5591. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5592. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5593. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5594. memcpy(
  5595. ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  5596. ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
  5597. rs);
  5598. }
  5599. }
  5600. }
  5601. return;
  5602. }
  5603. if (ggml_is_contiguous(dst)) {
  5604. // TODO: simplify
  5605. if (nb00 == sizeof(float)) {
  5606. if (dst->type == GGML_TYPE_F32) {
  5607. size_t id = 0;
  5608. const size_t rs = ne00 * nb00;
  5609. char * dst_ptr = (char *) dst->data;
  5610. for (int i03 = 0; i03 < ne03; i03++) {
  5611. for (int i02 = 0; i02 < ne02; i02++) {
  5612. id += rs * ir0;
  5613. for (int i01 = ir0; i01 < ir1; i01++) {
  5614. const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
  5615. memcpy(dst_ptr + id, src0_ptr, rs);
  5616. id += rs;
  5617. }
  5618. id += rs * (ne01 - ir1);
  5619. }
  5620. }
  5621. } else if (type_traits[dst->type].from_float) {
  5622. ggml_from_float_t const quantize_row_q = type_traits[dst->type].from_float;
  5623. size_t id = 0;
  5624. size_t rs = nb0 * (ne00 / ggml_blck_size(dst->type));
  5625. char * dst_ptr = (char *) dst->data;
  5626. for (int i03 = 0; i03 < ne03; i03++) {
  5627. for (int i02 = 0; i02 < ne02; i02++) {
  5628. id += rs * ir0;
  5629. for (int i01 = ir0; i01 < ir1; i01++) {
  5630. const float * src0_ptr = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  5631. quantize_row_q(src0_ptr, dst_ptr + id, ne00);
  5632. id += rs;
  5633. }
  5634. id += rs * (ne01 - ir1);
  5635. }
  5636. }
  5637. } else {
  5638. GGML_ASSERT(false); // TODO: implement
  5639. }
  5640. } else {
  5641. //printf("%s: this is not optimal - fix me\n", __func__);
  5642. if (dst->type == GGML_TYPE_F32) {
  5643. size_t id = 0;
  5644. float * dst_ptr = (float *) dst->data;
  5645. for (int i03 = 0; i03 < ne03; i03++) {
  5646. for (int i02 = 0; i02 < ne02; i02++) {
  5647. id += ne00 * ir0;
  5648. for (int i01 = ir0; i01 < ir1; i01++) {
  5649. for (int i00 = 0; i00 < ne00; i00++) {
  5650. const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5651. dst_ptr[id] = *src0_ptr;
  5652. id++;
  5653. }
  5654. }
  5655. id += ne00 * (ne01 - ir1);
  5656. }
  5657. }
  5658. } else if (dst->type == GGML_TYPE_F16) {
  5659. size_t id = 0;
  5660. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  5661. for (int i03 = 0; i03 < ne03; i03++) {
  5662. for (int i02 = 0; i02 < ne02; i02++) {
  5663. id += ne00 * ir0;
  5664. for (int i01 = ir0; i01 < ir1; i01++) {
  5665. for (int i00 = 0; i00 < ne00; i00++) {
  5666. const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5667. dst_ptr[id] = GGML_FP32_TO_FP16(*src0_ptr);
  5668. id++;
  5669. }
  5670. }
  5671. id += ne00 * (ne01 - ir1);
  5672. }
  5673. }
  5674. } else {
  5675. GGML_ASSERT(false); // TODO: implement
  5676. }
  5677. }
  5678. return;
  5679. }
  5680. // dst counters
  5681. int64_t i10 = 0;
  5682. int64_t i11 = 0;
  5683. int64_t i12 = 0;
  5684. int64_t i13 = 0;
  5685. if (dst->type == GGML_TYPE_F32) {
  5686. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5687. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5688. i10 += ne00 * ir0;
  5689. while (i10 >= ne0) {
  5690. i10 -= ne0;
  5691. if (++i11 == ne1) {
  5692. i11 = 0;
  5693. if (++i12 == ne2) {
  5694. i12 = 0;
  5695. if (++i13 == ne3) {
  5696. i13 = 0;
  5697. }
  5698. }
  5699. }
  5700. }
  5701. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5702. for (int64_t i00 = 0; i00 < ne00; i00++) {
  5703. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5704. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  5705. memcpy(dst_ptr, src0_ptr, sizeof(float));
  5706. if (++i10 == ne0) {
  5707. i10 = 0;
  5708. if (++i11 == ne1) {
  5709. i11 = 0;
  5710. if (++i12 == ne2) {
  5711. i12 = 0;
  5712. if (++i13 == ne3) {
  5713. i13 = 0;
  5714. }
  5715. }
  5716. }
  5717. }
  5718. }
  5719. }
  5720. i10 += ne00 * (ne01 - ir1);
  5721. while (i10 >= ne0) {
  5722. i10 -= ne0;
  5723. if (++i11 == ne1) {
  5724. i11 = 0;
  5725. if (++i12 == ne2) {
  5726. i12 = 0;
  5727. if (++i13 == ne3) {
  5728. i13 = 0;
  5729. }
  5730. }
  5731. }
  5732. }
  5733. }
  5734. }
  5735. } else if (dst->type == GGML_TYPE_F16) {
  5736. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5737. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5738. i10 += ne00 * ir0;
  5739. while (i10 >= ne0) {
  5740. i10 -= ne0;
  5741. if (++i11 == ne1) {
  5742. i11 = 0;
  5743. if (++i12 == ne2) {
  5744. i12 = 0;
  5745. if (++i13 == ne3) {
  5746. i13 = 0;
  5747. }
  5748. }
  5749. }
  5750. }
  5751. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5752. for (int64_t i00 = 0; i00 < ne00; i00++) {
  5753. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5754. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  5755. *(ggml_fp16_t *) dst_ptr = GGML_FP32_TO_FP16(*(const float *) src0_ptr);
  5756. if (++i10 == ne0) {
  5757. i10 = 0;
  5758. if (++i11 == ne1) {
  5759. i11 = 0;
  5760. if (++i12 == ne2) {
  5761. i12 = 0;
  5762. if (++i13 == ne3) {
  5763. i13 = 0;
  5764. }
  5765. }
  5766. }
  5767. }
  5768. }
  5769. }
  5770. i10 += ne00 * (ne01 - ir1);
  5771. while (i10 >= ne0) {
  5772. i10 -= ne0;
  5773. if (++i11 == ne1) {
  5774. i11 = 0;
  5775. if (++i12 == ne2) {
  5776. i12 = 0;
  5777. if (++i13 == ne3) {
  5778. i13 = 0;
  5779. }
  5780. }
  5781. }
  5782. }
  5783. }
  5784. }
  5785. } else {
  5786. GGML_ASSERT(false); // TODO: implement
  5787. }
  5788. }
  5789. // A simplified version of ggml_compute_forward_dup that doesn't do float upcasting, and just plain old memcpy.
  5790. static void ggml_compute_forward_dup_bytes(
  5791. const struct ggml_compute_params * params,
  5792. const struct ggml_tensor * src0,
  5793. struct ggml_tensor * dst) {
  5794. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  5795. GGML_ASSERT(src0->type == dst->type);
  5796. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5797. return;
  5798. }
  5799. if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst)) {
  5800. ggml_compute_forward_dup_same_cont(params, src0, dst);
  5801. return;
  5802. }
  5803. GGML_TENSOR_UNARY_OP_LOCALS;
  5804. const size_t type_size = ggml_type_size(src0->type);
  5805. const int ith = params->ith; // thread index
  5806. const int nth = params->nth; // number of threads
  5807. // parallelize by rows
  5808. const int nr = ne01;
  5809. // number of rows per thread
  5810. const int dr = (nr + nth - 1) / nth;
  5811. // row range for this thread
  5812. const int ir0 = dr * ith;
  5813. const int ir1 = MIN(ir0 + dr, nr);
  5814. if (src0->type == dst->type &&
  5815. ne00 == ne0 &&
  5816. nb00 == type_size && nb0 == type_size) {
  5817. // copy by rows
  5818. const size_t rs = ne00 * type_size;
  5819. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5820. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5821. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5822. memcpy(
  5823. ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  5824. ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
  5825. rs);
  5826. }
  5827. }
  5828. }
  5829. return;
  5830. }
  5831. if (ggml_is_contiguous(dst)) {
  5832. size_t id = 0;
  5833. char * dst_ptr = (char *) dst->data;
  5834. const size_t rs = ne00 * type_size;
  5835. if (nb00 == type_size) {
  5836. // src0 is contigous on first dimension, copy by rows
  5837. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5838. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5839. id += rs * ir0;
  5840. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5841. const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
  5842. memcpy(dst_ptr + id, src0_ptr, rs);
  5843. id += rs;
  5844. }
  5845. id += rs * (ne01 - ir1);
  5846. }
  5847. }
  5848. } else {
  5849. //printf("%s: this is not optimal - fix me\n", __func__);
  5850. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5851. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5852. id += rs * ir0;
  5853. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5854. for (int64_t i00 = 0; i00 < ne00; i00++) {
  5855. const char * src0_ptr = (char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03;
  5856. memcpy(dst_ptr + id, src0_ptr, type_size);
  5857. id += type_size;
  5858. }
  5859. }
  5860. id += rs * (ne01 - ir1);
  5861. }
  5862. }
  5863. }
  5864. return;
  5865. }
  5866. // dst counters
  5867. int64_t i10 = 0;
  5868. int64_t i11 = 0;
  5869. int64_t i12 = 0;
  5870. int64_t i13 = 0;
  5871. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5872. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5873. i10 += ne00 * ir0;
  5874. while (i10 >= ne0) {
  5875. i10 -= ne0;
  5876. if (++i11 == ne1) {
  5877. i11 = 0;
  5878. if (++i12 == ne2) {
  5879. i12 = 0;
  5880. if (++i13 == ne3) {
  5881. i13 = 0;
  5882. }
  5883. }
  5884. }
  5885. }
  5886. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5887. for (int64_t i00 = 0; i00 < ne00; i00++) {
  5888. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5889. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  5890. memcpy(dst_ptr, src0_ptr, type_size);
  5891. if (++i10 == ne0) {
  5892. i10 = 0;
  5893. if (++i11 == ne1) {
  5894. i11 = 0;
  5895. if (++i12 == ne2) {
  5896. i12 = 0;
  5897. if (++i13 == ne3) {
  5898. i13 = 0;
  5899. }
  5900. }
  5901. }
  5902. }
  5903. }
  5904. }
  5905. i10 += ne00 * (ne01 - ir1);
  5906. while (i10 >= ne0) {
  5907. i10 -= ne0;
  5908. if (++i11 == ne1) {
  5909. i11 = 0;
  5910. if (++i12 == ne2) {
  5911. i12 = 0;
  5912. if (++i13 == ne3) {
  5913. i13 = 0;
  5914. }
  5915. }
  5916. }
  5917. }
  5918. }
  5919. }
  5920. }
  5921. static void ggml_compute_forward_dup(
  5922. const struct ggml_compute_params * params,
  5923. const struct ggml_tensor * src0,
  5924. struct ggml_tensor * dst) {
  5925. if (src0->type == dst->type) {
  5926. ggml_compute_forward_dup_bytes(params, src0, dst);
  5927. return;
  5928. }
  5929. switch (src0->type) {
  5930. case GGML_TYPE_F16:
  5931. {
  5932. ggml_compute_forward_dup_f16(params, src0, dst);
  5933. } break;
  5934. case GGML_TYPE_F32:
  5935. {
  5936. ggml_compute_forward_dup_f32(params, src0, dst);
  5937. } break;
  5938. default:
  5939. {
  5940. GGML_ASSERT(false);
  5941. } break;
  5942. }
  5943. }
  5944. // ggml_compute_forward_add
  5945. static void ggml_compute_forward_add_f32(
  5946. const struct ggml_compute_params * params,
  5947. const struct ggml_tensor * src0,
  5948. const struct ggml_tensor * src1,
  5949. struct ggml_tensor * dst) {
  5950. GGML_ASSERT(ggml_can_repeat(src1, src0) && ggml_are_same_shape(src0, dst));
  5951. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5952. return;
  5953. }
  5954. const int ith = params->ith;
  5955. const int nth = params->nth;
  5956. #ifdef GGML_USE_CLBLAST
  5957. if (src1->backend == GGML_BACKEND_GPU) {
  5958. // TODO: OpenCL kernel support full broadcast
  5959. GGML_ASSERT(ggml_can_repeat_rows(src1, src0));
  5960. if (ith == 0) {
  5961. ggml_cl_add(src0, src1, dst);
  5962. }
  5963. return;
  5964. }
  5965. #endif
  5966. const int nr = ggml_nrows(src0);
  5967. GGML_TENSOR_BINARY_OP_LOCALS
  5968. GGML_ASSERT( nb0 == sizeof(float));
  5969. GGML_ASSERT(nb00 == sizeof(float));
  5970. // rows per thread
  5971. const int dr = (nr + nth - 1)/nth;
  5972. // row range for this thread
  5973. const int ir0 = dr*ith;
  5974. const int ir1 = MIN(ir0 + dr, nr);
  5975. if (nb10 == sizeof(float)) {
  5976. for (int ir = ir0; ir < ir1; ++ir) {
  5977. // src1 is broadcastable across src0 and dst in i1, i2, i3
  5978. const int64_t i03 = ir/(ne02*ne01);
  5979. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  5980. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  5981. const int64_t i13 = i03 % ne13;
  5982. const int64_t i12 = i02 % ne12;
  5983. const int64_t i11 = i01 % ne11;
  5984. const int64_t nr0 = ne00 / ne10;
  5985. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  5986. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  5987. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11);
  5988. for (int64_t r = 0; r < nr0; ++r) {
  5989. #ifdef GGML_USE_ACCELERATE
  5990. vDSP_vadd(src0_ptr + r*ne10, 1, src1_ptr, 1, dst_ptr + r*ne10, 1, ne10);
  5991. #else
  5992. ggml_vec_add_f32(ne10, dst_ptr + r*ne10, src0_ptr + r*ne10, src1_ptr);
  5993. #endif
  5994. }
  5995. }
  5996. } else {
  5997. // src1 is not contiguous
  5998. for (int ir = ir0; ir < ir1; ++ir) {
  5999. // src1 is broadcastable across src0 and dst in i1, i2, i3
  6000. const int64_t i03 = ir/(ne02*ne01);
  6001. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  6002. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  6003. const int64_t i13 = i03 % ne13;
  6004. const int64_t i12 = i02 % ne12;
  6005. const int64_t i11 = i01 % ne11;
  6006. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  6007. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  6008. for (int64_t i0 = 0; i0 < ne0; ++i0) {
  6009. const int64_t i10 = i0 % ne10;
  6010. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11 + i10*nb10);
  6011. dst_ptr[i0] = src0_ptr[i0] + *src1_ptr;
  6012. }
  6013. }
  6014. }
  6015. }
  6016. static void ggml_compute_forward_add_f16_f32(
  6017. const struct ggml_compute_params * params,
  6018. const struct ggml_tensor * src0,
  6019. const struct ggml_tensor * src1,
  6020. struct ggml_tensor * dst) {
  6021. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  6022. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6023. return;
  6024. }
  6025. const int ith = params->ith;
  6026. const int nth = params->nth;
  6027. const int nr = ggml_nrows(src0);
  6028. GGML_TENSOR_BINARY_OP_LOCALS
  6029. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  6030. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  6031. if (dst->type == GGML_TYPE_F32) {
  6032. GGML_ASSERT( nb0 == sizeof(float));
  6033. }
  6034. else {
  6035. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  6036. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  6037. }
  6038. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  6039. // rows per thread
  6040. const int dr = (nr + nth - 1)/nth;
  6041. // row range for this thread
  6042. const int ir0 = dr*ith;
  6043. const int ir1 = MIN(ir0 + dr, nr);
  6044. if (nb10 == sizeof(float)) {
  6045. if (dst->type == GGML_TYPE_F16) {
  6046. for (int ir = ir0; ir < ir1; ++ir) {
  6047. // src0, src1 and dst are same shape => same indices
  6048. const int i3 = ir/(ne2*ne1);
  6049. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6050. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6051. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  6052. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  6053. float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11);
  6054. for (int i = 0; i < ne0; i++) {
  6055. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + src1_ptr[i]);
  6056. }
  6057. }
  6058. } else {
  6059. for (int ir = ir0; ir < ir1; ++ir) {
  6060. // src0, src1 and dst are same shape => same indices
  6061. const int i3 = ir/(ne2*ne1);
  6062. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6063. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6064. float * dst_ptr = (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  6065. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  6066. float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11);
  6067. for (int i = 0; i < ne0; i++) {
  6068. dst_ptr[i] = GGML_FP16_TO_FP32(src0_ptr[i]) + src1_ptr[i];
  6069. }
  6070. }
  6071. }
  6072. }
  6073. else {
  6074. // src1 is not contiguous
  6075. GGML_ASSERT(false);
  6076. }
  6077. }
  6078. static void ggml_compute_forward_add_f16_f16(
  6079. const struct ggml_compute_params * params,
  6080. const struct ggml_tensor * src0,
  6081. const struct ggml_tensor * src1,
  6082. struct ggml_tensor * dst) {
  6083. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  6084. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6085. return;
  6086. }
  6087. const int ith = params->ith;
  6088. const int nth = params->nth;
  6089. const int nr = ggml_nrows(src0);
  6090. GGML_TENSOR_BINARY_OP_LOCALS
  6091. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  6092. GGML_ASSERT(src1->type == GGML_TYPE_F16);
  6093. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  6094. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  6095. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  6096. // rows per thread
  6097. const int dr = (nr + nth - 1)/nth;
  6098. // row range for this thread
  6099. const int ir0 = dr*ith;
  6100. const int ir1 = MIN(ir0 + dr, nr);
  6101. if (nb10 == sizeof(ggml_fp16_t)) {
  6102. for (int ir = ir0; ir < ir1; ++ir) {
  6103. // src0, src1 and dst are same shape => same indices
  6104. const int i3 = ir/(ne2*ne1);
  6105. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6106. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6107. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  6108. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  6109. ggml_fp16_t * src1_ptr = (ggml_fp16_t *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11);
  6110. for (int i = 0; i < ne0; i++) {
  6111. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + GGML_FP16_TO_FP32(src1_ptr[i]));
  6112. }
  6113. }
  6114. }
  6115. else {
  6116. // src1 is not contiguous
  6117. GGML_ASSERT(false);
  6118. }
  6119. }
  6120. static void ggml_compute_forward_add_q_f32(
  6121. const struct ggml_compute_params * params,
  6122. const struct ggml_tensor * src0,
  6123. const struct ggml_tensor * src1,
  6124. struct ggml_tensor * dst) {
  6125. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  6126. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6127. return;
  6128. }
  6129. const int nr = ggml_nrows(src0);
  6130. GGML_TENSOR_BINARY_OP_LOCALS
  6131. const int ith = params->ith;
  6132. const int nth = params->nth;
  6133. const enum ggml_type type = src0->type;
  6134. const enum ggml_type dtype = dst->type;
  6135. ggml_to_float_t const dequantize_row_q = type_traits[type].to_float;
  6136. ggml_from_float_t const quantize_row_q = type_traits[dtype].from_float;
  6137. // we don't support permuted src0 or src1
  6138. GGML_ASSERT(nb00 == ggml_type_size(type));
  6139. GGML_ASSERT(nb10 == sizeof(float));
  6140. // dst cannot be transposed or permuted
  6141. GGML_ASSERT(nb0 <= nb1);
  6142. GGML_ASSERT(nb1 <= nb2);
  6143. GGML_ASSERT(nb2 <= nb3);
  6144. GGML_ASSERT(ggml_is_quantized(src0->type));
  6145. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  6146. // rows per thread
  6147. const int dr = (nr + nth - 1)/nth;
  6148. // row range for this thread
  6149. const int ir0 = dr*ith;
  6150. const int ir1 = MIN(ir0 + dr, nr);
  6151. float * wdata = (float *) params->wdata + (ne00 + CACHE_LINE_SIZE_F32) * ith;
  6152. for (int ir = ir0; ir < ir1; ++ir) {
  6153. // src0 indices
  6154. const int i03 = ir/(ne02*ne01);
  6155. const int i02 = (ir - i03*ne02*ne01)/ne01;
  6156. const int i01 = (ir - i03*ne02*ne01 - i02*ne01);
  6157. // src1 and dst are same shape as src0 => same indices
  6158. const int i13 = i03;
  6159. const int i12 = i02;
  6160. const int i11 = i01;
  6161. const int i3 = i03;
  6162. const int i2 = i02;
  6163. const int i1 = i01;
  6164. void * src0_row = (void *) ((char *) src0->data + (i01*nb01 + i02*nb02 + i03*nb03));
  6165. float * src1_row = (float *)((char *) src1->data + (i11*nb11 + i12*nb12 + i13*nb13));
  6166. void * dst_row = (void *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
  6167. assert(ne00 % 32 == 0);
  6168. // unquantize row from src0 to temp buffer
  6169. dequantize_row_q(src0_row, wdata, ne00);
  6170. // add src1
  6171. ggml_vec_acc_f32(ne00, wdata, src1_row);
  6172. // quantize row to dst
  6173. if (quantize_row_q != NULL) {
  6174. quantize_row_q(wdata, dst_row, ne00);
  6175. } else {
  6176. memcpy(dst_row, wdata, ne0*nb0);
  6177. }
  6178. }
  6179. }
  6180. static void ggml_compute_forward_add(
  6181. const struct ggml_compute_params * params,
  6182. const struct ggml_tensor * src0,
  6183. const struct ggml_tensor * src1,
  6184. struct ggml_tensor * dst) {
  6185. switch (src0->type) {
  6186. case GGML_TYPE_F32:
  6187. {
  6188. if (src1->type == GGML_TYPE_F32) {
  6189. ggml_compute_forward_add_f32(params, src0, src1, dst);
  6190. }
  6191. else {
  6192. GGML_ASSERT(false);
  6193. }
  6194. } break;
  6195. case GGML_TYPE_F16:
  6196. {
  6197. if (src1->type == GGML_TYPE_F16) {
  6198. ggml_compute_forward_add_f16_f16(params, src0, src1, dst);
  6199. }
  6200. else if (src1->type == GGML_TYPE_F32) {
  6201. ggml_compute_forward_add_f16_f32(params, src0, src1, dst);
  6202. }
  6203. else {
  6204. GGML_ASSERT(false);
  6205. }
  6206. } break;
  6207. case GGML_TYPE_Q4_0:
  6208. case GGML_TYPE_Q4_1:
  6209. case GGML_TYPE_Q5_0:
  6210. case GGML_TYPE_Q5_1:
  6211. case GGML_TYPE_Q8_0:
  6212. case GGML_TYPE_Q2_K:
  6213. case GGML_TYPE_Q3_K:
  6214. case GGML_TYPE_Q4_K:
  6215. case GGML_TYPE_Q5_K:
  6216. case GGML_TYPE_Q6_K:
  6217. case GGML_TYPE_IQ2_XXS:
  6218. case GGML_TYPE_IQ2_XS:
  6219. case GGML_TYPE_IQ3_XXS:
  6220. {
  6221. ggml_compute_forward_add_q_f32(params, src0, src1, dst);
  6222. } break;
  6223. default:
  6224. {
  6225. GGML_ASSERT(false);
  6226. } break;
  6227. }
  6228. }
  6229. // ggml_compute_forward_add1
  6230. static void ggml_compute_forward_add1_f32(
  6231. const struct ggml_compute_params * params,
  6232. const struct ggml_tensor * src0,
  6233. const struct ggml_tensor * src1,
  6234. struct ggml_tensor * dst) {
  6235. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6236. GGML_ASSERT(ggml_is_scalar(src1));
  6237. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6238. return;
  6239. }
  6240. const int ith = params->ith;
  6241. const int nth = params->nth;
  6242. const int nr = ggml_nrows(src0);
  6243. GGML_TENSOR_UNARY_OP_LOCALS
  6244. GGML_ASSERT( nb0 == sizeof(float));
  6245. GGML_ASSERT(nb00 == sizeof(float));
  6246. // rows per thread
  6247. const int dr = (nr + nth - 1)/nth;
  6248. // row range for this thread
  6249. const int ir0 = dr*ith;
  6250. const int ir1 = MIN(ir0 + dr, nr);
  6251. for (int ir = ir0; ir < ir1; ++ir) {
  6252. // src0 and dst are same shape => same indices
  6253. const int i3 = ir/(ne2*ne1);
  6254. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6255. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6256. #ifdef GGML_USE_ACCELERATE
  6257. UNUSED(ggml_vec_add1_f32);
  6258. vDSP_vadd(
  6259. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01), 1,
  6260. (float *) ((char *) src1->data), 0,
  6261. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ), 1,
  6262. ne0);
  6263. #else
  6264. ggml_vec_add1_f32(ne0,
  6265. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ),
  6266. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01),
  6267. *(float *) src1->data);
  6268. #endif
  6269. }
  6270. }
  6271. static void ggml_compute_forward_add1_f16_f32(
  6272. const struct ggml_compute_params * params,
  6273. const struct ggml_tensor * src0,
  6274. const struct ggml_tensor * src1,
  6275. struct ggml_tensor * dst) {
  6276. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6277. GGML_ASSERT(ggml_is_scalar(src1));
  6278. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6279. return;
  6280. }
  6281. // scalar to add
  6282. const float v = *(float *) src1->data;
  6283. const int ith = params->ith;
  6284. const int nth = params->nth;
  6285. const int nr = ggml_nrows(src0);
  6286. GGML_TENSOR_UNARY_OP_LOCALS
  6287. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  6288. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  6289. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  6290. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  6291. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  6292. // rows per thread
  6293. const int dr = (nr + nth - 1)/nth;
  6294. // row range for this thread
  6295. const int ir0 = dr*ith;
  6296. const int ir1 = MIN(ir0 + dr, nr);
  6297. for (int ir = ir0; ir < ir1; ++ir) {
  6298. // src0 and dst are same shape => same indices
  6299. const int i3 = ir/(ne2*ne1);
  6300. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6301. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6302. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  6303. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  6304. for (int i = 0; i < ne0; i++) {
  6305. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + v);
  6306. }
  6307. }
  6308. }
  6309. static void ggml_compute_forward_add1_f16_f16(
  6310. const struct ggml_compute_params * params,
  6311. const struct ggml_tensor * src0,
  6312. const struct ggml_tensor * src1,
  6313. struct ggml_tensor * dst) {
  6314. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6315. GGML_ASSERT(ggml_is_scalar(src1));
  6316. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6317. return;
  6318. }
  6319. // scalar to add
  6320. const float v = GGML_FP16_TO_FP32(*(ggml_fp16_t *) src1->data);
  6321. const int ith = params->ith;
  6322. const int nth = params->nth;
  6323. const int nr = ggml_nrows(src0);
  6324. GGML_TENSOR_UNARY_OP_LOCALS
  6325. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  6326. GGML_ASSERT(src1->type == GGML_TYPE_F16);
  6327. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  6328. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  6329. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  6330. // rows per thread
  6331. const int dr = (nr + nth - 1)/nth;
  6332. // row range for this thread
  6333. const int ir0 = dr*ith;
  6334. const int ir1 = MIN(ir0 + dr, nr);
  6335. for (int ir = ir0; ir < ir1; ++ir) {
  6336. // src0 and dst are same shape => same indices
  6337. const int i3 = ir/(ne2*ne1);
  6338. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6339. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6340. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  6341. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  6342. for (int i = 0; i < ne0; i++) {
  6343. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + v);
  6344. }
  6345. }
  6346. }
  6347. static void ggml_compute_forward_add1_q_f32(
  6348. const struct ggml_compute_params * params,
  6349. const struct ggml_tensor * src0,
  6350. const struct ggml_tensor * src1,
  6351. struct ggml_tensor * dst) {
  6352. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6353. GGML_ASSERT(ggml_is_scalar(src1));
  6354. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6355. return;
  6356. }
  6357. // scalar to add
  6358. const float v = *(float *) src1->data;
  6359. const int ith = params->ith;
  6360. const int nth = params->nth;
  6361. const int nr = ggml_nrows(src0);
  6362. GGML_TENSOR_UNARY_OP_LOCALS
  6363. const enum ggml_type type = src0->type;
  6364. ggml_to_float_t const dequantize_row_q = type_traits[type].to_float;
  6365. ggml_from_float_t const quantize_row_q = type_traits[type].from_float;
  6366. // we don't support permuted src0
  6367. GGML_ASSERT(nb00 == ggml_type_size(type));
  6368. // dst cannot be transposed or permuted
  6369. GGML_ASSERT(nb0 <= nb1);
  6370. GGML_ASSERT(nb1 <= nb2);
  6371. GGML_ASSERT(nb2 <= nb3);
  6372. GGML_ASSERT(ggml_is_quantized(src0->type));
  6373. GGML_ASSERT(dst->type == src0->type);
  6374. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  6375. // rows per thread
  6376. const int dr = (nr + nth - 1)/nth;
  6377. // row range for this thread
  6378. const int ir0 = dr*ith;
  6379. const int ir1 = MIN(ir0 + dr, nr);
  6380. float * wdata = (float *) params->wdata + (ne0 + CACHE_LINE_SIZE_F32) * ith;
  6381. for (int ir = ir0; ir < ir1; ++ir) {
  6382. // src0 and dst are same shape => same indices
  6383. const int i3 = ir/(ne2*ne1);
  6384. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6385. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6386. void * src0_row = (void *) ((char *) src0->data + (i1*nb01 + i2*nb02 + i3*nb03));
  6387. void * dst_row = (void *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb0 ));
  6388. assert(ne0 % 32 == 0);
  6389. // unquantize row from src0 to temp buffer
  6390. dequantize_row_q(src0_row, wdata, ne0);
  6391. // add src1
  6392. ggml_vec_acc1_f32(ne0, wdata, v);
  6393. // quantize row to dst
  6394. quantize_row_q(wdata, dst_row, ne0);
  6395. }
  6396. }
  6397. static void ggml_compute_forward_add1(
  6398. const struct ggml_compute_params * params,
  6399. const struct ggml_tensor * src0,
  6400. const struct ggml_tensor * src1,
  6401. struct ggml_tensor * dst) {
  6402. switch (src0->type) {
  6403. case GGML_TYPE_F32:
  6404. {
  6405. ggml_compute_forward_add1_f32(params, src0, src1, dst);
  6406. } break;
  6407. case GGML_TYPE_F16:
  6408. {
  6409. if (src1->type == GGML_TYPE_F16) {
  6410. ggml_compute_forward_add1_f16_f16(params, src0, src1, dst);
  6411. }
  6412. else if (src1->type == GGML_TYPE_F32) {
  6413. ggml_compute_forward_add1_f16_f32(params, src0, src1, dst);
  6414. }
  6415. else {
  6416. GGML_ASSERT(false);
  6417. }
  6418. } break;
  6419. case GGML_TYPE_Q4_0:
  6420. case GGML_TYPE_Q4_1:
  6421. case GGML_TYPE_Q5_0:
  6422. case GGML_TYPE_Q5_1:
  6423. case GGML_TYPE_Q8_0:
  6424. case GGML_TYPE_Q8_1:
  6425. case GGML_TYPE_Q2_K:
  6426. case GGML_TYPE_Q3_K:
  6427. case GGML_TYPE_Q4_K:
  6428. case GGML_TYPE_Q5_K:
  6429. case GGML_TYPE_Q6_K:
  6430. case GGML_TYPE_IQ2_XXS:
  6431. case GGML_TYPE_IQ2_XS:
  6432. case GGML_TYPE_IQ3_XXS:
  6433. {
  6434. ggml_compute_forward_add1_q_f32(params, src0, src1, dst);
  6435. } break;
  6436. default:
  6437. {
  6438. GGML_ASSERT(false);
  6439. } break;
  6440. }
  6441. }
  6442. // ggml_compute_forward_acc
  6443. static void ggml_compute_forward_acc_f32(
  6444. const struct ggml_compute_params * params,
  6445. const struct ggml_tensor * src0,
  6446. const struct ggml_tensor * src1,
  6447. struct ggml_tensor * dst) {
  6448. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6449. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  6450. // view src0 and dst with these strides and data offset inbytes during acc
  6451. // nb0 is implicitly element_size because src0 and dst are contiguous
  6452. size_t nb1 = ((int32_t *) dst->op_params)[0];
  6453. size_t nb2 = ((int32_t *) dst->op_params)[1];
  6454. size_t nb3 = ((int32_t *) dst->op_params)[2];
  6455. size_t offset = ((int32_t *) dst->op_params)[3];
  6456. bool inplace = (bool) ((int32_t *) dst->op_params)[4];
  6457. if (!inplace && (params->type == GGML_TASK_INIT)) {
  6458. if (params->ith != 0) {
  6459. return;
  6460. }
  6461. // memcpy needs to be synchronized across threads to avoid race conditions.
  6462. // => do it in INIT phase
  6463. memcpy(
  6464. ((char *) dst->data),
  6465. ((char *) src0->data),
  6466. ggml_nbytes(dst));
  6467. }
  6468. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6469. return;
  6470. }
  6471. const int ith = params->ith;
  6472. const int nth = params->nth;
  6473. const int nr = ggml_nrows(src1);
  6474. const int nc = src1->ne[0];
  6475. GGML_TENSOR_LOCALS(int64_t, ne1, src1, ne)
  6476. GGML_TENSOR_LOCALS(size_t, nb1, src1, nb)
  6477. // src0 and dst as viewed during acc
  6478. const size_t nb0 = ggml_element_size(src0);
  6479. const size_t nb00 = nb0;
  6480. const size_t nb01 = nb1;
  6481. const size_t nb02 = nb2;
  6482. const size_t nb03 = nb3;
  6483. GGML_ASSERT(offset + (ne10 == 0 ? 0 : ne10-1)*nb0 + (ne11 == 0 ? 0 : ne11-1)*nb1 + (ne12 == 0 ? 0 : ne12-1)*nb2 + (ne13 == 0 ? 0 : ne13-1)*nb3 < ggml_nbytes(dst));
  6484. GGML_ASSERT(offset + (ne10 == 0 ? 0 : ne10-1)*nb00 + (ne11 == 0 ? 0 : ne11-1)*nb01 + (ne12 == 0 ? 0 : ne12-1)*nb02 + (ne13 == 0 ? 0 : ne13-1)*nb03 < ggml_nbytes(src0));
  6485. GGML_ASSERT(nb10 == sizeof(float));
  6486. // rows per thread
  6487. const int dr = (nr + nth - 1)/nth;
  6488. // row range for this thread
  6489. const int ir0 = dr*ith;
  6490. const int ir1 = MIN(ir0 + dr, nr);
  6491. for (int ir = ir0; ir < ir1; ++ir) {
  6492. // src0 and dst are viewed with shape of src1 and offset
  6493. // => same indices
  6494. const int i3 = ir/(ne12*ne11);
  6495. const int i2 = (ir - i3*ne12*ne11)/ne11;
  6496. const int i1 = (ir - i3*ne12*ne11 - i2*ne11);
  6497. #ifdef GGML_USE_ACCELERATE
  6498. vDSP_vadd(
  6499. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + offset), 1,
  6500. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11), 1,
  6501. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + offset), 1, nc);
  6502. #else
  6503. ggml_vec_add_f32(nc,
  6504. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + offset),
  6505. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + offset),
  6506. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
  6507. #endif
  6508. }
  6509. }
  6510. static void ggml_compute_forward_acc(
  6511. const struct ggml_compute_params * params,
  6512. const struct ggml_tensor * src0,
  6513. const struct ggml_tensor * src1,
  6514. struct ggml_tensor * dst) {
  6515. switch (src0->type) {
  6516. case GGML_TYPE_F32:
  6517. {
  6518. ggml_compute_forward_acc_f32(params, src0, src1, dst);
  6519. } break;
  6520. case GGML_TYPE_F16:
  6521. case GGML_TYPE_Q4_0:
  6522. case GGML_TYPE_Q4_1:
  6523. case GGML_TYPE_Q5_0:
  6524. case GGML_TYPE_Q5_1:
  6525. case GGML_TYPE_Q8_0:
  6526. case GGML_TYPE_Q8_1:
  6527. case GGML_TYPE_Q2_K:
  6528. case GGML_TYPE_Q3_K:
  6529. case GGML_TYPE_Q4_K:
  6530. case GGML_TYPE_Q5_K:
  6531. case GGML_TYPE_Q6_K:
  6532. case GGML_TYPE_IQ2_XXS:
  6533. case GGML_TYPE_IQ2_XS:
  6534. case GGML_TYPE_IQ3_XXS:
  6535. default:
  6536. {
  6537. GGML_ASSERT(false);
  6538. } break;
  6539. }
  6540. }
  6541. // ggml_compute_forward_sub
  6542. static void ggml_compute_forward_sub_f32(
  6543. const struct ggml_compute_params * params,
  6544. const struct ggml_tensor * src0,
  6545. const struct ggml_tensor * src1,
  6546. struct ggml_tensor * dst) {
  6547. assert(params->ith == 0);
  6548. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  6549. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6550. return;
  6551. }
  6552. const int nr = ggml_nrows(src0);
  6553. GGML_TENSOR_BINARY_OP_LOCALS
  6554. GGML_ASSERT( nb0 == sizeof(float));
  6555. GGML_ASSERT(nb00 == sizeof(float));
  6556. if (nb10 == sizeof(float)) {
  6557. for (int ir = 0; ir < nr; ++ir) {
  6558. // src0, src1 and dst are same shape => same indices
  6559. const int i3 = ir/(ne2*ne1);
  6560. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6561. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6562. #ifdef GGML_USE_ACCELERATE
  6563. vDSP_vsub(
  6564. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11), 1,
  6565. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01), 1,
  6566. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ), 1,
  6567. ne0);
  6568. #else
  6569. ggml_vec_sub_f32(ne0,
  6570. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ),
  6571. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01),
  6572. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
  6573. #endif
  6574. // }
  6575. // }
  6576. }
  6577. } else {
  6578. // src1 is not contiguous
  6579. for (int ir = 0; ir < nr; ++ir) {
  6580. // src0, src1 and dst are same shape => same indices
  6581. const int i3 = ir/(ne2*ne1);
  6582. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6583. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6584. float * dst_ptr = (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  6585. float * src0_ptr = (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  6586. for (int i0 = 0; i0 < ne0; i0++) {
  6587. float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11 + i0*nb10);
  6588. dst_ptr[i0] = src0_ptr[i0] - *src1_ptr;
  6589. }
  6590. }
  6591. }
  6592. }
  6593. static void ggml_compute_forward_sub(
  6594. const struct ggml_compute_params * params,
  6595. const struct ggml_tensor * src0,
  6596. const struct ggml_tensor * src1,
  6597. struct ggml_tensor * dst) {
  6598. switch (src0->type) {
  6599. case GGML_TYPE_F32:
  6600. {
  6601. ggml_compute_forward_sub_f32(params, src0, src1, dst);
  6602. } break;
  6603. default:
  6604. {
  6605. GGML_ASSERT(false);
  6606. } break;
  6607. }
  6608. }
  6609. // ggml_compute_forward_mul
  6610. static void ggml_compute_forward_mul_f32(
  6611. const struct ggml_compute_params * params,
  6612. const struct ggml_tensor * src0,
  6613. const struct ggml_tensor * src1,
  6614. struct ggml_tensor * dst) {
  6615. GGML_ASSERT(ggml_can_repeat(src1, src0) && ggml_are_same_shape(src0, dst));
  6616. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6617. return;
  6618. }
  6619. const int ith = params->ith;
  6620. const int nth = params->nth;
  6621. #if defined(GGML_USE_CLBLAST)
  6622. if (src1->backend == GGML_BACKEND_GPU) {
  6623. // TODO: OpenCL kernel support full broadcast
  6624. GGML_ASSERT(ggml_can_repeat_rows(src1, src0));
  6625. if (ith == 0) {
  6626. ggml_cl_mul(src0, src1, dst);
  6627. }
  6628. return;
  6629. }
  6630. #endif
  6631. const int64_t nr = ggml_nrows(src0);
  6632. GGML_TENSOR_BINARY_OP_LOCALS
  6633. GGML_ASSERT( nb0 == sizeof(float));
  6634. GGML_ASSERT(nb00 == sizeof(float));
  6635. if (nb10 == sizeof(float)) {
  6636. for (int64_t ir = ith; ir < nr; ir += nth) {
  6637. // src0 and dst are same shape => same indices
  6638. const int64_t i03 = ir/(ne02*ne01);
  6639. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  6640. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  6641. const int64_t i13 = i03 % ne13;
  6642. const int64_t i12 = i02 % ne12;
  6643. const int64_t i11 = i01 % ne11;
  6644. const int64_t nr0 = ne00 / ne10;
  6645. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  6646. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  6647. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11);
  6648. for (int64_t r = 0 ; r < nr0; ++r) {
  6649. #ifdef GGML_USE_ACCELERATE
  6650. UNUSED(ggml_vec_mul_f32);
  6651. vDSP_vmul(src0_ptr + r*ne10, 1, src1_ptr, 1, dst_ptr + r*ne10, 1, ne10);
  6652. #else
  6653. ggml_vec_mul_f32(ne10, dst_ptr + r*ne10, src0_ptr + r*ne10, src1_ptr);
  6654. #endif
  6655. }
  6656. }
  6657. } else {
  6658. // src1 is not contiguous
  6659. for (int64_t ir = ith; ir < nr; ir += nth) {
  6660. // src0 and dst are same shape => same indices
  6661. // src1 is broadcastable across src0 and dst in i1, i2, i3
  6662. const int64_t i03 = ir/(ne02*ne01);
  6663. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  6664. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  6665. const int64_t i13 = i03 % ne13;
  6666. const int64_t i12 = i02 % ne12;
  6667. const int64_t i11 = i01 % ne11;
  6668. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  6669. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  6670. for (int64_t i0 = 0; i0 < ne00; ++i0) {
  6671. const int64_t i10 = i0 % ne10;
  6672. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11 + i10*nb10);
  6673. dst_ptr[i0] = src0_ptr[i0] * (*src1_ptr);
  6674. }
  6675. }
  6676. }
  6677. }
  6678. static void ggml_compute_forward_mul(
  6679. const struct ggml_compute_params * params,
  6680. const struct ggml_tensor * src0,
  6681. const struct ggml_tensor * src1,
  6682. struct ggml_tensor * dst) {
  6683. GGML_ASSERT(src1->type == GGML_TYPE_F32 && "only f32 src1 supported for now");
  6684. switch (src0->type) {
  6685. case GGML_TYPE_F32:
  6686. {
  6687. ggml_compute_forward_mul_f32(params, src0, src1, dst);
  6688. } break;
  6689. default:
  6690. {
  6691. GGML_ASSERT(false);
  6692. } break;
  6693. }
  6694. }
  6695. // ggml_compute_forward_div
  6696. static void ggml_compute_forward_div_f32(
  6697. const struct ggml_compute_params * params,
  6698. const struct ggml_tensor * src0,
  6699. const struct ggml_tensor * src1,
  6700. struct ggml_tensor * dst) {
  6701. GGML_ASSERT(ggml_can_repeat(src1, src0) && ggml_are_same_shape(src0, dst));
  6702. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6703. return;
  6704. }
  6705. const int ith = params->ith;
  6706. const int nth = params->nth;
  6707. const int64_t nr = ggml_nrows(src0);
  6708. GGML_TENSOR_BINARY_OP_LOCALS
  6709. GGML_ASSERT( nb0 == sizeof(float));
  6710. GGML_ASSERT(nb00 == sizeof(float));
  6711. if (nb10 == sizeof(float)) {
  6712. for (int64_t ir = ith; ir < nr; ir += nth) {
  6713. // src0 and dst are same shape => same indices
  6714. const int64_t i03 = ir/(ne02*ne01);
  6715. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  6716. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  6717. const int64_t i13 = i03 % ne13;
  6718. const int64_t i12 = i02 % ne12;
  6719. const int64_t i11 = i01 % ne11;
  6720. const int64_t nr0 = ne00 / ne10;
  6721. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  6722. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  6723. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11);
  6724. for (int64_t r = 0; r < nr0; ++r) {
  6725. #ifdef GGML_USE_ACCELERATE
  6726. UNUSED(ggml_vec_div_f32);
  6727. vDSP_vdiv(src1_ptr, 1, src0_ptr + r*ne10, 1, dst_ptr + r*ne10, 1, ne10);
  6728. #else
  6729. ggml_vec_div_f32(ne10, dst_ptr + r*ne10, src0_ptr + r*ne10, src1_ptr);
  6730. #endif
  6731. }
  6732. }
  6733. } else {
  6734. // src1 is not contiguous
  6735. for (int64_t ir = ith; ir < nr; ir += nth) {
  6736. // src0 and dst are same shape => same indices
  6737. // src1 is broadcastable across src0 and dst in i1, i2, i3
  6738. const int64_t i03 = ir/(ne02*ne01);
  6739. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  6740. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  6741. const int64_t i13 = i03 % ne13;
  6742. const int64_t i12 = i02 % ne12;
  6743. const int64_t i11 = i01 % ne11;
  6744. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  6745. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  6746. for (int64_t i0 = 0; i0 < ne00; ++i0) {
  6747. const int64_t i10 = i0 % ne10;
  6748. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11 + i10*nb10);
  6749. dst_ptr[i0] = src0_ptr[i0] / (*src1_ptr);
  6750. }
  6751. }
  6752. }
  6753. }
  6754. static void ggml_compute_forward_div(
  6755. const struct ggml_compute_params * params,
  6756. const struct ggml_tensor * src0,
  6757. const struct ggml_tensor * src1,
  6758. struct ggml_tensor * dst) {
  6759. switch (src0->type) {
  6760. case GGML_TYPE_F32:
  6761. {
  6762. ggml_compute_forward_div_f32(params, src0, src1, dst);
  6763. } break;
  6764. default:
  6765. {
  6766. GGML_ASSERT(false);
  6767. } break;
  6768. }
  6769. }
  6770. // ggml_compute_forward_sqr
  6771. static void ggml_compute_forward_sqr_f32(
  6772. const struct ggml_compute_params * params,
  6773. const struct ggml_tensor * src0,
  6774. struct ggml_tensor * dst) {
  6775. assert(params->ith == 0);
  6776. assert(ggml_are_same_shape(src0, dst));
  6777. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6778. return;
  6779. }
  6780. const int n = ggml_nrows(src0);
  6781. const int nc = src0->ne[0];
  6782. assert( dst->nb[0] == sizeof(float));
  6783. assert(src0->nb[0] == sizeof(float));
  6784. for (int i = 0; i < n; i++) {
  6785. ggml_vec_sqr_f32(nc,
  6786. (float *) ((char *) dst->data + i*( dst->nb[1])),
  6787. (float *) ((char *) src0->data + i*(src0->nb[1])));
  6788. }
  6789. }
  6790. static void ggml_compute_forward_sqr(
  6791. const struct ggml_compute_params * params,
  6792. const struct ggml_tensor * src0,
  6793. struct ggml_tensor * dst) {
  6794. switch (src0->type) {
  6795. case GGML_TYPE_F32:
  6796. {
  6797. ggml_compute_forward_sqr_f32(params, src0, dst);
  6798. } break;
  6799. default:
  6800. {
  6801. GGML_ASSERT(false);
  6802. } break;
  6803. }
  6804. }
  6805. // ggml_compute_forward_sqrt
  6806. static void ggml_compute_forward_sqrt_f32(
  6807. const struct ggml_compute_params * params,
  6808. const struct ggml_tensor * src0,
  6809. struct ggml_tensor * dst) {
  6810. assert(params->ith == 0);
  6811. assert(ggml_are_same_shape(src0, dst));
  6812. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6813. return;
  6814. }
  6815. const int n = ggml_nrows(src0);
  6816. const int nc = src0->ne[0];
  6817. assert( dst->nb[0] == sizeof(float));
  6818. assert(src0->nb[0] == sizeof(float));
  6819. for (int i = 0; i < n; i++) {
  6820. ggml_vec_sqrt_f32(nc,
  6821. (float *) ((char *) dst->data + i*( dst->nb[1])),
  6822. (float *) ((char *) src0->data + i*(src0->nb[1])));
  6823. }
  6824. }
  6825. static void ggml_compute_forward_sqrt(
  6826. const struct ggml_compute_params * params,
  6827. const struct ggml_tensor * src0,
  6828. struct ggml_tensor * dst) {
  6829. switch (src0->type) {
  6830. case GGML_TYPE_F32:
  6831. {
  6832. ggml_compute_forward_sqrt_f32(params, src0, dst);
  6833. } break;
  6834. default:
  6835. {
  6836. GGML_ASSERT(false);
  6837. } break;
  6838. }
  6839. }
  6840. // ggml_compute_forward_log
  6841. static void ggml_compute_forward_log_f32(
  6842. const struct ggml_compute_params * params,
  6843. const struct ggml_tensor * src0,
  6844. struct ggml_tensor * dst) {
  6845. GGML_ASSERT(params->ith == 0);
  6846. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6847. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6848. return;
  6849. }
  6850. const int n = ggml_nrows(src0);
  6851. const int nc = src0->ne[0];
  6852. GGML_ASSERT( dst->nb[0] == sizeof(float));
  6853. GGML_ASSERT(src0->nb[0] == sizeof(float));
  6854. for (int i = 0; i < n; i++) {
  6855. ggml_vec_log_f32(nc,
  6856. (float *) ((char *) dst->data + i*( dst->nb[1])),
  6857. (float *) ((char *) src0->data + i*(src0->nb[1])));
  6858. }
  6859. }
  6860. static void ggml_compute_forward_log(
  6861. const struct ggml_compute_params * params,
  6862. const struct ggml_tensor * src0,
  6863. struct ggml_tensor * dst) {
  6864. switch (src0->type) {
  6865. case GGML_TYPE_F32:
  6866. {
  6867. ggml_compute_forward_log_f32(params, src0, dst);
  6868. } break;
  6869. default:
  6870. {
  6871. GGML_ASSERT(false);
  6872. } break;
  6873. }
  6874. }
  6875. // ggml_compute_forward_sum
  6876. static void ggml_compute_forward_sum_f32(
  6877. const struct ggml_compute_params * params,
  6878. const struct ggml_tensor * src0,
  6879. struct ggml_tensor * dst) {
  6880. assert(params->ith == 0);
  6881. assert(ggml_is_scalar(dst));
  6882. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6883. return;
  6884. }
  6885. assert(ggml_is_scalar(dst));
  6886. assert(src0->nb[0] == sizeof(float));
  6887. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne)
  6888. GGML_TENSOR_LOCALS(size_t, nb0, src0, nb)
  6889. ggml_float sum = 0;
  6890. ggml_float row_sum = 0;
  6891. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6892. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6893. for (int64_t i01 = 0; i01 < ne01; i01++) {
  6894. ggml_vec_sum_f32_ggf(ne00,
  6895. &row_sum,
  6896. (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03));
  6897. sum += row_sum;
  6898. }
  6899. }
  6900. }
  6901. ((float *) dst->data)[0] = sum;
  6902. }
  6903. static void ggml_compute_forward_sum_f16(
  6904. const struct ggml_compute_params * params,
  6905. const struct ggml_tensor * src0,
  6906. struct ggml_tensor * dst) {
  6907. assert(params->ith == 0);
  6908. assert(ggml_is_scalar(dst));
  6909. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6910. return;
  6911. }
  6912. assert(src0->nb[0] == sizeof(ggml_fp16_t));
  6913. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne)
  6914. GGML_TENSOR_LOCALS(size_t, nb0, src0, nb)
  6915. float sum = 0;
  6916. float row_sum = 0;
  6917. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6918. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6919. for (int64_t i01 = 0; i01 < ne01; i01++) {
  6920. ggml_vec_sum_f16_ggf(ne00,
  6921. &row_sum,
  6922. (ggml_fp16_t *) ((char *) src0->data + i01 * nb01 + i02 * nb02 + i03 * nb03));
  6923. sum += row_sum;
  6924. }
  6925. }
  6926. }
  6927. ((ggml_fp16_t *) dst->data)[0] = GGML_FP32_TO_FP16(sum);
  6928. }
  6929. static void ggml_compute_forward_sum(
  6930. const struct ggml_compute_params * params,
  6931. const struct ggml_tensor * src0,
  6932. struct ggml_tensor * dst) {
  6933. switch (src0->type) {
  6934. case GGML_TYPE_F32:
  6935. {
  6936. ggml_compute_forward_sum_f32(params, src0, dst);
  6937. } break;
  6938. case GGML_TYPE_F16:
  6939. {
  6940. ggml_compute_forward_sum_f16(params, src0, dst);
  6941. } break;
  6942. default:
  6943. {
  6944. GGML_ASSERT(false);
  6945. } break;
  6946. }
  6947. }
  6948. // ggml_compute_forward_sum_rows
  6949. static void ggml_compute_forward_sum_rows_f32(
  6950. const struct ggml_compute_params * params,
  6951. const struct ggml_tensor * src0,
  6952. struct ggml_tensor * dst) {
  6953. GGML_ASSERT(params->ith == 0);
  6954. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6955. return;
  6956. }
  6957. GGML_ASSERT(src0->nb[0] == sizeof(float));
  6958. GGML_ASSERT(dst->nb[0] == sizeof(float));
  6959. GGML_TENSOR_UNARY_OP_LOCALS
  6960. GGML_ASSERT(ne0 == 1);
  6961. GGML_ASSERT(ne1 == ne01);
  6962. GGML_ASSERT(ne2 == ne02);
  6963. GGML_ASSERT(ne3 == ne03);
  6964. for (int64_t i3 = 0; i3 < ne03; i3++) {
  6965. for (int64_t i2 = 0; i2 < ne02; i2++) {
  6966. for (int64_t i1 = 0; i1 < ne01; i1++) {
  6967. float * src_row = (float *) ((char *) src0->data + i1*nb01 + i2*nb02 + i3*nb03);
  6968. float * dst_row = (float *) ((char *) dst->data + i1*nb1 + i2*nb2 + i3*nb3);
  6969. float row_sum = 0;
  6970. ggml_vec_sum_f32(ne00, &row_sum, src_row);
  6971. dst_row[0] = row_sum;
  6972. }
  6973. }
  6974. }
  6975. }
  6976. static void ggml_compute_forward_sum_rows(
  6977. const struct ggml_compute_params * params,
  6978. const struct ggml_tensor * src0,
  6979. struct ggml_tensor * dst) {
  6980. switch (src0->type) {
  6981. case GGML_TYPE_F32:
  6982. {
  6983. ggml_compute_forward_sum_rows_f32(params, src0, dst);
  6984. } break;
  6985. default:
  6986. {
  6987. GGML_ASSERT(false);
  6988. } break;
  6989. }
  6990. }
  6991. // ggml_compute_forward_mean
  6992. static void ggml_compute_forward_mean_f32(
  6993. const struct ggml_compute_params * params,
  6994. const struct ggml_tensor * src0,
  6995. struct ggml_tensor * dst) {
  6996. assert(params->ith == 0);
  6997. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6998. return;
  6999. }
  7000. assert(src0->nb[0] == sizeof(float));
  7001. GGML_TENSOR_UNARY_OP_LOCALS
  7002. assert(ne0 == 1);
  7003. assert(ne1 == ne01);
  7004. assert(ne2 == ne02);
  7005. assert(ne3 == ne03);
  7006. UNUSED(ne0);
  7007. UNUSED(ne1);
  7008. UNUSED(ne2);
  7009. UNUSED(ne3);
  7010. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7011. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7012. for (int64_t i01 = 0; i01 < ne01; i01++) {
  7013. ggml_vec_sum_f32(ne00,
  7014. (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  7015. (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03));
  7016. *(float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3) /= (float) ne00;
  7017. }
  7018. }
  7019. }
  7020. }
  7021. static void ggml_compute_forward_mean(
  7022. const struct ggml_compute_params * params,
  7023. const struct ggml_tensor * src0,
  7024. struct ggml_tensor * dst) {
  7025. switch (src0->type) {
  7026. case GGML_TYPE_F32:
  7027. {
  7028. ggml_compute_forward_mean_f32(params, src0, dst);
  7029. } break;
  7030. default:
  7031. {
  7032. GGML_ASSERT(false);
  7033. } break;
  7034. }
  7035. }
  7036. // ggml_compute_forward_argmax
  7037. static void ggml_compute_forward_argmax_f32(
  7038. const struct ggml_compute_params * params,
  7039. const struct ggml_tensor * src0,
  7040. struct ggml_tensor * dst) {
  7041. assert(params->ith == 0);
  7042. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7043. return;
  7044. }
  7045. assert(src0->nb[0] == sizeof(float));
  7046. assert(dst->nb[0] == sizeof(float));
  7047. const int64_t ne00 = src0->ne[0];
  7048. const int64_t ne01 = src0->ne[1];
  7049. const size_t nb01 = src0->nb[1];
  7050. const size_t nb0 = dst->nb[0];
  7051. for (int64_t i1 = 0; i1 < ne01; i1++) {
  7052. float * src = (float *) ((char *) src0->data + i1*nb01);
  7053. int32_t * dst_ = (int32_t *) ((char *) dst->data + i1*nb0);
  7054. int v = 0;
  7055. ggml_vec_argmax_f32(ne00, &v, src);
  7056. dst_[0] = v;
  7057. }
  7058. }
  7059. static void ggml_compute_forward_argmax(
  7060. const struct ggml_compute_params * params,
  7061. const struct ggml_tensor * src0,
  7062. struct ggml_tensor * dst) {
  7063. switch (src0->type) {
  7064. case GGML_TYPE_F32:
  7065. {
  7066. ggml_compute_forward_argmax_f32(params, src0, dst);
  7067. } break;
  7068. default:
  7069. {
  7070. GGML_ASSERT(false);
  7071. } break;
  7072. }
  7073. }
  7074. // ggml_compute_forward_repeat
  7075. static void ggml_compute_forward_repeat_f32(
  7076. const struct ggml_compute_params * params,
  7077. const struct ggml_tensor * src0,
  7078. struct ggml_tensor * dst) {
  7079. GGML_ASSERT(params->ith == 0);
  7080. GGML_ASSERT(ggml_can_repeat(src0, dst));
  7081. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7082. return;
  7083. }
  7084. GGML_TENSOR_UNARY_OP_LOCALS
  7085. // guaranteed to be an integer due to the check in ggml_can_repeat
  7086. const int nr0 = (int)(ne0/ne00);
  7087. const int nr1 = (int)(ne1/ne01);
  7088. const int nr2 = (int)(ne2/ne02);
  7089. const int nr3 = (int)(ne3/ne03);
  7090. // TODO: support for transposed / permuted tensors
  7091. GGML_ASSERT(nb0 == sizeof(float));
  7092. GGML_ASSERT(nb00 == sizeof(float));
  7093. // TODO: maybe this is not optimal?
  7094. for (int i3 = 0; i3 < nr3; i3++) {
  7095. for (int k3 = 0; k3 < ne03; k3++) {
  7096. for (int i2 = 0; i2 < nr2; i2++) {
  7097. for (int k2 = 0; k2 < ne02; k2++) {
  7098. for (int i1 = 0; i1 < nr1; i1++) {
  7099. for (int k1 = 0; k1 < ne01; k1++) {
  7100. for (int i0 = 0; i0 < nr0; i0++) {
  7101. ggml_vec_cpy_f32(ne00,
  7102. (float *) ((char *) dst->data + (i3*ne03 + k3)*nb3 + (i2*ne02 + k2)*nb2 + (i1*ne01 + k1)*nb1 + (i0*ne00)*nb0),
  7103. (float *) ((char *) src0->data + ( k3)*nb03 + ( k2)*nb02 + ( k1)*nb01));
  7104. }
  7105. }
  7106. }
  7107. }
  7108. }
  7109. }
  7110. }
  7111. }
  7112. static void ggml_compute_forward_repeat_f16(
  7113. const struct ggml_compute_params * params,
  7114. const struct ggml_tensor * src0,
  7115. struct ggml_tensor * dst) {
  7116. GGML_ASSERT(params->ith == 0);
  7117. GGML_ASSERT(ggml_can_repeat(src0, dst));
  7118. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7119. return;
  7120. }
  7121. GGML_TENSOR_UNARY_OP_LOCALS
  7122. // guaranteed to be an integer due to the check in ggml_can_repeat
  7123. const int nr0 = (int)(ne0/ne00);
  7124. const int nr1 = (int)(ne1/ne01);
  7125. const int nr2 = (int)(ne2/ne02);
  7126. const int nr3 = (int)(ne3/ne03);
  7127. // TODO: support for transposed / permuted tensors
  7128. GGML_ASSERT(nb0 == sizeof(ggml_fp16_t));
  7129. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  7130. // TODO: maybe this is not optimal?
  7131. for (int i3 = 0; i3 < nr3; i3++) {
  7132. for (int k3 = 0; k3 < ne03; k3++) {
  7133. for (int i2 = 0; i2 < nr2; i2++) {
  7134. for (int k2 = 0; k2 < ne02; k2++) {
  7135. for (int i1 = 0; i1 < nr1; i1++) {
  7136. for (int k1 = 0; k1 < ne01; k1++) {
  7137. for (int i0 = 0; i0 < nr0; i0++) {
  7138. ggml_fp16_t * y = (ggml_fp16_t *) ((char *) dst->data + (i3*ne03 + k3)*nb3 + (i2*ne02 + k2)*nb2 + (i1*ne01 + k1)*nb1 + (i0*ne00)*nb0);
  7139. ggml_fp16_t * x = (ggml_fp16_t *) ((char *) src0->data + ( k3)*nb03 + ( k2)*nb02 + ( k1)*nb01);
  7140. // ggml_vec_cpy_f16(ne00, y, x)
  7141. for (int i = 0; i < ne00; ++i) {
  7142. y[i] = x[i];
  7143. }
  7144. }
  7145. }
  7146. }
  7147. }
  7148. }
  7149. }
  7150. }
  7151. }
  7152. static void ggml_compute_forward_repeat(
  7153. const struct ggml_compute_params * params,
  7154. const struct ggml_tensor * src0,
  7155. struct ggml_tensor * dst) {
  7156. switch (src0->type) {
  7157. case GGML_TYPE_F16:
  7158. case GGML_TYPE_I16:
  7159. {
  7160. ggml_compute_forward_repeat_f16(params, src0, dst);
  7161. } break;
  7162. case GGML_TYPE_F32:
  7163. case GGML_TYPE_I32:
  7164. {
  7165. ggml_compute_forward_repeat_f32(params, src0, dst);
  7166. } break;
  7167. default:
  7168. {
  7169. GGML_ASSERT(false);
  7170. } break;
  7171. }
  7172. }
  7173. // ggml_compute_forward_repeat_back
  7174. static void ggml_compute_forward_repeat_back_f32(
  7175. const struct ggml_compute_params * params,
  7176. const struct ggml_tensor * src0,
  7177. struct ggml_tensor * dst) {
  7178. GGML_ASSERT(params->ith == 0);
  7179. GGML_ASSERT(ggml_can_repeat(dst, src0));
  7180. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7181. return;
  7182. }
  7183. GGML_TENSOR_UNARY_OP_LOCALS
  7184. // guaranteed to be an integer due to the check in ggml_can_repeat
  7185. const int nr0 = (int)(ne00/ne0);
  7186. const int nr1 = (int)(ne01/ne1);
  7187. const int nr2 = (int)(ne02/ne2);
  7188. const int nr3 = (int)(ne03/ne3);
  7189. // TODO: support for transposed / permuted tensors
  7190. GGML_ASSERT(nb0 == sizeof(float));
  7191. GGML_ASSERT(nb00 == sizeof(float));
  7192. if (ggml_is_contiguous(dst)) {
  7193. ggml_vec_set_f32(ne0*ne1*ne2*ne3, dst->data, 0);
  7194. } else {
  7195. for (int k3 = 0; k3 < ne3; k3++) {
  7196. for (int k2 = 0; k2 < ne2; k2++) {
  7197. for (int k1 = 0; k1 < ne1; k1++) {
  7198. ggml_vec_set_f32(ne0,
  7199. (float *) ((char *) dst->data + k1*nb1 + k2*nb2 + k3*nb3),
  7200. 0);
  7201. }
  7202. }
  7203. }
  7204. }
  7205. // TODO: maybe this is not optimal?
  7206. for (int i3 = 0; i3 < nr3; i3++) {
  7207. for (int k3 = 0; k3 < ne3; k3++) {
  7208. for (int i2 = 0; i2 < nr2; i2++) {
  7209. for (int k2 = 0; k2 < ne2; k2++) {
  7210. for (int i1 = 0; i1 < nr1; i1++) {
  7211. for (int k1 = 0; k1 < ne1; k1++) {
  7212. for (int i0 = 0; i0 < nr0; i0++) {
  7213. ggml_vec_acc_f32(ne0,
  7214. (float *) ((char *) dst->data + ( k3)*nb3 + ( k2)*nb2 + ( k1)*nb1),
  7215. (float *) ((char *) src0->data + (i3*ne3 + k3)*nb03 + (i2*ne2 + k2)*nb02 + (i1*ne1 + k1)*nb01 + (i0*ne0)*nb00));
  7216. }
  7217. }
  7218. }
  7219. }
  7220. }
  7221. }
  7222. }
  7223. }
  7224. static void ggml_compute_forward_repeat_back(
  7225. const struct ggml_compute_params * params,
  7226. const struct ggml_tensor * src0,
  7227. struct ggml_tensor * dst) {
  7228. switch (src0->type) {
  7229. case GGML_TYPE_F32:
  7230. {
  7231. ggml_compute_forward_repeat_back_f32(params, src0, dst);
  7232. } break;
  7233. default:
  7234. {
  7235. GGML_ASSERT(false);
  7236. } break;
  7237. }
  7238. }
  7239. // ggml_compute_forward_concat
  7240. static void ggml_compute_forward_concat_f32(
  7241. const struct ggml_compute_params * params,
  7242. const struct ggml_tensor * src0,
  7243. const struct ggml_tensor * src1,
  7244. struct ggml_tensor * dst) {
  7245. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7246. return;
  7247. }
  7248. GGML_ASSERT(src0->nb[0] == sizeof(float));
  7249. const int ith = params->ith;
  7250. const int nth = params->nth;
  7251. GGML_TENSOR_BINARY_OP_LOCALS
  7252. // TODO: support for transposed / permuted tensors
  7253. GGML_ASSERT(nb0 == sizeof(float));
  7254. GGML_ASSERT(nb00 == sizeof(float));
  7255. GGML_ASSERT(nb10 == sizeof(float));
  7256. for (int i3 = 0; i3 < ne3; i3++) {
  7257. for (int i2 = ith; i2 < ne2; i2 += nth) {
  7258. if (i2 < ne02) { // src0
  7259. for (int i1 = 0; i1 < ne1; i1++) {
  7260. for (int i0 = 0; i0 < ne0; i0++) {
  7261. const float * x = (float *)((char *) src0->data + i0 * nb00 + i1 * nb01 + i2 * nb02 + i3 * nb03);
  7262. float * y = (float *)((char *)dst->data + i0 * nb0 + i1 * nb1 + i2 * nb2 + i3 * nb3);
  7263. *y = *x;
  7264. }
  7265. }
  7266. } // src1
  7267. else {
  7268. for (int i1 = 0; i1 < ne1; i1++) {
  7269. for (int i0 = 0; i0 < ne0; i0++) {
  7270. const float * x = (float *)((char *) src1->data + i0 * nb10 + i1 * nb11 + (i2 - ne02) * nb12 + i3 * nb13);
  7271. float * y = (float *)((char *)dst->data + i0 * nb0 + i1 * nb1 + i2 * nb2 + i3 * nb3);
  7272. *y = *x;
  7273. }
  7274. }
  7275. }
  7276. }
  7277. }
  7278. }
  7279. static void ggml_compute_forward_concat(
  7280. const struct ggml_compute_params* params,
  7281. const struct ggml_tensor* src0,
  7282. const struct ggml_tensor* src1,
  7283. struct ggml_tensor* dst) {
  7284. switch (src0->type) {
  7285. case GGML_TYPE_F32:
  7286. case GGML_TYPE_I32:
  7287. {
  7288. ggml_compute_forward_concat_f32(params, src0, src1, dst);
  7289. } break;
  7290. default:
  7291. {
  7292. GGML_ASSERT(false);
  7293. } break;
  7294. }
  7295. }
  7296. // ggml_compute_forward_abs
  7297. static void ggml_compute_forward_abs_f32(
  7298. const struct ggml_compute_params * params,
  7299. const struct ggml_tensor * src0,
  7300. struct ggml_tensor * dst) {
  7301. assert(params->ith == 0);
  7302. assert(ggml_are_same_shape(src0, dst));
  7303. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7304. return;
  7305. }
  7306. const int n = ggml_nrows(src0);
  7307. const int nc = src0->ne[0];
  7308. assert(dst->nb[0] == sizeof(float));
  7309. assert(src0->nb[0] == sizeof(float));
  7310. for (int i = 0; i < n; i++) {
  7311. ggml_vec_abs_f32(nc,
  7312. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7313. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7314. }
  7315. }
  7316. static void ggml_compute_forward_abs(
  7317. const struct ggml_compute_params * params,
  7318. const struct ggml_tensor * src0,
  7319. struct ggml_tensor * dst) {
  7320. switch (src0->type) {
  7321. case GGML_TYPE_F32:
  7322. {
  7323. ggml_compute_forward_abs_f32(params, src0, dst);
  7324. } break;
  7325. default:
  7326. {
  7327. GGML_ASSERT(false);
  7328. } break;
  7329. }
  7330. }
  7331. // ggml_compute_forward_sgn
  7332. static void ggml_compute_forward_sgn_f32(
  7333. const struct ggml_compute_params * params,
  7334. const struct ggml_tensor * src0,
  7335. struct ggml_tensor * dst) {
  7336. assert(params->ith == 0);
  7337. assert(ggml_are_same_shape(src0, dst));
  7338. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7339. return;
  7340. }
  7341. const int n = ggml_nrows(src0);
  7342. const int nc = src0->ne[0];
  7343. assert(dst->nb[0] == sizeof(float));
  7344. assert(src0->nb[0] == sizeof(float));
  7345. for (int i = 0; i < n; i++) {
  7346. ggml_vec_sgn_f32(nc,
  7347. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7348. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7349. }
  7350. }
  7351. static void ggml_compute_forward_sgn(
  7352. const struct ggml_compute_params * params,
  7353. const struct ggml_tensor * src0,
  7354. struct ggml_tensor * dst) {
  7355. switch (src0->type) {
  7356. case GGML_TYPE_F32:
  7357. {
  7358. ggml_compute_forward_sgn_f32(params, src0, dst);
  7359. } break;
  7360. default:
  7361. {
  7362. GGML_ASSERT(false);
  7363. } break;
  7364. }
  7365. }
  7366. // ggml_compute_forward_neg
  7367. static void ggml_compute_forward_neg_f32(
  7368. const struct ggml_compute_params * params,
  7369. const struct ggml_tensor * src0,
  7370. struct ggml_tensor * dst) {
  7371. assert(params->ith == 0);
  7372. assert(ggml_are_same_shape(src0, dst));
  7373. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7374. return;
  7375. }
  7376. const int n = ggml_nrows(src0);
  7377. const int nc = src0->ne[0];
  7378. assert(dst->nb[0] == sizeof(float));
  7379. assert(src0->nb[0] == sizeof(float));
  7380. for (int i = 0; i < n; i++) {
  7381. ggml_vec_neg_f32(nc,
  7382. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7383. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7384. }
  7385. }
  7386. static void ggml_compute_forward_neg(
  7387. const struct ggml_compute_params * params,
  7388. const struct ggml_tensor * src0,
  7389. struct ggml_tensor * dst) {
  7390. switch (src0->type) {
  7391. case GGML_TYPE_F32:
  7392. {
  7393. ggml_compute_forward_neg_f32(params, src0, dst);
  7394. } break;
  7395. default:
  7396. {
  7397. GGML_ASSERT(false);
  7398. } break;
  7399. }
  7400. }
  7401. // ggml_compute_forward_step
  7402. static void ggml_compute_forward_step_f32(
  7403. const struct ggml_compute_params * params,
  7404. const struct ggml_tensor * src0,
  7405. struct ggml_tensor * dst) {
  7406. assert(params->ith == 0);
  7407. assert(ggml_are_same_shape(src0, dst));
  7408. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7409. return;
  7410. }
  7411. const int n = ggml_nrows(src0);
  7412. const int nc = src0->ne[0];
  7413. assert(dst->nb[0] == sizeof(float));
  7414. assert(src0->nb[0] == sizeof(float));
  7415. for (int i = 0; i < n; i++) {
  7416. ggml_vec_step_f32(nc,
  7417. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7418. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7419. }
  7420. }
  7421. static void ggml_compute_forward_step(
  7422. const struct ggml_compute_params * params,
  7423. const struct ggml_tensor * src0,
  7424. struct ggml_tensor * dst) {
  7425. switch (src0->type) {
  7426. case GGML_TYPE_F32:
  7427. {
  7428. ggml_compute_forward_step_f32(params, src0, dst);
  7429. } break;
  7430. default:
  7431. {
  7432. GGML_ASSERT(false);
  7433. } break;
  7434. }
  7435. }
  7436. // ggml_compute_forward_tanh
  7437. static void ggml_compute_forward_tanh_f32(
  7438. const struct ggml_compute_params * params,
  7439. const struct ggml_tensor * src0,
  7440. struct ggml_tensor * dst) {
  7441. assert(params->ith == 0);
  7442. assert(ggml_are_same_shape(src0, dst));
  7443. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7444. return;
  7445. }
  7446. const int n = ggml_nrows(src0);
  7447. const int nc = src0->ne[0];
  7448. assert(dst->nb[0] == sizeof(float));
  7449. assert(src0->nb[0] == sizeof(float));
  7450. for (int i = 0; i < n; i++) {
  7451. ggml_vec_tanh_f32(nc,
  7452. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7453. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7454. }
  7455. }
  7456. static void ggml_compute_forward_tanh(
  7457. const struct ggml_compute_params * params,
  7458. const struct ggml_tensor * src0,
  7459. struct ggml_tensor * dst) {
  7460. switch (src0->type) {
  7461. case GGML_TYPE_F32:
  7462. {
  7463. ggml_compute_forward_tanh_f32(params, src0, dst);
  7464. } break;
  7465. default:
  7466. {
  7467. GGML_ASSERT(false);
  7468. } break;
  7469. }
  7470. }
  7471. // ggml_compute_forward_elu
  7472. static void ggml_compute_forward_elu_f32(
  7473. const struct ggml_compute_params * params,
  7474. const struct ggml_tensor * src0,
  7475. struct ggml_tensor * dst) {
  7476. assert(params->ith == 0);
  7477. assert(ggml_are_same_shape(src0, dst));
  7478. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7479. return;
  7480. }
  7481. const int n = ggml_nrows(src0);
  7482. const int nc = src0->ne[0];
  7483. assert(dst->nb[0] == sizeof(float));
  7484. assert(src0->nb[0] == sizeof(float));
  7485. for (int i = 0; i < n; i++) {
  7486. ggml_vec_elu_f32(nc,
  7487. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7488. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7489. }
  7490. }
  7491. static void ggml_compute_forward_elu(
  7492. const struct ggml_compute_params * params,
  7493. const struct ggml_tensor * src0,
  7494. struct ggml_tensor * dst) {
  7495. switch (src0->type) {
  7496. case GGML_TYPE_F32:
  7497. {
  7498. ggml_compute_forward_elu_f32(params, src0, dst);
  7499. } break;
  7500. default:
  7501. {
  7502. GGML_ASSERT(false);
  7503. } break;
  7504. }
  7505. }
  7506. // ggml_compute_forward_relu
  7507. static void ggml_compute_forward_relu_f32(
  7508. const struct ggml_compute_params * params,
  7509. const struct ggml_tensor * src0,
  7510. struct ggml_tensor * dst) {
  7511. assert(params->ith == 0);
  7512. assert(ggml_are_same_shape(src0, dst));
  7513. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7514. return;
  7515. }
  7516. const int n = ggml_nrows(src0);
  7517. const int nc = src0->ne[0];
  7518. assert(dst->nb[0] == sizeof(float));
  7519. assert(src0->nb[0] == sizeof(float));
  7520. for (int i = 0; i < n; i++) {
  7521. ggml_vec_relu_f32(nc,
  7522. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7523. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7524. }
  7525. }
  7526. static void ggml_compute_forward_relu(
  7527. const struct ggml_compute_params * params,
  7528. const struct ggml_tensor * src0,
  7529. struct ggml_tensor * dst) {
  7530. switch (src0->type) {
  7531. case GGML_TYPE_F32:
  7532. {
  7533. ggml_compute_forward_relu_f32(params, src0, dst);
  7534. } break;
  7535. default:
  7536. {
  7537. GGML_ASSERT(false);
  7538. } break;
  7539. }
  7540. }
  7541. // ggml_compute_forward_gelu
  7542. static void ggml_compute_forward_gelu_f32(
  7543. const struct ggml_compute_params * params,
  7544. const struct ggml_tensor * src0,
  7545. struct ggml_tensor * dst) {
  7546. GGML_ASSERT(ggml_is_contiguous_except_dim_1(src0));
  7547. GGML_ASSERT(ggml_is_contiguous_except_dim_1(dst));
  7548. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7549. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7550. return;
  7551. }
  7552. const int ith = params->ith;
  7553. const int nth = params->nth;
  7554. const int nc = src0->ne[0];
  7555. const int nr = ggml_nrows(src0);
  7556. // rows per thread
  7557. const int dr = (nr + nth - 1)/nth;
  7558. // row range for this thread
  7559. const int ir0 = dr*ith;
  7560. const int ir1 = MIN(ir0 + dr, nr);
  7561. for (int i1 = ir0; i1 < ir1; i1++) {
  7562. ggml_vec_gelu_f32(nc,
  7563. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  7564. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  7565. #ifndef NDEBUG
  7566. for (int k = 0; k < nc; k++) {
  7567. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  7568. UNUSED(x);
  7569. assert(!isnan(x));
  7570. assert(!isinf(x));
  7571. }
  7572. #endif
  7573. }
  7574. }
  7575. static void ggml_compute_forward_gelu(
  7576. const struct ggml_compute_params * params,
  7577. const struct ggml_tensor * src0,
  7578. struct ggml_tensor * dst) {
  7579. switch (src0->type) {
  7580. case GGML_TYPE_F32:
  7581. {
  7582. ggml_compute_forward_gelu_f32(params, src0, dst);
  7583. } break;
  7584. default:
  7585. {
  7586. GGML_ASSERT(false);
  7587. } break;
  7588. }
  7589. }
  7590. // ggml_compute_forward_gelu_quick
  7591. static void ggml_compute_forward_gelu_quick_f32(
  7592. const struct ggml_compute_params * params,
  7593. const struct ggml_tensor * src0,
  7594. struct ggml_tensor * dst) {
  7595. GGML_ASSERT(ggml_is_contiguous_except_dim_1(src0));
  7596. GGML_ASSERT(ggml_is_contiguous_except_dim_1(dst));
  7597. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7598. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7599. return;
  7600. }
  7601. const int ith = params->ith;
  7602. const int nth = params->nth;
  7603. const int nc = src0->ne[0];
  7604. const int nr = ggml_nrows(src0);
  7605. // rows per thread
  7606. const int dr = (nr + nth - 1)/nth;
  7607. // row range for this thread
  7608. const int ir0 = dr*ith;
  7609. const int ir1 = MIN(ir0 + dr, nr);
  7610. for (int i1 = ir0; i1 < ir1; i1++) {
  7611. ggml_vec_gelu_quick_f32(nc,
  7612. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  7613. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  7614. #ifndef NDEBUG
  7615. for (int k = 0; k < nc; k++) {
  7616. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  7617. UNUSED(x);
  7618. assert(!isnan(x));
  7619. assert(!isinf(x));
  7620. }
  7621. #endif
  7622. }
  7623. }
  7624. static void ggml_compute_forward_gelu_quick(
  7625. const struct ggml_compute_params * params,
  7626. const struct ggml_tensor * src0,
  7627. struct ggml_tensor * dst) {
  7628. switch (src0->type) {
  7629. case GGML_TYPE_F32:
  7630. {
  7631. ggml_compute_forward_gelu_quick_f32(params, src0, dst);
  7632. } break;
  7633. default:
  7634. {
  7635. GGML_ASSERT(false);
  7636. } break;
  7637. }
  7638. }
  7639. // ggml_compute_forward_silu
  7640. static void ggml_compute_forward_silu_f32(
  7641. const struct ggml_compute_params * params,
  7642. const struct ggml_tensor * src0,
  7643. struct ggml_tensor * dst) {
  7644. GGML_ASSERT(ggml_is_contiguous_except_dim_1(src0));
  7645. GGML_ASSERT(ggml_is_contiguous_except_dim_1(dst));
  7646. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7647. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7648. return;
  7649. }
  7650. const int ith = params->ith;
  7651. const int nth = params->nth;
  7652. const int nc = src0->ne[0];
  7653. const int nr = ggml_nrows(src0);
  7654. // rows per thread
  7655. const int dr = (nr + nth - 1)/nth;
  7656. // row range for this thread
  7657. const int ir0 = dr*ith;
  7658. const int ir1 = MIN(ir0 + dr, nr);
  7659. for (int i1 = ir0; i1 < ir1; i1++) {
  7660. ggml_vec_silu_f32(nc,
  7661. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  7662. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  7663. #ifndef NDEBUG
  7664. for (int k = 0; k < nc; k++) {
  7665. const float x = ((float *) ((char *) dst->data + i1*(dst->nb[1])))[k];
  7666. UNUSED(x);
  7667. assert(!isnan(x));
  7668. assert(!isinf(x));
  7669. }
  7670. #endif
  7671. }
  7672. }
  7673. static void ggml_compute_forward_silu(
  7674. const struct ggml_compute_params * params,
  7675. const struct ggml_tensor * src0,
  7676. struct ggml_tensor * dst) {
  7677. switch (src0->type) {
  7678. case GGML_TYPE_F32:
  7679. {
  7680. ggml_compute_forward_silu_f32(params, src0, dst);
  7681. } break;
  7682. default:
  7683. {
  7684. GGML_ASSERT(false);
  7685. } break;
  7686. }
  7687. }
  7688. // ggml_compute_forward_leaky_relu
  7689. static void ggml_compute_forward_leaky_relu_f32(
  7690. const struct ggml_compute_params * params,
  7691. const struct ggml_tensor * src0,
  7692. struct ggml_tensor * dst) {
  7693. assert(params->ith == 0);
  7694. assert(ggml_are_same_shape(src0, dst));
  7695. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7696. return;
  7697. }
  7698. const int n = ggml_nrows(src0);
  7699. const int nc = src0->ne[0];
  7700. float negative_slope;
  7701. memcpy(&negative_slope, dst->op_params, sizeof(float));
  7702. assert(dst->nb[0] == sizeof(float));
  7703. assert(src0->nb[0] == sizeof(float));
  7704. for (int i = 0; i < n; i++) {
  7705. ggml_vec_leaky_relu_f32(nc,
  7706. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7707. (float *) ((char *) src0->data + i*(src0->nb[1])), negative_slope);
  7708. }
  7709. }
  7710. static void ggml_compute_forward_leaky_relu(
  7711. const struct ggml_compute_params * params,
  7712. const struct ggml_tensor * src0,
  7713. struct ggml_tensor * dst) {
  7714. switch (src0->type) {
  7715. case GGML_TYPE_F32:
  7716. {
  7717. ggml_compute_forward_leaky_relu_f32(params, src0, dst);
  7718. } break;
  7719. default:
  7720. {
  7721. GGML_ASSERT(false);
  7722. } break;
  7723. }
  7724. }
  7725. // ggml_compute_forward_silu_back
  7726. static void ggml_compute_forward_silu_back_f32(
  7727. const struct ggml_compute_params * params,
  7728. const struct ggml_tensor * src0,
  7729. const struct ggml_tensor * grad,
  7730. struct ggml_tensor * dst) {
  7731. GGML_ASSERT(ggml_is_contiguous_except_dim_1(grad));
  7732. GGML_ASSERT(ggml_is_contiguous_except_dim_1(src0));
  7733. GGML_ASSERT(ggml_is_contiguous_except_dim_1(dst));
  7734. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7735. GGML_ASSERT(ggml_are_same_shape(src0, grad));
  7736. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7737. return;
  7738. }
  7739. const int ith = params->ith;
  7740. const int nth = params->nth;
  7741. const int nc = src0->ne[0];
  7742. const int nr = ggml_nrows(src0);
  7743. // rows per thread
  7744. const int dr = (nr + nth - 1)/nth;
  7745. // row range for this thread
  7746. const int ir0 = dr*ith;
  7747. const int ir1 = MIN(ir0 + dr, nr);
  7748. for (int i1 = ir0; i1 < ir1; i1++) {
  7749. ggml_vec_silu_backward_f32(nc,
  7750. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  7751. (float *) ((char *) src0->data + i1*(src0->nb[1])),
  7752. (float *) ((char *) grad->data + i1*(grad->nb[1])));
  7753. #ifndef NDEBUG
  7754. for (int k = 0; k < nc; k++) {
  7755. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  7756. UNUSED(x);
  7757. assert(!isnan(x));
  7758. assert(!isinf(x));
  7759. }
  7760. #endif
  7761. }
  7762. }
  7763. static void ggml_compute_forward_silu_back(
  7764. const struct ggml_compute_params * params,
  7765. const struct ggml_tensor * src0,
  7766. const struct ggml_tensor * grad,
  7767. struct ggml_tensor * dst) {
  7768. switch (src0->type) {
  7769. case GGML_TYPE_F32:
  7770. {
  7771. ggml_compute_forward_silu_back_f32(params, src0, grad, dst);
  7772. } break;
  7773. default:
  7774. {
  7775. GGML_ASSERT(false);
  7776. } break;
  7777. }
  7778. }
  7779. static void ggml_compute_forward_hardswish_f32(
  7780. const struct ggml_compute_params * params,
  7781. const struct ggml_tensor * src0,
  7782. struct ggml_tensor * dst) {
  7783. assert(params->ith == 0);
  7784. assert(ggml_are_same_shape(src0, dst));
  7785. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7786. return;
  7787. }
  7788. const int n = ggml_nrows(src0);
  7789. const int nc = src0->ne[0];
  7790. assert(dst->nb[0] == sizeof(float));
  7791. assert(src0->nb[0] == sizeof(float));
  7792. for (int i = 0; i < n; i++) {
  7793. ggml_vec_hardswish_f32(nc,
  7794. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7795. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7796. }
  7797. }
  7798. static void ggml_compute_forward_hardswish(
  7799. const struct ggml_compute_params * params,
  7800. const struct ggml_tensor * src0,
  7801. struct ggml_tensor * dst) {
  7802. switch (src0->type) {
  7803. case GGML_TYPE_F32:
  7804. {
  7805. ggml_compute_forward_hardswish_f32(params, src0, dst);
  7806. } break;
  7807. default:
  7808. {
  7809. GGML_ASSERT(false);
  7810. } break;
  7811. }
  7812. }
  7813. static void ggml_compute_forward_hardsigmoid_f32(
  7814. const struct ggml_compute_params * params,
  7815. const struct ggml_tensor * src0,
  7816. struct ggml_tensor * dst) {
  7817. assert(params->ith == 0);
  7818. assert(ggml_are_same_shape(src0, dst));
  7819. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7820. return;
  7821. }
  7822. const int n = ggml_nrows(src0);
  7823. const int nc = src0->ne[0];
  7824. assert(dst->nb[0] == sizeof(float));
  7825. assert(src0->nb[0] == sizeof(float));
  7826. for (int i = 0; i < n; i++) {
  7827. ggml_vec_hardsigmoid_f32(nc,
  7828. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7829. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7830. }
  7831. }
  7832. static void ggml_compute_forward_hardsigmoid(
  7833. const struct ggml_compute_params * params,
  7834. const struct ggml_tensor * src0,
  7835. struct ggml_tensor * dst) {
  7836. switch (src0->type) {
  7837. case GGML_TYPE_F32:
  7838. {
  7839. ggml_compute_forward_hardsigmoid_f32(params, src0, dst);
  7840. } break;
  7841. default:
  7842. {
  7843. GGML_ASSERT(false);
  7844. } break;
  7845. }
  7846. }
  7847. // ggml_compute_forward_norm
  7848. static void ggml_compute_forward_norm_f32(
  7849. const struct ggml_compute_params * params,
  7850. const struct ggml_tensor * src0,
  7851. struct ggml_tensor * dst) {
  7852. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7853. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7854. return;
  7855. }
  7856. GGML_ASSERT(src0->nb[0] == sizeof(float));
  7857. const int ith = params->ith;
  7858. const int nth = params->nth;
  7859. GGML_TENSOR_UNARY_OP_LOCALS
  7860. float eps;
  7861. memcpy(&eps, dst->op_params, sizeof(float));
  7862. GGML_ASSERT(eps > 0.0f);
  7863. // TODO: optimize
  7864. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7865. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7866. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  7867. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  7868. ggml_float sum = 0.0;
  7869. for (int64_t i00 = 0; i00 < ne00; i00++) {
  7870. sum += (ggml_float)x[i00];
  7871. }
  7872. float mean = sum/ne00;
  7873. float * y = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  7874. ggml_float sum2 = 0.0;
  7875. for (int64_t i00 = 0; i00 < ne00; i00++) {
  7876. float v = x[i00] - mean;
  7877. y[i00] = v;
  7878. sum2 += (ggml_float)(v*v);
  7879. }
  7880. float variance = sum2/ne00;
  7881. const float scale = 1.0f/sqrtf(variance + eps);
  7882. ggml_vec_scale_f32(ne00, y, scale);
  7883. }
  7884. }
  7885. }
  7886. }
  7887. static void ggml_compute_forward_norm(
  7888. const struct ggml_compute_params * params,
  7889. const struct ggml_tensor * src0,
  7890. struct ggml_tensor * dst) {
  7891. switch (src0->type) {
  7892. case GGML_TYPE_F32:
  7893. {
  7894. ggml_compute_forward_norm_f32(params, src0, dst);
  7895. } break;
  7896. default:
  7897. {
  7898. GGML_ASSERT(false);
  7899. } break;
  7900. }
  7901. }
  7902. // ggml_compute_forward_group_rms_norm
  7903. static void ggml_compute_forward_rms_norm_f32(
  7904. const struct ggml_compute_params * params,
  7905. const struct ggml_tensor * src0,
  7906. struct ggml_tensor * dst) {
  7907. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7908. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7909. return;
  7910. }
  7911. GGML_ASSERT(src0->nb[0] == sizeof(float));
  7912. const int ith = params->ith;
  7913. const int nth = params->nth;
  7914. GGML_TENSOR_UNARY_OP_LOCALS
  7915. float eps;
  7916. memcpy(&eps, dst->op_params, sizeof(float));
  7917. GGML_ASSERT(eps > 0.0f);
  7918. // TODO: optimize
  7919. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7920. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7921. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  7922. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  7923. ggml_float sum = 0.0;
  7924. for (int64_t i00 = 0; i00 < ne00; i00++) {
  7925. sum += (ggml_float)(x[i00] * x[i00]);
  7926. }
  7927. const float mean = sum/ne00;
  7928. float * y = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  7929. memcpy(y, x, ne00 * sizeof(float));
  7930. // for (int i00 = 0; i00 < ne00; i00++) {
  7931. // y[i00] = x[i00];
  7932. // }
  7933. const float scale = 1.0f/sqrtf(mean + eps);
  7934. ggml_vec_scale_f32(ne00, y, scale);
  7935. }
  7936. }
  7937. }
  7938. }
  7939. static void ggml_compute_forward_rms_norm(
  7940. const struct ggml_compute_params * params,
  7941. const struct ggml_tensor * src0,
  7942. struct ggml_tensor * dst) {
  7943. switch (src0->type) {
  7944. case GGML_TYPE_F32:
  7945. {
  7946. ggml_compute_forward_rms_norm_f32(params, src0, dst);
  7947. } break;
  7948. default:
  7949. {
  7950. GGML_ASSERT(false);
  7951. } break;
  7952. }
  7953. }
  7954. static void ggml_compute_forward_rms_norm_back_f32(
  7955. const struct ggml_compute_params * params,
  7956. const struct ggml_tensor * src0,
  7957. const struct ggml_tensor * src1,
  7958. struct ggml_tensor * dst) {
  7959. GGML_ASSERT(ggml_are_same_shape(src0, dst) && ggml_are_same_shape(src0, src1));
  7960. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7961. return;
  7962. }
  7963. GGML_ASSERT(src0->nb[0] == sizeof(float));
  7964. const int ith = params->ith;
  7965. const int nth = params->nth;
  7966. GGML_TENSOR_BINARY_OP_LOCALS
  7967. float eps;
  7968. memcpy(&eps, dst->op_params, sizeof(float));
  7969. // TODO: optimize
  7970. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7971. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7972. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  7973. // src1 is same shape as src0 => same indices
  7974. const int64_t i11 = i01;
  7975. const int64_t i12 = i02;
  7976. const int64_t i13 = i03;
  7977. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  7978. const float * dz = (float *) ((char *) src1->data + i11*nb11 + i12*nb12 + i13*nb13);
  7979. ggml_float sum_xx = 0.0;
  7980. ggml_float sum_xdz = 0.0;
  7981. for (int64_t i00 = 0; i00 < ne00; i00++) {
  7982. sum_xx += (ggml_float)(x[i00] * x[i00]);
  7983. sum_xdz += (ggml_float)(x[i00] * dz[i00]);
  7984. }
  7985. //const float mean = (float)(sum_xx)/ne00;
  7986. const float mean_eps = (float)(sum_xx)/ne00 + eps;
  7987. const float sum_eps = (float)(sum_xx) + eps*ne00;
  7988. //const float mean_xdz = (float)(sum_xdz)/ne00;
  7989. // we could cache rms from forward pass to improve performance.
  7990. // to do this implement ggml_rms and compose ggml_rms_norm using ggml_rms.
  7991. //const float rms = sqrtf(mean_eps);
  7992. const float rrms = 1.0f / sqrtf(mean_eps);
  7993. //const float scale = -rrms/(ne00 * mean_eps); // -1/(n*rms**3)
  7994. {
  7995. // z = rms_norm(x)
  7996. //
  7997. // rms_norm(src0) =
  7998. // scale(
  7999. // src0,
  8000. // div(
  8001. // 1,
  8002. // sqrt(
  8003. // add(
  8004. // scale(
  8005. // sum(
  8006. // sqr(
  8007. // src0)),
  8008. // (1.0/N)),
  8009. // eps))));
  8010. // postorder:
  8011. // ## op args grad
  8012. // 00 param src0 grad[#00]
  8013. // 01 const 1
  8014. // 02 sqr (#00) grad[#02]
  8015. // 03 sum (#02) grad[#03]
  8016. // 04 const 1/N
  8017. // 05 scale (#03, #04) grad[#05]
  8018. // 06 const eps
  8019. // 07 add (#05, #06) grad[#07]
  8020. // 08 sqrt (#07) grad[#08]
  8021. // 09 div (#01,#08) grad[#09]
  8022. // 10 scale (#00,#09) grad[#10]
  8023. //
  8024. // backward pass, given grad[#10]
  8025. // #10: scale
  8026. // grad[#00] += scale(grad[#10],#09)
  8027. // grad[#09] += sum(mul(grad[#10],#00))
  8028. // #09: div
  8029. // grad[#08] += neg(mul(grad[#09], div(#09,#08)))
  8030. // #08: sqrt
  8031. // grad[#07] += mul(grad[#08], div(0.5, #08))
  8032. // #07: add
  8033. // grad[#05] += grad[#07]
  8034. // #05: scale
  8035. // grad[#03] += scale(grad[#05],#04)
  8036. // #03: sum
  8037. // grad[#02] += repeat(grad[#03], #02)
  8038. // #02:
  8039. // grad[#00] += scale(mul(#00, grad[#02]), 2.0)
  8040. //
  8041. // substitute and simplify:
  8042. // grad[#00] = scale(grad(#10), #09) + scale(mul(#00, grad[#02]), 2.0)
  8043. // grad[#02] = repeat(grad[#03], #02)
  8044. // grad[#02] = repeat(scale(grad[#05],#04), #02)
  8045. // grad[#02] = repeat(scale(grad[#07],#04), #02)
  8046. // grad[#02] = repeat(scale(mul(grad[#08], div(0.5, #08)),#04), #02)
  8047. // grad[#02] = repeat(scale(mul(neg(mul(grad[#09], div(#09,#08))), div(0.5, #08)),#04), #02)
  8048. // grad[#02] = repeat(scale(mul(neg(mul(sum(mul(grad[#10],#00)), div(#09,#08))), div(0.5, #08)),#04), #02)
  8049. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(#09,#08) * div(0.5, #08) * (1/N)), #02)
  8050. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(div(#01,#08),#08) * div(0.5, #08) * (1/N)), #02)
  8051. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(1,#08*#08) * div(0.5, #08) * (1/N)), #02)
  8052. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(1,#07) * div(0.5, #08) * (1/N)), #02)
  8053. // grad[#00] = scale(grad(#10), #09) + scale(mul(#00, grad[#02]), 2.0)
  8054. // grad[#00] = scale(grad(#10), #09) + scale(mul(#00, repeat(-(sum(mul(grad[#10],#00)) * div(1,#07) * div(0.5, #08) * (1/N)), #02)), 2.0)
  8055. // grad[#00] = scale(grad(#10), #09) + scale(scale(#00, -(sum(mul(grad[#10],#00)) * div(1,#07) * div(0.5, #08) * (1/N))), 2.0)
  8056. // grad[#00] = scale(grad(#10), #09) + scale(#00, -(sum(mul(grad[#10],#00)) * div(1,#07) * div(1,#08) * (1/N)))
  8057. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(1,#07*#08) * (-1/N))
  8058. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(1,#07*#08) * (-1/N))
  8059. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(1,mean_eps*rms) * (-1/N))
  8060. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(-1,rms*N*mean_eps))
  8061. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(-1,rms*N*(sum_xx/N+eps)))
  8062. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(-1,rms*N*sum_xx+rms*N*eps))
  8063. // grad[#00] = scale(dz, rrms) + scale(x, sum(mul(dz,x)) * div(-1,rms*N*mean_eps))
  8064. // grad[#00] = scale(dz, rrms) + scale(x, sum_xdz * div(-1,rms*N*mean_eps))
  8065. // a = b*c + d*e
  8066. // a = b*c*f/f + d*e*f/f
  8067. // a = (b*c*f + d*e*f)*(1/f)
  8068. // a = (b*c*(1/c) + d*e*(1/c))*(1/(1/c))
  8069. // a = (b + d*e/c)*c
  8070. // b = dz, c = rrms, d = x, e = sum_xdz * div(-1,rms*N*mean_eps)
  8071. // a = (dz + x*sum_xdz * div(-1,rms*N*mean_eps)/rrms)*rrms
  8072. // a = (dz + x*sum_xdz * div(-1,rms*N*mean_eps)*rms)*rrms
  8073. // a = (dz + x*sum_xdz * div(-rms,rms*N*mean_eps))*rrms
  8074. // a = (dz + x*sum_xdz * div(-1,N*mean_eps))*rrms
  8075. // a = (dz + x*div(-sum_xdz,N*mean_eps))*rrms
  8076. // a = (dz + x*div(-mean_xdz,mean_eps))*rrms
  8077. // grad[#00] = scale(dz + scale(x, div(-mean_xdz,mean_eps)),rrms)
  8078. // grad[#00] = scale(dz + scale(x, -mean_xdz/mean_eps),rrms)
  8079. // dx = scale(dz + scale(x, -mean_xdz/mean_eps),rrms)
  8080. }
  8081. // dx = scale(dz + scale(x, -mean_xdz/mean_eps),rrms)
  8082. // post-order:
  8083. // dx := x
  8084. // dx := scale(dx,-mean_xdz/mean_eps)
  8085. // dx := add(dx, dz)
  8086. // dx := scale(dx, rrms)
  8087. float * dx = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  8088. ggml_vec_cpy_f32 (ne00, dx, x);
  8089. // ggml_vec_scale_f32(ne00, dx, -mean_xdz/mean_eps);
  8090. ggml_vec_scale_f32(ne00, dx, (float)(-sum_xdz)/sum_eps);
  8091. ggml_vec_acc_f32 (ne00, dx, dz);
  8092. ggml_vec_scale_f32(ne00, dx, rrms);
  8093. }
  8094. }
  8095. }
  8096. }
  8097. static void ggml_compute_forward_rms_norm_back(
  8098. const struct ggml_compute_params * params,
  8099. const struct ggml_tensor * src0,
  8100. const struct ggml_tensor * src1,
  8101. struct ggml_tensor * dst) {
  8102. switch (src0->type) {
  8103. case GGML_TYPE_F32:
  8104. {
  8105. ggml_compute_forward_rms_norm_back_f32(params, src0, src1, dst);
  8106. } break;
  8107. default:
  8108. {
  8109. GGML_ASSERT(false);
  8110. } break;
  8111. }
  8112. }
  8113. // ggml_compute_forward_group_norm
  8114. static void ggml_compute_forward_group_norm_f32(
  8115. const struct ggml_compute_params * params,
  8116. const struct ggml_tensor * src0,
  8117. struct ggml_tensor * dst) {
  8118. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8119. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8120. return;
  8121. }
  8122. GGML_ASSERT(src0->nb[0] == sizeof(float));
  8123. const int ith = params->ith;
  8124. const int nth = params->nth;
  8125. GGML_TENSOR_UNARY_OP_LOCALS
  8126. const float eps = 1e-6f; // TODO: make this a parameter
  8127. // TODO: optimize
  8128. int n_channels = src0->ne[2];
  8129. int n_groups = dst->op_params[0];
  8130. int n_channels_per_group = (n_channels + n_groups - 1) / n_groups;
  8131. for (int i = ith; i < n_groups; i+=nth) {
  8132. int start = i * n_channels_per_group;
  8133. int end = start + n_channels_per_group;
  8134. if (end > n_channels) {
  8135. end = n_channels;
  8136. }
  8137. int step = end - start;
  8138. for (int64_t i03 = 0; i03 < ne03; i03++) {
  8139. ggml_float sum = 0.0;
  8140. for (int64_t i02 = start; i02 < end; i02++) {
  8141. for (int64_t i01 = 0; i01 < ne01; i01++) {
  8142. const float * x = (float *)((char *) src0->data + i01 * nb01 + i02 * nb02 + i03 * nb03);
  8143. for (int64_t i00 = 0; i00 < ne00; i00++) {
  8144. sum += (ggml_float)x[i00];
  8145. }
  8146. }
  8147. }
  8148. float mean = sum / (ne00 * ne01 * step);
  8149. ggml_float sum2 = 0.0;
  8150. for (int64_t i02 = start; i02 < end; i02++) {
  8151. for (int64_t i01 = 0; i01 < ne01; i01++) {
  8152. const float * x = (float *)((char *) src0->data + i01 * nb01 + i02 * nb02 + i03 * nb03);
  8153. float * y = (float *)((char *) dst->data + i01 * nb1 + i02 * nb2 + i03 * nb3);
  8154. for (int64_t i00 = 0; i00 < ne00; i00++) {
  8155. float v = x[i00] - mean;
  8156. y[i00] = v;
  8157. sum2 += (ggml_float)(v * v);
  8158. }
  8159. }
  8160. }
  8161. float variance = sum2 / (ne00 * ne01 * step);
  8162. const float scale = 1.0f / sqrtf(variance + eps);
  8163. for (int64_t i02 = start; i02 < end; i02++) {
  8164. for (int64_t i01 = 0; i01 < ne01; i01++) {
  8165. float * y = (float *)((char *) dst->data + i01 * nb1 + i02 * nb2 + i03 * nb3);
  8166. ggml_vec_scale_f32(ne00, y, scale);
  8167. }
  8168. }
  8169. }
  8170. }
  8171. }
  8172. static void ggml_compute_forward_group_norm(
  8173. const struct ggml_compute_params * params,
  8174. const struct ggml_tensor * src0,
  8175. struct ggml_tensor * dst) {
  8176. switch (src0->type) {
  8177. case GGML_TYPE_F32:
  8178. {
  8179. ggml_compute_forward_group_norm_f32(params, src0, dst);
  8180. } break;
  8181. default:
  8182. {
  8183. GGML_ASSERT(false);
  8184. } break;
  8185. }
  8186. }
  8187. // ggml_compute_forward_mul_mat
  8188. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  8189. // helper function to determine if it is better to use BLAS or not
  8190. // for large matrices, BLAS is faster
  8191. static bool ggml_compute_forward_mul_mat_use_blas(struct ggml_tensor * dst) {
  8192. const struct ggml_tensor * src0 = dst->src[0];
  8193. const struct ggml_tensor * src1 = dst->src[1];
  8194. //const int64_t ne00 = src0->ne[0];
  8195. //const int64_t ne01 = src0->ne[1];
  8196. const int64_t ne10 = src1->ne[0];
  8197. const int64_t ne0 = dst->ne[0];
  8198. const int64_t ne1 = dst->ne[1];
  8199. // NOTE: with GGML_OP_MUL_MAT_ID we don't want to go through the BLAS branch because it will dequantize (to_float)
  8200. // all the experts for each batch element and the processing would become incredibly slow
  8201. // TODO: find the optimal values for these
  8202. if (dst->op != GGML_OP_MUL_MAT_ID &&
  8203. ggml_is_contiguous(src0) &&
  8204. ggml_is_contiguous(src1) &&
  8205. //src0->type == GGML_TYPE_F32 &&
  8206. src1->type == GGML_TYPE_F32 &&
  8207. (ne0 >= 32 && ne1 >= 32 && ne10 >= 32)) {
  8208. /*printf("BLAS: %d %d %d %d %d\n", ne0, ne1, ne10, ne00, ne01);*/
  8209. return true;
  8210. }
  8211. return false;
  8212. }
  8213. #endif
  8214. static void ggml_compute_forward_mul_mat(
  8215. const struct ggml_compute_params * params,
  8216. const struct ggml_tensor * src0,
  8217. const struct ggml_tensor * src1,
  8218. struct ggml_tensor * dst) {
  8219. int64_t t0 = ggml_perf_time_us();
  8220. UNUSED(t0);
  8221. GGML_TENSOR_BINARY_OP_LOCALS
  8222. const int ith = params->ith;
  8223. const int nth = params->nth;
  8224. const enum ggml_type type = src0->type;
  8225. const bool src1_cont = ggml_is_contiguous(src1);
  8226. ggml_vec_dot_t const vec_dot = type_traits[type].vec_dot;
  8227. enum ggml_type const vec_dot_type = type_traits[type].vec_dot_type;
  8228. ggml_from_float_t const from_float_to_vec_dot = type_traits[vec_dot_type].from_float;
  8229. GGML_ASSERT(ne0 == ne01);
  8230. GGML_ASSERT(ne1 == ne11);
  8231. GGML_ASSERT(ne2 == ne12);
  8232. GGML_ASSERT(ne3 == ne13);
  8233. // we don't support permuted src0 or src1
  8234. GGML_ASSERT(nb00 == ggml_type_size(type));
  8235. GGML_ASSERT(nb10 == ggml_type_size(src1->type));
  8236. // dst cannot be transposed or permuted
  8237. GGML_ASSERT(nb0 == sizeof(float));
  8238. GGML_ASSERT(nb0 <= nb1);
  8239. GGML_ASSERT(nb1 <= nb2);
  8240. GGML_ASSERT(nb2 <= nb3);
  8241. // broadcast factors
  8242. const int64_t r2 = ne12/ne02;
  8243. const int64_t r3 = ne13/ne03;
  8244. // nb01 >= nb00 - src0 is not transposed
  8245. // compute by src0 rows
  8246. #if defined(GGML_USE_CLBLAST)
  8247. if (ggml_cl_can_mul_mat(src0, src1, dst)) {
  8248. if (params->ith == 0 && params->type == GGML_TASK_COMPUTE) {
  8249. ggml_cl_mul_mat(src0, src1, dst, params->wdata, params->wsize);
  8250. }
  8251. return;
  8252. }
  8253. #endif
  8254. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  8255. if (ggml_compute_forward_mul_mat_use_blas(dst)) {
  8256. const int64_t ne_plane = ne01*ne00;
  8257. const size_t desired_wsize = ne13*ne12*ne_plane*sizeof(float);
  8258. UNUSED(desired_wsize);
  8259. if (params->type == GGML_TASK_INIT) {
  8260. if (type != GGML_TYPE_F32) {
  8261. assert(params->wsize >= desired_wsize);
  8262. // parallelize by src0 rows
  8263. for (int64_t i13 = 0; i13 < ne13; i13++) {
  8264. for (int64_t i12 = 0; i12 < ne12; i12++) {
  8265. // broadcast src0 into src1 across 2nd,3rd dimension
  8266. const int64_t i03 = i13/r3;
  8267. const int64_t i02 = i12/r2;
  8268. const void * x = (char *) src0->data + i02*nb02 + i03*nb03;
  8269. float * const wdata = (float *) params->wdata + i13*ne12*ne_plane + i12*ne_plane;
  8270. ggml_to_float_t const to_float = type_traits[type].to_float;
  8271. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  8272. to_float((const char *) x + i01*nb01, wdata + i01*ne00, ne00);
  8273. }
  8274. }
  8275. }
  8276. }
  8277. return;
  8278. }
  8279. if (params->type == GGML_TASK_FINALIZE) {
  8280. return;
  8281. }
  8282. // perform sgemm, parallelization controlled by blas lib
  8283. if (ith != 0) {
  8284. return;
  8285. }
  8286. //const int64_t tgemm0 = ggml_perf_time_us();
  8287. for (int64_t i13 = 0; i13 < ne13; i13++) {
  8288. for (int64_t i12 = 0; i12 < ne12; i12++) {
  8289. const int64_t i03 = i13/r3;
  8290. const int64_t i02 = i12/r2;
  8291. const void * x = (char *) src0->data + i02*nb02 + i03*nb03;
  8292. const float * y = (float *) ((char *) src1->data + i12*nb12 + i13*nb13);
  8293. float * d = (float *) ((char *) dst->data + i12*nb2 + i13*nb3);
  8294. if (type != GGML_TYPE_F32) {
  8295. x = (float *) params->wdata + i13*ne12*ne_plane + i12*ne_plane;
  8296. }
  8297. cblas_sgemm(CblasRowMajor, CblasNoTrans, CblasTrans,
  8298. ne1, ne01, ne10,
  8299. 1.0f, y, ne10,
  8300. x, ne00,
  8301. 0.0f, d, ne01);
  8302. }
  8303. }
  8304. //printf("cblas_sgemm = %.3f ms, %lld flops\n", (ggml_perf_time_us() - tgemm0)/1000.0, ne13*ne12*ne1*ne01*ne10*2);
  8305. //printf("CBLAS = %f ms, %d x %d x %d x %d\n", (ggml_perf_time_us() - t0)/1000.0, ne0, ne1, ne2, ne3);
  8306. return;
  8307. }
  8308. #endif
  8309. if (params->type == GGML_TASK_INIT) {
  8310. if (ith != 0) {
  8311. return;
  8312. }
  8313. if (src1->type != vec_dot_type) {
  8314. char * wdata = params->wdata;
  8315. const size_t row_size = ggml_row_size(vec_dot_type, ne10);
  8316. assert(params->wsize >= ne11*ne12*ne13*row_size);
  8317. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  8318. for (int64_t i13 = 0; i13 < ne13; ++i13) {
  8319. for (int64_t i12 = 0; i12 < ne12; ++i12) {
  8320. for (int64_t i11 = 0; i11 < ne11; ++i11) {
  8321. from_float_to_vec_dot((float *)((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11), (void *) wdata, ne10);
  8322. wdata += row_size;
  8323. }
  8324. }
  8325. }
  8326. }
  8327. return;
  8328. }
  8329. if (params->type == GGML_TASK_FINALIZE) {
  8330. return;
  8331. }
  8332. const void * wdata = (src1->type == vec_dot_type) ? src1->data : params->wdata;
  8333. const size_t row_size = ggml_row_size(vec_dot_type, ne10);
  8334. const int64_t nr0 = ne01; // src0 rows
  8335. const int64_t nr1 = ne1*ne12*ne13; // src1 rows
  8336. //printf("nr0 = %lld, nr1 = %lld\n", nr0, nr1);
  8337. // distribute the thread work across the inner or outer loop based on which one is larger
  8338. const int64_t nth0 = nr0 > nr1 ? nth : 1; // parallelize by src0 rows
  8339. const int64_t nth1 = nr0 > nr1 ? 1 : nth; // parallelize by src1 rows
  8340. const int64_t ith0 = ith % nth0;
  8341. const int64_t ith1 = ith / nth0;
  8342. const int64_t dr0 = (nr0 + nth0 - 1)/nth0;
  8343. const int64_t dr1 = (nr1 + nth1 - 1)/nth1;
  8344. const int64_t ir010 = dr0*ith0;
  8345. const int64_t ir011 = MIN(ir010 + dr0, nr0);
  8346. const int64_t ir110 = dr1*ith1;
  8347. const int64_t ir111 = MIN(ir110 + dr1, nr1);
  8348. //printf("ir010 = %6lld, ir011 = %6lld, ir110 = %6lld, ir111 = %6lld\n", ir010, ir011, ir110, ir111);
  8349. // threads with no work simply yield (not sure if it helps)
  8350. if (ir010 >= ir011 || ir110 >= ir111) {
  8351. sched_yield();
  8352. return;
  8353. }
  8354. assert(ne12 % ne02 == 0);
  8355. assert(ne13 % ne03 == 0);
  8356. // block-tiling attempt
  8357. const int64_t blck_0 = 16;
  8358. const int64_t blck_1 = 16;
  8359. // attempt to reduce false-sharing (does not seem to make a difference)
  8360. float tmp[16];
  8361. for (int64_t iir1 = ir110; iir1 < ir111; iir1 += blck_1) {
  8362. for (int64_t iir0 = ir010; iir0 < ir011; iir0 += blck_0) {
  8363. for (int64_t ir1 = iir1; ir1 < iir1 + blck_1 && ir1 < ir111; ++ir1) {
  8364. const int64_t i13 = (ir1/(ne12*ne1));
  8365. const int64_t i12 = (ir1 - i13*ne12*ne1)/ne1;
  8366. const int64_t i11 = (ir1 - i13*ne12*ne1 - i12*ne1);
  8367. // broadcast src0 into src1
  8368. const int64_t i03 = i13/r3;
  8369. const int64_t i02 = i12/r2;
  8370. const int64_t i1 = i11;
  8371. const int64_t i2 = i12;
  8372. const int64_t i3 = i13;
  8373. const char * src0_row = (const char *) src0->data + (0 + i02*nb02 + i03*nb03);
  8374. // desc: when src1 is not a contiguous memory block we have to calculate the offset using the strides
  8375. // if it is, then we have either copied the data to params->wdata and made it contiguous or we are using
  8376. // the original src1 data pointer, so we should index using the indices directly
  8377. // TODO: this is a bit of a hack, we should probably have a better way to handle this
  8378. const char * src1_col = (const char *) wdata +
  8379. (src1_cont || src1->type != vec_dot_type
  8380. ? (i11 + i12*ne11 + i13*ne12*ne11)*row_size
  8381. : (i11*nb11 + i12*nb12 + i13*nb13));
  8382. float * dst_col = (float *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3));
  8383. //for (int64_t ir0 = iir0; ir0 < iir0 + blck_0 && ir0 < ir011; ++ir0) {
  8384. // vec_dot(ne00, &dst_col[ir0], src0_row + ir0*nb01, src1_col);
  8385. //}
  8386. for (int64_t ir0 = iir0; ir0 < iir0 + blck_0 && ir0 < ir011; ++ir0) {
  8387. vec_dot(ne00, &tmp[ir0 - iir0], src0_row + ir0*nb01, src1_col);
  8388. }
  8389. memcpy(&dst_col[iir0], tmp, (MIN(iir0 + blck_0, ir011) - iir0)*sizeof(float));
  8390. }
  8391. }
  8392. }
  8393. }
  8394. // ggml_compute_forward_mul_mat_id
  8395. static void ggml_compute_forward_mul_mat_id(
  8396. const struct ggml_compute_params * params,
  8397. const struct ggml_tensor * ids,
  8398. const struct ggml_tensor * src1,
  8399. struct ggml_tensor * dst) {
  8400. const struct ggml_tensor * src0 = dst->src[2]; // only for GGML_TENSOR_BINARY_OP_LOCALS
  8401. GGML_TENSOR_BINARY_OP_LOCALS
  8402. const int ith = params->ith;
  8403. const int nth = params->nth;
  8404. const enum ggml_type type = src0->type;
  8405. const bool src1_cont = ggml_is_contiguous(src1);
  8406. ggml_vec_dot_t const vec_dot = type_traits[type].vec_dot;
  8407. enum ggml_type const vec_dot_type = type_traits[type].vec_dot_type;
  8408. ggml_from_float_t const from_float_to_vec_dot = type_traits[vec_dot_type].from_float;
  8409. GGML_ASSERT(ne0 == ne01);
  8410. GGML_ASSERT(ne1 == ne11);
  8411. GGML_ASSERT(ne2 == ne12);
  8412. GGML_ASSERT(ne3 == ne13);
  8413. // we don't support permuted src0 or src1
  8414. GGML_ASSERT(nb00 == ggml_type_size(type));
  8415. GGML_ASSERT(nb10 == ggml_type_size(src1->type));
  8416. // dst cannot be transposed or permuted
  8417. GGML_ASSERT(nb0 == sizeof(float));
  8418. GGML_ASSERT(nb0 <= nb1);
  8419. GGML_ASSERT(nb1 <= nb2);
  8420. GGML_ASSERT(nb2 <= nb3);
  8421. // broadcast factors
  8422. const int64_t r2 = ne12/ne02;
  8423. const int64_t r3 = ne13/ne03;
  8424. // row groups
  8425. const int id = ggml_get_op_params_i32(dst, 0);
  8426. const int n_as = ggml_get_op_params_i32(dst, 1);
  8427. char * wdata_src1_end = (src1->type == vec_dot_type) ?
  8428. (char *) params->wdata :
  8429. (char *) params->wdata + GGML_PAD(ggml_row_size(vec_dot_type, ggml_nelements(src1)), sizeof(int64_t));
  8430. int64_t * matrix_row_counts = (int64_t *) (wdata_src1_end); // [n_as]
  8431. int64_t * matrix_rows = matrix_row_counts + n_as; // [n_as][ne11]
  8432. #define MMID_MATRIX_ROW(row_id, i1) matrix_rows[(row_id)*ne11 + (i1)]
  8433. if (params->type == GGML_TASK_INIT) {
  8434. if (ith != 0) {
  8435. return;
  8436. }
  8437. char * wdata = params->wdata;
  8438. if (src1->type != vec_dot_type) {
  8439. const size_t row_size = ggml_row_size(vec_dot_type, ne10);
  8440. assert(params->wsize >= ne11*ne12*ne13*row_size);
  8441. assert(src1->type == GGML_TYPE_F32);
  8442. for (int64_t i13 = 0; i13 < ne13; ++i13) {
  8443. for (int64_t i12 = 0; i12 < ne12; ++i12) {
  8444. for (int64_t i11 = 0; i11 < ne11; ++i11) {
  8445. from_float_to_vec_dot((float *)((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11), (void *) wdata, ne10);
  8446. wdata += row_size;
  8447. }
  8448. }
  8449. }
  8450. }
  8451. // initialize matrix_row_counts
  8452. GGML_ASSERT(wdata == wdata_src1_end);
  8453. memset(matrix_row_counts, 0, n_as*sizeof(int64_t));
  8454. // group rows by src0 matrix
  8455. for (int64_t i01 = 0; i01 < ids->ne[1]; i01++) {
  8456. const int32_t row_id = *(const int32_t *) ((const char *) ids->data + i01*ids->nb[1] + id*ids->nb[0]);
  8457. GGML_ASSERT(row_id >= 0 && row_id < n_as);
  8458. MMID_MATRIX_ROW(row_id, matrix_row_counts[row_id]) = i01;
  8459. matrix_row_counts[row_id] += 1;
  8460. }
  8461. return;
  8462. }
  8463. if (params->type == GGML_TASK_FINALIZE) {
  8464. return;
  8465. }
  8466. // compute each matrix multiplication in sequence
  8467. for (int cur_a = 0; cur_a < n_as; ++cur_a) {
  8468. const int64_t cne1 = matrix_row_counts[cur_a];
  8469. if (cne1 == 0) {
  8470. continue;
  8471. }
  8472. const struct ggml_tensor * src0_cur = dst->src[cur_a + 2];
  8473. const void * wdata = (src1->type == vec_dot_type) ? src1->data : params->wdata;
  8474. const size_t row_size = ggml_row_size(vec_dot_type, ne10);
  8475. const int64_t nr0 = ne01; // src0 rows
  8476. const int64_t nr1 = cne1*ne12*ne13; // src1 rows
  8477. //printf("nr0 = %lld, nr1 = %lld\n", nr0, nr1);
  8478. // distribute the thread work across the inner or outer loop based on which one is larger
  8479. const int64_t nth0 = nr0 > nr1 ? nth : 1; // parallelize by src0 rows
  8480. const int64_t nth1 = nr0 > nr1 ? 1 : nth; // parallelize by src1 rows
  8481. const int64_t ith0 = ith % nth0;
  8482. const int64_t ith1 = ith / nth0;
  8483. const int64_t dr0 = (nr0 + nth0 - 1)/nth0;
  8484. const int64_t dr1 = (nr1 + nth1 - 1)/nth1;
  8485. const int64_t ir010 = dr0*ith0;
  8486. const int64_t ir011 = MIN(ir010 + dr0, nr0);
  8487. const int64_t ir110 = dr1*ith1;
  8488. const int64_t ir111 = MIN(ir110 + dr1, nr1);
  8489. //printf("ir010 = %6lld, ir011 = %6lld, ir110 = %6lld, ir111 = %6lld\n", ir010, ir011, ir110, ir111);
  8490. // threads with no work simply yield (not sure if it helps)
  8491. if (ir010 >= ir011 || ir110 >= ir111) {
  8492. sched_yield();
  8493. continue;
  8494. }
  8495. assert(ne12 % ne02 == 0);
  8496. assert(ne13 % ne03 == 0);
  8497. // block-tiling attempt
  8498. const int64_t blck_0 = 16;
  8499. const int64_t blck_1 = 16;
  8500. // attempt to reduce false-sharing (does not seem to make a difference)
  8501. float tmp[16];
  8502. for (int64_t iir1 = ir110; iir1 < ir111; iir1 += blck_1) {
  8503. for (int64_t iir0 = ir010; iir0 < ir011; iir0 += blck_0) {
  8504. for (int64_t ir1 = iir1; ir1 < iir1 + blck_1 && ir1 < ir111; ++ir1) {
  8505. const int64_t i13 = (ir1/(ne12*cne1)); // Note: currently, src1 is always a matrix
  8506. const int64_t i12 = (ir1 - i13*ne12*cne1)/cne1;
  8507. const int64_t _i11 = (ir1 - i13*ne12*cne1 - i12*cne1);
  8508. const int64_t i11 = MMID_MATRIX_ROW(cur_a, _i11);
  8509. // broadcast src0 into src1
  8510. const int64_t i03 = i13/r3;
  8511. const int64_t i02 = i12/r2;
  8512. const int64_t i1 = i11;
  8513. const int64_t i2 = i12;
  8514. const int64_t i3 = i13;
  8515. const char * src0_row = (const char *) src0_cur->data + (0 + i02*nb02 + i03*nb03);
  8516. // desc: when src1 is not a contiguous memory block we have to calculate the offset using the strides
  8517. // if it is, then we have either copied the data to params->wdata and made it contiguous or we are using
  8518. // the original src1 data pointer, so we should index using the indices directly
  8519. // TODO: this is a bit of a hack, we should probably have a better way to handle this
  8520. const char * src1_col = (const char *) wdata +
  8521. (src1_cont || src1->type != vec_dot_type
  8522. ? (i11 + i12*ne11 + i13*ne12*ne11)*row_size
  8523. : (i11*nb11 + i12*nb12 + i13*nb13));
  8524. float * dst_col = (float *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3));
  8525. //for (int64_t ir0 = iir0; ir0 < iir0 + blck_0 && ir0 < ir011; ++ir0) {
  8526. // vec_dot(ne00, &dst_col[ir0], src0_row + ir0*nb01, src1_col);
  8527. //}
  8528. for (int64_t ir0 = iir0; ir0 < iir0 + blck_0 && ir0 < ir011; ++ir0) {
  8529. vec_dot(ne00, &tmp[ir0 - iir0], src0_row + ir0*nb01, src1_col);
  8530. }
  8531. memcpy(&dst_col[iir0], tmp, (MIN(iir0 + blck_0, ir011) - iir0)*sizeof(float));
  8532. }
  8533. }
  8534. }
  8535. }
  8536. #undef MMID_MATRIX_ROW
  8537. }
  8538. // ggml_compute_forward_out_prod
  8539. static void ggml_compute_forward_out_prod_f32(
  8540. const struct ggml_compute_params * params,
  8541. const struct ggml_tensor * src0,
  8542. const struct ggml_tensor * src1,
  8543. struct ggml_tensor * dst) {
  8544. // int64_t t0 = ggml_perf_time_us();
  8545. // UNUSED(t0);
  8546. GGML_TENSOR_BINARY_OP_LOCALS
  8547. const int ith = params->ith;
  8548. const int nth = params->nth;
  8549. GGML_ASSERT(ne0 == ne00);
  8550. GGML_ASSERT(ne1 == ne10);
  8551. GGML_ASSERT(ne2 == ne02);
  8552. GGML_ASSERT(ne02 == ne12);
  8553. GGML_ASSERT(ne3 == ne13);
  8554. GGML_ASSERT(ne03 == ne13);
  8555. // we don't support permuted src0 or src1
  8556. GGML_ASSERT(nb00 == sizeof(float));
  8557. // dst cannot be transposed or permuted
  8558. GGML_ASSERT(nb0 == sizeof(float));
  8559. // GGML_ASSERT(nb0 <= nb1);
  8560. // GGML_ASSERT(nb1 <= nb2);
  8561. // GGML_ASSERT(nb2 <= nb3);
  8562. // nb01 >= nb00 - src0 is not transposed
  8563. // compute by src0 rows
  8564. // TODO: #if defined(GGML_USE_CUBLAS) ggml_cuda_out_prod
  8565. // TODO: #if defined(GGML_USE_CLBLAST)
  8566. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  8567. bool use_blas = ggml_is_matrix(src0) &&
  8568. ggml_is_matrix(src1) &&
  8569. ggml_is_contiguous(src0) &&
  8570. (ggml_is_contiguous(src1) || ggml_is_transposed(src1));
  8571. #endif
  8572. if (params->type == GGML_TASK_INIT) {
  8573. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) // gemm beta will zero dst
  8574. if (use_blas) {
  8575. return;
  8576. }
  8577. #endif
  8578. if (ith != 0) {
  8579. return;
  8580. }
  8581. ggml_vec_set_f32(ne0*ne1*ne2*ne3, dst->data, 0);
  8582. return;
  8583. }
  8584. if (params->type == GGML_TASK_FINALIZE) {
  8585. return;
  8586. }
  8587. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  8588. if (use_blas) {
  8589. if (params->ith != 0) { // All threads other than the first do no work.
  8590. return;
  8591. }
  8592. // Arguments to ggml_compute_forward_out_prod (expressed as major,minor)
  8593. // src0: (k,n)
  8594. // src1: (k,m)
  8595. // dst: (m,n)
  8596. //
  8597. // Arguments to sgemm (see https://github.com/Reference-LAPACK/lapack/blob/master/BLAS/SRC/sgemm.f)
  8598. // Also expressed as (major,minor)
  8599. // a: (m,k): so src1 transposed
  8600. // b: (k,n): so src0
  8601. // c: (m,n)
  8602. //
  8603. // However, if ggml_is_transposed(src1) is true, then
  8604. // src1->data already contains a transposed version, so sgemm mustn't
  8605. // transpose it further.
  8606. int n = src0->ne[0];
  8607. int k = src0->ne[1];
  8608. int m = src1->ne[0];
  8609. int transposeA, lda;
  8610. if (!ggml_is_transposed(src1)) {
  8611. transposeA = CblasTrans;
  8612. lda = m;
  8613. } else {
  8614. transposeA = CblasNoTrans;
  8615. lda = k;
  8616. }
  8617. float * a = (float *) ((char *) src1->data);
  8618. float * b = (float *) ((char *) src0->data);
  8619. float * c = (float *) ((char *) dst->data);
  8620. cblas_sgemm(CblasRowMajor, transposeA, CblasNoTrans, m, n, k, 1.0, a, lda, b, n, 0.0, c, n);
  8621. return;
  8622. }
  8623. #endif
  8624. // dst[:,:,:,:] = 0
  8625. // for i2,i3:
  8626. // for i1:
  8627. // for i01:
  8628. // for i0:
  8629. // dst[i0,i1,i2,i3] += src0[i0,i01,i2,i3] * src1[i1,i01,i2,i3]
  8630. // parallelize by last three dimensions
  8631. // total rows in dst
  8632. const int64_t nr = ne1*ne2*ne3;
  8633. // rows per thread
  8634. const int64_t dr = (nr + nth - 1)/nth;
  8635. // row range for this thread
  8636. const int64_t ir0 = dr*ith;
  8637. const int64_t ir1 = MIN(ir0 + dr, nr);
  8638. // block-tiling attempt
  8639. const int64_t blck_0 = MAX(GGML_VEC_MAD_UNROLL, 32);
  8640. const int64_t blck_1 = 16;
  8641. for (int64_t bir = ir0; bir < ir1; bir += blck_1) {
  8642. const int64_t bir1 = MIN(bir + blck_1, ir1);
  8643. for (int64_t bi01 = 0; bi01 < ne01; bi01 += blck_0) {
  8644. const int64_t bne01 = MIN(bi01 + blck_0, ne01);
  8645. for (int64_t ir = bir; ir < bir1; ++ir) {
  8646. // dst indices
  8647. const int64_t i3 = ir/(ne2*ne1);
  8648. const int64_t i2 = (ir - i3*ne2*ne1)/ne1;
  8649. const int64_t i1 = (ir - i3*ne2*ne1 - i2*ne1);
  8650. const int64_t i02 = i2;
  8651. const int64_t i03 = i3;
  8652. //const int64_t i10 = i1;
  8653. const int64_t i12 = i2;
  8654. const int64_t i13 = i3;
  8655. #if GGML_VEC_MAD_UNROLL > 2
  8656. const int64_t bne01_unroll = bne01 - (bne01 % GGML_VEC_MAD_UNROLL);
  8657. for (int64_t i01 = bi01; i01 < bne01_unroll; i01 += GGML_VEC_MAD_UNROLL) {
  8658. const int64_t i11 = i01;
  8659. float * s0 = (float *) ((char *) src0->data + ( i01*nb01 + i02*nb02 + i03*nb03));
  8660. float * s1 = (float *) ((char *) src1->data + (i1*nb10 + i11*nb11 + i12*nb12 + i13*nb13));
  8661. float * d = (float *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
  8662. ggml_vec_mad_f32_unroll(ne0, nb01, nb11, d, s0, s1);
  8663. }
  8664. for (int64_t i01 = bne01_unroll; i01 < bne01; ++i01) {
  8665. const int64_t i11 = i01;
  8666. float * s0 = (float *) ((char *) src0->data + ( i01*nb01 + i02*nb02 + i03*nb03));
  8667. float * s1 = (float *) ((char *) src1->data + (i1*nb10 + i11*nb11 + i12*nb12 + i13*nb13));
  8668. float * d = (float *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
  8669. ggml_vec_mad_f32(ne0, d, s0, *s1);
  8670. }
  8671. #else
  8672. for (int64_t i01 = bi01; i01 < bne01; ++i01) {
  8673. const int64_t i11 = i01;
  8674. float * s0 = (float *) ((char *) src0->data + ( i01*nb01 + i02*nb02 + i03*nb03));
  8675. float * s1 = (float *) ((char *) src1->data + (i1*nb10 + i11*nb11 + i12*nb12 + i13*nb13));
  8676. float * d = (float *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
  8677. ggml_vec_mad_f32(ne0, d, s0, *s1);
  8678. }
  8679. #endif
  8680. }
  8681. }
  8682. }
  8683. //int64_t t1 = ggml_perf_time_us();
  8684. //static int64_t acc = 0;
  8685. //acc += t1 - t0;
  8686. //if (t1 - t0 > 10) {
  8687. // printf("\n");
  8688. // printf("ne00 = %5d, ne01 = %5d, ne02 = %5d, ne03 = %5d\n", ne00, ne01, ne02, ne03);
  8689. // printf("nb00 = %5d, nb01 = %5d, nb02 = %5d, nb03 = %5d\n", nb00, nb01, nb02, nb03);
  8690. // printf("ne10 = %5d, ne11 = %5d, ne12 = %5d, ne13 = %5d\n", ne10, ne11, ne12, ne13);
  8691. // printf("nb10 = %5d, nb11 = %5d, nb12 = %5d, nb13 = %5d\n", nb10, nb11, nb12, nb13);
  8692. // printf("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX task %d/%d: %d us, acc = %d\n", ith, nth, (int) (t1 - t0), (int) acc);
  8693. //}
  8694. }
  8695. static void ggml_compute_forward_out_prod_q_f32(
  8696. const struct ggml_compute_params * params,
  8697. const struct ggml_tensor * src0,
  8698. const struct ggml_tensor * src1,
  8699. struct ggml_tensor * dst) {
  8700. // int64_t t0 = ggml_perf_time_us();
  8701. // UNUSED(t0);
  8702. GGML_TENSOR_BINARY_OP_LOCALS;
  8703. const int ith = params->ith;
  8704. const int nth = params->nth;
  8705. const enum ggml_type type = src0->type;
  8706. ggml_to_float_t const dequantize_row_q = type_traits[type].to_float;
  8707. GGML_ASSERT(ne02 == ne12);
  8708. GGML_ASSERT(ne03 == ne13);
  8709. GGML_ASSERT(ne2 == ne12);
  8710. GGML_ASSERT(ne3 == ne13);
  8711. // we don't support permuted src0 dim0
  8712. GGML_ASSERT(nb00 == ggml_type_size(type));
  8713. // dst dim0 cannot be transposed or permuted
  8714. GGML_ASSERT(nb0 == sizeof(float));
  8715. // GGML_ASSERT(nb0 <= nb1);
  8716. // GGML_ASSERT(nb1 <= nb2);
  8717. // GGML_ASSERT(nb2 <= nb3);
  8718. GGML_ASSERT(ne0 == ne00);
  8719. GGML_ASSERT(ne1 == ne10);
  8720. GGML_ASSERT(ne2 == ne02);
  8721. GGML_ASSERT(ne3 == ne03);
  8722. // nb01 >= nb00 - src0 is not transposed
  8723. // compute by src0 rows
  8724. // TODO: #if defined(GGML_USE_CUBLAS) ggml_cuda_out_prod
  8725. // TODO: #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CLBLAST)
  8726. if (params->type == GGML_TASK_INIT) {
  8727. if (ith != 0) {
  8728. return;
  8729. }
  8730. ggml_vec_set_f32(ne0*ne1*ne2*ne3, dst->data, 0);
  8731. return;
  8732. }
  8733. if (params->type == GGML_TASK_FINALIZE) {
  8734. return;
  8735. }
  8736. // parallelize by last three dimensions
  8737. // total rows in dst
  8738. const int64_t nr = ne1*ne2*ne3;
  8739. // rows per thread
  8740. const int64_t dr = (nr + nth - 1)/nth;
  8741. // row range for this thread
  8742. const int64_t ir0 = dr*ith;
  8743. const int64_t ir1 = MIN(ir0 + dr, nr);
  8744. // dst[:,:,:,:] = 0
  8745. // for i2,i3:
  8746. // for i1:
  8747. // for i01:
  8748. // for i0:
  8749. // dst[i0,i1,i2,i3] += src0[i0,i01,i2,i3] * src1[i1,i01,i2,i3]
  8750. float * wdata = (float *) params->wdata + (ne0 + CACHE_LINE_SIZE_F32) * ith;
  8751. for (int64_t ir = ir0; ir < ir1; ++ir) {
  8752. // dst indices
  8753. const int64_t i3 = ir/(ne2*ne1);
  8754. const int64_t i2 = (ir - i3*ne2*ne1)/ne1;
  8755. const int64_t i1 = (ir - i3*ne2*ne1 - i2*ne1);
  8756. const int64_t i02 = i2;
  8757. const int64_t i03 = i3;
  8758. //const int64_t i10 = i1;
  8759. const int64_t i12 = i2;
  8760. const int64_t i13 = i3;
  8761. for (int64_t i01 = 0; i01 < ne01; ++i01) {
  8762. const int64_t i11 = i01;
  8763. float * s0 = (float *) ((char *) src0->data + ( i01*nb01 + i02*nb02 + i03*nb03));
  8764. float * s1 = (float *) ((char *) src1->data + (i1*nb10 + i11*nb11 + i12*nb12 + i13*nb13));
  8765. float * d = (float *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
  8766. dequantize_row_q(s0, wdata, ne0);
  8767. ggml_vec_mad_f32(ne0, d, wdata, *s1);
  8768. }
  8769. }
  8770. //int64_t t1 = ggml_perf_time_us();
  8771. //static int64_t acc = 0;
  8772. //acc += t1 - t0;
  8773. //if (t1 - t0 > 10) {
  8774. // printf("\n");
  8775. // printf("ne00 = %5d, ne01 = %5d, ne02 = %5d, ne03 = %5d\n", ne00, ne01, ne02, ne03);
  8776. // printf("nb00 = %5d, nb01 = %5d, nb02 = %5d, nb03 = %5d\n", nb00, nb01, nb02, nb03);
  8777. // printf("ne10 = %5d, ne11 = %5d, ne12 = %5d, ne13 = %5d\n", ne10, ne11, ne12, ne13);
  8778. // printf("nb10 = %5d, nb11 = %5d, nb12 = %5d, nb13 = %5d\n", nb10, nb11, nb12, nb13);
  8779. // printf("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX task %d/%d: %d us, acc = %d\n", ith, nth, (int) (t1 - t0), (int) acc);
  8780. //}
  8781. }
  8782. static void ggml_compute_forward_out_prod(
  8783. const struct ggml_compute_params * params,
  8784. const struct ggml_tensor * src0,
  8785. const struct ggml_tensor * src1,
  8786. struct ggml_tensor * dst) {
  8787. switch (src0->type) {
  8788. case GGML_TYPE_Q4_0:
  8789. case GGML_TYPE_Q4_1:
  8790. case GGML_TYPE_Q5_0:
  8791. case GGML_TYPE_Q5_1:
  8792. case GGML_TYPE_Q8_0:
  8793. case GGML_TYPE_Q2_K:
  8794. case GGML_TYPE_Q3_K:
  8795. case GGML_TYPE_Q4_K:
  8796. case GGML_TYPE_Q5_K:
  8797. case GGML_TYPE_Q6_K:
  8798. case GGML_TYPE_IQ2_XXS:
  8799. case GGML_TYPE_IQ2_XS:
  8800. case GGML_TYPE_IQ3_XXS:
  8801. {
  8802. ggml_compute_forward_out_prod_q_f32(params, src0, src1, dst);
  8803. } break;
  8804. case GGML_TYPE_F16:
  8805. {
  8806. GGML_ASSERT(false); // todo
  8807. // ggml_compute_forward_out_prod_f16_f32(params, src0, src1, dst);
  8808. } break;
  8809. case GGML_TYPE_F32:
  8810. {
  8811. ggml_compute_forward_out_prod_f32(params, src0, src1, dst);
  8812. } break;
  8813. default:
  8814. {
  8815. GGML_ASSERT(false);
  8816. } break;
  8817. }
  8818. }
  8819. // ggml_compute_forward_scale
  8820. static void ggml_compute_forward_scale_f32(
  8821. const struct ggml_compute_params * params,
  8822. const struct ggml_tensor * src0,
  8823. struct ggml_tensor * dst) {
  8824. GGML_ASSERT(ggml_is_contiguous(src0));
  8825. GGML_ASSERT(ggml_is_contiguous(dst));
  8826. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8827. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8828. return;
  8829. }
  8830. // scale factor
  8831. float v;
  8832. memcpy(&v, dst->op_params, sizeof(float));
  8833. const int ith = params->ith;
  8834. const int nth = params->nth;
  8835. const int nc = src0->ne[0];
  8836. const int nr = ggml_nrows(src0);
  8837. // rows per thread
  8838. const int dr = (nr + nth - 1)/nth;
  8839. // row range for this thread
  8840. const int ir0 = dr*ith;
  8841. const int ir1 = MIN(ir0 + dr, nr);
  8842. const size_t nb01 = src0->nb[1];
  8843. const size_t nb1 = dst->nb[1];
  8844. for (int i1 = ir0; i1 < ir1; i1++) {
  8845. if (dst->data != src0->data) {
  8846. // src0 is same shape as dst => same indices
  8847. memcpy((char *)dst->data + i1*nb1, (char *)src0->data + i1*nb01, nc * sizeof(float));
  8848. }
  8849. ggml_vec_scale_f32(nc, (float *) ((char *) dst->data + i1*nb1), v);
  8850. }
  8851. }
  8852. static void ggml_compute_forward_scale(
  8853. const struct ggml_compute_params * params,
  8854. const struct ggml_tensor * src0,
  8855. struct ggml_tensor * dst) {
  8856. switch (src0->type) {
  8857. case GGML_TYPE_F32:
  8858. {
  8859. ggml_compute_forward_scale_f32(params, src0, dst);
  8860. } break;
  8861. default:
  8862. {
  8863. GGML_ASSERT(false);
  8864. } break;
  8865. }
  8866. }
  8867. // ggml_compute_forward_set
  8868. static void ggml_compute_forward_set_f32(
  8869. const struct ggml_compute_params * params,
  8870. const struct ggml_tensor * src0,
  8871. const struct ggml_tensor * src1,
  8872. struct ggml_tensor * dst) {
  8873. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8874. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  8875. // view src0 and dst with these strides and data offset inbytes during set
  8876. // nb0 is implicitly element_size because src0 and dst are contiguous
  8877. size_t nb1 = ((int32_t *) dst->op_params)[0];
  8878. size_t nb2 = ((int32_t *) dst->op_params)[1];
  8879. size_t nb3 = ((int32_t *) dst->op_params)[2];
  8880. size_t offset = ((int32_t *) dst->op_params)[3];
  8881. bool inplace = (bool) ((int32_t *) dst->op_params)[4];
  8882. if (!inplace && (params->type == GGML_TASK_INIT)) {
  8883. if (params->ith != 0) {
  8884. return;
  8885. }
  8886. // memcpy needs to be synchronized across threads to avoid race conditions.
  8887. // => do it in INIT phase
  8888. memcpy(
  8889. ((char *) dst->data),
  8890. ((char *) src0->data),
  8891. ggml_nbytes(dst));
  8892. }
  8893. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8894. return;
  8895. }
  8896. const int ith = params->ith;
  8897. const int nth = params->nth;
  8898. const int nr = ggml_nrows(src1);
  8899. const int nc = src1->ne[0];
  8900. GGML_TENSOR_LOCALS(int64_t, ne1, src1, ne)
  8901. GGML_TENSOR_LOCALS(size_t, nb1, src1, nb)
  8902. // src0 and dst as viewed during set
  8903. const size_t nb0 = ggml_element_size(src0);
  8904. const int im0 = (ne10 == 0 ? 0 : ne10-1);
  8905. const int im1 = (ne11 == 0 ? 0 : ne11-1);
  8906. const int im2 = (ne12 == 0 ? 0 : ne12-1);
  8907. const int im3 = (ne13 == 0 ? 0 : ne13-1);
  8908. GGML_ASSERT(offset + im0*nb0 + im1*nb1 + im2*nb2 + im3*nb3 <= ggml_nbytes(dst));
  8909. GGML_ASSERT(nb10 == sizeof(float));
  8910. // rows per thread
  8911. const int dr = (nr + nth - 1)/nth;
  8912. // row range for this thread
  8913. const int ir0 = dr*ith;
  8914. const int ir1 = MIN(ir0 + dr, nr);
  8915. for (int ir = ir0; ir < ir1; ++ir) {
  8916. // src0 and dst are viewed with shape of src1 and offset
  8917. // => same indices
  8918. const int i3 = ir/(ne12*ne11);
  8919. const int i2 = (ir - i3*ne12*ne11)/ne11;
  8920. const int i1 = (ir - i3*ne12*ne11 - i2*ne11);
  8921. ggml_vec_cpy_f32(nc,
  8922. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + offset),
  8923. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
  8924. }
  8925. }
  8926. static void ggml_compute_forward_set(
  8927. const struct ggml_compute_params * params,
  8928. const struct ggml_tensor * src0,
  8929. const struct ggml_tensor * src1,
  8930. struct ggml_tensor * dst) {
  8931. switch (src0->type) {
  8932. case GGML_TYPE_F32:
  8933. {
  8934. ggml_compute_forward_set_f32(params, src0, src1, dst);
  8935. } break;
  8936. case GGML_TYPE_F16:
  8937. case GGML_TYPE_Q4_0:
  8938. case GGML_TYPE_Q4_1:
  8939. case GGML_TYPE_Q5_0:
  8940. case GGML_TYPE_Q5_1:
  8941. case GGML_TYPE_Q8_0:
  8942. case GGML_TYPE_Q8_1:
  8943. case GGML_TYPE_Q2_K:
  8944. case GGML_TYPE_Q3_K:
  8945. case GGML_TYPE_Q4_K:
  8946. case GGML_TYPE_Q5_K:
  8947. case GGML_TYPE_Q6_K:
  8948. case GGML_TYPE_IQ2_XXS:
  8949. case GGML_TYPE_IQ2_XS:
  8950. case GGML_TYPE_IQ3_XXS:
  8951. default:
  8952. {
  8953. GGML_ASSERT(false);
  8954. } break;
  8955. }
  8956. }
  8957. // ggml_compute_forward_cpy
  8958. static void ggml_compute_forward_cpy(
  8959. const struct ggml_compute_params * params,
  8960. const struct ggml_tensor * src0,
  8961. struct ggml_tensor * dst) {
  8962. ggml_compute_forward_dup(params, src0, dst);
  8963. }
  8964. // ggml_compute_forward_cont
  8965. static void ggml_compute_forward_cont(
  8966. const struct ggml_compute_params * params,
  8967. const struct ggml_tensor * src0,
  8968. struct ggml_tensor * dst) {
  8969. ggml_compute_forward_dup(params, src0, dst);
  8970. }
  8971. // ggml_compute_forward_reshape
  8972. static void ggml_compute_forward_reshape(
  8973. const struct ggml_compute_params * params,
  8974. const struct ggml_tensor * src0,
  8975. struct ggml_tensor * dst) {
  8976. // NOP
  8977. UNUSED(params);
  8978. UNUSED(src0);
  8979. UNUSED(dst);
  8980. }
  8981. // ggml_compute_forward_view
  8982. static void ggml_compute_forward_view(
  8983. const struct ggml_compute_params * params,
  8984. const struct ggml_tensor * src0) {
  8985. // NOP
  8986. UNUSED(params);
  8987. UNUSED(src0);
  8988. }
  8989. // ggml_compute_forward_permute
  8990. static void ggml_compute_forward_permute(
  8991. const struct ggml_compute_params * params,
  8992. const struct ggml_tensor * src0) {
  8993. // NOP
  8994. UNUSED(params);
  8995. UNUSED(src0);
  8996. }
  8997. // ggml_compute_forward_transpose
  8998. static void ggml_compute_forward_transpose(
  8999. const struct ggml_compute_params * params,
  9000. const struct ggml_tensor * src0) {
  9001. // NOP
  9002. UNUSED(params);
  9003. UNUSED(src0);
  9004. }
  9005. // ggml_compute_forward_get_rows
  9006. static void ggml_compute_forward_get_rows_q(
  9007. const struct ggml_compute_params * params,
  9008. const struct ggml_tensor * src0,
  9009. const struct ggml_tensor * src1,
  9010. struct ggml_tensor * dst) {
  9011. assert(params->ith == 0);
  9012. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9013. return;
  9014. }
  9015. GGML_TENSOR_BINARY_OP_LOCALS
  9016. const int64_t nc = ne00;
  9017. const int64_t nr = ggml_nelements(src1); GGML_UNUSED(nr);
  9018. const enum ggml_type type = src0->type;
  9019. ggml_to_float_t const dequantize_row_q = type_traits[type].to_float;
  9020. assert(ne0 == nc);
  9021. assert(ne02 == ne11);
  9022. assert(nb00 == ggml_type_size(type));
  9023. assert(ggml_nrows(dst) == nr);
  9024. // TODO: multi-thread
  9025. for (int64_t i12 = 0; i12 < ne12; ++i12) {
  9026. for (int64_t i11 = 0; i11 < ne11; ++i11) {
  9027. for (int64_t i10 = 0; i10 < ne10; ++i10) {
  9028. const int64_t i01 = *(int32_t *) ((char *) src1->data + i10*nb10 + i11*nb11 + i12*nb12);
  9029. dequantize_row_q(
  9030. (const void *) ((char *) src0->data + i01*nb01 + i11*nb02 + i12*nb03),
  9031. (float *) ((char *) dst->data + i10*nb1 + i11*nb2 + i12*nb3), nc);
  9032. }
  9033. }
  9034. }
  9035. }
  9036. static void ggml_compute_forward_get_rows_f16(
  9037. const struct ggml_compute_params * params,
  9038. const struct ggml_tensor * src0,
  9039. const struct ggml_tensor * src1,
  9040. struct ggml_tensor * dst) {
  9041. assert(params->ith == 0);
  9042. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9043. return;
  9044. }
  9045. GGML_TENSOR_BINARY_OP_LOCALS
  9046. const int64_t nc = ne00;
  9047. const int64_t nr = ggml_nelements(src1); GGML_UNUSED(nr);
  9048. assert(ne0 == nc);
  9049. assert(ne02 == ne11);
  9050. assert(nb00 == sizeof(ggml_fp16_t));
  9051. assert(ggml_nrows(dst) == nr);
  9052. // TODO: multi-thread
  9053. for (int64_t i12 = 0; i12 < ne12; ++i12) {
  9054. for (int64_t i11 = 0; i11 < ne11; ++i11) {
  9055. for (int64_t i10 = 0; i10 < ne10; ++i10) {
  9056. const int64_t i01 = *(int32_t *) ((char *) src1->data + i10*nb10 + i11*nb11 + i12*nb12);
  9057. ggml_fp16_to_fp32_row(
  9058. (const void *) ((char *) src0->data + i01*nb01 + i11*nb02 + i12*nb03),
  9059. (float *) ((char *) dst->data + i10*nb1 + i11*nb2 + i12*nb3), nc);
  9060. }
  9061. }
  9062. }
  9063. }
  9064. static void ggml_compute_forward_get_rows_f32(
  9065. const struct ggml_compute_params * params,
  9066. const struct ggml_tensor * src0,
  9067. const struct ggml_tensor * src1,
  9068. struct ggml_tensor * dst) {
  9069. assert(params->ith == 0);
  9070. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9071. return;
  9072. }
  9073. GGML_TENSOR_BINARY_OP_LOCALS
  9074. const int64_t nc = ne00;
  9075. const int64_t nr = ggml_nelements(src1); GGML_UNUSED(nr);
  9076. assert(ne0 == nc);
  9077. assert(ne02 == ne11);
  9078. assert(nb00 == sizeof(float));
  9079. assert(ggml_nrows(dst) == nr);
  9080. // TODO: multi-thread
  9081. for (int64_t i12 = 0; i12 < ne12; ++i12) {
  9082. for (int64_t i11 = 0; i11 < ne11; ++i11) {
  9083. for (int64_t i10 = 0; i10 < ne10; ++i10) {
  9084. const int64_t i01 = *(int32_t *) ((char *) src1->data + i10*nb10 + i11*nb11 + i12*nb12);
  9085. ggml_vec_cpy_f32(nc,
  9086. (float *) ((char *) dst->data + i10*nb1 + i11*nb2 + i12*nb3),
  9087. (float *) ((char *) src0->data + i01*nb01 + i11*nb02 + i12*nb03));
  9088. }
  9089. }
  9090. }
  9091. }
  9092. static void ggml_compute_forward_get_rows(
  9093. const struct ggml_compute_params * params,
  9094. const struct ggml_tensor * src0,
  9095. const struct ggml_tensor * src1,
  9096. struct ggml_tensor * dst) {
  9097. switch (src0->type) {
  9098. case GGML_TYPE_Q4_0:
  9099. case GGML_TYPE_Q4_1:
  9100. case GGML_TYPE_Q5_0:
  9101. case GGML_TYPE_Q5_1:
  9102. case GGML_TYPE_Q8_0:
  9103. case GGML_TYPE_Q8_1:
  9104. case GGML_TYPE_Q2_K:
  9105. case GGML_TYPE_Q3_K:
  9106. case GGML_TYPE_Q4_K:
  9107. case GGML_TYPE_Q5_K:
  9108. case GGML_TYPE_Q6_K:
  9109. case GGML_TYPE_IQ2_XXS:
  9110. case GGML_TYPE_IQ2_XS:
  9111. case GGML_TYPE_IQ3_XXS:
  9112. {
  9113. ggml_compute_forward_get_rows_q(params, src0, src1, dst);
  9114. } break;
  9115. case GGML_TYPE_F16:
  9116. {
  9117. ggml_compute_forward_get_rows_f16(params, src0, src1, dst);
  9118. } break;
  9119. case GGML_TYPE_F32:
  9120. case GGML_TYPE_I32:
  9121. {
  9122. ggml_compute_forward_get_rows_f32(params, src0, src1, dst);
  9123. } break;
  9124. default:
  9125. {
  9126. GGML_ASSERT(false);
  9127. } break;
  9128. }
  9129. //static bool first = true;
  9130. //printf("ne0 = %d, ne1 = %d, ne2 = %d\n", dst->ne[0], dst->ne[1], dst->ne[2]);
  9131. //if (first) {
  9132. // first = false;
  9133. //} else {
  9134. // for (int k = 0; k < dst->ne[1]; ++k) {
  9135. // for (int j = 0; j < dst->ne[0]/16; ++j) {
  9136. // for (int i = 0; i < 16; ++i) {
  9137. // printf("%8.4f ", ((float *) dst->data)[k*dst->ne[0] + j*16 + i]);
  9138. // }
  9139. // printf("\n");
  9140. // }
  9141. // printf("\n");
  9142. // }
  9143. // printf("\n");
  9144. // exit(0);
  9145. //}
  9146. }
  9147. // ggml_compute_forward_get_rows_back
  9148. static void ggml_compute_forward_get_rows_back_f32_f16(
  9149. const struct ggml_compute_params * params,
  9150. const struct ggml_tensor * src0,
  9151. const struct ggml_tensor * src1,
  9152. struct ggml_tensor * dst) {
  9153. GGML_ASSERT(params->ith == 0);
  9154. GGML_ASSERT(ggml_is_contiguous(dst));
  9155. // ggml_compute_forward_dup_same_cont(params, opt0, dst);
  9156. if (params->type == GGML_TASK_INIT) {
  9157. if (params->ith != 0) {
  9158. return;
  9159. }
  9160. memset(dst->data, 0, ggml_nbytes(dst));
  9161. }
  9162. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9163. return;
  9164. }
  9165. const int nc = src0->ne[0];
  9166. const int nr = ggml_nelements(src1);
  9167. GGML_ASSERT( dst->ne[0] == nc);
  9168. GGML_ASSERT(src0->nb[0] == sizeof(ggml_fp16_t));
  9169. for (int i = 0; i < nr; ++i) {
  9170. const int r = ((int32_t *) src1->data)[i];
  9171. for (int j = 0; j < nc; ++j) {
  9172. ggml_fp16_t v = ((ggml_fp16_t *) ((char *) src0->data + i*src0->nb[1]))[j];
  9173. ((float *) ((char *) dst->data + r*dst->nb[1]))[j] += GGML_FP16_TO_FP32(v);
  9174. }
  9175. }
  9176. }
  9177. static void ggml_compute_forward_get_rows_back_f32(
  9178. const struct ggml_compute_params * params,
  9179. const struct ggml_tensor * src0,
  9180. const struct ggml_tensor * src1,
  9181. struct ggml_tensor * dst) {
  9182. GGML_ASSERT(params->ith == 0);
  9183. GGML_ASSERT(ggml_is_contiguous(dst));
  9184. // ggml_compute_forward_dup_same_cont(params, opt0, dst);
  9185. if (params->type == GGML_TASK_INIT) {
  9186. if (params->ith != 0) {
  9187. return;
  9188. }
  9189. memset(dst->data, 0, ggml_nbytes(dst));
  9190. }
  9191. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9192. return;
  9193. }
  9194. const int nc = src0->ne[0];
  9195. const int nr = ggml_nelements(src1);
  9196. GGML_ASSERT( dst->ne[0] == nc);
  9197. GGML_ASSERT(src0->nb[0] == sizeof(float));
  9198. for (int i = 0; i < nr; ++i) {
  9199. const int r = ((int32_t *) src1->data)[i];
  9200. ggml_vec_add_f32(nc,
  9201. (float *) ((char *) dst->data + r*dst->nb[1]),
  9202. (float *) ((char *) dst->data + r*dst->nb[1]),
  9203. (float *) ((char *) src0->data + i*src0->nb[1]));
  9204. }
  9205. }
  9206. static void ggml_compute_forward_get_rows_back(
  9207. const struct ggml_compute_params * params,
  9208. const struct ggml_tensor * src0,
  9209. const struct ggml_tensor * src1,
  9210. struct ggml_tensor * dst) {
  9211. switch (src0->type) {
  9212. case GGML_TYPE_F16:
  9213. {
  9214. ggml_compute_forward_get_rows_back_f32_f16(params, src0, src1, dst);
  9215. } break;
  9216. case GGML_TYPE_F32:
  9217. {
  9218. ggml_compute_forward_get_rows_back_f32(params, src0, src1, dst);
  9219. } break;
  9220. default:
  9221. {
  9222. GGML_ASSERT(false);
  9223. } break;
  9224. }
  9225. //static bool first = true;
  9226. //printf("ne0 = %d, ne1 = %d, ne2 = %d\n", dst->ne[0], dst->ne[1], dst->ne[2]);
  9227. //if (first) {
  9228. // first = false;
  9229. //} else {
  9230. // for (int k = 0; k < dst->ne[1]; ++k) {
  9231. // for (int j = 0; j < dst->ne[0]/16; ++j) {
  9232. // for (int i = 0; i < 16; ++i) {
  9233. // printf("%8.4f ", ((float *) dst->data)[k*dst->ne[0] + j*16 + i]);
  9234. // }
  9235. // printf("\n");
  9236. // }
  9237. // printf("\n");
  9238. // }
  9239. // printf("\n");
  9240. // exit(0);
  9241. //}
  9242. }
  9243. // ggml_compute_forward_diag
  9244. static void ggml_compute_forward_diag_f32(
  9245. const struct ggml_compute_params * params,
  9246. const struct ggml_tensor * src0,
  9247. struct ggml_tensor * dst) {
  9248. GGML_ASSERT(params->ith == 0);
  9249. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9250. return;
  9251. }
  9252. // TODO: handle transposed/permuted matrices
  9253. GGML_TENSOR_UNARY_OP_LOCALS
  9254. GGML_ASSERT(ne00 == ne0);
  9255. GGML_ASSERT(ne00 == ne1);
  9256. GGML_ASSERT(ne01 == 1);
  9257. GGML_ASSERT(ne02 == ne2);
  9258. GGML_ASSERT(ne03 == ne3);
  9259. GGML_ASSERT(nb00 == sizeof(float));
  9260. GGML_ASSERT(nb0 == sizeof(float));
  9261. for (int i3 = 0; i3 < ne3; i3++) {
  9262. for (int i2 = 0; i2 < ne2; i2++) {
  9263. for (int i1 = 0; i1 < ne1; i1++) {
  9264. float * d = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  9265. float * s = (float *)((char *) src0->data + i3*nb03 + i2*nb02);
  9266. for (int i0 = 0; i0 < i1; i0++) {
  9267. d[i0] = 0;
  9268. }
  9269. d[i1] = s[i1];
  9270. for (int i0 = i1+1; i0 < ne0; i0++) {
  9271. d[i0] = 0;
  9272. }
  9273. }
  9274. }
  9275. }
  9276. }
  9277. static void ggml_compute_forward_diag(
  9278. const struct ggml_compute_params * params,
  9279. const struct ggml_tensor * src0,
  9280. struct ggml_tensor * dst) {
  9281. switch (src0->type) {
  9282. case GGML_TYPE_F32:
  9283. {
  9284. ggml_compute_forward_diag_f32(params, src0, dst);
  9285. } break;
  9286. default:
  9287. {
  9288. GGML_ASSERT(false);
  9289. } break;
  9290. }
  9291. }
  9292. // ggml_compute_forward_diag_mask_inf
  9293. static void ggml_compute_forward_diag_mask_f32(
  9294. const struct ggml_compute_params * params,
  9295. const struct ggml_tensor * src0,
  9296. struct ggml_tensor * dst,
  9297. const float value) {
  9298. const int ith = params->ith;
  9299. const int nth = params->nth;
  9300. const int n_past = ((int32_t *) dst->op_params)[0];
  9301. const bool inplace = src0->data == dst->data;
  9302. GGML_ASSERT(n_past >= 0);
  9303. if (!inplace && (params->type == GGML_TASK_INIT)) {
  9304. if (ith != 0) {
  9305. return;
  9306. }
  9307. // memcpy needs to be synchronized across threads to avoid race conditions.
  9308. // => do it in INIT phase
  9309. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  9310. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  9311. memcpy(
  9312. ((char *) dst->data),
  9313. ((char *) src0->data),
  9314. ggml_nbytes(dst));
  9315. }
  9316. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9317. return;
  9318. }
  9319. // TODO: handle transposed/permuted matrices
  9320. const int n = ggml_nrows(src0);
  9321. const int nc = src0->ne[0];
  9322. const int nr = src0->ne[1];
  9323. const int nz = n/nr;
  9324. GGML_ASSERT( dst->nb[0] == sizeof(float));
  9325. GGML_ASSERT(src0->nb[0] == sizeof(float));
  9326. for (int k = 0; k < nz; k++) {
  9327. for (int j = ith; j < nr; j += nth) {
  9328. for (int i = n_past; i < nc; i++) {
  9329. if (i > n_past + j) {
  9330. *(float *)((char *) dst->data + k*dst->nb[2] + j*dst->nb[1] + i*dst->nb[0]) = value;
  9331. }
  9332. }
  9333. }
  9334. }
  9335. }
  9336. static void ggml_compute_forward_diag_mask_inf(
  9337. const struct ggml_compute_params * params,
  9338. const struct ggml_tensor * src0,
  9339. struct ggml_tensor * dst) {
  9340. switch (src0->type) {
  9341. case GGML_TYPE_F32:
  9342. {
  9343. ggml_compute_forward_diag_mask_f32(params, src0, dst, -INFINITY);
  9344. } break;
  9345. default:
  9346. {
  9347. GGML_ASSERT(false);
  9348. } break;
  9349. }
  9350. }
  9351. static void ggml_compute_forward_diag_mask_zero(
  9352. const struct ggml_compute_params * params,
  9353. const struct ggml_tensor * src0,
  9354. struct ggml_tensor * dst) {
  9355. switch (src0->type) {
  9356. case GGML_TYPE_F32:
  9357. {
  9358. ggml_compute_forward_diag_mask_f32(params, src0, dst, 0);
  9359. } break;
  9360. default:
  9361. {
  9362. GGML_ASSERT(false);
  9363. } break;
  9364. }
  9365. }
  9366. // ggml_compute_forward_soft_max
  9367. static void ggml_compute_forward_soft_max_f32(
  9368. const struct ggml_compute_params * params,
  9369. const struct ggml_tensor * src0,
  9370. const struct ggml_tensor * src1,
  9371. struct ggml_tensor * dst) {
  9372. assert(ggml_is_contiguous(dst));
  9373. assert(ggml_are_same_shape(src0, dst));
  9374. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9375. return;
  9376. }
  9377. float scale = 1.0f;
  9378. memcpy(&scale, (float *) dst->op_params + 0, sizeof(float));
  9379. // TODO: handle transposed/permuted matrices
  9380. const int ith = params->ith;
  9381. const int nth = params->nth;
  9382. const int64_t ne11 = src1 ? src1->ne[1] : 1;
  9383. const int nc = src0->ne[0];
  9384. const int nr = ggml_nrows(src0);
  9385. // rows per thread
  9386. const int dr = (nr + nth - 1)/nth;
  9387. // row range for this thread
  9388. const int ir0 = dr*ith;
  9389. const int ir1 = MIN(ir0 + dr, nr);
  9390. float * wp = (float *) params->wdata + (nc + CACHE_LINE_SIZE_F32) * ith;
  9391. for (int i1 = ir0; i1 < ir1; i1++) {
  9392. float * sp = (float *)((char *) src0->data + i1*src0->nb[1]);
  9393. float * dp = (float *)((char *) dst->data + i1*dst->nb[1]);
  9394. // broadcast the mask across rows
  9395. float * mp = src1 ? (float *)((char *) src1->data + (i1%ne11)*src1->nb[1]) : NULL;
  9396. ggml_vec_cpy_f32 (nc, wp, sp);
  9397. ggml_vec_scale_f32(nc, wp, scale);
  9398. if (mp) {
  9399. ggml_vec_acc_f32(nc, wp, mp);
  9400. }
  9401. #ifndef NDEBUG
  9402. for (int i = 0; i < nc; ++i) {
  9403. //printf("p[%d] = %f\n", i, p[i]);
  9404. assert(!isnan(wp[i]));
  9405. }
  9406. #endif
  9407. float max = -INFINITY;
  9408. ggml_vec_max_f32(nc, &max, wp);
  9409. ggml_float sum = 0.0;
  9410. uint16_t scvt;
  9411. for (int i = 0; i < nc; i++) {
  9412. if (wp[i] == -INFINITY) {
  9413. dp[i] = 0.0f;
  9414. } else {
  9415. // const float val = (wp[i] == -INFINITY) ? 0.0 : exp(wp[i] - max);
  9416. ggml_fp16_t s = GGML_FP32_TO_FP16(wp[i] - max);
  9417. memcpy(&scvt, &s, sizeof(scvt));
  9418. const float val = GGML_FP16_TO_FP32(ggml_table_exp_f16[scvt]);
  9419. sum += (ggml_float)val;
  9420. dp[i] = val;
  9421. }
  9422. }
  9423. assert(sum > 0.0);
  9424. sum = 1.0/sum;
  9425. ggml_vec_scale_f32(nc, dp, sum);
  9426. #ifndef NDEBUG
  9427. for (int i = 0; i < nc; ++i) {
  9428. assert(!isnan(dp[i]));
  9429. assert(!isinf(dp[i]));
  9430. }
  9431. #endif
  9432. }
  9433. }
  9434. static void ggml_compute_forward_soft_max(
  9435. const struct ggml_compute_params * params,
  9436. const struct ggml_tensor * src0,
  9437. const struct ggml_tensor * src1,
  9438. struct ggml_tensor * dst) {
  9439. switch (src0->type) {
  9440. case GGML_TYPE_F32:
  9441. {
  9442. ggml_compute_forward_soft_max_f32(params, src0, src1, dst);
  9443. } break;
  9444. default:
  9445. {
  9446. GGML_ASSERT(false);
  9447. } break;
  9448. }
  9449. }
  9450. // ggml_compute_forward_soft_max_back
  9451. static void ggml_compute_forward_soft_max_back_f32(
  9452. const struct ggml_compute_params * params,
  9453. const struct ggml_tensor * src0,
  9454. const struct ggml_tensor * src1,
  9455. struct ggml_tensor * dst) {
  9456. GGML_ASSERT(ggml_is_contiguous(src0));
  9457. GGML_ASSERT(ggml_is_contiguous(src1));
  9458. GGML_ASSERT(ggml_is_contiguous(dst));
  9459. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  9460. GGML_ASSERT(ggml_are_same_shape(src1, dst));
  9461. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9462. return;
  9463. }
  9464. // TODO: handle transposed/permuted matrices
  9465. const int ith = params->ith;
  9466. const int nth = params->nth;
  9467. const int nc = src0->ne[0];
  9468. const int nr = ggml_nrows(src0);
  9469. // rows per thread
  9470. const int dr = (nr + nth - 1)/nth;
  9471. // row range for this thread
  9472. const int ir0 = dr*ith;
  9473. const int ir1 = MIN(ir0 + dr, nr);
  9474. for (int i1 = ir0; i1 < ir1; i1++) {
  9475. float *dy = (float *)((char *) src0->data + i1*src0->nb[1]);
  9476. float *y = (float *)((char *) src1->data + i1*src1->nb[1]);
  9477. float *dx = (float *)((char *) dst->data + i1*dst->nb[1]);
  9478. #ifndef NDEBUG
  9479. for (int i = 0; i < nc; ++i) {
  9480. //printf("p[%d] = %f\n", i, p[i]);
  9481. assert(!isnan(dy[i]));
  9482. assert(!isnan(y[i]));
  9483. }
  9484. #endif
  9485. // Jii = yi - yi*yi
  9486. // Jij = -yi*yj
  9487. // J = diag(y)-y.T*y
  9488. // dx = J * dy
  9489. // dxk = sum_i(Jki * dyi)
  9490. // dxk = sum_i(-yk*yi * dyi) - (-yk*yk)*dyk + (yk - yk*yk)*dyk
  9491. // dxk = sum_i(-yk*yi * dyi) + yk*yk*dyk + yk*dyk - yk*yk*dyk
  9492. // dxk = sum_i(-yk*yi * dyi) + yk*dyk
  9493. // dxk = -yk * sum_i(yi * dyi) + yk*dyk
  9494. // dxk = -yk * dot(y, dy) + yk*dyk
  9495. // dxk = yk * (- dot(y, dy) + dyk)
  9496. // dxk = yk * (dyk - dot(y, dy))
  9497. //
  9498. // post-order:
  9499. // dot_y_dy := dot(y, dy)
  9500. // dx := dy
  9501. // dx := dx - dot_y_dy
  9502. // dx := dx * y
  9503. // linear runtime, no additional memory
  9504. float dot_y_dy = 0;
  9505. ggml_vec_dot_f32 (nc, &dot_y_dy, y, dy);
  9506. ggml_vec_cpy_f32 (nc, dx, dy);
  9507. ggml_vec_acc1_f32(nc, dx, -dot_y_dy);
  9508. ggml_vec_mul_f32 (nc, dx, dx, y);
  9509. #ifndef NDEBUG
  9510. for (int i = 0; i < nc; ++i) {
  9511. assert(!isnan(dx[i]));
  9512. assert(!isinf(dx[i]));
  9513. }
  9514. #endif
  9515. }
  9516. }
  9517. static void ggml_compute_forward_soft_max_back(
  9518. const struct ggml_compute_params * params,
  9519. const struct ggml_tensor * src0,
  9520. const struct ggml_tensor * src1,
  9521. struct ggml_tensor * dst) {
  9522. switch (src0->type) {
  9523. case GGML_TYPE_F32:
  9524. {
  9525. ggml_compute_forward_soft_max_back_f32(params, src0, src1, dst);
  9526. } break;
  9527. default:
  9528. {
  9529. GGML_ASSERT(false);
  9530. } break;
  9531. }
  9532. }
  9533. // ggml_compute_forward_alibi
  9534. static void ggml_compute_forward_alibi_f32(
  9535. const struct ggml_compute_params * params,
  9536. const struct ggml_tensor * src0,
  9537. struct ggml_tensor * dst) {
  9538. assert(params->ith == 0);
  9539. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9540. return;
  9541. }
  9542. //const int n_past = ((int32_t *) dst->op_params)[0];
  9543. const int n_head = ((int32_t *) dst->op_params)[1];
  9544. float max_bias;
  9545. memcpy(&max_bias, (int32_t *) dst->op_params + 2, sizeof(float));
  9546. const int64_t ne0 = src0->ne[0]; // all_seq_len = n_past + ne1
  9547. const int64_t ne1 = src0->ne[1]; // seq_len_without_past
  9548. const int64_t ne2 = src0->ne[2]; // n_head -> this is k
  9549. //const int64_t ne3 = src0->ne[3]; // 1 -> bsz
  9550. const int64_t n = ggml_nrows(src0);
  9551. const int64_t ne2_ne3 = n/ne1; // ne2*ne3
  9552. const size_t nb0 = src0->nb[0];
  9553. const size_t nb1 = src0->nb[1];
  9554. const size_t nb2 = src0->nb[2];
  9555. //const int nb3 = src0->nb[3];
  9556. GGML_ASSERT(nb0 == sizeof(float));
  9557. GGML_ASSERT(n_head == ne2);
  9558. // add alibi to src0 (KQ_scaled)
  9559. const int n_heads_log2_floor = 1 << (int) floor(log2(n_head));
  9560. const float m0 = powf(2.0f, -(max_bias) / n_heads_log2_floor);
  9561. const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_heads_log2_floor);
  9562. for (int64_t i = 0; i < ne0; i++) {
  9563. for (int64_t j = 0; j < ne1; j++) {
  9564. for (int64_t k = 0; k < ne2_ne3; k++) {
  9565. float * const src = (float *)((char *) src0->data + i*nb0 + j*nb1 + k*nb2);
  9566. float * pdst = (float *)((char *) dst->data + i*nb0 + j*nb1 + k*nb2);
  9567. // TODO: k*nb2 or k*nb3
  9568. float m_k;
  9569. if (k < n_heads_log2_floor) {
  9570. m_k = powf(m0, k + 1);
  9571. } else {
  9572. m_k = powf(m1, 2 * (k - n_heads_log2_floor) + 1);
  9573. }
  9574. pdst[0] = i * m_k + src[0];
  9575. }
  9576. }
  9577. }
  9578. }
  9579. static void ggml_compute_forward_alibi_f16(
  9580. const struct ggml_compute_params * params,
  9581. const struct ggml_tensor * src0,
  9582. struct ggml_tensor * dst) {
  9583. assert(params->ith == 0);
  9584. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9585. return;
  9586. }
  9587. //const int n_past = ((int32_t *) dst->op_params)[0];
  9588. const int n_head = ((int32_t *) dst->op_params)[1];
  9589. float max_bias;
  9590. memcpy(&max_bias, (int32_t *) dst->op_params + 2, sizeof(float));
  9591. const int ne0 = src0->ne[0]; // all_seq_len = n_past + ne1
  9592. const int ne1 = src0->ne[1]; // seq_len_without_past
  9593. const int ne2 = src0->ne[2]; // n_head -> this is k
  9594. //const int ne3 = src0->ne[3]; // 1 -> bsz
  9595. const int n = ggml_nrows(src0);
  9596. const int ne2_ne3 = n/ne1; // ne2*ne3
  9597. const int nb0 = src0->nb[0];
  9598. const int nb1 = src0->nb[1];
  9599. const int nb2 = src0->nb[2];
  9600. //const int nb3 = src0->nb[3];
  9601. GGML_ASSERT(nb0 == sizeof(ggml_fp16_t));
  9602. //GGML_ASSERT(ne1 + n_past == ne0); (void) n_past;
  9603. GGML_ASSERT(n_head == ne2);
  9604. // add alibi to src0 (KQ_scaled)
  9605. const int n_heads_log2_floor = 1 << (int) floor(log2(n_head));
  9606. const float m0 = powf(2.0f, -(max_bias) / n_heads_log2_floor);
  9607. const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_heads_log2_floor);
  9608. for (int i = 0; i < ne0; i++) {
  9609. for (int j = 0; j < ne1; j++) {
  9610. for (int k = 0; k < ne2_ne3; k++) {
  9611. ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i*nb0 + j*nb1 + k*nb2);
  9612. float * pdst = (float *)((char *) dst->data + i*nb0 + j*nb1 + k*nb2);
  9613. // TODO: k*nb2 or k*nb3
  9614. float m_k;
  9615. if (k < n_heads_log2_floor) {
  9616. m_k = powf(m0, k + 1);
  9617. } else {
  9618. m_k = powf(m1, 2 * (k - n_heads_log2_floor) + 1);
  9619. }
  9620. // we return F32
  9621. pdst[0] = i * m_k + GGML_FP16_TO_FP32(src[0]);
  9622. }
  9623. }
  9624. }
  9625. }
  9626. static void ggml_compute_forward_alibi(
  9627. const struct ggml_compute_params * params,
  9628. const struct ggml_tensor * src0,
  9629. struct ggml_tensor * dst) {
  9630. switch (src0->type) {
  9631. case GGML_TYPE_F16:
  9632. {
  9633. ggml_compute_forward_alibi_f16(params, src0, dst);
  9634. } break;
  9635. case GGML_TYPE_F32:
  9636. {
  9637. ggml_compute_forward_alibi_f32(params, src0, dst);
  9638. } break;
  9639. case GGML_TYPE_Q4_0:
  9640. case GGML_TYPE_Q4_1:
  9641. case GGML_TYPE_Q5_0:
  9642. case GGML_TYPE_Q5_1:
  9643. case GGML_TYPE_Q8_0:
  9644. case GGML_TYPE_Q8_1:
  9645. case GGML_TYPE_Q2_K:
  9646. case GGML_TYPE_Q3_K:
  9647. case GGML_TYPE_Q4_K:
  9648. case GGML_TYPE_Q5_K:
  9649. case GGML_TYPE_Q6_K:
  9650. case GGML_TYPE_IQ2_XXS:
  9651. case GGML_TYPE_IQ2_XS:
  9652. case GGML_TYPE_IQ3_XXS:
  9653. case GGML_TYPE_Q8_K:
  9654. case GGML_TYPE_I8:
  9655. case GGML_TYPE_I16:
  9656. case GGML_TYPE_I32:
  9657. case GGML_TYPE_COUNT:
  9658. {
  9659. GGML_ASSERT(false);
  9660. } break;
  9661. }
  9662. }
  9663. // ggml_compute_forward_clamp
  9664. static void ggml_compute_forward_clamp_f32(
  9665. const struct ggml_compute_params * params,
  9666. const struct ggml_tensor * src0,
  9667. struct ggml_tensor * dst) {
  9668. assert(params->ith == 0);
  9669. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9670. return;
  9671. }
  9672. float min;
  9673. float max;
  9674. memcpy(&min, (float *) dst->op_params + 0, sizeof(float));
  9675. memcpy(&max, (float *) dst->op_params + 1, sizeof(float));
  9676. const int ith = params->ith;
  9677. const int nth = params->nth;
  9678. const int n = ggml_nrows(src0);
  9679. const int nc = src0->ne[0];
  9680. const size_t nb00 = src0->nb[0];
  9681. const size_t nb01 = src0->nb[1];
  9682. const size_t nb0 = dst->nb[0];
  9683. const size_t nb1 = dst->nb[1];
  9684. GGML_ASSERT( nb0 == sizeof(float));
  9685. GGML_ASSERT(nb00 == sizeof(float));
  9686. for (int j = ith; j < n; j += nth) {
  9687. float * dst_ptr = (float *) ((char *) dst->data + j*nb1);
  9688. float * src0_ptr = (float *) ((char *) src0->data + j*nb01);
  9689. for (int i = 0; i < nc; i++) {
  9690. dst_ptr[i] = MAX(MIN(src0_ptr[i], max), min);
  9691. }
  9692. }
  9693. }
  9694. static void ggml_compute_forward_clamp(
  9695. const struct ggml_compute_params * params,
  9696. const struct ggml_tensor * src0,
  9697. struct ggml_tensor * dst) {
  9698. switch (src0->type) {
  9699. case GGML_TYPE_F32:
  9700. {
  9701. ggml_compute_forward_clamp_f32(params, src0, dst);
  9702. } break;
  9703. case GGML_TYPE_F16:
  9704. case GGML_TYPE_Q4_0:
  9705. case GGML_TYPE_Q4_1:
  9706. case GGML_TYPE_Q5_0:
  9707. case GGML_TYPE_Q5_1:
  9708. case GGML_TYPE_Q8_0:
  9709. case GGML_TYPE_Q8_1:
  9710. case GGML_TYPE_Q2_K:
  9711. case GGML_TYPE_Q3_K:
  9712. case GGML_TYPE_Q4_K:
  9713. case GGML_TYPE_Q5_K:
  9714. case GGML_TYPE_Q6_K:
  9715. case GGML_TYPE_IQ2_XXS:
  9716. case GGML_TYPE_IQ2_XS:
  9717. case GGML_TYPE_IQ3_XXS:
  9718. case GGML_TYPE_Q8_K:
  9719. case GGML_TYPE_I8:
  9720. case GGML_TYPE_I16:
  9721. case GGML_TYPE_I32:
  9722. case GGML_TYPE_COUNT:
  9723. {
  9724. GGML_ASSERT(false);
  9725. } break;
  9726. }
  9727. }
  9728. // ggml_compute_forward_rope
  9729. static float rope_yarn_ramp(const float low, const float high, const int i0) {
  9730. const float y = (i0 / 2 - low) / MAX(0.001f, high - low);
  9731. return 1 - MIN(1, MAX(0, y));
  9732. }
  9733. // YaRN algorithm based on LlamaYaRNScaledRotaryEmbedding.py from https://github.com/jquesnelle/yarn
  9734. // MIT licensed. Copyright (c) 2023 Jeffrey Quesnelle and Bowen Peng.
  9735. static void rope_yarn(
  9736. float theta_extrap, float freq_scale, float corr_dims[2], int64_t i0, float ext_factor, float mscale,
  9737. float * cos_theta, float * sin_theta
  9738. ) {
  9739. // Get n-d rotational scaling corrected for extrapolation
  9740. float theta_interp = freq_scale * theta_extrap;
  9741. float theta = theta_interp;
  9742. if (ext_factor != 0.0f) {
  9743. float ramp_mix = rope_yarn_ramp(corr_dims[0], corr_dims[1], i0) * ext_factor;
  9744. theta = theta_interp * (1 - ramp_mix) + theta_extrap * ramp_mix;
  9745. // Get n-d magnitude scaling corrected for interpolation
  9746. mscale *= 1.0f + 0.1f * logf(1.0f / freq_scale);
  9747. }
  9748. *cos_theta = cosf(theta) * mscale;
  9749. *sin_theta = sinf(theta) * mscale;
  9750. }
  9751. // Apparently solving `n_rot = 2pi * x * base^((2 * max_pos_emb) / n_dims)` for x, we get
  9752. // `corr_dim(n_rot) = n_dims * log(max_pos_emb / (n_rot * 2pi)) / (2 * log(base))`
  9753. static float ggml_rope_yarn_corr_dim(int n_dims, int n_orig_ctx, float n_rot, float base) {
  9754. return n_dims * logf(n_orig_ctx / (n_rot * 2 * (float)M_PI)) / (2 * logf(base));
  9755. }
  9756. static void ggml_rope_cache_init(
  9757. float theta_base, float freq_scale, float corr_dims[2], int64_t ne0, float ext_factor, float mscale,
  9758. float * cache, float sin_sign, float theta_scale
  9759. ) {
  9760. float theta = theta_base;
  9761. for (int64_t i0 = 0; i0 < ne0; i0 += 2) {
  9762. rope_yarn(
  9763. theta, freq_scale, corr_dims, i0, ext_factor, mscale, &cache[i0 + 0], &cache[i0 + 1]
  9764. );
  9765. cache[i0 + 1] *= sin_sign;
  9766. theta *= theta_scale;
  9767. }
  9768. }
  9769. GGML_CALL void ggml_rope_yarn_corr_dims(
  9770. int n_dims, int n_orig_ctx, float freq_base, float beta_fast, float beta_slow, float dims[2]
  9771. ) {
  9772. // start and end correction dims
  9773. dims[0] = MAX(0, floorf(ggml_rope_yarn_corr_dim(n_dims, n_orig_ctx, beta_fast, freq_base)));
  9774. dims[1] = MIN(n_dims - 1, ceilf(ggml_rope_yarn_corr_dim(n_dims, n_orig_ctx, beta_slow, freq_base)));
  9775. }
  9776. static void ggml_compute_forward_rope_f32(
  9777. const struct ggml_compute_params * params,
  9778. const struct ggml_tensor * src0,
  9779. const struct ggml_tensor * src1,
  9780. struct ggml_tensor * dst,
  9781. const bool forward) {
  9782. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9783. return;
  9784. }
  9785. float freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow;
  9786. // these two only relevant for xPos RoPE:
  9787. float xpos_base;
  9788. bool xpos_down;
  9789. //const int n_past = ((int32_t *) dst->op_params)[0];
  9790. const int n_dims = ((int32_t *) dst->op_params)[1];
  9791. const int mode = ((int32_t *) dst->op_params)[2];
  9792. const int n_ctx = ((int32_t *) dst->op_params)[3];
  9793. const int n_orig_ctx = ((int32_t *) dst->op_params)[4];
  9794. memcpy(&freq_base, (int32_t *) dst->op_params + 5, sizeof(float));
  9795. memcpy(&freq_scale, (int32_t *) dst->op_params + 6, sizeof(float));
  9796. memcpy(&ext_factor, (int32_t *) dst->op_params + 7, sizeof(float));
  9797. memcpy(&attn_factor, (int32_t *) dst->op_params + 8, sizeof(float));
  9798. memcpy(&beta_fast, (int32_t *) dst->op_params + 9, sizeof(float));
  9799. memcpy(&beta_slow, (int32_t *) dst->op_params + 10, sizeof(float));
  9800. memcpy(&xpos_base, (int32_t *) dst->op_params + 11, sizeof(float));
  9801. memcpy(&xpos_down, (int32_t *) dst->op_params + 12, sizeof(bool));
  9802. GGML_TENSOR_UNARY_OP_LOCALS
  9803. //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
  9804. //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
  9805. GGML_ASSERT(nb00 == sizeof(float));
  9806. const int ith = params->ith;
  9807. const int nth = params->nth;
  9808. const int nr = ggml_nrows(dst);
  9809. GGML_ASSERT(n_dims <= ne0);
  9810. GGML_ASSERT(n_dims % 2 == 0);
  9811. // rows per thread
  9812. const int dr = (nr + nth - 1)/nth;
  9813. // row range for this thread
  9814. const int ir0 = dr*ith;
  9815. const int ir1 = MIN(ir0 + dr, nr);
  9816. // row index used to determine which thread to use
  9817. int ir = 0;
  9818. const float theta_scale = powf(freq_base, -2.0f/n_dims);
  9819. const float inv_ndims = -1.f/n_dims;
  9820. float corr_dims[2];
  9821. ggml_rope_yarn_corr_dims(n_dims, n_orig_ctx, freq_base, beta_fast, beta_slow, corr_dims);
  9822. const bool is_neox = mode & 2;
  9823. const bool is_glm = mode & 4;
  9824. // backward process uses inverse rotation by cos and sin.
  9825. // cos and sin build a rotation matrix, where the inverse is the transpose.
  9826. // this essentially just switches the sign of sin.
  9827. const float sin_sign = forward ? 1.0f : -1.0f;
  9828. const int32_t * pos = (const int32_t *) src1->data;
  9829. for (int64_t i3 = 0; i3 < ne3; i3++) {
  9830. for (int64_t i2 = 0; i2 < ne2; i2++) {
  9831. const int64_t p = pos[i2];
  9832. float * cache = (float *) params->wdata + (ne0 + CACHE_LINE_SIZE_F32)*ith;
  9833. if (!is_glm && !is_neox) { // TODO: cache sin/cos for glm, neox
  9834. ggml_rope_cache_init(p, freq_scale, corr_dims, ne0, ext_factor, attn_factor, cache, sin_sign, theta_scale);
  9835. }
  9836. for (int64_t i1 = 0; i1 < ne1; i1++) {
  9837. if (ir++ < ir0) continue;
  9838. if (ir > ir1) break;
  9839. float theta_base = (float)p;
  9840. if (is_glm) {
  9841. theta_base = MIN(p, n_ctx - 2);
  9842. float block_theta = MAX(p - (n_ctx - 2), 0);
  9843. for (int64_t i0 = 0; i0 < ne0 / 4; i0++) {
  9844. const float cos_theta = cosf(theta_base);
  9845. const float sin_theta = sinf(theta_base) * sin_sign;
  9846. const float cos_block_theta = cosf(block_theta);
  9847. const float sin_block_theta = sinf(block_theta) * sin_sign;
  9848. theta_base *= theta_scale;
  9849. block_theta *= theta_scale;
  9850. const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  9851. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  9852. const float x0 = src[0];
  9853. const float x1 = src[n_dims/2];
  9854. const float x2 = src[n_dims];
  9855. const float x3 = src[n_dims/2*3];
  9856. dst_data[0] = x0*cos_theta - x1*sin_theta;
  9857. dst_data[n_dims/2] = x0*sin_theta + x1*cos_theta;
  9858. dst_data[n_dims] = x2*cos_block_theta - x3*sin_block_theta;
  9859. dst_data[n_dims/2*3] = x2*sin_block_theta + x3*cos_block_theta;
  9860. }
  9861. } else if (!is_neox) {
  9862. for (int64_t i0 = 0; i0 < ne0; i0 += 2) {
  9863. const float cos_theta = cache[i0 + 0];
  9864. const float sin_theta = cache[i0 + 1];
  9865. // zeta scaling for xPos only:
  9866. float zeta = xpos_base != 0.0f ? powf((i0 + 0.4f * ne0) / (1.4f * ne0), p / xpos_base) : 1.0f;
  9867. if (xpos_down) zeta = 1.0f / zeta;
  9868. const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  9869. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  9870. const float x0 = src[0];
  9871. const float x1 = src[1];
  9872. dst_data[0] = x0*cos_theta*zeta - x1*sin_theta*zeta;
  9873. dst_data[1] = x0*sin_theta*zeta + x1*cos_theta*zeta;
  9874. }
  9875. } else {
  9876. // TODO: this might be wrong for ne0 != n_dims - need double check
  9877. // it seems we have to rope just the first n_dims elements and do nothing with the rest
  9878. // ref: https://github.com/ml-explore/mlx/blob/dc2edc762c797e3b8de50b1dad4dc0a131691033/benchmarks/python/llama_jax_bench.py#L11-L26
  9879. theta_base *= freq_scale;
  9880. for (int64_t ic = 0; ic < ne0; ic += 2) {
  9881. if (ic < n_dims) {
  9882. const int64_t ib = 0;
  9883. // simplified from `(ib * n_dims + ic) * inv_ndims`
  9884. float cur_rot = inv_ndims * ic - ib;
  9885. float cos_theta, sin_theta;
  9886. rope_yarn(
  9887. theta_base, freq_scale, corr_dims, cur_rot, ext_factor, attn_factor,
  9888. &cos_theta, &sin_theta
  9889. );
  9890. sin_theta *= sin_sign;
  9891. theta_base *= theta_scale;
  9892. const int64_t i0 = ib*n_dims + ic/2;
  9893. const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  9894. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  9895. const float x0 = src[0];
  9896. const float x1 = src[n_dims/2];
  9897. dst_data[0] = x0*cos_theta - x1*sin_theta;
  9898. dst_data[n_dims/2] = x0*sin_theta + x1*cos_theta;
  9899. } else {
  9900. const int64_t i0 = ic;
  9901. const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  9902. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  9903. dst_data[0] = src[0];
  9904. dst_data[1] = src[1];
  9905. }
  9906. }
  9907. }
  9908. }
  9909. }
  9910. }
  9911. }
  9912. static void ggml_compute_forward_rope_f16(
  9913. const struct ggml_compute_params * params,
  9914. const struct ggml_tensor * src0,
  9915. const struct ggml_tensor * src1,
  9916. struct ggml_tensor * dst,
  9917. const bool forward) {
  9918. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9919. return;
  9920. }
  9921. float freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow;
  9922. //const int n_past = ((int32_t *) dst->op_params)[0];
  9923. const int n_dims = ((int32_t *) dst->op_params)[1];
  9924. const int mode = ((int32_t *) dst->op_params)[2];
  9925. const int n_ctx = ((int32_t *) dst->op_params)[3];
  9926. const int n_orig_ctx = ((int32_t *) dst->op_params)[4];
  9927. memcpy(&freq_base, (int32_t *) dst->op_params + 5, sizeof(float));
  9928. memcpy(&freq_scale, (int32_t *) dst->op_params + 6, sizeof(float));
  9929. memcpy(&ext_factor, (int32_t *) dst->op_params + 7, sizeof(float));
  9930. memcpy(&attn_factor, (int32_t *) dst->op_params + 8, sizeof(float));
  9931. memcpy(&beta_fast, (int32_t *) dst->op_params + 9, sizeof(float));
  9932. memcpy(&beta_slow, (int32_t *) dst->op_params + 10, sizeof(float));
  9933. GGML_TENSOR_UNARY_OP_LOCALS
  9934. //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
  9935. //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
  9936. GGML_ASSERT(nb0 == sizeof(ggml_fp16_t));
  9937. const int ith = params->ith;
  9938. const int nth = params->nth;
  9939. const int nr = ggml_nrows(dst);
  9940. GGML_ASSERT(n_dims <= ne0);
  9941. GGML_ASSERT(n_dims % 2 == 0);
  9942. // rows per thread
  9943. const int dr = (nr + nth - 1)/nth;
  9944. // row range for this thread
  9945. const int ir0 = dr*ith;
  9946. const int ir1 = MIN(ir0 + dr, nr);
  9947. // row index used to determine which thread to use
  9948. int ir = 0;
  9949. const float theta_scale = powf(freq_base, -2.0f/n_dims);
  9950. const float inv_ndims = -1.f/n_dims;
  9951. float corr_dims[2];
  9952. ggml_rope_yarn_corr_dims(n_dims, n_orig_ctx, freq_base, beta_fast, beta_slow, corr_dims);
  9953. const bool is_neox = mode & 2;
  9954. const bool is_glm = mode & 4;
  9955. // backward process uses inverse rotation by cos and sin.
  9956. // cos and sin build a rotation matrix, where the inverse is the transpose.
  9957. // this essentially just switches the sign of sin.
  9958. const float sin_sign = forward ? 1.0f : -1.0f;
  9959. const int32_t * pos = (const int32_t *) src1->data;
  9960. for (int64_t i3 = 0; i3 < ne3; i3++) {
  9961. for (int64_t i2 = 0; i2 < ne2; i2++) {
  9962. const int64_t p = pos[i2];
  9963. float * cache = (float *) params->wdata + (ne0 + CACHE_LINE_SIZE_F32)*ith;
  9964. if (!is_glm && !is_neox) { // TODO: cache sin/cos for glm, neox
  9965. ggml_rope_cache_init(p, freq_scale, corr_dims, ne0, ext_factor, attn_factor, cache, sin_sign, theta_scale);
  9966. }
  9967. for (int64_t i1 = 0; i1 < ne1; i1++) {
  9968. if (ir++ < ir0) continue;
  9969. if (ir > ir1) break;
  9970. float theta_base = (float)p;
  9971. if (is_glm) {
  9972. theta_base = MIN(p, n_ctx - 2);
  9973. float block_theta = MAX(p - (n_ctx - 2), 0);
  9974. for (int64_t i0 = 0; i0 < ne0 / 4; i0++) {
  9975. const float cos_theta = cosf(theta_base);
  9976. const float sin_theta = sinf(theta_base) * sin_sign;
  9977. const float cos_block_theta = cosf(block_theta);
  9978. const float sin_block_theta = sinf(block_theta) * sin_sign;
  9979. theta_base *= theta_scale;
  9980. block_theta *= theta_scale;
  9981. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  9982. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  9983. const float x0 = GGML_FP16_TO_FP32(src[0]);
  9984. const float x1 = GGML_FP16_TO_FP32(src[n_dims/2]);
  9985. const float x2 = GGML_FP16_TO_FP32(src[n_dims]);
  9986. const float x3 = GGML_FP16_TO_FP32(src[n_dims/2*3]);
  9987. dst_data[0] = GGML_FP32_TO_FP16(x0*cos_theta - x1*sin_theta);
  9988. dst_data[n_dims/2] = GGML_FP32_TO_FP16(x0*sin_theta + x1*cos_theta);
  9989. dst_data[n_dims] = GGML_FP32_TO_FP16(x2*cos_block_theta - x3*sin_block_theta);
  9990. dst_data[n_dims/2*3] = GGML_FP32_TO_FP16(x2*sin_block_theta + x3*cos_block_theta);
  9991. }
  9992. } else if (!is_neox) {
  9993. for (int64_t i0 = 0; i0 < ne0; i0 += 2) {
  9994. const float cos_theta = cache[i0 + 0];
  9995. const float sin_theta = cache[i0 + 1];
  9996. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  9997. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  9998. const float x0 = GGML_FP16_TO_FP32(src[0]);
  9999. const float x1 = GGML_FP16_TO_FP32(src[1]);
  10000. dst_data[0] = GGML_FP32_TO_FP16(x0*cos_theta - x1*sin_theta);
  10001. dst_data[1] = GGML_FP32_TO_FP16(x0*sin_theta + x1*cos_theta);
  10002. }
  10003. } else {
  10004. // TODO: this might be wrong for ne0 != n_dims - need double check
  10005. // it seems we have to rope just the first n_dims elements and do nothing with the rest
  10006. // ref: https://github.com/ml-explore/mlx/blob/dc2edc762c797e3b8de50b1dad4dc0a131691033/benchmarks/python/llama_jax_bench.py#L11-L26
  10007. theta_base *= freq_scale;
  10008. for (int64_t ic = 0; ic < ne0; ic += 2) {
  10009. if (ic < n_dims) {
  10010. const int64_t ib = 0;
  10011. // simplified from `(ib * n_dims + ic) * inv_ndims`
  10012. float cur_rot = inv_ndims * ic - ib;
  10013. float cos_theta, sin_theta;
  10014. rope_yarn(
  10015. theta_base, freq_scale, corr_dims, cur_rot, ext_factor, attn_factor,
  10016. &cos_theta, &sin_theta
  10017. );
  10018. sin_theta *= sin_sign;
  10019. theta_base *= theta_scale;
  10020. const int64_t i0 = ib*n_dims + ic/2;
  10021. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  10022. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  10023. const float x0 = GGML_FP16_TO_FP32(src[0]);
  10024. const float x1 = GGML_FP16_TO_FP32(src[n_dims/2]);
  10025. dst_data[0] = GGML_FP32_TO_FP16(x0*cos_theta - x1*sin_theta);
  10026. dst_data[n_dims/2] = GGML_FP32_TO_FP16(x0*sin_theta + x1*cos_theta);
  10027. } else {
  10028. const int64_t i0 = ic;
  10029. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  10030. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  10031. dst_data[0] = src[0];
  10032. dst_data[1] = src[1];
  10033. }
  10034. }
  10035. }
  10036. }
  10037. }
  10038. }
  10039. }
  10040. static void ggml_compute_forward_rope(
  10041. const struct ggml_compute_params * params,
  10042. const struct ggml_tensor * src0,
  10043. const struct ggml_tensor * src1,
  10044. struct ggml_tensor * dst) {
  10045. switch (src0->type) {
  10046. case GGML_TYPE_F16:
  10047. {
  10048. ggml_compute_forward_rope_f16(params, src0, src1, dst, true);
  10049. } break;
  10050. case GGML_TYPE_F32:
  10051. {
  10052. ggml_compute_forward_rope_f32(params, src0, src1, dst, true);
  10053. } break;
  10054. default:
  10055. {
  10056. GGML_ASSERT(false);
  10057. } break;
  10058. }
  10059. }
  10060. // ggml_compute_forward_rope_back
  10061. static void ggml_compute_forward_rope_back(
  10062. const struct ggml_compute_params * params,
  10063. const struct ggml_tensor * src0,
  10064. const struct ggml_tensor * src1,
  10065. struct ggml_tensor * dst) {
  10066. switch (src0->type) {
  10067. case GGML_TYPE_F16:
  10068. {
  10069. ggml_compute_forward_rope_f16(params, src0, src1, dst, false);
  10070. } break;
  10071. case GGML_TYPE_F32:
  10072. {
  10073. ggml_compute_forward_rope_f32(params, src0, src1, dst, false);
  10074. } break;
  10075. default:
  10076. {
  10077. GGML_ASSERT(false);
  10078. } break;
  10079. }
  10080. }
  10081. // ggml_compute_forward_conv_transpose_1d
  10082. static void ggml_compute_forward_conv_transpose_1d_f16_f32(
  10083. const struct ggml_compute_params * params,
  10084. const struct ggml_tensor * src0,
  10085. const struct ggml_tensor * src1,
  10086. struct ggml_tensor * dst) {
  10087. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  10088. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  10089. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  10090. int64_t t0 = ggml_perf_time_us();
  10091. UNUSED(t0);
  10092. GGML_TENSOR_BINARY_OP_LOCALS
  10093. const int ith = params->ith;
  10094. const int nth = params->nth;
  10095. const int nk = ne00*ne01*ne02;
  10096. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  10097. GGML_ASSERT(nb10 == sizeof(float));
  10098. if (params->type == GGML_TASK_INIT) {
  10099. if (ith != 0) {
  10100. return;
  10101. }
  10102. memset(params->wdata, 0, params->wsize);
  10103. // permute kernel data (src0) from (K x Cout x Cin) to (Cin x K x Cout)
  10104. {
  10105. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  10106. for (int64_t i02 = 0; i02 < ne02; i02++) {
  10107. for (int64_t i01 = 0; i01 < ne01; i01++) {
  10108. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i02*nb02 + i01*nb01);
  10109. ggml_fp16_t * dst_data = wdata + i01*ne00*ne02;
  10110. for (int64_t i00 = 0; i00 < ne00; i00++) {
  10111. dst_data[i00*ne02 + i02] = src[i00];
  10112. }
  10113. }
  10114. }
  10115. }
  10116. // permute source data (src1) from (L x Cin) to (Cin x L)
  10117. {
  10118. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + nk;
  10119. ggml_fp16_t * dst_data = wdata;
  10120. for (int64_t i11 = 0; i11 < ne11; i11++) {
  10121. const float * const src = (float *)((char *) src1->data + i11*nb11);
  10122. for (int64_t i10 = 0; i10 < ne10; i10++) {
  10123. dst_data[i10*ne11 + i11] = GGML_FP32_TO_FP16(src[i10]);
  10124. }
  10125. }
  10126. }
  10127. // need to zero dst since we are accumulating into it
  10128. memset(dst->data, 0, ggml_nbytes(dst));
  10129. return;
  10130. }
  10131. if (params->type == GGML_TASK_FINALIZE) {
  10132. return;
  10133. }
  10134. const int32_t s0 = ((const int32_t*)(dst->op_params))[0];
  10135. // total rows in dst
  10136. const int nr = ne1;
  10137. // rows per thread
  10138. const int dr = (nr + nth - 1)/nth;
  10139. // row range for this thread
  10140. const int ir0 = dr*ith;
  10141. const int ir1 = MIN(ir0 + dr, nr);
  10142. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  10143. ggml_fp16_t * const wdata_src = wdata + nk;
  10144. for (int i1 = ir0; i1 < ir1; i1++) {
  10145. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  10146. ggml_fp16_t * wdata_kernel = wdata + i1*ne02*ne00;
  10147. for (int i10 = 0; i10 < ne10; i10++) {
  10148. const int i1n = i10*ne11;
  10149. for (int i00 = 0; i00 < ne00; i00++) {
  10150. float v = 0;
  10151. ggml_vec_dot_f16(ne02, &v,
  10152. (ggml_fp16_t *) wdata_src + i1n,
  10153. (ggml_fp16_t *) wdata_kernel + i00*ne02);
  10154. dst_data[i10*s0 + i00] += v;
  10155. }
  10156. }
  10157. }
  10158. }
  10159. static void ggml_compute_forward_conv_transpose_1d_f32(
  10160. const struct ggml_compute_params * params,
  10161. const struct ggml_tensor * src0,
  10162. const struct ggml_tensor * src1,
  10163. struct ggml_tensor * dst) {
  10164. GGML_ASSERT(src0->type == GGML_TYPE_F32);
  10165. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  10166. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  10167. int64_t t0 = ggml_perf_time_us();
  10168. UNUSED(t0);
  10169. GGML_TENSOR_BINARY_OP_LOCALS
  10170. const int ith = params->ith;
  10171. const int nth = params->nth;
  10172. const int nk = ne00*ne01*ne02;
  10173. GGML_ASSERT(nb00 == sizeof(float));
  10174. GGML_ASSERT(nb10 == sizeof(float));
  10175. if (params->type == GGML_TASK_INIT) {
  10176. if (ith != 0) {
  10177. return;
  10178. }
  10179. memset(params->wdata, 0, params->wsize);
  10180. // prepare kernel data (src0) from (K x Cout x Cin) to (Cin x K x Cout)
  10181. {
  10182. float * const wdata = (float *) params->wdata + 0;
  10183. for (int64_t i02 = 0; i02 < ne02; i02++) {
  10184. for (int64_t i01 = 0; i01 < ne01; i01++) {
  10185. const float * const src = (float *)((char *) src0->data + i02*nb02 + i01*nb01);
  10186. float * dst_data = wdata + i01*ne00*ne02;
  10187. for (int64_t i00 = 0; i00 < ne00; i00++) {
  10188. dst_data[i00*ne02 + i02] = src[i00];
  10189. }
  10190. }
  10191. }
  10192. }
  10193. // prepare source data (src1)
  10194. {
  10195. float * const wdata = (float *) params->wdata + nk;
  10196. float * dst_data = wdata;
  10197. for (int64_t i11 = 0; i11 < ne11; i11++) {
  10198. const float * const src = (float *)((char *) src1->data + i11*nb11);
  10199. for (int64_t i10 = 0; i10 < ne10; i10++) {
  10200. dst_data[i10*ne11 + i11] = src[i10];
  10201. }
  10202. }
  10203. }
  10204. // need to zero dst since we are accumulating into it
  10205. memset(dst->data, 0, ggml_nbytes(dst));
  10206. return;
  10207. }
  10208. if (params->type == GGML_TASK_FINALIZE) {
  10209. return;
  10210. }
  10211. const int32_t s0 = ((const int32_t*)(dst->op_params))[0];
  10212. // total rows in dst
  10213. const int nr = ne1;
  10214. // rows per thread
  10215. const int dr = (nr + nth - 1)/nth;
  10216. // row range for this thread
  10217. const int ir0 = dr*ith;
  10218. const int ir1 = MIN(ir0 + dr, nr);
  10219. float * const wdata = (float *) params->wdata + 0;
  10220. float * const wdata_src = wdata + nk;
  10221. for (int i1 = ir0; i1 < ir1; i1++) {
  10222. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  10223. float * wdata_kernel = wdata + i1*ne02*ne00;
  10224. for (int i10 = 0; i10 < ne10; i10++) {
  10225. const int i1n = i10*ne11;
  10226. for (int i00 = 0; i00 < ne00; i00++) {
  10227. float v = 0;
  10228. ggml_vec_dot_f32(ne02, &v,
  10229. wdata_src + i1n,
  10230. wdata_kernel + i00*ne02);
  10231. dst_data[i10*s0 + i00] += v;
  10232. }
  10233. }
  10234. }
  10235. }
  10236. static void ggml_compute_forward_conv_transpose_1d(
  10237. const struct ggml_compute_params * params,
  10238. const struct ggml_tensor * src0,
  10239. const struct ggml_tensor * src1,
  10240. struct ggml_tensor * dst) {
  10241. switch (src0->type) {
  10242. case GGML_TYPE_F16:
  10243. {
  10244. ggml_compute_forward_conv_transpose_1d_f16_f32(params, src0, src1, dst);
  10245. } break;
  10246. case GGML_TYPE_F32:
  10247. {
  10248. ggml_compute_forward_conv_transpose_1d_f32(params, src0, src1, dst);
  10249. } break;
  10250. default:
  10251. {
  10252. GGML_ASSERT(false);
  10253. } break;
  10254. }
  10255. }
  10256. // src0: kernel [OC, IC, KH, KW]
  10257. // src1: image [N, IC, IH, IW]
  10258. // dst: result [N, OH, OW, IC*KH*KW]
  10259. static void ggml_compute_forward_im2col_f32(
  10260. const struct ggml_compute_params * params,
  10261. const struct ggml_tensor * src0,
  10262. const struct ggml_tensor * src1,
  10263. struct ggml_tensor * dst) {
  10264. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  10265. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  10266. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  10267. int64_t t0 = ggml_perf_time_us();
  10268. UNUSED(t0);
  10269. GGML_TENSOR_BINARY_OP_LOCALS;
  10270. const int32_t s0 = ((const int32_t *)(dst->op_params))[0];
  10271. const int32_t s1 = ((const int32_t *)(dst->op_params))[1];
  10272. const int32_t p0 = ((const int32_t *)(dst->op_params))[2];
  10273. const int32_t p1 = ((const int32_t *)(dst->op_params))[3];
  10274. const int32_t d0 = ((const int32_t *)(dst->op_params))[4];
  10275. const int32_t d1 = ((const int32_t *)(dst->op_params))[5];
  10276. const bool is_2D = ((const int32_t *)(dst->op_params))[6] == 1;
  10277. const int ith = params->ith;
  10278. const int nth = params->nth;
  10279. const int64_t N = is_2D ? ne13 : ne12;
  10280. const int64_t IC = is_2D ? ne12 : ne11;
  10281. const int64_t IH = is_2D ? ne11 : 1;
  10282. const int64_t IW = ne10;
  10283. const int64_t KH = is_2D ? ne01 : 1;
  10284. const int64_t KW = ne00;
  10285. const int64_t OH = is_2D ? ne2 : 1;
  10286. const int64_t OW = ne1;
  10287. int ofs0 = is_2D ? nb13 : nb12;
  10288. int ofs1 = is_2D ? nb12 : nb11;
  10289. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  10290. GGML_ASSERT(nb10 == sizeof(float));
  10291. if (params->type == GGML_TASK_INIT) {
  10292. return;
  10293. }
  10294. if (params->type == GGML_TASK_FINALIZE) {
  10295. return;
  10296. }
  10297. // im2col: [N, IC, IH, IW] => [N, OH, OW, IC*KH*KW]
  10298. {
  10299. float * const wdata = (float *) dst->data;
  10300. for (int64_t in = 0; in < N; in++) {
  10301. for (int64_t ioh = 0; ioh < OH; ioh++) { // 1
  10302. for (int64_t iow = 0; iow < OW; iow++) {
  10303. for (int64_t iic = ith; iic < IC; iic += nth) {
  10304. // micro kernel
  10305. float * dst_data = wdata + (in*OH*OW + ioh*OW + iow)*(IC*KH*KW); // [IC, KH, KW]
  10306. const float * const src_data = (float *)((char *) src1->data + in*ofs0 + iic*ofs1); // [IH, IW]
  10307. for (int64_t ikh = 0; ikh < KH; ikh++) { // 1
  10308. for (int64_t ikw = 0; ikw < KW; ikw++) {
  10309. const int64_t iiw = iow*s0 + ikw*d0 - p0;
  10310. const int64_t iih = ioh*s1 + ikh*d1 - p1;
  10311. if (iih < 0 || iih >= IH || iiw < 0 || iiw >= IW) {
  10312. dst_data[iic*(KH*KW) + ikh*KW + ikw] = 0;
  10313. } else {
  10314. dst_data[iic*(KH*KW) + ikh*KW + ikw] = (src_data[iih*IW + iiw]);
  10315. }
  10316. }
  10317. }
  10318. }
  10319. }
  10320. }
  10321. }
  10322. }
  10323. }
  10324. // src0: kernel [OC, IC, KH, KW]
  10325. // src1: image [N, IC, IH, IW]
  10326. // dst: result [N, OH, OW, IC*KH*KW]
  10327. static void ggml_compute_forward_im2col_f16(
  10328. const struct ggml_compute_params * params,
  10329. const struct ggml_tensor * src0,
  10330. const struct ggml_tensor * src1,
  10331. struct ggml_tensor * dst) {
  10332. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  10333. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  10334. GGML_ASSERT( dst->type == GGML_TYPE_F16);
  10335. int64_t t0 = ggml_perf_time_us();
  10336. UNUSED(t0);
  10337. GGML_TENSOR_BINARY_OP_LOCALS;
  10338. const int32_t s0 = ((const int32_t *)(dst->op_params))[0];
  10339. const int32_t s1 = ((const int32_t *)(dst->op_params))[1];
  10340. const int32_t p0 = ((const int32_t *)(dst->op_params))[2];
  10341. const int32_t p1 = ((const int32_t *)(dst->op_params))[3];
  10342. const int32_t d0 = ((const int32_t *)(dst->op_params))[4];
  10343. const int32_t d1 = ((const int32_t *)(dst->op_params))[5];
  10344. const bool is_2D = ((const int32_t *)(dst->op_params))[6] == 1;
  10345. const int ith = params->ith;
  10346. const int nth = params->nth;
  10347. const int64_t N = is_2D ? ne13 : ne12;
  10348. const int64_t IC = is_2D ? ne12 : ne11;
  10349. const int64_t IH = is_2D ? ne11 : 1;
  10350. const int64_t IW = ne10;
  10351. const int64_t KH = is_2D ? ne01 : 1;
  10352. const int64_t KW = ne00;
  10353. const int64_t OH = is_2D ? ne2 : 1;
  10354. const int64_t OW = ne1;
  10355. int ofs0 = is_2D ? nb13 : nb12;
  10356. int ofs1 = is_2D ? nb12 : nb11;
  10357. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  10358. GGML_ASSERT(nb10 == sizeof(float));
  10359. if (params->type == GGML_TASK_INIT) {
  10360. return;
  10361. }
  10362. if (params->type == GGML_TASK_FINALIZE) {
  10363. return;
  10364. }
  10365. // im2col: [N, IC, IH, IW] => [N, OH, OW, IC*KH*KW]
  10366. {
  10367. ggml_fp16_t * const wdata = (ggml_fp16_t *) dst->data;
  10368. for (int64_t in = 0; in < N; in++) {
  10369. for (int64_t ioh = 0; ioh < OH; ioh++) { // 1
  10370. for (int64_t iow = 0; iow < OW; iow++) {
  10371. for (int64_t iic = ith; iic < IC; iic += nth) {
  10372. // micro kernel
  10373. ggml_fp16_t * dst_data = wdata + (in*OH*OW + ioh*OW + iow)*(IC*KH*KW); // [IC, KH, KW]
  10374. const float * const src_data = (float *)((char *) src1->data + in*ofs0 + iic*ofs1); // [IH, IW]
  10375. for (int64_t ikh = 0; ikh < KH; ikh++) { // 1
  10376. for (int64_t ikw = 0; ikw < KW; ikw++) {
  10377. const int64_t iiw = iow*s0 + ikw*d0 - p0;
  10378. const int64_t iih = ioh*s1 + ikh*d1 - p1;
  10379. if (iih < 0 || iih >= IH || iiw < 0 || iiw >= IW) {
  10380. dst_data[iic*(KH*KW) + ikh*KW + ikw] = 0;
  10381. } else {
  10382. dst_data[iic*(KH*KW) + ikh*KW + ikw] = GGML_FP32_TO_FP16(src_data[iih*IW + iiw]);
  10383. }
  10384. }
  10385. }
  10386. }
  10387. }
  10388. }
  10389. }
  10390. }
  10391. }
  10392. static void ggml_compute_forward_im2col(
  10393. const struct ggml_compute_params * params,
  10394. const struct ggml_tensor * src0,
  10395. const struct ggml_tensor * src1,
  10396. struct ggml_tensor * dst) {
  10397. switch (dst->type) {
  10398. case GGML_TYPE_F16:
  10399. {
  10400. ggml_compute_forward_im2col_f16(params, src0, src1, dst);
  10401. } break;
  10402. case GGML_TYPE_F32:
  10403. {
  10404. ggml_compute_forward_im2col_f32(params, src0, src1, dst);
  10405. } break;
  10406. default:
  10407. {
  10408. GGML_ASSERT(false);
  10409. } break;
  10410. }
  10411. }
  10412. // ggml_compute_forward_conv_transpose_2d
  10413. static void ggml_compute_forward_conv_transpose_2d(
  10414. const struct ggml_compute_params * params,
  10415. const struct ggml_tensor * src0,
  10416. const struct ggml_tensor * src1,
  10417. struct ggml_tensor * dst) {
  10418. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  10419. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  10420. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  10421. int64_t t0 = ggml_perf_time_us();
  10422. UNUSED(t0);
  10423. GGML_TENSOR_BINARY_OP_LOCALS
  10424. const int ith = params->ith;
  10425. const int nth = params->nth;
  10426. const int nk = ne00*ne01*ne02*ne03;
  10427. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  10428. GGML_ASSERT(nb10 == sizeof(float));
  10429. if (params->type == GGML_TASK_INIT) {
  10430. if (ith != 0) {
  10431. return;
  10432. }
  10433. memset(params->wdata, 0, params->wsize);
  10434. // permute kernel data (src0) from (Kw x Kh x Cout x Cin) to (Cin x Kw x Kh x Cout)
  10435. {
  10436. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  10437. for (int64_t i03 = 0; i03 < ne03; i03++) {
  10438. for (int64_t i02 = 0; i02 < ne02; i02++) {
  10439. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i03*nb03 + i02*nb02);
  10440. ggml_fp16_t * dst_data = wdata + i02*ne01*ne00*ne03;
  10441. for (int64_t i01 = 0; i01 < ne01; i01++) {
  10442. for (int64_t i00 = 0; i00 < ne00; i00++) {
  10443. dst_data[i01*ne00*ne03 + i00*ne03 + i03] = src[i01 * ne00 + i00];
  10444. }
  10445. }
  10446. }
  10447. }
  10448. }
  10449. // permute source data (src1) from (Sw x Sh x Cin) to (Cin x Sw x Sh)
  10450. {
  10451. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + nk;
  10452. for (int i12 = 0; i12 < ne12; i12++) {
  10453. for (int i11 = 0; i11 < ne11; i11++) {
  10454. const float * const src = (float *)((char *) src1->data + i12*nb12 + i11*nb11);
  10455. ggml_fp16_t * dst_data = wdata + i11*ne10*ne12;
  10456. for (int i10 = 0; i10 < ne10; i10++) {
  10457. dst_data[i10*ne12 + i12] = GGML_FP32_TO_FP16(src[i10]);
  10458. }
  10459. }
  10460. }
  10461. }
  10462. memset(dst->data, 0, ggml_nbytes(dst));
  10463. return;
  10464. }
  10465. if (params->type == GGML_TASK_FINALIZE) {
  10466. return;
  10467. }
  10468. const int32_t stride = ggml_get_op_params_i32(dst, 0);
  10469. // total patches in dst
  10470. const int np = ne2;
  10471. // patches per thread
  10472. const int dp = (np + nth - 1)/nth;
  10473. // patch range for this thread
  10474. const int ip0 = dp*ith;
  10475. const int ip1 = MIN(ip0 + dp, np);
  10476. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  10477. ggml_fp16_t * const wdata_src = wdata + nk;
  10478. for (int i2 = ip0; i2 < ip1; i2++) { // Cout
  10479. float * dst_data = (float *)((char *) dst->data + i2*nb2);
  10480. ggml_fp16_t * wdata_kernel = wdata + i2*ne01*ne00*ne03;
  10481. for (int i11 = 0; i11 < ne11; i11++) {
  10482. for (int i10 = 0; i10 < ne10; i10++) {
  10483. const int i1n = i11*ne10*ne12 + i10*ne12;
  10484. for (int i01 = 0; i01 < ne01; i01++) {
  10485. for (int i00 = 0; i00 < ne00; i00++) {
  10486. float v = 0;
  10487. ggml_vec_dot_f16(ne03, &v,
  10488. wdata_src + i1n,
  10489. wdata_kernel + i01*ne00*ne03 + i00*ne03);
  10490. dst_data[(i11*stride + i01)*ne0 + i10*stride + i00] += v;
  10491. }
  10492. }
  10493. }
  10494. }
  10495. }
  10496. }
  10497. // ggml_compute_forward_pool_1d_sk_p0
  10498. static void ggml_compute_forward_pool_1d_sk_p0(
  10499. const struct ggml_compute_params * params,
  10500. const enum ggml_op_pool op,
  10501. const struct ggml_tensor * src,
  10502. const int k,
  10503. struct ggml_tensor * dst) {
  10504. assert(src->type == GGML_TYPE_F32);
  10505. assert(params->ith == 0);
  10506. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  10507. return;
  10508. }
  10509. const char * cdata = (const char *)src->data;
  10510. const char * const data_end = cdata + ggml_nbytes(src);
  10511. float * drow = (float *)dst->data;
  10512. const int64_t rs = dst->ne[0];
  10513. while (cdata < data_end) {
  10514. const float * const srow = (const float *)cdata;
  10515. int j = 0;
  10516. for (int64_t i = 0; i < rs; ++i) {
  10517. switch (op) {
  10518. case GGML_OP_POOL_AVG: drow[i] = 0; break;
  10519. case GGML_OP_POOL_MAX: drow[i] = -FLT_MAX; break;
  10520. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  10521. }
  10522. for (int ki = 0; ki < k; ++ki) {
  10523. switch (op) {
  10524. case GGML_OP_POOL_AVG: drow[i] += srow[j]; break;
  10525. case GGML_OP_POOL_MAX: if (srow[j] > drow[i]) drow[i] = srow[j]; break;
  10526. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  10527. }
  10528. ++j;
  10529. }
  10530. switch (op) {
  10531. case GGML_OP_POOL_AVG: drow[i] /= k; break;
  10532. case GGML_OP_POOL_MAX: break;
  10533. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  10534. }
  10535. }
  10536. cdata += src->nb[1];
  10537. drow += rs;
  10538. }
  10539. }
  10540. // ggml_compute_forward_pool_1d
  10541. static void ggml_compute_forward_pool_1d(
  10542. const struct ggml_compute_params * params,
  10543. const struct ggml_tensor * src0,
  10544. struct ggml_tensor * dst) {
  10545. const int32_t * opts = (const int32_t *)dst->op_params;
  10546. enum ggml_op_pool op = opts[0];
  10547. const int k0 = opts[1];
  10548. const int s0 = opts[2];
  10549. const int p0 = opts[3];
  10550. GGML_ASSERT(p0 == 0); // padding not supported
  10551. GGML_ASSERT(k0 == s0); // only s = k supported
  10552. ggml_compute_forward_pool_1d_sk_p0(params, op, src0, k0, dst);
  10553. }
  10554. // ggml_compute_forward_pool_2d
  10555. static void ggml_compute_forward_pool_2d(
  10556. const struct ggml_compute_params * params,
  10557. const struct ggml_tensor * src,
  10558. struct ggml_tensor * dst) {
  10559. GGML_ASSERT(src->type == GGML_TYPE_F32);
  10560. GGML_ASSERT(params->ith == 0);
  10561. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  10562. return;
  10563. }
  10564. const int32_t * opts = (const int32_t *)dst->op_params;
  10565. enum ggml_op_pool op = opts[0];
  10566. const int k0 = opts[1];
  10567. const int k1 = opts[2];
  10568. const int s0 = opts[3];
  10569. const int s1 = opts[4];
  10570. const int p0 = opts[5];
  10571. const int p1 = opts[6];
  10572. const char * cdata = (const char*)src->data;
  10573. const char * const data_end = cdata + ggml_nbytes(src);
  10574. const int64_t px = dst->ne[0];
  10575. const int64_t py = dst->ne[1];
  10576. const int64_t pa = px * py;
  10577. float * dplane = (float *)dst->data;
  10578. const int ka = k0 * k1;
  10579. const int offset0 = -p0;
  10580. const int offset1 = -p1;
  10581. while (cdata < data_end) {
  10582. for (int oy = 0; oy < py; ++oy) {
  10583. float * const drow = dplane + oy * px;
  10584. for (int ox = 0; ox < px; ++ox) {
  10585. float * const out = drow + ox;
  10586. switch (op) {
  10587. case GGML_OP_POOL_AVG: *out = 0; break;
  10588. case GGML_OP_POOL_MAX: *out = -FLT_MAX; break;
  10589. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  10590. }
  10591. const int ix = offset0 + ox * s0;
  10592. const int iy = offset1 + oy * s1;
  10593. for (int ky = 0; ky < k1; ++ky) {
  10594. if (iy + ky < 0 || iy + ky >= src->ne[1]) continue;
  10595. const float * const srow = (const float *)(cdata + src->nb[1] * (iy + ky));
  10596. for (int kx = 0; kx < k0; ++kx) {
  10597. int j = ix + kx;
  10598. if (j < 0 || j >= src->ne[0]) continue;
  10599. switch (op) {
  10600. case GGML_OP_POOL_AVG: *out += srow[j]; break;
  10601. case GGML_OP_POOL_MAX: if (srow[j] > *out) *out = srow[j]; break;
  10602. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  10603. }
  10604. }
  10605. }
  10606. switch (op) {
  10607. case GGML_OP_POOL_AVG: *out /= ka; break;
  10608. case GGML_OP_POOL_MAX: break;
  10609. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  10610. }
  10611. }
  10612. }
  10613. cdata += src->nb[2];
  10614. dplane += pa;
  10615. }
  10616. }
  10617. // ggml_compute_forward_upscale
  10618. static void ggml_compute_forward_upscale_f32(
  10619. const struct ggml_compute_params * params,
  10620. const struct ggml_tensor * src0,
  10621. struct ggml_tensor * dst) {
  10622. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  10623. return;
  10624. }
  10625. GGML_ASSERT(src0->nb[0] == sizeof(float));
  10626. const int ith = params->ith;
  10627. const int nth = params->nth;
  10628. GGML_TENSOR_UNARY_OP_LOCALS
  10629. const int scale_factor = dst->op_params[0];
  10630. // TODO: optimize
  10631. for (int64_t i3 = 0; i3 < ne3; i3++) {
  10632. const int64_t i03 = i3;
  10633. for (int64_t i2 = ith; i2 < ne2; i2 += nth) {
  10634. const int64_t i02 = i2;
  10635. for (int64_t i1 = 0; i1 < ne1; i1++) {
  10636. const int64_t i01 = i1 / scale_factor;
  10637. for (int64_t i0 = 0; i0 < ne0; i0++) {
  10638. const int64_t i00 = i0 / scale_factor;
  10639. const float * x = (float *)((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  10640. float * y = (float *)((char *) dst->data + i0*nb0 + i1*nb1 + i2*nb2 + i3*nb3);
  10641. *y = *x;
  10642. }
  10643. }
  10644. }
  10645. }
  10646. }
  10647. static void ggml_compute_forward_upscale(
  10648. const struct ggml_compute_params * params,
  10649. const struct ggml_tensor * src0,
  10650. struct ggml_tensor * dst) {
  10651. switch (src0->type) {
  10652. case GGML_TYPE_F32:
  10653. {
  10654. ggml_compute_forward_upscale_f32(params, src0, dst);
  10655. } break;
  10656. default:
  10657. {
  10658. GGML_ASSERT(false);
  10659. } break;
  10660. }
  10661. }
  10662. // ggml_compute_forward_pad
  10663. static void ggml_compute_forward_pad_f32(
  10664. const struct ggml_compute_params * params,
  10665. const struct ggml_tensor * src0,
  10666. struct ggml_tensor * dst) {
  10667. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  10668. return;
  10669. }
  10670. GGML_ASSERT(src0->nb[0] == sizeof(float));
  10671. GGML_ASSERT( dst->nb[0] == sizeof(float));
  10672. const int ith = params->ith;
  10673. const int nth = params->nth;
  10674. GGML_TENSOR_UNARY_OP_LOCALS
  10675. float * dst_ptr = (float *) dst->data;
  10676. // TODO: optimize
  10677. for (int64_t i2 = 0; i2 < ne2; ++i2) {
  10678. for (int64_t i1 = ith; i1 < ne1; i1 += nth) {
  10679. for (int64_t i0 = 0; i0 < ne0; ++i0) {
  10680. for (int64_t i3 = 0; i3 < ne3; ++i3) {
  10681. const int64_t dst_idx = i3*(ne0*ne1*ne2) + i2*(ne0*ne1) + i1*ne0 + i0;
  10682. const float * src_ptr = (const float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  10683. if (i0 < ne00 && i1 < ne01 && i2 < ne02 && i3 < ne03) {
  10684. dst_ptr[dst_idx] = *src_ptr;
  10685. } else {
  10686. dst_ptr[dst_idx] = 0;
  10687. }
  10688. }
  10689. }
  10690. }
  10691. }
  10692. }
  10693. static void ggml_compute_forward_pad(
  10694. const struct ggml_compute_params * params,
  10695. const struct ggml_tensor * src0,
  10696. struct ggml_tensor * dst) {
  10697. switch (src0->type) {
  10698. case GGML_TYPE_F32:
  10699. {
  10700. ggml_compute_forward_pad_f32(params, src0, dst);
  10701. } break;
  10702. default:
  10703. {
  10704. GGML_ASSERT(false);
  10705. } break;
  10706. }
  10707. }
  10708. // ggml_compute_forward_argsort
  10709. static void ggml_compute_forward_argsort_f32(
  10710. const struct ggml_compute_params * params,
  10711. const struct ggml_tensor * src0,
  10712. struct ggml_tensor * dst) {
  10713. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  10714. return;
  10715. }
  10716. GGML_TENSOR_UNARY_OP_LOCALS
  10717. GGML_ASSERT(nb0 == sizeof(float));
  10718. const int ith = params->ith;
  10719. const int nth = params->nth;
  10720. const int64_t nr = ggml_nrows(src0);
  10721. enum ggml_sort_order order = (enum ggml_sort_order) ggml_get_op_params_i32(dst, 0);
  10722. for (int64_t i = ith; i < nr; i += nth) {
  10723. int32_t * dst_data = (int32_t *)((char *) dst->data + i*nb1);
  10724. const float * src_data = (float *)((char *) src0->data + i*nb01);
  10725. for (int64_t j = 0; j < ne0; j++) {
  10726. dst_data[j] = j;
  10727. }
  10728. // C doesn't have a functional sort, so we do a bubble sort instead
  10729. for (int64_t j = 0; j < ne0; j++) {
  10730. for (int64_t k = j + 1; k < ne0; k++) {
  10731. if ((order == GGML_SORT_ASC && src_data[dst_data[j]] > src_data[dst_data[k]]) ||
  10732. (order == GGML_SORT_DESC && src_data[dst_data[j]] < src_data[dst_data[k]])) {
  10733. int32_t tmp = dst_data[j];
  10734. dst_data[j] = dst_data[k];
  10735. dst_data[k] = tmp;
  10736. }
  10737. }
  10738. }
  10739. }
  10740. }
  10741. static void ggml_compute_forward_argsort(
  10742. const struct ggml_compute_params * params,
  10743. const struct ggml_tensor * src0,
  10744. struct ggml_tensor * dst) {
  10745. switch (src0->type) {
  10746. case GGML_TYPE_F32:
  10747. {
  10748. ggml_compute_forward_argsort_f32(params, src0, dst);
  10749. } break;
  10750. default:
  10751. {
  10752. GGML_ASSERT(false);
  10753. } break;
  10754. }
  10755. }
  10756. // ggml_compute_forward_flash_attn
  10757. static void ggml_compute_forward_flash_attn_f32(
  10758. const struct ggml_compute_params * params,
  10759. const struct ggml_tensor * q,
  10760. const struct ggml_tensor * k,
  10761. const struct ggml_tensor * v,
  10762. const bool masked,
  10763. struct ggml_tensor * dst) {
  10764. int64_t t0 = ggml_perf_time_us();
  10765. UNUSED(t0);
  10766. GGML_TENSOR_LOCALS(int64_t, neq, q, ne)
  10767. GGML_TENSOR_LOCALS(size_t, nbq, q, nb)
  10768. GGML_TENSOR_LOCALS(int64_t, nek, k, ne)
  10769. GGML_TENSOR_LOCALS(size_t, nbk, k, nb)
  10770. GGML_TENSOR_LOCALS(int64_t, nev, v, ne)
  10771. GGML_TENSOR_LOCALS(size_t, nbv, v, nb)
  10772. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
  10773. GGML_TENSOR_LOCALS(size_t, nb, dst, nb)
  10774. const int ith = params->ith;
  10775. const int nth = params->nth;
  10776. const int64_t D = neq0;
  10777. const int64_t N = neq1;
  10778. const int64_t P = nek1 - N;
  10779. const int64_t M = P + N;
  10780. const int Mup = ggml_up(M, GGML_SOFT_MAX_UNROLL);
  10781. GGML_ASSERT(ne0 == D);
  10782. GGML_ASSERT(ne1 == N);
  10783. GGML_ASSERT(P >= 0);
  10784. GGML_ASSERT(nbq0 == sizeof(float));
  10785. GGML_ASSERT(nbk0 == sizeof(float));
  10786. GGML_ASSERT(nbv0 == sizeof(float));
  10787. GGML_ASSERT(neq0 == D);
  10788. GGML_ASSERT(nek0 == D);
  10789. GGML_ASSERT(nev1 == D);
  10790. GGML_ASSERT(neq1 == N);
  10791. GGML_ASSERT(nek1 == N + P);
  10792. GGML_ASSERT(nev1 == D);
  10793. // dst cannot be transposed or permuted
  10794. GGML_ASSERT(nb0 == sizeof(float));
  10795. GGML_ASSERT(nb0 <= nb1);
  10796. GGML_ASSERT(nb1 <= nb2);
  10797. GGML_ASSERT(nb2 <= nb3);
  10798. if (params->type == GGML_TASK_INIT) {
  10799. return;
  10800. }
  10801. if (params->type == GGML_TASK_FINALIZE) {
  10802. return;
  10803. }
  10804. // parallelize by q rows using ggml_vec_dot_f32
  10805. // total rows in q
  10806. const int nr = neq1*neq2*neq3;
  10807. // rows per thread
  10808. const int dr = (nr + nth - 1)/nth;
  10809. // row range for this thread
  10810. const int ir0 = dr*ith;
  10811. const int ir1 = MIN(ir0 + dr, nr);
  10812. const float scale = 1.0f/sqrtf(D);
  10813. //printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale);
  10814. for (int ir = ir0; ir < ir1; ++ir) {
  10815. // q indices
  10816. const int iq3 = ir/(neq2*neq1);
  10817. const int iq2 = (ir - iq3*neq2*neq1)/neq1;
  10818. const int iq1 = (ir - iq3*neq2*neq1 - iq2*neq1);
  10819. float * S = (float *) params->wdata + ith*(Mup + CACHE_LINE_SIZE_F32);
  10820. for (int i = M; i < Mup; ++i) {
  10821. S[i] = -INFINITY;
  10822. }
  10823. const int64_t masked_begin = masked ? (P + iq1 + 1) : M;
  10824. for (int64_t ic = 0; ic < masked_begin; ++ic) {
  10825. // k indices
  10826. const int ik3 = iq3;
  10827. const int ik2 = iq2 % nek2;
  10828. const int ik1 = ic;
  10829. // S indices
  10830. const int i1 = ik1;
  10831. ggml_vec_dot_f32(neq0,
  10832. S + i1,
  10833. (float *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
  10834. (float *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
  10835. }
  10836. // scale
  10837. ggml_vec_scale_f32(masked_begin, S, scale);
  10838. for (int64_t i = masked_begin; i < M; i++) {
  10839. S[i] = -INFINITY;
  10840. }
  10841. // softmax
  10842. // exclude known -INF S[..] values from max and loop
  10843. // dont forget to set their SW values to zero
  10844. {
  10845. float max = -INFINITY;
  10846. ggml_vec_max_f32(masked_begin, &max, S);
  10847. ggml_float sum = 0.0;
  10848. {
  10849. #ifdef GGML_SOFT_MAX_ACCELERATE
  10850. max = -max;
  10851. vDSP_vsadd(S, 1, &max, S, 1, Mup);
  10852. vvexpf(S, S, &Mup);
  10853. ggml_vec_sum_f32(Mup, &sum, S);
  10854. #else
  10855. uint16_t scvt[GGML_SOFT_MAX_UNROLL]; UNUSED(scvt);
  10856. ggml_float sump[GGML_SOFT_MAX_UNROLL] = { 0.0 };
  10857. for (int i = 0; i < Mup; i += GGML_SOFT_MAX_UNROLL) {
  10858. if (i >= masked_begin) {
  10859. break;
  10860. }
  10861. float * SS = S + i;
  10862. for (int j = 0; j < GGML_SOFT_MAX_UNROLL; ++j) {
  10863. if (i + j >= masked_begin) {
  10864. break;
  10865. } else if (SS[j] == -INFINITY) {
  10866. SS[j] = 0.0f;
  10867. } else {
  10868. #ifndef GGML_FLASH_ATTN_EXP_FP16
  10869. const float val = expf(SS[j] - max);
  10870. #else
  10871. ggml_fp16_t s = GGML_FP32_TO_FP16(SS[j] - max);
  10872. memcpy(&scvt[j], &s, sizeof(uint16_t));
  10873. const float val = GGML_FP16_TO_FP32(ggml_table_exp_f16[scvt[j]]);
  10874. #endif
  10875. sump[j] += (ggml_float)val;
  10876. SS[j] = val;
  10877. }
  10878. }
  10879. }
  10880. for (int i = 0; i < GGML_SOFT_MAX_UNROLL; i++) {
  10881. sum += sump[i];
  10882. }
  10883. #endif
  10884. }
  10885. assert(sum > 0.0);
  10886. sum = 1.0/sum;
  10887. ggml_vec_scale_f32(masked_begin, S, sum);
  10888. #ifndef NDEBUG
  10889. for (int i = 0; i < masked_begin; ++i) {
  10890. assert(!isnan(S[i]));
  10891. assert(!isinf(S[i]));
  10892. }
  10893. #endif
  10894. }
  10895. for (int64_t ic = 0; ic < nev1; ++ic) {
  10896. // dst indices
  10897. const int i1 = iq1;
  10898. const int i2 = iq2;
  10899. const int i3 = iq3;
  10900. // v indices
  10901. const int iv2 = iq2 % nev2;
  10902. const int iv3 = iq3;
  10903. ggml_vec_dot_f32(masked_begin,
  10904. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  10905. (float *) ((char *) v->data + ( ic*nbv1 + iv2*nbv2 + iv3*nbv3)),
  10906. S);
  10907. }
  10908. }
  10909. }
  10910. static void ggml_compute_forward_flash_attn_f16(
  10911. const struct ggml_compute_params * params,
  10912. const struct ggml_tensor * q,
  10913. const struct ggml_tensor * k,
  10914. const struct ggml_tensor * v,
  10915. const bool masked,
  10916. struct ggml_tensor * dst) {
  10917. int64_t t0 = ggml_perf_time_us();
  10918. UNUSED(t0);
  10919. GGML_TENSOR_LOCALS(int64_t, neq, q, ne)
  10920. GGML_TENSOR_LOCALS(size_t, nbq, q, nb)
  10921. GGML_TENSOR_LOCALS(int64_t, nek, k, ne)
  10922. GGML_TENSOR_LOCALS(size_t, nbk, k, nb)
  10923. GGML_TENSOR_LOCALS(int64_t, nev, v, ne)
  10924. GGML_TENSOR_LOCALS(size_t, nbv, v, nb)
  10925. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
  10926. GGML_TENSOR_LOCALS(size_t, nb, dst, nb)
  10927. const int ith = params->ith;
  10928. const int nth = params->nth;
  10929. const int64_t D = neq0;
  10930. const int64_t N = neq1;
  10931. const int64_t P = nek1 - N;
  10932. const int64_t M = P + N;
  10933. const int Mup = ggml_up(M, GGML_SOFT_MAX_UNROLL);
  10934. GGML_ASSERT(ne0 == D);
  10935. GGML_ASSERT(ne1 == N);
  10936. GGML_ASSERT(P >= 0);
  10937. GGML_ASSERT(nbq0 == sizeof(ggml_fp16_t));
  10938. GGML_ASSERT(nbk0 == sizeof(ggml_fp16_t));
  10939. GGML_ASSERT(nbv0 == sizeof(ggml_fp16_t));
  10940. GGML_ASSERT(neq0 == D);
  10941. GGML_ASSERT(nek0 == D);
  10942. GGML_ASSERT(nev1 == D);
  10943. GGML_ASSERT(neq1 == N);
  10944. GGML_ASSERT(nek1 == N + P);
  10945. GGML_ASSERT(nev1 == D);
  10946. // dst cannot be transposed or permuted
  10947. GGML_ASSERT(nb0 == sizeof(float));
  10948. GGML_ASSERT(nb0 <= nb1);
  10949. GGML_ASSERT(nb1 <= nb2);
  10950. GGML_ASSERT(nb2 <= nb3);
  10951. if (params->type == GGML_TASK_INIT) {
  10952. return;
  10953. }
  10954. if (params->type == GGML_TASK_FINALIZE) {
  10955. return;
  10956. }
  10957. // parallelize by q rows using ggml_vec_dot_f32
  10958. // total rows in q
  10959. const int nr = neq1*neq2*neq3;
  10960. // rows per thread
  10961. const int dr = (nr + nth - 1)/nth;
  10962. // row range for this thread
  10963. const int ir0 = dr*ith;
  10964. const int ir1 = MIN(ir0 + dr, nr);
  10965. const float scale = 1.0f/sqrtf(D);
  10966. //printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale);
  10967. for (int ir = ir0; ir < ir1; ++ir) {
  10968. // q indices
  10969. const int iq3 = ir/(neq2*neq1);
  10970. const int iq2 = (ir - iq3*neq2*neq1)/neq1;
  10971. const int iq1 = (ir - iq3*neq2*neq1 - iq2*neq1);
  10972. float * S = (float *) params->wdata + ith*(2*Mup + CACHE_LINE_SIZE_F32);
  10973. for (int i = M; i < Mup; ++i) {
  10974. S[i] = -INFINITY;
  10975. }
  10976. if (GGML_VEC_DOT_UNROLL > 2 || nek1 % GGML_VEC_DOT_UNROLL != 0) {
  10977. for (int64_t ic = 0; ic < nek1; ++ic) {
  10978. // k indices
  10979. const int ik3 = iq3;
  10980. const int ik2 = iq2 % nek2;
  10981. const int ik1 = ic;
  10982. // S indices
  10983. const int i1 = ik1;
  10984. ggml_vec_dot_f16(neq0,
  10985. S + i1,
  10986. (ggml_fp16_t *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
  10987. (ggml_fp16_t *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
  10988. }
  10989. } else {
  10990. for (int64_t ic = 0; ic < nek1; ic += GGML_VEC_DOT_UNROLL) {
  10991. // k indices
  10992. const int ik3 = iq3;
  10993. const int ik2 = iq2 % nek2;
  10994. const int ik1 = ic;
  10995. // S indices
  10996. const int i1 = ik1;
  10997. ggml_vec_dot_f16_unroll(neq0, nbk1,
  10998. S + i1,
  10999. ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
  11000. (ggml_fp16_t *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
  11001. }
  11002. }
  11003. // scale
  11004. ggml_vec_scale_f32(nek1, S, scale);
  11005. if (masked) {
  11006. for (int64_t i = P; i < M; i++) {
  11007. if (i > P + iq1) {
  11008. S[i] = -INFINITY;
  11009. }
  11010. }
  11011. }
  11012. // softmax
  11013. // todo: exclude known -INF S[..] values from max and loop, assuming their results to be zero.
  11014. // dont forget to set their S values to zero
  11015. {
  11016. float max = -INFINITY;
  11017. ggml_vec_max_f32(M, &max, S);
  11018. ggml_float sum = 0.0;
  11019. {
  11020. #ifdef GGML_SOFT_MAX_ACCELERATE
  11021. max = -max;
  11022. vDSP_vsadd(S, 1, &max, S, 1, Mup);
  11023. vvexpf(S, S, &Mup);
  11024. ggml_vec_sum_f32(Mup, &sum, S);
  11025. #else
  11026. uint16_t scvt[GGML_SOFT_MAX_UNROLL];
  11027. ggml_float sump[GGML_SOFT_MAX_UNROLL] = { 0.0 };
  11028. for (int i = 0; i < Mup; i += GGML_SOFT_MAX_UNROLL) {
  11029. float * SS = S + i;
  11030. for (int j = 0; j < GGML_SOFT_MAX_UNROLL; ++j) {
  11031. if (SS[j] == -INFINITY) {
  11032. SS[j] = 0.0f;
  11033. } else {
  11034. ggml_fp16_t s = GGML_FP32_TO_FP16(SS[j] - max);
  11035. memcpy(&scvt[j], &s, sizeof(uint16_t));
  11036. const float val = GGML_FP16_TO_FP32(ggml_table_exp_f16[scvt[j]]);
  11037. sump[j] += (ggml_float)val;
  11038. SS[j] = val;
  11039. }
  11040. }
  11041. }
  11042. for (int i = 0; i < GGML_SOFT_MAX_UNROLL; i++) {
  11043. sum += sump[i];
  11044. }
  11045. #endif
  11046. }
  11047. assert(sum > 0.0);
  11048. sum = 1.0/sum;
  11049. ggml_vec_scale_f32(M, S, sum);
  11050. #ifndef NDEBUG
  11051. for (int i = 0; i < M; ++i) {
  11052. assert(!isnan(S[i]));
  11053. assert(!isinf(S[i]));
  11054. }
  11055. #endif
  11056. }
  11057. ggml_fp16_t * S16 = (ggml_fp16_t *) ((float *) params->wdata + ith*(2*Mup + CACHE_LINE_SIZE_F32) + Mup);
  11058. for (int64_t i = 0; i < M; i++) {
  11059. S16[i] = GGML_FP32_TO_FP16(S[i]);
  11060. }
  11061. // todo: exclude known zero S[..] values from dot (reducing nev0 and increasing begin of v and S16).
  11062. if (GGML_VEC_DOT_UNROLL == 1 || (nev1 % GGML_VEC_DOT_UNROLL != 0)) {
  11063. for (int64_t ic = 0; ic < nev1; ++ic) {
  11064. // dst indices
  11065. const int i1 = iq1;
  11066. const int i2 = iq2;
  11067. const int i3 = iq3;
  11068. // v indices
  11069. const int iv2 = iq2 % nev2;
  11070. const int iv3 = iq3;
  11071. ggml_vec_dot_f16(nev0,
  11072. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  11073. (ggml_fp16_t *) ((char *) v->data + ( ic*nbv1 + iv2*nbv2 + iv3*nbv3)),
  11074. S16);
  11075. }
  11076. } else {
  11077. for (int64_t ic = 0; ic < nev1; ic += GGML_VEC_DOT_UNROLL) {
  11078. // dst indices
  11079. const int i1 = iq1;
  11080. const int i2 = iq2;
  11081. const int i3 = iq3;
  11082. // v indices
  11083. const int iv2 = iq2 % nev2;
  11084. const int iv3 = iq3;
  11085. ggml_vec_dot_f16_unroll(nev0, nbv1,
  11086. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  11087. ((char *) v->data + ( ic*nbv1 + iv2*nbv2 + iv3*nbv3)),
  11088. S16);
  11089. }
  11090. }
  11091. }
  11092. }
  11093. static void ggml_compute_forward_flash_attn(
  11094. const struct ggml_compute_params * params,
  11095. const struct ggml_tensor * q,
  11096. const struct ggml_tensor * k,
  11097. const struct ggml_tensor * v,
  11098. const bool masked,
  11099. struct ggml_tensor * dst) {
  11100. switch (q->type) {
  11101. case GGML_TYPE_F16:
  11102. {
  11103. ggml_compute_forward_flash_attn_f16(params, q, k, v, masked, dst);
  11104. } break;
  11105. case GGML_TYPE_F32:
  11106. {
  11107. ggml_compute_forward_flash_attn_f32(params, q, k, v, masked, dst);
  11108. } break;
  11109. default:
  11110. {
  11111. GGML_ASSERT(false);
  11112. } break;
  11113. }
  11114. }
  11115. // ggml_compute_forward_flash_ff
  11116. static void ggml_compute_forward_flash_ff_f16(
  11117. const struct ggml_compute_params * params,
  11118. const struct ggml_tensor * a, // F16
  11119. const struct ggml_tensor * b0, // F16 fc_w
  11120. const struct ggml_tensor * b1, // F32 fc_b
  11121. const struct ggml_tensor * c0, // F16 proj_w
  11122. const struct ggml_tensor * c1, // F32 proj_b
  11123. struct ggml_tensor * dst) {
  11124. int64_t t0 = ggml_perf_time_us();
  11125. UNUSED(t0);
  11126. GGML_TENSOR_LOCALS(int64_t, nea, a, ne)
  11127. GGML_TENSOR_LOCALS(size_t, nba, a, nb)
  11128. GGML_TENSOR_LOCALS(int64_t, neb0, b0, ne)
  11129. GGML_TENSOR_LOCALS(size_t, nbb0, b0, nb)
  11130. GGML_TENSOR_LOCALS(int64_t, neb1, b1, ne)
  11131. GGML_TENSOR_LOCALS(size_t, nbb1, b1, nb)
  11132. GGML_TENSOR_LOCALS(int64_t, nec0, c0, ne)
  11133. GGML_TENSOR_LOCALS(size_t, nbc0, c0, nb)
  11134. GGML_TENSOR_LOCALS(int64_t, nec1, c1, ne)
  11135. GGML_TENSOR_LOCALS(size_t, nbc1, c1, nb)
  11136. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
  11137. GGML_TENSOR_LOCALS(size_t, nb, dst, nb)
  11138. const int ith = params->ith;
  11139. const int nth = params->nth;
  11140. const int64_t D = nea0;
  11141. //const int64_t N = nea1;
  11142. const int64_t M = neb01;
  11143. GGML_ASSERT(ne0 == nea0);
  11144. GGML_ASSERT(ne1 == nea1);
  11145. GGML_ASSERT(ne2 == nea2);
  11146. GGML_ASSERT(nba0 == sizeof(ggml_fp16_t));
  11147. GGML_ASSERT(nbb00 == sizeof(ggml_fp16_t));
  11148. GGML_ASSERT(nbb10 == sizeof(float));
  11149. GGML_ASSERT(nbc00 == sizeof(ggml_fp16_t));
  11150. GGML_ASSERT(nbc10 == sizeof(float));
  11151. GGML_ASSERT(neb00 == D);
  11152. GGML_ASSERT(neb01 == M);
  11153. GGML_ASSERT(neb10 == M);
  11154. GGML_ASSERT(neb11 == 1);
  11155. GGML_ASSERT(nec00 == M);
  11156. GGML_ASSERT(nec01 == D);
  11157. GGML_ASSERT(nec10 == D);
  11158. GGML_ASSERT(nec11 == 1);
  11159. // dst cannot be transposed or permuted
  11160. GGML_ASSERT(nb0 == sizeof(float));
  11161. GGML_ASSERT(nb0 <= nb1);
  11162. GGML_ASSERT(nb1 <= nb2);
  11163. GGML_ASSERT(nb2 <= nb3);
  11164. if (params->type == GGML_TASK_INIT) {
  11165. return;
  11166. }
  11167. if (params->type == GGML_TASK_FINALIZE) {
  11168. return;
  11169. }
  11170. // parallelize by a rows using ggml_vec_dot_f32
  11171. // total rows in a
  11172. const int nr = nea1*nea2*nea3;
  11173. // rows per thread
  11174. const int dr = (nr + nth - 1)/nth;
  11175. // row range for this thread
  11176. const int ir0 = dr*ith;
  11177. const int ir1 = MIN(ir0 + dr, nr);
  11178. for (int ir = ir0; ir < ir1; ++ir) {
  11179. // a indices
  11180. const int ia3 = ir/(nea2*nea1);
  11181. const int ia2 = (ir - ia3*nea2*nea1)/nea1;
  11182. const int ia1 = (ir - ia3*nea2*nea1 - ia2*nea1);
  11183. float * S = (float *) params->wdata + ith*(2*M + CACHE_LINE_SIZE_F32);
  11184. for (int64_t ic = 0; ic < neb01; ++ic) {
  11185. // b0 indices
  11186. const int ib03 = ia3;
  11187. const int ib02 = ia2;
  11188. const int ib01 = ic;
  11189. // S indices
  11190. const int i1 = ib01;
  11191. ggml_vec_dot_f16(nea0,
  11192. S + i1,
  11193. (ggml_fp16_t *) ((char *) b0->data + (ib01*nbb01 + ib02*nbb02 + ib03*nbb03)),
  11194. (ggml_fp16_t *) ((char *) a->data + ( ia1*nba1 + ia2*nba2 + ia3*nba3)));
  11195. }
  11196. ggml_vec_add_f32(neb01, S, S, (float *) b1->data);
  11197. //ggml_vec_gelu_f32(neb01, S, S);
  11198. ggml_fp16_t * S16 = (ggml_fp16_t *) ((float *) params->wdata + ith*(2*M + CACHE_LINE_SIZE_F32) + M);
  11199. for (int64_t i = 0; i < M; i++) {
  11200. S16[i] = GGML_FP32_TO_FP16(S[i]);
  11201. }
  11202. ggml_vec_gelu_f16(neb01, S16, S16);
  11203. {
  11204. // dst indices
  11205. const int i1 = ia1;
  11206. const int i2 = ia2;
  11207. const int i3 = ia3;
  11208. for (int64_t ic = 0; ic < nec01; ++ic) {
  11209. ggml_vec_dot_f16(neb01,
  11210. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  11211. (ggml_fp16_t *) ((char *) c0->data + ( ic*nbc01 + i2*nbc02 + i3*nbc03)),
  11212. S16);
  11213. }
  11214. ggml_vec_add_f32(nec01,
  11215. (float *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3)),
  11216. (float *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3)),
  11217. (float *) c1->data);
  11218. }
  11219. }
  11220. }
  11221. static void ggml_compute_forward_flash_ff(
  11222. const struct ggml_compute_params * params,
  11223. const struct ggml_tensor * a,
  11224. const struct ggml_tensor * b0,
  11225. const struct ggml_tensor * b1,
  11226. const struct ggml_tensor * c0,
  11227. const struct ggml_tensor * c1,
  11228. struct ggml_tensor * dst) {
  11229. switch (b0->type) {
  11230. case GGML_TYPE_F16:
  11231. {
  11232. ggml_compute_forward_flash_ff_f16(params, a, b0, b1, c0, c1, dst);
  11233. } break;
  11234. case GGML_TYPE_F32:
  11235. {
  11236. GGML_ASSERT(false); // TODO
  11237. } break;
  11238. default:
  11239. {
  11240. GGML_ASSERT(false);
  11241. } break;
  11242. }
  11243. }
  11244. // ggml_compute_forward_flash_attn_back
  11245. static void ggml_compute_forward_flash_attn_back_f32(
  11246. const struct ggml_compute_params * params,
  11247. const struct ggml_tensor * q,
  11248. const struct ggml_tensor * k,
  11249. const struct ggml_tensor * v,
  11250. const struct ggml_tensor * d,
  11251. const bool masked,
  11252. struct ggml_tensor * dst) {
  11253. int64_t t0 = ggml_perf_time_us();
  11254. UNUSED(t0);
  11255. GGML_TENSOR_LOCALS(int64_t, neq, q, ne)
  11256. GGML_TENSOR_LOCALS(size_t, nbq, q, nb)
  11257. GGML_TENSOR_LOCALS(int64_t, nek, k, ne)
  11258. GGML_TENSOR_LOCALS(size_t, nbk, k, nb)
  11259. GGML_TENSOR_LOCALS(int64_t, nev, v, ne)
  11260. GGML_TENSOR_LOCALS(size_t, nbv, v, nb)
  11261. GGML_TENSOR_LOCALS(int64_t, ned, d, ne)
  11262. GGML_TENSOR_LOCALS(size_t, nbd, d, nb)
  11263. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
  11264. GGML_TENSOR_LOCALS(size_t, nb, dst, nb)
  11265. const int ith = params->ith;
  11266. const int nth = params->nth;
  11267. const int64_t D = neq0;
  11268. const int64_t N = neq1;
  11269. const int64_t P = nek1 - N;
  11270. const int64_t M = P + N;
  11271. const int Mup = ggml_up(M, GGML_SOFT_MAX_UNROLL);
  11272. const int mxDM = MAX(D, Mup);
  11273. // GGML_ASSERT(ne0 == D);
  11274. // GGML_ASSERT(ne1 == N);
  11275. GGML_ASSERT(P >= 0);
  11276. GGML_ASSERT(nbq0 == sizeof(float));
  11277. GGML_ASSERT(nbk0 == sizeof(float));
  11278. GGML_ASSERT(nbv0 == sizeof(float));
  11279. GGML_ASSERT(neq0 == D);
  11280. GGML_ASSERT(nek0 == D);
  11281. GGML_ASSERT(nev1 == D);
  11282. GGML_ASSERT(ned0 == D);
  11283. GGML_ASSERT(neq1 == N);
  11284. GGML_ASSERT(nek1 == N + P);
  11285. GGML_ASSERT(nev1 == D);
  11286. GGML_ASSERT(ned1 == N);
  11287. // dst cannot be transposed or permuted
  11288. GGML_ASSERT(nb0 == sizeof(float));
  11289. GGML_ASSERT(nb0 <= nb1);
  11290. GGML_ASSERT(nb1 <= nb2);
  11291. GGML_ASSERT(nb2 <= nb3);
  11292. if (params->type == GGML_TASK_INIT) {
  11293. if (ith == 0) {
  11294. memset(dst->data, 0, nb0*ne0*ne1*ne2*ne3);
  11295. }
  11296. return;
  11297. }
  11298. if (params->type == GGML_TASK_FINALIZE) {
  11299. return;
  11300. }
  11301. const int64_t elem_q = ggml_nelements(q);
  11302. const int64_t elem_k = ggml_nelements(k);
  11303. enum ggml_type result_type = dst->type;
  11304. GGML_ASSERT(ggml_blck_size(result_type) == 1);
  11305. const size_t tsize = ggml_type_size(result_type);
  11306. const size_t offs_q = 0;
  11307. const size_t offs_k = offs_q + GGML_PAD(elem_q * tsize, GGML_MEM_ALIGN);
  11308. const size_t offs_v = offs_k + GGML_PAD(elem_k * tsize, GGML_MEM_ALIGN);
  11309. void * grad_q = (char *) dst->data;
  11310. void * grad_k = (char *) dst->data + offs_k;
  11311. void * grad_v = (char *) dst->data + offs_v;
  11312. const size_t nbgq1 = nb0*neq0;
  11313. const size_t nbgq2 = nb0*neq0*neq1;
  11314. const size_t nbgq3 = nb0*neq0*neq1*neq2;
  11315. const size_t nbgk1 = nb0*nek0;
  11316. const size_t nbgk2 = nb0*nek0*nek1;
  11317. const size_t nbgk3 = nb0*nek0*nek1*neq2;
  11318. const size_t nbgv1 = nb0*nev0;
  11319. const size_t nbgv2 = nb0*nev0*nev1;
  11320. const size_t nbgv3 = nb0*nev0*nev1*neq2;
  11321. // parallelize by k rows using ggml_vec_dot_f32
  11322. // total rows in k
  11323. const int nr = nek2*nek3;
  11324. // rows per thread
  11325. const int dr = (nr + nth - 1)/nth;
  11326. // row range for this thread
  11327. const int ir0 = dr*ith;
  11328. const int ir1 = MIN(ir0 + dr, nr);
  11329. const float scale = 1.0f/sqrtf(D);
  11330. //printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale);
  11331. // how often k2 (and v2) is repeated in q2
  11332. int nrep = neq2/nek2;
  11333. for (int ir = ir0; ir < ir1; ++ir) {
  11334. // q indices
  11335. const int ik3 = ir/(nek2);
  11336. const int ik2 = ir - ik3*nek2;
  11337. const int iq3 = ik3;
  11338. const int id3 = ik3;
  11339. const int iv3 = ik3;
  11340. const int iv2 = ik2;
  11341. for (int irep = 0; irep < nrep; ++irep) {
  11342. const int iq2 = ik2 + irep*nek2;
  11343. const int id2 = iq2;
  11344. // (ik2 + irep*nek2) % nek2 == ik2
  11345. for (int iq1 = 0; iq1 < neq1; ++iq1) {
  11346. const int id1 = iq1;
  11347. // not sure about CACHE_LINE_SIZE_F32..
  11348. // - maybe it must not be multiplied by 2 and excluded from .. in SM 1*(..) offset?
  11349. float * S = (float *) params->wdata + ith*2*(mxDM + CACHE_LINE_SIZE_F32) + 0*(mxDM+CACHE_LINE_SIZE_F32);
  11350. float * SM = (float *) params->wdata + ith*2*(mxDM + CACHE_LINE_SIZE_F32) + 1*(mxDM+CACHE_LINE_SIZE_F32);
  11351. for (int i = M; i < Mup; ++i) {
  11352. S[i] = -INFINITY;
  11353. }
  11354. const int64_t masked_begin = masked ? (P + iq1 + 1) : M;
  11355. for (int64_t ic = 0; ic < masked_begin; ++ic) {
  11356. // k indices
  11357. const int ik1 = ic;
  11358. // S indices
  11359. const int i1 = ik1;
  11360. ggml_vec_dot_f32(neq0,
  11361. S + i1,
  11362. (float *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
  11363. (float *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
  11364. }
  11365. // scale
  11366. ggml_vec_scale_f32(masked_begin, S, scale);
  11367. for (int64_t i = masked_begin; i < M; i++) {
  11368. S[i] = -INFINITY;
  11369. }
  11370. // softmax
  11371. // exclude known -INF S[..] values from max and loop
  11372. // dont forget to set their SM values to zero
  11373. {
  11374. float max = -INFINITY;
  11375. ggml_vec_max_f32(masked_begin, &max, S);
  11376. ggml_float sum = 0.0;
  11377. {
  11378. #ifdef GGML_SOFT_MAX_ACCELERATE
  11379. max = -max;
  11380. vDSP_vsadd(SM, 1, &max, SM, 1, Mup);
  11381. vvexpf(SM, SM, &Mup);
  11382. ggml_vec_sum_f32(Mup, &sum, SM);
  11383. #else
  11384. uint16_t scvt[GGML_SOFT_MAX_UNROLL]; UNUSED(scvt);
  11385. ggml_float sump[GGML_SOFT_MAX_UNROLL] = { 0.0 };
  11386. for (int i = 0; i < Mup; i += GGML_SOFT_MAX_UNROLL) {
  11387. if (i >= masked_begin) {
  11388. break;
  11389. }
  11390. float * SR = S + i;
  11391. float * SW = SM + i;
  11392. for (int j = 0; j < GGML_SOFT_MAX_UNROLL; ++j) {
  11393. if (i + j >= masked_begin) {
  11394. break;
  11395. } else if (SR[j] == -INFINITY) {
  11396. SW[j] = 0.0f;
  11397. } else {
  11398. #ifndef GGML_FLASH_ATTN_EXP_FP16
  11399. const float val = expf(SR[j] - max);
  11400. #else
  11401. ggml_fp16_t s = GGML_FP32_TO_FP16(SR[j] - max);
  11402. memcpy(&scvt[j], &s, sizeof(uint16_t));
  11403. const float val = GGML_FP16_TO_FP32(ggml_table_exp_f16[scvt[j]]);
  11404. #endif
  11405. sump[j] += (ggml_float)val;
  11406. SW[j] = val;
  11407. }
  11408. }
  11409. }
  11410. for (int i = 0; i < GGML_SOFT_MAX_UNROLL; i++) {
  11411. sum += sump[i];
  11412. }
  11413. #endif
  11414. }
  11415. assert(sum > 0.0);
  11416. sum = 1.0/sum;
  11417. ggml_vec_scale_f32(masked_begin, SM, sum);
  11418. }
  11419. // step-by-step explanation
  11420. {
  11421. // forward-process shape grads from backward process
  11422. // parallel_for ik2,ik3:
  11423. // for irep:
  11424. // iq2 = ik2 + irep*nek2
  11425. // k[:D,:M,:,:] [D,M,:,:] grad[k][:D,:M,ik2,ik3] += grad[kcur]
  11426. // q[:D,:N,:,:] [D,N,:,:] grad[q][:D,iq1,iq2,iq3] += grad[qcur]
  11427. // v[:M,:D,:,:] [M,D,:,:] grad[v][:M,:D,iv2,iv3] += grad[vcur]
  11428. // for iq1:
  11429. // kcur = k[:D,:M,ik2,ik3] [D,M,1,1] grad[kcur] = grad[S1].T @ qcur
  11430. // qcur = q[:D,iq1,iq2,iq3] [D,1,1,1] grad[qcur] = grad[S1] @ kcur
  11431. // vcur = v[:M,:D,iv2,iv3] [M,D,1,1] grad[vcur] = grad[S5].T @ S4
  11432. // S0 = -Inf [D,1,1,1]
  11433. // ~S1[i] = dot(kcur[:D,i], qcur)
  11434. // S1 = qcur @ kcur.T [M,1,1,1] grad[S1] = grad[S2] * scale
  11435. // S2 = S1 * scale [M,1,1,1] grad[S2] = diag_mask_zero(grad[S3], P)
  11436. // S3 = diag_mask_inf(S2, P) [M,1,1,1] grad[S3] = S4 * (grad[S4] - dot(S4, grad[S4]))
  11437. // S4 = softmax(S3) [M,1,1,1] grad[S4] = grad[S5] @ vcur
  11438. // ~S5[i] = dot(vcur[:,i], S4)
  11439. // S5 = S4 @ vcur.T [D,1,1,1] grad[S5] = d[:D,id1,id2,id3]
  11440. // ~dst[i,iq1,iq2,iq3] = S5[i] ^
  11441. // dst[:D,iq1,iq2,iq3] = S5 | grad[dst[:D,iq1,iq2,iq3]] = d[:D,id1,id2,id3]
  11442. // dst backward-/ grad[dst] = d
  11443. //
  11444. // output gradients with their dependencies:
  11445. //
  11446. // grad[kcur] = grad[S1].T @ qcur
  11447. // grad[S1] = diag_mask_zero(grad[S3], P) * scale
  11448. // grad[S3] = S4 * (grad[S4] - dot(S4, grad[S4]))
  11449. // grad[S4] = grad[S5] @ vcur
  11450. // grad[S4] = d[:D,id1,id2,id3] @ vcur
  11451. // grad[qcur] = grad[S1] @ kcur
  11452. // grad[vcur] = grad[S5].T @ S4
  11453. // grad[vcur] = d[:D,id1,id2,id3].T @ S4
  11454. //
  11455. // in post-order:
  11456. //
  11457. // S1 = qcur @ kcur.T
  11458. // S2 = S1 * scale
  11459. // S3 = diag_mask_inf(S2, P)
  11460. // S4 = softmax(S3)
  11461. // grad[S4] = d[:D,id1,id2,id3] @ vcur
  11462. // grad[S3] = S4 * (grad[S4] - dot(S4, grad[S4]))
  11463. // grad[S1] = diag_mask_zero(grad[S3], P) * scale
  11464. // grad[qcur] = grad[S1] @ kcur
  11465. // grad[kcur] = grad[S1].T @ qcur
  11466. // grad[vcur] = d[:D,id1,id2,id3].T @ S4
  11467. //
  11468. // using less variables (SM=S4):
  11469. //
  11470. // S = diag_mask_inf(qcur @ kcur.T * scale, P)
  11471. // SM = softmax(S)
  11472. // S = d[:D,iq1,iq2,iq3] @ vcur
  11473. // dot_SM_gradSM = dot(SM, S)
  11474. // S = SM * (S - dot(SM, S))
  11475. // S = diag_mask_zero(S, P) * scale
  11476. //
  11477. // grad[q][:D,iq1,iq2,iq3] += S @ kcur
  11478. // grad[k][:D,:M,ik2,ik3] += S.T @ qcur
  11479. // grad[v][:M,:D,iv2,iv3] += d[:D,id1,id2,id3].T @ SM
  11480. }
  11481. // S = gradSM = d[:D,id1,id2,id3] @ vcur[:,:,iv2,iv3]
  11482. // S = d[:D,id1,id2,id3] @ vcur[:,:,iv2,iv3]
  11483. // for ic:
  11484. // S[:M] += vcur[:M,ic,iv2,iv3] * d[ic,id1,id2,id3]
  11485. // exclude known future zero S[..] values from operation
  11486. ggml_vec_set_f32(masked_begin, S, 0);
  11487. for (int64_t ic = 0; ic < D; ++ic) {
  11488. ggml_vec_mad_f32(masked_begin,
  11489. S,
  11490. (float *) ((char *) v->data + ( ic*nbv1 + iv2*nbv2 + iv3*nbv3)),
  11491. *(float *) ((char *) d->data + (ic*nbd0 + id1*nbd1 + id2*nbd2 + id3*nbd3)));
  11492. }
  11493. // S = SM * (S - dot(SM, S))
  11494. float dot_SM_gradSM = 0;
  11495. ggml_vec_dot_f32 (masked_begin, &dot_SM_gradSM, SM, S);
  11496. ggml_vec_acc1_f32(M, S, -dot_SM_gradSM);
  11497. ggml_vec_mul_f32 (masked_begin, S, S, SM);
  11498. // S = diag_mask_zero(S, P) * scale
  11499. // already done by above ggml_vec_set_f32
  11500. // exclude known zero S[..] values from operation
  11501. ggml_vec_scale_f32(masked_begin, S, scale);
  11502. // S shape [M,1]
  11503. // SM shape [M,1]
  11504. // kcur shape [D,M]
  11505. // qcur shape [D,1]
  11506. // vcur shape [M,D]
  11507. // grad[q][:D,iq1,iq2,iq3] += S @ kcur
  11508. // grad[q][:D,iq1,iq2,iq3] += shape[M,1] @ shape[D,M]
  11509. // for ic:
  11510. // grad[q][:D,iq1,iq2,iq3] += S[ic] * kcur[:D,ic,ik2,ik3]
  11511. // exclude known zero S[..] values from loop
  11512. for (int64_t ic = 0; ic < masked_begin; ++ic) {
  11513. ggml_vec_mad_f32(D,
  11514. (float *) ((char *) grad_q + (iq1*nbgq1 + iq2*nbgq2 + iq3*nbgq3)),
  11515. (float *) ((char *) k->data + (ic*nbk1 + ik2*nbk2 + ik3*nbk3)),
  11516. S[ic]);
  11517. }
  11518. // grad[k][:D,:M,iq2,iq3] += S.T @ qcur
  11519. // for ic:
  11520. // grad[k][:D,ic,iq2,iq3] += S.T[0,ic] * qcur[:D,0]
  11521. // grad[k][:D,ic,iq2,iq3] += S[ic] * qcur[:D,0]
  11522. // exclude known zero S[..] values from loop
  11523. for (int64_t ic = 0; ic < masked_begin; ++ic) {
  11524. ggml_vec_mad_f32(D,
  11525. (float *) ((char *) grad_k + (ic*nbgk1 + ik2*nbgk2 + ik3*nbgk3)),
  11526. (float *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)),
  11527. S[ic]);
  11528. }
  11529. // grad[v][:M,:D,iv2,iv3] += d[:D,id1,id2,id3].T @ SM
  11530. // for ic:
  11531. // grad[v][:M,ic,iv2,iv3] += d[:D,id1,id2,id3].T[0,ic] * SM[:M]
  11532. // grad[v][:M,ic,iv2,iv3] += d[ic,id1,id2,id3] * SM[:M]
  11533. // exclude known zero SM[..] values from mad
  11534. for (int64_t ic = 0; ic < D; ++ic) {
  11535. ggml_vec_mad_f32(masked_begin,
  11536. (float *) ((char *) grad_v + ( ic*nbgv1 + iv2*nbgv2 + iv3*nbgv3)),
  11537. SM,
  11538. *(float *) ((char *) d->data + (ic*nbd0 + id1*nbd1 + id2*nbd2 + id3*nbd3)));
  11539. }
  11540. }
  11541. }
  11542. }
  11543. }
  11544. static void ggml_compute_forward_flash_attn_back(
  11545. const struct ggml_compute_params * params,
  11546. const struct ggml_tensor * q,
  11547. const struct ggml_tensor * k,
  11548. const struct ggml_tensor * v,
  11549. const struct ggml_tensor * d,
  11550. const bool masked,
  11551. struct ggml_tensor * dst) {
  11552. switch (q->type) {
  11553. case GGML_TYPE_F32:
  11554. {
  11555. ggml_compute_forward_flash_attn_back_f32(params, q, k, v, d, masked, dst);
  11556. } break;
  11557. default:
  11558. {
  11559. GGML_ASSERT(false);
  11560. } break;
  11561. }
  11562. }
  11563. // ggml_compute_forward_win_part
  11564. static void ggml_compute_forward_win_part_f32(
  11565. const struct ggml_compute_params * params,
  11566. const struct ggml_tensor * src0,
  11567. struct ggml_tensor * dst) {
  11568. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11569. return;
  11570. }
  11571. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne)
  11572. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
  11573. const int32_t nep0 = ((const int32_t *)(dst->op_params))[0];
  11574. const int32_t nep1 = ((const int32_t *)(dst->op_params))[1];
  11575. const int32_t w = ((const int32_t *)(dst->op_params))[2];
  11576. assert(ne00 == ne0);
  11577. assert(ne3 == nep0*nep1);
  11578. // TODO: optimize / multi-thread
  11579. for (int py = 0; py < nep1; ++py) {
  11580. for (int px = 0; px < nep0; ++px) {
  11581. const int64_t i3 = py*nep0 + px;
  11582. for (int64_t i2 = 0; i2 < ne2; ++i2) {
  11583. for (int64_t i1 = 0; i1 < ne1; ++i1) {
  11584. for (int64_t i0 = 0; i0 < ne0; ++i0) {
  11585. const int64_t i02 = py*w + i2;
  11586. const int64_t i01 = px*w + i1;
  11587. const int64_t i00 = i0;
  11588. const int64_t i = i3*ne2*ne1*ne0 + i2*ne1*ne0 + i1*ne0 + i0;
  11589. const int64_t j = i02*ne01*ne00 + i01*ne00 + i00;
  11590. if (py*w + i2 >= ne02 || px*w + i1 >= ne01) {
  11591. ((float *) dst->data)[i] = 0.0f;
  11592. } else {
  11593. ((float *) dst->data)[i] = ((float *) src0->data)[j];
  11594. }
  11595. }
  11596. }
  11597. }
  11598. }
  11599. }
  11600. }
  11601. static void ggml_compute_forward_win_part(
  11602. const struct ggml_compute_params * params,
  11603. const struct ggml_tensor * src0,
  11604. struct ggml_tensor * dst) {
  11605. switch (src0->type) {
  11606. case GGML_TYPE_F32:
  11607. {
  11608. ggml_compute_forward_win_part_f32(params, src0, dst);
  11609. } break;
  11610. default:
  11611. {
  11612. GGML_ASSERT(false);
  11613. } break;
  11614. }
  11615. }
  11616. // ggml_compute_forward_win_unpart
  11617. static void ggml_compute_forward_win_unpart_f32(
  11618. const struct ggml_compute_params * params,
  11619. const struct ggml_tensor * src0,
  11620. struct ggml_tensor * dst) {
  11621. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11622. return;
  11623. }
  11624. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne)
  11625. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
  11626. const int32_t w = ((const int32_t *)(dst->op_params))[0];
  11627. // padding
  11628. const int px = (w - ne1%w)%w;
  11629. //const int py = (w - ne2%w)%w;
  11630. const int npx = (px + ne1)/w;
  11631. //const int npy = (py + ne2)/w;
  11632. assert(ne0 == ne00);
  11633. // TODO: optimize / multi-thread
  11634. for (int64_t i2 = 0; i2 < ne2; ++i2) {
  11635. for (int64_t i1 = 0; i1 < ne1; ++i1) {
  11636. for (int64_t i0 = 0; i0 < ne0; ++i0) {
  11637. const int ip2 = i2/w;
  11638. const int ip1 = i1/w;
  11639. const int64_t i02 = i2%w;
  11640. const int64_t i01 = i1%w;
  11641. const int64_t i00 = i0;
  11642. const int64_t i = (ip2*npx + ip1)*ne02*ne01*ne00 + i02*ne01*ne00 + i01*ne00 + i00;
  11643. const int64_t j = i2*ne1*ne0 + i1*ne0 + i0;
  11644. ((float *) dst->data)[j] = ((float *) src0->data)[i];
  11645. }
  11646. }
  11647. }
  11648. }
  11649. static void ggml_compute_forward_win_unpart(
  11650. const struct ggml_compute_params * params,
  11651. const struct ggml_tensor * src0,
  11652. struct ggml_tensor * dst) {
  11653. switch (src0->type) {
  11654. case GGML_TYPE_F32:
  11655. {
  11656. ggml_compute_forward_win_unpart_f32(params, src0, dst);
  11657. } break;
  11658. default:
  11659. {
  11660. GGML_ASSERT(false);
  11661. } break;
  11662. }
  11663. }
  11664. //gmml_compute_forward_unary
  11665. static void ggml_compute_forward_unary(
  11666. const struct ggml_compute_params * params,
  11667. const struct ggml_tensor * src0,
  11668. struct ggml_tensor * dst) {
  11669. const enum ggml_unary_op op = ggml_get_unary_op(dst);
  11670. switch (op) {
  11671. case GGML_UNARY_OP_ABS:
  11672. {
  11673. ggml_compute_forward_abs(params, src0, dst);
  11674. } break;
  11675. case GGML_UNARY_OP_SGN:
  11676. {
  11677. ggml_compute_forward_sgn(params, src0, dst);
  11678. } break;
  11679. case GGML_UNARY_OP_NEG:
  11680. {
  11681. ggml_compute_forward_neg(params, src0, dst);
  11682. } break;
  11683. case GGML_UNARY_OP_STEP:
  11684. {
  11685. ggml_compute_forward_step(params, src0, dst);
  11686. } break;
  11687. case GGML_UNARY_OP_TANH:
  11688. {
  11689. ggml_compute_forward_tanh(params, src0, dst);
  11690. } break;
  11691. case GGML_UNARY_OP_ELU:
  11692. {
  11693. ggml_compute_forward_elu(params, src0, dst);
  11694. } break;
  11695. case GGML_UNARY_OP_RELU:
  11696. {
  11697. ggml_compute_forward_relu(params, src0, dst);
  11698. } break;
  11699. case GGML_UNARY_OP_GELU:
  11700. {
  11701. ggml_compute_forward_gelu(params, src0, dst);
  11702. } break;
  11703. case GGML_UNARY_OP_GELU_QUICK:
  11704. {
  11705. ggml_compute_forward_gelu_quick(params, src0, dst);
  11706. } break;
  11707. case GGML_UNARY_OP_SILU:
  11708. {
  11709. ggml_compute_forward_silu(params, src0, dst);
  11710. } break;
  11711. case GGML_UNARY_OP_HARDSWISH:
  11712. {
  11713. ggml_compute_forward_hardswish(params, src0, dst);
  11714. } break;
  11715. case GGML_UNARY_OP_HARDSIGMOID:
  11716. {
  11717. ggml_compute_forward_hardsigmoid(params, src0, dst);
  11718. } break;
  11719. default:
  11720. {
  11721. GGML_ASSERT(false);
  11722. } break;
  11723. }
  11724. }
  11725. // ggml_compute_forward_get_rel_pos
  11726. static void ggml_compute_forward_get_rel_pos_f16(
  11727. const struct ggml_compute_params * params,
  11728. const struct ggml_tensor * src0,
  11729. struct ggml_tensor * dst) {
  11730. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11731. return;
  11732. }
  11733. // ref: https://github.com/facebookresearch/segment-anything/blob/main/segment_anything/modeling/image_encoder.py#L292-L322
  11734. GGML_TENSOR_UNARY_OP_LOCALS
  11735. const int64_t w = ne1;
  11736. ggml_fp16_t * src0_data = (ggml_fp16_t *) src0->data;
  11737. ggml_fp16_t * dst_data = (ggml_fp16_t *) dst->data;
  11738. for (int64_t i2 = 0; i2 < ne2; ++i2) {
  11739. for (int64_t i1 = 0; i1 < ne1; ++i1) {
  11740. const int64_t pos = (w - i1 - 1) + i2;
  11741. for (int64_t i0 = 0; i0 < ne0; ++i0) {
  11742. dst_data[i2*ne1*ne0 + i1*ne0 + i0] = src0_data[pos*ne00 + i0];
  11743. }
  11744. }
  11745. }
  11746. }
  11747. static void ggml_compute_forward_get_rel_pos(
  11748. const struct ggml_compute_params * params,
  11749. const struct ggml_tensor * src0,
  11750. struct ggml_tensor * dst) {
  11751. switch (src0->type) {
  11752. case GGML_TYPE_F16:
  11753. {
  11754. ggml_compute_forward_get_rel_pos_f16(params, src0, dst);
  11755. } break;
  11756. default:
  11757. {
  11758. GGML_ASSERT(false);
  11759. } break;
  11760. }
  11761. }
  11762. // ggml_compute_forward_add_rel_pos
  11763. static void ggml_compute_forward_add_rel_pos_f32(
  11764. const struct ggml_compute_params * params,
  11765. const struct ggml_tensor * src0,
  11766. const struct ggml_tensor * src1,
  11767. const struct ggml_tensor * src2,
  11768. struct ggml_tensor * dst) {
  11769. const bool inplace = (bool) ((int32_t *) dst->op_params)[0];
  11770. if (!inplace && params->type == GGML_TASK_INIT) {
  11771. if (params->ith != 0) {
  11772. return;
  11773. }
  11774. memcpy((char *) dst->data, (char *) src0->data, ggml_nbytes(dst));
  11775. return;
  11776. }
  11777. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11778. return;
  11779. }
  11780. int64_t t0 = ggml_perf_time_us();
  11781. UNUSED(t0);
  11782. // ref: https://github.com/facebookresearch/segment-anything/blob/main/segment_anything/modeling/image_encoder.py#L357-L359
  11783. float * src1_data = (float *) src1->data;
  11784. float * src2_data = (float *) src2->data;
  11785. float * dst_data = (float *) dst->data;
  11786. const int64_t ne10 = src1->ne[0];
  11787. const int64_t ne11 = src1->ne[1];
  11788. const int64_t ne12 = src1->ne[2];
  11789. const int64_t ne13 = src1->ne[3];
  11790. const int ith = params->ith;
  11791. const int nth = params->nth;
  11792. // total patches in dst
  11793. const int np = ne13;
  11794. // patches per thread
  11795. const int dp = (np + nth - 1)/nth;
  11796. // patch range for this thread
  11797. const int ip0 = dp*ith;
  11798. const int ip1 = MIN(ip0 + dp, np);
  11799. for (int64_t i13 = ip0; i13 < ip1; ++i13) {
  11800. for (int64_t i12 = 0; i12 < ne12; ++i12) {
  11801. for (int64_t i11 = 0; i11 < ne11; ++i11) {
  11802. const int64_t jp1 = i13*ne12*ne11*ne10 + i12*ne11*ne10 + i11*ne10;
  11803. for (int64_t i10 = 0; i10 < ne10; ++i10) {
  11804. const int64_t jp0 = jp1 + i10;
  11805. const float src1_e = src1_data[jp0];
  11806. const float src2_e = src2_data[jp0];
  11807. const int64_t jdh = jp0 * ne10;
  11808. const int64_t jdw = jdh - (ne10 - 1) * i10;
  11809. for (int64_t j = 0; j < ne10; ++j) {
  11810. dst_data[jdh + j ] += src2_e;
  11811. dst_data[jdw + j*ne10] += src1_e;
  11812. }
  11813. }
  11814. }
  11815. }
  11816. }
  11817. }
  11818. static void ggml_compute_forward_add_rel_pos(
  11819. const struct ggml_compute_params * params,
  11820. const struct ggml_tensor * src0,
  11821. const struct ggml_tensor * src1,
  11822. const struct ggml_tensor * src2,
  11823. struct ggml_tensor * dst) {
  11824. switch (src0->type) {
  11825. case GGML_TYPE_F32:
  11826. {
  11827. ggml_compute_forward_add_rel_pos_f32(params, src0, src1, src2, dst);
  11828. } break;
  11829. default:
  11830. {
  11831. GGML_ASSERT(false);
  11832. } break;
  11833. }
  11834. }
  11835. // ggml_compute_forward_map_unary
  11836. static void ggml_compute_forward_map_unary_f32(
  11837. const struct ggml_compute_params * params,
  11838. const struct ggml_tensor * src0,
  11839. struct ggml_tensor * dst,
  11840. const ggml_unary_op_f32_t fun) {
  11841. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  11842. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11843. return;
  11844. }
  11845. const int n = ggml_nrows(src0);
  11846. const int nc = src0->ne[0];
  11847. assert( dst->nb[0] == sizeof(float));
  11848. assert(src0->nb[0] == sizeof(float));
  11849. for (int i = 0; i < n; i++) {
  11850. fun(nc,
  11851. (float *) ((char *) dst->data + i*( dst->nb[1])),
  11852. (float *) ((char *) src0->data + i*(src0->nb[1])));
  11853. }
  11854. }
  11855. static void ggml_compute_forward_map_unary(
  11856. const struct ggml_compute_params * params,
  11857. const struct ggml_tensor * src0,
  11858. struct ggml_tensor * dst,
  11859. const ggml_unary_op_f32_t fun) {
  11860. switch (src0->type) {
  11861. case GGML_TYPE_F32:
  11862. {
  11863. ggml_compute_forward_map_unary_f32(params, src0, dst, fun);
  11864. } break;
  11865. default:
  11866. {
  11867. GGML_ASSERT(false);
  11868. } break;
  11869. }
  11870. }
  11871. // ggml_compute_forward_map_binary
  11872. static void ggml_compute_forward_map_binary_f32(
  11873. const struct ggml_compute_params * params,
  11874. const struct ggml_tensor * src0,
  11875. const struct ggml_tensor * src1,
  11876. struct ggml_tensor * dst,
  11877. const ggml_binary_op_f32_t fun) {
  11878. assert(params->ith == 0);
  11879. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  11880. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11881. return;
  11882. }
  11883. const int n = ggml_nrows(src0);
  11884. const int nc = src0->ne[0];
  11885. assert( dst->nb[0] == sizeof(float));
  11886. assert(src0->nb[0] == sizeof(float));
  11887. assert(src1->nb[0] == sizeof(float));
  11888. for (int i = 0; i < n; i++) {
  11889. fun(nc,
  11890. (float *) ((char *) dst->data + i*( dst->nb[1])),
  11891. (float *) ((char *) src0->data + i*(src0->nb[1])),
  11892. (float *) ((char *) src1->data + i*(src1->nb[1])));
  11893. }
  11894. }
  11895. static void ggml_compute_forward_map_binary(
  11896. const struct ggml_compute_params * params,
  11897. const struct ggml_tensor * src0,
  11898. const struct ggml_tensor * src1,
  11899. struct ggml_tensor * dst,
  11900. const ggml_binary_op_f32_t fun) {
  11901. switch (src0->type) {
  11902. case GGML_TYPE_F32:
  11903. {
  11904. ggml_compute_forward_map_binary_f32(params, src0, src1, dst, fun);
  11905. } break;
  11906. default:
  11907. {
  11908. GGML_ASSERT(false);
  11909. } break;
  11910. }
  11911. }
  11912. // ggml_compute_forward_map_custom1
  11913. static void ggml_compute_forward_map_custom1_f32(
  11914. const struct ggml_compute_params * params,
  11915. const struct ggml_tensor * a,
  11916. struct ggml_tensor * dst,
  11917. const ggml_custom1_op_f32_t fun) {
  11918. assert(params->ith == 0);
  11919. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11920. return;
  11921. }
  11922. fun(dst, a);
  11923. }
  11924. // ggml_compute_forward_map_custom2
  11925. static void ggml_compute_forward_map_custom2_f32(
  11926. const struct ggml_compute_params * params,
  11927. const struct ggml_tensor * a,
  11928. const struct ggml_tensor * b,
  11929. struct ggml_tensor * dst,
  11930. const ggml_custom2_op_f32_t fun) {
  11931. assert(params->ith == 0);
  11932. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11933. return;
  11934. }
  11935. fun(dst, a, b);
  11936. }
  11937. // ggml_compute_forward_map_custom3
  11938. static void ggml_compute_forward_map_custom3_f32(
  11939. const struct ggml_compute_params * params,
  11940. const struct ggml_tensor * a,
  11941. const struct ggml_tensor * b,
  11942. const struct ggml_tensor * c,
  11943. struct ggml_tensor * dst,
  11944. const ggml_custom3_op_f32_t fun) {
  11945. assert(params->ith == 0);
  11946. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11947. return;
  11948. }
  11949. fun(dst, a, b, c);
  11950. }
  11951. // ggml_compute_forward_map_custom1
  11952. static void ggml_compute_forward_map_custom1(
  11953. const struct ggml_compute_params * params,
  11954. const struct ggml_tensor * a,
  11955. struct ggml_tensor * dst) {
  11956. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11957. return;
  11958. }
  11959. struct ggml_map_custom1_op_params * p = (struct ggml_map_custom1_op_params *) dst->op_params;
  11960. p->fun(dst, a, params->ith, params->nth, p->userdata);
  11961. }
  11962. // ggml_compute_forward_map_custom2
  11963. static void ggml_compute_forward_map_custom2(
  11964. const struct ggml_compute_params * params,
  11965. const struct ggml_tensor * a,
  11966. const struct ggml_tensor * b,
  11967. struct ggml_tensor * dst) {
  11968. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11969. return;
  11970. }
  11971. struct ggml_map_custom2_op_params * p = (struct ggml_map_custom2_op_params *) dst->op_params;
  11972. p->fun(dst, a, b, params->ith, params->nth, p->userdata);
  11973. }
  11974. // ggml_compute_forward_map_custom3
  11975. static void ggml_compute_forward_map_custom3(
  11976. const struct ggml_compute_params * params,
  11977. const struct ggml_tensor * a,
  11978. const struct ggml_tensor * b,
  11979. const struct ggml_tensor * c,
  11980. struct ggml_tensor * dst) {
  11981. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11982. return;
  11983. }
  11984. struct ggml_map_custom3_op_params * p = (struct ggml_map_custom3_op_params *) dst->op_params;
  11985. p->fun(dst, a, b, c, params->ith, params->nth, p->userdata);
  11986. }
  11987. // ggml_compute_forward_cross_entropy_loss
  11988. static void ggml_compute_forward_cross_entropy_loss_f32(
  11989. const struct ggml_compute_params * params,
  11990. const struct ggml_tensor * src0,
  11991. const struct ggml_tensor * src1,
  11992. struct ggml_tensor * dst) {
  11993. GGML_ASSERT(ggml_is_contiguous(src0));
  11994. GGML_ASSERT(ggml_is_contiguous(src1));
  11995. GGML_ASSERT(ggml_is_scalar(dst));
  11996. GGML_ASSERT(ggml_are_same_shape(src0, src1));
  11997. const int ith = params->ith;
  11998. const int nth = params->nth;
  11999. float * sums = (float *) params->wdata;
  12000. // TODO: handle transposed/permuted matrices
  12001. const int nc = src0->ne[0];
  12002. const int nr = ggml_nrows(src0);
  12003. GGML_ASSERT(params->wsize >= sizeof(float) * (nth + nth * nc));
  12004. if (params->type == GGML_TASK_INIT) {
  12005. if (ith == 0) {
  12006. memset(sums, 0, sizeof(float) * (nth + nth * nc));
  12007. }
  12008. return;
  12009. }
  12010. if (params->type == GGML_TASK_FINALIZE) {
  12011. if (ith == 0) {
  12012. float * dp = (float *) dst->data;
  12013. ggml_vec_sum_f32(nth, dp, sums);
  12014. dp[0] *= -1.0f / (float) nr;
  12015. }
  12016. return;
  12017. }
  12018. const double eps = 1e-9;
  12019. // rows per thread
  12020. const int dr = (nr + nth - 1)/nth;
  12021. // row range for this thread
  12022. const int ir0 = dr*ith;
  12023. const int ir1 = MIN(ir0 + dr, nr);
  12024. for (int i1 = ir0; i1 < ir1; i1++) {
  12025. float * s0 = (float *)((char *) src0->data + i1*src0->nb[1]);
  12026. float * s1 = (float *)((char *) src1->data + i1*src1->nb[1]);
  12027. float * st = ((float *) params->wdata) + nth + ith*nc;
  12028. #ifndef NDEBUG
  12029. for (int i = 0; i < nc; ++i) {
  12030. //printf("p[%d] = %f\n", i, p[i]);
  12031. assert(!isnan(s0[i]));
  12032. assert(!isnan(s1[i]));
  12033. }
  12034. #endif
  12035. // soft_max
  12036. ggml_float sum = 0.0;
  12037. {
  12038. float max = -INFINITY;
  12039. ggml_vec_max_f32(nc, &max, s0);
  12040. uint16_t scvt; UNUSED(scvt);
  12041. for (int i = 0; i < nc; i++) {
  12042. if (s0[i] == -INFINITY) {
  12043. st[i] = 0.0f;
  12044. } else {
  12045. #ifndef GGML_CROSS_ENTROPY_EXP_FP16
  12046. const float s = s0[i] - max;
  12047. const float val = expf(s);
  12048. #else
  12049. ggml_fp16_t s = GGML_FP32_TO_FP16(s0[i] - max);
  12050. memcpy(&scvt, &s, sizeof(scvt));
  12051. const float val = GGML_FP16_TO_FP32(ggml_table_exp_f16[scvt]);
  12052. #endif
  12053. sum += (ggml_float)val;
  12054. st[i] = val;
  12055. }
  12056. }
  12057. assert(sum > 0.0);
  12058. // sum = 1.0/sum;
  12059. }
  12060. // avoid log(0) by rescaling from [0..1] to [eps..1]
  12061. sum = (1.0 - eps) / sum;
  12062. ggml_vec_scale_f32(nc, st, sum);
  12063. ggml_vec_add1_f32(nc, st, st, eps);
  12064. ggml_vec_log_f32(nc, st, st);
  12065. ggml_vec_mul_f32(nc, st, st, s1);
  12066. float st_sum = 0;
  12067. ggml_vec_sum_f32(nc, &st_sum, st);
  12068. sums[ith] += st_sum;
  12069. #ifndef NDEBUG
  12070. for (int i = 0; i < nc; ++i) {
  12071. assert(!isnan(st[i]));
  12072. assert(!isinf(st[i]));
  12073. }
  12074. #endif
  12075. }
  12076. }
  12077. static void ggml_compute_forward_cross_entropy_loss(
  12078. const struct ggml_compute_params * params,
  12079. const struct ggml_tensor * src0,
  12080. const struct ggml_tensor * src1,
  12081. struct ggml_tensor * dst) {
  12082. switch (src0->type) {
  12083. case GGML_TYPE_F32:
  12084. {
  12085. ggml_compute_forward_cross_entropy_loss_f32(params, src0, src1, dst);
  12086. } break;
  12087. default:
  12088. {
  12089. GGML_ASSERT(false);
  12090. } break;
  12091. }
  12092. }
  12093. // ggml_compute_forward_cross_entropy_loss_back
  12094. static void ggml_compute_forward_cross_entropy_loss_back_f32(
  12095. const struct ggml_compute_params * params,
  12096. const struct ggml_tensor * src0,
  12097. const struct ggml_tensor * src1,
  12098. const struct ggml_tensor * opt0,
  12099. struct ggml_tensor * dst) {
  12100. GGML_ASSERT(ggml_is_contiguous(dst));
  12101. GGML_ASSERT(ggml_is_contiguous(src0));
  12102. GGML_ASSERT(ggml_is_contiguous(src1));
  12103. GGML_ASSERT(ggml_is_contiguous(opt0));
  12104. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  12105. const int64_t ith = params->ith;
  12106. const int64_t nth = params->nth;
  12107. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  12108. return;
  12109. }
  12110. const double eps = 1e-9;
  12111. // TODO: handle transposed/permuted matrices
  12112. const int64_t nc = src0->ne[0];
  12113. const int64_t nr = ggml_nrows(src0);
  12114. // rows per thread
  12115. const int64_t dr = (nr + nth - 1)/nth;
  12116. // row range for this thread
  12117. const int64_t ir0 = dr*ith;
  12118. const int64_t ir1 = MIN(ir0 + dr, nr);
  12119. float * d = (float *) opt0->data;
  12120. for (int64_t i1 = ir0; i1 < ir1; i1++) {
  12121. float * ds0 = (float *)((char *) dst->data + i1*dst->nb[1]);
  12122. float * s0 = (float *)((char *) src0->data + i1*src0->nb[1]);
  12123. float * s1 = (float *)((char *) src1->data + i1*src1->nb[1]);
  12124. #ifndef NDEBUG
  12125. for (int i = 0; i < nc; ++i) {
  12126. //printf("p[%d] = %f\n", i, p[i]);
  12127. assert(!isnan(s0[i]));
  12128. assert(!isnan(s1[i]));
  12129. }
  12130. #endif
  12131. // soft_max
  12132. ggml_float sum = 0.0;
  12133. {
  12134. float max = -INFINITY;
  12135. ggml_vec_max_f32(nc, &max, s0);
  12136. uint16_t scvt; UNUSED(scvt);
  12137. for (int i = 0; i < nc; i++) {
  12138. if (s0[i] == -INFINITY) {
  12139. ds0[i] = 0.0f;
  12140. } else {
  12141. #ifndef GGML_CROSS_ENTROPY_EXP_FP16
  12142. const float s = s0[i] - max;
  12143. const float val = expf(s);
  12144. #else
  12145. ggml_fp16_t s = GGML_FP32_TO_FP16(s0[i] - max);
  12146. memcpy(&scvt, &s, sizeof(scvt));
  12147. const float val = GGML_FP16_TO_FP32(ggml_table_exp_f16[scvt]);
  12148. #endif
  12149. sum += (ggml_float)val;
  12150. ds0[i] = val;
  12151. }
  12152. }
  12153. assert(sum > 0.0);
  12154. sum = (1.0 - eps)/sum;
  12155. }
  12156. // grad(src0) = (softmax(src0) - src1) * grad(cross_entropy_loss(src0, src1)) / nr
  12157. ggml_vec_scale_f32(nc, ds0, sum);
  12158. ggml_vec_add1_f32(nc, ds0, ds0, eps);
  12159. ggml_vec_sub_f32(nc, ds0, ds0, s1);
  12160. ggml_vec_scale_f32(nc, ds0, d[0] / (float) nr);
  12161. #ifndef NDEBUG
  12162. for (int i = 0; i < nc; ++i) {
  12163. assert(!isnan(ds0[i]));
  12164. assert(!isinf(ds0[i]));
  12165. }
  12166. #endif
  12167. }
  12168. }
  12169. static void ggml_compute_forward_cross_entropy_loss_back(
  12170. const struct ggml_compute_params * params,
  12171. const struct ggml_tensor * src0,
  12172. const struct ggml_tensor * src1,
  12173. const struct ggml_tensor * opt0,
  12174. struct ggml_tensor * dst) {
  12175. switch (src0->type) {
  12176. case GGML_TYPE_F32:
  12177. {
  12178. ggml_compute_forward_cross_entropy_loss_back_f32(params, src0, src1, opt0, dst);
  12179. } break;
  12180. default:
  12181. {
  12182. GGML_ASSERT(false);
  12183. } break;
  12184. }
  12185. }
  12186. /////////////////////////////////
  12187. static void ggml_compute_forward(struct ggml_compute_params * params, struct ggml_tensor * tensor) {
  12188. GGML_ASSERT(params);
  12189. if (tensor->op == GGML_OP_NONE) {
  12190. return;
  12191. }
  12192. #ifdef GGML_USE_CUBLAS
  12193. bool skip_cpu = ggml_cuda_compute_forward(params, tensor);
  12194. if (skip_cpu) {
  12195. return;
  12196. }
  12197. GGML_ASSERT(tensor->src[0] == NULL || tensor->src[0]->backend == GGML_BACKEND_CPU);
  12198. GGML_ASSERT(tensor->src[1] == NULL || tensor->src[1]->backend == GGML_BACKEND_CPU);
  12199. #elif defined(GGML_USE_VULKAN)
  12200. const bool skip_cpu = ggml_vk_compute_forward(params, tensor);
  12201. #ifdef GGML_VULKAN_CHECK_RESULTS
  12202. if (skip_cpu) {
  12203. ggml_vk_check_results_1(params, tensor);
  12204. }
  12205. #endif
  12206. if (skip_cpu) {
  12207. return;
  12208. }
  12209. GGML_ASSERT(tensor->src[0] == NULL || tensor->src[0]->backend == GGML_BACKEND_CPU);
  12210. GGML_ASSERT(tensor->src[1] == NULL || tensor->src[1]->backend == GGML_BACKEND_CPU);
  12211. #endif // GGML_USE_CUBLAS
  12212. #ifdef GGML_USE_SYCL
  12213. bool skip_cpu = ggml_sycl_compute_forward(params, tensor);
  12214. if (skip_cpu) {
  12215. return;
  12216. }
  12217. #endif // GGML_USE_SYCL
  12218. switch (tensor->op) {
  12219. case GGML_OP_DUP:
  12220. {
  12221. ggml_compute_forward_dup(params, tensor->src[0], tensor);
  12222. } break;
  12223. case GGML_OP_ADD:
  12224. {
  12225. ggml_compute_forward_add(params, tensor->src[0], tensor->src[1], tensor);
  12226. } break;
  12227. case GGML_OP_ADD1:
  12228. {
  12229. ggml_compute_forward_add1(params, tensor->src[0], tensor->src[1], tensor);
  12230. } break;
  12231. case GGML_OP_ACC:
  12232. {
  12233. ggml_compute_forward_acc(params, tensor->src[0], tensor->src[1], tensor);
  12234. } break;
  12235. case GGML_OP_SUB:
  12236. {
  12237. ggml_compute_forward_sub(params, tensor->src[0], tensor->src[1], tensor);
  12238. } break;
  12239. case GGML_OP_MUL:
  12240. {
  12241. ggml_compute_forward_mul(params, tensor->src[0], tensor->src[1], tensor);
  12242. } break;
  12243. case GGML_OP_DIV:
  12244. {
  12245. ggml_compute_forward_div(params, tensor->src[0], tensor->src[1], tensor);
  12246. } break;
  12247. case GGML_OP_SQR:
  12248. {
  12249. ggml_compute_forward_sqr(params, tensor->src[0], tensor);
  12250. } break;
  12251. case GGML_OP_SQRT:
  12252. {
  12253. ggml_compute_forward_sqrt(params, tensor->src[0], tensor);
  12254. } break;
  12255. case GGML_OP_LOG:
  12256. {
  12257. ggml_compute_forward_log(params, tensor->src[0], tensor);
  12258. } break;
  12259. case GGML_OP_SUM:
  12260. {
  12261. ggml_compute_forward_sum(params, tensor->src[0], tensor);
  12262. } break;
  12263. case GGML_OP_SUM_ROWS:
  12264. {
  12265. ggml_compute_forward_sum_rows(params, tensor->src[0], tensor);
  12266. } break;
  12267. case GGML_OP_MEAN:
  12268. {
  12269. ggml_compute_forward_mean(params, tensor->src[0], tensor);
  12270. } break;
  12271. case GGML_OP_ARGMAX:
  12272. {
  12273. ggml_compute_forward_argmax(params, tensor->src[0], tensor);
  12274. } break;
  12275. case GGML_OP_REPEAT:
  12276. {
  12277. ggml_compute_forward_repeat(params, tensor->src[0], tensor);
  12278. } break;
  12279. case GGML_OP_REPEAT_BACK:
  12280. {
  12281. ggml_compute_forward_repeat_back(params, tensor->src[0], tensor);
  12282. } break;
  12283. case GGML_OP_CONCAT:
  12284. {
  12285. ggml_compute_forward_concat(params, tensor->src[0], tensor->src[1], tensor);
  12286. } break;
  12287. case GGML_OP_SILU_BACK:
  12288. {
  12289. ggml_compute_forward_silu_back(params, tensor->src[0], tensor->src[1], tensor);
  12290. } break;
  12291. case GGML_OP_NORM:
  12292. {
  12293. ggml_compute_forward_norm(params, tensor->src[0], tensor);
  12294. } break;
  12295. case GGML_OP_RMS_NORM:
  12296. {
  12297. ggml_compute_forward_rms_norm(params, tensor->src[0], tensor);
  12298. } break;
  12299. case GGML_OP_RMS_NORM_BACK:
  12300. {
  12301. ggml_compute_forward_rms_norm_back(params, tensor->src[0], tensor->src[1], tensor);
  12302. } break;
  12303. case GGML_OP_GROUP_NORM:
  12304. {
  12305. ggml_compute_forward_group_norm(params, tensor->src[0], tensor);
  12306. } break;
  12307. case GGML_OP_MUL_MAT:
  12308. {
  12309. ggml_compute_forward_mul_mat(params, tensor->src[0], tensor->src[1], tensor);
  12310. } break;
  12311. case GGML_OP_MUL_MAT_ID:
  12312. {
  12313. ggml_compute_forward_mul_mat_id(params, tensor->src[0], tensor->src[1], tensor);
  12314. } break;
  12315. case GGML_OP_OUT_PROD:
  12316. {
  12317. ggml_compute_forward_out_prod(params, tensor->src[0], tensor->src[1], tensor);
  12318. } break;
  12319. case GGML_OP_SCALE:
  12320. {
  12321. ggml_compute_forward_scale(params, tensor->src[0], tensor);
  12322. } break;
  12323. case GGML_OP_SET:
  12324. {
  12325. ggml_compute_forward_set(params, tensor->src[0], tensor->src[1], tensor);
  12326. } break;
  12327. case GGML_OP_CPY:
  12328. {
  12329. ggml_compute_forward_cpy(params, tensor->src[0], tensor);
  12330. } break;
  12331. case GGML_OP_CONT:
  12332. {
  12333. ggml_compute_forward_cont(params, tensor->src[0], tensor);
  12334. } break;
  12335. case GGML_OP_RESHAPE:
  12336. {
  12337. ggml_compute_forward_reshape(params, tensor->src[0], tensor);
  12338. } break;
  12339. case GGML_OP_VIEW:
  12340. {
  12341. ggml_compute_forward_view(params, tensor->src[0]);
  12342. } break;
  12343. case GGML_OP_PERMUTE:
  12344. {
  12345. ggml_compute_forward_permute(params, tensor->src[0]);
  12346. } break;
  12347. case GGML_OP_TRANSPOSE:
  12348. {
  12349. ggml_compute_forward_transpose(params, tensor->src[0]);
  12350. } break;
  12351. case GGML_OP_GET_ROWS:
  12352. {
  12353. ggml_compute_forward_get_rows(params, tensor->src[0], tensor->src[1], tensor);
  12354. } break;
  12355. case GGML_OP_GET_ROWS_BACK:
  12356. {
  12357. ggml_compute_forward_get_rows_back(params, tensor->src[0], tensor->src[1], tensor);
  12358. } break;
  12359. case GGML_OP_DIAG:
  12360. {
  12361. ggml_compute_forward_diag(params, tensor->src[0], tensor);
  12362. } break;
  12363. case GGML_OP_DIAG_MASK_INF:
  12364. {
  12365. ggml_compute_forward_diag_mask_inf(params, tensor->src[0], tensor);
  12366. } break;
  12367. case GGML_OP_DIAG_MASK_ZERO:
  12368. {
  12369. ggml_compute_forward_diag_mask_zero(params, tensor->src[0], tensor);
  12370. } break;
  12371. case GGML_OP_SOFT_MAX:
  12372. {
  12373. ggml_compute_forward_soft_max(params, tensor->src[0], tensor->src[1], tensor);
  12374. } break;
  12375. case GGML_OP_SOFT_MAX_BACK:
  12376. {
  12377. ggml_compute_forward_soft_max_back(params, tensor->src[0], tensor->src[1], tensor);
  12378. } break;
  12379. case GGML_OP_ROPE:
  12380. {
  12381. ggml_compute_forward_rope(params, tensor->src[0], tensor->src[1], tensor);
  12382. } break;
  12383. case GGML_OP_ROPE_BACK:
  12384. {
  12385. ggml_compute_forward_rope_back(params, tensor->src[0], tensor->src[1], tensor);
  12386. } break;
  12387. case GGML_OP_ALIBI:
  12388. {
  12389. ggml_compute_forward_alibi(params, tensor->src[0], tensor);
  12390. } break;
  12391. case GGML_OP_CLAMP:
  12392. {
  12393. ggml_compute_forward_clamp(params, tensor->src[0], tensor);
  12394. } break;
  12395. case GGML_OP_CONV_TRANSPOSE_1D:
  12396. {
  12397. ggml_compute_forward_conv_transpose_1d(params, tensor->src[0], tensor->src[1], tensor);
  12398. } break;
  12399. case GGML_OP_IM2COL:
  12400. {
  12401. ggml_compute_forward_im2col(params, tensor->src[0], tensor->src[1], tensor);
  12402. } break;
  12403. case GGML_OP_CONV_TRANSPOSE_2D:
  12404. {
  12405. ggml_compute_forward_conv_transpose_2d(params, tensor->src[0], tensor->src[1], tensor);
  12406. } break;
  12407. case GGML_OP_POOL_1D:
  12408. {
  12409. ggml_compute_forward_pool_1d(params, tensor->src[0], tensor);
  12410. } break;
  12411. case GGML_OP_POOL_2D:
  12412. {
  12413. ggml_compute_forward_pool_2d(params, tensor->src[0], tensor);
  12414. } break;
  12415. case GGML_OP_UPSCALE:
  12416. {
  12417. ggml_compute_forward_upscale(params, tensor->src[0], tensor);
  12418. } break;
  12419. case GGML_OP_PAD:
  12420. {
  12421. ggml_compute_forward_pad(params, tensor->src[0], tensor);
  12422. } break;
  12423. case GGML_OP_ARGSORT:
  12424. {
  12425. ggml_compute_forward_argsort(params, tensor->src[0], tensor);
  12426. } break;
  12427. case GGML_OP_LEAKY_RELU:
  12428. {
  12429. ggml_compute_forward_leaky_relu(params, tensor->src[0], tensor);
  12430. } break;
  12431. case GGML_OP_FLASH_ATTN:
  12432. {
  12433. const int32_t t = ggml_get_op_params_i32(tensor, 0);
  12434. GGML_ASSERT(t == 0 || t == 1);
  12435. const bool masked = t != 0;
  12436. ggml_compute_forward_flash_attn(params, tensor->src[0], tensor->src[1], tensor->src[2], masked, tensor);
  12437. } break;
  12438. case GGML_OP_FLASH_FF:
  12439. {
  12440. ggml_compute_forward_flash_ff(params, tensor->src[0], tensor->src[1], tensor->src[2], tensor->src[3], tensor->src[4], tensor);
  12441. } break;
  12442. case GGML_OP_FLASH_ATTN_BACK:
  12443. {
  12444. int32_t t = ggml_get_op_params_i32(tensor, 0);
  12445. GGML_ASSERT(t == 0 || t == 1);
  12446. bool masked = t != 0;
  12447. ggml_compute_forward_flash_attn_back(params, tensor->src[0], tensor->src[1], tensor->src[2], tensor->src[3], masked, tensor);
  12448. } break;
  12449. case GGML_OP_WIN_PART:
  12450. {
  12451. ggml_compute_forward_win_part(params, tensor->src[0], tensor);
  12452. } break;
  12453. case GGML_OP_WIN_UNPART:
  12454. {
  12455. ggml_compute_forward_win_unpart(params, tensor->src[0], tensor);
  12456. } break;
  12457. case GGML_OP_UNARY:
  12458. {
  12459. ggml_compute_forward_unary(params, tensor->src[0], tensor);
  12460. } break;
  12461. case GGML_OP_GET_REL_POS:
  12462. {
  12463. ggml_compute_forward_get_rel_pos(params, tensor->src[0], tensor);
  12464. } break;
  12465. case GGML_OP_ADD_REL_POS:
  12466. {
  12467. ggml_compute_forward_add_rel_pos(params, tensor->src[0], tensor->src[1], tensor->src[2], tensor);
  12468. } break;
  12469. case GGML_OP_MAP_UNARY:
  12470. {
  12471. ggml_unary_op_f32_t fun;
  12472. memcpy(&fun, tensor->op_params, sizeof(fun));
  12473. ggml_compute_forward_map_unary(params, tensor->src[0], tensor, fun);
  12474. }
  12475. break;
  12476. case GGML_OP_MAP_BINARY:
  12477. {
  12478. ggml_binary_op_f32_t fun;
  12479. memcpy(&fun, tensor->op_params, sizeof(fun));
  12480. ggml_compute_forward_map_binary(params, tensor->src[0], tensor->src[1], tensor, fun);
  12481. }
  12482. break;
  12483. case GGML_OP_MAP_CUSTOM1_F32:
  12484. {
  12485. ggml_custom1_op_f32_t fun;
  12486. memcpy(&fun, tensor->op_params, sizeof(fun));
  12487. ggml_compute_forward_map_custom1_f32(params, tensor->src[0], tensor, fun);
  12488. }
  12489. break;
  12490. case GGML_OP_MAP_CUSTOM2_F32:
  12491. {
  12492. ggml_custom2_op_f32_t fun;
  12493. memcpy(&fun, tensor->op_params, sizeof(fun));
  12494. ggml_compute_forward_map_custom2_f32(params, tensor->src[0], tensor->src[1], tensor, fun);
  12495. }
  12496. break;
  12497. case GGML_OP_MAP_CUSTOM3_F32:
  12498. {
  12499. ggml_custom3_op_f32_t fun;
  12500. memcpy(&fun, tensor->op_params, sizeof(fun));
  12501. ggml_compute_forward_map_custom3_f32(params, tensor->src[0], tensor->src[1], tensor->src[2], tensor, fun);
  12502. }
  12503. break;
  12504. case GGML_OP_MAP_CUSTOM1:
  12505. {
  12506. ggml_compute_forward_map_custom1(params, tensor->src[0], tensor);
  12507. }
  12508. break;
  12509. case GGML_OP_MAP_CUSTOM2:
  12510. {
  12511. ggml_compute_forward_map_custom2(params, tensor->src[0], tensor->src[1], tensor);
  12512. }
  12513. break;
  12514. case GGML_OP_MAP_CUSTOM3:
  12515. {
  12516. ggml_compute_forward_map_custom3(params, tensor->src[0], tensor->src[1], tensor->src[2], tensor);
  12517. }
  12518. break;
  12519. case GGML_OP_CROSS_ENTROPY_LOSS:
  12520. {
  12521. ggml_compute_forward_cross_entropy_loss(params, tensor->src[0], tensor->src[1], tensor);
  12522. }
  12523. break;
  12524. case GGML_OP_CROSS_ENTROPY_LOSS_BACK:
  12525. {
  12526. ggml_compute_forward_cross_entropy_loss_back(params, tensor->src[0], tensor->src[1], tensor->src[2], tensor);
  12527. }
  12528. break;
  12529. case GGML_OP_NONE:
  12530. {
  12531. // nop
  12532. } break;
  12533. case GGML_OP_COUNT:
  12534. {
  12535. GGML_ASSERT(false);
  12536. } break;
  12537. }
  12538. }
  12539. ////////////////////////////////////////////////////////////////////////////////
  12540. static size_t ggml_hash_size(size_t min_sz) {
  12541. // next primes after powers of two
  12542. static const size_t primes[] = {
  12543. 2, 3, 5, 11, 17, 37, 67, 131, 257, 521, 1031,
  12544. 2053, 4099, 8209, 16411, 32771, 65537, 131101,
  12545. 262147, 524309, 1048583, 2097169, 4194319, 8388617,
  12546. 16777259, 33554467, 67108879, 134217757, 268435459,
  12547. 536870923, 1073741827, 2147483659
  12548. };
  12549. static const size_t n_primes = sizeof(primes)/sizeof(primes[0]);
  12550. // find the smallest prime that is larger or equal to min_sz
  12551. size_t l = 0;
  12552. size_t r = n_primes;
  12553. while (l < r) {
  12554. size_t m = (l + r)/2;
  12555. if (primes[m] < min_sz) {
  12556. l = m + 1;
  12557. } else {
  12558. r = m;
  12559. }
  12560. }
  12561. size_t sz = l < n_primes ? primes[l] : min_sz | 1;
  12562. return sz;
  12563. }
  12564. static size_t ggml_hash(const void * p) {
  12565. return (size_t)p;
  12566. }
  12567. size_t ggml_hash_find(const struct ggml_hash_set hash_set, struct ggml_tensor * key) {
  12568. size_t h = ggml_hash(key) % hash_set.size;
  12569. // linear probing
  12570. size_t i = h;
  12571. while (hash_set.keys[i] != NULL && hash_set.keys[i] != key) {
  12572. i = (i + 1) % hash_set.size;
  12573. if (i == h) {
  12574. // visited all hash table entries -> not found
  12575. return GGML_HASHTABLE_FULL;
  12576. }
  12577. }
  12578. return i;
  12579. }
  12580. bool ggml_hash_contains(struct ggml_hash_set hash_set, struct ggml_tensor * key) {
  12581. size_t i = ggml_hash_find(hash_set, key);
  12582. return i != GGML_HASHTABLE_FULL && hash_set.keys[i] == key;
  12583. }
  12584. size_t ggml_hash_insert(struct ggml_hash_set hash_set, struct ggml_tensor * key) {
  12585. size_t i = ggml_hash_find(hash_set, key);
  12586. GGML_ASSERT(i != GGML_HASHTABLE_FULL);
  12587. if (hash_set.keys[i] == key) {
  12588. return GGML_HASHTABLE_ALREADY_EXISTS;
  12589. }
  12590. // insert
  12591. GGML_ASSERT(hash_set.keys[i] == NULL);
  12592. hash_set.keys[i] = key;
  12593. return i;
  12594. }
  12595. size_t ggml_hash_find_or_insert(struct ggml_hash_set hash_set, struct ggml_tensor * key) {
  12596. size_t i = ggml_hash_find(hash_set, key);
  12597. GGML_ASSERT(i != GGML_HASHTABLE_FULL);
  12598. hash_set.keys[i] = key;
  12599. return i;
  12600. }
  12601. struct ggml_hash_set ggml_hash_set_new(size_t size) {
  12602. size = ggml_hash_size(size);
  12603. struct ggml_hash_set result;
  12604. result.size = size;
  12605. result.keys = GGML_MALLOC(sizeof(struct ggml_tensor *) * size);
  12606. memset(result.keys, 0, sizeof(struct ggml_tensor *) * size);
  12607. return result;
  12608. }
  12609. static void ggml_hash_set_free(struct ggml_hash_set hash_set) {
  12610. GGML_FREE(hash_set.keys);
  12611. }
  12612. struct hash_map {
  12613. struct ggml_hash_set set;
  12614. struct ggml_tensor ** vals;
  12615. };
  12616. static struct hash_map * ggml_new_hash_map(size_t size) {
  12617. struct hash_map * result = GGML_MALLOC(sizeof(struct hash_map));
  12618. result->set = ggml_hash_set_new(size);
  12619. result->vals = GGML_MALLOC(sizeof(struct ggml_tensor *) * result->set.size);
  12620. memset(result->vals, 0, sizeof(struct ggml_tensor *) * result->set.size);
  12621. return result;
  12622. }
  12623. static void ggml_hash_map_free(struct hash_map * map) {
  12624. ggml_hash_set_free(map->set);
  12625. GGML_FREE(map->vals);
  12626. GGML_FREE(map);
  12627. }
  12628. // gradient checkpointing
  12629. static struct ggml_tensor * ggml_recompute_graph_node(
  12630. struct ggml_context * ctx,
  12631. struct ggml_cgraph * graph,
  12632. struct hash_map * replacements,
  12633. struct ggml_tensor * node) {
  12634. if (node == NULL) {
  12635. return NULL;
  12636. }
  12637. if (node->is_param) {
  12638. return node;
  12639. }
  12640. if (!ggml_hash_contains(graph->visited_hash_table, node)) {
  12641. return node;
  12642. }
  12643. int count_children = 0;
  12644. for (int k = 0; k < GGML_MAX_SRC; ++k) {
  12645. if (node->src[k]) {
  12646. ++count_children;
  12647. }
  12648. }
  12649. if (count_children == 0) {
  12650. return node;
  12651. }
  12652. size_t i = ggml_hash_find(replacements->set, node);
  12653. GGML_ASSERT(i != GGML_HASHTABLE_FULL); // assert that not full
  12654. if (replacements->set.keys[i] == node) {
  12655. return replacements->vals[i];
  12656. }
  12657. struct ggml_tensor * clone = ggml_new_tensor(ctx, node->type, GGML_MAX_DIMS, node->ne);
  12658. // insert clone into replacements
  12659. GGML_ASSERT(replacements->set.keys[i] == NULL); // assert that we don't overwrite
  12660. replacements->set.keys[i] = node;
  12661. replacements->vals[i] = clone;
  12662. clone->op = node->op;
  12663. clone->grad = node->grad;
  12664. clone->is_param = node->is_param;
  12665. clone->extra = node->extra;
  12666. for (int k = 0; k < GGML_MAX_DIMS; ++k) {
  12667. clone->nb[k] = node->nb[k];
  12668. }
  12669. for (int k = 0; k < GGML_MAX_SRC; ++k) {
  12670. clone->src[k] = ggml_recompute_graph_node(ctx, graph, replacements, node->src[k]);
  12671. }
  12672. if (node->view_src != NULL) {
  12673. clone->data = (node->view_src->data == NULL)
  12674. ? NULL // view_src not yet allocated
  12675. : (char *) node->view_src->data // view_src already allocated
  12676. + node->view_offs;
  12677. clone->view_src = node->view_src;
  12678. clone->view_offs = node->view_offs;
  12679. }
  12680. GGML_ASSERT(sizeof(node->op_params) == sizeof(int32_t) * (GGML_MAX_OP_PARAMS / sizeof(int32_t)));
  12681. GGML_ASSERT(sizeof(node->name) == GGML_MAX_NAME);
  12682. memcpy(clone->op_params, node->op_params, sizeof(node->op_params));
  12683. ggml_format_name(clone, "%s (clone)", ggml_get_name(node));
  12684. return clone;
  12685. }
  12686. void ggml_build_backward_gradient_checkpointing(
  12687. struct ggml_context * ctx,
  12688. struct ggml_cgraph * gf,
  12689. struct ggml_cgraph * gb,
  12690. struct ggml_cgraph * gb_tmp,
  12691. struct ggml_tensor * * checkpoints,
  12692. int n_checkpoints) {
  12693. ggml_graph_cpy(gf, gb_tmp);
  12694. ggml_build_backward_expand(ctx, gf, gb_tmp, true);
  12695. if (n_checkpoints <= 0) {
  12696. ggml_graph_cpy(gb_tmp, gb);
  12697. return;
  12698. }
  12699. struct hash_map * replacements = ggml_new_hash_map(gf->n_nodes + gf->n_leafs + n_checkpoints);
  12700. // insert checkpoints in replacements
  12701. for (int i = 0; i < n_checkpoints; ++i) {
  12702. size_t k = ggml_hash_find(replacements->set, checkpoints[i]);
  12703. GGML_ASSERT(k != GGML_HASHTABLE_FULL); // assert that not full
  12704. GGML_ASSERT(replacements->set.keys[k] == NULL); // assert that we don't overwrite
  12705. replacements->set.keys[k] = checkpoints[i];
  12706. replacements->vals[k] = checkpoints[i];
  12707. }
  12708. ggml_graph_cpy(gf, gb);
  12709. // rewrite gb_tmp->nodes[gf->n_nodes:gb_tmp->n_nodes],
  12710. // replacing references to gb_tmp->nodes[0:gf->n_nodes] ( == gf->nodes[0:gf->n_nodes]),
  12711. // by recomputing them from checkpoints
  12712. for (int i = gf->n_nodes; i<gb_tmp->n_nodes; ++i) {
  12713. struct ggml_tensor * node = gb_tmp->nodes[i];
  12714. for (int k = 0; k < GGML_MAX_SRC; ++k) {
  12715. // insert new tensors recomputing src, reusing already made replacements,
  12716. // remember replacements: remember new tensors with mapping from corresponding gf nodes
  12717. // recurse for input tensors,
  12718. // unless (i.e. terminating when) input tensors are replacements (like checkpoints)
  12719. node->src[k] = ggml_recompute_graph_node(ctx, gf, replacements, node->src[k]);
  12720. }
  12721. // insert rewritten backward node with replacements made into resulting backward graph gb
  12722. ggml_build_forward_expand(gb, node);
  12723. }
  12724. ggml_hash_map_free(replacements);
  12725. }
  12726. // functions to change gradients considering the case that input a might be initial gradient with zero value
  12727. static struct ggml_tensor * ggml_add_or_set(struct ggml_context * ctx, struct ggml_tensor * a, struct ggml_tensor * b, struct ggml_hash_set zero_table) {
  12728. if (ggml_hash_contains(zero_table, a)) {
  12729. return b;
  12730. } else {
  12731. return ggml_add_impl(ctx, a, b, false);
  12732. }
  12733. }
  12734. static struct ggml_tensor * ggml_acc_or_set(struct ggml_context * ctx, struct ggml_tensor * a, struct ggml_tensor * b, size_t nb1, size_t nb2, size_t nb3, size_t offset, struct ggml_hash_set zero_table) {
  12735. if (ggml_hash_contains(zero_table, a)) {
  12736. struct ggml_tensor * a_zero = ggml_scale(ctx, a, 0.0f);
  12737. return ggml_acc_impl(ctx, a_zero, b, nb1, nb2, nb3, offset, false);
  12738. } else {
  12739. return ggml_acc_impl(ctx, a, b, nb1, nb2, nb3, offset, false);
  12740. }
  12741. }
  12742. static struct ggml_tensor * ggml_add1_or_set(struct ggml_context * ctx, struct ggml_tensor * a, struct ggml_tensor * b, struct ggml_hash_set zero_table) {
  12743. if (ggml_hash_contains(zero_table, a)) {
  12744. return ggml_repeat(ctx, b, a);
  12745. } else {
  12746. return ggml_add1_impl(ctx, a, b, false);
  12747. }
  12748. }
  12749. static struct ggml_tensor * ggml_sub_or_set(struct ggml_context * ctx, struct ggml_tensor * a, struct ggml_tensor * b, struct ggml_hash_set zero_table) {
  12750. if (ggml_hash_contains(zero_table, a)) {
  12751. return ggml_neg(ctx, b);
  12752. } else {
  12753. return ggml_sub_impl(ctx, a, b, false);
  12754. }
  12755. }
  12756. static void ggml_compute_backward(struct ggml_context * ctx, struct ggml_tensor * tensor, struct ggml_hash_set zero_table) {
  12757. struct ggml_tensor * src0 = tensor->src[0];
  12758. struct ggml_tensor * src1 = tensor->src[1];
  12759. switch (tensor->op) {
  12760. case GGML_OP_DUP:
  12761. {
  12762. if (src0->grad) {
  12763. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  12764. }
  12765. } break;
  12766. case GGML_OP_ADD:
  12767. {
  12768. if (src0->grad) {
  12769. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  12770. }
  12771. if (src1->grad) {
  12772. src1->grad = ggml_add_or_set(ctx, src1->grad, tensor->grad, zero_table);
  12773. }
  12774. } break;
  12775. case GGML_OP_ADD1:
  12776. {
  12777. if (src0->grad) {
  12778. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  12779. }
  12780. if (src1->grad) {
  12781. src1->grad = ggml_add_or_set(ctx,
  12782. src1->grad,
  12783. ggml_mean(ctx, tensor->grad), // TODO: should probably be sum instead of mean
  12784. zero_table);
  12785. }
  12786. } break;
  12787. case GGML_OP_ACC:
  12788. {
  12789. if (src0->grad) {
  12790. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  12791. }
  12792. if (src1->grad) {
  12793. const size_t nb1 = ((int32_t *) tensor->op_params)[0];
  12794. const size_t nb2 = ((int32_t *) tensor->op_params)[1];
  12795. const size_t nb3 = ((int32_t *) tensor->op_params)[2];
  12796. const size_t offset = ((int32_t *) tensor->op_params)[3];
  12797. struct ggml_tensor * tensor_grad_view = ggml_view_4d(ctx,
  12798. tensor->grad,
  12799. src1->grad->ne[0],
  12800. src1->grad->ne[1],
  12801. src1->grad->ne[2],
  12802. src1->grad->ne[3],
  12803. nb1, nb2, nb3, offset);
  12804. src1->grad =
  12805. ggml_add_or_set(ctx,
  12806. src1->grad,
  12807. ggml_reshape(ctx,
  12808. ggml_cont(ctx, tensor_grad_view),
  12809. src1->grad),
  12810. zero_table);
  12811. }
  12812. } break;
  12813. case GGML_OP_SUB:
  12814. {
  12815. if (src0->grad) {
  12816. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  12817. }
  12818. if (src1->grad) {
  12819. src1->grad = ggml_sub_or_set(ctx, src1->grad, tensor->grad, zero_table);
  12820. }
  12821. } break;
  12822. case GGML_OP_MUL:
  12823. {
  12824. if (src0->grad) {
  12825. src0->grad =
  12826. ggml_add_or_set(ctx,
  12827. src0->grad,
  12828. ggml_mul(ctx, src1, tensor->grad),
  12829. zero_table);
  12830. }
  12831. if (src1->grad) {
  12832. src1->grad =
  12833. ggml_add_or_set(ctx,
  12834. src1->grad,
  12835. ggml_mul(ctx, src0, tensor->grad),
  12836. zero_table);
  12837. }
  12838. } break;
  12839. case GGML_OP_DIV:
  12840. {
  12841. if (src0->grad) {
  12842. src0->grad =
  12843. ggml_add_or_set(ctx,
  12844. src0->grad,
  12845. ggml_div(ctx, tensor->grad, src1),
  12846. zero_table);
  12847. }
  12848. if (src1->grad) {
  12849. src1->grad =
  12850. ggml_sub_or_set(ctx,
  12851. src1->grad,
  12852. ggml_mul(ctx,
  12853. tensor->grad,
  12854. ggml_div(ctx, tensor, src1)),
  12855. zero_table);
  12856. }
  12857. } break;
  12858. case GGML_OP_SQR:
  12859. {
  12860. if (src0->grad) {
  12861. src0->grad =
  12862. ggml_add_or_set(ctx,
  12863. src0->grad,
  12864. ggml_scale(ctx,
  12865. ggml_mul(ctx, src0, tensor->grad),
  12866. 2.0f),
  12867. zero_table);
  12868. }
  12869. } break;
  12870. case GGML_OP_SQRT:
  12871. {
  12872. if (src0->grad) {
  12873. src0->grad =
  12874. ggml_add_or_set(ctx,
  12875. src0->grad,
  12876. ggml_scale(ctx,
  12877. ggml_div(ctx,
  12878. tensor->grad,
  12879. tensor),
  12880. 0.5f),
  12881. zero_table);
  12882. }
  12883. } break;
  12884. case GGML_OP_LOG:
  12885. {
  12886. if (src0->grad) {
  12887. src0->grad =
  12888. ggml_add_or_set(ctx,
  12889. src0->grad,
  12890. ggml_div(ctx,
  12891. tensor->grad,
  12892. src0),
  12893. zero_table);
  12894. }
  12895. } break;
  12896. case GGML_OP_SUM:
  12897. {
  12898. if (src0->grad) {
  12899. src0->grad =
  12900. ggml_add1_or_set(ctx,
  12901. src0->grad,
  12902. tensor->grad,
  12903. zero_table);
  12904. }
  12905. } break;
  12906. case GGML_OP_SUM_ROWS:
  12907. {
  12908. if (src0->grad) {
  12909. src0->grad =
  12910. ggml_add_or_set(ctx,
  12911. src0->grad,
  12912. ggml_repeat(ctx,
  12913. tensor->grad,
  12914. src0->grad),
  12915. zero_table);
  12916. }
  12917. } break;
  12918. case GGML_OP_MEAN:
  12919. case GGML_OP_ARGMAX:
  12920. {
  12921. GGML_ASSERT(false); // TODO: implement
  12922. } break;
  12923. case GGML_OP_REPEAT:
  12924. {
  12925. // necessary for llama
  12926. if (src0->grad) {
  12927. src0->grad = ggml_add_or_set(ctx,
  12928. src0->grad,
  12929. ggml_repeat_back(ctx, tensor->grad, src0->grad),
  12930. zero_table);
  12931. }
  12932. } break;
  12933. case GGML_OP_REPEAT_BACK:
  12934. {
  12935. if (src0->grad) {
  12936. // TODO: test this
  12937. src0->grad = ggml_add_or_set(ctx,
  12938. src0->grad,
  12939. ggml_repeat(ctx, tensor->grad, src0->grad),
  12940. zero_table);
  12941. }
  12942. } break;
  12943. case GGML_OP_CONCAT:
  12944. {
  12945. GGML_ASSERT(false); // TODO: implement
  12946. } break;
  12947. case GGML_OP_SILU_BACK:
  12948. {
  12949. GGML_ASSERT(false); // TODO: not implemented
  12950. } break;
  12951. case GGML_OP_NORM:
  12952. {
  12953. GGML_ASSERT(false); // TODO: not implemented
  12954. } break;
  12955. case GGML_OP_RMS_NORM:
  12956. {
  12957. // necessary for llama
  12958. if (src0->grad) {
  12959. float eps;
  12960. memcpy(&eps, tensor->op_params, sizeof(float));
  12961. src0->grad = ggml_add_or_set(ctx,
  12962. src0->grad,
  12963. ggml_rms_norm_back(ctx, src0, tensor->grad, eps),
  12964. zero_table);
  12965. }
  12966. } break;
  12967. case GGML_OP_RMS_NORM_BACK:
  12968. {
  12969. GGML_ASSERT(false); // TODO: not implemented
  12970. } break;
  12971. case GGML_OP_GROUP_NORM:
  12972. {
  12973. GGML_ASSERT(false); // TODO: not implemented
  12974. } break;
  12975. case GGML_OP_MUL_MAT:
  12976. {
  12977. // https://cs231n.github.io/optimization-2/#staged
  12978. // # forward pass
  12979. // s0 = np.random.randn(5, 10)
  12980. // s1 = np.random.randn(10, 3)
  12981. // t = s0.dot(s1)
  12982. // # now suppose we had the gradient on t from above in the circuit
  12983. // dt = np.random.randn(*t.shape) # same shape as t
  12984. // ds0 = dt.dot(s1.T) #.T gives the transpose of the matrix
  12985. // ds1 = t.T.dot(dt)
  12986. // tensor.shape [m,p,qq,rr]
  12987. // src0.shape [n,m,q1,r1]
  12988. // src1.shape [n,p,qq,rr]
  12989. // necessary for llama
  12990. if (src0->grad) {
  12991. struct ggml_tensor * s1_tg =
  12992. ggml_out_prod(ctx, // [n,m,qq,rr]
  12993. src1, // [n,p,qq,rr]
  12994. tensor->grad); // [m,p,qq,rr]
  12995. const int64_t qq = s1_tg->ne[2];
  12996. const int64_t rr = s1_tg->ne[3];
  12997. const int64_t q1 = src0->ne[2];
  12998. const int64_t r1 = src0->ne[3];
  12999. const bool ne2_broadcasted = qq > q1;
  13000. const bool ne3_broadcasted = rr > r1;
  13001. if (ne2_broadcasted || ne3_broadcasted) {
  13002. // sum broadcast repetitions of s1_tg into shape of src0
  13003. s1_tg = ggml_repeat_back(ctx, s1_tg, src0);
  13004. }
  13005. src0->grad =
  13006. ggml_add_or_set(ctx,
  13007. src0->grad, // [n,m,q1,r1]
  13008. s1_tg, // [n,m,q1,r1]
  13009. zero_table);
  13010. }
  13011. if (src1->grad) {
  13012. src1->grad =
  13013. ggml_add_or_set(ctx,
  13014. src1->grad, // [n,p,qq,rr]
  13015. // ggml_mul_mat(ctx, // [n,p,qq,rr]
  13016. // ggml_cont(ctx, // [m,n,q1,r1]
  13017. // ggml_transpose(ctx, src0)), // [m,n,q1,r1]
  13018. // tensor->grad), // [m,p,qq,rr]
  13019. // // when src0 is bigger than tensor->grad (this is mostly the case in llama),
  13020. // // avoid transpose of src0, rather transpose smaller tensor->grad
  13021. // // and then use ggml_out_prod
  13022. ggml_out_prod(ctx, // [n,p,qq,rr]
  13023. src0, // [n,m,q1,r1]
  13024. ggml_transpose(ctx, // [p,m,qq,rr]
  13025. tensor->grad)), // [m,p,qq,rr]
  13026. zero_table);
  13027. }
  13028. } break;
  13029. case GGML_OP_MUL_MAT_ID:
  13030. {
  13031. GGML_ASSERT(false); // TODO: not implemented
  13032. } break;
  13033. case GGML_OP_OUT_PROD:
  13034. {
  13035. GGML_ASSERT(false); // TODO: not implemented
  13036. } break;
  13037. case GGML_OP_SCALE:
  13038. {
  13039. // necessary for llama
  13040. if (src0->grad) {
  13041. float s;
  13042. memcpy(&s, tensor->op_params, sizeof(float));
  13043. src0->grad =
  13044. ggml_add_or_set(ctx,
  13045. src0->grad,
  13046. ggml_scale_impl(ctx, tensor->grad, s, false),
  13047. zero_table);
  13048. }
  13049. } break;
  13050. case GGML_OP_SET:
  13051. {
  13052. const size_t nb1 = ((int32_t *) tensor->op_params)[0];
  13053. const size_t nb2 = ((int32_t *) tensor->op_params)[1];
  13054. const size_t nb3 = ((int32_t *) tensor->op_params)[2];
  13055. const size_t offset = ((int32_t *) tensor->op_params)[3];
  13056. struct ggml_tensor * tensor_grad_view = NULL;
  13057. if (src0->grad || src1->grad) {
  13058. GGML_ASSERT(src0->type == tensor->type);
  13059. GGML_ASSERT(tensor->grad->type == tensor->type);
  13060. GGML_ASSERT(tensor->grad->type == src1->grad->type);
  13061. tensor_grad_view = ggml_view_4d(ctx,
  13062. tensor->grad,
  13063. src1->grad->ne[0],
  13064. src1->grad->ne[1],
  13065. src1->grad->ne[2],
  13066. src1->grad->ne[3],
  13067. nb1, nb2, nb3, offset);
  13068. }
  13069. if (src0->grad) {
  13070. src0->grad = ggml_add_or_set(ctx,
  13071. src0->grad,
  13072. ggml_acc_impl(ctx,
  13073. tensor->grad,
  13074. ggml_neg(ctx, tensor_grad_view),
  13075. nb1, nb2, nb3, offset, false),
  13076. zero_table);
  13077. }
  13078. if (src1->grad) {
  13079. src1->grad =
  13080. ggml_add_or_set(ctx,
  13081. src1->grad,
  13082. ggml_reshape(ctx,
  13083. ggml_cont(ctx, tensor_grad_view),
  13084. src1->grad),
  13085. zero_table);
  13086. }
  13087. } break;
  13088. case GGML_OP_CPY:
  13089. {
  13090. // necessary for llama
  13091. // cpy overwrites value of src1 by src0 and returns view(src1)
  13092. // the overwriting is mathematically equivalent to:
  13093. // tensor = src0 * 1 + src1 * 0
  13094. if (src0->grad) {
  13095. // dsrc0 = dtensor * 1
  13096. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  13097. }
  13098. if (src1->grad) {
  13099. // dsrc1 = dtensor * 0 -> noop
  13100. }
  13101. } break;
  13102. case GGML_OP_CONT:
  13103. {
  13104. // same as cpy
  13105. if (src0->grad) {
  13106. GGML_ASSERT(ggml_is_contiguous(src0->grad));
  13107. GGML_ASSERT(ggml_is_contiguous(tensor->grad));
  13108. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  13109. }
  13110. } break;
  13111. case GGML_OP_RESHAPE:
  13112. {
  13113. // necessary for llama
  13114. if (src0->grad) {
  13115. src0->grad =
  13116. ggml_add_or_set(ctx, src0->grad,
  13117. ggml_reshape(ctx,
  13118. ggml_is_contiguous(tensor->grad)
  13119. ? tensor->grad
  13120. : ggml_cont(ctx, tensor->grad),
  13121. src0->grad),
  13122. zero_table);
  13123. }
  13124. } break;
  13125. case GGML_OP_VIEW:
  13126. {
  13127. // necessary for llama
  13128. if (src0->grad) {
  13129. size_t offset;
  13130. memcpy(&offset, tensor->op_params, sizeof(offset));
  13131. size_t nb1 = tensor->nb[1];
  13132. size_t nb2 = tensor->nb[2];
  13133. size_t nb3 = tensor->nb[3];
  13134. if (src0->type != src0->grad->type) {
  13135. // gradient is typically F32, but src0 could be other type
  13136. size_t ng = ggml_element_size(src0->grad);
  13137. size_t n0 = ggml_element_size(src0);
  13138. GGML_ASSERT(offset % n0 == 0);
  13139. GGML_ASSERT(nb1 % n0 == 0);
  13140. GGML_ASSERT(nb2 % n0 == 0);
  13141. GGML_ASSERT(nb3 % n0 == 0);
  13142. offset = (offset / n0) * ng;
  13143. nb1 = (nb1 / n0) * ng;
  13144. nb2 = (nb2 / n0) * ng;
  13145. nb3 = (nb3 / n0) * ng;
  13146. }
  13147. src0->grad = ggml_acc_or_set(ctx, src0->grad, tensor->grad, nb1, nb2, nb3, offset, zero_table);
  13148. }
  13149. } break;
  13150. case GGML_OP_PERMUTE:
  13151. {
  13152. // necessary for llama
  13153. if (src0->grad) {
  13154. int32_t * axes = (int32_t *) tensor->op_params;
  13155. int axis0 = axes[0] & 0x3;
  13156. int axis1 = axes[1] & 0x3;
  13157. int axis2 = axes[2] & 0x3;
  13158. int axis3 = axes[3] & 0x3;
  13159. int axes_backward[4] = {0,0,0,0};
  13160. axes_backward[axis0] = 0;
  13161. axes_backward[axis1] = 1;
  13162. axes_backward[axis2] = 2;
  13163. axes_backward[axis3] = 3;
  13164. src0->grad =
  13165. ggml_add_or_set(ctx, src0->grad,
  13166. ggml_permute(ctx,
  13167. tensor->grad,
  13168. axes_backward[0],
  13169. axes_backward[1],
  13170. axes_backward[2],
  13171. axes_backward[3]),
  13172. zero_table);
  13173. }
  13174. } break;
  13175. case GGML_OP_TRANSPOSE:
  13176. {
  13177. // necessary for llama
  13178. if (src0->grad) {
  13179. src0->grad =
  13180. ggml_add_or_set(ctx, src0->grad,
  13181. ggml_transpose(ctx, tensor->grad),
  13182. zero_table);
  13183. }
  13184. } break;
  13185. case GGML_OP_GET_ROWS:
  13186. {
  13187. // necessary for llama (only for tokenizer)
  13188. if (src0->grad) {
  13189. src0->grad =
  13190. ggml_add_or_set(ctx, src0->grad,
  13191. // last ggml_get_rows_back argument src0->grad is only
  13192. // necessary to setup correct output shape
  13193. ggml_get_rows_back(ctx, tensor->grad, src1, src0->grad),
  13194. zero_table);
  13195. }
  13196. if (src1->grad) {
  13197. // noop
  13198. }
  13199. } break;
  13200. case GGML_OP_GET_ROWS_BACK:
  13201. {
  13202. GGML_ASSERT(false); // TODO: not implemented
  13203. } break;
  13204. case GGML_OP_DIAG:
  13205. {
  13206. GGML_ASSERT(false); // TODO: not implemented
  13207. } break;
  13208. case GGML_OP_DIAG_MASK_INF:
  13209. {
  13210. // necessary for llama
  13211. if (src0->grad) {
  13212. const int n_past = ((int32_t *) tensor->op_params)[0];
  13213. src0->grad =
  13214. ggml_add_or_set(ctx, src0->grad,
  13215. /* ggml_diag_mask_inf_impl() shouldn't be here */
  13216. /* ref: https://github.com/ggerganov/llama.cpp/pull/4203#discussion_r1412377992 */
  13217. ggml_diag_mask_zero_impl(ctx, tensor->grad, n_past, false),
  13218. zero_table);
  13219. }
  13220. } break;
  13221. case GGML_OP_DIAG_MASK_ZERO:
  13222. {
  13223. // necessary for llama
  13224. if (src0->grad) {
  13225. const int n_past = ((int32_t *) tensor->op_params)[0];
  13226. src0->grad =
  13227. ggml_add_or_set(ctx, src0->grad,
  13228. ggml_diag_mask_zero_impl(ctx, tensor->grad, n_past, false),
  13229. zero_table);
  13230. }
  13231. } break;
  13232. case GGML_OP_SOFT_MAX:
  13233. {
  13234. // necessary for llama
  13235. if (src0->grad) {
  13236. src0->grad =
  13237. ggml_add_or_set(ctx, src0->grad,
  13238. ggml_soft_max_back(ctx, tensor->grad, tensor),
  13239. zero_table);
  13240. }
  13241. } break;
  13242. case GGML_OP_SOFT_MAX_BACK:
  13243. {
  13244. GGML_ASSERT(false); // TODO: not implemented
  13245. } break;
  13246. case GGML_OP_ROPE:
  13247. {
  13248. // necessary for llama
  13249. if (src0->grad) {
  13250. //const int n_past = ((int32_t *) tensor->op_params)[0];
  13251. const int n_dims = ((int32_t *) tensor->op_params)[1];
  13252. const int mode = ((int32_t *) tensor->op_params)[2];
  13253. const int n_ctx = ((int32_t *) tensor->op_params)[3];
  13254. const int n_orig_ctx = ((int32_t *) tensor->op_params)[4];
  13255. float freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow, xpos_base, xpos_down;
  13256. memcpy(&freq_base, (int32_t *) tensor->op_params + 5, sizeof(float));
  13257. memcpy(&freq_scale, (int32_t *) tensor->op_params + 6, sizeof(float));
  13258. memcpy(&ext_factor, (int32_t *) tensor->op_params + 7, sizeof(float));
  13259. memcpy(&attn_factor, (int32_t *) tensor->op_params + 8, sizeof(float));
  13260. memcpy(&beta_fast, (int32_t *) tensor->op_params + 9, sizeof(float));
  13261. memcpy(&beta_slow, (int32_t *) tensor->op_params + 10, sizeof(float));
  13262. memcpy(&xpos_base, (int32_t *) tensor->op_params + 11, sizeof(float));
  13263. memcpy(&xpos_down, (int32_t *) tensor->op_params + 12, sizeof(bool));
  13264. src0->grad = ggml_add_or_set(ctx,
  13265. src0->grad,
  13266. ggml_rope_back(ctx,
  13267. tensor->grad,
  13268. src1,
  13269. n_dims,
  13270. mode,
  13271. n_ctx,
  13272. n_orig_ctx,
  13273. freq_base,
  13274. freq_scale,
  13275. ext_factor,
  13276. attn_factor,
  13277. beta_fast,
  13278. beta_slow,
  13279. xpos_base,
  13280. xpos_down),
  13281. zero_table);
  13282. }
  13283. } break;
  13284. case GGML_OP_ROPE_BACK:
  13285. {
  13286. if (src0->grad) {
  13287. //const int n_past = ((int32_t *) tensor->op_params)[0];
  13288. const int n_dims = ((int32_t *) tensor->op_params)[1];
  13289. const int mode = ((int32_t *) tensor->op_params)[2];
  13290. const int n_ctx = ((int32_t *) tensor->op_params)[3];
  13291. const int n_orig_ctx = ((int32_t *) tensor->op_params)[4];
  13292. float freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow, xpos_base, xpos_down;
  13293. memcpy(&freq_base, (int32_t *) tensor->op_params + 5, sizeof(float));
  13294. memcpy(&freq_scale, (int32_t *) tensor->op_params + 6, sizeof(float));
  13295. memcpy(&ext_factor, (int32_t *) tensor->op_params + 7, sizeof(float));
  13296. memcpy(&attn_factor, (int32_t *) tensor->op_params + 8, sizeof(float));
  13297. memcpy(&beta_fast, (int32_t *) tensor->op_params + 9, sizeof(float));
  13298. memcpy(&beta_slow, (int32_t *) tensor->op_params + 10, sizeof(float));
  13299. memcpy(&xpos_base, (int32_t *) tensor->op_params + 11, sizeof(float));
  13300. memcpy(&xpos_down, (int32_t *) tensor->op_params + 12, sizeof(bool));
  13301. src0->grad = ggml_add_or_set(ctx,
  13302. src0->grad,
  13303. ggml_rope_impl(ctx,
  13304. tensor->grad,
  13305. src1,
  13306. n_dims,
  13307. mode,
  13308. n_ctx,
  13309. n_orig_ctx,
  13310. freq_base,
  13311. freq_scale,
  13312. ext_factor,
  13313. attn_factor,
  13314. beta_fast,
  13315. beta_slow,
  13316. xpos_base,
  13317. xpos_down,
  13318. false),
  13319. zero_table);
  13320. }
  13321. } break;
  13322. case GGML_OP_ALIBI:
  13323. {
  13324. GGML_ASSERT(false); // TODO: not implemented
  13325. } break;
  13326. case GGML_OP_CLAMP:
  13327. {
  13328. GGML_ASSERT(false); // TODO: not implemented
  13329. } break;
  13330. case GGML_OP_CONV_TRANSPOSE_1D:
  13331. {
  13332. GGML_ASSERT(false); // TODO: not implemented
  13333. } break;
  13334. case GGML_OP_IM2COL:
  13335. {
  13336. GGML_ASSERT(false); // TODO: not implemented
  13337. } break;
  13338. case GGML_OP_CONV_TRANSPOSE_2D:
  13339. {
  13340. GGML_ASSERT(false); // TODO: not implemented
  13341. } break;
  13342. case GGML_OP_POOL_1D:
  13343. {
  13344. GGML_ASSERT(false); // TODO: not implemented
  13345. } break;
  13346. case GGML_OP_POOL_2D:
  13347. {
  13348. GGML_ASSERT(false); // TODO: not implemented
  13349. } break;
  13350. case GGML_OP_UPSCALE:
  13351. {
  13352. GGML_ASSERT(false); // TODO: not implemented
  13353. } break;
  13354. case GGML_OP_PAD:
  13355. {
  13356. GGML_ASSERT(false); // TODO: not implemented
  13357. } break;
  13358. case GGML_OP_ARGSORT:
  13359. {
  13360. GGML_ASSERT(false); // TODO: not implemented
  13361. } break;
  13362. case GGML_OP_LEAKY_RELU:
  13363. {
  13364. GGML_ASSERT(false); // TODO: not implemented
  13365. } break;
  13366. case GGML_OP_FLASH_ATTN:
  13367. {
  13368. struct ggml_tensor * flash_grad = NULL;
  13369. if (src0->grad || src1->grad || tensor->src[2]->grad) {
  13370. int32_t t = ggml_get_op_params_i32(tensor, 0);
  13371. GGML_ASSERT(t == 0 || t == 1);
  13372. bool masked = t != 0;
  13373. flash_grad =
  13374. ggml_flash_attn_back(ctx,
  13375. src0,
  13376. src1,
  13377. tensor->src[2],
  13378. tensor->grad,
  13379. masked);
  13380. }
  13381. struct ggml_tensor * src2 = tensor->src[2];
  13382. const int64_t elem_q = ggml_nelements(src0);
  13383. const int64_t elem_k = ggml_nelements(src1);
  13384. const int64_t elem_v = ggml_nelements(src2);
  13385. enum ggml_type result_type = flash_grad->type;
  13386. GGML_ASSERT(ggml_blck_size(result_type) == 1);
  13387. const size_t tsize = ggml_type_size(result_type);
  13388. const size_t offs_q = 0;
  13389. const size_t offs_k = offs_q + GGML_PAD(elem_q * tsize, GGML_MEM_ALIGN);
  13390. const size_t offs_v = offs_k + GGML_PAD(elem_k * tsize, GGML_MEM_ALIGN);
  13391. if (src0->grad) {
  13392. struct ggml_tensor * view_q = ggml_view_1d(ctx, flash_grad, elem_q, offs_q);
  13393. struct ggml_tensor * grad_q = ggml_reshape(ctx, view_q, src0);
  13394. src0->grad = ggml_add_or_set(ctx,
  13395. src0->grad,
  13396. grad_q,
  13397. zero_table);
  13398. }
  13399. if (src1->grad) {
  13400. struct ggml_tensor * view_k = ggml_view_1d(ctx, flash_grad, elem_k, offs_k);
  13401. struct ggml_tensor * grad_k = ggml_reshape(ctx, view_k, src1);
  13402. src1->grad = ggml_add_or_set(ctx,
  13403. src1->grad,
  13404. grad_k,
  13405. zero_table);
  13406. }
  13407. if (src2->grad) {
  13408. struct ggml_tensor * view_v = ggml_view_1d(ctx, flash_grad, elem_v, offs_v);
  13409. struct ggml_tensor * grad_v = ggml_reshape(ctx, view_v, src2);
  13410. src2->grad = ggml_add_or_set(ctx,
  13411. src2->grad,
  13412. grad_v,
  13413. zero_table);
  13414. }
  13415. } break;
  13416. case GGML_OP_FLASH_FF:
  13417. {
  13418. GGML_ASSERT(false); // not supported
  13419. } break;
  13420. case GGML_OP_FLASH_ATTN_BACK:
  13421. {
  13422. GGML_ASSERT(false); // not supported
  13423. } break;
  13424. case GGML_OP_WIN_PART:
  13425. case GGML_OP_WIN_UNPART:
  13426. case GGML_OP_UNARY:
  13427. {
  13428. switch (ggml_get_unary_op(tensor)) {
  13429. case GGML_UNARY_OP_ABS:
  13430. {
  13431. if (src0->grad) {
  13432. src0->grad =
  13433. ggml_add_or_set(ctx,
  13434. src0->grad,
  13435. ggml_mul(ctx,
  13436. ggml_sgn(ctx, src0),
  13437. tensor->grad),
  13438. zero_table);
  13439. }
  13440. } break;
  13441. case GGML_UNARY_OP_SGN:
  13442. {
  13443. if (src0->grad) {
  13444. // noop
  13445. }
  13446. } break;
  13447. case GGML_UNARY_OP_NEG:
  13448. {
  13449. if (src0->grad) {
  13450. src0->grad = ggml_sub_or_set(ctx, src0->grad, tensor->grad, zero_table);
  13451. }
  13452. } break;
  13453. case GGML_UNARY_OP_STEP:
  13454. {
  13455. if (src0->grad) {
  13456. // noop
  13457. }
  13458. } break;
  13459. case GGML_UNARY_OP_TANH:
  13460. {
  13461. GGML_ASSERT(false); // TODO: not implemented
  13462. } break;
  13463. case GGML_UNARY_OP_ELU:
  13464. {
  13465. GGML_ASSERT(false); // TODO: not implemented
  13466. } break;
  13467. case GGML_UNARY_OP_RELU:
  13468. {
  13469. if (src0->grad) {
  13470. src0->grad = ggml_add_or_set(ctx,
  13471. src0->grad,
  13472. ggml_mul(ctx,
  13473. ggml_step(ctx, src0),
  13474. tensor->grad),
  13475. zero_table);
  13476. }
  13477. } break;
  13478. case GGML_UNARY_OP_GELU:
  13479. {
  13480. GGML_ASSERT(false); // TODO: not implemented
  13481. } break;
  13482. case GGML_UNARY_OP_GELU_QUICK:
  13483. {
  13484. GGML_ASSERT(false); // TODO: not implemented
  13485. } break;
  13486. case GGML_UNARY_OP_SILU:
  13487. {
  13488. // necessary for llama
  13489. if (src0->grad) {
  13490. src0->grad = ggml_add_or_set(ctx,
  13491. src0->grad,
  13492. ggml_silu_back(ctx, src0, tensor->grad),
  13493. zero_table);
  13494. }
  13495. } break;
  13496. default:
  13497. GGML_ASSERT(false);
  13498. }
  13499. } break;
  13500. case GGML_OP_GET_REL_POS:
  13501. case GGML_OP_ADD_REL_POS:
  13502. case GGML_OP_MAP_UNARY:
  13503. case GGML_OP_MAP_BINARY:
  13504. case GGML_OP_MAP_CUSTOM1_F32:
  13505. case GGML_OP_MAP_CUSTOM2_F32:
  13506. case GGML_OP_MAP_CUSTOM3_F32:
  13507. case GGML_OP_MAP_CUSTOM1:
  13508. case GGML_OP_MAP_CUSTOM2:
  13509. case GGML_OP_MAP_CUSTOM3:
  13510. {
  13511. GGML_ASSERT(false); // not supported
  13512. } break;
  13513. case GGML_OP_CROSS_ENTROPY_LOSS:
  13514. {
  13515. if (src0->grad) {
  13516. src0->grad = ggml_add_or_set(ctx,
  13517. src0->grad,
  13518. ggml_cross_entropy_loss_back(ctx,
  13519. src0,
  13520. src1,
  13521. tensor->grad),
  13522. zero_table);
  13523. }
  13524. } break;
  13525. case GGML_OP_CROSS_ENTROPY_LOSS_BACK:
  13526. {
  13527. GGML_ASSERT(false); // not supported
  13528. } break;
  13529. case GGML_OP_NONE:
  13530. {
  13531. // nop
  13532. } break;
  13533. case GGML_OP_COUNT:
  13534. {
  13535. GGML_ASSERT(false);
  13536. } break;
  13537. }
  13538. for (int i = 0; i < GGML_MAX_SRC; ++i) {
  13539. if (tensor->src[i] && tensor->src[i]->grad) {
  13540. GGML_ASSERT(ggml_are_same_shape(tensor->src[i], tensor->src[i]->grad));
  13541. }
  13542. }
  13543. }
  13544. static void ggml_visit_parents(struct ggml_cgraph * cgraph, struct ggml_tensor * node) {
  13545. if (node->grad == NULL) {
  13546. // this usually happens when we generate intermediate nodes from constants in the backward pass
  13547. // it can also happen during forward pass, if the user performs computations with constants
  13548. if (node->op != GGML_OP_NONE) {
  13549. //GGML_PRINT_DEBUG("%s: warning: node %p has no grad, but op %d\n", __func__, (void *) node, node->op);
  13550. }
  13551. }
  13552. // check if already visited
  13553. if (ggml_hash_insert(cgraph->visited_hash_table, node) == GGML_HASHTABLE_ALREADY_EXISTS) {
  13554. return;
  13555. }
  13556. for (int i = 0; i < GGML_MAX_SRC; ++i) {
  13557. const int k =
  13558. (cgraph->order == GGML_CGRAPH_EVAL_ORDER_LEFT_TO_RIGHT) ? i :
  13559. (cgraph->order == GGML_CGRAPH_EVAL_ORDER_RIGHT_TO_LEFT) ? (GGML_MAX_SRC-1-i) :
  13560. /* unknown order, just fall back to using i*/ i;
  13561. if (node->src[k]) {
  13562. ggml_visit_parents(cgraph, node->src[k]);
  13563. }
  13564. }
  13565. if (node->op == GGML_OP_NONE && node->grad == NULL) {
  13566. // reached a leaf node, not part of the gradient graph (e.g. a constant)
  13567. GGML_ASSERT(cgraph->n_leafs < cgraph->size);
  13568. if (strlen(node->name) == 0) {
  13569. ggml_format_name(node, "leaf_%d", cgraph->n_leafs);
  13570. }
  13571. cgraph->leafs[cgraph->n_leafs] = node;
  13572. cgraph->n_leafs++;
  13573. } else {
  13574. GGML_ASSERT(cgraph->n_nodes < cgraph->size);
  13575. if (strlen(node->name) == 0) {
  13576. ggml_format_name(node, "node_%d", cgraph->n_nodes);
  13577. }
  13578. cgraph->nodes[cgraph->n_nodes] = node;
  13579. if (cgraph->grads) {
  13580. cgraph->grads[cgraph->n_nodes] = node->grad;
  13581. }
  13582. cgraph->n_nodes++;
  13583. }
  13584. }
  13585. static void ggml_build_forward_impl(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor, bool expand) {
  13586. if (!expand) {
  13587. // TODO: this branch isn't accessible anymore, maybe move this to ggml_build_forward_expand
  13588. ggml_graph_clear(cgraph);
  13589. }
  13590. const int n0 = cgraph->n_nodes;
  13591. UNUSED(n0);
  13592. ggml_visit_parents(cgraph, tensor);
  13593. const int n_new = cgraph->n_nodes - n0;
  13594. GGML_PRINT_DEBUG("%s: visited %d new nodes\n", __func__, n_new);
  13595. if (n_new > 0) {
  13596. // the last added node should always be starting point
  13597. GGML_ASSERT(cgraph->nodes[cgraph->n_nodes - 1] == tensor);
  13598. }
  13599. }
  13600. void ggml_build_forward_expand(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor) {
  13601. ggml_build_forward_impl(cgraph, tensor, true);
  13602. }
  13603. void ggml_build_backward_expand(struct ggml_context * ctx, struct ggml_cgraph * gf, struct ggml_cgraph * gb, bool keep) {
  13604. GGML_ASSERT(gf->n_nodes > 0);
  13605. // if we are keeping the gradient graph, we have to detach the gradient nodes from the original graph
  13606. if (keep) {
  13607. for (int i = 0; i < gf->n_nodes; i++) {
  13608. struct ggml_tensor * node = gf->nodes[i];
  13609. if (node->grad) {
  13610. node->grad = ggml_dup_tensor(ctx, node);
  13611. gf->grads[i] = node->grad;
  13612. }
  13613. }
  13614. }
  13615. // remember original gradients which start with zero values
  13616. struct ggml_hash_set zero_table = ggml_hash_set_new(gf->size);
  13617. for (int i = 0; i < gf->n_nodes; i++) {
  13618. if (gf->grads[i]) {
  13619. ggml_hash_insert(zero_table, gf->grads[i]);
  13620. }
  13621. }
  13622. for (int i = gf->n_nodes - 1; i >= 0; i--) {
  13623. struct ggml_tensor * node = gf->nodes[i];
  13624. // inplace operations to add gradients are not created by ggml_compute_backward
  13625. // use allocator to automatically make inplace operations
  13626. if (node->grad) {
  13627. ggml_compute_backward(ctx, node, zero_table);
  13628. }
  13629. }
  13630. for (int i = 0; i < gf->n_nodes; i++) {
  13631. struct ggml_tensor * node = gf->nodes[i];
  13632. if (node->is_param) {
  13633. GGML_PRINT_DEBUG("%s: found root node %p\n", __func__, (void *) node);
  13634. ggml_build_forward_expand(gb, node->grad);
  13635. }
  13636. }
  13637. ggml_hash_set_free(zero_table);
  13638. }
  13639. static size_t ggml_graph_nbytes(size_t size, bool grads) {
  13640. size_t nbytes = sizeof(struct ggml_cgraph);
  13641. nbytes += size * sizeof(struct ggml_tensor *) * 2; // leafs + nodes
  13642. if (grads) {
  13643. nbytes += size * sizeof(struct ggml_tensor *); // grads
  13644. }
  13645. nbytes += ggml_hash_size(size * 2) * sizeof(struct ggml_tensor *); // hash set
  13646. return nbytes;
  13647. }
  13648. size_t ggml_graph_overhead_custom(size_t size, bool grads) {
  13649. return GGML_OBJECT_SIZE + GGML_PAD(ggml_graph_nbytes(size, grads), GGML_MEM_ALIGN);
  13650. }
  13651. size_t ggml_graph_overhead(void) {
  13652. return ggml_graph_overhead_custom(GGML_DEFAULT_GRAPH_SIZE, false);
  13653. }
  13654. struct ggml_cgraph * ggml_new_graph_custom(struct ggml_context * ctx, size_t size, bool grads) {
  13655. const size_t obj_size = ggml_graph_nbytes(size, grads);
  13656. struct ggml_object * obj = ggml_new_object(ctx, GGML_OBJECT_GRAPH, obj_size);
  13657. struct ggml_cgraph * cgraph = (struct ggml_cgraph *) ((char *) ctx->mem_buffer + obj->offs);
  13658. struct ggml_tensor ** data_start = (struct ggml_tensor **) (cgraph + 1);
  13659. size_t hash_size = ggml_hash_size(size * 2);
  13660. struct ggml_tensor ** nodes_ptr = data_start;
  13661. struct ggml_tensor ** leafs_ptr = nodes_ptr + size;
  13662. struct ggml_tensor ** hash_keys_ptr = leafs_ptr + size;
  13663. struct ggml_tensor ** grads_ptr = grads ? hash_keys_ptr + hash_size : NULL;
  13664. // check that we allocated the correct amount of memory
  13665. assert(obj_size == (size_t) (
  13666. (grads ? (char *)(grads_ptr + size) : (char *)(hash_keys_ptr + hash_size)) - (char *)cgraph));
  13667. memset(hash_keys_ptr, 0, hash_size * sizeof(struct ggml_tensor *));
  13668. *cgraph = (struct ggml_cgraph) {
  13669. /*.size =*/ size,
  13670. /*.n_nodes =*/ 0,
  13671. /*.n_leafs =*/ 0,
  13672. /*.nodes =*/ nodes_ptr,
  13673. /*.grads =*/ grads_ptr,
  13674. /*.leafs =*/ leafs_ptr,
  13675. /*.hash_table =*/ { hash_size, hash_keys_ptr },
  13676. /*.order =*/ GGML_CGRAPH_EVAL_ORDER_LEFT_TO_RIGHT,
  13677. /*.perf_runs =*/ 0,
  13678. /*.perf_cycles =*/ 0,
  13679. /*.perf_time_us =*/ 0,
  13680. };
  13681. return cgraph;
  13682. }
  13683. struct ggml_cgraph * ggml_new_graph(struct ggml_context * ctx) {
  13684. return ggml_new_graph_custom(ctx, GGML_DEFAULT_GRAPH_SIZE, false);
  13685. }
  13686. struct ggml_cgraph ggml_graph_view(struct ggml_cgraph * cgraph0, int i0, int i1) {
  13687. struct ggml_cgraph cgraph = {
  13688. /*.size =*/ 0,
  13689. /*.n_nodes =*/ i1 - i0,
  13690. /*.n_leafs =*/ 0,
  13691. /*.nodes =*/ cgraph0->nodes + i0,
  13692. /*.grads =*/ cgraph0->grads ? cgraph0->grads + i0 : NULL,
  13693. /*.leafs =*/ NULL,
  13694. /*.hash_table =*/ { 0, NULL },
  13695. /*.order =*/ cgraph0->order,
  13696. /*.perf_runs =*/ 0,
  13697. /*.perf_cycles =*/ 0,
  13698. /*.perf_time_us =*/ 0,
  13699. };
  13700. return cgraph;
  13701. }
  13702. void ggml_graph_cpy(struct ggml_cgraph * src, struct ggml_cgraph * dst) {
  13703. GGML_ASSERT(dst->size >= src->n_leafs);
  13704. GGML_ASSERT(dst->size >= src->n_nodes);
  13705. GGML_ASSERT(dst->visited_hash_table.size >= src->visited_hash_table.size);
  13706. dst->n_leafs = src->n_leafs;
  13707. dst->n_nodes = src->n_nodes;
  13708. dst->order = src->order;
  13709. for (int i = 0; i < src->n_leafs; ++i) {
  13710. dst->leafs[i] = src->leafs[i];
  13711. }
  13712. for (int i = 0; i < src->n_nodes; ++i) {
  13713. dst->nodes[i] = src->nodes[i];
  13714. }
  13715. if (src->grads) {
  13716. GGML_ASSERT(dst->grads != NULL);
  13717. for (int i = 0; i < src->n_nodes; ++i) {
  13718. dst->grads[i] = src->grads[i];
  13719. }
  13720. }
  13721. for (size_t i = 0; i < src->visited_hash_table.size; ++i) {
  13722. if (src->visited_hash_table.keys[i]) {
  13723. ggml_hash_insert(dst->visited_hash_table, src->visited_hash_table.keys[i]);
  13724. }
  13725. }
  13726. }
  13727. struct ggml_cgraph * ggml_graph_dup(struct ggml_context * ctx, struct ggml_cgraph * cgraph) {
  13728. struct ggml_cgraph * result = ggml_new_graph_custom(ctx, cgraph->size, cgraph->grads != NULL);
  13729. ggml_graph_cpy(cgraph, result);
  13730. return result;
  13731. }
  13732. void ggml_graph_reset(struct ggml_cgraph * cgraph) {
  13733. GGML_ASSERT(cgraph->grads != NULL);
  13734. for (int i = 0; i < cgraph->n_nodes; i++) {
  13735. struct ggml_tensor * grad = cgraph->grads[i];
  13736. if (grad) {
  13737. ggml_set_zero(grad);
  13738. }
  13739. }
  13740. }
  13741. void ggml_graph_clear(struct ggml_cgraph * cgraph) {
  13742. cgraph->n_leafs = 0;
  13743. cgraph->n_nodes = 0;
  13744. memset(cgraph->visited_hash_table.keys, 0, cgraph->visited_hash_table.size * sizeof(struct ggml_tensor *));
  13745. }
  13746. //
  13747. // thread data
  13748. //
  13749. // synchronization is done via busy loops
  13750. // I tried using spin locks, but not sure how to use them correctly - the things I tried were slower than busy loops
  13751. //
  13752. #ifdef __APPLE__
  13753. //#include <os/lock.h>
  13754. //
  13755. //typedef os_unfair_lock ggml_lock_t;
  13756. //
  13757. //#define ggml_lock_init(x) UNUSED(x)
  13758. //#define ggml_lock_destroy(x) UNUSED(x)
  13759. //#define ggml_lock_lock os_unfair_lock_lock
  13760. //#define ggml_lock_unlock os_unfair_lock_unlock
  13761. //
  13762. //#define GGML_LOCK_INITIALIZER OS_UNFAIR_LOCK_INIT
  13763. typedef int ggml_lock_t;
  13764. #define ggml_lock_init(x) UNUSED(x)
  13765. #define ggml_lock_destroy(x) UNUSED(x)
  13766. #define ggml_lock_lock(x) UNUSED(x)
  13767. #define ggml_lock_unlock(x) UNUSED(x)
  13768. #define GGML_LOCK_INITIALIZER 0
  13769. typedef pthread_t ggml_thread_t;
  13770. #define ggml_thread_create pthread_create
  13771. #define ggml_thread_join pthread_join
  13772. #else
  13773. //typedef pthread_spinlock_t ggml_lock_t;
  13774. //#define ggml_lock_init(x) pthread_spin_init(x, PTHREAD_PROCESS_PRIVATE)
  13775. //#define ggml_lock_destroy pthread_spin_destroy
  13776. //#define ggml_lock_lock pthread_spin_lock
  13777. //#define ggml_lock_unlock pthread_spin_unlock
  13778. typedef int ggml_lock_t;
  13779. #define ggml_lock_init(x) UNUSED(x)
  13780. #define ggml_lock_destroy(x) UNUSED(x)
  13781. #if defined(__x86_64__) || (defined(_MSC_VER) && defined(_M_AMD64))
  13782. #define ggml_lock_lock(x) _mm_pause()
  13783. #else
  13784. #define ggml_lock_lock(x) UNUSED(x)
  13785. #endif
  13786. #define ggml_lock_unlock(x) UNUSED(x)
  13787. #define GGML_LOCK_INITIALIZER 0
  13788. typedef pthread_t ggml_thread_t;
  13789. #define ggml_thread_create pthread_create
  13790. #define ggml_thread_join pthread_join
  13791. #endif
  13792. // Android's libc implementation "bionic" does not support setting affinity
  13793. #if defined(__linux__) && !defined(__BIONIC__)
  13794. static void set_numa_thread_affinity(int thread_n, int n_threads) {
  13795. if (!ggml_is_numa()) {
  13796. return;
  13797. }
  13798. // run thread on node_num thread_n / (threads per node)
  13799. const int node_num = thread_n / ((n_threads + g_state.numa.n_nodes - 1) / g_state.numa.n_nodes);
  13800. struct ggml_numa_node * node = &g_state.numa.nodes[node_num];
  13801. size_t setsize = CPU_ALLOC_SIZE(g_state.numa.total_cpus);
  13802. cpu_set_t * cpus = CPU_ALLOC(g_state.numa.total_cpus);
  13803. CPU_ZERO_S(setsize, cpus);
  13804. for (size_t i = 0; i < node->n_cpus; ++i) {
  13805. CPU_SET_S(node->cpus[i], setsize, cpus);
  13806. }
  13807. int rv = pthread_setaffinity_np(pthread_self(), setsize, cpus);
  13808. if (rv) {
  13809. fprintf(stderr, "warning: pthread_setaffinity_np() failed: %s\n",
  13810. strerror(rv));
  13811. }
  13812. CPU_FREE(cpus);
  13813. }
  13814. static void clear_numa_thread_affinity(void) {
  13815. if (!ggml_is_numa()) {
  13816. return;
  13817. }
  13818. size_t setsize = CPU_ALLOC_SIZE(g_state.numa.total_cpus);
  13819. cpu_set_t * cpus = CPU_ALLOC(g_state.numa.total_cpus);
  13820. CPU_ZERO_S(setsize, cpus);
  13821. for (unsigned i = 0; i < g_state.numa.total_cpus; ++i) {
  13822. CPU_SET_S(i, setsize, cpus);
  13823. }
  13824. int rv = pthread_setaffinity_np(pthread_self(), setsize, cpus);
  13825. if (rv) {
  13826. fprintf(stderr, "warning: pthread_setaffinity_np() failed: %s\n",
  13827. strerror(rv));
  13828. }
  13829. CPU_FREE(cpus);
  13830. }
  13831. #else
  13832. // TODO: Windows etc.
  13833. // (the linux implementation may also work on BSD, someone should test)
  13834. static void set_numa_thread_affinity(int thread_n, int n_threads) { UNUSED(thread_n); UNUSED(n_threads); }
  13835. static void clear_numa_thread_affinity(void) {}
  13836. #endif
  13837. struct ggml_compute_state_shared {
  13838. const struct ggml_cgraph * cgraph;
  13839. const struct ggml_cplan * cplan;
  13840. int64_t perf_node_start_cycles;
  13841. int64_t perf_node_start_time_us;
  13842. const int n_threads;
  13843. // synchronization primitives
  13844. atomic_int n_active; // num active threads
  13845. atomic_int node_n; // active graph node
  13846. atomic_int node_task; // active graph node task phase
  13847. bool (*abort_callback)(void * data); // abort ggml_graph_compute when true
  13848. void * abort_callback_data;
  13849. };
  13850. struct ggml_compute_state {
  13851. ggml_thread_t thrd;
  13852. int ith;
  13853. struct ggml_compute_state_shared * shared;
  13854. };
  13855. static void ggml_graph_compute_perf_stats_node(struct ggml_tensor * node, const struct ggml_compute_state_shared * st) {
  13856. int64_t cycles_cur = ggml_perf_cycles() - st->perf_node_start_cycles;
  13857. int64_t time_us_cur = ggml_perf_time_us() - st->perf_node_start_time_us;
  13858. node->perf_runs++;
  13859. node->perf_cycles += cycles_cur;
  13860. node->perf_time_us += time_us_cur;
  13861. }
  13862. static int ggml_get_n_tasks(struct ggml_tensor * node, int n_threads) {
  13863. int n_tasks = 0;
  13864. switch (node->op) {
  13865. case GGML_OP_CPY:
  13866. case GGML_OP_DUP:
  13867. case GGML_OP_ADD:
  13868. case GGML_OP_ADD1:
  13869. case GGML_OP_ACC:
  13870. {
  13871. n_tasks = n_threads;
  13872. } break;
  13873. case GGML_OP_SUB:
  13874. case GGML_OP_SQR:
  13875. case GGML_OP_SQRT:
  13876. case GGML_OP_LOG:
  13877. case GGML_OP_SUM:
  13878. case GGML_OP_SUM_ROWS:
  13879. case GGML_OP_MEAN:
  13880. case GGML_OP_ARGMAX:
  13881. case GGML_OP_REPEAT:
  13882. case GGML_OP_REPEAT_BACK:
  13883. case GGML_OP_LEAKY_RELU:
  13884. {
  13885. n_tasks = 1;
  13886. } break;
  13887. case GGML_OP_UNARY:
  13888. switch (ggml_get_unary_op(node)) {
  13889. case GGML_UNARY_OP_ABS:
  13890. case GGML_UNARY_OP_SGN:
  13891. case GGML_UNARY_OP_NEG:
  13892. case GGML_UNARY_OP_STEP:
  13893. case GGML_UNARY_OP_TANH:
  13894. case GGML_UNARY_OP_ELU:
  13895. case GGML_UNARY_OP_RELU:
  13896. case GGML_UNARY_OP_HARDSWISH: // to opt for multiple threads
  13897. case GGML_UNARY_OP_HARDSIGMOID: // to opt for multiple threads
  13898. {
  13899. n_tasks = 1;
  13900. } break;
  13901. case GGML_UNARY_OP_GELU:
  13902. case GGML_UNARY_OP_GELU_QUICK:
  13903. case GGML_UNARY_OP_SILU:
  13904. {
  13905. n_tasks = n_threads;
  13906. } break;
  13907. default:
  13908. GGML_ASSERT(false);
  13909. }
  13910. break;
  13911. case GGML_OP_SILU_BACK:
  13912. case GGML_OP_MUL:
  13913. case GGML_OP_DIV:
  13914. case GGML_OP_NORM:
  13915. case GGML_OP_RMS_NORM:
  13916. case GGML_OP_RMS_NORM_BACK:
  13917. case GGML_OP_GROUP_NORM:
  13918. case GGML_OP_CONCAT:
  13919. {
  13920. n_tasks = n_threads;
  13921. } break;
  13922. case GGML_OP_MUL_MAT:
  13923. {
  13924. n_tasks = n_threads;
  13925. // TODO: use different scheduling for different matrix sizes
  13926. //const int nr0 = ggml_nrows(node->src[0]);
  13927. //const int nr1 = ggml_nrows(node->src[1]);
  13928. //n_tasks = MIN(n_threads, MAX(1, nr0/128));
  13929. //printf("nr0 = %8d, nr1 = %8d, nr0*nr1 = %8d, n_tasks%d\n", nr0, nr1, nr0*nr1, n_tasks);
  13930. } break;
  13931. case GGML_OP_MUL_MAT_ID:
  13932. {
  13933. n_tasks = n_threads;
  13934. } break;
  13935. case GGML_OP_OUT_PROD:
  13936. {
  13937. n_tasks = n_threads;
  13938. } break;
  13939. case GGML_OP_SCALE:
  13940. case GGML_OP_SET:
  13941. case GGML_OP_CONT:
  13942. case GGML_OP_RESHAPE:
  13943. case GGML_OP_VIEW:
  13944. case GGML_OP_PERMUTE:
  13945. case GGML_OP_TRANSPOSE:
  13946. case GGML_OP_GET_ROWS:
  13947. case GGML_OP_GET_ROWS_BACK:
  13948. case GGML_OP_DIAG:
  13949. {
  13950. n_tasks = 1;
  13951. } break;
  13952. case GGML_OP_DIAG_MASK_ZERO:
  13953. case GGML_OP_DIAG_MASK_INF:
  13954. case GGML_OP_SOFT_MAX_BACK:
  13955. case GGML_OP_ROPE:
  13956. case GGML_OP_ROPE_BACK:
  13957. case GGML_OP_ADD_REL_POS:
  13958. {
  13959. n_tasks = n_threads;
  13960. } break;
  13961. case GGML_OP_ALIBI:
  13962. {
  13963. n_tasks = 1; //TODO
  13964. } break;
  13965. case GGML_OP_CLAMP:
  13966. {
  13967. n_tasks = 1; //TODO
  13968. } break;
  13969. case GGML_OP_SOFT_MAX:
  13970. {
  13971. n_tasks = MIN(n_threads, ggml_nrows(node->src[0]));
  13972. } break;
  13973. case GGML_OP_CONV_TRANSPOSE_1D:
  13974. {
  13975. n_tasks = n_threads;
  13976. } break;
  13977. case GGML_OP_IM2COL:
  13978. {
  13979. n_tasks = n_threads;
  13980. } break;
  13981. case GGML_OP_CONV_TRANSPOSE_2D:
  13982. {
  13983. n_tasks = n_threads;
  13984. } break;
  13985. case GGML_OP_POOL_1D:
  13986. case GGML_OP_POOL_2D:
  13987. {
  13988. n_tasks = 1;
  13989. } break;
  13990. case GGML_OP_UPSCALE:
  13991. {
  13992. n_tasks = n_threads;
  13993. } break;
  13994. case GGML_OP_PAD:
  13995. {
  13996. n_tasks = n_threads;
  13997. } break;
  13998. case GGML_OP_ARGSORT:
  13999. {
  14000. n_tasks = n_threads;
  14001. } break;
  14002. case GGML_OP_FLASH_ATTN:
  14003. {
  14004. n_tasks = n_threads;
  14005. } break;
  14006. case GGML_OP_FLASH_FF:
  14007. {
  14008. n_tasks = n_threads;
  14009. } break;
  14010. case GGML_OP_FLASH_ATTN_BACK:
  14011. {
  14012. n_tasks = n_threads;
  14013. } break;
  14014. case GGML_OP_WIN_PART:
  14015. case GGML_OP_WIN_UNPART:
  14016. case GGML_OP_GET_REL_POS:
  14017. case GGML_OP_MAP_UNARY:
  14018. case GGML_OP_MAP_BINARY:
  14019. case GGML_OP_MAP_CUSTOM1_F32:
  14020. case GGML_OP_MAP_CUSTOM2_F32:
  14021. case GGML_OP_MAP_CUSTOM3_F32:
  14022. {
  14023. n_tasks = 1;
  14024. } break;
  14025. case GGML_OP_MAP_CUSTOM1:
  14026. {
  14027. struct ggml_map_custom1_op_params * p = (struct ggml_map_custom1_op_params *) node->op_params;
  14028. if (p->n_tasks == GGML_N_TASKS_MAX) {
  14029. n_tasks = n_threads;
  14030. } else {
  14031. n_tasks = MIN(p->n_tasks, n_threads);
  14032. }
  14033. } break;
  14034. case GGML_OP_MAP_CUSTOM2:
  14035. {
  14036. struct ggml_map_custom2_op_params * p = (struct ggml_map_custom2_op_params *) node->op_params;
  14037. if (p->n_tasks == GGML_N_TASKS_MAX) {
  14038. n_tasks = n_threads;
  14039. } else {
  14040. n_tasks = MIN(p->n_tasks, n_threads);
  14041. }
  14042. } break;
  14043. case GGML_OP_MAP_CUSTOM3:
  14044. {
  14045. struct ggml_map_custom3_op_params * p = (struct ggml_map_custom3_op_params *) node->op_params;
  14046. if (p->n_tasks == GGML_N_TASKS_MAX) {
  14047. n_tasks = n_threads;
  14048. } else {
  14049. n_tasks = MIN(p->n_tasks, n_threads);
  14050. }
  14051. } break;
  14052. case GGML_OP_CROSS_ENTROPY_LOSS:
  14053. {
  14054. n_tasks = n_threads;
  14055. } break;
  14056. case GGML_OP_CROSS_ENTROPY_LOSS_BACK:
  14057. {
  14058. n_tasks = n_threads;
  14059. } break;
  14060. case GGML_OP_NONE:
  14061. {
  14062. n_tasks = 1;
  14063. } break;
  14064. case GGML_OP_COUNT:
  14065. {
  14066. GGML_ASSERT(false);
  14067. } break;
  14068. default:
  14069. {
  14070. fprintf(stderr, "%s: op not implemented: ", __func__);
  14071. if (node->op < GGML_OP_COUNT) {
  14072. fprintf(stderr, "%s\n", ggml_op_name(node->op));
  14073. } else {
  14074. fprintf(stderr, "%d\n", node->op);
  14075. }
  14076. GGML_ASSERT(false);
  14077. } break;
  14078. }
  14079. assert(n_tasks > 0);
  14080. return n_tasks;
  14081. }
  14082. static void ggml_graph_compute_thread_sync_node(int * node_n, struct ggml_compute_state * state, const bool do_yield) {
  14083. // wait for other threads to finish
  14084. const int last_node_n = * node_n;
  14085. while (true) {
  14086. if (do_yield) {
  14087. sched_yield();
  14088. }
  14089. * node_n = atomic_load(&state->shared->node_n);
  14090. if (* node_n != last_node_n) break;
  14091. }
  14092. }
  14093. static void ggml_graph_compute_thread_sync_task(int * task_phase, struct ggml_compute_state * state, const bool do_yield) {
  14094. // wait for other threads to finish
  14095. const int last_task_phase = * task_phase;
  14096. while (true) {
  14097. if (do_yield) {
  14098. sched_yield();
  14099. }
  14100. * task_phase = atomic_load(&state->shared->node_task);
  14101. if (* task_phase != last_task_phase) break;
  14102. }
  14103. }
  14104. static thread_ret_t ggml_graph_compute_thread(void * data) {
  14105. struct ggml_compute_state * state = (struct ggml_compute_state *) data;
  14106. const struct ggml_cgraph * cgraph = state->shared->cgraph;
  14107. const struct ggml_cplan * cplan = state->shared->cplan;
  14108. const int n_threads = state->shared->n_threads;
  14109. set_numa_thread_affinity(state->ith, n_threads);
  14110. int node_n = -1;
  14111. int task_phase = GGML_TASK_FINALIZE;
  14112. while (true) {
  14113. if (cplan->abort_callback && cplan->abort_callback(cplan->abort_callback_data)) {
  14114. state->shared->node_n += 1;
  14115. return (thread_ret_t) GGML_EXIT_ABORTED;
  14116. }
  14117. if (atomic_fetch_sub(&state->shared->n_active, 1) == 1) {
  14118. // all other threads are finished and spinning
  14119. // do finalize and init here so we don't have synchronize again
  14120. struct ggml_compute_params params = {
  14121. /*.type =*/ GGML_TASK_FINALIZE,
  14122. /*.ith =*/ 0,
  14123. /*.nth =*/ 0,
  14124. /*.wsize =*/ cplan->work_size,
  14125. /*.wdata =*/ cplan->work_data,
  14126. };
  14127. if (node_n != -1) {
  14128. /* FINALIZE */
  14129. struct ggml_tensor * node = cgraph->nodes[node_n];
  14130. if (GGML_OP_HAS_FINALIZE[node->op]) {
  14131. params.nth = ggml_get_n_tasks(node, n_threads);
  14132. ggml_compute_forward(&params, node);
  14133. }
  14134. ggml_graph_compute_perf_stats_node(node, state->shared);
  14135. }
  14136. // distribute new work or execute it direct if 1T
  14137. while (++node_n < cgraph->n_nodes) {
  14138. GGML_PRINT_DEBUG_5("%s: %d/%d\n", __func__, node_n, cgraph->n_nodes);
  14139. struct ggml_tensor * node = cgraph->nodes[node_n];
  14140. const int n_tasks = ggml_get_n_tasks(node, n_threads);
  14141. state->shared->perf_node_start_cycles = ggml_perf_cycles();
  14142. state->shared->perf_node_start_time_us = ggml_perf_time_us();
  14143. params.nth = n_tasks;
  14144. if (n_tasks == 1) {
  14145. /* INIT */
  14146. if (GGML_OP_HAS_INIT[node->op]) {
  14147. params.type = GGML_TASK_INIT;
  14148. ggml_compute_forward(&params, node);
  14149. }
  14150. // TODO: maybe push node_n to the atomic but if other threads see n_tasks is 1,
  14151. // they do something more efficient than spinning (?)
  14152. params.type = GGML_TASK_COMPUTE;
  14153. ggml_compute_forward(&params, node);
  14154. if (GGML_OP_HAS_FINALIZE[node->op]) {
  14155. params.type = GGML_TASK_FINALIZE;
  14156. ggml_compute_forward(&params, node);
  14157. }
  14158. ggml_graph_compute_perf_stats_node(node, state->shared);
  14159. } else {
  14160. break;
  14161. }
  14162. if (cplan->abort_callback && cplan->abort_callback(cplan->abort_callback_data)) {
  14163. break;
  14164. }
  14165. }
  14166. task_phase = GGML_TASK_INIT;
  14167. atomic_store(&state->shared->n_active, n_threads);
  14168. atomic_store(&state->shared->node_n, node_n);
  14169. atomic_store(&state->shared->node_task, task_phase);
  14170. } else {
  14171. ggml_graph_compute_thread_sync_node(&node_n, state, false);
  14172. ggml_graph_compute_thread_sync_task(&task_phase, state, false);
  14173. }
  14174. // check if we should stop
  14175. if (node_n >= cgraph->n_nodes) break;
  14176. /* INIT & COMPUTE */
  14177. struct ggml_tensor * node = cgraph->nodes[node_n];
  14178. const int n_tasks = ggml_get_n_tasks(node, n_threads);
  14179. struct ggml_compute_params params = {
  14180. /*.type =*/ GGML_TASK_INIT,
  14181. /*.ith =*/ state->ith,
  14182. /*.nth =*/ n_tasks,
  14183. /*.wsize =*/ cplan->work_size,
  14184. /*.wdata =*/ cplan->work_data,
  14185. };
  14186. if (state->ith < n_tasks) {
  14187. if (GGML_OP_HAS_INIT[node->op]) {
  14188. ggml_compute_forward(&params, node);
  14189. }
  14190. }
  14191. if (atomic_fetch_sub(&state->shared->n_active, 1) == 1) {
  14192. task_phase = GGML_TASK_COMPUTE;
  14193. atomic_store(&state->shared->n_active, n_threads);
  14194. atomic_store(&state->shared->node_task, task_phase);
  14195. }
  14196. else {
  14197. // TODO: this sched_yield can have significant impact on the performance - either positive or negative
  14198. // depending on the workload and the operating system.
  14199. // since it is not clear what is the best approach, it should potentially become user-configurable
  14200. // ref: https://github.com/ggerganov/ggml/issues/291
  14201. // UPD: adding the do_yield flag seems to resolve the issue universally
  14202. const bool do_yield = node_n < 0 || cgraph->nodes[node_n]->op == GGML_OP_MUL_MAT;
  14203. ggml_graph_compute_thread_sync_task(&task_phase, state, do_yield);
  14204. }
  14205. if (state->ith < n_tasks) {
  14206. params.type = GGML_TASK_COMPUTE;
  14207. ggml_compute_forward(&params, node);
  14208. }
  14209. if (atomic_fetch_sub(&state->shared->n_active, 1) == 1) {
  14210. task_phase = GGML_TASK_FINALIZE;
  14211. atomic_store(&state->shared->n_active, n_threads);
  14212. atomic_store(&state->shared->node_task, task_phase);
  14213. }
  14214. else {
  14215. ggml_graph_compute_thread_sync_task(&task_phase, state, false);
  14216. }
  14217. }
  14218. return GGML_EXIT_SUCCESS;
  14219. }
  14220. struct ggml_cplan ggml_graph_plan(const struct ggml_cgraph * cgraph, int n_threads) {
  14221. if (n_threads <= 0) {
  14222. n_threads = GGML_DEFAULT_N_THREADS;
  14223. }
  14224. size_t work_size = 0;
  14225. struct ggml_cplan cplan;
  14226. memset(&cplan, 0, sizeof(struct ggml_cplan));
  14227. int max_tasks = 1;
  14228. // thread scheduling for the different operations + work buffer size estimation
  14229. for (int i = 0; i < cgraph->n_nodes; i++) {
  14230. struct ggml_tensor * node = cgraph->nodes[i];
  14231. const int n_tasks = ggml_get_n_tasks(node, n_threads);
  14232. max_tasks = MAX(max_tasks, n_tasks);
  14233. size_t cur = 0;
  14234. switch (node->op) {
  14235. case GGML_OP_CPY:
  14236. case GGML_OP_DUP:
  14237. {
  14238. if (ggml_is_quantized(node->type)) {
  14239. cur = ggml_type_size(GGML_TYPE_F32) * node->ne[0] * n_tasks;
  14240. }
  14241. } break;
  14242. case GGML_OP_ADD:
  14243. case GGML_OP_ADD1:
  14244. {
  14245. if (ggml_is_quantized(node->src[0]->type)) {
  14246. cur = ggml_type_size(GGML_TYPE_F32) * node->src[0]->ne[0] * n_tasks;
  14247. }
  14248. } break;
  14249. case GGML_OP_ACC:
  14250. {
  14251. if (ggml_is_quantized(node->src[0]->type)) {
  14252. cur = ggml_type_size(GGML_TYPE_F32) * node->src[1]->ne[0] * n_tasks;
  14253. }
  14254. } break;
  14255. case GGML_OP_MUL_MAT:
  14256. {
  14257. const enum ggml_type vec_dot_type = type_traits[node->src[0]->type].vec_dot_type;
  14258. #if defined(GGML_USE_CLBLAST)
  14259. if (ggml_cl_can_mul_mat(node->src[0], node->src[1], node)) {
  14260. cur = ggml_cl_mul_mat_get_wsize(node->src[0], node->src[1], node);
  14261. } else
  14262. #endif
  14263. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  14264. if (ggml_compute_forward_mul_mat_use_blas(node)) {
  14265. if (node->src[0]->type != GGML_TYPE_F32) {
  14266. // here we need memory for fully dequantized matrix from src0
  14267. // take into account that src0 can be broadcasted into src1[2,3]
  14268. cur = ggml_type_size(GGML_TYPE_F32)
  14269. * node->src[0]->ne[0]*node->src[0]->ne[1]
  14270. * node->src[1]->ne[2]*node->src[1]->ne[3];
  14271. }
  14272. } else
  14273. #endif
  14274. if (node->src[1]->type != vec_dot_type) {
  14275. cur = ggml_row_size(vec_dot_type, ggml_nelements(node->src[1]));
  14276. }
  14277. } break;
  14278. case GGML_OP_MUL_MAT_ID:
  14279. {
  14280. cur = 0;
  14281. const struct ggml_tensor * src0 = node->src[2];
  14282. const struct ggml_tensor * src1 = node->src[1];
  14283. const enum ggml_type vec_dot_type = type_traits[src0->type].vec_dot_type;
  14284. if (src1->type != vec_dot_type) {
  14285. cur += ggml_row_size(vec_dot_type, ggml_nelements(src1));
  14286. }
  14287. const int n_as = ggml_get_op_params_i32(node, 1);
  14288. cur += GGML_PAD(cur, sizeof(int64_t)); // align
  14289. cur += n_as * sizeof(int64_t); // matrix_row_counts
  14290. cur += n_as * src1->ne[1] * sizeof(int64_t); // matrix_rows
  14291. } break;
  14292. case GGML_OP_OUT_PROD:
  14293. {
  14294. if (ggml_is_quantized(node->src[0]->type)) {
  14295. cur = ggml_type_size(GGML_TYPE_F32) * node->src[0]->ne[0] * n_tasks;
  14296. }
  14297. } break;
  14298. case GGML_OP_SOFT_MAX:
  14299. case GGML_OP_ROPE:
  14300. {
  14301. cur = ggml_type_size(GGML_TYPE_F32) * node->ne[0] * n_tasks;
  14302. } break;
  14303. case GGML_OP_CONV_TRANSPOSE_1D:
  14304. {
  14305. GGML_ASSERT(node->src[0]->ne[3] == 1);
  14306. GGML_ASSERT(node->src[1]->ne[2] == 1);
  14307. GGML_ASSERT(node->src[1]->ne[3] == 1);
  14308. const int64_t ne00 = node->src[0]->ne[0]; // K
  14309. const int64_t ne01 = node->src[0]->ne[1]; // Cout
  14310. const int64_t ne02 = node->src[0]->ne[2]; // Cin
  14311. const int64_t ne10 = node->src[1]->ne[0]; // L
  14312. const int64_t ne11 = node->src[1]->ne[1]; // Cin
  14313. if (node->src[0]->type == GGML_TYPE_F16 &&
  14314. node->src[1]->type == GGML_TYPE_F32) {
  14315. cur += sizeof(ggml_fp16_t)*ne00*ne01*ne02;
  14316. cur += sizeof(ggml_fp16_t)*ne10*ne11;
  14317. } else if (node->src[0]->type == GGML_TYPE_F32 &&
  14318. node->src[1]->type == GGML_TYPE_F32) {
  14319. cur += sizeof(float)*ne00*ne01*ne02;
  14320. cur += sizeof(float)*ne10*ne11;
  14321. } else {
  14322. GGML_ASSERT(false);
  14323. }
  14324. } break;
  14325. case GGML_OP_CONV_TRANSPOSE_2D:
  14326. {
  14327. const int64_t ne00 = node->src[0]->ne[0]; // W
  14328. const int64_t ne01 = node->src[0]->ne[1]; // H
  14329. const int64_t ne02 = node->src[0]->ne[2]; // Channels Out
  14330. const int64_t ne03 = node->src[0]->ne[3]; // Channels In
  14331. const int64_t ne10 = node->src[1]->ne[0]; // W
  14332. const int64_t ne11 = node->src[1]->ne[1]; // H
  14333. const int64_t ne12 = node->src[1]->ne[2]; // Channels In
  14334. cur += sizeof(ggml_fp16_t)*ne00*ne01*ne02*ne03;
  14335. cur += sizeof(ggml_fp16_t)*ne10*ne11*ne12;
  14336. } break;
  14337. case GGML_OP_FLASH_ATTN:
  14338. {
  14339. const int64_t ne11 = ggml_up(node->src[1]->ne[1], GGML_SOFT_MAX_UNROLL);
  14340. if (node->src[1]->type == GGML_TYPE_F32) {
  14341. cur = sizeof(float)*ne11*n_tasks; // TODO: this can become (n_tasks-1)
  14342. cur += sizeof(float)*ne11*n_tasks; // this is overestimated by x2
  14343. } else if (node->src[1]->type == GGML_TYPE_F16) {
  14344. cur = sizeof(float)*ne11*n_tasks; // TODO: this can become (n_tasks-1)
  14345. cur += sizeof(float)*ne11*n_tasks; // this is overestimated by x2
  14346. }
  14347. } break;
  14348. case GGML_OP_FLASH_FF:
  14349. {
  14350. if (node->src[1]->type == GGML_TYPE_F32) {
  14351. cur = sizeof(float)*node->src[1]->ne[1]*n_tasks; // TODO: this can become (n_tasks-1)
  14352. cur += sizeof(float)*node->src[1]->ne[1]*n_tasks; // this is overestimated by x2
  14353. } else if (node->src[1]->type == GGML_TYPE_F16) {
  14354. cur = sizeof(float)*node->src[1]->ne[1]*n_tasks; // TODO: this can become (n_tasks-1)
  14355. cur += sizeof(float)*node->src[1]->ne[1]*n_tasks; // this is overestimated by x2
  14356. }
  14357. } break;
  14358. case GGML_OP_FLASH_ATTN_BACK:
  14359. {
  14360. const int64_t D = node->src[0]->ne[0];
  14361. const int64_t ne11 = ggml_up(node->src[1]->ne[1], GGML_SOFT_MAX_UNROLL);
  14362. const int64_t mxDn = MAX(D, ne11) * 2; // *2 because of S and SM in ggml_compute_forward_flash_attn_back
  14363. if (node->src[1]->type == GGML_TYPE_F32) {
  14364. cur = sizeof(float)*mxDn*n_tasks; // TODO: this can become (n_tasks-1)
  14365. cur += sizeof(float)*mxDn*n_tasks; // this is overestimated by x2
  14366. } else if (node->src[1]->type == GGML_TYPE_F16) {
  14367. cur = sizeof(float)*mxDn*n_tasks; // TODO: this can become (n_tasks-1)
  14368. cur += sizeof(float)*mxDn*n_tasks; // this is overestimated by x2
  14369. }
  14370. } break;
  14371. case GGML_OP_CROSS_ENTROPY_LOSS:
  14372. {
  14373. cur = ggml_type_size(node->type)*(n_tasks + node->src[0]->ne[0]*n_tasks);
  14374. } break;
  14375. case GGML_OP_COUNT:
  14376. {
  14377. GGML_ASSERT(false);
  14378. } break;
  14379. default:
  14380. break;
  14381. }
  14382. work_size = MAX(work_size, cur);
  14383. }
  14384. if (work_size > 0) {
  14385. work_size += CACHE_LINE_SIZE*(n_threads - 1);
  14386. }
  14387. cplan.n_threads = MIN(max_tasks, n_threads);
  14388. cplan.work_size = work_size;
  14389. cplan.work_data = NULL;
  14390. return cplan;
  14391. }
  14392. int ggml_graph_compute(struct ggml_cgraph * cgraph, struct ggml_cplan * cplan) {
  14393. {
  14394. GGML_ASSERT(cplan);
  14395. GGML_ASSERT(cplan->n_threads > 0);
  14396. if (cplan->work_size > 0) {
  14397. GGML_ASSERT(cplan->work_data);
  14398. }
  14399. }
  14400. #ifdef GGML_USE_VULKAN
  14401. for (int i = 0; i < cgraph->n_nodes; i++) {
  14402. ggml_vk_preallocate_buffers_graph(cgraph->nodes[i]);
  14403. }
  14404. ggml_vk_preallocate_buffers();
  14405. for (int i = 0; i < cgraph->n_nodes; i++) {
  14406. ggml_vk_build_graph(cgraph->nodes[i], i == cgraph->n_nodes - 1);
  14407. }
  14408. #endif
  14409. const int n_threads = cplan->n_threads;
  14410. struct ggml_compute_state_shared state_shared = {
  14411. /*.cgraph =*/ cgraph,
  14412. /*.cgraph_plan =*/ cplan,
  14413. /*.perf_node_start_cycles =*/ 0,
  14414. /*.perf_node_start_time_us =*/ 0,
  14415. /*.n_threads =*/ n_threads,
  14416. /*.n_active =*/ n_threads,
  14417. /*.node_n =*/ -1,
  14418. /*.node_task =*/ GGML_TASK_FINALIZE,
  14419. /*.abort_callback =*/ NULL,
  14420. /*.abort_callback_data =*/ NULL,
  14421. };
  14422. struct ggml_compute_state * workers = alloca(sizeof(struct ggml_compute_state)*n_threads);
  14423. // create thread pool
  14424. if (n_threads > 1) {
  14425. for (int j = 1; j < n_threads; ++j) {
  14426. workers[j] = (struct ggml_compute_state) {
  14427. .thrd = 0,
  14428. .ith = j,
  14429. .shared = &state_shared,
  14430. };
  14431. const int rc = ggml_thread_create(&workers[j].thrd, NULL, ggml_graph_compute_thread, &workers[j]);
  14432. GGML_ASSERT(rc == 0);
  14433. UNUSED(rc);
  14434. }
  14435. }
  14436. workers[0].ith = 0;
  14437. workers[0].shared = &state_shared;
  14438. const int64_t perf_start_cycles = ggml_perf_cycles();
  14439. const int64_t perf_start_time_us = ggml_perf_time_us();
  14440. // this is a work thread too
  14441. int compute_status = (size_t) ggml_graph_compute_thread(&workers[0]);
  14442. // don't leave affinity set on the main thread
  14443. clear_numa_thread_affinity();
  14444. // join or kill thread pool
  14445. if (n_threads > 1) {
  14446. for (int j = 1; j < n_threads; j++) {
  14447. const int rc = ggml_thread_join(workers[j].thrd, NULL);
  14448. GGML_ASSERT(rc == 0);
  14449. }
  14450. }
  14451. #ifdef GGML_USE_VULKAN
  14452. ggml_vk_graph_cleanup();
  14453. #endif
  14454. // performance stats (graph)
  14455. {
  14456. int64_t perf_cycles_cur = ggml_perf_cycles() - perf_start_cycles;
  14457. int64_t perf_time_us_cur = ggml_perf_time_us() - perf_start_time_us;
  14458. cgraph->perf_runs++;
  14459. cgraph->perf_cycles += perf_cycles_cur;
  14460. cgraph->perf_time_us += perf_time_us_cur;
  14461. GGML_PRINT_DEBUG("%s: perf (%d) - cpu = %.3f / %.3f ms, wall = %.3f / %.3f ms\n",
  14462. __func__, cgraph->perf_runs,
  14463. (double) perf_cycles_cur / (double) ggml_cycles_per_ms(),
  14464. (double) cgraph->perf_cycles / (double) ggml_cycles_per_ms() / (double) cgraph->perf_runs,
  14465. (double) perf_time_us_cur / 1000.0,
  14466. (double) cgraph->perf_time_us / 1000.0 / cgraph->perf_runs);
  14467. }
  14468. return compute_status;
  14469. }
  14470. void ggml_graph_compute_with_ctx(struct ggml_context * ctx, struct ggml_cgraph * cgraph, int n_threads) {
  14471. struct ggml_cplan cplan = ggml_graph_plan(cgraph, n_threads);
  14472. struct ggml_object * obj = ggml_new_object(ctx, GGML_OBJECT_WORK_BUFFER, cplan.work_size);
  14473. cplan.work_data = (uint8_t *)ctx->mem_buffer + obj->offs;
  14474. ggml_graph_compute(cgraph, &cplan);
  14475. }
  14476. struct ggml_tensor * ggml_graph_get_tensor(struct ggml_cgraph * cgraph, const char * name) {
  14477. for (int i = 0; i < cgraph->n_leafs; i++) {
  14478. struct ggml_tensor * leaf = cgraph->leafs[i];
  14479. if (strcmp(leaf->name, name) == 0) {
  14480. return leaf;
  14481. }
  14482. }
  14483. for (int i = 0; i < cgraph->n_nodes; i++) {
  14484. struct ggml_tensor * node = cgraph->nodes[i];
  14485. if (strcmp(node->name, name) == 0) {
  14486. return node;
  14487. }
  14488. }
  14489. return NULL;
  14490. }
  14491. static void ggml_graph_export_leaf(const struct ggml_tensor * tensor, FILE * fout) {
  14492. const int64_t * ne = tensor->ne;
  14493. const size_t * nb = tensor->nb;
  14494. fprintf(fout, "%-6s %-12s %8d %" PRId64 " %" PRId64 " %" PRId64 " %" PRId64 " %16zu %16zu %16zu %16zu %16p %32s\n",
  14495. ggml_type_name(tensor->type),
  14496. ggml_op_name (tensor->op),
  14497. ggml_n_dims(tensor),
  14498. ne[0], ne[1], ne[2], ne[3],
  14499. nb[0], nb[1], nb[2], nb[3],
  14500. tensor->data,
  14501. tensor->name);
  14502. }
  14503. static void ggml_graph_export_node(const struct ggml_tensor * tensor, const char * arg, FILE * fout) {
  14504. const int64_t * ne = tensor->ne;
  14505. const size_t * nb = tensor->nb;
  14506. fprintf(fout, "%-6s %-6s %-12s %8d %" PRId64 " %" PRId64 " %" PRId64 " %" PRId64 " %16zu %16zu %16zu %16zu %16p %32s\n",
  14507. arg,
  14508. ggml_type_name(tensor->type),
  14509. ggml_op_name (tensor->op),
  14510. ggml_n_dims(tensor),
  14511. ne[0], ne[1], ne[2], ne[3],
  14512. nb[0], nb[1], nb[2], nb[3],
  14513. tensor->data,
  14514. tensor->name);
  14515. }
  14516. void ggml_graph_export(const struct ggml_cgraph * cgraph, const char * fname) {
  14517. uint64_t size_eval = 0;
  14518. // compute size of intermediate results
  14519. // TODO: does not take into account scratch buffers !!!!
  14520. for (int i = 0; i < cgraph->n_nodes; ++i) {
  14521. size_eval += ggml_nbytes_pad(cgraph->nodes[i]);
  14522. }
  14523. // print
  14524. {
  14525. FILE * fout = stdout;
  14526. fprintf(fout, "\n");
  14527. fprintf(fout, "%-16s %8x\n", "magic", GGML_FILE_MAGIC);
  14528. fprintf(fout, "%-16s %8d\n", "version", GGML_FILE_VERSION);
  14529. fprintf(fout, "%-16s %8d\n", "leafs", cgraph->n_leafs);
  14530. fprintf(fout, "%-16s %8d\n", "nodes", cgraph->n_nodes);
  14531. fprintf(fout, "%-16s %" PRIu64 "\n", "eval", size_eval);
  14532. // header
  14533. fprintf(fout, "\n");
  14534. fprintf(fout, "%-6s %-12s %8s %8s %8s %8s %8s %16s %16s %16s %16s %16s %16s\n",
  14535. "TYPE", "OP", "NDIMS", "NE0", "NE1", "NE2", "NE3", "NB0", "NB1", "NB2", "NB3", "DATA", "NAME");
  14536. for (int i = 0; i < cgraph->n_leafs; ++i) {
  14537. ggml_graph_export_leaf(cgraph->leafs[i], fout);
  14538. GGML_ASSERT(cgraph->leafs[i]->op == GGML_OP_NONE);
  14539. GGML_ASSERT(cgraph->leafs[i]->src[0] == NULL);
  14540. GGML_ASSERT(cgraph->leafs[i]->src[1] == NULL);
  14541. }
  14542. // header
  14543. fprintf(fout, "\n");
  14544. fprintf(fout, "%-6s %-6s %-12s %8s %8s %8s %8s %8s %16s %16s %16s %16s %8s %16s %16s\n",
  14545. "ARG", "TYPE", "OP", "NDIMS", "NE0", "NE1", "NE2", "NE3", "NB0", "NB1", "NB2", "NB3", "NTASKS", "DATA", "NAME");
  14546. for (int i = 0; i < cgraph->n_nodes; ++i) {
  14547. ggml_graph_export_node(cgraph->nodes[i], "DST", fout);
  14548. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  14549. if (cgraph->nodes[i]->src[j]) {
  14550. ggml_graph_export_node(cgraph->nodes[i]->src[j], "SRC", fout);
  14551. }
  14552. }
  14553. fprintf(fout, "\n");
  14554. }
  14555. fprintf(fout, "\n");
  14556. }
  14557. // write binary data
  14558. {
  14559. FILE * fout = fopen(fname, "wb");
  14560. if (!fout) {
  14561. fprintf(stderr, "%s: failed to open %s\n", __func__, fname);
  14562. return;
  14563. }
  14564. // header
  14565. {
  14566. const uint32_t magic = GGML_FILE_MAGIC;
  14567. const uint32_t version = GGML_FILE_VERSION;
  14568. const uint32_t n_leafs = cgraph->n_leafs;
  14569. const uint32_t n_nodes = cgraph->n_nodes;
  14570. fwrite(&magic, sizeof(uint32_t), 1, fout);
  14571. fwrite(&version, sizeof(uint32_t), 1, fout);
  14572. fwrite(&n_leafs, sizeof(uint32_t), 1, fout);
  14573. fwrite(&n_nodes, sizeof(uint32_t), 1, fout);
  14574. fwrite(&size_eval, sizeof(uint64_t), 1, fout);
  14575. }
  14576. // leafs
  14577. {
  14578. for (int i = 0; i < cgraph->n_leafs; ++i) {
  14579. const struct ggml_tensor * tensor = cgraph->leafs[i];
  14580. const uint32_t type = tensor->type;
  14581. const uint32_t op = tensor->op;
  14582. fwrite(&type, sizeof(uint32_t), 1, fout);
  14583. fwrite(&op, sizeof(uint32_t), 1, fout);
  14584. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  14585. const uint64_t ne = tensor->ne[j];
  14586. const uint64_t nb = tensor->nb[j];
  14587. fwrite(&ne, sizeof(uint64_t), 1, fout);
  14588. fwrite(&nb, sizeof(uint64_t), 1, fout);
  14589. }
  14590. fwrite(tensor->name, sizeof(char), GGML_MAX_NAME, fout);
  14591. fwrite(tensor->op_params, sizeof(char), GGML_MAX_OP_PARAMS, fout);
  14592. // dump the data
  14593. // TODO: pad this to 32 byte boundary
  14594. {
  14595. const size_t size = ggml_nbytes(tensor);
  14596. fwrite(tensor->data, sizeof(char), size, fout);
  14597. }
  14598. }
  14599. }
  14600. // nodes
  14601. {
  14602. for (int i = 0; i < cgraph->n_nodes; ++i) {
  14603. const struct ggml_tensor * tensor = cgraph->nodes[i];
  14604. const uint32_t type = tensor->type;
  14605. const uint32_t op = tensor->op;
  14606. fwrite(&type, sizeof(uint32_t), 1, fout);
  14607. fwrite(&op, sizeof(uint32_t), 1, fout);
  14608. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  14609. const uint64_t ne = tensor->ne[j];
  14610. const uint64_t nb = tensor->nb[j];
  14611. fwrite(&ne, sizeof(uint64_t), 1, fout);
  14612. fwrite(&nb, sizeof(uint64_t), 1, fout);
  14613. }
  14614. fwrite(tensor->name, sizeof(char), GGML_MAX_NAME, fout);
  14615. fwrite(tensor->op_params, sizeof(char), GGML_MAX_OP_PARAMS, fout);
  14616. // output the op arguments
  14617. {
  14618. struct ggml_tensor * args[GGML_MAX_SRC] = { NULL };
  14619. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  14620. args[j] = tensor->src[j];
  14621. }
  14622. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  14623. if (args[j]) {
  14624. int32_t idx = -1;
  14625. // check if leaf
  14626. {
  14627. for (int k = 0; k < cgraph->n_leafs; ++k) {
  14628. if (args[j] == cgraph->leafs[k]) {
  14629. idx = k;
  14630. break;
  14631. }
  14632. }
  14633. }
  14634. // check if node
  14635. if (idx == -1) {
  14636. for (int k = 0; k < cgraph->n_nodes; ++k) {
  14637. if (args[j] == cgraph->nodes[k]) {
  14638. idx = cgraph->n_leafs + k;
  14639. break;
  14640. }
  14641. }
  14642. }
  14643. if (idx == -1) {
  14644. fprintf(stderr, "%s: failed to find tensor, arg = %d, node = %d\n", __func__, j, i);
  14645. fclose(fout);
  14646. return;
  14647. }
  14648. fwrite(&idx, sizeof(int32_t), 1, fout);
  14649. } else {
  14650. const int32_t nul = -1;
  14651. fwrite(&nul, sizeof(int32_t), 1, fout);
  14652. }
  14653. }
  14654. }
  14655. }
  14656. }
  14657. fclose(fout);
  14658. }
  14659. }
  14660. struct ggml_cgraph * ggml_graph_import(const char * fname, struct ggml_context ** ctx_data, struct ggml_context ** ctx_eval) {
  14661. assert(*ctx_data == NULL);
  14662. assert(*ctx_eval == NULL);
  14663. struct ggml_cgraph * result = NULL;
  14664. struct ggml_tensor * data = NULL;
  14665. // read file into data
  14666. {
  14667. FILE * fin = fopen(fname, "rb");
  14668. if (!fin) {
  14669. fprintf(stderr, "%s: failed to open %s\n", __func__, fname);
  14670. return result;
  14671. }
  14672. size_t fsize = 0;
  14673. fseek(fin, 0, SEEK_END);
  14674. fsize = ftell(fin);
  14675. fseek(fin, 0, SEEK_SET);
  14676. // create the data context
  14677. {
  14678. const size_t overhead = 1*ggml_tensor_overhead();
  14679. struct ggml_init_params params = {
  14680. .mem_size = fsize + overhead,
  14681. .mem_buffer = NULL,
  14682. .no_alloc = false,
  14683. };
  14684. *ctx_data = ggml_init(params);
  14685. if (!*ctx_data) {
  14686. fprintf(stderr, "%s: failed to create ggml context\n", __func__);
  14687. fclose(fin);
  14688. return result;
  14689. }
  14690. }
  14691. data = ggml_new_tensor_1d(*ctx_data, GGML_TYPE_I8, fsize);
  14692. {
  14693. const size_t ret = fread(data->data, sizeof(char), fsize, fin);
  14694. if (ret != fsize) {
  14695. fprintf(stderr, "%s: failed to read %s\n", __func__, fname);
  14696. fclose(fin);
  14697. return result;
  14698. }
  14699. }
  14700. fclose(fin);
  14701. }
  14702. // populate result
  14703. {
  14704. char * ptr = (char *) data->data;
  14705. const uint32_t magic = *(const uint32_t *) ptr; ptr += sizeof(magic);
  14706. if (magic != GGML_FILE_MAGIC) {
  14707. fprintf(stderr, "%s: invalid magic number, got %08x\n", __func__, magic);
  14708. return result;
  14709. }
  14710. const uint32_t version = *(const uint32_t *) ptr; ptr += sizeof(version);
  14711. if (version != GGML_FILE_VERSION) {
  14712. fprintf(stderr, "%s: invalid version number\n", __func__);
  14713. return result;
  14714. }
  14715. const uint32_t n_leafs = *(const uint32_t *) ptr; ptr += sizeof(n_leafs);
  14716. const uint32_t n_nodes = *(const uint32_t *) ptr; ptr += sizeof(n_nodes);
  14717. const uint64_t size_eval = *(const uint64_t *) ptr; ptr += sizeof(size_eval);
  14718. const int graph_size = MAX(n_leafs, n_nodes);
  14719. // create the data context
  14720. {
  14721. const size_t overhead = (n_leafs + n_nodes)*ggml_tensor_overhead() + ggml_graph_overhead_custom(graph_size, false);
  14722. struct ggml_init_params params = {
  14723. .mem_size = size_eval + overhead,
  14724. .mem_buffer = NULL,
  14725. .no_alloc = true,
  14726. };
  14727. *ctx_eval = ggml_init(params);
  14728. if (!*ctx_eval) {
  14729. fprintf(stderr, "%s: failed to create ggml context\n", __func__);
  14730. return result;
  14731. }
  14732. }
  14733. result = ggml_new_graph_custom(*ctx_eval, graph_size, false);
  14734. result->n_leafs = n_leafs;
  14735. result->n_nodes = n_nodes;
  14736. // leafs
  14737. {
  14738. uint32_t type;
  14739. uint32_t op;
  14740. for (uint32_t i = 0; i < n_leafs; ++i) {
  14741. type = *(const uint32_t *) ptr; ptr += sizeof(type);
  14742. op = *(const uint32_t *) ptr; ptr += sizeof(op);
  14743. int64_t ne[GGML_MAX_DIMS];
  14744. size_t nb[GGML_MAX_DIMS];
  14745. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  14746. uint64_t ne_cur;
  14747. uint64_t nb_cur;
  14748. ne_cur = *(const uint64_t *) ptr; ptr += sizeof(ne_cur);
  14749. nb_cur = *(const uint64_t *) ptr; ptr += sizeof(nb_cur);
  14750. ne[j] = ne_cur;
  14751. nb[j] = nb_cur;
  14752. }
  14753. struct ggml_tensor * tensor = ggml_new_tensor(*ctx_eval, (enum ggml_type) type, GGML_MAX_DIMS, ne);
  14754. tensor->op = (enum ggml_op) op;
  14755. memcpy(tensor->name, ptr, GGML_MAX_NAME); ptr += GGML_MAX_NAME;
  14756. memcpy(tensor->op_params, ptr, GGML_MAX_OP_PARAMS); ptr += GGML_MAX_OP_PARAMS;
  14757. tensor->data = (void *) ptr;
  14758. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  14759. tensor->nb[j] = nb[j];
  14760. }
  14761. result->leafs[i] = tensor;
  14762. ptr += ggml_nbytes(tensor);
  14763. fprintf(stderr, "%s: loaded leaf %d: '%16s', %9zu bytes\n", __func__, i, tensor->name, ggml_nbytes(tensor));
  14764. }
  14765. }
  14766. ggml_set_no_alloc(*ctx_eval, false);
  14767. // nodes
  14768. {
  14769. uint32_t type;
  14770. uint32_t op;
  14771. for (uint32_t i = 0; i < n_nodes; ++i) {
  14772. type = *(const uint32_t *) ptr; ptr += sizeof(type);
  14773. op = *(const uint32_t *) ptr; ptr += sizeof(op);
  14774. enum ggml_op eop = (enum ggml_op) op;
  14775. int64_t ne[GGML_MAX_DIMS];
  14776. size_t nb[GGML_MAX_DIMS];
  14777. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  14778. uint64_t ne_cur;
  14779. uint64_t nb_cur;
  14780. ne_cur = *(const uint64_t *) ptr; ptr += sizeof(ne_cur);
  14781. nb_cur = *(const uint64_t *) ptr; ptr += sizeof(nb_cur);
  14782. ne[j] = ne_cur;
  14783. nb[j] = nb_cur;
  14784. }
  14785. const char * ptr_name = ptr; ptr += GGML_MAX_NAME;
  14786. const char * ptr_op_params = ptr; ptr += GGML_MAX_OP_PARAMS;
  14787. const int32_t * ptr_arg_idx = (const int32_t *) ptr; ptr += GGML_MAX_SRC*sizeof(int32_t);
  14788. struct ggml_tensor * args[GGML_MAX_SRC] = { NULL };
  14789. // parse args
  14790. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  14791. const int32_t arg_idx = ptr_arg_idx[j];
  14792. if (arg_idx == -1) {
  14793. continue;
  14794. }
  14795. if (arg_idx < result->n_leafs) {
  14796. args[j] = result->leafs[arg_idx];
  14797. } else {
  14798. args[j] = result->nodes[arg_idx - result->n_leafs];
  14799. }
  14800. }
  14801. // create the tensor
  14802. // "view" operations are handled differently
  14803. // TODO: handle inplace ops - currently a copy is always made
  14804. struct ggml_tensor * tensor = NULL;
  14805. switch (eop) {
  14806. // TODO: implement other view ops
  14807. case GGML_OP_RESHAPE:
  14808. {
  14809. tensor = ggml_reshape_4d(*ctx_eval, args[0], ne[0], ne[1], ne[2], ne[3]);
  14810. } break;
  14811. case GGML_OP_VIEW:
  14812. {
  14813. tensor = ggml_view_4d(*ctx_eval, args[0], ne[0], ne[1], ne[2], ne[3], 0, 0, 0, 0);
  14814. size_t offs;
  14815. memcpy(&offs, ptr_op_params, sizeof(offs));
  14816. tensor->data = ((char *) tensor->data) + offs;
  14817. } break;
  14818. case GGML_OP_TRANSPOSE:
  14819. {
  14820. tensor = ggml_transpose(*ctx_eval, args[0]);
  14821. } break;
  14822. case GGML_OP_PERMUTE:
  14823. {
  14824. tensor = ggml_view_4d(*ctx_eval, args[0], ne[0], ne[1], ne[2], ne[3], 0, 0, 0, 0);
  14825. } break;
  14826. default:
  14827. {
  14828. tensor = ggml_new_tensor(*ctx_eval, (enum ggml_type) type, GGML_MAX_DIMS, ne);
  14829. tensor->op = eop;
  14830. } break;
  14831. }
  14832. memcpy(tensor->name, ptr_name, GGML_MAX_NAME);
  14833. memcpy(tensor->op_params, ptr_op_params, GGML_MAX_OP_PARAMS);
  14834. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  14835. tensor->nb[j] = nb[j];
  14836. }
  14837. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  14838. tensor->src[j] = args[j];
  14839. }
  14840. result->nodes[i] = tensor;
  14841. fprintf(stderr, "%s: loaded node %d: '%16s', %9zu bytes\n", __func__, i, tensor->name, ggml_nbytes(tensor));
  14842. }
  14843. }
  14844. }
  14845. return result;
  14846. }
  14847. void ggml_graph_print(const struct ggml_cgraph * cgraph) {
  14848. int64_t perf_total_per_op_us[GGML_OP_COUNT] = {0};
  14849. GGML_PRINT("=== GRAPH ===\n");
  14850. GGML_PRINT("n_nodes = %d\n", cgraph->n_nodes);
  14851. for (int i = 0; i < cgraph->n_nodes; i++) {
  14852. struct ggml_tensor * node = cgraph->nodes[i];
  14853. perf_total_per_op_us[node->op] += MAX(1, node->perf_time_us);
  14854. GGML_PRINT(" - %3d: [ %5" PRId64 ", %5" PRId64 ", %5" PRId64 "] %16s %s (%3d) cpu = %7.3f / %7.3f ms, wall = %7.3f / %7.3f ms\n",
  14855. i,
  14856. node->ne[0], node->ne[1], node->ne[2],
  14857. ggml_op_name(node->op), node->is_param ? "x" : node->grad ? "g" : " ", node->perf_runs,
  14858. (double) node->perf_cycles / (double) ggml_cycles_per_ms(),
  14859. (double) node->perf_cycles / (double) ggml_cycles_per_ms() / (double) node->perf_runs,
  14860. (double) node->perf_time_us / 1000.0,
  14861. (double) node->perf_time_us / 1000.0 / node->perf_runs);
  14862. }
  14863. GGML_PRINT("n_leafs = %d\n", cgraph->n_leafs);
  14864. for (int i = 0; i < cgraph->n_leafs; i++) {
  14865. struct ggml_tensor * node = cgraph->leafs[i];
  14866. GGML_PRINT(" - %3d: [ %5" PRId64 ", %5" PRId64 "] %8s %16s\n",
  14867. i,
  14868. node->ne[0], node->ne[1],
  14869. ggml_op_name(node->op),
  14870. ggml_get_name(node));
  14871. }
  14872. for (int i = 0; i < GGML_OP_COUNT; i++) {
  14873. if (perf_total_per_op_us[i] == 0) {
  14874. continue;
  14875. }
  14876. GGML_PRINT("perf_total_per_op_us[%16s] = %7.3f ms\n", ggml_op_name(i), (double) perf_total_per_op_us[i] / 1000.0);
  14877. }
  14878. GGML_PRINT("========================================\n");
  14879. }
  14880. // check if node is part of the graph
  14881. static bool ggml_graph_find(const struct ggml_cgraph * cgraph, const struct ggml_tensor * node) {
  14882. if (cgraph == NULL) {
  14883. return true;
  14884. }
  14885. for (int i = 0; i < cgraph->n_nodes; i++) {
  14886. if (cgraph->nodes[i] == node) {
  14887. return true;
  14888. }
  14889. }
  14890. return false;
  14891. }
  14892. static struct ggml_tensor * ggml_graph_get_parent(const struct ggml_cgraph * cgraph, const struct ggml_tensor * node) {
  14893. for (int i = 0; i < cgraph->n_nodes; i++) {
  14894. struct ggml_tensor * parent = cgraph->nodes[i];
  14895. if (parent->grad == node) {
  14896. return parent;
  14897. }
  14898. }
  14899. return NULL;
  14900. }
  14901. static void ggml_graph_dump_dot_node_edge(FILE * fp, const struct ggml_cgraph * gb, struct ggml_tensor * node, struct ggml_tensor * parent, const char * label) {
  14902. struct ggml_tensor * gparent = ggml_graph_get_parent(gb, node);
  14903. struct ggml_tensor * gparent0 = ggml_graph_get_parent(gb, parent);
  14904. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ arrowhead = %s; style = %s; label = \"%s\"; ]\n",
  14905. gparent0 ? (void *) gparent0 : (void *) parent,
  14906. gparent0 ? "g" : "x",
  14907. gparent ? (void *) gparent : (void *) node,
  14908. gparent ? "g" : "x",
  14909. gparent ? "empty" : "vee",
  14910. gparent ? "dashed" : "solid",
  14911. label);
  14912. }
  14913. static void ggml_graph_dump_dot_leaf_edge(FILE * fp, struct ggml_tensor * node, struct ggml_tensor * parent, const char * label) {
  14914. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ label = \"%s\"; ]\n",
  14915. (void *) parent, "x",
  14916. (void *) node, "x",
  14917. label);
  14918. }
  14919. void ggml_graph_dump_dot(const struct ggml_cgraph * gb, const struct ggml_cgraph * gf, const char * filename) {
  14920. char color[16];
  14921. FILE * fp = fopen(filename, "w");
  14922. GGML_ASSERT(fp);
  14923. fprintf(fp, "digraph G {\n");
  14924. fprintf(fp, " newrank = true;\n");
  14925. fprintf(fp, " rankdir = LR;\n");
  14926. for (int i = 0; i < gb->n_nodes; i++) {
  14927. struct ggml_tensor * node = gb->nodes[i];
  14928. if (ggml_graph_get_parent(gb, node) != NULL) {
  14929. continue;
  14930. }
  14931. if (node->is_param) {
  14932. snprintf(color, sizeof(color), "yellow");
  14933. } else if (node->grad) {
  14934. if (ggml_graph_find(gf, node)) {
  14935. snprintf(color, sizeof(color), "green");
  14936. } else {
  14937. snprintf(color, sizeof(color), "lightblue");
  14938. }
  14939. } else {
  14940. snprintf(color, sizeof(color), "white");
  14941. }
  14942. fprintf(fp, " \"%p\" [ "
  14943. "style = filled; fillcolor = %s; shape = record; "
  14944. "label=\"",
  14945. (void *) node, color);
  14946. if (strlen(node->name) > 0) {
  14947. fprintf(fp, "%s (%s)|", node->name, ggml_type_name(node->type));
  14948. } else {
  14949. fprintf(fp, "(%s)|", ggml_type_name(node->type));
  14950. }
  14951. if (ggml_is_matrix(node)) {
  14952. fprintf(fp, "%d [%" PRId64 ", %" PRId64 "] | <x>%s", i, node->ne[0], node->ne[1], ggml_op_symbol(node->op));
  14953. } else {
  14954. fprintf(fp, "%d [%" PRId64 ", %" PRId64 ", %" PRId64 "] | <x>%s", i, node->ne[0], node->ne[1], node->ne[2], ggml_op_symbol(node->op));
  14955. }
  14956. if (node->grad) {
  14957. fprintf(fp, " | <g>%s\"; ]\n", ggml_op_symbol(node->grad->op));
  14958. } else {
  14959. fprintf(fp, "\"; ]\n");
  14960. }
  14961. }
  14962. for (int i = 0; i < gb->n_leafs; i++) {
  14963. struct ggml_tensor * node = gb->leafs[i];
  14964. snprintf(color, sizeof(color), "pink");
  14965. fprintf(fp, " \"%p\" [ "
  14966. "style = filled; fillcolor = %s; shape = record; "
  14967. "label=\"<x>",
  14968. (void *) node, color);
  14969. if (strlen(node->name) > 0) {
  14970. fprintf(fp, "%s (%s)|", node->name, ggml_type_name(node->type));
  14971. } else {
  14972. fprintf(fp, "(%s)|", ggml_type_name(node->type));
  14973. }
  14974. fprintf(fp, "CONST %d [%" PRId64 ", %" PRId64 "]", i, node->ne[0], node->ne[1]);
  14975. if (ggml_nelements(node) < 5) {
  14976. fprintf(fp, " | (");
  14977. for (int j = 0; j < ggml_nelements(node); j++) {
  14978. if (node->type == GGML_TYPE_I8 || node->type == GGML_TYPE_I16 || node->type == GGML_TYPE_I32) {
  14979. fprintf(fp, "%d", ggml_get_i32_1d(node, j));
  14980. }
  14981. else if (node->type == GGML_TYPE_F32 || node->type == GGML_TYPE_F16) {
  14982. fprintf(fp, "%.1e", (double)ggml_get_f32_1d(node, j));
  14983. }
  14984. else {
  14985. fprintf(fp, "#");
  14986. }
  14987. if (j < ggml_nelements(node) - 1) {
  14988. fprintf(fp, ", ");
  14989. }
  14990. }
  14991. fprintf(fp, ")");
  14992. }
  14993. fprintf(fp, "\"; ]\n");
  14994. }
  14995. for (int i = 0; i < gb->n_nodes; i++) {
  14996. struct ggml_tensor * node = gb->nodes[i];
  14997. for (int j = 0; j < GGML_MAX_SRC; j++) {
  14998. if (node->src[j]) {
  14999. char label[16];
  15000. snprintf(label, sizeof(label), "src %d", j);
  15001. ggml_graph_dump_dot_node_edge(fp, gb, node, node->src[j], label);
  15002. }
  15003. }
  15004. }
  15005. for (int i = 0; i < gb->n_leafs; i++) {
  15006. struct ggml_tensor * node = gb->leafs[i];
  15007. for (int j = 0; j < GGML_MAX_SRC; j++) {
  15008. if (node->src[j]) {
  15009. char label[16];
  15010. snprintf(label, sizeof(label), "src %d", j);
  15011. ggml_graph_dump_dot_leaf_edge(fp, node, node->src[j], label);
  15012. }
  15013. }
  15014. }
  15015. fprintf(fp, "}\n");
  15016. fclose(fp);
  15017. GGML_PRINT("%s: dot -Tpng %s -o %s.png && open %s.png\n", __func__, filename, filename, filename);
  15018. }
  15019. ////////////////////////////////////////////////////////////////////////////////
  15020. static void ggml_opt_set_params(int np, struct ggml_tensor * const ps[], const float * x) {
  15021. int i = 0;
  15022. for (int p = 0; p < np; ++p) {
  15023. const int64_t ne = ggml_nelements(ps[p]) ;
  15024. // TODO: add function to set tensor from array
  15025. for (int64_t j = 0; j < ne; ++j) {
  15026. ggml_set_f32_1d(ps[p], j, x[i++]);
  15027. }
  15028. }
  15029. }
  15030. static void ggml_opt_get_params(int np, struct ggml_tensor * const ps[], float * x) {
  15031. int i = 0;
  15032. for (int p = 0; p < np; ++p) {
  15033. const int64_t ne = ggml_nelements(ps[p]) ;
  15034. // TODO: add function to get all elements at once
  15035. for (int64_t j = 0; j < ne; ++j) {
  15036. x[i++] = ggml_get_f32_1d(ps[p], j);
  15037. }
  15038. }
  15039. }
  15040. static void ggml_opt_get_grad(int np, struct ggml_tensor * const ps[], float * g) {
  15041. int64_t i = 0;
  15042. for (int p = 0; p < np; ++p) {
  15043. const int64_t ne = ggml_nelements(ps[p]) ;
  15044. // TODO: add function to get all elements at once
  15045. for (int64_t j = 0; j < ne; ++j) {
  15046. g[i++] = ggml_get_f32_1d(ps[p]->grad, j);
  15047. }
  15048. }
  15049. }
  15050. static void ggml_opt_acc_grad(int np, struct ggml_tensor * const ps[], float * g, float scale) {
  15051. int64_t i = 0;
  15052. for (int p = 0; p < np; ++p) {
  15053. const int64_t ne = ggml_nelements(ps[p]) ;
  15054. // TODO: add function to get all elements at once
  15055. for (int64_t j = 0; j < ne; ++j) {
  15056. g[i++] += ggml_get_f32_1d(ps[p]->grad, j) * scale;
  15057. }
  15058. }
  15059. }
  15060. //
  15061. // Using AdamW - ref: https://arxiv.org/pdf/1711.05101v3.pdf
  15062. //
  15063. // (Original Adam - ref: https://arxiv.org/pdf/1412.6980.pdf)
  15064. //
  15065. static enum ggml_opt_result ggml_opt_adam(
  15066. struct ggml_context * ctx,
  15067. struct ggml_opt_context * opt,
  15068. struct ggml_opt_params params,
  15069. struct ggml_tensor * f,
  15070. struct ggml_cgraph * gf,
  15071. struct ggml_cgraph * gb,
  15072. ggml_opt_callback callback,
  15073. void * callback_data) {
  15074. GGML_ASSERT(ggml_is_scalar(f));
  15075. // these will store the parameters we want to optimize
  15076. struct ggml_tensor * ps[GGML_MAX_PARAMS];
  15077. int np = 0;
  15078. int64_t nx = 0;
  15079. for (int i = 0; i < gf->n_nodes; ++i) {
  15080. if (gf->nodes[i]->is_param) {
  15081. GGML_PRINT_DEBUG("found param %d: grad->op = %d\n", np, gf->nodes[i]->grad->op);
  15082. GGML_ASSERT(np < GGML_MAX_PARAMS);
  15083. ps[np++] = gf->nodes[i];
  15084. nx += ggml_nelements(gf->nodes[i]);
  15085. }
  15086. }
  15087. if ((opt->params.type != params.type) || (opt->nx != nx) || (opt->params.past != params.past)) {
  15088. int iter = opt->iter;
  15089. ggml_opt_init(opt->ctx, opt, params, nx);
  15090. opt->iter = iter;
  15091. }
  15092. // constants
  15093. float sched = params.adam.sched;
  15094. const float alpha = params.adam.alpha;
  15095. const float decay = params.adam.decay * alpha;
  15096. const float beta1 = params.adam.beta1;
  15097. const float beta2 = params.adam.beta2;
  15098. const float eps = params.adam.eps;
  15099. const float gclip = params.adam.gclip;
  15100. const int decay_min_ndim = params.adam.decay_min_ndim;
  15101. const int n_accum = MAX(1, params.n_gradient_accumulation);
  15102. const float accum_norm = 1.0f / (float) n_accum;
  15103. float * g = opt->adam.g->data; // gradients
  15104. float * m = opt->adam.m->data; // first moment
  15105. float * v = opt->adam.v->data; // second moment
  15106. float * pf = params.past > 0 ? opt->adam.pf->data : NULL; // past function values
  15107. struct ggml_cplan cplan = ggml_graph_plan(gb, params.n_threads);
  15108. struct ggml_object * obj = ggml_new_object(ctx, GGML_OBJECT_WORK_BUFFER, cplan.work_size);
  15109. cplan.work_data = (uint8_t *)ctx->mem_buffer + obj->offs;
  15110. bool cancel = false;
  15111. // compute the function value
  15112. float fx = 0;
  15113. ggml_set_zero(opt->adam.g);
  15114. for (int accum_step = 0; accum_step < n_accum; ++accum_step) {
  15115. if (callback) {
  15116. callback(callback_data, accum_step, &sched, &cancel);
  15117. if (cancel) {
  15118. return GGML_OPT_CANCEL;
  15119. }
  15120. }
  15121. // ggml_graph_reset (gf);
  15122. ggml_set_f32 (f->grad, 1.0f);
  15123. ggml_graph_compute(gb, &cplan);
  15124. ggml_opt_acc_grad(np, ps, g, accum_norm);
  15125. fx += ggml_get_f32_1d(f, 0);
  15126. }
  15127. fx *= accum_norm;
  15128. opt->adam.fx_prev = fx;
  15129. opt->adam.fx_best = opt->adam.fx_prev;
  15130. if (pf) {
  15131. pf[opt->iter % params.past] = opt->adam.fx_prev;
  15132. }
  15133. opt->loss_before = opt->adam.fx_prev;
  15134. opt->loss_after = opt->adam.fx_prev;
  15135. // initialize
  15136. if (opt->just_initialized) {
  15137. opt->adam.n_no_improvement = 0;
  15138. opt->just_initialized = false;
  15139. }
  15140. float * fx_best = &opt->adam.fx_best;
  15141. float * fx_prev = &opt->adam.fx_prev;
  15142. int * n_no_improvement = &opt->adam.n_no_improvement;
  15143. int iter0 = opt->iter;
  15144. // run the optimizer
  15145. for (int t = 0; t < params.adam.n_iter; ++t) {
  15146. opt->iter = iter0 + t + 1;
  15147. GGML_PRINT_DEBUG ("=== iter %d ===\n", t);
  15148. GGML_PRINT_DEBUG ("f = %10.6f\n", ggml_get_f32_1d(f, 0));
  15149. GGML_PRINT_DEBUG_5("df/dx0 = %10.6f\n", ggml_get_f32_1d(ps[0]->grad, 0));
  15150. GGML_PRINT_DEBUG_5("df/dx1 = %10.6f\n", ggml_get_f32_1d(ps[1]->grad, 0));
  15151. for (int i = 0; i < np; ++i) {
  15152. GGML_PRINT_DEBUG("param %d: %10.6f, g = %10.6f\n", i,
  15153. ggml_get_f32_1d(ps[i], 0), ggml_get_f32_1d(ps[i]->grad, 0));
  15154. }
  15155. const int64_t t_start_wall = ggml_time_us();
  15156. const int64_t t_start_cpu = ggml_cycles();
  15157. UNUSED(t_start_wall);
  15158. UNUSED(t_start_cpu);
  15159. {
  15160. float gnorm = 1.0f;
  15161. if (gclip > 0.0f) {
  15162. // gradient clipping
  15163. ggml_float sum = 0.0;
  15164. for (int64_t i = 0; i < nx; ++i) {
  15165. sum += (ggml_float)(g[i]*g[i]);
  15166. }
  15167. ggml_float norm = sqrt(sum);
  15168. if (norm > (ggml_float) gclip) {
  15169. gnorm = (float) ((ggml_float) gclip / norm);
  15170. }
  15171. }
  15172. const float beta1h = alpha*sched/(1.0f - powf(beta1, opt->iter));
  15173. const float beta2h = 1.0f/(1.0f - powf(beta2, opt->iter));
  15174. int64_t i = 0;
  15175. for (int p = 0; p < np; ++p) {
  15176. const int64_t ne = ggml_nelements(ps[p]);
  15177. const float p_decay = ((ggml_n_dims(ps[p]) >= decay_min_ndim) ? decay : 0.0f) * sched;
  15178. for (int64_t j = 0; j < ne; ++j) {
  15179. float x = ggml_get_f32_1d(ps[p], j);
  15180. float g_ = g[i]*gnorm;
  15181. m[i] = m[i]*beta1 + g_*(1.0f - beta1);
  15182. v[i] = v[i]*beta2 + g_*g_*(1.0f - beta2);
  15183. float mh = m[i]*beta1h;
  15184. float vh = v[i]*beta2h;
  15185. vh = sqrtf(vh) + eps;
  15186. x = x*(1.0f - p_decay) - mh/vh;
  15187. ggml_set_f32_1d(ps[p], j, x);
  15188. ++i;
  15189. }
  15190. }
  15191. }
  15192. fx = 0;
  15193. ggml_set_zero(opt->adam.g);
  15194. for (int accum_step = 0; accum_step < n_accum; ++accum_step) {
  15195. if (callback) {
  15196. callback(callback_data, accum_step, &sched, &cancel);
  15197. if (cancel) {
  15198. return GGML_OPT_CANCEL;;
  15199. }
  15200. }
  15201. // ggml_graph_reset (gf);
  15202. ggml_set_f32 (f->grad, 1.0f);
  15203. ggml_graph_compute(gb, &cplan);
  15204. ggml_opt_acc_grad(np, ps, g, accum_norm);
  15205. fx += ggml_get_f32_1d(f, 0);
  15206. }
  15207. fx *= accum_norm;
  15208. opt->loss_after = fx;
  15209. // check convergence
  15210. if (fabsf(fx - fx_prev[0])/fx < params.adam.eps_f) {
  15211. GGML_PRINT_DEBUG("converged\n");
  15212. return GGML_OPT_OK;
  15213. }
  15214. // delta-based convergence test
  15215. if (pf != NULL) {
  15216. // need at least params.past iterations to start checking for convergence
  15217. if (params.past <= iter0 + t) {
  15218. const float rate = (pf[(iter0 + t)%params.past] - fx)/fx;
  15219. if (fabsf(rate) < params.delta) {
  15220. return GGML_OPT_OK;
  15221. }
  15222. }
  15223. pf[(iter0 + t)%params.past] = fx;
  15224. }
  15225. // check for improvement
  15226. if (params.max_no_improvement > 0) {
  15227. if (fx_best[0] > fx) {
  15228. fx_best[0] = fx;
  15229. n_no_improvement[0] = 0;
  15230. } else {
  15231. ++n_no_improvement[0];
  15232. if (n_no_improvement[0] >= params.max_no_improvement) {
  15233. return GGML_OPT_OK;
  15234. }
  15235. }
  15236. }
  15237. fx_prev[0] = fx;
  15238. {
  15239. const int64_t t_end_cpu = ggml_cycles();
  15240. GGML_PRINT_DEBUG("time iter: %5.3f s\n", ((float)(t_end_cpu - t_start_cpu))/CLOCKS_PER_SEC);
  15241. UNUSED(t_end_cpu);
  15242. const int64_t t_end_wall = ggml_time_us();
  15243. GGML_PRINT_DEBUG("wall time iter: %5.3f s\n", (t_end_wall - t_start_wall)/1e6);
  15244. UNUSED(t_end_wall);
  15245. }
  15246. }
  15247. return GGML_OPT_DID_NOT_CONVERGE;
  15248. }
  15249. //
  15250. // L-BFGS
  15251. //
  15252. // the L-BFGS implementation below is based on the following implementation:
  15253. //
  15254. // https://github.com/chokkan/liblbfgs
  15255. //
  15256. struct ggml_lbfgs_iteration_data {
  15257. float alpha;
  15258. float ys;
  15259. float * s;
  15260. float * y;
  15261. };
  15262. static enum ggml_opt_result linesearch_backtracking(
  15263. const struct ggml_opt_params * params,
  15264. int nx,
  15265. float * x,
  15266. float * fx,
  15267. float * g,
  15268. float * d,
  15269. float * step,
  15270. const float * xp,
  15271. struct ggml_tensor * f,
  15272. struct ggml_cgraph * gb,
  15273. struct ggml_cplan * cplan,
  15274. const int np,
  15275. struct ggml_tensor * ps[],
  15276. bool * cancel,
  15277. ggml_opt_callback callback,
  15278. void * callback_data) {
  15279. int count = 0;
  15280. float width = 0.0f;
  15281. float dg = 0.0f;
  15282. float finit = 0.0f;
  15283. float dginit = 0.0f;
  15284. float dgtest = 0.0f;
  15285. const float dec = 0.5f;
  15286. const float inc = 2.1f;
  15287. const int n_accum = MAX(1, params->n_gradient_accumulation);
  15288. const float accum_norm = 1.0f / (float) n_accum;
  15289. if (*step <= 0.f) {
  15290. return GGML_LINESEARCH_INVALID_PARAMETERS;
  15291. }
  15292. // compute the initial gradient in the search direction
  15293. ggml_vec_dot_f32(nx, &dginit, g, d);
  15294. // make sure that d points to a descent direction
  15295. if (0 < dginit) {
  15296. return GGML_LINESEARCH_FAIL;
  15297. }
  15298. // initialize local variables
  15299. finit = *fx;
  15300. dgtest = params->lbfgs.ftol*dginit;
  15301. while (true) {
  15302. ggml_vec_cpy_f32(nx, x, xp);
  15303. ggml_vec_mad_f32(nx, x, d, *step);
  15304. // evaluate the function and gradient values
  15305. {
  15306. ggml_opt_set_params(np, ps, x);
  15307. *fx = 0;
  15308. memset(g, 0, sizeof(float)*nx);
  15309. for (int accum_step = 0; accum_step < n_accum; ++accum_step) {
  15310. if (callback) {
  15311. // LBFG-S does not support learning rate -> ignore learning schedule
  15312. float sched = 0;
  15313. callback(callback_data, accum_step, &sched, cancel);
  15314. if (*cancel) {
  15315. return GGML_OPT_CANCEL;
  15316. }
  15317. }
  15318. // ggml_graph_reset (gf);
  15319. ggml_set_f32 (f->grad, 1.0f);
  15320. ggml_graph_compute(gb, cplan);
  15321. ggml_opt_acc_grad(np, ps, g, accum_norm);
  15322. *fx += ggml_get_f32_1d(f, 0);
  15323. }
  15324. *fx *= accum_norm;
  15325. }
  15326. ++count;
  15327. if (*fx > finit + (*step)*dgtest) {
  15328. width = dec;
  15329. } else {
  15330. // Armijo condition is satisfied
  15331. if (params->lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_ARMIJO) {
  15332. return count;
  15333. }
  15334. ggml_vec_dot_f32(nx, &dg, g, d);
  15335. // check the Wolfe condition
  15336. if (dg < params->lbfgs.wolfe * dginit) {
  15337. width = inc;
  15338. } else {
  15339. if(params->lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_WOLFE) {
  15340. // regular Wolfe conditions
  15341. return count;
  15342. }
  15343. if(dg > -params->lbfgs.wolfe*dginit) {
  15344. width = dec;
  15345. } else {
  15346. // strong Wolfe condition (GGML_LINESEARCH_BACKTRACKING_STRONG_WOLFE)
  15347. return count;
  15348. }
  15349. }
  15350. }
  15351. if (*step < params->lbfgs.min_step) {
  15352. return GGML_LINESEARCH_MINIMUM_STEP;
  15353. }
  15354. if (*step > params->lbfgs.max_step) {
  15355. return GGML_LINESEARCH_MAXIMUM_STEP;
  15356. }
  15357. if (params->lbfgs.max_linesearch <= count) {
  15358. return GGML_LINESEARCH_MAXIMUM_ITERATIONS;
  15359. }
  15360. (*step) *= width;
  15361. }
  15362. GGML_UNREACHABLE();
  15363. }
  15364. static enum ggml_opt_result ggml_opt_lbfgs(
  15365. struct ggml_context * ctx,
  15366. struct ggml_opt_context * opt,
  15367. struct ggml_opt_params params,
  15368. struct ggml_tensor * f,
  15369. struct ggml_cgraph * gf,
  15370. struct ggml_cgraph * gb,
  15371. ggml_opt_callback callback,
  15372. void * callback_data) {
  15373. if (params.lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_WOLFE ||
  15374. params.lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_STRONG_WOLFE) {
  15375. if (params.lbfgs.wolfe <= params.lbfgs.ftol || 1.f <= params.lbfgs.wolfe) {
  15376. return GGML_OPT_INVALID_WOLFE;
  15377. }
  15378. }
  15379. const int m = params.lbfgs.m;
  15380. // these will store the parameters we want to optimize
  15381. struct ggml_tensor * ps[GGML_MAX_PARAMS];
  15382. int np = 0;
  15383. int nx = 0;
  15384. for (int i = 0; i < gf->n_nodes; ++i) {
  15385. if (gf->nodes[i]->is_param) {
  15386. GGML_PRINT_DEBUG("found param %d: grad->op = %d\n", np, gf->nodes[i]->grad->op);
  15387. GGML_ASSERT(np < GGML_MAX_PARAMS);
  15388. ps[np++] = gf->nodes[i];
  15389. nx += ggml_nelements(gf->nodes[i]);
  15390. }
  15391. }
  15392. if ((opt->params.type != params.type) || (opt->nx != nx) || (opt->params.past != params.past) || (opt->params.lbfgs.m != params.lbfgs.m)) {
  15393. int iter = opt->iter;
  15394. ggml_opt_init(ctx, opt, params, nx);
  15395. opt->iter = iter;
  15396. }
  15397. struct ggml_cplan cplan = ggml_graph_plan(gb, params.n_threads);
  15398. struct ggml_object * obj = ggml_new_object(ctx, GGML_OBJECT_WORK_BUFFER, cplan.work_size);
  15399. cplan.work_data = (uint8_t *)ctx->mem_buffer + obj->offs;
  15400. float * x = opt->lbfgs.x->data; // current parameters
  15401. float * xp = opt->lbfgs.xp->data; // previous parameters
  15402. float * g = opt->lbfgs.g->data; // current gradient
  15403. float * gp = opt->lbfgs.gp->data; // previous gradient
  15404. float * d = opt->lbfgs.d->data; // search direction
  15405. float * pf = params.past > 0 ? opt->lbfgs.pf->data : NULL; // past function values
  15406. const int n_accum = MAX(1, params.n_gradient_accumulation);
  15407. const float accum_norm = 1.0f / (float) n_accum;
  15408. float fx = 0.0f; // cost function value
  15409. float xnorm = 0.0f; // ||x||
  15410. float gnorm = 0.0f; // ||g||
  15411. // initialize x from the graph nodes
  15412. ggml_opt_get_params(np, ps, x);
  15413. // the L-BFGS memory
  15414. float * lm_alpha = opt->lbfgs.lmal->data;
  15415. float * lm_ys = opt->lbfgs.lmys->data;
  15416. float * lm_s = opt->lbfgs.lms->data;
  15417. float * lm_y = opt->lbfgs.lmy->data;
  15418. bool cancel = false;
  15419. // evaluate the function value and its gradient
  15420. {
  15421. ggml_opt_set_params(np, ps, x);
  15422. fx = 0;
  15423. memset(g, 0, sizeof(float)*nx);
  15424. for (int accum_step = 0; accum_step < n_accum; ++accum_step) {
  15425. if (callback) {
  15426. // LBFG-S does not support learning rate -> ignore learning schedule
  15427. float sched = 0;
  15428. callback(callback_data, accum_step, &sched, &cancel);
  15429. if (cancel) {
  15430. return GGML_OPT_CANCEL;
  15431. }
  15432. }
  15433. // ggml_graph_reset (gf);
  15434. ggml_set_f32 (f->grad, 1.0f);
  15435. ggml_graph_compute(gb, &cplan);
  15436. ggml_opt_acc_grad(np, ps, g, accum_norm);
  15437. fx += ggml_get_f32_1d(f, 0);
  15438. }
  15439. fx *= accum_norm;
  15440. opt->loss_before = fx;
  15441. opt->loss_after = fx;
  15442. }
  15443. // search direction = -gradient
  15444. ggml_vec_neg_f32(nx, d, g);
  15445. // ||x||, ||g||
  15446. ggml_vec_norm_f32(nx, &xnorm, x);
  15447. ggml_vec_norm_f32(nx, &gnorm, g);
  15448. if (xnorm < 1.0f) {
  15449. xnorm = 1.0f;
  15450. }
  15451. // already optimized
  15452. if (gnorm/xnorm <= params.lbfgs.eps) {
  15453. return GGML_OPT_OK;
  15454. }
  15455. if (opt->just_initialized) {
  15456. if (pf) {
  15457. pf[0] = fx;
  15458. }
  15459. opt->lbfgs.fx_best = fx;
  15460. // initial step
  15461. ggml_vec_norm_inv_f32(nx, &opt->lbfgs.step, d);
  15462. opt->lbfgs.j = 0;
  15463. opt->lbfgs.k = 1;
  15464. opt->lbfgs.end = 0;
  15465. opt->lbfgs.n_no_improvement = 0;
  15466. opt->just_initialized = false;
  15467. }
  15468. float * fx_best = &opt->lbfgs.fx_best;
  15469. float * step = &opt->lbfgs.step;
  15470. int * j = &opt->lbfgs.j;
  15471. int * k = &opt->lbfgs.k;
  15472. int * end = &opt->lbfgs.end;
  15473. int * n_no_improvement = &opt->lbfgs.n_no_improvement;
  15474. int ls = 0;
  15475. int bound = 0;
  15476. float ys = 0.0f;
  15477. float yy = 0.0f;
  15478. float beta = 0.0f;
  15479. int it = 0;
  15480. while (true) {
  15481. // store the current position and gradient vectors
  15482. ggml_vec_cpy_f32(nx, xp, x);
  15483. ggml_vec_cpy_f32(nx, gp, g);
  15484. // TODO: instead of passing &cancel here, use the return code of the linesearch
  15485. // to determine if the optimization should be cancelled
  15486. // this is a simple change, but not doing this atm, since I don't have a nice
  15487. // way to test and don't want to break something with so many changes lined up
  15488. ls = linesearch_backtracking(&params, nx, x, &fx, g, d, step, xp, f, gb, &cplan, np, ps, &cancel, callback, callback_data);
  15489. if (cancel) {
  15490. return GGML_OPT_CANCEL;
  15491. }
  15492. if (ls < 0) {
  15493. // linesearch failed - go back to the previous point and return
  15494. ggml_vec_cpy_f32(nx, x, xp);
  15495. ggml_vec_cpy_f32(nx, g, gp);
  15496. return ls;
  15497. }
  15498. opt->loss_after = fx;
  15499. ggml_vec_norm_f32(nx, &xnorm, x);
  15500. ggml_vec_norm_f32(nx, &gnorm, g);
  15501. GGML_PRINT_DEBUG("f = %10.6f\n", ggml_get_f32_1d(f, 0));
  15502. if (xnorm < 1.0f) {
  15503. xnorm = 1.0f;
  15504. }
  15505. if (gnorm/xnorm <= params.lbfgs.eps) {
  15506. // converged
  15507. return GGML_OPT_OK;
  15508. }
  15509. // delta-based convergence test
  15510. if (pf != NULL) {
  15511. // need at least params.past iterations to start checking for convergence
  15512. if (params.past <= k[0]) {
  15513. const float rate = (pf[k[0]%params.past] - fx)/fx;
  15514. if (fabsf(rate) < params.delta) {
  15515. return GGML_OPT_OK;
  15516. }
  15517. }
  15518. pf[k[0]%params.past] = fx;
  15519. }
  15520. // check for improvement
  15521. if (params.max_no_improvement > 0) {
  15522. if (fx < fx_best[0]) {
  15523. fx_best[0] = fx;
  15524. n_no_improvement[0] = 0;
  15525. } else {
  15526. n_no_improvement[0]++;
  15527. if (n_no_improvement[0] >= params.max_no_improvement) {
  15528. return GGML_OPT_OK;
  15529. }
  15530. }
  15531. }
  15532. if (params.lbfgs.n_iter != 0 && params.lbfgs.n_iter < it + 1) {
  15533. // reached the maximum number of iterations
  15534. return GGML_OPT_DID_NOT_CONVERGE;
  15535. }
  15536. // update vectors s and y:
  15537. // s_{k+1} = x_{k+1} - x_{k} = \step * d_{k}.
  15538. // y_{k+1} = g_{k+1} - g_{k}.
  15539. //
  15540. ggml_vec_sub_f32(nx, &lm_s[end[0]*nx], x, xp);
  15541. ggml_vec_sub_f32(nx, &lm_y[end[0]*nx], g, gp);
  15542. // compute scalars ys and yy:
  15543. // ys = y^t \cdot s -> 1 / \rho.
  15544. // yy = y^t \cdot y.
  15545. //
  15546. ggml_vec_dot_f32(nx, &ys, &lm_y[end[0]*nx], &lm_s[end[0]*nx]);
  15547. ggml_vec_dot_f32(nx, &yy, &lm_y[end[0]*nx], &lm_y[end[0]*nx]);
  15548. lm_ys[end[0]] = ys;
  15549. // find new search direction
  15550. // ref: https://en.wikipedia.org/wiki/Limited-memory_BFGS
  15551. bound = (m <= k[0]) ? m : k[0];
  15552. k[0]++;
  15553. it++;
  15554. end[0] = (end[0] + 1)%m;
  15555. // initialize search direction with -g
  15556. ggml_vec_neg_f32(nx, d, g);
  15557. j[0] = end[0];
  15558. for (int i = 0; i < bound; ++i) {
  15559. j[0] = (j[0] + m - 1) % m;
  15560. // \alpha_{j} = \rho_{j} s^{t}_{j} \cdot q_{k+1}
  15561. ggml_vec_dot_f32(nx, &lm_alpha[j[0]], &lm_s[j[0]*nx], d);
  15562. lm_alpha[j[0]] /= lm_ys[j[0]];
  15563. // q_{i} = q_{i+1} - \alpha_{i} y_{i}
  15564. ggml_vec_mad_f32(nx, d, &lm_y[j[0]*nx], -lm_alpha[j[0]]);
  15565. }
  15566. ggml_vec_scale_f32(nx, d, ys/yy);
  15567. for (int i = 0; i < bound; ++i) {
  15568. // \beta_{j} = \rho_{j} y^t_{j} \cdot \gamma_{i}
  15569. ggml_vec_dot_f32(nx, &beta, &lm_y[j[0]*nx], d);
  15570. beta /= lm_ys[j[0]];
  15571. // \gamma_{i+1} = \gamma_{i} + (\alpha_{j} - \beta_{j}) s_{j}
  15572. ggml_vec_mad_f32(nx, d, &lm_s[j[0]*nx], lm_alpha[j[0]] - beta);
  15573. j[0] = (j[0] + 1)%m;
  15574. }
  15575. step[0] = 1.0;
  15576. }
  15577. GGML_UNREACHABLE();
  15578. }
  15579. struct ggml_opt_params ggml_opt_default_params(enum ggml_opt_type type) {
  15580. struct ggml_opt_params result;
  15581. switch (type) {
  15582. case GGML_OPT_ADAM:
  15583. {
  15584. result = (struct ggml_opt_params) {
  15585. .type = GGML_OPT_ADAM,
  15586. .graph_size = GGML_DEFAULT_GRAPH_SIZE,
  15587. .n_threads = 1, // FIXME: GGML_DEFAULT_N_THREADS ?
  15588. .past = 0,
  15589. .delta = 1e-5f,
  15590. .max_no_improvement = 100,
  15591. .print_forward_graph = true,
  15592. .print_backward_graph = true,
  15593. .n_gradient_accumulation = 1,
  15594. .adam = {
  15595. .n_iter = 10000,
  15596. .sched = 1.000f,
  15597. .decay = 0.0f,
  15598. .decay_min_ndim = 2,
  15599. .alpha = 0.001f,
  15600. .beta1 = 0.9f,
  15601. .beta2 = 0.999f,
  15602. .eps = 1e-8f,
  15603. .eps_f = 1e-5f,
  15604. .eps_g = 1e-3f,
  15605. .gclip = 0.0f,
  15606. },
  15607. };
  15608. } break;
  15609. case GGML_OPT_LBFGS:
  15610. {
  15611. result = (struct ggml_opt_params) {
  15612. .type = GGML_OPT_LBFGS,
  15613. .graph_size = GGML_DEFAULT_GRAPH_SIZE,
  15614. .n_threads = 1,
  15615. .past = 0,
  15616. .delta = 1e-5f,
  15617. .max_no_improvement = 0,
  15618. .print_forward_graph = true,
  15619. .print_backward_graph = true,
  15620. .n_gradient_accumulation = 1,
  15621. .lbfgs = {
  15622. .m = 6,
  15623. .n_iter = 100,
  15624. .max_linesearch = 20,
  15625. .eps = 1e-5f,
  15626. .ftol = 1e-4f,
  15627. .wolfe = 0.9f,
  15628. .min_step = 1e-20f,
  15629. .max_step = 1e+20f,
  15630. .linesearch = GGML_LINESEARCH_DEFAULT,
  15631. },
  15632. };
  15633. } break;
  15634. }
  15635. return result;
  15636. }
  15637. GGML_API void ggml_opt_init(
  15638. struct ggml_context * ctx,
  15639. struct ggml_opt_context * opt,
  15640. struct ggml_opt_params params,
  15641. int64_t nx) {
  15642. opt->ctx = ctx;
  15643. opt->params = params;
  15644. opt->iter = 0;
  15645. opt->nx = nx;
  15646. opt->just_initialized = true;
  15647. if (opt->ctx == NULL) {
  15648. struct ggml_init_params ctx_opt_params;
  15649. if (opt->params.type == GGML_OPT_ADAM) {
  15650. ctx_opt_params.mem_size = GGML_MEM_ALIGN*3 + ggml_tensor_overhead()*3 + ggml_type_size(GGML_TYPE_F32)*nx*3;
  15651. if (opt->params.past > 0) {
  15652. ctx_opt_params.mem_size += GGML_MEM_ALIGN + ggml_tensor_overhead() + ggml_type_size(GGML_TYPE_F32)*opt->params.past;
  15653. }
  15654. } else if (opt->params.type == GGML_OPT_LBFGS) {
  15655. ctx_opt_params.mem_size = GGML_MEM_ALIGN*9 + ggml_tensor_overhead()*9 + ggml_type_size(GGML_TYPE_F32)*(nx*5 + opt->params.lbfgs.m*2 + nx*opt->params.lbfgs.m*2);
  15656. if (opt->params.past > 0) {
  15657. ctx_opt_params.mem_size += GGML_MEM_ALIGN + ggml_tensor_overhead() + ggml_type_size(GGML_TYPE_F32)*opt->params.past;
  15658. }
  15659. }
  15660. ctx_opt_params.mem_buffer = NULL;
  15661. ctx_opt_params.no_alloc = false;
  15662. opt->ctx = ggml_init(ctx_opt_params);
  15663. }
  15664. switch (opt->params.type) {
  15665. case GGML_OPT_ADAM:
  15666. {
  15667. opt->adam.g = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  15668. opt->adam.m = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  15669. opt->adam.v = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  15670. opt->adam.pf = params.past > 0
  15671. ? ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, params.past)
  15672. : NULL;
  15673. ggml_set_zero(opt->adam.m);
  15674. ggml_set_zero(opt->adam.v);
  15675. if (opt->adam.pf) {
  15676. ggml_set_zero(opt->adam.pf);
  15677. }
  15678. } break;
  15679. case GGML_OPT_LBFGS:
  15680. {
  15681. opt->lbfgs.x = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  15682. opt->lbfgs.xp = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  15683. opt->lbfgs.g = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  15684. opt->lbfgs.gp = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  15685. opt->lbfgs.d = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  15686. opt->lbfgs.pf = params.past > 0
  15687. ? ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, params.past)
  15688. : NULL;
  15689. opt->lbfgs.lmal = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, params.lbfgs.m);
  15690. opt->lbfgs.lmys = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, params.lbfgs.m);
  15691. opt->lbfgs.lms = ggml_new_tensor_2d(opt->ctx, GGML_TYPE_F32, nx, params.lbfgs.m);
  15692. opt->lbfgs.lmy = ggml_new_tensor_2d(opt->ctx, GGML_TYPE_F32, nx, params.lbfgs.m);
  15693. ggml_set_zero(opt->lbfgs.x);
  15694. ggml_set_zero(opt->lbfgs.xp);
  15695. ggml_set_zero(opt->lbfgs.g);
  15696. ggml_set_zero(opt->lbfgs.gp);
  15697. ggml_set_zero(opt->lbfgs.d);
  15698. if (opt->lbfgs.pf) {
  15699. ggml_set_zero(opt->lbfgs.pf);
  15700. }
  15701. ggml_set_zero(opt->lbfgs.lmal);
  15702. ggml_set_zero(opt->lbfgs.lmys);
  15703. ggml_set_zero(opt->lbfgs.lms);
  15704. ggml_set_zero(opt->lbfgs.lmy);
  15705. } break;
  15706. }
  15707. }
  15708. enum ggml_opt_result ggml_opt(
  15709. struct ggml_context * ctx,
  15710. struct ggml_opt_params params,
  15711. struct ggml_tensor * f) {
  15712. bool free_ctx = false;
  15713. if (ctx == NULL) {
  15714. struct ggml_init_params params_ctx = {
  15715. .mem_size = 16*1024*1024,
  15716. .mem_buffer = NULL,
  15717. .no_alloc = false,
  15718. };
  15719. ctx = ggml_init(params_ctx);
  15720. if (ctx == NULL) {
  15721. return GGML_OPT_NO_CONTEXT;
  15722. }
  15723. free_ctx = true;
  15724. }
  15725. enum ggml_opt_result result = GGML_OPT_OK;
  15726. struct ggml_opt_context * opt = (struct ggml_opt_context *) alloca(sizeof(struct ggml_opt_context));
  15727. ggml_opt_init(ctx, opt, params, 0);
  15728. result = ggml_opt_resume(ctx, opt, f);
  15729. if (free_ctx) {
  15730. ggml_free(ctx);
  15731. }
  15732. return result;
  15733. }
  15734. enum ggml_opt_result ggml_opt_resume(
  15735. struct ggml_context * ctx,
  15736. struct ggml_opt_context * opt,
  15737. struct ggml_tensor * f) {
  15738. // build forward + backward compute graphs
  15739. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx, opt->params.graph_size, true);
  15740. ggml_build_forward_expand(gf, f);
  15741. struct ggml_cgraph * gb = ggml_graph_dup(ctx, gf);
  15742. ggml_build_backward_expand(ctx, gf, gb, true);
  15743. return ggml_opt_resume_g(ctx, opt, f, gf, gb, NULL, NULL);
  15744. }
  15745. enum ggml_opt_result ggml_opt_resume_g(
  15746. struct ggml_context * ctx,
  15747. struct ggml_opt_context * opt,
  15748. struct ggml_tensor * f,
  15749. struct ggml_cgraph * gf,
  15750. struct ggml_cgraph * gb,
  15751. ggml_opt_callback callback,
  15752. void * callback_data) {
  15753. // build forward + backward compute graphs
  15754. enum ggml_opt_result result = GGML_OPT_OK;
  15755. switch (opt->params.type) {
  15756. case GGML_OPT_ADAM:
  15757. {
  15758. result = ggml_opt_adam(ctx, opt, opt->params, f, gf, gb, callback, callback_data);
  15759. } break;
  15760. case GGML_OPT_LBFGS:
  15761. {
  15762. result = ggml_opt_lbfgs(ctx, opt, opt->params, f, gf, gb, callback, callback_data);
  15763. } break;
  15764. }
  15765. if (opt->params.print_forward_graph) {
  15766. ggml_graph_print (gf);
  15767. ggml_graph_dump_dot(gf, NULL, "opt-forward.dot");
  15768. }
  15769. if (opt->params.print_backward_graph) {
  15770. ggml_graph_print (gb);
  15771. ggml_graph_dump_dot(gb, gf, "opt-backward.dot");
  15772. }
  15773. return result;
  15774. }
  15775. ////////////////////////////////////////////////////////////////////////////////
  15776. void ggml_quantize_init(enum ggml_type type) {
  15777. ggml_critical_section_start();
  15778. switch (type) {
  15779. case GGML_TYPE_IQ2_XXS: iq2xs_init_impl(256); break;
  15780. case GGML_TYPE_IQ2_XS: iq2xs_init_impl(512); break;
  15781. case GGML_TYPE_IQ3_XXS: iq3xs_init_impl(256); break;
  15782. default: // nothing
  15783. break;
  15784. }
  15785. ggml_critical_section_end();
  15786. }
  15787. void ggml_quantize_free(void) {
  15788. ggml_critical_section_start();
  15789. iq2xs_free_impl(256);
  15790. iq2xs_free_impl(512);
  15791. ggml_critical_section_end();
  15792. }
  15793. size_t ggml_quantize_q4_0(const float * src, void * dst, int n, int k, int64_t * hist) {
  15794. assert(k % QK4_0 == 0);
  15795. const int nb = k / QK4_0;
  15796. for (int b = 0; b < n; b += k) {
  15797. block_q4_0 * restrict y = (block_q4_0 *) dst + b/QK4_0;
  15798. quantize_row_q4_0_reference(src + b, y, k);
  15799. for (int i = 0; i < nb; i++) {
  15800. for (int j = 0; j < QK4_0; j += 2) {
  15801. const uint8_t vi0 = y[i].qs[j/2] & 0x0F;
  15802. const uint8_t vi1 = y[i].qs[j/2] >> 4;
  15803. hist[vi0]++;
  15804. hist[vi1]++;
  15805. }
  15806. }
  15807. }
  15808. return (n/QK4_0*sizeof(block_q4_0));
  15809. }
  15810. size_t ggml_quantize_q4_1(const float * src, void * dst, int n, int k, int64_t * hist) {
  15811. assert(k % QK4_1 == 0);
  15812. const int nb = k / QK4_1;
  15813. for (int b = 0; b < n; b += k) {
  15814. block_q4_1 * restrict y = (block_q4_1 *) dst + b/QK4_1;
  15815. quantize_row_q4_1_reference(src + b, y, k);
  15816. for (int i = 0; i < nb; i++) {
  15817. for (int j = 0; j < QK4_1; j += 2) {
  15818. const uint8_t vi0 = y[i].qs[j/2] & 0x0F;
  15819. const uint8_t vi1 = y[i].qs[j/2] >> 4;
  15820. hist[vi0]++;
  15821. hist[vi1]++;
  15822. }
  15823. }
  15824. }
  15825. return (n/QK4_1*sizeof(block_q4_1));
  15826. }
  15827. size_t ggml_quantize_q5_0(const float * src, void * dst, int n, int k, int64_t * hist) {
  15828. assert(k % QK5_0 == 0);
  15829. const int nb = k / QK5_0;
  15830. for (int b = 0; b < n; b += k) {
  15831. block_q5_0 * restrict y = (block_q5_0 *)dst + b/QK5_0;
  15832. quantize_row_q5_0_reference(src + b, y, k);
  15833. for (int i = 0; i < nb; i++) {
  15834. uint32_t qh;
  15835. memcpy(&qh, &y[i].qh, sizeof(qh));
  15836. for (int j = 0; j < QK5_0; j += 2) {
  15837. const uint8_t vh0 = ((qh & (1u << (j/2 + 0 ))) >> (j/2 + 0 )) << 4;
  15838. const uint8_t vh1 = ((qh & (1u << (j/2 + 16))) >> (j/2 + 12));
  15839. // cast to 16 bins
  15840. const uint8_t vi0 = ((y[i].qs[j/2] & 0x0F) | vh0) / 2;
  15841. const uint8_t vi1 = ((y[i].qs[j/2] >> 4) | vh1) / 2;
  15842. hist[vi0]++;
  15843. hist[vi1]++;
  15844. }
  15845. }
  15846. }
  15847. return (n/QK5_0*sizeof(block_q5_0));
  15848. }
  15849. size_t ggml_quantize_q5_1(const float * src, void * dst, int n, int k, int64_t * hist) {
  15850. assert(k % QK5_1 == 0);
  15851. const int nb = k / QK5_1;
  15852. for (int b = 0; b < n; b += k) {
  15853. block_q5_1 * restrict y = (block_q5_1 *)dst + b/QK5_1;
  15854. quantize_row_q5_1_reference(src + b, y, k);
  15855. for (int i = 0; i < nb; i++) {
  15856. uint32_t qh;
  15857. memcpy(&qh, &y[i].qh, sizeof(qh));
  15858. for (int j = 0; j < QK5_1; j += 2) {
  15859. const uint8_t vh0 = ((qh & (1u << (j/2 + 0 ))) >> (j/2 + 0 )) << 4;
  15860. const uint8_t vh1 = ((qh & (1u << (j/2 + 16))) >> (j/2 + 12));
  15861. // cast to 16 bins
  15862. const uint8_t vi0 = ((y[i].qs[j/2] & 0x0F) | vh0) / 2;
  15863. const uint8_t vi1 = ((y[i].qs[j/2] >> 4) | vh1) / 2;
  15864. hist[vi0]++;
  15865. hist[vi1]++;
  15866. }
  15867. }
  15868. }
  15869. return (n/QK5_1*sizeof(block_q5_1));
  15870. }
  15871. size_t ggml_quantize_q8_0(const float * src, void * dst, int n, int k, int64_t * hist) {
  15872. assert(k % QK8_0 == 0);
  15873. const int nb = k / QK8_0;
  15874. for (int b = 0; b < n; b += k) {
  15875. block_q8_0 * restrict y = (block_q8_0 *)dst + b/QK8_0;
  15876. quantize_row_q8_0_reference(src + b, y, k);
  15877. for (int i = 0; i < nb; i++) {
  15878. for (int j = 0; j < QK8_0; ++j) {
  15879. const int8_t vi = y[i].qs[j];
  15880. hist[vi/16 + 8]++;
  15881. }
  15882. }
  15883. }
  15884. return (n/QK8_0*sizeof(block_q8_0));
  15885. }
  15886. bool ggml_quantize_requires_imatrix(enum ggml_type type) {
  15887. return
  15888. type == GGML_TYPE_IQ2_XXS ||
  15889. type == GGML_TYPE_IQ2_XS;
  15890. }
  15891. size_t ggml_quantize_chunk(enum ggml_type type, const float * src, void * dst, int start,
  15892. int nrows, int n_per_row, int64_t * hist, const float * imatrix) {
  15893. ggml_quantize_init(type); // this is noop if already initialized
  15894. size_t result = 0;
  15895. int n = nrows * n_per_row;
  15896. switch (type) {
  15897. case GGML_TYPE_Q4_0:
  15898. {
  15899. GGML_ASSERT(start % QK4_0 == 0);
  15900. GGML_ASSERT(start % n_per_row == 0);
  15901. size_t start_row = start / n_per_row;
  15902. size_t row_size = ggml_row_size(type, n_per_row);
  15903. result = quantize_q4_0(src + start, (char *)dst + start_row * row_size, nrows, n_per_row, hist, imatrix);
  15904. GGML_ASSERT(result == row_size * nrows);
  15905. } break;
  15906. case GGML_TYPE_Q4_1:
  15907. {
  15908. GGML_ASSERT(start % QK4_1 == 0);
  15909. GGML_ASSERT(start % n_per_row == 0);
  15910. size_t start_row = start / n_per_row;
  15911. size_t row_size = ggml_row_size(type, n_per_row);
  15912. result = quantize_q4_1(src + start, (char *)dst + start_row * row_size, nrows, n_per_row, hist, imatrix);
  15913. GGML_ASSERT(result == row_size * nrows);
  15914. } break;
  15915. case GGML_TYPE_Q5_0:
  15916. {
  15917. GGML_ASSERT(start % QK5_0 == 0);
  15918. GGML_ASSERT(start % n_per_row == 0);
  15919. size_t start_row = start / n_per_row;
  15920. size_t row_size = ggml_row_size(type, n_per_row);
  15921. result = quantize_q5_0(src + start, (char *)dst + start_row * row_size, nrows, n_per_row, hist, imatrix);
  15922. GGML_ASSERT(result == row_size * nrows);
  15923. } break;
  15924. case GGML_TYPE_Q5_1:
  15925. {
  15926. GGML_ASSERT(start % QK5_1 == 0);
  15927. GGML_ASSERT(start % n_per_row == 0);
  15928. size_t start_row = start / n_per_row;
  15929. size_t row_size = ggml_row_size(type, n_per_row);
  15930. result = quantize_q5_1(src + start, (char *)dst + start_row * row_size, nrows, n_per_row, hist, imatrix);
  15931. GGML_ASSERT(result == row_size * nrows);
  15932. } break;
  15933. case GGML_TYPE_Q8_0:
  15934. {
  15935. GGML_ASSERT(start % QK8_0 == 0);
  15936. block_q8_0 * block = (block_q8_0*)dst + start / QK8_0;
  15937. result = ggml_quantize_q8_0(src + start, block, n, n, hist);
  15938. } break;
  15939. case GGML_TYPE_Q2_K:
  15940. {
  15941. GGML_ASSERT(start % QK_K == 0);
  15942. GGML_ASSERT(start % n_per_row == 0);
  15943. size_t start_row = start / n_per_row;
  15944. size_t row_size = ggml_row_size(type, n_per_row);
  15945. result = quantize_q2_K(src + start, (char *)dst + start_row * row_size, nrows, n_per_row, hist, imatrix);
  15946. GGML_ASSERT(result == row_size * nrows);
  15947. } break;
  15948. case GGML_TYPE_Q3_K:
  15949. {
  15950. GGML_ASSERT(start % QK_K == 0);
  15951. GGML_ASSERT(start % n_per_row == 0);
  15952. size_t start_row = start / n_per_row;
  15953. size_t row_size = ggml_row_size(type, n_per_row);
  15954. result = quantize_q3_K(src + start, (char *)dst + start_row * row_size, nrows, n_per_row, hist, imatrix);
  15955. GGML_ASSERT(result == row_size * nrows);
  15956. } break;
  15957. case GGML_TYPE_Q4_K:
  15958. {
  15959. GGML_ASSERT(start % QK_K == 0);
  15960. GGML_ASSERT(start % n_per_row == 0);
  15961. size_t start_row = start / n_per_row;
  15962. size_t row_size = ggml_row_size(type, n_per_row);
  15963. result = quantize_q4_K(src + start, (char *)dst + start_row * row_size, nrows, n_per_row, hist, imatrix);
  15964. GGML_ASSERT(result == row_size * nrows);
  15965. } break;
  15966. case GGML_TYPE_Q5_K:
  15967. {
  15968. GGML_ASSERT(start % QK_K == 0);
  15969. GGML_ASSERT(start % n_per_row == 0);
  15970. size_t start_row = start / n_per_row;
  15971. size_t row_size = ggml_row_size(type, n_per_row);
  15972. result = quantize_q5_K(src + start, (char *)dst + start_row * row_size, nrows, n_per_row, hist, imatrix);
  15973. GGML_ASSERT(result == row_size * nrows);
  15974. } break;
  15975. case GGML_TYPE_Q6_K:
  15976. {
  15977. GGML_ASSERT(start % QK_K == 0);
  15978. GGML_ASSERT(start % n_per_row == 0);
  15979. size_t start_row = start / n_per_row;
  15980. size_t row_size = ggml_row_size(type, n_per_row);
  15981. result = quantize_q6_K(src + start, (char *)dst + start_row * row_size, nrows, n_per_row, hist, imatrix);
  15982. GGML_ASSERT(result == row_size * nrows);
  15983. } break;
  15984. case GGML_TYPE_IQ2_XXS:
  15985. {
  15986. GGML_ASSERT(start % QK_K == 0);
  15987. GGML_ASSERT(start % n_per_row == 0);
  15988. GGML_ASSERT(imatrix);
  15989. size_t start_row = start / n_per_row;
  15990. size_t row_size = ggml_row_size(type, n_per_row);
  15991. result = quantize_iq2_xxs(src + start, (char *)dst + start_row * row_size, nrows, n_per_row, hist, imatrix);
  15992. GGML_ASSERT(result == row_size * nrows);
  15993. } break;
  15994. case GGML_TYPE_IQ2_XS:
  15995. {
  15996. GGML_ASSERT(start % QK_K == 0);
  15997. GGML_ASSERT(start % n_per_row == 0);
  15998. GGML_ASSERT(imatrix);
  15999. size_t start_row = start / n_per_row;
  16000. size_t row_size = ggml_row_size(type, n_per_row);
  16001. result = quantize_iq2_xs(src + start, (char *)dst + start_row * row_size, nrows, n_per_row, hist, imatrix);
  16002. GGML_ASSERT(result == row_size * nrows);
  16003. } break;
  16004. case GGML_TYPE_IQ3_XXS:
  16005. {
  16006. GGML_ASSERT(start % QK_K == 0);
  16007. GGML_ASSERT(start % n_per_row == 0);
  16008. size_t start_row = start / n_per_row;
  16009. size_t row_size = ggml_row_size(type, n_per_row);
  16010. result = quantize_iq3_xxs(src + start, (char *)dst + start_row * row_size, nrows, n_per_row, hist, imatrix);
  16011. GGML_ASSERT(result == row_size * nrows);
  16012. } break;
  16013. case GGML_TYPE_F16:
  16014. {
  16015. size_t elemsize = sizeof(ggml_fp16_t);
  16016. ggml_fp32_to_fp16_row(src + start, (ggml_fp16_t *)dst + start, n);
  16017. result = n * elemsize;
  16018. } break;
  16019. case GGML_TYPE_F32:
  16020. {
  16021. size_t elemsize = sizeof(float);
  16022. result = n * elemsize;
  16023. memcpy((uint8_t *)dst + start * elemsize, src + start, result);
  16024. } break;
  16025. default:
  16026. assert(false);
  16027. }
  16028. return result;
  16029. }
  16030. ////////////////////////////////////////////////////////////////////////////////
  16031. struct gguf_str {
  16032. uint64_t n; // GGUFv2
  16033. char * data;
  16034. };
  16035. static const size_t GGUF_TYPE_SIZE[GGUF_TYPE_COUNT] = {
  16036. [GGUF_TYPE_UINT8] = sizeof(uint8_t),
  16037. [GGUF_TYPE_INT8] = sizeof(int8_t),
  16038. [GGUF_TYPE_UINT16] = sizeof(uint16_t),
  16039. [GGUF_TYPE_INT16] = sizeof(int16_t),
  16040. [GGUF_TYPE_UINT32] = sizeof(uint32_t),
  16041. [GGUF_TYPE_INT32] = sizeof(int32_t),
  16042. [GGUF_TYPE_FLOAT32] = sizeof(float),
  16043. [GGUF_TYPE_BOOL] = sizeof(bool),
  16044. [GGUF_TYPE_STRING] = sizeof(struct gguf_str),
  16045. [GGUF_TYPE_UINT64] = sizeof(uint64_t),
  16046. [GGUF_TYPE_INT64] = sizeof(int64_t),
  16047. [GGUF_TYPE_FLOAT64] = sizeof(double),
  16048. [GGUF_TYPE_ARRAY] = 0, // undefined
  16049. };
  16050. static_assert(GGUF_TYPE_COUNT == 13, "GGUF_TYPE_COUNT != 13");
  16051. static const char * GGUF_TYPE_NAME[GGUF_TYPE_COUNT] = {
  16052. [GGUF_TYPE_UINT8] = "u8",
  16053. [GGUF_TYPE_INT8] = "i8",
  16054. [GGUF_TYPE_UINT16] = "u16",
  16055. [GGUF_TYPE_INT16] = "i16",
  16056. [GGUF_TYPE_UINT32] = "u32",
  16057. [GGUF_TYPE_INT32] = "i32",
  16058. [GGUF_TYPE_FLOAT32] = "f32",
  16059. [GGUF_TYPE_BOOL] = "bool",
  16060. [GGUF_TYPE_STRING] = "str",
  16061. [GGUF_TYPE_ARRAY] = "arr",
  16062. [GGUF_TYPE_UINT64] = "u64",
  16063. [GGUF_TYPE_INT64] = "i64",
  16064. [GGUF_TYPE_FLOAT64] = "f64",
  16065. };
  16066. static_assert(GGUF_TYPE_COUNT == 13, "GGUF_TYPE_COUNT != 13");
  16067. union gguf_value {
  16068. uint8_t uint8;
  16069. int8_t int8;
  16070. uint16_t uint16;
  16071. int16_t int16;
  16072. uint32_t uint32;
  16073. int32_t int32;
  16074. float float32;
  16075. uint64_t uint64;
  16076. int64_t int64;
  16077. double float64;
  16078. bool bool_;
  16079. struct gguf_str str;
  16080. struct {
  16081. enum gguf_type type;
  16082. uint64_t n; // GGUFv2
  16083. void * data;
  16084. } arr;
  16085. };
  16086. struct gguf_kv {
  16087. struct gguf_str key;
  16088. enum gguf_type type;
  16089. union gguf_value value;
  16090. };
  16091. struct gguf_header {
  16092. char magic[4];
  16093. uint32_t version;
  16094. uint64_t n_tensors; // GGUFv2
  16095. uint64_t n_kv; // GGUFv2
  16096. };
  16097. struct gguf_tensor_info {
  16098. struct gguf_str name;
  16099. uint32_t n_dims;
  16100. uint64_t ne[GGML_MAX_DIMS];
  16101. enum ggml_type type;
  16102. uint64_t offset; // offset from start of `data`, must be a multiple of `ALIGNMENT`
  16103. // for writing API
  16104. const void * data;
  16105. size_t size;
  16106. };
  16107. struct gguf_context {
  16108. struct gguf_header header;
  16109. struct gguf_kv * kv;
  16110. struct gguf_tensor_info * infos;
  16111. size_t alignment;
  16112. size_t offset; // offset of `data` from beginning of file
  16113. size_t size; // size of `data` in bytes
  16114. //uint8_t * padding;
  16115. void * data;
  16116. };
  16117. static size_t gguf_type_size(enum gguf_type type) {
  16118. GGML_ASSERT(0 <= type && type < GGUF_TYPE_COUNT);
  16119. return GGUF_TYPE_SIZE[type];
  16120. }
  16121. static void gguf_tensor_info_sanitize(struct gguf_tensor_info * info) {
  16122. GGML_ASSERT(info->n_dims <= GGML_MAX_DIMS);
  16123. GGML_ASSERT(0 <= info->type && info->type < GGML_TYPE_COUNT);
  16124. for (uint32_t i = 0; i < info->n_dims; ++i) {
  16125. GGML_ASSERT(info->ne[i] > 0);
  16126. }
  16127. // prevent overflow for total number of elements
  16128. GGML_ASSERT(INT64_MAX/info->ne[1] > info->ne[0]);
  16129. GGML_ASSERT(INT64_MAX/info->ne[2] > info->ne[0]*info->ne[1]);
  16130. GGML_ASSERT(INT64_MAX/info->ne[3] > info->ne[0]*info->ne[1]*info->ne[2]);
  16131. }
  16132. static bool gguf_fread_el(FILE * file, void * dst, size_t size, size_t * offset) {
  16133. const size_t n = fread(dst, 1, size, file);
  16134. *offset += n;
  16135. return n == size;
  16136. }
  16137. static bool gguf_fread_str(FILE * file, struct gguf_str * p, size_t * offset) {
  16138. p->n = 0;
  16139. p->data = NULL;
  16140. bool ok = true;
  16141. ok = ok && gguf_fread_el(file, &p->n, sizeof(p->n), offset);
  16142. // early exit if string length is invalid, prevents from integer overflow
  16143. if (p->n == SIZE_MAX) {
  16144. fprintf(stderr, "%s: invalid string length (%" PRIu64 ")\n", __func__, p->n);
  16145. return false;
  16146. }
  16147. p->data = GGML_CALLOC(p->n + 1, 1);
  16148. ok = ok && gguf_fread_el(file, p->data, p->n, offset);
  16149. return ok;
  16150. }
  16151. struct gguf_context * gguf_init_empty(void) {
  16152. struct gguf_context * ctx = GGML_ALIGNED_MALLOC(sizeof(struct gguf_context));
  16153. memcpy(ctx->header.magic, GGUF_MAGIC, sizeof(ctx->header.magic));
  16154. ctx->header.version = GGUF_VERSION;
  16155. ctx->header.n_tensors = 0;
  16156. ctx->header.n_kv = 0;
  16157. ctx->kv = NULL;
  16158. ctx->infos = NULL;
  16159. ctx->alignment = GGUF_DEFAULT_ALIGNMENT;
  16160. ctx->offset = 0;
  16161. ctx->size = 0;
  16162. ctx->data = NULL;
  16163. return ctx;
  16164. }
  16165. struct gguf_context * gguf_init_from_file(const char * fname, struct gguf_init_params params) {
  16166. FILE * file = fopen(fname, "rb");
  16167. if (!file) {
  16168. return NULL;
  16169. }
  16170. // offset from start of file
  16171. size_t offset = 0;
  16172. char magic[4];
  16173. // check the magic before making allocations
  16174. {
  16175. gguf_fread_el(file, &magic, sizeof(magic), &offset);
  16176. for (uint32_t i = 0; i < sizeof(magic); i++) {
  16177. if (magic[i] != GGUF_MAGIC[i]) {
  16178. fprintf(stderr, "%s: invalid magic characters '%c%c%c%c'\n", __func__, magic[0], magic[1], magic[2], magic[3]);
  16179. fclose(file);
  16180. return NULL;
  16181. }
  16182. }
  16183. }
  16184. bool ok = true;
  16185. struct gguf_context * ctx = GGML_ALIGNED_MALLOC(sizeof(struct gguf_context));
  16186. // read the header
  16187. {
  16188. strncpy(ctx->header.magic, magic, 4);
  16189. ctx->kv = NULL;
  16190. ctx->infos = NULL;
  16191. ctx->data = NULL;
  16192. ok = ok && gguf_fread_el(file, &ctx->header.version, sizeof(ctx->header.version), &offset);
  16193. ok = ok && gguf_fread_el(file, &ctx->header.n_tensors, sizeof(ctx->header.n_tensors), &offset);
  16194. ok = ok && gguf_fread_el(file, &ctx->header.n_kv, sizeof(ctx->header.n_kv), &offset);
  16195. if (ctx->header.version == 1) {
  16196. fprintf(stderr, "%s: GGUFv1 is no longer supported. please use a more up-to-date version\n", __func__);
  16197. fclose(file);
  16198. gguf_free(ctx);
  16199. return NULL;
  16200. }
  16201. // sanity-checks to prevent from integer/buffer overflows
  16202. ok = ok && (ctx->header.n_tensors < (SIZE_MAX/2)/sizeof(struct gguf_tensor_info));
  16203. ok = ok && (ctx->header.n_tensors < (SIZE_MAX/2)/ggml_tensor_overhead());
  16204. ok = ok && (ctx->header.n_kv < (SIZE_MAX/2)/sizeof(struct gguf_kv));
  16205. if (!ok) {
  16206. fprintf(stderr, "%s: failed to read header\n", __func__);
  16207. fclose(file);
  16208. gguf_free(ctx);
  16209. return NULL;
  16210. }
  16211. }
  16212. // read the kv pairs
  16213. {
  16214. ctx->kv = GGML_MALLOC(ctx->header.n_kv * sizeof(struct gguf_kv));
  16215. for (uint64_t i = 0; i < ctx->header.n_kv; ++i) {
  16216. struct gguf_kv * kv = &ctx->kv[i];
  16217. //fprintf(stderr, "%s: reading kv %d\n", __func__, i);
  16218. ok = ok && gguf_fread_str(file, &kv->key, &offset);
  16219. ok = ok && gguf_fread_el (file, &kv->type, sizeof(kv->type), &offset);
  16220. //fprintf(stderr, "%s: reading kv with key %s\n", __func__, kv->key.data);
  16221. switch (kv->type) {
  16222. case GGUF_TYPE_UINT8: ok = ok && gguf_fread_el (file, &kv->value.uint8, sizeof(kv->value.uint8), &offset); break;
  16223. case GGUF_TYPE_INT8: ok = ok && gguf_fread_el (file, &kv->value.int8, sizeof(kv->value.int8), &offset); break;
  16224. case GGUF_TYPE_UINT16: ok = ok && gguf_fread_el (file, &kv->value.uint16, sizeof(kv->value.uint16), &offset); break;
  16225. case GGUF_TYPE_INT16: ok = ok && gguf_fread_el (file, &kv->value.int16, sizeof(kv->value.int16), &offset); break;
  16226. case GGUF_TYPE_UINT32: ok = ok && gguf_fread_el (file, &kv->value.uint32, sizeof(kv->value.uint32), &offset); break;
  16227. case GGUF_TYPE_INT32: ok = ok && gguf_fread_el (file, &kv->value.int32, sizeof(kv->value.int32), &offset); break;
  16228. case GGUF_TYPE_FLOAT32: ok = ok && gguf_fread_el (file, &kv->value.float32, sizeof(kv->value.float32), &offset); break;
  16229. case GGUF_TYPE_UINT64: ok = ok && gguf_fread_el (file, &kv->value.uint64, sizeof(kv->value.uint64), &offset); break;
  16230. case GGUF_TYPE_INT64: ok = ok && gguf_fread_el (file, &kv->value.int64, sizeof(kv->value.int64), &offset); break;
  16231. case GGUF_TYPE_FLOAT64: ok = ok && gguf_fread_el (file, &kv->value.float64, sizeof(kv->value.float64), &offset); break;
  16232. case GGUF_TYPE_BOOL: ok = ok && gguf_fread_el (file, &kv->value.bool_, sizeof(kv->value.bool_), &offset); break;
  16233. case GGUF_TYPE_STRING: ok = ok && gguf_fread_str(file, &kv->value.str, &offset); break;
  16234. case GGUF_TYPE_ARRAY:
  16235. {
  16236. ok = ok && gguf_fread_el(file, &kv->value.arr.type, sizeof(kv->value.arr.type), &offset);
  16237. ok = ok && gguf_fread_el(file, &kv->value.arr.n, sizeof(kv->value.arr.n), &offset);
  16238. switch (kv->value.arr.type) {
  16239. case GGUF_TYPE_UINT8:
  16240. case GGUF_TYPE_INT8:
  16241. case GGUF_TYPE_UINT16:
  16242. case GGUF_TYPE_INT16:
  16243. case GGUF_TYPE_UINT32:
  16244. case GGUF_TYPE_INT32:
  16245. case GGUF_TYPE_FLOAT32:
  16246. case GGUF_TYPE_UINT64:
  16247. case GGUF_TYPE_INT64:
  16248. case GGUF_TYPE_FLOAT64:
  16249. case GGUF_TYPE_BOOL:
  16250. {
  16251. // prevent from integer overflow in the malloc below
  16252. if (kv->value.arr.n >= SIZE_MAX/gguf_type_size(kv->value.arr.type)) {
  16253. fprintf(stderr, "%s: array size is too large (%" PRIu64 ")\n", __func__, kv->value.arr.n);
  16254. fclose(file);
  16255. gguf_free(ctx);
  16256. return NULL;
  16257. }
  16258. kv->value.arr.data = GGML_MALLOC(kv->value.arr.n * gguf_type_size(kv->value.arr.type));
  16259. ok = ok && gguf_fread_el(file, kv->value.arr.data, kv->value.arr.n * gguf_type_size(kv->value.arr.type), &offset);
  16260. } break;
  16261. case GGUF_TYPE_STRING:
  16262. {
  16263. // prevent from integer overflow in the malloc below
  16264. if (kv->value.arr.n >= SIZE_MAX/sizeof(struct gguf_str)) {
  16265. fprintf(stderr, "%s: array size is too large (%" PRIu64 ")\n", __func__, kv->value.arr.n);
  16266. fclose(file);
  16267. gguf_free(ctx);
  16268. return NULL;
  16269. }
  16270. kv->value.arr.data = GGML_MALLOC(kv->value.arr.n * sizeof(struct gguf_str));
  16271. for (uint64_t j = 0; j < kv->value.arr.n; ++j) {
  16272. ok = ok && gguf_fread_str(file, &((struct gguf_str *) kv->value.arr.data)[j], &offset);
  16273. }
  16274. } break;
  16275. case GGUF_TYPE_ARRAY:
  16276. default: GGML_ASSERT(false && "invalid type"); break;
  16277. }
  16278. } break;
  16279. default: GGML_ASSERT(false && "invalid type");
  16280. }
  16281. if (!ok) {
  16282. break;
  16283. }
  16284. }
  16285. if (!ok) {
  16286. fprintf(stderr, "%s: failed to read key-value pairs\n", __func__);
  16287. fclose(file);
  16288. gguf_free(ctx);
  16289. return NULL;
  16290. }
  16291. }
  16292. // read the tensor infos
  16293. {
  16294. ctx->infos = GGML_MALLOC(ctx->header.n_tensors * sizeof(struct gguf_tensor_info));
  16295. for (uint64_t i = 0; i < ctx->header.n_tensors; ++i) {
  16296. struct gguf_tensor_info * info = &ctx->infos[i];
  16297. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  16298. info->ne[j] = 1;
  16299. }
  16300. ok = ok && gguf_fread_str(file, &info->name, &offset);
  16301. ok = ok && gguf_fread_el (file, &info->n_dims, sizeof(info->n_dims), &offset);
  16302. ok = ok && (info->n_dims <= GGML_MAX_DIMS);
  16303. for (uint32_t j = 0; j < info->n_dims; ++j) {
  16304. ok = ok && gguf_fread_el(file, &info->ne[j], sizeof(info->ne[j]), &offset);
  16305. }
  16306. ok = ok && gguf_fread_el (file, &info->type, sizeof(info->type), &offset);
  16307. ok = ok && gguf_fread_el (file, &info->offset, sizeof(info->offset), &offset);
  16308. gguf_tensor_info_sanitize(info);
  16309. if (!ok) {
  16310. fprintf(stderr, "%s: failed to read tensor info\n", __func__);
  16311. fclose(file);
  16312. gguf_free(ctx);
  16313. return NULL;
  16314. }
  16315. }
  16316. }
  16317. ctx->alignment = GGUF_DEFAULT_ALIGNMENT;
  16318. int alignment_idx = gguf_find_key(ctx, "general.alignment");
  16319. if (alignment_idx != -1) {
  16320. ctx->alignment = gguf_get_val_u32(ctx, alignment_idx);
  16321. }
  16322. // we require the data section to be aligned, so take into account any padding
  16323. {
  16324. const size_t offset_pad = offset % ctx->alignment;
  16325. if (offset_pad != 0) {
  16326. offset += ctx->alignment - offset_pad;
  16327. fseek(file, offset, SEEK_SET);
  16328. }
  16329. }
  16330. // store the current file offset - this is where the data section starts
  16331. ctx->offset = offset;
  16332. // compute the total size of the data section, taking into account the alignment
  16333. {
  16334. ctx->size = 0;
  16335. for (uint64_t i = 0; i < ctx->header.n_tensors; ++i) {
  16336. struct gguf_tensor_info * info = &ctx->infos[i];
  16337. const int64_t ne =
  16338. (int64_t) info->ne[0] *
  16339. (int64_t) info->ne[1] *
  16340. (int64_t) info->ne[2] *
  16341. (int64_t) info->ne[3];
  16342. if (ne % ggml_blck_size(info->type) != 0) {
  16343. fprintf(stderr, "%s: tensor '%s' of type %d (%s) number of elements (%" PRId64 ") is not a multiple of block size (%d)\n",
  16344. __func__, info->name.data, (int)info->type, ggml_type_name(info->type), ne, ggml_blck_size(info->type));
  16345. fclose(file);
  16346. gguf_free(ctx);
  16347. return NULL;
  16348. }
  16349. const size_t size_cur = ggml_row_size(info->type, ne);
  16350. ctx->size += GGML_PAD(size_cur, ctx->alignment);
  16351. }
  16352. }
  16353. // load the tensor data only if requested
  16354. if (params.ctx != NULL) {
  16355. // if the provided gguf_context is no_alloc, then we create "empty" tensors and do not read the binary blob
  16356. // otherwise, we load the binary blob into the created ggml_context as well, and point the "data" members of
  16357. // the ggml_tensor structs to the appropriate locations in the binary blob
  16358. // compute the exact size needed for the new ggml_context
  16359. const size_t mem_size =
  16360. params.no_alloc ?
  16361. (ctx->header.n_tensors )*ggml_tensor_overhead() :
  16362. (ctx->header.n_tensors + 1)*ggml_tensor_overhead() + ctx->size;
  16363. struct ggml_init_params pdata = {
  16364. .mem_size = mem_size,
  16365. .mem_buffer = NULL,
  16366. .no_alloc = params.no_alloc,
  16367. };
  16368. *params.ctx = ggml_init(pdata);
  16369. struct ggml_context * ctx_data = *params.ctx;
  16370. struct ggml_tensor * data = NULL;
  16371. if (!params.no_alloc) {
  16372. data = ggml_new_tensor_1d(ctx_data, GGML_TYPE_I8, ctx->size);
  16373. ok = ok && data != NULL;
  16374. // read the binary blob with the tensor data
  16375. ok = ok && gguf_fread_el(file, data->data, ctx->size, &offset);
  16376. if (!ok) {
  16377. fprintf(stderr, "%s: failed to read tensor data\n", __func__);
  16378. fclose(file);
  16379. ggml_free(ctx_data);
  16380. gguf_free(ctx);
  16381. return NULL;
  16382. }
  16383. ctx->data = data->data;
  16384. }
  16385. ggml_set_no_alloc(ctx_data, true);
  16386. // create the tensors
  16387. for (uint64_t i = 0; i < ctx->header.n_tensors; ++i) {
  16388. const int64_t ne[GGML_MAX_DIMS] = {
  16389. ctx->infos[i].ne[0],
  16390. ctx->infos[i].ne[1],
  16391. ctx->infos[i].ne[2],
  16392. ctx->infos[i].ne[3],
  16393. };
  16394. struct ggml_tensor * cur = ggml_new_tensor(ctx_data, ctx->infos[i].type, ctx->infos[i].n_dims, ne);
  16395. ok = ok && cur != NULL;
  16396. ggml_set_name(cur, ctx->infos[i].name.data);
  16397. if (!ok) {
  16398. break;
  16399. }
  16400. // point the data member to the appropriate location in the binary blob using the tensor infos
  16401. if (!params.no_alloc) {
  16402. //cur->data = (char *) data->data + ctx->infos[i].offset - ctx->offset; // offset from start of file
  16403. cur->data = (char *) data->data + ctx->infos[i].offset; // offset from data
  16404. }
  16405. }
  16406. if (!ok) {
  16407. fprintf(stderr, "%s: failed to read the tensor data\n", __func__);
  16408. fclose(file);
  16409. ggml_free(ctx_data);
  16410. gguf_free(ctx);
  16411. return NULL;
  16412. }
  16413. ggml_set_no_alloc(ctx_data, params.no_alloc);
  16414. }
  16415. fclose(file);
  16416. return ctx;
  16417. }
  16418. void gguf_free(struct gguf_context * ctx) {
  16419. if (ctx == NULL) {
  16420. return;
  16421. }
  16422. if (ctx->kv) {
  16423. // free string memory - not great..
  16424. for (uint64_t i = 0; i < ctx->header.n_kv; ++i) {
  16425. struct gguf_kv * kv = &ctx->kv[i];
  16426. if (kv->key.data) {
  16427. GGML_FREE(kv->key.data);
  16428. }
  16429. if (kv->type == GGUF_TYPE_STRING) {
  16430. if (kv->value.str.data) {
  16431. GGML_FREE(kv->value.str.data);
  16432. }
  16433. }
  16434. if (kv->type == GGUF_TYPE_ARRAY) {
  16435. if (kv->value.arr.data) {
  16436. if (kv->value.arr.type == GGUF_TYPE_STRING) {
  16437. for (uint64_t j = 0; j < kv->value.arr.n; ++j) {
  16438. struct gguf_str * str = &((struct gguf_str *) kv->value.arr.data)[j];
  16439. if (str->data) {
  16440. GGML_FREE(str->data);
  16441. }
  16442. }
  16443. }
  16444. GGML_FREE(kv->value.arr.data);
  16445. }
  16446. }
  16447. }
  16448. GGML_FREE(ctx->kv);
  16449. }
  16450. if (ctx->infos) {
  16451. for (uint64_t i = 0; i < ctx->header.n_tensors; ++i) {
  16452. struct gguf_tensor_info * info = &ctx->infos[i];
  16453. if (info->name.data) {
  16454. GGML_FREE(info->name.data);
  16455. }
  16456. }
  16457. GGML_FREE(ctx->infos);
  16458. }
  16459. GGML_ALIGNED_FREE(ctx);
  16460. }
  16461. const char * gguf_type_name(enum gguf_type type) {
  16462. return GGUF_TYPE_NAME[type];
  16463. }
  16464. int gguf_get_version(const struct gguf_context * ctx) {
  16465. return ctx->header.version;
  16466. }
  16467. size_t gguf_get_alignment(const struct gguf_context * ctx) {
  16468. return ctx->alignment;
  16469. }
  16470. size_t gguf_get_data_offset(const struct gguf_context * ctx) {
  16471. return ctx->offset;
  16472. }
  16473. void * gguf_get_data(const struct gguf_context * ctx) {
  16474. return ctx->data;
  16475. }
  16476. int gguf_get_n_kv(const struct gguf_context * ctx) {
  16477. return ctx->header.n_kv;
  16478. }
  16479. int gguf_find_key(const struct gguf_context * ctx, const char * key) {
  16480. // return -1 if key not found
  16481. int keyfound = -1;
  16482. const int n_kv = gguf_get_n_kv(ctx);
  16483. for (int i = 0; i < n_kv; ++i) {
  16484. if (strcmp(key, gguf_get_key(ctx, i)) == 0) {
  16485. keyfound = i;
  16486. break;
  16487. }
  16488. }
  16489. return keyfound;
  16490. }
  16491. const char * gguf_get_key(const struct gguf_context * ctx, int key_id) {
  16492. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  16493. return ctx->kv[key_id].key.data;
  16494. }
  16495. enum gguf_type gguf_get_kv_type(const struct gguf_context * ctx, int key_id) {
  16496. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  16497. return ctx->kv[key_id].type;
  16498. }
  16499. enum gguf_type gguf_get_arr_type(const struct gguf_context * ctx, int key_id) {
  16500. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  16501. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_ARRAY);
  16502. return ctx->kv[key_id].value.arr.type;
  16503. }
  16504. const void * gguf_get_arr_data(const struct gguf_context * ctx, int key_id) {
  16505. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  16506. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_ARRAY);
  16507. return ctx->kv[key_id].value.arr.data;
  16508. }
  16509. const char * gguf_get_arr_str(const struct gguf_context * ctx, int key_id, int i) {
  16510. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  16511. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_ARRAY);
  16512. struct gguf_kv * kv = &ctx->kv[key_id];
  16513. struct gguf_str * str = &((struct gguf_str *) kv->value.arr.data)[i];
  16514. return str->data;
  16515. }
  16516. int gguf_get_arr_n(const struct gguf_context * ctx, int key_id) {
  16517. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  16518. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_ARRAY);
  16519. return ctx->kv[key_id].value.arr.n;
  16520. }
  16521. uint8_t gguf_get_val_u8(const struct gguf_context * ctx, int key_id) {
  16522. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  16523. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_UINT8);
  16524. return ctx->kv[key_id].value.uint8;
  16525. }
  16526. int8_t gguf_get_val_i8(const struct gguf_context * ctx, int key_id) {
  16527. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  16528. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_INT8);
  16529. return ctx->kv[key_id].value.int8;
  16530. }
  16531. uint16_t gguf_get_val_u16(const struct gguf_context * ctx, int key_id) {
  16532. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  16533. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_UINT16);
  16534. return ctx->kv[key_id].value.uint16;
  16535. }
  16536. int16_t gguf_get_val_i16(const struct gguf_context * ctx, int key_id) {
  16537. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  16538. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_INT16);
  16539. return ctx->kv[key_id].value.int16;
  16540. }
  16541. uint32_t gguf_get_val_u32(const struct gguf_context * ctx, int key_id) {
  16542. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  16543. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_UINT32);
  16544. return ctx->kv[key_id].value.uint32;
  16545. }
  16546. int32_t gguf_get_val_i32(const struct gguf_context * ctx, int key_id) {
  16547. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  16548. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_INT32);
  16549. return ctx->kv[key_id].value.int32;
  16550. }
  16551. float gguf_get_val_f32(const struct gguf_context * ctx, int key_id) {
  16552. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  16553. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_FLOAT32);
  16554. return ctx->kv[key_id].value.float32;
  16555. }
  16556. uint64_t gguf_get_val_u64(const struct gguf_context * ctx, int key_id) {
  16557. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  16558. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_UINT64);
  16559. return ctx->kv[key_id].value.uint64;
  16560. }
  16561. int64_t gguf_get_val_i64(const struct gguf_context * ctx, int key_id) {
  16562. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  16563. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_INT64);
  16564. return ctx->kv[key_id].value.int64;
  16565. }
  16566. double gguf_get_val_f64(const struct gguf_context * ctx, int key_id) {
  16567. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  16568. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_FLOAT64);
  16569. return ctx->kv[key_id].value.float64;
  16570. }
  16571. bool gguf_get_val_bool(const struct gguf_context * ctx, int key_id) {
  16572. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  16573. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_BOOL);
  16574. return ctx->kv[key_id].value.bool_;
  16575. }
  16576. const char * gguf_get_val_str(const struct gguf_context * ctx, int key_id) {
  16577. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  16578. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_STRING);
  16579. return ctx->kv[key_id].value.str.data;
  16580. }
  16581. const void * gguf_get_val_data(const struct gguf_context * ctx, int key_id) {
  16582. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  16583. GGML_ASSERT(ctx->kv[key_id].type != GGUF_TYPE_ARRAY);
  16584. GGML_ASSERT(ctx->kv[key_id].type != GGUF_TYPE_STRING);
  16585. return &ctx->kv[key_id].value;
  16586. }
  16587. int gguf_get_n_tensors(const struct gguf_context * ctx) {
  16588. return ctx->header.n_tensors;
  16589. }
  16590. int gguf_find_tensor(const struct gguf_context * ctx, const char * name) {
  16591. // return -1 if tensor not found
  16592. int tensorfound = -1;
  16593. const int n_tensors = gguf_get_n_tensors(ctx);
  16594. for (int i = 0; i < n_tensors; ++i) {
  16595. if (strcmp(name, gguf_get_tensor_name(ctx, i)) == 0) {
  16596. tensorfound = i;
  16597. break;
  16598. }
  16599. }
  16600. return tensorfound;
  16601. }
  16602. size_t gguf_get_tensor_offset(const struct gguf_context * ctx, int i) {
  16603. return ctx->infos[i].offset;
  16604. }
  16605. char * gguf_get_tensor_name(const struct gguf_context * ctx, int i) {
  16606. return ctx->infos[i].name.data;
  16607. }
  16608. enum ggml_type gguf_get_tensor_type(const struct gguf_context * ctx, int i) {
  16609. return ctx->infos[i].type;
  16610. }
  16611. // returns the index
  16612. static int gguf_get_or_add_key(struct gguf_context * ctx, const char * key) {
  16613. const int idx = gguf_find_key(ctx, key);
  16614. if (idx >= 0) {
  16615. return idx;
  16616. }
  16617. const int n_kv = gguf_get_n_kv(ctx);
  16618. ctx->kv = realloc(ctx->kv, (n_kv + 1) * sizeof(struct gguf_kv));
  16619. ctx->kv[n_kv].key.n = strlen(key);
  16620. ctx->kv[n_kv].key.data = strdup(key);
  16621. ctx->header.n_kv++;
  16622. return n_kv;
  16623. }
  16624. void gguf_set_val_u8(struct gguf_context * ctx, const char * key, uint8_t val) {
  16625. const int idx = gguf_get_or_add_key(ctx, key);
  16626. ctx->kv[idx].type = GGUF_TYPE_UINT8;
  16627. ctx->kv[idx].value.uint8 = val;
  16628. }
  16629. void gguf_set_val_i8(struct gguf_context * ctx, const char * key, int8_t val) {
  16630. const int idx = gguf_get_or_add_key(ctx, key);
  16631. ctx->kv[idx].type = GGUF_TYPE_INT8;
  16632. ctx->kv[idx].value.int8 = val;
  16633. }
  16634. void gguf_set_val_u16(struct gguf_context * ctx, const char * key, uint16_t val) {
  16635. const int idx = gguf_get_or_add_key(ctx, key);
  16636. ctx->kv[idx].type = GGUF_TYPE_UINT16;
  16637. ctx->kv[idx].value.uint16 = val;
  16638. }
  16639. void gguf_set_val_i16(struct gguf_context * ctx, const char * key, int16_t val) {
  16640. const int idx = gguf_get_or_add_key(ctx, key);
  16641. ctx->kv[idx].type = GGUF_TYPE_INT16;
  16642. ctx->kv[idx].value.int16 = val;
  16643. }
  16644. void gguf_set_val_u32(struct gguf_context * ctx, const char * key, uint32_t val) {
  16645. const int idx = gguf_get_or_add_key(ctx, key);
  16646. ctx->kv[idx].type = GGUF_TYPE_UINT32;
  16647. ctx->kv[idx].value.uint32 = val;
  16648. }
  16649. void gguf_set_val_i32(struct gguf_context * ctx, const char * key, int32_t val) {
  16650. const int idx = gguf_get_or_add_key(ctx, key);
  16651. ctx->kv[idx].type = GGUF_TYPE_INT32;
  16652. ctx->kv[idx].value.int32 = val;
  16653. }
  16654. void gguf_set_val_f32(struct gguf_context * ctx, const char * key, float val) {
  16655. const int idx = gguf_get_or_add_key(ctx, key);
  16656. ctx->kv[idx].type = GGUF_TYPE_FLOAT32;
  16657. ctx->kv[idx].value.float32 = val;
  16658. }
  16659. void gguf_set_val_u64(struct gguf_context * ctx, const char * key, uint64_t val) {
  16660. const int idx = gguf_get_or_add_key(ctx, key);
  16661. ctx->kv[idx].type = GGUF_TYPE_UINT64;
  16662. ctx->kv[idx].value.uint64 = val;
  16663. }
  16664. void gguf_set_val_i64(struct gguf_context * ctx, const char * key, int64_t val) {
  16665. const int idx = gguf_get_or_add_key(ctx, key);
  16666. ctx->kv[idx].type = GGUF_TYPE_INT64;
  16667. ctx->kv[idx].value.int64 = val;
  16668. }
  16669. void gguf_set_val_f64(struct gguf_context * ctx, const char * key, double val) {
  16670. const int idx = gguf_get_or_add_key(ctx, key);
  16671. ctx->kv[idx].type = GGUF_TYPE_FLOAT64;
  16672. ctx->kv[idx].value.float64 = val;
  16673. }
  16674. void gguf_set_val_bool(struct gguf_context * ctx, const char * key, bool val) {
  16675. const int idx = gguf_get_or_add_key(ctx, key);
  16676. ctx->kv[idx].type = GGUF_TYPE_BOOL;
  16677. ctx->kv[idx].value.bool_ = val;
  16678. }
  16679. void gguf_set_val_str(struct gguf_context * ctx, const char * key, const char * val) {
  16680. const int idx = gguf_get_or_add_key(ctx, key);
  16681. ctx->kv[idx].type = GGUF_TYPE_STRING;
  16682. ctx->kv[idx].value.str.n = strlen(val);
  16683. ctx->kv[idx].value.str.data = strdup(val);
  16684. }
  16685. void gguf_set_arr_data(struct gguf_context * ctx, const char * key, enum gguf_type type, const void * data, int n) {
  16686. const int idx = gguf_get_or_add_key(ctx, key);
  16687. ctx->kv[idx].type = GGUF_TYPE_ARRAY;
  16688. ctx->kv[idx].value.arr.type = type;
  16689. ctx->kv[idx].value.arr.n = n;
  16690. ctx->kv[idx].value.arr.data = GGML_MALLOC(n*gguf_type_size(type));
  16691. memcpy(ctx->kv[idx].value.arr.data, data, n*gguf_type_size(type));
  16692. }
  16693. void gguf_set_arr_str(struct gguf_context * ctx, const char * key, const char ** data, int n) {
  16694. const int idx = gguf_get_or_add_key(ctx, key);
  16695. ctx->kv[idx].type = GGUF_TYPE_ARRAY;
  16696. ctx->kv[idx].value.arr.type = GGUF_TYPE_STRING;
  16697. ctx->kv[idx].value.arr.n = n;
  16698. ctx->kv[idx].value.arr.data = GGML_MALLOC(n*sizeof(struct gguf_str));
  16699. for (int i = 0; i < n; i++) {
  16700. struct gguf_str * str = &((struct gguf_str *)ctx->kv[idx].value.arr.data)[i];
  16701. str->n = strlen(data[i]);
  16702. str->data = strdup(data[i]);
  16703. }
  16704. }
  16705. // set or add KV pairs from another context
  16706. void gguf_set_kv(struct gguf_context * ctx, struct gguf_context * src) {
  16707. for (uint32_t i = 0; i < src->header.n_kv; i++) {
  16708. switch (src->kv[i].type) {
  16709. case GGUF_TYPE_UINT8: gguf_set_val_u8 (ctx, src->kv[i].key.data, src->kv[i].value.uint8); break;
  16710. case GGUF_TYPE_INT8: gguf_set_val_i8 (ctx, src->kv[i].key.data, src->kv[i].value.int8); break;
  16711. case GGUF_TYPE_UINT16: gguf_set_val_u16 (ctx, src->kv[i].key.data, src->kv[i].value.uint16); break;
  16712. case GGUF_TYPE_INT16: gguf_set_val_i16 (ctx, src->kv[i].key.data, src->kv[i].value.int16); break;
  16713. case GGUF_TYPE_UINT32: gguf_set_val_u32 (ctx, src->kv[i].key.data, src->kv[i].value.uint32); break;
  16714. case GGUF_TYPE_INT32: gguf_set_val_i32 (ctx, src->kv[i].key.data, src->kv[i].value.int32); break;
  16715. case GGUF_TYPE_FLOAT32: gguf_set_val_f32 (ctx, src->kv[i].key.data, src->kv[i].value.float32); break;
  16716. case GGUF_TYPE_UINT64: gguf_set_val_u64 (ctx, src->kv[i].key.data, src->kv[i].value.uint64); break;
  16717. case GGUF_TYPE_INT64: gguf_set_val_i64 (ctx, src->kv[i].key.data, src->kv[i].value.int64); break;
  16718. case GGUF_TYPE_FLOAT64: gguf_set_val_f64 (ctx, src->kv[i].key.data, src->kv[i].value.float64); break;
  16719. case GGUF_TYPE_BOOL: gguf_set_val_bool(ctx, src->kv[i].key.data, src->kv[i].value.bool_); break;
  16720. case GGUF_TYPE_STRING: gguf_set_val_str (ctx, src->kv[i].key.data, src->kv[i].value.str.data); break;
  16721. case GGUF_TYPE_ARRAY:
  16722. {
  16723. if (src->kv[i].value.arr.type == GGUF_TYPE_STRING) {
  16724. const char ** data = GGML_MALLOC(src->kv[i].value.arr.n*sizeof(char *));
  16725. for (uint32_t j = 0; j < src->kv[i].value.arr.n; j++) {
  16726. data[j] = ((struct gguf_str *)src->kv[i].value.arr.data)[j].data;
  16727. }
  16728. gguf_set_arr_str(ctx, src->kv[i].key.data, data, src->kv[i].value.arr.n);
  16729. GGML_FREE((void *)data);
  16730. } else if (src->kv[i].value.arr.type == GGUF_TYPE_ARRAY) {
  16731. GGML_ASSERT(false && "nested arrays not supported");
  16732. } else {
  16733. gguf_set_arr_data(ctx, src->kv[i].key.data, src->kv[i].value.arr.type, src->kv[i].value.arr.data, src->kv[i].value.arr.n);
  16734. }
  16735. } break;
  16736. default: GGML_ASSERT(false && "invalid type"); break;
  16737. }
  16738. }
  16739. }
  16740. void gguf_add_tensor(
  16741. struct gguf_context * ctx,
  16742. const struct ggml_tensor * tensor) {
  16743. const int idx = ctx->header.n_tensors;
  16744. ctx->infos = realloc(ctx->infos, (idx + 1)*sizeof(struct gguf_tensor_info));
  16745. ctx->infos[idx].name.n = strlen(tensor->name);
  16746. ctx->infos[idx].name.data = strdup(tensor->name);
  16747. for (int i = 0; i < GGML_MAX_DIMS; ++i) {
  16748. ctx->infos[idx].ne[i] = 1;
  16749. }
  16750. ctx->infos[idx].n_dims = ggml_n_dims(tensor);
  16751. for (uint32_t i = 0; i < ctx->infos[idx].n_dims; i++) {
  16752. ctx->infos[idx].ne[i] = tensor->ne[i];
  16753. }
  16754. ctx->infos[idx].type = tensor->type;
  16755. ctx->infos[idx].offset = 0;
  16756. ctx->infos[idx].data = tensor->data;
  16757. ctx->infos[idx].size = ggml_nbytes(tensor);
  16758. if (ctx->header.n_tensors > 0) {
  16759. ctx->infos[idx].offset = ctx->infos[idx - 1].offset + GGML_PAD(ctx->infos[idx - 1].size, ctx->alignment);
  16760. }
  16761. ctx->header.n_tensors++;
  16762. }
  16763. void gguf_set_tensor_type(struct gguf_context * ctx, const char * name, enum ggml_type type) {
  16764. const int idx = gguf_find_tensor(ctx, name);
  16765. if (idx < 0) {
  16766. GGML_ASSERT(false && "tensor not found");
  16767. }
  16768. ctx->infos[idx].type = type;
  16769. }
  16770. void gguf_set_tensor_data(struct gguf_context * ctx, const char * name, const void * data, size_t size) {
  16771. const int idx = gguf_find_tensor(ctx, name);
  16772. if (idx < 0) {
  16773. GGML_ASSERT(false && "tensor not found");
  16774. }
  16775. ctx->infos[idx].data = data;
  16776. ctx->infos[idx].size = size;
  16777. // update offsets
  16778. for (uint32_t i = idx + 1; i < ctx->header.n_tensors; ++i) {
  16779. ctx->infos[i].offset = ctx->infos[i - 1].offset + GGML_PAD(ctx->infos[i - 1].size, ctx->alignment);
  16780. }
  16781. }
  16782. //static void gguf_fwrite_str(FILE * file, const struct gguf_str * val) {
  16783. // fwrite(&val->n, sizeof(val->n), 1, file);
  16784. // fwrite(val->data, sizeof(char), val->n, file);
  16785. //}
  16786. //
  16787. //static void gguf_fwrite_el(FILE * file, const void * val, size_t size) {
  16788. // fwrite(val, sizeof(char), size, file);
  16789. //}
  16790. struct gguf_buf {
  16791. void * data;
  16792. size_t size;
  16793. size_t offset;
  16794. };
  16795. static struct gguf_buf gguf_buf_init(size_t size) {
  16796. struct gguf_buf buf = {
  16797. /*buf.data =*/ size == 0 ? NULL : GGML_MALLOC(size),
  16798. /*buf.size =*/ size,
  16799. /*buf.offset =*/ 0,
  16800. };
  16801. return buf;
  16802. }
  16803. static void gguf_buf_free(struct gguf_buf buf) {
  16804. if (buf.data) {
  16805. GGML_FREE(buf.data);
  16806. }
  16807. }
  16808. static void gguf_buf_grow(struct gguf_buf * buf, size_t size) {
  16809. if (buf->offset + size > buf->size) {
  16810. buf->size = 1.5*(buf->offset + size);
  16811. if (buf->data) {
  16812. buf->data = realloc(buf->data, buf->size);
  16813. }
  16814. }
  16815. }
  16816. static void gguf_bwrite_str(struct gguf_buf * buf, const struct gguf_str * val) {
  16817. gguf_buf_grow(buf, sizeof(val->n) + val->n);
  16818. if (buf->data) {
  16819. memcpy((char *) buf->data + buf->offset, &val->n, sizeof(val->n));
  16820. }
  16821. buf->offset += sizeof(val->n);
  16822. if (buf->data) {
  16823. memcpy((char *) buf->data + buf->offset, val->data, val->n);
  16824. }
  16825. buf->offset += val->n;
  16826. }
  16827. static void gguf_bwrite_el(struct gguf_buf * buf, const void * val, size_t el_size) {
  16828. gguf_buf_grow(buf, el_size);
  16829. if (buf->data) {
  16830. memcpy((char *) buf->data + buf->offset, val, el_size);
  16831. }
  16832. buf->offset += el_size;
  16833. }
  16834. static void gguf_write_to_buf(const struct gguf_context * ctx, struct gguf_buf * buf, bool only_meta) {
  16835. // write header
  16836. gguf_bwrite_el(buf, &ctx->header.magic, sizeof(ctx->header.magic));
  16837. gguf_bwrite_el(buf, &ctx->header.version, sizeof(ctx->header.version));
  16838. gguf_bwrite_el(buf, &ctx->header.n_tensors, sizeof(ctx->header.n_tensors));
  16839. gguf_bwrite_el(buf, &ctx->header.n_kv, sizeof(ctx->header.n_kv));
  16840. // write key-value pairs
  16841. for (uint32_t i = 0; i < ctx->header.n_kv; ++i) {
  16842. struct gguf_kv * kv = &ctx->kv[i];
  16843. gguf_bwrite_str(buf, &kv->key);
  16844. gguf_bwrite_el (buf, &kv->type, sizeof(kv->type));
  16845. switch (kv->type) {
  16846. case GGUF_TYPE_UINT8: gguf_bwrite_el( buf, &kv->value.uint8, sizeof(kv->value.uint8) ); break;
  16847. case GGUF_TYPE_INT8: gguf_bwrite_el (buf, &kv->value.int8, sizeof(kv->value.int8) ); break;
  16848. case GGUF_TYPE_UINT16: gguf_bwrite_el (buf, &kv->value.uint16, sizeof(kv->value.uint16) ); break;
  16849. case GGUF_TYPE_INT16: gguf_bwrite_el (buf, &kv->value.int16, sizeof(kv->value.int16) ); break;
  16850. case GGUF_TYPE_UINT32: gguf_bwrite_el (buf, &kv->value.uint32, sizeof(kv->value.uint32) ); break;
  16851. case GGUF_TYPE_INT32: gguf_bwrite_el (buf, &kv->value.int32, sizeof(kv->value.int32) ); break;
  16852. case GGUF_TYPE_FLOAT32: gguf_bwrite_el (buf, &kv->value.float32, sizeof(kv->value.float32)); break;
  16853. case GGUF_TYPE_UINT64: gguf_bwrite_el (buf, &kv->value.uint64, sizeof(kv->value.uint64) ); break;
  16854. case GGUF_TYPE_INT64: gguf_bwrite_el (buf, &kv->value.int64, sizeof(kv->value.int64) ); break;
  16855. case GGUF_TYPE_FLOAT64: gguf_bwrite_el (buf, &kv->value.float64, sizeof(kv->value.float64)); break;
  16856. case GGUF_TYPE_BOOL: gguf_bwrite_el (buf, &kv->value.bool_, sizeof(kv->value.bool_) ); break;
  16857. case GGUF_TYPE_STRING: gguf_bwrite_str(buf, &kv->value.str ); break;
  16858. case GGUF_TYPE_ARRAY:
  16859. {
  16860. gguf_bwrite_el(buf, &kv->value.arr.type, sizeof(kv->value.arr.type));
  16861. gguf_bwrite_el(buf, &kv->value.arr.n, sizeof(kv->value.arr.n) );
  16862. switch (kv->value.arr.type) {
  16863. case GGUF_TYPE_UINT8:
  16864. case GGUF_TYPE_INT8:
  16865. case GGUF_TYPE_UINT16:
  16866. case GGUF_TYPE_INT16:
  16867. case GGUF_TYPE_UINT32:
  16868. case GGUF_TYPE_INT32:
  16869. case GGUF_TYPE_FLOAT32:
  16870. case GGUF_TYPE_UINT64:
  16871. case GGUF_TYPE_INT64:
  16872. case GGUF_TYPE_FLOAT64:
  16873. case GGUF_TYPE_BOOL:
  16874. {
  16875. gguf_bwrite_el(buf, kv->value.arr.data, kv->value.arr.n * gguf_type_size(kv->value.arr.type));
  16876. } break;
  16877. case GGUF_TYPE_STRING:
  16878. {
  16879. for (uint32_t j = 0; j < kv->value.arr.n; ++j) {
  16880. gguf_bwrite_str(buf, &((struct gguf_str *) kv->value.arr.data)[j]);
  16881. }
  16882. } break;
  16883. case GGUF_TYPE_ARRAY:
  16884. default: GGML_ASSERT(false && "invalid type"); break;
  16885. }
  16886. } break;
  16887. default: GGML_ASSERT(false && "invalid type");
  16888. }
  16889. }
  16890. // write tensor infos
  16891. for (uint32_t i = 0; i < ctx->header.n_tensors; ++i) {
  16892. struct gguf_tensor_info * info = &ctx->infos[i];
  16893. gguf_bwrite_str(buf, &info->name);
  16894. gguf_bwrite_el (buf, &info->n_dims, sizeof(info->n_dims));
  16895. for (uint32_t j = 0; j < info->n_dims; ++j) {
  16896. gguf_bwrite_el(buf, &info->ne[j], sizeof(info->ne[j]));
  16897. }
  16898. gguf_bwrite_el(buf, &info->type, sizeof(info->type));
  16899. gguf_bwrite_el(buf, &info->offset, sizeof(info->offset));
  16900. }
  16901. // we require the data section to be aligned, so take into account any padding
  16902. {
  16903. const size_t offset = buf->offset;
  16904. const size_t offset_pad = GGML_PAD(offset, ctx->alignment);
  16905. if (offset_pad != offset) {
  16906. uint8_t pad = 0;
  16907. for (size_t i = 0; i < offset_pad - offset; ++i) {
  16908. gguf_bwrite_el(buf, &pad, sizeof(pad));
  16909. }
  16910. }
  16911. }
  16912. if (only_meta) {
  16913. return;
  16914. }
  16915. size_t offset = 0;
  16916. // write tensor data
  16917. for (uint32_t i = 0; i < ctx->header.n_tensors; ++i) {
  16918. struct gguf_tensor_info * info = &ctx->infos[i];
  16919. const size_t size = info->size;
  16920. const size_t size_pad = GGML_PAD(size, ctx->alignment);
  16921. gguf_bwrite_el(buf, info->data, size);
  16922. if (size_pad != size) {
  16923. uint8_t pad = 0;
  16924. for (size_t j = 0; j < size_pad - size; ++j) {
  16925. gguf_bwrite_el(buf, &pad, sizeof(pad));
  16926. }
  16927. }
  16928. GGML_ASSERT(offset == info->offset);
  16929. offset += size_pad;
  16930. }
  16931. }
  16932. void gguf_write_to_file(const struct gguf_context * ctx, const char * fname, bool only_meta) {
  16933. FILE * file = fopen(fname, "wb");
  16934. if (!file) {
  16935. GGML_ASSERT(false && "failed to open file for writing");
  16936. }
  16937. struct gguf_buf buf = gguf_buf_init(16*1024);
  16938. gguf_write_to_buf(ctx, &buf, only_meta);
  16939. fwrite(buf.data, 1, buf.offset, file);
  16940. gguf_buf_free(buf);
  16941. fclose(file);
  16942. }
  16943. size_t gguf_get_meta_size(const struct gguf_context * ctx) {
  16944. // no allocs - only compute size
  16945. struct gguf_buf buf = gguf_buf_init(0);
  16946. gguf_write_to_buf(ctx, &buf, true);
  16947. return buf.offset;
  16948. }
  16949. void gguf_get_meta_data(const struct gguf_context * ctx, void * data) {
  16950. struct gguf_buf buf = gguf_buf_init(16*1024);
  16951. gguf_write_to_buf(ctx, &buf, true);
  16952. memcpy(data, buf.data, buf.offset);
  16953. gguf_buf_free(buf);
  16954. }
  16955. ////////////////////////////////////////////////////////////////////////////////
  16956. int ggml_cpu_has_avx(void) {
  16957. #if defined(__AVX__)
  16958. return 1;
  16959. #else
  16960. return 0;
  16961. #endif
  16962. }
  16963. int ggml_cpu_has_avx_vnni(void) {
  16964. #if defined(__AVXVNNI__)
  16965. return 1;
  16966. #else
  16967. return 0;
  16968. #endif
  16969. }
  16970. int ggml_cpu_has_avx2(void) {
  16971. #if defined(__AVX2__)
  16972. return 1;
  16973. #else
  16974. return 0;
  16975. #endif
  16976. }
  16977. int ggml_cpu_has_avx512(void) {
  16978. #if defined(__AVX512F__)
  16979. return 1;
  16980. #else
  16981. return 0;
  16982. #endif
  16983. }
  16984. int ggml_cpu_has_avx512_vbmi(void) {
  16985. #if defined(__AVX512VBMI__)
  16986. return 1;
  16987. #else
  16988. return 0;
  16989. #endif
  16990. }
  16991. int ggml_cpu_has_avx512_vnni(void) {
  16992. #if defined(__AVX512VNNI__)
  16993. return 1;
  16994. #else
  16995. return 0;
  16996. #endif
  16997. }
  16998. int ggml_cpu_has_fma(void) {
  16999. #if defined(__FMA__)
  17000. return 1;
  17001. #else
  17002. return 0;
  17003. #endif
  17004. }
  17005. int ggml_cpu_has_neon(void) {
  17006. #if defined(__ARM_NEON)
  17007. return 1;
  17008. #else
  17009. return 0;
  17010. #endif
  17011. }
  17012. int ggml_cpu_has_arm_fma(void) {
  17013. #if defined(__ARM_FEATURE_FMA)
  17014. return 1;
  17015. #else
  17016. return 0;
  17017. #endif
  17018. }
  17019. int ggml_cpu_has_metal(void) {
  17020. #if defined(GGML_USE_METAL)
  17021. return 1;
  17022. #else
  17023. return 0;
  17024. #endif
  17025. }
  17026. int ggml_cpu_has_f16c(void) {
  17027. #if defined(__F16C__)
  17028. return 1;
  17029. #else
  17030. return 0;
  17031. #endif
  17032. }
  17033. int ggml_cpu_has_fp16_va(void) {
  17034. #if defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC)
  17035. return 1;
  17036. #else
  17037. return 0;
  17038. #endif
  17039. }
  17040. int ggml_cpu_has_wasm_simd(void) {
  17041. #if defined(__wasm_simd128__)
  17042. return 1;
  17043. #else
  17044. return 0;
  17045. #endif
  17046. }
  17047. int ggml_cpu_has_blas(void) {
  17048. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CUBLAS) || defined(GGML_USE_VULKAN) || defined(GGML_USE_CLBLAST) || defined(GGML_USE_SYCL)
  17049. return 1;
  17050. #else
  17051. return 0;
  17052. #endif
  17053. }
  17054. int ggml_cpu_has_cublas(void) {
  17055. #if defined(GGML_USE_CUBLAS)
  17056. return 1;
  17057. #else
  17058. return 0;
  17059. #endif
  17060. }
  17061. int ggml_cpu_has_clblast(void) {
  17062. #if defined(GGML_USE_CLBLAST)
  17063. return 1;
  17064. #else
  17065. return 0;
  17066. #endif
  17067. }
  17068. int ggml_cpu_has_vulkan(void) {
  17069. #if defined(GGML_USE_VULKAN)
  17070. return 1;
  17071. #else
  17072. return 0;
  17073. #endif
  17074. }
  17075. int ggml_cpu_has_kompute(void) {
  17076. #if defined(GGML_USE_KOMPUTE)
  17077. return 1;
  17078. #else
  17079. return 0;
  17080. #endif
  17081. }
  17082. int ggml_cpu_has_sycl(void) {
  17083. #if defined(GGML_USE_SYCL)
  17084. return 1;
  17085. #else
  17086. return 0;
  17087. #endif
  17088. }
  17089. int ggml_cpu_has_gpublas(void) {
  17090. return ggml_cpu_has_cublas() || ggml_cpu_has_clblast() || ggml_cpu_has_vulkan() || ggml_cpu_has_kompute() ||
  17091. ggml_cpu_has_sycl();
  17092. }
  17093. int ggml_cpu_has_sse3(void) {
  17094. #if defined(__SSE3__)
  17095. return 1;
  17096. #else
  17097. return 0;
  17098. #endif
  17099. }
  17100. int ggml_cpu_has_ssse3(void) {
  17101. #if defined(__SSSE3__)
  17102. return 1;
  17103. #else
  17104. return 0;
  17105. #endif
  17106. }
  17107. int ggml_cpu_has_vsx(void) {
  17108. #if defined(__POWER9_VECTOR__)
  17109. return 1;
  17110. #else
  17111. return 0;
  17112. #endif
  17113. }
  17114. ////////////////////////////////////////////////////////////////////////////////