clip.cpp 218 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122
  1. // NOTE: This is modified from clip.cpp only for LLaVA,
  2. // so there might be still unnecessary artifacts hanging around
  3. // I'll gradually clean and extend it
  4. // Note: Even when using identical normalized image inputs (see normalize_image_u8_to_f32()) we have a significant difference in resulting embeddings compared to pytorch
  5. #include "clip.h"
  6. #include "clip-impl.h"
  7. #include "ggml.h"
  8. #include "ggml-cpp.h"
  9. #include "ggml-alloc.h"
  10. #include "ggml-backend.h"
  11. #include "gguf.h"
  12. #include <cassert>
  13. #include <cmath>
  14. #include <cstdlib>
  15. #include <cstring>
  16. #include <fstream>
  17. #include <map>
  18. #include <stdexcept>
  19. #include <unordered_set>
  20. #include <vector>
  21. #include <cinttypes>
  22. #include <limits>
  23. #include <array>
  24. #include <functional>
  25. struct clip_logger_state g_logger_state = {clip_log_callback_default, NULL};
  26. enum ffn_op_type {
  27. FFN_GELU,
  28. FFN_GELU_ERF,
  29. FFN_SILU,
  30. FFN_GELU_QUICK,
  31. };
  32. enum norm_type {
  33. NORM_TYPE_NORMAL,
  34. NORM_TYPE_RMS,
  35. };
  36. //#define CLIP_DEBUG_FUNCTIONS
  37. #ifdef CLIP_DEBUG_FUNCTIONS
  38. static void clip_image_write_image_to_ppm(const clip_image_u8& img, const std::string& filename) {
  39. std::ofstream file(filename, std::ios::binary);
  40. if (!file.is_open()) {
  41. LOG_ERR("Failed to open file for writing: %s\n", filename.c_str());
  42. return;
  43. }
  44. // PPM header: P6 format, width, height, and max color value
  45. file << "P6\n" << img.nx << " " << img.ny << "\n255\n";
  46. // Write pixel data
  47. for (size_t i = 0; i < img.buf.size(); i += 3) {
  48. // PPM expects binary data in RGB format, which matches our image buffer
  49. file.write(reinterpret_cast<const char*>(&img.buf[i]), 3);
  50. }
  51. file.close();
  52. }
  53. static void clip_image_save_to_bmp(const clip_image_u8& img, const std::string& filename) {
  54. std::ofstream file(filename, std::ios::binary);
  55. if (!file.is_open()) {
  56. LOG_ERR("Failed to open file for writing: %s\n", filename.c_str());
  57. return;
  58. }
  59. int fileSize = 54 + 3 * img.nx * img.ny; // File header + info header + pixel data
  60. int bytesPerPixel = 3;
  61. int widthInBytes = img.nx * bytesPerPixel;
  62. int paddingAmount = (4 - (widthInBytes % 4)) % 4;
  63. int stride = widthInBytes + paddingAmount;
  64. // Bitmap file header
  65. unsigned char fileHeader[14] = {
  66. 'B','M', // Signature
  67. 0,0,0,0, // Image file size in bytes
  68. 0,0,0,0, // Reserved
  69. 54,0,0,0 // Start of pixel array
  70. };
  71. // Total file size
  72. fileSize = 54 + (stride * img.ny);
  73. fileHeader[2] = (unsigned char)(fileSize);
  74. fileHeader[3] = (unsigned char)(fileSize >> 8);
  75. fileHeader[4] = (unsigned char)(fileSize >> 16);
  76. fileHeader[5] = (unsigned char)(fileSize >> 24);
  77. // Bitmap information header (BITMAPINFOHEADER)
  78. unsigned char infoHeader[40] = {
  79. 40,0,0,0, // Size of this header (40 bytes)
  80. 0,0,0,0, // Image width
  81. 0,0,0,0, // Image height
  82. 1,0, // Number of color planes
  83. 24,0, // Bits per pixel
  84. 0,0,0,0, // No compression
  85. 0,0,0,0, // Image size (can be 0 for no compression)
  86. 0,0,0,0, // X pixels per meter (not specified)
  87. 0,0,0,0, // Y pixels per meter (not specified)
  88. 0,0,0,0, // Total colors (color table not used)
  89. 0,0,0,0 // Important colors (all are important)
  90. };
  91. // Width and height in the information header
  92. infoHeader[4] = (unsigned char)(img.nx);
  93. infoHeader[5] = (unsigned char)(img.nx >> 8);
  94. infoHeader[6] = (unsigned char)(img.nx >> 16);
  95. infoHeader[7] = (unsigned char)(img.nx >> 24);
  96. infoHeader[8] = (unsigned char)(img.ny);
  97. infoHeader[9] = (unsigned char)(img.ny >> 8);
  98. infoHeader[10] = (unsigned char)(img.ny >> 16);
  99. infoHeader[11] = (unsigned char)(img.ny >> 24);
  100. // Write file headers
  101. file.write(reinterpret_cast<char*>(fileHeader), sizeof(fileHeader));
  102. file.write(reinterpret_cast<char*>(infoHeader), sizeof(infoHeader));
  103. // Pixel data
  104. std::vector<unsigned char> padding(3, 0); // Max padding size to be added to each row
  105. for (int y = img.ny - 1; y >= 0; --y) { // BMP files are stored bottom-to-top
  106. for (int x = 0; x < img.nx; ++x) {
  107. // Each pixel
  108. size_t pixelIndex = (y * img.nx + x) * 3;
  109. unsigned char pixel[3] = {
  110. img.buf[pixelIndex + 2], // BMP stores pixels in BGR format
  111. img.buf[pixelIndex + 1],
  112. img.buf[pixelIndex]
  113. };
  114. file.write(reinterpret_cast<char*>(pixel), 3);
  115. }
  116. // Write padding for the row
  117. file.write(reinterpret_cast<char*>(padding.data()), paddingAmount);
  118. }
  119. file.close();
  120. }
  121. // debug function to convert f32 to u8
  122. static void clip_image_convert_f32_to_u8(const clip_image_f32& src, clip_image_u8& dst) {
  123. dst.nx = src.nx;
  124. dst.ny = src.ny;
  125. dst.buf.resize(3 * src.nx * src.ny);
  126. for (size_t i = 0; i < src.buf.size(); ++i) {
  127. dst.buf[i] = static_cast<uint8_t>(std::min(std::max(int(src.buf[i] * 255.0f), 0), 255));
  128. }
  129. }
  130. #endif
  131. //
  132. // clip layers
  133. //
  134. enum patch_merge_type {
  135. PATCH_MERGE_FLAT,
  136. PATCH_MERGE_SPATIAL_UNPAD,
  137. };
  138. struct clip_hparams {
  139. int32_t image_size = 0;
  140. int32_t patch_size = 0;
  141. int32_t n_embd = 0;
  142. int32_t n_ff = 0;
  143. int32_t projection_dim = 0;
  144. int32_t n_head = 0;
  145. int32_t n_layer = 0;
  146. // idefics3
  147. int32_t image_longest_edge = 0;
  148. int32_t image_min_pixels = -1;
  149. int32_t image_max_pixels = -1;
  150. int32_t n_merge = 0; // number of patch merges **per-side**
  151. float image_mean[3];
  152. float image_std[3];
  153. // for models using dynamic image size, we need to have a smaller image size to warmup
  154. // otherwise, user will get OOM everytime they load the model
  155. int32_t warmup_image_size = 0;
  156. int32_t warmup_audio_size = 3000;
  157. ffn_op_type ffn_op = FFN_GELU;
  158. patch_merge_type mm_patch_merge_type = PATCH_MERGE_FLAT;
  159. float eps = 1e-6;
  160. float rope_theta = 0.0;
  161. std::vector<clip_image_size> image_res_candidates; // for llava-uhd style models
  162. int32_t image_crop_resolution;
  163. std::unordered_set<int32_t> vision_feature_layer;
  164. int32_t attn_window_size = 0;
  165. int32_t n_wa_pattern = 0;
  166. // audio
  167. int32_t n_mel_bins = 0; // whisper preprocessor
  168. int32_t proj_stack_factor = 0; // ultravox
  169. // legacy
  170. bool has_llava_projector = false;
  171. int minicpmv_version = 0;
  172. int32_t minicpmv_query_num = 0; // MiniCPM-V query number
  173. // custom value provided by user, can be undefined if not set
  174. int32_t custom_image_min_tokens = -1;
  175. int32_t custom_image_max_tokens = -1;
  176. void set_limit_image_tokens(int n_tokens_min, int n_tokens_max) {
  177. const int cur_merge = n_merge == 0 ? 1 : n_merge;
  178. const int patch_area = patch_size * patch_size * cur_merge * cur_merge;
  179. image_min_pixels = (custom_image_min_tokens > 0 ? custom_image_min_tokens : n_tokens_min) * patch_area;
  180. image_max_pixels = (custom_image_max_tokens > 0 ? custom_image_max_tokens : n_tokens_max) * patch_area;
  181. warmup_image_size = static_cast<int>(std::sqrt(image_max_pixels));
  182. }
  183. void set_warmup_n_tokens(int n_tokens) {
  184. int n_tok_per_side = static_cast<int>(std::sqrt(n_tokens));
  185. GGML_ASSERT(n_tok_per_side * n_tok_per_side == n_tokens && "n_tokens must be n*n");
  186. const int cur_merge = n_merge == 0 ? 1 : n_merge;
  187. warmup_image_size = n_tok_per_side * patch_size * cur_merge;
  188. // TODO: support warmup size for custom token numbers
  189. }
  190. };
  191. struct clip_layer {
  192. // attention
  193. ggml_tensor * k_w = nullptr;
  194. ggml_tensor * k_b = nullptr;
  195. ggml_tensor * q_w = nullptr;
  196. ggml_tensor * q_b = nullptr;
  197. ggml_tensor * v_w = nullptr;
  198. ggml_tensor * v_b = nullptr;
  199. ggml_tensor * qkv_w = nullptr;
  200. ggml_tensor * qkv_b = nullptr;
  201. ggml_tensor * o_w = nullptr;
  202. ggml_tensor * o_b = nullptr;
  203. ggml_tensor * k_norm = nullptr;
  204. ggml_tensor * q_norm = nullptr;
  205. // layernorm 1
  206. ggml_tensor * ln_1_w = nullptr;
  207. ggml_tensor * ln_1_b = nullptr;
  208. ggml_tensor * ff_up_w = nullptr;
  209. ggml_tensor * ff_up_b = nullptr;
  210. ggml_tensor * ff_gate_w = nullptr;
  211. ggml_tensor * ff_gate_b = nullptr;
  212. ggml_tensor * ff_down_w = nullptr;
  213. ggml_tensor * ff_down_b = nullptr;
  214. // layernorm 2
  215. ggml_tensor * ln_2_w = nullptr;
  216. ggml_tensor * ln_2_b = nullptr;
  217. // layer scale (no bias)
  218. ggml_tensor * ls_1_w = nullptr;
  219. ggml_tensor * ls_2_w = nullptr;
  220. // qwen3vl deepstack merger
  221. ggml_tensor * deepstack_norm_w = nullptr;
  222. ggml_tensor * deepstack_norm_b = nullptr;
  223. ggml_tensor * deepstack_fc1_w = nullptr;
  224. ggml_tensor * deepstack_fc1_b = nullptr;
  225. ggml_tensor * deepstack_fc2_w = nullptr;
  226. ggml_tensor * deepstack_fc2_b = nullptr;
  227. bool has_deepstack() const {
  228. return deepstack_fc1_w != nullptr;
  229. }
  230. };
  231. struct clip_model {
  232. clip_modality modality = CLIP_MODALITY_VISION;
  233. projector_type proj_type = PROJECTOR_TYPE_MLP;
  234. clip_hparams hparams;
  235. // embeddings
  236. ggml_tensor * class_embedding = nullptr;
  237. ggml_tensor * patch_embeddings_0 = nullptr;
  238. ggml_tensor * patch_embeddings_1 = nullptr; // second Conv2D kernel when we decouple Conv3D along temproal dimension (Qwen2VL)
  239. ggml_tensor * patch_bias = nullptr;
  240. ggml_tensor * position_embeddings = nullptr;
  241. ggml_tensor * pre_ln_w = nullptr;
  242. ggml_tensor * pre_ln_b = nullptr;
  243. std::vector<clip_layer> layers;
  244. int32_t n_deepstack_layers = 0; // used by Qwen3-VL, calculated from clip_layer
  245. ggml_tensor * post_ln_w;
  246. ggml_tensor * post_ln_b;
  247. ggml_tensor * projection; // TODO: rename it to fc (fully connected layer)
  248. ggml_tensor * mm_fc_w;
  249. ggml_tensor * mm_fc_b;
  250. // LLaVA projection
  251. ggml_tensor * mm_input_norm_w = nullptr;
  252. ggml_tensor * mm_input_norm_b = nullptr;
  253. ggml_tensor * mm_0_w = nullptr;
  254. ggml_tensor * mm_0_b = nullptr;
  255. ggml_tensor * mm_2_w = nullptr;
  256. ggml_tensor * mm_2_b = nullptr;
  257. ggml_tensor * image_newline = nullptr;
  258. // Yi type models with mlp+normalization projection
  259. ggml_tensor * mm_1_w = nullptr; // Yi type models have 0, 1, 3, 4
  260. ggml_tensor * mm_1_b = nullptr;
  261. ggml_tensor * mm_3_w = nullptr;
  262. ggml_tensor * mm_3_b = nullptr;
  263. ggml_tensor * mm_4_w = nullptr;
  264. ggml_tensor * mm_4_b = nullptr;
  265. // GLMV-Edge projection
  266. ggml_tensor * mm_model_adapter_conv_w = nullptr;
  267. ggml_tensor * mm_model_adapter_conv_b = nullptr;
  268. // MobileVLM projection
  269. ggml_tensor * mm_model_mlp_1_w = nullptr;
  270. ggml_tensor * mm_model_mlp_1_b = nullptr;
  271. ggml_tensor * mm_model_mlp_3_w = nullptr;
  272. ggml_tensor * mm_model_mlp_3_b = nullptr;
  273. ggml_tensor * mm_model_block_1_block_0_0_w = nullptr;
  274. ggml_tensor * mm_model_block_1_block_0_1_w = nullptr;
  275. ggml_tensor * mm_model_block_1_block_0_1_b = nullptr;
  276. ggml_tensor * mm_model_block_1_block_1_fc1_w = nullptr;
  277. ggml_tensor * mm_model_block_1_block_1_fc1_b = nullptr;
  278. ggml_tensor * mm_model_block_1_block_1_fc2_w = nullptr;
  279. ggml_tensor * mm_model_block_1_block_1_fc2_b = nullptr;
  280. ggml_tensor * mm_model_block_1_block_2_0_w = nullptr;
  281. ggml_tensor * mm_model_block_1_block_2_1_w = nullptr;
  282. ggml_tensor * mm_model_block_1_block_2_1_b = nullptr;
  283. ggml_tensor * mm_model_block_2_block_0_0_w = nullptr;
  284. ggml_tensor * mm_model_block_2_block_0_1_w = nullptr;
  285. ggml_tensor * mm_model_block_2_block_0_1_b = nullptr;
  286. ggml_tensor * mm_model_block_2_block_1_fc1_w = nullptr;
  287. ggml_tensor * mm_model_block_2_block_1_fc1_b = nullptr;
  288. ggml_tensor * mm_model_block_2_block_1_fc2_w = nullptr;
  289. ggml_tensor * mm_model_block_2_block_1_fc2_b = nullptr;
  290. ggml_tensor * mm_model_block_2_block_2_0_w = nullptr;
  291. ggml_tensor * mm_model_block_2_block_2_1_w = nullptr;
  292. ggml_tensor * mm_model_block_2_block_2_1_b = nullptr;
  293. // MobileVLM_V2 projection
  294. ggml_tensor * mm_model_mlp_0_w = nullptr;
  295. ggml_tensor * mm_model_mlp_0_b = nullptr;
  296. ggml_tensor * mm_model_mlp_2_w = nullptr;
  297. ggml_tensor * mm_model_mlp_2_b = nullptr;
  298. ggml_tensor * mm_model_peg_0_w = nullptr;
  299. ggml_tensor * mm_model_peg_0_b = nullptr;
  300. // MINICPMV projection
  301. ggml_tensor * mm_model_pos_embed_k = nullptr;
  302. ggml_tensor * mm_model_query = nullptr;
  303. ggml_tensor * mm_model_proj = nullptr;
  304. ggml_tensor * mm_model_kv_proj = nullptr;
  305. ggml_tensor * mm_model_attn_q_w = nullptr;
  306. ggml_tensor * mm_model_attn_q_b = nullptr;
  307. ggml_tensor * mm_model_attn_k_w = nullptr;
  308. ggml_tensor * mm_model_attn_k_b = nullptr;
  309. ggml_tensor * mm_model_attn_v_w = nullptr;
  310. ggml_tensor * mm_model_attn_v_b = nullptr;
  311. ggml_tensor * mm_model_attn_o_w = nullptr;
  312. ggml_tensor * mm_model_attn_o_b = nullptr;
  313. ggml_tensor * mm_model_ln_q_w = nullptr;
  314. ggml_tensor * mm_model_ln_q_b = nullptr;
  315. ggml_tensor * mm_model_ln_kv_w = nullptr;
  316. ggml_tensor * mm_model_ln_kv_b = nullptr;
  317. ggml_tensor * mm_model_ln_post_w = nullptr;
  318. ggml_tensor * mm_model_ln_post_b = nullptr;
  319. // gemma3
  320. ggml_tensor * mm_input_proj_w = nullptr;
  321. ggml_tensor * mm_soft_emb_norm_w = nullptr;
  322. // pixtral
  323. ggml_tensor * token_embd_img_break = nullptr;
  324. ggml_tensor * mm_patch_merger_w = nullptr;
  325. // ultravox / whisper encoder
  326. ggml_tensor * conv1d_1_w = nullptr;
  327. ggml_tensor * conv1d_1_b = nullptr;
  328. ggml_tensor * conv1d_2_w = nullptr;
  329. ggml_tensor * conv1d_2_b = nullptr;
  330. ggml_tensor * mm_norm_pre_w = nullptr;
  331. ggml_tensor * mm_norm_mid_w = nullptr;
  332. // cogvlm
  333. ggml_tensor * mm_post_fc_norm_w = nullptr;
  334. ggml_tensor * mm_post_fc_norm_b = nullptr;
  335. ggml_tensor * mm_h_to_4h_w = nullptr;
  336. ggml_tensor * mm_gate_w = nullptr;
  337. ggml_tensor * mm_4h_to_h_w = nullptr;
  338. ggml_tensor * mm_boi = nullptr;
  339. ggml_tensor * mm_eoi = nullptr;
  340. bool audio_has_avgpool() const {
  341. return proj_type == PROJECTOR_TYPE_QWEN2A
  342. || proj_type == PROJECTOR_TYPE_VOXTRAL;
  343. }
  344. bool audio_has_stack_frames() const {
  345. return proj_type == PROJECTOR_TYPE_ULTRAVOX
  346. || proj_type == PROJECTOR_TYPE_VOXTRAL;
  347. }
  348. };
  349. struct clip_ctx {
  350. clip_model model;
  351. gguf_context_ptr ctx_gguf;
  352. ggml_context_ptr ctx_data;
  353. std::vector<uint8_t> buf_compute_meta;
  354. std::vector<ggml_backend_t> backend_ptrs;
  355. std::vector<ggml_backend_buffer_type_t> backend_buft;
  356. ggml_backend_t backend = nullptr;
  357. ggml_backend_t backend_cpu = nullptr;
  358. ggml_backend_buffer_ptr buf;
  359. int max_nodes = 8192;
  360. ggml_backend_sched_ptr sched;
  361. clip_flash_attn_type flash_attn_type = CLIP_FLASH_ATTN_TYPE_AUTO;
  362. // for debugging
  363. bool debug_graph = false;
  364. std::vector<ggml_tensor *> debug_print_tensors;
  365. clip_ctx(clip_context_params & ctx_params) {
  366. flash_attn_type = ctx_params.flash_attn_type;
  367. debug_graph = std::getenv("MTMD_DEBUG_GRAPH") != nullptr;
  368. backend_cpu = ggml_backend_init_by_type(GGML_BACKEND_DEVICE_TYPE_CPU, nullptr);
  369. if (!backend_cpu) {
  370. throw std::runtime_error("failed to initialize CPU backend");
  371. }
  372. if (ctx_params.use_gpu) {
  373. auto backend_name = std::getenv("MTMD_BACKEND_DEVICE");
  374. if (backend_name != nullptr) {
  375. backend = ggml_backend_init_by_name(backend_name, nullptr);
  376. if (!backend) {
  377. LOG_WRN("%s: Warning: Failed to initialize \"%s\" backend, falling back to default GPU backend\n", __func__, backend_name);
  378. }
  379. }
  380. if (!backend) {
  381. backend = ggml_backend_init_by_type(GGML_BACKEND_DEVICE_TYPE_GPU, nullptr);
  382. backend = backend ? backend : ggml_backend_init_by_type(GGML_BACKEND_DEVICE_TYPE_IGPU, nullptr);
  383. }
  384. }
  385. if (backend) {
  386. LOG_INF("%s: CLIP using %s backend\n", __func__, ggml_backend_name(backend));
  387. backend_ptrs.push_back(backend);
  388. backend_buft.push_back(ggml_backend_get_default_buffer_type(backend));
  389. } else {
  390. backend = backend_cpu;
  391. LOG_INF("%s: CLIP using CPU backend\n", __func__);
  392. }
  393. if (ctx_params.image_min_tokens > 0) {
  394. model.hparams.custom_image_min_tokens = ctx_params.image_min_tokens;
  395. }
  396. if (ctx_params.image_max_tokens > 0) {
  397. model.hparams.custom_image_max_tokens = ctx_params.image_max_tokens;
  398. }
  399. backend_ptrs.push_back(backend_cpu);
  400. backend_buft.push_back(ggml_backend_get_default_buffer_type(backend_cpu));
  401. sched.reset(
  402. ggml_backend_sched_new(backend_ptrs.data(), backend_buft.data(), backend_ptrs.size(), 8192, false, true)
  403. );
  404. }
  405. ~clip_ctx() {
  406. ggml_backend_free(backend);
  407. if (backend != backend_cpu) {
  408. ggml_backend_free(backend_cpu);
  409. }
  410. }
  411. // this function is added so that we don't change too much of the existing code
  412. projector_type proj_type() const {
  413. return model.proj_type;
  414. }
  415. };
  416. struct clip_graph {
  417. clip_ctx * ctx;
  418. const clip_model & model;
  419. const clip_hparams & hparams;
  420. // we only support single image per batch
  421. const clip_image_f32 & img;
  422. const int patch_size;
  423. const int n_patches_x;
  424. const int n_patches_y;
  425. const int n_patches;
  426. const int n_embd;
  427. const int n_head;
  428. const int d_head;
  429. const int n_layer;
  430. const float eps;
  431. const float kq_scale;
  432. ggml_context_ptr ctx0_ptr;
  433. ggml_context * ctx0;
  434. ggml_cgraph * gf;
  435. clip_graph(clip_ctx * ctx, const clip_image_f32 & img) :
  436. ctx(ctx),
  437. model(ctx->model),
  438. hparams(model.hparams),
  439. img(img),
  440. patch_size(hparams.patch_size),
  441. n_patches_x(img.nx / patch_size),
  442. n_patches_y(img.ny / patch_size),
  443. n_patches(n_patches_x * n_patches_y),
  444. n_embd(hparams.n_embd),
  445. n_head(hparams.n_head),
  446. d_head(n_embd / n_head),
  447. n_layer(hparams.n_layer),
  448. eps(hparams.eps),
  449. kq_scale(1.0f / sqrtf((float)d_head)) {
  450. struct ggml_init_params params = {
  451. /*.mem_size =*/ ctx->buf_compute_meta.size(),
  452. /*.mem_buffer =*/ ctx->buf_compute_meta.data(),
  453. /*.no_alloc =*/ true,
  454. };
  455. ctx0_ptr.reset(ggml_init(params));
  456. ctx0 = ctx0_ptr.get();
  457. gf = ggml_new_graph_custom(ctx0, ctx->max_nodes, false);
  458. }
  459. ggml_cgraph * build_siglip() {
  460. ggml_tensor * inp = build_inp();
  461. ggml_tensor * learned_pos_embd = model.position_embeddings;
  462. if (ctx->proj_type() == PROJECTOR_TYPE_LFM2) {
  463. learned_pos_embd = resize_position_embeddings();
  464. }
  465. ggml_tensor * cur = build_vit(
  466. inp, n_patches,
  467. NORM_TYPE_NORMAL,
  468. hparams.ffn_op,
  469. learned_pos_embd,
  470. nullptr);
  471. if (ctx->proj_type() == PROJECTOR_TYPE_GEMMA3) {
  472. const int batch_size = 1;
  473. GGML_ASSERT(n_patches_x == n_patches_y);
  474. const int patches_per_image = n_patches_x;
  475. const int kernel_size = hparams.n_merge;
  476. cur = ggml_transpose(ctx0, cur);
  477. cur = ggml_cont_4d(ctx0, cur, patches_per_image, patches_per_image, n_embd, batch_size);
  478. // doing a pool2d to reduce the number of output tokens
  479. cur = ggml_pool_2d(ctx0, cur, GGML_OP_POOL_AVG, kernel_size, kernel_size, kernel_size, kernel_size, 0, 0);
  480. cur = ggml_reshape_3d(ctx0, cur, cur->ne[0] * cur->ne[0], n_embd, batch_size);
  481. cur = ggml_cont(ctx0, ggml_transpose(ctx0, cur));
  482. // apply norm before projection
  483. cur = ggml_rms_norm(ctx0, cur, eps);
  484. cur = ggml_mul(ctx0, cur, model.mm_soft_emb_norm_w);
  485. // apply projection
  486. cur = ggml_mul_mat(ctx0,
  487. ggml_cont(ctx0, ggml_transpose(ctx0, model.mm_input_proj_w)),
  488. cur);
  489. } else if (ctx->proj_type() == PROJECTOR_TYPE_IDEFICS3) {
  490. // pixel_shuffle
  491. // https://github.com/huggingface/transformers/blob/0a950e0bbe1ed58d5401a6b547af19f15f0c195e/src/transformers/models/idefics3/modeling_idefics3.py#L578
  492. const int scale_factor = model.hparams.n_merge;
  493. cur = build_patch_merge_permute(cur, scale_factor);
  494. cur = ggml_mul_mat(ctx0, model.projection, cur);
  495. } else if (ctx->proj_type() == PROJECTOR_TYPE_LFM2) {
  496. // pixel unshuffle block
  497. const int scale_factor = model.hparams.n_merge;
  498. cur = build_patch_merge_permute(cur, scale_factor);
  499. // projection
  500. cur = ggml_norm(ctx0, cur, 1e-5); // default nn.LayerNorm
  501. cur = ggml_mul(ctx0, cur, model.mm_input_norm_w);
  502. cur = ggml_add(ctx0, cur, model.mm_input_norm_b);
  503. cur = ggml_mul_mat(ctx0, model.mm_1_w, cur);
  504. cur = ggml_add(ctx0, cur, model.mm_1_b);
  505. cur = ggml_gelu(ctx0, cur);
  506. cur = ggml_mul_mat(ctx0, model.mm_2_w, cur);
  507. cur = ggml_add(ctx0, cur, model.mm_2_b);
  508. } else if (ctx->proj_type() == PROJECTOR_TYPE_JANUS_PRO) {
  509. cur = build_ffn(cur,
  510. model.mm_0_w, model.mm_0_b,
  511. nullptr, nullptr,
  512. model.mm_1_w, model.mm_1_b,
  513. hparams.ffn_op,
  514. -1);
  515. } else {
  516. GGML_ABORT("SigLIP: Unsupported projector type");
  517. }
  518. // build the graph
  519. ggml_build_forward_expand(gf, cur);
  520. return gf;
  521. }
  522. ggml_cgraph * build_pixtral() {
  523. const int n_merge = hparams.n_merge;
  524. // 2D input positions
  525. ggml_tensor * pos_h = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_patches);
  526. ggml_set_name(pos_h, "pos_h");
  527. ggml_set_input(pos_h);
  528. ggml_tensor * pos_w = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_patches);
  529. ggml_set_name(pos_w, "pos_w");
  530. ggml_set_input(pos_w);
  531. auto add_pos = [&](ggml_tensor * cur, const clip_layer &) {
  532. return build_rope_2d(ctx0, cur, pos_h, pos_w, hparams.rope_theta, true);
  533. };
  534. ggml_tensor * inp = build_inp();
  535. ggml_tensor * cur = build_vit(
  536. inp, n_patches,
  537. NORM_TYPE_RMS,
  538. hparams.ffn_op,
  539. nullptr, // no learned pos embd
  540. add_pos);
  541. // mistral small 3.1 patch merger
  542. // ref: https://github.com/huggingface/transformers/blob/7a3e208892c06a5e278144eaf38c8599a42f53e7/src/transformers/models/mistral3/modeling_mistral3.py#L67
  543. if (model.mm_patch_merger_w) {
  544. GGML_ASSERT(hparams.n_merge > 0);
  545. cur = ggml_mul(ctx0, ggml_rms_norm(ctx0, cur, eps), model.mm_input_norm_w);
  546. // reshape image tokens to 2D grid
  547. cur = ggml_reshape_3d(ctx0, cur, n_embd, n_patches_x, n_patches_y);
  548. cur = ggml_permute(ctx0, cur, 2, 0, 1, 3); // [x, y, n_embd]
  549. cur = ggml_cont(ctx0, cur);
  550. // torch.nn.functional.unfold is just an im2col under the hood
  551. // we just need a dummy kernel to make it work
  552. ggml_tensor * kernel = ggml_view_3d(ctx0, cur, n_merge, n_merge, cur->ne[2], 0, 0, 0);
  553. cur = ggml_im2col(ctx0, kernel, cur, n_merge, n_merge, 0, 0, 1, 1, true, inp->type);
  554. // project to n_embd
  555. cur = ggml_reshape_2d(ctx0, cur, cur->ne[0], cur->ne[1] * cur->ne[2]);
  556. cur = ggml_mul_mat(ctx0, model.mm_patch_merger_w, cur);
  557. }
  558. // LlavaMultiModalProjector (always using GELU activation)
  559. {
  560. cur = ggml_mul_mat(ctx0, model.mm_1_w, cur);
  561. if (model.mm_1_b) {
  562. cur = ggml_add(ctx0, cur, model.mm_1_b);
  563. }
  564. cur = ggml_gelu(ctx0, cur);
  565. cur = ggml_mul_mat(ctx0, model.mm_2_w, cur);
  566. if (model.mm_2_b) {
  567. cur = ggml_add(ctx0, cur, model.mm_2_b);
  568. }
  569. }
  570. // arrangement of the [IMG_BREAK] token
  571. if (model.token_embd_img_break) {
  572. // not efficient, but works
  573. // the trick is to view the embeddings as a 3D tensor with shape [n_embd, n_patches_per_row, n_rows]
  574. // and then concatenate the [IMG_BREAK] token to the end of each row, aka n_patches_per_row dimension
  575. // after the concatenation, we have a tensor with shape [n_embd, n_patches_per_row + 1, n_rows]
  576. const int p_y = n_merge > 0 ? n_patches_y / n_merge : n_patches_y;
  577. const int p_x = n_merge > 0 ? n_patches_x / n_merge : n_patches_x;
  578. const int p_total = p_x * p_y;
  579. const int n_embd_text = cur->ne[0];
  580. const int n_tokens_output = p_total + p_y - 1; // one [IMG_BREAK] per row, except the last row
  581. ggml_tensor * tmp = ggml_reshape_3d(ctx0, cur, n_embd_text, p_x, p_y);
  582. ggml_tensor * tok = ggml_new_tensor_3d(ctx0, tmp->type, n_embd_text, 1, p_y);
  583. tok = ggml_scale(ctx0, tok, 0.0); // clear the tensor
  584. tok = ggml_add(ctx0, tok, model.token_embd_img_break);
  585. tmp = ggml_concat(ctx0, tmp, tok, 1);
  586. cur = ggml_view_2d(ctx0, tmp,
  587. n_embd_text, n_tokens_output,
  588. ggml_row_size(tmp->type, n_embd_text), 0);
  589. }
  590. // build the graph
  591. ggml_build_forward_expand(gf, cur);
  592. return gf;
  593. }
  594. // Qwen2VL and Qwen2.5VL use M-RoPE
  595. ggml_cgraph * build_qwen2vl() {
  596. GGML_ASSERT(model.patch_bias == nullptr);
  597. GGML_ASSERT(model.class_embedding == nullptr);
  598. const int batch_size = 1;
  599. const bool use_window_attn = hparams.n_wa_pattern > 0;
  600. const int n_wa_pattern = hparams.n_wa_pattern;
  601. const int n_pos = n_patches;
  602. const int num_position_ids = n_pos * 4; // m-rope requires 4 dim per position
  603. norm_type norm_t = ctx->proj_type() == PROJECTOR_TYPE_QWEN25VL
  604. ? NORM_TYPE_RMS // qwen 2.5 vl
  605. : NORM_TYPE_NORMAL; // qwen 2 vl
  606. int mrope_sections[4] = {d_head/4, d_head/4, d_head/4, d_head/4};
  607. ggml_tensor * inp_raw = build_inp_raw();
  608. ggml_tensor * inp = ggml_conv_2d(ctx0, model.patch_embeddings_0, inp_raw, patch_size, patch_size, 0, 0, 1, 1);
  609. GGML_ASSERT(img.nx % (patch_size * 2) == 0);
  610. GGML_ASSERT(img.ny % (patch_size * 2) == 0);
  611. // second conv dimension
  612. {
  613. auto inp_1 = ggml_conv_2d(ctx0, model.patch_embeddings_1, inp_raw, patch_size, patch_size, 0, 0, 1, 1);
  614. inp = ggml_add(ctx0, inp, inp_1);
  615. inp = ggml_permute(ctx0, inp, 1, 2, 0, 3); // [w, h, c, b] -> [c, w, h, b]
  616. inp = ggml_cont_4d(
  617. ctx0, inp,
  618. n_embd * 2, n_patches_x / 2, n_patches_y, batch_size);
  619. inp = ggml_reshape_4d(
  620. ctx0, inp,
  621. n_embd * 2, n_patches_x / 2, 2, batch_size * (n_patches_y / 2));
  622. inp = ggml_permute(ctx0, inp, 0, 2, 1, 3);
  623. inp = ggml_cont_3d(
  624. ctx0, inp,
  625. n_embd, n_patches_x * n_patches_y, batch_size);
  626. }
  627. ggml_tensor * inpL = inp;
  628. ggml_tensor * window_mask = nullptr;
  629. ggml_tensor * window_idx = nullptr;
  630. ggml_tensor * inv_window_idx = nullptr;
  631. ggml_tensor * positions = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, num_position_ids);
  632. ggml_set_name(positions, "positions");
  633. ggml_set_input(positions);
  634. // pre-layernorm
  635. if (model.pre_ln_w) {
  636. inpL = build_norm(inpL, model.pre_ln_w, model.pre_ln_b, norm_t, eps, -1);
  637. }
  638. if (use_window_attn) {
  639. // handle window attention inputs
  640. inv_window_idx = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_pos / 4);
  641. ggml_set_name(inv_window_idx, "inv_window_idx");
  642. ggml_set_input(inv_window_idx);
  643. // mask for window attention
  644. window_mask = ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_pos, n_pos);
  645. ggml_set_name(window_mask, "window_mask");
  646. ggml_set_input(window_mask);
  647. // if flash attn is used, we need to pad the mask and cast to f16
  648. if (ctx->flash_attn_type == CLIP_FLASH_ATTN_TYPE_ENABLED) {
  649. int n_pad = GGML_PAD(window_mask->ne[1], GGML_KQ_MASK_PAD) - window_mask->ne[1];
  650. if (n_pad > 0) {
  651. window_mask = ggml_pad(ctx0, window_mask, 0, n_pad, 0, 0);
  652. }
  653. window_mask = ggml_cast(ctx0, window_mask, GGML_TYPE_F16);
  654. }
  655. // inpL shape: [n_embd, n_patches_x * n_patches_y, batch_size]
  656. GGML_ASSERT(batch_size == 1);
  657. inpL = ggml_reshape_2d(ctx0, inpL, n_embd * 4, n_patches_x * n_patches_y * batch_size / 4);
  658. inpL = ggml_get_rows(ctx0, inpL, inv_window_idx);
  659. inpL = ggml_reshape_3d(ctx0, inpL, n_embd, n_patches_x * n_patches_y, batch_size);
  660. }
  661. // loop over layers
  662. for (int il = 0; il < n_layer; il++) {
  663. auto & layer = model.layers[il];
  664. const bool full_attn = use_window_attn ? (il + 1) % n_wa_pattern == 0 : true;
  665. ggml_tensor * cur = inpL; // inpL = residual, cur = hidden_states
  666. // layernorm1
  667. cur = build_norm(cur, layer.ln_1_w, layer.ln_1_b, norm_t, eps, il);
  668. cb(cur, "ln1", il);
  669. // self-attention
  670. {
  671. ggml_tensor * Qcur = ggml_add(ctx0,
  672. ggml_mul_mat(ctx0, layer.q_w, cur), layer.q_b);
  673. ggml_tensor * Kcur = ggml_add(ctx0,
  674. ggml_mul_mat(ctx0, layer.k_w, cur), layer.k_b);
  675. ggml_tensor * Vcur = ggml_add(ctx0,
  676. ggml_mul_mat(ctx0, layer.v_w, cur), layer.v_b);
  677. Qcur = ggml_reshape_3d(ctx0, Qcur, d_head, n_head, n_patches);
  678. Kcur = ggml_reshape_3d(ctx0, Kcur, d_head, n_head, n_patches);
  679. Vcur = ggml_reshape_3d(ctx0, Vcur, d_head, n_head, n_patches);
  680. cb(Qcur, "Qcur", il);
  681. cb(Kcur, "Kcur", il);
  682. cb(Vcur, "Vcur", il);
  683. // apply M-RoPE
  684. Qcur = ggml_rope_multi(
  685. ctx0, Qcur, positions, nullptr,
  686. d_head/2, mrope_sections, GGML_ROPE_TYPE_VISION, 32768, 10000, 1, 0, 1, 32, 1);
  687. Kcur = ggml_rope_multi(
  688. ctx0, Kcur, positions, nullptr,
  689. d_head/2, mrope_sections, GGML_ROPE_TYPE_VISION, 32768, 10000, 1, 0, 1, 32, 1);
  690. cb(Qcur, "Qcur_rope", il);
  691. cb(Kcur, "Kcur_rope", il);
  692. ggml_tensor * attn_mask = full_attn ? nullptr : window_mask;
  693. cur = build_attn(layer.o_w, layer.o_b,
  694. Qcur, Kcur, Vcur, attn_mask, kq_scale, il);
  695. cb(cur, "attn_out", il);
  696. }
  697. // re-add the layer input, e.g., residual
  698. cur = ggml_add(ctx0, cur, inpL);
  699. inpL = cur; // inpL = residual, cur = hidden_states
  700. cb(cur, "ffn_inp", il);
  701. // layernorm2
  702. cur = build_norm(cur, layer.ln_2_w, layer.ln_2_b, norm_t, eps, il);
  703. cb(cur, "ffn_inp_normed", il);
  704. // ffn
  705. cur = build_ffn(cur,
  706. layer.ff_up_w, layer.ff_up_b,
  707. layer.ff_gate_w, layer.ff_gate_b,
  708. layer.ff_down_w, layer.ff_down_b,
  709. hparams.ffn_op, il);
  710. cb(cur, "ffn_out", il);
  711. // residual 2
  712. cur = ggml_add(ctx0, inpL, cur);
  713. cb(cur, "layer_out", il);
  714. inpL = cur;
  715. }
  716. // post-layernorm
  717. if (model.post_ln_w) {
  718. inpL = build_norm(inpL, model.post_ln_w, model.post_ln_b, norm_t, eps, n_layer);
  719. }
  720. // multimodal projection
  721. ggml_tensor * embeddings = inpL;
  722. embeddings = ggml_reshape_3d(ctx0, embeddings, n_embd * 4, n_pos / 4, batch_size);
  723. embeddings = ggml_mul_mat(ctx0, model.mm_0_w, embeddings);
  724. embeddings = ggml_add(ctx0, embeddings, model.mm_0_b);
  725. // GELU activation
  726. embeddings = ggml_gelu(ctx0, embeddings);
  727. // Second linear layer
  728. embeddings = ggml_mul_mat(ctx0, model.mm_1_w, embeddings);
  729. embeddings = ggml_add(ctx0, embeddings, model.mm_1_b);
  730. if (use_window_attn) {
  731. window_idx = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_pos / 4);
  732. ggml_set_name(window_idx, "window_idx");
  733. ggml_set_input(window_idx);
  734. // embeddings shape: [n_embd, n_patches_x * n_patches_y, batch_size]
  735. GGML_ASSERT(batch_size == 1);
  736. embeddings = ggml_reshape_2d(ctx0, embeddings, hparams.projection_dim, n_patches_x * n_patches_y / 4);
  737. embeddings = ggml_get_rows(ctx0, embeddings, window_idx);
  738. embeddings = ggml_reshape_3d(ctx0, embeddings, hparams.projection_dim, n_patches_x * n_patches_y / 4, batch_size);
  739. }
  740. // build the graph
  741. ggml_build_forward_expand(gf, embeddings);
  742. return gf;
  743. }
  744. // Qwen3VL
  745. ggml_cgraph * build_qwen3vl() {
  746. GGML_ASSERT(model.patch_bias != nullptr);
  747. GGML_ASSERT(model.position_embeddings != nullptr);
  748. GGML_ASSERT(model.class_embedding == nullptr);
  749. const int batch_size = 1;
  750. const int n_pos = n_patches;
  751. const int num_position_ids = n_pos * 4; // m-rope requires 4 dim per position
  752. norm_type norm_t = NORM_TYPE_NORMAL;
  753. int mrope_sections[4] = {d_head/4, d_head/4, d_head/4, d_head/4};
  754. ggml_tensor * inp_raw = build_inp_raw();
  755. ggml_tensor * inp = ggml_conv_2d(ctx0, model.patch_embeddings_0, inp_raw, patch_size, patch_size, 0, 0, 1, 1);
  756. GGML_ASSERT(img.nx % (patch_size * 2) == 0);
  757. GGML_ASSERT(img.ny % (patch_size * 2) == 0);
  758. // second conv dimension
  759. {
  760. auto inp_1 = ggml_conv_2d(ctx0, model.patch_embeddings_1, inp_raw, patch_size, patch_size, 0, 0, 1, 1);
  761. inp = ggml_add(ctx0, inp, inp_1);
  762. inp = ggml_permute(ctx0, inp, 1, 2, 0, 3); // [w, h, c, b] -> [c, w, h, b]
  763. inp = ggml_cont_4d(
  764. ctx0, inp,
  765. n_embd * 2, n_patches_x / 2, n_patches_y, batch_size);
  766. inp = ggml_reshape_4d(
  767. ctx0, inp,
  768. n_embd * 2, n_patches_x / 2, 2, batch_size * (n_patches_y / 2));
  769. inp = ggml_permute(ctx0, inp, 0, 2, 1, 3);
  770. inp = ggml_cont_3d(
  771. ctx0, inp,
  772. n_embd, n_patches_x * n_patches_y, batch_size);
  773. }
  774. // add patch bias
  775. if (model.patch_bias != nullptr) {
  776. inp = ggml_add(ctx0, inp, model.patch_bias);
  777. cb(inp, "patch_bias", -1);
  778. }
  779. // calculate absolute position embedding and apply
  780. ggml_tensor * learned_pos_embd = resize_position_embeddings();
  781. learned_pos_embd = ggml_cont_4d(
  782. ctx0, learned_pos_embd,
  783. n_embd * 2, n_patches_x / 2, n_patches_y, batch_size);
  784. learned_pos_embd = ggml_reshape_4d(
  785. ctx0, learned_pos_embd,
  786. n_embd * 2, n_patches_x / 2, 2, batch_size * (n_patches_y / 2));
  787. learned_pos_embd = ggml_permute(ctx0, learned_pos_embd, 0, 2, 1, 3);
  788. learned_pos_embd = ggml_cont_3d(
  789. ctx0, learned_pos_embd,
  790. n_embd, n_patches_x * n_patches_y, batch_size);
  791. inp = ggml_add(ctx0, inp, learned_pos_embd);
  792. cb(inp, "inp_pos_emb", -1);
  793. ggml_tensor * inpL = inp;
  794. ggml_tensor * positions = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, num_position_ids);
  795. ggml_set_name(positions, "positions");
  796. ggml_set_input(positions);
  797. // pre-layernorm
  798. if (model.pre_ln_w) {
  799. inpL = build_norm(inpL, model.pre_ln_w, model.pre_ln_b, norm_t, eps, -1);
  800. }
  801. // deepstack features (stack along the feature dimension), [n_embd * len(deepstack_layers), n_patches_x * n_patches_y, batch_size]
  802. ggml_tensor * deepstack_features = nullptr;
  803. const int merge_factor = hparams.n_merge > 0 ? hparams.n_merge * hparams.n_merge : 4; // default 2x2=4 for qwen3vl
  804. // loop over layers
  805. for (int il = 0; il < n_layer; il++) {
  806. auto & layer = model.layers[il];
  807. ggml_tensor * cur = inpL; // inpL = residual, cur = hidden_states
  808. // layernorm1
  809. cur = build_norm(cur, layer.ln_1_w, layer.ln_1_b, norm_t, eps, il);
  810. cb(cur, "ln1", il);
  811. // self-attention
  812. {
  813. cur = ggml_mul_mat(ctx0, layer.qkv_w, cur);
  814. cur = ggml_add(ctx0, cur, layer.qkv_b);
  815. ggml_tensor * Qcur = ggml_view_3d(ctx0, cur, d_head, n_head, n_pos,
  816. /* nb1 */ ggml_row_size(cur->type, d_head),
  817. /* nb2 */ cur->nb[1],
  818. /* offset */ 0);
  819. ggml_tensor * Kcur = ggml_view_3d(ctx0, cur, d_head, n_head, n_pos,
  820. /* nb1 */ ggml_row_size(cur->type, d_head),
  821. /* nb2 */ cur->nb[1],
  822. /* offset */ ggml_row_size(cur->type, n_embd));
  823. ggml_tensor * Vcur = ggml_view_3d(ctx0, cur, d_head, n_head, n_pos,
  824. /* nb1 */ ggml_row_size(cur->type, d_head),
  825. /* nb2 */ cur->nb[1],
  826. /* offset */ ggml_row_size(cur->type, 2 * n_embd));
  827. cb(Qcur, "Qcur", il);
  828. cb(Kcur, "Kcur", il);
  829. cb(Vcur, "Vcur", il);
  830. // apply M-RoPE
  831. Qcur = ggml_rope_multi(
  832. ctx0, Qcur, positions, nullptr,
  833. d_head/2, mrope_sections, GGML_ROPE_TYPE_VISION, 32768, 10000, 1, 0, 1, 32, 1);
  834. Kcur = ggml_rope_multi(
  835. ctx0, Kcur, positions, nullptr,
  836. d_head/2, mrope_sections, GGML_ROPE_TYPE_VISION, 32768, 10000, 1, 0, 1, 32, 1);
  837. cb(Qcur, "Qcur_rope", il);
  838. cb(Kcur, "Kcur_rope", il);
  839. cur = build_attn(layer.o_w, layer.o_b,
  840. Qcur, Kcur, Vcur, nullptr, kq_scale, il);
  841. cb(cur, "attn_out", il);
  842. }
  843. // re-add the layer input, e.g., residual
  844. cur = ggml_add(ctx0, cur, inpL);
  845. inpL = cur; // inpL = residual, cur = hidden_states
  846. cb(cur, "ffn_inp", il);
  847. // layernorm2
  848. cur = build_norm(cur, layer.ln_2_w, layer.ln_2_b, norm_t, eps, il);
  849. cb(cur, "ffn_inp_normed", il);
  850. // ffn
  851. cur = build_ffn(cur,
  852. layer.ff_up_w, layer.ff_up_b,
  853. layer.ff_gate_w, layer.ff_gate_b,
  854. layer.ff_down_w, layer.ff_down_b,
  855. hparams.ffn_op, il);
  856. cb(cur, "ffn_out", il);
  857. // residual 2
  858. cur = ggml_add(ctx0, inpL, cur);
  859. cb(cur, "layer_out", il);
  860. if (layer.has_deepstack()) {
  861. ggml_tensor * feat = ggml_reshape_3d(ctx0, cur, n_embd * merge_factor, n_pos / merge_factor, batch_size);
  862. feat = build_norm(feat, layer.deepstack_norm_w, layer.deepstack_norm_b, norm_t, eps, il);
  863. feat = build_ffn(feat,
  864. layer.deepstack_fc1_w, layer.deepstack_fc1_b,
  865. nullptr, nullptr,
  866. layer.deepstack_fc2_w, layer.deepstack_fc2_b,
  867. ffn_op_type::FFN_GELU, il);
  868. if(!deepstack_features) {
  869. deepstack_features = feat;
  870. } else {
  871. // concat along the feature dimension
  872. deepstack_features = ggml_concat(ctx0, deepstack_features, feat, 0);
  873. }
  874. }
  875. inpL = cur;
  876. }
  877. // post-layernorm
  878. if (model.post_ln_w) {
  879. inpL = build_norm(inpL, model.post_ln_w, model.post_ln_b, norm_t, eps, n_layer);
  880. }
  881. // multimodal projection
  882. ggml_tensor * embeddings = inpL;
  883. embeddings = ggml_reshape_3d(ctx0, embeddings, n_embd * 4, n_pos / 4, batch_size);
  884. embeddings = build_ffn(embeddings,
  885. model.mm_0_w, model.mm_0_b,
  886. nullptr, nullptr,
  887. model.mm_1_w, model.mm_1_b,
  888. ffn_op_type::FFN_GELU, -1);
  889. embeddings = ggml_concat(ctx0, embeddings, deepstack_features, 0); // concat along the feature dimension
  890. // build the graph
  891. ggml_build_forward_expand(gf, embeddings);
  892. return gf;
  893. }
  894. ggml_cgraph * build_minicpmv() {
  895. GGML_ASSERT(model.class_embedding == nullptr);
  896. const int n_pos = n_patches;
  897. const int n_embd_proj = clip_n_mmproj_embd(ctx);
  898. // position embeddings for the projector (not for ViT)
  899. // see: https://huggingface.co/openbmb/MiniCPM-o-2_6/blob/main/resampler.py#L70
  900. // base frequency omega
  901. ggml_tensor * omega = ggml_new_tensor_1d(ctx0, GGML_TYPE_F32, n_embd_proj / 4);
  902. ggml_set_name(omega, "omega");
  903. ggml_set_input(omega);
  904. // 2D input positions (using float for sinusoidal embeddings)
  905. ggml_tensor * pos_h = ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, 1, n_pos);
  906. ggml_set_name(pos_h, "pos_h");
  907. ggml_set_input(pos_h);
  908. ggml_tensor * pos_w = ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, 1, n_pos);
  909. ggml_set_name(pos_w, "pos_w");
  910. ggml_set_input(pos_w);
  911. // for selecting learned pos embd, used by ViT
  912. struct ggml_tensor * positions = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_pos);
  913. ggml_set_name(positions, "positions");
  914. ggml_set_input(positions);
  915. ggml_tensor * learned_pos_embd = ggml_get_rows(ctx0, model.position_embeddings, positions);
  916. ggml_tensor * inp = build_inp();
  917. ggml_tensor * embeddings = build_vit(
  918. inp, n_pos,
  919. NORM_TYPE_NORMAL,
  920. hparams.ffn_op,
  921. learned_pos_embd,
  922. nullptr);
  923. // resampler projector (it is just another transformer)
  924. ggml_tensor * q = model.mm_model_query;
  925. ggml_tensor * v = ggml_mul_mat(ctx0, model.mm_model_kv_proj, embeddings);
  926. // norm
  927. q = build_norm(q, model.mm_model_ln_q_w, model.mm_model_ln_q_b, NORM_TYPE_NORMAL, eps, -1);
  928. v = build_norm(v, model.mm_model_ln_kv_w, model.mm_model_ln_kv_b, NORM_TYPE_NORMAL, eps, -1);
  929. // calculate sinusoidal pos embd
  930. ggml_tensor * pos_embed = nullptr;
  931. {
  932. // outer product
  933. ggml_tensor * omega_b = ggml_repeat_4d(ctx0, omega, omega->ne[0], n_pos, 1, 1); // n_pos rows
  934. ggml_tensor * theta_x = ggml_mul(ctx0, omega_b, pos_w);
  935. ggml_tensor * theta_y = ggml_mul(ctx0, omega_b, pos_h);
  936. // sin and cos
  937. ggml_tensor * pos_embd_x = ggml_concat(
  938. ctx0,
  939. ggml_sin(ctx0, theta_x),
  940. ggml_cos(ctx0, theta_x),
  941. 0 // concat on first dim
  942. );
  943. ggml_tensor * pos_embd_y = ggml_concat(
  944. ctx0,
  945. ggml_sin(ctx0, theta_y),
  946. ggml_cos(ctx0, theta_y),
  947. 0 // concat on first dim
  948. );
  949. pos_embed = ggml_concat(ctx0, pos_embd_x, pos_embd_y, 0);
  950. }
  951. // k = v + pos_embed
  952. ggml_tensor * k = ggml_add(ctx0, v, pos_embed);
  953. // attention
  954. {
  955. const int d_head = 128;
  956. int n_head = n_embd_proj/d_head;
  957. // Use actual config value if available, otherwise fall back to hardcoded values
  958. int num_query = ctx->model.hparams.minicpmv_query_num;
  959. ggml_tensor * Q = ggml_add(ctx0,
  960. ggml_mul_mat(ctx0, model.mm_model_attn_q_w, q),
  961. model.mm_model_attn_q_b);
  962. ggml_tensor * K = ggml_add(ctx0,
  963. ggml_mul_mat(ctx0, model.mm_model_attn_k_w, k),
  964. model.mm_model_attn_k_b);
  965. ggml_tensor * V = ggml_add(ctx0,
  966. ggml_mul_mat(ctx0, model.mm_model_attn_v_w, v),
  967. model.mm_model_attn_v_b);
  968. Q = ggml_reshape_3d(ctx0, Q, d_head, n_head, num_query);
  969. K = ggml_reshape_3d(ctx0, K, d_head, n_head, n_pos);
  970. V = ggml_reshape_3d(ctx0, V, d_head, n_head, n_pos);
  971. cb(Q, "resampler_Q", -1);
  972. cb(K, "resampler_K", -1);
  973. cb(V, "resampler_V", -1);
  974. float resampler_kq_scale = 1.0f/ sqrtf(float(d_head));
  975. embeddings = build_attn(
  976. model.mm_model_attn_o_w,
  977. model.mm_model_attn_o_b,
  978. Q, K, V, nullptr, resampler_kq_scale, -1);
  979. cb(embeddings, "resampler_attn_out", -1);
  980. }
  981. // layernorm
  982. embeddings = build_norm(embeddings, model.mm_model_ln_post_w, model.mm_model_ln_post_b, NORM_TYPE_NORMAL, eps, -1);
  983. // projection
  984. embeddings = ggml_mul_mat(ctx0, model.mm_model_proj, embeddings);
  985. // build the graph
  986. ggml_build_forward_expand(gf, embeddings);
  987. return gf;
  988. }
  989. ggml_cgraph * build_internvl() {
  990. GGML_ASSERT(model.class_embedding != nullptr);
  991. GGML_ASSERT(model.position_embeddings != nullptr);
  992. const int n_pos = n_patches + 1;
  993. ggml_tensor * inp = build_inp();
  994. // add CLS token
  995. inp = ggml_concat(ctx0, inp, model.class_embedding, 1);
  996. // The larger models use a different ViT, which uses RMS norm instead of layer norm
  997. // ref: https://github.com/ggml-org/llama.cpp/pull/13443#issuecomment-2869786188
  998. norm_type norm_t = (hparams.n_embd == 3200 && hparams.n_layer == 45)
  999. ? NORM_TYPE_RMS // 6B ViT (Used by InternVL 2.5/3 - 26B, 38B, 78B)
  1000. : NORM_TYPE_NORMAL; // 300M ViT (Used by all smaller InternVL models)
  1001. ggml_tensor * cur = build_vit(
  1002. inp, n_pos,
  1003. norm_t,
  1004. hparams.ffn_op,
  1005. model.position_embeddings,
  1006. nullptr);
  1007. // remove CLS token
  1008. cur = ggml_view_2d(ctx0, cur,
  1009. n_embd, n_patches,
  1010. ggml_row_size(cur->type, n_embd), 0);
  1011. // pixel shuffle
  1012. {
  1013. const int scale_factor = model.hparams.n_merge;
  1014. const int bsz = 1; // batch size, always 1 for now since we don't support batching
  1015. const int height = n_patches_y;
  1016. const int width = n_patches_x;
  1017. GGML_ASSERT(scale_factor > 0);
  1018. cur = ggml_reshape_4d(ctx0, cur, n_embd * scale_factor, height / scale_factor, width, bsz);
  1019. cur = ggml_permute(ctx0, cur, 0, 2, 1, 3);
  1020. cur = ggml_cont_4d(ctx0, cur,
  1021. n_embd * scale_factor * scale_factor,
  1022. height / scale_factor,
  1023. width / scale_factor,
  1024. bsz);
  1025. cur = ggml_permute(ctx0, cur, 0, 2, 1, 3);
  1026. // flatten to 2D
  1027. cur = ggml_cont_2d(ctx0, cur,
  1028. n_embd * scale_factor * scale_factor,
  1029. cur->ne[1] * cur->ne[2]);
  1030. }
  1031. // projector (always using GELU activation)
  1032. {
  1033. // projector LayerNorm uses pytorch's default eps = 1e-5
  1034. // ref: https://huggingface.co/OpenGVLab/InternVL3-8B-Instruct/blob/a34d3e4e129a5856abfd6aa6de79776484caa14e/modeling_internvl_chat.py#L79
  1035. cur = build_norm(cur, model.mm_0_w, model.mm_0_b, NORM_TYPE_NORMAL, 1e-5, -1);
  1036. cur = ggml_mul_mat(ctx0, model.mm_1_w, cur);
  1037. cur = ggml_add(ctx0, cur, model.mm_1_b);
  1038. cur = ggml_gelu(ctx0, cur);
  1039. cur = ggml_mul_mat(ctx0, model.mm_3_w, cur);
  1040. cur = ggml_add(ctx0, cur, model.mm_3_b);
  1041. }
  1042. // build the graph
  1043. ggml_build_forward_expand(gf, cur);
  1044. return gf;
  1045. }
  1046. ggml_cgraph * build_llama4() {
  1047. GGML_ASSERT(model.class_embedding != nullptr);
  1048. GGML_ASSERT(model.position_embeddings != nullptr);
  1049. const int n_pos = n_patches + 1; // +1 for [CLS]
  1050. // 2D input positions
  1051. ggml_tensor * pos_h = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_pos);
  1052. ggml_set_name(pos_h, "pos_h");
  1053. ggml_set_input(pos_h);
  1054. ggml_tensor * pos_w = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_pos);
  1055. ggml_set_name(pos_w, "pos_w");
  1056. ggml_set_input(pos_w);
  1057. ggml_tensor * inp = build_inp_raw();
  1058. // Llama4UnfoldConvolution
  1059. {
  1060. ggml_tensor * kernel = ggml_reshape_4d(ctx0, model.patch_embeddings_0,
  1061. patch_size, patch_size, 3, n_embd);
  1062. inp = ggml_im2col(ctx0, kernel, inp, patch_size, patch_size, 0, 0, 1, 1, true, inp->type);
  1063. inp = ggml_mul_mat(ctx0, model.patch_embeddings_0, inp);
  1064. inp = ggml_reshape_2d(ctx0, inp, n_embd, n_patches);
  1065. cb(inp, "patch_conv", -1);
  1066. }
  1067. // add CLS token
  1068. inp = ggml_concat(ctx0, inp, model.class_embedding, 1);
  1069. // build ViT with 2D position embeddings
  1070. auto add_pos = [&](ggml_tensor * cur, const clip_layer &) {
  1071. // first half is X axis and second half is Y axis
  1072. // ref: https://github.com/huggingface/transformers/blob/40a493c7ed4f19f08eadb0639cf26d49bfa5e180/src/transformers/models/llama4/modeling_llama4.py#L1312
  1073. // ref: https://github.com/Blaizzy/mlx-vlm/blob/a57156aa87b33cca6e5ee6cfc14dd4ef8f611be6/mlx_vlm/models/llama4/vision.py#L441
  1074. return build_rope_2d(ctx0, cur, pos_w, pos_h, hparams.rope_theta, false);
  1075. };
  1076. ggml_tensor * cur = build_vit(
  1077. inp, n_pos,
  1078. NORM_TYPE_NORMAL,
  1079. hparams.ffn_op,
  1080. model.position_embeddings,
  1081. add_pos);
  1082. // remove CLS token
  1083. cur = ggml_view_2d(ctx0, cur,
  1084. n_embd, n_patches,
  1085. ggml_row_size(cur->type, n_embd), 0);
  1086. // pixel shuffle
  1087. // based on Llama4VisionPixelShuffleMLP
  1088. // https://github.com/huggingface/transformers/blob/2932f318a20d9e54cc7aea052e040164d85de7d6/src/transformers/models/llama4/modeling_llama4.py#L1151
  1089. {
  1090. const int scale_factor = model.hparams.n_merge;
  1091. const int bsz = 1; // batch size, always 1 for now since we don't support batching
  1092. GGML_ASSERT(scale_factor > 0);
  1093. GGML_ASSERT(n_patches_x == n_patches_y); // llama4 only supports square images
  1094. cur = ggml_reshape_4d(ctx0, cur,
  1095. n_embd * scale_factor,
  1096. n_patches_x / scale_factor,
  1097. n_patches_y,
  1098. bsz);
  1099. cur = ggml_permute(ctx0, cur, 0, 2, 1, 3);
  1100. cur = ggml_cont_4d(ctx0, cur,
  1101. n_embd * scale_factor * scale_factor,
  1102. n_patches_x / scale_factor,
  1103. n_patches_y / scale_factor,
  1104. bsz);
  1105. //cur = ggml_permute(ctx0, cur, 0, 2, 1, 3);
  1106. // flatten to 2D
  1107. cur = ggml_cont_2d(ctx0, cur,
  1108. n_embd * scale_factor * scale_factor,
  1109. n_patches / scale_factor / scale_factor);
  1110. cb(cur, "pixel_shuffle", -1);
  1111. }
  1112. // based on Llama4VisionMLP2 (always uses GELU activation, no bias)
  1113. {
  1114. cur = ggml_mul_mat(ctx0, model.mm_model_mlp_1_w, cur);
  1115. cur = ggml_gelu(ctx0, cur);
  1116. cur = ggml_mul_mat(ctx0, model.mm_model_mlp_2_w, cur);
  1117. cur = ggml_gelu(ctx0, cur);
  1118. cb(cur, "adapter_mlp", -1);
  1119. }
  1120. // Llama4MultiModalProjector
  1121. cur = ggml_mul_mat(ctx0, model.mm_model_proj, cur);
  1122. cb(cur, "projected", -1);
  1123. // build the graph
  1124. ggml_build_forward_expand(gf, cur);
  1125. return gf;
  1126. }
  1127. ggml_cgraph * build_kimivl() {
  1128. // 2D input positions
  1129. ggml_tensor * pos_h = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_patches);
  1130. ggml_set_name(pos_h, "pos_h");
  1131. ggml_set_input(pos_h);
  1132. ggml_tensor * pos_w = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_patches);
  1133. ggml_set_name(pos_w, "pos_w");
  1134. ggml_set_input(pos_w);
  1135. ggml_tensor * learned_pos_embd = resize_position_embeddings();
  1136. // build ViT with 2D position embeddings
  1137. auto add_pos = [&](ggml_tensor * cur, const clip_layer &) {
  1138. // first half is X axis and second half is Y axis
  1139. return build_rope_2d(ctx0, cur, pos_w, pos_h, hparams.rope_theta, false);
  1140. };
  1141. ggml_tensor * inp = build_inp();
  1142. ggml_tensor * cur = build_vit(
  1143. inp, n_patches,
  1144. NORM_TYPE_NORMAL,
  1145. hparams.ffn_op,
  1146. learned_pos_embd,
  1147. add_pos);
  1148. cb(cur, "vit_out", -1);
  1149. {
  1150. // patch_merger
  1151. const int scale_factor = model.hparams.n_merge;
  1152. cur = build_patch_merge_permute(cur, scale_factor);
  1153. // projection norm
  1154. int proj_inp_dim = cur->ne[0];
  1155. cur = ggml_view_2d(ctx0, cur,
  1156. n_embd, cur->ne[1] * scale_factor * scale_factor,
  1157. ggml_row_size(cur->type, n_embd), 0);
  1158. cur = ggml_norm(ctx0, cur, 1e-5); // default nn.LayerNorm
  1159. cur = ggml_mul(ctx0, cur, model.mm_input_norm_w);
  1160. cur = ggml_add(ctx0, cur, model.mm_input_norm_b);
  1161. cur = ggml_view_2d(ctx0, cur,
  1162. proj_inp_dim, cur->ne[1] / scale_factor / scale_factor,
  1163. ggml_row_size(cur->type, proj_inp_dim), 0);
  1164. cb(cur, "proj_inp_normed", -1);
  1165. // projection mlp
  1166. cur = ggml_mul_mat(ctx0, model.mm_1_w, cur);
  1167. cur = ggml_add(ctx0, cur, model.mm_1_b);
  1168. cur = ggml_gelu(ctx0, cur);
  1169. cur = ggml_mul_mat(ctx0, model.mm_2_w, cur);
  1170. cur = ggml_add(ctx0, cur, model.mm_2_b);
  1171. cb(cur, "proj_out", -1);
  1172. }
  1173. // build the graph
  1174. ggml_build_forward_expand(gf, cur);
  1175. return gf;
  1176. }
  1177. // this graph is used by llava, granite and glm
  1178. // due to having embedding_stack (used by granite), we cannot reuse build_vit
  1179. ggml_cgraph * build_llava() {
  1180. const int batch_size = 1;
  1181. const int n_pos = n_patches + (model.class_embedding ? 1 : 0);
  1182. GGML_ASSERT(n_patches_x == n_patches_y && "only square images supported");
  1183. // Calculate the deepest feature layer based on hparams and projector type
  1184. int max_feature_layer = n_layer;
  1185. {
  1186. // Get the index of the second to last layer; this is the default for models that have a llava projector
  1187. int il_last = hparams.n_layer - 1;
  1188. int deepest_feature_layer = -1;
  1189. if (ctx->proj_type() == PROJECTOR_TYPE_MINICPMV || ctx->proj_type() == PROJECTOR_TYPE_GLM_EDGE) {
  1190. il_last += 1;
  1191. }
  1192. // If we set explicit vision feature layers, only go up to the deepest one
  1193. // NOTE: only used by granite-vision models for now
  1194. for (const auto & feature_layer : hparams.vision_feature_layer) {
  1195. if (feature_layer > deepest_feature_layer) {
  1196. deepest_feature_layer = feature_layer;
  1197. }
  1198. }
  1199. max_feature_layer = deepest_feature_layer < 0 ? il_last : deepest_feature_layer;
  1200. }
  1201. ggml_tensor * inp = build_inp();
  1202. // concat class_embeddings and patch_embeddings
  1203. if (model.class_embedding) {
  1204. inp = ggml_concat(ctx0, inp, model.class_embedding, 1);
  1205. }
  1206. ggml_tensor * positions = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_pos);
  1207. ggml_set_name(positions, "positions");
  1208. ggml_set_input(positions);
  1209. inp = ggml_add(ctx0, inp, ggml_get_rows(ctx0, model.position_embeddings, positions));
  1210. ggml_tensor * inpL = inp;
  1211. // pre-layernorm
  1212. if (model.pre_ln_w) {
  1213. inpL = build_norm(inpL, model.pre_ln_w, model.pre_ln_b, NORM_TYPE_NORMAL, eps, -1);
  1214. cb(inpL, "pre_ln", -1);
  1215. }
  1216. std::vector<ggml_tensor *> embedding_stack;
  1217. const auto & vision_feature_layer = hparams.vision_feature_layer;
  1218. // loop over layers
  1219. for (int il = 0; il < max_feature_layer; il++) {
  1220. auto & layer = model.layers[il];
  1221. ggml_tensor * cur = inpL; // inpL = residual, cur = hidden_states
  1222. // If this is an embedding feature layer, save the output.
  1223. // NOTE: 0 index here refers to the input to the encoder.
  1224. if (vision_feature_layer.find(il) != vision_feature_layer.end()) {
  1225. embedding_stack.push_back(cur);
  1226. }
  1227. // layernorm1
  1228. cur = build_norm(cur, layer.ln_1_w, layer.ln_1_b, NORM_TYPE_NORMAL, eps, il);
  1229. cb(cur, "layer_inp_normed", il);
  1230. // self-attention
  1231. {
  1232. ggml_tensor * Qcur = ggml_mul_mat(ctx0, layer.q_w, cur);
  1233. if (layer.q_b) {
  1234. Qcur = ggml_add(ctx0, Qcur, layer.q_b);
  1235. }
  1236. ggml_tensor * Kcur = ggml_mul_mat(ctx0, layer.k_w, cur);
  1237. if (layer.k_b) {
  1238. Kcur = ggml_add(ctx0, Kcur, layer.k_b);
  1239. }
  1240. ggml_tensor * Vcur = ggml_mul_mat(ctx0, layer.v_w, cur);
  1241. if (layer.v_b) {
  1242. Vcur = ggml_add(ctx0, Vcur, layer.v_b);
  1243. }
  1244. Qcur = ggml_reshape_3d(ctx0, Qcur, d_head, n_head, n_pos);
  1245. Kcur = ggml_reshape_3d(ctx0, Kcur, d_head, n_head, n_pos);
  1246. Vcur = ggml_reshape_3d(ctx0, Vcur, d_head, n_head, n_pos);
  1247. cb(Qcur, "Qcur", il);
  1248. cb(Kcur, "Kcur", il);
  1249. cb(Vcur, "Vcur", il);
  1250. cur = build_attn(layer.o_w, layer.o_b,
  1251. Qcur, Kcur, Vcur, nullptr, kq_scale, il);
  1252. cb(cur, "attn_out", il);
  1253. }
  1254. // re-add the layer input, e.g., residual
  1255. cur = ggml_add(ctx0, cur, inpL);
  1256. inpL = cur; // inpL = residual, cur = hidden_states
  1257. cb(cur, "ffn_inp", il);
  1258. // layernorm2
  1259. cur = build_norm(cur, layer.ln_2_w, layer.ln_2_b, NORM_TYPE_NORMAL, eps, il);
  1260. cb(cur, "ffn_inp_normed", il);
  1261. // ffn
  1262. cur = build_ffn(cur,
  1263. layer.ff_up_w, layer.ff_up_b,
  1264. layer.ff_gate_w, layer.ff_gate_b,
  1265. layer.ff_down_w, layer.ff_down_b,
  1266. hparams.ffn_op, il);
  1267. cb(cur, "ffn_out", il);
  1268. // residual 2
  1269. cur = ggml_add(ctx0, inpL, cur);
  1270. cb(cur, "layer_out", il);
  1271. inpL = cur;
  1272. }
  1273. // post-layernorm
  1274. if (model.post_ln_w) {
  1275. inpL = build_norm(inpL, model.post_ln_w, model.post_ln_b, NORM_TYPE_NORMAL, eps, -1);
  1276. }
  1277. ggml_tensor * embeddings = inpL;
  1278. // process vision feature layers (used by granite)
  1279. {
  1280. // final layer is a vision feature layer
  1281. if (vision_feature_layer.find(max_feature_layer) != vision_feature_layer.end()) {
  1282. embedding_stack.push_back(inpL);
  1283. }
  1284. // If feature layers are explicitly set, stack them (if we have multiple)
  1285. if (!embedding_stack.empty()) {
  1286. embeddings = embedding_stack[0];
  1287. for (size_t i = 1; i < embedding_stack.size(); i++) {
  1288. embeddings = ggml_concat(ctx0, embeddings, embedding_stack[i], 0);
  1289. }
  1290. }
  1291. }
  1292. // llava projector (also used by granite)
  1293. if (ctx->model.hparams.has_llava_projector) {
  1294. embeddings = ggml_reshape_2d(ctx0, embeddings, embeddings->ne[0], embeddings->ne[1]);
  1295. ggml_tensor * patches = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_patches);
  1296. ggml_set_name(patches, "patches");
  1297. ggml_set_input(patches);
  1298. // shape [1, 576, 1024]
  1299. // ne is whcn, ne = [1024, 576, 1, 1]
  1300. embeddings = ggml_get_rows(ctx0, embeddings, patches);
  1301. // print_tensor_info(embeddings, "embeddings");
  1302. // llava projector
  1303. if (ctx->proj_type() == PROJECTOR_TYPE_MLP) {
  1304. embeddings = ggml_mul_mat(ctx0, model.mm_0_w, embeddings);
  1305. embeddings = ggml_add(ctx0, embeddings, model.mm_0_b);
  1306. embeddings = ggml_gelu(ctx0, embeddings);
  1307. if (model.mm_2_w) {
  1308. embeddings = ggml_mul_mat(ctx0, model.mm_2_w, embeddings);
  1309. embeddings = ggml_add(ctx0, embeddings, model.mm_2_b);
  1310. }
  1311. }
  1312. else if (ctx->proj_type() == PROJECTOR_TYPE_MLP_NORM) {
  1313. embeddings = ggml_mul_mat(ctx0, model.mm_0_w, embeddings);
  1314. embeddings = ggml_add(ctx0, embeddings, model.mm_0_b);
  1315. // ggml_tensor_printf(embeddings, "mm_0_w",0,true,false);
  1316. // First LayerNorm
  1317. embeddings = ggml_norm(ctx0, embeddings, eps);
  1318. embeddings = ggml_add(ctx0, ggml_mul(ctx0, embeddings, model.mm_1_w),
  1319. model.mm_1_b);
  1320. // GELU activation
  1321. embeddings = ggml_gelu(ctx0, embeddings);
  1322. // Second linear layer
  1323. embeddings = ggml_mul_mat(ctx0, model.mm_3_w, embeddings);
  1324. embeddings = ggml_add(ctx0, embeddings, model.mm_3_b);
  1325. // Second LayerNorm
  1326. embeddings = ggml_norm(ctx0, embeddings, eps);
  1327. embeddings = ggml_add(ctx0, ggml_mul(ctx0, embeddings, model.mm_4_w),
  1328. model.mm_4_b);
  1329. }
  1330. else if (ctx->proj_type() == PROJECTOR_TYPE_LDP) {
  1331. // MobileVLM projector
  1332. int n_patch = 24;
  1333. ggml_tensor * mlp_1 = ggml_mul_mat(ctx0, model.mm_model_mlp_1_w, embeddings);
  1334. mlp_1 = ggml_add(ctx0, mlp_1, model.mm_model_mlp_1_b);
  1335. mlp_1 = ggml_gelu(ctx0, mlp_1);
  1336. ggml_tensor * mlp_3 = ggml_mul_mat(ctx0, model.mm_model_mlp_3_w, mlp_1);
  1337. mlp_3 = ggml_add(ctx0, mlp_3, model.mm_model_mlp_3_b);
  1338. // mlp_3 shape = [1, 576, 2048], ne = [2048, 576, 1, 1]
  1339. // block 1
  1340. ggml_tensor * block_1 = nullptr;
  1341. {
  1342. // transpose from [1, 576, 2048] --> [1, 2048, 576] --> [1, 2048, 24, 24]
  1343. mlp_3 = ggml_permute(ctx0, mlp_3, 1, 0, 2, 3);
  1344. mlp_3 = ggml_cont_4d(ctx0, mlp_3, n_patch, n_patch, mlp_3->ne[1], mlp_3->ne[2]);
  1345. // stride = 1, padding = 1, bias is nullptr
  1346. block_1 = ggml_conv_2d_dw(ctx0, model.mm_model_block_1_block_0_0_w, mlp_3, 1, 1, 1, 1, 1, 1);
  1347. // layer norm
  1348. // // block_1 shape = [1, 2048, 24, 24], ne = [24, 24, 2048, 1]
  1349. block_1 = ggml_cont(ctx0, ggml_permute(ctx0, block_1, 1, 2, 0, 3));
  1350. // block_1 shape = [1, 24, 24, 2048], ne = [2048, 24, 24, 1]
  1351. block_1 = ggml_norm(ctx0, block_1, eps);
  1352. block_1 = ggml_add(ctx0, ggml_mul(ctx0, block_1, model.mm_model_block_1_block_0_1_w), model.mm_model_block_1_block_0_1_b);
  1353. block_1 = ggml_cont(ctx0, ggml_permute(ctx0, block_1, 2, 0, 1, 3));
  1354. // block_1 shape = [1, 2048, 24, 24], ne = [24, 24, 2048, 1]
  1355. // hardswish
  1356. ggml_tensor * block_1_hw = ggml_hardswish(ctx0, block_1);
  1357. block_1 = ggml_pool_2d(ctx0, block_1_hw, GGML_OP_POOL_AVG, block_1_hw->ne[0], block_1_hw->ne[1], block_1_hw->ne[0], block_1_hw->ne[1], 0, 0);
  1358. // block_1 shape = [1, 2048, 1, 1], ne = [1, 1, 2048, 1]
  1359. // pointwise conv
  1360. block_1 = ggml_reshape_2d(ctx0, block_1, block_1->ne[0]*block_1->ne[1]*block_1->ne[2], block_1->ne[3]);
  1361. block_1 = ggml_mul_mat(ctx0, model.mm_model_block_1_block_1_fc1_w, block_1);
  1362. block_1 = ggml_add(ctx0, block_1, model.mm_model_block_1_block_1_fc1_b);
  1363. block_1 = ggml_relu(ctx0, block_1);
  1364. block_1 = ggml_mul_mat(ctx0, model.mm_model_block_1_block_1_fc2_w, block_1);
  1365. block_1 = ggml_add(ctx0, block_1, model.mm_model_block_1_block_1_fc2_b);
  1366. block_1 = ggml_hardsigmoid(ctx0, block_1);
  1367. // block_1_hw shape = [1, 2048, 24, 24], ne = [24, 24, 2048, 1], block_1 shape = [1, 2048], ne = [2048, 1, 1, 1]
  1368. block_1 = ggml_reshape_4d(ctx0, block_1, 1, 1, block_1->ne[0], block_1->ne[1]);
  1369. block_1 = ggml_mul(ctx0, block_1_hw, block_1);
  1370. int w = block_1->ne[0], h = block_1->ne[1];
  1371. block_1 = ggml_reshape_3d(ctx0, block_1, w*h, block_1->ne[2], block_1->ne[3]);
  1372. block_1 = ggml_cont(ctx0, ggml_permute(ctx0, block_1, 1, 0, 2, 3));
  1373. // block_1 shape = [1, 24*24, 2048], ne = [24*24, 2048, 1]
  1374. block_1 = ggml_mul_mat(ctx0, model.mm_model_block_1_block_2_0_w, block_1);
  1375. block_1 = ggml_reshape_4d(ctx0, block_1, block_1->ne[0], w, h, block_1->ne[3]);
  1376. // block_1 shape = [1, 24, 24, 2048], ne = [2048, 24, 24, 1]
  1377. block_1 = ggml_norm(ctx0, block_1, eps);
  1378. block_1 = ggml_add(ctx0, ggml_mul(ctx0, block_1, model.mm_model_block_1_block_2_1_w), model.mm_model_block_1_block_2_1_b);
  1379. block_1 = ggml_cont(ctx0, ggml_permute(ctx0, block_1, 2, 0, 1, 3));
  1380. // block1 shape = [1, 2048, 24, 24], ne = [24, 24, 2048, 1]
  1381. // residual
  1382. block_1 = ggml_add(ctx0, mlp_3, block_1);
  1383. }
  1384. // block_2
  1385. {
  1386. // stride = 2
  1387. block_1 = ggml_conv_2d_dw(ctx0, model.mm_model_block_2_block_0_0_w, block_1, 2, 2, 1, 1, 1, 1);
  1388. // block_1 shape = [1, 2048, 12, 12], ne = [12, 12, 2048, 1]
  1389. // layer norm
  1390. block_1 = ggml_cont(ctx0, ggml_permute(ctx0, block_1, 1, 2, 0, 3));
  1391. // block_1 shape = [1, 12, 12, 2048], ne = [2048, 12, 12, 1]
  1392. block_1 = ggml_norm(ctx0, block_1, eps);
  1393. block_1 = ggml_add(ctx0, ggml_mul(ctx0, block_1, model.mm_model_block_2_block_0_1_w), model.mm_model_block_2_block_0_1_b);
  1394. block_1 = ggml_cont(ctx0, ggml_permute(ctx0, block_1, 2, 0, 1, 3));
  1395. // block_1 shape = [1, 2048, 12, 12], ne = [12, 12, 2048, 1]
  1396. // hardswish
  1397. ggml_tensor * block_1_hw = ggml_hardswish(ctx0, block_1);
  1398. // not sure the parameters is right for globalAvgPooling
  1399. block_1 = ggml_pool_2d(ctx0, block_1_hw, GGML_OP_POOL_AVG, block_1_hw->ne[0], block_1_hw->ne[1], block_1_hw->ne[0], block_1_hw->ne[1], 0, 0);
  1400. // block_1 shape = [1, 2048, 1, 1], ne = [1, 1, 2048, 1]
  1401. // pointwise conv
  1402. block_1 = ggml_reshape_2d(ctx0, block_1, block_1->ne[0]*block_1->ne[1]*block_1->ne[2], block_1->ne[3]);
  1403. block_1 = ggml_mul_mat(ctx0, model.mm_model_block_2_block_1_fc1_w, block_1);
  1404. block_1 = ggml_add(ctx0, block_1, model.mm_model_block_2_block_1_fc1_b);
  1405. block_1 = ggml_relu(ctx0, block_1);
  1406. block_1 = ggml_mul_mat(ctx0, model.mm_model_block_2_block_1_fc2_w, block_1);
  1407. block_1 = ggml_add(ctx0, block_1, model.mm_model_block_2_block_1_fc2_b);
  1408. block_1 = ggml_hardsigmoid(ctx0, block_1);
  1409. // block_1_hw shape = [1, 2048, 12, 12], ne = [12, 12, 2048, 1], block_1 shape = [1, 2048, 1, 1], ne = [1, 1, 2048, 1]
  1410. block_1 = ggml_reshape_4d(ctx0, block_1, 1, 1, block_1->ne[0], block_1->ne[1]);
  1411. block_1 = ggml_mul(ctx0, block_1_hw, block_1);
  1412. int w = block_1->ne[0], h = block_1->ne[1];
  1413. block_1 = ggml_reshape_3d(ctx0, block_1, w*h, block_1->ne[2], block_1->ne[3]);
  1414. block_1 = ggml_cont(ctx0, ggml_permute(ctx0, block_1, 1, 0, 2, 3));
  1415. // block_1 shape = [1, 24*24, 2048], ne = [24*24, 2048, 1]
  1416. block_1 = ggml_mul_mat(ctx0, model.mm_model_block_2_block_2_0_w, block_1);
  1417. block_1 = ggml_reshape_4d(ctx0, block_1, block_1->ne[0], w, h, block_1->ne[3]);
  1418. // block_1 shape = [1, 12, 12, 2048], ne = [2048, 12, 12, 1]
  1419. block_1 = ggml_norm(ctx0, block_1, eps);
  1420. block_1 = ggml_add(ctx0, ggml_mul(ctx0, block_1, model.mm_model_block_2_block_2_1_w), model.mm_model_block_2_block_2_1_b);
  1421. block_1 = ggml_reshape_3d(ctx0, block_1, block_1->ne[0], block_1->ne[1] * block_1->ne[2], block_1->ne[3]);
  1422. // block_1 shape = [1, 144, 2048], ne = [2048, 144, 1]
  1423. }
  1424. embeddings = block_1;
  1425. }
  1426. else if (ctx->proj_type() == PROJECTOR_TYPE_LDPV2)
  1427. {
  1428. int n_patch = 24;
  1429. ggml_tensor * mlp_0 = ggml_mul_mat(ctx0, model.mm_model_mlp_0_w, embeddings);
  1430. mlp_0 = ggml_add(ctx0, mlp_0, model.mm_model_mlp_0_b);
  1431. mlp_0 = ggml_gelu(ctx0, mlp_0);
  1432. ggml_tensor * mlp_2 = ggml_mul_mat(ctx0, model.mm_model_mlp_2_w, mlp_0);
  1433. mlp_2 = ggml_add(ctx0, mlp_2, model.mm_model_mlp_2_b);
  1434. // mlp_2 ne = [2048, 576, 1, 1]
  1435. // // AVG Pool Layer 2*2, strides = 2
  1436. mlp_2 = ggml_permute(ctx0, mlp_2, 1, 0, 2, 3);
  1437. // mlp_2 ne = [576, 2048, 1, 1]
  1438. mlp_2 = ggml_cont_4d(ctx0, mlp_2, n_patch, n_patch, mlp_2->ne[1], mlp_2->ne[2]);
  1439. // mlp_2 ne [24, 24, 2048, 1]
  1440. mlp_2 = ggml_pool_2d(ctx0, mlp_2, GGML_OP_POOL_AVG, 2, 2, 2, 2, 0, 0);
  1441. // weight ne = [3, 3, 2048, 1]
  1442. ggml_tensor * peg_0 = ggml_conv_2d_dw(ctx0, model.mm_model_peg_0_w, mlp_2, 1, 1, 1, 1, 1, 1);
  1443. peg_0 = ggml_cont(ctx0, ggml_permute(ctx0, peg_0, 1, 2, 0, 3));
  1444. peg_0 = ggml_add(ctx0, peg_0, model.mm_model_peg_0_b);
  1445. mlp_2 = ggml_cont(ctx0, ggml_permute(ctx0, mlp_2, 1, 2, 0, 3));
  1446. peg_0 = ggml_add(ctx0, peg_0, mlp_2);
  1447. peg_0 = ggml_reshape_3d(ctx0, peg_0, peg_0->ne[0], peg_0->ne[1] * peg_0->ne[2], peg_0->ne[3]);
  1448. embeddings = peg_0;
  1449. }
  1450. else {
  1451. GGML_ABORT("fatal error");
  1452. }
  1453. }
  1454. // glm projector
  1455. else if (ctx->proj_type() == PROJECTOR_TYPE_GLM_EDGE) {
  1456. size_t gridsz = (size_t)sqrt(embeddings->ne[1]);
  1457. embeddings = ggml_permute(ctx0,embeddings,1,0,2,3);
  1458. embeddings = ggml_cont_3d(ctx0, embeddings, gridsz, gridsz, embeddings->ne[1]);
  1459. embeddings = ggml_conv_2d(ctx0, model.mm_model_adapter_conv_w, embeddings, 2, 2, 0, 0, 1, 1);
  1460. embeddings = ggml_reshape_3d(ctx0, embeddings,embeddings->ne[0]*embeddings->ne[1] , embeddings->ne[2], batch_size);
  1461. embeddings = ggml_cont(ctx0, ggml_permute(ctx0,embeddings, 1, 0, 2, 3));
  1462. embeddings = ggml_add(ctx0, embeddings, model.mm_model_adapter_conv_b);
  1463. // GLU
  1464. {
  1465. embeddings = ggml_mul_mat(ctx0, model.mm_model_mlp_0_w, embeddings);
  1466. embeddings = ggml_norm(ctx0, embeddings, eps);
  1467. embeddings = ggml_add(ctx0, ggml_mul(ctx0, embeddings, model.mm_model_ln_q_w), model.mm_model_ln_q_b);
  1468. embeddings = ggml_gelu_inplace(ctx0, embeddings);
  1469. ggml_tensor * x = embeddings;
  1470. embeddings = ggml_mul_mat(ctx0, model.mm_model_mlp_2_w, embeddings);
  1471. x = ggml_mul_mat(ctx0, model.mm_model_mlp_1_w,x);
  1472. embeddings = ggml_swiglu_split(ctx0, embeddings, x);
  1473. embeddings = ggml_mul_mat(ctx0, model.mm_model_mlp_3_w, embeddings);
  1474. }
  1475. // arrangement of BOI/EOI token embeddings
  1476. // note: these embeddings are not present in text model, hence we cannot process them as text tokens
  1477. // see: https://huggingface.co/THUDM/glm-edge-v-2b/blob/main/siglip.py#L53
  1478. {
  1479. embeddings = ggml_concat(ctx0, model.mm_boi, embeddings, 1); // BOI
  1480. embeddings = ggml_concat(ctx0, embeddings, model.mm_eoi, 1); // EOI
  1481. }
  1482. }
  1483. else {
  1484. GGML_ABORT("llava: unknown projector type");
  1485. }
  1486. // build the graph
  1487. ggml_build_forward_expand(gf, embeddings);
  1488. return gf;
  1489. }
  1490. // whisper encoder with custom projector
  1491. ggml_cgraph * build_whisper_enc() {
  1492. const int n_frames = img.nx;
  1493. const int n_pos = n_frames / 2;
  1494. GGML_ASSERT(model.position_embeddings->ne[1] >= n_pos);
  1495. ggml_tensor * inp = build_inp_raw(1);
  1496. // conv1d block
  1497. {
  1498. // convolution + gelu
  1499. ggml_tensor * cur = ggml_conv_1d_ph(ctx0, model.conv1d_1_w, inp, 1, 1);
  1500. cur = ggml_add(ctx0, cur, model.conv1d_1_b);
  1501. cur = ggml_gelu_erf(ctx0, cur);
  1502. cur = ggml_conv_1d_ph(ctx0, model.conv1d_2_w, cur, 2, 1);
  1503. cur = ggml_add(ctx0, cur, model.conv1d_2_b);
  1504. cur = ggml_gelu_erf(ctx0, cur);
  1505. // transpose
  1506. inp = ggml_cont(ctx0, ggml_transpose(ctx0, cur));
  1507. cb(inp, "after_conv1d", -1);
  1508. }
  1509. // sanity check (only check one layer, but it should be the same for all)
  1510. GGML_ASSERT(model.layers[0].ln_1_w && model.layers[0].ln_1_b);
  1511. GGML_ASSERT(model.layers[0].ln_2_w && model.layers[0].ln_2_b);
  1512. GGML_ASSERT(model.layers[0].q_b);
  1513. GGML_ASSERT(model.layers[0].v_b);
  1514. GGML_ASSERT(!model.layers[0].k_b); // no bias for k
  1515. GGML_ASSERT(model.post_ln_w && model.post_ln_b);
  1516. ggml_tensor * pos_embd_selected = ggml_view_2d(
  1517. ctx0, model.position_embeddings,
  1518. model.position_embeddings->ne[0], n_pos,
  1519. model.position_embeddings->nb[1], 0
  1520. );
  1521. ggml_tensor * cur = build_vit(
  1522. inp, n_pos,
  1523. NORM_TYPE_NORMAL,
  1524. hparams.ffn_op,
  1525. pos_embd_selected,
  1526. nullptr);
  1527. cb(cur, "after_transformer", -1);
  1528. if (model.audio_has_stack_frames()) {
  1529. // StackAudioFrames
  1530. // https://huggingface.co/fixie-ai/ultravox-v0_5-llama-3_2-1b/blob/main/ultravox_model.py
  1531. int64_t stride = n_embd * hparams.proj_stack_factor;
  1532. int64_t padded_len = GGML_PAD(ggml_nelements(cur), stride);
  1533. int64_t pad = padded_len - ggml_nelements(cur);
  1534. if (pad > 0) {
  1535. cur = ggml_view_1d(ctx0, cur, ggml_nelements(cur), 0);
  1536. cur = ggml_pad(ctx0, cur, pad, 0, 0, 0);
  1537. }
  1538. cur = ggml_view_2d(ctx0, cur, stride, padded_len / stride,
  1539. ggml_row_size(cur->type, stride), 0);
  1540. cb(cur, "after_stacked", -1);
  1541. }
  1542. if (ctx->proj_type() == PROJECTOR_TYPE_ULTRAVOX) {
  1543. // UltravoxProjector
  1544. // pre-norm
  1545. cur = ggml_rms_norm(ctx0, cur, 1e-6);
  1546. cur = ggml_mul(ctx0, cur, model.mm_norm_pre_w);
  1547. // ffn in
  1548. cur = ggml_mul_mat(ctx0, model.mm_1_w, cur);
  1549. // swiglu
  1550. // see SwiGLU in ultravox_model.py, the second half passed through is silu, not the first half
  1551. cur = ggml_swiglu_swapped(ctx0, cur);
  1552. // mid-norm
  1553. cur = ggml_rms_norm(ctx0, cur, 1e-6);
  1554. cur = ggml_mul(ctx0, cur, model.mm_norm_mid_w);
  1555. // ffn out
  1556. cur = ggml_mul_mat(ctx0, model.mm_2_w, cur);
  1557. } else if (ctx->proj_type() == PROJECTOR_TYPE_QWEN2A) {
  1558. // projector
  1559. cur = ggml_mul_mat(ctx0, model.mm_fc_w, cur);
  1560. cur = ggml_add(ctx0, cur, model.mm_fc_b);
  1561. } else if (ctx->proj_type() == PROJECTOR_TYPE_VOXTRAL) {
  1562. // projector
  1563. cur = ggml_mul_mat(ctx0, model.mm_1_w, cur);
  1564. cur = ggml_gelu_erf(ctx0, cur);
  1565. cur = ggml_mul_mat(ctx0, model.mm_2_w, cur);
  1566. } else {
  1567. GGML_ABORT("%s: unknown projector type", __func__);
  1568. }
  1569. cb(cur, "projected", -1);
  1570. ggml_build_forward_expand(gf, cur);
  1571. return gf;
  1572. }
  1573. // cogvlm vision encoder
  1574. ggml_cgraph * build_cogvlm() {
  1575. GGML_ASSERT(model.class_embedding != nullptr);
  1576. GGML_ASSERT(model.position_embeddings != nullptr);
  1577. const int n_pos = n_patches + 1; // +1 for [CLS]
  1578. // build input and concatenate class embedding
  1579. ggml_tensor * inp = build_inp();
  1580. inp = ggml_concat(ctx0, inp, model.class_embedding, 1);
  1581. inp = ggml_add(ctx0, inp, model.position_embeddings);
  1582. cb(inp, "inp_pos", -1);
  1583. ggml_tensor * inpL = inp;
  1584. for (int il = 0; il < n_layer; il++) {
  1585. auto & layer = model.layers[il];
  1586. ggml_tensor * cur = inpL;
  1587. cur = ggml_mul_mat(ctx0, layer.qkv_w, cur);
  1588. cur = ggml_add(ctx0, cur, layer.qkv_b);
  1589. ggml_tensor * Qcur = ggml_view_3d(ctx0, cur, d_head, n_head, n_pos, d_head*sizeof(float),
  1590. cur->nb[1], 0);
  1591. ggml_tensor * Kcur = ggml_view_3d(ctx0, cur, d_head, n_head, n_pos, d_head*sizeof(float),
  1592. cur->nb[1], n_embd * sizeof(float));
  1593. ggml_tensor * Vcur = ggml_view_3d(ctx0, cur, d_head, n_head, n_pos, d_head*sizeof(float),
  1594. cur->nb[1], 2 * n_embd * sizeof(float));
  1595. cb(Qcur, "Qcur", il);
  1596. cb(Kcur, "Kcur", il);
  1597. cb(Vcur, "Vcur", il);
  1598. cur = build_attn(layer.o_w, layer.o_b,
  1599. Qcur, Kcur, Vcur, nullptr, kq_scale, il);
  1600. cb(cur, "attn_out", il);
  1601. cur = build_norm(cur, layer.ln_1_w, layer.ln_1_b, NORM_TYPE_NORMAL, eps, il);
  1602. cb(cur, "attn_post_norm", il);
  1603. cur = ggml_add(ctx0, cur, inpL);
  1604. inpL = cur;
  1605. cur = build_ffn(cur,
  1606. layer.ff_up_w, layer.ff_up_b,
  1607. layer.ff_gate_w, layer.ff_gate_b,
  1608. layer.ff_down_w, layer.ff_down_b,
  1609. hparams.ffn_op, il);
  1610. cb(cur, "ffn_out", il);
  1611. cur = build_norm(cur, layer.ln_2_w, layer.ln_2_b, NORM_TYPE_NORMAL, eps, il);
  1612. cb(cur, "ffn_post_norm", il);
  1613. cur = ggml_add(ctx0, cur, inpL);
  1614. cb(cur, "layer_out", il);
  1615. inpL = cur;
  1616. }
  1617. // remove CLS token (like build_llama4 does)
  1618. ggml_tensor * cur = ggml_view_2d(ctx0, inpL,
  1619. n_embd, n_patches,
  1620. ggml_row_size(inpL->type, n_embd), 0);
  1621. // Multiply with mm_model_proj
  1622. cur = ggml_mul_mat(ctx0, model.mm_model_proj, cur);
  1623. // Apply layernorm, weight, bias
  1624. cur = build_norm(cur, model.mm_post_fc_norm_w, model.mm_post_fc_norm_b, NORM_TYPE_NORMAL, 1e-5, -1);
  1625. // Apply GELU
  1626. cur = ggml_gelu_inplace(ctx0, cur);
  1627. // Branch 1: multiply with mm_h_to_4h_w
  1628. ggml_tensor * h_to_4h = ggml_mul_mat(ctx0, model.mm_h_to_4h_w, cur);
  1629. // Branch 2: multiply with mm_gate_w
  1630. ggml_tensor * gate = ggml_mul_mat(ctx0, model.mm_gate_w, cur);
  1631. // Apply silu
  1632. gate = ggml_swiglu_split(ctx0, gate, h_to_4h);
  1633. // Apply mm_4h_to_h_w
  1634. cur = ggml_mul_mat(ctx0, model.mm_4h_to_h_w, gate);
  1635. // Concatenate with boi and eoi
  1636. cur = ggml_concat(ctx0, model.mm_boi, cur, 1);
  1637. cur = ggml_concat(ctx0, cur, model.mm_eoi, 1);
  1638. // build the graph
  1639. ggml_build_forward_expand(gf, cur);
  1640. return gf;
  1641. }
  1642. private:
  1643. //
  1644. // utility functions
  1645. //
  1646. void cb(ggml_tensor * cur0, const char * name, int il) const {
  1647. if (ctx->debug_graph) {
  1648. ggml_tensor * cur = ggml_cpy(ctx0, cur0, ggml_dup_tensor(ctx0, cur0));
  1649. std::string cur_name = il >= 0 ? std::string(name) + "_" + std::to_string(il) : name;
  1650. ggml_set_name(cur, cur_name.c_str());
  1651. ggml_set_output(cur);
  1652. ggml_build_forward_expand(gf, cur);
  1653. ctx->debug_print_tensors.push_back(cur);
  1654. }
  1655. }
  1656. // siglip2 naflex
  1657. ggml_tensor * resize_position_embeddings() {
  1658. ggml_tensor * pos_embd = model.position_embeddings;
  1659. const int height = img.ny / patch_size;
  1660. const int width = img.nx / patch_size;
  1661. const uint32_t mode = GGML_SCALE_MODE_BILINEAR | GGML_SCALE_FLAG_ANTIALIAS;
  1662. const int n_per_side = (int)std::sqrt(pos_embd->ne[1]);
  1663. GGML_ASSERT(pos_embd);
  1664. if (height == n_per_side && width == n_per_side) {
  1665. return pos_embd;
  1666. }
  1667. pos_embd = ggml_reshape_3d(ctx0, pos_embd, n_embd, n_per_side, n_per_side); // -> (n_embd, n_per_side, n_per_side)
  1668. pos_embd = ggml_permute(ctx0, pos_embd, 2, 0, 1, 3); // -> (n_per_side, n_per_side, n_embd)
  1669. pos_embd = ggml_interpolate(ctx0, pos_embd, width, height, n_embd, 1, mode); // -> (width, height, n_embd)
  1670. pos_embd = ggml_permute(ctx0, pos_embd, 1, 2, 0, 3); // -> (n_embd, width, height)
  1671. pos_embd = ggml_cont_2d(ctx0, pos_embd, n_embd, width * height); // -> (n_embd, width * height)
  1672. return pos_embd;
  1673. }
  1674. // build vision transformer (ViT) cgraph
  1675. // this function should cover most of the models
  1676. // if your model has specific features, you should probably duplicate this function
  1677. ggml_tensor * build_vit(
  1678. ggml_tensor * inp,
  1679. int64_t n_pos,
  1680. norm_type norm_t,
  1681. ffn_op_type ffn_t,
  1682. ggml_tensor * learned_pos_embd,
  1683. std::function<ggml_tensor *(ggml_tensor *, const clip_layer &)> add_pos
  1684. ) {
  1685. if (learned_pos_embd) {
  1686. inp = ggml_add(ctx0, inp, learned_pos_embd);
  1687. cb(inp, "pos_embed", -1);
  1688. }
  1689. ggml_tensor * inpL = inp;
  1690. // pre-layernorm
  1691. if (model.pre_ln_w) {
  1692. inpL = build_norm(inpL, model.pre_ln_w, model.pre_ln_b, norm_t, eps, -1);
  1693. cb(inpL, "pre_ln", -1);
  1694. }
  1695. // loop over layers
  1696. for (int il = 0; il < n_layer; il++) {
  1697. auto & layer = model.layers[il];
  1698. ggml_tensor * cur = inpL; // inpL = residual, cur = hidden_states
  1699. // layernorm1
  1700. cur = build_norm(cur, layer.ln_1_w, layer.ln_1_b, norm_t, eps, il);
  1701. cb(cur, "layer_inp_normed", il);
  1702. // self-attention
  1703. {
  1704. ggml_tensor * Qcur = ggml_mul_mat(ctx0, layer.q_w, cur);
  1705. if (layer.q_b) {
  1706. Qcur = ggml_add(ctx0, Qcur, layer.q_b);
  1707. }
  1708. ggml_tensor * Kcur = ggml_mul_mat(ctx0, layer.k_w, cur);
  1709. if (layer.k_b) {
  1710. Kcur = ggml_add(ctx0, Kcur, layer.k_b);
  1711. }
  1712. ggml_tensor * Vcur = ggml_mul_mat(ctx0, layer.v_w, cur);
  1713. if (layer.v_b) {
  1714. Vcur = ggml_add(ctx0, Vcur, layer.v_b);
  1715. }
  1716. if (layer.q_norm) {
  1717. Qcur = build_norm(Qcur, layer.q_norm, NULL, norm_t, eps, il);
  1718. cb(Qcur, "Qcur_norm", il);
  1719. }
  1720. if (layer.k_norm) {
  1721. Kcur = build_norm(Kcur, layer.k_norm, NULL, norm_t, eps, il);
  1722. cb(Kcur, "Kcur_norm", il);
  1723. }
  1724. Qcur = ggml_reshape_3d(ctx0, Qcur, d_head, n_head, n_pos);
  1725. Kcur = ggml_reshape_3d(ctx0, Kcur, d_head, n_head, n_pos);
  1726. Vcur = ggml_reshape_3d(ctx0, Vcur, d_head, n_head, n_pos);
  1727. cb(Qcur, "Qcur", il);
  1728. cb(Kcur, "Kcur", il);
  1729. cb(Vcur, "Vcur", il);
  1730. if (add_pos) {
  1731. Qcur = add_pos(Qcur, layer);
  1732. Kcur = add_pos(Kcur, layer);
  1733. cb(Qcur, "Qcur_pos", il);
  1734. cb(Kcur, "Kcur_pos", il);
  1735. }
  1736. cur = build_attn(layer.o_w, layer.o_b,
  1737. Qcur, Kcur, Vcur, nullptr, kq_scale, il);
  1738. cb(cur, "attn_out", il);
  1739. }
  1740. if (layer.ls_1_w) {
  1741. cur = ggml_mul(ctx0, cur, layer.ls_1_w);
  1742. cb(cur, "attn_out_scaled", il);
  1743. }
  1744. // re-add the layer input, e.g., residual
  1745. cur = ggml_add(ctx0, cur, inpL);
  1746. inpL = cur; // inpL = residual, cur = hidden_states
  1747. cb(cur, "ffn_inp", il);
  1748. // layernorm2
  1749. cur = build_norm(cur, layer.ln_2_w, layer.ln_2_b, norm_t, eps, il);
  1750. cb(cur, "ffn_inp_normed", il);
  1751. // ffn
  1752. cur = build_ffn(cur,
  1753. layer.ff_up_w, layer.ff_up_b,
  1754. layer.ff_gate_w, layer.ff_gate_b,
  1755. layer.ff_down_w, layer.ff_down_b,
  1756. ffn_t, il);
  1757. cb(cur, "ffn_out", il);
  1758. if (layer.ls_2_w) {
  1759. cur = ggml_mul(ctx0, cur, layer.ls_2_w);
  1760. cb(cur, "ffn_out_scaled", il);
  1761. }
  1762. // residual 2
  1763. cur = ggml_add(ctx0, inpL, cur);
  1764. cb(cur, "layer_out", il);
  1765. inpL = cur;
  1766. }
  1767. if (ctx->model.audio_has_avgpool()) {
  1768. ggml_tensor * cur = inpL;
  1769. cur = ggml_transpose(ctx0, cur);
  1770. cur = ggml_cont(ctx0, cur);
  1771. cur = ggml_pool_1d(ctx0, cur, GGML_OP_POOL_AVG, 2, 2, 0);
  1772. cur = ggml_transpose(ctx0, cur);
  1773. cur = ggml_cont(ctx0, cur);
  1774. inpL = cur;
  1775. }
  1776. // post-layernorm
  1777. if (model.post_ln_w) {
  1778. inpL = build_norm(inpL, model.post_ln_w, model.post_ln_b, norm_t, eps, -1);
  1779. }
  1780. return inpL;
  1781. }
  1782. // build the input after conv2d (inp_raw --> patches)
  1783. // returns tensor with shape [n_embd, n_patches]
  1784. ggml_tensor * build_inp() {
  1785. ggml_tensor * inp_raw = build_inp_raw();
  1786. ggml_tensor * inp = ggml_conv_2d(ctx0, model.patch_embeddings_0, inp_raw, patch_size, patch_size, 0, 0, 1, 1);
  1787. inp = ggml_reshape_2d(ctx0, inp, n_patches, n_embd);
  1788. inp = ggml_cont(ctx0, ggml_transpose(ctx0, inp));
  1789. if (model.patch_bias) {
  1790. inp = ggml_add(ctx0, inp, model.patch_bias);
  1791. cb(inp, "patch_bias", -1);
  1792. }
  1793. return inp;
  1794. }
  1795. ggml_tensor * build_inp_raw(int channels = 3) {
  1796. ggml_tensor * inp_raw = ggml_new_tensor_3d(ctx0, GGML_TYPE_F32, img.nx, img.ny, channels);
  1797. ggml_set_name(inp_raw, "inp_raw");
  1798. ggml_set_input(inp_raw);
  1799. return inp_raw;
  1800. }
  1801. ggml_tensor * build_norm(
  1802. ggml_tensor * cur,
  1803. ggml_tensor * mw,
  1804. ggml_tensor * mb,
  1805. norm_type type,
  1806. float norm_eps,
  1807. int il) const {
  1808. cur = type == NORM_TYPE_RMS
  1809. ? ggml_rms_norm(ctx0, cur, norm_eps)
  1810. : ggml_norm(ctx0, cur, norm_eps);
  1811. if (mw || mb) {
  1812. cb(cur, "norm", il);
  1813. }
  1814. if (mw) {
  1815. cur = ggml_mul(ctx0, cur, mw);
  1816. if (mb) {
  1817. cb(cur, "norm_w", il);
  1818. }
  1819. }
  1820. if (mb) {
  1821. cur = ggml_add(ctx0, cur, mb);
  1822. }
  1823. return cur;
  1824. }
  1825. ggml_tensor * build_ffn(
  1826. ggml_tensor * cur,
  1827. ggml_tensor * up,
  1828. ggml_tensor * up_b,
  1829. ggml_tensor * gate,
  1830. ggml_tensor * gate_b,
  1831. ggml_tensor * down,
  1832. ggml_tensor * down_b,
  1833. ffn_op_type type_op,
  1834. int il) const {
  1835. ggml_tensor * tmp = up ? ggml_mul_mat(ctx0, up, cur) : cur;
  1836. cb(tmp, "ffn_up", il);
  1837. if (up_b) {
  1838. tmp = ggml_add(ctx0, tmp, up_b);
  1839. cb(tmp, "ffn_up_b", il);
  1840. }
  1841. if (gate) {
  1842. cur = ggml_mul_mat(ctx0, gate, cur);
  1843. cb(cur, "ffn_gate", il);
  1844. if (gate_b) {
  1845. cur = ggml_add(ctx0, cur, gate_b);
  1846. cb(cur, "ffn_gate_b", il);
  1847. }
  1848. } else {
  1849. cur = tmp;
  1850. }
  1851. // we only support parallel ffn for now
  1852. switch (type_op) {
  1853. case FFN_SILU:
  1854. if (gate) {
  1855. cur = ggml_swiglu_split(ctx0, cur, tmp);
  1856. cb(cur, "ffn_swiglu", il);
  1857. } else {
  1858. cur = ggml_silu(ctx0, cur);
  1859. cb(cur, "ffn_silu", il);
  1860. } break;
  1861. case FFN_GELU:
  1862. if (gate) {
  1863. cur = ggml_geglu_split(ctx0, cur, tmp);
  1864. cb(cur, "ffn_geglu", il);
  1865. } else {
  1866. cur = ggml_gelu(ctx0, cur);
  1867. cb(cur, "ffn_gelu", il);
  1868. } break;
  1869. case FFN_GELU_ERF:
  1870. if (gate) {
  1871. cur = ggml_geglu_erf_split(ctx0, cur, tmp);
  1872. cb(cur, "ffn_geglu_erf", il);
  1873. } else {
  1874. cur = ggml_gelu_erf(ctx0, cur);
  1875. cb(cur, "ffn_gelu_erf", il);
  1876. } break;
  1877. case FFN_GELU_QUICK:
  1878. if (gate) {
  1879. cur = ggml_geglu_quick_split(ctx0, cur, tmp);
  1880. cb(cur, "ffn_geglu_quick", il);
  1881. } else {
  1882. cur = ggml_gelu_quick(ctx0, cur);
  1883. cb(cur, "ffn_gelu_quick", il);
  1884. } break;
  1885. }
  1886. if (down) {
  1887. cur = ggml_mul_mat(ctx0, down, cur);
  1888. }
  1889. if (down_b) {
  1890. cb(cur, "ffn_down", il);
  1891. }
  1892. if (down_b) {
  1893. cur = ggml_add(ctx0, cur, down_b);
  1894. }
  1895. return cur;
  1896. }
  1897. ggml_tensor * build_attn(
  1898. ggml_tensor * wo,
  1899. ggml_tensor * wo_b,
  1900. ggml_tensor * q_cur,
  1901. ggml_tensor * k_cur,
  1902. ggml_tensor * v_cur,
  1903. ggml_tensor * kq_mask,
  1904. float kq_scale,
  1905. int il) const {
  1906. // these nodes are added to the graph together so that they are not reordered
  1907. // by doing so, the number of splits in the graph is reduced
  1908. ggml_build_forward_expand(gf, q_cur);
  1909. ggml_build_forward_expand(gf, k_cur);
  1910. ggml_build_forward_expand(gf, v_cur);
  1911. ggml_tensor * q = ggml_permute(ctx0, q_cur, 0, 2, 1, 3);
  1912. //cb(q, "q", il);
  1913. ggml_tensor * k = ggml_permute(ctx0, k_cur, 0, 2, 1, 3);
  1914. //cb(k, "k", il);
  1915. ggml_tensor * cur;
  1916. if (ctx->flash_attn_type == CLIP_FLASH_ATTN_TYPE_ENABLED) {
  1917. ggml_tensor * v = ggml_permute(ctx0, v_cur, 0, 2, 1, 3);
  1918. k = ggml_cast(ctx0, k, GGML_TYPE_F16);
  1919. v = ggml_cast(ctx0, v, GGML_TYPE_F16);
  1920. cur = ggml_flash_attn_ext(ctx0, q, k, v, kq_mask, kq_scale, 0.0f, 0.0f);
  1921. ggml_flash_attn_ext_set_prec(cur, GGML_PREC_F32);
  1922. cur = ggml_reshape_2d(ctx0, cur, cur->ne[0]*cur->ne[1], cur->ne[2]*cur->ne[3]);
  1923. } else {
  1924. ggml_tensor * v = ggml_permute(ctx0, v_cur, 1, 2, 0, 3);
  1925. v = ggml_cont(ctx0, v);
  1926. const auto n_tokens = q->ne[1];
  1927. const auto n_head = q->ne[2];
  1928. ggml_tensor * kq = ggml_mul_mat(ctx0, k, q);
  1929. // F32 may not needed for vision encoders?
  1930. // ggml_mul_mat_set_prec(kq, GGML_PREC_F32);
  1931. kq = ggml_soft_max_ext(ctx0, kq, kq_mask, kq_scale, 0.0f);
  1932. ggml_tensor * kqv = ggml_mul_mat(ctx0, v, kq);
  1933. cur = ggml_permute(ctx0, kqv, 0, 2, 1, 3);
  1934. cur = ggml_cont_2d(ctx0, cur, cur->ne[0]*n_head, n_tokens);
  1935. }
  1936. cb(cur, "kqv_out", il);
  1937. if (wo) {
  1938. cur = ggml_mul_mat(ctx0, wo, cur);
  1939. }
  1940. if (wo_b) {
  1941. cur = ggml_add(ctx0, cur, wo_b);
  1942. }
  1943. return cur;
  1944. }
  1945. // implementation of the 2D RoPE without adding a new op in ggml
  1946. // this is not efficient (use double the memory), but works on all backends
  1947. // TODO: there was a more efficient which relies on ggml_view and ggml_rope_ext_inplace, but the rope inplace does not work well with non-contiguous tensors ; we should fix that and revert back to the original implementation in https://github.com/ggml-org/llama.cpp/pull/13065
  1948. static ggml_tensor * build_rope_2d(
  1949. ggml_context * ctx0,
  1950. ggml_tensor * cur,
  1951. ggml_tensor * pos_a, // first half
  1952. ggml_tensor * pos_b, // second half
  1953. const float freq_base,
  1954. const bool interleave_freq
  1955. ) {
  1956. const int64_t n_dim = cur->ne[0];
  1957. const int64_t n_head = cur->ne[1];
  1958. const int64_t n_pos = cur->ne[2];
  1959. // for example, if we have cur tensor of shape (n_dim=8, n_head, n_pos)
  1960. // we will have a list of 4 inv_freq: 1e-0, 1e-1, 1e-2, 1e-3
  1961. // first half of cur will use 1e-0, 1e-2 (even)
  1962. // second half of cur will use 1e-1, 1e-3 (odd)
  1963. // the trick here is to rotate just half of n_dim, so inv_freq will automatically be even
  1964. // ^ don't ask me why, it's math! -2(2i) / n_dim == -2i / (n_dim/2)
  1965. // then for the second half, we use freq_scale to shift the inv_freq
  1966. // ^ why? replace (2i) with (2i+1) in the above equation
  1967. const float freq_scale_odd = interleave_freq
  1968. ? std::pow(freq_base, (float)-2/n_dim)
  1969. : 1.0;
  1970. // first half
  1971. ggml_tensor * first;
  1972. {
  1973. first = ggml_view_3d(ctx0, cur,
  1974. n_dim/2, n_head, n_pos,
  1975. ggml_row_size(cur->type, n_dim),
  1976. ggml_row_size(cur->type, n_dim*n_head),
  1977. 0);
  1978. first = ggml_rope_ext(
  1979. ctx0,
  1980. first,
  1981. pos_a, // positions
  1982. nullptr, // freq factors
  1983. n_dim/2, // n_dims
  1984. 0, 0, freq_base,
  1985. 1.0f, 0.0f, 1.0f, 0.0f, 0.0f
  1986. );
  1987. }
  1988. // second half
  1989. ggml_tensor * second;
  1990. {
  1991. second = ggml_view_3d(ctx0, cur,
  1992. n_dim/2, n_head, n_pos,
  1993. ggml_row_size(cur->type, n_dim),
  1994. ggml_row_size(cur->type, n_dim*n_head),
  1995. n_dim/2 * ggml_element_size(cur));
  1996. second = ggml_rope_ext(
  1997. ctx0,
  1998. second,
  1999. pos_b, // positions
  2000. nullptr, // freq factors
  2001. n_dim/2, // n_dims
  2002. 0, 0, freq_base,
  2003. freq_scale_odd,
  2004. 0.0f, 1.0f, 0.0f, 0.0f
  2005. );
  2006. }
  2007. cur = ggml_concat(ctx0, first, second, 0);
  2008. return cur;
  2009. }
  2010. // aka pixel_shuffle / pixel_unshuffle / patch_merger (Kimi-VL)
  2011. // support dynamic resolution
  2012. ggml_tensor * build_patch_merge_permute(ggml_tensor * cur, int scale_factor) {
  2013. GGML_ASSERT(scale_factor > 1);
  2014. const int n_embd = cur->ne[0];
  2015. int width = img.nx / patch_size;
  2016. int height = img.ny / patch_size;
  2017. // pad width and height to factor
  2018. const int64_t pad_width = CLIP_ALIGN(width, scale_factor) - width;
  2019. const int64_t pad_height = CLIP_ALIGN(height, scale_factor) - height;
  2020. cur = ggml_reshape_3d(ctx0, cur, n_embd, width, height);
  2021. if (pad_width || pad_height) {
  2022. cur = ggml_pad(ctx0, cur, 0, pad_width, pad_height, 0);
  2023. width += pad_width;
  2024. height += pad_height;
  2025. }
  2026. // unshuffle h
  2027. cur = ggml_reshape_3d(ctx0, cur, n_embd * scale_factor, width / scale_factor, height);
  2028. cur = ggml_permute(ctx0, cur, 0, 2, 1, 3);
  2029. // unshuffle w
  2030. cur = ggml_cont_3d(ctx0, cur, n_embd * scale_factor * scale_factor, height / scale_factor, width / scale_factor);
  2031. cur = ggml_permute(ctx0, cur, 0, 2, 1, 3);
  2032. cur = ggml_cont_2d(ctx0, cur, cur->ne[0], cur->ne[1] * cur->ne[2]);
  2033. cb(cur, "pixel_shuffle", -1);
  2034. return cur;
  2035. }
  2036. };
  2037. static ggml_cgraph * clip_image_build_graph(clip_ctx * ctx, const clip_image_f32_batch & imgs) {
  2038. GGML_ASSERT(imgs.entries.size() == 1 && "n_batch > 1 is not supported");
  2039. clip_graph graph(ctx, *imgs.entries[0]);
  2040. ggml_cgraph * res;
  2041. switch (ctx->proj_type()) {
  2042. case PROJECTOR_TYPE_GEMMA3:
  2043. case PROJECTOR_TYPE_IDEFICS3:
  2044. case PROJECTOR_TYPE_LFM2:
  2045. {
  2046. res = graph.build_siglip();
  2047. } break;
  2048. case PROJECTOR_TYPE_PIXTRAL:
  2049. case PROJECTOR_TYPE_LIGHTONOCR:
  2050. {
  2051. res = graph.build_pixtral();
  2052. } break;
  2053. case PROJECTOR_TYPE_QWEN2VL:
  2054. case PROJECTOR_TYPE_QWEN25VL:
  2055. {
  2056. res = graph.build_qwen2vl();
  2057. } break;
  2058. case PROJECTOR_TYPE_QWEN3VL:
  2059. {
  2060. res = graph.build_qwen3vl();
  2061. } break;
  2062. case PROJECTOR_TYPE_MINICPMV:
  2063. {
  2064. res = graph.build_minicpmv();
  2065. } break;
  2066. case PROJECTOR_TYPE_INTERNVL:
  2067. {
  2068. res = graph.build_internvl();
  2069. } break;
  2070. case PROJECTOR_TYPE_LLAMA4:
  2071. {
  2072. res = graph.build_llama4();
  2073. } break;
  2074. case PROJECTOR_TYPE_ULTRAVOX:
  2075. case PROJECTOR_TYPE_VOXTRAL:
  2076. case PROJECTOR_TYPE_QWEN2A:
  2077. {
  2078. res = graph.build_whisper_enc();
  2079. } break;
  2080. case PROJECTOR_TYPE_KIMIVL:
  2081. {
  2082. res = graph.build_kimivl();
  2083. } break;
  2084. case PROJECTOR_TYPE_JANUS_PRO:
  2085. {
  2086. res = graph.build_siglip();
  2087. } break;
  2088. case PROJECTOR_TYPE_COGVLM:
  2089. {
  2090. res = graph.build_cogvlm();
  2091. } break;
  2092. default:
  2093. {
  2094. res = graph.build_llava();
  2095. } break;
  2096. }
  2097. return res;
  2098. }
  2099. struct clip_model_loader {
  2100. ggml_context_ptr ctx_meta;
  2101. gguf_context_ptr ctx_gguf;
  2102. std::string fname;
  2103. size_t model_size = 0; // in bytes
  2104. bool has_vision = false;
  2105. bool has_audio = false;
  2106. // TODO @ngxson : we should not pass clip_ctx here, it should be clip_model
  2107. clip_model_loader(const char * fname) : fname(fname) {
  2108. struct ggml_context * meta = nullptr;
  2109. struct gguf_init_params params = {
  2110. /*.no_alloc = */ true,
  2111. /*.ctx = */ &meta,
  2112. };
  2113. ctx_gguf = gguf_context_ptr(gguf_init_from_file(fname, params));
  2114. if (!ctx_gguf.get()) {
  2115. throw std::runtime_error(string_format("%s: failed to load CLIP model from %s. Does this file exist?\n", __func__, fname));
  2116. }
  2117. ctx_meta.reset(meta);
  2118. const int n_tensors = gguf_get_n_tensors(ctx_gguf.get());
  2119. // print gguf info
  2120. {
  2121. std::string name;
  2122. get_string(KEY_NAME, name, false);
  2123. std::string description;
  2124. get_string(KEY_DESCRIPTION, description, false);
  2125. LOG_INF("%s: model name: %s\n", __func__, name.c_str());
  2126. LOG_INF("%s: description: %s\n", __func__, description.c_str());
  2127. LOG_INF("%s: GGUF version: %d\n", __func__, gguf_get_version(ctx_gguf.get()));
  2128. LOG_INF("%s: alignment: %zu\n", __func__, gguf_get_alignment(ctx_gguf.get()));
  2129. LOG_INF("%s: n_tensors: %d\n", __func__, n_tensors);
  2130. LOG_INF("%s: n_kv: %d\n", __func__, (int)gguf_get_n_kv(ctx_gguf.get()));
  2131. LOG_INF("\n");
  2132. }
  2133. // modalities
  2134. {
  2135. get_bool(KEY_HAS_VISION_ENC, has_vision, false);
  2136. get_bool(KEY_HAS_AUDIO_ENC, has_audio, false);
  2137. if (has_vision) {
  2138. LOG_INF("%s: has vision encoder\n", __func__);
  2139. }
  2140. if (has_audio) {
  2141. LOG_INF("%s: has audio encoder\n", __func__);
  2142. }
  2143. }
  2144. // tensors
  2145. {
  2146. for (int i = 0; i < n_tensors; ++i) {
  2147. const char * name = gguf_get_tensor_name(ctx_gguf.get(), i);
  2148. const size_t offset = gguf_get_tensor_offset(ctx_gguf.get(), i);
  2149. enum ggml_type type = gguf_get_tensor_type(ctx_gguf.get(), i);
  2150. ggml_tensor * cur = ggml_get_tensor(meta, name);
  2151. size_t tensor_size = ggml_nbytes(cur);
  2152. model_size += tensor_size;
  2153. LOG_DBG("%s: tensor[%d]: n_dims = %d, name = %s, tensor_size=%zu, offset=%zu, shape:[%" PRIu64 ", %" PRIu64 ", %" PRIu64 ", %" PRIu64 "], type = %s\n",
  2154. __func__, i, ggml_n_dims(cur), cur->name, tensor_size, offset, cur->ne[0], cur->ne[1], cur->ne[2], cur->ne[3], ggml_type_name(type));
  2155. }
  2156. }
  2157. }
  2158. void load_hparams(clip_model & model, clip_modality modality) {
  2159. auto & hparams = model.hparams;
  2160. std::string log_ffn_op; // for logging
  2161. // sanity check
  2162. if (modality == CLIP_MODALITY_VISION) {
  2163. GGML_ASSERT(has_vision);
  2164. } else if (modality == CLIP_MODALITY_AUDIO) {
  2165. GGML_ASSERT(has_audio);
  2166. }
  2167. model.modality = modality;
  2168. // projector type
  2169. std::string proj_type;
  2170. {
  2171. // default key
  2172. get_string(KEY_PROJ_TYPE, proj_type, false);
  2173. // for models with mixed modalities
  2174. if (proj_type.empty()) {
  2175. if (modality == CLIP_MODALITY_VISION) {
  2176. get_string(KEY_VISION_PROJ_TYPE, proj_type, false);
  2177. } else if (modality == CLIP_MODALITY_AUDIO) {
  2178. get_string(KEY_AUDIO_PROJ_TYPE, proj_type, false);
  2179. } else {
  2180. GGML_ABORT("unknown modality");
  2181. }
  2182. }
  2183. model.proj_type = clip_projector_type_from_string(proj_type);
  2184. if (model.proj_type == PROJECTOR_TYPE_UNKNOWN) {
  2185. throw std::runtime_error(string_format("%s: unknown projector type: %s\n", __func__, proj_type.c_str()));
  2186. }
  2187. // correct arch for multimodal models (legacy method)
  2188. if (model.proj_type == PROJECTOR_TYPE_QWEN25O) {
  2189. model.proj_type = modality == CLIP_MODALITY_VISION
  2190. ? PROJECTOR_TYPE_QWEN25VL
  2191. : PROJECTOR_TYPE_QWEN2A;
  2192. }
  2193. }
  2194. const bool is_vision = model.modality == CLIP_MODALITY_VISION;
  2195. const bool is_audio = model.modality == CLIP_MODALITY_AUDIO;
  2196. // other hparams
  2197. {
  2198. const char * prefix = is_vision ? "vision" : "audio";
  2199. get_u32(string_format(KEY_N_EMBD, prefix), hparams.n_embd);
  2200. get_u32(string_format(KEY_N_HEAD, prefix), hparams.n_head);
  2201. get_u32(string_format(KEY_N_FF, prefix), hparams.n_ff);
  2202. get_u32(string_format(KEY_N_BLOCK, prefix), hparams.n_layer);
  2203. get_u32(string_format(KEY_PROJ_DIM, prefix), hparams.projection_dim);
  2204. get_f32(string_format(KEY_LAYER_NORM_EPS, prefix), hparams.eps);
  2205. if (is_vision) {
  2206. get_u32(KEY_IMAGE_SIZE, hparams.image_size);
  2207. get_u32(KEY_PATCH_SIZE, hparams.patch_size);
  2208. get_u32(KEY_IMAGE_CROP_RESOLUTION, hparams.image_crop_resolution, false);
  2209. get_i32(KEY_MINICPMV_VERSION, hparams.minicpmv_version, false); // legacy
  2210. get_u32(KEY_MINICPMV_QUERY_NUM, hparams.minicpmv_query_num, false);
  2211. if (hparams.minicpmv_query_num == 0) {
  2212. // Fallback to hardcoded values for legacy models
  2213. if (hparams.minicpmv_version == 3) {
  2214. hparams.minicpmv_query_num = 64;
  2215. } else if (hparams.minicpmv_version == 4) {
  2216. hparams.minicpmv_query_num = 64;
  2217. } else if (hparams.minicpmv_version == 5) {
  2218. hparams.minicpmv_query_num = 64;
  2219. } else if (hparams.minicpmv_version == 6) {
  2220. hparams.minicpmv_query_num = 64;
  2221. } else {
  2222. hparams.minicpmv_query_num = 96;
  2223. }
  2224. }
  2225. } else if (is_audio) {
  2226. get_u32(KEY_A_NUM_MEL_BINS, hparams.n_mel_bins);
  2227. // some hparams are unused, but still need to set to avoid issues
  2228. hparams.image_size = 0;
  2229. hparams.patch_size = 1;
  2230. } else {
  2231. GGML_ASSERT(false && "unknown modality");
  2232. }
  2233. // for pinpoints, we need to convert it into a list of resolution candidates
  2234. {
  2235. std::vector<int> pinpoints;
  2236. get_arr_int(KEY_IMAGE_GRID_PINPOINTS, pinpoints, false);
  2237. if (!pinpoints.empty()) {
  2238. for (size_t i = 0; i < pinpoints.size(); i += 2) {
  2239. hparams.image_res_candidates.push_back({
  2240. pinpoints[i],
  2241. pinpoints[i+1],
  2242. });
  2243. }
  2244. }
  2245. }
  2246. // default warmup value
  2247. hparams.warmup_image_size = hparams.image_size;
  2248. hparams.has_llava_projector = model.proj_type == PROJECTOR_TYPE_MLP
  2249. || model.proj_type == PROJECTOR_TYPE_MLP_NORM
  2250. || model.proj_type == PROJECTOR_TYPE_LDP
  2251. || model.proj_type == PROJECTOR_TYPE_LDPV2;
  2252. {
  2253. bool use_gelu = false;
  2254. bool use_silu = false;
  2255. get_bool(KEY_USE_GELU, use_gelu, false);
  2256. get_bool(KEY_USE_SILU, use_silu, false);
  2257. if (use_gelu && use_silu) {
  2258. throw std::runtime_error(string_format("%s: both use_gelu and use_silu are set to true\n", __func__));
  2259. }
  2260. if (use_gelu) {
  2261. hparams.ffn_op = FFN_GELU;
  2262. log_ffn_op = "gelu";
  2263. } else if (use_silu) {
  2264. hparams.ffn_op = FFN_SILU;
  2265. log_ffn_op = "silu";
  2266. } else {
  2267. hparams.ffn_op = FFN_GELU_QUICK;
  2268. log_ffn_op = "gelu_quick";
  2269. }
  2270. }
  2271. {
  2272. std::string mm_patch_merge_type;
  2273. get_string(KEY_MM_PATCH_MERGE_TYPE, mm_patch_merge_type, false);
  2274. if (mm_patch_merge_type == "spatial_unpad") {
  2275. hparams.mm_patch_merge_type = PATCH_MERGE_SPATIAL_UNPAD;
  2276. }
  2277. }
  2278. if (is_vision) {
  2279. int idx_mean = gguf_find_key(ctx_gguf.get(), KEY_IMAGE_MEAN);
  2280. int idx_std = gguf_find_key(ctx_gguf.get(), KEY_IMAGE_STD);
  2281. GGML_ASSERT(idx_mean >= 0 && "image_mean not found");
  2282. GGML_ASSERT(idx_std >= 0 && "image_std not found");
  2283. const float * mean_data = (const float *) gguf_get_arr_data(ctx_gguf.get(), idx_mean);
  2284. const float * std_data = (const float *) gguf_get_arr_data(ctx_gguf.get(), idx_std);
  2285. for (int i = 0; i < 3; ++i) {
  2286. hparams.image_mean[i] = mean_data[i];
  2287. hparams.image_std[i] = std_data[i];
  2288. }
  2289. }
  2290. // Load the vision feature layer indices if they are explicitly provided;
  2291. // if multiple vision feature layers are present, the values will be concatenated
  2292. // to form the final visual features.
  2293. // NOTE: gguf conversions should standardize the values of the vision feature layer to
  2294. // be non-negative, since we use -1 to mark values as unset here.
  2295. std::vector<int> vision_feature_layer;
  2296. get_arr_int(KEY_FEATURE_LAYER, vision_feature_layer, false);
  2297. // convert std::vector to std::unordered_set
  2298. for (auto & layer : vision_feature_layer) {
  2299. hparams.vision_feature_layer.insert(layer);
  2300. }
  2301. // model-specific params
  2302. switch (model.proj_type) {
  2303. case PROJECTOR_TYPE_MINICPMV:
  2304. {
  2305. if (hparams.minicpmv_version == 0) {
  2306. hparams.minicpmv_version = 2; // default to 2 if not set
  2307. }
  2308. } break;
  2309. case PROJECTOR_TYPE_INTERNVL:
  2310. {
  2311. get_u32(KEY_PROJ_SCALE_FACTOR, hparams.n_merge, false);
  2312. } break;
  2313. case PROJECTOR_TYPE_IDEFICS3:
  2314. {
  2315. get_u32(KEY_PROJ_SCALE_FACTOR, hparams.n_merge, false);
  2316. get_u32(KEY_PREPROC_IMAGE_SIZE, hparams.image_longest_edge, false);
  2317. } break;
  2318. case PROJECTOR_TYPE_LFM2:
  2319. {
  2320. get_u32(KEY_PROJ_SCALE_FACTOR, hparams.n_merge, false);
  2321. // ref: https://huggingface.co/LiquidAI/LFM2-VL-3B/blob/main/preprocessor_config.json
  2322. // config above specifies number of tokens after downsampling, while here it is before, relax lowerbound to 64
  2323. hparams.set_limit_image_tokens(64, 1024);
  2324. } break;
  2325. case PROJECTOR_TYPE_PIXTRAL:
  2326. case PROJECTOR_TYPE_LIGHTONOCR:
  2327. {
  2328. // ref: https://huggingface.co/mistral-community/pixtral-12b/blob/main/preprocessor_config.json
  2329. // TODO: verify the image_min_tokens
  2330. hparams.n_merge = 1; // the original pixtral does not use patch merging
  2331. hparams.rope_theta = 10000.0f;
  2332. get_u32(KEY_SPATIAL_MERGE_SIZE, hparams.n_merge, false);
  2333. hparams.set_limit_image_tokens(8, 1024);
  2334. hparams.set_warmup_n_tokens(256); // avoid OOM on warmup
  2335. } break;
  2336. case PROJECTOR_TYPE_KIMIVL:
  2337. {
  2338. hparams.rope_theta = 10000.0f;
  2339. get_u32(KEY_PROJ_SCALE_FACTOR, hparams.n_merge, false);
  2340. // TODO: check kimivl preprocessor for exact values
  2341. hparams.set_limit_image_tokens(8, 1024);
  2342. hparams.set_warmup_n_tokens(256); // avoid OOM on warmup
  2343. } break;
  2344. case PROJECTOR_TYPE_GEMMA3:
  2345. {
  2346. // default value (used by all model sizes in gemma 3 family)
  2347. // number of patches for each **side** is reduced by a factor of 4
  2348. hparams.n_merge = 4;
  2349. // test model (tinygemma3) has a different value, we optionally read it
  2350. get_u32(KEY_PROJ_SCALE_FACTOR, hparams.n_merge, false);
  2351. } break;
  2352. case PROJECTOR_TYPE_QWEN2VL:
  2353. case PROJECTOR_TYPE_QWEN25VL:
  2354. case PROJECTOR_TYPE_QWEN3VL:
  2355. {
  2356. hparams.n_merge = 2; // default value for Qwen 2 and 2.5
  2357. get_u32(KEY_SPATIAL_MERGE_SIZE, hparams.n_merge, false);
  2358. get_u32(KEY_WIN_ATTN_PATTERN, hparams.n_wa_pattern, model.proj_type == PROJECTOR_TYPE_QWEN25VL); // only 2.5 requires it
  2359. // ref: https://huggingface.co/Qwen/Qwen2.5-VL-7B-Instruct/blob/main/preprocessor_config.json
  2360. hparams.set_limit_image_tokens(8, 4096);
  2361. hparams.set_warmup_n_tokens(46*46); // avoid OOM on warmup
  2362. const int warn_min_pixels = 1024 * hparams.n_merge * hparams.n_merge * hparams.patch_size * hparams.patch_size;
  2363. if (hparams.image_min_pixels < warn_min_pixels) {
  2364. LOG_WRN("%s: Qwen-VL models require at minimum 1024 image tokens to function correctly on grounding tasks\n", __func__);
  2365. LOG_WRN("%s: if you encounter problems with accuracy, try adding --image-min-tokens 1024\n", __func__);
  2366. LOG_WRN("%s: more info: https://github.com/ggml-org/llama.cpp/issues/16842\n\n", __func__);
  2367. }
  2368. } break;
  2369. case PROJECTOR_TYPE_LLAMA4:
  2370. {
  2371. hparams.rope_theta = 10000.0f;
  2372. get_u32(KEY_PROJ_SCALE_FACTOR, hparams.n_merge, false);
  2373. set_llava_uhd_res_candidates(model, 3);
  2374. } break;
  2375. case PROJECTOR_TYPE_ULTRAVOX:
  2376. case PROJECTOR_TYPE_QWEN2A:
  2377. case PROJECTOR_TYPE_VOXTRAL:
  2378. {
  2379. bool require_stack = model.proj_type == PROJECTOR_TYPE_ULTRAVOX ||
  2380. model.proj_type == PROJECTOR_TYPE_VOXTRAL;
  2381. get_u32(KEY_A_PROJ_STACK_FACTOR, hparams.proj_stack_factor, require_stack);
  2382. if (hparams.n_mel_bins != 128) {
  2383. throw std::runtime_error(string_format("%s: only 128 mel bins are supported for ultravox\n", __func__));
  2384. }
  2385. hparams.ffn_op = FFN_GELU_ERF;
  2386. log_ffn_op = "gelu_erf"; // temporary solution for logging
  2387. } break;
  2388. default:
  2389. break;
  2390. }
  2391. // sanity check
  2392. {
  2393. if (hparams.image_max_pixels < hparams.image_min_pixels) {
  2394. throw std::runtime_error(string_format("%s: image_max_pixels (%d) is less than image_min_pixels (%d)\n", __func__, hparams.image_max_pixels, hparams.image_min_pixels));
  2395. }
  2396. }
  2397. LOG_INF("%s: projector: %s\n", __func__, proj_type.c_str());
  2398. LOG_INF("%s: n_embd: %d\n", __func__, hparams.n_embd);
  2399. LOG_INF("%s: n_head: %d\n", __func__, hparams.n_head);
  2400. LOG_INF("%s: n_ff: %d\n", __func__, hparams.n_ff);
  2401. LOG_INF("%s: n_layer: %d\n", __func__, hparams.n_layer);
  2402. LOG_INF("%s: ffn_op: %s\n", __func__, log_ffn_op.c_str());
  2403. LOG_INF("%s: projection_dim: %d\n", __func__, hparams.projection_dim);
  2404. if (is_vision) {
  2405. LOG_INF("\n--- vision hparams ---\n");
  2406. LOG_INF("%s: image_size: %d\n", __func__, hparams.image_size);
  2407. LOG_INF("%s: patch_size: %d\n", __func__, hparams.patch_size);
  2408. LOG_INF("%s: has_llava_proj: %d\n", __func__, hparams.has_llava_projector);
  2409. LOG_INF("%s: minicpmv_version: %d\n", __func__, hparams.minicpmv_version);
  2410. LOG_INF("%s: n_merge: %d\n", __func__, hparams.n_merge);
  2411. LOG_INF("%s: n_wa_pattern: %d\n", __func__, hparams.n_wa_pattern);
  2412. if (hparams.image_min_pixels > 0) {
  2413. LOG_INF("%s: image_min_pixels: %d%s\n", __func__, hparams.image_min_pixels, hparams.custom_image_min_tokens > 0 ? " (custom value)" : "");
  2414. }
  2415. if (hparams.image_max_pixels > 0) {
  2416. LOG_INF("%s: image_max_pixels: %d%s\n", __func__, hparams.image_max_pixels, hparams.custom_image_max_tokens > 0 ? " (custom value)" : "");
  2417. }
  2418. } else if (is_audio) {
  2419. LOG_INF("\n--- audio hparams ---\n");
  2420. LOG_INF("%s: n_mel_bins: %d\n", __func__, hparams.n_mel_bins);
  2421. LOG_INF("%s: proj_stack_factor: %d\n", __func__, hparams.proj_stack_factor);
  2422. }
  2423. LOG_INF("\n");
  2424. LOG_INF("%s: model size: %.2f MiB\n", __func__, model_size / 1024.0 / 1024.0);
  2425. LOG_INF("%s: metadata size: %.2f MiB\n", __func__, ggml_get_mem_size(ctx_meta.get()) / 1024.0 / 1024.0);
  2426. }
  2427. }
  2428. void load_tensors(clip_ctx & ctx_clip) {
  2429. auto & model = ctx_clip.model;
  2430. auto & hparams = model.hparams;
  2431. std::map<std::string, size_t> tensor_offset;
  2432. std::vector<ggml_tensor *> tensors_to_load;
  2433. // TODO @ngxson : support both audio and video in the future
  2434. const char * prefix = model.modality == CLIP_MODALITY_AUDIO ? "a" : "v";
  2435. // get offsets
  2436. for (int64_t i = 0; i < gguf_get_n_tensors(ctx_gguf.get()); ++i) {
  2437. const char * name = gguf_get_tensor_name(ctx_gguf.get(), i);
  2438. tensor_offset[name] = gguf_get_data_offset(ctx_gguf.get()) + gguf_get_tensor_offset(ctx_gguf.get(), i);
  2439. }
  2440. // create data context
  2441. struct ggml_init_params params = {
  2442. /*.mem_size =*/ static_cast<size_t>(gguf_get_n_tensors(ctx_gguf.get()) + 1) * ggml_tensor_overhead(),
  2443. /*.mem_buffer =*/ NULL,
  2444. /*.no_alloc =*/ true,
  2445. };
  2446. ctx_clip.ctx_data.reset(ggml_init(params));
  2447. if (!ctx_clip.ctx_data) {
  2448. throw std::runtime_error(string_format("%s: failed to init ggml context\n", __func__));
  2449. }
  2450. // helper function
  2451. auto get_tensor = [&](const std::string & name, bool required = true) {
  2452. ggml_tensor * cur = ggml_get_tensor(ctx_meta.get(), name.c_str());
  2453. if (!cur && required) {
  2454. throw std::runtime_error(string_format("%s: unable to find tensor %s\n", __func__, name.c_str()));
  2455. }
  2456. if (cur) {
  2457. tensors_to_load.push_back(cur);
  2458. // add tensors to context
  2459. ggml_tensor * data_tensor = ggml_dup_tensor(ctx_clip.ctx_data.get(), cur);
  2460. ggml_set_name(data_tensor, cur->name);
  2461. cur = data_tensor;
  2462. }
  2463. return cur;
  2464. };
  2465. model.class_embedding = get_tensor(TN_CLASS_EMBD, false);
  2466. model.pre_ln_w = get_tensor(string_format(TN_LN_PRE, prefix, "weight"), false);
  2467. model.pre_ln_b = get_tensor(string_format(TN_LN_PRE, prefix, "bias"), false);
  2468. model.post_ln_w = get_tensor(string_format(TN_LN_POST, prefix, "weight"), false);
  2469. model.post_ln_b = get_tensor(string_format(TN_LN_POST, prefix, "bias"), false);
  2470. model.patch_bias = get_tensor(TN_PATCH_BIAS, false);
  2471. model.patch_embeddings_0 = get_tensor(TN_PATCH_EMBD, false);
  2472. model.patch_embeddings_1 = get_tensor(TN_PATCH_EMBD_1, false);
  2473. model.position_embeddings = get_tensor(string_format(TN_POS_EMBD, prefix), false);
  2474. // layers
  2475. model.layers.resize(hparams.n_layer);
  2476. for (int il = 0; il < hparams.n_layer; ++il) {
  2477. auto & layer = model.layers[il];
  2478. layer.k_w = get_tensor(string_format(TN_ATTN_K, prefix, il, "weight"), false);
  2479. layer.q_w = get_tensor(string_format(TN_ATTN_Q, prefix, il, "weight"), false);
  2480. layer.v_w = get_tensor(string_format(TN_ATTN_V, prefix, il, "weight"), false);
  2481. layer.o_w = get_tensor(string_format(TN_ATTN_OUTPUT, prefix, il, "weight"));
  2482. layer.qkv_w = get_tensor(string_format(TN_ATTN_QKV, prefix, il, "weight"), false);
  2483. layer.k_norm = get_tensor(string_format(TN_ATTN_K_NORM, prefix, il, "weight"), false);
  2484. layer.q_norm = get_tensor(string_format(TN_ATTN_Q_NORM, prefix, il, "weight"), false);
  2485. layer.ln_1_w = get_tensor(string_format(TN_LN_1, prefix, il, "weight"), false);
  2486. layer.ln_2_w = get_tensor(string_format(TN_LN_2, prefix, il, "weight"), false);
  2487. layer.ls_1_w = get_tensor(string_format(TN_LS_1, prefix, il, "weight"), false); // no bias
  2488. layer.ls_2_w = get_tensor(string_format(TN_LS_2, prefix, il, "weight"), false); // no bias
  2489. layer.k_b = get_tensor(string_format(TN_ATTN_K, prefix, il, "bias"), false);
  2490. layer.q_b = get_tensor(string_format(TN_ATTN_Q, prefix, il, "bias"), false);
  2491. layer.v_b = get_tensor(string_format(TN_ATTN_V, prefix, il, "bias"), false);
  2492. layer.o_b = get_tensor(string_format(TN_ATTN_OUTPUT, prefix, il, "bias"), false);
  2493. layer.qkv_b = get_tensor(string_format(TN_ATTN_QKV, prefix, il, "bias"), false);
  2494. layer.ln_1_b = get_tensor(string_format(TN_LN_1, prefix, il, "bias"), false);
  2495. layer.ln_2_b = get_tensor(string_format(TN_LN_2, prefix, il, "bias"), false);
  2496. // ffn
  2497. layer.ff_up_w = get_tensor(string_format(TN_FFN_UP, prefix, il, "weight"));
  2498. layer.ff_up_b = get_tensor(string_format(TN_FFN_UP, prefix, il, "bias"), false);
  2499. layer.ff_gate_w = get_tensor(string_format(TN_FFN_GATE, prefix, il, "weight"), false);
  2500. layer.ff_gate_b = get_tensor(string_format(TN_FFN_GATE, prefix, il, "bias"), false);
  2501. layer.ff_down_w = get_tensor(string_format(TN_FFN_DOWN, prefix, il, "weight"));
  2502. layer.ff_down_b = get_tensor(string_format(TN_FFN_DOWN, prefix, il, "bias"), false);
  2503. // qwen3vl deepstack layer
  2504. layer.deepstack_norm_w = get_tensor(string_format(TN_DEEPSTACK_NORM, il, "weight"), false);
  2505. layer.deepstack_norm_b = get_tensor(string_format(TN_DEEPSTACK_NORM, il, "bias"), false);
  2506. layer.deepstack_fc1_w = get_tensor(string_format(TN_DEEPSTACK_FC1, il, "weight"), false);
  2507. layer.deepstack_fc1_b = get_tensor(string_format(TN_DEEPSTACK_FC1, il, "bias"), false);
  2508. layer.deepstack_fc2_w = get_tensor(string_format(TN_DEEPSTACK_FC2, il, "weight"), false);
  2509. layer.deepstack_fc2_b = get_tensor(string_format(TN_DEEPSTACK_FC2, il, "bias"), false);
  2510. if (layer.has_deepstack()) {
  2511. model.n_deepstack_layers++;
  2512. }
  2513. // some models already exported with legacy (incorrect) naming which is quite messy, let's fix it here
  2514. // note: Qwen model converted from the old surgery script has n_ff = 0, so we cannot use n_ff to check!
  2515. bool is_ffn_swapped = (
  2516. // only old models need this fix
  2517. model.proj_type == PROJECTOR_TYPE_MLP
  2518. || model.proj_type == PROJECTOR_TYPE_MLP_NORM
  2519. || model.proj_type == PROJECTOR_TYPE_LDP
  2520. || model.proj_type == PROJECTOR_TYPE_LDPV2
  2521. || model.proj_type == PROJECTOR_TYPE_QWEN2VL
  2522. || model.proj_type == PROJECTOR_TYPE_QWEN25VL
  2523. || model.proj_type == PROJECTOR_TYPE_GLM_EDGE
  2524. || model.proj_type == PROJECTOR_TYPE_GEMMA3
  2525. || model.proj_type == PROJECTOR_TYPE_IDEFICS3
  2526. || model.proj_type == PROJECTOR_TYPE_MINICPMV
  2527. ) && layer.ff_up_w && layer.ff_down_w && layer.ff_down_w->ne[0] == hparams.n_embd;
  2528. if (is_ffn_swapped) {
  2529. // swap up and down weights
  2530. ggml_tensor * tmp = layer.ff_up_w;
  2531. layer.ff_up_w = layer.ff_down_w;
  2532. layer.ff_down_w = tmp;
  2533. // swap up and down biases
  2534. tmp = layer.ff_up_b;
  2535. layer.ff_up_b = layer.ff_down_b;
  2536. layer.ff_down_b = tmp;
  2537. if (il == 0) {
  2538. LOG_WRN("%s: ffn up/down are swapped\n", __func__);
  2539. }
  2540. }
  2541. }
  2542. switch (model.proj_type) {
  2543. case PROJECTOR_TYPE_MLP:
  2544. case PROJECTOR_TYPE_MLP_NORM:
  2545. {
  2546. // LLaVA projection
  2547. model.mm_0_w = get_tensor(string_format(TN_LLAVA_PROJ, 0, "weight"), false);
  2548. model.mm_0_b = get_tensor(string_format(TN_LLAVA_PROJ, 0, "bias"), false);
  2549. // Yi-type llava
  2550. model.mm_1_w = get_tensor(string_format(TN_LLAVA_PROJ, 1, "weight"), false);
  2551. model.mm_1_b = get_tensor(string_format(TN_LLAVA_PROJ, 1, "bias"), false);
  2552. // missing in Yi-type llava
  2553. model.mm_2_w = get_tensor(string_format(TN_LLAVA_PROJ, 2, "weight"), false);
  2554. model.mm_2_b = get_tensor(string_format(TN_LLAVA_PROJ, 2, "bias"), false);
  2555. // Yi-type llava
  2556. model.mm_3_w = get_tensor(string_format(TN_LLAVA_PROJ, 3, "weight"), false);
  2557. model.mm_3_b = get_tensor(string_format(TN_LLAVA_PROJ, 3, "bias"), false);
  2558. model.mm_4_w = get_tensor(string_format(TN_LLAVA_PROJ, 4, "weight"), false);
  2559. model.mm_4_b = get_tensor(string_format(TN_LLAVA_PROJ, 4, "bias"), false);
  2560. if (model.mm_3_w) {
  2561. // TODO: this is a hack to support Yi-type llava
  2562. model.proj_type = PROJECTOR_TYPE_MLP_NORM;
  2563. }
  2564. model.image_newline = get_tensor(TN_IMAGE_NEWLINE, false);
  2565. } break;
  2566. case PROJECTOR_TYPE_LDP:
  2567. {
  2568. // MobileVLM projection
  2569. model.mm_model_mlp_1_w = get_tensor(string_format(TN_MVLM_PROJ_MLP, 1, "weight"));
  2570. model.mm_model_mlp_1_b = get_tensor(string_format(TN_MVLM_PROJ_MLP, 1, "bias"));
  2571. model.mm_model_mlp_3_w = get_tensor(string_format(TN_MVLM_PROJ_MLP, 3, "weight"));
  2572. model.mm_model_mlp_3_b = get_tensor(string_format(TN_MVLM_PROJ_MLP, 3, "bias"));
  2573. model.mm_model_block_1_block_0_0_w = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 1, 0, "0.weight"));
  2574. model.mm_model_block_1_block_0_1_w = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 1, 0, "1.weight"));
  2575. model.mm_model_block_1_block_0_1_b = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 1, 0, "1.bias"));
  2576. model.mm_model_block_1_block_1_fc1_w = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 1, 1, "fc1.weight"));
  2577. model.mm_model_block_1_block_1_fc1_b = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 1, 1, "fc1.bias"));
  2578. model.mm_model_block_1_block_1_fc2_w = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 1, 1, "fc2.weight"));
  2579. model.mm_model_block_1_block_1_fc2_b = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 1, 1, "fc2.bias"));
  2580. model.mm_model_block_1_block_2_0_w = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 1, 2, "0.weight"));
  2581. model.mm_model_block_1_block_2_1_w = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 1, 2, "1.weight"));
  2582. model.mm_model_block_1_block_2_1_b = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 1, 2, "1.bias"));
  2583. model.mm_model_block_2_block_0_0_w = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 2, 0, "0.weight"));
  2584. model.mm_model_block_2_block_0_1_w = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 2, 0, "1.weight"));
  2585. model.mm_model_block_2_block_0_1_b = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 2, 0, "1.bias"));
  2586. model.mm_model_block_2_block_1_fc1_w = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 2, 1, "fc1.weight"));
  2587. model.mm_model_block_2_block_1_fc1_b = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 2, 1, "fc1.bias"));
  2588. model.mm_model_block_2_block_1_fc2_w = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 2, 1, "fc2.weight"));
  2589. model.mm_model_block_2_block_1_fc2_b = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 2, 1, "fc2.bias"));
  2590. model.mm_model_block_2_block_2_0_w = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 2, 2, "0.weight"));
  2591. model.mm_model_block_2_block_2_1_w = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 2, 2, "1.weight"));
  2592. model.mm_model_block_2_block_2_1_b = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 2, 2, "1.bias"));
  2593. } break;
  2594. case PROJECTOR_TYPE_LDPV2:
  2595. {
  2596. // MobilVLM_V2 projection
  2597. model.mm_model_mlp_0_w = get_tensor(string_format(TN_MVLM_PROJ_MLP, 0, "weight"));
  2598. model.mm_model_mlp_0_b = get_tensor(string_format(TN_MVLM_PROJ_MLP, 0, "bias"));
  2599. model.mm_model_mlp_2_w = get_tensor(string_format(TN_MVLM_PROJ_MLP, 2, "weight"));
  2600. model.mm_model_mlp_2_b = get_tensor(string_format(TN_MVLM_PROJ_MLP, 2, "bias"));
  2601. model.mm_model_peg_0_w = get_tensor(string_format(TN_MVLM_PROJ_PEG, 0, "weight"));
  2602. model.mm_model_peg_0_b = get_tensor(string_format(TN_MVLM_PROJ_PEG, 0, "bias"));
  2603. } break;
  2604. case PROJECTOR_TYPE_MINICPMV:
  2605. {
  2606. // model.mm_model_pos_embed = get_tensor(new_clip->ctx_data, TN_MINICPMV_POS_EMBD);
  2607. model.mm_model_pos_embed_k = get_tensor(TN_MINICPMV_POS_EMBD_K);
  2608. model.mm_model_query = get_tensor(TN_MINICPMV_QUERY);
  2609. model.mm_model_proj = get_tensor(TN_MINICPMV_PROJ);
  2610. model.mm_model_kv_proj = get_tensor(TN_MINICPMV_KV_PROJ);
  2611. model.mm_model_attn_q_w = get_tensor(string_format(TN_MINICPMV_ATTN, "q", "weight"));
  2612. model.mm_model_attn_k_w = get_tensor(string_format(TN_MINICPMV_ATTN, "k", "weight"));
  2613. model.mm_model_attn_v_w = get_tensor(string_format(TN_MINICPMV_ATTN, "v", "weight"));
  2614. model.mm_model_attn_q_b = get_tensor(string_format(TN_MINICPMV_ATTN, "q", "bias"));
  2615. model.mm_model_attn_k_b = get_tensor(string_format(TN_MINICPMV_ATTN, "k", "bias"));
  2616. model.mm_model_attn_v_b = get_tensor(string_format(TN_MINICPMV_ATTN, "v", "bias"));
  2617. model.mm_model_attn_o_w = get_tensor(string_format(TN_MINICPMV_ATTN, "out", "weight"));
  2618. model.mm_model_attn_o_b = get_tensor(string_format(TN_MINICPMV_ATTN, "out", "bias"));
  2619. model.mm_model_ln_q_w = get_tensor(string_format(TN_MINICPMV_LN, "q", "weight"));
  2620. model.mm_model_ln_q_b = get_tensor(string_format(TN_MINICPMV_LN, "q", "bias"));
  2621. model.mm_model_ln_kv_w = get_tensor(string_format(TN_MINICPMV_LN, "kv", "weight"));
  2622. model.mm_model_ln_kv_b = get_tensor(string_format(TN_MINICPMV_LN, "kv", "bias"));
  2623. model.mm_model_ln_post_w = get_tensor(string_format(TN_MINICPMV_LN, "post", "weight"));
  2624. model.mm_model_ln_post_b = get_tensor(string_format(TN_MINICPMV_LN, "post", "bias"));
  2625. } break;
  2626. case PROJECTOR_TYPE_GLM_EDGE:
  2627. {
  2628. model.mm_model_adapter_conv_w = get_tensor(string_format(TN_GLM_ADAPER_CONV, "weight"));
  2629. model.mm_model_adapter_conv_b = get_tensor(string_format(TN_GLM_ADAPER_CONV, "bias"));
  2630. model.mm_model_mlp_0_w = get_tensor(string_format(TN_GLM_ADAPTER_LINEAR, "weight"));
  2631. model.mm_model_ln_q_w = get_tensor(string_format(TN_GLM_ADAPTER_NORM_1, "weight"));
  2632. model.mm_model_ln_q_b = get_tensor(string_format(TN_GLM_ADAPTER_NORM_1, "bias"));
  2633. model.mm_model_mlp_1_w = get_tensor(string_format(TN_GLM_ADAPTER_D_H_2_4H, "weight"));
  2634. model.mm_model_mlp_2_w = get_tensor(string_format(TN_GLM_ADAPTER_GATE, "weight"));
  2635. model.mm_model_mlp_3_w = get_tensor(string_format(TN_GLM_ADAPTER_D_4H_2_H, "weight"));
  2636. model.mm_boi = get_tensor(string_format(TN_TOK_GLM_BOI, "weight"));
  2637. model.mm_eoi = get_tensor(string_format(TN_TOK_GLM_EOI, "weight"));
  2638. } break;
  2639. case PROJECTOR_TYPE_QWEN2VL:
  2640. case PROJECTOR_TYPE_QWEN25VL:
  2641. {
  2642. model.mm_0_w = get_tensor(string_format(TN_LLAVA_PROJ, 0, "weight"));
  2643. model.mm_0_b = get_tensor(string_format(TN_LLAVA_PROJ, 0, "bias"));
  2644. model.mm_1_w = get_tensor(string_format(TN_LLAVA_PROJ, 2, "weight"));
  2645. model.mm_1_b = get_tensor(string_format(TN_LLAVA_PROJ, 2, "bias"));
  2646. } break;
  2647. case PROJECTOR_TYPE_QWEN3VL:
  2648. {
  2649. model.mm_0_w = get_tensor(string_format(TN_LLAVA_PROJ, 0, "weight"));
  2650. model.mm_0_b = get_tensor(string_format(TN_LLAVA_PROJ, 0, "bias"));
  2651. model.mm_1_w = get_tensor(string_format(TN_LLAVA_PROJ, 2, "weight"));
  2652. model.mm_1_b = get_tensor(string_format(TN_LLAVA_PROJ, 2, "bias"));
  2653. } break;
  2654. case PROJECTOR_TYPE_GEMMA3:
  2655. {
  2656. model.mm_input_proj_w = get_tensor(TN_MM_INP_PROJ);
  2657. model.mm_soft_emb_norm_w = get_tensor(TN_MM_SOFT_EMB_N);
  2658. } break;
  2659. case PROJECTOR_TYPE_IDEFICS3:
  2660. {
  2661. model.projection = get_tensor(TN_MM_PROJECTOR);
  2662. } break;
  2663. case PROJECTOR_TYPE_LFM2:
  2664. case PROJECTOR_TYPE_KIMIVL:
  2665. {
  2666. model.mm_input_norm_w = get_tensor(TN_MM_INP_NORM);
  2667. model.mm_input_norm_b = get_tensor(TN_MM_INP_NORM_B);
  2668. model.mm_1_w = get_tensor(string_format(TN_LLAVA_PROJ, 1, "weight"));
  2669. model.mm_1_b = get_tensor(string_format(TN_LLAVA_PROJ, 1, "bias"));
  2670. model.mm_2_w = get_tensor(string_format(TN_LLAVA_PROJ, 2, "weight"));
  2671. model.mm_2_b = get_tensor(string_format(TN_LLAVA_PROJ, 2, "bias"));
  2672. } break;
  2673. case PROJECTOR_TYPE_PIXTRAL:
  2674. {
  2675. model.mm_1_w = get_tensor(string_format(TN_LLAVA_PROJ, 1, "weight"));
  2676. model.mm_1_b = get_tensor(string_format(TN_LLAVA_PROJ, 1, "bias"), false);
  2677. model.mm_2_w = get_tensor(string_format(TN_LLAVA_PROJ, 2, "weight"));
  2678. model.mm_2_b = get_tensor(string_format(TN_LLAVA_PROJ, 2, "bias"), false);
  2679. // [IMG_BREAK] token embedding
  2680. model.token_embd_img_break = get_tensor(TN_TOK_IMG_BREAK);
  2681. // for mistral small 3.1
  2682. model.mm_input_norm_w = get_tensor(TN_MM_INP_NORM, false);
  2683. model.mm_patch_merger_w = get_tensor(TN_MM_PATCH_MERGER, false);
  2684. } break;
  2685. case PROJECTOR_TYPE_LIGHTONOCR:
  2686. {
  2687. model.mm_1_w = get_tensor(string_format(TN_LLAVA_PROJ, 1, "weight"));
  2688. model.mm_1_b = get_tensor(string_format(TN_LLAVA_PROJ, 1, "bias"), false);
  2689. model.mm_2_w = get_tensor(string_format(TN_LLAVA_PROJ, 2, "weight"));
  2690. model.mm_2_b = get_tensor(string_format(TN_LLAVA_PROJ, 2, "bias"), false);
  2691. model.mm_input_norm_w = get_tensor(TN_MM_INP_NORM, false);
  2692. model.mm_patch_merger_w = get_tensor(TN_MM_PATCH_MERGER, false);
  2693. } break;
  2694. case PROJECTOR_TYPE_ULTRAVOX:
  2695. {
  2696. model.conv1d_1_w = get_tensor(string_format(TN_CONV1D, 1, "weight"));
  2697. model.conv1d_1_b = get_tensor(string_format(TN_CONV1D, 1, "bias"));
  2698. model.conv1d_2_w = get_tensor(string_format(TN_CONV1D, 2, "weight"));
  2699. model.conv1d_2_b = get_tensor(string_format(TN_CONV1D, 2, "bias"));
  2700. model.mm_1_w = get_tensor(string_format(TN_MM_AUDIO_MLP, 1, "weight"));
  2701. model.mm_2_w = get_tensor(string_format(TN_MM_AUDIO_MLP, 2, "weight"));
  2702. model.mm_norm_pre_w = get_tensor(string_format(TN_MM_NORM_PRE, "weight"));
  2703. model.mm_norm_mid_w = get_tensor(string_format(TN_MM_NORM_MID, "weight"));
  2704. } break;
  2705. case PROJECTOR_TYPE_QWEN2A:
  2706. {
  2707. model.conv1d_1_w = get_tensor(string_format(TN_CONV1D, 1, "weight"));
  2708. model.conv1d_1_b = get_tensor(string_format(TN_CONV1D, 1, "bias"));
  2709. model.conv1d_2_w = get_tensor(string_format(TN_CONV1D, 2, "weight"));
  2710. model.conv1d_2_b = get_tensor(string_format(TN_CONV1D, 2, "bias"));
  2711. model.mm_fc_w = get_tensor(string_format(TN_MM_AUDIO_FC, "weight"));
  2712. model.mm_fc_b = get_tensor(string_format(TN_MM_AUDIO_FC, "bias"));
  2713. } break;
  2714. case PROJECTOR_TYPE_VOXTRAL:
  2715. {
  2716. model.conv1d_1_w = get_tensor(string_format(TN_CONV1D, 1, "weight"));
  2717. model.conv1d_1_b = get_tensor(string_format(TN_CONV1D, 1, "bias"));
  2718. model.conv1d_2_w = get_tensor(string_format(TN_CONV1D, 2, "weight"));
  2719. model.conv1d_2_b = get_tensor(string_format(TN_CONV1D, 2, "bias"));
  2720. model.mm_1_w = get_tensor(string_format(TN_MM_AUDIO_MLP, 1, "weight"));
  2721. model.mm_2_w = get_tensor(string_format(TN_MM_AUDIO_MLP, 2, "weight"));
  2722. } break;
  2723. case PROJECTOR_TYPE_INTERNVL:
  2724. {
  2725. model.mm_0_w = get_tensor(string_format(TN_MVLM_PROJ_MLP, 0, "weight"));
  2726. model.mm_0_b = get_tensor(string_format(TN_MVLM_PROJ_MLP, 0, "bias"));
  2727. model.mm_1_w = get_tensor(string_format(TN_MVLM_PROJ_MLP, 1, "weight"));
  2728. model.mm_1_b = get_tensor(string_format(TN_MVLM_PROJ_MLP, 1, "bias"));
  2729. model.mm_3_w = get_tensor(string_format(TN_MVLM_PROJ_MLP, 3, "weight"));
  2730. model.mm_3_b = get_tensor(string_format(TN_MVLM_PROJ_MLP, 3, "bias"));
  2731. } break;
  2732. case PROJECTOR_TYPE_LLAMA4:
  2733. {
  2734. model.mm_model_proj = get_tensor(TN_MM_PROJECTOR);
  2735. model.mm_model_mlp_1_w = get_tensor(string_format(TN_MVLM_PROJ_MLP, 1, "weight"));
  2736. model.mm_model_mlp_2_w = get_tensor(string_format(TN_MVLM_PROJ_MLP, 2, "weight"));
  2737. } break;
  2738. case PROJECTOR_TYPE_COGVLM:
  2739. {
  2740. model.mm_model_proj = get_tensor(TN_MM_PROJECTOR);
  2741. model.mm_post_fc_norm_w = get_tensor(string_format(TN_MM_POST_FC_NORM, "weight"));
  2742. model.mm_post_fc_norm_b = get_tensor(string_format(TN_MM_POST_FC_NORM, "bias"));
  2743. model.mm_h_to_4h_w = get_tensor(string_format(TN_MM_H_TO_4H, "weight"));
  2744. model.mm_gate_w = get_tensor(string_format(TN_MM_GATE, "weight"));
  2745. model.mm_4h_to_h_w = get_tensor(string_format(TN_MM_4H_TO_H, "weight"));
  2746. model.mm_boi = get_tensor(TN_TOK_BOI);
  2747. model.mm_eoi = get_tensor(TN_TOK_EOI);
  2748. } break;
  2749. case PROJECTOR_TYPE_JANUS_PRO:
  2750. {
  2751. model.mm_0_w = get_tensor(string_format(TN_LLAVA_PROJ, 0, "weight"));
  2752. model.mm_0_b = get_tensor(string_format(TN_LLAVA_PROJ, 0, "bias"));
  2753. model.mm_1_w = get_tensor(string_format(TN_LLAVA_PROJ, 1, "weight"));
  2754. model.mm_1_b = get_tensor(string_format(TN_LLAVA_PROJ, 1, "bias"));
  2755. } break;
  2756. default:
  2757. GGML_ASSERT(false && "unknown projector type");
  2758. }
  2759. // load data
  2760. {
  2761. std::vector<uint8_t> read_buf;
  2762. auto fin = std::ifstream(fname, std::ios::binary);
  2763. if (!fin) {
  2764. throw std::runtime_error(string_format("%s: failed to open %s\n", __func__, fname.c_str()));
  2765. }
  2766. // alloc memory and offload data
  2767. ggml_backend_buffer_type_t buft = ggml_backend_get_default_buffer_type(ctx_clip.backend);
  2768. ctx_clip.buf.reset(ggml_backend_alloc_ctx_tensors_from_buft(ctx_clip.ctx_data.get(), buft));
  2769. ggml_backend_buffer_set_usage(ctx_clip.buf.get(), GGML_BACKEND_BUFFER_USAGE_WEIGHTS);
  2770. for (auto & t : tensors_to_load) {
  2771. ggml_tensor * cur = ggml_get_tensor(ctx_clip.ctx_data.get(), t->name);
  2772. const size_t offset = tensor_offset[t->name];
  2773. fin.seekg(offset, std::ios::beg);
  2774. if (!fin) {
  2775. throw std::runtime_error(string_format("%s: failed to seek for tensor %s\n", __func__, t->name));
  2776. }
  2777. size_t num_bytes = ggml_nbytes(cur);
  2778. if (ggml_backend_buft_is_host(buft)) {
  2779. // for the CPU and Metal backend, we can read directly into the tensor
  2780. fin.read(reinterpret_cast<char *>(cur->data), num_bytes);
  2781. } else {
  2782. // read into a temporary buffer first, then copy to device memory
  2783. read_buf.resize(num_bytes);
  2784. fin.read(reinterpret_cast<char *>(read_buf.data()), num_bytes);
  2785. ggml_backend_tensor_set(cur, read_buf.data(), 0, num_bytes);
  2786. }
  2787. }
  2788. fin.close();
  2789. LOG_DBG("%s: loaded %zu tensors from %s\n", __func__, tensors_to_load.size(), fname.c_str());
  2790. }
  2791. }
  2792. struct support_info_op {
  2793. ggml_tensor * op;
  2794. // true if the op runs on the accelerated ctx_clip.backend
  2795. bool is_accel = true;
  2796. };
  2797. struct support_info_graph {
  2798. // whether the clip_ctx.backend supports flash attention
  2799. bool fattn = true;
  2800. ggml_tensor * fattn_op = nullptr; // for debugging
  2801. std::vector<support_info_op> ops;
  2802. };
  2803. static void warmup(clip_ctx & ctx_clip) {
  2804. support_info_graph info;
  2805. if (ctx_clip.flash_attn_type == CLIP_FLASH_ATTN_TYPE_AUTO) {
  2806. // try to enable flash attention to see if it's supported
  2807. ctx_clip.flash_attn_type = CLIP_FLASH_ATTN_TYPE_ENABLED;
  2808. info = alloc_compute_meta(ctx_clip);
  2809. if (!info.fattn && info.fattn_op) {
  2810. auto op = info.fattn_op;
  2811. LOG_WRN("%s: *****************************************************************\n", __func__);
  2812. LOG_WRN("%s: WARNING: flash attention not supported by %s, memory usage will increase\n", __func__, ggml_backend_name(ctx_clip.backend));
  2813. LOG_WRN("%s: op params: \n", __func__);
  2814. static auto print_shape = [](const char * fn, const char * name, ggml_tensor * t) {
  2815. LOG_WRN("%s: %s: type = %s, ne = [%d %d %d %d], nb = [%d %d %d %d]\n", fn,
  2816. name, ggml_type_name(t->type),
  2817. t->ne[0], t->ne[1], t->ne[2], t->ne[3],
  2818. t->nb[0], t->nb[1], t->nb[2], t->nb[3]);
  2819. };
  2820. print_shape(__func__, " dst", op);
  2821. print_shape(__func__, "src0", op->src[0]);
  2822. print_shape(__func__, "src1", op->src[1]);
  2823. print_shape(__func__, "src2", op->src[2]);
  2824. LOG_WRN("%s: please report this on github as an issue\n", __func__);
  2825. LOG_WRN("%s: *****************************************************************\n", __func__);
  2826. ctx_clip.flash_attn_type = CLIP_FLASH_ATTN_TYPE_DISABLED;
  2827. alloc_compute_meta(ctx_clip);
  2828. }
  2829. } else {
  2830. info = alloc_compute_meta(ctx_clip);
  2831. if (!info.fattn && ctx_clip.flash_attn_type == CLIP_FLASH_ATTN_TYPE_ENABLED) {
  2832. LOG_WRN("%s: flash attention is not supported by the current backend; falling back to CPU (performance will be degraded)\n", __func__);
  2833. }
  2834. }
  2835. LOG_INF("%s: flash attention is %s\n", __func__,
  2836. (ctx_clip.flash_attn_type == CLIP_FLASH_ATTN_TYPE_ENABLED) ? "enabled" : "disabled");
  2837. // print ops that are not supported by the GPU backend (if there is one)
  2838. if (ctx_clip.backend && ctx_clip.backend != ctx_clip.backend_cpu) {
  2839. std::vector<support_info_op> unsupported_ops;
  2840. for (const auto & op : info.ops) {
  2841. if (!op.is_accel) {
  2842. unsupported_ops.push_back(op);
  2843. }
  2844. }
  2845. if (!unsupported_ops.empty()) {
  2846. LOG_WRN("%s: *****************************************************************\n", __func__);
  2847. LOG_WRN("%s: WARNING: the CLIP graph uses unsupported operators by the backend\n", __func__);
  2848. LOG_WRN("%s: the performance will be suboptimal \n", __func__);
  2849. LOG_WRN("%s: list of unsupported ops (backend=%s):\n", __func__, ggml_backend_name(ctx_clip.backend));
  2850. for (const auto & op : unsupported_ops) {
  2851. LOG_WRN("%s: %16s: type = %s, ne = [%d %d %d %d]\n", __func__,
  2852. ggml_op_name(op.op->op),
  2853. ggml_type_name(op.op->type),
  2854. op.op->ne[0], op.op->ne[1], op.op->ne[2], op.op->ne[3]);
  2855. }
  2856. LOG_WRN("%s: flash attention is %s\n", __func__,
  2857. (ctx_clip.flash_attn_type == CLIP_FLASH_ATTN_TYPE_ENABLED) ? "enabled" : "disabled");
  2858. LOG_WRN("%s: please report this on github as an issue\n", __func__);
  2859. LOG_WRN("%s: ref: https://github.com/ggml-org/llama.cpp/pull/16837#issuecomment-3461676118\n", __func__);
  2860. LOG_WRN("%s: *****************************************************************\n", __func__);
  2861. }
  2862. }
  2863. }
  2864. static support_info_graph alloc_compute_meta(clip_ctx & ctx_clip) {
  2865. const auto & hparams = ctx_clip.model.hparams;
  2866. ctx_clip.buf_compute_meta.resize(ctx_clip.max_nodes * ggml_tensor_overhead() + ggml_graph_overhead());
  2867. // create a fake batch
  2868. clip_image_f32_batch batch;
  2869. clip_image_f32_ptr img(clip_image_f32_init());
  2870. if (ctx_clip.model.modality == CLIP_MODALITY_VISION) {
  2871. img->nx = hparams.warmup_image_size;
  2872. img->ny = hparams.warmup_image_size;
  2873. LOG_INF("%s: warmup with image size = %d x %d\n", __func__, img->nx, img->ny);
  2874. } else {
  2875. img->nx = hparams.warmup_audio_size;
  2876. img->ny = hparams.n_mel_bins;
  2877. LOG_INF("%s: warmup with audio size = %d\n", __func__, img->nx);
  2878. }
  2879. batch.entries.push_back(std::move(img));
  2880. ggml_cgraph * gf = clip_image_build_graph(&ctx_clip, batch);
  2881. ggml_backend_sched_reserve(ctx_clip.sched.get(), gf);
  2882. for (size_t i = 0; i < ctx_clip.backend_ptrs.size(); ++i) {
  2883. ggml_backend_t backend = ctx_clip.backend_ptrs[i];
  2884. ggml_backend_buffer_type_t buft = ctx_clip.backend_buft[i];
  2885. size_t size = ggml_backend_sched_get_buffer_size(ctx_clip.sched.get(), backend);
  2886. if (size > 1) {
  2887. LOG_INF("%s: %10s compute buffer size = %8.2f MiB\n", __func__,
  2888. ggml_backend_buft_name(buft),
  2889. size / 1024.0 / 1024.0);
  2890. }
  2891. }
  2892. const int n_splits = ggml_backend_sched_get_n_splits(ctx_clip.sched.get());
  2893. const int n_nodes = ggml_graph_n_nodes(gf);
  2894. LOG_INF("%s: graph splits = %d, nodes = %d\n", __func__, n_splits, n_nodes);
  2895. support_info_graph res {
  2896. /*.fattn = */ true,
  2897. /*.fattn_op = */ nullptr,
  2898. /*.ops = */ {},
  2899. };
  2900. // check op support
  2901. for (int i = 0; i < ggml_graph_n_nodes(gf); i++) {
  2902. ggml_tensor * node = ggml_graph_node(gf, i);
  2903. res.ops.push_back({node, true});
  2904. if (!ggml_backend_supports_op(ctx_clip.backend, node)) {
  2905. res.ops.back().is_accel = false;
  2906. if (node->op == GGML_OP_FLASH_ATTN_EXT) {
  2907. res.fattn = false;
  2908. res.fattn_op = node;
  2909. }
  2910. }
  2911. }
  2912. return res;
  2913. }
  2914. void get_bool(const std::string & key, bool & output, bool required = true) const {
  2915. const int i = gguf_find_key(ctx_gguf.get(), key.c_str());
  2916. if (i < 0) {
  2917. if (required) {
  2918. throw std::runtime_error("Key not found: " + key);
  2919. }
  2920. return;
  2921. }
  2922. output = gguf_get_val_bool(ctx_gguf.get(), i);
  2923. }
  2924. void get_i32(const std::string & key, int & output, bool required = true) const {
  2925. const int i = gguf_find_key(ctx_gguf.get(), key.c_str());
  2926. if (i < 0) {
  2927. if (required) {
  2928. throw std::runtime_error("Key not found: " + key);
  2929. }
  2930. return;
  2931. }
  2932. output = gguf_get_val_i32(ctx_gguf.get(), i);
  2933. }
  2934. void get_u32(const std::string & key, int & output, bool required = true) const {
  2935. const int i = gguf_find_key(ctx_gguf.get(), key.c_str());
  2936. if (i < 0) {
  2937. if (required) {
  2938. throw std::runtime_error("Key not found: " + key);
  2939. }
  2940. return;
  2941. }
  2942. output = gguf_get_val_u32(ctx_gguf.get(), i);
  2943. }
  2944. void get_f32(const std::string & key, float & output, bool required = true) const {
  2945. const int i = gguf_find_key(ctx_gguf.get(), key.c_str());
  2946. if (i < 0) {
  2947. if (required) {
  2948. throw std::runtime_error("Key not found: " + key);
  2949. }
  2950. return;
  2951. }
  2952. output = gguf_get_val_f32(ctx_gguf.get(), i);
  2953. }
  2954. void get_string(const std::string & key, std::string & output, bool required = true) const {
  2955. const int i = gguf_find_key(ctx_gguf.get(), key.c_str());
  2956. if (i < 0) {
  2957. if (required) {
  2958. throw std::runtime_error("Key not found: " + key);
  2959. }
  2960. return;
  2961. }
  2962. output = std::string(gguf_get_val_str(ctx_gguf.get(), i));
  2963. }
  2964. void get_arr_int(const std::string & key, std::vector<int> & output, bool required = true) const {
  2965. const int i = gguf_find_key(ctx_gguf.get(), key.c_str());
  2966. if (i < 0) {
  2967. if (required) {
  2968. throw std::runtime_error("Key not found: " + key);
  2969. }
  2970. return;
  2971. }
  2972. int n = gguf_get_arr_n(ctx_gguf.get(), i);
  2973. output.resize(n);
  2974. const int32_t * values = (const int32_t *)gguf_get_arr_data(ctx_gguf.get(), i);
  2975. for (int i = 0; i < n; ++i) {
  2976. output[i] = values[i];
  2977. }
  2978. }
  2979. static void set_llava_uhd_res_candidates(clip_model & model, const int max_patches_per_side) {
  2980. auto & hparams = model.hparams;
  2981. for (int x = 1; x <= max_patches_per_side; x++) {
  2982. for (int y = 1; y <= max_patches_per_side; y++) {
  2983. if (x == 1 && y == 1) {
  2984. continue; // skip the first point
  2985. }
  2986. hparams.image_res_candidates.push_back(clip_image_size{
  2987. x*hparams.image_size,
  2988. y*hparams.image_size,
  2989. });
  2990. }
  2991. }
  2992. }
  2993. };
  2994. struct clip_init_result clip_init(const char * fname, struct clip_context_params ctx_params) {
  2995. clip_ctx * ctx_vision = nullptr;
  2996. clip_ctx * ctx_audio = nullptr;
  2997. try {
  2998. clip_model_loader loader(fname);
  2999. if (loader.has_vision) {
  3000. ctx_vision = new clip_ctx(ctx_params);
  3001. loader.load_hparams(ctx_vision->model, CLIP_MODALITY_VISION);
  3002. loader.load_tensors(*ctx_vision);
  3003. if (ctx_params.warmup) {
  3004. loader.warmup(*ctx_vision);
  3005. }
  3006. }
  3007. if (loader.has_audio) {
  3008. ctx_audio = new clip_ctx(ctx_params);
  3009. loader.load_hparams(ctx_audio->model, CLIP_MODALITY_AUDIO);
  3010. loader.load_tensors(*ctx_audio);
  3011. if (ctx_params.warmup) {
  3012. loader.warmup(*ctx_audio);
  3013. }
  3014. }
  3015. } catch (const std::exception & e) {
  3016. LOG_ERR("%s: failed to load model '%s': %s\n", __func__, fname, e.what());
  3017. delete ctx_vision;
  3018. delete ctx_audio;
  3019. return {nullptr, nullptr};
  3020. }
  3021. return {ctx_vision, ctx_audio};
  3022. }
  3023. struct clip_image_size * clip_image_size_init() {
  3024. struct clip_image_size * load_image_size = new struct clip_image_size();
  3025. load_image_size->width = 448;
  3026. load_image_size->height = 448;
  3027. return load_image_size;
  3028. }
  3029. struct clip_image_u8 * clip_image_u8_init() {
  3030. return new clip_image_u8();
  3031. }
  3032. struct clip_image_f32 * clip_image_f32_init() {
  3033. return new clip_image_f32();
  3034. }
  3035. struct clip_image_f32_batch * clip_image_f32_batch_init() {
  3036. return new clip_image_f32_batch();
  3037. }
  3038. unsigned char * clip_image_u8_get_data(struct clip_image_u8 * img, uint32_t * nx, uint32_t * ny) {
  3039. if (nx) *nx = img->nx;
  3040. if (ny) *ny = img->ny;
  3041. return img->buf.data();
  3042. }
  3043. void clip_image_size_free(struct clip_image_size * load_image_size) {
  3044. if (load_image_size == nullptr) {
  3045. return;
  3046. }
  3047. delete load_image_size;
  3048. }
  3049. void clip_image_u8_free(struct clip_image_u8 * img) { delete img; }
  3050. void clip_image_f32_free(struct clip_image_f32 * img) { delete img; }
  3051. void clip_image_u8_batch_free(struct clip_image_u8_batch * batch) { delete batch; }
  3052. void clip_image_f32_batch_free(struct clip_image_f32_batch * batch) { delete batch; }
  3053. size_t clip_image_f32_batch_n_images(const struct clip_image_f32_batch * batch) {
  3054. return batch->entries.size();
  3055. }
  3056. size_t clip_image_f32_batch_nx(const struct clip_image_f32_batch * batch, int idx) {
  3057. if (idx < 0 || idx >= (int)batch->entries.size()) {
  3058. LOG_ERR("%s: invalid index %d\n", __func__, idx);
  3059. return 0;
  3060. }
  3061. return batch->entries[idx]->nx;
  3062. }
  3063. size_t clip_image_f32_batch_ny(const struct clip_image_f32_batch * batch, int idx) {
  3064. if (idx < 0 || idx >= (int)batch->entries.size()) {
  3065. LOG_ERR("%s: invalid index %d\n", __func__, idx);
  3066. return 0;
  3067. }
  3068. return batch->entries[idx]->ny;
  3069. }
  3070. clip_image_f32 * clip_image_f32_get_img(const struct clip_image_f32_batch * batch, int idx) {
  3071. if (idx < 0 || idx >= (int)batch->entries.size()) {
  3072. LOG_ERR("%s: invalid index %d\n", __func__, idx);
  3073. return nullptr;
  3074. }
  3075. return batch->entries[idx].get();
  3076. }
  3077. void clip_build_img_from_pixels(const unsigned char * rgb_pixels, int nx, int ny, clip_image_u8 * img) {
  3078. img->nx = nx;
  3079. img->ny = ny;
  3080. img->buf.resize(3 * nx * ny);
  3081. memcpy(img->buf.data(), rgb_pixels, img->buf.size());
  3082. }
  3083. // Normalize image to float32 - careful with pytorch .to(model.device, dtype=torch.float16) - this sometimes reduces precision (32>16>32), sometimes not
  3084. static void normalize_image_u8_to_f32(const clip_image_u8 & src, clip_image_f32 & dst, const float mean[3], const float std[3]) {
  3085. dst.nx = src.nx;
  3086. dst.ny = src.ny;
  3087. dst.buf.resize(src.buf.size());
  3088. // TODO @ngxson : seems like this could be done more efficiently on cgraph
  3089. for (size_t i = 0; i < src.buf.size(); ++i) {
  3090. int c = i % 3; // rgb
  3091. dst.buf[i] = (static_cast<float>(src.buf[i]) / 255.0f - mean[c]) / std[c];
  3092. }
  3093. }
  3094. // set of tools to manupulate images
  3095. // in the future, we can have HW acceleration by allowing this struct to access 3rd party lib like imagick or opencv
  3096. struct img_tool {
  3097. enum resize_algo {
  3098. RESIZE_ALGO_BILINEAR,
  3099. RESIZE_ALGO_BICUBIC,
  3100. // RESIZE_ALGO_LANCZOS, // TODO
  3101. };
  3102. static void resize(
  3103. const clip_image_u8 & src,
  3104. clip_image_u8 & dst,
  3105. const clip_image_size & target_resolution,
  3106. resize_algo algo,
  3107. bool add_padding = true, // TODO: define the behavior for add_padding = false
  3108. std::array<uint8_t, 3> pad_color = {0, 0, 0}) {
  3109. dst.nx = target_resolution.width;
  3110. dst.ny = target_resolution.height;
  3111. dst.buf.resize(3 * dst.nx * dst.ny);
  3112. if (dst.nx == src.nx && dst.ny == src.ny) {
  3113. // no resize needed, simple copy
  3114. dst.buf = src.buf;
  3115. return;
  3116. }
  3117. if (!add_padding) {
  3118. // direct resize
  3119. switch (algo) {
  3120. case RESIZE_ALGO_BILINEAR:
  3121. resize_bilinear(src, dst, target_resolution.width, target_resolution.height);
  3122. break;
  3123. case RESIZE_ALGO_BICUBIC:
  3124. resize_bicubic(src, dst, target_resolution.width, target_resolution.height);
  3125. break;
  3126. default:
  3127. throw std::runtime_error("Unsupported resize algorithm");
  3128. }
  3129. } else {
  3130. // resize with padding
  3131. clip_image_u8 resized_image;
  3132. float scale_w = static_cast<float>(target_resolution.width) / src.nx;
  3133. float scale_h = static_cast<float>(target_resolution.height) / src.ny;
  3134. float scale = std::min(scale_w, scale_h);
  3135. int new_width = std::min(static_cast<int>(std::ceil(src.nx * scale)), target_resolution.width);
  3136. int new_height = std::min(static_cast<int>(std::ceil(src.ny * scale)), target_resolution.height);
  3137. switch (algo) {
  3138. case RESIZE_ALGO_BILINEAR:
  3139. resize_bilinear(src, resized_image, new_width, new_height);
  3140. break;
  3141. case RESIZE_ALGO_BICUBIC:
  3142. resize_bicubic(src, resized_image, new_width, new_height);
  3143. break;
  3144. default:
  3145. throw std::runtime_error("Unsupported resize algorithm");
  3146. }
  3147. // fill dst with pad_color
  3148. fill(dst, pad_color);
  3149. int offset_x = (target_resolution.width - new_width) / 2;
  3150. int offset_y = (target_resolution.height - new_height) / 2;
  3151. composite(dst, resized_image, offset_x, offset_y);
  3152. }
  3153. }
  3154. static void crop(const clip_image_u8 & image, clip_image_u8 & dst, int x, int y, int w, int h) {
  3155. dst.nx = w;
  3156. dst.ny = h;
  3157. dst.buf.resize(3 * w * h);
  3158. for (int i = 0; i < h; ++i) {
  3159. for (int j = 0; j < w; ++j) {
  3160. int src_idx = 3 * ((y + i)*image.nx + (x + j));
  3161. int dst_idx = 3 * (i*w + j);
  3162. dst.buf[dst_idx] = image.buf[src_idx];
  3163. dst.buf[dst_idx + 1] = image.buf[src_idx + 1];
  3164. dst.buf[dst_idx + 2] = image.buf[src_idx + 2];
  3165. }
  3166. }
  3167. }
  3168. // calculate the size of the **resized** image, while preserving the aspect ratio
  3169. // the calculated size will be aligned to the nearest multiple of align_size
  3170. // if H or W size is larger than longest_edge, it will be resized to longest_edge
  3171. static clip_image_size calc_size_preserved_ratio(const clip_image_size & inp_size, const int align_size, const int longest_edge) {
  3172. GGML_ASSERT(align_size > 0);
  3173. if (inp_size.width <= 0 || inp_size.height <= 0 || longest_edge <= 0) {
  3174. return {0, 0};
  3175. }
  3176. float scale = std::min(static_cast<float>(longest_edge) / inp_size.width,
  3177. static_cast<float>(longest_edge) / inp_size.height);
  3178. float target_width_f = static_cast<float>(inp_size.width) * scale;
  3179. float target_height_f = static_cast<float>(inp_size.height) * scale;
  3180. auto ceil_by_factor = [f = align_size](float x) { return static_cast<int>(std::ceil(x / static_cast<float>(f))) * f; };
  3181. int aligned_width = ceil_by_factor(target_width_f);
  3182. int aligned_height = ceil_by_factor(target_height_f);
  3183. return {aligned_width, aligned_height};
  3184. }
  3185. // calculate the size of the **resized** image, while preserving the aspect ratio
  3186. // the calculated size will have min_pixels <= W*H <= max_pixels
  3187. // this is referred as "smart_resize" in transformers code
  3188. static clip_image_size calc_size_preserved_ratio(const clip_image_size & inp_size, const int align_size, const int min_pixels, const int max_pixels) {
  3189. GGML_ASSERT(align_size > 0);
  3190. const int width = inp_size.width;
  3191. const int height = inp_size.height;
  3192. auto round_by_factor = [f = align_size](float x) { return static_cast<int>(std::round(x / static_cast<float>(f))) * f; };
  3193. auto ceil_by_factor = [f = align_size](float x) { return static_cast<int>(std::ceil(x / static_cast<float>(f))) * f; };
  3194. auto floor_by_factor = [f = align_size](float x) { return static_cast<int>(std::floor(x / static_cast<float>(f))) * f; };
  3195. // always align up first
  3196. int h_bar = std::max(align_size, round_by_factor(height));
  3197. int w_bar = std::max(align_size, round_by_factor(width));
  3198. if (h_bar * w_bar > max_pixels) {
  3199. const auto beta = std::sqrt(static_cast<float>(height * width) / max_pixels);
  3200. h_bar = std::max(align_size, floor_by_factor(height / beta));
  3201. w_bar = std::max(align_size, floor_by_factor(width / beta));
  3202. } else if (h_bar * w_bar < min_pixels) {
  3203. const auto beta = std::sqrt(static_cast<float>(min_pixels) / (height * width));
  3204. h_bar = ceil_by_factor(height * beta);
  3205. w_bar = ceil_by_factor(width * beta);
  3206. }
  3207. return {w_bar, h_bar};
  3208. }
  3209. // draw src image into dst image at offset (offset_x, offset_y)
  3210. static void composite(clip_image_u8 & dst, const clip_image_u8 & src, int offset_x, int offset_y) {
  3211. for (int y = 0; y < src.ny; ++y) {
  3212. for (int x = 0; x < src.nx; ++x) {
  3213. int dx = x + offset_x;
  3214. int dy = y + offset_y;
  3215. // skip pixels that would be out of bounds in the destination
  3216. if (dx < 0 || dy < 0 || dx >= dst.nx || dy >= dst.ny) {
  3217. continue;
  3218. }
  3219. size_t dst_idx = 3 * (static_cast<size_t>(dy) * dst.nx + static_cast<size_t>(dx));
  3220. size_t src_idx = 3 * (static_cast<size_t>(y) * src.nx + static_cast<size_t>(x));
  3221. dst.buf[dst_idx + 0] = src.buf[src_idx + 0];
  3222. dst.buf[dst_idx + 1] = src.buf[src_idx + 1];
  3223. dst.buf[dst_idx + 2] = src.buf[src_idx + 2];
  3224. }
  3225. }
  3226. }
  3227. // fill the image with a solid color
  3228. static void fill(clip_image_u8 & img, const std::array<uint8_t, 3> & color) {
  3229. for (size_t i = 0; i < img.buf.size(); i += 3) {
  3230. img.buf[i] = color[0];
  3231. img.buf[i + 1] = color[1];
  3232. img.buf[i + 2] = color[2];
  3233. }
  3234. }
  3235. private:
  3236. // Bilinear resize function
  3237. static void resize_bilinear(const clip_image_u8 & src, clip_image_u8 & dst, int target_width, int target_height) {
  3238. dst.nx = target_width;
  3239. dst.ny = target_height;
  3240. dst.buf.resize(3 * target_width * target_height);
  3241. float x_ratio = static_cast<float>(src.nx - 1) / target_width;
  3242. float y_ratio = static_cast<float>(src.ny - 1) / target_height;
  3243. for (int y = 0; y < target_height; y++) {
  3244. for (int x = 0; x < target_width; x++) {
  3245. float px = x_ratio * x;
  3246. float py = y_ratio * y;
  3247. int x_floor = static_cast<int>(px);
  3248. int y_floor = static_cast<int>(py);
  3249. float x_lerp = px - x_floor;
  3250. float y_lerp = py - y_floor;
  3251. for (int c = 0; c < 3; c++) {
  3252. float top = lerp(
  3253. static_cast<float>(src.buf[3 * (y_floor * src.nx + x_floor) + c]),
  3254. static_cast<float>(src.buf[3 * (y_floor * src.nx + (x_floor + 1)) + c]),
  3255. x_lerp
  3256. );
  3257. float bottom = lerp(
  3258. static_cast<float>(src.buf[3 * ((y_floor + 1) * src.nx + x_floor) + c]),
  3259. static_cast<float>(src.buf[3 * ((y_floor + 1) * src.nx + (x_floor + 1)) + c]),
  3260. x_lerp
  3261. );
  3262. dst.buf[3 * (y * target_width + x) + c] = static_cast<uint8_t>(lerp(top, bottom, y_lerp));
  3263. }
  3264. }
  3265. }
  3266. }
  3267. // Bicubic resize function
  3268. // part of image will be cropped if the aspect ratio is different
  3269. static bool resize_bicubic(const clip_image_u8 & img, clip_image_u8 & dst, int target_width, int target_height) {
  3270. const int nx = img.nx;
  3271. const int ny = img.ny;
  3272. dst.nx = target_width;
  3273. dst.ny = target_height;
  3274. dst.buf.resize(3 * target_width * target_height);
  3275. float Cc;
  3276. float C[5] = {};
  3277. float d0, d2, d3, a0, a1, a2, a3;
  3278. int i, j, k, jj;
  3279. int x, y;
  3280. float dx, dy;
  3281. float tx, ty;
  3282. tx = (float)nx / (float)target_width;
  3283. ty = (float)ny / (float)target_height;
  3284. // Bicubic interpolation; adapted from ViT.cpp, inspired from :
  3285. // -> https://github.com/yglukhov/bicubic-interpolation-image-processing/blob/master/libimage.c#L36
  3286. // -> https://en.wikipedia.org/wiki/Bicubic_interpolation
  3287. for (i = 0; i < target_height; i++) {
  3288. for (j = 0; j < target_width; j++) {
  3289. x = (int)(tx * j);
  3290. y = (int)(ty * i);
  3291. dx = tx * j - x;
  3292. dy = ty * i - y;
  3293. for (k = 0; k < 3; k++) {
  3294. for (jj = 0; jj <= 3; jj++) {
  3295. d0 = img.buf[(clip(y - 1 + jj, 0, ny - 1) * nx + clip(x - 1, 0, nx - 1)) * 3 + k] - img.buf[(clip(y - 1 + jj, 0, ny - 1) * nx + clip(x, 0, nx - 1)) * 3 + k];
  3296. d2 = img.buf[(clip(y - 1 + jj, 0, ny - 1) * nx + clip(x + 1, 0, nx - 1)) * 3 + k] - img.buf[(clip(y - 1 + jj, 0, ny - 1) * nx + clip(x, 0, nx - 1)) * 3 + k];
  3297. d3 = img.buf[(clip(y - 1 + jj, 0, ny - 1) * nx + clip(x + 2, 0, nx - 1)) * 3 + k] - img.buf[(clip(y - 1 + jj, 0, ny - 1) * nx + clip(x, 0, nx - 1)) * 3 + k];
  3298. a0 = img.buf[(clip(y - 1 + jj, 0, ny - 1) * nx + clip(x, 0, nx - 1)) * 3 + k];
  3299. a1 = -1.0 / 3 * d0 + d2 - 1.0 / 6 * d3;
  3300. a2 = 1.0 / 2 * d0 + 1.0 / 2 * d2;
  3301. a3 = -1.0 / 6 * d0 - 1.0 / 2 * d2 + 1.0 / 6 * d3;
  3302. C[jj] = a0 + a1 * dx + a2 * dx * dx + a3 * dx * dx * dx;
  3303. d0 = C[0] - C[1];
  3304. d2 = C[2] - C[1];
  3305. d3 = C[3] - C[1];
  3306. a0 = C[1];
  3307. a1 = -1.0 / 3 * d0 + d2 - 1.0 / 6 * d3;
  3308. a2 = 1.0 / 2 * d0 + 1.0 / 2 * d2;
  3309. a3 = -1.0 / 6 * d0 - 1.0 / 2 * d2 + 1.0 / 6 * d3;
  3310. Cc = a0 + a1 * dy + a2 * dy * dy + a3 * dy * dy * dy;
  3311. const uint8_t Cc2 = std::min(std::max(std::round(Cc), 0.0f), 255.0f);
  3312. dst.buf[(i * target_width + j) * 3 + k] = float(Cc2);
  3313. }
  3314. }
  3315. }
  3316. }
  3317. return true;
  3318. }
  3319. static inline int clip(int x, int lower, int upper) {
  3320. return std::max(lower, std::min(x, upper));
  3321. }
  3322. // Linear interpolation between two points
  3323. static inline float lerp(float s, float e, float t) {
  3324. return s + (e - s) * t;
  3325. }
  3326. };
  3327. /**
  3328. * implementation of LLaVA-UHD:
  3329. * - https://arxiv.org/pdf/2403.11703
  3330. * - https://github.com/thunlp/LLaVA-UHD
  3331. * - https://github.com/thunlp/LLaVA-UHD/blob/302301bc2175f7e717fb8548516188e89f649753/llava_uhd/train/llava-uhd/slice_logic.py#L118
  3332. *
  3333. * overview:
  3334. * - an image always have a single overview (downscaled image)
  3335. * - an image can have 0 or multiple slices, depending on the image size
  3336. * - each slice can then be considered as a separate image
  3337. *
  3338. * for example:
  3339. *
  3340. * [overview] --> [slice 1] --> [slice 2]
  3341. * | |
  3342. * +--> [slice 3] --> [slice 4]
  3343. */
  3344. struct llava_uhd {
  3345. struct slice_coordinates {
  3346. int x;
  3347. int y;
  3348. clip_image_size size;
  3349. };
  3350. struct slice_instructions {
  3351. clip_image_size overview_size; // size of downscaled image
  3352. clip_image_size refined_size; // size of image right before slicing (must be multiple of slice size)
  3353. clip_image_size grid_size; // grid_size.width * grid_size.height = number of slices
  3354. std::vector<slice_coordinates> slices;
  3355. bool padding_refined = false; // if true, refine image will be padded to the grid size (e.g. llava-1.6)
  3356. };
  3357. static slice_instructions get_slice_instructions(struct clip_ctx * ctx, const clip_image_size & original_size) {
  3358. slice_instructions res;
  3359. const int patch_size = clip_get_patch_size(ctx);
  3360. const int slice_size = clip_get_image_size(ctx);
  3361. const int original_width = original_size.width;
  3362. const int original_height = original_size.height;
  3363. const bool has_slices = original_size.width > slice_size || original_size.height > slice_size;
  3364. const bool has_pinpoints = !ctx->model.hparams.image_res_candidates.empty();
  3365. if (!has_slices) {
  3366. // skip slicing logic
  3367. res.overview_size = clip_image_size{slice_size, slice_size};
  3368. res.refined_size = clip_image_size{0, 0};
  3369. res.grid_size = clip_image_size{0, 0};
  3370. return res;
  3371. }
  3372. if (has_pinpoints) {
  3373. // has pinpoints, use them to calculate the grid size (e.g. llava-1.6)
  3374. auto refine_size = llava_uhd::select_best_resolution(
  3375. original_size,
  3376. ctx->model.hparams.image_res_candidates);
  3377. res.overview_size = clip_image_size{slice_size, slice_size};
  3378. res.refined_size = refine_size;
  3379. res.grid_size = clip_image_size{0, 0};
  3380. res.padding_refined = true;
  3381. LOG_DBG("%s: using pinpoints for slicing\n", __func__);
  3382. LOG_DBG("%s: original size: %d x %d, overview size: %d x %d, refined size: %d x %d\n",
  3383. __func__, original_width, original_height,
  3384. res.overview_size.width, res.overview_size.height,
  3385. res.refined_size.width, res.refined_size.height);
  3386. for (int y = 0; y < refine_size.height; y += slice_size) {
  3387. for (int x = 0; x < refine_size.width; x += slice_size) {
  3388. slice_coordinates slice;
  3389. slice.x = x;
  3390. slice.y = y;
  3391. slice.size.width = std::min(slice_size, refine_size.width - x);
  3392. slice.size.height = std::min(slice_size, refine_size.height - y);
  3393. res.slices.push_back(slice);
  3394. LOG_DBG("%s: slice %d: x=%d, y=%d, size=%dx%d\n",
  3395. __func__, (int)res.slices.size() - 1,
  3396. slice.x, slice.y, slice.size.width, slice.size.height);
  3397. }
  3398. }
  3399. res.grid_size.height = refine_size.height / slice_size;
  3400. res.grid_size.width = refine_size.width / slice_size;
  3401. LOG_DBG("%s: grid size: %d x %d\n", __func__, res.grid_size.width, res.grid_size.height);
  3402. return res;
  3403. }
  3404. // no pinpoints, dynamically calculate the grid size (e.g. minicpmv)
  3405. auto best_size = get_best_resize(original_size, slice_size, patch_size, !has_slices);
  3406. res.overview_size = best_size;
  3407. {
  3408. const int max_slice_nums = 9; // TODO: this is only used by minicpmv, maybe remove it
  3409. const float log_ratio = log((float)original_width / original_height);
  3410. const float ratio = (float)original_width * original_height / (slice_size * slice_size);
  3411. const int multiple = fmin(ceil(ratio), max_slice_nums);
  3412. auto best_grid = get_best_grid(max_slice_nums, multiple, log_ratio);
  3413. auto refine_size = get_refine_size(original_size, best_grid, slice_size, patch_size, true);
  3414. res.grid_size = best_grid;
  3415. res.refined_size = refine_size;
  3416. LOG_DBG("%s: original size: %d x %d, overview size: %d x %d, refined size: %d x %d, grid size: %d x %d\n",
  3417. __func__, original_width, original_height,
  3418. res.overview_size.width, res.overview_size.height,
  3419. res.refined_size.width, res.refined_size.height,
  3420. res.grid_size.width, res.grid_size.height);
  3421. int width = refine_size.width;
  3422. int height = refine_size.height;
  3423. int grid_x = int(width / best_grid.width);
  3424. int grid_y = int(height / best_grid.height);
  3425. for (int patches_y = 0, ic = 0;
  3426. patches_y < refine_size.height && ic < best_grid.height;
  3427. patches_y += grid_y, ic += 1) {
  3428. for (int patches_x = 0, jc = 0;
  3429. patches_x < refine_size.width && jc < best_grid.width;
  3430. patches_x += grid_x, jc += 1) {
  3431. slice_coordinates slice;
  3432. slice.x = patches_x;
  3433. slice.y = patches_y;
  3434. slice.size.width = grid_x;
  3435. slice.size.height = grid_y;
  3436. res.slices.push_back(slice);
  3437. LOG_DBG("%s: slice %d: x=%d, y=%d, size=%dx%d\n",
  3438. __func__, (int)res.slices.size() - 1,
  3439. slice.x, slice.y, slice.size.width, slice.size.height);
  3440. }
  3441. }
  3442. }
  3443. return res;
  3444. }
  3445. static std::vector<clip_image_u8_ptr> slice_image(const clip_image_u8 * img, const slice_instructions & inst) {
  3446. std::vector<clip_image_u8_ptr> output;
  3447. img_tool::resize_algo interpolation = img_tool::RESIZE_ALGO_BILINEAR; // TODO: make it configurable
  3448. // resize to overview size
  3449. clip_image_u8_ptr resized_img(clip_image_u8_init());
  3450. img_tool::resize(*img, *resized_img, inst.overview_size, interpolation);
  3451. output.push_back(std::move(resized_img));
  3452. if (inst.slices.empty()) {
  3453. // no slices, just return the resized image
  3454. return output;
  3455. }
  3456. // resize to refined size
  3457. clip_image_u8_ptr refined_img(clip_image_u8_init());
  3458. if (inst.padding_refined) {
  3459. img_tool::resize(*img, *refined_img, inst.refined_size, interpolation);
  3460. } else {
  3461. // only algo bicubic preserves the ratio; old models rely on this behavior
  3462. // TODO: do we need to support other algos here?
  3463. img_tool::resize(*img, *refined_img, inst.refined_size, img_tool::RESIZE_ALGO_BICUBIC, false);
  3464. }
  3465. // create slices
  3466. for (const auto & slice : inst.slices) {
  3467. int x = slice.x;
  3468. int y = slice.y;
  3469. int w = slice.size.width;
  3470. int h = slice.size.height;
  3471. clip_image_u8_ptr img_slice(clip_image_u8_init());
  3472. img_tool::crop(*refined_img, *img_slice, x, y, w, h);
  3473. output.push_back(std::move(img_slice));
  3474. }
  3475. return output;
  3476. }
  3477. private:
  3478. static clip_image_size get_best_resize(const clip_image_size & original_size, int scale_resolution, int patch_size, bool allow_upscale = false) {
  3479. int width = original_size.width;
  3480. int height = original_size.height;
  3481. if ((width * height > scale_resolution * scale_resolution) || allow_upscale) {
  3482. float r = static_cast<float>(width) / height;
  3483. height = static_cast<int>(scale_resolution / std::sqrt(r));
  3484. width = static_cast<int>(height * r);
  3485. }
  3486. clip_image_size res;
  3487. res.width = ensure_divide(width, patch_size);
  3488. res.height = ensure_divide(height, patch_size);
  3489. return res;
  3490. }
  3491. static clip_image_size resize_maintain_aspect_ratio(const clip_image_size & orig, const clip_image_size & target_max) {
  3492. float scale_width = static_cast<float>(target_max.width) / orig.width;
  3493. float scale_height = static_cast<float>(target_max.height) / orig.height;
  3494. float scale = std::min(scale_width, scale_height);
  3495. return clip_image_size{
  3496. static_cast<int>(orig.width * scale),
  3497. static_cast<int>(orig.height * scale),
  3498. };
  3499. }
  3500. /**
  3501. * Selects the best resolution from a list of possible resolutions based on the original size.
  3502. *
  3503. * For example, when given a list of resolutions:
  3504. * - 100x100
  3505. * - 200x100
  3506. * - 100x200
  3507. * - 200x200
  3508. *
  3509. * And an input image of size 111x200, then 100x200 is the best fit (least wasted resolution).
  3510. *
  3511. * @param original_size The original size of the image
  3512. * @param possible_resolutions A list of possible resolutions
  3513. * @return The best fit resolution
  3514. */
  3515. static clip_image_size select_best_resolution(const clip_image_size & original_size, const std::vector<clip_image_size> & possible_resolutions) {
  3516. clip_image_size best_fit;
  3517. int min_wasted_area = std::numeric_limits<int>::max();
  3518. int max_effective_resolution = 0;
  3519. for (const clip_image_size & candidate : possible_resolutions) {
  3520. auto target_size = resize_maintain_aspect_ratio(original_size, candidate);
  3521. int effective_resolution = std::min(
  3522. target_size.width * target_size.height,
  3523. original_size.width * original_size.height);
  3524. int wasted_area = (candidate.width * candidate.height) - effective_resolution;
  3525. if (effective_resolution > max_effective_resolution || (effective_resolution == max_effective_resolution && wasted_area < min_wasted_area)) {
  3526. max_effective_resolution = effective_resolution;
  3527. min_wasted_area = wasted_area;
  3528. best_fit = candidate;
  3529. }
  3530. LOG_DBG("%s: candidate: %d x %d, target: %d x %d, wasted: %d, effective: %d\n", __func__, candidate.width, candidate.height, target_size.width, target_size.height, wasted_area, effective_resolution);
  3531. }
  3532. return best_fit;
  3533. }
  3534. static int ensure_divide(int length, int patch_size) {
  3535. return std::max(static_cast<int>(std::round(static_cast<float>(length) / patch_size) * patch_size), patch_size);
  3536. }
  3537. static clip_image_size get_refine_size(const clip_image_size & original_size, const clip_image_size & grid, int scale_resolution, int patch_size, bool allow_upscale = false) {
  3538. int width = original_size.width;
  3539. int height = original_size.height;
  3540. int grid_x = grid.width;
  3541. int grid_y = grid.height;
  3542. int refine_width = ensure_divide(width, grid_x);
  3543. int refine_height = ensure_divide(height, grid_y);
  3544. clip_image_size grid_size;
  3545. grid_size.width = refine_width / grid_x;
  3546. grid_size.height = refine_height / grid_y;
  3547. auto best_grid_size = get_best_resize(grid_size, scale_resolution, patch_size, allow_upscale);
  3548. int best_grid_width = best_grid_size.width;
  3549. int best_grid_height = best_grid_size.height;
  3550. clip_image_size refine_size;
  3551. refine_size.width = best_grid_width * grid_x;
  3552. refine_size.height = best_grid_height * grid_y;
  3553. return refine_size;
  3554. }
  3555. static clip_image_size get_best_grid(const int max_slice_nums, const int multiple, const float log_ratio) {
  3556. std::vector<int> candidate_split_grids_nums;
  3557. for (int i : {multiple - 1, multiple, multiple + 1}) {
  3558. if (i == 1 || i > max_slice_nums) {
  3559. continue;
  3560. }
  3561. candidate_split_grids_nums.push_back(i);
  3562. }
  3563. std::vector<clip_image_size> candidate_grids;
  3564. for (int split_grids_nums : candidate_split_grids_nums) {
  3565. int m = 1;
  3566. while (m <= split_grids_nums) {
  3567. if (split_grids_nums % m == 0) {
  3568. candidate_grids.push_back(clip_image_size{m, split_grids_nums / m});
  3569. }
  3570. ++m;
  3571. }
  3572. }
  3573. clip_image_size best_grid{1, 1};
  3574. float min_error = std::numeric_limits<float>::infinity();
  3575. for (const auto& grid : candidate_grids) {
  3576. float error = std::abs(log_ratio - std::log(1.0 * grid.width / grid.height));
  3577. if (error < min_error) {
  3578. best_grid = grid;
  3579. min_error = error;
  3580. }
  3581. }
  3582. return best_grid;
  3583. }
  3584. };
  3585. // returns the normalized float tensor for llava-1.5, for spatial_unpad with anyres processing for llava-1.6 it returns the normalized image patch tensors as a vector
  3586. // res_imgs memory is being allocated here, previous allocations will be freed if found
  3587. bool clip_image_preprocess(struct clip_ctx * ctx, const clip_image_u8 * img, struct clip_image_f32_batch * res_imgs) {
  3588. clip_image_size original_size{img->nx, img->ny};
  3589. auto & params = ctx->model.hparams;
  3590. switch (ctx->proj_type()) {
  3591. case PROJECTOR_TYPE_MINICPMV:
  3592. {
  3593. auto const inst = llava_uhd::get_slice_instructions(ctx, original_size);
  3594. std::vector<clip_image_u8_ptr> imgs = llava_uhd::slice_image(img, inst);
  3595. for (size_t i = 0; i < imgs.size(); ++i) {
  3596. // clip_image_save_to_bmp(*imgs[i], "slice_" + std::to_string(i) + ".bmp");
  3597. clip_image_f32_ptr res(clip_image_f32_init());
  3598. normalize_image_u8_to_f32(*imgs[i], *res, params.image_mean, params.image_std);
  3599. res_imgs->entries.push_back(std::move(res));
  3600. }
  3601. res_imgs->grid_x = inst.grid_size.width;
  3602. res_imgs->grid_y = inst.grid_size.height;
  3603. } break;
  3604. case PROJECTOR_TYPE_QWEN2VL:
  3605. case PROJECTOR_TYPE_QWEN25VL:
  3606. case PROJECTOR_TYPE_QWEN3VL:
  3607. {
  3608. GGML_ASSERT(params.image_min_pixels > 0 && params.image_max_pixels > 0);
  3609. clip_image_u8 resized;
  3610. const clip_image_size new_size = img_tool::calc_size_preserved_ratio(
  3611. original_size,
  3612. params.patch_size * 2,
  3613. params.image_min_pixels,
  3614. params.image_max_pixels);
  3615. img_tool::resize(*img, resized, new_size, img_tool::RESIZE_ALGO_BILINEAR, false);
  3616. // clip_image_save_to_bmp(resized, "preproc.bmp");
  3617. clip_image_f32_ptr img_f32(clip_image_f32_init());
  3618. // clip_image_f32_ptr res(clip_image_f32_init());
  3619. normalize_image_u8_to_f32(resized, *img_f32, params.image_mean, params.image_std);
  3620. // res_imgs->data[0] = *res;
  3621. res_imgs->entries.push_back(std::move(img_f32));
  3622. } break;
  3623. case PROJECTOR_TYPE_IDEFICS3:
  3624. {
  3625. // The refined size has two steps:
  3626. // 1. Resize w/ aspect-ratio preserving such that the longer side is
  3627. // the preprocessor longest size
  3628. // 2. Resize w/out preserving aspect ratio such that both sides are
  3629. // multiples of image_size (always rounding up)
  3630. //
  3631. // CITE: https://github.com/huggingface/transformers/blob/main/src/transformers/models/idefics3/image_processing_idefics3.py#L737
  3632. const clip_image_size refined_size = img_tool::calc_size_preserved_ratio(
  3633. original_size, params.image_size, params.image_longest_edge);
  3634. // LOG_INF("%s: original size: %d x %d, refined size: %d x %d\n",
  3635. // __func__, original_size.width, original_size.height,
  3636. // refined_size.width, refined_size.height);
  3637. llava_uhd::slice_instructions instructions;
  3638. instructions.overview_size = clip_image_size{params.image_size, params.image_size};
  3639. instructions.refined_size = refined_size;
  3640. instructions.grid_size = clip_image_size{
  3641. static_cast<int>(std::ceil(static_cast<float>(refined_size.width) / params.image_size)),
  3642. static_cast<int>(std::ceil(static_cast<float>(refined_size.height) / params.image_size)),
  3643. };
  3644. for (int y = 0; y < refined_size.height; y += params.image_size) {
  3645. for (int x = 0; x < refined_size.width; x += params.image_size) {
  3646. // LOG_INF("%s: adding slice at x=%d, y=%d\n", __func__, x, y);
  3647. instructions.slices.push_back(llava_uhd::slice_coordinates{
  3648. /* x */x,
  3649. /* y */y,
  3650. /* size */clip_image_size{
  3651. std::min(params.image_size, refined_size.width - x),
  3652. std::min(params.image_size, refined_size.height - y)
  3653. }
  3654. });
  3655. }
  3656. }
  3657. auto imgs = llava_uhd::slice_image(img, instructions);
  3658. // cast and normalize to f32
  3659. for (size_t i = 0; i < imgs.size(); ++i) {
  3660. // clip_image_save_to_bmp(*imgs[i], "slice_" + std::to_string(i) + ".bmp");
  3661. clip_image_f32_ptr res(clip_image_f32_init());
  3662. normalize_image_u8_to_f32(*imgs[i], *res, params.image_mean, params.image_std);
  3663. res_imgs->entries.push_back(std::move(res));
  3664. }
  3665. res_imgs->grid_x = instructions.grid_size.width;
  3666. res_imgs->grid_y = instructions.grid_size.height;
  3667. } break;
  3668. case PROJECTOR_TYPE_GLM_EDGE:
  3669. case PROJECTOR_TYPE_GEMMA3:
  3670. case PROJECTOR_TYPE_INTERNVL: // TODO @ngxson : support dynamic resolution
  3671. {
  3672. clip_image_u8 resized_image;
  3673. int sz = params.image_size;
  3674. img_tool::resize(*img, resized_image, {sz, sz}, img_tool::RESIZE_ALGO_BILINEAR);
  3675. clip_image_f32_ptr img_f32(clip_image_f32_init());
  3676. //clip_image_save_to_bmp(resized_image, "resized.bmp");
  3677. normalize_image_u8_to_f32(resized_image, *img_f32, params.image_mean, params.image_std);
  3678. res_imgs->entries.push_back(std::move(img_f32));
  3679. } break;
  3680. case PROJECTOR_TYPE_JANUS_PRO:
  3681. {
  3682. // Janus Pro preprocessing: pad to square with gray(127), resize to 384x384
  3683. const std::array<uint8_t, 3> pad_color = {127, 127, 127};
  3684. clip_image_u8 resized_image;
  3685. int sz = params.image_size;
  3686. img_tool::resize(*img, resized_image, {sz, sz}, img_tool::RESIZE_ALGO_BILINEAR, true, pad_color);
  3687. clip_image_f32_ptr img_f32(clip_image_f32_init());
  3688. normalize_image_u8_to_f32(resized_image, *img_f32, params.image_mean, params.image_std);
  3689. res_imgs->entries.push_back(std::move(img_f32));
  3690. } break;
  3691. case PROJECTOR_TYPE_PIXTRAL:
  3692. case PROJECTOR_TYPE_LIGHTONOCR:
  3693. {
  3694. GGML_ASSERT(params.image_min_pixels > 0 && params.image_max_pixels > 0);
  3695. clip_image_u8 resized_image;
  3696. // the original pixtral model doesn't have n_merge
  3697. const int cur_merge = params.n_merge == 0 ? 1 : params.n_merge;
  3698. const clip_image_size target_size = img_tool::calc_size_preserved_ratio(
  3699. original_size,
  3700. params.patch_size * cur_merge,
  3701. params.image_min_pixels,
  3702. params.image_max_pixels);
  3703. img_tool::resize(*img, resized_image, target_size, img_tool::RESIZE_ALGO_BILINEAR);
  3704. clip_image_f32_ptr img_f32(clip_image_f32_init());
  3705. normalize_image_u8_to_f32(resized_image, *img_f32, params.image_mean, params.image_std);
  3706. res_imgs->entries.push_back(std::move(img_f32));
  3707. } break;
  3708. case PROJECTOR_TYPE_LLAMA4:
  3709. {
  3710. GGML_ASSERT(!params.image_res_candidates.empty());
  3711. auto const inst = llava_uhd::get_slice_instructions(ctx, original_size);
  3712. std::vector<clip_image_u8_ptr> imgs = llava_uhd::slice_image(img, inst);
  3713. for (size_t i = 0; i < imgs.size(); ++i) {
  3714. clip_image_f32_ptr res(clip_image_f32_init());
  3715. normalize_image_u8_to_f32(*imgs[i], *res, params.image_mean, params.image_std);
  3716. res_imgs->entries.push_back(std::move(res));
  3717. }
  3718. res_imgs->grid_x = inst.grid_size.width;
  3719. res_imgs->grid_y = inst.grid_size.height;
  3720. } break;
  3721. case PROJECTOR_TYPE_LFM2:
  3722. case PROJECTOR_TYPE_KIMIVL:
  3723. {
  3724. GGML_ASSERT(params.image_min_pixels > 0 && params.image_max_pixels > 0);
  3725. const clip_image_size target_size = img_tool::calc_size_preserved_ratio(
  3726. original_size,
  3727. params.patch_size * params.n_merge,
  3728. params.image_min_pixels,
  3729. params.image_max_pixels);
  3730. const std::array<uint8_t, 3> pad_color = {122, 116, 104};
  3731. clip_image_u8 resized_img;
  3732. const bool pad = (ctx->proj_type() != PROJECTOR_TYPE_LFM2);
  3733. img_tool::resize(*img, resized_img, target_size, img_tool::RESIZE_ALGO_BILINEAR, pad, pad_color);
  3734. clip_image_f32_ptr res(clip_image_f32_init());
  3735. normalize_image_u8_to_f32(resized_img, *res, params.image_mean, params.image_std);
  3736. res_imgs->entries.push_back(std::move(res));
  3737. } break;
  3738. case PROJECTOR_TYPE_MLP:
  3739. case PROJECTOR_TYPE_MLP_NORM:
  3740. case PROJECTOR_TYPE_LDP:
  3741. case PROJECTOR_TYPE_LDPV2:
  3742. case PROJECTOR_TYPE_COGVLM: // TODO @ngxson : is this correct for cogvlm?
  3743. {
  3744. // TODO @ngxson : refactor the code below to avoid duplicated logic
  3745. // the logic below is to pad the shorter side to the longer side with a background color: rgb(122, 116, 104)
  3746. // see https://github.com/haotian-liu/LLaVA/blob/e854a2bf85118c504f6f16bf5c3c7c92f8fa8c6b/llava/conversation.py#L113-L156
  3747. clip_image_u8_ptr temp(clip_image_u8_init()); // we will keep the input image data here temporarily
  3748. // The model config actually contains all we need to decide on how to preprocess, here we automatically switch to the new llava-1.6 preprocessing
  3749. if (params.image_res_candidates.empty()) { // pad_to_square
  3750. // for llava-1.5, we resize image to a square, and pad the shorter side with a background color
  3751. // see https://github.com/haotian-liu/LLaVA/blob/e854a2bf85118c504f6f16bf5c3c7c92f8fa8c6b/llava/conversation.py#L113-L156
  3752. const int longer_side = std::max(img->nx, img->ny);
  3753. temp->nx = longer_side;
  3754. temp->ny = longer_side;
  3755. temp->buf.resize(3 * longer_side * longer_side);
  3756. // background color in RGB from LLaVA (this is the mean rgb color * 255)
  3757. const std::array<uint8_t, 3> pad_color = {122, 116, 104};
  3758. // resize the image to the target_size
  3759. img_tool::resize(*img, *temp, clip_image_size{params.image_size, params.image_size}, img_tool::RESIZE_ALGO_BILINEAR, true, pad_color);
  3760. clip_image_f32_ptr res(clip_image_f32_init());
  3761. normalize_image_u8_to_f32(*temp, *res, params.image_mean, params.image_std);
  3762. res_imgs->entries.push_back(std::move(res));
  3763. } else {
  3764. // "spatial_unpad" with "anyres" processing for llava-1.6
  3765. auto const inst = llava_uhd::get_slice_instructions(ctx, original_size);
  3766. std::vector<clip_image_u8_ptr> imgs = llava_uhd::slice_image(img, inst);
  3767. for (size_t i = 0; i < imgs.size(); ++i) {
  3768. // clip_image_save_to_bmp(*imgs[i], "slice_" + std::to_string(i) + ".bmp");
  3769. clip_image_f32_ptr res(clip_image_f32_init());
  3770. normalize_image_u8_to_f32(*imgs[i], *res, params.image_mean, params.image_std);
  3771. res_imgs->entries.push_back(std::move(res));
  3772. }
  3773. }
  3774. } break;
  3775. default:
  3776. LOG_ERR("%s: unsupported projector type %d\n", __func__, ctx->proj_type());
  3777. return false;
  3778. }
  3779. return true;
  3780. }
  3781. ggml_tensor * clip_get_newline_tensor(const struct clip_ctx * ctx) {
  3782. return ctx->model.image_newline;
  3783. }
  3784. void clip_free(clip_ctx * ctx) {
  3785. if (ctx == nullptr) {
  3786. return;
  3787. }
  3788. delete ctx;
  3789. }
  3790. // deprecated
  3791. size_t clip_embd_nbytes(const struct clip_ctx * ctx) {
  3792. const int32_t nx = ctx->model.hparams.image_size;
  3793. const int32_t ny = ctx->model.hparams.image_size;
  3794. return clip_embd_nbytes_by_img(ctx, nx, ny);
  3795. }
  3796. size_t clip_embd_nbytes_by_img(const struct clip_ctx * ctx, int img_w, int img_h) {
  3797. clip_image_f32 img;
  3798. img.nx = img_w;
  3799. img.ny = img_h;
  3800. return clip_n_output_tokens(ctx, &img) * clip_n_mmproj_embd(ctx) * sizeof(float);
  3801. }
  3802. int32_t clip_get_image_size(const struct clip_ctx * ctx) {
  3803. return ctx->model.hparams.image_size;
  3804. }
  3805. int32_t clip_get_patch_size(const struct clip_ctx * ctx) {
  3806. return ctx->model.hparams.patch_size;
  3807. }
  3808. int32_t clip_get_hidden_size(const struct clip_ctx * ctx) {
  3809. return ctx->model.hparams.n_embd;
  3810. }
  3811. const char * clip_patch_merge_type(const struct clip_ctx * ctx) {
  3812. return ctx->model.hparams.mm_patch_merge_type == PATCH_MERGE_SPATIAL_UNPAD ? "spatial_unpad" : "flat";
  3813. }
  3814. int clip_n_output_tokens_x(const struct clip_ctx * ctx, struct clip_image_f32 * img) {
  3815. const auto & params = ctx->model.hparams;
  3816. const int n_total = clip_n_output_tokens(ctx, img);
  3817. if (ctx->proj_type() == PROJECTOR_TYPE_QWEN2VL || ctx->proj_type() == PROJECTOR_TYPE_QWEN25VL || ctx->proj_type() == PROJECTOR_TYPE_QWEN3VL) {
  3818. return img->nx / (params.patch_size * 2);
  3819. }
  3820. return n_total;
  3821. }
  3822. int clip_n_output_tokens_y(const struct clip_ctx * ctx, struct clip_image_f32 * img) {
  3823. const auto & params = ctx->model.hparams;
  3824. if (ctx->proj_type() == PROJECTOR_TYPE_QWEN2VL || ctx->proj_type() == PROJECTOR_TYPE_QWEN25VL || ctx->proj_type() == PROJECTOR_TYPE_QWEN3VL) {
  3825. return img->ny / (params.patch_size * 2);
  3826. }
  3827. return 1;
  3828. }
  3829. int clip_n_output_tokens(const struct clip_ctx * ctx, struct clip_image_f32 * img) {
  3830. const auto & params = ctx->model.hparams;
  3831. // for models with fixed size image, the input image is already pre-processed and resized to square
  3832. int patch_size = params.patch_size;
  3833. int n_patches = (img->nx / patch_size) * (img->ny / patch_size);
  3834. projector_type proj = ctx->proj_type();
  3835. switch (proj) {
  3836. case PROJECTOR_TYPE_MLP:
  3837. case PROJECTOR_TYPE_MLP_NORM:
  3838. case PROJECTOR_TYPE_JANUS_PRO:
  3839. {
  3840. // do nothing
  3841. } break;
  3842. case PROJECTOR_TYPE_LDP:
  3843. case PROJECTOR_TYPE_LDPV2:
  3844. case PROJECTOR_TYPE_GLM_EDGE:
  3845. {
  3846. n_patches /= 4;
  3847. if (ctx->model.mm_boi) {
  3848. n_patches += 2; // for BOI and EOI token embeddings
  3849. }
  3850. } break;
  3851. case PROJECTOR_TYPE_MINICPMV:
  3852. {
  3853. // Use actual config value if available, otherwise fall back to hardcoded values
  3854. if (params.minicpmv_query_num > 0) {
  3855. n_patches = params.minicpmv_query_num;
  3856. } else {
  3857. // Fallback to hardcoded values for legacy models
  3858. if (params.minicpmv_version == 2) {
  3859. n_patches = 96;
  3860. } else if (params.minicpmv_version == 3) {
  3861. n_patches = 64;
  3862. } else if (params.minicpmv_version == 4) {
  3863. n_patches = 64;
  3864. } else if (params.minicpmv_version == 5) {
  3865. // MiniCPM-V 4.0
  3866. n_patches = 64;
  3867. } else if (params.minicpmv_version == 6) {
  3868. // MiniCPM-V 4.5
  3869. n_patches = 64;
  3870. } else {
  3871. GGML_ABORT("Unknown minicpmv version");
  3872. }
  3873. }
  3874. } break;
  3875. case PROJECTOR_TYPE_QWEN2VL:
  3876. case PROJECTOR_TYPE_QWEN25VL:
  3877. case PROJECTOR_TYPE_QWEN3VL:
  3878. {
  3879. // dynamic size (2 conv, so double patch size)
  3880. int x_patch = img->nx / (params.patch_size * 2);
  3881. int y_patch = img->ny / (params.patch_size * 2);
  3882. n_patches = x_patch * y_patch;
  3883. } break;
  3884. case PROJECTOR_TYPE_GEMMA3:
  3885. case PROJECTOR_TYPE_IDEFICS3:
  3886. case PROJECTOR_TYPE_INTERNVL:
  3887. case PROJECTOR_TYPE_LLAMA4:
  3888. {
  3889. // both X and Y are downscaled by the scale factor
  3890. int scale_factor = ctx->model.hparams.n_merge;
  3891. n_patches /= (scale_factor * scale_factor);
  3892. } break;
  3893. case PROJECTOR_TYPE_LFM2:
  3894. case PROJECTOR_TYPE_KIMIVL:
  3895. {
  3896. // dynamic size
  3897. int out_patch_size = params.patch_size * ctx->model.hparams.n_merge;
  3898. int x_patch = CLIP_ALIGN(img->nx, out_patch_size) / out_patch_size;
  3899. int y_patch = CLIP_ALIGN(img->ny, out_patch_size) / out_patch_size;
  3900. n_patches = x_patch * y_patch;
  3901. } break;
  3902. case PROJECTOR_TYPE_PIXTRAL:
  3903. case PROJECTOR_TYPE_LIGHTONOCR:
  3904. {
  3905. // dynamic size
  3906. int n_merge = ctx->model.hparams.n_merge;
  3907. int n_patches_x = img->nx / patch_size / (n_merge > 0 ? n_merge : 1);
  3908. int n_patches_y = img->ny / patch_size / (n_merge > 0 ? n_merge : 1);
  3909. if (ctx->model.token_embd_img_break) {
  3910. n_patches = n_patches_y * n_patches_x + n_patches_y - 1; // + one [IMG_BREAK] per row, except the last row
  3911. } else {
  3912. n_patches = n_patches_y * n_patches_x;
  3913. }
  3914. } break;
  3915. case PROJECTOR_TYPE_VOXTRAL:
  3916. case PROJECTOR_TYPE_ULTRAVOX:
  3917. case PROJECTOR_TYPE_QWEN2A:
  3918. {
  3919. n_patches = img->nx;
  3920. const int proj_stack_factor = ctx->model.hparams.proj_stack_factor;
  3921. if (ctx->model.audio_has_stack_frames()) {
  3922. GGML_ASSERT(proj_stack_factor > 0);
  3923. const int n_len = CLIP_ALIGN(n_patches, proj_stack_factor);
  3924. n_patches = n_len / proj_stack_factor;
  3925. }
  3926. // whisper downscales input token by half after conv1d
  3927. n_patches /= 2;
  3928. if (ctx->model.audio_has_avgpool()) {
  3929. // divide by 2 because of nn.AvgPool1d(2, stride=2)
  3930. n_patches /= 2;
  3931. }
  3932. } break;
  3933. case PROJECTOR_TYPE_COGVLM:
  3934. {
  3935. n_patches += 2; // for BOI and EOI token embeddings
  3936. } break;
  3937. default:
  3938. GGML_ABORT("unsupported projector type");
  3939. }
  3940. return n_patches;
  3941. }
  3942. bool clip_image_encode(struct clip_ctx * ctx, const int n_threads, clip_image_f32 * img, float * vec) {
  3943. clip_image_f32_batch imgs;
  3944. clip_image_f32_ptr img_copy(clip_image_f32_init());
  3945. *img_copy = *img;
  3946. imgs.entries.push_back(std::move(img_copy));
  3947. return clip_image_batch_encode(ctx, n_threads, &imgs, vec);
  3948. }
  3949. bool clip_image_batch_encode(clip_ctx * ctx, const int n_threads, const clip_image_f32_batch * imgs_c_ptr, float * vec) {
  3950. const clip_image_f32_batch & imgs = *imgs_c_ptr;
  3951. int batch_size = imgs.entries.size();
  3952. // TODO @ngxson : implement batch size > 1 as a loop
  3953. // we don't need true batching support because the cgraph will gonna be big anyway
  3954. if (batch_size != 1) {
  3955. return false; // only support batch size of 1
  3956. }
  3957. // build the inference graph
  3958. ctx->debug_print_tensors.clear();
  3959. ggml_backend_sched_reset(ctx->sched.get());
  3960. ggml_cgraph * gf = clip_image_build_graph(ctx, imgs);
  3961. ggml_backend_sched_alloc_graph(ctx->sched.get(), gf);
  3962. // set inputs
  3963. const auto & model = ctx->model;
  3964. const auto & hparams = model.hparams;
  3965. const int image_size_width = imgs.entries[0]->nx;
  3966. const int image_size_height = imgs.entries[0]->ny;
  3967. const int patch_size = hparams.patch_size;
  3968. const int num_patches = ((image_size_width / patch_size) * (image_size_height / patch_size));
  3969. const int n_pos = num_patches + (model.class_embedding ? 1 : 0);
  3970. const int pos_w = image_size_width / patch_size;
  3971. const int pos_h = image_size_height / patch_size;
  3972. const bool use_window_attn = hparams.n_wa_pattern > 0; // for qwen2.5vl
  3973. auto get_inp_tensor = [&gf](const char * name) {
  3974. ggml_tensor * inp = ggml_graph_get_tensor(gf, name);
  3975. if (inp == nullptr) {
  3976. GGML_ABORT("Failed to get tensor %s", name);
  3977. }
  3978. if (!(inp->flags & GGML_TENSOR_FLAG_INPUT)) {
  3979. GGML_ABORT("Tensor %s is not an input tensor", name);
  3980. }
  3981. return inp;
  3982. };
  3983. auto set_input_f32 = [&get_inp_tensor](const char * name, std::vector<float> & values) {
  3984. ggml_tensor * cur = get_inp_tensor(name);
  3985. GGML_ASSERT(cur->type == GGML_TYPE_F32);
  3986. GGML_ASSERT(ggml_nelements(cur) == (int64_t)values.size());
  3987. ggml_backend_tensor_set(cur, values.data(), 0, ggml_nbytes(cur));
  3988. };
  3989. auto set_input_i32 = [&get_inp_tensor](const char * name, std::vector<int32_t> & values) {
  3990. ggml_tensor * cur = get_inp_tensor(name);
  3991. GGML_ASSERT(cur->type == GGML_TYPE_I32);
  3992. GGML_ASSERT(ggml_nelements(cur) == (int64_t)values.size());
  3993. ggml_backend_tensor_set(cur, values.data(), 0, ggml_nbytes(cur));
  3994. };
  3995. // set input pixel values
  3996. if (!imgs.is_audio) {
  3997. size_t nelem = 0;
  3998. for (const auto & img : imgs.entries) {
  3999. nelem += img->nx * img->ny * 3;
  4000. }
  4001. std::vector<float> inp_raw(nelem);
  4002. // layout of data (note: the channel dim is unrolled to better visualize the layout):
  4003. //
  4004. // ┌──W──┐
  4005. // │ H │ channel = R
  4006. // ├─────┤ │
  4007. // │ H │ channel = G
  4008. // ├─────┤ │
  4009. // │ H │ channel = B
  4010. // └─────┘ │
  4011. // ──────┘ x B
  4012. for (size_t i = 0; i < imgs.entries.size(); i++) {
  4013. const int nx = imgs.entries[i]->nx;
  4014. const int ny = imgs.entries[i]->ny;
  4015. const int n = nx * ny;
  4016. for (int b = 0; b < batch_size; b++) {
  4017. float * batch_entry = inp_raw.data() + b * (3*n);
  4018. for (int y = 0; y < ny; y++) {
  4019. for (int x = 0; x < nx; x++) {
  4020. size_t base_src = 3*(y * nx + x); // idx of the first channel
  4021. size_t base_dst = y * nx + x; // idx of the first channel
  4022. batch_entry[ base_dst] = imgs.entries[b]->buf[base_src ];
  4023. batch_entry[1*n + base_dst] = imgs.entries[b]->buf[base_src + 1];
  4024. batch_entry[2*n + base_dst] = imgs.entries[b]->buf[base_src + 2];
  4025. }
  4026. }
  4027. }
  4028. }
  4029. set_input_f32("inp_raw", inp_raw);
  4030. } else {
  4031. // audio input
  4032. GGML_ASSERT(imgs.entries.size() == 1);
  4033. const auto & mel_inp = imgs.entries[0];
  4034. const int n_step = mel_inp->nx;
  4035. const int n_mel = mel_inp->ny;
  4036. std::vector<float> inp_raw(n_step * n_mel);
  4037. std::memcpy(inp_raw.data(), mel_inp->buf.data(), n_step * n_mel * sizeof(float));
  4038. set_input_f32("inp_raw", inp_raw);
  4039. }
  4040. // set input per projector
  4041. switch (ctx->model.proj_type) {
  4042. case PROJECTOR_TYPE_MINICPMV:
  4043. {
  4044. // inspired from siglip:
  4045. // -> https://huggingface.co/HuggingFaceM4/siglip-so400m-14-980-flash-attn2-navit
  4046. // -> https://huggingface.co/HuggingFaceM4/siglip-so400m-14-980-flash-attn2-navit/blob/d66538faeba44480d0bfaa42145eef26f9423199/modeling_siglip.py#L316
  4047. std::vector<int32_t> positions(pos_h * pos_w);
  4048. int bucket_coords_h[1024];
  4049. int bucket_coords_w[1024];
  4050. for (int i = 0; i < pos_h; i++){
  4051. bucket_coords_h[i] = std::floor(70.0*i/pos_h);
  4052. }
  4053. for (int i = 0; i < pos_w; i++){
  4054. bucket_coords_w[i] = std::floor(70.0*i/pos_w);
  4055. }
  4056. for (int i = 0, id = 0; i < pos_h; i++){
  4057. for (int j = 0; j < pos_w; j++){
  4058. positions[id++] = bucket_coords_h[i]*70 + bucket_coords_w[j];
  4059. }
  4060. }
  4061. set_input_i32("positions", positions);
  4062. // inputs for resampler projector
  4063. // set the 2D positions (using float for sinusoidal embedding)
  4064. int n_patches_per_col = image_size_width / patch_size;
  4065. std::vector<float> pos_data(n_pos);
  4066. // dimension H
  4067. for (int i = 0; i < n_pos; i++) {
  4068. pos_data[i] = static_cast<float>(i / n_patches_per_col);
  4069. }
  4070. set_input_f32("pos_h", pos_data);
  4071. // dimension W
  4072. for (int i = 0; i < n_pos; i++) {
  4073. pos_data[i] = static_cast<float>(i % n_patches_per_col);
  4074. }
  4075. set_input_f32("pos_w", pos_data);
  4076. // base frequency omega
  4077. const float base_freq = 10000.0f;
  4078. const int n_embd_proj = clip_n_mmproj_embd(ctx);
  4079. std::vector<float> omega(n_embd_proj / 4);
  4080. for (int i = 0; i < n_embd_proj / 4; ++i) {
  4081. omega[i] = 1.0f / std::pow(base_freq, static_cast<float>(i) / (n_embd_proj / 4));
  4082. }
  4083. set_input_f32("omega", omega);
  4084. } break;
  4085. case PROJECTOR_TYPE_QWEN2VL:
  4086. case PROJECTOR_TYPE_QWEN3VL:
  4087. {
  4088. const int merge_ratio = hparams.n_merge;
  4089. const int pw = image_size_width / patch_size;
  4090. const int ph = image_size_height / patch_size;
  4091. std::vector<int> positions(n_pos * 4);
  4092. int ptr = 0;
  4093. for (int y = 0; y < ph; y += merge_ratio) {
  4094. for (int x = 0; x < pw; x += merge_ratio) {
  4095. for (int dy = 0; dy < 2; dy++) {
  4096. for (int dx = 0; dx < 2; dx++) {
  4097. positions[ ptr] = y + dy;
  4098. positions[ num_patches + ptr] = x + dx;
  4099. positions[2 * num_patches + ptr] = y + dy;
  4100. positions[3 * num_patches + ptr] = x + dx;
  4101. ptr++;
  4102. }
  4103. }
  4104. }
  4105. }
  4106. set_input_i32("positions", positions);
  4107. } break;
  4108. case PROJECTOR_TYPE_QWEN25VL:
  4109. {
  4110. // pw * ph = number of tokens output by ViT after apply patch merger
  4111. // ipw * ipw = number of vision token been processed inside ViT
  4112. const int merge_ratio = 2;
  4113. const int pw = image_size_width / patch_size / merge_ratio;
  4114. const int ph = image_size_height / patch_size / merge_ratio;
  4115. const int ipw = image_size_width / patch_size;
  4116. const int iph = image_size_height / patch_size;
  4117. std::vector<int> idx (ph * pw);
  4118. std::vector<int> inv_idx(ph * pw);
  4119. if (use_window_attn) {
  4120. const int attn_window_size = 112;
  4121. const int grid_window = attn_window_size / patch_size / merge_ratio;
  4122. int dst = 0;
  4123. // [num_vision_tokens, num_vision_tokens] attention mask tensor
  4124. std::vector<float> mask(pow(ipw * iph, 2), std::numeric_limits<float>::lowest());
  4125. int mask_row = 0;
  4126. for (int y = 0; y < ph; y += grid_window) {
  4127. for (int x = 0; x < pw; x += grid_window) {
  4128. const int win_h = std::min(grid_window, ph - y);
  4129. const int win_w = std::min(grid_window, pw - x);
  4130. const int dst_0 = dst;
  4131. // group all tokens belong to the same window togather (to a continue range)
  4132. for (int dy = 0; dy < win_h; dy++) {
  4133. for (int dx = 0; dx < win_w; dx++) {
  4134. const int src = (y + dy) * pw + (x + dx);
  4135. GGML_ASSERT(src < (int)idx.size());
  4136. GGML_ASSERT(dst < (int)inv_idx.size());
  4137. idx [src] = dst;
  4138. inv_idx[dst] = src;
  4139. dst++;
  4140. }
  4141. }
  4142. for (int r=0; r < win_h * win_w * merge_ratio * merge_ratio; r++) {
  4143. int row_offset = mask_row * (ipw * iph);
  4144. std::fill(
  4145. mask.begin() + row_offset + (dst_0 * merge_ratio * merge_ratio),
  4146. mask.begin() + row_offset + (dst * merge_ratio * merge_ratio),
  4147. 0.0);
  4148. mask_row++;
  4149. }
  4150. }
  4151. }
  4152. set_input_i32("window_idx", idx);
  4153. set_input_i32("inv_window_idx", inv_idx);
  4154. set_input_f32("window_mask", mask);
  4155. } else {
  4156. for (int i = 0; i < ph * pw; i++) {
  4157. idx[i] = i;
  4158. }
  4159. }
  4160. const int mpow = merge_ratio * merge_ratio;
  4161. std::vector<int> positions(n_pos * 4);
  4162. int ptr = 0;
  4163. for (int y = 0; y < iph; y += merge_ratio) {
  4164. for (int x = 0; x < ipw; x += merge_ratio) {
  4165. for (int dy = 0; dy < 2; dy++) {
  4166. for (int dx = 0; dx < 2; dx++) {
  4167. auto remap = idx[ptr / mpow];
  4168. remap = (remap * mpow) + (ptr % mpow);
  4169. positions[ remap] = y + dy;
  4170. positions[ num_patches + remap] = x + dx;
  4171. positions[2 * num_patches + remap] = y + dy;
  4172. positions[3 * num_patches + remap] = x + dx;
  4173. ptr++;
  4174. }
  4175. }
  4176. }
  4177. }
  4178. set_input_i32("positions", positions);
  4179. } break;
  4180. case PROJECTOR_TYPE_PIXTRAL:
  4181. case PROJECTOR_TYPE_KIMIVL:
  4182. case PROJECTOR_TYPE_LIGHTONOCR:
  4183. {
  4184. // set the 2D positions
  4185. int n_patches_per_col = image_size_width / patch_size;
  4186. std::vector<int> pos_data(n_pos);
  4187. // dimension H
  4188. for (int i = 0; i < n_pos; i++) {
  4189. pos_data[i] = i / n_patches_per_col;
  4190. }
  4191. set_input_i32("pos_h", pos_data);
  4192. // dimension W
  4193. for (int i = 0; i < n_pos; i++) {
  4194. pos_data[i] = i % n_patches_per_col;
  4195. }
  4196. set_input_i32("pos_w", pos_data);
  4197. } break;
  4198. case PROJECTOR_TYPE_GLM_EDGE:
  4199. {
  4200. // llava and other models
  4201. std::vector<int32_t> positions(n_pos);
  4202. for (int i = 0; i < n_pos; i++) {
  4203. positions[i] = i;
  4204. }
  4205. set_input_i32("positions", positions);
  4206. } break;
  4207. case PROJECTOR_TYPE_MLP:
  4208. case PROJECTOR_TYPE_MLP_NORM:
  4209. case PROJECTOR_TYPE_LDP:
  4210. case PROJECTOR_TYPE_LDPV2:
  4211. {
  4212. // llava and other models
  4213. std::vector<int32_t> positions(n_pos);
  4214. for (int i = 0; i < n_pos; i++) {
  4215. positions[i] = i;
  4216. }
  4217. set_input_i32("positions", positions);
  4218. // The patches vector is used to get rows to index into the embeds with;
  4219. // we should skip dim 0 only if we have CLS to avoid going out of bounds
  4220. // when retrieving the rows.
  4221. int patch_offset = model.class_embedding ? 1 : 0;
  4222. std::vector<int32_t> patches(num_patches);
  4223. for (int i = 0; i < num_patches; i++) {
  4224. patches[i] = i + patch_offset;
  4225. }
  4226. set_input_i32("patches", patches);
  4227. } break;
  4228. case PROJECTOR_TYPE_GEMMA3:
  4229. case PROJECTOR_TYPE_IDEFICS3:
  4230. case PROJECTOR_TYPE_INTERNVL:
  4231. case PROJECTOR_TYPE_QWEN2A:
  4232. case PROJECTOR_TYPE_ULTRAVOX:
  4233. case PROJECTOR_TYPE_LFM2:
  4234. case PROJECTOR_TYPE_VOXTRAL:
  4235. case PROJECTOR_TYPE_JANUS_PRO:
  4236. case PROJECTOR_TYPE_COGVLM:
  4237. {
  4238. // do nothing
  4239. } break;
  4240. case PROJECTOR_TYPE_LLAMA4:
  4241. {
  4242. // set the 2D positions
  4243. int n_patches_per_col = image_size_width / patch_size;
  4244. std::vector<int> pos_data(num_patches + 1, 0); // +1 for the [CLS] token
  4245. // last pos is always kept 0, it's for CLS
  4246. // dimension H
  4247. for (int i = 0; i < num_patches; i++) {
  4248. pos_data[i] = (i / n_patches_per_col) + 1;
  4249. }
  4250. set_input_i32("pos_h", pos_data);
  4251. // dimension W
  4252. for (int i = 0; i < num_patches; i++) {
  4253. pos_data[i] = (i % n_patches_per_col) + 1;
  4254. }
  4255. set_input_i32("pos_w", pos_data);
  4256. } break;
  4257. default:
  4258. GGML_ABORT("Unknown projector type");
  4259. }
  4260. // ggml_backend_cpu_set_n_threads(ctx->backend_cpu, n_threads);
  4261. ggml_backend_dev_t dev = ggml_backend_get_device(ctx->backend_cpu);
  4262. ggml_backend_reg_t reg = dev ? ggml_backend_dev_backend_reg(dev) : nullptr;
  4263. if (reg) {
  4264. auto ggml_backend_set_n_threads_fn = (ggml_backend_set_n_threads_t) ggml_backend_reg_get_proc_address(reg, "ggml_backend_set_n_threads");
  4265. if (ggml_backend_set_n_threads_fn) {
  4266. ggml_backend_set_n_threads_fn(ctx->backend_cpu, n_threads);
  4267. }
  4268. }
  4269. auto status = ggml_backend_sched_graph_compute(ctx->sched.get(), gf);
  4270. if (status != GGML_STATUS_SUCCESS) {
  4271. LOG_ERR("%s: ggml_backend_sched_graph_compute failed with error %d\n", __func__, status);
  4272. return false;
  4273. }
  4274. // print debug nodes
  4275. if (ctx->debug_graph) {
  4276. LOG_INF("\n\n---\n\n");
  4277. LOG_INF("\n\nDebug graph:\n\n");
  4278. for (ggml_tensor * t : ctx->debug_print_tensors) {
  4279. std::vector<uint8_t> data(ggml_nbytes(t));
  4280. ggml_backend_tensor_get(t, data.data(), 0, ggml_nbytes(t));
  4281. print_tensor_shape(t);
  4282. print_tensor_data(t, data.data(), 3);
  4283. }
  4284. }
  4285. // the last node is the embedding tensor
  4286. ggml_tensor * embeddings = ggml_graph_node(gf, -1);
  4287. // sanity check (only support batch size of 1 for now)
  4288. const int n_tokens_out = embeddings->ne[1];
  4289. const int expected_n_tokens_out = clip_n_output_tokens(ctx, imgs.entries[0].get());
  4290. if (n_tokens_out != expected_n_tokens_out) {
  4291. LOG_ERR("%s: expected output %d tokens, got %d\n", __func__, expected_n_tokens_out, n_tokens_out);
  4292. GGML_ABORT("Invalid number of output tokens");
  4293. }
  4294. // copy the embeddings to the location passed by the user
  4295. ggml_backend_tensor_get(embeddings, vec, 0, ggml_nbytes(embeddings));
  4296. return true;
  4297. }
  4298. int clip_n_mmproj_embd(const struct clip_ctx * ctx) {
  4299. switch (ctx->model.proj_type) {
  4300. case PROJECTOR_TYPE_LDP:
  4301. return ctx->model.mm_model_block_1_block_2_1_b->ne[0];
  4302. case PROJECTOR_TYPE_LDPV2:
  4303. return ctx->model.mm_model_peg_0_b->ne[0];
  4304. case PROJECTOR_TYPE_MLP:
  4305. case PROJECTOR_TYPE_PIXTRAL:
  4306. case PROJECTOR_TYPE_LIGHTONOCR:
  4307. return ctx->model.mm_2_w->ne[1];
  4308. case PROJECTOR_TYPE_MLP_NORM:
  4309. return ctx->model.mm_3_b->ne[0];
  4310. case PROJECTOR_TYPE_MINICPMV:
  4311. return ctx->model.mm_model_proj->ne[0];
  4312. case PROJECTOR_TYPE_GLM_EDGE:
  4313. return ctx->model.mm_model_mlp_3_w->ne[1];
  4314. case PROJECTOR_TYPE_QWEN2VL:
  4315. case PROJECTOR_TYPE_QWEN25VL:
  4316. case PROJECTOR_TYPE_JANUS_PRO:
  4317. return ctx->model.mm_1_b->ne[0];
  4318. case PROJECTOR_TYPE_QWEN3VL:
  4319. // main path + deepstack paths
  4320. return ctx->model.mm_1_b->ne[0] * (1 + ctx->model.n_deepstack_layers);
  4321. case PROJECTOR_TYPE_GEMMA3:
  4322. return ctx->model.mm_input_proj_w->ne[0];
  4323. case PROJECTOR_TYPE_IDEFICS3:
  4324. return ctx->model.projection->ne[1];
  4325. case PROJECTOR_TYPE_ULTRAVOX:
  4326. case PROJECTOR_TYPE_VOXTRAL:
  4327. return ctx->model.mm_2_w->ne[1];
  4328. case PROJECTOR_TYPE_INTERNVL:
  4329. return ctx->model.mm_3_w->ne[1];
  4330. case PROJECTOR_TYPE_LLAMA4:
  4331. return ctx->model.mm_model_proj->ne[1];
  4332. case PROJECTOR_TYPE_QWEN2A:
  4333. return ctx->model.mm_fc_w->ne[1];
  4334. case PROJECTOR_TYPE_LFM2:
  4335. case PROJECTOR_TYPE_KIMIVL:
  4336. return ctx->model.mm_2_w->ne[1];
  4337. case PROJECTOR_TYPE_COGVLM:
  4338. return ctx->model.mm_4h_to_h_w->ne[1];
  4339. default:
  4340. GGML_ABORT("Unknown projector type");
  4341. }
  4342. }
  4343. int clip_is_minicpmv(const struct clip_ctx * ctx) {
  4344. if (ctx->proj_type() == PROJECTOR_TYPE_MINICPMV) {
  4345. return ctx->model.hparams.minicpmv_version;
  4346. }
  4347. return 0;
  4348. }
  4349. bool clip_is_glm(const struct clip_ctx * ctx) {
  4350. return ctx->proj_type() == PROJECTOR_TYPE_GLM_EDGE;
  4351. }
  4352. bool clip_is_qwen2vl(const struct clip_ctx * ctx) {
  4353. return ctx->proj_type() == PROJECTOR_TYPE_QWEN2VL
  4354. || ctx->proj_type() == PROJECTOR_TYPE_QWEN25VL
  4355. || ctx->proj_type() == PROJECTOR_TYPE_QWEN3VL;
  4356. }
  4357. bool clip_is_llava(const struct clip_ctx * ctx) {
  4358. return ctx->model.hparams.has_llava_projector;
  4359. }
  4360. bool clip_is_gemma3(const struct clip_ctx * ctx) {
  4361. return ctx->proj_type() == PROJECTOR_TYPE_GEMMA3;
  4362. }
  4363. bool clip_has_vision_encoder(const struct clip_ctx * ctx) {
  4364. return ctx->model.modality == CLIP_MODALITY_VISION;
  4365. }
  4366. bool clip_has_audio_encoder(const struct clip_ctx * ctx) {
  4367. return ctx->model.modality == CLIP_MODALITY_AUDIO;
  4368. }
  4369. bool clip_has_whisper_encoder(const struct clip_ctx * ctx) {
  4370. return ctx->proj_type() == PROJECTOR_TYPE_ULTRAVOX
  4371. || ctx->proj_type() == PROJECTOR_TYPE_QWEN2A
  4372. || ctx->proj_type() == PROJECTOR_TYPE_VOXTRAL;
  4373. }
  4374. bool clip_encode_float_image (struct clip_ctx * ctx, int n_threads, float * img, int h, int w, float * vec) {
  4375. clip_image_f32 clip_img;
  4376. clip_img.buf.resize(h * w * 3);
  4377. for (int i = 0; i < h*w*3; i++)
  4378. {
  4379. clip_img.buf[i] = img[i];
  4380. }
  4381. clip_img.nx = w;
  4382. clip_img.ny = h;
  4383. clip_image_encode(ctx, n_threads, &clip_img, vec);
  4384. return true;
  4385. }
  4386. //
  4387. // API used internally with mtmd
  4388. //
  4389. projector_type clip_get_projector_type(const struct clip_ctx * ctx) {
  4390. return ctx->proj_type();
  4391. }
  4392. void clip_image_f32_batch_add_mel(struct clip_image_f32_batch * batch, int n_mel, int n_frames, float * mel) {
  4393. clip_image_f32 * audio = new clip_image_f32;
  4394. audio->nx = n_frames;
  4395. audio->ny = n_mel;
  4396. audio->buf.resize(n_frames * n_mel);
  4397. std::memcpy(audio->buf.data(), mel, n_frames * n_mel * sizeof(float));
  4398. batch->entries.push_back(clip_image_f32_ptr(audio));
  4399. batch->is_audio = true;
  4400. }