| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636 |
- #include "server-context.h"
- #include "server-common.h"
- #include "server-http.h"
- #include "server-task.h"
- #include "server-queue.h"
- #include "arg.h"
- #include "common.h"
- #include "llama.h"
- #include "log.h"
- #include "sampling.h"
- #include "speculative.h"
- #include "mtmd.h"
- #include "mtmd-helper.h"
- #include <cstddef>
- #include <cinttypes>
- #include <memory>
- #include <unordered_set>
- #include <filesystem>
- // fix problem with std::min and std::max
- #if defined(_WIN32)
- #define WIN32_LEAN_AND_MEAN
- #ifndef NOMINMAX
- # define NOMINMAX
- #endif
- #include <windows.h>
- #endif
- using json = nlohmann::ordered_json;
- constexpr int HTTP_POLLING_SECONDS = 1;
- // state diagram: https://github.com/ggml-org/llama.cpp/pull/9283
- enum slot_state {
- SLOT_STATE_IDLE,
- SLOT_STATE_STARTED, // TODO: this state is only used for setting up the initial prompt processing; maybe merge it with launch_slot_with_task in the future
- SLOT_STATE_PROCESSING_PROMPT,
- SLOT_STATE_DONE_PROMPT,
- SLOT_STATE_GENERATING,
- };
- enum server_state {
- SERVER_STATE_LOADING_MODEL, // Server is starting up, model not fully loaded yet
- SERVER_STATE_READY, // Server is ready and model is loaded
- };
- static bool server_task_type_need_embd(server_task_type task_type) {
- switch (task_type) {
- case SERVER_TASK_TYPE_EMBEDDING:
- case SERVER_TASK_TYPE_RERANK:
- return true;
- default:
- return false;
- }
- }
- static bool server_task_type_need_logits(server_task_type task_type) {
- switch (task_type) {
- case SERVER_TASK_TYPE_COMPLETION:
- case SERVER_TASK_TYPE_INFILL:
- return true;
- default:
- return false;
- }
- }
- struct server_slot {
- int id;
- llama_batch batch_spec = {};
- // TODO: change to unique_ptrs for consistency:
- llama_context * ctx = nullptr;
- llama_context * ctx_dft = nullptr;
- // multimodal
- mtmd_context * mctx = nullptr;
- common_speculative * spec = nullptr;
- std::unique_ptr<const server_task> task;
- std::unique_ptr<const server_task> task_prev; // used for debugging
- // used to determine the slot that has been used the longest
- int64_t t_last_used = -1;
- // generation props
- int32_t n_ctx = 0; // context size per slot
- int32_t n_keep = 0;
- int32_t n_decoded = 0;
- int32_t n_remaining = -1;
- int32_t i_batch = -1;
- int32_t n_prompt_tokens_cache = 0;
- int32_t n_prompt_tokens_processed = 0;
- size_t last_nl_pos = 0;
- std::string generated_text;
- llama_tokens generated_tokens;
- common_chat_msg chat_msg;
- std::vector<completion_token_output> generated_token_probs;
- bool has_next_token = true;
- bool has_new_line = false;
- bool truncated = false;
- stop_type stop;
- std::string stopping_word;
- // state
- slot_state state = SLOT_STATE_IDLE;
- server_prompt prompt;
- void prompt_save(server_prompt_cache & prompt_cache) const {
- GGML_ASSERT(prompt.data.size() == 0);
- const size_t cur_size = llama_state_seq_get_size_ext(ctx, id, 0);
- SRV_WRN(" - saving prompt with length %d, total state size = %.3f MiB\n",
- (int) prompt.tokens.size(), cur_size / (1024.0 * 1024.0));
- auto * cur = prompt_cache.alloc(prompt, cur_size);
- if (cur == nullptr) {
- return;
- }
- llama_state_seq_get_data_ext(ctx, cur->data.data(), cur_size, id, 0);
- }
- bool prompt_load(server_prompt_cache & prompt_cache, const server_tokens & tokens) {
- bool res = prompt_cache.load(prompt, tokens, ctx, id);
- if (!res) {
- SLT_WRN(*this, "%s", "failed to load prompt from cache\n");
- }
- return res;
- }
- std::vector<common_adapter_lora_info> lora;
- int32_t alora_invocation_start = -1;
- // sampling
- json json_schema;
- struct common_sampler * smpl = nullptr;
- llama_token sampled;
- common_chat_format chat_format = COMMON_CHAT_FORMAT_CONTENT_ONLY;
- std::vector<std::string> generated_tool_call_ids;
- // stats
- size_t n_sent_text = 0; // number of sent text character
- int64_t t_start_process_prompt;
- int64_t t_start_generation;
- double t_prompt_processing; // ms
- double t_token_generation; // ms
- std::function<void(int)> callback_on_release;
- // Speculative decoding stats
- int32_t n_draft_total = 0; // Total draft tokens generated
- int32_t n_draft_accepted = 0; // Draft tokens actually accepted
- void reset() {
- SLT_DBG(*this, "%s", "\n");
- n_prompt_tokens_cache = 0;
- last_nl_pos = 0;
- generated_text = "";
- has_new_line = false;
- truncated = false;
- stop = STOP_TYPE_NONE;
- stopping_word = "";
- n_sent_text = 0;
- chat_format = COMMON_CHAT_FORMAT_CONTENT_ONLY;
- generated_tokens.clear();
- generated_token_probs.clear();
- chat_msg = {};
- json_schema = json();
- generated_tool_call_ids.clear();
- // clear speculative decoding stats
- n_draft_total = 0;
- n_draft_accepted = 0;
- task.reset();
- task_prev.reset();
- // clear alora start
- alora_invocation_start = -1;
- }
- bool need_embd() const {
- GGML_ASSERT(task);
- return server_task_type_need_embd(task->type);
- }
- bool need_logits() const {
- GGML_ASSERT(task);
- return server_task_type_need_logits(task->type);
- }
- // if the context does not have a memory module then all embeddings have to be computed within a single ubatch
- // also we cannot split if the pooling would require any past tokens
- bool can_split() const {
- return
- !need_embd() ||
- (llama_get_memory(ctx) && llama_pooling_type(ctx) == LLAMA_POOLING_TYPE_LAST);
- }
- bool can_batch_with(server_slot & other_slot) const {
- GGML_ASSERT(task);
- return task->type == other_slot.task->type && are_lora_equal(lora, other_slot.lora);
- }
- bool has_budget(const common_params & global_params) {
- GGML_ASSERT(task);
- if (task->params.n_predict == -1 && global_params.n_predict == -1) {
- return true; // limitless
- }
- n_remaining = -1;
- if (task->params.n_predict != -1) {
- n_remaining = task->params.n_predict - n_decoded;
- } else if (global_params.n_predict != -1) {
- n_remaining = global_params.n_predict - n_decoded;
- }
- return n_remaining > 0; // no budget
- }
- bool is_processing() const {
- return state != SLOT_STATE_IDLE;
- }
- bool can_speculate() const {
- return ctx_dft;
- }
- void add_token(const completion_token_output & token) {
- if (!is_processing()) {
- SLT_WRN(*this, "%s", "slot is not processing\n");
- return;
- }
- generated_token_probs.push_back(token);
- }
- void release() {
- if (is_processing()) {
- GGML_ASSERT(task);
- SLT_INF(*this, "stop processing: n_tokens = %d, truncated = %d\n", prompt.n_tokens(), truncated);
- t_last_used = ggml_time_us();
- t_token_generation = (ggml_time_us() - t_start_generation) / 1e3;
- state = SLOT_STATE_IDLE;
- task_prev = std::move(task);
- task.reset();
- callback_on_release(id);
- }
- }
- result_timings get_timings() const {
- result_timings timings;
- timings.cache_n = n_prompt_tokens_cache;
- timings.prompt_n = n_prompt_tokens_processed;
- timings.prompt_ms = t_prompt_processing;
- timings.prompt_per_token_ms = t_prompt_processing / n_prompt_tokens_processed;
- timings.prompt_per_second = 1e3 / t_prompt_processing * n_prompt_tokens_processed;
- timings.predicted_n = n_decoded;
- timings.predicted_ms = t_token_generation;
- timings.predicted_per_token_ms = t_token_generation / n_decoded;
- timings.predicted_per_second = 1e3 / t_token_generation * n_decoded;
- // Add speculative metrics
- if (n_draft_total > 0) {
- timings.draft_n = n_draft_total;
- timings.draft_n_accepted = n_draft_accepted;
- }
- return timings;
- }
- const common_chat_msg & update_chat_msg(std::vector<common_chat_msg_diff> & diffs) {
- GGML_ASSERT(task);
- auto previous_msg = chat_msg;
- SRV_DBG("Parsing chat message: %s\n", generated_text.c_str());
- auto new_msg = common_chat_parse(
- generated_text,
- /* is_partial= */ stop != STOP_TYPE_EOS,
- task->params.oaicompat_chat_syntax);
- if (!new_msg.empty()) {
- new_msg.set_tool_call_ids(generated_tool_call_ids, gen_tool_call_id);
- chat_msg = new_msg;
- diffs = common_chat_msg_diff::compute_diffs(previous_msg, new_msg.empty() ? previous_msg : new_msg);
- }
- return chat_msg;
- }
- size_t find_stopping_strings(const std::string & text, const size_t last_token_size, bool is_full_stop) {
- GGML_ASSERT(task);
- size_t stop_pos = std::string::npos;
- for (const std::string & word : task->params.antiprompt) {
- size_t pos;
- if (is_full_stop) {
- const size_t tmp = word.size() + last_token_size;
- const size_t from_pos = text.size() > tmp ? text.size() - tmp : 0;
- pos = text.find(word, from_pos);
- } else {
- // otherwise, partial stop
- pos = string_find_partial_stop(text, word);
- }
- if (pos != std::string::npos && (stop_pos == std::string::npos || pos < stop_pos)) {
- if (is_full_stop) {
- stop = STOP_TYPE_WORD;
- stopping_word = word;
- has_next_token = false;
- }
- stop_pos = pos;
- }
- }
- return stop_pos;
- }
- void print_timings() const {
- const double t_prompt = t_prompt_processing / n_prompt_tokens_processed;
- const double n_prompt_second = 1e3 / t_prompt_processing * n_prompt_tokens_processed;
- const double t_gen = t_token_generation / n_decoded;
- const double n_gen_second = 1e3 / t_token_generation * n_decoded;
- SLT_INF(*this,
- "\n"
- "prompt eval time = %10.2f ms / %5d tokens (%8.2f ms per token, %8.2f tokens per second)\n"
- " eval time = %10.2f ms / %5d tokens (%8.2f ms per token, %8.2f tokens per second)\n"
- " total time = %10.2f ms / %5d tokens\n",
- t_prompt_processing, n_prompt_tokens_processed, t_prompt, n_prompt_second,
- t_token_generation, n_decoded, t_gen, n_gen_second,
- t_prompt_processing + t_token_generation, n_prompt_tokens_processed + n_decoded);
- if (n_draft_total > 0) {
- const float draft_ratio = (float) n_draft_accepted / n_draft_total;
- SLT_INF(*this,
- "\n"
- "draft acceptance rate = %0.5f (%5d accepted / %5d generated)\n",
- draft_ratio, n_draft_accepted, n_draft_total
- );
- }
- }
- json to_json(bool only_metrics = false) const {
- json res;
- res = {
- {"id", id},
- {"n_ctx", n_ctx},
- {"speculative", can_speculate()},
- {"is_processing", is_processing()},
- };
- const auto & ptask = task ? task : task_prev;
- if (ptask) {
- res["id_task"] = ptask->id;
- res["params"] = ptask->params.to_json(only_metrics);
- res["next_token"] = {
- {
- {"has_next_token", has_next_token},
- {"has_new_line", has_new_line},
- {"n_remain", n_remaining},
- {"n_decoded", n_decoded},
- }
- };
- if (!only_metrics) {
- res["prompt"] = ptask->tokens.detokenize(ctx, true);
- res["generated"] = generated_text;
- }
- }
- return res;
- }
- };
- //
- // server_metrics
- //
- struct server_metrics {
- int64_t t_start = 0;
- uint64_t n_prompt_tokens_processed_total = 0;
- uint64_t t_prompt_processing_total = 0;
- uint64_t n_tokens_predicted_total = 0;
- uint64_t t_tokens_generation_total = 0;
- uint64_t n_tokens_max = 0;
- uint64_t n_prompt_tokens_processed = 0;
- uint64_t t_prompt_processing = 0;
- uint64_t n_tokens_predicted = 0;
- uint64_t t_tokens_generation = 0;
- uint64_t n_decode_total = 0;
- uint64_t n_busy_slots_total = 0;
- void init() {
- t_start = ggml_time_us();
- }
- void on_prompt_eval(const server_slot & slot) {
- n_prompt_tokens_processed_total += slot.n_prompt_tokens_processed;
- n_prompt_tokens_processed += slot.n_prompt_tokens_processed;
- t_prompt_processing += slot.t_prompt_processing;
- t_prompt_processing_total += slot.t_prompt_processing;
- n_tokens_max = std::max(n_tokens_max, (uint64_t) slot.prompt.n_tokens());
- }
- void on_prediction(const server_slot & slot) {
- n_tokens_predicted_total += slot.n_decoded;
- n_tokens_predicted += slot.n_decoded;
- t_tokens_generation += slot.t_token_generation;
- t_tokens_generation_total += slot.t_token_generation;
- }
- void on_decoded(const std::vector<server_slot> & slots) {
- n_decode_total++;
- for (const auto & slot : slots) {
- if (slot.is_processing()) {
- n_busy_slots_total++;
- }
- n_tokens_max = std::max(n_tokens_max, (uint64_t) slot.prompt.n_tokens());
- }
- }
- void reset_bucket() {
- n_prompt_tokens_processed = 0;
- t_prompt_processing = 0;
- n_tokens_predicted = 0;
- t_tokens_generation = 0;
- }
- };
- //
- // server_context_impl (private implementation)
- //
- struct server_context_impl {
- common_params params_base;
- // note: keep these alive - they determine the lifetime of the model, context, etc.
- common_init_result llama_init;
- common_init_result llama_init_dft;
- llama_model * model = nullptr;
- llama_context * ctx = nullptr;
- // multimodal
- mtmd_context * mctx = nullptr;
- const llama_vocab * vocab = nullptr;
- bool vocab_dft_compatible = true;
- llama_model * model_dft = nullptr;
- llama_context_params cparams_dft;
- llama_batch batch {};
- bool add_bos_token = true;
- int32_t n_ctx; // total context for all clients / slots
- // slots / clients
- std::vector<server_slot> slots;
- int slots_debug = 0;
- server_queue queue_tasks;
- server_response queue_results;
- std::unique_ptr<server_prompt_cache> prompt_cache;
- server_metrics metrics;
- // Necessary similarity of prompt for slot selection
- float slot_prompt_similarity = 0.0f;
- std::string model_name; // name of the loaded model, to be used by API
- common_chat_templates_ptr chat_templates;
- oaicompat_parser_options oai_parser_opt;
- ~server_context_impl() {
- mtmd_free(mctx);
- // Clear any sampling context
- for (server_slot & slot : slots) {
- common_sampler_free(slot.smpl);
- slot.smpl = nullptr;
- llama_free(slot.ctx_dft);
- slot.ctx_dft = nullptr;
- common_speculative_free(slot.spec);
- slot.spec = nullptr;
- llama_batch_free(slot.batch_spec);
- }
- llama_batch_free(batch);
- }
- // load the model and initialize llama_context
- bool load_model(const common_params & params) {
- SRV_INF("loading model '%s'\n", params.model.path.c_str());
- params_base = params;
- llama_init = common_init_from_params(params_base);
- model = llama_init.model.get();
- ctx = llama_init.context.get();
- if (model == nullptr) {
- SRV_ERR("failed to load model, '%s'\n", params_base.model.path.c_str());
- return false;
- }
- vocab = llama_model_get_vocab(model);
- n_ctx = llama_n_ctx(ctx);
- add_bos_token = llama_vocab_get_add_bos(vocab);
- if (params_base.has_speculative()) {
- SRV_INF("loading draft model '%s'\n", params_base.speculative.model.path.c_str());
- auto params_dft = params_base;
- params_dft.devices = params_base.speculative.devices;
- params_dft.model = params_base.speculative.model;
- params_dft.n_ctx = params_base.speculative.n_ctx == 0 ? llama_n_ctx_seq(ctx) : params_base.speculative.n_ctx;
- params_dft.n_gpu_layers = params_base.speculative.n_gpu_layers;
- params_dft.n_parallel = 1;
- params_dft.cache_type_k = params_base.speculative.cache_type_k;
- params_dft.cache_type_v = params_base.speculative.cache_type_v;
- params_dft.cpuparams.n_threads = params_base.speculative.cpuparams.n_threads;
- params_dft.cpuparams_batch.n_threads = params_base.speculative.cpuparams_batch.n_threads;
- params_dft.tensor_buft_overrides = params_base.speculative.tensor_buft_overrides;
- llama_init_dft = common_init_from_params(params_dft);
- model_dft = llama_init_dft.model.get();
- if (model_dft == nullptr) {
- SRV_ERR("failed to load draft model, '%s'\n", params_base.speculative.model.path.c_str());
- return false;
- }
- vocab_dft_compatible = common_speculative_are_compatible(ctx, llama_init_dft.context.get());
- if (!vocab_dft_compatible) {
- SRV_INF("the draft model '%s' is not compatible with the target model '%s'. tokens will be translated between the draft and target models.\n", params_base.speculative.model.path.c_str(), params_base.model.path.c_str());
- }
- const int n_ctx_dft = llama_n_ctx(llama_init_dft.context.get());
- cparams_dft = common_context_params_to_llama(params_dft);
- cparams_dft.n_batch = n_ctx_dft;
- // the context is not needed - we will create one for each slot
- llama_init_dft.context.reset();
- }
- chat_templates = common_chat_templates_init(model, params_base.chat_template);
- try {
- common_chat_format_example(chat_templates.get(), params.use_jinja, params.default_template_kwargs);
- } catch (const std::exception & e) {
- SRV_WRN("%s: Chat template parsing error: %s\n", __func__, e.what());
- SRV_WRN("%s: The chat template that comes with this model is not yet supported, falling back to chatml. This may cause the model to output suboptimal responses\n", __func__);
- chat_templates = common_chat_templates_init(model, "chatml");
- }
- std::string & mmproj_path = params_base.mmproj.path;
- if (!mmproj_path.empty()) {
- mtmd_helper_log_set(common_log_default_callback, nullptr);
- mtmd_context_params mparams = mtmd_context_params_default();
- mparams.use_gpu = params_base.mmproj_use_gpu;
- mparams.print_timings = false;
- mparams.n_threads = params_base.cpuparams.n_threads;
- mparams.flash_attn_type = params_base.flash_attn_type;
- mparams.warmup = params_base.warmup;
- mparams.image_min_tokens = params_base.image_min_tokens;
- mparams.image_max_tokens = params_base.image_max_tokens;
- mctx = mtmd_init_from_file(mmproj_path.c_str(), model, mparams);
- if (mctx == nullptr) {
- SRV_ERR("failed to load multimodal model, '%s'\n", mmproj_path.c_str());
- return false;
- }
- SRV_INF("loaded multimodal model, '%s'\n", mmproj_path.c_str());
- if (params_base.ctx_shift) {
- params_base.ctx_shift = false;
- SRV_WRN("%s\n", "ctx_shift is not supported by multimodal, it will be disabled");
- }
- if (params_base.n_cache_reuse) {
- params_base.n_cache_reuse = 0;
- SRV_WRN("%s\n", "cache_reuse is not supported by multimodal, it will be disabled");
- }
- if (params_base.has_speculative()) {
- SRV_ERR("%s\n", "err: speculative decode is not supported by multimodal");
- return false;
- }
- }
- if (!llama_memory_can_shift(llama_get_memory(ctx))) {
- if (params_base.ctx_shift) {
- params_base.ctx_shift = false;
- SRV_WRN("%s\n", "ctx_shift is not supported by this context, it will be disabled");
- }
- if (params_base.n_cache_reuse) {
- params_base.n_cache_reuse = 0;
- SRV_WRN("%s\n", "cache_reuse is not supported by this context, it will be disabled");
- }
- }
- return true;
- }
- // initialize slots and server-related data
- void init() {
- // wiring up server queues
- queue_tasks.on_new_task([this](server_task && task) {
- process_single_task(std::move(task));
- });
- queue_tasks.on_update_slots([this]() {
- update_slots();
- });
- // Necessary similarity of prompt for slot selection
- slot_prompt_similarity = params_base.slot_prompt_similarity;
- // setup slots
- SRV_INF("initializing slots, n_slots = %d\n", params_base.n_parallel);
- const int n_ctx_train = llama_model_n_ctx_train(model);
- int n_ctx_slot = llama_n_ctx_seq(ctx);
- if (n_ctx_slot > n_ctx_train) {
- SRV_WRN("the slot context (%d) exceeds the training context of the model (%d) - capping\n", n_ctx_slot, n_ctx_train);
- n_ctx_slot = n_ctx_train;
- }
- for (int i = 0; i < params_base.n_parallel; i++) {
- server_slot slot;
- slot.id = i;
- slot.ctx = ctx;
- slot.n_ctx = n_ctx_slot;
- slot.mctx = mctx;
- slot.prompt.tokens.has_mtmd = mctx != nullptr;
- if (model_dft) {
- slot.batch_spec = llama_batch_init(params_base.speculative.n_max + 1, 0, 1);
- // TODO: rework speculative decoding [TAG_SERVER_SPEC_REWORK]
- slot.ctx_dft = llama_init_from_model(model_dft, cparams_dft);
- if (slot.ctx_dft == nullptr) {
- SRV_ERR("%s", "failed to create draft context\n");
- return;
- }
- slot.spec = common_speculative_init(slot.ctx, slot.ctx_dft);
- if (slot.spec == nullptr) {
- SRV_ERR("%s", "failed to create speculator\n");
- return;
- }
- for (auto & pair : params_base.speculative.replacements) {
- common_speculative_add_replacement_tgt_dft(slot.spec, pair.first.c_str(), pair.second.c_str());
- }
- }
- SLT_INF(slot, "new slot, n_ctx = %d\n", slot.n_ctx);
- slot.callback_on_release = [this](int) {
- queue_tasks.pop_deferred_task();
- };
- slot.reset();
- slots.push_back(std::move(slot));
- }
- {
- const char * LLAMA_SERVER_SLOTS_DEBUG = getenv("LLAMA_SERVER_SLOTS_DEBUG");
- slots_debug = LLAMA_SERVER_SLOTS_DEBUG ? atoi(LLAMA_SERVER_SLOTS_DEBUG) : 0;
- if (slots_debug) {
- SRV_WRN("slots debug = %d\n", slots_debug);
- }
- }
- // the update_slots() logic will always submit a maximum of n_batch or n_parallel tokens
- // note that n_batch can be > n_ctx (e.g. for non-causal attention models such as BERT where the KV cache is not used)
- {
- const int32_t n_batch = llama_n_batch(ctx);
- batch = llama_batch_init(std::max(n_batch, params_base.n_parallel), 0, 1);
- }
- metrics.init();
- if (params_base.cache_ram_mib != 0) {
- if (params_base.cache_ram_mib < 0) {
- SRV_WRN("prompt cache is enabled, size limit: %s\n", "no limit");
- } else {
- SRV_WRN("prompt cache is enabled, size limit: %d MiB\n", params_base.cache_ram_mib);
- }
- SRV_WRN("%s", "use `--cache-ram 0` to disable the prompt cache\n");
- prompt_cache = std::make_unique<server_prompt_cache>(params_base.cache_ram_mib, n_ctx);
- } else {
- SRV_WRN("%s", "prompt cache is disabled - use `--cache-ram N` to enable it\n");
- }
- SRV_WRN("%s", "for more info see https://github.com/ggml-org/llama.cpp/pull/16391\n");
- if (!params_base.model_alias.empty()) {
- // user explicitly specified model name
- model_name = params_base.model_alias;
- } else if (!params_base.model.name.empty()) {
- // use model name in registry format (for models in cache)
- model_name = params_base.model.name;
- } else {
- // fallback: derive model name from file name
- auto model_path = std::filesystem::path(params_base.model.path);
- model_name = model_path.filename().string();
- }
- // thinking is enabled if:
- // 1. It's not explicitly disabled (reasoning_budget == 0)
- // 2. The chat template supports it
- const bool enable_thinking = params_base.use_jinja && params_base.reasoning_budget != 0 && common_chat_templates_support_enable_thinking(chat_templates.get());
- SRV_INF("thinking = %d\n", enable_thinking);
- oai_parser_opt = {
- /* use_jinja */ params_base.use_jinja,
- /* prefill_assistant */ params_base.prefill_assistant,
- /* reasoning_format */ params_base.reasoning_format,
- /* chat_template_kwargs */ params_base.default_template_kwargs,
- /* common_chat_templates */ chat_templates.get(),
- /* allow_image */ mctx ? mtmd_support_vision(mctx) : false,
- /* allow_audio */ mctx ? mtmd_support_audio (mctx) : false,
- /* enable_thinking */ enable_thinking,
- };
- // print sample chat example to make it clear which template is used
- LOG_INF("%s: chat template, chat_template: %s, example_format: '%s'\n", __func__,
- common_chat_templates_source(chat_templates.get()),
- common_chat_format_example(chat_templates.get(), params_base.use_jinja, params_base.default_template_kwargs).c_str());
- }
- server_slot * get_slot_by_id(int id) {
- for (server_slot & slot : slots) {
- if (slot.id == id) {
- return &slot;
- }
- }
- return nullptr;
- }
- server_slot * get_available_slot(const server_task & task) {
- server_slot * ret = nullptr;
- bool update_cache = false;
- // find the slot that has at least n% prompt similarity
- if (ret == nullptr && slot_prompt_similarity != 0.0f) {
- float sim_best = 0;
- for (server_slot & slot : slots) {
- // skip the slot if it is not available
- if (slot.is_processing()) {
- continue;
- }
- const auto & tokens = slot.prompt.tokens;
- // skip the slot if it does not contains cached tokens
- if (tokens.empty()) {
- continue;
- }
- // fraction of the Longest Common Prefix length with respect to the input prompt length
- const float sim_cur = float(tokens.get_common_prefix(task.tokens)) / task.tokens.size();
- // select the current slot if the criteria match
- if (sim_cur > sim_best && sim_cur > slot_prompt_similarity) {
- sim_best = sim_cur;
- ret = &slot;
- }
- }
- if (ret != nullptr) {
- const float f_keep = (sim_best*task.tokens.size()) / ret->prompt.tokens.size();
- SLT_INF(*ret, "selected slot by LCP similarity, sim_best = %.3f (> %.3f thold), f_keep = %.3f\n",
- sim_best, slot_prompt_similarity, f_keep);
- // if we are about to lose a large portion of the existing context - save it in the prompt cache
- if (f_keep < 0.5f) {
- update_cache = true;
- }
- }
- }
- // find the slot that has been least recently used
- if (ret == nullptr) {
- int64_t t_last = -1;
- for (server_slot & slot : slots) {
- // skip the slot if it is not available
- if (slot.is_processing()) {
- continue;
- }
- // select the current slot if the criteria match
- if (!ret || slot.t_last_used <= t_last) {
- t_last = slot.t_last_used;
- ret = &slot;
- }
- }
- if (ret != nullptr) {
- SLT_INF(*ret, "selected slot by LRU, t_last = %" PRId64 "\n", t_last);
- update_cache = true;
- }
- }
- if (ret) {
- const auto & tokens = ret->prompt.tokens;
- update_cache = update_cache && prompt_cache;
- // cache prompts only for completion tasks
- update_cache = update_cache && task.type == SERVER_TASK_TYPE_COMPLETION;
- // don't update the cache if the slot's context is empty
- update_cache = update_cache && tokens.size() > 0;
- // TODO: mtmd does not support prompt cache
- update_cache = update_cache && (ret->mctx == nullptr);
- if (update_cache) {
- SRV_WRN("%s", "updating prompt cache\n");
- const int64_t t_start = ggml_time_us();
- ret->prompt_save(*prompt_cache);
- if (!ret->prompt_load(*prompt_cache, task.tokens)) {
- clear_slot(*ret);
- }
- prompt_cache->update();
- SRV_WRN("prompt cache update took %.2f ms\n", (ggml_time_us() - t_start) / 1000.0);
- }
- }
- return ret;
- }
- void clear_slot(server_slot & slot) const {
- GGML_ASSERT(!slot.is_processing());
- SLT_WRN(slot, "clearing slot with %zu tokens\n", slot.prompt.tokens.size());
- llama_memory_seq_rm(llama_get_memory(ctx), slot.id, -1, -1);
- slot.prompt.tokens.clear();
- }
- // return true if at least one slot has been cleared
- // TODO: improve logic
- // - smarter decision which slot to clear (LRU or longest prompt?)
- // - move slot to level 2 cache instead of removing?
- // - instead of purging, try to store and resume later?
- bool try_clear_idle_slots() {
- bool res = false;
- if (!params_base.kv_unified) {
- return res;
- }
- for (auto & slot : slots) {
- if (slot.is_processing()) {
- continue;
- }
- if (slot.prompt.n_tokens() > 0) {
- SRV_WRN("purging slot %d with %zu tokens\n", slot.id, slot.prompt.tokens.size());
- clear_slot(slot);
- res = true;
- // clear slots one by one
- break;
- }
- }
- return res;
- }
- bool launch_slot_with_task(server_slot & slot, server_task && task) {
- slot.reset();
- if (!are_lora_equal(task.params.lora, slot.lora)) {
- // if lora has changed, check to see if the cache should be cleared
- if (lora_should_clear_cache(slot.lora, task.params.lora)) {
- SLT_INF(slot, "clearing cache for lora change. %zu loras -> %zu loras\n", slot.lora.size(), task.params.lora.size());
- slot.prompt.tokens.clear();
- } else {
- SLT_INF(slot, "keeping cache for alora. %zu target loras\n", task.params.lora.size());
- }
- slot.lora = task.params.lora;
- }
- // if using alora, make sure it's only a single one requested and active
- size_t alora_invocation_start = task.tokens.size();
- if (lora_all_alora(slot.lora)) {
- const auto & enabled_ids = lora_get_enabled_ids(slot.lora);
- // TODO: This will error out if a user requests two aloras, but only
- // provides the activation string for one. We could, instead search
- // for all requested alora activation strings and then either keep
- // only the last one, or reject if multiple are found.
- if (enabled_ids.size() != 1) {
- send_error(task, "Cannot run multiple aLoRAs in a single request", ERROR_TYPE_INVALID_REQUEST);
- return false;
- }
- const auto & lora = slot.lora[enabled_ids[0]].ptr;
- // get the pointer and count for the invocation tokens
- const uint64_t n_invocation_tokens = llama_adapter_get_alora_n_invocation_tokens(lora);
- const llama_token * invocation_tokens = llama_adapter_get_alora_invocation_tokens (lora);
- // scan backwards through the prompt tokens to find the last
- // occurrence of the invocation sequence
- int match_idx = static_cast<int>(n_invocation_tokens) - 1;
- for (int i = task.tokens.size() - 1; i >= 0; --i) {
- // the token in this position matches the next token to find in
- // the invocation sequence
- if (task.tokens[i] == invocation_tokens[match_idx]) {
- // if it's a full match, we've found the start
- if (match_idx == 0) {
- alora_invocation_start = i;
- break;
- }
- // otherwise, check the next token in the sequence
- --match_idx;
- } else {
- // no match in this position, so start looking over again
- match_idx = static_cast<int>(n_invocation_tokens) - 1;
- }
- }
- // if the activation string is not found, disable the alora
- if (alora_invocation_start == task.tokens.size()) {
- SLT_DBG(slot, "alora %zu requested, but not found. deactivating\n", enabled_ids[0]);
- slot.lora[enabled_ids[0]].scale = 0.0f;
- } else {
- SLT_DBG(slot, "alora %zu activated starting at %zu\n", enabled_ids[0], alora_invocation_start);
- slot.alora_invocation_start = alora_invocation_start;
- }
- }
- if (!task.tokens.validate(ctx)) {
- send_error(task, "Prompt contains invalid tokens", ERROR_TYPE_INVALID_REQUEST);
- return false;
- }
- SLT_DBG(slot, "launching slot : %s\n", safe_json_to_str(slot.to_json()).c_str());
- // initialize samplers
- {
- if (slot.smpl != nullptr) {
- common_sampler_free(slot.smpl);
- }
- slot.smpl = common_sampler_init(model, task.params.sampling);
- if (slot.smpl == nullptr) {
- // for now, the only error that may happen here is invalid grammar
- send_error(task, "Failed to parse grammar", ERROR_TYPE_INVALID_REQUEST);
- return false;
- }
- SLT_INF(slot, "sampler chain: %s\n", common_sampler_print(slot.smpl).c_str());
- }
- // initialize draft batch
- // TODO: rework speculative decoding [TAG_SERVER_SPEC_REWORK]
- if (slot.ctx_dft) {
- llama_batch_free(slot.batch_spec);
- slot.batch_spec = llama_batch_init(task.params.speculative.n_max + 1, 0, 1);
- }
- slot.task = std::make_unique<const server_task>(std::move(task));
- slot.state = SLOT_STATE_STARTED;
- SLT_INF(slot, "%s", "processing task\n");
- return true;
- }
- bool process_token(completion_token_output & result, server_slot & slot) {
- // remember which tokens were sampled - used for repetition penalties during sampling
- const std::string token_str = result.text_to_send;
- slot.sampled = result.tok;
- slot.generated_text += token_str;
- if (slot.task->params.return_tokens) {
- slot.generated_tokens.push_back(result.tok);
- }
- slot.has_next_token = true;
- // check if there is incomplete UTF-8 character at the end
- bool incomplete = validate_utf8(slot.generated_text) < slot.generated_text.size();
- // search stop word and delete it
- if (!incomplete) {
- size_t pos = std::min(slot.n_sent_text, slot.generated_text.size());
- const std::string str_test = slot.generated_text.substr(pos);
- bool send_text = true;
- size_t stop_pos = slot.find_stopping_strings(str_test, token_str.size(), true);
- if (stop_pos != std::string::npos) {
- slot.generated_text.erase(
- slot.generated_text.begin() + pos + stop_pos,
- slot.generated_text.end());
- pos = std::min(slot.n_sent_text, slot.generated_text.size());
- } else if (slot.has_next_token && !llama_vocab_is_eog(vocab, result.tok) ) {
- stop_pos = slot.find_stopping_strings(str_test, token_str.size(), false);
- send_text = stop_pos == std::string::npos;
- }
- // check if there is any token to predict
- if (send_text) {
- // no send the stop word in the response
- result.text_to_send = slot.generated_text.substr(pos, std::string::npos);
- slot.n_sent_text += result.text_to_send.size();
- // add the token to slot queue and cache
- } else {
- result.text_to_send = "";
- }
- slot.add_token(result);
- if (slot.task->params.stream) {
- send_partial_response(slot, result, false);
- }
- }
- if (incomplete) {
- slot.has_next_token = true;
- }
- // if context shifting is disabled, make sure that we don't run out of context
- if (!params_base.ctx_shift && slot.prompt.n_tokens() + 1 >= slot.n_ctx) {
- slot.truncated = true;
- slot.stop = STOP_TYPE_LIMIT;
- slot.has_next_token = false;
- SLT_DBG(slot, "stopped due to running out of context capacity, prompt.n_tokens() = %d, task.n_tokens = %d, n_decoded = %d, n_ctx = %d\n",
- slot.prompt.n_tokens(), slot.task->n_tokens(), slot.n_decoded, slot.n_ctx);
- }
- // check the limits
- if (slot.n_decoded > 0 && slot.has_next_token && !slot.has_budget(params_base)) {
- slot.stop = STOP_TYPE_LIMIT;
- slot.has_next_token = false;
- SLT_DBG(slot, "stopped by limit, n_decoded = %d, n_predict = %d\n", slot.n_decoded, slot.task->params.n_predict);
- }
- if (slot.has_new_line) {
- // require that each new line has a whitespace prefix (i.e. indentation) of at least slot.params.n_indent
- if (slot.task->params.n_indent > 0) {
- // check the current indentation
- // TODO: improve by not doing it more than once for each new line
- if (slot.last_nl_pos > 0) {
- size_t pos = slot.last_nl_pos;
- int n_indent = 0;
- while (pos < slot.generated_text.size() && (slot.generated_text[pos] == ' ' || slot.generated_text[pos] == '\t')) {
- n_indent++;
- pos++;
- }
- if (pos < slot.generated_text.size() && n_indent < slot.task->params.n_indent) {
- slot.stop = STOP_TYPE_LIMIT;
- slot.has_next_token = false;
- // cut the last line
- slot.generated_text.erase(pos, std::string::npos);
- SLT_DBG(slot, "stopped by indentation limit, n_decoded = %d, n_indent = %d\n", slot.n_decoded, n_indent);
- }
- }
- // find the next new line
- {
- const size_t pos = slot.generated_text.find('\n', slot.last_nl_pos);
- if (pos != std::string::npos) {
- slot.last_nl_pos = pos + 1;
- }
- }
- }
- }
- // check if there is a new line in the generated text
- if (result.text_to_send.find('\n') != std::string::npos) {
- slot.has_new_line = true;
- // if we have seen a new line, we stop after a certain time limit, but only upon another new line
- if (slot.task->params.t_max_predict_ms > 0 && (ggml_time_us() - slot.t_start_generation > 1000.0f*slot.task->params.t_max_predict_ms)) {
- slot.stop = STOP_TYPE_LIMIT;
- slot.has_next_token = false;
- SLT_DBG(slot, "stopped by time limit, n_decoded = %d, t_max_predict_ms = %d ms\n", slot.n_decoded, (int) slot.task->params.t_max_predict_ms);
- }
- }
- if (llama_vocab_is_eog(vocab, result.tok)) {
- slot.stop = STOP_TYPE_EOS;
- slot.has_next_token = false;
- SLT_DBG(slot, "%s", "stopped by EOS\n");
- }
- SLT_DBG(slot, "n_decoded = %d, n_remaining = %d, next token: %5d '%s'\n", slot.n_decoded, slot.n_remaining, result.tok, token_str.c_str());
- return slot.has_next_token; // continue
- }
- void populate_token_probs(const server_slot & slot, completion_token_output & result, bool post_sampling, bool special, int idx) const {
- size_t n_probs = slot.task->params.sampling.n_probs;
- size_t n_vocab = llama_vocab_n_tokens(vocab);
- if (post_sampling) {
- const auto * cur_p = common_sampler_get_candidates(slot.smpl, true);
- const size_t max_probs = cur_p->size;
- // set probability for sampled token
- for (size_t i = 0; i < max_probs; i++) {
- if (cur_p->data[i].id == result.tok) {
- result.prob = cur_p->data[i].p;
- break;
- }
- }
- // set probability for top n_probs tokens
- result.probs.reserve(max_probs);
- for (size_t i = 0; i < std::min(max_probs, n_probs); i++) {
- result.probs.push_back({
- cur_p->data[i].id,
- common_token_to_piece(ctx, cur_p->data[i].id, special),
- cur_p->data[i].p
- });
- }
- } else {
- // TODO: optimize this with min-p optimization
- std::vector<llama_token_data> cur = get_token_probabilities(ctx, idx);
- // set probability for sampled token
- for (size_t i = 0; i < n_vocab; i++) {
- // set probability for sampled token
- if (cur[i].id == result.tok) {
- result.prob = cur[i].p;
- break;
- }
- }
- // set probability for top n_probs tokens
- result.probs.reserve(n_probs);
- for (size_t i = 0; i < std::min(n_vocab, n_probs); i++) {
- result.probs.push_back({
- cur[i].id,
- common_token_to_piece(ctx, cur[i].id, special),
- cur[i].p
- });
- }
- }
- }
- void send_error(const server_task & task, const std::string & error, const enum error_type type = ERROR_TYPE_SERVER) {
- send_error(task.id, error, type);
- }
- void send_error(const server_slot & slot, const std::string & error, const enum error_type type = ERROR_TYPE_SERVER) {
- send_error(slot.task->id, error, type, slot.task->n_tokens(), slot.n_ctx);
- }
- void send_error(const int id_task, const std::string & error, const enum error_type type = ERROR_TYPE_SERVER, const int32_t n_prompt_tokens = 0, const int32_t n_ctx = 0) {
- SRV_ERR("task id = %d, error: %s\n", id_task, error.c_str());
- if (type == ERROR_TYPE_EXCEED_CONTEXT_SIZE) {
- GGML_ASSERT(n_ctx > 0 && n_prompt_tokens > 0);
- }
- auto res = std::make_unique<server_task_result_error>();
- res->id = id_task;
- res->err_type = type;
- res->err_msg = error;
- res->n_prompt_tokens = n_prompt_tokens;
- res->n_ctx = n_ctx;
- queue_results.send(std::move(res));
- }
- // if multimodal is enabled, send an error and return false
- bool check_no_mtmd(const int id_task) {
- if (mctx) {
- send_error(id_task, "This feature is not supported by multimodal", ERROR_TYPE_NOT_SUPPORTED);
- return false;
- }
- return true;
- }
- void send_partial_response(server_slot & slot, const completion_token_output & tkn, bool is_progress) {
- auto res = std::make_unique<server_task_result_cmpl_partial>();
- res->id = slot.task->id;
- res->index = slot.task->index;
- if (is_progress) {
- res->is_progress = true;
- res->progress.total = slot.task->n_tokens();
- res->progress.cache = slot.n_prompt_tokens_cache;
- res->progress.processed = slot.prompt.tokens.size();
- res->progress.time_ms = (ggml_time_us() - slot.t_start_process_prompt) / 1000;
- } else {
- res->content = tkn.text_to_send;
- res->tokens = { tkn.tok };
- slot.update_chat_msg(res->oaicompat_msg_diffs);
- }
- res->n_decoded = slot.n_decoded;
- res->n_prompt_tokens = slot.task->n_tokens();
- res->post_sampling_probs = slot.task->params.post_sampling_probs;
- res->verbose = slot.task->params.verbose;
- res->res_type = slot.task->params.res_type;
- res->oaicompat_model = slot.task->params.oaicompat_model;
- res->oaicompat_cmpl_id = slot.task->params.oaicompat_cmpl_id;
- // populate res.probs_output
- if (slot.task->params.sampling.n_probs > 0) {
- res->prob_output = tkn; // copy the token probs
- }
- // populate timings if this is final response or timings_per_token is enabled
- if (slot.stop != STOP_TYPE_NONE || slot.task->params.timings_per_token) {
- res->timings = slot.get_timings();
- }
- queue_results.send(std::move(res));
- }
- void send_final_response(server_slot & slot) {
- auto res = std::make_unique<server_task_result_cmpl_final>();
- res->id = slot.task->id;
- res->id_slot = slot.id;
- res->index = slot.task->index;
- res->content = slot.generated_text;
- res->tokens = std::move(slot.generated_tokens);
- res->timings = slot.get_timings();
- res->prompt = slot.task->tokens.detokenize(ctx, true);
- res->response_fields = std::move(slot.task->params.response_fields);
- res->truncated = slot.truncated;
- res->n_decoded = slot.n_decoded;
- res->n_prompt_tokens = slot.task->n_tokens();
- res->n_tokens_cached = slot.prompt.n_tokens();
- res->has_new_line = slot.has_new_line;
- res->stopping_word = slot.stopping_word;
- res->stop = slot.stop;
- res->post_sampling_probs = slot.task->params.post_sampling_probs;
- res->verbose = slot.task->params.verbose;
- res->stream = slot.task->params.stream;
- res->include_usage = slot.task->params.include_usage;
- res->res_type = slot.task->params.res_type;
- res->oaicompat_model = slot.task->params.oaicompat_model;
- res->oaicompat_cmpl_id = slot.task->params.oaicompat_cmpl_id;
- res->oaicompat_msg = slot.update_chat_msg(res->oaicompat_msg_diffs);
- // populate res.probs_output
- if (slot.task->params.sampling.n_probs > 0) {
- if (!slot.task->params.stream && slot.stop == STOP_TYPE_WORD) {
- const llama_tokens stop_word_toks = common_tokenize(ctx, slot.stopping_word, false);
- size_t safe_offset = std::min(slot.generated_token_probs.size(), stop_word_toks.size());
- res->probs_output = std::vector<completion_token_output>(
- slot.generated_token_probs.begin(),
- slot.generated_token_probs.end() - safe_offset);
- } else {
- res->probs_output = std::vector<completion_token_output>(
- slot.generated_token_probs.begin(),
- slot.generated_token_probs.end());
- }
- }
- res->generation_params = slot.task->params; // copy the parameters
- queue_results.send(std::move(res));
- }
- void send_embedding(const server_slot & slot, const llama_batch & batch) {
- auto res = std::make_unique<server_task_result_embd>();
- res->id = slot.task->id;
- res->index = slot.task->index;
- res->n_tokens = slot.task->n_tokens();
- res->res_type = slot.task->params.res_type;
- const int n_embd = llama_model_n_embd(model);
- std::vector<float> embd_res(n_embd, 0.0f);
- for (int i = 0; i < batch.n_tokens; ++i) {
- if (!batch.logits[i] || batch.seq_id[i][0] != slot.id) {
- continue;
- }
- const float * embd = nullptr;
- if (llama_pooling_type(slot.ctx) == LLAMA_POOLING_TYPE_NONE) {
- embd = llama_get_embeddings_ith(ctx, i);
- } else {
- embd = llama_get_embeddings_seq(ctx, batch.seq_id[i][0]);
- }
- if (embd == nullptr) {
- SLT_ERR(slot, "failed to get embeddings, token = %d, seq_id = %d\n", batch.token[i], batch.seq_id[i][0]);
- res->embedding.push_back(std::vector<float>(n_embd, 0.0f));
- continue;
- }
- // normalize only when there is pooling
- if (llama_pooling_type(slot.ctx) != LLAMA_POOLING_TYPE_NONE) {
- common_embd_normalize(embd, embd_res.data(), n_embd, slot.task->params.embd_normalize);
- res->embedding.push_back(embd_res);
- break;
- }
- res->embedding.emplace_back(embd, embd + n_embd);
- }
- SLT_DBG(slot, "%s", "sending embeddings\n");
- queue_results.send(std::move(res));
- }
- void send_rerank(const server_slot & slot, const llama_batch & batch) {
- auto res = std::make_unique<server_task_result_rerank>();
- res->id = slot.task->id;
- res->index = slot.task->index;
- res->n_tokens = slot.task->n_tokens();
- for (int i = 0; i < batch.n_tokens; ++i) {
- if (!batch.logits[i] || batch.seq_id[i][0] != slot.id) {
- continue;
- }
- const float * embd = llama_get_embeddings_seq(ctx, batch.seq_id[i][0]);
- if (embd == NULL) {
- embd = llama_get_embeddings_ith(ctx, i);
- }
- if (embd == NULL) {
- SLT_ERR(slot, "failed to get embeddings, token = %d, seq_id = %d\n", batch.token[i], batch.seq_id[i][0]);
- res->score = -1e6;
- continue;
- }
- res->score = embd[0];
- }
- SLT_DBG(slot, "sending rerank result, res.score = %f\n", res->score);
- queue_results.send(std::move(res));
- }
- //
- // Functions to process the task
- //
- void process_single_task(server_task && task) {
- switch (task.type) {
- case SERVER_TASK_TYPE_COMPLETION:
- case SERVER_TASK_TYPE_INFILL:
- case SERVER_TASK_TYPE_EMBEDDING:
- case SERVER_TASK_TYPE_RERANK:
- {
- const int id_slot = task.id_slot;
- server_slot * slot = id_slot != -1 ? get_slot_by_id(id_slot) : get_available_slot(task);
- if (slot == nullptr) {
- // if no slot is available, we defer this task for processing later
- SRV_DBG("no slot is available, defer task, id_task = %d\n", task.id);
- queue_tasks.defer(std::move(task));
- break;
- }
- if (slot->is_processing()) {
- // if requested slot is unavailable, we defer this task for processing later
- SRV_DBG("requested slot is unavailable, defer task, id_task = %d\n", task.id);
- queue_tasks.defer(std::move(task));
- break;
- }
- if (!launch_slot_with_task(*slot, std::move(task))) {
- SRV_ERR("failed to launch slot with task, id_task = %d\n", task.id);
- break;
- }
- } break;
- case SERVER_TASK_TYPE_CANCEL:
- {
- // release slot linked with the task id
- for (auto & slot : slots) {
- if (slot.task && slot.task->id == task.id_target) {
- slot.release();
- break;
- }
- }
- } break;
- case SERVER_TASK_TYPE_NEXT_RESPONSE:
- {
- // do nothing
- } break;
- case SERVER_TASK_TYPE_METRICS:
- {
- json slots_data = json::array();
- int n_idle_slots = 0;
- int n_processing_slots = 0;
- for (server_slot & slot : slots) {
- json slot_data = slot.to_json(slots_debug == 0);
- if (slot.is_processing()) {
- n_processing_slots++;
- } else {
- n_idle_slots++;
- }
- slots_data.push_back(slot_data);
- }
- SRV_DBG("n_idle_slots = %d, n_processing_slots = %d\n", n_idle_slots, n_processing_slots);
- auto res = std::make_unique<server_task_result_metrics>();
- res->id = task.id;
- res->slots_data = std::move(slots_data);
- res->n_idle_slots = n_idle_slots;
- res->n_processing_slots = n_processing_slots;
- res->n_tasks_deferred = queue_tasks.queue_tasks_deferred_size();
- res->t_start = metrics.t_start;
- res->n_prompt_tokens_processed_total = metrics.n_prompt_tokens_processed_total;
- res->t_prompt_processing_total = metrics.t_prompt_processing_total;
- res->n_tokens_predicted_total = metrics.n_tokens_predicted_total;
- res->t_tokens_generation_total = metrics.t_tokens_generation_total;
- res->n_tokens_max = metrics.n_tokens_max;
- res->n_prompt_tokens_processed = metrics.n_prompt_tokens_processed;
- res->t_prompt_processing = metrics.t_prompt_processing;
- res->n_tokens_predicted = metrics.n_tokens_predicted;
- res->t_tokens_generation = metrics.t_tokens_generation;
- res->n_decode_total = metrics.n_decode_total;
- res->n_busy_slots_total = metrics.n_busy_slots_total;
- if (task.metrics_reset_bucket) {
- metrics.reset_bucket();
- }
- queue_results.send(std::move(res));
- } break;
- case SERVER_TASK_TYPE_SLOT_SAVE:
- {
- if (!check_no_mtmd(task.id)) {
- break;
- }
- int id_slot = task.slot_action.slot_id;
- server_slot * slot = get_slot_by_id(id_slot);
- if (slot == nullptr) {
- send_error(task, "Invalid slot ID", ERROR_TYPE_INVALID_REQUEST);
- break;
- }
- if (slot->is_processing()) {
- // if requested slot is unavailable, we defer this task for processing later
- SRV_DBG("requested slot is unavailable, defer task, id_task = %d\n", task.id);
- queue_tasks.defer(std::move(task));
- break;
- }
- const size_t token_count = slot->prompt.tokens.size();
- const int64_t t_start = ggml_time_us();
- std::string filename = task.slot_action.filename;
- std::string filepath = task.slot_action.filepath;
- const llama_tokens & tokens = slot->prompt.tokens.get_text_tokens();
- const size_t nwrite = llama_state_seq_save_file(ctx, filepath.c_str(), slot->id, tokens.data(), token_count);
- const int64_t t_end = ggml_time_us();
- const double t_save_ms = (t_end - t_start) / 1000.0;
- auto res = std::make_unique<server_task_result_slot_save_load>();
- res->id = task.id;
- res->id_slot = id_slot;
- res->filename = filename;
- res->is_save = true;
- res->n_tokens = token_count;
- res->n_bytes = nwrite;
- res->t_ms = t_save_ms;
- queue_results.send(std::move(res));
- } break;
- case SERVER_TASK_TYPE_SLOT_RESTORE:
- {
- if (!check_no_mtmd(task.id)) break;
- int id_slot = task.slot_action.slot_id;
- server_slot * slot = get_slot_by_id(id_slot);
- if (slot == nullptr) {
- send_error(task, "Invalid slot ID", ERROR_TYPE_INVALID_REQUEST);
- break;
- }
- if (slot->is_processing()) {
- // if requested slot is unavailable, we defer this task for processing later
- SRV_DBG("requested slot is unavailable, defer task, id_task = %d\n", task.id);
- queue_tasks.defer(std::move(task));
- break;
- }
- const int64_t t_start = ggml_time_us();
- std::string filename = task.slot_action.filename;
- std::string filepath = task.slot_action.filepath;
- llama_tokens tokens;
- tokens.resize(slot->n_ctx);
- size_t token_count = 0;
- size_t nread = llama_state_seq_load_file(ctx, filepath.c_str(), slot->id, tokens.data(), tokens.size(), &token_count);
- if (nread == 0) {
- slot->prompt.tokens.clear(); // KV may already been invalidated?
- send_error(task, "Unable to restore slot, no available space in KV cache or invalid slot save file", ERROR_TYPE_INVALID_REQUEST);
- break;
- }
- tokens.resize(token_count);
- slot->prompt.tokens.clear();
- slot->prompt.tokens.insert(tokens);
- const int64_t t_end = ggml_time_us();
- const double t_restore_ms = (t_end - t_start) / 1000.0;
- auto res = std::make_unique<server_task_result_slot_save_load>();
- res->id = task.id;
- res->id_slot = id_slot;
- res->filename = filename;
- res->is_save = false;
- res->n_tokens = token_count;
- res->n_bytes = nread;
- res->t_ms = t_restore_ms;
- queue_results.send(std::move(res));
- } break;
- case SERVER_TASK_TYPE_SLOT_ERASE:
- {
- if (!check_no_mtmd(task.id)) {
- break;
- }
- int id_slot = task.slot_action.slot_id;
- server_slot * slot = get_slot_by_id(id_slot);
- if (slot == nullptr) {
- send_error(task, "Invalid slot ID", ERROR_TYPE_INVALID_REQUEST);
- break;
- }
- if (slot->is_processing()) {
- // if requested slot is unavailable, we defer this task for processing later
- SRV_DBG("requested slot is unavailable, defer task, id_task = %d\n", task.id);
- queue_tasks.defer(std::move(task));
- break;
- }
- // Erase token cache
- const size_t n_erased = slot->prompt.tokens.size();
- clear_slot(*slot);
- auto res = std::make_unique<server_task_result_slot_erase>();
- res->id = task.id;
- res->id_slot = id_slot;
- res->n_erased = n_erased;
- queue_results.send(std::move(res));
- } break;
- case SERVER_TASK_TYPE_SET_LORA:
- {
- params_base.lora_adapters = std::move(task.set_lora);
- auto res = std::make_unique<server_task_result_apply_lora>();
- res->id = task.id;
- queue_results.send(std::move(res));
- } break;
- }
- }
- void update_slots() {
- // check if all slots are idle
- {
- bool all_idle = true;
- for (auto & slot : slots) {
- if (slot.is_processing()) {
- all_idle = false;
- break;
- }
- }
- if (all_idle) {
- SRV_INF("%s", "all slots are idle\n");
- return;
- }
- }
- {
- SRV_DBG("%s", "posting NEXT_RESPONSE\n");
- server_task task(SERVER_TASK_TYPE_NEXT_RESPONSE);
- task.id = queue_tasks.get_new_id();
- queue_tasks.post(std::move(task));
- }
- // apply context-shift if needed
- // TODO: simplify and improve
- for (server_slot & slot : slots) {
- if (slot.state == SLOT_STATE_GENERATING && slot.prompt.n_tokens() + 1 >= slot.n_ctx) {
- if (!params_base.ctx_shift) {
- // this check is redundant (for good)
- // we should never get here, because generation should already stopped in process_token()
- send_error(slot, "context shift is disabled", ERROR_TYPE_SERVER);
- slot.release();
- continue;
- }
- if (mctx) {
- // we should never reach this because params_base.ctx_shift is automatically disabled if mmproj is loaded
- // we don't support ctx_shift because an image chunk may contains multiple tokens
- GGML_ABORT("not supported by multimodal");
- }
- // Shift context
- int n_keep = slot.task->params.n_keep < 0 ? slot.task->n_tokens() : slot.task->params.n_keep;
- if (add_bos_token) {
- n_keep += 1;
- }
- n_keep = std::min(slot.n_ctx - 4, n_keep);
- const int n_left = slot.prompt.n_tokens() - n_keep;
- const int n_discard = slot.task->params.n_discard ? slot.task->params.n_discard : (n_left / 2);
- SLT_WRN(slot, "slot context shift, n_keep = %d, n_left = %d, n_discard = %d\n", n_keep, n_left, n_discard);
- llama_memory_seq_rm (llama_get_memory(ctx), slot.id, n_keep , n_keep + n_discard);
- llama_memory_seq_add(llama_get_memory(ctx), slot.id, n_keep + n_discard, slot.prompt.n_tokens(), -n_discard);
- // add generated tokens to cache
- // ref: https://github.com/ggml-org/llama.cpp/pull/16818#discussion_r2473269481
- {
- GGML_ASSERT(!slot.prompt.tokens.has_mtmd);
- llama_tokens new_tokens = slot.prompt.tokens.get_text_tokens(); // copy
- for (size_t i = n_keep + n_discard; i < new_tokens.size(); i++) {
- new_tokens[i - n_discard] = new_tokens[i];
- }
- new_tokens.resize(slot.prompt.tokens.size() - n_discard);
- slot.prompt.tokens.clear();
- slot.prompt.tokens.insert(new_tokens);
- }
- slot.truncated = true;
- }
- }
- // start populating the batch for this iteration
- common_batch_clear(batch);
- // track if given slot can be batched with slots already in the batch
- server_slot * slot_batched = nullptr;
- auto accept_special_token = [&](server_slot & slot, llama_token token) {
- return params_base.special ||
- slot.task->params.sampling.preserved_tokens.find(token) != slot.task->params.sampling.preserved_tokens.end();
- };
- // first, add sampled tokens from any ongoing sequences
- for (auto & slot : slots) {
- if (slot.state != SLOT_STATE_GENERATING) {
- continue;
- }
- // check if we can batch this slot with the previous one
- if (!slot_batched) {
- slot_batched = &slot;
- } else if (!slot_batched->can_batch_with(slot)) {
- continue;
- }
- slot.i_batch = batch.n_tokens;
- common_batch_add(batch, slot.sampled, slot.prompt.tokens.pos_next(), { slot.id }, true);
- slot.prompt.tokens.push_back(slot.sampled);
- SLT_DBG(slot, "slot decode token, n_ctx = %d, n_tokens = %d, truncated = %d\n",
- slot.n_ctx, slot.prompt.n_tokens(), slot.truncated);
- }
- // process in chunks of params.n_batch
- int32_t n_batch = llama_n_batch(ctx);
- int32_t n_ubatch = llama_n_ubatch(ctx);
- float alora_scale = -1.0f;
- size_t alora_disabled_id = 0;
- // next, batch any pending prompts without exceeding n_batch
- if (params_base.cont_batching || batch.n_tokens == 0) {
- for (auto & slot : slots) {
- if (!slot.is_processing()) {
- continue;
- }
- // check if we can batch this slot with the previous one
- if (slot_batched && !slot_batched->can_batch_with(slot)) {
- continue;
- }
- // this slot still has a prompt to be processed
- if (slot.state == SLOT_STATE_PROCESSING_PROMPT || slot.state == SLOT_STATE_STARTED) {
- const auto & input_tokens = slot.task->tokens;
- // TODO: maybe move branch to outside of this loop in the future
- if (slot.state == SLOT_STATE_STARTED) {
- slot.t_start_process_prompt = ggml_time_us();
- slot.t_start_generation = 0;
- slot.state = SLOT_STATE_PROCESSING_PROMPT;
- SLT_INF(slot, "new prompt, n_ctx_slot = %d, n_keep = %d, task.n_tokens = %d\n",
- slot.n_ctx, slot.task->params.n_keep, slot.task->n_tokens());
- // print prompt tokens (for debugging)
- /*if (1) {
- // first 16 tokens (avoid flooding logs)
- for (int i = 0; i < std::min<int>(16, input_tokens.size()); i++) {
- SLT_DBG(slot, "prompt token %3d: %6d '%s'\n", i, input_tokens[i], common_token_to_piece(ctx, input_tokens[i]).c_str());
- }
- } else {
- // all
- for (int i = 0; i < (int) input_tokens.size(); i++) {
- SLT_DBG(slot, "prompt token %3d: %6d '%s'\n", i, input_tokens[i], common_token_to_piece(ctx, input_tokens[i]).c_str());
- }
- }*/
- // keep track how many tokens we can reuse from the previous state
- int n_past = 0;
- // empty prompt passed -> release the slot and send empty response
- if (input_tokens.empty()) {
- SLT_WRN(slot, "%s", "empty prompt - releasing slot\n");
- slot.print_timings();
- send_final_response(slot);
- slot.release();
- continue;
- }
- // TODO: support memory-less logits computation
- if (slot.need_logits() && !llama_get_memory(ctx)) {
- send_error(slot, "the current context does not logits computation. skipping", ERROR_TYPE_SERVER);
- slot.release();
- continue;
- }
- if (!slot.can_split()) {
- if (slot.task->n_tokens() > n_ubatch) {
- send_error(slot, "input is too large to process. increase the physical batch size", ERROR_TYPE_SERVER);
- slot.release();
- continue;
- }
- if (slot.task->n_tokens() > slot.n_ctx) {
- send_error(slot, "input is larger than the max context size. skipping", ERROR_TYPE_EXCEED_CONTEXT_SIZE);
- slot.release();
- continue;
- }
- } else {
- if (slot.task->n_tokens() >= slot.n_ctx) {
- send_error(slot, "the request exceeds the available context size, try increasing it", ERROR_TYPE_EXCEED_CONTEXT_SIZE);
- slot.release();
- continue;
- }
- if (slot.task->params.cache_prompt) {
- // reuse any previously computed tokens that are common with the new prompt
- n_past = slot.prompt.tokens.get_common_prefix(input_tokens);
- // if there is an alora invoked, don't cache after the invocation start
- if (slot.alora_invocation_start > 0) {
- SLT_DBG(slot, "only caching to alora invocation start (n_past = %d, alora_invocation_start = %d)\n", n_past, slot.alora_invocation_start);
- n_past = std::min(n_past, slot.alora_invocation_start - 1);
- }
- // reuse chunks from the cached prompt by shifting their KV cache in the new position
- if (params_base.n_cache_reuse > 0) {
- GGML_ASSERT(!slot.prompt.tokens.has_mtmd);
- size_t head_c = n_past; // cache
- size_t head_p = n_past; // current prompt
- if (mctx) {
- // we should never reach this
- GGML_ABORT("not supported by multimodal");
- }
- SLT_DBG(slot, "trying to reuse chunks with size > %d, n_past = %d\n", params_base.n_cache_reuse, n_past);
- while (head_c < slot.prompt.tokens.size() &&
- head_p < input_tokens.size()) {
- size_t n_match = 0;
- while (head_c + n_match < slot.prompt.tokens.size() &&
- head_p + n_match < input_tokens.size() &&
- slot.prompt.tokens[head_c + n_match] == input_tokens[head_p + n_match]) {
- n_match++;
- }
- if (n_match >= (size_t) params_base.n_cache_reuse) {
- SLT_INF(slot, "reusing chunk with size %zu, shifting KV cache [%zu, %zu) -> [%zu, %zu)\n", n_match, head_c, head_c + n_match, head_p, head_p + n_match);
- //for (size_t i = head_p; i < head_p + n_match; i++) {
- // SLT_DBG(slot, "cache token %3zu: %6d '%s'\n", i, prompt_tokens[i], common_token_to_piece(ctx, prompt_tokens[i]).c_str());
- //}
- const int64_t kv_shift = (int64_t) head_p - (int64_t) head_c;
- llama_memory_seq_rm (llama_get_memory(ctx), slot.id, head_p, head_c);
- llama_memory_seq_add(llama_get_memory(ctx), slot.id, head_c, head_c + n_match, kv_shift);
- for (size_t i = 0; i < n_match; i++) {
- slot.prompt.tokens.set_token(head_p + i, slot.prompt.tokens[head_c + i]);
- n_past++;
- }
- head_c += n_match;
- head_p += n_match;
- } else {
- head_c += 1;
- }
- }
- SLT_DBG(slot, "after context reuse, new n_past = %d\n", n_past);
- }
- } else {
- // if we don't cache the prompt, we have to remove all previous tokens
- n_past = 0;
- }
- // note: when n_swa == 0, the model does not use SWA, which is equivalent to a window of 1
- const auto n_swa = std::max(1, llama_model_n_swa(model));
- // the largest pos_min required for a checkpoint to be useful
- const auto pos_min_thold = std::max(0, n_past - n_swa);
- // note: disallow with mtmd contexts for now
- // https://github.com/ggml-org/llama.cpp/issues/17043
- if (!mctx && n_past > 0 && n_past < slot.prompt.n_tokens()) {
- const auto pos_min = llama_memory_seq_pos_min(llama_get_memory(ctx), slot.id);
- if (pos_min == -1) {
- SLT_ERR(slot, "n_past = %d, slot.prompt.tokens.size() = %d, seq_id = %d, pos_min = %d\n", n_past, (int) slot.prompt.tokens.size(), slot.id, pos_min);
- GGML_ABORT("pos_min == -1, but n_past > 0 - should not happen: https://github.com/ggml-org/llama.cpp/pull/13833#discussion_r2116181237");
- }
- // when the prompt prefix does not match, print the tokens around the mismatch
- // this is useful for debugging prompt caching
- if (slots_debug) {
- const int np0 = std::max<int>(n_past - 4, 0);
- const int np1 = std::min<int>(n_past + 6, std::min(slot.prompt.tokens.size(), slot.task->tokens.size()));
- std::stringstream ss0;
- std::stringstream ss1;
- std::stringstream st0;
- std::stringstream st1;
- ss0 << "old: ... ";
- ss1 << "new: ... ";
- for (int i = np0; i < np1; i++) {
- if (i == n_past) {
- ss0 << " | ";
- ss1 << " | ";
- }
- {
- const auto token = slot.prompt.tokens[i];
- const auto piece = token != LLAMA_TOKEN_NULL ? common_token_to_piece(ctx, token) : "[mtmd]";
- ss0 << piece;
- st0 << std::setw(8) << token;
- }
- {
- const auto token = slot.task->tokens[i];
- const auto piece = token != LLAMA_TOKEN_NULL ? common_token_to_piece(ctx, token) : "[mtmd]";
- ss1 << piece;
- st1 << std::setw(8) << token;
- }
- }
- SLT_WRN(slot, "%s\n", ss0.str().c_str());
- SLT_WRN(slot, "%s\n", ss1.str().c_str());
- SLT_WRN(slot, "%s\n", st0.str().c_str());
- SLT_WRN(slot, "%s\n", st1.str().c_str());
- }
- if (pos_min > pos_min_thold) {
- // TODO: support can be added in the future when corresponding vision models get released
- GGML_ASSERT(!slot.prompt.tokens.has_mtmd);
- SLT_WRN(slot, "n_past = %d, slot.prompt.tokens.size() = %d, seq_id = %d, pos_min = %d, n_swa = %d\n", n_past, (int) slot.prompt.tokens.size(), slot.id, pos_min, n_swa);
- // search for a context checkpoint
- const auto it = std::find_if(
- slot.prompt.checkpoints.rbegin(),
- slot.prompt.checkpoints.rend(),
- [&](const auto & cur) {
- // guarantee that a checkpoint will result in at least one token being processed [TAG_PROMPT_LOGITS]
- return cur.pos_min < pos_min_thold;
- }
- );
- bool do_reset = it == slot.prompt.checkpoints.rend();
- if (!do_reset) {
- // restore the context checkpoint
- const size_t checkpoint_size = it->data.size();
- const size_t n = llama_state_seq_set_data_ext(ctx, it->data.data(), checkpoint_size, slot.id, LLAMA_STATE_SEQ_FLAGS_PARTIAL_ONLY);
- if (n != checkpoint_size) {
- SLT_ERR(slot, "failed to restore context checkpoint (pos_min = %d, pos_max = %d, size = %.3f MiB)\n", it->pos_min, it->pos_max, (float) checkpoint_size / 1024 / 1024);
- do_reset = true;
- //printf("[DEBUG] `do_reset` was set to `true` after failing to restore a checkpoint");
- } else {
- n_past = std::min(n_past, std::max(it->pos_min + 1, it->pos_max));
- SLT_WRN(slot, "restored context checkpoint (pos_min = %d, pos_max = %d, size = %.3f MiB)\n", it->pos_min, it->pos_max, (float) checkpoint_size / 1024 / 1024);
- }
- }
- if (do_reset) {
- SLT_WRN(slot, "forcing full prompt re-processing due to lack of cache data (likely due to SWA or hybrid/recurrent memory, see %s)\n",
- "https://github.com/ggml-org/llama.cpp/pull/13194#issuecomment-2868343055");
- n_past = 0;
- }
- }
- }
- {
- // erase any checkpoints with pos_min > pos_min_thold
- for (auto it = slot.prompt.checkpoints.begin(); it != slot.prompt.checkpoints.end();) {
- const auto & cur = *it;
- if (cur.pos_min > pos_min_thold) {
- SLT_WRN(slot, "erased invalidated context checkpoint (pos_min = %d, pos_max = %d, n_swa = %d, size = %.3f MiB)\n", cur.pos_min, cur.pos_max, n_swa, (float) cur.data.size() / 1024 / 1024);
- it = slot.prompt.checkpoints.erase(it);
- } else {
- ++it;
- }
- }
- }
- }
- // [TAG_PROMPT_LOGITS]
- if (n_past == slot.task->n_tokens() && n_past > 0) {
- SLT_WRN(slot, "need to evaluate at least 1 token for each active slot (n_past = %d, task.n_tokens() = %d)\n", n_past, slot.task->n_tokens());
- n_past--;
- SLT_WRN(slot, "n_past was set to %d\n", n_past);
- }
- slot.n_prompt_tokens_cache = n_past;
- slot.n_prompt_tokens_processed = 0;
- slot.prompt.tokens.keep_first(n_past);
- }
- if (!slot.can_split()) {
- // cannot fit the prompt in the current batch - will try next iter
- if (batch.n_tokens + slot.task->n_tokens() > n_batch) {
- continue;
- }
- }
- // truncate any tokens that are beyond n_past for this slot
- const llama_pos p0 = slot.prompt.tokens.pos_next();
- SLT_INF(slot, "n_tokens = %d, memory_seq_rm [%d, end)\n", slot.prompt.n_tokens(), p0);
- if (!llama_memory_seq_rm(llama_get_memory(ctx), slot.id, p0, -1)) {
- SLT_WRN(slot, "failed to truncate tokens with position >= %d - clearing the memory\n", p0);
- clear_slot(slot);
- // there is no common part left
- slot.n_prompt_tokens_cache = 0;
- }
- // check if we should process the image
- if (slot.prompt.n_tokens() < slot.task->n_tokens() && input_tokens[slot.prompt.n_tokens()] == LLAMA_TOKEN_NULL) {
- // process the image
- size_t n_tokens_out = 0;
- int32_t res = input_tokens.process_chunk(ctx, mctx, slot.prompt.n_tokens(), slot.prompt.tokens.pos_next(), slot.id, n_tokens_out);
- if (res != 0) {
- SLT_ERR(slot, "failed to process image, res = %d\n", res);
- send_error(slot, "failed to process image", ERROR_TYPE_SERVER);
- slot.release();
- continue;
- }
- slot.n_prompt_tokens_processed += n_tokens_out;
- // add the image chunk to cache
- {
- const auto & chunk = input_tokens.find_chunk(slot.prompt.n_tokens());
- slot.prompt.tokens.push_back(chunk.get()); // copy
- }
- }
- // If using an alora, there may be uncached tokens that come
- // before the invocation sequence. When this happens, the
- // tokens before the invocation sequence need to be
- // processed without the adapter in a separate batch, then
- // the adapter needs to be enabled for the remaining tokens.
- if (lora_all_alora(slot.lora) && slot.alora_invocation_start - 1 > slot.prompt.n_tokens()) {
- SLT_DBG(slot, "processing pre-alora tokens without the adapter (n_tokens = %d, alora_invocation_start = %d)\n", slot.prompt.n_tokens(), slot.alora_invocation_start);
- const auto & enabled_loras = lora_get_enabled_ids(slot.lora);
- GGML_ASSERT(enabled_loras.size() == 1);
- alora_scale = slot.lora[enabled_loras[0]].scale;
- slot.lora[enabled_loras[0]].scale = 0.0f;
- alora_disabled_id = enabled_loras[0];
- }
- bool do_checkpoint = params_base.n_ctx_checkpoints > 0;
- // make checkpoints only for completion tasks
- do_checkpoint = do_checkpoint && slot.task->type == SERVER_TASK_TYPE_COMPLETION;
- // make a checkpoint of the parts of the memory that cannot be rolled back.
- // checkpoints are created only if:
- // - the model uses SWA and we are not using `swa_full`
- // - the model architecture is marked as recurrent or hybrid
- //
- // TODO: try to make this conditional on the context or the memory module, instead of the model type
- do_checkpoint = do_checkpoint && (
- llama_model_is_recurrent(model) ||
- llama_model_is_hybrid(model) ||
- (llama_model_n_swa(model) > 0 && !params_base.swa_full)
- );
- // add prompt tokens for processing in the current batch
- while (slot.prompt.n_tokens() < slot.task->n_tokens() && batch.n_tokens < n_batch) {
- // get next token to process
- llama_token cur_tok = input_tokens[slot.prompt.n_tokens()];
- if (cur_tok == LLAMA_TOKEN_NULL) {
- break; // end of text chunk
- }
- // if this is an alora request with pre-invocation
- // tokens that are not cached, we need to stop filling
- // this batch at those pre-invocation tokens.
- if (alora_scale > 0 && slot.prompt.n_tokens() == slot.alora_invocation_start - 1) {
- SLT_DBG(slot, "stop prompt batch filling at (n_tokens = %d, alora_invocation_start = %d)\n", slot.prompt.n_tokens(), slot.alora_invocation_start);
- break;
- }
- // embedding requires all tokens in the batch to be output
- common_batch_add(batch,
- cur_tok,
- slot.prompt.tokens.pos_next(),
- { slot.id },
- slot.need_embd());
- slot.prompt.tokens.push_back(cur_tok);
- slot.n_prompt_tokens_processed++;
- // process the last few tokens of the prompt separately in order to allow for a checkpoint to be created.
- if (do_checkpoint && slot.task->n_tokens() - slot.prompt.n_tokens() == 64) {
- break;
- }
- }
- // SLT_INF(slot, "new slot.prompt.tokens: %s\n", slot.slot.prompt.tokens.str().c_str());
- SLT_INF(slot, "prompt processing progress, n_tokens = %d, batch.n_tokens = %d, progress = %f\n", slot.prompt.n_tokens(), batch.n_tokens, (float) slot.prompt.n_tokens() / slot.task->n_tokens());
- // entire prompt has been processed
- if (slot.prompt.n_tokens() == slot.task->n_tokens()) {
- slot.state = SLOT_STATE_DONE_PROMPT;
- GGML_ASSERT(batch.n_tokens > 0);
- common_sampler_reset(slot.smpl);
- // Process all prompt tokens through sampler system
- for (int i = 0; i < slot.task->n_tokens(); ++i) {
- llama_token id = input_tokens[i];
- if (id != LLAMA_TOKEN_NULL) {
- common_sampler_accept(slot.smpl, id, false);
- }
- }
- // extract the logits only for the last token
- batch.logits[batch.n_tokens - 1] = true;
- slot.n_decoded = 0;
- slot.i_batch = batch.n_tokens - 1;
- SLT_INF(slot, "prompt done, n_tokens = %d, batch.n_tokens = %d\n", slot.prompt.n_tokens(), batch.n_tokens);
- const auto pos_min = llama_memory_seq_pos_min(llama_get_memory(ctx), slot.id);
- const auto pos_max = llama_memory_seq_pos_max(llama_get_memory(ctx), slot.id);
- // no need for empty or small checkpoints
- do_checkpoint = do_checkpoint && (pos_min >= 0 && pos_max >= 64);
- // no need to create checkpoints that are too close together
- do_checkpoint = do_checkpoint && (slot.prompt.checkpoints.empty() || pos_max > slot.prompt.checkpoints.back().pos_max + 64);
- if (do_checkpoint) {
- while (slot.prompt.checkpoints.size() >= (size_t) params_base.n_ctx_checkpoints) {
- // make room for the new checkpoint, if needed
- const auto & cur = slot.prompt.checkpoints.front();
- SLT_WRN(slot, "erasing old context checkpoint (pos_min = %d, pos_max = %d, size = %.3f MiB)\n",
- cur.pos_min, cur.pos_max, (float) cur.data.size() / 1024 / 1024);
- slot.prompt.checkpoints.erase(slot.prompt.checkpoints.begin());
- }
- const size_t checkpoint_size = llama_state_seq_get_size_ext(ctx, slot.id, LLAMA_STATE_SEQ_FLAGS_PARTIAL_ONLY);
- auto & cur = slot.prompt.checkpoints.emplace_back(server_prompt_checkpoint{
- /*.pos_min = */ pos_min,
- /*.pos_max = */ pos_max,
- /*.data = */ std::vector<uint8_t>(checkpoint_size),
- });
- llama_state_seq_get_data_ext(ctx, cur.data.data(), checkpoint_size, slot.id, LLAMA_STATE_SEQ_FLAGS_PARTIAL_ONLY);
- SLT_WRN(slot, "created context checkpoint %d of %d (pos_min = %d, pos_max = %d, size = %.3f MiB)\n",
- (int) slot.prompt.checkpoints.size(), params_base.n_ctx_checkpoints, cur.pos_min, cur.pos_max, (float) cur.data.size() / 1024 / 1024);
- }
- }
- }
- if (!slot_batched) {
- slot_batched = &slot;
- }
- if (batch.n_tokens >= n_batch) {
- break;
- }
- }
- }
- if (batch.n_tokens == 0) {
- SRV_WRN("%s", "no tokens to decode\n");
- return;
- }
- SRV_DBG("decoding batch, n_tokens = %d\n", batch.n_tokens);
- if (slot_batched) {
- // apply lora, only need to do it once per batch
- common_set_adapter_lora(ctx, slot_batched->lora);
- // if the lora is temporarily disabled for an alora, re-enable it
- // for next time
- if (alora_scale > 0.0f) {
- SRV_DBG("re-enabling alora with scale %f\n", alora_scale);
- slot_batched->lora[alora_disabled_id].scale = alora_scale;
- }
- llama_set_embeddings(ctx, slot_batched->need_embd());
- }
- int32_t i_next = 0;
- // process the created batch of tokens
- for (int32_t i = 0; i < batch.n_tokens; i = i_next) {
- const int32_t n_tokens = std::min(n_batch, batch.n_tokens - i);
- llama_batch batch_view = {
- n_tokens,
- batch.token + i,
- nullptr,
- batch.pos + i,
- batch.n_seq_id + i,
- batch.seq_id + i,
- batch.logits + i,
- };
- const int ret = llama_decode(ctx, batch_view);
- metrics.on_decoded(slots);
- if (ret != 0) {
- {
- std::string err;
- if (n_batch == 1 && ret == 1) {
- // TODO: try to terminate only the largest active slot/sequence and continue with the rest
- // need to remove the tokens from the current batch too
- err = "Context size has been exceeded.";
- }
- if (ret == -1) {
- err = "Invalid input batch.";
- }
- if (ret < -1) {
- // TODO: update slot state based on llama_memory_seq_pos_min() and llama_memory_seq_pos_max()
- err = "Compute error.";
- }
- // TODO: handle ret == 2 (abort) when we start aborting
- if (!err.empty()) {
- SRV_ERR("%s i = %d, n_batch = %d, ret = %d\n", err.c_str(), i, n_batch, ret);
- for (auto & slot : slots) {
- if (slot.is_processing()) {
- send_error(slot, err);
- slot.release();
- // note: it's complicated to keep track of how much of the current batch has been
- // processed before the error occurred, so we simply clear the entire context
- clear_slot(slot);
- }
- }
- break;
- }
- }
- // retry with half the batch size to try to find a free slot in the KV cache
- if (!try_clear_idle_slots()) {
- n_batch /= 2;
- }
- SRV_WRN("failed to find free space in the KV cache, retrying with smaller batch size, i = %d, n_batch = %d, ret = %d\n", i, n_batch, ret);
- continue; // continue loop of n_batch
- }
- // move the head of the batch forward with the number of tokens we just processed
- i_next = i + n_tokens;
- // on successful decode, restore the original batch size
- n_batch = llama_n_batch(ctx);
- for (auto & slot : slots) {
- // optionally send prompt processing progress
- if (slot.state == SLOT_STATE_PROCESSING_PROMPT || slot.state == SLOT_STATE_DONE_PROMPT) {
- if (slot.task->params.stream && slot.task->params.return_progress) {
- send_partial_response(slot, {}, true);
- }
- }
- if (slot.i_batch < (int) i || slot.i_batch >= (int) (i + n_tokens)) {
- continue; // continue loop of slots
- }
- if (slot.state == SLOT_STATE_DONE_PROMPT) {
- if (slot.task->type == SERVER_TASK_TYPE_EMBEDDING) {
- // prompt evaluated for embedding
- send_embedding(slot, batch_view);
- slot.release();
- slot.i_batch = -1;
- continue; // continue loop of slots
- }
- if (slot.task->type == SERVER_TASK_TYPE_RERANK) {
- send_rerank(slot, batch_view);
- slot.release();
- slot.i_batch = -1;
- continue; // continue loop of slots
- }
- // prompt evaluated for next-token prediction
- slot.state = SLOT_STATE_GENERATING;
- } else if (slot.state != SLOT_STATE_GENERATING) {
- continue; // continue loop of slots
- }
- const int tok_idx = slot.i_batch - i;
- llama_token id = common_sampler_sample(slot.smpl, ctx, tok_idx);
- slot.i_batch = -1;
- common_sampler_accept(slot.smpl, id, true);
- slot.n_decoded += 1;
- const int64_t t_current = ggml_time_us();
- if (slot.n_decoded == 1) {
- slot.t_start_generation = t_current;
- slot.t_prompt_processing = (slot.t_start_generation - slot.t_start_process_prompt) / 1e3;
- metrics.on_prompt_eval(slot);
- }
- slot.t_token_generation = std::max<int64_t>(1, t_current - slot.t_start_generation) / 1e3;
- completion_token_output result;
- result.tok = id;
- result.text_to_send = common_token_to_piece(ctx, result.tok, accept_special_token(slot, result.tok));
- result.prob = 1.0f; // TODO: set it here instead of doing inside populate_token_probs
- if (slot.task->params.sampling.n_probs > 0) {
- populate_token_probs(slot, result, slot.task->params.post_sampling_probs, params_base.special, tok_idx);
- }
- if (!process_token(result, slot)) {
- // release slot because of stop condition
- slot.print_timings();
- send_final_response(slot);
- metrics.on_prediction(slot);
- slot.release();
- continue;
- }
- }
- // do speculative decoding
- // TODO: rework to have a single draft llama_context shared across all slots [TAG_SERVER_SPEC_REWORK]
- // perform the speculative drafting for all sequences at the same time in a single batch
- for (auto & slot : slots) {
- if (!slot.is_processing() || !slot.can_speculate()) {
- continue;
- }
- if (slot.state != SLOT_STATE_GENERATING) {
- continue;
- }
- if (mctx) {
- // we should never reach this, as speculative is automatically disabled if mmproj is loaded
- GGML_ABORT("not supported by multimodal");
- }
- // determine the max draft that fits the current slot state
- int n_draft_max = slot.task->params.speculative.n_max;
- // note: slot.prompt is not yet expanded with the `id` token sampled above
- // also, need to leave space for 1 extra token to allow context shifts
- n_draft_max = std::min(n_draft_max, slot.n_ctx - slot.prompt.n_tokens() - 2);
- if (slot.n_remaining > 0) {
- n_draft_max = std::min(n_draft_max, slot.n_remaining - 1);
- }
- SLT_DBG(slot, "max possible draft: %d\n", n_draft_max);
- if (n_draft_max < slot.task->params.speculative.n_min) {
- SLT_DBG(slot, "the max possible draft is too small: %d < %d - skipping speculative decoding\n", n_draft_max, slot.task->params.speculative.n_min);
- continue;
- }
- llama_token id = slot.sampled;
- struct common_speculative_params params_spec;
- params_spec.n_draft = n_draft_max;
- params_spec.n_reuse = llama_n_ctx(slot.ctx_dft) - slot.task->params.speculative.n_max;
- params_spec.p_min = slot.task->params.speculative.p_min;
- const llama_tokens & cached_text_tokens = slot.prompt.tokens.get_text_tokens();
- llama_tokens draft = common_speculative_gen_draft(slot.spec, params_spec, cached_text_tokens, id);
- // ignore small drafts
- if (slot.task->params.speculative.n_min > (int) draft.size()) {
- SLT_DBG(slot, "ignoring small draft: %d < %d\n", (int) draft.size(), slot.task->params.speculative.n_min);
- continue;
- }
- // keep track of total number of drafted tokens tested
- slot.n_draft_total += draft.size();
- // construct the speculation batch
- common_batch_clear(slot.batch_spec);
- common_batch_add (slot.batch_spec, id, slot.prompt.tokens.pos_next(), { slot.id }, true);
- for (size_t i = 0; i < draft.size(); ++i) {
- common_batch_add(slot.batch_spec, draft[i], slot.prompt.tokens.pos_next() + 1 + i, { slot.id }, true);
- }
- SLT_DBG(slot, "decoding speculative batch, size = %d\n", slot.batch_spec.n_tokens);
- llama_decode(ctx, slot.batch_spec);
- // the accepted tokens from the speculation
- const auto ids = common_sampler_sample_and_accept_n(slot.smpl, ctx, draft);
- slot.n_decoded += ids.size();
- // update how many tokens out of those tested were accepted
- slot.n_draft_accepted += ids.size() - 1;
- slot.prompt.tokens.push_back(id);
- slot.prompt.tokens.insert({ids.begin(), ids.end() - 1});
- llama_memory_seq_rm(llama_get_memory(ctx), slot.id, slot.prompt.n_tokens(), -1);
- for (size_t i = 0; i < ids.size(); ++i) {
- completion_token_output result;
- result.tok = ids[i];
- result.text_to_send = common_token_to_piece(ctx, result.tok, accept_special_token(slot, result.tok));
- result.prob = 1.0f; // set later
- // TODO: set result.probs
- if (!process_token(result, slot)) {
- slot.print_timings();
- send_final_response(slot);
- metrics.on_prediction(slot);
- slot.release();
- break;
- }
- }
- SLT_DBG(slot, "accepted %d/%d draft tokens, new n_tokens = %d\n", (int) ids.size() - 1, (int) draft.size(), slot.prompt.n_tokens());
- }
- }
- SRV_DBG("%s", "run slots completed\n");
- }
- json model_meta() const {
- return json {
- {"vocab_type", llama_vocab_type (vocab)},
- {"n_vocab", llama_vocab_n_tokens (vocab)},
- {"n_ctx_train", llama_model_n_ctx_train(model)},
- {"n_embd", llama_model_n_embd (model)},
- {"n_params", llama_model_n_params (model)},
- {"size", llama_model_size (model)},
- };
- }
- int get_slot_n_ctx() {
- return slots.back().n_ctx;
- }
- };
- //
- // server_context (public API)
- //
- server_context::server_context() : impl(new server_context_impl()) {}
- server_context::~server_context() = default;
- void server_context::init() {
- impl->init();
- }
- bool server_context::load_model(const common_params & params) {
- return impl->load_model(params);
- }
- void server_context::start_loop() {
- impl->queue_tasks.start_loop();
- }
- void server_context::terminate() {
- impl->queue_tasks.terminate();
- }
- llama_context * server_context::get_llama_context() const {
- return impl->ctx;
- }
- std::pair<server_queue &, server_response &> server_context::get_queues() {
- return { impl->queue_tasks, impl->queue_results };
- }
- // generator-like API for HTTP response generation
- struct server_res_generator : server_http_res {
- server_response_reader rd;
- server_res_generator(server_context_impl & ctx_server)
- : rd({ctx_server.queue_tasks, ctx_server.queue_results}, HTTP_POLLING_SECONDS) {}
- void ok(const json & response_data) {
- status = 200;
- data = safe_json_to_str(response_data);
- }
- void error(const json & error_data) {
- status = json_value(error_data, "code", 500);
- data = safe_json_to_str({{ "error", error_data }});
- }
- };
- //
- // server_routes
- //
- static std::unique_ptr<server_res_generator> handle_completions_impl(
- server_context_impl & ctx_server,
- server_task_type type,
- const json & data,
- const std::vector<raw_buffer> & files,
- const std::function<bool()> & should_stop,
- task_response_type res_type) {
- GGML_ASSERT(type == SERVER_TASK_TYPE_COMPLETION || type == SERVER_TASK_TYPE_INFILL);
- auto res = std::make_unique<server_res_generator>(ctx_server);
- auto completion_id = gen_chatcmplid();
- auto & rd = res->rd;
- try {
- std::vector<server_task> tasks;
- const auto & prompt = data.at("prompt");
- // TODO: this log can become very long, put it behind a flag or think about a more compact format
- //SRV_DBG("Prompt: %s\n", prompt.is_string() ? prompt.get<std::string>().c_str() : prompt.dump(2).c_str());
- // process prompt
- std::vector<server_tokens> inputs;
- if (res_type != TASK_RESPONSE_TYPE_NONE && ctx_server.mctx != nullptr) {
- // This is the case used by OAI compatible chat path with MTMD. TODO It can be moved to the path below.
- inputs.push_back(process_mtmd_prompt(ctx_server.mctx, prompt.get<std::string>(), files));
- } else {
- // Everything else, including multimodal completions.
- inputs = tokenize_input_prompts(ctx_server.vocab, ctx_server.mctx, prompt, true, true);
- }
- tasks.reserve(inputs.size());
- for (size_t i = 0; i < inputs.size(); i++) {
- server_task task = server_task(type);
- task.id = ctx_server.queue_tasks.get_new_id();
- task.index = i;
- task.tokens = std::move(inputs[i]);
- task.params = server_task::params_from_json_cmpl(
- ctx_server.ctx,
- ctx_server.params_base,
- data);
- task.id_slot = json_value(data, "id_slot", -1);
- // OAI-compat
- task.params.res_type = res_type;
- task.params.oaicompat_cmpl_id = completion_id;
- task.params.oaicompat_model = ctx_server.model_name;
- tasks.push_back(std::move(task));
- }
- rd.post_tasks(std::move(tasks));
- } catch (const std::exception & e) {
- res->error(format_error_response(e.what(), ERROR_TYPE_INVALID_REQUEST));
- return res;
- }
- bool stream = json_value(data, "stream", false);
- if (!stream) {
- // non-stream, wait for the results
- auto all_results = rd.wait_for_all(should_stop);
- if (all_results.is_terminated) {
- return res; // connection is closed
- } else if (all_results.error) {
- res->error(all_results.error->to_json());
- return res;
- } else {
- json arr = json::array();
- for (auto & res : all_results.results) {
- GGML_ASSERT(dynamic_cast<server_task_result_cmpl_final*>(res.get()) != nullptr);
- arr.push_back(res->to_json());
- }
- // if single request, return single object instead of array
- res->ok(arr.size() == 1 ? arr[0] : arr);
- }
- } else {
- // in streaming mode, the first error must be treated as non-stream response
- // this is to match the OAI API behavior
- // ref: https://github.com/ggml-org/llama.cpp/pull/16486#discussion_r2419657309
- server_task_result_ptr first_result = rd.next(should_stop);
- if (first_result == nullptr) {
- return res; // connection is closed
- } else if (first_result->is_error()) {
- res->error(first_result->to_json());
- return res;
- } else {
- GGML_ASSERT(
- dynamic_cast<server_task_result_cmpl_partial*>(first_result.get()) != nullptr
- || dynamic_cast<server_task_result_cmpl_final*>(first_result.get()) != nullptr
- );
- }
- // next responses are streamed
- if (res_type == TASK_RESPONSE_TYPE_ANTHROPIC) {
- res->data = format_anthropic_sse(first_result->to_json());
- } else {
- res->data = format_oai_sse(first_result->to_json()); // to be sent immediately
- }
- res->status = 200;
- res->content_type = "text/event-stream";
- res->next = [res_this = res.get(), res_type, &should_stop](std::string & output) -> bool {
- if (should_stop()) {
- SRV_DBG("%s", "stopping streaming due to should_stop condition\n");
- return false; // should_stop condition met
- }
- if (!res_this->data.empty()) {
- // flush the first chunk
- output = std::move(res_this->data);
- res_this->data.clear();
- return true;
- }
- server_response_reader & rd = res_this->rd;
- // check if there is more data
- if (!rd.has_next()) {
- if (res_type == TASK_RESPONSE_TYPE_ANTHROPIC) {
- // Anthropic doesn't send [DONE], message_stop was already sent
- output = "";
- } else if (res_type != TASK_RESPONSE_TYPE_NONE) {
- output = "data: [DONE]\n\n";
- } else {
- output = "";
- }
- SRV_DBG("%s", "all results received, terminating stream\n");
- return false; // no more data, terminate
- }
- // receive subsequent results
- auto result = rd.next(should_stop);
- if (result == nullptr) {
- SRV_DBG("%s", "stopping streaming due to should_stop condition\n");
- return false; // should_stop condition met
- }
- // send the results
- json res_json = result->to_json();
- if (result->is_error()) {
- if (res_type == TASK_RESPONSE_TYPE_ANTHROPIC) {
- output = format_anthropic_sse({
- {"event", "error"},
- {"data", res_json},
- });
- } else {
- output = format_oai_sse(json {{ "error", res_json }});
- }
- SRV_DBG("%s", "error received during streaming, terminating stream\n");
- return false; // terminate on error
- } else {
- GGML_ASSERT(
- dynamic_cast<server_task_result_cmpl_partial*>(result.get()) != nullptr
- || dynamic_cast<server_task_result_cmpl_final*>(result.get()) != nullptr
- );
- if (res_type == TASK_RESPONSE_TYPE_ANTHROPIC) {
- output = format_anthropic_sse(res_json);
- } else {
- output = format_oai_sse(res_json);
- }
- }
- // has next data, continue
- return true;
- };
- }
- return res;
- }
- void server_routes::init_routes() {
- this->get_health = [this](const server_http_req &) {
- // error and loading states are handled by middleware
- auto res = std::make_unique<server_res_generator>(ctx_server);
- res->ok({{"status", "ok"}});
- return res;
- };
- this->get_metrics = [this](const server_http_req &) {
- auto res = std::make_unique<server_res_generator>(ctx_server);
- if (!params.endpoint_metrics) {
- res->error(format_error_response("This server does not support metrics endpoint. Start it with `--metrics`", ERROR_TYPE_NOT_SUPPORTED));
- return res;
- }
- // request slots data using task queue
- // TODO: use server_response_reader
- int task_id = ctx_server.queue_tasks.get_new_id();
- {
- server_task task(SERVER_TASK_TYPE_METRICS);
- task.id = task_id;
- ctx_server.queue_results.add_waiting_task_id(task_id);
- ctx_server.queue_tasks.post(std::move(task), true); // high-priority task
- }
- // get the result
- server_task_result_ptr result = ctx_server.queue_results.recv(task_id);
- ctx_server.queue_results.remove_waiting_task_id(task_id);
- if (result->is_error()) {
- res->error(result->to_json());
- return res;
- }
- // TODO: get rid of this dynamic_cast
- auto res_task = dynamic_cast<server_task_result_metrics*>(result.get());
- GGML_ASSERT(res_task != nullptr);
- // metrics definition: https://prometheus.io/docs/practices/naming/#metric-names
- json all_metrics_def = json {
- {"counter", {{
- {"name", "prompt_tokens_total"},
- {"help", "Number of prompt tokens processed."},
- {"value", (uint64_t) res_task->n_prompt_tokens_processed_total}
- }, {
- {"name", "prompt_seconds_total"},
- {"help", "Prompt process time"},
- {"value", (uint64_t) res_task->t_prompt_processing_total / 1.e3}
- }, {
- {"name", "tokens_predicted_total"},
- {"help", "Number of generation tokens processed."},
- {"value", (uint64_t) res_task->n_tokens_predicted_total}
- }, {
- {"name", "tokens_predicted_seconds_total"},
- {"help", "Predict process time"},
- {"value", (uint64_t) res_task->t_tokens_generation_total / 1.e3}
- }, {
- {"name", "n_decode_total"},
- {"help", "Total number of llama_decode() calls"},
- {"value", res_task->n_decode_total}
- }, {
- {"name", "n_tokens_max"},
- {"help", "Largest observed n_tokens."},
- {"value", res_task->n_tokens_max}
- }, {
- {"name", "n_busy_slots_per_decode"},
- {"help", "Average number of busy slots per llama_decode() call"},
- {"value", (float) res_task->n_busy_slots_total / std::max((float) res_task->n_decode_total, 1.f)}
- }}},
- {"gauge", {{
- {"name", "prompt_tokens_seconds"},
- {"help", "Average prompt throughput in tokens/s."},
- {"value", res_task->n_prompt_tokens_processed ? 1.e3 / res_task->t_prompt_processing * res_task->n_prompt_tokens_processed : 0.}
- },{
- {"name", "predicted_tokens_seconds"},
- {"help", "Average generation throughput in tokens/s."},
- {"value", res_task->n_tokens_predicted ? 1.e3 / res_task->t_tokens_generation * res_task->n_tokens_predicted : 0.}
- },{
- {"name", "requests_processing"},
- {"help", "Number of requests processing."},
- {"value", (uint64_t) res_task->n_processing_slots}
- },{
- {"name", "requests_deferred"},
- {"help", "Number of requests deferred."},
- {"value", (uint64_t) res_task->n_tasks_deferred}
- }}}
- };
- std::stringstream prometheus;
- for (const auto & el : all_metrics_def.items()) {
- const auto & type = el.key();
- const auto & metrics_def = el.value();
- for (const auto & metric_def : metrics_def) {
- const std::string name = metric_def.at("name");
- const std::string help = metric_def.at("help");
- auto value = json_value(metric_def, "value", 0.);
- prometheus << "# HELP llamacpp:" << name << " " << help << "\n"
- << "# TYPE llamacpp:" << name << " " << type << "\n"
- << "llamacpp:" << name << " " << value << "\n";
- }
- }
- res->headers["Process-Start-Time-Unix"] = std::to_string(res_task->t_start);
- res->content_type = "text/plain; version=0.0.4";
- res->status = 200;
- res->data = prometheus.str();
- return res;
- };
- this->get_slots = [this](const server_http_req & req) {
- auto res = std::make_unique<server_res_generator>(ctx_server);
- if (!params.endpoint_slots) {
- res->error(format_error_response("This server does not support slots endpoint. Start it with `--slots`", ERROR_TYPE_NOT_SUPPORTED));
- return res;
- }
- // request slots data using task queue
- int task_id = ctx_server.queue_tasks.get_new_id();
- {
- server_task task(SERVER_TASK_TYPE_METRICS);
- task.id = task_id;
- ctx_server.queue_results.add_waiting_task_id(task_id);
- ctx_server.queue_tasks.post(std::move(task), true); // high-priority task
- }
- // get the result
- server_task_result_ptr result = ctx_server.queue_results.recv(task_id);
- ctx_server.queue_results.remove_waiting_task_id(task_id);
- if (result->is_error()) {
- res->error(result->to_json());
- return res;
- }
- // TODO: get rid of this dynamic_cast
- auto res_task = dynamic_cast<server_task_result_metrics*>(result.get());
- GGML_ASSERT(res_task != nullptr);
- // optionally return "fail_on_no_slot" error
- if (!req.get_param("fail_on_no_slot").empty()) {
- if (res_task->n_idle_slots == 0) {
- res->error(format_error_response("no slot available", ERROR_TYPE_UNAVAILABLE));
- return res;
- }
- }
- res->ok(res_task->slots_data);
- return res;
- };
- this->post_slots = [this](const server_http_req & req) {
- auto res = std::make_unique<server_res_generator>(ctx_server);
- if (params.slot_save_path.empty()) {
- res->error(format_error_response("This server does not support slots action. Start it with `--slot-save-path`", ERROR_TYPE_NOT_SUPPORTED));
- return res;
- }
- std::string id_slot_str = req.get_param("id_slot");
- int id_slot;
- try {
- id_slot = std::stoi(id_slot_str);
- } catch (const std::exception &) {
- res->error(format_error_response("Invalid slot ID", ERROR_TYPE_INVALID_REQUEST));
- return res;
- }
- std::string action = req.get_param("action");
- if (action == "save") {
- return handle_slots_save(req, id_slot);
- } else if (action == "restore") {
- return handle_slots_restore(req, id_slot);
- } else if (action == "erase") {
- return handle_slots_erase(req, id_slot);
- } else {
- res->error(format_error_response("Invalid action", ERROR_TYPE_INVALID_REQUEST));
- return res;
- }
- };
- this->get_props = [this](const server_http_req &) {
- auto res = std::make_unique<server_res_generator>(ctx_server);
- json default_generation_settings_for_props;
- {
- task_params params;
- params.sampling = ctx_server.params_base.sampling;
- default_generation_settings_for_props = json {
- {"params", params.to_json(true)},
- {"n_ctx", ctx_server.get_slot_n_ctx()},
- };
- }
- // this endpoint is publicly available, please only return what is safe to be exposed
- json data = {
- { "default_generation_settings", default_generation_settings_for_props },
- { "total_slots", ctx_server.params_base.n_parallel },
- { "model_alias", ctx_server.model_name },
- { "model_path", ctx_server.params_base.model.path },
- { "modalities", json {
- {"vision", ctx_server.oai_parser_opt.allow_image},
- {"audio", ctx_server.oai_parser_opt.allow_audio},
- } },
- { "endpoint_slots", params.endpoint_slots },
- { "endpoint_props", params.endpoint_props },
- { "endpoint_metrics", params.endpoint_metrics },
- { "webui", params.webui },
- { "chat_template", common_chat_templates_source(ctx_server.chat_templates.get()) },
- { "bos_token", common_token_to_piece(ctx_server.ctx, llama_vocab_bos(ctx_server.vocab), /* special= */ true)},
- { "eos_token", common_token_to_piece(ctx_server.ctx, llama_vocab_eos(ctx_server.vocab), /* special= */ true)},
- { "build_info", build_info },
- };
- if (ctx_server.params_base.use_jinja) {
- if (auto tool_use_src = common_chat_templates_source(ctx_server.chat_templates.get(), "tool_use")) {
- data["chat_template_tool_use"] = tool_use_src;
- }
- }
- res->ok(data);
- return res;
- };
- this->post_props = [this](const server_http_req &) {
- auto res = std::make_unique<server_res_generator>(ctx_server);
- if (!params.endpoint_props) {
- res->error(format_error_response("This server does not support changing global properties. Start it with `--props`", ERROR_TYPE_NOT_SUPPORTED));
- return res;
- }
- // update any props here
- res->ok({{ "success", true }});
- return res;
- };
- this->get_api_show = [this](const server_http_req &) {
- auto res = std::make_unique<server_res_generator>(ctx_server);
- bool has_mtmd = ctx_server.mctx != nullptr;
- json data = {
- {
- "template", common_chat_templates_source(ctx_server.chat_templates.get()),
- },
- {
- "model_info", {
- { "llama.context_length", ctx_server.get_slot_n_ctx() },
- }
- },
- {"modelfile", ""},
- {"parameters", ""},
- {"template", common_chat_templates_source(ctx_server.chat_templates.get())},
- {"details", {
- {"parent_model", ""},
- {"format", "gguf"},
- {"family", ""},
- {"families", {""}},
- {"parameter_size", ""},
- {"quantization_level", ""}
- }},
- {"model_info", ""},
- {"capabilities", has_mtmd ? json({"completion","multimodal"}) : json({"completion"})}
- };
- res->ok(data);
- return res;
- };
- this->post_infill = [this](const server_http_req & req) {
- auto res = std::make_unique<server_res_generator>(ctx_server);
- // check model compatibility
- std::string err;
- if (llama_vocab_fim_pre(ctx_server.vocab) == LLAMA_TOKEN_NULL) {
- err += "prefix token is missing. ";
- }
- if (llama_vocab_fim_suf(ctx_server.vocab) == LLAMA_TOKEN_NULL) {
- err += "suffix token is missing. ";
- }
- if (llama_vocab_fim_mid(ctx_server.vocab) == LLAMA_TOKEN_NULL) {
- err += "middle token is missing. ";
- }
- if (!err.empty()) {
- res->error(format_error_response(string_format("Infill is not supported by this model: %s", err.c_str()), ERROR_TYPE_NOT_SUPPORTED));
- return res;
- }
- // validate input
- json data = json::parse(req.body);
- if (data.contains("prompt") && !data.at("prompt").is_string()) {
- // prompt is optional
- res->error(format_error_response("\"prompt\" must be a string", ERROR_TYPE_INVALID_REQUEST));
- }
- if (!data.contains("input_prefix")) {
- res->error(format_error_response("\"input_prefix\" is required", ERROR_TYPE_INVALID_REQUEST));
- }
- if (!data.contains("input_suffix")) {
- res->error(format_error_response("\"input_suffix\" is required", ERROR_TYPE_INVALID_REQUEST));
- }
- if (data.contains("input_extra") && !data.at("input_extra").is_array()) {
- // input_extra is optional
- res->error(format_error_response("\"input_extra\" must be an array of {\"filename\": string, \"text\": string}", ERROR_TYPE_INVALID_REQUEST));
- return res;
- }
- json input_extra = json_value(data, "input_extra", json::array());
- for (const auto & chunk : input_extra) {
- // { "text": string, "filename": string }
- if (!chunk.contains("text") || !chunk.at("text").is_string()) {
- res->error(format_error_response("extra_context chunk must contain a \"text\" field with a string value", ERROR_TYPE_INVALID_REQUEST));
- return res;
- }
- // filename is optional
- if (chunk.contains("filename") && !chunk.at("filename").is_string()) {
- res->error(format_error_response("extra_context chunk's \"filename\" field must be a string", ERROR_TYPE_INVALID_REQUEST));
- return res;
- }
- }
- data["input_extra"] = input_extra; // default to empty array if it's not exist
- std::string prompt = json_value(data, "prompt", std::string());
- std::vector<server_tokens> tokenized_prompts = tokenize_input_prompts(ctx_server.vocab, ctx_server.mctx, prompt, false, true);
- SRV_DBG("creating infill tasks, n_prompts = %d\n", (int) tokenized_prompts.size());
- data["prompt"] = format_prompt_infill(
- ctx_server.vocab,
- data.at("input_prefix"),
- data.at("input_suffix"),
- data.at("input_extra"),
- ctx_server.params_base.n_batch,
- ctx_server.params_base.n_predict,
- ctx_server.get_slot_n_ctx(),
- ctx_server.params_base.spm_infill,
- tokenized_prompts[0].get_text_tokens() // TODO: this could maybe be multimodal.
- );
- std::vector<raw_buffer> files; // dummy
- return handle_completions_impl(
- ctx_server,
- SERVER_TASK_TYPE_INFILL,
- data,
- files,
- req.should_stop,
- TASK_RESPONSE_TYPE_NONE); // infill is not OAI compatible
- };
- this->post_completions = [this](const server_http_req & req) {
- std::vector<raw_buffer> files; // dummy
- const json body = json::parse(req.body);
- return handle_completions_impl(
- ctx_server,
- SERVER_TASK_TYPE_COMPLETION,
- body,
- files,
- req.should_stop,
- TASK_RESPONSE_TYPE_NONE);
- };
- this->post_completions_oai = [this](const server_http_req & req) {
- std::vector<raw_buffer> files; // dummy
- const json body = json::parse(req.body);
- return handle_completions_impl(
- ctx_server,
- SERVER_TASK_TYPE_COMPLETION,
- body,
- files,
- req.should_stop,
- TASK_RESPONSE_TYPE_OAI_CMPL);
- };
- this->post_chat_completions = [this](const server_http_req & req) {
- std::vector<raw_buffer> files;
- json body = json::parse(req.body);
- json body_parsed = oaicompat_chat_params_parse(
- body,
- ctx_server.oai_parser_opt,
- files);
- return handle_completions_impl(
- ctx_server,
- SERVER_TASK_TYPE_COMPLETION,
- body_parsed,
- files,
- req.should_stop,
- TASK_RESPONSE_TYPE_OAI_CHAT);
- };
- this->post_anthropic_messages = [this](const server_http_req & req) {
- std::vector<raw_buffer> files;
- json body = convert_anthropic_to_oai(json::parse(req.body));
- json body_parsed = oaicompat_chat_params_parse(
- body,
- ctx_server.oai_parser_opt,
- files);
- return handle_completions_impl(
- ctx_server,
- SERVER_TASK_TYPE_COMPLETION,
- body_parsed,
- files,
- req.should_stop,
- TASK_RESPONSE_TYPE_ANTHROPIC);
- };
- this->post_anthropic_count_tokens = [this](const server_http_req & req) {
- auto res = std::make_unique<server_res_generator>(ctx_server);
- std::vector<raw_buffer> files;
- json body = convert_anthropic_to_oai(json::parse(req.body));
- json body_parsed = oaicompat_chat_params_parse(
- body,
- ctx_server.oai_parser_opt,
- files);
- json prompt = body_parsed.at("prompt");
- llama_tokens tokens = tokenize_mixed(ctx_server.vocab, prompt, true, true);
- res->ok({{"input_tokens", static_cast<int>(tokens.size())}});
- return res;
- };
- // same with handle_chat_completions, but without inference part
- this->post_apply_template = [this](const server_http_req & req) {
- auto res = std::make_unique<server_res_generator>(ctx_server);
- std::vector<raw_buffer> files; // dummy, unused
- json body = json::parse(req.body);
- json data = oaicompat_chat_params_parse(
- body,
- ctx_server.oai_parser_opt,
- files);
- res->ok({{ "prompt", std::move(data.at("prompt")) }});
- return res;
- };
- this->get_models = [this](const server_http_req &) {
- auto res = std::make_unique<server_res_generator>(ctx_server);
- json model_meta = nullptr;
- if (is_ready()) {
- model_meta = ctx_server.model_meta();
- }
- bool has_mtmd = ctx_server.mctx != nullptr;
- json models = {
- {"models", {
- {
- {"name", ctx_server.model_name},
- {"model", ctx_server.model_name},
- {"modified_at", ""},
- {"size", ""},
- {"digest", ""}, // dummy value, llama.cpp does not support managing model file's hash
- {"type", "model"},
- {"description", ""},
- {"tags", {""}},
- {"capabilities", has_mtmd ? json({"completion","multimodal"}) : json({"completion"})},
- {"parameters", ""},
- {"details", {
- {"parent_model", ""},
- {"format", "gguf"},
- {"family", ""},
- {"families", {""}},
- {"parameter_size", ""},
- {"quantization_level", ""}
- }}
- }
- }},
- {"object", "list"},
- {"data", {
- {
- {"id", ctx_server.model_name},
- {"object", "model"},
- {"created", std::time(0)},
- {"owned_by", "llamacpp"},
- {"meta", model_meta},
- },
- }}
- };
- res->ok(models);
- return res;
- };
- this->post_tokenize = [this](const server_http_req & req) {
- auto res = std::make_unique<server_res_generator>(ctx_server);
- const json body = json::parse(req.body);
- json tokens_response = json::array();
- if (body.count("content") != 0) {
- const bool add_special = json_value(body, "add_special", false);
- const bool parse_special = json_value(body, "parse_special", true);
- const bool with_pieces = json_value(body, "with_pieces", false);
- llama_tokens tokens = tokenize_mixed(ctx_server.vocab, body.at("content"), add_special, parse_special);
- if (with_pieces) {
- for (const auto& token : tokens) {
- std::string piece = common_token_to_piece(ctx_server.ctx, token);
- json piece_json;
- // Check if the piece is valid UTF-8
- if (is_valid_utf8(piece)) {
- piece_json = piece;
- } else {
- // If not valid UTF-8, store as array of byte values
- piece_json = json::array();
- for (unsigned char c : piece) {
- piece_json.push_back(static_cast<int>(c));
- }
- }
- tokens_response.push_back({
- {"id", token},
- {"piece", piece_json}
- });
- }
- } else {
- tokens_response = tokens;
- }
- }
- res->ok(json{{"tokens", std::move(tokens_response)}});
- return res;
- };
- this->post_detokenize = [this](const server_http_req & req) {
- auto res = std::make_unique<server_res_generator>(ctx_server);
- const json body = json::parse(req.body);
- std::string content;
- if (body.count("tokens") != 0) {
- const llama_tokens tokens = body.at("tokens");
- content = tokens_to_str(ctx_server.ctx, tokens);
- }
- res->ok(json{{"content", std::move(content)}});
- return res;
- };
- this->post_embeddings = [this](const server_http_req & req) {
- return handle_embeddings_impl(req, TASK_RESPONSE_TYPE_NONE);
- };
- this->post_embeddings_oai = [this](const server_http_req & req) {
- return handle_embeddings_impl(req, TASK_RESPONSE_TYPE_OAI_EMBD);
- };
- this->post_rerank = [this](const server_http_req & req) {
- auto res = std::make_unique<server_res_generator>(ctx_server);
- if (!ctx_server.params_base.embedding || ctx_server.params_base.pooling_type != LLAMA_POOLING_TYPE_RANK) {
- res->error(format_error_response("This server does not support reranking. Start it with `--reranking`", ERROR_TYPE_NOT_SUPPORTED));
- return res;
- }
- const json body = json::parse(req.body);
- // if true, use TEI API format, otherwise use Jina API format
- // Jina: https://jina.ai/reranker/
- // TEI: https://huggingface.github.io/text-embeddings-inference/#/Text%20Embeddings%20Inference/rerank
- bool is_tei_format = body.contains("texts");
- json query;
- if (body.count("query") == 1) {
- query = body.at("query");
- if (!query.is_string()) {
- res->error(format_error_response("\"query\" must be a string", ERROR_TYPE_INVALID_REQUEST));
- return res;
- }
- } else {
- res->error(format_error_response("\"query\" must be provided", ERROR_TYPE_INVALID_REQUEST));
- return res;
- }
- std::vector<std::string> documents = json_value(body, "documents",
- json_value(body, "texts", std::vector<std::string>()));
- if (documents.empty()) {
- res->error(format_error_response("\"documents\" must be a non-empty string array", ERROR_TYPE_INVALID_REQUEST));
- return res;
- }
- int top_n = json_value(body, "top_n", (int)documents.size());
- // create and queue the task
- json responses = json::array();
- server_response_reader rd({ctx_server.queue_tasks, ctx_server.queue_results}, HTTP_POLLING_SECONDS);
- {
- std::vector<server_task> tasks;
- tasks.reserve(documents.size());
- for (size_t i = 0; i < documents.size(); i++) {
- auto tmp = format_prompt_rerank(ctx_server.model, ctx_server.vocab, ctx_server.mctx, query, documents[i]);
- server_task task = server_task(SERVER_TASK_TYPE_RERANK);
- task.id = ctx_server.queue_tasks.get_new_id();
- task.index = i;
- task.tokens = std::move(tmp);
- tasks.push_back(std::move(task));
- }
- rd.post_tasks(std::move(tasks));
- }
- // wait for the results
- auto all_results = rd.wait_for_all(req.should_stop);
- // collect results
- if (all_results.is_terminated) {
- return res; // connection is closed
- } else if (all_results.error) {
- res->error(all_results.error->to_json());
- return res;
- } else {
- for (auto & res : all_results.results) {
- GGML_ASSERT(dynamic_cast<server_task_result_rerank*>(res.get()) != nullptr);
- responses.push_back(res->to_json());
- }
- }
- // write JSON response
- json root = format_response_rerank(
- body,
- ctx_server.model_name,
- responses,
- is_tei_format,
- documents,
- top_n);
- res->ok(root);
- return res;
- };
- this->get_lora_adapters = [this](const server_http_req &) {
- auto res = std::make_unique<server_res_generator>(ctx_server);
- json result = json::array();
- const auto & loras = ctx_server.params_base.lora_adapters;
- for (size_t i = 0; i < loras.size(); ++i) {
- auto & lora = loras[i];
- json entry = {
- {"id", i},
- {"path", lora.path},
- {"scale", lora.scale},
- {"task_name", lora.task_name},
- {"prompt_prefix", lora.prompt_prefix},
- };
- std::string alora_invocation_string = "";
- const uint64_t n_alora_tokens = llama_adapter_get_alora_n_invocation_tokens(lora.ptr);
- std::vector<llama_token> alora_invocation_tokens;
- if (n_alora_tokens) {
- const llama_token * alora_tokens = llama_adapter_get_alora_invocation_tokens(lora.ptr);
- for (uint64_t i = 0; i < n_alora_tokens; ++i) {
- alora_invocation_string += common_token_to_piece(ctx_server.ctx, alora_tokens[i]);
- alora_invocation_tokens.push_back(alora_tokens[i]);
- }
- entry["alora_invocation_string"] = alora_invocation_string;
- entry["alora_invocation_tokens"] = alora_invocation_tokens;
- }
- result.push_back(std::move(entry));
- }
- res->ok(result);
- return res;
- };
- this->post_lora_adapters = [this](const server_http_req & req) {
- auto res = std::make_unique<server_res_generator>(ctx_server);
- const json body = json::parse(req.body);
- if (!body.is_array()) {
- res->error(format_error_response("Request body must be an array", ERROR_TYPE_INVALID_REQUEST));
- return res;
- }
- int task_id = ctx_server.queue_tasks.get_new_id();
- {
- server_task task(SERVER_TASK_TYPE_SET_LORA);
- task.id = task_id;
- task.set_lora = parse_lora_request(ctx_server.params_base.lora_adapters, body);
- ctx_server.queue_results.add_waiting_task_id(task_id);
- ctx_server.queue_tasks.post(std::move(task));
- }
- // get the result
- server_task_result_ptr result = ctx_server.queue_results.recv(task_id);
- ctx_server.queue_results.remove_waiting_task_id(task_id);
- if (result->is_error()) {
- res->error(result->to_json());
- return res;
- }
- GGML_ASSERT(dynamic_cast<server_task_result_apply_lora*>(result.get()) != nullptr);
- res->ok(result->to_json());
- return res;
- };
- }
- std::unique_ptr<server_res_generator> server_routes::handle_slots_save(const server_http_req & req, int id_slot) {
- auto res = std::make_unique<server_res_generator>(ctx_server);
- const json request_data = json::parse(req.body);
- std::string filename = request_data.at("filename");
- if (!fs_validate_filename(filename)) {
- res->error(format_error_response("Invalid filename", ERROR_TYPE_INVALID_REQUEST));
- return res;
- }
- std::string filepath = params.slot_save_path + filename;
- int task_id = ctx_server.queue_tasks.get_new_id();
- {
- server_task task(SERVER_TASK_TYPE_SLOT_SAVE);
- task.id = task_id;
- task.slot_action.slot_id = id_slot;
- task.slot_action.filename = filename;
- task.slot_action.filepath = filepath;
- // TODO: use server_response_reader
- ctx_server.queue_results.add_waiting_task_id(task_id);
- ctx_server.queue_tasks.post(std::move(task));
- }
- server_task_result_ptr result = ctx_server.queue_results.recv(task_id);
- ctx_server.queue_results.remove_waiting_task_id(task_id);
- if (result->is_error()) {
- res->error(result->to_json());
- return res;
- }
- res->ok(result->to_json());
- return res;
- }
- std::unique_ptr<server_res_generator> server_routes::handle_slots_restore(const server_http_req & req, int id_slot) {
- auto res = std::make_unique<server_res_generator>(ctx_server);
- const json request_data = json::parse(req.body);
- std::string filename = request_data.at("filename");
- if (!fs_validate_filename(filename)) {
- res->error(format_error_response("Invalid filename", ERROR_TYPE_INVALID_REQUEST));
- return res;
- }
- std::string filepath = params.slot_save_path + filename;
- int task_id = ctx_server.queue_tasks.get_new_id();
- {
- server_task task(SERVER_TASK_TYPE_SLOT_RESTORE);
- task.id = task_id;
- task.slot_action.slot_id = id_slot;
- task.slot_action.filename = filename;
- task.slot_action.filepath = filepath;
- // TODO: use server_response_reader
- ctx_server.queue_results.add_waiting_task_id(task_id);
- ctx_server.queue_tasks.post(std::move(task));
- }
- server_task_result_ptr result = ctx_server.queue_results.recv(task_id);
- ctx_server.queue_results.remove_waiting_task_id(task_id);
- if (result->is_error()) {
- res->error(result->to_json());
- return res;
- }
- GGML_ASSERT(dynamic_cast<server_task_result_slot_save_load*>(result.get()) != nullptr);
- res->ok(result->to_json());
- return res;
- }
- std::unique_ptr<server_res_generator> server_routes::handle_slots_erase(const server_http_req &, int id_slot) {
- auto res = std::make_unique<server_res_generator>(ctx_server);
- int task_id = ctx_server.queue_tasks.get_new_id();
- {
- server_task task(SERVER_TASK_TYPE_SLOT_ERASE);
- task.id = task_id;
- task.slot_action.slot_id = id_slot;
- // TODO: use server_response_reader
- ctx_server.queue_results.add_waiting_task_id(task_id);
- ctx_server.queue_tasks.post(std::move(task));
- }
- server_task_result_ptr result = ctx_server.queue_results.recv(task_id);
- ctx_server.queue_results.remove_waiting_task_id(task_id);
- if (result->is_error()) {
- res->error(result->to_json());
- return res;
- }
- GGML_ASSERT(dynamic_cast<server_task_result_slot_erase*>(result.get()) != nullptr);
- res->ok(result->to_json());
- return res;
- }
- std::unique_ptr<server_res_generator> server_routes::handle_embeddings_impl(const server_http_req & req, task_response_type res_type) {
- auto res = std::make_unique<server_res_generator>(ctx_server);
- if (!ctx_server.params_base.embedding) {
- res->error(format_error_response("This server does not support embeddings. Start it with `--embeddings`", ERROR_TYPE_NOT_SUPPORTED));
- return res;
- }
- if (res_type != TASK_RESPONSE_TYPE_NONE && llama_pooling_type(ctx_server.ctx) == LLAMA_POOLING_TYPE_NONE) {
- res->error(format_error_response("Pooling type 'none' is not OAI compatible. Please use a different pooling type", ERROR_TYPE_INVALID_REQUEST));
- return res;
- }
- const json body = json::parse(req.body);
- // for the shape of input/content, see tokenize_input_prompts()
- json prompt;
- if (body.count("input") != 0) {
- prompt = body.at("input");
- } else if (body.contains("content")) {
- res_type = TASK_RESPONSE_TYPE_NONE; // "content" field is not OAI compatible
- prompt = body.at("content");
- } else {
- res->error(format_error_response("\"input\" or \"content\" must be provided", ERROR_TYPE_INVALID_REQUEST));
- return res;
- }
- bool use_base64 = false;
- if (body.count("encoding_format") != 0) {
- const std::string& format = body.at("encoding_format");
- if (format == "base64") {
- use_base64 = true;
- } else if (format != "float") {
- res->error(format_error_response("The format to return the embeddings in. Can be either float or base64", ERROR_TYPE_INVALID_REQUEST));
- return res;
- }
- }
- auto tokenized_prompts = tokenize_input_prompts(ctx_server.vocab, ctx_server.mctx, prompt, true, true);
- for (const auto & tokens : tokenized_prompts) {
- // this check is necessary for models that do not add BOS token to the input
- if (tokens.empty()) {
- res->error(format_error_response("Input content cannot be empty", ERROR_TYPE_INVALID_REQUEST));
- return res;
- }
- }
- int embd_normalize = 2; // default to Euclidean/L2 norm
- if (body.count("embd_normalize") != 0) {
- embd_normalize = body.at("embd_normalize");
- if (llama_pooling_type(ctx_server.ctx) == LLAMA_POOLING_TYPE_NONE) {
- SRV_DBG("embd_normalize is not supported by pooling type %d, ignoring it\n", llama_pooling_type(ctx_server.ctx));
- }
- }
- // create and queue the task
- json responses = json::array();
- server_response_reader rd({ctx_server.queue_tasks, ctx_server.queue_results}, HTTP_POLLING_SECONDS);
- {
- std::vector<server_task> tasks;
- for (size_t i = 0; i < tokenized_prompts.size(); i++) {
- server_task task = server_task(SERVER_TASK_TYPE_EMBEDDING);
- task.id = ctx_server.queue_tasks.get_new_id();
- task.index = i;
- task.tokens = std::move(tokenized_prompts[i]);
- // OAI-compat
- task.params.res_type = res_type;
- task.params.embd_normalize = embd_normalize;
- tasks.push_back(std::move(task));
- }
- rd.post_tasks(std::move(tasks));
- }
- // wait for the results
- auto all_results = rd.wait_for_all(req.should_stop);
- // collect results
- if (all_results.is_terminated) {
- return res; // connection is closed
- } else if (all_results.error) {
- res->error(all_results.error->to_json());
- return res;
- } else {
- for (auto & res : all_results.results) {
- GGML_ASSERT(dynamic_cast<server_task_result_embd*>(res.get()) != nullptr);
- responses.push_back(res->to_json());
- }
- }
- // write JSON response
- json root = res_type == TASK_RESPONSE_TYPE_OAI_EMBD
- ? format_embeddings_response_oaicompat(body, ctx_server.model_name, responses, use_base64)
- : json(responses);
- res->ok(root);
- return res;
- }
|