| 1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082 |
- /*
- * Copyright (c) 2023-2024 The ggml authors
- *
- * Permission is hereby granted, free of charge, to any person obtaining a copy
- * of this software and associated documentation files (the "Software"), to
- * deal in the Software without restriction, including without limitation the
- * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
- * sell copies of the Software, and to permit persons to whom the Software is
- * furnished to do so, subject to the following conditions:
- *
- * The above copyright notice and this permission notice shall be included in
- * all copies or substantial portions of the Software.
- *
- * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
- * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
- * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
- * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
- * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
- * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
- * IN THE SOFTWARE.
- */
- #include "aclnn_ops.h"
- #include <aclnnop/aclnn_avgpool2d.h>
- #include <aclnnop/aclnn_cast.h>
- #include <aclnnop/aclnn_constant_pad_nd.h>
- #include <aclnnop/aclnn_copy.h>
- #include <aclnnop/aclnn_cos.h>
- #include <aclnnop/aclnn_exp.h>
- #include <aclnnop/aclnn_fill_scalar.h>
- #include <aclnnop/aclnn_group_norm.h>
- #include <aclnnop/aclnn_index_fill_tensor.h>
- #include <aclnnop/aclnn_layer_norm.h>
- #include <aclnnop/aclnn_matmul.h>
- #include <aclnnop/aclnn_max_pool.h>
- #include <aclnnop/aclnn_permute.h>
- #include <aclnnop/aclnn_pow_tensor_tensor.h>
- #include <aclnnop/aclnn_reduce_sum.h>
- #include <aclnnop/aclnn_repeat.h>
- #include <aclnnop/aclnn_repeat_interleave.h>
- #include <aclnnop/aclnn_roll.h>
- #include <aclnnop/aclnn_sin.h>
- #include <aclnnop/aclnn_softmax.h>
- #include <aclnnop/aclnn_tril.h>
- #include <aclnnop/aclnn_triu.h>
- #include <aclnnop/aclnn_upsample_nearest_2d.h>
- #include <aclnnop/aclnn_weight_quant_batch_matmul_v2.h>
- #include <float.h>
- #include <cmath>
- #include <cstring>
- #include <exception>
- #include <vector>
- #include "kernels/ascendc_kernels.h"
- #define GGML_COMMON_DECL_C
- #include "../ggml-common.h"
- /**
- * @brief Repeats elements of a tensor along each dimension according to the
- * specified repeat array.
- *
- * @param ctx The context for the CANN backend operations.
- * @param acl_src The source tensor to be repeated.
- * @param acl_dst The destination tensor after repeating.
- * @param repeat_array The array specifying the number of repetitions along each
- * dimension.
- */
- static void aclnn_repeat(ggml_backend_cann_context& ctx, aclTensor* acl_src,
- aclTensor* acl_dst, int64_t* repeat_array) {
- // repeat tensor along each dim with repeat_array
- aclIntArray* repeats = aclCreateIntArray(repeat_array, GGML_MAX_DIMS);
- uint64_t workspaceSize = 0;
- aclOpExecutor* executor;
- void* workspaceAddr = nullptr;
- ACL_CHECK(aclnnRepeatGetWorkspaceSize(acl_src, repeats, acl_dst,
- &workspaceSize, &executor));
- if (workspaceSize > 0) {
- // Memory from allocator will "free" immediately, and this memory
- // will be alloced to other pointers, but it won't access before
- // this async task end because all tasks in same stream will execute
- // in queue.
- ggml_cann_pool_alloc workspace_allocator(ctx.pool(), workspaceSize);
- workspaceAddr = workspace_allocator.get();
- }
- ACL_CHECK(
- aclnnRepeat(workspaceAddr, workspaceSize, executor, ctx.stream()));
- ACL_CHECK(aclDestroyIntArray(repeats));
- }
- void ggml_cann_repeat(ggml_backend_cann_context& ctx, ggml_tensor* dst) {
- ggml_tensor* src = dst->src[0];
- GGML_ASSERT(ggml_can_repeat(src, dst));
- aclTensor* acl_src = ggml_cann_create_tensor(src);
- aclTensor* acl_dst = ggml_cann_create_tensor(dst);
- int64_t repeatsArray[] = {dst->ne[3] / src->ne[3], dst->ne[2] / src->ne[2],
- dst->ne[1] / src->ne[1], dst->ne[0] / src->ne[0]};
- aclnn_repeat(ctx, acl_src, acl_dst, repeatsArray);
- ACL_CHECK(aclDestroyTensor(acl_src));
- ACL_CHECK(aclDestroyTensor(acl_dst));
- }
- /**
- * @brief Adds two tensors element-wise and stores the result in a destination
- * tensor.
- *
- * This function performs the operation:
- * \f[
- * dst = acl\_src0 + alpha \times acl\_src1
- * \f]
- * where alpha is a scalar value and defaults to 1.0f.
- *
- * @param ctx The context for the CANN backend operations.
- * @param acl_src0 The first source tensor.
- * @param acl_src1 The second source tensor.
- * @param acl_dst The destination tensor where the result will be stored.
- */
- static void aclnn_add(ggml_backend_cann_context& ctx, aclTensor* acl_src0,
- aclTensor* acl_src1, aclTensor* acl_dst) {
- aclScalar* alpha = nullptr;
- float alphaValue = 1.0f;
- alpha = aclCreateScalar(&alphaValue, aclDataType::ACL_FLOAT);
- uint64_t workspaceSize = 0;
- aclOpExecutor* executor;
- void* workspaceAddr = nullptr;
- ACL_CHECK(aclnnAddGetWorkspaceSize(acl_src0, acl_src1, alpha, acl_dst,
- &workspaceSize, &executor));
- if (workspaceSize > 0) {
- ggml_cann_pool_alloc workspace_allocator(ctx.pool(), workspaceSize);
- workspaceAddr = workspace_allocator.get();
- }
- ACL_CHECK(aclnnAdd(workspaceAddr, workspaceSize, executor, ctx.stream()));
- ACL_CHECK(aclDestroyScalar(alpha));
- }
- void ggml_cann_add(ggml_backend_cann_context& ctx, ggml_tensor* dst) {
- ggml_tensor* src0 = dst->src[0];
- ggml_tensor* src1 = dst->src[1];
- GGML_ASSERT(ggml_can_repeat(src1, src0) && ggml_are_same_shape(src0, dst));
- aclTensor* acl_src0;
- aclTensor* acl_src1;
- aclTensor* acl_dst;
- // Need bcast
- if (!ggml_are_same_shape(src0, src1) && ggml_cann_need_bcast(src0, src1)) {
- BCAST_SHAPE(src0, src1)
- acl_src0 = ggml_cann_create_tensor(src0, BCAST_PARAM(src0));
- acl_src1 = ggml_cann_create_tensor(src1, BCAST_PARAM(src1));
- acl_dst = ggml_cann_create_tensor(dst, BCAST_PARAM(src0));
- } else {
- acl_src0 = ggml_cann_create_tensor(src0);
- acl_src1 = ggml_cann_create_tensor(src1);
- acl_dst = ggml_cann_create_tensor(dst);
- }
- aclnn_add(ctx, acl_src0, acl_src1, acl_dst);
- ACL_CHECK(aclDestroyTensor(acl_src0));
- ACL_CHECK(aclDestroyTensor(acl_src1));
- ACL_CHECK(aclDestroyTensor(acl_dst));
- }
- void ggml_cann_leaky_relu(ggml_backend_cann_context& ctx, ggml_tensor* dst) {
- ggml_tensor* src = dst->src[0];
- GGML_ASSERT(src->type == GGML_TYPE_F32);
- GGML_ASSERT(dst->type == GGML_TYPE_F32);
- aclTensor* acl_src = ggml_cann_create_tensor(src);
- aclTensor* acl_dst = ggml_cann_create_tensor(dst);
- float negative_slope;
- memcpy(&negative_slope, dst->op_params, sizeof(float));
- aclScalar* acl_negative_slope =
- aclCreateScalar(&negative_slope, aclDataType::ACL_FLOAT);
- uint64_t workspaceSize = 0;
- aclOpExecutor* executor;
- void* workspaceAddr = nullptr;
- ACL_CHECK(aclnnLeakyReluGetWorkspaceSize(
- acl_src, acl_negative_slope, acl_dst, &workspaceSize, &executor));
- if (workspaceSize > 0) {
- ggml_cann_pool_alloc workspace_allocator(ctx.pool(), workspaceSize);
- workspaceAddr = workspace_allocator.get();
- }
- ACL_CHECK(
- aclnnLeakyRelu(workspaceAddr, workspaceSize, executor, ctx.stream()));
- ACL_CHECK(aclDestroyScalar(acl_negative_slope));
- ACL_CHECK(aclDestroyTensor(acl_src));
- ACL_CHECK(aclDestroyTensor(acl_dst));
- }
- /**
- * @brief Concatenates a list of tensors along a specified dimension and stores
- * the result in a destination tensor.
- *
- * @param ctx The context for the CANN backend operations.
- * @param tensorList The list of tensors to be concatenated.
- * @param acl_dst The destination tensor where the concatenated result will be
- * stored.
- * @param concat_dim The dimension along which the tensors will be concatenated.
- */
- static void aclnn_concat(ggml_backend_cann_context& ctx,
- aclTensorList* tensorList, aclTensor* acl_dst,
- int64_t concat_dim) {
- uint64_t workspaceSize = 0;
- aclOpExecutor* executor;
- void* workspaceAddr = nullptr;
- ACL_CHECK(aclnnCatGetWorkspaceSize(tensorList, concat_dim, acl_dst,
- &workspaceSize, &executor));
- if (workspaceSize > 0) {
- ggml_cann_pool_alloc workspace_allocator(ctx.pool(), workspaceSize);
- workspaceAddr = workspace_allocator.get();
- }
- ACL_CHECK(aclnnCat(workspaceAddr, workspaceSize, executor, ctx.stream()));
- }
- void ggml_cann_concat(ggml_backend_cann_context& ctx, ggml_tensor* dst) {
- ggml_tensor* src0 = dst->src[0];
- ggml_tensor* src1 = dst->src[1];
- aclTensor* acl_src0 = ggml_cann_create_tensor(src0);
- aclTensor* acl_src1 = ggml_cann_create_tensor(src1);
- aclTensor* acl_dst = ggml_cann_create_tensor(dst);
- int64_t concat_dim = 1;
- aclTensor* tensors[] = {acl_src0, acl_src1};
- aclTensorList* tensorList = aclCreateTensorList(tensors, 2);
- aclnn_concat(ctx, tensorList, acl_dst, concat_dim);
- ACL_CHECK(aclDestroyTensorList(tensorList));
- ACL_CHECK(aclDestroyTensor(acl_dst));
- }
- /**
- * @brief Creates a tensor with values starting from `start`, incremented by
- * `step`, and ending before `stop`.
- *
- * This function performs the operation:
- * \f[
- * \text {out }_{i+1}=\text {out }_i+\text {step}
- * \f]
- * the range is [start, stop).
- *
- * @param ctx The context for the CANN backend operations.
- * @param acl_dst The destination tensor where the values will be stored.
- * @param start The starting value of the range.
- * @param stop The ending value of the range (exclusive).
- * @param step The step size between consecutive values.
- * @param n_elements The number of elements in the destination tensor.
- */
- static void aclnn_arange(ggml_backend_cann_context& ctx, aclTensor* acl_dst,
- float start, float stop, float step,
- int64_t n_elements) {
- int64_t steps = (int64_t)std::ceil((stop - start) / step);
- GGML_ASSERT(n_elements == steps);
- uint64_t workspaceSize = 0;
- aclOpExecutor* executor;
- void* workspaceAddr = nullptr;
- aclScalar* acl_start = aclCreateScalar(&start, aclDataType::ACL_FLOAT);
- aclScalar* acl_end = aclCreateScalar(&stop, aclDataType::ACL_FLOAT);
- aclScalar* acl_step = aclCreateScalar(&step, aclDataType::ACL_FLOAT);
- ACL_CHECK(aclnnArangeGetWorkspaceSize(acl_start, acl_end, acl_step, acl_dst,
- &workspaceSize, &executor));
- if (workspaceSize > 0) {
- ggml_cann_pool_alloc workspace_allocator(ctx.pool(), workspaceSize);
- workspaceAddr = workspace_allocator.get();
- }
- ACL_CHECK(
- aclnnArange(workspaceAddr, workspaceSize, executor, ctx.stream()));
- ACL_CHECK(aclDestroyScalar(acl_start));
- ACL_CHECK(aclDestroyScalar(acl_end));
- ACL_CHECK(aclDestroyScalar(acl_step));
- }
- void ggml_cann_arange(ggml_backend_cann_context& ctx, ggml_tensor* dst) {
- GGML_ASSERT(dst->type == GGML_TYPE_F32);
- aclTensor* acl_dst = ggml_cann_create_tensor(dst);
- int64_t n_elements = ggml_nelements(dst);
- float start;
- float stop;
- float step;
- memcpy(&start, (float*)dst->op_params + 0, sizeof(float));
- memcpy(&stop, (float*)dst->op_params + 1, sizeof(float));
- memcpy(&step, (float*)dst->op_params + 2, sizeof(float));
- aclnn_arange(ctx, acl_dst, start, stop, step, n_elements);
- ACL_CHECK(aclDestroyTensor(acl_dst));
- }
- void ggml_cann_sqr(ggml_backend_cann_context& ctx, ggml_tensor* dst) {
- dst->src[1] = dst->src[0];
- ggml_cann_mul_div<aclnnMulGetWorkspaceSize, aclnnMul>(ctx, dst);
- }
- void ggml_cann_clamp(ggml_backend_cann_context& ctx, ggml_tensor* dst) {
- ggml_tensor* src = dst->src[0];
- GGML_ASSERT(src->type == GGML_TYPE_F32);
- GGML_ASSERT(dst->type == GGML_TYPE_F32);
- float min;
- float max;
- memcpy(&min, dst->op_params, sizeof(float));
- memcpy(&max, (float*)dst->op_params + 1, sizeof(float));
- aclTensor* acl_src = ggml_cann_create_tensor(src);
- aclTensor* acl_dst = ggml_cann_create_tensor(dst);
- aclScalar* acl_min = aclCreateScalar(&min, aclDataType::ACL_FLOAT);
- aclScalar* acl_max = aclCreateScalar(&max, aclDataType::ACL_FLOAT);
- uint64_t workspaceSize = 0;
- aclOpExecutor* executor;
- void* workspaceAddr = nullptr;
- ACL_CHECK(aclnnClampGetWorkspaceSize(acl_src, acl_min, acl_max, acl_dst,
- &workspaceSize, &executor));
- if (workspaceSize > 0) {
- ggml_cann_pool_alloc workspace_allocator(ctx.pool(), workspaceSize);
- workspaceAddr = workspace_allocator.get();
- }
- ACL_CHECK(aclnnClamp(workspaceAddr, workspaceSize, executor, ctx.stream()));
- ACL_CHECK(aclDestroyScalar(acl_min));
- ACL_CHECK(aclDestroyScalar(acl_max));
- ACL_CHECK(aclDestroyTensor(acl_src));
- ACL_CHECK(aclDestroyTensor(acl_dst));
- }
- void ggml_cann_scale(ggml_backend_cann_context& ctx, ggml_tensor* dst) {
- ggml_tensor* src = dst->src[0];
- // scale factor
- float v;
- memcpy(&v, dst->op_params, sizeof(float));
- aclScalar* scale = aclCreateScalar(&v, aclDataType::ACL_FLOAT);
- aclTensor* acl_src = ggml_cann_create_tensor(src);
- aclTensor* acl_dst = ggml_cann_create_tensor(dst);
- uint64_t workspaceSize = 0;
- aclOpExecutor* executor;
- void* workspaceAddr = nullptr;
- ACL_CHECK(aclnnMulsGetWorkspaceSize(acl_src, scale, acl_dst, &workspaceSize,
- &executor));
- if (workspaceSize > 0) {
- ggml_cann_pool_alloc workspace_allocator(ctx.pool(), workspaceSize);
- workspaceAddr = workspace_allocator.get();
- }
- ACL_CHECK(aclnnMuls(workspaceAddr, workspaceSize, executor, ctx.stream()));
- ACL_CHECK(aclDestroyScalar(scale));
- ACL_CHECK(aclDestroyTensor(acl_src));
- ACL_CHECK(aclDestroyTensor(acl_dst));
- }
- void ggml_cann_argsort(ggml_backend_cann_context& ctx, ggml_tensor* dst) {
- ggml_tensor* src = dst->src[0];
- enum ggml_sort_order order = (enum ggml_sort_order)dst->op_params[0];
- aclTensor* acl_src = ggml_cann_create_tensor(src);
- aclTensor* acl_dst = ggml_cann_create_tensor(dst);
- ggml_cann_pool_alloc temp_buffer_allocator(
- ctx.pool(), ggml_nelements(dst) * sizeof(int64_t));
- void* buffer = temp_buffer_allocator.get();
- aclTensor* tmp_tensor =
- ggml_cann_create_tensor(buffer, ACL_INT64, ggml_type_size(dst->type),
- dst->ne, dst->nb, GGML_MAX_DIMS);
- uint64_t workspaceSize = 0;
- aclOpExecutor* executor;
- void* workspaceAddr = nullptr;
- ACL_CHECK(aclnnArgsortGetWorkspaceSize(
- acl_src, -1, (order == GGML_SORT_ORDER_DESC ? true : false), tmp_tensor,
- &workspaceSize, &executor));
- if (workspaceSize > 0) {
- ggml_cann_pool_alloc workspace_allocator(ctx.pool(), workspaceSize);
- workspaceAddr = workspace_allocator.get();
- }
- ACL_CHECK(
- aclnnArgsort(workspaceAddr, workspaceSize, executor, ctx.stream()));
- workspaceSize = 0;
- ACL_CHECK(aclnnCastGetWorkspaceSize(tmp_tensor,
- ggml_cann_type_mapping(dst->type),
- acl_dst, &workspaceSize, &executor));
- if (workspaceSize > 0) {
- ggml_cann_pool_alloc workspace_allocator(ctx.pool(), workspaceSize);
- workspaceAddr = workspace_allocator.get();
- }
- ACL_CHECK(aclnnCast(workspaceAddr, workspaceSize, executor, ctx.stream()));
- ACL_CHECK(aclDestroyTensor(acl_src));
- ACL_CHECK(aclDestroyTensor(tmp_tensor));
- ACL_CHECK(aclDestroyTensor(acl_dst));
- }
- void ggml_cann_norm(ggml_backend_cann_context& ctx, ggml_tensor* dst) {
- ggml_tensor* src = dst->src[0];
- aclTensor* acl_src = ggml_cann_create_tensor(src);
- aclTensor* acl_dst = ggml_cann_create_tensor(dst);
- float eps;
- memcpy(&eps, dst->op_params, sizeof(float));
- uint64_t workspaceSize = 0;
- aclOpExecutor* executor;
- void* workspaceAddr = nullptr;
- std::vector<int64_t> normData = {dst->ne[0]};
- aclIntArray* norm = aclCreateIntArray(normData.data(), normData.size());
- ACL_CHECK(aclnnLayerNormGetWorkspaceSize(acl_src, norm, nullptr, nullptr,
- eps, acl_dst, nullptr, nullptr,
- &workspaceSize, &executor));
- if (workspaceSize > 0) {
- ggml_cann_pool_alloc workspace_allocator(ctx.pool(), workspaceSize);
- workspaceAddr = workspace_allocator.get();
- }
- ACL_CHECK(
- aclnnLayerNorm(workspaceAddr, workspaceSize, executor, ctx.stream()));
- ACL_CHECK(aclDestroyIntArray(norm));
- ACL_CHECK(aclDestroyTensor(acl_src));
- ACL_CHECK(aclDestroyTensor(acl_dst));
- }
- void ggml_cann_group_norm(ggml_backend_cann_context& ctx, ggml_tensor* dst) {
- ggml_tensor* src = dst->src[0];
- aclTensor* acl_src = ggml_cann_create_tensor(src);
- aclTensor* acl_dst = ggml_cann_create_tensor(dst);
- int n_groups = dst->op_params[0];
- float eps;
- memcpy(&eps, dst->op_params + 1, sizeof(float));
- uint64_t workspaceSize = 0;
- aclOpExecutor* executor;
- void* workspaceAddr = nullptr;
- int64_t N = src->ne[3];
- int64_t C = src->ne[2];
- int64_t HxW = src->ne[1] * src->ne[0];
- size_t type_size = ggml_type_size(src->type);
- int64_t ne[] = {n_groups, N};
- size_t nb[] = {type_size, type_size * n_groups};
- size_t n_bytes = N * n_groups;
- ggml_cann_pool_alloc temp_buffer_allocator(ctx.pool(), n_bytes * 2);
- void* buffer = temp_buffer_allocator.get();
- aclTensor* acl_mean_out = ggml_cann_create_tensor(
- buffer, ACL_FLOAT, type_size, ne, nb, ACL_FORMAT_ND);
- aclTensor* acl_rstd_out = ggml_cann_create_tensor(
- (char*)buffer + n_bytes, ACL_FLOAT, type_size, ne, nb, ACL_FORMAT_ND);
- ACL_CHECK(aclnnGroupNormGetWorkspaceSize(
- acl_src, nullptr, nullptr, N, C, HxW, n_groups, eps, acl_dst,
- acl_mean_out, acl_rstd_out, &workspaceSize, &executor));
- if (workspaceSize > 0) {
- ggml_cann_pool_alloc workspace_allocator(ctx.pool(), workspaceSize);
- workspaceAddr = workspace_allocator.get();
- }
- ACL_CHECK(
- aclnnGroupNorm(workspaceAddr, workspaceSize, executor, ctx.stream()));
- ACL_CHECK(aclDestroyTensor(acl_src));
- ACL_CHECK(aclDestroyTensor(acl_dst));
- ACL_CHECK(aclDestroyTensor(acl_mean_out));
- ACL_CHECK(aclDestroyTensor(acl_rstd_out));
- }
- void ggml_cann_acc(ggml_backend_cann_context& ctx, ggml_tensor* dst) {
- ggml_tensor* src0 = dst->src[0];
- ggml_tensor* src1 = dst->src[1];
- size_t nb1 = ((int32_t*)dst->op_params)[0];
- size_t nb2 = ((int32_t*)dst->op_params)[1];
- size_t nb3 = ((int32_t*)dst->op_params)[2];
- size_t offset = ((int32_t*)dst->op_params)[3];
- bool inplace = (bool)((int32_t*)dst->op_params)[4];
- size_t param_nb[] = {ggml_element_size(src0), nb1, nb2, nb3};
- aclTensor* acl_dst = ggml_cann_create_tensor(
- dst, src1->ne, param_nb, GGML_MAX_DIMS, ACL_FORMAT_ND, offset);
- aclTensor* acl_src1 = ggml_cann_create_tensor(src1);
- aclScalar* alpha = nullptr;
- float alphaValue = 1.0f;
- alpha = aclCreateScalar(&alphaValue, aclDataType::ACL_FLOAT);
- uint64_t workspaceSize = 0;
- aclOpExecutor* executor;
- void* workspaceAddr = nullptr;
- if (!inplace) {
- size_t cpy_size = ggml_nbytes(dst);
- ACL_CHECK(aclrtMemcpyAsync(dst->data, cpy_size, src0->data, cpy_size,
- ACL_MEMCPY_DEVICE_TO_DEVICE, ctx.stream()));
- aclTensor* acl_src0 = ggml_cann_create_tensor(
- src0, src1->ne, src0->nb, GGML_MAX_DIMS, ACL_FORMAT_ND, offset);
- ACL_CHECK(aclnnAddGetWorkspaceSize(acl_src0, acl_src1, alpha, acl_dst,
- &workspaceSize, &executor));
- if (workspaceSize > 0) {
- ggml_cann_pool_alloc workspace_allocator(ctx.pool(), workspaceSize);
- workspaceAddr = workspace_allocator.get();
- }
- ACL_CHECK(
- aclnnAdd(workspaceAddr, workspaceSize, executor, ctx.stream()));
- ACL_CHECK(aclDestroyTensor(acl_src0));
- } else {
- ACL_CHECK(aclnnInplaceAddGetWorkspaceSize(acl_dst, acl_src1, alpha,
- &workspaceSize, &executor));
- if (workspaceSize > 0) {
- ggml_cann_pool_alloc workspace_allocator(ctx.pool(), workspaceSize);
- workspaceAddr = workspace_allocator.get();
- }
- ACL_CHECK(aclnnInplaceAdd(workspaceAddr, workspaceSize, executor,
- ctx.stream()));
- }
- ACL_CHECK(aclDestroyTensor(acl_src1));
- ACL_CHECK(aclDestroyTensor(acl_dst));
- }
- void ggml_cann_sum_rows(ggml_backend_cann_context& ctx, ggml_tensor* dst) {
- ggml_tensor* src = dst->src[0];
- aclTensor* acl_src = ggml_cann_create_tensor(src);
- GGML_ASSERT(dst->ne[0] == 1);
- aclTensor* acl_dst = ggml_cann_create_tensor(dst);
- int64_t reduce_dims_host[] = {3};
- aclIntArray* reduce_dims = aclCreateIntArray(reduce_dims_host, 1);
- uint64_t workspaceSize = 0;
- aclOpExecutor* executor;
- void* workspaceAddr = nullptr;
- ACL_CHECK(aclnnReduceSumGetWorkspaceSize(
- acl_src, reduce_dims, true, ggml_cann_type_mapping(src->type), acl_dst,
- &workspaceSize, &executor));
- if (workspaceSize > 0) {
- ggml_cann_pool_alloc workspace_allocator(ctx.pool(), workspaceSize);
- workspaceAddr = workspace_allocator.get();
- }
- ACL_CHECK(
- aclnnReduceSum(workspaceAddr, workspaceSize, executor, ctx.stream()));
- ACL_CHECK(aclDestroyTensor(acl_src));
- ACL_CHECK(aclDestroyTensor(acl_dst));
- }
- void ggml_cann_upsample_nearest2d(ggml_backend_cann_context& ctx,
- ggml_tensor* dst) {
- ggml_tensor* src = dst->src[0];
- aclTensor* acl_src =
- ggml_cann_create_tensor(src, nullptr, nullptr, 0, ACL_FORMAT_NCHW);
- aclTensor* acl_dst =
- ggml_cann_create_tensor(dst, nullptr, nullptr, 0, ACL_FORMAT_NCHW);
- std::vector<int64_t> output_size{dst->ne[1], dst->ne[0]};
- auto output_size_array = aclCreateIntArray(output_size.data(), 2);
- uint64_t workspaceSize = 0;
- aclOpExecutor* executor;
- void* workspaceAddr = nullptr;
- ACL_CHECK(aclnnUpsampleNearest2dGetWorkspaceSize(
- acl_src, output_size_array, acl_dst, &workspaceSize, &executor));
- if (workspaceSize > 0) {
- ggml_cann_pool_alloc workspace_allocator(ctx.pool(), workspaceSize);
- workspaceAddr = workspace_allocator.get();
- }
- ACL_CHECK(aclnnUpsampleNearest2d(workspaceAddr, workspaceSize, executor,
- ctx.stream()));
- ACL_CHECK(aclDestroyIntArray(output_size_array));
- ACL_CHECK(aclDestroyTensor(acl_src));
- ACL_CHECK(aclDestroyTensor(acl_dst));
- }
- /**
- * @brief Pads a tensor with a specified value along each dimension.
- *
- * This function performs padding of the source tensor `acl_src` and stores the
- * result in the destination tensor `acl_dst`. The padding values for each
- * dimension are specified in the `paddings` array.
- *
- * @param ctx The context for the CANN backend operations.
- * @param acl_src The source tensor to be padded.
- * @param acl_dst The destination tensor where the padded result will be stored.
- * @param paddings An array specifying the padding values for each dimension.
- * The size of the array should be twice the number of dimensions of the tensor.
- * @param value The value to be used for padding. The default value is 0.0.
- */
- static void aclnn_pad(ggml_backend_cann_context& ctx, aclTensor* acl_src,
- aclTensor* acl_dst, int64_t* paddings,
- float value = 0.0f) {
- aclIntArray* acl_pad = aclCreateIntArray(paddings, GGML_MAX_DIMS * 2);
- aclScalar* acl_value = aclCreateScalar(&value, aclDataType::ACL_FLOAT);
- uint64_t workspaceSize = 0;
- aclOpExecutor* executor;
- void* workspaceAddr = nullptr;
- ACL_CHECK(aclnnConstantPadNdGetWorkspaceSize(
- acl_src, acl_pad, acl_value, acl_dst, &workspaceSize, &executor));
- if (workspaceSize > 0) {
- ggml_cann_pool_alloc workspace_allocator(ctx.pool(), workspaceSize);
- workspaceAddr = workspace_allocator.get();
- }
- ACL_CHECK(aclnnConstantPadNd(workspaceAddr, workspaceSize, executor,
- ctx.stream()));
- ACL_CHECK(aclDestroyIntArray(acl_pad));
- ACL_CHECK(aclDestroyScalar(acl_value));
- }
- void ggml_cann_pad(ggml_backend_cann_context& ctx, ggml_tensor* dst) {
- ggml_tensor* src = dst->src[0];
- aclTensor* acl_src = ggml_cann_create_tensor(src);
- aclTensor* acl_dst = ggml_cann_create_tensor(dst);
- // padding: value in the array means how much distance will be padding.
- // the position of elements in the array means which dirction to padding,
- // each position means: [dim0.front, dim0.behind, dim1.front, dim1.behind,
- // dim2.front, dim2.behind, dim3.front, dim3.behind]
- int64_t paddings[] = {
- 0, dst->ne[0] - src->ne[0], 0, dst->ne[1] - src->ne[1],
- 0, dst->ne[2] - src->ne[2], 0, dst->ne[3] - src->ne[3]};
- aclnn_pad(ctx, acl_src, acl_dst, paddings);
- ACL_CHECK(aclDestroyTensor(acl_dst));
- ACL_CHECK(aclDestroyTensor(acl_src));
- }
- /**
- * @brief Performs 2D average pooling on the input tensor and stores the result
- * in the destination tensor.
- *
- * This function performs average pooling on the source tensor and stores the
- * result in the destination tensor. The pooling parameters (kernel size,
- * strides, padding) are specified in the `op_params` of the destination tensor.
- *
- * @param ctx The context for the CANN backend operations.
- * @param dst The destination tensor where the result will be stored. The source
- * tensor is referenced by `dst->src[0]`.
- */
- static void ggml_cann_avg_pool2d(ggml_backend_cann_context& ctx,
- ggml_tensor* dst) {
- ggml_tensor* src = dst->src[0];
- GGML_ASSERT(src->type == GGML_TYPE_F32);
- GGML_ASSERT(dst->type == GGML_TYPE_F32);
- aclTensor* acl_src =
- ggml_cann_create_tensor(src, nullptr, nullptr, 0, ACL_FORMAT_NCHW);
- aclTensor* acl_dst =
- ggml_cann_create_tensor(dst, nullptr, nullptr, 0, ACL_FORMAT_NCHW);
- const int32_t* opts = (const int32_t*)dst->op_params;
- const int k0 = opts[1];
- const int k1 = opts[2];
- const int s0 = opts[3];
- const int s1 = opts[4];
- const int p0 = opts[5];
- const int p1 = opts[6];
- std::vector<int64_t> kernel_dims = {k1, k0};
- std::vector<int64_t> stride_dims = {s1, s0};
- std::vector<int64_t> padding_avg_dims = {p1, p0}; // (padH, padW)
- auto* kernel_size = aclCreateIntArray(kernel_dims.data(), 2);
- auto* strides = aclCreateIntArray(stride_dims.data(), 2);
- auto* paddings_avg = aclCreateIntArray(padding_avg_dims.data(), 2);
- bool ceil_mode = false;
- bool count_include_pad = true;
- int64_t divisor_override = 0;
- int8_t cube_math_type = 0;
- uint64_t workspaceSize = 0;
- aclOpExecutor* executor;
- void* workspaceAddr = nullptr;
- ACL_CHECK(aclnnAvgPool2dGetWorkspaceSize(
- acl_src, kernel_size, strides, paddings_avg, ceil_mode,
- count_include_pad, divisor_override, cube_math_type, acl_dst,
- &workspaceSize, &executor));
- if (workspaceSize > 0) {
- ggml_cann_pool_alloc workspace_allocator(ctx.pool(), workspaceSize);
- workspaceAddr = workspace_allocator.get();
- }
- ACL_CHECK(
- aclnnAvgPool2d(workspaceAddr, workspaceSize, executor, ctx.stream()));
- ACL_CHECK(aclDestroyTensor(acl_src));
- ACL_CHECK(aclDestroyTensor(acl_dst));
- ACL_CHECK(aclDestroyIntArray(kernel_size));
- ACL_CHECK(aclDestroyIntArray(strides));
- ACL_CHECK(aclDestroyIntArray(paddings_avg));
- }
- /**
- * @brief Performs 2D max pooling on the input tensor and stores the result in
- * the destination tensor.
- *
- * This function performs max pooling on the source tensor and stores the result
- * in the destination tensor. The pooling parameters (kernel size, strides,
- * padding) are specified in the `op_params` of the destination tensor.
- *
- * @param ctx The context for the CANN backend operations.
- * @param dst The destination tensor where the result will be stored. The source
- * tensor is referenced by `dst->src[0]`.
- */
- static void ggml_cann_max_pool2d(ggml_backend_cann_context& ctx,
- ggml_tensor* dst) {
- ggml_tensor* src = dst->src[0];
- GGML_ASSERT(src->type == GGML_TYPE_F32);
- GGML_ASSERT(dst->type == GGML_TYPE_F32);
- aclTensor* acl_src =
- ggml_cann_create_tensor(src, nullptr, nullptr, 0, ACL_FORMAT_NCHW);
- aclTensor* acl_dst =
- ggml_cann_create_tensor(dst, nullptr, nullptr, 0, ACL_FORMAT_NCHW);
- const int32_t* opts = (const int32_t*)dst->op_params;
- const int k0 = opts[1];
- const int k1 = opts[2];
- const int s0 = opts[3];
- const int s1 = opts[4];
- const int p0 = opts[5];
- const int p1 = opts[6];
- int64_t temp_ne[] = {src->ne[0] + p0 * 2, src->ne[1] + p1 * 2, src->ne[2],
- src->ne[3]};
- size_t temp_nb[GGML_MAX_DIMS];
- temp_nb[0] = ggml_element_size(src);
- for (int i = 1; i < GGML_MAX_DIMS; i++) {
- temp_nb[i] = temp_nb[i - 1] * temp_ne[i - 1];
- }
- ggml_cann_pool_alloc temp_buffer_allocator(
- ctx.pool(), ggml_nbytes(src) + p0 * 2 + p1 * 2 * src->nb[1]);
- void* buffer = temp_buffer_allocator.get();
- aclTensor* tmp_tensor = ggml_cann_create_tensor(
- buffer, ACL_FLOAT, ggml_element_size(src), temp_ne, temp_nb,
- GGML_MAX_DIMS, ACL_FORMAT_NCHW);
- // pad: see padding in ggml_cann_pad()
- int64_t paddings[] = {p0, p0, p1, p1, 0, 0, 0, 0};
- float value = -FLT_MAX;
- aclnn_pad(ctx, acl_src, tmp_tensor, paddings, value);
- // max_pool
- std::vector<int64_t> kernel_dims = {k1, k0};
- std::vector<int64_t> stride_dims = {s1, s0};
- // padding_max_dims: [dim0_start, dim0_end, dim1_start, dim1_end]
- std::vector<int64_t> padding_max_dims = {0, 0, 0, 0};
- std::vector<int64_t> dilation_size = {1, 1};
- auto* kernel_size = aclCreateIntArray(kernel_dims.data(), 2);
- auto* strides = aclCreateIntArray(stride_dims.data(), 2);
- auto* paddings_max = aclCreateIntArray(padding_max_dims.data(), 4);
- auto* dilations = aclCreateIntArray(dilation_size.data(), 2);
- bool ceil_mode = false;
- int64_t auto_pads = 0;
- uint64_t workspaceSize = 0;
- aclOpExecutor* executor;
- void* workspaceAddr = nullptr;
- ACL_CHECK(aclnnMaxPoolGetWorkspaceSize(
- tmp_tensor, kernel_size, strides, auto_pads, paddings_max, dilations,
- ceil_mode, acl_dst, &workspaceSize, &executor));
- if (workspaceSize > 0) {
- ggml_cann_pool_alloc workspace_allocator(ctx.pool(), workspaceSize);
- workspaceAddr = workspace_allocator.get();
- }
- ACL_CHECK(
- aclnnMaxPool(workspaceAddr, workspaceSize, executor, ctx.stream()));
- ACL_CHECK(aclDestroyTensor(acl_src));
- ACL_CHECK(aclDestroyTensor(acl_dst));
- ACL_CHECK(aclDestroyTensor(tmp_tensor));
- ACL_CHECK(aclDestroyIntArray(kernel_size));
- ACL_CHECK(aclDestroyIntArray(strides));
- ACL_CHECK(aclDestroyIntArray(paddings_max));
- ACL_CHECK(aclDestroyIntArray(dilations));
- }
- void ggml_cann_pool2d(ggml_backend_cann_context& ctx, ggml_tensor* dst) {
- const int32_t* opts = (const int32_t*)dst->op_params;
- enum ggml_op_pool op = static_cast<ggml_op_pool>(opts[0]);
- switch (op) {
- case GGML_OP_POOL_AVG:
- ggml_cann_avg_pool2d(ctx, dst);
- break;
- case GGML_OP_POOL_MAX:
- ggml_cann_max_pool2d(ctx, dst);
- break;
- case GGML_OP_POOL_COUNT:
- GGML_ABORT("fatal error");
- break;
- }
- }
- /**
- * @brief Copies data from the source tensor to the destination tensor.
- *
- * This function copies data from the source tensor `acl_src` to the destination
- * tensor `acl_dst`.
- *
- * @param ctx The context for the CANN backend operations.
- * @param acl_src The source tensor from which data will be copied.
- * @param acl_dst The destination tensor where the data will be copied to.
- */
- static void cann_copy(ggml_backend_cann_context& ctx, aclTensor* acl_src,
- aclTensor* acl_dst) {
- uint64_t workspaceSize = 0;
- aclOpExecutor* executor;
- void* workspaceAddr = nullptr;
- ACL_CHECK(aclnnInplaceCopyGetWorkspaceSize(acl_dst, acl_src, &workspaceSize,
- &executor));
- if (workspaceSize > 0) {
- ggml_cann_pool_alloc workspace_allocator(ctx.pool(), workspaceSize);
- workspaceAddr = workspace_allocator.get();
- }
- ACL_CHECK(
- aclnnInplaceCopy(workspaceAddr, workspaceSize, executor, ctx.stream()));
- }
- void ggml_cann_dup(ggml_backend_cann_context& ctx, ggml_tensor* dst) {
- ggml_tensor* src = dst->src[0];
- aclTensor* acl_src = ggml_cann_create_tensor(src);
- aclTensor* acl_dst = ggml_cann_create_tensor(dst);
- ggml_cann_pool_alloc src_extra_allocator(ctx.pool(), sizeof(ggml_tensor));
- ggml_cann_pool_alloc dst_extra_allocator(ctx.pool(), sizeof(ggml_tensor));
- src->extra = src_extra_allocator.get();
- dst->extra = dst_extra_allocator.get();
- ACL_CHECK(aclrtMemcpyAsync(src->extra, sizeof(ggml_tensor), src,
- sizeof(ggml_tensor), ACL_MEMCPY_HOST_TO_DEVICE,
- ctx.stream()));
- ACL_CHECK(aclrtMemcpyAsync(dst->extra, sizeof(ggml_tensor), dst,
- sizeof(ggml_tensor), ACL_MEMCPY_HOST_TO_DEVICE,
- ctx.stream()));
- if ((dst->type == GGML_TYPE_F16 || dst->type == GGML_TYPE_F32) &&
- ggml_are_same_shape(src, dst)) {
- cann_copy(ctx, acl_src, acl_dst);
- ACL_CHECK(aclDestroyTensor(acl_src));
- ACL_CHECK(aclDestroyTensor(acl_dst));
- return;
- }
- // TODO: simplify
- if (src->type == GGML_TYPE_F16) {
- if (dst->type == GGML_TYPE_Q8_0) {
- aclrtlaunch_ascendc_quantize_f16_q8_0(
- 24, ctx.stream(), src->data, dst->data,
- ((ggml_tensor*)src->extra)->ne, ((ggml_tensor*)src->extra)->nb,
- ((ggml_tensor*)dst->extra)->ne);
- return;
- }
- if (dst->type == GGML_TYPE_Q4_0) {
- aclrtlaunch_ascendc_quantize_f16_to_q4_0(
- 24, ctx.stream(), src->data, dst->data,
- ((ggml_tensor*)src->extra)->ne, ((ggml_tensor*)src->extra)->nb,
- ((ggml_tensor*)dst->extra)->ne);
- return;
- }
- if (dst->type == GGML_TYPE_F16) {
- if (ggml_are_same_shape(src, dst)) {
- cann_copy(ctx, acl_src, acl_dst);
- ACL_CHECK(aclDestroyTensor(acl_src));
- ACL_CHECK(aclDestroyTensor(acl_dst));
- return;
- }
- if (ggml_is_contiguous(dst)) {
- const size_t src_type_size = ggml_type_size(src->type);
- if (src->nb[0] == src_type_size) {
- // src0 is contigous on first dimension, copy by rows
- int64_t rows_num = ggml_nrows(src);
- aclrtlaunch_ascendc_dup_by_rows_fp16(
- rows_num, ctx.stream(), src->data, dst->data,
- ((ggml_tensor*)src->extra)->ne,
- ((ggml_tensor*)src->extra)->nb,
- ((ggml_tensor*)dst->extra)->ne,
- ((ggml_tensor*)dst->extra)->nb);
- return;
- }
- GGML_ABORT("fatal error");
- }
- GGML_ABORT("fatal error");
- }
- if (dst->type == GGML_TYPE_F32) {
- if (ggml_are_same_shape(src, dst)) {
- cann_copy(ctx, acl_src, acl_dst);
- ACL_CHECK(aclDestroyTensor(acl_src));
- ACL_CHECK(aclDestroyTensor(acl_dst));
- return;
- }
- if (ggml_is_contiguous(dst)) {
- const size_t src_type_size = ggml_type_size(src->type);
- if (src->nb[0] == src_type_size) {
- // src0 is contigous on first dimension, copy by rows
- int64_t rows_num = ggml_nrows(src);
- aclrtlaunch_ascendc_dup_by_rows_fp16_to_fp32(
- rows_num, ctx.stream(), src->data, dst->data,
- ((ggml_tensor*)src->extra)->ne,
- ((ggml_tensor*)src->extra)->nb,
- ((ggml_tensor*)dst->extra)->ne,
- ((ggml_tensor*)dst->extra)->nb);
- return;
- }
- GGML_ABORT("fatal error");
- }
- GGML_ABORT("fatal error");
- }
- // TODO
- GGML_ABORT("fatal error");
- } else if (src->type == GGML_TYPE_F32) {
- // TODO: if (src0->type == dst->type && ne00 == ne0 && nb00 == type_size
- // && nb0 == type_size)
- if (dst->type == GGML_TYPE_Q8_0) {
- aclrtlaunch_ascendc_quantize_f32_q8_0(
- 24, ctx.stream(), src->data, dst->data,
- ((ggml_tensor*)src->extra)->ne, ((ggml_tensor*)src->extra)->nb,
- ((ggml_tensor*)dst->extra)->ne);
- return;
- }
- if (dst->type == GGML_TYPE_Q4_0) {
- aclrtlaunch_ascendc_quantize_f32_to_q4_0(
- 24, ctx.stream(), src->data, dst->data,
- ((ggml_tensor*)src->extra)->ne, ((ggml_tensor*)src->extra)->nb,
- ((ggml_tensor*)dst->extra)->ne);
- return;
- }
- if (dst->type == GGML_TYPE_F32) {
- if (ggml_are_same_shape(src, dst)) {
- cann_copy(ctx, acl_src, acl_dst);
- ACL_CHECK(aclDestroyTensor(acl_src));
- ACL_CHECK(aclDestroyTensor(acl_dst));
- return;
- }
- if (ggml_is_contiguous(dst)) {
- const size_t src_type_size = ggml_type_size(src->type);
- if (src->nb[0] == src_type_size) {
- // src0 is contigous on first dimension, copy by rows
- int64_t rows_num = ggml_nrows(src);
- aclrtlaunch_ascendc_dup_by_rows_fp32(
- rows_num, ctx.stream(), src->data, dst->data,
- ((ggml_tensor*)src->extra)->ne,
- ((ggml_tensor*)src->extra)->nb,
- ((ggml_tensor*)dst->extra)->ne,
- ((ggml_tensor*)dst->extra)->nb);
- return;
- }
- GGML_ABORT("fatal error");
- } else {
- // TODO: dst not contiguous
- GGML_ABORT("fatal error");
- }
- }
- if (dst->type == GGML_TYPE_F16) {
- if (ggml_are_same_shape(src, dst)) {
- cann_copy(ctx, acl_src, acl_dst);
- ACL_CHECK(aclDestroyTensor(acl_src));
- ACL_CHECK(aclDestroyTensor(acl_dst));
- return;
- }
- if (ggml_is_contiguous(dst)) {
- const size_t src_type_size = ggml_type_size(src->type);
- if (src->nb[0] == src_type_size) {
- // src0 is contigous on first dimension, copy by rows
- int64_t rows_num = ggml_nrows(src);
- aclrtlaunch_ascendc_dup_by_rows_fp32_to_fp16(
- rows_num, ctx.stream(), src->data, dst->data,
- ((ggml_tensor*)src->extra)->ne,
- ((ggml_tensor*)src->extra)->nb,
- ((ggml_tensor*)dst->extra)->ne,
- ((ggml_tensor*)dst->extra)->nb);
- return;
- }
- GGML_ABORT("fatal error");
- }
- }
- // TODO
- GGML_ABORT("fatal error");
- } else {
- if (ggml_are_same_shape(src, dst)) {
- cann_copy(ctx, acl_src, acl_dst);
- ACL_CHECK(aclDestroyTensor(acl_src));
- ACL_CHECK(aclDestroyTensor(acl_dst));
- return;
- }
- GGML_ABORT("fatal error");
- }
- }
- #ifdef __cplusplus
- extern "C" {
- #endif
- aclnnStatus aclnnRmsNormGetWorkspaceSize(const aclTensor* x,
- const aclTensor* gamma, double epsilon,
- const aclTensor* yOut,
- const aclTensor* rstdOout,
- uint64_t* workspaceSize,
- aclOpExecutor** executor);
- aclnnStatus aclnnRmsNorm(void* workspace, uint64_t workspaceSize,
- aclOpExecutor* executor, aclrtStream stream);
- #ifdef __cplusplus
- }
- #endif
- /**
- * @brief Creates an ACL tensor initialized with zeros using a provided buffer.
- *
- * This function initializes a tensor with zeros using the specified buffer and
- * tensor parameters.
- *
- * @param ctx The context for the CANN backend operations.
- * @param buffer The buffer to be used for the tensor data.
- * @param n_bytes The size of the buffer in bytes.
- * @param ne An array specifying the extents (sizes) of each dimension of the
- * tensor.
- * @param dims The number of dimensions of the tensor.
- * @param type The data type of the tensor.
- * @param type_size The size of each element in the tensor data type.
- * @return An ACL tensor initialized with zeros.
- */
- static aclTensor* aclnn_zero(ggml_backend_cann_context& ctx, void* buffer,
- size_t n_bytes, int64_t* ne, int64_t dims,
- aclDataType type, size_t type_size) {
- size_t nb[GGML_MAX_DIMS];
- nb[0] = type_size;
- for (int i = 1; i < dims; i++) {
- nb[i] = nb[i - 1] * ne[i - 1];
- }
- ACL_CHECK(aclrtMemsetAsync(buffer, n_bytes, 0, n_bytes, ctx.stream()));
- aclTensor* zero =
- ggml_cann_create_tensor(buffer, type, type_size, ne, nb, dims);
- return zero;
- }
- /**
- * @brief Creates an ACL tensor initialized with ones using a provided buffer.
- *
- * This function initializes a tensor with ones using the specified buffer and
- * tensor parameters.
- *
- * @param ctx The context for the CANN backend operations.
- * @param buffer The buffer to be used for the tensor data.
- * @param n_bytes The size of the buffer in bytes.
- * @param ne An array specifying the extents (sizes) of each dimension of the
- * tensor.
- * @param dims The number of dimensions of the tensor.
- * @param type The data type of the tensor.
- * @param type_size The size of each element in the tensor data type.
- * @param value The value to be used for initializing the tensor (default
- * is 1.0).
- * @return An ACL tensor initialized with ones.
- */
- static aclTensor* aclnn_ones(ggml_backend_cann_context& ctx, void* buffer,
- size_t n_bytes, int64_t* ne, int64_t dims,
- aclDataType type, size_t type_size,
- float value = 1.0f) {
- aclTensor* acl_tensor =
- aclnn_zero(ctx, buffer, n_bytes, ne, dims, type, type_size);
- float alpha_host = 1.0f;
- aclScalar* alpha = aclCreateScalar(&alpha_host, aclDataType::ACL_FLOAT);
- aclScalar* other = aclCreateScalar(&value, aclDataType::ACL_FLOAT);
- uint64_t workspaceSize = 0;
- aclOpExecutor* executor;
- void* workspaceAddr = nullptr;
- ACL_CHECK(aclnnInplaceAddsGetWorkspaceSize(acl_tensor, other, alpha,
- &workspaceSize, &executor));
- if (workspaceSize > 0) {
- ggml_cann_pool_alloc workspace_allocator(ctx.pool(), workspaceSize);
- workspaceAddr = workspace_allocator.get();
- }
- ACL_CHECK(
- aclnnInplaceAdds(workspaceAddr, workspaceSize, executor, ctx.stream()));
- return acl_tensor;
- }
- void ggml_cann_rms_norm(ggml_backend_cann_context& ctx, ggml_tensor* dst) {
- ggml_tensor* src = dst->src[0];
- aclTensor* acl_src = ggml_cann_create_tensor(src);
- aclTensor* acl_dst = ggml_cann_create_tensor(dst);
- float eps;
- memcpy(&eps, dst->op_params, sizeof(float));
- GGML_ASSERT(eps > 0.0f);
- uint64_t workspaceSize = 0;
- aclOpExecutor* executor;
- void* workspaceAddr = nullptr;
- size_t one_tensor_n_bytes = src->ne[0] * ggml_element_size(src);
- ggml_cann_pool_alloc one_tensor_allocator(ctx.pool(), one_tensor_n_bytes);
- aclTensor* acl_gamma = aclnn_ones(
- ctx, one_tensor_allocator.get(), one_tensor_n_bytes, src->ne, 1,
- ggml_cann_type_mapping(src->type), ggml_element_size(src));
- size_t zero_tensor_n_bytes =
- src->ne[1] * src->ne[2] * src->ne[3] * ggml_element_size(src);
- ggml_cann_pool_alloc zero_tensor_allocator(ctx.pool(), zero_tensor_n_bytes);
- aclTensor* acl_rstd =
- aclnn_zero(ctx, zero_tensor_allocator.get(), zero_tensor_n_bytes,
- src->ne, GGML_MAX_DIMS, ggml_cann_type_mapping(src->type),
- ggml_element_size(src));
- ACL_CHECK(aclnnRmsNormGetWorkspaceSize(
- acl_src, acl_gamma, eps, acl_dst, acl_rstd, &workspaceSize, &executor));
- if (workspaceSize > 0) {
- ggml_cann_pool_alloc workspace_allocator(ctx.pool(), workspaceSize);
- workspaceAddr = workspace_allocator.get();
- }
- ACL_CHECK(
- aclnnRmsNorm(workspaceAddr, workspaceSize, executor, ctx.stream()));
- ACL_CHECK(aclDestroyTensor(acl_src));
- ACL_CHECK(aclDestroyTensor(acl_dst));
- ACL_CHECK(aclDestroyTensor(acl_gamma));
- ACL_CHECK(aclDestroyTensor(acl_rstd));
- }
- // TODO: performace is low.
- void ggml_cann_diag_mask(ggml_backend_cann_context& ctx, ggml_tensor* dst,
- float value) {
- ggml_tensor* src = dst->src[0];
- aclTensor* acl_src = ggml_cann_create_tensor(src);
- aclTensor* acl_dst = ggml_cann_create_tensor(dst);
- const int n_past = ((int32_t*)dst->op_params)[0];
- size_t one_tensor_n_bytes = src->ne[0] * src->ne[1] * src->ne[2] *
- src->ne[3] * ggml_element_size(src);
- ggml_cann_pool_alloc one_tensor_allocator(ctx.pool(), one_tensor_n_bytes);
- aclTensor* mask_tensor =
- aclnn_ones(ctx, one_tensor_allocator.get(), one_tensor_n_bytes, src->ne,
- GGML_MAX_DIMS, ggml_cann_type_mapping(src->type),
- ggml_element_size(src), value);
- uint64_t workspaceSize = 0;
- aclOpExecutor* executor;
- void* workspaceAddr = nullptr;
- ACL_CHECK(aclnnInplaceTriuGetWorkspaceSize(mask_tensor, n_past + 1,
- &workspaceSize, &executor));
- if (workspaceSize > 0) {
- ggml_cann_pool_alloc workspace_allocator(ctx.pool(), workspaceSize);
- workspaceAddr = workspace_allocator.get();
- }
- ACL_CHECK(
- aclnnInplaceTriu(workspaceAddr, workspaceSize, executor, ctx.stream()));
- ACL_CHECK(aclnnTrilGetWorkspaceSize(acl_src, n_past + 1, acl_dst,
- &workspaceSize, &executor));
- if (workspaceSize > 0) {
- ggml_cann_pool_alloc workspace_allocator(ctx.pool(), workspaceSize);
- workspaceAddr = workspace_allocator.get();
- }
- ACL_CHECK(aclnnTril(workspaceAddr, workspaceSize, executor, ctx.stream()));
- aclScalar* alpha = nullptr;
- float alphaValue = 1.0f;
- alpha = aclCreateScalar(&alphaValue, aclDataType::ACL_FLOAT);
- ACL_CHECK(aclnnInplaceAddGetWorkspaceSize(acl_dst, mask_tensor, alpha,
- &workspaceSize, &executor));
- if (workspaceSize > 0) {
- ggml_cann_pool_alloc workspace_allocator(ctx.pool(), workspaceSize);
- workspaceAddr = workspace_allocator.get();
- }
- ACL_CHECK(
- aclnnInplaceAdd(workspaceAddr, workspaceSize, executor, ctx.stream()));
- ACL_CHECK(aclDestroyScalar(alpha));
- ACL_CHECK(aclDestroyTensor(mask_tensor));
- ACL_CHECK(aclDestroyTensor(acl_src));
- ACL_CHECK(aclDestroyTensor(acl_dst));
- }
- /**
- * @brief Casts the data type of a source tensor to a destination tensor.
- *
- * This function casts the data type of the source tensor `acl_src` to the
- * specified data type `cast_data_type` and stores the result in the destination
- * tensor `acl_dst`.
- *
- * @param ctx The context for the CANN backend operations.
- * @param acl_src The source tensor whose data type will be casted.
- * @param acl_dst The destination tensor where the casted result will be stored.
- * @param cast_data_type The target data type to which the source tensor will be
- * casted.
- */
- static void aclnn_cast(ggml_backend_cann_context& ctx, aclTensor* acl_src,
- aclTensor* acl_dst, aclDataType cast_data_type) {
- uint64_t workspaceSize = 0;
- aclOpExecutor* executor;
- void* workspaceAddr = nullptr;
- ACL_CHECK(aclnnCastGetWorkspaceSize(acl_src, cast_data_type, acl_dst,
- &workspaceSize, &executor));
- if (workspaceSize > 0) {
- ggml_cann_pool_alloc workspace_allocator(ctx.pool(), workspaceSize);
- workspaceAddr = workspace_allocator.get();
- }
- ACL_CHECK(aclnnCast(workspaceAddr, workspaceSize, executor, ctx.stream()));
- }
- /**
- * @brief Permutes the dimensions of a tensor according to a specified order.
- *
- * This function permutes the dimensions of the source tensor `acl_src`
- * according to the order specified in the `new_dim` array and stores the result
- * in the destination tensor `acl_dst`.
- *
- * @param ctx The context for the CANN backend operations.
- * @param acl_src The source tensor whose dimensions will be permuted.
- * @param acl_dst The destination tensor where the permuted result will be
- * stored.
- * @param new_dim An array specifying the new order of dimensions for the
- * tensor.
- * @param dims The number of dimensions in the tensor.
- */
- static void aclnn_permute(ggml_backend_cann_context& ctx, aclTensor* acl_src,
- aclTensor* acl_dst, int64_t* new_dim, uint64_t dims) {
- aclIntArray* acl_dims = aclCreateIntArray(new_dim, dims);
- uint64_t workspaceSize = 0;
- aclOpExecutor* executor;
- void* workspaceAddr = nullptr;
- ACL_CHECK(aclnnPermuteGetWorkspaceSize(acl_src, acl_dims, acl_dst,
- &workspaceSize, &executor));
- if (workspaceSize > 0) {
- ggml_cann_pool_alloc workspace_allocator(ctx.pool(), workspaceSize);
- workspaceAddr = workspace_allocator.get();
- }
- ACL_CHECK(
- aclnnPermute(workspaceAddr, workspaceSize, executor, ctx.stream()));
- ACL_CHECK(aclDestroyIntArray(acl_dims));
- }
- #ifdef __cplusplus
- extern "C" {
- #endif
- aclnnStatus aclnnIm2colGetWorkspaceSize(const aclTensor* self,
- const aclIntArray* kernelSize,
- const aclIntArray* dilation,
- const aclIntArray* padding,
- const aclIntArray* stride,
- aclTensor* out, uint64_t* workspaceSize,
- aclOpExecutor** executor);
- aclnnStatus aclnnIm2col(void* workspace, uint64_t workspaceSize,
- aclOpExecutor* executor, aclrtStream stream);
- #ifdef __cplusplus
- }
- #endif
- static void ggml_cann_im2col_2d_post_process(ggml_backend_cann_context& ctx,
- ggml_tensor* dst,
- ggml_tensor* src1,
- aclTensor* tmp_cast_tensor,
- aclTensor* tmp_im2col_tensor) {
- // Permute: [N, IC * KH * KW, OW * OH] -> [N, OW * OH, IC * KH * KW]
- int64_t dst_ne[] = {dst->ne[0], dst->ne[1] * dst->ne[2], dst->ne[3]};
- size_t dst_nb[] = {dst->nb[0], dst->nb[1], dst->nb[3]};
- aclTensor* acl_dst =
- ggml_cann_create_tensor(dst, dst_ne, dst_nb, GGML_MAX_DIMS - 1);
- int64_t permute_dim[] = {0, 2, 1};
- if (src1->type != dst->type) {
- aclnn_permute(ctx, tmp_cast_tensor, acl_dst, permute_dim, 3);
- } else {
- aclnn_permute(ctx, tmp_im2col_tensor, acl_dst, permute_dim, 3);
- }
- // release
- ACL_CHECK(aclDestroyTensor(acl_dst));
- }
- static void ggml_cann_im2col_1d_post_process(
- ggml_backend_cann_context& ctx, ggml_tensor* dst, ggml_tensor* src1,
- aclTensor* tmp_cast_tensor, aclTensor* tmp_im2col_tensor,
- const std::vector<int64_t>& im2col_op_params) {
- // get params
- const int64_t KH = im2col_op_params[0];
- const int64_t KW = im2col_op_params[1];
- const int64_t IW = im2col_op_params[2];
- const int64_t IC = im2col_op_params[3];
- const int64_t N = im2col_op_params[4];
- const int64_t OH = im2col_op_params[5];
- const int64_t OW = im2col_op_params[6];
- const int64_t s0 = im2col_op_params[7];
- const int64_t p0 = im2col_op_params[8];
- const int64_t d0 = im2col_op_params[9];
- const int64_t n_bytes_factor = im2col_op_params[10];
- // Permute: [N, IC * KH * KW, OW * OH] ->
- // [N, OW * OH * n_bytes_factor, IC * KH * KW]
- aclTensor* tmp_permute_tensor = nullptr;
- ggml_cann_pool_alloc tmp_permute_allocator(ctx.pool());
- tmp_permute_allocator.alloc(ggml_nbytes(dst) * n_bytes_factor);
- void* tmp_permute_buffer = tmp_permute_allocator.get();
- int64_t tmp_permute_ne[] = {IC * KH * KW, OW * OH * n_bytes_factor, N};
- size_t tmp_permute_nb[GGML_MAX_DIMS - 1];
- tmp_permute_nb[0] = ggml_type_size(dst->type);
- for (int i = 1; i < GGML_MAX_DIMS - 1; i++) {
- tmp_permute_nb[i] = tmp_permute_nb[i - 1] * tmp_permute_ne[i - 1];
- }
- tmp_permute_tensor = ggml_cann_create_tensor(
- tmp_permute_buffer, ggml_cann_type_mapping(dst->type),
- ggml_type_size(dst->type), tmp_permute_ne, tmp_permute_nb,
- GGML_MAX_DIMS - 1, ACL_FORMAT_ND);
- int64_t permute_dim[] = {0, 2, 1};
- if (src1->type != dst->type) {
- aclnn_permute(ctx, tmp_cast_tensor, tmp_permute_tensor, permute_dim, 3);
- } else {
- aclnn_permute(ctx, tmp_im2col_tensor, tmp_permute_tensor, permute_dim,
- 3);
- }
- // number of times the kernel moves in W dimension
- const int n_step_w = (IW + 2 * p0 - d0 * (KW - 1) - 1) / s0 + 1;
- size_t offset;
- void *cur_dst_buffer = dst->data, *cur_permute_buffer = tmp_permute_buffer;
- // memory copy with offset to restore 1D im2col from 2d
- if (IC > 1) {
- offset = IC * KH * KW * n_step_w * ggml_type_size(dst->type);
- size_t size_cpy = KH * KW * ggml_type_size(dst->type);
- for (int c = 0; c < IC; c++) {
- cur_permute_buffer = (char*)tmp_permute_buffer + offset +
- KH * KW * c * ggml_type_size(dst->type);
- cur_dst_buffer = (char*)dst->data +
- c * KH * KW * n_step_w * ggml_type_size(dst->type);
- for (int i = 0; i < n_step_w; i++) {
- ACL_CHECK(aclrtMemcpyAsync(
- cur_dst_buffer, size_cpy, cur_permute_buffer, size_cpy,
- ACL_MEMCPY_DEVICE_TO_DEVICE, ctx.stream()));
- cur_dst_buffer =
- (char*)cur_dst_buffer + KH * KW * ggml_type_size(dst->type);
- cur_permute_buffer = (char*)cur_permute_buffer +
- KH * KW * IC * ggml_type_size(dst->type);
- }
- }
- } else {
- offset = KH * KW * n_step_w *
- ggml_type_size(dst->type); // equal to ggml_nbytes(dst)
- ACL_CHECK(aclrtMemcpyAsync(dst->data, offset,
- (char*)tmp_permute_buffer + offset, offset,
- ACL_MEMCPY_DEVICE_TO_DEVICE, ctx.stream()));
- }
- // release
- ACL_CHECK(aclDestroyTensor(tmp_permute_tensor));
- }
- void ggml_cann_im2col(ggml_backend_cann_context& ctx, ggml_tensor* dst) {
- ggml_tensor* src0 = dst->src[0]; // kernel
- ggml_tensor* src1 = dst->src[1]; // input
- GGML_ASSERT(src0->type == GGML_TYPE_F16);
- GGML_ASSERT(src1->type == GGML_TYPE_F32);
- GGML_ASSERT(dst->type == GGML_TYPE_F16 || dst->type == GGML_TYPE_F32);
- GGML_TENSOR_BINARY_OP_LOCALS;
- // aclnnIm2col only works on 2D. set s1, p1, d1 to 1 to perform 2D
- // im2col and do post-processing to restore it to 1D.
- const bool is_2D = ((const int32_t*)(dst->op_params))[6] == 1;
- const int32_t s0 = ((const int32_t*)(dst->op_params))[0];
- const int32_t s1 = is_2D ? ((const int32_t*)(dst->op_params))[1] : 1;
- const int32_t p0 = ((const int32_t*)(dst->op_params))[2];
- const int32_t p1 = is_2D ? ((const int32_t*)(dst->op_params))[3] : 1;
- const int32_t d0 = ((const int32_t*)(dst->op_params))[4];
- const int32_t d1 = is_2D ? ((const int32_t*)(dst->op_params))[5] : 1;
- const int64_t N = ne13;
- const int64_t IC = ne12;
- const int64_t KH = ne01;
- const int64_t KW = ne00;
- const int64_t IW = ne10;
- const int64_t OH = is_2D ? ne2 : 1;
- const int64_t OW = ne1;
- GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
- GGML_ASSERT(nb10 == sizeof(float));
- // memory allocated increased to 3x when is_2D == false
- const int64_t n_bytes_factor = is_2D ? 1 : 3;
- // im2col: [N,C,H,W] -> [N, IC * KH * KW, OW * OH * n_bytes_factor]
- aclTensor* acl_src1 = ggml_cann_create_tensor(src1);
- int64_t tmp_im2col_ne[] = {OW * OH * n_bytes_factor, IC * KH * KW, N};
- size_t tmp_im2col_nb[GGML_MAX_DIMS - 1];
- tmp_im2col_nb[0] = ggml_type_size(src1->type);
- for (int i = 1; i < GGML_MAX_DIMS - 1; i++) {
- tmp_im2col_nb[i] = tmp_im2col_nb[i - 1] * tmp_im2col_ne[i - 1];
- }
- // Calculate im2col.
- // If dst is f16, tmp_buffer is f32, we need alloc src.typesize *
- // dst.elemcount.
- ggml_cann_pool_alloc im2col_allocator(
- ctx.pool(),
- ggml_nelements(dst) * ggml_element_size(src1) * n_bytes_factor);
- void* tmp_im2col_buffer = im2col_allocator.get();
- aclTensor* tmp_im2col_tensor = ggml_cann_create_tensor(
- tmp_im2col_buffer, ggml_cann_type_mapping(src1->type),
- ggml_type_size(src1->type), tmp_im2col_ne, tmp_im2col_nb,
- GGML_MAX_DIMS - 1, ACL_FORMAT_ND);
- std::vector<int64_t> kernel_dims = {KH, KW};
- std::vector<int64_t> dilation_size = {d1, d0};
- std::vector<int64_t> padding_dims = {p1, p0};
- std::vector<int64_t> stride_dims = {s1, s0};
- auto* kernel_size = aclCreateIntArray(kernel_dims.data(), 2);
- auto* dilations = aclCreateIntArray(dilation_size.data(), 2);
- auto* paddings = aclCreateIntArray(padding_dims.data(), 2);
- auto* strides = aclCreateIntArray(stride_dims.data(), 2);
- uint64_t workspaceSize = 0;
- aclOpExecutor* executor;
- void* workspaceAddr = nullptr;
- ACL_CHECK(aclnnIm2colGetWorkspaceSize(acl_src1, kernel_size, dilations,
- paddings, strides, tmp_im2col_tensor,
- &workspaceSize, &executor));
- ggml_cann_pool_alloc workspace_allocator(ctx.pool());
- if (workspaceSize > 0) {
- workspace_allocator.alloc(workspaceSize);
- workspaceAddr = workspace_allocator.get();
- }
- ACL_CHECK(
- aclnnIm2col(workspaceAddr, workspaceSize, executor, ctx.stream()));
- // Cast if dst is f16.
- aclTensor* tmp_cast_tensor = nullptr;
- ggml_cann_pool_alloc tmp_cast_allocator(ctx.pool());
- void* tmp_cast_buffer = nullptr;
- if (src1->type != dst->type) {
- tmp_cast_allocator.alloc(ggml_nbytes(dst) * n_bytes_factor);
- tmp_cast_buffer = tmp_cast_allocator.get();
- size_t temp_cast_nb[GGML_MAX_DIMS - 1];
- temp_cast_nb[0] = ggml_type_size(dst->type);
- for (int i = 1; i < GGML_MAX_DIMS - 1; i++) {
- temp_cast_nb[i] = temp_cast_nb[i - 1] * tmp_im2col_ne[i - 1];
- }
- tmp_cast_tensor = ggml_cann_create_tensor(
- tmp_cast_buffer, ggml_cann_type_mapping(dst->type),
- ggml_type_size(dst->type), tmp_im2col_ne, temp_cast_nb,
- GGML_MAX_DIMS - 1, ACL_FORMAT_ND);
- aclnn_cast(ctx, tmp_im2col_tensor, tmp_cast_tensor,
- ggml_cann_type_mapping(dst->type));
- }
- // post-processing
- if (is_2D) {
- ggml_cann_im2col_2d_post_process(ctx, dst, src1, tmp_cast_tensor,
- tmp_im2col_tensor);
- } else {
- std::vector<int64_t> im2col_op_params = {
- KH, KW, IW, IC, N, OH, OW, s0, p0, d0, n_bytes_factor};
- ggml_cann_im2col_1d_post_process(ctx, dst, src1, tmp_cast_tensor,
- tmp_im2col_tensor, im2col_op_params);
- }
- // release
- ACL_CHECK(aclDestroyTensor(acl_src1));
- ACL_CHECK(aclDestroyTensor(tmp_im2col_tensor));
- ACL_CHECK(aclDestroyTensor(tmp_cast_tensor));
- ACL_CHECK(aclDestroyIntArray(kernel_size));
- ACL_CHECK(aclDestroyIntArray(dilations));
- ACL_CHECK(aclDestroyIntArray(paddings));
- ACL_CHECK(aclDestroyIntArray(strides));
- }
- /**
- * @brief Applies element-wise exponential function to the elements of a tensor.
- *
- * This function computes the exponential of each element in the source tensor
- * `acl_src` and stores the result back into the same tensor.
- * The operation is defined as:
- * \f[
- * \text {acl_src }_i=e^{acl\_src_i}
- * \f]
- *
- * @param ctx The context for the CANN backend operations.
- * @param acl_src The tensor on which the exponential function will be applied.
- */
- static void aclnn_exp(ggml_backend_cann_context& ctx, aclTensor* acl_src) {
- uint64_t workspaceSize = 0;
- aclOpExecutor* executor;
- void* workspaceAddr = nullptr;
- ACL_CHECK(
- aclnnInplaceExpGetWorkspaceSize(acl_src, &workspaceSize, &executor));
- if (workspaceSize > 0) {
- ggml_cann_pool_alloc workspace_allocator(ctx.pool(), workspaceSize);
- workspaceAddr = workspace_allocator.get();
- }
- ACL_CHECK(
- aclnnInplaceExp(workspaceAddr, workspaceSize, executor, ctx.stream()));
- }
- /**
- * @brief Multiplies elements of a tensor by a scalar value, optionally
- * in-place.
- *
- * This function multiplies each element of the source tensor `acl_src` by the
- * scalar `scale` and stores the result in the destination tensor `acl_dst`. If
- * `inplace` is true, `acl_dst` will not be used and the operation is performed
- * in-place on `acl_src`.
- * The operation is defined as:
- * \f[
- * \text {acl_dst }_i=\text {acl_src }_i \times \text {scale}
- * \f]
- *
- * @param ctx The context for the CANN backend operations.
- * @param acl_src The source tensor whose elements will be multiplied.
- * @param scale The scalar value by which each element of `acl_src` will be
- * multiplied.
- * @param acl_dst The destination tensor where the result will be stored if
- * `inplace` is false.
- * @param inplace Flag indicating whether to perform the operation in-place on
- * `acl_src`.
- */
- static void aclnn_muls(ggml_backend_cann_context& ctx, aclTensor* acl_src,
- float scale, aclTensor* acl_dst, bool inplace) {
- aclScalar* acl_scale = aclCreateScalar(&scale, aclDataType::ACL_FLOAT);
- uint64_t workspaceSize = 0;
- aclOpExecutor* executor;
- void* workspaceAddr = nullptr;
- if (inplace) {
- ACL_CHECK(aclnnInplaceMulsGetWorkspaceSize(acl_src, acl_scale,
- &workspaceSize, &executor));
- if (workspaceSize > 0) {
- ggml_cann_pool_alloc workspace_allocator(ctx.pool(), workspaceSize);
- workspaceAddr = workspace_allocator.get();
- }
- ACL_CHECK(aclnnInplaceMuls(workspaceAddr, workspaceSize, executor,
- ctx.stream()));
- } else {
- ACL_CHECK(aclnnMulsGetWorkspaceSize(acl_src, acl_scale, acl_dst,
- &workspaceSize, &executor));
- if (workspaceSize > 0) {
- ggml_cann_pool_alloc workspace_allocator(ctx.pool(), workspaceSize);
- workspaceAddr = workspace_allocator.get();
- }
- ACL_CHECK(
- aclnnMuls(workspaceAddr, workspaceSize, executor, ctx.stream()));
- }
- ACL_CHECK(aclDestroyScalar(acl_scale));
- }
- /**
- * @brief Performs an in-place element-wise multiplication of two tensors.
- *
- * This function performs an element-wise multiplication of the tensors
- * `acl_src` and `acl_other` and stores the result in `acl_src`.
- * The operation is defined as:
- * \f[
- * \text {acl_src }_i=\text {acl_src }_i \times \text {acl_other }_i
- * \f]
- *
- * @param ctx The context for the CANN backend operations.
- * @param acl_src The source tensor where the multiplication result will be
- * stored.
- * @param acl_other The tensor whose elements will be multiplied with `acl_src`.
- */
- static void aclnn_inplace_mul(ggml_backend_cann_context& ctx,
- aclTensor* acl_src, aclTensor* acl_other) {
- uint64_t workspaceSize = 0;
- aclOpExecutor* executor;
- void* workspaceAddr = nullptr;
- ACL_CHECK(aclnnInplaceMulGetWorkspaceSize(acl_src, acl_other,
- &workspaceSize, &executor));
- if (workspaceSize > 0) {
- ggml_cann_pool_alloc workspace_allocator(ctx.pool(), workspaceSize);
- workspaceAddr = workspace_allocator.get();
- }
- ACL_CHECK(
- aclnnInplaceMul(workspaceAddr, workspaceSize, executor, ctx.stream()));
- }
- /**
- * @brief Performs element-wise multiplication of two tensors and stores the
- * result in a destination tensor.
- *
- * This function performs element-wise multiplication of the tensors `acl_src`
- * and `acl_other` and stores the result in the destination tensor `acl_dst`.
- * The operation is defined as:
- * \f[
- * \text {acl_dst }_i=\text {acl_src }_i \times \text {acl_other }_i
- * \f]
- *
- * @param ctx The context for the CANN backend operations.
- * @param acl_src The first tensor for element-wise multiplication.
- * @param acl_other The second tensor for element-wise multiplication.
- * @param acl_dst The destination tensor where the result will be stored.
- */
- static void aclnn_mul(ggml_backend_cann_context& ctx, aclTensor* acl_src,
- aclTensor* acl_other, aclTensor* acl_dst) {
- uint64_t workspaceSize = 0;
- aclOpExecutor* executor;
- void* workspaceAddr = nullptr;
- ACL_CHECK(aclnnMulGetWorkspaceSize(acl_src, acl_other, acl_dst,
- &workspaceSize, &executor));
- if (workspaceSize > 0) {
- ggml_cann_pool_alloc workspace_allocator(ctx.pool(), workspaceSize);
- workspaceAddr = workspace_allocator.get();
- }
- ACL_CHECK(aclnnMul(workspaceAddr, workspaceSize, executor, ctx.stream()));
- }
- /**
- * @brief Applies element-wise cosine function to the elements of a tensor.
- *
- * This function computes the cosine of each element in the source tensor
- * `acl_src` and stores the result in the destination tensor `acl_dst`. The
- * operation is defined as: \f[ \text {acl_dst }_i=\cos \left(\text {acl_src
- * }_i\right) \f]
- *
- * @param ctx The context for the CANN backend operations.
- * @param acl_src The source tensor on which the cosine function will be
- * applied.
- * @param acl_dst The destination tensor where the cosine results will be
- * stored.
- */
- static void aclnn_cos(ggml_backend_cann_context& ctx, aclTensor* acl_src,
- aclTensor* acl_dst) {
- uint64_t workspaceSize = 0;
- aclOpExecutor* executor;
- void* workspaceAddr = nullptr;
- ACL_CHECK(
- aclnnCosGetWorkspaceSize(acl_src, acl_dst, &workspaceSize, &executor));
- if (workspaceSize > 0) {
- ggml_cann_pool_alloc workspace_allocator(ctx.pool(), workspaceSize);
- workspaceAddr = workspace_allocator.get();
- }
- ACL_CHECK(aclnnCos(workspaceAddr, workspaceSize, executor, ctx.stream()));
- }
- /**
- * @brief Applies element-wise sine function to the elements of a tensor.
- *
- * This function computes the sine of each element in the source tensor
- `acl_src`
- * and stores the result in the destination tensor `acl_dst`.
- * The operation is defined as:
- * \f[
- * \text {acl_dst }_i=\sin \left(\text {acl_src }_i\right)
- * \f]
- * @param ctx The context for the CANN backend operations.
- * @param acl_src The source tensor on which the sine function will be applied.
- * @param acl_dst The destination tensor where the sine results will be stored.
- */
- static void aclnn_sin(ggml_backend_cann_context& ctx, aclTensor* acl_src,
- aclTensor* acl_dst) {
- uint64_t workspaceSize = 0;
- aclOpExecutor* executor;
- void* workspaceAddr = nullptr;
- ACL_CHECK(
- aclnnSinGetWorkspaceSize(acl_src, acl_dst, &workspaceSize, &executor));
- if (workspaceSize > 0) {
- ggml_cann_pool_alloc workspace_allocator(ctx.pool(), workspaceSize);
- workspaceAddr = workspace_allocator.get();
- }
- ACL_CHECK(aclnnSin(workspaceAddr, workspaceSize, executor, ctx.stream()));
- }
- void ggml_cann_timestep_embedding(ggml_backend_cann_context& ctx,
- ggml_tensor* dst) {
- const ggml_tensor* src = dst->src[0];
- GGML_ASSERT(src->type == GGML_TYPE_F32);
- GGML_ASSERT(dst->type == GGML_TYPE_F32);
- const int dim = dst->op_params[0];
- const int max_period = dst->op_params[1];
- int half = dim / 2;
- aclTensor* acl_src = ggml_cann_create_tensor(src);
- // arange: [0, ..., half)
- float start = 0;
- float stop = half;
- float step = 1;
- int64_t n_elements_arange = half;
- int64_t tmp_arange_ne[] = {half};
- size_t tmp_arange_nb[] = {sizeof(dst->type)};
- ggml_cann_pool_alloc arange_allocator(ctx.pool(), half * sizeof(dst->type));
- void* tmp_arange_buffer = arange_allocator.get();
- aclTensor* tmp_arange_tensor = ggml_cann_create_tensor(
- tmp_arange_buffer, ggml_cann_type_mapping(dst->type),
- ggml_type_size(dst->type), tmp_arange_ne, tmp_arange_nb,
- GGML_MAX_DIMS - 3, ACL_FORMAT_ND);
- aclnn_arange(ctx, tmp_arange_tensor, start, stop, step, n_elements_arange);
- // freq
- float freq_param = -logf(max_period) / half;
- bool inplace = true;
- aclnn_muls(ctx, tmp_arange_tensor, freq_param, nullptr, inplace);
- aclnn_exp(ctx, tmp_arange_tensor);
- // permute: src [0,1,2,3]->[0,1,3,2]
- int64_t tmp_permute_ne[] = {src->ne[1], src->ne[0], src->ne[2], src->ne[3]};
- size_t tmp_permute_nb[GGML_MAX_DIMS];
- tmp_permute_nb[0] = ggml_type_size(src->type);
- for (int i = 1; i < GGML_MAX_DIMS; i++) {
- tmp_permute_nb[i] = tmp_permute_nb[i - 1] * tmp_permute_ne[i - 1];
- }
- ggml_cann_pool_alloc permute_allocator(ctx.pool(), ggml_nbytes(src));
- void* tmp_permute_buffer = permute_allocator.get();
- aclTensor* tmp_permute_tenosr = ggml_cann_create_tensor(
- tmp_permute_buffer, ggml_cann_type_mapping(src->type),
- ggml_type_size(src->type), tmp_permute_ne, tmp_permute_nb,
- GGML_MAX_DIMS, ACL_FORMAT_ND);
- int64_t permute_dim[] = {0, 1, 3, 2};
- int64_t num_dims = 4;
- aclnn_permute(ctx, acl_src, tmp_permute_tenosr, permute_dim, num_dims);
- // timestep * freq
- int64_t tmp_mul_ne[] = {src->ne[1] * half, src->ne[0], src->ne[2],
- src->ne[3]};
- size_t tmp_mul_nb[GGML_MAX_DIMS];
- tmp_mul_nb[0] = ggml_type_size(src->type);
- for (int i = 1; i < GGML_MAX_DIMS; i++) {
- tmp_mul_nb[i] = tmp_mul_nb[i - 1] * tmp_mul_ne[i - 1];
- }
- int mul_nelements =
- src->ne[1] * half * src->ne[0] * src->ne[2] * src->ne[3];
- ggml_cann_pool_alloc mul_allocator(
- ctx.pool(), mul_nelements * ggml_type_size(src->type));
- void* tmp_mul_buffer = mul_allocator.get();
- aclTensor* tmp_mul_tensor = ggml_cann_create_tensor(
- tmp_mul_buffer, ggml_cann_type_mapping(src->type),
- ggml_type_size(src->type), tmp_mul_ne, tmp_mul_nb, GGML_MAX_DIMS,
- ACL_FORMAT_ND);
- aclnn_mul(ctx, tmp_permute_tenosr, tmp_arange_tensor, tmp_mul_tensor);
- // cos
- ggml_cann_pool_alloc cos_allocator(
- ctx.pool(), mul_nelements * ggml_type_size(src->type));
- void* tmp_cos_buffer = cos_allocator.get();
- aclTensor* tmp_cos_tensor = ggml_cann_create_tensor(
- tmp_cos_buffer, ggml_cann_type_mapping(dst->type),
- ggml_type_size(dst->type), tmp_mul_ne, tmp_mul_nb, GGML_MAX_DIMS,
- ACL_FORMAT_ND);
- aclnn_cos(ctx, tmp_mul_tensor, tmp_cos_tensor);
- // sin
- ggml_cann_pool_alloc sin_allocator(
- ctx.pool(), mul_nelements * ggml_type_size(src->type));
- void* tmp_sin_buffer = sin_allocator.get();
- aclTensor* tmp_sin_tensor = ggml_cann_create_tensor(
- tmp_sin_buffer, ggml_cann_type_mapping(dst->type),
- ggml_type_size(dst->type), tmp_mul_ne, tmp_mul_nb, GGML_MAX_DIMS,
- ACL_FORMAT_ND);
- aclnn_sin(ctx, tmp_mul_tensor, tmp_sin_tensor);
- // concat
- int64_t concat_dim = 3;
- aclTensor* acl_dst = ggml_cann_create_tensor(dst);
- aclTensor* tensors[] = {tmp_cos_tensor, tmp_sin_tensor};
- aclTensorList* tensorList = aclCreateTensorList(tensors, 2);
- aclnn_concat(ctx, tensorList, acl_dst, concat_dim);
- // release
- // segmentation fault when delete both tensorList and his elements.
- ACL_CHECK(aclDestroyTensorList(tensorList));
- ACL_CHECK(aclDestroyTensor(acl_src));
- ACL_CHECK(aclDestroyTensor(tmp_arange_tensor));
- ACL_CHECK(aclDestroyTensor(tmp_permute_tenosr));
- ACL_CHECK(aclDestroyTensor(tmp_mul_tensor));
- ACL_CHECK(aclDestroyTensor(acl_dst));
- }
- /**
- * @brief Fills a tensor with a scalar value.
- *
- * This function fills the destination tensor `acl_dst` with the scalar value
- * `scalar`.
- *
- * @param ctx The context for the CANN backend operations.
- * @param scalar The scalar value used to fill the tensor.
- * @param acl_dst The destination tensor to be filled with the scalar value.
- */
- static void aclnn_fill_scalar(ggml_backend_cann_context& ctx, float scalar,
- aclTensor* acl_dst) {
- auto acl_scalar = aclCreateScalar(&scalar, aclDataType::ACL_FLOAT);
- uint64_t workspaceSize = 0;
- aclOpExecutor* executor;
- void* workspaceAddr = nullptr;
- ACL_CHECK(aclnnInplaceFillScalarGetWorkspaceSize(
- acl_dst, acl_scalar, &workspaceSize, &executor));
- if (workspaceSize > 0) {
- ggml_cann_pool_alloc workspace_allocator(ctx.pool(), workspaceSize);
- workspaceAddr = workspace_allocator.get();
- }
- ACL_CHECK(aclnnInplaceFillScalar(workspaceAddr, workspaceSize, executor,
- ctx.stream()));
- ACL_CHECK(aclDestroyScalar(acl_scalar));
- }
- /**
- * @brief Raises each element of a tensor to the power of the corresponding
- * element in another tensor.
- *
- * This function computes the element-wise power of the destination tensor
- * `acl_dst` raised to the power of the exponent tensor `acl_exp`.
- * The operation is defined as:
- * \f[
- * \text {acl_dst }_i=acl\_dst_i^{\text {acl_exp }_i}
- * \f]
- *
- * @param ctx The context for the CANN backend operations.
- * @param acl_dst The destination tensor, which also serves as the base tensor.
- * @param acl_exp The exponent tensor, each element of which is used to raise
- * the corresponding element in the destination tensor.
- */
- static void aclnn_pow_tensor_tensor(ggml_backend_cann_context& ctx,
- aclTensor* acl_dst, aclTensor* acl_exp) {
- uint64_t workspaceSize = 0;
- aclOpExecutor* executor;
- void* workspaceAddr = nullptr;
- ACL_CHECK(aclnnInplacePowTensorTensorGetWorkspaceSize(
- acl_dst, acl_exp, &workspaceSize, &executor));
- if (workspaceSize > 0) {
- ggml_cann_pool_alloc workspace_allocator(ctx.pool(), workspaceSize);
- workspaceAddr = workspace_allocator.get();
- }
- ACL_CHECK(aclnnInplacePowTensorTensor(workspaceAddr, workspaceSize,
- executor, ctx.stream()));
- }
- /**
- * @brief Applies the Alibi (Attention with Linear Biases) mechanism to the
- * @details This function implements the Alibi mechanism, which introduces
- * learnable biases into the attention scores to simulate relative
- * position encoding without the need for explicit positional
- * embeddings.
- *
- * @param ctx The backend CANN context for executing operations.
- * @param acl_src The source tensor representing the query or key.
- * @param acl_position The position tensor containing relative positions.
- * @param acl_dst The destination tensor where the result will be stored.
- * @param n_head The number of attention heads.
- * @param src_ne The dimensions of the source tensor.
- * @param src_nb0 The byte size of the first dimension of the source
- tensor.
- * @param max_bias The maximum bias value used in the Alibi mechanism.
- * @param dst The destination tensor object for additional metadata.
- *
- * The function performs the following steps:
- * 1. Calculates the logarithm floor of the number of heads to determine the
- base for bias calculation.
- * 2. Initializes arrays with arithmetic sequences and fills them with bias
- values.
- * 3. Computes the bias tensor based on the calculated biases and arithmetic
- sequences.
- * 4. Reshapes the bias tensor to match the dimensions of the input tensors.
- * 5. Multiplies the position tensor by the bias tensor.
- * 6. Adds the result of the multiplication to the source tensor to produce the
- final output.
- */
- static void aclnn_alibi(ggml_backend_cann_context& ctx, aclTensor* acl_src,
- aclTensor* acl_position, aclTensor* acl_dst,
- const int n_head, int64_t* src_ne, const size_t src_nb0,
- float max_bias, ggml_tensor* dst) {
- const int64_t ne2_ne3 = src_ne[2] * src_ne[3];
- GGML_ASSERT(src_nb0 == sizeof(float));
- GGML_ASSERT(n_head == src_ne[2]);
- const int n_heads_log2_floor = 1u << (uint32_t)floor(log2(n_head));
- float m0 = powf(2.0f, -(max_bias) / n_heads_log2_floor);
- float m1 = powf(2.0f, -(max_bias / 2.0f) / n_heads_log2_floor);
- // init arange
- ggml_cann_pool_alloc arange_allocator(ctx.pool(),
- ne2_ne3 * ggml_type_size(dst->type));
- void* tmp_arange_buffer = arange_allocator.get();
- // arange1: [1, ..., n_heads_log2_floor+1)
- float start = 1;
- float stop = n_heads_log2_floor + 1;
- float step = 1;
- int64_t n_elements_arange = n_heads_log2_floor;
- int64_t tmp_arange1_ne[] = {n_heads_log2_floor};
- size_t tmp_arange1_nb[] = {sizeof(dst->type)};
- aclTensor* tmp_arange1_tensor = ggml_cann_create_tensor(
- tmp_arange_buffer, ggml_cann_type_mapping(dst->type),
- ggml_type_size(dst->type), tmp_arange1_ne, tmp_arange1_nb,
- GGML_MAX_DIMS - 3, ACL_FORMAT_ND);
- aclnn_arange(ctx, tmp_arange1_tensor, start, stop, step, n_elements_arange);
- aclTensor* tmp_arange2_tensor = nullptr;
- if (n_heads_log2_floor < ne2_ne3) {
- // arange2: [1, ..., 2 * (k - n_heads_log2_floor) + 1)
- start = 1;
- stop = 2 * (ne2_ne3 - n_heads_log2_floor) + 1;
- step = 2;
- n_elements_arange = ne2_ne3 - n_heads_log2_floor;
- int64_t tmp_arange2_ne[] = {ne2_ne3 - n_heads_log2_floor};
- size_t tmp_arange2_nb[] = {sizeof(dst->type)};
- aclTensor* tmp_arange2_tensor = ggml_cann_create_tensor(
- (char*)tmp_arange_buffer +
- n_heads_log2_floor * ggml_type_size(dst->type),
- ggml_cann_type_mapping(dst->type), ggml_type_size(dst->type),
- tmp_arange2_ne, tmp_arange2_nb, GGML_MAX_DIMS - 3, ACL_FORMAT_ND);
- aclnn_arange(ctx, tmp_arange2_tensor, start, stop, step,
- n_elements_arange);
- }
- // init mk_base
- ggml_cann_pool_alloc mk_base_allocator(ctx.pool(),
- ne2_ne3 * ggml_type_size(dst->type));
- void* tmp_mk_base_buffer = mk_base_allocator.get();
- int64_t tmp_mk_base1_ne[] = {n_heads_log2_floor};
- size_t tmp_mk_base1_nb[] = {sizeof(dst->type)};
- aclTensor* tmp_mk_base1_tensor = ggml_cann_create_tensor(
- tmp_mk_base_buffer, ggml_cann_type_mapping(dst->type),
- ggml_type_size(dst->type), tmp_mk_base1_ne, tmp_mk_base1_nb,
- GGML_MAX_DIMS - 3, ACL_FORMAT_ND);
- aclnn_fill_scalar(ctx, m0, tmp_mk_base1_tensor);
- aclTensor* tmp_mk_base2_tensor = nullptr;
- if (n_heads_log2_floor < ne2_ne3) {
- int64_t tmp_mk_base2_ne[] = {ne2_ne3 - n_heads_log2_floor};
- size_t tmp_mk_base2_nb[] = {sizeof(dst->type)};
- aclTensor* tmp_mk_base2_tensor = ggml_cann_create_tensor(
- (char*)tmp_mk_base_buffer +
- n_heads_log2_floor * ggml_type_size(dst->type),
- ggml_cann_type_mapping(dst->type), ggml_type_size(dst->type),
- tmp_mk_base2_ne, tmp_mk_base2_nb, GGML_MAX_DIMS - 3, ACL_FORMAT_ND);
- aclnn_fill_scalar(ctx, m1, tmp_mk_base2_tensor);
- }
- // init mk
- int64_t tmp_mk_base_ne[] = {ne2_ne3};
- size_t tmp_mk_base_nb[] = {sizeof(dst->type)};
- aclTensor* tmp_mk_base_tensor = ggml_cann_create_tensor(
- tmp_mk_base_buffer, ggml_cann_type_mapping(dst->type),
- ggml_type_size(dst->type), tmp_mk_base_ne, tmp_mk_base_nb,
- GGML_MAX_DIMS - 3, ACL_FORMAT_ND);
- aclTensor* tmp_arange_tensor = ggml_cann_create_tensor(
- tmp_arange_buffer, ggml_cann_type_mapping(dst->type),
- ggml_type_size(dst->type), tmp_mk_base_ne, tmp_mk_base_nb,
- GGML_MAX_DIMS - 3, ACL_FORMAT_ND);
- aclnn_pow_tensor_tensor(ctx, tmp_mk_base_tensor, tmp_arange_tensor);
- // reshape mk
- int64_t tmp_mk_ne[] = {1, 1, src_ne[2], src_ne[3]};
- size_t tmp_mk_nb[GGML_MAX_DIMS];
- tmp_mk_nb[0] = ggml_type_size(dst->type);
- for (int i = 1; i < GGML_MAX_DIMS; i++) {
- tmp_mk_nb[i] = tmp_mk_nb[i - 1] * tmp_mk_ne[i - 1];
- }
- aclTensor* tmp_mk_tensor = ggml_cann_create_tensor(
- tmp_mk_base_buffer, ggml_cann_type_mapping(dst->type),
- ggml_type_size(dst->type), tmp_mk_ne, tmp_mk_nb, GGML_MAX_DIMS,
- ACL_FORMAT_ND);
- // acl_position * mk
- int64_t tmp_output_ne[] = {src_ne[0], src_ne[1], src_ne[2], src_ne[3]};
- size_t tmp_output_nb[GGML_MAX_DIMS];
- tmp_output_nb[0] = ggml_type_size(dst->type);
- for (int i = 1; i < GGML_MAX_DIMS; i++) {
- tmp_output_nb[i] = tmp_output_nb[i - 1] * tmp_output_ne[i - 1];
- }
- ggml_cann_pool_alloc output_allocator(ctx.pool(), ggml_nbytes(dst));
- void* tmp_output_buffer = output_allocator.get();
- aclTensor* tmp_output_tensor = ggml_cann_create_tensor(
- tmp_output_buffer, ggml_cann_type_mapping(dst->type),
- ggml_type_size(dst->type), tmp_output_ne, tmp_output_nb, GGML_MAX_DIMS,
- ACL_FORMAT_ND);
- aclnn_mul(ctx, acl_position, tmp_mk_tensor, tmp_output_tensor);
- // add
- aclnn_add(ctx, tmp_output_tensor, acl_src, acl_dst);
- ACL_CHECK(aclDestroyTensor(tmp_arange1_tensor));
- ACL_CHECK(aclDestroyTensor(tmp_arange2_tensor));
- ACL_CHECK(aclDestroyTensor(tmp_mk_base1_tensor));
- ACL_CHECK(aclDestroyTensor(tmp_mk_base2_tensor));
- ACL_CHECK(aclDestroyTensor(tmp_mk_base_tensor));
- ACL_CHECK(aclDestroyTensor(tmp_arange_tensor));
- ACL_CHECK(aclDestroyTensor(tmp_mk_tensor));
- ACL_CHECK(aclDestroyTensor(tmp_output_tensor));
- }
- void ggml_cann_cpy(ggml_backend_cann_context& ctx, ggml_tensor* dst) {
- ggml_cann_dup(ctx, dst);
- }
- /**
- * @brief Performs element-wise addition of two tensors in place.
- *
- * This function adds the source tensor `acl_src` to the destination tensor
- * `acl_dst` element-wise and stores the result in the destination tensor
- * `acl_dst`.
- *
- * @param ctx The context for the CANN backend operations.
- * @param acl_src The source tensor to be added.
- * @param acl_dst The destination tensor which will hold the result of the
- * addition.
- */
- static void aclnn_inplace_add(ggml_backend_cann_context& ctx,
- aclTensor* acl_src, aclTensor* acl_dst) {
- aclScalar* alpha = nullptr;
- float alphaValue = 1.0f;
- alpha = aclCreateScalar(&alphaValue, aclDataType::ACL_FLOAT);
- uint64_t workspaceSize = 0;
- aclOpExecutor* executor;
- void* workspaceAddr = nullptr;
- ACL_CHECK(aclnnInplaceAddGetWorkspaceSize(acl_dst, acl_src, alpha,
- &workspaceSize, &executor));
- if (workspaceSize > 0) {
- ggml_cann_pool_alloc workspace_allocator(ctx.pool(), workspaceSize);
- workspaceAddr = workspace_allocator.get();
- }
- ACL_CHECK(
- aclnnInplaceAdd(workspaceAddr, workspaceSize, executor, ctx.stream()));
- ACL_CHECK(aclDestroyScalar(alpha));
- }
- /**
- * @brief Applies the softmax function to a tensor along a specified dimension.
- *
- * This function computes the softmax of the source tensor `acl_src` along the
- * specified dimension `dim` and stores the result in the destination tensor
- * `acl_dst`.
- *
- * @param ctx The context for the CANN backend operations.
- * @param acl_src The source tensor on which the softmax function will be
- * applied.
- * @param dim The dimension along which the softmax function will be computed.
- * @param acl_dst The destination tensor where the softmax results will be
- * stored.
- */
- static void aclnn_softmax(ggml_backend_cann_context& ctx, aclTensor* acl_src,
- int64_t dim, aclTensor* acl_dst) {
- uint64_t workspaceSize = 0;
- aclOpExecutor* executor;
- void* workspaceAddr = nullptr;
- ACL_CHECK(aclnnSoftmaxGetWorkspaceSize(acl_src, dim, acl_dst,
- &workspaceSize, &executor));
- if (workspaceSize > 0) {
- ggml_cann_pool_alloc workspace_allocator(ctx.pool(), workspaceSize);
- workspaceAddr = workspace_allocator.get();
- }
- aclrtStream stream = ctx.stream();
- ACL_CHECK(aclnnSoftmax(workspaceAddr, workspaceSize, executor, stream));
- }
- void ggml_cann_softmax(ggml_backend_cann_context& ctx, ggml_tensor* dst) {
- ggml_tensor* src0 = dst->src[0];
- ggml_tensor* src1 = dst->src[1]; // mask
- aclTensor* acl_src0 = ggml_cann_create_tensor(src0);
- aclTensor* acl_dst = ggml_cann_create_tensor(dst);
- float scale = 1.0f;
- float max_bias = 0.0f;
- memcpy(&scale, (float*)dst->op_params + 0, sizeof(float));
- memcpy(&max_bias, (float*)dst->op_params + 1, sizeof(float));
- // input mul scale
- aclScalar* acl_scale = aclCreateScalar(&scale, aclDataType::ACL_FLOAT);
- size_t n_bytes = ggml_nbytes(src0);
- ggml_cann_pool_alloc mul_scale_allocator(ctx.pool(), n_bytes);
- void* input_mul_scale_buffer = mul_scale_allocator.get();
- aclTensor* acl_input_mul_scale_tensor = ggml_cann_create_tensor(
- input_mul_scale_buffer, ACL_FLOAT, ggml_type_size(src0->type), src0->ne,
- src0->nb, GGML_MAX_DIMS);
- bool inplace = false;
- aclnn_muls(ctx, acl_src0, scale, acl_input_mul_scale_tensor, inplace);
- // mask
- aclTensor* acl_src1_fp32_tensor = nullptr;
- aclTensor* tmp_mask_tensor = nullptr;
- ggml_cann_pool_alloc src1_fp32_allocator(ctx.pool());
- if (src1) {
- const bool use_f16 = src1->type == GGML_TYPE_F16;
- if (use_f16) {
- // cast to fp32
- size_t n_bytes = ggml_nelements(src1) * sizeof(float_t);
- size_t src1_fp32_nb[GGML_MAX_DIMS];
- src1_fp32_nb[0] = sizeof(float_t);
- for (int i = 1; i < GGML_MAX_DIMS; i++) {
- src1_fp32_nb[i] = src1_fp32_nb[i - 1] * src1->ne[i - 1];
- }
- src1_fp32_allocator.alloc(n_bytes);
- void* src1_fp32_buffer = src1_fp32_allocator.get();
- acl_src1_fp32_tensor = ggml_cann_create_tensor(
- src1_fp32_buffer, ACL_FLOAT, sizeof(float), src1->ne,
- src1_fp32_nb, GGML_MAX_DIMS);
- aclTensor* acl_src1 = ggml_cann_create_tensor(src1);
- aclnn_cast(ctx, acl_src1, acl_src1_fp32_tensor, ACL_FLOAT);
- ACL_CHECK(aclDestroyTensor(acl_src1));
- } else {
- acl_src1_fp32_tensor = ggml_cann_create_tensor(src1);
- }
- // broadcast the mask across rows, only use ne11 of ne01 in mask
- if (src1->ne[1] != src0->ne[1]) {
- // mask shape: [1,1,ne11,ne10]
- int64_t tmp_mask_ne[] = {src0->ne[0], src0->ne[1], 1, 1};
- size_t tmp_mask_nb[GGML_MAX_DIMS];
- tmp_mask_nb[0] = sizeof(float_t);
- for (int i = 1; i < GGML_MAX_DIMS; i++) {
- tmp_mask_nb[i] = tmp_mask_nb[i - 1] * tmp_mask_ne[i - 1];
- }
- tmp_mask_tensor = ggml_cann_create_tensor(
- src1->data, ACL_FLOAT, sizeof(float), tmp_mask_ne, tmp_mask_nb,
- GGML_MAX_DIMS, ACL_FORMAT_ND);
- }
- // alibi
- const int n_head = src0->ne[2];
- const size_t src_nb0 = src0->nb[0];
- n_bytes = ggml_nbytes(dst);
- ggml_cann_pool_alloc output_allocator(ctx.pool(), n_bytes);
- void* output_buffer = output_allocator.get();
- aclTensor* alibi_output_tensor = ggml_cann_create_tensor(
- output_buffer, ACL_FLOAT, ggml_type_size(dst->type), dst->ne,
- dst->nb, GGML_MAX_DIMS);
- if (max_bias <= 0.0f) {
- // slope = 1.0
- if (tmp_mask_tensor) {
- aclnn_add(ctx, tmp_mask_tensor, acl_input_mul_scale_tensor,
- alibi_output_tensor);
- } else {
- aclnn_add(ctx, acl_src1_fp32_tensor, acl_input_mul_scale_tensor,
- alibi_output_tensor);
- }
- } else {
- // slope != 1.0
- if (tmp_mask_tensor) {
- aclnn_alibi(ctx, acl_input_mul_scale_tensor, tmp_mask_tensor,
- alibi_output_tensor, n_head, src0->ne, src_nb0,
- max_bias, dst);
- } else {
- aclnn_alibi(ctx, acl_input_mul_scale_tensor,
- acl_src1_fp32_tensor, alibi_output_tensor, n_head,
- src0->ne, src_nb0, max_bias, dst);
- }
- }
- // softmax
- aclnn_softmax(ctx, alibi_output_tensor, 3, acl_dst);
- ACL_CHECK(aclDestroyTensor(alibi_output_tensor));
- } else {
- aclnn_softmax(ctx, acl_input_mul_scale_tensor, 3, acl_dst);
- }
- ACL_CHECK(aclDestroyTensor(acl_src0));
- ACL_CHECK(aclDestroyTensor(acl_src1_fp32_tensor));
- ACL_CHECK(aclDestroyTensor(acl_dst));
- ACL_CHECK(aclDestroyScalar(acl_scale));
- ACL_CHECK(aclDestroyTensor(acl_input_mul_scale_tensor));
- ACL_CHECK(aclDestroyTensor(tmp_mask_tensor));
- }
- void ggml_cann_get_rows(ggml_backend_cann_context& ctx, ggml_tensor* dst) {
- ggml_tensor* src0 = dst->src[0];
- ggml_tensor* src1 = dst->src[1];
- ggml_cann_pool_alloc src0_extra_allocator(ctx.pool(), sizeof(ggml_tensor));
- ggml_cann_pool_alloc src1_extra_allocator(ctx.pool(), sizeof(ggml_tensor));
- ggml_cann_pool_alloc dst_extra_allocator(ctx.pool(), sizeof(ggml_tensor));
- src0->extra = src0_extra_allocator.get();
- src1->extra = src1_extra_allocator.get();
- dst->extra = dst_extra_allocator.get();
- ACL_CHECK(aclrtMemcpyAsync(src0->extra, sizeof(ggml_tensor), src0,
- sizeof(ggml_tensor), ACL_MEMCPY_HOST_TO_DEVICE,
- ctx.stream()));
- ACL_CHECK(aclrtMemcpyAsync(src1->extra, sizeof(ggml_tensor), src1,
- sizeof(ggml_tensor), ACL_MEMCPY_HOST_TO_DEVICE,
- ctx.stream()));
- ACL_CHECK(aclrtMemcpyAsync(dst->extra, sizeof(ggml_tensor), dst,
- sizeof(ggml_tensor), ACL_MEMCPY_HOST_TO_DEVICE,
- ctx.stream()));
- switch (src0->type) {
- case GGML_TYPE_F32:
- aclrtlaunch_ascendc_get_row_f32(
- 24, ctx.stream(), src0->data, src1->data, dst->data,
- ((ggml_tensor*)src0->extra)->ne,
- ((ggml_tensor*)src0->extra)->nb,
- ((ggml_tensor*)src1->extra)->ne,
- ((ggml_tensor*)src1->extra)->nb, ((ggml_tensor*)dst->extra)->ne,
- ((ggml_tensor*)dst->extra)->nb);
- break;
- case GGML_TYPE_F16:
- aclrtlaunch_ascendc_get_row_f16(
- 24, ctx.stream(), src0->data, src1->data, dst->data,
- ((ggml_tensor*)src0->extra)->ne,
- ((ggml_tensor*)src0->extra)->nb,
- ((ggml_tensor*)src1->extra)->ne,
- ((ggml_tensor*)src1->extra)->nb, ((ggml_tensor*)dst->extra)->ne,
- ((ggml_tensor*)dst->extra)->nb);
- break;
- case GGML_TYPE_Q4_0:
- aclrtlaunch_ascendc_get_row_q4_0(
- 24, ctx.stream(), src0->data, src1->data, dst->data,
- ((ggml_tensor*)src0->extra)->ne,
- ((ggml_tensor*)src1->extra)->ne,
- ((ggml_tensor*)src1->extra)->nb, ((ggml_tensor*)dst->extra)->ne,
- ((ggml_tensor*)dst->extra)->nb);
- break;
- case GGML_TYPE_Q8_0:
- aclrtlaunch_ascendc_get_row_q8_0(
- 24, ctx.stream(), src0->data, src1->data, dst->data,
- ((ggml_tensor*)src0->extra)->ne,
- ((ggml_tensor*)src1->extra)->ne,
- ((ggml_tensor*)src1->extra)->nb, ((ggml_tensor*)dst->extra)->ne,
- ((ggml_tensor*)dst->extra)->nb);
- break;
- default:
- GGML_ABORT("fatal error");
- break;
- }
- }
- /**
- * @brief Repeats elements of a tensor along a specified dimension.
- *
- * This function repeats each element of the source tensor `acl_src` a specified
- * number of times (`repeats`) along the specified dimension `dim` and stores
- * the result in the destination tensor `acl_dst`.
- *
- * @param ctx The context for the CANN backend operations.
- * @param acl_src The source tensor whose elements will be repeated.
- * @param acl_dst The destination tensor where the repeated elements will be
- * stored.
- * @param dim The dimension along which the elements will be repeated.
- * @param repeats The number of times each element will be repeated.
- * @param output_size The size of the output tensor.
- */
- static void aclnn_repeat_interleave(ggml_backend_cann_context& ctx,
- aclTensor* acl_src, aclTensor* acl_dst,
- int64_t dim, int64_t repeats,
- int64_t output_size) {
- uint64_t workspaceSize = 0;
- aclOpExecutor* executor;
- void* workspaceAddr = nullptr;
- ACL_CHECK(aclnnRepeatInterleaveIntWithDimGetWorkspaceSize(
- acl_src, repeats, dim, output_size, acl_dst, &workspaceSize,
- &executor));
- if (workspaceSize > 0) {
- ggml_cann_pool_alloc workspace_allocator(ctx.pool(), workspaceSize);
- workspaceAddr = workspace_allocator.get();
- }
- ACL_CHECK(aclnnRepeatInterleaveIntWithDim(workspaceAddr, workspaceSize,
- executor, ctx.stream()));
- }
- /**
- * @brief Performs matrix multiplication of two tensors.
- *
- * This function computes the matrix multiplication of the input tensor
- * `acl_input` and the weight tensor `acl_weight`, and stores the result in the
- * destination tensor `acl_dst`.
- * The operation is defined as:
- * \f[
- * \text {acl_dst}=\text {acl_input@acl_weight}
- * \f]
- *
- * @param ctx The context for the CANN backend operations.
- * @param acl_input The input tensor for the matrix multiplication.
- * @param acl_weight The weight tensor for the matrix multiplication.
- * @param acl_dst The destination tensor where the result of the matrix
- * multiplication will be stored.
- */
- static void aclnn_mat_mul(ggml_backend_cann_context& ctx, aclTensor* acl_input,
- aclTensor* acl_weight, aclTensor* acl_dst) {
- int8_t cube_math_type = 1; // ALLOW_FP32_DOWN_PRECISION, when input is
- // fp32, atlas a2 will transpose it to HFLOAT32.
- uint64_t workspaceSize = 0;
- aclOpExecutor* executor;
- void* workspaceAddr = nullptr;
- ACL_CHECK(aclnnMatmulGetWorkspaceSize(acl_input, acl_weight, acl_dst,
- cube_math_type, &workspaceSize,
- &executor));
- if (workspaceSize > 0) {
- ggml_cann_pool_alloc workspace_allocator(ctx.pool(), workspaceSize);
- workspaceAddr = workspace_allocator.get();
- }
- ACL_CHECK(
- aclnnMatmul(workspaceAddr, workspaceSize, executor, ctx.stream()));
- }
- /**
- * @brief Performs matrix multiplication with floating-point precision on
- * tensors using the CANN backend.
- *
- * This function performs matrix multiplication of the input tensor and the
- * weight tensor, handling broadcasting and transposing as needed, and stores
- * the result in the destination tensor `dst`.
- *
- * @param ctx The context for the CANN backend operations.
- * @param dst The destination tensor where the result of the matrix
- * multiplication will be stored.
- */
- static void ggml_cann_mat_mul_fp(ggml_backend_cann_context& ctx,
- ggml_tensor* dst) {
- ggml_tensor* weight = dst->src[0]; // weight
- ggml_tensor* input = dst->src[1]; // input
- // when weight ne2 or ne3 is 1, aclnnMatmulGetWorkspaceSize will auto
- // broadcast, when weight ne2 or ne3 is not 1, weight need repeat.
- BCAST_MUL_MAT_SHAPE(input, weight, dst);
- // transpose weight: [1,2,3,4] -> [1,2,4,3]
- int64_t transpose_ne[] = {bcast_weight_ne[1], bcast_weight_ne[0],
- bcast_weight_ne[2], bcast_weight_ne[3],
- bcast_weight_ne[4], bcast_weight_ne[5]};
- size_t transpose_nb[] = {bcast_weight_nb[1], bcast_weight_nb[0],
- bcast_weight_nb[2], bcast_weight_nb[3],
- bcast_weight_nb[4], bcast_weight_nb[5]};
- aclTensor* acl_weight_tensor =
- ggml_cann_create_tensor(weight, transpose_ne, transpose_nb, bcast_dims);
- aclTensor* acl_input_tensor =
- ggml_cann_create_tensor(input, BCAST_MUL_MAT_PARAM(input));
- aclTensor* acl_dst = ggml_cann_create_tensor(dst, BCAST_MUL_MAT_PARAM(dst));
- aclnn_mat_mul(ctx, acl_input_tensor, acl_weight_tensor, acl_dst);
- ACL_CHECK(aclDestroyTensor(acl_weight_tensor));
- ACL_CHECK(aclDestroyTensor(acl_input_tensor));
- ACL_CHECK(aclDestroyTensor(acl_dst));
- }
- /**
- * @brief Performs matrix multiplication with quantized weights and
- * floating-point inputs using the CANN backend.
- *
- * This function performs matrix multiplication of the input tensor `src1` and
- * the weight tensor `src0`, handling broadcasting, transposing, and
- * quantization as needed, and stores the result in the destination tensor
- * `dst`.
- *
- * @param ctx The context for the CANN backend operations.
- * @param dst The destination tensor where the result of the matrix
- * multiplication will be stored.
- */
- static void ggml_cann_mul_mat_quant(ggml_backend_cann_context& ctx,
- ggml_tensor* dst,
- const enum ggml_type type) {
- ggml_tensor* src0 = dst->src[0]; // weight
- ggml_tensor* src1 = dst->src[1]; // input
- // The shape of the weight is NCHW. Matrix multiplication uses HW dims. HC
- // is regarded as batch. weight need transpose.
- int64_t weight_ne[] = {src0->ne[1], src0->ne[0]};
- float weight_elem_size;
- if (type == GGML_TYPE_Q4_0) {
- weight_elem_size = float(sizeof(uint8_t)) / 2;
- }
- else if (type == GGML_TYPE_Q8_0) {
- weight_elem_size = float(sizeof(uint8_t));
- }
- else {
- GGML_ABORT("Only support Q4_0 and Q8_0 MUL_MAT");
- }
- float weight_nb[] = {weight_elem_size * src0->ne[0], weight_elem_size};
- // size of one matrix is element_size * height * width.
- size_t weight_stride = weight_elem_size * src0->ne[0] * src0->ne[1];
- size_t weight_size = weight_stride * src0->ne[2] * src0->ne[3];
- // scale stored at the end of weight. Also need transpose.
- GGML_ASSERT(QK4_0 == QK8_0);
- int64_t scale_ne[] = {src0->ne[1], src0->ne[0] / QK8_0};
- size_t scale_elem_size = sizeof(uint16_t);
- size_t scale_nb[] = {src0->ne[0] / QK8_0 * scale_elem_size,
- scale_elem_size};
- size_t scale_stride = scale_elem_size * src0->ne[0] * src0->ne[1] / QK8_0;
- char* scale_offset = (char*)src0->data + weight_size;
- // input
- void* input_buffer;
- size_t input_elem_size = sizeof(uint16_t);
- int64_t input_ne[] = {src1->ne[0], src1->ne[1]};
- size_t input_nb[] = {input_elem_size, input_elem_size * src1->ne[0]};
- size_t input_stride = input_elem_size * src1->ne[0] * src1->ne[1];
- ggml_cann_pool_alloc input_alloctor(ctx.pool());
- if (src1->type != GGML_TYPE_F16) {
- aclTensor* acl_src1_tensor = ggml_cann_create_tensor(src1);
- input_alloctor.alloc(ggml_nelements(src1) * input_elem_size);
- input_buffer = input_alloctor.get();
- int64_t* input_cast_ne = src1->ne;
- size_t input_cast_nb[GGML_MAX_DIMS];
- input_cast_nb[0] = sizeof(uint16_t);
- for (int i = 1; i < GGML_MAX_DIMS; i++) {
- input_cast_nb[i] = input_cast_nb[i - 1] * input_cast_ne[i - 1];
- }
- aclTensor* acl_input_tensor = ggml_cann_create_tensor(
- input_buffer, ACL_FLOAT16, input_elem_size, input_cast_ne,
- input_cast_nb, GGML_MAX_DIMS);
- aclnn_cast(ctx, acl_src1_tensor, acl_input_tensor, ACL_FLOAT16);
- ACL_CHECK(aclDestroyTensor(acl_input_tensor));
- ACL_CHECK(aclDestroyTensor(acl_src1_tensor));
- } else {
- input_buffer = src1->data;
- }
- // output
- size_t output_elem_size = sizeof(uint16_t);
- int64_t output_ne[] = {dst->ne[0], dst->ne[1]};
- size_t output_nb[] = {output_elem_size, output_elem_size * dst->ne[0]};
- ggml_cann_pool_alloc output_alloctor(
- ctx.pool(), ggml_nelements(dst) * output_elem_size);
- void* output_buffer = output_alloctor.get();
- size_t output_stride = output_elem_size * dst->ne[0] * dst->ne[1];
- // aclnn
- uint64_t workspaceSize = 0;
- aclOpExecutor* executor;
- void* workspaceAddr = nullptr;
- for (int64_t n1 = 0; n1 < src1->ne[3]; n1++) {
- for (int64_t c1 = 0; c1 < src1->ne[2]; c1++) {
- int64_t n0 = n1 / (src1->ne[3] / src0->ne[3]);
- int64_t c0 = c1 / (src1->ne[2] / src0->ne[2]);
- int64_t batch1 = n1 * src1->ne[2] + c1;
- int64_t batch0 = n0 * src0->ne[2] + c0;
- aclTensor* acl_input_tensor = ggml_cann_create_tensor(
- (char*)input_buffer + batch1 * input_stride, ACL_FLOAT16,
- input_elem_size, input_ne, input_nb, 2);
- aclTensor* acl_weight_tensor = ggml_cann_create_tensor(
- (char*)src0->data + batch0 * weight_stride,
- ggml_cann_type_mapping(type), weight_elem_size, weight_ne,
- weight_nb, 2);
- aclTensor* acl_scale_tensor = ggml_cann_create_tensor(
- scale_offset + batch0 * scale_stride, ACL_FLOAT16,
- scale_elem_size, scale_ne, scale_nb, 2);
- aclTensor* acl_output_tensor = ggml_cann_create_tensor(
- (char*)output_buffer + batch1 * output_stride, ACL_FLOAT16,
- output_elem_size, output_ne, output_nb, 2);
- ACL_CHECK(aclnnWeightQuantBatchMatmulV2GetWorkspaceSize(
- acl_input_tensor, acl_weight_tensor, acl_scale_tensor, nullptr,
- nullptr, nullptr, nullptr, QK8_0, acl_output_tensor,
- &workspaceSize, &executor));
- if (workspaceSize > 0 && workspaceAddr == nullptr) {
- ggml_cann_pool_alloc workspace_allocator(ctx.pool(),
- workspaceSize);
- workspaceAddr = workspace_allocator.get();
- }
- ACL_CHECK(aclnnWeightQuantBatchMatmulV2(
- workspaceAddr, workspaceSize, executor, ctx.stream()));
- ACL_CHECK(aclDestroyTensor(acl_input_tensor));
- ACL_CHECK(aclDestroyTensor(acl_weight_tensor));
- ACL_CHECK(aclDestroyTensor(acl_scale_tensor));
- ACL_CHECK(aclDestroyTensor(acl_output_tensor));
- }
- }
- // cast out
- int64_t* output_cast_ne = dst->ne;
- size_t output_cast_nb[GGML_MAX_DIMS];
- output_cast_nb[0] = sizeof(uint16_t);
- for (int i = 1; i < GGML_MAX_DIMS; i++) {
- output_cast_nb[i] = output_cast_nb[i - 1] * output_cast_ne[i - 1];
- }
- aclTensor* acl_output_tensor =
- ggml_cann_create_tensor(output_buffer, ACL_FLOAT16, output_elem_size,
- output_cast_ne, output_cast_nb, GGML_MAX_DIMS);
- aclTensor* acl_dst_tensor = ggml_cann_create_tensor(dst);
- aclnn_cast(ctx, acl_output_tensor, acl_dst_tensor, ACL_FLOAT);
- ACL_CHECK(aclDestroyTensor(acl_output_tensor));
- ACL_CHECK(aclDestroyTensor(acl_dst_tensor));
- }
- void ggml_cann_mul_mat(ggml_backend_cann_context& ctx, ggml_tensor* dst) {
- const enum ggml_type type = dst->src[0]->type;
- switch (type) {
- case GGML_TYPE_F32:
- case GGML_TYPE_F16:
- ggml_cann_mat_mul_fp(ctx, dst);
- break;
- case GGML_TYPE_Q4_0:
- case GGML_TYPE_Q8_0:
- ggml_cann_mul_mat_quant(ctx, dst, type);
- break;
- default:
- GGML_ABORT("fatal error");
- break;
- }
- }
- /**
- * @brief Rolls the elements of a tensor along a specified dimension.
- *
- * This function rolls the elements of the source tensor `acl_src` by the
- * specified shifts `shifts` along the specified dimensions `dims`, and stores
- * the result in the destination tensor `acl_dst`.
- *
- * @param ctx The context for the CANN backend operations.
- * @param acl_src The source tensor whose elements will be rolled.
- * @param acl_dst The destination tensor where the rolled elements will be
- * stored.
- * @param shifts An array specifying the number of positions by which elements
- * are shifted.
- * @param dims An array specifying the dimensions along which elements are
- * shifted.
- */
- static void aclnn_roll(ggml_backend_cann_context& ctx, aclTensor* acl_src,
- aclTensor* acl_dst, int64_t* shifts, int64_t* dims) {
- aclIntArray* acl_shifts = aclCreateIntArray(shifts, 1);
- aclIntArray* acl_dims = aclCreateIntArray(dims, 1);
- uint64_t workspaceSize = 0;
- aclOpExecutor* executor;
- void* workspaceAddr = nullptr;
- ACL_CHECK(aclnnRollGetWorkspaceSize(acl_src, acl_shifts, acl_dims, acl_dst,
- &workspaceSize, &executor));
- if (workspaceSize > 0) {
- ggml_cann_pool_alloc workspace_allocator(ctx.pool(), workspaceSize);
- workspaceAddr = workspace_allocator.get();
- }
- ACL_CHECK(aclnnRoll(workspaceAddr, workspaceSize, executor, ctx.stream()));
- ACL_CHECK(aclDestroyIntArray(acl_shifts));
- ACL_CHECK(aclDestroyIntArray(acl_dims));
- }
- /**
- * @brief Fills specified positions of a tensor with a scalar value.
- *
- * This function fills the positions in the source tensor `acl_src` specified by
- * `index` along the dimension `dim` with the scalar value `value`.
- *
- * @param ctx The context for the CANN backend operations.
- * @param acl_src The source tensor where the positions will be filled.
- * @param dim The dimension along which the positions are specified.
- * @param index An array specifying the positions to be filled.
- * @param index_num The number of positions specified in the index array.
- * @param value The scalar value used to fill the specified positions.
- */
- static void aclnn_index_fill_tensor(ggml_backend_cann_context& ctx,
- aclTensor* acl_src, int64_t dim,
- int64_t* index, int64_t index_num,
- float value) {
- aclIntArray* acl_index = aclCreateIntArray(index, index_num);
- aclScalar* acl_value = aclCreateScalar(&value, aclDataType::ACL_FLOAT);
- uint64_t workspaceSize = 0;
- aclOpExecutor* executor;
- void* workspaceAddr = nullptr;
- ACL_CHECK(aclnnInplaceIndexFillTensorGetWorkspaceSize(
- acl_src, dim, acl_index, acl_value, &workspaceSize, &executor));
- if (workspaceSize > 0) {
- ggml_cann_pool_alloc workspace_allocator(ctx.pool(), workspaceSize);
- workspaceAddr = workspace_allocator.get();
- }
- ACL_CHECK(aclnnInplaceIndexFillTensor(workspaceAddr, workspaceSize,
- executor, ctx.stream()));
- ACL_CHECK(aclDestroyIntArray(acl_index));
- ACL_CHECK(aclDestroyScalar(acl_value));
- }
- static void aclnn_cache_init(ggml_backend_cann_context& ctx, ggml_tensor* dst,
- aclTensor* acl_cos_repeat_tensor,
- aclTensor* acl_sin_repeat_tensor,
- float theta_scale, bool is_neox) {
- // int sin/cos cache, cache has different repeat method depond on
- // @param.is_neox
- ggml_tensor* src0 = dst->src[0]; // input
- ggml_tensor* src1 = dst->src[1]; // position
- // arange, [0,1,...,ne0/2]
- int64_t arange_length = src0->ne[0] / 2;
- ggml_cann_pool_alloc arange_allocator(ctx.pool(),
- arange_length * sizeof(float_t));
- void* arange_buffer = arange_allocator.get();
- int64_t arange_ne[] = {arange_length, 1, 1, 1};
- size_t arange_nb[] = {sizeof(float_t), sizeof(float_t), sizeof(float_t),
- arange_length * sizeof(float_t)};
- aclTensor* acl_arange_tensor =
- ggml_cann_create_tensor(arange_buffer, ACL_FLOAT, sizeof(float_t),
- arange_ne, arange_nb, GGML_MAX_DIMS);
- float start = 0;
- float step = 1;
- float stop = src0->ne[0] / 2;
- float n_elements = src0->ne[0] / 2;
- aclnn_arange(ctx, acl_arange_tensor, start, stop, step, n_elements);
- // power
- // aclnnPowScalarTensor(): @param self is tensor which should be scalar, so
- // use aclnn_pow_tensor_tensor() until fixed. aclScalar* acl_theta_scale =
- // aclCreateScalar(&theta_scale, aclDataType::ACL_FLOAT);
- // aclnn_power_scalar_tensor(ctx, acl_theta_scale, acl_arange_tensor,
- // acl_power_tensor);
- ggml_cann_pool_alloc theta_scale_allocator(ctx.pool(),
- arange_length * sizeof(float_t));
- void* theta_scale_buffer = theta_scale_allocator.get();
- aclTensor* acl_theta_scale_tensor = aclnn_ones(
- ctx, theta_scale_buffer, arange_length * sizeof(float_t), arange_ne,
- GGML_MAX_DIMS, ACL_FLOAT, sizeof(float_t), theta_scale);
- aclnn_pow_tensor_tensor(ctx, acl_theta_scale_tensor, acl_arange_tensor);
- // position
- GGML_ASSERT(src1->type == GGML_TYPE_I32);
- int64_t position_length = src1->ne[0];
- int64_t position_ne[] = {1, position_length, 1, 1};
- size_t position_nb[] = {sizeof(int32_t), sizeof(int32_t),
- sizeof(int32_t) * position_length,
- sizeof(int32_t) * position_length};
- aclTensor* acl_position_tensor = ggml_cann_create_tensor(
- src1->data, ggml_cann_type_mapping(src1->type),
- ggml_type_size(src1->type), position_ne, position_nb, GGML_MAX_DIMS);
- // power * position
- int64_t theta_length = arange_length * position_length;
- ggml_cann_pool_alloc theta_allocator(ctx.pool(),
- theta_length * sizeof(float_t));
- void* theta_buffer = theta_allocator.get();
- int64_t theta_ne[] = {arange_length, position_length, 1, 1};
- size_t theta_nb[GGML_MAX_DIMS];
- theta_nb[0] = sizeof(float_t);
- for (int i = 1; i < GGML_MAX_DIMS; i++) {
- theta_nb[i] = theta_nb[i - 1] * theta_ne[i - 1];
- }
- aclTensor* acl_theta_tensor =
- ggml_cann_create_tensor(theta_buffer, ACL_FLOAT, sizeof(float_t),
- theta_ne, theta_nb, GGML_MAX_DIMS);
- aclnn_mul(ctx, acl_position_tensor, acl_theta_scale_tensor,
- acl_theta_tensor);
- // permute: [0,1,2,3]->[0,2,1,3]
- int64_t permute_ne[] = {arange_length, 1, position_length, 1};
- size_t permute_nb[GGML_MAX_DIMS];
- permute_nb[0] = sizeof(float_t);
- for (int i = 1; i < GGML_MAX_DIMS; i++) {
- permute_nb[i] = permute_nb[i - 1] * permute_ne[i - 1];
- }
- ggml_cann_pool_alloc permute_allocator(ctx.pool(),
- theta_length * sizeof(float_t));
- void* permute_buffer = permute_allocator.get();
- aclTensor* acl_permute_tensor = ggml_cann_create_tensor(
- permute_buffer, ACL_FLOAT, sizeof(float_t), permute_ne, permute_nb,
- GGML_MAX_DIMS, ACL_FORMAT_ND);
- int64_t permute_dim[] = {0, 2, 1, 3};
- int64_t num_dims = 4;
- aclnn_permute(ctx, acl_theta_tensor, acl_permute_tensor, permute_dim,
- num_dims);
- // sin/cos
- ggml_cann_pool_alloc sin_allocator(ctx.pool(),
- theta_length * sizeof(float_t));
- void* sin_buffer = sin_allocator.get();
- aclTensor* acl_sin_tensor = ggml_cann_create_tensor(
- sin_buffer, ACL_FLOAT, sizeof(float_t), permute_ne, permute_nb,
- GGML_MAX_DIMS, ACL_FORMAT_ND);
- aclnn_sin(ctx, acl_permute_tensor, acl_sin_tensor);
- ggml_cann_pool_alloc cos_allocator(ctx.pool(),
- theta_length * sizeof(float_t));
- void* cos_buffer = cos_allocator.get();
- aclTensor* acl_cos_tensor = ggml_cann_create_tensor(
- cos_buffer, ACL_FLOAT, sizeof(float_t), permute_ne, permute_nb,
- GGML_MAX_DIMS, ACL_FORMAT_ND);
- aclnn_cos(ctx, acl_permute_tensor, acl_cos_tensor);
- // repeat
- if (is_neox) {
- int64_t repeatsArray[] = {1, 1, 1, 2};
- aclnn_repeat(ctx, acl_sin_tensor, acl_sin_repeat_tensor, repeatsArray);
- aclnn_repeat(ctx, acl_cos_tensor, acl_cos_repeat_tensor, repeatsArray);
- } else {
- int64_t num_repeats = 2;
- int64_t dim = 3;
- int64_t output_size = arange_length * num_repeats;
- aclnn_repeat_interleave(ctx, acl_sin_tensor, acl_sin_repeat_tensor, dim,
- num_repeats, output_size);
- aclnn_repeat_interleave(ctx, acl_cos_tensor, acl_cos_repeat_tensor, dim,
- num_repeats, output_size);
- }
- // release
- ACL_CHECK(aclDestroyTensor(acl_arange_tensor));
- ACL_CHECK(aclDestroyTensor(acl_theta_scale_tensor));
- ACL_CHECK(aclDestroyTensor(acl_position_tensor));
- ACL_CHECK(aclDestroyTensor(acl_theta_tensor));
- ACL_CHECK(aclDestroyTensor(acl_permute_tensor));
- ACL_CHECK(aclDestroyTensor(acl_sin_tensor));
- ACL_CHECK(aclDestroyTensor(acl_cos_tensor));
- }
- void ggml_cann_rope(ggml_backend_cann_context& ctx, ggml_tensor* dst) {
- // TODO: use ascendc
- // Only test with LLAMA model.
- ggml_tensor* src0 = dst->src[0]; // input
- ggml_tensor* src2 = dst->src[2]; // freq_factors
- // TODO: with freq_factors
- GGML_ASSERT(src2 == NULL);
- // param
- float freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow;
- // const int n_past = ((int32_t *) dst->op_params)[0];
- const int n_dims = ((int32_t*)dst->op_params)[1];
- const int mode = ((int32_t*)dst->op_params)[2];
- // const int n_ctx = ((int32_t *) dst->op_params)[3];
- const int n_ctx_orig = ((int32_t*)dst->op_params)[4];
- GGML_TENSOR_UNARY_OP_LOCALS
- memcpy(&freq_base, (int32_t*)dst->op_params + 5, sizeof(float));
- memcpy(&freq_scale, (int32_t*)dst->op_params + 6, sizeof(float));
- memcpy(&ext_factor, (int32_t*)dst->op_params + 7, sizeof(float));
- memcpy(&attn_factor, (int32_t*)dst->op_params + 8, sizeof(float));
- memcpy(&beta_fast, (int32_t*)dst->op_params + 9, sizeof(float));
- memcpy(&beta_slow, (int32_t*)dst->op_params + 10, sizeof(float));
- GGML_ASSERT(n_dims <= ne0);
- GGML_ASSERT(n_dims % 2 == 0);
- // TODO: ext_factor != 0
- GGML_ASSERT(ext_factor == 0);
- // TODO: freq_scale != 1
- GGML_ASSERT(freq_scale == 1);
- const float theta_scale = powf(freq_base, -2.0f / n_dims);
- float corr_dims[2];
- ggml_rope_yarn_corr_dims(n_dims, n_ctx_orig, freq_base, beta_fast,
- beta_slow, corr_dims);
- const bool is_neox = mode & GGML_ROPE_TYPE_NEOX;
- // init cos/sin cache
- ggml_cann_pool_alloc sin_allocator(
- ctx.pool(), src0->ne[0] * src0->ne[2] * sizeof(float_t));
- ggml_cann_pool_alloc cos_allocator(
- ctx.pool(), src0->ne[0] * src0->ne[2] * sizeof(float_t));
- void* sin_buffer = sin_allocator.get();
- void* cos_buffer = cos_allocator.get();
- int64_t sin_reshape_ne[4] = {src0->ne[0], 1, src0->ne[2], 1};
- size_t sin_reshape_nb[GGML_MAX_DIMS];
- sin_reshape_nb[0] = sizeof(float_t);
- for (int i = 1; i < GGML_MAX_DIMS; i++) {
- sin_reshape_nb[i] = sin_reshape_nb[i - 1] * sin_reshape_ne[i - 1];
- }
- aclTensor* acl_sin_reshape_tensor =
- ggml_cann_create_tensor(sin_buffer, ACL_FLOAT, sizeof(float_t),
- sin_reshape_ne, sin_reshape_nb, GGML_MAX_DIMS);
- aclTensor* acl_cos_reshape_tensor =
- ggml_cann_create_tensor(cos_buffer, ACL_FLOAT, sizeof(float_t),
- sin_reshape_ne, sin_reshape_nb, GGML_MAX_DIMS);
- aclnn_cache_init(ctx, dst, acl_cos_reshape_tensor, acl_sin_reshape_tensor,
- theta_scale, is_neox);
- // roll input
- void* input_roll_buffer;
- aclTensor* acl_minus_one_tensor;
- void* minus_one_scale_buffer = nullptr;
- ggml_cann_pool_alloc roll_allocator(ctx.pool(), ggml_nbytes(src0));
- ggml_cann_pool_alloc minus_one_scale_allocator(
- ctx.pool(), sizeof(float_t) * src0->ne[0]);
- if (!is_neox) {
- // roll input: [q0,q1,q2,q3,...] -> [q1,q0,q3,q2,...]
- input_roll_buffer = roll_allocator.get();
- int64_t input_roll_ne[4] = {2, src0->ne[1] * (src0->ne[0] / 2),
- src0->ne[2], src0->ne[3]};
- size_t input_roll_nb[GGML_MAX_DIMS];
- input_roll_nb[0] = ggml_type_size(src0->type);
- for (int i = 1; i < GGML_MAX_DIMS; i++) {
- input_roll_nb[i] = input_roll_nb[i - 1] * input_roll_ne[i - 1];
- }
- aclTensor* acl_input_roll_tensor = ggml_cann_create_tensor(
- input_roll_buffer, ggml_cann_type_mapping(src0->type),
- ggml_type_size(src0->type), input_roll_ne, input_roll_nb,
- GGML_MAX_DIMS);
- aclTensor* acl_input_tensor = ggml_cann_create_tensor(
- src0->data, ggml_cann_type_mapping(src0->type),
- ggml_type_size(src0->type), input_roll_ne, input_roll_nb,
- GGML_MAX_DIMS);
- int64_t shifts[] = {1};
- int64_t dims[] = {3};
- aclnn_roll(ctx, acl_input_tensor, acl_input_roll_tensor, shifts, dims);
- ACL_CHECK(aclDestroyTensor(acl_input_roll_tensor));
- ACL_CHECK(aclDestroyTensor(acl_input_tensor));
- // init [-1, 1, -1, 1, ...]
- minus_one_scale_buffer = minus_one_scale_allocator.get();
- int64_t minus_one_ne[4] = {src0->ne[0], 1, 1, 1};
- size_t minus_one_nb[GGML_MAX_DIMS];
- minus_one_nb[0] = sizeof(float_t);
- for (int i = 1; i < GGML_MAX_DIMS; i++) {
- minus_one_nb[i] = minus_one_nb[i - 1] * minus_one_ne[i - 1];
- }
- acl_minus_one_tensor = aclnn_ones(
- ctx, minus_one_scale_buffer, sizeof(float_t) * src0->ne[0],
- minus_one_ne, GGML_MAX_DIMS, ACL_FLOAT, sizeof(float_t), 1);
- int64_t dim = 3;
- int64_t* index = new int64_t[src0->ne[0]];
- for (int i = 0; i < src0->ne[0]; i++) {
- index[i] = i / 2 * 2;
- }
- int64_t index_num = src0->ne[0];
- float value = -1;
- aclnn_index_fill_tensor(ctx, acl_minus_one_tensor, dim, index,
- index_num, value);
- } else {
- // roll input: [q0,q1,q2,...] ->
- // [q_half,q_half+1,...,q_end,q0,q1,...q_half-1]
- input_roll_buffer = roll_allocator.get();
- aclTensor* acl_input_roll_tensor = ggml_cann_create_tensor(
- input_roll_buffer, ggml_cann_type_mapping(src0->type),
- ggml_type_size(src0->type), src0->ne, src0->nb, GGML_MAX_DIMS);
- aclTensor* acl_input_tensor = ggml_cann_create_tensor(src0);
- int64_t shifts[] = {src0->ne[0] / 2};
- int64_t dims[] = {3};
- aclnn_roll(ctx, acl_input_tensor, acl_input_roll_tensor, shifts, dims);
- ACL_CHECK(aclDestroyTensor(acl_input_roll_tensor));
- ACL_CHECK(aclDestroyTensor(acl_input_tensor));
- // init [-1, -1, -1, 1, 1,1,...]
- minus_one_scale_buffer = minus_one_scale_allocator.get();
- int64_t minus_one_ne[4] = {src0->ne[0], 1, 1, 1};
- size_t minus_one_nb[GGML_MAX_DIMS];
- minus_one_nb[0] = sizeof(float_t);
- for (int i = 1; i < GGML_MAX_DIMS; i++) {
- minus_one_nb[i] = minus_one_nb[i - 1] * minus_one_ne[i - 1];
- }
- acl_minus_one_tensor = aclnn_ones(
- ctx, minus_one_scale_buffer, sizeof(float_t) * src0->ne[0],
- minus_one_ne, GGML_MAX_DIMS, ACL_FLOAT, sizeof(float_t), 1);
- // -1 * first half
- int64_t first_half_ne[4] = {src0->ne[0] / 2, 1, 1, 1};
- size_t first_half_nb[GGML_MAX_DIMS];
- first_half_nb[0] = sizeof(float_t);
- for (int i = 1; i < GGML_MAX_DIMS; i++) {
- first_half_nb[i] = first_half_nb[i - 1] * first_half_ne[i - 1];
- }
- aclTensor* acl_first_half_tensor = ggml_cann_create_tensor(
- minus_one_scale_buffer, ACL_FLOAT, sizeof(float_t), first_half_ne,
- first_half_nb, GGML_MAX_DIMS);
- bool inplace = true;
- float scale = -1;
- aclnn_muls(ctx, acl_first_half_tensor, scale, nullptr, inplace);
- ACL_CHECK(aclDestroyTensor(acl_first_half_tensor));
- }
- // TODO: n_dims < ne0
- GGML_ASSERT(n_dims == src0->ne[0]);
- // input * scale
- ggml_cann_pool_alloc roll_mul_scale_allocator(ctx.pool(),
- ggml_nbytes(src0));
- void* input_roll_mul_scale_buffer = roll_mul_scale_allocator.get();
- size_t input_nb[GGML_MAX_DIMS];
- input_nb[0] = ggml_type_size(src0->type);
- for (int i = 1; i < GGML_MAX_DIMS; i++) {
- input_nb[i] = input_nb[i - 1] * src0->ne[i - 1];
- }
- aclTensor* acl_input_roll_mul_scale_tensor = ggml_cann_create_tensor(
- input_roll_mul_scale_buffer, ggml_cann_type_mapping(src0->type),
- ggml_type_size(src0->type), src0->ne, input_nb, GGML_MAX_DIMS);
- aclTensor* acl_input_roll_reshape_tensor = ggml_cann_create_tensor(
- input_roll_buffer, ggml_cann_type_mapping(src0->type),
- ggml_type_size(src0->type), src0->ne, input_nb, GGML_MAX_DIMS);
- aclnn_mul(ctx, acl_input_roll_reshape_tensor, acl_minus_one_tensor,
- acl_input_roll_mul_scale_tensor);
- // output
- aclTensor* acl_src0 = ggml_cann_create_tensor(src0);
- aclTensor* acl_dst = ggml_cann_create_tensor(dst);
- void* output_fp32_buffer;
- if (src0->type == GGML_TYPE_F32) {
- aclnn_inplace_mul(ctx, acl_src0, acl_cos_reshape_tensor);
- aclnn_inplace_mul(ctx, acl_input_roll_mul_scale_tensor,
- acl_sin_reshape_tensor);
- aclnn_add(ctx, acl_src0, acl_input_roll_mul_scale_tensor, acl_dst);
- // TODO: ne0 != n_dims in mode2
- } else if (src0->type == GGML_TYPE_F16) {
- size_t input_fp32_nb[GGML_MAX_DIMS];
- input_fp32_nb[0] = sizeof(float_t);
- for (int i = 1; i < GGML_MAX_DIMS; i++) {
- input_fp32_nb[i] = input_fp32_nb[i - 1] * dst->ne[i - 1];
- }
- ggml_cann_pool_alloc fp32_allocator1(
- ctx.pool(), ggml_nelements(dst) * sizeof(float_t));
- void* input_fp32_buffer1 = fp32_allocator1.get();
- aclTensor* input_fp32_tensor1 = ggml_cann_create_tensor(
- input_fp32_buffer1, ACL_FLOAT, sizeof(float_t), dst->ne,
- input_fp32_nb, GGML_MAX_DIMS);
- ggml_cann_pool_alloc fp32_allocator2(
- ctx.pool(), ggml_nelements(dst) * sizeof(float_t));
- void* input_fp32_buffer2 = fp32_allocator2.get();
- aclTensor* input_fp32_tensor2 = ggml_cann_create_tensor(
- input_fp32_buffer2, ACL_FLOAT, sizeof(float_t), dst->ne,
- input_fp32_nb, GGML_MAX_DIMS);
- ggml_cann_pool_alloc fp32_allocator(
- ctx.pool(), ggml_nelements(dst) * sizeof(float_t));
- output_fp32_buffer = fp32_allocator.get();
- aclTensor* output_fp32_tensor = ggml_cann_create_tensor(
- output_fp32_buffer, ACL_FLOAT, sizeof(float_t), dst->ne,
- input_fp32_nb, GGML_MAX_DIMS);
- aclnn_mul(ctx, acl_src0, acl_cos_reshape_tensor, input_fp32_tensor1);
- aclnn_mul(ctx, acl_input_roll_mul_scale_tensor, acl_sin_reshape_tensor,
- input_fp32_tensor2);
- aclnn_add(ctx, input_fp32_tensor1, input_fp32_tensor2,
- output_fp32_tensor);
- aclnn_cast(ctx, output_fp32_tensor, acl_dst, ACL_FLOAT16);
- ACL_CHECK(aclDestroyTensor(input_fp32_tensor1));
- ACL_CHECK(aclDestroyTensor(input_fp32_tensor2));
- ACL_CHECK(aclDestroyTensor(output_fp32_tensor));
- }
- ACL_CHECK(aclDestroyTensor(acl_sin_reshape_tensor));
- ACL_CHECK(aclDestroyTensor(acl_cos_reshape_tensor));
- ACL_CHECK(aclDestroyTensor(acl_minus_one_tensor));
- ACL_CHECK(aclDestroyTensor(acl_input_roll_mul_scale_tensor));
- ACL_CHECK(aclDestroyTensor(acl_input_roll_reshape_tensor));
- ACL_CHECK(aclDestroyTensor(acl_src0));
- ACL_CHECK(aclDestroyTensor(acl_dst));
- }
|