llama.cpp 760 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284528552865287528852895290529152925293529452955296529752985299530053015302530353045305530653075308530953105311531253135314531553165317531853195320532153225323532453255326532753285329533053315332533353345335533653375338533953405341534253435344534553465347534853495350535153525353535453555356535753585359536053615362536353645365536653675368536953705371537253735374537553765377537853795380538153825383538453855386538753885389539053915392539353945395539653975398539954005401540254035404540554065407540854095410541154125413541454155416541754185419542054215422542354245425542654275428542954305431543254335434543554365437543854395440544154425443544454455446544754485449545054515452545354545455545654575458545954605461546254635464546554665467546854695470547154725473547454755476547754785479548054815482548354845485548654875488548954905491549254935494549554965497549854995500550155025503550455055506550755085509551055115512551355145515551655175518551955205521552255235524552555265527552855295530553155325533553455355536553755385539554055415542554355445545554655475548554955505551555255535554555555565557555855595560556155625563556455655566556755685569557055715572557355745575557655775578557955805581558255835584558555865587558855895590559155925593559455955596559755985599560056015602560356045605560656075608560956105611561256135614561556165617561856195620562156225623562456255626562756285629563056315632563356345635563656375638563956405641564256435644564556465647564856495650565156525653565456555656565756585659566056615662566356645665566656675668566956705671567256735674567556765677567856795680568156825683568456855686568756885689569056915692569356945695569656975698569957005701570257035704570557065707570857095710571157125713571457155716571757185719572057215722572357245725572657275728572957305731573257335734573557365737573857395740574157425743574457455746574757485749575057515752575357545755575657575758575957605761576257635764576557665767576857695770577157725773577457755776577757785779578057815782578357845785578657875788578957905791579257935794579557965797579857995800580158025803580458055806580758085809581058115812581358145815581658175818581958205821582258235824582558265827582858295830583158325833583458355836583758385839584058415842584358445845584658475848584958505851585258535854585558565857585858595860586158625863586458655866586758685869587058715872587358745875587658775878587958805881588258835884588558865887588858895890589158925893589458955896589758985899590059015902590359045905590659075908590959105911591259135914591559165917591859195920592159225923592459255926592759285929593059315932593359345935593659375938593959405941594259435944594559465947594859495950595159525953595459555956595759585959596059615962596359645965596659675968596959705971597259735974597559765977597859795980598159825983598459855986598759885989599059915992599359945995599659975998599960006001600260036004600560066007600860096010601160126013601460156016601760186019602060216022602360246025602660276028602960306031603260336034603560366037603860396040604160426043604460456046604760486049605060516052605360546055605660576058605960606061606260636064606560666067606860696070607160726073607460756076607760786079608060816082608360846085608660876088608960906091609260936094609560966097609860996100610161026103610461056106610761086109611061116112611361146115611661176118611961206121612261236124612561266127612861296130613161326133613461356136613761386139614061416142614361446145614661476148614961506151615261536154615561566157615861596160616161626163616461656166616761686169617061716172617361746175617661776178617961806181618261836184618561866187618861896190619161926193619461956196619761986199620062016202620362046205620662076208620962106211621262136214621562166217621862196220622162226223622462256226622762286229623062316232623362346235623662376238623962406241624262436244624562466247624862496250625162526253625462556256625762586259626062616262626362646265626662676268626962706271627262736274627562766277627862796280628162826283628462856286628762886289629062916292629362946295629662976298629963006301630263036304630563066307630863096310631163126313631463156316631763186319632063216322632363246325632663276328632963306331633263336334633563366337633863396340634163426343634463456346634763486349635063516352635363546355635663576358635963606361636263636364636563666367636863696370637163726373637463756376637763786379638063816382638363846385638663876388638963906391639263936394639563966397639863996400640164026403640464056406640764086409641064116412641364146415641664176418641964206421642264236424642564266427642864296430643164326433643464356436643764386439644064416442644364446445644664476448644964506451645264536454645564566457645864596460646164626463646464656466646764686469647064716472647364746475647664776478647964806481648264836484648564866487648864896490649164926493649464956496649764986499650065016502650365046505650665076508650965106511651265136514651565166517651865196520652165226523652465256526652765286529653065316532653365346535653665376538653965406541654265436544654565466547654865496550655165526553655465556556655765586559656065616562656365646565656665676568656965706571657265736574657565766577657865796580658165826583658465856586658765886589659065916592659365946595659665976598659966006601660266036604660566066607660866096610661166126613661466156616661766186619662066216622662366246625662666276628662966306631663266336634663566366637663866396640664166426643664466456646664766486649665066516652665366546655665666576658665966606661666266636664666566666667666866696670667166726673667466756676667766786679668066816682668366846685668666876688668966906691669266936694669566966697669866996700670167026703670467056706670767086709671067116712671367146715671667176718671967206721672267236724672567266727672867296730673167326733673467356736673767386739674067416742674367446745674667476748674967506751675267536754675567566757675867596760676167626763676467656766676767686769677067716772677367746775677667776778677967806781678267836784678567866787678867896790679167926793679467956796679767986799680068016802680368046805680668076808680968106811681268136814681568166817681868196820682168226823682468256826682768286829683068316832683368346835683668376838683968406841684268436844684568466847684868496850685168526853685468556856685768586859686068616862686368646865686668676868686968706871687268736874687568766877687868796880688168826883688468856886688768886889689068916892689368946895689668976898689969006901690269036904690569066907690869096910691169126913691469156916691769186919692069216922692369246925692669276928692969306931693269336934693569366937693869396940694169426943694469456946694769486949695069516952695369546955695669576958695969606961696269636964696569666967696869696970697169726973697469756976697769786979698069816982698369846985698669876988698969906991699269936994699569966997699869997000700170027003700470057006700770087009701070117012701370147015701670177018701970207021702270237024702570267027702870297030703170327033703470357036703770387039704070417042704370447045704670477048704970507051705270537054705570567057705870597060706170627063706470657066706770687069707070717072707370747075707670777078707970807081708270837084708570867087708870897090709170927093709470957096709770987099710071017102710371047105710671077108710971107111711271137114711571167117711871197120712171227123712471257126712771287129713071317132713371347135713671377138713971407141714271437144714571467147714871497150715171527153715471557156715771587159716071617162716371647165716671677168716971707171717271737174717571767177717871797180718171827183718471857186718771887189719071917192719371947195719671977198719972007201720272037204720572067207720872097210721172127213721472157216721772187219722072217222722372247225722672277228722972307231723272337234723572367237723872397240724172427243724472457246724772487249725072517252725372547255725672577258725972607261726272637264726572667267726872697270727172727273727472757276727772787279728072817282728372847285728672877288728972907291729272937294729572967297729872997300730173027303730473057306730773087309731073117312731373147315731673177318731973207321732273237324732573267327732873297330733173327333733473357336733773387339734073417342734373447345734673477348734973507351735273537354735573567357735873597360736173627363736473657366736773687369737073717372737373747375737673777378737973807381738273837384738573867387738873897390739173927393739473957396739773987399740074017402740374047405740674077408740974107411741274137414741574167417741874197420742174227423742474257426742774287429743074317432743374347435743674377438743974407441744274437444744574467447744874497450745174527453745474557456745774587459746074617462746374647465746674677468746974707471747274737474747574767477747874797480748174827483748474857486748774887489749074917492749374947495749674977498749975007501750275037504750575067507750875097510751175127513751475157516751775187519752075217522752375247525752675277528752975307531753275337534753575367537753875397540754175427543754475457546754775487549755075517552755375547555755675577558755975607561756275637564756575667567756875697570757175727573757475757576757775787579758075817582758375847585758675877588758975907591759275937594759575967597759875997600760176027603760476057606760776087609761076117612761376147615761676177618761976207621762276237624762576267627762876297630763176327633763476357636763776387639764076417642764376447645764676477648764976507651765276537654765576567657765876597660766176627663766476657666766776687669767076717672767376747675767676777678767976807681768276837684768576867687768876897690769176927693769476957696769776987699770077017702770377047705770677077708770977107711771277137714771577167717771877197720772177227723772477257726772777287729773077317732773377347735773677377738773977407741774277437744774577467747774877497750775177527753775477557756775777587759776077617762776377647765776677677768776977707771777277737774777577767777777877797780778177827783778477857786778777887789779077917792779377947795779677977798779978007801780278037804780578067807780878097810781178127813781478157816781778187819782078217822782378247825782678277828782978307831783278337834783578367837783878397840784178427843784478457846784778487849785078517852785378547855785678577858785978607861786278637864786578667867786878697870787178727873787478757876787778787879788078817882788378847885788678877888788978907891789278937894789578967897789878997900790179027903790479057906790779087909791079117912791379147915791679177918791979207921792279237924792579267927792879297930793179327933793479357936793779387939794079417942794379447945794679477948794979507951795279537954795579567957795879597960796179627963796479657966796779687969797079717972797379747975797679777978797979807981798279837984798579867987798879897990799179927993799479957996799779987999800080018002800380048005800680078008800980108011801280138014801580168017801880198020802180228023802480258026802780288029803080318032803380348035803680378038803980408041804280438044804580468047804880498050805180528053805480558056805780588059806080618062806380648065806680678068806980708071807280738074807580768077807880798080808180828083808480858086808780888089809080918092809380948095809680978098809981008101810281038104810581068107810881098110811181128113811481158116811781188119812081218122812381248125812681278128812981308131813281338134813581368137813881398140814181428143814481458146814781488149815081518152815381548155815681578158815981608161816281638164816581668167816881698170817181728173817481758176817781788179818081818182818381848185818681878188818981908191819281938194819581968197819881998200820182028203820482058206820782088209821082118212821382148215821682178218821982208221822282238224822582268227822882298230823182328233823482358236823782388239824082418242824382448245824682478248824982508251825282538254825582568257825882598260826182628263826482658266826782688269827082718272827382748275827682778278827982808281828282838284828582868287828882898290829182928293829482958296829782988299830083018302830383048305830683078308830983108311831283138314831583168317831883198320832183228323832483258326832783288329833083318332833383348335833683378338833983408341834283438344834583468347834883498350835183528353835483558356835783588359836083618362836383648365836683678368836983708371837283738374837583768377837883798380838183828383838483858386838783888389839083918392839383948395839683978398839984008401840284038404840584068407840884098410841184128413841484158416841784188419842084218422842384248425842684278428842984308431843284338434843584368437843884398440844184428443844484458446844784488449845084518452845384548455845684578458845984608461846284638464846584668467846884698470847184728473847484758476847784788479848084818482848384848485848684878488848984908491849284938494849584968497849884998500850185028503850485058506850785088509851085118512851385148515851685178518851985208521852285238524852585268527852885298530853185328533853485358536853785388539854085418542854385448545854685478548854985508551855285538554855585568557855885598560856185628563856485658566856785688569857085718572857385748575857685778578857985808581858285838584858585868587858885898590859185928593859485958596859785988599860086018602860386048605860686078608860986108611861286138614861586168617861886198620862186228623862486258626862786288629863086318632863386348635863686378638863986408641864286438644864586468647864886498650865186528653865486558656865786588659866086618662866386648665866686678668866986708671867286738674867586768677867886798680868186828683868486858686868786888689869086918692869386948695869686978698869987008701870287038704870587068707870887098710871187128713871487158716871787188719872087218722872387248725872687278728872987308731873287338734873587368737873887398740874187428743874487458746874787488749875087518752875387548755875687578758875987608761876287638764876587668767876887698770877187728773877487758776877787788779878087818782878387848785878687878788878987908791879287938794879587968797879887998800880188028803880488058806880788088809881088118812881388148815881688178818881988208821882288238824882588268827882888298830883188328833883488358836883788388839884088418842884388448845884688478848884988508851885288538854885588568857885888598860886188628863886488658866886788688869887088718872887388748875887688778878887988808881888288838884888588868887888888898890889188928893889488958896889788988899890089018902890389048905890689078908890989108911891289138914891589168917891889198920892189228923892489258926892789288929893089318932893389348935893689378938893989408941894289438944894589468947894889498950895189528953895489558956895789588959896089618962896389648965896689678968896989708971897289738974897589768977897889798980898189828983898489858986898789888989899089918992899389948995899689978998899990009001900290039004900590069007900890099010901190129013901490159016901790189019902090219022902390249025902690279028902990309031903290339034903590369037903890399040904190429043904490459046904790489049905090519052905390549055905690579058905990609061906290639064906590669067906890699070907190729073907490759076907790789079908090819082908390849085908690879088908990909091909290939094909590969097909890999100910191029103910491059106910791089109911091119112911391149115911691179118911991209121912291239124912591269127912891299130913191329133913491359136913791389139914091419142914391449145914691479148914991509151915291539154915591569157915891599160916191629163916491659166916791689169917091719172917391749175917691779178917991809181918291839184918591869187918891899190919191929193919491959196919791989199920092019202920392049205920692079208920992109211921292139214921592169217921892199220922192229223922492259226922792289229923092319232923392349235923692379238923992409241924292439244924592469247924892499250925192529253925492559256925792589259926092619262926392649265926692679268926992709271927292739274927592769277927892799280928192829283928492859286928792889289929092919292929392949295929692979298929993009301930293039304930593069307930893099310931193129313931493159316931793189319932093219322932393249325932693279328932993309331933293339334933593369337933893399340934193429343934493459346934793489349935093519352935393549355935693579358935993609361936293639364936593669367936893699370937193729373937493759376937793789379938093819382938393849385938693879388938993909391939293939394939593969397939893999400940194029403940494059406940794089409941094119412941394149415941694179418941994209421942294239424942594269427942894299430943194329433943494359436943794389439944094419442944394449445944694479448944994509451945294539454945594569457945894599460946194629463946494659466946794689469947094719472947394749475947694779478947994809481948294839484948594869487948894899490949194929493949494959496949794989499950095019502950395049505950695079508950995109511951295139514951595169517951895199520952195229523952495259526952795289529953095319532953395349535953695379538953995409541954295439544954595469547954895499550955195529553955495559556955795589559956095619562956395649565956695679568956995709571957295739574957595769577957895799580958195829583958495859586958795889589959095919592959395949595959695979598959996009601960296039604960596069607960896099610961196129613961496159616961796189619962096219622962396249625962696279628962996309631963296339634963596369637963896399640964196429643964496459646964796489649965096519652965396549655965696579658965996609661966296639664966596669667966896699670967196729673967496759676967796789679968096819682968396849685968696879688968996909691969296939694969596969697969896999700970197029703970497059706970797089709971097119712971397149715971697179718971997209721972297239724972597269727972897299730973197329733973497359736973797389739974097419742974397449745974697479748974997509751975297539754975597569757975897599760976197629763976497659766976797689769977097719772977397749775977697779778977997809781978297839784978597869787978897899790979197929793979497959796979797989799980098019802980398049805980698079808980998109811981298139814981598169817981898199820982198229823982498259826982798289829983098319832983398349835983698379838983998409841984298439844984598469847984898499850985198529853985498559856985798589859986098619862986398649865986698679868986998709871987298739874987598769877987898799880988198829883988498859886988798889889989098919892989398949895989698979898989999009901990299039904990599069907990899099910991199129913991499159916991799189919992099219922992399249925992699279928992999309931993299339934993599369937993899399940994199429943994499459946994799489949995099519952995399549955995699579958995999609961996299639964996599669967996899699970997199729973997499759976997799789979998099819982998399849985998699879988998999909991999299939994999599969997999899991000010001100021000310004100051000610007100081000910010100111001210013100141001510016100171001810019100201002110022100231002410025100261002710028100291003010031100321003310034100351003610037100381003910040100411004210043100441004510046100471004810049100501005110052100531005410055100561005710058100591006010061100621006310064100651006610067100681006910070100711007210073100741007510076100771007810079100801008110082100831008410085100861008710088100891009010091100921009310094100951009610097100981009910100101011010210103101041010510106101071010810109101101011110112101131011410115101161011710118101191012010121101221012310124101251012610127101281012910130101311013210133101341013510136101371013810139101401014110142101431014410145101461014710148101491015010151101521015310154101551015610157101581015910160101611016210163101641016510166101671016810169101701017110172101731017410175101761017710178101791018010181101821018310184101851018610187101881018910190101911019210193101941019510196101971019810199102001020110202102031020410205102061020710208102091021010211102121021310214102151021610217102181021910220102211022210223102241022510226102271022810229102301023110232102331023410235102361023710238102391024010241102421024310244102451024610247102481024910250102511025210253102541025510256102571025810259102601026110262102631026410265102661026710268102691027010271102721027310274102751027610277102781027910280102811028210283102841028510286102871028810289102901029110292102931029410295102961029710298102991030010301103021030310304103051030610307103081030910310103111031210313103141031510316103171031810319103201032110322103231032410325103261032710328103291033010331103321033310334103351033610337103381033910340103411034210343103441034510346103471034810349103501035110352103531035410355103561035710358103591036010361103621036310364103651036610367103681036910370103711037210373103741037510376103771037810379103801038110382103831038410385103861038710388103891039010391103921039310394103951039610397103981039910400104011040210403104041040510406104071040810409104101041110412104131041410415104161041710418104191042010421104221042310424104251042610427104281042910430104311043210433104341043510436104371043810439104401044110442104431044410445104461044710448104491045010451104521045310454104551045610457104581045910460104611046210463104641046510466104671046810469104701047110472104731047410475104761047710478104791048010481104821048310484104851048610487104881048910490104911049210493104941049510496104971049810499105001050110502105031050410505105061050710508105091051010511105121051310514105151051610517105181051910520105211052210523105241052510526105271052810529105301053110532105331053410535105361053710538105391054010541105421054310544105451054610547105481054910550105511055210553105541055510556105571055810559105601056110562105631056410565105661056710568105691057010571105721057310574105751057610577105781057910580105811058210583105841058510586105871058810589105901059110592105931059410595105961059710598105991060010601106021060310604106051060610607106081060910610106111061210613106141061510616106171061810619106201062110622106231062410625106261062710628106291063010631106321063310634106351063610637106381063910640106411064210643106441064510646106471064810649106501065110652106531065410655106561065710658106591066010661106621066310664106651066610667106681066910670106711067210673106741067510676106771067810679106801068110682106831068410685106861068710688106891069010691106921069310694106951069610697106981069910700107011070210703107041070510706107071070810709107101071110712107131071410715107161071710718107191072010721107221072310724107251072610727107281072910730107311073210733107341073510736107371073810739107401074110742107431074410745107461074710748107491075010751107521075310754107551075610757107581075910760107611076210763107641076510766107671076810769107701077110772107731077410775107761077710778107791078010781107821078310784107851078610787107881078910790107911079210793107941079510796107971079810799108001080110802108031080410805108061080710808108091081010811108121081310814108151081610817108181081910820108211082210823108241082510826108271082810829108301083110832108331083410835108361083710838108391084010841108421084310844108451084610847108481084910850108511085210853108541085510856108571085810859108601086110862108631086410865108661086710868108691087010871108721087310874108751087610877108781087910880108811088210883108841088510886108871088810889108901089110892108931089410895108961089710898108991090010901109021090310904109051090610907109081090910910109111091210913109141091510916109171091810919109201092110922109231092410925109261092710928109291093010931109321093310934109351093610937109381093910940109411094210943109441094510946109471094810949109501095110952109531095410955109561095710958109591096010961109621096310964109651096610967109681096910970109711097210973109741097510976109771097810979109801098110982109831098410985109861098710988109891099010991109921099310994109951099610997109981099911000110011100211003110041100511006110071100811009110101101111012110131101411015110161101711018110191102011021110221102311024110251102611027110281102911030110311103211033110341103511036110371103811039110401104111042110431104411045110461104711048110491105011051110521105311054110551105611057110581105911060110611106211063110641106511066110671106811069110701107111072110731107411075110761107711078110791108011081110821108311084110851108611087110881108911090110911109211093110941109511096110971109811099111001110111102111031110411105111061110711108111091111011111111121111311114111151111611117111181111911120111211112211123111241112511126111271112811129111301113111132111331113411135111361113711138111391114011141111421114311144111451114611147111481114911150111511115211153111541115511156111571115811159111601116111162111631116411165111661116711168111691117011171111721117311174111751117611177111781117911180111811118211183111841118511186111871118811189111901119111192111931119411195111961119711198111991120011201112021120311204112051120611207112081120911210112111121211213112141121511216112171121811219112201122111222112231122411225112261122711228112291123011231112321123311234112351123611237112381123911240112411124211243112441124511246112471124811249112501125111252112531125411255112561125711258112591126011261112621126311264112651126611267112681126911270112711127211273112741127511276112771127811279112801128111282112831128411285112861128711288112891129011291112921129311294112951129611297112981129911300113011130211303113041130511306113071130811309113101131111312113131131411315113161131711318113191132011321113221132311324113251132611327113281132911330113311133211333113341133511336113371133811339113401134111342113431134411345113461134711348113491135011351113521135311354113551135611357113581135911360113611136211363113641136511366113671136811369113701137111372113731137411375113761137711378113791138011381113821138311384113851138611387113881138911390113911139211393113941139511396113971139811399114001140111402114031140411405114061140711408114091141011411114121141311414114151141611417114181141911420114211142211423114241142511426114271142811429114301143111432114331143411435114361143711438114391144011441114421144311444114451144611447114481144911450114511145211453114541145511456114571145811459114601146111462114631146411465114661146711468114691147011471114721147311474114751147611477114781147911480114811148211483114841148511486114871148811489114901149111492114931149411495114961149711498114991150011501115021150311504115051150611507115081150911510115111151211513115141151511516115171151811519115201152111522115231152411525115261152711528115291153011531115321153311534115351153611537115381153911540115411154211543115441154511546115471154811549115501155111552115531155411555115561155711558115591156011561115621156311564115651156611567115681156911570115711157211573115741157511576115771157811579115801158111582115831158411585115861158711588115891159011591115921159311594115951159611597115981159911600116011160211603116041160511606116071160811609116101161111612116131161411615116161161711618116191162011621116221162311624116251162611627116281162911630116311163211633116341163511636116371163811639116401164111642116431164411645116461164711648116491165011651116521165311654116551165611657116581165911660116611166211663116641166511666116671166811669116701167111672116731167411675116761167711678116791168011681116821168311684116851168611687116881168911690116911169211693116941169511696116971169811699117001170111702117031170411705117061170711708117091171011711117121171311714117151171611717117181171911720117211172211723117241172511726117271172811729117301173111732117331173411735117361173711738117391174011741117421174311744117451174611747117481174911750117511175211753117541175511756117571175811759117601176111762117631176411765117661176711768117691177011771117721177311774117751177611777117781177911780117811178211783117841178511786117871178811789117901179111792117931179411795117961179711798117991180011801118021180311804118051180611807118081180911810118111181211813118141181511816118171181811819118201182111822118231182411825118261182711828118291183011831118321183311834118351183611837118381183911840118411184211843118441184511846118471184811849118501185111852118531185411855118561185711858118591186011861118621186311864118651186611867118681186911870118711187211873118741187511876118771187811879118801188111882118831188411885118861188711888118891189011891118921189311894118951189611897118981189911900119011190211903119041190511906119071190811909119101191111912119131191411915119161191711918119191192011921119221192311924119251192611927119281192911930119311193211933119341193511936119371193811939119401194111942119431194411945119461194711948119491195011951119521195311954119551195611957119581195911960119611196211963119641196511966119671196811969119701197111972119731197411975119761197711978119791198011981119821198311984119851198611987119881198911990119911199211993119941199511996119971199811999120001200112002120031200412005120061200712008120091201012011120121201312014120151201612017120181201912020120211202212023120241202512026120271202812029120301203112032120331203412035120361203712038120391204012041120421204312044120451204612047120481204912050120511205212053120541205512056120571205812059120601206112062120631206412065120661206712068120691207012071120721207312074120751207612077120781207912080120811208212083120841208512086120871208812089120901209112092120931209412095120961209712098120991210012101121021210312104121051210612107121081210912110121111211212113121141211512116121171211812119121201212112122121231212412125121261212712128121291213012131121321213312134121351213612137121381213912140121411214212143121441214512146121471214812149121501215112152121531215412155121561215712158121591216012161121621216312164121651216612167121681216912170121711217212173121741217512176121771217812179121801218112182121831218412185121861218712188121891219012191121921219312194121951219612197121981219912200122011220212203122041220512206122071220812209122101221112212122131221412215122161221712218122191222012221122221222312224122251222612227122281222912230122311223212233122341223512236122371223812239122401224112242122431224412245122461224712248122491225012251122521225312254122551225612257122581225912260122611226212263122641226512266122671226812269122701227112272122731227412275122761227712278122791228012281122821228312284122851228612287122881228912290122911229212293122941229512296122971229812299123001230112302123031230412305123061230712308123091231012311123121231312314123151231612317123181231912320123211232212323123241232512326123271232812329123301233112332123331233412335123361233712338123391234012341123421234312344123451234612347123481234912350123511235212353123541235512356123571235812359123601236112362123631236412365123661236712368123691237012371123721237312374123751237612377123781237912380123811238212383123841238512386123871238812389123901239112392123931239412395123961239712398123991240012401124021240312404124051240612407124081240912410124111241212413124141241512416124171241812419124201242112422124231242412425124261242712428124291243012431124321243312434124351243612437124381243912440124411244212443124441244512446124471244812449124501245112452124531245412455124561245712458124591246012461124621246312464124651246612467124681246912470124711247212473124741247512476124771247812479124801248112482124831248412485124861248712488124891249012491124921249312494124951249612497124981249912500125011250212503125041250512506125071250812509125101251112512125131251412515125161251712518125191252012521125221252312524125251252612527125281252912530125311253212533125341253512536125371253812539125401254112542125431254412545125461254712548125491255012551125521255312554125551255612557125581255912560125611256212563125641256512566125671256812569125701257112572125731257412575125761257712578125791258012581125821258312584125851258612587125881258912590125911259212593125941259512596125971259812599126001260112602126031260412605126061260712608126091261012611126121261312614126151261612617126181261912620126211262212623126241262512626126271262812629126301263112632126331263412635126361263712638126391264012641126421264312644126451264612647126481264912650126511265212653126541265512656126571265812659126601266112662126631266412665126661266712668126691267012671126721267312674126751267612677126781267912680126811268212683126841268512686126871268812689126901269112692126931269412695126961269712698126991270012701127021270312704127051270612707127081270912710127111271212713127141271512716127171271812719127201272112722127231272412725127261272712728127291273012731127321273312734127351273612737127381273912740127411274212743127441274512746127471274812749127501275112752127531275412755127561275712758127591276012761127621276312764127651276612767127681276912770127711277212773127741277512776127771277812779127801278112782127831278412785127861278712788127891279012791127921279312794127951279612797127981279912800128011280212803128041280512806128071280812809128101281112812128131281412815128161281712818128191282012821128221282312824128251282612827128281282912830128311283212833128341283512836128371283812839128401284112842128431284412845128461284712848128491285012851128521285312854128551285612857128581285912860128611286212863128641286512866128671286812869128701287112872128731287412875128761287712878128791288012881128821288312884128851288612887128881288912890128911289212893128941289512896128971289812899129001290112902129031290412905129061290712908129091291012911129121291312914129151291612917129181291912920129211292212923129241292512926129271292812929129301293112932129331293412935129361293712938129391294012941129421294312944129451294612947129481294912950129511295212953129541295512956129571295812959129601296112962129631296412965129661296712968129691297012971129721297312974129751297612977129781297912980129811298212983129841298512986129871298812989129901299112992129931299412995129961299712998129991300013001130021300313004130051300613007130081300913010130111301213013130141301513016130171301813019130201302113022130231302413025130261302713028130291303013031130321303313034130351303613037130381303913040130411304213043130441304513046130471304813049130501305113052130531305413055130561305713058130591306013061130621306313064130651306613067130681306913070130711307213073130741307513076130771307813079130801308113082130831308413085130861308713088130891309013091130921309313094130951309613097130981309913100131011310213103131041310513106131071310813109131101311113112131131311413115131161311713118131191312013121131221312313124131251312613127131281312913130131311313213133131341313513136131371313813139131401314113142131431314413145131461314713148131491315013151131521315313154131551315613157131581315913160131611316213163131641316513166131671316813169131701317113172131731317413175131761317713178131791318013181131821318313184131851318613187131881318913190131911319213193131941319513196131971319813199132001320113202132031320413205132061320713208132091321013211132121321313214132151321613217132181321913220132211322213223132241322513226132271322813229132301323113232132331323413235132361323713238132391324013241132421324313244132451324613247132481324913250132511325213253132541325513256132571325813259132601326113262132631326413265132661326713268132691327013271132721327313274132751327613277132781327913280132811328213283132841328513286132871328813289132901329113292132931329413295132961329713298132991330013301133021330313304133051330613307133081330913310133111331213313133141331513316133171331813319133201332113322133231332413325133261332713328133291333013331133321333313334133351333613337133381333913340133411334213343133441334513346133471334813349133501335113352133531335413355133561335713358133591336013361133621336313364133651336613367133681336913370133711337213373133741337513376133771337813379133801338113382133831338413385133861338713388133891339013391133921339313394133951339613397133981339913400134011340213403134041340513406134071340813409134101341113412134131341413415134161341713418134191342013421134221342313424134251342613427134281342913430134311343213433134341343513436134371343813439134401344113442134431344413445134461344713448134491345013451134521345313454134551345613457134581345913460134611346213463134641346513466134671346813469134701347113472134731347413475134761347713478134791348013481134821348313484134851348613487134881348913490134911349213493134941349513496134971349813499135001350113502135031350413505135061350713508135091351013511135121351313514135151351613517135181351913520135211352213523135241352513526135271352813529135301353113532135331353413535135361353713538135391354013541135421354313544135451354613547135481354913550135511355213553135541355513556135571355813559135601356113562135631356413565135661356713568135691357013571135721357313574135751357613577135781357913580135811358213583135841358513586135871358813589135901359113592135931359413595135961359713598135991360013601136021360313604136051360613607136081360913610136111361213613136141361513616136171361813619136201362113622136231362413625136261362713628136291363013631136321363313634136351363613637136381363913640136411364213643136441364513646136471364813649136501365113652136531365413655136561365713658136591366013661136621366313664136651366613667136681366913670136711367213673136741367513676136771367813679136801368113682136831368413685136861368713688136891369013691136921369313694136951369613697136981369913700137011370213703137041370513706137071370813709137101371113712137131371413715137161371713718137191372013721137221372313724137251372613727137281372913730137311373213733137341373513736137371373813739137401374113742137431374413745137461374713748137491375013751137521375313754137551375613757137581375913760137611376213763137641376513766137671376813769137701377113772137731377413775137761377713778137791378013781137821378313784137851378613787137881378913790137911379213793137941379513796137971379813799138001380113802138031380413805138061380713808138091381013811138121381313814138151381613817138181381913820138211382213823138241382513826138271382813829138301383113832138331383413835138361383713838138391384013841138421384313844138451384613847138481384913850138511385213853138541385513856138571385813859138601386113862138631386413865138661386713868138691387013871138721387313874138751387613877138781387913880138811388213883138841388513886138871388813889138901389113892138931389413895138961389713898138991390013901139021390313904139051390613907139081390913910139111391213913139141391513916139171391813919139201392113922139231392413925139261392713928139291393013931139321393313934139351393613937139381393913940139411394213943139441394513946139471394813949139501395113952139531395413955139561395713958139591396013961139621396313964139651396613967139681396913970139711397213973139741397513976139771397813979139801398113982139831398413985139861398713988139891399013991139921399313994139951399613997139981399914000140011400214003140041400514006140071400814009140101401114012140131401414015140161401714018140191402014021140221402314024140251402614027140281402914030140311403214033140341403514036140371403814039140401404114042140431404414045140461404714048140491405014051140521405314054140551405614057140581405914060140611406214063140641406514066140671406814069140701407114072140731407414075140761407714078140791408014081140821408314084140851408614087140881408914090140911409214093140941409514096140971409814099141001410114102141031410414105141061410714108141091411014111141121411314114141151411614117141181411914120141211412214123141241412514126141271412814129141301413114132141331413414135141361413714138141391414014141141421414314144141451414614147141481414914150141511415214153141541415514156141571415814159141601416114162141631416414165141661416714168141691417014171141721417314174141751417614177141781417914180141811418214183141841418514186141871418814189141901419114192141931419414195141961419714198141991420014201142021420314204142051420614207142081420914210142111421214213142141421514216142171421814219142201422114222142231422414225142261422714228142291423014231142321423314234142351423614237142381423914240142411424214243142441424514246142471424814249142501425114252142531425414255142561425714258142591426014261142621426314264142651426614267142681426914270142711427214273142741427514276142771427814279142801428114282142831428414285142861428714288142891429014291142921429314294142951429614297142981429914300143011430214303143041430514306143071430814309143101431114312143131431414315143161431714318143191432014321143221432314324143251432614327143281432914330143311433214333143341433514336143371433814339143401434114342143431434414345143461434714348143491435014351143521435314354143551435614357143581435914360143611436214363143641436514366143671436814369143701437114372143731437414375143761437714378143791438014381143821438314384143851438614387143881438914390143911439214393143941439514396143971439814399144001440114402144031440414405144061440714408144091441014411144121441314414144151441614417144181441914420144211442214423144241442514426144271442814429144301443114432144331443414435144361443714438144391444014441144421444314444144451444614447144481444914450144511445214453144541445514456144571445814459144601446114462144631446414465144661446714468144691447014471144721447314474144751447614477144781447914480144811448214483144841448514486144871448814489144901449114492144931449414495144961449714498144991450014501145021450314504145051450614507145081450914510145111451214513145141451514516145171451814519145201452114522145231452414525145261452714528145291453014531145321453314534145351453614537145381453914540145411454214543145441454514546145471454814549145501455114552145531455414555145561455714558145591456014561145621456314564145651456614567145681456914570145711457214573145741457514576145771457814579145801458114582145831458414585145861458714588145891459014591145921459314594145951459614597145981459914600146011460214603146041460514606146071460814609146101461114612146131461414615146161461714618146191462014621146221462314624146251462614627146281462914630146311463214633146341463514636146371463814639146401464114642146431464414645146461464714648146491465014651146521465314654146551465614657146581465914660146611466214663146641466514666146671466814669146701467114672146731467414675146761467714678146791468014681146821468314684146851468614687146881468914690146911469214693146941469514696146971469814699147001470114702147031470414705147061470714708147091471014711147121471314714147151471614717147181471914720147211472214723147241472514726147271472814729147301473114732147331473414735147361473714738147391474014741147421474314744147451474614747147481474914750147511475214753147541475514756147571475814759147601476114762147631476414765147661476714768147691477014771147721477314774147751477614777147781477914780147811478214783147841478514786147871478814789147901479114792147931479414795147961479714798147991480014801148021480314804148051480614807148081480914810148111481214813148141481514816148171481814819148201482114822148231482414825148261482714828148291483014831148321483314834148351483614837148381483914840148411484214843148441484514846148471484814849148501485114852148531485414855148561485714858148591486014861148621486314864148651486614867148681486914870148711487214873148741487514876148771487814879148801488114882148831488414885148861488714888148891489014891148921489314894148951489614897148981489914900149011490214903149041490514906149071490814909149101491114912149131491414915149161491714918149191492014921149221492314924149251492614927149281492914930149311493214933149341493514936149371493814939149401494114942149431494414945149461494714948149491495014951149521495314954149551495614957149581495914960149611496214963149641496514966149671496814969149701497114972149731497414975149761497714978149791498014981149821498314984149851498614987149881498914990149911499214993149941499514996149971499814999150001500115002150031500415005150061500715008150091501015011150121501315014150151501615017150181501915020150211502215023150241502515026150271502815029150301503115032150331503415035150361503715038150391504015041150421504315044150451504615047150481504915050150511505215053150541505515056150571505815059150601506115062150631506415065150661506715068150691507015071150721507315074150751507615077150781507915080150811508215083150841508515086150871508815089150901509115092150931509415095150961509715098150991510015101151021510315104151051510615107151081510915110151111511215113151141511515116151171511815119151201512115122151231512415125151261512715128151291513015131151321513315134151351513615137151381513915140151411514215143151441514515146151471514815149151501515115152151531515415155151561515715158151591516015161151621516315164151651516615167151681516915170151711517215173151741517515176151771517815179151801518115182151831518415185151861518715188151891519015191151921519315194151951519615197151981519915200152011520215203152041520515206152071520815209152101521115212152131521415215152161521715218152191522015221152221522315224152251522615227152281522915230152311523215233152341523515236152371523815239152401524115242152431524415245152461524715248152491525015251152521525315254152551525615257152581525915260152611526215263152641526515266152671526815269152701527115272152731527415275152761527715278152791528015281152821528315284152851528615287152881528915290152911529215293152941529515296152971529815299153001530115302153031530415305153061530715308153091531015311153121531315314153151531615317153181531915320153211532215323153241532515326153271532815329153301533115332153331533415335153361533715338153391534015341153421534315344153451534615347153481534915350153511535215353153541535515356153571535815359153601536115362153631536415365153661536715368153691537015371153721537315374153751537615377153781537915380153811538215383153841538515386153871538815389153901539115392153931539415395153961539715398153991540015401154021540315404154051540615407154081540915410154111541215413154141541515416154171541815419154201542115422154231542415425154261542715428154291543015431154321543315434154351543615437154381543915440154411544215443154441544515446154471544815449154501545115452154531545415455154561545715458154591546015461154621546315464154651546615467154681546915470154711547215473154741547515476154771547815479154801548115482154831548415485154861548715488154891549015491154921549315494154951549615497154981549915500155011550215503155041550515506155071550815509155101551115512155131551415515155161551715518155191552015521155221552315524155251552615527155281552915530155311553215533155341553515536155371553815539155401554115542155431554415545155461554715548155491555015551155521555315554155551555615557155581555915560155611556215563155641556515566155671556815569155701557115572155731557415575155761557715578155791558015581155821558315584155851558615587155881558915590155911559215593155941559515596155971559815599156001560115602156031560415605156061560715608156091561015611156121561315614156151561615617156181561915620156211562215623156241562515626156271562815629156301563115632156331563415635156361563715638156391564015641156421564315644156451564615647156481564915650156511565215653156541565515656156571565815659156601566115662156631566415665156661566715668156691567015671156721567315674156751567615677156781567915680156811568215683156841568515686156871568815689156901569115692156931569415695156961569715698156991570015701157021570315704157051570615707157081570915710157111571215713157141571515716157171571815719157201572115722157231572415725157261572715728157291573015731157321573315734157351573615737157381573915740157411574215743157441574515746157471574815749157501575115752157531575415755157561575715758157591576015761157621576315764157651576615767157681576915770157711577215773157741577515776157771577815779157801578115782157831578415785157861578715788157891579015791157921579315794157951579615797157981579915800158011580215803158041580515806158071580815809158101581115812158131581415815158161581715818158191582015821158221582315824158251582615827158281582915830158311583215833158341583515836158371583815839158401584115842158431584415845158461584715848158491585015851158521585315854158551585615857158581585915860158611586215863158641586515866158671586815869158701587115872158731587415875158761587715878158791588015881158821588315884158851588615887158881588915890158911589215893158941589515896158971589815899159001590115902159031590415905159061590715908159091591015911159121591315914159151591615917159181591915920159211592215923159241592515926159271592815929159301593115932159331593415935159361593715938159391594015941159421594315944159451594615947159481594915950159511595215953159541595515956159571595815959159601596115962159631596415965159661596715968159691597015971159721597315974159751597615977159781597915980159811598215983159841598515986159871598815989159901599115992159931599415995159961599715998159991600016001160021600316004160051600616007160081600916010160111601216013160141601516016160171601816019160201602116022160231602416025160261602716028160291603016031160321603316034160351603616037160381603916040160411604216043160441604516046160471604816049160501605116052160531605416055160561605716058160591606016061160621606316064160651606616067160681606916070160711607216073160741607516076160771607816079160801608116082160831608416085160861608716088160891609016091160921609316094160951609616097160981609916100161011610216103161041610516106161071610816109161101611116112161131611416115161161611716118161191612016121161221612316124161251612616127161281612916130161311613216133161341613516136161371613816139161401614116142161431614416145161461614716148161491615016151161521615316154161551615616157161581615916160161611616216163161641616516166161671616816169161701617116172161731617416175161761617716178161791618016181161821618316184161851618616187161881618916190161911619216193161941619516196161971619816199162001620116202162031620416205162061620716208162091621016211162121621316214162151621616217162181621916220162211622216223162241622516226162271622816229162301623116232162331623416235162361623716238162391624016241162421624316244162451624616247162481624916250162511625216253162541625516256162571625816259162601626116262162631626416265162661626716268162691627016271162721627316274162751627616277162781627916280162811628216283162841628516286162871628816289162901629116292162931629416295162961629716298162991630016301163021630316304163051630616307163081630916310163111631216313163141631516316163171631816319163201632116322163231632416325163261632716328163291633016331163321633316334163351633616337163381633916340163411634216343163441634516346163471634816349163501635116352163531635416355163561635716358163591636016361163621636316364163651636616367163681636916370163711637216373163741637516376163771637816379163801638116382163831638416385163861638716388163891639016391163921639316394163951639616397163981639916400164011640216403164041640516406164071640816409164101641116412164131641416415164161641716418164191642016421164221642316424164251642616427164281642916430164311643216433164341643516436164371643816439164401644116442164431644416445164461644716448164491645016451164521645316454164551645616457164581645916460164611646216463164641646516466164671646816469164701647116472164731647416475164761647716478164791648016481164821648316484164851648616487164881648916490164911649216493164941649516496164971649816499165001650116502165031650416505165061650716508165091651016511165121651316514165151651616517165181651916520165211652216523165241652516526165271652816529165301653116532165331653416535165361653716538165391654016541165421654316544165451654616547165481654916550165511655216553165541655516556165571655816559165601656116562165631656416565165661656716568165691657016571165721657316574165751657616577165781657916580165811658216583165841658516586165871658816589165901659116592165931659416595165961659716598165991660016601166021660316604166051660616607166081660916610166111661216613166141661516616166171661816619166201662116622166231662416625166261662716628166291663016631166321663316634166351663616637166381663916640166411664216643166441664516646166471664816649166501665116652166531665416655166561665716658166591666016661166621666316664166651666616667166681666916670166711667216673166741667516676166771667816679166801668116682166831668416685166861668716688166891669016691166921669316694166951669616697166981669916700167011670216703167041670516706167071670816709167101671116712167131671416715167161671716718167191672016721167221672316724167251672616727167281672916730167311673216733167341673516736167371673816739167401674116742167431674416745167461674716748167491675016751167521675316754167551675616757167581675916760167611676216763167641676516766167671676816769167701677116772167731677416775167761677716778167791678016781167821678316784167851678616787167881678916790167911679216793167941679516796167971679816799168001680116802168031680416805168061680716808168091681016811168121681316814168151681616817168181681916820168211682216823168241682516826168271682816829168301683116832168331683416835168361683716838168391684016841168421684316844168451684616847168481684916850168511685216853168541685516856168571685816859168601686116862168631686416865168661686716868168691687016871168721687316874168751687616877168781687916880168811688216883168841688516886168871688816889168901689116892168931689416895168961689716898168991690016901169021690316904169051690616907169081690916910169111691216913169141691516916169171691816919169201692116922169231692416925169261692716928169291693016931169321693316934169351693616937169381693916940169411694216943169441694516946169471694816949169501695116952169531695416955169561695716958169591696016961169621696316964169651696616967169681696916970169711697216973169741697516976169771697816979169801698116982169831698416985169861698716988169891699016991169921699316994169951699616997169981699917000170011700217003170041700517006170071700817009170101701117012170131701417015170161701717018170191702017021170221702317024170251702617027170281702917030170311703217033170341703517036170371703817039170401704117042170431704417045170461704717048170491705017051170521705317054170551705617057170581705917060170611706217063170641706517066170671706817069170701707117072170731707417075170761707717078170791708017081170821708317084170851708617087170881708917090170911709217093170941709517096170971709817099171001710117102171031710417105171061710717108171091711017111171121711317114171151711617117171181711917120171211712217123171241712517126171271712817129171301713117132171331713417135171361713717138171391714017141171421714317144171451714617147171481714917150171511715217153171541715517156171571715817159171601716117162171631716417165171661716717168171691717017171171721717317174171751717617177171781717917180171811718217183171841718517186171871718817189171901719117192171931719417195171961719717198171991720017201172021720317204172051720617207172081720917210172111721217213172141721517216172171721817219172201722117222172231722417225172261722717228172291723017231172321723317234172351723617237172381723917240172411724217243172441724517246172471724817249172501725117252172531725417255172561725717258172591726017261172621726317264172651726617267172681726917270172711727217273172741727517276172771727817279172801728117282172831728417285172861728717288172891729017291172921729317294172951729617297172981729917300173011730217303173041730517306173071730817309173101731117312173131731417315173161731717318173191732017321173221732317324173251732617327173281732917330173311733217333173341733517336173371733817339173401734117342173431734417345173461734717348173491735017351173521735317354173551735617357173581735917360173611736217363173641736517366173671736817369173701737117372173731737417375173761737717378173791738017381173821738317384173851738617387173881738917390173911739217393173941739517396173971739817399174001740117402174031740417405174061740717408174091741017411174121741317414174151741617417174181741917420174211742217423174241742517426174271742817429174301743117432174331743417435174361743717438174391744017441174421744317444174451744617447174481744917450174511745217453174541745517456174571745817459174601746117462174631746417465174661746717468174691747017471174721747317474174751747617477174781747917480174811748217483174841748517486174871748817489174901749117492174931749417495174961749717498174991750017501175021750317504175051750617507175081750917510175111751217513175141751517516175171751817519175201752117522175231752417525175261752717528175291753017531175321753317534175351753617537175381753917540175411754217543175441754517546175471754817549175501755117552175531755417555175561755717558175591756017561175621756317564175651756617567175681756917570175711757217573175741757517576175771757817579175801758117582175831758417585175861758717588175891759017591175921759317594175951759617597175981759917600176011760217603176041760517606176071760817609176101761117612176131761417615176161761717618176191762017621176221762317624176251762617627176281762917630176311763217633176341763517636176371763817639176401764117642176431764417645176461764717648176491765017651176521765317654176551765617657176581765917660176611766217663176641766517666176671766817669176701767117672176731767417675176761767717678176791768017681176821768317684176851768617687176881768917690176911769217693176941769517696176971769817699177001770117702177031770417705177061770717708177091771017711177121771317714177151771617717177181771917720177211772217723177241772517726177271772817729177301773117732177331773417735177361773717738177391774017741177421774317744177451774617747177481774917750177511775217753177541775517756177571775817759177601776117762177631776417765177661776717768177691777017771177721777317774177751777617777177781777917780177811778217783177841778517786177871778817789177901779117792177931779417795177961779717798177991780017801178021780317804178051780617807178081780917810178111781217813178141781517816178171781817819178201782117822178231782417825178261782717828178291783017831178321783317834178351783617837178381783917840178411784217843178441784517846178471784817849178501785117852178531785417855178561785717858178591786017861178621786317864178651786617867178681786917870178711787217873178741787517876178771787817879178801788117882178831788417885178861788717888178891789017891178921789317894178951789617897178981789917900179011790217903179041790517906179071790817909179101791117912179131791417915179161791717918179191792017921179221792317924179251792617927179281792917930179311793217933179341793517936179371793817939179401794117942179431794417945179461794717948179491795017951179521795317954179551795617957179581795917960179611796217963179641796517966179671796817969179701797117972179731797417975179761797717978179791798017981179821798317984179851798617987179881798917990179911799217993179941799517996179971799817999180001800118002180031800418005180061800718008180091801018011180121801318014180151801618017180181801918020180211802218023180241802518026180271802818029180301803118032180331803418035180361803718038180391804018041180421804318044180451804618047180481804918050180511805218053180541805518056180571805818059180601806118062180631806418065180661806718068180691807018071180721807318074180751807618077180781807918080180811808218083180841808518086180871808818089180901809118092180931809418095180961809718098180991810018101181021810318104181051810618107181081810918110181111811218113181141811518116181171811818119181201812118122181231812418125181261812718128181291813018131181321813318134181351813618137181381813918140181411814218143181441814518146181471814818149181501815118152181531815418155181561815718158181591816018161181621816318164181651816618167181681816918170181711817218173181741817518176181771817818179181801818118182181831818418185181861818718188181891819018191181921819318194181951819618197181981819918200182011820218203182041820518206182071820818209182101821118212182131821418215182161821718218182191822018221182221822318224182251822618227182281822918230182311823218233182341823518236182371823818239182401824118242182431824418245182461824718248182491825018251182521825318254182551825618257182581825918260182611826218263182641826518266182671826818269182701827118272182731827418275182761827718278182791828018281182821828318284182851828618287182881828918290182911829218293182941829518296182971829818299183001830118302183031830418305183061830718308183091831018311183121831318314183151831618317183181831918320183211832218323183241832518326183271832818329183301833118332183331833418335183361833718338183391834018341183421834318344183451834618347183481834918350183511835218353183541835518356183571835818359183601836118362183631836418365183661836718368183691837018371183721837318374183751837618377183781837918380183811838218383183841838518386183871838818389183901839118392183931839418395183961839718398183991840018401184021840318404184051840618407184081840918410184111841218413184141841518416184171841818419184201842118422184231842418425184261842718428184291843018431184321843318434184351843618437184381843918440184411844218443184441844518446184471844818449184501845118452184531845418455184561845718458184591846018461184621846318464184651846618467184681846918470184711847218473184741847518476184771847818479184801848118482184831848418485184861848718488184891849018491184921849318494184951849618497184981849918500185011850218503185041850518506185071850818509185101851118512185131851418515185161851718518185191852018521185221852318524185251852618527185281852918530185311853218533185341853518536185371853818539185401854118542185431854418545185461854718548185491855018551185521855318554185551855618557185581855918560185611856218563185641856518566185671856818569185701857118572185731857418575185761857718578185791858018581185821858318584185851858618587185881858918590185911859218593185941859518596185971859818599186001860118602186031860418605186061860718608186091861018611186121861318614186151861618617186181861918620186211862218623186241862518626186271862818629186301863118632186331863418635186361863718638186391864018641186421864318644186451864618647186481864918650186511865218653186541865518656186571865818659186601866118662186631866418665186661866718668186691867018671186721867318674186751867618677186781867918680186811868218683186841868518686186871868818689186901869118692186931869418695186961869718698186991870018701187021870318704187051870618707187081870918710187111871218713187141871518716187171871818719187201872118722187231872418725187261872718728187291873018731187321873318734187351873618737187381873918740187411874218743187441874518746187471874818749187501875118752187531875418755187561875718758187591876018761187621876318764187651876618767187681876918770187711877218773187741877518776187771877818779187801878118782187831878418785
  1. #define LLAMA_API_INTERNAL
  2. #include "llama.h"
  3. #include "unicode.h"
  4. #include "ggml.h"
  5. #include "ggml-alloc.h"
  6. #include "ggml-backend.h"
  7. #ifdef GGML_USE_RPC
  8. # include "ggml-rpc.h"
  9. #endif
  10. #ifdef GGML_USE_CUDA
  11. # include "ggml-cuda.h"
  12. #elif defined(GGML_USE_CLBLAST)
  13. # include "ggml-opencl.h"
  14. #elif defined(GGML_USE_VULKAN)
  15. # include "ggml-vulkan.h"
  16. #elif defined(GGML_USE_SYCL)
  17. # include "ggml-sycl.h"
  18. #elif defined(GGML_USE_KOMPUTE)
  19. # include "ggml-kompute.h"
  20. #endif
  21. #ifdef GGML_USE_METAL
  22. # include "ggml-metal.h"
  23. #endif
  24. // TODO: replace with ggml API call
  25. #define QK_K 256
  26. #ifdef __has_include
  27. #if __has_include(<unistd.h>)
  28. #include <unistd.h>
  29. #if defined(_POSIX_MAPPED_FILES)
  30. #include <sys/mman.h>
  31. #include <fcntl.h>
  32. #endif
  33. #if defined(_POSIX_MEMLOCK_RANGE)
  34. #include <sys/resource.h>
  35. #endif
  36. #endif
  37. #endif
  38. #if defined(_WIN32)
  39. #define WIN32_LEAN_AND_MEAN
  40. #ifndef NOMINMAX
  41. #define NOMINMAX
  42. #endif
  43. #include <windows.h>
  44. #ifndef PATH_MAX
  45. #define PATH_MAX MAX_PATH
  46. #endif
  47. #include <io.h>
  48. #endif
  49. #include <algorithm>
  50. #include <array>
  51. #include <cassert>
  52. #include <cctype>
  53. #include <cfloat>
  54. #include <cinttypes>
  55. #include <climits>
  56. #include <cmath>
  57. #include <cstdarg>
  58. #include <cstddef>
  59. #include <cstdint>
  60. #include <cstdio>
  61. #include <cstring>
  62. #include <ctime>
  63. #include <forward_list>
  64. #include <fstream>
  65. #include <functional>
  66. #include <future>
  67. #include <initializer_list>
  68. #include <locale>
  69. #include <map>
  70. #include <memory>
  71. #include <mutex>
  72. #include <numeric>
  73. #include <queue>
  74. #include <random>
  75. #include <regex>
  76. #include <set>
  77. #include <sstream>
  78. #include <thread>
  79. #include <type_traits>
  80. #include <unordered_map>
  81. #if defined(_MSC_VER)
  82. #pragma warning(disable: 4244 4267) // possible loss of data
  83. #endif
  84. #ifdef __GNUC__
  85. #ifdef __MINGW32__
  86. #define LLAMA_ATTRIBUTE_FORMAT(...) __attribute__((format(gnu_printf, __VA_ARGS__)))
  87. #else
  88. #define LLAMA_ATTRIBUTE_FORMAT(...) __attribute__((format(printf, __VA_ARGS__)))
  89. #endif
  90. #else
  91. #define LLAMA_ATTRIBUTE_FORMAT(...)
  92. #endif
  93. #define LLAMA_MAX_NODES 8192
  94. #define LLAMA_MAX_EXPERTS 160
  95. //
  96. // logging
  97. //
  98. LLAMA_ATTRIBUTE_FORMAT(2, 3)
  99. static void llama_log_internal (ggml_log_level level, const char* format, ...);
  100. static void llama_log_callback_default(ggml_log_level level, const char * text, void * user_data);
  101. #define LLAMA_LOG_INFO(...) llama_log_internal(GGML_LOG_LEVEL_INFO , __VA_ARGS__)
  102. #define LLAMA_LOG_WARN(...) llama_log_internal(GGML_LOG_LEVEL_WARN , __VA_ARGS__)
  103. #define LLAMA_LOG_ERROR(...) llama_log_internal(GGML_LOG_LEVEL_ERROR, __VA_ARGS__)
  104. //
  105. // helpers
  106. //
  107. static size_t utf8_len(char src) {
  108. const size_t lookup[] = { 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 3, 4 };
  109. uint8_t highbits = static_cast<uint8_t>(src) >> 4;
  110. return lookup[highbits];
  111. }
  112. static void replace_all(std::string & s, const std::string & search, const std::string & replace) {
  113. std::string result;
  114. for (size_t pos = 0; ; pos += search.length()) {
  115. auto new_pos = s.find(search, pos);
  116. if (new_pos == std::string::npos) {
  117. result += s.substr(pos, s.size() - pos);
  118. break;
  119. }
  120. result += s.substr(pos, new_pos - pos) + replace;
  121. pos = new_pos;
  122. }
  123. s = std::move(result);
  124. }
  125. static bool is_float_close(float a, float b, float abs_tol) {
  126. // Check for non-negative tolerance
  127. if (abs_tol < 0.0) {
  128. throw std::invalid_argument("Tolerance must be non-negative");
  129. }
  130. // Exact equality check
  131. if (a == b) {
  132. return true;
  133. }
  134. // Check for infinities
  135. if (std::isinf(a) || std::isinf(b)) {
  136. return false;
  137. }
  138. // Regular comparison using the provided absolute tolerance
  139. return std::fabs(b - a) <= abs_tol;
  140. }
  141. static void zeros(std::ofstream & file, size_t n) {
  142. char zero = 0;
  143. for (size_t i = 0; i < n; ++i) {
  144. file.write(&zero, 1);
  145. }
  146. }
  147. LLAMA_ATTRIBUTE_FORMAT(1, 2)
  148. static std::string format(const char * fmt, ...) {
  149. va_list ap;
  150. va_list ap2;
  151. va_start(ap, fmt);
  152. va_copy(ap2, ap);
  153. int size = vsnprintf(NULL, 0, fmt, ap);
  154. GGML_ASSERT(size >= 0 && size < INT_MAX); // NOLINT
  155. std::vector<char> buf(size + 1);
  156. int size2 = vsnprintf(buf.data(), size + 1, fmt, ap2);
  157. GGML_ASSERT(size2 == size);
  158. va_end(ap2);
  159. va_end(ap);
  160. return std::string(buf.data(), size);
  161. }
  162. //
  163. // gguf constants (sync with gguf.py)
  164. //
  165. enum llm_arch {
  166. LLM_ARCH_LLAMA,
  167. LLM_ARCH_FALCON,
  168. LLM_ARCH_BAICHUAN,
  169. LLM_ARCH_GROK,
  170. LLM_ARCH_GPT2,
  171. LLM_ARCH_GPTJ,
  172. LLM_ARCH_GPTNEOX,
  173. LLM_ARCH_MPT,
  174. LLM_ARCH_STARCODER,
  175. LLM_ARCH_REFACT,
  176. LLM_ARCH_BERT,
  177. LLM_ARCH_NOMIC_BERT,
  178. LLM_ARCH_JINA_BERT_V2,
  179. LLM_ARCH_BLOOM,
  180. LLM_ARCH_STABLELM,
  181. LLM_ARCH_QWEN,
  182. LLM_ARCH_QWEN2,
  183. LLM_ARCH_QWEN2MOE,
  184. LLM_ARCH_PHI2,
  185. LLM_ARCH_PHI3,
  186. LLM_ARCH_PLAMO,
  187. LLM_ARCH_CODESHELL,
  188. LLM_ARCH_ORION,
  189. LLM_ARCH_INTERNLM2,
  190. LLM_ARCH_MINICPM,
  191. LLM_ARCH_GEMMA,
  192. LLM_ARCH_STARCODER2,
  193. LLM_ARCH_MAMBA,
  194. LLM_ARCH_XVERSE,
  195. LLM_ARCH_COMMAND_R,
  196. LLM_ARCH_DBRX,
  197. LLM_ARCH_OLMO,
  198. LLM_ARCH_ARCTIC,
  199. LLM_ARCH_DEEPSEEK2,
  200. LLM_ARCH_UNKNOWN,
  201. };
  202. static const std::map<llm_arch, const char *> LLM_ARCH_NAMES = {
  203. { LLM_ARCH_LLAMA, "llama" },
  204. { LLM_ARCH_FALCON, "falcon" },
  205. { LLM_ARCH_GROK, "grok" },
  206. { LLM_ARCH_GPT2, "gpt2" },
  207. { LLM_ARCH_GPTJ, "gptj" },
  208. { LLM_ARCH_GPTNEOX, "gptneox" },
  209. { LLM_ARCH_MPT, "mpt" },
  210. { LLM_ARCH_BAICHUAN, "baichuan" },
  211. { LLM_ARCH_STARCODER, "starcoder" },
  212. { LLM_ARCH_REFACT, "refact" },
  213. { LLM_ARCH_BERT, "bert" },
  214. { LLM_ARCH_NOMIC_BERT, "nomic-bert" },
  215. { LLM_ARCH_JINA_BERT_V2, "jina-bert-v2" },
  216. { LLM_ARCH_BLOOM, "bloom" },
  217. { LLM_ARCH_STABLELM, "stablelm" },
  218. { LLM_ARCH_QWEN, "qwen" },
  219. { LLM_ARCH_QWEN2, "qwen2" },
  220. { LLM_ARCH_QWEN2MOE, "qwen2moe" },
  221. { LLM_ARCH_PHI2, "phi2" },
  222. { LLM_ARCH_PHI3, "phi3" },
  223. { LLM_ARCH_PLAMO, "plamo" },
  224. { LLM_ARCH_CODESHELL, "codeshell" },
  225. { LLM_ARCH_ORION, "orion" },
  226. { LLM_ARCH_INTERNLM2, "internlm2" },
  227. { LLM_ARCH_MINICPM, "minicpm" },
  228. { LLM_ARCH_GEMMA, "gemma" },
  229. { LLM_ARCH_STARCODER2, "starcoder2" },
  230. { LLM_ARCH_MAMBA, "mamba" },
  231. { LLM_ARCH_XVERSE, "xverse" },
  232. { LLM_ARCH_COMMAND_R, "command-r" },
  233. { LLM_ARCH_DBRX, "dbrx" },
  234. { LLM_ARCH_OLMO, "olmo" },
  235. { LLM_ARCH_ARCTIC, "arctic" },
  236. { LLM_ARCH_DEEPSEEK2, "deepseek2" },
  237. { LLM_ARCH_UNKNOWN, "(unknown)" },
  238. };
  239. enum llm_kv {
  240. LLM_KV_GENERAL_ARCHITECTURE,
  241. LLM_KV_GENERAL_QUANTIZATION_VERSION,
  242. LLM_KV_GENERAL_ALIGNMENT,
  243. LLM_KV_GENERAL_NAME,
  244. LLM_KV_GENERAL_AUTHOR,
  245. LLM_KV_GENERAL_VERSION,
  246. LLM_KV_GENERAL_URL,
  247. LLM_KV_GENERAL_DESCRIPTION,
  248. LLM_KV_GENERAL_LICENSE,
  249. LLM_KV_GENERAL_SOURCE_URL,
  250. LLM_KV_GENERAL_SOURCE_HF_REPO,
  251. LLM_KV_VOCAB_SIZE,
  252. LLM_KV_CONTEXT_LENGTH,
  253. LLM_KV_EMBEDDING_LENGTH,
  254. LLM_KV_BLOCK_COUNT,
  255. LLM_KV_LEADING_DENSE_BLOCK_COUNT,
  256. LLM_KV_FEED_FORWARD_LENGTH,
  257. LLM_KV_EXPERT_FEED_FORWARD_LENGTH,
  258. LLM_KV_USE_PARALLEL_RESIDUAL,
  259. LLM_KV_TENSOR_DATA_LAYOUT,
  260. LLM_KV_EXPERT_COUNT,
  261. LLM_KV_EXPERT_USED_COUNT,
  262. LLM_KV_EXPERT_SHARED_COUNT,
  263. LLM_KV_EXPERT_WEIGHTS_SCALE,
  264. LLM_KV_POOLING_TYPE,
  265. LLM_KV_LOGIT_SCALE,
  266. LLM_KV_ATTENTION_HEAD_COUNT,
  267. LLM_KV_ATTENTION_HEAD_COUNT_KV,
  268. LLM_KV_ATTENTION_MAX_ALIBI_BIAS,
  269. LLM_KV_ATTENTION_CLAMP_KQV,
  270. LLM_KV_ATTENTION_KEY_LENGTH,
  271. LLM_KV_ATTENTION_VALUE_LENGTH,
  272. LLM_KV_ATTENTION_LAYERNORM_EPS,
  273. LLM_KV_ATTENTION_LAYERNORM_RMS_EPS,
  274. LLM_KV_ATTENTION_CAUSAL,
  275. LLM_KV_ATTENTION_Q_LORA_RANK,
  276. LLM_KV_ATTENTION_KV_LORA_RANK,
  277. LLM_KV_ROPE_DIMENSION_COUNT,
  278. LLM_KV_ROPE_FREQ_BASE,
  279. LLM_KV_ROPE_SCALE_LINEAR,
  280. LLM_KV_ROPE_SCALING_TYPE,
  281. LLM_KV_ROPE_SCALING_FACTOR,
  282. LLM_KV_ROPE_SCALING_ATTN_FACTOR,
  283. LLM_KV_ROPE_SCALING_ORIG_CTX_LEN,
  284. LLM_KV_ROPE_SCALING_FINETUNED,
  285. LLM_KV_ROPE_SCALING_YARN_LOG_MUL,
  286. LLM_KV_SPLIT_NO,
  287. LLM_KV_SPLIT_COUNT,
  288. LLM_KV_SPLIT_TENSORS_COUNT,
  289. LLM_KV_SSM_INNER_SIZE,
  290. LLM_KV_SSM_CONV_KERNEL,
  291. LLM_KV_SSM_STATE_SIZE,
  292. LLM_KV_SSM_TIME_STEP_RANK,
  293. LLM_KV_TOKENIZER_MODEL,
  294. LLM_KV_TOKENIZER_PRE,
  295. LLM_KV_TOKENIZER_LIST,
  296. LLM_KV_TOKENIZER_TOKEN_TYPE,
  297. LLM_KV_TOKENIZER_TOKEN_TYPE_COUNT,
  298. LLM_KV_TOKENIZER_SCORES,
  299. LLM_KV_TOKENIZER_MERGES,
  300. LLM_KV_TOKENIZER_BOS_ID,
  301. LLM_KV_TOKENIZER_EOS_ID,
  302. LLM_KV_TOKENIZER_UNK_ID,
  303. LLM_KV_TOKENIZER_SEP_ID,
  304. LLM_KV_TOKENIZER_PAD_ID,
  305. LLM_KV_TOKENIZER_CLS_ID,
  306. LLM_KV_TOKENIZER_MASK_ID,
  307. LLM_KV_TOKENIZER_ADD_BOS,
  308. LLM_KV_TOKENIZER_ADD_EOS,
  309. LLM_KV_TOKENIZER_ADD_PREFIX,
  310. LLM_KV_TOKENIZER_HF_JSON,
  311. LLM_KV_TOKENIZER_RWKV,
  312. LLM_KV_TOKENIZER_PREFIX_ID,
  313. LLM_KV_TOKENIZER_SUFFIX_ID,
  314. LLM_KV_TOKENIZER_MIDDLE_ID,
  315. LLM_KV_TOKENIZER_EOT_ID,
  316. };
  317. static const std::map<llm_kv, const char *> LLM_KV_NAMES = {
  318. { LLM_KV_GENERAL_ARCHITECTURE, "general.architecture" },
  319. { LLM_KV_GENERAL_QUANTIZATION_VERSION, "general.quantization_version" },
  320. { LLM_KV_GENERAL_ALIGNMENT, "general.alignment" },
  321. { LLM_KV_GENERAL_NAME, "general.name" },
  322. { LLM_KV_GENERAL_AUTHOR, "general.author" },
  323. { LLM_KV_GENERAL_VERSION, "general.version" },
  324. { LLM_KV_GENERAL_URL, "general.url" },
  325. { LLM_KV_GENERAL_DESCRIPTION, "general.description" },
  326. { LLM_KV_GENERAL_LICENSE, "general.license" },
  327. { LLM_KV_GENERAL_SOURCE_URL, "general.source.url" },
  328. { LLM_KV_GENERAL_SOURCE_HF_REPO, "general.source.huggingface.repository" },
  329. { LLM_KV_VOCAB_SIZE, "%s.vocab_size" },
  330. { LLM_KV_CONTEXT_LENGTH, "%s.context_length" },
  331. { LLM_KV_EMBEDDING_LENGTH, "%s.embedding_length" },
  332. { LLM_KV_BLOCK_COUNT, "%s.block_count" },
  333. { LLM_KV_LEADING_DENSE_BLOCK_COUNT, "%s.leading_dense_block_count" },
  334. { LLM_KV_FEED_FORWARD_LENGTH, "%s.feed_forward_length" },
  335. { LLM_KV_EXPERT_FEED_FORWARD_LENGTH, "%s.expert_feed_forward_length" },
  336. { LLM_KV_USE_PARALLEL_RESIDUAL, "%s.use_parallel_residual" },
  337. { LLM_KV_TENSOR_DATA_LAYOUT, "%s.tensor_data_layout" },
  338. { LLM_KV_EXPERT_COUNT, "%s.expert_count" },
  339. { LLM_KV_EXPERT_USED_COUNT, "%s.expert_used_count" },
  340. { LLM_KV_EXPERT_SHARED_COUNT, "%s.expert_shared_count" },
  341. { LLM_KV_EXPERT_WEIGHTS_SCALE, "%s.expert_weights_scale" },
  342. { LLM_KV_POOLING_TYPE , "%s.pooling_type" },
  343. { LLM_KV_LOGIT_SCALE, "%s.logit_scale" },
  344. { LLM_KV_ATTENTION_HEAD_COUNT, "%s.attention.head_count" },
  345. { LLM_KV_ATTENTION_HEAD_COUNT_KV, "%s.attention.head_count_kv" },
  346. { LLM_KV_ATTENTION_MAX_ALIBI_BIAS, "%s.attention.max_alibi_bias" },
  347. { LLM_KV_ATTENTION_CLAMP_KQV, "%s.attention.clamp_kqv" },
  348. { LLM_KV_ATTENTION_KEY_LENGTH, "%s.attention.key_length" },
  349. { LLM_KV_ATTENTION_VALUE_LENGTH, "%s.attention.value_length" },
  350. { LLM_KV_ATTENTION_LAYERNORM_EPS, "%s.attention.layer_norm_epsilon" },
  351. { LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, "%s.attention.layer_norm_rms_epsilon" },
  352. { LLM_KV_ATTENTION_CAUSAL, "%s.attention.causal" },
  353. { LLM_KV_ATTENTION_Q_LORA_RANK, "%s.attention.q_lora_rank" },
  354. { LLM_KV_ATTENTION_KV_LORA_RANK, "%s.attention.kv_lora_rank" },
  355. { LLM_KV_ROPE_DIMENSION_COUNT, "%s.rope.dimension_count" },
  356. { LLM_KV_ROPE_FREQ_BASE, "%s.rope.freq_base" },
  357. { LLM_KV_ROPE_SCALE_LINEAR, "%s.rope.scale_linear" },
  358. { LLM_KV_ROPE_SCALING_TYPE, "%s.rope.scaling.type" },
  359. { LLM_KV_ROPE_SCALING_FACTOR, "%s.rope.scaling.factor" },
  360. { LLM_KV_ROPE_SCALING_ATTN_FACTOR, "%s.rope.scaling.attn_factor" },
  361. { LLM_KV_ROPE_SCALING_ORIG_CTX_LEN, "%s.rope.scaling.original_context_length" },
  362. { LLM_KV_ROPE_SCALING_FINETUNED, "%s.rope.scaling.finetuned" },
  363. { LLM_KV_ROPE_SCALING_YARN_LOG_MUL, "%s.rope.scaling.yarn_log_multiplier" },
  364. { LLM_KV_SPLIT_NO, "split.no" },
  365. { LLM_KV_SPLIT_COUNT, "split.count" },
  366. { LLM_KV_SPLIT_TENSORS_COUNT, "split.tensors.count" },
  367. { LLM_KV_SSM_CONV_KERNEL, "%s.ssm.conv_kernel" },
  368. { LLM_KV_SSM_INNER_SIZE, "%s.ssm.inner_size" },
  369. { LLM_KV_SSM_STATE_SIZE, "%s.ssm.state_size" },
  370. { LLM_KV_SSM_TIME_STEP_RANK, "%s.ssm.time_step_rank" },
  371. { LLM_KV_TOKENIZER_MODEL, "tokenizer.ggml.model" },
  372. { LLM_KV_TOKENIZER_PRE, "tokenizer.ggml.pre" },
  373. { LLM_KV_TOKENIZER_LIST, "tokenizer.ggml.tokens" },
  374. { LLM_KV_TOKENIZER_TOKEN_TYPE, "tokenizer.ggml.token_type" },
  375. { LLM_KV_TOKENIZER_TOKEN_TYPE_COUNT, "tokenizer.ggml.token_type_count" },
  376. { LLM_KV_TOKENIZER_SCORES, "tokenizer.ggml.scores" },
  377. { LLM_KV_TOKENIZER_MERGES, "tokenizer.ggml.merges" },
  378. { LLM_KV_TOKENIZER_BOS_ID, "tokenizer.ggml.bos_token_id" },
  379. { LLM_KV_TOKENIZER_EOS_ID, "tokenizer.ggml.eos_token_id" },
  380. { LLM_KV_TOKENIZER_UNK_ID, "tokenizer.ggml.unknown_token_id" },
  381. { LLM_KV_TOKENIZER_SEP_ID, "tokenizer.ggml.seperator_token_id" },
  382. { LLM_KV_TOKENIZER_PAD_ID, "tokenizer.ggml.padding_token_id" },
  383. { LLM_KV_TOKENIZER_CLS_ID, "tokenizer.ggml.cls_token_id" },
  384. { LLM_KV_TOKENIZER_MASK_ID, "tokenizer.ggml.mask_token_id" },
  385. { LLM_KV_TOKENIZER_ADD_BOS, "tokenizer.ggml.add_bos_token" },
  386. { LLM_KV_TOKENIZER_ADD_EOS, "tokenizer.ggml.add_eos_token" },
  387. { LLM_KV_TOKENIZER_ADD_PREFIX, "tokenizer.ggml.add_space_prefix" },
  388. { LLM_KV_TOKENIZER_HF_JSON, "tokenizer.huggingface.json" },
  389. { LLM_KV_TOKENIZER_RWKV, "tokenizer.rwkv.world" },
  390. { LLM_KV_TOKENIZER_PREFIX_ID, "tokenizer.ggml.prefix_token_id" },
  391. { LLM_KV_TOKENIZER_SUFFIX_ID, "tokenizer.ggml.suffix_token_id" },
  392. { LLM_KV_TOKENIZER_MIDDLE_ID, "tokenizer.ggml.middle_token_id" },
  393. { LLM_KV_TOKENIZER_EOT_ID, "tokenizer.ggml.eot_token_id" },
  394. };
  395. struct LLM_KV {
  396. LLM_KV(llm_arch arch) : arch(arch) {}
  397. llm_arch arch;
  398. std::string operator()(llm_kv kv) const {
  399. return ::format(LLM_KV_NAMES.at(kv), LLM_ARCH_NAMES.at(arch));
  400. }
  401. };
  402. enum llm_tensor {
  403. LLM_TENSOR_TOKEN_EMBD,
  404. LLM_TENSOR_TOKEN_EMBD_NORM,
  405. LLM_TENSOR_TOKEN_TYPES,
  406. LLM_TENSOR_POS_EMBD,
  407. LLM_TENSOR_OUTPUT,
  408. LLM_TENSOR_OUTPUT_NORM,
  409. LLM_TENSOR_ROPE_FREQS,
  410. LLM_TENSOR_ROPE_FACTORS_LONG,
  411. LLM_TENSOR_ROPE_FACTORS_SHORT,
  412. LLM_TENSOR_ATTN_Q,
  413. LLM_TENSOR_ATTN_K,
  414. LLM_TENSOR_ATTN_V,
  415. LLM_TENSOR_ATTN_QKV,
  416. LLM_TENSOR_ATTN_OUT,
  417. LLM_TENSOR_ATTN_NORM,
  418. LLM_TENSOR_ATTN_NORM_2,
  419. LLM_TENSOR_ATTN_OUT_NORM,
  420. LLM_TENSOR_ATTN_ROT_EMBD,
  421. LLM_TENSOR_FFN_GATE_INP,
  422. LLM_TENSOR_FFN_GATE_INP_SHEXP,
  423. LLM_TENSOR_FFN_NORM,
  424. LLM_TENSOR_FFN_GATE,
  425. LLM_TENSOR_FFN_DOWN,
  426. LLM_TENSOR_FFN_UP,
  427. LLM_TENSOR_FFN_ACT,
  428. LLM_TENSOR_FFN_DOWN_EXP, // split experts for backward compatibility
  429. LLM_TENSOR_FFN_GATE_EXP,
  430. LLM_TENSOR_FFN_UP_EXP,
  431. LLM_TENSOR_FFN_NORM_EXPS,
  432. LLM_TENSOR_FFN_DOWN_EXPS, // merged experts
  433. LLM_TENSOR_FFN_GATE_EXPS,
  434. LLM_TENSOR_FFN_UP_EXPS,
  435. LLM_TENSOR_FFN_DOWN_SHEXP,
  436. LLM_TENSOR_FFN_GATE_SHEXP,
  437. LLM_TENSOR_FFN_UP_SHEXP,
  438. LLM_TENSOR_ATTN_Q_NORM,
  439. LLM_TENSOR_ATTN_K_NORM,
  440. LLM_TENSOR_LAYER_OUT_NORM,
  441. LLM_TENSOR_SSM_IN,
  442. LLM_TENSOR_SSM_CONV1D,
  443. LLM_TENSOR_SSM_X,
  444. LLM_TENSOR_SSM_DT,
  445. LLM_TENSOR_SSM_A,
  446. LLM_TENSOR_SSM_D,
  447. LLM_TENSOR_SSM_OUT,
  448. LLM_TENSOR_ATTN_Q_A,
  449. LLM_TENSOR_ATTN_Q_B,
  450. LLM_TENSOR_ATTN_KV_A_MQA,
  451. LLM_TENSOR_ATTN_KV_B,
  452. LLM_TENSOR_ATTN_Q_A_NORM,
  453. LLM_TENSOR_ATTN_KV_A_NORM,
  454. };
  455. static const std::map<llm_arch, std::map<llm_tensor, std::string>> LLM_TENSOR_NAMES = {
  456. {
  457. LLM_ARCH_LLAMA,
  458. {
  459. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  460. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  461. { LLM_TENSOR_OUTPUT, "output" },
  462. { LLM_TENSOR_ROPE_FREQS, "rope_freqs" },
  463. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  464. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  465. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  466. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  467. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  468. { LLM_TENSOR_ATTN_ROT_EMBD, "blk.%d.attn_rot_embd" },
  469. { LLM_TENSOR_FFN_GATE_INP, "blk.%d.ffn_gate_inp" },
  470. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  471. { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
  472. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  473. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  474. { LLM_TENSOR_FFN_GATE_EXP, "blk.%d.ffn_gate.%d" },
  475. { LLM_TENSOR_FFN_DOWN_EXP, "blk.%d.ffn_down.%d" },
  476. { LLM_TENSOR_FFN_UP_EXP, "blk.%d.ffn_up.%d" },
  477. { LLM_TENSOR_FFN_GATE_EXPS, "blk.%d.ffn_gate_exps" },
  478. { LLM_TENSOR_FFN_DOWN_EXPS, "blk.%d.ffn_down_exps" },
  479. { LLM_TENSOR_FFN_UP_EXPS, "blk.%d.ffn_up_exps" },
  480. },
  481. },
  482. {
  483. LLM_ARCH_BAICHUAN,
  484. {
  485. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  486. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  487. { LLM_TENSOR_OUTPUT, "output" },
  488. { LLM_TENSOR_ROPE_FREQS, "rope_freqs" },
  489. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  490. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  491. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  492. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  493. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  494. { LLM_TENSOR_ATTN_ROT_EMBD, "blk.%d.attn_rot_embd" },
  495. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  496. { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
  497. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  498. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  499. },
  500. },
  501. {
  502. LLM_ARCH_FALCON,
  503. {
  504. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  505. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  506. { LLM_TENSOR_OUTPUT, "output" },
  507. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  508. { LLM_TENSOR_ATTN_NORM_2, "blk.%d.attn_norm_2" },
  509. { LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" },
  510. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  511. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  512. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  513. },
  514. },
  515. {
  516. LLM_ARCH_GROK,
  517. {
  518. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  519. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  520. { LLM_TENSOR_OUTPUT, "output" },
  521. { LLM_TENSOR_ROPE_FREQS, "rope_freqs" },
  522. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  523. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  524. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  525. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  526. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  527. { LLM_TENSOR_ATTN_ROT_EMBD, "blk.%d.attn_rot_embd" },
  528. { LLM_TENSOR_FFN_GATE_INP, "blk.%d.ffn_gate_inp" },
  529. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  530. { LLM_TENSOR_FFN_GATE_EXP, "blk.%d.ffn_gate.%d" },
  531. { LLM_TENSOR_FFN_DOWN_EXP, "blk.%d.ffn_down.%d" },
  532. { LLM_TENSOR_FFN_UP_EXP, "blk.%d.ffn_up.%d" },
  533. { LLM_TENSOR_FFN_GATE_EXPS, "blk.%d.ffn_gate_exps" },
  534. { LLM_TENSOR_FFN_DOWN_EXPS, "blk.%d.ffn_down_exps" },
  535. { LLM_TENSOR_FFN_UP_EXPS, "blk.%d.ffn_up_exps" },
  536. { LLM_TENSOR_LAYER_OUT_NORM, "blk.%d.layer_output_norm" },
  537. { LLM_TENSOR_ATTN_OUT_NORM, "blk.%d.attn_output_norm" },
  538. },
  539. },
  540. {
  541. LLM_ARCH_GPT2,
  542. {
  543. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  544. { LLM_TENSOR_POS_EMBD, "position_embd" },
  545. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  546. { LLM_TENSOR_OUTPUT, "output" },
  547. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  548. { LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" },
  549. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  550. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  551. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  552. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  553. },
  554. },
  555. {
  556. LLM_ARCH_GPTJ,
  557. {
  558. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  559. },
  560. },
  561. {
  562. LLM_ARCH_GPTNEOX,
  563. {
  564. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  565. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  566. { LLM_TENSOR_OUTPUT, "output" },
  567. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  568. { LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" },
  569. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  570. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  571. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  572. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  573. },
  574. },
  575. {
  576. LLM_ARCH_MPT,
  577. {
  578. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  579. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  580. { LLM_TENSOR_OUTPUT, "output"},
  581. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  582. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  583. { LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" },
  584. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  585. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  586. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  587. { LLM_TENSOR_FFN_ACT, "blk.%d.ffn.act" },
  588. { LLM_TENSOR_POS_EMBD, "position_embd" },
  589. { LLM_TENSOR_ATTN_Q_NORM, "blk.%d.attn_q_norm"},
  590. { LLM_TENSOR_ATTN_K_NORM, "blk.%d.attn_k_norm"},
  591. },
  592. },
  593. {
  594. LLM_ARCH_STARCODER,
  595. {
  596. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  597. { LLM_TENSOR_POS_EMBD, "position_embd" },
  598. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  599. { LLM_TENSOR_OUTPUT, "output" },
  600. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  601. { LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" },
  602. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  603. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  604. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  605. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  606. },
  607. },
  608. {
  609. LLM_ARCH_REFACT,
  610. {
  611. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  612. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  613. { LLM_TENSOR_OUTPUT, "output" },
  614. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  615. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  616. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  617. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  618. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  619. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  620. { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
  621. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  622. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  623. },
  624. },
  625. {
  626. LLM_ARCH_BERT,
  627. {
  628. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  629. { LLM_TENSOR_TOKEN_EMBD_NORM, "token_embd_norm" },
  630. { LLM_TENSOR_TOKEN_TYPES, "token_types" },
  631. { LLM_TENSOR_POS_EMBD, "position_embd" },
  632. { LLM_TENSOR_ATTN_OUT_NORM, "blk.%d.attn_output_norm" },
  633. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  634. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  635. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  636. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  637. { LLM_TENSOR_LAYER_OUT_NORM, "blk.%d.layer_output_norm" },
  638. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  639. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  640. },
  641. },
  642. {
  643. LLM_ARCH_NOMIC_BERT,
  644. {
  645. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  646. { LLM_TENSOR_TOKEN_EMBD_NORM, "token_embd_norm" },
  647. { LLM_TENSOR_TOKEN_TYPES, "token_types" },
  648. { LLM_TENSOR_ATTN_OUT_NORM, "blk.%d.attn_output_norm" },
  649. { LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" },
  650. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  651. { LLM_TENSOR_LAYER_OUT_NORM, "blk.%d.layer_output_norm" },
  652. { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
  653. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  654. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  655. },
  656. },
  657. {
  658. LLM_ARCH_JINA_BERT_V2,
  659. {
  660. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  661. { LLM_TENSOR_TOKEN_EMBD_NORM, "token_embd_norm" },
  662. { LLM_TENSOR_TOKEN_TYPES, "token_types" },
  663. { LLM_TENSOR_ATTN_OUT_NORM, "blk.%d.attn_output_norm" },
  664. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  665. { LLM_TENSOR_ATTN_Q_NORM, "blk.%d.attn_q_norm" },
  666. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  667. { LLM_TENSOR_ATTN_K_NORM, "blk.%d.attn_k_norm" },
  668. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  669. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  670. { LLM_TENSOR_LAYER_OUT_NORM, "blk.%d.layer_output_norm" },
  671. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  672. { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
  673. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  674. },
  675. },
  676. {
  677. LLM_ARCH_BLOOM,
  678. {
  679. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  680. { LLM_TENSOR_TOKEN_EMBD_NORM, "token_embd_norm" },
  681. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  682. { LLM_TENSOR_OUTPUT, "output" },
  683. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  684. { LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" },
  685. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  686. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  687. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  688. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  689. },
  690. },
  691. {
  692. LLM_ARCH_STABLELM,
  693. {
  694. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  695. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  696. { LLM_TENSOR_OUTPUT, "output" },
  697. { LLM_TENSOR_ROPE_FREQS, "rope_freqs" },
  698. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  699. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  700. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  701. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  702. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  703. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  704. { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
  705. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  706. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  707. { LLM_TENSOR_ATTN_Q_NORM, "blk.%d.attn_q_norm" },
  708. { LLM_TENSOR_ATTN_K_NORM, "blk.%d.attn_k_norm" },
  709. },
  710. },
  711. {
  712. LLM_ARCH_QWEN,
  713. {
  714. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  715. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  716. { LLM_TENSOR_OUTPUT, "output" },
  717. { LLM_TENSOR_ROPE_FREQS, "rope_freqs" },
  718. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  719. { LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" },
  720. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  721. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  722. { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
  723. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  724. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  725. },
  726. },
  727. {
  728. LLM_ARCH_QWEN2,
  729. {
  730. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  731. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  732. { LLM_TENSOR_OUTPUT, "output" },
  733. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  734. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  735. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  736. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  737. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  738. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  739. { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
  740. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  741. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  742. },
  743. },
  744. {
  745. LLM_ARCH_QWEN2MOE,
  746. {
  747. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  748. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  749. { LLM_TENSOR_OUTPUT, "output" },
  750. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  751. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  752. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  753. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  754. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  755. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  756. { LLM_TENSOR_FFN_GATE_INP, "blk.%d.ffn_gate_inp" },
  757. { LLM_TENSOR_FFN_GATE_EXPS, "blk.%d.ffn_gate_exps" },
  758. { LLM_TENSOR_FFN_DOWN_EXPS, "blk.%d.ffn_down_exps" },
  759. { LLM_TENSOR_FFN_UP_EXPS, "blk.%d.ffn_up_exps" },
  760. { LLM_TENSOR_FFN_GATE_INP_SHEXP, "blk.%d.ffn_gate_inp_shexp" },
  761. { LLM_TENSOR_FFN_GATE_SHEXP, "blk.%d.ffn_gate_shexp" },
  762. { LLM_TENSOR_FFN_DOWN_SHEXP, "blk.%d.ffn_down_shexp" },
  763. { LLM_TENSOR_FFN_UP_SHEXP, "blk.%d.ffn_up_shexp" },
  764. },
  765. },
  766. {
  767. LLM_ARCH_PHI2,
  768. {
  769. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  770. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  771. { LLM_TENSOR_OUTPUT, "output" },
  772. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  773. { LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" },
  774. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  775. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  776. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  777. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  778. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  779. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  780. },
  781. },
  782. {
  783. LLM_ARCH_PHI3,
  784. {
  785. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  786. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  787. { LLM_TENSOR_OUTPUT, "output" },
  788. { LLM_TENSOR_ROPE_FACTORS_LONG, "rope_factors_long" },
  789. { LLM_TENSOR_ROPE_FACTORS_SHORT, "rope_factors_short" },
  790. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  791. { LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" },
  792. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  793. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  794. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  795. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  796. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  797. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  798. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  799. },
  800. },
  801. {
  802. LLM_ARCH_PLAMO,
  803. {
  804. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  805. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  806. { LLM_TENSOR_OUTPUT, "output" },
  807. { LLM_TENSOR_ROPE_FREQS, "rope_freqs" },
  808. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  809. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  810. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  811. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  812. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  813. { LLM_TENSOR_ATTN_ROT_EMBD, "blk.%d.attn_rot_embd" },
  814. { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
  815. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  816. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  817. },
  818. },
  819. {
  820. LLM_ARCH_CODESHELL,
  821. {
  822. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  823. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  824. { LLM_TENSOR_OUTPUT, "output" },
  825. { LLM_TENSOR_ROPE_FREQS, "rope_freqs" },
  826. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  827. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  828. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  829. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  830. { LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" },
  831. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  832. { LLM_TENSOR_ATTN_ROT_EMBD, "blk.%d.attn_rot_embd" },
  833. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  834. { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
  835. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  836. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  837. },
  838. },
  839. {
  840. LLM_ARCH_ORION,
  841. {
  842. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  843. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  844. { LLM_TENSOR_OUTPUT, "output" },
  845. { LLM_TENSOR_ROPE_FREQS, "rope_freqs" },
  846. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  847. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  848. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  849. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  850. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  851. { LLM_TENSOR_ATTN_ROT_EMBD, "blk.%d.attn_rot_embd" },
  852. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  853. { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
  854. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  855. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  856. },
  857. },
  858. {
  859. LLM_ARCH_INTERNLM2,
  860. {
  861. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  862. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  863. { LLM_TENSOR_OUTPUT, "output" },
  864. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  865. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  866. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  867. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  868. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  869. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  870. { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
  871. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  872. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  873. },
  874. },
  875. {
  876. LLM_ARCH_MINICPM,
  877. {
  878. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  879. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  880. { LLM_TENSOR_OUTPUT, "output" },
  881. { LLM_TENSOR_ROPE_FREQS, "rope_freqs" },
  882. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  883. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  884. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  885. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  886. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  887. { LLM_TENSOR_ATTN_ROT_EMBD, "blk.%d.attn_rot_embd" },
  888. { LLM_TENSOR_FFN_GATE_INP, "blk.%d.ffn_gate_inp" },
  889. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  890. { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
  891. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  892. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  893. { LLM_TENSOR_FFN_GATE_EXP, "blk.%d.ffn_gate.%d" },
  894. { LLM_TENSOR_FFN_DOWN_EXP, "blk.%d.ffn_down.%d" },
  895. { LLM_TENSOR_FFN_UP_EXP, "blk.%d.ffn_up.%d" },
  896. },
  897. },
  898. {
  899. LLM_ARCH_GEMMA,
  900. {
  901. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  902. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  903. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  904. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  905. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  906. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  907. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  908. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  909. { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
  910. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  911. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  912. },
  913. },
  914. {
  915. LLM_ARCH_STARCODER2,
  916. {
  917. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  918. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  919. { LLM_TENSOR_OUTPUT, "output" },
  920. { LLM_TENSOR_ROPE_FREQS, "rope_freqs" },
  921. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  922. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  923. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  924. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  925. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  926. { LLM_TENSOR_ATTN_ROT_EMBD, "blk.%d.attn_rot_embd" },
  927. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  928. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  929. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  930. },
  931. },
  932. {
  933. LLM_ARCH_MAMBA,
  934. {
  935. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  936. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  937. { LLM_TENSOR_OUTPUT, "output" },
  938. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  939. { LLM_TENSOR_SSM_IN, "blk.%d.ssm_in" },
  940. { LLM_TENSOR_SSM_CONV1D, "blk.%d.ssm_conv1d" },
  941. { LLM_TENSOR_SSM_X, "blk.%d.ssm_x" },
  942. { LLM_TENSOR_SSM_DT, "blk.%d.ssm_dt" },
  943. { LLM_TENSOR_SSM_A, "blk.%d.ssm_a" },
  944. { LLM_TENSOR_SSM_D, "blk.%d.ssm_d" },
  945. { LLM_TENSOR_SSM_OUT, "blk.%d.ssm_out" },
  946. },
  947. },
  948. {
  949. LLM_ARCH_XVERSE,
  950. {
  951. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  952. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  953. { LLM_TENSOR_OUTPUT, "output" },
  954. { LLM_TENSOR_ROPE_FREQS, "rope_freqs" },
  955. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  956. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  957. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  958. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  959. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  960. { LLM_TENSOR_ATTN_ROT_EMBD, "blk.%d.attn_rot_embd" },
  961. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  962. { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
  963. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  964. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  965. },
  966. },
  967. {
  968. LLM_ARCH_COMMAND_R,
  969. {
  970. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  971. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  972. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  973. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  974. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  975. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  976. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  977. { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
  978. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  979. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  980. { LLM_TENSOR_ATTN_Q_NORM, "blk.%d.attn_q_norm" },
  981. { LLM_TENSOR_ATTN_K_NORM, "blk.%d.attn_k_norm" },
  982. },
  983. },
  984. {
  985. LLM_ARCH_DBRX,
  986. {
  987. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  988. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  989. { LLM_TENSOR_OUTPUT, "output" },
  990. { LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" },
  991. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  992. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  993. { LLM_TENSOR_ATTN_OUT_NORM, "blk.%d.attn_output_norm" },
  994. { LLM_TENSOR_FFN_GATE_INP, "blk.%d.ffn_gate_inp" },
  995. { LLM_TENSOR_FFN_GATE_EXPS, "blk.%d.ffn_gate_exps" },
  996. { LLM_TENSOR_FFN_DOWN_EXPS, "blk.%d.ffn_down_exps" },
  997. { LLM_TENSOR_FFN_UP_EXPS, "blk.%d.ffn_up_exps" },
  998. },
  999. },
  1000. {
  1001. LLM_ARCH_OLMO,
  1002. {
  1003. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  1004. { LLM_TENSOR_OUTPUT, "output" },
  1005. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  1006. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  1007. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  1008. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  1009. { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
  1010. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  1011. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  1012. },
  1013. },
  1014. {
  1015. LLM_ARCH_ARCTIC,
  1016. {
  1017. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  1018. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  1019. { LLM_TENSOR_OUTPUT, "output" },
  1020. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  1021. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  1022. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  1023. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  1024. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  1025. { LLM_TENSOR_FFN_GATE_INP, "blk.%d.ffn_gate_inp" },
  1026. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  1027. { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
  1028. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  1029. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  1030. { LLM_TENSOR_FFN_NORM_EXPS, "blk.%d.ffn_norm_exps" },
  1031. { LLM_TENSOR_FFN_GATE_EXPS, "blk.%d.ffn_gate_exps" },
  1032. { LLM_TENSOR_FFN_DOWN_EXPS, "blk.%d.ffn_down_exps" },
  1033. { LLM_TENSOR_FFN_UP_EXPS, "blk.%d.ffn_up_exps" },
  1034. },
  1035. },
  1036. {
  1037. LLM_ARCH_DEEPSEEK2,
  1038. {
  1039. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  1040. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  1041. { LLM_TENSOR_OUTPUT, "output" },
  1042. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  1043. { LLM_TENSOR_ATTN_Q_A_NORM, "blk.%d.attn_q_a_norm" },
  1044. { LLM_TENSOR_ATTN_KV_A_NORM, "blk.%d.attn_kv_a_norm" },
  1045. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  1046. { LLM_TENSOR_ATTN_Q_A, "blk.%d.attn_q_a" },
  1047. { LLM_TENSOR_ATTN_Q_B, "blk.%d.attn_q_b" },
  1048. { LLM_TENSOR_ATTN_KV_A_MQA, "blk.%d.attn_kv_a_mqa" },
  1049. { LLM_TENSOR_ATTN_KV_B, "blk.%d.attn_kv_b" },
  1050. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  1051. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  1052. { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
  1053. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  1054. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  1055. { LLM_TENSOR_FFN_GATE_INP, "blk.%d.ffn_gate_inp" },
  1056. { LLM_TENSOR_FFN_GATE_EXPS, "blk.%d.ffn_gate_exps" },
  1057. { LLM_TENSOR_FFN_DOWN_EXPS, "blk.%d.ffn_down_exps" },
  1058. { LLM_TENSOR_FFN_UP_EXPS, "blk.%d.ffn_up_exps" },
  1059. { LLM_TENSOR_FFN_GATE_INP_SHEXP, "blk.%d.ffn_gate_inp_shexp" },
  1060. { LLM_TENSOR_FFN_GATE_SHEXP, "blk.%d.ffn_gate_shexp" },
  1061. { LLM_TENSOR_FFN_DOWN_SHEXP, "blk.%d.ffn_down_shexp" },
  1062. { LLM_TENSOR_FFN_UP_SHEXP, "blk.%d.ffn_up_shexp" },
  1063. },
  1064. },
  1065. {
  1066. LLM_ARCH_UNKNOWN,
  1067. {
  1068. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  1069. },
  1070. },
  1071. };
  1072. static llm_arch llm_arch_from_string(const std::string & name) {
  1073. for (const auto & kv : LLM_ARCH_NAMES) { // NOLINT
  1074. if (kv.second == name) {
  1075. return kv.first;
  1076. }
  1077. }
  1078. return LLM_ARCH_UNKNOWN;
  1079. }
  1080. // helper to handle gguf constants
  1081. // usage:
  1082. //
  1083. // const auto tn = LLM_TN(LLM_ARCH_LLAMA);
  1084. //
  1085. // std::string name = tn(LLM_TENSOR_OUTPUT); -> "output"
  1086. // std::string name = tn(LLM_TENSOR_TOKEN_EMBD, "bias"); -> "token_embd.bias"
  1087. // std::string name = tn(LLM_TENSOR_ATTN_NORM, "weight", 3); -> "blk.3.attn_norm.weight"
  1088. //
  1089. struct LLM_TN {
  1090. LLM_TN(llm_arch arch) : arch(arch) {}
  1091. llm_arch arch;
  1092. std::string operator()(llm_tensor tensor) const {
  1093. if (LLM_TENSOR_NAMES.at(arch).find(tensor) == LLM_TENSOR_NAMES.at(arch).end()) {
  1094. return "__missing__";
  1095. }
  1096. return LLM_TENSOR_NAMES.at(arch).at(tensor);
  1097. }
  1098. std::string operator()(llm_tensor tensor, const std::string & suffix) const {
  1099. if (LLM_TENSOR_NAMES.at(arch).find(tensor) == LLM_TENSOR_NAMES.at(arch).end()) {
  1100. return "__missing__";
  1101. }
  1102. return LLM_TENSOR_NAMES.at(arch).at(tensor) + "." + suffix;
  1103. }
  1104. std::string operator()(llm_tensor tensor, int bid) const {
  1105. if (LLM_TENSOR_NAMES.at(arch).find(tensor) == LLM_TENSOR_NAMES.at(arch).end()) {
  1106. return "__missing__";
  1107. }
  1108. return ::format(LLM_TENSOR_NAMES.at(arch).at(tensor).c_str(), bid);
  1109. }
  1110. std::string operator()(llm_tensor tensor, const std::string & suffix, int bid) const {
  1111. if (LLM_TENSOR_NAMES.at(arch).find(tensor) == LLM_TENSOR_NAMES.at(arch).end()) {
  1112. return "__missing__";
  1113. }
  1114. return ::format(LLM_TENSOR_NAMES.at(arch).at(tensor).c_str(), bid) + "." + suffix;
  1115. }
  1116. std::string operator()(llm_tensor tensor, const std::string & suffix, int bid, int xid) const {
  1117. if (LLM_TENSOR_NAMES.at(arch).find(tensor) == LLM_TENSOR_NAMES.at(arch).end()) {
  1118. return "__missing__";
  1119. }
  1120. return ::format(LLM_TENSOR_NAMES.at(arch).at(tensor).c_str(), bid, xid) + "." + suffix;
  1121. }
  1122. };
  1123. //
  1124. // gguf helpers
  1125. //
  1126. static const std::map<llama_rope_scaling_type, const char *> LLAMA_ROPE_SCALING_TYPES = {
  1127. { LLAMA_ROPE_SCALING_TYPE_NONE, "none" },
  1128. { LLAMA_ROPE_SCALING_TYPE_LINEAR, "linear" },
  1129. { LLAMA_ROPE_SCALING_TYPE_YARN, "yarn" },
  1130. };
  1131. static llama_rope_scaling_type llama_rope_scaling_type_from_string(const std::string & name) {
  1132. for (const auto & kv : LLAMA_ROPE_SCALING_TYPES) {
  1133. if (kv.second == name) {
  1134. return (llama_rope_scaling_type) kv.first;
  1135. }
  1136. }
  1137. return LLAMA_ROPE_SCALING_TYPE_UNSPECIFIED;
  1138. }
  1139. static std::string gguf_data_to_str(enum gguf_type type, const void * data, int i) {
  1140. switch (type) {
  1141. case GGUF_TYPE_UINT8: return std::to_string(((const uint8_t *)data)[i]);
  1142. case GGUF_TYPE_INT8: return std::to_string(((const int8_t *)data)[i]);
  1143. case GGUF_TYPE_UINT16: return std::to_string(((const uint16_t *)data)[i]);
  1144. case GGUF_TYPE_INT16: return std::to_string(((const int16_t *)data)[i]);
  1145. case GGUF_TYPE_UINT32: return std::to_string(((const uint32_t *)data)[i]);
  1146. case GGUF_TYPE_INT32: return std::to_string(((const int32_t *)data)[i]);
  1147. case GGUF_TYPE_UINT64: return std::to_string(((const uint64_t *)data)[i]);
  1148. case GGUF_TYPE_INT64: return std::to_string(((const int64_t *)data)[i]);
  1149. case GGUF_TYPE_FLOAT32: return std::to_string(((const float *)data)[i]);
  1150. case GGUF_TYPE_FLOAT64: return std::to_string(((const double *)data)[i]);
  1151. case GGUF_TYPE_BOOL: return ((const bool *)data)[i] ? "true" : "false";
  1152. default: return format("unknown type %d", type);
  1153. }
  1154. }
  1155. static std::string gguf_kv_to_str(const struct gguf_context * ctx_gguf, int i) {
  1156. const enum gguf_type type = gguf_get_kv_type(ctx_gguf, i);
  1157. switch (type) {
  1158. case GGUF_TYPE_STRING:
  1159. return gguf_get_val_str(ctx_gguf, i);
  1160. case GGUF_TYPE_ARRAY:
  1161. {
  1162. const enum gguf_type arr_type = gguf_get_arr_type(ctx_gguf, i);
  1163. int arr_n = gguf_get_arr_n(ctx_gguf, i);
  1164. const void * data = gguf_get_arr_data(ctx_gguf, i);
  1165. std::stringstream ss;
  1166. ss << "[";
  1167. for (int j = 0; j < arr_n; j++) {
  1168. if (arr_type == GGUF_TYPE_STRING) {
  1169. std::string val = gguf_get_arr_str(ctx_gguf, i, j);
  1170. // escape quotes
  1171. replace_all(val, "\\", "\\\\");
  1172. replace_all(val, "\"", "\\\"");
  1173. ss << '"' << val << '"';
  1174. } else if (arr_type == GGUF_TYPE_ARRAY) {
  1175. ss << "???";
  1176. } else {
  1177. ss << gguf_data_to_str(arr_type, data, j);
  1178. }
  1179. if (j < arr_n - 1) {
  1180. ss << ", ";
  1181. }
  1182. }
  1183. ss << "]";
  1184. return ss.str();
  1185. }
  1186. default:
  1187. return gguf_data_to_str(type, gguf_get_val_data(ctx_gguf, i), 0);
  1188. }
  1189. }
  1190. //
  1191. // llama helpers
  1192. //
  1193. #if defined(_WIN32)
  1194. static std::string llama_format_win_err(DWORD err) {
  1195. LPSTR buf;
  1196. size_t size = FormatMessageA(FORMAT_MESSAGE_ALLOCATE_BUFFER | FORMAT_MESSAGE_FROM_SYSTEM | FORMAT_MESSAGE_IGNORE_INSERTS,
  1197. NULL, err, MAKELANGID(LANG_NEUTRAL, SUBLANG_DEFAULT), (LPSTR)&buf, 0, NULL);
  1198. if (!size) {
  1199. return "FormatMessageA failed";
  1200. }
  1201. std::string ret(buf, size);
  1202. LocalFree(buf);
  1203. return ret;
  1204. }
  1205. #endif
  1206. template <typename T>
  1207. struct no_init {
  1208. T value;
  1209. no_init() { /* do nothing */ }
  1210. };
  1211. struct llama_file {
  1212. // use FILE * so we don't have to re-open the file to mmap
  1213. FILE * fp;
  1214. size_t size;
  1215. llama_file(const char * fname, const char * mode) {
  1216. fp = ggml_fopen(fname, mode);
  1217. if (fp == NULL) {
  1218. throw std::runtime_error(format("failed to open %s: %s", fname, strerror(errno)));
  1219. }
  1220. seek(0, SEEK_END);
  1221. size = tell();
  1222. seek(0, SEEK_SET);
  1223. }
  1224. size_t tell() const {
  1225. #ifdef _WIN32
  1226. __int64 ret = _ftelli64(fp);
  1227. #else
  1228. long ret = std::ftell(fp);
  1229. #endif
  1230. GGML_ASSERT(ret != -1); // this really shouldn't fail
  1231. return (size_t) ret;
  1232. }
  1233. void seek(size_t offset, int whence) const {
  1234. #ifdef _WIN32
  1235. int ret = _fseeki64(fp, (__int64) offset, whence);
  1236. #else
  1237. int ret = std::fseek(fp, (long) offset, whence);
  1238. #endif
  1239. GGML_ASSERT(ret == 0); // same
  1240. }
  1241. void read_raw(void * ptr, size_t len) const {
  1242. if (len == 0) {
  1243. return;
  1244. }
  1245. errno = 0;
  1246. std::size_t ret = std::fread(ptr, len, 1, fp);
  1247. if (ferror(fp)) {
  1248. throw std::runtime_error(format("read error: %s", strerror(errno)));
  1249. }
  1250. if (ret != 1) {
  1251. throw std::runtime_error("unexpectedly reached end of file");
  1252. }
  1253. }
  1254. uint32_t read_u32() const {
  1255. uint32_t ret;
  1256. read_raw(&ret, sizeof(ret));
  1257. return ret;
  1258. }
  1259. void write_raw(const void * ptr, size_t len) const {
  1260. if (len == 0) {
  1261. return;
  1262. }
  1263. errno = 0;
  1264. size_t ret = std::fwrite(ptr, len, 1, fp);
  1265. if (ret != 1) {
  1266. throw std::runtime_error(format("write error: %s", strerror(errno)));
  1267. }
  1268. }
  1269. void write_u32(std::uint32_t val) const {
  1270. write_raw(&val, sizeof(val));
  1271. }
  1272. ~llama_file() {
  1273. if (fp) {
  1274. std::fclose(fp);
  1275. }
  1276. }
  1277. };
  1278. using llama_files = std::vector<std::unique_ptr<llama_file>>;
  1279. struct llama_mmap {
  1280. void * addr;
  1281. size_t size;
  1282. llama_mmap(const llama_mmap &) = delete;
  1283. #ifdef _POSIX_MAPPED_FILES
  1284. static constexpr bool SUPPORTED = true;
  1285. // list of mapped fragments (first_offset, last_offset)
  1286. std::vector<std::pair<size_t, size_t>> mapped_fragments;
  1287. llama_mmap(struct llama_file * file, size_t prefetch = (size_t) -1 /* -1 = max value */, bool numa = false) {
  1288. size = file->size;
  1289. int fd = fileno(file->fp);
  1290. int flags = MAP_SHARED;
  1291. // prefetch/readahead impairs performance on NUMA systems
  1292. if (numa) { prefetch = 0; }
  1293. #ifdef __linux__
  1294. // advise the kernel to read the file sequentially (increases readahead)
  1295. if (posix_fadvise(fd, 0, 0, POSIX_FADV_SEQUENTIAL)) {
  1296. LLAMA_LOG_WARN("warning: posix_fadvise(.., POSIX_FADV_SEQUENTIAL) failed: %s\n",
  1297. strerror(errno));
  1298. }
  1299. if (prefetch) { flags |= MAP_POPULATE; }
  1300. #endif
  1301. addr = mmap(NULL, file->size, PROT_READ, flags, fd, 0);
  1302. if (addr == MAP_FAILED) { // NOLINT
  1303. throw std::runtime_error(format("mmap failed: %s", strerror(errno)));
  1304. }
  1305. if (prefetch > 0) {
  1306. // advise the kernel to preload the mapped memory
  1307. if (posix_madvise(addr, std::min(file->size, prefetch), POSIX_MADV_WILLNEED)) {
  1308. LLAMA_LOG_WARN("warning: posix_madvise(.., POSIX_MADV_WILLNEED) failed: %s\n",
  1309. strerror(errno));
  1310. }
  1311. }
  1312. if (numa) {
  1313. // advise the kernel not to use readahead
  1314. // (because the next page might not belong on the same node)
  1315. if (posix_madvise(addr, file->size, POSIX_MADV_RANDOM)) {
  1316. LLAMA_LOG_WARN("warning: posix_madvise(.., POSIX_MADV_RANDOM) failed: %s\n",
  1317. strerror(errno));
  1318. }
  1319. }
  1320. // initialize list of mapped_fragments
  1321. mapped_fragments.emplace_back(0, file->size);
  1322. }
  1323. static void align_range(size_t * first, size_t * last, size_t page_size) {
  1324. // align first to the next page
  1325. size_t offset_in_page = *first & (page_size - 1);
  1326. size_t offset_to_page = offset_in_page == 0 ? 0 : page_size - offset_in_page;
  1327. *first += offset_to_page;
  1328. // align last to the previous page
  1329. *last = *last & ~(page_size - 1);
  1330. if (*last <= *first) {
  1331. *last = *first;
  1332. }
  1333. }
  1334. // partially unmap the file in the range [first, last)
  1335. void unmap_fragment(size_t first, size_t last) {
  1336. // note: this function must not be called multiple times with overlapping ranges
  1337. // otherwise, there is a risk of invalidating addresses that have been repurposed for other mappings
  1338. int page_size = sysconf(_SC_PAGESIZE);
  1339. align_range(&first, &last, page_size);
  1340. size_t len = last - first;
  1341. if (len == 0) {
  1342. return;
  1343. }
  1344. GGML_ASSERT(first % page_size == 0);
  1345. GGML_ASSERT(last % page_size == 0);
  1346. GGML_ASSERT(last > first);
  1347. void * next_page_start = (uint8_t *) addr + first;
  1348. // unmap the range
  1349. if (munmap(next_page_start, len)) {
  1350. LLAMA_LOG_WARN("warning: munmap failed: %s\n", strerror(errno));
  1351. }
  1352. // update the list of mapped fragments to avoid unmapping the same range again in the destructor
  1353. std::vector<std::pair<size_t, size_t>> new_mapped_fragments;
  1354. for (const auto & frag : mapped_fragments) {
  1355. if (frag.first < first && frag.second > last) {
  1356. // the range is in the middle of the fragment, split it
  1357. new_mapped_fragments.emplace_back(frag.first, first);
  1358. new_mapped_fragments.emplace_back(last, frag.second);
  1359. } else if (frag.first < first && frag.second > first) {
  1360. // the range starts in the middle of the fragment
  1361. new_mapped_fragments.emplace_back(frag.first, first);
  1362. } else if (frag.first < last && frag.second > last) {
  1363. // the range ends in the middle of the fragment
  1364. new_mapped_fragments.emplace_back(last, frag.second);
  1365. } else if (frag.first >= first && frag.second <= last) {
  1366. // the range covers the entire fragment
  1367. } else {
  1368. // the range is outside the fragment
  1369. new_mapped_fragments.push_back(frag);
  1370. }
  1371. }
  1372. mapped_fragments = std::move(new_mapped_fragments);
  1373. }
  1374. ~llama_mmap() {
  1375. for (const auto & frag : mapped_fragments) {
  1376. if (munmap((char *) addr + frag.first, frag.second - frag.first)) {
  1377. LLAMA_LOG_WARN("warning: munmap failed: %s\n", strerror(errno));
  1378. }
  1379. }
  1380. }
  1381. #elif defined(_WIN32)
  1382. static constexpr bool SUPPORTED = true;
  1383. llama_mmap(struct llama_file * file, size_t prefetch = (size_t) -1, bool numa = false) {
  1384. GGML_UNUSED(numa);
  1385. size = file->size;
  1386. HANDLE hFile = (HANDLE) _get_osfhandle(_fileno(file->fp));
  1387. HANDLE hMapping = CreateFileMappingA(hFile, NULL, PAGE_READONLY, 0, 0, NULL);
  1388. if (hMapping == NULL) {
  1389. DWORD error = GetLastError();
  1390. throw std::runtime_error(format("CreateFileMappingA failed: %s", llama_format_win_err(error).c_str()));
  1391. }
  1392. addr = MapViewOfFile(hMapping, FILE_MAP_READ, 0, 0, 0);
  1393. DWORD error = GetLastError();
  1394. CloseHandle(hMapping);
  1395. if (addr == NULL) {
  1396. throw std::runtime_error(format("MapViewOfFile failed: %s", llama_format_win_err(error).c_str()));
  1397. }
  1398. if (prefetch > 0) {
  1399. #if _WIN32_WINNT >= 0x602
  1400. // PrefetchVirtualMemory is only present on Windows 8 and above, so we dynamically load it
  1401. BOOL (WINAPI *pPrefetchVirtualMemory) (HANDLE, ULONG_PTR, PWIN32_MEMORY_RANGE_ENTRY, ULONG);
  1402. HMODULE hKernel32 = GetModuleHandleW(L"kernel32.dll");
  1403. // may fail on pre-Windows 8 systems
  1404. pPrefetchVirtualMemory = reinterpret_cast<decltype(pPrefetchVirtualMemory)> (GetProcAddress(hKernel32, "PrefetchVirtualMemory"));
  1405. if (pPrefetchVirtualMemory) {
  1406. // advise the kernel to preload the mapped memory
  1407. WIN32_MEMORY_RANGE_ENTRY range;
  1408. range.VirtualAddress = addr;
  1409. range.NumberOfBytes = (SIZE_T) std::min(size, prefetch);
  1410. if (!pPrefetchVirtualMemory(GetCurrentProcess(), 1, &range, 0)) {
  1411. LLAMA_LOG_WARN("warning: PrefetchVirtualMemory failed: %s\n",
  1412. llama_format_win_err(GetLastError()).c_str());
  1413. }
  1414. }
  1415. #else
  1416. throw std::runtime_error("PrefetchVirtualMemory unavailable");
  1417. #endif
  1418. }
  1419. }
  1420. void unmap_fragment(size_t first, size_t last) {
  1421. // not supported
  1422. GGML_UNUSED(first);
  1423. GGML_UNUSED(last);
  1424. }
  1425. ~llama_mmap() {
  1426. if (!UnmapViewOfFile(addr)) {
  1427. LLAMA_LOG_WARN("warning: UnmapViewOfFile failed: %s\n",
  1428. llama_format_win_err(GetLastError()).c_str());
  1429. }
  1430. }
  1431. #else
  1432. static constexpr bool SUPPORTED = false;
  1433. llama_mmap(struct llama_file * file, size_t prefetch = -1, bool numa = false) {
  1434. GGML_UNUSED(file);
  1435. GGML_UNUSED(prefetch);
  1436. GGML_UNUSED(numa);
  1437. throw std::runtime_error("mmap not supported");
  1438. }
  1439. void unmap_fragment(size_t first, size_t last) {
  1440. GGML_UNUSED(first);
  1441. GGML_UNUSED(last);
  1442. throw std::runtime_error("mmap not supported");
  1443. }
  1444. #endif
  1445. };
  1446. using llama_mmaps = std::vector<std::unique_ptr<llama_mmap>>;
  1447. // Represents some region of memory being locked using mlock or VirtualLock;
  1448. // will automatically unlock on destruction.
  1449. struct llama_mlock {
  1450. void * addr = NULL;
  1451. size_t size = 0;
  1452. bool failed_already = false;
  1453. llama_mlock() {}
  1454. llama_mlock(const llama_mlock &) = delete;
  1455. ~llama_mlock() {
  1456. if (size) {
  1457. raw_unlock(addr, size);
  1458. }
  1459. }
  1460. void init(void * ptr) {
  1461. GGML_ASSERT(addr == NULL && size == 0); // NOLINT
  1462. addr = ptr;
  1463. }
  1464. void grow_to(size_t target_size) {
  1465. GGML_ASSERT(addr);
  1466. if (failed_already) {
  1467. return;
  1468. }
  1469. size_t granularity = lock_granularity();
  1470. target_size = (target_size + granularity - 1) & ~(granularity - 1);
  1471. if (target_size > size) {
  1472. if (raw_lock((uint8_t *) addr + size, target_size - size)) {
  1473. size = target_size;
  1474. } else {
  1475. failed_already = true;
  1476. }
  1477. }
  1478. }
  1479. #ifdef _POSIX_MEMLOCK_RANGE
  1480. static constexpr bool SUPPORTED = true;
  1481. static size_t lock_granularity() {
  1482. return (size_t) sysconf(_SC_PAGESIZE);
  1483. }
  1484. #ifdef __APPLE__
  1485. #define MLOCK_SUGGESTION \
  1486. "Try increasing the sysctl values 'vm.user_wire_limit' and 'vm.global_user_wire_limit' and/or " \
  1487. "decreasing 'vm.global_no_user_wire_amount'. Also try increasing RLIMIT_MEMLOCK (ulimit -l).\n"
  1488. #else
  1489. #define MLOCK_SUGGESTION \
  1490. "Try increasing RLIMIT_MEMLOCK ('ulimit -l' as root).\n"
  1491. #endif
  1492. bool raw_lock(const void * addr, size_t size) const {
  1493. if (!mlock(addr, size)) {
  1494. return true;
  1495. }
  1496. char* errmsg = std::strerror(errno);
  1497. bool suggest = (errno == ENOMEM);
  1498. // Check if the resource limit is fine after all
  1499. struct rlimit lock_limit;
  1500. if (suggest && getrlimit(RLIMIT_MEMLOCK, &lock_limit)) {
  1501. suggest = false;
  1502. }
  1503. if (suggest && (lock_limit.rlim_max > lock_limit.rlim_cur + size)) {
  1504. suggest = false;
  1505. }
  1506. LLAMA_LOG_WARN("warning: failed to mlock %zu-byte buffer (after previously locking %zu bytes): %s\n%s",
  1507. size, this->size, errmsg, suggest ? MLOCK_SUGGESTION : "");
  1508. return false;
  1509. }
  1510. #undef MLOCK_SUGGESTION
  1511. static void raw_unlock(void * addr, size_t size) {
  1512. if (munlock(addr, size)) {
  1513. LLAMA_LOG_WARN("warning: failed to munlock buffer: %s\n", std::strerror(errno));
  1514. }
  1515. }
  1516. #elif defined(_WIN32)
  1517. static constexpr bool SUPPORTED = true;
  1518. static size_t lock_granularity() {
  1519. SYSTEM_INFO si;
  1520. GetSystemInfo(&si);
  1521. return (size_t) si.dwPageSize;
  1522. }
  1523. bool raw_lock(void * ptr, size_t len) const {
  1524. for (int tries = 1; ; tries++) {
  1525. if (VirtualLock(ptr, len)) {
  1526. return true;
  1527. }
  1528. if (tries == 2) {
  1529. LLAMA_LOG_WARN("warning: failed to VirtualLock %zu-byte buffer (after previously locking %zu bytes): %s\n",
  1530. len, size, llama_format_win_err(GetLastError()).c_str());
  1531. return false;
  1532. }
  1533. // It failed but this was only the first try; increase the working
  1534. // set size and try again.
  1535. SIZE_T min_ws_size, max_ws_size;
  1536. if (!GetProcessWorkingSetSize(GetCurrentProcess(), &min_ws_size, &max_ws_size)) {
  1537. LLAMA_LOG_WARN("warning: GetProcessWorkingSetSize failed: %s\n",
  1538. llama_format_win_err(GetLastError()).c_str());
  1539. return false;
  1540. }
  1541. // Per MSDN: "The maximum number of pages that a process can lock
  1542. // is equal to the number of pages in its minimum working set minus
  1543. // a small overhead."
  1544. // Hopefully a megabyte is enough overhead:
  1545. size_t increment = len + 1048576;
  1546. // The minimum must be <= the maximum, so we need to increase both:
  1547. min_ws_size += increment;
  1548. max_ws_size += increment;
  1549. if (!SetProcessWorkingSetSize(GetCurrentProcess(), min_ws_size, max_ws_size)) {
  1550. LLAMA_LOG_WARN("warning: SetProcessWorkingSetSize failed: %s\n",
  1551. llama_format_win_err(GetLastError()).c_str());
  1552. return false;
  1553. }
  1554. }
  1555. }
  1556. static void raw_unlock(void * ptr, size_t len) {
  1557. if (!VirtualUnlock(ptr, len)) {
  1558. LLAMA_LOG_WARN("warning: failed to VirtualUnlock buffer: %s\n",
  1559. llama_format_win_err(GetLastError()).c_str());
  1560. }
  1561. }
  1562. #else
  1563. static constexpr bool SUPPORTED = false;
  1564. static size_t lock_granularity() {
  1565. return (size_t) 65536;
  1566. }
  1567. bool raw_lock(const void * addr, size_t len) const {
  1568. LLAMA_LOG_WARN("warning: mlock not supported on this system\n");
  1569. return false;
  1570. }
  1571. static void raw_unlock(const void * addr, size_t len) {}
  1572. #endif
  1573. };
  1574. using llama_mlocks = std::vector<std::unique_ptr<llama_mlock>>;
  1575. static std::string llama_token_to_piece(const struct llama_context * ctx, llama_token token, bool special) {
  1576. std::vector<char> result(8, 0);
  1577. const int n_tokens = llama_token_to_piece(llama_get_model(ctx), token, result.data(), result.size(), special);
  1578. if (n_tokens < 0) {
  1579. result.resize(-n_tokens);
  1580. int check = llama_token_to_piece(llama_get_model(ctx), token, result.data(), result.size(), special);
  1581. GGML_ASSERT(check == -n_tokens);
  1582. }
  1583. else {
  1584. result.resize(n_tokens);
  1585. }
  1586. return std::string(result.data(), result.size());
  1587. }
  1588. static ggml_backend_buffer_type_t llama_default_buffer_type_cpu(bool host_buffer) {
  1589. ggml_backend_buffer_type_t buft = nullptr;
  1590. #if defined(GGML_USE_CUDA)
  1591. // host buffers should only be used when data is expected to be copied to/from the GPU
  1592. if (host_buffer) {
  1593. buft = ggml_backend_cuda_host_buffer_type();
  1594. }
  1595. #elif defined(GGML_USE_SYCL)
  1596. if (host_buffer) {
  1597. buft = ggml_backend_sycl_host_buffer_type();
  1598. }
  1599. #elif defined(GGML_USE_CPU_HBM)
  1600. buft = ggml_backend_cpu_hbm_buffer_type();
  1601. #elif defined(GGML_USE_VULKAN)
  1602. if (host_buffer) {
  1603. buft = ggml_backend_vk_host_buffer_type();
  1604. }
  1605. #endif
  1606. if (buft == nullptr) {
  1607. buft = ggml_backend_cpu_buffer_type();
  1608. }
  1609. return buft;
  1610. GGML_UNUSED(host_buffer);
  1611. }
  1612. //
  1613. // globals
  1614. //
  1615. struct llama_state {
  1616. llama_state() {
  1617. #ifdef GGML_USE_METAL
  1618. ggml_backend_metal_log_set_callback(log_callback, log_callback_user_data);
  1619. #elif defined(GGML_USE_CUDA)
  1620. ggml_backend_cuda_log_set_callback(log_callback, log_callback_user_data);
  1621. #endif
  1622. }
  1623. // We save the log callback globally
  1624. ggml_log_callback log_callback = llama_log_callback_default;
  1625. void * log_callback_user_data = nullptr;
  1626. };
  1627. static llama_state g_state;
  1628. // available llama models
  1629. enum e_model {
  1630. MODEL_UNKNOWN,
  1631. MODEL_14M,
  1632. MODEL_17M,
  1633. MODEL_22M,
  1634. MODEL_33M,
  1635. MODEL_70M,
  1636. MODEL_109M,
  1637. MODEL_137M,
  1638. MODEL_160M,
  1639. MODEL_335M,
  1640. MODEL_410M,
  1641. MODEL_0_5B,
  1642. MODEL_1B,
  1643. MODEL_1_4B,
  1644. MODEL_2B,
  1645. MODEL_2_8B,
  1646. MODEL_3B,
  1647. MODEL_4B,
  1648. MODEL_6_9B,
  1649. MODEL_7B,
  1650. MODEL_8B,
  1651. MODEL_12B,
  1652. MODEL_13B,
  1653. MODEL_14B,
  1654. MODEL_15B,
  1655. MODEL_16B,
  1656. MODEL_20B,
  1657. MODEL_30B,
  1658. MODEL_34B,
  1659. MODEL_35B,
  1660. MODEL_40B,
  1661. MODEL_65B,
  1662. MODEL_70B,
  1663. MODEL_236B,
  1664. MODEL_314B,
  1665. MODEL_SMALL,
  1666. MODEL_MEDIUM,
  1667. MODEL_LARGE,
  1668. MODEL_XL,
  1669. MODEL_A2_7B,
  1670. MODEL_8x7B,
  1671. MODEL_8x22B,
  1672. MODEL_16x12B,
  1673. MODEL_10B_128x3_66B,
  1674. };
  1675. static const size_t kiB = 1024;
  1676. static const size_t MiB = 1024*kiB;
  1677. static const size_t GiB = 1024*MiB;
  1678. struct llama_hparams {
  1679. bool vocab_only;
  1680. bool rope_finetuned;
  1681. bool use_par_res;
  1682. uint32_t n_vocab;
  1683. uint32_t n_ctx_train; // context size the model was trained on
  1684. uint32_t n_embd;
  1685. uint32_t n_head;
  1686. uint32_t n_head_kv;
  1687. uint32_t n_layer;
  1688. uint32_t n_rot;
  1689. uint32_t n_embd_head_k; // dimension of keys (d_k). d_q is assumed to be the same, but there are n_head q heads, and only n_head_kv k-v heads
  1690. uint32_t n_embd_head_v; // dimension of values (d_v) aka n_embd_head
  1691. uint32_t n_ff;
  1692. uint32_t n_expert = 0;
  1693. uint32_t n_expert_used = 0;
  1694. uint32_t n_vocab_type = 0; // for BERT-style token types
  1695. uint32_t n_layer_dense_lead = 0;
  1696. uint32_t n_lora_q = 0;
  1697. uint32_t n_lora_kv = 0;
  1698. uint32_t n_ff_exp = 0;
  1699. uint32_t n_expert_shared = 0;
  1700. float expert_weights_scale = 0.0;
  1701. float f_norm_eps;
  1702. float f_norm_rms_eps;
  1703. float rope_attn_factor = 1.0f;
  1704. float rope_freq_base_train;
  1705. float rope_freq_scale_train;
  1706. uint32_t n_yarn_orig_ctx;
  1707. float rope_yarn_log_mul;
  1708. // for State Space Models
  1709. uint32_t ssm_d_conv = 0;
  1710. uint32_t ssm_d_inner = 0;
  1711. uint32_t ssm_d_state = 0;
  1712. uint32_t ssm_dt_rank = 0;
  1713. float f_clamp_kqv = 0.0f;
  1714. float f_max_alibi_bias = 0.0f;
  1715. float f_logit_scale = 0.0f;
  1716. bool causal_attn = true;
  1717. bool use_alibi = false;
  1718. enum llama_pooling_type pooling_type = LLAMA_POOLING_TYPE_NONE;
  1719. enum llama_rope_type rope_type = LLAMA_ROPE_TYPE_NONE;
  1720. enum llama_rope_scaling_type rope_scaling_type_train = LLAMA_ROPE_SCALING_TYPE_NONE;
  1721. bool operator!=(const llama_hparams & other) const {
  1722. if (this->vocab_only != other.vocab_only) return true;
  1723. if (this->n_vocab != other.n_vocab) return true;
  1724. if (this->n_ctx_train != other.n_ctx_train) return true;
  1725. if (this->n_embd != other.n_embd) return true;
  1726. if (this->n_head != other.n_head) return true;
  1727. if (this->n_head_kv != other.n_head_kv) return true;
  1728. if (this->n_layer != other.n_layer) return true;
  1729. if (this->n_rot != other.n_rot) return true;
  1730. if (this->n_embd_head_k != other.n_embd_head_k) return true;
  1731. if (this->n_embd_head_v != other.n_embd_head_v) return true;
  1732. if (this->n_ff != other.n_ff) return true;
  1733. if (this->n_expert != other.n_expert) return true;
  1734. if (this->n_expert_used != other.n_expert_used) return true;
  1735. if (this->n_layer_dense_lead != other.n_layer_dense_lead) return true;
  1736. if (this->n_lora_q != other.n_lora_q) return true;
  1737. if (this->n_lora_kv != other.n_lora_kv) return true;
  1738. if (this->n_ff_exp != other.n_ff_exp) return true;
  1739. if (this->n_expert_shared != other.n_expert_shared) return true;
  1740. if (this->rope_finetuned != other.rope_finetuned) return true;
  1741. if (this->n_yarn_orig_ctx != other.n_yarn_orig_ctx) return true;
  1742. if (this->ssm_d_conv != other.ssm_d_conv) return true;
  1743. if (this->ssm_d_inner != other.ssm_d_inner) return true;
  1744. if (this->ssm_d_state != other.ssm_d_state) return true;
  1745. if (this->ssm_dt_rank != other.ssm_dt_rank) return true;
  1746. const float EPSILON = 1e-9f;
  1747. if (!is_float_close(this->f_norm_eps, other.f_norm_eps, EPSILON)) return true;
  1748. if (!is_float_close(this->f_norm_rms_eps, other.f_norm_rms_eps, EPSILON)) return true;
  1749. if (!is_float_close(this->rope_attn_factor, other.rope_attn_factor, EPSILON)) return true;
  1750. if (!is_float_close(this->rope_freq_base_train, other.rope_freq_base_train, EPSILON)) return true;
  1751. if (!is_float_close(this->rope_freq_scale_train, other.rope_freq_scale_train, EPSILON)) return true;
  1752. if (!is_float_close(this->expert_weights_scale, other.expert_weights_scale, EPSILON)) return true;
  1753. if (!is_float_close(this->rope_yarn_log_mul, other.rope_yarn_log_mul, EPSILON)) return true;
  1754. return false;
  1755. }
  1756. uint32_t n_gqa() const {
  1757. if (n_head_kv == 0) {
  1758. return 0;
  1759. }
  1760. return n_head/n_head_kv;
  1761. }
  1762. uint32_t n_embd_k_gqa() const { // dimension of key embeddings across all k-v heads
  1763. return n_embd_head_k * n_head_kv;
  1764. }
  1765. uint32_t n_embd_v_gqa() const { // dimension of value embeddings across all k-v heads
  1766. return n_embd_head_v * n_head_kv;
  1767. }
  1768. uint32_t n_embd_k_s() const { // dimension of the rolling state embeddings
  1769. // corresponds to Mamba's conv_states size
  1770. // TODO: maybe support other convolution strides than 1
  1771. // NOTE: since the first column of the conv_state is shifted out each time, it's not actually needed
  1772. return (ssm_d_conv > 0 ? ssm_d_conv - 1 : 0) * ssm_d_inner;
  1773. }
  1774. uint32_t n_embd_v_s() const { // dimension of the recurrent state embeddings
  1775. // corresponds to Mamba's ssm_states size
  1776. return ssm_d_state * ssm_d_inner;
  1777. }
  1778. };
  1779. struct llama_cparams {
  1780. uint32_t n_ctx; // context size used during inference
  1781. uint32_t n_batch;
  1782. uint32_t n_ubatch;
  1783. uint32_t n_seq_max;
  1784. uint32_t n_threads; // number of threads to use for generation
  1785. uint32_t n_threads_batch; // number of threads to use for batch processing
  1786. float rope_freq_base;
  1787. float rope_freq_scale;
  1788. uint32_t n_yarn_orig_ctx;
  1789. // These hyperparameters are not exposed in GGUF, because all
  1790. // existing YaRN models use the same values for them.
  1791. float yarn_ext_factor;
  1792. float yarn_attn_factor;
  1793. float yarn_beta_fast;
  1794. float yarn_beta_slow;
  1795. float defrag_thold;
  1796. bool embeddings;
  1797. bool causal_attn;
  1798. bool offload_kqv;
  1799. bool flash_attn;
  1800. enum llama_pooling_type pooling_type;
  1801. ggml_backend_sched_eval_callback cb_eval;
  1802. void * cb_eval_user_data;
  1803. };
  1804. struct llama_layer {
  1805. // normalization
  1806. struct ggml_tensor * attn_norm;
  1807. struct ggml_tensor * attn_norm_b;
  1808. struct ggml_tensor * attn_norm_2;
  1809. struct ggml_tensor * attn_norm_2_b;
  1810. struct ggml_tensor * attn_q_norm;
  1811. struct ggml_tensor * attn_q_norm_b;
  1812. struct ggml_tensor * attn_k_norm;
  1813. struct ggml_tensor * attn_k_norm_b;
  1814. struct ggml_tensor * attn_out_norm;
  1815. struct ggml_tensor * attn_out_norm_b;
  1816. struct ggml_tensor * attn_q_a_norm;
  1817. struct ggml_tensor * attn_kv_a_norm;
  1818. // attention
  1819. struct ggml_tensor * wq;
  1820. struct ggml_tensor * wk;
  1821. struct ggml_tensor * wv;
  1822. struct ggml_tensor * wo;
  1823. struct ggml_tensor * wqkv;
  1824. struct ggml_tensor * wq_a;
  1825. struct ggml_tensor * wq_b;
  1826. struct ggml_tensor * wkv_a_mqa;
  1827. struct ggml_tensor * wkv_b;
  1828. // attention bias
  1829. struct ggml_tensor * bq;
  1830. struct ggml_tensor * bk;
  1831. struct ggml_tensor * bv;
  1832. struct ggml_tensor * bo;
  1833. struct ggml_tensor * bqkv;
  1834. // normalization
  1835. struct ggml_tensor * ffn_norm;
  1836. struct ggml_tensor * ffn_norm_b;
  1837. struct ggml_tensor * layer_out_norm;
  1838. struct ggml_tensor * layer_out_norm_b;
  1839. struct ggml_tensor * ffn_norm_exps;
  1840. // ff
  1841. struct ggml_tensor * ffn_gate; // w1
  1842. struct ggml_tensor * ffn_down; // w2
  1843. struct ggml_tensor * ffn_up; // w3
  1844. // ff MoE
  1845. struct ggml_tensor * ffn_gate_inp;
  1846. struct ggml_tensor * ffn_gate_exps;
  1847. struct ggml_tensor * ffn_down_exps;
  1848. struct ggml_tensor * ffn_up_exps ;
  1849. // ff shared expert (shexp)
  1850. struct ggml_tensor * ffn_gate_inp_shexp;
  1851. struct ggml_tensor * ffn_gate_shexp;
  1852. struct ggml_tensor * ffn_down_shexp;
  1853. struct ggml_tensor * ffn_up_shexp;
  1854. // ff bias
  1855. struct ggml_tensor * ffn_gate_b = nullptr;
  1856. struct ggml_tensor * ffn_down_b = nullptr; // b2
  1857. struct ggml_tensor * ffn_up_b = nullptr; // b3
  1858. struct ggml_tensor * ffn_act;
  1859. // mamba proj
  1860. struct ggml_tensor * ssm_in;
  1861. struct ggml_tensor * ssm_x;
  1862. struct ggml_tensor * ssm_dt;
  1863. struct ggml_tensor * ssm_out;
  1864. // mamba
  1865. struct ggml_tensor * ssm_conv1d;
  1866. struct ggml_tensor * ssm_a;
  1867. struct ggml_tensor * ssm_d;
  1868. // mamba bias
  1869. struct ggml_tensor * ssm_conv1d_b;
  1870. struct ggml_tensor * ssm_dt_b;
  1871. // long rope factors
  1872. struct ggml_tensor * rope_long = nullptr;
  1873. struct ggml_tensor * rope_short = nullptr;
  1874. };
  1875. struct llama_kv_cell {
  1876. llama_pos pos = -1;
  1877. llama_pos delta = 0;
  1878. int32_t src = 0; // used by recurrent state models to copy states
  1879. std::set<llama_seq_id> seq_id;
  1880. bool has_seq_id(const llama_seq_id & id) const {
  1881. return seq_id.find(id) != seq_id.end();
  1882. }
  1883. bool is_empty() const {
  1884. return seq_id.empty();
  1885. }
  1886. bool is_same_seq(const llama_kv_cell & other) const {
  1887. return seq_id == other.seq_id;
  1888. }
  1889. };
  1890. // ring-buffer of cached KV data
  1891. struct llama_kv_cache {
  1892. bool has_shift = false;
  1893. bool do_defrag = false;
  1894. bool do_copy = false;
  1895. bool recurrent = false; // with recurrent state models, a cell can hold the state for more than one past token
  1896. bool v_trans = true; // the value tensor is transposed
  1897. // Note: The value of head isn't only used to optimize searching
  1898. // for a free KV slot. llama_decode_internal also uses it, so it
  1899. // cannot be freely changed after a slot has been allocated.
  1900. uint32_t head = 0;
  1901. uint32_t size = 0;
  1902. uint32_t used = 0; // used cells (i.e. at least one seq_id)
  1903. // computed before each graph build
  1904. uint32_t n = 0;
  1905. ggml_type type_k = GGML_TYPE_F16;
  1906. ggml_type type_v = GGML_TYPE_F16;
  1907. std::vector<llama_kv_cell> cells;
  1908. std::vector<struct ggml_tensor *> k_l; // per layer
  1909. std::vector<struct ggml_tensor *> v_l;
  1910. std::vector<struct ggml_context *> ctxs;
  1911. std::vector<ggml_backend_buffer_t> bufs;
  1912. size_t total_size() const {
  1913. size_t size = 0;
  1914. for (ggml_backend_buffer_t buf : bufs) {
  1915. size += ggml_backend_buffer_get_size(buf);
  1916. }
  1917. return size;
  1918. }
  1919. ~llama_kv_cache() {
  1920. for (struct ggml_context * ctx : ctxs) {
  1921. ggml_free(ctx);
  1922. }
  1923. for (ggml_backend_buffer_t buf : bufs) {
  1924. ggml_backend_buffer_free(buf);
  1925. }
  1926. }
  1927. };
  1928. struct llama_control_vector {
  1929. std::vector<struct ggml_tensor *> tensors; // per layer
  1930. std::vector<struct ggml_context *> ctxs;
  1931. std::vector<ggml_backend_buffer_t> bufs;
  1932. int32_t layer_start = -1;
  1933. int32_t layer_end = -1;
  1934. ggml_tensor * tensor_for(int il) const {
  1935. if (il < 0 || il < layer_start || il > layer_end || (size_t) il >= tensors.size()) {
  1936. return nullptr;
  1937. }
  1938. return tensors[il];
  1939. }
  1940. ~llama_control_vector() {
  1941. for (struct ggml_context * ctx : ctxs) {
  1942. ggml_free(ctx);
  1943. }
  1944. for (ggml_backend_buffer_t buf : bufs) {
  1945. ggml_backend_buffer_free(buf);
  1946. }
  1947. }
  1948. };
  1949. struct llama_vocab {
  1950. using id = int32_t;
  1951. using token = std::string;
  1952. using ttype = llama_token_type;
  1953. struct token_data {
  1954. token text;
  1955. float score;
  1956. ttype type;
  1957. };
  1958. enum llama_vocab_type type = LLAMA_VOCAB_TYPE_SPM;
  1959. enum llama_vocab_pre_type type_pre = LLAMA_VOCAB_PRE_TYPE_DEFAULT;
  1960. std::unordered_map<token, id> token_to_id;
  1961. std::vector<token_data> id_to_token;
  1962. std::vector<id> special_tokens_cache;
  1963. std::map<std::pair<std::string, std::string>, int> bpe_ranks;
  1964. // default LLaMA special tokens
  1965. id special_bos_id = 1;
  1966. id special_eos_id = 2;
  1967. id special_unk_id = 0;
  1968. id special_sep_id = -1;
  1969. id special_pad_id = -1;
  1970. id special_cls_id = -1;
  1971. id special_mask_id = -1;
  1972. int special_add_bos = -1; // -1 unknown, 1 add, 0 don't add.
  1973. int special_add_eos = -1; // -1 unknown, 1 add, 0 don't add.
  1974. id linefeed_id = 13;
  1975. id special_prefix_id = -1;
  1976. id special_suffix_id = -1;
  1977. id special_middle_id = -1;
  1978. id special_eot_id = -1; // TODO: move above after "eos_id", and here add "file separator" token
  1979. bool add_space_prefix = true;
  1980. int find_bpe_rank(const std::string & token_left, const std::string & token_right) const {
  1981. GGML_ASSERT(token_left.find(' ') == std::string::npos);
  1982. GGML_ASSERT(token_left.find('\n') == std::string::npos);
  1983. GGML_ASSERT(token_right.find(' ') == std::string::npos);
  1984. GGML_ASSERT(token_right.find('\n') == std::string::npos);
  1985. auto it = bpe_ranks.find(std::make_pair(token_left, token_right));
  1986. if (it == bpe_ranks.end()) {
  1987. return -1;
  1988. }
  1989. return it->second;
  1990. }
  1991. };
  1992. struct llama_model {
  1993. e_model type = MODEL_UNKNOWN;
  1994. llm_arch arch = LLM_ARCH_UNKNOWN;
  1995. llama_ftype ftype = LLAMA_FTYPE_ALL_F32;
  1996. std::string name = "n/a";
  1997. llama_hparams hparams = {};
  1998. llama_vocab vocab;
  1999. struct ggml_tensor * tok_embd;
  2000. struct ggml_tensor * type_embd;
  2001. struct ggml_tensor * pos_embd;
  2002. struct ggml_tensor * tok_norm;
  2003. struct ggml_tensor * tok_norm_b;
  2004. struct ggml_tensor * output_norm;
  2005. struct ggml_tensor * output_norm_b;
  2006. struct ggml_tensor * output;
  2007. struct ggml_tensor * output_b;
  2008. std::vector<llama_layer> layers;
  2009. llama_split_mode split_mode;
  2010. int main_gpu;
  2011. int n_gpu_layers;
  2012. std::vector<std::string> rpc_servers;
  2013. // gguf metadata
  2014. std::unordered_map<std::string, std::string> gguf_kv;
  2015. // layer -> buffer type mapping
  2016. struct layer_buft {
  2017. layer_buft() : buft_matrix(nullptr), buft(nullptr) {}
  2018. layer_buft(ggml_backend_buffer_type_t matrix) : buft_matrix(matrix), buft(matrix) {}
  2019. layer_buft(ggml_backend_buffer_type_t matrix, ggml_backend_buffer_type_t other) : buft_matrix(matrix), buft(other) {}
  2020. ggml_backend_buffer_type_t buft_matrix; // matrices only - used by split buffers and backends that support only matrix multiplication
  2021. ggml_backend_buffer_type_t buft; // everything else
  2022. };
  2023. layer_buft buft_input;
  2024. layer_buft buft_output;
  2025. std::vector<layer_buft> buft_layer;
  2026. // contexts where the model tensors metadata is stored
  2027. std::vector<struct ggml_context *> ctxs;
  2028. // the model memory buffers for the tensor data
  2029. std::vector<ggml_backend_buffer_t> bufs;
  2030. // model memory mapped files
  2031. llama_mmaps mappings;
  2032. // objects representing data potentially being locked in memory
  2033. llama_mlocks mlock_bufs;
  2034. llama_mlocks mlock_mmaps;
  2035. // for quantize-stats only
  2036. std::vector<std::pair<std::string, struct ggml_tensor *>> tensors_by_name;
  2037. int64_t t_load_us = 0;
  2038. int64_t t_start_us = 0;
  2039. ~llama_model() {
  2040. for (struct ggml_context * ctx : ctxs) {
  2041. ggml_free(ctx);
  2042. }
  2043. for (ggml_backend_buffer_t buf : bufs) {
  2044. #ifdef GGML_USE_CUDA
  2045. if (ggml_backend_buffer_get_type(buf) == ggml_backend_cpu_buffer_type()) {
  2046. ggml_backend_cuda_unregister_host_buffer(ggml_backend_buffer_get_base(buf));
  2047. }
  2048. #endif
  2049. ggml_backend_buffer_free(buf);
  2050. }
  2051. }
  2052. };
  2053. struct llama_context {
  2054. llama_context(const llama_model & model) : model(model), t_start_us(model.t_start_us), t_load_us(model.t_load_us) {}
  2055. ~llama_context() {
  2056. ggml_backend_sched_free(sched);
  2057. for (ggml_backend_t backend : backends) {
  2058. ggml_backend_free(backend);
  2059. }
  2060. ggml_backend_buffer_free(buf_output);
  2061. }
  2062. llama_cparams cparams;
  2063. std::vector<ggml_backend_t> backends;
  2064. #ifdef GGML_USE_METAL
  2065. ggml_backend_t backend_metal = nullptr;
  2066. #endif
  2067. ggml_backend_t backend_cpu = nullptr;
  2068. const llama_model & model;
  2069. // key + value cache for the self attention
  2070. struct llama_kv_cache kv_self;
  2071. std::mt19937 rng;
  2072. bool has_evaluated_once = false;
  2073. int64_t t_start_us;
  2074. int64_t t_load_us;
  2075. int64_t t_sample_us = 0;
  2076. int64_t t_p_eval_us = 0;
  2077. int64_t t_eval_us = 0;
  2078. int64_t t_compute_start_us = 0;
  2079. int64_t n_queued_tokens = 0;
  2080. int32_t n_sample = 0; // number of tokens sampled
  2081. int32_t n_p_eval = 0; // number of tokens in eval calls for the prompt (with batch size > 1)
  2082. int32_t n_eval = 0; // number of eval calls
  2083. // host buffer for the model output (logits and embeddings)
  2084. ggml_backend_buffer_t buf_output = nullptr;
  2085. // decode output (2-dimensional array: [n_outputs][n_vocab])
  2086. size_t logits_size = 0; // capacity (of floats) for logits
  2087. float * logits = nullptr;
  2088. std::vector<int32_t> output_ids; // map batch token positions to ids of the logits and embd buffers
  2089. size_t output_size = 0; // capacity (of tokens positions) for the output buffers
  2090. int32_t n_outputs = 0; // number of actually-used outputs in the current ubatch or last logical batch
  2091. bool logits_all = false;
  2092. // embeddings output (2-dimensional array: [n_outputs][n_embd])
  2093. // populated only when pooling_type == LLAMA_POOLING_TYPE_NONE
  2094. size_t embd_size = 0; // capacity (of floats) for embeddings
  2095. float * embd = nullptr;
  2096. // sequence embeddings output (map of [n_embd] vectors)
  2097. // populated only when pooling_type != LLAMA_POOLING_TYPE_NONE
  2098. std::map<llama_seq_id, std::vector<float>> embd_seq;
  2099. // memory buffers used to evaluate the model
  2100. std::vector<uint8_t> buf_compute_meta;
  2101. ggml_backend_sched_t sched = nullptr;
  2102. ggml_abort_callback abort_callback = nullptr;
  2103. void * abort_callback_data = nullptr;
  2104. // input tensors
  2105. struct ggml_tensor * inp_tokens; // I32 [n_batch]
  2106. struct ggml_tensor * inp_embd; // F32 [n_embd, n_batch]
  2107. struct ggml_tensor * inp_pos; // I32 [n_batch]
  2108. struct ggml_tensor * inp_out_ids; // I32 [n_outputs]
  2109. struct ggml_tensor * inp_KQ_mask; // F32 [kv_size, n_batch]
  2110. struct ggml_tensor * inp_K_shift; // I32 [kv_size]
  2111. struct ggml_tensor * inp_mean; // F32 [n_batch, n_batch]
  2112. struct ggml_tensor * inp_cls; // I32 [n_batch]
  2113. struct ggml_tensor * inp_s_copy; // I32 [kv_size]
  2114. struct ggml_tensor * inp_s_mask; // F32 [1, n_kv]
  2115. struct ggml_tensor * inp_s_seq; // I32 [n_kv, n_batch]
  2116. // control vectors
  2117. struct llama_control_vector cvec;
  2118. };
  2119. static ggml_backend_buffer_type_t llama_default_buffer_type_offload(const llama_model & model, int gpu) {
  2120. ggml_backend_buffer_type_t buft = nullptr;
  2121. #ifdef GGML_USE_RPC
  2122. std::string endpoint = model.rpc_servers[gpu];
  2123. buft = ggml_backend_rpc_buffer_type(endpoint.c_str());
  2124. #elif defined(GGML_USE_METAL)
  2125. buft = ggml_backend_metal_buffer_type();
  2126. #elif defined(GGML_USE_CUDA)
  2127. buft = ggml_backend_cuda_buffer_type(gpu);
  2128. #elif defined(GGML_USE_VULKAN)
  2129. buft = ggml_backend_vk_buffer_type(gpu);
  2130. #elif defined(GGML_USE_SYCL)
  2131. buft = ggml_backend_sycl_buffer_type(gpu);
  2132. #elif defined(GGML_USE_CLBLAST)
  2133. buft = ggml_backend_opencl_buffer_type();
  2134. #elif defined(GGML_USE_KOMPUTE)
  2135. buft = ggml_backend_kompute_buffer_type(gpu);
  2136. if (buft == nullptr) {
  2137. LLAMA_LOG_WARN("%s: cannot use GPU %d, check `vulkaninfo --summary`\n", __func__, gpu);
  2138. }
  2139. #endif
  2140. if (buft == nullptr) {
  2141. buft = llama_default_buffer_type_cpu(true);
  2142. }
  2143. return buft;
  2144. GGML_UNUSED(model);
  2145. GGML_UNUSED(gpu);
  2146. }
  2147. static ggml_backend_buffer_type_t llama_default_buffer_type_split(const llama_model & model, int fallback_gpu, const float * tensor_split) {
  2148. ggml_backend_buffer_type_t buft = nullptr;
  2149. #ifdef GGML_USE_CUDA
  2150. if (ggml_backend_cuda_get_device_count() > 1) {
  2151. buft = ggml_backend_cuda_split_buffer_type(tensor_split);
  2152. }
  2153. #endif
  2154. #ifdef GGML_USE_SYCL
  2155. if (ggml_backend_sycl_get_device_count() > 1) {
  2156. buft = ggml_backend_sycl_split_buffer_type(tensor_split);
  2157. }
  2158. #endif
  2159. if (buft == nullptr) {
  2160. buft = llama_default_buffer_type_offload(model, fallback_gpu);
  2161. }
  2162. return buft;
  2163. GGML_UNUSED(tensor_split);
  2164. }
  2165. static size_t llama_get_device_count(const llama_model & model) {
  2166. #if defined(GGML_USE_RPC)
  2167. return model.rpc_servers.size();
  2168. #elif defined(GGML_USE_CUDA)
  2169. return ggml_backend_cuda_get_device_count();
  2170. #elif defined(GGML_USE_SYCL)
  2171. return ggml_backend_sycl_get_device_count();
  2172. #elif defined(GGML_USE_VULKAN)
  2173. return ggml_backend_vk_get_device_count();
  2174. #else
  2175. return 1;
  2176. #endif
  2177. GGML_UNUSED(model);
  2178. }
  2179. static size_t llama_get_device_memory(const llama_model & model, int device) {
  2180. #if defined(GGML_USE_RPC)
  2181. size_t total;
  2182. size_t free;
  2183. std::string endpoint = model.rpc_servers[device];
  2184. ggml_backend_rpc_get_device_memory(endpoint.c_str(), &free, &total);
  2185. return free;
  2186. #elif defined(GGML_USE_CUDA)
  2187. size_t total;
  2188. size_t free;
  2189. ggml_backend_cuda_get_device_memory(device, &free, &total);
  2190. return free;
  2191. #elif defined(GGML_USE_SYCL)
  2192. size_t total;
  2193. size_t free;
  2194. ggml_backend_sycl_get_device_memory(device, &free, &total);
  2195. return free;
  2196. #elif defined(GGML_USE_VULKAN)
  2197. size_t total;
  2198. size_t free;
  2199. ggml_backend_vk_get_device_memory(device, &free, &total);
  2200. return free;
  2201. #else
  2202. return 1;
  2203. #endif
  2204. GGML_UNUSED(model);
  2205. GGML_UNUSED(device);
  2206. }
  2207. //
  2208. // kv cache helpers
  2209. //
  2210. static bool llama_kv_cache_init(
  2211. struct llama_kv_cache & cache,
  2212. const llama_context * ctx,
  2213. ggml_type type_k,
  2214. ggml_type type_v,
  2215. uint32_t kv_size,
  2216. bool offload) {
  2217. const llama_model & model = ctx->model;
  2218. const llama_cparams & cparams = ctx->cparams;
  2219. const struct llama_hparams & hparams = model.hparams;
  2220. const uint32_t n_embd_k_gqa = hparams.n_embd_k_gqa() + hparams.n_embd_k_s();
  2221. const uint32_t n_embd_v_gqa = hparams.n_embd_v_gqa() + hparams.n_embd_v_s();
  2222. const int64_t n_layer = hparams.n_layer;
  2223. cache.has_shift = false;
  2224. // TODO: find a nicer way to add other recurrent model architectures
  2225. cache.recurrent = model.arch == LLM_ARCH_MAMBA;
  2226. cache.v_trans = !cparams.flash_attn;
  2227. // TODO: support mixed recurrent Transformer architectures
  2228. // NOTE: (!a || b) is a logical implication (a -> b)
  2229. GGML_ASSERT(!cache.recurrent || n_embd_k_gqa == hparams.n_embd_k_s());
  2230. GGML_ASSERT(!cache.recurrent || n_embd_v_gqa == hparams.n_embd_v_s());
  2231. GGML_ASSERT( cache.recurrent || n_embd_k_gqa == hparams.n_embd_k_gqa());
  2232. GGML_ASSERT( cache.recurrent || n_embd_v_gqa == hparams.n_embd_v_gqa());
  2233. cache.head = 0;
  2234. cache.size = kv_size;
  2235. cache.used = 0;
  2236. cache.type_k = type_k;
  2237. cache.type_v = type_v;
  2238. cache.cells.clear();
  2239. cache.cells.resize(kv_size);
  2240. if (cache.recurrent) {
  2241. // init state copy sources
  2242. for (uint32_t i = 0; i < cache.size; ++i) {
  2243. cache.cells[i].src = i;
  2244. }
  2245. }
  2246. #ifdef GGML_USE_CLBLAST
  2247. offload = false;
  2248. #endif
  2249. // count used buffer types
  2250. std::map<ggml_backend_buffer_type_t, int> buft_layer_count;
  2251. if (offload) {
  2252. for (int64_t i = 0; i < n_layer; ++i) {
  2253. buft_layer_count[model.buft_layer[i].buft]++;
  2254. }
  2255. } else {
  2256. buft_layer_count[llama_default_buffer_type_cpu(true)] = n_layer;
  2257. }
  2258. // create a context for each buffer type
  2259. std::map<ggml_backend_buffer_type_t, ggml_context *> ctx_map;
  2260. for (auto & it : buft_layer_count) {
  2261. int n_layers = it.second;
  2262. struct ggml_init_params params = {
  2263. /*.mem_size =*/ 2u*n_layers*ggml_tensor_overhead(),
  2264. /*.mem_buffer =*/ NULL,
  2265. /*.no_alloc =*/ true,
  2266. };
  2267. ggml_context * ctx = ggml_init(params);
  2268. if (!ctx) {
  2269. LLAMA_LOG_ERROR("%s: failed to allocate context for kv cache\n", __func__);
  2270. return false;
  2271. }
  2272. ctx_map[it.first] = ctx;
  2273. cache.ctxs.push_back(ctx);
  2274. }
  2275. cache.k_l.reserve(n_layer);
  2276. cache.v_l.reserve(n_layer);
  2277. for (int i = 0; i < (int) n_layer; i++) {
  2278. struct ggml_context * ctx = offload ? ctx_map.at(model.buft_layer[i].buft) : cache.ctxs.front();
  2279. ggml_tensor * k = ggml_new_tensor_1d(ctx, type_k, n_embd_k_gqa*kv_size);
  2280. ggml_tensor * v = ggml_new_tensor_1d(ctx, type_v, n_embd_v_gqa*kv_size);
  2281. ggml_format_name(k, "cache_k_l%d", i);
  2282. ggml_format_name(v, "cache_v_l%d", i);
  2283. cache.k_l.push_back(k);
  2284. cache.v_l.push_back(v);
  2285. }
  2286. // allocate tensors and initialize the buffers to avoid NaNs in the padding
  2287. for (auto it : ctx_map) {
  2288. ggml_backend_buffer_type_t buft = it.first;
  2289. ggml_context * ctx = it.second;
  2290. ggml_backend_buffer_t buf = ggml_backend_alloc_ctx_tensors_from_buft(ctx, buft);
  2291. if (!buf) {
  2292. LLAMA_LOG_ERROR("%s: failed to allocate buffer for kv cache\n", __func__);
  2293. return false;
  2294. }
  2295. ggml_backend_buffer_clear(buf, 0);
  2296. LLAMA_LOG_INFO("%s: %10s KV buffer size = %8.2f MiB\n", __func__, ggml_backend_buffer_name(buf), ggml_backend_buffer_get_size(buf)/1024.0/1024.0);
  2297. cache.bufs.push_back(buf);
  2298. }
  2299. return true;
  2300. }
  2301. // find an empty slot of size "n_tokens" in the cache
  2302. // updates the cache head
  2303. // Note: On success, it's important that cache.head points
  2304. // to the first cell of the slot.
  2305. static bool llama_kv_cache_find_slot(
  2306. struct llama_kv_cache & cache,
  2307. const struct llama_batch & batch) {
  2308. const uint32_t n_tokens = batch.n_tokens;
  2309. if (cache.recurrent) {
  2310. // For recurrent state architectures (like Mamba),
  2311. // each KV cache cell can store the state for a whole sequence.
  2312. llama_seq_id min = cache.size - 1;
  2313. llama_seq_id max = 0;
  2314. for (uint32_t i = 0; i < n_tokens; ++i) {
  2315. for (int32_t j = 0; j < batch.n_seq_id[i]; ++j) {
  2316. llama_seq_id seq_id = batch.seq_id[i][j];
  2317. // make sure it's a valid seq_id
  2318. if ((uint32_t) seq_id < cache.size) {
  2319. if (seq_id > max) {
  2320. max = seq_id;
  2321. }
  2322. if (seq_id < min) {
  2323. min = seq_id;
  2324. }
  2325. // Assuming the tokens are in-order
  2326. if (batch.pos[i] != cache.cells[seq_id].pos + 1) {
  2327. // What should happen when the pos backtracks or skips a value?
  2328. // Clearing the state mid-batch would require special-casing which isn't done.
  2329. LLAMA_LOG_WARN("%s: non-consecutive token position %d after %d for sequence %d\n",
  2330. __func__, batch.pos[i], cache.cells[seq_id].pos, seq_id);
  2331. }
  2332. if (cache.cells[seq_id].pos < 0 && 0 <= batch.pos[i]) {
  2333. cache.used += 1;
  2334. }
  2335. cache.cells[seq_id].pos = batch.pos[i];
  2336. // NOTE: seq_ids are not inserted here; they are handled when the input tensors are set
  2337. } else {
  2338. // too big seq_id
  2339. // TODO: would it be possible to resize the KV cache size instead?
  2340. LLAMA_LOG_ERROR("%s: seq_id=%d >= kv_size=%d Try using a bigger --parallel value\n", __func__, seq_id, cache.size);
  2341. return false;
  2342. }
  2343. }
  2344. }
  2345. // allow getting the range of used cells, from head to head + n
  2346. cache.head = min;
  2347. cache.n = max - min + 1;
  2348. // sanity check
  2349. return max >= min;
  2350. }
  2351. // otherwise, one cell per token.
  2352. if (n_tokens > cache.size) {
  2353. LLAMA_LOG_ERROR("%s: n_tokens=%d > cache.size=%d\n", __func__, n_tokens, cache.size);
  2354. return false;
  2355. }
  2356. uint32_t n_tested = 0;
  2357. while (true) {
  2358. if (cache.head + n_tokens > cache.size) {
  2359. n_tested += cache.size - cache.head;
  2360. cache.head = 0;
  2361. continue;
  2362. }
  2363. bool found = true;
  2364. for (uint32_t i = 0; i < n_tokens; i++) {
  2365. if (cache.cells[cache.head + i].pos >= 0) {
  2366. found = false;
  2367. cache.head += i + 1;
  2368. n_tested += i + 1;
  2369. break;
  2370. }
  2371. }
  2372. if (found) {
  2373. break;
  2374. }
  2375. if (n_tested >= cache.size) {
  2376. //LLAMA_LOG_ERROR("%s: failed to find a slot for %d tokens\n", __func__, n_tokens);
  2377. return false;
  2378. }
  2379. }
  2380. for (uint32_t i = 0; i < n_tokens; i++) {
  2381. cache.cells[cache.head + i].pos = batch.pos[i];
  2382. for (int32_t j = 0; j < batch.n_seq_id[i]; j++) {
  2383. cache.cells[cache.head + i].seq_id.insert(batch.seq_id[i][j]);
  2384. }
  2385. }
  2386. cache.used += n_tokens;
  2387. return true;
  2388. }
  2389. // find how many cells are currently in use
  2390. static uint32_t llama_kv_cache_cell_max(const struct llama_kv_cache & cache) {
  2391. for (uint32_t i = cache.size; i > 0; --i) {
  2392. const llama_kv_cell & cell = cache.cells[i - 1];
  2393. if (cell.pos >= 0 && !cell.is_empty()) {
  2394. return i;
  2395. }
  2396. }
  2397. return 0;
  2398. }
  2399. static void llama_kv_cache_clear(struct llama_kv_cache & cache) {
  2400. for (int32_t i = 0; i < (int32_t) cache.size; ++i) {
  2401. cache.cells[i].pos = -1;
  2402. cache.cells[i].seq_id.clear();
  2403. }
  2404. cache.head = 0;
  2405. cache.used = 0;
  2406. for (auto & buf : cache.bufs) {
  2407. ggml_backend_buffer_clear(buf, 0);
  2408. }
  2409. }
  2410. static bool llama_kv_cache_seq_rm(
  2411. struct llama_kv_cache & cache,
  2412. llama_seq_id seq_id,
  2413. llama_pos p0,
  2414. llama_pos p1) {
  2415. uint32_t new_head = cache.size;
  2416. if (p0 < 0) p0 = 0;
  2417. if (p1 < 0) p1 = std::numeric_limits<llama_pos>::max();
  2418. // models like Mamba can't have a state partially erased
  2419. if (cache.recurrent) {
  2420. if (seq_id >= (int64_t) cache.size) {
  2421. // could be fatal
  2422. return false;
  2423. }
  2424. if (0 <= seq_id) {
  2425. // partial intersection is invalid
  2426. if ((0 < p0 && p0 <= cache.cells[seq_id].pos) || (0 < p1 && p1 <= cache.cells[seq_id].pos)) {
  2427. return false;
  2428. }
  2429. } else {
  2430. // seq_id is negative, then the range should include everything or nothing
  2431. if (p0 != p1 && (p0 != 0 || p1 != std::numeric_limits<llama_pos>::max())) {
  2432. return false;
  2433. }
  2434. }
  2435. }
  2436. for (uint32_t i = 0; i < cache.size; ++i) {
  2437. if (cache.cells[i].pos >= p0 && cache.cells[i].pos < p1) {
  2438. if (seq_id < 0) {
  2439. cache.cells[i].seq_id.clear();
  2440. } else if (cache.cells[i].has_seq_id(seq_id)) {
  2441. cache.cells[i].seq_id.erase(seq_id);
  2442. } else {
  2443. continue;
  2444. }
  2445. if (cache.cells[i].is_empty()) {
  2446. // keep count of the number of used cells
  2447. if (cache.cells[i].pos >= 0) cache.used--;
  2448. cache.cells[i].pos = -1;
  2449. if (new_head == cache.size) new_head = i;
  2450. }
  2451. }
  2452. }
  2453. // If we freed up a slot, set head to it so searching can start there.
  2454. if (new_head != cache.size && new_head < cache.head) cache.head = new_head;
  2455. return true;
  2456. }
  2457. static void llama_kv_cache_seq_cp(
  2458. struct llama_kv_cache & cache,
  2459. llama_seq_id seq_id_src,
  2460. llama_seq_id seq_id_dst,
  2461. llama_pos p0,
  2462. llama_pos p1) {
  2463. if (p0 < 0) p0 = 0;
  2464. if (p1 < 0) p1 = std::numeric_limits<llama_pos>::max();
  2465. if (cache.recurrent) {
  2466. if ((uint32_t) seq_id_dst < cache.size && (uint32_t) seq_id_src < cache.size) {
  2467. seq_id_src = cache.cells[seq_id_src].src;
  2468. GGML_ASSERT((uint32_t) seq_id_src < cache.size);
  2469. // intent to "copy from"
  2470. // supports copy chains thanks to taking the source of the source
  2471. cache.cells[seq_id_dst].src = seq_id_src;
  2472. // preserve the "keep or clear" status of the copied sequence
  2473. if (cache.cells[seq_id_src].has_seq_id(seq_id_src)) {
  2474. cache.cells[seq_id_dst].seq_id.insert(seq_id_dst);
  2475. } else {
  2476. cache.cells[seq_id_dst].seq_id.erase(seq_id_dst);
  2477. }
  2478. cache.do_copy = true;
  2479. cache.cells[seq_id_dst].pos = cache.cells[seq_id_src].pos;
  2480. }
  2481. return;
  2482. }
  2483. // otherwise, this is the KV cache of a Transformer-like model
  2484. cache.head = 0;
  2485. for (uint32_t i = 0; i < cache.size; ++i) {
  2486. if (cache.cells[i].has_seq_id(seq_id_src) && cache.cells[i].pos >= p0 && cache.cells[i].pos < p1) {
  2487. cache.cells[i].seq_id.insert(seq_id_dst);
  2488. }
  2489. }
  2490. }
  2491. static void llama_kv_cache_seq_keep(struct llama_kv_cache & cache, llama_seq_id seq_id) {
  2492. uint32_t new_head = cache.size;
  2493. for (uint32_t i = 0; i < cache.size; ++i) {
  2494. if (!cache.cells[i].has_seq_id(seq_id)) {
  2495. if (cache.cells[i].pos >= 0) cache.used--;
  2496. cache.cells[i].pos = -1;
  2497. cache.cells[i].seq_id.clear();
  2498. if (new_head == cache.size) new_head = i;
  2499. } else {
  2500. cache.cells[i].seq_id.clear();
  2501. cache.cells[i].seq_id.insert(seq_id);
  2502. }
  2503. }
  2504. // If we freed up a slot, set head to it so searching can start there.
  2505. if (new_head != cache.size && new_head < cache.head) cache.head = new_head;
  2506. }
  2507. static void llama_kv_cache_seq_add(
  2508. struct llama_kv_cache & cache,
  2509. llama_seq_id seq_id,
  2510. llama_pos p0,
  2511. llama_pos p1,
  2512. llama_pos delta) {
  2513. uint32_t new_head = cache.size;
  2514. if (p0 < 0) p0 = 0;
  2515. if (p1 < 0) p1 = std::numeric_limits<llama_pos>::max();
  2516. if (cache.recurrent) {
  2517. // for Mamba-like models, only the pos needs to be shifted
  2518. if (0 <= seq_id && seq_id < (int64_t) cache.size) {
  2519. llama_kv_cell & cell = cache.cells[seq_id];
  2520. if (cell.has_seq_id(seq_id) && p0 <= cell.pos && cell.pos < p1) {
  2521. cell.pos += delta;
  2522. }
  2523. }
  2524. return;
  2525. }
  2526. for (uint32_t i = 0; i < cache.size; ++i) {
  2527. if (cache.cells[i].has_seq_id(seq_id) && cache.cells[i].pos >= p0 && cache.cells[i].pos < p1) {
  2528. cache.has_shift = true;
  2529. cache.cells[i].pos += delta;
  2530. cache.cells[i].delta += delta;
  2531. if (cache.cells[i].pos < 0) {
  2532. if (!cache.cells[i].is_empty()) {
  2533. cache.used--;
  2534. }
  2535. cache.cells[i].pos = -1;
  2536. cache.cells[i].seq_id.clear();
  2537. if (new_head == cache.size) {
  2538. new_head = i;
  2539. }
  2540. }
  2541. }
  2542. }
  2543. // If we freed up a slot, set head to it so searching can start there.
  2544. // Otherwise we just start the next search from the beginning.
  2545. cache.head = new_head != cache.size ? new_head : 0;
  2546. }
  2547. static void llama_kv_cache_seq_div(
  2548. struct llama_kv_cache & cache,
  2549. llama_seq_id seq_id,
  2550. llama_pos p0,
  2551. llama_pos p1,
  2552. int d) {
  2553. if (p0 < 0) p0 = 0;
  2554. if (p1 < 0) p1 = std::numeric_limits<llama_pos>::max();
  2555. if (cache.recurrent) {
  2556. // for Mamba-like models, only the pos needs to be changed
  2557. if (0 <= seq_id && seq_id < (int64_t) cache.size) {
  2558. llama_kv_cell & cell = cache.cells[seq_id];
  2559. if (cell.has_seq_id(seq_id) && p0 <= cell.pos && cell.pos < p1) {
  2560. cell.pos /= d;
  2561. }
  2562. }
  2563. return;
  2564. }
  2565. for (uint32_t i = 0; i < cache.size; ++i) {
  2566. if (cache.cells[i].has_seq_id(seq_id) && cache.cells[i].pos >= p0 && cache.cells[i].pos < p1) {
  2567. cache.has_shift = true;
  2568. {
  2569. llama_pos p_old = cache.cells[i].pos;
  2570. cache.cells[i].pos /= d;
  2571. cache.cells[i].delta += cache.cells[i].pos - p_old;
  2572. }
  2573. }
  2574. }
  2575. }
  2576. static llama_pos llama_kv_cache_seq_pos_max(struct llama_kv_cache & cache, llama_seq_id seq_id) {
  2577. llama_pos result = 0;
  2578. for (uint32_t i = 0; i < cache.size; ++i) {
  2579. if (cache.cells[i].has_seq_id(seq_id)) {
  2580. result = std::max(result, cache.cells[i].pos);
  2581. }
  2582. }
  2583. return result;
  2584. }
  2585. static void llama_kv_cache_defrag(struct llama_kv_cache & cache) {
  2586. cache.do_defrag = true;
  2587. }
  2588. static uint32_t llama_kv_cache_get_padding(const struct llama_cparams & cparams) {
  2589. // the FA kernels require padding to avoid extra runtime boundary checks
  2590. return cparams.flash_attn ? 256u : 32u;
  2591. }
  2592. //
  2593. // model loading and saving
  2594. //
  2595. enum llama_fver {
  2596. GGUF_FILE_VERSION_V1 = 1,
  2597. GGUF_FILE_VERSION_V2 = 2,
  2598. GGUF_FILE_VERSION_V3 = 3,
  2599. };
  2600. static const char * llama_file_version_name(llama_fver version) {
  2601. switch (version) {
  2602. case GGUF_FILE_VERSION_V1: return "GGUF V1 (support until nov 2023)";
  2603. case GGUF_FILE_VERSION_V2: return "GGUF V2";
  2604. case GGUF_FILE_VERSION_V3: return "GGUF V3 (latest)";
  2605. }
  2606. return "unknown";
  2607. }
  2608. static std::string llama_format_tensor_shape(const std::vector<int64_t> & ne) {
  2609. char buf[256];
  2610. snprintf(buf, sizeof(buf), "%5" PRId64, ne.at(0));
  2611. for (size_t i = 1; i < ne.size(); i++) {
  2612. snprintf(buf + strlen(buf), sizeof(buf) - strlen(buf), ", %5" PRId64, ne.at(i));
  2613. }
  2614. return buf;
  2615. }
  2616. static std::string llama_format_tensor_shape(const struct ggml_tensor * t) {
  2617. char buf[256];
  2618. snprintf(buf, sizeof(buf), "%5" PRId64, t->ne[0]);
  2619. for (int i = 1; i < GGML_MAX_DIMS; i++) {
  2620. snprintf(buf + strlen(buf), sizeof(buf) - strlen(buf), ", %5" PRId64, t->ne[i]);
  2621. }
  2622. return buf;
  2623. }
  2624. namespace GGUFMeta {
  2625. template <typename T, gguf_type gt_, T (*gfun)(const gguf_context *, const int)>
  2626. struct GKV_Base_Type {
  2627. static constexpr gguf_type gt = gt_;
  2628. static T getter(const gguf_context * ctx, const int kid) {
  2629. return gfun(ctx, kid);
  2630. }
  2631. };
  2632. template<typename T> struct GKV_Base;
  2633. template<> struct GKV_Base<bool >: GKV_Base_Type<bool, GGUF_TYPE_BOOL, gguf_get_val_bool> {};
  2634. template<> struct GKV_Base<uint8_t >: GKV_Base_Type<uint8_t, GGUF_TYPE_UINT8, gguf_get_val_u8 > {};
  2635. template<> struct GKV_Base<uint16_t >: GKV_Base_Type<uint16_t, GGUF_TYPE_UINT16, gguf_get_val_u16 > {};
  2636. template<> struct GKV_Base<uint32_t >: GKV_Base_Type<uint32_t, GGUF_TYPE_UINT32, gguf_get_val_u32 > {};
  2637. template<> struct GKV_Base<uint64_t >: GKV_Base_Type<uint64_t, GGUF_TYPE_UINT64, gguf_get_val_u64 > {};
  2638. template<> struct GKV_Base<int8_t >: GKV_Base_Type<int8_t, GGUF_TYPE_INT8, gguf_get_val_i8 > {};
  2639. template<> struct GKV_Base<int16_t >: GKV_Base_Type<int16_t, GGUF_TYPE_INT16, gguf_get_val_i16 > {};
  2640. template<> struct GKV_Base<int32_t >: GKV_Base_Type<int32_t, GGUF_TYPE_INT32, gguf_get_val_i32 > {};
  2641. template<> struct GKV_Base<int64_t >: GKV_Base_Type<int64_t, GGUF_TYPE_INT64, gguf_get_val_i64 > {};
  2642. template<> struct GKV_Base<float >: GKV_Base_Type<float, GGUF_TYPE_FLOAT32, gguf_get_val_f32 > {};
  2643. template<> struct GKV_Base<double >: GKV_Base_Type<double, GGUF_TYPE_FLOAT64, gguf_get_val_f64 > {};
  2644. template<> struct GKV_Base<const char *>: GKV_Base_Type<const char *, GGUF_TYPE_STRING, gguf_get_val_str > {};
  2645. template<> struct GKV_Base<std::string> {
  2646. static constexpr gguf_type gt = GGUF_TYPE_STRING;
  2647. static std::string getter(const gguf_context * ctx, const int kid) {
  2648. return gguf_get_val_str(ctx, kid);
  2649. }
  2650. };
  2651. struct ArrayInfo {
  2652. const gguf_type gt;
  2653. const size_t length;
  2654. const void * data;
  2655. };
  2656. template<> struct GKV_Base<ArrayInfo> {
  2657. public:
  2658. static constexpr gguf_type gt = GGUF_TYPE_ARRAY;
  2659. static ArrayInfo getter(const gguf_context *ctx, const int k) {
  2660. return ArrayInfo {
  2661. gguf_get_arr_type(ctx, k),
  2662. size_t(gguf_get_arr_n(ctx, k)),
  2663. gguf_get_arr_data(ctx, k),
  2664. };
  2665. }
  2666. };
  2667. template<typename T>
  2668. class GKV : public GKV_Base<T> {
  2669. GKV() = delete;
  2670. public:
  2671. static T get_kv(const gguf_context * ctx, const int k) {
  2672. const enum gguf_type kt = gguf_get_kv_type(ctx, k);
  2673. if (kt != GKV::gt) {
  2674. throw std::runtime_error(format("key %s has wrong type %s but expected type %s",
  2675. gguf_get_key(ctx, k), gguf_type_name(kt), gguf_type_name(GKV::gt)));
  2676. }
  2677. return GKV::getter(ctx, k);
  2678. }
  2679. static const char * override_type_to_str(const llama_model_kv_override_type ty) {
  2680. switch (ty) {
  2681. case LLAMA_KV_OVERRIDE_TYPE_BOOL: return "bool";
  2682. case LLAMA_KV_OVERRIDE_TYPE_INT: return "int";
  2683. case LLAMA_KV_OVERRIDE_TYPE_FLOAT: return "float";
  2684. case LLAMA_KV_OVERRIDE_TYPE_STR: return "str";
  2685. }
  2686. return "unknown";
  2687. }
  2688. static bool validate_override(const llama_model_kv_override_type expected_type, const struct llama_model_kv_override * ovrd) {
  2689. if (!ovrd) { return false; }
  2690. if (ovrd->tag == expected_type) {
  2691. LLAMA_LOG_INFO("%s: Using metadata override (%5s) '%s' = ",
  2692. __func__, override_type_to_str(ovrd->tag), ovrd->key);
  2693. switch (ovrd->tag) {
  2694. case LLAMA_KV_OVERRIDE_TYPE_BOOL: {
  2695. LLAMA_LOG_INFO("%s\n", ovrd->val_bool ? "true" : "false");
  2696. } break;
  2697. case LLAMA_KV_OVERRIDE_TYPE_INT: {
  2698. LLAMA_LOG_INFO("%" PRId64 "\n", ovrd->val_i64);
  2699. } break;
  2700. case LLAMA_KV_OVERRIDE_TYPE_FLOAT: {
  2701. LLAMA_LOG_INFO("%.6f\n", ovrd->val_f64);
  2702. } break;
  2703. case LLAMA_KV_OVERRIDE_TYPE_STR: {
  2704. LLAMA_LOG_INFO("%s\n", ovrd->val_str);
  2705. } break;
  2706. default:
  2707. // Shouldn't be possible to end up here, but just in case...
  2708. throw std::runtime_error(
  2709. format("Unsupported attempt to override %s type for metadata key %s\n",
  2710. override_type_to_str(ovrd->tag), ovrd->key));
  2711. }
  2712. return true;
  2713. }
  2714. LLAMA_LOG_WARN("%s: Warning: Bad metadata override type for key '%s', expected %s but got %s\n",
  2715. __func__, ovrd->key, override_type_to_str(expected_type), override_type_to_str(ovrd->tag));
  2716. return false;
  2717. }
  2718. template<typename OT>
  2719. static typename std::enable_if<std::is_same<OT, bool>::value, bool>::type
  2720. try_override(OT & target, const struct llama_model_kv_override * ovrd) {
  2721. if (validate_override(LLAMA_KV_OVERRIDE_TYPE_BOOL, ovrd)) {
  2722. target = ovrd->val_bool;
  2723. return true;
  2724. }
  2725. return false;
  2726. }
  2727. template<typename OT>
  2728. static typename std::enable_if<!std::is_same<OT, bool>::value && std::is_integral<OT>::value, bool>::type
  2729. try_override(OT & target, const struct llama_model_kv_override * ovrd) {
  2730. if (validate_override(LLAMA_KV_OVERRIDE_TYPE_INT, ovrd)) {
  2731. target = ovrd->val_i64;
  2732. return true;
  2733. }
  2734. return false;
  2735. }
  2736. template<typename OT>
  2737. static typename std::enable_if<std::is_floating_point<OT>::value, bool>::type
  2738. try_override(T & target, const struct llama_model_kv_override * ovrd) {
  2739. if (validate_override(LLAMA_KV_OVERRIDE_TYPE_FLOAT, ovrd)) {
  2740. target = ovrd->val_f64;
  2741. return true;
  2742. }
  2743. return false;
  2744. }
  2745. template<typename OT>
  2746. static typename std::enable_if<std::is_same<OT, std::string>::value, bool>::type
  2747. try_override(T & target, const struct llama_model_kv_override * ovrd) {
  2748. if (validate_override(LLAMA_KV_OVERRIDE_TYPE_STR, ovrd)) {
  2749. target = ovrd->val_str;
  2750. return true;
  2751. }
  2752. return false;
  2753. }
  2754. static bool set(const gguf_context * ctx, const int k, T & target, const struct llama_model_kv_override * ovrd = nullptr) {
  2755. if (try_override<T>(target, ovrd)) {
  2756. return true;
  2757. }
  2758. if (k < 0) { return false; }
  2759. target = get_kv(ctx, k);
  2760. return true;
  2761. }
  2762. static bool set(const gguf_context * ctx, const char * key, T & target, const struct llama_model_kv_override * ovrd = nullptr) {
  2763. return set(ctx, gguf_find_key(ctx, key), target, ovrd);
  2764. }
  2765. static bool set(const gguf_context * ctx, const std::string & key, T & target, const struct llama_model_kv_override * ovrd = nullptr) {
  2766. return set(ctx, key.c_str(), target, ovrd);
  2767. }
  2768. };
  2769. }
  2770. using llama_buf_map = std::unordered_map<uint32_t, ggml_backend_buffer_t>;
  2771. struct llama_model_loader {
  2772. int n_kv = 0;
  2773. int n_tensors = 0;
  2774. int n_created = 0;
  2775. int64_t n_elements = 0;
  2776. size_t n_bytes = 0;
  2777. bool use_mmap = false;
  2778. bool check_tensors;
  2779. llama_files files;
  2780. llama_ftype ftype;
  2781. llama_fver fver;
  2782. llama_mmaps mappings;
  2783. // Holds information on a model weight
  2784. struct llama_tensor_weight {
  2785. uint16_t idx; // source file index
  2786. size_t offs; // tensor data offset in the original file
  2787. ggml_tensor * tensor;
  2788. llama_tensor_weight(const llama_file * file, uint16_t idx, const char * name, const struct gguf_context * gguf_ctx, ggml_tensor * tensor) : idx(idx), tensor(tensor) {
  2789. const int tensor_idx = gguf_find_tensor(gguf_ctx, name);
  2790. offs = gguf_get_data_offset(gguf_ctx) + gguf_get_tensor_offset(gguf_ctx, tensor_idx);
  2791. if (offs + ggml_nbytes(tensor) < offs || offs + ggml_nbytes(tensor) > file->size) {
  2792. throw std::runtime_error(format("tensor '%s' data is not within the file bounds, model is corrupted or incomplete", name));
  2793. }
  2794. }
  2795. };
  2796. std::vector<llama_tensor_weight> weights;
  2797. std::unordered_map<std::string, struct llama_model_kv_override> kv_overrides;
  2798. struct gguf_context * meta = NULL;
  2799. std::vector<ggml_context *> contexts;
  2800. std::string arch_name;
  2801. LLM_KV llm_kv = LLM_KV(LLM_ARCH_UNKNOWN);
  2802. llama_model_loader(const std::string & fname, bool use_mmap, bool check_tensors, const struct llama_model_kv_override * param_overrides_p) {
  2803. int trace = 0;
  2804. if (getenv("LLAMA_TRACE")) {
  2805. trace = atoi(getenv("LLAMA_TRACE"));
  2806. }
  2807. if (param_overrides_p != nullptr) {
  2808. for (const struct llama_model_kv_override *p = param_overrides_p; p->key[0] != 0; p++) {
  2809. kv_overrides.insert({std::string(p->key), *p});
  2810. }
  2811. }
  2812. struct ggml_context * ctx = NULL;
  2813. struct gguf_init_params params = {
  2814. /*.no_alloc = */ true,
  2815. /*.ctx = */ &ctx,
  2816. };
  2817. meta = gguf_init_from_file(fname.c_str(), params);
  2818. if (!meta) {
  2819. throw std::runtime_error(format("%s: failed to load model from %s\n", __func__, fname.c_str()));
  2820. }
  2821. get_key(llm_kv(LLM_KV_GENERAL_ARCHITECTURE), arch_name, false);
  2822. llm_kv = LLM_KV(llm_arch_from_string(arch_name));
  2823. files.emplace_back(new llama_file(fname.c_str(), "rb"));
  2824. contexts.emplace_back(ctx);
  2825. // Save tensors data offset of the main file.
  2826. // For subsidiary files, `meta` tensor data offset must not be used,
  2827. // so we build a unified tensors index for weights.
  2828. for (ggml_tensor * cur = ggml_get_first_tensor(ctx); cur; cur = ggml_get_next_tensor(ctx, cur)) {
  2829. weights.emplace_back(files.back().get(), 0, cur->name, meta, cur);
  2830. }
  2831. uint16_t n_split = 0;
  2832. get_key(llm_kv(LLM_KV_SPLIT_COUNT), n_split, false);
  2833. // Load additional GGML contexts
  2834. if (n_split > 1) {
  2835. uint16_t idx = 0;
  2836. get_key(llm_kv(LLM_KV_SPLIT_NO), idx);
  2837. if (idx != 0) {
  2838. throw std::runtime_error(format("illegal split file: %d, model must be loaded with the first split", idx));
  2839. }
  2840. char split_prefix[PATH_MAX] = {0};
  2841. if (!llama_split_prefix(split_prefix, sizeof(split_prefix), fname.c_str(), idx, n_split)) {
  2842. throw std::runtime_error(format("invalid split file: %s", fname.c_str()));
  2843. }
  2844. if (trace > 0) {
  2845. LLAMA_LOG_INFO("%s: loading additional %d GGUFs\n", __func__, n_split);
  2846. }
  2847. char split_path[PATH_MAX] = {0};
  2848. for (idx = 1; idx < n_split; idx++) {
  2849. llama_split_path(split_path, sizeof(split_path), split_prefix, idx, n_split);
  2850. struct gguf_init_params split_params = {
  2851. /*.no_alloc = */ true,
  2852. /*.ctx = */ &ctx,
  2853. };
  2854. struct gguf_context * ctx_gguf = gguf_init_from_file(split_path, split_params);
  2855. if (!ctx_gguf) {
  2856. throw std::runtime_error(format("%s: failed to load GGUF split from %s\n", __func__, split_path));
  2857. }
  2858. files.emplace_back(new llama_file(split_path, "rb"));
  2859. contexts.emplace_back(ctx);
  2860. // Save tensors data offset info of the shard.
  2861. for (ggml_tensor * cur = ggml_get_first_tensor(ctx); cur; cur = ggml_get_next_tensor(ctx, cur)) {
  2862. weights.emplace_back(files.back().get(), idx, cur->name, ctx_gguf, cur);
  2863. }
  2864. gguf_free(ctx_gguf);
  2865. }
  2866. get_key(llm_kv(LLM_KV_SPLIT_TENSORS_COUNT), n_tensors);
  2867. // sanity check
  2868. {
  2869. const int n_tensors_loaded = (int) weights.size();
  2870. if (n_tensors != n_tensors_loaded) {
  2871. throw std::runtime_error(format("corrupted model: %d tensors expected but %d found", n_tensors, n_tensors_loaded));
  2872. }
  2873. }
  2874. LLAMA_LOG_INFO("%s: additional %d GGUFs metadata loaded.\n", __func__, n_split - 1);
  2875. }
  2876. n_kv = gguf_get_n_kv(meta);
  2877. n_tensors = weights.size();
  2878. fver = (enum llama_fver) gguf_get_version(meta);
  2879. std::set<std::string> tensor_names;
  2880. for (auto & w : weights) {
  2881. n_elements += ggml_nelements(w.tensor);
  2882. n_bytes += ggml_nbytes(w.tensor);
  2883. // make sure there is no duplicated tensor names
  2884. const std::string name(w.tensor->name);
  2885. auto found = tensor_names.find(name);
  2886. if (found != tensor_names.end()) {
  2887. throw std::runtime_error(format("invalid model: tensor '%s' is duplicated", w.tensor->name));
  2888. }
  2889. tensor_names.insert(name);
  2890. }
  2891. LLAMA_LOG_INFO("%s: loaded meta data with %d key-value pairs and %d tensors from %s (version %s)\n",
  2892. __func__, n_kv, n_tensors, fname.c_str(), llama_file_version_name(fver));
  2893. // determine file type based on the number of tensors for each quantization and print meta data
  2894. // TODO: make optional
  2895. {
  2896. std::map<enum ggml_type, uint32_t> n_type;
  2897. uint32_t n_type_max = 0;
  2898. enum ggml_type type_max = GGML_TYPE_F32;
  2899. for (int i = 0; i < n_tensors; i++) {
  2900. const ggml_tensor * tensor = weights.at(i).tensor;
  2901. enum ggml_type type = tensor->type;
  2902. n_type[type]++;
  2903. if (n_type_max < n_type[type]) {
  2904. n_type_max = n_type[type];
  2905. type_max = type;
  2906. }
  2907. if (trace > 0) {
  2908. const uint16_t sid = weights.at(i).idx;
  2909. LLAMA_LOG_INFO("%s: - tensor %4d, split %2d: %32s %-8s [ %s ]\n", __func__, i, sid, ggml_get_name(tensor), ggml_type_name(type), llama_format_tensor_shape(tensor).c_str());
  2910. }
  2911. }
  2912. switch (type_max) {
  2913. case GGML_TYPE_F32: ftype = LLAMA_FTYPE_ALL_F32; break;
  2914. case GGML_TYPE_F16: ftype = LLAMA_FTYPE_MOSTLY_F16; break;
  2915. case GGML_TYPE_BF16: ftype = LLAMA_FTYPE_MOSTLY_BF16; break;
  2916. case GGML_TYPE_Q4_0: ftype = LLAMA_FTYPE_MOSTLY_Q4_0; break;
  2917. case GGML_TYPE_Q4_1: ftype = LLAMA_FTYPE_MOSTLY_Q4_1; break;
  2918. case GGML_TYPE_Q5_0: ftype = LLAMA_FTYPE_MOSTLY_Q5_0; break;
  2919. case GGML_TYPE_Q5_1: ftype = LLAMA_FTYPE_MOSTLY_Q5_1; break;
  2920. case GGML_TYPE_Q8_0: ftype = LLAMA_FTYPE_MOSTLY_Q8_0; break;
  2921. case GGML_TYPE_Q2_K: ftype = LLAMA_FTYPE_MOSTLY_Q2_K; break;
  2922. case GGML_TYPE_Q3_K: ftype = LLAMA_FTYPE_MOSTLY_Q3_K_M; break;
  2923. case GGML_TYPE_Q4_K: ftype = LLAMA_FTYPE_MOSTLY_Q4_K_M; break;
  2924. case GGML_TYPE_Q5_K: ftype = LLAMA_FTYPE_MOSTLY_Q5_K_M; break;
  2925. case GGML_TYPE_Q6_K: ftype = LLAMA_FTYPE_MOSTLY_Q6_K; break;
  2926. case GGML_TYPE_IQ2_XXS: ftype = LLAMA_FTYPE_MOSTLY_IQ2_XXS; break;
  2927. case GGML_TYPE_IQ2_XS: ftype = LLAMA_FTYPE_MOSTLY_IQ2_XS; break;
  2928. case GGML_TYPE_IQ2_S: ftype = LLAMA_FTYPE_MOSTLY_IQ2_S; break;
  2929. case GGML_TYPE_IQ3_XXS: ftype = LLAMA_FTYPE_MOSTLY_IQ3_XXS; break;
  2930. case GGML_TYPE_IQ1_S: ftype = LLAMA_FTYPE_MOSTLY_IQ1_S; break;
  2931. case GGML_TYPE_IQ1_M: ftype = LLAMA_FTYPE_MOSTLY_IQ1_M; break;
  2932. case GGML_TYPE_IQ4_NL: ftype = LLAMA_FTYPE_MOSTLY_IQ4_NL; break;
  2933. case GGML_TYPE_IQ4_XS: ftype = LLAMA_FTYPE_MOSTLY_IQ4_XS; break;
  2934. case GGML_TYPE_IQ3_S: ftype = LLAMA_FTYPE_MOSTLY_IQ3_S; break;
  2935. default:
  2936. {
  2937. LLAMA_LOG_WARN("%s: unknown type %s\n", __func__, ggml_type_name(type_max));
  2938. ftype = LLAMA_FTYPE_ALL_F32;
  2939. } break;
  2940. }
  2941. // this is a way to mark that we have "guessed" the file type
  2942. ftype = (llama_ftype) (ftype | LLAMA_FTYPE_GUESSED);
  2943. {
  2944. const int kid = gguf_find_key(meta, "general.file_type");
  2945. if (kid >= 0) {
  2946. ftype = (llama_ftype) gguf_get_val_u32(meta, kid);
  2947. }
  2948. }
  2949. LLAMA_LOG_INFO("%s: Dumping metadata keys/values. Note: KV overrides do not apply in this output.\n", __func__);
  2950. for (int i = 0; i < n_kv; i++) {
  2951. const char * name = gguf_get_key(meta, i);
  2952. const enum gguf_type type = gguf_get_kv_type(meta, i);
  2953. const std::string type_name =
  2954. type == GGUF_TYPE_ARRAY
  2955. ? format("%s[%s,%d]", gguf_type_name(type), gguf_type_name(gguf_get_arr_type(meta, i)), gguf_get_arr_n(meta, i))
  2956. : gguf_type_name(type);
  2957. std::string value = gguf_kv_to_str(meta, i);
  2958. const size_t MAX_VALUE_LEN = 40;
  2959. if (value.size() > MAX_VALUE_LEN) {
  2960. value = format("%s...", value.substr(0, MAX_VALUE_LEN - 3).c_str());
  2961. }
  2962. replace_all(value, "\n", "\\n");
  2963. LLAMA_LOG_INFO("%s: - kv %3d: %42s %-16s = %s\n", __func__, i, name, type_name.c_str(), value.c_str());
  2964. }
  2965. // print type counts
  2966. for (auto & kv : n_type) {
  2967. if (kv.second == 0) {
  2968. continue;
  2969. }
  2970. LLAMA_LOG_INFO("%s: - type %4s: %4d tensors\n", __func__, ggml_type_name(kv.first), kv.second);
  2971. }
  2972. }
  2973. if (!llama_mmap::SUPPORTED) {
  2974. LLAMA_LOG_WARN("%s: mmap is not supported on this platform\n", __func__);
  2975. use_mmap = false;
  2976. }
  2977. this->use_mmap = use_mmap;
  2978. this->check_tensors = check_tensors;
  2979. }
  2980. ~llama_model_loader() {
  2981. if (meta) {
  2982. gguf_free(meta);
  2983. }
  2984. for (auto * ctx : contexts) {
  2985. ggml_free(ctx);
  2986. }
  2987. }
  2988. template<typename T>
  2989. typename std::enable_if<std::is_integral<T>::value, bool>::type
  2990. get_arr_n(const std::string & key, T & result, const bool required = true) {
  2991. const int kid = gguf_find_key(meta, key.c_str());
  2992. if (kid < 0) {
  2993. if (required) {
  2994. throw std::runtime_error(format("key not found in model: %s", key.c_str()));
  2995. }
  2996. return false;
  2997. }
  2998. struct GGUFMeta::ArrayInfo arr_info =
  2999. GGUFMeta::GKV<GGUFMeta::ArrayInfo>::get_kv(meta, kid);
  3000. result = arr_info.length;
  3001. return true;
  3002. }
  3003. template<typename T>
  3004. typename std::enable_if<std::is_integral<T>::value, bool>::type
  3005. get_arr_n(const enum llm_kv kid, T & result, const bool required = true) {
  3006. return get_arr_n(llm_kv(kid), result, required);
  3007. }
  3008. template<typename T>
  3009. bool get_arr(const std::string & key, std::vector<T> & result, const bool required = true) {
  3010. const int kid = gguf_find_key(meta, key.c_str());
  3011. if (kid < 0) {
  3012. if (required) {
  3013. throw std::runtime_error(format("key not found in model: %s", key.c_str()));
  3014. }
  3015. return false;
  3016. }
  3017. struct GGUFMeta::ArrayInfo arr_info =
  3018. GGUFMeta::GKV<GGUFMeta::ArrayInfo>::get_kv(meta, kid);
  3019. if (arr_info.gt != GGUF_TYPE_FLOAT32 && arr_info.gt != GGUF_TYPE_INT32) {
  3020. throw std::runtime_error(format("%s is not a float32 or int32 array", key.c_str()));
  3021. }
  3022. // GGML_ASSERT(gguf_type_size(arr_info.gt) == sizeof(T));
  3023. GGML_ASSERT((arr_info.gt != GGUF_TYPE_FLOAT32 || std::is_same<T, float>::value));
  3024. GGML_ASSERT((arr_info.gt != GGUF_TYPE_INT32 || std::is_same<T, int>::value));
  3025. result.resize(arr_info.length);
  3026. result.assign((const T*)arr_info.data, (const T *)arr_info.data + arr_info.length);
  3027. return true;
  3028. }
  3029. template<typename T>
  3030. bool get_arr(const enum llm_kv kid, T& result, const bool required = true) {
  3031. return get_arr(llm_kv(kid), result, required);
  3032. }
  3033. template<typename T>
  3034. bool get_key(const std::string & key, T & result, const bool required = true) {
  3035. auto it = kv_overrides.find(key);
  3036. const struct llama_model_kv_override * override =
  3037. it != kv_overrides.end() ? &it->second : nullptr;
  3038. const bool found = GGUFMeta::GKV<T>::set(meta, key, result, override);
  3039. if (required && !found) {
  3040. throw std::runtime_error(format("key not found in model: %s", key.c_str()));
  3041. }
  3042. return found;
  3043. }
  3044. template<typename T>
  3045. bool get_key(const enum llm_kv kid, T & result, const bool required = true) {
  3046. return get_key(llm_kv(kid), result, required);
  3047. }
  3048. std::string get_arch_name() const {
  3049. return arch_name;
  3050. }
  3051. enum llm_arch get_arch() const {
  3052. return llm_kv.arch;
  3053. }
  3054. const char * get_tensor_name(int i) const {
  3055. return weights.at(i).tensor->name;
  3056. }
  3057. const llama_tensor_weight * get_weight(const char * name) const {
  3058. for (const auto & weight : weights) {
  3059. if (strcmp(name, weight.tensor->name) == 0) {
  3060. return &weight;
  3061. }
  3062. }
  3063. return nullptr;
  3064. }
  3065. const llama_tensor_weight * get_weight(int i) const {
  3066. return get_weight(get_tensor_name(i));
  3067. }
  3068. const llama_tensor_weight & require_weight(const char * name) const {
  3069. const llama_tensor_weight * weight = get_weight(name);
  3070. if (!weight) {
  3071. throw std::runtime_error(format("%s: tensor '%s' not found", __func__, name));
  3072. }
  3073. return *weight;
  3074. }
  3075. struct ggml_tensor * get_tensor_meta(const char * name) const {
  3076. const auto * weight = get_weight(name);
  3077. if (!weight) {
  3078. return nullptr;
  3079. }
  3080. return weight->tensor;
  3081. }
  3082. struct ggml_tensor * require_tensor_meta(const char * name) const {
  3083. struct ggml_tensor * tensor = get_tensor_meta(name);
  3084. if (!tensor) {
  3085. throw std::runtime_error(format("%s: tensor '%s' not found", __func__, name));
  3086. }
  3087. return tensor;
  3088. }
  3089. struct ggml_tensor * get_tensor_meta(int i) const {
  3090. return get_tensor_meta(get_tensor_name(i));
  3091. }
  3092. struct ggml_tensor * create_tensor_for(struct ggml_context * ctx, const struct ggml_tensor * cur, bool duplicated) {
  3093. struct ggml_tensor * tensor = ggml_dup_tensor(ctx, cur);
  3094. ggml_set_name(tensor, ggml_get_name(cur));
  3095. if (duplicated) {
  3096. size_data += ggml_nbytes(cur);
  3097. } else {
  3098. n_created++;
  3099. }
  3100. return tensor;
  3101. }
  3102. const struct ggml_tensor * check_tensor_dims(const std::string & name, const std::vector<int64_t> & ne, bool required) const {
  3103. const struct ggml_tensor * cur = get_tensor_meta(name.c_str());
  3104. if (cur == NULL) {
  3105. if (!required) {
  3106. return NULL;
  3107. }
  3108. throw std::runtime_error(format("%s: tensor '%s' not found", __func__, name.c_str()));
  3109. }
  3110. {
  3111. bool is_ok = true;
  3112. for (size_t i = 0; i < GGML_MAX_DIMS; ++i) {
  3113. if ((i < ne.size() && ne[i] != cur->ne[i]) || (i >= ne.size() && cur->ne[i] != 1)) {
  3114. is_ok = false;
  3115. break;
  3116. }
  3117. }
  3118. if (!is_ok) {
  3119. throw std::runtime_error(
  3120. format("%s: tensor '%s' has wrong shape; expected %s, got %s",
  3121. __func__, name.c_str(),
  3122. llama_format_tensor_shape(ne).c_str(),
  3123. llama_format_tensor_shape(cur).c_str()));
  3124. }
  3125. }
  3126. return cur;
  3127. }
  3128. static const int TENSOR_NOT_REQUIRED = 1;
  3129. static const int TENSOR_DUPLICATED = 2;
  3130. struct ggml_tensor * create_tensor(struct ggml_context * ctx, const std::string & name, const std::vector<int64_t> & ne, int flags = 0) {
  3131. const struct ggml_tensor * cur = check_tensor_dims(name, ne, !(flags & TENSOR_NOT_REQUIRED));
  3132. if (cur == NULL) {
  3133. return NULL;
  3134. }
  3135. return create_tensor_for(ctx, cur, flags & TENSOR_DUPLICATED);
  3136. }
  3137. struct ggml_tensor * create_tensor_as_view(struct ggml_context * ctx, struct ggml_tensor * base, const std::string & name, const std::vector<int64_t> & ne, size_t offset, bool required = true) {
  3138. const struct ggml_tensor * cur = check_tensor_dims(name, ne, required);
  3139. if (cur == NULL) {
  3140. return NULL;
  3141. }
  3142. if (cur->type != base->type) {
  3143. throw std::runtime_error(format("%s: tensor '%s' has wrong type; expected %s, got %s", __func__, name.c_str(), ggml_type_name(base->type), ggml_type_name(cur->type)));
  3144. }
  3145. std::array<int64_t, GGML_MAX_DIMS> dims;
  3146. for (size_t i = 0; i < GGML_MAX_DIMS; ++i) {
  3147. dims[i] = i < ne.size() ? ne[i] : 1;
  3148. }
  3149. struct ggml_tensor * tensor = ggml_view_4d(ctx, base,
  3150. dims[0], dims[1], dims[2], dims[3],
  3151. cur->nb[1], cur->nb[2], cur->nb[3],
  3152. offset);
  3153. ggml_set_name(tensor, name.c_str());
  3154. n_created++;
  3155. return tensor;
  3156. }
  3157. void done_getting_tensors() const {
  3158. if (n_created != n_tensors) {
  3159. throw std::runtime_error(format("%s: wrong number of tensors; expected %d, got %d", __func__, n_tensors, n_created));
  3160. }
  3161. }
  3162. void init_mappings(bool prefetch = true, llama_mlocks * mlock_mmaps = nullptr) {
  3163. if (use_mmap) {
  3164. mappings.reserve(files.size());
  3165. mmaps_used.reserve(files.size());
  3166. for (const auto & file : files) {
  3167. std::unique_ptr<llama_mmap> mapping(new llama_mmap(file.get(), prefetch ? -1 : 0, ggml_is_numa()));
  3168. mmaps_used.emplace_back(mapping->size, 0);
  3169. if (mlock_mmaps) {
  3170. std::unique_ptr<llama_mlock> mlock_mmap(new llama_mlock());
  3171. mlock_mmap->init(mapping->addr);
  3172. mlock_mmaps->emplace_back(std::move(mlock_mmap));
  3173. }
  3174. mappings.emplace_back(std::move(mapping));
  3175. }
  3176. }
  3177. // compute the total size of all tensors for progress reporting
  3178. for (auto & w : weights) {
  3179. size_data += ggml_nbytes(w.tensor);
  3180. }
  3181. }
  3182. void get_mapping_range(size_t * first, size_t * last, void ** addr, int idx, ggml_context * ctx) const {
  3183. GGML_ASSERT(!mappings.empty());
  3184. const auto & mapping = mappings.at(idx);
  3185. *first = mapping->size;
  3186. *last = 0;
  3187. *addr = mapping->addr;
  3188. for (ggml_tensor * tensor = ggml_get_first_tensor(ctx); tensor; tensor = ggml_get_next_tensor(ctx, tensor)) {
  3189. try {
  3190. const auto * weight = get_weight(ggml_get_name(tensor));
  3191. if (!weight) {
  3192. continue;
  3193. }
  3194. if (weight->idx != idx) {
  3195. continue;
  3196. }
  3197. *first = std::min(*first, weight->offs);
  3198. *last = std::max(*last, weight->offs + ggml_nbytes(tensor));
  3199. } catch(...) {
  3200. // the tensor is not in the model
  3201. }
  3202. }
  3203. }
  3204. // for backwards compatibility, does not support ggml-backend
  3205. void load_data_for(struct ggml_tensor * cur) const {
  3206. const auto & w = require_weight(ggml_get_name(cur));
  3207. if (use_mmap) {
  3208. const auto & mapping = mappings.at(w.idx);
  3209. if (cur->data == nullptr) {
  3210. cur->data = (uint8_t *)mapping->addr + w.offs;
  3211. } else {
  3212. memcpy(cur->data, (uint8_t *)mapping->addr + w.offs, ggml_nbytes(cur));
  3213. }
  3214. } else {
  3215. GGML_ASSERT(cur->data != nullptr);
  3216. GGML_ASSERT(w.idx < files.size());
  3217. const auto & file = files.at(w.idx);
  3218. file->seek(w.offs, SEEK_SET);
  3219. file->read_raw(cur->data, ggml_nbytes(cur));
  3220. }
  3221. if (check_tensors && !ggml_validate_row_data(cur->type, cur->data, ggml_nbytes(cur))) {
  3222. throw std::runtime_error(format("tensor '%s' has invalid data", ggml_get_name(cur)));
  3223. }
  3224. }
  3225. size_t size_done = 0;
  3226. size_t size_data = 0;
  3227. std::vector<std::pair<size_t, size_t>> mmaps_used;
  3228. // Returns false if cancelled by progress_callback
  3229. bool load_all_data(
  3230. struct ggml_context * ctx,
  3231. llama_buf_map & bufs_mmap,
  3232. llama_mlocks * lmlocks,
  3233. llama_progress_callback progress_callback,
  3234. void * progress_callback_user_data) {
  3235. GGML_ASSERT(size_data != 0 && "call init_mappings() first");
  3236. std::vector<no_init<uint8_t>> read_buf;
  3237. std::vector<std::future<std::pair<ggml_tensor *, bool>>> validation_result;
  3238. for (struct ggml_tensor * cur = ggml_get_first_tensor(ctx); cur != NULL; cur = ggml_get_next_tensor(ctx, cur)) {
  3239. const auto * weight = get_weight(ggml_get_name(cur));
  3240. if (weight == nullptr) {
  3241. // this can happen with split experts models
  3242. continue;
  3243. }
  3244. if (progress_callback) {
  3245. if (!progress_callback((float) size_done / size_data, progress_callback_user_data)) {
  3246. return false;
  3247. }
  3248. }
  3249. size_t n_size = ggml_nbytes(cur);
  3250. if (use_mmap) {
  3251. const auto & mapping = mappings.at(weight->idx);
  3252. ggml_backend_buffer_t buf_mmap = nullptr;
  3253. if (bufs_mmap.count(weight->idx)) {
  3254. buf_mmap = bufs_mmap.at(weight->idx);
  3255. }
  3256. uint8_t * data = (uint8_t *) mapping->addr + weight->offs;
  3257. if (check_tensors) {
  3258. validation_result.emplace_back(std::async(std::launch::async, [cur, data, n_size] {
  3259. return std::make_pair(cur, ggml_validate_row_data(cur->type, data, n_size));
  3260. }));
  3261. }
  3262. GGML_ASSERT(buf_mmap || cur->data); // either we have a buffer to allocate the tensor in, or it is already allocated
  3263. if (buf_mmap && cur->data == nullptr) {
  3264. ggml_backend_tensor_alloc(buf_mmap, cur, data);
  3265. if (lmlocks) {
  3266. const auto & lmlock = lmlocks->at(weight->idx);
  3267. lmlock->grow_to(weight->offs + n_size);
  3268. }
  3269. auto & mmap_used = mmaps_used[weight->idx];
  3270. mmap_used.first = std::min(mmap_used.first, weight->offs);
  3271. mmap_used.second = std::max(mmap_used.second, weight->offs + n_size);
  3272. } else {
  3273. ggml_backend_tensor_set(cur, data, 0, n_size);
  3274. }
  3275. } else {
  3276. GGML_ASSERT(weight->idx < files.size());
  3277. const auto & file = files.at(weight->idx);
  3278. if (ggml_backend_buffer_is_host(cur->buffer)) {
  3279. file->seek(weight->offs, SEEK_SET);
  3280. file->read_raw(cur->data, n_size);
  3281. if (check_tensors) {
  3282. validation_result.emplace_back(std::async(std::launch::async, [cur, n_size] {
  3283. return std::make_pair(cur, ggml_validate_row_data(cur->type, cur->data, n_size));
  3284. }));
  3285. }
  3286. } else {
  3287. read_buf.resize(n_size);
  3288. file->seek(weight->offs, SEEK_SET);
  3289. file->read_raw(read_buf.data(), n_size);
  3290. ggml_backend_tensor_set(cur, read_buf.data(), 0, n_size);
  3291. if (check_tensors && !ggml_validate_row_data(cur->type, read_buf.data(), n_size)) {
  3292. throw std::runtime_error(format("tensor '%s' has invalid data", ggml_get_name(cur)));
  3293. }
  3294. }
  3295. }
  3296. size_done += n_size;
  3297. }
  3298. // check validation results
  3299. bool validation_failed = false;
  3300. for (auto & future : validation_result) {
  3301. auto result = future.get();
  3302. if (!result.second) {
  3303. LLAMA_LOG_ERROR("%s: tensor '%s' has invalid data\n", __func__, ggml_get_name(result.first));
  3304. validation_failed = true;
  3305. }
  3306. }
  3307. if (validation_failed) {
  3308. throw std::runtime_error("found tensors with invalid data");
  3309. }
  3310. // check if this is the last call and do final cleanup
  3311. if (size_done >= size_data) {
  3312. // unmap offloaded tensors and metadata
  3313. if (use_mmap) {
  3314. for (uint32_t idx = 0; idx < mappings.size(); idx++) {
  3315. const auto & mmap_used = mmaps_used.at(idx);
  3316. auto & mapping = mappings.at(idx);
  3317. mapping->unmap_fragment(0, mmap_used.first);
  3318. if (mmap_used.second != 0) {
  3319. mapping->unmap_fragment(mmap_used.second, mapping->size);
  3320. }
  3321. }
  3322. }
  3323. if (progress_callback) {
  3324. // Even though the model is done loading, we still honor
  3325. // cancellation since we need to free allocations.
  3326. return progress_callback(1.0f, progress_callback_user_data);
  3327. }
  3328. }
  3329. return true;
  3330. }
  3331. };
  3332. template<>
  3333. bool llama_model_loader::get_key(const enum llm_kv kid, enum llama_pooling_type & result, const bool required) {
  3334. uint32_t tmp;
  3335. const bool found = get_key(kid, tmp, required);
  3336. if (found) {
  3337. result = (enum llama_pooling_type) tmp;
  3338. } else {
  3339. result = LLAMA_POOLING_TYPE_UNSPECIFIED;
  3340. }
  3341. return found;
  3342. }
  3343. //
  3344. // load LLaMA models
  3345. //
  3346. static const char * llama_model_arch_name(llm_arch arch) {
  3347. auto it = LLM_ARCH_NAMES.find(arch);
  3348. if (it == LLM_ARCH_NAMES.end()) {
  3349. return "unknown";
  3350. }
  3351. return it->second;
  3352. }
  3353. static std::string llama_model_ftype_name(llama_ftype ftype) {
  3354. if (ftype & LLAMA_FTYPE_GUESSED) {
  3355. return llama_model_ftype_name((enum llama_ftype) (ftype & ~LLAMA_FTYPE_GUESSED)) + " (guessed)";
  3356. }
  3357. switch (ftype) {
  3358. case LLAMA_FTYPE_ALL_F32: return "all F32";
  3359. case LLAMA_FTYPE_MOSTLY_F16: return "F16";
  3360. case LLAMA_FTYPE_MOSTLY_BF16: return "BF16";
  3361. case LLAMA_FTYPE_MOSTLY_Q4_0: return "Q4_0";
  3362. case LLAMA_FTYPE_MOSTLY_Q4_1: return "Q4_1";
  3363. case LLAMA_FTYPE_MOSTLY_Q4_1_SOME_F16:
  3364. return "Q4_1, some F16";
  3365. case LLAMA_FTYPE_MOSTLY_Q5_0: return "Q5_0";
  3366. case LLAMA_FTYPE_MOSTLY_Q5_1: return "Q5_1";
  3367. case LLAMA_FTYPE_MOSTLY_Q8_0: return "Q8_0";
  3368. // K-quants
  3369. case LLAMA_FTYPE_MOSTLY_Q2_K: return "Q2_K - Medium";
  3370. case LLAMA_FTYPE_MOSTLY_Q2_K_S: return "Q2_K - Small";
  3371. case LLAMA_FTYPE_MOSTLY_Q3_K_S: return "Q3_K - Small";
  3372. case LLAMA_FTYPE_MOSTLY_Q3_K_M: return "Q3_K - Medium";
  3373. case LLAMA_FTYPE_MOSTLY_Q3_K_L: return "Q3_K - Large";
  3374. case LLAMA_FTYPE_MOSTLY_Q4_K_S: return "Q4_K - Small";
  3375. case LLAMA_FTYPE_MOSTLY_Q4_K_M: return "Q4_K - Medium";
  3376. case LLAMA_FTYPE_MOSTLY_Q5_K_S: return "Q5_K - Small";
  3377. case LLAMA_FTYPE_MOSTLY_Q5_K_M: return "Q5_K - Medium";
  3378. case LLAMA_FTYPE_MOSTLY_Q6_K: return "Q6_K";
  3379. case LLAMA_FTYPE_MOSTLY_IQ2_XXS:return "IQ2_XXS - 2.0625 bpw";
  3380. case LLAMA_FTYPE_MOSTLY_IQ2_XS: return "IQ2_XS - 2.3125 bpw";
  3381. case LLAMA_FTYPE_MOSTLY_IQ2_S: return "IQ2_S - 2.5 bpw";
  3382. case LLAMA_FTYPE_MOSTLY_IQ2_M: return "IQ2_M - 2.7 bpw";
  3383. case LLAMA_FTYPE_MOSTLY_IQ3_XS: return "IQ3_XS - 3.3 bpw";
  3384. case LLAMA_FTYPE_MOSTLY_IQ3_XXS:return "IQ3_XXS - 3.0625 bpw";
  3385. case LLAMA_FTYPE_MOSTLY_IQ1_S :return "IQ1_S - 1.5625 bpw";
  3386. case LLAMA_FTYPE_MOSTLY_IQ1_M :return "IQ1_M - 1.75 bpw";
  3387. case LLAMA_FTYPE_MOSTLY_IQ4_NL: return "IQ4_NL - 4.5 bpw";
  3388. case LLAMA_FTYPE_MOSTLY_IQ4_XS: return "IQ4_XS - 4.25 bpw";
  3389. case LLAMA_FTYPE_MOSTLY_IQ3_S: return "IQ3_S - 3.4375 bpw";
  3390. case LLAMA_FTYPE_MOSTLY_IQ3_M: return "IQ3_S mix - 3.66 bpw";
  3391. default: return "unknown, may not work";
  3392. }
  3393. }
  3394. static const char * llama_model_type_name(e_model type) {
  3395. switch (type) {
  3396. case MODEL_14M: return "14M";
  3397. case MODEL_17M: return "17M";
  3398. case MODEL_22M: return "22M";
  3399. case MODEL_33M: return "33M";
  3400. case MODEL_70M: return "70M";
  3401. case MODEL_109M: return "109M";
  3402. case MODEL_137M: return "137M";
  3403. case MODEL_160M: return "160M";
  3404. case MODEL_335M: return "335M";
  3405. case MODEL_410M: return "410M";
  3406. case MODEL_0_5B: return "0.5B";
  3407. case MODEL_1B: return "1B";
  3408. case MODEL_1_4B: return "1.4B";
  3409. case MODEL_2B: return "2B";
  3410. case MODEL_2_8B: return "2.8B";
  3411. case MODEL_3B: return "3B";
  3412. case MODEL_4B: return "4B";
  3413. case MODEL_6_9B: return "6.9B";
  3414. case MODEL_7B: return "7B";
  3415. case MODEL_8B: return "8B";
  3416. case MODEL_12B: return "12B";
  3417. case MODEL_13B: return "13B";
  3418. case MODEL_14B: return "14B";
  3419. case MODEL_15B: return "15B";
  3420. case MODEL_16B: return "16B";
  3421. case MODEL_20B: return "20B";
  3422. case MODEL_30B: return "30B";
  3423. case MODEL_34B: return "34B";
  3424. case MODEL_35B: return "35B";
  3425. case MODEL_40B: return "40B";
  3426. case MODEL_65B: return "65B";
  3427. case MODEL_70B: return "70B";
  3428. case MODEL_236B: return "236B";
  3429. case MODEL_314B: return "314B";
  3430. case MODEL_SMALL: return "0.1B";
  3431. case MODEL_MEDIUM: return "0.4B";
  3432. case MODEL_LARGE: return "0.8B";
  3433. case MODEL_XL: return "1.5B";
  3434. case MODEL_A2_7B: return "A2.7B";
  3435. case MODEL_8x7B: return "8x7B";
  3436. case MODEL_8x22B: return "8x22B";
  3437. case MODEL_16x12B: return "16x12B";
  3438. case MODEL_10B_128x3_66B: return "10B+128x3.66B";
  3439. default: return "?B";
  3440. }
  3441. }
  3442. static const char * llama_model_vocab_type_name(enum llama_vocab_type type){
  3443. switch (type) {
  3444. case LLAMA_VOCAB_TYPE_NONE: return "no vocab";
  3445. case LLAMA_VOCAB_TYPE_SPM: return "SPM";
  3446. case LLAMA_VOCAB_TYPE_BPE: return "BPE";
  3447. case LLAMA_VOCAB_TYPE_WPM: return "WPM";
  3448. default: return "unknown";
  3449. }
  3450. }
  3451. static void llm_load_arch(llama_model_loader & ml, llama_model & model) {
  3452. model.arch = ml.get_arch();
  3453. if (model.arch == LLM_ARCH_UNKNOWN) {
  3454. throw std::runtime_error("unknown model architecture: '" + ml.get_arch_name() + "'");
  3455. }
  3456. }
  3457. static void llm_load_hparams(
  3458. llama_model_loader & ml,
  3459. llama_model & model) {
  3460. auto & hparams = model.hparams;
  3461. const gguf_context * ctx = ml.meta;
  3462. // get metadata as string
  3463. for (int i = 0; i < gguf_get_n_kv(ctx); i++) {
  3464. enum gguf_type type = gguf_get_kv_type(ctx, i);
  3465. if (type == GGUF_TYPE_ARRAY) {
  3466. continue;
  3467. }
  3468. const char * name = gguf_get_key(ctx, i);
  3469. const std::string value = gguf_kv_to_str(ctx, i);
  3470. model.gguf_kv.emplace(name, value);
  3471. }
  3472. // get general kv
  3473. ml.get_key(LLM_KV_GENERAL_NAME, model.name, false);
  3474. // get hparams kv
  3475. ml.get_key(LLM_KV_VOCAB_SIZE, hparams.n_vocab, false) || ml.get_arr_n(LLM_KV_TOKENIZER_LIST, hparams.n_vocab);
  3476. // everything past this point is not vocab-related
  3477. if (hparams.vocab_only) {
  3478. return;
  3479. }
  3480. ml.get_key(LLM_KV_CONTEXT_LENGTH, hparams.n_ctx_train);
  3481. ml.get_key(LLM_KV_EMBEDDING_LENGTH, hparams.n_embd);
  3482. ml.get_key(LLM_KV_FEED_FORWARD_LENGTH, hparams.n_ff);
  3483. ml.get_key(LLM_KV_ATTENTION_HEAD_COUNT, hparams.n_head);
  3484. ml.get_key(LLM_KV_BLOCK_COUNT, hparams.n_layer);
  3485. ml.get_key(LLM_KV_EXPERT_COUNT, hparams.n_expert, false);
  3486. ml.get_key(LLM_KV_EXPERT_USED_COUNT, hparams.n_expert_used, false);
  3487. GGML_ASSERT(hparams.n_expert <= LLAMA_MAX_EXPERTS);
  3488. GGML_ASSERT(hparams.n_expert_used <= hparams.n_expert);
  3489. if (hparams.n_expert > 0) {
  3490. GGML_ASSERT(hparams.n_expert_used > 0);
  3491. } else {
  3492. GGML_ASSERT(hparams.n_expert_used == 0);
  3493. }
  3494. // n_head_kv is optional, default to n_head
  3495. hparams.n_head_kv = hparams.n_head;
  3496. ml.get_key(LLM_KV_ATTENTION_HEAD_COUNT_KV, hparams.n_head_kv, false);
  3497. bool rope_finetuned = false;
  3498. ml.get_key(LLM_KV_ROPE_SCALING_FINETUNED, rope_finetuned, false);
  3499. hparams.rope_finetuned = rope_finetuned;
  3500. hparams.n_yarn_orig_ctx = hparams.n_ctx_train;
  3501. ml.get_key(LLM_KV_ROPE_SCALING_ORIG_CTX_LEN, hparams.n_yarn_orig_ctx, false);
  3502. // rope_freq_base (optional)
  3503. hparams.rope_freq_base_train = 10000.0f;
  3504. ml.get_key(LLM_KV_ROPE_FREQ_BASE, hparams.rope_freq_base_train, false);
  3505. std::string rope_scaling("linear");
  3506. ml.get_key(LLM_KV_ROPE_SCALING_TYPE, rope_scaling, false);
  3507. hparams.rope_scaling_type_train = llama_rope_scaling_type_from_string(rope_scaling);
  3508. GGML_ASSERT(hparams.rope_scaling_type_train != LLAMA_ROPE_SCALING_TYPE_UNSPECIFIED);
  3509. // rope_freq_scale (inverse of the kv) is optional
  3510. float ropescale = 0.0f;
  3511. if (!ml.get_key(LLM_KV_ROPE_SCALING_FACTOR, ropescale, false)) {
  3512. // try the old key name
  3513. ml.get_key(LLM_KV_ROPE_SCALE_LINEAR, ropescale, false);
  3514. }
  3515. hparams.rope_freq_scale_train = ropescale == 0.0f ? 1.0f : 1.0f/ropescale;
  3516. ml.get_key(LLM_KV_ROPE_SCALING_ATTN_FACTOR, hparams.rope_attn_factor, false);
  3517. // sanity check for n_rot (optional)
  3518. {
  3519. hparams.n_rot = (hparams.n_head == 0) ? 0 : hparams.n_embd / hparams.n_head;
  3520. ml.get_key(LLM_KV_ROPE_DIMENSION_COUNT, hparams.n_rot, false);
  3521. if (model.arch == LLM_ARCH_LLAMA || model.arch == LLM_ARCH_FALCON) {
  3522. if (hparams.n_rot != hparams.n_embd / hparams.n_head) {
  3523. throw std::runtime_error(format("invalid n_rot: %u, expected %u", hparams.n_rot, hparams.n_embd / hparams.n_head));
  3524. }
  3525. }
  3526. // gpt-neox n_rot = rotary_pct * (n_embd / n_head)
  3527. // gpt-j n_rot = rotary_dim
  3528. }
  3529. hparams.n_embd_head_k = (hparams.n_head == 0) ? 0 : hparams.n_embd / hparams.n_head;
  3530. ml.get_key(LLM_KV_ATTENTION_KEY_LENGTH, hparams.n_embd_head_k, false);
  3531. hparams.n_embd_head_v = (hparams.n_head == 0) ? 0 : hparams.n_embd / hparams.n_head;
  3532. ml.get_key(LLM_KV_ATTENTION_VALUE_LENGTH, hparams.n_embd_head_v, false);
  3533. // arch-specific KVs
  3534. switch (model.arch) {
  3535. case LLM_ARCH_LLAMA:
  3536. {
  3537. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  3538. if (hparams.n_expert == 8) {
  3539. switch (hparams.n_layer) {
  3540. case 32: model.type = e_model::MODEL_8x7B; break;
  3541. case 56: model.type = e_model::MODEL_8x22B; break;
  3542. default: model.type = e_model::MODEL_UNKNOWN;
  3543. }
  3544. } else {
  3545. switch (hparams.n_layer) {
  3546. case 22: model.type = e_model::MODEL_1B; break;
  3547. case 26: model.type = e_model::MODEL_3B; break;
  3548. // granite uses a vocab with len 49152
  3549. case 32: model.type = hparams.n_vocab == 49152 ? e_model::MODEL_3B : (hparams.n_vocab < 40000 ? e_model::MODEL_7B : e_model::MODEL_8B); break;
  3550. case 36: model.type = e_model::MODEL_8B; break; // granite
  3551. case 40: model.type = e_model::MODEL_13B; break;
  3552. case 48: model.type = e_model::MODEL_34B; break;
  3553. case 60: model.type = e_model::MODEL_30B; break;
  3554. case 80: model.type = hparams.n_head == hparams.n_head_kv ? e_model::MODEL_65B : e_model::MODEL_70B; break;
  3555. default: model.type = e_model::MODEL_UNKNOWN;
  3556. }
  3557. }
  3558. } break;
  3559. case LLM_ARCH_MINICPM:
  3560. {
  3561. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  3562. switch (hparams.n_layer) {
  3563. case 40: model.type = e_model::MODEL_2B; break;
  3564. default: model.type = e_model::MODEL_UNKNOWN;
  3565. }
  3566. } break;
  3567. case LLM_ARCH_GROK:
  3568. {
  3569. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  3570. switch (hparams.n_layer) {
  3571. case 64: model.type = e_model::MODEL_314B; break;
  3572. default: model.type = e_model::MODEL_UNKNOWN;
  3573. }
  3574. } break;
  3575. case LLM_ARCH_FALCON:
  3576. {
  3577. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  3578. switch (hparams.n_layer) {
  3579. case 32: model.type = e_model::MODEL_7B; break;
  3580. case 60: model.type = e_model::MODEL_40B; break;
  3581. default: model.type = e_model::MODEL_UNKNOWN;
  3582. }
  3583. } break;
  3584. case LLM_ARCH_BAICHUAN:
  3585. {
  3586. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  3587. switch (hparams.n_layer) {
  3588. case 32: model.type = e_model::MODEL_7B; break;
  3589. case 40: model.type = e_model::MODEL_13B; break;
  3590. default: model.type = e_model::MODEL_UNKNOWN;
  3591. }
  3592. if (model.type == e_model::MODEL_13B) {
  3593. // TODO: become GGUF KV parameter
  3594. hparams.f_max_alibi_bias = 8.0f;
  3595. }
  3596. } break;
  3597. case LLM_ARCH_STARCODER:
  3598. {
  3599. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  3600. switch (hparams.n_layer) {
  3601. case 24: model.type = e_model::MODEL_1B; break;
  3602. case 36: model.type = e_model::MODEL_3B; break;
  3603. case 42: model.type = e_model::MODEL_7B; break;
  3604. case 40: model.type = e_model::MODEL_15B; break;
  3605. default: model.type = e_model::MODEL_UNKNOWN;
  3606. }
  3607. } break;
  3608. case LLM_ARCH_REFACT:
  3609. {
  3610. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  3611. switch (hparams.n_layer) {
  3612. case 32: model.type = e_model::MODEL_1B; break;
  3613. default: model.type = e_model::MODEL_UNKNOWN;
  3614. }
  3615. // TODO: become GGUF KV parameter
  3616. hparams.f_max_alibi_bias = 8.0f;
  3617. } break;
  3618. case LLM_ARCH_BERT:
  3619. {
  3620. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  3621. ml.get_key(LLM_KV_ATTENTION_CAUSAL, hparams.causal_attn);
  3622. ml.get_key(LLM_KV_TOKENIZER_TOKEN_TYPE_COUNT, hparams.n_vocab_type);
  3623. ml.get_key(LLM_KV_POOLING_TYPE, hparams.pooling_type, false);
  3624. switch (hparams.n_layer) {
  3625. case 3:
  3626. model.type = e_model::MODEL_17M; break; // bge-micro
  3627. case 6:
  3628. model.type = e_model::MODEL_22M; break; // MiniLM-L6
  3629. case 12:
  3630. switch (hparams.n_embd) {
  3631. case 384: model.type = e_model::MODEL_33M; break; // MiniLM-L12, bge-small
  3632. case 768: model.type = e_model::MODEL_109M; break; // bge-base
  3633. } break;
  3634. case 24:
  3635. model.type = e_model::MODEL_335M; break; // bge-large
  3636. }
  3637. } break;
  3638. case LLM_ARCH_JINA_BERT_V2:
  3639. {
  3640. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  3641. ml.get_key(LLM_KV_ATTENTION_CAUSAL, hparams.causal_attn);
  3642. ml.get_key(LLM_KV_TOKENIZER_TOKEN_TYPE_COUNT, hparams.n_vocab_type);
  3643. ml.get_key(LLM_KV_POOLING_TYPE, hparams.pooling_type);
  3644. hparams.f_max_alibi_bias = 8.0f;
  3645. switch (hparams.n_layer) {
  3646. case 4: model.type = e_model::MODEL_33M; break; // jina-embeddings-small
  3647. case 12: model.type = e_model::MODEL_137M; break; // jina-embeddings-base
  3648. }
  3649. } break;
  3650. case LLM_ARCH_NOMIC_BERT:
  3651. {
  3652. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  3653. ml.get_key(LLM_KV_ATTENTION_CAUSAL, hparams.causal_attn);
  3654. ml.get_key(LLM_KV_TOKENIZER_TOKEN_TYPE_COUNT, hparams.n_vocab_type);
  3655. ml.get_key(LLM_KV_POOLING_TYPE, hparams.pooling_type);
  3656. if (hparams.n_layer == 12 && hparams.n_embd == 768) {
  3657. model.type = e_model::MODEL_137M;
  3658. }
  3659. } break;
  3660. case LLM_ARCH_BLOOM:
  3661. {
  3662. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  3663. switch (hparams.n_layer) {
  3664. case 24: model.type = e_model::MODEL_1B; break;
  3665. case 30:
  3666. switch (hparams.n_embd) {
  3667. case 2560: model.type = e_model::MODEL_3B; break;
  3668. case 4096: model.type = e_model::MODEL_7B; break;
  3669. } break;
  3670. }
  3671. // TODO: become GGUF KV parameter
  3672. hparams.f_max_alibi_bias = 8.0f;
  3673. } break;
  3674. case LLM_ARCH_MPT:
  3675. {
  3676. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  3677. ml.get_key(LLM_KV_ATTENTION_CLAMP_KQV, hparams.f_clamp_kqv, false);
  3678. ml.get_key(LLM_KV_ATTENTION_MAX_ALIBI_BIAS, hparams.f_max_alibi_bias);
  3679. switch (hparams.n_layer) {
  3680. case 32: model.type = e_model::MODEL_7B; break;
  3681. case 48: model.type = e_model::MODEL_30B; break;
  3682. default: model.type = e_model::MODEL_UNKNOWN;
  3683. }
  3684. } break;
  3685. case LLM_ARCH_STABLELM:
  3686. {
  3687. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  3688. switch (hparams.n_layer) {
  3689. case 24: model.type = e_model::MODEL_1B; break;
  3690. case 32: model.type = e_model::MODEL_3B; break;
  3691. case 40: model.type = e_model::MODEL_12B; break;
  3692. default: model.type = e_model::MODEL_UNKNOWN;
  3693. }
  3694. } break;
  3695. case LLM_ARCH_QWEN:
  3696. {
  3697. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  3698. switch (hparams.n_layer) {
  3699. case 32: model.type = e_model::MODEL_7B; break;
  3700. case 40: model.type = e_model::MODEL_13B; break;
  3701. default: model.type = e_model::MODEL_UNKNOWN;
  3702. }
  3703. } break;
  3704. case LLM_ARCH_QWEN2:
  3705. {
  3706. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  3707. switch (hparams.n_layer) {
  3708. case 24: model.type = hparams.n_embd == 1024 ? e_model::MODEL_0_5B : e_model::MODEL_1B; break;
  3709. case 32: model.type = e_model::MODEL_7B; break;
  3710. case 40: model.type = hparams.n_head == 20 ? e_model::MODEL_4B : e_model::MODEL_13B; break;
  3711. case 80: model.type = e_model::MODEL_70B; break;
  3712. default: model.type = e_model::MODEL_UNKNOWN;
  3713. }
  3714. } break;
  3715. case LLM_ARCH_QWEN2MOE:
  3716. {
  3717. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  3718. switch (hparams.n_layer) {
  3719. case 24: model.type = e_model::MODEL_A2_7B; break;
  3720. default: model.type = e_model::MODEL_UNKNOWN;
  3721. }
  3722. } break;
  3723. case LLM_ARCH_PHI2:
  3724. {
  3725. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  3726. switch (hparams.n_layer) {
  3727. case 24: model.type = e_model::MODEL_1B; break;
  3728. case 32: model.type = e_model::MODEL_3B; break;
  3729. default: model.type = e_model::MODEL_UNKNOWN;
  3730. }
  3731. } break;
  3732. case LLM_ARCH_PHI3:
  3733. {
  3734. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  3735. switch (hparams.n_layer) {
  3736. case 24: model.type = e_model::MODEL_1B; break;
  3737. case 32: model.type = e_model::MODEL_3B; break;
  3738. case 40: model.type = e_model::MODEL_14B; break;
  3739. default: model.type = e_model::MODEL_UNKNOWN;
  3740. }
  3741. } break;
  3742. case LLM_ARCH_PLAMO:
  3743. {
  3744. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  3745. switch (hparams.n_layer) {
  3746. case 40: model.type = e_model::MODEL_13B; break;
  3747. default: model.type = e_model::MODEL_UNKNOWN;
  3748. }
  3749. } break;
  3750. case LLM_ARCH_GPT2:
  3751. {
  3752. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  3753. switch (hparams.n_layer) {
  3754. case 12: model.type = e_model::MODEL_SMALL; break;
  3755. case 24: model.type = e_model::MODEL_MEDIUM; break;
  3756. case 36: model.type = e_model::MODEL_LARGE; break;
  3757. case 48: model.type = e_model::MODEL_XL; break;
  3758. default: model.type = e_model::MODEL_UNKNOWN;
  3759. }
  3760. } break;
  3761. case LLM_ARCH_CODESHELL:
  3762. {
  3763. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  3764. switch (hparams.n_layer) {
  3765. case 42: model.type = e_model::MODEL_SMALL; break;
  3766. default: model.type = e_model::MODEL_UNKNOWN;
  3767. }
  3768. } break;
  3769. case LLM_ARCH_ORION:
  3770. {
  3771. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  3772. switch (hparams.n_layer) {
  3773. case 40: model.type = e_model::MODEL_14B; break;
  3774. default: model.type = e_model::MODEL_UNKNOWN;
  3775. }
  3776. } break;
  3777. case LLM_ARCH_INTERNLM2:
  3778. {
  3779. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  3780. switch (hparams.n_layer) {
  3781. case 32: model.type = e_model::MODEL_7B; break;
  3782. case 48: model.type = e_model::MODEL_20B; break;
  3783. default: model.type = e_model::MODEL_UNKNOWN;
  3784. }
  3785. } break;
  3786. case LLM_ARCH_GEMMA:
  3787. {
  3788. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  3789. switch (hparams.n_layer) {
  3790. case 18: model.type = e_model::MODEL_2B; break;
  3791. case 28: model.type = e_model::MODEL_7B; break;
  3792. default: model.type = e_model::MODEL_UNKNOWN;
  3793. }
  3794. } break;
  3795. case LLM_ARCH_STARCODER2:
  3796. {
  3797. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  3798. switch (hparams.n_layer) {
  3799. case 30: model.type = e_model::MODEL_3B; break;
  3800. case 32: model.type = e_model::MODEL_7B; break;
  3801. case 40: model.type = e_model::MODEL_15B; break;
  3802. case 52: model.type = e_model::MODEL_20B; break; // granite
  3803. case 88: model.type = e_model::MODEL_34B; break; // granite
  3804. default: model.type = e_model::MODEL_UNKNOWN;
  3805. }
  3806. } break;
  3807. case LLM_ARCH_MAMBA:
  3808. {
  3809. ml.get_key(LLM_KV_SSM_CONV_KERNEL, hparams.ssm_d_conv);
  3810. ml.get_key(LLM_KV_SSM_INNER_SIZE, hparams.ssm_d_inner);
  3811. ml.get_key(LLM_KV_SSM_STATE_SIZE, hparams.ssm_d_state);
  3812. ml.get_key(LLM_KV_SSM_TIME_STEP_RANK, hparams.ssm_dt_rank);
  3813. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  3814. switch (hparams.n_layer) {
  3815. case 24:
  3816. switch (hparams.n_embd) {
  3817. case 768: model.type = e_model::MODEL_SMALL; break;
  3818. default: model.type = e_model::MODEL_UNKNOWN;
  3819. } break;
  3820. case 48:
  3821. switch (hparams.n_embd) {
  3822. case 1024: model.type = e_model::MODEL_MEDIUM; break;
  3823. case 1536: model.type = e_model::MODEL_LARGE; break;
  3824. case 2048: model.type = e_model::MODEL_XL; break;
  3825. default: model.type = e_model::MODEL_UNKNOWN;
  3826. } break;
  3827. case 64:
  3828. switch (hparams.n_embd) {
  3829. case 2560: model.type = e_model::MODEL_3B; break;
  3830. default: model.type = e_model::MODEL_UNKNOWN;
  3831. } break;
  3832. default: model.type = e_model::MODEL_UNKNOWN;
  3833. }
  3834. } break;
  3835. case LLM_ARCH_XVERSE:
  3836. {
  3837. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  3838. switch (hparams.n_layer) {
  3839. case 32: model.type = e_model::MODEL_7B; break;
  3840. case 40: model.type = e_model::MODEL_13B; break;
  3841. case 80: model.type = e_model::MODEL_65B; break;
  3842. default: model.type = e_model::MODEL_UNKNOWN;
  3843. }
  3844. } break;
  3845. case LLM_ARCH_COMMAND_R:
  3846. {
  3847. ml.get_key(LLM_KV_LOGIT_SCALE, hparams.f_logit_scale);
  3848. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  3849. switch (hparams.n_layer) {
  3850. case 40: model.type = e_model::MODEL_35B; break;
  3851. default: model.type = e_model::MODEL_UNKNOWN;
  3852. }
  3853. } break;
  3854. case LLM_ARCH_DBRX:
  3855. {
  3856. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  3857. ml.get_key(LLM_KV_ATTENTION_CLAMP_KQV, hparams.f_clamp_kqv);
  3858. switch (hparams.n_layer) {
  3859. case 40: model.type = e_model::MODEL_16x12B; break;
  3860. default: model.type = e_model::MODEL_UNKNOWN;
  3861. }
  3862. } break;
  3863. case LLM_ARCH_OLMO:
  3864. {
  3865. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  3866. ml.get_key(LLM_KV_ATTENTION_CLAMP_KQV, hparams.f_clamp_kqv, false);
  3867. switch (hparams.n_layer) {
  3868. case 22: model.type = e_model::MODEL_1B; break;
  3869. case 32: model.type = e_model::MODEL_7B; break;
  3870. case 80: model.type = e_model::MODEL_70B; break;
  3871. default: model.type = e_model::MODEL_UNKNOWN;
  3872. }
  3873. } break;
  3874. case LLM_ARCH_GPTNEOX:
  3875. {
  3876. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  3877. ml.get_key(LLM_KV_USE_PARALLEL_RESIDUAL, hparams.use_par_res);
  3878. switch (hparams.n_layer) {
  3879. case 6:
  3880. switch (hparams.n_ff) {
  3881. case 512: model.type = e_model::MODEL_14M; break;
  3882. case 2048: model.type = e_model::MODEL_70M; break;
  3883. default: model.type = e_model::MODEL_UNKNOWN;
  3884. } break;
  3885. case 12:
  3886. switch (hparams.n_ff) {
  3887. case 3072: model.type = e_model::MODEL_160M; break;
  3888. default: model.type = e_model::MODEL_UNKNOWN;
  3889. } break;
  3890. case 16:
  3891. switch (hparams.n_ff) {
  3892. case 8192: model.type = e_model::MODEL_1B; break;
  3893. default: model.type = e_model::MODEL_UNKNOWN;
  3894. } break;
  3895. case 24:
  3896. switch (hparams.n_ff) {
  3897. case 4096: model.type = e_model::MODEL_410M; break;
  3898. case 8192: model.type = e_model::MODEL_1_4B; break;
  3899. default: model.type = e_model::MODEL_UNKNOWN;
  3900. } break;
  3901. case 32:
  3902. switch (hparams.n_ff) {
  3903. case 10240: model.type = e_model::MODEL_2_8B; break;
  3904. case 16384: model.type = e_model::MODEL_6_9B; break;
  3905. default: model.type = e_model::MODEL_UNKNOWN;
  3906. } break;
  3907. case 36:
  3908. switch (hparams.n_ff) {
  3909. case 20480: model.type = e_model::MODEL_12B; break;
  3910. default: model.type = e_model::MODEL_UNKNOWN;
  3911. } break;
  3912. case 44:
  3913. switch (hparams.n_ff) {
  3914. case 24576: model.type = e_model::MODEL_20B; break;
  3915. default: model.type = e_model::MODEL_UNKNOWN;
  3916. } break;
  3917. default: model.type = e_model::MODEL_UNKNOWN;
  3918. }
  3919. } break;
  3920. case LLM_ARCH_ARCTIC:
  3921. {
  3922. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  3923. if (hparams.n_expert == 128) {
  3924. switch (hparams.n_layer) {
  3925. case 35: model.type = e_model::MODEL_10B_128x3_66B; break;
  3926. default: model.type = e_model::MODEL_UNKNOWN;
  3927. }
  3928. } else {
  3929. model.type = e_model::MODEL_UNKNOWN;
  3930. }
  3931. } break;
  3932. case LLM_ARCH_DEEPSEEK2:
  3933. {
  3934. bool is_lite = (hparams.n_layer == 27);
  3935. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  3936. ml.get_key(LLM_KV_LEADING_DENSE_BLOCK_COUNT, hparams.n_layer_dense_lead);
  3937. if (!is_lite) {
  3938. ml.get_key(LLM_KV_ATTENTION_Q_LORA_RANK, hparams.n_lora_q);
  3939. }
  3940. ml.get_key(LLM_KV_ATTENTION_KV_LORA_RANK, hparams.n_lora_kv);
  3941. ml.get_key(LLM_KV_EXPERT_FEED_FORWARD_LENGTH, hparams.n_ff_exp);
  3942. ml.get_key(LLM_KV_EXPERT_SHARED_COUNT, hparams.n_expert_shared);
  3943. ml.get_key(LLM_KV_EXPERT_WEIGHTS_SCALE, hparams.expert_weights_scale);
  3944. ml.get_key(LLM_KV_ROPE_SCALING_YARN_LOG_MUL, hparams.rope_yarn_log_mul);
  3945. switch (hparams.n_layer) {
  3946. case 27: model.type = e_model::MODEL_16B; break;
  3947. case 60: model.type = e_model::MODEL_236B; break;
  3948. default: model.type = e_model::MODEL_UNKNOWN;
  3949. }
  3950. } break;
  3951. default: (void)0;
  3952. }
  3953. model.ftype = ml.ftype;
  3954. if (hparams.f_max_alibi_bias > 0.0f) {
  3955. hparams.use_alibi = true;
  3956. }
  3957. hparams.rope_type = llama_rope_type(&model);
  3958. }
  3959. // TODO: This should probably be in llama.h
  3960. static std::vector<llama_vocab::id> llama_tokenize_internal(
  3961. const llama_vocab & vocab, std::string raw_text, bool add_special, bool parse_special = false
  3962. );
  3963. static llama_token llama_byte_to_token(const llama_vocab & vocab, uint8_t ch);
  3964. static void llm_load_vocab(
  3965. llama_model_loader & ml,
  3966. llama_model & model) {
  3967. auto & vocab = model.vocab;
  3968. struct gguf_context * ctx = ml.meta;
  3969. const auto kv = LLM_KV(model.arch);
  3970. // determine vocab type
  3971. {
  3972. std::string tokenizer_model;
  3973. std::string tokenizer_pre;
  3974. ml.get_key(LLM_KV_TOKENIZER_MODEL, tokenizer_model);
  3975. ml.get_key(LLM_KV_TOKENIZER_PRE, tokenizer_pre, false);
  3976. if (tokenizer_model == "no_vocab") {
  3977. vocab.type = LLAMA_VOCAB_TYPE_NONE;
  3978. // default special tokens
  3979. vocab.special_bos_id = -1;
  3980. vocab.special_eos_id = -1;
  3981. vocab.special_unk_id = -1;
  3982. vocab.special_sep_id = -1;
  3983. vocab.special_pad_id = -1;
  3984. vocab.special_cls_id = -1;
  3985. vocab.special_mask_id = -1;
  3986. vocab.linefeed_id = -1;
  3987. return;
  3988. } else if (tokenizer_model == "llama") {
  3989. vocab.type = LLAMA_VOCAB_TYPE_SPM;
  3990. // default special tokens
  3991. vocab.special_bos_id = 1;
  3992. vocab.special_eos_id = 2;
  3993. vocab.special_unk_id = 0;
  3994. vocab.special_sep_id = -1;
  3995. vocab.special_pad_id = -1;
  3996. vocab.special_cls_id = -1;
  3997. vocab.special_mask_id = -1;
  3998. // For Fill-In-the-Middle (FIM)/infill models which where converted
  3999. // prior to support of FIM special tokens in GGUF, the following
  4000. // will allow those models to continue to work. The general names
  4001. // of the known models are currently CodeLlama (LLM_ARCH_LLAMA) and
  4002. // CodeGemma (LLM_ARCH_GEMMA). This can potentially be removed once
  4003. // new versions of these models have been published.
  4004. std::string gen_name;
  4005. ml.get_key(LLM_KV_GENERAL_NAME, gen_name, false);
  4006. std::transform(gen_name.begin(), gen_name.end(), gen_name.begin(),
  4007. [](unsigned char c){ return std::tolower(c); });
  4008. if (gen_name.find("code") != std::string::npos) {
  4009. if (model.arch == LLM_ARCH_LLAMA) {
  4010. vocab.special_prefix_id = 32007;
  4011. vocab.special_suffix_id = 32008;
  4012. vocab.special_middle_id = 32009;
  4013. vocab.special_eot_id = 32010;
  4014. } else if (model.arch == LLM_ARCH_GEMMA) {
  4015. vocab.special_prefix_id = 67;
  4016. vocab.special_suffix_id = 69;
  4017. vocab.special_middle_id = 68;
  4018. // TODO: this is not EOT, it is "file separator" token, needs fix
  4019. // https://huggingface.co/google/codegemma-7b-it/blob/9b1d9231388358c04d90bd003458f5070d97db44/tokenizer_config.json#L565-L572
  4020. //vocab.special_eot_id = 70;
  4021. vocab.special_eot_id = 107;
  4022. }
  4023. }
  4024. const int add_space_prefix_keyidx = gguf_find_key(ctx, kv(LLM_KV_TOKENIZER_ADD_PREFIX).c_str());
  4025. if (add_space_prefix_keyidx != -1) {
  4026. vocab.add_space_prefix = gguf_get_val_bool(ctx, add_space_prefix_keyidx);
  4027. } // The default value of add_space_prefix is true.
  4028. } else if (tokenizer_model == "bert") {
  4029. vocab.type = LLAMA_VOCAB_TYPE_WPM;
  4030. // default special tokens
  4031. vocab.special_bos_id = -1;
  4032. vocab.special_eos_id = -1;
  4033. vocab.special_unk_id = 100;
  4034. vocab.special_sep_id = 102;
  4035. vocab.special_pad_id = 0;
  4036. vocab.special_cls_id = 101;
  4037. vocab.special_mask_id = 103;
  4038. vocab.add_space_prefix = false;
  4039. } else {
  4040. if (tokenizer_model == "gpt2") {
  4041. vocab.type = LLAMA_VOCAB_TYPE_BPE;
  4042. const int add_space_prefix_keyidx = gguf_find_key(ctx, kv(LLM_KV_TOKENIZER_ADD_PREFIX).c_str());
  4043. if (add_space_prefix_keyidx != -1) {
  4044. vocab.add_space_prefix = gguf_get_val_bool(ctx, add_space_prefix_keyidx);
  4045. }
  4046. } else {
  4047. LLAMA_LOG_WARN("%s: unknown tokenizer: '%s'", __func__, tokenizer_model.c_str());
  4048. LLAMA_LOG_WARN("%s: using default tokenizer: 'llama'", __func__);
  4049. vocab.type = LLAMA_VOCAB_TYPE_SPM;
  4050. return;
  4051. }
  4052. // read bpe merges and populate bpe ranks
  4053. const int merges_keyidx = gguf_find_key(ctx, kv(LLM_KV_TOKENIZER_MERGES).c_str());
  4054. if (merges_keyidx == -1) {
  4055. throw std::runtime_error("cannot find tokenizer merges in model file\n");
  4056. }
  4057. const int n_merges = gguf_get_arr_n(ctx, merges_keyidx);
  4058. for (int i = 0; i < n_merges; i++) {
  4059. const std::string word = gguf_get_arr_str(ctx, merges_keyidx, i);
  4060. GGML_ASSERT(unicode_cpts_from_utf8(word).size() > 0);
  4061. std::string first;
  4062. std::string second;
  4063. const size_t pos = word.find(' ', 1);
  4064. if (pos != std::string::npos) {
  4065. first = word.substr(0, pos);
  4066. second = word.substr(pos + 1);
  4067. }
  4068. vocab.bpe_ranks.emplace(std::make_pair(first, second), i);
  4069. }
  4070. // default special tokens
  4071. vocab.special_bos_id = 11;
  4072. vocab.special_eos_id = 11;
  4073. vocab.special_unk_id = -1;
  4074. vocab.special_sep_id = -1;
  4075. vocab.special_pad_id = -1;
  4076. vocab.special_cls_id = -1;
  4077. vocab.special_mask_id = -1;
  4078. }
  4079. // for now, only BPE models have pre-tokenizers
  4080. if (vocab.type == LLAMA_VOCAB_TYPE_BPE) {
  4081. if (tokenizer_pre.empty()) {
  4082. LLAMA_LOG_WARN("%s: missing pre-tokenizer type, using: 'default'\n", __func__);
  4083. LLAMA_LOG_WARN("%s: \n", __func__);
  4084. LLAMA_LOG_WARN("%s: ************************************ \n", __func__);
  4085. LLAMA_LOG_WARN("%s: GENERATION QUALITY WILL BE DEGRADED! \n", __func__);
  4086. LLAMA_LOG_WARN("%s: CONSIDER REGENERATING THE MODEL \n", __func__);
  4087. LLAMA_LOG_WARN("%s: ************************************ \n", __func__);
  4088. LLAMA_LOG_WARN("%s: \n", __func__);
  4089. vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_DEFAULT;
  4090. } else if (
  4091. tokenizer_pre == "default") {
  4092. vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_DEFAULT;
  4093. } else if (
  4094. tokenizer_pre == "llama3" ||
  4095. tokenizer_pre == "llama-v3" ||
  4096. tokenizer_pre == "llama-bpe") {
  4097. vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_LLAMA3;
  4098. } else if (
  4099. tokenizer_pre == "deepseek-llm") {
  4100. vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_DEEPSEEK_LLM;
  4101. } else if (
  4102. tokenizer_pre == "deepseek-coder") {
  4103. vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_DEEPSEEK_CODER;
  4104. } else if (
  4105. tokenizer_pre == "falcon") {
  4106. vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_FALCON;
  4107. } else if (
  4108. tokenizer_pre == "mpt") {
  4109. vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_MPT;
  4110. } else if (
  4111. tokenizer_pre == "starcoder") {
  4112. vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_STARCODER;
  4113. } else if (
  4114. tokenizer_pre == "gpt-2" ||
  4115. tokenizer_pre == "jina-es" ||
  4116. tokenizer_pre == "jina-de" ||
  4117. tokenizer_pre == "jina-v2-es" ||
  4118. tokenizer_pre == "jina-v2-de") {
  4119. vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_GPT2;
  4120. } else if (
  4121. tokenizer_pre == "refact") {
  4122. vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_REFACT;
  4123. } else if (
  4124. tokenizer_pre == "command-r") {
  4125. vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_COMMAND_R;
  4126. } else if (
  4127. tokenizer_pre == "qwen2") {
  4128. vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_QWEN2;
  4129. } else if (
  4130. tokenizer_pre == "stablelm2") {
  4131. vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_STABLELM2;
  4132. } else if (
  4133. tokenizer_pre == "olmo") {
  4134. vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_OLMO;
  4135. } else if (
  4136. tokenizer_pre == "dbrx") {
  4137. vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_DBRX;
  4138. } else if (
  4139. tokenizer_pre == "smaug-bpe") {
  4140. vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_SMAUG;
  4141. } else {
  4142. throw std::runtime_error(format("unknown pre-tokenizer type: '%s'", tokenizer_pre.c_str()));
  4143. }
  4144. } else {
  4145. vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_DEFAULT;
  4146. }
  4147. }
  4148. const int token_idx = gguf_find_key(ctx, kv(LLM_KV_TOKENIZER_LIST).c_str());
  4149. if (token_idx == -1) {
  4150. throw std::runtime_error("cannot find tokenizer vocab in model file\n");
  4151. }
  4152. const float * scores = nullptr;
  4153. const int score_idx = gguf_find_key(ctx, kv(LLM_KV_TOKENIZER_SCORES).c_str());
  4154. if (score_idx != -1) {
  4155. scores = (const float * ) gguf_get_arr_data(ctx, score_idx);
  4156. }
  4157. const int * toktypes = nullptr;
  4158. const int toktype_idx = gguf_find_key(ctx, kv(LLM_KV_TOKENIZER_TOKEN_TYPE).c_str());
  4159. if (toktype_idx != -1) {
  4160. toktypes = (const int * ) gguf_get_arr_data(ctx, toktype_idx);
  4161. }
  4162. const uint32_t n_vocab = gguf_get_arr_n(ctx, token_idx);
  4163. vocab.id_to_token.resize(n_vocab);
  4164. for (uint32_t i = 0; i < n_vocab; i++) {
  4165. std::string word = gguf_get_arr_str(ctx, token_idx, i);
  4166. GGML_ASSERT(unicode_cpts_from_utf8(word).size() > 0);
  4167. vocab.token_to_id[word] = i;
  4168. auto & token_data = vocab.id_to_token[i];
  4169. token_data.text = std::move(word);
  4170. token_data.score = scores ? scores[i] : 0.0f;
  4171. token_data.type = toktypes ? (llama_token_type) toktypes[i] : LLAMA_TOKEN_TYPE_NORMAL;
  4172. }
  4173. GGML_ASSERT(vocab.id_to_token.size() == vocab.token_to_id.size());
  4174. // determine the newline token: LLaMA "<0x0A>" == 10 == '\n', Falcon 193 == '\n'
  4175. if (vocab.type == LLAMA_VOCAB_TYPE_SPM) {
  4176. try {
  4177. vocab.linefeed_id = llama_byte_to_token(vocab, '\n');
  4178. } catch (const std::exception & e) {
  4179. LLAMA_LOG_WARN("%s: SPM vocabulary, but newline token not found: %s! Using special_pad_id instead.", __func__, e.what());
  4180. vocab.linefeed_id = vocab.special_pad_id;
  4181. }
  4182. } else if (vocab.type == LLAMA_VOCAB_TYPE_WPM) {
  4183. vocab.linefeed_id = vocab.special_pad_id;
  4184. } else {
  4185. const std::vector<int> ids = llama_tokenize_internal(vocab, "\xC4\x8A", false); // U+010A
  4186. GGML_ASSERT(!ids.empty() && "model vocab missing newline token");
  4187. vocab.linefeed_id = ids[0];
  4188. }
  4189. // special tokens
  4190. {
  4191. const std::vector<std::pair<enum llm_kv, int32_t &>> special_token_types = {
  4192. { LLM_KV_TOKENIZER_BOS_ID, vocab.special_bos_id },
  4193. { LLM_KV_TOKENIZER_EOS_ID, vocab.special_eos_id },
  4194. { LLM_KV_TOKENIZER_UNK_ID, vocab.special_unk_id },
  4195. { LLM_KV_TOKENIZER_SEP_ID, vocab.special_sep_id },
  4196. { LLM_KV_TOKENIZER_PAD_ID, vocab.special_pad_id },
  4197. { LLM_KV_TOKENIZER_CLS_ID, vocab.special_cls_id },
  4198. { LLM_KV_TOKENIZER_MASK_ID, vocab.special_mask_id },
  4199. { LLM_KV_TOKENIZER_PREFIX_ID, vocab.special_prefix_id },
  4200. { LLM_KV_TOKENIZER_SUFFIX_ID, vocab.special_suffix_id },
  4201. { LLM_KV_TOKENIZER_MIDDLE_ID, vocab.special_middle_id },
  4202. { LLM_KV_TOKENIZER_EOT_ID, vocab.special_eot_id },
  4203. };
  4204. for (const auto & it : special_token_types) {
  4205. const std::string & key = kv(std::get<0>(it));
  4206. int32_t & id = std::get<1>(it);
  4207. uint32_t new_id;
  4208. if (!ml.get_key(std::get<0>(it), new_id, false)) {
  4209. continue;
  4210. }
  4211. if (new_id >= vocab.id_to_token.size()) {
  4212. LLAMA_LOG_WARN("%s: bad special token: '%s' = %ud, using default id %d\n",
  4213. __func__, key.c_str(), new_id, id);
  4214. } else {
  4215. id = new_id;
  4216. }
  4217. }
  4218. // Handle add_bos_token and add_eos_token
  4219. {
  4220. bool temp = true;
  4221. if (ml.get_key(LLM_KV_TOKENIZER_ADD_BOS, temp, false)) {
  4222. vocab.special_add_bos = int(temp);
  4223. }
  4224. if (ml.get_key(LLM_KV_TOKENIZER_ADD_EOS, temp, false)) {
  4225. vocab.special_add_eos = int(temp);
  4226. }
  4227. }
  4228. // find EOT token: "<|eot_id|>", "<|im_end|>", "<end_of_turn>", etc.
  4229. //
  4230. // TODO: convert scripts should provide this token through the KV metadata LLAMA_KV_TOKENIZER_EOT_ID
  4231. // for now, we apply this workaround to find the EOT token based on its text
  4232. if (vocab.special_eot_id == -1) {
  4233. for (const auto & t : vocab.token_to_id) {
  4234. if (
  4235. // TODO: gemma "<end_of_turn>" is exported as a normal token, so the following check does not work
  4236. // need to fix convert script
  4237. //vocab.id_to_token[t.second].type == LLAMA_TOKEN_TYPE_CONTROL &&
  4238. (t.first == "<|eot_id|>" ||
  4239. t.first == "<|im_end|>" ||
  4240. t.first == "<|end|>" ||
  4241. t.first == "<end_of_turn>" ||
  4242. t.first == "<|endoftext|>"
  4243. )
  4244. ) {
  4245. vocab.special_eot_id = t.second;
  4246. break;
  4247. }
  4248. }
  4249. }
  4250. }
  4251. // build special tokens cache
  4252. {
  4253. for (llama_vocab::id id = 0; id < (llama_vocab::id)n_vocab; ++id) {
  4254. if (vocab.id_to_token[id].type != LLAMA_TOKEN_TYPE_NORMAL) {
  4255. vocab.special_tokens_cache.push_back(id);
  4256. }
  4257. }
  4258. std::sort( vocab.special_tokens_cache.begin(), vocab.special_tokens_cache.end(),
  4259. [&] (const llama_vocab::id a, const llama_vocab::id b) {
  4260. return vocab.id_to_token[a].text.size() > vocab.id_to_token[b].text.size();
  4261. }
  4262. );
  4263. LLAMA_LOG_INFO("%s: special tokens cache size = %u.\n", __func__, (uint32_t)vocab.special_tokens_cache.size());
  4264. }
  4265. }
  4266. static void llm_load_print_meta(llama_model_loader & ml, llama_model & model) {
  4267. const auto & hparams = model.hparams;
  4268. const auto & vocab = model.vocab;
  4269. const char * rope_scaling_type = LLAMA_ROPE_SCALING_TYPES.at(hparams.rope_scaling_type_train);
  4270. // hparams
  4271. LLAMA_LOG_INFO("%s: format = %s\n", __func__, llama_file_version_name(ml.fver));
  4272. LLAMA_LOG_INFO("%s: arch = %s\n", __func__, LLM_ARCH_NAMES.at(model.arch));
  4273. LLAMA_LOG_INFO("%s: vocab type = %s\n", __func__, llama_model_vocab_type_name(vocab.type));
  4274. LLAMA_LOG_INFO("%s: n_vocab = %u\n", __func__, hparams.n_vocab);
  4275. LLAMA_LOG_INFO("%s: n_merges = %u\n", __func__, (int) vocab.bpe_ranks.size());
  4276. LLAMA_LOG_INFO("%s: n_ctx_train = %u\n", __func__, hparams.n_ctx_train);
  4277. LLAMA_LOG_INFO("%s: n_embd = %u\n", __func__, hparams.n_embd);
  4278. LLAMA_LOG_INFO("%s: n_head = %u\n", __func__, hparams.n_head);
  4279. LLAMA_LOG_INFO("%s: n_head_kv = %u\n", __func__, hparams.n_head_kv);
  4280. LLAMA_LOG_INFO("%s: n_layer = %u\n", __func__, hparams.n_layer);
  4281. LLAMA_LOG_INFO("%s: n_rot = %u\n", __func__, hparams.n_rot);
  4282. LLAMA_LOG_INFO("%s: n_embd_head_k = %u\n", __func__, hparams.n_embd_head_k);
  4283. LLAMA_LOG_INFO("%s: n_embd_head_v = %u\n", __func__, hparams.n_embd_head_v);
  4284. LLAMA_LOG_INFO("%s: n_gqa = %u\n", __func__, hparams.n_gqa());
  4285. LLAMA_LOG_INFO("%s: n_embd_k_gqa = %u\n", __func__, hparams.n_embd_k_gqa());
  4286. LLAMA_LOG_INFO("%s: n_embd_v_gqa = %u\n", __func__, hparams.n_embd_v_gqa());
  4287. LLAMA_LOG_INFO("%s: f_norm_eps = %.1e\n", __func__, hparams.f_norm_eps);
  4288. LLAMA_LOG_INFO("%s: f_norm_rms_eps = %.1e\n", __func__, hparams.f_norm_rms_eps);
  4289. LLAMA_LOG_INFO("%s: f_clamp_kqv = %.1e\n", __func__, hparams.f_clamp_kqv);
  4290. LLAMA_LOG_INFO("%s: f_max_alibi_bias = %.1e\n", __func__, hparams.f_max_alibi_bias);
  4291. LLAMA_LOG_INFO("%s: f_logit_scale = %.1e\n", __func__, hparams.f_logit_scale);
  4292. LLAMA_LOG_INFO("%s: n_ff = %u\n", __func__, hparams.n_ff);
  4293. LLAMA_LOG_INFO("%s: n_expert = %u\n", __func__, hparams.n_expert);
  4294. LLAMA_LOG_INFO("%s: n_expert_used = %u\n", __func__, hparams.n_expert_used);
  4295. LLAMA_LOG_INFO("%s: causal attn = %d\n", __func__, hparams.causal_attn);
  4296. LLAMA_LOG_INFO("%s: pooling type = %d\n", __func__, hparams.pooling_type);
  4297. LLAMA_LOG_INFO("%s: rope type = %d\n", __func__, hparams.rope_type);
  4298. LLAMA_LOG_INFO("%s: rope scaling = %s\n", __func__, rope_scaling_type);
  4299. LLAMA_LOG_INFO("%s: freq_base_train = %.1f\n", __func__, hparams.rope_freq_base_train);
  4300. LLAMA_LOG_INFO("%s: freq_scale_train = %g\n", __func__, hparams.rope_freq_scale_train);
  4301. LLAMA_LOG_INFO("%s: n_yarn_orig_ctx = %u\n", __func__, hparams.n_yarn_orig_ctx);
  4302. LLAMA_LOG_INFO("%s: rope_finetuned = %s\n", __func__, hparams.rope_finetuned ? "yes" : "unknown");
  4303. LLAMA_LOG_INFO("%s: ssm_d_conv = %u\n", __func__, hparams.ssm_d_conv);
  4304. LLAMA_LOG_INFO("%s: ssm_d_inner = %u\n", __func__, hparams.ssm_d_inner);
  4305. LLAMA_LOG_INFO("%s: ssm_d_state = %u\n", __func__, hparams.ssm_d_state);
  4306. LLAMA_LOG_INFO("%s: ssm_dt_rank = %u\n", __func__, hparams.ssm_dt_rank);
  4307. LLAMA_LOG_INFO("%s: model type = %s\n", __func__, llama_model_type_name(model.type));
  4308. LLAMA_LOG_INFO("%s: model ftype = %s\n", __func__, llama_model_ftype_name(model.ftype).c_str());
  4309. if (ml.n_elements >= 1e12) {
  4310. LLAMA_LOG_INFO("%s: model params = %.2f T\n", __func__, ml.n_elements*1e-12);
  4311. } else if (ml.n_elements >= 1e9) {
  4312. LLAMA_LOG_INFO("%s: model params = %.2f B\n", __func__, ml.n_elements*1e-9);
  4313. } else if (ml.n_elements >= 1e6) {
  4314. LLAMA_LOG_INFO("%s: model params = %.2f M\n", __func__, ml.n_elements*1e-6);
  4315. } else {
  4316. LLAMA_LOG_INFO("%s: model params = %.2f K\n", __func__, ml.n_elements*1e-3);
  4317. }
  4318. if (ml.n_bytes < GiB) {
  4319. LLAMA_LOG_INFO("%s: model size = %.2f MiB (%.2f BPW) \n", __func__, ml.n_bytes/1024.0/1024.0, ml.n_bytes*8.0/ml.n_elements);
  4320. } else {
  4321. LLAMA_LOG_INFO("%s: model size = %.2f GiB (%.2f BPW) \n", __func__, ml.n_bytes/1024.0/1024.0/1024.0, ml.n_bytes*8.0/ml.n_elements);
  4322. }
  4323. // general kv
  4324. LLAMA_LOG_INFO("%s: general.name = %s\n", __func__, model.name.c_str());
  4325. // special tokens
  4326. if (vocab.special_bos_id != -1) { LLAMA_LOG_INFO( "%s: BOS token = %d '%s'\n", __func__, vocab.special_bos_id, vocab.id_to_token[vocab.special_bos_id].text.c_str() ); }
  4327. if (vocab.special_eos_id != -1) { LLAMA_LOG_INFO( "%s: EOS token = %d '%s'\n", __func__, vocab.special_eos_id, vocab.id_to_token[vocab.special_eos_id].text.c_str() ); }
  4328. if (vocab.special_unk_id != -1) { LLAMA_LOG_INFO( "%s: UNK token = %d '%s'\n", __func__, vocab.special_unk_id, vocab.id_to_token[vocab.special_unk_id].text.c_str() ); }
  4329. if (vocab.special_sep_id != -1) { LLAMA_LOG_INFO( "%s: SEP token = %d '%s'\n", __func__, vocab.special_sep_id, vocab.id_to_token[vocab.special_sep_id].text.c_str() ); }
  4330. if (vocab.special_pad_id != -1) { LLAMA_LOG_INFO( "%s: PAD token = %d '%s'\n", __func__, vocab.special_pad_id, vocab.id_to_token[vocab.special_pad_id].text.c_str() ); }
  4331. if (vocab.special_cls_id != -1) { LLAMA_LOG_INFO( "%s: CLS token = %d '%s'\n", __func__, vocab.special_cls_id, vocab.id_to_token[vocab.special_cls_id].text.c_str() ); }
  4332. if (vocab.special_mask_id != -1) { LLAMA_LOG_INFO( "%s: MASK token = %d '%s'\n", __func__, vocab.special_mask_id, vocab.id_to_token[vocab.special_mask_id].text.c_str() ); }
  4333. if (vocab.linefeed_id != -1) { LLAMA_LOG_INFO( "%s: LF token = %d '%s'\n", __func__, vocab.linefeed_id, vocab.id_to_token[vocab.linefeed_id].text.c_str() ); }
  4334. if (vocab.special_prefix_id != -1) { LLAMA_LOG_INFO( "%s: PRE token = %d '%s'\n", __func__, vocab.special_prefix_id, vocab.id_to_token[vocab.special_prefix_id].text.c_str() ); }
  4335. if (vocab.special_suffix_id != -1) { LLAMA_LOG_INFO( "%s: SUF token = %d '%s'\n", __func__, vocab.special_suffix_id, vocab.id_to_token[vocab.special_suffix_id].text.c_str() ); }
  4336. if (vocab.special_middle_id != -1) { LLAMA_LOG_INFO( "%s: MID token = %d '%s'\n", __func__, vocab.special_middle_id, vocab.id_to_token[vocab.special_middle_id].text.c_str() ); }
  4337. if (vocab.special_eot_id != -1) { LLAMA_LOG_INFO( "%s: EOT token = %d '%s'\n", __func__, vocab.special_eot_id, vocab.id_to_token[vocab.special_eot_id].text.c_str() ); }
  4338. if (model.arch == LLM_ARCH_DEEPSEEK2) {
  4339. LLAMA_LOG_INFO("%s: n_layer_dense_lead = %d\n", __func__, hparams.n_layer_dense_lead);
  4340. LLAMA_LOG_INFO("%s: n_lora_q = %d\n", __func__, hparams.n_lora_q);
  4341. LLAMA_LOG_INFO("%s: n_lora_kv = %d\n", __func__, hparams.n_lora_kv);
  4342. LLAMA_LOG_INFO("%s: n_ff_exp = %d\n", __func__, hparams.n_ff_exp);
  4343. LLAMA_LOG_INFO("%s: n_expert_shared = %d\n", __func__, hparams.n_expert_shared);
  4344. LLAMA_LOG_INFO("%s: expert_weights_scale = %.1f\n", __func__, hparams.expert_weights_scale);
  4345. LLAMA_LOG_INFO("%s: rope_yarn_log_mul = %.4f\n", __func__, hparams.rope_yarn_log_mul);
  4346. }
  4347. }
  4348. // Returns false if cancelled by progress_callback
  4349. static bool llm_load_tensors(
  4350. llama_model_loader & ml,
  4351. llama_model & model,
  4352. int n_gpu_layers,
  4353. enum llama_split_mode split_mode,
  4354. int main_gpu,
  4355. const float * tensor_split,
  4356. bool use_mlock,
  4357. llama_progress_callback progress_callback,
  4358. void * progress_callback_user_data) {
  4359. model.t_start_us = ggml_time_us();
  4360. auto & hparams = model.hparams;
  4361. #ifdef GGML_USE_SYCL
  4362. // disable MoE with SYCL until mul_mat_id is updated
  4363. if (hparams.n_expert > 0) {
  4364. n_gpu_layers = 0;
  4365. }
  4366. #endif
  4367. model.split_mode = split_mode;
  4368. model.main_gpu = main_gpu;
  4369. model.n_gpu_layers = n_gpu_layers;
  4370. const int64_t n_layer = hparams.n_layer;
  4371. const int64_t i_gpu_start = std::max((int64_t) hparams.n_layer - n_gpu_layers, (int64_t) 0);
  4372. bool use_mmap_buffer = true;
  4373. // there is very little benefit to offloading the input layer, so always keep it on the CPU
  4374. model.buft_input = llama_default_buffer_type_cpu(true);
  4375. //model.buft_input = llama_default_buffer_type_offload(main_gpu);
  4376. model.buft_layer.resize(n_layer);
  4377. // assign cpu layers
  4378. for (int64_t i = 0; i < i_gpu_start; ++i) {
  4379. model.buft_layer[i] = llama_default_buffer_type_cpu(true);
  4380. }
  4381. if (split_mode == LLAMA_SPLIT_MODE_LAYER) {
  4382. // calculate the split points
  4383. int device_count = llama_get_device_count(model);
  4384. bool all_zero = tensor_split == nullptr || std::all_of(tensor_split, tensor_split + device_count, [](float x) { return x == 0.0f; });
  4385. std::vector<float> splits(device_count);
  4386. if (all_zero) {
  4387. // default split, by free memory
  4388. for (int i = 0; i < device_count; ++i) {
  4389. splits[i] = llama_get_device_memory(model, i);
  4390. }
  4391. } else {
  4392. std::copy(tensor_split, tensor_split + device_count, splits.begin());
  4393. }
  4394. // sum and normalize the splits to get the split points
  4395. float split_sum = 0.0f;
  4396. for (int i = 0; i < device_count; ++i) {
  4397. split_sum += splits[i];
  4398. splits[i] = split_sum;
  4399. }
  4400. for (int i = 0; i < device_count; ++i) {
  4401. splits[i] /= split_sum;
  4402. }
  4403. // assign the repeating layers to the devices according to the splits
  4404. int act_gpu_layers = std::min(n_gpu_layers, (int)n_layer + 1);
  4405. for (int64_t i = i_gpu_start; i < n_layer; ++i) {
  4406. int layer_gpu = std::upper_bound(splits.begin(), splits.begin() + device_count, float(i - i_gpu_start)/act_gpu_layers) - splits.begin();
  4407. model.buft_layer[i] = llama_default_buffer_type_offload(model, layer_gpu);
  4408. }
  4409. // assign the output layer
  4410. if (n_gpu_layers > n_layer) {
  4411. int layer_gpu = std::upper_bound(splits.begin(), splits.begin() + device_count, float(act_gpu_layers - 1)/act_gpu_layers) - splits.begin();
  4412. model.buft_output = llama_default_buffer_type_offload(model, layer_gpu);
  4413. } else {
  4414. model.buft_output = llama_default_buffer_type_cpu(true);
  4415. }
  4416. } else {
  4417. ggml_backend_buffer_type_t split_buft;
  4418. if (split_mode == LLAMA_SPLIT_MODE_ROW) {
  4419. split_buft = llama_default_buffer_type_split(model, main_gpu, tensor_split);
  4420. } else {
  4421. // LLAMA_SPLIT_MODE_NONE or LLAMA_SPLIT_MODE_LAYER in backends where it is not supported
  4422. split_buft = llama_default_buffer_type_offload(model, main_gpu);
  4423. }
  4424. // assign the repeating layers
  4425. for (int64_t i = i_gpu_start; i < n_layer; ++i) {
  4426. model.buft_layer[i] = {
  4427. split_buft,
  4428. llama_default_buffer_type_offload(model, main_gpu)
  4429. };
  4430. }
  4431. // assign the output layer
  4432. if (n_gpu_layers > n_layer) {
  4433. model.buft_output = {
  4434. split_buft,
  4435. llama_default_buffer_type_offload(model, main_gpu)
  4436. };
  4437. } else {
  4438. model.buft_output = llama_default_buffer_type_cpu(true);
  4439. }
  4440. }
  4441. // count used buffer types
  4442. std::map<ggml_backend_buffer_type_t, int> buft_layer_count;
  4443. buft_layer_count[model.buft_input.buft]++;
  4444. buft_layer_count[model.buft_input.buft_matrix]++;
  4445. buft_layer_count[model.buft_output.buft]++;
  4446. buft_layer_count[model.buft_output.buft_matrix]++;
  4447. for (int64_t i = 0; i < n_layer; ++i) {
  4448. buft_layer_count[model.buft_layer[i].buft]++;
  4449. buft_layer_count[model.buft_layer[i].buft_matrix]++;
  4450. }
  4451. // create one context per buffer type
  4452. size_t ctx_size = ggml_tensor_overhead()*(ml.n_tensors + 1); // +1 for models where tok_embd is duplicated as output
  4453. // for moe merged tensors
  4454. ctx_size += ggml_tensor_overhead()*n_layer*3;
  4455. std::map<ggml_backend_buffer_type_t, ggml_context *> ctx_map;
  4456. for (auto & it : buft_layer_count) {
  4457. struct ggml_init_params params = {
  4458. /*.mem_size =*/ ctx_size,
  4459. /*.mem_buffer =*/ NULL,
  4460. /*.no_alloc =*/ true,
  4461. };
  4462. ggml_context * ctx = ggml_init(params);
  4463. if (!ctx) {
  4464. throw std::runtime_error(format("failed to create context"));
  4465. }
  4466. ctx_map[it.first] = ctx;
  4467. model.ctxs.push_back(ctx);
  4468. }
  4469. LLAMA_LOG_INFO("%s: ggml ctx size = %7.2f MiB\n", __func__, model.ctxs.size()*ctx_size/1024.0/1024.0);
  4470. // create tensors for the weights
  4471. {
  4472. const int64_t n_embd = hparams.n_embd;
  4473. const int64_t n_embd_head = n_embd / hparams.n_head;
  4474. const int64_t n_embd_k_gqa = hparams.n_embd_k_gqa();
  4475. const int64_t n_embd_v_gqa = hparams.n_embd_v_gqa();
  4476. const int64_t n_embd_gqa = n_embd_v_gqa;
  4477. const int64_t n_vocab = hparams.n_vocab;
  4478. const int64_t n_vocab_type = hparams.n_vocab_type;
  4479. const int64_t n_ff = hparams.n_ff;
  4480. const int64_t n_expert = hparams.n_expert;
  4481. if (n_expert > 0 && hparams.n_expert_used == 0) {
  4482. throw std::runtime_error("model has expert layers but no expert layers are used");
  4483. }
  4484. ggml_context * ctx_input = ctx_map.at(model.buft_input.buft);
  4485. ggml_context * ctx_output = ctx_map.at(model.buft_output.buft);
  4486. ggml_context * ctx_output_split = ctx_map.at(model.buft_output.buft_matrix);
  4487. auto ctx_for_layer = [&](int i) { return ctx_map.at(model.buft_layer[i].buft); };
  4488. auto ctx_for_layer_split = [&](int i) { return ctx_map.at(model.buft_layer[i].buft_matrix); };
  4489. model.layers.resize(n_layer);
  4490. const auto tn = LLM_TN(model.arch);
  4491. switch (model.arch) {
  4492. case LLM_ARCH_LLAMA:
  4493. case LLM_ARCH_REFACT:
  4494. case LLM_ARCH_MINICPM:
  4495. {
  4496. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  4497. // output
  4498. {
  4499. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  4500. if (model.arch != LLM_ARCH_MINICPM){
  4501. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_NOT_REQUIRED);
  4502. // if output is NULL, init from the input tok embed
  4503. if (model.output == NULL) {
  4504. model.output = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_DUPLICATED);
  4505. }
  4506. }
  4507. }
  4508. for (int i = 0; i < n_layer; ++i) {
  4509. ggml_context * ctx_layer = ctx_for_layer(i);
  4510. ggml_context * ctx_split = ctx_for_layer_split(i);
  4511. auto & layer = model.layers[i];
  4512. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  4513. layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd});
  4514. layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa});
  4515. layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa});
  4516. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  4517. // optional bias tensors
  4518. layer.bq = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd}, llama_model_loader::TENSOR_NOT_REQUIRED);
  4519. layer.bk = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa}, llama_model_loader::TENSOR_NOT_REQUIRED);
  4520. layer.bv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa}, llama_model_loader::TENSOR_NOT_REQUIRED);
  4521. layer.bo = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd}, llama_model_loader::TENSOR_NOT_REQUIRED);
  4522. layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
  4523. if (n_expert == 0) {
  4524. layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff});
  4525. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd});
  4526. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  4527. // optional MLP bias
  4528. layer.ffn_gate_b = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "bias", i), {n_ff}, llama_model_loader::TENSOR_NOT_REQUIRED);
  4529. layer.ffn_down_b = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd}, llama_model_loader::TENSOR_NOT_REQUIRED);
  4530. layer.ffn_up_b = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff}, llama_model_loader::TENSOR_NOT_REQUIRED);
  4531. } else {
  4532. layer.ffn_gate_inp = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert});
  4533. layer.ffn_gate_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), {n_embd, n_ff, n_expert}, llama_model_loader::TENSOR_NOT_REQUIRED);
  4534. if (layer.ffn_gate_exps) {
  4535. layer.ffn_down_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), { n_ff, n_embd, n_expert});
  4536. layer.ffn_up_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), {n_embd, n_ff, n_expert});
  4537. } else {
  4538. // merge split expert into a single tensor for compatibility with older models
  4539. // requires disabling mmap
  4540. use_mmap_buffer = false;
  4541. ggml_type type_gate = ml.require_tensor_meta(tn(LLM_TENSOR_FFN_GATE_EXP, "weight", i, 0).c_str())->type;
  4542. ggml_type type_down = ml.require_tensor_meta(tn(LLM_TENSOR_FFN_DOWN_EXP, "weight", i, 0).c_str())->type;
  4543. ggml_type type_up = ml.require_tensor_meta(tn(LLM_TENSOR_FFN_UP_EXP, "weight", i, 0).c_str())->type;
  4544. layer.ffn_gate_exps = ggml_new_tensor_3d(ctx_split, type_gate, n_embd, n_ff, n_expert);
  4545. layer.ffn_down_exps = ggml_new_tensor_3d(ctx_split, type_down, n_ff, n_embd, n_expert);
  4546. layer.ffn_up_exps = ggml_new_tensor_3d(ctx_split, type_up, n_embd, n_ff, n_expert);
  4547. ggml_set_name(layer.ffn_gate_exps, tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i).c_str());
  4548. ggml_set_name(layer.ffn_down_exps, tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i).c_str());
  4549. ggml_set_name(layer.ffn_up_exps, tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i).c_str());
  4550. for (uint32_t x = 0; x < n_expert; ++x) {
  4551. // the individual experts are loaded into a view of the merged tensor
  4552. ml.create_tensor_as_view(ctx_split, layer.ffn_gate_exps, tn(LLM_TENSOR_FFN_GATE_EXP, "weight", i, x), { n_embd, n_ff }, layer.ffn_gate_exps->nb[2]*x);
  4553. ml.create_tensor_as_view(ctx_split, layer.ffn_down_exps, tn(LLM_TENSOR_FFN_DOWN_EXP, "weight", i, x), { n_ff, n_embd }, layer.ffn_down_exps->nb[2]*x);
  4554. ml.create_tensor_as_view(ctx_split, layer.ffn_up_exps, tn(LLM_TENSOR_FFN_UP_EXP, "weight", i, x), { n_embd, n_ff }, layer.ffn_up_exps->nb[2]*x);
  4555. }
  4556. }
  4557. }
  4558. }
  4559. } break;
  4560. case LLM_ARCH_GROK:
  4561. {
  4562. if (n_expert == 0) {
  4563. throw std::runtime_error("Grok model cannot have zero experts");
  4564. }
  4565. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  4566. // output
  4567. {
  4568. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  4569. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_NOT_REQUIRED);
  4570. // if output is NULL, init from the input tok embed
  4571. if (model.output == NULL) {
  4572. model.output = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_DUPLICATED);
  4573. }
  4574. }
  4575. for (int i = 0; i < n_layer; ++i) {
  4576. ggml_context * ctx_layer = ctx_for_layer(i);
  4577. ggml_context * ctx_split = ctx_for_layer_split(i);
  4578. auto & layer = model.layers[i];
  4579. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  4580. layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd});
  4581. layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa});
  4582. layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa});
  4583. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  4584. layer.attn_out_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT_NORM, "weight", i), {n_embd});
  4585. layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
  4586. layer.ffn_gate_inp = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert});
  4587. layer.ffn_gate_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), {n_embd, n_ff, n_expert}, llama_model_loader::TENSOR_NOT_REQUIRED);
  4588. if (layer.ffn_gate_exps) {
  4589. layer.ffn_down_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), { n_ff, n_embd, n_expert});
  4590. layer.ffn_up_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), {n_embd, n_ff, n_expert});
  4591. } else {
  4592. // merge split expert into a single tensor for compatibility with older models
  4593. // requires disabling mmap
  4594. use_mmap_buffer = false;
  4595. ggml_type type_gate = ml.require_tensor_meta(tn(LLM_TENSOR_FFN_GATE_EXP, "weight", i, 0).c_str())->type;
  4596. ggml_type type_down = ml.require_tensor_meta(tn(LLM_TENSOR_FFN_DOWN_EXP, "weight", i, 0).c_str())->type;
  4597. ggml_type type_up = ml.require_tensor_meta(tn(LLM_TENSOR_FFN_UP_EXP, "weight", i, 0).c_str())->type;
  4598. layer.ffn_gate_exps = ggml_new_tensor_3d(ctx_split, type_gate, n_embd, n_ff, n_expert);
  4599. layer.ffn_down_exps = ggml_new_tensor_3d(ctx_split, type_down, n_ff, n_embd, n_expert);
  4600. layer.ffn_up_exps = ggml_new_tensor_3d(ctx_split, type_up, n_embd, n_ff, n_expert);
  4601. ggml_set_name(layer.ffn_gate_exps, tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i).c_str());
  4602. ggml_set_name(layer.ffn_down_exps, tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i).c_str());
  4603. ggml_set_name(layer.ffn_up_exps, tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i).c_str());
  4604. for (uint32_t x = 0; x < n_expert; ++x) {
  4605. // the individual experts are loaded into a view of the merged tensor
  4606. ml.create_tensor_as_view(ctx_split, layer.ffn_gate_exps, tn(LLM_TENSOR_FFN_GATE_EXP, "weight", i, x), { n_embd, n_ff }, layer.ffn_gate_exps->nb[2]*x);
  4607. ml.create_tensor_as_view(ctx_split, layer.ffn_down_exps, tn(LLM_TENSOR_FFN_DOWN_EXP, "weight", i, x), { n_ff, n_embd }, layer.ffn_down_exps->nb[2]*x);
  4608. ml.create_tensor_as_view(ctx_split, layer.ffn_up_exps, tn(LLM_TENSOR_FFN_UP_EXP, "weight", i, x), { n_embd, n_ff }, layer.ffn_up_exps->nb[2]*x);
  4609. }
  4610. }
  4611. layer.layer_out_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_LAYER_OUT_NORM, "weight", i), {n_embd});
  4612. }
  4613. } break;
  4614. case LLM_ARCH_DBRX:
  4615. {
  4616. if (n_expert == 0) {
  4617. throw std::runtime_error("DBRX model cannot have zero experts");
  4618. }
  4619. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  4620. // output
  4621. {
  4622. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  4623. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab});
  4624. }
  4625. for (int i = 0; i < n_layer; ++i) {
  4626. ggml_context * ctx_layer = ctx_for_layer(i);
  4627. ggml_context * ctx_split = ctx_for_layer_split(i);
  4628. auto & layer = model.layers[i];
  4629. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  4630. layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa});
  4631. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  4632. layer.attn_out_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT_NORM, "weight", i), {n_embd});
  4633. layer.ffn_gate_inp = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert});
  4634. layer.ffn_gate_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), {n_embd, n_ff, n_expert});
  4635. layer.ffn_down_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), {n_ff, n_embd, n_expert});
  4636. layer.ffn_up_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), {n_embd, n_ff, n_expert});
  4637. }
  4638. } break;
  4639. case LLM_ARCH_BAICHUAN:
  4640. {
  4641. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  4642. {
  4643. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  4644. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab});
  4645. }
  4646. for (int i = 0; i < n_layer; ++i) {
  4647. ggml_context * ctx_layer = ctx_for_layer(i);
  4648. ggml_context * ctx_split = ctx_for_layer_split(i);
  4649. auto & layer = model.layers[i];
  4650. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  4651. layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd});
  4652. layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa});
  4653. layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa});
  4654. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  4655. layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
  4656. layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff});
  4657. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd});
  4658. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  4659. }
  4660. } break;
  4661. case LLM_ARCH_FALCON:
  4662. {
  4663. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  4664. // output
  4665. {
  4666. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  4667. model.output_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd});
  4668. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_NOT_REQUIRED);
  4669. if (!model.output) {
  4670. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_DUPLICATED); // needs to be on GPU
  4671. }
  4672. }
  4673. for (int i = 0; i < n_layer; ++i) {
  4674. ggml_context * ctx_layer = ctx_for_layer(i);
  4675. ggml_context * ctx_split = ctx_for_layer_split(i);
  4676. auto & layer = model.layers[i];
  4677. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  4678. layer.attn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd});
  4679. layer.attn_norm_2 = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM_2, "weight", i), {n_embd}, llama_model_loader::TENSOR_NOT_REQUIRED);
  4680. layer.attn_norm_2_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM_2, "bias", i), {n_embd}, llama_model_loader::TENSOR_NOT_REQUIRED);
  4681. layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa});
  4682. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  4683. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd});
  4684. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  4685. }
  4686. } break;
  4687. case LLM_ARCH_STARCODER:
  4688. {
  4689. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  4690. model.pos_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_POS_EMBD, "weight"), {n_embd, hparams.n_ctx_train});
  4691. // output
  4692. {
  4693. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  4694. model.output_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd});
  4695. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_NOT_REQUIRED);
  4696. if (!model.output) {
  4697. // needs to be on GPU
  4698. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_DUPLICATED);
  4699. }
  4700. }
  4701. for (int i = 0; i < n_layer; ++i) {
  4702. ggml_context * ctx_layer = ctx_for_layer(i);
  4703. ggml_context * ctx_split = ctx_for_layer_split(i);
  4704. auto & layer = model.layers[i];
  4705. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  4706. layer.attn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd});
  4707. layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa});
  4708. layer.bqkv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd + 2*n_embd_gqa});
  4709. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  4710. layer.bo = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd});
  4711. layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
  4712. layer.ffn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd});
  4713. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd});
  4714. layer.ffn_down_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd});
  4715. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  4716. layer.ffn_up_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff});
  4717. }
  4718. } break;
  4719. case LLM_ARCH_BERT:
  4720. case LLM_ARCH_NOMIC_BERT:
  4721. {
  4722. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  4723. model.type_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_TYPES, "weight"), {n_embd, n_vocab_type});
  4724. if (model.arch == LLM_ARCH_BERT) {
  4725. model.pos_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_POS_EMBD, "weight"), {n_embd, hparams.n_ctx_train});
  4726. }
  4727. model.tok_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD_NORM, "weight"), {n_embd});
  4728. model.tok_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD_NORM, "bias"), {n_embd});
  4729. for (int i = 0; i < n_layer; ++i) {
  4730. ggml_context * ctx_layer = ctx_for_layer(i);
  4731. ggml_context * ctx_split = ctx_for_layer_split(i);
  4732. auto & layer = model.layers[i];
  4733. if (model.arch == LLM_ARCH_BERT) {
  4734. layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd});
  4735. layer.bq = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd});
  4736. layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa});
  4737. layer.bk = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa});
  4738. layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa});
  4739. layer.bv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa});
  4740. } else {
  4741. layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa});
  4742. }
  4743. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  4744. layer.attn_out_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT_NORM, "weight", i), {n_embd});
  4745. layer.attn_out_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT_NORM, "bias", i), {n_embd});
  4746. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  4747. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd});
  4748. if (model.arch == LLM_ARCH_BERT) {
  4749. layer.bo = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd});
  4750. layer.ffn_up_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff});
  4751. layer.ffn_down_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd});
  4752. } else {
  4753. layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff});
  4754. }
  4755. layer.layer_out_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_LAYER_OUT_NORM, "weight", i), {n_embd});
  4756. layer.layer_out_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_LAYER_OUT_NORM, "bias", i), {n_embd});
  4757. }
  4758. } break;
  4759. case LLM_ARCH_JINA_BERT_V2:
  4760. {
  4761. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}); // word_embeddings
  4762. model.type_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_TYPES, "weight"), {n_embd, n_vocab_type}); //token_type_embeddings
  4763. model.tok_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD_NORM, "weight"), {n_embd}); // LayerNorm
  4764. model.tok_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD_NORM, "bias"), {n_embd}); //LayerNorm bias
  4765. for (int i = 0; i < n_layer; ++i) {
  4766. ggml_context * ctx_layer = ctx_for_layer(i);
  4767. ggml_context * ctx_split = ctx_for_layer_split(i);
  4768. auto & layer = model.layers[i]; // JinaBertLayer
  4769. layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd});
  4770. layer.bq = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd});
  4771. layer.attn_q_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), {n_embd}, llama_model_loader::TENSOR_NOT_REQUIRED);
  4772. layer.attn_q_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q_NORM, "bias", i), {n_embd}, llama_model_loader::TENSOR_NOT_REQUIRED);
  4773. layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa});
  4774. layer.bk = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa});
  4775. layer.attn_k_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), {n_embd}, llama_model_loader::TENSOR_NOT_REQUIRED);
  4776. layer.attn_k_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K_NORM, "bias", i), {n_embd}, llama_model_loader::TENSOR_NOT_REQUIRED);
  4777. layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa});
  4778. layer.bv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa});
  4779. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}); //output_dens
  4780. layer.bo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd}); //output_dens
  4781. layer.attn_out_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT_NORM, "weight", i), {n_embd}); //output_norm
  4782. layer.attn_out_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT_NORM, "bias", i), {n_embd});
  4783. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  4784. layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff});
  4785. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd});
  4786. layer.ffn_down_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd});
  4787. layer.layer_out_norm = ml.create_tensor(ctx_split, tn(LLM_TENSOR_LAYER_OUT_NORM, "weight", i), {n_embd});
  4788. layer.layer_out_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_LAYER_OUT_NORM, "bias", i), {n_embd});
  4789. }
  4790. } break;
  4791. case LLM_ARCH_BLOOM:
  4792. {
  4793. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  4794. model.tok_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD_NORM, "weight"), {n_embd});
  4795. model.tok_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD_NORM, "bias"), {n_embd});
  4796. // output
  4797. {
  4798. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  4799. model.output_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd});
  4800. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab});
  4801. }
  4802. for (int i = 0; i < n_layer; ++i) {
  4803. ggml_context * ctx_layer = ctx_for_layer(i);
  4804. ggml_context * ctx_split = ctx_for_layer_split(i);
  4805. auto & layer = model.layers[i];
  4806. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  4807. layer.attn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd});
  4808. layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa});
  4809. layer.bqkv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd + 2*n_embd_gqa});
  4810. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  4811. layer.bo = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd});
  4812. layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
  4813. layer.ffn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd});
  4814. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd});
  4815. layer.ffn_down_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd});
  4816. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  4817. layer.ffn_up_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff});
  4818. }
  4819. } break;
  4820. case LLM_ARCH_MPT:
  4821. {
  4822. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  4823. model.pos_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_POS_EMBD, "weight"), {n_embd, hparams.n_ctx_train}, llama_model_loader::TENSOR_NOT_REQUIRED);
  4824. // output
  4825. {
  4826. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  4827. model.output_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd}, llama_model_loader::TENSOR_NOT_REQUIRED);
  4828. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_NOT_REQUIRED);
  4829. if (!model.output) {
  4830. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_DUPLICATED); // needs to be on GPU
  4831. }
  4832. }
  4833. for (int i = 0; i < n_layer; ++i) {
  4834. ggml_context * ctx_layer = ctx_for_layer(i);
  4835. ggml_context * ctx_split = ctx_for_layer_split(i);
  4836. auto & layer = model.layers[i];
  4837. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  4838. layer.attn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd}, llama_model_loader::TENSOR_NOT_REQUIRED);
  4839. layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa});
  4840. layer.bqkv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd + 2*n_embd_gqa}, llama_model_loader::TENSOR_NOT_REQUIRED);
  4841. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  4842. layer.bo = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd}, llama_model_loader::TENSOR_NOT_REQUIRED);
  4843. layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
  4844. layer.ffn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd}, llama_model_loader::TENSOR_NOT_REQUIRED);
  4845. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd});
  4846. layer.ffn_down_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd}, llama_model_loader::TENSOR_NOT_REQUIRED);
  4847. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  4848. layer.ffn_up_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff}, llama_model_loader::TENSOR_NOT_REQUIRED);
  4849. layer.attn_q_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), {n_embd}, llama_model_loader::TENSOR_NOT_REQUIRED);
  4850. layer.attn_q_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q_NORM, "bias", i), {n_embd}, llama_model_loader::TENSOR_NOT_REQUIRED);
  4851. layer.attn_k_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), {n_embd}, llama_model_loader::TENSOR_NOT_REQUIRED);
  4852. layer.attn_k_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K_NORM, "bias", i), {n_embd}, llama_model_loader::TENSOR_NOT_REQUIRED);
  4853. // AWQ ScaleActivation layer
  4854. layer.ffn_act = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_ACT, "scales", i), {n_ff}, llama_model_loader::TENSOR_NOT_REQUIRED);
  4855. }
  4856. } break;
  4857. case LLM_ARCH_STABLELM:
  4858. {
  4859. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  4860. // output
  4861. {
  4862. model.output_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd});
  4863. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  4864. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab});
  4865. }
  4866. for (int i = 0; i < n_layer; ++i) {
  4867. ggml_context * ctx_layer = ctx_for_layer(i);
  4868. ggml_context * ctx_split = ctx_for_layer_split(i);
  4869. auto & layer = model.layers[i];
  4870. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  4871. layer.attn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd});
  4872. layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd});
  4873. layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa});
  4874. layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa});
  4875. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  4876. // optional bias tensors, present in Stable LM 2 1.6B
  4877. layer.bq = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd}, llama_model_loader::TENSOR_NOT_REQUIRED);
  4878. layer.bk = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa}, llama_model_loader::TENSOR_NOT_REQUIRED);
  4879. layer.bv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa}, llama_model_loader::TENSOR_NOT_REQUIRED);
  4880. // optional q and k layernorms, present in StableLM 2 12B
  4881. layer.attn_q_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), {hparams.n_embd_head_k, hparams.n_head}, llama_model_loader::TENSOR_NOT_REQUIRED);
  4882. layer.attn_k_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), {hparams.n_embd_head_k, hparams.n_head_kv}, llama_model_loader::TENSOR_NOT_REQUIRED);
  4883. // optional FFN norm, not present in StableLM 2 12B which uses parallel residual
  4884. layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, llama_model_loader::TENSOR_NOT_REQUIRED);
  4885. layer.ffn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd}, llama_model_loader::TENSOR_NOT_REQUIRED);
  4886. layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff});
  4887. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd});
  4888. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  4889. }
  4890. } break;
  4891. case LLM_ARCH_QWEN:
  4892. {
  4893. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  4894. // output
  4895. {
  4896. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  4897. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab});
  4898. }
  4899. for (int i = 0; i < n_layer; ++i) {
  4900. ggml_context * ctx_layer = ctx_for_layer(i);
  4901. ggml_context * ctx_split = ctx_for_layer_split(i);
  4902. auto & layer = model.layers[i];
  4903. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  4904. layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd*3});
  4905. layer.bqkv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd*3});
  4906. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  4907. layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
  4908. layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff/2});
  4909. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff/2, n_embd});
  4910. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff/2});
  4911. }
  4912. } break;
  4913. case LLM_ARCH_QWEN2:
  4914. {
  4915. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  4916. // output
  4917. {
  4918. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  4919. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_NOT_REQUIRED);
  4920. // if output is NULL, init from the input tok embed
  4921. if (model.output == NULL) {
  4922. model.output = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_DUPLICATED);
  4923. }
  4924. }
  4925. for (int i = 0; i < n_layer; ++i) {
  4926. ggml_context * ctx_layer = ctx_for_layer(i);
  4927. ggml_context * ctx_split = ctx_for_layer_split(i);
  4928. auto & layer = model.layers[i];
  4929. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  4930. layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd});
  4931. layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa});
  4932. layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa});
  4933. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  4934. // optional bias tensors
  4935. layer.bq = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd});
  4936. layer.bk = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa});
  4937. layer.bv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa});
  4938. layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
  4939. layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff});
  4940. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd});
  4941. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  4942. }
  4943. } break;
  4944. case LLM_ARCH_QWEN2MOE:
  4945. {
  4946. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  4947. // output
  4948. {
  4949. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  4950. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab});
  4951. }
  4952. for (int i = 0; i < n_layer; ++i) {
  4953. ggml_context * ctx_layer = ctx_for_layer(i);
  4954. ggml_context * ctx_split = ctx_for_layer_split(i);
  4955. auto & layer = model.layers[i];
  4956. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  4957. layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd});
  4958. layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa});
  4959. layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa});
  4960. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  4961. // optional bias tensors
  4962. layer.bq = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd});
  4963. layer.bk = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa});
  4964. layer.bv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa});
  4965. layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
  4966. layer.ffn_gate_inp = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert});
  4967. GGML_ASSERT(hparams.n_expert > 0);
  4968. GGML_ASSERT(hparams.n_expert_used > 0);
  4969. // MoE branch
  4970. auto n_ff_exp = n_ff / hparams.n_expert_used;
  4971. layer.ffn_gate_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), { n_embd, n_ff_exp, n_expert});
  4972. layer.ffn_down_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), {n_ff_exp, n_embd, n_expert});
  4973. layer.ffn_up_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), { n_embd, n_ff_exp, n_expert});
  4974. // Shared expert branch
  4975. layer.ffn_gate_inp_shexp = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_GATE_INP_SHEXP, "weight", i), {n_embd});
  4976. layer.ffn_gate_shexp = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE_SHEXP, "weight", i), {n_embd, n_ff});
  4977. layer.ffn_down_shexp = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN_SHEXP, "weight", i), { n_ff, n_embd});
  4978. layer.ffn_up_shexp = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP_SHEXP, "weight", i), {n_embd, n_ff});
  4979. }
  4980. } break;
  4981. case LLM_ARCH_PHI2:
  4982. {
  4983. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  4984. // output
  4985. {
  4986. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  4987. model.output_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd});
  4988. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab});
  4989. model.output_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT, "bias"), {n_vocab});
  4990. }
  4991. for (int i = 0; i < n_layer; ++i) {
  4992. ggml_context * ctx_layer = ctx_for_layer(i);
  4993. ggml_context * ctx_split = ctx_for_layer_split(i);
  4994. auto & layer = model.layers[i];
  4995. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  4996. layer.attn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd});
  4997. layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa}, llama_model_loader::TENSOR_NOT_REQUIRED);
  4998. layer.bqkv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd + 2*n_embd_gqa}, llama_model_loader::TENSOR_NOT_REQUIRED);
  4999. if (layer.wqkv == nullptr) {
  5000. layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd});
  5001. layer.bq = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd});
  5002. layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa});
  5003. layer.bk = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa});
  5004. layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa});
  5005. layer.bv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa});
  5006. }
  5007. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  5008. layer.bo = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd});
  5009. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd});
  5010. layer.ffn_down_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd});
  5011. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  5012. layer.ffn_up_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff});
  5013. }
  5014. } break;
  5015. case LLM_ARCH_PHI3:
  5016. {
  5017. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), { n_embd, n_vocab });
  5018. // output
  5019. {
  5020. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), { n_embd });
  5021. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), { n_embd, n_vocab });
  5022. }
  5023. for (int i = 0; i < n_layer; ++i) {
  5024. ggml_context* ctx_layer = ctx_for_layer(i);
  5025. ggml_context* ctx_split = ctx_for_layer_split(i);
  5026. auto & layer = model.layers[i];
  5027. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), { n_embd });
  5028. layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), { n_embd, n_embd + 2 * n_embd_gqa }, llama_model_loader::TENSOR_NOT_REQUIRED);
  5029. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), { n_embd, n_embd });
  5030. layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), { n_embd });
  5031. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd });
  5032. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), { n_embd, 2 * n_ff });
  5033. layer.rope_long = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ROPE_FACTORS_LONG, "weight"), { n_embd_head/2 }, llama_model_loader::TENSOR_NOT_REQUIRED | (i != 0 ? llama_model_loader::TENSOR_DUPLICATED : 0));
  5034. layer.rope_short = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ROPE_FACTORS_SHORT, "weight"), { n_embd_head/2 }, llama_model_loader::TENSOR_NOT_REQUIRED | (i != 0 ? llama_model_loader::TENSOR_DUPLICATED : 0));
  5035. }
  5036. } break;
  5037. case LLM_ARCH_PLAMO:
  5038. {
  5039. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  5040. // output
  5041. {
  5042. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  5043. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab});
  5044. }
  5045. for (int i = 0; i < n_layer; ++i) {
  5046. ggml_context * ctx_layer = ctx_for_layer(i);
  5047. ggml_context * ctx_split = ctx_for_layer_split(i);
  5048. auto & layer = model.layers[i];
  5049. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  5050. layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd});
  5051. layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa});
  5052. layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa});
  5053. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  5054. layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff});
  5055. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd});
  5056. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  5057. }
  5058. } break;
  5059. case LLM_ARCH_GPT2:
  5060. {
  5061. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  5062. model.pos_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_POS_EMBD, "weight"), {n_embd, hparams.n_ctx_train});
  5063. // output
  5064. {
  5065. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  5066. model.output_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd});
  5067. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab});
  5068. }
  5069. for (int i = 0; i < n_layer; ++i) {
  5070. ggml_context * ctx_layer = ctx_for_layer(i);
  5071. ggml_context * ctx_split = ctx_for_layer_split(i);
  5072. auto & layer = model.layers[i];
  5073. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  5074. layer.attn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd});
  5075. layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa});
  5076. layer.bqkv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd + 2*n_embd_gqa});
  5077. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  5078. layer.bo = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd});
  5079. layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
  5080. layer.ffn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd});
  5081. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd});
  5082. layer.ffn_down_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd});
  5083. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  5084. layer.ffn_up_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff});
  5085. }
  5086. } break;
  5087. case LLM_ARCH_CODESHELL:
  5088. {
  5089. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  5090. // output
  5091. {
  5092. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  5093. model.output_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd});
  5094. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab});
  5095. }
  5096. for (int i = 0; i < n_layer; ++i) {
  5097. ggml_context * ctx_layer = ctx_for_layer(i);
  5098. ggml_context * ctx_split = ctx_for_layer_split(i);
  5099. auto & layer = model.layers[i];
  5100. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  5101. layer.attn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd});
  5102. layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa});
  5103. layer.bqkv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd + 2*n_embd_gqa});
  5104. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  5105. layer.bo = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd});
  5106. layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
  5107. layer.ffn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd});
  5108. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd});
  5109. layer.ffn_down_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd});
  5110. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  5111. layer.ffn_up_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff});
  5112. }
  5113. } break;
  5114. case LLM_ARCH_ORION:
  5115. {
  5116. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  5117. {
  5118. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  5119. model.output_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd});
  5120. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab});
  5121. }
  5122. for (int i = 0; i < n_layer; ++i) {
  5123. ggml_context * ctx_layer = ctx_for_layer(i);
  5124. ggml_context * ctx_split = ctx_for_layer_split(i);
  5125. auto & layer = model.layers[i];
  5126. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  5127. layer.attn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd});
  5128. layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd});
  5129. layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa});
  5130. layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa});
  5131. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  5132. layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
  5133. layer.ffn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd});
  5134. layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff});
  5135. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd});
  5136. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  5137. }
  5138. } break;
  5139. case LLM_ARCH_INTERNLM2:
  5140. {
  5141. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  5142. // output
  5143. {
  5144. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  5145. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab});
  5146. }
  5147. for (int i = 0; i < n_layer; ++i) {
  5148. ggml_context * ctx_layer = ctx_for_layer(i);
  5149. ggml_context * ctx_split = ctx_for_layer_split(i);
  5150. auto & layer = model.layers[i];
  5151. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  5152. // layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa});
  5153. layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd});
  5154. layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa});
  5155. layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa});
  5156. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  5157. layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
  5158. layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff});
  5159. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd});
  5160. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  5161. }
  5162. } break;
  5163. case LLM_ARCH_GEMMA:
  5164. {
  5165. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  5166. // output
  5167. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  5168. model.output = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_DUPLICATED); // same as tok_embd, duplicated to allow offloading
  5169. const int64_t n_ff = hparams.n_ff;
  5170. const int64_t n_embd_head_k = hparams.n_embd_head_k;
  5171. const int64_t n_embd_k_gqa = hparams.n_embd_k_gqa();
  5172. const int64_t n_embd_v_gqa = hparams.n_embd_v_gqa();
  5173. for (uint32_t i = 0; i < n_layer; ++i) {
  5174. ggml_context * ctx_layer = ctx_for_layer(i);
  5175. ggml_context * ctx_split = ctx_for_layer_split(i);
  5176. auto & layer = model.layers[i];
  5177. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  5178. layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd_head_k * hparams.n_head});
  5179. layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_k_gqa});
  5180. layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_v_gqa});
  5181. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd_head_k * hparams.n_head, n_embd});
  5182. layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
  5183. layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff});
  5184. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  5185. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd});
  5186. }
  5187. } break;
  5188. case LLM_ARCH_STARCODER2:
  5189. {
  5190. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  5191. // output
  5192. {
  5193. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  5194. model.output_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd});
  5195. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_NOT_REQUIRED);
  5196. // if output is NULL, init from the input tok embed
  5197. if (model.output == NULL) {
  5198. model.output = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_DUPLICATED);
  5199. }
  5200. }
  5201. for (int i = 0; i < n_layer; ++i) {
  5202. ggml_context * ctx_layer = ctx_for_layer(i);
  5203. ggml_context * ctx_split = ctx_for_layer_split(i);
  5204. auto & layer = model.layers[i];
  5205. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  5206. layer.attn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd});
  5207. layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd});
  5208. layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa});
  5209. layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa});
  5210. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  5211. // optional bias tensors
  5212. layer.bq = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd});
  5213. layer.bk = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa});
  5214. layer.bv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa});
  5215. layer.bo = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd});
  5216. layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
  5217. layer.ffn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd});
  5218. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd});
  5219. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  5220. // optional bias tensors
  5221. layer.ffn_down_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd});
  5222. layer.ffn_up_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_UP , "bias", i), { n_ff});
  5223. }
  5224. } break;
  5225. case LLM_ARCH_MAMBA:
  5226. {
  5227. const int64_t d_conv = hparams.ssm_d_conv;
  5228. const int64_t d_inner = hparams.ssm_d_inner;
  5229. const int64_t d_state = hparams.ssm_d_state;
  5230. const int64_t dt_rank = hparams.ssm_dt_rank;
  5231. // only an expansion factor of 2 is supported for now
  5232. GGML_ASSERT(2 * n_embd == d_inner);
  5233. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  5234. // output
  5235. {
  5236. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  5237. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_NOT_REQUIRED);
  5238. // if output is NULL, init from the input tok embed, duplicated to allow offloading
  5239. if (model.output == NULL) {
  5240. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_DUPLICATED);
  5241. }
  5242. }
  5243. for (int i = 0; i < n_layer; ++i) {
  5244. ggml_context * ctx_layer = ctx_for_layer(i);
  5245. ggml_context * ctx_split = ctx_for_layer_split(i);
  5246. auto & layer = model.layers[i];
  5247. // norm
  5248. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  5249. layer.ssm_in = ml.create_tensor(ctx_split, tn(LLM_TENSOR_SSM_IN, "weight", i), {n_embd, 2*d_inner});
  5250. layer.ssm_conv1d = ml.create_tensor(ctx_split, tn(LLM_TENSOR_SSM_CONV1D, "weight", i), {d_conv, d_inner});
  5251. layer.ssm_conv1d_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_SSM_CONV1D, "bias", i), {d_inner});
  5252. layer.ssm_x = ml.create_tensor(ctx_split, tn(LLM_TENSOR_SSM_X, "weight", i), {d_inner, dt_rank + 2*d_state});
  5253. layer.ssm_dt = ml.create_tensor(ctx_split, tn(LLM_TENSOR_SSM_DT, "weight", i), {dt_rank, d_inner});
  5254. layer.ssm_dt_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_SSM_DT, "bias", i), {d_inner});
  5255. // no "weight" suffix for these
  5256. layer.ssm_a = ml.create_tensor(ctx_split, tn(LLM_TENSOR_SSM_A, i), {d_state, d_inner});
  5257. layer.ssm_d = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_SSM_D, i), {d_inner});
  5258. // out_proj
  5259. layer.ssm_out = ml.create_tensor(ctx_split, tn(LLM_TENSOR_SSM_OUT, "weight", i), {d_inner, n_embd});
  5260. }
  5261. } break;
  5262. case LLM_ARCH_XVERSE:
  5263. {
  5264. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  5265. {
  5266. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  5267. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab});
  5268. }
  5269. for (int i = 0; i < n_layer; ++i) {
  5270. ggml_context * ctx_layer = ctx_for_layer(i);
  5271. ggml_context * ctx_split = ctx_for_layer_split(i);
  5272. auto & layer = model.layers[i];
  5273. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  5274. layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd});
  5275. layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa});
  5276. layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa});
  5277. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  5278. layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
  5279. layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff});
  5280. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd});
  5281. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  5282. }
  5283. } break;
  5284. case LLM_ARCH_COMMAND_R:
  5285. {
  5286. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  5287. // output
  5288. {
  5289. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  5290. // init output from the input tok embed
  5291. model.output = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_DUPLICATED);
  5292. }
  5293. for (int i = 0; i < n_layer; ++i) {
  5294. ggml_context * ctx_layer = ctx_for_layer(i);
  5295. ggml_context * ctx_split = ctx_for_layer_split(i);
  5296. auto & layer = model.layers[i];
  5297. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  5298. if (n_layer >= 64){
  5299. layer.attn_q_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), {hparams.n_embd_head_k, hparams.n_head});
  5300. layer.attn_k_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), {hparams.n_embd_head_k, hparams.n_head_kv});
  5301. }
  5302. layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd});
  5303. layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa});
  5304. layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa});
  5305. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  5306. layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff});
  5307. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd});
  5308. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  5309. }
  5310. } break;
  5311. case LLM_ARCH_OLMO: // adapted from LLM_ARCH_LLAMA with norm params removed
  5312. {
  5313. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  5314. // output
  5315. {
  5316. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_NOT_REQUIRED);
  5317. // if output is NULL, init from the input tok embed
  5318. if (model.output == NULL) {
  5319. model.output = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_DUPLICATED);
  5320. }
  5321. }
  5322. for (int i = 0; i < n_layer; ++i) {
  5323. ggml_context * ctx_split = ctx_for_layer_split(i);
  5324. auto & layer = model.layers[i];
  5325. layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd});
  5326. layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa});
  5327. layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa});
  5328. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  5329. layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff});
  5330. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd});
  5331. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  5332. }
  5333. } break;
  5334. case LLM_ARCH_GPTNEOX:
  5335. {
  5336. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  5337. // output
  5338. {
  5339. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  5340. model.output_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd});
  5341. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab});
  5342. }
  5343. for (int i = 0; i < n_layer; ++i) {
  5344. ggml_context * ctx_layer = ctx_for_layer(i);
  5345. ggml_context * ctx_split = ctx_for_layer_split(i);
  5346. auto & layer = model.layers[i];
  5347. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  5348. layer.attn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd});
  5349. layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa});
  5350. layer.bqkv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd + 2*n_embd_gqa});
  5351. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  5352. layer.bo = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd});
  5353. layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
  5354. layer.ffn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd});
  5355. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd});
  5356. layer.ffn_down_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd});
  5357. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  5358. layer.ffn_up_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff});
  5359. }
  5360. } break;
  5361. case LLM_ARCH_ARCTIC:
  5362. {
  5363. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  5364. // output
  5365. {
  5366. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  5367. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_NOT_REQUIRED);
  5368. // if output is NULL, init from the input tok embed
  5369. if (model.output == NULL) {
  5370. model.output = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_DUPLICATED);
  5371. }
  5372. }
  5373. for (int i = 0; i < n_layer; ++i) {
  5374. ggml_context * ctx_layer = ctx_for_layer(i);
  5375. ggml_context * ctx_split = ctx_for_layer_split(i);
  5376. auto & layer = model.layers[i];
  5377. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  5378. layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd});
  5379. layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa});
  5380. layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa});
  5381. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  5382. layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
  5383. layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_embd});
  5384. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_embd, n_embd});
  5385. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_embd});
  5386. layer.ffn_gate_inp = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert});
  5387. layer.ffn_norm_exps = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM_EXPS, "weight", i), {n_embd});
  5388. layer.ffn_gate_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), {n_embd, n_ff, n_expert}, false);
  5389. layer.ffn_down_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), { n_ff, n_embd, n_expert});
  5390. layer.ffn_up_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), {n_embd, n_ff, n_expert});
  5391. }
  5392. } break;
  5393. case LLM_ARCH_DEEPSEEK2:
  5394. {
  5395. bool is_lite = (hparams.n_layer == 27);
  5396. const uint32_t n_embd_head_qk_rope = hparams.n_rot;
  5397. const uint32_t n_embd_head_qk_nope = hparams.n_embd_head_k - hparams.n_rot;
  5398. const uint32_t q_lora_rank = hparams.n_lora_q;
  5399. const uint32_t kv_lora_rank = hparams.n_lora_kv;
  5400. const uint32_t n_ff_exp = hparams.n_ff_exp;
  5401. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  5402. // output
  5403. {
  5404. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  5405. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab});
  5406. }
  5407. for (int i = 0; i < n_layer; ++i) {
  5408. ggml_context * ctx_layer = ctx_for_layer(i);
  5409. ggml_context * ctx_split = ctx_for_layer_split(i);
  5410. auto & layer = model.layers[i];
  5411. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  5412. if (!is_lite) {
  5413. layer.attn_q_a_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q_A_NORM, "weight", i), {q_lora_rank});
  5414. }
  5415. layer.attn_kv_a_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_KV_A_NORM, "weight", i), {kv_lora_rank});
  5416. if (!is_lite) {
  5417. layer.wq_a = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q_A, "weight", i), {n_embd, q_lora_rank});
  5418. layer.wq_b = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q_B, "weight", i), {q_lora_rank, hparams.n_head * hparams.n_embd_head_k});
  5419. } else {
  5420. layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd_k_gqa});
  5421. }
  5422. layer.wkv_a_mqa = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_KV_A_MQA, "weight", i), {n_embd, kv_lora_rank + n_embd_head_qk_rope});
  5423. layer.wkv_b = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_KV_B, "weight", i), {kv_lora_rank, hparams.n_head * (n_embd_head_qk_nope + hparams.n_embd_head_v)});
  5424. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {hparams.n_head * hparams.n_embd_head_v, n_embd});
  5425. layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
  5426. if ((uint32_t) i < hparams.n_layer_dense_lead) {
  5427. layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff});
  5428. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd});
  5429. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  5430. } else {
  5431. layer.ffn_gate_inp = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert});
  5432. GGML_ASSERT(hparams.n_expert > 0);
  5433. GGML_ASSERT(hparams.n_expert_used > 0);
  5434. // MoE branch
  5435. layer.ffn_gate_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), { n_embd, n_ff_exp, n_expert});
  5436. layer.ffn_down_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), {n_ff_exp, n_embd, n_expert});
  5437. layer.ffn_up_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), { n_embd, n_ff_exp, n_expert});
  5438. // Shared expert branch
  5439. layer.ffn_gate_shexp = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE_SHEXP, "weight", i), {n_embd, n_ff_exp * hparams.n_expert_shared});
  5440. layer.ffn_down_shexp = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN_SHEXP, "weight", i), { n_ff_exp * hparams.n_expert_shared, n_embd});
  5441. layer.ffn_up_shexp = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP_SHEXP, "weight", i), {n_embd, n_ff_exp * hparams.n_expert_shared});
  5442. }
  5443. }
  5444. } break;
  5445. default:
  5446. throw std::runtime_error("unknown architecture");
  5447. }
  5448. }
  5449. ml.done_getting_tensors();
  5450. ml.init_mappings(true, use_mlock ? &model.mlock_mmaps : nullptr);
  5451. model.mappings.reserve(ml.mappings.size());
  5452. // create the backend buffers
  5453. std::vector<std::pair<ggml_context *, llama_buf_map>> ctx_bufs;
  5454. ctx_bufs.reserve(ctx_map.size());
  5455. // Ensure we have enough capacity for the maximum backend buffer we will potentially create
  5456. size_t n_max_backend_buffer = ctx_map.size() * ml.files.size();
  5457. model.bufs.reserve(n_max_backend_buffer);
  5458. for (auto & it : ctx_map) {
  5459. ggml_backend_buffer_type_t buft = it.first;
  5460. ggml_context * ctx = it.second;
  5461. llama_buf_map bufs;
  5462. bufs.reserve(n_max_backend_buffer);
  5463. // only the mmap region containing the tensors in the model is mapped to the backend buffer
  5464. // this is important for metal with apple silicon: if the entire model could be mapped to a metal buffer, then we could just use metal for all layers
  5465. // this allows using partial offloading when the model size exceeds the metal buffer size, but not the RAM size
  5466. if (ml.use_mmap && use_mmap_buffer && buft == llama_default_buffer_type_cpu(true)) {
  5467. for (uint32_t idx = 0; idx < ml.files.size(); idx++) {
  5468. void * addr = nullptr;
  5469. size_t first, last;
  5470. ml.get_mapping_range(&first, &last, &addr, idx, ctx);
  5471. if (first >= last) {
  5472. continue;
  5473. }
  5474. ggml_backend_buffer_t buf = ggml_backend_cpu_buffer_from_ptr((char *) addr + first, last - first);
  5475. if (buf == nullptr) {
  5476. throw std::runtime_error("unable to allocate backend CPU buffer");
  5477. }
  5478. model.bufs.push_back(buf);
  5479. bufs.emplace(idx, buf);
  5480. #ifdef GGML_USE_CUDA
  5481. if (n_layer >= n_gpu_layers) {
  5482. ggml_backend_cuda_register_host_buffer(
  5483. ggml_backend_buffer_get_base(buf),
  5484. ggml_backend_buffer_get_size(buf));
  5485. }
  5486. #endif
  5487. }
  5488. }
  5489. #ifdef GGML_USE_METAL
  5490. else if (ml.use_mmap && use_mmap_buffer && buft == ggml_backend_metal_buffer_type()) {
  5491. for (uint32_t idx = 0; idx < ml.files.size(); idx++) {
  5492. const size_t max_size = ggml_get_max_tensor_size(ctx);
  5493. void * addr = nullptr;
  5494. size_t first, last;
  5495. ml.get_mapping_range(&first, &last, &addr, idx, ctx);
  5496. if (first >= last) {
  5497. continue;
  5498. }
  5499. ggml_backend_buffer_t buf = ggml_backend_metal_buffer_from_ptr((char *) addr + first, last - first, max_size);
  5500. if (buf == nullptr) {
  5501. throw std::runtime_error("unable to allocate backend metal buffer");
  5502. }
  5503. model.bufs.push_back(buf);
  5504. bufs.emplace(idx, buf);
  5505. }
  5506. }
  5507. #endif
  5508. else {
  5509. ggml_backend_buffer_t buf = ggml_backend_alloc_ctx_tensors_from_buft(ctx, buft);
  5510. if (buf == nullptr) {
  5511. throw std::runtime_error("unable to allocate backend buffer");
  5512. }
  5513. model.bufs.push_back(buf);
  5514. if (use_mlock && ggml_backend_buffer_is_host(buf)) {
  5515. model.mlock_bufs.emplace_back(new llama_mlock);
  5516. auto & mlock_buf = model.mlock_bufs.back();
  5517. mlock_buf->init (ggml_backend_buffer_get_base(buf));
  5518. mlock_buf->grow_to(ggml_backend_buffer_get_size(buf));
  5519. }
  5520. for (uint32_t idx = 0; idx < ml.files.size(); idx++) {
  5521. bufs.emplace(idx, buf);
  5522. }
  5523. }
  5524. if (bufs.empty()) {
  5525. throw std::runtime_error("failed to allocate buffer");
  5526. }
  5527. for (auto & buf : bufs) {
  5528. // indicate that this buffer contains weights
  5529. // this is used by ggml_backend_sched to improve op scheduling -> ops that use a weight are preferably scheduled to the backend that contains the weight
  5530. ggml_backend_buffer_set_usage(buf.second, GGML_BACKEND_BUFFER_USAGE_WEIGHTS);
  5531. }
  5532. ctx_bufs.emplace_back(ctx, bufs);
  5533. }
  5534. if (llama_supports_gpu_offload()) {
  5535. const int n_gpu = std::min(n_gpu_layers, int(hparams.n_layer));
  5536. LLAMA_LOG_INFO("%s: offloading %d repeating layers to GPU\n", __func__, n_gpu);
  5537. if (n_gpu_layers > (int) hparams.n_layer) {
  5538. LLAMA_LOG_INFO("%s: offloading non-repeating layers to GPU\n", __func__);
  5539. }
  5540. const int max_backend_supported_layers = hparams.n_layer + 1;
  5541. const int max_offloadable_layers = hparams.n_layer + 1;
  5542. LLAMA_LOG_INFO("%s: offloaded %d/%d layers to GPU\n", __func__, std::min(n_gpu_layers, max_offloadable_layers), max_backend_supported_layers);
  5543. }
  5544. // print memory requirements
  5545. for (ggml_backend_buffer_t buf : model.bufs) {
  5546. LLAMA_LOG_INFO("%s: %10s buffer size = %8.2f MiB\n", __func__, ggml_backend_buffer_name(buf), ggml_backend_buffer_get_size(buf) / 1024.0 / 1024.0);
  5547. }
  5548. // populate tensors_by_name
  5549. for (ggml_context * ctx : model.ctxs) {
  5550. for (auto * cur = ggml_get_first_tensor(ctx); cur != NULL; cur = ggml_get_next_tensor(ctx, cur)) {
  5551. model.tensors_by_name.emplace_back(ggml_get_name(cur), cur);
  5552. }
  5553. }
  5554. // load tensor data
  5555. for (auto & it : ctx_bufs) {
  5556. ggml_context * ctx = it.first;
  5557. auto & bufs = it.second;
  5558. if (!ml.load_all_data(ctx, bufs, use_mlock ? &model.mlock_mmaps : NULL, progress_callback, progress_callback_user_data)) {
  5559. return false;
  5560. }
  5561. }
  5562. if (use_mmap_buffer) {
  5563. for (auto & mapping : ml.mappings) {
  5564. model.mappings.emplace_back(std::move(mapping));
  5565. }
  5566. }
  5567. // loading time will be recalculate after the first eval, so
  5568. // we take page faults deferred by mmap() into consideration
  5569. model.t_load_us = ggml_time_us() - model.t_start_us;
  5570. return true;
  5571. }
  5572. // Returns 0 on success, -1 on error, and -2 on cancellation via llama_progress_callback
  5573. static int llama_model_load(const std::string & fname, llama_model & model, llama_model_params & params) {
  5574. try {
  5575. llama_model_loader ml(fname, params.use_mmap, params.check_tensors, params.kv_overrides);
  5576. model.hparams.vocab_only = params.vocab_only;
  5577. try {
  5578. llm_load_arch(ml, model);
  5579. } catch(const std::exception & e) {
  5580. throw std::runtime_error("error loading model architecture: " + std::string(e.what()));
  5581. }
  5582. try {
  5583. llm_load_hparams(ml, model);
  5584. } catch(const std::exception & e) {
  5585. throw std::runtime_error("error loading model hyperparameters: " + std::string(e.what()));
  5586. }
  5587. try {
  5588. llm_load_vocab(ml, model);
  5589. } catch(const std::exception & e) {
  5590. throw std::runtime_error("error loading model vocabulary: " + std::string(e.what()));
  5591. }
  5592. llm_load_print_meta(ml, model);
  5593. if (model.vocab.type != LLAMA_VOCAB_TYPE_NONE &&
  5594. model.hparams.n_vocab != model.vocab.id_to_token.size()) {
  5595. throw std::runtime_error("vocab size mismatch");
  5596. }
  5597. if (params.vocab_only) {
  5598. LLAMA_LOG_INFO("%s: vocab only - skipping tensors\n", __func__);
  5599. return 0;
  5600. }
  5601. #ifdef GGML_USE_KOMPUTE
  5602. if (params.n_gpu_layers > 0 && (
  5603. !(model.arch == LLM_ARCH_LLAMA || model.arch == LLM_ARCH_FALCON)
  5604. || !(
  5605. model.ftype == LLAMA_FTYPE_ALL_F32 ||
  5606. model.ftype == LLAMA_FTYPE_MOSTLY_F16 ||
  5607. model.ftype == LLAMA_FTYPE_MOSTLY_BF16 ||
  5608. model.ftype == LLAMA_FTYPE_MOSTLY_Q4_0 ||
  5609. model.ftype == LLAMA_FTYPE_MOSTLY_Q4_1
  5610. )
  5611. )) {
  5612. // TODO(cebtenzzre): propagate this error outside of llama_load_model_from_file
  5613. LLAMA_LOG_WARN("%s: disabling Kompute due to unsupported model arch or quantization\n", __func__);
  5614. params.n_gpu_layers = 0;
  5615. }
  5616. #endif
  5617. #ifdef GGML_USE_SYCL
  5618. if (params.split_mode == LLAMA_SPLIT_MODE_NONE) {
  5619. ggml_backend_sycl_set_single_device_mode(params.main_gpu);
  5620. //SYCL use device index (0, 1, 2) directly, uer input device id, then convert to device index.
  5621. params.main_gpu = ggml_backend_sycl_get_device_index(params.main_gpu);
  5622. } else {
  5623. ggml_backend_sycl_set_mul_device_mode();
  5624. }
  5625. #endif
  5626. if (!llm_load_tensors(
  5627. ml, model, params.n_gpu_layers, params.split_mode, params.main_gpu, params.tensor_split, params.use_mlock,
  5628. params.progress_callback, params.progress_callback_user_data
  5629. )) {
  5630. return -2;
  5631. }
  5632. } catch (const std::exception & err) {
  5633. LLAMA_LOG_ERROR("%s: error loading model: %s\n", __func__, err.what());
  5634. return -1;
  5635. }
  5636. return 0;
  5637. }
  5638. //
  5639. // llm_build
  5640. //
  5641. using llm_build_cb = std::function<void(struct ggml_tensor * cur, const char * name, int nl)>;
  5642. enum llm_ffn_op_type {
  5643. LLM_FFN_SILU,
  5644. LLM_FFN_GELU,
  5645. LLM_FFN_RELU,
  5646. LLM_FFN_RELU_SQR,
  5647. };
  5648. enum llm_ffn_gate_type {
  5649. LLM_FFN_SEQ,
  5650. LLM_FFN_PAR, // ffn_gate is parallel to ffn_up
  5651. };
  5652. enum llm_norm_type {
  5653. LLM_NORM,
  5654. LLM_NORM_RMS,
  5655. };
  5656. static struct ggml_tensor * llm_build_inp_embd(
  5657. struct ggml_context * ctx,
  5658. struct llama_context & lctx,
  5659. const llama_hparams & hparams,
  5660. const llama_batch & batch,
  5661. struct ggml_tensor * tok_embd,
  5662. const llm_build_cb & cb) {
  5663. const int64_t n_embd = hparams.n_embd;
  5664. struct ggml_tensor * inpL;
  5665. if (batch.token) {
  5666. lctx.inp_tokens = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, batch.n_tokens);
  5667. cb(lctx.inp_tokens, "inp_tokens", -1);
  5668. ggml_set_input(lctx.inp_tokens);
  5669. inpL = ggml_get_rows(ctx, tok_embd, lctx.inp_tokens);
  5670. } else {
  5671. lctx.inp_embd = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd, batch.n_tokens);
  5672. inpL = lctx.inp_embd;
  5673. ggml_set_input(lctx.inp_embd);
  5674. }
  5675. cb(inpL, "inp_embd", -1);
  5676. return inpL;
  5677. }
  5678. static void llm_build_kv_store(
  5679. struct ggml_context * ctx,
  5680. const llama_hparams & hparams,
  5681. const llama_cparams & cparams,
  5682. const llama_kv_cache & kv,
  5683. struct ggml_cgraph * graph,
  5684. struct ggml_tensor * k_cur,
  5685. struct ggml_tensor * v_cur,
  5686. int32_t n_tokens,
  5687. int32_t kv_head,
  5688. const llm_build_cb & cb,
  5689. int64_t il) {
  5690. const int64_t n_ctx = cparams.n_ctx;
  5691. const int64_t n_embd_k_gqa = hparams.n_embd_k_gqa();
  5692. const int64_t n_embd_v_gqa = hparams.n_embd_v_gqa();
  5693. GGML_ASSERT(kv.size == n_ctx);
  5694. struct ggml_tensor * k_cache_view = ggml_view_1d(ctx, kv.k_l[il], n_tokens*n_embd_k_gqa,
  5695. (ggml_row_size(kv.k_l[il]->type, n_embd_k_gqa))*kv_head);
  5696. cb(k_cache_view, "k_cache_view", il);
  5697. // note: storing RoPE-ed version of K in the KV cache
  5698. ggml_build_forward_expand(graph, ggml_cpy(ctx, k_cur, k_cache_view));
  5699. assert(v_cur->ne[0] == n_embd_v_gqa && v_cur->ne[1] == n_tokens);
  5700. struct ggml_tensor * v_cache_view = nullptr;
  5701. if (cparams.flash_attn) {
  5702. v_cache_view = ggml_view_1d(ctx, kv.v_l[il], n_tokens*n_embd_v_gqa,
  5703. (kv_head)*ggml_row_size(kv.v_l[il]->type, n_embd_v_gqa));
  5704. } else {
  5705. // note: the V cache is transposed when not using flash attention
  5706. v_cache_view = ggml_view_2d(ctx, kv.v_l[il], n_tokens, n_embd_v_gqa,
  5707. ( n_ctx)*ggml_element_size(kv.v_l[il]),
  5708. (kv_head)*ggml_element_size(kv.v_l[il]));
  5709. v_cur = ggml_transpose(ctx, v_cur);
  5710. }
  5711. cb(v_cache_view, "v_cache_view", il);
  5712. ggml_build_forward_expand(graph, ggml_cpy(ctx, v_cur, v_cache_view));
  5713. }
  5714. static struct ggml_tensor * llm_build_norm(
  5715. struct ggml_context * ctx,
  5716. struct ggml_tensor * cur,
  5717. const llama_hparams & hparams,
  5718. struct ggml_tensor * mw,
  5719. struct ggml_tensor * mb,
  5720. llm_norm_type type,
  5721. const llm_build_cb & cb,
  5722. int il) {
  5723. switch (type) {
  5724. case LLM_NORM: cur = ggml_norm (ctx, cur, hparams.f_norm_eps); break;
  5725. case LLM_NORM_RMS: cur = ggml_rms_norm(ctx, cur, hparams.f_norm_rms_eps); break;
  5726. }
  5727. if (mw || mb) {
  5728. cb(cur, "norm", il);
  5729. }
  5730. if (mw) {
  5731. cur = ggml_mul(ctx, cur, mw);
  5732. if (mb) {
  5733. cb(cur, "norm_w", il);
  5734. }
  5735. }
  5736. if (mb) {
  5737. cur = ggml_add(ctx, cur, mb);
  5738. }
  5739. return cur;
  5740. }
  5741. static struct ggml_tensor * llm_build_ffn(
  5742. struct ggml_context * ctx,
  5743. struct ggml_tensor * cur,
  5744. struct ggml_tensor * up,
  5745. struct ggml_tensor * up_b,
  5746. struct ggml_tensor * gate,
  5747. struct ggml_tensor * gate_b,
  5748. struct ggml_tensor * down,
  5749. struct ggml_tensor * down_b,
  5750. struct ggml_tensor * act_scales,
  5751. llm_ffn_op_type type_op,
  5752. llm_ffn_gate_type type_gate,
  5753. const llm_build_cb & cb,
  5754. int il) {
  5755. struct ggml_tensor * tmp = up ? ggml_mul_mat(ctx, up, cur) : cur;
  5756. cb(tmp, "ffn_up", il);
  5757. if (up_b) {
  5758. tmp = ggml_add(ctx, tmp, up_b);
  5759. cb(tmp, "ffn_up_b", il);
  5760. }
  5761. if (gate) {
  5762. switch (type_gate) {
  5763. case LLM_FFN_SEQ:
  5764. {
  5765. cur = ggml_mul_mat(ctx, gate, tmp);
  5766. cb(cur, "ffn_gate", il);
  5767. } break;
  5768. case LLM_FFN_PAR:
  5769. {
  5770. cur = ggml_mul_mat(ctx, gate, cur);
  5771. cb(cur, "ffn_gate", il);
  5772. } break;
  5773. }
  5774. if (gate_b) {
  5775. cur = ggml_add(ctx, cur, gate_b);
  5776. cb(cur, "ffn_gate_b", il);
  5777. }
  5778. } else {
  5779. cur = tmp;
  5780. }
  5781. switch (type_op) {
  5782. case LLM_FFN_SILU:
  5783. {
  5784. cur = ggml_silu(ctx, cur);
  5785. cb(cur, "ffn_silu", il);
  5786. } break;
  5787. case LLM_FFN_GELU:
  5788. {
  5789. cur = ggml_gelu(ctx, cur);
  5790. cb(cur, "ffn_gelu", il);
  5791. if (act_scales != NULL) {
  5792. cur = ggml_div(ctx, cur, act_scales);
  5793. cb(cur, "ffn_act", il);
  5794. }
  5795. } break;
  5796. case LLM_FFN_RELU:
  5797. {
  5798. cur = ggml_relu(ctx, cur);
  5799. cb(cur, "ffn_relu", il);
  5800. } break;
  5801. case LLM_FFN_RELU_SQR:
  5802. {
  5803. cur = ggml_relu(ctx, cur);
  5804. cb(cur, "ffn_relu", il);
  5805. cur = ggml_sqr(ctx, cur);
  5806. cb(cur, "ffn_sqr(relu)", il);
  5807. } break;
  5808. }
  5809. if (type_gate == LLM_FFN_PAR) {
  5810. cur = ggml_mul(ctx, cur, tmp);
  5811. cb(cur, "ffn_gate_par", il);
  5812. }
  5813. cur = ggml_mul_mat(ctx, down, cur);
  5814. if (down_b) {
  5815. cb(cur, "ffn_down", il);
  5816. }
  5817. if (down_b) {
  5818. cur = ggml_add(ctx, cur, down_b);
  5819. }
  5820. return cur;
  5821. }
  5822. static struct ggml_tensor * llm_build_moe_ffn(
  5823. struct ggml_context * ctx,
  5824. struct ggml_tensor * cur,
  5825. struct ggml_tensor * gate_inp,
  5826. struct ggml_tensor * up_exps,
  5827. struct ggml_tensor * gate_exps,
  5828. struct ggml_tensor * down_exps,
  5829. int64_t n_expert,
  5830. int64_t n_expert_used,
  5831. llm_ffn_op_type type_op,
  5832. bool norm_w,
  5833. bool scale_w,
  5834. float w_scale,
  5835. const llm_build_cb & cb,
  5836. int il) {
  5837. int64_t n_embd = cur->ne[0];
  5838. int64_t n_tokens = cur->ne[1];
  5839. ggml_tensor * logits = ggml_mul_mat(ctx, gate_inp, cur); // [n_expert, n_tokens]
  5840. cb(logits, "ffn_moe_logits", il);
  5841. ggml_tensor * probs = ggml_soft_max(ctx, logits); // [n_expert, n_tokens]
  5842. cb(probs, "ffn_moe_probs", il);
  5843. // select experts
  5844. ggml_tensor * selected_experts = ggml_top_k(ctx, probs, n_expert_used); // [n_expert_used, n_tokens]
  5845. cb(selected_experts->src[0], "ffn_moe_argsort", il);
  5846. cb(selected_experts, "ffn_moe_topk", il);
  5847. ggml_tensor * weights = ggml_get_rows(ctx,
  5848. ggml_reshape_3d(ctx, probs, 1, n_expert, n_tokens), selected_experts); // [1, n_expert_used, n_tokens]
  5849. cb(weights, "ffn_moe_weights", il);
  5850. if (norm_w) {
  5851. weights = ggml_reshape_2d(ctx, weights, n_expert_used, n_tokens);
  5852. ggml_tensor * weights_sum = ggml_sum_rows(ctx, weights); // [1, n_tokens]
  5853. cb(weights_sum, "ffn_moe_weights_sum", il);
  5854. weights = ggml_div(ctx, weights, weights_sum); // [n_expert_used, n_tokens]
  5855. cb(weights, "ffn_moe_weights_norm", il);
  5856. weights = ggml_reshape_3d(ctx, weights, 1, n_expert_used, n_tokens);
  5857. }
  5858. if (scale_w) {
  5859. weights = ggml_scale(ctx, weights, w_scale);
  5860. cb(weights, "ffn_moe_weights_scaled", il);
  5861. }
  5862. cur = ggml_reshape_3d(ctx, cur, n_embd, 1, n_tokens);
  5863. ggml_tensor * up = ggml_mul_mat_id(ctx, up_exps, cur, selected_experts); // [n_ff, n_expert_used, n_tokens]
  5864. cb(up, "ffn_moe_up", il);
  5865. ggml_tensor * gate = ggml_mul_mat_id(ctx, gate_exps, cur, selected_experts); // [n_ff, n_expert_used, n_tokens]
  5866. cb(gate, "ffn_moe_gate", il);
  5867. switch (type_op) {
  5868. case LLM_FFN_SILU:
  5869. {
  5870. gate = ggml_silu(ctx, gate);
  5871. cb(gate, "ffn_moe_silu", il);
  5872. } break;
  5873. case LLM_FFN_GELU:
  5874. {
  5875. gate = ggml_gelu(ctx, gate);
  5876. cb(gate, "ffn_moe_gelu", il);
  5877. } break;
  5878. default:
  5879. GGML_ASSERT(false);
  5880. }
  5881. ggml_tensor * par = ggml_mul(ctx, up, gate); // [n_ff, n_expert_used, n_tokens]
  5882. cb(par, "ffn_moe_gate_par", il);
  5883. ggml_tensor * experts = ggml_mul_mat_id(ctx, down_exps, par, selected_experts); // [n_embd, n_expert_used, n_tokens]
  5884. cb(experts, "ffn_moe_down", il);
  5885. experts = ggml_mul(ctx, experts, weights);
  5886. // aggregate experts
  5887. ggml_tensor * moe_out = nullptr;
  5888. for (int i = 0; i < n_expert_used; ++i) {
  5889. ggml_tensor * cur_expert = ggml_view_2d(ctx, experts, n_embd, n_tokens,
  5890. experts->nb[2], i*experts->nb[1]);
  5891. if (i == 0) {
  5892. moe_out = cur_expert;
  5893. } else {
  5894. moe_out = ggml_add(ctx, moe_out, cur_expert);
  5895. }
  5896. }
  5897. if (n_expert_used == 1) {
  5898. // avoid returning a non-contiguous tensor
  5899. moe_out = ggml_cont(ctx, moe_out);
  5900. }
  5901. return moe_out;
  5902. }
  5903. static struct ggml_tensor * llm_build_kqv(
  5904. struct ggml_context * ctx,
  5905. const llama_model & model,
  5906. const llama_hparams & hparams,
  5907. const llama_cparams & cparams,
  5908. const llama_kv_cache & kv,
  5909. struct ggml_cgraph * graph,
  5910. struct ggml_tensor * wo,
  5911. struct ggml_tensor * wo_b,
  5912. struct ggml_tensor * q_cur,
  5913. struct ggml_tensor * kq_mask,
  5914. int32_t n_tokens,
  5915. int32_t n_kv,
  5916. float kq_scale,
  5917. const llm_build_cb & cb,
  5918. int il) {
  5919. const int64_t n_ctx = cparams.n_ctx;
  5920. const int64_t n_head = hparams.n_head;
  5921. const int64_t n_head_kv = hparams.n_head_kv;
  5922. const int64_t n_embd_head_k = hparams.n_embd_head_k;
  5923. const int64_t n_embd_k_gqa = hparams.n_embd_k_gqa();
  5924. const int64_t n_embd_head_v = hparams.n_embd_head_v;
  5925. const int64_t n_embd_v_gqa = hparams.n_embd_v_gqa();
  5926. struct ggml_tensor * q = ggml_permute(ctx, q_cur, 0, 2, 1, 3);
  5927. cb(q, "q", il);
  5928. struct ggml_tensor * k =
  5929. ggml_view_3d(ctx, kv.k_l[il],
  5930. n_embd_head_k, n_kv, n_head_kv,
  5931. ggml_row_size(kv.k_l[il]->type, n_embd_k_gqa),
  5932. ggml_row_size(kv.k_l[il]->type, n_embd_head_k),
  5933. 0);
  5934. cb(k, "k", il);
  5935. struct ggml_tensor * cur;
  5936. if (cparams.flash_attn) {
  5937. GGML_UNUSED(model);
  5938. GGML_UNUSED(n_ctx);
  5939. // split cached v into n_head heads (not transposed)
  5940. struct ggml_tensor * v =
  5941. ggml_view_3d(ctx, kv.v_l[il],
  5942. n_embd_head_v, n_kv, n_head_kv,
  5943. ggml_row_size(kv.v_l[il]->type, n_embd_v_gqa),
  5944. ggml_row_size(kv.v_l[il]->type, n_embd_head_v),
  5945. 0);
  5946. cb(v, "v", il);
  5947. cur = ggml_flash_attn_ext(ctx, q, k, v, kq_mask, kq_scale, hparams.f_max_alibi_bias);
  5948. if (model.arch == LLM_ARCH_PHI2 || model.arch == LLM_ARCH_PHI3 || model.arch == LLM_ARCH_GPTNEOX) {
  5949. ggml_flash_attn_ext_set_prec(cur, GGML_PREC_F32);
  5950. }
  5951. cur = ggml_reshape_2d(ctx, cur, n_embd_head_v*n_head, n_tokens);
  5952. } else {
  5953. struct ggml_tensor * kq = ggml_mul_mat(ctx, k, q);
  5954. cb(kq, "kq", il);
  5955. if (model.arch == LLM_ARCH_PHI2 || model.arch == LLM_ARCH_PHI3 || model.arch == LLM_ARCH_GPTNEOX) {
  5956. // for this arch, we need to perform the KQ multiplication with F32 precision, otherwise we get NaNs
  5957. // ref: https://github.com/ggerganov/llama.cpp/pull/4490#issuecomment-1859055847
  5958. ggml_mul_mat_set_prec(kq, GGML_PREC_F32);
  5959. }
  5960. if (model.arch == LLM_ARCH_GROK) {
  5961. // need to do the following:
  5962. // multiply by attn_output_multiplyer of 0.08838834764831845
  5963. // and then :
  5964. // kq = 30 * tanh(kq / 30)
  5965. // before the softmax below
  5966. //try from phi2
  5967. //ggml_mul_mat_set_prec(kq, GGML_PREC_F32);
  5968. kq = ggml_tanh(ctx, ggml_scale(ctx, kq, 0.08838834764831845f/30.0f));
  5969. kq = ggml_scale(ctx, kq, 30);
  5970. }
  5971. kq = ggml_soft_max_ext(ctx, kq, kq_mask, kq_scale, hparams.f_max_alibi_bias);
  5972. cb(kq, "kq_soft_max_ext", il);
  5973. GGML_ASSERT(kv.size == n_ctx);
  5974. // split cached v into n_head heads
  5975. struct ggml_tensor * v =
  5976. ggml_view_3d(ctx, kv.v_l[il],
  5977. n_kv, n_embd_head_v, n_head_kv,
  5978. ggml_element_size(kv.v_l[il])*n_ctx,
  5979. ggml_element_size(kv.v_l[il])*n_ctx*n_embd_head_v,
  5980. 0);
  5981. cb(v, "v", il);
  5982. struct ggml_tensor * kqv = ggml_mul_mat(ctx, v, kq);
  5983. cb(kqv, "kqv", il);
  5984. struct ggml_tensor * kqv_merged = ggml_permute(ctx, kqv, 0, 2, 1, 3);
  5985. cb(kqv_merged, "kqv_merged", il);
  5986. cur = ggml_cont_2d(ctx, kqv_merged, n_embd_head_v*n_head, n_tokens);
  5987. cb(cur, "kqv_merged_cont", il);
  5988. }
  5989. ggml_build_forward_expand(graph, cur);
  5990. cur = ggml_mul_mat(ctx, wo, cur);
  5991. if (wo_b) {
  5992. cb(cur, "kqv_wo", il);
  5993. }
  5994. if (wo_b) {
  5995. cur = ggml_add(ctx, cur, wo_b);
  5996. }
  5997. return cur;
  5998. }
  5999. static struct ggml_tensor * llm_build_kv(
  6000. struct ggml_context * ctx,
  6001. const llama_model & model,
  6002. const llama_hparams & hparams,
  6003. const llama_cparams & cparams,
  6004. const llama_kv_cache & kv,
  6005. struct ggml_cgraph * graph,
  6006. struct ggml_tensor * wo,
  6007. struct ggml_tensor * wo_b,
  6008. struct ggml_tensor * k_cur,
  6009. struct ggml_tensor * v_cur,
  6010. struct ggml_tensor * q_cur,
  6011. struct ggml_tensor * kq_mask,
  6012. int32_t n_tokens,
  6013. int32_t kv_head,
  6014. int32_t n_kv,
  6015. float kq_scale,
  6016. const llm_build_cb & cb,
  6017. int il) {
  6018. // these nodes are added to the graph together so that they are not reordered
  6019. // by doing so, the number of splits in the graph is reduced
  6020. ggml_build_forward_expand(graph, q_cur);
  6021. ggml_build_forward_expand(graph, k_cur);
  6022. ggml_build_forward_expand(graph, v_cur);
  6023. llm_build_kv_store(ctx, hparams, cparams, kv, graph, k_cur, v_cur, n_tokens, kv_head, cb, il);
  6024. struct ggml_tensor * cur;
  6025. cur = llm_build_kqv(ctx, model, hparams, cparams, kv, graph, wo, wo_b,
  6026. q_cur, kq_mask, n_tokens, n_kv, kq_scale, cb, il);
  6027. cb(cur, "kqv_out", il);
  6028. return cur;
  6029. }
  6030. struct llm_build_context {
  6031. const llama_model & model;
  6032. llama_context & lctx;
  6033. const llama_hparams & hparams;
  6034. const llama_cparams & cparams;
  6035. const llama_batch & batch;
  6036. const llama_kv_cache & kv_self;
  6037. const int64_t n_embd;
  6038. const int64_t n_layer;
  6039. const int64_t n_rot;
  6040. const int64_t n_ctx; // user-specified context size (can be different from n_ctx_train)
  6041. const int64_t n_head;
  6042. const int64_t n_head_kv;
  6043. const int64_t n_embd_head_k;
  6044. const int64_t n_embd_k_gqa;
  6045. const int64_t n_embd_head_v;
  6046. const int64_t n_embd_v_gqa;
  6047. const int64_t n_expert;
  6048. const int64_t n_expert_used;
  6049. const float freq_base;
  6050. const float freq_scale;
  6051. const float ext_factor;
  6052. const float attn_factor;
  6053. const float beta_fast;
  6054. const float beta_slow;
  6055. const float norm_eps;
  6056. const float norm_rms_eps;
  6057. const int32_t n_tokens;
  6058. const int32_t n_kv; // size of KV cache to consider (n_kv <= kv_self.size)
  6059. const int32_t n_outputs;
  6060. const int32_t kv_head; // index of where we store new KV data in the cache
  6061. const int32_t n_orig_ctx;
  6062. const bool flash_attn;
  6063. const enum llama_pooling_type pooling_type;
  6064. const enum llama_rope_type rope_type;
  6065. const llm_build_cb & cb;
  6066. std::vector<uint8_t> & buf_compute_meta;
  6067. struct ggml_context * ctx0 = nullptr;
  6068. // TODO: consider making the entire interface noexcept
  6069. llm_build_context(
  6070. llama_context & lctx,
  6071. const llama_batch & batch,
  6072. const llm_build_cb & cb,
  6073. bool worst_case) :
  6074. model (lctx.model),
  6075. lctx (lctx),
  6076. hparams (model.hparams),
  6077. cparams (lctx.cparams),
  6078. batch (batch),
  6079. kv_self (lctx.kv_self),
  6080. n_embd (hparams.n_embd),
  6081. n_layer (hparams.n_layer),
  6082. n_rot (hparams.n_rot),
  6083. n_ctx (cparams.n_ctx),
  6084. n_head (hparams.n_head),
  6085. n_head_kv (hparams.n_head_kv),
  6086. n_embd_head_k (hparams.n_embd_head_k),
  6087. n_embd_k_gqa (hparams.n_embd_k_gqa()),
  6088. n_embd_head_v (hparams.n_embd_head_v),
  6089. n_embd_v_gqa (hparams.n_embd_v_gqa()),
  6090. n_expert (hparams.n_expert),
  6091. n_expert_used (hparams.n_expert_used),
  6092. freq_base (cparams.rope_freq_base),
  6093. freq_scale (cparams.rope_freq_scale),
  6094. ext_factor (cparams.yarn_ext_factor),
  6095. attn_factor (cparams.yarn_attn_factor),
  6096. beta_fast (cparams.yarn_beta_fast),
  6097. beta_slow (cparams.yarn_beta_slow),
  6098. norm_eps (hparams.f_norm_eps),
  6099. norm_rms_eps (hparams.f_norm_rms_eps),
  6100. n_tokens (batch.n_tokens),
  6101. n_kv (worst_case ? kv_self.size : kv_self.n),
  6102. n_outputs (worst_case ? n_tokens : lctx.n_outputs),
  6103. kv_head (worst_case ? (kv_self.recurrent ? 0 : kv_self.size - n_tokens) : kv_self.head),
  6104. n_orig_ctx (cparams.n_yarn_orig_ctx),
  6105. flash_attn (cparams.flash_attn),
  6106. pooling_type (cparams.pooling_type),
  6107. rope_type (hparams.rope_type),
  6108. cb (cb),
  6109. buf_compute_meta (lctx.buf_compute_meta) {
  6110. // all initializations should be done in init()
  6111. }
  6112. void init() {
  6113. struct ggml_init_params params = {
  6114. /*.mem_size =*/ buf_compute_meta.size(),
  6115. /*.mem_buffer =*/ buf_compute_meta.data(),
  6116. /*.no_alloc =*/ true,
  6117. };
  6118. ctx0 = ggml_init(params);
  6119. lctx.inp_tokens = nullptr;
  6120. lctx.inp_embd = nullptr;
  6121. lctx.inp_pos = nullptr;
  6122. lctx.inp_out_ids = nullptr;
  6123. lctx.inp_KQ_mask = nullptr;
  6124. lctx.inp_K_shift = nullptr;
  6125. lctx.inp_mean = nullptr;
  6126. lctx.inp_cls = nullptr;
  6127. lctx.inp_s_copy = nullptr;
  6128. lctx.inp_s_mask = nullptr;
  6129. lctx.inp_s_seq = nullptr;
  6130. }
  6131. void free() {
  6132. if (ctx0) {
  6133. ggml_free(ctx0);
  6134. ctx0 = nullptr;
  6135. }
  6136. }
  6137. struct ggml_cgraph * build_k_shift() {
  6138. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  6139. GGML_ASSERT(kv_self.size == n_ctx);
  6140. lctx.inp_K_shift = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_ctx);
  6141. cb(lctx.inp_K_shift, "K_shift", -1);
  6142. ggml_set_input(lctx.inp_K_shift);
  6143. for (int il = 0; il < n_layer; ++il) {
  6144. struct ggml_tensor * rope_factors = build_rope_factors(il);
  6145. struct ggml_tensor * tmp =
  6146. // we rotate only the first n_rot dimensions
  6147. ggml_rope_ext_inplace(ctx0,
  6148. ggml_view_3d(ctx0, kv_self.k_l[il],
  6149. n_embd_head_k, n_head_kv, n_ctx,
  6150. ggml_row_size(kv_self.k_l[il]->type, n_embd_head_k),
  6151. ggml_row_size(kv_self.k_l[il]->type, n_embd_k_gqa),
  6152. 0),
  6153. lctx.inp_K_shift, rope_factors, n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  6154. ext_factor, attn_factor, beta_fast, beta_slow);
  6155. cb(tmp, "K_shifted", il);
  6156. ggml_build_forward_expand(gf, tmp);
  6157. }
  6158. return gf;
  6159. }
  6160. struct ggml_cgraph * build_s_copy() {
  6161. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  6162. GGML_ASSERT(kv_self.recurrent);
  6163. struct ggml_tensor * state_copy = build_inp_s_copy();
  6164. for (int il = 0; il < n_layer; ++il) {
  6165. struct ggml_tensor * conv_states = ggml_reshape_2d(ctx0, kv_self.k_l[il], hparams.n_embd_k_s(), kv_self.size);
  6166. struct ggml_tensor * ssm_states = ggml_reshape_2d(ctx0, kv_self.v_l[il], hparams.n_embd_v_s(), kv_self.size);
  6167. conv_states = ggml_get_rows(ctx0, conv_states, state_copy);
  6168. ssm_states = ggml_get_rows(ctx0, ssm_states, state_copy);
  6169. // TODO: name the intermediate tensors with cb()
  6170. ggml_build_forward_expand(gf, ggml_cpy(ctx0, conv_states, kv_self.k_l[il]));
  6171. ggml_build_forward_expand(gf, ggml_cpy(ctx0, ssm_states, kv_self.v_l[il]));
  6172. }
  6173. return gf;
  6174. }
  6175. struct ggml_cgraph * build_defrag(const std::vector<uint32_t> & ids) {
  6176. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  6177. for (uint32_t i = 0; i < ids.size(); ++i) {
  6178. const uint32_t id = ids[i];
  6179. if (i == id || id == ids.size()) {
  6180. continue;
  6181. }
  6182. uint32_t nm = 1;
  6183. while (i + nm < ids.size() && ids[i + nm] == id + nm) {
  6184. nm++;
  6185. }
  6186. for (int il = 0; il < n_layer; ++il) {
  6187. ggml_tensor * view_k_src = ggml_view_2d(ctx0, kv_self.k_l[il],
  6188. n_embd_k_gqa, nm,
  6189. ggml_row_size(kv_self.k_l[il]->type, n_embd_k_gqa),
  6190. ggml_row_size(kv_self.k_l[il]->type, n_embd_k_gqa*i));
  6191. ggml_tensor * view_k_dst = ggml_view_2d(ctx0, kv_self.k_l[il],
  6192. n_embd_k_gqa, nm,
  6193. ggml_row_size(kv_self.k_l[il]->type, n_embd_k_gqa),
  6194. ggml_row_size(kv_self.k_l[il]->type, n_embd_k_gqa*id));
  6195. ggml_tensor * view_v_src;
  6196. ggml_tensor * view_v_dst;
  6197. if (flash_attn) {
  6198. // NOTE: the V cache is not transposed when using flash attention
  6199. view_v_src = ggml_view_2d(ctx0, kv_self.v_l[il],
  6200. n_embd_v_gqa, nm,
  6201. ggml_row_size(kv_self.v_l[il]->type, n_embd_v_gqa),
  6202. ggml_row_size(kv_self.v_l[il]->type, n_embd_v_gqa*i));
  6203. view_v_dst = ggml_view_2d(ctx0, kv_self.v_l[il],
  6204. n_embd_v_gqa, nm,
  6205. ggml_row_size(kv_self.v_l[il]->type, n_embd_v_gqa),
  6206. ggml_row_size(kv_self.v_l[il]->type, n_embd_v_gqa*id));
  6207. } else {
  6208. view_v_src = ggml_view_2d(ctx0, kv_self.v_l[il],
  6209. nm, n_embd_v_gqa,
  6210. ggml_row_size(kv_self.v_l[il]->type, kv_self.size),
  6211. ggml_row_size(kv_self.v_l[il]->type, i));
  6212. view_v_dst = ggml_view_2d(ctx0, kv_self.v_l[il],
  6213. nm, n_embd_v_gqa,
  6214. ggml_row_size(kv_self.v_l[il]->type, kv_self.size),
  6215. ggml_row_size(kv_self.v_l[il]->type, id));
  6216. }
  6217. ggml_build_forward_expand(gf, ggml_cpy(ctx0, view_k_src, view_k_dst));
  6218. ggml_build_forward_expand(gf, ggml_cpy(ctx0, view_v_src, view_v_dst));
  6219. }
  6220. i += nm - 1;
  6221. }
  6222. //LLAMA_LOG_INFO("gf->n_nodes = %d\n", gf->n_nodes);
  6223. return gf;
  6224. }
  6225. struct ggml_tensor * build_inp_pos() {
  6226. lctx.inp_pos = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_tokens);
  6227. cb(lctx.inp_pos, "inp_pos", -1);
  6228. ggml_set_input(lctx.inp_pos);
  6229. return lctx.inp_pos;
  6230. }
  6231. struct ggml_tensor * build_rope_factors(int il) {
  6232. // choose long/short freq factors based on the context size
  6233. const auto n_ctx_pre_seq = cparams.n_ctx / cparams.n_seq_max;
  6234. if (n_ctx_pre_seq > hparams.n_yarn_orig_ctx) {
  6235. return model.layers[il].rope_long;
  6236. }
  6237. return model.layers[il].rope_short;
  6238. }
  6239. struct ggml_tensor * build_inp_out_ids() {
  6240. lctx.inp_out_ids = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_outputs);
  6241. cb(lctx.inp_out_ids, "inp_out_ids", -1);
  6242. ggml_set_input(lctx.inp_out_ids);
  6243. return lctx.inp_out_ids;
  6244. }
  6245. struct ggml_tensor * build_inp_KQ_mask(bool causal = true) {
  6246. if (causal) {
  6247. lctx.inp_KQ_mask = ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_kv, GGML_PAD(n_tokens, GGML_KQ_MASK_PAD));
  6248. } else {
  6249. lctx.inp_KQ_mask = ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_tokens, GGML_PAD(n_tokens, GGML_KQ_MASK_PAD));
  6250. }
  6251. cb(lctx.inp_KQ_mask, "KQ_mask", -1);
  6252. ggml_set_input(lctx.inp_KQ_mask);
  6253. return flash_attn ? ggml_cast(ctx0, lctx.inp_KQ_mask, GGML_TYPE_F16) : lctx.inp_KQ_mask;
  6254. }
  6255. struct ggml_tensor * build_inp_mean() {
  6256. lctx.inp_mean = ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_tokens, n_tokens);
  6257. cb(lctx.inp_mean, "inp_mean", -1);
  6258. ggml_set_input(lctx.inp_mean);
  6259. return lctx.inp_mean;
  6260. }
  6261. struct ggml_tensor * build_inp_cls() {
  6262. lctx.inp_cls = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_tokens);
  6263. cb(lctx.inp_cls, "inp_cls", -1);
  6264. ggml_set_input(lctx.inp_cls);
  6265. return lctx.inp_cls;
  6266. }
  6267. struct ggml_tensor * build_inp_s_copy() {
  6268. lctx.inp_s_copy = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, kv_self.size);
  6269. cb(lctx.inp_s_copy, "inp_s_copy", -1);
  6270. ggml_set_input(lctx.inp_s_copy);
  6271. return lctx.inp_s_copy;
  6272. }
  6273. struct ggml_tensor * build_inp_s_mask() {
  6274. lctx.inp_s_mask = ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, 1, n_kv);
  6275. cb(lctx.inp_s_mask, "inp_s_mask", -1);
  6276. ggml_set_input(lctx.inp_s_mask);
  6277. return lctx.inp_s_mask;
  6278. }
  6279. struct ggml_tensor * build_inp_s_seq() {
  6280. lctx.inp_s_seq = ggml_new_tensor_2d(ctx0, GGML_TYPE_I32, n_kv, n_tokens);
  6281. cb(lctx.inp_s_seq, "inp_s_seq", -1);
  6282. ggml_set_input(lctx.inp_s_seq);
  6283. return lctx.inp_s_seq;
  6284. }
  6285. struct ggml_cgraph * build_llama() {
  6286. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  6287. // mutable variable, needed during the last layer of the computation to skip unused tokens
  6288. int32_t n_tokens = this->n_tokens;
  6289. const int64_t n_embd_head = hparams.n_embd_head_v;
  6290. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  6291. GGML_ASSERT(n_embd_head == hparams.n_rot);
  6292. struct ggml_tensor * cur;
  6293. struct ggml_tensor * inpL;
  6294. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  6295. // inp_pos - contains the positions
  6296. struct ggml_tensor * inp_pos = build_inp_pos();
  6297. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  6298. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  6299. for (int il = 0; il < n_layer; ++il) {
  6300. struct ggml_tensor * inpSA = inpL;
  6301. // norm
  6302. cur = llm_build_norm(ctx0, inpL, hparams,
  6303. model.layers[il].attn_norm, NULL,
  6304. LLM_NORM_RMS, cb, il);
  6305. cb(cur, "attn_norm", il);
  6306. // self-attention
  6307. {
  6308. // compute Q and K and RoPE them
  6309. struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
  6310. cb(Qcur, "Qcur", il);
  6311. if (model.layers[il].bq) {
  6312. Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
  6313. cb(Qcur, "Qcur", il);
  6314. }
  6315. struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
  6316. cb(Kcur, "Kcur", il);
  6317. if (model.layers[il].bk) {
  6318. Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
  6319. cb(Kcur, "Kcur", il);
  6320. }
  6321. struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
  6322. cb(Vcur, "Vcur", il);
  6323. if (model.layers[il].bv) {
  6324. Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
  6325. cb(Vcur, "Vcur", il);
  6326. }
  6327. Qcur = ggml_rope_ext(
  6328. ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos, nullptr,
  6329. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  6330. ext_factor, attn_factor, beta_fast, beta_slow
  6331. );
  6332. cb(Qcur, "Qcur", il);
  6333. Kcur = ggml_rope_ext(
  6334. ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos, nullptr,
  6335. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  6336. ext_factor, attn_factor, beta_fast, beta_slow
  6337. );
  6338. cb(Kcur, "Kcur", il);
  6339. cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf,
  6340. model.layers[il].wo, model.layers[il].bo,
  6341. Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  6342. }
  6343. if (il == n_layer - 1) {
  6344. // skip computing output for unused tokens
  6345. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  6346. n_tokens = n_outputs;
  6347. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  6348. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  6349. }
  6350. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  6351. cb(ffn_inp, "ffn_inp", il);
  6352. // feed-forward network
  6353. if (model.layers[il].ffn_gate_inp == nullptr) {
  6354. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  6355. model.layers[il].ffn_norm, NULL,
  6356. LLM_NORM_RMS, cb, il);
  6357. cb(cur, "ffn_norm", il);
  6358. cur = llm_build_ffn(ctx0, cur,
  6359. model.layers[il].ffn_up, model.layers[il].ffn_up_b,
  6360. model.layers[il].ffn_gate, model.layers[il].ffn_gate_b,
  6361. model.layers[il].ffn_down, model.layers[il].ffn_down_b,
  6362. NULL,
  6363. LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
  6364. cb(cur, "ffn_out", il);
  6365. } else {
  6366. // MoE branch
  6367. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  6368. model.layers[il].ffn_norm, NULL,
  6369. LLM_NORM_RMS, cb, il);
  6370. cb(cur, "ffn_norm", il);
  6371. cur = llm_build_moe_ffn(ctx0, cur,
  6372. model.layers[il].ffn_gate_inp,
  6373. model.layers[il].ffn_up_exps,
  6374. model.layers[il].ffn_gate_exps,
  6375. model.layers[il].ffn_down_exps,
  6376. n_expert, n_expert_used,
  6377. LLM_FFN_SILU, true,
  6378. false, 0.0,
  6379. cb, il);
  6380. cb(cur, "ffn_moe_out", il);
  6381. }
  6382. cur = ggml_add(ctx0, cur, ffn_inp);
  6383. cb(cur, "ffn_out", il);
  6384. ggml_tensor * layer_dir = lctx.cvec.tensor_for(il);
  6385. if (layer_dir != nullptr) {
  6386. cur = ggml_add(ctx0, cur, layer_dir);
  6387. }
  6388. cb(cur, "l_out", il);
  6389. // input for next layer
  6390. inpL = cur;
  6391. }
  6392. cur = inpL;
  6393. cur = llm_build_norm(ctx0, cur, hparams,
  6394. model.output_norm, NULL,
  6395. LLM_NORM_RMS, cb, -1);
  6396. cb(cur, "result_norm", -1);
  6397. // lm_head
  6398. cur = ggml_mul_mat(ctx0, model.output, cur);
  6399. cb(cur, "result_output", -1);
  6400. ggml_build_forward_expand(gf, cur);
  6401. return gf;
  6402. }
  6403. struct ggml_cgraph * build_baichuan() {
  6404. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  6405. const int64_t n_embd_head = hparams.n_embd_head_v;
  6406. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  6407. GGML_ASSERT(n_embd_head == hparams.n_rot);
  6408. struct ggml_tensor * cur;
  6409. struct ggml_tensor * inpL;
  6410. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  6411. // inp_pos - contains the positions
  6412. struct ggml_tensor * inp_pos = model.type == MODEL_7B ? build_inp_pos() : nullptr;
  6413. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  6414. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  6415. for (int il = 0; il < n_layer; ++il) {
  6416. struct ggml_tensor * inpSA = inpL;
  6417. cur = llm_build_norm(ctx0, inpL, hparams,
  6418. model.layers[il].attn_norm, NULL,
  6419. LLM_NORM_RMS, cb, il);
  6420. cb(cur, "attn_norm", il);
  6421. // self-attention
  6422. {
  6423. struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
  6424. cb(Qcur, "Qcur", il);
  6425. struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
  6426. cb(Kcur, "Kcur", il);
  6427. struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
  6428. cb(Vcur, "Vcur", il);
  6429. switch (model.type) {
  6430. case MODEL_7B:
  6431. Qcur = ggml_rope_ext(
  6432. ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos, nullptr,
  6433. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  6434. ext_factor, attn_factor, beta_fast, beta_slow
  6435. );
  6436. Kcur = ggml_rope_ext(
  6437. ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos, nullptr,
  6438. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  6439. ext_factor, attn_factor, beta_fast, beta_slow
  6440. );
  6441. break;
  6442. case MODEL_13B:
  6443. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd/n_head, n_head, n_tokens);
  6444. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd/n_head, n_head, n_tokens);
  6445. break;
  6446. default:
  6447. GGML_ASSERT(false);
  6448. }
  6449. cb(Qcur, "Qcur", il);
  6450. cb(Kcur, "Kcur", il);
  6451. cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf,
  6452. model.layers[il].wo, NULL,
  6453. Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  6454. }
  6455. if (il == n_layer - 1) {
  6456. // skip computing output for unused tokens
  6457. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  6458. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  6459. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  6460. }
  6461. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  6462. cb(ffn_inp, "ffn_inp", il);
  6463. // feed-forward network
  6464. {
  6465. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  6466. model.layers[il].ffn_norm, NULL,
  6467. LLM_NORM_RMS, cb, il);
  6468. cb(cur, "ffn_norm", il);
  6469. cur = llm_build_ffn(ctx0, cur,
  6470. model.layers[il].ffn_up, NULL,
  6471. model.layers[il].ffn_gate, NULL,
  6472. model.layers[il].ffn_down, NULL,
  6473. NULL,
  6474. LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
  6475. cb(cur, "ffn_out", il);
  6476. }
  6477. cur = ggml_add(ctx0, cur, ffn_inp);
  6478. cb(cur, "l_out", il);
  6479. // input for next layer
  6480. inpL = cur;
  6481. }
  6482. cur = inpL;
  6483. cur = llm_build_norm(ctx0, cur, hparams,
  6484. model.output_norm, NULL,
  6485. LLM_NORM_RMS, cb, -1);
  6486. cb(cur, "result_norm", -1);
  6487. // lm_head
  6488. cur = ggml_mul_mat(ctx0, model.output, cur);
  6489. cb(cur, "result_output", -1);
  6490. ggml_build_forward_expand(gf, cur);
  6491. return gf;
  6492. }
  6493. struct ggml_cgraph * build_xverse() {
  6494. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  6495. const int64_t n_embd_head = hparams.n_embd_head_v;
  6496. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  6497. GGML_ASSERT(n_embd_head == hparams.n_rot);
  6498. struct ggml_tensor * cur;
  6499. struct ggml_tensor * inpL;
  6500. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  6501. // inp_pos - contains the positions
  6502. struct ggml_tensor * inp_pos = build_inp_pos();
  6503. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  6504. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  6505. for (int il = 0; il < n_layer; ++il) {
  6506. struct ggml_tensor * inpSA = inpL;
  6507. cur = llm_build_norm(ctx0, inpL, hparams,
  6508. model.layers[il].attn_norm, NULL,
  6509. LLM_NORM_RMS, cb, il);
  6510. cb(cur, "attn_norm", il);
  6511. // self-attention
  6512. {
  6513. struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
  6514. cb(Qcur, "Qcur", il);
  6515. struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
  6516. cb(Kcur, "Kcur", il);
  6517. struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
  6518. cb(Vcur, "Vcur", il);
  6519. Qcur = ggml_rope_ext(
  6520. ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos, nullptr,
  6521. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  6522. ext_factor, attn_factor, beta_fast, beta_slow
  6523. );
  6524. cb(Qcur, "Qcur", il);
  6525. Kcur = ggml_rope_ext(
  6526. ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos, nullptr,
  6527. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  6528. ext_factor, attn_factor, beta_fast, beta_slow
  6529. );
  6530. cb(Kcur, "Kcur", il);
  6531. cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf,
  6532. model.layers[il].wo, NULL,
  6533. Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  6534. }
  6535. if (il == n_layer - 1) {
  6536. // skip computing output for unused tokens
  6537. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  6538. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  6539. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  6540. }
  6541. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  6542. cb(ffn_inp, "ffn_inp", il);
  6543. // feed-forward network
  6544. {
  6545. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  6546. model.layers[il].ffn_norm, NULL,
  6547. LLM_NORM_RMS, cb, il);
  6548. cb(cur, "ffn_norm", il);
  6549. cur = llm_build_ffn(ctx0, cur,
  6550. model.layers[il].ffn_up, NULL,
  6551. model.layers[il].ffn_gate, NULL,
  6552. model.layers[il].ffn_down, NULL,
  6553. NULL,
  6554. LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
  6555. cb(cur, "ffn_out", il);
  6556. }
  6557. cur = ggml_add(ctx0, cur, ffn_inp);
  6558. cb(cur, "l_out", il);
  6559. // input for next layer
  6560. inpL = cur;
  6561. }
  6562. cur = inpL;
  6563. cur = llm_build_norm(ctx0, cur, hparams, model.output_norm, NULL, LLM_NORM_RMS, cb, -1);
  6564. cb(cur, "result_norm", -1);
  6565. // lm_head
  6566. cur = ggml_mul_mat(ctx0, model.output, cur);
  6567. cb(cur, "result_output", -1);
  6568. ggml_build_forward_expand(gf, cur);
  6569. return gf;
  6570. }
  6571. struct ggml_cgraph * build_falcon() {
  6572. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  6573. const int64_t n_embd_head = hparams.n_embd_head_v;
  6574. const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
  6575. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  6576. GGML_ASSERT(n_embd_head == hparams.n_rot);
  6577. struct ggml_tensor * cur;
  6578. struct ggml_tensor * inpL;
  6579. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  6580. // inp_pos - contains the positions
  6581. struct ggml_tensor * inp_pos = build_inp_pos();
  6582. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  6583. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  6584. for (int il = 0; il < n_layer; ++il) {
  6585. struct ggml_tensor * attn_norm;
  6586. attn_norm = llm_build_norm(ctx0, inpL, hparams,
  6587. model.layers[il].attn_norm,
  6588. model.layers[il].attn_norm_b,
  6589. LLM_NORM, cb, il);
  6590. cb(attn_norm, "attn_norm", il);
  6591. // self-attention
  6592. {
  6593. if (model.layers[il].attn_norm_2) {
  6594. // Falcon-40B
  6595. cur = llm_build_norm(ctx0, inpL, hparams,
  6596. model.layers[il].attn_norm_2,
  6597. model.layers[il].attn_norm_2_b,
  6598. LLM_NORM, cb, il);
  6599. cb(cur, "attn_norm_2", il);
  6600. } else {
  6601. cur = attn_norm;
  6602. }
  6603. cur = ggml_mul_mat(ctx0, model.layers[il].wqkv, cur);
  6604. cb(cur, "wqkv", il);
  6605. struct ggml_tensor * Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd)));
  6606. struct ggml_tensor * Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd)));
  6607. struct ggml_tensor * Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa)));
  6608. cb(Qcur, "Qcur", il);
  6609. cb(Kcur, "Kcur", il);
  6610. cb(Vcur, "Vcur", il);
  6611. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  6612. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  6613. // using mode = 2 for neox mode
  6614. Qcur = ggml_rope_ext(
  6615. ctx0, Qcur, inp_pos, nullptr, n_rot, rope_type, 0, n_orig_ctx,
  6616. freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow
  6617. );
  6618. cb(Qcur, "Qcur", il);
  6619. Kcur = ggml_rope_ext(
  6620. ctx0, Kcur, inp_pos, nullptr, n_rot, rope_type, 0, n_orig_ctx,
  6621. freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow
  6622. );
  6623. cb(Kcur, "Kcur", il);
  6624. cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf,
  6625. model.layers[il].wo, NULL,
  6626. Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  6627. }
  6628. if (il == n_layer - 1) {
  6629. // skip computing output for unused tokens
  6630. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  6631. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  6632. inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
  6633. attn_norm = ggml_get_rows(ctx0, attn_norm, inp_out_ids);
  6634. }
  6635. struct ggml_tensor * ffn_inp = cur;
  6636. // feed forward
  6637. {
  6638. cur = llm_build_ffn(ctx0, attn_norm, // !! use the attn norm, not the result
  6639. model.layers[il].ffn_up, NULL,
  6640. NULL, NULL,
  6641. model.layers[il].ffn_down, NULL,
  6642. NULL,
  6643. LLM_FFN_GELU, LLM_FFN_SEQ, cb, il);
  6644. cb(cur, "ffn_out", il);
  6645. }
  6646. cur = ggml_add(ctx0, cur, ffn_inp);
  6647. cb(cur, "l_out", il);
  6648. cur = ggml_add(ctx0, cur, inpL);
  6649. cb(cur, "l_out", il);
  6650. // input for next layer
  6651. inpL = cur;
  6652. }
  6653. cur = inpL;
  6654. // norm
  6655. cur = llm_build_norm(ctx0, cur, hparams,
  6656. model.output_norm,
  6657. model.output_norm_b,
  6658. LLM_NORM, cb, -1);
  6659. cb(cur, "result_norm", -1);
  6660. cur = ggml_mul_mat(ctx0, model.output, cur);
  6661. cb(cur, "result_output", -1);
  6662. ggml_build_forward_expand(gf, cur);
  6663. return gf;
  6664. }
  6665. struct ggml_cgraph * build_grok() {
  6666. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  6667. // mutable variable, needed during the last layer of the computation to skip unused tokens
  6668. int32_t n_tokens = this->n_tokens;
  6669. const int64_t n_embd_head = hparams.n_embd_head_v;
  6670. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  6671. GGML_ASSERT(n_embd_head == hparams.n_rot);
  6672. struct ggml_tensor * cur;
  6673. struct ggml_tensor * inpL;
  6674. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  6675. // multiply by embedding_multiplier_scale of 78.38367176906169
  6676. inpL = ggml_scale(ctx0, inpL, 78.38367176906169f);
  6677. // inp_pos - contains the positions
  6678. struct ggml_tensor * inp_pos = build_inp_pos();
  6679. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  6680. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  6681. for (int il = 0; il < n_layer; ++il) {
  6682. struct ggml_tensor * inpSA = inpL;
  6683. // norm
  6684. cur = llm_build_norm(ctx0, inpL, hparams,
  6685. model.layers[il].attn_norm, NULL,
  6686. LLM_NORM_RMS, cb, il);
  6687. cb(cur, "attn_norm", il);
  6688. // self-attention
  6689. {
  6690. // compute Q and K and RoPE them
  6691. struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
  6692. cb(Qcur, "Qcur", il);
  6693. if (model.layers[il].bq) {
  6694. Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
  6695. cb(Qcur, "Qcur", il);
  6696. }
  6697. struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
  6698. cb(Kcur, "Kcur", il);
  6699. if (model.layers[il].bk) {
  6700. Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
  6701. cb(Kcur, "Kcur", il);
  6702. }
  6703. struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
  6704. cb(Vcur, "Vcur", il);
  6705. if (model.layers[il].bv) {
  6706. Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
  6707. cb(Vcur, "Vcur", il);
  6708. }
  6709. Qcur = ggml_rope_ext(
  6710. ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos, nullptr,
  6711. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  6712. ext_factor, attn_factor, beta_fast, beta_slow
  6713. );
  6714. cb(Qcur, "Qcur", il);
  6715. Kcur = ggml_rope_ext(
  6716. ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos, nullptr,
  6717. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  6718. ext_factor, attn_factor, beta_fast, beta_slow
  6719. );
  6720. cb(Kcur, "Kcur", il);
  6721. cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf,
  6722. model.layers[il].wo, model.layers[il].bo,
  6723. Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f, cb, il);
  6724. }
  6725. if (il == n_layer - 1) {
  6726. // skip computing output for unused tokens
  6727. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  6728. n_tokens = n_outputs;
  6729. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  6730. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  6731. }
  6732. // Grok
  6733. // if attn_out_norm is present then apply it before adding the input
  6734. if (model.layers[il].attn_out_norm) {
  6735. cur = llm_build_norm(ctx0, cur, hparams,
  6736. model.layers[il].attn_out_norm, NULL,
  6737. LLM_NORM_RMS, cb, il);
  6738. cb(cur, "attn_out_norm", il);
  6739. }
  6740. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  6741. cb(ffn_inp, "ffn_inp", il);
  6742. // feed-forward network
  6743. // MoE branch
  6744. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  6745. model.layers[il].ffn_norm, NULL,
  6746. LLM_NORM_RMS, cb, il);
  6747. cb(cur, "ffn_norm", il);
  6748. cur = llm_build_moe_ffn(ctx0, cur,
  6749. model.layers[il].ffn_gate_inp,
  6750. model.layers[il].ffn_up_exps,
  6751. model.layers[il].ffn_gate_exps,
  6752. model.layers[il].ffn_down_exps,
  6753. n_expert, n_expert_used,
  6754. LLM_FFN_GELU, true,
  6755. false, 0.0,
  6756. cb, il);
  6757. cb(cur, "ffn_moe_out", il);
  6758. // Grok
  6759. // if layer_out_norm is present then apply it before adding the input
  6760. // Idea: maybe ffn_out_norm is a better name
  6761. if (model.layers[il].layer_out_norm) {
  6762. cur = llm_build_norm(ctx0, cur, hparams,
  6763. model.layers[il].layer_out_norm, NULL,
  6764. LLM_NORM_RMS, cb, il);
  6765. cb(cur, "layer_out_norm", il);
  6766. }
  6767. cur = ggml_add(ctx0, cur, ffn_inp);
  6768. cb(cur, "ffn_out", il);
  6769. ggml_tensor * layer_dir = lctx.cvec.tensor_for(il);
  6770. if (layer_dir != nullptr) {
  6771. cur = ggml_add(ctx0, cur, layer_dir);
  6772. }
  6773. cb(cur, "l_out", il);
  6774. // input for next layer
  6775. inpL = cur;
  6776. }
  6777. cur = inpL;
  6778. cur = llm_build_norm(ctx0, cur, hparams,
  6779. model.output_norm, NULL,
  6780. LLM_NORM_RMS, cb, -1);
  6781. cb(cur, "result_norm", -1);
  6782. // lm_head
  6783. cur = ggml_mul_mat(ctx0, model.output, cur);
  6784. // Grok
  6785. // multiply logits by output_multiplier_scale of 0.5773502691896257
  6786. cur = ggml_scale(ctx0, cur, 0.5773502691896257f);
  6787. cb(cur, "result_output", -1);
  6788. ggml_build_forward_expand(gf, cur);
  6789. return gf;
  6790. }
  6791. struct ggml_cgraph * build_dbrx() {
  6792. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  6793. // mutable variable, needed during the last layer of the computation to skip unused tokens
  6794. int32_t n_tokens = this->n_tokens;
  6795. const int64_t n_embd_head = hparams.n_embd_head_v;
  6796. const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
  6797. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  6798. GGML_ASSERT(n_embd_head == hparams.n_rot);
  6799. struct ggml_tensor * cur;
  6800. struct ggml_tensor * inpL;
  6801. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  6802. // inp_pos - contains the positions
  6803. struct ggml_tensor * inp_pos = build_inp_pos();
  6804. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  6805. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  6806. for (int il = 0; il < n_layer; ++il) {
  6807. struct ggml_tensor * inpSA = inpL;
  6808. // norm
  6809. cur = llm_build_norm(ctx0, inpL, hparams,
  6810. model.layers[il].attn_norm, NULL,
  6811. LLM_NORM, cb, il);
  6812. cb(cur, "attn_norm", il);
  6813. // self-attention
  6814. {
  6815. struct ggml_tensor * Qcur = nullptr;
  6816. struct ggml_tensor * Kcur = nullptr;
  6817. struct ggml_tensor * Vcur = nullptr;
  6818. cur = ggml_mul_mat(ctx0, model.layers[il].wqkv, cur);
  6819. cb(cur, "wqkv", il);
  6820. cur = ggml_clamp(ctx0, cur, -hparams.f_clamp_kqv, hparams.f_clamp_kqv);
  6821. cb(cur, "wqkv_clamped", il);
  6822. Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd)));
  6823. Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd)));
  6824. Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa)));
  6825. cb(Qcur, "Qcur", il);
  6826. cb(Kcur, "Kcur", il);
  6827. cb(Vcur, "Vcur", il);
  6828. Qcur = ggml_rope_ext(
  6829. ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos, nullptr,
  6830. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  6831. ext_factor, attn_factor, beta_fast, beta_slow
  6832. );
  6833. cb(Qcur, "Qcur", il);
  6834. Kcur = ggml_rope_ext(
  6835. ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos, nullptr,
  6836. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  6837. ext_factor, attn_factor, beta_fast, beta_slow
  6838. );
  6839. cb(Kcur, "Kcur", il);
  6840. cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf,
  6841. model.layers[il].wo, NULL,
  6842. Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  6843. }
  6844. if (il == n_layer - 1) {
  6845. // skip computing output for unused tokens
  6846. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  6847. n_tokens = n_outputs;
  6848. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  6849. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  6850. }
  6851. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  6852. cb(ffn_inp, "ffn_inp", il);
  6853. // feed-forward network
  6854. // MoE branch
  6855. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  6856. model.layers[il].attn_out_norm, NULL,
  6857. LLM_NORM, cb, il);
  6858. cb(cur, "attn_out_norm", il);
  6859. cur = llm_build_moe_ffn(ctx0, cur,
  6860. model.layers[il].ffn_gate_inp,
  6861. model.layers[il].ffn_up_exps,
  6862. model.layers[il].ffn_gate_exps,
  6863. model.layers[il].ffn_down_exps,
  6864. n_expert, n_expert_used,
  6865. LLM_FFN_SILU, true,
  6866. false, 0.0,
  6867. cb, il);
  6868. cb(cur, "ffn_moe_out", il);
  6869. cur = ggml_add(ctx0, cur, ffn_inp);
  6870. cb(cur, "ffn_out", il);
  6871. ggml_tensor * layer_dir = lctx.cvec.tensor_for(il);
  6872. if (layer_dir != nullptr) {
  6873. cur = ggml_add(ctx0, cur, layer_dir);
  6874. }
  6875. cb(cur, "l_out", il);
  6876. // input for next layer
  6877. inpL = cur;
  6878. }
  6879. cur = inpL;
  6880. cur = llm_build_norm(ctx0, cur, hparams,
  6881. model.output_norm, NULL,
  6882. LLM_NORM, cb, -1);
  6883. cb(cur, "result_norm", -1);
  6884. // lm_head
  6885. cur = ggml_mul_mat(ctx0, model.output, cur);
  6886. cb(cur, "result_output", -1);
  6887. ggml_build_forward_expand(gf, cur);
  6888. return gf;
  6889. }
  6890. struct ggml_cgraph * build_starcoder() {
  6891. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  6892. const int64_t n_embd_head = hparams.n_embd_head_v;
  6893. const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
  6894. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  6895. struct ggml_tensor * cur;
  6896. struct ggml_tensor * inpL;
  6897. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  6898. // inp_pos - contains the positions
  6899. struct ggml_tensor * inp_pos = build_inp_pos();
  6900. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  6901. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  6902. struct ggml_tensor * pos = ggml_get_rows(ctx0, model.pos_embd, inp_pos);
  6903. cb(pos, "pos_embd", -1);
  6904. inpL = ggml_add(ctx0, inpL, pos);
  6905. cb(inpL, "inpL", -1);
  6906. for (int il = 0; il < n_layer; ++il) {
  6907. cur = llm_build_norm(ctx0, inpL, hparams,
  6908. model.layers[il].attn_norm,
  6909. model.layers[il].attn_norm_b,
  6910. LLM_NORM, cb, il);
  6911. cb(cur, "attn_norm", il);
  6912. // self-attention
  6913. {
  6914. cur = ggml_mul_mat(ctx0, model.layers[il].wqkv, cur);
  6915. cb(cur, "wqkv", il);
  6916. cur = ggml_add(ctx0, cur, model.layers[il].bqkv);
  6917. cb(cur, "bqkv", il);
  6918. struct ggml_tensor * Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd)));
  6919. struct ggml_tensor * Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd)));
  6920. struct ggml_tensor * Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa)));
  6921. cb(Qcur, "Qcur", il);
  6922. cb(Kcur, "Kcur", il);
  6923. cb(Vcur, "Vcur", il);
  6924. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  6925. cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf,
  6926. model.layers[il].wo, model.layers[il].bo,
  6927. Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  6928. }
  6929. if (il == n_layer - 1) {
  6930. // skip computing output for unused tokens
  6931. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  6932. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  6933. inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
  6934. }
  6935. // add the input
  6936. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpL);
  6937. cb(ffn_inp, "ffn_inp", il);
  6938. // FF
  6939. {
  6940. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  6941. model.layers[il].ffn_norm,
  6942. model.layers[il].ffn_norm_b,
  6943. LLM_NORM, cb, il);
  6944. cb(cur, "ffn_norm", il);
  6945. cur = llm_build_ffn(ctx0, cur,
  6946. model.layers[il].ffn_up, model.layers[il].ffn_up_b,
  6947. NULL, NULL,
  6948. model.layers[il].ffn_down, model.layers[il].ffn_down_b,
  6949. NULL,
  6950. LLM_FFN_GELU, LLM_FFN_SEQ, cb, il);
  6951. cb(cur, "ffn_out", il);
  6952. }
  6953. inpL = ggml_add(ctx0, cur, ffn_inp);
  6954. cb(inpL, "l_out", il);
  6955. }
  6956. cur = llm_build_norm(ctx0, inpL, hparams,
  6957. model.output_norm,
  6958. model.output_norm_b,
  6959. LLM_NORM, cb, -1);
  6960. cb(cur, "result_norm", -1);
  6961. cur = ggml_mul_mat(ctx0, model.output, cur);
  6962. cb(cur, "result_output", -1);
  6963. ggml_build_forward_expand(gf, cur);
  6964. return gf;
  6965. }
  6966. struct ggml_cgraph * build_refact() {
  6967. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  6968. const int64_t n_embd_head = hparams.n_embd_head_v;
  6969. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  6970. struct ggml_tensor * cur;
  6971. struct ggml_tensor * inpL;
  6972. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  6973. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  6974. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  6975. for (int il = 0; il < n_layer; ++il) {
  6976. struct ggml_tensor * inpSA = inpL;
  6977. cur = llm_build_norm(ctx0, inpL, hparams,
  6978. model.layers[il].attn_norm, NULL,
  6979. LLM_NORM_RMS, cb, il);
  6980. cb(cur, "attn_norm", il);
  6981. // self-attention
  6982. {
  6983. struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
  6984. cb(Qcur, "Qcur", il);
  6985. struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
  6986. cb(Kcur, "Kcur", il);
  6987. struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
  6988. cb(Vcur, "Vcur", il);
  6989. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  6990. cb(Kcur, "Kcur", il);
  6991. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  6992. cb(Qcur, "Qcur", il);
  6993. cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf,
  6994. model.layers[il].wo, NULL,
  6995. Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  6996. }
  6997. if (il == n_layer - 1) {
  6998. // skip computing output for unused tokens
  6999. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  7000. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  7001. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  7002. }
  7003. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  7004. cb(ffn_inp, "ffn_inp", il);
  7005. // feed-forward network
  7006. {
  7007. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  7008. model.layers[il].ffn_norm, NULL,
  7009. LLM_NORM_RMS, cb, il);
  7010. cb(cur, "ffn_norm", il);
  7011. cur = llm_build_ffn(ctx0, cur,
  7012. model.layers[il].ffn_up, NULL,
  7013. model.layers[il].ffn_gate, NULL,
  7014. model.layers[il].ffn_down, NULL,
  7015. NULL,
  7016. LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
  7017. cb(cur, "ffn_out", il);
  7018. }
  7019. cur = ggml_add(ctx0, cur, ffn_inp);
  7020. cb(cur, "l_out", il);
  7021. // input for next layer
  7022. inpL = cur;
  7023. }
  7024. cur = inpL;
  7025. cur = llm_build_norm(ctx0, cur, hparams,
  7026. model.output_norm, NULL,
  7027. LLM_NORM_RMS, cb, -1);
  7028. cb(cur, "result_norm", -1);
  7029. // lm_head
  7030. cur = ggml_mul_mat(ctx0, model.output, cur);
  7031. cb(cur, "result_output", -1);
  7032. ggml_build_forward_expand(gf, cur);
  7033. return gf;
  7034. }
  7035. struct ggml_cgraph * build_bert() {
  7036. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  7037. const int64_t n_embd_head = hparams.n_embd_head_v;
  7038. const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
  7039. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  7040. struct ggml_tensor * cur;
  7041. struct ggml_tensor * inpL;
  7042. struct ggml_tensor * inp_pos = nullptr;
  7043. if (model.arch != LLM_ARCH_JINA_BERT_V2) {
  7044. inp_pos = build_inp_pos();
  7045. }
  7046. struct ggml_tensor * inp_mean = build_inp_mean();
  7047. struct ggml_tensor * inp_cls = build_inp_cls();
  7048. // construct input embeddings (token, type, position)
  7049. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  7050. // token types are hardcoded to zero ("Sentence A")
  7051. struct ggml_tensor * type_row0 = ggml_view_1d(ctx0, model.type_embd, n_embd, 0);
  7052. inpL = ggml_add(ctx0, inpL, type_row0);
  7053. if (model.arch == LLM_ARCH_BERT) {
  7054. inpL = ggml_add(ctx0, ggml_get_rows(ctx0, model.pos_embd, inp_pos), inpL);
  7055. }
  7056. cb(inpL, "inp_embd", -1);
  7057. // embed layer norm
  7058. inpL = llm_build_norm(ctx0, inpL, hparams, model.tok_norm, model.tok_norm_b, LLM_NORM, cb, -1);
  7059. cb(inpL, "inp_norm", -1);
  7060. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  7061. struct ggml_tensor * KQ_mask = build_inp_KQ_mask(false);
  7062. // iterate layers
  7063. for (int il = 0; il < n_layer; ++il) {
  7064. struct ggml_tensor * cur = inpL;
  7065. struct ggml_tensor * Qcur;
  7066. struct ggml_tensor * Kcur;
  7067. struct ggml_tensor * Vcur;
  7068. // self-attention
  7069. if (model.arch == LLM_ARCH_BERT || model.arch == LLM_ARCH_JINA_BERT_V2) {
  7070. Qcur = ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].wq, cur), model.layers[il].bq);
  7071. cb(Qcur, "Qcur", il);
  7072. if (model.layers[il].attn_q_norm) {
  7073. Qcur = llm_build_norm(ctx0, Qcur, hparams,
  7074. model.layers[il].attn_q_norm,
  7075. model.layers[il].attn_q_norm_b,
  7076. LLM_NORM, cb, il);
  7077. }
  7078. Kcur = ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].wk, cur), model.layers[il].bk);
  7079. cb(Kcur, "Kcur", il);
  7080. if (model.layers[il].attn_k_norm) {
  7081. Kcur = llm_build_norm(ctx0, Kcur, hparams,
  7082. model.layers[il].attn_k_norm,
  7083. model.layers[il].attn_k_norm_b,
  7084. LLM_NORM, cb, il);
  7085. }
  7086. Vcur = ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].wv, cur), model.layers[il].bv);
  7087. cb(Vcur, "Vcur", il);
  7088. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  7089. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  7090. } else {
  7091. // compute Q and K and RoPE them
  7092. cur = ggml_mul_mat(ctx0, model.layers[il].wqkv, cur);
  7093. cb(cur, "wqkv", il);
  7094. Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd)));
  7095. Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd)));
  7096. Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa)));
  7097. cb(Qcur, "Qcur", il);
  7098. cb(Kcur, "Kcur", il);
  7099. cb(Vcur, "Vcur", il);
  7100. Qcur = ggml_rope_ext(
  7101. ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos, nullptr,
  7102. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  7103. ext_factor, attn_factor, beta_fast, beta_slow
  7104. );
  7105. cb(Qcur, "Qcur", il);
  7106. Kcur = ggml_rope_ext(
  7107. ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos, nullptr,
  7108. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  7109. ext_factor, attn_factor, beta_fast, beta_slow
  7110. );
  7111. cb(Kcur, "Kcur", il);
  7112. }
  7113. struct ggml_tensor * q = ggml_permute(ctx0, Qcur, 0, 2, 1, 3);
  7114. struct ggml_tensor * k = ggml_cont(ctx0, ggml_permute(ctx0, Kcur, 0, 2, 1, 3));
  7115. struct ggml_tensor * kq = ggml_mul_mat(ctx0, k, q);
  7116. cb(kq, "kq", il);
  7117. kq = ggml_soft_max_ext(ctx0, kq, KQ_mask, 1.0f/sqrtf(float(n_embd_head)), hparams.f_max_alibi_bias);
  7118. cb(kq, "kq_soft_max_ext", il);
  7119. struct ggml_tensor * v = ggml_cont(ctx0, ggml_transpose(ctx0, ggml_reshape_2d(ctx0, Vcur, n_embd_gqa, n_tokens)));
  7120. cb(v, "v", il);
  7121. struct ggml_tensor * kqv = ggml_mul_mat(ctx0, ggml_reshape_3d(ctx0, v, n_tokens, n_embd_head, n_head_kv), kq);
  7122. cb(kqv, "kqv", il);
  7123. struct ggml_tensor * kqv_merged = ggml_permute(ctx0, kqv, 0, 2, 1, 3);
  7124. cb(kqv_merged, "kqv_merged", il);
  7125. cur = ggml_cont_2d(ctx0, kqv_merged, n_embd_gqa, n_tokens);
  7126. cb(cur, "kqv_merged_cont", il);
  7127. ggml_build_forward_expand(gf, cur);
  7128. cur = ggml_mul_mat(ctx0, model.layers[il].wo, cur);
  7129. if (model.layers[il].bo) {
  7130. cb(cur, "kqv_wo", il);
  7131. }
  7132. if (model.layers[il].bo) {
  7133. cur = ggml_add(ctx0, cur, model.layers[il].bo);
  7134. }
  7135. cb(cur, "kqv_out", il);
  7136. if (il == n_layer - 1 && pooling_type == LLAMA_POOLING_TYPE_NONE) {
  7137. // skip computing output for unused tokens
  7138. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  7139. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  7140. inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
  7141. }
  7142. // re-add the layer input
  7143. cur = ggml_add(ctx0, cur, inpL);
  7144. // attention layer norm
  7145. cur = llm_build_norm(ctx0, cur, hparams, model.layers[il].attn_out_norm, model.layers[il].attn_out_norm_b, LLM_NORM, cb, il);
  7146. struct ggml_tensor * ffn_inp = cur;
  7147. cb(ffn_inp, "ffn_inp", il);
  7148. // feed-forward network
  7149. if (model.arch == LLM_ARCH_BERT) {
  7150. cur = llm_build_ffn(ctx0, cur,
  7151. model.layers[il].ffn_up, model.layers[il].ffn_up_b,
  7152. NULL, NULL,
  7153. model.layers[il].ffn_down, model.layers[il].ffn_down_b,
  7154. NULL,
  7155. LLM_FFN_GELU, LLM_FFN_SEQ, cb, il);
  7156. } else if (model.arch == LLM_ARCH_JINA_BERT_V2) {
  7157. cur = llm_build_ffn(ctx0, cur,
  7158. model.layers[il].ffn_up, NULL,
  7159. model.layers[il].ffn_gate, NULL,
  7160. model.layers[il].ffn_down, model.layers[il].ffn_down_b,
  7161. NULL,
  7162. LLM_FFN_GELU, LLM_FFN_PAR, cb, il);
  7163. } else {
  7164. cur = llm_build_ffn(ctx0, cur,
  7165. model.layers[il].ffn_up, NULL,
  7166. model.layers[il].ffn_gate, NULL,
  7167. model.layers[il].ffn_down, NULL,
  7168. NULL,
  7169. LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
  7170. }
  7171. cb(cur, "ffn_out", il);
  7172. // attentions bypass the intermediate layer
  7173. cur = ggml_add(ctx0, cur, ffn_inp);
  7174. // output layer norm
  7175. cur = llm_build_norm(ctx0, cur, hparams, model.layers[il].layer_out_norm, model.layers[il].layer_out_norm_b, LLM_NORM, cb, il);
  7176. // input for next layer
  7177. inpL = cur;
  7178. }
  7179. // final output
  7180. cur = inpL;
  7181. cb(cur, "result_embd", -1);
  7182. // pooling layer
  7183. switch (pooling_type) {
  7184. case LLAMA_POOLING_TYPE_NONE:
  7185. {
  7186. // nop
  7187. } break;
  7188. case LLAMA_POOLING_TYPE_MEAN:
  7189. {
  7190. cur = ggml_mul_mat(ctx0, ggml_cont(ctx0, ggml_transpose(ctx0, cur)), inp_mean);
  7191. cb(cur, "result_embd_pooled", -1);
  7192. } break;
  7193. case LLAMA_POOLING_TYPE_CLS:
  7194. {
  7195. cur = ggml_get_rows(ctx0, cur, inp_cls);
  7196. cb(cur, "result_embd_pooled", -1);
  7197. } break;
  7198. case LLAMA_POOLING_TYPE_UNSPECIFIED:
  7199. {
  7200. GGML_ASSERT(false && "Invalid pooling type");
  7201. } break;
  7202. }
  7203. ggml_build_forward_expand(gf, cur);
  7204. return gf;
  7205. }
  7206. struct ggml_cgraph * build_bloom() {
  7207. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  7208. const int64_t n_embd_head = hparams.n_embd_head_v;
  7209. const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
  7210. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  7211. struct ggml_tensor * cur;
  7212. struct ggml_tensor * inpL;
  7213. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  7214. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  7215. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  7216. inpL = llm_build_norm(ctx0, inpL, hparams,
  7217. model.tok_norm,
  7218. model.tok_norm_b,
  7219. LLM_NORM, cb, -1);
  7220. cb(inpL, "inp_norm", -1);
  7221. for (int il = 0; il < n_layer; ++il) {
  7222. cur = llm_build_norm(ctx0, inpL, hparams,
  7223. model.layers[il].attn_norm,
  7224. model.layers[il].attn_norm_b,
  7225. LLM_NORM, cb, il);
  7226. cb(cur, "attn_norm", il);
  7227. // self-attention
  7228. {
  7229. cur = ggml_mul_mat(ctx0, model.layers[il].wqkv, cur);
  7230. cb(cur, "wqkv", il);
  7231. cur = ggml_add(ctx0, cur, model.layers[il].bqkv);
  7232. cb(cur, "bqkv", il);
  7233. struct ggml_tensor * Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd)));
  7234. struct ggml_tensor * Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd)));
  7235. struct ggml_tensor * Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa)));
  7236. cb(Qcur, "Qcur", il);
  7237. cb(Kcur, "Kcur", il);
  7238. cb(Vcur, "Vcur", il);
  7239. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  7240. cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf,
  7241. model.layers[il].wo, model.layers[il].bo,
  7242. Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  7243. }
  7244. if (il == n_layer - 1) {
  7245. // skip computing output for unused tokens
  7246. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  7247. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  7248. inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
  7249. }
  7250. // Add the input
  7251. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpL);
  7252. cb(ffn_inp, "ffn_inp", il);
  7253. // FF
  7254. {
  7255. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  7256. model.layers[il].ffn_norm,
  7257. model.layers[il].ffn_norm_b,
  7258. LLM_NORM, cb, il);
  7259. cb(cur, "ffn_norm", il);
  7260. cur = llm_build_ffn(ctx0, cur,
  7261. model.layers[il].ffn_up, model.layers[il].ffn_up_b,
  7262. NULL, NULL,
  7263. model.layers[il].ffn_down, model.layers[il].ffn_down_b,
  7264. NULL,
  7265. LLM_FFN_GELU, LLM_FFN_SEQ, cb, il);
  7266. cb(cur, "ffn_out", il);
  7267. }
  7268. inpL = ggml_add(ctx0, cur, ffn_inp);
  7269. cb(inpL, "l_out", il);
  7270. }
  7271. cur = llm_build_norm(ctx0, inpL, hparams,
  7272. model.output_norm,
  7273. model.output_norm_b,
  7274. LLM_NORM, cb, -1);
  7275. cb(cur, "result_norm", -1);
  7276. cur = ggml_mul_mat(ctx0, model.output, cur);
  7277. cb(cur, "result_output", -1);
  7278. ggml_build_forward_expand(gf, cur);
  7279. return gf;
  7280. }
  7281. struct ggml_cgraph * build_mpt() {
  7282. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  7283. const int64_t n_embd_head = hparams.n_embd_head_v;
  7284. const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
  7285. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  7286. struct ggml_tensor * cur;
  7287. struct ggml_tensor * pos;
  7288. struct ggml_tensor * inpL;
  7289. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  7290. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  7291. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  7292. if (model.pos_embd) {
  7293. // inp_pos - contains the positions
  7294. struct ggml_tensor * inp_pos = build_inp_pos();
  7295. pos = ggml_get_rows(ctx0, model.pos_embd, inp_pos);
  7296. cb(pos, "pos_embd", -1);
  7297. inpL = ggml_add(ctx0, inpL, pos);
  7298. cb(inpL, "inpL", -1);
  7299. }
  7300. for (int il = 0; il < n_layer; ++il) {
  7301. struct ggml_tensor * attn_norm;
  7302. attn_norm = llm_build_norm(ctx0, inpL, hparams,
  7303. model.layers[il].attn_norm,
  7304. model.layers[il].attn_norm_b,
  7305. LLM_NORM, cb, il);
  7306. cb(attn_norm, "attn_norm", il);
  7307. // self-attention
  7308. {
  7309. cur = attn_norm;
  7310. cur = ggml_mul_mat(ctx0, model.layers[il].wqkv, cur);
  7311. cb(cur, "wqkv", il);
  7312. if (model.layers[il].bqkv){
  7313. cur = ggml_add(ctx0, cur, model.layers[il].bqkv);
  7314. cb(cur, "bqkv", il);
  7315. }
  7316. if (hparams.f_clamp_kqv > 0.0f) {
  7317. cur = ggml_clamp(ctx0, cur, -hparams.f_clamp_kqv, hparams.f_clamp_kqv);
  7318. cb(cur, "wqkv_clamped", il);
  7319. }
  7320. struct ggml_tensor * Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd)));
  7321. struct ggml_tensor * Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd)));
  7322. struct ggml_tensor * Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa)));
  7323. cb(Qcur, "Qcur", il);
  7324. cb(Kcur, "Kcur", il);
  7325. cb(Vcur, "Vcur", il);
  7326. // Q/K Layernorm
  7327. if (model.layers[il].attn_q_norm) {
  7328. Qcur = llm_build_norm(ctx0, Qcur, hparams,
  7329. model.layers[il].attn_q_norm,
  7330. model.layers[il].attn_q_norm_b,
  7331. LLM_NORM, cb, il);
  7332. cb(Qcur, "Qcur", il);
  7333. Kcur = llm_build_norm(ctx0, Kcur, hparams,
  7334. model.layers[il].attn_k_norm,
  7335. model.layers[il].attn_k_norm_b,
  7336. LLM_NORM, cb, il);
  7337. cb(Kcur, "Kcur", il);
  7338. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  7339. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  7340. cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf,
  7341. model.layers[il].wo, model.layers[il].bo,
  7342. Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  7343. } else {
  7344. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  7345. cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf,
  7346. model.layers[il].wo, model.layers[il].bo,
  7347. Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  7348. }
  7349. }
  7350. if (il == n_layer - 1) {
  7351. // skip computing output for unused tokens
  7352. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  7353. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  7354. inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
  7355. }
  7356. // Add the input
  7357. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpL);
  7358. cb(ffn_inp, "ffn_inp", il);
  7359. // feed forward
  7360. {
  7361. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  7362. model.layers[il].ffn_norm,
  7363. model.layers[il].ffn_norm_b,
  7364. LLM_NORM, cb, il);
  7365. cb(cur, "ffn_norm", il);
  7366. cur = llm_build_ffn(ctx0, cur,
  7367. model.layers[il].ffn_up, model.layers[il].ffn_up_b,
  7368. NULL, NULL,
  7369. model.layers[il].ffn_down, model.layers[il].ffn_down_b,
  7370. model.layers[il].ffn_act,
  7371. LLM_FFN_GELU, LLM_FFN_SEQ, cb, il);
  7372. cb(cur, "ffn_out", il);
  7373. }
  7374. cur = ggml_add(ctx0, cur, ffn_inp);
  7375. cb(cur, "l_out", il);
  7376. // input for next layer
  7377. inpL = cur;
  7378. }
  7379. cur = inpL;
  7380. cur = llm_build_norm(ctx0, cur, hparams,
  7381. model.output_norm,
  7382. model.output_norm_b,
  7383. LLM_NORM, cb, -1);
  7384. cb(cur, "result_norm", -1);
  7385. cur = ggml_mul_mat(ctx0, model.output, cur);
  7386. cb(cur, "result_output", -1);
  7387. ggml_build_forward_expand(gf, cur);
  7388. return gf;
  7389. }
  7390. struct ggml_cgraph * build_stablelm() {
  7391. struct ggml_cgraph * gf = ggml_new_graph(ctx0);
  7392. const int64_t n_embd_head = hparams.n_embd_head_v;
  7393. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  7394. struct ggml_tensor * cur;
  7395. struct ggml_tensor * inpL;
  7396. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  7397. // inp_pos - contains the positions
  7398. struct ggml_tensor * inp_pos = build_inp_pos();
  7399. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  7400. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  7401. for (int il = 0; il < n_layer; ++il) {
  7402. // norm
  7403. cur = llm_build_norm(ctx0, inpL, hparams,
  7404. model.layers[il].attn_norm,
  7405. model.layers[il].attn_norm_b,
  7406. LLM_NORM, cb, il);
  7407. cb(cur, "attn_norm", il);
  7408. struct ggml_tensor * inpSA = cur;
  7409. // self-attention
  7410. {
  7411. // compute Q and K and RoPE them
  7412. struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
  7413. cb(Qcur, "Qcur", il);
  7414. if (model.layers[il].bq) {
  7415. Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
  7416. cb(Qcur, "Qcur", il);
  7417. }
  7418. struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
  7419. cb(Kcur, "Kcur", il);
  7420. if (model.layers[il].bk) {
  7421. Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
  7422. cb(Kcur, "Kcur", il);
  7423. }
  7424. struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
  7425. cb(Vcur, "Vcur", il);
  7426. if (model.layers[il].bv) {
  7427. Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
  7428. cb(Vcur, "Vcur", il);
  7429. }
  7430. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  7431. cb(Qcur, "Qcur", il);
  7432. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  7433. cb(Kcur, "Kcur", il);
  7434. if (model.layers[il].attn_q_norm) {
  7435. Qcur = llm_build_norm(ctx0, Qcur, hparams,
  7436. model.layers[il].attn_q_norm,
  7437. NULL,
  7438. LLM_NORM, cb, il);
  7439. cb(Qcur, "Qcur", il);
  7440. }
  7441. if (model.layers[il].attn_k_norm) {
  7442. Kcur = llm_build_norm(ctx0, Kcur, hparams,
  7443. model.layers[il].attn_k_norm,
  7444. NULL,
  7445. LLM_NORM, cb, il);
  7446. cb(Kcur, "Kcur", il);
  7447. }
  7448. Qcur = ggml_rope_ext(
  7449. ctx0, Qcur, inp_pos, nullptr,
  7450. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  7451. ext_factor, attn_factor, beta_fast, beta_slow
  7452. );
  7453. cb(Qcur, "Qcur", il);
  7454. Kcur = ggml_rope_ext(
  7455. ctx0, Kcur, inp_pos, nullptr,
  7456. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  7457. ext_factor, attn_factor, beta_fast, beta_slow
  7458. );
  7459. cb(Kcur, "Kcur", il);
  7460. cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf,
  7461. model.layers[il].wo, NULL,
  7462. Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  7463. }
  7464. if (il == n_layer - 1) {
  7465. // skip computing output for unused tokens
  7466. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  7467. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  7468. inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
  7469. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  7470. }
  7471. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpL);
  7472. cb(ffn_inp, "ffn_inp", il);
  7473. // feed-forward network
  7474. {
  7475. if (model.layers[il].ffn_norm) {
  7476. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  7477. model.layers[il].ffn_norm,
  7478. model.layers[il].ffn_norm_b,
  7479. LLM_NORM, cb, il);
  7480. cb(cur, "ffn_norm", il);
  7481. } else {
  7482. // parallel residual
  7483. cur = inpSA;
  7484. }
  7485. cur = llm_build_ffn(ctx0, cur,
  7486. model.layers[il].ffn_up, NULL,
  7487. model.layers[il].ffn_gate, NULL,
  7488. model.layers[il].ffn_down, NULL,
  7489. NULL,
  7490. LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
  7491. cb(cur, "ffn_out", il);
  7492. }
  7493. cur = ggml_add(ctx0, cur, ffn_inp);
  7494. cb(cur, "l_out", il);
  7495. // input for next layer
  7496. inpL = cur;
  7497. }
  7498. cur = inpL;
  7499. cur = llm_build_norm(ctx0, cur, hparams,
  7500. model.output_norm,
  7501. model.output_norm_b,
  7502. LLM_NORM, cb, -1);
  7503. cb(cur, "result_norm", -1);
  7504. // lm_head
  7505. cur = ggml_mul_mat(ctx0, model.output, cur);
  7506. cb(cur, "result_output", -1);
  7507. ggml_build_forward_expand(gf, cur);
  7508. return gf;
  7509. }
  7510. struct ggml_cgraph * build_qwen() {
  7511. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  7512. const int64_t n_embd_head = hparams.n_embd_head_v;
  7513. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  7514. struct ggml_tensor * cur;
  7515. struct ggml_tensor * inpL;
  7516. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  7517. // inp_pos - contains the positions
  7518. struct ggml_tensor * inp_pos = build_inp_pos();
  7519. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  7520. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  7521. for (int il = 0; il < n_layer; ++il) {
  7522. struct ggml_tensor * inpSA = inpL;
  7523. cur = llm_build_norm(ctx0, inpL, hparams,
  7524. model.layers[il].attn_norm, NULL,
  7525. LLM_NORM_RMS, cb, il);
  7526. cb(cur, "attn_norm", il);
  7527. // self-attention
  7528. {
  7529. cur = ggml_mul_mat(ctx0, model.layers[il].wqkv, cur);
  7530. cb(cur, "wqkv", il);
  7531. cur = ggml_add(ctx0, cur, model.layers[il].bqkv);
  7532. cb(cur, "bqkv", il);
  7533. struct ggml_tensor * Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd)));
  7534. struct ggml_tensor * Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd)));
  7535. struct ggml_tensor * Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 2*sizeof(float)*(n_embd)));
  7536. cb(Qcur, "Qcur", il);
  7537. cb(Kcur, "Kcur", il);
  7538. cb(Vcur, "Vcur", il);
  7539. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  7540. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  7541. // using mode = 2 for neox mode
  7542. Qcur = ggml_rope_ext(
  7543. ctx0, Qcur, inp_pos, nullptr, n_rot, rope_type, 0, n_orig_ctx,
  7544. freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow
  7545. );
  7546. cb(Qcur, "Qcur", il);
  7547. Kcur = ggml_rope_ext(
  7548. ctx0, Kcur, inp_pos, nullptr, n_rot, rope_type, 0, n_orig_ctx,
  7549. freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow
  7550. );
  7551. cb(Kcur, "Kcur", il);
  7552. cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf,
  7553. model.layers[il].wo, NULL,
  7554. Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  7555. }
  7556. if (il == n_layer - 1) {
  7557. // skip computing output for unused tokens
  7558. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  7559. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  7560. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  7561. }
  7562. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  7563. cb(ffn_inp, "ffn_inp", il);
  7564. // feed-forward forward
  7565. {
  7566. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  7567. model.layers[il].ffn_norm, NULL,
  7568. LLM_NORM_RMS, cb, il);
  7569. cb(cur, "ffn_norm", il);
  7570. cur = llm_build_ffn(ctx0, cur,
  7571. model.layers[il].ffn_up, NULL,
  7572. model.layers[il].ffn_gate, NULL,
  7573. model.layers[il].ffn_down, NULL,
  7574. NULL,
  7575. LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
  7576. cb(cur, "ffn_out", il);
  7577. }
  7578. cur = ggml_add(ctx0, cur, ffn_inp);
  7579. cb(cur, "l_out", il);
  7580. // input for next layer
  7581. inpL = cur;
  7582. }
  7583. cur = inpL;
  7584. cur = llm_build_norm(ctx0, cur, hparams,
  7585. model.output_norm, NULL,
  7586. LLM_NORM_RMS, cb, -1);
  7587. cb(cur, "result_norm", -1);
  7588. // lm_head
  7589. cur = ggml_mul_mat(ctx0, model.output, cur);
  7590. cb(cur, "result_output", -1);
  7591. ggml_build_forward_expand(gf, cur);
  7592. return gf;
  7593. }
  7594. struct ggml_cgraph * build_qwen2() {
  7595. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  7596. const int64_t n_embd_head = hparams.n_embd_head_v;
  7597. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  7598. GGML_ASSERT(n_embd_head == hparams.n_rot);
  7599. struct ggml_tensor * cur;
  7600. struct ggml_tensor * inpL;
  7601. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  7602. // inp_pos - contains the positions
  7603. struct ggml_tensor * inp_pos = build_inp_pos();
  7604. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  7605. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  7606. for (int il = 0; il < n_layer; ++il) {
  7607. struct ggml_tensor * inpSA = inpL;
  7608. // norm
  7609. cur = llm_build_norm(ctx0, inpL, hparams,
  7610. model.layers[il].attn_norm, NULL,
  7611. LLM_NORM_RMS, cb, il);
  7612. cb(cur, "attn_norm", il);
  7613. // self-attention
  7614. {
  7615. // compute Q and K and RoPE them
  7616. struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
  7617. cb(Qcur, "Qcur", il);
  7618. Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
  7619. cb(Qcur, "Qcur", il);
  7620. struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
  7621. cb(Kcur, "Kcur", il);
  7622. Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
  7623. cb(Kcur, "Kcur", il);
  7624. struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
  7625. cb(Vcur, "Vcur", il);
  7626. Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
  7627. cb(Vcur, "Vcur", il);
  7628. Qcur = ggml_rope_ext(
  7629. ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos, nullptr,
  7630. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  7631. ext_factor, attn_factor, beta_fast, beta_slow
  7632. );
  7633. cb(Qcur, "Qcur", il);
  7634. Kcur = ggml_rope_ext(
  7635. ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos, nullptr,
  7636. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  7637. ext_factor, attn_factor, beta_fast, beta_slow
  7638. );
  7639. cb(Kcur, "Kcur", il);
  7640. cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf,
  7641. model.layers[il].wo, model.layers[il].bo,
  7642. Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  7643. }
  7644. if (il == n_layer - 1) {
  7645. // skip computing output for unused tokens
  7646. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  7647. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  7648. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  7649. }
  7650. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  7651. cb(ffn_inp, "ffn_inp", il);
  7652. // feed-forward network
  7653. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  7654. model.layers[il].ffn_norm, NULL,
  7655. LLM_NORM_RMS, cb, il);
  7656. cb(cur, "ffn_norm", il);
  7657. cur = llm_build_ffn(ctx0, cur,
  7658. model.layers[il].ffn_up, NULL,
  7659. model.layers[il].ffn_gate, NULL,
  7660. model.layers[il].ffn_down, NULL,
  7661. NULL,
  7662. LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
  7663. cb(cur, "ffn_out", il);
  7664. cur = ggml_add(ctx0, cur, ffn_inp);
  7665. cb(cur, "l_out", il);
  7666. // input for next layer
  7667. inpL = cur;
  7668. }
  7669. cur = inpL;
  7670. cur = llm_build_norm(ctx0, cur, hparams,
  7671. model.output_norm, NULL,
  7672. LLM_NORM_RMS, cb, -1);
  7673. cb(cur, "result_norm", -1);
  7674. // lm_head
  7675. cur = ggml_mul_mat(ctx0, model.output, cur);
  7676. cb(cur, "result_output", -1);
  7677. ggml_build_forward_expand(gf, cur);
  7678. return gf;
  7679. }
  7680. struct ggml_cgraph * build_qwen2moe() {
  7681. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  7682. // mutable variable, needed during the last layer of the computation to skip unused tokens
  7683. int32_t n_tokens = this->n_tokens;
  7684. const int64_t n_embd_head = hparams.n_embd_head_v;
  7685. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  7686. GGML_ASSERT(n_embd_head == hparams.n_rot);
  7687. struct ggml_tensor * cur;
  7688. struct ggml_tensor * inpL;
  7689. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  7690. // inp_pos - contains the positions
  7691. struct ggml_tensor * inp_pos = build_inp_pos();
  7692. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  7693. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  7694. for (int il = 0; il < n_layer; ++il) {
  7695. struct ggml_tensor * inpSA = inpL;
  7696. // norm
  7697. cur = llm_build_norm(ctx0, inpL, hparams,
  7698. model.layers[il].attn_norm, NULL,
  7699. LLM_NORM_RMS, cb, il);
  7700. cb(cur, "attn_norm", il);
  7701. // self_attention
  7702. {
  7703. // compute Q and K and RoPE them
  7704. struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
  7705. cb(Qcur, "Qcur", il);
  7706. Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
  7707. cb(Qcur, "Qcur", il);
  7708. struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
  7709. cb(Kcur, "Kcur", il);
  7710. Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
  7711. cb(Kcur, "Kcur", il);
  7712. struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
  7713. cb(Vcur, "Vcur", il);
  7714. Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
  7715. cb(Vcur, "Vcur", il);
  7716. Qcur = ggml_rope_ext(
  7717. ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos, nullptr,
  7718. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  7719. ext_factor, attn_factor, beta_fast, beta_slow
  7720. );
  7721. cb(Qcur, "Qcur", il);
  7722. Kcur = ggml_rope_ext(
  7723. ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos, nullptr,
  7724. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  7725. ext_factor, attn_factor, beta_fast, beta_slow
  7726. );
  7727. cb(Kcur, "Kcur", il);
  7728. cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf,
  7729. model.layers[il].wo, model.layers[il].bo,
  7730. Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  7731. }
  7732. if (il == n_layer - 1) {
  7733. // skip computing output for unused tokens
  7734. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  7735. n_tokens = n_outputs;
  7736. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  7737. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  7738. }
  7739. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  7740. cb(ffn_inp, "ffn_inp", il);
  7741. // MoE branch
  7742. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  7743. model.layers[il].ffn_norm, NULL,
  7744. LLM_NORM_RMS, cb, il);
  7745. cb(cur, "ffn_norm", il);
  7746. ggml_tensor * moe_out =
  7747. llm_build_moe_ffn(ctx0, cur,
  7748. model.layers[il].ffn_gate_inp,
  7749. model.layers[il].ffn_up_exps,
  7750. model.layers[il].ffn_gate_exps,
  7751. model.layers[il].ffn_down_exps,
  7752. n_expert, n_expert_used,
  7753. LLM_FFN_SILU, false,
  7754. false, 0.0,
  7755. cb, il);
  7756. cb(cur, "ffn_moe_out", il);
  7757. // FFN shared expert
  7758. {
  7759. ggml_tensor * cur_gate_inp = ggml_mul_mat(ctx0, model.layers[il].ffn_gate_inp_shexp, cur);
  7760. cb(cur_gate_inp, "ffn_shexp_gate_inp", il);
  7761. // sigmoid
  7762. ggml_tensor * cur_gate = ggml_div(ctx0, ggml_silu(ctx0, cur_gate_inp), cur_gate_inp);
  7763. cb(cur_gate, "ffn_shexp_gate", il);
  7764. ggml_tensor * cur_ffn = llm_build_ffn(ctx0, cur,
  7765. model.layers[il].ffn_up_shexp, NULL,
  7766. model.layers[il].ffn_gate_shexp, NULL,
  7767. model.layers[il].ffn_down_shexp, NULL,
  7768. NULL,
  7769. LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
  7770. cb(cur_ffn, "ffn_shexp", il);
  7771. ggml_tensor * ffn_shexp_out = ggml_mul(ctx0, cur_ffn, cur_gate);
  7772. cb(ffn_shexp_out, "ffn_shexp_out", il);
  7773. moe_out = ggml_add(ctx0, moe_out, ffn_shexp_out);
  7774. cb(moe_out, "ffn_out", il);
  7775. cur = moe_out;
  7776. }
  7777. cur = ggml_add(ctx0, cur, ffn_inp);
  7778. cb(cur, "l_out", il);
  7779. // input for next layer
  7780. inpL = cur;
  7781. }
  7782. cur = inpL;
  7783. cur = llm_build_norm(ctx0, cur, hparams,
  7784. model.output_norm, NULL,
  7785. LLM_NORM_RMS, cb, -1);
  7786. cb(cur, "result_norm", -1);
  7787. // lm_head
  7788. cur = ggml_mul_mat(ctx0, model.output, cur);
  7789. cb(cur, "result_output", -1);
  7790. ggml_build_forward_expand(gf, cur);
  7791. return gf;
  7792. }
  7793. struct ggml_cgraph * build_phi2() {
  7794. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  7795. const int64_t n_embd_head = hparams.n_embd_head_v;
  7796. const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
  7797. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  7798. struct ggml_tensor * cur;
  7799. struct ggml_tensor * attn_norm_output;
  7800. struct ggml_tensor * ffn_output;
  7801. struct ggml_tensor * inpL;
  7802. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  7803. // inp_pos - contains the positions
  7804. struct ggml_tensor * inp_pos = build_inp_pos();
  7805. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  7806. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  7807. for (int il = 0; il < n_layer; ++il) {
  7808. attn_norm_output = llm_build_norm(ctx0, inpL, hparams,
  7809. model.layers[il].attn_norm,
  7810. model.layers[il].attn_norm_b,
  7811. LLM_NORM, cb, il);
  7812. cb(attn_norm_output, "attn_norm", il);
  7813. // self-attention
  7814. {
  7815. struct ggml_tensor * Qcur = nullptr;
  7816. struct ggml_tensor * Kcur = nullptr;
  7817. struct ggml_tensor * Vcur = nullptr;
  7818. if (model.layers[il].wqkv) {
  7819. cur = ggml_mul_mat(ctx0, model.layers[il].wqkv, attn_norm_output);
  7820. cb(cur, "wqkv", il);
  7821. cur = ggml_add(ctx0, cur, model.layers[il].bqkv);
  7822. cb(cur, "bqkv", il);
  7823. Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd)));
  7824. Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd)));
  7825. Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa)));
  7826. } else {
  7827. Qcur = ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].wq, attn_norm_output), model.layers[il].bq);
  7828. Kcur = ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].wk, attn_norm_output), model.layers[il].bk);
  7829. Vcur = ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].wv, attn_norm_output), model.layers[il].bv);
  7830. }
  7831. cb(Qcur, "Qcur", il);
  7832. cb(Kcur, "Kcur", il);
  7833. cb(Vcur, "Vcur", il);
  7834. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  7835. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  7836. Qcur = ggml_rope_ext(
  7837. ctx0, Qcur, inp_pos, nullptr, n_rot, rope_type, 0, n_orig_ctx,
  7838. freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow
  7839. );
  7840. cb(Qcur, "Qcur", il);
  7841. // with phi2, we scale the Q to avoid precision issues
  7842. // ref: https://github.com/ml-explore/mlx-examples/blob/08e862336ade809bc37d1035f94b359e7d1a5152/phi2/phi2.py#L64-L66
  7843. Qcur = ggml_scale(ctx0, Qcur, 1.0f/sqrtf(float(n_embd_head)));
  7844. cb(Qcur, "Qcur", il);
  7845. Kcur = ggml_rope_ext(
  7846. ctx0, Kcur, inp_pos, nullptr, n_rot, rope_type, 0, n_orig_ctx,
  7847. freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow
  7848. );
  7849. cb(Kcur, "Kcur", il);
  7850. cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf,
  7851. model.layers[il].wo, model.layers[il].bo,
  7852. Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f, cb, il);
  7853. }
  7854. if (il == n_layer - 1) {
  7855. // skip computing output for unused tokens
  7856. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  7857. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  7858. inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
  7859. attn_norm_output = ggml_get_rows(ctx0, attn_norm_output, inp_out_ids);
  7860. }
  7861. // FF
  7862. {
  7863. ffn_output = llm_build_ffn(ctx0, attn_norm_output,
  7864. model.layers[il].ffn_up, model.layers[il].ffn_up_b,
  7865. NULL, NULL,
  7866. model.layers[il].ffn_down, model.layers[il].ffn_down_b,
  7867. NULL,
  7868. LLM_FFN_GELU, LLM_FFN_SEQ, cb, il);
  7869. cb(ffn_output, "ffn_out", il);
  7870. }
  7871. cur = ggml_add(ctx0, cur, ffn_output);
  7872. cb(cur, "l_out", il);
  7873. cur = ggml_add(ctx0, cur, inpL);
  7874. cb(cur, "l_out", il);
  7875. inpL = cur;
  7876. }
  7877. cur = llm_build_norm(ctx0, inpL, hparams,
  7878. model.output_norm,
  7879. model.output_norm_b,
  7880. LLM_NORM, cb, -1);
  7881. cb(cur, "result_norm", -1);
  7882. cur = ggml_mul_mat(ctx0, model.output, cur);
  7883. cb(cur, "result_output_no_bias", -1);
  7884. cur = ggml_add(ctx0, cur, model.output_b);
  7885. cb(cur, "result_output", -1);
  7886. ggml_build_forward_expand(gf, cur);
  7887. return gf;
  7888. }
  7889. struct ggml_cgraph * build_phi3() {
  7890. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  7891. const int64_t n_embd_head = hparams.n_embd_head_v;
  7892. const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
  7893. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  7894. struct ggml_tensor * cur;
  7895. struct ggml_tensor * inpL;
  7896. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  7897. // inp_pos - contains the positions
  7898. struct ggml_tensor * inp_pos = build_inp_pos();
  7899. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  7900. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  7901. for (int il = 0; il < n_layer; ++il) {
  7902. auto residual = inpL;
  7903. // self-attention
  7904. {
  7905. // rope freq factors for 128k context
  7906. struct ggml_tensor * rope_factors = build_rope_factors(il);
  7907. struct ggml_tensor* attn_norm_output = llm_build_norm(ctx0, inpL, hparams,
  7908. model.layers[il].attn_norm,
  7909. NULL,
  7910. LLM_NORM_RMS, cb, il);
  7911. cb(attn_norm_output, "attn_norm", il);
  7912. struct ggml_tensor * Qcur = nullptr;
  7913. struct ggml_tensor * Kcur = nullptr;
  7914. struct ggml_tensor * Vcur = nullptr;
  7915. if (model.layers[il].wqkv) {
  7916. cur = ggml_mul_mat(ctx0, model.layers[il].wqkv, attn_norm_output);
  7917. cb(cur, "wqkv", il);
  7918. Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0 * sizeof(float) * (n_embd)));
  7919. Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1 * sizeof(float) * (n_embd)));
  7920. Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1 * sizeof(float) * (n_embd + n_embd_gqa)));
  7921. }
  7922. else {
  7923. Qcur = ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].wq, attn_norm_output), model.layers[il].bq);
  7924. Kcur = ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].wk, attn_norm_output), model.layers[il].bk);
  7925. Vcur = ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].wv, attn_norm_output), model.layers[il].bv);
  7926. }
  7927. cb(Qcur, "Qcur", il);
  7928. cb(Kcur, "Kcur", il);
  7929. cb(Vcur, "Vcur", il);
  7930. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  7931. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  7932. Qcur = ggml_rope_ext(
  7933. ctx0, Qcur, inp_pos, rope_factors, n_rot, rope_type, 0, n_orig_ctx,
  7934. freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow
  7935. );
  7936. cb(Qcur, "Qcur", il);
  7937. Qcur = ggml_scale(ctx0, Qcur, 1.0f / sqrtf(float(n_embd_head)));
  7938. cb(Qcur, "Qcur", il);
  7939. Kcur = ggml_rope_ext(
  7940. ctx0, Kcur, inp_pos, rope_factors, n_rot, rope_type, 0, n_orig_ctx,
  7941. freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow
  7942. );
  7943. cb(Kcur, "Kcur", il);
  7944. cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf,
  7945. model.layers[il].wo, model.layers[il].bo,
  7946. Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f, cb, il);
  7947. }
  7948. if (il == n_layer - 1) {
  7949. // skip computing output for unused tokens
  7950. struct ggml_tensor* inp_out_ids = build_inp_out_ids();
  7951. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  7952. residual = ggml_get_rows(ctx0, residual, inp_out_ids);
  7953. }
  7954. cur = ggml_add(ctx0, cur, residual);
  7955. residual = cur;
  7956. cur = llm_build_norm(ctx0, cur, hparams,
  7957. model.layers[il].ffn_norm, NULL,
  7958. LLM_NORM_RMS, cb, il);
  7959. cb(cur, "ffn_norm", il);
  7960. // FF
  7961. // special-case: the up and gate tensors are merged into a single tensor
  7962. // TOOD: support into llm_build_ffn
  7963. {
  7964. struct ggml_tensor* up = ggml_mul_mat(ctx0, model.layers[il].ffn_up, cur);
  7965. cb(up, "ffn_up", il);
  7966. auto g = ggml_cont(ctx0, ggml_view_2d(ctx0, up, up->ne[0] / 2, up->ne[1], ggml_row_size(up->type, up->ne[0]), 0));
  7967. auto y = ggml_cont(ctx0, ggml_view_2d(ctx0, up, up->ne[0] / 2, up->ne[1], ggml_row_size(up->type, up->ne[0]), up->nb[1] / 2));
  7968. y = ggml_mul(ctx0, y, ggml_silu(ctx0, g));
  7969. cb(y, "ffn_gate", il);
  7970. auto down = ggml_mul_mat(ctx0, model.layers[il].ffn_down, y);
  7971. cb(down, "ffn_down", il);
  7972. cur = down;
  7973. cb(cur, "ffn_out", il);
  7974. }
  7975. cur = ggml_add(ctx0, residual, cur);
  7976. cb(cur, "l_out", il);
  7977. inpL = cur;
  7978. }
  7979. cur = llm_build_norm(ctx0, inpL, hparams,
  7980. model.output_norm,
  7981. NULL,
  7982. LLM_NORM_RMS, cb, -1);
  7983. cb(cur, "result_norm", -1);
  7984. cur = ggml_mul_mat(ctx0, model.output, cur);
  7985. cb(cur, "result_output", -1);
  7986. ggml_build_forward_expand(gf, cur);
  7987. return gf;
  7988. }
  7989. struct ggml_cgraph * build_plamo() {
  7990. struct ggml_cgraph * gf = ggml_new_graph(ctx0);
  7991. const int64_t n_embd_head = hparams.n_embd_head_v;
  7992. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  7993. GGML_ASSERT(n_embd_head == hparams.n_rot);
  7994. struct ggml_tensor * cur;
  7995. struct ggml_tensor * inpL;
  7996. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  7997. // inp_pos - contains the positions
  7998. struct ggml_tensor * inp_pos = build_inp_pos();
  7999. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  8000. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  8001. for (int il = 0; il < n_layer; ++il) {
  8002. // norm
  8003. cur = llm_build_norm(ctx0, inpL, hparams,
  8004. model.layers[il].attn_norm, NULL,
  8005. LLM_NORM_RMS, cb, il);
  8006. cb(cur, "attn_norm", il);
  8007. struct ggml_tensor * attention_norm = cur;
  8008. // self-attention
  8009. {
  8010. // compute Q and K and RoPE them
  8011. struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
  8012. cb(Qcur, "Qcur", il);
  8013. struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
  8014. cb(Kcur, "Kcur", il);
  8015. struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
  8016. cb(Vcur, "Vcur", il);
  8017. Qcur = ggml_rope_ext(
  8018. ctx0, ggml_reshape_3d(ctx0, Qcur, n_rot, n_head, n_tokens), inp_pos, nullptr,
  8019. n_embd_head, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  8020. ext_factor, attn_factor, beta_fast, beta_slow);
  8021. cb(Qcur, "Qcur", il);
  8022. Kcur = ggml_rope_ext(
  8023. ctx0, ggml_reshape_3d(ctx0, Kcur, n_rot, n_head_kv, n_tokens), inp_pos, nullptr,
  8024. n_embd_head, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  8025. ext_factor, attn_factor, beta_fast, beta_slow);
  8026. cb(Kcur, "Kcur", il);
  8027. cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf,
  8028. model.layers[il].wo, NULL,
  8029. Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  8030. }
  8031. struct ggml_tensor * sa_out = cur;
  8032. cur = attention_norm;
  8033. if (il == n_layer - 1) {
  8034. // skip computing output for unused tokens
  8035. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  8036. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  8037. sa_out = ggml_get_rows(ctx0, sa_out, inp_out_ids);
  8038. inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
  8039. }
  8040. // feed-forward network
  8041. {
  8042. cur = llm_build_ffn(ctx0, cur,
  8043. model.layers[il].ffn_up, NULL,
  8044. model.layers[il].ffn_gate, NULL,
  8045. model.layers[il].ffn_down, NULL,
  8046. NULL,
  8047. LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
  8048. cb(cur, "ffn_out", il);
  8049. }
  8050. cur = ggml_add(ctx0, cur, sa_out);
  8051. cb(cur, "l_out", il);
  8052. cur = ggml_add(ctx0, cur, inpL);
  8053. cb(cur, "l_out", il);
  8054. // input for next layer
  8055. inpL = cur;
  8056. }
  8057. cur = inpL;
  8058. cur = llm_build_norm(ctx0, cur, hparams,
  8059. model.output_norm, NULL,
  8060. LLM_NORM_RMS, cb, -1);
  8061. cb(cur, "result_norm", -1);
  8062. // lm_head
  8063. cur = ggml_mul_mat(ctx0, model.output, cur);
  8064. cb(cur, "result_output", -1);
  8065. ggml_build_forward_expand(gf, cur);
  8066. return gf;
  8067. }
  8068. struct ggml_cgraph * build_gpt2() {
  8069. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  8070. const int64_t n_embd_head = hparams.n_embd_head_v;
  8071. const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
  8072. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  8073. struct ggml_tensor * cur;
  8074. struct ggml_tensor * pos;
  8075. struct ggml_tensor * inpL;
  8076. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  8077. // inp_pos - contains the positions
  8078. struct ggml_tensor * inp_pos = build_inp_pos();
  8079. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  8080. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  8081. pos = ggml_get_rows(ctx0, model.pos_embd, inp_pos);
  8082. cb(pos, "pos_embd", -1);
  8083. inpL = ggml_add(ctx0, inpL, pos);
  8084. cb(inpL, "inpL", -1);
  8085. for (int il = 0; il < n_layer; ++il) {
  8086. cur = llm_build_norm(ctx0, inpL, hparams,
  8087. model.layers[il].attn_norm,
  8088. model.layers[il].attn_norm_b,
  8089. LLM_NORM, cb, il);
  8090. cb(cur, "attn_norm", il);
  8091. // self-attention
  8092. {
  8093. cur = ggml_mul_mat(ctx0, model.layers[il].wqkv, cur);
  8094. cb(cur, "wqkv", il);
  8095. cur = ggml_add(ctx0, cur, model.layers[il].bqkv);
  8096. cb(cur, "bqkv", il);
  8097. struct ggml_tensor * Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd)));
  8098. struct ggml_tensor * Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd)));
  8099. struct ggml_tensor * Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa)));
  8100. cb(Qcur, "Qcur", il);
  8101. cb(Kcur, "Kcur", il);
  8102. cb(Vcur, "Vcur", il);
  8103. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  8104. cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf,
  8105. model.layers[il].wo, model.layers[il].bo,
  8106. Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  8107. }
  8108. if (il == n_layer - 1) {
  8109. // skip computing output for unused tokens
  8110. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  8111. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  8112. inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
  8113. }
  8114. // add the input
  8115. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpL);
  8116. cb(ffn_inp, "ffn_inp", il);
  8117. // FF
  8118. {
  8119. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  8120. model.layers[il].ffn_norm,
  8121. model.layers[il].ffn_norm_b,
  8122. LLM_NORM, cb, il);
  8123. cb(cur, "ffn_norm", il);
  8124. cur = llm_build_ffn(ctx0, cur,
  8125. model.layers[il].ffn_up, model.layers[il].ffn_up_b,
  8126. NULL, NULL,
  8127. model.layers[il].ffn_down, model.layers[il].ffn_down_b,
  8128. NULL,
  8129. LLM_FFN_GELU, LLM_FFN_SEQ, cb, il);
  8130. cb(cur, "ffn_out", il);
  8131. }
  8132. inpL = ggml_add(ctx0, cur, ffn_inp);
  8133. cb(inpL, "l_out", il);
  8134. }
  8135. cur = llm_build_norm(ctx0, inpL, hparams,
  8136. model.output_norm,
  8137. model.output_norm_b,
  8138. LLM_NORM, cb, -1);
  8139. cb(cur, "result_norm", -1);
  8140. cur = ggml_mul_mat(ctx0, model.output, cur);
  8141. cb(cur, "result_output", -1);
  8142. ggml_build_forward_expand(gf, cur);
  8143. return gf;
  8144. }
  8145. struct ggml_cgraph * build_codeshell() {
  8146. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  8147. const int64_t n_embd_head = hparams.n_embd_head_v;
  8148. const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
  8149. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  8150. GGML_ASSERT(n_embd_head == hparams.n_rot);
  8151. struct ggml_tensor * cur;
  8152. struct ggml_tensor * inpL;
  8153. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  8154. // inp_pos - contains the positions
  8155. struct ggml_tensor * inp_pos = build_inp_pos();
  8156. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  8157. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  8158. for (int il = 0; il < n_layer; ++il) {
  8159. cur = llm_build_norm(ctx0, inpL, hparams,
  8160. model.layers[il].attn_norm,
  8161. model.layers[il].attn_norm_b,
  8162. LLM_NORM, cb, il);
  8163. cb(cur, "attn_norm", il);
  8164. // self-attention
  8165. {
  8166. cur = ggml_mul_mat(ctx0, model.layers[il].wqkv, cur);
  8167. cb(cur, "wqkv", il);
  8168. cur = ggml_add(ctx0, cur, model.layers[il].bqkv);
  8169. cb(cur, "bqkv", il);
  8170. struct ggml_tensor * tmpq = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd)));
  8171. struct ggml_tensor * tmpk = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd)));
  8172. struct ggml_tensor * Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa)));
  8173. cb(tmpq, "tmpq", il);
  8174. cb(tmpk, "tmpk", il);
  8175. cb(Vcur, "Vcur", il);
  8176. struct ggml_tensor * Qcur = ggml_rope_ext(
  8177. ctx0, ggml_reshape_3d(ctx0, tmpq, n_embd_head, n_head, n_tokens), inp_pos, nullptr,
  8178. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  8179. ext_factor, attn_factor, beta_fast, beta_slow
  8180. );
  8181. cb(Qcur, "Qcur", il);
  8182. struct ggml_tensor * Kcur = ggml_rope_ext(
  8183. ctx0, ggml_reshape_3d(ctx0, tmpk, n_embd_head, n_head_kv, n_tokens), inp_pos, nullptr,
  8184. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  8185. ext_factor, attn_factor, beta_fast, beta_slow
  8186. );
  8187. cb(Kcur, "Kcur", il);
  8188. cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf,
  8189. model.layers[il].wo, model.layers[il].bo,
  8190. Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  8191. }
  8192. if (il == n_layer - 1) {
  8193. // skip computing output for unused tokens
  8194. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  8195. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  8196. inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
  8197. }
  8198. // add the input
  8199. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpL);
  8200. cb(ffn_inp, "ffn_inp", il);
  8201. // FF
  8202. {
  8203. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  8204. model.layers[il].ffn_norm,
  8205. model.layers[il].ffn_norm_b,
  8206. LLM_NORM, cb, il);
  8207. cb(cur, "ffn_norm", il);
  8208. cur = llm_build_ffn(ctx0, cur,
  8209. model.layers[il].ffn_up, model.layers[il].ffn_up_b,
  8210. NULL, NULL,
  8211. model.layers[il].ffn_down, model.layers[il].ffn_down_b,
  8212. NULL,
  8213. LLM_FFN_GELU, LLM_FFN_SEQ, cb, il);
  8214. cb(cur, "ffn_out", il);
  8215. }
  8216. inpL = ggml_add(ctx0, cur, ffn_inp);
  8217. cb(inpL, "l_out", il);
  8218. }
  8219. cur = llm_build_norm(ctx0, inpL, hparams,
  8220. model.output_norm,
  8221. model.output_norm_b,
  8222. LLM_NORM, cb, -1);
  8223. cb(cur, "result_norm", -1);
  8224. cur = ggml_mul_mat(ctx0, model.output, cur);
  8225. cb(cur, "result_output", -1);
  8226. ggml_build_forward_expand(gf, cur);
  8227. return gf;
  8228. }
  8229. struct ggml_cgraph * build_orion() {
  8230. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  8231. const int64_t n_embd_head = hparams.n_embd_head_v;
  8232. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  8233. GGML_ASSERT(n_embd_head == hparams.n_rot);
  8234. struct ggml_tensor * cur;
  8235. struct ggml_tensor * inpL;
  8236. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  8237. // inp_pos - contains the positions
  8238. struct ggml_tensor * inp_pos = build_inp_pos();
  8239. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  8240. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  8241. for (int il = 0; il < n_layer; ++il) {
  8242. struct ggml_tensor * inpSA = inpL;
  8243. // norm
  8244. cur = llm_build_norm(ctx0, inpL, hparams,
  8245. model.layers[il].attn_norm, model.layers[il].attn_norm_b,
  8246. LLM_NORM, cb, il);
  8247. cb(cur, "attn_norm", il);
  8248. // self-attention
  8249. {
  8250. // compute Q and K and RoPE them
  8251. struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
  8252. cb(Qcur, "Qcur", il);
  8253. // if (model.layers[il].bq) {
  8254. // Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
  8255. // cb(Qcur, "Qcur", il);
  8256. // }
  8257. struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
  8258. cb(Kcur, "Kcur", il);
  8259. // if (model.layers[il].bk) {
  8260. // Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
  8261. // cb(Kcur, "Kcur", il);
  8262. // }
  8263. struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
  8264. cb(Vcur, "Vcur", il);
  8265. // if (model.layers[il].bv) {
  8266. // Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
  8267. // cb(Vcur, "Vcur", il);
  8268. // }
  8269. Qcur = ggml_rope_ext(
  8270. ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos, nullptr,
  8271. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  8272. ext_factor, attn_factor, beta_fast, beta_slow
  8273. );
  8274. cb(Qcur, "Qcur", il);
  8275. Kcur = ggml_rope_ext(
  8276. ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos, nullptr,
  8277. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  8278. ext_factor, attn_factor, beta_fast, beta_slow
  8279. );
  8280. cb(Kcur, "Kcur", il);
  8281. cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf,
  8282. model.layers[il].wo, NULL,
  8283. Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  8284. }
  8285. if (il == n_layer - 1) {
  8286. // skip computing output for unused tokens
  8287. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  8288. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  8289. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  8290. }
  8291. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  8292. cb(ffn_inp, "ffn_inp", il);
  8293. // feed-forward network
  8294. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  8295. model.layers[il].ffn_norm, model.layers[il].ffn_norm_b,
  8296. LLM_NORM, cb, il);
  8297. cb(cur, "ffn_norm", il);
  8298. cur = llm_build_ffn(ctx0, cur,
  8299. model.layers[il].ffn_up, NULL,
  8300. model.layers[il].ffn_gate, NULL,
  8301. model.layers[il].ffn_down, NULL,
  8302. NULL,
  8303. LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
  8304. cb(cur, "ffn_out", il);
  8305. cur = ggml_add(ctx0, cur, ffn_inp);
  8306. cb(cur, "l_out", il);
  8307. // input for next layer
  8308. inpL = cur;
  8309. }
  8310. cur = inpL;
  8311. cur = llm_build_norm(ctx0, cur, hparams,
  8312. model.output_norm, model.output_norm_b,
  8313. LLM_NORM, cb, -1);
  8314. cb(cur, "result_norm", -1);
  8315. // lm_head
  8316. cur = ggml_mul_mat(ctx0, model.output, cur);
  8317. cb(cur, "result_output", -1);
  8318. ggml_build_forward_expand(gf, cur);
  8319. return gf;
  8320. }
  8321. struct ggml_cgraph * build_internlm2() {
  8322. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  8323. const int64_t n_embd_head = hparams.n_embd_head_v;
  8324. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  8325. GGML_ASSERT(n_embd_head == hparams.n_rot);
  8326. struct ggml_tensor * cur;
  8327. struct ggml_tensor * inpL;
  8328. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  8329. // inp_pos - contains the positions
  8330. struct ggml_tensor * inp_pos = build_inp_pos();
  8331. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  8332. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  8333. for (int il = 0; il < n_layer; ++il) {
  8334. struct ggml_tensor * inpSA = inpL;
  8335. // norm
  8336. cur = llm_build_norm(ctx0, inpL, hparams,
  8337. model.layers[il].attn_norm, NULL,
  8338. LLM_NORM_RMS, cb, il);
  8339. cb(cur, "attn_norm", il);
  8340. // self-attention
  8341. {
  8342. // compute Q and K and RoPE them
  8343. struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
  8344. cb(Qcur, "Qcur", il);
  8345. if (model.layers[il].bq) {
  8346. Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
  8347. cb(Qcur, "Qcur", il);
  8348. }
  8349. struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
  8350. cb(Kcur, "Kcur", il);
  8351. if (model.layers[il].bk) {
  8352. Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
  8353. cb(Kcur, "Kcur", il);
  8354. }
  8355. struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
  8356. cb(Vcur, "Vcur", il);
  8357. if (model.layers[il].bv) {
  8358. Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
  8359. cb(Vcur, "Vcur", il);
  8360. }
  8361. Qcur = ggml_rope_ext(
  8362. ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos, nullptr,
  8363. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  8364. ext_factor, attn_factor, beta_fast, beta_slow
  8365. );
  8366. cb(Qcur, "Qcur", il);
  8367. Kcur = ggml_rope_ext(
  8368. ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos, nullptr,
  8369. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  8370. ext_factor, attn_factor, beta_fast, beta_slow
  8371. );
  8372. cb(Kcur, "Kcur", il);
  8373. cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf,
  8374. model.layers[il].wo, model.layers[il].bo,
  8375. Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  8376. }
  8377. if (il == n_layer - 1) {
  8378. // skip computing output for unused tokens
  8379. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  8380. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  8381. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  8382. }
  8383. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  8384. cb(ffn_inp, "ffn_inp", il);
  8385. // feed-forward network
  8386. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  8387. model.layers[il].ffn_norm, NULL,
  8388. LLM_NORM_RMS, cb, il);
  8389. cb(cur, "ffn_norm", il);
  8390. cur = llm_build_ffn(ctx0, cur,
  8391. model.layers[il].ffn_up, NULL,
  8392. model.layers[il].ffn_gate, NULL,
  8393. model.layers[il].ffn_down, NULL,
  8394. NULL,
  8395. LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
  8396. cb(cur, "ffn_out", il);
  8397. cur = ggml_add(ctx0, cur, ffn_inp);
  8398. cb(cur, "l_out", il);
  8399. // input for next layer
  8400. inpL = cur;
  8401. }
  8402. cur = inpL;
  8403. cur = llm_build_norm(ctx0, cur, hparams,
  8404. model.output_norm, NULL,
  8405. LLM_NORM_RMS, cb, -1);
  8406. cb(cur, "result_norm", -1);
  8407. // lm_head
  8408. cur = ggml_mul_mat(ctx0, model.output, cur);
  8409. cb(cur, "result_output", -1);
  8410. ggml_build_forward_expand(gf, cur);
  8411. return gf;
  8412. }
  8413. // ref: https://arxiv.org/abs/2203.03466
  8414. // https://github.com/ggerganov/llama.cpp/issues/5276#issuecomment-1925774738
  8415. // based on the original build_llama() function
  8416. struct ggml_cgraph * build_minicpm() {
  8417. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  8418. const int64_t n_embd_head = hparams.n_embd_head_v;
  8419. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  8420. GGML_ASSERT(n_embd_head == hparams.n_rot);
  8421. const int64_t n_embd = hparams.n_embd;
  8422. //TODO: if the model varies, these parameters need to be read from the model
  8423. const int64_t n_embd_base = 256;
  8424. const float scale_embd = 12.0f;
  8425. const float scale_depth = 1.4f;
  8426. struct ggml_tensor * cur;
  8427. struct ggml_tensor * inpL;
  8428. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  8429. // scale the input embeddings
  8430. inpL = ggml_scale(ctx0, inpL, scale_embd);
  8431. cb(inpL, "inp_scaled", -1);
  8432. // inp_pos - contains the positions
  8433. struct ggml_tensor * inp_pos = build_inp_pos();
  8434. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  8435. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  8436. for (int il = 0; il < n_layer; ++il) {
  8437. struct ggml_tensor * inpSA = inpL;
  8438. // norm
  8439. cur = llm_build_norm(ctx0, inpL, hparams,
  8440. model.layers[il].attn_norm, NULL,
  8441. LLM_NORM_RMS, cb, il);
  8442. cb(cur, "attn_norm", il);
  8443. // self-attention
  8444. {
  8445. // compute Q and K and RoPE them
  8446. struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
  8447. cb(Qcur, "Qcur", il);
  8448. if (model.layers[il].bq) {
  8449. Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
  8450. cb(Qcur, "Qcur", il);
  8451. }
  8452. struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
  8453. cb(Kcur, "Kcur", il);
  8454. if (model.layers[il].bk) {
  8455. Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
  8456. cb(Kcur, "Kcur", il);
  8457. }
  8458. struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
  8459. cb(Vcur, "Vcur", il);
  8460. if (model.layers[il].bv) {
  8461. Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
  8462. cb(Vcur, "Vcur", il);
  8463. }
  8464. Qcur = ggml_rope_ext(
  8465. ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos, nullptr,
  8466. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  8467. ext_factor, attn_factor, beta_fast, beta_slow
  8468. );
  8469. cb(Qcur, "Qcur", il);
  8470. Kcur = ggml_rope_ext(
  8471. ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos, nullptr,
  8472. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  8473. ext_factor, attn_factor, beta_fast, beta_slow
  8474. );
  8475. cb(Kcur, "Kcur", il);
  8476. cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf,
  8477. model.layers[il].wo, model.layers[il].bo,
  8478. Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  8479. }
  8480. if (il == n_layer - 1) {
  8481. // skip computing output for unused tokens
  8482. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  8483. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  8484. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  8485. }
  8486. // scale_res - scale the hidden states for residual connection
  8487. const float scale_res = scale_depth/sqrtf(float(n_layer));
  8488. cur = ggml_scale(ctx0, cur, scale_res);
  8489. cb(cur, "hidden_scaled", -1);
  8490. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  8491. cb(ffn_inp, "ffn_inp", il);
  8492. // feed-forward network
  8493. {
  8494. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  8495. model.layers[il].ffn_norm, NULL,
  8496. LLM_NORM_RMS, cb, il);
  8497. cb(cur, "ffn_norm", il);
  8498. cur = llm_build_ffn(ctx0, cur,
  8499. model.layers[il].ffn_up, NULL,
  8500. model.layers[il].ffn_gate, NULL,
  8501. model.layers[il].ffn_down, NULL,
  8502. NULL,
  8503. LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
  8504. cb(cur, "ffn_out", il);
  8505. }
  8506. // scale the hidden states for residual connection
  8507. cur = ggml_scale(ctx0, cur, scale_res);
  8508. cb(cur, "hidden_scaled_ffn", -1);
  8509. cur = ggml_add(ctx0, cur, ffn_inp);
  8510. cb(cur, "l_out", il);
  8511. // input for next layer
  8512. inpL = cur;
  8513. }
  8514. cur = inpL;
  8515. cur = llm_build_norm(ctx0, cur, hparams,
  8516. model.output_norm, NULL,
  8517. LLM_NORM_RMS, cb, -1);
  8518. cb(cur, "result_norm", -1);
  8519. // lm_head scaling
  8520. const float scale_lmhead = float(n_embd_base)/float(n_embd);
  8521. cur = ggml_scale(ctx0, cur, scale_lmhead);
  8522. cb(cur, "lmhead_scaling", -1);
  8523. // lm_head
  8524. cur = ggml_mul_mat(ctx0, model.tok_embd, cur);
  8525. cb(cur, "result_output", -1);
  8526. ggml_build_forward_expand(gf, cur);
  8527. return gf;
  8528. }
  8529. struct ggml_cgraph * build_gemma() {
  8530. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  8531. const int64_t n_embd_head_k = hparams.n_embd_head_k;
  8532. struct ggml_tensor * cur;
  8533. struct ggml_tensor * inpL;
  8534. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  8535. inpL = ggml_scale(ctx0, inpL, sqrtf(n_embd));
  8536. cb(inpL, "inp_scaled", -1);
  8537. // inp_pos - contains the positions
  8538. struct ggml_tensor * inp_pos = build_inp_pos();
  8539. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  8540. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  8541. for (int il = 0; il < n_layer; ++il) {
  8542. // norm
  8543. cur = llm_build_norm(ctx0, inpL, hparams,
  8544. model.layers[il].attn_norm, NULL,
  8545. LLM_NORM_RMS, cb, il);
  8546. cb(cur, "attn_norm", il);
  8547. // self-attention
  8548. {
  8549. // compute Q and K and RoPE them
  8550. struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
  8551. cb(Qcur, "Qcur", il);
  8552. struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
  8553. cb(Kcur, "Kcur", il);
  8554. struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
  8555. cb(Vcur, "Vcur", il);
  8556. Qcur = ggml_rope_ext(
  8557. ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head_k, n_head, n_tokens), inp_pos, nullptr,
  8558. n_embd_head_k, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  8559. ext_factor, attn_factor, beta_fast, beta_slow);
  8560. cb(Qcur, "Qcur", il);
  8561. Qcur = ggml_scale(ctx0, Qcur, 1.0f / sqrtf(float(n_embd_head_k)));
  8562. cb(Qcur, "Qcur_scaled", il);
  8563. Kcur = ggml_rope_ext(
  8564. ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head_k, n_head_kv, n_tokens), inp_pos, nullptr,
  8565. n_embd_head_k, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  8566. ext_factor, attn_factor, beta_fast, beta_slow);
  8567. cb(Kcur, "Kcur", il);
  8568. cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf,
  8569. model.layers[il].wo, NULL,
  8570. Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f, cb, il);
  8571. }
  8572. if (il == n_layer - 1) {
  8573. // skip computing output for unused tokens
  8574. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  8575. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  8576. inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
  8577. }
  8578. struct ggml_tensor * sa_out = ggml_add(ctx0, cur, inpL);
  8579. cb(sa_out, "sa_out", il);
  8580. cur = llm_build_norm(ctx0, sa_out, hparams,
  8581. model.layers[il].ffn_norm, NULL,
  8582. LLM_NORM_RMS, cb, il);
  8583. cb(cur, "ffn_norm", il);
  8584. // feed-forward network
  8585. {
  8586. cur = llm_build_ffn(ctx0, cur,
  8587. model.layers[il].ffn_up, NULL,
  8588. model.layers[il].ffn_gate, NULL,
  8589. model.layers[il].ffn_down, NULL,
  8590. NULL,
  8591. LLM_FFN_GELU, LLM_FFN_PAR, cb, il);
  8592. cb(cur, "ffn_out", il);
  8593. }
  8594. cur = ggml_add(ctx0, cur, sa_out);
  8595. cb(cur, "l_out", il);
  8596. // input for next layer
  8597. inpL = cur;
  8598. }
  8599. cur = inpL;
  8600. cur = llm_build_norm(ctx0, cur, hparams,
  8601. model.output_norm, NULL,
  8602. LLM_NORM_RMS, cb, -1);
  8603. cb(cur, "result_norm", -1);
  8604. // lm_head
  8605. cur = ggml_mul_mat(ctx0, model.output, cur);
  8606. cb(cur, "result_output", -1);
  8607. ggml_build_forward_expand(gf, cur);
  8608. return gf;
  8609. }
  8610. struct ggml_cgraph * build_starcoder2() {
  8611. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  8612. const int64_t n_embd_head = hparams.n_embd_head_v;
  8613. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  8614. GGML_ASSERT(n_embd_head == hparams.n_rot);
  8615. struct ggml_tensor * cur;
  8616. struct ggml_tensor * inpL;
  8617. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  8618. // inp_pos - contains the positions
  8619. struct ggml_tensor * inp_pos = build_inp_pos();
  8620. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  8621. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  8622. for (int il = 0; il < n_layer; ++il) {
  8623. struct ggml_tensor * inpSA = inpL;
  8624. // norm
  8625. cur = llm_build_norm(ctx0, inpL, hparams,
  8626. model.layers[il].attn_norm, model.layers[il].attn_norm_b,
  8627. LLM_NORM, cb, il);
  8628. cb(cur, "attn_norm", il);
  8629. // self-attention
  8630. {
  8631. // compute Q and K and RoPE them
  8632. struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
  8633. cb(Qcur, "Qcur", il);
  8634. if (model.layers[il].bq) {
  8635. Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
  8636. cb(Qcur, "Qcur", il);
  8637. }
  8638. struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
  8639. cb(Kcur, "Kcur", il);
  8640. if (model.layers[il].bk) {
  8641. Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
  8642. cb(Kcur, "Kcur", il);
  8643. }
  8644. struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
  8645. cb(Vcur, "Vcur", il);
  8646. if (model.layers[il].bv) {
  8647. Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
  8648. cb(Vcur, "Vcur", il);
  8649. }
  8650. Qcur = ggml_rope_ext(
  8651. ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos, nullptr,
  8652. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  8653. ext_factor, attn_factor, beta_fast, beta_slow
  8654. );
  8655. cb(Qcur, "Qcur", il);
  8656. Kcur = ggml_rope_ext(
  8657. ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos, nullptr,
  8658. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  8659. ext_factor, attn_factor, beta_fast, beta_slow
  8660. );
  8661. cb(Kcur, "Kcur", il);
  8662. cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf,
  8663. model.layers[il].wo, model.layers[il].bo,
  8664. Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  8665. }
  8666. if (il == n_layer - 1) {
  8667. // skip computing output for unused tokens
  8668. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  8669. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  8670. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  8671. }
  8672. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  8673. cb(ffn_inp, "ffn_inp", il);
  8674. // feed-forward network
  8675. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  8676. model.layers[il].ffn_norm, model.layers[il].ffn_norm_b,
  8677. LLM_NORM, cb, il);
  8678. cb(cur, "ffn_norm", il);
  8679. cur = llm_build_ffn(ctx0, cur,
  8680. model.layers[il].ffn_up, model.layers[il].ffn_up_b,
  8681. NULL, NULL,
  8682. model.layers[il].ffn_down, model.layers[il].ffn_down_b,
  8683. NULL,
  8684. LLM_FFN_GELU, LLM_FFN_SEQ, cb, il);
  8685. cb(cur, "ffn_out", il);
  8686. cur = ggml_add(ctx0, cur, ffn_inp);
  8687. cb(cur, "l_out", il);
  8688. // input for next layer
  8689. inpL = cur;
  8690. }
  8691. cur = inpL;
  8692. cur = llm_build_norm(ctx0, cur, hparams,
  8693. model.output_norm, model.output_norm_b,
  8694. LLM_NORM, cb, -1);
  8695. cb(cur, "result_norm", -1);
  8696. // lm_head
  8697. cur = ggml_mul_mat(ctx0, model.output, cur);
  8698. cb(cur, "result_output", -1);
  8699. ggml_build_forward_expand(gf, cur);
  8700. return gf;
  8701. }
  8702. struct ggml_cgraph * build_mamba() {
  8703. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  8704. const int64_t d_model = n_embd;
  8705. const int64_t d_conv = hparams.ssm_d_conv;
  8706. const int64_t d_inner = hparams.ssm_d_inner;
  8707. GGML_ASSERT(2 * d_model == d_inner);
  8708. const int64_t d_state = hparams.ssm_d_state;
  8709. const int64_t dt_rank = hparams.ssm_dt_rank;
  8710. struct ggml_tensor * cur;
  8711. struct ggml_tensor * inpL;
  8712. // {n_embd, n_tokens}
  8713. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  8714. struct ggml_tensor * state_mask = build_inp_s_mask();
  8715. struct ggml_tensor * state_seq = build_inp_s_seq();
  8716. for (int il = 0; il < n_layer; ++il) {
  8717. // (ab)using the KV cache to store the states
  8718. struct ggml_tensor * conv_states = ggml_reshape_2d(ctx0, kv_self.k_l[il], hparams.n_embd_k_s(), kv_self.size);
  8719. struct ggml_tensor * ssm_states = ggml_reshape_2d(ctx0, kv_self.v_l[il], hparams.n_embd_v_s(), kv_self.size);
  8720. // clear states of sequences which are starting at the beginning of this batch
  8721. {
  8722. conv_states = ggml_mul(ctx0,
  8723. ggml_view_2d(ctx0, conv_states, conv_states->ne[0], n_kv, conv_states->nb[1], kv_head*conv_states->nb[1]),
  8724. state_mask);
  8725. ssm_states = ggml_mul(ctx0,
  8726. ggml_view_2d(ctx0, ssm_states, ssm_states->ne[0], n_kv, ssm_states->nb[1], kv_head*ssm_states->nb[1]),
  8727. state_mask);
  8728. }
  8729. conv_states = ggml_reshape_3d(ctx0, conv_states, d_conv - 1, d_inner, n_kv);
  8730. ssm_states = ggml_reshape_3d(ctx0, ssm_states, d_state, d_inner, n_kv);
  8731. // norm
  8732. cur = llm_build_norm(ctx0, inpL, hparams,
  8733. model.layers[il].attn_norm, NULL,
  8734. LLM_NORM_RMS, cb, il);
  8735. cb(cur, "attn_norm", il);
  8736. // {n_embd, 2*d_inner} * {n_embd, n_tokens} => {2*d_inner, n_tokens}
  8737. struct ggml_tensor * xz = ggml_mul_mat(ctx0, model.layers[il].ssm_in, cur);
  8738. // split the above in two
  8739. // => {d_inner, n_tokens}
  8740. struct ggml_tensor * x = ggml_view_2d(ctx0, xz, d_inner, xz->ne[1], xz->nb[1], 0);
  8741. struct ggml_tensor * z = ggml_view_2d(ctx0, xz, d_inner, xz->ne[1], xz->nb[1], ggml_element_size(xz)*d_inner);
  8742. // conv
  8743. {
  8744. // Custom operator which is needed only to ease simultaneous sequence processing.
  8745. // For a single sequence, the equivalent is to concatenate the columns of conv_states and x,
  8746. // then make a self-overlapping view of that over d_conv columns at each stride in the 3rd dimension,
  8747. // then element-wise multiply that with the conv1d weigth,
  8748. // then sum the elements of each row,
  8749. // (the last two steps are a dot product over rows (also doable with mul_mat))
  8750. // then permute away the ne[0] dimension,
  8751. // and then you're left with the resulting x tensor.
  8752. // The new conv_states is the last (d_conv - 1) columns
  8753. // of the last 3rd dimensional "layer" of the self-overlapping view.
  8754. // For simultaneous sequences, it's more complicated.
  8755. struct ggml_tensor * x_conv = ggml_ssm_conv(ctx0, conv_states, x, model.layers[il].ssm_conv1d, state_seq);
  8756. // store last (d_conv - 1) columns of the conv_state part of x_conv back into the KV cache
  8757. ggml_build_forward_expand(gf,
  8758. ggml_cpy(ctx0,
  8759. ggml_view_2d(ctx0, x_conv, d_conv - 1, d_inner*n_kv, d_conv*ggml_element_size(x_conv), (1+d_inner*n_tokens)*ggml_element_size(x_conv)),
  8760. ggml_view_1d(ctx0, kv_self.k_l[il], (d_conv - 1)*(d_inner)*(n_kv), kv_head*(d_conv - 1)*(d_inner)*ggml_element_size(x_conv))));
  8761. // extract x from x_conv
  8762. x = ggml_view_2d(ctx0, x_conv, d_inner, n_tokens, d_inner*ggml_element_size(x_conv), 0);
  8763. // bias
  8764. x = ggml_add(ctx0, x, model.layers[il].ssm_conv1d_b);
  8765. x = ggml_silu(ctx0, x);
  8766. }
  8767. // ssm
  8768. {
  8769. // {d_inner, dt_rank + 2*d_state} * {d_inner, n_tokens} => {dt_rank + 2*d_state, n_tokens}
  8770. struct ggml_tensor * x_db = ggml_mul_mat(ctx0, model.layers[il].ssm_x, x);
  8771. // split
  8772. struct ggml_tensor * dt = ggml_view_2d(ctx0, x_db, dt_rank, n_tokens, x_db->nb[1], 0);
  8773. struct ggml_tensor * B = ggml_view_2d(ctx0, x_db, d_state, n_tokens, x_db->nb[1], ggml_element_size(x_db)*dt_rank);
  8774. struct ggml_tensor * C = ggml_view_2d(ctx0, x_db, d_state, n_tokens, x_db->nb[1], ggml_element_size(x_db)*(dt_rank+d_state));
  8775. // {dt_rank, d_inner} * {dt_rank, n_tokens} => {d_inner, n_tokens}
  8776. dt = ggml_mul_mat(ctx0, model.layers[il].ssm_dt, dt);
  8777. dt = ggml_add(ctx0, dt, model.layers[il].ssm_dt_b);
  8778. // Custom operator to optimize the parallel associative scan
  8779. // as described in the Annex D of the Mamba paper.
  8780. // => {d_inner, n_tokens} and {d_state, d_inner, n_kv} combined,
  8781. // because only a single tensor can be returned.
  8782. struct ggml_tensor * y_ssm_states = ggml_ssm_scan(ctx0, ssm_states, x, dt, model.layers[il].ssm_a, B, C, state_seq);
  8783. // store last states (the second part of y_ssm_states)
  8784. ggml_build_forward_expand(gf,
  8785. ggml_cpy(ctx0,
  8786. ggml_view_1d(ctx0, y_ssm_states, d_state*d_inner*n_kv, d_inner*n_tokens*ggml_element_size(y_ssm_states)),
  8787. ggml_view_1d(ctx0, kv_self.v_l[il], d_state*d_inner*n_kv, kv_head*d_state*d_inner*ggml_element_size(ssm_states))));
  8788. struct ggml_tensor * y = ggml_view_2d(ctx0, y_ssm_states, d_inner, n_tokens, d_inner*ggml_element_size(y_ssm_states), 0);
  8789. if (il == n_layer - 1) {
  8790. // skip computing output for unused tokens
  8791. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  8792. x = ggml_get_rows(ctx0, x, inp_out_ids);
  8793. y = ggml_get_rows(ctx0, y, inp_out_ids);
  8794. z = ggml_get_rows(ctx0, z, inp_out_ids);
  8795. inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
  8796. }
  8797. // {d_inner, n_tokens} * {d_inner} => {d_inner, n_tokens}
  8798. y = ggml_add(ctx0, y, ggml_mul(ctx0, x, model.layers[il].ssm_d));
  8799. y = ggml_mul(ctx0, y, ggml_silu(ctx0, z));
  8800. // {d_inner, n_embd} * {d_inner, n_tokens} => {n_embd, n_tokens}
  8801. cur = ggml_mul_mat(ctx0, model.layers[il].ssm_out, y);
  8802. }
  8803. // residual
  8804. cur = ggml_add(ctx0, cur, inpL);
  8805. cb(cur, "l_out", il);
  8806. // input for next layer
  8807. inpL = cur;
  8808. }
  8809. // final rmsnorm
  8810. cur = llm_build_norm(ctx0, inpL, hparams,
  8811. model.output_norm, NULL,
  8812. LLM_NORM_RMS, cb, -1);
  8813. cb(cur, "result_norm", -1);
  8814. // lm_head
  8815. cur = ggml_mul_mat(ctx0, model.output, cur);
  8816. cb(cur, "result_output", -1);
  8817. ggml_build_forward_expand(gf, cur);
  8818. return gf;
  8819. }
  8820. struct ggml_cgraph * build_command_r() {
  8821. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  8822. const int64_t n_embd_head = hparams.n_embd_head_v;
  8823. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  8824. const float f_logit_scale = hparams.f_logit_scale;
  8825. struct ggml_tensor * cur;
  8826. struct ggml_tensor * inpL;
  8827. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  8828. // inp_pos - contains the positions
  8829. struct ggml_tensor * inp_pos = build_inp_pos();
  8830. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  8831. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  8832. for (int il = 0; il < n_layer; ++il) {
  8833. // norm
  8834. cur = llm_build_norm(ctx0, inpL, hparams,
  8835. model.layers[il].attn_norm, NULL,
  8836. LLM_NORM, cb, il);
  8837. cb(cur, "attn_norm", il);
  8838. struct ggml_tensor * ffn_inp = cur;
  8839. // self-attention
  8840. {
  8841. // compute Q and K and RoPE them
  8842. struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
  8843. cb(Qcur, "Qcur", il);
  8844. if (model.layers[il].bq) {
  8845. Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
  8846. cb(Qcur, "Qcur", il);
  8847. }
  8848. struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
  8849. cb(Kcur, "Kcur", il);
  8850. if (model.layers[il].bk) {
  8851. Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
  8852. cb(Kcur, "Kcur", il);
  8853. }
  8854. struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
  8855. cb(Vcur, "Vcur", il);
  8856. if (model.layers[il].bv) {
  8857. Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
  8858. cb(Vcur, "Vcur", il);
  8859. }
  8860. if (model.layers[il].attn_q_norm) {
  8861. Qcur = ggml_view_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens,
  8862. ggml_element_size(Qcur) * n_embd_head,
  8863. ggml_element_size(Qcur) * n_embd_head * n_head,
  8864. 0);
  8865. cb(Qcur, "Qcur", il);
  8866. Kcur = ggml_view_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens,
  8867. ggml_element_size(Kcur) * n_embd_head,
  8868. ggml_element_size(Kcur) * n_embd_head * n_head_kv,
  8869. 0);
  8870. cb(Kcur, "Kcur", il);
  8871. Qcur = llm_build_norm(ctx0, Qcur, hparams,
  8872. model.layers[il].attn_q_norm,
  8873. NULL,
  8874. LLM_NORM, cb, il);
  8875. cb(Qcur, "Qcur", il);
  8876. Kcur = llm_build_norm(ctx0, Kcur, hparams,
  8877. model.layers[il].attn_k_norm,
  8878. NULL,
  8879. LLM_NORM, cb, il);
  8880. cb(Kcur, "Kcur", il);
  8881. }
  8882. Qcur = ggml_rope_ext(
  8883. ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos, nullptr,
  8884. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  8885. ext_factor, attn_factor, beta_fast, beta_slow
  8886. );
  8887. cb(Qcur, "Qcur", il);
  8888. Kcur = ggml_rope_ext(
  8889. ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos, nullptr,
  8890. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  8891. ext_factor, attn_factor, beta_fast, beta_slow
  8892. );
  8893. cb(Kcur, "Kcur", il);
  8894. cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf,
  8895. model.layers[il].wo, model.layers[il].bo,
  8896. Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  8897. }
  8898. if (il == n_layer - 1) {
  8899. // skip computing output for unused tokens
  8900. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  8901. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  8902. inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
  8903. ffn_inp = ggml_get_rows(ctx0, ffn_inp, inp_out_ids);
  8904. }
  8905. struct ggml_tensor * attn_out = cur;
  8906. // feed-forward network
  8907. {
  8908. cur = llm_build_ffn(ctx0, ffn_inp,
  8909. model.layers[il].ffn_up, NULL,
  8910. model.layers[il].ffn_gate, NULL,
  8911. model.layers[il].ffn_down, NULL,
  8912. NULL,
  8913. LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
  8914. cb(cur, "ffn_out", il);
  8915. }
  8916. // add together residual + FFN + self-attention
  8917. cur = ggml_add(ctx0, cur, inpL);
  8918. cur = ggml_add(ctx0, cur, attn_out);
  8919. cb(cur, "l_out", il);
  8920. // input for next layer
  8921. inpL = cur;
  8922. }
  8923. cur = inpL;
  8924. cur = llm_build_norm(ctx0, cur, hparams,
  8925. model.output_norm, NULL,
  8926. LLM_NORM, cb, -1);
  8927. cb(cur, "result_norm", -1);
  8928. // lm_head
  8929. cur = ggml_mul_mat(ctx0, model.output, cur);
  8930. if (f_logit_scale) {
  8931. cur = ggml_scale(ctx0, cur, f_logit_scale);
  8932. }
  8933. cb(cur, "result_output", -1);
  8934. ggml_build_forward_expand(gf, cur);
  8935. return gf;
  8936. }
  8937. // ref: https://allenai.org/olmo
  8938. // based on the original build_llama() function, changes:
  8939. // * non-parametric layer norm
  8940. // * clamp qkv
  8941. // * removed bias
  8942. // * removed MoE
  8943. struct ggml_cgraph * build_olmo() {
  8944. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  8945. // mutable variable, needed during the last layer of the computation to skip unused tokens
  8946. int32_t n_tokens = this->n_tokens;
  8947. const int64_t n_embd_head = hparams.n_embd_head_v;
  8948. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  8949. GGML_ASSERT(n_embd_head == hparams.n_rot);
  8950. struct ggml_tensor * cur;
  8951. struct ggml_tensor * inpL;
  8952. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  8953. // inp_pos - contains the positions
  8954. struct ggml_tensor * inp_pos = build_inp_pos();
  8955. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  8956. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  8957. for (int il = 0; il < n_layer; ++il) {
  8958. struct ggml_tensor * inpSA = inpL;
  8959. // norm
  8960. cur = llm_build_norm(ctx0, inpL, hparams,
  8961. NULL, NULL,
  8962. LLM_NORM, cb, il);
  8963. cb(cur, "attn_norm", il);
  8964. // self-attention
  8965. {
  8966. // compute Q and K and RoPE them
  8967. struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
  8968. cb(Qcur, "Qcur", il);
  8969. if (hparams.f_clamp_kqv > 0.0f) {
  8970. Qcur = ggml_clamp(ctx0, Qcur, -hparams.f_clamp_kqv, hparams.f_clamp_kqv);
  8971. cb(Qcur, "Qcur", il);
  8972. }
  8973. struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
  8974. cb(Kcur, "Kcur", il);
  8975. if (hparams.f_clamp_kqv > 0.0f) {
  8976. Kcur = ggml_clamp(ctx0, Kcur, -hparams.f_clamp_kqv, hparams.f_clamp_kqv);
  8977. cb(Kcur, "Kcur", il);
  8978. }
  8979. struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
  8980. cb(Vcur, "Vcur", il);
  8981. if (hparams.f_clamp_kqv > 0.0f) {
  8982. Vcur = ggml_clamp(ctx0, Vcur, -hparams.f_clamp_kqv, hparams.f_clamp_kqv);
  8983. cb(Vcur, "Vcur", il);
  8984. }
  8985. Qcur = ggml_rope_ext(
  8986. ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos, nullptr,
  8987. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  8988. ext_factor, attn_factor, beta_fast, beta_slow
  8989. );
  8990. cb(Qcur, "Qcur", il);
  8991. Kcur = ggml_rope_ext(
  8992. ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos, nullptr,
  8993. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  8994. ext_factor, attn_factor, beta_fast, beta_slow
  8995. );
  8996. cb(Kcur, "Kcur", il);
  8997. cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf,
  8998. model.layers[il].wo, nullptr,
  8999. Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  9000. }
  9001. if (il == n_layer - 1) {
  9002. // skip computing output for unused tokens
  9003. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  9004. n_tokens = n_outputs;
  9005. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  9006. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  9007. }
  9008. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  9009. cb(ffn_inp, "ffn_inp", il);
  9010. // feed-forward network
  9011. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  9012. NULL, NULL,
  9013. LLM_NORM, cb, il);
  9014. cb(cur, "ffn_norm", il);
  9015. cur = llm_build_ffn(ctx0, cur,
  9016. model.layers[il].ffn_up, NULL,
  9017. model.layers[il].ffn_gate, NULL,
  9018. model.layers[il].ffn_down, NULL,
  9019. NULL,
  9020. LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
  9021. cb(cur, "ffn_out", il);
  9022. cur = ggml_add(ctx0, cur, ffn_inp);
  9023. cb(cur, "ffn_out", il);
  9024. ggml_tensor * layer_dir = lctx.cvec.tensor_for(il);
  9025. if (layer_dir != nullptr) {
  9026. cur = ggml_add(ctx0, cur, layer_dir);
  9027. }
  9028. cb(cur, "l_out", il);
  9029. // input for next layer
  9030. inpL = cur;
  9031. }
  9032. cur = inpL;
  9033. cur = llm_build_norm(ctx0, cur, hparams,
  9034. NULL, NULL,
  9035. LLM_NORM, cb, -1);
  9036. cb(cur, "result_norm", -1);
  9037. // lm_head
  9038. cur = ggml_mul_mat(ctx0, model.output, cur);
  9039. cb(cur, "result_output", -1);
  9040. ggml_build_forward_expand(gf, cur);
  9041. return gf;
  9042. }
  9043. struct ggml_cgraph * build_gptneox() {
  9044. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  9045. const int64_t n_embd_head = hparams.n_embd_head_v;
  9046. const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
  9047. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  9048. struct ggml_tensor * cur;
  9049. struct ggml_tensor * inpL;
  9050. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  9051. // inp_pos - contains the positions
  9052. struct ggml_tensor * inp_pos = build_inp_pos();
  9053. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  9054. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  9055. for (int il = 0; il < n_layer; ++il) {
  9056. cur = llm_build_norm(ctx0, inpL, hparams,
  9057. model.layers[il].attn_norm,
  9058. model.layers[il].attn_norm_b,
  9059. LLM_NORM, cb, il);
  9060. cb(cur, "attn_norm", il);
  9061. // self-attention
  9062. {
  9063. cur = ggml_mul_mat(ctx0, model.layers[il].wqkv, cur);
  9064. cb(cur, "wqkv", il);
  9065. cur = ggml_add(ctx0, cur, model.layers[il].bqkv);
  9066. cb(cur, "bqkv", il);
  9067. struct ggml_tensor * Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd)));
  9068. struct ggml_tensor * Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd)));
  9069. struct ggml_tensor * Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa)));
  9070. cb(Qcur, "Qcur", il);
  9071. cb(Kcur, "Kcur", il);
  9072. cb(Vcur, "Vcur", il);
  9073. Qcur = ggml_rope_ext(
  9074. ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos, nullptr,
  9075. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  9076. ext_factor, attn_factor, beta_fast, beta_slow
  9077. );
  9078. cb(Qcur, "Qcur", il);
  9079. Kcur = ggml_rope_ext(
  9080. ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos, nullptr,
  9081. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  9082. ext_factor, attn_factor, beta_fast, beta_slow
  9083. );
  9084. cb(Kcur, "Kcur", il);
  9085. cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf,
  9086. model.layers[il].wo, model.layers[il].bo,
  9087. Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  9088. }
  9089. if (il == n_layer - 1) {
  9090. // skip computing output for unused tokens
  9091. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  9092. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  9093. inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
  9094. }
  9095. // ffn
  9096. if (hparams.use_par_res) {
  9097. // attention and ffn are computed in parallel
  9098. // x = x + attn(ln1(x)) + ffn(ln2(x))
  9099. struct ggml_tensor * attn_out = cur;
  9100. cur = llm_build_norm(ctx0, inpL, hparams,
  9101. model.layers[il].ffn_norm,
  9102. model.layers[il].ffn_norm_b,
  9103. LLM_NORM, cb, il);
  9104. cb(cur, "ffn_norm", il);
  9105. cur = llm_build_ffn(ctx0, cur,
  9106. model.layers[il].ffn_up, model.layers[il].ffn_up_b,
  9107. NULL, NULL,
  9108. model.layers[il].ffn_down, model.layers[il].ffn_down_b,
  9109. NULL,
  9110. LLM_FFN_GELU, LLM_FFN_SEQ, cb, il);
  9111. cb(cur, "ffn_out", il);
  9112. cur = ggml_add(ctx0, cur, inpL);
  9113. cb(cur, "ffn_out", il);
  9114. inpL = ggml_add(ctx0, cur, attn_out);
  9115. cb(inpL, "l_out", il);
  9116. } else {
  9117. // attention and ffn are computed sequentially
  9118. // x = x + attn(ln1(x))
  9119. // x = x + ffn(ln2(x))
  9120. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpL);
  9121. cb(ffn_inp, "ffn_inp", il);
  9122. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  9123. model.layers[il].ffn_norm,
  9124. model.layers[il].ffn_norm_b,
  9125. LLM_NORM, cb, il);
  9126. cb(cur, "ffn_norm", il);
  9127. cur = llm_build_ffn(ctx0, cur,
  9128. model.layers[il].ffn_up, model.layers[il].ffn_up_b,
  9129. NULL, NULL,
  9130. model.layers[il].ffn_down, model.layers[il].ffn_down_b,
  9131. NULL,
  9132. LLM_FFN_GELU, LLM_FFN_SEQ, cb, il);
  9133. cb(cur, "ffn_out", il);
  9134. inpL = ggml_add(ctx0, cur, ffn_inp);
  9135. cb(inpL, "l_out", il);
  9136. }
  9137. }
  9138. cur = llm_build_norm(ctx0, inpL, hparams,
  9139. model.output_norm,
  9140. model.output_norm_b,
  9141. LLM_NORM, cb, -1);
  9142. cb(cur, "result_norm", -1);
  9143. cur = ggml_mul_mat(ctx0, model.output, cur);
  9144. cb(cur, "result_output", -1);
  9145. ggml_build_forward_expand(gf, cur);
  9146. return gf;
  9147. }
  9148. struct ggml_cgraph * build_arctic() {
  9149. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  9150. // mutable variable, needed during the last layer of the computation to skip unused tokens
  9151. int32_t n_tokens = this->n_tokens;
  9152. const int64_t n_embd_head = hparams.n_embd_head_v;
  9153. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  9154. GGML_ASSERT(n_embd_head == hparams.n_rot);
  9155. struct ggml_tensor * cur;
  9156. struct ggml_tensor * inpL;
  9157. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  9158. // inp_pos - contains the positions
  9159. struct ggml_tensor * inp_pos = build_inp_pos();
  9160. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  9161. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  9162. for (int il = 0; il < n_layer; ++il) {
  9163. struct ggml_tensor * inpSA = inpL;
  9164. // norm
  9165. cur = llm_build_norm(ctx0, inpL, hparams,
  9166. model.layers[il].attn_norm, NULL,
  9167. LLM_NORM_RMS, cb, il);
  9168. cb(cur, "attn_norm", il);
  9169. // self-attention
  9170. {
  9171. // compute Q and K and RoPE them
  9172. struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
  9173. cb(Qcur, "Qcur", il);
  9174. struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
  9175. cb(Kcur, "Kcur", il);
  9176. struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
  9177. cb(Vcur, "Vcur", il);
  9178. Qcur = ggml_rope_ext(
  9179. ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos, nullptr,
  9180. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  9181. ext_factor, attn_factor, beta_fast, beta_slow
  9182. );
  9183. cb(Qcur, "Qcur", il);
  9184. Kcur = ggml_rope_ext(
  9185. ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos, nullptr,
  9186. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  9187. ext_factor, attn_factor, beta_fast, beta_slow
  9188. );
  9189. cb(Kcur, "Kcur", il);
  9190. cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf,
  9191. model.layers[il].wo, NULL,
  9192. Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  9193. }
  9194. if (il == n_layer - 1) {
  9195. // skip computing output for unused tokens
  9196. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  9197. n_tokens = n_outputs;
  9198. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  9199. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  9200. }
  9201. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  9202. cb(ffn_inp, "ffn_inp", il);
  9203. // feed-forward network
  9204. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  9205. model.layers[il].ffn_norm, NULL,
  9206. LLM_NORM_RMS, cb, il);
  9207. cb(cur, "ffn_norm", il);
  9208. cur = llm_build_ffn(ctx0, cur,
  9209. model.layers[il].ffn_up, NULL,
  9210. model.layers[il].ffn_gate, NULL,
  9211. model.layers[il].ffn_down, NULL,
  9212. NULL,
  9213. LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
  9214. cb(cur, "ffn_out", il);
  9215. struct ggml_tensor * ffn_out = ggml_add(ctx0, cur, ffn_inp);
  9216. cb(ffn_out, "ffn_out", il);
  9217. // MoE
  9218. cur = llm_build_norm(ctx0, inpSA, hparams,
  9219. model.layers[il].ffn_norm_exps, NULL,
  9220. LLM_NORM_RMS, cb, il);
  9221. cb(cur, "ffn_norm_exps", il);
  9222. cur = llm_build_moe_ffn(ctx0, cur,
  9223. model.layers[il].ffn_gate_inp,
  9224. model.layers[il].ffn_up_exps,
  9225. model.layers[il].ffn_gate_exps,
  9226. model.layers[il].ffn_down_exps,
  9227. n_expert, n_expert_used,
  9228. LLM_FFN_SILU, true,
  9229. false, 0.0,
  9230. cb, il);
  9231. cb(cur, "ffn_moe_out", il);
  9232. cur = ggml_add(ctx0, cur, ffn_out);
  9233. cb(cur, "ffn_out", il);
  9234. ggml_tensor * layer_dir = lctx.cvec.tensor_for(il);
  9235. if (layer_dir != nullptr) {
  9236. cur = ggml_add(ctx0, cur, layer_dir);
  9237. }
  9238. cb(cur, "l_out", il);
  9239. // input for next layer
  9240. inpL = cur;
  9241. }
  9242. cur = inpL;
  9243. cur = llm_build_norm(ctx0, cur, hparams,
  9244. model.output_norm, NULL,
  9245. LLM_NORM_RMS, cb, -1);
  9246. cb(cur, "result_norm", -1);
  9247. // lm_head
  9248. cur = ggml_mul_mat(ctx0, model.output, cur);
  9249. cb(cur, "result_output", -1);
  9250. ggml_build_forward_expand(gf, cur);
  9251. return gf;
  9252. }
  9253. struct ggml_cgraph * build_deepseek2() {
  9254. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  9255. // mutable variable, needed during the last layer of the computation to skip unused tokens
  9256. int32_t n_tokens = this->n_tokens;
  9257. bool is_lite = (hparams.n_layer == 27);
  9258. // We have to pre-scale kq_scale and attn_factor to make the YaRN RoPE work correctly.
  9259. // See https://github.com/ggerganov/llama.cpp/discussions/7416 for detailed explanation.
  9260. const float mscale = attn_factor * (1.0f + hparams.rope_yarn_log_mul * logf(1.0f / freq_scale));
  9261. const float kq_scale = 1.0f*mscale*mscale/sqrtf(float(hparams.n_embd_head_k));
  9262. const float attn_factor_scaled = 1.0f / (1.0f + 0.1f * logf(1.0f / freq_scale));
  9263. const uint32_t n_embd_head_qk_rope = hparams.n_rot;
  9264. const uint32_t n_embd_head_qk_nope = hparams.n_embd_head_k - hparams.n_rot;
  9265. const uint32_t kv_lora_rank = hparams.n_lora_kv;
  9266. struct ggml_tensor * cur;
  9267. struct ggml_tensor * inpL;
  9268. // {n_embd, n_tokens}
  9269. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  9270. // inp_pos - contains the positions
  9271. struct ggml_tensor * inp_pos = build_inp_pos();
  9272. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  9273. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  9274. for (int il = 0; il < n_layer; ++il) {
  9275. struct ggml_tensor * inpSA = inpL;
  9276. // norm
  9277. cur = llm_build_norm(ctx0, inpL, hparams,
  9278. model.layers[il].attn_norm, NULL,
  9279. LLM_NORM_RMS, cb, il);
  9280. cb(cur, "attn_norm", il);
  9281. // self_attention
  9282. {
  9283. struct ggml_tensor * q = NULL;
  9284. if (!is_lite) {
  9285. // {n_embd, q_lora_rank} * {n_embd, n_tokens} -> {q_lora_rank, n_tokens}
  9286. q = ggml_mul_mat(ctx0, model.layers[il].wq_a, cur);
  9287. cb(q, "q", il);
  9288. q = llm_build_norm(ctx0, q, hparams,
  9289. model.layers[il].attn_q_a_norm, NULL,
  9290. LLM_NORM_RMS, cb, il);
  9291. cb(q, "q", il);
  9292. // {q_lora_rank, n_head * hparams.n_embd_head_k} * {q_lora_rank, n_tokens} -> {n_head * hparams.n_embd_head_k, n_tokens}
  9293. q = ggml_mul_mat(ctx0, model.layers[il].wq_b, q);
  9294. cb(q, "q", il);
  9295. } else {
  9296. q = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
  9297. cb(q, "q", il);
  9298. }
  9299. // split into {n_head * n_embd_head_qk_nope, n_tokens}
  9300. struct ggml_tensor * q_nope = ggml_view_3d(ctx0, q, n_embd_head_qk_nope, n_head, n_tokens,
  9301. ggml_row_size(q->type, hparams.n_embd_head_k),
  9302. ggml_row_size(q->type, hparams.n_embd_head_k * n_head),
  9303. 0);
  9304. cb(q_nope, "q_nope", il);
  9305. // and {n_head * n_embd_head_qk_rope, n_tokens}
  9306. struct ggml_tensor * q_pe = ggml_view_3d(ctx0, q, n_embd_head_qk_rope, n_head, n_tokens,
  9307. ggml_row_size(q->type, hparams.n_embd_head_k),
  9308. ggml_row_size(q->type, hparams.n_embd_head_k * n_head),
  9309. ggml_row_size(q->type, n_embd_head_qk_nope));
  9310. cb(q_pe, "q_pe", il);
  9311. // {n_embd, kv_lora_rank + n_embd_head_qk_rope} * {n_embd, n_tokens} -> {kv_lora_rank + n_embd_head_qk_rope, n_tokens}
  9312. struct ggml_tensor * kv_pe_compresseed = ggml_mul_mat(ctx0, model.layers[il].wkv_a_mqa, cur);
  9313. cb(kv_pe_compresseed, "kv_pe_compresseed", il);
  9314. // split into {kv_lora_rank, n_tokens}
  9315. struct ggml_tensor * kv_compressed = ggml_view_2d(ctx0, kv_pe_compresseed, kv_lora_rank, n_tokens,
  9316. kv_pe_compresseed->nb[1],
  9317. 0);
  9318. cb(kv_compressed, "kv_compressed", il);
  9319. // and {n_embd_head_qk_rope, n_tokens}
  9320. struct ggml_tensor * k_pe = ggml_view_3d(ctx0, kv_pe_compresseed, n_embd_head_qk_rope, 1, n_tokens,
  9321. kv_pe_compresseed->nb[1],
  9322. kv_pe_compresseed->nb[1],
  9323. ggml_row_size(kv_pe_compresseed->type, kv_lora_rank));
  9324. cb(k_pe, "k_pe", il);
  9325. kv_compressed = ggml_cont(ctx0, kv_compressed); // TODO: the CUDA backend does not support non-contiguous norm
  9326. kv_compressed = llm_build_norm(ctx0, kv_compressed, hparams,
  9327. model.layers[il].attn_kv_a_norm, NULL,
  9328. LLM_NORM_RMS, cb, il);
  9329. cb(kv_compressed, "kv_compressed", il);
  9330. // {kv_lora_rank, n_head * (n_embd_head_qk_nope + n_embd_head_v)} * {kv_lora_rank, n_tokens} -> {n_head * (n_embd_head_qk_nope + n_embd_head_v), n_tokens}
  9331. struct ggml_tensor * kv = ggml_mul_mat(ctx0, model.layers[il].wkv_b, kv_compressed);
  9332. cb(kv, "kv", il);
  9333. // split into {n_head * n_embd_head_qk_nope, n_tokens}
  9334. struct ggml_tensor * k_nope = ggml_view_3d(ctx0, kv, n_embd_head_qk_nope, n_head, n_tokens,
  9335. ggml_row_size(kv->type, n_embd_head_qk_nope + hparams.n_embd_head_v),
  9336. ggml_row_size(kv->type, n_head * (n_embd_head_qk_nope + hparams.n_embd_head_v)),
  9337. 0);
  9338. cb(k_nope, "k_nope", il);
  9339. // and {n_head * n_embd_head_v, n_tokens}
  9340. struct ggml_tensor * v_states = ggml_view_3d(ctx0, kv, hparams.n_embd_head_v, n_head, n_tokens,
  9341. ggml_row_size(kv->type, (n_embd_head_qk_nope + hparams.n_embd_head_v)),
  9342. ggml_row_size(kv->type, (n_embd_head_qk_nope + hparams.n_embd_head_v)*n_head),
  9343. ggml_row_size(kv->type, (n_embd_head_qk_nope)));
  9344. cb(v_states, "v_states", il);
  9345. v_states = ggml_cont(ctx0, v_states);
  9346. cb(v_states, "v_states", il);
  9347. v_states = ggml_view_2d(ctx0, v_states, hparams.n_embd_head_v * n_head, n_tokens,
  9348. ggml_row_size(kv->type, hparams.n_embd_head_v * n_head),
  9349. 0);
  9350. cb(v_states, "v_states", il);
  9351. q_pe = ggml_cont(ctx0, q_pe); // TODO: the CUDA backend does not support non-contiguous RoPE
  9352. q_pe = ggml_rope_ext(
  9353. ctx0, q_pe, inp_pos, nullptr,
  9354. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  9355. ext_factor, attn_factor_scaled, beta_fast, beta_slow
  9356. );
  9357. cb(q_pe, "q_pe", il);
  9358. // shared RoPE key
  9359. k_pe = ggml_cont(ctx0, k_pe); // TODO: the CUDA backend does not support non-contiguous RoPE
  9360. k_pe = ggml_rope_ext(
  9361. ctx0, k_pe, inp_pos, nullptr,
  9362. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  9363. ext_factor, attn_factor_scaled, beta_fast, beta_slow
  9364. );
  9365. cb(k_pe, "k_pe", il);
  9366. struct ggml_tensor * q_states = ggml_concat(ctx0, q_nope, q_pe, 0);
  9367. cb(q_states, "q_states", il);
  9368. struct ggml_tensor * k_states = ggml_concat(ctx0, k_nope, ggml_repeat(ctx0, k_pe, q_pe), 0);
  9369. cb(k_states, "k_states", il);
  9370. cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf,
  9371. model.layers[il].wo, NULL,
  9372. k_states, v_states, q_states, KQ_mask, n_tokens, kv_head, n_kv, kq_scale, cb, il);
  9373. }
  9374. if (il == n_layer - 1) {
  9375. // skip computing output for unused tokens
  9376. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  9377. n_tokens = n_outputs;
  9378. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  9379. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  9380. }
  9381. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  9382. cb(ffn_inp, "ffn_inp", il);
  9383. if ((uint32_t) il < hparams.n_layer_dense_lead) {
  9384. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  9385. model.layers[il].ffn_norm, NULL,
  9386. LLM_NORM_RMS, cb, il);
  9387. cb(cur, "ffn_norm", il);
  9388. cur = llm_build_ffn(ctx0, cur,
  9389. model.layers[il].ffn_up, NULL,
  9390. model.layers[il].ffn_gate, NULL,
  9391. model.layers[il].ffn_down, NULL,
  9392. NULL,
  9393. LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
  9394. cb(cur, "ffn_out", il);
  9395. } else {
  9396. // MoE branch
  9397. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  9398. model.layers[il].ffn_norm, NULL,
  9399. LLM_NORM_RMS, cb, il);
  9400. cb(cur, "ffn_norm", il);
  9401. ggml_tensor * moe_out =
  9402. llm_build_moe_ffn(ctx0, cur,
  9403. model.layers[il].ffn_gate_inp,
  9404. model.layers[il].ffn_up_exps,
  9405. model.layers[il].ffn_gate_exps,
  9406. model.layers[il].ffn_down_exps,
  9407. n_expert, n_expert_used,
  9408. LLM_FFN_SILU, false,
  9409. true, hparams.expert_weights_scale,
  9410. cb, il);
  9411. cb(moe_out, "ffn_moe_out", il);
  9412. // FFN shared expert
  9413. {
  9414. ggml_tensor * ffn_shexp = llm_build_ffn(ctx0, cur,
  9415. model.layers[il].ffn_up_shexp, NULL,
  9416. model.layers[il].ffn_gate_shexp, NULL,
  9417. model.layers[il].ffn_down_shexp, NULL,
  9418. NULL,
  9419. LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
  9420. cb(ffn_shexp, "ffn_shexp", il);
  9421. cur = ggml_add(ctx0, moe_out, ffn_shexp);
  9422. cb(cur, "ffn_out", il);
  9423. }
  9424. }
  9425. cur = ggml_add(ctx0, cur, ffn_inp);
  9426. cb(cur, "l_out", il);
  9427. // input for next layer
  9428. inpL = cur;
  9429. }
  9430. cur = inpL;
  9431. cur = llm_build_norm(ctx0, cur, hparams,
  9432. model.output_norm, NULL,
  9433. LLM_NORM_RMS, cb, -1);
  9434. cb(cur, "result_norm", -1);
  9435. // lm_head
  9436. cur = ggml_mul_mat(ctx0, model.output, cur);
  9437. cb(cur, "result_output", -1);
  9438. ggml_build_forward_expand(gf, cur);
  9439. return gf;
  9440. }
  9441. };
  9442. static struct ggml_cgraph * llama_build_graph_defrag(llama_context & lctx, const std::vector<uint32_t> & ids) {
  9443. llama_batch dummy;
  9444. dummy.n_tokens = 0;
  9445. llm_build_cb cb = [&](struct ggml_tensor * , const char * , int ) { };
  9446. struct llm_build_context llm(lctx, dummy, cb, false);
  9447. llm.init();
  9448. struct ggml_cgraph * result = llm.build_defrag(ids);
  9449. llm.free();
  9450. return result;
  9451. }
  9452. static struct ggml_cgraph * llama_build_graph_k_shift(llama_context & lctx) {
  9453. llama_batch dummy;
  9454. dummy.n_tokens = 0;
  9455. llm_build_cb cb = [&](struct ggml_tensor * , const char * , int ) { };
  9456. struct llm_build_context llm(lctx, dummy, cb, false);
  9457. llm.init();
  9458. struct ggml_cgraph * result = llm.build_k_shift();
  9459. llm.free();
  9460. return result;
  9461. }
  9462. static struct ggml_cgraph * llama_build_graph_s_copy(llama_context & lctx) {
  9463. llama_batch dummy;
  9464. dummy.n_tokens = 0;
  9465. llm_build_cb cb = [&](struct ggml_tensor * , const char * , int ) { };
  9466. struct llm_build_context llm(lctx, dummy, cb, false);
  9467. llm.init();
  9468. struct ggml_cgraph * result = llm.build_s_copy();
  9469. llm.free();
  9470. return result;
  9471. }
  9472. static struct ggml_cgraph * llama_build_graph(
  9473. llama_context & lctx,
  9474. const llama_batch & batch,
  9475. bool worst_case) {
  9476. const auto & model = lctx.model;
  9477. // this callback allows us to apply custom logic to each tensor (e.g. ggml-alloc, offloading, etc.)
  9478. llm_build_cb cb = [&](struct ggml_tensor * cur, const char * name, int il) {
  9479. if (il >= 0) {
  9480. ggml_format_name(cur, "%s-%d", name, il);
  9481. } else {
  9482. ggml_set_name(cur, name);
  9483. }
  9484. if (!lctx.cparams.offload_kqv) {
  9485. if (strcmp(name, "kqv_merged_cont") == 0) {
  9486. // all nodes between the KV store and the attention output are run on the CPU
  9487. ggml_backend_sched_set_tensor_backend(lctx.sched, cur, lctx.backend_cpu);
  9488. }
  9489. }
  9490. // norm may be automatically assigned to the backend of the previous layer, increasing data transfer between backends
  9491. // FIXME: fix in ggml_backend_sched
  9492. const bool full_offload = lctx.model.n_gpu_layers > (int)lctx.model.hparams.n_layer;
  9493. if (batch.n_tokens < 32 || full_offload) {
  9494. if (il != -1 && strcmp(name, "norm") == 0) {
  9495. for (auto * backend : lctx.backends) {
  9496. if (ggml_backend_buft_supports_backend(lctx.model.buft_layer[il].buft, backend)) {
  9497. ggml_backend_sched_set_tensor_backend(lctx.sched, cur, backend);
  9498. break;
  9499. }
  9500. }
  9501. }
  9502. }
  9503. };
  9504. struct ggml_cgraph * result = NULL;
  9505. struct llm_build_context llm(lctx, batch, cb, worst_case);
  9506. llm.init();
  9507. switch (model.arch) {
  9508. case LLM_ARCH_LLAMA:
  9509. {
  9510. result = llm.build_llama();
  9511. } break;
  9512. case LLM_ARCH_BAICHUAN:
  9513. {
  9514. result = llm.build_baichuan();
  9515. } break;
  9516. case LLM_ARCH_FALCON:
  9517. {
  9518. result = llm.build_falcon();
  9519. } break;
  9520. case LLM_ARCH_GROK:
  9521. {
  9522. result = llm.build_grok();
  9523. } break;
  9524. case LLM_ARCH_STARCODER:
  9525. {
  9526. result = llm.build_starcoder();
  9527. } break;
  9528. case LLM_ARCH_REFACT:
  9529. {
  9530. result = llm.build_refact();
  9531. } break;
  9532. case LLM_ARCH_BERT:
  9533. case LLM_ARCH_JINA_BERT_V2:
  9534. case LLM_ARCH_NOMIC_BERT:
  9535. {
  9536. result = llm.build_bert();
  9537. } break;
  9538. case LLM_ARCH_BLOOM:
  9539. {
  9540. result = llm.build_bloom();
  9541. } break;
  9542. case LLM_ARCH_MPT:
  9543. {
  9544. result = llm.build_mpt();
  9545. } break;
  9546. case LLM_ARCH_STABLELM:
  9547. {
  9548. result = llm.build_stablelm();
  9549. } break;
  9550. case LLM_ARCH_QWEN:
  9551. {
  9552. result = llm.build_qwen();
  9553. } break;
  9554. case LLM_ARCH_QWEN2:
  9555. {
  9556. result = llm.build_qwen2();
  9557. } break;
  9558. case LLM_ARCH_QWEN2MOE:
  9559. {
  9560. result = llm.build_qwen2moe();
  9561. } break;
  9562. case LLM_ARCH_PHI2:
  9563. {
  9564. result = llm.build_phi2();
  9565. } break;
  9566. case LLM_ARCH_PHI3:
  9567. {
  9568. result = llm.build_phi3();
  9569. } break;
  9570. case LLM_ARCH_PLAMO:
  9571. {
  9572. result = llm.build_plamo();
  9573. } break;
  9574. case LLM_ARCH_GPT2:
  9575. {
  9576. result = llm.build_gpt2();
  9577. } break;
  9578. case LLM_ARCH_CODESHELL:
  9579. {
  9580. result = llm.build_codeshell();
  9581. } break;
  9582. case LLM_ARCH_ORION:
  9583. {
  9584. result = llm.build_orion();
  9585. } break;
  9586. case LLM_ARCH_INTERNLM2:
  9587. {
  9588. result = llm.build_internlm2();
  9589. } break;
  9590. case LLM_ARCH_MINICPM:
  9591. {
  9592. result = llm.build_minicpm();
  9593. } break;
  9594. case LLM_ARCH_GEMMA:
  9595. {
  9596. result = llm.build_gemma();
  9597. } break;
  9598. case LLM_ARCH_STARCODER2:
  9599. {
  9600. result = llm.build_starcoder2();
  9601. } break;
  9602. case LLM_ARCH_MAMBA:
  9603. {
  9604. result = llm.build_mamba();
  9605. } break;
  9606. case LLM_ARCH_XVERSE:
  9607. {
  9608. result = llm.build_xverse();
  9609. } break;
  9610. case LLM_ARCH_COMMAND_R:
  9611. {
  9612. result = llm.build_command_r();
  9613. } break;
  9614. case LLM_ARCH_DBRX:
  9615. {
  9616. result = llm.build_dbrx();
  9617. } break;
  9618. case LLM_ARCH_OLMO:
  9619. {
  9620. result = llm.build_olmo();
  9621. } break;
  9622. case LLM_ARCH_GPTNEOX:
  9623. {
  9624. result = llm.build_gptneox();
  9625. } break;
  9626. case LLM_ARCH_ARCTIC:
  9627. {
  9628. result = llm.build_arctic();
  9629. } break;
  9630. case LLM_ARCH_DEEPSEEK2:
  9631. {
  9632. result = llm.build_deepseek2();
  9633. } break;
  9634. default:
  9635. GGML_ASSERT(false);
  9636. }
  9637. llm.free();
  9638. return result;
  9639. }
  9640. static void llama_set_k_shift(llama_context & lctx) {
  9641. const int64_t kv_size = lctx.kv_self.size;
  9642. assert(ggml_backend_buffer_is_host(lctx.inp_K_shift->buffer));
  9643. int32_t * data = (int32_t *) lctx.inp_K_shift->data;
  9644. for (int i = 0; i < kv_size; ++i) {
  9645. data[i] = lctx.kv_self.cells[i].delta;
  9646. }
  9647. }
  9648. static void llama_set_s_copy(llama_context & lctx) {
  9649. const int64_t kv_size = lctx.kv_self.size;
  9650. assert(ggml_backend_buffer_is_host(lctx.inp_s_copy->buffer));
  9651. int32_t * data = (int32_t *) lctx.inp_s_copy->data;
  9652. for (int i = 0; i < kv_size; ++i) {
  9653. data[i] = lctx.kv_self.cells[i].src;
  9654. }
  9655. }
  9656. static void llama_set_inputs(llama_context & lctx, const llama_batch & batch) {
  9657. //
  9658. // set input data
  9659. //
  9660. const auto & hparams = lctx.model.hparams;
  9661. const auto & cparams = lctx.cparams;
  9662. const auto & kv_self = lctx.kv_self;
  9663. if (batch.token) {
  9664. const int64_t n_tokens = batch.n_tokens;
  9665. ggml_backend_tensor_set(lctx.inp_tokens, batch.token, 0, n_tokens*ggml_element_size(lctx.inp_tokens));
  9666. }
  9667. if (batch.embd) {
  9668. const int64_t n_embd = hparams.n_embd;
  9669. const int64_t n_tokens = batch.n_tokens;
  9670. ggml_backend_tensor_set(lctx.inp_embd, batch.embd, 0, n_tokens*n_embd*ggml_element_size(lctx.inp_embd));
  9671. }
  9672. if (batch.pos && lctx.inp_pos) {
  9673. const int64_t n_tokens = batch.n_tokens;
  9674. ggml_backend_tensor_set(lctx.inp_pos, batch.pos, 0, n_tokens*ggml_element_size(lctx.inp_pos));
  9675. }
  9676. if (hparams.causal_attn || cparams.pooling_type == LLAMA_POOLING_TYPE_NONE) {
  9677. GGML_ASSERT(lctx.inp_out_ids && "every model that can must skip unused outputs");
  9678. const int64_t n_tokens = batch.n_tokens;
  9679. GGML_ASSERT(ggml_backend_buffer_is_host(lctx.inp_out_ids->buffer));
  9680. int32_t * data = (int32_t *) lctx.inp_out_ids->data;
  9681. if (lctx.n_outputs == n_tokens) {
  9682. for (int i = 0; i < n_tokens; ++i) {
  9683. data[i] = i;
  9684. }
  9685. } else if (batch.logits) {
  9686. int32_t n_outputs = 0;
  9687. for (int i = 0; i < n_tokens; ++i) {
  9688. if (batch.logits[i]) {
  9689. data[n_outputs++] = i;
  9690. }
  9691. }
  9692. // the graph needs to have been passed the correct number of outputs
  9693. GGML_ASSERT(lctx.n_outputs == n_outputs);
  9694. } else if (lctx.n_outputs == 1) {
  9695. // only keep last output
  9696. data[0] = n_tokens - 1;
  9697. } else {
  9698. GGML_ASSERT(lctx.n_outputs == 0);
  9699. }
  9700. }
  9701. GGML_ASSERT(
  9702. // (!a || b) is a logical implication (a -> b)
  9703. // !hparams.causal_attn -> !cparams.causal_attn
  9704. (hparams.causal_attn || !cparams.causal_attn) &&
  9705. "causal attention with embedding models is not supported"
  9706. );
  9707. if (lctx.inp_KQ_mask) {
  9708. // NOTE: hparams.causal_attn indicates the model is capable of generation and uses the kv cache.
  9709. if (cparams.causal_attn) {
  9710. const int64_t n_kv = kv_self.n;
  9711. const int64_t n_tokens = batch.n_tokens;
  9712. GGML_ASSERT(ggml_backend_buffer_is_host(lctx.inp_KQ_mask->buffer));
  9713. float * data = (float *) lctx.inp_KQ_mask->data;
  9714. // For causal attention, use only the previous KV cells
  9715. // of the correct sequence for each token of the batch.
  9716. // It's assumed that if a token in the batch has multiple sequences, they are equivalent.
  9717. for (int h = 0; h < 1; ++h) {
  9718. for (int j = 0; j < n_tokens; ++j) {
  9719. const llama_pos pos = batch.pos[j];
  9720. const llama_seq_id seq_id = batch.seq_id[j][0];
  9721. for (int i = 0; i < n_kv; ++i) {
  9722. float f;
  9723. if (!lctx.kv_self.cells[i].has_seq_id(seq_id) || lctx.kv_self.cells[i].pos > pos) {
  9724. f = -INFINITY;
  9725. } else {
  9726. if (hparams.use_alibi) {
  9727. f = -fabs(lctx.kv_self.cells[i].pos - pos);
  9728. } else {
  9729. f = 0.0f;
  9730. }
  9731. }
  9732. data[h*(n_kv*n_tokens) + j*n_kv + i] = f;
  9733. }
  9734. }
  9735. for (int i = n_tokens; i < GGML_PAD(n_tokens, GGML_KQ_MASK_PAD); ++i) {
  9736. for (int j = 0; j < n_kv; ++j) {
  9737. data[h*(n_kv*n_tokens) + i*n_kv + j] = -INFINITY;
  9738. }
  9739. }
  9740. }
  9741. } else {
  9742. // when using kv cache, the mask needs to match the kv cache size
  9743. const int64_t n_tokens = batch.n_tokens;
  9744. const int64_t n_stride = hparams.causal_attn ? kv_self.n : n_tokens;
  9745. GGML_ASSERT(ggml_backend_buffer_is_host(lctx.inp_KQ_mask->buffer));
  9746. float * data = (float *) lctx.inp_KQ_mask->data;
  9747. for (int h = 0; h < 1; ++h) {
  9748. for (int j = 0; j < n_tokens; ++j) {
  9749. const llama_seq_id seq_id = batch.seq_id[j][0];
  9750. for (int i = 0; i < n_tokens; ++i) {
  9751. float f = -INFINITY;
  9752. for (int s = 0; s < batch.n_seq_id[i]; ++s) {
  9753. if (batch.seq_id[i][s] == seq_id) {
  9754. if (hparams.use_alibi) {
  9755. f = -fabs(batch.pos[i] - batch.pos[j]);
  9756. } else {
  9757. f = 0.0f;
  9758. }
  9759. break;
  9760. }
  9761. }
  9762. data[h*(n_tokens*n_tokens) + j*n_stride + i] = f;
  9763. }
  9764. for (int i = n_tokens; i < n_stride; ++i) {
  9765. data[h*(n_tokens*n_tokens) + j*n_stride + i] = -INFINITY;
  9766. }
  9767. }
  9768. }
  9769. }
  9770. }
  9771. if (cparams.pooling_type == LLAMA_POOLING_TYPE_MEAN) {
  9772. const int64_t n_tokens = batch.n_tokens;
  9773. GGML_ASSERT(lctx.inp_mean);
  9774. GGML_ASSERT(ggml_backend_buffer_is_host(lctx.inp_mean->buffer));
  9775. float * data = (float *) lctx.inp_mean->data;
  9776. memset(lctx.inp_mean->data, 0, n_tokens * n_tokens * ggml_element_size(lctx.inp_mean));
  9777. std::vector<uint64_t> sum(n_tokens, 0);
  9778. for (int i = 0; i < n_tokens; ++i) {
  9779. const llama_seq_id seq_id = batch.seq_id[i][0];
  9780. GGML_ASSERT(seq_id < n_tokens && "seq_id cannot be larger than n_tokens with pooling_type == MEAN");
  9781. sum[seq_id] += 1;
  9782. }
  9783. std::vector<float> div(n_tokens, 0.0f);
  9784. for (int i = 0; i < n_tokens; ++i) {
  9785. const uint64_t s = sum[i];
  9786. if (s > 0) {
  9787. div[i] = 1.0f/float(s);
  9788. }
  9789. }
  9790. for (int i = 0; i < n_tokens; ++i) {
  9791. const llama_seq_id seq_id = batch.seq_id[i][0];
  9792. data[seq_id*n_tokens + i] = div[seq_id];
  9793. }
  9794. }
  9795. if (cparams.pooling_type == LLAMA_POOLING_TYPE_CLS) {
  9796. const int64_t n_tokens = batch.n_tokens;
  9797. GGML_ASSERT(lctx.inp_cls);
  9798. GGML_ASSERT(ggml_backend_buffer_is_host(lctx.inp_cls->buffer));
  9799. uint32_t * data = (uint32_t *) lctx.inp_cls->data;
  9800. memset(lctx.inp_cls->data, 0, n_tokens * ggml_element_size(lctx.inp_cls));
  9801. for (int i = 0; i < n_tokens; ++i) {
  9802. const llama_seq_id seq_id = batch.seq_id[i][0];
  9803. const llama_pos pos = batch.pos[i];
  9804. GGML_ASSERT(seq_id < n_tokens && "seq_id cannot be larger than n_tokens with pooling_type == CLS");
  9805. if (pos == 0) {
  9806. data[seq_id] = i;
  9807. }
  9808. }
  9809. }
  9810. if (kv_self.recurrent) {
  9811. const int64_t n_kv = kv_self.n;
  9812. if (lctx.inp_s_mask) {
  9813. GGML_ASSERT(ggml_backend_buffer_is_host(lctx.inp_s_mask->buffer));
  9814. float * data = (float *) lctx.inp_s_mask->data;
  9815. // states which are not affected by the current batch are left untouched
  9816. for (int i = 0; i < n_kv; ++i) {
  9817. llama_seq_id seq_id = i + lctx.kv_self.head;
  9818. llama_kv_cell & kv_cell = lctx.kv_self.cells[seq_id];
  9819. bool has_self_seq = kv_cell.has_seq_id(seq_id);
  9820. data[i] = (float) has_self_seq;
  9821. // ensure current sequences will be kept
  9822. if (!has_self_seq && kv_cell.pos >= 0) {
  9823. kv_cell.seq_id.insert(seq_id);
  9824. }
  9825. }
  9826. }
  9827. // For Mamba (and other recurrent architectures),
  9828. // update the correct state(s)/sequence(s) for each token of the batch.
  9829. // Like with the KQ_mask, if a token in the batch has multiple sequences,
  9830. // they are assumed to be equivalent (not here, but in ggml_ssm_scan and ggml_ssm_conv).
  9831. if (lctx.inp_s_seq) {
  9832. const int64_t n_tokens = batch.n_tokens;
  9833. GGML_ASSERT(ggml_backend_buffer_is_host(lctx.inp_s_seq->buffer));
  9834. int32_t * data = (int32_t *) lctx.inp_s_seq->data;
  9835. for (int j = 0; j < n_tokens; ++j) {
  9836. const int32_t n_seq = batch.n_seq_id[j];
  9837. GGML_ASSERT(0 < n_seq); // a token should be part of at least 1 sequence
  9838. for (int i = 0; i < n_kv; ++i) {
  9839. if (i < n_seq) {
  9840. // for this type of model, the head is the minimum seq_id of the batch
  9841. data[j*n_kv + i] = batch.seq_id[j][i] - kv_self.head;
  9842. } else {
  9843. data[j*n_kv + i] = -1;
  9844. }
  9845. }
  9846. }
  9847. }
  9848. }
  9849. }
  9850. // Make sure enough space is available for outputs.
  9851. // Returns max number of outputs for which space was reserved.
  9852. static size_t llama_output_reserve(llama_context & lctx, size_t n_outputs) {
  9853. const auto & cparams = lctx.cparams;
  9854. const auto & hparams = lctx.model.hparams;
  9855. const size_t n_outputs_max = std::max(n_outputs, (size_t) cparams.n_seq_max);
  9856. const auto n_batch = cparams.n_batch;
  9857. const auto n_vocab = hparams.n_vocab;
  9858. const auto n_embd = hparams.n_embd;
  9859. // TODO: use a per-batch flag for logits presence instead
  9860. const bool has_logits = cparams.causal_attn;
  9861. const bool has_embd = cparams.embeddings && (hparams.causal_attn || cparams.pooling_type == LLAMA_POOLING_TYPE_NONE);
  9862. const size_t logits_size = has_logits ? n_vocab*n_outputs_max : 0;
  9863. const size_t embd_size = has_embd ? n_embd*n_outputs_max : 0;
  9864. if (lctx.output_ids.empty()) {
  9865. // init, never resized afterwards
  9866. lctx.output_ids.resize(n_batch);
  9867. }
  9868. const size_t prev_size = lctx.buf_output ? ggml_backend_buffer_get_size(lctx.buf_output) : 0;
  9869. const size_t new_size = (logits_size + embd_size) * sizeof(float);
  9870. // alloc only when more than the current capacity is required
  9871. // TODO: also consider shrinking the buffer
  9872. if (!lctx.buf_output || prev_size < new_size) {
  9873. if (lctx.buf_output) {
  9874. #ifndef NDEBUG
  9875. // This doesn't happen often, but may be annoying in some cases (like the HellaSwag benchmark)
  9876. LLAMA_LOG_INFO("%s: reallocating output buffer from size %.02f MiB to %.02f MiB\n", __func__, prev_size / 1024.0 / 1024.0, new_size / 1024.0 / 1024.0);
  9877. #endif
  9878. ggml_backend_buffer_free(lctx.buf_output);
  9879. lctx.buf_output = nullptr;
  9880. lctx.logits = nullptr;
  9881. lctx.embd = nullptr;
  9882. }
  9883. lctx.buf_output = ggml_backend_buft_alloc_buffer(llama_default_buffer_type_cpu(true), new_size);
  9884. if (lctx.buf_output == nullptr) {
  9885. LLAMA_LOG_ERROR("%s: failed to allocate output buffer of size %.2f MiB\n", __func__, new_size / (1024.0 * 1024.0));
  9886. return 0;
  9887. }
  9888. }
  9889. float * output_base = (float *) ggml_backend_buffer_get_base(lctx.buf_output);
  9890. lctx.logits = has_logits ? output_base : nullptr;
  9891. lctx.embd = has_embd ? output_base + logits_size : nullptr;
  9892. lctx.output_size = n_outputs_max;
  9893. lctx.logits_size = logits_size;
  9894. lctx.embd_size = embd_size;
  9895. // set all ids as invalid (negative)
  9896. std::fill(lctx.output_ids.begin(), lctx.output_ids.end(), -1);
  9897. ggml_backend_buffer_clear(lctx.buf_output, 0);
  9898. lctx.n_outputs = 0;
  9899. return n_outputs_max;
  9900. }
  9901. static void llama_graph_compute(
  9902. llama_context & lctx,
  9903. ggml_cgraph * gf,
  9904. int n_threads) {
  9905. #ifdef GGML_USE_METAL
  9906. if (ggml_backend_is_metal(lctx.backend_metal)) {
  9907. ggml_backend_metal_set_n_cb(lctx.backend_metal, n_threads);
  9908. }
  9909. #endif
  9910. if (lctx.backend_cpu != nullptr) {
  9911. ggml_backend_cpu_set_n_threads(lctx.backend_cpu, n_threads);
  9912. ggml_backend_cpu_set_abort_callback(lctx.backend_cpu, lctx.abort_callback, lctx.abort_callback_data);
  9913. }
  9914. ggml_backend_sched_graph_compute_async(lctx.sched, gf);
  9915. // fprintf(stderr, "splits: %d\n", ggml_backend_sched_get_n_splits(lctx.sched));
  9916. }
  9917. // decode a batch of tokens by evaluating the transformer
  9918. //
  9919. // - lctx: llama context
  9920. // - batch: batch to evaluate
  9921. //
  9922. // return 0 on success
  9923. // return positive int on warning
  9924. // return negative int on error
  9925. //
  9926. static int llama_decode_internal(
  9927. llama_context & lctx,
  9928. llama_batch batch_all) { // TODO: rename back to batch
  9929. const uint32_t n_tokens_all = batch_all.n_tokens;
  9930. if (n_tokens_all == 0) {
  9931. LLAMA_LOG_ERROR("%s: n_tokens == 0", __func__);
  9932. return -1;
  9933. }
  9934. const auto & model = lctx.model;
  9935. const auto & hparams = model.hparams;
  9936. const auto & cparams = lctx.cparams;
  9937. GGML_ASSERT((!batch_all.token && batch_all.embd) || (batch_all.token && !batch_all.embd)); // NOLINT
  9938. GGML_ASSERT(n_tokens_all <= cparams.n_batch);
  9939. GGML_ASSERT((cparams.causal_attn || cparams.n_ubatch >= n_tokens_all) && "non-causal attention requires n_ubatch >= n_tokens");
  9940. if (lctx.t_compute_start_us == 0) {
  9941. lctx.t_compute_start_us = ggml_time_us();
  9942. }
  9943. lctx.n_queued_tokens += n_tokens_all;
  9944. auto & kv_self = lctx.kv_self;
  9945. const int64_t n_embd = hparams.n_embd;
  9946. const int64_t n_vocab = hparams.n_vocab;
  9947. uint32_t n_outputs = 0;
  9948. uint32_t n_outputs_prev = 0;
  9949. const auto n_ubatch = cparams.n_ubatch;
  9950. std::vector<llama_pos> pos;
  9951. std::vector<int32_t> n_seq_id;
  9952. std::vector<llama_seq_id *> seq_id_arr;
  9953. std::vector<std::vector<llama_seq_id>> seq_id;
  9954. // count outputs
  9955. if (batch_all.logits) {
  9956. for (uint32_t i = 0; i < n_tokens_all; ++i) {
  9957. n_outputs += batch_all.logits[i] != 0;
  9958. }
  9959. } else if (lctx.logits_all || (cparams.embeddings && cparams.pooling_type != LLAMA_POOLING_TYPE_NONE)) {
  9960. n_outputs = n_tokens_all;
  9961. } else {
  9962. // keep last output only
  9963. n_outputs = 1;
  9964. }
  9965. // reserve output buffer
  9966. if (llama_output_reserve(lctx, n_outputs) < n_outputs) {
  9967. LLAMA_LOG_ERROR("%s: could not reserve space for batch with %u outputs\n", __func__, n_outputs);
  9968. return -2;
  9969. };
  9970. // set output mappings
  9971. if (batch_all.logits) {
  9972. int32_t i_logits = 0;
  9973. for (uint32_t i = 0; i < n_tokens_all; ++i) {
  9974. if (batch_all.logits[i]) {
  9975. lctx.output_ids[i] = i_logits++;
  9976. }
  9977. }
  9978. } else {
  9979. for (uint32_t i = 0; i < n_outputs; ++i) {
  9980. lctx.output_ids[i] = i;
  9981. }
  9982. }
  9983. for (uint32_t cur_token = 0; cur_token < n_tokens_all; cur_token += n_ubatch) {
  9984. const uint32_t n_tokens = std::min(n_ubatch, n_tokens_all - cur_token);
  9985. llama_batch u_batch = {
  9986. /* .n_tokens = */ (int32_t) n_tokens,
  9987. /* .token = */ batch_all.token ? batch_all.token + cur_token : nullptr,
  9988. /* .embd = */ batch_all.embd ? batch_all.embd + cur_token*n_embd : nullptr,
  9989. /* .pos = */ batch_all.pos ? batch_all.pos + cur_token : nullptr,
  9990. /* .n_seq_id = */ batch_all.n_seq_id ? batch_all.n_seq_id + cur_token : nullptr,
  9991. /* .seq_id = */ batch_all.seq_id ? batch_all.seq_id + cur_token : nullptr,
  9992. /* .logits = */ batch_all.logits ? batch_all.logits + cur_token : nullptr,
  9993. /* .all_pos_0 = */ batch_all.all_pos_0 + (llama_pos) cur_token*batch_all.all_pos_1,
  9994. /* .all_pos_1 = */ batch_all.all_pos_1,
  9995. /* .all_seq_id = */ batch_all.all_seq_id,
  9996. };
  9997. // count the outputs in this u_batch
  9998. {
  9999. int32_t n_outputs_new = 0;
  10000. if (u_batch.logits) {
  10001. for (uint32_t i = 0; i < n_tokens; i++) {
  10002. n_outputs_new += u_batch.logits[i] != 0;
  10003. }
  10004. } else if (n_outputs == n_tokens_all) {
  10005. n_outputs_new = n_tokens;
  10006. } else {
  10007. // keep last output only
  10008. if (cur_token + n_tokens >= n_tokens_all) {
  10009. n_outputs_new = 1;
  10010. }
  10011. }
  10012. // needs to happen before the graph is built
  10013. lctx.n_outputs = n_outputs_new;
  10014. }
  10015. int n_threads = n_tokens == 1 ? cparams.n_threads : cparams.n_threads_batch;
  10016. GGML_ASSERT(n_threads > 0);
  10017. // helpers for smoother batch API transition
  10018. // after deprecating the llama_eval calls, these will be removed
  10019. if (u_batch.pos == nullptr) {
  10020. pos.resize(n_tokens);
  10021. for (uint32_t i = 0; i < n_tokens; i++) {
  10022. pos[i] = u_batch.all_pos_0 + i*u_batch.all_pos_1;
  10023. }
  10024. u_batch.pos = pos.data();
  10025. }
  10026. if (u_batch.seq_id == nullptr) {
  10027. n_seq_id.resize(n_tokens);
  10028. seq_id.resize(n_tokens);
  10029. seq_id_arr.resize(n_tokens);
  10030. for (uint32_t i = 0; i < n_tokens; i++) {
  10031. n_seq_id[i] = 1;
  10032. seq_id[i].resize(1);
  10033. seq_id[i][0] = u_batch.all_seq_id;
  10034. seq_id_arr[i] = seq_id[i].data();
  10035. }
  10036. u_batch.n_seq_id = n_seq_id.data();
  10037. u_batch.seq_id = seq_id_arr.data();
  10038. }
  10039. // non-causal masks do not use the KV cache
  10040. if (hparams.causal_attn) {
  10041. llama_kv_cache_update(&lctx);
  10042. // if we have enough unused cells before the current head ->
  10043. // better to start searching from the beginning of the cache, hoping to fill it
  10044. if (kv_self.head > kv_self.used + 2*n_tokens) {
  10045. kv_self.head = 0;
  10046. }
  10047. if (!llama_kv_cache_find_slot(kv_self, u_batch)) {
  10048. return 1;
  10049. }
  10050. if (!kv_self.recurrent) {
  10051. // a heuristic, to avoid attending the full cache if it is not yet utilized
  10052. // after enough generations, the benefit from this heuristic disappears
  10053. // if we start defragmenting the cache, the benefit from this will be more important
  10054. const uint32_t pad = llama_kv_cache_get_padding(cparams);
  10055. kv_self.n = std::min(kv_self.size, std::max(pad, GGML_PAD(llama_kv_cache_cell_max(kv_self), pad)));
  10056. //kv_self.n = llama_kv_cache_cell_max(kv_self);
  10057. }
  10058. }
  10059. //printf("kv_self.n = %5d, kv_self.used = %5d, kv_self.head = %5d\n", kv_self.n, kv_self.used, kv_self.head);
  10060. ggml_backend_sched_reset(lctx.sched);
  10061. ggml_backend_sched_set_eval_callback(lctx.sched, lctx.cparams.cb_eval, lctx.cparams.cb_eval_user_data);
  10062. ggml_cgraph * gf = llama_build_graph(lctx, u_batch, false);
  10063. // the output is always the last tensor in the graph
  10064. struct ggml_tensor * res = gf->nodes[gf->n_nodes - 1];
  10065. struct ggml_tensor * embd = gf->nodes[gf->n_nodes - 2];
  10066. if (lctx.n_outputs == 0) {
  10067. // no output
  10068. res = nullptr;
  10069. embd = nullptr;
  10070. } else if (!hparams.causal_attn) {
  10071. res = nullptr; // do not extract logits for embedding models such as BERT
  10072. // token or sequence embeddings
  10073. embd = gf->nodes[gf->n_nodes - 1];
  10074. GGML_ASSERT(strcmp(embd->name, "result_embd") == 0 || strcmp(embd->name, "result_embd_pooled") == 0);
  10075. } else if (cparams.embeddings) {
  10076. // the embeddings could be in the second to last tensor, or any of the previous tensors
  10077. int i_embd = gf->n_nodes - 2;
  10078. for (int i = 3; strcmp(embd->name, "result_norm") != 0; ++i) {
  10079. i_embd = gf->n_nodes - i;
  10080. if (i_embd < 0) { break; }
  10081. embd = gf->nodes[i_embd];
  10082. }
  10083. GGML_ASSERT(i_embd >= 0 && "missing result_norm tensor");
  10084. // TODO: use a per-batch flag to know when to skip logits while keeping embeddings
  10085. if (!cparams.causal_attn) {
  10086. res = nullptr; // do not extract logits when not needed
  10087. // skip computing logits
  10088. // TODO: is this safe?
  10089. gf->n_nodes = i_embd + 1;
  10090. }
  10091. } else {
  10092. embd = nullptr; // do not extract embeddings when not needed
  10093. GGML_ASSERT(strcmp(res->name, "result_output") == 0 && "missing result_output tensor");
  10094. }
  10095. // LLAMA_LOG_INFO("graph build time: %.3f ms (%d nodes, %d leafs)\n", (ggml_time_us() - t_start_us)/1000.0, gf->n_nodes, gf->n_leafs);
  10096. // for big prompts, if BLAS is enabled, it is better to use only one thread
  10097. // otherwise, the threads are spin-lock waiting for the BLAS calls and are degrading the performance
  10098. // TODO: this is mostly important for Apple Silicon where CBLAS is still performing very well
  10099. // we still need some threads to process all non-mul_mat ops, but not too much to avoid interfering
  10100. // with the BLAS calls. need a better solution
  10101. // MoE Special Case: This logic applies when hparams.n_expert == 0, i.e. the model is NOT an MoE model. When an MoE is
  10102. // being processed then Accelerate/BLAS will not be involved, so capping would limit performance.
  10103. if (n_tokens >= 32 && hparams.n_expert == 0 && ggml_cpu_has_blas() && !ggml_cpu_has_gpublas()) {
  10104. n_threads = std::min(4, n_threads);
  10105. }
  10106. ggml_backend_sched_alloc_graph(lctx.sched, gf);
  10107. llama_set_inputs(lctx, u_batch);
  10108. llama_graph_compute(lctx, gf, n_threads);
  10109. // update the kv ring buffer
  10110. {
  10111. kv_self.head += n_tokens;
  10112. // Ensure kv cache head points to a valid index.
  10113. if (kv_self.head >= kv_self.size) {
  10114. kv_self.head = 0;
  10115. }
  10116. }
  10117. #ifdef GGML_PERF
  10118. // print timing information per ggml operation (for debugging purposes)
  10119. // requires GGML_PERF to be defined
  10120. ggml_graph_print(gf);
  10121. #endif
  10122. // plot the computation graph in dot format (for debugging purposes)
  10123. //if (n_past%100 == 0) {
  10124. // ggml_graph_dump_dot(gf, NULL, "llama.dot");
  10125. //}
  10126. // extract logits
  10127. if (res) {
  10128. ggml_backend_t backend_res = ggml_backend_sched_get_tensor_backend(lctx.sched, res);
  10129. GGML_ASSERT(backend_res != nullptr);
  10130. GGML_ASSERT(lctx.logits != nullptr);
  10131. float * logits_out = lctx.logits + n_outputs_prev*n_vocab;
  10132. const int32_t n_outputs_new = lctx.n_outputs;
  10133. if (n_outputs_new) {
  10134. GGML_ASSERT( n_outputs_prev + n_outputs_new <= n_outputs);
  10135. GGML_ASSERT((n_outputs_prev + n_outputs_new)*n_vocab <= (int64_t) lctx.logits_size);
  10136. ggml_backend_tensor_get_async(backend_res, res, logits_out, 0, n_outputs_new*n_vocab*sizeof(float));
  10137. }
  10138. }
  10139. // extract embeddings
  10140. if (embd) {
  10141. ggml_backend_t backend_embd = ggml_backend_sched_get_tensor_backend(lctx.sched, embd);
  10142. GGML_ASSERT(backend_embd != nullptr);
  10143. switch (cparams.pooling_type) {
  10144. case LLAMA_POOLING_TYPE_NONE:
  10145. {
  10146. // extract token embeddings
  10147. GGML_ASSERT(lctx.embd != nullptr);
  10148. float * embd_out = lctx.embd + n_outputs_prev*n_embd;
  10149. const int32_t n_outputs_new = lctx.n_outputs;
  10150. if (n_outputs_new) {
  10151. GGML_ASSERT( n_outputs_prev + n_outputs_new <= n_outputs);
  10152. GGML_ASSERT((n_outputs_prev + n_outputs_new)*n_embd <= (int64_t) lctx.embd_size);
  10153. ggml_backend_tensor_get_async(backend_embd, embd, embd_out, 0, n_outputs_new*n_embd*sizeof(float));
  10154. }
  10155. } break;
  10156. case LLAMA_POOLING_TYPE_CLS:
  10157. case LLAMA_POOLING_TYPE_MEAN:
  10158. {
  10159. GGML_ASSERT(strcmp(embd->name, "result_embd_pooled") == 0);
  10160. // extract sequence embeddings
  10161. auto & embd_seq_out = lctx.embd_seq;
  10162. embd_seq_out.clear();
  10163. for (uint32_t i = 0; i < n_tokens; i++) {
  10164. const llama_seq_id seq_id = u_batch.seq_id[i][0];
  10165. if (embd_seq_out.find(seq_id) != embd_seq_out.end()) {
  10166. continue;
  10167. }
  10168. embd_seq_out[seq_id].resize(n_embd);
  10169. ggml_backend_tensor_get_async(backend_embd, embd, embd_seq_out[seq_id].data(), (n_embd*seq_id)*sizeof(float), n_embd*sizeof(float));
  10170. }
  10171. } break;
  10172. case LLAMA_POOLING_TYPE_UNSPECIFIED:
  10173. {
  10174. GGML_ASSERT(false && "unknown pooling type");
  10175. } break;
  10176. }
  10177. }
  10178. n_outputs_prev += lctx.n_outputs;
  10179. }
  10180. // set to total number of outputs in the batch, for use in llama_get_logits_ith
  10181. lctx.n_outputs = n_outputs;
  10182. // wait for the computation to finish (automatically done when obtaining the model output)
  10183. //llama_synchronize(&lctx);
  10184. // decide if we need to defrag the kv cache
  10185. if (cparams.causal_attn && cparams.defrag_thold >= 0.0f) {
  10186. const float fragmentation = kv_self.n >= 128 ? 1.0f - float(kv_self.used)/float(kv_self.n) : 0.0f;
  10187. // queue defragmentation for next llama_kv_cache_update
  10188. if (fragmentation > cparams.defrag_thold) {
  10189. //LLAMA_LOG_INFO("fragmentation: %.2f\n", fragmentation);
  10190. llama_kv_cache_defrag(kv_self);
  10191. }
  10192. }
  10193. // Reset state for the next token before backend sync, to allow the CPU activities in the reset to
  10194. // overlap with device computation.
  10195. ggml_backend_sched_reset(lctx.sched);
  10196. return 0;
  10197. }
  10198. // find holes from the beginning of the KV cache and fill them by moving data from the end of the cache
  10199. static void llama_kv_cache_defrag_internal(struct llama_context & lctx) {
  10200. auto & kv_self = lctx.kv_self;
  10201. const auto & hparams = lctx.model.hparams;
  10202. const uint32_t n_layer = hparams.n_layer;
  10203. const uint32_t n_kv = llama_kv_cache_cell_max(kv_self);
  10204. const uint32_t n_used = kv_self.used;
  10205. assert(n_used <= n_kv);
  10206. //const int64_t t_start = ggml_time_us();
  10207. // number of cells moved
  10208. uint32_t n_moves = 0;
  10209. // each move requires 6*n_layer tensors (see build_defrag)
  10210. // - source view, destination view, copy operation
  10211. // - x2 for keys and values
  10212. //const uint32_t max_moves = LLAMA_MAX_NODES/(6*n_layer);
  10213. // TODO: tmp fix https://github.com/ggerganov/llama.cpp/issues/6685#issuecomment-2057579516
  10214. const uint32_t max_moves = (LLAMA_MAX_NODES - 2*n_layer)/(6*n_layer);
  10215. // determine which KV cells to move where
  10216. //
  10217. // cell i moves to ids[i]
  10218. //
  10219. // if ids[i] == i || ids[i] == n_kv, then cell i is not moved
  10220. //
  10221. std::vector<uint32_t> ids(n_kv, n_kv);
  10222. for (uint32_t i0 = 0; i0 < n_used; ++i0) {
  10223. const auto & cell0 = kv_self.cells[i0];
  10224. if (!cell0.is_empty()) {
  10225. ids[i0] = i0;
  10226. continue;
  10227. }
  10228. // found a hole - fill it with data from the end of the cache
  10229. uint32_t nh = 1;
  10230. // determine the size of the hole
  10231. while (i0 + nh < n_used && kv_self.cells[i0 + nh].is_empty()) {
  10232. nh++;
  10233. }
  10234. uint32_t nf = 0;
  10235. uint32_t is = n_kv - 1;
  10236. // starting from the end, find nh non-empty cells
  10237. for (; is > i0; --is) {
  10238. const auto & cell1 = kv_self.cells[is];
  10239. if (cell1.is_empty() || ids[is] != n_kv) {
  10240. continue;
  10241. }
  10242. // non-empty cell which is not yet moved
  10243. nf++;
  10244. if (nf == nh) {
  10245. break;
  10246. }
  10247. }
  10248. // this can only happen if `n_used` is not accurate, which would be a bug
  10249. GGML_ASSERT(nf == nh && "KV defrag bug: nf != nh");
  10250. nf = 0;
  10251. uint32_t i1 = is;
  10252. // are we moving a continuous block of memory?
  10253. bool cont = false;
  10254. // should we stop searching for the next move?
  10255. bool stop = false;
  10256. // go back and move the nf cells to the hole
  10257. for (; i1 < n_kv; ++i1) {
  10258. auto & cell1 = kv_self.cells[i1];
  10259. if (cell1.is_empty() || ids[i1] != n_kv) {
  10260. if (n_moves == max_moves) {
  10261. stop = true;
  10262. break;
  10263. }
  10264. cont = false;
  10265. continue;
  10266. }
  10267. // this cell goes to (i0 + nf)
  10268. ids[i1] = i0 + nf;
  10269. // move the cell meta data
  10270. kv_self.cells[i0 + nf] = cell1;
  10271. // clear the old cell and move the head there
  10272. cell1 = llama_kv_cell();
  10273. kv_self.head = n_used;
  10274. if (!cont) {
  10275. n_moves++;
  10276. cont = true;
  10277. }
  10278. nf++;
  10279. if (nf == nh) {
  10280. break;
  10281. }
  10282. }
  10283. if (stop || n_moves == max_moves) {
  10284. break;
  10285. }
  10286. //LLAMA_LOG_INFO("(tmp log) KV defrag: move [%u, %u) to [%u, %u)\n", is, i1 + 1, i0, i0 + nh);
  10287. i0 += nh - 1;
  10288. }
  10289. if (n_moves == 0) {
  10290. return;
  10291. }
  10292. //LLAMA_LOG_INFO("(tmp log) KV defrag cell moves: %u\n", n_moves);
  10293. //LLAMA_LOG_INFO("expected gf nodes: %u\n", 6*n_moves*n_layer);
  10294. #if 0
  10295. // CPU defrag
  10296. //
  10297. // TODO: optimizations are possible:
  10298. // - multiple threads
  10299. // - avoid copying to the host memory when already there
  10300. //
  10301. // likely not worth the effort, as we have ggml_graph based defrag
  10302. //
  10303. const uint32_t n_embd_k_gqa = hparams.n_embd_k_gqa();
  10304. const uint32_t n_embd_v_gqa = hparams.n_embd_v_gqa();
  10305. const uint32_t kv_size = kv_self.size;
  10306. std::vector<uint8_t> buf_k;
  10307. std::vector<uint8_t> buf_v;
  10308. for (uint32_t il = 0; il < n_layer; ++il) {
  10309. const size_t k_size_row = ggml_row_size(kv_self.k_l[il]->type, n_embd_k_gqa);
  10310. const size_t k_size = ggml_row_size(kv_self.k_l[il]->type, n_embd_k_gqa*kv_size);
  10311. const size_t v_size_el = ggml_type_size(kv_self.v_l[il]->type);
  10312. const size_t v_size = ggml_row_size (kv_self.v_l[il]->type, n_embd_v_gqa*kv_size);
  10313. buf_k.resize(k_size);
  10314. buf_v.resize(v_size);
  10315. ggml_backend_tensor_get(kv_self.k_l[il], buf_k.data(), 0, buf_k.size());
  10316. ggml_backend_tensor_get(kv_self.v_l[il], buf_v.data(), 0, buf_v.size());
  10317. // batch move [i, i+nm) to [id, id+nm)
  10318. // note: cells can move only to a lower index
  10319. for (uint32_t i = 0; i < n_kv; ++i) {
  10320. const uint32_t id = ids[i];
  10321. if (i == id || id == n_kv) {
  10322. continue;
  10323. }
  10324. uint32_t nm = 1;
  10325. while (i + nm < n_kv && ids[i + nm] == id + nm) {
  10326. nm++;
  10327. }
  10328. // move keys
  10329. {
  10330. const int64_t os = i*k_size_row;
  10331. const int64_t od = id*k_size_row;
  10332. memcpy(buf_k.data() + od, buf_k.data() + os, nm*k_size_row);
  10333. }
  10334. // move values (note: they are transposed)
  10335. {
  10336. const int64_t os = i;
  10337. const int64_t od = id;
  10338. for (uint32_t j = 0; j < n_embd_v_gqa; ++j) {
  10339. memcpy(buf_v.data() + (od + j*kv_size)*v_size_el, buf_v.data() + (os + j*kv_size)*v_size_el, nm*v_size_el);
  10340. }
  10341. }
  10342. i += nm - 1;
  10343. }
  10344. ggml_backend_tensor_set(kv_self.k_l[il], buf_k.data(), 0, buf_k.size());
  10345. ggml_backend_tensor_set(kv_self.v_l[il], buf_v.data(), 0, buf_v.size());
  10346. }
  10347. #else
  10348. // ggml_graph defrag
  10349. ggml_backend_sched_reset(lctx.sched);
  10350. ggml_cgraph * gf = llama_build_graph_defrag(lctx, ids);
  10351. llama_graph_compute(lctx, gf, lctx.cparams.n_threads);
  10352. #endif
  10353. //const int64_t t_end = ggml_time_us();
  10354. //LLAMA_LOG_INFO("(tmp log) KV defrag time: %.3f ms\n", (t_end - t_start)/1000.0);
  10355. }
  10356. static void llama_kv_cache_update_internal(struct llama_context & lctx) {
  10357. bool need_reserve = false;
  10358. // apply K-shift if needed
  10359. if (lctx.model.hparams.rope_type != LLAMA_ROPE_TYPE_NONE && lctx.kv_self.has_shift) {
  10360. {
  10361. ggml_backend_sched_reset(lctx.sched);
  10362. ggml_cgraph * gf = llama_build_graph_k_shift(lctx);
  10363. ggml_backend_sched_alloc_graph(lctx.sched, gf);
  10364. llama_set_k_shift(lctx);
  10365. llama_graph_compute(lctx, gf, lctx.cparams.n_threads);
  10366. need_reserve = true;
  10367. }
  10368. {
  10369. auto & kv_self = lctx.kv_self;
  10370. kv_self.has_shift = false;
  10371. for (uint32_t i = 0; i < kv_self.size; ++i) {
  10372. kv_self.cells[i].delta = 0;
  10373. }
  10374. }
  10375. }
  10376. if (lctx.kv_self.recurrent && lctx.kv_self.do_copy) {
  10377. {
  10378. ggml_backend_sched_reset(lctx.sched);
  10379. ggml_cgraph * gf = llama_build_graph_s_copy(lctx);
  10380. ggml_backend_sched_alloc_graph(lctx.sched, gf);
  10381. llama_set_s_copy(lctx);
  10382. llama_graph_compute(lctx, gf, lctx.cparams.n_threads);
  10383. need_reserve = true;
  10384. }
  10385. {
  10386. auto & kv_self = lctx.kv_self;
  10387. kv_self.do_copy = false;
  10388. for (uint32_t i = 0; i < kv_self.size; ++i) {
  10389. kv_self.cells[i].src = i;
  10390. }
  10391. }
  10392. }
  10393. // defragment the KV cache if needed
  10394. if (lctx.kv_self.do_defrag) {
  10395. llama_kv_cache_defrag_internal(lctx);
  10396. need_reserve = true;
  10397. lctx.kv_self.do_defrag = false;
  10398. }
  10399. // reserve a worst case graph again
  10400. if (need_reserve) {
  10401. // TODO: extract to a function
  10402. // build worst-case graph
  10403. int n_tokens = (int)std::min(lctx.cparams.n_ctx, lctx.cparams.n_ubatch);
  10404. int n_past = lctx.cparams.n_ctx - n_tokens;
  10405. llama_token token = llama_token_bos(&lctx.model); // not actually used by llama_build_graph, but required to choose between token and embedding inputs graph
  10406. ggml_cgraph * gf = llama_build_graph(lctx, llama_batch_get_one(&token, n_tokens, n_past, 0), true);
  10407. // initialize scheduler with the worst-case graph
  10408. ggml_backend_sched_reset(lctx.sched);
  10409. if (!ggml_backend_sched_reserve(lctx.sched, gf)) {
  10410. LLAMA_LOG_ERROR("%s: failed to allocate compute buffers\n", __func__);
  10411. }
  10412. }
  10413. }
  10414. //
  10415. // tokenizer
  10416. //
  10417. static enum llama_vocab_type llama_vocab_get_type(const llama_vocab & vocab) {
  10418. return vocab.type;
  10419. }
  10420. static bool llama_is_normal_token(const llama_vocab & vocab, llama_token id) {
  10421. GGML_ASSERT(vocab.type != LLAMA_VOCAB_TYPE_NONE);
  10422. return vocab.id_to_token[id].type == LLAMA_TOKEN_TYPE_NORMAL;
  10423. }
  10424. static bool llama_is_unknown_token(const llama_vocab & vocab, llama_token id) {
  10425. GGML_ASSERT(vocab.type != LLAMA_VOCAB_TYPE_NONE);
  10426. return vocab.id_to_token[id].type == LLAMA_TOKEN_TYPE_UNKNOWN;
  10427. }
  10428. static bool llama_is_control_token(const llama_vocab & vocab, llama_token id) {
  10429. GGML_ASSERT(vocab.type != LLAMA_VOCAB_TYPE_NONE);
  10430. return vocab.id_to_token[id].type == LLAMA_TOKEN_TYPE_CONTROL;
  10431. }
  10432. static bool llama_is_byte_token(const llama_vocab & vocab, llama_token id) {
  10433. GGML_ASSERT(vocab.type != LLAMA_VOCAB_TYPE_NONE);
  10434. return vocab.id_to_token[id].type == LLAMA_TOKEN_TYPE_BYTE;
  10435. }
  10436. static bool llama_is_user_defined_token(const llama_vocab& vocab, llama_token id) {
  10437. GGML_ASSERT(vocab.type != LLAMA_VOCAB_TYPE_NONE);
  10438. return vocab.id_to_token[id].type == LLAMA_TOKEN_TYPE_USER_DEFINED;
  10439. }
  10440. static uint8_t llama_token_to_byte(const llama_vocab& vocab, llama_token id) {
  10441. GGML_ASSERT(llama_vocab_get_type(vocab) != LLAMA_VOCAB_TYPE_NONE);
  10442. GGML_ASSERT(llama_is_byte_token(vocab, id));
  10443. const auto & token_data = vocab.id_to_token.at(id);
  10444. switch (llama_vocab_get_type(vocab)) {
  10445. case LLAMA_VOCAB_TYPE_SPM: {
  10446. auto buf = token_data.text.substr(3, 2);
  10447. return strtol(buf.c_str(), NULL, 16);
  10448. }
  10449. case LLAMA_VOCAB_TYPE_BPE: {
  10450. GGML_ASSERT(false);
  10451. return unicode_utf8_to_byte(token_data.text); // TODO: why is this here after GGML_ASSERT?
  10452. }
  10453. case LLAMA_VOCAB_TYPE_WPM: {
  10454. GGML_ASSERT(false);
  10455. }
  10456. default:
  10457. GGML_ASSERT(false);
  10458. }
  10459. }
  10460. static llama_token llama_byte_to_token(const llama_vocab & vocab, uint8_t ch) {
  10461. GGML_ASSERT(llama_vocab_get_type(vocab) != LLAMA_VOCAB_TYPE_NONE);
  10462. static const char * hex = "0123456789ABCDEF";
  10463. switch (llama_vocab_get_type(vocab)) {
  10464. case LLAMA_VOCAB_TYPE_SPM: {
  10465. const char buf[7] = { '<', '0', 'x', hex[ch >> 4], hex[ch & 15], '>', 0 };
  10466. auto token = vocab.token_to_id.find(buf);
  10467. if (token != vocab.token_to_id.end()) {
  10468. return (*token).second;
  10469. }
  10470. // Try to fall back to just the byte as a string
  10471. const char buf2[2] = { (char)ch, 0 };
  10472. return vocab.token_to_id.at(buf2);
  10473. }
  10474. case LLAMA_VOCAB_TYPE_WPM:
  10475. case LLAMA_VOCAB_TYPE_BPE: {
  10476. return vocab.token_to_id.at(unicode_byte_to_utf8(ch));
  10477. }
  10478. default:
  10479. GGML_ASSERT(false);
  10480. }
  10481. }
  10482. static void llama_escape_whitespace(std::string & text) {
  10483. replace_all(text, " ", "\xe2\x96\x81");
  10484. }
  10485. static void llama_unescape_whitespace(std::string & word) {
  10486. replace_all(word, "\xe2\x96\x81", " ");
  10487. }
  10488. struct llm_symbol {
  10489. using index = int;
  10490. index prev;
  10491. index next;
  10492. const char * text;
  10493. size_t n;
  10494. };
  10495. static_assert(std::is_trivially_copyable<llm_symbol>::value, "llm_symbol is not trivially copyable");
  10496. // SPM tokenizer
  10497. // original implementation:
  10498. // https://github.com/ggerganov/llama.cpp/commit/074bea2eb1f1349a0118239c4152914aecaa1be4
  10499. struct llm_bigram_spm {
  10500. struct comparator {
  10501. bool operator()(llm_bigram_spm & l, llm_bigram_spm & r) {
  10502. return (l.score < r.score) || (l.score == r.score && l.left > r.left);
  10503. }
  10504. };
  10505. using queue_storage = std::vector<llm_bigram_spm>;
  10506. using queue = std::priority_queue<llm_bigram_spm, queue_storage, comparator>;
  10507. llm_symbol::index left;
  10508. llm_symbol::index right;
  10509. float score;
  10510. size_t size;
  10511. };
  10512. struct llm_tokenizer_spm {
  10513. llm_tokenizer_spm(const llama_vocab & vocab) : vocab(vocab) {}
  10514. void tokenize(const std::string & text, std::vector<llama_vocab::id> & output) {
  10515. // split string into utf8 chars
  10516. int index = 0;
  10517. size_t offs = 0;
  10518. while (offs < text.size()) {
  10519. llm_symbol sym;
  10520. size_t len = utf8_len(text[offs]);
  10521. sym.text = text.c_str() + offs;
  10522. sym.n = std::min(len, text.size() - offs);
  10523. offs += sym.n;
  10524. sym.prev = index - 1;
  10525. sym.next = offs == text.size() ? -1 : index + 1;
  10526. index++;
  10527. symbols.emplace_back(sym);
  10528. }
  10529. // seed the work queue with all possible 2-character tokens.
  10530. for (size_t i = 1; i < symbols.size(); ++i) {
  10531. try_add_bigram(i - 1, i);
  10532. }
  10533. // keep substituting the highest frequency pairs for as long as we can.
  10534. while (!work_queue.empty()) {
  10535. auto bigram = work_queue.top();
  10536. work_queue.pop();
  10537. auto & left_sym = symbols[bigram.left];
  10538. auto & right_sym = symbols[bigram.right];
  10539. // if one of the symbols already got merged, skip it.
  10540. if (left_sym.n == 0 || right_sym.n == 0 ||
  10541. left_sym.n + right_sym.n != bigram.size) {
  10542. continue;
  10543. }
  10544. // merge the right sym into the left one
  10545. left_sym.n += right_sym.n;
  10546. right_sym.n = 0;
  10547. //LLAMA_LOG_INFO("left = '%*s' size = %zu\n", (int) left_sym.n, left_sym.text, bigram.size);
  10548. // remove the right sym from the chain
  10549. left_sym.next = right_sym.next;
  10550. if (right_sym.next >= 0) {
  10551. symbols[right_sym.next].prev = bigram.left;
  10552. }
  10553. // find more substitutions
  10554. try_add_bigram(left_sym.prev, bigram.left);
  10555. try_add_bigram(bigram.left, left_sym.next);
  10556. }
  10557. for (int i = 0; i != -1; i = symbols[i].next) {
  10558. auto & symbol = symbols[i];
  10559. resegment(symbol, output);
  10560. }
  10561. }
  10562. private:
  10563. void resegment(llm_symbol & symbol, std::vector<llama_vocab::id> & output) {
  10564. auto text = std::string(symbol.text, symbol.n);
  10565. auto token = vocab.token_to_id.find(text);
  10566. // Do we need to support is_unused?
  10567. if (token != vocab.token_to_id.end()) {
  10568. output.push_back((*token).second);
  10569. return;
  10570. }
  10571. const auto p = rev_merge.find(text);
  10572. if (p == rev_merge.end()) {
  10573. // output any symbols that did not form tokens as bytes.
  10574. output.reserve(output.size() + symbol.n);
  10575. for (int j = 0; j < (int)symbol.n; ++j) {
  10576. llama_vocab::id token_id = llama_byte_to_token(vocab, symbol.text[j]);
  10577. output.push_back(token_id);
  10578. }
  10579. return;
  10580. }
  10581. resegment(symbols[p->second.first], output);
  10582. resegment(symbols[p->second.second], output);
  10583. }
  10584. void try_add_bigram(int left, int right) {
  10585. if (left == -1 || right == -1) {
  10586. return;
  10587. }
  10588. const std::string text = std::string(symbols[left].text, symbols[left].n + symbols[right].n);
  10589. auto token = vocab.token_to_id.find(text);
  10590. if (token == vocab.token_to_id.end()) {
  10591. return;
  10592. }
  10593. if (static_cast<size_t>((*token).second) >= vocab.id_to_token.size()) {
  10594. return;
  10595. }
  10596. const auto & tok_data = vocab.id_to_token[(*token).second];
  10597. llm_bigram_spm bigram;
  10598. bigram.left = left;
  10599. bigram.right = right;
  10600. bigram.score = tok_data.score;
  10601. bigram.size = text.size();
  10602. work_queue.push(bigram);
  10603. // Do we need to support is_unused?
  10604. rev_merge[text] = std::make_pair(left, right);
  10605. }
  10606. const llama_vocab & vocab;
  10607. std::vector<llm_symbol> symbols;
  10608. llm_bigram_spm::queue work_queue;
  10609. std::map<std::string, std::pair<int, int>> rev_merge;
  10610. };
  10611. // BPE tokenizer
  10612. // adapted from https://github.com/cmp-nct/ggllm.cpp [MIT License]
  10613. // tried to simplify unicode stuff, so most likely does not work 100% correctly!
  10614. // TODO: there are a lot of common parts between spm and bpe tokenizers, should be refactored and reused
  10615. struct llm_bigram_bpe {
  10616. struct comparator {
  10617. bool operator()(const llm_bigram_bpe & l, const llm_bigram_bpe & r) const {
  10618. return l.rank > r.rank || (l.rank == r.rank && l.left > r.left);
  10619. }
  10620. };
  10621. using queue_storage = std::vector<llm_bigram_bpe>;
  10622. using queue = std::priority_queue<llm_bigram_bpe, queue_storage, comparator>;
  10623. llm_symbol::index left;
  10624. llm_symbol::index right;
  10625. std::string text;
  10626. int rank;
  10627. size_t size;
  10628. };
  10629. struct llm_tokenizer_bpe {
  10630. llm_tokenizer_bpe(const llama_vocab & vocab): vocab(vocab) {}
  10631. void tokenize(const std::string & text, std::vector<llama_vocab::id> & output) {
  10632. int final_prev_index = -1;
  10633. bool ignore_merges = false;
  10634. std::vector<std::string> word_collection;
  10635. switch (vocab.type) {
  10636. case LLAMA_VOCAB_TYPE_BPE:
  10637. switch (vocab.type_pre) {
  10638. case LLAMA_VOCAB_PRE_TYPE_LLAMA3:
  10639. ignore_merges = true;
  10640. word_collection = unicode_regex_split(text, {
  10641. // original regex from tokenizer.json
  10642. //"(?i:'s|'t|'re|'ve|'m|'ll|'d)|[^\\r\\n\\p{L}\\p{N}]?\\p{L}+|\\p{N}{1,3}| ?[^\\s\\p{L}\\p{N}]+[\\r\\n]*|\\s*[\\r\\n]+|\\s+(?!\\S)|\\s+",
  10643. // adapted: https://github.com/ggerganov/llama.cpp/pull/6920#issuecomment-2080233989
  10644. "(?:'[sS]|'[tT]|'[rR][eE]|'[vV][eE]|'[mM]|'[lL][lL]|'[dD])|[^\\r\\n\\p{L}\\p{N}]?\\p{L}+|\\p{N}{1,3}| ?[^\\s\\p{L}\\p{N}]+[\\r\\n]*|\\s*[\\r\\n]+|\\s+(?!\\S)|\\s+",
  10645. });
  10646. break;
  10647. case LLAMA_VOCAB_PRE_TYPE_DBRX:
  10648. case LLAMA_VOCAB_PRE_TYPE_SMAUG:
  10649. word_collection = unicode_regex_split(text, {
  10650. // same as llama3
  10651. "(?:'[sS]|'[tT]|'[rR][eE]|'[vV][eE]|'[mM]|'[lL][lL]|'[dD])|[^\\r\\n\\p{L}\\p{N}]?\\p{L}+|\\p{N}{1,3}| ?[^\\s\\p{L}\\p{N}]+[\\r\\n]*|\\s*[\\r\\n]+|\\s+(?!\\S)|\\s+",
  10652. });
  10653. break;
  10654. case LLAMA_VOCAB_PRE_TYPE_DEEPSEEK_LLM:
  10655. word_collection = unicode_regex_split(text, {
  10656. "[\r\n]",
  10657. "\\s?[A-Za-zµÀ-ÖØ-öø-ƺƼ-ƿDŽ-ʓʕ-ʯͰ-ͳͶͷͻ-ͽͿΆΈ-ΊΌΎ-ΡΣ-ϵϷ-ҁҊ-ԯԱ-ՖႠ-ჅᎠ-Ᏽᏸ-ᏽᲐ-ᲺᲽ-Ჿᴀ-ᴫᵫ-ᵷᵹ-ᶚḀ-ἕἘ-Ἕἠ-ὅὈ-Ὅὐ-ὗὙὛὝὟ-ώᾀ-ᾴᾶ-ᾼιῂ-ῄῆ-ῌῐ-ΐῖ-Ίῠ-Ῥῲ-ῴῶ-ῼℂℇℊ-ℓℕℙ-ℝℤΩℨK-ℭℯ-ℴℹℼ-ℿⅅ-ⅉⅎↃↄⰀ-ⱻⱾ-ⳤⳫ-ⳮⳲⳳꙀ-ꙭꚀ-ꚛꜢ-ꝯꝱ-ꞇꞋ-ꞎꭰ-ꮿff-stﬓ-ﬗA-Za-z𐐀-𐑏𐒰-𐓓𐓘-𐓻𐲀-𐲲𐳀-𐳲𑢠-𑣟𞤀-𞥃]+",
  10658. "\\s?[!-/:-~!-/:-~‘-‟ -。]+",
  10659. "\\s+$",
  10660. "[一-龥ࠀ-一가-퟿]+",
  10661. "\\p{N}+",
  10662. });
  10663. break;
  10664. case LLAMA_VOCAB_PRE_TYPE_DEEPSEEK_CODER:
  10665. word_collection = unicode_regex_split(text, {
  10666. "[\r\n]",
  10667. "\\s?\\p{L}+",
  10668. "\\s?\\p{P}+",
  10669. "[一-龥ࠀ-一가-퟿]+",
  10670. "\\p{N}",
  10671. });
  10672. break;
  10673. case LLAMA_VOCAB_PRE_TYPE_FALCON:
  10674. word_collection = unicode_regex_split(text, {
  10675. "[\\p{P}\\$\\+<=>\\^~\\|]+",
  10676. "'s|'t|'re|'ve|'m|'ll|'d| ?\\p{L}+| ?\\p{N}+| ?[^\\s\\p{L}\\p{N}]+|\\s+(?!\\S)",
  10677. "[0-9][0-9][0-9]",
  10678. });
  10679. break;
  10680. case LLAMA_VOCAB_PRE_TYPE_MPT:
  10681. // TODO: MPT pre-tokenization regexes are unknown
  10682. // the following are close, but not exact. run the following:
  10683. // ./bin/test-tokenizer-0 ../models/ggml-vocab-mpt.gguf
  10684. GGML_ASSERT("MPT pre-tokenization regexes are unknown - fixes needed");
  10685. word_collection = unicode_regex_split(text, {
  10686. "\\s?\\p{L}+",
  10687. "\\s?\\p{P}+",
  10688. "'s|'t|'re|'ve|'m|'ll|'d| ?\\p{L}+| ?\\p{N}+| ?[^\\s\\p{L}\\p{N}]+|\\s+(?!\\S)",
  10689. });
  10690. break;
  10691. case LLAMA_VOCAB_PRE_TYPE_STARCODER:
  10692. case LLAMA_VOCAB_PRE_TYPE_REFACT:
  10693. case LLAMA_VOCAB_PRE_TYPE_COMMAND_R:
  10694. word_collection = unicode_regex_split(text, {
  10695. "\\p{N}",
  10696. "'s|'t|'re|'ve|'m|'ll|'d| ?\\p{L}+| ?\\p{N}+| ?[^\\s\\p{L}\\p{N}]+|\\s+(?!\\S)",
  10697. });
  10698. break;
  10699. case LLAMA_VOCAB_PRE_TYPE_GPT2:
  10700. case LLAMA_VOCAB_PRE_TYPE_OLMO:
  10701. word_collection = unicode_regex_split(text, {
  10702. "'s|'t|'re|'ve|'m|'ll|'d| ?\\p{L}+| ?\\p{N}+| ?[^\\s\\p{L}\\p{N}]+|\\s+(?!\\S)",
  10703. });
  10704. break;
  10705. case LLAMA_VOCAB_PRE_TYPE_STABLELM2:
  10706. case LLAMA_VOCAB_PRE_TYPE_QWEN2:
  10707. word_collection = unicode_regex_split(text, {
  10708. // original regex from tokenizer.json
  10709. // "(?i:'s|'t|'re|'ve|'m|'ll|'d)|[^\\r\\n\\p{L}\\p{N}]?\\p{L}+|\\p{N}| ?[^\\s\\p{L}\\p{N}]+[\\r\\n]*|\\s*[\\r\\n]+|\\s+(?!\\S)|\\s+"
  10710. "(?:'[sS]|'[tT]|'[rR][eE]|'[vV][eE]|'[mM]|'[lL][lL]|'[dD])|[^\\r\\n\\p{L}\\p{N}]?\\p{L}+|\\p{N}| ?[^\\s\\p{L}\\p{N}]+[\\r\\n]*|\\s*[\\r\\n]+|\\s+(?!\\S)|\\s+",
  10711. });
  10712. break;
  10713. default:
  10714. // default regex for BPE tokenization pre-processing
  10715. word_collection = unicode_regex_split(text, {
  10716. "[\\p{P}\\$\\+<=>\\^~\\|]+",
  10717. "'s|'t|'re|'ve|'m|'ll|'d| ?\\p{L}+| ?\\p{N}+| ?[^\\s\\p{L}\\p{N}]+|\\s+(?!\\S)",
  10718. "\\p{N}+",
  10719. "[0-9][0-9][0-9]",
  10720. });
  10721. break;
  10722. }
  10723. break;
  10724. default:
  10725. GGML_ASSERT(false);
  10726. break;
  10727. }
  10728. symbols_final.clear();
  10729. for (auto & word : word_collection) {
  10730. work_queue = llm_bigram_bpe::queue();
  10731. symbols.clear();
  10732. int index = 0;
  10733. size_t offset = 0;
  10734. if (ignore_merges && vocab.token_to_id.find(word) != vocab.token_to_id.end()) {
  10735. symbols.emplace_back(llm_symbol{-1, -1, word.c_str(), word.size()});
  10736. offset = word.size();
  10737. }
  10738. while (offset < word.size()) {
  10739. llm_symbol sym;
  10740. size_t char_len = std::min(word.size() - offset, (size_t) ::utf8_len(word[offset]));
  10741. sym.text = word.c_str() + offset;
  10742. sym.n = char_len;
  10743. offset += sym.n;
  10744. sym.prev = index - 1;
  10745. sym.next = offset == word.size() ? -1 : index + 1;
  10746. index++;
  10747. symbols.emplace_back(sym);
  10748. }
  10749. for (size_t i = 1; i < symbols.size(); ++i) {
  10750. add_new_bigram(i - 1, i);
  10751. }
  10752. // build token(s)
  10753. while (!work_queue.empty()) {
  10754. auto bigram = work_queue.top();
  10755. work_queue.pop();
  10756. auto & left_symbol = symbols[bigram.left];
  10757. auto & right_symbol = symbols[bigram.right];
  10758. if (left_symbol.n == 0 || right_symbol.n == 0) {
  10759. continue;
  10760. }
  10761. std::string left_token = std::string(left_symbol.text, left_symbol.n);
  10762. std::string right_token = std::string(right_symbol.text, right_symbol.n);
  10763. if (left_token + right_token != bigram.text) {
  10764. continue; // Skip this bigram if it's outdated
  10765. }
  10766. // merge the right sym into the left one
  10767. left_symbol.n += right_symbol.n;
  10768. right_symbol.n = 0;
  10769. // remove the right sym from the chain
  10770. left_symbol.next = right_symbol.next;
  10771. if (right_symbol.next >= 0) {
  10772. symbols[right_symbol.next].prev = bigram.left;
  10773. }
  10774. add_new_bigram(left_symbol.prev, bigram.left); // left side of current symbol
  10775. add_new_bigram(bigram.left, left_symbol.next); // right side of current symbol
  10776. }
  10777. // add the finished tokens to the final list keeping correct order for next and prev
  10778. for (auto & sym : symbols) {
  10779. if (sym.n > 0) {
  10780. sym.prev = final_prev_index;
  10781. sym.next = -1;
  10782. if (final_prev_index != -1) {
  10783. symbols_final[final_prev_index].next = symbols_final.size();
  10784. }
  10785. symbols_final.emplace_back(sym);
  10786. final_prev_index = symbols_final.size() - 1;
  10787. }
  10788. }
  10789. }
  10790. symbols = symbols_final;
  10791. if (!symbols.empty()) {
  10792. for (int i = 0; i != -1; i = symbols[i].next) {
  10793. auto & symbol = symbols[i];
  10794. if (symbol.n == 0) {
  10795. continue;
  10796. }
  10797. const std::string str = std::string(symbol.text, symbol.n);
  10798. const auto token = vocab.token_to_id.find(str);
  10799. if (token == vocab.token_to_id.end()) {
  10800. for (auto j = str.begin(); j != str.end(); ++j) {
  10801. std::string byte_str(1, *j);
  10802. auto token_multibyte = vocab.token_to_id.find(byte_str);
  10803. if (token_multibyte == vocab.token_to_id.end()) {
  10804. throw std::runtime_error("ERROR: byte not found in vocab");
  10805. }
  10806. output.push_back((*token_multibyte).second);
  10807. }
  10808. } else {
  10809. output.push_back((*token).second);
  10810. }
  10811. }
  10812. }
  10813. }
  10814. private:
  10815. void add_new_bigram(int left, int right) {
  10816. if (left == -1 || right == -1) {
  10817. return;
  10818. }
  10819. std::string left_token = std::string(symbols[left].text, symbols[left].n);
  10820. std::string right_token = std::string(symbols[right].text, symbols[right].n);
  10821. int rank_found = -1;
  10822. rank_found = vocab.find_bpe_rank(left_token, right_token);
  10823. if (rank_found < 0) {
  10824. return;
  10825. }
  10826. llm_bigram_bpe bigram;
  10827. bigram.left = left;
  10828. bigram.right = right;
  10829. bigram.text = left_token + right_token;
  10830. bigram.size = left_token.size() + right_token.size();
  10831. bigram.rank = rank_found;
  10832. work_queue.push(bigram);
  10833. }
  10834. const llama_vocab & vocab;
  10835. std::vector<llm_symbol> symbols;
  10836. std::vector<llm_symbol> symbols_final;
  10837. llm_bigram_bpe::queue work_queue;
  10838. };
  10839. struct llm_tokenizer_wpm {
  10840. llm_tokenizer_wpm(const llama_vocab & vocab): vocab(vocab) {}
  10841. void tokenize(const std::string & text, std::vector<llama_vocab::id> & output) {
  10842. const auto & token_map = vocab.token_to_id;
  10843. // normalize and split by whitespace
  10844. std::vector<std::string> words = preprocess(text);
  10845. // bos token prepended already
  10846. // find the longest tokens that form the words
  10847. for (const std::string &word : words) {
  10848. // skip empty words
  10849. if (word.size() == 0) {
  10850. continue;
  10851. }
  10852. // prepend phantom space
  10853. const std::string word1 = "\xe2\x96\x81" + word;
  10854. const int n = word1.size();
  10855. const size_t current_tokens = output.size();
  10856. // we're at the start of a new word
  10857. // move through character position in word
  10858. for (int i = 0; i < n; ++i) {
  10859. // loop through possible match length
  10860. bool match = false;
  10861. for (int j = n; j > i; j--) {
  10862. auto it = token_map.find(word1.substr(i, j - i));
  10863. if (it != token_map.end()) {
  10864. output.push_back(it->second);
  10865. match = true;
  10866. i = j - 1;
  10867. break;
  10868. }
  10869. }
  10870. if (!match) { // discard all
  10871. output.resize(current_tokens);
  10872. break; // and discard next tokens
  10873. }
  10874. }
  10875. // we didn't find any matches for this word
  10876. if (current_tokens == output.size()) {
  10877. output.push_back(vocab.special_unk_id);
  10878. }
  10879. }
  10880. }
  10881. std::vector<std::string> preprocess(const std::string & text) {
  10882. const std::vector<uint32_t> cpts_nfd = unicode_cpts_normalize_nfd(unicode_cpts_from_utf8(text));
  10883. std::vector<std::string> words(1, "");
  10884. for (const char32_t cpt : cpts_nfd) {
  10885. const auto flags = unicode_cpt_flags(cpt);
  10886. if (flags.is_whitespace) {
  10887. if (words.back().size()) { // finish previous word if any
  10888. words.emplace_back();
  10889. }
  10890. continue;
  10891. }
  10892. assert (!flags.is_separator);
  10893. if (cpt == 0 || cpt == 0xFFFD || flags.is_control) {
  10894. continue;
  10895. }
  10896. const std::string s = unicode_cpt_to_utf8(unicode_tolower(cpt));
  10897. if (flags.is_punctuation || ( cpt < 0x7F && flags.is_symbol ) || is_chinese_char(cpt)) {
  10898. if (words.back().size()) { // finish previous word if any
  10899. words.emplace_back();
  10900. }
  10901. words.back() = s; // single char word
  10902. words.emplace_back(); // start a new word
  10903. } else {
  10904. words.back() += s; // append char to word
  10905. }
  10906. }
  10907. if (!words.back().size()) {
  10908. words.pop_back();
  10909. }
  10910. return words;
  10911. }
  10912. static bool is_chinese_char(uint32_t cpt) {
  10913. return
  10914. (cpt >= 0x04E00 && cpt <= 0x09FFF) ||
  10915. (cpt >= 0x03400 && cpt <= 0x04DBF) ||
  10916. (cpt >= 0x20000 && cpt <= 0x2A6DF) ||
  10917. (cpt >= 0x2A700 && cpt <= 0x2B73F) ||
  10918. (cpt >= 0x2B740 && cpt <= 0x2B81F) ||
  10919. (cpt >= 0x2B920 && cpt <= 0x2CEAF) || // this should be 0x2B820 but in hf rust code it is 0x2B920
  10920. (cpt >= 0x0F900 && cpt <= 0x0FAFF) ||
  10921. (cpt >= 0x2F800 && cpt <= 0x2FA1F);
  10922. //(cpt >= 0x3000 && cpt <= 0x303F) ||
  10923. //(cpt >= 0xFF00 && cpt <= 0xFFEF);
  10924. }
  10925. const llama_vocab & vocab;
  10926. };
  10927. typedef enum FRAGMENT_BUFFER_VARIANT_TYPE {
  10928. FRAGMENT_BUFFER_VARIANT_TYPE_TOKEN,
  10929. FRAGMENT_BUFFER_VARIANT_TYPE_RAW_TEXT
  10930. } FRAGMENT_BUFFER_VARIANT_TYPE;
  10931. struct fragment_buffer_variant {
  10932. fragment_buffer_variant(llama_vocab::id _token)
  10933. :
  10934. type(FRAGMENT_BUFFER_VARIANT_TYPE_TOKEN),
  10935. token(_token),
  10936. raw_text(_dummy),
  10937. offset(0),
  10938. length(0) {}
  10939. fragment_buffer_variant(const std::string & _raw_text, int64_t _offset, int64_t _length)
  10940. :
  10941. type(FRAGMENT_BUFFER_VARIANT_TYPE_RAW_TEXT),
  10942. token((llama_vocab::id) - 1),
  10943. raw_text(_raw_text),
  10944. offset(_offset),
  10945. length(_length){
  10946. GGML_ASSERT(_offset >= 0);
  10947. GGML_ASSERT(_length >= 1);
  10948. GGML_ASSERT(offset + length <= raw_text.length());
  10949. }
  10950. const FRAGMENT_BUFFER_VARIANT_TYPE type;
  10951. const llama_vocab::id token;
  10952. const std::string _dummy;
  10953. const std::string & raw_text;
  10954. const uint64_t offset;
  10955. const uint64_t length;
  10956. };
  10957. // #define PRETOKENIZERDEBUG
  10958. static void tokenizer_st_partition(const llama_vocab & vocab, std::forward_list<fragment_buffer_variant> & buffer) {
  10959. // for each special token
  10960. for (const llama_vocab::id special_id : vocab.special_tokens_cache) {
  10961. const auto & special_token = vocab.id_to_token[special_id].text;
  10962. // for each text fragment
  10963. std::forward_list<fragment_buffer_variant>::iterator it = buffer.begin();
  10964. while (it != buffer.end()) {
  10965. auto & fragment = (*it);
  10966. // if a fragment is text ( not yet processed )
  10967. if (fragment.type == FRAGMENT_BUFFER_VARIANT_TYPE_RAW_TEXT) {
  10968. auto & raw_text = fragment.raw_text;
  10969. auto raw_text_base_offset = fragment.offset;
  10970. auto raw_text_base_length = fragment.length;
  10971. // loop over the text
  10972. while (true) {
  10973. // find the first occurrence of a given special token in this fragment
  10974. // passing offset argument only limit the "search area" but match coordinates
  10975. // are still relative to the source full raw_text
  10976. auto match = raw_text.find(special_token, raw_text_base_offset);
  10977. // no occurrences found, stop processing this fragment for a given special token
  10978. if (match == std::string::npos) break;
  10979. // check if match is within bounds of offset <-> length
  10980. if (match + special_token.length() > raw_text_base_offset + raw_text_base_length) break;
  10981. #ifdef PRETOKENIZERDEBUG
  10982. LLAMA_LOG_WARN("FF: (%ld %ld %ld) '%s'\n", raw_text->length(), raw_text_base_offset, raw_text_base_length, raw_text->substr(raw_text_base_offset, raw_text_base_length).c_str());
  10983. #endif
  10984. auto source = std::distance(buffer.begin(), it);
  10985. // if match is further than base offset
  10986. // then we have some text to the left of it
  10987. if (match > raw_text_base_offset) {
  10988. // left
  10989. const int64_t left_reminder_offset = raw_text_base_offset + 0;
  10990. const int64_t left_reminder_length = match - raw_text_base_offset;
  10991. buffer.emplace_after(it, raw_text, left_reminder_offset, left_reminder_length);
  10992. #ifdef PRETOKENIZERDEBUG
  10993. LLAMA_LOG_WARN("FL: (%ld %ld) '%s'\n", left_reminder_offset, left_reminder_length, raw_text->substr(left_reminder_offset, left_reminder_length).c_str());
  10994. #endif
  10995. it++;
  10996. }
  10997. // special token
  10998. buffer.emplace_after(it, special_id);
  10999. it++;
  11000. // right
  11001. if (match + special_token.length() < raw_text_base_offset + raw_text_base_length) {
  11002. const int64_t right_reminder_offset = match + special_token.length();
  11003. const int64_t right_reminder_length = raw_text_base_length - ((match - raw_text_base_offset) + special_token.length());
  11004. buffer.emplace_after(it, raw_text, right_reminder_offset, right_reminder_length);
  11005. #ifdef PRETOKENIZERDEBUG
  11006. LLAMA_LOG_WARN("FR: (%ld %ld) '%s'\n", right_reminder_offset, right_reminder_length, raw_text->substr(right_reminder_offset, right_reminder_length).c_str());
  11007. #endif
  11008. it++;
  11009. if (source == 0) {
  11010. buffer.erase_after(buffer.before_begin());
  11011. } else {
  11012. buffer.erase_after(std::next(buffer.begin(), (source-1)));
  11013. }
  11014. // repeat for the right side
  11015. raw_text_base_offset = right_reminder_offset;
  11016. raw_text_base_length = right_reminder_length;
  11017. #ifdef PRETOKENIZERDEBUG
  11018. LLAMA_LOG_WARN("RR: (%ld %ld) '%s'\n", raw_text_base_offset, raw_text_base_length, raw_text->substr(raw_text_base_offset, raw_text_base_length).c_str());
  11019. #endif
  11020. } else {
  11021. if (source == 0) {
  11022. buffer.erase_after(buffer.before_begin());
  11023. } else {
  11024. buffer.erase_after(std::next(buffer.begin(), (source-1)));
  11025. }
  11026. break;
  11027. }
  11028. }
  11029. }
  11030. it++;
  11031. }
  11032. }
  11033. }
  11034. static std::vector<llama_vocab::id> llama_tokenize_internal(const llama_vocab & vocab, std::string raw_text, bool add_special, bool parse_special) {
  11035. std::vector<llama_vocab::id> output;
  11036. std::forward_list<fragment_buffer_variant> fragment_buffer;
  11037. if (!raw_text.empty()) {
  11038. fragment_buffer.emplace_front(raw_text, 0, raw_text.length());
  11039. if (parse_special) tokenizer_st_partition(vocab, fragment_buffer);
  11040. }
  11041. switch (vocab.type) {
  11042. case LLAMA_VOCAB_TYPE_SPM:
  11043. {
  11044. // OG tokenizer behavior:
  11045. //
  11046. // tokenizer.encode('', add_special_tokens=True) returns [1]
  11047. // tokenizer.encode('', add_special_tokens=False) returns []
  11048. static const bool rtrim = true; //TODO: as param
  11049. bool is_prev_special = false;
  11050. bool special_token_rtrim = false;
  11051. if (add_special && vocab.special_add_bos != 0) {
  11052. GGML_ASSERT(vocab.special_bos_id != -1);
  11053. output.push_back(vocab.special_bos_id);
  11054. is_prev_special = true;
  11055. }
  11056. for (const auto & fragment : fragment_buffer) {
  11057. if (fragment.type == FRAGMENT_BUFFER_VARIANT_TYPE_RAW_TEXT) {
  11058. // without adding this leading whitespace, we do not get the same results as the original tokenizer
  11059. // TODO: It's likely possible to get rid of this string copy entirely
  11060. // by modifying llm_tokenizer_x to operate with string offsets like pre-tokenizer
  11061. // and passing 'add space prefix' as bool argument
  11062. //
  11063. auto raw_text = fragment.raw_text.substr(fragment.offset, fragment.length);
  11064. if (special_token_rtrim) {
  11065. size_t num_whitespaces = 0;
  11066. while (isspace(raw_text[num_whitespaces])) {
  11067. num_whitespaces++;
  11068. }
  11069. if (num_whitespaces == raw_text.size()) {
  11070. continue; // skip if all whitespaces
  11071. }
  11072. raw_text = raw_text.substr(num_whitespaces);
  11073. }
  11074. if (vocab.add_space_prefix) {
  11075. if (!output.size() || is_prev_special) { // prefix with space if first token
  11076. raw_text = " " + raw_text;
  11077. }
  11078. }
  11079. #ifdef PRETOKENIZERDEBUG
  11080. LLAMA_LOG_WARN("TT: (%ld %ld %ld) '%s'\n", raw_text.length(), fragment.offset, fragment.length, raw_text.c_str());
  11081. #endif
  11082. llm_tokenizer_spm tokenizer(vocab);
  11083. llama_escape_whitespace(raw_text);
  11084. tokenizer.tokenize(raw_text, output);
  11085. } else { // if (fragment.type == FRAGMENT_BUFFER_VARIANT_TYPE_TOKEN)
  11086. output.push_back(fragment.token);
  11087. is_prev_special = true;
  11088. // phi-3 special tokens without rtrim, works fine for llama-spm too
  11089. special_token_rtrim = rtrim
  11090. && fragment.token != vocab.special_bos_id
  11091. && fragment.token != vocab.special_unk_id
  11092. && fragment.token != vocab.special_eos_id;
  11093. }
  11094. }
  11095. if (add_special && vocab.special_add_bos != 0 && output.size() >= 2 && output[1] == vocab.special_bos_id) {
  11096. LLAMA_LOG_WARN(
  11097. "%s: Added a BOS token to the prompt as specified by the model but the prompt "
  11098. "also starts with a BOS token. So now the final prompt starts with 2 BOS tokens. "
  11099. "Are you sure this is what you want?\n", __FUNCTION__);
  11100. }
  11101. if (add_special && vocab.special_add_eos == 1) {
  11102. GGML_ASSERT(vocab.special_eos_id != -1);
  11103. output.push_back(vocab.special_eos_id);
  11104. }
  11105. } break;
  11106. case LLAMA_VOCAB_TYPE_BPE:
  11107. {
  11108. if (add_special && vocab.special_add_bos != 0) {
  11109. GGML_ASSERT(vocab.special_bos_id != -1);
  11110. output.push_back(vocab.special_bos_id);
  11111. }
  11112. for (const auto & fragment : fragment_buffer) {
  11113. if (fragment.type == FRAGMENT_BUFFER_VARIANT_TYPE_RAW_TEXT) {
  11114. auto raw_text = fragment.raw_text.substr(fragment.offset, fragment.length);
  11115. #ifdef PRETOKENIZERDEBUG
  11116. LLAMA_LOG_WARN("TT: (%ld %ld %ld) '%s'\n", raw_text.length(), fragment.offset, fragment.length, raw_text.c_str());
  11117. #endif
  11118. llm_tokenizer_bpe tokenizer(vocab);
  11119. tokenizer.tokenize(raw_text, output);
  11120. } else { // if (fragment.type == FRAGMENT_BUFFER_VARIANT_TYPE_TOKEN)
  11121. output.push_back(fragment.token);
  11122. }
  11123. }
  11124. if (add_special && vocab.special_add_bos != 0 && output.size() >= 2 && output[1] == vocab.special_bos_id) {
  11125. LLAMA_LOG_WARN(
  11126. "%s: Added a BOS token to the prompt as specified by the model but the prompt "
  11127. "also starts with a BOS token. So now the final prompt starts with 2 BOS tokens. "
  11128. "Are you sure this is what you want?\n", __FUNCTION__);
  11129. }
  11130. if (add_special && vocab.special_add_eos == 1) {
  11131. GGML_ASSERT(vocab.special_add_eos != -1);
  11132. output.push_back(vocab.special_eos_id);
  11133. }
  11134. } break;
  11135. case LLAMA_VOCAB_TYPE_WPM:
  11136. {
  11137. if (add_special) {
  11138. GGML_ASSERT(vocab.special_cls_id != -1);
  11139. output.push_back(vocab.special_cls_id);
  11140. }
  11141. for (const auto & fragment : fragment_buffer) {
  11142. if (fragment.type == FRAGMENT_BUFFER_VARIANT_TYPE_RAW_TEXT) {
  11143. auto raw_text = fragment.raw_text.substr(fragment.offset, fragment.length);
  11144. #ifdef PRETOKENIZERDEBUG
  11145. LLAMA_LOG_WARN("TT: (%ld %ld %ld) '%s'\n", raw_text.length(), fragment.offset, fragment.length, raw_text.c_str());
  11146. #endif
  11147. llm_tokenizer_wpm tokenizer(vocab);
  11148. tokenizer.tokenize(raw_text, output);
  11149. } else { // if (fragment.type == FRAGMENT_BUFFER_VARIANT_TYPE_TOKEN)
  11150. output.push_back(fragment.token);
  11151. }
  11152. }
  11153. if (add_special) {
  11154. GGML_ASSERT(vocab.special_sep_id != -1);
  11155. output.push_back(vocab.special_sep_id);
  11156. }
  11157. } break;
  11158. case LLAMA_VOCAB_TYPE_NONE:
  11159. GGML_ASSERT(false);
  11160. }
  11161. return output;
  11162. }
  11163. //
  11164. // grammar - internal
  11165. //
  11166. // Decodes a UTF-8 string which may end in an incomplete sequence. Adds a terminating 0 for use as
  11167. // pointer. If an invalid sequence is encountered, returns `llama_partial_utf8.n_remain == -1`.
  11168. std::pair<std::vector<uint32_t>, llama_partial_utf8> decode_utf8(
  11169. const std::string & src,
  11170. llama_partial_utf8 partial_start) {
  11171. static const int lookup[] = { 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 2, 2, 3, 4 };
  11172. const char * pos = src.c_str();
  11173. std::vector<uint32_t> code_points;
  11174. // common english strings have the same number of codepoints and bytes. `+ 1` for the terminating 0.
  11175. code_points.reserve(src.size() + 1);
  11176. uint32_t value = partial_start.value;
  11177. int n_remain = partial_start.n_remain;
  11178. // continue previous decode, if applicable
  11179. while (*pos != 0 && n_remain > 0) {
  11180. uint8_t next_byte = static_cast<uint8_t>(*pos);
  11181. if ((next_byte >> 6) != 2) {
  11182. // invalid sequence, abort
  11183. code_points.push_back(0);
  11184. return std::make_pair(std::move(code_points), llama_partial_utf8{ 0, -1 });
  11185. }
  11186. value = (value << 6) + (next_byte & 0x3F);
  11187. ++pos;
  11188. --n_remain;
  11189. }
  11190. if (partial_start.n_remain > 0 && n_remain == 0) {
  11191. code_points.push_back(value);
  11192. }
  11193. // decode any subsequent utf-8 sequences, which may end in an incomplete one
  11194. while (*pos != 0) {
  11195. uint8_t first_byte = static_cast<uint8_t>(*pos);
  11196. uint8_t highbits = first_byte >> 4;
  11197. n_remain = lookup[highbits] - 1;
  11198. if (n_remain < 0) {
  11199. // invalid sequence, abort
  11200. code_points.clear();
  11201. code_points.push_back(0);
  11202. return std::make_pair(std::move(code_points), llama_partial_utf8{ 0, n_remain });
  11203. }
  11204. uint8_t mask = (1 << (7 - n_remain)) - 1;
  11205. value = first_byte & mask;
  11206. ++pos;
  11207. while (*pos != 0 && n_remain > 0) {
  11208. value = (value << 6) + (static_cast<uint8_t>(*pos) & 0x3F);
  11209. ++pos;
  11210. --n_remain;
  11211. }
  11212. if (n_remain == 0) {
  11213. code_points.push_back(value);
  11214. }
  11215. }
  11216. code_points.push_back(0);
  11217. return std::make_pair(std::move(code_points), llama_partial_utf8{ value, n_remain });
  11218. }
  11219. // returns true iff pos points to the end of one of the definitions of a rule
  11220. static bool llama_grammar_is_end_of_sequence(const llama_grammar_element * pos) {
  11221. switch (pos->type) {
  11222. case LLAMA_GRETYPE_END: return true; // NOLINT
  11223. case LLAMA_GRETYPE_ALT: return true; // NOLINT
  11224. default: return false;
  11225. }
  11226. }
  11227. // returns true iff chr satisfies the char range at pos (regular or inverse range)
  11228. // asserts that pos is pointing to a char range element
  11229. static std::pair<bool, const llama_grammar_element *> llama_grammar_match_char(
  11230. const llama_grammar_element * pos,
  11231. const uint32_t chr) {
  11232. bool found = false;
  11233. bool is_positive_char = pos->type == LLAMA_GRETYPE_CHAR;
  11234. GGML_ASSERT(is_positive_char || pos->type == LLAMA_GRETYPE_CHAR_NOT); // NOLINT
  11235. do {
  11236. if (pos[1].type == LLAMA_GRETYPE_CHAR_RNG_UPPER) {
  11237. // inclusive range, e.g. [a-z]
  11238. found = found || (pos->value <= chr && chr <= pos[1].value);
  11239. pos += 2;
  11240. } else {
  11241. // exact char match, e.g. [a] or "a"
  11242. found = found || pos->value == chr;
  11243. pos += 1;
  11244. }
  11245. } while (pos->type == LLAMA_GRETYPE_CHAR_ALT);
  11246. return std::make_pair(found == is_positive_char, pos);
  11247. }
  11248. // returns true iff some continuation of the given partial UTF-8 sequence could satisfy the char
  11249. // range at pos (regular or inverse range)
  11250. // asserts that pos is pointing to a char range element
  11251. static bool llama_grammar_match_partial_char(
  11252. const llama_grammar_element * pos,
  11253. const llama_partial_utf8 partial_utf8) {
  11254. bool is_positive_char = pos->type == LLAMA_GRETYPE_CHAR;
  11255. GGML_ASSERT(is_positive_char || pos->type == LLAMA_GRETYPE_CHAR_NOT);
  11256. uint32_t partial_value = partial_utf8.value;
  11257. int n_remain = partial_utf8.n_remain;
  11258. // invalid sequence or 7-bit char split across 2 bytes (overlong)
  11259. if (n_remain < 0 || (n_remain == 1 && partial_value < 2)) {
  11260. return false;
  11261. }
  11262. // range of possible code points this partial UTF-8 sequence could complete to
  11263. uint32_t low = partial_value << (n_remain * 6);
  11264. uint32_t high = low | ((1 << (n_remain * 6)) - 1);
  11265. if (low == 0) {
  11266. if (n_remain == 2) {
  11267. low = 1 << 11;
  11268. } else if (n_remain == 3) {
  11269. low = 1 << 16;
  11270. }
  11271. }
  11272. do {
  11273. if (pos[1].type == LLAMA_GRETYPE_CHAR_RNG_UPPER) {
  11274. // inclusive range, e.g. [a-z]
  11275. if (pos->value <= high && low <= pos[1].value) {
  11276. return is_positive_char;
  11277. }
  11278. pos += 2;
  11279. } else {
  11280. // exact char match, e.g. [a] or "a"
  11281. if (low <= pos->value && pos->value <= high) {
  11282. return is_positive_char;
  11283. }
  11284. pos += 1;
  11285. }
  11286. } while (pos->type == LLAMA_GRETYPE_CHAR_ALT);
  11287. return !is_positive_char;
  11288. }
  11289. // transforms a grammar pushdown stack into N possible stacks, all ending
  11290. // at a character range (terminal element)
  11291. static void llama_grammar_advance_stack(
  11292. const std::vector<std::vector<llama_grammar_element>> & rules,
  11293. const std::vector<const llama_grammar_element *> & stack,
  11294. std::vector<std::vector<const llama_grammar_element *>> & new_stacks) {
  11295. if (stack.empty()) {
  11296. if (std::find(new_stacks.begin(), new_stacks.end(), stack) == new_stacks.end()) {
  11297. new_stacks.emplace_back(stack);
  11298. }
  11299. return;
  11300. }
  11301. const llama_grammar_element * pos = stack.back();
  11302. switch (pos->type) {
  11303. case LLAMA_GRETYPE_RULE_REF: {
  11304. const size_t rule_id = static_cast<size_t>(pos->value);
  11305. const llama_grammar_element * subpos = rules[rule_id].data();
  11306. do {
  11307. // init new stack without the top (pos)
  11308. std::vector<const llama_grammar_element *> new_stack(stack.begin(), stack.end() - 1);
  11309. if (!llama_grammar_is_end_of_sequence(pos + 1)) {
  11310. // if this rule ref is followed by another element, add that to stack
  11311. new_stack.push_back(pos + 1);
  11312. }
  11313. if (!llama_grammar_is_end_of_sequence(subpos)) {
  11314. // if alternate is nonempty, add to stack
  11315. new_stack.push_back(subpos);
  11316. }
  11317. llama_grammar_advance_stack(rules, new_stack, new_stacks);
  11318. while (!llama_grammar_is_end_of_sequence(subpos)) {
  11319. // scan to end of alternate def
  11320. subpos++;
  11321. }
  11322. if (subpos->type == LLAMA_GRETYPE_ALT) {
  11323. // there's another alternate def of this rule to process
  11324. subpos++;
  11325. } else {
  11326. break;
  11327. }
  11328. } while (true);
  11329. break;
  11330. }
  11331. case LLAMA_GRETYPE_CHAR:
  11332. case LLAMA_GRETYPE_CHAR_NOT:
  11333. if (std::find(new_stacks.begin(), new_stacks.end(), stack) == new_stacks.end()) {
  11334. // only add the stack if it's not a duplicate of one we already have
  11335. new_stacks.emplace_back(stack);
  11336. }
  11337. break;
  11338. default:
  11339. // end of alternate (LLAMA_GRETYPE_END, LLAMA_GRETYPE_ALT) or middle of char range
  11340. // (LLAMA_GRETYPE_CHAR_ALT, LLAMA_GRETYPE_CHAR_RNG_UPPER); stack should never be left on
  11341. // those
  11342. GGML_ASSERT(false);
  11343. }
  11344. }
  11345. // takes a set of possible pushdown stacks on a grammar, which are required to
  11346. // be positioned at a character range (see `llama_grammar_advance_stack`), and
  11347. // produces the N possible stacks if the given char is accepted at those
  11348. // positions
  11349. void llama_grammar_accept(
  11350. const std::vector<std::vector<llama_grammar_element>> & rules,
  11351. const std::vector<std::vector<const llama_grammar_element *>> & stacks,
  11352. const uint32_t chr,
  11353. std::vector<std::vector<const llama_grammar_element *>> & new_stacks) {
  11354. new_stacks.clear();
  11355. for (const auto & stack : stacks) {
  11356. if (stack.empty()) {
  11357. continue;
  11358. }
  11359. auto match = llama_grammar_match_char(stack.back(), chr);
  11360. if (match.first) {
  11361. const llama_grammar_element * pos = match.second;
  11362. // update top of stack to next element, if any
  11363. std::vector<const llama_grammar_element *> new_stack(stack.begin(), stack.end() - 1);
  11364. if (!llama_grammar_is_end_of_sequence(pos)) {
  11365. new_stack.push_back(pos);
  11366. }
  11367. llama_grammar_advance_stack(rules, new_stack, new_stacks);
  11368. }
  11369. }
  11370. }
  11371. static std::vector<llama_grammar_candidate> llama_grammar_reject_candidates(
  11372. const std::vector<std::vector<llama_grammar_element>> & rules,
  11373. const std::vector<std::vector<const llama_grammar_element *>> & stacks,
  11374. const std::vector<llama_grammar_candidate> & candidates);
  11375. static std::vector<llama_grammar_candidate> llama_grammar_reject_candidates_for_stack(
  11376. const std::vector<std::vector<llama_grammar_element>> & rules,
  11377. const std::vector<const llama_grammar_element *> & stack,
  11378. const std::vector<llama_grammar_candidate> & candidates) {
  11379. std::vector<llama_grammar_candidate> rejects;
  11380. rejects.reserve(candidates.size());
  11381. if (stack.empty()) {
  11382. for (const auto & tok : candidates) {
  11383. if (*tok.code_points != 0 || tok.partial_utf8.n_remain != 0) {
  11384. rejects.push_back(tok);
  11385. }
  11386. }
  11387. return rejects;
  11388. }
  11389. const llama_grammar_element * stack_pos = stack.back();
  11390. std::vector<llama_grammar_candidate> next_candidates;
  11391. next_candidates.reserve(candidates.size());
  11392. for (const auto & tok : candidates) {
  11393. if (*tok.code_points == 0) {
  11394. // reached end of full codepoints in token, reject iff it ended in a partial sequence
  11395. // that cannot satisfy this position in grammar
  11396. if (tok.partial_utf8.n_remain != 0 &&
  11397. !llama_grammar_match_partial_char(stack_pos, tok.partial_utf8)) {
  11398. rejects.push_back(tok);
  11399. }
  11400. } else if (llama_grammar_match_char(stack_pos, *tok.code_points).first) {
  11401. next_candidates.push_back({ tok.index, tok.code_points + 1, tok.partial_utf8 });
  11402. } else {
  11403. rejects.push_back(tok);
  11404. }
  11405. }
  11406. const auto * stack_pos_after = llama_grammar_match_char(stack_pos, 0).second;
  11407. // update top of stack to next element, if any
  11408. std::vector<const llama_grammar_element *> stack_after(stack.begin(), stack.end() - 1);
  11409. if (!llama_grammar_is_end_of_sequence(stack_pos_after)) {
  11410. stack_after.push_back(stack_pos_after);
  11411. }
  11412. std::vector<std::vector<const llama_grammar_element *>> next_stacks;
  11413. llama_grammar_advance_stack(rules, stack_after, next_stacks);
  11414. auto next_rejects = llama_grammar_reject_candidates(rules, next_stacks, next_candidates);
  11415. for (const auto & tok : next_rejects) {
  11416. rejects.push_back({ tok.index, tok.code_points - 1, tok.partial_utf8 });
  11417. }
  11418. return rejects;
  11419. }
  11420. static std::vector<llama_grammar_candidate> llama_grammar_reject_candidates(
  11421. const std::vector<std::vector<llama_grammar_element>> & rules,
  11422. const std::vector<std::vector<const llama_grammar_element *>> & stacks,
  11423. const std::vector<llama_grammar_candidate> & candidates) {
  11424. GGML_ASSERT(!stacks.empty()); // REVIEW
  11425. if (candidates.empty()) {
  11426. return std::vector<llama_grammar_candidate>();
  11427. }
  11428. auto rejects = llama_grammar_reject_candidates_for_stack(rules, stacks.front(), candidates);
  11429. for (size_t i = 1, size = stacks.size(); i < size; ++i) {
  11430. rejects = llama_grammar_reject_candidates_for_stack(rules, stacks[i], rejects);
  11431. }
  11432. return rejects;
  11433. }
  11434. static bool llama_grammar_detect_left_recursion(
  11435. const std::vector<std::vector<llama_grammar_element>> & rules,
  11436. size_t rule_index,
  11437. std::vector<bool> * rules_visited,
  11438. std::vector<bool> * rules_in_progress,
  11439. std::vector<bool> * rules_may_be_empty) {
  11440. if ((*rules_in_progress)[rule_index]) {
  11441. return true;
  11442. }
  11443. (*rules_in_progress)[rule_index] = true;
  11444. const std::vector<llama_grammar_element> & rule = rules[rule_index];
  11445. // First check if the rule might produce the empty string. This could be done combined with the second
  11446. // step but it's more readable as two steps.
  11447. bool at_rule_start = true;
  11448. for (size_t i = 0; i < rule.size(); i++) {
  11449. if (llama_grammar_is_end_of_sequence(&rule[i])) {
  11450. if (at_rule_start) {
  11451. (*rules_may_be_empty)[rule_index] = true;
  11452. break;
  11453. }
  11454. at_rule_start = true;
  11455. } else {
  11456. at_rule_start = false;
  11457. }
  11458. }
  11459. // Second, recurse into leftmost nonterminals (or next-leftmost as long as the previous nonterminal may
  11460. // be empty)
  11461. bool recurse_into_nonterminal = true;
  11462. for (size_t i = 0; i < rule.size(); i++) {
  11463. if (rule[i].type == LLAMA_GRETYPE_RULE_REF && recurse_into_nonterminal) {
  11464. if (llama_grammar_detect_left_recursion(rules, (size_t)rule[i].value, rules_visited, rules_in_progress, rules_may_be_empty)) {
  11465. return true;
  11466. }
  11467. if (!((*rules_may_be_empty)[(size_t)rule[i].value])) {
  11468. recurse_into_nonterminal = false;
  11469. }
  11470. } else if (llama_grammar_is_end_of_sequence(&rule[i])) {
  11471. recurse_into_nonterminal = true;
  11472. } else {
  11473. recurse_into_nonterminal = false;
  11474. }
  11475. }
  11476. (*rules_in_progress)[rule_index] = false;
  11477. (*rules_visited)[rule_index] = true;
  11478. return false;
  11479. }
  11480. //
  11481. // grammar - external
  11482. //
  11483. struct llama_grammar * llama_grammar_init(
  11484. const llama_grammar_element ** rules,
  11485. size_t n_rules,
  11486. size_t start_rule_index) {
  11487. const llama_grammar_element * pos;
  11488. // copy rule definitions into vectors
  11489. std::vector<std::vector<llama_grammar_element>> vec_rules(n_rules);
  11490. for (size_t i = 0; i < n_rules; i++) {
  11491. for (pos = rules[i]; pos->type != LLAMA_GRETYPE_END; pos++) {
  11492. vec_rules[i].push_back(*pos);
  11493. }
  11494. vec_rules[i].push_back({LLAMA_GRETYPE_END, 0});
  11495. }
  11496. // Check for left recursion
  11497. std::vector<bool> rules_visited(n_rules);
  11498. std::vector<bool> rules_in_progress(n_rules);
  11499. std::vector<bool> rules_may_be_empty(n_rules);
  11500. for (size_t i = 0; i < n_rules; i++) {
  11501. if (rules_visited[i]) {
  11502. continue;
  11503. }
  11504. if (llama_grammar_detect_left_recursion(vec_rules, i, &rules_visited, &rules_in_progress, &rules_may_be_empty)) {
  11505. throw std::runtime_error(format("unsupported grammar, left recursion detected for nonterminal at index %zu", i));
  11506. }
  11507. }
  11508. // loop over alternates of start rule to build initial stacks
  11509. std::vector<std::vector<const llama_grammar_element *>> stacks;
  11510. pos = vec_rules[start_rule_index].data();
  11511. do {
  11512. std::vector<const llama_grammar_element *> stack;
  11513. if (!llama_grammar_is_end_of_sequence(pos)) {
  11514. // if alternate is nonempty, add to stack
  11515. stack.push_back(pos);
  11516. }
  11517. llama_grammar_advance_stack(vec_rules, stack, stacks);
  11518. while (!llama_grammar_is_end_of_sequence(pos)) {
  11519. // scan to end of alternate def
  11520. pos++;
  11521. }
  11522. if (pos->type == LLAMA_GRETYPE_ALT) {
  11523. // there's another alternate def of this rule to process
  11524. pos++;
  11525. } else {
  11526. break;
  11527. }
  11528. } while (true);
  11529. // Important: vec_rules has to be moved here, not copied, because stacks contains
  11530. // pointers to elements of vec_rules. If vec_rules were copied into llama_grammar
  11531. // then the pointers would be invalidated when the local vec_rules goes out of scope.
  11532. return new llama_grammar{ std::move(vec_rules), std::move(stacks), {} };
  11533. }
  11534. void llama_grammar_free(struct llama_grammar * grammar) {
  11535. delete grammar;
  11536. }
  11537. struct llama_grammar * llama_grammar_copy(const struct llama_grammar * grammar) {
  11538. llama_grammar * result = new llama_grammar{ grammar->rules, grammar->stacks, grammar->partial_utf8 };
  11539. // redirect elements in stacks to point to new rules
  11540. for (size_t is = 0; is < result->stacks.size(); is++) {
  11541. for (size_t ie = 0; ie < result->stacks[is].size(); ie++) {
  11542. for (size_t ir0 = 0; ir0 < grammar->rules.size(); ir0++) {
  11543. for (size_t ir1 = 0; ir1 < grammar->rules[ir0].size(); ir1++) {
  11544. if (grammar->stacks[is][ie] == &grammar->rules[ir0][ir1]) {
  11545. result->stacks[is][ie] = &result->rules[ir0][ir1];
  11546. }
  11547. }
  11548. }
  11549. }
  11550. }
  11551. return result;
  11552. }
  11553. //
  11554. // sampling
  11555. //
  11556. void llama_set_rng_seed(struct llama_context * ctx, uint32_t seed) {
  11557. if (seed == LLAMA_DEFAULT_SEED) {
  11558. seed = time(NULL);
  11559. }
  11560. ctx->rng.seed(seed);
  11561. }
  11562. void llama_sample_softmax(struct llama_context * ctx, llama_token_data_array * candidates) {
  11563. GGML_ASSERT(candidates->size > 0);
  11564. const int64_t t_start_sample_us = ggml_time_us();
  11565. // Sort the logits in descending order
  11566. if (!candidates->sorted) {
  11567. std::sort(candidates->data, candidates->data + candidates->size, [](const llama_token_data & a, const llama_token_data & b) {
  11568. return a.logit > b.logit;
  11569. });
  11570. candidates->sorted = true;
  11571. }
  11572. float max_l = candidates->data[0].logit;
  11573. float cum_sum = 0.0f;
  11574. for (size_t i = 0; i < candidates->size; ++i) {
  11575. float p = expf(candidates->data[i].logit - max_l);
  11576. candidates->data[i].p = p;
  11577. cum_sum += p;
  11578. }
  11579. for (size_t i = 0; i < candidates->size; ++i) {
  11580. candidates->data[i].p /= cum_sum;
  11581. }
  11582. if (ctx) {
  11583. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  11584. }
  11585. }
  11586. void llama_sample_top_k(struct llama_context * ctx, llama_token_data_array * candidates, int32_t k, size_t min_keep) {
  11587. // TODO: move bucket sort to separate function so that top_p/tail_free/typical/softmax first is equally fast
  11588. // if (k >= (int32_t)candidates->size) {
  11589. // return;
  11590. // }
  11591. const int64_t t_start_sample_us = ggml_time_us();
  11592. if (k <= 0) {
  11593. k = candidates->size;
  11594. }
  11595. k = std::max(k, (int) min_keep);
  11596. k = std::min(k, (int) candidates->size);
  11597. // Sort scores in descending order
  11598. if (!candidates->sorted) {
  11599. auto comp = [](const llama_token_data & a, const llama_token_data & b) {
  11600. return a.logit > b.logit;
  11601. };
  11602. if (k <= 128) {
  11603. std::partial_sort(candidates->data, candidates->data + k, candidates->data + candidates->size, comp);
  11604. } else {
  11605. constexpr int nbuckets = 128;
  11606. constexpr float bucket_low = -10.0f;
  11607. constexpr float bucket_high = 10.0f;
  11608. constexpr float bucket_scale = nbuckets/(bucket_high - bucket_low);
  11609. constexpr float bucker_inter = -bucket_low * bucket_scale;
  11610. std::vector<int> bucket_idx(candidates->size);
  11611. std::vector<int> histo(nbuckets, 0);
  11612. for (int i = 0; i < (int)candidates->size; ++i) {
  11613. const float val = candidates->data[i].logit;
  11614. int ib = int(bucket_scale * val + bucker_inter); //nbuckets * (val - bucket_low) / (bucket_high - bucket_low);
  11615. ib = std::max(0, std::min(nbuckets-1, ib));
  11616. bucket_idx[i] = ib;
  11617. ++histo[ib];
  11618. }
  11619. int nhave = 0;
  11620. int ib = nbuckets - 1;
  11621. for ( ; ib >= 0; --ib) {
  11622. nhave += histo[ib];
  11623. if (nhave >= k) break;
  11624. }
  11625. std::vector<llama_token_data> tmp_tokens(nhave);
  11626. auto ptr = tmp_tokens.data();
  11627. std::vector<llama_token_data*> bucket_ptrs;
  11628. bucket_ptrs.reserve(nbuckets - ib);
  11629. for (int j = nbuckets - 1; j >= ib; --j) {
  11630. bucket_ptrs.push_back(ptr);
  11631. ptr += histo[j];
  11632. }
  11633. for (int i = 0; i < (int)candidates->size; ++i) {
  11634. int j = bucket_idx[i];
  11635. if (j >= ib) {
  11636. *bucket_ptrs[nbuckets-1-j]++ = candidates->data[i];
  11637. }
  11638. }
  11639. ptr = tmp_tokens.data();
  11640. int ndone = 0;
  11641. for (int j = nbuckets-1; j > ib; --j) {
  11642. std::sort(ptr, ptr + histo[j], comp);
  11643. ptr += histo[j];
  11644. ndone += histo[j];
  11645. }
  11646. std::partial_sort(ptr, ptr + k - ndone, ptr + histo[ib], comp);
  11647. std::memcpy(candidates->data, tmp_tokens.data(), k*sizeof(llama_token_data));
  11648. }
  11649. candidates->sorted = true;
  11650. }
  11651. candidates->size = k;
  11652. if (ctx) {
  11653. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  11654. }
  11655. }
  11656. void llama_sample_top_p(struct llama_context * ctx, llama_token_data_array * candidates, float p, size_t min_keep) {
  11657. if (p >= 1.0f) {
  11658. return;
  11659. }
  11660. llama_sample_softmax(ctx, candidates);
  11661. const int64_t t_start_sample_us = ggml_time_us();
  11662. // Compute the cumulative probabilities
  11663. float cum_sum = 0.0f;
  11664. size_t last_idx = candidates->size;
  11665. for (size_t i = 0; i < candidates->size; ++i) {
  11666. cum_sum += candidates->data[i].p;
  11667. // Check if the running sum is at least p or if we have kept at least min_keep tokens
  11668. // we set the last index to i+1 to indicate that the current iterate should be included in the set
  11669. if (cum_sum >= p && i + 1 >= min_keep) {
  11670. last_idx = i + 1;
  11671. break;
  11672. }
  11673. }
  11674. // Resize the output vector to keep only the top-p tokens
  11675. candidates->size = last_idx;
  11676. if (ctx) {
  11677. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  11678. }
  11679. }
  11680. void llama_sample_min_p(struct llama_context * ctx, llama_token_data_array * candidates, float p, size_t min_keep) {
  11681. if (p <= 0.0f || !candidates->size) {
  11682. return;
  11683. }
  11684. const int64_t t_start_sample_us = ggml_time_us();
  11685. bool min_p_applied = false;
  11686. // if the candidates aren't sorted, try the unsorted implementation first
  11687. if (!candidates->sorted) {
  11688. std::vector<llama_token_data> filtered_tokens;
  11689. float max_logit = -FLT_MAX;
  11690. for (size_t i = 0; i < candidates->size; ++i) {
  11691. max_logit = std::max(max_logit, candidates->data[i].logit);
  11692. }
  11693. const float min_logit = max_logit + logf(p); // min logit for p_i >= p * p_max
  11694. for (size_t i = 0; i < candidates->size; ++i) {
  11695. if (candidates->data[i].logit >= min_logit) {
  11696. filtered_tokens.push_back(candidates->data[i]);
  11697. }
  11698. }
  11699. // if we have enough values the operation was a success
  11700. if (filtered_tokens.size() >= min_keep) {
  11701. memcpy(candidates->data, filtered_tokens.data(), filtered_tokens.size()*sizeof(llama_token_data));
  11702. candidates->size = filtered_tokens.size();
  11703. min_p_applied = true;
  11704. }
  11705. }
  11706. // if the candidates are sorted or the unsorted implementation failed, use this implementation
  11707. if (!min_p_applied) {
  11708. // Sort the logits in descending order
  11709. if (!candidates->sorted) {
  11710. std::sort(candidates->data, candidates->data + candidates->size, [](const llama_token_data & a, const llama_token_data & b) {
  11711. return a.logit > b.logit;
  11712. });
  11713. candidates->sorted = true;
  11714. }
  11715. const float min_logit = candidates->data[0].logit + logf(p); // min logit for p_i >= p * p_max
  11716. size_t i = 1; // first token always matches
  11717. for (; i < candidates->size; ++i) {
  11718. if (candidates->data[i].logit < min_logit && i >= min_keep) {
  11719. break; // prob too small
  11720. }
  11721. }
  11722. // Resize the output vector to keep only the matching tokens
  11723. candidates->size = i;
  11724. }
  11725. if (ctx) {
  11726. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  11727. }
  11728. }
  11729. void llama_sample_tail_free(struct llama_context * ctx, llama_token_data_array * candidates, float z, size_t min_keep) {
  11730. if (z >= 1.0f || candidates->size <= 2) {
  11731. return;
  11732. }
  11733. llama_sample_softmax(nullptr, candidates);
  11734. const int64_t t_start_sample_us = ggml_time_us();
  11735. // Compute the first and second derivatives
  11736. std::vector<float> first_derivatives(candidates->size - 1);
  11737. std::vector<float> second_derivatives(candidates->size - 2);
  11738. for (size_t i = 0; i < first_derivatives.size(); ++i) {
  11739. first_derivatives[i] = candidates->data[i].p - candidates->data[i + 1].p;
  11740. }
  11741. for (size_t i = 0; i < second_derivatives.size(); ++i) {
  11742. second_derivatives[i] = first_derivatives[i] - first_derivatives[i + 1];
  11743. }
  11744. // Calculate absolute value of second derivatives
  11745. for (size_t i = 0; i < second_derivatives.size(); ++i) {
  11746. second_derivatives[i] = std::abs(second_derivatives[i]);
  11747. }
  11748. // Normalize the second derivatives
  11749. {
  11750. const float second_derivatives_sum = std::accumulate(second_derivatives.begin(), second_derivatives.end(), 0.0f);
  11751. if (second_derivatives_sum > 1e-6f) {
  11752. for (float & value : second_derivatives) {
  11753. value /= second_derivatives_sum;
  11754. }
  11755. } else {
  11756. for (float & value : second_derivatives) {
  11757. value = 1.0f / second_derivatives.size();
  11758. }
  11759. }
  11760. }
  11761. float cum_sum = 0.0f;
  11762. size_t last_idx = candidates->size;
  11763. for (size_t i = 0; i < second_derivatives.size(); ++i) {
  11764. cum_sum += second_derivatives[i];
  11765. // Check if the running sum is greater than z or if we have kept at least min_keep tokens
  11766. if (cum_sum > z && i >= min_keep) {
  11767. last_idx = i;
  11768. break;
  11769. }
  11770. }
  11771. // Resize the output vector to keep only the tokens above the tail location
  11772. candidates->size = last_idx;
  11773. if (ctx) {
  11774. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  11775. }
  11776. }
  11777. void llama_sample_typical(struct llama_context * ctx, llama_token_data_array * candidates, float p, size_t min_keep) {
  11778. // Reference implementation:
  11779. // https://github.com/huggingface/transformers/compare/main...cimeister:typical-sampling:typical-pr
  11780. if (p >= 1.0f) {
  11781. return;
  11782. }
  11783. // Compute the softmax of logits and calculate entropy
  11784. llama_sample_softmax(nullptr, candidates);
  11785. const int64_t t_start_sample_us = ggml_time_us();
  11786. float entropy = 0.0f;
  11787. for (size_t i = 0; i < candidates->size; ++i) {
  11788. entropy += -candidates->data[i].p * logf(candidates->data[i].p);
  11789. }
  11790. // Compute the absolute difference between negative log probability and entropy for each candidate
  11791. std::vector<float> shifted_scores;
  11792. for (size_t i = 0; i < candidates->size; ++i) {
  11793. float shifted_score = fabsf(-logf(candidates->data[i].p) - entropy);
  11794. shifted_scores.push_back(shifted_score);
  11795. }
  11796. // Sort tokens based on the shifted_scores and their corresponding indices
  11797. std::vector<size_t> indices(candidates->size);
  11798. std::iota(indices.begin(), indices.end(), 0);
  11799. std::sort(indices.begin(), indices.end(), [&](size_t a, size_t b) {
  11800. return shifted_scores[a] < shifted_scores[b];
  11801. });
  11802. // Compute the cumulative probabilities
  11803. float cum_sum = 0.0f;
  11804. size_t last_idx = indices.size();
  11805. for (size_t i = 0; i < indices.size(); ++i) {
  11806. size_t idx = indices[i];
  11807. cum_sum += candidates->data[idx].p;
  11808. // Check if the running sum is greater than typical or if we have kept at least min_keep tokens
  11809. if (cum_sum > p && i >= min_keep - 1) {
  11810. last_idx = i + 1;
  11811. break;
  11812. }
  11813. }
  11814. // Resize the output vector to keep only the locally typical tokens
  11815. std::vector<llama_token_data> new_candidates;
  11816. for (size_t i = 0; i < last_idx; ++i) {
  11817. size_t idx = indices[i];
  11818. new_candidates.push_back(candidates->data[idx]);
  11819. }
  11820. // Replace the data in candidates with the new_candidates data
  11821. std::copy(new_candidates.begin(), new_candidates.end(), candidates->data);
  11822. candidates->size = new_candidates.size();
  11823. candidates->sorted = false;
  11824. if (ctx) {
  11825. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  11826. }
  11827. }
  11828. void llama_sample_entropy(struct llama_context * ctx, llama_token_data_array * candidates_p, float min_temp, float max_temp, float exponent_val) {
  11829. const int64_t t_start_sample_us = ggml_time_us();
  11830. // no need to do anything if there is only one (or zero) candidates
  11831. if(candidates_p->size <= 1) {
  11832. return;
  11833. }
  11834. // Calculate maximum possible entropy
  11835. float max_entropy = -logf(1.0f / candidates_p->size);
  11836. llama_sample_softmax(nullptr, candidates_p);
  11837. // Calculate entropy of the softmax probabilities
  11838. float entropy = 0.0f;
  11839. for (size_t i = 0; i < candidates_p->size; ++i) {
  11840. float prob = candidates_p->data[i].p;
  11841. if (prob > 0.0f) { // Ensure no log(0)
  11842. entropy -= prob * logf(prob);
  11843. }
  11844. }
  11845. // Normalize the entropy (max_entropy cannot be 0 here because we checked candidates_p->size != 1 above)
  11846. float normalized_entropy = entropy / max_entropy;
  11847. // Map the normalized entropy to the desired temperature range using the power function
  11848. float dyn_temp = min_temp + (max_temp - min_temp) * powf(normalized_entropy, exponent_val);
  11849. #ifdef DEBUG
  11850. LLAMA_LOG_INFO("Your text maxtemp value is: %f\n", max_temp);
  11851. LLAMA_LOG_INFO("Entropy: %f\n", entropy);
  11852. LLAMA_LOG_INFO("Max Possible Entropy: %f\n", max_entropy);
  11853. LLAMA_LOG_INFO("Normalized Entropy: %f\n", normalized_entropy);
  11854. LLAMA_LOG_INFO("Exponent: %f\n", exponent_val);
  11855. LLAMA_LOG_INFO("Dynamic Temperature (dyn_temp): %f\n", dyn_temp);
  11856. #endif
  11857. // Apply the dynamically calculated temperature scaling
  11858. for (size_t i = 0; i < candidates_p->size; ++i) {
  11859. candidates_p->data[i].logit /= dyn_temp;
  11860. }
  11861. // Re-compute softmax probabilities after scaling logits with dynamic temperature
  11862. double max_l_double = candidates_p->data[0].logit;
  11863. double cum_sum_double = 0.0;
  11864. for (size_t i = 0; i < candidates_p->size; ++i) {
  11865. double p = exp(candidates_p->data[i].logit - max_l_double);
  11866. candidates_p->data[i].p = p; // Store the scaled probability
  11867. cum_sum_double += p;
  11868. }
  11869. for (size_t i = 0; i < candidates_p->size; ++i) {
  11870. candidates_p->data[i].p /= cum_sum_double; // Re-normalize the probabilities
  11871. }
  11872. #ifdef DEBUG
  11873. // Print the updated top 25 probabilities after temperature scaling
  11874. LLAMA_LOG_INFO("\nUpdated Top 25 Probabilities After Dynamic Temperature Scaling (in percentages):\n");
  11875. for (size_t i = 0; i < 25 && i < candidates_p->size; ++i) {
  11876. LLAMA_LOG_INFO("Token %zu: %f%%\n", i + 1, candidates_p->data[i].p * 100.0f);
  11877. }
  11878. #endif
  11879. if (ctx) {
  11880. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  11881. }
  11882. }
  11883. void llama_sample_temp(struct llama_context * ctx, llama_token_data_array * candidates_p, float temp) {
  11884. const int64_t t_start_sample_us = ggml_time_us();
  11885. for (size_t i = 0; i < candidates_p->size; ++i) {
  11886. candidates_p->data[i].logit /= temp;
  11887. }
  11888. if (ctx) {
  11889. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  11890. }
  11891. }
  11892. void llama_sample_repetition_penalties(
  11893. struct llama_context * ctx,
  11894. llama_token_data_array * candidates,
  11895. const llama_token * last_tokens,
  11896. size_t penalty_last_n,
  11897. float penalty_repeat,
  11898. float penalty_freq,
  11899. float penalty_present) {
  11900. if (penalty_last_n == 0 || (penalty_repeat == 1.0f && penalty_freq == 0.0f && penalty_present == 0.0f)) {
  11901. return;
  11902. }
  11903. const int64_t t_start_sample_us = ggml_time_us();
  11904. // Create a frequency map to count occurrences of each token in last_tokens
  11905. std::unordered_map<llama_token, int> token_count;
  11906. for (size_t i = 0; i < penalty_last_n; ++i) {
  11907. token_count[last_tokens[i]]++;
  11908. }
  11909. // Apply frequency and presence penalties to the candidates
  11910. for (size_t i = 0; i < candidates->size; ++i) {
  11911. const auto token_iter = token_count.find(candidates->data[i].id);
  11912. if (token_iter == token_count.end()) {
  11913. continue;
  11914. }
  11915. const int count = token_iter->second;
  11916. // The academic publication that described this technique actually just only divided, but that would cause tokens with negative logits to become more likely, which is obviously wrong.
  11917. // This is common fix for this problem, which is to multiply by the penalty instead of dividing.
  11918. if (candidates->data[i].logit <= 0) {
  11919. candidates->data[i].logit *= penalty_repeat;
  11920. } else {
  11921. candidates->data[i].logit /= penalty_repeat;
  11922. }
  11923. candidates->data[i].logit -= float(count) * penalty_freq + float(count > 0) * penalty_present;
  11924. }
  11925. candidates->sorted = false;
  11926. if (ctx) {
  11927. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  11928. }
  11929. }
  11930. void llama_sample_grammar(struct llama_context * ctx, llama_token_data_array * candidates, const struct llama_grammar * grammar) {
  11931. GGML_ASSERT(ctx);
  11932. const int64_t t_start_sample_us = ggml_time_us();
  11933. bool allow_eog = false;
  11934. for (const auto & stack : grammar->stacks) {
  11935. if (stack.empty()) {
  11936. allow_eog = true;
  11937. break;
  11938. }
  11939. }
  11940. std::vector<std::pair<std::vector<uint32_t>, llama_partial_utf8>> candidates_decoded;
  11941. candidates_decoded.reserve(candidates->size);
  11942. std::vector<llama_grammar_candidate> candidates_grammar;
  11943. candidates_grammar.reserve(candidates->size);
  11944. for (size_t i = 0; i < candidates->size; ++i) {
  11945. const llama_token id = candidates->data[i].id;
  11946. const std::string piece = llama_token_to_piece(ctx, id, false);
  11947. if (llama_token_is_eog(&ctx->model, id)) {
  11948. if (!allow_eog) {
  11949. candidates->data[i].logit = -INFINITY;
  11950. }
  11951. } else if (piece.empty() || piece[0] == 0) {
  11952. candidates->data[i].logit = -INFINITY;
  11953. } else {
  11954. candidates_decoded.push_back(decode_utf8(piece, grammar->partial_utf8));
  11955. candidates_grammar.push_back({ i, candidates_decoded.back().first.data(), candidates_decoded.back().second });
  11956. }
  11957. }
  11958. const auto rejects = llama_grammar_reject_candidates(grammar->rules, grammar->stacks, candidates_grammar);
  11959. for (const auto & reject : rejects) {
  11960. candidates->data[reject.index].logit = -INFINITY;
  11961. }
  11962. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  11963. }
  11964. static void llama_log_softmax(float * array, size_t size) {
  11965. float max_l = *std::max_element(array, array + size);
  11966. float sum = 0.f;
  11967. for (size_t i = 0; i < size; ++i) {
  11968. float p = expf(array[i] - max_l);
  11969. sum += p;
  11970. array[i] = p;
  11971. }
  11972. for (size_t i = 0; i < size; ++i) {
  11973. array[i] = logf(array[i] / sum);
  11974. }
  11975. }
  11976. void llama_sample_apply_guidance(
  11977. struct llama_context * ctx,
  11978. float * logits,
  11979. float * logits_guidance,
  11980. float scale) {
  11981. GGML_ASSERT(ctx);
  11982. const auto t_start_sample_us = ggml_time_us();
  11983. const auto n_vocab = llama_n_vocab(llama_get_model(ctx));
  11984. llama_log_softmax(logits, n_vocab);
  11985. llama_log_softmax(logits_guidance, n_vocab);
  11986. for (int i = 0; i < n_vocab; ++i) {
  11987. auto & l = logits[i];
  11988. const auto & g = logits_guidance[i];
  11989. l = scale * (l - g) + g;
  11990. }
  11991. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  11992. }
  11993. llama_token llama_sample_token_mirostat(struct llama_context * ctx, llama_token_data_array * candidates, float tau, float eta, int32_t m, float * mu) {
  11994. GGML_ASSERT(ctx);
  11995. auto N = float(llama_n_vocab(llama_get_model(ctx)));
  11996. int64_t t_start_sample_us;
  11997. t_start_sample_us = ggml_time_us();
  11998. llama_sample_softmax(nullptr, candidates);
  11999. // Estimate s_hat using the most probable m tokens
  12000. float s_hat = 0.0;
  12001. float sum_ti_bi = 0.0;
  12002. float sum_ti_sq = 0.0;
  12003. for (size_t i = 0; i < size_t(m - 1) && i < candidates->size - 1; ++i) {
  12004. float t_i = logf(float(i + 2) / float(i + 1));
  12005. float b_i = logf(candidates->data[i].p / candidates->data[i + 1].p);
  12006. sum_ti_bi += t_i * b_i;
  12007. sum_ti_sq += t_i * t_i;
  12008. }
  12009. s_hat = sum_ti_bi / sum_ti_sq;
  12010. // Compute k from the estimated s_hat and target surprise value
  12011. float epsilon_hat = s_hat - 1;
  12012. float k = powf((epsilon_hat * powf(2, *mu)) / (1 - powf(N, -epsilon_hat)), 1 / s_hat);
  12013. // Sample the next word X using top-k sampling
  12014. llama_sample_top_k(nullptr, candidates, int(k), 1);
  12015. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  12016. llama_token X = llama_sample_token(ctx, candidates);
  12017. t_start_sample_us = ggml_time_us();
  12018. // Compute error as the difference between observed surprise and target surprise value
  12019. size_t X_idx = std::distance(candidates->data, std::find_if(candidates->data, candidates->data + candidates->size, [&](const llama_token_data & candidate) {
  12020. return candidate.id == X;
  12021. }));
  12022. float observed_surprise = -log2f(candidates->data[X_idx].p);
  12023. float e = observed_surprise - tau;
  12024. // Update mu using the learning rate and error
  12025. *mu = *mu - eta * e;
  12026. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  12027. return X;
  12028. }
  12029. llama_token llama_sample_token_mirostat_v2(struct llama_context * ctx, llama_token_data_array * candidates, float tau, float eta, float * mu) {
  12030. int64_t t_start_sample_us;
  12031. t_start_sample_us = ggml_time_us();
  12032. llama_sample_softmax(ctx, candidates);
  12033. // Truncate the words with surprise values greater than mu
  12034. candidates->size = std::distance(candidates->data, std::find_if(candidates->data, candidates->data + candidates->size, [&](const llama_token_data & candidate) {
  12035. return -log2f(candidate.p) > *mu;
  12036. }));
  12037. if (candidates->size == 0) {
  12038. candidates->size = 1;
  12039. }
  12040. if (ctx) {
  12041. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  12042. }
  12043. // Normalize the probabilities of the remaining words
  12044. llama_sample_softmax(ctx, candidates);
  12045. // Sample the next word X from the remaining words
  12046. llama_token X = llama_sample_token(ctx, candidates);
  12047. t_start_sample_us = ggml_time_us();
  12048. // Compute error as the difference between observed surprise and target surprise value
  12049. size_t X_idx = std::distance(candidates->data, std::find_if(candidates->data, candidates->data + candidates->size, [&](const llama_token_data & candidate) {
  12050. return candidate.id == X;
  12051. }));
  12052. float observed_surprise = -log2f(candidates->data[X_idx].p);
  12053. float e = observed_surprise - tau;
  12054. // Update mu using the learning rate and error
  12055. *mu = *mu - eta * e;
  12056. if (ctx) {
  12057. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  12058. }
  12059. return X;
  12060. }
  12061. llama_token llama_sample_token_greedy(struct llama_context * ctx, llama_token_data_array * candidates) {
  12062. const int64_t t_start_sample_us = ggml_time_us();
  12063. // Find max element
  12064. auto * max_iter = std::max_element(candidates->data, candidates->data + candidates->size, [](const llama_token_data & a, const llama_token_data & b) {
  12065. return a.logit < b.logit;
  12066. });
  12067. llama_token result = max_iter->id;
  12068. if (ctx) {
  12069. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  12070. ctx->n_sample++;
  12071. }
  12072. return result;
  12073. }
  12074. llama_token llama_sample_token_with_rng(struct llama_context * ctx, llama_token_data_array * candidates, std::mt19937 & rng) {
  12075. GGML_ASSERT(ctx);
  12076. const int64_t t_start_sample_us = ggml_time_us();
  12077. llama_sample_softmax(nullptr, candidates);
  12078. std::vector<float> probs;
  12079. probs.reserve(candidates->size);
  12080. for (size_t i = 0; i < candidates->size; ++i) {
  12081. probs.push_back(candidates->data[i].p);
  12082. }
  12083. std::discrete_distribution<> dist(probs.begin(), probs.end());
  12084. int idx = dist(rng);
  12085. llama_token result = candidates->data[idx].id;
  12086. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  12087. ctx->n_sample++;
  12088. return result;
  12089. }
  12090. llama_token llama_sample_token(struct llama_context * ctx, llama_token_data_array * candidates) {
  12091. return llama_sample_token_with_rng(ctx, candidates, ctx->rng);
  12092. }
  12093. void llama_grammar_accept_token(struct llama_context * ctx, struct llama_grammar * grammar, llama_token token) {
  12094. const int64_t t_start_sample_us = ggml_time_us();
  12095. if (llama_token_is_eog(&ctx->model, token)) {
  12096. for (const auto & stack : grammar->stacks) {
  12097. if (stack.empty()) {
  12098. return;
  12099. }
  12100. }
  12101. GGML_ASSERT(false);
  12102. }
  12103. const std::string piece = llama_token_to_piece(ctx, token, false);
  12104. // Note terminating 0 in decoded string
  12105. const auto decoded = decode_utf8(piece, grammar->partial_utf8);
  12106. const auto & code_points = decoded.first;
  12107. std::vector<std::vector<const llama_grammar_element *>> tmp_new_stacks;
  12108. for (auto it = code_points.begin(), end = code_points.end() - 1; it != end; ++it) {
  12109. llama_grammar_accept(grammar->rules, grammar->stacks, *it, tmp_new_stacks);
  12110. grammar->stacks = tmp_new_stacks;
  12111. }
  12112. grammar->partial_utf8 = decoded.second;
  12113. GGML_ASSERT(!grammar->stacks.empty());
  12114. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  12115. }
  12116. //
  12117. // Beam search
  12118. //
  12119. struct llama_beam {
  12120. std::vector<llama_token> tokens;
  12121. float p; // Cumulative beam probability (renormalized relative to all beams)
  12122. bool eob; // Initialize end-of-beam to false. Callback sets this to true.
  12123. // Sort beams by probability. In case of ties, prefer beams at eob.
  12124. bool operator<(const llama_beam & rhs) const {
  12125. return std::make_pair(p, eob) < std::make_pair(rhs.p, rhs.eob);
  12126. }
  12127. // Shift off first n tokens and discard them.
  12128. void shift_tokens(const size_t n) {
  12129. if (n) {
  12130. std::copy(tokens.begin() + n, tokens.end(), tokens.begin());
  12131. tokens.resize(tokens.size() - n);
  12132. }
  12133. }
  12134. llama_beam_view view() const { return {tokens.data(), tokens.size(), p, eob}; }
  12135. };
  12136. // A struct for calculating logit-related info.
  12137. struct llama_logit_info {
  12138. const float * const logits;
  12139. const int n_vocab;
  12140. const float max_l;
  12141. const float normalizer;
  12142. struct sum_exp {
  12143. float max_l;
  12144. float operator()(float sum, float l) const { return sum + std::exp(l - max_l); }
  12145. };
  12146. llama_logit_info(llama_context * ctx)
  12147. : logits(llama_get_logits(ctx))
  12148. , n_vocab(llama_n_vocab(llama_get_model(ctx)))
  12149. , max_l(*std::max_element(logits, logits + n_vocab))
  12150. , normalizer(1.0f / std::accumulate(logits, logits + n_vocab, 0.0f, sum_exp{max_l}))
  12151. { }
  12152. llama_token_data get_token_data(const llama_token token_id) const {
  12153. constexpr auto p = std::numeric_limits<float>::quiet_NaN(); // never used
  12154. return {token_id, logits[token_id], p};
  12155. }
  12156. // Return top k token_data by logit.
  12157. std::vector<llama_token_data> top_k(size_t k) {
  12158. std::vector<llama_token_data> min_heap; // min-heap by logit
  12159. const llama_token k_min = std::min(static_cast<llama_token>(k), n_vocab);
  12160. min_heap.reserve(k_min);
  12161. for (llama_token token_id = 0 ; token_id < k_min ; ++token_id) {
  12162. min_heap.push_back(get_token_data(token_id));
  12163. }
  12164. auto comp = [](const llama_token_data & a, const llama_token_data & b) { return a.logit > b.logit; };
  12165. std::make_heap(min_heap.begin(), min_heap.end(), comp);
  12166. for (llama_token token_id = k_min ; token_id < n_vocab ; ++token_id) {
  12167. if (min_heap.front().logit < logits[token_id]) {
  12168. std::pop_heap(min_heap.begin(), min_heap.end(), comp);
  12169. min_heap.back().id = token_id;
  12170. min_heap.back().logit = logits[token_id];
  12171. std::push_heap(min_heap.begin(), min_heap.end(), comp);
  12172. }
  12173. }
  12174. return min_heap;
  12175. }
  12176. float probability_from_logit(float logit) const {
  12177. return normalizer * std::exp(logit - max_l);
  12178. }
  12179. };
  12180. struct llama_beam_search_data {
  12181. llama_context * ctx;
  12182. size_t n_beams;
  12183. int n_past;
  12184. int n_predict;
  12185. std::vector<llama_beam> beams;
  12186. std::vector<llama_beam> next_beams;
  12187. // Re-calculated on each loop iteration
  12188. size_t common_prefix_length;
  12189. // Used to communicate to/from callback on beams state.
  12190. std::vector<llama_beam_view> beam_views;
  12191. llama_beam_search_data(llama_context * ctx, size_t n_beams, int n_past, int n_predict)
  12192. : ctx(ctx)
  12193. , n_beams(n_beams)
  12194. , n_past(n_past)
  12195. , n_predict(n_predict)
  12196. , beam_views(n_beams) {
  12197. beams.reserve(n_beams);
  12198. next_beams.reserve(n_beams);
  12199. }
  12200. // Collapse beams to a single beam given by index.
  12201. void collapse_beams(const size_t beam_idx) {
  12202. if (0u < beam_idx) {
  12203. std::swap(beams[0], beams[beam_idx]);
  12204. }
  12205. beams.resize(1);
  12206. }
  12207. // Min-heaps are used to efficiently collect the top-k elements (k=n_beams).
  12208. // The repetitive patterns below reflect the 2 stages of heaps:
  12209. // * Gather elements until the vector is full, then call std::make_heap() on it.
  12210. // * If the heap is full and a new element is found that should be included, pop the
  12211. // least element to the back(), replace it with the new, then push it into the heap.
  12212. void fill_next_beams_by_top_probabilities(llama_beam & beam) {
  12213. // Min-heaps use a greater-than comparator.
  12214. const auto comp = [](const llama_beam & a, const llama_beam & b) { return a.p > b.p; };
  12215. if (beam.eob) {
  12216. // beam is at end-of-sentence, so just copy it to next_beams if its probability is high enough.
  12217. if (next_beams.size() < n_beams) {
  12218. next_beams.push_back(std::move(beam));
  12219. if (next_beams.size() == n_beams) {
  12220. std::make_heap(next_beams.begin(), next_beams.end(), comp);
  12221. }
  12222. } else if (next_beams.front().p < beam.p) {
  12223. std::pop_heap(next_beams.begin(), next_beams.end(), comp);
  12224. next_beams.back() = std::move(beam);
  12225. std::push_heap(next_beams.begin(), next_beams.end(), comp);
  12226. }
  12227. } else {
  12228. // beam is not at end-of-sentence, so branch with next top_k tokens.
  12229. if (!beam.tokens.empty()) {
  12230. llama_decode(ctx, llama_batch_get_one(beam.tokens.data(), beam.tokens.size(), n_past, 0));
  12231. }
  12232. llama_logit_info logit_info(ctx);
  12233. std::vector<llama_token_data> next_tokens = logit_info.top_k(n_beams);
  12234. // Clear the kv slot so that other beams may try different tokens at this position. The llama_decode()
  12235. // call in loop() will conclusively fill in the kv slot once the beams converge at this position.
  12236. llama_kv_cache_seq_rm(ctx, 0, n_past, -1);
  12237. size_t i=0;
  12238. if (next_beams.size() < n_beams) {
  12239. for (; next_beams.size() < n_beams ; ++i) {
  12240. llama_beam next_beam = beam;
  12241. next_beam.tokens.push_back(next_tokens[i].id);
  12242. next_beam.p *= logit_info.probability_from_logit(next_tokens[i].logit);
  12243. next_beams.push_back(std::move(next_beam));
  12244. }
  12245. std::make_heap(next_beams.begin(), next_beams.end(), comp);
  12246. } else {
  12247. for (; next_beams.front().p == 0.0f ; ++i) {
  12248. std::pop_heap(next_beams.begin(), next_beams.end(), comp);
  12249. next_beams.back() = beam;
  12250. next_beams.back().tokens.push_back(next_tokens[i].id);
  12251. next_beams.back().p *= logit_info.probability_from_logit(next_tokens[i].logit);
  12252. std::push_heap(next_beams.begin(), next_beams.end(), comp);
  12253. }
  12254. }
  12255. for (; i < n_beams ; ++i) {
  12256. const float next_p = beam.p * logit_info.probability_from_logit(next_tokens[i].logit);
  12257. if (next_beams.front().p < next_p) {
  12258. std::pop_heap(next_beams.begin(), next_beams.end(), comp);
  12259. next_beams.back() = beam;
  12260. next_beams.back().tokens.push_back(next_tokens[i].id);
  12261. next_beams.back().p = next_p;
  12262. std::push_heap(next_beams.begin(), next_beams.end(), comp);
  12263. }
  12264. }
  12265. }
  12266. }
  12267. // Find common_prefix_length based on beams.
  12268. // Requires beams is not empty.
  12269. size_t find_common_prefix_length() {
  12270. size_t common_prefix_length = beams[0].tokens.size();
  12271. for (size_t i = 1 ; i < beams.size() ; ++i) {
  12272. common_prefix_length = std::min(common_prefix_length, beams[i].tokens.size());
  12273. for (size_t j = 0 ; j < common_prefix_length ; ++j) {
  12274. if (beams[0].tokens[j] != beams[i].tokens[j]) {
  12275. common_prefix_length = j;
  12276. break;
  12277. }
  12278. }
  12279. }
  12280. return common_prefix_length;
  12281. }
  12282. // Construct beams_state to send back to caller via the callback function.
  12283. // Side effect: set common_prefix_length = find_common_prefix_length();
  12284. llama_beams_state get_beams_state(const bool last_call) {
  12285. for (size_t i = 0 ; i < beams.size() ; ++i) {
  12286. beam_views[i] = beams[i].view();
  12287. }
  12288. common_prefix_length = find_common_prefix_length();
  12289. return {beam_views.data(), beams.size(), common_prefix_length, last_call};
  12290. }
  12291. // Loop:
  12292. // * while i < n_predict, AND
  12293. // * any of the beams have not yet reached end-of-beam (eob), AND
  12294. // * the highest probability beam(s) (plural in case of ties) are not at end-of-sentence
  12295. // (since all other beam probabilities can only decrease)
  12296. void loop(const llama_beam_search_callback_fn_t callback, void * const callback_data) {
  12297. beams.push_back({{}, 1.0f, false}); // Start with one empty beam w/ probability = 1.0 and !eob.
  12298. const auto not_eob = [](const llama_beam & beam) { return !beam.eob; };
  12299. for (int i = 0 ; i < n_predict && std::any_of(beams.begin(),beams.end(),not_eob) &&
  12300. !beams[top_beam_index()].eob ; ++i) {
  12301. callback(callback_data, get_beams_state(false)); // Sets common_prefix_length
  12302. update_beams_from_beam_views(); // Update values (p,eob) that callback may have changed.
  12303. if (common_prefix_length) {
  12304. llama_decode(ctx, llama_batch_get_one(beams[0].tokens.data(), common_prefix_length, n_past, 0));
  12305. n_past += common_prefix_length;
  12306. }
  12307. // Zero-out next_beam probabilities to place them last in following min-heap.
  12308. std::for_each(next_beams.begin(), next_beams.end(), [](llama_beam & beam) { beam.p = 0.0f; });
  12309. for (llama_beam & beam : beams) {
  12310. beam.shift_tokens(common_prefix_length);
  12311. fill_next_beams_by_top_probabilities(beam);
  12312. }
  12313. // next_beams become the beams of next/final iteration. Swap them to re-use memory.
  12314. beams.swap(next_beams);
  12315. renormalize_beam_probabilities(beams);
  12316. }
  12317. collapse_beams(top_beam_index());
  12318. callback(callback_data, get_beams_state(true));
  12319. }
  12320. // As beams grow, the cumulative probabilities decrease.
  12321. // Renormalize them to avoid floating point underflow.
  12322. static void renormalize_beam_probabilities(std::vector<llama_beam> & beams) {
  12323. const auto sum_p = [](float sum, llama_beam & beam) { return sum + beam.p; };
  12324. const float inv_sum = 1.0f / std::accumulate(beams.begin(), beams.end(), 0.0f, sum_p);
  12325. std::for_each(beams.begin(), beams.end(), [=](llama_beam & beam) { beam.p *= inv_sum; });
  12326. }
  12327. // Assumes beams is non-empty. Uses llama_beam::operator<() for ordering.
  12328. size_t top_beam_index() {
  12329. return std::max_element(beams.begin(), beams.end()) - beams.begin();
  12330. }
  12331. // Copy (p,eob) for each beam which may have been changed by the callback.
  12332. void update_beams_from_beam_views() {
  12333. for (size_t i = 0 ; i < beams.size() ; ++i) {
  12334. beams[i].p = beam_views[i].p;
  12335. beams[i].eob = beam_views[i].eob;
  12336. }
  12337. }
  12338. };
  12339. void llama_beam_search(llama_context * ctx,
  12340. llama_beam_search_callback_fn_t callback, void * callback_data,
  12341. size_t n_beams, int n_past, int n_predict) {
  12342. assert(ctx);
  12343. const int64_t t_start_sample_us = ggml_time_us();
  12344. llama_beam_search_data beam_search_data(ctx, n_beams, n_past, n_predict);
  12345. beam_search_data.loop(callback, callback_data);
  12346. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  12347. ctx->n_sample++;
  12348. }
  12349. //
  12350. // quantization
  12351. //
  12352. struct quantize_state_internal {
  12353. const llama_model & model;
  12354. const llama_model_quantize_params * params;
  12355. int n_attention_wv = 0;
  12356. int n_ffn_down = 0;
  12357. int n_ffn_gate = 0;
  12358. int n_ffn_up = 0;
  12359. int i_attention_wv = 0;
  12360. int i_ffn_down = 0;
  12361. int i_ffn_gate = 0;
  12362. int i_ffn_up = 0;
  12363. int n_k_quantized = 0;
  12364. int n_fallback = 0;
  12365. bool has_imatrix = false;
  12366. // used to figure out if a model shares tok_embd with the output weight
  12367. bool has_output = false;
  12368. quantize_state_internal(const llama_model & model, const llama_model_quantize_params * params)
  12369. : model(model)
  12370. , params(params)
  12371. {}
  12372. };
  12373. static void llama_tensor_dequantize_internal(
  12374. struct ggml_tensor * tensor, std::vector<no_init<float>> & output, std::vector<std::thread> & workers,
  12375. const size_t nelements, const int nthread
  12376. ) {
  12377. if (output.size() < nelements) {
  12378. output.resize(nelements);
  12379. }
  12380. float * f32_output = (float *) output.data();
  12381. ggml_type_traits_t qtype;
  12382. if (ggml_is_quantized(tensor->type)) {
  12383. qtype = ggml_internal_get_type_traits(tensor->type);
  12384. if (qtype.to_float == NULL) {
  12385. throw std::runtime_error(format("type %s unsupported for integer quantization: no dequantization available", ggml_type_name(tensor->type)));
  12386. }
  12387. } else if (tensor->type != GGML_TYPE_F16 &&
  12388. tensor->type != GGML_TYPE_BF16) {
  12389. throw std::runtime_error(format("cannot dequantize/convert tensor type %s", ggml_type_name(tensor->type)));
  12390. }
  12391. if (nthread < 2) {
  12392. if (tensor->type == GGML_TYPE_F16) {
  12393. ggml_fp16_to_fp32_row((ggml_fp16_t *)tensor->data, f32_output, nelements);
  12394. } else if (tensor->type == GGML_TYPE_BF16) {
  12395. ggml_bf16_to_fp32_row((ggml_bf16_t *)tensor->data, f32_output, nelements);
  12396. } else if (ggml_is_quantized(tensor->type)) {
  12397. qtype.to_float(tensor->data, f32_output, nelements);
  12398. } else {
  12399. GGML_ASSERT(false); // unreachable
  12400. }
  12401. return;
  12402. }
  12403. size_t block_size;
  12404. if (tensor->type == GGML_TYPE_F16 ||
  12405. tensor->type == GGML_TYPE_BF16) {
  12406. block_size = 1;
  12407. } else {
  12408. block_size = (size_t)ggml_blck_size(tensor->type);
  12409. }
  12410. size_t block_size_bytes = ggml_type_size(tensor->type);
  12411. GGML_ASSERT(nelements % block_size == 0);
  12412. size_t nblocks = nelements / block_size;
  12413. size_t blocks_per_thread = nblocks / nthread;
  12414. size_t spare_blocks = nblocks - (blocks_per_thread * nthread); // if blocks aren't divisible by thread count
  12415. size_t in_buff_offs = 0;
  12416. size_t out_buff_offs = 0;
  12417. for (int tnum = 0; tnum < nthread; tnum++) {
  12418. size_t thr_blocks = blocks_per_thread + (tnum == nthread - 1 ? spare_blocks : 0); // num blocks for this thread
  12419. size_t thr_elems = thr_blocks * block_size; // number of elements for this thread
  12420. size_t thr_block_bytes = thr_blocks * block_size_bytes; // number of input bytes for this thread
  12421. auto compute = [qtype] (ggml_type typ, uint8_t * inbuf, float * outbuf, int nels) {
  12422. if (typ == GGML_TYPE_F16) {
  12423. ggml_fp16_to_fp32_row((ggml_fp16_t *)inbuf, outbuf, nels);
  12424. } else if (typ == GGML_TYPE_BF16) {
  12425. ggml_bf16_to_fp32_row((ggml_bf16_t *)inbuf, outbuf, nels);
  12426. } else {
  12427. qtype.to_float(inbuf, outbuf, nels);
  12428. }
  12429. };
  12430. workers.emplace_back(compute, tensor->type, (uint8_t *) tensor->data + in_buff_offs, f32_output + out_buff_offs, thr_elems);
  12431. in_buff_offs += thr_block_bytes;
  12432. out_buff_offs += thr_elems;
  12433. }
  12434. for (auto & w : workers) { w.join(); }
  12435. workers.clear();
  12436. }
  12437. static ggml_type llama_tensor_get_type(quantize_state_internal & qs, ggml_type new_type, const ggml_tensor * tensor, llama_ftype ftype) {
  12438. const std::string name = ggml_get_name(tensor);
  12439. // TODO: avoid hardcoded tensor names - use the TN_* constants
  12440. const llm_arch arch = qs.model.arch;
  12441. const auto tn = LLM_TN(arch);
  12442. auto use_more_bits = [](int i_layer, int num_layers) -> bool {
  12443. return i_layer < num_layers/8 || i_layer >= 7*num_layers/8 || (i_layer - num_layers/8)%3 == 2;
  12444. };
  12445. const int n_expert = std::max(1, (int)qs.model.hparams.n_expert);
  12446. auto layer_info = [n_expert] (int i_layer, int n_layer, const char * name) {
  12447. if (n_expert > 1) {
  12448. // Believe it or not, "experts" in the FFN of Mixtral-8x7B are not consecutive, but iccasionally randomly
  12449. // sprinkled in the model. Hence, simply dividing i_ffn_down by n_expert does not work
  12450. // for getting the current layer as I initially thought, and we need to resort to parsing the
  12451. // tensor name.
  12452. if (sscanf(name, "blk.%d.", &i_layer) != 1) {
  12453. throw std::runtime_error(format("Failed to determine layer for tensor %s", name));
  12454. }
  12455. if (i_layer < 0 || i_layer >= n_layer) {
  12456. throw std::runtime_error(format("Bad layer %d for tensor %s. Must be in [0, %d)", i_layer, name, n_layer));
  12457. }
  12458. }
  12459. return std::make_pair(i_layer, n_layer);
  12460. };
  12461. // for arches that share the same tensor between the token embeddings and the output, we quantize the token embeddings
  12462. // with the quantization of the output tensor
  12463. if (name == tn(LLM_TENSOR_OUTPUT, "weight") || (!qs.has_output && name == tn(LLM_TENSOR_TOKEN_EMBD, "weight"))) {
  12464. if (qs.params->output_tensor_type < GGML_TYPE_COUNT) {
  12465. new_type = qs.params->output_tensor_type;
  12466. } else {
  12467. int nx = tensor->ne[0];
  12468. if (arch == LLM_ARCH_FALCON || nx % QK_K != 0) {
  12469. new_type = GGML_TYPE_Q8_0;
  12470. }
  12471. else if (ftype == LLAMA_FTYPE_MOSTLY_IQ2_XXS || ftype == LLAMA_FTYPE_MOSTLY_IQ2_XS || ftype == LLAMA_FTYPE_MOSTLY_IQ3_XXS ||
  12472. ftype == LLAMA_FTYPE_MOSTLY_IQ1_S || ftype == LLAMA_FTYPE_MOSTLY_IQ2_S || ftype == LLAMA_FTYPE_MOSTLY_IQ2_M ||
  12473. ftype == LLAMA_FTYPE_MOSTLY_IQ1_M) {
  12474. new_type = GGML_TYPE_Q5_K;
  12475. }
  12476. else if (new_type != GGML_TYPE_Q8_0) {
  12477. new_type = GGML_TYPE_Q6_K;
  12478. }
  12479. }
  12480. } else if (name == "token_embd.weight") {
  12481. if (qs.params->token_embedding_type < GGML_TYPE_COUNT) {
  12482. new_type = qs.params->token_embedding_type;
  12483. } else {
  12484. if (ftype == LLAMA_FTYPE_MOSTLY_IQ2_XXS || ftype == LLAMA_FTYPE_MOSTLY_IQ2_XS ||
  12485. ftype == LLAMA_FTYPE_MOSTLY_IQ1_S || ftype == LLAMA_FTYPE_MOSTLY_IQ1_M) {
  12486. new_type = GGML_TYPE_Q2_K;
  12487. }
  12488. else if (ftype == LLAMA_FTYPE_MOSTLY_IQ2_S || ftype == LLAMA_FTYPE_MOSTLY_IQ2_M) {
  12489. new_type = GGML_TYPE_IQ3_S;
  12490. }
  12491. else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_XXS) {
  12492. new_type = GGML_TYPE_IQ3_S;
  12493. }
  12494. }
  12495. } else if (ftype == LLAMA_FTYPE_MOSTLY_IQ2_XXS || ftype == LLAMA_FTYPE_MOSTLY_IQ2_XS || ftype == LLAMA_FTYPE_MOSTLY_IQ1_S ||
  12496. ftype == LLAMA_FTYPE_MOSTLY_IQ2_S || ftype == LLAMA_FTYPE_MOSTLY_IQ2_M || ftype == LLAMA_FTYPE_MOSTLY_IQ1_M) {
  12497. if (name.find("attn_v.weight") != std::string::npos) {
  12498. if (qs.model.hparams.n_gqa() >= 4 || qs.model.hparams.n_expert >= 4) new_type = GGML_TYPE_Q4_K;
  12499. else new_type = ftype == LLAMA_FTYPE_MOSTLY_IQ2_S || ftype == LLAMA_FTYPE_MOSTLY_IQ2_M ? GGML_TYPE_IQ3_S : GGML_TYPE_Q2_K;
  12500. ++qs.i_attention_wv;
  12501. }
  12502. else if (qs.model.hparams.n_expert == 8 && name.find("attn_k.weight") != std::string::npos) {
  12503. new_type = GGML_TYPE_Q4_K;
  12504. }
  12505. else if (name.find("ffn_down") != std::string::npos) {
  12506. if (qs.i_ffn_down < qs.n_ffn_down/8) {
  12507. new_type = ftype == LLAMA_FTYPE_MOSTLY_IQ2_S || ftype == LLAMA_FTYPE_MOSTLY_IQ2_M ? GGML_TYPE_IQ3_S : GGML_TYPE_Q2_K;
  12508. }
  12509. ++qs.i_ffn_down;
  12510. }
  12511. else if (name.find("attn_output.weight") != std::string::npos) {
  12512. if (qs.model.hparams.n_expert == 8) {
  12513. new_type = GGML_TYPE_Q5_K;
  12514. } else {
  12515. if (ftype == LLAMA_FTYPE_MOSTLY_IQ1_S || ftype == LLAMA_FTYPE_MOSTLY_IQ1_M) new_type = GGML_TYPE_IQ2_XXS;
  12516. else if (ftype == LLAMA_FTYPE_MOSTLY_IQ2_S || ftype == LLAMA_FTYPE_MOSTLY_IQ2_M) new_type = GGML_TYPE_IQ3_S;
  12517. }
  12518. }
  12519. } else if (name.find("attn_v.weight") != std::string::npos) {
  12520. if (ftype == LLAMA_FTYPE_MOSTLY_Q2_K) {
  12521. new_type = qs.model.hparams.n_gqa() >= 4 ? GGML_TYPE_Q4_K : GGML_TYPE_Q3_K;
  12522. }
  12523. else if (ftype == LLAMA_FTYPE_MOSTLY_Q2_K_S && qs.model.hparams.n_gqa() >= 4) {
  12524. new_type = GGML_TYPE_Q4_K;
  12525. }
  12526. else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_XXS) {
  12527. new_type = qs.model.hparams.n_gqa() >= 4 ? GGML_TYPE_Q4_K : !qs.has_imatrix ? GGML_TYPE_IQ3_S : GGML_TYPE_IQ3_XXS;
  12528. }
  12529. else if ((ftype == LLAMA_FTYPE_MOSTLY_IQ3_XS || ftype == LLAMA_FTYPE_MOSTLY_IQ3_S) && qs.model.hparams.n_gqa() >= 4) {
  12530. new_type = GGML_TYPE_Q4_K;
  12531. }
  12532. else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_M) {
  12533. new_type = GGML_TYPE_Q4_K;
  12534. }
  12535. else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_M) {
  12536. new_type = qs.i_attention_wv < 2 ? GGML_TYPE_Q5_K : GGML_TYPE_Q4_K;
  12537. }
  12538. else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_L) new_type = GGML_TYPE_Q5_K;
  12539. else if ((ftype == LLAMA_FTYPE_MOSTLY_IQ4_NL || ftype == LLAMA_FTYPE_MOSTLY_IQ4_XS) && qs.model.hparams.n_gqa() >= 4) {
  12540. new_type = GGML_TYPE_Q5_K;
  12541. }
  12542. else if ((ftype == LLAMA_FTYPE_MOSTLY_Q4_K_M || ftype == LLAMA_FTYPE_MOSTLY_Q5_K_M) &&
  12543. use_more_bits(qs.i_attention_wv, qs.n_attention_wv)) new_type = GGML_TYPE_Q6_K;
  12544. else if (ftype == LLAMA_FTYPE_MOSTLY_Q4_K_S && qs.i_attention_wv < 4) new_type = GGML_TYPE_Q5_K;
  12545. if (qs.model.type == MODEL_70B) {
  12546. // In the 70B model we have 8 heads sharing the same attn_v weights. As a result, the attn_v.weight tensor is
  12547. // 8x smaller compared to attn_q.weight. Hence, we can get a nice boost in quantization accuracy with
  12548. // nearly negligible increase in model size by quantizing this tensor with more bits:
  12549. if (new_type == GGML_TYPE_Q3_K || new_type == GGML_TYPE_Q4_K) new_type = GGML_TYPE_Q5_K;
  12550. }
  12551. if (qs.model.hparams.n_expert == 8) {
  12552. // for the 8-expert model, bumping this to Q8_0 trades just ~128MB
  12553. // TODO: explore better strategies
  12554. new_type = GGML_TYPE_Q8_0;
  12555. }
  12556. ++qs.i_attention_wv;
  12557. } else if (name.find("attn_k.weight") != std::string::npos) {
  12558. if (qs.model.hparams.n_expert == 8) {
  12559. // for the 8-expert model, bumping this to Q8_0 trades just ~128MB
  12560. // TODO: explore better strategies
  12561. new_type = GGML_TYPE_Q8_0;
  12562. }
  12563. else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_XS) {
  12564. new_type = GGML_TYPE_IQ3_XXS;
  12565. }
  12566. else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_XXS) {
  12567. new_type = GGML_TYPE_IQ2_S;
  12568. }
  12569. } else if (name.find("attn_q.weight") != std::string::npos) {
  12570. if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_XS) {
  12571. new_type = GGML_TYPE_IQ3_XXS;
  12572. }
  12573. else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_XXS) {
  12574. new_type = GGML_TYPE_IQ2_S;
  12575. }
  12576. } else if (name.find("ffn_down") != std::string::npos) {
  12577. auto info = layer_info(qs.i_ffn_down, qs.n_ffn_down, name.c_str());
  12578. int i_layer = info.first, n_layer = info.second;
  12579. if (ftype == LLAMA_FTYPE_MOSTLY_Q2_K) new_type = GGML_TYPE_Q3_K;
  12580. else if (ftype == LLAMA_FTYPE_MOSTLY_Q2_K_S) {
  12581. if (i_layer < n_layer/8) new_type = GGML_TYPE_Q4_K;
  12582. }
  12583. else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_XXS && !qs.has_imatrix) {
  12584. new_type = i_layer < n_layer/8 ? GGML_TYPE_Q4_K : GGML_TYPE_Q3_K;
  12585. }
  12586. else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_M) {
  12587. new_type = i_layer < n_layer/16 ? GGML_TYPE_Q5_K
  12588. : arch != LLM_ARCH_FALCON || use_more_bits(i_layer, n_layer) ? GGML_TYPE_Q4_K
  12589. : GGML_TYPE_Q3_K;
  12590. }
  12591. else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_M && (i_layer < n_layer/8 ||
  12592. (qs.model.hparams.n_expert == 8 && use_more_bits(i_layer, n_layer)))) {
  12593. new_type = GGML_TYPE_Q4_K;
  12594. }
  12595. else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_L) {
  12596. new_type = arch == LLM_ARCH_FALCON ? GGML_TYPE_Q4_K : GGML_TYPE_Q5_K;
  12597. }
  12598. else if (ftype == LLAMA_FTYPE_MOSTLY_Q4_K_M) {
  12599. if (arch == LLM_ARCH_FALCON) {
  12600. new_type = i_layer < n_layer/16 ? GGML_TYPE_Q6_K :
  12601. use_more_bits(i_layer, n_layer) ? GGML_TYPE_Q5_K : GGML_TYPE_Q4_K;
  12602. } else {
  12603. if (use_more_bits(i_layer, n_layer)) new_type = GGML_TYPE_Q6_K;
  12604. }
  12605. }
  12606. else if (i_layer < n_layer/8 && (ftype == LLAMA_FTYPE_MOSTLY_IQ4_NL || ftype == LLAMA_FTYPE_MOSTLY_IQ4_XS) && !qs.has_imatrix) {
  12607. new_type = GGML_TYPE_Q5_K;
  12608. }
  12609. else if (ftype == LLAMA_FTYPE_MOSTLY_Q5_K_M && use_more_bits(i_layer, n_layer)) new_type = GGML_TYPE_Q6_K;
  12610. else if (ftype == LLAMA_FTYPE_MOSTLY_Q4_K_S && arch != LLM_ARCH_FALCON && i_layer < n_layer/8) {
  12611. new_type = GGML_TYPE_Q5_K;
  12612. }
  12613. else if ((ftype == LLAMA_FTYPE_MOSTLY_Q4_0 || ftype == LLAMA_FTYPE_MOSTLY_Q5_0)
  12614. && qs.has_imatrix && i_layer < n_layer/8) {
  12615. // Guard against craziness in the first few ffn_down layers that can happen even with imatrix for Q4_0/Q5_0.
  12616. // We only do it when an imatrix is provided because a) we want to make sure that one can always get the
  12617. // same quantization as before imatrix stuff, and b) Q4_1/Q5_1 do go crazy on ffn_down without an imatrix.
  12618. new_type = ftype == LLAMA_FTYPE_MOSTLY_Q4_0 ? GGML_TYPE_Q4_1 : GGML_TYPE_Q5_1;
  12619. }
  12620. ++qs.i_ffn_down;
  12621. } else if (name.find("attn_output.weight") != std::string::npos) {
  12622. if (arch != LLM_ARCH_FALCON) {
  12623. if (qs.model.hparams.n_expert == 8) {
  12624. if (ftype == LLAMA_FTYPE_MOSTLY_Q2_K || ftype == LLAMA_FTYPE_MOSTLY_IQ3_XS || ftype == LLAMA_FTYPE_MOSTLY_IQ3_XXS ||
  12625. ftype == LLAMA_FTYPE_MOSTLY_Q3_K_S || ftype == LLAMA_FTYPE_MOSTLY_Q3_K_M || ftype == LLAMA_FTYPE_MOSTLY_IQ4_NL ||
  12626. ftype == LLAMA_FTYPE_MOSTLY_Q4_K_S || ftype == LLAMA_FTYPE_MOSTLY_Q4_K_M || ftype == LLAMA_FTYPE_MOSTLY_IQ3_S ||
  12627. ftype == LLAMA_FTYPE_MOSTLY_IQ3_M || ftype == LLAMA_FTYPE_MOSTLY_IQ4_XS) {
  12628. new_type = GGML_TYPE_Q5_K;
  12629. }
  12630. } else {
  12631. if (ftype == LLAMA_FTYPE_MOSTLY_Q2_K ) new_type = GGML_TYPE_Q3_K;
  12632. else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_XXS) new_type = GGML_TYPE_IQ3_S;
  12633. else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_M ) new_type = GGML_TYPE_Q4_K;
  12634. else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_L ) new_type = GGML_TYPE_Q5_K;
  12635. else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_M ) new_type = GGML_TYPE_Q4_K;
  12636. }
  12637. } else {
  12638. if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_L) new_type = GGML_TYPE_Q4_K;
  12639. }
  12640. }
  12641. else if (name.find("attn_qkv.weight") != std::string::npos) {
  12642. if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_M || ftype == LLAMA_FTYPE_MOSTLY_Q3_K_L || ftype == LLAMA_FTYPE_MOSTLY_IQ3_M) {
  12643. new_type = GGML_TYPE_Q4_K;
  12644. }
  12645. else if (ftype == LLAMA_FTYPE_MOSTLY_Q4_K_M) new_type = GGML_TYPE_Q5_K;
  12646. else if (ftype == LLAMA_FTYPE_MOSTLY_Q5_K_M) new_type = GGML_TYPE_Q6_K;
  12647. }
  12648. else if (name.find("ffn_gate") != std::string::npos) {
  12649. auto info = layer_info(qs.i_ffn_gate, qs.n_ffn_gate, name.c_str());
  12650. int i_layer = info.first, n_layer = info.second;
  12651. if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_XS && (i_layer >= n_layer/8 && i_layer < 7*n_layer/8)) {
  12652. new_type = GGML_TYPE_IQ3_XXS;
  12653. }
  12654. ++qs.i_ffn_gate;
  12655. }
  12656. else if (name.find("ffn_up") != std::string::npos) {
  12657. auto info = layer_info(qs.i_ffn_up, qs.n_ffn_up, name.c_str());
  12658. int i_layer = info.first, n_layer = info.second;
  12659. if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_XS && (i_layer >= n_layer/8 && i_layer < 7*n_layer/8)) {
  12660. new_type = GGML_TYPE_IQ3_XXS;
  12661. }
  12662. ++qs.i_ffn_up;
  12663. }
  12664. // if (ftype == LLAMA_FTYPE_MOSTLY_Q2_K) new_type = GGML_TYPE_Q3_K;
  12665. //}
  12666. // IK: let's remove this, else Q2_K is almost the same as Q3_K_S
  12667. //else if (name.find("ffn_gate") != std::string::npos || name.find("ffn_up") != std::string::npos) {
  12668. // if (ftype == LLAMA_FTYPE_MOSTLY_Q2_K) new_type = GGML_TYPE_Q3_K;
  12669. //}
  12670. // This can be used to reduce the size of the Q5_K_S model.
  12671. // The associated PPL increase is fully in line with the size reduction
  12672. //else {
  12673. // if (ftype == LLAMA_FTYPE_MOSTLY_Q5_K_S) new_type = GGML_TYPE_Q4_K;
  12674. //}
  12675. bool convert_incompatible_tensor = false;
  12676. if (new_type == GGML_TYPE_Q2_K || new_type == GGML_TYPE_Q3_K || new_type == GGML_TYPE_Q4_K ||
  12677. new_type == GGML_TYPE_Q5_K || new_type == GGML_TYPE_Q6_K || new_type == GGML_TYPE_IQ4_XS ||
  12678. new_type == GGML_TYPE_IQ2_XS || new_type == GGML_TYPE_IQ2_XXS || new_type == GGML_TYPE_IQ2_S ||
  12679. new_type == GGML_TYPE_IQ3_XXS || new_type == GGML_TYPE_IQ1_S || new_type == GGML_TYPE_IQ3_S ||
  12680. new_type == GGML_TYPE_IQ1_M) {
  12681. int nx = tensor->ne[0];
  12682. int ny = tensor->ne[1];
  12683. if (nx % QK_K != 0) {
  12684. LLAMA_LOG_WARN("\n\n%s : tensor cols %d x %d are not divisible by %d, required for %s", __func__, nx, ny, QK_K, ggml_type_name(new_type));
  12685. convert_incompatible_tensor = true;
  12686. } else {
  12687. ++qs.n_k_quantized;
  12688. }
  12689. }
  12690. if (convert_incompatible_tensor) {
  12691. switch (new_type) {
  12692. case GGML_TYPE_IQ2_XXS:
  12693. case GGML_TYPE_IQ2_XS:
  12694. case GGML_TYPE_IQ2_S:
  12695. case GGML_TYPE_IQ3_XXS:
  12696. case GGML_TYPE_IQ3_S:
  12697. case GGML_TYPE_IQ1_S:
  12698. case GGML_TYPE_IQ1_M:
  12699. case GGML_TYPE_Q2_K:
  12700. case GGML_TYPE_Q3_K:
  12701. case GGML_TYPE_IQ4_XS: new_type = GGML_TYPE_IQ4_NL; break;
  12702. case GGML_TYPE_Q4_K: new_type = GGML_TYPE_Q5_0; break;
  12703. case GGML_TYPE_Q5_K: new_type = GGML_TYPE_Q5_1; break;
  12704. case GGML_TYPE_Q6_K: new_type = GGML_TYPE_Q8_0; break;
  12705. default: throw std::runtime_error("\nUnsupported tensor size encountered\n");
  12706. }
  12707. LLAMA_LOG_WARN(" - using fallback quantization %s\n", ggml_type_name(new_type));
  12708. ++qs.n_fallback;
  12709. }
  12710. return new_type;
  12711. }
  12712. static size_t llama_tensor_quantize_internal(enum ggml_type new_type, const float * f32_data, void * new_data, const int64_t chunk_size, int64_t nrows, int64_t n_per_row, const float * imatrix, std::vector<std::thread> & workers, const int nthread) {
  12713. if (nthread < 2) {
  12714. // single-thread
  12715. size_t new_size = ggml_quantize_chunk(new_type, f32_data, new_data, 0, nrows, n_per_row, imatrix);
  12716. if (!ggml_validate_row_data(new_type, new_data, new_size)) {
  12717. throw std::runtime_error("quantized data validation failed");
  12718. }
  12719. return new_size;
  12720. }
  12721. std::mutex mutex;
  12722. int64_t counter = 0;
  12723. size_t new_size = 0;
  12724. bool valid = true;
  12725. auto compute = [&mutex, &counter, &new_size, &valid, new_type, f32_data, new_data, chunk_size,
  12726. nrows, n_per_row, imatrix]() {
  12727. const int64_t nrows_per_chunk = chunk_size / n_per_row;
  12728. size_t local_size = 0;
  12729. while (true) {
  12730. std::unique_lock<std::mutex> lock(mutex);
  12731. int64_t first_row = counter; counter += nrows_per_chunk;
  12732. if (first_row >= nrows) {
  12733. if (local_size > 0) {
  12734. new_size += local_size;
  12735. }
  12736. break;
  12737. }
  12738. lock.unlock();
  12739. const int64_t this_nrow = std::min(nrows - first_row, nrows_per_chunk);
  12740. size_t this_size = ggml_quantize_chunk(new_type, f32_data, new_data, first_row * n_per_row, this_nrow, n_per_row, imatrix);
  12741. local_size += this_size;
  12742. // validate the quantized data
  12743. const size_t row_size = ggml_row_size(new_type, n_per_row);
  12744. void * this_data = (char *) new_data + first_row * row_size;
  12745. if (!ggml_validate_row_data(new_type, this_data, this_size)) {
  12746. std::unique_lock<std::mutex> lock(mutex);
  12747. valid = false;
  12748. break;
  12749. }
  12750. }
  12751. };
  12752. for (int it = 0; it < nthread - 1; ++it) {
  12753. workers.emplace_back(compute);
  12754. }
  12755. compute();
  12756. for (auto & w : workers) { w.join(); }
  12757. workers.clear();
  12758. if (!valid) {
  12759. throw std::runtime_error("quantized data validation failed");
  12760. }
  12761. return new_size;
  12762. }
  12763. static void llama_model_quantize_internal(const std::string & fname_inp, const std::string & fname_out, const llama_model_quantize_params * params) {
  12764. ggml_type default_type;
  12765. llama_ftype ftype = params->ftype;
  12766. switch (params->ftype) {
  12767. case LLAMA_FTYPE_MOSTLY_Q4_0: default_type = GGML_TYPE_Q4_0; break;
  12768. case LLAMA_FTYPE_MOSTLY_Q4_1: default_type = GGML_TYPE_Q4_1; break;
  12769. case LLAMA_FTYPE_MOSTLY_Q5_0: default_type = GGML_TYPE_Q5_0; break;
  12770. case LLAMA_FTYPE_MOSTLY_Q5_1: default_type = GGML_TYPE_Q5_1; break;
  12771. case LLAMA_FTYPE_MOSTLY_Q8_0: default_type = GGML_TYPE_Q8_0; break;
  12772. case LLAMA_FTYPE_MOSTLY_F16: default_type = GGML_TYPE_F16; break;
  12773. case LLAMA_FTYPE_MOSTLY_BF16: default_type = GGML_TYPE_BF16; break;
  12774. case LLAMA_FTYPE_ALL_F32: default_type = GGML_TYPE_F32; break;
  12775. // K-quants
  12776. case LLAMA_FTYPE_MOSTLY_Q2_K_S:
  12777. case LLAMA_FTYPE_MOSTLY_Q2_K: default_type = GGML_TYPE_Q2_K; break;
  12778. case LLAMA_FTYPE_MOSTLY_IQ3_XS: default_type = GGML_TYPE_IQ3_S; break;
  12779. case LLAMA_FTYPE_MOSTLY_Q3_K_S:
  12780. case LLAMA_FTYPE_MOSTLY_Q3_K_M:
  12781. case LLAMA_FTYPE_MOSTLY_Q3_K_L: default_type = GGML_TYPE_Q3_K; break;
  12782. case LLAMA_FTYPE_MOSTLY_Q4_K_S:
  12783. case LLAMA_FTYPE_MOSTLY_Q4_K_M: default_type = GGML_TYPE_Q4_K; break;
  12784. case LLAMA_FTYPE_MOSTLY_Q5_K_S:
  12785. case LLAMA_FTYPE_MOSTLY_Q5_K_M: default_type = GGML_TYPE_Q5_K; break;
  12786. case LLAMA_FTYPE_MOSTLY_Q6_K: default_type = GGML_TYPE_Q6_K; break;
  12787. case LLAMA_FTYPE_MOSTLY_IQ2_XXS: default_type = GGML_TYPE_IQ2_XXS; break;
  12788. case LLAMA_FTYPE_MOSTLY_IQ2_XS: default_type = GGML_TYPE_IQ2_XS; break;
  12789. case LLAMA_FTYPE_MOSTLY_IQ2_S: default_type = GGML_TYPE_IQ2_XS; break;
  12790. case LLAMA_FTYPE_MOSTLY_IQ2_M: default_type = GGML_TYPE_IQ2_S; break;
  12791. case LLAMA_FTYPE_MOSTLY_IQ3_XXS: default_type = GGML_TYPE_IQ3_XXS; break;
  12792. case LLAMA_FTYPE_MOSTLY_IQ1_S: default_type = GGML_TYPE_IQ1_S; break;
  12793. case LLAMA_FTYPE_MOSTLY_IQ1_M: default_type = GGML_TYPE_IQ1_M; break;
  12794. case LLAMA_FTYPE_MOSTLY_IQ4_NL: default_type = GGML_TYPE_IQ4_NL; break;
  12795. case LLAMA_FTYPE_MOSTLY_IQ4_XS: default_type = GGML_TYPE_IQ4_XS; break;
  12796. case LLAMA_FTYPE_MOSTLY_IQ3_S: default_type = GGML_TYPE_IQ3_S; break;
  12797. case LLAMA_FTYPE_MOSTLY_IQ3_M: default_type = GGML_TYPE_IQ3_S; break;
  12798. default: throw std::runtime_error(format("invalid output file type %d\n", ftype));
  12799. }
  12800. int nthread = params->nthread;
  12801. if (nthread <= 0) {
  12802. nthread = std::thread::hardware_concurrency();
  12803. }
  12804. // mmap consistently increases speed Linux, and also increases speed on Windows with
  12805. // hot cache. It may cause a slowdown on macOS, possibly related to free memory.
  12806. #if defined(__linux__) || defined(_WIN32)
  12807. constexpr bool use_mmap = true;
  12808. #else
  12809. constexpr bool use_mmap = false;
  12810. #endif
  12811. llama_model_kv_override * kv_overrides = nullptr;
  12812. if (params->kv_overrides) {
  12813. auto v = (std::vector<llama_model_kv_override>*)params->kv_overrides;
  12814. kv_overrides = v->data();
  12815. }
  12816. llama_model_loader ml(fname_inp, use_mmap, /*check_tensors*/ true, kv_overrides);
  12817. ml.init_mappings(false); // no prefetching
  12818. llama_model model;
  12819. llm_load_arch(ml, model);
  12820. llm_load_hparams(ml, model);
  12821. struct quantize_state_internal qs(model, params);
  12822. if (params->only_copy) {
  12823. ftype = model.ftype;
  12824. }
  12825. const std::unordered_map<std::string, std::vector<float>> * imatrix_data = nullptr;
  12826. if (params->imatrix) {
  12827. imatrix_data = static_cast<const std::unordered_map<std::string, std::vector<float>>*>(params->imatrix);
  12828. if (imatrix_data) {
  12829. LLAMA_LOG_INFO("================================ Have weights data with %d entries\n",int(imatrix_data->size()));
  12830. qs.has_imatrix = true;
  12831. }
  12832. }
  12833. const size_t align = GGUF_DEFAULT_ALIGNMENT;
  12834. struct gguf_context * ctx_out = gguf_init_empty();
  12835. // copy the KV pairs from the input file
  12836. gguf_set_kv (ctx_out, ml.meta);
  12837. gguf_set_val_u32(ctx_out, "general.quantization_version", GGML_QNT_VERSION);
  12838. gguf_set_val_u32(ctx_out, "general.file_type", ftype);
  12839. // Remove split metadata
  12840. gguf_remove_key(ctx_out, ml.llm_kv(LLM_KV_SPLIT_NO).c_str());
  12841. gguf_remove_key(ctx_out, ml.llm_kv(LLM_KV_SPLIT_COUNT).c_str());
  12842. gguf_remove_key(ctx_out, ml.llm_kv(LLM_KV_SPLIT_TENSORS_COUNT).c_str());
  12843. if (params->kv_overrides) {
  12844. const std::vector<llama_model_kv_override> & overrides = *(const std::vector<llama_model_kv_override> *)params->kv_overrides;
  12845. for (auto & o : overrides) {
  12846. if (o.key[0] == 0) break;
  12847. if (o.tag == LLAMA_KV_OVERRIDE_TYPE_FLOAT) {
  12848. gguf_set_val_f32(ctx_out, o.key, o.val_f64);
  12849. } else if (o.tag == LLAMA_KV_OVERRIDE_TYPE_INT) {
  12850. gguf_set_val_i32(ctx_out, o.key, o.val_i64);
  12851. } else if (o.tag == LLAMA_KV_OVERRIDE_TYPE_BOOL) {
  12852. gguf_set_val_bool(ctx_out, o.key, o.val_bool);
  12853. } else if (o.tag == LLAMA_KV_OVERRIDE_TYPE_STR) {
  12854. gguf_set_val_str(ctx_out, o.key, o.val_str);
  12855. } else {
  12856. LLAMA_LOG_WARN("%s: unknown KV override type for key %s\n", __func__, o.key);
  12857. }
  12858. }
  12859. }
  12860. for (int i = 0; i < ml.n_tensors; ++i) {
  12861. const struct ggml_tensor * meta = ml.get_tensor_meta(i);
  12862. const std::string name = ggml_get_name(meta);
  12863. // TODO: avoid hardcoded tensor names - use the TN_* constants
  12864. if (name.find("attn_v.weight") != std::string::npos ||
  12865. name.find("attn_qkv.weight") != std::string::npos) {
  12866. ++qs.n_attention_wv;
  12867. } else if (name == LLM_TN(model.arch)(LLM_TENSOR_OUTPUT, "weight")) {
  12868. qs.has_output = true;
  12869. }
  12870. }
  12871. qs.n_ffn_down = qs.n_ffn_gate = qs.n_ffn_up = (int)model.hparams.n_layer;
  12872. // sanity checks
  12873. //
  12874. // - qs.n_attention_wv == 0 for Mamba models
  12875. // - qs.n_attention_wv == model.hparams.n_layer for Transformer models
  12876. //
  12877. GGML_ASSERT((qs.n_attention_wv == 0 || qs.n_attention_wv == (int)model.hparams.n_layer) && "n_attention_wv is unexpected");
  12878. size_t total_size_org = 0;
  12879. size_t total_size_new = 0;
  12880. std::vector<std::thread> workers;
  12881. workers.reserve(nthread);
  12882. int idx = 0;
  12883. std::vector<no_init<uint8_t>> read_data;
  12884. std::vector<no_init<uint8_t>> work;
  12885. std::vector<no_init<float>> f32_conv_buf;
  12886. uint16_t n_split = 1;
  12887. // Assume split index is continuous
  12888. if (params->keep_split) {
  12889. for (int i = 0; i < ml.n_tensors; ++i) {
  12890. n_split = std::max(uint16_t(ml.get_weight(i)->idx+1), n_split);
  12891. }
  12892. }
  12893. std::vector<gguf_context*> ctx_outs(n_split, NULL);
  12894. ctx_outs[0] = ctx_out;
  12895. // populate the original tensors so we get an initial meta data
  12896. for (int i = 0; i < ml.n_tensors; ++i) {
  12897. auto weight = ml.get_weight(i);
  12898. uint16_t i_split = params->keep_split ? weight->idx : 0;
  12899. struct ggml_tensor * tensor = weight->tensor;
  12900. if (ctx_outs[i_split] == NULL) {
  12901. ctx_outs[i_split] = gguf_init_empty();
  12902. }
  12903. gguf_add_tensor(ctx_outs[i_split], tensor);
  12904. }
  12905. // Set split info if needed
  12906. if (n_split > 1) {
  12907. for (size_t i = 0; i < ctx_outs.size(); ++i) {
  12908. gguf_set_val_u16(ctx_outs[i], ml.llm_kv(LLM_KV_SPLIT_NO).c_str(), i);
  12909. gguf_set_val_u16(ctx_outs[i], ml.llm_kv(LLM_KV_SPLIT_COUNT).c_str(), n_split);
  12910. gguf_set_val_i32(ctx_outs[i], ml.llm_kv(LLM_KV_SPLIT_TENSORS_COUNT).c_str(), ml.n_tensors);
  12911. }
  12912. }
  12913. int cur_split = -1;
  12914. std::ofstream fout;
  12915. auto close_ofstream = [&]() {
  12916. // Write metadata and close file handler
  12917. if (fout.is_open()) {
  12918. fout.seekp(0);
  12919. std::vector<uint8_t> data(gguf_get_meta_size(ctx_outs[cur_split]));
  12920. gguf_get_meta_data(ctx_outs[cur_split], data.data());
  12921. fout.write((const char *) data.data(), data.size());
  12922. fout.close();
  12923. }
  12924. };
  12925. auto new_ofstream = [&](int index) {
  12926. cur_split = index;
  12927. GGML_ASSERT(ctx_outs[cur_split] && "Find uninitialized gguf_context");
  12928. std::string fname = fname_out;
  12929. if (params->keep_split) {
  12930. char split_path[PATH_MAX] = {0};
  12931. llama_split_path(split_path, sizeof(split_path), fname_out.c_str(), cur_split, n_split);
  12932. fname = std::string(split_path);
  12933. }
  12934. fout = std::ofstream(fname, std::ios::binary);
  12935. fout.exceptions(std::ofstream::failbit); // fail fast on write errors
  12936. const size_t meta_size = gguf_get_meta_size(ctx_outs[cur_split]);
  12937. // placeholder for the meta data
  12938. ::zeros(fout, meta_size);
  12939. };
  12940. const auto tn = LLM_TN(model.arch);
  12941. new_ofstream(0);
  12942. for (int i = 0; i < ml.n_tensors; ++i) {
  12943. auto weight = ml.get_weight(i);
  12944. struct ggml_tensor * tensor = weight->tensor;
  12945. if (weight->idx != cur_split && params->keep_split) {
  12946. close_ofstream();
  12947. new_ofstream(weight->idx);
  12948. }
  12949. const std::string name = ggml_get_name(tensor);
  12950. if (!ml.use_mmap) {
  12951. if (read_data.size() < ggml_nbytes(tensor)) {
  12952. read_data.resize(ggml_nbytes(tensor));
  12953. }
  12954. tensor->data = read_data.data();
  12955. }
  12956. ml.load_data_for(tensor);
  12957. LLAMA_LOG_INFO("[%4d/%4d] %36s - [%s], type = %6s, ",
  12958. ++idx, ml.n_tensors,
  12959. ggml_get_name(tensor),
  12960. llama_format_tensor_shape(tensor).c_str(),
  12961. ggml_type_name(tensor->type));
  12962. // This used to be a regex, but <regex> has an extreme cost to compile times.
  12963. bool quantize = name.rfind("weight") == name.size() - 6; // ends with 'weight'?
  12964. // quantize only 2D and 3D tensors (experts)
  12965. quantize &= (ggml_n_dims(tensor) >= 2);
  12966. // do not quantize norm tensors
  12967. quantize &= name.find("_norm.weight") == std::string::npos;
  12968. quantize &= params->quantize_output_tensor || name != "output.weight";
  12969. quantize &= !params->only_copy;
  12970. // do not quantize expert gating tensors
  12971. // NOTE: can't use LLM_TN here because the layer number is not known
  12972. quantize &= name.find("ffn_gate_inp.weight") == std::string::npos;
  12973. // do not quantize positional embeddings and token types (BERT)
  12974. quantize &= name != LLM_TN(model.arch)(LLM_TENSOR_POS_EMBD, "weight");
  12975. quantize &= name != LLM_TN(model.arch)(LLM_TENSOR_TOKEN_TYPES, "weight");
  12976. // do not quantize Mamba's small yet 2D weights
  12977. // NOTE: can't use LLM_TN here because the layer number is not known
  12978. quantize &= name.find("ssm_conv1d.weight") == std::string::npos;
  12979. quantize &= name.find("ssm_x.weight") == std::string::npos;
  12980. quantize &= name.find("ssm_dt.weight") == std::string::npos;
  12981. enum ggml_type new_type;
  12982. void * new_data;
  12983. size_t new_size;
  12984. if (quantize) {
  12985. new_type = default_type;
  12986. // get more optimal quantization type based on the tensor shape, layer, etc.
  12987. if (!params->pure && ggml_is_quantized(default_type)) {
  12988. new_type = llama_tensor_get_type(qs, new_type, tensor, ftype);
  12989. }
  12990. if (params->token_embedding_type < GGML_TYPE_COUNT && strcmp(tensor->name, "token_embd.weight") == 0) {
  12991. new_type = params->token_embedding_type;
  12992. }
  12993. if (params->output_tensor_type < GGML_TYPE_COUNT && strcmp(tensor->name, "output.weight") == 0) {
  12994. new_type = params->output_tensor_type;
  12995. }
  12996. // If we've decided to quantize to the same type the tensor is already
  12997. // in then there's nothing to do.
  12998. quantize = tensor->type != new_type;
  12999. }
  13000. if (!quantize) {
  13001. new_type = tensor->type;
  13002. new_data = tensor->data;
  13003. new_size = ggml_nbytes(tensor);
  13004. LLAMA_LOG_INFO("size = %8.3f MB\n", ggml_nbytes(tensor)/1024.0/1024.0);
  13005. } else {
  13006. const int64_t nelements = ggml_nelements(tensor);
  13007. const float * imatrix = nullptr;
  13008. if (imatrix_data) {
  13009. auto it = imatrix_data->find(tensor->name);
  13010. if (it == imatrix_data->end()) {
  13011. LLAMA_LOG_INFO("\n====== %s: did not find weights for %s\n", __func__, tensor->name);
  13012. } else {
  13013. if (it->second.size() == (size_t)tensor->ne[0]*tensor->ne[2]) {
  13014. imatrix = it->second.data();
  13015. } else {
  13016. LLAMA_LOG_INFO("\n====== %s: imatrix size %d is different from tensor size %d for %s\n", __func__,
  13017. int(it->second.size()), int(tensor->ne[0]*tensor->ne[2]), tensor->name);
  13018. // this can happen when quantizing an old mixtral model with split tensors with a new incompatible imatrix
  13019. // this is a significant error and it may be good idea to abort the process if this happens,
  13020. // since many people will miss the error and not realize that most of the model is being quantized without an imatrix
  13021. // tok_embd should be ignored in this case, since it always causes this warning
  13022. if (name != tn(LLM_TENSOR_TOKEN_EMBD, "weight")) {
  13023. throw std::runtime_error(format("imatrix size %d is different from tensor size %d for %s",
  13024. int(it->second.size()), int(tensor->ne[0]*tensor->ne[2]), tensor->name));
  13025. }
  13026. }
  13027. }
  13028. }
  13029. if ((new_type == GGML_TYPE_IQ2_XXS ||
  13030. new_type == GGML_TYPE_IQ2_XS ||
  13031. new_type == GGML_TYPE_IQ2_S ||
  13032. new_type == GGML_TYPE_IQ1_S ||
  13033. (new_type == GGML_TYPE_IQ1_M && strcmp(tensor->name, "token_embd.weight") && strcmp(tensor->name, "output.weight")) ||
  13034. (new_type == GGML_TYPE_Q2_K && params->ftype == LLAMA_FTYPE_MOSTLY_Q2_K_S && strcmp(tensor->name, "token_embd.weight") != 0)) && !imatrix) {
  13035. LLAMA_LOG_ERROR("\n\n============================================================\n");
  13036. LLAMA_LOG_ERROR("Missing importance matrix for tensor %s in a very low-bit quantization\n", tensor->name);
  13037. LLAMA_LOG_ERROR("The result will be garbage, so bailing out\n");
  13038. LLAMA_LOG_ERROR("============================================================\n\n");
  13039. throw std::runtime_error(format("Missing importance matrix for tensor %s in a very low-bit quantization", tensor->name));
  13040. }
  13041. float * f32_data;
  13042. if (tensor->type == GGML_TYPE_F32) {
  13043. f32_data = (float *) tensor->data;
  13044. } else if (ggml_is_quantized(tensor->type) && !params->allow_requantize) {
  13045. throw std::runtime_error(format("requantizing from type %s is disabled", ggml_type_name(tensor->type)));
  13046. } else {
  13047. llama_tensor_dequantize_internal(tensor, f32_conv_buf, workers, nelements, nthread);
  13048. f32_data = (float *) f32_conv_buf.data();
  13049. }
  13050. LLAMA_LOG_INFO("converting to %s .. ", ggml_type_name(new_type));
  13051. fflush(stdout);
  13052. if (work.size() < (size_t)nelements * 4) {
  13053. work.resize(nelements * 4); // upper bound on size
  13054. }
  13055. new_data = work.data();
  13056. const int64_t n_per_row = tensor->ne[0];
  13057. const int64_t nrows = tensor->ne[1];
  13058. static const int64_t min_chunk_size = 32 * 512;
  13059. const int64_t chunk_size = n_per_row >= min_chunk_size ? n_per_row : n_per_row * ((min_chunk_size + n_per_row - 1)/n_per_row);
  13060. const int64_t nelements_matrix = tensor->ne[0] * tensor->ne[1];
  13061. const int64_t nchunk = (nelements_matrix + chunk_size - 1)/chunk_size;
  13062. const int64_t nthread_use = nthread > 1 ? std::max((int64_t)1, std::min((int64_t)nthread, nchunk)) : 1;
  13063. // quantize each expert separately since they have different importance matrices
  13064. new_size = 0;
  13065. for (int64_t i03 = 0; i03 < tensor->ne[2]; ++i03) {
  13066. const float * f32_data_03 = f32_data + i03 * nelements_matrix;
  13067. void * new_data_03 = (char *)new_data + ggml_row_size(new_type, n_per_row) * i03 * nrows;
  13068. const float * imatrix_03 = imatrix ? imatrix + i03 * n_per_row : nullptr;
  13069. new_size += llama_tensor_quantize_internal(new_type, f32_data_03, new_data_03, chunk_size, nrows, n_per_row, imatrix_03, workers, nthread_use);
  13070. }
  13071. LLAMA_LOG_INFO("size = %8.2f MiB -> %8.2f MiB\n", ggml_nbytes(tensor)/1024.0/1024.0, new_size/1024.0/1024.0);
  13072. }
  13073. total_size_org += ggml_nbytes(tensor);
  13074. total_size_new += new_size;
  13075. // update the gguf meta data as we go
  13076. gguf_set_tensor_type(ctx_outs[cur_split], name.c_str(), new_type);
  13077. gguf_set_tensor_data(ctx_outs[cur_split], name.c_str(), new_data, new_size);
  13078. // write tensor data + padding
  13079. fout.write((const char *) new_data, new_size);
  13080. zeros(fout, GGML_PAD(new_size, align) - new_size);
  13081. }
  13082. close_ofstream();
  13083. for (auto & c:ctx_outs) {
  13084. gguf_free(c);
  13085. }
  13086. LLAMA_LOG_INFO("%s: model size = %8.2f MB\n", __func__, total_size_org/1024.0/1024.0);
  13087. LLAMA_LOG_INFO("%s: quant size = %8.2f MB\n", __func__, total_size_new/1024.0/1024.0);
  13088. if (qs.n_fallback > 0) {
  13089. LLAMA_LOG_WARN("%s: WARNING: %d of %d tensor(s) required fallback quantization\n",
  13090. __func__, qs.n_fallback, qs.n_k_quantized + qs.n_fallback);
  13091. }
  13092. }
  13093. static int llama_apply_lora_from_file_internal(
  13094. const struct llama_model & model, const char * path_lora, float scale, const char * path_base_model, int n_threads
  13095. ) {
  13096. LLAMA_LOG_INFO("%s: applying lora adapter from '%s' - please wait ...\n", __func__, path_lora);
  13097. const int64_t t_start_lora_us = ggml_time_us();
  13098. llama_file fin(path_lora, "rb");
  13099. // verify magic and version
  13100. {
  13101. uint32_t magic = fin.read_u32();
  13102. if (magic != LLAMA_FILE_MAGIC_GGLA) {
  13103. LLAMA_LOG_ERROR("%s: bad file magic\n", __func__);
  13104. return 1;
  13105. }
  13106. uint32_t format_version = fin.read_u32();
  13107. if (format_version != 1) {
  13108. LLAMA_LOG_ERROR("%s: unsupported file version\n", __func__ );
  13109. return 1;
  13110. }
  13111. }
  13112. int32_t lora_r = fin.read_u32();
  13113. int32_t lora_alpha = fin.read_u32();
  13114. float scaling = scale * (float)lora_alpha / (float)lora_r;
  13115. LLAMA_LOG_INFO("%s: r = %d, alpha = %d, scaling = %.2f\n", __func__, lora_r, lora_alpha, scaling);
  13116. // load base model
  13117. std::unique_ptr<llama_model_loader> ml;
  13118. if (path_base_model) {
  13119. LLAMA_LOG_INFO("%s: loading base model from '%s'\n", __func__, path_base_model);
  13120. ml.reset(new llama_model_loader(path_base_model, /*use_mmap*/ true, /*check_tensors*/ false, /*kv_overrides*/ nullptr));
  13121. ml->init_mappings(/*prefetch*/ false); // no prefetching
  13122. }
  13123. struct tensor_meta {
  13124. std::string name;
  13125. ggml_type type;
  13126. int32_t ne[2];
  13127. size_t offset;
  13128. };
  13129. std::map<std::string, tensor_meta> tensor_meta_map;
  13130. // load all tensor meta
  13131. while (true) {
  13132. if (fin.tell() == fin.size) {
  13133. // eof
  13134. break;
  13135. }
  13136. int32_t n_dims;
  13137. int32_t name_len;
  13138. int32_t ftype;
  13139. fin.read_raw(&n_dims, sizeof(n_dims));
  13140. fin.read_raw(&name_len, sizeof(name_len));
  13141. fin.read_raw(&ftype, sizeof(ftype));
  13142. if (n_dims != 1 && n_dims != 2) {
  13143. LLAMA_LOG_ERROR("%s: unsupported tensor dimension %d\n", __func__, n_dims);
  13144. return 1;
  13145. }
  13146. int32_t ne[2] = { 1, 1 };
  13147. for (int i = 0; i < n_dims; ++i) {
  13148. fin.read_raw(&ne[i], sizeof(ne[i]));
  13149. }
  13150. std::string name;
  13151. {
  13152. GGML_ASSERT(name_len < GGML_MAX_NAME);
  13153. char buf[GGML_MAX_NAME];
  13154. fin.read_raw(buf, name_len);
  13155. name = std::string(buf, name_len);
  13156. }
  13157. // check for lora suffix
  13158. std::string lora_suffix;
  13159. if (name.length() > 6) {
  13160. lora_suffix = name.substr(name.length() - 6);
  13161. }
  13162. if (lora_suffix != ".loraA" && lora_suffix != ".loraB") {
  13163. LLAMA_LOG_ERROR("%s: error: '%s' is not a lora tensor\n", __func__, name.c_str());
  13164. return 1;
  13165. }
  13166. // tensor type
  13167. ggml_type wtype;
  13168. switch (ftype) {
  13169. case 0: wtype = GGML_TYPE_F32; break;
  13170. case 1: wtype = GGML_TYPE_F16; break;
  13171. default:
  13172. {
  13173. LLAMA_LOG_ERROR("%s: invalid tensor data type '%d'\n",
  13174. __func__, ftype);
  13175. return 1;
  13176. }
  13177. }
  13178. // data offset
  13179. size_t offset = fin.tell();
  13180. offset = (offset + 31) & -32;
  13181. // skip tensor data
  13182. fin.seek(offset + ggml_row_size(wtype, ne[0]) * ne[1], SEEK_SET);
  13183. tensor_meta_map.emplace(name, tensor_meta{ name, wtype, { ne[0], ne[1] }, offset });
  13184. }
  13185. bool warned = false;
  13186. int n_tensors = 0;
  13187. // apply
  13188. ggml_backend_t backend_cpu = ggml_backend_cpu_init();
  13189. if (backend_cpu == nullptr) {
  13190. LLAMA_LOG_ERROR("%s: error: failed to initialize cpu backend\n", __func__);
  13191. return 1;
  13192. }
  13193. ggml_backend_cpu_set_n_threads(backend_cpu, n_threads);
  13194. std::vector<no_init<uint8_t>> read_buf;
  13195. for (const auto & it : model.tensors_by_name) {
  13196. const std::string & base_name = it.first;
  13197. ggml_tensor * model_t = it.second;
  13198. if (tensor_meta_map.find(base_name + ".loraA") == tensor_meta_map.end() ||
  13199. tensor_meta_map.find(base_name + ".loraB") == tensor_meta_map.end()) {
  13200. continue;
  13201. }
  13202. tensor_meta & metaA = tensor_meta_map.at(base_name + ".loraA");
  13203. tensor_meta & metaB = tensor_meta_map.at(base_name + ".loraB");
  13204. ggml_init_params lora_init_params = {
  13205. /* .mem_size */ ggml_tensor_overhead()*128 + ggml_graph_overhead(),
  13206. /* .mem_buffer */ nullptr,
  13207. /* .no_alloc */ true,
  13208. };
  13209. ggml_context * lora_ctx = ggml_init(lora_init_params);
  13210. if (lora_ctx == nullptr) {
  13211. LLAMA_LOG_ERROR("%s: error: failed to initialize lora context\n", __func__);
  13212. ggml_backend_free(backend_cpu);
  13213. return 1;
  13214. }
  13215. // create tensors
  13216. ggml_tensor * loraA = ggml_new_tensor_2d(lora_ctx, metaA.type, metaA.ne[0], metaA.ne[1]);
  13217. ggml_tensor * loraB = ggml_new_tensor_2d(lora_ctx, metaB.type, metaB.ne[0], metaB.ne[1]);
  13218. ggml_set_name(loraA, metaA.name.c_str());
  13219. ggml_set_name(loraB, metaB.name.c_str());
  13220. ggml_tensor * base_t;
  13221. if (ml) {
  13222. if (!ml->get_tensor_meta(base_name.c_str())) {
  13223. LLAMA_LOG_ERROR("%s: error: tensor '%s' not found in base model\n", __func__, base_name.c_str());
  13224. return 1;
  13225. }
  13226. base_t = ggml_dup_tensor(lora_ctx, ml->get_tensor_meta(base_name.c_str()));
  13227. } else {
  13228. base_t = ggml_dup_tensor(lora_ctx, model_t);
  13229. }
  13230. ggml_set_name(base_t, base_name.c_str());
  13231. // allocate in backend buffer
  13232. ggml_backend_buffer_t lora_buf = ggml_backend_alloc_ctx_tensors_from_buft(lora_ctx, ggml_backend_cpu_buffer_type());
  13233. if (lora_buf == nullptr) {
  13234. LLAMA_LOG_ERROR("%s: error: failed to allocate lora tensors\n", __func__);
  13235. return 1;
  13236. }
  13237. // load tensor data
  13238. auto load_tensor = [&read_buf, &fin](const tensor_meta & tensor_meta, ggml_tensor * tensor) {
  13239. read_buf.resize(ggml_nbytes(tensor));
  13240. fin.seek(tensor_meta.offset, SEEK_SET);
  13241. fin.read_raw(read_buf.data(), ggml_nbytes(tensor));
  13242. ggml_backend_tensor_set(tensor, read_buf.data(), 0, read_buf.size());
  13243. };
  13244. load_tensor(metaA, loraA);
  13245. load_tensor(metaB, loraB);
  13246. // load base model tensor data
  13247. if (ml) {
  13248. ml->load_data_for(base_t);
  13249. } else {
  13250. ggml_backend_tensor_copy(model_t, base_t);
  13251. }
  13252. if (ggml_is_quantized(base_t->type) && !warned) {
  13253. LLAMA_LOG_WARN("%s: warning: using a lora adapter with a quantized model may result in poor quality, "
  13254. "use a f16 or f32 base model with --lora-base\n", __func__);
  13255. warned = true;
  13256. }
  13257. if (base_t->ne[0] != loraA->ne[1] || base_t->ne[1] != loraB->ne[1]) {
  13258. LLAMA_LOG_ERROR("%s: incompatible tensor dimensions (%" PRId64 " and %" PRId64 ");"
  13259. " are you sure that this adapter is for this model?\n", __func__, base_t->ne[0], loraA->ne[1]);
  13260. ggml_free(lora_ctx);
  13261. ggml_backend_buffer_free(lora_buf);
  13262. ggml_backend_free(backend_cpu);
  13263. return 1;
  13264. }
  13265. auto build_lora_graph = [&]() {
  13266. // w = w + BA*s
  13267. ggml_tensor * BA = ggml_mul_mat(lora_ctx, loraA, loraB);
  13268. ggml_set_name(BA, "BA");
  13269. if (scaling != 1.0f) {
  13270. BA = ggml_scale(lora_ctx, BA, scaling);
  13271. ggml_set_name(BA, "BA_scaled");
  13272. }
  13273. ggml_tensor * r;
  13274. r = ggml_add_inplace(lora_ctx, base_t, BA);
  13275. ggml_set_name(r, "r_add");
  13276. if (base_t->type != model_t->type) {
  13277. // convert the result to the model type
  13278. r = ggml_cast(lora_ctx, r, model_t->type);
  13279. ggml_set_name(r, "r_cast");
  13280. }
  13281. return r;
  13282. };
  13283. ggml_cgraph * gf = ggml_new_graph(lora_ctx);
  13284. ggml_tensor * r = build_lora_graph();
  13285. ggml_build_forward_expand(gf, r);
  13286. ggml_backend_buffer_t graph_buf = ggml_backend_alloc_ctx_tensors_from_buft(lora_ctx, ggml_backend_cpu_buffer_type());
  13287. if (graph_buf == nullptr) {
  13288. LLAMA_LOG_ERROR("%s: error: failed to allocate graph tensors\n", __func__);
  13289. ggml_free(lora_ctx);
  13290. ggml_backend_buffer_free(lora_buf);
  13291. ggml_backend_free(backend_cpu);
  13292. return 1;
  13293. }
  13294. ggml_backend_graph_compute(backend_cpu, gf);
  13295. ggml_backend_tensor_set(model_t, r->data, 0, ggml_nbytes(r));
  13296. #if 0
  13297. // TODO: use scheduler with fallback to CPU for less copies between CPU and GPU
  13298. //ggml_backend_sched_t sched = ggml_backend_sched_new(backends.data(), backends.size(), GGML_DEFAULT_GRAPH_SIZE);
  13299. // sched compute
  13300. ggml_build_forward_expand(gf, build_graph());
  13301. ggml_backend_sched_init_measure(sched, gf);
  13302. // create the graph again, since the previous one was destroyed by the measure
  13303. ggml_graph_clear(gf);
  13304. ggml_build_forward_expand(gf, build_graph());
  13305. ggml_backend_sched_graph_compute(sched, gf);
  13306. ggml_backend_sched_free(sched);
  13307. #endif
  13308. ggml_backend_buffer_free(lora_buf);
  13309. ggml_backend_buffer_free(graph_buf);
  13310. ggml_free(lora_ctx);
  13311. n_tensors++;
  13312. if (n_tensors % 4 == 0) {
  13313. LLAMA_LOG_INFO(".");
  13314. }
  13315. }
  13316. ggml_backend_free(backend_cpu);
  13317. const int64_t t_lora_us = ggml_time_us() - t_start_lora_us;
  13318. LLAMA_LOG_INFO(" done (%.2f ms)\n", t_lora_us / 1000.0);
  13319. return 0;
  13320. }
  13321. //
  13322. // interface implementation
  13323. //
  13324. struct llama_model_params llama_model_default_params() {
  13325. struct llama_model_params result = {
  13326. /*.n_gpu_layers =*/ 0,
  13327. /*.split_mode =*/ LLAMA_SPLIT_MODE_LAYER,
  13328. /*.main_gpu =*/ 0,
  13329. /*.tensor_split =*/ nullptr,
  13330. /*.rpc_servers =*/ nullptr,
  13331. /*.progress_callback =*/ nullptr,
  13332. /*.progress_callback_user_data =*/ nullptr,
  13333. /*.kv_overrides =*/ nullptr,
  13334. /*.vocab_only =*/ false,
  13335. /*.use_mmap =*/ true,
  13336. /*.use_mlock =*/ false,
  13337. /*.check_tensors =*/ false,
  13338. };
  13339. #ifdef GGML_USE_METAL
  13340. // note: we usually have plenty of VRAM, so by default offload all layers to the GPU
  13341. result.n_gpu_layers = 999;
  13342. #endif
  13343. return result;
  13344. }
  13345. struct llama_context_params llama_context_default_params() {
  13346. struct llama_context_params result = {
  13347. /*.seed =*/ LLAMA_DEFAULT_SEED,
  13348. /*.n_ctx =*/ 512,
  13349. /*.n_batch =*/ 2048,
  13350. /*.n_ubatch =*/ 512,
  13351. /*.n_seq_max =*/ 1,
  13352. /*.n_threads =*/ GGML_DEFAULT_N_THREADS, // TODO: better default
  13353. /*.n_threads_batch =*/ GGML_DEFAULT_N_THREADS,
  13354. /*.rope_scaling_type =*/ LLAMA_ROPE_SCALING_TYPE_UNSPECIFIED,
  13355. /*.pooling_type =*/ LLAMA_POOLING_TYPE_UNSPECIFIED,
  13356. /*.rope_freq_base =*/ 0.0f,
  13357. /*.rope_freq_scale =*/ 0.0f,
  13358. /*.yarn_ext_factor =*/ -1.0f,
  13359. /*.yarn_attn_factor =*/ 1.0f,
  13360. /*.yarn_beta_fast =*/ 32.0f,
  13361. /*.yarn_beta_slow =*/ 1.0f,
  13362. /*.yarn_orig_ctx =*/ 0,
  13363. /*.defrag_thold =*/ -1.0f,
  13364. /*.cb_eval =*/ nullptr,
  13365. /*.cb_eval_user_data =*/ nullptr,
  13366. /*.type_k =*/ GGML_TYPE_F16,
  13367. /*.type_v =*/ GGML_TYPE_F16,
  13368. /*.logits_all =*/ false,
  13369. /*.embeddings =*/ false,
  13370. /*.offload_kqv =*/ true,
  13371. /*.flash_attn =*/ false,
  13372. /*.abort_callback =*/ nullptr,
  13373. /*.abort_callback_data =*/ nullptr,
  13374. };
  13375. return result;
  13376. }
  13377. struct llama_model_quantize_params llama_model_quantize_default_params() {
  13378. struct llama_model_quantize_params result = {
  13379. /*.nthread =*/ 0,
  13380. /*.ftype =*/ LLAMA_FTYPE_MOSTLY_Q5_1,
  13381. /*.output_tensor_type =*/ GGML_TYPE_COUNT,
  13382. /*.token_embedding_type =*/ GGML_TYPE_COUNT,
  13383. /*.allow_requantize =*/ false,
  13384. /*.quantize_output_tensor =*/ true,
  13385. /*.only_copy =*/ false,
  13386. /*.pure =*/ false,
  13387. /*.keep_split =*/ false,
  13388. /*.imatrix =*/ nullptr,
  13389. /*.kv_overrides =*/ nullptr,
  13390. };
  13391. return result;
  13392. }
  13393. size_t llama_max_devices(void) {
  13394. #if defined(GGML_USE_RPC)
  13395. return GGML_RPC_MAX_SERVERS;
  13396. #elif defined(GGML_USE_METAL)
  13397. return 1;
  13398. #elif defined(GGML_USE_CUDA)
  13399. return GGML_CUDA_MAX_DEVICES;
  13400. #elif defined(GGML_USE_SYCL)
  13401. return GGML_SYCL_MAX_DEVICES;
  13402. #elif defined(GGML_USE_VULKAN)
  13403. return GGML_VK_MAX_DEVICES;
  13404. #else
  13405. return 1;
  13406. #endif
  13407. }
  13408. bool llama_supports_mmap(void) {
  13409. return llama_mmap::SUPPORTED;
  13410. }
  13411. bool llama_supports_mlock(void) {
  13412. return llama_mlock::SUPPORTED;
  13413. }
  13414. bool llama_supports_gpu_offload(void) {
  13415. #if defined(GGML_USE_CUDA) || defined(GGML_USE_CLBLAST) || defined(GGML_USE_METAL) || defined(GGML_USE_VULKAN) || \
  13416. defined(GGML_USE_SYCL) || defined(GGML_USE_KOMPUTE) || defined(GGML_USE_RPC)
  13417. // Defined when llama.cpp is compiled with support for offloading model layers to GPU.
  13418. return true;
  13419. #else
  13420. return false;
  13421. #endif
  13422. }
  13423. void llama_backend_init(void) {
  13424. ggml_time_init();
  13425. // needed to initialize f16 tables
  13426. {
  13427. struct ggml_init_params params = { 0, NULL, false };
  13428. struct ggml_context * ctx = ggml_init(params);
  13429. ggml_free(ctx);
  13430. }
  13431. }
  13432. void llama_numa_init(enum ggml_numa_strategy numa) {
  13433. if (numa != GGML_NUMA_STRATEGY_DISABLED) {
  13434. ggml_numa_init(numa);
  13435. }
  13436. }
  13437. void llama_backend_free(void) {
  13438. ggml_quantize_free();
  13439. }
  13440. int64_t llama_time_us(void) {
  13441. return ggml_time_us();
  13442. }
  13443. struct llama_model * llama_load_model_from_file(
  13444. const char * path_model,
  13445. struct llama_model_params params) {
  13446. ggml_time_init();
  13447. llama_model * model = new llama_model;
  13448. unsigned cur_percentage = 0;
  13449. if (params.progress_callback == NULL) {
  13450. params.progress_callback_user_data = &cur_percentage;
  13451. params.progress_callback = [](float progress, void * ctx) {
  13452. unsigned * cur_percentage_p = (unsigned *) ctx;
  13453. unsigned percentage = (unsigned) (100 * progress);
  13454. while (percentage > *cur_percentage_p) {
  13455. *cur_percentage_p = percentage;
  13456. LLAMA_LOG_INFO(".");
  13457. if (percentage >= 100) {
  13458. LLAMA_LOG_INFO("\n");
  13459. }
  13460. }
  13461. return true;
  13462. };
  13463. }
  13464. if (params.rpc_servers != nullptr) {
  13465. // split the servers set them into model->rpc_servers
  13466. std::string servers(params.rpc_servers);
  13467. size_t pos = 0;
  13468. while ((pos = servers.find(",")) != std::string::npos) {
  13469. std::string server = servers.substr(0, pos);
  13470. model->rpc_servers.push_back(server);
  13471. servers.erase(0, pos + 1);
  13472. }
  13473. model->rpc_servers.push_back(servers);
  13474. }
  13475. int status = llama_model_load(path_model, *model, params);
  13476. GGML_ASSERT(status <= 0);
  13477. if (status < 0) {
  13478. if (status == -1) {
  13479. LLAMA_LOG_ERROR("%s: failed to load model\n", __func__);
  13480. } else if (status == -2) {
  13481. LLAMA_LOG_INFO("%s: cancelled model load\n", __func__);
  13482. }
  13483. delete model;
  13484. return nullptr;
  13485. }
  13486. return model;
  13487. }
  13488. void llama_free_model(struct llama_model * model) {
  13489. delete model;
  13490. }
  13491. struct llama_context * llama_new_context_with_model(
  13492. struct llama_model * model,
  13493. struct llama_context_params params) {
  13494. if (!model) {
  13495. LLAMA_LOG_ERROR("%s: model cannot be NULL\n", __func__);
  13496. return nullptr;
  13497. }
  13498. if (params.n_batch == 0 && params.n_ubatch == 0) {
  13499. LLAMA_LOG_ERROR("%s: n_batch and n_ubatch cannot both be zero\n", __func__);
  13500. return nullptr;
  13501. }
  13502. if (params.n_ctx == 0 && model->hparams.n_ctx_train == 0) {
  13503. LLAMA_LOG_ERROR("%s: n_ctx and model->hparams.n_ctx_train cannot both be zero\n", __func__);
  13504. return nullptr;
  13505. }
  13506. if (params.flash_attn && model->arch == LLM_ARCH_GROK) {
  13507. LLAMA_LOG_WARN("%s: flash_attn is not compatible with Grok - forcing off\n", __func__);
  13508. params.flash_attn = false;
  13509. }
  13510. llama_context * ctx = new llama_context(*model);
  13511. const auto & hparams = model->hparams;
  13512. auto & cparams = ctx->cparams;
  13513. cparams.n_seq_max = std::max(1u, params.n_seq_max);
  13514. cparams.n_threads = params.n_threads;
  13515. cparams.n_threads_batch = params.n_threads_batch;
  13516. cparams.yarn_ext_factor = params.yarn_ext_factor;
  13517. cparams.yarn_attn_factor = params.yarn_attn_factor;
  13518. cparams.yarn_beta_fast = params.yarn_beta_fast;
  13519. cparams.yarn_beta_slow = params.yarn_beta_slow;
  13520. cparams.defrag_thold = params.defrag_thold;
  13521. cparams.embeddings = params.embeddings;
  13522. cparams.offload_kqv = params.offload_kqv;
  13523. cparams.flash_attn = params.flash_attn;
  13524. cparams.pooling_type = params.pooling_type;
  13525. cparams.n_ctx = params.n_ctx == 0 ? hparams.n_ctx_train : params.n_ctx;
  13526. cparams.rope_freq_base = params.rope_freq_base == 0.0f ? hparams.rope_freq_base_train : params.rope_freq_base;
  13527. cparams.rope_freq_scale = params.rope_freq_scale == 0.0f ? hparams.rope_freq_scale_train : params.rope_freq_scale;
  13528. // this is necessary due to kv_self.n being padded later during inference
  13529. cparams.n_ctx = GGML_PAD(cparams.n_ctx, llama_kv_cache_get_padding(cparams));
  13530. // with causal attention, the batch size is limited by the context size
  13531. cparams.n_batch = hparams.causal_attn ? std::min(cparams.n_ctx, params.n_batch) : params.n_batch;
  13532. // the batch has to be at least GGML_KQ_MASK_PAD because we will be padding the KQ_mask
  13533. // this is required by GPU kernels in order to avoid out-of-bounds accesses (e.g. ggml_flash_attn_ext)
  13534. // ref: https://github.com/ggerganov/llama.cpp/pull/5021
  13535. if (cparams.n_batch < GGML_KQ_MASK_PAD) {
  13536. LLAMA_LOG_WARN("%s: n_batch is less than GGML_KQ_MASK_PAD - increasing to %d\n", __func__, GGML_KQ_MASK_PAD);
  13537. cparams.n_batch = GGML_KQ_MASK_PAD;
  13538. }
  13539. cparams.n_ubatch = std::min(cparams.n_batch, params.n_ubatch == 0 ? params.n_batch : params.n_ubatch);
  13540. cparams.n_yarn_orig_ctx = params.yarn_orig_ctx != 0 ? params.yarn_orig_ctx :
  13541. hparams.n_yarn_orig_ctx != 0 ? hparams.n_yarn_orig_ctx :
  13542. hparams.n_ctx_train;
  13543. cparams.cb_eval = params.cb_eval;
  13544. cparams.cb_eval_user_data = params.cb_eval_user_data;
  13545. auto rope_scaling_type = params.rope_scaling_type;
  13546. if (rope_scaling_type == LLAMA_ROPE_SCALING_TYPE_UNSPECIFIED) {
  13547. rope_scaling_type = hparams.rope_scaling_type_train;
  13548. }
  13549. if (rope_scaling_type == LLAMA_ROPE_SCALING_TYPE_NONE) {
  13550. cparams.rope_freq_scale = 1.0f; // never scale if scaling type is none
  13551. }
  13552. if (cparams.yarn_ext_factor < 0.0f) { // negative indicates 'not set'
  13553. cparams.yarn_ext_factor = rope_scaling_type == LLAMA_ROPE_SCALING_TYPE_YARN ? 1.0f : 0.0f;
  13554. }
  13555. cparams.yarn_attn_factor *= hparams.rope_attn_factor;
  13556. cparams.causal_attn = hparams.causal_attn;
  13557. if (cparams.pooling_type == LLAMA_POOLING_TYPE_UNSPECIFIED) {
  13558. if (hparams.pooling_type == LLAMA_POOLING_TYPE_UNSPECIFIED) {
  13559. cparams.pooling_type = LLAMA_POOLING_TYPE_NONE;
  13560. } else {
  13561. cparams.pooling_type = hparams.pooling_type;
  13562. }
  13563. }
  13564. if (params.seed == LLAMA_DEFAULT_SEED) {
  13565. params.seed = time(NULL);
  13566. }
  13567. LLAMA_LOG_INFO("%s: n_ctx = %u\n", __func__, cparams.n_ctx);
  13568. LLAMA_LOG_INFO("%s: n_batch = %u\n", __func__, cparams.n_batch);
  13569. LLAMA_LOG_INFO("%s: n_ubatch = %u\n", __func__, cparams.n_ubatch);
  13570. LLAMA_LOG_INFO("%s: flash_attn = %d\n", __func__, cparams.flash_attn);
  13571. LLAMA_LOG_INFO("%s: freq_base = %.1f\n", __func__, cparams.rope_freq_base);
  13572. LLAMA_LOG_INFO("%s: freq_scale = %g\n", __func__, cparams.rope_freq_scale);
  13573. ctx->abort_callback = params.abort_callback;
  13574. ctx->abort_callback_data = params.abort_callback_data;
  13575. ctx->rng = std::mt19937(params.seed);
  13576. ctx->logits_all = params.logits_all;
  13577. uint32_t kv_size = cparams.n_ctx;
  13578. ggml_type type_k = params.type_k;
  13579. ggml_type type_v = params.type_v;
  13580. // Mamba only needs a constant number of KV cache cells per sequence
  13581. if (model->arch == LLM_ARCH_MAMBA) {
  13582. // Mamba needs at least as many KV cells as there are sequences kept at any time
  13583. kv_size = std::max((uint32_t) 1, params.n_seq_max);
  13584. // it's probably best to keep as much precision as possible for the states
  13585. type_k = GGML_TYPE_F32; // required by ggml_ssm_conv for Mamba's conv_states
  13586. type_v = GGML_TYPE_F32; // required by ggml_ssm_scan for Mamba's ssm_states
  13587. }
  13588. GGML_ASSERT(hparams.n_embd_head_k % ggml_blck_size(type_k) == 0);
  13589. GGML_ASSERT(hparams.n_embd_head_v % ggml_blck_size(type_v) == 0);
  13590. if (!hparams.vocab_only) {
  13591. // initialize backends
  13592. #if defined(GGML_USE_RPC)
  13593. for (auto & server : model->rpc_servers) {
  13594. ggml_backend_t backend = ggml_backend_rpc_init(server.c_str());
  13595. if (backend == nullptr) {
  13596. LLAMA_LOG_ERROR("%s: failed to connect RPC backend to %s\n", __func__, server.c_str());
  13597. llama_free(ctx);
  13598. return nullptr;
  13599. }
  13600. ctx->backends.push_back(backend);
  13601. }
  13602. #elif defined(GGML_USE_METAL)
  13603. if (model->n_gpu_layers > 0) {
  13604. ctx->backend_metal = ggml_backend_metal_init();
  13605. if (ctx->backend_metal == nullptr) {
  13606. LLAMA_LOG_ERROR("%s: failed to initialize Metal backend\n", __func__);
  13607. llama_free(ctx);
  13608. return nullptr;
  13609. }
  13610. ctx->backends.push_back(ctx->backend_metal);
  13611. }
  13612. #elif defined(GGML_USE_CUDA)
  13613. if (model->split_mode == LLAMA_SPLIT_MODE_NONE || model->split_mode == LLAMA_SPLIT_MODE_ROW) {
  13614. // with split_mode LLAMA_SPLIT_MODE_NONE or LLAMA_SPLIT_MODE_ROW, only the main GPU backend is used
  13615. ggml_backend_t backend = ggml_backend_cuda_init(model->main_gpu);
  13616. if (backend == nullptr) {
  13617. LLAMA_LOG_ERROR("%s: failed to initialize CUDA%d backend\n", __func__, model->main_gpu);
  13618. llama_free(ctx);
  13619. return nullptr;
  13620. }
  13621. ctx->backends.push_back(backend);
  13622. } else {
  13623. // LLAMA_SPLIT_MODE_LAYER requires a backend for each GPU
  13624. for (int device = 0; device < ggml_backend_cuda_get_device_count(); ++device) {
  13625. ggml_backend_t backend = ggml_backend_cuda_init(device);
  13626. if (backend == nullptr) {
  13627. LLAMA_LOG_ERROR("%s: failed to initialize CUDA%d backend\n", __func__, device);
  13628. llama_free(ctx);
  13629. return nullptr;
  13630. }
  13631. ctx->backends.push_back(backend);
  13632. }
  13633. }
  13634. #elif defined(GGML_USE_VULKAN)
  13635. if (model->split_mode == LLAMA_SPLIT_MODE_ROW) {
  13636. LLAMA_LOG_ERROR("%s: Row split not supported. Failed to initialize Vulkan backend\n", __func__);
  13637. llama_free(ctx);
  13638. return nullptr;
  13639. }
  13640. if (model->split_mode == LLAMA_SPLIT_MODE_NONE) {
  13641. ggml_backend_t backend = ggml_backend_vk_init(0);
  13642. if (backend == nullptr) {
  13643. LLAMA_LOG_ERROR("%s: failed to initialize Vulkan backend\n", __func__);
  13644. llama_free(ctx);
  13645. return nullptr;
  13646. }
  13647. ctx->backends.push_back(backend);
  13648. } else {
  13649. for (int device = 0; device < ggml_backend_vk_get_device_count(); ++device) {
  13650. ggml_backend_t backend = ggml_backend_vk_init(device);
  13651. if (backend == nullptr) {
  13652. LLAMA_LOG_ERROR("%s: failed to initialize Vulkan%d backend\n", __func__, device);
  13653. llama_free(ctx);
  13654. return nullptr;
  13655. }
  13656. ctx->backends.push_back(backend);
  13657. }
  13658. }
  13659. #elif defined(GGML_USE_SYCL)
  13660. // with split_mode LLAMA_SPLIT_MODE_NONE or LLAMA_SPLIT_MODE_ROW, only the main GPU backend is used
  13661. if (model->split_mode == LLAMA_SPLIT_MODE_NONE || model->split_mode == LLAMA_SPLIT_MODE_ROW) {
  13662. ggml_backend_t backend = ggml_backend_sycl_init(model->main_gpu);
  13663. if (backend == nullptr) {
  13664. int main_gpu_id = ggml_backend_sycl_get_device_id(model->main_gpu);
  13665. LLAMA_LOG_ERROR("%s: failed to initialize SYCL%d (index %d) backend\n", __func__, main_gpu_id, model->main_gpu);
  13666. llama_free(ctx);
  13667. return nullptr;
  13668. }
  13669. ctx->backends.push_back(backend);
  13670. } else {
  13671. // LLAMA_SPLIT_LAYER requires a backend for each GPU
  13672. for (int i = 0; i < ggml_backend_sycl_get_device_count(); ++i) {
  13673. ggml_backend_t backend = ggml_backend_sycl_init(i);
  13674. if (backend == nullptr) {
  13675. int id_list[GGML_SYCL_MAX_DEVICES];
  13676. ggml_sycl_get_gpu_list(id_list, GGML_SYCL_MAX_DEVICES);
  13677. LLAMA_LOG_ERROR("%s: failed to initialize SYCL%d (index %d) backend\n", __func__, id_list[i], i);
  13678. llama_free(ctx);
  13679. return nullptr;
  13680. }
  13681. ctx->backends.push_back(backend);
  13682. }
  13683. }
  13684. #elif defined(GGML_USE_KOMPUTE)
  13685. if (model->n_gpu_layers > 0) {
  13686. auto * backend = ggml_backend_kompute_init(model->main_gpu);
  13687. if (backend == nullptr) {
  13688. LLAMA_LOG_ERROR("%s: failed to initialize Kompute backend\n", __func__);
  13689. llama_free(ctx);
  13690. return nullptr;
  13691. }
  13692. ctx->backends.push_back(backend);
  13693. }
  13694. #endif
  13695. ctx->backend_cpu = ggml_backend_cpu_init();
  13696. if (ctx->backend_cpu == nullptr) {
  13697. LLAMA_LOG_ERROR("%s: failed to initialize CPU backend\n", __func__);
  13698. llama_free(ctx);
  13699. return nullptr;
  13700. }
  13701. ctx->backends.push_back(ctx->backend_cpu);
  13702. if (!llama_kv_cache_init(ctx->kv_self, ctx, type_k, type_v, kv_size, cparams.offload_kqv)) {
  13703. LLAMA_LOG_ERROR("%s: llama_kv_cache_init() failed for self-attention cache\n", __func__);
  13704. llama_free(ctx);
  13705. return nullptr;
  13706. }
  13707. {
  13708. size_t memory_size_k = 0;
  13709. size_t memory_size_v = 0;
  13710. for (auto & k : ctx->kv_self.k_l) {
  13711. memory_size_k += ggml_nbytes(k);
  13712. }
  13713. for (auto & v : ctx->kv_self.v_l) {
  13714. memory_size_v += ggml_nbytes(v);
  13715. }
  13716. LLAMA_LOG_INFO("%s: KV self size = %7.2f MiB, K (%s): %7.2f MiB, V (%s): %7.2f MiB\n", __func__,
  13717. (float)(memory_size_k + memory_size_v) / (1024.0f * 1024.0f),
  13718. ggml_type_name(type_k), (float)memory_size_k / (1024.0f * 1024.0f),
  13719. ggml_type_name(type_v), (float)memory_size_v / (1024.0f * 1024.0f));
  13720. }
  13721. // graph outputs buffer
  13722. {
  13723. // resized during inference when a batch uses more outputs
  13724. if (llama_output_reserve(*ctx, params.n_seq_max) < params.n_seq_max) {
  13725. LLAMA_LOG_ERROR("%s: failed to reserve initial output buffer\n", __func__);
  13726. llama_free(ctx);
  13727. return nullptr;
  13728. }
  13729. LLAMA_LOG_INFO("%s: %10s output buffer size = %8.2f MiB\n", __func__,
  13730. ggml_backend_buffer_name(ctx->buf_output),
  13731. ggml_backend_buffer_get_size(ctx->buf_output) / 1024.0 / 1024.0);
  13732. }
  13733. // scheduler and compute buffers
  13734. {
  13735. // buffer types used for the compute buffer of each backend
  13736. std::vector<ggml_backend_buffer_type_t> backend_buft;
  13737. for (auto * backend : ctx->backends) {
  13738. if (ggml_backend_is_cpu(backend)) {
  13739. // use host buffers for the CPU backend compute buffer
  13740. backend_buft.push_back(llama_default_buffer_type_cpu(true));
  13741. } else {
  13742. backend_buft.push_back(ggml_backend_get_default_buffer_type(backend));
  13743. }
  13744. }
  13745. // buffer used to store the computation graph and the tensor meta data
  13746. ctx->buf_compute_meta.resize(ggml_tensor_overhead()*LLAMA_MAX_NODES + ggml_graph_overhead_custom(LLAMA_MAX_NODES, false));
  13747. // enabling pipeline parallelism in the scheduler increases memory usage, so it is only done when necessary
  13748. bool pipeline_parallel =
  13749. llama_get_device_count(*model) > 1 &&
  13750. model->n_gpu_layers > (int)model->hparams.n_layer &&
  13751. model->split_mode == LLAMA_SPLIT_MODE_LAYER &&
  13752. params.offload_kqv;
  13753. #ifndef GGML_USE_CUDA
  13754. // pipeline parallelism requires support for async compute and events
  13755. // currently this is only implemented in the CUDA backend
  13756. pipeline_parallel = false;
  13757. #endif
  13758. ctx->sched = ggml_backend_sched_new(ctx->backends.data(), backend_buft.data(), ctx->backends.size(), LLAMA_MAX_NODES, pipeline_parallel);
  13759. if (pipeline_parallel) {
  13760. LLAMA_LOG_INFO("%s: pipeline parallelism enabled (n_copies=%d)\n", __func__, ggml_backend_sched_get_n_copies(ctx->sched));
  13761. }
  13762. // build worst-case graph
  13763. int n_tokens = (int)std::min(cparams.n_ctx, cparams.n_ubatch);
  13764. int n_past = cparams.n_ctx - n_tokens;
  13765. llama_token token = llama_token_bos(&ctx->model); // not actually used by llama_build_graph, but required to choose between token and embedding inputs graph
  13766. ggml_cgraph * gf = llama_build_graph(*ctx, llama_batch_get_one(&token, n_tokens, n_past, 0), true);
  13767. // initialize scheduler with the worst-case graph
  13768. if (!ggml_backend_sched_reserve(ctx->sched, gf)) {
  13769. LLAMA_LOG_ERROR("%s: failed to allocate compute buffers\n", __func__);
  13770. llama_free(ctx);
  13771. return nullptr;
  13772. }
  13773. for (size_t i = 0; i < ctx->backends.size(); i++) {
  13774. ggml_backend_t backend = ctx->backends[i];
  13775. ggml_backend_buffer_type_t buft = backend_buft[i];
  13776. size_t size = ggml_backend_sched_get_buffer_size(ctx->sched, backend);
  13777. if (size > 1) {
  13778. LLAMA_LOG_INFO("%s: %10s compute buffer size = %8.2f MiB\n", __func__,
  13779. ggml_backend_buft_name(buft),
  13780. size / 1024.0 / 1024.0);
  13781. }
  13782. }
  13783. // note: the number of splits during measure is higher than during inference due to the kv shift
  13784. int n_splits = ggml_backend_sched_get_n_splits(ctx->sched);
  13785. LLAMA_LOG_INFO("%s: graph nodes = %d\n", __func__, gf->n_nodes);
  13786. LLAMA_LOG_INFO("%s: graph splits = %d\n", __func__, n_splits);
  13787. }
  13788. }
  13789. return ctx;
  13790. }
  13791. void llama_free(struct llama_context * ctx) {
  13792. delete ctx;
  13793. }
  13794. const llama_model * llama_get_model(const struct llama_context * ctx) {
  13795. return &ctx->model;
  13796. }
  13797. uint32_t llama_n_ctx(const struct llama_context * ctx) {
  13798. return ctx->cparams.n_ctx;
  13799. }
  13800. uint32_t llama_n_batch(const struct llama_context * ctx) {
  13801. return ctx->cparams.n_batch;
  13802. }
  13803. uint32_t llama_n_ubatch(const struct llama_context * ctx) {
  13804. return ctx->cparams.n_ubatch;
  13805. }
  13806. uint32_t llama_n_seq_max(const struct llama_context * ctx) {
  13807. return ctx->kv_self.size;
  13808. }
  13809. enum llama_vocab_type llama_vocab_type(const struct llama_model * model) {
  13810. return model->vocab.type;
  13811. }
  13812. enum llama_rope_type llama_rope_type(const struct llama_model * model) {
  13813. switch (model->arch) {
  13814. // these models do not use RoPE
  13815. case LLM_ARCH_GPT2:
  13816. case LLM_ARCH_GPTJ:
  13817. case LLM_ARCH_MPT:
  13818. case LLM_ARCH_REFACT:
  13819. case LLM_ARCH_BLOOM:
  13820. case LLM_ARCH_MAMBA:
  13821. case LLM_ARCH_JINA_BERT_V2:
  13822. return LLAMA_ROPE_TYPE_NONE;
  13823. // use what we call a normal RoPE, operating on pairs of consecutive head values
  13824. case LLM_ARCH_LLAMA:
  13825. case LLM_ARCH_BAICHUAN:
  13826. case LLM_ARCH_STARCODER:
  13827. case LLM_ARCH_PLAMO:
  13828. case LLM_ARCH_CODESHELL:
  13829. case LLM_ARCH_ORION:
  13830. case LLM_ARCH_INTERNLM2:
  13831. case LLM_ARCH_MINICPM:
  13832. case LLM_ARCH_XVERSE:
  13833. case LLM_ARCH_COMMAND_R:
  13834. case LLM_ARCH_OLMO:
  13835. case LLM_ARCH_ARCTIC:
  13836. case LLM_ARCH_DEEPSEEK2:
  13837. return LLAMA_ROPE_TYPE_NORM;
  13838. // the pairs of head values are offset by n_rot/2
  13839. case LLM_ARCH_FALCON:
  13840. case LLM_ARCH_GROK:
  13841. case LLM_ARCH_DBRX:
  13842. case LLM_ARCH_BERT:
  13843. case LLM_ARCH_NOMIC_BERT:
  13844. case LLM_ARCH_STABLELM:
  13845. case LLM_ARCH_QWEN:
  13846. case LLM_ARCH_QWEN2:
  13847. case LLM_ARCH_QWEN2MOE:
  13848. case LLM_ARCH_PHI2:
  13849. case LLM_ARCH_PHI3:
  13850. case LLM_ARCH_GEMMA:
  13851. case LLM_ARCH_STARCODER2:
  13852. case LLM_ARCH_GPTNEOX:
  13853. return LLAMA_ROPE_TYPE_NEOX;
  13854. // all model arches should be listed explicitly here
  13855. case LLM_ARCH_UNKNOWN:
  13856. GGML_ASSERT(false && "unknown architecture");
  13857. break;
  13858. }
  13859. return LLAMA_ROPE_TYPE_NONE;
  13860. }
  13861. enum llama_pooling_type llama_pooling_type(const struct llama_context * ctx) {
  13862. return ctx->cparams.pooling_type;
  13863. }
  13864. int32_t llama_n_vocab(const struct llama_model * model) {
  13865. return model->hparams.n_vocab;
  13866. }
  13867. int32_t llama_n_ctx_train(const struct llama_model * model) {
  13868. return model->hparams.n_ctx_train;
  13869. }
  13870. int32_t llama_n_embd(const struct llama_model * model) {
  13871. return model->hparams.n_embd;
  13872. }
  13873. int32_t llama_n_layer(const struct llama_model * model) {
  13874. return model->hparams.n_layer;
  13875. }
  13876. float llama_rope_freq_scale_train(const struct llama_model * model) {
  13877. return model->hparams.rope_freq_scale_train;
  13878. }
  13879. int32_t llama_model_meta_val_str(const struct llama_model * model, const char * key, char * buf, size_t buf_size) {
  13880. const auto & it = model->gguf_kv.find(key);
  13881. if (it == model->gguf_kv.end()) {
  13882. if (buf_size > 0) {
  13883. buf[0] = '\0';
  13884. }
  13885. return -1;
  13886. }
  13887. return snprintf(buf, buf_size, "%s", it->second.c_str());
  13888. }
  13889. int32_t llama_model_meta_count(const struct llama_model * model) {
  13890. return (int)model->gguf_kv.size();
  13891. }
  13892. int32_t llama_model_meta_key_by_index(const struct llama_model * model, int i, char * buf, size_t buf_size) {
  13893. if (i < 0 || i >= (int)model->gguf_kv.size()) {
  13894. if (buf_size > 0) {
  13895. buf[0] = '\0';
  13896. }
  13897. return -1;
  13898. }
  13899. auto it = model->gguf_kv.begin();
  13900. std::advance(it, i);
  13901. return snprintf(buf, buf_size, "%s", it->first.c_str());
  13902. }
  13903. int32_t llama_model_meta_val_str_by_index(const struct llama_model * model, int32_t i, char * buf, size_t buf_size) {
  13904. if (i < 0 || i >= (int)model->gguf_kv.size()) {
  13905. if (buf_size > 0) {
  13906. buf[0] = '\0';
  13907. }
  13908. return -1;
  13909. }
  13910. auto it = model->gguf_kv.begin();
  13911. std::advance(it, i);
  13912. return snprintf(buf, buf_size, "%s", it->second.c_str());
  13913. }
  13914. int32_t llama_model_desc(const struct llama_model * model, char * buf, size_t buf_size) {
  13915. return snprintf(buf, buf_size, "%s %s %s",
  13916. llama_model_arch_name(model->arch),
  13917. llama_model_type_name(model->type),
  13918. llama_model_ftype_name(model->ftype).c_str());
  13919. }
  13920. uint64_t llama_model_size(const struct llama_model * model) {
  13921. uint64_t size = 0;
  13922. for (const auto & it : model->tensors_by_name) {
  13923. size += ggml_nbytes(it.second);
  13924. }
  13925. return size;
  13926. }
  13927. uint64_t llama_model_n_params(const struct llama_model * model) {
  13928. uint64_t nparams = 0;
  13929. for (const auto & it : model->tensors_by_name) {
  13930. nparams += ggml_nelements(it.second);
  13931. }
  13932. return nparams;
  13933. }
  13934. struct ggml_tensor * llama_get_model_tensor(struct llama_model * model, const char * name) {
  13935. auto it = std::find_if(model->tensors_by_name.begin(), model->tensors_by_name.end(),
  13936. [name](const std::pair<std::string, struct ggml_tensor *> & it) {
  13937. return it.first == name;
  13938. });
  13939. if (it == model->tensors_by_name.end()) {
  13940. return nullptr;
  13941. }
  13942. return it->second;
  13943. }
  13944. uint32_t llama_model_quantize(
  13945. const char * fname_inp,
  13946. const char * fname_out,
  13947. const llama_model_quantize_params * params) {
  13948. try {
  13949. llama_model_quantize_internal(fname_inp, fname_out, params);
  13950. return 0;
  13951. } catch (const std::exception & err) {
  13952. LLAMA_LOG_ERROR("%s: failed to quantize: %s\n", __func__, err.what());
  13953. return 1;
  13954. }
  13955. }
  13956. int32_t llama_model_apply_lora_from_file(const struct llama_model * model, const char * path_lora, float scale, const char * path_base_model, int32_t n_threads) {
  13957. try {
  13958. return llama_apply_lora_from_file_internal(*model, path_lora, scale, path_base_model, n_threads);
  13959. } catch (const std::exception & err) {
  13960. LLAMA_LOG_ERROR("%s: failed to apply lora adapter: %s\n", __func__, err.what());
  13961. return 1;
  13962. }
  13963. }
  13964. static bool llama_control_vector_init(struct llama_control_vector & cvec, const llama_model & model) {
  13965. GGML_ASSERT(cvec.tensors.empty());
  13966. GGML_ASSERT(cvec.ctxs.empty());
  13967. GGML_ASSERT(cvec.bufs.empty());
  13968. // count layer buffer types
  13969. std::map<ggml_backend_buffer_type_t, int> buft_layer_count;
  13970. for (int64_t i = 0; i < model.hparams.n_layer; i++) {
  13971. buft_layer_count[model.buft_layer[i].buft]++;
  13972. }
  13973. // allocate contexts
  13974. std::map<ggml_backend_buffer_type_t, ggml_context *> ctx_map;
  13975. for (auto & it : buft_layer_count) {
  13976. int n_layers = it.second;
  13977. struct ggml_init_params params = {
  13978. /*.mem_size =*/ n_layers * ggml_tensor_overhead(),
  13979. /*.mem_buffer =*/ NULL,
  13980. /*.no_alloc =*/ true,
  13981. };
  13982. ggml_context * ctx = ggml_init(params);
  13983. if (!ctx) {
  13984. LLAMA_LOG_ERROR("%s: failed to allocate context for control vector\n", __func__);
  13985. return 1;
  13986. }
  13987. ctx_map[it.first] = ctx;
  13988. }
  13989. // make tensors
  13990. cvec.tensors.reserve(model.hparams.n_layer);
  13991. cvec.tensors.push_back(nullptr); // there's never a tensor for layer 0
  13992. for (size_t il = 1; il < model.hparams.n_layer; il++) {
  13993. struct ggml_context * ctx = ctx_map.at(model.buft_layer[il].buft);
  13994. ggml_tensor * tensor = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, model.hparams.n_embd);
  13995. cvec.tensors.push_back(tensor);
  13996. }
  13997. // allocate tensors / buffers and zero
  13998. cvec.ctxs.reserve(ctx_map.size());
  13999. cvec.bufs.reserve(ctx_map.size());
  14000. for (auto it : ctx_map) {
  14001. ggml_backend_buffer_type_t buft = it.first;
  14002. ggml_context * ctx = it.second;
  14003. ggml_backend_buffer_t buf = ggml_backend_alloc_ctx_tensors_from_buft(ctx, buft);
  14004. if (!buf) {
  14005. LLAMA_LOG_ERROR("%s: failed to allocate buffer for control vector\n", __func__);
  14006. return false;
  14007. }
  14008. ggml_backend_buffer_clear(buf, 0);
  14009. cvec.ctxs.push_back(ctx);
  14010. cvec.bufs.push_back(buf);
  14011. }
  14012. return true;
  14013. }
  14014. int32_t llama_control_vector_apply(struct llama_context * lctx, const float * data, size_t len, int32_t n_embd, int32_t il_start, int32_t il_end) {
  14015. const llama_model & model = lctx->model;
  14016. llama_control_vector & cvec = lctx->cvec;
  14017. if (data == nullptr) {
  14018. // disable the current control vector (but leave allocated for later)
  14019. cvec.layer_start = -1;
  14020. cvec.layer_end = -1;
  14021. return 0;
  14022. }
  14023. if (n_embd != (int) model.hparams.n_embd) {
  14024. LLAMA_LOG_ERROR("%s: control vector n_embd does not match model\n", __func__);
  14025. return 1;
  14026. }
  14027. if (cvec.tensors.empty()) {
  14028. if (!llama_control_vector_init(cvec, model)) {
  14029. return 1;
  14030. }
  14031. }
  14032. cvec.layer_start = il_start;
  14033. cvec.layer_end = il_end;
  14034. for (size_t il = 1; il < model.hparams.n_layer; il++) {
  14035. assert(cvec.tensors[il] != nullptr);
  14036. const size_t off = n_embd * (il - 1); // buffer doesn't have data for layer 0, since it's never present
  14037. if (off + n_embd <= len) {
  14038. ggml_backend_tensor_set(cvec.tensors[il], data + off, 0, n_embd * ggml_element_size(cvec.tensors[il]));
  14039. }
  14040. }
  14041. return 0;
  14042. }
  14043. struct llama_kv_cache_view llama_kv_cache_view_init(const struct llama_context * ctx, int32_t n_seq_max) {
  14044. struct llama_kv_cache_view result = {
  14045. /*.n_cells = */ 0,
  14046. /*.n_seq_max = */ n_seq_max,
  14047. /*.token_count = */ 0,
  14048. /*.used_cells = */ llama_get_kv_cache_used_cells(ctx),
  14049. /*.max_contiguous = */ 0,
  14050. /*.max_contiguous_idx = */ -1,
  14051. /*.cells = */ nullptr,
  14052. /*.cells_sequences = */ nullptr,
  14053. };
  14054. return result;
  14055. }
  14056. void llama_kv_cache_view_free(struct llama_kv_cache_view * view) {
  14057. if (view->cells != nullptr) {
  14058. free(view->cells);
  14059. view->cells = nullptr;
  14060. }
  14061. if (view->cells_sequences != nullptr) {
  14062. free(view->cells_sequences);
  14063. view->cells_sequences = nullptr;
  14064. }
  14065. }
  14066. void llama_kv_cache_view_update(const struct llama_context * ctx, struct llama_kv_cache_view * view) {
  14067. if (uint32_t(view->n_cells) < ctx->kv_self.size || view->cells == nullptr) {
  14068. view->n_cells = int32_t(ctx->kv_self.size);
  14069. void * p = realloc(view->cells, sizeof(struct llama_kv_cache_view_cell) * view->n_cells);
  14070. GGML_ASSERT(p != nullptr && "Failed to alloc kv_cache_view cells");
  14071. view->cells = (struct llama_kv_cache_view_cell *)p;
  14072. p = realloc(view->cells_sequences, sizeof(llama_seq_id) * view->n_seq_max * view->n_cells);
  14073. GGML_ASSERT(p != nullptr && "Failed to alloc kv_cache_view cells sequences");
  14074. view->cells_sequences = (llama_seq_id *)p;
  14075. }
  14076. const std::vector<llama_kv_cell> & kv_cells = ctx->kv_self.cells;
  14077. llama_kv_cache_view_cell * c_curr = view->cells;
  14078. llama_seq_id * cs_curr = view->cells_sequences;
  14079. int32_t used_cells = 0;
  14080. int32_t token_count = 0;
  14081. int32_t curr_contig_idx = -1;
  14082. uint32_t max_contig = 0;
  14083. int32_t max_contig_idx = -1;
  14084. for (int32_t i = 0; i < int32_t(ctx->kv_self.size); i++, c_curr++, cs_curr += view->n_seq_max) {
  14085. const size_t curr_size = kv_cells[i].seq_id.size();
  14086. token_count += curr_size;
  14087. c_curr->pos = kv_cells[i].pos + kv_cells[i].delta;
  14088. if (curr_size > 0) {
  14089. if (curr_contig_idx >= 0 && uint32_t(i - curr_contig_idx) > max_contig) {
  14090. max_contig = i - curr_contig_idx;
  14091. max_contig_idx = curr_contig_idx;
  14092. }
  14093. curr_contig_idx = -1;
  14094. } else if (curr_contig_idx < 0) {
  14095. curr_contig_idx = i;
  14096. }
  14097. int seq_idx = 0;
  14098. for (const llama_seq_id it : kv_cells[i].seq_id) {
  14099. if (seq_idx >= view->n_seq_max) {
  14100. break;
  14101. }
  14102. cs_curr[seq_idx] = it;
  14103. seq_idx++;
  14104. }
  14105. if (seq_idx != 0) {
  14106. used_cells++;
  14107. }
  14108. for (; seq_idx < view->n_seq_max; seq_idx++) {
  14109. cs_curr[seq_idx] = -1;
  14110. }
  14111. }
  14112. if (curr_contig_idx >= 0 && kv_cells.size() - curr_contig_idx > max_contig) {
  14113. max_contig_idx = curr_contig_idx;
  14114. max_contig = kv_cells.size() - curr_contig_idx;
  14115. }
  14116. view->max_contiguous = max_contig;
  14117. view->max_contiguous_idx = max_contig_idx;
  14118. view->token_count = token_count;
  14119. view->used_cells = used_cells;
  14120. if (uint32_t(used_cells) != ctx->kv_self.used) {
  14121. LLAMA_LOG_ERROR("%s: used cells mismatch. kv_cache says %d but we calculated %d\n",
  14122. __func__, ctx->kv_self.used, used_cells);
  14123. }
  14124. }
  14125. int32_t llama_get_kv_cache_token_count(const struct llama_context * ctx) {
  14126. int result = 0;
  14127. for (uint32_t i = 0; i < ctx->kv_self.size; i++) {
  14128. result += ctx->kv_self.cells[i].seq_id.size();
  14129. }
  14130. return result;
  14131. }
  14132. int32_t llama_get_kv_cache_used_cells(const struct llama_context * ctx) {
  14133. return ctx->kv_self.used;
  14134. }
  14135. void llama_kv_cache_clear(struct llama_context * ctx) {
  14136. llama_kv_cache_clear(ctx->kv_self);
  14137. }
  14138. bool llama_kv_cache_seq_rm(struct llama_context * ctx, llama_seq_id seq_id, llama_pos p0, llama_pos p1) {
  14139. return llama_kv_cache_seq_rm(ctx->kv_self, seq_id, p0, p1);
  14140. }
  14141. void llama_kv_cache_seq_cp(struct llama_context * ctx, llama_seq_id seq_id_src, llama_seq_id seq_id_dst, llama_pos p0, llama_pos p1) {
  14142. if (seq_id_src == seq_id_dst) {
  14143. return;
  14144. }
  14145. llama_kv_cache_seq_cp(ctx->kv_self, seq_id_src, seq_id_dst, p0, p1);
  14146. }
  14147. void llama_kv_cache_seq_keep(struct llama_context * ctx, llama_seq_id seq_id) {
  14148. llama_kv_cache_seq_keep(ctx->kv_self, seq_id);
  14149. }
  14150. void llama_kv_cache_seq_add(struct llama_context * ctx, llama_seq_id seq_id, llama_pos p0, llama_pos p1, llama_pos delta) {
  14151. if (delta == 0) {
  14152. return;
  14153. }
  14154. llama_kv_cache_seq_add(ctx->kv_self, seq_id, p0, p1, delta);
  14155. }
  14156. void llama_kv_cache_seq_div(struct llama_context * ctx, llama_seq_id seq_id, llama_pos p0, llama_pos p1, int d) {
  14157. if (d == 1) {
  14158. return;
  14159. }
  14160. llama_kv_cache_seq_div(ctx->kv_self, seq_id, p0, p1, d);
  14161. }
  14162. llama_pos llama_kv_cache_seq_pos_max(struct llama_context * ctx, llama_seq_id seq_id) {
  14163. return llama_kv_cache_seq_pos_max(ctx->kv_self, seq_id);
  14164. }
  14165. void llama_kv_cache_defrag(struct llama_context * ctx) {
  14166. llama_kv_cache_defrag(ctx->kv_self);
  14167. }
  14168. void llama_kv_cache_update(struct llama_context * ctx) {
  14169. llama_kv_cache_update_internal(*ctx);
  14170. }
  14171. // deprecated
  14172. size_t llama_get_state_size(const struct llama_context * ctx) {
  14173. return llama_state_get_size(ctx);
  14174. }
  14175. // deprecated
  14176. size_t llama_copy_state_data(struct llama_context * ctx, uint8_t * dst) {
  14177. return llama_state_get_data(ctx, dst);
  14178. }
  14179. // deprecated
  14180. size_t llama_set_state_data(struct llama_context * ctx, const uint8_t * src) {
  14181. return llama_state_set_data(ctx, src);
  14182. }
  14183. // deprecated
  14184. bool llama_load_session_file(struct llama_context * ctx, const char * path_session, llama_token * tokens_out, size_t n_token_capacity, size_t * n_token_count_out) {
  14185. return llama_state_load_file(ctx, path_session, tokens_out, n_token_capacity, n_token_count_out);
  14186. }
  14187. // deprecated
  14188. bool llama_save_session_file(struct llama_context * ctx, const char * path_session, const llama_token * tokens, size_t n_token_count) {
  14189. return llama_state_save_file(ctx, path_session, tokens, n_token_count);
  14190. }
  14191. // Returns the *maximum* size of the state
  14192. size_t llama_state_get_size(const struct llama_context * ctx) {
  14193. const auto & cparams = ctx->cparams;
  14194. const auto & hparams = ctx->model.hparams;
  14195. // we don't know size of rng until we actually serialize it. so reserve more than enough memory for its serialized state.
  14196. // for reference, std::mt19937(1337) serializes to 6701 bytes.
  14197. const size_t s_rng_size = sizeof(size_t);
  14198. const size_t s_rng = LLAMA_MAX_RNG_STATE;
  14199. const size_t s_n_outputs = sizeof(size_t);
  14200. // assume worst case for outputs although only currently set ones are serialized
  14201. const size_t s_output_pos = ctx->cparams.n_batch * sizeof(int32_t);
  14202. const size_t s_logits_size = sizeof(size_t);
  14203. const size_t s_logits = ctx->logits_size ? cparams.n_batch * hparams.n_vocab * sizeof(float) : 0;
  14204. const size_t s_embedding_size = sizeof(size_t);
  14205. const size_t s_embedding = ctx->embd_size ? cparams.n_batch * hparams.n_embd * sizeof(float) : 0;
  14206. const size_t s_kv_buf_size = sizeof(size_t);
  14207. const size_t s_kv_head = sizeof(uint32_t);
  14208. const size_t s_kv_size = sizeof(uint32_t);
  14209. const size_t s_kv_used = sizeof(uint32_t);
  14210. const size_t s_v_trans = sizeof(uint32_t);
  14211. const size_t s_kv = ctx->kv_self.total_size();
  14212. const size_t s_kv_cell = sizeof(llama_pos) + sizeof(size_t) + cparams.n_seq_max*sizeof(llama_seq_id);
  14213. const size_t s_kv_cells = ctx->kv_self.size * s_kv_cell;
  14214. const size_t s_total = (
  14215. + s_rng_size
  14216. + s_rng
  14217. + s_n_outputs
  14218. + s_output_pos
  14219. + s_logits_size
  14220. + s_logits
  14221. + s_embedding_size
  14222. + s_embedding
  14223. + s_kv_buf_size
  14224. + s_kv_head
  14225. + s_kv_size
  14226. + s_kv_used
  14227. + s_v_trans
  14228. + s_kv
  14229. + s_kv_cells
  14230. );
  14231. // on session change it is very likely that the state size has changed - so we need to update this function
  14232. static_assert(LLAMA_SESSION_VERSION == 6, "So you just bumped the session version - good. But did you remember to update llama_state_get_size?");
  14233. return s_total;
  14234. }
  14235. // llama_context_data
  14236. struct llama_data_context {
  14237. virtual void write(const void * src, size_t size) = 0;
  14238. virtual size_t get_size_written() = 0;
  14239. virtual ~llama_data_context() = default;
  14240. };
  14241. struct llama_data_buffer_context : llama_data_context {
  14242. uint8_t * ptr;
  14243. size_t size_written = 0;
  14244. llama_data_buffer_context(uint8_t * p) : ptr(p) {}
  14245. void write(const void * src, size_t size) override {
  14246. memcpy(ptr, src, size);
  14247. ptr += size;
  14248. size_written += size;
  14249. }
  14250. size_t get_size_written() override {
  14251. return size_written;
  14252. }
  14253. };
  14254. struct llama_data_file_context : llama_data_context {
  14255. llama_file * file;
  14256. size_t size_written = 0;
  14257. llama_data_file_context(llama_file * f) : file(f) {}
  14258. void write(const void * src, size_t size) override {
  14259. file->write_raw(src, size);
  14260. size_written += size;
  14261. }
  14262. size_t get_size_written() override {
  14263. return size_written;
  14264. }
  14265. };
  14266. /** copy state data into either a buffer or file depending on the passed in context
  14267. *
  14268. * file context:
  14269. * llama_file file("/path", "wb");
  14270. * llama_data_file_context data_ctx(&file);
  14271. * llama_state_get_data(ctx, &data_ctx);
  14272. *
  14273. * buffer context:
  14274. * std::vector<uint8_t> buf(max_size, 0);
  14275. * llama_data_buffer_context data_ctx(&buf.data());
  14276. * llama_state_get_data(ctx, &data_ctx);
  14277. *
  14278. */
  14279. static void llama_state_get_data_internal(struct llama_context * ctx, llama_data_context * data_ctx) {
  14280. llama_synchronize(ctx);
  14281. // copy rng
  14282. {
  14283. std::ostringstream rng_ss;
  14284. rng_ss << ctx->rng;
  14285. const std::string & rng_str = rng_ss.str();
  14286. const size_t rng_size = rng_str.size();
  14287. GGML_ASSERT(rng_size <= LLAMA_MAX_RNG_STATE);
  14288. data_ctx->write(&rng_size, sizeof(rng_size));
  14289. data_ctx->write(rng_str.data(), rng_size);
  14290. }
  14291. // copy outputs
  14292. {
  14293. // Can't use ctx->n_outputs because it's not for the
  14294. // entire last batch when n_ubatch is smaller than n_batch
  14295. size_t n_outputs = 0;
  14296. // copy output ids
  14297. {
  14298. std::vector<int32_t> output_pos;
  14299. const size_t n_batch = ctx->cparams.n_batch;
  14300. const auto & output_ids = ctx->output_ids;
  14301. output_pos.resize(ctx->output_size);
  14302. // build a more compact representation of the output ids
  14303. for (size_t i = 0; i < n_batch; ++i) {
  14304. // map an output id to a position in the batch
  14305. int32_t pos = output_ids[i];
  14306. if (pos >= 0) {
  14307. if ((size_t) pos >= n_outputs) {
  14308. n_outputs = pos + 1;
  14309. }
  14310. GGML_ASSERT((size_t) pos < ctx->output_size);
  14311. output_pos[pos] = i;
  14312. }
  14313. }
  14314. data_ctx->write(&n_outputs, sizeof(n_outputs));
  14315. if (n_outputs) {
  14316. data_ctx->write(output_pos.data(), n_outputs * sizeof(int32_t));
  14317. }
  14318. }
  14319. // copy logits
  14320. {
  14321. const size_t logits_size = std::min(ctx->logits_size, n_outputs * ctx->model.hparams.n_vocab);
  14322. data_ctx->write(&logits_size, sizeof(logits_size));
  14323. if (logits_size) {
  14324. data_ctx->write(ctx->logits, logits_size * sizeof(float));
  14325. }
  14326. }
  14327. // copy embeddings
  14328. {
  14329. const size_t embeddings_size = std::min(ctx->embd_size, n_outputs * ctx->model.hparams.n_embd);
  14330. data_ctx->write(&embeddings_size, sizeof(embeddings_size));
  14331. if (embeddings_size) {
  14332. data_ctx->write(ctx->embd, embeddings_size * sizeof(float));
  14333. }
  14334. }
  14335. }
  14336. // copy kv cache
  14337. {
  14338. const auto & kv_self = ctx->kv_self;
  14339. const auto & hparams = ctx->model.hparams;
  14340. const uint32_t n_layer = hparams.n_layer;
  14341. const uint32_t n_embd_k_gqa = hparams.n_embd_k_gqa() + hparams.n_embd_k_s();
  14342. const uint32_t n_embd_v_gqa = hparams.n_embd_v_gqa() + hparams.n_embd_v_s();
  14343. // NOTE: kv_size and kv_buf_size are mostly used for sanity checks
  14344. const uint32_t kv_head = llama_kv_cache_cell_max(kv_self);
  14345. const uint32_t kv_size = kv_self.size;
  14346. const size_t kv_buf_size = kv_self.total_size() / (kv_size ? kv_size : 1) * kv_head;
  14347. const uint32_t kv_used = kv_self.used;
  14348. const uint32_t v_trans = kv_self.v_trans ? 1 : 0;
  14349. data_ctx->write(&kv_buf_size, sizeof(kv_buf_size));
  14350. data_ctx->write(&kv_head, sizeof(kv_head));
  14351. data_ctx->write(&kv_size, sizeof(kv_size));
  14352. data_ctx->write(&kv_used, sizeof(kv_used));
  14353. data_ctx->write(&v_trans, sizeof(v_trans));
  14354. if (kv_buf_size) {
  14355. const size_t pre_kv_buf_size = data_ctx->get_size_written();
  14356. std::vector<uint8_t> tmp_buf;
  14357. for (int il = 0; il < (int) n_layer; ++il) {
  14358. const size_t k_size = ggml_row_size(kv_self.k_l[il]->type, n_embd_k_gqa*kv_head);
  14359. tmp_buf.resize(k_size);
  14360. ggml_backend_tensor_get(kv_self.k_l[il], tmp_buf.data(), 0, tmp_buf.size());
  14361. data_ctx->write(tmp_buf.data(), tmp_buf.size());
  14362. if (kv_self.recurrent || !kv_self.v_trans) {
  14363. // v is contiguous for recurrent models
  14364. // TODO: use other tensors for state models than k and v
  14365. const size_t v_size = ggml_row_size(kv_self.v_l[il]->type, n_embd_v_gqa*kv_head);
  14366. tmp_buf.resize(v_size);
  14367. ggml_backend_tensor_get(kv_self.v_l[il], tmp_buf.data(), 0, tmp_buf.size());
  14368. data_ctx->write(tmp_buf.data(), tmp_buf.size());
  14369. continue;
  14370. }
  14371. // v is not contiguous, copy row by row
  14372. const size_t v_row_size = ggml_row_size(kv_self.v_l[il]->type, kv_head);
  14373. const size_t v_row_stride = ggml_row_size(kv_self.v_l[il]->type, kv_size);
  14374. tmp_buf.resize(v_row_size);
  14375. for (int ir = 0; ir < (int) n_embd_v_gqa; ++ir) {
  14376. ggml_backend_tensor_get(kv_self.v_l[il], tmp_buf.data(), ir*v_row_stride, tmp_buf.size());
  14377. data_ctx->write(tmp_buf.data(), tmp_buf.size());
  14378. }
  14379. }
  14380. GGML_ASSERT(kv_buf_size == data_ctx->get_size_written() - pre_kv_buf_size);
  14381. }
  14382. for (uint32_t i = 0; i < kv_head; ++i) {
  14383. const auto & cell = kv_self.cells[i];
  14384. const llama_pos pos = cell.pos;
  14385. const size_t seq_id_size = cell.seq_id.size();
  14386. data_ctx->write(&pos, sizeof(pos));
  14387. data_ctx->write(&seq_id_size, sizeof(seq_id_size));
  14388. for (auto seq_id : cell.seq_id) {
  14389. data_ctx->write(&seq_id, sizeof(seq_id));
  14390. }
  14391. }
  14392. }
  14393. }
  14394. size_t llama_state_get_data(struct llama_context * ctx, uint8_t * dst) {
  14395. llama_data_buffer_context data_ctx(dst);
  14396. llama_state_get_data_internal(ctx, &data_ctx);
  14397. return data_ctx.get_size_written();
  14398. }
  14399. // Sets the state reading from the specified source address
  14400. size_t llama_state_set_data(struct llama_context * ctx, const uint8_t * src) {
  14401. llama_synchronize(ctx);
  14402. const uint8_t * inp = src;
  14403. // set rng
  14404. {
  14405. size_t rng_size;
  14406. memcpy(&rng_size, inp, sizeof(rng_size)); inp += sizeof(rng_size);
  14407. GGML_ASSERT(rng_size <= LLAMA_MAX_RNG_STATE);
  14408. std::string rng_str((const char *)inp, rng_size); inp += rng_size;
  14409. std::istringstream rng_ss(rng_str);
  14410. rng_ss >> ctx->rng;
  14411. GGML_ASSERT(!rng_ss.fail());
  14412. }
  14413. // set output ids
  14414. {
  14415. size_t n_outputs;
  14416. std::vector<int32_t> output_pos;
  14417. memcpy(&n_outputs, inp, sizeof(n_outputs)); inp += sizeof(n_outputs);
  14418. GGML_ASSERT(n_outputs <= llama_output_reserve(*ctx, n_outputs));
  14419. if (n_outputs) {
  14420. output_pos.resize(n_outputs);
  14421. memcpy(output_pos.data(), inp, n_outputs * sizeof(int32_t));
  14422. inp += n_outputs * sizeof(int32_t);
  14423. for (int32_t i = 0; i < (int32_t) output_pos.size(); ++i) {
  14424. int32_t id = output_pos[i];
  14425. GGML_ASSERT((uint32_t) id < ctx->cparams.n_batch);
  14426. ctx->output_ids[id] = i;
  14427. }
  14428. ctx->n_outputs = n_outputs;
  14429. }
  14430. }
  14431. // set logits
  14432. {
  14433. size_t logits_size;
  14434. memcpy(&logits_size, inp, sizeof(logits_size)); inp += sizeof(logits_size);
  14435. GGML_ASSERT(ctx->logits_size >= logits_size);
  14436. if (logits_size) {
  14437. memcpy(ctx->logits, inp, logits_size * sizeof(float));
  14438. inp += logits_size * sizeof(float);
  14439. }
  14440. }
  14441. // set embeddings
  14442. {
  14443. size_t embeddings_size;
  14444. memcpy(&embeddings_size, inp, sizeof(embeddings_size)); inp += sizeof(embeddings_size);
  14445. GGML_ASSERT(ctx->embd_size >= embeddings_size);
  14446. if (embeddings_size) {
  14447. memcpy(ctx->embd, inp, embeddings_size * sizeof(float));
  14448. inp += embeddings_size * sizeof(float);
  14449. }
  14450. }
  14451. // set kv cache
  14452. {
  14453. const auto & kv_self = ctx->kv_self;
  14454. const auto & hparams = ctx->model.hparams;
  14455. const uint32_t n_layer = hparams.n_layer;
  14456. const uint32_t n_embd_k_gqa = hparams.n_embd_k_gqa() + hparams.n_embd_k_s();
  14457. const uint32_t n_embd_v_gqa = hparams.n_embd_v_gqa() + hparams.n_embd_v_s();
  14458. size_t kv_buf_size;
  14459. uint32_t kv_head;
  14460. uint32_t kv_size;
  14461. uint32_t kv_used;
  14462. uint32_t v_trans;
  14463. memcpy(&kv_buf_size, inp, sizeof(kv_buf_size)); inp += sizeof(kv_buf_size);
  14464. memcpy(&kv_head, inp, sizeof(kv_head)); inp += sizeof(kv_head);
  14465. memcpy(&kv_size, inp, sizeof(kv_size)); inp += sizeof(kv_size);
  14466. memcpy(&kv_used, inp, sizeof(kv_used)); inp += sizeof(kv_used);
  14467. memcpy(&v_trans, inp, sizeof(v_trans)); inp += sizeof(v_trans);
  14468. GGML_ASSERT(kv_self.v_trans == (bool) v_trans); // incompatible V transposition
  14469. if (kv_self.size != kv_size) {
  14470. // the KV cache needs to be big enough to load all the KV cells from the saved state
  14471. GGML_ASSERT(kv_self.size >= kv_head);
  14472. LLAMA_LOG_INFO("%s: state contains %d KV cells, was saved with kv_size=%d, but is loaded with kv_size=%d (fine, but different)\n",
  14473. __func__, kv_head, kv_size, kv_self.size);
  14474. }
  14475. llama_kv_cache_clear(ctx);
  14476. if (kv_buf_size) {
  14477. const size_t pre_kv_buf_size = inp - src;
  14478. GGML_ASSERT(kv_self.total_size() >= kv_buf_size);
  14479. for (int il = 0; il < (int) n_layer; ++il) {
  14480. const size_t k_size = ggml_row_size(kv_self.k_l[il]->type, n_embd_k_gqa*kv_head);
  14481. ggml_backend_tensor_set(kv_self.k_l[il], inp, 0, k_size);
  14482. inp += k_size;
  14483. if (kv_self.recurrent || !kv_self.v_trans) {
  14484. // v is contiguous for recurrent models
  14485. // TODO: use other tensors for state models than k and v
  14486. const size_t v_size = ggml_row_size(kv_self.v_l[il]->type, n_embd_v_gqa*kv_head);
  14487. ggml_backend_tensor_set(kv_self.v_l[il], inp, 0, v_size);
  14488. inp += v_size;
  14489. continue;
  14490. }
  14491. // v is not contiguous, copy row by row
  14492. const size_t v_row_size = ggml_row_size(kv_self.v_l[il]->type, kv_head);
  14493. const size_t v_row_stride = ggml_row_size(kv_self.v_l[il]->type, kv_self.size);
  14494. for (int ir = 0; ir < (int) n_embd_v_gqa; ++ir) {
  14495. ggml_backend_tensor_set(kv_self.v_l[il], inp, ir*v_row_stride, v_row_size);
  14496. inp += v_row_size;
  14497. }
  14498. }
  14499. GGML_ASSERT(kv_buf_size == inp - src - pre_kv_buf_size);
  14500. }
  14501. ctx->kv_self.head = kv_head;
  14502. ctx->kv_self.used = kv_used;
  14503. for (uint32_t i = 0; i < kv_head; ++i) {
  14504. llama_pos pos;
  14505. size_t seq_id_size;
  14506. memcpy(&pos, inp, sizeof(pos)); inp += sizeof(pos);
  14507. memcpy(&seq_id_size, inp, sizeof(seq_id_size)); inp += sizeof(seq_id_size);
  14508. ctx->kv_self.cells[i].pos = pos;
  14509. llama_seq_id seq_id;
  14510. for (size_t j = 0; j < seq_id_size; ++j) {
  14511. memcpy(&seq_id, inp, sizeof(seq_id)); inp += sizeof(seq_id);
  14512. ctx->kv_self.cells[i].seq_id.insert(seq_id);
  14513. }
  14514. }
  14515. }
  14516. const size_t nread = inp - src;
  14517. const size_t max_size = llama_state_get_size(ctx);
  14518. GGML_ASSERT(nread <= max_size);
  14519. return nread;
  14520. }
  14521. static bool llama_state_load_file_internal(struct llama_context * ctx, const char * path_session, llama_token * tokens_out, size_t n_token_capacity, size_t * n_token_count_out) {
  14522. llama_file file(path_session, "rb");
  14523. // sanity checks
  14524. {
  14525. const uint32_t magic = file.read_u32();
  14526. const uint32_t version = file.read_u32();
  14527. if (magic != LLAMA_SESSION_MAGIC || version != LLAMA_SESSION_VERSION) {
  14528. LLAMA_LOG_ERROR("%s : unknown (magic, version) for session file: %08x, %08x\n", __func__, magic, version);
  14529. return false;
  14530. }
  14531. llama_hparams session_hparams;
  14532. file.read_raw(&session_hparams, sizeof(llama_hparams));
  14533. if (session_hparams != ctx->model.hparams) {
  14534. LLAMA_LOG_INFO("%s : model hparams didn't match from session file!\n", __func__);
  14535. return false;
  14536. }
  14537. }
  14538. // load the prompt
  14539. {
  14540. const uint32_t n_token_count = file.read_u32();
  14541. if (n_token_count > n_token_capacity) {
  14542. LLAMA_LOG_ERROR("%s : token count in session file exceeded capacity! %u > %zu\n", __func__, n_token_count, n_token_capacity);
  14543. return false;
  14544. }
  14545. file.read_raw(tokens_out, sizeof(llama_token) * n_token_count);
  14546. *n_token_count_out = n_token_count;
  14547. }
  14548. // restore the context state
  14549. {
  14550. const size_t n_state_size_cur = file.size - file.tell();
  14551. const size_t n_state_size_max = llama_state_get_size(ctx);
  14552. if (n_state_size_cur > n_state_size_max) {
  14553. LLAMA_LOG_ERROR("%s : the state size in session file is too big! max %zu, got %zu\n", __func__, n_state_size_max, n_state_size_cur);
  14554. return false;
  14555. }
  14556. std::vector<uint8_t> state_data(n_state_size_max);
  14557. file.read_raw(state_data.data(), n_state_size_cur);
  14558. llama_state_set_data(ctx, state_data.data());
  14559. }
  14560. return true;
  14561. }
  14562. bool llama_state_load_file(struct llama_context * ctx, const char * path_session, llama_token * tokens_out, size_t n_token_capacity, size_t * n_token_count_out) {
  14563. try {
  14564. return llama_state_load_file_internal(ctx, path_session, tokens_out, n_token_capacity, n_token_count_out);
  14565. } catch (const std::exception & err) {
  14566. LLAMA_LOG_ERROR("error loading session file: %s\n", err.what());
  14567. return false;
  14568. }
  14569. }
  14570. static bool llama_state_save_file_internal(struct llama_context * ctx, const char * path_session, const llama_token * tokens, size_t n_token_count) {
  14571. llama_file file(path_session, "wb");
  14572. file.write_u32(LLAMA_SESSION_MAGIC);
  14573. file.write_u32(LLAMA_SESSION_VERSION);
  14574. file.write_raw(&ctx->model.hparams, sizeof(llama_hparams));
  14575. // save the prompt
  14576. file.write_u32((uint32_t) n_token_count);
  14577. file.write_raw(tokens, sizeof(llama_token) * n_token_count);
  14578. // save the context state using stream saving
  14579. llama_data_file_context data_ctx(&file);
  14580. llama_state_get_data_internal(ctx, &data_ctx);
  14581. return true;
  14582. }
  14583. bool llama_state_save_file(struct llama_context * ctx, const char * path_session, const llama_token * tokens, size_t n_token_count) {
  14584. try {
  14585. return llama_state_save_file_internal(ctx, path_session, tokens, n_token_count);
  14586. } catch (const std::exception & err) {
  14587. LLAMA_LOG_ERROR("error saving session file: %s\n", err.what());
  14588. return false;
  14589. }
  14590. }
  14591. size_t llama_state_seq_get_size(struct llama_context* ctx, llama_seq_id seq_id) {
  14592. // save the size of size_t as a uint32_t for safety check
  14593. const size_t size_t_size_size = sizeof(uint32_t);
  14594. // other values
  14595. const size_t s_cell_count_size = sizeof(uint32_t);
  14596. const size_t s_layer_count_size = sizeof(uint32_t);
  14597. const size_t n_embd_v_gqa_size = sizeof(uint32_t);
  14598. size_t s_cell_count = 0;
  14599. size_t s_cell_data_size = 0;
  14600. const auto & kv_self = ctx->kv_self;
  14601. const auto & hparams = ctx->model.hparams;
  14602. const uint32_t n_layer = hparams.n_layer;
  14603. const uint32_t n_embd_k_gqa = hparams.n_embd_k_gqa() + hparams.n_embd_k_s();
  14604. const uint32_t n_embd_v_gqa = hparams.n_embd_v_gqa() + hparams.n_embd_v_s();
  14605. for (uint32_t i = 0; i < kv_self.size; ++i) {
  14606. const auto & cell = kv_self.cells[i];
  14607. if (cell.seq_id.count(seq_id) > 0) {
  14608. ++s_cell_count;
  14609. s_cell_data_size += sizeof(llama_pos);
  14610. }
  14611. }
  14612. for (int il = 0; il < (int)n_layer; ++il) {
  14613. // types of keys and values
  14614. s_cell_data_size += sizeof(int32_t) * 2;
  14615. // k_size_row and v_size_el values of layer
  14616. s_cell_data_size += sizeof(size_t) * 2;
  14617. // keys
  14618. const size_t k_size_row = ggml_row_size(kv_self.k_l[il]->type, n_embd_k_gqa);
  14619. s_cell_data_size += k_size_row * s_cell_count;
  14620. // values (transposed)
  14621. const size_t v_size_el = ggml_type_size(kv_self.v_l[il]->type);
  14622. s_cell_data_size += v_size_el * s_cell_count * n_embd_v_gqa;
  14623. }
  14624. const size_t s_total = (
  14625. size_t_size_size +
  14626. s_cell_count_size +
  14627. s_layer_count_size +
  14628. n_embd_v_gqa_size +
  14629. s_cell_data_size
  14630. );
  14631. return s_total;
  14632. }
  14633. static size_t llama_state_seq_get_data_internal(struct llama_context * ctx, llama_data_context & data_ctx, llama_seq_id seq_id) {
  14634. llama_synchronize(ctx);
  14635. const auto & kv_self = ctx->kv_self;
  14636. GGML_ASSERT(!kv_self.recurrent); // not implemented
  14637. // Save the size of size_t as a uint32_t for safety check
  14638. const uint32_t size_t_size = sizeof(size_t);
  14639. data_ctx.write(&size_t_size, sizeof(size_t_size));
  14640. std::vector<std::pair<uint32_t, uint32_t>> cell_ranges; // ranges, from inclusive, to exclusive
  14641. uint32_t cell_count = 0;
  14642. // Count the number of cells with the specified seq_id
  14643. // Find all the ranges of cells with this seq id
  14644. {
  14645. uint32_t cell_range_begin = kv_self.size;
  14646. for (uint32_t i = 0; i < kv_self.size; ++i) {
  14647. const auto & cell = kv_self.cells[i];
  14648. if (cell.has_seq_id(seq_id)) {
  14649. ++cell_count;
  14650. if (cell_range_begin == kv_self.size) {
  14651. cell_range_begin = i;
  14652. }
  14653. }
  14654. else {
  14655. if (cell_range_begin != kv_self.size) {
  14656. cell_ranges.emplace_back(cell_range_begin, i);
  14657. cell_range_begin = kv_self.size;
  14658. }
  14659. }
  14660. }
  14661. if (cell_range_begin != kv_self.size) {
  14662. cell_ranges.emplace_back(cell_range_begin, kv_self.size);
  14663. }
  14664. // DEBUG CHECK: Sum of cell counts in ranges should equal the total cell count
  14665. uint32_t cell_count_check = 0;
  14666. for (const auto & range : cell_ranges) {
  14667. cell_count_check += range.second - range.first;
  14668. }
  14669. GGML_ASSERT(cell_count == cell_count_check);
  14670. }
  14671. // Write the cell count
  14672. data_ctx.write(&cell_count, sizeof(cell_count));
  14673. const auto & hparams = ctx->model.hparams;
  14674. const uint32_t n_layer = hparams.n_layer;
  14675. const uint32_t n_embd_k_gqa = hparams.n_embd_k_gqa() + hparams.n_embd_k_s();
  14676. const uint32_t n_embd_v_gqa = hparams.n_embd_v_gqa() + hparams.n_embd_v_s();
  14677. // Write the layer count
  14678. data_ctx.write(&n_layer, sizeof(n_layer));
  14679. // Write n_embd_v_gqa
  14680. data_ctx.write(&n_embd_v_gqa, sizeof(n_embd_v_gqa));
  14681. // Iterate the ranges and write all the pos (this is the token position in the prompt)
  14682. for (const auto & range : cell_ranges) {
  14683. for (uint32_t i = range.first; i < range.second; ++i) {
  14684. const auto & cell = kv_self.cells[i];
  14685. data_ctx.write(&cell.pos, sizeof(cell.pos));
  14686. }
  14687. }
  14688. // Iterate and write all the keys first, each row is a cell
  14689. // Get whole range at a time
  14690. std::vector<uint8_t> tmp_buf;
  14691. for (int il = 0; il < (int)n_layer; ++il) {
  14692. // Write key type
  14693. const int32_t k_type_i = (int32_t)kv_self.k_l[il]->type;
  14694. data_ctx.write(&k_type_i, sizeof(k_type_i));
  14695. // Write row size of key
  14696. const size_t k_size_row = ggml_row_size(kv_self.k_l[il]->type, n_embd_k_gqa);
  14697. data_ctx.write(&k_size_row, sizeof(k_size_row));
  14698. // Read each range of cells of k_size length each into tmp_buf and write out
  14699. for (const auto & range : cell_ranges) {
  14700. const size_t range_size = range.second - range.first;
  14701. tmp_buf.resize(range_size * k_size_row);
  14702. ggml_backend_tensor_get(kv_self.k_l[il], tmp_buf.data(), range.first * k_size_row, range_size * k_size_row);
  14703. data_ctx.write(tmp_buf.data(), tmp_buf.size());
  14704. }
  14705. }
  14706. // TODO: simplify, reduce copy-paste
  14707. if (!kv_self.v_trans) {
  14708. for (int il = 0; il < (int)n_layer; ++il) {
  14709. // Write value type
  14710. const int32_t v_type_i = (int32_t)kv_self.v_l[il]->type;
  14711. data_ctx.write(&v_type_i, sizeof(v_type_i));
  14712. // Write row size of value
  14713. const size_t v_size_row = ggml_row_size(kv_self.v_l[il]->type, n_embd_v_gqa);
  14714. data_ctx.write(&v_size_row, sizeof(v_size_row));
  14715. // Read each range of cells of v_size length each into tmp_buf and write out
  14716. for (const auto & range : cell_ranges) {
  14717. const size_t range_size = range.second - range.first;
  14718. tmp_buf.resize(range_size * v_size_row);
  14719. ggml_backend_tensor_get(kv_self.v_l[il], tmp_buf.data(), range.first * v_size_row, range_size * v_size_row);
  14720. data_ctx.write(tmp_buf.data(), tmp_buf.size());
  14721. }
  14722. }
  14723. } else {
  14724. // For the values, they are transposed, so we also need the element size and get the element ranges from each row
  14725. const uint32_t kv_size = kv_self.size;
  14726. for (int il = 0; il < (int)n_layer; ++il) {
  14727. // Write value type
  14728. const int32_t v_type_i = (int32_t)kv_self.v_l[il]->type;
  14729. data_ctx.write(&v_type_i, sizeof(v_type_i));
  14730. // Write element size
  14731. const size_t v_size_el = ggml_type_size(kv_self.v_l[il]->type);
  14732. data_ctx.write(&v_size_el, sizeof(v_size_el));
  14733. // For each row, we get the element values of each cell
  14734. for (uint32_t j = 0; j < n_embd_v_gqa; ++j) {
  14735. // Read each range of cells of v_size_el length each into tmp_buf and write out
  14736. for (const auto & range : cell_ranges) {
  14737. const size_t range_size = range.second - range.first;
  14738. const size_t src_offset = (range.first + j * kv_size) * v_size_el;
  14739. tmp_buf.resize(range_size * v_size_el);
  14740. ggml_backend_tensor_get(kv_self.v_l[il], tmp_buf.data(), src_offset, tmp_buf.size());
  14741. data_ctx.write(tmp_buf.data(), tmp_buf.size());
  14742. }
  14743. }
  14744. }
  14745. }
  14746. return data_ctx.get_size_written();
  14747. }
  14748. size_t llama_state_seq_get_data(struct llama_context* ctx, uint8_t* dst, llama_seq_id seq_id) {
  14749. llama_data_buffer_context data_ctx(dst);
  14750. return llama_state_seq_get_data_internal(ctx, data_ctx, seq_id);
  14751. }
  14752. size_t llama_state_seq_set_data(struct llama_context * ctx, const uint8_t * src, llama_seq_id dest_seq_id) {
  14753. llama_synchronize(ctx);
  14754. auto & kv_self = ctx->kv_self;
  14755. GGML_ASSERT(!kv_self.recurrent); // not implemented
  14756. // Wipe the slot
  14757. llama_kv_cache_seq_rm(kv_self, dest_seq_id, -1, -1);
  14758. const uint8_t * inp = src;
  14759. // Read size of size_t
  14760. uint32_t size_t_size;
  14761. memcpy(&size_t_size, inp, sizeof(size_t_size));
  14762. inp += sizeof(size_t_size);
  14763. if (size_t_size != sizeof(size_t)) {
  14764. LLAMA_LOG_ERROR("%s: size_t size mismatch\n", __func__);
  14765. return 0;
  14766. }
  14767. // Read the cell count
  14768. uint32_t cell_count;
  14769. memcpy(&cell_count, inp, sizeof(cell_count));
  14770. inp += sizeof(cell_count);
  14771. // Read the layer count
  14772. uint32_t n_layer_ref;
  14773. memcpy(&n_layer_ref, inp, sizeof(n_layer_ref));
  14774. inp += sizeof(n_layer_ref);
  14775. // Read n_embd_v_gqa
  14776. uint32_t n_embd_v_gqa_ref;
  14777. memcpy(&n_embd_v_gqa_ref, inp, sizeof(n_embd_v_gqa_ref));
  14778. inp += sizeof(n_embd_v_gqa_ref);
  14779. // Sanity check model compatibility
  14780. const auto & hparams = ctx->model.hparams;
  14781. const uint32_t n_layer = hparams.n_layer;
  14782. const uint32_t n_embd_k_gqa = hparams.n_embd_k_gqa() + hparams.n_embd_k_s();
  14783. const uint32_t n_embd_v_gqa = hparams.n_embd_v_gqa() + hparams.n_embd_v_s();
  14784. if (n_layer != n_layer_ref) {
  14785. LLAMA_LOG_ERROR("%s: mismatched n_layer (%d != %d)\n", __func__, n_layer, n_layer_ref);
  14786. return 0;
  14787. }
  14788. if (n_embd_v_gqa != n_embd_v_gqa_ref) {
  14789. LLAMA_LOG_ERROR("%s: mismatched n_embd_v_gqa (%d != %d)\n", __func__, n_embd_v_gqa, n_embd_v_gqa_ref);
  14790. return 0;
  14791. }
  14792. // Allocate the new cells for the slot
  14793. if (cell_count) {
  14794. llama_batch batch = llama_batch_init(cell_count, 0, 1);
  14795. batch.n_tokens = cell_count;
  14796. for (uint32_t i = 0; i < cell_count; ++i) {
  14797. llama_pos pos;
  14798. memcpy(&pos, inp, sizeof(pos));
  14799. inp += sizeof(pos);
  14800. batch.pos[i] = pos;
  14801. batch.n_seq_id[i] = 1;
  14802. batch.seq_id[i][0] = dest_seq_id;
  14803. }
  14804. if (!llama_kv_cache_find_slot(kv_self, batch)) {
  14805. llama_batch_free(batch);
  14806. LLAMA_LOG_ERROR("%s: failed to find available cells in kv cache\n", __func__);
  14807. return 0;
  14808. }
  14809. // DEBUG CHECK: kv_self.head should be our first cell, kv_self.head + cell_count - 1 should be our last cell (verify seq_id and pos values)
  14810. // Assume that this is one contiguous block of cells
  14811. GGML_ASSERT(kv_self.head + cell_count <= kv_self.size);
  14812. GGML_ASSERT(kv_self.cells[kv_self.head].pos == batch.pos[0]);
  14813. GGML_ASSERT(kv_self.cells[kv_self.head + cell_count - 1].pos == batch.pos[cell_count - 1]);
  14814. GGML_ASSERT(kv_self.cells[kv_self.head].has_seq_id(dest_seq_id));
  14815. GGML_ASSERT(kv_self.cells[kv_self.head + cell_count - 1].has_seq_id(dest_seq_id));
  14816. // Cleanup
  14817. llama_batch_free(batch);
  14818. }
  14819. const uint32_t kv_size = kv_self.size;
  14820. const uint32_t kv_head = kv_self.head;
  14821. // For each layer, read the keys for each cell, one row is one cell, read as one contiguous blo
  14822. for (int il = 0; il < (int)n_layer; ++il) {
  14823. // Read type of key
  14824. int32_t k_type_i_ref;
  14825. memcpy(&k_type_i_ref, inp, sizeof(k_type_i_ref));
  14826. inp += sizeof(k_type_i_ref);
  14827. const int32_t k_type_i = (int32_t)kv_self.k_l[il]->type;
  14828. if (k_type_i != k_type_i_ref) {
  14829. llama_kv_cache_seq_rm(kv_self, dest_seq_id, -1, -1);
  14830. LLAMA_LOG_ERROR("%s: mismatched key type (%d != %d, layer %d)\n", __func__, k_type_i, k_type_i_ref, il);
  14831. return 0;
  14832. }
  14833. // Read row size of key
  14834. size_t k_size_row_ref;
  14835. memcpy(&k_size_row_ref, inp, sizeof(k_size_row_ref));
  14836. inp += sizeof(k_size_row_ref);
  14837. const size_t k_size_row = ggml_row_size(kv_self.k_l[il]->type, n_embd_k_gqa);
  14838. if (k_size_row != k_size_row_ref) {
  14839. llama_kv_cache_seq_rm(kv_self, dest_seq_id, -1, -1);
  14840. LLAMA_LOG_ERROR("%s: mismatched key row size (%zu != %zu, layer %d)\n", __func__, k_size_row, k_size_row_ref, il);
  14841. return 0;
  14842. }
  14843. if (cell_count) {
  14844. // Read and set the keys for the whole cell range
  14845. ggml_backend_tensor_set(kv_self.k_l[il], inp, kv_head * k_size_row, cell_count * k_size_row);
  14846. inp += cell_count * k_size_row;
  14847. }
  14848. }
  14849. // TODO: simplify, reduce copy-paste
  14850. if (!kv_self.v_trans) {
  14851. for (int il = 0; il < (int)n_layer; ++il) {
  14852. // Read type of value
  14853. int32_t v_type_i_ref;
  14854. memcpy(&v_type_i_ref, inp, sizeof(v_type_i_ref));
  14855. inp += sizeof(v_type_i_ref);
  14856. const int32_t v_type_i = (int32_t)kv_self.v_l[il]->type;
  14857. if (v_type_i != v_type_i_ref) {
  14858. llama_kv_cache_seq_rm(kv_self, dest_seq_id, -1, -1);
  14859. LLAMA_LOG_ERROR("%s: mismatched value type (%d != %d, layer %d)\n", __func__, v_type_i, v_type_i_ref, il);
  14860. return 0;
  14861. }
  14862. // Read row size of value
  14863. size_t v_size_row_ref;
  14864. memcpy(&v_size_row_ref, inp, sizeof(v_size_row_ref));
  14865. inp += sizeof(v_size_row_ref);
  14866. const size_t v_size_row = ggml_row_size(kv_self.v_l[il]->type, n_embd_v_gqa);
  14867. if (v_size_row != v_size_row_ref) {
  14868. llama_kv_cache_seq_rm(kv_self, dest_seq_id, -1, -1);
  14869. LLAMA_LOG_ERROR("%s: mismatched value row size (%zu != %zu, layer %d)\n", __func__, v_size_row, v_size_row_ref, il);
  14870. return 0;
  14871. }
  14872. if (cell_count) {
  14873. // Read and set the values for the whole cell range
  14874. ggml_backend_tensor_set(kv_self.v_l[il], inp, kv_head * v_size_row, cell_count * v_size_row);
  14875. inp += cell_count * v_size_row;
  14876. }
  14877. }
  14878. } else {
  14879. // For each layer, read the values for each cell (transposed)
  14880. for (int il = 0; il < (int)n_layer; ++il) {
  14881. // Read type of value
  14882. int32_t v_type_i_ref;
  14883. memcpy(&v_type_i_ref, inp, sizeof(v_type_i_ref));
  14884. inp += sizeof(v_type_i_ref);
  14885. const int32_t v_type_i = (int32_t)kv_self.v_l[il]->type;
  14886. if (v_type_i != v_type_i_ref) {
  14887. llama_kv_cache_seq_rm(kv_self, dest_seq_id, -1, -1);
  14888. LLAMA_LOG_ERROR("%s: mismatched value type (%d != %d, layer %d)\n", __func__, v_type_i, v_type_i_ref, il);
  14889. return 0;
  14890. }
  14891. // Read element size of value
  14892. size_t v_size_el_ref;
  14893. memcpy(&v_size_el_ref, inp, sizeof(v_size_el_ref));
  14894. inp += sizeof(v_size_el_ref);
  14895. const size_t v_size_el = ggml_type_size(kv_self.v_l[il]->type);
  14896. if (v_size_el != v_size_el_ref) {
  14897. llama_kv_cache_seq_rm(kv_self, dest_seq_id, -1, -1);
  14898. LLAMA_LOG_ERROR("%s: mismatched value element size (%zu != %zu, layer %d)\n", __func__, v_size_el, v_size_el_ref, il);
  14899. return 0;
  14900. }
  14901. if (cell_count) {
  14902. // For each row in the transposed matrix, read the values for the whole cell range
  14903. for (uint32_t j = 0; j < n_embd_v_gqa; ++j) {
  14904. const size_t dst_offset = (kv_head + j * kv_size) * v_size_el;
  14905. ggml_backend_tensor_set(kv_self.v_l[il], inp, dst_offset, cell_count * v_size_el);
  14906. inp += cell_count * v_size_el;
  14907. }
  14908. }
  14909. }
  14910. }
  14911. const size_t nread = inp - src;
  14912. return nread;
  14913. }
  14914. static size_t llama_state_seq_save_file_internal(struct llama_context * ctx, const char * filepath, llama_seq_id seq_id, const llama_token * tokens, size_t n_token_count) {
  14915. llama_file file(filepath, "wb");
  14916. file.write_u32(LLAMA_STATE_SEQ_MAGIC);
  14917. file.write_u32(LLAMA_STATE_SEQ_VERSION);
  14918. // save the prompt
  14919. file.write_u32((uint32_t)n_token_count);
  14920. file.write_raw(tokens, sizeof(llama_token) * n_token_count);
  14921. // save the context state using stream saving
  14922. llama_data_file_context data_ctx(&file);
  14923. llama_state_seq_get_data_internal(ctx, data_ctx, seq_id);
  14924. const size_t res = file.tell();
  14925. GGML_ASSERT(res == sizeof(uint32_t) * 3 + sizeof(llama_token) * n_token_count + data_ctx.get_size_written());
  14926. return res;
  14927. }
  14928. static size_t llama_state_seq_load_file_internal(struct llama_context * ctx, const char * filepath, llama_seq_id dest_seq_id, llama_token * tokens_out, size_t n_token_capacity, size_t * n_token_count_out) {
  14929. llama_file file(filepath, "rb");
  14930. // version checks
  14931. {
  14932. const uint32_t magic = file.read_u32();
  14933. const uint32_t version = file.read_u32();
  14934. if (magic != LLAMA_STATE_SEQ_MAGIC || version != LLAMA_STATE_SEQ_VERSION) {
  14935. LLAMA_LOG_ERROR("%s: unknown (magic, version) for sequence state file: %08x, %08x\n", __func__, magic, version);
  14936. return 0;
  14937. }
  14938. }
  14939. // load the prompt
  14940. {
  14941. const uint32_t n_token_count = file.read_u32();
  14942. if (n_token_count > n_token_capacity) {
  14943. LLAMA_LOG_ERROR("%s: token count in sequence state file exceeded capacity! %u > %zu\n", __func__, n_token_count, n_token_capacity);
  14944. return 0;
  14945. }
  14946. file.read_raw(tokens_out, sizeof(llama_token) * n_token_count);
  14947. *n_token_count_out = n_token_count;
  14948. }
  14949. // restore the context state
  14950. {
  14951. const size_t state_size = file.size - file.tell();
  14952. std::vector<uint8_t> state_data(state_size);
  14953. file.read_raw(state_data.data(), state_size);
  14954. const size_t nread = llama_state_seq_set_data(ctx, state_data.data(), dest_seq_id);
  14955. if (!nread) {
  14956. LLAMA_LOG_ERROR("%s: failed to restore sequence state\n", __func__);
  14957. return 0;
  14958. }
  14959. GGML_ASSERT(nread <= state_size);
  14960. GGML_ASSERT(nread + sizeof(uint32_t) * 3 + sizeof(llama_token) * *n_token_count_out == file.tell());
  14961. }
  14962. return file.tell();
  14963. }
  14964. size_t llama_state_seq_save_file(struct llama_context * ctx, const char * filepath, llama_seq_id seq_id, const llama_token * tokens, size_t n_token_count) {
  14965. try {
  14966. return llama_state_seq_save_file_internal(ctx, filepath, seq_id, tokens, n_token_count);
  14967. } catch (const std::exception & err) {
  14968. LLAMA_LOG_ERROR("error saving sequence state file: %s\n", err.what());
  14969. return 0;
  14970. }
  14971. }
  14972. size_t llama_state_seq_load_file(struct llama_context * ctx, const char * filepath, llama_seq_id dest_seq_id, llama_token * tokens_out, size_t n_token_capacity, size_t * n_token_count_out) {
  14973. try {
  14974. return llama_state_seq_load_file_internal(ctx, filepath, dest_seq_id, tokens_out, n_token_capacity, n_token_count_out);
  14975. } catch (const std::exception & err) {
  14976. LLAMA_LOG_ERROR("error loading sequence state file: %s\n", err.what());
  14977. return 0;
  14978. }
  14979. }
  14980. void llama_set_n_threads(struct llama_context * ctx, uint32_t n_threads, uint32_t n_threads_batch) {
  14981. ctx->cparams.n_threads = n_threads;
  14982. ctx->cparams.n_threads_batch = n_threads_batch;
  14983. }
  14984. uint32_t llama_n_threads(struct llama_context * ctx) {
  14985. return ctx->cparams.n_threads;
  14986. }
  14987. uint32_t llama_n_threads_batch(struct llama_context * ctx) {
  14988. return ctx->cparams.n_threads_batch;
  14989. }
  14990. void llama_set_abort_callback(struct llama_context * ctx, bool (*abort_callback)(void * data), void * abort_callback_data) {
  14991. ctx->abort_callback = abort_callback;
  14992. ctx->abort_callback_data = abort_callback_data;
  14993. }
  14994. void llama_set_causal_attn(struct llama_context * ctx, bool causal_attn) {
  14995. ctx->cparams.causal_attn = causal_attn;
  14996. }
  14997. struct llama_batch llama_batch_get_one(
  14998. llama_token * tokens,
  14999. int32_t n_tokens,
  15000. llama_pos pos_0,
  15001. llama_seq_id seq_id) {
  15002. return {
  15003. /*n_tokens =*/ n_tokens,
  15004. /*tokens =*/ tokens,
  15005. /*embd =*/ nullptr,
  15006. /*pos =*/ nullptr,
  15007. /*n_seq_id =*/ nullptr,
  15008. /*seq_id =*/ nullptr,
  15009. /*logits =*/ nullptr,
  15010. /*all_pos_0 =*/ pos_0,
  15011. /*all_pos_1 =*/ 1,
  15012. /*all_seq_id =*/ seq_id,
  15013. };
  15014. }
  15015. struct llama_batch llama_batch_init(int32_t n_tokens_alloc, int32_t embd, int32_t n_seq_max) {
  15016. llama_batch batch = { 0, nullptr, nullptr, nullptr, nullptr, nullptr, nullptr, 0, 0, 0, };
  15017. if (embd) {
  15018. batch.embd = (float *) malloc(sizeof(float) * n_tokens_alloc * embd);
  15019. } else {
  15020. batch.token = (llama_token *) malloc(sizeof(llama_token) * n_tokens_alloc);
  15021. }
  15022. batch.pos = (llama_pos *) malloc(sizeof(llama_pos) * n_tokens_alloc);
  15023. batch.n_seq_id = (int32_t *) malloc(sizeof(int32_t) * n_tokens_alloc);
  15024. batch.seq_id = (llama_seq_id **) malloc(sizeof(llama_seq_id *) * (n_tokens_alloc + 1));
  15025. for (int i = 0; i < n_tokens_alloc; ++i) {
  15026. batch.seq_id[i] = (llama_seq_id *) malloc(sizeof(llama_seq_id) * n_seq_max);
  15027. }
  15028. batch.seq_id[n_tokens_alloc] = nullptr;
  15029. batch.logits = (int8_t *) malloc(sizeof(int8_t) * n_tokens_alloc);
  15030. return batch;
  15031. }
  15032. void llama_batch_free(struct llama_batch batch) {
  15033. if (batch.token) free(batch.token);
  15034. if (batch.embd) free(batch.embd);
  15035. if (batch.pos) free(batch.pos);
  15036. if (batch.n_seq_id) free(batch.n_seq_id);
  15037. if (batch.seq_id) {
  15038. for (int i = 0; batch.seq_id[i] != nullptr; ++i) {
  15039. free(batch.seq_id[i]);
  15040. }
  15041. free(batch.seq_id);
  15042. }
  15043. if (batch.logits) free(batch.logits);
  15044. }
  15045. int32_t llama_decode(
  15046. struct llama_context * ctx,
  15047. struct llama_batch batch) {
  15048. const int ret = llama_decode_internal(*ctx, batch);
  15049. if (ret < 0) {
  15050. LLAMA_LOG_ERROR("%s: failed to decode, ret = %d\n", __func__, ret);
  15051. }
  15052. return ret;
  15053. }
  15054. void llama_synchronize(struct llama_context * ctx) {
  15055. ggml_backend_sched_synchronize(ctx->sched);
  15056. // FIXME: if multiple single tokens are evaluated without a synchronization,
  15057. // the stats will be added to the prompt evaluation stats
  15058. // this should only happen when using batch size 1 to evaluate a batch
  15059. // add the evaluation to the stats
  15060. if (ctx->n_queued_tokens == 1) {
  15061. ctx->t_eval_us += ggml_time_us() - ctx->t_compute_start_us;
  15062. ctx->n_eval++;
  15063. } else if (ctx->n_queued_tokens > 1) {
  15064. ctx->t_p_eval_us += ggml_time_us() - ctx->t_compute_start_us;
  15065. ctx->n_p_eval += ctx->n_queued_tokens;
  15066. }
  15067. // get a more accurate load time, upon first eval
  15068. if (ctx->n_queued_tokens > 0 && !ctx->has_evaluated_once) {
  15069. ctx->t_load_us = ggml_time_us() - ctx->t_start_us;
  15070. ctx->has_evaluated_once = true;
  15071. }
  15072. ctx->n_queued_tokens = 0;
  15073. ctx->t_compute_start_us = 0;
  15074. }
  15075. float * llama_get_logits(struct llama_context * ctx) {
  15076. llama_synchronize(ctx);
  15077. return ctx->logits;
  15078. }
  15079. float * llama_get_logits_ith(struct llama_context * ctx, int32_t i) {
  15080. int32_t j = -1;
  15081. llama_synchronize(ctx);
  15082. try {
  15083. if (ctx->logits == nullptr) {
  15084. throw std::runtime_error("no logits");
  15085. }
  15086. if (i < 0) {
  15087. j = ctx->n_outputs + i;
  15088. if (j < 0) {
  15089. throw std::runtime_error(format("negative index out of range [0, %d)", ctx->n_outputs));
  15090. }
  15091. } else if ((size_t) i >= ctx->output_ids.size()) {
  15092. throw std::runtime_error(format("out of range [0, %lu)", ctx->output_ids.size()));
  15093. } else {
  15094. j = ctx->output_ids[i];
  15095. }
  15096. if (j < 0) {
  15097. throw std::runtime_error(format("batch.logits[%d] != true", i));
  15098. }
  15099. if (j >= ctx->n_outputs) {
  15100. // This should not happen
  15101. throw std::runtime_error(format("corrupt output buffer (j=%d, n_outputs=%d)", j, ctx->n_outputs));
  15102. }
  15103. return ctx->logits + j*ctx->model.hparams.n_vocab;
  15104. } catch (const std::exception & err) {
  15105. LLAMA_LOG_ERROR("%s: invalid logits id %d, reason: %s\n", __func__, i, err.what());
  15106. #ifndef NDEBUG
  15107. GGML_ASSERT(false);
  15108. #endif
  15109. return nullptr;
  15110. }
  15111. }
  15112. float * llama_get_embeddings(struct llama_context * ctx) {
  15113. llama_synchronize(ctx);
  15114. return ctx->embd;
  15115. }
  15116. float * llama_get_embeddings_ith(struct llama_context * ctx, int32_t i) {
  15117. int32_t j = -1;
  15118. llama_synchronize(ctx);
  15119. try {
  15120. if (ctx->embd == nullptr) {
  15121. throw std::runtime_error("no embeddings");
  15122. }
  15123. if (i < 0) {
  15124. j = ctx->n_outputs + i;
  15125. if (j < 0) {
  15126. throw std::runtime_error(format("negative index out of range [0, %d)", ctx->n_outputs));
  15127. }
  15128. } else if ((size_t) i >= ctx->output_ids.size()) {
  15129. throw std::runtime_error(format("out of range [0, %lu)", ctx->output_ids.size()));
  15130. } else {
  15131. j = ctx->output_ids[i];
  15132. }
  15133. if (j < 0) {
  15134. throw std::runtime_error(format("batch.logits[%d] != true", i));
  15135. }
  15136. if (j >= ctx->n_outputs) {
  15137. // This should not happen
  15138. throw std::runtime_error(format("corrupt output buffer (j=%d, n_outputs=%d)", j, ctx->n_outputs));
  15139. }
  15140. return ctx->embd + j*ctx->model.hparams.n_embd;
  15141. } catch (const std::exception & err) {
  15142. LLAMA_LOG_ERROR("%s: invalid embeddings id %d, reason: %s\n", __func__, i, err.what());
  15143. #ifndef NDEBUG
  15144. GGML_ASSERT(false);
  15145. #endif
  15146. return nullptr;
  15147. }
  15148. }
  15149. float * llama_get_embeddings_seq(struct llama_context * ctx, llama_seq_id seq_id) {
  15150. llama_synchronize(ctx);
  15151. auto it = ctx->embd_seq.find(seq_id);
  15152. if (it == ctx->embd_seq.end()) {
  15153. return nullptr;
  15154. }
  15155. return it->second.data();
  15156. }
  15157. const char * llama_token_get_text(const struct llama_model * model, llama_token token) {
  15158. GGML_ASSERT(model->vocab.type != LLAMA_VOCAB_TYPE_NONE);
  15159. return model->vocab.id_to_token[token].text.c_str();
  15160. }
  15161. float llama_token_get_score(const struct llama_model * model, llama_token token) {
  15162. GGML_ASSERT(model->vocab.type != LLAMA_VOCAB_TYPE_NONE);
  15163. return model->vocab.id_to_token[token].score;
  15164. }
  15165. llama_token_type llama_token_get_type(const struct llama_model * model, llama_token token) {
  15166. GGML_ASSERT(model->vocab.type != LLAMA_VOCAB_TYPE_NONE);
  15167. return model->vocab.id_to_token[token].type;
  15168. }
  15169. bool llama_token_is_eog(const struct llama_model * model, llama_token token) {
  15170. return token != -1 && (
  15171. token == llama_token_eos(model) ||
  15172. token == llama_token_eot(model)
  15173. );
  15174. }
  15175. bool llama_token_is_control(const struct llama_model * model, llama_token token) {
  15176. return llama_is_control_token(model->vocab, token);
  15177. }
  15178. llama_token llama_token_bos(const struct llama_model * model) {
  15179. return model->vocab.special_bos_id;
  15180. }
  15181. llama_token llama_token_eos(const struct llama_model * model) {
  15182. return model->vocab.special_eos_id;
  15183. }
  15184. llama_token llama_token_cls(const struct llama_model * model) {
  15185. return model->vocab.special_cls_id;
  15186. }
  15187. llama_token llama_token_sep(const struct llama_model * model) {
  15188. return model->vocab.special_sep_id;
  15189. }
  15190. llama_token llama_token_nl(const struct llama_model * model) {
  15191. return model->vocab.linefeed_id;
  15192. }
  15193. int32_t llama_add_bos_token(const struct llama_model * model) {
  15194. return model->vocab.special_add_bos;
  15195. }
  15196. int32_t llama_add_eos_token(const struct llama_model * model) {
  15197. return model->vocab.special_add_eos;
  15198. }
  15199. llama_token llama_token_prefix(const struct llama_model * model) {
  15200. return model->vocab.special_prefix_id;
  15201. }
  15202. llama_token llama_token_middle(const struct llama_model * model) {
  15203. return model->vocab.special_middle_id;
  15204. }
  15205. llama_token llama_token_suffix(const struct llama_model * model) {
  15206. return model->vocab.special_suffix_id;
  15207. }
  15208. llama_token llama_token_eot(const struct llama_model * model) {
  15209. return model->vocab.special_eot_id;
  15210. }
  15211. int32_t llama_tokenize(
  15212. const struct llama_model * model,
  15213. const char * text,
  15214. int32_t text_len,
  15215. llama_token * tokens,
  15216. int32_t n_tokens_max,
  15217. bool add_special,
  15218. bool parse_special) {
  15219. auto res = llama_tokenize_internal(model->vocab, std::string(text, text_len), add_special, parse_special);
  15220. if (n_tokens_max < (int) res.size()) {
  15221. // LLAMA_LOG_ERROR("%s: too many tokens\n", __func__);
  15222. return -((int) res.size());
  15223. }
  15224. for (size_t i = 0; i < res.size(); i++) {
  15225. tokens[i] = res[i];
  15226. }
  15227. return res.size();
  15228. }
  15229. static std::string llama_decode_text(const std::string & text) {
  15230. std::string decoded_text;
  15231. const auto cpts = unicode_cpts_from_utf8(text);
  15232. for (const auto cpt : cpts) {
  15233. const auto utf8 = unicode_cpt_to_utf8(cpt);
  15234. try {
  15235. decoded_text += unicode_utf8_to_byte(utf8);
  15236. } catch (const std::out_of_range & e) {
  15237. decoded_text += "[UNK_BYTE_0x";
  15238. for (const auto c : utf8) {
  15239. decoded_text += format("%02x", (uint8_t) c);
  15240. }
  15241. decoded_text += text + "]";
  15242. }
  15243. }
  15244. return decoded_text;
  15245. }
  15246. // does not write null-terminator to buf
  15247. int32_t llama_token_to_piece(const struct llama_model * model, llama_token token, char * buf, int32_t length, bool special) {
  15248. if (0 <= token && token < llama_n_vocab(model)) {
  15249. switch (llama_vocab_get_type(model->vocab)) {
  15250. case LLAMA_VOCAB_TYPE_WPM:
  15251. case LLAMA_VOCAB_TYPE_SPM: {
  15252. // NOTE: we accept all unsupported token types,
  15253. // suppressing them like CONTROL tokens.
  15254. if (llama_is_normal_token(model->vocab, token)) {
  15255. std::string result = model->vocab.id_to_token[token].text;
  15256. llama_unescape_whitespace(result);
  15257. if (length < (int) result.length()) {
  15258. return -(int) result.length();
  15259. }
  15260. memcpy(buf, result.c_str(), result.length());
  15261. return result.length();
  15262. } else if (
  15263. (llama_is_user_defined_token(model->vocab, token)) ||
  15264. (llama_is_control_token (model->vocab, token) && special)) {
  15265. std::string result = model->vocab.id_to_token[token].text;
  15266. if (length < (int) result.length()) {
  15267. return -(int) result.length();
  15268. }
  15269. memcpy(buf, result.c_str(), result.length());
  15270. return result.length();
  15271. } else if (llama_is_unknown_token(model->vocab, token)) { // NOLINT
  15272. if (length < 3) {
  15273. return -3;
  15274. }
  15275. memcpy(buf, "\xe2\x96\x85", 3);
  15276. return 3;
  15277. } else if (llama_is_byte_token(model->vocab, token)) {
  15278. if (length < 1) {
  15279. return -1;
  15280. }
  15281. buf[0] = llama_token_to_byte(model->vocab, token);
  15282. return 1;
  15283. }
  15284. break;
  15285. }
  15286. case LLAMA_VOCAB_TYPE_BPE: {
  15287. // NOTE: we accept all unsupported token types,
  15288. // suppressing them like CONTROL tokens.
  15289. if (llama_is_normal_token(model->vocab, token)) {
  15290. std::string result = model->vocab.id_to_token[token].text;
  15291. result = llama_decode_text(result);
  15292. if (length < (int) result.length()) {
  15293. return -(int) result.length();
  15294. }
  15295. memcpy(buf, result.c_str(), result.length());
  15296. return result.length();
  15297. } else if (
  15298. (llama_is_user_defined_token(model->vocab, token)) ||
  15299. (llama_is_control_token (model->vocab, token) && special)) {
  15300. std::string result = model->vocab.id_to_token[token].text;
  15301. if (length < (int) result.length()) {
  15302. return -(int) result.length();
  15303. }
  15304. memcpy(buf, result.c_str(), result.length());
  15305. return result.length();
  15306. }
  15307. break;
  15308. }
  15309. default:
  15310. GGML_ASSERT(false);
  15311. }
  15312. }
  15313. return 0;
  15314. }
  15315. // trim whitespace from the beginning and end of a string
  15316. static std::string trim(const std::string & str) {
  15317. size_t start = 0;
  15318. size_t end = str.size();
  15319. while (start < end && isspace(str[start])) {
  15320. start += 1;
  15321. }
  15322. while (end > start && isspace(str[end - 1])) {
  15323. end -= 1;
  15324. }
  15325. return str.substr(start, end - start);
  15326. }
  15327. // Simple version of "llama_apply_chat_template" that only works with strings
  15328. // This function uses heuristic checks to determine commonly used template. It is not a jinja parser.
  15329. static int32_t llama_chat_apply_template_internal(
  15330. const std::string & tmpl,
  15331. const std::vector<const llama_chat_message *> & chat,
  15332. std::string & dest, bool add_ass) {
  15333. // Taken from the research: https://github.com/ggerganov/llama.cpp/issues/5527
  15334. std::stringstream ss;
  15335. if (tmpl == "chatml" || tmpl.find("<|im_start|>") != std::string::npos) {
  15336. // chatml template
  15337. for (auto message : chat) {
  15338. ss << "<|im_start|>" << message->role << "\n" << message->content << "<|im_end|>\n";
  15339. }
  15340. if (add_ass) {
  15341. ss << "<|im_start|>assistant\n";
  15342. }
  15343. } else if (tmpl == "llama2" || tmpl.find("[INST]") != std::string::npos) {
  15344. // llama2 template and its variants
  15345. // [variant] support system message
  15346. bool support_system_message = tmpl.find("<<SYS>>") != std::string::npos;
  15347. // [variant] space before + after response
  15348. bool space_around_response = tmpl.find("' ' + eos_token") != std::string::npos;
  15349. // [variant] add BOS inside history
  15350. bool add_bos_inside_history = tmpl.find("bos_token + '[INST]") != std::string::npos;
  15351. // [variant] trim spaces from the input message
  15352. bool strip_message = tmpl.find("content.strip()") != std::string::npos;
  15353. // construct the prompt
  15354. bool is_inside_turn = true; // skip BOS at the beginning
  15355. ss << "[INST] ";
  15356. for (auto message : chat) {
  15357. std::string content = strip_message ? trim(message->content) : message->content;
  15358. std::string role(message->role);
  15359. if (!is_inside_turn) {
  15360. is_inside_turn = true;
  15361. ss << (add_bos_inside_history ? "<s>[INST] " : "[INST] ");
  15362. }
  15363. if (role == "system") {
  15364. if (support_system_message) {
  15365. ss << "<<SYS>>\n" << content << "\n<</SYS>>\n\n";
  15366. } else {
  15367. // if the model does not support system message, we still include it in the first message, but without <<SYS>>
  15368. ss << content << "\n";
  15369. }
  15370. } else if (role == "user") {
  15371. ss << content << " [/INST]";
  15372. } else {
  15373. ss << (space_around_response ? " " : "") << content << (space_around_response ? " " : "") << "</s>";
  15374. is_inside_turn = false;
  15375. }
  15376. }
  15377. // llama2 templates seem to not care about "add_generation_prompt"
  15378. } else if (tmpl == "phi3" || (tmpl.find("<|assistant|>") != std::string::npos && tmpl.find("<|end|>") != std::string::npos)) {
  15379. // Phi 3
  15380. for (auto message : chat) {
  15381. std::string role(message->role);
  15382. ss << "<|" << role << "|>\n" << message->content << "<|end|>\n";
  15383. }
  15384. if (add_ass) {
  15385. ss << "<|assistant|>\n";
  15386. }
  15387. } else if (tmpl == "zephyr" || tmpl.find("<|user|>") != std::string::npos) {
  15388. // zephyr template
  15389. for (auto message : chat) {
  15390. ss << "<|" << message->role << "|>" << "\n" << message->content << "<|endoftext|>\n";
  15391. }
  15392. if (add_ass) {
  15393. ss << "<|assistant|>\n";
  15394. }
  15395. } else if (tmpl == "monarch" || tmpl.find("bos_token + message['role']") != std::string::npos) {
  15396. // mlabonne/AlphaMonarch-7B template (the <s> is included inside history)
  15397. for (auto message : chat) {
  15398. std::string bos = (message == chat.front()) ? "" : "<s>"; // skip BOS for first message
  15399. ss << bos << message->role << "\n" << message->content << "</s>\n";
  15400. }
  15401. if (add_ass) {
  15402. ss << "<s>assistant\n";
  15403. }
  15404. } else if (tmpl == "gemma" || tmpl.find("<start_of_turn>") != std::string::npos) {
  15405. // google/gemma-7b-it
  15406. std::string system_prompt = "";
  15407. for (auto message : chat) {
  15408. std::string role(message->role);
  15409. if (role == "system") {
  15410. // there is no system message for gemma, but we will merge it with user prompt, so nothing is broken
  15411. system_prompt = trim(message->content);
  15412. continue;
  15413. }
  15414. // in gemma, "assistant" is "model"
  15415. role = role == "assistant" ? "model" : message->role;
  15416. ss << "<start_of_turn>" << role << "\n";
  15417. if (!system_prompt.empty() && role != "model") {
  15418. ss << system_prompt << "\n\n";
  15419. system_prompt = "";
  15420. }
  15421. ss << trim(message->content) << "<end_of_turn>\n";
  15422. }
  15423. if (add_ass) {
  15424. ss << "<start_of_turn>model\n";
  15425. }
  15426. } else if (tmpl == "orion" || tmpl.find("'\\n\\nAssistant: ' + eos_token") != std::string::npos) {
  15427. // OrionStarAI/Orion-14B-Chat
  15428. std::string system_prompt = "";
  15429. for (auto message : chat) {
  15430. std::string role(message->role);
  15431. if (role == "system") {
  15432. // there is no system message support, we will merge it with user prompt
  15433. system_prompt = message->content;
  15434. continue;
  15435. } else if (role == "user") {
  15436. ss << "Human: ";
  15437. if (!system_prompt.empty()) {
  15438. ss << system_prompt << "\n\n";
  15439. system_prompt = "";
  15440. }
  15441. ss << message->content << "\n\nAssistant: </s>";
  15442. } else {
  15443. ss << message->content << "</s>";
  15444. }
  15445. }
  15446. } else if (tmpl == "openchat" || tmpl.find("GPT4 Correct ") != std::string::npos) {
  15447. // openchat/openchat-3.5-0106,
  15448. for (auto message : chat) {
  15449. std::string role(message->role);
  15450. if (role == "system") {
  15451. ss << message->content << "<|end_of_turn|>";
  15452. } else {
  15453. role[0] = toupper(role[0]);
  15454. ss << "GPT4 Correct " << role << ": " << message->content << "<|end_of_turn|>";
  15455. }
  15456. }
  15457. if (add_ass) {
  15458. ss << "GPT4 Correct Assistant:";
  15459. }
  15460. } else if (tmpl == "vicuna" || tmpl == "vicuna-orca" || (tmpl.find("USER: ") != std::string::npos && tmpl.find("ASSISTANT: ") != std::string::npos)) {
  15461. // eachadea/vicuna-13b-1.1 (and Orca variant)
  15462. for (auto message : chat) {
  15463. std::string role(message->role);
  15464. if (role == "system") {
  15465. // Orca-Vicuna variant uses a system prefix
  15466. if (tmpl == "vicuna-orca" || tmpl.find("SYSTEM: ") != std::string::npos) {
  15467. ss << "SYSTEM: " << message->content << "\n";
  15468. } else {
  15469. ss << message->content << "\n\n";
  15470. }
  15471. } else if (role == "user") {
  15472. ss << "USER: " << message->content << "\n";
  15473. } else if (role == "assistant") {
  15474. ss << "ASSISTANT: " << message->content << "</s>\n";
  15475. }
  15476. }
  15477. if (add_ass) {
  15478. ss << "ASSISTANT:";
  15479. }
  15480. } else if (tmpl == "deepseek" || (tmpl.find("### Instruction:") != std::string::npos && tmpl.find("<|EOT|>") != std::string::npos)) {
  15481. // deepseek-ai/deepseek-coder-33b-instruct
  15482. for (auto message : chat) {
  15483. std::string role(message->role);
  15484. if (role == "system") {
  15485. ss << message->content;
  15486. } else if (role == "user") {
  15487. ss << "### Instruction:\n" << message->content << "\n";
  15488. } else if (role == "assistant") {
  15489. ss << "### Response:\n" << message->content << "\n<|EOT|>\n";
  15490. }
  15491. }
  15492. if (add_ass) {
  15493. ss << "### Response:\n";
  15494. }
  15495. } else if (tmpl == "command-r" || (tmpl.find("<|START_OF_TURN_TOKEN|>") != std::string::npos && tmpl.find("<|USER_TOKEN|>") != std::string::npos)) {
  15496. // CohereForAI/c4ai-command-r-plus
  15497. for (auto message : chat) {
  15498. std::string role(message->role);
  15499. if (role == "system") {
  15500. ss << "<|START_OF_TURN_TOKEN|><|SYSTEM_TOKEN|>" << trim(message->content) << "<|END_OF_TURN_TOKEN|>";
  15501. } else if (role == "user") {
  15502. ss << "<|START_OF_TURN_TOKEN|><|USER_TOKEN|>" << trim(message->content) << "<|END_OF_TURN_TOKEN|>";
  15503. } else if (role == "assistant") {
  15504. ss << "<|START_OF_TURN_TOKEN|><|CHATBOT_TOKEN|>" << trim(message->content) << "<|END_OF_TURN_TOKEN|>";
  15505. }
  15506. }
  15507. if (add_ass) {
  15508. ss << "<|START_OF_TURN_TOKEN|><|CHATBOT_TOKEN|>";
  15509. }
  15510. } else if (tmpl == "llama3" || (tmpl.find("<|start_header_id|>") != std::string::npos && tmpl.find("<|end_header_id|>") != std::string::npos)) {
  15511. // Llama 3
  15512. for (auto message : chat) {
  15513. std::string role(message->role);
  15514. ss << "<|start_header_id|>" << role << "<|end_header_id|>\n\n" << trim(message->content) << "<|eot_id|>";
  15515. }
  15516. if (add_ass) {
  15517. ss << "<|start_header_id|>assistant<|end_header_id|>\n\n";
  15518. }
  15519. } else {
  15520. // template not supported
  15521. return -1;
  15522. }
  15523. dest = ss.str();
  15524. return dest.size();
  15525. }
  15526. LLAMA_API int32_t llama_chat_apply_template(
  15527. const struct llama_model * model,
  15528. const char * tmpl,
  15529. const struct llama_chat_message * chat,
  15530. size_t n_msg,
  15531. bool add_ass,
  15532. char * buf,
  15533. int32_t length) {
  15534. std::string curr_tmpl(tmpl == nullptr ? "" : tmpl);
  15535. if (tmpl == nullptr) {
  15536. GGML_ASSERT(model != nullptr);
  15537. // load template from model
  15538. std::vector<char> model_template(2048, 0); // longest known template is about 1200 bytes
  15539. std::string template_key = "tokenizer.chat_template";
  15540. int32_t res = llama_model_meta_val_str(model, template_key.c_str(), model_template.data(), model_template.size());
  15541. if (res < 0) {
  15542. // worst case: there is no information about template, we will use chatml by default
  15543. curr_tmpl = "chatml"; // see llama_chat_apply_template_internal
  15544. } else {
  15545. curr_tmpl = std::string(model_template.data(), model_template.size());
  15546. }
  15547. }
  15548. // format the chat to string
  15549. std::vector<const llama_chat_message *> chat_vec;
  15550. chat_vec.resize(n_msg);
  15551. for (size_t i = 0; i < n_msg; i++) {
  15552. chat_vec[i] = &chat[i];
  15553. }
  15554. std::string formatted_chat;
  15555. int32_t res = llama_chat_apply_template_internal(curr_tmpl, chat_vec, formatted_chat, add_ass);
  15556. if (res < 0) {
  15557. return res;
  15558. }
  15559. if (buf && length > 0) {
  15560. strncpy(buf, formatted_chat.c_str(), length);
  15561. }
  15562. return res;
  15563. }
  15564. LLAMA_API int llama_split_path(char * split_path, size_t maxlen, const char * path_prefix, int split_no, int split_count) {
  15565. static const char * const SPLIT_PATH_FORMAT = "%s-%05d-of-%05d.gguf";
  15566. if (snprintf(split_path, maxlen, SPLIT_PATH_FORMAT, path_prefix, split_no + 1, split_count)) {
  15567. return strlen(split_path);
  15568. }
  15569. return 0;
  15570. }
  15571. int llama_split_prefix(char * dest, size_t maxlen, const char * split_path, int split_no, int split_count) {
  15572. std::string str_split_path(split_path);
  15573. char postfix[32];
  15574. snprintf(postfix, 32, "-%05d-of-%05d.gguf", split_no + 1, split_count);
  15575. std::string str_postfix(postfix);
  15576. // check if dest ends with postfix
  15577. int size_prefix = str_split_path.size() - str_postfix.size();
  15578. if (size_prefix > 0 && str_split_path.find(str_postfix, size_prefix) != std::string::npos) {
  15579. snprintf(dest, std::min((size_t) size_prefix + 1, maxlen), "%s", split_path);
  15580. return size_prefix;
  15581. }
  15582. return 0;
  15583. }
  15584. struct llama_timings llama_get_timings(struct llama_context * ctx) {
  15585. struct llama_timings result = {
  15586. /*.t_start_ms =*/ 1e-3 * ctx->t_start_us,
  15587. /*.t_end_ms =*/ 1.00 * ggml_time_ms(),
  15588. /*.t_load_ms =*/ 1e-3 * ctx->t_load_us,
  15589. /*.t_sample_ms =*/ 1e-3 * ctx->t_sample_us,
  15590. /*.t_p_eval_ms =*/ 1e-3 * ctx->t_p_eval_us,
  15591. /*.t_eval_ms =*/ 1e-3 * ctx->t_eval_us,
  15592. /*.n_sample =*/ std::max(1, ctx->n_sample),
  15593. /*.n_p_eval =*/ std::max(0, ctx->n_p_eval),
  15594. /*.n_eval =*/ std::max(1, ctx->n_eval),
  15595. };
  15596. return result;
  15597. }
  15598. void llama_print_timings(struct llama_context * ctx) {
  15599. const llama_timings timings = llama_get_timings(ctx);
  15600. LLAMA_LOG_INFO("\n");
  15601. LLAMA_LOG_INFO("%s: load time = %10.2f ms\n", __func__, timings.t_load_ms);
  15602. LLAMA_LOG_INFO("%s: sample time = %10.2f ms / %5d runs (%8.2f ms per token, %8.2f tokens per second)\n",
  15603. __func__, timings.t_sample_ms, timings.n_sample, timings.t_sample_ms / timings.n_sample, 1e3 / timings.t_sample_ms * timings.n_sample);
  15604. LLAMA_LOG_INFO("%s: prompt eval time = %10.2f ms / %5d tokens (%8.2f ms per token, %8.2f tokens per second)\n",
  15605. __func__, timings.t_p_eval_ms, timings.n_p_eval, timings.t_p_eval_ms / timings.n_p_eval, 1e3 / timings.t_p_eval_ms * timings.n_p_eval);
  15606. LLAMA_LOG_INFO("%s: eval time = %10.2f ms / %5d runs (%8.2f ms per token, %8.2f tokens per second)\n",
  15607. __func__, timings.t_eval_ms, timings.n_eval, timings.t_eval_ms / timings.n_eval, 1e3 / timings.t_eval_ms * timings.n_eval);
  15608. LLAMA_LOG_INFO("%s: total time = %10.2f ms / %5d tokens\n", __func__, (timings.t_end_ms - timings.t_start_ms), (timings.n_p_eval + timings.n_eval));
  15609. }
  15610. void llama_reset_timings(struct llama_context * ctx) {
  15611. ctx->t_start_us = ggml_time_us();
  15612. ctx->t_sample_us = ctx->n_sample = 0;
  15613. ctx->t_eval_us = ctx->n_eval = 0;
  15614. ctx->t_p_eval_us = ctx->n_p_eval = 0;
  15615. }
  15616. const char * llama_print_system_info(void) {
  15617. static std::string s;
  15618. s = "";
  15619. s += "AVX = " + std::to_string(ggml_cpu_has_avx()) + " | ";
  15620. s += "AVX_VNNI = " + std::to_string(ggml_cpu_has_avx_vnni()) + " | ";
  15621. s += "AVX2 = " + std::to_string(ggml_cpu_has_avx2()) + " | ";
  15622. s += "AVX512 = " + std::to_string(ggml_cpu_has_avx512()) + " | ";
  15623. s += "AVX512_VBMI = " + std::to_string(ggml_cpu_has_avx512_vbmi()) + " | ";
  15624. s += "AVX512_VNNI = " + std::to_string(ggml_cpu_has_avx512_vnni()) + " | ";
  15625. s += "AVX512_BF16 = " + std::to_string(ggml_cpu_has_avx512_bf16()) + " | ";
  15626. s += "FMA = " + std::to_string(ggml_cpu_has_fma()) + " | ";
  15627. s += "NEON = " + std::to_string(ggml_cpu_has_neon()) + " | ";
  15628. s += "SVE = " + std::to_string(ggml_cpu_has_sve()) + " | ";
  15629. s += "ARM_FMA = " + std::to_string(ggml_cpu_has_arm_fma()) + " | ";
  15630. s += "F16C = " + std::to_string(ggml_cpu_has_f16c()) + " | ";
  15631. s += "FP16_VA = " + std::to_string(ggml_cpu_has_fp16_va()) + " | ";
  15632. s += "WASM_SIMD = " + std::to_string(ggml_cpu_has_wasm_simd()) + " | ";
  15633. s += "BLAS = " + std::to_string(ggml_cpu_has_blas()) + " | ";
  15634. s += "SSE3 = " + std::to_string(ggml_cpu_has_sse3()) + " | ";
  15635. s += "SSSE3 = " + std::to_string(ggml_cpu_has_ssse3()) + " | ";
  15636. s += "VSX = " + std::to_string(ggml_cpu_has_vsx()) + " | ";
  15637. s += "MATMUL_INT8 = " + std::to_string(ggml_cpu_has_matmul_int8()) + " | ";
  15638. #ifdef GGML_USE_LLAMAFILE
  15639. s += "LLAMAFILE = 1 | ";
  15640. #else
  15641. s += "LLAMAFILE = 0 | ";
  15642. #endif
  15643. return s.c_str();
  15644. }
  15645. void llama_dump_timing_info_yaml(FILE * stream, const llama_context * ctx) {
  15646. fprintf(stream, "\n");
  15647. fprintf(stream, "###########\n");
  15648. fprintf(stream, "# Timings #\n");
  15649. fprintf(stream, "###########\n");
  15650. fprintf(stream, "\n");
  15651. fprintf(stream, "mst_eval: %.2f # ms / token during generation\n",
  15652. 1.0e-3 * ctx->t_eval_us / ctx->n_eval);
  15653. fprintf(stream, "mst_p_eval: %.2f # ms / token during prompt processing\n",
  15654. 1.0e-3 * ctx->t_p_eval_us / ctx->n_p_eval);
  15655. fprintf(stream, "mst_sample: %.2f # ms / token during sampling\n",
  15656. 1.0e-3 * ctx->t_sample_us / ctx->n_sample);
  15657. fprintf(stream, "n_eval: %d # number of tokens generated (excluding the first one)\n", ctx->n_eval);
  15658. fprintf(stream, "n_p_eval: %d # number of tokens processed in batches at the beginning\n", ctx->n_p_eval);
  15659. fprintf(stream, "n_sample: %d # number of sampled tokens\n", ctx->n_sample);
  15660. fprintf(stream, "t_eval_us: %" PRId64 " # total microseconds spent generating tokens\n", ctx->t_eval_us);
  15661. fprintf(stream, "t_load_us: %" PRId64 " # total microseconds spent loading the model\n", ctx->t_load_us);
  15662. fprintf(stream, "t_p_eval_us: %" PRId64 " # total microseconds spent prompt processing\n", ctx->t_p_eval_us);
  15663. fprintf(stream, "t_sample_us: %" PRId64 " # total microseconds spent sampling\n", ctx->t_sample_us);
  15664. fprintf(stream, "ts_eval: %.2f # tokens / second during generation\n",
  15665. 1.0e6 * ctx->n_eval / ctx->t_eval_us);
  15666. fprintf(stream, "ts_p_eval: %.2f # tokens / second during prompt processing\n",
  15667. 1.0e6 * ctx->n_p_eval / ctx->t_p_eval_us);
  15668. fprintf(stream, "ts_sample: %.2f # tokens / second during sampling\n",
  15669. 1.0e6 * ctx->n_sample / ctx->t_sample_us);
  15670. }
  15671. // For internal test use
  15672. const std::vector<std::pair<std::string, struct ggml_tensor *>> & llama_internal_get_tensor_map(
  15673. struct llama_context * ctx
  15674. ) {
  15675. return ctx->model.tensors_by_name;
  15676. }
  15677. void llama_log_set(ggml_log_callback log_callback, void * user_data) {
  15678. g_state.log_callback = log_callback ? log_callback : llama_log_callback_default;
  15679. g_state.log_callback_user_data = user_data;
  15680. #ifdef GGML_USE_METAL
  15681. ggml_backend_metal_log_set_callback(g_state.log_callback, g_state.log_callback_user_data);
  15682. #elif defined(GGML_USE_CUDA)
  15683. ggml_backend_cuda_log_set_callback(g_state.log_callback, g_state.log_callback_user_data);
  15684. #endif
  15685. }
  15686. static void llama_log_internal_v(ggml_log_level level, const char * format, va_list args) {
  15687. va_list args_copy;
  15688. va_copy(args_copy, args);
  15689. char buffer[128];
  15690. int len = vsnprintf(buffer, 128, format, args);
  15691. if (len < 128) {
  15692. g_state.log_callback(level, buffer, g_state.log_callback_user_data);
  15693. } else {
  15694. char* buffer2 = new char[len+1];
  15695. vsnprintf(buffer2, len+1, format, args_copy);
  15696. buffer2[len] = 0;
  15697. g_state.log_callback(level, buffer2, g_state.log_callback_user_data);
  15698. delete[] buffer2;
  15699. }
  15700. va_end(args_copy);
  15701. }
  15702. static void llama_log_internal(ggml_log_level level, const char * format, ...) {
  15703. va_list args;
  15704. va_start(args, format);
  15705. llama_log_internal_v(level, format, args);
  15706. va_end(args);
  15707. }
  15708. static void llama_log_callback_default(ggml_log_level level, const char * text, void * user_data) {
  15709. (void) level;
  15710. (void) user_data;
  15711. fputs(text, stderr);
  15712. fflush(stderr);
  15713. }