ggml-rpc.cpp 38 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023
  1. #include "ggml-rpc.h"
  2. #include "ggml.h"
  3. #include "ggml-backend-impl.h"
  4. #include <cinttypes>
  5. #include <string>
  6. #include <vector>
  7. #include <memory>
  8. #include <unordered_map>
  9. #include <unordered_set>
  10. #ifdef _WIN32
  11. # define WIN32_LEAN_AND_MEAN
  12. # ifndef NOMINMAX
  13. # define NOMINMAX
  14. # endif
  15. # include <windows.h>
  16. # include <winsock2.h>
  17. #else
  18. # include <arpa/inet.h>
  19. # include <sys/socket.h>
  20. # include <sys/types.h>
  21. # include <netinet/in.h>
  22. # include <netinet/tcp.h>
  23. # include <netdb.h>
  24. # include <unistd.h>
  25. #endif
  26. #include <string.h>
  27. #define UNUSED GGML_UNUSED
  28. #define GGML_DEBUG 1
  29. #if (GGML_DEBUG >= 1)
  30. #define GGML_PRINT_DEBUG(...) printf(__VA_ARGS__)
  31. #else
  32. #define GGML_PRINT_DEBUG(...)
  33. #endif
  34. #ifdef _WIN32
  35. typedef SOCKET sockfd_t;
  36. using ssize_t = __int64;
  37. #else
  38. typedef int sockfd_t;
  39. #endif
  40. // cross-platform socket
  41. struct socket_t {
  42. sockfd_t fd;
  43. socket_t(sockfd_t fd) : fd(fd) {}
  44. ~socket_t() {
  45. #ifdef _WIN32
  46. closesocket(this->fd);
  47. #else
  48. close(this->fd);
  49. #endif
  50. }
  51. };
  52. // ggml_tensor is serialized into rpc_tensor
  53. struct rpc_tensor {
  54. uint64_t id;
  55. uint32_t type;
  56. uint64_t buffer;
  57. uint32_t ne[GGML_MAX_DIMS];
  58. uint32_t nb[GGML_MAX_DIMS];
  59. uint32_t op;
  60. int32_t op_params[GGML_MAX_OP_PARAMS / sizeof(int32_t)];
  61. int32_t flags;
  62. uint64_t src[GGML_MAX_SRC];
  63. uint64_t view_src;
  64. uint64_t view_offs;
  65. uint64_t data;
  66. char name[GGML_MAX_NAME];
  67. };
  68. // RPC commands
  69. enum rpc_cmd {
  70. ALLOC_BUFFER = 0,
  71. GET_ALIGNMENT,
  72. GET_MAX_SIZE,
  73. BUFFER_GET_BASE,
  74. FREE_BUFFER,
  75. BUFFER_CLEAR,
  76. SET_TENSOR,
  77. GET_TENSOR,
  78. COPY_TENSOR,
  79. GRAPH_COMPUTE,
  80. GET_DEVICE_MEMORY,
  81. };
  82. // RPC data structures
  83. static ggml_guid_t ggml_backend_rpc_guid() {
  84. static ggml_guid guid = {0x99, 0x68, 0x5b, 0x6c, 0xd2, 0x83, 0x3d, 0x24, 0x25, 0x36, 0x72, 0xe1, 0x5b, 0x0e, 0x14, 0x03};
  85. return &guid;
  86. }
  87. struct ggml_backend_rpc_buffer_type_context {
  88. std::shared_ptr<socket_t> sock;
  89. std::string name;
  90. size_t alignment;
  91. size_t max_size;
  92. };
  93. struct ggml_backend_rpc_context {
  94. std::string endpoint;
  95. std::string name;
  96. std::shared_ptr<socket_t> sock;
  97. ggml_backend_buffer_type_t buft;
  98. };
  99. struct ggml_backend_rpc_buffer_context {
  100. std::shared_ptr<socket_t> sock;
  101. std::unordered_map<ggml_backend_buffer_t, void *> base_cache;
  102. uint64_t remote_ptr;
  103. std::string name;
  104. };
  105. // RPC helper functions
  106. static std::shared_ptr<socket_t> make_socket(sockfd_t fd) {
  107. #ifdef _WIN32
  108. if (fd == INVALID_SOCKET) {
  109. return nullptr;
  110. }
  111. #else
  112. if (fd < 0) {
  113. return nullptr;
  114. }
  115. #endif
  116. return std::make_shared<socket_t>(fd);
  117. }
  118. static bool set_no_delay(sockfd_t sockfd) {
  119. int flag = 1;
  120. // set TCP_NODELAY to disable Nagle's algorithm
  121. int ret = setsockopt(sockfd, IPPROTO_TCP, TCP_NODELAY, (char *)&flag, sizeof(int));
  122. return ret >= 0;
  123. }
  124. static std::shared_ptr<socket_t> socket_connect(const char * host, int port) {
  125. struct sockaddr_in addr;
  126. auto sockfd = socket(AF_INET, SOCK_STREAM, 0);
  127. auto sock_ptr = make_socket(sockfd);
  128. if (sock_ptr == nullptr) {
  129. return nullptr;
  130. }
  131. if (!set_no_delay(sockfd)) {
  132. fprintf(stderr, "Failed to set TCP_NODELAY\n");
  133. return nullptr;
  134. }
  135. addr.sin_family = AF_INET;
  136. addr.sin_port = htons(port);
  137. struct hostent * server = gethostbyname(host);
  138. if (server == NULL) {
  139. fprintf(stderr, "Cannot resolve host '%s'\n", host);
  140. return nullptr;
  141. }
  142. memcpy(&addr.sin_addr.s_addr, server->h_addr, server->h_length);
  143. if (connect(sock_ptr->fd, (struct sockaddr *)&addr, sizeof(addr)) < 0) {
  144. return nullptr;
  145. }
  146. return sock_ptr;
  147. }
  148. static std::shared_ptr<socket_t> socket_accept(sockfd_t srv_sockfd) {
  149. auto client_socket_fd = accept(srv_sockfd, NULL, NULL);
  150. auto client_socket = make_socket(client_socket_fd);
  151. if (client_socket == nullptr) {
  152. return nullptr;
  153. }
  154. if (!set_no_delay(client_socket_fd)) {
  155. fprintf(stderr, "Failed to set TCP_NODELAY\n");
  156. return nullptr;
  157. }
  158. return client_socket;
  159. }
  160. static std::shared_ptr<socket_t> create_server_socket(const char * host, int port) {
  161. auto sockfd = socket(AF_INET, SOCK_STREAM, 0);
  162. auto sock = make_socket(sockfd);
  163. if (sock == nullptr) {
  164. return nullptr;
  165. }
  166. struct sockaddr_in serv_addr;
  167. serv_addr.sin_family = AF_INET;
  168. serv_addr.sin_addr.s_addr = inet_addr(host);
  169. serv_addr.sin_port = htons(port);
  170. if (bind(sockfd, (struct sockaddr *) &serv_addr, sizeof(serv_addr)) < 0) {
  171. return nullptr;
  172. }
  173. if (listen(sockfd, 1) < 0) {
  174. return nullptr;
  175. }
  176. return sock;
  177. }
  178. static bool send_data(sockfd_t sockfd, const void * data, size_t size) {
  179. size_t bytes_sent = 0;
  180. while (bytes_sent < size) {
  181. ssize_t n = send(sockfd, (const char *)data + bytes_sent, size - bytes_sent, 0);
  182. if (n < 0) {
  183. return false;
  184. }
  185. bytes_sent += n;
  186. }
  187. return true;
  188. }
  189. static bool recv_data(sockfd_t sockfd, void * data, size_t size) {
  190. size_t bytes_recv = 0;
  191. while (bytes_recv < size) {
  192. ssize_t n = recv(sockfd, (char *)data + bytes_recv, size - bytes_recv, 0);
  193. if (n <= 0) {
  194. return false;
  195. }
  196. bytes_recv += n;
  197. }
  198. return true;
  199. }
  200. static bool parse_endpoint(const char * endpoint, std::string & host, int & port) {
  201. std::string str(endpoint);
  202. size_t pos = str.find(':');
  203. if (pos == std::string::npos) {
  204. return false;
  205. }
  206. host = str.substr(0, pos);
  207. port = std::stoi(str.substr(pos + 1));
  208. return true;
  209. }
  210. // RPC request : | rpc_cmd (1 byte) | request_size (8 bytes) | request_data (request_size bytes) |
  211. // RPC response: | response_size (8 bytes) | response_data (response_size bytes) |
  212. static bool send_rpc_cmd(const std::shared_ptr<socket_t> & sock, enum rpc_cmd cmd, const std::vector<uint8_t> & input, std::vector<uint8_t> & output) {
  213. uint8_t cmd_byte = cmd;
  214. if (!send_data(sock->fd, &cmd_byte, sizeof(cmd_byte))) {
  215. return false;
  216. }
  217. uint64_t input_size = input.size();
  218. if (!send_data(sock->fd, &input_size, sizeof(input_size))) {
  219. return false;
  220. }
  221. if (!send_data(sock->fd, input.data(), input.size())) {
  222. return false;
  223. }
  224. uint64_t output_size;
  225. if (!recv_data(sock->fd, &output_size, sizeof(output_size))) {
  226. return false;
  227. }
  228. if (output_size == 0) {
  229. output.clear();
  230. return true;
  231. }
  232. output.resize(output_size);
  233. if (!recv_data(sock->fd, output.data(), output_size)) {
  234. return false;
  235. }
  236. return true;
  237. }
  238. // RPC client-side implementation
  239. GGML_CALL static const char * ggml_backend_rpc_buffer_get_name(ggml_backend_buffer_t buffer) {
  240. ggml_backend_rpc_buffer_context * ctx = (ggml_backend_rpc_buffer_context *)buffer->context;
  241. return ctx->name.c_str();
  242. }
  243. GGML_CALL static void ggml_backend_rpc_buffer_free_buffer(ggml_backend_buffer_t buffer) {
  244. ggml_backend_rpc_buffer_context * ctx = (ggml_backend_rpc_buffer_context *)buffer->context;
  245. // input serialization format: | remote_ptr (8 bytes) |
  246. std::vector<uint8_t> input(sizeof(uint64_t), 0);
  247. uint64_t remote_ptr = ctx->remote_ptr;
  248. memcpy(input.data(), &remote_ptr, sizeof(remote_ptr));
  249. std::vector<uint8_t> output;
  250. bool status = send_rpc_cmd(ctx->sock, FREE_BUFFER, input, output);
  251. GGML_ASSERT(status);
  252. GGML_ASSERT(output.empty());
  253. delete ctx;
  254. }
  255. GGML_CALL static void * ggml_backend_rpc_buffer_get_base(ggml_backend_buffer_t buffer) {
  256. ggml_backend_rpc_buffer_context * ctx = (ggml_backend_rpc_buffer_context *)buffer->context;
  257. if (ctx->base_cache.find(buffer) != ctx->base_cache.end()) {
  258. return ctx->base_cache[buffer];
  259. }
  260. // input serialization format: | remote_ptr (8 bytes) |
  261. std::vector<uint8_t> input(sizeof(uint64_t), 0);
  262. uint64_t remote_ptr = ctx->remote_ptr;
  263. memcpy(input.data(), &remote_ptr, sizeof(remote_ptr));
  264. std::vector<uint8_t> output;
  265. bool status = send_rpc_cmd(ctx->sock, BUFFER_GET_BASE, input, output);
  266. GGML_ASSERT(status);
  267. GGML_ASSERT(output.size() == sizeof(uint64_t));
  268. // output serialization format: | base_ptr (8 bytes) |
  269. uint64_t base_ptr;
  270. memcpy(&base_ptr, output.data(), sizeof(base_ptr));
  271. void * base = reinterpret_cast<void *>(base_ptr);
  272. ctx->base_cache[buffer] = base;
  273. return base;
  274. }
  275. static rpc_tensor serialize_tensor(const ggml_tensor * tensor) {
  276. rpc_tensor result;
  277. result.id = reinterpret_cast<uint64_t>(tensor);
  278. result.type = tensor->type;
  279. if (tensor->buffer) {
  280. ggml_backend_buffer_t buffer = tensor->buffer;
  281. ggml_backend_rpc_buffer_context * ctx = (ggml_backend_rpc_buffer_context *)buffer->context;
  282. result.buffer = ctx->remote_ptr;
  283. } else {
  284. result.buffer = 0;
  285. }
  286. for (uint32_t i = 0; i < GGML_MAX_DIMS; i++) {
  287. result.ne[i] = tensor->ne[i];
  288. result.nb[i] = tensor->nb[i];
  289. }
  290. result.op = tensor->op;
  291. for (uint32_t i = 0; i < GGML_MAX_OP_PARAMS / sizeof(int32_t); i++) {
  292. result.op_params[i] = tensor->op_params[i];
  293. }
  294. result.flags = tensor->flags;
  295. for (uint32_t i = 0; i < GGML_MAX_SRC; i++) {
  296. result.src[i] = reinterpret_cast<uint64_t>(tensor->src[i]);
  297. }
  298. result.view_src = reinterpret_cast<uint64_t>(tensor->view_src);
  299. result.view_offs = tensor->view_offs;
  300. result.data = reinterpret_cast<uint64_t>(tensor->data);
  301. snprintf(result.name, GGML_MAX_NAME, "%s", tensor->name);
  302. return result;
  303. }
  304. static ggml_tensor * deserialize_tensor(struct ggml_context * ctx, const rpc_tensor * tensor) {
  305. ggml_tensor * result = ggml_new_tensor_4d(ctx, (ggml_type) tensor->type,
  306. tensor->ne[0], tensor->ne[1], tensor->ne[2], tensor->ne[3]);
  307. for (uint32_t i = 0; i < GGML_MAX_DIMS; i++) {
  308. result->nb[i] = tensor->nb[i];
  309. }
  310. result->buffer = reinterpret_cast<ggml_backend_buffer_t>(tensor->buffer);
  311. result->op = (ggml_op) tensor->op;
  312. for (uint32_t i = 0; i < GGML_MAX_OP_PARAMS / sizeof(int32_t); i++) {
  313. result->op_params[i] = tensor->op_params[i];
  314. }
  315. result->flags = tensor->flags;
  316. result->data = reinterpret_cast<void *>(tensor->data);
  317. ggml_set_name(result, tensor->name);
  318. return result;
  319. }
  320. GGML_CALL static void ggml_backend_rpc_buffer_init_tensor(ggml_backend_buffer_t buffer, ggml_tensor * tensor) {
  321. UNUSED(buffer);
  322. if (ggml_is_quantized(tensor->type)) {
  323. // TODO: this check is due to MATRIX_ROW_PADDING in CUDA and should be generalized
  324. GGML_ASSERT(tensor->ne[0] % 512 == 0 && "unsupported quantized tensor");
  325. }
  326. }
  327. GGML_CALL static void ggml_backend_rpc_buffer_set_tensor(ggml_backend_buffer_t buffer, ggml_tensor * tensor, const void * data, size_t offset, size_t size) {
  328. ggml_backend_rpc_buffer_context * ctx = (ggml_backend_rpc_buffer_context *)buffer->context;
  329. // input serialization format: | rpc_tensor | offset (8 bytes) | data (size bytes) |
  330. size_t input_size = sizeof(rpc_tensor) + sizeof(uint64_t) + size;
  331. std::vector<uint8_t> input(input_size, 0);
  332. rpc_tensor rpc_tensor = serialize_tensor(tensor);
  333. memcpy(input.data(), &rpc_tensor, sizeof(rpc_tensor));
  334. memcpy(input.data() + sizeof(rpc_tensor), &offset, sizeof(offset));
  335. memcpy(input.data() + sizeof(rpc_tensor) + sizeof(offset), data, size);
  336. std::vector<uint8_t> output;
  337. bool status = send_rpc_cmd(ctx->sock, SET_TENSOR, input, output);
  338. GGML_ASSERT(status);
  339. }
  340. GGML_CALL static void ggml_backend_rpc_buffer_get_tensor(ggml_backend_buffer_t buffer, const ggml_tensor * tensor, void * data, size_t offset, size_t size) {
  341. ggml_backend_rpc_buffer_context * ctx = (ggml_backend_rpc_buffer_context *)buffer->context;
  342. // input serialization format: | rpc_tensor | offset (8 bytes) | size (8 bytes) |
  343. int input_size = sizeof(rpc_tensor) + 2*sizeof(uint64_t);
  344. std::vector<uint8_t> input(input_size, 0);
  345. rpc_tensor rpc_tensor = serialize_tensor(tensor);
  346. memcpy(input.data(), &rpc_tensor, sizeof(rpc_tensor));
  347. memcpy(input.data() + sizeof(rpc_tensor), &offset, sizeof(offset));
  348. memcpy(input.data() + sizeof(rpc_tensor) + sizeof(offset), &size, sizeof(size));
  349. std::vector<uint8_t> output;
  350. bool status = send_rpc_cmd(ctx->sock, GET_TENSOR, input, output);
  351. GGML_ASSERT(status);
  352. GGML_ASSERT(output.size() == size);
  353. // output serialization format: | data (size bytes) |
  354. memcpy(data, output.data(), size);
  355. }
  356. GGML_CALL static bool ggml_backend_rpc_buffer_cpy_tensor(ggml_backend_buffer_t buffer, const ggml_tensor * src, ggml_tensor * dst) {
  357. // check if src and dst are on the same server
  358. ggml_backend_buffer_t src_buffer = src->buffer;
  359. ggml_backend_rpc_buffer_context * src_ctx = (ggml_backend_rpc_buffer_context *)src_buffer->context;
  360. ggml_backend_buffer_t dst_buffer = dst->buffer;
  361. ggml_backend_rpc_buffer_context * dst_ctx = (ggml_backend_rpc_buffer_context *)dst_buffer->context;
  362. if (src_ctx->sock != dst_ctx->sock) {
  363. return false;
  364. }
  365. ggml_backend_rpc_buffer_context * ctx = (ggml_backend_rpc_buffer_context *)buffer->context;
  366. // input serialization format: | rpc_tensor src | rpc_tensor dst |
  367. int input_size = 2*sizeof(rpc_tensor);
  368. std::vector<uint8_t> input(input_size, 0);
  369. rpc_tensor rpc_src = serialize_tensor(src);
  370. rpc_tensor rpc_dst = serialize_tensor(dst);
  371. memcpy(input.data(), &rpc_src, sizeof(rpc_src));
  372. memcpy(input.data() + sizeof(rpc_src), &rpc_dst, sizeof(rpc_dst));
  373. std::vector<uint8_t> output;
  374. bool status = send_rpc_cmd(ctx->sock, COPY_TENSOR, input, output);
  375. GGML_ASSERT(status);
  376. // output serialization format: | result (1 byte) |
  377. GGML_ASSERT(output.size() == 1);
  378. return output[0];
  379. }
  380. GGML_CALL static void ggml_backend_rpc_buffer_clear(ggml_backend_buffer_t buffer, uint8_t value) {
  381. ggml_backend_rpc_buffer_context * ctx = (ggml_backend_rpc_buffer_context *)buffer->context;
  382. // serialization format: | bufptr (8 bytes) | value (1 byte) |
  383. int input_size = sizeof(uint64_t) + sizeof(uint8_t);
  384. std::vector<uint8_t> input(input_size, 0);
  385. memcpy(input.data(), &ctx->remote_ptr, sizeof(ctx->remote_ptr));
  386. memcpy(input.data() + sizeof(ctx->remote_ptr), &value, sizeof(value));
  387. std::vector<uint8_t> output;
  388. bool status = send_rpc_cmd(ctx->sock, BUFFER_CLEAR, input, output);
  389. GGML_ASSERT(status);
  390. }
  391. static ggml_backend_buffer_i ggml_backend_rpc_buffer_interface = {
  392. /* .get_name = */ ggml_backend_rpc_buffer_get_name,
  393. /* .free_buffer = */ ggml_backend_rpc_buffer_free_buffer,
  394. /* .get_base = */ ggml_backend_rpc_buffer_get_base,
  395. /* .init_tensor = */ ggml_backend_rpc_buffer_init_tensor,
  396. /* .set_tensor = */ ggml_backend_rpc_buffer_set_tensor,
  397. /* .get_tensor = */ ggml_backend_rpc_buffer_get_tensor,
  398. /* .cpy_tensor = */ ggml_backend_rpc_buffer_cpy_tensor,
  399. /* .clear = */ ggml_backend_rpc_buffer_clear,
  400. /* .reset = */ NULL,
  401. };
  402. GGML_CALL static const char * ggml_backend_rpc_buffer_type_name(ggml_backend_buffer_type_t buft) {
  403. ggml_backend_rpc_buffer_type_context * buft_ctx = (ggml_backend_rpc_buffer_type_context *)buft->context;
  404. return buft_ctx->name.c_str();
  405. }
  406. GGML_CALL static ggml_backend_buffer_t ggml_backend_rpc_buffer_type_alloc_buffer(ggml_backend_buffer_type_t buft, size_t size) {
  407. ggml_backend_rpc_buffer_type_context * buft_ctx = (ggml_backend_rpc_buffer_type_context *)buft->context;
  408. // input serialization format: | size (8 bytes) |
  409. int input_size = sizeof(uint64_t);
  410. std::vector<uint8_t> input(input_size, 0);
  411. memcpy(input.data(), &size, sizeof(size));
  412. std::vector<uint8_t> output;
  413. bool status = send_rpc_cmd(buft_ctx->sock, ALLOC_BUFFER, input, output);
  414. GGML_ASSERT(status);
  415. GGML_ASSERT(output.size() == 2*sizeof(uint64_t));
  416. // output serialization format: | remote_ptr (8 bytes) | remote_size (8 bytes) |
  417. uint64_t remote_ptr;
  418. memcpy(&remote_ptr, output.data(), sizeof(remote_ptr));
  419. size_t remote_size;
  420. memcpy(&remote_size, output.data() + sizeof(uint64_t), sizeof(remote_size));
  421. ggml_backend_buffer_t buffer = ggml_backend_buffer_init(buft,
  422. ggml_backend_rpc_buffer_interface,
  423. new ggml_backend_rpc_buffer_context{buft_ctx->sock, {}, remote_ptr, "RPC"},
  424. remote_size);
  425. return buffer;
  426. }
  427. static size_t get_alignment(const std::shared_ptr<socket_t> & sock) {
  428. // input serialization format: | 0 bytes |
  429. std::vector<uint8_t> input;
  430. std::vector<uint8_t> output;
  431. bool status = send_rpc_cmd(sock, GET_ALIGNMENT, input, output);
  432. GGML_ASSERT(status);
  433. GGML_ASSERT(output.size() == sizeof(uint64_t));
  434. // output serialization format: | alignment (8 bytes) |
  435. uint64_t alignment;
  436. memcpy(&alignment, output.data(), sizeof(alignment));
  437. return alignment;
  438. }
  439. GGML_CALL static size_t ggml_backend_rpc_buffer_type_get_alignment(ggml_backend_buffer_type_t buft) {
  440. ggml_backend_rpc_buffer_type_context * buft_ctx = (ggml_backend_rpc_buffer_type_context *)buft->context;
  441. return buft_ctx->alignment;
  442. }
  443. static size_t get_max_size(const std::shared_ptr<socket_t> & sock) {
  444. // input serialization format: | 0 bytes |
  445. std::vector<uint8_t> input;
  446. std::vector<uint8_t> output;
  447. bool status = send_rpc_cmd(sock, GET_MAX_SIZE, input, output);
  448. GGML_ASSERT(status);
  449. GGML_ASSERT(output.size() == sizeof(uint64_t));
  450. // output serialization format: | max_size (8 bytes) |
  451. uint64_t max_size;
  452. memcpy(&max_size, output.data(), sizeof(max_size));
  453. return max_size;
  454. }
  455. GGML_CALL static size_t ggml_backend_rpc_get_max_size(ggml_backend_buffer_type_t buft) {
  456. ggml_backend_rpc_buffer_type_context * buft_ctx = (ggml_backend_rpc_buffer_type_context *)buft->context;
  457. return buft_ctx->max_size;
  458. }
  459. GGML_CALL static size_t ggml_backend_rpc_buffer_type_get_alloc_size(ggml_backend_buffer_type_t buft, const ggml_tensor * tensor) {
  460. UNUSED(buft);
  461. return ggml_nbytes(tensor);
  462. }
  463. GGML_CALL static bool ggml_backend_rpc_buffer_type_supports_backend(ggml_backend_buffer_type_t buft, ggml_backend_t backend) {
  464. if (!ggml_backend_is_rpc(backend)) {
  465. return false;
  466. }
  467. ggml_backend_rpc_buffer_type_context * buft_ctx = (ggml_backend_rpc_buffer_type_context *)buft->context;
  468. ggml_backend_rpc_context * rpc_ctx = (ggml_backend_rpc_context *)backend->context;
  469. return buft_ctx->sock == rpc_ctx->sock;
  470. }
  471. static ggml_backend_buffer_type_i ggml_backend_rpc_buffer_type_interface = {
  472. /* .get_name = */ ggml_backend_rpc_buffer_type_name,
  473. /* .alloc_buffer = */ ggml_backend_rpc_buffer_type_alloc_buffer,
  474. /* .get_alignment = */ ggml_backend_rpc_buffer_type_get_alignment,
  475. /* .get_max_size = */ ggml_backend_rpc_get_max_size,
  476. /* .get_alloc_size = */ ggml_backend_rpc_buffer_type_get_alloc_size,
  477. /* .supports_backend = */ ggml_backend_rpc_buffer_type_supports_backend,
  478. /* .is_host = */ NULL,
  479. };
  480. GGML_CALL static const char * ggml_backend_rpc_name(ggml_backend_t backend) {
  481. ggml_backend_rpc_context * rpc_ctx = (ggml_backend_rpc_context *)backend->context;
  482. return rpc_ctx->name.c_str();
  483. }
  484. GGML_CALL static void ggml_backend_rpc_free(ggml_backend_t backend) {
  485. ggml_backend_rpc_context * rpc_ctx = (ggml_backend_rpc_context *)backend->context;
  486. ggml_backend_rpc_buffer_type_context * buft_ctx = (ggml_backend_rpc_buffer_type_context *)rpc_ctx->buft->context;
  487. delete buft_ctx;
  488. delete rpc_ctx->buft;
  489. delete rpc_ctx;
  490. delete backend;
  491. }
  492. GGML_CALL static ggml_backend_buffer_type_t ggml_backend_rpc_get_default_buffer_type(ggml_backend_t backend) {
  493. ggml_backend_rpc_context * ctx = (ggml_backend_rpc_context *)backend->context;
  494. return ctx->buft;
  495. }
  496. GGML_CALL static void ggml_backend_rpc_synchronize(ggml_backend_t backend) {
  497. UNUSED(backend);
  498. // this is no-op because we don't have any async operations
  499. }
  500. static void add_tensor(ggml_tensor * tensor, std::vector<rpc_tensor> & tensors, std::unordered_set<ggml_tensor*> & visited) {
  501. if (tensor == nullptr) {
  502. return;
  503. }
  504. if (visited.find(tensor) != visited.end()) {
  505. return;
  506. }
  507. visited.insert(tensor);
  508. for (int i = 0; i < GGML_MAX_SRC; i++) {
  509. add_tensor(tensor->src[i], tensors, visited);
  510. }
  511. add_tensor(tensor->view_src, tensors, visited);
  512. tensors.push_back(serialize_tensor(tensor));
  513. }
  514. static void serialize_graph(const ggml_cgraph * cgraph, std::vector<uint8_t> & output) {
  515. uint32_t n_nodes = cgraph->n_nodes;
  516. std::vector<rpc_tensor> tensors;
  517. std::unordered_set<ggml_tensor*> visited;
  518. for (uint32_t i = 0; i < n_nodes; i++) {
  519. add_tensor(cgraph->nodes[i], tensors, visited);
  520. }
  521. // serialization format:
  522. // | n_nodes (4 bytes) | nodes (n_nodes * sizeof(uint64_t) | n_tensors (4 bytes) | tensors (n_tensors * sizeof(rpc_tensor)) |
  523. uint32_t n_tensors = tensors.size();
  524. int output_size = sizeof(uint32_t) + n_nodes * sizeof(uint64_t) + sizeof(uint32_t) + n_tensors * sizeof(rpc_tensor);
  525. output.resize(output_size, 0);
  526. memcpy(output.data(), &n_nodes, sizeof(n_nodes));
  527. uint64_t * out_nodes = (uint64_t *)(output.data() + sizeof(n_nodes));
  528. for (uint32_t i = 0; i < n_nodes; i++) {
  529. out_nodes[i] = reinterpret_cast<uint64_t>(cgraph->nodes[i]);
  530. }
  531. uint32_t * out_ntensors = (uint32_t *)(output.data() + sizeof(n_nodes) + n_nodes * sizeof(uint64_t));
  532. *out_ntensors = n_tensors;
  533. rpc_tensor * out_tensors = (rpc_tensor *)(output.data() + sizeof(n_nodes) + n_nodes * sizeof(uint64_t) + sizeof(uint32_t));
  534. memcpy(out_tensors, tensors.data(), n_tensors * sizeof(rpc_tensor));
  535. }
  536. GGML_CALL static enum ggml_status ggml_backend_rpc_graph_compute(ggml_backend_t backend, ggml_cgraph * cgraph) {
  537. ggml_backend_rpc_context * rpc_ctx = (ggml_backend_rpc_context *)backend->context;
  538. std::vector<uint8_t> input;
  539. serialize_graph(cgraph, input);
  540. std::vector<uint8_t> output;
  541. bool status = send_rpc_cmd(rpc_ctx->sock, GRAPH_COMPUTE, input, output);
  542. GGML_ASSERT(status);
  543. GGML_ASSERT(output.size() == 1);
  544. return (enum ggml_status)output[0];
  545. }
  546. GGML_CALL static bool ggml_backend_rpc_supports_op(ggml_backend_t backend, const ggml_tensor * op) {
  547. UNUSED(backend);
  548. UNUSED(op);
  549. GGML_ASSERT(false && "not implemented");
  550. return false;
  551. }
  552. static ggml_backend_i ggml_backend_rpc_interface = {
  553. /* .get_name = */ ggml_backend_rpc_name,
  554. /* .free = */ ggml_backend_rpc_free,
  555. /* .get_default_buffer_type = */ ggml_backend_rpc_get_default_buffer_type,
  556. /* .set_tensor_async = */ NULL,
  557. /* .get_tensor_async = */ NULL,
  558. /* .cpy_tensor_async = */ NULL,
  559. /* .synchronize = */ ggml_backend_rpc_synchronize,
  560. /* .graph_plan_create = */ NULL,
  561. /* .graph_plan_free = */ NULL,
  562. /* .graph_plan_compute = */ NULL,
  563. /* .graph_compute = */ ggml_backend_rpc_graph_compute,
  564. /* .supports_op = */ ggml_backend_rpc_supports_op,
  565. /* .offload_op = */ NULL,
  566. /* .event_new = */ NULL,
  567. /* .event_free = */ NULL,
  568. /* .event_record = */ NULL,
  569. /* .event_wait = */ NULL,
  570. /* .event_synchronize = */ NULL,
  571. };
  572. static std::unordered_map<std::string, ggml_backend_t> instances;
  573. GGML_API GGML_CALL ggml_backend_buffer_type_t ggml_backend_rpc_buffer_type(const char * endpoint) {
  574. ggml_backend_t backend = ggml_backend_rpc_init(endpoint);
  575. return backend != nullptr ? ggml_backend_rpc_get_default_buffer_type(backend) : nullptr;
  576. }
  577. GGML_CALL ggml_backend_t ggml_backend_rpc_init(const char * endpoint) {
  578. std::string endpoint_str(endpoint);
  579. if (instances.find(endpoint_str) != instances.end()) {
  580. return instances[endpoint_str];
  581. }
  582. #ifdef _WIN32
  583. {
  584. WSADATA wsaData;
  585. int res = WSAStartup(MAKEWORD(2, 2), &wsaData);
  586. if (res != 0) {
  587. return nullptr;
  588. }
  589. }
  590. #endif
  591. GGML_PRINT_DEBUG("Connecting to %s\n", endpoint);
  592. std::string host;
  593. int port;
  594. if (!parse_endpoint(endpoint, host, port)) {
  595. return nullptr;
  596. }
  597. auto sock = socket_connect(host.c_str(), port);
  598. if (sock == nullptr) {
  599. return nullptr;
  600. }
  601. size_t alignment = get_alignment(sock);
  602. size_t max_size = get_max_size(sock);
  603. ggml_backend_rpc_buffer_type_context * buft_ctx = new ggml_backend_rpc_buffer_type_context {
  604. /* .sock = */ sock,
  605. /* .name = */ "RPC" + std::to_string(sock->fd),
  606. /* .alignment = */ alignment,
  607. /* .max_size = */ max_size
  608. };
  609. ggml_backend_buffer_type_t buft = new ggml_backend_buffer_type {
  610. /* .iface = */ ggml_backend_rpc_buffer_type_interface,
  611. /* .context = */ buft_ctx
  612. };
  613. ggml_backend_rpc_context * ctx = new ggml_backend_rpc_context {
  614. /* .endpoint = */ endpoint,
  615. /* .name = */ "RPC" + std::to_string(sock->fd),
  616. /* .sock = */ sock,
  617. /* .buft = */ buft
  618. };
  619. instances[endpoint] = new ggml_backend {
  620. /* .guid = */ ggml_backend_rpc_guid(),
  621. /* .interface = */ ggml_backend_rpc_interface,
  622. /* .context = */ ctx
  623. };
  624. return instances[endpoint];
  625. }
  626. GGML_API GGML_CALL bool ggml_backend_is_rpc(ggml_backend_t backend) {
  627. return backend != NULL && ggml_guid_matches(backend->guid, ggml_backend_rpc_guid());
  628. }
  629. static void get_device_memory(const std::shared_ptr<socket_t> & sock, size_t * free, size_t * total) {
  630. // input serialization format: | 0 bytes |
  631. std::vector<uint8_t> input;
  632. std::vector<uint8_t> output;
  633. bool status = send_rpc_cmd(sock, GET_DEVICE_MEMORY, input, output);
  634. GGML_ASSERT(status);
  635. GGML_ASSERT(output.size() == 2*sizeof(uint64_t));
  636. // output serialization format: | free (8 bytes) | total (8 bytes) |
  637. uint64_t free_mem;
  638. memcpy(&free_mem, output.data(), sizeof(free_mem));
  639. uint64_t total_mem;
  640. memcpy(&total_mem, output.data() + sizeof(uint64_t), sizeof(total_mem));
  641. *free = free_mem;
  642. *total = total_mem;
  643. }
  644. GGML_API GGML_CALL void ggml_backend_rpc_get_device_memory(const char * endpoint, size_t * free, size_t * total) {
  645. ggml_backend_t backend = ggml_backend_rpc_init(endpoint);
  646. if (backend == nullptr) {
  647. *free = 0;
  648. *total = 0;
  649. return;
  650. }
  651. ggml_backend_rpc_context * ctx = (ggml_backend_rpc_context *)backend->context;
  652. get_device_memory(ctx->sock, free, total);
  653. }
  654. // RPC server-side implementation
  655. static void rpc_alloc_buffer(ggml_backend_t backend, const std::vector<uint8_t> & input, std::vector<uint8_t> & output) {
  656. // input serialization format: | size (8 bytes) |
  657. uint64_t size;
  658. memcpy(&size, input.data(), sizeof(size));
  659. ggml_backend_buffer_type_t buft = ggml_backend_get_default_buffer_type(backend);
  660. ggml_backend_buffer_t buffer = ggml_backend_buft_alloc_buffer(buft, size);
  661. uint64_t remote_ptr = reinterpret_cast<uint64_t>(buffer);
  662. uint64_t remote_size = buffer->size;
  663. GGML_PRINT_DEBUG("[%s] size: %" PRIu64 " -> remote_ptr: %" PRIx64 ", remote_size: %" PRIu64 "\n", __func__, size, remote_ptr, remote_size);
  664. // output serialization format: | remote_ptr (8 bytes) | remote_size (8 bytes) |
  665. output.resize(2*sizeof(uint64_t), 0);
  666. memcpy(output.data(), &remote_ptr, sizeof(remote_ptr));
  667. memcpy(output.data() + sizeof(uint64_t), &remote_size, sizeof(remote_size));
  668. }
  669. static void rpc_get_alignment(ggml_backend_t backend, std::vector<uint8_t> & output) {
  670. ggml_backend_buffer_type_t buft = ggml_backend_get_default_buffer_type(backend);
  671. size_t alignment = ggml_backend_buft_get_alignment(buft);
  672. GGML_PRINT_DEBUG("[%s] alignment: %lu\n", __func__, alignment);
  673. // output serialization format: | alignment (8 bytes) |
  674. output.resize(sizeof(uint64_t), 0);
  675. memcpy(output.data(), &alignment, sizeof(alignment));
  676. }
  677. static void rpc_get_max_size(ggml_backend_t backend, std::vector<uint8_t> & output) {
  678. ggml_backend_buffer_type_t buft = ggml_backend_get_default_buffer_type(backend);
  679. size_t max_size = ggml_backend_buft_get_max_size(buft);
  680. GGML_PRINT_DEBUG("[%s] max_size: %lu\n", __func__, max_size);
  681. // output serialization format: | max_size (8 bytes) |
  682. output.resize(sizeof(uint64_t), 0);
  683. memcpy(output.data(), &max_size, sizeof(max_size));
  684. }
  685. static void rpc_buffer_get_base(const std::vector<uint8_t> & input, std::vector<uint8_t> & output) {
  686. // input serialization format: | remote_ptr (8 bytes) |
  687. uint64_t remote_ptr;
  688. memcpy(&remote_ptr, input.data(), sizeof(remote_ptr));
  689. GGML_PRINT_DEBUG("[%s] remote_ptr: %" PRIx64 "\n", __func__, remote_ptr);
  690. ggml_backend_buffer_t buffer = reinterpret_cast<ggml_backend_buffer_t>(remote_ptr);
  691. void * base = ggml_backend_buffer_get_base(buffer);
  692. // output serialization format: | base_ptr (8 bytes) |
  693. uint64_t base_ptr = reinterpret_cast<uint64_t>(base);
  694. output.resize(sizeof(uint64_t), 0);
  695. memcpy(output.data(), &base_ptr, sizeof(base_ptr));
  696. }
  697. static void rpc_free_buffer(const std::vector<uint8_t> & input) {
  698. // input serialization format: | remote_ptr (8 bytes) |
  699. uint64_t remote_ptr;
  700. memcpy(&remote_ptr, input.data(), sizeof(remote_ptr));
  701. GGML_PRINT_DEBUG("[%s] remote_ptr: %" PRIx64 "\n", __func__, remote_ptr);
  702. ggml_backend_buffer_t buffer = reinterpret_cast<ggml_backend_buffer_t>(remote_ptr);
  703. ggml_backend_buffer_free(buffer);
  704. }
  705. static void rpc_buffer_clear(const std::vector<uint8_t> & input) {
  706. // input serialization format: | remote_ptr (8 bytes) | value (1 byte) |
  707. uint64_t remote_ptr;
  708. memcpy(&remote_ptr, input.data(), sizeof(remote_ptr));
  709. uint8_t value;
  710. memcpy(&value, input.data() + sizeof(uint64_t), sizeof(value));
  711. GGML_PRINT_DEBUG("[%s] remote_ptr: %" PRIx64 ", value: %u\n", __func__, remote_ptr, value);
  712. ggml_backend_buffer_t buffer = reinterpret_cast<ggml_backend_buffer_t>(remote_ptr);
  713. ggml_backend_buffer_clear(buffer, value);
  714. }
  715. static void rpc_set_tensor(const std::vector<uint8_t> & input) {
  716. // serialization format: | rpc_tensor | offset (8 bytes) | data (size bytes) |
  717. const rpc_tensor * in_tensor = (const rpc_tensor *)input.data();
  718. uint64_t offset;
  719. memcpy(&offset, input.data() + sizeof(rpc_tensor), sizeof(offset));
  720. size_t size = input.size() - sizeof(rpc_tensor) - sizeof(offset);
  721. struct ggml_init_params params {
  722. /*.mem_size =*/ ggml_tensor_overhead(),
  723. /*.mem_buffer =*/ NULL,
  724. /*.no_alloc =*/ true,
  725. };
  726. struct ggml_context * ctx = ggml_init(params);
  727. ggml_tensor * tensor = deserialize_tensor(ctx, in_tensor);
  728. GGML_PRINT_DEBUG("[%s] buffer: %p, data: %p, offset: %" PRIu64 ", size: %zu\n", __func__, (void*)tensor->buffer, tensor->data, offset, size);
  729. const void * data = input.data() + sizeof(rpc_tensor) + sizeof(offset);
  730. ggml_backend_tensor_set(tensor, data, offset, size);
  731. ggml_free(ctx);
  732. }
  733. static void rpc_get_tensor(const std::vector<uint8_t> & input, std::vector<uint8_t> & output) {
  734. // serialization format: | rpc_tensor | offset (8 bytes) | size (8 bytes) |
  735. const rpc_tensor * in_tensor = (const rpc_tensor *)input.data();
  736. uint64_t offset;
  737. memcpy(&offset, input.data() + sizeof(rpc_tensor), sizeof(offset));
  738. uint64_t size;
  739. memcpy(&size, input.data() + sizeof(rpc_tensor) + sizeof(offset), sizeof(size));
  740. struct ggml_init_params params {
  741. /*.mem_size =*/ ggml_tensor_overhead(),
  742. /*.mem_buffer =*/ NULL,
  743. /*.no_alloc =*/ true,
  744. };
  745. struct ggml_context * ctx = ggml_init(params);
  746. ggml_tensor * tensor = deserialize_tensor(ctx, in_tensor);
  747. GGML_PRINT_DEBUG("[%s] buffer: %p, data: %p, offset: %" PRIu64 ", size: %" PRIu64 "\n", __func__, (void*)tensor->buffer, tensor->data, offset, size);
  748. // output serialization format: | data (size bytes) |
  749. output.resize(size, 0);
  750. ggml_backend_tensor_get(tensor, output.data(), offset, size);
  751. ggml_free(ctx);
  752. }
  753. static void rpc_copy_tensor(const std::vector<uint8_t> & input, std::vector<uint8_t> & output) {
  754. // serialization format: | rpc_tensor src | rpc_tensor dst |
  755. const rpc_tensor * rpc_src = (const rpc_tensor *)input.data();
  756. const rpc_tensor * rpc_dst = (const rpc_tensor *)(input.data() + sizeof(rpc_src));
  757. struct ggml_init_params params {
  758. /*.mem_size =*/ 2*ggml_tensor_overhead(),
  759. /*.mem_buffer =*/ NULL,
  760. /*.no_alloc =*/ true,
  761. };
  762. struct ggml_context * ctx = ggml_init(params);
  763. ggml_tensor * src = deserialize_tensor(ctx, rpc_src);
  764. ggml_tensor * dst = deserialize_tensor(ctx, rpc_dst);
  765. GGML_PRINT_DEBUG("[%s] src->buffer: %p, dst->buffer: %p\n", __func__, (void*)src->buffer, (void*)dst->buffer);
  766. bool result = ggml_backend_buffer_copy_tensor(src, dst);
  767. // output serialization format: | result (1 byte) |
  768. output.resize(1, 0);
  769. output[0] = result;
  770. ggml_free(ctx);
  771. }
  772. static struct ggml_tensor * create_node(uint64_t id,
  773. struct ggml_context * ctx,
  774. const std::unordered_map<uint64_t, const rpc_tensor*> & tensor_ptrs,
  775. std::unordered_map<uint64_t, struct ggml_tensor*> & tensor_map) {
  776. if (id == 0) {
  777. return nullptr;
  778. }
  779. if (tensor_map.find(id) != tensor_map.end()) {
  780. return tensor_map[id];
  781. }
  782. const rpc_tensor * tensor = tensor_ptrs.at(id);
  783. struct ggml_tensor * result = deserialize_tensor(ctx, tensor);
  784. tensor_map[id] = result;
  785. for (int i = 0; i < GGML_MAX_SRC; i++) {
  786. result->src[i] = create_node(tensor->src[i], ctx, tensor_ptrs, tensor_map);
  787. }
  788. result->view_src = create_node(tensor->view_src, ctx, tensor_ptrs, tensor_map);
  789. result->view_offs = tensor->view_offs;
  790. return result;
  791. }
  792. static void rpc_graph_compute(ggml_backend_t backend, const std::vector<uint8_t> & input, std::vector<uint8_t> & output) {
  793. // serialization format:
  794. // | n_nodes (4 bytes) | nodes (n_nodes * sizeof(uint64_t) | n_tensors (4 bytes) | tensors (n_tensors * sizeof(rpc_tensor)) |
  795. uint32_t n_nodes;
  796. memcpy(&n_nodes, input.data(), sizeof(n_nodes));
  797. const uint64_t * nodes = (const uint64_t *)(input.data() + sizeof(n_nodes));
  798. uint32_t n_tensors;
  799. memcpy(&n_tensors, input.data() + sizeof(n_nodes) + n_nodes*sizeof(uint64_t), sizeof(n_tensors));
  800. const rpc_tensor * tensors = (const rpc_tensor *)(input.data() + sizeof(n_nodes) + n_nodes*sizeof(uint64_t) + sizeof(n_tensors));
  801. GGML_PRINT_DEBUG("[%s] n_nodes: %u, n_tensors: %u\n", __func__, n_nodes, n_tensors);
  802. static size_t buf_size = ggml_tensor_overhead()*(n_nodes + n_tensors) + ggml_graph_overhead_custom(n_nodes, false);
  803. struct ggml_init_params params = {
  804. /*.mem_size =*/ buf_size,
  805. /*.mem_buffer =*/ NULL,
  806. /*.no_alloc =*/ true,
  807. };
  808. struct ggml_context * ctx = ggml_init(params);
  809. struct ggml_cgraph * graph = ggml_new_graph_custom(ctx, n_nodes, false);
  810. graph->n_nodes = n_nodes;
  811. std::unordered_map<uint64_t, const rpc_tensor*> tensor_ptrs;
  812. for (uint32_t i = 0; i < n_tensors; i++) {
  813. tensor_ptrs[tensors[i].id] = &tensors[i];
  814. }
  815. std::unordered_map<uint64_t, ggml_tensor*> tensor_map;
  816. for (uint32_t i = 0; i < n_nodes; i++) {
  817. graph->nodes[i] = create_node(nodes[i], ctx, tensor_ptrs, tensor_map);
  818. }
  819. ggml_status status = ggml_backend_graph_compute(backend, graph);
  820. // output serialization format: | status (1 byte) |
  821. output.resize(1, 0);
  822. output[0] = status;
  823. ggml_free(ctx);
  824. }
  825. static void rpc_serve_client(ggml_backend_t backend, sockfd_t sockfd, size_t free_mem, size_t total_mem) {
  826. while (true) {
  827. uint8_t cmd;
  828. if (!recv_data(sockfd, &cmd, 1)) {
  829. break;
  830. }
  831. std::vector<uint8_t> input;
  832. std::vector<uint8_t> output;
  833. uint64_t input_size;
  834. if (!recv_data(sockfd, &input_size, sizeof(input_size))) {
  835. break;
  836. }
  837. input.resize(input_size);
  838. if (!recv_data(sockfd, input.data(), input_size)) {
  839. break;
  840. }
  841. switch (cmd) {
  842. case ALLOC_BUFFER: {
  843. rpc_alloc_buffer(backend, input, output);
  844. break;
  845. }
  846. case GET_ALIGNMENT: {
  847. rpc_get_alignment(backend, output);
  848. break;
  849. }
  850. case GET_MAX_SIZE: {
  851. rpc_get_max_size(backend, output);
  852. break;
  853. }
  854. case BUFFER_GET_BASE: {
  855. rpc_buffer_get_base(input, output);
  856. break;
  857. }
  858. case FREE_BUFFER: {
  859. rpc_free_buffer(input);
  860. break;
  861. }
  862. case BUFFER_CLEAR: {
  863. rpc_buffer_clear(input);
  864. break;
  865. }
  866. case SET_TENSOR: {
  867. rpc_set_tensor(input);
  868. break;
  869. }
  870. case GET_TENSOR: {
  871. rpc_get_tensor(input, output);
  872. break;
  873. }
  874. case COPY_TENSOR: {
  875. rpc_copy_tensor(input, output);
  876. break;
  877. }
  878. case GRAPH_COMPUTE: {
  879. rpc_graph_compute(backend, input, output);
  880. break;
  881. }
  882. case GET_DEVICE_MEMORY: {
  883. // output serialization format: | free (8 bytes) | total (8 bytes) |
  884. output.resize(2*sizeof(uint64_t), 0);
  885. memcpy(output.data(), &free_mem, sizeof(free_mem));
  886. memcpy(output.data() + sizeof(uint64_t), &total_mem, sizeof(total_mem));
  887. break;
  888. }
  889. default: {
  890. fprintf(stderr, "Unknown command: %d\n", cmd);
  891. return;
  892. }
  893. }
  894. uint64_t output_size = output.size();
  895. if (!send_data(sockfd, &output_size, sizeof(output_size))) {
  896. break;
  897. }
  898. if (!send_data(sockfd, output.data(), output_size)) {
  899. break;
  900. }
  901. }
  902. }
  903. void start_rpc_server(ggml_backend_t backend, const char * endpoint, size_t free_mem, size_t total_mem) {
  904. std::string host;
  905. int port;
  906. if (!parse_endpoint(endpoint, host, port)) {
  907. return;
  908. }
  909. #ifdef _WIN32
  910. {
  911. WSADATA wsaData;
  912. int res = WSAStartup(MAKEWORD(2, 2), &wsaData);
  913. if (res != 0) {
  914. fprintf(stderr, "WSAStartup failed: %d\n", res);
  915. return;
  916. }
  917. }
  918. #endif
  919. auto server_socket = create_server_socket(host.c_str(), port);
  920. if (server_socket == nullptr) {
  921. fprintf(stderr, "Failed to create server socket\n");
  922. return;
  923. }
  924. while (true) {
  925. auto client_socket = socket_accept(server_socket->fd);
  926. if (client_socket == nullptr) {
  927. fprintf(stderr, "Failed to accept client connection\n");
  928. return;
  929. }
  930. printf("Accepted client connection, free_mem=%zu, total_mem=%zu\n", free_mem, total_mem);
  931. rpc_serve_client(backend, client_socket->fd, free_mem, total_mem);
  932. printf("Client connection closed\n");
  933. }
  934. #ifdef _WIN32
  935. WSACleanup();
  936. #endif
  937. }