1
0

utils.h 2.8 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101
  1. // Various helper functions and utilities
  2. #pragma once
  3. #include <string>
  4. #include <map>
  5. #include <vector>
  6. #include <random>
  7. #include <thread>
  8. //
  9. // CLI argument parsing
  10. //
  11. struct gpt_params {
  12. int32_t seed = -1; // RNG seed
  13. int32_t n_threads = std::min(4, (int32_t) std::thread::hardware_concurrency());
  14. int32_t n_predict = 128; // new tokens to predict
  15. // sampling parameters
  16. int32_t top_k = 40; // unused
  17. float top_p = 0.95f;
  18. float temp = 0.80f;
  19. int32_t n_batch = 8; // batch size for prompt processing
  20. std::string model = "models/lamma-7B/ggml-model.bin"; // model path
  21. std::string prompt;
  22. };
  23. bool gpt_params_parse(int argc, char ** argv, gpt_params & params);
  24. void gpt_print_usage(int argc, char ** argv, const gpt_params & params);
  25. std::string gpt_random_prompt(std::mt19937 & rng);
  26. //
  27. // Vocab utils
  28. //
  29. struct gpt_vocab {
  30. using id = int32_t;
  31. using token = std::string;
  32. std::map<token, id> token_to_id;
  33. std::map<id, token> id_to_token;
  34. };
  35. void replace(std::string & str, const std::string & needle, const std::string & replacement);
  36. // poor-man's JSON parsing
  37. std::map<std::string, int32_t> json_parse(const std::string & fname);
  38. // split text into tokens
  39. //
  40. // ref: https://github.com/openai/gpt-2/blob/a74da5d99abaaba920de8131d64da2862a8f213b/src/encoder.py#L53
  41. //
  42. // Regex (Python):
  43. // r"""'s|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+"""
  44. //
  45. // Regex (C++):
  46. // R"('s|'t|'re|'ve|'m|'ll|'d| ?[[:alpha:]]+| ?[[:digit:]]+| ?[^\s[:alpha:][:digit:]]+|\s+(?!\S)|\s+)"
  47. //
  48. std::vector<gpt_vocab::id> gpt_tokenize(const gpt_vocab & vocab, const std::string & text);
  49. // TODO: this is probably wrong, but I cannot figure out how this tokenizer works ..
  50. // ref: https://github.com/google/sentencepiece
  51. std::vector<gpt_vocab::id> llama_tokenize(const gpt_vocab & vocab, const std::string & text, bool bos);
  52. // load the tokens from encoder.json
  53. bool gpt_vocab_init(const std::string & fname, gpt_vocab & vocab);
  54. // sample next token given probabilities for each embedding
  55. //
  56. // - consider only the top K tokens
  57. // - from them, consider only the top tokens with cumulative probability > P
  58. //
  59. // TODO: not sure if this implementation is correct
  60. // TODO: temperature is not implemented
  61. //
  62. gpt_vocab::id gpt_sample_top_k_top_p(
  63. const gpt_vocab & vocab,
  64. const float * logits,
  65. int top_k,
  66. double top_p,
  67. double temp,
  68. std::mt19937 & rng);
  69. gpt_vocab::id llama_sample_top_p(
  70. const gpt_vocab & vocab,
  71. const float * logits,
  72. double top_p,
  73. double temp,
  74. std::mt19937 & rng);
  75. //
  76. // Quantization
  77. //
  78. size_t ggml_quantize_q4_0(float * src, void * dst, int n, int k, int qk, int64_t * hist);
  79. size_t ggml_quantize_q4_1(float * src, void * dst, int n, int k, int qk, int64_t * hist);