arg.cpp 149 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389
  1. #include "arg.h"
  2. #include "chat.h"
  3. #include "common.h"
  4. #include "json-schema-to-grammar.h"
  5. #include "log.h"
  6. #include "sampling.h"
  7. #include "download.h"
  8. // fix problem with std::min and std::max
  9. #if defined(_WIN32)
  10. #define WIN32_LEAN_AND_MEAN
  11. #ifndef NOMINMAX
  12. # define NOMINMAX
  13. #endif
  14. #include <windows.h>
  15. #endif
  16. #define JSON_ASSERT GGML_ASSERT
  17. #include <nlohmann/json.hpp>
  18. #include <algorithm>
  19. #include <cinttypes>
  20. #include <climits>
  21. #include <cstdarg>
  22. #include <fstream>
  23. #include <list>
  24. #include <regex>
  25. #include <set>
  26. #include <string>
  27. #include <thread> // for hardware_concurrency
  28. #include <vector>
  29. #ifndef __EMSCRIPTEN__
  30. #ifdef __linux__
  31. #include <linux/limits.h>
  32. #elif defined(_WIN32)
  33. # if !defined(PATH_MAX)
  34. # define PATH_MAX MAX_PATH
  35. # endif
  36. #elif defined(_AIX)
  37. #include <sys/limits.h>
  38. #else
  39. #include <sys/syslimits.h>
  40. #endif
  41. #endif
  42. #define LLAMA_MAX_URL_LENGTH 2084 // Maximum URL Length in Chrome: 2083
  43. using json = nlohmann::ordered_json;
  44. using namespace common_arg_utils;
  45. static std::initializer_list<enum llama_example> mmproj_examples = {
  46. LLAMA_EXAMPLE_MTMD,
  47. LLAMA_EXAMPLE_SERVER,
  48. LLAMA_EXAMPLE_CLI,
  49. };
  50. static std::string read_file(const std::string & fname) {
  51. std::ifstream file(fname);
  52. if (!file) {
  53. throw std::runtime_error(string_format("error: failed to open file '%s'\n", fname.c_str()));
  54. }
  55. std::string content((std::istreambuf_iterator<char>(file)), std::istreambuf_iterator<char>());
  56. file.close();
  57. return content;
  58. }
  59. static const std::vector<common_arg> & get_common_arg_defs() {
  60. static const std::vector<common_arg> options = [] {
  61. common_params params;
  62. auto ctx = common_params_parser_init(params, LLAMA_EXAMPLE_SERVER, nullptr);
  63. return ctx.options;
  64. }();
  65. return options;
  66. }
  67. common_arg & common_arg::set_examples(std::initializer_list<enum llama_example> examples) {
  68. this->examples = examples;
  69. return *this;
  70. }
  71. common_arg & common_arg::set_excludes(std::initializer_list<enum llama_example> excludes) {
  72. this->excludes = excludes;
  73. return *this;
  74. }
  75. common_arg & common_arg::set_env(const char * env) {
  76. help = help + "\n(env: " + env + ")";
  77. this->env = env;
  78. return *this;
  79. }
  80. common_arg & common_arg::set_sparam() {
  81. is_sparam = true;
  82. return *this;
  83. }
  84. bool common_arg::in_example(enum llama_example ex) {
  85. return examples.find(ex) != examples.end();
  86. }
  87. bool common_arg::is_exclude(enum llama_example ex) {
  88. return excludes.find(ex) != excludes.end();
  89. }
  90. bool common_arg::get_value_from_env(std::string & output) const {
  91. if (env == nullptr) return false;
  92. if (!args_neg.empty()) {
  93. // for compatibility, we need to check LLAMA_ARG_NO_ env as well
  94. std::string neg_env = env;
  95. string_replace_all(neg_env, "LLAMA_ARG_", "LLAMA_ARG_NO_");
  96. char * neg_value = std::getenv(neg_env.c_str());
  97. if (neg_value) {
  98. output = "0"; // falsey
  99. return true;
  100. }
  101. }
  102. char * value = std::getenv(env);
  103. if (value) {
  104. output = value;
  105. return true;
  106. }
  107. return false;
  108. }
  109. bool common_arg::has_value_from_env() const {
  110. if (env != nullptr && !args_neg.empty()) {
  111. // for compatibility, we need to check LLAMA_ARG_NO_ env as well
  112. std::string neg_env = env;
  113. string_replace_all(neg_env, "LLAMA_ARG_", "LLAMA_ARG_NO_");
  114. if (std::getenv(neg_env.c_str())) {
  115. return true;
  116. }
  117. }
  118. return env != nullptr && std::getenv(env);
  119. }
  120. static std::vector<std::string> break_str_into_lines(std::string input, size_t max_char_per_line) {
  121. std::vector<std::string> result;
  122. std::istringstream iss(input);
  123. std::string line;
  124. auto add_line = [&](const std::string& l) {
  125. if (l.length() <= max_char_per_line) {
  126. result.push_back(l);
  127. } else {
  128. std::istringstream line_stream(l);
  129. std::string word, current_line;
  130. while (line_stream >> word) {
  131. if (current_line.length() + !current_line.empty() + word.length() > max_char_per_line) {
  132. if (!current_line.empty()) result.push_back(current_line);
  133. current_line = word;
  134. } else {
  135. current_line += (!current_line.empty() ? " " : "") + word;
  136. }
  137. }
  138. if (!current_line.empty()) result.push_back(current_line);
  139. }
  140. };
  141. while (std::getline(iss, line)) {
  142. add_line(line);
  143. }
  144. return result;
  145. }
  146. std::string common_arg::to_string() const {
  147. // params for printing to console
  148. const static int n_leading_spaces = 40;
  149. const static int n_char_per_line_help = 70; // TODO: detect this based on current console
  150. std::string leading_spaces(n_leading_spaces, ' ');
  151. std::ostringstream ss;
  152. auto all_args = get_args(); // also contains args_neg
  153. for (const auto & arg : all_args) {
  154. if (arg == all_args.front()) {
  155. if (all_args.size() == 1) {
  156. ss << arg;
  157. } else {
  158. // first arg is usually abbreviation, we need padding to make it more beautiful
  159. auto tmp = std::string(arg) + ", ";
  160. auto spaces = std::string(std::max(0, 7 - (int)tmp.size()), ' ');
  161. ss << tmp << spaces;
  162. }
  163. } else {
  164. ss << arg << (arg != all_args.back() ? ", " : "");
  165. }
  166. }
  167. if (value_hint) ss << " " << value_hint;
  168. if (value_hint_2) ss << " " << value_hint_2;
  169. if (ss.tellp() > n_leading_spaces - 3) {
  170. // current line is too long, add new line
  171. ss << "\n" << leading_spaces;
  172. } else {
  173. // padding between arg and help, same line
  174. ss << std::string(leading_spaces.size() - ss.tellp(), ' ');
  175. }
  176. const auto help_lines = break_str_into_lines(help, n_char_per_line_help);
  177. for (const auto & line : help_lines) {
  178. ss << (&line == &help_lines.front() ? "" : leading_spaces) << line << "\n";
  179. }
  180. return ss.str();
  181. }
  182. std::vector<std::string> common_arg::get_args() const {
  183. std::vector<std::string> result;
  184. for (const auto & arg : args) {
  185. result.push_back(std::string(arg));
  186. }
  187. for (const auto & arg : args_neg) {
  188. result.push_back(std::string(arg));
  189. }
  190. return result;
  191. }
  192. std::vector<std::string> common_arg::get_env() const {
  193. std::vector<std::string> result;
  194. if (env) {
  195. result.push_back(std::string(env));
  196. }
  197. if (!args_neg.empty() && env) {
  198. // for compatibility, we need to add LLAMA_ARG_NO_ variant
  199. std::string neg_env = env;
  200. string_replace_all(neg_env, "LLAMA_ARG_", "LLAMA_ARG_NO_");
  201. result.push_back(neg_env);
  202. }
  203. return result;
  204. }
  205. //
  206. // utils
  207. //
  208. // Helper function to parse tensor buffer override strings
  209. static void parse_tensor_buffer_overrides(const std::string & value, std::vector<llama_model_tensor_buft_override> & overrides) {
  210. std::map<std::string, ggml_backend_buffer_type_t> buft_list;
  211. for (size_t i = 0; i < ggml_backend_dev_count(); ++i) {
  212. auto * dev = ggml_backend_dev_get(i);
  213. auto * buft = ggml_backend_dev_buffer_type(dev);
  214. if (buft) {
  215. buft_list[ggml_backend_buft_name(buft)] = buft;
  216. }
  217. }
  218. for (const auto & override : string_split<std::string>(value, ',')) {
  219. std::string::size_type pos = override.find('=');
  220. if (pos == std::string::npos) {
  221. throw std::invalid_argument("invalid value");
  222. }
  223. std::string tensor_name = override.substr(0, pos);
  224. std::string buffer_type = override.substr(pos + 1);
  225. if (buft_list.find(buffer_type) == buft_list.end()) {
  226. printf("Available buffer types:\n");
  227. for (const auto & it : buft_list) {
  228. printf(" %s\n", ggml_backend_buft_name(it.second));
  229. }
  230. throw std::invalid_argument("unknown buffer type");
  231. }
  232. // keep strings alive and avoid leaking memory by storing them in a static vector
  233. static std::list<std::string> buft_overrides;
  234. buft_overrides.push_back(tensor_name);
  235. overrides.push_back({buft_overrides.back().c_str(), buft_list.at(buffer_type)});
  236. }
  237. }
  238. struct handle_model_result {
  239. bool found_mmproj = false;
  240. common_params_model mmproj;
  241. };
  242. static handle_model_result common_params_handle_model(
  243. struct common_params_model & model,
  244. const std::string & bearer_token,
  245. bool offline) {
  246. handle_model_result result;
  247. // handle pre-fill default model path and url based on hf_repo and hf_file
  248. {
  249. if (!model.docker_repo.empty()) { // Handle Docker URLs by resolving them to local paths
  250. model.path = common_docker_resolve_model(model.docker_repo);
  251. model.name = model.docker_repo; // set name for consistency
  252. } else if (!model.hf_repo.empty()) {
  253. // short-hand to avoid specifying --hf-file -> default it to --model
  254. if (model.hf_file.empty()) {
  255. if (model.path.empty()) {
  256. auto auto_detected = common_get_hf_file(model.hf_repo, bearer_token, offline);
  257. if (auto_detected.repo.empty() || auto_detected.ggufFile.empty()) {
  258. exit(1); // built without CURL, error message already printed
  259. }
  260. model.name = model.hf_repo; // repo name with tag
  261. model.hf_repo = auto_detected.repo; // repo name without tag
  262. model.hf_file = auto_detected.ggufFile;
  263. if (!auto_detected.mmprojFile.empty()) {
  264. result.found_mmproj = true;
  265. result.mmproj.hf_repo = model.hf_repo;
  266. result.mmproj.hf_file = auto_detected.mmprojFile;
  267. }
  268. } else {
  269. model.hf_file = model.path;
  270. }
  271. }
  272. std::string model_endpoint = get_model_endpoint();
  273. model.url = model_endpoint + model.hf_repo + "/resolve/main/" + model.hf_file;
  274. // make sure model path is present (for caching purposes)
  275. if (model.path.empty()) {
  276. // this is to avoid different repo having same file name, or same file name in different subdirs
  277. std::string filename = model.hf_repo + "_" + model.hf_file;
  278. // to make sure we don't have any slashes in the filename
  279. string_replace_all(filename, "/", "_");
  280. model.path = fs_get_cache_file(filename);
  281. }
  282. } else if (!model.url.empty()) {
  283. if (model.path.empty()) {
  284. auto f = string_split<std::string>(model.url, '#').front();
  285. f = string_split<std::string>(f, '?').front();
  286. model.path = fs_get_cache_file(string_split<std::string>(f, '/').back());
  287. }
  288. }
  289. }
  290. // then, download it if needed
  291. if (!model.url.empty()) {
  292. bool ok = common_download_model(model, bearer_token, offline);
  293. if (!ok) {
  294. LOG_ERR("error: failed to download model from %s\n", model.url.c_str());
  295. exit(1);
  296. }
  297. }
  298. return result;
  299. }
  300. const std::vector<ggml_type> kv_cache_types = {
  301. GGML_TYPE_F32,
  302. GGML_TYPE_F16,
  303. GGML_TYPE_BF16,
  304. GGML_TYPE_Q8_0,
  305. GGML_TYPE_Q4_0,
  306. GGML_TYPE_Q4_1,
  307. GGML_TYPE_IQ4_NL,
  308. GGML_TYPE_Q5_0,
  309. GGML_TYPE_Q5_1,
  310. };
  311. static ggml_type kv_cache_type_from_str(const std::string & s) {
  312. for (const auto & type : kv_cache_types) {
  313. if (ggml_type_name(type) == s) {
  314. return type;
  315. }
  316. }
  317. throw std::runtime_error("Unsupported cache type: " + s);
  318. }
  319. static std::string get_all_kv_cache_types() {
  320. std::ostringstream msg;
  321. for (const auto & type : kv_cache_types) {
  322. msg << ggml_type_name(type) << (&type == &kv_cache_types.back() ? "" : ", ");
  323. }
  324. return msg.str();
  325. }
  326. static bool parse_bool_value(const std::string & value) {
  327. if (is_truthy(value)) {
  328. return true;
  329. } else if (is_falsey(value)) {
  330. return false;
  331. } else {
  332. throw std::invalid_argument("invalid boolean value");
  333. }
  334. }
  335. //
  336. // CLI argument parsing functions
  337. //
  338. static bool common_params_parse_ex(int argc, char ** argv, common_params_context & ctx_arg) {
  339. common_params & params = ctx_arg.params;
  340. std::unordered_map<std::string, std::pair<common_arg *, bool>> arg_to_options;
  341. for (auto & opt : ctx_arg.options) {
  342. for (const auto & arg : opt.args) {
  343. arg_to_options[arg] = {&opt, /* is_positive */ true};
  344. }
  345. for (const auto & arg : opt.args_neg) {
  346. arg_to_options[arg] = {&opt, /* is_positive */ false};
  347. }
  348. }
  349. // handle environment variables
  350. for (auto & opt : ctx_arg.options) {
  351. std::string value;
  352. if (opt.get_value_from_env(value)) {
  353. try {
  354. if (opt.handler_void && is_truthy(value)) {
  355. opt.handler_void(params);
  356. }
  357. if (opt.handler_int) {
  358. opt.handler_int(params, std::stoi(value));
  359. }
  360. if (opt.handler_bool) {
  361. opt.handler_bool(params, parse_bool_value(value));
  362. }
  363. if (opt.handler_string) {
  364. opt.handler_string(params, value);
  365. continue;
  366. }
  367. } catch (std::exception & e) {
  368. throw std::invalid_argument(string_format(
  369. "error while handling environment variable \"%s\": %s\n\n", opt.env, e.what()));
  370. }
  371. }
  372. }
  373. // handle command line arguments
  374. auto check_arg = [&](int i) {
  375. if (i+1 >= argc) {
  376. throw std::invalid_argument("expected value for argument");
  377. }
  378. };
  379. for (int i = 1; i < argc; i++) {
  380. const std::string arg_prefix = "--";
  381. std::string arg = argv[i];
  382. if (arg.compare(0, arg_prefix.size(), arg_prefix) == 0) {
  383. std::replace(arg.begin(), arg.end(), '_', '-');
  384. }
  385. if (arg_to_options.find(arg) == arg_to_options.end()) {
  386. throw std::invalid_argument(string_format("error: invalid argument: %s", arg.c_str()));
  387. }
  388. auto & tmp = arg_to_options[arg];
  389. auto opt = *tmp.first;
  390. bool is_positive = tmp.second;
  391. if (opt.has_value_from_env()) {
  392. fprintf(stderr, "warn: %s environment variable is set, but will be overwritten by command line argument %s\n", opt.env, arg.c_str());
  393. }
  394. try {
  395. if (opt.handler_void) {
  396. opt.handler_void(params);
  397. continue;
  398. }
  399. if (opt.handler_bool) {
  400. opt.handler_bool(params, is_positive);
  401. continue;
  402. }
  403. // arg with single value
  404. check_arg(i);
  405. std::string val = argv[++i];
  406. if (opt.handler_int) {
  407. opt.handler_int(params, std::stoi(val));
  408. continue;
  409. }
  410. if (opt.handler_string) {
  411. opt.handler_string(params, val);
  412. continue;
  413. }
  414. // arg with 2 values
  415. check_arg(i);
  416. std::string val2 = argv[++i];
  417. if (opt.handler_str_str) {
  418. opt.handler_str_str(params, val, val2);
  419. continue;
  420. }
  421. } catch (std::exception & e) {
  422. throw std::invalid_argument(string_format(
  423. "error while handling argument \"%s\": %s\n\n"
  424. "usage:\n%s\n\nto show complete usage, run with -h",
  425. arg.c_str(), e.what(), opt.to_string().c_str()));
  426. }
  427. }
  428. postprocess_cpu_params(params.cpuparams, nullptr);
  429. postprocess_cpu_params(params.cpuparams_batch, &params.cpuparams);
  430. postprocess_cpu_params(params.speculative.cpuparams, &params.cpuparams);
  431. postprocess_cpu_params(params.speculative.cpuparams_batch, &params.cpuparams_batch);
  432. if (params.prompt_cache_all && (params.interactive || params.interactive_first)) {
  433. throw std::invalid_argument("error: --prompt-cache-all not supported in interactive mode yet\n");
  434. }
  435. // handle model and download
  436. {
  437. auto res = common_params_handle_model(params.model, params.hf_token, params.offline);
  438. if (params.no_mmproj) {
  439. params.mmproj = {};
  440. } else if (res.found_mmproj && params.mmproj.path.empty() && params.mmproj.url.empty()) {
  441. // optionally, handle mmproj model when -hf is specified
  442. params.mmproj = res.mmproj;
  443. }
  444. // only download mmproj if the current example is using it
  445. for (auto & ex : mmproj_examples) {
  446. if (ctx_arg.ex == ex) {
  447. common_params_handle_model(params.mmproj, params.hf_token, params.offline);
  448. break;
  449. }
  450. }
  451. common_params_handle_model(params.speculative.model, params.hf_token, params.offline);
  452. common_params_handle_model(params.vocoder.model, params.hf_token, params.offline);
  453. }
  454. // model is required (except for server)
  455. // TODO @ngxson : maybe show a list of available models in CLI in this case
  456. if (params.model.path.empty() && ctx_arg.ex != LLAMA_EXAMPLE_SERVER && !params.usage && !params.completion) {
  457. throw std::invalid_argument("error: --model is required\n");
  458. }
  459. if (params.escape) {
  460. string_process_escapes(params.prompt);
  461. string_process_escapes(params.input_prefix);
  462. string_process_escapes(params.input_suffix);
  463. for (auto & antiprompt : params.antiprompt) {
  464. string_process_escapes(antiprompt);
  465. }
  466. for (auto & seq_breaker : params.sampling.dry_sequence_breakers) {
  467. string_process_escapes(seq_breaker);
  468. }
  469. for (auto & pair : params.speculative.replacements) {
  470. string_process_escapes(pair.first);
  471. string_process_escapes(pair.second);
  472. }
  473. }
  474. if (!params.kv_overrides.empty()) {
  475. params.kv_overrides.emplace_back();
  476. params.kv_overrides.back().key[0] = 0;
  477. }
  478. // pad tensor_buft_overrides for llama_params_fit:
  479. const size_t ntbo = llama_max_tensor_buft_overrides();
  480. while (params.tensor_buft_overrides.size() < ntbo) {
  481. params.tensor_buft_overrides.push_back({nullptr, nullptr});
  482. }
  483. if (!params.speculative.tensor_buft_overrides.empty()) {
  484. params.speculative.tensor_buft_overrides.push_back({nullptr, nullptr});
  485. }
  486. if (!params.chat_template.empty() && !common_chat_verify_template(params.chat_template, params.use_jinja)) {
  487. throw std::runtime_error(string_format(
  488. "error: the supplied chat template is not supported: %s%s\n",
  489. params.chat_template.c_str(),
  490. params.use_jinja ? "" : "\nnote: llama.cpp was started without --jinja, we only support commonly used templates"
  491. ));
  492. }
  493. common_log_set_verbosity_thold(params.verbosity);
  494. return true;
  495. }
  496. static void common_params_print_usage(common_params_context & ctx_arg) {
  497. auto print_options = [](std::vector<common_arg *> & options) {
  498. for (common_arg * opt : options) {
  499. printf("%s", opt->to_string().c_str());
  500. }
  501. };
  502. std::vector<common_arg *> common_options;
  503. std::vector<common_arg *> sparam_options;
  504. std::vector<common_arg *> specific_options;
  505. for (auto & opt : ctx_arg.options) {
  506. // in case multiple LLAMA_EXAMPLE_* are set, we prioritize the LLAMA_EXAMPLE_* matching current example
  507. if (opt.is_sparam) {
  508. sparam_options.push_back(&opt);
  509. } else if (opt.in_example(ctx_arg.ex)) {
  510. specific_options.push_back(&opt);
  511. } else {
  512. common_options.push_back(&opt);
  513. }
  514. }
  515. printf("----- common params -----\n\n");
  516. print_options(common_options);
  517. printf("\n\n----- sampling params -----\n\n");
  518. print_options(sparam_options);
  519. // TODO: maybe convert enum llama_example to string
  520. printf("\n\n----- example-specific params -----\n\n");
  521. print_options(specific_options);
  522. }
  523. static void common_params_print_completion(common_params_context & ctx_arg) {
  524. std::vector<common_arg *> common_options;
  525. std::vector<common_arg *> sparam_options;
  526. std::vector<common_arg *> specific_options;
  527. for (auto & opt : ctx_arg.options) {
  528. if (opt.is_sparam) {
  529. sparam_options.push_back(&opt);
  530. } else if (opt.in_example(ctx_arg.ex)) {
  531. specific_options.push_back(&opt);
  532. } else {
  533. common_options.push_back(&opt);
  534. }
  535. }
  536. printf("_llama_completions() {\n");
  537. printf(" local cur prev opts\n");
  538. printf(" COMPREPLY=()\n");
  539. printf(" cur=\"${COMP_WORDS[COMP_CWORD]}\"\n");
  540. printf(" prev=\"${COMP_WORDS[COMP_CWORD-1]}\"\n\n");
  541. printf(" opts=\"");
  542. auto print_options = [](const std::vector<common_arg *> & options) {
  543. for (const common_arg * opt : options) {
  544. for (const char * arg : opt->args) {
  545. printf("%s ", arg);
  546. }
  547. }
  548. };
  549. print_options(common_options);
  550. print_options(sparam_options);
  551. print_options(specific_options);
  552. printf("\"\n\n");
  553. printf(" case \"$prev\" in\n");
  554. printf(" --model|-m)\n");
  555. printf(" COMPREPLY=( $(compgen -f -X '!*.gguf' -- \"$cur\") $(compgen -d -- \"$cur\") )\n");
  556. printf(" return 0\n");
  557. printf(" ;;\n");
  558. printf(" --grammar-file)\n");
  559. printf(" COMPREPLY=( $(compgen -f -X '!*.gbnf' -- \"$cur\") $(compgen -d -- \"$cur\") )\n");
  560. printf(" return 0\n");
  561. printf(" ;;\n");
  562. printf(" --chat-template-file)\n");
  563. printf(" COMPREPLY=( $(compgen -f -X '!*.jinja' -- \"$cur\") $(compgen -d -- \"$cur\") )\n");
  564. printf(" return 0\n");
  565. printf(" ;;\n");
  566. printf(" *)\n");
  567. printf(" COMPREPLY=( $(compgen -W \"${opts}\" -- \"$cur\") )\n");
  568. printf(" return 0\n");
  569. printf(" ;;\n");
  570. printf(" esac\n");
  571. printf("}\n\n");
  572. std::set<std::string> executables = {
  573. "llama-batched",
  574. "llama-batched-bench",
  575. "llama-bench",
  576. "llama-cli",
  577. "llama-completion",
  578. "llama-convert-llama2c-to-ggml",
  579. "llama-cvector-generator",
  580. "llama-embedding",
  581. "llama-eval-callback",
  582. "llama-export-lora",
  583. "llama-gen-docs",
  584. "llama-gguf",
  585. "llama-gguf-hash",
  586. "llama-gguf-split",
  587. "llama-gritlm",
  588. "llama-imatrix",
  589. "llama-infill",
  590. "llama-mtmd-cli",
  591. "llama-llava-clip-quantize-cli",
  592. "llama-lookahead",
  593. "llama-lookup",
  594. "llama-lookup-create",
  595. "llama-lookup-merge",
  596. "llama-lookup-stats",
  597. "llama-parallel",
  598. "llama-passkey",
  599. "llama-perplexity",
  600. "llama-q8dot",
  601. "llama-quantize",
  602. "llama-qwen2vl-cli",
  603. "llama-retrieval",
  604. "llama-run",
  605. "llama-save-load-state",
  606. "llama-server",
  607. "llama-simple",
  608. "llama-simple-chat",
  609. "llama-speculative",
  610. "llama-speculative-simple",
  611. "llama-tokenize",
  612. "llama-tts",
  613. "llama-vdot"
  614. };
  615. for (const auto& exe : executables) {
  616. printf("complete -F _llama_completions %s\n", exe.c_str());
  617. }
  618. }
  619. static std::vector<ggml_backend_dev_t> parse_device_list(const std::string & value) {
  620. std::vector<ggml_backend_dev_t> devices;
  621. auto dev_names = string_split<std::string>(value, ',');
  622. if (dev_names.empty()) {
  623. throw std::invalid_argument("no devices specified");
  624. }
  625. if (dev_names.size() == 1 && dev_names[0] == "none") {
  626. devices.push_back(nullptr);
  627. } else {
  628. for (const auto & device : dev_names) {
  629. auto * dev = ggml_backend_dev_by_name(device.c_str());
  630. if (!dev || ggml_backend_dev_type(dev) == GGML_BACKEND_DEVICE_TYPE_CPU) {
  631. throw std::invalid_argument(string_format("invalid device: %s", device.c_str()));
  632. }
  633. devices.push_back(dev);
  634. }
  635. devices.push_back(nullptr);
  636. }
  637. return devices;
  638. }
  639. static void add_rpc_devices(const std::string & servers) {
  640. auto rpc_servers = string_split<std::string>(servers, ',');
  641. if (rpc_servers.empty()) {
  642. throw std::invalid_argument("no RPC servers specified");
  643. }
  644. ggml_backend_reg_t rpc_reg = ggml_backend_reg_by_name("RPC");
  645. if (!rpc_reg) {
  646. throw std::invalid_argument("failed to find RPC backend");
  647. }
  648. typedef ggml_backend_reg_t (*ggml_backend_rpc_add_server_t)(const char * endpoint);
  649. ggml_backend_rpc_add_server_t ggml_backend_rpc_add_server_fn = (ggml_backend_rpc_add_server_t) ggml_backend_reg_get_proc_address(rpc_reg, "ggml_backend_rpc_add_server");
  650. if (!ggml_backend_rpc_add_server_fn) {
  651. throw std::invalid_argument("failed to find RPC add server function");
  652. }
  653. for (const auto & server : rpc_servers) {
  654. auto reg = ggml_backend_rpc_add_server_fn(server.c_str());
  655. ggml_backend_register(reg);
  656. }
  657. }
  658. bool common_params_to_map(int argc, char ** argv, llama_example ex, std::map<common_arg, std::string> & out_map) {
  659. common_params dummy_params;
  660. common_params_context ctx_arg = common_params_parser_init(dummy_params, ex, nullptr);
  661. std::unordered_map<std::string, common_arg *> arg_to_options;
  662. for (auto & opt : ctx_arg.options) {
  663. for (const auto & arg : opt.args) {
  664. arg_to_options[arg] = &opt;
  665. }
  666. for (const auto & arg : opt.args_neg) {
  667. arg_to_options[arg] = &opt;
  668. }
  669. }
  670. // TODO @ngxson : find a way to deduplicate this code
  671. // handle command line arguments
  672. auto check_arg = [&](int i) {
  673. if (i+1 >= argc) {
  674. throw std::invalid_argument("expected value for argument");
  675. }
  676. };
  677. for (int i = 1; i < argc; i++) {
  678. const std::string arg_prefix = "--";
  679. std::string arg = argv[i];
  680. if (arg.compare(0, arg_prefix.size(), arg_prefix) == 0) {
  681. std::replace(arg.begin(), arg.end(), '_', '-');
  682. }
  683. if (arg_to_options.find(arg) == arg_to_options.end()) {
  684. throw std::invalid_argument(string_format("error: invalid argument: %s", arg.c_str()));
  685. }
  686. auto opt = *arg_to_options[arg];
  687. std::string val;
  688. if (opt.value_hint != nullptr) {
  689. // arg with single value
  690. check_arg(i);
  691. val = argv[++i];
  692. }
  693. if (opt.value_hint_2 != nullptr) {
  694. // TODO: support arg with 2 values
  695. throw std::invalid_argument("error: argument with 2 values is not yet supported\n");
  696. }
  697. out_map[opt] = val;
  698. }
  699. return true;
  700. }
  701. bool common_params_parse(int argc, char ** argv, common_params & params, llama_example ex, void(*print_usage)(int, char **)) {
  702. auto ctx_arg = common_params_parser_init(params, ex, print_usage);
  703. const common_params params_org = ctx_arg.params; // the example can modify the default params
  704. try {
  705. if (!common_params_parse_ex(argc, argv, ctx_arg)) {
  706. ctx_arg.params = params_org;
  707. return false;
  708. }
  709. if (ctx_arg.params.usage) {
  710. common_params_print_usage(ctx_arg);
  711. if (ctx_arg.print_usage) {
  712. ctx_arg.print_usage(argc, argv);
  713. }
  714. exit(0);
  715. }
  716. if (ctx_arg.params.completion) {
  717. common_params_print_completion(ctx_arg);
  718. exit(0);
  719. }
  720. params.lr.init();
  721. } catch (const std::invalid_argument & ex) {
  722. fprintf(stderr, "%s\n", ex.what());
  723. ctx_arg.params = params_org;
  724. return false;
  725. } catch (std::exception & ex) {
  726. fprintf(stderr, "%s\n", ex.what());
  727. exit(1); // for other exceptions, we exit with status code 1
  728. }
  729. return true;
  730. }
  731. static std::string list_builtin_chat_templates() {
  732. std::vector<const char *> supported_tmpl;
  733. int32_t res = llama_chat_builtin_templates(nullptr, 0);
  734. supported_tmpl.resize(res);
  735. res = llama_chat_builtin_templates(supported_tmpl.data(), supported_tmpl.size());
  736. std::ostringstream msg;
  737. for (auto & tmpl : supported_tmpl) {
  738. msg << tmpl << (&tmpl == &supported_tmpl.back() ? "" : ", ");
  739. }
  740. return msg.str();
  741. }
  742. bool common_arg_utils::is_truthy(const std::string & value) {
  743. return value == "on" || value == "enabled" || value == "true" || value == "1";
  744. }
  745. bool common_arg_utils::is_falsey(const std::string & value) {
  746. return value == "off" || value == "disabled" || value == "false" || value == "0";
  747. }
  748. bool common_arg_utils::is_autoy(const std::string & value) {
  749. return value == "auto" || value == "-1";
  750. }
  751. common_params_context common_params_parser_init(common_params & params, llama_example ex, void(*print_usage)(int, char **)) {
  752. params.use_color = tty_can_use_colors();
  753. // load dynamic backends
  754. ggml_backend_load_all();
  755. common_params_context ctx_arg(params);
  756. ctx_arg.print_usage = print_usage;
  757. ctx_arg.ex = ex;
  758. std::string sampler_type_chars;
  759. std::string sampler_type_names;
  760. for (const auto & sampler : params.sampling.samplers) {
  761. sampler_type_chars += common_sampler_type_to_chr(sampler);
  762. sampler_type_names += common_sampler_type_to_str(sampler) + ";";
  763. }
  764. sampler_type_names.pop_back();
  765. /**
  766. * filter options by example
  767. * rules:
  768. * - all examples inherit options from LLAMA_EXAMPLE_COMMON
  769. * - if LLAMA_EXAMPLE_* is set (other than COMMON), we only show the option in the corresponding example
  770. * - if both {LLAMA_EXAMPLE_COMMON, LLAMA_EXAMPLE_*,} are set, we will prioritize the LLAMA_EXAMPLE_* matching current example
  771. */
  772. auto add_opt = [&](common_arg arg) {
  773. if ((arg.in_example(ex) || arg.in_example(LLAMA_EXAMPLE_COMMON)) && !arg.is_exclude(ex)) {
  774. ctx_arg.options.push_back(std::move(arg));
  775. }
  776. };
  777. add_opt(common_arg(
  778. {"-h", "--help", "--usage"},
  779. "print usage and exit",
  780. [](common_params & params) {
  781. params.usage = true;
  782. }
  783. ));
  784. add_opt(common_arg(
  785. {"--version"},
  786. "show version and build info",
  787. [](common_params &) {
  788. fprintf(stderr, "version: %d (%s)\n", LLAMA_BUILD_NUMBER, LLAMA_COMMIT);
  789. fprintf(stderr, "built with %s for %s\n", LLAMA_COMPILER, LLAMA_BUILD_TARGET);
  790. exit(0);
  791. }
  792. ));
  793. add_opt(common_arg(
  794. {"-cl", "--cache-list"},
  795. "show list of models in cache",
  796. [](common_params &) {
  797. printf("model cache directory: %s\n", fs_get_cache_directory().c_str());
  798. auto models = common_list_cached_models();
  799. printf("number of models in cache: %zu\n", models.size());
  800. for (size_t i = 0; i < models.size(); i++) {
  801. auto & model = models[i];
  802. printf("%4d. %s\n", (int) i + 1, model.to_string().c_str());
  803. }
  804. exit(0);
  805. }
  806. ));
  807. add_opt(common_arg(
  808. {"--completion-bash"},
  809. "print source-able bash completion script for llama.cpp",
  810. [](common_params & params) {
  811. params.completion = true;
  812. }
  813. ));
  814. add_opt(common_arg(
  815. {"--verbose-prompt"},
  816. string_format("print a verbose prompt before generation (default: %s)", params.verbose_prompt ? "true" : "false"),
  817. [](common_params & params) {
  818. params.verbose_prompt = true;
  819. }
  820. ));
  821. add_opt(common_arg(
  822. {"--display-prompt"},
  823. {"--no-display-prompt"},
  824. string_format("whether to print prompt at generation (default: %s)", params.display_prompt ? "true" : "false"),
  825. [](common_params & params, bool value) {
  826. params.display_prompt = value;
  827. }
  828. ).set_examples({LLAMA_EXAMPLE_COMPLETION, LLAMA_EXAMPLE_CLI}));
  829. add_opt(common_arg(
  830. {"-co", "--color"}, "[on|off|auto]",
  831. "Colorize output to distinguish prompt and user input from generations ('on', 'off', or 'auto', default: 'auto')\n"
  832. "'auto' enables colors when output is to a terminal",
  833. [](common_params & params, const std::string & value) {
  834. if (is_truthy(value)) {
  835. params.use_color = true;
  836. } else if (is_falsey(value)) {
  837. params.use_color = false;
  838. } else if (is_autoy(value)) {
  839. params.use_color = tty_can_use_colors();
  840. } else {
  841. throw std::invalid_argument(
  842. string_format("error: unknown value for --color: '%s'\n", value.c_str()));
  843. }
  844. }
  845. ).set_examples({LLAMA_EXAMPLE_COMPLETION, LLAMA_EXAMPLE_CLI, LLAMA_EXAMPLE_SPECULATIVE, LLAMA_EXAMPLE_LOOKUP}));
  846. add_opt(common_arg(
  847. {"-t", "--threads"}, "N",
  848. string_format("number of CPU threads to use during generation (default: %d)", params.cpuparams.n_threads),
  849. [](common_params & params, int value) {
  850. params.cpuparams.n_threads = value;
  851. if (params.cpuparams.n_threads <= 0) {
  852. params.cpuparams.n_threads = std::thread::hardware_concurrency();
  853. }
  854. }
  855. ).set_env("LLAMA_ARG_THREADS"));
  856. add_opt(common_arg(
  857. {"-tb", "--threads-batch"}, "N",
  858. "number of threads to use during batch and prompt processing (default: same as --threads)",
  859. [](common_params & params, int value) {
  860. params.cpuparams_batch.n_threads = value;
  861. if (params.cpuparams_batch.n_threads <= 0) {
  862. params.cpuparams_batch.n_threads = std::thread::hardware_concurrency();
  863. }
  864. }
  865. ));
  866. add_opt(common_arg(
  867. {"-C", "--cpu-mask"}, "M",
  868. "CPU affinity mask: arbitrarily long hex. Complements cpu-range (default: \"\")",
  869. [](common_params & params, const std::string & mask) {
  870. params.cpuparams.mask_valid = true;
  871. if (!parse_cpu_mask(mask, params.cpuparams.cpumask)) {
  872. throw std::invalid_argument("invalid cpumask");
  873. }
  874. }
  875. ));
  876. add_opt(common_arg(
  877. {"-Cr", "--cpu-range"}, "lo-hi",
  878. "range of CPUs for affinity. Complements --cpu-mask",
  879. [](common_params & params, const std::string & range) {
  880. params.cpuparams.mask_valid = true;
  881. if (!parse_cpu_range(range, params.cpuparams.cpumask)) {
  882. throw std::invalid_argument("invalid range");
  883. }
  884. }
  885. ));
  886. add_opt(common_arg(
  887. {"--cpu-strict"}, "<0|1>",
  888. string_format("use strict CPU placement (default: %u)\n", (unsigned) params.cpuparams.strict_cpu),
  889. [](common_params & params, const std::string & value) {
  890. params.cpuparams.strict_cpu = std::stoul(value);
  891. }
  892. ));
  893. add_opt(common_arg(
  894. {"--prio"}, "N",
  895. string_format("set process/thread priority : low(-1), normal(0), medium(1), high(2), realtime(3) (default: %d)\n", params.cpuparams.priority),
  896. [](common_params & params, int prio) {
  897. if (prio < GGML_SCHED_PRIO_LOW || prio > GGML_SCHED_PRIO_REALTIME) {
  898. throw std::invalid_argument("invalid value");
  899. }
  900. params.cpuparams.priority = (enum ggml_sched_priority) prio;
  901. }
  902. ));
  903. add_opt(common_arg(
  904. {"--poll"}, "<0...100>",
  905. string_format("use polling level to wait for work (0 - no polling, default: %u)\n", (unsigned) params.cpuparams.poll),
  906. [](common_params & params, const std::string & value) {
  907. params.cpuparams.poll = std::stoul(value);
  908. }
  909. ));
  910. add_opt(common_arg(
  911. {"-Cb", "--cpu-mask-batch"}, "M",
  912. "CPU affinity mask: arbitrarily long hex. Complements cpu-range-batch (default: same as --cpu-mask)",
  913. [](common_params & params, const std::string & mask) {
  914. params.cpuparams_batch.mask_valid = true;
  915. if (!parse_cpu_mask(mask, params.cpuparams_batch.cpumask)) {
  916. throw std::invalid_argument("invalid cpumask");
  917. }
  918. }
  919. ));
  920. add_opt(common_arg(
  921. {"-Crb", "--cpu-range-batch"}, "lo-hi",
  922. "ranges of CPUs for affinity. Complements --cpu-mask-batch",
  923. [](common_params & params, const std::string & range) {
  924. params.cpuparams_batch.mask_valid = true;
  925. if (!parse_cpu_range(range, params.cpuparams_batch.cpumask)) {
  926. throw std::invalid_argument("invalid range");
  927. }
  928. }
  929. ));
  930. add_opt(common_arg(
  931. {"--cpu-strict-batch"}, "<0|1>",
  932. "use strict CPU placement (default: same as --cpu-strict)",
  933. [](common_params & params, int value) {
  934. params.cpuparams_batch.strict_cpu = value;
  935. }
  936. ));
  937. add_opt(common_arg(
  938. {"--prio-batch"}, "N",
  939. string_format("set process/thread priority : 0-normal, 1-medium, 2-high, 3-realtime (default: %d)\n", params.cpuparams_batch.priority),
  940. [](common_params & params, int prio) {
  941. if (prio < 0 || prio > 3) {
  942. throw std::invalid_argument("invalid value");
  943. }
  944. params.cpuparams_batch.priority = (enum ggml_sched_priority) prio;
  945. }
  946. ));
  947. add_opt(common_arg(
  948. {"--poll-batch"}, "<0|1>",
  949. "use polling to wait for work (default: same as --poll)",
  950. [](common_params & params, int value) {
  951. params.cpuparams_batch.poll = value;
  952. }
  953. ));
  954. add_opt(common_arg(
  955. {"-lcs", "--lookup-cache-static"}, "FNAME",
  956. "path to static lookup cache to use for lookup decoding (not updated by generation)",
  957. [](common_params & params, const std::string & value) {
  958. params.lookup_cache_static = value;
  959. }
  960. ).set_examples({LLAMA_EXAMPLE_LOOKUP}));
  961. add_opt(common_arg(
  962. {"-lcd", "--lookup-cache-dynamic"}, "FNAME",
  963. "path to dynamic lookup cache to use for lookup decoding (updated by generation)",
  964. [](common_params & params, const std::string & value) {
  965. params.lookup_cache_dynamic = value;
  966. }
  967. ).set_examples({LLAMA_EXAMPLE_LOOKUP}));
  968. add_opt(common_arg(
  969. {"-c", "--ctx-size"}, "N",
  970. string_format("size of the prompt context (default: %d, 0 = loaded from model)", params.n_ctx),
  971. [](common_params & params, int value) {
  972. params.n_ctx = value;
  973. }
  974. ).set_env("LLAMA_ARG_CTX_SIZE"));
  975. add_opt(common_arg(
  976. {"-n", "--predict", "--n-predict"}, "N",
  977. string_format(
  978. ex == LLAMA_EXAMPLE_COMPLETION
  979. ? "number of tokens to predict (default: %d, -1 = infinity, -2 = until context filled)"
  980. : "number of tokens to predict (default: %d, -1 = infinity)",
  981. params.n_predict),
  982. [](common_params & params, int value) {
  983. params.n_predict = value;
  984. }
  985. ).set_env("LLAMA_ARG_N_PREDICT"));
  986. add_opt(common_arg(
  987. {"-b", "--batch-size"}, "N",
  988. string_format("logical maximum batch size (default: %d)", params.n_batch),
  989. [](common_params & params, int value) {
  990. params.n_batch = value;
  991. }
  992. ).set_env("LLAMA_ARG_BATCH"));
  993. add_opt(common_arg(
  994. {"-ub", "--ubatch-size"}, "N",
  995. string_format("physical maximum batch size (default: %d)", params.n_ubatch),
  996. [](common_params & params, int value) {
  997. params.n_ubatch = value;
  998. }
  999. ).set_env("LLAMA_ARG_UBATCH"));
  1000. add_opt(common_arg(
  1001. {"--keep"}, "N",
  1002. string_format("number of tokens to keep from the initial prompt (default: %d, -1 = all)", params.n_keep),
  1003. [](common_params & params, int value) {
  1004. params.n_keep = value;
  1005. }
  1006. ));
  1007. add_opt(common_arg(
  1008. {"--swa-full"},
  1009. string_format("use full-size SWA cache (default: %s)\n"
  1010. "[(more info)](https://github.com/ggml-org/llama.cpp/pull/13194#issuecomment-2868343055)", params.swa_full ? "true" : "false"),
  1011. [](common_params & params) {
  1012. params.swa_full = true;
  1013. }
  1014. ).set_env("LLAMA_ARG_SWA_FULL"));
  1015. add_opt(common_arg(
  1016. {"--ctx-checkpoints", "--swa-checkpoints"}, "N",
  1017. string_format("max number of context checkpoints to create per slot (default: %d)\n"
  1018. "[(more info)](https://github.com/ggml-org/llama.cpp/pull/15293)", params.n_ctx_checkpoints),
  1019. [](common_params & params, int value) {
  1020. params.n_ctx_checkpoints = value;
  1021. }
  1022. ).set_env("LLAMA_ARG_CTX_CHECKPOINTS").set_examples({LLAMA_EXAMPLE_SERVER, LLAMA_EXAMPLE_CLI}));
  1023. add_opt(common_arg(
  1024. {"--cache-ram", "-cram"}, "N",
  1025. string_format("set the maximum cache size in MiB (default: %d, -1 - no limit, 0 - disable)\n"
  1026. "[(more info)](https://github.com/ggml-org/llama.cpp/pull/16391)", params.cache_ram_mib),
  1027. [](common_params & params, int value) {
  1028. params.cache_ram_mib = value;
  1029. }
  1030. ).set_env("LLAMA_ARG_CACHE_RAM").set_examples({LLAMA_EXAMPLE_SERVER, LLAMA_EXAMPLE_CLI}));
  1031. add_opt(common_arg(
  1032. {"--kv-unified", "-kvu"},
  1033. string_format("use single unified KV buffer for the KV cache of all sequences (default: %s)\n"
  1034. "[(more info)](https://github.com/ggml-org/llama.cpp/pull/14363)", params.kv_unified ? "true" : "false"),
  1035. [](common_params & params) {
  1036. params.kv_unified = true;
  1037. }
  1038. ).set_env("LLAMA_ARG_KV_UNIFIED"));
  1039. add_opt(common_arg(
  1040. {"--context-shift"},
  1041. {"--no-context-shift"},
  1042. string_format("whether to use context shift on infinite text generation (default: %s)", params.ctx_shift ? "enabled" : "disabled"),
  1043. [](common_params & params, bool value) {
  1044. params.ctx_shift = value;
  1045. }
  1046. ).set_examples({LLAMA_EXAMPLE_COMPLETION, LLAMA_EXAMPLE_CLI, LLAMA_EXAMPLE_SERVER, LLAMA_EXAMPLE_IMATRIX, LLAMA_EXAMPLE_PERPLEXITY}).set_env("LLAMA_ARG_CONTEXT_SHIFT"));
  1047. add_opt(common_arg(
  1048. {"--chunks"}, "N",
  1049. string_format("max number of chunks to process (default: %d, -1 = all)", params.n_chunks),
  1050. [](common_params & params, int value) {
  1051. params.n_chunks = value;
  1052. }
  1053. ).set_examples({LLAMA_EXAMPLE_IMATRIX, LLAMA_EXAMPLE_PERPLEXITY, LLAMA_EXAMPLE_RETRIEVAL}));
  1054. add_opt(common_arg({ "-fa", "--flash-attn" }, "[on|off|auto]",
  1055. string_format("set Flash Attention use ('on', 'off', or 'auto', default: '%s')",
  1056. llama_flash_attn_type_name(params.flash_attn_type)),
  1057. [](common_params & params, const std::string & value) {
  1058. if (is_truthy(value)) {
  1059. params.flash_attn_type = LLAMA_FLASH_ATTN_TYPE_ENABLED;
  1060. } else if (is_falsey(value)) {
  1061. params.flash_attn_type = LLAMA_FLASH_ATTN_TYPE_DISABLED;
  1062. } else if (is_autoy(value)) {
  1063. params.flash_attn_type = LLAMA_FLASH_ATTN_TYPE_AUTO;
  1064. } else {
  1065. throw std::runtime_error(
  1066. string_format("error: unknown value for --flash-attn: '%s'\n", value.c_str()));
  1067. }
  1068. }).set_env("LLAMA_ARG_FLASH_ATTN"));
  1069. add_opt(common_arg(
  1070. {"-p", "--prompt"}, "PROMPT",
  1071. "prompt to start generation with; for system message, use -sys",
  1072. [](common_params & params, const std::string & value) {
  1073. params.prompt = value;
  1074. }
  1075. ).set_excludes({LLAMA_EXAMPLE_SERVER}));
  1076. add_opt(common_arg(
  1077. {"-sys", "--system-prompt"}, "PROMPT",
  1078. "system prompt to use with model (if applicable, depending on chat template)",
  1079. [](common_params & params, const std::string & value) {
  1080. params.system_prompt = value;
  1081. }
  1082. ).set_examples({LLAMA_EXAMPLE_COMPLETION, LLAMA_EXAMPLE_CLI, LLAMA_EXAMPLE_DIFFUSION}));
  1083. add_opt(common_arg(
  1084. {"--perf"},
  1085. {"--no-perf"},
  1086. string_format("whether to enable internal libllama performance timings (default: %s)", params.no_perf ? "true" : "false"),
  1087. [](common_params & params, bool value) {
  1088. params.no_perf = !value;
  1089. params.sampling.no_perf = !value;
  1090. }
  1091. ).set_env("LLAMA_ARG_PERF"));
  1092. add_opt(common_arg(
  1093. {"--show-timings"},
  1094. {"--no-show-timings"},
  1095. string_format("whether to show timing information after each response (default: %s)", params.show_timings ? "true" : "false"),
  1096. [](common_params & params, bool value) {
  1097. params.show_timings = value;
  1098. }
  1099. ).set_examples({LLAMA_EXAMPLE_CLI}).set_env("LLAMA_ARG_SHOW_TIMINGS"));
  1100. add_opt(common_arg(
  1101. {"-f", "--file"}, "FNAME",
  1102. "a file containing the prompt (default: none)",
  1103. [](common_params & params, const std::string & value) {
  1104. params.prompt = read_file(value);
  1105. // store the external file name in params
  1106. params.prompt_file = value;
  1107. if (!params.prompt.empty() && params.prompt.back() == '\n') {
  1108. params.prompt.pop_back();
  1109. }
  1110. }
  1111. ).set_excludes({LLAMA_EXAMPLE_SERVER}));
  1112. add_opt(common_arg(
  1113. {"-sysf", "--system-prompt-file"}, "FNAME",
  1114. "a file containing the system prompt (default: none)",
  1115. [](common_params & params, const std::string & value) {
  1116. params.system_prompt = read_file(value);
  1117. if (!params.system_prompt.empty() && params.system_prompt.back() == '\n') {
  1118. params.system_prompt.pop_back();
  1119. }
  1120. }
  1121. ).set_examples({LLAMA_EXAMPLE_COMPLETION, LLAMA_EXAMPLE_CLI, LLAMA_EXAMPLE_DIFFUSION}));
  1122. add_opt(common_arg(
  1123. {"--in-file"}, "FNAME",
  1124. "an input file (repeat to specify multiple files)",
  1125. [](common_params & params, const std::string & value) {
  1126. std::ifstream file(value);
  1127. if (!file) {
  1128. throw std::runtime_error(string_format("error: failed to open file '%s'\n", value.c_str()));
  1129. }
  1130. params.in_files.push_back(value);
  1131. }
  1132. ).set_examples({LLAMA_EXAMPLE_IMATRIX}));
  1133. add_opt(common_arg(
  1134. {"-bf", "--binary-file"}, "FNAME",
  1135. "binary file containing the prompt (default: none)",
  1136. [](common_params & params, const std::string & value) {
  1137. std::ifstream file(value, std::ios::binary);
  1138. if (!file) {
  1139. throw std::runtime_error(string_format("error: failed to open file '%s'\n", value.c_str()));
  1140. }
  1141. // store the external file name in params
  1142. params.prompt_file = value;
  1143. std::ostringstream ss;
  1144. ss << file.rdbuf();
  1145. params.prompt = ss.str();
  1146. fprintf(stderr, "Read %zu bytes from binary file %s\n", params.prompt.size(), value.c_str());
  1147. }
  1148. ).set_excludes({LLAMA_EXAMPLE_SERVER}));
  1149. add_opt(common_arg(
  1150. {"-e", "--escape"},
  1151. {"--no-escape"},
  1152. string_format("whether to process escapes sequences (\\n, \\r, \\t, \\', \\\", \\\\) (default: %s)", params.escape ? "true" : "false"),
  1153. [](common_params & params, bool value) {
  1154. params.escape = value;
  1155. }
  1156. ));
  1157. add_opt(common_arg(
  1158. {"-ptc", "--print-token-count"}, "N",
  1159. string_format("print token count every N tokens (default: %d)", params.n_print),
  1160. [](common_params & params, int value) {
  1161. params.n_print = value;
  1162. }
  1163. ).set_examples({LLAMA_EXAMPLE_COMPLETION}));
  1164. add_opt(common_arg(
  1165. {"--prompt-cache"}, "FNAME",
  1166. "file to cache prompt state for faster startup (default: none)",
  1167. [](common_params & params, const std::string & value) {
  1168. params.path_prompt_cache = value;
  1169. }
  1170. ).set_examples({LLAMA_EXAMPLE_COMPLETION}));
  1171. add_opt(common_arg(
  1172. {"--prompt-cache-all"},
  1173. "if specified, saves user input and generations to cache as well\n",
  1174. [](common_params & params) {
  1175. params.prompt_cache_all = true;
  1176. }
  1177. ).set_examples({LLAMA_EXAMPLE_COMPLETION}));
  1178. add_opt(common_arg(
  1179. {"--prompt-cache-ro"},
  1180. "if specified, uses the prompt cache but does not update it",
  1181. [](common_params & params) {
  1182. params.prompt_cache_ro = true;
  1183. }
  1184. ).set_examples({LLAMA_EXAMPLE_COMPLETION}));
  1185. add_opt(common_arg(
  1186. {"-r", "--reverse-prompt"}, "PROMPT",
  1187. "halt generation at PROMPT, return control in interactive mode\n",
  1188. [](common_params & params, const std::string & value) {
  1189. params.antiprompt.emplace_back(value);
  1190. }
  1191. ).set_examples({LLAMA_EXAMPLE_COMPLETION, LLAMA_EXAMPLE_CLI, LLAMA_EXAMPLE_SERVER}));
  1192. add_opt(common_arg(
  1193. {"-sp", "--special"},
  1194. string_format("special tokens output enabled (default: %s)", params.special ? "true" : "false"),
  1195. [](common_params & params) {
  1196. params.special = true;
  1197. }
  1198. ).set_examples({LLAMA_EXAMPLE_COMPLETION, LLAMA_EXAMPLE_CLI, LLAMA_EXAMPLE_SERVER}));
  1199. add_opt(common_arg(
  1200. {"-cnv", "--conversation"},
  1201. {"-no-cnv", "--no-conversation"},
  1202. "whether to run in conversation mode:\n"
  1203. "- does not print special tokens and suffix/prefix\n"
  1204. "- interactive mode is also enabled\n"
  1205. "(default: auto enabled if chat template is available)",
  1206. [](common_params & params, bool value) {
  1207. params.conversation_mode = value ? COMMON_CONVERSATION_MODE_ENABLED : COMMON_CONVERSATION_MODE_DISABLED;
  1208. }
  1209. ).set_examples({LLAMA_EXAMPLE_COMPLETION, LLAMA_EXAMPLE_CLI}));
  1210. add_opt(common_arg(
  1211. {"-st", "--single-turn"},
  1212. "run conversation for a single turn only, then exit when done\n"
  1213. "will not be interactive if first turn is predefined with --prompt\n"
  1214. "(default: false)",
  1215. [](common_params & params) {
  1216. params.single_turn = true;
  1217. }
  1218. ).set_examples({LLAMA_EXAMPLE_COMPLETION, LLAMA_EXAMPLE_CLI}));
  1219. add_opt(common_arg(
  1220. {"-i", "--interactive"},
  1221. string_format("run in interactive mode (default: %s)", params.interactive ? "true" : "false"),
  1222. [](common_params & params) {
  1223. params.interactive = true;
  1224. }
  1225. ).set_examples({LLAMA_EXAMPLE_COMPLETION}));
  1226. add_opt(common_arg(
  1227. {"-if", "--interactive-first"},
  1228. string_format("run in interactive mode and wait for input right away (default: %s)", params.interactive_first ? "true" : "false"),
  1229. [](common_params & params) {
  1230. params.interactive_first = true;
  1231. }
  1232. ).set_examples({LLAMA_EXAMPLE_COMPLETION}));
  1233. add_opt(common_arg(
  1234. {"-mli", "--multiline-input"},
  1235. "allows you to write or paste multiple lines without ending each in '\\'",
  1236. [](common_params & params) {
  1237. params.multiline_input = true;
  1238. }
  1239. ).set_examples({LLAMA_EXAMPLE_COMPLETION, LLAMA_EXAMPLE_CLI}));
  1240. add_opt(common_arg(
  1241. {"--in-prefix-bos"},
  1242. "prefix BOS to user inputs, preceding the `--in-prefix` string",
  1243. [](common_params & params) {
  1244. params.input_prefix_bos = true;
  1245. params.enable_chat_template = false;
  1246. }
  1247. ).set_examples({LLAMA_EXAMPLE_COMPLETION}));
  1248. add_opt(common_arg(
  1249. {"--in-prefix"}, "STRING",
  1250. "string to prefix user inputs with (default: empty)",
  1251. [](common_params & params, const std::string & value) {
  1252. params.input_prefix = value;
  1253. params.enable_chat_template = false;
  1254. }
  1255. ).set_examples({LLAMA_EXAMPLE_COMPLETION}));
  1256. add_opt(common_arg(
  1257. {"--in-suffix"}, "STRING",
  1258. "string to suffix after user inputs with (default: empty)",
  1259. [](common_params & params, const std::string & value) {
  1260. params.input_suffix = value;
  1261. params.enable_chat_template = false;
  1262. }
  1263. ).set_examples({LLAMA_EXAMPLE_COMPLETION}));
  1264. add_opt(common_arg(
  1265. {"--warmup"},
  1266. {"--no-warmup"},
  1267. string_format("whether to perform warmup with an empty run (default: %s)", params.warmup ? "enabled" : "disabled"),
  1268. [](common_params & params, bool value) {
  1269. params.warmup = value;
  1270. }
  1271. ).set_examples({LLAMA_EXAMPLE_COMPLETION, LLAMA_EXAMPLE_CLI, LLAMA_EXAMPLE_SERVER, LLAMA_EXAMPLE_MTMD, LLAMA_EXAMPLE_EMBEDDING, LLAMA_EXAMPLE_RETRIEVAL, LLAMA_EXAMPLE_PERPLEXITY}));
  1272. add_opt(common_arg(
  1273. {"--spm-infill"},
  1274. string_format(
  1275. "use Suffix/Prefix/Middle pattern for infill (instead of Prefix/Suffix/Middle) as some models prefer this. (default: %s)",
  1276. params.spm_infill ? "enabled" : "disabled"
  1277. ),
  1278. [](common_params & params) {
  1279. params.spm_infill = true;
  1280. }
  1281. ).set_examples({LLAMA_EXAMPLE_SERVER}));
  1282. add_opt(common_arg(
  1283. {"--samplers"}, "SAMPLERS",
  1284. string_format("samplers that will be used for generation in the order, separated by \';\'\n(default: %s)", sampler_type_names.c_str()),
  1285. [](common_params & params, const std::string & value) {
  1286. const auto sampler_names = string_split<std::string>(value, ';');
  1287. params.sampling.samplers = common_sampler_types_from_names(sampler_names, true);
  1288. params.sampling.user_sampling_config |= common_params_sampling_config::COMMON_PARAMS_SAMPLING_CONFIG_SAMPLERS;
  1289. }
  1290. ).set_sparam());
  1291. add_opt(common_arg(
  1292. {"-s", "--seed"}, "SEED",
  1293. string_format("RNG seed (default: %d, use random seed for %d)", params.sampling.seed, LLAMA_DEFAULT_SEED),
  1294. [](common_params & params, const std::string & value) {
  1295. params.sampling.seed = std::stoul(value);
  1296. }
  1297. ).set_sparam());
  1298. add_opt(common_arg(
  1299. {"--sampling-seq", "--sampler-seq"}, "SEQUENCE",
  1300. string_format("simplified sequence for samplers that will be used (default: %s)", sampler_type_chars.c_str()),
  1301. [](common_params & params, const std::string & value) {
  1302. params.sampling.samplers = common_sampler_types_from_chars(value);
  1303. }
  1304. ).set_sparam());
  1305. add_opt(common_arg(
  1306. {"--ignore-eos"},
  1307. "ignore end of stream token and continue generating (implies --logit-bias EOS-inf)",
  1308. [](common_params & params) {
  1309. params.sampling.ignore_eos = true;
  1310. }
  1311. ).set_sparam());
  1312. add_opt(common_arg(
  1313. {"--temp"}, "N",
  1314. string_format("temperature (default: %.1f)", (double)params.sampling.temp),
  1315. [](common_params & params, const std::string & value) {
  1316. params.sampling.temp = std::stof(value);
  1317. params.sampling.temp = std::max(params.sampling.temp, 0.0f);
  1318. params.sampling.user_sampling_config |= common_params_sampling_config::COMMON_PARAMS_SAMPLING_CONFIG_TEMP;
  1319. }
  1320. ).set_sparam());
  1321. add_opt(common_arg(
  1322. {"--top-k"}, "N",
  1323. string_format("top-k sampling (default: %d, 0 = disabled)", params.sampling.top_k),
  1324. [](common_params & params, int value) {
  1325. params.sampling.top_k = value;
  1326. params.sampling.user_sampling_config |= common_params_sampling_config::COMMON_PARAMS_SAMPLING_CONFIG_TOP_K;
  1327. }
  1328. ).set_sparam().set_env("LLAMA_ARG_TOP_K"));
  1329. add_opt(common_arg(
  1330. {"--top-p"}, "N",
  1331. string_format("top-p sampling (default: %.1f, 1.0 = disabled)", (double)params.sampling.top_p),
  1332. [](common_params & params, const std::string & value) {
  1333. params.sampling.top_p = std::stof(value);
  1334. params.sampling.user_sampling_config |= common_params_sampling_config::COMMON_PARAMS_SAMPLING_CONFIG_TOP_P;
  1335. }
  1336. ).set_sparam());
  1337. add_opt(common_arg(
  1338. {"--min-p"}, "N",
  1339. string_format("min-p sampling (default: %.1f, 0.0 = disabled)", (double)params.sampling.min_p),
  1340. [](common_params & params, const std::string & value) {
  1341. params.sampling.min_p = std::stof(value);
  1342. params.sampling.user_sampling_config |= common_params_sampling_config::COMMON_PARAMS_SAMPLING_CONFIG_MIN_P;
  1343. }
  1344. ).set_sparam());
  1345. add_opt(common_arg(
  1346. {"--top-nsigma"}, "N",
  1347. string_format("top-n-sigma sampling (default: %.1f, -1.0 = disabled)", params.sampling.top_n_sigma),
  1348. [](common_params & params, const std::string & value) {
  1349. params.sampling.top_n_sigma = std::stof(value);
  1350. }
  1351. ).set_sparam());
  1352. add_opt(common_arg(
  1353. {"--xtc-probability"}, "N",
  1354. string_format("xtc probability (default: %.1f, 0.0 = disabled)", (double)params.sampling.xtc_probability),
  1355. [](common_params & params, const std::string & value) {
  1356. params.sampling.xtc_probability = std::stof(value);
  1357. params.sampling.user_sampling_config |= common_params_sampling_config::COMMON_PARAMS_SAMPLING_CONFIG_XTC_PROBABILITY;
  1358. }
  1359. ).set_sparam());
  1360. add_opt(common_arg(
  1361. {"--xtc-threshold"}, "N",
  1362. string_format("xtc threshold (default: %.1f, 1.0 = disabled)", (double)params.sampling.xtc_threshold),
  1363. [](common_params & params, const std::string & value) {
  1364. params.sampling.xtc_threshold = std::stof(value);
  1365. params.sampling.user_sampling_config |= common_params_sampling_config::COMMON_PARAMS_SAMPLING_CONFIG_XTC_THRESHOLD;
  1366. }
  1367. ).set_sparam());
  1368. add_opt(common_arg(
  1369. {"--typical"}, "N",
  1370. string_format("locally typical sampling, parameter p (default: %.1f, 1.0 = disabled)", (double)params.sampling.typ_p),
  1371. [](common_params & params, const std::string & value) {
  1372. params.sampling.typ_p = std::stof(value);
  1373. }
  1374. ).set_sparam());
  1375. add_opt(common_arg(
  1376. {"--repeat-last-n"}, "N",
  1377. string_format("last n tokens to consider for penalize (default: %d, 0 = disabled, -1 = ctx_size)", params.sampling.penalty_last_n),
  1378. [](common_params & params, int value) {
  1379. if (value < -1) {
  1380. throw std::runtime_error(string_format("error: invalid repeat-last-n = %d\n", value));
  1381. }
  1382. params.sampling.penalty_last_n = value;
  1383. params.sampling.n_prev = std::max(params.sampling.n_prev, params.sampling.penalty_last_n);
  1384. params.sampling.user_sampling_config |= common_params_sampling_config::COMMON_PARAMS_SAMPLING_CONFIG_PENALTY_LAST_N;
  1385. }
  1386. ).set_sparam());
  1387. add_opt(common_arg(
  1388. {"--repeat-penalty"}, "N",
  1389. string_format("penalize repeat sequence of tokens (default: %.1f, 1.0 = disabled)", (double)params.sampling.penalty_repeat),
  1390. [](common_params & params, const std::string & value) {
  1391. params.sampling.penalty_repeat = std::stof(value);
  1392. params.sampling.user_sampling_config |= common_params_sampling_config::COMMON_PARAMS_SAMPLING_CONFIG_PENALTY_REPEAT;
  1393. }
  1394. ).set_sparam());
  1395. add_opt(common_arg(
  1396. {"--presence-penalty"}, "N",
  1397. string_format("repeat alpha presence penalty (default: %.1f, 0.0 = disabled)", (double)params.sampling.penalty_present),
  1398. [](common_params & params, const std::string & value) {
  1399. params.sampling.penalty_present = std::stof(value);
  1400. }
  1401. ).set_sparam());
  1402. add_opt(common_arg(
  1403. {"--frequency-penalty"}, "N",
  1404. string_format("repeat alpha frequency penalty (default: %.1f, 0.0 = disabled)", (double)params.sampling.penalty_freq),
  1405. [](common_params & params, const std::string & value) {
  1406. params.sampling.penalty_freq = std::stof(value);
  1407. }
  1408. ).set_sparam());
  1409. add_opt(common_arg(
  1410. {"--dry-multiplier"}, "N",
  1411. string_format("set DRY sampling multiplier (default: %.1f, 0.0 = disabled)", (double)params.sampling.dry_multiplier),
  1412. [](common_params & params, const std::string & value) {
  1413. params.sampling.dry_multiplier = std::stof(value);
  1414. }
  1415. ).set_sparam());
  1416. add_opt(common_arg(
  1417. {"--dry-base"}, "N",
  1418. string_format("set DRY sampling base value (default: %.2f)", (double)params.sampling.dry_base),
  1419. [](common_params & params, const std::string & value) {
  1420. float potential_base = std::stof(value);
  1421. if (potential_base >= 1.0f)
  1422. {
  1423. params.sampling.dry_base = potential_base;
  1424. }
  1425. }
  1426. ).set_sparam());
  1427. add_opt(common_arg(
  1428. {"--dry-allowed-length"}, "N",
  1429. string_format("set allowed length for DRY sampling (default: %d)", params.sampling.dry_allowed_length),
  1430. [](common_params & params, int value) {
  1431. params.sampling.dry_allowed_length = value;
  1432. }
  1433. ).set_sparam());
  1434. add_opt(common_arg(
  1435. {"--dry-penalty-last-n"}, "N",
  1436. string_format("set DRY penalty for the last n tokens (default: %d, 0 = disable, -1 = context size)", params.sampling.dry_penalty_last_n),
  1437. [](common_params & params, int value) {
  1438. if (value < -1) {
  1439. throw std::runtime_error(string_format("error: invalid dry-penalty-last-n = %d\n", value));
  1440. }
  1441. params.sampling.dry_penalty_last_n = value;
  1442. }
  1443. ).set_sparam());
  1444. add_opt(common_arg(
  1445. {"--dry-sequence-breaker"}, "STRING",
  1446. string_format("add sequence breaker for DRY sampling, clearing out default breakers (%s) in the process; use \"none\" to not use any sequence breakers\n",
  1447. params.sampling.dry_sequence_breakers.empty() ? "none" :
  1448. std::accumulate(std::next(params.sampling.dry_sequence_breakers.begin()),
  1449. params.sampling.dry_sequence_breakers.end(),
  1450. std::string("'") + (params.sampling.dry_sequence_breakers[0] == "\n" ? "\\n" : params.sampling.dry_sequence_breakers[0]) + "'",
  1451. [](const std::string& a, const std::string& b) {
  1452. std::string formatted_b = (b == "\n") ? "\\n" : b;
  1453. return a + ", '" + formatted_b + "'";
  1454. }).c_str()),
  1455. [](common_params & params, const std::string & value) {
  1456. static bool defaults_cleared = false;
  1457. if (!defaults_cleared) {
  1458. params.sampling.dry_sequence_breakers.clear();
  1459. defaults_cleared = true;
  1460. }
  1461. if (value == "none") {
  1462. params.sampling.dry_sequence_breakers.clear();
  1463. } else {
  1464. params.sampling.dry_sequence_breakers.emplace_back(value);
  1465. }
  1466. }
  1467. ).set_sparam());
  1468. add_opt(common_arg(
  1469. {"--dynatemp-range"}, "N",
  1470. string_format("dynamic temperature range (default: %.1f, 0.0 = disabled)", (double)params.sampling.dynatemp_range),
  1471. [](common_params & params, const std::string & value) {
  1472. params.sampling.dynatemp_range = std::stof(value);
  1473. }
  1474. ).set_sparam());
  1475. add_opt(common_arg(
  1476. {"--dynatemp-exp"}, "N",
  1477. string_format("dynamic temperature exponent (default: %.1f)", (double)params.sampling.dynatemp_exponent),
  1478. [](common_params & params, const std::string & value) {
  1479. params.sampling.dynatemp_exponent = std::stof(value);
  1480. }
  1481. ).set_sparam());
  1482. add_opt(common_arg(
  1483. {"--mirostat"}, "N",
  1484. string_format("use Mirostat sampling.\nTop K, Nucleus and Locally Typical samplers are ignored if used.\n"
  1485. "(default: %d, 0 = disabled, 1 = Mirostat, 2 = Mirostat 2.0)", params.sampling.mirostat),
  1486. [](common_params & params, int value) {
  1487. params.sampling.mirostat = value;
  1488. params.sampling.user_sampling_config |= common_params_sampling_config::COMMON_PARAMS_SAMPLING_CONFIG_MIROSTAT;
  1489. }
  1490. ).set_sparam());
  1491. add_opt(common_arg(
  1492. {"--mirostat-lr"}, "N",
  1493. string_format("Mirostat learning rate, parameter eta (default: %.1f)", (double)params.sampling.mirostat_eta),
  1494. [](common_params & params, const std::string & value) {
  1495. params.sampling.mirostat_eta = std::stof(value);
  1496. params.sampling.user_sampling_config |= common_params_sampling_config::COMMON_PARAMS_SAMPLING_CONFIG_MIROSTAT_ETA;
  1497. }
  1498. ).set_sparam());
  1499. add_opt(common_arg(
  1500. {"--mirostat-ent"}, "N",
  1501. string_format("Mirostat target entropy, parameter tau (default: %.1f)", (double)params.sampling.mirostat_tau),
  1502. [](common_params & params, const std::string & value) {
  1503. params.sampling.mirostat_tau = std::stof(value);
  1504. params.sampling.user_sampling_config |= common_params_sampling_config::COMMON_PARAMS_SAMPLING_CONFIG_MIROSTAT_TAU;
  1505. }
  1506. ).set_sparam());
  1507. add_opt(common_arg(
  1508. {"-l", "--logit-bias"}, "TOKEN_ID(+/-)BIAS",
  1509. "modifies the likelihood of token appearing in the completion,\n"
  1510. "i.e. `--logit-bias 15043+1` to increase likelihood of token ' Hello',\n"
  1511. "or `--logit-bias 15043-1` to decrease likelihood of token ' Hello'",
  1512. [](common_params & params, const std::string & value) {
  1513. std::stringstream ss(value);
  1514. llama_token key;
  1515. char sign;
  1516. std::string value_str;
  1517. try {
  1518. if (ss >> key && ss >> sign && std::getline(ss, value_str) && (sign == '+' || sign == '-')) {
  1519. const float bias = std::stof(value_str) * ((sign == '-') ? -1.0f : 1.0f);
  1520. params.sampling.logit_bias.push_back({key, bias});
  1521. } else {
  1522. throw std::invalid_argument("invalid input format");
  1523. }
  1524. } catch (const std::exception&) {
  1525. throw std::invalid_argument("invalid input format");
  1526. }
  1527. }
  1528. ).set_sparam());
  1529. add_opt(common_arg(
  1530. {"--grammar"}, "GRAMMAR",
  1531. string_format("BNF-like grammar to constrain generations (see samples in grammars/ dir) (default: '%s')", params.sampling.grammar.c_str()),
  1532. [](common_params & params, const std::string & value) {
  1533. params.sampling.grammar = value;
  1534. }
  1535. ).set_sparam());
  1536. add_opt(common_arg(
  1537. {"--grammar-file"}, "FNAME",
  1538. "file to read grammar from",
  1539. [](common_params & params, const std::string & value) {
  1540. params.sampling.grammar = read_file(value);
  1541. }
  1542. ).set_sparam());
  1543. add_opt(common_arg(
  1544. {"-j", "--json-schema"}, "SCHEMA",
  1545. "JSON schema to constrain generations (https://json-schema.org/), e.g. `{}` for any JSON object\nFor schemas w/ external $refs, use --grammar + example/json_schema_to_grammar.py instead",
  1546. [](common_params & params, const std::string & value) {
  1547. params.sampling.grammar = json_schema_to_grammar(json::parse(value));
  1548. }
  1549. ).set_sparam());
  1550. add_opt(common_arg(
  1551. {"-jf", "--json-schema-file"}, "FILE",
  1552. "File containing a JSON schema to constrain generations (https://json-schema.org/), e.g. `{}` for any JSON object\nFor schemas w/ external $refs, use --grammar + example/json_schema_to_grammar.py instead",
  1553. [](common_params & params, const std::string & value) {
  1554. std::ifstream file(value);
  1555. if (!file) {
  1556. throw std::runtime_error(string_format("error: failed to open file '%s'\n", value.c_str()));
  1557. }
  1558. std::string schema;
  1559. std::copy(
  1560. std::istreambuf_iterator<char>(file),
  1561. std::istreambuf_iterator<char>(),
  1562. std::back_inserter(schema)
  1563. );
  1564. params.sampling.grammar = json_schema_to_grammar(json::parse(schema));
  1565. }
  1566. ).set_sparam());
  1567. add_opt(common_arg(
  1568. {"--pooling"}, "{none,mean,cls,last,rank}",
  1569. "pooling type for embeddings, use model default if unspecified",
  1570. [](common_params & params, const std::string & value) {
  1571. /**/ if (value == "none") { params.pooling_type = LLAMA_POOLING_TYPE_NONE; }
  1572. else if (value == "mean") { params.pooling_type = LLAMA_POOLING_TYPE_MEAN; }
  1573. else if (value == "cls") { params.pooling_type = LLAMA_POOLING_TYPE_CLS; }
  1574. else if (value == "last") { params.pooling_type = LLAMA_POOLING_TYPE_LAST; }
  1575. else if (value == "rank") { params.pooling_type = LLAMA_POOLING_TYPE_RANK; }
  1576. else { throw std::invalid_argument("invalid value"); }
  1577. }
  1578. ).set_examples({LLAMA_EXAMPLE_EMBEDDING, LLAMA_EXAMPLE_RETRIEVAL, LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_POOLING"));
  1579. add_opt(common_arg(
  1580. {"--attention"}, "{causal,non-causal}",
  1581. "attention type for embeddings, use model default if unspecified",
  1582. [](common_params & params, const std::string & value) {
  1583. /**/ if (value == "causal") { params.attention_type = LLAMA_ATTENTION_TYPE_CAUSAL; }
  1584. else if (value == "non-causal") { params.attention_type = LLAMA_ATTENTION_TYPE_NON_CAUSAL; }
  1585. else { throw std::invalid_argument("invalid value"); }
  1586. }
  1587. ).set_examples({LLAMA_EXAMPLE_EMBEDDING}));
  1588. add_opt(common_arg(
  1589. {"--rope-scaling"}, "{none,linear,yarn}",
  1590. "RoPE frequency scaling method, defaults to linear unless specified by the model",
  1591. [](common_params & params, const std::string & value) {
  1592. /**/ if (value == "none") { params.rope_scaling_type = LLAMA_ROPE_SCALING_TYPE_NONE; }
  1593. else if (value == "linear") { params.rope_scaling_type = LLAMA_ROPE_SCALING_TYPE_LINEAR; }
  1594. else if (value == "yarn") { params.rope_scaling_type = LLAMA_ROPE_SCALING_TYPE_YARN; }
  1595. else { throw std::invalid_argument("invalid value"); }
  1596. }
  1597. ).set_env("LLAMA_ARG_ROPE_SCALING_TYPE"));
  1598. add_opt(common_arg(
  1599. {"--rope-scale"}, "N",
  1600. "RoPE context scaling factor, expands context by a factor of N",
  1601. [](common_params & params, const std::string & value) {
  1602. params.rope_freq_scale = 1.0f / std::stof(value);
  1603. }
  1604. ).set_env("LLAMA_ARG_ROPE_SCALE"));
  1605. add_opt(common_arg(
  1606. {"--rope-freq-base"}, "N",
  1607. "RoPE base frequency, used by NTK-aware scaling (default: loaded from model)",
  1608. [](common_params & params, const std::string & value) {
  1609. params.rope_freq_base = std::stof(value);
  1610. }
  1611. ).set_env("LLAMA_ARG_ROPE_FREQ_BASE"));
  1612. add_opt(common_arg(
  1613. {"--rope-freq-scale"}, "N",
  1614. "RoPE frequency scaling factor, expands context by a factor of 1/N",
  1615. [](common_params & params, const std::string & value) {
  1616. params.rope_freq_scale = std::stof(value);
  1617. }
  1618. ).set_env("LLAMA_ARG_ROPE_FREQ_SCALE"));
  1619. add_opt(common_arg(
  1620. {"--yarn-orig-ctx"}, "N",
  1621. string_format("YaRN: original context size of model (default: %d = model training context size)", params.yarn_orig_ctx),
  1622. [](common_params & params, int value) {
  1623. params.yarn_orig_ctx = value;
  1624. }
  1625. ).set_env("LLAMA_ARG_YARN_ORIG_CTX"));
  1626. add_opt(common_arg(
  1627. {"--yarn-ext-factor"}, "N",
  1628. string_format("YaRN: extrapolation mix factor (default: %.1f, 0.0 = full interpolation)", (double)params.yarn_ext_factor),
  1629. [](common_params & params, const std::string & value) {
  1630. params.yarn_ext_factor = std::stof(value);
  1631. }
  1632. ).set_env("LLAMA_ARG_YARN_EXT_FACTOR"));
  1633. add_opt(common_arg(
  1634. {"--yarn-attn-factor"}, "N",
  1635. string_format("YaRN: scale sqrt(t) or attention magnitude (default: %.1f)", (double)params.yarn_attn_factor),
  1636. [](common_params & params, const std::string & value) {
  1637. params.yarn_attn_factor = std::stof(value);
  1638. }
  1639. ).set_env("LLAMA_ARG_YARN_ATTN_FACTOR"));
  1640. add_opt(common_arg(
  1641. {"--yarn-beta-slow"}, "N",
  1642. string_format("YaRN: high correction dim or alpha (default: %.1f)", (double)params.yarn_beta_slow),
  1643. [](common_params & params, const std::string & value) {
  1644. params.yarn_beta_slow = std::stof(value);
  1645. }
  1646. ).set_env("LLAMA_ARG_YARN_BETA_SLOW"));
  1647. add_opt(common_arg(
  1648. {"--yarn-beta-fast"}, "N",
  1649. string_format("YaRN: low correction dim or beta (default: %.1f)", (double)params.yarn_beta_fast),
  1650. [](common_params & params, const std::string & value) {
  1651. params.yarn_beta_fast = std::stof(value);
  1652. }
  1653. ).set_env("LLAMA_ARG_YARN_BETA_FAST"));
  1654. add_opt(common_arg(
  1655. {"-gan", "--grp-attn-n"}, "N",
  1656. string_format("group-attention factor (default: %d)", params.grp_attn_n),
  1657. [](common_params & params, int value) {
  1658. params.grp_attn_n = value;
  1659. }
  1660. ).set_env("LLAMA_ARG_GRP_ATTN_N").set_examples({LLAMA_EXAMPLE_COMPLETION, LLAMA_EXAMPLE_PASSKEY}));
  1661. add_opt(common_arg(
  1662. {"-gaw", "--grp-attn-w"}, "N",
  1663. string_format("group-attention width (default: %d)", params.grp_attn_w),
  1664. [](common_params & params, int value) {
  1665. params.grp_attn_w = value;
  1666. }
  1667. ).set_env("LLAMA_ARG_GRP_ATTN_W").set_examples({LLAMA_EXAMPLE_COMPLETION}));
  1668. add_opt(common_arg(
  1669. {"-kvo", "--kv-offload"},
  1670. {"-nkvo", "--no-kv-offload"},
  1671. string_format("whether to enable KV cache offloading (default: %s)", params.no_kv_offload ? "disabled" : "enabled"),
  1672. [](common_params & params, bool value) {
  1673. params.no_kv_offload = !value;
  1674. }
  1675. ).set_env("LLAMA_ARG_KV_OFFLOAD"));
  1676. add_opt(common_arg(
  1677. {"--repack"},
  1678. {"-nr", "--no-repack"},
  1679. string_format("whether to enable weight repacking (default: %s)", params.no_extra_bufts ? "disabled" : "enabled"),
  1680. [](common_params & params, bool value) {
  1681. params.no_extra_bufts = !value;
  1682. }
  1683. ).set_env("LLAMA_ARG_REPACK"));
  1684. add_opt(common_arg(
  1685. {"--no-host"},
  1686. "bypass host buffer allowing extra buffers to be used",
  1687. [](common_params & params) {
  1688. params.no_host = true;
  1689. }
  1690. ).set_env("LLAMA_ARG_NO_HOST"));
  1691. add_opt(common_arg(
  1692. {"-ctk", "--cache-type-k"}, "TYPE",
  1693. string_format(
  1694. "KV cache data type for K\n"
  1695. "allowed values: %s\n"
  1696. "(default: %s)",
  1697. get_all_kv_cache_types().c_str(),
  1698. ggml_type_name(params.cache_type_k)
  1699. ),
  1700. [](common_params & params, const std::string & value) {
  1701. params.cache_type_k = kv_cache_type_from_str(value);
  1702. }
  1703. ).set_env("LLAMA_ARG_CACHE_TYPE_K"));
  1704. add_opt(common_arg(
  1705. {"-ctv", "--cache-type-v"}, "TYPE",
  1706. string_format(
  1707. "KV cache data type for V\n"
  1708. "allowed values: %s\n"
  1709. "(default: %s)",
  1710. get_all_kv_cache_types().c_str(),
  1711. ggml_type_name(params.cache_type_v)
  1712. ),
  1713. [](common_params & params, const std::string & value) {
  1714. params.cache_type_v = kv_cache_type_from_str(value);
  1715. }
  1716. ).set_env("LLAMA_ARG_CACHE_TYPE_V"));
  1717. add_opt(common_arg(
  1718. {"--hellaswag"},
  1719. "compute HellaSwag score over random tasks from datafile supplied with -f",
  1720. [](common_params & params) {
  1721. params.hellaswag = true;
  1722. }
  1723. ).set_examples({LLAMA_EXAMPLE_PERPLEXITY}));
  1724. add_opt(common_arg(
  1725. {"--hellaswag-tasks"}, "N",
  1726. string_format("number of tasks to use when computing the HellaSwag score (default: %zu)", params.hellaswag_tasks),
  1727. [](common_params & params, int value) {
  1728. params.hellaswag_tasks = value;
  1729. }
  1730. ).set_examples({LLAMA_EXAMPLE_PERPLEXITY}));
  1731. add_opt(common_arg(
  1732. {"--winogrande"},
  1733. "compute Winogrande score over random tasks from datafile supplied with -f",
  1734. [](common_params & params) {
  1735. params.winogrande = true;
  1736. }
  1737. ).set_examples({LLAMA_EXAMPLE_PERPLEXITY}));
  1738. add_opt(common_arg(
  1739. {"--winogrande-tasks"}, "N",
  1740. string_format("number of tasks to use when computing the Winogrande score (default: %zu)", params.winogrande_tasks),
  1741. [](common_params & params, int value) {
  1742. params.winogrande_tasks = value;
  1743. }
  1744. ).set_examples({LLAMA_EXAMPLE_PERPLEXITY}));
  1745. add_opt(common_arg(
  1746. {"--multiple-choice"},
  1747. "compute multiple choice score over random tasks from datafile supplied with -f",
  1748. [](common_params & params) {
  1749. params.multiple_choice = true;
  1750. }
  1751. ).set_examples({LLAMA_EXAMPLE_PERPLEXITY}));
  1752. add_opt(common_arg(
  1753. {"--multiple-choice-tasks"}, "N",
  1754. string_format("number of tasks to use when computing the multiple choice score (default: %zu)", params.multiple_choice_tasks),
  1755. [](common_params & params, int value) {
  1756. params.multiple_choice_tasks = value;
  1757. }
  1758. ).set_examples({LLAMA_EXAMPLE_PERPLEXITY}));
  1759. add_opt(common_arg(
  1760. {"--kl-divergence"},
  1761. "computes KL-divergence to logits provided via --kl-divergence-base",
  1762. [](common_params & params) {
  1763. params.kl_divergence = true;
  1764. }
  1765. ).set_examples({LLAMA_EXAMPLE_PERPLEXITY}));
  1766. add_opt(common_arg(
  1767. {"--save-all-logits", "--kl-divergence-base"}, "FNAME",
  1768. "set logits file",
  1769. [](common_params & params, const std::string & value) {
  1770. params.logits_file = value;
  1771. }
  1772. ).set_examples({LLAMA_EXAMPLE_PERPLEXITY}));
  1773. add_opt(common_arg(
  1774. {"--ppl-stride"}, "N",
  1775. string_format("stride for perplexity calculation (default: %d)", params.ppl_stride),
  1776. [](common_params & params, int value) {
  1777. params.ppl_stride = value;
  1778. }
  1779. ).set_examples({LLAMA_EXAMPLE_PERPLEXITY}));
  1780. add_opt(common_arg(
  1781. {"--ppl-output-type"}, "<0|1>",
  1782. string_format("output type for perplexity calculation (default: %d)", params.ppl_output_type),
  1783. [](common_params & params, int value) {
  1784. params.ppl_output_type = value;
  1785. }
  1786. ).set_examples({LLAMA_EXAMPLE_PERPLEXITY}));
  1787. add_opt(common_arg(
  1788. {"-dt", "--defrag-thold"}, "N",
  1789. string_format("KV cache defragmentation threshold (DEPRECATED)"),
  1790. [](common_params & params, const std::string & value) {
  1791. GGML_UNUSED(params);
  1792. GGML_UNUSED(value);
  1793. LOG_WRN("DEPRECATED: --defrag-thold is deprecated and no longer necessary to specify\n");
  1794. }
  1795. ).set_env("LLAMA_ARG_DEFRAG_THOLD"));
  1796. add_opt(common_arg(
  1797. {"-np", "--parallel"}, "N",
  1798. string_format("number of parallel sequences to decode (default: %d)", params.n_parallel),
  1799. [](common_params & params, int value) {
  1800. params.n_parallel = value;
  1801. }
  1802. ).set_env("LLAMA_ARG_N_PARALLEL"));
  1803. add_opt(common_arg(
  1804. {"-ns", "--sequences"}, "N",
  1805. string_format("number of sequences to decode (default: %d)", params.n_sequences),
  1806. [](common_params & params, int value) {
  1807. params.n_sequences = value;
  1808. }
  1809. ).set_examples({LLAMA_EXAMPLE_PARALLEL}));
  1810. add_opt(common_arg(
  1811. {"-cb", "--cont-batching"},
  1812. {"-nocb", "--no-cont-batching"},
  1813. string_format("whether to enable continuous batching (a.k.a dynamic batching) (default: %s)", params.cont_batching ? "enabled" : "disabled"),
  1814. [](common_params & params, bool value) {
  1815. params.cont_batching = value;
  1816. }
  1817. ).set_examples({LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_CONT_BATCHING"));
  1818. add_opt(common_arg(
  1819. {"-mm", "--mmproj"}, "FILE",
  1820. "path to a multimodal projector file. see tools/mtmd/README.md\n"
  1821. "note: if -hf is used, this argument can be omitted",
  1822. [](common_params & params, const std::string & value) {
  1823. params.mmproj.path = value;
  1824. }
  1825. ).set_examples(mmproj_examples).set_env("LLAMA_ARG_MMPROJ"));
  1826. add_opt(common_arg(
  1827. {"-mmu", "--mmproj-url"}, "URL",
  1828. "URL to a multimodal projector file. see tools/mtmd/README.md",
  1829. [](common_params & params, const std::string & value) {
  1830. params.mmproj.url = value;
  1831. }
  1832. ).set_examples(mmproj_examples).set_env("LLAMA_ARG_MMPROJ_URL"));
  1833. add_opt(common_arg(
  1834. {"--mmproj-auto"},
  1835. {"--no-mmproj", "--no-mmproj-auto"},
  1836. string_format("whether to use multimodal projector file (if available), useful when using -hf (default: %s)", params.no_mmproj ? "disabled" : "enabled"),
  1837. [](common_params & params, bool value) {
  1838. params.no_mmproj = !value;
  1839. }
  1840. ).set_examples(mmproj_examples).set_env("LLAMA_ARG_MMPROJ_AUTO"));
  1841. add_opt(common_arg(
  1842. {"--mmproj-offload"},
  1843. {"--no-mmproj-offload"},
  1844. string_format("whether to enable GPU offloading for multimodal projector (default: %s)", params.mmproj_use_gpu ? "enabled" : "disabled"),
  1845. [](common_params & params, bool value) {
  1846. params.mmproj_use_gpu = value;
  1847. }
  1848. ).set_examples(mmproj_examples).set_env("LLAMA_ARG_MMPROJ_OFFLOAD"));
  1849. add_opt(common_arg(
  1850. {"--image", "--audio"}, "FILE",
  1851. "path to an image or audio file. use with multimodal models, can be repeated if you have multiple files\n",
  1852. [](common_params & params, const std::string & value) {
  1853. params.image.emplace_back(value);
  1854. }
  1855. ).set_examples({LLAMA_EXAMPLE_MTMD, LLAMA_EXAMPLE_CLI}));
  1856. add_opt(common_arg(
  1857. {"--image-min-tokens"}, "N",
  1858. "minimum number of tokens each image can take, only used by vision models with dynamic resolution (default: read from model)",
  1859. [](common_params & params, int value) {
  1860. params.image_min_tokens = value;
  1861. }
  1862. ).set_examples(mmproj_examples).set_env("LLAMA_ARG_IMAGE_MIN_TOKENS"));
  1863. add_opt(common_arg(
  1864. {"--image-max-tokens"}, "N",
  1865. "maximum number of tokens each image can take, only used by vision models with dynamic resolution (default: read from model)",
  1866. [](common_params & params, int value) {
  1867. params.image_max_tokens = value;
  1868. }
  1869. ).set_examples(mmproj_examples).set_env("LLAMA_ARG_IMAGE_MAX_TOKENS"));
  1870. if (llama_supports_rpc()) {
  1871. add_opt(common_arg(
  1872. {"--rpc"}, "SERVERS",
  1873. "comma separated list of RPC servers",
  1874. [](common_params & params, const std::string & value) {
  1875. add_rpc_devices(value);
  1876. GGML_UNUSED(params);
  1877. }
  1878. ).set_env("LLAMA_ARG_RPC"));
  1879. }
  1880. add_opt(common_arg(
  1881. {"--mlock"},
  1882. "force system to keep model in RAM rather than swapping or compressing",
  1883. [](common_params & params) {
  1884. params.use_mlock = true;
  1885. }
  1886. ).set_env("LLAMA_ARG_MLOCK"));
  1887. add_opt(common_arg(
  1888. {"--mmap"},
  1889. {"--no-mmap"},
  1890. string_format("whether to memory-map model (if disabled, slower load but may reduce pageouts if not using mlock) (default: %s)", params.use_mmap ? "enabled" : "disabled"),
  1891. [](common_params & params, bool value) {
  1892. params.use_mmap = value;
  1893. }
  1894. ).set_env("LLAMA_ARG_MMAP"));
  1895. add_opt(common_arg(
  1896. {"--numa"}, "TYPE",
  1897. "attempt optimizations that help on some NUMA systems\n"
  1898. "- distribute: spread execution evenly over all nodes\n"
  1899. "- isolate: only spawn threads on CPUs on the node that execution started on\n"
  1900. "- numactl: use the CPU map provided by numactl\n"
  1901. "if run without this previously, it is recommended to drop the system page cache before using this\n"
  1902. "see https://github.com/ggml-org/llama.cpp/issues/1437",
  1903. [](common_params & params, const std::string & value) {
  1904. /**/ if (value == "distribute" || value == "") { params.numa = GGML_NUMA_STRATEGY_DISTRIBUTE; }
  1905. else if (value == "isolate") { params.numa = GGML_NUMA_STRATEGY_ISOLATE; }
  1906. else if (value == "numactl") { params.numa = GGML_NUMA_STRATEGY_NUMACTL; }
  1907. else { throw std::invalid_argument("invalid value"); }
  1908. }
  1909. ).set_env("LLAMA_ARG_NUMA"));
  1910. add_opt(common_arg(
  1911. {"-dev", "--device"}, "<dev1,dev2,..>",
  1912. "comma-separated list of devices to use for offloading (none = don't offload)\n"
  1913. "use --list-devices to see a list of available devices",
  1914. [](common_params & params, const std::string & value) {
  1915. params.devices = parse_device_list(value);
  1916. }
  1917. ).set_env("LLAMA_ARG_DEVICE"));
  1918. add_opt(common_arg(
  1919. {"--list-devices"},
  1920. "print list of available devices and exit",
  1921. [](common_params &) {
  1922. std::vector<ggml_backend_dev_t> devices;
  1923. for (size_t i = 0; i < ggml_backend_dev_count(); ++i) {
  1924. auto * dev = ggml_backend_dev_get(i);
  1925. if (ggml_backend_dev_type(dev) != GGML_BACKEND_DEVICE_TYPE_CPU) {
  1926. devices.push_back(dev);
  1927. }
  1928. }
  1929. printf("Available devices:\n");
  1930. for (auto * dev : devices) {
  1931. size_t free, total;
  1932. ggml_backend_dev_memory(dev, &free, &total);
  1933. printf(" %s: %s (%zu MiB, %zu MiB free)\n", ggml_backend_dev_name(dev), ggml_backend_dev_description(dev), total / 1024 / 1024, free / 1024 / 1024);
  1934. }
  1935. exit(0);
  1936. }
  1937. ));
  1938. add_opt(common_arg(
  1939. {"--override-tensor", "-ot"}, "<tensor name pattern>=<buffer type>,...",
  1940. "override tensor buffer type", [](common_params & params, const std::string & value) {
  1941. parse_tensor_buffer_overrides(value, params.tensor_buft_overrides);
  1942. }
  1943. ));
  1944. add_opt(common_arg(
  1945. {"--override-tensor-draft", "-otd"}, "<tensor name pattern>=<buffer type>,...",
  1946. "override tensor buffer type for draft model", [](common_params & params, const std::string & value) {
  1947. parse_tensor_buffer_overrides(value, params.speculative.tensor_buft_overrides);
  1948. }
  1949. ).set_examples({LLAMA_EXAMPLE_SPECULATIVE, LLAMA_EXAMPLE_SERVER, LLAMA_EXAMPLE_CLI}));
  1950. add_opt(common_arg(
  1951. {"--cpu-moe", "-cmoe"},
  1952. "keep all Mixture of Experts (MoE) weights in the CPU",
  1953. [](common_params & params) {
  1954. params.tensor_buft_overrides.push_back(llm_ffn_exps_cpu_override());
  1955. }
  1956. ).set_env("LLAMA_ARG_CPU_MOE"));
  1957. add_opt(common_arg(
  1958. {"--n-cpu-moe", "-ncmoe"}, "N",
  1959. "keep the Mixture of Experts (MoE) weights of the first N layers in the CPU",
  1960. [](common_params & params, int value) {
  1961. if (value < 0) {
  1962. throw std::invalid_argument("invalid value");
  1963. }
  1964. for (int i = 0; i < value; ++i) {
  1965. // keep strings alive and avoid leaking memory by storing them in a static vector
  1966. static std::list<std::string> buft_overrides;
  1967. buft_overrides.push_back(llm_ffn_exps_block_regex(i));
  1968. params.tensor_buft_overrides.push_back({buft_overrides.back().c_str(), ggml_backend_cpu_buffer_type()});
  1969. }
  1970. }
  1971. ).set_env("LLAMA_ARG_N_CPU_MOE"));
  1972. add_opt(common_arg(
  1973. {"--cpu-moe-draft", "-cmoed"},
  1974. "keep all Mixture of Experts (MoE) weights in the CPU for the draft model",
  1975. [](common_params & params) {
  1976. params.speculative.tensor_buft_overrides.push_back(llm_ffn_exps_cpu_override());
  1977. }
  1978. ).set_examples({LLAMA_EXAMPLE_SPECULATIVE, LLAMA_EXAMPLE_SERVER, LLAMA_EXAMPLE_CLI}).set_env("LLAMA_ARG_CPU_MOE_DRAFT"));
  1979. add_opt(common_arg(
  1980. {"--n-cpu-moe-draft", "-ncmoed"}, "N",
  1981. "keep the Mixture of Experts (MoE) weights of the first N layers in the CPU for the draft model",
  1982. [](common_params & params, int value) {
  1983. if (value < 0) {
  1984. throw std::invalid_argument("invalid value");
  1985. }
  1986. for (int i = 0; i < value; ++i) {
  1987. static std::list<std::string> buft_overrides_draft;
  1988. buft_overrides_draft.push_back(llm_ffn_exps_block_regex(i));
  1989. params.speculative.tensor_buft_overrides.push_back({buft_overrides_draft.back().c_str(), ggml_backend_cpu_buffer_type()});
  1990. }
  1991. }
  1992. ).set_examples({LLAMA_EXAMPLE_SPECULATIVE, LLAMA_EXAMPLE_SERVER, LLAMA_EXAMPLE_CLI}).set_env("LLAMA_ARG_N_CPU_MOE_DRAFT"));
  1993. add_opt(common_arg(
  1994. {"-ngl", "--gpu-layers", "--n-gpu-layers"}, "N",
  1995. string_format("max. number of layers to store in VRAM (default: %d)", params.n_gpu_layers),
  1996. [](common_params & params, int value) {
  1997. params.n_gpu_layers = value;
  1998. if (!llama_supports_gpu_offload()) {
  1999. fprintf(stderr, "warning: no usable GPU found, --gpu-layers option will be ignored\n");
  2000. fprintf(stderr, "warning: one possible reason is that llama.cpp was compiled without GPU support\n");
  2001. fprintf(stderr, "warning: consult docs/build.md for compilation instructions\n");
  2002. }
  2003. }
  2004. ).set_env("LLAMA_ARG_N_GPU_LAYERS"));
  2005. add_opt(common_arg(
  2006. {"-sm", "--split-mode"}, "{none,layer,row}",
  2007. "how to split the model across multiple GPUs, one of:\n"
  2008. "- none: use one GPU only\n"
  2009. "- layer (default): split layers and KV across GPUs\n"
  2010. "- row: split rows across GPUs",
  2011. [](common_params & params, const std::string & value) {
  2012. std::string arg_next = value;
  2013. if (arg_next == "none") {
  2014. params.split_mode = LLAMA_SPLIT_MODE_NONE;
  2015. } else if (arg_next == "layer") {
  2016. params.split_mode = LLAMA_SPLIT_MODE_LAYER;
  2017. } else if (arg_next == "row") {
  2018. params.split_mode = LLAMA_SPLIT_MODE_ROW;
  2019. } else {
  2020. throw std::invalid_argument("invalid value");
  2021. }
  2022. if (!llama_supports_gpu_offload()) {
  2023. fprintf(stderr, "warning: llama.cpp was compiled without support for GPU offload. Setting the split mode has no effect.\n");
  2024. }
  2025. }
  2026. ).set_env("LLAMA_ARG_SPLIT_MODE"));
  2027. add_opt(common_arg(
  2028. {"-ts", "--tensor-split"}, "N0,N1,N2,...",
  2029. "fraction of the model to offload to each GPU, comma-separated list of proportions, e.g. 3,1",
  2030. [](common_params & params, const std::string & value) {
  2031. std::string arg_next = value;
  2032. // split string by , and /
  2033. const std::regex regex{ R"([,/]+)" };
  2034. std::sregex_token_iterator it{ arg_next.begin(), arg_next.end(), regex, -1 };
  2035. std::vector<std::string> split_arg{ it, {} };
  2036. if (split_arg.size() >= llama_max_devices()) {
  2037. throw std::invalid_argument(
  2038. string_format("got %d input configs, but system only has %d devices", (int)split_arg.size(), (int)llama_max_devices())
  2039. );
  2040. }
  2041. for (size_t i = 0; i < llama_max_devices(); ++i) {
  2042. if (i < split_arg.size()) {
  2043. params.tensor_split[i] = std::stof(split_arg[i]);
  2044. } else {
  2045. params.tensor_split[i] = 0.0f;
  2046. }
  2047. }
  2048. if (!llama_supports_gpu_offload()) {
  2049. fprintf(stderr, "warning: llama.cpp was compiled without support for GPU offload. Setting a tensor split has no effect.\n");
  2050. }
  2051. }
  2052. ).set_env("LLAMA_ARG_TENSOR_SPLIT"));
  2053. add_opt(common_arg(
  2054. {"-mg", "--main-gpu"}, "INDEX",
  2055. string_format("the GPU to use for the model (with split-mode = none), or for intermediate results and KV (with split-mode = row) (default: %d)", params.main_gpu),
  2056. [](common_params & params, int value) {
  2057. params.main_gpu = value;
  2058. if (!llama_supports_gpu_offload()) {
  2059. fprintf(stderr, "warning: llama.cpp was compiled without support for GPU offload. Setting the main GPU has no effect.\n");
  2060. }
  2061. }
  2062. ).set_env("LLAMA_ARG_MAIN_GPU"));
  2063. add_opt(common_arg(
  2064. { "-fit", "--fit" }, "[on|off]",
  2065. string_format("whether to adjust unset arguments to fit in device memory ('on' or 'off', default: '%s')", params.fit_params ? "on" : "off"),
  2066. [](common_params & params, const std::string & value) {
  2067. if (is_truthy(value)) {
  2068. params.fit_params = true;
  2069. } else if (is_falsey(value)) {
  2070. params.fit_params = false;
  2071. } else {
  2072. throw std::runtime_error(
  2073. string_format("error: unkown value for --fit: '%s'\n", value.c_str()));
  2074. }
  2075. }
  2076. ).set_env("LLAMA_ARG_FIT"));
  2077. add_opt(common_arg(
  2078. { "-fitt", "--fit-target" }, "MiB",
  2079. string_format("target margin per device for --fit option, default: %zu", params.fit_params_target/(1024*1024)),
  2080. [](common_params & params, int value) {
  2081. params.fit_params_target = value * size_t(1024*1024);
  2082. }
  2083. ).set_env("LLAMA_ARG_FIT_TARGET"));
  2084. add_opt(common_arg(
  2085. { "-fitc", "--fit-ctx" }, "N",
  2086. string_format("minimum ctx size that can be set by --fit option, default: %" PRIu32, params.fit_params_min_ctx),
  2087. [](common_params & params, int value) {
  2088. params.fit_params_min_ctx = value;
  2089. }
  2090. ).set_env("LLAMA_ARG_FIT_CTX"));
  2091. add_opt(common_arg(
  2092. {"--check-tensors"},
  2093. string_format("check model tensor data for invalid values (default: %s)", params.check_tensors ? "true" : "false"),
  2094. [](common_params & params) {
  2095. params.check_tensors = true;
  2096. }
  2097. ));
  2098. add_opt(common_arg(
  2099. {"--override-kv"}, "KEY=TYPE:VALUE",
  2100. "advanced option to override model metadata by key. may be specified multiple times.\n"
  2101. "types: int, float, bool, str. example: --override-kv tokenizer.ggml.add_bos_token=bool:false",
  2102. [](common_params & params, const std::string & value) {
  2103. if (!string_parse_kv_override(value.c_str(), params.kv_overrides)) {
  2104. throw std::runtime_error(string_format("error: Invalid type for KV override: %s\n", value.c_str()));
  2105. }
  2106. }
  2107. ));
  2108. add_opt(common_arg(
  2109. {"--op-offload"},
  2110. {"--no-op-offload"},
  2111. string_format("whether to offload host tensor operations to device (default: %s)", params.no_op_offload ? "false" : "true"),
  2112. [](common_params & params, bool value) {
  2113. params.no_op_offload = !value;
  2114. }
  2115. ));
  2116. add_opt(common_arg(
  2117. {"--lora"}, "FNAME",
  2118. "path to LoRA adapter (can be repeated to use multiple adapters)",
  2119. [](common_params & params, const std::string & value) {
  2120. params.lora_adapters.push_back({ std::string(value), 1.0, "", "", nullptr });
  2121. }
  2122. // we define this arg on both COMMON and EXPORT_LORA, so when showing help message of export-lora, it will be categorized as "example-specific" arg
  2123. ).set_examples({LLAMA_EXAMPLE_COMMON, LLAMA_EXAMPLE_EXPORT_LORA}));
  2124. add_opt(common_arg(
  2125. {"--lora-scaled"}, "FNAME", "SCALE",
  2126. "path to LoRA adapter with user defined scaling (can be repeated to use multiple adapters)",
  2127. [](common_params & params, const std::string & fname, const std::string & scale) {
  2128. params.lora_adapters.push_back({ fname, std::stof(scale), "", "", nullptr });
  2129. }
  2130. // we define this arg on both COMMON and EXPORT_LORA, so when showing help message of export-lora, it will be categorized as "example-specific" arg
  2131. ).set_examples({LLAMA_EXAMPLE_COMMON, LLAMA_EXAMPLE_EXPORT_LORA}));
  2132. add_opt(common_arg(
  2133. {"--control-vector"}, "FNAME",
  2134. "add a control vector\nnote: this argument can be repeated to add multiple control vectors",
  2135. [](common_params & params, const std::string & value) {
  2136. params.control_vectors.push_back({ 1.0f, value, });
  2137. }
  2138. ));
  2139. add_opt(common_arg(
  2140. {"--control-vector-scaled"}, "FNAME", "SCALE",
  2141. "add a control vector with user defined scaling SCALE\n"
  2142. "note: this argument can be repeated to add multiple scaled control vectors",
  2143. [](common_params & params, const std::string & fname, const std::string & scale) {
  2144. params.control_vectors.push_back({ std::stof(scale), fname });
  2145. }
  2146. ));
  2147. add_opt(common_arg(
  2148. {"--control-vector-layer-range"}, "START", "END",
  2149. "layer range to apply the control vector(s) to, start and end inclusive",
  2150. [](common_params & params, const std::string & start, const std::string & end) {
  2151. params.control_vector_layer_start = std::stoi(start);
  2152. params.control_vector_layer_end = std::stoi(end);
  2153. }
  2154. ));
  2155. add_opt(common_arg(
  2156. {"-a", "--alias"}, "STRING",
  2157. "set alias for model name (to be used by REST API)",
  2158. [](common_params & params, const std::string & value) {
  2159. params.model_alias = value;
  2160. }
  2161. ).set_examples({LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_ALIAS"));
  2162. add_opt(common_arg(
  2163. {"-m", "--model"}, "FNAME",
  2164. ex == LLAMA_EXAMPLE_EXPORT_LORA
  2165. ? "model path from which to load base model"
  2166. : "model path to load",
  2167. [](common_params & params, const std::string & value) {
  2168. params.model.path = value;
  2169. }
  2170. ).set_examples({LLAMA_EXAMPLE_COMMON, LLAMA_EXAMPLE_EXPORT_LORA}).set_env("LLAMA_ARG_MODEL"));
  2171. add_opt(common_arg(
  2172. {"-mu", "--model-url"}, "MODEL_URL",
  2173. "model download url (default: unused)",
  2174. [](common_params & params, const std::string & value) {
  2175. params.model.url = value;
  2176. }
  2177. ).set_env("LLAMA_ARG_MODEL_URL"));
  2178. add_opt(common_arg(
  2179. { "-dr", "--docker-repo" }, "[<repo>/]<model>[:quant]",
  2180. "Docker Hub model repository. repo is optional, default to ai/. quant is optional, default to :latest.\n"
  2181. "example: gemma3\n"
  2182. "(default: unused)",
  2183. [](common_params & params, const std::string & value) {
  2184. params.model.docker_repo = value;
  2185. }
  2186. ).set_env("LLAMA_ARG_DOCKER_REPO"));
  2187. add_opt(common_arg(
  2188. {"-hf", "-hfr", "--hf-repo"}, "<user>/<model>[:quant]",
  2189. "Hugging Face model repository; quant is optional, case-insensitive, default to Q4_K_M, or falls back to the first file in the repo if Q4_K_M doesn't exist.\n"
  2190. "mmproj is also downloaded automatically if available. to disable, add --no-mmproj\n"
  2191. "example: unsloth/phi-4-GGUF:q4_k_m\n"
  2192. "(default: unused)",
  2193. [](common_params & params, const std::string & value) {
  2194. params.model.hf_repo = value;
  2195. }
  2196. ).set_env("LLAMA_ARG_HF_REPO"));
  2197. add_opt(common_arg(
  2198. {"-hfd", "-hfrd", "--hf-repo-draft"}, "<user>/<model>[:quant]",
  2199. "Same as --hf-repo, but for the draft model (default: unused)",
  2200. [](common_params & params, const std::string & value) {
  2201. params.speculative.model.hf_repo = value;
  2202. }
  2203. ).set_env("LLAMA_ARG_HFD_REPO"));
  2204. add_opt(common_arg(
  2205. {"-hff", "--hf-file"}, "FILE",
  2206. "Hugging Face model file. If specified, it will override the quant in --hf-repo (default: unused)",
  2207. [](common_params & params, const std::string & value) {
  2208. params.model.hf_file = value;
  2209. }
  2210. ).set_env("LLAMA_ARG_HF_FILE"));
  2211. add_opt(common_arg(
  2212. {"-hfv", "-hfrv", "--hf-repo-v"}, "<user>/<model>[:quant]",
  2213. "Hugging Face model repository for the vocoder model (default: unused)",
  2214. [](common_params & params, const std::string & value) {
  2215. params.vocoder.model.hf_repo = value;
  2216. }
  2217. ).set_env("LLAMA_ARG_HF_REPO_V"));
  2218. add_opt(common_arg(
  2219. {"-hffv", "--hf-file-v"}, "FILE",
  2220. "Hugging Face model file for the vocoder model (default: unused)",
  2221. [](common_params & params, const std::string & value) {
  2222. params.vocoder.model.hf_file = value;
  2223. }
  2224. ).set_env("LLAMA_ARG_HF_FILE_V"));
  2225. add_opt(common_arg(
  2226. {"-hft", "--hf-token"}, "TOKEN",
  2227. "Hugging Face access token (default: value from HF_TOKEN environment variable)",
  2228. [](common_params & params, const std::string & value) {
  2229. params.hf_token = value;
  2230. }
  2231. ).set_env("HF_TOKEN"));
  2232. add_opt(common_arg(
  2233. {"--context-file"}, "FNAME",
  2234. "file to load context from (repeat to specify multiple files)",
  2235. [](common_params & params, const std::string & value) {
  2236. std::ifstream file(value, std::ios::binary);
  2237. if (!file) {
  2238. throw std::runtime_error(string_format("error: failed to open file '%s'\n", value.c_str()));
  2239. }
  2240. params.context_files.push_back(value);
  2241. }
  2242. ).set_examples({LLAMA_EXAMPLE_RETRIEVAL}));
  2243. add_opt(common_arg(
  2244. {"--chunk-size"}, "N",
  2245. string_format("minimum length of embedded text chunks (default: %d)", params.chunk_size),
  2246. [](common_params & params, int value) {
  2247. params.chunk_size = value;
  2248. }
  2249. ).set_examples({LLAMA_EXAMPLE_RETRIEVAL}));
  2250. add_opt(common_arg(
  2251. {"--chunk-separator"}, "STRING",
  2252. string_format("separator between chunks (default: '%s')", params.chunk_separator.c_str()),
  2253. [](common_params & params, const std::string & value) {
  2254. params.chunk_separator = value;
  2255. }
  2256. ).set_examples({LLAMA_EXAMPLE_RETRIEVAL}));
  2257. add_opt(common_arg(
  2258. {"--junk"}, "N",
  2259. string_format("number of times to repeat the junk text (default: %d)", params.n_junk),
  2260. [](common_params & params, int value) {
  2261. params.n_junk = value;
  2262. }
  2263. ).set_examples({LLAMA_EXAMPLE_PASSKEY, LLAMA_EXAMPLE_PARALLEL}));
  2264. add_opt(common_arg(
  2265. {"--pos"}, "N",
  2266. string_format("position of the passkey in the junk text (default: %d)", params.i_pos),
  2267. [](common_params & params, int value) {
  2268. params.i_pos = value;
  2269. }
  2270. ).set_examples({LLAMA_EXAMPLE_PASSKEY}));
  2271. add_opt(common_arg(
  2272. {"-o", "--output", "--output-file"}, "FNAME",
  2273. string_format("output file (default: '%s')", params.out_file.c_str()),
  2274. [](common_params & params, const std::string & value) {
  2275. params.out_file = value;
  2276. }
  2277. ).set_examples({LLAMA_EXAMPLE_IMATRIX, LLAMA_EXAMPLE_CVECTOR_GENERATOR, LLAMA_EXAMPLE_EXPORT_LORA, LLAMA_EXAMPLE_TTS, LLAMA_EXAMPLE_FINETUNE}));
  2278. add_opt(common_arg(
  2279. {"-ofreq", "--output-frequency"}, "N",
  2280. string_format("output the imatrix every N iterations (default: %d)", params.n_out_freq),
  2281. [](common_params & params, int value) {
  2282. params.n_out_freq = value;
  2283. }
  2284. ).set_examples({LLAMA_EXAMPLE_IMATRIX}));
  2285. add_opt(common_arg(
  2286. {"--output-format"}, "{gguf,dat}",
  2287. string_format("output format for imatrix file (default: %s)", params.imat_dat > 0 ? "dat" : "gguf"),
  2288. [](common_params & params, const std::string & value) {
  2289. /**/ if (value == "gguf") { params.imat_dat = -1; }
  2290. else if (value == "dat") { params.imat_dat = 1; }
  2291. else { throw std::invalid_argument("invalid output format"); }
  2292. }
  2293. ).set_examples({LLAMA_EXAMPLE_IMATRIX}));
  2294. add_opt(common_arg(
  2295. {"--save-frequency"}, "N",
  2296. string_format("save an imatrix copy every N iterations (default: %d)", params.n_save_freq),
  2297. [](common_params & params, int value) {
  2298. params.n_save_freq = value;
  2299. }
  2300. ).set_examples({LLAMA_EXAMPLE_IMATRIX}));
  2301. add_opt(common_arg(
  2302. {"--process-output"},
  2303. string_format("collect data for the output tensor (default: %s)", params.process_output ? "true" : "false"),
  2304. [](common_params & params) {
  2305. params.process_output = true;
  2306. }
  2307. ).set_examples({LLAMA_EXAMPLE_IMATRIX}));
  2308. add_opt(common_arg(
  2309. {"--ppl"},
  2310. {"--no-ppl"},
  2311. string_format("whether to compute perplexity (default: %s)", params.compute_ppl ? "true" : "false"),
  2312. [](common_params & params, bool value) {
  2313. params.compute_ppl = value;
  2314. }
  2315. ).set_examples({LLAMA_EXAMPLE_IMATRIX}));
  2316. add_opt(common_arg(
  2317. {"--chunk", "--from-chunk"}, "N",
  2318. string_format("start processing the input from chunk N (default: %d)", params.i_chunk),
  2319. [](common_params & params, int value) {
  2320. params.i_chunk = value;
  2321. }
  2322. ).set_examples({LLAMA_EXAMPLE_IMATRIX}));
  2323. add_opt(common_arg(
  2324. {"--show-statistics"},
  2325. string_format("show imatrix statistics and then exit (default: %s)", params.show_statistics ? "true" : "false"),
  2326. [](common_params & params) {
  2327. params.show_statistics = true;
  2328. }
  2329. ).set_examples({LLAMA_EXAMPLE_IMATRIX}));
  2330. add_opt(common_arg(
  2331. {"--parse-special"},
  2332. string_format("parse special tokens (chat, tool, etc) (default: %s)", params.parse_special ? "true" : "false"),
  2333. [](common_params & params) {
  2334. params.parse_special = true;
  2335. }
  2336. ).set_examples({LLAMA_EXAMPLE_IMATRIX}));
  2337. add_opt(common_arg(
  2338. {"-pps"},
  2339. string_format("is the prompt shared across parallel sequences (default: %s)", params.is_pp_shared ? "true" : "false"),
  2340. [](common_params & params) {
  2341. params.is_pp_shared = true;
  2342. }
  2343. ).set_examples({LLAMA_EXAMPLE_BENCH, LLAMA_EXAMPLE_PARALLEL}));
  2344. add_opt(common_arg(
  2345. {"-tgs"},
  2346. string_format("is the text generation separated across the different sequences (default: %s)", params.is_tg_separate ? "true" : "false"),
  2347. [](common_params & params) {
  2348. params.is_tg_separate = true;
  2349. }
  2350. ).set_examples({LLAMA_EXAMPLE_BENCH, LLAMA_EXAMPLE_PARALLEL}));
  2351. add_opt(common_arg(
  2352. {"-npp"}, "n0,n1,...",
  2353. "number of prompt tokens",
  2354. [](common_params & params, const std::string & value) {
  2355. auto p = string_split<int>(value, ',');
  2356. params.n_pp.insert(params.n_pp.end(), p.begin(), p.end());
  2357. }
  2358. ).set_examples({LLAMA_EXAMPLE_BENCH}));
  2359. add_opt(common_arg(
  2360. {"-ntg"}, "n0,n1,...",
  2361. "number of text generation tokens",
  2362. [](common_params & params, const std::string & value) {
  2363. auto p = string_split<int>(value, ',');
  2364. params.n_tg.insert(params.n_tg.end(), p.begin(), p.end());
  2365. }
  2366. ).set_examples({LLAMA_EXAMPLE_BENCH}));
  2367. add_opt(common_arg(
  2368. {"-npl"}, "n0,n1,...",
  2369. "number of parallel prompts",
  2370. [](common_params & params, const std::string & value) {
  2371. auto p = string_split<int>(value, ',');
  2372. params.n_pl.insert(params.n_pl.end(), p.begin(), p.end());
  2373. }
  2374. ).set_examples({LLAMA_EXAMPLE_BENCH}));
  2375. add_opt(common_arg(
  2376. {"--embd-normalize"}, "N",
  2377. string_format("normalisation for embeddings (default: %d) (-1=none, 0=max absolute int16, 1=taxicab, 2=euclidean, >2=p-norm)", params.embd_normalize),
  2378. [](common_params & params, int value) {
  2379. params.embd_normalize = value;
  2380. }
  2381. ).set_examples({LLAMA_EXAMPLE_EMBEDDING}));
  2382. add_opt(common_arg(
  2383. {"--embd-output-format"}, "FORMAT",
  2384. "empty = default, \"array\" = [[],[]...], \"json\" = openai style, \"json+\" = same \"json\" + cosine similarity matrix, \"raw\" = plain whitespace-delimited output (one embedding per line)",
  2385. [](common_params & params, const std::string & value) {
  2386. params.embd_out = value;
  2387. }
  2388. ).set_examples({LLAMA_EXAMPLE_EMBEDDING}));
  2389. add_opt(common_arg(
  2390. {"--embd-separator"}, "STRING",
  2391. "separator of embeddings (default \\n) for example \"<#sep#>\"",
  2392. [](common_params & params, const std::string & value) {
  2393. params.embd_sep = value;
  2394. }
  2395. ).set_examples({LLAMA_EXAMPLE_EMBEDDING}));
  2396. add_opt(common_arg(
  2397. {"--cls-separator"}, "STRING",
  2398. "separator of classification sequences (default \\t) for example \"<#seq#>\"",
  2399. [](common_params & params, const std::string & value) {
  2400. params.cls_sep = value;
  2401. }
  2402. ).set_examples({LLAMA_EXAMPLE_EMBEDDING}));
  2403. add_opt(common_arg(
  2404. {"--host"}, "HOST",
  2405. string_format("ip address to listen, or bind to an UNIX socket if the address ends with .sock (default: %s)", params.hostname.c_str()),
  2406. [](common_params & params, const std::string & value) {
  2407. params.hostname = value;
  2408. }
  2409. ).set_examples({LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_HOST"));
  2410. add_opt(common_arg(
  2411. {"--port"}, "PORT",
  2412. string_format("port to listen (default: %d)", params.port),
  2413. [](common_params & params, int value) {
  2414. params.port = value;
  2415. }
  2416. ).set_examples({LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_PORT"));
  2417. add_opt(common_arg(
  2418. {"--path"}, "PATH",
  2419. string_format("path to serve static files from (default: %s)", params.public_path.c_str()),
  2420. [](common_params & params, const std::string & value) {
  2421. params.public_path = value;
  2422. }
  2423. ).set_examples({LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_STATIC_PATH"));
  2424. add_opt(common_arg(
  2425. {"--api-prefix"}, "PREFIX",
  2426. string_format("prefix path the server serves from, without the trailing slash (default: %s)", params.api_prefix.c_str()),
  2427. [](common_params & params, const std::string & value) {
  2428. params.api_prefix = value;
  2429. }
  2430. ).set_examples({LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_API_PREFIX"));
  2431. add_opt(common_arg(
  2432. {"--webui"},
  2433. {"--no-webui"},
  2434. string_format("whether to enable the Web UI (default: %s)", params.webui ? "enabled" : "disabled"),
  2435. [](common_params & params, bool value) {
  2436. params.webui = value;
  2437. }
  2438. ).set_examples({LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_WEBUI"));
  2439. add_opt(common_arg(
  2440. {"--embedding", "--embeddings"},
  2441. string_format("restrict to only support embedding use case; use only with dedicated embedding models (default: %s)", params.embedding ? "enabled" : "disabled"),
  2442. [](common_params & params) {
  2443. params.embedding = true;
  2444. }
  2445. ).set_examples({LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_EMBEDDINGS"));
  2446. add_opt(common_arg(
  2447. {"--reranking", "--rerank"},
  2448. string_format("enable reranking endpoint on server (default: %s)", "disabled"),
  2449. [](common_params & params) {
  2450. params.embedding = true;
  2451. params.pooling_type = LLAMA_POOLING_TYPE_RANK;
  2452. }
  2453. ).set_examples({LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_RERANKING"));
  2454. add_opt(common_arg(
  2455. {"--api-key"}, "KEY",
  2456. "API key to use for authentication (default: none)",
  2457. [](common_params & params, const std::string & value) {
  2458. params.api_keys.push_back(value);
  2459. }
  2460. ).set_examples({LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_API_KEY"));
  2461. add_opt(common_arg(
  2462. {"--api-key-file"}, "FNAME",
  2463. "path to file containing API keys (default: none)",
  2464. [](common_params & params, const std::string & value) {
  2465. std::ifstream key_file(value);
  2466. if (!key_file) {
  2467. throw std::runtime_error(string_format("error: failed to open file '%s'\n", value.c_str()));
  2468. }
  2469. std::string key;
  2470. while (std::getline(key_file, key)) {
  2471. if (!key.empty()) {
  2472. params.api_keys.push_back(key);
  2473. }
  2474. }
  2475. key_file.close();
  2476. }
  2477. ).set_examples({LLAMA_EXAMPLE_SERVER}));
  2478. add_opt(common_arg(
  2479. {"--ssl-key-file"}, "FNAME",
  2480. "path to file a PEM-encoded SSL private key",
  2481. [](common_params & params, const std::string & value) {
  2482. params.ssl_file_key = value;
  2483. }
  2484. ).set_examples({LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_SSL_KEY_FILE"));
  2485. add_opt(common_arg(
  2486. {"--ssl-cert-file"}, "FNAME",
  2487. "path to file a PEM-encoded SSL certificate",
  2488. [](common_params & params, const std::string & value) {
  2489. params.ssl_file_cert = value;
  2490. }
  2491. ).set_examples({LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_SSL_CERT_FILE"));
  2492. add_opt(common_arg(
  2493. {"--chat-template-kwargs"}, "STRING",
  2494. string_format("sets additional params for the json template parser"),
  2495. [](common_params & params, const std::string & value) {
  2496. auto parsed = json::parse(value);
  2497. for (const auto & item : parsed.items()) {
  2498. params.default_template_kwargs[item.key()] = item.value().dump();
  2499. }
  2500. }
  2501. ).set_examples({LLAMA_EXAMPLE_SERVER, LLAMA_EXAMPLE_CLI}).set_env("LLAMA_CHAT_TEMPLATE_KWARGS"));
  2502. add_opt(common_arg(
  2503. {"-to", "--timeout"}, "N",
  2504. string_format("server read/write timeout in seconds (default: %d)", params.timeout_read),
  2505. [](common_params & params, int value) {
  2506. params.timeout_read = value;
  2507. params.timeout_write = value;
  2508. }
  2509. ).set_examples({LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_TIMEOUT"));
  2510. add_opt(common_arg(
  2511. {"--threads-http"}, "N",
  2512. string_format("number of threads used to process HTTP requests (default: %d)", params.n_threads_http),
  2513. [](common_params & params, int value) {
  2514. params.n_threads_http = value;
  2515. }
  2516. ).set_examples({LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_THREADS_HTTP"));
  2517. add_opt(common_arg(
  2518. {"--cache-reuse"}, "N",
  2519. string_format(
  2520. "min chunk size to attempt reusing from the cache via KV shifting (default: %d)\n"
  2521. "[(card)](https://ggml.ai/f0.png)", params.n_cache_reuse
  2522. ),
  2523. [](common_params & params, int value) {
  2524. params.n_cache_reuse = value;
  2525. }
  2526. ).set_examples({LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_CACHE_REUSE"));
  2527. add_opt(common_arg(
  2528. {"--metrics"},
  2529. string_format("enable prometheus compatible metrics endpoint (default: %s)", params.endpoint_metrics ? "enabled" : "disabled"),
  2530. [](common_params & params) {
  2531. params.endpoint_metrics = true;
  2532. }
  2533. ).set_examples({LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_ENDPOINT_METRICS"));
  2534. add_opt(common_arg(
  2535. {"--props"},
  2536. string_format("enable changing global properties via POST /props (default: %s)", params.endpoint_props ? "enabled" : "disabled"),
  2537. [](common_params & params) {
  2538. params.endpoint_props = true;
  2539. }
  2540. ).set_examples({LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_ENDPOINT_PROPS"));
  2541. add_opt(common_arg(
  2542. {"--slots"},
  2543. {"--no-slots"},
  2544. string_format("expose slots monitoring endpoint (default: %s)", params.endpoint_slots ? "enabled" : "disabled"),
  2545. [](common_params & params, bool value) {
  2546. params.endpoint_slots = value;
  2547. }
  2548. ).set_examples({LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_ENDPOINT_SLOTS"));
  2549. add_opt(common_arg(
  2550. {"--slot-save-path"}, "PATH",
  2551. "path to save slot kv cache (default: disabled)",
  2552. [](common_params & params, const std::string & value) {
  2553. params.slot_save_path = value;
  2554. if (!fs_is_directory(params.slot_save_path)) {
  2555. throw std::invalid_argument("not a directory: " + value);
  2556. }
  2557. // if doesn't end with DIRECTORY_SEPARATOR, add it
  2558. if (!params.slot_save_path.empty() && params.slot_save_path[params.slot_save_path.size() - 1] != DIRECTORY_SEPARATOR) {
  2559. params.slot_save_path += DIRECTORY_SEPARATOR;
  2560. }
  2561. }
  2562. ).set_examples({LLAMA_EXAMPLE_SERVER}));
  2563. add_opt(common_arg(
  2564. {"--media-path"}, "PATH",
  2565. "directory for loading local media files; files can be accessed via file:// URLs using relative paths (default: disabled)",
  2566. [](common_params & params, const std::string & value) {
  2567. params.media_path = value;
  2568. if (!fs_is_directory(params.media_path)) {
  2569. throw std::invalid_argument("not a directory: " + value);
  2570. }
  2571. // if doesn't end with DIRECTORY_SEPARATOR, add it
  2572. if (!params.media_path.empty() && params.media_path[params.media_path.size() - 1] != DIRECTORY_SEPARATOR) {
  2573. params.media_path += DIRECTORY_SEPARATOR;
  2574. }
  2575. }
  2576. ).set_examples({LLAMA_EXAMPLE_SERVER}));
  2577. add_opt(common_arg(
  2578. {"--models-dir"}, "PATH",
  2579. "directory containing models for the router server (default: disabled)",
  2580. [](common_params & params, const std::string & value) {
  2581. params.models_dir = value;
  2582. }
  2583. ).set_examples({LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_MODELS_DIR"));
  2584. add_opt(common_arg(
  2585. {"--models-preset"}, "PATH",
  2586. "path to INI file containing model presets for the router server (default: disabled)",
  2587. [](common_params & params, const std::string & value) {
  2588. params.models_preset = value;
  2589. }
  2590. ).set_examples({LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_MODELS_PRESET"));
  2591. add_opt(common_arg(
  2592. {"--models-max"}, "N",
  2593. string_format("for router server, maximum number of models to load simultaneously (default: %d, 0 = unlimited)", params.models_max),
  2594. [](common_params & params, int value) {
  2595. params.models_max = value;
  2596. }
  2597. ).set_examples({LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_MODELS_MAX"));
  2598. add_opt(common_arg(
  2599. {"--models-autoload"},
  2600. {"--no-models-autoload"},
  2601. string_format("for router server, whether to automatically load models (default: %s)", params.models_autoload ? "enabled" : "disabled"),
  2602. [](common_params & params, bool value) {
  2603. params.models_autoload = value;
  2604. }
  2605. ).set_examples({LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_MODELS_AUTOLOAD"));
  2606. add_opt(common_arg(
  2607. {"--jinja"},
  2608. {"--no-jinja"},
  2609. string_format("whether to use jinja template engine for chat (default: %s)", params.use_jinja ? "enabled" : "disabled"),
  2610. [](common_params & params, bool value) {
  2611. params.use_jinja = value;
  2612. }
  2613. ).set_examples({LLAMA_EXAMPLE_SERVER, LLAMA_EXAMPLE_COMPLETION, LLAMA_EXAMPLE_CLI, LLAMA_EXAMPLE_MTMD}).set_env("LLAMA_ARG_JINJA"));
  2614. add_opt(common_arg(
  2615. {"--reasoning-format"}, "FORMAT",
  2616. "controls whether thought tags are allowed and/or extracted from the response, and in which format they're returned; one of:\n"
  2617. "- none: leaves thoughts unparsed in `message.content`\n"
  2618. "- deepseek: puts thoughts in `message.reasoning_content`\n"
  2619. "- deepseek-legacy: keeps `<think>` tags in `message.content` while also populating `message.reasoning_content`\n"
  2620. "(default: auto)",
  2621. [](common_params & params, const std::string & value) {
  2622. params.reasoning_format = common_reasoning_format_from_name(value);
  2623. }
  2624. ).set_examples({LLAMA_EXAMPLE_SERVER, LLAMA_EXAMPLE_COMPLETION, LLAMA_EXAMPLE_CLI}).set_env("LLAMA_ARG_THINK"));
  2625. add_opt(common_arg(
  2626. {"--reasoning-budget"}, "N",
  2627. "controls the amount of thinking allowed; currently only one of: -1 for unrestricted thinking budget, or 0 to disable thinking (default: -1)",
  2628. [](common_params & params, int value) {
  2629. if (value != 0 && value != -1) { throw std::invalid_argument("invalid value"); }
  2630. params.reasoning_budget = value;
  2631. }
  2632. ).set_examples({LLAMA_EXAMPLE_SERVER, LLAMA_EXAMPLE_COMPLETION, LLAMA_EXAMPLE_CLI}).set_env("LLAMA_ARG_THINK_BUDGET"));
  2633. add_opt(common_arg(
  2634. {"--chat-template"}, "JINJA_TEMPLATE",
  2635. string_format(
  2636. "set custom jinja chat template (default: template taken from model's metadata)\n"
  2637. "if suffix/prefix are specified, template will be disabled\n"
  2638. "only commonly used templates are accepted (unless --jinja is set before this flag):\n"
  2639. "list of built-in templates:\n%s", list_builtin_chat_templates().c_str()
  2640. ),
  2641. [](common_params & params, const std::string & value) {
  2642. params.chat_template = value;
  2643. }
  2644. ).set_examples({LLAMA_EXAMPLE_COMPLETION, LLAMA_EXAMPLE_CLI, LLAMA_EXAMPLE_SERVER, LLAMA_EXAMPLE_MTMD}).set_env("LLAMA_ARG_CHAT_TEMPLATE"));
  2645. add_opt(common_arg(
  2646. {"--chat-template-file"}, "JINJA_TEMPLATE_FILE",
  2647. string_format(
  2648. "set custom jinja chat template file (default: template taken from model's metadata)\n"
  2649. "if suffix/prefix are specified, template will be disabled\n"
  2650. "only commonly used templates are accepted (unless --jinja is set before this flag):\n"
  2651. "list of built-in templates:\n%s", list_builtin_chat_templates().c_str()
  2652. ),
  2653. [](common_params & params, const std::string & value) {
  2654. params.chat_template = read_file(value);
  2655. }
  2656. ).set_examples({LLAMA_EXAMPLE_COMPLETION, LLAMA_EXAMPLE_CLI, LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_CHAT_TEMPLATE_FILE"));
  2657. add_opt(common_arg(
  2658. {"--prefill-assistant"},
  2659. {"--no-prefill-assistant"},
  2660. string_format(
  2661. "whether to prefill the assistant's response if the last message is an assistant message (default: prefill enabled)\n"
  2662. "when this flag is set, if the last message is an assistant message then it will be treated as a full message and not prefilled\n"
  2663. ),
  2664. [](common_params & params, bool value) {
  2665. params.prefill_assistant = value;
  2666. }
  2667. ).set_examples({LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_PREFILL_ASSISTANT"));
  2668. add_opt(common_arg(
  2669. {"-sps", "--slot-prompt-similarity"}, "SIMILARITY",
  2670. string_format("how much the prompt of a request must match the prompt of a slot in order to use that slot (default: %.2f, 0.0 = disabled)\n", params.slot_prompt_similarity),
  2671. [](common_params & params, const std::string & value) {
  2672. params.slot_prompt_similarity = std::stof(value);
  2673. }
  2674. ).set_examples({LLAMA_EXAMPLE_SERVER}));
  2675. add_opt(common_arg(
  2676. {"--lora-init-without-apply"},
  2677. string_format("load LoRA adapters without applying them (apply later via POST /lora-adapters) (default: %s)", params.lora_init_without_apply ? "enabled" : "disabled"),
  2678. [](common_params & params) {
  2679. params.lora_init_without_apply = true;
  2680. }
  2681. ).set_examples({LLAMA_EXAMPLE_SERVER}));
  2682. add_opt(common_arg(
  2683. {"--simple-io"},
  2684. "use basic IO for better compatibility in subprocesses and limited consoles",
  2685. [](common_params & params) {
  2686. params.simple_io = true;
  2687. }
  2688. ).set_examples({LLAMA_EXAMPLE_COMPLETION, LLAMA_EXAMPLE_CLI}));
  2689. add_opt(common_arg(
  2690. {"--positive-file"}, "FNAME",
  2691. string_format("positive prompts file, one prompt per line (default: '%s')", params.cvector_positive_file.c_str()),
  2692. [](common_params & params, const std::string & value) {
  2693. params.cvector_positive_file = value;
  2694. }
  2695. ).set_examples({LLAMA_EXAMPLE_CVECTOR_GENERATOR}));
  2696. add_opt(common_arg(
  2697. {"--negative-file"}, "FNAME",
  2698. string_format("negative prompts file, one prompt per line (default: '%s')", params.cvector_negative_file.c_str()),
  2699. [](common_params & params, const std::string & value) {
  2700. params.cvector_negative_file = value;
  2701. }
  2702. ).set_examples({LLAMA_EXAMPLE_CVECTOR_GENERATOR}));
  2703. add_opt(common_arg(
  2704. {"--pca-batch"}, "N",
  2705. string_format("batch size used for PCA. Larger batch runs faster, but uses more memory (default: %d)", params.n_pca_batch),
  2706. [](common_params & params, int value) {
  2707. params.n_pca_batch = value;
  2708. }
  2709. ).set_examples({LLAMA_EXAMPLE_CVECTOR_GENERATOR}));
  2710. add_opt(common_arg(
  2711. {"--pca-iter"}, "N",
  2712. string_format("number of iterations used for PCA (default: %d)", params.n_pca_iterations),
  2713. [](common_params & params, int value) {
  2714. params.n_pca_iterations = value;
  2715. }
  2716. ).set_examples({LLAMA_EXAMPLE_CVECTOR_GENERATOR}));
  2717. add_opt(common_arg(
  2718. {"--method"}, "{pca, mean}",
  2719. "dimensionality reduction method to be used (default: pca)",
  2720. [](common_params & params, const std::string & value) {
  2721. /**/ if (value == "pca") { params.cvector_dimre_method = DIMRE_METHOD_PCA; }
  2722. else if (value == "mean") { params.cvector_dimre_method = DIMRE_METHOD_MEAN; }
  2723. else { throw std::invalid_argument("invalid value"); }
  2724. }
  2725. ).set_examples({LLAMA_EXAMPLE_CVECTOR_GENERATOR}));
  2726. add_opt(common_arg(
  2727. {"--output-format"}, "{md,jsonl}",
  2728. "output format for batched-bench results (default: md)",
  2729. [](common_params & params, const std::string & value) {
  2730. /**/ if (value == "jsonl") { params.batched_bench_output_jsonl = true; }
  2731. else if (value == "md") { params.batched_bench_output_jsonl = false; }
  2732. else { throw std::invalid_argument("invalid value"); }
  2733. }
  2734. ).set_examples({LLAMA_EXAMPLE_BENCH}));
  2735. add_opt(common_arg(
  2736. {"--log-disable"},
  2737. "Log disable",
  2738. [](common_params &) {
  2739. common_log_pause(common_log_main());
  2740. }
  2741. ));
  2742. add_opt(common_arg(
  2743. {"--log-file"}, "FNAME",
  2744. "Log to file",
  2745. [](common_params &, const std::string & value) {
  2746. common_log_set_file(common_log_main(), value.c_str());
  2747. }
  2748. ).set_env("LLAMA_LOG_FILE"));
  2749. add_opt(common_arg(
  2750. {"--log-colors"}, "[on|off|auto]",
  2751. "Set colored logging ('on', 'off', or 'auto', default: 'auto')\n"
  2752. "'auto' enables colors when output is to a terminal",
  2753. [](common_params &, const std::string & value) {
  2754. if (is_truthy(value)) {
  2755. common_log_set_colors(common_log_main(), LOG_COLORS_ENABLED);
  2756. } else if (is_falsey(value)) {
  2757. common_log_set_colors(common_log_main(), LOG_COLORS_DISABLED);
  2758. } else if (is_autoy(value)) {
  2759. common_log_set_colors(common_log_main(), LOG_COLORS_AUTO);
  2760. } else {
  2761. throw std::invalid_argument(
  2762. string_format("error: unknown value for --log-colors: '%s'\n", value.c_str()));
  2763. }
  2764. }
  2765. ).set_env("LLAMA_LOG_COLORS"));
  2766. add_opt(common_arg(
  2767. {"-v", "--verbose", "--log-verbose"},
  2768. "Set verbosity level to infinity (i.e. log all messages, useful for debugging)",
  2769. [](common_params & params) {
  2770. params.verbosity = INT_MAX;
  2771. }
  2772. ));
  2773. add_opt(common_arg(
  2774. {"--offline"},
  2775. "Offline mode: forces use of cache, prevents network access",
  2776. [](common_params & params) {
  2777. params.offline = true;
  2778. }
  2779. ).set_env("LLAMA_OFFLINE"));
  2780. add_opt(common_arg(
  2781. {"-lv", "--verbosity", "--log-verbosity"}, "N",
  2782. string_format("Set the verbosity threshold. Messages with a higher verbosity will be ignored. Values:\n"
  2783. " - 0: generic output\n"
  2784. " - 1: error\n"
  2785. " - 2: warning\n"
  2786. " - 3: info\n"
  2787. " - 4: debug\n"
  2788. "(default: %d)\n", params.verbosity),
  2789. [](common_params & params, int value) {
  2790. params.verbosity = value;
  2791. }
  2792. ).set_env("LLAMA_LOG_VERBOSITY"));
  2793. add_opt(common_arg(
  2794. {"--log-prefix"},
  2795. "Enable prefix in log messages",
  2796. [](common_params &) {
  2797. common_log_set_prefix(common_log_main(), true);
  2798. }
  2799. ).set_env("LLAMA_LOG_PREFIX"));
  2800. add_opt(common_arg(
  2801. {"--log-timestamps"},
  2802. "Enable timestamps in log messages",
  2803. [](common_params &) {
  2804. common_log_set_timestamps(common_log_main(), true);
  2805. }
  2806. ).set_env("LLAMA_LOG_TIMESTAMPS"));
  2807. // speculative parameters
  2808. add_opt(common_arg(
  2809. {"-td", "--threads-draft"}, "N",
  2810. "number of threads to use during generation (default: same as --threads)",
  2811. [](common_params & params, int value) {
  2812. params.speculative.cpuparams.n_threads = value;
  2813. if (params.speculative.cpuparams.n_threads <= 0) {
  2814. params.speculative.cpuparams.n_threads = std::thread::hardware_concurrency();
  2815. }
  2816. }
  2817. ).set_examples({LLAMA_EXAMPLE_SPECULATIVE, LLAMA_EXAMPLE_SERVER}));
  2818. add_opt(common_arg(
  2819. {"-tbd", "--threads-batch-draft"}, "N",
  2820. "number of threads to use during batch and prompt processing (default: same as --threads-draft)",
  2821. [](common_params & params, int value) {
  2822. params.speculative.cpuparams_batch.n_threads = value;
  2823. if (params.speculative.cpuparams_batch.n_threads <= 0) {
  2824. params.speculative.cpuparams_batch.n_threads = std::thread::hardware_concurrency();
  2825. }
  2826. }
  2827. ).set_examples({LLAMA_EXAMPLE_SPECULATIVE, LLAMA_EXAMPLE_SERVER}));
  2828. add_opt(common_arg(
  2829. {"-Cd", "--cpu-mask-draft"}, "M",
  2830. "Draft model CPU affinity mask. Complements cpu-range-draft (default: same as --cpu-mask)",
  2831. [](common_params & params, const std::string & mask) {
  2832. params.speculative.cpuparams.mask_valid = true;
  2833. if (!parse_cpu_mask(mask, params.speculative.cpuparams.cpumask)) {
  2834. throw std::invalid_argument("invalid cpumask");
  2835. }
  2836. }
  2837. ).set_examples({LLAMA_EXAMPLE_SPECULATIVE}));
  2838. add_opt(common_arg(
  2839. {"-Crd", "--cpu-range-draft"}, "lo-hi",
  2840. "Ranges of CPUs for affinity. Complements --cpu-mask-draft",
  2841. [](common_params & params, const std::string & range) {
  2842. params.speculative.cpuparams.mask_valid = true;
  2843. if (!parse_cpu_range(range, params.speculative.cpuparams.cpumask)) {
  2844. throw std::invalid_argument("invalid range");
  2845. }
  2846. }
  2847. ).set_examples({LLAMA_EXAMPLE_SPECULATIVE}));
  2848. add_opt(common_arg(
  2849. {"--cpu-strict-draft"}, "<0|1>",
  2850. "Use strict CPU placement for draft model (default: same as --cpu-strict)",
  2851. [](common_params & params, int value) {
  2852. params.speculative.cpuparams.strict_cpu = value;
  2853. }
  2854. ).set_examples({LLAMA_EXAMPLE_SPECULATIVE}));
  2855. add_opt(common_arg(
  2856. {"--prio-draft"}, "N",
  2857. string_format("set draft process/thread priority : 0-normal, 1-medium, 2-high, 3-realtime (default: %d)\n", params.speculative.cpuparams.priority),
  2858. [](common_params & params, int prio) {
  2859. if (prio < 0 || prio > 3) {
  2860. throw std::invalid_argument("invalid value");
  2861. }
  2862. params.speculative.cpuparams.priority = (enum ggml_sched_priority) prio;
  2863. }
  2864. ).set_examples({LLAMA_EXAMPLE_SPECULATIVE}));
  2865. add_opt(common_arg(
  2866. {"--poll-draft"}, "<0|1>",
  2867. "Use polling to wait for draft model work (default: same as --poll])",
  2868. [](common_params & params, int value) {
  2869. params.speculative.cpuparams.poll = value;
  2870. }
  2871. ).set_examples({LLAMA_EXAMPLE_SPECULATIVE}));
  2872. add_opt(common_arg(
  2873. {"-Cbd", "--cpu-mask-batch-draft"}, "M",
  2874. "Draft model CPU affinity mask. Complements cpu-range-draft (default: same as --cpu-mask)",
  2875. [](common_params & params, const std::string & mask) {
  2876. params.speculative.cpuparams_batch.mask_valid = true;
  2877. if (!parse_cpu_mask(mask, params.speculative.cpuparams_batch.cpumask)) {
  2878. throw std::invalid_argument("invalid cpumask");
  2879. }
  2880. }
  2881. ).set_examples({LLAMA_EXAMPLE_SPECULATIVE}));
  2882. add_opt(common_arg(
  2883. {"-Crbd", "--cpu-range-batch-draft"}, "lo-hi",
  2884. "Ranges of CPUs for affinity. Complements --cpu-mask-draft-batch)",
  2885. [](common_params & params, const std::string & range) {
  2886. params.speculative.cpuparams_batch.mask_valid = true;
  2887. if (!parse_cpu_range(range, params.speculative.cpuparams_batch.cpumask)) {
  2888. throw std::invalid_argument("invalid cpumask");
  2889. }
  2890. }
  2891. ).set_examples({LLAMA_EXAMPLE_SPECULATIVE}));
  2892. add_opt(common_arg(
  2893. {"--cpu-strict-batch-draft"}, "<0|1>",
  2894. "Use strict CPU placement for draft model (default: --cpu-strict-draft)",
  2895. [](common_params & params, int value) {
  2896. params.speculative.cpuparams_batch.strict_cpu = value;
  2897. }
  2898. ).set_examples({LLAMA_EXAMPLE_SPECULATIVE}));
  2899. add_opt(common_arg(
  2900. {"--prio-batch-draft"}, "N",
  2901. string_format("set draft process/thread priority : 0-normal, 1-medium, 2-high, 3-realtime (default: %d)\n", params.speculative.cpuparams_batch.priority),
  2902. [](common_params & params, int prio) {
  2903. if (prio < 0 || prio > 3) {
  2904. throw std::invalid_argument("invalid value");
  2905. }
  2906. params.speculative.cpuparams_batch.priority = (enum ggml_sched_priority) prio;
  2907. }
  2908. ).set_examples({LLAMA_EXAMPLE_SPECULATIVE}));
  2909. add_opt(common_arg(
  2910. {"--poll-batch-draft"}, "<0|1>",
  2911. "Use polling to wait for draft model work (default: --poll-draft)",
  2912. [](common_params & params, int value) {
  2913. params.speculative.cpuparams_batch.poll = value;
  2914. }
  2915. ).set_examples({LLAMA_EXAMPLE_SPECULATIVE}));
  2916. add_opt(common_arg(
  2917. {"--draft-max", "--draft", "--draft-n"}, "N",
  2918. string_format("number of tokens to draft for speculative decoding (default: %d)", params.speculative.n_max),
  2919. [](common_params & params, int value) {
  2920. params.speculative.n_max = value;
  2921. }
  2922. ).set_examples({LLAMA_EXAMPLE_SPECULATIVE, LLAMA_EXAMPLE_LOOKUP, LLAMA_EXAMPLE_SERVER, LLAMA_EXAMPLE_CLI}).set_env("LLAMA_ARG_DRAFT_MAX"));
  2923. add_opt(common_arg(
  2924. {"--draft-min", "--draft-n-min"}, "N",
  2925. string_format("minimum number of draft tokens to use for speculative decoding (default: %d)", params.speculative.n_min),
  2926. [](common_params & params, int value) {
  2927. params.speculative.n_min = value;
  2928. }
  2929. ).set_examples({LLAMA_EXAMPLE_SPECULATIVE, LLAMA_EXAMPLE_LOOKUP, LLAMA_EXAMPLE_SERVER, LLAMA_EXAMPLE_CLI}).set_env("LLAMA_ARG_DRAFT_MIN"));
  2930. add_opt(common_arg(
  2931. {"--draft-p-split"}, "P",
  2932. string_format("speculative decoding split probability (default: %.1f)", (double)params.speculative.p_split),
  2933. [](common_params & params, const std::string & value) {
  2934. params.speculative.p_split = std::stof(value);
  2935. }
  2936. ).set_examples({LLAMA_EXAMPLE_SPECULATIVE}).set_env("LLAMA_ARG_DRAFT_P_SPLIT"));
  2937. add_opt(common_arg(
  2938. {"--draft-p-min"}, "P",
  2939. string_format("minimum speculative decoding probability (greedy) (default: %.1f)", (double)params.speculative.p_min),
  2940. [](common_params & params, const std::string & value) {
  2941. params.speculative.p_min = std::stof(value);
  2942. }
  2943. ).set_examples({LLAMA_EXAMPLE_SPECULATIVE, LLAMA_EXAMPLE_SERVER, LLAMA_EXAMPLE_CLI}).set_env("LLAMA_ARG_DRAFT_P_MIN"));
  2944. add_opt(common_arg(
  2945. {"-cd", "--ctx-size-draft"}, "N",
  2946. string_format("size of the prompt context for the draft model (default: %d, 0 = loaded from model)", params.speculative.n_ctx),
  2947. [](common_params & params, int value) {
  2948. params.speculative.n_ctx = value;
  2949. }
  2950. ).set_examples({LLAMA_EXAMPLE_SPECULATIVE, LLAMA_EXAMPLE_SERVER, LLAMA_EXAMPLE_CLI}).set_env("LLAMA_ARG_CTX_SIZE_DRAFT"));
  2951. add_opt(common_arg(
  2952. {"-devd", "--device-draft"}, "<dev1,dev2,..>",
  2953. "comma-separated list of devices to use for offloading the draft model (none = don't offload)\n"
  2954. "use --list-devices to see a list of available devices",
  2955. [](common_params & params, const std::string & value) {
  2956. params.speculative.devices = parse_device_list(value);
  2957. }
  2958. ).set_examples({LLAMA_EXAMPLE_SPECULATIVE, LLAMA_EXAMPLE_SERVER, LLAMA_EXAMPLE_CLI}));
  2959. add_opt(common_arg(
  2960. {"-ngld", "--gpu-layers-draft", "--n-gpu-layers-draft"}, "N",
  2961. "number of layers to store in VRAM for the draft model",
  2962. [](common_params & params, int value) {
  2963. params.speculative.n_gpu_layers = value;
  2964. if (!llama_supports_gpu_offload()) {
  2965. fprintf(stderr, "warning: no usable GPU found, --gpu-layers-draft option will be ignored\n");
  2966. fprintf(stderr, "warning: one possible reason is that llama.cpp was compiled without GPU support\n");
  2967. fprintf(stderr, "warning: consult docs/build.md for compilation instructions\n");
  2968. }
  2969. }
  2970. ).set_examples({LLAMA_EXAMPLE_SPECULATIVE, LLAMA_EXAMPLE_SERVER, LLAMA_EXAMPLE_CLI}).set_env("LLAMA_ARG_N_GPU_LAYERS_DRAFT"));
  2971. add_opt(common_arg(
  2972. {"-md", "--model-draft"}, "FNAME",
  2973. "draft model for speculative decoding (default: unused)",
  2974. [](common_params & params, const std::string & value) {
  2975. params.speculative.model.path = value;
  2976. }
  2977. ).set_examples({LLAMA_EXAMPLE_SPECULATIVE, LLAMA_EXAMPLE_SERVER, LLAMA_EXAMPLE_CLI}).set_env("LLAMA_ARG_MODEL_DRAFT"));
  2978. add_opt(common_arg(
  2979. {"--spec-replace"}, "TARGET", "DRAFT",
  2980. "translate the string in TARGET into DRAFT if the draft model and main model are not compatible",
  2981. [](common_params & params, const std::string & tgt, const std::string & dft) {
  2982. params.speculative.replacements.push_back({ tgt, dft });
  2983. }
  2984. ).set_examples({LLAMA_EXAMPLE_SPECULATIVE, LLAMA_EXAMPLE_SERVER, LLAMA_EXAMPLE_CLI}));
  2985. add_opt(common_arg(
  2986. {"-ctkd", "--cache-type-k-draft"}, "TYPE",
  2987. string_format(
  2988. "KV cache data type for K for the draft model\n"
  2989. "allowed values: %s\n"
  2990. "(default: %s)",
  2991. get_all_kv_cache_types().c_str(),
  2992. ggml_type_name(params.speculative.cache_type_k)
  2993. ),
  2994. [](common_params & params, const std::string & value) {
  2995. params.speculative.cache_type_k = kv_cache_type_from_str(value);
  2996. }
  2997. ).set_env("LLAMA_ARG_CACHE_TYPE_K_DRAFT"));
  2998. add_opt(common_arg(
  2999. {"-ctvd", "--cache-type-v-draft"}, "TYPE",
  3000. string_format(
  3001. "KV cache data type for V for the draft model\n"
  3002. "allowed values: %s\n"
  3003. "(default: %s)",
  3004. get_all_kv_cache_types().c_str(),
  3005. ggml_type_name(params.speculative.cache_type_v)
  3006. ),
  3007. [](common_params & params, const std::string & value) {
  3008. params.speculative.cache_type_v = kv_cache_type_from_str(value);
  3009. }
  3010. ).set_env("LLAMA_ARG_CACHE_TYPE_V_DRAFT"));
  3011. add_opt(common_arg(
  3012. {"-mv", "--model-vocoder"}, "FNAME",
  3013. "vocoder model for audio generation (default: unused)",
  3014. [](common_params & params, const std::string & value) {
  3015. params.vocoder.model.path = value;
  3016. }
  3017. ).set_examples({LLAMA_EXAMPLE_TTS, LLAMA_EXAMPLE_SERVER}));
  3018. add_opt(common_arg(
  3019. {"--tts-use-guide-tokens"},
  3020. "Use guide tokens to improve TTS word recall",
  3021. [](common_params & params) {
  3022. params.vocoder.use_guide_tokens = true;
  3023. }
  3024. ).set_examples({LLAMA_EXAMPLE_TTS, LLAMA_EXAMPLE_SERVER}));
  3025. add_opt(common_arg(
  3026. {"--tts-speaker-file"}, "FNAME",
  3027. "speaker file path for audio generation",
  3028. [](common_params & params, const std::string & value) {
  3029. params.vocoder.speaker_file = value;
  3030. }
  3031. ).set_examples({LLAMA_EXAMPLE_TTS}));
  3032. add_opt(common_arg(
  3033. {"--diffusion-steps"}, "N",
  3034. string_format("number of diffusion steps (default: %d)", params.diffusion.steps),
  3035. [](common_params & params, int value) { params.diffusion.steps = value; }
  3036. ).set_examples({ LLAMA_EXAMPLE_DIFFUSION }));
  3037. add_opt(common_arg(
  3038. {"--diffusion-visual"},
  3039. string_format("enable visual diffusion mode (show progressive generation) (default: %s)", params.diffusion.visual_mode ? "true" : "false"),
  3040. [](common_params & params) { params.diffusion.visual_mode = true; }
  3041. ).set_examples({ LLAMA_EXAMPLE_DIFFUSION }));
  3042. add_opt(common_arg(
  3043. {"--diffusion-eps"}, "F",
  3044. string_format("epsilon for timesteps (default: %.6f)", (double) params.diffusion.eps),
  3045. [](common_params & params, const std::string & value) { params.diffusion.eps = std::stof(value); }
  3046. ).set_examples({ LLAMA_EXAMPLE_DIFFUSION }));
  3047. add_opt(common_arg(
  3048. {"--diffusion-algorithm"}, "N",
  3049. string_format("diffusion algorithm: 0=ORIGIN, 1=ENTROPY_BASED, 2=MARGIN_BASED, 3=RANDOM, 4=LOW_CONFIDENCE (default: %d)", params.diffusion.algorithm),
  3050. [](common_params & params, int value) { params.diffusion.algorithm = value; }
  3051. ).set_examples({ LLAMA_EXAMPLE_DIFFUSION }));
  3052. add_opt(common_arg(
  3053. {"--diffusion-alg-temp"}, "F",
  3054. string_format("dream algorithm temperature (default: %.3f)", (double) params.diffusion.alg_temp),
  3055. [](common_params & params, const std::string & value) { params.diffusion.alg_temp = std::stof(value); }
  3056. ).set_examples({ LLAMA_EXAMPLE_DIFFUSION }));
  3057. add_opt(common_arg(
  3058. {"--diffusion-block-length"}, "N",
  3059. string_format("llada block length for generation (default: %d)", params.diffusion.block_length),
  3060. [](common_params & params, int value) { params.diffusion.block_length = value; }
  3061. ).set_examples({ LLAMA_EXAMPLE_DIFFUSION }));
  3062. add_opt(common_arg(
  3063. {"--diffusion-cfg-scale"}, "F",
  3064. string_format("llada classifier-free guidance scale (default: %.3f)", (double) params.diffusion.cfg_scale),
  3065. [](common_params & params, const std::string & value) { params.diffusion.cfg_scale = std::stof(value); }
  3066. ).set_examples({ LLAMA_EXAMPLE_DIFFUSION }));
  3067. add_opt(common_arg(
  3068. {"--diffusion-add-gumbel-noise"}, "F",
  3069. string_format("add gumbel noise to the logits if temp > 0.0 (default: %s)", params.diffusion.add_gumbel_noise ? "true" : "false"),
  3070. [](common_params & params, const std::string & value) { params.diffusion.add_gumbel_noise = std::stof(value); }
  3071. ).set_examples({ LLAMA_EXAMPLE_DIFFUSION }));
  3072. add_opt(common_arg(
  3073. { "-lr", "--learning-rate" }, "ALPHA",
  3074. string_format("adamw or sgd optimizer alpha (default: %.2g); note: sgd alpha recommended ~10x (no momentum)", (double) params.lr.lr0),
  3075. [](common_params & params, const std::string & value) { params.lr.lr0 = std::stof(value); }
  3076. ).set_examples({ LLAMA_EXAMPLE_FINETUNE }));
  3077. add_opt(common_arg({ "-lr-min", "--learning-rate-min" }, "ALPHA",
  3078. string_format("(if >0) final learning rate after decay (if -decay-epochs is set, default=%.2g)",
  3079. (double) params.lr.lr_min),
  3080. [](common_params & params, const std::string & value) { params.lr.lr_min = std::stof(value); }
  3081. ).set_examples({ LLAMA_EXAMPLE_FINETUNE }));
  3082. add_opt(common_arg(
  3083. {"-decay-epochs", "--learning-rate-decay-epochs"}, "ALPHA",
  3084. string_format("(if >0) decay learning rate to -lr-min after this many epochs (exponential decay, default=%.2g)", (double) params.lr.decay_epochs),
  3085. [](common_params & params, const std::string & value) { params.lr.decay_epochs = std::stof(value); }
  3086. ).set_examples({ LLAMA_EXAMPLE_FINETUNE }));
  3087. add_opt(common_arg(
  3088. {"-wd", "--weight-decay"}, "WD",
  3089. string_format("adamw or sgd optimizer weight decay (0 is off; recommend very small e.g. 1e-9) (default: %.2g).", (double) params.lr.wd),
  3090. [](common_params & params, const std::string & value) { params.lr.wd = std::stof(value); }
  3091. ).set_examples({ LLAMA_EXAMPLE_FINETUNE }));
  3092. add_opt(common_arg(
  3093. {"-val-split", "--val-split"}, "FRACTION",
  3094. string_format("fraction of data to use as validation set for training (default: %.2g).", (double) params.val_split),
  3095. [](common_params & params, const std::string & value) { params.val_split = std::stof(value); }
  3096. ).set_examples({ LLAMA_EXAMPLE_FINETUNE }));
  3097. add_opt(common_arg(
  3098. {"-epochs", "--epochs"}, "N",
  3099. string_format("optimizer max # of epochs (default: %d)", params.lr.epochs),
  3100. [](common_params & params, int epochs) { params.lr.epochs = epochs; }
  3101. ).set_examples({ LLAMA_EXAMPLE_FINETUNE }));
  3102. add_opt(common_arg(
  3103. {"-opt", "--optimizer"}, "sgd|adamw", "adamw or sgd",
  3104. [](common_params & params, const std::string & name) {
  3105. params.optimizer = common_opt_get_optimizer(name.c_str());
  3106. if (params.optimizer == GGML_OPT_OPTIMIZER_TYPE_COUNT) {
  3107. throw std::invalid_argument("invalid --optimizer, valid options: adamw, sgd");
  3108. }
  3109. }
  3110. ).set_examples({ LLAMA_EXAMPLE_FINETUNE }));
  3111. // presets
  3112. add_opt(common_arg(
  3113. {"--tts-oute-default"},
  3114. string_format("use default OuteTTS models (note: can download weights from the internet)"),
  3115. [](common_params & params) {
  3116. params.model.hf_repo = "OuteAI/OuteTTS-0.2-500M-GGUF";
  3117. params.model.hf_file = "OuteTTS-0.2-500M-Q8_0.gguf";
  3118. params.vocoder.model.hf_repo = "ggml-org/WavTokenizer";
  3119. params.vocoder.model.hf_file = "WavTokenizer-Large-75-F16.gguf";
  3120. }
  3121. ).set_examples({LLAMA_EXAMPLE_TTS}));
  3122. add_opt(common_arg(
  3123. {"--embd-gemma-default"},
  3124. string_format("use default EmbeddingGemma model (note: can download weights from the internet)"),
  3125. [](common_params & params) {
  3126. params.model.hf_repo = "ggml-org/embeddinggemma-300M-qat-q4_0-GGUF";
  3127. params.model.hf_file = "embeddinggemma-300M-qat-Q4_0.gguf";
  3128. params.port = 8011;
  3129. params.n_ubatch = 2048;
  3130. params.n_batch = 2048;
  3131. params.n_parallel = 32;
  3132. params.n_ctx = 2048*params.n_parallel;
  3133. params.verbose_prompt = true;
  3134. params.embedding = true;
  3135. }
  3136. ).set_examples({LLAMA_EXAMPLE_EMBEDDING, LLAMA_EXAMPLE_SERVER}));
  3137. add_opt(common_arg(
  3138. {"--fim-qwen-1.5b-default"},
  3139. string_format("use default Qwen 2.5 Coder 1.5B (note: can download weights from the internet)"),
  3140. [](common_params & params) {
  3141. params.model.hf_repo = "ggml-org/Qwen2.5-Coder-1.5B-Q8_0-GGUF";
  3142. params.model.hf_file = "qwen2.5-coder-1.5b-q8_0.gguf";
  3143. params.port = 8012;
  3144. params.n_ubatch = 1024;
  3145. params.n_batch = 1024;
  3146. params.n_ctx = 0;
  3147. params.n_cache_reuse = 256;
  3148. }
  3149. ).set_examples({LLAMA_EXAMPLE_SERVER}));
  3150. add_opt(common_arg(
  3151. {"--fim-qwen-3b-default"},
  3152. string_format("use default Qwen 2.5 Coder 3B (note: can download weights from the internet)"),
  3153. [](common_params & params) {
  3154. params.model.hf_repo = "ggml-org/Qwen2.5-Coder-3B-Q8_0-GGUF";
  3155. params.model.hf_file = "qwen2.5-coder-3b-q8_0.gguf";
  3156. params.port = 8012;
  3157. params.n_ubatch = 1024;
  3158. params.n_batch = 1024;
  3159. params.n_ctx = 0;
  3160. params.n_cache_reuse = 256;
  3161. }
  3162. ).set_examples({LLAMA_EXAMPLE_SERVER}));
  3163. add_opt(common_arg(
  3164. {"--fim-qwen-7b-default"},
  3165. string_format("use default Qwen 2.5 Coder 7B (note: can download weights from the internet)"),
  3166. [](common_params & params) {
  3167. params.model.hf_repo = "ggml-org/Qwen2.5-Coder-7B-Q8_0-GGUF";
  3168. params.model.hf_file = "qwen2.5-coder-7b-q8_0.gguf";
  3169. params.port = 8012;
  3170. params.n_ubatch = 1024;
  3171. params.n_batch = 1024;
  3172. params.n_ctx = 0;
  3173. params.n_cache_reuse = 256;
  3174. }
  3175. ).set_examples({LLAMA_EXAMPLE_SERVER}));
  3176. add_opt(common_arg(
  3177. {"--fim-qwen-7b-spec"},
  3178. string_format("use Qwen 2.5 Coder 7B + 0.5B draft for speculative decoding (note: can download weights from the internet)"),
  3179. [](common_params & params) {
  3180. params.model.hf_repo = "ggml-org/Qwen2.5-Coder-7B-Q8_0-GGUF";
  3181. params.model.hf_file = "qwen2.5-coder-7b-q8_0.gguf";
  3182. params.speculative.model.hf_repo = "ggml-org/Qwen2.5-Coder-0.5B-Q8_0-GGUF";
  3183. params.speculative.model.hf_file = "qwen2.5-coder-0.5b-q8_0.gguf";
  3184. params.port = 8012;
  3185. params.n_ubatch = 1024;
  3186. params.n_batch = 1024;
  3187. params.n_ctx = 0;
  3188. params.n_cache_reuse = 256;
  3189. }
  3190. ).set_examples({LLAMA_EXAMPLE_SERVER}));
  3191. add_opt(common_arg(
  3192. {"--fim-qwen-14b-spec"},
  3193. string_format("use Qwen 2.5 Coder 14B + 0.5B draft for speculative decoding (note: can download weights from the internet)"),
  3194. [](common_params & params) {
  3195. params.model.hf_repo = "ggml-org/Qwen2.5-Coder-14B-Q8_0-GGUF";
  3196. params.model.hf_file = "qwen2.5-coder-14b-q8_0.gguf";
  3197. params.speculative.model.hf_repo = "ggml-org/Qwen2.5-Coder-0.5B-Q8_0-GGUF";
  3198. params.speculative.model.hf_file = "qwen2.5-coder-0.5b-q8_0.gguf";
  3199. params.port = 8012;
  3200. params.n_ubatch = 1024;
  3201. params.n_batch = 1024;
  3202. params.n_ctx = 0;
  3203. params.n_cache_reuse = 256;
  3204. }
  3205. ).set_examples({LLAMA_EXAMPLE_SERVER}));
  3206. add_opt(common_arg(
  3207. {"--fim-qwen-30b-default"},
  3208. string_format("use default Qwen 3 Coder 30B A3B Instruct (note: can download weights from the internet)"),
  3209. [](common_params & params) {
  3210. params.model.hf_repo = "ggml-org/Qwen3-Coder-30B-A3B-Instruct-Q8_0-GGUF";
  3211. params.model.hf_file = "qwen3-coder-30b-a3b-instruct-q8_0.gguf";
  3212. params.port = 8012;
  3213. params.n_ubatch = 1024;
  3214. params.n_batch = 1024;
  3215. params.n_ctx = 0;
  3216. params.n_cache_reuse = 256;
  3217. }
  3218. ).set_examples({LLAMA_EXAMPLE_SERVER}));
  3219. add_opt(common_arg(
  3220. {"--gpt-oss-20b-default"},
  3221. string_format("use gpt-oss-20b (note: can download weights from the internet)"),
  3222. [](common_params & params) {
  3223. params.model.hf_repo = "ggml-org/gpt-oss-20b-GGUF";
  3224. params.model.hf_file = "gpt-oss-20b-mxfp4.gguf";
  3225. params.port = 8013;
  3226. params.n_ubatch = 2048;
  3227. params.n_batch = 32768;
  3228. params.n_parallel = 2;
  3229. params.n_ctx = 131072*params.n_parallel;
  3230. params.sampling.temp = 1.0f;
  3231. params.sampling.top_p = 1.0f;
  3232. params.sampling.top_k = 0;
  3233. params.sampling.min_p = 0.01f;
  3234. params.use_jinja = true;
  3235. //params.default_template_kwargs["reasoning_effort"] = "\"high\"";
  3236. }
  3237. ).set_examples({LLAMA_EXAMPLE_SERVER, LLAMA_EXAMPLE_CLI}));
  3238. add_opt(common_arg(
  3239. {"--gpt-oss-120b-default"},
  3240. string_format("use gpt-oss-120b (note: can download weights from the internet)"),
  3241. [](common_params & params) {
  3242. params.model.hf_repo = "ggml-org/gpt-oss-120b-GGUF";
  3243. params.port = 8013;
  3244. params.n_ubatch = 2048;
  3245. params.n_batch = 32768;
  3246. params.n_parallel = 2;
  3247. params.n_ctx = 131072*params.n_parallel;
  3248. params.sampling.temp = 1.0f;
  3249. params.sampling.top_p = 1.0f;
  3250. params.sampling.top_k = 0;
  3251. params.sampling.min_p = 0.01f;
  3252. params.use_jinja = true;
  3253. //params.default_template_kwargs["reasoning_effort"] = "\"high\"";
  3254. }
  3255. ).set_examples({LLAMA_EXAMPLE_SERVER, LLAMA_EXAMPLE_CLI}));
  3256. add_opt(common_arg(
  3257. {"--vision-gemma-4b-default"},
  3258. string_format("use Gemma 3 4B QAT (note: can download weights from the internet)"),
  3259. [](common_params & params) {
  3260. params.model.hf_repo = "ggml-org/gemma-3-4b-it-qat-GGUF";
  3261. params.port = 8014;
  3262. params.n_ctx = 0;
  3263. params.use_jinja = true;
  3264. }
  3265. ).set_examples({LLAMA_EXAMPLE_SERVER, LLAMA_EXAMPLE_CLI}));
  3266. add_opt(common_arg(
  3267. {"--vision-gemma-12b-default"},
  3268. string_format("use Gemma 3 12B QAT (note: can download weights from the internet)"),
  3269. [](common_params & params) {
  3270. params.model.hf_repo = "ggml-org/gemma-3-12b-it-qat-GGUF";
  3271. params.port = 8014;
  3272. params.n_ctx = 0;
  3273. params.use_jinja = true;
  3274. }
  3275. ).set_examples({LLAMA_EXAMPLE_SERVER, LLAMA_EXAMPLE_CLI}));
  3276. return ctx_arg;
  3277. }